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ABSTRACT

Active colloids are micron-sized particles that self-propel through viscous fluids
by converting energy extracted from their environment into mechanical motion.
The origin or mechanism of their locomotion can be either biological or synthetic
ranging from motile bacteria to artificial phoretic particles. Owing to their ability
to self-propel, active colloids are out of thermodynamic equilibrium and exhibit
interesting macroscopic or collective dynamics. In particular, active colloids exhibit
accumulation at confining boundaries, upstream swimming in Poiseuille flow, and
a reduced or negative apparent shear viscosity. My work has been focused on
a theoretical and computational understanding of the dynamics of active colloids
under the influence of confinement and external fluid flows, which are ubiquitous in
biological processes. I consider the transport of active colloids in channel flows, the
microrheology of active colloids, and lastly I propose and study a vesicle propulsion
system based on the learned principles.

A generalized Taylor dispersion theory is developed to study the transport of active
colloids in channel flows. I show that the often-observed upstream swimming
can be explained by the biased upstream reorientation due to the flow vorticity.
The longitudinal dispersion of active colloids includes the classical shear-enhanced
dispersion and an active swim diffusivity. Their coupling results in a non-monotonic
variation of the dispersivity as a function of the flow speed. To understand the
effect of particle shape on the transport of active colloids, a simulation algorithm
is developed that is able to faithfully resolve the inelastic collision between an
ellipsoidal particle and the channel walls. I show that the collision-induced rotation
for active ellipsoids can suppress upstream swimming. I then investigate the particle-
tracking microrheology of active colloids. I show that active colloids exhibit a swim-
thinning microrheology and a negative microviscosity can be observed when certain
hydrodynamic effects are considered. I show that the traditional constant-velocity
probe model is not suitable for the quantification of fluctuations in the suspension. To
resolve this difficulty, a generalized microrheology model that closely mimicks the
experimental setup is developed. I conclude by proposing a microscale propulsion
system in which active colloids are encapsulated in a vesicle with a semi-permeable
membrane that allows water to pass through. By maintaining an asymmetric number
density distribution, I show that the vesicle can self-propel through the surrounding
viscous fluid.
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C h a p t e r 1

INTRODUCTION

1.1 Swimming at low Reynolds number
Self-propulsion is a core feature of many living organisms. That is, they are able
to exhibit locomotion without being driven by external forces—they are active
‘particles’. Animals exhibit various modes of locomotion such as running, jumping,
swimming, and flying. The ability to move is essential for the survival of living
organisms because it allows them to search for food, find a suitable habitat, and
escape predators.

Net motion of a motile organism originates from physical interaction between the
organism and its surrounding medium. First, the organism typically has to deform
its body or appendages periodically, which constitutes the ‘gait’ of locomotion. An
equally important aspect of locomotion is the surrounding medium. For example,
human walking involves having at least one foot in contact with the ground at all
times (Bianchi et al. 1998; Donelan et al. 2002), the body undulations of fish interact
with the surrounding water to generate propulsive thrust (Blake 1983; Lauder and
Tytell 2005; Lauder et al. 2007; Lauder 2015), and the flapping flight of birds results
from aerodynamics of the surrounding air (DeLaurier 1993; Platzer et al. 2008; Shyy
et al. 2010; Chin and Lentink 2016). As walkers move on a substrate or swimmers
move through a fluid, they inevitably exert forces on the environment and in turn
experience reactive forces due to the environment.

The mechanics of locomotion through fluids at the microscale such as the swimming
of microorganisms has received substantial attention in recent decades (Lighthill
1976; Brennen and Winet 1977; Lauga and Powers 2009; Elgeti et al. 2015; Pak
et al. 2015; Lauga 2016). The physics governing swimming at the microscale is
different from that of swimming/flying of large animals or the terrestrial locomotion
of walkers and crawlers. For a typical microorganism such as E. coli, which has a
characteristic body length 𝐿 ∼ 10𝜇m and a swim speed 𝑈 ∼ 30𝜇m/s, the Reynolds
number,

𝑅𝑒 =
𝜌𝑈𝐿

𝜂
, (1.1)

in water (density 𝜌 ≈ 103kg/m3 and shear viscosity 𝜂 ∼ 10−3Pa · s) is on the order of
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3 × 10−4. In this low 𝑅𝑒 regime, viscous damping is paramount and inertia effects
play no role in the locomotion of microswimmers. Swimming or flying strategies
adopted by animals in the high Reynolds number regime such as fish and birds are
ineffective at the small scale. Any attempt to impart momentum to the surrounding
fluid, as is familiar to humans, will be countered by viscous damping at low 𝑅𝑒.

In the absence of inertia, the fluid mechanics is governed by the Stokes equations:

− ∇𝑝 + 𝜂∇2u = 0, (1.2)

∇ · u = 0, (1.3)

where 𝑝 is the pressure and u is the flow field. Equivalently, the momentum
balance (1.2) can be written as ∇ · σ = 0, where σ = −𝑝I + 𝜂 [∇u + (∇u)⊺]
is the Newtonian stress tensor. Equation (1.3) is the incompressibility condition.
The linearity and time-independence of the Stokes equations (1.2) and (1.3) lead
to kinematic reversibility, which is a fundamental constraint associated with the
motion of bodies at zero Reynolds number. Consider the rigid body translation of
an arbitrary object with a prescribed velocity U in an otherwise quiescent viscous
fluid. If we double the translational velocity U → 2U , then due to linearity the
entire flow and pressure fields are doubled: u → 2u and 𝑝 → 2𝑝. Similarly, if
the translational velocity is reversed, U → −U , the streamlines of the flow field is
identical except that the direction of flow is reversed: u → −u.

An important consequence of the linearity and time-independence of the Stokes
equations is Purcell’s “scallop theorem”, which states that a reciprocal motion (a
deformation exhibiting time-reversal symmetry) cannot generate any net propulsive
thrust (Purcell 1977). To bypass the constraint of time-reversibility, microorganisms
in nature adopt a variety of propulsion mechanisms including passing planar defor-
mation waves along the flagellum, rotating a helical flagellum, and beating arrays
of cilia (short flagella) covering their body surface (Taylor 1951; 1952; Lighthill
1952; Gray and Hancock 1955; Chwang and Wu 1971; Blake 1971; Lighthill 1976;
Brennen and Winet 1977; Higdon 1979; Purcell 1997; Rodenborn et al. 2013).
Meanwhile, recent advances in micro-fabrication technologies have enabled the
development of microscale robots such as synthetic flexible filaments or Janus parti-
cles that are capable of swimming at speeds comparable to microorganisms (Dreyfus
et al. 2005; Howse et al. 2007; Pak et al. 2011; Williams et al. 2014; Yadav et al.
2015; Maier et al. 2016). These motile microrobots, either synthetic or biohybrid,
have been used for the delivery of medical cargo into single cells for the purpose
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of imaging, diagnostics and therapeutics (Medina-Sánchez et al. 2018; Erkoc et al.
2019; Singh et al. 2019; Bunea and Taboryski 2020).

To illustrate the swimming mechanics of a single microswimmer, we consider the
squirmer model first studied by Lighthill (1952) and Blake (1971), which was
originally intended to mimic the locomotion of organisms possessing dense arrays
of cilia such as Paramecium. The squirmer model consists of a body that has a
prescribed surface actuation described by the velocity field u𝑠 (𝑡)—the swimming
gait. The instantaneous velocity on the body surface 𝑆𝐵 is given by

u(x ∈ 𝑆𝐵) = U +Ω × x + u𝑠, (1.4)

which serves as a boundary condition for the Stokes equations (1.2) and (1.3).
Here, the angular velocity and the actuation is measured in a reference frame that
is attached to an arbitrary point in the squirmer body. The swimming problem is to
determine the instantaneous linear and angular velocities U (𝑡) and Ω(𝑡) for a given
u𝑠. To do this, we require the hydrodynamic force (F 𝐻) and torque (L𝐻) to vanish
because self-propulsion is force- and torque-free. In a viscous fluid as we consider
here, the hydrodynamic force and torque are, respectively, given by

F 𝐻 =

∫
𝑆𝐵

σ · n𝑑𝑆, (1.5)

L𝐻 =

∫
𝑆𝐵

x × (σ · n) 𝑑𝑆, (1.6)

where n is the unit normal vector of 𝑆𝐵 pointing into the fluid. After specifying
a far-field condition, which typically is given by u → 0, 𝑝 → 0, the equations
governing the fluid mechanics of swimming is complete.

To satisfy the force- and torque-free condition, one may be tempted to first solve
the Stokes equations to obtain the stress tensor σ and then carry out the integrals
in (1.5) and (1.6). However, an immediate difficulty arises because the boundary
condition (1.4) is still unknown and has to be determined as part of the solution.
This difficulty can be bypassed using the reciprocal theorem (Stone and Samuel
1996) provided that one can solve the resistance/mobility problem for the swimmer
shape. In particular, for a spherical squirmer of radius 𝑅, we have

U = − 1
4𝜋𝑅2

∫
𝑆𝐵

u𝑠𝑑𝑆, (1.7)

Ω = − 3
8𝜋𝑅3

∫
𝑆𝐵

n × u𝑠𝑑𝑆. (1.8)



4

A detailed pedagogical introduction to the reciprocal theorem can be found in
Masoud and Stone (2019). We note that, however, the reciprocal theorem does not
produce the flow or pressure field outside the squirmer. If the flow field is of interest,
one must solve the Stokes equations directly.

Making use of linearity, we can decompose the swimming problem into a thrust
problem and a drag problem. In the thrust problem, the swimmer body is held fixed
while undergoing surface actuation u𝑠 thus generating thrust (The thrust is also
called the ‘swim’ force.). In the drag problem, the swimmer undergoes rigid body
translation with velocity U which induces hydrodynamic drag. The balance of the
thrust and the drag constitutes the original swimming problem. Taking the spherical
squirmer undergoing tangential surface actuation as an example, the hydrodynamic
drag of translation is simply the Stokes drag, F 𝐷 = −6𝜋𝜂𝑅U , while the thrust
problem gives the swim force

F 𝑆 = −3
2
𝜂

𝑅

∫
𝑆𝐵

u𝑠𝑑𝑆. (1.9)

One can see that the balance

F 𝑆 + F 𝐷 = 0 (1.10)

recovers equation (1.7).

1.2 Active colloids
So far we have outlined the fundamentals of swimming of a single organism in the
low Re regime. More recently, the focus has been on the macroscopic or collective
behavior of swimming microorganisms or active particles. While the concept of
‘activity’ comes most naturally from living microorganisms, it can be easily extended
to non-living objects. Self-propulsion of synthetic swimmers can be achieved using
a multitude of mechanisms including electrophoresis (Paxton et al. 2006), self-
diffusiophoresis (Theurkauff et al. 2012; Würger 2015), thermophoresis (Baraban
et al. 2013), flexible nanowire motors (Pak et al. 2011), bubble propulsion (Gibbs
and Zhao 2009; Wang and Wu 2014), and so on. In most cases, these synthetic
swimmers mimic the size (𝜇m) and swim speeds (𝜇m/s) of living microorganisms.

Owing to their ability to self-propel, active particles (whether living or synthetic)
are out of thermal equilibrium; they exhibit a cascade of interesting behaviors
including accumulation at confining boundaries (Wensink and Löwen 2008; Li
and Tang 2009; Elgeti and Gompper 2013; Yan and Brady 2015b), Casimir effect
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(Ray et al. 2014; Kjeldbjerg and Brady 2021), self-assembly (Mallory et al. 2018),
upstream swimming in pressure-driven channel flows (Hill et al. 2007; Kaya and
Koser 2012; Zöttl and Stark 2013; Peng and Brady 2020), motility-induced phase
separation (Cates and Tailleur 2015; Takatori and Brady 2015), and the existence
of a steady-state spontaneous flow in the absence of any external forces (Lushi
et al. 2012; Guo et al. 2018). Most of these phenomena are universal to active
particles; these behaviors do not rely on the underlying propulsion mechanism (e.g.,
chemical self-propulsion versus biological self-propulsion) but result from physical
interactions among active particles and/or with the environment (e.g., the solvent or
boundaries, et cetera.) This important observation allows us to probe the physics
behind such behaviors using a minimal model—the active Brownian particle (ABP)
model (Romanczuk et al. 2012).

In the context of this thesis, we consider the dynamics of viscous suspensions of
active Brownian particles. In essence, ABPs are active colloidal particles and we
refer to the viscous suspension of ABPs as active colloidal suspensions (or colloidal
active matter).

1.2.1 The active Brownian particle model
Suppose that the surface actuation of a spherical squirmer is axisymmetric with the
axis of symmetry denoted by q(𝑡) (|q | = 1) and consider an expansion of the slip
velocity in the irreducible spherical tensor harmonics given by

u𝑠 (x ∈ 𝑆𝐵) = 𝐴1q + 𝐴2q × n + 𝐴3

(
qq − 1

3
I

)
· n + 𝐴4q ·

(
nn − 1

3
I

)
+ · · ·,

(1.11)

where 𝐴𝑖 (𝑖 = 1, 2...) are numerical coefficients having dimensions of velocity.
Using (1.9), we obtain the thrust as F 𝑆 = −𝜁𝑅𝐴1q, where 𝜁 = 6𝜋𝜂𝑅 is the Stokes
drag coefficient of a sphere. Setting 𝐴1 = −𝑈𝑠, equation (1.10) becomes

𝜁𝑈𝑠q − 𝜁U = 0. (1.12)

In other words, the instantaneous velocity U = 𝑈𝑠q: 𝑈𝑠 is the swim speed and q is
a unit vector in the direction of swimming. The above analysis is performed under
the assumption that the expansion (1.11) is allowed and that an isolated squirmer is
considered. We note that the swim force for general swimmers or in the presence
of other swimmers/particles is more involved and we refer the reader to the work of
Yan and Brady (2015a) and Burkholder and Brady (2018).
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The above analysis reveals the first ingredient of the ABP model—the self-propulsion
characterized by a constant swim speed 𝑈𝑠. Because the ABPs are at the colloidal
scale, they experience random fluctuations from the solvent. Furthermore, motile
bacteria such as E. coli do not swim in straight lines but instead has discrete
tumbling events in which the direction of swimming changes abruptly 1. To take into
account either thermal or biological fluctuations, we assume that the ABPs undergo
translational and rotational Brownian motion—which are the second ingredient of
the ABP model.

The inclusion of Brownian motion renders the system stochastic and thus a statistical
mechanical approach is adopted. To this end, we consider the probability density
𝑃(x, q, 𝑡) of finding the ABP at position x, orientation q at time 𝑡. Because the
probability is conserved, 𝑃 is governed by the Smoluchowski equation, which reads

𝜕𝑃

𝜕𝑡
+ ∇ · j𝑇 + ∇𝑅 · j𝑅 = 0, (1.13)

where the translational and rotational fluxes are, respectively,2

j𝑇 = 𝑈𝑠q𝑃 − 𝐷𝑇∇𝑃, (1.14)

j𝑅 = −𝐷𝑅∇𝑅𝑃. (1.15)

Here, 𝐷𝑇 is the translational diffusivity and 𝐷𝑅 is the rotational diffusivity. An
important length scale for ABPs is the run or persistence length, ℓ = 𝑈𝑠𝜏𝑅, where
𝜏𝑅 = 1/𝐷𝑅 is the reorientation time.

The global conservation condition reads∫
𝑉

𝑑x

∫
|q |=1

𝑃𝑑q = 1, (1.16)

where 𝑉 is the physical domain (x ∈ 𝑉).

In contrast to passive Brownian particles, the self-propulsion of active particles
introduces a coupling between their rotational and translational dynamics via the
swimming motion. That is, even for an isolated active Brownian sphere (which
is geometrically isotropic), one must track both its orientation and position. One
manifestation of such a coupling is the enhanced long-time self-diffusivity beyond
the translational diffusivity 𝐷𝑇 , which for an ABP with constant properties in free
space is 𝐷eff = 𝐷𝑇 + 𝐷swim, where 𝐷swim = 𝑈2

𝑠 𝜏𝑅/6 (in 3D) is the swim diffusivity.
1There is a run-and-tumble particle (RTP) model that intends to mimic the behavior of bacteria

motion more closely. For many situations, its dynamics is equivalent to that of the ABPs (Cates and
Tailleur 2013; Solon et al. 2015).

2See appendix A for a discussion of the Smoluchowski equation and its moments.
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Figure 1.1: Schematic of ABPs on one side of an infinite planar wall (𝑧 = 0) and
the number density distribution.

1.2.2 Pressure in active colloids
Consider a body immersed in a dilute suspension of active colloids. The net force
the active colloids exert on the body is given by (Brady 1993; Squires and Brady
2005)

F = −𝑘𝐵𝑇
∫
𝑆𝐵

𝑛(x, 𝑡)n𝑑𝑆, (1.17)

where 𝑆𝐵 is the surface of the body, n is the unit normal vector of 𝑆𝐵 that is pointing
into the suspension, and

𝑛(x, 𝑡) =
∫
|q |=1

𝑃𝑑q (1.18)

is the number density of active colloids. To understand the force on an immersed
body, we consider an infinite flat plate with normal in 𝑧-direction (See figure 1.1 for
a schematic.), which has been solved by Yan and Brady (2015b).

From (1.17), the force per unit area or pressure on the wall is just the osmotic
pressure, Π𝑤

osmo = 𝑛𝑤𝑘𝐵𝑇 , where 𝑛𝑤 is the number density on the wall. Yan and
Brady (2015b) showed that

𝑛𝑤

𝑛∞
= 1 + 𝑘𝑠𝑇𝑠

𝑘𝐵𝑇
> 1, (1.19)

where 𝑘𝐵𝑇 = 𝜁𝐷𝑇 is the thermal energy, 𝑘𝑠𝑇𝑠 = 𝜁𝐷swim is the ‘activity’ (Takatori
et al. 2014), and 𝑛∞ is the bulk (𝑧 → ∞) number density. As shown in figure 1.1,
active colloids accumulate at the wall (a no-flux boundary) and the number density
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decays from 𝑛𝑤 to 𝑛∞ as one moves away from the wall. Using equation (1.19), we
can relate the pressure at the wall to that at infinity:

Π𝑤
osmo = 𝑛𝑤𝑘𝐵𝑇 = 𝑛∞𝑘𝐵𝑇 + 𝑛∞𝑘𝑠𝑇𝑠 = Π∞

osmo + Π∞
swim, (1.20)

where Π∞
swim = 𝑛∞𝑘𝑠𝑇𝑠 is the so-called swim pressure (Takatori et al. 2014). There-

fore, the osmotic pressure on the wall is the sum of the osmotic pressure and the
swim pressure far away in the bulk. We note that the activity of active colloids does
not introduce a new mechanism for pressure generation beyond that of the osmotic
pressure. The swim pressure appears when one wishes to isolate the value of the
osmotic pressure at a wall Π𝑤

osmo and relate it to quantities far away.

For many colloidal active matter systems, 𝑘𝑠𝑇𝑠/𝑘𝐵𝑇 ≫ 1. In this high activity or
athermal limit, we have

Π𝑤
osmo = Π∞

swim. (1.21)

In other words, the osmotic pressure at the wall is given by the swim pressure far
away. For an arbitrary immersed object, the above equation can be generalized to
include the effect of the boundary curvature (Yan and Brady 2015b; 2018; Peng
et al. 2021). We note that the total pressure (osmotic plus the fluid pressure 𝑝 𝑓 ),
𝑃 = 𝑝 𝑓 + 𝑛𝑘𝐵𝑇 , does not contain the swim pressure.

1.3 Thesis outline
In this thesis, I investigate the transport and microrheology of active colloids. As
shown in the previous section, active colloids under confinement exhibit wall accu-
mulation. Here, I consider how external flow (or forcing) in addition to confinement
affect the dynamics of active colloids. This is particularly useful because many
biological active processes happen in the presence of fluid flows and under confine-
ment.

1.3.1 Transport of active colloids
Locomotion of active particles such as motile bacteria or phoretic swimmers often
takes place in the presence of applied flows and confining boundaries. Interactions of
these active swimmers with the flow environment are important for the understanding
of many biological processes, including infection by motile bacteria (Siitonen and
Nurminen 1992; Kao et al. 2014) and the formation of biofilms (Rusconi et al. 2010;
Kim et al. 2014). Recent experimental and theoretical work have shown that active
particles in a Poiseuille flow exhibit interesting dynamics including accumulation at
the wall and upstream swimming (Bechinger et al. 2016).
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In Chapter 2, I develop a generalized Taylor dispersion theory to study the effective
transport (average drift and effective longitudinal dispersion) of active colloids in a
pressure-driven channel flow. In this problem, the active colloids experience both
channel confinement and the background Poiseuille flow, the interplay of which
gives rise to interesting behaviors such as upstream swimming (i.e., rheotaxis) and
non-monotonic dispersion as a function of the flow speed. In our model, the active
colloids are considered as point-like particles.

Many biological microswimmers are non-spherical. For example, the motile bacte-
ria E. coli can be better represented by ellipsoidal particles than spherical ones. In
Chapter 3, the dynamics and transport of ellipsoidal active particles in channel flows
are studied. One difficulty in this effort is the boundary interaction. For spherical
particles, one can just use the no-flux boundary condition at the wall; in this case
the wall simply exerts a force to keep the particle from penetrating the wall. When
the particle is non-spherical, however, the collision between it and a planar wall can
induce a torque on the particle. As a result, when an ellipsoid approaches the wall
at an oblique angle, the wall torque tends to rotate the particle and align it with the
wall. It is shown that the inelastic collision between an ellipsoid and a planar wall
can be formulated as a complementarity problem. Coupling this collision-resolution
method with Brownian dynamics simulations, the dynamics and transport of active
ellipsoids can be studied.

1.3.2 Microrheology of active colloids
The macroscopic (bulk) rheological response of active colloidal suspensions is
distinct from that of passive colloids. In particular, experiments (López et al. 2015;
Chui et al. 2021) and theoretical studies (Hatwalne et al. 2004; Haines et al. 2009;
Saintillan 2010; Ryan et al. 2011; Loisy et al. 2018) have shown that the low-𝑃𝑒 shear
(weak shear) viscosity of dilute active suspensions consisting of anisotropic and
pusher (tail-actuated) microswimmers can be zero—or even negative. This apparent
negative viscosity has been attributed to the interaction between the hydrodynamic
stresslet induced by the force dipoles of an active particle and the applied simple
shear flow.

In the context of biological active matter such as cellular environments, the active
‘particles’ are often subjected to spatially localized cues and biochemical signals
rather than to bulk flow or body forces. These localized behaviors lead to an in-
herently heterogeneous intracellular environment with differing material properties
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such as spatial variations in viscosity and elasticity. In addition, classical bulk rhe-
ology equipment cannot be used to probe the microenvironment inside individual
living cells without disrupting their mechanical structure. To address such chal-
lenges, microrheological techniques have been developed. In microrheology, the
local rheological properties such as viscoelasticity of a complex fluid are inferred
from the free (thermal) or forced motion of ‘probe’ particles. The probes can be
either embedded colloidal particles or tagged organelles and molecules existing in
the biological material. The study of the deformation or flow of biological materials
at small length scales has been termed bio-microrheology and deemed a frontier
in microrheology (Weihs et al. 2006). Indeed, particle-tracking microrheology has
been widely used in experimental measurements to characterize the rheological
properties inside living cells.

Theoretical machinery developed for forced-probe microrheology of colloidal sus-
pensions focused on either constant-force (CF) or constant-velocity (CV) probes
while in experiments neither the force nor the kinematics of the probe is fixed. More
importantly, the constraint of CF or CV introduces a difficulty in the meaningful
quantification of the fluctuations of the probe due to a thermodynamic uncertainty
relation. It is known that for a Brownian particle trapped in a harmonic potential
well, the product of the standard deviations of the trap force and the particle po-
sition is 𝑑𝑘𝐵𝑇 in 𝑑 dimensions with 𝑘𝐵𝑇 being the thermal energy. As a result,
if the force (position) is not allowed to fluctuate, the position (force) fluctuation
becomes infinite. To allow the measurement of fluctuations, in Chapter 4 I consider
a microrheology model in which the embedded probe is dragged along by a mov-
ing harmonic potential so that both its position and the trap force are allowed to
fluctuate. A theoretical framework is developed using the Smoluchowski equation
governing the dynamics of an active colloidal suspension. It is shown that this
model can be reduced to several important problems such as tracer diffusion, the
CV/CF microrheology, and pair-correlation when appropriate limits are taken.

Compared to bulk rheology, study of the microrheology of active colloids are
very recent and many questions remain to be answered. In particular, is there
a microrheological analogue of the negative bulk shear viscosity? If a negative
microviscosity exists, what is the mechanism for such a behavior?

In Chapter 5, I study the microrheology of active colloids by driving a constant-
velocity (CV) probe through a bath of active colloids. The external force required
to maintain the steady probe motion compared to the Stokes drag law defines a
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microviscosity. It is shown that the microviscosity of active colloids is reduced in
the low probe speed regime in the absence of hydrodynamic interactions. If the
probe speed is large, the swimming motion of the active colloids is obscured and
one recovers the microviscosity of passive colloids. Though active colloids exhibit
a swim-thinning behavior, the microviscosity is always positive.

It is then shown that hydrodynamic interactions are important in order to obtain a
negative microviscosity. To this end, two mechanisms that can lead to a negative
microviscosity are studied. First, the dipolar disturbance flow induced by a puller
particle in front of the probe acts to pull the probe forward, which facilitate the probe
motion. Second, the disturbance flow of the translating probe can induce negative
microviscosity by transporting active colloids to the back of the probe; once the
active colloids are in the back, they can help ‘push’ the probe forward.

To probe the viscoelastic behavior of active colloids, in Chapter 6 an oscillatory probe
motion is considered. For small-amplitude oscillations, the microviscoelasticity of
active colloids is computed.

1.3.3 Activity-induced propulsion
In the microrheology problem, a probe particle is immersed in an active colloidal
suspension and the force on the probe is measured. The advection of the probe
introduces front-back asymmetry in the suspension microstructure, which leads to
a net force on the probe.

To exploit this notion of asymmetry, in Chapter 7 I propose a novel osmotic pro-
peller in which active colloids are confined inside a vesicle with a semi-permeable
membrane. The vesicle is immersed in water and the membrane only allows water
to pass through while the active colloids cannot escape the vesicle. If an asymmetric
osmotic pressure on the interior wall of the membrane can be generated, the vesicle
is able to exhibit net motion. A theoretical framework is developed and analyzed to
show that indeed propulsion is possible.

The key ingredient in this model is the generation of an asymmetric number density
(the osmotic pressure is 𝑛𝑘𝐵𝑇) distribution inside a spherical vesicle. Previous works
have shown that a spatial variation in the swim speed leads to a spatial variation
in the number density of active particles (Schnitzer 1993; Tailleur and Cates 2008;
Row and Brady 2020). By tuning the swim speed distribution of ABPs confined
inside the vesicle, a spherically asymmetric density distribution can emerge and
lead to net motion of the vesicle. The second approach considered is an external
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orienting field in which the orientational dynamics of active colloids is biased.
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C h a p t e r 2

UPSTREAM SWIMMING AND TAYLOR DISPERSION

Locomotion of self-propelled particles such as motile bacteria or phoretic swim-
mers often takes place in the presence of applied flows and confining boundaries.
Interactions of these active swimmers with the flow environment are important
for the understanding of many biological processes, including infection by motile
bacteria and the formation of biofilms. Recent experimental and theoretical work
have shown that active particles in a Poiseuille flow exhibit interesting dynamics
including accumulation at the wall and upstream swimming. Compared to the well-
studied Taylor dispersion of passive Brownian particles, a theoretical understanding
of the transport of active Brownian particles (ABPs) in a pressure-driven flow is
relatively less developed. In this Chapter, employing a small wavenumber expan-
sion of the Smoluchowski equation describing the particle distribution, we explicitly
derive an effective advection-diffusion equation for the cross-sectional average of
the particle number density in Fourier space. We characterize the average drift
(specifically upstream swimming) and effective longitudinal dispersion coefficient
of active particles in relation to the flow speed, the intrinsic swimming speed of
the active particles, their Brownian diffusion and the degree of confinement. In
contrast to passive Brownian particles, both the average drift and the longitudinal
dispersivity of ABPs exhibit a non-monotonic variation as a function of the flow
speed. In particular, the dispersion of ABPs includes the classical shear-enhanced
(Taylor) dispersion and an active contribution called the swim diffusivity. In the
absence of translational diffusion, the classical Taylor dispersion is absent and we
observe a giant longitudinal dispersion in the strong flow limit. Our continuum
theory is corroborated by a direct Brownian dynamics simulation of the Langevin
equations governing the motion of each ABP.

This Chapter includes content from our previously published article:

• Zhiwei Peng and John F. Brady. Upstream swimming and Taylor dispersion
of active Brownian particles. Phys. Rev. Fluids, 5:073102, Jul 2020. doi:
10.1103/PhysRevFluids.5.073102
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2.1 Introduction
Transport and mixing within suspensions of swimming micro-organisms are im-
portant for the understanding of many biological and industrial processes, such as
infection by motile bacteria (Siitonen and Nurminen 1992; Kao et al. 2014) or the
formation of biofilms (Rusconi et al. 2010; Kim et al. 2014). Different from passive
particles, the ability of active swimmers to self-propel gives rise to interesting dy-
namics including accumulation at confining boundaries and upstream swimming in
the presence of a pressure-driven flow (Bechinger et al. 2016).

The transport of passive matter (e.g., diffusing solute) that experiences molecu-
lar diffusion and fluid advection in a Poiseuille flow has been extensively studied
since the seminal work of Taylor (Taylor 1953; 1954a;b), who demonstrated that
the effective dispersion coefficient in the direction of flow is enhanced compared
to the bare molecular diffusivity. Shortly after, Aris (1956) underpinned Taylor’s
analysis with a theoretical framework based on longitudinal moments of the solute
distribution function. This phenomenon of enhanced longitudinal spreading, often
referred to as Taylor (or Taylor-Aris) dispersion, results from the coupling of molec-
ular diffusion in the transverse direction and advection in the longitudinal direction.
To understand the interaction between these two separate mechanisms for solute
transport, it is helpful to first consider advection alone, and then to include the effect
of molecular diffusion. In the absence of molecular diffusion, a point-sized particle
introduced into the flow simply moves downstream along the streamline at that lo-
cation. The presence of molecular diffusion, on the other hand, enables the particle
to migrate across streamlines and then immediately be advected downstream with
different velocities. This process represents a random walk and leads to an advective
contribution to the longitudinal dispersion in addition to the molecular diffusivity.
In a random walk process, the diffusivity scales as 𝑙2/𝜏, where 𝑙 is the step size
and 𝜏 is the decorrelation time. Consider a Brownian solute with diffusivity 𝐷𝑇
in a pressure-driven channel flow with characteristic width 𝐻 and centerline speed
𝑈 𝑓 . The decorrelation time is purely Brownian and given by 𝜏 ∼ 𝐻2/𝐷𝑇 while
the step size is due to advection in this time: 𝑙 ∼ 𝑈 𝑓 𝜏. As a result, we have
(𝐷eff − 𝐷𝑇 )/𝐷𝑇 ∼ 𝑃𝑒2, where 𝐷eff is the effective longitudinal dispersivity and
𝑃𝑒 = 𝑈 𝑓𝐻/𝐷𝑇 is the Péclet number.

One can also rationalize the classical Taylor dispersion from a macroscopic point of
view. Suppose that initially a diffusing solute is introduced at a small segment of
the channel flow with a uniform concentration (see figure 2.1 for a schematic). At
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Figure 2.1: Schematic of the Taylor dispersion process of passive matter in a
pressure driven flow.

times shorter than the diffusive time scale 𝐻2/𝐷𝑇 , the non-uniform fluid advection
generates a concentration gradient across the channel, which induces a diffusive flux
of the material transverse to the direction of flow. At long times, the concentration in
the transverse direction becomes uniform again due to molecular diffusion. In this
long-time asymptotic limit, the cross-sectional average concentration is governed
by an effective one-dimensional advection-diffusion equation. The drift velocity in
this equation is simply the cross-sectional average fluid velocity, while the effective
Taylor dispersivity is greater than the molecular diffusivity.

During the past half century, the original analysis by Taylor and Aris has been
extended to accommodate a wide class of dispersion problems including complex
geometries (Brenner 1980; Dorfman and Brenner 2002) and chemical reactions
(Shapiro and Brenner 1986; 1987). In particular, a generalized Taylor dispersion
theory (GTDT) has been developed (Frankel and Brenner 1989). GTDT provides a
systematic scheme to derive the coarse-grained transport equation starting from the
probability density function describing the motion of a Brownian tracer in its phase
space. A detailed discussion on the application of GTDT to material dispersion can
be found in the book by Brenner and Edwards (2013).

In contrast to passive tracers, the study of the transport of active microswimmers that
self-propel is more recent and their dynamics is less well understood. To capture the
essential physics of a microswimmer on a coarse-grained level, the active Brownian
particle (ABP) model is often used. An ABP self-propels with a fixed intrinsic speed
𝑈𝑠 and undergoes translational and rotational Brownian motion with diffusivities
𝐷𝑇 and 𝐷𝑅. We note that in modeling the locomotion of swimming microorganisms
the diffusivities are typically biological rather than thermal in origin. The rotary dif-
fusion describes the random reorientation of microorganisms such as tumbling. The



16

translational diffusivity can be interpreted as a simple model representing the fluc-
tuation of the center-of-mass position during the flagellar bundling or unbundling
process. In other words, 𝐷𝑇 and 𝐷𝑅 are independent quantities and not constrained
by the fluctuation-dissipation theorem. Due to rotary Brownian motion, the swim-
ming direction of an ABP relaxes over the reorientation time scale 𝜏𝑅 = 1/𝐷𝑅. One
can define a run length ℓ = 𝑈𝑠𝜏𝑅 that characterizes the persistence of swimming
in a given direction. The directed swimming persists at short time (𝑡 ≪ 𝜏𝑅) and
one observes ballistic motion. At times much larger than 𝜏𝑅, the swimming motion
becomes a random walk due to Brownian reorientation. This active random walk
can be characterized by an effective diffusivity 𝐷swim ∼ ℓ2/𝜏𝑅 ∼ 𝑈2

𝑠 𝜏𝑅 called the
swim diffusivity. A detailed calculation gives 𝐷swim = 𝑈2

𝑠 𝜏𝑅/2 in two-dimensional
unbounded space (Berg 1993). This implies that the long-time dispersion coefficient
of ABPs is enhanced, 𝐷eff = 𝐷𝑇 + 𝐷swim (Takatori et al. 2014; Takatori and Brady
2014). The swim-enhanced dispersion originates from the coupling of diffusion
in orientational space to the translational via self-propulsion, which is a unique
signature of active matter systems.

DT

τR

Usq ` ∼
Us
τR

active random walk

Dswim ∼ `2

τR
∼ U2

s τR

Figure 2.2: Schematic of an ABP in an unbounded domain with no background flow
and its long-time (𝑡 ≫ 𝜏𝑅) active random walk process. The swimming direction is
denoted by a unit vector q.

When placed under confinement, such as in a channel, ABPs tend to accumulate
at the wall. Unlike non-interacting Brownian particles in thermal equilibrium that
exhibits a uniform density distribution, ABPs can spontaneously generate regions of
higher density under geometric confinement. This boundary accumulation is another
distinct feature of active matter, which is ubiquitous in biological processes involv-
ing motile bacteria or swimming spermatozoa. Exploiting this behavior, Sokolov
et al. (2010) showed that a motile bacteria suspension can power microscopic gears
with asymmetric teeth. Interestingly, this boundary accumulation phenomenon was
first observed decades ago by Rothschild (1963), who measured a non-uniform
concentration of swimming bull spermatozoa in a glass chamber. More recently, ex-
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periments by Berke et al. (2008) reported the same accumulation phenomenon with
swimming Escherichia coli (E. coli) confined between two glass plates. Rothschild
postulated that wall accumulation might originate from hydrodynamic interaction
of swimmers with the wall. Berke et al. pursued this idea and provided a theoretical
model to explain their experimental results. On the other hand, studies neglect-
ing hydrodynamic interaction between swimmers and boundary also observed wall
accumulation (Li and Tang 2009; Li et al. 2011; Costanzo et al. 2012; Elgeti and
Gompper 2013; Yan and Brady 2015a; 2018). These studies suggest that wall
accumulation can be understood from a purely kinematic perspective while hydro-
dynamic interaction only modifies this behavior quantitatively. That is, owing to
persistent self-propulsion, a swimmer hitting the boundary maintains its orientation
for a finite time 𝜏𝑅 until it rotates away via Brownian reorientation. Conversely,
swimmers pointing away from the boundary simply swim into the bulk. As a result,
there is an accumulation of swimmers near the boundary with a net orientation or
polar order pointing into the boundary.

To gain a quantitative understanding, consider ABPs confined between two parallel
plates separated by a distance 𝐻. Before considering the number density and polar
order distribution, it is helpful to recognize the three length scales in this problem:
the run length ℓ, a microscopic length 𝛿 =

√
𝐷𝑇𝜏𝑅 that characterizes the distance

an ABP travels by diffusion within the reorientation time, and the channel width 𝐻.
Two dimensionless groups, ℓ/𝐻 and ℓ/𝛿, can thus be defined. The dimensionless
quantity ℓ/𝛿 compares the distance traveled by swimming to translational diffusion
in 𝜏𝑅, and thus characterizes the activity level of ABPs. The second parameter ℓ/𝐻
quantifies the strength of confinement. In the limit ℓ/𝐻 ≪ 1, an ABP can travel
its full run length without colliding with the wall. If ℓ/𝐻 ≫ 1, the swimming
trajectories of ABPs are frequently disrupted by the wall. We use orientational
moments, in particular number density (𝑛0) and polar order in the transverse di-
rection (𝑚0

𝑦) as a function of the transverse coordinate 𝑦, to quantify the effect of
confinement. The polar order 𝑚0

𝑦 characterizes the amount of particles pointing in
the ±𝑦 direction (See section2.2 for the mathematical definition and formulation).
Using a vanishing nematic order closure to the Smoluchowski equation, Yan and
Brady (2015b) obtained the number density and polar order distribution of ABPs in
several confinement geometries. For ABPs between two parallel plates in 2D, it is
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shown that

𝑛0(𝑦)
𝑛

= 1 + 1
2

(
ℓ

𝛿

)2 cosh(𝜆𝑦)
cosh(𝜆𝐻/2) , (2.1)

𝑚0
𝑦 (𝑦)
𝑛

=
1
2
𝜆ℓ

sinh(𝜆𝑦)
cosh(𝜆𝐻/2) . (2.2)

Here, 𝑦 ∈ [−𝐻/2, 𝐻/2] is the transverse coordinate, 𝑛0 is the number density, 𝑚0
𝑦

is the polar order in the transverse direction and 𝜆 =

√︃
1 + 1

2 (ℓ/𝛿)2/𝛿 is the inverse
screening length. To be consistent with notation in this Chapter, the average con-
centration 𝑛 is obtained such that (1/𝐻)

∫ 𝐻/2
−𝐻/2 𝑛

0𝑑𝑦 = 1. To prevent ABPs from
penetrating the wall, the swimming flux into the wall (𝑈𝑠𝑚0

𝑦) is balanced by a diffu-
sive flux (−𝐷𝑇𝑑𝑛0/𝑑𝑦) away from the wall (See equation (2.51) in the appendix.).
This balance dictates that the screen length 𝜆−1 is proportional to the microscopic
length 𝛿 and depends on the activity ℓ/𝛿. For a given confinement strength (ℓ/𝐻),
the accumulation boundary layer becomes thinner as activity (ℓ/𝛿) increases. Since
𝛿/𝐻 = ℓ/𝐻 (ℓ/𝛿)−1, the boundary layers becomes thinner as confinement ℓ/𝐻 de-
creases for a fixed ℓ/𝛿. Therefore, we observe a sharp accumulation boundary layer
for ℓ/𝐻 ≪ 1. As ℓ/𝐻 increases, the two boundary layers at the top and bottom
walls merge and a more uniform number density profile is observed. The variation
of the number density profile as a function of ℓ/𝐻 is shown in figure 2.3(a). Strong
accumulation of ABPs at the wall is accompanied by a net polar order as seen in
figure 2.3(b) for ℓ/𝐻 = 0.1. The case of passive Brownian particles, which has a
uniform number density, can be obtained by setting ℓ = 0.

Due to the linear geometry of the channel, we can obtain the effective longitudinal
dispersion coefficient by a simple physical argument. Because the Brownian kicks
in each direction are independent, the confinement in the transverse direction does
not affect motion in the longitudinal direction. We expect the effective longitudinal
dispersion to be identical to that in free space, 𝐷eff/𝐷𝑇 = 1 + 1

2 (ℓ/𝛿)2. In fig-
ure 2.3(c), we show 𝐷eff/𝐷𝑇 as a function of ℓ/𝛿 obtained from both finite element
simulations (circles) and moment equations (blue solid line). These results agree
well with the free space dispersivity given by the red dashed line. We remark that
confinement can have an effect on longitudinal dispersion if the channel width is
non-uniform.

The application of an external flow in the channel further complicates the transport
process of ABPs. First, ABPs are now advected by the flow in addition to its self-
advection. Second, the orientational dynamics of ABPs are coupled to the local
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Figure 2.3: (a) Number density 𝑛0 as a function of the transverse coordinate 𝑦 for
ℓ/𝛿 = 𝑈𝑠𝜏𝑅/

√
𝐷𝑇𝜏𝑅 = 2 and different confinement strengths: ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 =

{0.1, 1, 10}. (b) Polar order in the transverse direction 𝑚0
𝑦 as a function of the

transverse coordinate 𝑦 for ℓ/𝛿 = 2 and different confinement strengths. (c) Effective
longitudinal dispersion coefficient 𝐷eff/𝐷𝑇 as a function of activity ℓ/𝛿. Circles
are results from finite element simulations and the solid line is the solution from
moment equations. The free space effective dispersivity of ABPs is denoted by the
dashed line. In all three panels, the flow is absent. Refer to section 2.2 for details
on FEM and moment equations.

fluid shear, which varies spatially in a quadratic flow. One manifestation of such a
coupling effect is the upstream swimming of motile particles in a pressure-driven
flow. Here, we are speaking in terms of upstream swimming in a laboratory-fixed
frame rather than that relative to the downstream flow. Put differently, a swimmer
can overcome the downstream advection with some excess speed to move upstream.
Koser and coworkers (Hill et al. 2007; Kaya and Koser 2009) observed upstream
swimming with E. coli in a microfluidic channel flow and proposed a mechanism for
upstream motility involving chirality of the flagella and hydrodynamic interaction
with the wall. A later study by Kaya and Koser (2012) systematically measured the
swim speed of E. coli and reported a transition between upstream and downstream
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motion. Below a critical but nonzero flow speed, E. coli were found to swim
upstream. For strong flow, the swimming motion is dominated by fluid advection
and net downstream motion is observed. In a recent work by Kantsler et al. (2014),
mammalian sperm cells are also found to exhibit upstream motility.

Various theoretical models have been proposed to explain the swimming dynamics of
microorganisms in flow, many of which include the effect of fluid shear, body shape
asymmetry, flagellar chirality, steric and/or hydrodynamic interaction with the wall,
and so forth (Nash et al. 2010; Zöttl and Stark 2012; Costanzo et al. 2012; Kantsler
et al. 2014; Uspal et al. 2015; Ezhilan and Saintillan 2015; Junot et al. 2019; Mathi-
jssen et al. 2019). These models are able to produce, at least qualitatively, upstream
motion similar to those observed in experiments. On the other hand, Ezhilan and
Saintillan (2015) implemented a simpler model, which consists of non-interacting
slender ABPs, to investigate the effect of flow on transport of microswimmers. Us-
ing numerical and asymptotic solutions to the Smoluchowski equation governing
particle conservation, they investigated the distribution of ABPs across the channel
systematically and predicted net upstream swimming. In their study, the focus is on
mildly active ABPs that are moderately confined: ℓ/𝛿 =

√
6 (≈ 2.45) and ℓ/𝐻 ≤ 2.

Previous work on the dispersion of active particles in flow has examined suspen-
sions of gyrotactic micro-organisms (Pedley and Kessler 1990; Hill and Bees 2002;
Manela and Frankel 2003; Bees and Croze 2010; Croze et al. 2013; Bearon et al.
2011) and chemotactic run-and-tumble bacteria (Bearon 2003). Due to asymmetry
in mass distribution, gyrotactic swimmers experience a gravitational torque in addi-
tion to the viscous torque from the local fluid vorticity. The balance between viscous
and gravitational torques leads to a preferred orientation of the particles and thus
a non-uniform particle distribution across the channel. More recently, Chilukuri
et al. (2015) investigated the dispersion of flagellated swimming micro-organisms
in planar Poiseuille flow using Brownian dynamics (BD) simulation. In their work,
a flagellated swimmer is represented by two beads connected by a stiff spring. They
focused on the effect of flow speed on the dispersion of very active particles under
moderate to strong confinement with ℓ/𝛿 = 80 and ℓ/𝐻 = {2.5, 4, 10}. It is shown
that the longitudinal dispersivity exhibits a non-monotonic variation as a function
of the flow speed with a minimum obtained when the flow speed is comparable
to the self-propulsion speed. Intuitive physical scaling arguments were used to
qualitatively explain the dispersion behavior in the weak and strong flow limits.
Interestingly, a similar non-monotonic dispersion behavior is predicted by Alonso-
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Matilla et al. (2019) in the context of ABPs in external flow through periodic porous
media. Dehkharghani et al. (2019) studied the dispersion of swimming bacteria in
flow through a microfluidic lattice consists of a periodic array of circular pillars
using both experiments and computer simulation. They showed that the external
flow hinders transverse dispersion and enhances longitudinal dispersion of active
particles with no translational diffusion beyond the Taylor dispersion of passive
Brownian particles. Using the same ellipsoidal ABP model as Ezhilan and Sain-
tillan (2015), Jiang and Chen (2019) studied the dispersion of active particles in
confined unidirectional flows. The longitudinal dispersion of ABPs are related to
the physical space moments of the probability density function of an ABP based
on the GTDT. In this work, they solved the resulting equations numerically and
presented the dispersivity for ℓ/𝛿 =

√
6 and ℓ/𝐻 = 1.

In view of the above discussion, it is clear that upstream swimming is almost
certainly universal to active particles and transcends some of the details of the
specific mathematical model or microorganism used. This suggests an underlying
mechanism shared among different models that is fundamental and responsible for
upstream swimming, while additional details represent only a correction for the
quantitative behavior. Though the dispersion of active particles in flow has been
studied much less compared to upstream swimming, the same argument should
apply. Indeed, as an example, Chilukuri et al. (2015) showed that hydrodynamic
interaction with the wall does not qualitatively alter the longitudinal dispersion of
their beads-spring swimmers. Therefore, we believe that there is value in studying
the dynamics of active particles in flow with a model that is simple yet able to
capture the interesting advective-diffusive behavior discussed above. To this end, we
consider spherical ABPs suspended in a Poiseuille flow between two parallel plates in
2D. Our study ignores hydrodynamic interaction with the wall. In appendix 2.8, we
discuss the effect of non-spherical shape that might be relevant to microorganisms
such as E. coli. We also assume that the particle suspension is dilute so that
the background flow is not affected by the suspended ABPs and excluded-volume
interaction between particles is irrelevant.

In this work, we show that both upstream swimming and non-monotonic dispersion
as a function of the flow speed are recovered using the spherical ABP model.
Upstream swimming can be understood as a result of channel confinement and
rotation by the flow alone. Particles at the wall are rotated towards the upstream
direction owing to the fluid vorticity that reaches its maximum at the wall. Once
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aligned against the flow, self-propelled particles are able to swim upstream because
the fluid velocity vanishes at the wall. Furthermore, ABPs accumulate at the wall
when the flow is weak compared to self-propulsion. In the weak flow regime,
strong upstream swimming is observed. As the flow speed increases, the intrinsic
swim speed becomes sub-dominant and the number density of ABPs becomes more
uniform across the channel. This leads to a transition from net upstream motion
to downstream motion as the flow speed increases. The net speed of ABPs in the
longitudinal direction approaches that of passive Brownian particles in the strong
flow limit.

As predicted by previous work, the long-time longitudinal dispersion coefficient
of ABPs is a non-monotonic function of the flow speed. In addition to transla-
tional diffusion enjoyed by both active and passive Brownian particles, ABPs can
also sample different flow speeds using self-propulsion coupled to a reorientation
mechanism. For ABPs in flow, there are two mechanisms for reorientation: random
rotary diffusion and deterministic rotation by the fluid vorticity. The longitudinal
dispersion of ABPs consists of the translational diffusivity, the swim diffusivity and
the classical Taylor dispersivity. The swim diffusivity of ABPs is altered by the
pressure-driven flow and the classical Taylor dispersivity of ABPs is different from
that of passive Brownian particles because activity modifies the number density
distribution. In the limit of weak flow, where ABPs explore the physical space
dominantly via self-propulsion and random Brownian reorientation, the dispersion
coefficient approaches that in the absence of flow. In the limit of strong flow, the
dispersion coefficient converges to that of passive Brownian particles because ABPs
lose their persistence due to the rapid rotation by the fluid vorticity.

We formulate the problem from a continuum perspective using the Smoluchowski equa-
tion governing the position and orientation of an ABP in the channel. We consider
a dilute suspension and neglect particle-particle and particle-wall hydrodynamic
interactions. From the Smoluchowski equation we derive an effective advection-
diffusion equation for the cross-sectional average number density in Fourier space
and calculate both the average drift and the effective dispersion coefficient in the flow
direction in the long-time limit. In addition to the continuum model, the equivalent
particle-based Langevin equations are considered. After the derivation of the gov-
erning equations, we elucidate the origin of upstream swimming by considering the
case of deterministic particle dynamics without diffusion (𝐷𝑇 = 0 and 𝐷𝑅 = 0). We
then characterize the drift velocity of active particles without translational diffusion
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Figure 2.4: Schematic of active Brownian particles suspended in a planar Poiseuille
flow between two parallel plates. The ABPs reorient on a time scale of 𝜏

𝑅
= 1/𝐷𝑅,

where 𝐷𝑅 is the rotary diffusivity. The blue solid line is the Poiseuille flow and the
green solid line is the scalar vorticity. The arrows represent the magnitude and sign
of the fluid speed or vorticity. The vorticity is an odd function of the transverse
coordinate 𝑦.

(𝐷𝑇 = 0), followed by the general case of finite translational and rotational diffusion.
Next, in Section 2.4 we consider the dispersive behavior of active particles before
concluding the Chapter in Section 2.5.

2.2 Problem formulation
We consider a dilute suspension of spherical ABPs in a planar Poiseuille flow
between two parallel plates separated by a distance 𝐻 as illustrated in figure 2.4.
We assume that the radius of the ABPs is negligible compared to the width of the
channel. The background flow is given by u 𝑓 = 𝑢 𝑓 (𝑦)e𝑥 , where

𝑢 𝑓 = 𝑈 𝑓

(
1 − 4

𝑦2

𝐻2

)
, −𝐻

2
≤ 𝑦 ≤ 𝐻

2
, (2.3)

with the maximum velocity𝑈 𝑓 at the centerline of the channel (𝑦 = 0).

Following previous work on active suspensions (Saintillan and Shelley 2015), we
define a probability density function 𝑃(x, q, 𝑡) of finding an ABP at position x

with orientation q (|q | = 1) at time 𝑡. The evolution of 𝑃 satisfies the Smolu-
chowski equation,

𝜕𝑃

𝜕𝑡
+ ∇ · j𝑇 + ∇𝑅 · j𝑅 = 0, (2.4)

where ∇ and ∇𝑅 = q × 𝜕
𝜕q are gradient operators in physical and orientation space,
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respectively. The translational and rotational fluxes are given by, respectively,

j𝑇 = u 𝑓 𝑃 +𝑈𝑠q𝑃 − 𝐷𝑇∇𝑃, (2.5)

j𝑅 =
1
2
ω𝑃 − 𝐷𝑅∇𝑅𝑃, (2.6)

where ω = ∇ × u 𝑓 is the vorticity vector of the background flow. The flux normal
to a boundary surface must vanish, e𝑦 · j𝑇 = 0 at 𝑦 = ±𝐻/2. Integrating the
Smoluchowski equation in orientation space gives a conservation equation for the
number density,

𝜕𝑛

𝜕𝑡
+ ∇ ·

(
u 𝑓 𝑛 +𝑈𝑠m − 𝐷𝑇∇𝑛

)
= 0, (2.7)

where 𝑛(x, 𝑡) =
∫
𝑃𝑑q is the number density and m(x, 𝑡) =

∫
q𝑃𝑑q is the polar

order field.

The unboundedness in the flow direction makes it convenient to work in Fourier
space. To this end, we introduce a Fourier transform with respect to 𝑥 given by
𝑓 (𝑘) =

∫
exp(−𝑖𝑘𝑥) 𝑓 (𝑥)𝑑𝑥. In Fourier space, the governing equation for number

density becomes

𝜕𝑛̂

𝜕𝑡
+ 𝑖𝑘 (𝑢𝑛̂ +𝑈𝑠𝑚̂𝑥) − 𝐷𝑇 (𝑖𝑘)2𝑛̂ + 𝜕

𝜕𝑦

(
𝑈𝑠𝑚̂𝑦 − 𝐷𝑇

𝜕𝑛̂

𝜕𝑦

)
= 0. (2.8)

Averaging over the width of the channel, we obtain

𝜕𝑛

𝜕𝑡
+ 𝑘2𝐷𝑇𝑛 + 𝑖𝑘

(
𝑢(𝑦)𝑛̂ +𝑈𝑠𝑚̂𝑥

)
= 0, (2.9)

where the boundary terms vanish due to the zero normal flux condition and an
overhead bar denotes cross-sectional average, 𝑛(𝑘, 𝑡) = (1/𝐻)

∫ 𝐻/2
−𝐻/2 𝑛̂(𝑘, 𝑦, 𝑡)𝑑𝑦. It

is convenient to relate 𝑃̂ to 𝑛 via the definition of a structure function 𝑔̂ such that

𝑃̂(𝑘, 𝑦, q, 𝑡) = 𝑛(𝑘, 𝑡)𝑔̂(𝑘, 𝑦, q, 𝑡). (2.10)

By construction, we have the normalization condition

1
𝐻

∫
𝑑𝑦

∫
𝑔̂𝑑q = 1. (2.11)

On the other hand, taking the Fourier transform of the Smoluchowski equation (2.4)
yields

𝜕𝑃̂

𝜕𝑡
+ 𝑖𝑘 𝑗𝑇𝑥 +

𝜕 𝑗𝑇𝑦

𝜕𝑦
+ ∇𝑅 · ĵ𝑅 = 0. (2.12)
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Using the definition of 𝑃̂ given in equation (2.10), we multiply equation (2.9) by 𝑔̂
and subtract it from equation (2.12) to obtain

𝜕𝑔̂

𝜕𝑡
+ 𝜕

𝜕𝑦

(
𝑈𝑠𝑞𝑦 𝑔̂ − 𝐷𝑇

𝜕𝑔̂

𝜕𝑦

)
− 𝐷𝑅 ∇2

𝑅𝑔̂ + ∇𝑅 · (
1
2
ω𝑔̂)

− 𝑖𝑘
(
𝑈𝑠𝑚̂𝑥

𝑔̂

𝑛
+ 𝑢𝑛̂ 𝑔̂

𝑛
−𝑈𝑠𝑞𝑥 𝑔̂ − 𝑢𝑔̂

)
= 0. (2.13)

Consider a small wavenumber expansion, 𝑔̂ = 𝑔0(𝑦, q, 𝑡) + 𝑖𝑘𝑑0(𝑦, q, 𝑡) + 𝑂 (𝑘2),
corresponding to a slow variation over a large length scale (weak gradient) (Zia
and Brady 2010; Takatori and Brady 2014). Substituting this expansion into equa-
tion (2.9), we obtain an effective advection-diffusion equation for the average number
density in Fourier space,

𝜕𝑛

𝜕𝑡
+ 𝑖𝑘𝑈eff 𝑛 + 𝑘2𝐷eff 𝑛 = 0, (2.14)

where the average drift and the effective longitudinal dispersion coefficient are

𝑈eff = 𝑈𝑠𝑚
0
𝑥 + 𝑢(𝑦)𝑛0 , (2.15)

𝐷eff = 𝐷𝑇 −𝑈𝑠𝑚̃𝑥 − 𝑢(𝑦)𝑛̃ . (2.16)

Here, the average and fluctuating field variables are defined as the orientational
moments of 𝑔0 and 𝑑0:

𝑛0 =

∫
𝑔0𝑑q, m0 =

∫
q𝑔0𝑑q, 𝑛̃ =

∫
𝑑0𝑑q, m̃ =

∫
q𝑑0𝑑q. (2.17)

The average drift of ABPs consists of the average of the flow speed weighted by
the number density, 𝑢(𝑦)𝑛0, and the average streamwise swimming velocity 𝑈𝑠𝑚0

𝑥 .
Similarly, the effective longitudinal dispersion coefficient includes the translational
diffusion 𝐷𝑇 , the fluctuation in the self-propulsive velocity, −𝑈𝑠𝑚̃𝑥 , and the fluctu-
ation in the particle number density weighted by the flow, −𝑢(𝑦)𝑛̃.

The classical Taylor dispersion of passive Brownian particles can be readily recov-
ered by setting 𝑈𝑠 = 0. Without self-propulsion, the rotary diffusion is decoupled
from the translational motion (and therefore is irrelevant) and the number density be-
comes uniform 𝑛0 ≡ 1. As a result, we obtain𝑈eff = 𝑢 = 2𝑈 𝑓 /3 and 𝐷eff = 𝐷𝑇 −𝑢𝑛̃
for passive particles. In contrast, the ability of ABPs to self-propel alters the num-
ber density distribution and introduces additional terms in the expressions for the
average drift and the effective dispersion coefficient.
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Substituting the small wavenumber expansion into equation (2.13), we obtain at
leading order

𝜕𝑔0
𝜕𝑡

+ 𝜕

𝜕𝑦

(
𝑈𝑠𝑞𝑦𝑔0 − 𝐷𝑇

𝜕𝑔0
𝜕𝑦

)
− 𝐷𝑅∇2

𝑅𝑔0 + ∇𝑅 · (
1
2
ω𝑔0) = 0. (2.18)

At order 𝑖𝑘 , we obtain the governing equation for the fluctuating field 𝑑0,

𝜕𝑑0
𝜕𝑡

+ 𝜕

𝜕𝑦

(
𝑈𝑠𝑞𝑦𝑑0 − 𝐷𝑇

𝜕𝑑0
𝜕𝑦

)
− 𝐷𝑅∇2

𝑅𝑑0 + ∇𝑅 · (
1
2
ω𝑑0) =

(
𝑈eff − 𝑢 −𝑈𝑠𝑞𝑥

)
𝑔0.

(2.19)

The no-flux boundary conditions for 𝑔0 and 𝑑0 at 𝑦 = ±𝐻/2 are given by

𝑈𝑠𝑞𝑦𝑔0 − 𝐷𝑇
𝜕𝑔0
𝜕𝑦

= 0 and𝑈𝑠𝑞𝑦𝑑0 − 𝐷𝑇
𝜕𝑑0
𝜕𝑦

= 0. (2.20)

The normalization condition translates into

1
𝐻

∫
𝑑𝑦

∫
𝑔0𝑑q = 1 and

1
𝐻

∫
𝑑𝑦

∫
𝑑0𝑑q = 0. (2.21)

At this point, the continuum formulation is complete. The governing equations
are characterized by three dimensionless groups: the strength of confinement
ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻, the activity level ℓ/𝛿 = 𝑈𝑠𝜏𝑅/

√
𝐷𝑇𝜏𝑅 and the Péclet number

𝑃𝑒 = 𝑈 𝑓𝐻/𝐷𝑇 . The Péclet number characterizes the relative importance of advec-
tion by flow and translational diffusion. To quantify the effect of flow speed 𝑈 𝑓 on
the drift and dispersion, one can vary 𝑃𝑒while keeping ℓ/𝐻 and ℓ/𝛿 fixed. However,
it is cumbersome to characterize the effect of𝑈𝑠, 𝜏𝑅 or 𝐷𝑇 separately because all of
them appear in two dimensionless parameters. We therefore introduce two alternate
dimensionless groups,

𝛽 =
𝑈𝑠

𝑈 𝑓

and 𝑃𝑒 ¤𝛾 = ¤𝛾𝜏𝑅 =
2𝑈 𝑓 𝜏𝑅

𝐻
, (2.22)

where ¤𝛾 = |𝑑𝑢/𝑑𝑦 | = 2𝑈 𝑓 /𝐻 is the average shear rate across the channel. The first
parameter 𝛽 is a direct comparison of the swim speed of the ABPs and the flow
speed at the centerline of the channel. The second parameter 𝑃𝑒 ¤𝛾 is a Péclet number
that compares the two time scales of reorientation: rotational Brownian motion on
the scale of 𝜏𝑅 and rotation from fluid shear with a time scale 1/ ¤𝛾. Using 𝛽, 𝑃𝑒 and
𝑃𝑒 ¤𝛾 as independent dimensionless parameters, we can conveniently probe the effect
of 𝑈𝑠, 𝐷𝑇 and 𝜏𝑅 separately. For example, variation of the swim speed 𝑈𝑠 is fully
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Fixed Varying Physical parameter
ℓ/𝐻, ℓ/𝛿 𝑃𝑒 flow speed (𝑈 𝑓 )
ℓ/𝐻, ℓ/𝛿 = ∞ (𝐷𝑇 = 0) 𝑃𝑒 ¤𝛾 flow speed
ℓ/𝐻, 𝑃𝑒 ¤𝛾 ℓ/𝛿 translational diffusivity (𝐷𝑇 )
𝛽, 𝐷𝑇 = 0 𝑃𝑒 ¤𝛾 reorientation time (𝜏𝑅)
𝑃𝑒 ¤𝛾, 𝑃𝑒 = ∞ (𝐷𝑇 = 0) 𝛽 swim speed (𝑈𝑠)
𝑃𝑒 ¤𝛾, 𝑃𝑒 𝛽 swim speed
𝛽, 𝑃𝑒 ¤𝛾 𝑃𝑒 translational diffusivity
𝛽, 𝑃𝑒 𝑃𝑒 ¤𝛾 reorientation time

Table 2.1: Variation of different dimensionless parameters and the corresponding
physical parameter that is varied.

characterized by variation of 𝛽 while both 𝑃𝑒 and 𝑃𝑒 ¤𝛾 are fixed. Similarly, variation
of 𝜏𝑅 is represented by variation of 𝑃𝑒 ¤𝛾 while 𝛽 and 𝑃𝑒 are fixed. To measure
the effect of 𝐷𝑇 , we can vary 𝑃𝑒 and fix both 𝑃𝑒 ¤𝛾 and 𝛽. The two dimensionless
parameters ℓ/𝐻 and ℓ/𝛿 can be expressed in terms of 𝛽, 𝑃𝑒 and 𝑃𝑒 ¤𝛾 via the relations
ℓ/𝐻 = 𝛽𝑃𝑒 ¤𝛾/2, ℓ/𝛿 = 𝛽

√︁
𝑃𝑒𝑃𝑒 ¤𝛾/2. Conversely, we have 𝛽 = (ℓ/𝛿)2(ℓ/𝐻)−1𝑃𝑒−1

and 𝑃𝑒 ¤𝛾 = 2𝑃𝑒(ℓ/𝐻)2(ℓ/𝛿)−2. In Table 2.1, we summarize the different schemes
of varying dimensionless groups and their corresponding physical situation in terms
of dimensional parameters. In experiments, some variation schemes are easier than
others. For example, one could easily vary the flow speed and quantify the transport
of active particles as a function of 𝑃𝑒 for a given ℓ/𝛿 and ℓ/𝐻.

Henceforth, we consider ABPs in 2D where the orientation vector q is in the velocity-
gradient plane. As a result, one can parameterize q in terms of a single orientation
angle 𝜃 ∈ [0, 2𝜋) where q = cos 𝜃e𝑥 + sin 𝜃e𝑦. We note that the qualitative
behavior of the average drift and longitudinal dispersion does not depend on the
dimensionality of the orientation space. We shall discuss three separate methods to
solve (2.15) – (2.21): truncated orientational moment expansion, solution of (2.18)
and (2.19) using the finite element method (FEM) and Brownian dynamics (BD)
simulation. For the first two methods, we determine 𝑔0 from (2.18) and the average
drift 𝑈eff from (2.15). With solution to 𝑔0 and 𝑈eff , we then determine 𝑑0 from
(2.19) and 𝐷eff from (2.16).

As a first approach, we approximate the average and fluctuating field in terms of
their truncated orientational moments (Saintillan and Shelley 2013; Theillard et al.
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2017)

𝑔0 ≈ 1
2𝜋

(
𝑛0 + 2q · m0 + 4qq : Q0

)
,

𝑑0 ≈ 1
2𝜋

(
𝑛̃ + 2q · m̃ + 4qq : Q̃

)
, (2.23)

where Q0 =
∫
(qq − I/2)𝑔0𝑑q is the average nematic field and Q̃ =

∫
(qq −

I/2)𝑑0𝑑q is the fluctuating nematic field. Substituting these expressions for 𝑔0

and 𝑑0 and taking orientational moments of appropriate order yield a set of closed
ordinary differential equations at steady state for the average and fluctuating number
density, polar and nematic fields (refer to Appendix 2.6 for details). Mathematically,
this approximation can be interpreted as a severely truncated Fourier series expansion
of 𝑔0 and 𝑑0 in the orientation angle. The moment expansion converges rapidly only
when the probability distributions are near isotropy.

For the problem of this Chapter, the distribution can be very anisotropic in the
presence of a Poiseuille flow. It is then beneficial to solve the governing equations
for 𝑔0 and 𝑑0 directly and then take the needed orientational moments to obtain the
average drift and effective dispersion coefficient. To this end, we solve (2.18) and
(2.19) directly with a finite element method implemented using FreeFem++ (Hecht
2012) with adaptive mesh refinement. In the FEM formulation, periodic boundary
condition in 𝜃 is enforced, 𝑔0(𝑦, 𝜃 = 0, 𝑡) = 𝑔0(𝑦, 𝜃 = 2𝜋, 𝑡) and 𝑑0(𝑦, 𝜃 = 0, 𝑡) =
𝑑0(𝑦, 𝜃 = 2𝜋, 𝑡). After the system reaches steady state, the orientional moments
of 𝑔0 and 𝑑0 are calculated according to (2.17) and then the drift and effective
dispersion coefficient are obtained using (2.15) and (2.16).

From a particle-level perspective, the evolution of the configuration of ABPs can
be described by the overdamped Langevin equations. For each ABP, this force and
torque balance is given by

0 = −𝜁
(
𝑑x

𝑑𝑡
− u 𝑓

)
+ F 𝐵 + F 𝑆, (2.24)

0 = −𝜁𝑅
(
𝑑q

𝑑𝑡
− 1

2
ω × q

)
+L𝐵 × q. (2.25)

Here, F 𝑆 = 𝜁𝑈𝑠q is the swim force (Takatori et al. 2014), F 𝐵 (L𝐵) is the Brow-
nian force (torque). 𝜁 and 𝜁𝑅 are the translational and rotational hydrodynamic
drag coefficients, respectively. The Brownian force and torque satisfy white-noise
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statistics 〈
F 𝐵

〉
= 0,

〈
F 𝐵 (0)F 𝐵 (𝑡)

〉
= 2𝐷𝑇 𝜁2𝛿(𝑡)I , (2.26)〈

L𝐵
〉
= 0,

〈
L𝐵 (0)L𝐵 (𝑡)

〉
=

2
𝜏
𝑅

𝜁2
𝑅𝛿(𝑡)I , (2.27)

where 𝛿(𝑡) is the delta function and the angle brackets denote ensemble average over
Brownian fluctuations. We emphasize that the translational and rotational diffusion
coefficients represent biological noises and their variation can be independent.

We evolve the Langevin equation with a typical Brownian dynamics algorithm
(Bechinger et al. 2016) for approximately 105 non-interacting particles to ensure
good statistics. The duration of the BD simulation was chosen to be longer than
the slowest time scale in the problem so that the long-time behavior is captured.
The domain of simulation is a square box of side length 𝐻 with periodic boundary
condition in the flow direction and hard walls at 𝑦 = ±𝐻/2. The hard-wall boundary
condition is implemented using the potential-free algorithm (Heyes and Melrose
1993) that ensures that the particle does not cross the wall. The interaction of the
particle with the wall does not change the particle orientation. The absolute position
of each ABP is recorded to calculate the effective drift and diffusivity. Further details
of the BD simulation are presented in Appendix 2.7.

2.3 Upstream swimming
The drift 𝑈eff quantifies the average motion of ABPs along the channel due to the
combined effects of advection by the ambient flow and self-propulsion. In the
absence of flow (𝑈 𝑓 ≡ 0), the notion of upstream or downstream is lost and the
longitudinal polarization 𝑚0

𝑥 vanishes by symmetry. As a result, the drift 𝑈eff is
zero if the flow is not present. The introduction of an ambient flow breaks the left-
right symmetry in the longitudinal direction, which enables non-zero polarization
(𝑚0

𝑥 ≠ 0). This symmetry-breaking ultimately leads to the tendency of ABPs to
swim upstream in a pressure-driven flow, which has been investigated experimentally
(Hill et al. 2007; Kaya and Koser 2012; Kantsler et al. 2014) and theoretically
(Ezhilan and Saintillan 2015). A number of mechanisms for the upstream swimming
of micro-organisms have been proposed including chirality of flagellar bundles and
hydrodynamic interactions (Marcos et al. 2012; Shen et al. 2012; Kantsler et al.
2014; Tung et al. 2015; Omori and Ishikawa 2016). However, even for the simplest
case of spherical particles without fluid-mediated or particle-particle interactions
as we consider here, upstream swimming is still present. In the following section,
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by considering the case of non-Brownian particles, we show that this peculiar
upstream swimming behavior can be explained with simple physical arguments:
a self-propelling particle reaching the wall points into the wall. The body-fixed
swimming director q is then rotated towards the upstream direction owing to the
strong fluid vorticity at the wall. As a result, the particle moves upstream.

Though the moment equations are not analytically tractable, a number of symmetry
properties can be obtained. First, solution to the Smoluchowski equation (2.18) along
with the boundary condition (2.20) satisfies the symmetry property that 𝑔0(𝑦, 𝜃, 𝑡) =
𝑔0(−𝑦, 2𝜋 − 𝜃, 𝑡). Integrating over the orientation, we have 𝑛0(𝑦) = 𝑛0(−𝑦), i.e., the
number density is an even function of 𝑦. Similarly, one can show that 𝑚0

𝑦 (−𝑦) =

−𝑚0
𝑦 (𝑦) (and therefore, 𝑚0

𝑦 ≡ 0) and 𝑚0
𝑥 (−𝑦) = 𝑚0

𝑥 (𝑦). Taking the cross-sectional
average of the steady-state moment equation (2.31), we can further obtain 𝑚0

𝑥 =

−1
2𝜏𝑅𝜔𝑚

0
𝑦. This expression shows that the vorticity induces a coupling between the

polar order in the flow direction and that in the transverse direction.

2.3.1 Non-Brownian active particles
We first consider non-Brownian particles with 𝐷𝑇 = 0 and 𝐷𝑅 = 0 (or 𝜏𝑅 =

∞). In this case, the active particle has an infinite run length ℓ = 𝑈𝑠𝜏𝑅 = ∞.
Without translational and rotational Brownian motion, an active particle follows a
deterministic trajectory. Zöttl and Stark (2012) examined the nonlinear dynamics
of non-Brownian microswimmers in Poiseuille flow in a cylindrical tube. Both
upstream and downstream trajectories are observed depending on the flow speed.
When the flow speed is small, the microswimmer that comes into contact with the
wall is turned upstream and performs a swinging motion between the walls while
swimming upstream. Here, we examine this interesting behavior in more detail and
quantify the transition between upstream and downstream motion in the absence of
Brownian motion. The equations of motion given by equations (2.24) and (2.25)
reduce to 𝑑𝑥/𝑑𝑡 = 𝑢+𝑈𝑠 cos 𝜃, 𝑑𝑦/𝑑𝑡 = 𝑈𝑠 sin 𝜃, 𝑑𝜃/𝑑𝑡 = 1

2𝜔, where𝜔 = 8𝑈 𝑓 𝑦/𝐻2

is the scalar vorticity. The unit orientation vector is written in a parametric form,
q = cos 𝜃e𝑥 + sin 𝜃e𝑦. We note that a second order equation for the orientation angle
can be obtained: 𝑑2𝜃/𝑑𝑡2 = 4𝑈 𝑓𝑈𝑠 sin 𝜃/𝐻2. In general, the particle trajectory
depends on its initial position and orientation. If the particle is located on the
centerline (𝑦0 = 0) and aligned with the flow (𝜃0 = 0) initially, the equations of
motion can be solved exactly to obtain 𝜃 ≡ 0, 𝑦 ≡ 0 and 𝑥(𝑡) = 𝑥0 + (𝑈 𝑓 + 𝑈𝑠)𝑡.
Because the torque due to shear vanishes on the centerline, the particle will not rotate,
and thus stays on the centerline for all time. Starting from this initial condition, the
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Figure 2.5: (a)-(b) Trajectories of a non-Brownian active particle for different speed
ratios 𝛽 = 𝑈𝑠/𝑈 𝑓 . The initial positions are marked by dots. (c) Average speed in
the longitudinal direction as a function of 𝛽. Initial conditions for all three panels
are identical: 𝑥0 = 0, 𝑦0 = 0, 𝜃0 = 𝜋/2.

particle will always move downstream. On the other hand, if the particle is located
on the centerline but aligned against the flow (𝜃 = 𝜋) at 𝑡 = 0, the solution becomes
𝑥(𝑡) = 𝑥0 + (𝑈 𝑓 −𝑈𝑠)𝑡. Depending on the relative magnitude of self-propulsion and
fluid advection (𝛽 = 𝑈𝑠/𝑈 𝑓 ), the particle can move upstream (𝛽 > 1) or downstream
(𝛽 < 1). The upstream-downstream transition occurs at 𝛽 = 1, where the particle
will be stationary for all time. We note that the upstream motion of a non-Brownian
active particle with initial condition 𝑦0 = 0 and 𝜃0 = 𝜋 is a stable fixed point while
the downstream motion with 𝑦0 = 0 and 𝜃0 = 0 is an unstable fixed point. In general,
the swimming behavior is different from this special case and the fluid vorticity plays
a major role in the orientation dynamics of the active particle.
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Figure 2.6: (a) Initial trajectory 𝑦/𝐻 (blue, left axis) and orientation angle 𝜃
(red, right axis) as a function of the dimensionless time 𝑡𝑈 𝑓 /𝐻 for a non-Brownian
active particle. The shaded region represents the time period in which the particle
moves from the top wall to the bottom wall. (b) Initial trajectory (solid, green line)
and orientation vector (red, arrows) of the active particle in the channel. Particles
rotate counterclockwise (𝑑𝜃/𝑑𝑡 > 0) in the upper half of the channel and clockwise
(𝑑𝜃/𝑑𝑡 < 0) in the lower half of the channel. Parameters: 𝑦0 = 0, 𝜃0 = 𝜋/2 and
𝛽 = 1.



33

For arbitrary initial conditions, we solve the equations of motion numerically using
the explicit Runge-Kutta method (RK4). Interaction of the particle with the channel
wall is treated using the potential-free algorithm (Heyes and Melrose 1993) as
discussed earlier. We reiterate that the interaction of the particle with the wall
specified by the potential-free algorithm does not change the particle orientation. If
the swim speed is small compared to the flow speed (𝛽 ≪ 1), the active particle will
always move downstream. In the small 𝛽 limit, due to its slow swimming speed, the
active particle cannot reach the wall before its direction changes significantly due to
the fluid shear. A typical particle trajectory in this advection-dominated regime is
presented in figure 2.5(a).

For large 𝛽, the active particle located on the channel centerline can travel to the wall
if it is not aligned in the longitudinal direction. Due to the large fluid vorticity at the
wall, the particle will be reorientated upstream. The continuing reorientation and
swimming results in periodic movement between the walls and net upstream motion.
A particle trajectory in this regime is shown in figure 2.5(b). Similar trajectories to
figure 2.5(a-b) are found in Zöttl and Stark (2012). To quantify the net motion of
a particle, we present the net speed in the longitudinal direction scaled by the flow
speed as a function of 𝛽 in figure 2.5(c). The net speed is given by Δ𝑥/𝑇 , where
Δ𝑥 is the distance traveled in the longitudinal direction within a period (𝑇) of its
motion. The period 𝑇 is obtained using autocorrelation of the orientation angle 𝜃.
As expected, the particle moves downstream at small 𝛽 and upstream at large 𝛽.

It is instructive to examine this upstream-swimming trajectory in more detail. In
figure 2.6(a) we show the 𝑦-coordinate and orientation angle 𝜃 of the active particle
as a function of the scaled time 𝑡𝑈 𝑓 /𝐻. To better visualize the swimming behavior,
the same particle trajectory in 𝑥 − 𝑦 plane (green line) with red arrows denoting the
orientation vector is shown in figure 2.6(b). Initially, the particle is located on the
centerline and pointed towards the top wall. As time starts, the particle moves to the
top wall while being rotated counterclockwise by the fluid vorticity and advected
downstream. If the swim speed 𝑈𝑠 is large enough compared to 𝑈 𝑓 , the particle
is able to arrive at the top wall where the fluid vorticity is the greatest. Because
the particle cannot penetrate through the hard wall, it remains at the wall until the
vorticity rotates it towards the upstream so that it can finally escape into the bulk.
As the particle escapes into the bulk, it now points towards the bottom wall and
starts to swim towards it. Once the particle reaches the lower half of the channel, the
fluid vorticity reverses sign and the particle is again rotated towards the upstream
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direction. It will then approach the bottom wall if its speed 𝑈𝑠 permits. Once the
particle reaches the bottom wall, the above process repeats itself and we observe a
periodic upstream trajectory confined between the two walls at later times.

In this section, we considered the transport of a self-propelled non-Brownian particle
in a pressure-driven flow. Specifically, we studied the swimming behavior of non-
Brownian active particles that start on the centerline. We note that a particle starting
from a location other than the centerline exhibits similar behavior to those shown
in figure 2.6. With a sufficiently large speed of self-propulsion, an active particle
is able to swim upstream rather than being advected downstream by the flow. The
interplay of biased rotation due to the fluid vorticity and confinement gives rise to
this interesting upstream swimming behavior.

2.3.2 No translational diffusion
We now consider the case in which the ABPs have no translational diffusion (𝐷𝑇 =

0) but finite rotational diffusion (𝐷𝑅 ≠ 0). In the Smoluchowski perspective,
the absence of translational diffusion is singular. A diffusive flux at the wall is
required to balance the flux due to self-propulsion. In the limit of vanishing 𝐷𝑇 ,
a boundary layer develops at the walls (Yan and Brady 2015b). Starting from the
Smoluchowski equation, one can reformulate the problem in a singular perturbation
approach and obtain equations inside the boundary layer and out in the bulk. In
the presence of flow, the resulting equations are not analytically tractable. Instead,
we make use of the BD simulation introduced earlier to probe this regime of zero
translational diffusion.

For 𝐷𝑇 = 0, we have ℓ/𝛿 = ∞ and 𝑃𝑒 = ∞ given that all other dimensional
parameters are nonzero and finite. In this case, 𝛽 = 𝑈𝑠/𝑈 𝑓 and 𝑃𝑒 ¤𝛾 = 2𝑈 𝑓 𝜏𝑅/𝐻
are used as the two independent dimensionless groups. Recall the relation ℓ/𝐻 =

𝛽𝑃𝑒 ¤𝛾/2. In figure 2.7(a), we show the average drift 𝑈eff/𝑢 as a function of 𝑃𝑒 ¤𝛾 for
different values of the confinement strength ℓ/𝐻. For a fixed ℓ/𝐻, the variation of
𝑃𝑒 ¤𝛾 is better interpreted as a variation of the flow speed at the centerline 𝑈 𝑓 while
other dimensional parameters are fixed. If the flow speed 𝑈 𝑓 ≡ 0, the average drift
𝑈eff vanishes by symmetry. We note that, however, 𝑈eff/𝑈 𝑓 does not vanish in the
limit 𝑈 𝑓 → 0 as shown in figure 2.7(a). When the flow is weak (𝑃𝑒 ¤𝛾 ≪ 1), active
particles accumulate and swim upstream at the wall, which makes the average drift
less than the average flow speed (𝑈eff < 𝑢). We emphasize that the causes for this
reduction of drift is twofold: first, the number density is higher at the wall than at the
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Figure 2.7: Variation of the average drift 𝑈eff/𝑢 in the absence of translational
diffusion (𝐷𝑇 = 0) as a function of the flow speed 𝑈 𝑓 , the reorientation time 𝜏𝑅
and the swim speed 𝑈𝑠 are shown in (a), (b) and (c) respectively. (a) Drift 𝑈eff/𝑢
as a function of 𝑃𝑒 ¤𝛾 = 2𝑈 𝑓 𝜏𝑅/𝐻 for ℓ/𝐻 = {0.1, 1, 2}. (b) Drift 𝑈eff/𝑢 as a
function of 𝑃𝑒 ¤𝛾 for 𝛽 = 𝑈𝑠/𝑈 𝑓 = {0.5, 1, 2}. (c) Drift 𝑈eff/𝑢 as a function of 𝛽
for 𝑃𝑒 ¤𝛾 = {0.1, 1, 10, 100}. The horizontal dash-dotted lines denote the transition
between downstream and upstream drift.
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centerline, which implies that 𝑢𝑛0 < 𝑢 because the flow speed is zero at the wall and
is the greatest at the centerline; second, a negative polar order in the flow direction
develops, which means that 𝑈𝑠𝑚0

𝑥 < 0. For small ℓ/𝐻, the swimming speed is not
strong enough to overcome the downstream advection, i.e., |𝑈𝑠𝑚0

𝑥 | < 𝑢𝑛0, and we
obtain a downstream drift. For larger ℓ/𝐻, upstream swimming is dominant and an
upstream drift is achieved as shown in figure 2.7(a) for ℓ/𝐻 = {1, 2}.

For 𝑃𝑒 ¤𝛾 ≫ 1 with ℓ/𝐻 fixed, the flow speed𝑈 𝑓 is much faster than the swim speed
𝑈𝑠. From (2.15), we have 𝑈eff/𝑢 = 3𝛽𝑚0

𝑥/2 + 𝑢𝑛0/𝑢 → 𝑢𝑛0/𝑢 since 𝛽 → 0 as
𝑃𝑒 ¤𝛾 → ∞. Furthermore, particles in this strong flow regime spin rapidly owing
to the dominant fluid vorticity compared to Brownian reorientation. This leads
to a more uniform number density distribution across the channel and thus 𝑈eff/𝑢
approaches unity in the large 𝑃𝑒 ¤𝛾 limit.

In figure 2.7(b), we show the average drift 𝑈eff/𝑢 as a function of 𝑃𝑒 ¤𝛾 for different
values of the speed ratio 𝛽 in the absence of translational diffusion. For a fixed 𝛽,
this represents the effect of the reorientation time 𝜏𝑅 on the drift. For 𝑃𝑒 ¤𝛾 ≪ 1,
the reorientation time 𝜏𝑅 is much smaller than the fluid shear timescale 1/ ¤𝛾, and
particles lose their persistence due to the rapid random reorientation and behave
like passive particles without self-propulsion. As a result, the effective velocity
approaches the passive limit, 𝑈eff/𝑢 → 1 as 𝑃𝑒 ¤𝛾 → 0 regardless of the speed ratio
𝛽.

For 𝑃𝑒 ¤𝛾 ≫ 1, the reorientation time 𝜏𝑅 is large and particles follow nearly de-
terministic trajectories with small fluctuations from Brownian rotation. One can
recover the purely ballistic case discussed in the previous section by taking the limit
𝑃𝑒 ¤𝛾 → ∞ with a finite 𝛽 (e.g., 𝜏𝑅 → ∞).

It is important to distinguish between Brownian reorientation and rotation by fluid
vorticity. Brownian reorientation is random and unbiased while the rotation due to
the fluid vorticity is deterministic and biased. In order to move upstream, active
particles have to be aligned against the flow so that it can swim upstream due to
self-propulsion. This orientational bias towards the upstream, as discussed in the
previous section, is achieved by the deterministic rotation from the fluid vorticity
in the presence of a confining boundary. With other parameters fixed, Brownian
reorientation becomes weaker as 𝜏𝑅 increases (𝐷𝑅 decreases, 𝑃𝑒 ¤𝛾 increases), and
therefore is unable to randomize the biased orientation generated by the fluid vor-
ticity. As a result, the average drift shown in figure 2.7(b) decreases monotonically
as a function of 𝑃𝑒 ¤𝛾, becoming negative—upstream swimming—and asymptotes to
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the non-Brownian limit at large 𝑃𝑒 ¤𝛾.

We showed the variation of𝑈eff/𝑢 as a function of 𝑃𝑒 ¤𝛾 with different dimensionless
parameters being fixed in figure 2.7(a) and (b). When ℓ/𝐻 is fixed, upstream drift
is observed for small 𝑃𝑒 ¤𝛾. On the other hand, upstream drift is achieved for large
𝑃𝑒 ¤𝛾 when 𝛽 is fixed. We emphasize that to interpret the results properly, one has to
be precise about what parameters are fixed.

In addition to the two competing reorientation mechanisms characterized by 𝑃𝑒 ¤𝛾,
the speed ratio 𝛽 also plays an important role in determining the swimming behavior.
In figure 2.7(c), we show the variation of𝑈eff/𝑢 as a function of 𝛽 for different values
of 𝑃𝑒 ¤𝛾. For small 𝛽 (e.g., 𝛽 = 0.5), active particles move downstream (𝑈eff/𝑢 > 0)
for all values of 𝑃𝑒 ¤𝛾. The transition from downstream to upstream swimming
(𝑈eff/𝑢 < 0) is observed for larger 𝛽 only. For a given 𝑃𝑒 ¤𝛾, the average drift𝑈eff/𝑢
decreases monotonically and becomes negative as 𝛽 increases. We note that for
𝛽 = 0, i.e., the particles are passive, the orientational degree of freedom becomes
decoupled from the translational, and we recover the passive limit: 𝑈eff/𝑢 → 1 as
𝛽 → 0.

2.3.3 Finite translational and rotational diffusion
We now examine the distribution and swimming behavior of ABPs with finite
translational and rotational diffusivities in the presence of a pressure-driven flow. To
illustrate the effect of translational diffusivity (𝐷𝑇 ) on the behavior of active particles,
we show in figure 2.8 the average number density 𝑛0, average streamwise polar order
𝑚0
𝑥 and the average probability distribution 𝑔0 (Recall that 𝑛0 =

∫
𝑔0𝑑q.) at the top

wall for different 𝑃𝑒 = 𝑈 𝑓𝐻/𝐷𝑇 with 𝛽 = 𝑈𝑠/𝑈 𝑓 = 2 and 𝑃𝑒 ¤𝛾 = 2𝑈 𝑓 𝜏𝑅/𝐻 = 10.
The 𝐷𝑇 = 0 case discussed in the previous section is the limit 𝑃𝑒 → ∞ and
𝛽, 𝑃𝑒 ¤𝛾 < ∞. With 𝛽 and 𝑃𝑒 ¤𝛾 fixed at finite values, the variation of translational
diffusivity 𝐷𝑇 is represented in dimensionless form by the variation of 𝑃𝑒. In other
words, 𝑃𝑒 goes down as 𝐷𝑇 increases and 𝑃𝑒 ≪ 1 implies that the translational
diffusion dominates over the fluid advection. In this strong diffusion limit, the steady
state probability profile cannot sustain a large gradient across the channel due to the
smoothing effect of diffusion. As a result, in figure 2.8(a)-(b) we observe a mostly
uniform number density and polar order for 𝑃𝑒 = 0.1. As 𝑃𝑒 increases, translational
diffusion becomes less important and we observe the development of boundary
layers at the wall in both the average number density and polar order distribution.
At large 𝑃𝑒, ABPs exhibit strong accumulation and upstream polarization at the
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Figure 2.8: Effect of translational diffusivity 𝐷𝑇 on the average field distributions.
(a) Average number density distribution across the channel for different values of
𝑃𝑒 = 𝑈 𝑓𝐻/𝐷𝑇 . (b) Average streamwise polar order distribution across the channel
for different values of 𝑃𝑒. (c) The average field 𝑔0 as a function of 𝜃 at the top wall
(𝑦/𝐻 = 1/2) for different values of 𝑃𝑒. The solutions presented are obtained from
the finite element calculation with 𝛽 = 𝑈𝑠/𝑈 𝑓 = 2 and 𝑃𝑒 ¤𝛾 = 2𝑈 𝑓 𝜏𝑅/𝐻 = 10.

wall. In figure 2.8(c), the average field 𝑔0 at the top wall is plotted as a function
of the orientation angle 𝜃 for different Péclet numbers. Recall that an ABP with
the orientation angle 𝜃 = 𝜋/2 is pointing normally into the top wall and an ABP
with 𝜃 = 𝜋 is pointing upstream parallel to the wall. In the strong diffusion limit
(𝑃𝑒 ≪ 1), only a weak variation of 𝑔0 as a function of 𝜃 is observed. Similar to
the orientational order distribution across the channel, the probability at the wall
develops a large gradient and the peak shifts towards the upstream direction as 𝑃𝑒
increases.
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We note that even though the streamwise polar order 𝑚0
𝑥 < 0 for 𝑃𝑒 = 0.1, it is not

strong enough to overcome the fluid advection, which leads to a net downstream
motion (𝑈eff > 0). The dependence of the average drift 𝑈eff/𝑢 on 𝑃𝑒 is made
quantitative in figure 2.9. Here, the dashed lines are solutions from the moment
equations, the circles are solutions from FEM and the crosses are solutions from BD
simulations. The horizontal dash-dotted line represents the drift velocity of passive
particles, 𝑈eff = 𝑢. Results from BD and FEM agree very well while solution from
the moment equations deviates from BD (or FEM) for 𝑃𝑒 ¤𝛾 = 10 at large 𝑃𝑒 as seen in
figure 2.9(a). The moment method truncating after the nematic order is not sufficient
to capture this behavior. One can show that our simple truncated expansions of the
average and fluctuation fields given in equation 2.23 lead to isotropic closures to the
third moments of 𝑔0 and 𝑑0 (Saintillan and Shelley 2013). Because this truncation
does not incorporate the effect of the external flow field even though particles rotate
according to Jeffery’s equation, it is only a good approximation when the average
and fluctuation fields are not far away from isotropy. Therefore, care must be taken
when using these isotropic closures in the presence of an external flow.

For fixed finite 𝛽 and 𝑃𝑒 ¤𝛾 as shown in figure 2.9(a), the increase of 𝑃𝑒 is under-
stood as the decrease in the translational diffusivity 𝐷𝑇 . The effective drift 𝑈eff/𝑢
approaches unity in the limit 𝑃𝑒 → 0 (𝐷𝑇 → ∞) because the particle number den-
sity becomes uniform owing to strong translational diffusion. For small 𝑃𝑒, ABPs
have a net downstream motion. A transition from downstream to upstream motion
occurs at a larger 𝑃𝑒 where more particles accumulate at the wall. Because the fluid
vorticity is the greatest at the wall while the fluid velocity is zero, particles at the
wall are able to swim upstream with a larger net speed. As a result, for a given 𝛽
and 𝑃𝑒 ¤𝛾, the effective drift velocity𝑈eff/𝑢 decreases monotonically as a function of
𝑃𝑒 and reaches a plateau at large 𝑃𝑒. The limit of 𝑃𝑒 → ∞ with fixed 𝛽, 𝑃𝑒 ¤𝛾 < ∞
asymptotes to the case of no translational diffusion explored in the previous section.

The variation of𝑈eff/𝑢 as a function of 𝑃𝑒 depends qualitatively on how the param-
eter space is sampled. By keeping 𝛽 and 𝑃𝑒 ¤𝛾 constant as shown in figure 2.9(a), the
variation of 𝑃𝑒 is understood as the variation of the translational diffusivity alone. In
figure 2.9(b), to investigate the effect of the flow speed𝑈 𝑓 on the average drift, we fix
ℓ/𝛿 = 𝑈𝑠𝜏𝑅/

√
𝐷𝑇𝜏𝑅, ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 and vary 𝑃𝑒. In this case, 𝑃𝑒 increases as the

flow speed𝑈 𝑓 increases. Noting that ℓ/𝛿 characterizes the activity level of ABPs, a
suspension with ℓ/𝛿 = 30 is in the highly active regime. The competition between
upstream swimming and downstream advection gives rise to a non-monotonic vari-
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Figure 2.9: (a) Average drift 𝑈eff/𝑢 of ABPs as a function of 𝑃𝑒 = 𝑈 𝑓𝐻/𝐷𝑇 for
𝑃𝑒 ¤𝛾 = 2𝑈 𝑓 𝜏𝑅/𝐻 = 1 (red) and 𝑃𝑒 ¤𝛾 = 10 (blue) with fixed 𝛽 = 𝑈𝑠/𝑈 𝑓 = 2. (b)
Average drift𝑈eff/𝑢 of ABPs as a function of the Péclet number for ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 =

1 (red) and ℓ/𝐻 = 10 (blue) with fixed ℓ/𝛿 = 𝑈𝑠𝜏𝑅/
√
𝐷𝑇𝜏𝑅 = 30. Circles are from

FEM, while dashed lines denote results from the moment equations. Results from
Brownian dynamics are indicated by crosses. The dash-dotted green line is the
effective drift of passive particles.

ation of the drift velocity as a function of Péclet number. As discussed earlier, the
effective drift vanishes (𝑈eff = 0) when the flow is absent (𝑃𝑒 = 0). For weak flow
(𝑃𝑒 ≪ 1), upstream swimming dominates over downstream advection and the drift
becomes negative. Upstream swimming is particularly strong for large confinement,
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Figure 2.10: The average polar order distribution (𝑚0
𝑥) across the channel for

different Péclet numbers (𝑃𝑒 = 𝑈 𝑓𝐻/𝐷𝑇 ) with ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 = 10 and
ℓ/𝛿 = 𝑈𝑠𝜏𝑅/

√
𝐷𝑇𝜏𝑅 = 30. The red solid lines are solution from FEM, the black

dashed lines are from moment equations and the blue dots are results from BD
simulation.

e.g., ℓ/𝐻 = 10 in figure 2.9(b). In the strong flow (𝑃𝑒 ≫ 1) limit, the advection of
ABPs by the ambient flow is much stronger than the self-propelling speed. Besides,
the accumulation of ABPs at the wall is greatly reduced as 𝑃𝑒 increases. As a result,
the drift velocity approaches that of a passive particle for large 𝑃𝑒. As a function of
the flow speed, the average drift𝑈eff of ABPs with high activity first decreases to a
negative value and then increases to approach the passive limit 𝑢. We note that the
ratio 𝑈eff/𝑢 approaches a nonzero value in the limit 𝑈 𝑓 → 0. Because we scaled
the dimensional average drift using 𝑢, the ratio𝑈eff/𝑢 is a monotonically increasing
function of 𝑃𝑒 as shown in figure 2.9(b). We note that the non-monotonicity of the
average drift refers to the variation of the dimensional quantity𝑈eff as a function of
𝑃𝑒. In appendix 2.8, the effect of non-spherical shape on the average drift of ABPs
is discussed.
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In figure 2.10, we present the average polar order distribution in 𝑥-direction (𝑚0
𝑥)

across the channel for different Péclet numbers for a very active suspension (ℓ/𝛿 =

30) with ℓ/𝐻 = 10. As the flow strength (𝑃𝑒) increases, upstream swimming be-
comes weaker. For𝑃𝑒 = 10, the time scale of rotation by flow vorticity at the wall and
random rotation by Brownian motion is comparable (𝑃𝑒 ¤𝛾 = 2𝑃𝑒(ℓ/𝐻)2(ℓ/𝛿)−2 ≈
2.22). In this regime, the flow vorticity at the wall only biases the orientation of
ABPs towards the upstream. In the strong flow limit (𝑃𝑒 ≫ 1), the time scale for
rotation by flow vorticity is much smaller than the Brownian reorientation time 𝜏𝑅
even in the bulk. As a result, the persisting motion of an ABP vanishes because of
the fast spinning due to vorticity.

This fast spinning by vorticity also affects the number density distribution. At large
𝑃𝑒 where flow is strong, ABPs at the wall are quickly reoriented by vorticity without
relying on rotary diffusion to escape into the bulk flow. This leads to a more uniform
distribution of particles across the channel at large 𝑃𝑒. In figure 2.11, we present
the average number density distribution 𝑛0 across the channel for different Péclet
numbers with ℓ/𝐻 = 10 and ℓ/𝛿 = 30. Indeed, we observe a reduction of wall
accumulation as the Péclet number increases. The reduction of wall accumulation
in the presence of flow has also been observed by Chilukuri et al. (2014) for a
model microswimmer consists of two beads connected by a stiff spring. Another
interesting feature is the non-monotonic variation of number density across the
channel at large Péclet number. At 𝑃𝑒 = 100, a weak accumulation of particles at
the channel centerline is observed. This centerline accumulation is due to strong
confinement. If we decrease ℓ/𝐻 or increase ℓ/𝛿, the bulk number density will
become more uniform. For 𝑃𝑒 = 104, figure 2.11(c), a local depletion of particles
is observed near the wall before the number density increases at the wall. In bulk
flow, the number density is uniform due to the vanishing swimming motion. In
Brownian dynamics simulation, we observe that ABPs can be trapped near the wall
when the flow is strong. An ABP approaching the upper wall will be rotating
counterclockwise. Instead of escaping into the bulk once orientated upstream, an
ABP comes back to the wall again due to the rapid rotation by flow vorticity. It
will repeat this process until random Brownian motion kicks it outside this region
and it can escape to the bulk. As a result, we still observe a small amount of wall
accumulation and a region of depletion because ABPs here either go back to the
wall or escape into the bulk.
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Figure 2.11: The average number density distribution (𝑛0) across the channel for
different Péclet numbers (𝑃𝑒 = 𝑈 𝑓𝐻/𝐷𝑇 ) with ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 = 10 and ℓ/𝛿 =

𝑈𝑠𝜏𝑅/
√
𝐷𝑇𝜏𝑅 = 30. The red solid lines are solution from FEM, the black dashed

lines are from moment equations and the blue dots are results from BD simulation.

2.4 Longitudinal dispersion
We now turn our attention to the effect of flow on longitudinal dispersion of ABPs
in a channel. The average drift considered in the previous section characterizes
the mean motion of ABPs along the channel. In contrast, the effective dispersivity
measures the variation of particle motion in the longitudinal direction compared to
the mean. In this section, we first discuss the effective longitudinal dispersion when
the translational diffusivity 𝐷𝑇 = 0, in which case the classical Taylor dispersion is
absent. We then discuss the general case with finite 𝐷𝑇 .

2.4.1 Dispersion in the absence of translational diffusion
In this section, we explore the long-time longitudinal diffusive behavior of active
particles in the presence of flow in the absence of translational diffusion, 𝐷𝑇 = 0.
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For passive particles with 𝐷𝑇 = 0, there is no long-time diffusive motion. Their
behavior is purely deterministic and ballistic, that is, being advected downstream
with the local flow speed. But for active particles, there is long-time diffusive
behavior from the coupling between the diffusive sampling of orientation space
due to Brownian rotation and the orientational dependence of the self-propelling
velocity𝑈𝑠q. In other words, the dispersion of active particles with 𝐷𝑇 = 0 consists
of the swim diffusivity 𝐷swim alone while the presence of an external flow modulates
the effective speed in a run and the effective reorientation time 𝜏eff of the effective
long-time random walk process. Recall that the longitudinal dispersion coefficient
becomes the free-space swim diffusivity (𝐷eff = 𝐷swim

0 ≡ 𝑈2
𝑠 𝜏𝑅/2) if the flow is also

absent (𝑈 𝑓 = 0). This coupling of rotation to translation does not exist for passive
particles that do not self-propel. Therefore, Brownian sampling of the orientation
space becomes irrelevant to the consideration of the effective dispersion for passive
particles.

To reveal the effect of flow on the longitudinal dispersion of active particles, we show
in figure 2.12(a) the effective dispersion coefficient scaled by the free space swim
diffusivity as a function of 𝑃𝑒 ¤𝛾 = 2𝑈 𝑓 𝜏𝑅/𝐻 for different strengths of confinement
ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻. The same quantity is plotted as a function of 𝑃𝑒 ¤𝛾 for different
values of 𝛽 = 𝑈𝑠/𝑈 𝑓 in figure 2.12(b) and as a function of 𝛽 for different values
of 𝑃𝑒 ¤𝛾 in figure 2.12(c). Dash-dotted horizontal lines represent the case in which
the effective dispersivity is identical to that in free space, 𝐷eff = 𝐷swim

0 . For fixed
ℓ/𝐻 as shown in figure 2.12(a), the variation of 𝑃𝑒 ¤𝛾 is understood as the variation
of the flow speed𝑈 𝑓 . For fixed 𝛽 as shown in figure 2.12(b), the variation of 𝑃𝑒 ¤𝛾 is
the variation of the reorientation time 𝜏𝑅. In figure 2.12(c) where 𝑃𝑒 ¤𝛾 is fixed, the
variation of 𝛽 corresponds to the variation of the swim speed𝑈𝑠.

In the presence of a pressure-driven flow, the effective longitudinal dispersivity is
altered in an interesting and nontrivial fashion. As shown in figure 2.12(a), the
effective dispersivity 𝐷eff/𝐷swim

0 is a non-monotonic function of the flow speed:
the effective dispersivity 𝐷eff can be either enhanced (𝐷eff/𝐷swim

0 > 1) or hindered
(𝐷eff/𝐷swim

0 < 1) compared to 𝐷swim
0 . To understand this non-monotonic behavior,

consider the effective long-time random walk process of the ABPs in the presence
of pressure-driven flow. In addition to the fluid vorticity that modifies the effective
reorientation time 𝜏eff , the fluid advection affects the effective speed in a run. Recall
that the effect of vorticity on orientation is characterized by 𝑃𝑒 ¤𝛾 and the effect of
flow speed is characterized by 𝛽. For a given ℓ/𝐻, 𝛽 decreases as the flow speed
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Figure 2.12: Variation of the effective longitudinal dispersivity 𝐷eff/(𝑈2
𝑠 𝜏𝑅/2)

in the absence of translational diffusion (𝐷𝑇 = 0) as a function of the flow speed
𝑈 𝑓 , the reorientation time 𝜏𝑅 and the swim speed 𝑈𝑠 are shown in (a), (b) and (c),
respectively. (a) Effective longitudinal dispersivity 𝐷eff/(𝑈2

𝑠 𝜏𝑅/2) as a function
of 𝑃𝑒 ¤𝛾 = 2𝑈 𝑓 𝜏𝑅/𝐻 for ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 = {0.1, 1, 2}. (b) Effective longitudinal
dispersivity 𝐷eff/(𝑈2

𝑠 𝜏𝑅/2) as a function of 𝑃𝑒 ¤𝛾 for 𝛽 = 𝑈𝑠/𝑈 𝑓 = {0.5, 1, 2, 10}.
(c) Effective longitudinal dispersion coefficient 𝐷eff/(𝑈2

𝑠 𝜏𝑅/2) as a function of 𝛽
for 𝑃𝑒 ¤𝛾 = {0.1, 1}. The results shown are obtained from BD simulations. The
horizontal dash-dotted lines are 𝐷eff = 𝑈2

𝑠 𝜏𝑅/2, i.e., the free space swim diffusivity.
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(i.e., 𝑃𝑒 ¤𝛾) increases since ℓ/𝐻 = 𝛽𝑃𝑒 ¤𝛾/2. When the flow is weak (𝑃𝑒 ¤𝛾 ≪ 1), we
have 𝛽 ≫ 1 and the advection is dominated by swimming and we recover the free
space swim diffusivity, 𝐷eff → 𝑈2

0𝜏𝑅/2 as 𝑃𝑒 ¤𝛾 → 0 with ℓ/𝐻 fixed. For strong flow
(𝑃𝑒 ¤𝛾 ≫ 1), the effective reorientation time is reduced owing to the fluid vorticity
but the effective speed in a run increases due to fluid advection. The effect of fluid
advection dominates and the longitudinal dispersion is greatly enhanced.

The two competing effects originating from the background flow gives rise to the
non-monotonic behavior. For ℓ/𝐻 = 0.1, the fluid advection becomes important
(𝛽 ∼ 𝑂 (1)) for even small 𝑃𝑒 ¤𝛾 (∼ 0.1) where the effect of the fluid vorticity is still
weak. In this case, the dispersivity increases monotonically as a function of 𝑃𝑒 ¤𝛾.
For ℓ/𝐻 = {1, 2}, the effect of vorticity becomes important at 𝑃𝑒 ¤𝛾 ∼ 𝑂 (1) and
we observe an initial decrease in the dispersivity due to a reduction of the effective
reorientation time. As the fluid advection becomes dominant (𝛽 < 1), 𝑃𝑒 ¤𝛾 ∼ 10,
the dispersivity increases as 𝑃𝑒 ¤𝛾 increases.

In the large 𝑃𝑒 ¤𝛾 limit for ℓ/𝐻 = 0.1, we observe a strong dependence of the effective
longitudinal dispersion on the flow speed, 𝐷eff/𝐷swim

0 ∼ 𝑃𝑒4
¤𝛾. Interestingly, this

giant longitudinal dispersion has also been observed by Dehkharghani et al. (2019)
in the dispersion of active particles with 𝐷𝑇 = 0 in flow through a periodic porous
media. Due to the rapid spinning from the fluid vorticity, active particles are not con-
fined in the transverse direction since their effective run length ℓeff is reduced such
that ℓeff ≪ 𝐻. In a constant vorticity field in an unbounded domain, the transverse
dispersion coefficient of active particles is reduced. In the large 𝑃𝑒 ¤𝛾 limit, this re-
duction follows the scaling 𝐷⊥/𝐷swim

0 ∼ 1/𝑃𝑒2
¤𝛾 (Dehkharghani et al. 2019; Takatori

and Brady 2014). Making use of the scaling in the classical Taylor dispersion pro-
cess, 𝐷eff ∼ 𝑈2

𝑓
𝐻2/𝐷⊥, we have 𝐷eff/𝐷swim

0 ∼ 𝑈2
𝑓
𝐻2𝑃𝑒2

¤𝛾/(𝑈4
𝑠 𝜏

2
𝑅
) ∼ 𝑃𝑒4

¤𝛾 (ℓ/𝐻)−4

in the large 𝑃𝑒 ¤𝛾 limit. For a fixed ℓ/𝐻, we recover the scaling 𝐷eff/𝐷swim
0 ∼ 𝑃𝑒4

¤𝛾.
In figure 2.12(a) for ℓ/𝐻 = 0.1, this limiting behavior is achieved for 𝑃𝑒 ¤𝛾 > 10. For
larger ℓ/𝐻, we expect the same quartic scaling in 𝑃𝑒 ¤𝛾 as 𝑃𝑒 ¤𝛾 → ∞. In the range of
𝑃𝑒 ¤𝛾 sampled in figure 2.12(a), this scaling is not achieved yet for ℓ/𝐻 = 1, 2.

To explore the effect of the reorientation time 𝜏𝑅, in figure 2.12(b) we fix 𝛽 and plot
the longitudinal dispersivity as a function of 𝑃𝑒 ¤𝛾. Physically, the variation of 𝑃𝑒 ¤𝛾
with 𝛽 fixed corresponds to the variation of the importance of the fluid vorticity while
keeping the advective effect of the flow fixed. For 𝑃𝑒 ¤𝛾 < 1, Brownian reorientation
is the fast time scale and rotation by the fluid vorticity is less important. On the other
hand, rotation by the fluid vorticity becomes dominant for 𝑃𝑒 ¤𝛾 > 1. The effective
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reorientation time 𝜏eff is reduced and thus the dispersivity decreases monotonically
as 𝑃𝑒 ¤𝛾 increases. For 𝑃𝑒 ¤𝛾 ≪ 1, the dominant reorientation mechanism is Brownian
and the enhancement of longitudinal dispersion for small 𝛽 is due to the increase in
the effective speed in the random walk from the fluid advection. The no-flow limit
where 𝐷eff → 𝐷swim

0 is recovered as the flow speed 𝑈 𝑓 → 0, which in terms of
the dimensionless parameters is obtained by taking the limit 𝛽 → ∞ and 𝑃𝑒 ¤𝛾 → 0.
This no-flow limit is effectively recovered with 𝛽 = 10 and 𝑃𝑒 ¤𝛾 ≪ 1 as marked by
the diamond symbols in figure 2.12(b).

At this point the difference between Taylor dispersion of passive matter and active
particles without translational diffusion should be noted. In the passive case, the lon-
gitudinal dispersion is always enhanced by the flow. In contrast, the pressure-driven
flow can either enhance or hinder the longitudinal dispersion of active particles.

In figure 2.12(c), we show the dispersivity as a function of the speed ratio 𝛽 for
fixed values of 𝑃𝑒 ¤𝛾. This corresponds to a variation of the effect of the fluid
advection while keeping the effect of the fluid vorticity fixed. In terms of dimensional
parameters, this is a variation of the swim speed𝑈𝑠 while keeping other parameters
fixed. As the swim speed increases, the effective run speed transitions from the
fluid speed to the swim speed and the effective longitudinal dispersion decreases
monotonically. The limiting value of the dispersivity in the large 𝛽 limit depends
on 𝑃𝑒 ¤𝛾. If 𝑃𝑒 ¤𝛾 is small (e.g., 𝑃𝑒 ¤𝛾 = 0.1), Brownian reorientation dominates and
we recover the no-flow limit (𝐷swim

0 ). If 𝑃𝑒 ¤𝛾 is larger (e.g., 𝑃𝑒 ¤𝛾 = 1), the effective
reorientation time is reduced and the longitudinal dispersivity is less than 𝐷swim

0 .

2.4.2 Dispersion with finite translational diffusion
We now consider the general case of ABPs with finite translational diffusion. For
active particles with𝐷𝑇 = 0 as explored in the previous section, the background flow
affects longitudinal particle dispersion through the rotation by vorticity in orientation
space and advection in physical space. In addition to this effective modulation of
the swim diffusivity, ABPs with finite 𝐷𝑇 also experience the classical Taylor
dispersion that occurs in physical space alone. Therefore, the dispersion of ABPs
reflects the combined effects of the pressure-driven flow on the particle dynamics
in both orientational and physical space.

For given activity level ℓ/𝛿 and confinement strength ℓ/𝐻, the variation of 𝑃𝑒
corresponds to the variation of the flow speed𝑈 𝑓 with other dimensional quantities
being fixed. We present in figure 2.13(a) the effective longitudinal dispersivity
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𝐷eff/𝐷𝑇 as a function of Péclet number for a suspension with low activity, ℓ/𝛿 = 2,
and two different confinement strengths ℓ/𝐻 = {1, 10}. The same quantities are
presented in figure 2.13(b) for a very active suspension characterized by ℓ/𝛿 = 30.

Similar to the variation of the effective drift𝑈eff/𝑢 as a function of 𝑃𝑒 with fixed ℓ/𝛿
and ℓ/𝐻 shown in figure 2.9(b), we observe a non-monotonic variation of the effec-
tive longitudinal dispersivity 𝐷eff/𝐷𝑇 as a function of the Péclet number. Notice
that the effective dispersivity has three contributions, the translational diffusivity
(𝐷𝑇 ), fluctuation of the stream-wise swimming motion (−𝑈𝑠𝑚𝑥) and fluctuation in
the number density weighted by the flow (−𝑢𝑛̃). Recall that in the absence of 𝐷𝑇 ,
only the fluctuation in the swimming motion remains and the effective dispersivity
reduces to the swim diffusivity if the flow speed is also zero. For small Péclet
number, the flow is very weak and the dispersion is dominated by the fluctuation in
self-propulsion. We have 𝐷eff → 𝐷𝑇 + 𝐷swim

0 as 𝑃𝑒 → 0. The dispersivity in this
region is insensitive to the variation in confinement ℓ/𝐻 as discussed earlier for the
no-flow case (𝑃𝑒 = 0).

In the large Péclet number limit, the advective effect dominates and the effective
dispersion approaches that of the classical Taylor dispersion of passive particles. A
minimum in the effective dispersivity is obtained when the effect of advection by
the ambient flow is comparable to the self-propulsion of ABPs.

To understand the physical origin of this non-monotonic variation in the effective
dispersivity, we consider two separate problems. First, by neglecting the advection
(u 𝑓 = 0), we remove the effect of classical Taylor dispersion and consider the
effect of vorticity alone. As one increases strength of the vorticity, the effective
reorientation time decreases due to the spinning motion while the random walk speed
is unchanged. This reduced effective reorientation time gives rise to decreasing swim
diffusivity. As 𝑃𝑒 → ∞ for fixed finite ℓ/𝛿 and ℓ/𝐻, 𝑃𝑒 ¤𝛾 → ∞, and the swim
diffusivity 𝐷swim → 0. Next, we neglect the swimming motion of ABPs (𝑈𝑠 = 0)
and simply recover the classical Taylor dispersion problem. In the classical Taylor
dispersion problem, the effective dispersivity increases monotonically as a function
of the Péclet number. By combining these two separate problems, the total effective
dispersivity becomes non-monotonic as a function of the Péclet number. In other
words, increasing of the flow strength diminishes the swim diffusivity while at the
same time generates shear-induced dispersion. It is this competition that gives rise
to the non-monotonic variation in the effective longitudinal dispersion of ABPs in a
pressure-driven flow.
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Figure 2.13: Effective longitudinal dispersivity 𝐷eff/𝐷𝑇 as a function of 𝑃𝑒 =

𝑈 𝑓𝐻/𝐷𝑇 for (a) ℓ/𝛿 = 𝑈𝑠𝜏𝑅/
√
𝐷𝑇𝜏𝑅 = 2 and (b) ℓ/𝛿 = 30 and different confinement

strengths (red: ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 = 1; blue: ℓ/𝐻 = 10). Circles are results from FEM
and dashed lines are solution from moment equations. Results from BD simulation
are marked by cross symbols. In regions of comparably large activity and flow
strength, the moment equations do not agree with FEM or BD simulation. The
classical dispersion for passive particles are plotted in a dash-dotted green line.
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The above physical argument suggests the consideration of 𝑃𝑒 ¤𝛾 that characterizes
how strong the biased rotation by vorticity is compared to random Brownian reorien-
tation. Noting that 𝑃𝑒 ¤𝛾 is proportional to 𝑃𝑒 for fixed ℓ/𝐻 and ℓ/𝛿 from the relation
𝑃𝑒 ¤𝛾 = 2𝑃𝑒(ℓ/𝐻)2(ℓ/𝛿)−2. We can define a critical condition 𝑃𝑒 ¤𝛾 ∼ 1 where the
rotational effect of the fluid vorticity becomes comparable to Brownian reorienta-
tion. If we consider a fixed activity level (e.g. ℓ/𝛿 = 30 shown in figure 2.13(b)), we
can predict the relative location of the minimal effective dispersivity when the con-
finement ℓ/𝐻 varies. For a fixed ℓ/𝛿, we require (ℓ/𝐻)2

1𝑃𝑒1 ∼ (ℓ/𝐻)2
2𝑃𝑒2 where

the subscripts 1 and 2 denote different confinement strengths. Using parameters in
figure 2.13(b), we have 𝑃𝑒2/𝑃𝑒1 ∼ 102. Here, subscript 1 denotes ℓ/𝐻 = 10 and
2 denotes ℓ/𝐻 = 1. Similarly, we can consider a fixed confinement, say ℓ/𝐻 = 1,
and different activity level. By the same argument, we have 𝑃𝑒2/𝑃𝑒1 ∼ 900 with 2
denoting ℓ/𝛿 = 30 and 1 being ℓ/𝛿 = 1.

To recover the classical Taylor dispersion analytically, we set𝑈𝑠 = 0 in the moment
equations and obtain 𝑛0 ≡ 1. In other words, the average number density of passive
particles is uniform across the channel as expected. The average drift is simply the
average flow velocity 𝑈eff = 2𝑈 𝑓 /3. The fluctuating field number density can then
be obtained

𝑛̃(𝑦) = −
𝑈 𝑓𝐻

2

720𝐷𝑇

[
7 − 120

( 𝑦
𝐻

)2
+ 240

( 𝑦
𝐻

)4
]
. (2.28)

Taking an average of 𝑛̃weighted by the flow field, we recover the effective longitudi-
nal dispersivity for passive particles 𝐷eff/𝐷𝑇 = 1+2𝑃𝑒2/945. The numerical factor
is different from that given in Brenner and Edwards (2013) due to their definition
of the Péclet number based on the average instead of the maximum flow velocity.
The effective dispersivity for passive particles as a function of Péclet number is
plotted in figure 2.13 with a dash-dotted green line. In appendix 2.8, the effect of
non-spherical shape on the longitudinal dispersion of ABPs is considered.

In figure 2.14, we show the variation of 𝐷eff/𝐷swim
0 as a function of 𝑃𝑒 ¤𝛾 for ℓ/𝐻 = 2

and different values of ℓ/𝛿. The blue cross markers are results for active particles
with 𝐷𝑇 = 0 (ℓ/𝛿 = ∞), which has been shown in figure 2.12(a) with square
markers. Decreasing ℓ/𝛿 corresponds to increasing the translational diffusivity of
the ABPs. The strong non-monotonic variation of the effective dispersion coefficient
as a function of the flow speed (𝑃𝑒 ¤𝛾) is observed when translational diffusion is
weak (ℓ/𝛿 is large). Due to the presence of classical Taylor dispersion for active
particles with finite 𝐷𝑇 , the non-monotonicity becomes weaker as 𝐷𝑇 increases
(ℓ/𝛿 decreases).
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Figure 2.14: The effective longitudinal dispersion coefficient 𝐷eff/(𝑈2
𝑠 𝜏𝑅/2) as a

function of 𝑃𝑒 ¤𝛾 for different values of ℓ/𝛿. The degree of confinement is fixed,
ℓ/𝐻 = 2. For a given 𝑃𝑒 ¤𝛾 and ℓ/𝐻, decreasing ℓ/𝛿 corresponds to increasing the
translational diffusivity.

2.5 Conclusion
In this Chapter, we have presented a combined analytical and numerical investigation
of the effective longitudinal advection and dispersion of non-interacting isotropic
ABPs in a planar Poiseuille flow. Using a generalized Taylor dispersion approach, we
derived an effective longitudinal advection-diffusion equation for the cross-sectional
average number density. The average drift and effective longitudinal dispersivity
are then related to the average and fluctuating field moments, respectively. Our
results from this continuum perspective are corroborated by Brownian dynamics
simulations of the equations of motion for each active particle. Compared to the
BD simulation, the continuum approach exposes the mathematical structure of the
problem and elucidates the mechanism from which the observed upstream swimming
and dispersive behavior emerges.

Self-propulsion of ABPs leads to interesting behavior in the average drift and effec-
tive longitudinal dispersion distinct from those of passive particles. Instead of being
advected downstream, ABPs can swim upstream due to the biased rotation from
the fluid vorticity. In the absence of flow, fluctuations in self-propulsion alone give
rise to enhanced dispersion compared to the translational diffusivity. On the other
hand, the combination of flow and activity can lead to a non-monotonic variation
of the effective longitudinal dispersion with changing flow strength. By tuning the
relative magnitudes of flow and self-propulsion, the long-time effective dispersivity
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of ABPs can be minimized.

Both upstream swimming and non-monotonic dispersion examined in this Chap-
ter have received considerable attention in previous work using different model
swimmers or methods. We have shown that the essential physics required to pro-
duce upstream swimming and non-monotonic dispersion are captured by the simple
spherical ABP model. Regardless of the type of microorganisms or artificial active
particles, the flow effects included in this work are universally present. As a result,
the spherical ABP model provides a basis for the understanding of the transport of
active particles in channel flow. In addition, the simplicity of the spherical ABP
model allows the development of a continuum theory, which is challenging for active
swimmers with complex body geometry.

Several previous work have studied the dynamics of non-spherical particles such as
rod-like or beads-spring swimmers. To understand the effect of shape anisotropy, we
consider a spheroidal particle and model the orientation dynamics using Jeffery’s
equation (Jeffery 1922). In the Smoluchowski equation, we need to include the
additional effect of alignment from the rate-of-strain tensorE and write the rotational
flux as j𝑅 = 1

2ω𝑃 + 𝐵q × (E · q)𝑃 − 𝐷𝑅∇𝑅𝑃. When q is aligned with one of the
eigenvectors of E, the dot product E · q is parallel to q and the term q × (E · q)
vanishes. The dimensionless parameter 𝐵 quantifies the shape of the particle. For
a sphere, 𝐵 = 0. In the strong flow limit, the average drift of a non-spherical
particle still approaches that of the passive particles. The effect of the alignment
is to enhance upstream swimming when the flow is weak. Because the alignment
do not modify the dispersion mechanism, we only expect a weak dependence of
the longitudinal dispersion on the shape anisotropy. The effect of particle shape
on the average drift and effective longitudinal dispersion is shown in figure 2.15 in
appendix 2.8.

In addition to recovering the upstream swimming and non-monotonic dispersive
behavior discovered by previous work, we systematically examined the effect of the
flow speed, the swim speed, the reorientation time and the translational diffusivity
on the dynamics of ABPs in Poiseuille flow. In particular, we studied the dynamics
of active particles in the absence of translational diffusion, which has not been
analyzed in detail previously. Under weak confinement, active particles without 𝐷𝑇
experiences giant Taylor dispersion where 𝐷eff/𝐷swim

0 ∼ 𝑃𝑒4
¤𝛾 for 𝑃𝑒 ¤𝛾 ≫ 1. We

showed that a non-monotonic variation in longitudinal dispersion is also observed
in the absence of 𝐷𝑇 for confined active particles. For ABPs with finite 𝐷𝑇 , we
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showed that 𝐷eff/𝐷𝑇 ∼ 𝑃𝑒2 for 𝑃𝑒 ≫ 1. For a fixed ℓ/𝛿 and ℓ/𝐻, this scaling
for finite 𝐷𝑇 can be alternatively written as 𝐷eff/𝐷swim

0 ∼ 𝑃𝑒2
¤𝛾 using the relation

𝑃𝑒 ¤𝛾 = 2𝑃𝑒(ℓ/𝐻)2(ℓ/𝛿)−2. This difference in scaling reveals the singular nature of
the limit 𝐷𝑇 → 0.

To conclude, we note that wall accumulation and upstream swimming have practical
implications such as biofilm formation and bacteria infection. The results we
have shown complement our understanding of the dynamics of active particles in
Poiseuille flow and provide insights into the effective design of biomedical systems
that aim to reduce infection or biofilm formation.

2.6 Appendix: The orientational moments
We substitute the moment expansion of 𝑔0 and 𝑑0 into equations (2.18) and (2.19)
and take orientational moments to obtain the moment equations. The following
identities are useful:∫

𝑞𝑖𝑞 𝑗𝑑q = 𝜋𝛿𝑖 𝑗 ,

∫
𝑞𝑖𝑞 𝑗𝑞𝑘𝑞𝑙𝑑q =

𝜋

4
(𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘 ), (2.29)

where 𝛿𝑖 𝑗 is the Kronecker delta. At steady state, the average field moments satisfy

𝑑

𝑑𝑦

(
𝑈𝑠𝑚

0
𝑦 − 𝐷𝑇

𝑑𝑛0

𝑑𝑦

)
= 0, (2.30)

𝑑

𝑑𝑦

(
𝑈𝑠𝑄

0
𝑦𝑥 − 𝐷𝑇

𝑑𝑚0
𝑥

𝑑𝑦

)
+ 𝐷𝑅𝑚

0
𝑥 +

1
2
𝜔𝑚0

𝑦 = 0, (2.31)

𝑑

𝑑𝑦

(
1
2
𝑈𝑠𝑛

0 +𝑈𝑠𝑄0
𝑦𝑦 − 𝐷𝑇

𝑑𝑚0
𝑦

𝑑𝑦

)
+ 𝐷𝑅𝑚

0
𝑦 −

1
2
𝜔𝑚0

𝑥 = 0, (2.32)

𝑑

𝑑𝑦

(
1
4
𝑈𝑠𝑚

0
𝑦 − 𝐷𝑇

𝑑𝑄0
𝑦𝑦

𝑑𝑦

)
+ 4𝐷𝑅𝑄

0
𝑦𝑦 − 𝜔𝑄0

𝑦𝑥 = 0, (2.33)

𝑑

𝑑𝑦

(
1
4
𝑈𝑠𝑚

0
𝑥 − 𝐷𝑇

𝑑𝑄0
𝑦𝑥

𝑑𝑦

)
+ 4𝐷𝑅𝑄

0
𝑦𝑥 + 𝜔𝑄0

𝑦𝑦 = 0. (2.34)
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Here, 𝜔 = 8𝑈 𝑓 𝑦/𝐻2 is the scalar vorticity. The no-flux boundary conditions at
𝑦 = ±𝐻/2 are given by

𝑈𝑠𝑚
0
𝑦 − 𝐷𝑇

𝑑𝑛0

𝑑𝑦
= 0, (2.35)

𝑈𝑠𝑄
0
𝑦𝑥 − 𝐷𝑇

𝑑𝑚0
𝑥

𝑑𝑦
= 0, (2.36)

1
2
𝑈𝑠𝑛

0 +𝑈𝑠𝑄0
𝑦𝑦 − 𝐷𝑇

𝑑

𝑑𝑦
𝑚0
𝑦 = 0, (2.37)

1
4
𝑈𝑠𝑚

0
𝑦 − 𝐷𝑇

𝑑𝑄0
𝑦𝑦

𝑑𝑦
= 0, (2.38)

1
4
𝑈𝑠𝑚

0
𝑥 − 𝐷𝑇

𝑑𝑄0
𝑦𝑥

𝑑𝑦
= 0. (2.39)

The steady-state moment equations for the fluctuating field are

𝑑

𝑑𝑦

(
𝑈𝑠𝑚̃𝑦 − 𝐷𝑇

𝑑𝑛̃

𝑑𝑦

)
= (𝑈eff − 𝑢)𝑛0 −𝑈𝑠𝑚0

𝑥 , (2.40)

𝑑

𝑑𝑦

(
𝑈𝑠𝑄̃𝑦𝑥 − 𝐷𝑇

𝑑𝑚̃𝑥

𝑑𝑦

)
+ 𝐷𝑅𝑚̃𝑥 +

1
2
𝜔𝑚̃𝑦 = (𝑈eff − 𝑢)𝑚0

𝑥 −𝑈𝑠
(
𝑄0
𝑥𝑥 +

1
2
𝑛0

)
,

(2.41)
𝑑

𝑑𝑦

(
1
2
𝑈𝑠𝑛̃ +𝑈𝑠𝑄̃𝑦𝑦 − 𝐷𝑇

𝑑𝑚̃𝑦

𝑑𝑦

)
+ 𝐷𝑅𝑚̃𝑦 −

1
2
𝜔𝑚̃𝑥 = (𝑈eff − 𝑢)𝑚0

𝑦 −𝑈𝑠𝑄0
𝑦𝑥 ,

(2.42)

𝑑

𝑑𝑦

(
1
4
𝑈𝑠𝑚̃𝑦 − 𝐷𝑇

𝑑𝑄̃𝑦𝑦

𝑑𝑦

)
+ 4𝐷𝑅𝑄̃𝑦𝑦 − 𝜔𝑄̃𝑦𝑥 = (𝑈eff − 𝑢)𝑄0

𝑦𝑦 +
1
4
𝑈𝑠𝑚

0
𝑥 , (2.43)

𝑑

𝑑𝑦

(
1
4
𝑈𝑠𝑚̃𝑥 − 𝐷𝑇

𝑑𝑄̃𝑦𝑥

𝑑𝑦

)
+ 4𝐷𝑅𝑄̃𝑦𝑥 + 𝜔𝑄̃𝑦𝑦 = (𝑈eff − 𝑢)𝑄0

𝑦𝑥 −
1
4
𝑈𝑠𝑚

0
𝑦 . (2.44)

Similar to the average field moments, the fluctuating field moments satisfy the
no-flux conditions at the wall:

𝑈𝑠𝑚̃𝑦 − 𝐷𝑇
𝑑𝑛̃

𝑑𝑦
= 0, (2.45)

𝑈𝑠𝑄̃𝑦𝑥 − 𝐷𝑇
𝑑𝑚̃𝑥

𝑑𝑦
= 0, (2.46)

1
2
𝑈𝑠𝑛̃ +𝑈𝑠𝑄̃𝑦𝑦 − 𝐷𝑇

𝑑𝑚̃𝑦

𝑑𝑦
= 0, (2.47)

1
4
𝑈𝑠𝑚̃𝑦 − 𝐷𝑇

𝑑𝑄̃𝑦𝑦

𝑑𝑦
= 0, (2.48)

1
4
𝑈𝑠𝑚̃𝑥 − 𝐷𝑇

𝑑𝑄̃𝑦𝑥

𝑑𝑦
= 0. (2.49)
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The normalization requires

1
𝐻

∫ 𝐻/2

−𝐻/2
𝑛0𝑑𝑦 = 1 and

∫ 𝐻/2

−𝐻/2
𝑛̃𝑑𝑦 = 0. (2.50)

We solve these equations in Matlab using a Chebyshev collocation method (Trefethen
2000). Equation (2.30) along with its boundary condition (2.35) is analytically
integrated once to obtain a first order equation

𝑈𝑠𝑚
0
𝑦 − 𝐷𝑇

𝑑𝑛0

𝑑𝑦
= 0. (2.51)

To solve the average filed moment equations (2.31)–(2.34) and (2.51), we start from
a guess for 𝑛0(−𝐻/2) as a boundary condition and update the guess based on a
root finding algorithm such that the normalization condition is satisfied within a
tolerance of 10−6. A similar approach for the fluctuating field equations is used.

2.7 Appendix: Brownian dynamics simulation
The motion of ABPs is governed by the overdamped Langevin equations as presented
in equations (2.24) and (2.25). In 2D, we can parameterize the orientation vector
by an orientation angle 𝜃 such that q = cos 𝜃e𝑥 + sin 𝜃e𝑦. The discretized Langevin
equation is given by

Δ𝑥 = 𝑢 𝑓 (𝑦𝑛)Δ𝑡 +𝑈𝑠 cos [𝜃 (𝑡𝑛)] Δ𝑡 + Δ𝑥𝐵,

Δ𝑦 = 𝑈𝑠 sin [𝜃 (𝑡𝑛)] Δ𝑡 + Δ𝑦𝐵,

Δ𝜃 =
1
2
𝜔(𝑦𝑛)Δ𝑡 + Δ𝜃𝐵, (2.52)

where Δ𝑥 is the particle displacement in 𝑥-direction over the time step Δ𝑡 from
𝑡𝑛 to 𝑡𝑛+1. Similarly, Δ𝑦 is the displacement in 𝑦-direction and Δ𝜃 is the angular
displacement. The Brownian displacement Δ𝑥𝐵 (or Δ𝑦𝐵) is sampled from a white
noise with a mean of 0 and variance of 2𝐷𝑇Δ𝑡. Similarly, the rotary Brownian
displacement Δ𝜃𝐵 has a mean of 0 and variance of 2Δ𝑡/𝜏𝑅. The subscript 𝑛 denotes
the current time, and 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡. The position and orientation of a particle at
𝑡𝑛+1 is then given by 𝑥𝑛+1 = 𝑥𝑛 + Δ𝑥, 𝑦𝑛+1 = 𝑦𝑛 + Δ𝑦, 𝜃𝑛+1 = 𝜃𝑛 + Δ𝜃. The position
𝑦𝑛+1 is then corrected according to the potential-free algorithm if it overlaps with
the channel wall. In our definition, the parameter 𝐻 already includes the radius of
the particle. In other words, when the center position of the particles exceeds ±𝐻/2,
we move the particle back such that its center position is at ±𝐻/2. The particle size
do not appear explicitly in the potential-free algorithm. We note that the radius of
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the ABPs is assumed to be negligible compared to the width of the channel. As a
result, the ABPs experience zero background flow at contact with the wall.

In most simulations, we use a time step Δ𝑡 = 10−3𝑡min where 𝑡min is the smallest time
scale in the problem, which is estimated via 𝑡min = min(𝜏𝑅, 𝐻2/𝐷𝑇 , 𝐻/𝑈𝑠, 𝐻/𝑈 𝑓 ).
Simulations were run for a duration of 100𝑡max where 𝑡max is the largest time scale
in the problem. All simulations are performed using an in-house GPU-accelerated
code consisting of 102, 400 active Brownian particles.

2.8 Appendix: Non-spherical particles
In figure 2.15(a), we show the average drift as a function of 𝑃𝑒 for different values
of 𝐵. For an ellipsoidal particle of major axis 𝑎 and minor axis 𝑏, the shape factor
is defined as 𝐵 = (𝑟2 − 1)/(𝑟2 + 1), where the aspect ratio 𝑟 = 𝑎/𝑏. For a sphere
(𝑎 = 𝑏), we have 𝐵 = 0. For a rod-like particle, 𝑟 → ∞ and 𝐵 → 1. As 𝐵
increases from 0 to 1, the particle shape changes from a sphere to a rod. In the weak
flow limit, alignment from the rate-of-strain tensor enhances upstream swimming
of non-spherical particles. In figure 2.15(b), we show the effective longitudinal
dispersion coefficient as a function of 𝑃𝑒 for different values of 𝐵. We only observe
a weak dependence of the dispersion on particle shape. We note that the same
no-flux boundary condition for spherical ABPs (e𝑦 · j𝑇 = 0 at the wall) is used in
the Smoluchowski equation for non-spherical particles.
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Figure 2.15: (a) The average drift 𝑈eff/𝑢 as a function of 𝑃𝑒 for different values of
𝐵. The black dashed line is the result for passive Brownian particles, 𝑈eff/𝑢 ≡ 1.
(b) The effective longitudinal dispersion coefficient 𝐷eff/𝐷𝑇 as a function of 𝑃𝑒 for
different values of 𝐵. In both panels, ℓ/𝐻 = 10 and ℓ/𝛿 = 30. Results are obtained
from FEM simulation of the Smoluchowski equation.
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C h a p t e r 3

DYNAMICS OF AN ACTIVE ELLIPSOID IN A POISEUILLE
FLOW

3.1 Introduction
In the previous Chapter, we developed a generalized Taylor dispersion approach
to characterize the effective longitudinal transport of active Brownian spheres in
a Poiseuille flow. However, many biological microswimmers such as E. coli have
a nonspherical shape, which is often modeled as a prolate spheroid. Neglecting
hydrodynamic interactions of the spheroid with the channel walls, the orientational
dynamics of a prolate spheroid in pressure-driven flow is often modeled by Jeffery’s
equation (Jeffery 1922). Compared to a spherical particle that rotates with the
local angular velocity of the flow, the spheroid experiences the additional effect of
alignment from the rate-of-strain tensor.

In general, the interactions of a rigid particle with the channel walls include both hy-
drodynamic and steric effects. Even though we neglect hydrodynamic interactions,
the steric interaction of a nonspherical particle with the channel walls is nontriv-
ial. From a continuum perspective, the dynamics of an active Brownian particle is
governed by the Smoluchowski equation and the steric interaction with the channel
walls is enforced via boundary conditions. For spherical active Brownian particles
of radius 𝑎 as we considered in the previous Chapter, this is simply the no-flux con-
dition: take the top wall located at 𝑦 = 𝐻/2 as an example, the boundary condition
is e𝑦 ·j𝑇 = 0 at 𝑦 = 𝐻/2−𝑎, i.e. no flux of particle centers into the wall at a distance
of the particle’s radius away from the wall.

For a spheroid (or any nonspherical particle) in contact with a planar wall, the center
position of the particle is coupled to its orientation. If the characteristic dimension
of the spheroid is much smaller than the width of the channel, this orientation-
dependent steric interaction is often neglected (Bees and Croze 2010; Croze et al.
2013; Zöttl and Stark 2013; Ezhilan and Saintillan 2015; Junot et al. 2019; Jiang and
Chen 2019; 2021; Kumar et al. 2021). In this approach, the difference between the
dynamics of spheroidal and spherical particles originate solely from the alignment
effect of the rate-of-strain tensor, which we have explored in section 2.8 of the
previous Chapter. To capture the orientation-dependent steric interaction, Nitsche
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and Brenner (1990) developed a generalized no-flux condition that applies locally
at the hyperspace boundaries of the configuration space. This boundary condition
comes naturally by integrating the Smoluchowski equation over the entire accessible
phase space and demanding that the normal component of the generalized flux vector
vanishes at each boundary point so as to conserve probability. The generalized no-
flux condition of Nitsche and Brenner has been used to study the dynamics of
nonspherical particles confined in a channel (Chen and Thiffeault 2021) and in
planar Poiseuille flow (Ezhilan and Saintillan 2015).

While the generalized no-flux condition of Nitsche and Brenner guarantees that
the particle does not overlap with the boundary, it does not take into consideration
the contact-induced alignment of nonspherical particles with the wall. To see this,
consider a spheroid approaching the wall at an oblique angle. Instead of staying
in contact with the wall while maintaining its orientation, the spheroid is rotated
such that its major axis aligns with the wall due to the torque induced by the off-
center contact force. In this Chapter, we present a computational approach based on
the micromechanical equations of motion subject to the geometric constraint of no
overlap between the spheroid and the channel walls. Using this approach, we can
resolve the steric interaction between the spheroid and the channel walls.

3.2 Problem formulation
We consider a rigid and active prolate spheroidal particle that swims with an intrinsic
speed𝑈𝑠 along its major axis p (p · p = 1)1 in a planar Poiseuille flow between two
parallel plates separated by a distance 𝐻. The spheroidal particle has a semi-major
axis of length 𝑎 and a semi-minor axis of length 𝑏, 𝑎 ≥ 𝑏. The parabolic flow profile
is given by

u 𝑓 = 𝑢 𝑓 (𝑦)e𝑥 = 𝑈 𝑓

(
1 − 4

𝑦2

𝐻2

)
e𝑥 , −𝐻

2
≤ 𝑦 ≤ 𝐻

2
, (3.1)

with the maximum fluid velocity𝑈 𝑓 at the centerline of the channel (𝑦 = 0).

In this Chapter, we neglect hydrodynamic interactions but emphasize steric interac-
tions of the active particle with the channel walls. Collision of the particle with a
wall is assumed to be hard and has a single point of contact. At this contact point, the
wall exerts a normal force that prevents the particle from penetrating the wall. When
the spheroidal particle collides with a planar wall from an oblique angle, the normal

1In this Chapter, q is used to denote the generalized coordinate and p is used to denote the
swimming direction of an active particle.
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collisional force induces a torque that tends to align the major axis of the particle
with the wall. This collision-induced alignment relies on the shape anisotropy and
therefore is absent for a spherical particle.

In the absence of hydrodynamic interactions with the wall, we use the free-space
resistance tensors of a single spheroidal particle to model the low Reynolds number
dynamics. The force and torque balances on the spheroidal particle are given by,
respectively,

−R𝐹𝑈 ·
(
U − u 𝑓 −𝑈𝑠p

)
+ F𝐵 + F𝐶 = 0, (3.2)

−R𝐿Ω ·
(
Ω −Ω 𝑓

)
+L𝐵 +L𝐶 = 0, (3.3)

whereU (Ω) is the instantaneous linear (angular) velocity; they satisfy the kinematic
relations

¤x = U and ¤p = Ω × p (3.4)

with the over-dot denoting the time derivative. For a prolate spheroid in free space,
the resistance tensors can be written as

R𝐹𝑈 = 6𝜋𝜇𝑎
[
𝑋𝐴pp + 𝑌 𝐴 (I − pp)

]
, (3.5)

R𝐿Ω = 8𝜋𝜇𝑎3 [
𝑋𝐶pp + 𝑌𝐶 (I − pp)

]
, (3.6)

where 𝜇 is the viscosity, and 𝑋𝐴, 𝑌 𝐴, 𝑋𝐶 and 𝑌𝐶 are scalar resistance functions of
Kim and Karrila (1991). For completeness, the resistance functions are listed here:

𝑋𝐴 =
8
3
𝑒3 [

−2𝑒 + (1 + 𝑒2)𝐿
]−1

, (3.7)

𝑌 𝐴 =
16
3
𝑒3 [

2𝑒 + (3𝑒2 − 1)𝐿
]−1

, (3.8)

𝑋𝐶 =
4
3
𝑒3(1 − 𝑒2)

[
2𝑒 − (1 − 𝑒2)𝐿

]−1
, (3.9)

𝑌𝐶 =
4
3
𝑒3(2 − 𝑒2)

[
−2𝑒 + (1 + 𝑒2)𝐿

]−1
, (3.10)

where
𝐿 (𝑒) = ln

(
1 + 𝑒
1 − 𝑒

)
(3.11)

and
𝑒 =

√︁
𝑎2 − 𝑏2/𝑎 (3.12)

is the eccentricity.

Because a spheroid has three mutually perpendicular planes of symmetry (or-
thotropic), there is no translation-rotation coupling (R𝑈𝐿 = RΩ𝐹 = 0) in free-space.
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The force (F𝐶) and torque (L𝐶) due to collision is only present when a collision is
active. We model the angular velocity due to the background flow using Jeffery’s
equation (Jeffery 1922; Bretherton 1962)

Ω 𝑓 =
1
2
ω + 𝛽p × (E · p), (3.13)

where ω = ∇ × u 𝑓 is the fluid vorticity and 𝛽 = (𝑟2 − 1)/(𝑟2 + 1) is the Bretherton
constant characterizing the shape of the particle. The aspect ratio of the spheroid is
𝑟 = 𝑎/𝑏 ≥ 1. For a spherical particle, 𝑎 = 𝑏 and 𝛽 = 0; in the limit of an infinitely
thin spheroid, 𝑎/𝑏 → ∞ and 𝛽 → 1. The second term on the right-hand side
of equation (3.13) represents alignment of p due to the local rate-of-strain tensor
E = 1

2 (∇u 𝑓 + (∇u 𝑓 )⊺); this contribution to the angular velocity vanishes when p

is aligned with one of the eigenvectors of E.

3.2.1 Constrained equation of motion in 3D
To simulate the particle dynamics governed by equations (3.2) and (3.3) in 3D,
it is more convenient to represent the orientational degrees of freedom using the
normalized quaternion θ = (𝑠, v)𝑇 , a composition of a scalar 𝑠 ∈ R and a vector
v ∈ R3 that satisfy the unit-norm constraint θ · θ = 𝑠2 + v · v = 1. For a given
deterministic angular velocity Ω(𝑡), the kinematics of rotational motion in terms of
the quaternion θ(𝑡) satisfies

¤θ = 𝚿Ω, (3.14)

where

𝚿 =
1
2

[
−v⊺

𝑠I − P

]
(3.15)

is a 4 × 3 matrix composed of elements of the quaternion θ(𝑡) (Delong et al. 2015).
Here, P is a skew-symmetric matrix with elements 𝑃𝑖 𝑗 = 𝜖𝑖𝑘 𝑗𝑣𝑘 and 𝜖𝑖 𝑗 𝑘 is the
Levi-Civita tensor in three dimensions.

Delong et al. (2015) formulated the Ito Langevin equation of motion for a Brownian
particle using the generalized coordinates q = (x, θ)⊺. Following their approach,
we write the equation of motion of an active Brownian spheroid in Poiseuille flow
as

¤q = 𝚿̃

[
𝑈𝑠p

0

]
+𝚿̃

[
u 𝑓

Ω 𝑓

]
+𝚿̃MF𝑐+

√︁
2𝑘𝐵𝑇𝚿̃M

1/2
W+𝑘𝐵𝑇∇q ·

(
𝚿̃M𝚿̃

⊺)
, (3.16)

where 𝚿̃ = diag(I ,𝚿) ∈ R7×6 is a block-diagonal matrix and F𝑐 ∈ R6 is the
generalized force vector (force and torque) due to collision with the boundary. In
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equation (3.16), the total velocity consists of the intrinsic swimming velocity, the
linear and angular fluid velocities, the velocity due to collision with the wall (U𝑐 =

MF𝑐) and the velocity due to Brownian motion. The yet unknown collisional force
(and velocity U𝑐) ensures that the particle does not penetrate the wall. Because
the mobility tensor depends on the configuration q, the Brownian velocity has two
contributions as given by the last two terms in equation (3.16). In particular, the
last term represents the Brownian drift due to the gradient of the mobility tensor.
The “square root” of the mobility matrix is defined via the fluctuation-dissipation
relation, M1/2

(
M

1/2
)⊺

= M, and W (𝑡) ∈ R6 is a vector of independent unit-
variance white noise processes.

Following previous works on potential-free collision resolution (Tasora et al. 2008;
Tasora and Anitescu 2011; Yan et al. 2019), we formulate the contact dynamics of
a spheroid with the channel walls as an optimization problem based on geometric
constraint. Collisions of the particle with a wall are assumed to be inelastic; the
particle and the wall can remain in contact after collisions. We emphasize that
during contact, the collisional force is normal to both the particle surface and the
wall at the point of contact and friction is ignored. Before considering the collisional
force, a description of the geometric condition of non-overlap is needed. This can
be achieved by defining a gap function Φ𝑙 (q) for a pair of objects labeled 𝑙—in our
case the pair consists of the spheroid and one of the walls—such that Φ𝑙 = 0 if the
pair is at contact and Φ𝑙 > 0 if the pair is not at contact. This purely geometric
gap function can be written explicitly for a spheroid confined between two parallel
plates,

Φ±(q) =
𝐻

2
∓ e
⊺
𝑦x −

(
e
⊺
𝑦R𝚲−1R⊺e𝑦

)1/2
, (3.17)

where𝚲 = diag(1/𝑎2, 1/𝑏2, 1/𝑏2), e𝑦 = (0, 1, 0)⊺ andR is the orthonormal rotation
matrix (See section 3.5 for the derivation). The gap function Φ+ (Φ−) gives the
minimum distance between any point on the spheroid and the upper (lower) wall for
a given accessible particle configuration q. In the case of a sphere, 𝑎 = 𝑏 and the
gap function for the upper wall reduces to the familiar expression Φ+ = 𝐻/2− 𝑦− 𝑎.

If the pair 𝑙 is at contact, Φ𝑙 = 0, the contact force is nonzero; denoting the force
magnitude by 𝛾𝑙 , we have 𝛾𝑙 > 0. On the other hand, if the pair 𝑙 is not at
contact, we have Φ𝑙 > 0 and 𝛾𝑙 = 0. As a result, Φ𝑙 and 𝛾𝑙 satisfies the so-called
complementarity condition and is usually denoted by the notation

0 ≤ 𝚽 ⊥ γ ≥ 0, (3.18)
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where 𝚽 ∈ R𝑛𝑐 denotes the minimal separation distances between all possible
collision pairs (𝑛𝑐) and γ ∈ R𝑛𝑐 is the corresponding contact force magnitudes.

The contact force magnitude is mapped to the contact force via the director matrix
D such that

F = Dγ, (3.19)

where the director matrix is a purely geometric quantity and given by (Tasora et al.
2008)

∇𝑞𝚽 = D
𝑇 . (3.20)

Equations (3.16) and (3.18) complete the formulation of the constrained equation
of motion for an active particle in the presence of a boundary. To simulate the
constrained Langevin dynamics of the particle, a time discretization scheme is
required.

3.2.2 Constrained equation of motion in 2D
The general formulation in the previous section still applies in 2D except that the
orientation space is now represented by a single orientation angle 𝜃 such that the
swimming direction p = cos 𝜃e𝑥 + sin 𝜃e𝑦. Realizing that in 2D Ω = Ωe𝑧 and
¤p = ¤𝜃e𝑧 × p, the orientational kinematic relation in (3.4) reduces to the familiar
form ¤𝜃 = Ω. The Langevin equation of motion analogous to (3.16) in 2D can be
written as

¤q =

[
𝑈𝑠p

0

]
+

[
u 𝑓

Ω 𝑓

]
+MF𝑐 +

√︁
2𝑘𝐵𝑇M1/2

W + 𝑘𝐵𝑇∇q ·M, (3.21)

where the generalized coordinate q = (x, 𝜃)⊺ ∈ R3.

For many active matter systems, the swim diffusivity is often much larger than the
thermal diffusivity. As a result, we neglect the thermal translational and rotational
Brownian motion. Furthermore, a biological microswimmer may ‘decide’ to change
its orientation by, for example, actuating the flagella on a different side of its body
without disturbing the flow; we model this process using a rotary diffusion process
with the rotary diffusivity 𝐷𝑅. Since the origin of 𝐷𝑅 is biological rather than
thermal in origin, it is independent of the thermal energy 𝑘𝐵𝑇 .

Under the above assumptions, equation (3.21) becomes

¤q =

[
𝑈𝑠p

0

]
+

[
u 𝑓

Ω 𝑓

]
+MF𝑐 +

[
0

√
2𝐷𝑅W

]
, (3.22)
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where W is a unit-variance white noise process satisfying

⟨W⟩ = 0 and ⟨W(0)W(𝑡)⟩ = 𝛿(𝑡). (3.23)

From equation (3.13), the scalar angular velocity due to the flow can be shown to be

Ω 𝑓 =
4𝑈 𝑓 𝑦

𝐻2 [1 − 𝛽 cos(2𝜃)] . (3.24)

3.2.3 Time discretization
We discretize equation (3.22) using the Euler-Maruyama scheme. For a time step
size Δ𝑡, we have at 𝑡𝑘 = 𝑘Δ𝑡

q𝑘+1 − q𝑘

Δ𝑡
=

[
𝑈𝑠p

𝑘

0

]
+

[
u𝑘
𝑓

Ω𝑘
𝑓

]
+M

𝑘
F
𝑘
𝑐 +

[
0√︁

2𝐷𝑅/Δ𝑡𝑊

]
, (3.25)

where 𝑊 is a pseudorandom number with zero mean and unit variance. To resolve
the potential boundary collisions, we require

0 ≤ 𝚽
(
q𝑘+1

)
⊥ γ𝑘 ≥ 0. (3.26)

Because the minimum gap function 𝚽 is a nonlinear function of q, the above
formulation constitutes a nonlinear complementarity problem. Following the work
of Yan et al. (2019), the complementarity problem is linearized and solved as a
linear complementarity problem.

A straightforward dimensional analysis reveals that the problem is governed by four
dimensionless groups: (i) the size of the ellipsoid compared to the channel 𝑎/𝐻,
(ii) the aspect ratio of the ellipsoid 𝑟 = 𝑎/𝑏, (iii) the confinement in the absence of
flow ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 , and (iv) the comparison of the flow speed and the swim speed
𝑈 𝑓 /𝑈𝑠.

3.3 Deterministic dynamics
To probe the effect of the contact force/torque on the dynamics of the ellipsoid, we
first present results in the absence of random noises (𝐷𝑅 = 0). In figure 3.1 we
show the time evolution of the position and orientation of the ellipsoid as it interacts
with the top wall of the channel for (a) no flow, (b) weak flow and (c) stronger flow.
The simulation is started from the position 𝑦/𝐻 = 0.3 and orientation 𝜃 = 𝜋/4. In
the absence of flow, the ellipsoid swim towards the top wall following the initial
orientation until it reaches the wall. Because the ellipsoid comes into contact with
the wall at an oblique angle, the contact force is off-center and induces a net torque
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(a)

(b)

(c)

Figure 3.1: Interaction of an active ellipsoid (𝑎/𝐻 = 0.1, 𝑎/𝑏 = 2) without noise
in 2D with the top wall of the channel for (a) no flow, (b) weak flow, and (c) stronger
flow. The red dashed line denotes the trajectory of the center of the ellipsoid. The
color gradient of the ellipsoids denotes the evolution of time (from light to dark).
The simulation is started from the initial condition 𝑦/𝐻 = 0.3 and 𝜃 = 𝜋/4. The
bottom wall of the channel is not shown.
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on the ellipsoid that tends to align the major axis of the ellipsoid with the channel
wall. As can be seen from figure 3.1(a), the contact torque rotates the ellipsoid
such that at later times it becomes aligned with the wall. Once aligned horizontally
(𝜃 = 0), the contact force and torque vanishes and the particle keeps swimming
towards the right while maintaining contact with the wall. In other words, at long
times the ellipsoid in figure 3.1(a) reaches the fixed point (𝐻/2 − 𝑏, 0) in the (𝑦, 𝜃)
phase space.

For weak flow shown in figure 3.1(b), the ellipsoid is rotated counterclockwise
towards the upstream (left) direction; it will then reach the wall with an orientation
angle 𝜋/4 < 𝜃 < 𝜋/2. Because at contact its orientation angle is less than 𝜋/2,
the contact torque induces a clockwise rotation towards the downstream. At long
times, the particle exhibits a nonzero orientation angle determined by the balance
of the torque due to flow and the contact torque. As a result, the particle moves
downstream while keeps pushing against the wall. If the flow is strong, as shown
in figure 3.1(c), the particle approaches the wall with an angle close to 𝜋/2 and
the contact torque is weak. Therefore, the flow torque is able to rotate the particle
such that 𝜃 > 𝜋/2. Once 𝜃 > 𝜋/2, the contact torque reverses its direction to
be counterclockwise and acts to further rotate the ellipsoid. The ellipsoid is then
rotated towards the upstream direction and is able to escape into the bulk of the
channel. At long times, the trajectory reaches a limit cycle in the (𝑦, 𝜃) space.

To classify the behavior of the system in the absence of noise, in figure 3.2 we show
the phase plot for varying initial position 𝑦 and 𝑈 𝑓 /𝑈𝑠. Initially, the particle is
pointing towards the downstream, 𝜃 = 0. Because the angular velocity due to flow
at the channel centerline (𝑦 = 0) is zero, a particle with the initial position 𝑦 = 0 and
orientation 𝜃 = 0 will stay on the channel centerline; therefore (𝑦 = 0, 𝜃 = 0) is a
fixed point in the phase space 2. If the particle starts slightly above the centerline, for
large flow speed it will reach a limit cycle at long times. If the particle starts near the
wall, it will approach the wall and follow a trajectory similar to those shown in figure
3.1(b). As the flow speed (therefore the rotation due to flow) increases, the range
of initial 𝑦 positions that allow the particle to reach the limit cycle is widened. In
figure 3.3, the phase-space trajectories and the long-time limit cycles are presented
for several values of𝑈 𝑓 /𝑈𝑠.

2This fixed point is unstable (Peng and Brady 2020).
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Figure 3.2: Classification of the long-time particle dynamics in the (𝑦, 𝜃) phase
space. All simulations are started with the initial orientation 𝜃 = 0. The dimensions
of the ellipsoid are given by 𝑎/𝐻 = 0.01, 𝑎/𝑏 = 2.
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Figure 3.3: Example phase-space trajectories of an active ellipsoid. The dimensions
of the ellipsoid are given by 𝑎/𝐻 = 0.01, 𝑎/𝑏 = 2.
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Figure 3.4: The average drift𝑈eff/𝑢 𝑓 as a function of the dimensionless flow speed
𝑈 𝑓 /𝑈𝑠 for different particle shapes. For all results, ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 = 1.0. The
average flow speed 𝑢 𝑓 = 2𝑈 𝑓 /3.

3.4 Effective transport
We now turn to the effective longitudinal transport of active ellipsoids in the absence
of translational diffusion but with finite rotational diffusion. In figure 3.4, we plot
the non-dimensional average drift 𝑈eff/𝑢 𝑓 as a function of the dimensionless flow
speed𝑈 𝑓 /𝑈𝑠 for different particle shapes. The average flow speed across the channel
𝑢 𝑓 = 2𝑈 𝑓 /3 is achieved for passive point Brownian particles. For passive Brownian
spheres, the average drift with a uniform number density distribution is given by

𝑈eff =

[
2
3
− 4

3

( 𝑎
𝐻

)2
+ 4

3

( 𝑎
𝐻

)]
𝑈 𝑓 , (3.27)

which is obtained by averaging the flow velocity from −𝐻/2 + 𝑎 to 𝐻/2 − 𝑎. For
small but nonzero 𝑎/𝐻, the average drift of passive Brownian spheres is larger than
the average flow speed 2𝑈 𝑓 /3 because particles are excluded from the walls by a
distance of 𝑎.

As shown in figure 3.4, the average drift of active spheres increases as a function
of 𝑎/𝐻. In the small 𝑈 𝑓 /𝑈𝑠 limit, active spheres with 𝑎/𝐻 = {0.1, 0.05, 0} are
able to exhibit a net upstream speed. For 𝑎/𝐻 = 0, the upstream swimming speed
is the largest because a particle with 𝑎/𝐻 = 0 can reach the wall where the flow
speed is zero. For active ellipsoids, the average drift is positive. This suppression of
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Figure 3.5: The effective longitudinal dispersion 𝐷eff/𝐷swim as a function of
the dimensionless flow speed 𝑈 𝑓 /𝑈𝑠 for different particle shapes. For all results,
ℓ/𝐻 = 𝑈𝑠𝜏𝑅/𝐻 = 1.0.

upstream swimming is due to the interaction between the ellipsoid and the channel
walls as shown in figures 3.1(a) and (b).

In figure 3.5, we present the dimensionless effective longitudinal dispersion𝐷eff/𝐷swim

as a function of 𝑈 𝑓 /𝑈𝑠 for different particle shapes. For spherical/point particles,
in the small flow limit, the dispersion is due to activity and given by the swim diffu-
sivity 𝐷swim = 𝑈2

𝑠 𝜏𝑅/2. The size of the sphere does not affect the swim diffusivity.
For active ellipsoid, however, the steric interaction with the wall increases the swim
diffusivity.

3.5 Appendix: Minimum separation between a spheroid and a planar wall
In its body frame, the surface of a spheroid is parametrized by

X⊺𝚲X = 1, (3.28)

where 𝚲 = diag(1/𝑎2, 1/𝑏2, 1/𝑏2) and X is the Cartesian coordinates in the body
frame. Using the rotation matrix R, the spheroidal surface in the lab frame is
y = x +RX , where x is the Cartesian coordinates of the geometric center in the
lab frame. In the lab frame, equation (3.28) becomes

(y − x)⊺R𝚲R⊺ (y − x) = 1, (3.29)

where we have used the orthogonality condition RR⊺ = R⊺R = I .
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The outward vector that is normal to the spheroidal surface is in the direction of
the vector R𝚲R⊺ (y − x). For the upper wall located at 𝑦 = 𝐻/2, its upward unit
normal vector is e𝑦. At the point on the spheroid that has a minimum separation
with the wall, the normal vectors must be parallel, which gives

R𝚲R⊺ (y − x) = 𝜆+e𝑦 . (3.30)

Inverting equation (3.30) for y −x and inserting into equation (3.29), we obtain the
positive solution

𝜆+ =
1√︃

e
⊺
𝑦R𝚲−1R𝑇e𝑦

. (3.31)

From equation (3.30), the point of minimum separation on the spheroid is y∗ =

x + 𝜆+R𝚲−1R⊺e𝑦. As a result, we obtain

Φ+ =
𝐻

2
− e
⊺
𝑦 y

∗, (3.32)

which upon inserting the solution to 𝜆+ from (3.31) becomes equation (3.17) in
the main text. Following the same procedure, the minimum separation between the
spheroid and the lower wall located at 𝑦 = −𝐻/2 can be obtained.

Equation (3.17) is valid in both two and three dimensions. In 2D, by parametrizing
p = cos 𝜃e𝑥 + sin 𝜃e𝑦 with 𝜃 ∈ [0, 2𝜋) being the orientation angle, we can write the
minimum separation as

Φ±(x, 𝜃) =
𝐻

2
∓ 𝑦 −

√︁
𝑏2 cos2 𝜃 + 𝑎2 sin2 𝜃. (3.33)

The gradients of Φ± with respect to the configuration space variables are

∇𝑥Φ± = (0,∓1)⊺ and
𝜕Φ±
𝜕𝜃

= − (𝑎2 − 𝑏2) sin 𝜃 cos 𝜃√︁
𝑏2 cos2 𝜃 + 𝑎2 sin2 𝜃

. (3.34)
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C h a p t e r 4

TRAPPED-PARTICLE MICRORHEOLOGY

In microrheology, the local rheological properties such as viscoelasticity of a com-
plex fluid are inferred from the free or forced motion of embedded colloidal probe
particles. Theoretical machinery developed for forced-probe microrheology of col-
loidal suspensions focused on either constant-force (CF) or constant-velocity (CV)
probes while in experiments neither the force nor the kinematics of the probe is
fixed. More importantly, the constraint of CF or CV introduces a difficulty in the
meaningful quantification of the fluctuations of the probe due to a thermodynamic
uncertainty relation. It is known that for a Brownian particle trapped in a harmonic
potential well, the product of the standard deviations of the trap force and the particle
position is 𝑑𝑘𝐵𝑇 in 𝑑 dimensions with 𝑘𝐵𝑇 being the thermal energy. As a result,
if the force (position) is not allowed to fluctuate, the position (force) fluctuation be-
comes infinite. To allow the measurement of fluctuations, in this work we consider
a microrheology model in which the embedded probe is dragged along by a moving
harmonic potential so that both its position and the trap force are allowed to fluc-
tuate. Starting from the full Smoluchowski equation governing the dynamics of 𝑁
hard active Brownian particles, we derive a pair Smoluchowski equation describing
the dynamics of the probe as it interacts with one bath particle by neglecting hydro-
dynamic interactions among particles in the dilute limit. From this, we determine
the mean and the variance (i.e., fluctuation) of the probe position in terms of the
pair probability distribution. As an example, we characterize the fluctuations of a
passive Brownian probe in a bath of passive Brownian particles. For the case of an
active probe and no bath particles, we show that the fluctuation includes an active
contribution in addition to 𝑑𝑘𝐵𝑇 . In the presence of bath particles, we show that our
model reduces to the CF or CV microrheology when appropriate limits are taken.

4.1 Introduction
Rheology is the study of flow and deformation of complex materials in response
to an applied force. Traditional (bulk) rheological measurements are performed
by shearing a macroscopic sample of the material confined between two solid
surfaces, such as in the cone and plate rheometer. Bulk rheological studies such as
shear rheometry provide a measurement of the macroscopic rheological behavior of
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complex materials.

Recently, particle-tracking microrheology has become a standard tool for studying
the mechanical properties of materials on a much smaller scale. In contrast to bulk
rheology, microrheology only requires a small sample volume and can be used to
quantify spatial heterogeneity. As a result, microrheology is particularly useful
for examining soft biological materials. For example, classical bulk rheometry
cannot be used to probe the microenvironment inside living cells without disrupting
their mechanical structure while particle-tracking microrheology can be performed
(Wilhelm et al. 2003; Nawaz et al. 2012; Berret 2016; Ayala et al. 2016; Hu et al.
2017).

To aid in the understanding of experimental measurements and in the prediction of
colloidal microrheology, Squires and Brady (2005) developed a theoretical frame-
work in which a colloidal probe is pulled through a suspension of neutrally buoyant
bath colloids. This model has been used and generalized to study the microrheology
of passive colloids (Khair and Brady 2005; 2006; Meyer et al. 2006; Zia and Brady
2010; Swan and Zia 2013; Zia 2018) and active colloids (Burkholder and Brady
2019; 2020). When the external pulling force is absent, the probe ‘collides’ with bath
particles as it undergoes Brownian motion—the so-called tracer diffusion problem.
To characterize the nonlinear response, forced microrheology is considered in which
an external force, often larger than the thermodynamic restoring force, is applied to
the probe. Within forced microrheology, two operating modes—constant-force (CF)
and constant-velocity (CV)—are often considered from a theoretical perspective. In
the CF mode, the probe is driven by a constant external force F ext and the velocity
of the probe is fluctuating. Conversely, for a CV probe, the probe velocity U1 is a
constant vector (Therefore, the position of the probe is known at all times.) and the
force required to maintain such a steady motion must fluctuate.

To characterize the micro-viscous response of colloidal suspensions, an effective
microviscosity 𝜂eff can be defined using the Stokes drag law. For a spherical probe
of radius 𝑎 in the CF mode, this is given by 𝐹ext = 6𝜋𝜂eff⟨𝑈1⟩, where ⟨𝑈1⟩ the
probe velocity in the direction of F ext averaged over Brownian fluctuations. The
ratio between the effective microviscosity and the solvent viscosity, 𝜂eff/𝜂, is the
main quantity of interest in colloidal microrheology. For the CV mode, the average
external force is used in the definition of the effective microviscosity: ⟨𝐹ext⟩ =

6𝜋𝜂eff𝑈1. In order to measure the microviscoelastic response of suspensions, an
oscillatory driving force is considered (Khair and Brady 2005).
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While the CF (or CV) model is successful in quantifying the mean velocity (or mean
force) of a probe driven through colloidal suspensions. The fluctuation from this
mean value is largely unexplored. Taking the CV mode as an example, one could
calculate the variance of the mean force using the probe-distorted microstructure.
The questions is what does this variance physically imply? In particular, how does
this variance relate to the fluctuations in the suspension? In an experimental setting,
neither the force nor the velocity of the probe is fixed; they are both allowed to
fluctuate (Meyer et al. 2006; Weihs et al. 2006; Cicuta and Donald 2007; Yao et al.
2009).

To mimic the experimental realization more closely and motivate later discussions,
consider the simple case of an isolated Brownian particle in a harmonic trap that is
centered at the origin (arbitrary). In this physical picture, both the position and the
velocity of the particle is fluctuating. A statistical mechanical description can be
adopted in which one defines the probability density, 𝑃(r, 𝑡), of finding the particle at
position r relative to the fixed trap at time 𝑡. Conservation of probability dictates that
𝑃(r, 𝑡) is governed by the Smoluchowski equation, which reads 𝜕𝑃/𝜕𝑡 + ∇ · j = 0,
where the flux vector j = 𝑃F trap/𝜁 − 𝐷𝑇∇𝑃. Here, F trap is the trap force and
for a harmonic trap is given by F trap = −𝑘r with 𝑘 being the spring constant;
𝜁 is the drag coefficient and 𝐷𝑇 is the thermal diffusivity given by the Stokes-
Einstein-Sutherland relation, 𝜁𝐷𝑇 = 𝑘𝐵𝑇 , where 𝑘𝐵𝑇 is the thermal energy. The
mean external force exerted on the Brownian particle is ⟨F trap⟩ =

∫
F trap𝑃𝑑r =

−𝑘
∫
r𝑃𝑑r = −𝑘 ⟨r⟩. Because the trap is harmonic, the mean force is proportional

to the mean displacement with −𝑘 being the constant of proportionality. For a fixed
trap, the mean position (therefore the mean force) is zero, ⟨r⟩ = 0. The variance of
the force, Var

(
F trap) = 𝑘2 Var(r). A straightforward calculation leads to the result

Var(r) = 𝑘𝐵𝑇

𝑘
I , (4.1)

where I is the identity tensor. Introducing the shorthand ΔF trap = F trap − ⟨F trap⟩,
we can write the fluctuation relation as〈

(ΔF trap)2〉1/2 〈
(Δr1)2〉1/2

= 𝑑𝑘𝐵𝑇, (4.2)

where 𝑑 is the spatial dimensionality.

Equation (4.2) is a fundamental result and a few comments on its implications
are in order. First, by harmonically trapping a particle immersed in a solvent, the
product of the standard deviations of the trap force and the particle position gives
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precisely the thermal fluctuations of the solvent—𝑑𝑘𝐵𝑇 . Second, one can decrease
the uncertainty in the position by increasing the stiffness of the trap [see equation
(4.1)]. However, the trade-off is that the fluctuation in the force must increase due
to (4.2). Said differently, this constitutes a thermodynamic uncertainty relation
in which one cannot decreases the fluctuations in both the force and the position
simultaneously. If the fluctuation in the position vanishes (infinitely stiff trap), the
fluctuation in the force blows up.

We note that (4.2) is observed elsewhere. For example, consider an ideal Gaussian
polymer chain with one end localized in a harmonic trap. The fluctuations of the
trap force and the position from the trap center satisfies an identical relation (Wang
2017).

We are now in a position to consider the fluctuations in the microrheology problem.
Instead of considering either CF or CV, we must allow both the position of and
the force on the probe to fluctuate in order to have a meaningful quantification of
fluctuations. Equation (4.2) also implies that we should consider the position not
the velocity of the probe. In the CF mode, therefore, the quantity of interest for
fluctuations is the variance of the position of the probe, which is just the force-
induced tracer diffusion problem. That is, the tracer diffusivity under the influence
of a constant force should be considered—not the variance of the velocity. For the
CV mode, the position of the probe is also prescribed and the fluctuation in the force
is infinite. As a result, in the CV mode the computed variance of the force does not
have a physical meaning.

In this Chapter, to closely mimic the setup of microrheological experiments, we
consider a trapped-particle microrheology model in which the colloidal probe parti-
cle is driven by a translating harmonic trap. Because biological materials examined
by microrheology such as the microenvironment inside living cells often contain
active ‘particles’, we model the suspension as an active colloidal suspension. The
colloidal particles in an active suspension are able to self-propel, which can be a
model for either biologically active microswimmers or synthetic phoretic particles.
This active colloidal suspension model also includes passive (not self-propelled)
colloidal systems, which can be obtained by setting the swim speed to zero.

4.2 Mechanics of active Brownian suspensions
Consider a colloidal suspension consisting of 𝑁 particles dispersed in an incom-
pressible Newtonian fluid (solvent) of dynamic viscosity 𝜂. The particles could be
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active and are subject to fluctuating thermal (Brownian) forces from the solvent.
Furthermore, the inertia of the fluid and the particles are assumed to be negligible.
In this low Reynolds number regime, the fluid dynamics is governed by the linear
Stokes equations and the probability distribution of the particles are described by
the Smoluchowski equation. In general, all 𝑁 particles could be active, and we
model them as active Brownian particles. The probability distribution for finding
the 𝑁 particles in positions {x𝛼} and orientations {q𝛼} at a given time 𝑡 is denoted
as 𝑃𝑁 (x𝑁 , q𝑁 , 𝑡) where 𝛼 = 1, · · ·, 𝑁 is the particle label. In the laboratory frame
of reference, the 𝑁-particle Smoluchowski equation is given by

𝜕𝑃𝑁

𝜕𝑡
+

𝑁∑︁
𝛼=1

∇𝑇𝛼 · j𝑇𝛼 +
𝑁∑︁
𝛼=1

∇𝑅𝛼 · j𝑅𝛼 = 0, (4.3)

where ∇𝑇𝛼 = 𝜕/𝜕x𝛼 is the spatial gradient operator with respect to the position
vector (x𝛼) of particle 𝛼 in the laboratory frame and ∇𝑅𝛼 = q𝛼 × (𝜕/𝜕q𝛼) is the
orientational gradient operator of particle 𝛼. The translational and rotational fluxes
in equation (4.3) are, respectively, given by j𝑇𝛼 = U𝛼𝑃𝑁 and j𝑅𝛼 = Ω𝛼𝑃𝑁 , where
U𝛼 (Ω𝛼) is the instantaneous linear (angular) velocity of particle labeled 𝛼 relative
to the laboratory frame. The conservation of probability is∫

Γ𝑁

𝑃𝑁𝑑Γ
𝑁 = 1, (4.4)

where 𝑑Γ𝑁 =
∏𝑁
𝛼=1 𝑑Γ𝛼 denotes the volume element of the 𝑁-particle phase space

and 𝑑Γ𝛼 = 𝑑x𝛼𝑑q𝛼 is the volume element of the phase space of particle 𝛼.

In the absence of a background flow, the linear and angular velocities of any active
particle 𝛼 are given by(

U𝛼 −U 0
𝛼

Ω𝛼 −Ω0
𝛼

)
=

𝑁∑︁
𝛽=1

M𝛼𝛽 ·
(
F 𝑒
𝛽
+ F 𝑃

𝛽
− 𝑘𝐵𝑇∇𝑇𝛽 ln 𝑃𝑁

L𝑒
𝛽
+L𝑃

𝛽
− 𝑘𝐵𝑇∇𝑅𝛽 ln 𝑃𝑁

)
+

(
0

−𝐷𝑅
𝛼∇𝑅𝛼 ln 𝑃𝑁

)
, (4.5)

where M𝛼𝛽 is the configuration-dependent grand hydrodynamic mobility tensor
coupling the linear and angular velocity of particle 𝛼 to the force and torque exerted
on particle 𝛽. Note that for general particle shapes M𝛼𝛽 is a function of the
instantaneous 𝑁-particle configuration—both positions and orientations. The forces
on any particle 𝛽 include the external force F 𝑒

𝛽
, the interparticle colloidal force F 𝑃

𝛽

and the thermal or entropic force −𝑘𝐵𝑇∇𝑇𝛽 ln 𝑃𝑁 . Similarly, the torques on any
particle 𝛽 include the external torque L𝑒

𝛽
, the interparticle colloidal torque L𝑃

𝛽
and

the thermal torque −𝑘𝐵𝑇∇𝑅𝛽 ln 𝑃𝑁 . The interparticle colloidal forces and torques
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are assumed to be conservative. For the case of hard-sphere interactions, the
interparticle forces reduce to no-flux boundary conditions at any surface of contact
between particles.

In equation (4.5), the activity of any particle 𝛼 is modeled by its undisturbed swim
linear velocity U 0

𝛼 and angular velocity Ω0
𝛼 regardless of the presence of any other

particles. For the case of simple ABPs, the swim angular velocity is often taken to
be zero, Ω0

𝛼 = 0. Furthermore, a biological microswimmer may “decide” to change
its orientation q𝛼 by, for example, actuating the flagella on a different side of its body
without disturbing the flow. In this process, the body of the microswimmer does
not turn. For nonspherical particles, this process means that the swim orientation
q𝛼 is usually different from the orientation of the particle shape, in which case
the shape orientation needs to be included as an additional phase space variable.
For spherical particles, only the swim orientation matters and no such difficulty
is introduced. This reorientation process of any particle 𝛼 is independent of the
motion of other particles and is modeled by a simple rotary diffusion with a constant
rotary diffusivity 𝐷𝑅

𝛼 . The reorientation time is 𝜏𝑅𝛼 = 1/𝐷𝑅
𝛼 , which defines the

active run or persistence length of an ABP: ℓ𝛼 = 𝑈0
𝛼𝜏

𝑅
𝛼 . Because this reorientation

process is biological rather than thermal in origin, 𝐷𝑅
𝛼 is not constrained by the

fluctuation-dissipation theorem and may be inferred from experimental data.

4.3 Moving trap microrheology
In the context of microrheology, the particle with label 1 is identified as the probe
particle. This particle could be a new particle placed into the suspension or one of
the suspension particles tagged as the probe. Particles labeled 2 − 𝑁 are referred to
as bath particles. In the following, we consider a suspension of neutrally buoyant,
hard and active colloidal spheres with identical radii. The probe may have a different
radius than the bath particles. Instead of fixing the external force F 𝑒

1 or the velocity
U1, the probe particle is trapped in a translating harmonic potential well. Denoting
the position vector of the center of the potential well as x0(𝑡), we have 𝑑x0/𝑑𝑡 =
U trap(𝑡), where U trap(𝑡) is the prescribed velocity of the moving trap relative to the
laboratory frame. The trap force F 𝑒

1 is assumed to be only a function of the relative
position between the probe and the potential well. All bath particles experience
no external forces or torques. We first consider a general derivation in which all
particles are ABPs and the probe is a tagged ABP in the suspension.

In the constant-force or constant-velocity mode of microrheology, the position of the
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probe does not matter, and the system is statistically homogeneous. In contrast, the
introduction of a moving trap defines a specific origin in the system and the position
of the probe relative to the trap needs to be considered explicitly. To this end, we
first change to a coordinate system moving with the instantaneous trap velocity and
measure all particle positions relative to the trap. This change of variables is written
as z𝛼 = z𝛼 ({x}, 𝑡) = x𝛼 −

∫ 𝑡

0 U trap(𝑠)𝑑𝑠 − x0(0) for any 𝛼 and 𝑡′ = 𝑡′({x}, 𝑡) = 𝑡.
Using the chain rule we obtain 𝜕/𝜕𝑡 = −∑𝑁

𝛼=1 U
trap · 𝜕/𝜕z𝛼 + 𝜕/𝜕𝑡′ and 𝜕/𝜕x𝛼 =

𝜕/𝜕z𝛼. The Smoluchowski equation (4.3) in the new coordinate system becomes

𝜕𝑃𝑁

𝜕𝑡′
+

𝑁∑︁
𝛼=1

𝜕

𝜕z𝛼
·
(
j𝑇𝛼 −U trap𝑃𝑁

)
+

𝑁∑︁
𝛼=1

∇𝑅𝛼 · j𝑅𝛼 = 0, (4.6)

where j𝑇𝛼 and j𝑅𝛼 remain unchanged. In the context of microrheology, it is more
convenient to measure the positions of all bath particles relative to that of the probe.
We therefore introduce another change of variables such that for the probe r1 =

r1(z𝑁 , 𝑡′) = z1 and r𝛼 = r𝛼 (z𝑁 , 𝑡′) = z𝛼 − z1 for all bath particles (𝛼 = 2, · · ·, 𝑁).
In this coordinate system, the probe position is measured relative to the trap and
the positions of all bath particles are measured relative to the probe. The change of
variables allows us to write 𝜕/𝜕z1 = 𝜕/𝜕r1 −

∑𝑁
𝛼=2 𝜕/𝜕r𝛼 and 𝜕/𝜕z𝛼 = 𝜕/𝜕r𝛼 for

𝛼 = 2, · · ·, 𝑁 . The Smoluchowski equation (4.6) transforms to

𝜕𝑃𝑁

𝜕𝑡
+ ∇𝑇1 ·

(
j𝑇1 −U trap𝑃𝑁

)
+

𝑁∑︁
𝛼=2

∇𝑇𝛼 ·
(
j𝑇𝛼 − j𝑇1

)
+

𝑁∑︁
𝛼=1

∇𝑅𝛼 · j𝑅𝛼 = 0. (4.7)

It is understood that in equation (4.7) we have used 𝑡 for the time variable and
∇𝑇𝛼 = 𝜕/𝜕r𝛼 for any 𝛼. Formally, the probability density in equation (4.7) is the
conditional probability of find all particles at a given configuration provided that
the trap is at x0 at time 𝑡, i.e., 𝑃𝑁 = 𝑃𝑁

(
r𝑁 , q𝑁 , 𝑡 |x0, 𝑡

)
. The translational flux of

particle 𝛼 can be written as

j𝑇𝛼 =𝑈0
𝛼q𝛼𝑃𝑁 +M𝑈𝐹

𝛼1 · F 𝑒
1 𝑃𝑁 −

𝑁∑︁
𝛽=1

(
D𝑈𝐹
𝛼𝛽 −D𝑈𝐹

𝛼1

)
· ∇𝑇𝛽𝑃𝑁 −D𝑈𝐹

𝛼1 · ∇𝑇1𝑃𝑁

−
𝑁∑︁
𝛽=1

D𝑈𝐿
𝛼𝛽 · ∇𝑅𝛽𝑃𝑁 , (4.8)

where we have taken U 0
𝛼 = 𝑈0

𝛼q𝛼 and used the Stokes-Einstein-Sutherland relations
D𝑈𝐹
𝛼𝛽

= 𝑘𝐵𝑇M
𝑈𝐹
𝛼𝛽
,D𝑈𝐿

𝛼𝛽
= 𝑘𝐵𝑇M

𝑈𝐿
𝛼𝛽

. For all accessible configurations, the inter-
particle forces are zero and the hard-particle interaction between two spheres do not
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induce torques. Similarly, the rotary flux of particle 𝛼 is given by

j𝑅𝛼 =MΩ𝐹
𝛼1 · F 𝑒

1 𝑃𝑁 −
𝑁∑︁
𝛽=1

(
DΩ𝐹
𝛼𝛽 −DΩ𝐹

𝛼1

)
· ∇𝑇𝛽𝑃𝑁 −DΩ𝐹

𝛼1 · ∇𝑇1𝑃𝑁

−
𝑁∑︁
𝛽=1

DΩ𝐿
𝛼𝛽 · ∇𝑅𝛽𝑃𝑁 − 𝐷𝑅

𝛼∇𝑅𝛼𝑃𝑁 . (4.9)

The Smoluchowski equation (4.7) together with the flux expressions (4.8) and (4.9)
fully specify the 𝑁-particle phase space dynamics. Some comments regarding
equations (4.7)-(4.9) are in order. First, the above derivation is an extension of the
model considered by Squires and Brady (2005) for passive Brownian suspensions.
We have generalized their model to a suspension of ABPs in which one of the
particles are tagged as the probe that is driven by a translating trap. Realizing
that the grand mobility tensor does not depend on the swim orientation vectors
of spherical particles, one can set U 0

𝛼 = 0 and integrate over the orientations
of all particles to obtain the trapped probe microrheology problem of a passive
Brownian suspension. Note that even for passive suspensions, if the probe or the
bath particles are non-spherical, their shape orientations need to be included in the
above formulation. Second, the hydrodynamic interactions between all 𝑁-particles
are included in the grand mobility tensor. In particular, this leads to the fact that
a gradient in orientation space of particle 𝛽 induces a translational flux of particle
𝛼, and vice versa, due to the hydrodynamic translation-rotation coupling. Third,
due to the dependence on particle orientations, the phase space of 𝑁 ABPs has a
dimension of 5𝑁: the physical space has a dimension of 3𝑁 and the orientation
space has a dimension of 2𝑁 if the orientation of each particle is parametrized by
the azimuthal and polar angles.

4.3.1 Mean and fluctuation of the probe position
The average position or mean displacement of the probe relative to the trap is defined
by

⟨r1⟩(𝑡) =
∫

r1𝑃𝑁𝑑Γ
𝑁 , (4.10)

where the angle bracket denotes integration against 𝑃𝑁 over the configuration space
of all particles. Multiplying equation (4.7) by r1 and integrating over the configu-
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ration space Γ𝑁 , we obtain

𝜕⟨r1⟩
𝜕𝑡

+U trap =𝑈0
1 ⟨q1⟩ +

〈
M𝑈𝐹

11 · F 𝑒
1
〉
−

〈
D𝑈𝐹

11 · ∇𝑇1 ln 𝑃𝑁
〉

−
𝑁∑︁
𝛽=1

〈(
D𝑈𝐹

1𝛽 −D𝑈𝐹
11

)
· ∇𝑇𝛽 ln 𝑃𝑁

〉
. (4.11)

Similarly, the mean squared displacement, a second order tensor, is governed by

𝜕⟨r1r1⟩
𝜕𝑡

+U trap⟨r1⟩ + ⟨r1⟩U trap =

∫ (
j𝑇1 r1 + r1j

𝑇
1

)
𝑑Γ𝑁 , (4.12)

where the integral∫
j𝑇1 r1𝑑Γ

𝑁 = 𝑈0
1 ⟨q1r1⟩ +

〈
M𝑈𝐹

11 · F 𝑒
1 r1

〉
−

〈
D𝑈𝐹

11 ·
(
∇𝑇1 ln 𝑃𝑁

)
r1

〉
−

𝑁∑︁
𝛽=1

〈(
D𝑈𝐹

1𝛽 −D𝑈𝐹
11

)
·
(
∇𝑇𝛽 ln 𝑃𝑁

)
r1

〉
. (4.13)

The main quantities of interest in the trapped probe microrheology problem are the
mean displacement ⟨r1⟩ and the fluctuation

Cov(r1, r1) =
〈
Δr1Δr1

〉
=

〈
r1r1

〉
− ⟨r1⟩⟨r1⟩, (4.14)

where we have introduced the shorthand Δr1 = r1 − ⟨r1⟩ and Cov(r1, r1) denotes
the covariance tensor of r1. For a harmonic trap, the mean force is related to the
mean displacement via ⟨F 𝑒

1 ⟩ = −𝑘 ⟨r1⟩ and similarly the fluctuation in the force is
given by

〈
ΔF 𝑒

1 ΔF
𝑒
1
〉
= 𝑘2⟨Δr1Δr1⟩.

4.3.2 The pair problem
The generalized pair distribution function 𝑔2 (See section 4.6.) is governed by

𝜕𝑔2
𝜕𝑡

+ ∇𝑇1 ·
(
j𝑇1 −U trap𝑔2

)
+ ∇𝑇2 ·

(
j𝑇2 − j𝑇1

)
+

2∑︁
𝛼=1

∇𝑅𝛼 · j𝑅𝛼 = 0, (4.15)

j𝑇1 = 𝑈0
1q1𝑔2 +

1
𝜁1
F 𝑒

1 𝑔2 + 𝐷𝑇1∇
𝑇
2𝑔2 − 𝐷𝑇1∇

𝑇
1𝑔2, (4.16)

j𝑇2 = 𝑈0
2q2𝑔2 − 𝐷𝑇2∇

𝑇
2𝑔2, (4.17)

j𝑅𝛼 = −𝐷𝑅
𝛼∇𝑅𝛼𝑔2. (4.18)

At contact, 𝑟2 = 𝑅𝑐, no relative flux is allowed,

n2 ·
(
j𝑇2 − j𝑇1

)
= 0. (4.19)
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Figure 4.1: Schematic of the pair problem of a spherical probe particle in a moving
harmonic trap interacting with a spherical bath particle. Both the probe and the bath
particles can be active.

Far away from the probe, the bath distribution is undisturbed by the probe and the
probe distribution is that in the absence of the bath particles,

𝑔2(r2, q2, r1, q1, 𝑡) →
1
Ω𝑏

𝑃1(r1, q1, 𝑡) as |r2 | → ∞, (4.20)

where Ω𝑏 is the total solid angle of the orientation space of the bath particle. In 3D,
Ω𝑏 = 4𝜋. Far away from the trap, the probability vanishes

𝑔2 → 0 as |r1 | → ∞. (4.21)

The conservation equation (4.4) becomes∫
𝑔2𝑑Γ1𝑑Γ2 =

𝑁 − 1
𝑛𝑏

, (4.22)

and the mean of any quantity defined in equation (4.10) is given by

⟨(·)⟩ = 𝑛𝑏

𝑁 − 1

∫
(·)𝑔2𝑑Γ1𝑑Γ2. (4.23)

Equation (4.11) governing the mean displacement becomes

𝜕⟨r1⟩
𝜕𝑡

+ 1
𝜏𝑘

⟨r1⟩ = −U trap +𝑈0
1 ⟨q1⟩ + 𝑛𝑏𝐷𝑇1

〈
∇2 ln 𝑔2

〉
, (4.24)

where we have defined the viscoelastic timescale

𝜏𝑘 =
𝜁1
𝑘
, (4.25)
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which is set by the balance between the viscous force 𝜁1𝜕⟨r1⟩/𝜕𝑡 and the elastic
force 𝑘 ⟨r1⟩. Using the divergence theorem and the far-field condition (4.20), the
last term on the rhs of (4.24) can be written as

𝑛𝑏𝐷
𝑇
1
〈
∇2 ln 𝑔2

〉
= 𝑛𝑏𝐷

𝑇
1

∫
𝑑q2𝑑Γ1

∮
𝑆𝑐

n2
𝑛𝑏

𝑁 − 1
𝑔2𝑑𝑆2, (4.26)

where 𝑆𝑐 = {r2 : |r2 | = 𝑅𝑐} is the contact surface and n2 is the unit normal vector
of 𝑆𝑐 that points out of particle 2.

As shown in appendix 4.7, the position fluctuation of the probe is governed by

1
2
𝜕 Cov(r1, r1)

𝜕𝑡
+ 1
𝜏𝑘

Cov(r1, r1) = 𝐷𝑇1I+
[
𝑈0

1 Cov(q1, r1) + 𝑛𝑏𝐷𝑇1
〈
∇2 (ln 𝑔2) Δr1

〉] sym
,

(4.27)
where the covariance of q1 and r1 satisfies

𝜕 Cov(q1, r1)
𝜕𝑡

+
(

1
𝜏𝑘

+ 𝑑 − 1
𝜏𝑅1

)
Cov(q1, r1) =𝑈0

1 Cov(q1, q1)

+ 𝑛𝑏𝐷𝑇1
〈
Δq1∇2 ln 𝑔2

〉
. (4.28)

Regardless of the presence of the trap or the bath particles, at long times (𝑡 → ∞) the
net polar and nematic orders of the probe are given by ⟨q1⟩ = 0 and

〈
q1q1

〉
= I/𝑑,

respectively (see appendix 4.7). As a result, Cov(q1, q1) = I/𝑑 at long times.

It is convenient to consider the rank 𝑚 polyadic spatial moment tensor

M𝑚 (r2, q2, q1, 𝑡) =
∫

r1 · · · r1︸    ︷︷    ︸
𝑚

𝑔2𝑑r1, (𝑚 = 0, 1, 2, ...). (4.29)

Multiplying equation (4.15) by the 𝑚-adic product of r1 and integrating over the
physical space of the probe, we obtain

𝜕M𝑚

𝜕𝑡
− 𝑚

[
𝑈0

1q1M𝑚−1 −
𝑘

𝜁1
M𝑚 + (𝑚 − 1)𝐷𝑇1M𝑚−2I + 𝐷𝑇1∇

𝑇
2M𝑚−1 −U trapM𝑚−1

] sym

+∇𝑇2 ·
(
U𝑟M𝑚 − 𝐷𝑇𝑟 ∇𝑇2M𝑚 + 𝑘

𝜁1
M𝑚+1

)
−𝑚𝐷𝑇1

[
∇𝑇2M𝑚−1

] sym −
2∑︁
𝛼=1

𝐷𝑅
𝛼∇𝑅𝛼 · ∇𝑅𝛼M𝑚 = 0, (4.30)

where we have defined the relative swim velocity and the relative diffusivity as,
respectively,

U𝑟 = 𝑈
0
2q2 −𝑈0

1q1, 𝐷𝑇𝑟 = 𝐷𝑇1 + 𝐷𝑇2 , (4.31)
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whereas [A]sym denotes the symmetric part of any rank 𝑚 Cartesian tensor A such
that

[A]sym
𝑖1𝑖2···𝑖𝑚 =

1
𝑚!

∑︁
𝜎∈𝔖𝑚

𝐴𝑖𝜎1𝑖𝜎2···𝑖𝜎𝑚
, (4.32)

in which 𝔖𝑚 is the set containing the 𝑚! permutations of indices. For 𝑚 = 2,
this reduces to the familiar definition of the symmetric part of a rank 2 tensor,
Asym = (A +A⊺) /2. For any rank 𝑚 tensor A, its symmetric part [A]sym is
invariant under a permutation of all indices. In equation (4.30), M𝑚 for 𝑚 < 0 is
understood to be zero.

At contact, 𝑟2 = 𝑅𝑐, the no-flux boundary condition is satisfied:

n2 ·
(
U𝑟M𝑚 − 𝐷𝑇𝑟 ∇𝑇2M𝑚 + 𝑘

𝜁1
M𝑚+1

)
− 𝑚𝐷𝑇1 [n2M𝑚−1]sym = 0. (4.33)

The far-field condition for the spatial moment of rank 𝑚 is

M𝑚 → 1
Ω𝑏

𝚽𝑚 (q1, 𝑡) as 𝑟2 → ∞, (4.34)

where
𝚽𝑚 (q1, 𝑡) =

∫
r1 · · · r1︸    ︷︷    ︸

𝑚

𝑃1(r1, q1, 𝑡)𝑑r1 (4.35)

is the rank 𝑚 spatial moment of the single particle probability 𝑃1 of the probe.
Discussion of the single particle behavior and the method to obtain 𝚽𝑚 is deferred
to section 4.3.3.

From (4.24) and (4.102), to obtain the mean and mean-squared displacements, one
only needs to calculate the zeroth and first spatial moments, respectively. On the
other hand, the definitions of mean and mean-squared displacements allow us to
write ⟨r1⟩ = [𝑛𝑏/(𝑁 − 1)]

∫
M1𝑑q1𝑑Γ2 and ⟨r1r1⟩ = [𝑛𝑏/(𝑁 − 1)]

∫
M2𝑑q1𝑑Γ2.

Because in obtaining ⟨r1r1⟩ only the integral of M2 is required, it’s not necessary
to first calculate the distribution ofM2 explicitly before carrying out the integration.
Instead, one can show that integrating equation (4.30) for 𝑚 = 2 leads to the same
equation as (4.102). Due to the presence of the harmonic trap force, the equation
for M𝑚 is coupled to M𝑚+1. To truncate this infinite set of equations and obtain a
finite set of closed equations, a closure model may be used.

To see the structure of the spatial moments more clearly, we write out the first few
moment equations explicitly using (4.30). The zeroth moment, 𝑀0 =

∫
𝑔2𝑑r1,

satisfies the equation

𝜕𝑀0
𝜕𝑡

+ ∇𝑇2 ·
[
U𝑟𝑀0 − 𝐷𝑇𝑟 ∇𝑇2𝑀0 +

𝑘

𝜁1
M1

]
−

2∑︁
𝛼=1

𝐷𝑅
𝛼∇𝑅𝛼 · ∇𝑅𝛼𝑀0 = 0, (4.36)
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and the normalization
∫
𝑀0𝑑q1𝑑Γ2 = (𝑁 − 1)/𝑛𝑏. In addition to being advected by

the relative velocity U𝑟 in the physical space of the bath particle, 𝑀0 is forced by the
trap via the divergence of the first moment. The equation governing the evolution
of the first spatial moment is

𝜕M1
𝜕𝑡

−
(
𝑈0

1q1𝑀0 −
𝑘

𝜁1
M1 + 𝐷𝑇1∇

𝑇
2𝑀0

)
+U trap𝑀0

+∇𝑇2 ·
[
U𝑟M1 − 𝐷𝑇𝑟 ∇𝑇2M1 +

𝑘

𝜁1
M2 − 𝐷𝑇1I𝑀0

]
−

2∑︁
𝛼=1

𝐷𝑅
𝛼∇𝑅𝛼 · ∇𝑅𝛼M1 = 0. (4.37)

Similarly, the second moment is governed by

𝜕M2
𝜕𝑡

− 2
[
𝑈0

1q1M1 −
𝑘

𝜁1
M2 + 𝐷𝑇1𝑀0I + 𝐷𝑇1∇

𝑇
2M1 −U trapM1

] sym

+∇𝑇2 ·
[
U𝑟M2 − 𝐷𝑇𝑟 ∇𝑇2M2 +

𝑘

𝜁1
M3

]
−2𝐷𝑇1

[
∇𝑇2M1

] sym −
2∑︁
𝛼=1

𝐷𝑅
𝛼∇𝑅𝛼 · ∇𝑅𝛼M2 = 0. (4.38)

4.3.3 The probe distribution in the absence of bath particles
The lowest level problem in the above formulation is the single particle problem of
the probe interacting with the trap. One can formulate this single particle problem
by neglecting all bath particles or taking the limit 𝜙𝑏 → 0 in the above 𝑁-particle
formulation. The single particle probability 𝑃1(r1, q1, 𝑡 |x0, 𝑡) of the active probe
satisfies

𝜕𝑃1
𝜕𝑡

+∇𝑇1 ·
(

1
𝜁1
F 𝑒

1 𝑃1 − 𝐷𝑇1∇𝑃1 −U trap𝑃1 +𝑈0
1q1𝑃1

)
−𝐷𝑅

1 ∇
𝑅
1 · ∇𝑅1 𝑃1 = 0, (4.39)

where the conservation of probability dictates that
∫
𝑃1𝑑Γ1 = 1 and the harmonic

trap force F 𝑒
1 = −𝑘r1.

The rank 𝑚 (𝑚 = 0, 1, ...) spatial moment of 𝑃1 defined by (4.35) satisfies

𝜕𝚽𝑚

𝜕𝑡
− 𝑚

[
𝑈0

1q1𝚽𝑚−1 −
𝑘

𝜁1
𝚽𝑚 + (𝑚 − 1)𝐷𝑇1𝚽𝑚−2I −U trap𝚽𝑚−1

] sym

− 𝐷𝑅
1 ∇

𝑅
1 · ∇𝑅1 𝚽𝑚 = 0, (4.40)

where 𝚽𝑚 for 𝑚 < 0 is defined to be zero. Different from equation (4.30) in which
the momentM𝑚 is coupled toM𝑚+1, the rank𝑚 spatial moment of 𝑃1 only depends
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on lower order moments, which leads to a set of closed equations. The solution to
the preceding equation provides the far-field condition for M𝑚 as given by equation
(4.34).

The zeroth order spatial moment Φ0 is the net orientational distribution, which is
unaffected by the trap and is governed by the orientational diffusion equation:

𝜕Φ0
𝜕𝑡

− 𝐷𝑅
1 ∇

𝑅
1 · ∇𝑅1 Φ0 = 0, (4.41)

where the conservation of 𝑃1 gives
∫
Φ0𝑑q1 = 1. At long times, the solution is

simply the uniform distribution, Φ0(q1, 𝑡 → ∞) = 1/(4𝜋).

The above formulation also allows us to consider the mean and fluctuation of the
probe displacement in the absence of bath particles. Equation (4.11) or (4.24) in the
absence of bath particles reduces to

𝜕⟨r1⟩
𝜕𝑡

+ 1
𝜏𝑘

⟨r1⟩ = −U trap +𝑈0
1 ⟨q1⟩, (4.42)

where for the single particle ⟨r1⟩ =
∫
r1𝑃1𝑑Γ1 =

∫
𝚽1𝑑q1. Similarly, equation

(4.12) or (4.102) for the single particle becomes

1
2
𝜕⟨r1r1⟩
𝜕𝑡

+ 1
𝜏𝑘

〈
r1r1

〉
= 𝐷𝑇1I +

[
𝑈0

1
〈
q1r1

〉
−U trap⟨r1⟩

] sym
. (4.43)

It can be seen from equations (4.42) and (4.43) that in order to calculate the mean
and mean-squared displacements, one needs to obtain the net polar order ⟨q1⟩ and
the covariance of the position and orientation Cov(q1, r1). The governing equation
for Cov(q1, r1) follows from (4.28) and is given by

𝜕 Cov(q1, r1)
𝜕𝑡

+ 1
𝜏𝑘

Cov(q1, r1) +
𝑑 − 1
𝜏𝑅1

Cov(q1, r1) = 𝑈0
1 Cov(q1, q1) (4.44)

which depends on the net nematic order ⟨q1q1⟩.

At steady state, it is shown that ⟨q1⟩ = 0 and ⟨q1q1⟩ = I/𝑑, where 𝑑 = 2, 3 is the
dimensionality of the physical space. This allows us to obtain

⟨r1⟩ = − 𝜁1U
trap

𝑘
, (4.45)

Cov(q1, r1) =
𝑈0

1

𝑑𝑘/𝜁1 + 𝑑 (𝑑 − 1)𝐷𝑅
1
I , (4.46)

⟨r1r1⟩ =
𝜁2

1
𝑘2U

trapU trap +
𝜁1𝐷

𝑇
1

𝑘
I +

𝜁1𝐷
swim
1
𝑘

1

1 + 𝑘𝜏𝑅1
𝜁1

1
𝑑−1

I , (4.47)
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where 𝐷swim
1 =

(
𝑈0

1

)2
𝜏𝑅1 /[𝑑 (𝑑 − 1)] is the swim diffusivity of a freely swimming

ABP (Takatori et al. 2014; Takatori and Brady 2014). The average position of the
ABP relative to the trap is given by the balance between the average trap force 𝑘 ⟨r1⟩
and the viscous drag 𝜁1U

trap. If the trap is strong, 𝑘 → ∞, the ABP is tightly
confined and pushing against the trap ‘boundary’. On the other hand, for 𝑘 → 0, the
average position of the ABP becomes unbounded. Solving the steady state first and
then taking the limit 𝑘 → 0 in (4.45) is singular because in the absence of the trap
(𝑘 = 0) the average position is unbounded and at long times the particle motion is
diffusive. For 𝑘 ≡ 0, we are simply measuring the motion of an ABP in a frame of
reference moving with velocity U trap relative to the laboratory frame, which gives
𝑑⟨r1⟩/𝑑𝑡 = −U trap.

Takatori et al. (2016) studied the transient and long-time dynamics of self-propelled
Janus particles in a fixed acoustic trap. They showed that the experimentally mea-
sured density distribution of Janus particles follow closely the theoretical predictions
using a harmonic trap. Equation (4.47) in the absence of U trap agrees with that ob-
tained in Takatori et al. (2016).

The fluctuation relation is given by〈(
ΔF 𝑒

1
)2〉1/2〈(Δr1)2〉1/2

= 𝑑

[
𝑘𝐵𝑇 + 𝑘𝑠𝑇𝑠

1 + 𝜏𝑅1 /[(𝑑 − 1)𝜏𝑘 ]

]
, (4.48)

where the thermal energy 𝑘𝐵𝑇 = 𝜁1𝐷
𝑇
1 and analogously an active energy scale

𝑘𝑠𝑇𝑠 has been defined such that 𝑘𝑠𝑇𝑠 = 𝜁1𝐷
swim
1 (Takatori et al. 2014). In equation

(4.48), the fluctuation consists of the thermal (passive) energy 𝑑𝑘𝐵𝑇 and an active
energy contribution. This active energy is different from 𝑘𝑠𝑇𝑠 due to the presence
of the harmonic trap, which introduces an orientational decorrelation timescale 𝜏𝑘
in addition to the reorientation time 𝜏𝑅1 of the ABP. For a weak trap, 𝜏𝑅1 /𝜏𝑘 ≪ 1, the
decorrelation occurs on the timescale of 𝜏𝑅1 , and the active contribution scales as

𝜁1

(
𝑈0

1

)2
𝜏𝑅1 . As a result, the fluctuation

〈(
ΔF 𝑒

1
)2〉1/2〈(Δr1)2〉1/2 → 𝑑 (𝑘𝐵𝑇 + 𝑘𝑠𝑇𝑠)

as 𝜏𝑅1 /𝜏𝑘 → 0. When 𝜏𝑅1 /𝜏𝑘 ≫ 1, the relevant timescale is 𝜏𝑘 , and the active

contribution scales as 𝜁1

(
𝑈0

1

)2
𝜏𝑘 . In this limit, the ABP is pushing against the edge

of the potential well and the fluctuation comes from passive Brownian motion alone,〈(
ΔF 𝑒

1
)2〉1/2〈(Δr1)2〉1/2 → 𝑑𝑘𝐵𝑇 as 𝜏𝑅1 /𝜏𝑘 → ∞.

Regardless of the trap strength, the product of the square root of the fluctuations
in the force and the position is always bounded. For a strong trap, the position
fluctuation vanishes,

〈
Δr1Δr1

〉
= 𝑂 (1/𝑘) → 0, but the force fluctuation blows
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up linearly since
〈
ΔF 𝑒

1 ΔF
𝑒
1
〉
= 𝑂 (𝑘) → ∞ as 𝑘 → ∞. Conversely, the position

fluctuation grows unboundedly while the force fluctuation vanishes as 𝑘 → 0.

In the weak trap limit, equation (4.48) can be equivalently written as

𝑘

𝜁1

〈
Δr1Δr1

〉
=

〈
Δr1Δr1

〉
𝜏𝑘

→ Deff
1 as

𝜏𝑅1
𝜏𝑘

→ 0, (4.49)

where Deff
1 = 𝐷𝑇1I + 𝐷swim

1 I is the long-time effective dispersion tensor of the
ABP in the absence of the trap (see appendix 4.8 for the asymptotic analysis). This
relation implies the equivalence of the position fluctuation divided by 𝜏𝑘 in the
limit of vanishing harmonic trapping force and the effective dispersion of a free
ABP. In other words, one could calculate the position fluctuation in a trap and then
take the limit of

〈
Δr1Δr1

〉
/𝜏𝑘 as 𝑘 → 0 to obtain the long-time dispersion tensor

that the particle would have in the absence of the trap, or vice versa. Because the
trap is weak, the ABP is able to explore space via both thermal fluctuation and its
undisturbed active run-and-reorientation, both processes contribute to the position
fluctuation. In the presence of bath particles, this equivalence still holds in which
Deff

1 is the dispersion tensor of the probe affected by collisions with bath particles
(i.e., tracer dispersion).

4.3.4 A weak trap
For a weak trap, 𝜖 = 𝜏𝑅1 /𝜏𝑘 = 𝑘𝜏𝑅1 /𝜁1 ≪ 1, the probe is allowed to explore and
reorient freely before reaching the ‘boundary’ of the potential well. The viscoelastic
timescale 𝜏𝑘 is well separated from the reorientation timescale 𝜏𝑅1 . In the interme-
diate timescale characterized by 𝑡/𝜏𝑅1 ≫ 1 and 𝑡/𝜏𝑘 ≪ 1, the probe has explored
the suspension but has not reached the boundary of the potential; we expect a dif-
fusive behavior of the probe. At times much longer than the viscoelastic timescale
(𝑡/𝜏𝑘 ≫ 1), the variance of the probe position becomes bounded due to the trapping
force. Therefore, the motion of the probe exhibits a transition from diffusive to
bounded behavior.

The separation of the two timescales allows us to consider a multiple-scale analysis.
By defining the fast variable 𝑡1 = 𝑡 and the slow variable 𝑡2 = 𝜖𝑡, we have 𝜕/𝜕𝑡 =
𝜕/𝜕𝑡1 + 𝜖𝜕/𝜕𝑡2. Regular perturbation expansions of the pair probability distribution
and its spatial moments in terms of 𝜖 are written as

𝑔2 = 𝑔
(0)
2 + 𝜖𝑔(1)2 + · · ·, (4.50)

M𝑚 = M (0)
𝑚 + 𝜖M (0)

𝑚 + · · ·, (4.51)
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where M (𝑘)
𝑚 is the rank 𝑚 spatial moment of 𝑔(𝑘)2 .

At 𝑂 (1), the zeroth moment satisfies

𝜕𝑀
(0)
0

𝜕𝑡1
+ ∇𝑇2 ·

(
U𝑟𝑀

(0)
0 − 𝐷𝑇𝑟 ∇𝑇2𝑀

(0)
0

)
−

2∑︁
𝛼=1

𝐷𝑅
𝛼∇𝑅𝛼 · ∇𝑅𝛼𝑀

(0)
0 = 0, (4.52)

n2 ·
(
U𝑟𝑀

(0)
0 − 𝐷𝑇𝑟 ∇𝑇2𝑀

(0)
0

)
= 0, r2 ∈ 𝑆𝑐 . (4.53)

Similarly, the first moment at this order is given by

𝜕M (0)
1

𝜕𝑡1
−

(
𝑈0

1q1𝑀
(0)
0 + 𝐷𝑇1∇

𝑇
2𝑀

(0)
0

)
+U trap𝑀

(0)
0

+∇𝑇2 ·
(
U𝑟M

(0)
1 − 𝐷𝑇𝑟 ∇𝑇2M

(0)
1 − 𝐷𝑇1I𝑀

(0)
0

)
−

2∑︁
𝛼=1

𝐷𝑅
𝛼∇𝑅𝛼 · ∇𝑅𝛼M

(0)
1 = 0, (4.54)

n2 ·
(
U𝑟M

(0)
1 − 𝐷𝑇𝑟 ∇𝑇2M

(0)
1 − 𝐷𝑇1I𝑀

(0)
0

)
= 0, r2 ∈ 𝑆𝑐 . (4.55)

Expanding the covariances in a similar fashion,

Cov(r1, r1) = Cov(0) (r1, r1) + 𝜖 Cov(1) (r1, r1) + · · ·, (4.56)

we obtain at 𝑂 (1)

1
2
𝜕 Cov(0) (r1, r1)

𝜕𝑡1
= 𝐷𝑇1I +

[
𝑈0

1 Cov(0) (q1, r1) + 𝑛𝑏𝐷𝑇1
〈
∇2

(
ln 𝑔(0)2

)
Δr1

〉] sym
,

(4.57)
and

𝜕 Cov(0) (q1, r1)
𝜕𝑡1

+ 𝑑 − 1
𝜏𝑅1

Cov(0) (q1, r1) = 𝑈0
1 Cov(q1, q1) + 𝑛𝑏𝐷𝑇1

〈
Δq1∇2 ln 𝑔(0)2

〉
.

(4.58)
Note that Cov(q1, q1) is not affected by the presence of the trap (see appendix 4.7)
and therefore only has the 𝑂 (1) term in the small-𝜖 expansion.

Equations (4.52)–(4.58) govern the dynamics of a probe in a bath of active particles
in the absence of the trapping force (The presence ofU trap in (4.54) is only due to the
fact that we are in a frame of reference moving with U trap relative to the laboratory
frame). This problem is the so-called tracer—an active one—dispersion in an active
Brownian suspension. Even in the absence of the trap, the correlation between q1

and r1 has a steady-state (time-independent) solution due to the presence of the
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decorrelation time 𝜏𝑅1 in equation (4.58). Dropping the time derivative in (4.58) at
steady state, we obtain

Cov(0) (q1, r1) =
ℓ1

𝑑 (𝑑 − 1)I +
𝜏𝑅1
𝑑 − 1

𝑛𝑏𝐷
𝑇
1
〈
Δq1∇2 ln 𝑔(0)2

〉
, (4.59)

where it is understood that the steady-state distribution of 𝑔(0)2 is used. Therefore,
equation (4.57) is written as

Deff
1 =

(
𝐷𝑇1 + 𝐷swim

1

)
I+𝑛𝑏𝐷𝑇1

[
ℓ1
𝑑 − 1

〈
Δq1∇2 ln 𝑔2

〉
+

〈
Δr1∇2 ln 𝑔2

〉] sym
, (4.60)

where Deff
1 = 𝜕 Cov(0) (r1, r1)/(2𝜕𝑡1) is the long-time dispersivity of the probe in

the absence of the trapping force. As expected, one could obtain the same results
by setting F 𝑒

1 = 0 from the outset (see section 4.4.2).

So long as the trapping force is not identically zero, the probe will eventually reach
the boundary of the trap. This confinement happens at very large distances from the
trap (or at long times).

4.3.5 A strong trap
For a strong trap, the viscoelastic time scale 𝜏𝑘 = 𝜁1/𝑘 is much smaller than other
timescales (e.g., the reorientation time ) of the problem. Due to the strong trapping
force, both the mean and the variance of the probe have a steady-state solution that
is time independent.

The position fluctuation governed by equation (4.27) at steady state becomes

𝑘

𝜁1
Cov(r1, r1) = 𝐷𝑇1I +

[
𝑈0

1 Cov(q1, r1) + 𝑛𝑏𝐷𝑇1
〈
∇2 (ln 𝑔2) Δr1

〉] sym
. (4.61)

Similarly, Cov(q1, r1) defined in (4.28) is given by

𝑘

𝜁1
Cov(q1, r1) = 𝑈0

1I/𝑑 + 𝑛𝑏𝐷
𝑇
1
〈
Δq1∇2 ln 𝑔2

〉
. (4.62)

Because the last term in the preceding equation is finite as 𝑘 → ∞, Cov(q1, r1) is
small and on the order of 1/𝑘 .

On the other hand, the relative deviation of the probe position from the average
position is small, Δ|r1 |/⟨|r1 |⟩ ≪ 1, which leads to

M1(r2, q2, 𝑡) =
∫

r1𝑔2𝑑r1 =
〈
r1

〉
𝑀0 +

∫
Δr1𝑔2𝑑r1

=
〈
r1

〉
𝑀0 +𝑂 (Δ|r1 |/⟨|r1 |⟩), (4.63)
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where the decomposition r1 = ⟨r1⟩ + Δr1 is used. Noting that〈
∇2 (ln 𝑔2) Δr1

〉
=

𝑛𝑏

𝑁 − 1

∫
𝑑q1𝑑q2

∮
𝑆𝑐

(M1 − ⟨r1⟩𝑀0) 𝑑𝑆2, (4.64)

we conclude that the last two terms on the rhs of (4.61) are small. To leading-order,
the fluctuation in the strong-trap limit is given by

𝑘

𝜁1
Cov(r1, r1) = 𝐷𝑇1I , (4.65)

regardless of the presence of the bath particles.

4.4 Constant-force and constant-velocity microrheology
The moving-trap microrheology model includes the constant-force and constant-
velocity microrheology models.

4.4.1 Constant-force microrheology
To recover the constant-force microrheology problem, instead of a harmonic trapping
force, we apply a constant force to the probe particle, F 𝑒

1 = 𝑐𝑜𝑛𝑠𝑡, and set the trap
velocity U trap = 0. In this mode of operation, the main quantity of interest is the
average velocity ⟨U1⟩ of the probe in response to the constant external driving force.
By definition, ⟨U1⟩ = 𝜕⟨r1⟩/𝜕𝑡, which can be obtained by considering the rhs of
equation (4.11). Because the trap is absent, the position r1 defines an arbitrary origin
in the laboratory frame of reference and the system is statistically homogeneous. As
a result, the conditional probability 𝑃𝑁−1/1 defined by

𝑃𝑁

(
r𝑁 , q𝑁 , 𝑡

)
= 𝑃𝑁−1/1(r𝑁−1, q𝑁−1, 𝑡 |r1, q1, 𝑡)𝑃1(r1, q1, 𝑡) (4.66)

is not a function of r1. (Note that in general 𝑃𝑁−1/1 is a function of q1.) The third
term on the rhs of equation (4.11) becomes

−
〈
D𝑈𝐹

11 · ∇𝑇1 ln 𝑃𝑁
〉
= −

∫
𝑑Γ𝑁−1𝑃𝑁−1/1D

𝑈𝐹
11 ·

∫
𝑑Γ1∇𝑇1𝑃1 = 0, (4.67)

where we have used the divergence theorem and the fact that 𝑃1 vanishes at infinity.
Further manipulations allow us to write equation (4.11) as

⟨U1⟩ =𝑈0
1 ⟨q1⟩ +

〈
M𝑈𝐹

11
〉
· F 𝑒

1

−
𝑁∑︁
𝛽=1

∫
𝑑Γ1𝑃1

∫
𝑑Γ𝑁−1

(
D𝑈𝐹

1𝛽 −D𝑈𝐹
11

)
· ∇𝑇𝛽𝑃𝑁−1/1. (4.68)
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If all 𝑁 particles are not active, equation (4.68) upon integration over Γ1 reduces
to the average velocity relation originally obtained by Squires and Brady (2005,
equation A4) for passive colloids.

Neglecting hydrodynamic interactions in the dilute limit, the average velocity be-
comes

⟨U1⟩ =
1
𝜁1
F 𝑒

1 +𝑈0
1 ⟨q1⟩ + 𝑛𝑏𝐷𝑇1

〈
∇2 ln 𝑔2

〉
, (4.69)

where the zeroth spatial moment, 𝑀0(q1, r2, q2, 𝑡) =
∫
𝑔2𝑑r1, is needed in order to

calculate the average velocity of the probe. At long times, ⟨q1⟩ = 0.

In the CF mode of microrheology, the equation governing the spatial moment M𝑚

is similar to (4.30) and can be shown to be

𝜕M𝑚

𝜕𝑡
− 𝑚

[
𝑈0

1q1M𝑚−1 +
1
𝜁1
F 𝑒

1 M𝑚−1 + (𝑚 − 1)𝐷𝑇1M𝑚−2I + 𝐷𝑇1∇
𝑇
2M𝑚−1

] sym

+∇𝑇2 ·
(
U𝑟M𝑚 − 𝐷𝑇𝑟 ∇𝑇2M𝑚 − 1

𝜁1
F 𝑒

1 M𝑚

)
−𝑚𝐷𝑇1

[
∇𝑇2M𝑚−1

] sym −
2∑︁
𝛼=1

𝐷𝑅
𝛼∇𝑅𝛼 · ∇𝑅𝛼M𝑚 = 0. (4.70)

Here, because the force is constant, the moment equation at rank 𝑚 only depends on
moments of lower ranks and the system up to any rank is a closed set of equations.
At contact, 𝑟2 = 𝑅𝑐, we have the no-flux boundary condition

n2 ·
(
U𝑟M𝑚 − 𝐷𝑇𝑟 ∇𝑇2M𝑚 − 1

𝜁1
F 𝑒

1 M𝑚

)
− 𝑚𝐷𝑇1 [n2M𝑚−1]sym = 0. (4.71)

The far-field condition as 𝑟2 → ∞ is unchanged and given by equation (4.34), where
𝚽𝑚 for constant force satisfies

𝜕𝚽𝑚

𝜕𝑡
− 𝑚

[
𝑈0

1q1𝚽𝑚−1 +
F 𝑒

1
𝜁1

𝚽𝑚−1 + (𝑚 − 1)𝐷𝑇1𝚽𝑚−2I

] sym

− 𝐷𝑅
1 ∇

𝑅
1 · ∇𝑅1 𝚽𝑚 = 0. (4.72)

To find the average velocity given in equation (4.69), one needs to consider equations
(4.70) and (4.72) for 𝑚 = 0. At long times, Φ0 = 0.

We note that in the above general formulation, both the probe particle and the bath
particle are ABPs. By setting 𝑈0

1 ,𝑈
0
2 = 0 and integrating out the orientational

degrees of freedom of the probe and the bath particle, we obtain the CF microrhe-
ology problem of a passive Brownian probe in a passive Brownian suspension,
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which has been considered by Squires and Brady (2005). On the other hand, the
CF microrheology of a passive Brownian probe in an active Brownian suspension
(𝑈0

1 = 0,𝑈0
2 ≠ 0) is studied by Burkholder and Brady (2019).

Taking 𝑚 = 0 in equation (4.70) in the absence of the external force (F 𝑒
1 = 0), we

obtain

𝜕𝑀0
𝜕𝑡

+ ∇𝑇2 ·
(
U𝑟𝑀0 − 𝐷𝑇𝑟 ∇𝑇2𝑀0

)
−

2∑︁
𝛼=1

𝐷𝑅
𝛼∇𝑅𝛼 · ∇𝑅𝛼𝑀0 = 0. (4.73)

Treating the probe as one of the suspension particles, this zeroth spatial moment
is the pair-correlation function of an active Brownian suspension (subject to proper
normalization) in the dilute limit by neglecting all higher order correlations. Equa-
tion (4.73) governing the pair-correlation at steady state in 2D has been studied
(Poncet et al. 2021; Dhont et al. 2021).

4.4.2 Force-induced tracer dispersion
In the constant-force mode of microrheology, it is also of importance to consider
the force-induced dispersion of the probe particle. In this context, the probe is often
referred to as the tracer, i.e., force-induced tracer dispersion. If no external force
is applied, F 𝑒

1 = 0, the problem is simply called tracer dispersion. The long-time
dispersion tensor of the tracer in the presence of bath particles can be written as

Deff
1 = lim

𝑡→∞
1
2
𝑑

𝑑𝑡
Cov(r1, r1)

= lim
𝑡→∞

1
2

[
𝜕

𝜕𝑡
⟨r1r1⟩ − ⟨U1⟩⟨r1⟩ − ⟨r1⟩⟨U1⟩

]
, (4.74)

where the covariance tensor of r1 is governed by

1
2
𝑑

𝑑𝑡
Cov(r1, r1) = 𝐷𝑇1I +

[
𝑈0

1 Cov(q1, r1) + 𝑛𝑏𝐷𝑇1
〈
Δr1∇2 ln 𝑔2

〉] sym
, (4.75)

and the covariance of q1 and r1 satisfies

𝑑

𝑑𝑡
Cov(q1, r1) +

𝑑 − 1
𝜏𝑅1

Cov(q1, r1) = 𝑈0
1 Cov(q1, q1) + 𝑛𝑏𝐷𝑇1

〈
Δq1∇2 ln 𝑔2

〉
.

(4.76)

At long times, we then obtain the dispersion tensor as

Deff
1 =

(
𝐷𝑇1 + 𝐷swim

1

)
I+𝑛𝑏𝐷𝑇1

[
ℓ1
𝑑 − 1

〈
Δq1∇2 ln 𝑔2

〉
+

〈
Δr1∇2 ln 𝑔2

〉] sym
, (4.77)

where ℓ1 = 𝑈0
1𝜏

𝑅
1 is the run length of the active probe. In the preceding equation,

the first bracketed term on the rhs is the dispersion tensor of a single ABP in free



92

space and the terms proportional to 𝑛𝑏 is the additional contribution due to the
excluded-volume interaction with the bath particles.

Using the divergence theorem, we can relate the last two terms on the rhs of (4.77)
to the zeroth and first spatial moments,〈

Δq1∇2 ln 𝑔2
〉

=
𝑛𝑏

𝑁 − 1

∫
Δq1𝑑q1𝑑q2

∮
𝑆𝑐

n2𝑀0𝑑𝑆2, (4.78)〈
Δr1∇2 ln 𝑔2

〉
=

𝑛𝑏

𝑁 − 1

∫
𝑑q1𝑑q2

∮
𝑆𝑐

(M1 − ⟨r1⟩𝑀0) n2𝑑𝑆2, (4.79)

where ⟨r1⟩ = [𝑛𝑏/(𝑁 − 1)]
∫
M1𝑑q1𝑑Γ2. Therefore, one only needs to solve for

𝑀0 and M1 in equation (4.70) in order to calculate the dispersion tensor.

The above formulation for the forced-induced dispersion of an active tracer in an
active suspension is a direct extension of the generalized Taylor dispersion theory
(GTDT). In particular, we have used the statistical moment method of Frankel and
Brenner (1989). An equivalent approach is to derive the mean velocity and the
dispersion tensor by first transforming the unbounded coordinate r1 into the Fourier
space and consider a small wave-number expansion (Zia and Brady 2010).

By setting 𝑈0
1 ,𝑈

0
2 = 0 and integrating over the orientational degrees of freedom of

both the probe and the bath particles, we recover the equations governing the force-
induced dispersion of a passive probe in a passive suspension (Zia and Brady 2010).
To recover the problem of a passive free tracer in an active suspension studied by
Burkholder and Brady (2017), one can set F 𝑒

1 = 0, 𝑈0
1 = 0 and integrate over the

orientational degrees of freedom of the probe.

4.4.3 Constant-velocity microrheology
To obtain the equations for the CV microrheology problem, we first consider the
probe to have deterministic dynamics with 𝑈0

1 = 0, 𝐷𝑇1 = 0 and 𝐷𝑅
1 = 0. Equation

(4.24) at steady-state then leads to 𝑘 ⟨r1⟩/𝜁1 = −U trap. Furthermore, we consider
the limit of a strong trap in which case the probe tightly follows the trap velocity.
In this limit, the probe velocity is the trap velocity to leading-order and we then
achieve a CV probe.

To see this, we first decompose the position of the probe via r1 = ⟨r1⟩ + Δr1. In
the strong trap limit, the deviation of the probe from the mean position is small,
Δ|r1 |/⟨|r1 |⟩ ≪ 1. To leading-order, (4.63) allows us to obtain the first spatial
moment as 𝑘M1/𝜁1 = −U trap𝑀0 (this relation can also be viewed as a closure for
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the spatial moments). Substitution of this relation into (4.36) leads to

𝜕𝑀0
𝜕𝑡

+ ∇𝑇2 ·
(
𝑈0

2q2𝑀0 − 𝐷𝑇1∇
𝑇
2𝑀0 −U trap𝑀0

)
− 𝐷𝑅

2 ∇
𝑅
2 · ∇𝑅2 𝑀0 = 0. (4.80)

Similarly, the no-flux condition at contact (r2 ∈ 𝑆𝑐) is

n2 ·
(
𝑈0

2q2𝑀0 − 𝐷𝑇1∇
𝑇
2𝑀0 −U trap𝑀0

)
= 0. (4.81)

Equation (4.80) describes the distribution of the bath particle measured in a frame of
reference that is co-moving with U trap. Realizing that the probe velocity is the same
as the ‘trap’, U probe = U trap, this is the CV microrheology of an active Brownian
suspension. We note that in (4.80) [cf. (4.36)] the relative velocity is 𝑈0

2q2 −U trap

and the relative diffusivity is 𝐷𝑇1 because the probe has prescribed kinematics.

The CV microrheology of an active Brownian suspension governed by (4.80) and
(4.81) has been studied by Burkholder and Brady (2020). To recover the CV
microrheology of a passive Brownian suspension considered by Squires and Brady
(2005), one only needs to set𝑈0

2 = 0 and integrate over the orientational degrees of
freedom of the bath ABP.

4.5 Fluctuations in a passive suspension
For a passive spherical probe in a passive suspension of Brownian spheres,𝑈0

1 ,𝑈
0
2 =

0, the orientational degrees of freedom of both the probe and the bath parti-
cles do not matter. As a result, the pair distribution is given by 𝑔(r1, r2, 𝑡) =∫
𝑔2(r1, q1, r2, q2, 𝑡)𝑑q1𝑑q2, which only depends on the spatial coordinates of the

probe and the bath particle. Because a constant velocity of translation of the har-
monic trap does not affect the position fluctuation of the probe, without loss of
generality we set the trap speed to be zero, U trap = 0.

Equation (4.15) at steady state under the above conditions reduces to

∇1 ·
(
− 𝑘
𝜁1
r1𝑔 + 𝐷1∇2𝑔 − 𝐷1∇1𝑔

)
+ ∇2 ·

(
𝑘

𝜁1
r1𝑔 + 𝐷1∇1𝑔 − 𝐷𝑟∇2𝑔

)
= 0, (4.82)

where we have dropped the superscript ‘𝑇’ denoting translation. The no-flux con-
dition at contact, 𝑟2 = 𝑅𝑐, is given by

n2 ·
(
𝑘

𝜁1
r1𝑔 + 𝐷1∇1𝑔 − 𝐷𝑟∇2𝑔

)
= 0. (4.83)

The far-field conditions for 𝑟2 → ∞ and 𝑟1 → ∞ can be obtained from (4.20) and
(4.21), respectively. In the absence of the bath particles, the positional distribution of
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the probe at steady state is Boltzmann and given by 𝑃1(r1) = 𝐶1 exp(−𝑉 trap/𝑘𝐵𝑇),
where𝑉 trap = 𝑘r1 · r1/2 is the potential energy of the trap and 𝐶1 is a normalization
constant such that the total probability is conserved,

∫
𝑃1𝑑r1 = 1.

The pair distribution governed by (4.82) still has a high dimensionality even without
considering the orientational degrees of freedom, as is the case for a passive probe
in a passive suspension. To make numerical progress, we consider the system to
be in 2D, in which case the normalization constant is given by 𝐶1 = 𝑘/(2𝜋𝑘𝐵𝑇).
The normalization also reveals an important entropic length scale,

√︁
𝑘𝐵𝑇/𝑘 , which

characterizes the spreading of the probability because 𝑘 ⟨r1r1⟩ = 𝑘𝐵𝑇I (regardless
of the dimensionality) in the absence of the bath particles.

By setting U 0
𝛼 = 0 and integrating out the orientational degrees of freedom, we

define the spatial moment for passive particles as N𝑚 (r2, 𝑡) =
∫
M𝑚𝑑q1𝑑q2. The

equation governing the evolution of N𝑚 is readily obtained by integrating over q1

and q2 in equation (4.30). At steady state, the zeroth spatial moment satisfies

∇𝑇2 ·
(
−𝐷𝑇𝑟 ∇𝑇2𝑁0 +

𝑘

𝜁1
N1

)
= 0. (4.84)

The preceding equation is accompanied by the no-flux condition

n2 ·
(
−𝐷𝑇𝑟 ∇𝑇2𝑁0 +

𝑘

𝜁1
N1

)
= 0 for r2 ∈ 𝑆𝑐, (4.85)

the far-field condition
𝑁0 → 1 as |r2 | → ∞, (4.86)

and the normalization
∫
𝑁0𝑑r2 = (𝑁 − 1)/𝑛𝑏. Using equation (4.24), we obtain at

steady state
𝑘

𝜁1
⟨r1⟩ =

𝑛𝑏

𝑁 − 1
𝑛𝑏𝐷

𝑇
1

∮
𝑟2=𝑅𝑐

n2𝑁0𝑑𝑆2. (4.87)

The first spatial moment is governed by

𝑘

𝜁1
N1 − 𝐷𝑇1∇

𝑇
2𝑁0 + ∇𝑇2 ·

(
−𝐷𝑇𝑟 ∇𝑇2N1 +

𝑘

𝜁1
N2 − 𝐷𝑇1I𝑁0

)
= 0, (4.88)

where similarly the no-flux condition is

n2 ·
(
−𝐷𝑇𝑟 ∇𝑇2N1 +

𝑘

𝜁1
N2 − 𝐷𝑇1I𝑁0

)
= 0 for r2 ∈ 𝑆𝑐, (4.89)

and the far-field condition is given by

N1 → 0 as |r2 | → ∞. (4.90)
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Using N1, one can calculate the mean-squared displacement via

𝑘

𝜁1

〈
r1r1

〉
= 𝐷𝑇1I + 2

𝑛𝑏

𝑁 − 1
𝑛𝑏𝐷

𝑇
1

∮
𝑟2=𝑅𝑐

[n2N1]sym 𝑑𝑆2. (4.91)

The second spatial moment is governed by

− 2
[
− 𝑘
𝜁1
N2 + 𝐷𝑇1𝑁0I + 𝐷𝑇1∇

𝑇
2N1

] sym

+ ∇𝑇2 ·
[
−𝐷𝑇𝑟 ∇𝑇2N2 +

𝑘

𝜁1
N3

]
− 2𝐷𝑇1

[
∇𝑇2N1

] sym
= 0,

n2 ·
[
−𝐷𝑇𝑟 ∇𝑇2N2 +

𝑘

𝜁1
N3

]
− 2𝐷𝑇1 [n2N1]sym = 0. (4.92)

The far-filed condition for N2 is given by

N2 →
𝜁1𝐷

𝑇
1

𝑘
I as |r2 | → ∞. (4.93)

4.6 Derivation of the pair problem
We integrate equation (4.7) over the relative positions and the orientations of the
bath particles labeled from 3 to 𝑁 to obtain

𝜕𝑃2
𝜕𝑡

+ ∇𝑇1 ·
∫ (

j𝑇1 −U trap𝑃𝑁

)
𝑑Γ𝑁−2 + ∇𝑇2 ·

∫ (
j𝑇2 − j𝑇1

)
𝑑Γ𝑁−2

+
2∑︁
𝛼=1

∇𝑅𝛼 ·
∫

j𝑅𝛼 𝑑Γ
𝑁−2 = 0, (4.94)

where 𝑑Γ𝑁−2 is a shorthand for
∏𝑁

𝛽=3 𝑑Γ𝛽 and 𝑃2 =
∫
𝑃𝑁𝑑Γ

𝑁−2. In deriving the
preceding equation, the divergence theorem and the no-flux condition are used to
eliminate the terms

∫
∇𝑇
𝛽
·
(
j𝑇
𝛽
− j𝑇1

)
𝑑Γ𝑁−2 for 𝛽 = 3, ..., 𝑁 . In addition, the relation∫

∇𝑅𝛼 · j𝑅𝛼 𝑑q𝛼 = 0 is used.

To proceed further, we define the conditional probability of finding the remaining
𝑁 − 2 particles (𝑃𝑁−2/2) given the configuration of the probe and the first bath
particle:

𝑃𝑁 (r𝑁 , q𝑁 , 𝑡) = 𝑃(𝑁−2)/2

(
r𝑁−2, q𝑁−2, 𝑡 |r2, q2, r1, q1, 𝑡

)
𝑃2(r2, q2, r1, q1, 𝑡).

(4.95)
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Notice that the conditional probability is conserved,
∫
𝑃𝑁−2/2𝑑Γ

𝑁−2 = 1. In equa-
tion (4.94), for 𝛼 = 1 or 2, we have∫

j𝑇𝛼𝑑Γ
𝑁−2 =𝑈0

𝛼q𝛼𝑃2 +
〈
M𝑈𝐹

𝛼1
〉
𝑁−2/2 · F

𝑒
1 𝑃2 −

〈
D𝑈𝐹
𝛼2 −D𝑈𝐹

𝛼1
〉
𝑁−2/2 · ∇

𝑇
2𝑃2

−
𝑁∑︁
𝛽=2

〈(
D𝑈𝐹
𝛼𝛽 −D𝑈𝐹

𝛼1

)
· ∇𝑇𝛽 ln 𝑃𝑁−2/2

〉
𝑁−2/2𝑃2

−
〈
D𝑈𝐹
𝛼1 · ∇𝑇1 ln 𝑃𝑁−2/2

〉
𝑁−2/2𝑃2 −

〈
D𝑈𝐹
𝛼1

〉
𝑁−2/2 · ∇

𝑇
1𝑃2

−
2∑︁
𝛽=1

〈
D𝑈𝐿
𝛼𝛽 · ∇𝑅𝛽 ln 𝑃𝑁−2/2

〉
𝑃2 −

2∑︁
𝛽=1

〈
D𝑈𝐿
𝛼𝛽

〉
· ∇𝑅𝛽𝑃2, (4.96)

and ∫
j𝑅𝛼 𝑑Γ

𝑁−2 =
〈
MΩ𝐹

𝛼1
〉
𝑁−2/2 · F

𝑒
1 𝑃2 −

〈
DΩ𝐹
𝛼2 −DΩ𝐹

𝛼1
〉
𝑁−2/2 · ∇

𝑇
2𝑃2

−
𝑁∑︁
𝛽=2

〈(
DΩ𝐹
𝛼𝛽 −DΩ𝐹

𝛼1

)
· ∇𝑇𝛽 ln 𝑃𝑁−2/2

〉
𝑁−2/2𝑃2

−
〈
DΩ𝐹
𝛼1 · ∇𝑇1 ln 𝑃𝑁−2/2

〉
𝑁−2/2𝑃2 −

〈
DΩ𝐹
𝛼1

〉
𝑁−2/2 · ∇

𝑇
1𝑃2

−
2∑︁
𝛽=1

〈
DΩ𝐿
𝛼𝛽 · ∇𝑅𝛽 ln 𝑃𝑁−2/2

〉
𝑃2

−
2∑︁
𝛽=1

〈
DΩ𝐿
𝛼𝛽

〉
· ∇𝑅𝛽𝑃2 − 𝐷𝑅

𝛼∇𝑅𝛼𝑃2, (4.97)

where we have used the fact that the mobility tensors are independent of q𝑁 for
spheres, i.e., M𝛼𝛽 = M𝛼𝛽 (r2, ...r𝑁 ).

In the dilute limit, neglecting the terms involving the gradients of ln 𝑃𝑁−2/2 and using
the pair mobility tensor in the absence of other particles in place of ⟨M ⟩𝑁−2/2, we
obtain

𝜕𝑃2
𝜕𝑡

+ ∇𝑇1 ·
(
j𝑇1 −U trap𝑃2

)
+ ∇𝑇2 ·

(
j𝑇2 − j𝑇1

)
+

2∑︁
𝛼=1

∇𝑅𝛼 · j𝑅𝛼 = 0, (4.98)
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where using the same symbols as before

j𝑇𝛼 = 𝑈0
𝛼q𝛼𝑃2 +M𝑈𝐹

𝛼1 · F 𝑒
1 𝑃2 −

(
D𝑈𝐹
𝛼2 −D𝑈𝐹

𝛼1

)
· ∇𝑇2𝑃2

−D𝑈𝐹
𝛼1 · ∇𝑇1𝑃2 −

2∑︁
𝛽=1

D𝑈𝐿
𝛼𝛽 · ∇𝑅𝛽𝑃2 (4.99)

j𝑅𝛼 = MΩ𝐹
𝛼1 · F 𝑒

1 𝑃2 −
(
DΩ𝐹
𝛼2 −DΩ𝐹

𝛼1

)
· ∇𝑇2𝑃2 −DΩ𝐹

𝛼1 · ∇𝑇1𝑃2

−
2∑︁
𝛽=1

DΩ𝐿
𝛼𝛽 · ∇𝑅𝛽𝑃2 − 𝐷𝑅

𝛼∇𝑅𝛼𝑃2. (4.100)

In the absence of hydrodynamic interactions, we have M𝑈𝐹
𝛼𝛽

= I𝛿𝛼𝛽/𝜁𝑇𝛼 , MΩ𝐿
𝛼𝛽

=

I𝛿𝛼𝛽/𝜁𝑅𝛼 , and M𝑈𝐿
𝛼𝛽
,MΩ𝐹

𝛼𝛽
= 0, where 𝛿𝛼𝛽 is the Kronecker delta. The conditional

probability of finding a bath particle, 𝜌1/1(r2, q2, 𝑡 |r1, q1, 𝑡), can be related to 𝑃2

via the relation 𝜌1/1 = (𝑁 − 1)𝑃1/1, where 𝑃1/1 is defined by 𝑃2 = 𝑃1/1𝑃1. The
factor of 𝑁 − 1 comes from the process of removing the “labels” of the 𝑁 − 1 bath
particles. From this, the joint probability density of finding a bath particle at r2,
q2 and the probe at r1, q1 is defined as 𝜌2 = 𝜌1/1𝑃1. Furthermore, we define a
generalized pair-distribution function 𝑔2 such that

𝜌2 = 𝜌1/1𝑃1 = 𝑛𝑏𝑔1/1𝑃1 = 𝑛𝑏𝑔2, (4.101)

where 𝑛𝑏 = (𝑁 − 1)/𝑉 is the number density of bath particles.

This generalized pair distribution is still governed by equation (4.98) with 𝑔2 in
place of 𝑃2. In the absence of hydrodynamic interactions, equations (4.98)-(4.100)
reduce to equations (4.15)-(4.18) given in the text.

4.7 Derivation of the variance relations
For the pair problem, equation (4.12) governing the mean-squared displacement
reduces to

1
2
𝜕⟨r1r1⟩
𝜕𝑡

+ 1
𝜏𝑘

〈
r1r1

〉
=𝐷𝑇1I +

[
𝑈0

1
〈
q1r1

〉
−U trap⟨r1⟩

] sym

+ 𝑛𝑏𝐷𝑇1
[〈
∇2 (ln 𝑔2) r1

〉] sym
. (4.102)

Using equations (4.24) and (4.102), one can show that the position fluctuation of
the probe is governed by

1
2
𝜕 Cov(r1, r1)

𝜕𝑡
+ 1
𝜏𝑘

Cov(r1, r1) =𝐷𝑇1I +𝑈0
1 [Cov(q1, r1)]sym

+ 𝑛𝑏𝐷𝑇1
[〈
∇2 (ln 𝑔2) Δr1

〉] sym
, (4.103)
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where Cov(q1, r1) = ⟨q1r1⟩− ⟨q1⟩⟨r1⟩ and recall that Δr1 = r1−⟨r1⟩. To calculate
the covariance of q1 and r1 appearing in equation (4.103), we need ⟨q1r1⟩, ⟨q1⟩ and
⟨r1⟩.

The net polar order of the probe satisfies

𝜕⟨q1⟩
𝜕𝑡

+ 𝑑 − 1
𝜏𝑅1

⟨q1⟩ = 0, (4.104)

where 𝑑 (= 2, 3) is the dimensionality of the problem. It can be seen that the net
polar order of the probe is not affected by the trap or the bath particles. The full
solution to (4.104) is readily obtained as

⟨q1⟩(𝑡) = exp
[
−(𝑑 − 1)𝑡/𝜏𝑅1

]
⟨q1⟩(0), (4.105)

where any initial net polar order ⟨q1⟩(0) decays away exponentially due to the rotary
diffusion.

The average of q1r1 is governed by

𝜕
〈
q1r1

〉
𝜕𝑡

+ 1
𝜏𝑘

〈
q1r1

〉
+ 𝑑 − 1

𝜏𝑅1

〈
q1r1

〉
= − ⟨q1⟩U trap +𝑈0

1
〈
q1q1

〉
+ 𝑛𝑏𝐷𝑇1

〈
q1∇2 ln 𝑔2

〉
, (4.106)

where ⟨q1⟩ is given by (4.104) and
〈
q1q1

〉
satisfies

𝜕
〈
q1q1

〉
𝜕𝑡

+ 2𝑑
𝜏𝑅1

[〈
q1q1

〉
− 1
𝑑
I

]
= 0. (4.107)

Similarly to ⟨q1⟩, the net nematic order of the probe regardless of the presence of
the trap or the bath particles is given by

⟨Q1⟩(𝑡) = exp
[
−2𝑑𝑡/𝜏𝑅1

]
Q1(0), (4.108)

where we have defined the net trace-free nematic tensor ⟨Q1⟩ =
〈
q1q1

〉
− I/𝑑.

At long times (𝑡 → ∞), there is no net polar order of the probe, ⟨q1⟩ = 0 and the
net nematic order is isotropic,

〈
q1q1

〉
= I/𝑑.

Using equations (4.24), (4.104) and (4.106), we obtain

𝜕 Cov(q1, r1)
𝜕𝑡

+
(

1
𝜏𝑘

+ 𝑑 − 1
𝜏𝑅1

)
Cov(q1, r1) =𝑈0

1 Cov(q1, q1)

+ 𝑛𝑏𝐷𝑇1
〈
Δq1∇2 ln 𝑔2

〉
, (4.109)

where Δq1 = q1 − ⟨q1⟩.
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4.8 Asymptotic analysis of the probe in the absence of bath particles
In equation (4.44), the timescale of transient decay 𝜏 can be defiend by

1
𝜏
=
𝑑 − 1
𝜏𝑅1

+ 1
𝜏𝑘

=
𝑑 − 1 + 𝜖
𝜏𝑅1

, (4.110)

where 𝜖 = 𝜏𝑅1 /𝜏𝑘 = 𝑘𝜏
𝑅
1 /𝜁1. Using this definition, the solution of (4.44) is given by

Cov(q1, r1) (𝑡) =𝑒−𝑡/𝜏 Cov(q1, r1) (0)

+𝑈0
1

∫ 𝑡

0
exp

(
− 𝑡 − 𝑠

𝜏

)
Cov(q1, q1) (𝑠)𝑑𝑠. (4.111)

From equation (4.108), the preceding equation becomes

Cov(q1, r1) (𝑡) = 𝑒−𝑡/𝜏 Cov(q1, r1) (0) +
𝑈0

1𝜏I

𝑑

(
1 − 𝑒−𝑡/𝜏

)
− ℓ1
𝑑 + 1 − 𝜖

(
𝑒−2𝑑𝑡/𝜏𝑅 − 𝑒−𝑡/𝜏

)
⟨Q1⟩(0). (4.112)

In the long-time limit (𝑡/𝜏𝑅 ≫ 1 and 𝑡/𝜏 ≫ 1), we obtain equation (4.46) in the
text. Using equation (4.103) in the absence of bath particles, we obtain

Cov(r1, r1) (𝑡) = 𝑒−2𝑡/𝜏𝑘 Cov(r1, r1) (0) + 𝜏𝑘
©­­«𝐷𝑇1 +

(
𝑈0

1

)2
𝜏

𝑑

ª®®¬ I
(
1 − 𝑒−2𝑡/𝜏𝑘

)
+2𝑈0

1

∫ 𝑡

0
exp

[
−2
𝑡 − 𝑠
𝜏𝑘

]
[Cov′(q1, r1) (𝑠)]sym

𝑑𝑠, (4.113)

where Cov′(q1, r1) (𝑠) = Cov(q1, r1) (𝑠)−𝑈0
1𝜏I/𝑑 is the time-dependent (transient)

part of the covariance of q1 and r1. The integral in (4.113) can be carried out
explicitly but is not important for the following discussion.

In the presence of the harmonic trap, the system exhibit two timescales that are
important: the reorientation time 𝜏𝑅1 and the viscoelastic timescale 𝜏𝑘 ; their relative
importance is characterized by the parameter 𝜖 . In the weak-trap limit, 𝜖 → 0,
the two timescales are well-separated. It is useful to define the fast time variable
𝑡1 = 𝑡 and the slow time variable 𝑡2 = 𝜖𝑡. We now consider the limit 𝜖 → 0 and the
intermediate timescale in which the ABP has experienced many reorientations due
to rotary diffusion but hasn’t reached the ‘boundary’ of the trap, i.e., 𝑡1/𝜏𝑅1 ≫ 1 but
𝑡2/𝜏𝑅1 = 𝜖𝑡/𝜏𝑅 ≪ 1.
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Differentiating equation (4.113) leads to

𝑑

𝑑𝑡
Cov(r1, r1) (𝑡) =

−2
𝜏𝑘
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𝜏

𝑑
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+ 2𝑈0
1 [Cov′(q1, r1) (𝑡)]sym

+ 2𝑈0
1
−2
𝜏𝑘

∫ 𝑡

0
exp

[
−2
𝑡 − 𝑠
𝜏𝑘

]
[Cov′(q1, r1) (𝑠)]sym

𝑑𝑠.

(4.114)

Since 1/𝜏𝑘 = 𝜖/𝜏𝑅1 and

𝑡

𝜏𝑘
=
𝑡2
𝜖𝜏𝑘

=
𝑡2

𝜏𝑅1
≪ 1 and

𝑡

𝜏
=
𝑡1

𝜏𝑅1
(𝑑 + 1 − 𝜖) ≫ 1, (4.115)

we have

𝑒−2𝑡/𝜏𝑘 = 𝑒−2𝑡2/𝜏𝑅1 = 1 +𝑂 (𝑡2/𝜏𝑅1 )

(
𝑈0

1

)2
𝜏

𝑑
=

𝑈0
1ℓ1

𝑑 (𝑑 − 1) [1 +𝑂 (𝜖)] . (4.116)

Therefore, equation (4.114) at leading order is

1
2
𝑑

𝑑𝑡
Cov(r1, r1) (𝑡) =

(
𝐷𝑇1 +

𝑈0
1ℓ1

𝑑 (𝑑 − 1)

)
I =

(
𝐷𝑇1 + 𝐷swim

1

)
I . (4.117)

It is clear that in the weak-trap limit in this intermediate timescale, the ABP exhibit
diffusive behavior with the free-space dispersivity 𝐷𝑇1 + 𝐷swim

1 .

We now consider the weak-trap limit but at long-times, 𝑡/𝜏𝑅1 ≫ 1, 𝑡/𝜏𝑘 ≫ 1. So
long as the trap strength is not identically zero, the ABP will eventually (𝑡/𝜏𝑘 ≫ 1)
experience the confinement of the trap. Using equation (4.113), we obtain at long
times

1
𝜏𝑘

Cov(r1, r1) →
(
𝐷𝑇1 + 𝐷swim

1

)
I . (4.118)

In the strong-trap limit (𝜖 → ∞) and at long times, we have 𝜏/𝜏𝑅1 = 𝑂 (1/𝜖) and the
position fluctuation of the probe Cov(r1, r1)/𝜏𝑘 = 𝐷𝑇1 .

4.9 Solution for a passive probe in a passive suspension
Equation (4.82) in 2D is most convenient for numerical analysis in a polar coordinate
system in which the angle between r2 and r1 is defined as 𝛽. To see this, we first
consider the polar angles defined relative to a Cartesian frame of reference (see
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Figure 4.2: Definitions of the polar coordinate system and the relative angle 𝛽 =

𝜃2 − 𝜃1.

figure 4.2) in which 𝑔 = 𝑔(𝑟1, 𝜃1, 𝑟2, 𝜃2). Introducing the change of variables such
that 𝛼 = 𝜃1 and 𝛽 = 𝜃2 − 𝜃1, one can show that 𝑔2 in this new coordinate system is
not a function of 𝛼, i.e., 𝑔 = 𝑔(𝑟1, 𝑟2, 𝛽).

Noting that 𝜕/𝜕𝜃1 = 𝜕/𝜕𝛼− 𝜕/𝜕𝛽 and 𝜕/𝜕𝜃2 = 𝜕/𝜕𝛽, equation (4.82) is written as

−2𝑔 − 𝑟1
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1
= 0, (4.119)

where 𝑟1, 𝑟2 and 𝑔 are rendered dimensionless using the length scale
√︁
𝑘𝐵𝑇/𝑘 . The

no-flux condition (4.83) becomes

𝑟1 cos 𝛽𝑔− sin 𝛽
𝑟1

𝜕𝑔

𝜕𝛽
−

(
1 + 𝐷2

𝐷1

)
𝜕𝑔

𝜕𝑟2
+cos 𝛽

𝜕𝑔

𝜕𝑟1
= 0 at 𝑟2 =

𝑅𝑐√︁
𝑘𝐵𝑇/𝑘

. (4.120)

Far away from the probe, the probe distribution is undisturbed from its equilibrium:

𝑔 → 1
2𝜋

exp
(
−1

2
𝑟2

1

)
as 𝑟2 → ∞. (4.121)

Far away from the trap, the probability vanishes:

𝑔 → 0 as 𝑟1 → ∞. (4.122)

Because 𝜁1𝐷1 = 𝜁2𝐷2 = 𝑘𝐵𝑇 , we have 𝐷2/𝐷1 = 𝑎/𝑏.
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C h a p t e r 5

CONSTANT-VELOCITY MICRORHEOLOGY

Particle-tracking microrheology of dilute active (self-propelled) colloidal suspen-
sions is studied by considering the external force required to maintain the steady
translation of an immersed constant-velocity colloidal probe. If the probe speed
is zero, the suspension microstructure is isotropic but exhibits a boundary ac-
cumulation of active bath particles at contact due to their self-propulsion. As
the probe moves through the suspension, the microstructure is distorted from the
non-equilibrium isotropic state, which allows us to define a microviscosity for the
suspension using the Stokes drag law. For a slow probe, we show that active suspen-
sions exhibit a swim-thinning behavior in which their microviscosity is gradually
lowered from that of passive suspensions as the swim speed increases. When the
probe speed is fast, the suspension activity is obscured by the rapid advection of
the probe and the measured microviscosity is indistinguishable from that of passive
suspensions. Generally for finite activity, the suspension exhibits a force-thinning
behavior—though with a lower zero-forcing plateau—as a function of the probe
speed. These behaviors originate from the interplay between the suspension activity
and the hard-sphere excluded volume interaction between the probe and a bath par-
ticle. We show that for pullers, the disturbance due to their hydrodynamic stresslets
pulls the probe forward provided that the density of particles is larger in the front of
the probe than that in the back. Therefore, the microviscosity can become negative
if the hydrodynamic stresslet is sufficiently strong. This is in contrast to the bulk
shear rheology of active suspensions, where a negative viscosity is only observed
for pushers. In addition, if the disturbance flow due to the translating probe is
considered, we show that again the microviscosity can become negative. This is
due to the coupling between vorticity-induced reorientation and swimming of active
particles, which allows the number density in the back of the probe to be larger than
that in the front.

5.1 Introduction
In the past few decades, colloidal active matter systems such as motile bacteria and
synthetic Janus particles immersed in a viscous solvent have evolved into a vibrant
field of study (Lauga and Powers 2009; Ramaswamy 2010; Marchetti et al. 2013;



103

Figure 5.1: Schematic of a simple shear flow and the force dipoles of a pusher and
a puller.

Elgeti et al. 2015; Bechinger et al. 2016). Owing to their ability to self-propel,
active colloids exhibit a cascade of striking properties not observed in equilibrium
colloidal systems such as accumulation at no-flux boundaries (Wensink and Löwen
2008; Li and Tang 2009; Elgeti and Gompper 2013; Yan and Brady 2015b), upstream
swimming in Poiseuille flow (Hill et al. 2007; Kaya and Koser 2009; 2012; Zöttl and
Stark 2012; Peng and Brady 2020), and the existence of a steady-state spontaneous
flow in the absence of any external forces (Lushi et al. 2012; Guo et al. 2018).

The macroscopic (bulk) rheological response of active colloidal suspensions is also
distinct from that of passive colloids. In particular, experiments (López et al. 2015;
Chui et al. 2021) and theoretical studies (Hatwalne et al. 2004; Haines et al. 2009;
Saintillan 2010; Ryan et al. 2011; Loisy et al. 2018) have shown that the low-𝑃𝑒
shear (weak shear) viscosity of dilute active suspensions consisting of anisotropic
and pusher (tail-actuated) microswimmers can be zero—or even negative. This
apparent negative viscosity has been attributed to the interaction between the hydro-
dynamic stresslet induced by the force dipoles of an active particle and the applied
simple shear flow. To see this, consider a self-propelled pusher or puller microswim-
mer in a simple shear flow (see figure 5.1 for a schematic). The straining-component
of the flow tends to align the microswimmer along the extensional axis of shear.
With this alignment, the flow induced by a pusher acts to “stretch” the fluid further,
which results in a reduced shear viscosity. For a puller swimmer, the induced flow
acts against the imposed shear and an increase in the shear viscosity is observed.
According to Jeffery’s equation describing the orientational dynamics of an ellip-
soidal particle in simple shear (Jeffery 1922), this alignment effect is only present
for non-spherical particles and therefore one expects the shear viscosity of active
spheres to be non-negative.

Bulk rheological studies such as simple shear provide a measurement of the global
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(suspension averaged) rheological behavior of colloidal suspensions. In the context
of biological active matter such as cellular environments, the active “particles” are
often subjected to spatially localized cues and biochemical signals rather than to
bulk flow or body forces. These localized behaviors lead to an inherently hetero-
geneous intracellular environment with differing material properties such as spatial
variations in viscosity and elasticity. In addition, classical bulk rheology equipment
cannot be used to probe the microenvironment inside individual living cells without
disrupting their mechanical structure. To address such challenges, microrheological
techniques have been developed. In microrheology, the local rheological properties
such as viscoelasticity of a complex fluid are inferred from the free (thermal) or
forced motion of “probe” particles. The probes can be either embedded colloidal
particles or tagged organelles and molecules existing in the biological material. The
study of the deformation or flow of biological materials at small length scales has
been termed bio-microrheology and deemed a frontier in microrheology (Weihs
et al. 2006). Indeed, particle-tracking microrheology has been widely used in exper-
imental measurements to characterize the rheological properties inside living cells
(Wilhelm et al. 2003; Nawaz et al. 2012; Berret 2016; Ayala et al. 2016; Hu et al.
2017).

To aid in the understanding of experimental measurements and in the prediction of
colloidal microrheology, Squires and Brady (2005) developed a theoretical frame-
work in which a colloidal probe is pulled through a suspension of neutrally buoyant
bath colloids (see figure 5.2 for a schematic). If the external pulling force is absent,
this problem is often referred to as tracer diffusion and is classified as passive (no
external forcing) microrheology. To characterize the nonlinear response, an external
force, often larger than the thermodynamic restoring force, is applied to the probe
and we call this problem forced microrheology 1. Within forced microrheology,
two operating modes—constant-force (CF) and constant-velocity (CV)—are often
considered from a theoretical perspective. In the CF mode, the external force F ext

applied to the probe is a constant while the position of the probe is fluctuating.
Conversely for the CV mode, the velocity U ext is a constant (therefore the position
of the probe is known) and the external force required to maintain such a steady
motion must fluctuate. The framework of Squires and Brady (2005) has been ex-
tended and used to study the microrheology of passive (not self-propelled) colloidal

1Traditionally, this is called active microrheology in contrast to the passive mode. In the context
of active matter, however, this terminology of active microrheology conflicts with that of active
matter and we thus use the term forced microrheology.
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Figure 5.2: Schematic of different operating modes of colloidal microrheology.
The gray particle is the probe and the blue particles are the bath particles. In the
passive mode, the MSD of the probe is measured. In the forced modes, the probe is
driven by an external force, either constant (CF mode) or fluctuating (CV mode).

suspensions (Khair and Brady 2005; 2006; Meyer et al. 2006; Zia and Brady 2010;
Swan and Zia 2013; Zia 2018).

In contrast to passive colloids, the study of the microrheology of active colloids is
more recent and their microrheological response is less well understood. Recent
experimental and theoretical studies have shown that in the absence of external
forcing, a Brownian tracer can undergo enhanced diffusive motion at long times
due to the activity (e.g., self-propulsion) of the bath particles (Jepson et al. 2013;
Miño et al. 2013; Morozov and Marenduzzo 2014; Burkholder and Brady 2017).
If the bath particles are passive, it is known that the long-time diffusive motion of
the tracer is hindered resulting from the “collisions” between the probe and the bath
particles. This means that for active bath particles the activity-induced enhancement
is more than enough to overcome the steric hindrance, which is present regardless of
the activity of the bath particles. In the absence of hydrodynamic interactions (HI),
Burkholder and Brady (2017) showed that such enhanced diffusive motion can result
from the interplay between the bath activity and the probe-bath steric interactions.

In forced microrheology, the viscous response of the suspension can be characterized
by the effective microviscosity 𝜂eff. Taking the CV mode as an example, one can
relate the average external force to the probe velocity via

〈
F ext〉 = 6𝜋𝜂eff𝑎U1,

where 𝑎 is the radius of the spherical probe and U1 is the prescribed constant probe
velocity. In the absence of HI, the microviscosity of passive colloids exhibit a
force-thinning behavior as a function of the probe speed—the microscopic analogue
of shear-thinning (Squires and Brady 2005). When the short-range hydrodynamic
lubrication is considered, a force-thickening behavior can be observed (Swan and
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Zia 2013) at large probe speed. For active Brownian suspensions without HI in the
dilute limit, Burkholder and Brady studied the forced microrheology by solving the
Smoluchowski equation governing the distribution of active Brownian bath particles
relative to the probe using a closure approximation. In particular, in the low probe
speed limit a swim-thinning behavior is predicted (Burkholder and Brady 2019) and
in the high probe speed limit the microviscosity becomes indistinguishable from
that of passive suspensions because the swimming motion is obscured by the much
faster probe advection (Burkholder and Brady 2020).

Following previous works (Burkholder and Brady 2017; 2019; 2020), we consider
active colloidal suspensions modeled as monodisperse spherical active Brownian
particles (ABPs) of radii 𝑏. The ABP model is one of the simplest descriptions
for self-propelled particles. Furthermore, we study the CV mode of microrheology
in which the probe (particle 1), which is a spherical colloidal particle of radius 𝑎,
has a prescribed constant velocity U1. In addition to the thermal Brownian motion
with diffusivity 𝐷2, the bath ABP (particle 2) self-propels with its intrinsic “swim”
speed𝑈2 in a direction q, as illustrated in figure 5.3. The orientation of swimming q

changes on a reorientation timescale 𝜏𝑅 that results from either continuous random
Brownian rotations or the often-observed discrete tumbling events of bacteria. The
inverse of reorientation time defines a rotary diffusivity, 𝐷𝑅 = 1/𝜏𝑅. One important
intrinsic length scale due to activity is the run or persistence length ℓ = 𝑈𝑠𝜏𝑅. Even
for an isolated spherical ABP, the self-propulsion introduces a coupling between
its orientational and translational dynamics, which is absent for a passive Brownian
sphere.

To characterize the microstructural deformation of the active suspension and the
resulting viscous response, in the present work we solve the full Smoluchowski
equation governing the probability distribution of a single ABP relative to the trans-
lating probe. This is done in the dilute limit in which only the interactions between
the probe and one of the bath ABPs matter. Furthermore, we neglect hydrodynamic
interactions between the probe and the ABP and focus on the interplay between the
bath activity and the probe-ABP steric interaction. Resolving the full probability
distribution allows us to examine the microstructure and the microviscosity in the
full range of the ABP swim speeds and the probe speeds.

For a passive Brownian suspension, recall that the microviscosity 𝜂micro [see equa-
tions (5.20) and (5.21)] exhibits a force-thinning behavior as a function of the probe
Péclet number 𝑃𝑒 = 𝑈1𝑅𝑐/𝐷2, where 𝑅𝑐 = 𝑎 + 𝑏 (Squires and Brady 2005). The
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asymptotic results in the small and large 𝑃𝑒 limits are: 𝜂micro → 1 as 𝑃𝑒 → 0
and 𝜂micro → 1/2 as 𝑃𝑒 → ∞. For active suspensions, if the probe speed is much
faster than the swim speed, the activity of the suspension is obscured by the probe
advection and one recovers the passive result: 𝜂micro → 1/2 as 𝑃𝑒 → ∞. As such,
the most interesting regime for the microrheology of active suspensions is small and
intermediate 𝑃𝑒.

When the speed of the probe is small, the suspension is in the linear response regime
(linear in terms of the probe speed, or 𝑃𝑒; see section 5.3) and the microviscosity
obtained in this limit is called the zero-forcing microviscosity, 𝜂micro

0 [see equation
(5.38)]. Corroborating the observations of Burkholder and Brady (2019), we show
that 𝜂micro

0 decreases as the swim speed increases; therefore the zero-forcing mi-
croviscosity exhibits a swim-thinning behavior. In the limit of no swimming, the
passive result is recovered: 𝜂micro

0 → 1 as 𝑃𝑒𝑠 = 𝑈2𝑅𝑐/𝐷2 → 0. When the swim
speed is large, we show via a boundary-layer analysis of the Smoluchowski equation
that 𝜂micro

0 → 1/2 as 𝑃𝑒𝑠 → ∞. Generally for finite activity, the microviscosity
exhibits a force-thinning behavior as a function of 𝑃𝑒 but with a reduced 𝜂micro

0 due
to swim-thinning.

Because an active particle or microswimmer propels itself without exerting a net
force on the surrounding fluid, it generates a dipolar disturbance flow (hydrodynamic
stresslet). We show that the dipolar disturbance flow can either enhance or hinder
the motion of the probe depending on the sign of the stresslet (pusher or puller). The
disturbance from a puller located in front of the probe acts to pull the probe forward,
therefore facilitates the probe motion and can give rise to a negative microviscosity.
This behavior is opposite to that observed in bulk rheology, where only pushers
can exhibit a negative shear viscosity. Our analysis is consistent with the work of
Foffano et al. (2012), where the microrheology of an active nematic is considered.
Using a continuum approach based on an active liquid crystal model, they showed
that the flow field due to pullers in front of the probe can facilitate the probe motion.

Finally, by considering the disturbance flow due to the steady motion of the probe—
the classical Stokes flow outside a translating sphere—while treating the ABPs as
point particles hydrodynamically, we reveal another mechanism for negative micro-
viscosity. Because the probe disturbance flow has a nonzero curvature, particularly
near the probe, the ABPs are advected by the flow and rotated by the fluid vorticity.
The advection near the probe means that particles that would otherwise be “stuck”
at the front of the probe can be transported to the back, which acts to lower the
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difference between the densities in the front and in the back; this ultimately leads
to a reduction in the suspension microviscosity. The advection-induced reduction
does not rely on the activity of the bath particles and therefore is also present for
passive Brownian suspensions.

In addition to this advective effect enjoyed by bath particles regardless of activity,
active bath particles that would otherwise escape into the bulk from the sides (e.g.,
top and bottom) of the probe are reoriented towards the back of the probe due to the
fluid vorticity. If the swim speed is large enough, this reorientation allows them to
swim towards the back of the probe and then “push” the probe from behind. This
reorientation by vorticity is responsible for upstream swimming of active particles
in Poiseuille flow (Peng and Brady 2020) and in the current problem the same
mechanism leads to a negative microviscosity. The reorientation by vorticity, of
course, is irrelevant for the translational motion of a passive bath particle.

Recalling that at large 𝑃𝑒, the activity does not matter and the microviscosity
cannot be negative. Therefore, active suspensions can exhibit a force-thickening
behavior with a negative low-𝑃𝑒 plateau and a non-negative high-𝑃𝑒 plateau. This
is in contrast to passive suspensions in which force-thickening is often associated
with the short-range hydrodynamic lubrication (i.e., pair hydrodynamic interaction
between the probe and a bath particle), which occurs at large 𝑃𝑒 (Swan and Zia
2013). For ABPs in the presence of the probe disturbance flow, force-thickening
originates from the interaction between swimming and the disturbance flow.

To obtain the results outlined thus far, in section 5.2 we formulate the problem from
the Smoluchowski perspective. From the Smoluchowski equation governing the
probability distribution of an ABP relative to the translating probe, we show that
the microviscosity can be defined by the bath particle number density distribution
at contact. A perturbation analysis at small 𝑃𝑒 (section 5.3) allows us to derive
equations governing the leading-order [𝑂 (𝑃𝑒)] microstructure deformation, which
gives rise to the zero-forcing microviscosity 𝜂micro

0 . In this small 𝑃𝑒 limit, we further
consider the limit of fast swimming (𝑃𝑒𝑠 ≫ 1) and show that 𝜂micro

0 exhibits a swim-
thinning behavior. In section 5.4, we discuss the numerical methods used to solve
the full Smoluchowski equation. To corroborate our analysis and numerical results
from the Smoluchowski equation, in section 5.5 we consider Brownian dynamics
(BD) simulations. In section 5.6, we present the microviscosity as a function of the
probe speed, the swim speed, and the reorientation time. We show that the results
obtained by solving the Smoluchowski equation agree well with those from BD.
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In section 5.7, we consider the effect of the active hydrodynamic stresslet and then
the effect of the probe disturbance flow. We conclude in section 5.8.

5.2 Problem formulation
We consider a dilute suspension of ABPs where only the pair-wise interactions be-
tween the probe and a single ABP matter. At this level, the suspension microstruc-
ture in the presence of a probe is described by the pair probability distribution
𝑃2(x1,x2, q, 𝑡), where the positions of the probe (x1) and the ABP (x2) are in
the laboratory frame. Because the probe has prescribed kinematics, i.e., constant-
velocity, the position of the probe does not matter and the system is statistically
homogeneous (Squires and Brady 2005). Conditioning the pair probability on the
position of the probe, we then have

𝑃2(x1,x2, q, 𝑡) = 𝑃1/1(r, q, 𝑡 |z, 𝑡)𝑃1(z, 𝑡) = 𝑃1/1(r, q, 𝑡)𝑃1(z, 𝑡), (5.1)

where r = x2 − x1, z = x1. In other words, the conditional probability density
function 𝑃1/1 does not depend on the position of the probe in the laboratory frame.
As a result, it is most convenient to consider the conditional probability distribution
of the ABP in a co-moving frame that is attached to the probe particle. In this
relative frame, the Smoluchowski equation governing the conservation of ABPs is
written as (Burkholder and Brady 2019; 2020)

𝜕𝑃1/1(r, q, 𝑡)
𝜕𝑡

+ ∇𝑟 ·
(
j𝑇2 − j𝑇1

)
+ ∇𝑅 · j𝑅2 = 0. (5.2)

In the absence of hydrodynamic interactions between the probe and the ABP, the
translational and rotational fluxes in the Smoluchowski equation (5.2), respectively,
are

j𝑇2 − j𝑇1 = (𝑈2q −U1) 𝑃1/1 − 𝐷2∇𝑟𝑃1/1, (5.3)

j𝑅2 = −𝐷𝑅∇𝑅𝑃1/1. (5.4)

Notice that it is the flux of ABPs relative to the probe that appears in the equation
so as to obey Galilean invariance. In the CV mode of microrheology, the relative
diffusivity is simply the diffusivity of the ABP (𝐷2) instead of the sum of diffusivities
of the probe and the ABP as in the CF mode of microrheology (Squires and Brady
2005). Because we neglect hydrodynamic interactions, the probe and ABP interact
sterically due to their hard-sphere nature. That is, at the surface of contact (|r | =
𝑅𝑐 = 𝑎 + 𝑏), the relative translational flux of particle centers vanishes:

n ·
(
j𝑇2 − j𝑇1

)
= 0, (5.5)
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Figure 5.3: Schematic of a probe particle driven at a constant velocity U1 and an
active Brownian bath particle in 2D. The ABP swims with a constant speed 𝑈2 in
a direction q. The radius of contact is 𝑅𝑐 and n is the unit normal vector pointing
from the probe into the ABP suspension.

where n is the unit normal vector as shown in figure 5.3.

Far from the probe, the suspension microstructure is undisturbed, giving

𝑃1/1 → 𝑛∞

Ω𝑑

, (5.6)

where 𝑛∞ is the number density in the undisturbed ABP suspension, which has the
units of number per volume (or area in 2D), and Ω𝑑 is the total solid angle of the
orientation space in 𝑑 dimensions.

Equation (5.2) together with its flux expressions (5.3)-(5.4) and boundary condi-
tions (5.5)-(5.6) govern the disturbance of the suspension microstructure due to the
CV probe. In the absence of activity, by setting 𝑈2 = 0 and integrating out the
orientational degree of freedom, one can recover the CV microrheology problem
for passive Brownian suspensions considered by Squires and Brady (2005).

In the CV mode of microrheology, the main quantity of interest is the external force
required to maintain such a steady probe motion. Due to the fluctuating nature
of the ABP suspension, the external force averaged over Brownian fluctuations
is considered. For an active Brownian suspension, this has been shown to be
(Burkholder and Brady 2019)〈

𝐹ext〉 = 𝜁1𝑈1 + 𝑘𝐵𝑇
∮
𝑟=𝑅𝑐

n · Û1𝑃1/1𝑑𝑆𝑑q, (5.7)

where 𝜁1 is the Stokes drag of the probe, 𝑘𝐵𝑇 is the thermal energy, and Û1 is
the direction of the probe motion, Û1 = U1/|U1 |. The only difference between
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equation (5.7) and that obtained for a passive Brownian suspension (Squires and
Brady 2005) is the additional integration over the orientational degrees of freedom
of the active bath particle. In equation (5.7), only the net force in the direction
of the probe motion is considered because the net force in the transverse direction
vanishes due to symmetry. The applied external force in a hard-sphere passive
colloidal suspension is larger than the Stokes drag (𝜁1𝑈1) of the probe due to the
fact that in order to maintain a constant velocity the probe has to push away bath
particles along its trajectory. To quantify this increase in the applied force, it is
convenient to consider the dimensionless viscosity increment defined as

Δ𝜂

𝜂
=

〈
𝐹ext〉 − 𝜁1𝑈1

𝜁1𝑈1
, (5.8)

where an effective microscopic viscosity can be defined via 𝐹ext = 6𝜋𝜂eff𝑎𝑈1 and
equivalently Δ𝜂/𝜂 = (𝜂eff − 𝜂)/𝜂 with 𝜂 being the viscosity of the solvent. By
definition, the viscosity increment vanishes in the absence of bath particles.

A dimensional analysis reveals four timescales that govern the microrheology of
active Brownian suspensions: (1) the diffusive timescale 𝜏𝐷 = 𝑅2

𝑐/𝐷2, (2) the
swim timescale 𝜏𝑠 = 𝑅𝑐/𝑈2, (3) the advective timescale 𝜏adv = 𝑅𝑐/𝑈1, and (4)
the reorientation time 𝜏𝑅 = 1/𝐷𝑅. Comparing the other three timescales with the
diffusive timescale gives three dimensionless groups. The first one is the swim
Péclet number given by

𝑃𝑒𝑠 =
𝜏𝐷

𝜏𝑠
=
𝑈2𝑅𝑐
𝐷2

. (5.9)

The second dimensionless group is the Péclet number of the probe (using the
diffusivity of the ABP)

𝑃𝑒 =
𝜏𝐷

𝜏adv
=
𝑈1𝑅𝑐
𝐷2

. (5.10)

Finally, comparing 𝜏𝑅 with 𝜏𝐷 defines the third parameter:

𝛾 =

(
𝜏𝐷

𝜏𝑅

)1/2
=
𝑅𝑐

𝛿
, (5.11)

where 𝛿 =
√
𝐷2𝜏𝑅 is the microscopic diffusive step taken by the ABP on the

reorientation timescale 𝜏𝑅.

To render the equations dimensionless, we scale lengths by 𝑅𝑐 and time by 𝜏𝐷 and
define the dimensionless probability distribution (or the suspension microstructure)
𝑔 such that

𝑃1/1(r, q, 𝑡) = 𝑛∞𝑔(r, q, 𝑡). (5.12)
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From equations (5.2), (5.3), and (5.4), we obtain the Smoluchowski equation for the
microstructure as

𝜕𝑔

𝜕𝑡
+ ∇𝑟 ·

[(
𝑃𝑒𝑠q − 𝑃𝑒Û1

)
𝑔 − ∇𝑟𝑔

]
− 𝛾2∇2

𝑅𝑔 = 0. (5.13)

The no-flux condition (5.5) becomes

n ·
[(
𝑃𝑒𝑠q − 𝑃𝑒Û1

)
𝑔 − ∇𝑟𝑔

]
= 0 at 𝑟 = 1, (5.14)

and the far-field condition (5.6) translates into

𝑔 → 1
Ω𝑑

as 𝑟 → ∞. (5.15)

Making use of the Stokes-Einstein-Sutherland relation, 𝑘𝐵𝑇 = 𝐷2𝜁2 = 𝐷26𝜋𝜂𝑏 and
the definition of volume fraction 𝜙 = 4𝜋𝑏3𝑛∞/3 in 3D, we obtain from (5.7) and
(5.8) the scaled viscosity increment

Δ𝜂

𝜙𝜂
=

3
4𝜋

𝐷2𝑅
2
𝑐

𝑎𝑏2𝑈1

∮
𝑟=1

n · Û1𝑛𝑑𝑆, (5.16)

where
𝑛(r, 𝑡) =

∫
𝑔(r, q, 𝑡)𝑑q (5.17)

is the dimensionless number density which tends to unity as 𝑟 → ∞. Noting that

𝐷2𝑅
2
𝑐

𝑎𝑏2𝑈1
=

(1 + 𝛼)3

𝛼𝑃𝑒
, (5.18)

and 𝛼 = 𝑎/𝑏, we obtain

Δ𝜂

𝜙𝜂
=

3
4𝜋

(1 + 𝛼)3

𝛼𝑃𝑒

∮
𝑟=1

n · Û𝑛𝑑𝑆. (5.19)

Noting that the microstructure only depends on the contact radius 𝑅𝑐 instead of the
sizes of both the probe and the ABP [see equation (5.13)], the only dependence of
the scaled viscosity increment Δ𝜂/(𝜙𝜂) on the size ratio 𝛼 is in the prefactor before
the integral in equation (5.19). Therefore, for convenience we define the so-called
effective microviscosity coefficient as

𝜂micro =
Δ𝜂

𝜙𝜂

2𝛼
(1 + 𝛼)3 =

3
2𝜋𝑃𝑒

Û1 ·
∮
𝑟=1

n𝑛𝑑𝑆. (5.20)

Here, a factor of 2 is introduced in front of the factor 𝛼/(1 + 𝛼)3 so that for a
passive Brownian suspension 𝜂micro → 1 as 𝑃𝑒 → 0 (Squires and Brady 2005). By
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construction, 𝜂micro does not depend on the size ratio 𝛼. In 2D, we use the area
fraction 𝜙 = 𝑛∞𝜋𝑏2 and obtain a similar definition

𝜂micro =
Δ𝜂

𝜙𝜂

𝛼

(1 + 𝛼)2 =
1
𝜋𝑃𝑒

Û1 ·
∮
𝑟=1

n𝑛𝑑𝑆. (5.21)

Hereinafter, we use microviscosity and microviscosity coefficient interchangeably
to refer to the effective microviscosity coefficient defined above.

Because the bath particles are active, the phase space of the microstructure includes
both the relative position r and the orientation q. The high dimensionality of the
phase space is challenging for the numerical simulation of the Smoluchowski equa-
tion (5.13). In 3D, by parametrizing the orientation vector q using the polar and
azimuthal angles of a spherical coordinate system, the phase space has a dimension-
ality of 5: three dimensional in space and two dimensional in orientation. As shown
in previous work (Yan and Brady 2015b; Burkholder and Brady 2019), the dimen-
sionality only affects the solution of the Smoluchowski equation in a quantitative
manner. In this Chapter we focus on the microrheology of ABPs in 2D.

5.2.1 The Smoluchowski equation in 2D
Equation (5.13) is most convenient for analysis in a polar coordinate system for
the physical space and in a relative angular coordinate system for the orientation
space in which q = cos 𝜃𝑞e𝑟 + sin 𝜃𝑞e𝜃 (see figure 5.3 for a schematic). Here,
e𝑟 = cos 𝜃e𝑥 + sin 𝜃e𝑦 is the radial basis vector in the polar coordinate system and
e𝜃 is the basis vector in the angular (𝜃) direction. Without loss of generality, we
take Û1 = e𝑥 so that the probe moves in the positive 𝑥 direction. In this (𝑟, 𝜃, 𝜃𝑞)
coordinate system, equation (5.13) is written explicitly as(

𝑃𝑒𝑠 cos 𝜃𝑞 − 𝑃𝑒 cos 𝜃
) 𝜕𝑔
𝜕𝑟

+
(
𝑃𝑒𝑠 sin 𝜃𝑞 + 𝑃𝑒 sin 𝜃

) 1
𝑟

(
𝜕𝑔

𝜕𝜃
− 𝜕𝑔

𝜕𝜃𝑞

)
− 1
𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑔

𝜕𝑟
− 1
𝑟2

(
𝜕2𝑔

𝜕𝜃2 − 2
𝜕2𝑔

𝜕𝜃𝜕𝜃𝑞
+ 𝜕

2𝑔

𝜕𝜃2
𝑞

)
− 𝛾2 𝜕

2𝑔

𝜕𝜃2
𝑞

= 0, (5.22)(
𝑃𝑒𝑠 cos 𝜃𝑞 − 𝑃𝑒 cos 𝜃

)
𝑔 − 𝜕𝑔

𝜕𝑟
= 0 at 𝑟 = 1, (5.23)

𝑔 → 1
2𝜋

as 𝑟 → ∞. (5.24)

5.3 A slow probe
5.3.1 Perturbation expansion of the microstructure
For a slow probe, 𝑃𝑒 ≪ 1, the suspension microstructure is only slightly displaced
from the state in which the probe is held fixed in a bath of ABPs. This allows us to
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consider the microstructure in the perturbation series 𝑔 = 𝑔0(r, q) +𝑃𝑒𝑔1(r, q) +· · ·,
where in any dimension we have at 𝑂 (1):

∇𝑟 · (𝑃𝑒𝑠q𝑔0 − ∇𝑟𝑔0) − 𝛾2∇2
𝑅𝑔0 = 0, (5.25)

n · (𝑃𝑒𝑠q𝑔0 − ∇𝑟𝑔0) = 0 at 𝑟 = 1, (5.26)

𝑔0 → 1
Ω𝑑

as 𝑟 → ∞. (5.27)

The 𝑂 (𝑃𝑒) equation is nonhomogeneous, i.e., forced by the probe advection of the
𝑔0 field, which reads

∇𝑟 · (𝑃𝑒𝑠q𝑔1 − ∇𝑟𝑔1) − 𝛾2∇2
𝑅𝑔1 = Û1 · ∇𝑟𝑔0, (5.28)

n · (𝑃𝑒𝑠q𝑔1 − ∇𝑟𝑔1) = n · Û1𝑔0 at 𝑟 = 1, (5.29)

𝑔1 → 0 as 𝑟 → ∞. (5.30)

In 2D, equations (5.25)-(5.29) can be written explicitly in the (𝑟, 𝜃, 𝜃𝑞) frame. To
this end, we first write the perturbation series as 𝑔 = 𝑔0(𝑟, 𝜃𝑞) +𝑃𝑒𝑔1(𝑟, 𝜃, 𝜃𝑞) + · · ·.
At𝑂 (1), the probe is held stationary (zero velocity) and the problem reduces to that
of ABPs in the exterior of a disk (Yan and Brady 2015b), which exhibits spherical
symmetry and thus 𝑔0 is independent of the angular position 𝜃. The probability
distribution of ABPs outside a fixed probe is governed by

𝑃𝑒𝑠 cos 𝜃𝑞
𝜕𝑔0
𝜕𝑟

− 𝑃𝑒𝑠 sin 𝜃𝑞
1
𝑟

𝜕𝑔0
𝜕𝜃𝑞

− 1
𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑔0
𝜕𝑟

−
(

1
𝑟2 + 𝛾2

)
𝜕2𝑔0

𝜕𝜃2
𝑞

= 0, (5.31)

𝑃𝑒𝑠 cos 𝜃𝑞𝑔0 −
𝜕𝑔0
𝜕𝑟

= 0 at 𝑟 = 1, (5.32)

𝑔0 → 1
2𝜋

as 𝑟 → ∞. (5.33)

The first effect of the probe motion appears at 𝑂 (𝑃𝑒), which is governed by

𝑃𝑒𝑠 cos 𝜃𝑞
𝜕 𝑓1
𝜕𝑟

+ 𝑃𝑒𝑠 sin 𝜃𝑞
1
𝑟

(
𝑓2 −

𝜕 𝑓1
𝜕𝜃𝑞

)
− 1
𝑟

𝜕

𝜕𝑟
𝑟
𝜕 𝑓1
𝜕𝑟

− 1
𝑟2

(
− 𝑓1 − 2

𝜕 𝑓2
𝜕𝜃𝑞

+ 𝜕
2 𝑓1

𝜕𝜃2
𝑞

)
− 𝛾2 𝜕

2 𝑓1

𝜕𝜃2
𝑞

=
𝜕𝑔0
𝜕𝑟

, (5.34)

𝑃𝑒𝑠 cos 𝜃𝑞
𝜕 𝑓2
𝜕𝑟

+ 𝑃𝑒𝑠 sin 𝜃𝑞
1
𝑟

(
− 𝑓1 −

𝜕 𝑓2
𝜕𝜃𝑞

)
− 1
𝑟

𝜕

𝜕𝑟
𝑟
𝜕 𝑓2
𝜕𝑟

− 1
𝑟2

(
− 𝑓2 + 2

𝜕 𝑓1
𝜕𝜃𝑞

+ 𝜕
2 𝑓2

𝜕𝜃2
𝑞

)
− 𝛾2 𝜕

2 𝑓2

𝜕𝜃2
𝑞

=
1
𝑟

𝜕𝑔0
𝜕𝜃𝑞

, (5.35)
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where 𝑔1(𝑟, 𝜃, 𝜃𝑞) = 𝑓1(𝑟, 𝜃𝑞) cos 𝜃 + 𝑓2(𝑟, 𝜃𝑞) sin 𝜃. The no-flux condition reduces
to

𝑃𝑒𝑠 cos 𝜃𝑞 𝑓1 −
𝜕 𝑓1
𝜕𝑟

= 𝑔0, 𝑃𝑒𝑠 cos 𝜃𝑞 𝑓2 −
𝜕 𝑓2
𝜕𝑟

= 0, at 𝑟 = 1. (5.36)

Using equation (5.21), we obtain

𝜂micro
0 =

∫
𝑓1(𝑟 = 1, 𝜃𝑞)𝑑𝜃𝑞, (5.37)

where
𝜂micro

0 = lim
𝑃𝑒→0

𝜂micro (5.38)

is the microviscosity in the limit 𝑃𝑒 → 0, or the zero-forcing microviscosity. The
𝑂 (𝑃𝑒) number density, 𝑛1(r) =

∫
𝑔1𝑑q, has the form 𝑛1(r) = Û1 · r𝑝3(𝑟) due to

symmetry, where 𝑝3 is an unknown scalar function of 𝑟 (see section 5.9). From this
and (5.21), we see that 𝜂micro

0 = 𝑝3(1) in 2D.

In general, 𝜂micro
0 for active Brownian suspensions is a function of 𝑃𝑒𝑠 and 𝛾. For

passive suspensions (𝑃𝑒𝑠 = 0), the orientational distribution is uniform and the
density at 𝑂 (𝑃𝑒) is 𝑛1 = Û1 · e𝑟/𝑟 in 2D, which gives 𝜂micro

0 = 1. If the suspension
is weakly active, we expect the zero-forcing microviscosity to approach that of a
passive suspension. That is, 𝜂micro

0 → 1 as 𝑃𝑒𝑠 → 0.

5.3.2 Fast-swimming ABPs
We now consider the suspension microstructure and the zero-forcing microviscosity
in the fast-swimming limit characterized by 𝑃𝑒𝑠 ≫ 1. The rotational diffusivity is
assumed to be finite, 𝛾 ∼ 𝑂 (1). In this high 𝑃𝑒𝑠 limit, translational diffusion is only
important in a boundary layer near the probe. The boundary layer thickness is dic-
tated by the balance between the swimming flux into the probe and the diffusive flux
down the concentration gradient, which gives a thickness of𝑂 (𝑃𝑒−1

𝑠 𝑅𝑐). Therefore,
we define a stretched boundary layer coordinate 𝜌 = (𝑟 − 1)/𝜖 , 𝜖 = 1/𝑃𝑒𝑠, such that
𝜌 ∼ 𝑂 (1) as 𝑟 → 1 and 𝜖 → 0.

In the boundary layer, the governing equation for 𝑔0(𝜌, 𝜃, 𝜃𝑞) becomes

cos 𝜃𝑞
𝜕𝑔0
𝜕𝜌

− sin 𝜃𝑞
𝜖

1 + 𝜌𝜖
𝜕𝑔0
𝜕𝜃𝑞

− 𝜖

1 + 𝜌𝜖
𝜕𝑔0
𝜕𝜌

− 𝜕2𝑔0

𝜕𝜌2 − 𝜖2
(
𝛾2 + 1

(1 + 𝜌𝜖)2

)
𝜕2𝑔0

𝜕𝜃2
𝑞

= 0, (5.39)

cos 𝜃𝑞𝑔0 −
𝜕𝑔0
𝜕𝜌

= 0 at 𝜌 = 0, (5.40)

𝑔0 → 1
2𝜋

as 𝜌 → ∞. (5.41)
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To study the microstructure for a stationary probe in the fast swimming limit, we
pose the perturbation expansion 𝑔0 = 𝜖−1𝑔

(−1)
0 + 𝑔(0)0 + 𝜖𝑔(1)0 + 𝑜(𝜖), where the

leading order microstructure is 𝑂 (1/𝜖) (singular) as 𝜖 → 0 (Yan and Brady 2018;
Peng et al. 2021). Inserting this expansion into equation (5.39) yields equations for
𝑔
(𝑘)
0 (𝑘 = −1, 0, · · ·).

The solution to 𝑔(−1)
0 can be readily obtained as

𝑔
(−1)
0 = 𝐴1(𝜃𝑞)𝑒𝜌 cos 𝜃𝑞 . (5.42)

Here, 𝐴1 is an unknown function of 𝜃𝑞 that will be determined from the solution
at the next order. Because the distribution is 𝑂 (1) far from the probe, we require
𝑔
(−1)
0 → 0 as 𝜌 → ∞. This means that the solution is only valid in the region

cos 𝜃𝑞 < 0. Outside this region in orientation space, the solution is zero at this
order. Physically, this is due to the fact that ABPs in contact with the probe have
to point towards the probe, i.e. q · e𝑟 = cos 𝜃𝑞 < 0, because otherwise they would
swim away.

At 𝑂 (1), we have

cos 𝜃𝑞
𝜕𝑔

(0)
0
𝜕𝜌

−
𝜕2𝑔

(0)
0

𝜕𝜌2 = sin 𝜃𝑞
𝜕𝑔

(−1)
0
𝜕𝜃𝑞

+
𝜕𝑔

(−1)
0
𝜕𝜌

, (5.43)

cos 𝜃𝑞𝑔(0)0 −
𝜕𝑔

(0)
0
𝜕𝜌

= 0 at 𝜌 = 0, (5.44)

𝑔
(0)
0 → 1

2𝜋
as 𝜌 → ∞. (5.45)

The far-field condition on 𝑔(0)0 ensures proper matching with the constant solution
outside the boundary layer. The general solution can be written as

𝑔
(0)
0 =

(
𝐵1(𝜃𝑞)𝜌 + 𝐵2(𝜃𝑞)𝜌2

)
𝑒𝜌 cos 𝜃𝑞 + 𝐶1(𝜃𝑞)𝑒𝜌 cos 𝜃𝑞 + 1

2𝜋
, (5.46)

where

𝐵1 = −𝐴1 sec2 𝜃𝑞 − tan 𝜃𝑞
𝑑𝐴1
𝑑𝜃𝑞

, (5.47)

𝐵2 =
1
2
𝐴1 sin 𝜃𝑞 tan 𝜃𝑞 (5.48)

and the far-field condition is already enforced. Making use of the no-flux condition
at 𝜌 = 0, we obtain an ordinary differential equation for 𝐴1:

cos 𝜃𝑞
2𝜋

+ 𝐴1 sec2 𝜃𝑞 + tan 𝜃𝑞
𝑑𝐴1
𝑑𝜃𝑞

= 0. (5.49)
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Figure 5.4: (a): Contour plot of the leading-order distribution function 𝑔(−1)
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function of 𝜌 and 𝜃𝑞. (b): The leading-order number density 𝑛(−1)
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in the radial direction 𝑚 (−1)
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Requiring regularity of 𝐴1 at 𝜃𝑞 = 𝜋, we can integrate the above equation to obtain
𝐴1 = − cos 𝜃𝑞/(2𝜋).

In figure 5.4(a) we plot the leading-order probability distribution 𝑔(−1)
0 as a function

of 𝜌 and 𝜃𝑞. In figure 5.4(b) , we show the number density 𝑛(−1)
0 =

∫
𝑔
(−1)
0 𝑑𝜃𝑞 and

the radial polar order 𝑚 (−1)
𝜌,0 =

∫
𝑔
(−1)
0 cos 𝜃𝑞𝑑𝜃𝑞 as a function of 𝜌. In the boundary

layer, ABPs are pointing into the probe, because otherwise they would swim away.
As a result, we observe an accumulation at contact (𝜌 = 0) and a negative radial
polar order. The following asymptotic behaviors can be obtained near contact:

𝑛
(−1)
0 =

1
𝜋
− 𝜌

4
+𝑂 (𝜌2) and 𝑚

(−1)
𝜌,0 = −1

4
+ 2𝜌

3𝜋
+𝑂 (𝜌2) as 𝜌 → 0. (5.50)

It is worth noting that the boundary layer structure is identical in 2D and 3D.
One can show that in 3D the leading order probability density is given by 𝑔−1

0 =

q · e𝑟 exp(q · e𝑟𝜌)/(−8𝜋), which differs from (5.42) only by a numerical factor due
to the dimensionality.

To determine the function 𝐶1 in equation (5.46), we again need the solution at the
next order. So far in this section we have considered the asymptotic behavior of
the probability distribution of ABPs outside a a fixed probe in the large 𝑃𝑒𝑠 limit.
This problem has been solved by Yan and Brady (2015b) using a Q = 0 (defined by
Q =

∫
𝑔(qq − I/𝑑)𝑑q) closure and Brownian dynamics simulations. We note that

the Q closure gives the correctly scaling for the number density, i.e., the number
density at contact scales as 𝑃𝑒𝑠 for large 𝑃𝑒𝑠, but does not give quantitatively correct
results over the full range of 𝑃𝑒𝑠.

We now consider the microstructure disturbance due to the weak probe motion and
the zero-forcing microviscosity in the high 𝑃𝑒𝑠 limit. The governing equations for
𝑓1 and 𝑓2 in the boundary layer can be obtained in a similar fashion to the approach
described above for 𝑔0. At leading order, the disturbance fields are finite, i.e.,𝑂 (𝜖0),
and are expanded as

𝑓1(𝜌, 𝜃𝑞) = 𝑓
(0)

1 + 𝜖 𝑓 (1)1 +𝑂 (𝜖2), (5.51)

𝑓2(𝜌, 𝜃𝑞) = 𝑓
(0)

2 + 𝜖 𝑓 (1)2 +𝑂 (𝜖2). (5.52)
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The governing equation for 𝑓 (0)1 is

cos 𝜃𝑞
𝜕 𝑓

(0)
1
𝜕𝜌

−
𝜕2 𝑓

(0)
1

𝜕𝜌2 =
𝜕𝑔

(−1)
0
𝜕𝜌

, (5.53)

cos 𝜃𝑞 𝑓 (0)1 −
𝜕 𝑓

(0)
1
𝜕𝜌

= 𝑔
(−1)
0 at 𝜌 = 0, (5.54)

𝑓
(0)

1 → 0 as 𝜌 → ∞. (5.55)

The solution is given by

𝑓
(0)

1 =
1

2𝜋
𝜌 cos 𝜃𝑞𝑒𝜌 cos 𝜃𝑞 + 𝐴2(𝜃𝑞)𝑒𝜌 cos 𝜃𝑞 , (5.56)

which is only valid for cos 𝜃𝑞 < 0. To determine 𝐴2, we need the solutions to 𝑓
(0)

2
and 𝑓

(1)
1 . Imposing regularity of 𝑓 (0)1 at 𝜃𝑞 = 𝜋, one can show that 𝐴2 = 1/(2𝜋).

Finally, using equation (5.37), we obtain the zero-forcing microviscosity in the
fast-swimming limit:

𝜂micro
0 → 1

2
as 𝑃𝑒𝑠 → ∞. (5.57)

5.3.3 Zero-forcing microviscosity
To obtain the microstructure in the zero 𝑃𝑒 limit for arbitrary values of 𝑃𝑒𝑠, we solve
equations (5.31), (5.34) and (5.35) numerically using a Fourier-Laguerre spectral
method (see section 5.4). For large 𝑃𝑒𝑠, the discretization of the equations needs
to conform with the boundary layer structure as discussed in the previous section
in order to yield accurate numerical result. To this end, for 𝑃𝑒𝑠 > 10, instead
of discretizing 𝑟, the boundary layer coordinate 𝜌 is discretized and used in the
numerical solution.

As shown in equation (5.37), the contact distribution of 𝑓1 determines the zero-
forcing microviscosity. More precisely, 𝜂micro

0 is the area under the curve 𝑓 (𝑟 = 1, 𝜃𝑞)
from 𝜃𝑞 = 0 to 𝜃𝑞 = 2𝜋. For a passive suspension, 𝑃𝑒𝑠 ≡ 0, one can readily show
that 𝑓1(𝑟 = 1, 𝜃𝑞) ≡ 1/(2𝜋), in which case the area under the curve is unity hence
𝜂micro

0 = 1. For large 𝑃𝑒𝑠, the contact distribution of 𝑓1 obtained from equation
(5.56) is 𝑓1(𝑟 = 1, 𝜃𝑞) = 1/(2𝜋) for q · e𝑟 < 0 and zero otherwise. In other words,
the contact value of 𝑓1 for large 𝑃𝑒𝑠 is the same as the limit of 𝑃𝑒𝑠 → 0 but only in
half of the domain of 𝜃𝑞. Therefore, the zero-forcing microviscosity approaches 1/2
as 𝑃𝑒𝑠 → ∞. In figure 5.5 we plot the contact distribution of 𝑓1 as a function of 𝜃𝑞
for several values of 𝑃𝑒𝑠 obtained from the numerical solutions. The leading-order
asymptotic solution in the large 𝑃𝑒𝑠 limit is plotted as a solid line.
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Figure 5.5: The function 𝑓1(𝑟 = 1, 𝜃𝑞) as a function of 𝜃𝑞 for several values of 𝑃𝑒𝑠
and 𝛾 = 1. The large 𝑃𝑒𝑠 asymptotic solution given by equation (5.56) is plotted as
a solid line. The zero-forcing microviscosity is the area under the curve as can be
seen from equation (5.37).

In figure 5.6 we present the zero-forcing microviscosity as a function of 𝑃𝑒𝑠 for
several values of 𝛾. As alluded to earlier, the zero-forcing microviscosity exhibits a
swim-thinning behavior. That is, 𝜂micro

0 in general decreases with increasing swim
speed, or 𝑃𝑒𝑠. The onset of swim-thinning occurs at 𝑂 (𝑃𝑒2

𝑠 ) for small 𝑃𝑒𝑠 (see
section 5.10). An outlier in this general behavior appears when 𝛾2 is comparable
to 𝑃𝑒𝑠 and both are large, 𝑃𝑒𝑠 ∼ 𝛾2 ≫ 1. This can be seen from the results in
figure 5.6 for 𝛾 = 10, in which case 𝜂micro

0 decreases below 1/2 before increasing
and asymptoting to the large 𝑃𝑒𝑠 value of 1/2. An asymptotic analysis in the
limit 𝑃𝑒𝑠 ≫ 1 while 𝑃𝑒𝑠/𝛾2 = 𝑂 (1) shows that the boundary layer thickness
remains the same but an additional forcing term due to rotary diffusion appears in
equation (5.43). The addition of this new term renders the boundary layer equations
analytically intractable.

5.4 Numerical solution of the Smoluchowski equation
To obtain the suspension microstructure over the full range of 𝑃𝑒, a numerical solu-
tion of the full Smoluchowski equation (5.22) together with its boundary conditions
(5.23) and (5.24) is required. In this section, we develop a Fourier-Laguerre spectral
method in which the physical space angular position 𝜃 and the orientation angle 𝜃𝑞
are resolved analytically using a truncated double Fourier series expansion. To this
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end, we first approximate the microstructure at steady state as a truncated double
Fourier series as

𝑔(𝑟, 𝜃, 𝜃𝑞) ≈
𝑀∑︁

𝑚=−𝑀

𝑁∑︁
𝑛=−𝑁

𝐶𝑚,𝑛 (𝑟)𝑒𝑖𝑚𝜃𝑒𝑖𝑛𝜃𝑞 , (5.58)

where 𝑖2 = −1 is the imaginary unit and 𝐶𝑚,𝑛 (𝑟) is the Fourier mode indexed by 𝑚
and 𝑛. Inserting equation (5.58) into (5.22), at steady state we obtain a system of
(2𝑁 + 1) (2𝑀 + 1) coupled ordinary differential equations (ODEs) for the radially-
varying Fourier modes:

𝑃𝑒𝑠

2
𝑑

𝑑𝑟

(
𝐶𝑚,𝑛+1 + 𝐶𝑚,𝑛−1

)
+ 𝑃𝑒𝑠

2𝑟
[
(𝑛 + 1 − 𝑚)𝐶𝑚,𝑛+1 + (𝑚 − (𝑛 − 1)𝐶𝑚,𝑛−1

]
− 𝑃𝑒

2
𝑑

𝑑𝑟

(
𝐶𝑚+1,𝑛 + 𝐶𝑚−1,𝑛

)
+ 𝑃𝑒

2𝑟
[
(𝑛 − (𝑚 + 1)𝐶𝑚+1,𝑛 + (𝑚 − 1 − 𝑛)𝐶𝑚−1,𝑛

]
− 1
𝑟

𝑑

𝑑𝑟
𝑟
𝑑𝐶𝑚,𝑛

𝑑𝑟
+ 𝑚

2 + 𝑛2 − 2𝑚𝑛
𝑟2 𝐶𝑚,𝑛 + 𝛾2𝑛2𝐶𝑚,𝑛 = 0. (5.59)

Here, any Fourier mode 𝐶𝑚,𝑛 that exceeds the range −𝑀 ≤ 𝑚 ≤ 𝑀,−𝑁 ≤ 𝑛 ≤ 𝑁 is
simply discarded. Similarly, the no-flux condition (5.23) becomes
𝑃𝑒𝑠

2
(
𝐶𝑚,𝑛+1 + 𝐶𝑚,𝑛−1

)
− 𝑃𝑒

2
(
𝐶𝑚+1,𝑛 + 𝐶𝑚−1,𝑛

)
− 𝑑𝐶𝑚,𝑛

𝑑𝑟
= 0 at 𝑟 = 1, (5.60)

and the far-filed condition (5.24) is

𝐶𝑚,𝑛 →


1
2𝜋 𝑚 = 𝑛 = 0

0 otherwise
as 𝑟 → ∞. (5.61)
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Figure 5.7: Contour plots of the number density distribution around the probe
for different values of 𝑃𝑒 = 𝑈1𝑅𝑐/𝐷2 with 𝑃𝑒𝑠 = 𝑈2𝑅𝑐/𝐷2 = 1, 𝛾 = 𝑅𝑐/𝛿 = 1
obtained from the numerical solution of the Smoluchowski equation [(a), (c), (e)]
and BD [(b), (d), (f)]. For the top panels (a)-(b), 𝑃𝑒 = 0.1; (c)-(d): 𝑃𝑒 = 1, and
(e)-(f): 𝑃𝑒 = 10. All panels have identical 𝑥 and 𝑦 limits and are thus only shown
in (e). Panels in each row have the same color bar and are shown on the right. The
red disk with a white fill represents the circle of contact with radius 𝑅𝑐.

We solve the system of ODEs in (5.59) using spectral collocation of the Laguerre
functions at the Laguerre-Gauss-Radau quadrature nodes (Shen et al. 2011). The
Laguerre function of order 𝑛 is defined by 𝐿̂𝑛 (𝑥) = 𝑒−𝑥/2𝐿𝑛 (𝑥), where 𝐿𝑛 (𝑥) is
the Laguerre polynomial satisfying the recurrence relation (𝑛 + 1)𝐿𝑛+1 = (2𝑛 + 1 −
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𝑥)𝐿𝑛 − 𝑛𝐿𝑛−1 and 𝐿0(𝑥) = 1, 𝐿1(𝑥) = 1 − 𝑥. The orthogonality condition of the
Laguerre functions is given by

∫ +∞
0 𝐿̂ 𝑗 (𝑥) 𝐿̂𝑘 (𝑥)𝑑𝑥 = 𝛿 𝑗 𝑘 where 𝛿 𝑗 𝑘 is the Kronecker

delta. It is clear that all Laguerre functions vanish at infinity. To accommodate this
natural boundary condition, we define the shifted Fourier modes 𝐶̃𝑚,𝑛 such that
𝐶̃0,0 = 𝐶0,0 − 1/(2𝜋) and 𝐶̃𝑚,𝑛 = 𝐶𝑚,𝑛 otherwise. It is straightforward to rewrite the
ODEs in (5.59) and the no-flux condition (5.60) in terms of 𝐶̃𝑚,𝑛. For 𝑃𝑒, 𝑃𝑒𝑠 ≲ 10,
the ODEs in terms of 𝐶̃𝑚,𝑛 is solved after shifting the radial coordinate 𝑟 → 𝑟 − 1 so
that it falls into the natural domain [0,∞) of the Laguerre functions. For 𝑃𝑒𝑠 ≳ 10,
there exists an accumulation boundary layer near the wall as considered in the
previous section; in this case a stretched coordinate 𝜌 = (𝑟 − 1)𝑃𝑒𝑠 is used and
the ODEs are written in terms of 𝜌 before applying the spectral collocation. For
a fast-moving probe, 𝑃𝑒 ≫ 1, there exists a boundary layer of thickness 𝑂 (1/𝑃𝑒)
in the front sector of the probe with density in the boundary layer growing like
𝑃𝑒 as 𝑃𝑒 → ∞, just like the case of a probe moving in a passive Brownian
suspension (Squires and Brady 2005). For 𝑃𝑒 ≳ 10, we use the stretched coordinate
𝜌 = (𝑟 − 1)𝑃𝑒 for the spectral collocation.

Because the resulting discretized linear system has a very large dimension and the
spectral differentiation matrix is dense, the matrix system is not formed explicitly.
We solve the linear system iteratively using a matrix-free generalized minimal
residual method (GMRES).

In figure 5.7 we plot the number density distribution (Recall 𝑛 =
∫
𝑔𝑑q) in a region

around the probe for several values of 𝑃𝑒 with 𝑃𝑒𝑠 = 1 and 𝛾 = 1. Contours on the
left [(a), (c), (e)] are obtained from the numerical solutions of the Smoluchowski
equation and are compared to the results obtained from BD (See section 5.5 for
details on BD.) on the right [(b), (d), (f)]. The 𝑃𝑒 numbers from the top to the
bottom are, respectively, 0.1, 1, and 10. A square grid is used to sample the
number density distribution and is averaged over several hundred frames at long
times. Despite the noise, the density distribution sampled from BD agrees well with
that obtained from solving the Smoluchowski equation. The number density and
radial polar order (𝑚𝑟 =

∫
𝑔q · e𝑟𝑑q) distributions at contact corresponding to the

microstructures shown in figures 5.7(a), 5.7(c) and 5.7(e) are shown in figure 5.8.

When the speed of the probe is zero, i.e., 𝑃𝑒 = 0, the microstructure (hence the
density) is isotropic, which is simply the distribution of ABPs outside a fixed sphere
(Yan and Brady 2015b). Because the suspension is active, the density is not uniform
in space but exhibits a boundary accumulation at contact. In order for ABPs to
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Figure 5.8: Contact values of (a) the number density and (b) the radial polar order
as a function of the angular position 𝜃 for several values of 𝑃𝑒 = 𝑈1𝑅𝑐/𝐷2. Panels
(a) and (b) share the same legends and are only shown in (b). For all lines plotted,
𝑃𝑒𝑠 = 𝑈2𝑅𝑐/𝐷2 = 1 and 𝛾 = 𝑅𝑐/𝛿 = 1. The front of the probe is at 𝜃 = 0 and the
back is 𝜃 = ±𝜋.

accumulate at the boundary, they must exhibit a net polar order pointing into the
boundary (𝑚𝑟 < 0) because otherwise they swim away. In the absence of activity
(𝑃𝑒𝑠 = 0), the number density is uniform. When the probe is set into motion in
an active suspension, the microstructure is perturbed from its isotropic steady state
(For an active suspension, this steady state is not in a thermodynamic equilibrium.).
For small 𝑃𝑒 such as that shown in figure 5.7(a), the microstructure is only slightly
perturbed from the isotropic state and has been characterized in section 5.3. As 𝑃𝑒
increases, a prominently non-uniform density distribution develops at contact with
an accumulation at the front and a depletion in the back of the probe as can be seen
in figure 5.8(a). Because the density becomes depleted in the back, the polar order
also decreases in the back (in absolute value) and increases in the front of the probe
as shown in figure 5.8(b).

For passive Brownian suspensions, the buildup of particles in the front of the probe
is solely due to the advection of the probe. When the suspension is active, this
advective effect is still present. In figure 5.9 we plot the contact density at 𝑃𝑒 = 10
for a passive suspension and for active suspensions with 𝑃𝑒𝑠 = 1 and 𝑃𝑒𝑠 = 10.
For 𝑃𝑒𝑠 = 1, the swim speed is small compared to that of the probe and the contact
density is almost the same as that of the passive suspension. For 𝑃𝑒𝑠 = 10, the
swim speed is comparable to the probe speed and the density is elevated from that
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Figure 5.9: Number density at contact for several values of 𝑃𝑒𝑠 = 𝑈2𝑅𝑐/𝐷2. For
all results, 𝛾 = 𝑅𝑐/𝛿 = 1 and 𝑃𝑒 = 𝑈1𝑅𝑐/𝐷2 = 10.

of the passive. This elevation in density represents the additional wall accumulation
resulting from activity. In particular, we note that the contact density on all sides of
the probe is increased.

5.5 Brownian dynamics simulation
From a particle-level perspective, the evolution of the configuration of ABPs can be
described by the overdamped Langevin equations—a balance of forces and torques.
In the absence of hydrodynamic interactions as we consider here, Brownian Dynam-
ics (BD) can be used to simulate the dynamics of ABPs at the particle level. BD
has been used to study the bulk rheology (Foss and Brady 2000) and microrheology
(Carpen and Brady 2005) of passive colloidal suspensions. Our approach is similar
to those considered by Foss and Brady (2000) and Carpen and Brady (2005) except
that the orientational dynamics of each particle also needs to be tracked due to the
self-propulsion of ABPs.

For each ABP, the force and torque balance in the co-moving frame is given by

0 = −𝜁2

(
𝑑x

𝑑𝑡
+U1

)
+ F 𝐵 + F 𝑆 + F 𝐻𝑆, (5.62)

0 = −𝜁𝑅
𝑑q

𝑑𝑡
+L𝐵 × q. (5.63)

Here, F 𝑆 = 𝜁2𝑈𝑠q is the swim force (Takatori et al. 2014) giving rise to self-
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propulsion, F 𝐵 (L𝐵) is the Brownian force (torque), F 𝐻𝑆 is the hard-sphere force
due to the steric interaction between the probe and the ABP, and 𝜁𝑅 is the rotational
hydrodynamic drag coefficient. Because both the probe and the ABP are spheres,
their hard-sphere interaction do not induce a torque. However, if either the probe or
the ABP (or both) is nonspherical, their hard-particle interaction can induce a torque.
The hard-sphere force is present only when the probe and the ABP are in contact
and is the mechanism of the enhanced viscosity in passive colloidal suspensions
compared to the motion of a probe in the solvent alone. The Brownian force and
torque satisfy the white-noise statistics:〈

F 𝐵
〉
= 0,

〈
F 𝐵 (0)F 𝐵 (𝑡)

〉
= 2𝐷2𝜁

2
2𝛿(𝑡)I , (5.64)〈

L𝐵
〉
= 0,

〈
L𝐵 (0)L𝐵 (𝑡)

〉
= 2𝐷𝑅𝜁

2
𝑅𝛿(𝑡)I , (5.65)

where 𝛿(𝑡) is the delta function (which has the units of the inverse of time) and
the angle brackets denote the ensemble average over Brownian fluctuations. We
emphasize that the rotational diffusivity represents biological noises and can be
varied independently from the translational diffusivity 𝐷2. In the co-moving frame,
the probe is fixed in space and appears as an obstacle for the dynamics of ABPs
outside of it.

In 2D, using the parametrization q(𝑡) = cos 𝜃′(𝑡)e𝑥+sin 𝜃′(𝑡)e𝑦, it is straightforward
to see that 𝑑q/𝑑𝑡 = e𝑧 × q𝑑𝜃′/𝑑𝑡 where e𝑧 = e𝑥 × e𝑦. As a result, equation (5.63)
can be written as

𝑑𝜃′

𝑑𝑡
= Ω𝐵, (5.66)

where the Brownian angular velocity satisfies
〈
Ω𝐵 (𝑡)

〉
= 0 and

〈
Ω𝐵 (0)Ω𝐵 (𝑡)

〉
=

2𝐷𝑅𝛿(𝑡).

Using the Euler-Maruyama scheme, the linear and angular equations (5.62) and
(5.66) can be discretized given the time step Δ𝑡; their discrete forms at time 𝑡 = 𝑡𝑘 =
𝑘Δ𝑡 (𝑘 = 0, 1, ...) are given by

x𝑘+1 = x𝑘 + (−U1 +𝑈𝑠q𝑘 ) Δ𝑡 +
√︁

2𝐷2Δ𝑡ξ𝑥 + Δx𝐻𝑆, (5.67)

𝜃′𝑘+1 = 𝜃′𝑘 +
√︁

2𝐷𝑅Δ𝑡𝜉𝜃 ′, (5.68)

where ξ𝑥 is a 2-vector of pseudo random numbers with each entry having zero mean
and unit variance. Similarly, 𝜉𝜃 ′ is a scalar having zero mean and unit variance.

At each time step, the position of the ABP is updated first by adding the displacements
due to the relative velocity −U1, the swimming, and the Brownian contributions,
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and second by resolving collision with the fixed probe. We use the potential-free
algorithm of Heyes and Melrose (1993) in which the overlap between the probe-
ABP pair is corrected by moving the ABP along the line of centers back to contact.
Because the probe has prescribed kinematics (i.e., fixed), only the ABP is moved if
an overlap is detected.

At this point, a contrast between the CF and CV modes of microrheology is in
order. In the CF mode of microrheology, either the external force is zero (tracer
dispersion) or finite, in the collision resolution step both the probe and the ABP have
to be displaced in opposite directions such that Newton’s third law is satisfied. In the
CV mode of microrheology, because the probe is never displaced due to collision,
one can have many bath particles interacting with a single probe in one simulation;
these bath particles are “transparent” to each other in the sense that they can pass
through each other and only interact with the probe. For the CF mode, however,
the collision resolution between the probe and a bath particle might introduce a
new overlap between the probe and a different bath particle due to the displacement
to the probe. Therefore, if one wishes to simulate the pair-interaction between
the probe and one bath particle only, one can run many independent simulations
each consisting of the probe and a bath particle or simulate a system of many bath
particles with low volume fraction. The results obtained in the second method is a
good approximation to the pair behavior only when the system is sufficiently dilute.

In the simulation setup, the system consists of the fixed probe and 𝑁 ABPs in a
rectangular domain of lengths 𝐿𝑥 and 𝐿𝑦 where the 𝑥-axis is aligned with U1, i.e.,
Û1 = e𝑥 . The size of the simulation domain needs to be sufficiently large such that its
boundary is a good approximation of the far-field [see equation (5.15)]. In particular,
the domain needs to be much larger than the run length of the ABPs. At each time
step, we evolve the positions and orientations of all ABPs according to equations
(5.67) and (5.68) and the hard-sphere displacement of each particle is recorded
when necessary. Simulations are performed using an in-house CUDA-accelerated
code that runs on NVIDIA GPUs, which enables us to run a typical simulation with
𝑂 (105) ABPs. The measured area fraction of the ABPs is 𝜙 = 𝑁𝜋𝑏2/(𝐿𝑥𝐿𝑦 −𝜋𝑎2).
Because the ABPs are transparent to each other, the measured volume fraction has
no physical interpretation and only serves to improve the measured statistics.

The force balance of the probe is −𝜁1U1 + F ext − F 𝐻𝑆 = 0, where the hard-sphere
force the ABP exerts on the probe is −F 𝐻𝑆 according to Newton’s third law. To
maintain a constant velocity of the probe, the external force fluctuates and we are
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concerned with its average over the fluctuations. Noting that F 𝐻𝑆 = 𝜁2Δx
𝐻𝑆/Δ𝑡

and equation (5.8), we obtain

Δ𝜂

𝜂
=
𝜁2Δ𝑥

𝐻𝑆

𝜁1𝑈1Δ𝑡
, (5.69)

where Δ𝑥𝐻𝑆 is the accumulated hard-sphere displacement of all 𝑁 ABPs at each
time step and then averaged over many frames at sufficiently long times so that a
steady state is reached. It is then straightforward to calculate 𝜂micro using the first
part of equation (5.21).

In figure 5.10 we show three snapshots of the BD simulation for varying probe
speeds. The speed of the probe increases from the top panel to the bottom. The
snapshot is windowed around the probe in order to highlight the near-field mi-
crostructure. The red solid circle denotes the circle of contact that is concentric
with the probe but with radius 𝑅𝑐 (see figure 5.3). The blue dots are the positions
of the centers of the ABPs and their size do not reflect the size of ABPs in the
simulation. A prominent feature of the near-field microstructure is the presence of
a trailing wake behind the probe that is devoid of bath particles. To highlight the
wake structure, in figure 5.10 the translational diffusion is turned off, 𝐷2 = 0. In the
absence of translational diffusion, the only source of noise in the dynamics of ABPs
comes from the Brownian reorientation. Recall that in the simulation the probe is
fixed in place while the ABPs experience a constant advection of speed 𝑈1 to the
left. To understand the development of the trailing wake, consider an ABP that is
behind the probe (to the left). In order for this ABP to reach the probe from behind,
the best orientation it should take is q = e𝑥 (pointing to the right), in which case
the net speed to the right is 𝑈2 −𝑈1. When 𝑈2 > 𝑈1, i.e., the speed of the ABPs is
larger than that of the probe, ABPs with orientations near e𝑥 can reach the probe.
On the other hand, when 𝑈2 ≤ 𝑈1, the speed of the ABPs is smaller than that of
the probe and all ABPs will be advected further to the left. This simple physical
argument suggests that the onset of a trailing wake happens when𝑈2 ≈ 𝑈1. Indeed,
when the speed of the probe is smaller than that of the ABPs as shown in the top
panel of figure 5.10 there is no wake. When the speed of the probe surpasses that
of the ABPs, e.g. in the middle and bottom panels of figure 5.10, the trailing wake
appears and becomes more extended to the left as the speed of the probe increases.

To characterize the geometry of the triangular wake, we define the wake half angle
𝛽, which is the angle between the top (or equivalently the bottom) boundary of the
wake and the horizontal axis. Consider an active particle at contact with the top
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Figure 5.10: Windowed snapshots of the BD simulation showing the circle of
contact (red solid line), the positions of ABPs (blue dots), and the wake structure
behind the probe. In all panels, ℓ/𝑅𝑐 = 1 and 𝐷2 = 0. The speed of the probe
increases from top to bottom: 𝑈1𝜏𝑅/𝑅𝑐 = {0.5, 2.5, 5}. The blue dots denote the
center positions of the ABPs and their size in the figure does not represent the size
of the ABPs in the simulation. The simulation domain is larger than the window
shown and 10000 ABPs are plotted in each panel.
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of the probe; in order for this particle to swim into the back of the probe it should
have an orientation towards the bottom. The maximum vertical displacement is
achieved with q = −e𝑦, in which case the ABP assumes a trajectory that has a slope
given by tan 𝛽 = 𝑈2/𝑈1. This simple argument is able to predict the wake half
angle quantitatively. The wake half angle can be easily read off from the middle and
bottom panels of figure 5.10. Taking the bottom panel as an example, from the plot
we see that tan 𝛽 ≈ 1/5 which is exactly the speed ratio 𝑈2/𝑈1 = 1/5. Similarly,
one can verify the prediction in the middle panel.

In the presence of translational diffusion, the wake boundary becomes less sharp
because of the diffusive flux −𝐷2∇𝑛 down the number density gradient, into the
wake. If the swim speed is small compared to the probe speed, the wake structure
with finite 𝐷2 approaches that obtained for a passive Brownian suspension, which
has been studied (Squires and Brady 2005; Carpen and Brady 2005).

In figure 5.10, periodic boundary conditions in both directions of the simulation
domain are used. This is a good approximation of the far-field condition provided
that the simulation domain is sufficiently long such that all prior interactions of an
ABP with the probe have relaxed once the ABP reaches the boundary of the domain.
When the probe speed is much larger than that of the ABPs, 𝑈1 ≫ 𝑈2, the trailing
wake becomes rather extended in the horizontal direction. To make use of the
periodic boundary condition, the simulation domain has to be enlarged accordingly,
which makes the nominal volume fraction very small and the number of particles
colliding with the probe diminishing. For a fixed number of ABPs, as the probe
speed increases the statistics for the hard-sphere force becomes less reliable. Notice
that for 𝑈1 ≫ 𝑈2, once an ABP moves past the probe to the left, the chance of it
turning back to the right without exiting the left boundary and entering from the
right is vanishingly small. As a result, we introduce a new boundary condition in
the horizontal direction for 𝑈1 ≫ 𝑈2 in which the trailing wake is cut off. Once an
ABP moves past the probe to the left, it is removed from the simulation and added
back from the right boundary of the domain with the bulk distribution, i.e., random
orientation and 𝑦 position. Similarly, if the ABP leaves the boundary from the right,
instead of appearing from the left it will be put back on the right boundary with the
bulk distribution. This new boundary condition allows us to reduce the domain size
significantly for𝑈1 ≫ 𝑈2 but still obtain the correct microviscosity measurement.
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Figure 5.11: The microviscosity of ABPs as a function of 𝑃𝑒 = 𝑈1𝑅𝑐/𝐷2 for several
values of 𝑃𝑒𝑠 and 𝛾. The dashed line denotes the results for passive Brownian
suspensions (𝑃𝑒𝑠 = 0). Circles are results from the numerical solutions of the
Smoluchowski equation and diamonds are obtained from BD. The horizontal solid
lines are the zero-forcing microviscosity 𝜂micro

0 obtained in section 5.3. The values
of 𝛾 are fixed in each panel and are given by: (a) 𝛾 = 1, (b) 𝛾 = 0.1 and (c)
𝛾 = 10. Note that in panel (c) the results for 𝑃𝑒𝑠 = 0.1 and 𝑃𝑒𝑠 = 1 are visually
indistinguishable.
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5.6 Microviscosity
In figure 5.11(a) we plot the microviscosity 𝜂micro as a function of 𝑃𝑒 for several
values of 𝑃𝑒𝑠 and 𝛾 = 1. The solid line denotes the microviscosity of passive
Brownian suspensions (𝑃𝑒𝑠 = 0). Circles denote results from the numerical solution
of the Smoluchowski equation and diamonds are obtained from BD. The solid
horizontal lines denote the zero-forcing microviscosity discussed in section 5.3. For
𝑃𝑒𝑠 = 0.1, the ABPs are weakly active and the microviscosity approximates that of
the passive suspension. As discussed in section 5.3, when the probe speed is small
(𝑃𝑒 ≪ 1), the ABPs exhibit swim-thinning in which the microviscosity decreases
as 𝑃𝑒𝑠 increases. In the large 𝑃𝑒 limit, the activity of the ABPs is obscured by the
rapid advection of the probe speed and therefore does not affect the microviscosity
as 𝑃𝑒 → ∞. That is, regardless of 𝑃𝑒𝑠 (so long as it is finite), the microviscosity
approaches that of the passive result of 1/2 as 𝑃𝑒 → ∞.

For completeness, the variation of microviscosity for different values of 𝛾 are
presented in figures 5.11(b) and 5.11(c). The increase of 𝛾 corresponds to the
decrease in 𝜏𝑅 or the increase in the rotary diffusivity 𝐷𝑅. When 𝛾 is large, e.g.,
𝛾 = 10 in 5.11(c), the rotary diffusion is strong and the particles behave more
like passive particles. Therefore, the swim-thinning is less prominent and the
microviscosity is closer to that of passive suspensions. Conversely for a small 𝛾 as
shown in 5.11(b) for 𝛾 = 0.1, the swim-thinning is stronger compared to the case
shown in 5.11(a) for 𝛾 = 1.

5.7 Effects of hydrodynamics
5.7.1 Fluid disturbance due to the active force dipole
So far in this Chapter we have considered the effect of activity, i.e., the intrinsic
swim speed, on the suspension microstructure and the resulting microviscosity.
Beyond the swim speed (𝑈2), another important characteristic of a self-propelled
microswimmer or active particle is its hydrodynamic stresslet (Koch and Subrama-
nian 2011; Saintillan and Shelley 2015). Because an active particle propels itself
without applying a net force on the surrounding fluid, the disturbance flow it induces
in the far field has a dipolar structure that decays as 1/𝑟2 with 𝑟 being the distance
from the particle. Using the reciprocal theorem for Stokes flow, Lauga and Michelin
(2016) proposed a general method to determine the stresslet of an active particle
with a prescribed surface slip velocity distribution.

To understand the first effect of the stresslet on the suspension microviscosity, we
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Figure 5.12: Schematic of the flow generated by a pusher (left) and by a puller
(right) located in the front of the probe.

consider the far-field fluid velocity generated by an ABP. The flow field at position x

in 3D due to the force dipole with strength 𝜎0 at y with orientation q can be written
as (Saintillan and Shelley 2015)

u(x;y, q) = 𝜎0
8𝜋𝜂

qq : ∇𝑥J (x − y), (5.70)

where J (r) = I/𝑟 + rr/𝑟3 is the Oseen–Burgers tensor. The dipole strength is
a signed quantity and its magnitude for ABPs obeys the scaling relation |𝜎0 | ∼
𝐹swim𝑏 ∼ 𝜁2𝑈2𝑏 ∼ 𝜂𝑈2𝑏

2. The sign of 𝜎0 depends on the positions of the thrust
and drag forces relative to the swimming direction q: 𝜎0 < 0 for a pusher particle
that generates a thrust with its tail (e.g, E. coli), while for a puller particle such as
C. reinhardtii, 𝜎0 > 0 (see figure 5.12 for a schematic).

To proceed, we only consider the effect of the dipolar flow on the drag of the
probe for the known ABP distribution solved in the previous section. Making use
of Faxén’s law for a sphere (Kim and Karrila 1991), the hydrodynamic force the
probe experiences can be given by F 𝐻 = −𝜁1

[
U1 −

(
1 + 𝑎2∇2/6

)
u
]
. Noting the

force balance, F ext + F 𝐻 + F 𝐻𝑆 = 0, we only need to consider the additional drag
contribution due to the dipole, which upon averaging over the distribution of the
ABP is given by〈(

1 + 𝑎2∇2

6

)
u

〉
= 𝑛∞3

∫ (
1 + 𝑎2∇2

6

)
u𝑔3(r3, q)𝑑r3𝑑q, (5.71)

where the subscript 3 denotes 3D. To accommodate the above equation using the
2D solution of the ABP distribution, we place the system in a monolayer such
that 𝑛∞3 = 𝑁/𝑉 = 𝑁/(2𝑏𝐴) = 𝑛∞/(2𝑏) and 𝑔3(r3, q) = 𝑔(r, q)𝛿(𝑧). After non-
dimensionalization (recall that lengths are non-dimensionalized by 𝑅𝑐), we obtain
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the dipole contribution to microviscosity as

𝜂micro
d = −𝛽

∫ 2𝜋

0
𝑑𝜃

∫ ∞

1
𝑓𝑥 (𝑟, 𝜃)𝑟𝑑𝑟, (5.72)

where we have defined

𝑓𝑥 = 3𝑄𝑟𝑟 cos 𝜃

[
1
𝑟2 − 1

𝑟4

(
𝑎

𝑅𝑐

)2
]
− 2𝑄𝑟𝑡 sin 𝜃

1
𝑟4

(
𝑎

𝑅𝑐

)2
(5.73)

and
𝛽 =

𝑎𝜎0

16𝜋2𝜂𝑏2𝑅𝑐𝑈1
= 𝜎̂0

𝛼2

𝑃𝑒
. (5.74)

In the above, 𝜎̂0 = 𝜎0/(16𝜋2𝜂𝑎𝐷2) is a dimensionless measure of the dipole
strength; recall that 𝛼 = 𝑎/𝑏. In equation (5.73), 𝑄𝑟𝑟 =

∫
e𝑟e𝑟 : (qq − I/2)𝑔𝑑q is

the radial component of the nematic tensor and 𝑄𝑟𝑡 =
∫
e𝑟e𝜃 : (qq − I/2)𝑔𝑑q is

the cross component.

Notice that at this level of approximation the dipole contribution to microviscosity
is proportional to 𝜎̂0 (and thus 𝜎0). As a result, 𝜂micro

d for pushers and pullers have
opposite signs. In figure 5.13 we plot 𝜂micro

d for pushers with 𝜎̂0 = −100 obtained
from equation (5.72) as a function of 𝑃𝑒. Similar to the collisional microviscosity
considered in the previous section, 𝜂micro

d exhibits a force-thinning behavior. The
most interesting characteristic seen in figure 5.13 is the fact that for pushers 𝜂micro

d
is positive. Due to the linearity in 𝜎̂0, this means that for pullers 𝜂micro

d is negative,
which acts to reduce the microviscosity below that of the collisional result.

To understand the physical origin of such behavior, we consider the force dipole of
an ABP that is in front of the probe as shown in figure 5.12. For a pusher, the flow
field acts to push back the probe, which gives rise to increased microviscosity. On
the other hand, for a puller the flow field pulls the probe forward which results in
reduced drag and thus reduced microviscosity. Because the ABP is more likely to
be in front of the probe than in the back, the above physical picture is sufficient to
explain the qualitative behavior of the dipole contribution to microviscosity.

If the dipole strength of puller ABPs is sufficiently large, the suspension microviscos-
ity can become negative, which means that the external force applied to maintain the
steady probe motion is opposite to the direction of the probe velocity—a microscopic
analogue of the bulk superfluid behavior observed in rheological measurements of
active matter in the dilute regime (López et al. 2015; Chui et al. 2021). Opposite to
the microscopic result, in bulk shear flow the superfluid behavior is observed only
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Figure 5.13: The dipole contribution to the suspension microviscosity obtained
from equation (5.72). Parameters used are 𝜎̂0 = −100 (pusher), 𝛼 = 1, 𝛾 = 1 and
𝑃𝑒𝑠 = 1.

for pushers, the mechanism for which is shown in figure 5.1. For a nonspherical
particle, the shear flow tends to align the particle along the extensional axis. The
flow due to the pusher stresslet then acts to “stretch” the fluid further and reduces
the effective shear viscosity. For active puller microswimmers, the effective shear
viscosity is increased because the flow they induce acts against the imposed shear.
We note that one similarity between microrheology and bulk rheology is that the
reductions in viscosity in both cases are most significant in the small 𝑃𝑒 limit—slow
probe speed in microrheology and weak shear in bulk rheology.

The presence of a negative microviscosity at steady state is a unique feature for
CV probes. In the CF mode of microrheology, the probe would speed up as
the local viscosity decreases, and eventually moves out of the regime of negative
viscosity. At steady state, therefore, the measured microviscosity is positive 2.
Foffano et al. (2012) studied the CF microrheology of an active nematic suspension
modeled at the continuum level as an active liquid crystal. In the active nematics
model, activity refers to the stresslet contribution to the suspension stress and the
constituting individual “particles” do not self-propel (cf. ABPs). Though a negative
microviscosity is not observed in Foffano et al. (2012), the authors showed that in

2The macroscopic analogue of this phenomenon is the constant strain-rate versus constant shear-
stress experiments. For constant shear-stress, a negative viscosity allows the rheometer to accelerate
(and thus increases the shear rate) out of the negative viscosity regime (Takatori and Brady 2017).
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the puller case the active stresslet generates a flow field in front of the probe that acts
to pull the probe forward, hence facilitating the probe motion. Their observation is
consistent with our analysis and prediction.

5.7.2 Fluid disturbance due to the probe motion
In this section, we neglect any fluid disturbances associated with the self-propulsion
of ABPs but consider the flow due to the steady motion of the probe—the Stokes flow
outside a translating sphere. In this limit, the ABPs are treated hydrodynamically
as point particles that do not disturb the flow. Defining u′ = u −U1 with u being
the flow field in the laboratory frame, the translational and rotational fluxes of the
Smoluchowski equation (5.2) are, respectively,

j𝑇2 − j𝑇1 = (u′ +𝑈𝑠q) 𝑃1/1 − 𝐷2∇𝑟𝑃1/1, (5.75)

j𝑅2 =
1
2
ω′𝑃1/1 − 𝐷𝑅∇𝑅𝑃1/1, (5.76)

where ω′ = ∇ × u′ is the vorticity of the u′ field. Notice that the u′ field vanishes
on the surface of the probe and asymptotes to −U1 at infinity: u′ = 0 at 𝑟 = 𝑎 and
u′ → −U1 as 𝑟 → ∞.

The ABPs in the Stokes flow of the probe experience a spatially varying fluid
advection and rotate with the vorticity. Only in the far field one recovers equations
(5.3) and (5.4): the vorticity vanishes and u′ → −U1 as 𝑟 → ∞. For our 2D
system we only need the in-plane components of the flow field, which in the polar
coordinate system are written as

𝑢′𝑟 = 𝑈1 cos 𝜃
(
−1 + 3𝑎

2𝑟
− 𝑎3

2𝑟3

)
, (5.77)

𝑢′𝜃 = 𝑈1 sin 𝜃
(
1 − 3𝑎

4𝑟
− 𝑎3

4𝑟3

)
. (5.78)

Similarly, the vorticity in the 𝑧 direction can be obtained as 𝜔 = 3𝑎𝑈1 sin 𝜃/(2𝑟2).
Because the length scale of the flow is set by the size of the probe (radius 𝑎) while
the hard sphere contact occurs at 𝑟 = 𝑅𝑐, this introduces an explicit dependence
on the size ratio 𝑎/𝑅𝑐. Following the procedure outlined in previous sections,
the Smoluchowski equation together with the flux expressions (5.75) and (5.76) is
non-dimensionalized and solved numerically.

In figure 5.14 we plot the microviscosity obtained from the numerical solutions of
the Smoluchowski equation in the probe disturbance flow for an active suspension
with 𝑃𝑒𝑠 = 10, 𝛾 = 1 (fast-swimming ABPs) and the passive suspension as a
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Figure 5.14: The suspension microviscosity as a function of 𝑃𝑒 = 𝑈1𝑅𝑐/𝐷2 for
fast ABPs (red) and passive Brownian particles (black) with or without considering
the Stokes flow of the probe. The size ratio is 𝑎/𝑅𝑐 = 0.8. For the active results,
𝑃𝑒𝑠 = 10 and 𝛾 = 1. In the small 𝑃𝑒 regime for fast ABPs (𝑃𝑒𝑠 = 10), a negative
microviscosity is observed.

function of 𝑃𝑒. For comparison, the results in the absence of the probe disturbance
flow obtained previously (see figure 5.11) are also plotted. Comparing the passive
results without (dashed line) and with (black diamonds) the probe disturbance, we
see that the microviscosity is lowered over the entire range of 𝑃𝑒. In the small
𝑃𝑒 limit, the microviscosity is lowered to a value close to zero (but positive).
When 𝑃𝑒 ≫ 1, the microviscosity approaches zero. For a passive suspension, the
suspension still exhibits a force-thinning behavior (though at a smaller scale). For
the fast ABPs shown in red, the behavior is rather interesting: in the small 𝑃𝑒
regime, the probe disturbance leads to a negative microviscosity; in the large 𝑃𝑒
limit, the microviscosity is indistinguishable from that of the passive suspension and
approaches zero as 𝑃𝑒 → ∞.

Though more significant for active suspensions, the reduction in microviscosity
occurs regardless of the activity of the bath particles. This disturbance-induced
reduction can be understood by examining the flow field shown in figure 5.15.
In the co-moving frame of the probe, the disturbance flow is the same as that of
a fixed sphere placed in the uniform background flow −U1. As one moves from
infinity towards the probe, the flow field develops a transverse (𝑦) component and the
magnitude of the flow decreases because at the probe surface (a no-slip boundary)u′
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Figure 5.15: Plot of the stream lines of the flow field u′. The dashed red circle is
the circle of contact (𝑟 = 𝑅𝑐). The streamlines are colored according to the local
fluid vorticity (non-dimensionalized by𝑈1/𝑅𝑐). The blue particles from right to left
is a sketch of the trajectory of an ABP under the influence of the fluid vorticity. The
size of the ABP is not to scale but the contact circle and the flow/vorticity fields are.
Note that u′ vanishes at 𝑟 = 𝑎, not at 𝑟 = 𝑅𝑐 = 𝑎 + 𝑏. The ratio 𝑎/𝑅𝑐 = 0.8 is used
for the flow field.

vanishes. To understand the reduction in 𝜂micro for passive suspensions, recall that
there is a buildup of bath particles in the front (right) of the probe due to the uniform
advection −U1. When the disturbance flow is included, however, the 𝑥 component
of the flow vanishes at the front and near this stagnation point the streamlines (see
figure 5.15) go around the probe towards the back (left) 3. The particles that would
otherwise accumulate at the front are transported to the back of the probe simply due
to the advection of the flow. As a result, the advection acts to lower the difference
between the number density in the front and back, thus reduces the microviscosity.

Further reductions in microviscosity for ABPs beyond that of the passive suspension
as shown in figure 5.14 must be due to the interaction between the suspension
activity and the disturbance flow. In the high 𝑃𝑒 limit, as noted before the probe
speed obscures that of the activity, and one cannot distinguish between a passive and

3A bath particle at contact with the front of the probe still experiences a weak flow speed towards
the left because the contact radius 𝑟 = 𝑅𝑐 = 𝑎 + 𝑏 is larger than the no-slip surface 𝑟 = 𝑎.
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an active suspension solely from the measurements of microviscosity. For small 𝑃𝑒,
however, the difference between an active and a passive suspension is prominent
because a negative microviscosity is observed as indicated by the red diamond
symbols in figure 5.14. To understand the emergence of a negative microviscosity,
consider an active particle near the top of the probe that is trying to move away
from the probe to the upper left domain (see figure 5.15). Noting that in addition to
the spatially-varying fluid velocity, the probe disturbance also introduces a vorticity
field, which at the top half (𝑦 > 0) of the plane is positive as shown in the color bar.
For the ABP at the top, it experiences a counterclockwise rotation due to the fluid
vorticity, which tends to turn the swimming director q towards the back of the probe.
In the small 𝑃𝑒 limit, the −𝑦 component of the swim speed is larger than the flow
speed, which allows the ABP to move into the rear of the probe and pushes the probe
towards the right. This vorticity-induced reorientation process near a no-slip wall
has been discussed in detail by Peng and Brady (2020) in the context of upstream
swimming of ABPs in Poiseuille flow. In the current problem, the reorientation
and pushing lead to a negative microviscosity provided that the ABPs have a large
enough swim speed. Because the flow field has mirror symmetry about the 𝑦 = 0
axis, a similar process occurs for ABPs in the lower half of the domain.

In the large 𝑃𝑒 limit, the timescale for reorientation by vorticity is much smaller than
the active reorientation time 𝜏𝑅, which significantly reduces the effective run length
of ABPs (Peng and Brady 2020). Therefore, in this limit the ABPs “lose” their
activity (e.g., persistence) and must have a microviscosity indistinguishable from
that of the passive suspension. In the intermediate 𝑃𝑒 regime, the above analysis
means that active suspensions must exhibit a force-thickening behavior (see figure
5.14) in order to meet with the low-𝑃𝑒 negative plateau and the near-zero plateau of
large 𝑃𝑒. We note that for ABPs with slow swim speed, the low-𝑃𝑒 plateau is still
positive and a force-thinning behavior can be observed. Depending on the activity,
an active suspension in the disturbance of the probe can exhibit either force-thinning
or force-thickening behavior.

The above analysis is from a micromechanical perspective, which can be corrob-
orated by examining the number density and polar order distributions at the circle
of contact shown in figure 5.16. When the disturbance flow of the probe (shown in
blue) is included, the density (similarly the radial polar order) in the back (𝜃 = ±𝜋)
becomes higher than that in the front. Because more particles are pushing in the
back than in the front, one must experience a negative microviscosity, which is con-
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Figure 5.16: (a) The number density distribution and (b) the radial polar order
distribution at contact as a function of the angular position 𝜃 around the probe in
the small 𝑃𝑒 regime. The front of the probe is at 𝜃 = 0 and the back is 𝜃 = ±𝜋.
Parameters are 𝛾 = 1, 𝑃𝑒𝑠 = 10, 𝑎/𝑅𝑐 = 0.8 and 𝑃𝑒 = 0.1.

sistent with the micromechanical analysis. The behavior is reversed in the absence
of the probe disturbance with more ABPs pushing in the front than in the back.

5.8 Concluding remarks
In this Chapter we have considered the particle-tracking microrheology of an active
colloidal suspension consisting of active Brownian spheres. The tracked particle,
i.e., probe, is a passive colloidal sphere. When the probe is held fixed in an active
suspension, the microstructure is isotropic but not in a thermodynamic equilibrium.
Because active particles self-propel, they accumulate at no-flux boundaries. In
the context of microrheology when the probe is stationary, the number density at
contact is higher than that in the bulk, far from the probe. Nevertheless, this isotropic
state of active suspensions does not give rise to a net force on the probe, only an
elevated osmotic pressure at contact compared to that in the bulk (Yan and Brady
2015b). When the probe has a nonzero speed, the suspension microstructure is no
longer isotropic, even for passive suspensions. Averaging the external force over
Brownian fluctuations allows us to define a microviscosity similar to that in a passive
suspension. By varying the prescribed speed of a CV probe, one can distort the
suspension microstructure slightly (𝑃𝑒 ≪ 1) or considerably (𝑃𝑒 ≫ 1) from the
isotropic steady state.
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In the absence of hydrodynamic interactions, the microrheological response of
active suspensions originates from the interplay between the suspension activity
and the excluded-volume interaction between the probe and the bath ABP. One
manifestation of such a nontrivial interaction is the swim-thinning of the zero-
forcing microviscosity. As the swim speed of the ABP increases, the zero-forcing
microviscosity is lowered: 𝜂micro

0 → 1 as 𝑃𝑒𝑠 → 0 and 𝜂micro
0 → 1/2 as 𝑃𝑒𝑠 → ∞.

In general, for finite activity, the suspension exhibits a force-thinning behavior
similar to that of passive suspensions but with a lowered 𝜂micro

0 . The high 𝑃𝑒

microviscosity of colloidal suspensions does not depend on activity due to the
obscuring effect of the rapid advection of the probe. To

One interesting feature to note is that the microviscosity obtained in the successive
limits 𝑃𝑒 → 0 then 𝑃𝑒𝑠 → ∞ is the same as the limit 𝑃𝑒 → ∞ but with 𝑃𝑒𝑠 being
finite (or zero). This can be understood by recalling the boundary layer structures
in these two limits. For 𝑃𝑒 → ∞, there is an advective accumulation boundary
layer in the front and an empty wake devoid of particles in the back regardless of
activity (provided that the swimming motion is not covarying with the probe speed,
i.e., 𝑃𝑒𝑠 ≪ 𝑃𝑒 as 𝑃𝑒 → ∞). On the other hand, in the successive limits by first
talking 𝑃𝑒 → 0 and then 𝑃𝑒𝑠 → ∞, there is again an accumulation boundary layer (
but due to swimming) for orientations pointing into the probe. At contact, there are
no particles with orientations pointing away from the probe in the limit 𝑃𝑒𝑠 → ∞.
Structurally, these two limits share the behavior that only half of the domain has
particles—half of the local orientation space for the first limit and half of the physical
space for the second limit. The resulting net asymmetry of the density distribution
at contact in both cases are identical and gives rise to the same microviscosity.

By considering the disturbance flow of the hydrodynamic stresslet, we showed that
its effect on microviscosity depends on the type of the stresslet. For bath particles
that are pullers, we showed that the suspension microviscosity is lowered provided
that the number density in the front of the probe is larger than that in the back. On the
other hand, the flow due to pushers increases the microviscosity. This interesting
result has been observed in the microrheology of active nematics (Foffano et al.
2012). More importantly, this behavior is opposite to the bulk shear rheology of
active matter, where the reduction in shear viscosity is only associated with pushers.
In shear rheology, this is due to the interaction between activity and the applied shear
flow (single particle). For microrheology, the reduction results from the interplay
between the activity, volume exclusion (two-particle interaction), and the additional
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effect of the flow.

Finally, we considered the disturbance flow due to the translating probe while treating
ABPs as point particles that do not disturb the fluid. In this case, the combination
of reorientation by vorticity and swimming allows the ABPs to be transported to the
back of the probe, which leads to a negative microviscosity. This mechanism for
reduced microviscosity relies on the self-propulsion of the ABPs, not the nature of
the stresslet in contrast to the disturbance due to the ABPs.

It is also important to note that the negative shear viscosity relies on the nonspherical
shape of the active particle. In microrheology, negative microviscosity can be
observed for spherical particles as we have shown here. These differences between
bulk rheology and microrheology imply that care must be taken when extrapolating
the results of bulk rheology to microrheology and vice versa in the study of active
matter.

To conclude, we have shown that in the absence of hydrodynamic interactions
the microviscosity of active suspensions are always positive. In particular, the
swim-thinning in the low-𝑃𝑒 limit at most can reduce the microviscosity by 1/2,
which is still positive. When some hydrodynamic effects are included, however,
a negative microviscosity can be obtained. This suggests that the existence of
a negative microviscosity is the result of hydrodynamic interactions between the
probe and the active bath particles. In the present study, hydrodynamic interactions
are only partially accounted for and the effect of full hydrodynamic interactions on
the microrheology of active suspensions will be considered in a future study.

5.9 Appendix: Orientational moments for a slow probe
Though in the main text the full Smoluchowski equation is solved, it is useful to
examine the symmetries of the orientational moments in the slow probe limit. The
zeroth moment of equation (5.25) gives the governing equation for the𝑂 (1) number
density, which reads

∇𝑟 · (𝑃𝑒𝑠m0 − ∇𝑟𝑛0) = 0, (5.79)

n · (𝑃𝑒𝑠m0 − ∇𝑟𝑛0) = 0 at 𝑟 = 1, (5.80)

𝑛0 → 1 as 𝑟 → ∞. (5.81)
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Here, 𝑛0 =
∫
𝑔0𝑑q is the number density and m0 =

∫
𝑔0q𝑑q is the polar order

when the probe is fixed. The polar order satisfies

∇𝑟 ·
[
𝑃𝑒𝑠

(
Q0 +

1
𝑑
𝑛0I

)
− ∇𝑟m0

]
+ (𝑑 − 1)𝛾2m0 = 0, (5.82)

n ·
[
𝑃𝑒𝑠

(
Q0 +

1
𝑑
𝑛0I

)
− ∇𝑟m0

]
= 0 at 𝑟 = 1, (5.83)

where Q0 =
∫
(qq − I/𝑑)𝑔0𝑑q is the nematic field.

The spherical symmetry of the domain dictates that (Yan and Brady 2015b)

𝑛0(r) = 𝑝0(𝑟), m0(r) = r𝑝1(𝑟), Q0(r) =
(
rr − 1

𝑑
𝑟2I

)
𝑝2(𝑟), (5.84)

where 𝑝0-𝑝2 are scalar functions of the radial coordinate. One cannot solve equation
(5.79) without knowledge of the polar order m0. In fact, this hierarchy of orienta-
tional moments continue indefinitely. A truncation or closure is often used to close
the set of moment equations. For example, the solutions to 𝑛0 and m0 are obtained
by Yan and Brady (2015b) with the closure Q0 = 0.

As a reference, we proceed to present the solution whenQ0 is included and a closure
at the next order is used. The third orientational moment in 3D is

B̃0 =

∫
qqq𝑔0𝑑q = B0 +α ·m0/5, (5.85)

where 𝛼𝑖 𝑗 𝑘𝑙 = 𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘 + 𝛿𝑖𝑘𝛿 𝑗 𝑙 is an isotropic fourth order tensor. Assuming
that B0 = 0, one can show that the general solutions are given by

𝑝0(𝑟) = 𝐶0 +
2∑︁
𝑘=1

𝐶𝑘
1
𝑟

exp [−𝜆𝑘 (𝑟 − 1)] + 𝐶3
𝑟
, (5.86)

𝑝1(𝑟) = −
2∑︁
𝑘=1

𝐶𝑘

𝑃𝑒𝑠

(
𝜆𝑘

𝑟2 + 1
𝑟3

)
exp [−𝜆𝑘 (𝑟 − 1)] + 𝐶3𝑃𝑒𝑠

6𝛾2𝑟3 , (5.87)

𝑝2(𝑟) =
2∑︁
𝑘=1

𝐶𝑘
3𝜆2

𝑘
− 6𝛾2 − 𝑃𝑒2

𝑠

2𝑃𝑒2
𝑠

(
1
𝑟3 + 3

𝜆𝑘𝑟
4 + 3

𝜆2
𝑘
𝑟5

)
exp [−𝜆𝑘 (𝑟 − 1)]

+
𝐶3𝑃𝑒

2
𝑠

30𝛾4𝑟5 , (5.88)

where

𝜆1 =

√︃
3𝑃𝑒2

𝑠 + 40𝛾2 +
√︁

9𝑃𝑒4
𝑠 + 40𝛾2𝑃𝑒2

𝑠 + 400𝛾4

√
10

, (5.89)

𝜆2 =

√︃
3𝑃𝑒2

𝑠 + 40𝛾2 −
√︁

9𝑃𝑒4
𝑠 + 40𝛾2𝑃𝑒2

𝑠 + 400𝛾4

√
10

. (5.90)
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The no-flux condition of 𝑛0 means that 𝐶3 = 0 and the far-field condition gives
𝐶0 = 1. The other two integration constants 𝐶1 and 𝐶2 can be obtained from the
no-flux conditions for m0 and Q0.

It is worthwhile to compare the results obtained with Q0 = 0 and B0 = 0. In
particular, for 𝑃𝑒𝑠 ≫ 1 and 𝛾 = 𝑂 (1), the Q0 closure predicts the correct scaling
of the number density at contact [𝑛𝑐 = 𝑂 (𝑃𝑒𝑠)] while the B0 closure gives a finite
density. This comparison implies that a higher order closure is not necessarily more
accurate.

The zeroth moment of 𝑔1 satisfies

∇𝑟 · (𝑃𝑒𝑠m1 − ∇𝑟𝑛1) = Û1 · ∇𝑟𝑛0, (5.91)

n · (𝑃𝑒𝑠m1 − ∇𝑟𝑛1) = n · Û1𝑛0 at 𝑟 = 1, (5.92)

𝑛1 → 0 as 𝑟 → ∞, (5.93)

where 𝑛1 and m1 are similarly defined but for 𝑔1; they are the leading-order distur-
bances to 𝑛0 and m0, respectively, due to the weak probe motion. With (5.84), it is
straightforward to see that the 𝑂 (𝑃𝑒) moments satisfy

𝑛1(r) = Û1 · r𝑝3(𝑟), (5.94)

m1(r) = Û1𝑝4(𝑟) + Û1 · rr𝑝5(𝑟), (5.95)

where 𝑝3-𝑝5 are unknown scalar radial functions. This is a manifestation of the so-
called linear response in which the disturbance fields are proportional to the vector
U1—the weak driving force.

In 2D, from (5.21), we have 𝜂micro
0 = 𝑝3(1). Similarly in 3D, (5.20) gives 𝜂micro

0 =

2𝑝3(1). In other words, the zero-forcing microviscosity is determined from the
contact value of 𝑝3.

5.10 Appendix: The slow-swimming limit
In the slow-swimming limit, characterized by 𝑃𝑒𝑠 ≪ 1, the probability distribution
of bath colloids can be expanded as

𝑔(r, q) = 𝑔0(r, q) + 𝑃𝑒𝑠𝑔1(r, q) + 𝑃𝑒2
𝑠𝑔2(r, q) + · · ·. (5.96)

Inserting the series into (5.13), (5.14), and (5.15), we can solve the problem order
by order.
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At𝑂 (1), the bath colloids are not self-propelling and the governing equations in the
vector form are

𝑃𝑒Û1 · ∇𝑟𝑛0 + ∇2
𝑟𝑛0 = 0, (5.97)

𝑃𝑒n · Û1𝑛0 + n · ∇𝑟𝑛0 = 0 at 𝑟 = 1, (5.98)

𝑛0 → 1 as 𝑟 → ∞, (5.99)

where 𝑛0(r) =
∫
𝑔0𝑑q and 𝑔0 = 𝑛0/Ω𝑑 . Clearly, the equations at 𝑂 (1) govern the

CV microrheology of passive colloids (Squires and Brady 2005).

The problem at 𝑂 (𝑃𝑒𝑘𝑠 ) (𝑘 = 1, 2, ...) satisfies

∇𝑟 ·
(
𝑃𝑒Û1𝑔𝑘 + ∇𝑟𝑔𝑘

)
+ 𝛾2∇2

𝑅𝑔1 = q · ∇𝑟𝑔𝑘−1, (5.100)

n ·
(
𝑃𝑒Û1𝑔𝑘 + ∇𝑟𝑔𝑘

)
= n · q𝑔𝑘−1 at 𝑟 = 1, (5.101)

𝑔𝑘 → 0 as 𝑟 → ∞. (5.102)

One can see that the solution at 𝑂 (𝑃𝑒𝑠) has the structure 𝑔1(r, q) = q · G1(r),
whereG1(r) is a vector-valued function of r. This means that the number density at
𝑂 (𝑃𝑒𝑠) vanishes, 𝑛1 =

∫
𝑔1𝑑q ≡ 0. We note that the polar order (m1 =

∫
q𝑔1𝑑q)

is nonzero and is responsible for driving a density distribution at the next order
[𝑂 (𝑃𝑒2

𝑠 )]. This structure ultimately leads to the fact that

𝜂micro(𝑃𝑒, 𝑃𝑒𝑠, 𝛾) = 𝜂micro
passive + 𝑃𝑒

2
𝑠𝜂

micro
2 + · · ·. (5.103)

In other words, the swim-thinning discussed in the main text occurs at 𝑂 (𝑃𝑒2
𝑠 ).
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C h a p t e r 6

MICROVISCOELASTICITY

6.1 Introduction
In the previous chapter, we have examined the micro-viscous response of active
colloidal suspensions. This is achieved using particle-tracking microrheology in
which a probe particle is pulled through the suspension at a constant velocity. In the
context of bio-microrheology, the material under examination is often complex and
exhibit viscoelastic behavior. To probe the viscoelastic response of materials at the
microscale, the probe is often driven by an oscillatory motion (Weihs et al. 2006;
Berret 2016).

From a theoretical perspective, the oscillatory microrheology of passive colloidal
suspensions have been considered by Khair and Brady (2005) and Swan et al. (2014).
In this chapter, we extend this analysis to active colloidal suspensions.

6.2 Theoretical framework
Consider a collection of 𝑁 neutrally buoyant spherical active Brownian particles of
radii 𝑏 dispersed in a Newtonian solvent with viscosity 𝜂 and density 𝜌. A probe
particle of radius 𝑎 is placed into the active suspension in order to measure its
rheological response. The kinematics of the probe is prescribed to be oscillatory
such that its instantaneous velocity at time 𝑡 is given by

Ũ1(𝑡) = U1𝑅𝑒
[
𝑒𝑖𝜔𝑡

]
, (6.1)

where U1 is a constant vector, 𝑖 (𝑖2 = −1) is the imaginary unit, 𝜔 is frequency
of oscillation, and 𝑅𝑒 denotes the real part of a complex quantity. In addition to
requiring the Reynolds number to be small, we assume that the Strouhal number
𝑆𝑡 = 𝜌𝜔𝑏2/𝜂 ≪ 1 such that the fluid mechanics is described by the quasi-steady
Stokes equations.

Assuming that the suspension is sufficiently dilute, we only consider the interaction
between the probe and one of the bath particles. Following previous work on
the microrheology of passive (Squires and Brady 2005) and active suspensions
(Burkholder and Brady 2019; 2020), we neglect hydrodynamic interactions and
instead focus on the steric interaction between the probe and one ABP. These
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Figure 6.1: Schematic of a probe particle oscillating with the velocity U1𝑒
𝑖𝜔𝑡 and

an active Brownian bath particle in 2D. The ABP swims with a constant speed 𝑈2
in a direction q. The radius of contact is 𝑅𝑐 and n is the unit normal vector pointing
from the probe into the ABP suspension.

assumptions lead to arguably the simplest model for the microrheology of active
suspensions, where insightful analytical progress can be made. In the co-moving
frame attached to the probe, the suspension microstructure 𝑔(r, q, 𝑡) is governed by
the Smoluchowski equation (Burkholder and Brady 2020):

𝜕𝑔(r, q, 𝑡)
𝜕𝑡

+ ∇𝑟 ·
(
j𝑇2 − j𝑇1

)
+ ∇𝑅 · j𝑅2 = 0, (6.2)

where 𝑃1/1(r, q, 𝑡) = 𝑛∞𝑔(r, q, 𝑡) is the conditional probability of finding an ABP
at a separation r from the probe with orientation q at time 𝑡 and 𝑛∞ is the undisturbed
number density of the suspension.

In the absence of hydrodynamic interactions between the probe and the ABP, the
translational and rotational fluxes in the Smoluchowski equation (6.2), respectively,
are

j𝑇2 − j𝑇1 =
(
𝑈2q − Ũ1

)
𝑔 − 𝐷2∇𝑟𝑔, (6.3)

j𝑅2 = −𝐷𝑅∇𝑅𝑔. (6.4)

At the surface of contact (|r | = 𝑅𝑐 = 𝑎 + 𝑏), the relative translational flux of particle
centers vanishes:

n ·
(
j𝑇2 − j𝑇1

)
= 0, (6.5)
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where n is the unit normal vector as shown in figure 6.1. In the far field, the
suspension microstructure is undisturbed, giving

𝑔 → 1
Ω𝑑

as 𝑟 → ∞, (6.6)

where Ω𝑑 is the total solid angle of the orientation space in 𝑑 dimensions.

A dimensional analysis reveals five timescales that govern the oscillatory microrhe-
ology of active suspensions: (1) the diffusive timescale 𝜏𝐷 = 𝑅2

𝑐/𝐷2, (2) the swim
timescale 𝜏𝑠 = 𝑅𝑐/𝑈2, (3) the advective timescale 𝜏adv = 𝑅𝑐/𝑈1, (4) the reorienta-
tion time 𝜏𝑅 = 1/𝐷𝑅, and (5) the timescale of oscillation 1/𝜔. Four dimensionless
parameters can be defined by comparing various timescales; these are given by

𝑃𝑒𝑠 =
𝜏𝐷

𝜏𝑠
=
𝑈2𝑅𝑐
𝐷2

, 𝛾 =

(
𝜏𝐷

𝜏𝑅

)1/2
=
𝑅𝑐

𝛿
, 𝑃𝑒 =

𝜏𝐷

𝜏adv
=
𝑈1𝑅𝑐
𝐷2

, 𝜒 = 𝜔𝜏𝐷 . (6.7)

where 𝛿 =
√
𝐷2𝜏𝑅 is the microscopic diffusive step taken by the ABP on the

reorientation timescale 𝜏𝑅. The first parameter in the above is referred to as the
swim Péclet number, 𝑃𝑒 is the Péclet number of the probe, 𝛾 is a measure of the
reorientation time compared to 𝜏𝐷 , and 𝜒 is the comparison between the oscillation
timescale and 𝜏𝐷 .

By scaling lengths by 𝑅𝑐 and time by 𝜏𝐷 , the resulting dimensionless Smoluchowski
equation is

𝜕𝑔

𝜕𝑡
+ ∇𝑟 ·

[(
𝑃𝑒𝑠q − 𝑃𝑒Û1 cos(𝜒𝑡)

)
𝑔 − ∇𝑟𝑔

]
− 𝛾2∇2

𝑅𝑔 = 0. (6.8)

The no-flux condition (6.5) becomes

n ·
[(
𝑃𝑒𝑠q − 𝑃𝑒Û1 cos(𝜒𝑡)

)
𝑔 − ∇𝑟𝑔

]
= 0 at 𝑟 = 1, (6.9)

and the far-field condition (6.6) remains unchanged.

To characterize the microviscoelastic response of the suspension in the dilute limit,
a microviscosity can be defined. In 2D, this is given by

𝜂micro =
Δ𝜂

𝜙𝜂

𝛼

(1 + 𝛼)2 =
1
𝜋𝑃𝑒

Û1 ·
∮
𝑟=1

n𝑛𝑑𝑆, (6.10)

where 𝜙 = 𝑛∞𝜋𝑏2 is the area fraction, 𝛼 = 𝑎/𝑏 is the radius ratio between the probe
and the bath particle, and 𝑛 =

∫
𝑔𝑑q is the number density. When the probe has an

oscillatory motion, the probability distribution 𝑔 (therefore the microviscosity) is a
function of time 𝑡. A general time-periodic oscillation can be decomposed into an
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infinite sum of individual Fourier modes. Here, we consider the microrheological
behavior under a single mode oscillation.

For steady-probe microrheology, we have shown that the viscous response of active
suspensions exhibit a swim-thinning behavior. Compared to that of passive suspen-
sions, the microviscosity of active suspensions is lowered due to their swimming
motion. Because the swimming motion is obscured by a fast probe, swim-thinning
is most significant in the slow-probe regime and vanishes in the fast-probe limit.
For an oscillating probe as we consider in this chapter, the swimming motion is sim-
ilarly obscured in the fast-probe limit and the microviscoelastic response becomes
the same as that of passive suspensions. To highlight the difference between passive
and active suspensions, we therefore focus on small amplitude oscillations in this
chapter.

6.3 Small amplitude oscillations
When the amplitude of oscillation is small but the frequency of oscillation is ar-
bitrary, characterized by 𝑃𝑒 ≪ 1, the suspension is slightly perturbed from its
isotropic steady state in which the probe is held fixed (𝑃𝑒 ≡ 0). In this low-𝑃𝑒 limit,
the suspension microstructure at long times admits a perturbation expansion of the
form

𝑔(r, q, 𝑡) = 𝑔0(r, q) + 𝑃𝑒𝑔̃1(r, q)𝑒𝑖𝜒𝑡 + · · ·, (6.11)

where at𝑂 (1) the probe is not moving and 𝑔0 is the microstructure of ABPs outside
a fixed sphere. We note that, in the above to obtain the 𝑂 (𝑃𝑒) microstructure due
to the oscillation cos(𝜒𝑡), the real part of the solution should be taken. In terms
of 𝑃𝑒, the leading-order deformation of the microstructure is in the linear response
regime. Inserting equation (6.11) into the Smoluchowski equation (6.8) and the
no-flux condition (6.9), we obtain the governing equations at 𝑂 (𝑃𝑒) as

𝑖𝜒𝑔̃1 + ∇𝑟 · (𝑃𝑒𝑠q𝑔̃1 − ∇𝑔̃1) − 𝛾2∇2
𝑅𝑔̃1 = Û1 · ∇𝑟𝑔0, (6.12)

n · (𝑃𝑒𝑠q𝑔̃1 − ∇𝑟 𝑔̃1) = n · Û1𝑔0 at 𝑟 = 1, (6.13)

𝑔̃1 → 0 as 𝑟 → ∞. (6.14)

Obviously, the only difference between (6.12) and that obtained for a steady-probe
is the presence of the term 𝑖𝜒𝑔̃1, which drives a frequency response.

From (6.10) and (6.11), the microviscosity can be obtained order by order. The
𝑂 (𝑃𝑒) microstructure gives rise to the 𝑂 (1) microviscosity:

𝜂micro
0 = lim

𝑃𝑒→0
𝜂micro = 𝑅𝑒

[
𝑒𝑖𝜒𝑡𝜂0

]
, (6.15)
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where we have defined the zero-forcing complex microviscosity (in 2D)

𝜂0 =
1
𝜋
Û1 ·

∮
𝑟=1

n𝑛̃1𝑑𝑆, (6.16)

and
𝑛̃1 =

∫
𝑔̃1𝑑q (6.17)

is the “complex” number density at 𝑂 (𝑃𝑒).

It is useful to separate 𝜂0 into its real and imaginary parts via the definition

𝜂0 = 𝜂′ − 𝑖𝜂′′, (6.18)

where 𝜂′ = 𝑅𝑒 [𝜂0] is the real part and 𝜂′′ = −𝐼𝑚 [𝜂0] is the imaginary part. The
real part corresponds to viscous dissipation while the imaginary part corresponds to
elasticity. To see this more clearly, consider the probe motion given by 𝑅𝑒

[
𝑒𝑖𝜒𝑡

]
=

cos(𝜒𝑡), which in the small amplitude limit leads to a microviscosity of the form
𝜂micro

0 = cos(𝜒𝑡)𝜂′ + sin(𝜒𝑡)𝜂′′. Notice that 𝜂′ cos(𝜒𝑡) is the component that is
in-phase (i.e., viscous) with the driving motion while 𝜂′ cos(𝜒𝑡) is the out-of-phase
component (elastic).

6.3.1 The governing equations in 2D
It is convenient to define the swim orientation angle relative to the radial basis vector
e𝑟 such that q = cos 𝜃𝑞e𝑟 + sin 𝜃𝑞e𝜃 , where e𝑟 = cos 𝜃e𝑥 + sin 𝜃e𝑦 and e𝜃 = e𝑧 ×e𝑟 .
Furthermore, we take Û1 = e𝑥 so that the oscillation is along the 𝑥 axis of the
Cartesian coordinate system (see figure 6.1). In the (𝑟, 𝜃, 𝜃𝑞) coordinate system,
equation (6.12) can be written explicitly as

𝑖𝜒𝑔̃1 + 𝑃𝑒𝑠 cos 𝜃𝑞
𝜕𝑔̃1
𝜕𝑟

+ 𝑃𝑒𝑠
sin 𝜃𝑞
𝑟

(
𝜕𝑔̃1
𝜕𝜃

− 𝜕𝑔̃1
𝜕𝜃𝑞

)
− 1
𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑔̃1
𝜕𝑟

− 1
𝑟2

(
𝜕2𝑔̃1

𝜕𝜃2 − 2
𝜕2𝑔̃1
𝜕𝜃𝜕𝜃𝑞

+ 𝜕
2𝑔̃1

𝜕𝜃2
𝑞

)
− 𝛾2 𝜕

2𝑔̃1

𝜕𝜃2
𝑞

= cos 𝜃
𝜕𝑔0
𝜕𝑟

− sin 𝜃
𝑟

(
𝜕𝑔0
𝜕𝜃

− 𝜕𝑔0
𝜕𝜃𝑞

)
, (6.19)

and the boundary condition (6.13) becomes

𝑃𝑒𝑠 cos 𝜃𝑞 𝑔̃1 −
𝜕𝑔̃1
𝜕𝑟

= cos 𝜃𝑔0 at 𝑟 = 1. (6.20)

As shown in the previous chapter for the microrheology using a steady probe (𝜒 ≡ 0),
the structure of the equations at 𝑂 (𝑃𝑒) allows us to decompose the solution as

𝑔̃1(𝑟, 𝜃, 𝜃𝑞) = 𝑓1(𝑟, 𝜃𝑞) cos 𝜃 + 𝑓2(𝑟, 𝜃𝑞) sin 𝜃. (6.21)
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The solution to 𝑔0 has been obtained in the previous chapter, which is needed to
calculate the 𝑂 (𝑃𝑒) microstructure 𝑔̃1 as can be seen from equation (6.19). Using
truncated Fourier series to represent 𝑓1 and 𝑓2 allows us to obtain a set of coupled
ordinary differential equations (ODEs) for their radially-dependent Fourier modes.
These ODEs are then solved numerically using a Laguerre collocation method (see
section 6.5 for the details on numerics).

6.3.2 The high-frequency limit
In the limit 𝜒 → ∞, far from the probe the suspension is not disturbed, 𝑔̃1 = 0. Near
contact with the probe, a boundary layer emerges, which is determined by a balance
between the fast oscillation 𝑖𝜒𝑔̃1 and diffusion −𝜕2𝑔̃1/𝜕𝑟2. This balance determines
the boundary layer thickness and the stretched coordinate 𝜌 = (𝑟 − 1)𝜒1/2. In the
boundary layer, the leading-order solution is 𝑂 (𝜒−1/2):

𝑔̃1 = 𝜒−1/2ℎ + · · ·, (6.22)

where ℎ is governed by

𝑖ℎ − 𝜕2ℎ

𝜕𝜌2 = 0, (6.23)

− 𝜕ℎ

𝜕𝜌
= e𝑟 · Û1𝑔0 at 𝜌 = 0, (6.24)

ℎ → 0 as 𝜌 → ∞. (6.25)

Here, as seen in (6.24), ℎ is driven by the radial advective flux of the 𝑔0 field at
contact. One can show that the solution is

ℎ =
1 − 𝑖
√

2
e𝑟 · Û1 exp

(
− (1 + 𝑖)𝜌

√
2

)
𝑔0( |r | = 1, q). (6.26)

With this, the zero-forcing microviscosity defined by equation (6.16) becomes

𝜂0 =
1 − 𝑖√︁

2𝜒
𝑛0(𝑟 = 1) + 𝑜( 1

√
𝜒
) as 𝜒 → ∞, (6.27)

where 𝑛0(𝑟 = 1) =
∫
𝑔0(𝑟 = 1)𝑑q is the number density at contact when the probe

is held fixed.

6.4 The zero-forcing microviscoelasticity
In figure 6.2, we plot the zero-forcing microviscoelasticity as a function of the
dimensionless frequency 𝜒. In the small 𝜒 limit, the active suspension is viscous
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Figure 6.2: Plot of (a) the viscous part (𝜂′) and (b) the elastic part (𝜂′′) of the
zero-forcing microviscosity as a function of the dimensionless oscillation frequency
𝜒 = 𝜔𝜏𝐷 for several values of 𝑃𝑒𝑠 = 𝑈2𝑅𝑐/𝐷2. The results are obtained from
solving the governing equations numerically as discussed in section 6.5. For all
results shown, 𝛾 = 1. Both panels share the same legends as shown in (a).

and the viscous part of the microviscosity exhibits a swim-thinning behavior as
discussed in the previous chapter. As the frequency increases, the viscous part
of the microviscosity decreases. The elastic part of the microviscosity exhibits a
non-monotonic behavior as a function of 𝜒.

In the large 𝜒 limit, both the viscous and the elastic part of the microviscosity decay
as 𝜒−1/2 [see equation (6.27)]. This behavior is highlighted in figure 6.3 in which
𝜂′/𝑛0(𝑟 = 1) and 𝜂′′/𝑛0(𝑟 = 1) are plotted as a function of 𝜒.

6.5 Appendix: Numerical solution to 𝑓1 and 𝑓2

In this section, we present the governing equations for 𝑓1 and 𝑓2 and their discretiza-
tion used for the numerical solution. Inserting equation (6.21) into (6.19) leads to
the following coupled equations:

𝑖𝜒 𝑓1 + 𝑃𝑒𝑠 cos 𝜃𝑞
𝜕 𝑓1
𝜕𝑟

+ 𝑃𝑒𝑠
sin 𝜃𝑞
𝑟

(
𝑓2 −

𝜕 𝑓1
𝜕𝜃𝑞

)
− 1
𝑟

𝜕

𝜕𝑟
𝑟
𝜕 𝑓1
𝜕𝑟

− 1
𝑟2

(
− 𝑓1 − 2

𝜕 𝑓2
𝜕𝜃𝑞

+ 𝜕
2 𝑓1

𝜕𝜃2
𝑞

)
− 𝛾2 𝜕

2 𝑓1

𝜕𝜃2
𝑞

=
𝜕𝑔0
𝜕𝑟

, (6.28)
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Figure 6.3: Plot of (a) the viscous part (𝜂′) and (b) the elastic part (𝜂′′) of the
zero-forcing microviscosity as a function of the dimensionless oscillation frequency
𝜒 = 𝜔𝜏𝐷 for several values of 𝑃𝑒𝑠 = 𝑈2𝑅𝑐/𝐷2. The results are obtained from
solving the governing equations numerically as discussed in section 6.5. For all
results shown, 𝛾 = 1.

𝑖𝜒 𝑓2 + 𝑃𝑒𝑠 cos 𝜃𝑞
𝜕 𝑓2
𝜕𝑟

+ 𝑃𝑒𝑠
sin 𝜃𝑞
𝑟

(
− 𝑓1 −

𝜕 𝑓2
𝜕𝜃𝑞

)
− 1
𝑟

𝜕

𝜕𝑟
𝑟
𝜕 𝑓2
𝜕𝑟

− 1
𝑟2

(
− 𝑓2 + 2

𝜕 𝑓2
𝜕𝜃𝑞

+ 𝜕
2 𝑓2

𝜕𝜃2
𝑞

)
− 𝛾2 𝜕

2 𝑓2

𝜕𝜃2
𝑞

=
1
𝑟

𝜕𝑔0
𝜕𝜃𝑞

. (6.29)

Similarly, the boundary condition (6.20) decomposes into

𝑃𝑒𝑠 cos 𝜃𝑞 𝑓1 −
𝜕 𝑓1
𝜕𝑟

= 𝑔0 at 𝑟 = 1, (6.30)

𝑃𝑒𝑠 cos 𝜃𝑞 𝑓2 −
𝜕 𝑓2
𝜕𝑟

= 0 at 𝑟 = 1. (6.31)

The far-field condition is 𝑓1, 𝑓2 → 0 as 𝑟 → ∞.

Following the previous chapter, we resolve the orientational operators explicitly
using a truncated Fourier series, i.e.,

𝑓1(𝑟, 𝜃𝑞) ≈
𝐾∑︁

𝑘=−𝐾
𝐶1,𝑘 (𝑟)𝑒𝑖𝑘𝜃𝑞 , (6.32)

𝑓2(𝑟, 𝜃𝑞) ≈
𝐾∑︁

𝑘=−𝐾
𝐶2,𝑘 (𝑟)𝑒𝑖𝑘𝜃𝑞 , (6.33)

where 𝐾 is a positive integer denoting the number of Fourier modes used in the
truncated series. These expansions allow us to reduce equations (6.28) and (6.29)
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to a set of coupled ODEs in terms of the Fourier modes 𝐶1,𝑘 (𝑟) and 𝐶2,𝑘 (𝑟). The
resulting ODEs are similar to those obtained in the previous chapter for the case of
steady-probe microrheology except the addition of the frequency terms (e.g., 𝑖𝜒 𝑓1).
We solve these ODEs using a spectral collocation method of the Laguerre functions,
which forms an orthogonal basis in the natural domain of [0, +∞). Further details
of the numerics are given in the previous chapter.
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C h a p t e r 7

ACTIVITY-INDUCED PROPULSION OF A VESICLE

Modern biomedical applications such as targeted drug delivery require a delivery
system capable of enhanced transport beyond that of passive Brownian diffusion. In
this work an osmotic mechanism for the propulsion of a vesicle immersed in a viscous
fluid is proposed. By maintaining a steady-state solute gradient inside the vesicle,
a seepage flow of the solvent (e.g., water) across the semipermeable membrane is
generated which in turn propels the vesicle. We develop a theoretical model for
this vesicle-solute system in which the seepage flow is described by a Darcy flow.
Using the reciprocal theorem for Stokes flow it is shown that the seepage velocity at
the exterior surface of the vesicle generates a thrust force which is balanced by the
hydrodynamic drag such that there is no net force on the vesicle. We characterize
the motility of the vesicle in relation to the concentration distribution of the solute
confined inside the vesicle. Any osmotic solute is able to propel the vesicle so long as
a concentration gradient is present. In the present work, we propose active Brownian
particles (ABPs) as a solute. To maintain a symmetry-breaking concentration
gradient, we consider ABPs with spatially varying swim speed and ABPs with
constant properties but under the influence of an orienting field. In particular, it is
shown that at high activity the vesicle velocity is U ∼ [𝐾⊥/(𝜂𝑒ℓ𝑚)]

∫
Πswim

0 n𝑑Ω,
where Πswim

0 is the swim pressure just outside the thin accumulation boundary layer
on the vesicle interior surface, n is the unit normal vector of the vesicle boundary,
𝐾⊥ is the membrane permeability, 𝜂𝑒 is the viscosity of the solvent, and ℓ𝑚 is the
membrane thickness.

7.1 Introduction
Targeted drug delivery is an important goal of modern nanomedicine. Recent ad-
vances in the design, manufacture and control of nanocarriers have enabled the
delivery of such cargoes into single cells for the purpose of imaging, diagnostics
and therapeutics (West and Halas 2003; Gao et al. 2005; Rao et al. 2007; Torchilin
2012). Commonly used pharmaceutical nanocarriers include liposomes, micelles,
nanoemulsions, polymeric nanoparticles, and many others (Torchilin 2012). In par-
ticular, liposomes have become an important class of carriers for the encapsulation
and transport of medical cargoes because of several advantages including their bio-
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compatibility with human cells, and the improved solubility of drugs and versatility
for chemical targeting (Pattni et al. 2015), among others.

A liposome is a vesicle that has an aqueous solution core encircled by a hydrophobic
membrane (lipid bilayer); hydrophilic solutes dissolved in the core cannot readily
pass through the membrane while lipophilic chemicals tend to associate with the
bilayer. As a result, a liposome can be loaded with hydrophilic, lipophilic and/or
amphiphilic cargoes in the context of drug delivery. Recently, the Moderna vaccine
developed to prevent coronavirus disease 2019 (COVID-19) has utilized a lipid
based nanovesicle to encapsulate the mRNA vaccine that encodes the SARS-CoV-2
spike glycoprotein (Jackson et al. 2020).

The liposome-encapsulated medical cargo is transported passively, either via dif-
fusion or advection due to local fluid flow, which limits its ability to overcome
biological barriers. To mitigate such limitations of passive drug delivery, active
drug delivery platforms using motile microrobots (or microswimmers), either syn-
thetic or biohybrid, have been proposed (Medina-Sánchez et al. 2018; Erkoc et al.
2019; Singh et al. 2019; Bunea and Taboryski 2020). By attaching nanoparticle
cargoes to the surface of a motile microswimmer, the delivery system can actively
navigate, access regions that are unreachable to passive drug delivery, and be di-
rected to the desired site using chemotaxis or an external magnetic field (Felfoul et al.
2016; Park et al. 2017). Due to self-propulsion of the microswimmer, the effective
dispersion of the attached cargo is greatly enhanced, sometimes by a few orders of
magnitude, compared to the long-time self diffusivity of the passively-transported
cargo (Singh et al. 2017).

Instead of attaching a cargo to the surface of a microswimmer, one can also en-
capsulate both the cargo and the microswimmer inside the vesicle. Encapsulated
microswimmers have been studied by previous works. For example, biological
microswimmers and self-propelled Janus particles haven been successfully encap-
sulated inside engineered giant unilamellar vesicles (GUVs) (Trantidou et al. 2018;
Takatori and Sahu 2020; Vutukuri et al. 2020). The encapsulated microswimmer
provides the vesicle with enhanced super-diffusive motion mediated through hydro-
dynamic interactions between the microswimmer and the vesicle provided that the
fluid is allowed to pass through the membrane of the vesicle (Marshall and Brady
2021).

In the present work we consider a system that combines the benefits of the vesicle
for cargo encapsulation and the self-propulsion of microswimmers for enhanced
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transport. We propose an alternate model system in which the vesicle is propelled
by an osmotic flow that is induced by an actively-maintained concentration gradient
of a solute inside the vesicle. This kind of osmotic propulsion has been proposed
as an alternate mechanism for tumor cells to migrate under strong confinement,
in which case other modes of motility such as contractility is inhibited. Stroka
et al. (2014) showed that through physical and biochemical processes, the tumor
cell establishes a spatial gradient of solute (ions), which creates a net inflow of
water at the cell leading edge and a net outflow at the cell trailing edge. As a
result, this water permeation process enables the cell to migrate through narrow
channels. We are specifically interested in studying the motility of the vesicle as a
result of a prescribed concentration gradient of a solute that is confined inside the
vesicle. Because the solute particles are not allowed to pass through the membrane,
an osmotic flow of water is generated, which in turn propels the vesicle immersed
in water.

The main question we wish to address in this work is: What is the motility of the
vesicle system in relation to the concentration gradient of the solute? More interest-
ingly, does the vesicle move in the same or opposite direction of the concentration
gradient?

We show by explicit calculation that for a weakly permeable membrane the transla-
tional velocity of a rigid spherical vesicle becomes

U =
1

4𝜋
𝐾⊥
𝜂𝑒ℓ𝑚

∫
𝑆2
Πosmo

0 n𝑑Ω, (7.1)

where Πosmo
0 = 𝑛𝑤𝑘𝐵𝑇 is the osmotic pressure of the solute at the interior wall, 𝑛𝑤

is the local number density of the solute in the absence of internal fluid flow, 𝑘𝐵𝑇
is the thermal energy, 𝐾⊥ is the membrane permeability, 𝜂𝑒 is the viscosity of the
solvent (water) and ℓ𝑚 is the thickness of the membrane. In equation (7.1), n is
the unit outward normal vector (see figure 7.1) and the integration is over the solid
angle in three dimensions (3D). In this limit, the translational velocity of the vesicle
is linearly proportional to the driving force—the osmotic pressure. As expected, a
number density at the interior wall that breaks front-back symmetry is required in
order to have a nonzero translational velocity of the vesicle.

Equation (7.1) applies generally for any osmotic solute in the weak permeability
limit so that the interior fluid flow only slightly perturbs the solute distribution. For
example, a linear solute gradient, 𝑛0 = 𝑛0(0) + x · ∇𝑛0, results in

U =
1
3
𝐾⊥
𝜂𝑒ℓ𝑚

(𝑅 − ℓ𝑚)𝑘𝐵𝑇∇𝑛0, (7.2)
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where ∇𝑛0 is a constant vector and 𝑅 is the exterior radius of the vesicle. Therefore,
for the simple prescribed linear-density gradient, the vesicle translates in the same
direction as the gradient in number density.

The above discussion reveals that the vesicle is able to exhibit net motion when an
interior solute concentration gradient is given. A separate, but important, question
is: How can such a solute gradient be maintained? For a biological cell, this is
achieved by its internal physical and biochemical processes (Stroka et al. 2014). For
a synthetic vesicle system for the purpose of enhanced transport, alternate methods
need to be implemented in order to generate such a concentration gradient.

In this work, leveraging recent advances in the understanding of the dynamics of
active matter, we propose to use active Brownian particles (ABPs) as the solute.
In addition to normal thermal Brownian motion with translational diffusivity 𝐷𝑇 ,
ABPs self-propel with an intrinsic ‘swim’ speed𝑈𝑠 in a direction q. The orientation
of the swimming direction q changes on a reorientation timescale 𝜏𝑅 that results
from either continuous random Brownian rotations or the often-observed discrete
tumbling events of bacteria. One important intrinsic length scale due to activity is
the run or persistence length ℓ = 𝑈𝑠𝜏𝑅. Previous works have shown that a spatial
variation in the swim speed leads to a spatial variation in the concentration (or
number density) of active particles (Schnitzer 1993; Tailleur and Cates 2008; Row
and Brady 2020). By tuning the swim speed distribution of ABPs confined inside
the vesicle, a spherically asymmetric density distribution can emerge and lead to net
motion of the vesicle.

For active particles with slow spatial variation in swim speed in 1D, Schnitzer
(1993) and later Tailleur and Cates (2008) showed that the local number density
𝑛 is inversely proportional to the local swim speed 𝑈𝑠, i.e., 𝑛𝑈𝑠 = 𝑐𝑜𝑛𝑠𝑡. This
simple prediction has been validated experimentally using bacteria that swim with
an intensity-dependent speed when illuminated by a spatial light pattern (Arlt et al.
2019). Row and Brady (2020) generalized this result and showed that the spatial
variation in activity (e.g., swim speed) can be utilized as a pump mechanism in which
fluid flows from regions of high concentration of particles to low. Employing this
spatial variation, we show that encapsulated ABPs with spatially varying activity
can be used to propel the vesicle.

In equations (7.1) and (7.2), the vesicle velocity appears to be linearly proportional
to 𝑘𝐵𝑇 . However, this does not imply that the driving force is necessarily thermal
in origin (in thermodynamic equilibrium no density gradient is present). In the case
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of ABPs as solute, the active (non-equilibrium) dynamics provides such a density
gradient. Analogous to the Stokes-Einstein-Sutherland relation 𝑘𝐵𝑇 = 𝜁𝐷𝑇 , where
𝜁 is the Stokes drag coefficient, an active energy scale 𝑘𝑠𝑇𝑠 = 𝜁 𝐷̃swim can be
defined for active matter systems (Takatori et al. 2014), where 𝐷̃swim = 𝑈̃2

𝑠 𝜏𝑅/6
is the swim diffusivity. We note that for ABPs with spatially varying swim speed
a characteristic swim speed 𝑈̃𝑠 is used in the definition of the swim diffusivity;
the local active energy 𝑘𝑠𝑇𝑠 (x) can also be defined by using the local swim speed
𝑈𝑠 (x) and/or local reorientation time 𝜏𝑅 (x). An important parameter that quantifies
the activity of ABPs is the ratio 𝑘𝑠𝑇𝑠/𝑘𝐵𝑇 = 𝐷̃swim/𝐷𝑇 . For many active matter
systems this ratio is very large, often exceeding 103 (Takatori et al. 2016). In this
high activity limit, the ABPs exhibit a thin accumulation boundary layer at the
interior surface of the vesicle. As we shall show in section 7.3.2, the local density at
the interior wall of the vesicle can be related to the density just outside the boundary
layer via the equation 𝑛𝑤𝑘𝐵𝑇 = 𝑛0𝑘𝑠𝑇𝑠 (x) 𝑓 = Πswim

0 (x) 𝑓 , where Πswim
0 is the swim

pressure just outside the boundary layer and 𝑓 is a factor that depends on the ratio
of the run length to the size of the vesicle. [ This factor is unity for the case of ABPs
on one side of an infinite planar wall (Yan and Brady 2015b).] For highly active
(𝑘𝑠𝑇𝑠 ≫ 𝑘𝐵𝑇) ABPs, equation (7.1) becomes

U =
1

4𝜋
𝐾⊥
𝜂𝑒ℓ𝑚

∫
𝑆2
𝑛0𝑘𝑠𝑇𝑠 (x) 𝑓n𝑑Ω =

1
4𝜋

𝐾⊥
𝜂𝑒ℓ𝑚

∫
𝑆2
Πswim

0 n 𝑓 𝑑Ω, (7.3)

showing that the velocity of the vesicle is proportional to the swim pressure. More
precisely, it is the variation of the swim pressure [due to the variation in swim speed
or run length ℓ(x)] that gives rise to net motion.

Instead of using ABPs with spatially varying swim speed or run length, one can
also consider using an external field that orients constant-property ABPs towards
a certain direction. External fields such as chemical gradients or magnetic fields
can affect the swimming behavior of microorganisms to facilitate their movement
towards a favorable region. In the laboratory, an externally applied magnetic field
has been used to guide nanocarriers for the purpose of targeted drug delivery (Felfoul
et al. 2016; Pattni et al. 2015). In the presence of an external orienting field, even
for ABPs with constant properties, the front-back symmetry is broken, and net
motion of the vesicle is generated. The balance of the strength of the orienting
field and the random reorientation due to rotary diffusion is characterized by the
Langevin parameter, 𝜒𝑅 = Ω𝑐𝜏𝑅, where Ω𝑐 is the strength of the angular velocity
induced by the field (Takatori and Brady 2014). Noting that the force exerted by the
active particles on the wall F 𝑤 = 𝑘𝐵𝑇

∫
𝑛𝑤n𝑑𝑆 (Yan and Brady 2015b), we rewrite
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equation (7.1) as 𝑈 = 𝐾⊥F𝑊/(4𝜋𝑅2𝜂𝑒ℓ𝑚). In other words, we need to know the
net force the active particles exert on the wall to determine the net vesicle motion.
The force on the wall scales as 𝑁𝑤𝜁𝑈𝑠, where 𝑁𝑤 is the total number of particles
at the wall and each particle pushes against the wall with at most its swim force
𝜁𝑈𝑠. The balance of this force due to the ABPs with the drag force of the porous
vesicle moving through an external viscous fluid gives the net motion. Of particular
interest is the strong-field limit, where the number of particles on the wall is on the
same order as the total number of particles, 𝑁𝑤/𝑁 = 𝑂 (1), and the net speed of the
vesicle is the largest,𝑈 ∼ 𝐾⊥𝑁𝜁𝑈𝑠/(𝑅2𝜂𝑒ℓ𝑚).

This last example where we argued that the vesicle motion can be deduced from
the net swim force of the ABPs balancing the drag of the vesicle also applies to the
so-called ‘dry’ active matter (Marchetti et al. 2013). Dry active matter describes
bacteria (or other organisms) that crawl (or even walk) on a surface of a medium of
resistivity 𝜁 . Active particles confined to a ‘container’ that is able to slide along the
surface in response to a lateral force will be able to push the container via their ‘swim’
force if there is an asymmetric distribution of ABPs. The net swim force would scale
as 𝑁𝑤𝜁𝑈𝑠, and the container would translate with the speed𝑈𝑐 ∼ 𝑁𝑤𝜁𝑈𝑠/𝜁𝑐, where
𝜁𝑐 is the resistivity for sliding the container along the surface. For dry active matter
there is no fluid and thus one does not have the notion of a semipermeable membrane
nor a seepage velocity driven by an osmotic pressure difference. Nevertheless, the
mechanics are the same: like the seepage velocity, the substrate surface must move
across the container boundary as it slides along the surface, and the ABPs achieve
their propulsive ‘crawling’ force by pushing off the substrate just like swimmers
push off the fluid. Thus, at least at high activity, the results derived here apply
equally well to dry active matter with an appropriate change in notation.

In the case of a spherical vesicle, its net motion is induced by an asymmetric
number density distribution on the vesicle interior surface. An alternate route for
the generation of net motion is to use a vesicle with an asymmetric shape. Because
the accumulation of ABPs at the interior surface depends on the local curvature
of the boundary, a vesicle that has a front-back asymmetry in its shape is able to
exhibit net motion. Indeed, the exterior version of the problem where a passive
object is immersed in a bath of active particles has been studied. It has been shown
in experiments and simulations that for an object with shape asymmetry, net motion
can be achieved (Sokolov et al. 2010; Kaiser et al. 2014; Yan and Brady 2018).

To obtain the results for the vesicle motility, in section 7.2 we describe the model
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and derive a theoretical formulation that governs the dynamics of the vesicle, the
interior solute suspension and the exterior fluid flow. A Darcy-like constitutive law
that models the response of the fluid seepage velocity in relation to the fluid stress
differences across the membrane is used. This formulation is at the continuum level,
where the vesicle is large compared to the size of the ABPs so that the interior (fluid
and ABPs) is treated as a suspension; the suspension stress includes the fluid stress
and the osmotic pressure of the ABPs. The exterior flow field satisfies the boundary
condition that the fluid velocity at the exterior surface of the vesicle consists of the
rigid body motion and a seepage velocity. Because the vesicle is force- and torque-
free, we can relate the rigid body motion to the seepage velocity distribution at the
exterior surface using the reciprocal theorem. This approach is similar to treatments
of the swimming of microorganisms using the squirmer model (Stone and Samuel
1996) where the boundary velocity at the surface of the swimmer is decomposed
into rigid-body motion and the slip velocity distribution.

In situations relevant for the vesicle model as we consider here, the interior fluid flow
is often weak compared to the active self-propulsion. In section 7.3, by neglecting
the interior fluid flow we show that the total (fluid and osmotic) pressure inside the
vesicle is constant and the leading-order translational velocity of the vesicle is driven
by the difference in the fluid pressure across the membrane. As a result, one only
needs to compute the distribution of ABPs in the absence of flow and the resulting
number density distribution at the interior wall is used to obtain the translational
velocity. The effect of an external orienting field on the dynamics of confined ABPs
and the motion of the vesicle is considered in section 7.3.4. The behavior of ABPs
with slow spatial variation in their swim speed where fluid motion is explicitly
considered is discussed in section 7.4. Finally, we conclude in section 7.5 with a
discussion of the limitations and extensions of this vesicle-ABPs propulsion system.

7.2 Problem formulation
Consider a rigid vesicle or cell consisting of a thin membrane and a solution core
immersed in an otherwise quiescent viscous fluid (see figure 7.1). The interior of
the vesicle is a suspension of potentially active elements, which we model as active
Brownian particles. The boundary or membrane of the vesicle is permeable to the
solvent (i.e. water) but not to the solute (ABPs). In other words, the membrane is
an osmotic membrane and serves as a confining boundary for the ABPs. Relative to
the vesicle, the fluid domain is partitioned into interior, exterior, and the thin porous
(in the membrane) regions. The solvent in all regions is identical.
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Figure 7.1: Left: A rigid spherical vesicle with a semipermeable membrane im-
mersed in an otherwise quiescent viscous fluid. Active Brownian particles are
confined inside the vesicle. Right: Schematic of the semipermeable membrane with
a permeability tensor K and thickness ℓ𝑚. The seepage velocity in the membrane
is u𝑠, which in general depends on the local position vector.

The ABPs encapsulated inside the vesicle swim with a prescribed spatially varying
swim speed, which is the driving mechanism for a spatially varying number density.

At small scales relevant to the vesicle-ABP system proposed here, the inertia of the
fluid, the ABPs and the vesicle are negligible. In this low Reynolds number limit,
the dynamics of the fluid is governed by the Stokes equations and there is no external
force/torque on the vesicle.

7.2.1 The exterior flow
The exterior domain consists of solvent alone and its dynamics is governed by

∇ · σ𝑒𝑓 = 𝜂𝑒∇
2u𝑒 − ∇𝑝𝑒𝑓 = 0, ∇ · u𝑒 = 0. (7.4)

Here, σ𝑒
𝑓

is the stress tensor, 𝜂𝑒 is the dynamic viscosity of the solvent, 𝑝𝑒
𝑓

is
the pressure field and u𝑒 is the velocity field. Far from the vesicle, the fluid is
undisturbed and there is no background flow:

𝑝𝑒𝑓 → 0 and u𝑒 → 0 as 𝑟 → ∞. (7.5)

At the exterior surface of the vesicle, we have

u𝑒 (x ∈ 𝑆𝑒) = U +Ω × x + u𝑠 (x), (7.6)
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where 𝑆𝑒 denotes the exterior surface of the vesicle, U (Ω) is the rigid-body linear
(angular) velocity of the vesicle and u𝑠 is the local seepage velocity at the exterior
surface. The definition of u𝑠 is deferred to Section 7.2.4. We note that equation
(7.6) is similar to the squirmer model where the closely packed cilia tips of a
microorganism are modeled as a distribution of radial and tangential velocities on
the cell body, often taken to be of spherical shape (Lighthill 1952; Blake 1971).

7.2.2 The interior suspension
The particles and solvent in the interior of the vesicle are treated as a continuum and
governed by

∇ · σ𝑖 = 𝜂𝑖∇2u𝑖 − ∇𝑃 = 0 and ∇ · u𝑖 = 0, (7.7)

where σ𝑖 is the stress tensor, 𝜂𝑖 is the dynamic viscosity of the suspension and u𝑖 is
the velocity field. Here, the total pressure is given by

𝑃 = 𝑝𝑖𝑓 + 𝑛𝑘𝐵𝑇, (7.8)

where 𝑝𝑖
𝑓

is the fluid pressure, 𝑛 the number density of the ABPs and 𝑘𝐵𝑇 is the
thermal energy. In our model, the only contribution to the suspension stress from
the ABPs is the osmotic pressure 𝑛𝑘𝐵𝑇 . We note that additional stress contributions
such as the active hydrodynamic stresslet of ABPs (Saintillan and Shelley 2015)
can be readily incorporated into our model. These effects play a less important role
compared to the osmotic pressure and are thus neglected here. At the interior wall
of the vesicle, we have

u𝑖 (x ∈ 𝑆𝑖) = U +Ω × x + u𝑠 (x), (7.9)

where 𝑆𝑖 is the interior surface of the vesicle.

7.2.3 Dynamics of ABPs
The distribution of ABPs confined inside the vesicle is described by the probability
density𝛹 (x, q, 𝑡) as a function of space x, orientation q (|q | = 1) and time 𝑡. The
conservation of ABPs is governed by the Smoluchowski equation. At steady state,
this is given by

∇ · j𝑇 + ∇𝑅 · j𝑅 = 0, (7.10)

where the translational and rotational fluxes are given by, respectively,

j𝑇 = u𝑖𝛹 +𝑈𝑠 (x)q𝛹 − 𝐷𝑇∇𝛹, (7.11)

j𝑅 =
1
2
ω𝑖𝛹 − 𝐷𝑅∇𝑅𝛹 . (7.12)
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Here, 𝐷𝑇 is the thermal diffusivity of ABPs, ω𝑖 = ∇ × u𝑖 is the vorticity vector,
𝐷𝑅 is the rotary diffusivity, ∇𝑅 = q × ∇𝑞 is the rotary gradient operator and 𝑈𝑠 (x)
is the intrinsic swim speed of ABPs. The prescribed spatial variation of 𝑈𝑠 is the
key ingredient of our model, and is responsible for the generation of a concentration
gradient of ABPs inside the vesicle. The conservation of ABPs requires that∫

𝑉𝑖

𝛹𝑑x𝑑q = 𝑁, (7.13)

where 𝑁 is the total number of ABPs and 𝑉𝑖 is the volume of the interior of the
vesicle. At the interior surface of the vesicle, the flux relative to the rigid-body
motion must vanish. This no-flux condition can be written as

n · j𝑇 = n · (U +Ω × x)𝛹, x ∈ 𝑆𝑖, (7.14)

where n is the unit normal vector as shown in figure 7.1. We note that as a
model of active elements inside a cell, the rotary diffusivity 𝐷𝑅 is biological rather
than thermal in origin. As a result, 𝐷𝑅 is independent of 𝐷𝑇 (which is assumed
to be thermal in origin). The rotary diffusivity defines a reorientation timescale
𝜏𝑅 = 1/𝐷𝑅 that characterizes the relaxation of the swimming direction. The ABPs
take a step of magnitude ℓ = 𝑈𝑠𝜏𝑅, which is often called the run (or persistence)
length ℓ, before its swimming direction changes significantly. Note that one might
have a reorientation time 𝜏𝑅 (x) that is a function of position in addition to a spatially
varying swim speed, as we show below that the important quantity is the run length
ℓ(x).

7.2.4 Transport in the membrane
We treat the fluid transport in the membrane using a macroscopic approach similar to
Darcy’s law; however, the porous region is ultimately modelled as a thin permeable
interface. To this end, we first consider the membrane as having a network stressσnet

and a fluid stress σ𝑚
𝑓
. The defining characteristic of the semi-permeable membrane

is that the fluid stress in the membrane balances the seepage velocity:

∇ · σ𝑚𝑓 − 𝜂𝑒R𝑚 · u𝑠 = 0, (7.15)

or u𝑠 = K · ∇ · σ𝑚
𝑓
/𝜂𝑒, where K = R−1

𝑚 is the permeability tensor and R𝑚 is the
membrane resistivity. The remaining network stress is responsible for maintaining
the osmotic pressure difference across the membrane. That is, we have the force
balance on the exterior and interior surfaces, respectively,

σ𝑒𝑓 · n = σ𝑚𝑓 · n, x ∈ 𝑆𝑒 (7.16)

σ𝑖𝑓 · n = σ𝑚𝑓 · n, x ∈ 𝑆𝑖 . (7.17)
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Note, importantly, that at the interior surface, σ𝑖
𝑓

is the interior fluid stress (it does
not contain the osmotic pressure).

We model the membrane as a tangentially isotropic material with the permeability
tensor

K (n) = 𝐾⊥nn + 𝐾∥ (I − nn), (7.18)

where 𝐾⊥ is the normal permeability and 𝐾∥ is the tangential one. For a thin
membrane the gradient in equation (7.15) can be approximated by a finite difference
in the normal direction, which after applying the boundary conditions (7.16) and
(7.17) leads to

u𝑠 (n) = K

𝜂𝑒ℓ𝑚
·
(
σ𝑒𝑓

��
𝑆𝑒
− σ𝑖𝑓

��
𝑆𝑖

)
· n. (7.19)

Here, ℓ𝑚 is the thickness of the membrane and the thin membrane condition is
ℓ𝑚 ≪ 𝑅 with 𝑅 being the radius of the exterior surface. It is understood that in
equation (7.19) u𝑠 is a function of the local outward normal vector n (see figure
7.1). Equation (7.19) is a linear relation that specifies how a seepage velocity is
generated in response to a jump in the fluid stress across the membrane.

In the absence of deviatoric stress, equation (7.19) reduces to

u𝑠 = − 𝐾⊥
𝜂𝑒ℓ𝑚

(
𝑝𝑒𝑓 |𝑆𝑒 − 𝑝

𝑖
𝑓

��
𝑆𝑖

)
n, (7.20)

which is the more familiar Darcy’s law in terms of the fluid pressure difference.
In general, the normal flow is driven by the fluid pressure difference as well as the
shear stress.

We remark that different boundary conditions across membranes and macroscopic
transport equations exist in the literature. For example, an empirical boundary
condition was proposed by Beavers and Joseph (1967) and later rationalized by
Saffman (1971). This boundary condition was then generalized to a curved surface
(Jones 1973). Recently, using multiscale homogenization and matched asymptotic
expansions between the near membrane and the far region, Zampogna and Gallaire
(2020) developed a macroscopic condition to simulate the interaction between an
incompressible fluid flow and a permeable thin membrane. For the purpose of the
present work, equation (7.19) is sufficient.

Because the vesicle is rigid, the preservation of its volume dictates that∫
𝑆𝑒

u𝑠 · n𝑑𝑆 = 0. (7.21)
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Henceforth, for simplicity we shall assume that the membrane is not permeable in
the tangential directions (𝐾∥ = 0), in which case the seepage velocity is normal to
the vesicle surface.

7.2.5 Dynamics of the vesicle
The rigid-body translational and rotational velocities of the vesicle are determined
by the force/torque-free conditions given by∫

𝑆𝑒

σ𝑒𝑓 · n𝑑𝑆 = 0,

∫
𝑆𝑒

x × σ𝑒𝑓 · n𝑑𝑆 = 0. (7.22)

We can relate the rigid-body velocities U and Ω to the seepage velocity u𝑠 at the
exterior surface using the reciprocal theorem for Stokes flow (Masoud and Stone
2019). The formula for a general body shape is given in Elfring (2015). For the
case of a spherical particle, the rigid-body translational and rotational velocities are
given by, respectively,

U = − 1
4𝜋𝑅2

∫
𝑆𝑒

u𝑠𝑑𝑆, Ω = − 3
8𝜋𝑅3

∫
𝑆𝑒

n × u𝑠𝑑𝑆. (7.23)

In the study of the rigid-body motion of micro-swimmers with prescribed kinematics
(gaits) such as squirmers, the reciprocal theorem allows one to bypass the calculation
of the unknown flow field, provided one can solve the resistance/mobility problem
for the swimmer shape. For the problem considered here, the seepage velocity of
the vesicle is not known a priori; we need to determine the rigid-body motion, the
exterior/interior flow fields and the distribution of ABPs simultaneously.

7.2.6 Non-dimensional equations for a spherical vesicle
For a spherical vesicle, the angular velocity vanishes (Ω = 0) and the torque balance
is automatically satisfied. We define a characteristic swim speed 𝑈̃𝑠 such that

𝑈𝑠 (x) = 𝑈̃𝑠𝑈̂𝑠 (x). (7.24)

For a spatially homogeneous swim speed, 𝑈̂𝑠 (x) = 1. The average density of ABPs
inside the vesicle is 𝑛 = 𝑁/𝑉𝑖, where 𝑉𝑖 = 4𝜋(𝑅 − ℓ𝑚)3/3 is the volume of the
interior. We use this average density to scale the probability density such that

𝛹 = 𝑛𝑔, (7.25)

where 𝑔 is the non-dimensional probability density. To render the governing equa-
tions non-dimensional, we scale pressures and stresses by 𝑛𝑘𝑠𝑇𝑠, length by 𝑅, and
fluid/vesicle velocities by 𝑛𝑘𝑠𝑇𝑠𝐾⊥/(𝜂𝑒ℓ𝑚). Recall that the activity 𝑘𝑠𝑇𝑠 = 𝜁𝑈̃2

𝑠 𝜏𝑅/6.
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Using the characteristic swim speed, we define the swim Péclet number

𝑃𝑒𝑠 =
𝑈̃𝑠𝜏𝐷

𝑅
=
𝑈̃𝑠𝑅

𝐷𝑇
(7.26)

that compares the swim speed to the diffusive speed 𝑅/𝜏𝐷 , where 𝜏𝐷 = 𝑅2/𝐷𝑇 is a
diffusive timescale. Another dimensionless parameter for ABPs is defined as

𝛾 =

√︂
𝜏𝐷

𝜏𝑅
=
𝑅

𝛿
, (7.27)

where 𝛿 =
√
𝐷𝑇𝜏𝑅 is a microscopic length that quantifies the distance traveled by

translational diffusion on the timescale of 𝜏𝑅. Alternate parameters including ℓ/𝛿
and ℓ/𝑅 are often used in the literature. These parameters are direct comparisons
between different length scales. We note that they are related to 𝑃𝑒𝑠 and 𝛾 by
𝑃𝑒𝑠 = (ℓ/𝛿)2(ℓ/𝑅)−1 and 𝛾 = (ℓ/𝑅)−1ℓ/𝛿.

The non-dimensional exterior problem is given by

𝐷𝑎∇2u𝑒 = ∇𝑝𝑒𝑓 , (7.28)

∇ · u𝑒 = 0, (7.29)

u𝑒 → 0 and 𝑝𝑒𝑓 → 0 as 𝑟 → ∞, (7.30)

u𝑒 = U + u𝑠 at 𝑟 = 1, (7.31)

where
𝐷𝑎 =

𝐾⊥
𝑅ℓ𝑚

, (7.32)

is a Darcy number that compares the permeability of the membrane to its character-
istic cross-sectional area.

In the interior, the rigid-body translation U has no effect on the fluid dynamics and
we only need to consider the deviation u′ = u𝑖 − U . Thus, the non-dimensional
flow problem in the interior is governed by

𝛽𝐷𝑎∇2u′ = ∇𝑃, (7.33)

∇ · u′ = 0, (7.34)

|u′|, 𝑃 < ∞ at 𝑟 = 0, (7.35)

u′ = u𝑠 at 𝑟 = Δ. (7.36)

Here,
𝛽 =

𝜂𝑖

𝜂𝑒
(7.37)
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is the interior-to-exterior viscosity ratio and

Δ =
𝑅 − ℓ𝑚
𝑅

(7.38)

is the radius ratio between the interior and the exterior surfaces of the membrane.
For a thin membrane, ℓ𝑚/𝑅 ≪ 1, Δ is 𝑂 (1). The non-dimensional total pressure is
given by

𝑃 = 𝑝𝑖𝑓 +
𝑘𝐵𝑇

𝑘𝑠𝑇𝑠
𝑛 = 𝑝𝑖𝑓 +

6𝛾2

𝑃𝑒2
𝑠

𝑛, (7.39)

where we have used the relation 𝑘𝐵𝑇/𝑘𝑠𝑇𝑠 = 𝐷𝑇/(𝑈
2
0𝜏𝑅/6) = 6𝛾2/𝑃𝑒2

𝑠 .

The non-dimensional deviatoric stress tensors in the exterior and interior are, re-
spectively,

τ 𝑒 = 𝐷𝑎
[
∇u𝑒 + (∇u𝑒)𝑇

]
, τ 𝑖 = 𝛽𝐷𝑎

[
∇u′ + (∇u′)𝑇

]
. (7.40)

The seepage velocity is given by

u𝑠 = nn ·
(
σ𝑒𝑓

��
𝑆𝑒
− σ𝑖𝑓

��
𝑆𝑖

)
· n, (7.41)

where σ𝑒
𝑓
= −𝑝𝑒

𝑓
I + τ 𝑒 and σ𝑖

𝑓
= −𝑝𝑖

𝑓
I + τ 𝑖. The volume conservation of the

vesicle is ∫
𝑆𝑒

u𝑠 · n = 0. (7.42)

The rigid-body translational velocity of the vesicle is then

U = − 1
4𝜋

∫
𝑆2
u𝑠𝑑Ω. (7.43)

The non-dimensional Smoluchowski equation, its fluxes, boundary condition, and
particle conservation are, respectively,

∇ · j𝑇 + ∇𝑅 · j𝑅 = 0, (7.44)

j𝑇 = 𝛼𝐷𝑎u′𝑔 + 𝑃𝑒𝑠𝑈̂𝑠 (x)q𝑔 − ∇𝑔, (7.45)

j𝑅 =
1
2
𝛼𝐷𝑎ω′𝑔 − 𝛾2∇𝑅𝑔, (7.46)

n · j𝑇 = 0 at 𝑟 = Δ, (7.47)∫
𝑔𝑑q𝑑x =

4𝜋
3
Δ3, (7.48)

where we have introduced three non-dimensional parameters 𝛼, 𝑃𝑒𝑠 and 𝛾. The first
parameter is a reduced osmotic pressure and given by

𝛼 =
𝑛𝑘𝑠𝑇𝑠𝜏𝐷

𝜂𝑒
. (7.49)
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Non-dimensional parameter Mathematical definition Physical description
𝛼 𝑛𝑘𝑠𝑇𝑠𝜏𝐷/𝜂𝑒 Reduced osmotic pressure
𝛽 𝜂𝑖/𝜂𝑒 Viscosity ratio
𝛾 𝑅/𝛿 Comparison of 𝑅 and 𝛿
𝐷𝑎 𝐾⊥/(𝑅ℓ𝑚) Darcy number
𝑃𝑒𝑠 𝑈̃𝑠𝜏𝐷/𝑅 Swim Péclet number
Δ (𝑅 − ℓ𝑚)/𝑅 Radius ratio

Table 7.1: Independent non-dimensional parameters.

Physically, this is a comparison between the active driving pressure (𝑛𝑘𝑠𝑇𝑠) and a
viscous resistive ‘pressure’ (𝜂𝑒/𝜏𝐷 ) on the timescale 𝜏𝐷 .

In the equations above, variables {u𝑒, 𝑝𝑒
𝑓
,x, 𝑟,U ,u𝑠, 𝑃,u′} and gradient operators

are non-dimensional even though the same symbols as their dimensional counter-
parts are used. This is to avoid inconvenience in notation and henceforth we shall
work with non-dimensional quantities unless otherwise noted.

It is convenient to consider the orientational moments of the probability density
function. The zeroth order moment, or the number density, is given by

𝑛(x) =
∫
𝑆2
𝑔𝑑q, (7.50)

where 𝑆2 is the surface of the unit sphere in R3, which represents all possible ori-
entations that q takes. Integrating the Smoluchowski equation over all orientations,
we obtain a conservation equation for the number density

∇ · j𝑛 = 0, (7.51a)

j𝑛 = 𝛼𝐷𝑎u
′𝑛 + 𝑃𝑒𝑠𝑈̂𝑠 (x)m − ∇𝑛. (7.51b)

This equation is coupled to the first moment, or polar order,

m(x) =
∫
𝑆2
q𝑔𝑑q. (7.52)

The no-flux condition (7.14) becomes n · j𝑛 = 0 for x ∈ 𝑆𝑖. Multiplying the
Smoluchowski equation by q and integrating over 𝑆2, we obtain a governing equation
for the polar order,

∇ · j𝑚 − 1
2
𝛼𝐷𝑎ω𝑖 ×m + 2𝛾2m = 0, (7.53a)
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j𝑚 = 𝛼𝐷𝑎u′m + 𝑃𝑒𝑠𝑈̂𝑠 (x)
(
Q + 1

3
𝑛I

)
− ∇m, (7.53b)

where
Q =

∫
𝑆2

(
qq − 1

3
I

)
𝑔𝑑q (7.54)

is the trace-free nematic order tensor and I is the identity tensor of rank two. The
no-flux condition at the interior surface for the polar order becomes n · j𝑚 = 0.
Different from the conservation of the total number of ABPs, the polar order is not
conserved as indicated by the presence of the sink term 2𝛾2m in equation (7.53a)
even in the absence of flow. This sink term describes the randomization, due to
rotary diffusion, of any polar order.

As can be inferred from the above discussion, there is an infinite hierarchical structure
to the moment equations. To truncate this infinite set of equations, a closure model
such as Q = 0 is often considered in the literature (Saintillan and Shelley 2015; Yan
and Brady 2015b). A closure leads to a set of closed equations that can be solved as an
approximation to the Smoluchowski equation. We note that a closure approximation
is often not uniformly accurate across different regimes of physical parameters or
different spatial/time domains and care must be taken when interpreting results
obtained from such methods (Dulaney and Brady 2020; Burkholder and Brady
2020; Peng and Brady 2020). A systematic approach to derive low-order closure
models that are able to approximate the full solution of the Smoluchowski equation
is still lacking.

The mechanism for an induced concentration gradient from a prescribed activity
gradient in the absence of flow has been studied in previous works (Schnitzer 1993;
Tailleur and Cates 2008; Row and Brady 2020). To illustrate this mechanism and
motivate later discussions, we summarize the simple one-dimensional (1D) result
here. In the absence of external linear or angular velocities, such as due to flow or
orienting field, the governing equation in 1D for highly active ABPs is∇·(𝑈̂𝑠m) = 0,
where the diffusive term is neglected. The solution in 1D is simply m = 0. Then,
equation (7.53a) reduces to 𝑛𝑈̂𝑠 = 𝑐𝑜𝑛𝑠𝑡. Further, Row and Brady (2020) showed
that this spatial variation of activity and concentration can drive a reverse osmotic
flow, i.e. fluid flow from regions of high concentration to low. In this work, we
exploit this spatial variation to propel a vesicle that is able to maintain an activity
gradient in the swim speed of ABPs confined inside.



171

7.3 Vesicle motion in the limit of weak interior flow
In many situations, the advection due to the interior fluid flow is much weaker
compared to the self-propulsion of the ABPs or its active swim diffusion (small
Péclet number), and we may neglect the effect of the fluid velocity disturbance on
the distribution of ABPs.

7.3.1 Governing equations
The behavior of the system in this small-Péclet limit can be systematically derived
by considering a weakly permeable membrane, 𝐷𝑎 ≪ 1.

If the vesicle is non-permeable (𝐷𝑎 = 0), no external or internal flows can be gener-
ated, and the vesicle remains stationary despite the nonuniform density distribution
and accumulation of the ABPs at the boundary. Due to the scaling of the dimen-
sional velocities by the permeability, the leading order non-dimensional velocities
are 𝑂 (1) as 𝐷𝑎 → 0. To study the motion of the vesicle in the 𝐷𝑎 ≪ 1 limit, we
pose regular expansions for all fields:

u𝑒 = u𝑒0 + 𝐷𝑎u
𝑒
1 + · · ·, (7.55)

𝑝𝑒𝑓 = 𝑝𝑒𝑓 ,0 + 𝐷𝑎𝑝
𝑒
𝑓 ,1 + · · ·, (7.56)

u′ = u′
0 + 𝐷𝑎u

′
1 + · · ·, (7.57)

𝑃 = 𝑃0 + 𝐷𝑎𝑃1 + · · ·, (7.58)

𝑔 = 𝑔0 + 𝐷𝑎𝑔1 + · · ·. (7.59)

The dimensionless number density is given by 𝑛 =
∫
𝑔𝑑q = 𝑛0+𝐷𝑎𝑛1+···. Similarly,

the expansions for the translational and the seepage velocities are, respectively,

U = U0 + 𝐷𝑎U1 + · · ·, (7.60)

u𝑠 = u𝑠0 + 𝐷𝑎u
𝑠
1 + · · ·. (7.61)

From equation (7.40), we know that the leading order deviatoric stresses are𝑂 (𝐷𝑎),
which does not contribute to the 𝑂 (1) seepage velocity. As a result, the seepage
velocity at leading order is driven by the fluid pressure difference across the mem-
brane,

u𝑠0 =

(
𝑝𝑖𝑓

��
𝑆𝑖
− 𝑝𝑒𝑓

��
𝑆𝑒

)
n. (7.62)

Inserting these expansions into the exterior Stokes equations (7.28) and (7.29) gives
to leading order

∇𝑝𝑒𝑓 ,0 = 0, ∇ · u𝑒0 = 0. (7.63)
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The kinematic boundary condition at the exterior surface is u𝑒0(𝑟 = 1) = U0 + u𝑠0.
Due to the linearity of Stokes flow, we only need to solve equation (7.63) using
the seepage velocity condition [u𝑒0(𝑟 = 1) = u𝑠0]; the rigid body translation is
determined from the reciprocal theorem given by equation (7.43). Because u𝑠0 is in
the radial direction, the exterior flow is radial and given by

𝑝𝑒𝑓 ,0 = 0, u𝑒0 =
u𝑠0
𝑟2 . (7.64)

Similarly, the leading order equation governing the interior flow is given by

∇𝑃0 = 0, ∇ · u′
0 = 0. (7.65)

At the interior surface, the flow field satisfies the conditionu′(𝑟 = Δ) = u𝑠. We note
that the interior flow field is not analytically tractable but it is not required in order
to determine the vesicle motion. The total pressure at leading order is a constant,
consisting of spatially varying fluid pressure and osmotic pressure,

𝑝𝑖𝑓 ,0 + 6𝛾2𝑛0/𝑃𝑒2
𝑠 = 𝑃0 = 𝑐𝑜𝑛𝑠𝑡. (7.66)

Inserting the expansions into the Smoluchowski equation (7.44)–(7.48), we obtain
at leading order

∇ ·
(
𝑃𝑒𝑠𝑈̂𝑠 (x)q𝑔0 − ∇𝑔0

)
− 𝛾2∇2

𝑅𝑔0 = 0, (7.67)

n ·
(
𝑃𝑒𝑠𝑈̂𝑠 (x)q𝑔0 − ∇𝑔0

)
= 0 at 𝑟 = Δ, (7.68)∫

𝑔0𝑑q𝑑x =
4𝜋
3
Δ3. (7.69)

Using equations (7.43), (7.62) and (7.66), we obtain

U0 =
3𝛾2

2𝜋𝑃𝑒2
𝑠

∫
𝑆2
𝑛0(𝑟 = Δ)n𝑑Ω. (7.70)

It is more intuitive to examine the above expression in its dimensional form

U0 =
1

4𝜋
𝐾⊥
𝜂𝑒ℓ𝑚

∫
𝑆2
Πosmo

0 n𝑑Ω, (7.71)

where Πosmo
0 = 𝑛𝑤𝑘𝐵𝑇 is the dimensional osmotic pressure of ABPs in the absence

of flow.

To sum up, one needs to solve equations (7.67)-(7.69) to obtain the density distri-
bution of ABPs in the absence of flow, and then using equation (7.70) to calculate
the vesicle motion. In the remainder of section 7.3, the subscript ‘0’ (e.g., 𝑔0, U0)
will be dropped for notational convenience.
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In general, one can represent the number density distribution at the spherical interior
wall by the complete spherical harmonic expansion

𝑛0(Δ, 𝜃, 𝜙) =
∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝐶𝑙,𝑚𝑌
𝑚
𝑙 (𝜃, 𝜙), (7.72)

where 𝑌𝑚
𝑙

=
√︁
(2𝑙 + 1) (𝑙 − 𝑚)!/[4𝜋(𝑙 + 𝑚)!]𝑃𝑚

𝑙
(cos 𝜃) exp(𝑖𝑚𝜙) and 𝑃𝑚

𝑙
is the

associated Legendre polynomial of degree 𝑙 and order 𝑚. Using equation (7.70),
a direct integration shows that only the 𝑙 = 1 modes contribute to the translational
velocity of the vesicle.

7.3.2 High activity
We now explore the limit of high activity, 𝑘𝑠𝑇𝑠/𝑘𝐵𝑇 = 𝐷̃swim/𝐷𝑇 = ℓ2/(6𝛿2) ≫ 1,
which is often observed in active matter systems (Takatori et al. 2016). Equivalently,
we define 𝜖 = 1/𝛾2 (Note that 𝑃𝑒𝑠 = 𝛾2ℓ/𝑅) and consider the limit 𝜖 → 0.
Expanding the probability density function 𝑔 = 𝑔(0) + 𝜖𝑔(1) + · · ·, we obtain at
leading order

ℓ

𝑅
∇ ·

[
𝑈̂𝑠q𝑔

(0)
]
− 1
𝜏𝑅

∇2
𝑅𝑔

(0) = 0, (7.73)

where we have included the spatial variation of 𝜏𝑅 (x) and defined 𝜏𝑅 = 𝜏𝑅𝜏𝑅 similar
to the case of spatially varying swim speed. Integrating over the orientation space
leads to an equation for the polar order

∇ ·
(
𝑈̂𝑠m

(0)
)
= 0. (7.74)

Equation (7.73) is incompatible with the no-flux boundary condition and thus is only
valid in the bulk of the interior. At the interior membrane surface, the swimming
flux is balanced by the diffusive flux, which implies the existence of an accumulation
boundary layer of thickness𝑂 (𝜖). In this high activity limit, the number of particles
in the boundary layer is still finite, which suggests that the probability density is
𝑂 (1/𝜖) as 𝜖 → 0. Therefore, the probability density in the boundary layer admits
an expansion of the form 𝑔(𝑦, 𝜃, 𝜙, q) = 𝑔(−1)/𝜖 + 𝑔(0) + · · ·. Defining a stretched
boundary-layer coordinate in the radial direction 𝑦 = (Δ − 𝑟)/𝜖 , the Smoluchowski
equation to leading order is

ℓ

𝑅
𝑈̂𝑠

��
𝑆𝑖
q · e𝑟

𝜕𝑔(−1)

𝜕𝑦
+ 𝜕

2𝑔(−1)

𝜕𝑦2 = 0, (7.75)

ℓ

𝑅
𝑈̂𝑠

��
𝑆𝑖
q · e𝑟𝑔(−1) + 𝜕𝑔

(−1)

𝜕𝑦
= 0 at 𝑦 = 0, (7.76)

𝑔(−1) → 0 as 𝑦 → +∞. (7.77)
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Here, the Taylor expansion 𝑈̂𝑠 (𝑟, 𝜃, 𝜙) = 𝑈̂𝑠
��
𝑆𝑖
− 𝜖 𝑦 𝑑𝑈̂𝑠

𝑑𝑟

��
𝑆𝑖
+ · · · is used. The solution

is readily obtained

𝑔(−1) =


𝐴1(𝜃, 𝜙, q) exp

(
− ℓ
𝑅
𝑈̂𝑠

��
𝑆𝑖
q · e𝑟 𝑦

)
, q · e𝑟 > 0,

0, otherwise.
(7.78)

This singular accumulation only occurs for particles with orientation pointing to-
wards the wall (q · e𝑟 > 0) because otherwise they would swim away. In equation
(7.78), 𝐴1 is an unknown function that can only be determined from the next-order
solution. The boundary layer solution 𝑔(0) (𝑦, 𝜃, 𝜙, q) in the limit 𝑦 → ∞ needs to
be matched with the solution in the bulk as 𝑟 → Δ.

At the interior surface of the vesicle (𝑦 = 0), the leading-order density is large
and given by 𝛾2

∫
q·e𝑟>0 𝐴1𝑑q. Just outside the boundary layer (i.e., 𝑦 → ∞), the

density is 𝑂 (1) as 𝛾2 → ∞. This boundary-layer structure allows us to relate the
osmotic pressure at the interior surface of the vesicle to the swim pressure outside
the boundary layer. To this end, we consider the ratio 𝑛𝑤𝑘𝐵𝑇/

(
𝑛0𝑘𝑠𝑇𝑠

)
, where all

quantities are dimensional. The density at the wall 𝑛𝑤 and the density outside the
boundary layer 𝑛0 are defined locally along the interior surface and are functions of
the local surface normal vector n. From the above analysis, we have

𝑛𝑤𝑘𝐵𝑇

𝑛0𝑘𝑠𝑇𝑠
=

𝛾2
∫
q·e𝑟>0 𝐴1𝑑q∫

𝑔(0) (𝑦 → ∞, 𝜃, 𝜙, q)𝑑q
𝑘𝐵𝑇

𝑘𝑠𝑇𝑠
= 𝑓 (ℓ/𝑅,Δ), (7.79)

where 𝛾2𝑘𝐵𝑇/𝑘𝑠𝑇𝑠 = 6𝑅2/ℓ2 is not a function of the thermal diffusivity 𝐷𝑇 (or
ℓ/𝛿). Because in general 𝐴1 is not analytically tractable, the factor 𝑓 (ℓ/𝑅,Δ) in
the preceding equation cannot be explicitly obtained. Nevertheless, equation (7.79)
reveals the important fact that at high activity

Πosmo = 𝑛𝑤𝑘𝐵𝑇 = Πswim
0 𝑓 (ℓ/𝑅,Δ), (7.80)

where Πswim
0 = 𝑛0𝑘𝑠𝑇𝑠. In other words, the osmotic pressure at the wall is equal

to the swim pressure in the bulk of the interior just outside the boundary layer but
modified by a scale factor that is a function of ℓ/𝑅 and Δ. We emphasize that in
equation (7.80), all quantities are defined locally along the interior surface of the
vesicle. This is a generalization of the result of Yan and Brady (2015b) for ABPs
outside an infinite planar wall, where 𝑛𝑤𝑘𝐵𝑇 = 𝑛0𝑘𝑠𝑇𝑠 in the limit 𝛾2 → ∞ because
of the absence of curvature of the geometry.
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Figure 7.2: The magnitude of the dimensionless net force on the interior vesicle
surface F 𝑤/(4𝜋𝑅2

𝑖
𝑛𝑘𝑠𝑇𝑠) as a function of ℓ/𝑅𝑖 for ABPs with spatially varying

swim speed. The speed profile is a step function where the swim speed in one of
the hemisphere is half of that in the other. The reorientation time 𝜏𝑅 is a constant.
The net force points towards the side with a higher swim speed.

Equation (7.80) allows us to obtain the dimensional speed of the vesicle:

U =
1

4𝜋
𝐾⊥
𝜂𝑒ℓ𝑚

∫
𝑆2
Πswim

0 𝑓 (ℓ/𝑅,Δ)n𝑑Ω. (7.81)

We note that this relation holds for ABPs with spatially varying swim speed or
reorientation time.

To understand the dependence of the motion of the vesicle on ℓ/𝑅, we approach the
problem from a micromechanical perspective using Brownian dynamics simulations
that resolve the Langevin equations of motion governing the stochastic dynamics of
an ABP in its physical and orientation space. The details of the simulation method is
given in section 7.6. The ABPs are treated as point particles and their hard-particle
interaction with the vesicle interior boundary is implemented using the potential-
free algorithm (Heyes and Melrose 1993). In this approach, the force exerted on the
wall due to the collision with ABPs is readily obtained. Consider a simulation of 𝑁
ABPs that only interact with the boundary independently but not among themselves.
After a time step Δ𝑡, some particles might have moved outside the interior wall. For
particle 𝑖 that is now outside, we add a displacement Δx𝑖 to the particle such that
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after the move the particle is at contact with the boundary. The total force exerted
on the wall is then F 𝑤 = −𝜁 ∑

𝑖∈I Δx𝑖/Δ𝑡 where I is the set of all particles that are
outside the boundary before the hard-sphere move. As seen in equation (7.71), the
net speed of the vesicle is proportional to the net force F 𝑤.

In figure 7.2, we show the dimensionless net force exerted on the interior vesicle
surface by the ABPs, F 𝑤/(4𝜋𝑅2

𝑖
𝑛𝑘𝑠𝑇𝑠), as a function of ℓ/𝑅𝑖 for ABPs with no 𝐷𝑇

(infinitely active, ℓ/𝛿 = ∞) and a spatially-varying swim speed. The swim speed
profile is a step function given by

𝑈̂𝑠 =


1 𝑥 < 0,

1/2 𝑥 > 0.
(7.82)

The net force points to the side with a larger swim speed and only the force magnitude
is shown in figure 7.2. As ℓ/𝑅𝑖 increases, the net force decreases. For large ℓ/𝑅𝑖,
the ABPs spend most of their time pushing against and sliding along the interior
vesicle surface until rotary Brownian motion reorients them towards the bulk of the
interior. In this limit, the number of particles pushing against the interior surface on
the side of slow speed is comparable to the side of high speed.

As discussed earlier, in 1D the relation 𝑛𝑈𝑠 = 𝑐𝑜𝑛𝑠𝑡 holds for ABPs with spatially
varying properties. In the interior of a vesicle, this relation is still useful for the
qualitative understanding of the distribution of ABPs and the motion of the vesicle.
Taking the step-function given by equation (7.82) as an example, 𝑛0𝑈𝑠 = 𝑐𝑜𝑛𝑠𝑡

means that in the bulk of the interior the density on the right side (𝑥 > 0) is higher
than that on the left (𝑥 < 0), 𝑛0

𝑅
> 𝑛0

𝐿
. Because 𝑛𝑤 ∼ 𝑛0𝑘𝑠𝑇𝑠/𝑘𝐵𝑇 ∼ 𝑛0𝑈𝑠𝜁ℓ/𝑘𝐵𝑇

and 𝑛0𝑈𝑠 = 𝑐𝑜𝑛𝑠𝑡, we have 𝑛𝑤 ∼ 𝑈𝑠 for ABPs with constant 𝜏𝑅. Therefore, the
density at the interior vesicle surface on the right side is lower than that on the
left (𝑛𝑤

𝑅
< 𝑛𝑤

𝐿
), which is opposite to the behavior of the bulk density. Because

only the ABPs at the interior surface contribute to the net force, and they can only
push against the boundary, this leads to the fact that the net force is in the negative
𝑥 direction (to the left). If one only had observations of the number density in
the bulk, one would conclude that the vesicle moves in the direction of a lower
concentration—a ‘reverse’ osmotic propulsion [cf. equation (7.2)].

The number density profile in the bulk and the boundary layer is sketched in figure
7.3 (red line) for a general swim-speed profile that decreases from the left to the
right. The variation of the swim speed leads to a gradient in the number density
in the bulk of the interior. Two thin accumulation boundary layers are established
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Figure 7.3: Schematic of the number density profile (red) and the flow direction
(blue) in the high activity limit for a swim-speed profile that decreases from the left
to the right. A weak density gradient is present in the bulk of the interior due to the
variation of the swim speed. Two accumulation boundary layers are established at
the left and right sides of the interior wall, with the density at the wall on the left
larger than that on the right. The vesicle-ABPs system as a whole moves by way of
jet propulsion.

at the left and right sides of the interior vesicle surface. Because the density at
the wall on the right is smaller than that on the left, 𝑛𝑤

𝑅
< 𝑛𝑤

𝐿
, the dimensional

version of equation (7.66) then leads to a larger fluid pressure on the low density
side (right), 𝑝𝑖

𝑓 ,𝑅
> 𝑝𝑖

𝑓 ,𝐿
. Since the fluid pressure in the exterior is homogeneous,

the fluid is pushed out of the vesicle from the right and drawn in from the left by
conservation of mass. For the vesicle-ABPs system as a whole, it effectively moves
by way of jet propulsion. This kind of noninertial jet propulsion has been proposed
and studied in detail by Spagnolie and Lauga (2010) as an alternate mechanism for
the locomotion of microswimmers. In their paper, the jetting velocity distribution
of a microswimmer (u𝑠) is prescribed, and then the swim speed is determined from
the reciprocal theorem.

Using the approximation 𝑛0𝑈𝑠 = 𝑐𝑜𝑛𝑠𝑡 and the relationΠswim
0 = 𝑛0𝑘𝑠𝑇𝑠 = 𝑛

0𝑈𝑠𝜁ℓ/6,
we see that it is the variation of run length ℓ(x) that is responsible for the net force
on the vesicle interior surface and ultimately the vesicle motion. Using equation
(7.81), a Taylor series expansion about the center of the vesicle leads to the scaling
relation U ∼ 𝐾⊥𝑅𝜁𝑛0𝑈𝑠∇ℓ/(𝜂𝑒ℓ𝑚), where ∇ℓ is the gradient of the run length at
the center of the vesicle.
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7.3.3 A large vesicle
When the vesicle is large, the confinement is weak, ℓ/𝑅 ≪ 1, ABPs exhibit a thin
accumulation boundary layer at the wall and a uniform distribution in the bulk of
the interior to leading order. To study this large-vesicle limit of ℓ/𝑅 ≪ 1, we first
write equation (7.67) equivalently as

∇ ·
[
ℓ

𝑅
𝑈̂𝑠 (x)q𝑔 −

(
ℓ

𝑅

)2 (
ℓ

𝛿

)−2
∇𝑔

]
− ∇2

𝑅𝑔 = 0. (7.83)

In this section, we use the definition 𝜖 = ℓ/𝑅 and consider the limit as 𝜖 → 0. In the
bulk of the interior, we have the expansion 𝑔 = 𝑔(0) +𝜖𝑔(1) +· · · and the leading order
equation ∇2

𝑅
𝑔(0) = 0. The solution in the bulk is then 𝑔(0) (x, q) = 𝑛(0) (x)/(4𝜋).

The boundary-layer thickness is determined by a balance between the swimming
and the diffusive fluxes, which leads to the leading-order equation

− 𝜕

𝜕𝜌

(
ℓ

𝛿
𝑈̂𝑠

��
𝑆𝑖
q · e𝑟𝑔(0) +

𝜕

𝜕𝜌
𝑔(0)

)
− ∇2

𝑅𝑔
(0) = 0, (7.84)

ℓ

𝛿
𝑈̂𝑠

��
𝑆𝑖
q · e𝑟𝑔(0) +

𝜕

𝜕𝜌
𝑔(0) = 0 at 𝜌 = 0. (7.85)

Here, we have used the stretched coordinate 𝜌 = (Δ− 𝑟)/𝜖 . Since ℓ ≪ 𝑅, curvature
of the domain has no effect at 𝑂 (1) and the boundary-layer equation is similar to
that in a planar domain. The𝑂 (1) probability density in the boundary layer does not
contribute to the 𝑂 (1) conservation because the boundary layer thickness is 𝑂 (𝜖).
This means that the total conservation is given by the density outside the boundary
layer alone,

∫
𝑛(0) (x)𝑑x = 4𝜋Δ3/3. In the absence of curvature terms, just like

the problem of ABPs on one side of an infinite planar wall (Yan and Brady 2015b),
the number density at the interior wall of the vesicle at 𝑂 (1) can be determined
analytically; the result is given by

𝑛𝑤

𝑛0 = 1 + 1
6

(
ℓ

𝛿

)2
𝑈̂2

0
��
𝑆𝑖
. (7.86)

In dimensional terms, this means that the osmotic pressure at the wall Πosmo
0 =

𝑛𝑤𝑘𝐵𝑇 = 𝑛0𝑘𝐵𝑇 + 𝑛0𝑘𝑠𝑇𝑠𝑈̂
2
𝑠 where 𝑛0 is the density outside the boundary layer. To

determine 𝑛0, one needs to solve equation (7.84) and then match the boundary-layer
solution to that in the bulk.

The dimensional translational velocity in the large-vesicle limit is written as

U =
1

4𝜋
𝐾⊥
𝜂𝑒ℓ𝑚

∫
𝑆2

[
𝑛0𝑘𝐵𝑇 + 𝑛0𝑘𝑠𝑇𝑠𝑈̂

2
𝑠

��
𝑆𝑖

]
n𝑑Ω. (7.87)
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For a large vesicle, the accumulation boundary layer has a similar structure to that
obtained in the high-activity limit. Even for weakly active ABPs, this accumulation
boundary layer exists so long as ℓ/𝑅 ≪ 1. As expected, equation (7.87) reduces to
a form of (7.81) if the activity is high.

7.3.4 Vesicle motion due to an external orienting field
Another way to achieve motion is to apply an external orienting field, which affects
the orientational dynamics but not the swim speed of the ABPs. Takatori and Brady
(2014) showed that net directed motion of ABPs in free space can be achieved due
to the fact that the external field can orient particles to move in the same direction.
Instead of having ABPs with spatially varying swim speed, we consider the same
orienting field as in Takatori and Brady (2014) but now with ABPs confined inside
the vesicle. The only change to the orientational dynamics is that the orienting field
exerts an external torque that depends on the orientation of the particle relative to the
field direction; the dimensional rotary flux now becomes j𝑅 = Ω𝑐q×Ĥ𝑔−𝐷𝑅∇𝑅𝑔,
where Ω𝑐 characterizes the rate of reorientation due to the field and Ĥ is the
direction of the field. When an ABP is aligned with the field direction (q ∥ Ĥ),
the external torque vanishes. The Smoluchowski equation (7.67) for ABPs with
constant properties in the presence of an orienting field is then

∇ · (𝑃𝑒𝑠q𝑔 − ∇𝑔) + 𝛾2∇𝑅 ·
(
𝜒𝑅q × Ĥ𝑔 − ∇𝑅𝑔

)
= 0, (7.88)

while the no-flux boundary condition (7.68) and the total conservation (7.69) remain
unchanged. Here, we have defined the Langevin parameter, 𝜒𝑅 = Ω𝑐𝜏𝑅, which
measures the strength of the orienting field compared to rotary diffusion.

In the high-activity limit, an accumulation boundary layer is established at the
interior wall. The boundary-layer structure is identical to that obtained for ABPs
with spatially varying swim speed. At leading-order, the probability density in the
bulk of the interior is governed by

ℓ

𝑅
q · ∇𝑔(0) + ∇ ·

(
𝜒𝑅q × 𝐻̂𝑔(0) − ∇𝑅𝑔(0)

)
= 0. (7.89)

Compared to (7.73) for spatial variation, the preceding equation has a constant
swim speed and the orientational dynamics is affected by the orienting field. In the
boundary layer, the leading-order equation is identical to (7.75) and the density at
the wall is large.

Because equation (7.88) together with its no-flux boundary condition is not analyt-
ically tractable, we again make use of Brownian dynamics simulations. In figure
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Figure 7.4: (a): The magnitude of the dimensionless net force on the interior wall
F 𝑤/(4𝜋𝑅2

𝑖
𝑛𝑘𝑠𝑇𝑠) as a function of the field strength 𝜒𝑅 for different values of ℓ/𝑅𝑖.

(b): The rescaled net force, F 𝑤ℓ/(4𝜋𝑅3
𝑖
𝑛𝑘𝑠𝑇𝑠), as a function of 𝜒𝑅 for different

values of ℓ/𝑅. All data collapse into one curve in panel (b). The values of ℓ/𝑅𝑖
in both panels are the same and are thus only shown in (b). In both panels, the
translational diffusion is absent, 𝐷𝑇 ≡ 0. In the weak-field limit, 𝜒𝑅 ≪ 1, the net
force is linearly proportional to 𝜒𝑅 as shown by the dashed line.
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7.4(a), we show the dimensionless net force exerted on the interior wall by the ABPs,
F 𝑤/(4𝜋𝑅2

𝑖
𝑛𝑘𝑠𝑇𝑠), as a function of the field strength for different values of ℓ/𝑅. We

note that the net force is in the field direction Ĥ . In figure 7.4(b), the same data
is plotted but with the dimensionless net force multiplied by ℓ/𝑅𝑖. This rescaling
allows us to collapse all data onto a single curve. In the linear response regime, the
net force is proportional to 𝜒𝑅. On the other hand, the net force asymptotes to a
finite value in the strong field limit. This is due to the fact that at most all 𝑁 particles
are aligned with Ĥ and are pushing against the vesicle; further increasing of the
field strength beyond this limit has no effect.

In ‘wet’ active matter systems such as the vesicle problem, the fluid mechanics is
ultimately responsible for the motion of the vesicle and needs to be treated properly.
Nevertheless, the perspective offered by the dry active matter force balance as
discussed in section 7.1 gives the right answer for the speed of the vesicle. In
particular, consider the case in which the vesicle is driven by an orienting field. The
ratio 𝑁𝑤/𝑁 is a function of the field strength 𝜒𝑅, 𝑁𝑤/𝑁 = 𝑓 (𝜒𝑅). As a result, we
have the qualitative scaling relation 𝐹𝑤 ∼ 𝑁𝜁𝑈𝑠 𝑓 (𝜒𝑅). Noting that 𝑛 ∼ 𝑁/𝑅3

𝑖
and

𝑘𝑠𝑇𝑠 ∼ 𝜁𝑈2
𝑠 𝜏𝑅, we have

𝐹𝑤

4𝜋𝑅2
𝑖
𝑛𝑘𝑠𝑇𝑠

∼ 𝑁𝜁𝑈𝑠

𝑅2
𝑖
𝑛𝑘𝑠𝑇𝑠

𝑓 (𝜒𝑅) ∼
𝑅𝑖

ℓ
𝑓 (𝜒𝑅). (7.90)

In the weak-field limit, 𝑓 (𝜒𝑅) ∼ 𝜒𝑅. For large 𝜒𝑅, 𝑓 (𝜒𝑅) ∼ 1 (independent of 𝜒𝑅).
The above scaling argument also explains the collapse of the data as shown in figure
7.4(b). The maximum that 𝐹𝑤 may achieve is 𝑁𝜁𝑈𝑠, which gives the result that
𝐹𝑤ℓ/(4𝜋𝑅3

𝑖
𝑛𝑘𝑠𝑇𝑠) = 2, this is plotted as a horizontal dashed line in figure 7.4(b).

We note that in figure 7.4, the translational diffusion is absent (𝐷𝑇 ≡ 0), which
allows the system to achieve the maximum in the net force on the wall. For finite
thermal diffusion, the net force is reduced and so is the speed of the vesicle.

7.4 Slow variation in activity
In the previous section, the dynamics of the vesicle is determined by the distribution
of ABPs in the absence of flow. To understand the effect of interior fluid flow on the
distribution of ABPs and the dynamics of the vesicle, we consider the case of slow
variation in activity. When the activity gradient is small, any smooth variation of
the swim speed can be approximated by a Taylor series expansion about the origin.
Here, we consider the first effect of a small gradient by keeping the linear term only.



182

The non-dimensional swim speed can be written as

𝑈̂𝑠 (x) = 1 + 𝜖e · x, (7.91)

where 𝜖 = |∇𝑈𝑠 |𝑅/𝑈𝑠 ≪ 1 and e = ∇𝑈𝑠/|∇𝑈𝑠 | is a constant unit vector in the
direction of the gradient. If 𝜖 is identically zero, we have a spatially homogeneous
swim speed and there is no vesicle motion due to spherical symmetry (see discussion
in section 7.5). In this case of 𝜖 ≡ 0, the solution is u′

0 = u𝑒0 = u𝑠0 = U0 = 0,
𝑝𝑒
𝑓 ,0 = 0 and 𝑃0 = 𝑐𝑜𝑛𝑠𝑡. The distribution of ABPs is governed by equations (7.67),

(7.68) and (7.69) but with 𝑈̂𝑠 = 1, i.e., this problem reduces to that of ABPs confined
inside a fixed spherical domain. This spherical symmetry means that the number
density is a function of the radial coordinate only, 𝑛0(x) = 𝑛0(𝑟). As shown by
Yan and Brady (2015b), the number density is a monotonically increasing function
that obtains its maximum at the interior wall. Because the total pressure 𝑃0 is
a constant, this variation of number density (osmotic pressure) maintains a fluid
pressure gradient with its maximum at the center of the interior domain. The fluid
pressure across the membrane is constant, and no seepage velocity is generated.

To probe the first effect of a small linear gradient, we pose regular expansions for
all fields and the translational velocity:

𝑔 = 𝑔0 + 𝜖𝑔1 + · · ·, (7.92)(
𝑃, 𝑝𝑒𝑓 , 𝑝

𝑖
𝑓

)
= (𝑃0, 0, 0) + 𝜖

(
𝑃1, 𝑝

𝑒
1, 𝑝

′
1
)
+ · · ·, (7.93)

(u′,u𝑒,u𝑠,U ) = 0 + 𝜖
(
u′

1,u
𝑒
1,u

𝑠
1,U1

)
+ · · ·. (7.94)

At𝑂 (𝜖), the exterior fluid and the interior suspension are still governed by equations
(7.28)–(7.31) and (7.33)–(7.36). Similarly, the seepage velocity is related to the jump
in the fluid stress across the membrane given by equation (7.41). The disturbance to
the distribution of ABPs at this order is governed by the inhomogeneous equation

∇ · (𝑃𝑒𝑠q𝑔1 − ∇𝑔1) − 𝛾2∇2
𝑅𝑔1 = −∇ ·

(
𝛼𝐷𝑎u′

1𝑔0 + 𝑃𝑒𝑠e · xq𝑔0
)

−1
2
𝛼𝐷𝑎∇𝑅 ·

(
ω′

1𝑔0
)
, (7.95)

with the boundary condition

n · (𝑃𝑒𝑠q𝑔1 − ∇𝑔1) = −𝛼𝐷𝑎n · u′
1𝑔0 − 𝑃𝑒𝑠e · xn · q𝑔0 at 𝑟 = Δ. (7.96)

The net disturbance is zero,
∫
𝑔1𝑑x𝑑q = 0. As can be seen from equation (7.95),

the disturbance fields must be linear to the vector e, which allows us to write the
number density in the form

𝑛1 = e · xℎ1(𝑟), (7.97)
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where ℎ1(𝑟) is a scalar function of the radial coordinate only.

Due to linearity of the Stokes equations, the interior flow problem at 𝑂 (𝜖) admits a
solution of the form

𝑃1 = 𝐴1e · x, (7.98)

u′
1 = 𝐴2e + 𝐴3e ·

(
xx − 1

3
𝑟2I

)
+ 1

2𝛽𝐷𝑎
𝑃1x. (7.99)

Here, the momentum equation (7.33) is solved using a linear combination of the
growing tensor harmonic functions (Leal 2007). The continuity equation (7.34)
gives a constraint

5𝐴3 +
3𝐴1
𝛽𝐷𝑎

= 0. (7.100)

We can solve the external flow problem by considering two separate problems with
different boundary conditions: (1) u𝑒1 = u𝑠1 and (2) u𝑒1 = U1 at 𝑟 = 1. Instead
of solving the flow field due to the second boundary condition in terms of the yet
unknown velocity U1, it will be determined from the reciprocal theorem (7.43). As
a result, one only needs to compute the exterior flow field due to the seepage velocity
u𝑠1. The exterior flow problem with the first boundary condition has a solution of
the form

𝑝𝑒1 = 𝐴4e · x
𝑟3 , (7.101)

u𝑒1 = 𝐴5e
1
𝑟
+ 𝐴6e ·

(
I

𝑟3 − 3
xx

𝑟5

)
+ 1

2𝐷𝑎
𝑝𝑒1x, (7.102)

where the decaying tensor harmonic functions are used. To satisfy the continuity
equation (7.29), we must have

𝐴4 = 2𝐷𝑎𝐴5. (7.103)

The seepage velocity connects the interior and exterior flow field via

u′
1(x = Δe𝑟) = u𝑠1 = u𝑒1(x = e𝑟), (7.104)

which reduces to

𝐴2 −
1
3
Δ2𝐴3 = 𝐴5 + 𝐴6 and 𝐴3Δ

2 + 𝐴1Δ
2

2𝛽𝐷𝑎
= −3𝐴6 +

𝐴4
2𝐷𝑎

. (7.105)

The volume conservation (7.42) is satisfied. The velocity of the vesicle is obtained
from the reciprocal theorem, which gives

U1 = − 1
4𝜋

∫
𝑆2
u𝑠1𝑑Ω = −

(
𝐴2 +

𝐴1Δ
2

6𝛽𝐷𝑎

)
e. (7.106)
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Finally, to solve equation (7.41) at this order, we need to compute the fluid stress at
the interior and the exterior wall. At the interior wall, we have

σ𝑖𝑓 ,1 · e𝑟 = −Δ
(
𝐴1 − ℎ1(Δ)

𝑘𝐵𝑇

𝑘𝑠𝑇𝑠

)
e · e𝑟e𝑟

+Δ
(
7
3
𝐴3𝛽𝐷𝑎 +

3
2
𝐴1

)
e · e𝑟e𝑟 + Δ

(
1
3
𝐴3𝛽𝐷𝑎 +

1
2
𝐴1

)
e.(7.107)

The traction at the exterior wall has two contributions. The first is due to the vesicle
translating at a constant speed U1, which is given by (Guazzelli and Morris 2011,
pp. 44)

σ𝑒𝑈1
· e𝑟 = −3

2
𝐷𝑎U1. (7.108)

The second contribution is from the seepage velocity boundary condition u𝑠1, which
is given by

− 𝐴4e · e𝑟e𝑟 + 𝐷𝑎
(
−𝐴5 − 6𝐴6 +

𝐴4
2𝐷𝑎

)
e + 𝐷𝑎

(
−𝐴5 + 18𝐴6 −

3𝐴4
2𝐷𝑎

)
e · e𝑟e𝑟 .

(7.109)
Using equations (7.106)–(7.109) we can obtain the jump in the fluid stress across
the membrane, which then allows us to calculate the seepage velocity using equation
(7.41). Equating this result with the seepage velocity obtained from equation (7.102)
by setting 𝑟 = 1, we arrive at the following equations for the coefficients:

𝐴5 + 𝐴6 = 0, (7.110)

and

𝐴4
2𝐷𝑎

− 3𝐴6 = 𝐴1Δ

(
−1 + Δ

4𝛽

)
+ 3

2
𝐷𝑎𝐴2 −

8
3
𝐴3𝛽Δ𝐷𝑎 − 2𝐴4

−2𝐴5𝐷𝑎 + 12𝐴6𝐷𝑎 − Δℎ1(Δ)
𝑘𝐵𝑇

𝑘𝑠𝑇𝑠
. (7.111)

Equation (7.110) implies that u𝑠1 is proportional to e · e𝑟e𝑟 and the component
proportional to e is zero, which is consistent with the fact that the seepage velocity
is in the normal (e𝑟) direction. At this stage, we have obtained 6 equations for the 6
unknown coefficients 𝐴𝑖 (𝑖 = 1 · · · 6), which are given by equations (7.100), (7.103),
(7.105), (7.110) and (7.111). Using these equations, one could express 𝐴𝑖 in terms
of the boundary value of ℎ1 at the interior wall, i.e., ℎ1(Δ). These relations are
obtained as

𝐴6 =
Δ2

4
𝑘𝐵𝑇

𝑘𝑠𝑇𝑠

ℎ1(Δ)
Δ + 𝐷𝑎(6𝛽 + 4Δ) , (7.112)
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and

𝐴1 =
40𝐷𝑎𝛽
Δ2 𝐴6, 𝐴2 = −8𝐴6, 𝐴3 = −24

Δ2 𝐴6, (7.113)

𝐴4 = −2𝐷𝑎𝐴6, 𝐴5 = −𝐴6. (7.114)

From equation (7.106), we have the net motion of the vesicle

U1 =
4
3
𝐴6e =

Δ2

3
𝑘𝐵𝑇

𝑘𝑠𝑇𝑠

ℎ1(Δ)
Δ + 𝐷𝑎(6𝛽 + 4Δ)e. (7.115)

Equation (7.115) is the main result of this section. In obtaining (7.115) the only
assumption made is the small linear gradient in the swim speed; therefore, it applies
generally for all ranges of the parameters 𝛼, 𝛽, 𝐷𝑎, 𝑃𝑒𝑠, and 𝛾. In particular, no
restriction on the activity of the ABPs (e.g., ℓ/𝛿) is made. We note that ℎ1(Δ)
depends parametrically on all the above parameters.

To obtain ℎ1(𝑟), we need to solve equation (7.95) that governs the disturbance
probability density distribution of the ABPs. As an approximation, we consider the
general solution using the Q = 0 closure. At 𝑂 (1), the spherical symmetry allows
us to write the number density and polar order in the form

𝑛0(x) = 𝑛0(𝑟), (7.116)

m0(x) = x 𝑓 (𝑟), (7.117)

which, when inserted into equations (7.51a) and (7.53a), leads to a couple of ordinary
differential equations (ODEs) for 𝑛0(𝑟) and 𝑓 (𝑟). The solutions to 𝑛0 and m0 under
this assumption are obtained by Yan and Brady (2015b).

Next, we consider the disturbance distribution of ABPs at 𝑂 (𝜖). At this order, the
number density distribution is governed by

∇ · j𝑛,1 = 0 and j𝑛,1 = 𝛼𝐷𝑎u′
1𝑛0 + 𝑃𝑒𝑠m1 + 𝑃𝑒𝑠e · xm0 − ∇𝑛1. (7.118)

The no-flux boundary condition is n · j𝑛,1 = 0 at 𝑟 = Δ. Similarly, the governing
equation for the polar order (assuming Q1 = 0) is

∇ · j𝑚,1 + 2𝛾2m1 −
1
2
𝛼𝐷𝑎ω′

1 ×m0 = 0, (7.119)

and
j𝑚,1 = 𝛼𝐷𝑎u′

1m0 +
1
3
𝑃𝑒𝑠 (𝑛0e · x + 𝑛1) I − ∇m1. (7.120)
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Figure 7.5: The dimensionless speed of the vesicle 𝑈1 as a function of ℓ/𝛿 for
different fixed values of ℓ/𝑅. All other parameters are fixed: Δ = 0.98, 𝛼 = 1, 𝐷𝑎 =

0.1 and 𝛽 = 1.0.

No-flux at 𝑟 = Δ is n · j𝑚,1 = 0. Similar to equation (7.97), linearity and symmetry
allow us to write the solution to the polar order in the form

m1 = eℎ2(𝑟) + e · xxℎ3(𝑟), (7.121)

where ℎ2(𝑟) and ℎ3(𝑟) are functions of the radial coordinate only and satisfy a
coupled set of ODEs that can be found in Appendix 7.7.

In figure 7.5 we show the dimensionless speed of the vesicle (𝑈1) as a function of ℓ/𝛿
for ℓ/𝑅 = {0.1, 1}. With other dimensionless parameters fixed, the increase of ℓ/𝛿
means the decrease of the translational diffusivity and thus the increase of activity.
The speed of the vesicle vanishes as the activity approaches zero, ℓ/𝛿 → 0. As
ℓ/𝛿 increases, the speed of the vesicle increases and asymptotes to a finite value for
large ℓ/𝛿. The speed is larger for a smaller ℓ/𝑅 because a thin boundary layer near
the interior wall develops that enhances the front-back asymmetry of the density
distribution.

7.5 Concluding remarks
In this Chapter we have proposed a composite low-Reynolds-number propulsion
system made up of active Brownian particles encapsulated in a vesicle for the
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purpose of enhanced transport beyond that of passive Brownian diffusion. Instead
of using the self-propulsion of a microswimmer directly, such as by attaching a
cargo to its surface, we considered an alternate mechanism in which the vesicle is
propelled by a fluid seepage velocity generated by a concentration gradient of these
encapsulated particles. In the present work, we considered the cases in which the
concentration gradient is generated by either a prescribed activity gradient in the
swim speed of these ABPs or an external orienting field. By tuning the spatial pattern
of variation in the swim speed, one could obtain a concentration profile that in turn
propels the vesicle with a certain speed or in a desired direction. Alternatively, the
application of an external orienting field can push the ABPs against the wall and
generate net thrust for the vesicle. We provided a continuum formulation governing
the dynamics of the vesicle-ABPs system and explicitly analyzed its behavior in the
limits of weak interior flow and small activity gradient. For the composite system
as a whole, it moves by jet propulsion at low Reynolds number, i.e., fluid is drawn in
from one side of the vesicle and expels from the other. The encapsulation of ABPs
only provides a mechanism to generate such a seepage flow.

We emphasize that in the present model it is the concentration gradient rather than the
species of the solute particles that is ultimately responsible for vesicle locomotion.
Any osmotic solute, not necessarily active, is able to propel the vesicle so long as
a concentration gradient is maintained. For a passive solute, one can maintain a
concentration gradient using chemical reaction, e.g., by placing a distribution of
sources and sinks. In this Chapter, we analyzed how such a concentration gradient
may be generated by an activity gradient or by the application of an external orienting
field. For magnetotactic bacteria or synthetic active particles, an aligning magnetic
field can be used to control the direction of the concentration gradient and therefore
the direction of motion of the vesicle.

In obtaining the results we assumed that the ABPs can be treated as a continuum
and only contribute to the suspension stress via the osmotic pressure. We note
that additional constitutive models at the continuum level for the suspension stress
can be readily incorporated into our model. The hydrodynamic interactions of
the active particles with each other or the confining vesicle boundary is neglected.
These effects can be studied using a colloidal approach by considering the detailed
interactions among the active particles and with the boundary. For example, this is
considered in the study of a single squirmer encapsulated in a porous container by
Marshall and Brady (2021) and for the case of a collection of squirmers inside a
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droplet that is immersed in another fluid by Huang et al. (2020).

To achieve net motion of the spherical vesicle, a number density distribution at the
vesicle interior wall that breaks the front-back symmetry is required. Instead of
maintaining an asymmetric density distribution in a spherical vesicle using ABPs
with spatially-varying properties or ABPs with constant properties but in an ori-
enting field, one can also consider an asymmetric vesicle. For ABPs with constant
properties confined in an asymmetric container, a symmetry-breaking density dis-
tribution will emerge because the accumulation of ABPs at the wall depends on the
local curvature. The effect of vesicle shape on its net motion is left for a future
study.

The enhancement of transport revealed by our study may be useful for the devel-
opment of synthetic microscale propelling systems for the purpose of delivery of
therapeutic payloads, penetrating complex media, or clearing clogged arteries. We
hope that our proposed theoretical designs can prompt new experimental implemen-
tations.

7.6 Appendix:Brownian dynamics simulations
The dynamics of ABPs confined inside the vesicle in an external orienting field can
be resolved using Brownian dynamics (BD) simulations. Each ABP follows the
Langevin equations of motion given by

0 = −𝜁 (U −𝑈𝑠q) + F 𝐵 + F 𝑤 and 0 = −𝜁𝑅Ω +L𝐵 +L𝑒, (7.122)

where U (Ω) is the instantaneous linear (angular) velocity, F 𝐵 is the Brownian
force, F 𝑤 is the hard-sphere force due to collisions with the interior wall, 𝜁𝑅 is the
rotary Stokes drag coefficient, L𝐵 is the Brownian torque, and L𝑒 is the external
torque due to the field.

The Brownian force and torque satisfy the white noise statistics: F 𝐵 = 0,F 𝐵 (0)F 𝐵 (𝑡) =
2𝑘𝐵𝑇𝜁𝛿(𝑡)I , and L𝐵 = 0,L𝐵 (0)L𝐵 (𝑡) = 2𝜁2

𝑅
𝛿(𝑡)I/𝜏𝑅. Here, 𝛿(𝑡) is the delta

function. In the BD simulations, the particle orientations are represented using unit
quaternions. At each time step, the instantaneous particle velocities are computed
and then used to update the positions and orientations. The kinematic equation
relating the angular velocity and the rate-of-change of the quaternion is given by
Delong et al. (2015).

In figure 7.4, all data points are obtained by averaging over the long-time behavior
of the system. In each simulation, 105 noninteracting ABPs are used, and the system
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is evolved for a sufficiently long time such that the steady state is reached.

7.7 Appendix: Equations for ℎ1, ℎ2 and ℎ3

In this appendix we provide the detail on the derivation of the ODEs for ℎ1, ℎ2, and
ℎ3. Note that the conservation ∫

|x|≤Δ
𝑛1𝑑x = 0 (7.123)

is satisfied.

Note that
∇ 𝑓 (𝑟) = x

1
𝑟
𝑓 ′, (7.124)

and
∇(e · x 𝑓 ) = e 𝑓 + e · xx1

𝑟
𝑓 ′. (7.125)

Using the identity

∇ · (xx · · · x︸    ︷︷    ︸
𝑘

𝑓 (𝑟)) = [(𝑑 + 𝑘 − 1) 𝑓 + 𝑟 𝑓 ′] xx · · · x︸    ︷︷    ︸
𝑘−1

, (7.126)

we can obtain

∇ · [e · xx 𝑓 (𝑟)] = e · [∇ · (xx 𝑓 (𝑟))] = e · x(4 𝑓 + 𝑟 𝑓 ′), (7.127)

∇ · [e · xxx 𝑓 (𝑟)] = e · [∇ · (xxx 𝑓 (𝑟))] = e · xx(5 𝑓 + 𝑟 𝑓 ′). (7.128)

(7.129)

Similarly, we have
∇2 𝑓 =

2
𝑟
𝑓 ′ + 𝑓 ′′, (7.130)

∇2 [e · x 𝑓 ] = e · x
(
4 𝑓 ′

𝑟
+ 𝑓 ′′

)
, (7.131)

∇2(e · xx 𝑓 (𝑟)) = 2e 𝑓 + e · xx
(
6
𝑟
𝑓 ′ + 𝑓 ′′

)
. (7.132)

The equation for ℎ1 is given by

𝛼𝐷𝑎
𝑑𝑛0
𝑑𝑟

(
1
𝑟
𝐴2 +

2
3
𝑟𝐴3 +

𝑟

2𝛽𝐷𝑎
𝐴1

)
+ 𝑃𝑒𝑠

(
1
𝑟

𝑑ℎ2
𝑑𝑟

+ 4ℎ3 + 𝑟
𝑑ℎ3
𝑑𝑟

)
+𝑃𝑒𝑠

(
4 𝑓 + 𝑟 𝑑𝑓

𝑑𝑟

)
− 4
𝑟

𝑑ℎ1
𝑑𝑟

− 𝑑2ℎ1

𝑑𝑟2 = 0. (7.133)
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The no-flux condition is given by

𝑃𝑒𝑠 (𝑟2 𝑓 +ℎ2+𝑟2ℎ3)−ℎ1−𝑟
𝑑ℎ1
𝑑𝑟

+𝐴2𝛼𝐷𝑎𝑛0+
𝛼

6𝛽
𝑟2𝑛0(3𝐴1+4𝐴3𝐷𝑎𝛽) = 0, (7.134)

evaluated at 𝑟 = Δ. The governing equation for ℎ2 is

𝛼𝐷𝑎

(
𝐴2 −

1
3
𝑟2𝐴3

)
𝑓 + 1

3
𝑃𝑒𝑠 (𝑛0 + ℎ1) −

2
𝑟

𝑑ℎ2
𝑑𝑟

− 𝑑2ℎ2

𝑑𝑟2 − 2ℎ3

+2𝛾2ℎ2 +
1
2
𝛼𝐷𝑎

(
5
3
𝐴3 +

𝐴2
2𝛽𝐷𝑎

)
𝑟2 𝑓 = 0. (7.135)

The no-flux condition at 𝑟 = Δ is

𝑑ℎ2
𝑑𝑟

= 0. (7.136)

The governing equation for ℎ3 is

𝛼𝐷𝑎

(
𝐴3 +

𝐴1
2𝛽𝐷𝑎

)
𝑓 + 𝛼𝐷𝑎1

𝑟

𝑑𝑓

𝑑𝑟

(
𝐴2 +

2
3
𝑟2𝐴3 +

𝐴1𝑟
2

2𝛽𝐷𝑎

)
+1

3
𝑃𝑒𝑠

1
𝑟

(
𝑑𝑛0
𝑑𝑟

+ 𝑑ℎ1
𝑑𝑟

)
− 6
𝑟

𝑑ℎ3
𝑑𝑟

− 𝑑2ℎ3

𝑑𝑟2

+2𝛾2ℎ3 −
1
2
𝛼𝐷𝑎

(
5
3
𝐴3 +

𝐴2
2𝛽𝐷𝑎

)
𝑓 = 0. (7.137)

The no-flux condition is

𝛼𝐷𝑎𝑟 𝑓

(
𝐴2 +

2
3
𝑟2𝐴3 +

𝑟2𝐴1
2𝛽𝐷𝑎

)
+ 1

3
𝑃𝑒𝑠𝑟 (𝑛0 + ℎ1) − 2𝑟ℎ3 − 𝑟2 𝑑ℎ3

𝑑𝑟
= 0, (7.138)

evaluated at 𝑟 = Δ. We solve these equations in MATLAB using a Chebyshev
collocation method Trefethen (2000).
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C h a p t e r 8

CONCLUSIONS AND OUTLOOK

8.1 Conclusions
In this thesis, I presented a series of theoretical and computational studies on the
transport and microrheology of active colloids. In free space and in the absence of
external flow, active colloids exhibit enhanced diffusive transport at long times due
to their swim diffusivity. To understand the transport of active colloids in Poiseuille
flow, a generalized Taylor dispersion theory is developed in Chapter 2 and used
to characterize the long-time transport behavior. In particular, I showed that the
vorticity-induced rotation allows active colloids to swim upstream provided that
their swim speed is large enough compared to the flow speed. I also showed that
the interplay between the swim diffusivity and the classical Taylor dispersion gives
rise to a non-monotonic dispersion behavior as a function of the flow speed. These
interesting behaviors of active colloids in Poiseuille flow result from the combined
effects of channel confinement and the background flow. To understand the effect
of swimmer shape on the dynamics and transport, active ellipsoidal colloids are
considered in Chapter 3. The steric interaction between the ellipsoidal particle and
the channel walls gives rise to wall-induced rotation that tends to align the particles
with the wall.

In Chapters 4-6, I considered the microrheology of active colloids by tracking the
dynamics of a colloidal probe particle. In the absence of hydrodynamic interactions,
I showed that active colloids exhibit a swim-thinning behavior in the low-𝑃𝑒 limit.
For large 𝑃𝑒, the probe speed is much larger than the swim speed of active colloids,
the microviscosity is indistinguishable from that of passive colloids. Because of
a thermodynamic uncertainty relation, one cannot meaningfully quantify the fluc-
tuations in the external force if the probe velocity is prescribed. To resolve this
difficulty, a generalized microrheology model is considered in which the probe is
trapped by a moving harmonic trap.

In the microrheology problem, the probe motion drives an asymmetric number
density distribution around the probe, which ultimately leads to a net force on the
probe. To exploit this density asymmetry, in Chapter 7 I considered a composite
propulsion system in which active colloids are encapsulated inside a vesicle with a
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semi-permeable membrane. By immersing the vesicle system in water and allowing
water to pass through the membrane, the vesicle can self-propel provided that an
asymmetric number density inside the vesicle is maintained.

8.2 Outlook
This thesis constitutes a theoretical study on the dynamics of active colloids in
flow and under confinement. In particular, the focus was on the transport of active
colloids in channel flows and the particle-tracking microrheology of active colloids.
In the majority of this thesis, the dynamics of a single particle is considered and the
hydrodynamic interactions among particles or between the particle and the boundary
are neglected.

In the microrheology problem, I showed that by considering the disturbance flow
of the active colloids or the probe, a negative microviscosity can be obtained.
This analysis suggests that hydrodynamic interactions are important in the accurate
quantification of the microrheology of active colloids. For passive colloids, hy-
drodynamic interaction between particles gives rise to a force-thickening behavior
in the large 𝑃𝑒 limit (Khair and Brady 2006; Swan and Zia 2013). An important
future direction is to study the microrheology of active colloids with finite volume
fractions and including full hydrodynamic interactions. This problem can be studied
by using a particle-based simulation technique such as Stokesian dynamics (Brady
and Bossis 1988).

Another issue for future consideration is the effect of shape on the dynamics of active
colloids. For example, in Chapter 3 the dynamics of an active ellipsoidal particle in
Poiseuille flow is considered. Even in the absence of hydrodynamic interactions, the
steric interaction between the ellipsoid and the channel walls gives rise to alignment
with the walls. Many biological microswimmers have a nonspherical shape and the
effect of shape anisotropy or asymmetry on their dynamics is not well understood.
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A p p e n d i x A

MOMENTS OF THE SMOLUCHOWSKI EQUATION

As presented in the main text, an active Brownian particle swims with an intrinsic
swim speed𝑈𝑠 in a direction q (|q | = 1) that relaxes over time via continuous rotary
diffusion characterized by the rotary diffusivity 𝐷𝑅. In the continuum perspective,
the dynamics of an ABP can be described by the probability density function
𝑃(x, q, 𝑡) of finding the particle at position x with orientation q at time 𝑡. As
presented in the main text, the evolution of 𝑃 is governed by the Smoluchowski
equation:

𝜕𝑃

𝜕𝑡
+ ∇ · j𝑇 + ∇𝑅 · j𝑅 = 0, (A.1)

where j𝑇 (j𝑅) is the translational (rotational) flux. For the simplest case in which
an ABP swims freely, we have j𝑇 = 𝑈𝑠q𝑃 − 𝐷𝑇∇𝑃 and j𝑅 = −𝐷𝑅∇𝑅𝑃, where 𝐷𝑇
is the translational diffusivity of the ABP and is assumed to be a constant.

A.1 The rotational operator
The rotational operator in equation (A.1) is defined as (Doi et al. 1988)

∇𝑅 = q × 𝜕

𝜕q
. (A.2)

In 3D, one can parametrize q in a spherical coordinate system such that

q = sin 𝜃 cos 𝜙e𝑥 + sin 𝜃 sin 𝜙e𝑦 + cos 𝜃e𝑧, (A.3)

where 𝜃 is the polar angle, 𝜙 is the azimuthal angle, and {e𝑥 , e𝑦, e𝑧} are the basis
vectors of the reference Cartesian coordinate system. Using this parameterization,
the operator 𝜕/𝜕q is simply the gradient on the unit sphere, which is written as

𝜕

𝜕q
= e𝜃

𝜕

𝜕𝜃
+ 1

sin 𝜃
e𝜙

𝜕

𝜕𝜙
, (A.4)

where e𝜃 (e𝜙) is the basis vector in 𝜃 (𝜙) direction. As a result, the rotational
operator is

∇𝑅 = e𝜙
𝜕

𝜕𝜃
− 1

sin 𝜃
e𝜃

𝜕

𝜕𝜙
. (A.5)

We note that a similar parametric form in 2D can be readily obtained. These
parametric forms of the operator are useful for the numerical simulation of the
Smoluchowski equation.
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For smooth scalar functions 𝐴 = 𝐴(q) and 𝐵 = 𝐵(q), the rotational operator satisfies∫
𝐴∇𝑅 (𝐵)𝑑q = −

∫
𝐵∇𝑅 (𝐴)𝑑q, (A.6)

which is the formula of integration by parts on the unit sphere in both 2D and 3D.
With (A.6), it follows that for a vector-valued function F = F (q),∫

𝐴∇𝑅 · F = −
∫

F · ∇𝑅𝐴𝑑q, (A.7)

and ∫
𝐴∇2

𝑅 (𝐵)𝑑q =

∫
𝐵∇2

𝑅 (𝐴)𝑑q. (A.8)

Because an implied convention is used in the cross product in (A.2), the rotational
operator is a pseudo operator. To avoid this, one can equivalently formulate the
Smoluchowski equation using only the orientational gradient ∇𝑞 = 𝜕/𝜕q (Saintillan
and Shelley 2015). The integration-by-parts formula for ∇𝑞 is given by∫

𝐴∇𝑞 ·B𝑑q = (𝑑 − 1)
∫

q ·B𝐴𝑑q −
∫

B · ∇𝑞𝐴𝑑q, (A.9)

where B = B(q) is a vector-valued function. Setting 𝐴 = 𝑐𝑜𝑛𝑠𝑡 in the above, one
obtains the divergence theorem in orientation space∫

∇𝑞 ·B𝑑q = (𝑑 − 1)
∫

q ·B𝑑q. (A.10)

Noting that q · ∇𝑞 = 0 and using (A.9), we have∫
𝐴∇𝑞 ·

©­­«q · · · q︸  ︷︷  ︸
𝑘

ª®®¬ 𝑑q = (𝑑 − 1)
∫

q · · · q︸  ︷︷  ︸
𝑘−1

𝐴𝑑q, (A.11)

where 𝑘 is an integer.

In manipulating orientational derivatives, the following differential identities are
often useful. First, the orientational gradient of the unit swimming director is

∇𝑞q =
𝜕q

𝜕q
= I − qq, (A.12)

which is simply the identity tensor on the unit sphere. The dot productq · (I−qq) = 0
because q is perpendicular to the surface of the unit sphere representing orientations.
Similarly, we have

q · 𝜕
𝜕q

= 0. (A.13)
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The cross derivative
𝜕

𝜕q
× q = 0 (A.14)

due to symmetry. The orientational Laplacian is

∇2
𝑅 = ∇2

𝑞 . (A.15)

One can also show that

q × ∇𝑅 = − 𝜕

𝜕q
. (A.16)

Several identities involving the derivatives of the polyadic products of q are useful:

∇𝑅 × q = −(𝑑 − 1)q, (A.17)

∇𝑞 · (qq · · · q︸    ︷︷    ︸
𝑘 terms

) = (𝑑 − 1) qq · · · q︸    ︷︷    ︸
𝑘−1 terms

, (A.18)

∇2
𝑞 (qq) = −2𝑑

(
qq − 1

𝑑
I

)
(A.19)

A.2 The orientational moments
Due to the polar nature of ABPs (the presence of q), the mathematical dimensionality
of its phase space (x and q) is high. In 3D, it has a dimensionality of 5 if one
parametrizes the swimming direction q using the polar and azimuthal angles of a
spherical coordinate system. This poses a challenge for direct numerical simulations
of the Smoluchowski equation. On the other hand, one often does not require the full
distribution but rather its orientational moments. These often include the number
density

𝑛(x, 𝑡) =
∫

𝑃𝑑q, (A.20)

the polar order
m(x, 𝑡) =

∫
q𝑃𝑑q, (A.21)

and the nematic order

Q(x, 𝑡) =
∫ (

qq − 1
𝑑
I

)
𝑃𝑑q, (A.22)

where 𝑑 = 2, 3 is the dimensionality of the physical space and I is the identity
tensor.

As an example, we consider the dynamics of a spheroidal ABP with length 2𝑎
and diameter 2𝑏 in simple shear flow. The Smoluchowski equation using the
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orientational gradient formulation can be written as

𝜕𝑃

𝜕𝑡
+ ∇ · j𝑇 + ∇𝑞 · j𝑞 = 0, (A.23)

j𝑇 = u𝑃 +𝑈𝑠q𝑃 −D(q) · ∇𝑃, (A.24)

j𝑞 = [q ·Ω + 𝛽(I − qq) ·E · q] 𝑃 − 𝐷𝑅∇𝑞𝑃, (A.25)

where Ω𝑖 𝑗 = (𝜕𝑢 𝑗/𝜕𝑥𝑖 − 𝜕𝑢𝑖/𝜕𝑥 𝑗 )/2 is the anti-symmetric part of the velocity
gradient tensor, 𝐸𝑖 𝑗 = (𝜕𝑢 𝑗/𝜕𝑥𝑖 + 𝜕𝑢𝑖/𝜕𝑥 𝑗 )/2 is the symmetric part, D(q) =

𝐷 ∥qq + 𝐷⊥(I − qq) is the translational diffusivity, and 𝛽 = (𝑟2 − 1)/(𝑟2 + 1) is the
Bretherton parameter with 𝑟 = 𝑎/𝑏 being the aspect ratio. The flow field is given by

u = ¤𝛾𝑦e𝑥 , (A.26)

where ¤𝛾 is the shear rate.

If the rotational operator is used to formulate the Smoluchowski equation as done
in (A.1), one needs to define the rotary flux as

j𝑅 = ∇𝑅 ·
[
1
2
ω𝑃 + 𝛽q × (E · q) 𝑃

]
, (A.27)

where ω = ∇ × u is the vorticity vector of the flow field. To see this, using the
relations Ω = 1

2ϵ · ω and ω = ϵ : Ω with ϵ being the Levi-Civita tensor, one can
show that

∇𝑅 ·
[
1
2
ω𝑃 + 𝛽q × (E · q) 𝑃

]
= ∇𝑞 · [q ·Ω𝑃 + 𝛽(I − qq) ·E · q𝑃] . (A.28)

We emphasize again that both formulations give the same Smoluchowski equation.

To derive the governing equation for the 𝑘-th orientational moment, we multiply
equation (A.23) by the 𝑘-adic product of q and integrate over the orientation space.
The zeroth moment, or number density, is governed by

𝜕𝑛

𝜕𝑡
+ ∇ · (u𝑛 +𝑈𝑠m − ⟨𝐷⟩ ∇𝑛 − Δ𝐷∇ ·Q) = 0, (A.29)

where the translational diffusivity is written as

D =

(
2
3
𝐷⊥ + 1

3
𝐷 ∥

)
I + (𝐷 ∥ − 𝐷⊥)

(
qq − 1

3
I

)
,

= ⟨𝐷⟩ I + Δ𝐷

(
qq − 1

3
I

)
. (A.30)
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The first moment is the polar order and satisfies

𝜕m

𝜕𝑡
+ ∇ · j𝑚 + 2𝐷𝑅m −m · (𝛽E +Ω) + 𝛽B̃ : E = 0, (A.31)

where the flux for m is

j𝑚 = um +𝑈𝑠
(
Q + 1

3
𝑛I

)
−

(
⟨𝐷⟩ − 1

3
Δ𝐷

)
∇m − Δ𝐷∇ · B̃, (A.32)

and
𝐵̃𝑖 𝑗 𝑘 =

∫
𝑞𝑖𝑞 𝑗𝑞𝑘𝑃𝑑q (A.33)

is the third moment. The nematic order satisfies

𝜕Q

𝜕𝑡
+ ∇ · j𝑄 +Ω ·Q −Q ·Ω − 𝛽(E ·Q +Q ·E)

− 2
3
𝛽𝑛E + 2𝛽C̃ : E + 6𝐷𝑅Q = 0, (A.34)

where the flux for Q is

j𝑄 = uQ +𝑈𝑠
(
B̃ − 1

3
mI

)
−

(
⟨𝐷⟩ − 1

3
Δ𝐷

)
∇Q

− Δ𝐷∇ · C̃ + 1
3
Δ𝐷 (∇ ·Q)I + 1

9
Δ𝐷∇𝑛I , (A.35)

and

𝐶̃𝑖 𝑗 𝑘𝑙 =

∫
𝑞𝑖𝑞 𝑗𝑞𝑘𝑞𝑙𝑃𝑑q (A.36)

is the fourth moment. In deriving the equations for orientational moments, the
differential and integral identities in the previous section are used.

It is clear that there are an infinite sequence of equations governing the orientational
moments. The equation governing the 𝑘-th moment depends on the 𝑘 + 1 or higher
order moments. It is common to consider only the equations governing the first few
moments and use a closure approximation for higher order moments. For example,
in the absence of flow (u = 0) for isotropic ABPs (Δ𝐷 = 0), the Q = 0 closure is
often used (Saintillan and Shelley 2015; Yan and Brady 2015b); this leads to a set
of closed equations for the number density and polar order.

As one might expect, this Q = 0 closure does not offer a universal approximation
for the dynamics of ABPs, particularly in the presence of external orienting or flow
fields. Taking the equations for ABPs in simple shear as an example, one way to
obtain a closure at the Q level is to examine equation (A.34). If we neglect the
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gradient terms ∇ · j𝑄 and higher order moments completely, one arrives at steady
state the algebraic equation

Ω ·Q −Q ·Ω − 𝛽(E ·Q +Q ·E) − 2
3
𝛽𝑛E + 6𝐷𝑅Q = 0. (A.37)

For a spherical ABP, 𝛽 = 0, we obtain the closure Q = 0. If the particle is non-
spherical, Q does not vanish but instead is related to the rate-of-strain tensor, which
can be obtained by inverting the above equation.

Another approach to close the moment equations is to consider a tensor harmonics
expansion of the probability density (Saintillan and Shelley 2013):

𝑃(x, q, 𝑡) = 1
4𝜋

[
𝑛(x, 𝑡) + 3q ·m(x, 𝑡) + 15

2
qq : Q(x, 𝑡) + · · ·

]
. (A.38)

Mathematically, this represents a severely truncated spherical harmonics expansion
(or Fourier series in 2D), which is expected to be a good approximation if the prob-
ability density is locally close to the uniform orientational distribution. Truncating
at the Q level, one can then derive closures for higher order moments by integration.
For example, the third moment can be shown to be

𝐵̃𝑖 𝑗 𝑘 =
1
5
(𝑚𝑖𝛿 𝑗 𝑘 + 𝑚 𝑗𝛿𝑖𝑘 + 𝑚𝑘𝛿𝑖 𝑗 ), (A.39)

where 𝛿𝑖 𝑗 is the Kronecker delta.

One can see that the above equation does not reflect the effects of external orienting
or flow fields, therefore the truncated probability density does not work when the
orientational distribution is highly distorted due to external flow as shown in Peng
and Brady (2020).

A.3 The spatial moments
In free space, one can also consider the spatial moments of the Smoluchowski
equation. The 𝑘-th polyadic spatial moment is defined as

P𝑘 (q, 𝑡) =
∫

x · · · x︸  ︷︷  ︸
𝑘 times

𝑃(x, q, 𝑡)𝑑x. (A.40)

The zeroth spatial moment,

𝑃0(q, 𝑡) =
∫

𝑃𝑑x, (A.41)

is the net orientational distribution.
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As an example, we again consider the problem of an ABP in simple shear. The
equation governing the zeroth moment is given by

𝜕𝑃0
𝜕𝑡

+ ∇𝑞 · (H𝑃0) − 𝐷𝑅∇2
𝑞𝑃0 = 0, (A.42)

where H = q ·Ω + 𝛽(I − qq) ·E · q. The first moment satisfies

𝜕P1
𝜕𝑡

+ ∇𝑞 · (HP1) − 𝐷𝑅∇2
𝑞P1 = P1 · ¤𝚪 +𝑈𝑠q𝑃0, (A.43)

where ¤𝚪 = E + Ω is the velocity gradient tensor. For the case of an ABP in
simple shear, the spatial moment equation at order 𝑘 is coupled only to lower order
moments. As a result, the set of moment equations up to order 𝑘 is closed. We note
that, in general, the spatial moment equations can also have an infinite hierarchical
structure similar to that of the orientational moments.

For ABPs, the hydrodynamic stresslet is proportional to the nematic order. The
spatially averaged nematic filed ⟨Q⟩ (𝑡) =

∫
(qq − I/3)𝑃𝑑q𝑑x in simple shear

satisfies a closed equation given by

𝜕

𝜕𝑡
⟨Q⟩ +Ω · ⟨Q⟩ − ⟨Q⟩ ·Ω + 6𝐷𝑅 ⟨Q⟩ = 0,

⟨Q⟩ (𝑡 = 0) =
∫ (

qq − 1
3
I

)
𝑃0(q, 0)𝑑q. (A.44)

We note that the net nematic order can be obtained by using either ⟨Q⟩ =
∫
Q𝑑x

or ⟨Q⟩ =
∫
(qq − I/3)𝑃0(q, 𝑡)𝑑q. By defining

Q̂ =
(
⟨𝑄𝑥𝑥⟩ ,

〈
𝑄𝑥𝑦

〉
, ⟨𝑄𝑥𝑧⟩ ,

〈
𝑄𝑦𝑦

〉
,
〈
𝑄𝑦𝑧

〉)𝑇
, (A.45)

we can write

𝜕

𝜕𝑡
Q̂ = A1 · Q̂, (A.46)

where

A1(𝑡) = −

©­­­­­­­«

6𝐷𝑅 − ¤𝛾 0 0 0
1
2 ¤𝛾 6𝐷𝑅 0 −1

2 ¤𝛾 0
0 0 6𝐷𝑅 0 −1

2 ¤𝛾
0 ¤𝛾 0 6𝐷𝑅 0
0 0 1

2 ¤𝛾 0 6𝐷𝑅

ª®®®®®®®¬
(A.47)

We can further generalize the flow to be oscillatory, ¤𝛾(𝑡) = ¤𝛾0 cos(𝜔𝑡), in which
case A has one real and two pairs of complex eigenvalues, which indicates that we
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have damped oscillation in the solution. The solution can be readily obtained via
the matrix exponential

Q̂(𝑡) = exp
(∫ 𝑡

0
A1(𝑠)𝑑𝑠

)
· Q̂(0). (A.48)
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