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ABSTRACT 
 
 
 

Signaling in context: parsing the adhesion-dependence  

of growth factor signaling 

 

February, 2007 

 
 

Niki Galownia, B.S., Case Western Reserve University 

M.S., California Institute of Technology 

Ph.D, California Institute of Technology 

 

 

 
Intracellular signaling induced by adhesion and soluble growth factors is a 

significant contributor to cellular function.  The serine/threonine kinase, extracellular 

signal-regulated kinase (Erk), is a prominent point of signaling crosstalk between 

adhesion and growth factors.  Despite extensive effort, the effect of individual growth 

factors on adhesion-dependent Erk signaling remains unclear due to considerable 

protocol differences and qualitative analyses.  To address these issues, we developed an 

experimental technique to compare systematically the crosstalk between adhesion and 

individual growth factors and a quantitative protocol for measuring the magnitude and 

dynamics of Erk signaling. 
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Using these methods, we demonstrate that: (1) Adhesion to fibronectin 

desensitizes Erk activation for cells stimulated by either PDGF (platelet-derived growth 

factor) or bFGF (basic fibroblast growth factor), but not by EGF (epidermal growth 

factor); (2) EGF, but not PDGF or bFGF, induces adhesion-dependent Erk activation 

enhancement; and (3) for adherent cells, either EGF or PDGF stimulation generates 

transient Erk activation, while bFGF stimulation mediates sustained Erk activation.  This 

data reveal that there are significant differences in the adhesion-dependence of growth 

factor signaling.  The most striking observation was that adhesion desensitizes cells to 

low doses of specific growth factors (PDGF and bFGF).  Studies conducted to uncover 

the underlying mechanism(s) revealed that adhesion-mediated desensitization of Erk 

activation exhibits rapid kinetics and occurs at or above the level of Ras activation, but 

does not involve Sos hyperphosphorylation. 

To further probe the mechanisms responsible for generating different Erk 

signaling dynamics, we constructed a simple coarse-grain model of Erk activation and 

deactivation pathways.  These pathways are represented by four distinct motifs: 

activation, constitutive direct-deactivation, feedback-mediated direct-deactivation, and 

feedback-decoupling.  Our model predicts that transient and sustained Erk signaling 

dynamics require specific combinations of the four signaling motifs.  These predictions 

suggest that differences in the Erk activation motif are most likely responsible for the 

experimentally observed characteristics of adhesion-dependent EGF-mediated Erk 

signaling.  Furthermore, the model indicates either feedback-decoupling deactivation or 

direct-deactivation as the mechanisms responsible for the observed transient-versus-

sustained signaling dynamics induced by different growth factors.     
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Chapter I. Introduction 
 

Cell adhesion to the extracellular matrix (ECM) is critical for multiple cellular 

functions including migration, survival, apoptosis, and proliferation.   In fact, 

carcinogenic cells gain anchorage-independence, retaining the ability to proliferate 

without adhesion to the ECM (Assoian, 1997; Schwartz and Assoian, 2001).  

Additionally, cell adhesion is important in the area of biomaterial development.  

Understanding how adhesion affects cellular function is critical in determining the 

appropriate epitopes required on a biomaterial surface to induce adhesion.  Importantly, 

quantification of growth factor-induced adhesion-dependent signals is a key challenge in 

assessing the quality and effectiveness of both biomaterials and cancer therapies.   

 

To begin to understand cellular adhesion, it is necessary to discuss the proteins 

responsible for cell attachment to the ECM.  Cell adhesion is mediated by heterodimeric 

transmembrane proteins called integrins (Asthagiri et al., 1999; Giancotti and Ruoslahti, 

1999; van der Flier and Sonnenberg, 2001; Vinogradova et al., 2002; Vuori, 1998).  Each 

integrin contains an alpha and beta extracellular domain that combine to form 24 

heterodimers.  It is these heterodimers that determine to which ECM proteins the integrin 

will bind (van der Flier and Sonnenberg, 2001).  The ECM protein fibronectin (FN) has 

been well characterized in mediating cellular adhesion and spreading (Pierschbacher and 

Ruoslahti, 1984).  In fact, the Arg-Gly-Asp (RGD) domain of FN has been termed the 

cell-binding domain due to its presence in several other ECM proteins known to bind to 

cells (Hersel et al., 2003; Pierschbacher and Ruoslahti, 1984; Ruoslahti and 

Pierschbacher, 1987).   Although many integrins can bind FN, the α5β1 integrin is the 
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main FN receptor on most cells.  In addition, binding of α5β1 to FN has been implicated 

as important in supporting mitogen proliferation in endothelial, epithelial, and fibroblast 

cells (Danen and Yamada, 2001)  

 

While integrins themselves do not have any intrinsic catalytic signaling ability, 

integrin binding to ECM proteins induces integrin clustering and subsequent focal 

adhesion formation that affects multiple signaling pathways within cells (Danen and 

Yamada, 2001).  Structural components such as actin fibers and cortical actin filaments 

also associate with focal adhesions; thereby providing a link between integrin-mediated 

signaling and the cytoskeleton (Vuori, 1998).  Ultimately, these complexes initiate 

signaling cascades that lead to cytoskeleton rearrangement and integrin-mediated gene 

transcription (Asthagiri et al., 1999; van der Flier and Sonnenberg, 2001).  Importantly, 

these integrin-mediated signals enforce an adhesion requirement for proliferation in the 

majority of normal cells (Schwartz and Assoian, 2001).   

 

Interestingly, adhesion alone is not sufficient to maintain survival or induce 

proliferation (Assoian, 1997; Asthagiri et al., 2000; Danen et al., 2000; Schneller et al., 

1997; Schwartz and Assoian, 2001; Vuori and Ruoslahti, 1994).   Instead, signaling 

events induced by soluble growth factors are also essential.  It is the combined effect of 

signaling induced by integrin-mediated adhesion and soluble growth factors that is 

necessary for cell viability and proliferation; thus, it is not surprising that both adhesion 

and soluble growth factors affect similar signaling pathways (Assoian, 1997; Danen et 
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al., 2000; Pu and Streuli, 2002; Roovers and Assoian, 2000; Schneller et al., 1997; 

Schwartz and Assoian, 2001; Vuori and Ruoslahti, 1994).   

 

While both integrins and growth factors affect similar signaling pathways, the 

means by which they elicit these signaling events differ.  Unlike integrins, soluble growth 

factors, including epidermal growth factor (EGF), platelet-derived growth factor (PDGF), 

basic fibroblast growth factor (bFGF), and insulin, do not affect the cell structure.  

Instead, they actively induce signaling by directly binding to their growth factor specific 

receptor.  This ligand binding induces the catalytic activity of the transmembrane 

receptor and elicits a signal cascade ultimately affecting numerous cellular functions.  

 

 Because of the physiological importance of adhesion- and growth factor-

mediated cell regulation, significant attention has been given to uncovering the 

underlying signaling mechanisms relating the two.  One prominent point of crosstalk 

between adhesion and growth factors involves the serine/threonine kinase, extracellular 

signal-regulated kinase (Erk).  Although Erk activation is generally viewed as a result of 

activation of the canonical growth factor-mediated mitogen activated protein kinase 

(MAPK) signaling pathway, integrin-mediated signaling ultimately results in the 

enhancement of Erk activation.  While we leave a detailed discussion of the pathways by 

which integrins affect and enhance MAPK signaling to Chapter 4, growth-factor 

mediated activation of the canonical MAPK pathway is presented here.     
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Growth factor-mediated activation of the canonical MAPK pathway begins with 

the binding of a soluble growth factor ligand to its respective receptor.  The ligand 

binding elicits tyrosine autophosphorylation of the receptor (Ford and Pardee, 1999; 

Roovers and Assoian, 2000), which enables growth factor receptor bound protein 2 

(Grb2) to bind to the now activated receptor.  The Grb2-growth factor receptor complex 

then recruits and binds with the guanosine 5’-triphosphate exchange factor, son-of-

sevenless (Sos) (Roovers and Assoian, 2000).  Sos-mediated nucleotide exchange 

activates Ras by converting it to its GTP form, which enables it to bind to and activate 

Raf, initiating activation of the MAPK cascade.  Active Raf kinase binds to and activates 

Mek, which binds to and activates Erk, eventually leading to S-phase entry (Ford and 

Pardee, 1999; Roovers and Assoian, 2000) if also activated by integrin-mediated 

pathways.     

 

In most normal cells, Erk must be activated by both integrins and growth factors 

in order to induce proliferation.  Thus, it is the combined effect of integrin-mediated 

activation pathways and growth factor-induced signaling events that enables active Erk to 

translocate into the nucleus.  Once inside the nucleus, active Erk phosphorylates Elk-1 

and enables cyclin D1 transcription (Aplin et al., 2001; Ford and Pardee, 1999; 

Khokhlatchev et al., 1998; Pu and Streuli, 2002; Roovers and Assoian, 2000).  Cyclin D1 

then forms a complex with cyclin-dependent kinase 4/6 (cdk4/6 ) that is able to 

phosphorylate the tumor-suppressor retinoblastoma protein (Rb) (Assoian, 1997; Ford 

and Pardee, 1999; Pu and Streuli, 2002).  Rb is normally complexed with E2F.  However, 

upon phosphorylation, Rb is released from the E2F complex, enabling the transcription of 
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numerous genes involved in DNA synthesis and ultimately leading to S-phase entry and 

proliferation (Assoian, 1997; Ford and Pardee, 1999; Pu and Streuli, 2002). 

 

The nature of Erk signaling has been intensely studied.  While some studies 

suggest that it is the early phase of growth factor-mediated Erk signaling that is enhanced 

by adhesion (Danen et al., 2000; DeMali et al., 1999; Lin et al., 1997 ), others have 

suggested that it is dynamic changes in Erk activation, and not the early magnitude of the 

signal, that is important (Danen et al., 2000; Jones and Kazlauskas, 2001; Renshaw et al., 

1999; Roovers et al., 1999; Tombes et al., 1998).  Yet others still report no synergism 

between adhesion and soluble growth factors in Erk signaling (Hedin et al., 1997; 

Mettouchi et al., 2001).  These discrepancies are attributable to the use of different cell 

systems, different synchronization methods, different growth factor cocktails, and 

different adhesive contexts (Danen et al., 2000; DeMali et al., 1999; Renshaw et al., 

1997; Roovers et al., 1999).  These discrepancies in experimental protocols make it 

difficult to decipher whether adhesion enhances Erk signaling in response to all of these 

growth factors or whether only a subset of growth factors signal in an adhesion-

dependent manner.  In addition, conclusions regarding differences in dynamic activation 

profiles (either manifesting themselves as a difference in magnitude or as a shift from 

transient to sustained signal) cannot be resolved from the current body of literature.    
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In an effort to answer these questions, we chose to examine quantitatively the 

effect of adhesion and specific growth factors on Erk activation.   We first developed an 

experimental system that enables systematic comparison of the crosstalk between 

adhesion and individual growth factors.  In addition, we developed a quantitative protocol 

for Western blot imaging and analysis to measure both the magnitude and dynamics of 

Erk signaling.  The development the experimental system and quantitative assay are 

discussed in Chapter 2.   

 

  Interestingly, utilization of our experimental protocol reveals a novel aspect of 

adhesion-dependent growth factor signaling.  As described in Chapter 3, we discovered 

that adhesion selectively desensitizes growth factor-mediated activation of Erk.  To help 

guide our search for the molecular mechanism(s) responsible for differential Erk 

activation dynamics by specific growth factors, we developed a simple coarse-grain 

mathematical model, which is described in detail in Chapter 4.  Finally, Chapter 5 

outlines both the significance of our results and how model predictions of key molecular 

mechanisms may be further examined in future work.   
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Chapter II.  Developing an Experimental Platform for Quantifying 
Adhesion-Dependent Signaling 
 

1. Abstract 
 

A prominent point of signaling crosstalk between adhesion and growth factors 

involves the serine/threonine kinase, extracellular signal-regulated kinase (Erk).  

Extensive effort has been invested in understanding adhesion-dependent Erk signaling.  

However, because of the considerable differences in protocols and the qualitative nature 

of past studies, the effect of individual growth factors on adhesion-dependent Erk 

signaling remains unclear.  To address these issues, we developed: (1) an experimental 

system that enables systematic comparison of the crosstalk between adhesion and 

individual growth factors and (2) a quantitative protocol for measuring both the 

magnitude and dynamics of Erk signaling.  The experimental system avoids potentially 

confounding contributions from serum by conducting each step of the protocol in 

completely serum-free medium.  We find that serum augmentation is necessary to 

maintain NIH-3T3 cell viability only when late signaling kinetics are examined.  We 

have identified a 4-5 hour window during which serum supplementation is unnecessary to 

maintain cell viability.  These serum-free conditions, coupled with optimized methods for 

maintaining cells in suspension, should now enable us to directly study the adhesion-

dependence of specific growth factors.  Unique to existing methods used to quantify 

adhesion-dependent Erk activation, we also employ standards in every Western blot to 

confirm the linear range of the assay.  These standards are also used to optimize antibody 

incubation protocols. The development of a rigorous  experimental system and 

quantitative methods for imaging and analysis well equips us to investigate the effect of 
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integrins and individual growth factors on adhesion-mediated signaling, which we 

discuss in subsequent chapters.  

2. Introduction 
 

Cell adhesion generates intracellular signals that affect multiple cellular functions 

including proliferation, survival, and apoptosis (Asthagiri et al., 1999; Giancotti and 

Ruoslahti, 1999; van der Flier and Sonnenberg, 2001; Vinogradova et al., 2002; Vuori, 

1998).   While proliferation of mammalian cells is dependent on a myriad of 

environmental factors, stimulation both by soluble growth factors and by integrin-

mediated adhesion is among the most important.   In fact, loss of adhesion in normal cells 

generally results in complete cell cycle arrest (Assoian, 1997; Schwartz and Assoian, 

2001).  In addition, loss of integrin-mediated cell adhesion initiates apoptosis in 

susceptible cell types such as endothelial human umbilical vein (HUVEC) cells 

(Meredith et al., 1993), gut epithelial cells (Meredith et al., 1993), normal Madin-Darby 

canine kidney (MDCK) epithelial cells (Frisch and Francis, 1994), and spontaneously 

immortalized non-transformed human keratinocyte (HaCat) cells  (Frisch and Francis, 

1994).  Because the majority of normal cells require adhesion to an ECM in order to 

proliferate, it is not surprising that deregulation of adhesion-dependent proliferation often 

contributes to cancer development.  In fact, the formation and spread of tumors is closely 

associated with decreased dependence on adhesion to extracellular matrix proteins 

(Assoian, 1997; Schwartz and Assoian, 2001).   

 

  An important integrin-mediated signaling pathway involves activation of the 

mitogen activated protein kinase (MAPK) pathway, which is also triggered by growth 



 

 

II-3

factor stimulation (Danen et al., 2000; Ford and Pardee, 1999; Giancotti and Ruoslahti, 

1999; Pu and Streuli, 2002; Renshaw et al., 1997; Roovers and Assoian, 2000; Roovers et 

al., 1999; Schlaepfer et al., 1994; Schneller et al., 1997; Schwartz and Assoian, 2001; 

Vuori and Ruoslahti, 1994).  Interestingly, Erk activation by either integrins or growth 

factors alone is not sufficient for S-phase entry, and, by extension, proliferation (Assoian, 

1997; Danen et al., 2000; Schneller et al., 1997; Schwartz and Assoian, 2001; Vuori and 

Ruoslahti, 1994).  However, the combined effects of integrins and growth factors have 

been shown to synergistically amplify Erk signaling and ultimately lead to S-phase entry 

and proliferation (Assoian, 1997; Danen et al., 2000; Pu and Streuli, 2002; Roovers and 

Assoian, 2000; Schneller et al., 1997; Schwartz and Assoian, 2001; Vuori and Ruoslahti, 

1994).   

 

While some studies suggest that it is the early magnitude of Erk signaling that 

confers its adhesion-dependence (Danen et al., 2000; DeMali et al., 1999; Lin et al., 

1997), others have suggested that it is the changes in Erk signaling dynamics over 

extended time periods that are actually important (Danen et al., 2000; Jones and 

Kazlauskas, 2001; Renshaw et al., 1999; Roovers et al., 1999; Tombes et al., 1998).  Yet 

others report no synergism between adhesion and soluble growth factors in Erk signaling 

(Asthagiri and Lauffenburger, 2000; Hedin et al., 1997; Mettouchi et al., 2001).  These 

discrepancies may be attributed to the use of different cell systems, different 

synchronization methods, different growth factor cocktails, and different adhesive 

contexts.  For example, while NIH-3T3 cells are prevalent throughout the literature 

(Danen et al., 2000; Renshaw et al., 1997; Roovers et al., 1999), other cell type, including 



 

 

II-4

Ph cells and F cells (DeMali et al., 1999) or NIH-3T3 cells expressing transfected 

constructs, are also used (Roovers et al., 1999).  In addition, not all studies serum-starve 

cells before plating (Renshaw et al., 1997), and some include small amounts of serum in 

the starvation medium (DeMali et al., 1999; Renshaw et al., 1997).  Serum is also 

included in the growth factor stimulation medium, with the amount of serum varying 

from as little as 0.4% (Renshaw et al., 1997) to as much as 5% (Roovers et al., 1999).  

Use of multiple growth factors in stimulation medium also occurs (Danen et al., 2000) 

 

Furthermore, not all adhesion studies use defined surfaces, where a single ECM 

protein, such as fibronectin (FN), is exclusively used to mediate cell adhesion.  Instead, 

some allow the cells to adhere to tissue culture dishes coated with ECM proteins from 

serum prior to growth factor stimulation (Renshaw et al., 1997; Roovers et al., 1999).  

The method for maintaining non-adherent cells also varies in the literature; some employ 

poly-L-lysine(PL)-coated surfaces to mediate non-specific attachment via electrostatic 

interactions (DeMali et al., 1999), while others utilize agarose-coated dishes to maintain 

cells in suspension (Danen et al., 2000; Renshaw et al., 1997; Roovers et al., 1999).  The 

time cells are either maintained in suspension or allowed to adhere to FN-coated surfaces 

prior to growth factor stimulation, or the ‘priming time,’ also varies widely in the 

literature.  Some prime cells for substantial amount of time prior to growth factor 

stimulation (Danen et al., 2000; Renshaw et al., 1997), while others choose not to prime 

cells at all (Roovers et al., 1999).    
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Finally, adhesion-mediated Erk signaling is often analyzed only in qualitative 

terms.  In studies that attempt to quantify Erk signaling, densitometry of film-based 

techniques is often used.  As film-based techniques are known to easily saturate, and 

standard curves are not provided with the data, one can never be certain that quantitative 

data obtained via densitometry occurs within the linear dynamic range of the imaging 

protocol.    

 

Because of these discrepancies in experimental protocols, it remains unclear 

whether adhesion-dependent Erk signaling is specific to particular growth factors.   Thus 

we sought first to establish an experimental system to study adhesion-dependent 

signaling, and then to develop quantitative methodologies to accurately measure these 

adhesion-mediated signals. 

 

3. Results and Discussion 
 

3.1     Considerations in developing a protocol to study adhesion-mediated signaling 
 

Adhesion and growth factor synergy has been investigated by comparing 

differences in signaling between adherent and non-adherent cells stimulated by growth 

factors.  However, due to the many the differences in both the experimental systems and 

the protocols employed in previous adhesion-dependent studies, it remains unclear 

whether adhesion-dependent Erk signaling is specific to particular growth factors.   Thus, 

we are left with many possibilities for which cell type to examine, how to lift cells from 

the dish, which kind of adhesive and non-adhesive surface to utilize, whether starvation 
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medium is necessary to quiesce residual Erk signaling in the cells, and whether 

supplementing starvation and/or stimulation media with serum is required to maintain 

high cell viability.  Because our goal is to develop an adhesion protocol that enables 

direct comparison of the effects of adhesion and a single growth factor on Erk signaling, 

each protocol development decision we make will be with this objective in mind.  

 

 In order to fulfill our goal of developing an experimental system to enable direct 

comparison of three individual growth factors (EGF, PDGF, or bFGF) on adhesion-

dependent Erk activation, it is essential that each experiment be conducted using the same 

experimental system.  Each experiment must utilize the same cell type, a consistent 

method to lift cells, the same plating method, identical starvation medium formulations, 

equivalent stimulation medium formulations prior to growth factor addition, equivalent 

plating methods for adherent and non-adherent cells, and identical analysis and imaging 

techniques.  Thus, we seek to develop a consistent protocol to acquire data that will begin 

to provide a systematic comparison of the crosstalk between adhesion and individual 

growth factors.   

 

Development of this experimental protocol required careful consideration of the 

effect that each choice we made would have on our experimental system.  For example, 

during determination of the appropriate cell detachment technique, we had to consider 

how each option would affect the integrity of the integrins.  Integrin damage is known to 

occur via protease exposure.  Thus, we were careful to add a protease inhibitor to cells 
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immediately after detachment when a protease-containing cell detachment method was 

used.     

 

The possible formation of cell aggregates following detachment was another 

important consideration.  Cell aggregation must be prevented because such cell-cell 

contact can initiate cadherin-mediated signaling that convolutes proper data 

interpretation.  Although some cell-cell contact during re-suspension is likely, cells can 

be quickly separated via trituration to limit the effects of cadherin-mediated signaling.  

However, excessive trituration can negatively affect cell viability, and thus should be 

avoided.  In cases where the cell aggregates cannot be separated, the cell suspension must 

not be used for experiments due to probable cadherin-mediated signaling. 

 

The presence of residual adhesion-mediated signaling resulting from cell 

attachment to matrix proteins in serum is an equally important consideration.  Cells are 

cultured on uncoated tissue culture dishes in serum-containing growth media.  To return 

Erk signaling to basal levels and prevent residual Erk activation from confounding 

interpretation of adhesion- and/or growth factor-induced signaling, serum-starvation prior 

to re-plating of cells for experiments was investigated.  As quiescing residual signals by 

deprivation of both serum and integrin engagement is known to induce apoptosis   

(Levine and Klionsky, 2004; Reddig and Juliano, 2005), maintaining cell viability is also 

a concern.  Clearly, from a data-analysis standpoint, excluding serum from starvation and 

stimulation media is most desirable.  However, the cells must remain viable to obtain 
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valid results.  Therefore, the balance of serum use and cell viability was closely 

evaluated.    

 

In addressing these considerations, we developed an experimental protocol that 

limits the use of serum to ensure that signaling responses can be clearly attributed to 

adhesion and a specific growth factor.  Moreover, conditions that minimize cell clustering 

and quiesce pre-stimulatory Erk signaling were identified.  Together, the developed 

experimental protocol provides a systematic platform for parsing the crosstalk between 

cell adhesion- and growth factor-mediated signaling.  

 

3.2     Maintaining high cell viability while eliminating cell aggregation  
 

Our studies focused on the NIH-3T3 cell line, since it has served as the preferred 

line for adhesion-mediated signaling studies (Danen et al., 2000; Renshaw et al., 1997; 

Roovers et al., 1999).  Maintaining high NIH-3T3 cell viability is a concern through each 

phase of the protocol, including the step where cells are detached from the culture dish.  

Multiple factors can affect cell viability during detachment including prolonged exposure 

to proteases and removal of cells via mechanical shearing.  In addition to cell viability 

issues, the formation of cell aggregates following cell detachment can also readily occur. 

 

A variety of solutions can be used for cell detachment, with some containing only 

chelating agents (such as EDTA) and others containing a combination of both chelating 

agents and proteases (such as trypsin diluted in EDTA).  However, chelating agents alone 

do not always result in complete detachment.   Thus, the presence of a protease can be 
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required to further detach the cell from the dish.  However, as proteases are known to 

damage cell surface receptors, care must be taken to avoid prolonged protease exposure.  

Thus, the lowest concentration of protease necessary to induce efficient detachment 

should be used to mitigate potential cell-receptor damage.   

 

We investigated six different detachment agents: 5 mM EDTA alone, 0.48 mM 

EDTA alone, 0.01% trypsin diluted in 5 mM EDTA, 0.01% trypsin diluted in 0.48 mM 

EDTA, 0.05% trypsin diluted in 0.48 mM EDTA, and 0.25% trypsin diluted in 1 mM 

EDTA.   Although 0.48 mM EDTA and 5mM EDTA elicit the least amount of cell- 

receptor damage due to the absence of a protease, neither method was able to induce cell 

detachment even after exposure of up to 45 min.  As a result, substantial mechanical 

shearing from the force of the EDTA solution being washed over the dish during cell 

collection was required to dislodge cells from the dish, and use of both concentrations of 

EDTA alone resulted in approximately 50% cell viability as assayed via trypan blue 

staining (data not shown).   

 

While adding 0.01% trypsin to either 0.48 mM EDTA or 5 mM EDTA induced 

cell detachment within 7 min and enabled complete detachment of cells from the dish, 

significant cell aggregation resulted upon re-suspension.  Only via vigorous trituration—

which resulted in 20-40% viability, as assayed via trypan blue staining—could single-cell 

suspensions be obtained (data not shown).   Although cell viability improved 

significantly when less trituration was employed, a single cell suspension could not be 

obtained.  Thus detachment methods with only 0.01% trypsin were eliminated, due to 
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either probable cadherin-mediated signaling from cell aggregates that remained after mild 

trituration, or due to poor cell viability that occurred when vigorous trituration was used 

to separate cell aggregates.        

 

When the trypsin concentration was increased to 0.05% trypsin in 0.48 mM 

EDTA or 0.25% trypsin in 1 mM EDTA, detachment again occurred within 7 min.  

Single-cell suspensions were obtained after mild trituration and high cell viability was 

maintained, establishing both as potential detachment agents.  However, as trypsin is 

known to elicit some degree of integrin and receptor damage, the solution with the lower 

concentration of trypsin, 0.05% trypsin in 0.48 mM EDTA, was selected as optimal.  To 

further minimize cell-receptor damage, we employed soybean trypsin inhibitor 

immediately following cell detachment.  Thus, although protease use cannot be avoided, 

as its presence is required for both high cell viability and elimination of cell aggregate 

formation upon re-suspension, we efficiently mitigate its potential negative effects via 

low trypsin concentration, short contact time, and the addition of an inhibitor 

immediately following detachment.   

 

Cell viability and aggregation issues can also occur as a result of the 

methodologies used for either facilitating or preventing cell adhesion.  While undefined 

surfaces coated with ECM proteins found in serum can be used to facilitate adhesion 

(Renshaw et al., 1997; Roovers et al., 1999), it is difficult to ascertain the contribution of 

specific integrins on signal activation.  Thus, we used a defined surface to facilitate 

adhesion; specifically, we selected fibronectin, as it is the most common ECM used in 
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defined surface studies (DeMali et al., 1999; Lin et al., 1997; Renshaw et al., 1997; 

Roovers et al., 1999).   

 

To complement the experimental condition where cells are adhered to a 

fibronectin-coated substratum, a condition where cells are cultured in an adhesion-free 

environment was also developed.  A survey of the literature revealed that methods for 

preventing integrin-mediated attachment vary widely.  While some studies use poly-L-

lysine (PL)-coated surfaces to prevent adhesion-mediated attachment due to integrin 

binding (DeMali et al., 1999), others use agarose-coated tissue culture dishes to maintain 

cells in suspension (Danen et al., 2000; Renshaw et al., 1997; Roovers et al., 1999).   We 

also explored poly-HEMA (PH)-coated surfaces as a potential suspension method.  

Although not traditionally used in integrin and growth factor signaling studies, PH is the 

most widely utilized approach for holding cells in suspension during suspension-induced 

anoikis studies (Folkman and Moscona, 1978b; Frisch and Francis, 1994; Kawada et al., 

1997; Lebowitz et al., 1997; Reginato et al., 2003).  The mechanism by which adhesion is 

inhibited via each of these methods is further discussed in the following paragraphs.   

 

PL enables cell attachment to the culture dish via an electrostatic interaction 

between the cell membrane and the tissue culture dish surface.  Thus, although no 

integrin engagement should occur when cell are adhered to PL, cells do experience an 

electrostatic force that holds them to PL-coated surface.  We eliminated PL as the optimal 

method for non-adherent cells because the cells are subjected to an electrostatic force 

absent in the adherent condition.   
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Agarose-coated dishes inhibit cell attachment by presenting a surface that cells 

supposedly cannot adhere to.  However, preliminary experiments using agarose-coated 

dishes that were gently rocked to avoid the settling of cells proved this method 

unacceptable for use as substantial cell aggregation resulted (Figure II-1A).  Moreover, 

cells embedded into the agarose surface over time, resulting in poor cell recovery.  

Additionally, actual cell adhesion to the agarose coated surface also occurred (Figure 

II-1A).   Clearly, agarose is not an ideal surface for the suspension protocol.   

 
 

 
A 

 
 
 

 
B  

 
 

Figure II-1: Suspension on poly-HEMA-coated dishes  
NIH-3T3 cells were starved for 20 h, allowed to adhere for 2.5 h, and stimulated 
with 0.81 mM of PDGF.  (A) Severe cell aggregation occurs on agarose-coated 
dishes  Cells plated on 60 mm agarose dishes containing 3 mL total medium volume 
experience substantial clumping.  Some adhesion to the agarose-coated surface is 
also observed.   (B) PH-coated dishes eliminate cell clumping Cells plated on 100 
mm PH-coated dishes containing 11 mL total medium volume subjected to gentle 
rocking displays no cell aggregation.   
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As mentioned previously, PH is the most commonly used substrate for holding 

cells in suspension during anoikis studies.  When alcoholic solutions of PH are allowed to 

evaporate onto a plastic tissue culture dish, a thin, hard, non-ionic sterile film of optically 

clear polymer remains tightly bonded to the plastic surface.  This non-ionic film inhibits 

cell attachment by preventing matrix deposition and subsequent cell adhesion to the PH-

coated surface (Folkman and Moscona, 1978a; Frisch and Francis, 1994).  Although 

during initial testing, cells plated on PH-coated dishes settled to the bottom of the dishes 

and cell aggregates formed, increasing the total medium volume from 3 mL in a 60 mm 

dish to 11 mL in a 100 mm dish and subjecting the dishes to gentle rocking eliminated 

these problems (Figure II-1B).   

 

3.3     Maintaining high cell viability while minimizing serum supplementation    
 

Maintaining high cell viability has been an important issue during the 

development of our experimental protocol.  Although minimizing serum use is important 

in determining the contribution of individual growth factors on signal activation, the 

decision of whether or not to use serum in the starvation and/or stimulation media 

completely relies upon whether or not serum is necessary to sustain high cell viability.   

 

NIH-3T3 cells undergo apoptosis as a result of prolonged exposure to completely 

serum-free medium (data not shown).   As mentioned previously, serum augmentation of 

the starvation and stimulation media improves cell viability, but its presence also 

prevents ascertainment of the effect of individual growth factors on Erk activation due to 

the presence of the many signal-inducing proteins present in serum.  Moreover, 
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restoration of basal signal activation levels is unattainable in the presence of large 

amounts of serum.  For these reasons, exclusion of serum from the experimental protocol 

is ideal.   
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Figure II-2: Determination of optimal starvation medium.   
NIH-3T3 cells were starved for 24 h (empty) or 48 h (filled) in completely serum-free 
medium (serum-free) or in completely serum-free medium supplemented with 
increasing amounts of serum (0.1% serum, 0.5% serum, 1% serum, or 5% serum).   All 
proteins have been normalized to their respective total Erk equal loading control. (A) 
Measure of apoptosis resulting from starvation  Normalized cleaved caspase3 
induction after 24 h (white bars) or 48 h (black bars) of starvation.  (B) Ability of 
starvation media to quiesce Erk Activation  Normalized Erk activation after 24 h 
(white bars) or 48 h (black bars) of starvation. 

 

 

To determine if the presence of serum was necessary for high cell viability during 

quiescing of the cells, the presence of cleaved caspase 3, a known marker of apoptosis, 

was assayed for cells exposed to starvation medium containing increasing concentrations 

of serum.  Cells were starved for 24 h and 48 h in completely serum-free medium or in 

completely serum-free medium supplemented by 0.1%, 0.5%, 1%, or 5% serum.  After 
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24 h, there was little difference in survival of cells starved in completely serum-free 

medium as compared to cells starved in serum-free media supplemented with either 0.1% 

or 0.5% serum (Figure II-2A).  Supplementation by 1% and 5% serum reduced cleaved 

caspase3 to nearly basal levels.  Starvation in a completely serum-free medium for 48 h 

was not an option, as NIH-3T3 cells are unable to survive serum deprivation for such an 

extended amount of time.  After 48 h, the majority of the cells had detached from the dish 

(observations) and a significant portion of the remaining cells on the dish were 

undergoing apoptosis.  Interestingly, very little difference in cell survival was observed 

between 24 h of starvation verses 48 h of starvation for 0.1%, 0.5%, 1%, and 5% serum-

supplemented serum-free media (Figure II-2A).     

 

The optimal starvation condition must minimize apoptosis and return Erk 

signaling to basal levels.  Thus, we also examined the ability of each starvation condition 

to quiesce Erk signaling.   Recall that quiescing cells in a completely serum-free medium 

to return adhesion signals to basal levels is ideal, as it enables interpretation of individual 

growth factors without the presence of serum to convolute the results.   Although 

starvation in completely serum-free medium after 24 h quiesced Erk signaling to basal 

(near zero) signal levels (Figure II-2B), the presence of small amounts of cleaved 

caspase3 (Figure II-2A) indicate that a small fraction of cells are undergoing apoptosis.  

Cells starved for 48 h in medium supplemented with either 1% or 5% serum were also 

able to quiesce Erk activation back to basal (near zero) signal levels (Figure II-2B) and 

these were the most effective starvation conditions in minimizing the induction of 
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cleaved caspase 3 (Figure II-2A).   However, the presence of such large amounts of 

serum in the starvation medium convolutes interpretation of the data.   

 

As we suspected, the decision of whether or not to augment the medium with 

serum was a balance between quiescing Erk signaling and maintaining high cell survival.  

While the two starvation media with the highest levels of serum are optimal for viability 

(Figure II-2A), they are the worst conditions from a data-interpretation perspective.  

Likewise, while elimination of serum is the best choice for data interpretation, completely 

serum-free medium induces the highest levels of apoptosis.  Thus, no acceptable 

combination of serum and viability could be found for starvation times of 24 h or 48 h. 

 

We hypothesized that by reducing the starvation time of the completely serum-

free condition, we might find an optimal starvation time where low caspase3 induction 

and effective quiescing of basal signaling resulted from the completely serum-free 

medium condition.  We found that when the starvation time is reduced to 20 hours, 

caspase 3 induction remains low, and both Erk and Akt signaling are quiesced (data not 

shown).  Thus, starvation in completely serum-free medium was selected as the optimal 

choice for quiescing basal signaling in the cell, with experimental starvation times not to 

exceed 20 h. 

 

The compromise between cell viability and clear data interpretation also arises in 

the stimulation medium formation.  The duration of adhesion/suspension time prior to 

growth factor stimulation, or the priming time, is a variable of interest in our 
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experiments.  Thus, we had to determine how long cells could be deprived of growth 

factor stimulation before cell viability becomes an issue, with and without serum 

augmentation. 
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Figure II-3: Induction of cell apoptosis as a function of time in suspension   
NIH-3T3 cells were starved for 20 h in completely serum-free medium, plated on 
FN-coated dishes (adherent cells, black bars) or maintained in suspension via PH-
coated dishes (suspended cells, white bars) for increasing amounts of time.  The 
unstimulated cells were assayed for the presence of cleaved caspase 3 at different 
priming times, and cleaved caspase 3 normalized to its total Erk equal loading 
control is shown.  “X” denotes cells prior to plating (that have been starved for 20 
h).  
 

Cells starved in completely serum-free medium for 20 h, were plated on either 

FN- or PH-coated surfaces for various lengths of time to assay cell viability as a function 

of priming time (Figure II-3).  We find that cleaved caspase 3 induction remains low both 

prior to plating and after priming times for 1.25 h on either FN- or PH-coated surfaces.  

By 2.5 h, caspase 3 induction has increased slightly and by 4 h caspase 3 induction is 

significant, indicating that considerable apoptosis has occurred.  This data reveals that 
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cells can be serum-starved for 20 h and primed for up to 2.5 h without serum 

augmentation.  

 

To establish whether or not serum supplementation of the stimulation medium 

was necessary to sustain high cell viability, the presence of cleaved caspase 3 was 

assayed after cells were starved for 20 h and primed for 2.5 h in completely serum-free 

media, as these are the harshest starvation and priming times conditions found to support 

high cell viability.   Caspase 3 induction over a period of two hours after stimulation by 

EGF, bFGF, or PDGF remained either at or below basal signal induction (data not 

shown).  Thus, serum supplementation of the stimulation medium is not required to study 

Erk signaling kinetics for priming times up to 2.5 hours and for stimulation times up to 2 

hours (data not shown).       

 

Consequently, if the effects of adhesion-dependent signaling for priming times 

longer than 2.5 hours or if proliferative studies requiring the negative control of 

unstimulated cells are to be studied, serum supplementation of both the starvation and 

stimulation media are necessary to enhance cell viability.  In accordance with these 

findings, cell cycle progression studies supplement the starvation and stimulation media 

with serum (Renshaw et al., 1997; Roovers et al., 1999).  However, for the purposes of 

our investigation, which investigates early Erk signaling kinetics, serum supplementation 

is not necessary.   
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3.4     Summary of optimized protocol 
 

Employing this optimized protocol (Figure II-4), adhesion and spreading were 

excellent (Figure II-5A) as compared to cell adhesion and cell spreading from cells  

 
 
 
 

Figure II-4: Optimized adhesion protocol   
Adhesive signals in subconfluent NIH-3T3 cells are quiesced by starvation for 20 h 
using completely serum-free medium.  Cells are detached via 0.05% trypsin in 0.48 
mM EDTA and re-suspended to a concentration of 5*105 cells/mL.   5*105 cells are 
plated on either FN- or PH- coated dishes.  After acclimating to their new 
environment for a prescribed amount of time, cells are stimulated by a single growth 
factor and lysed at the appropriate time.    
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subjected to a non-optimal protocol (Figure II-5B).  Cells from the non-optimal 

experimental protocol completely failed to adhere and spread, while cells from the 

optimal protocol adhered and spread with a morphology consistent with normal growth. 

 

A 
 

 
 
 

B 
 

 
 

Figure II-5: Adherent NIH-3T3 cells using different adhesion protocols 
NIH-3T3 cells were starved and allowed to adhere for 2.5 h before growth factor 
stimulation. (A) Adherent cells starved for 20 h and treated using the optimized 
protocol.  (B) Adherent cells starved for 24 h and treated using sub-optimal 
DMEM (see Materials & Methods). 
 
 

3.5     Developing a quantitative methodology for measuring Erk signaling 
 

The next set of tools needed were analysis techniques to facilitate measurement of 

the lysates generated in our optimized experimental protocol.  To quantify the extent to 

which different growth factors induce adhesion-dependent Erk signaling, we developed a 

systematic, quantitative, Western blotting protocol.  The methodology is based on digital 

imaging using a cooled CCD camera that has a theoretically wider linear dynamic range 

than standard film-based imaging (Budowle et al., 2001; Martin and Bronstein, 1994).  

However, even when signals are within the detection limit of the imaging system, data 
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points do not always conform to the expected linear trend (Figure II-6).  We expect that 

factors such as antigen saturation may contribute to the observed non-linearity.  

 

 
 

 
 
 

Figure II-6: Blot saturation occurs even when operating within the imaging 
system detection limit   
Although signal strength increases with increasing image integration time, blot 
saturation exists for all three integration times.  Thus, blot saturation cannot be 
eliminated by changing the integration time. 

 

To address these sources of non-linearity that may be specific to each blot, we 

developed a quantitative Western blotting protocol that employs standard samples to 

establish the linear dynamic range of each blot.  The standards are a set of dilutions of a 

positive control lysate as illustrated for an anti-Erk Western blot in Figure II-7A.  The 

band intensities from the standard lanes are quantified, and the working linear range is 

established empirically for each blot (Figure II-7C).   Band intensities from the lanes 

loaded with lysates-of-interest are then confirmed to fall within the linear dynamic range 

(Figure II-7C); any band intensities that fall outside the linear dynamic range are 

discarded.  The sole exceptions to this requirement are samples whose basal signal cannot 
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Figure II-7: Quantification of Western blotting Images  
Immunoblot obtained using cooled CCD camera are shown in (A) for ErkT and (B) for 
ppErk.  Lanes 1-4 in each blot represents cells held in suspension for 2.5 hr, prior to 
stimulation for 12 min by one of four different growth factors.   Lanes 5-8 represent cells 
allowed to adhere to FN for 2.5 hr prior to stimulation for 12 min by one of four growth 
factors.  Lanes 9-13 represent standards employed in each blot to ensure that each unknown 
sample is within the linear dynamic range of the blot and that blot saturation has not 
occurred.  Each of the unknown samples (lanes 1-8) and the ErkT standards (lanes 9-13) are 
quantified.  (C) Quantification of ErkT signal for cells held in suspension on PH (open 
circles), cells adhered to FN (solid squares) and for each of the employed ErkT standards 
(asterisks).  (D) Quantification of ppErk for cells maintained in suspension via PH (open 
circles), cells adhered to FN (closed squares), and for each of the employed pp-Erk standards 
(asterisks). (E) Graph represents pp-Erk activation profile (shown in D) normalized to the 
total Erk equal loading control (shown in C).  Because each signal is normalized by the total 
protein loaded, this method ensures the most rigorous means of comparing each growth 
factor’s ability to activate Erk.  
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be distinguished from background noise; typical examples are the initial time-point 

following serum-starvation, or time-points measured after a signal has returned to basal.  

This approach ensures that the measurements of Erk expression levels lie within the 

linear dynamic range of each Western blot.  A similar approach is applied to quantify 

phospho-Erk (ppErk) (Shown in Figure II-7B and Figure II-7D) and phospho-Akt (pAkt) 

(data not shown).  The band intensity associated with a phospho-protein (e.g., ppErk, 

Figure II-7D) is normalized to the band intensity of an equal-loading control, such as 

total Erk (ErkT, Figure II-7C), to adjust for unequal loading, as shown in Figure II-7E.   

 

We note that the same standards are not used in every blot.  Rather, dilutions of 

positive control lysates are used as standards.  This approach ensures that for a particular 

blot, the band intensities of the standards will encompass nearly the entire linear range of 

the blot.  Such an approach increases likelihood that the band intensities of the lysates-of-

interest will fall within the linear range.  

  

To ensure that data collected from two distinct blots can be compared to each 

another, we include a common reference point in each blot.   This reference is a sample 

generated under the same stimulation conditions.  The data (Figure II-7E) is then always 

analyzed and reported relative to this reference point, which in this case was chosen to be 

the PH 12 min time-point stimulated with 800 mM PDGF.  The new graph resulting from 

normalization by the reference point is shown in Figure II-8A.  Including such a 

reference enables comparison of repeated experiments, as shown in Figure II-8B.    Note 

that the normalized signals (Figure II-8A) can only be compared with data that has been 
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normalized by an identical reference point.  Thus the results of Figure II-8A can only be 

directly compared to another graph that has also been normalized by the PH 12 min time-

point stimulated by 800 mM PDGF.  Graphs without identical normalization time-points 

cannot be directly compared. 
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Figure II-8: Normalizing and combining data from different trials   
(A)  Each data point in Figure II-7E is re-normalized to the 12 min time-point for 
suspended cells stimulated via 800 mM PDGF so that experiments from different 
trials can be compared to each other.  (B) An example of how several sets of data are 
normalized to the same condition (in this case, 800 mM PDGF for suspended cells) 
so that experiments from several different trials can be averaged together and error 
bars computed.  

 

Note, however, that ratio of any two time-points in Figure II-8A can be compared 

to the ratio of those same time-points (provided that these two time-points are from the 

same second graph).  For example, we can compare the ratio of the 12 min FN time-point 

stimulated by EGF to the 12 min PH time-point stimulated by EGF in Figure II-8A to the 

ratio of the 12 min FN time-point stimulated by EGF to the 12 min PH time-point 

stimulated by EGF in any other figure; if our data is consistent, we would find these two 

ratios to be identical.  However, we are not able to directly compare any two equivalent 

time-points; for example, we cannot directly compare the 12 min FN time-point 

stimulated by EGF in Figure II-8A to the same time-point (12 min FN time-point 
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stimulated by EGF) in another figure unless both graphs have been normalized to the 

identical time-points (for example, 12 min PH time-point stimulated by 800mM PDGF) 

as described in the previously.   

 

In order for quantitative data to correlate directly to a difference in the imaged 

signals, the data must fall within the linear detection range of both the blot/antibodies of 

interest and the cooled CCD camera itself.  If data taken falls outside of the linear 

measurement range of either, a direct correlation between two protein band images and 

their relative signal strengths cannot be made.  Thus, we must ensure that every blot 

imaged falls within both the linear dynamic range of the cooled CCD camera and the 

linear dynamic range of the antibody and individual blot.    

 

Fortunately, losing data due to the occurrence of machine saturation can be 

readily avoided by ensuring that the feature that indicates when the camera pixel 

detection saturation has occurred is turned on prior to imaging the blot.  This feature 

highlights bands where image saturation occurs; if saturation has occurred in any of the 

samples due to image acquisition over too long of a time period, a new image integrated 

for a shortened length of time can easily be acquired.  It is because saturation occurring 

due to blot/antibody imaging cannot be eliminated during the imaging process that we 

invested extensive time into optimization of each antibody.  By ensuring that the optimal 

lysate amount is loaded into every blot, and optimal antibody incubation times and 

incubation concentrations are employed during our Western blotting protocol, we 

mitigate the number of blots that must be rerun due to blot/antibody saturation.  In 
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addition, we employ standards in every blot to provide a metric for detection of blot 

saturation after imaging; such a rigorous technique facilitates early detection of blot 

saturation so that all data falling outside the linear range can be discarded and rerun using 

smaller amounts of lysate. 

3.6     Extending quantitative approach to other intracellular signals 
 

In addition to measuring Erk signaling, protocols were developed for quantitative 

measurement of other signaling proteins in cell lysates.  The quantitative imaging 

techniques utilized in this project directly affect our methodology for optimizing antibody 

incubation protocols.  To ensure that a direct correlation exists between the observed 

protein band image and the actual amount of protein present in our sample, we must 

ensure that each lysate of interest falls within the linear dynamic range of the antibody.  

In order to determine the linear dynamic range of each antibody, several identical 

standard curves are incubated in different concentrations of the same antibody of interest, 

and the antibody concentration yielding the best linear dynamic range with a good signal-

to-noise ratio is chosen as optimal.      

 

For example, Figure II-9 below illustrates the process of optimizing antibody 

usage for the detection of phospho-Mek298 (p-Mek298).   We were originally interested in 

developing an optimized protocol to image phospho-Mek298 because of reports that 

phosphorylation of the serine-298 residue of Mek1 by adhesion is necessary for efficient 

growth factor-mediated activation of Mek, and subsequent activation of Erk (Slack-Davis 

et al., 2003).  In order to optimize phospho-Mek298 for imaging, we analyzed standard 

curves at several different primary antibody incubation concentrations, and quantitatively 
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determined that a dilution of 1:5000 yielded the largest linear range between the 

measured signal strength and the lysate amount (Figure II-9).  Moreover, a lysate amount 

of 7.5 μg was determined as the optimal amount to load for p-Mek298 imaging, as this 

value yielded both a high signal-to-noise ratio, and allowed for both higher and lower 

signal measurements to fall within the linear dynamic range of the antibody.  A similar 

procedure was followed for each of the other antibodies of interest: pp-Erk, Erk, p-Akt, 

Sos, cyclin D1, and caspase 3. 
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Figure II-9: Quantitative determination of optimal primary antibody conditions 
Four standard curve were subjected to different primary antibody dilutions of 1:1000 
(solid circles), 1:5000 (Solid triangles), 1:10000 (open squares), and 1:20000 (solid 
diamonds).   

 

Antibody incubation times were varied to yield optimal imaging conditions.  

Although the antibody incubation protocol for film exposure indicates that primary 

antibody incubations can be run for 1 h at room temperature or overnight at 4 ºC with 

equivalent results, these two conditions yielded distinctly different images when a cooled 

CCD camera was used to image and analyze blots.  Several combinations of primary and 

secondary antibody incubation times were tested to optimize the obtained signal to noise 
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ratio for each antibody run at optimal dilution.  As two optimal antibody incubation time 

protocols exist for film-based techniques, one which optimized for short incubation times 

and one optimized for long incubation times, we wanted to develop similar optimal 

incubation time protocols for our quantitative Western blotting imaging protocol.   The 

results from our optimization of antibody incubation times are depicted in Table II-1 and 

the experimental details can be found in the material and methods section of this text.   

 
 
Company Antibody Animal Cat # μg Primary Antibodies               substrate 

Biosource pMek298 Rabbit 44-460 7.5 

1:5000 ON @ 4 ºC in 3% 
milk/TBST or 1.25h RT, 5-10 h 4 
ºC  

Pico 

Cell 
Signaling  ppErk Rabbit 9101 1.25 

1:20000 1h @ RT in 1% 
BSA/TBST or 1.25h RT, 5-10 h 4 
ºC 

Pico 

Santa Cruz  Erk2 Rabbit sc 154 1.25 

1:10000 1h @ RT in 1% 
BSA/TBST or 1.25h RT, 5-10 h 4 
ºC 

Pico 

Cell 
Signaling  pAkt Rabbit 9271 2.5 

1:1000 1h @ RT in 1% BSA/TBST 
or 1.25h RT, 5-10 h 4 ºC 

Pico 

NeoMarkers cyclin D1 Rabbit RM-9104 10 

1:5000 ON @ 4 ºC in 1% 
BSA/TBST or 1.25h RT, 5-10 h 4 
ºC  

Pico 

Cell 
Signaling  caspase3 Rabbit 9661 15 

 1:500 ON @ 4 ºC in 1% 
BSA/TSBT or 1.25h RT, 5-10 h 4 
ºC 

Pico 

Santa Cruz  Sos1 Rabbit SC-256 10 

1:1000 ON @ 4 ºC in 3% 
milk\/TBST or 1.25h RT, 5-10 h 4 
ºC  

Pico 

Table II-1: Optimized antibody conditions 

The blocking buffer (1% BSA in TBST or 3% milk in TBST) is identical to that used for 
primary antibody incubations.  Blocking is done either at room temperature (for 1h – 4h) 
or overnight at 4 ºC (for up to 24 h).  Secondary antibodies are diluted 1:20000 in 3% 
milk/TBST and are incubated for either 1.5 h at room temperature or 1.25 h at room 
temperature and 5-8 h at 4 ºC.    
 

4. Materials and Methods 
 

4.1     Cell maintenance  
NIH-3T3 fibroblasts (ATTC) were cultured and maintained in 89% DMEM 

(Gibco 11965-118), 10% DCS + Fe (Gibco 10371-029), and 1% PenStrep (Gibco 15070-
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063).  Cells were maintained under subconfluent conditions to avoid transformation, as 

suggested by the commercial provider (ATCC).  Liquid DMEM (Gibco) was used in all 

cell culture, since powdered medium yielded sub-optimal performance, both in terms of 

cell viability and cell adhesiveness.  After approximately 48 h of growth (when cells 

achieved 70-80% confluence) 1 mL of 0.25% trypsin/1mM EDTA (Gibco 25200-072) 

was added to subconfluent cells and cells were allowed to incubate at 37 ºC under 5% 

CO2 for 3 min.  Cells were triturated to inhibit clumping, and added to a 15 mL conical 

tube containing 1 mL culture media.  Cells were again triturated to inhibit clumping, and 

were plated at a ratio of 1:5.  Prior to passing, the surface of each dish was scanned twice 

to ensure that there were no confluent areas on the dish as NIH-3T3 are known to 

transform if grown to too high a confluence.   

 

4.2     Protein-coating surfaces 
 

Fibronectin (FN) (Sigma F0895) was diluted in Dulbecco’s phosphate buffered 

saline (dPBS) (Sigma D5652) to a concentration of 5 ug/mL.  2 mL were added to each 

60 mm Corning plastic tissue culture dish and the cells were incubated overnight at 4 ºC 

on a rocker.  The dishes were then washed twice with cold dPBS and blocked with 

1mg/mL filter sterilized, heat-inactivated, Bovine serum albumin (BSA A7906) diluted in 

dPBS for 1 h at 37 ºC under 5% CO2.   The dishes were washed twice with warm dPBS 

immediately before plating adherent cells.   

 

PH (Sigma P3932) was dissolved in 70% biological grade ethanol (Sigma E7148) 

to a concentration of 6 mg/mL, and 5 mL was added to each 100 mm Corning plastic 
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tissue culture dish.  The dishes were left uncovered, overnight, at room temperature, in 

the tissue culture hood, with the UV light off.  The hood must remain slightly open to 

allow some air flow to occur or the ethanol will not evaporate and the PH polymer layer 

will not form.  PH-coated dishes were then washed twice with warm dPBS prior to 

plating non-adherent cells.  

4.3     Cell adhesion experiments  
 

NIH-3T3 cells were plated at a density of 1:5 in culture media, grown for 

approximately 48 hours, and subconfluent dishes were starved in completely serum-free 

medium (99 % DMEM (Gibco 11965-118), 1% PenStrep (Gibco 15070-063), 1mg/mL 

BSA (Sigma A7906)) for 20 h to quiesce adhesion-mediated signaling to basal levels.  

Serum-starved cells were detached by adding 1mL 0.05% Trypsin in 0.48 EDTA (Gibco 

25300-062) per dish, and allowed to incubate at 37 ºC under 5% CO2 for 7 min.   Cells 

were collected and added to a tube containing an equal volume of 1mg/mL Soybean 

Trypsin Inhibitor (Sigma 93619) in serum-free medium.  Cells were centrifuged at 214.6 

RCF for 3 min and washed twice with 3 mL serum-free medium, being careful not to 

agitate the cells.  Cells were re-suspended in serum-free medium to a concentration of 5 x 

105 cells/mL, and were either plated onto FN-coated 60 mm dishes containing 1 mL 

serum-free medium or 100mm PH-coated dishes containing 9 mL serum-free medium.  

Cells were incubated at 37 ºC under 5% CO2 for a prescribed period of time (a priming 

time of either 1 h or 2.5 h) or no time at all (priming time of 0 h); FN-coated dishes were 

placed on an incubator rack, while PH-coated dishes were placed in the incubator on a 

rocker and gently rocked.  Growth factor stimulation was achieved by adding 1 mL of 

growth factor stimulation medium (serum-free medium supplemented with EGF, PDGF, 
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or bFGF, as described in the text) to each dish so that concentration of growth factor was 

equivalent in both adherent and suspended dishes.  FN-coated and PH-coated dishes were 

then incubated as described above.   

 

  After being allowed to acclimate (or prime) to their new surface for varying 

lengths of time, as described in the text, cells were stimulated with the indicated amount 

of EGF (Peprotech 100-15), PDGF (Sigma P4306), or bFGF (Sigma F0291).  At desired 

times, Fn-coated dishes were washed twice with cold dPBS, and dishes were tilted and 

rested on ice for 1 to 2 minutes to allow dPBS to collect.  The collected dPBS is then 

aspirated away.  This procedure minimized the amount of diluting the cell lysate, thereby 

enhancing the protein concentration of the recovered lysate.   Cells were lysed by adding 

55 μL of lysis buffer [50 mM Tris (pH 7.5), 150 mM sodium chloride, 50 mM β-

glycerophosphate (pH 7.3), 10 mM sodium pyrophosphate, 30 mM sodium fluoride, 1% 

Triton X-100, 1 mM benzamidine, 2 mM EGTA, 100 μM sodium orthovanadate, 1 mM 

dithiothreitol, 10 µg/mL aprotinin, 10 µg/mL luepeptin, 1 µg/mL pepstatin, and 1 mM 

PMSF] to each dish.  Lysis buffer was added by touching the pipette tip to the upper 

surface of the dish and moving in a horizontal line as lysis buffer was added drop-wise.  

This procedure minimized the volume of lysis buffer needed to obtain full coverage of 

the 60 mm dish and contributed to higher protein concentration in the recovered lysates.  

The cells (on FN-coated dishes) were scraped into the lysis buffer and allowed to lyse for 

approximately 15 min.  
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For PH-coated dishes, cells were collected and centrifuged at 214.6 RCF for 2 

min and liquid was aspirated.  Cells were washed twice with 10 mL cold dPBS.  The tube 

was placed on ice for 1-2 min to allow extra dPBS to collect.  Most of the excess dPBS is 

then aspirated away and the very last bit was manually removed with a pipette.  50 μL of 

lysis buffer was added to each tube, cells were triturated in the lysis buffer, and allowed 

to lyse identically to cells on FN-coated dishes.   

 

Lysates were centrifuged at 16060 RCF for 10 min, and the supernatant was 

collected using gel-loading tips to exclude residual cell debris in the suspension.  Micro-

BCA protein determination (Pierce 23235) was used to determine total protein 

concentration. 

4.4     Immunoblotting 
 

Whole cell lysates were resolved in 10% SDS-polyacrylamide gel electrophoresis 

and blotted onto a PVDF membrane.  Blots were probed using either an antibody against 

dually phosphorylated Erk (Cell Signaling 9101L), phosphorylated Akt (Cell Signaling 

9271L), or Erk2 (Santa Cruz SC-154).  To assay Sos (Santa Cruz SC-256) 

hyperphosphorylation, a 7% polyacrylamide gel electrophoresis was used for enhanced 

resolution of high-molecular-weight molecules.   To assay caspase 3 (Upstate 06-529), a 

15% polyacrylamide gel electrophoresis was used for enhanced resolution of low- 

molecular-weight molecules.  Blots were imaged and quantified as described in the 

Results and Discussion section.  
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4.5     Antibody incubation time optimization  
 

We developed two antibody incubation protocols: one for short antibody 

incubation times, and one for long antibody incubation times.  For optimization of the 

long antibody incubation time protocol, we investigated four different incubation 

conditions:  

1. primary for 1h at room temperature (RT); secondary for 1 h at RT 

2. primary overnight at 4 ºC, secondary 1 h at RT 

3. primary overnight at 4 ºC, secondary overnight at 4 ºC 

4. primary ~24 h at 4 ºC, secondary ~24 h at 4 ºC.   

 

Results from this test revealed a significant difference in imaging based on the 

time and temperature of the primary and secondary antibody incubations.  The highest 

signal-to-noise ratio and best linearity of the employed standard curves occurred for 

primary and secondary incubations that occurred overnight at 4 ºC.  Following this 

optimized incubation protocol resulted in significantly reducing the number of blots that 

had to be rerun, either due to poor estimation of image acquisition time or low signal-to-

noise ratio. 

 

We then began development of an optimal short antibody incubation time 

protocol.  Our hope was to be able to develop a protocol requiring shorter antibody 

incubation times that would yield equivalent results to our long antibody incubation time 

protocol.  In order to achieve this goal, we experimented with many different 

combinations of antibody incubation times including:  

 

1. primary antibody for 2 h at RT; secondary antibody for 2 h at RT 
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2. primary antibody for 1.5 h at RT; secondary antibody for 1.5 h at RT 

3. primary antibody for 1.25 h at RT; secondary antibody for 1.25 h at RT 

4. primary antibody for 1 h at RT; secondary antibody for 1 h at RT 

5. primary antibody for 1.25 h at RT and 5 – 8 h at 4 ºC; secondary antibody 

incubations for 1.5 h at RT.   

6. primary antibody for 1.25 h at RT and 5 – 8 h at 4 ºC; secondary antibody 

incubations for 1.25 h at RT and 5-8 hr at 4 ºC or 1.5 h at RT.   

 

We found that primary antibody incubations times of 1.25 h at room temperature 

and 5-8 h at 4 ºC, followed by secondary antibody incubation times of either 1.5 hours at 

room temperature or 1.25 h at room temperature followed by 5 to 8 h at 4 ºC produced 

nearly identical results.   Thus, our optimal long incubation time protocol requires 

primary antibody incubations overnight at 4 ºC and secondary antibody incubations 

overnight at 4 ºC, while our optimal short incubation time protocol requires primary 

antibody incubations for 1.25 h at room temperature and 5-8 h at 4 ºC, followed by either 

1.5 h at room temperature or 1.25 hours at room temperature and 5-8 hours at 4 ºC.  The 

resulting optimized antibody conditions and lysates amount to load for each antibody of 

interest are shown in Table II-1. 
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Chapter III.    Selective Desensitization of Growth Factor Signaling by 
Cell Adhesion to Fibronectin 
 

1. Abstract  
 

Cell adhesion to the extracellular matrix is required to execute growth factor-

mediated cell behaviors, such as proliferation.  A major underlying mechanism is that cell 

adhesion enhances growth factor-mediated intracellular signals, such as extracellular 

signal-regulated kinase (Erk).  However, because growth factors use distinct mechanisms 

to activate Ras-Erk signaling, it is unclear whether adhesion-mediated enhancement of 

Erk signaling is universal to all growth factors.  We examined this issue by quantifying 

the dynamics of Erk signaling induced by epidermal growth factor (EGF), basic 

fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF) in NIH-3T3 

fibroblasts.  Adhesion to fibronectin(FN)-coated surfaces enhances Erk signaling elicited 

by EGF, but not by bFGF or PDGF.  Unexpectedly, adhesion is not always a positive 

influence on growth factor-mediated signaling.  At critical sub-saturating doses of PDGF 

or bFGF, cell adhesion ablates Erk signaling; that is, adhesion desensitizes the cell to 

growth factor stimulation, rendering the signaling pathway unresponsive to growth factor.  

Interestingly, the timing of growth factor stimulation proved critical to the desensitization 

process.  Erk activation significantly improved only when pre-exposure to adhesion was 

completely eliminated; thus, concurrent stimulation by growth factor and adhesion was 

able to partially rescue adhesion-mediated desensitization of PDGF- and bFGF-mediated 

Erk and Akt signaling.  These findings suggest that adhesion-mediated desensitization 

occurs with rapid kinetics and targets a regulatory point upstream of Ras and proximal to 

growth factor receptor activation.  Thus, adhesion-dependent Erk signaling is not 
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universal to all growth factors, but rather is growth factor-specific with quantitative 

features that depend strongly on the dose and timing of growth factor exposure.  

 
 

2. Introduction 
 

Cell adhesion plays a key role in regulating cellular behaviors such as gene 

expression, cell survival, and proliferation.  Normal cells deprived of adhesion to the 

extracellular matrix undergo cell cycle arrest (1,2) and programmed cell death, even 

when soluble growth and survival cues are present (1,43-45).  This adhesion-dependence 

is often de-regulated during cancer development, allowing transformed cells to acquire 

growth and survival advantages over their normal counterparts (46-48).  Adhesion-

independent survival and proliferation play a role not only in the build-up of cell mass 

during tumor formation, but also in the survival of cancer cells in foreign, secondary sites 

during metastasis (46,49,50). 

 

Because of the physiological importance of adhesion-mediated cell regulation, 

significant attention has been given to uncovering the underlying signaling mechanisms.  

One prominent point of crosstalk between adhesion and growth factors involves the 

serine/threonine kinase, extracellular signal-regulated kinase (Erk).  Several reports have 

shown that growth factor-mediated Erk signaling is enhanced among cells adhered to 

extracellular matrix (ECM) proteins (2,4,12,13,15-18,24,29,32).  In fact, this adhesion-

mediated enhancement of Erk signaling plays a crucial role in cell cycle regulation.  In 

NIH-3T3 fibroblasts, suspended cells trigger only a transient Erk signal; however, when 
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adhered to FN, growth factor treatment supports both a sustained Erk signal and 

subsequent progression through the cell cycle (24).   

 

Erk is a major signaling protein that is activated by a wide array of stimuli, 

including several growth factors such as PDGF, bFGF, and EGF (51-53).  It is unclear 

whether adhesion enhances Erk signaling in response to all of these growth factors, or 

whether only a subset of growth factors signal in an adhesion-dependent manner.  Growth 

factors use substantially different mechanisms to trigger Erk signaling.  Unlike EGF, 

bFGF binding to the cell surface is mediated by two distinct families of cell surface 

receptors (52).  Following ligand binding, EGF receptors are phosphorylated on key 

tyrosine residues that recruit signaling proteins.  In contrast, bFGF receptors 

phosphorylate the multidocking protein FSR2, which subsequently serves as a scaffold to 

trigger downstream signaling pathways.  In addition to activation pathways, growth 

factors differ in negative feedback mechanisms that desensitize signaling (54,55).  For 

example, while stimulation via EGF and PDGF result in serine/threonine phosphorylation 

of their respective receptors, this receptor phosphorylation results in Erk inhibition only 

in the cells stimulated by PDGF.  Interestingly, Erk activation in EGF-stimulated cells 

remain unaffected (54).  Such differences in growth factor signaling mechanisms raise 

the hypothesis that growth factors may differ in the extent to which their stimulation of 

Erk signaling is adhesion-dependent.  

 

To begin to test this hypothesis, we measured the effect of cell adhesion on Erk 

signaling by three growth factors (EGF, bFGF, and PDGF).  In order to measure the level 
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of adhesion-dependence on both the magnitude and dynamics of the Erk signal, we 

implemented a quantitative protocol for Western blot imaging and analysis.  This 

quantitative approach revealed that adhesion-dependent Erk signaling is selective to EGF 

in NIH-3T3 fibroblasts.  Furthermore, our data reveal that adhesion is not always a 

positive influence on growth factor-mediated Erk signaling.  At a critical sub-saturating 

dose of PDGF and bFGF, cell adhesion actually thwarts Erk signaling.  Our results show 

that adhesion desensitizes cells from subsequent growth factor-mediated activation of 

Erk; that is, adhesion renders the signaling pathway unresponsive to growth factor 

treatment.  Interestingly, reducing the duration of cell adhesion prior to growth factor 

stimulation proved critical in the desensitization process.  Thus, PDGF- and bFGF-

mediated Erk signaling significantly improved among adherent cells only when pre-

exposure to adhesion was completely eliminated; however, concurrent stimulation by 

growth factors and adhesion was only able to partially neutralize growth factor-mediated 

desensitization.  Our findings suggest that adhesion-dependence of Erk signaling is not 

universal to all growth factors, but rather is growth factor-specific with quantitative 

features that depend strongly on the dose and timing of adhesion and growth factor 

exposure.  
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3. Experimental Procedures 
 

3.1     Cell maintenance  
 

NIH-3T3 fibroblasts (ATTC) were cultured and maintained in 89% DMEM 

(Gibco), 10% DCS + Fe (Gibco), 1% PenStrep (Gibco).  After approximately 2 d of 

growth, when cells reached between 70-80% confluence, subconfluent cells were 

suspended using 0.25% trypsin-EDTA (Gibco) and reseeded onto tissue culture dishes.    

 

3.2     Protein-coating surfaces 
 

Fibronectin (FN)-coated surfaces were prepared by incubating 2 mL of 5 µg/mL 

FN (Sigma) diluted in Dulbecco’s phosphate buffered saline (dPBS) (Sigma) in tissue 

culture dishes overnight at 4 ºC.  The dishes were gently rocked during adsorption.  The 

dishes were then blocked with 1 mg/mL heat-inactivated bovine serum albumin (BSA) in 

dPBS for 1 h at 37 ºC.  Poly-HEMA (PH)-coated surfaces were prepared by incubating 5 

mL of a solution containing 6 mg/mL PH (Sigma) dissolved in 70% biological grade 

ethanol (Sigma) in uncovered tissue culture dishes overnight at room temperature.   

3.3     Cell adhesion experiments  
 

NIH-3T3 cells were suspended using 0.25% trypsin-EDTA, reseeded, and grown 

until 70-80% confluent.  Subconfluent dishes were starved in completely serum-free 

medium (99% DMEM (Gibco), 1% PenStrep (Gibco), 1 mg/mL BSA (Sigma)) for 20 h 

to bring adhesion signals back to basal levels.  Serum-starved cells were suspended using 

0.05% trypsin; trypsin activity was quenched by adding soybean trypsin inhibitor (Sigma) 
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to a final concentration of 0.5 mg/mL.  Cells were re-suspended in serum-free medium to 

a concentration of 5 x 105 cells/mL and were either plated onto FN-coated dishes or PH-

coated dishes; PH-coated dishes were rocked to prevent cell aggregation.   

 

After cells acclimated to the surface for varying lengths of time (either 2.5 h, 1 h, 

or 0 h, as described in the text), cells were stimulated with the indicated amount of either 

PDGF (Sigma), bFGF (Sigma), or EGF (Peprotech).  Cells were lysed in buffer 

containing 50 mM Tris (pH 7.5), 150 mM sodium chloride, 50 mM β-glycerophosphate 

(pH 7.3), 10 mM sodium pyrophosphate, 30 mM sodium fluoride, 1% Triton X-100, 1 

mM benzamidine, 2 mM EGTA, 100 μM sodium orthovanadate, 1 mM dithiothreitol, 10 

μg/mL aprotinin, 10 μg/mL leupeptin, 1 μg/mL pepstatin, and 1 mM PMSF.  Lysates 

were incubated in lysis buffer for 15 min on ice before centrifugation and collection of 

the supernatant.  Micro-BCA Protein Assay Kit (Pierce) was used to determine total 

protein concentration.  

 

3.4     Immunoblotting 
 

Whole cell lysates were resolved by 10% SDS-polyacrylamide gel electrophoresis 

and blotted onto a PVDF membrane.  Blots were probed using either an antibody against 

dually phosphorylated Erk (Cell Signaling), S473 phosphorylated Akt (Cell Signaling), 

Erk2 (Santa Cruz), Sos (Santa Cruz), or caspase 3 (Upstate).  In the cases of Sos and 

caspase 3, a 7% and 15% gel were used to better resolve high- and low-molecular-weight 

proteins, respectively.  Blots were imaged and quantified as described in the Results 

section.  
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4. Results  
 

4.1     EGF, but not PDGF and bFGF, induces adhesion-dependent Erk activation 
 

Using the quantitative Western blotting protocol described in detail in Chapter 2, 

we measured the Erk signaling response to growth factor treatment of cells adhered on 

FN or held in suspension.  Our initial experiments used growth factor concentrations well 

above the dissociation constant (Kd) (Table III-1).  

 
 
Table III-1: Summary of growth factor properties including the critical 
concentration at which adhesion-mediated desensitization occurs.  
 
 

Growth 
Factor 

MW 
(kDa) 

Kd 
(pM)  

Critical concentration, [GF]c 
(pM) 

EGF 6.20 670 (56) N/A 
PDGF 24.6 100-1000 (57-63) 8.1 
bFGF 16.4 30 (64,65)a 1.2 

 

a At low concentrations, bFGF will bind almost exclusively to high-affinity sites (64), 
thus, the reported Kd corresponds to bFGF interaction with its high-affinity receptor. 

 

At these saturating growth factor concentrations, EGF-mediated Erk signaling is 

enhanced by cell adhesion.  Cells adhered on FN exhibit approximately 3-fold greater Erk 

activation than cells held in suspension in response to treatment with EGF for 12 min 

(Figure III-1).  Meanwhile, neither bFGF- nor PDGF-mediated Erk signaling at a single 

early time-point are adhesion-dependent (Figure III-1A).  These results suggest that some 

growth factors (EGF) signal better via the Erk pathway when in an adhesive setting, 

while other growth factors (PDGF, bFGF) promote Erk signaling in an adhesion-

independent manner. 
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A 

 

B 

 

C 

 
Figure III-1: Adhesion-dependence of Erk signaling at saturating concentrations of growth 
factors.  

 Serum-starved cells were either held in suspension via PH-coated dishes or allowed to adhere 
on FN-coated dishes for 2.5 hr prior to stimulation with serum-free medium containing a single 
growth factor at the indicated concentrations.  After the desired time of exposure to growth 
factor, cells were lysed, and lysates were analyzed via Western blot with the anti-phospho-Erk 
and anti-Erk antibodies.  The relative amount of active Erk (ppErk) normalized to the equal-
loading control, total Erk (ErkT), is reported for the different treatment conditions. (A) 
Adhesion enhances Erk signaling in response to EGF, but not bFGF or PDGF, 
stimulation.  Cells held in suspension (empty) and those adhered to FN (filled) were 
stimulated with the indicated growth factor-containing medium or with serum-free medium 
(SF) and were lysed after 12 min of stimulation.  Error bars represent sample standard errors (n 
= 2-9).  The single asterisk denotes that Erk activation in the suspended and adherent cells is 
statistically similar.  The double asterisk denotes that ERK activation in the suspended and 
adherent cells is statistically different (P < 0.01) using Student’s t-test. (B) Adhesion enhances 
EGF-mediated Erk signaling over the entire time course.  Cells held in suspension (empty 
circles) or allowed to adhere on FN (solid square) were stimulated with 800 pM EGF for the 
indicated times.  Error bars represent sample standard errors (n=2-4).  The double asterisk 
denotes that ERK activation in the suspended and adherent cells is statistically different with P 
< 0.05 (6 min.)  and P < 0.09 (12 min.).  All P values were computed using Student’s t-test.  
(C)  PDGF activates Erk in an adhesion-independent manner over the entire time course. 
Cells held in suspension (empty circles) or allowed to adhere on FN (solid squares) were 
stimulated with 800 pM PDGF for the indicated times.  Error bars represent sample standard 
errors (n = 2-4).  The single asterisk denotes that ERK activation in the suspended and adherent 
cells is not statistically different using Student’s t-test. 
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These observations are based on a single, early time-point.  However, others have 

shown that growth factor-mediated Erk signaling may exhibit different dynamical 

features in adhered versus non-adhered cells (15,22,24,29).  For example, in both adhered 

and suspended cells, PDGF stimulates Erk equivalently at early times, but only the 

adhered cells maintain a sustained Erk signal (22).  To examine whether adhesion affects 

the dynamics of growth factor-mediated Erk signaling, we measured a full time-course of 

Erk signaling in response to each of the three growth factors.  For EGF-stimulated cells, 

the early phase of Erk activation (< 1 h) is adhesion-dependent, while the late phase of 

the signal reaches a nearly equivalent, basal signal for both adhered and suspended cells 

(Figure III-1B).  Furthermore, both the adherent and suspended cells reach maximum 

signal intensity after only 6 min of stimulation.  Thus, the kinetics of EGF-induced Erk 

signaling is similar in both adherent and suspended cells, although signal magnitude is 

clearly adhesion-dependent.   

 

In contrast, Erk activation in cells stimulated with either PDGF (Figure III-1C) or 

bFGF (Supplemental Figure VI-1, see page VI-1) was adhesion-independent.  For both 

growth factors, the Erk signal reached a similar maximum after approximately 30 min of 

stimulation.  Furthermore, in the case of PDGF, the Erk signal decays with similar 

kinetics for both suspended and adhered cells.  In the case of bFGF, however, the Erk 

signal is sustained at near-maximum levels in both adhered and suspended cells.  Thus, 

measurements of the complete dynamics of Erk signaling show that EGF, but not PDGF 

or bFGF, induces Erk signaling in an adhesion-dependent manner.   
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4.2     Sub-saturating doses of PDGF or bFGF reveal negative adhesion-growth factor 
synergism 
 

The apparent lack of adhesion-dependence in Erk signaling for bFGF and PDGF 

may be linked to the fact that high concentrations of the growth factors were used.  In this 

concentration regime, excessive growth factor signaling may overcome the need for cell 

adhesion.  Thus, we hypothesized that for PDGF and bFGF, Erk signaling may be 

adhesion-dependent if concentrations near or less than Kd (Table III-1) were used.  To 

test this possibility, we measured growth factor-mediated Erk signaling across a broad 

range of growth factor concentrations.   

 

In the case of EGF, varying its concentration over three orders of magnitude did 

not affect the observed adhesion-mediated enhancement in Erk signaling (Figure III-2A).  

Regardless of its concentration, EGF stimulated an approximately 3-fold greater Erk 

response among adherent cells than among suspended cells (Figure III-2A).  In contrast, 

experiments with different PDGF and bFGF concentrations revealed an unexpected 

response (Figure III-2B and Figure III-2C).  At a critical growth factor concentration (8 

pM PDGF or 1 pM bFGF), cells in suspension induced Erk signaling to a significantly 

greater extent than did adherent cells.  Above the critical PDGF and bFGF concentration, 

adhered and suspended cells responded equivalently (Figure III-2B and Figure III-2C).  

At the critical PDGF and bFGF concentration, the suspended cells responded 7-fold and 

13-fold better, respectively, than their adherent counterparts (Figure III-2B and Figure 

III-2C).  These results reveal a negative synergism between adhesion and growth factor 

stimulation: adhesion thwarts Erk activation at critically low doses of PDGF and bFGF.   
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A 
 

B 

C 

 
 
Figure III-2: Adhesion-dependence of Erk signaling across a wide range of growth 
factor doses.  

 NIH-3T3 cells were treated as described in the legend to Figure III-1, except that cells were 
stimulated with serum-free medium containing different doses of (A) EGF for 12 min, (B) 
PDGF for 30 min or (C) bFGF for 30 min.  The response of cells held in suspension (empty) 
is compared to cells adhered on FN (filled).  (A) Error bars represent sample standard errors 
(n=2-4).  The double asterisk denotes that ERK activation in suspended and adherent cells is 
statistically different with P < 0.001 (800 pm) and P < 0.07 (80 pm).  (B) Error bars represent 
sample standard errors (n=2-4).  The double asterisk denotes that ERK activation in 
suspended and adherent cells is statistically different with P < 0.04.  (C) Error bars represent 
sample standard errors (n=2-4).  The double asterisk denotes that ERK activation in the 
suspended cells is statically different with P < 0.07.  All P values were computed using 
Student’s t-test.    

 
 

Since this negative synergy was observed at a specific time point in Erk signaling, 

we investigated the dynamics of Erk signaling more completely at the critical PDGF 
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concentration (Figure III-3) and bFGF concentrations (Supplemental Figure VI-2, see 

page VI-1).  At the critical PDGF concentration, adherent cells were unable to induce Erk 

signaling during the entire time course (Figure III-3).  In contrast, Erk signaling in 

suspended cells was substantial throughout the entire time course (Figure III-3).  Thus, 

the observed negative synergism between adhesion and growth factor stimulation is not 

an artifact of selecting a specific time point; rather, the entire dynamics of PDGF-

mediated Erk signaling is suppressed among adherent cells at the critical PDGF 

concentration.  Similar results were observed for bFGF as adhesion completely ablated 

bFGF-mediated Erk activation (Supplemental Figure VI-2, see page VI-1).   

 

 
 
Figure III-3:  Time course of adhesion-dependent Erk signaling at the critical PDGF 
concentration.   

Serum-starved NIH-3T3 cells were held in suspension (empty circles) or adhered on FN (solid 
squares) as described in the legend to Figure III-1.  Cells were stimulated with serum-free 
medium containing 8 pM PDGF and lysed at the indicated times.  The relative amount of 
active Erk normalized to total Erk is reported.  Error bars represent sample standard errors (n = 
2-4). 

 

4.3     Adhesion desensitizes PDGF- and bFGF-mediated Erk signaling 
 

The observed negative synergy reveals that cell adhesion to FN selectively 

abrogates PDGF- and bFGF-mediated Erk signaling when these growth factors are 
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present at low concentrations.  These observations raise the possibility that adhesion 

desensitizes subsequent Erk activation.  Desensitization refers to a state in which a 

signaling pathway becomes unresponsive to stimuli.  This desensitized or refractory state 

may occur when a signal triggers negative feedback mechanisms that persist and prevent 

re-activation of the signal in response to new stimuli.  Published reports have shown that 

growth factor stimulation inhibits Erk signaling in response to a second challenge of 

growth factor (66-68).  Our results suggest that adhesion to FN may also desensitize Erk 

signaling to a select subset of growth factors (PDGF and bFGF).   

 

 

 
 
 

 
 

Figure III-4: Adhesion-mediated Erk activation.   

Serum-starved NIH-3T3 cells were suspended and re-plated on FN-coated plates as described 
in the legend of Figure III-1.  Cells were lysed at the indicated times after plating without 
growth factor stimulation.  Lysates were analyzed by SDS-PAGE and Western blotting with 
an anti-phospho-Erk antibody (top panel) and an anti-Erk antibody (bottom panel) as an equal 
loading control. 

 
 
 
Consistent with this hypothesis of adhesion-mediated desensitization, cell 

adhesion to FN in the absence of growth factors promotes Erk activation (Figure III-4).  

Adhesion rapidly stimulates the Erk pathway with maximal activation occurring by 

approximately 12 min after cell seeding. This adhesion-mediated Erk signaling may 

trigger negative feedback loops that desensitize cells to subsequent Erk signaling by 
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PDGF and bFGF.  If desensitization is responsible for reduced PDGF- and bFGF-

mediated Erk signaling, then reducing the duration of cell adhesion prior to growth factor 

stimulation might alleviate this suppression.  As cells were seeded 2.5 hr prior to  

 
 

A 

 

B 

 
C 

 
Figure III-5: The dependence of PDGF-mediated ERK signaling on the duration of 
pre-exposure to FN-coated surfaces.   

Serum-starved NIH-3T3 cells were held in suspension (empty circles) or adhered on FN-
coated plates (solid squares) as described in the legend to Figure III-1.  The duration cells 
spent in suspension or adhered to FN prior to stimulation with 8 pM PDGF was reduced 
from 2.5 h to (A) 1 h or (B) 0 h.  The integral of the ERK time-course for all three 
acclimation times are shown in (C).  For A and B, error bars represent sample standard 
errors (n = 3-6).  For C, the error bars represent propagated error when the trapezoid rule is 
used to calculate the integrated signal.    

 
 
 

stimulation in all previous experiments, we tested this hypothesis by measuring PDGF-

mediated Erk signaling among cells that were exposed to FN-coated surfaces for shorter 
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times, specifically 1 h and 0 h (Figure III-5A and Figure III-5B, respectively).  In the 0 h 

case, cells were concurrently stimulated with growth factor and plated onto FN-coated 

dishes. 

 

Reducing the duration of adhesion significantly enhanced PDGF-mediated Erk 

signaling among adherent cells.  While Erk signaling was severely attenuated among 

cells that had adhered for 2.5 h (Figure III-3), reducing adhesion time to 1 h only slightly 

improved Erk signaling (Figure III-5A).  However, eliminating pre-exposure to adhesion 

altogether by concurrent stimulation with PDGF significantly improved Erk signaling 

among adherent cells (Figure III-5B).  In order to quantify the enhancement in PDGF-

mediated Erk signaling in response to decreasing the duration of adhesion, we integrated 

the time course of Erk signaling for cells held in suspension or adhered on FN for 0 h, 1 h 

and 2.5 h (Figure III-5C).  When the pre-exposure time to adhesion is reduced from 2.5 h 

to 0 h, the integrated Erk signal increases approximately 5-fold.  Notably, even 

concurrent stimulation was unable to rescue PDGF-mediated Erk activation to the same 

level as that observed in suspended cells, suggesting that adhesion-mediated 

desensitization occurs rapidly.  The rapid timescale of adhesion-mediated desensitization 

is consistent with the fact that cell adhesion to FN significantly activates Erk within 12 

min of cell seeding (Figure III-4).  

 

4.4     Mechanisms underlying adhesion-mediated desensitization 
 

The hyperphosphorylation of Sos is a prominent mechanism in growth factor-

mediated desensitization of Erk (69-73).  To determine whether cell adhesion to FN 
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desensitizes the Erk pathway in a similar manner, we measured the effect of cell adhesion 

on the hyperphosphorylation of Sos using a gel retardation assay (Figure III-6).  The 

mobility of Sos did not change among cells that were plated on FN-coated substrates in 

the absence of growth factor (Figure III-6, lanes 1-7).  In contrast, a positive-control 

treatment with PDGF induces a clear and significant retardation in Sos mobility (Figure 

III-6, lane 10).  Thus, adhesion-mediated desensitization of Erk signaling does not 

involve hyperphosphorylation of Sos. 

 

 
Figure III-6: The effect of cell adhesion on Sos hyperphosphorylation.  

 Serum-starved NIH-3T3 cells were suspended and re-plated on FN-coated plates as described 
in the legend of Figure III-1.  Cells were lysed at the indicated times after plating without 
growth factor stimulation.  Lysates were analyzed by SDS-PAGE and Western blotting with 
an anti-Sos antibody.  A shift in total Sos indicates presence of the hyperphosphorylated form 
of Sos.  Lanes 8 and 9 represent negative unstimulated controls for Sos hyperphosphorylation.  
Lane 8 contains cells that have been held in suspension for 2.5 h, while lane 9 represents cells 
that have been adhered to FN to 2.5 h.  Lane 10 represents the positive control for the 
hyperphosphorylated form of Sos and contains cells that have been adhered to fibronectin for 
2.5 h prior to stimulation by 800 pM PDGF for 12 min.   

 

To determine whether adhesion-mediated suppression of PDGF and bFGF 

signaling was specific to the Erk pathway, we measured Akt signaling under similar 

conditions.  PDGF- and bFGF-mediated Akt phosphorylation was also significantly 

diminished among adherent cells (Figure III-7 and Supplemental Figure VI-3 on page VI-

2, respectively).  In addition, PDGF-mediated Akt activation among adherent cells 

significantly improved as adhesion time on FN was decreased (Figure III-7).  While  
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A 

 
 

B 

 

C D 

Figure III-7: Adhesion-dependence of PDGF-mediated Akt signaling.   
Serum-starved NIH-3T3 cells were held in suspension (empty circles) or adhered on 
FN (solid squares) for 2.5 h as described in the legend to Figure III-1.  Cells were then 
treated with PDGF and lysed at the indicated time-points.  The level of 
phosphorylated Akt (pAkt) was quantified and normalized to the amount of total 
cellular Erk (ErkT).  The duration for which cells were either held in suspension or 
adhered on FN was reduced from (A) 2.5 h to (B) 1 h or (C) 0 h.  The integrated area 
for all three acclimation times is shown in (D).  For A and B, error bars represent the 
sample standard errors (n = 3-6).   For D, the error bars represent propagated standard 
error when the trapezoid rule is used to approximate the integrated signal.    

 
reducing the duration of adhesion from 2.5 h to 1 h only slightly improved Akt signaling 

(compare Figure III-7A and Figure III-7B), concurrent stimulation significantly improved 

Akt signaling among adherent cells (Figure III-7C).  Indeed, the integrated Akt signal 

shows a trend identical to that of the integrated Erk signal.  While the integrated Akt 
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signal for suspended cells remains constant, for adherent cells, the signal clearly increases 

as the duration of adhesion on FN is reduced (Figure III-7D).  Because adhesion 

suppresses both Erk and Akt signaling, it suggests that adhesion-mediated desensitization 

of PDGF and bFGF signaling may occur at or above the level of Ras activation, but 

independent of Sos regulation.  

  

5. Discussion  
 

This study demonstrates that cell adhesion has quantitatively intricate effects on 

growth factor-mediated Erk signaling.  We report that the effect of cell adhesion is 

specific to the type of growth factor, its dose, and the timing of stimulation.   Our system 

exclusively uses NIH-3T3 fibroblasts that are stimulated in defined medium.  We find 

that adhesion to FN selectively enhances Erk signaling elicited by EGF, but has no effect 

on bFGF- or PDGF-mediated Erk activation.  Unexpectedly at concentrations of PDGF 

and bFGF (GFc) that are significantly less than Kd (Table III-1), cell adhesion severely 

attenuates growth factor-mediated Erk signaling.  Thus, adhesion not only enhances cell 

response to specific growth factors, but also filters out potentially noisy signals from low 

levels of growth factor.  This aspect of adhesion-growth factor crosstalk may play an 

important role in buffering cell response to noisy background levels of growth factor 

stimulation.  These results reveal that the crosstalk between adhesion and growth factor 

signaling has intricate quantitative features, consistent with the extensive connectivity 

between adhesion and growth factor signaling pathways (53,74,75). 
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Our observation that adhesion to FN enhances EGF-mediated Erk signaling is 

consistent with other reports (21).  Our results further demonstrate that adhesion does not 

enhance either PDGF- or bFGF-mediated Erk signaling in NIH-3T3 cells, a finding that 

is contrary to some reports (15,22,24,29).  In one such report, bFGF treatment was found 

to induce sustained Erk signaling that supports cell cycle progression of NIH-3T3 

fibroblasts seeded on FN-coated surfaces (76).  However, the 3T3 cells used express 

exogenous human α5β1 integrin, whereas our cell system expresses only endogenous 

integrin adhesion receptors.  Furthermore, both the aforementioned study and others 

using NIH-3T3 cells supplement the growth factor-containing medium with serum 

(24,29).  This serum supplement is essential to maintain long-term cell viability, a clear 

requirement for studying cell cycle progression.  Our studies, in contrast, employ serum-

free medium supplemented with specific growth factors.  We have carefully assayed cell 

death under serum-free conditions by trypan blue staining and by Western blotting for 

caspase 3 cleavage (data not shown).  Our measurements show that cells held in 

suspension or adhered on FN-coated plates remain viable for 4-5 hr in serum-free 

conditions.  Thus, all reported results are gathered in this time window and offer a clear 

indication of how Erk signaling by each growth factor is influenced by adhesion without 

confounding contributions from serum.  

 

In addition to serum, cell type differences may also contribute to apparent 

differences in adhesion-dependence of Erk signaling.  Kazlauskas and colleagues showed 

that PDGF treatment of mouse embryo fibroblasts (MEFs) adhered on FN induces 

sustained Erk activation, whereas cells seeded on poly-L-lysine support only a transient 
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Erk signal (22).  The difference between our results and those of Kazlauskas and 

colleagues may be due to the use of MEF versus NIH-3T3 cells.  Moreover, the MEF 

strain used in the study lacks PDGFRα and expresses endogenous PDGFRβ; our NIH-

3T3 cells express both isoforms.  Thus, the complement of homo- and heterodimer 

receptors available for binding PDGF-BB and for intracellular signaling are likely to be 

different in these two cell types.   

 

Because of both the differences in cell types and receptor expression profiles, as 

well as the potentially confounding contributions from serum, it remains unclear whether 

adhesion-dependent Erk signaling is specific to particular growth factors.  We sought to 

address this issue by developing a system that utilizes only NIH-3T3 fibroblast cells 

expressing endogenous integrins.  Furthermore, growth factor stimulation was limited to 

use of only one growth factor in defined medium, thus no serum was used during the 

course of the experiments.  Thus, our data begins to provide a systematic comparison of 

the crosstalk between adhesion and three different growth factors.  We show that 

adhesion to FN enhances Erk signaling elicited by EGF, but not by bFGF and PDGF.  

Our observation that adhesion-mediated enhancement of Erk signaling is not a universal 

property of all growth factors is consistent with our previous findings in Chinese hamster 

ovary (CHO) cells.  In these cells, the dynamics and magnitude of insulin-mediated Erk 

signaling are unaffected by cell adhesion to FN (14).  Rather, adhesion and insulin 

synergistically affected IRS-1 phosphorylation en route to co-regulating cell cycle 

activity.   
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The specificity of adhesion-dependence might be explained by intrinsic 

differences in how the receptors of these growth factors signal to Erk.  Although all three 

growth factors employ the canonical Ras-MAP kinase cascade to activate Erk, there are 

significant differences in the upstream machinery that connect to the core Ras/MAP 

kinase signaling module. While EGF receptors recruit the necessary signaling proteins 

mostly by themselves (52), FGF receptors rely on the formation of a multidocking 

signaling protein complex to recruit the majority of signaling components (77).  In 

addition, bFGF binds to two distinct families of cell surface receptors, the first being the 

bFGF receptor tyrosine kinase and the second being heparin sulfate proteoglycans 

(HSPG) (65,78).  The binding to and signaling from two distinct receptor families 

provides additional layers of control and complexity to bFGF-mediated signaling to Erk 

(79).    

 

In addition to utilizing different mechanisms for activating the Ras/MAPK 

module, growth factor receptors differ in their susceptibility to negative regulatory 

mechanisms.  For example, serine/threonine phosphorylation of EGF and PDGF 

receptors has been shown to affect the two receptors differently.  G protein-coupled 

receptor kinase 2 (GRK2) mediated serine/threonine phosphorylation of the PDGF 

receptor results in a decrease in PDGF receptor tyrosine phosphorylation, which 

correlates to an observed decrease in Erk activation by PDGF stimulation (54).  In 

contrast, GRK2 mediated serine/threonine phosphorylation has no effect on the tyrosine 

phosphorylation of the EGF receptor and subsequent Erk activation is also not affected.  

In summary, there are distinct pathways by which growth factors activate the Ras/MAPK 
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module as well as differences in growth factor receptor sensitivity to negative regulatory 

mechanisms.  Cell adhesion may also couple to pathways unique to EGF, thereby 

selectively enhancing EGF-mediated Erk signaling. 

 

While adhesion selectively enhances EGF-mediated Erk signaling at saturating 

growth factor concentrations, an intriguing feature of adhesion-dependence was found at 

low, sub-saturating doses of growth factors.  PDGF- and bFGF-mediated Erk signaling is 

substantially attenuated among cells adhered on FN.  This adhesion-mediated suppression 

of growth factor-induced Erk signaling is alleviated if the duration of cell adhesion is 

reduced.  These observations suggest that cell adhesion rapidly triggers mechanisms that 

desensitize Erk signaling by low concentrations of PDGF and bFGF.    

 

Desensitization of the ERK signaling pathway has been reported in response to 

growth factor stimulation.  Growth hormone (GH) induces Erk activation in HA cells; 

however, re-exposure to GH in cells that have been pre-treated with this growth factor for 

3 h fails to stimulate ERK (67).  Similar desensitization of Erk activation has been shown 

in insulin-treated CHO/IR cells.  Although Erk activation occurs upon initial insulin 

exposure, a second exposure to insulin fails to induce Erk signaling (68).  Comparable 

insulin-mediated desensitization has been observed in 3T3-LI adipocyte cells (66).  

However, in these cells, insulin pre-treatment does not desensitize EGF-mediated ERK 

activation.  In contrast to insulin and EGF, heterologous desensitization has been 

observed between EGF and PDGF (80).  Swiss-3T3 cells first exposed to PDGF fail to 

induce Erk activation upon a subsequent treatment with either PDGF or EGF.  The 
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converse is also observed: initial exposure to EGF inhibits subsequent stimulation of 

ERK signaling by either PDGF or EGF treatment.  Hence, there is precedent for 

desensitization to selectively affect a subset of growth factors. 

 

A prominent mechanism by which growth factor desensitizes ERK signaling in 

response to subsequent growth factor stimulation involves Sos hyperphosphorylation (69-

72).  However, our results demonstrate that adhesion to FN does not induce Sos 

hyperphosphorylation, suggesting that adhesion-mediated desensitization does not occur 

at the level of Sos regulation.   

 

Our results suggest that the time scale of desensitization is remarkably rapid.  

Thus, although Sos is not the target of desensitization, another signal extremely proximal 

to growth factor detection must be involved.  Consistent with this possibility, our results 

show that both Akt and Erk signaling are subject to adhesion-mediated desensitization, 

suggesting that Ras or some other common upstream element is the point of 

desensitization.  In fact, several growth factor receptors directly interact with adhesion 

receptors (81).  While the association of growth factor receptors with adhesion receptors 

has been predominantly correlated with positive synergism, it may also sequester and 

inhibit the activity of low levels of ligand-bound growth factor receptors.  Indeed, such 

heterologous desensitization by receptor sequestration has been demonstrated for EGFR 

and PDGFR (80).  Another possible mechanism of growth factor desensitization may 

involve direct interactions between growth factors and ECM proteins.  Sequestration of 

TGFβ, VEGF, and HGF by ECM is well documented (82).  In fact, VEGF has recently 
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been shown to bind specific sites on FN, suggesting potential sequestration in more basic 

reconstituted systems.   Thus, ECM protein-mediated sequestration may play a role in 

diminishing growth factor-mediated signaling on FN-coated dishes, especially in systems 

employing low doses of growth factor (83). 

 

While elucidating the precise role of these mechanisms is the subject of ongoing 

work in our lab, it is especially intriguing that adhesion-mediated desensitization occurs 

selectively at low growth factor concentrations.  Thus, adhesion may play an important 

role in buffering cell response to noisy, background levels of growth factor stimulation.  

Combined with the ability to enhance signaling for select growth factors, adhesion may 

have a net positive effect on the signal- to-noise ratio of detecting and responding to 

growth factors.  Deciphering these and other quantitatively intricate ways in which cell 

adhesion influences growth factor signaling will be crucial to developing a better 

understanding of how the adhesive microenvironment ‘primes’ cell behaviors.  Such 

quantitative insight will be important in designing synthetic microenvironments for 

applications such as tissue engineering and regenerative medicine.  In addition, 

quantification will enable improved assessment of the quality and effectiveness of both 

biomaterials and cancer therapies. 
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Chapter IV.    Modeling-Guided Inference of Mechanisms Underlying 
Erk Signaling Dynamics 
 
 

1. Abstract 
 

We developed a simple coarse-grain mathematical model to elucidate how 

specific molecular mechanisms contribute to the dynamics of Erk signaling.  Model 

results are compared to experimental Erk signaling profiles to infer potential mechanisms 

and to direct future experiments.  Our model lumps Erk activation and deactivation 

mechanisms into four distinct biological motifs: activation, constitutive direct 

deactivation, feedback-mediated direct-deactivation (a feedback mechanism where the 

active signal upregulates a protein that deactivates it), and feedback-decoupling 

deactivation (a feedback mechanism where the active signal deactivates an upstream 

protein necessary for signal activation).  In the presence of activation stimulus, two types 

of kinetic profiles are observed: (1) transient, where the steady-state signal returns to a 

basal level, and (2) sustained, where the steady-state signal is maintained to at least its 

half-maximal level.  Our model reveals that feedback-decoupling deactivation and one 

form of direct-deactivation are necessary to generate a transient signal, while feedback-

decoupling deactivation in isolation or any form(s) of direct-deactivation results in 

sustained signal activation.  Notably, our model predicts that signal magnitude 

enhancement/depression is most significantly impacted by differences in the activation 

rate constant (κact).  As a difference in peak signal magnitude was experimentally 

observed for adhesion-dependent Erk activation by EGF-stimulation, our model predicts 

that adhesion-induced enhancement is the most likely explanation.  In addition, our 



 

 

IV-2

model provides insight into potential mechanisms responsible for the difference in Erk 

activation dynamics in adherent cells stimulated by distinct growth factors.  In order to 

determine the mechanistic details responsible for the PDGF/EGF-induced transient Erk 

activation verses the bFGF-induced sustained Erk activation observed for adherent cells, 

a difference in the deactivation motifs acting on these adherent cells must be determined. 

We find that the mechanism responsible for the distinct signaling dynamics resulting 

from stimulation by different growth factors in adherent cells must be due to either 

feedback-decoupling deactivation (for the case where no feedback-decoupling 

deactivation occurs in cells stimulated via bFGF) or direct-deactivation (for the case 

where feedback-decoupling deactivation is the only form of deactivation present in cells 

stimulated via bFGF).  

2. Introduction 
 

The combination of adhesion to the extracellular matrix (ECM) and growth 

factors plays a key role in regulating important cellular functions such as proliferation, 

cell survival, and gene expression.  Because Erk activation has been established as a 

prominent point of cross-talk between adhesion and growth factors, extensive effort has 

been invested in understanding adhesion-mediated Erk signaling.  Synergy in adhesion- 

and growth factor-mediated Erk activation has been described as equivalent (Galownia, 

2006; Mettouchi et al., 2001), as a difference in magnitudes (Asthagiri et al., 2000; 

Marshall, 1995), as a difference in dynamics from transient to sustained (DeMali et al., 

1999; Roovers et al., 1999; Tombes et al., 1998), or not been given any kinetic 

description at all (Lin et al., 1997; Renshaw et al., 1997; Schwartz and Assoian, 2001).  

For clarity, several phrases used to describe signal kinetics will be given precise 
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definitions.  In order for a signal to be classified as ‘transient,’ the temporal profile must 

return to basal.  Alternatively, to be classified as ‘sustained,’ the temporal profile must 

reach and maintain a signal equal to at least half-maximum.  The phrases ‘maximum 

intensity’ and ‘peak intensity’ will be used to describe the largest magnitude in the 

temporal profile. 

 

Because both the kinetic profile and signal magnitude of Erk activation may be 

affected, synergy in Erk signaling likely involves crosstalk not only in activation 

mechanisms, but also across Erk deactivation pathways (Asthagiri and Lauffenburger, 

2001).  Dephosphorylation due to basal phosphatase activity regulates Erk deactivation 

(Keyse, 2000; Lewis et al., 1998; Tamura et al., 2002), a mechanism we term as 

constitutive direct deactivation.  In addition, activation of Erk itself catalyzes its 

deactivation via two separate feedback mechanisms where active Erk:  (1) upregulates 

phosphatase levels (Brondello et al., 1997; Grumont et al., 1996) that deactivate it, a 

feedback mechanism we term feedback-mediated direct deactivation, or (2) deactivates 

its upstream activators (Brunet et al., 1994; Buday et al., 1995; Cherniack et al., 1995; 

Dong et al., 1996; Langlois et al., 1995; Wartmann et al., 1997), a feedback mechanism 

we term feedback-decoupling deactivation.   

 

Our experimental data reveals that adhesion-dependence of Erk signaling is not 

universal to all growth factors, but rather is growth factor-specific (Galownia, 2006).  In 

addition, our experimental data indicates that different growth factors result in distinct 

kinetic Erk activation profiles.  However, precisely what combination of crosstalk 
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between integrins and growth factors underlies the observed synergy in Erk signaling 

remains unclear.  Therefore, in this study we developed a computational model to 

investigate how different activation and deactivation motifs within the Erk signaling 

network contribute to Erk signaling dynamics. Our model predictions are then compared 

to experimental data to narrow down potential mechanism(s) producing the observed 

kinetic profiles.    

 

3. Background 
 

3.1     Activation of MAPK pathway 
 

 
Figure IV-1: Canonical MAPK pathway  
 Growth Factor-receptor binding stimulates receptor autophosphorylation, which 
enables Grb2 binding.  Grb2 then recruits Sos, allowing Sos-mediated Ras 
activation.  Activated Ras triggers a signaling cascade by activating Raf.  Raf 
phosphorylates Mek, which phosphorylates Erk.   
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In the canonical growth factor-MAPK (mitogen activated protein kinase) pathway 

(Figure IV-1), growth factor ligands bind to receptors and elicit tyrosine 

autophosphorylation of the receptor (Ford and Pardee, 1999; Roovers and Assoian, 

2000).  This enables growth factor receptor bound protein 2 (Grb2) to bind to the receptor 

and recruit the guanosine 5’-triphosphate exchange factor, son-of-sevenless (Sos) 

(Roovers and Assoian, 2000).  Sos-mediated nucleotide exchange activates the Ras G-

protein by converting it to its GTP form, which enables it to bind to and activate Raf 

kinase.  Raf kinase then activates Mek kinase, which activates Erk kinase and eventually 

leads to S-phase entry (Ford and Pardee, 1999; Roovers and Assoian, 2000).   

 

One pathway by which integrins enhance MAPK activation is through direct 

interaction with growth factor receptors themselves (Giancotti and Tarone, 2003; 

Miyamoto et al., 1996).  Integrin-mediated cell adhesion has been shown to induce 

activation of insulin receptor, EGF receptor, PDGF receptor, and bFGF receptor 

(Giancotti and Tarone, 2003; Schlessinger, 2000).   Recent studies have uncovered 

multiple mechanisms by which integrins induce MAPK activation at the level of receptor 

protein tyrosine kinase activation (Giancotti and Tarone, 2003).  In one such mechanism, 

integrin-mediated adhesion has been shown to induce growth factor receptor aggregation 

and the subsequent activation of the MAPK pathway (Miyamoto et al., 1996).    

 

Another mechanism involves integrin-mediated activation of Src.  In this form of 

regulation, a macromolecular complex comprised of the cytoplasmic tail of the EGF 

receptor, p130Cas, and Src form in response to cell adhesion.  Src is required for complex 
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assembly, and complex formation is necessary to enable Src-mediated phosphorylation 

and activation of the EGF receptor.  Once in complex, Src phosphorylates the 

cytoplasmic domain of the receptor on tyrosine residues 845, 108, and 1173, resulting in 

its activation.  Interestingly, Src is unable to phosphorylate the receptor on Tyr1148, which 

is a major site of the receptor phosphorylation by EGF, indicating that distinct 

mechanisms exist by which integrins and growth factors activate the growth factor 

receptor (Moro et al., 2002). 

 

   Alternatively, for integrin- and Src-family kinase-mediated PDGF receptor 

activation, active SFK phosphorylates SIRP-α/SHPS-1, leading to the recruitment of the 

tyrosine phosphatase, SHP-2, to the cell’s membrane.  SHP-2 then associates with PDGF 

receptor and dephosphorylates it at the tyrosine residue mediating binding to Ras-Gap, a 

known negative regulator of Ras.  Ras-Gap activation is efficiently reduced, leading to 

both Ras and subsequent Erk activation.    

 

There are also several mechanisms by which integrin-mediated activation of focal 

adhesion kinase (Fak) activates the MAPK pathway.  Although Fak activation is not well 

understood (Giancotti and Tarone, 2003; Lee and Juliano, 2004), it is known that Fak is 

recruited to focal adhesion complexes and is activated via autophosphorylation on Tyr397, 

thus creating a binding site for the Src homology 2 (SH2) domain of the Src-family 

kinases, Src or Fyn (Giancotti and Ruoslahti, 1999; Giancotti and Tarone, 2003; Lee and 

Juliano, 2004; Schlaepfer et al., 1994).   
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In the first integrin-mediated Fak kinase activation mechanism, Cas and paxillin 

are also recruited to the membrane via integrin-mediated cell adhesion (Hanks and Polte, 

1997).  The combined kinase activity of Fak and the Src-family kinases results in the 

phosphorylation of multiple sites on Fak, Cas, and paxillin (Hanks and Polte, 1997; 

Vuori, 1998).  Phosphorylation of Fak by Src at tyrosine 925 (Tyr925) (Giancotti and 

Ruoslahti, 1999; Lee and Juliano, 2004; Schlaepfer et al., 1994) creates a binding site for 

the Grb2-Sos complex, thereby providing the link between integrin-mediated signaling 

and the canonical MAPK pathway (Giancotti and Ruoslahti, 1999; Lee and Juliano, 2004; 

Renshaw et al., 1999; Schlaepfer et al., 1994; Schwartz and Assoian, 2001).  

  

 In the second integrin-mediated Fak kinase activation pathway, p130Cas interacts 

with Fak through its SH3 domain and is phosphorylated by Src.  This enables recruitment 

of Crk.  Crk associates with either Sos or the guaneonucleotide exchange factor C3G for 

Rap-1, resulting in the activation of B-Raf.  Notably, B-Raf has been linked to Erk 

activation (Barberis et al., 2000), thus providing another pathway linking Fak to MAPK 

activation in cells that express B-Raf  (Giancotti and Tarone, 2003; Lee and Juliano, 

2004).   

 

Another integrin-mediated mechanism that affects MAPK signaling occurs via 

Fak independent activation of the p21-activated kinase (Pak) (Howe et al., 2002).  

Integrin-mediated adhesion relieves the inhibition of protein kinase A (PKA) on Pak 

(Giancotti and Tarone, 2003).  In addition, focal adhesion complexes recruit active Rac, 

which then associates with and activates Pak (Giancotti and Tarone, 2003; Howe et al., 
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2002).  Once active, Pak3 phosphorylates Raf1, while Pak1 phosphorylates Mek1 (Slack-

Davis et al., 2003).  Thus a link between Pak and activation of the MAPK pathway is 

established. 

 

A fifth mechanism by which integrins affect MAPK signaling involves Src-family 

kinases, such as Fyn or Yes (Giancotti and Ruoslahti, 1999; Giancotti and Tarone, 2003).  

Specific α integrin subunits, including α1, α5, αv, bind to the transmembrane adapter 

protein caveolin-1 independently of Fak, through their external and transmembrane 

domains (Giancotti and Tarone, 2003; Lee and Juliano, 2004).  Caveolin-1 links the 

transmembrane portion of the integrin α subunit to the Src-family kinase.  While the 

mechanism by which integrin engagement induces the Src-family kinase activation is not 

well understood, it is known that the activated Src-family kinase undergoes a 

conformational change to expose its Src homology 3 (SH3)-binding domain.  The SH3-

binding domain recruits Shc, which is then phosphorylated at Tyr317.  The Grb2-Sos 

complex then binds to Shc, and ultimately induces Erk activation (Giancotti and Tarone, 

2003; Lee and Juliano, 2004), providing yet another link to MAPK activation.   

 

A sixth pathway by which integrins activate the MAPK pathway involves the Src 

family tyrosine kinase Syk (Miranti et al., 1998).  Prior to activation of Syk, the β3 

integrin subunits are associated with Csk, enabling Csk to phosphorylate the C-terminal 

autoinhibitory site of Src-family kinases; thus all integrin-associated Src-family kinases 

have been rendered inactive (Giancotti and Tarone, 2003).  Upon ECM binding, Csk is 

released from the β3 subunit, enabling activation of integrin-associated Src-family kinases 
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and subsequent recruitment and activation of Syk and ZAP70 (Giancotti and Tarone, 

2003).  Rac exchange factors Vav1 and Vav2 are substrates of Syk/ZAP70 and once 

active, Vav1 recruits Sos, thus providing a link to the MAPK pathway (Reynolds et al., 

2004).   

 

The seventh mechanism by which integrins activate the MAPK pathway is 

through protein kinase C (PKC).  PKC is known to activate Raf, thus providing a link to 

the MAPK pathway (Giancotti and Ruoslahti, 1999, Bjorkoy, 1995 #97).  It has been 

reported that upon phosphatidylcholine (PC) hydrolysis, elevated levels of PC-derived 

1,2 diacylglycerol (DAG) result in PKC-ζ mediated Raf activation (Bjorkoy et al., 1995).  

In addition, phosphoinositide 3 kinase (PI-3K) has been implicated in activating PKCζ, 

which then activates Raf (Giancotti and Ruoslahti, 1999; Mas et al., 2003).  Thus PKC- 

mediated activation of the MAPK pathway through Raf has been reported through two 

distinct pathways. 

 

Importantly, while there are many pathways by which integrins can potentially 

activate the canonical MAPK pathway, not all of these pathways are firmly established 

(Giancotti and Ruoslahti, 1999; Giancotti and Tarone, 2003; Howe et al., 2002; Lee and 

Juliano, 2004; Mas et al., 2003; Miranti et al., 1998).  In addition, these pathways may 

not all exist in every cell line and for every integrin (Giancotti and Tarone, 2003; Miranti 

et al., 1998).  Furthermore, integrin-mediated stimulation has also been shown to activate 

pathways involving Rho (Danen et al., 2000), a GTPase that has been firmly established 

as a cytoskeleton regulator (Ridley and Hall, 1992), and thus provides a possible link 
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between cell morphology and Erk activation.  Additionally, RhoA has been found to 

activate MAP/Erk kinase kinase 1 (MEKK1) in yeast, providing a link between Rho and 

activation of Erk (Chen and Cobb, 2006)  

 

3.2     Deactivation mechanisms 
 

Erk is also concurrently regulated by deactivation machinery.  Deactivation 

pathways can be loosely grouped into one of three motifs.  In the first motif, deactivation 

occurs without stimulus; because this form of deactivation is present in the absence of 

any other stimulation, it is termed as constitutive direct-deactivation.   As the signal 

activation reaction is not an irreversible chemical reaction, an equilibrium reaction exists 

between the active phosphorylated state and the inactive dephosphorylated state.  Thus, 

deactivation due to dephosphorylation of Erk by either dissociation of the active 

phosphorylated signal to an inactive dephosphorylated form due to equilibrium or via 

basal phosphatase activity may occur (Keyse, 2000; Lewis et al., 1998; Tamura et al., 

2002).     

 

In the second motif, active Erk initiates a signaling pathway that ultimately leads 

to transcription of phosphatase(s) that target its deactivation (Brondello et al., 1997; 

Grumont et al., 1996).  Because in this form of deactivation, active Erk essentially targets 

itself, it is referred to as feedback-mediated direct deactivation.    Activation of Erk has 

been observed to regulate map kinase phosphatases (Mkp) through both an upregulation 

of the rate of phosphatase transcription (Brondello et al., 1997) and a reduction in the rate 

of proteosome-mediated degradation (Brondello et al., 1999).  Activation of Erk has been 
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found to induce transcription of Mkp1 and Mkp2 (Brondello et al., 1997).  In addition, 

active Erk has also been observed to upregulate Mkp3 via Erk-mediated binding to its 

regulatory domain (Camps et al., 2000; Camps et al., 1998).  Erk-mediated 

phosphorylation of Mkp1 on Serine-359 and Serine-364 protects it from proteosome-

mediated degradation (Brondello et al., 1999).   In addition, adhesion-mediated regulation 

of phosphatases have also been observed.  For example, the cytoplasmic tail of α1 integrin 

selectively interacts with the ubiquitously expressed T-cell protein tyrosine phosphatase 

(TCPTP) and activates it after adhesion to collagen.  (Mattila et al., 2005).  Several 

addition candidates for Erk-mediated phosphatase upregulation are PAC-1, vaccinia H1-

related (VHR), and haemopoietic protein tyrosine phosphatase (HePTP), all of which are 

known to act on Erk (Keyse, 2000).  

 

In the final deactivation motif, active Erk deactivates one of its upstream 

activators via hyperphosphorylation (Brunet et al., 1994; Buday et al., 1995; Cherniack et 

al., 1995; Dong et al., 1996; Langlois et al., 1995; Wartmann et al., 1997).  This form of 

deactivation is termed feedback-decoupling deactivation.  In the Erk signaling pathway, 

feedback-decoupling deactivation is mediated by both adaptor-targeted feedback (Buday 

et al., 1995; Cherniack et al., 1995; Dong et al., 1996; Langlois et al., 1995) and enzyme-

targeted feedback (Brunet et al., 1994; Wartmann et al., 1997).  In adaptor-targeted 

feedback, Sos complexed with Grb2 undergoes serine/threonine hyperphosphorylation.  

Once hyperphosphorylated, the complex either dissociates from the active receptor 

(Buday et al., 1995) or separates back into Sos and Grb2 (Cherniack et al., 1995; Dong et 

al., 1996; Langlois et al., 1995), both of which render hyperphosphorylated Sos to an 
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inactive state.  Both Erk, and an enzyme downstream of Erk have been implicated as 

responsible for Sos hyperphosphorylation (Anderson et al., 1991; Corbalan-Garcia et al., 

1996).  In enzyme-targeted feedback, Raf (Wartmann et al., 1997), Mek (Brunet et al., 

1994), and Fak (Hunger-Glaser et al., 2003) hyperphosphorylation have been shown to 

trigger signal attenuation.  Consistent with both these findings, hyperphosphorylation of 

Mek on Thr292 and Thr386 (Brunet et al., 1994) and Raf (Brunet et al., 1994; Wartmann et 

al., 1997) on serine residues 29, 43, 289, 296, 301, and 642 have been implicated as 

substrates for Erk (Dougherty et al., 2005).  Hyperphosphorylation of Fak on Serine-910 

is believed to be mediated either via Erk or protein kinase C (Hunger-Glaser et al., 2003).  

Recently, the hyperphosphorylated form of Raf has been observed to return to an active 

signaling state through interaction and dephosphorylation with the serine/threonine  

phosphatase PP2A and the prolyl isomerase Pin1 (Dougherty et al., 2005).  Although 

phosphatases that associate with and activate the inactive hyperphosphorylated forms of 

Mek and Fak via dephosphorylation have not been determined, serine/threonine 

phosphatases that can target many different substrates, such as PP2A, may act to catalyze 

the activation of the inactive hyperphosphorylated forms of Mek and/or Fak.   

 

4. Model Description 
 

4.1     Coarse-grain model 
 

A simple mathematical model which lumps Erk activation and deactivation 

mechanisms into four distinct biological motifs is depicted in Figure IV-2.  In this model, 

the input stimulus (I) activates the signal (S), converting it to its active form (S*) as 
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shown in motif 1, which we term simply as ‘activation.’  The signal S in our model refers 

to Erk.  Active signal (S*) can be deactivated in the absence of any other stimulation as 

illustrated in motif 2, which we term ‘constitutive direct-deactivation.’  Deactivation can 

also occur via feedback mechanisms.  In the first feedback mechanism, active signal (S*) 

deactivates itself as shown in motif 3, which we term ‘feedback-mediated direct-

deactivation.’  In the second feedback mechanism, feedback occurs by converting input 

stimulus (I) to a permanently inactive form (I-) as shown in motif 4, which we term 

‘feedback decoupling deactivation.’   

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure IV-2:  Model schematic 
The input stimulus (I) activates the signal (S), converting it to its active form (S*) as 
shown in motif 1, termed simply as ‘activation.’  Active signal (S*) can be 
deactivated in the absence of any other stimulation as illustrated in motif 2, termed 
‘constitutive direct-deactivation.’  Deactivation can also occur via feedback 
mechanisms.  In the first feedback mechanism, active signal (S*) deactivates itself as 
shown in motif 3, termed ‘feedback-mediated direct-deactivation.’  In the second 
feedback mechanism, feedback occurs by converting input stimulus (I) to a 
permanently inactive form (I-) as shown in motif 4, termed ‘feedback-decoupling 
deactivation.’  In each of these motifs, it is assumed that the kinetics of each 
pathway can be described by a single rate constant.   
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In each of these motifs, it is assumed that the kinetics of each pathway can be 

described by a single rate constant.  Thus, the rate is proportional to the species 

concentration connected by each arrow.  In the decoupling motif, it is assumed that 

permanent deactivation of (I) occurs over the time course of the experiment.  While the 

first assumption may not be valid if non-linear relationships exist between the connected 

species and the second assumption may not be valid at late times, both are reasonable 

starting postulates for a coarse-grain model.   

 

4.2     Activation motif (motif 1) 
 

The activation rate constant kAct incorporates both growth factor- and integrin-

mediated activation pathways when appropriate to the system of study.  Growth factor-

mediated Erk activation contributions to kAct are due to growth factor-induced receptor 

activation that enables formation of Sos-Grb2 (Roovers and Assoian, 2000).  Recall that 

this allows Ras to be activated and initiates a kinase cascade resulting in Erk activation 

(Roovers and Assoian, 2000).  Likewise, adhesion-mediated Erk activation contributions 

to kAct will involve aforementioned integrin mediated pathway(s) leading to subsequent 

Erk activation (Bjorkoy et al., 1995; Giancotti and Ruoslahti, 1999; Hanks and Polte, 

1997; Howe et al., 2002; Mas et al., 2003; Miranti et al., 1998; Schlaepfer et al., 1994; 

Vuori, 1998).  Note that the relative importance of these pathways cannot be determined 

by the model at this stage of development.   
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4.3     Constitutive direct-deactivation (motif 2) 
 

Because constitutive direct-deactivation is independent of feedback control, it is 

written as a reversible step in the model schematic (Figure IV-2).  Contributions from 

constitutive phosphatase activity as well as dissociation of the active phosphorylated 

form of Erk to its inactive dephosphorylated form are incorporated into kconst.  For the Erk 

activation pathway, constitutive phosphatases of importance may include any of the 

aforementioned phosphatases known to act on Erk (Keyse, 2000; Tamura et al., 2002).     

 

4.4     Feedback-mediated direct-deactivation (motif 3) 
 

In feedback-mediated direct-deactivation, the active signal (S*) initiates 

deactivation of itself, thus this deactivation motif is a form of feedback control.  For the 

Erk signaling pathway, direct-deactivation feedback occurs when active Erk initiates a 

signaling pathway that ultimately leads to the transcription of phosphatase(s) that target 

its deactivation (Brondello et al., 1997; Grumont et al., 1996).  All forms of feedback-

mediated direct-deactivation acting on the cell are incorporated into kdir. 

 

4.5     Feedback-decoupling deactivation (motif 4) 
 

Feedback-decoupling deactivation is an activation-targeting form of feedback 

control where the active signal S* acts on the upstream species I and renders it 

permanently inactive by changing it to I-.  As mentioned previously, in the Erk signaling 

pathway feedback-decoupling occurs when active Erk permanently deactivates growth 

factor receptor (Matveev and Smart, 2002), Sos (Buday et al., 1995; Chen et al., 1996; 

Cherniack et al., 1995; Corbalan-Garcia et al., 1996; Langlois et al., 1995), Raf 
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(Wartmann et al., 1997), Mek (Brunet et al., 1994), or Fak (Lee and Juliano, 2004) via 

hyperphosphorylation.  All forms of feedback-decoupling deactivation present in the cell 

are incorporated into kdecoupl. 

 

4.6     Model equations 
 

From the model schematic pictured in (Figure IV-2), differential equations 

describing the signal and input kinetics are shown in Equation 1 below. 
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The following mass balances for signal (S) and input (I) apply (Equation 2):  
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Dimensionless parameters are defined as: 
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Substituting the mass balances (Equation 2) and dimensionless parameters (Equation 3)   

into the model equation (Equation 1), the dimensionless form of the model is written: 
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Where the dimensionless groups are defined in Equation 5  
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5. Results and Discussion 
 
 

5.1     Model results 
 

We begin by examining the effect of the activation motif on signaling kinetics in 

the absence and presence of each form of deactivation.  Deactivation motifs are first 

studied separately in order to determine the individual effect of each on temporal profiles.  

Once the contributions of individual motifs are known, we consider the combined effect 

of multiple forms of deactivation on signal dynamics.   
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Figure IV-3: Activation alone induces sustained signal activation.   

The effect varying the activation dimensionless group (κAct) on signaling kinetics.   
 

In the absence of any deactivation mechanism, the rate at which active signal 

(S*), reaches its maximum value is determined by the value of the dimensionless 

activation rate constant, κAct.  As the value of this dimensionless parameter is increased, 

the time taken to achieve maximum intensity decreases (Figure IV-3).  Note that the 

signal intensity is limited between zero and unity due to dimensionalization.   

 

When activation is coupled with only one form of deactivation, a sustained signal 

is observed regardless of the type of deactivation (Figure IV-4).  Although all three 

deactivation dimensionless groups affect signaling kinetics similarly, with signal 

maximum decreasing with increasing dimensionless deactivation constant, each motif 

affects the maximum signal intensity differently (Figure IV-4).  As can be seen from 

Figure IV-4, increasing constitutive direct-deactivation has the greatest impact on signal 

κAct 
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reduction, while increasing feedback decoupling deactivation has the least effect 

(compare Figure IV-4A, to Figure IV-4B, to Figure IV-4C).     
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Figure IV-4: Effect of each form of deactivation on signal activation kinetics.  
 The effect of activation and only one form of deactivation was investigated.  
Dimensionless groups for (A) constitutive direct-deactivation (κconst), (B) feedback-
mediated direct-deactivation (κdir), and (C) feedback-decoupling deactivation (κdecoupl) 
were varied to determine the effect of each on signaling kinetics.     
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When activation and all three forms of deactivation are present, a transient signal 

is observed (Figure IV-5).    Because no transient activation is observed in the presence 

of a single deactivation motif (Figure IV-4), a transient signal requires multiple forms of 

deactivation.  Furthermore, we find that all three motifs of deactivation are not necessary 

to obtain a transient signal.  Our model demonstrates that the minimal requirement for 

transient signaling is that feedback decoupling deactivation must be complemented by at 

least one form of direct-deactivation (Figure IV-6, compare A to B and C).   
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Figure IV-5: Activation and all three forms of deactivation results in transient 
signal activation.   
A transient signal is observed when activation and all three forms of deactivation are 
present.   

 

 

Analysis of Figure IV-5 and Figure IV-6 illustrates that activation, feedback- 

decoupling deactivation, and one form of direct-deactivation are required for 

establishment of a transient signal.  Therefore, we begin our detailed analysis of transient 

signaling kinetics by investigating the importance of the magnitude of activation on the 

observed transient profile.  Following this analysis, the effects of deactivation are 
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Figure IV-6: Feedback-decoupling deactivation and one form of direct-deactivation is 
required for transient signal attainment  
(A) Both forms of direct deactivation (constitutive and feedback-mediated) result in 
sustained signal kinetics.  Feedback decoupling deactivation plus either (B) constitutive or 
(C) feedback-mediated direct deactivation result in transient signal kinetics.   
 

investigated, starting with feedback decoupling.  Recall that in addition to feedback-

decoupling deactivation, one form of direct-deactivation is also required for attainment of 

a transient signal.  Thus, two distinct cases are investigated that include activation and 

feedback-decoupling deactivation either with (1) constitutive direct-deactivation as the 
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required form of direct-deactivation, or (2) feedback-mediated direct-deactivation as the 

necessary form of direct-deactivation.  To facilitate comparison between each of these 

cases across analyses, a common profile with κact = 5, κdecoupl = 1 and κdirect_deactivation = 1 

(where the form of direct deactivation is either constitutive or feedback-mediated) is 

provided for reference in each of the graphs presented, and this common profile always 

appears as a solid line.  Thus, the relative effect of varying each motif independently can 

be determined by comparing the reference (solid line) provided for each case.  Note that 

the reference is not equivalent across cases as the common profiles are not equivalent 

when different forms of direct deactivation are present.   
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Figure IV-7: The effect of varying activation on transient profiles 

Varying activation results in an increase in peak signal magnitude regardless of whether 
the required form of direct-deactivation is due to (A) constitutive or (B) feedback-mediated 
direct-deactivation  
 

We find that identical trends are observed in the resultant transient profile when 

activation is varied regardless of which form of direct-deactivation is present.  In either 

case, increasing the magnitude of the activation dimensionless group increases the 

κAct  κAct 
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maximum peak intensity and the time at which signal returns to basal is not affected 

(Figure IV-7A).     

 

As feedback-decoupling is the only form of deactivation that is required for 

establishment of a transient signal, we begin our analysis of the effect of deactivation on 

transient signaling kinetics by investigating the importance of the magnitude of feedback-

decoupling deactivation on the observed transient signaling profile.  Again, two distinct 

cases are investigated: activation and feedback-decoupling deactivation in the presence of 

either constitutive (Figure IV-8A) or feedback-mediated (Figure IV-8B) direct-

deactivation.   
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Figure IV-8: The effect of varying feedback-decoupling deactivation on transient 
profiles  
 Varying decoupling deactivation results in depression of the maximum signal intensity 
and acceleration of the signal return to basal regardless of whether the required form of 
direct-deactivation is due to (A) constitutive or (B) feedback-mediated direct-deactivation.  
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We again find that the observed trends are the same, regardless of which form of direct-

deactivation is present.  When the feedback-decoupling deactivation dimensionless group 

is increased, peak signal intensity is depressed and the return to basal levels is accelerated 

(Figure IV-8).  
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Figure IV-9: The effect of varying direct-deactivation on transient profiles   

Increasing the direct-deactivation dimensionless group results in peak signal magnitude 
depression without affecting the signal’s return to basal signal level regardless of whether the 
required second form of direct- deactivation is due to (A) constitutive or (B) feedback-mediated 
direct-deactivation.  

 

 

In order to more fully understand how the direct-deactivation motifs affect 

signaling kinetics, the dimensionless group for either constitutive or feedback-mediated 

direct-deactivation was varied independently in the presence of the other two required 

motifs: activation and feedback-decoupling deactivation.  Increasing either form of 
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direct- deactivation results in depressing the signal peak intensity without affecting the 

signal’s return to basal level (Figure IV-9).    

 

Our model reveals that feedback-decoupling deactivation and one form of direct-

deactivation are both necessary and sufficient for establishment of a transient signal 

(Figure IV-6).  Observed trends for activation and feedback-decoupling are similar 

regardless of which form of direct-deactivation (constitutive or feedback) is present.  

Furthermore, when the magnitude of the activation dimensionless group is increased, our 

model predicts that an increase in signal peak magnitude will occur without affecting the 

time at which signal returns to basal (Figure IV-7A).  In contrast, when the feedback 

decoupling deactivation dimensionless group is increased, peak signal intensity is 

depressed and the return to basal levels is accelerated.  In addition, we find that 

increasing direct-deactivation (either constitutive or feedback-mediated) results in 

depressing the signal peak intensity without affecting the signal’s return to basal levels.   

Finally, our model indicates that the constitutive form direct-deactivation has a greater 

impact on signal kinetics than does feedback-mediated direct-deactivation, regardless of 

which parameter is being varied.  

5.2     Comparison to experimental results 
 
 

We use the results of the model to focus the search for potential mechanisms 

responsible for experimentally observed Erk activation profiles.  The model is first used 

to focus the search for molecular mechanisms responsible for the observed adhesion-

induced enhancement EGF-mediated Erk signaling.  The model is then later used to 
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investigate potential mechanistic explanations for the observed differences in signaling 

kinetics in adherent cells stimulated by each of the three growth factors (EGF, PDGF, or 

bFGF).  

   

 

A 

 
B 

 
C  

Figure IV-10: Experimental Erk activation profiles 

A single asterisk denotes that Erk activation in the adherent and suspended profiles is 
statistically equivalent, while a double asterisk denotes the two profiles are statistically 
different using Student’s t-test.  (A) EGF-mediated Erk activation is transient for both 
adherent and suspended cells.    Cells were stimulated with 800 pM EGF for the indicated 
times.  (B) PDGF induces transient Erk activation in adherent cells.  Cells were stimulated 
with 800 pM PDGF for the indicated times.  (C) bFGF induces sustained activation of 
Erk. Cells were stimulated with 1000 pM bFGF for the indicated times prior to lysing.  
The graph represents a single experiment.  
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The results of our experiments demonstrate that EGF clearly induces a transient 

activation of Erk in both adherent and suspended cells.  In both cases, the signal returns 

to basal within one hour following stimulation (Figure IV-10A).  Classification of PDGF-

mediated Erk activation in adherent cells requires use of our definitions for transient and 

sustained.  Note that PDGF-mediated Erk activation in adherent cells peaks and steadily 

decreases to one-third of the maximal signal intensity.  Therefore, according to our 

definition that a sustained signal peaks and maintains a signal that is equal to at least half-

maximum, PDGF-stimulation also induces a transient activation of Erk (Figure IV-10B).  

In contrast, bFGF-mediated Erk activation in adherent cells is indubitably sustained 

(Figure IV-10C) as the signal remains at maximum signal intensity throughout the time 

course. 

  

The model is first used to narrow down potential mechanism(s) responsible for 

the observed enhancement of EGF-mediated Erk activation in adherent cells as compared 

to suspended cells.  Note that for adherent and suspended cells stimulated via EGF, the 

early phase of Erk activation (< 1 h) is adhesion-dependent, while the late phase of the 

signal reaches a nearly equivalent, basal signal for both adhered and suspended cells 

(Figure IV-10A).  In addition, both the adherent and suspended cells reach maximum 

signal intensity rapidly (Figure IV-10A).  One possible explanation is that the magnitude 

of the activation dimensionless group is greater in the adherent cells than in the 

suspended cells (Figure IV-7).  As adhesion is known to induce Erk activation by 

mechanisms distinct from growth factors, an increase in the activation dimensionless 

group for cells adhered to fibronectin is a likely explanation.  However, the model also 

reveals that differences in either of the two required forms of deactivation required for 
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transient signal attainment could be responsible for the observed difference in signal peak 

magnitude (Figure IV-8 and Figure IV-9).  As the possibility that adhesion reduces 

negative feedback cannot be discounted, both differences in activation and deactivation 

mechanisms may occur.  

 

 

The model is then used to predict potential mechanisms explaining dynamic 

differences resulting from differential growth factor stimulation.  As the model incidated 

that only the presence of feedback-decoupling deactivation and one form of direct-

deactivation result in transient profile attainment (Figure IV-5; Figure IV-6, A-C), these 

motifs must be present in both EGF- or PDGF-mediated stimulation of adherent cells 

(Figure IV-6, A-C).  In addition, the model predicts that for bFGF simulation of adherent 

cells, either no deactivation (Figure IV-3), any single form of deactivation (Figure IV-4), 

or both forms of direct-deactivation (Figure IV-6A) may be responsible for the observed 

sustained kinetic profile.  

 

6. Conclusions 
 

A simple coarse-grain mathematical model was developed to focus the search for 

molecular mechanism(s) driving the magnitude and kinetics of experimentally observed 

Erk activation profiles.  However, it should be noted that the model is not restricted to 

investigation of Erk activation, but rather, can be applied to any system in which the four 

identified motifs are present.  The model demonstrates that activation, feedback-

decoupling deactivation, and one form of direct-deactivation are required to generate a 
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transient signal.  Interestingly, the form of direct-deactivation (either constitutive or 

feedback-mediated) has no effect on the observed signaling trend.   We also find that 

increasing the magnitude of the activation dimensionless group increases the maximum 

signal peak and the time at which signal returns to basal is not affected, regardless of 

which form of direct-deactivation is present.  Notably, the activation dimensionless group 

has the most significant affect on peak signal magnitude.  In contrast, when the feedback-

decoupling deactivation dimensionless group is increased, peak signal intensity is 

depressed and the return to basal levels is accelerated irrespective of which form of 

direct-deactivation is present.  Lastly, we find that increasing either required form of 

direct-deactivation (constitutive or feedback-mediated) results in signal peak intensity 

depression without affecting the signal’s return to basal level.  Interestingly, in all cases, 

the signaling kinetics are most sensitive to variation of any single motif’s dimensionless 

group when constitutive direct-deactivation is the required form of direct-deactivation, 

instead of feedback-mediated direct-deactivation being present.   

 

Our model results are used to narrow the search for the molecular mechanisms 

responsible for our experimental observations detailed in Chapter 3.   Recall that our 

experimental results demonstrate that EGF-stimulation clearly induces transient Erk 

activation in both adherent and suspended cells, and that this EGF-mediated Erk 

activation is adhesion-dependent.  Furthermore, a comparison of adherent and suspended 

experimental activation profiles reveals that adherent and suspended cells exhibit similar 

signaling dynamics, but differ in maximum peak intensity with signal magnitude being 

enhanced in adherent cells.  Thus, our model suggests the most likely mechanism 
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responsible for adhesion-dependent Erk activation is an increase in the activation rate 

constant upon adhesion.  Alternatively, the model also indicates decreasing any 

deactivation dimensionless group can enhance signal magnitude, but not to nearly as 

great as an extent as that resulting from an increased activation rate.   

  

Model results can also be used to focus the mechanistic search for the intriguing 

differences in Erk activation dynamics resulting from stimulation of adherent cells by 

distinct growth factors.  Recall that the model predicts that decoupling deactivation must 

be present in cells stimulated by either PDGF or EGF due to the generation of a transient 

Erk activation signal.  If we discover decoupling deactivation occurs in bFGF-stimulated 

adherent cells, the model predicts direct-deactivation cannot be present in these cells and 

still produce sustained Erk activation.  Thus, in this case, the presence of direct- 

deactivation in PDGF- and EGF-stimulated adherent cells, and its absence in bFGF-

stimulated adherent cells, would be the mechanism responsible for differences in Erk 

activation dynamics.  However, if no feedback-decoupling deactivation is found to occur 

in adherent cells stimulated by bFGF, the model predicts that any form(s) of direct- 

deactivation result in the observed sustained Erk activation.  Thus, in this case it would 

be the presence of feedback-decoupling in PDGF- and EGF-stimulated adherent cells, 

and its absence in bFGF-stimulated adherent cells, that would be the mechanism 

responsible for the observed differences in Erk activation dynamics.   

 

We use the results of this simple coarse-grain mathematical model to elucidate 

how specific molecular mechanisms contribute to the dynamics of Erk signaling.   Model 
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results are then compared to our experimentally determined Erk signaling profiles 

(Chapter 3) to infer potential mechanisms and to direct future experiments. To that end, 

both the significance of our findings and the future work suggested by our experiment 

results (Chapter 3) and model predictions (Chapter 4) will be discussed in detail in 

Chapter 5.  
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Chapter V.   Conclusions and Future Work 
 

1. Significance of Findings  
 

This study demonstrates that cell adhesion has quantitatively intricate effects on 

growth factor-mediated Erk signaling.  We reported that the effect of cell adhesion is 

specific to the type of growth factor, its dose, and the timing of stimulation.  Our system 

utilizes a single cell line, and each study is subjected to identical experimental conditions 

prior to growth factor stimulation to ensure that valid comparisons and conclusions are 

drawn.  We find that adhesion to FN selectively enhances Erk signaling elicited by EGF, 

but has no effect on bFGF- or PDGF-mediated Erk activation.  Unexpectedly, at 

concentrations of PDGF and bFGF that are significantly less than the dissociation 

constant, cell adhesion severely attenuates growth factor-mediated Erk signaling.  Thus, 

adhesion not only enhances cell response to specific growth factors, but also filters out 

potentially noisy signals from low levels of growth factor.   

 

Our study reveals that cell adhesion is not always a positive effector of signal 

transduction and that, surprisingly, cell adhesion can negatively affect signaling.  Thus, 

cell adhesion can no longer be viewed exclusively as a positive activator of signaling.  

Instead, we must adjust our view of adhesion; adhesion can act as either a positive or 

negative regulator of activation.  Importantly, this change in perspective will be 

significant in the area of biomaterial development as researchers must now consider the 

possibility that enhancing adhesivity could inadvertently quiesce the very signals they are 

trying to augment.  Such considerations will be especially important in selecting adhesive 
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epitopes to integrate into biomaterial surfaces.  The potential for adhesion to negatively 

regulate signal activation also suggests researchers will need to develop assays to 

ascertain whether or not they have accidentally incorporated this negative effect into the 

biomaterial surface under development.  To that end, our findings raise the question of 

whether we can decouple the mechanisms of adhesion-mediated negative and positive 

regulation on signal activation so that biomaterial surfaces can be developed which 

incorporate only the desirable positive effects of adhesion on signal activation.  

 

In addition, our study begins to provide a systematic comparison of the crosstalk 

between adhesion and three different growth factors.  Deciphering these and other 

quantitatively intricate ways in which cell adhesion influences growth factor signaling 

will be crucial to developing a better understanding of how the adhesive 

microenvironment ‘primes’ cell behaviors.  Such quantitative insight will be important in 

designing synthetic microenvironments for applications such as tissue engineering and 

regenerative medicine, where rigorous quantification will be required.   In addition, 

quantification will enable improved assessment of the quality and effectiveness of both 

biomaterials and cancer therapies. 

 

 

2. Overview of Future Research 
 

Future work will focus on uncovering the molecular mechanisms governing the 

three most significant experimental results: (1) adhesion-mediated desensitization of 

signal activation by selective growth factors, (2) adhesion-dependent Erk activation 
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enhancement by EGF stimulation, and (3) growth-factor specific signaling dynamics of 

Erk activation in adherent cells.  Investigation into potential pathways contributing to the 

observed Erk signaling kinetics may have a bilateral approach; either experimental data 

independently or experimental data in combination with model predictions may be used 

to guide future experiments.  Experimental results may be used to design additional new 

experiments to ascertain which upstream activator is responsible for adhesion-dependent 

growth factor-mediated desensitization of Erk activation.   In contrast, experimental data 

in conjunction with model results may be used to focus the mechanistic search for both 

EGF-mediated adhesion-dependent Erk activation and growth-factor specific Erk 

signaling dynamics in adherent cells.   

 
 

3. Adhesion-Mediated Desensitization of Signal Activation by Selective Growth 
Factors 
 

3.1     Background 
 

Our experimental work discussed in detail in Chapter 3 demonstrates that at 

critical sub-saturating doses of PDGF or bFGF, adhesion to fibronectin actually 

desensitizes the cell to growth factor stimulation, rendering the signaling pathway 

unresponsive to growth factor.  Our experimental findings are particularly interesting 

given that adhesion is historically considered as a positive effector.  However, while 

adhesion-mediated desensitization is a novel finding, there are many examples of Erk 

signaling desensitization in the literature, where exposure to a growth factor desensitizes 

the cell from signal activation when exposed to a second charge of the same and/or 

different growth factor.   
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As the hyperphosphorylation of Sos in response to growth factor stimulation has 

been found to be a prominent mechanism by which growth factor desensitizes Erk 

signaling (Chen et al., 1996; Cherniack et al., 1995; Corbalan-Garcia et al., 1996; 

Langlois et al., 1995), we began our search for the mechanism of adhesion-mediated 

desensitization of Erk activation to EGF/PDGF-stimulation by assaying Sos 

hyperphosphorylation.  However, experimental results clearly demonstrate that adhesion 

to FN does not induce Sos hyperphosphorylation in our system (Figure III-6, III-16).  

Thus, the adhesion-mediated desensitization we observe does not occur at the level of Sos 

regulation.   

 

To focus our search for the mechanism responsible for adhesion-induced 

desensitization, we varied the ‘priming time,’ or duration of adhesion prior to growth 

factor stimulation, and found that priming time was critical to the desensitization process.  

Interestingly, Erk and Akt activation significantly improved only when pre-exposure to 

adhesion was completely eliminated and concurrent stimulation of adhesion and growth 

factors occurred.  However, concurrent stimulation by growth factor and adhesion was 

only able to partially rescue adhesion-mediated desensitization of PDGF- and bFGF-

mediated Erk and Akt signaling.  The fact that concurrent stimulation was not able to 

fully rescue adhesion-mediated desensitization to PDGF or bFGF suggests that the time 

scale of desensitization is rapid.  Moreover, because both Ras and growth factor receptors 

are known to be upstream activators of Akt (Downward, 2004; Shaw and Cantley, 2006), 

these findings further suggest that adhesion-mediated desensitization targets a regulatory 
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point upstream of Ras and proximal to growth factor receptor activation.  Thus, although 

Sos is not the target of desensitization, another signal proximal to growth factor detection 

must be involved.   

 

In fact, several growth factor receptors directly interact with adhesion receptors 

(Comoglio et al., 2003).  While the association of growth factor receptors with adhesion 

receptors has been predominantly correlated with positive synergism, it may also 

sequester and inhibit the activity of low levels of ligand-bound growth factor receptors.  

Indeed, such heterologous desensitization by receptor sequestration has been 

demonstrated for EGFR and PDGFR via stimulation by PDGF or EGF (Matveev and 

Smart, 2002).  Hence, there is precedent for desensitization to selectively affect a subset 

of growth factors (Hupfeld et al., 2005; Matveev and Smart, 2002). 

 

3.2     Future work 
 

To test if regulation occurs at the level of growth factor receptor, phosphor-

tyrosine blots may be run for both adherent and suspended cells stimulated with either 

PDGF or bFGF using the experimental system we developed.  If differences in growth 

factor receptor tyrosine phosphorylation levels are observed over the time course, this 

indicates that some form of regulation occurs at the level of growth factor receptor.  To 

investigate this mechanism further, development of an adhesion-mediated receptor 

sequestration assay, possibly adapting the solid-phase binding assay protocol outlined by 

Wijelath and colleagues (Wijelath et al., 2002), would be required.   If growth factor 
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receptor sequestration levels cannot explain regulation at the level of receptor, alternate 

mechanisms would have to be investigated to explain the observed result.    

 

One such possible mechanism may involve direct interactions between growth 

factors and ECM proteins.  Sequestration of TGFβ, VEGF, and HGF by ECM is well 

documented (Griffith and Swartz, 2006).  In fact, VEGF has recently been shown to bind 

specific sites on FN, suggesting potential sequestration in more basic reconstituted 

systems.   Thus, ECM protein-mediated sequestration may play a role in diminishing 

PDGF- or bFGF-mediated signaling on FN-coated dishes, especially in systems 

employing low doses of growth factor (Wijelath et al., 2006).  In order to determine if 

PDGF and bFGF binding to FN is responsible for the observed adhesion-mediated 

desensitization, we would need to develop an assay to determine if binding to FN is 

depleting our stimulation medium of growth factor.  If PDGF- and bFGF-depletion via 

binding to FN is found to occur, depletion of EGF via binding to FN would be tested to 

determine if a lack of binding explains why no adhesion-mediated desensitization is 

observed for stimulation via EGF.  

 

Finally, if regulation does not occur at the level of growth factor receptor, we will 

investigate regulation at the level of Ras.  In order to determine if Ras activation is the 

mechanism responsible for the observed adhesion-mediated desensitization to 

bFGF/PDGF, but not EGF, the levels of active Ras in PDGF- and bFGF-stimulated 

adherent cells could be compared to those of suspended cells.  Substantial depression of 
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Ras activation in adherent cells as compared to suspended cells will indicate that 

desensitization likely occurs at the level of Ras.  

 

4. Adhesion-Dependent Erk Activation Enhancement by EGF Stimulation 
 

4.1     Background 
 

A simple coarse-grain mathematical model was developed to focus the search for 

molecular mechanism(s) driving the magnitude and kinetics of experimentally observed 

Erk activation profiles.  The model demonstrated that while activation, feedback-

decoupling deactivation, and one form of direct-deactivation (either constitutive or 

feedback-mediated) is required for transient signal attainment, a sustained signal is 

generated provided that feedback-decoupling deactivation never occurs in the presence of 

any other form of deactivation.  Thus, a sustained signaling profile occurs in the presence 

of activation and (1) no deactivation, (2) a single form of deactivation, or (3) both forms 

of direct-deactivation.       

 

For transient activation profiles we find that: (1) increasing the magnitude of the 

activation dimensionless group increases the maximum peak, but that the time at which 

the signal returns to basal levels is not affected, (2) increasing the decoupling- 

deactivation dimensionless group depresses peak signal intensity and accelerates the 

signal’s return to basal levels,  (3) increasing either constitutive direct deactivation or 

feedback-mediated direct-deactivation results signal depression without affecting the time 

at which the signal returns to basal levels, and (4) the presence of constitutive direct 
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deactivation in place of feedback-mediated deactivation has a greater affect on signaling 

kinetics.  

 For sustained activation profiles, we find that the signal reaches a maximum and 

is maintained at maximum for the entire length of the time course.  We also observe that 

increasing the magnitude of the activation group increases the maximum signal, while 

increasing the magnitude of any deactivation dimensionless group decreases the 

maximum signal.   

 

4.2     Future work 
 

Focusing first on the mechanism(s) responsible for the presence of adhesion-

dependent enhancement of Erk activation signal intensity in cells stimulated via EGF, we 

note both adherent and suspended cells induce transient activation of Erk.  Thus, although 

according to our model, activation, feedback-decoupling deactivation, and one form of 

direct deactivation (either constitutive or feedback-mediated) must occur to obtain a 

transient profile, the important difference in adhesion-dependent Erk activation induced 

via EGF stimulation is that the peak signal magnitude differs between adherent and 

suspended cells.  Therefore, we look to model predictions to determine which 

dimensionless group affects the magnitude of signal peak intensity.  Our model predicts 

the enhancement in signal peak magnitude may occur by either an increase in the 

activation rate constant (κAct) or an decrease in a deactivation rate constant (κConst, κDir, or 

κDecoupl).  Notably, our model demonstrates that variation in the activation rate constant 

has the greatest affect on signal peak magnitude    
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In addition, adhesion-mediated signal enhancement is reported for a wide number 

of signaling proteins including Fak (Guilherme et al., 1998), Ras (DeMali et al., 1999),  

Raf (Lin et al., 1997), and Mek (Renshaw et al., 1997) activation.  Thus, an increase in 

κAct is the most likely explanation for the observed phenomena.  Note that because the 

relative importance of activation pathways cannot be determined by the model at this 

stage of development, all known forms of activation must be considered.    In order to 

focus the mechanistic search, we will begin our investigation of activation pathways by 

determining the Akt activation profile for adherent and suspended cells.  Because Akt is 

activated by both Ras and growth factor receptors, equivalent Akt activation levels in 

adherent and suspended cells indicate that regulation of adhesion-induced enhancement 

of Erk affects the MAPK signaling pathway below the level of Ras activation.  In 

contrast, adhesion-dependent Akt activation suggests regulation occurs at or above the 

level of Ras activation.  Knowledge of whether adhesion-induced enhancement occurs (1) 

downstream of Ras activation or (2) at or upstream of Ras activation will elucidate which 

integrin-activation pathways should be more thoroughly investigated.   

 

However, when investigating these activation pathways as possible mechanisms, 

it is important not to overlook differences in the deactivation dimensionless group(s) in 

adherent and suspended cells as potential points of regulation for adhesion-dependent Erk 

activation.  Because enhancement of deactivation pathways has never been reported to 

contribute to adhesion-dependent signal enhancement, possible contributions from 

feedback-decoupling deactivation and/or direct deactivation will only be investigated if 
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no enhancement of activation pathway(s) are determined to be of mechanistic importance 

to adhesion-mediated enhanced of Erk signaling.   

 

5. Growth-Factor Specific Signaling Dynamics of Erk Activation in Adherent Cells 
 

5.1     Background   
 

We focus now on the mechanism responsible for growth factor specific Erk 

signaling dynamics.  Our experiments revealed that while adherent cells stimulated by 

either EGF or PDGF generate transient Erk activation, adherent cells stimulated via 

bFGF produce sustained Erk activation.  According to our model, activation, feedback 

decoupling, and at least one form of direct deactivation (either constitutive or feedback-

mediated) are necessary for the transient activation of Erk observed for adherent cells 

stimulated via EGF or PDGF.   In contrast, our model predicts that either feedback 

decoupling alone or any form(s) of direct deactivation are necessary for the sustained Erk 

activation profile observed in cells stimulated via bFGF.   

 

5.2     Future work 
 
 

Recall that feedback-decoupling deactivation is known to occur in cells stimulated 

via PDGF (Figure III-6, page III-16).  As one of our model assumptions is that feedback 

decoupling is irreversible, this finding gives us the opportunity to validate our model 

assumptions via assaying temporal Sos hyperphosphorylation profiles in adherent cells 

stimulated via PDGF.  Importantly, if hyperphosphorylated proteins are found to return to 
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their active unphosphorylated state over the time-course of the experiment, the 

assumption of irreversible feedback would have to be revised.  Current modeling 

equations would then be modified to include reversibility of feedback-decoupling 

deactivation and the resulting predictions from the modified model would be used to 

further guide our search.  However, if our assay reveals that decoupling feedback renders 

proteins permanently inactive, maintaining them in the hyperphosphorylated form 

throughout the duration of the experiment, our assumption of irreversible feedback 

decoupling is valid.  Current modeling predictions can be used in the continued search for 

the molecular mechanism responsible for differences in Erk signaling dynamic by 

different growth factors.   

 

To search for the molecular mechanism responsible for PDGF-mediated 

stimulation inducing transient Erk activation, while bFGF-mediated stimulation induces a 

sustained Erk activation, we will investigate if the presence of decoupling-feedback due 

to PDGF treatment is the point of regulation.  We will determine whether feedback-

decoupling deactivation occurs via bFGF-mediated stimulation by assaying for protein 

hyperphosphorylation of Sos, Raf, Mek, and Fak, using techniques described previously.  

To assay if decoupling deactivation due to adhesion-mediated receptor sequestration or 

ECM protein sequestration of growth factor ligands are responsible, further investigation 

and development of assays to ascertain the presence of these forms of decoupling 

deactivation must occur.  
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If feedback-decoupling deactivation is not found to occur due to bFGF-

stimulation of adherent cells, feedback-decoupling deactivation in cells stimulated via 

PDGF, and not in cells stimulated via bFGF, would be the mechanism responsible for the 

observed transient Erk activation resulting from  PDGF-stimulation and sustained Erk 

activation produced by bFGF-stimulation.  

 

In contrast, if feedback-decoupling deactivation is found to occur in cells 

stimulated by bFGF, the model indicates that direct-deactivation should be investigated 

as point of regulation in Erk signaling kinetics.  The presence of direct deactivation in 

cells stimulated by PDGF, but not bFGF, would explain the observation that a transient 

signal is obtained for PDGF-stimulated cells, while a sustained signal for is obtained in 

bFGF-stimulated cells.  The most comprehensive method to test for direct deactivation is 

to develop a phosphatase assay that uses a kinase inactive form of Erk as a substrate.  

Phosphatase activity measured by this assay prior to growth factor-stimulation would 

indicate the presence of constitutive direct-deactivation, while an increase in phosphatase 

activity in growth factor-stimulated cells would indicate that feedback-mediated direct-

deactivation is present.  However, as development of such an assay is an intensive 

process, Western blotting against phosphatases known to act on Erk (such as Mkp1 and 

Mkp4) is a suitable alternative method to assay for the presence of direct-deactivation.  

The presence of phosphatases via Western blotting before growth factor stimulation 

would again indicate the presence of constitutive direct-deactivation, while the 

upregulation of phosphatases levels after growth factor-stimulation would reveal the 

presence of feedback-mediated direct deactivation.  If Western blotting reveals either the 
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presence of constitutive or feedback-mediated direct-deactivation, further development of 

the phosphatase assay will be unnecessary, as direct deactivation would be revealed as 

the mechanism responsible for PDGF-mediated transient Erk activation and bFGF-

mediated sustained Erk activation.  

 

Determination of the mechanism responsible for the dynamic differences in cells 

stimulated via EGF, compared to those stimulated via bFGF will be identical to the 

process outlined above for PDGF.  The only difference is that the form of feedback-

decoupling deactivation that occurs in cells stimulated via EGF must be determined 

following the methodology outlined previously to determine the source of feedback-

decoupling deactivation that occurs in adherent cells stimulated by EGF. 

 

6. Conclusions 
 

Our experimental findings (Chapter 3) have begun to elucidate quantitative 

aspects of the crosstalk between adhesion and individual growth factors.  We have laid 

out a process for elucidating the precise mechanisms responsible for: 1) adhesion-

mediated desensitization of signal activation by selective growth factors, 2) adhesion-

dependent Erk activation enhancement by EGF stimulation, and 3) growth factor-specific 

signaling dynamics of Erk activation in adherent cells.  Many of the proposed 

experiments are guided by model predictions that identify key mechanisms required to 

elicit specific aspects of Erk signaling dynamics.  Pursuing the proposed experiments will 

yield mechanistic understanding of the quantitatively intricate ways in which cell 

adhesion influences growth factor signaling.  This understanding will offer insights into 
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how the adhesive microenvironment ‘primes’ cell behaviors such as survival, apoptosis, 

proliferation, and migration.  Such quantitative insight will enhance our ability to both 

design synthetic microenvironments for applications such as tissue engineering and 

regenerative medicine.  In addition, quantification will enable improved assessment of 

the quality and effectiveness of both biomaterials and cancer therapies. 
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Chapter VI. Appendices 
 

 
 

Supplemental Figure VI-1: bFGF does not induce Erk signaling in an adhesion-
dependent manner for any portion of the time course.  

NIH-3T3 cells were prepared as described in the legend to Figure III-1.  Cells that were either 
maintained in suspension on PH (empty circles) or allowed to adhere on FN (filled squares) for 
2.5 hr were stimulated with 1000 pM bFGF for the indicated times prior to lysing.  The relative 
amount of active Erk (ppErk) normalized to the equal-loading control, total Erk (ErkT), is 
reported for the different treatment conditions. The graph represents a single experiment.  

 
 

 
Supplemental Figure VI-2: At the critical bFGF concentration of 1 pM, suspended cells 
strongly induce Erk activation, while Erk activation remains near basal in adherent cells.   

NIH-3T3 cells were prepared as described in the legend to Figure III-1.  After being maintained 
in suspension by PH (empty circles) or allowed to adhere on FN (filled squares) for 2.5 hr, cells 
were stimulated with the critical concentration of 1 pM bFGF.  The relative amount of active 
Erk (ppErk) normalized to the equal-loading control, total Erk (ErkT), is reported for the 
different treatment conditions.  The graph represents one to three independent experiments, with 
n > 1 for the 0 and 30’ time point.  The double asterisk denotes that 1 pm bFGF-mediated ERK 
activation in suspended and adherent cells is statistically different (P < 0.01). 
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Supplemental Figure VI-3: At the critical bFGF concentration of 1 pM bFGF, 
suspended cells also strongly induce Akt activation, while Akt activation remains 
near basal in adherent cells.   
NIH-3T3 cells were prepared and analyzed identically to those in Figure III-1. Total cell 
lysates were assayed by immunoblot analysis using antibodies specific to total Erk 
(ErkT) and phosphorylated Akt (pAkt).  The relative amount of active Akt (pAkt) 
normalized to the equal-loading control, total cellular Erk (ErkT), is reported for the 
different treatment conditions.  The graph represents a single experiment. 
 
 
 


