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ABSTRACT

We require a real-time, modular earth observation system that unites efforts across
research groups in order to provide the necessary information necessary for global-
scale impact in sustainability and conservation in the face of climate change. The
development of such systems requires collaborative, interdisciplinary approaches
that translate diverse sources of raw information into accessible scientific insight.
For example, we need to monitor species in real time and in greater detail to quickly
understand which conservation efforts are most effective and take corrective action.
Current ecological monitoring systems generate data far faster than researchers
can analyze it, making scaling up impossible without automated data processing.
However, ecological data collected in the field presents a number of challenges
that current methods, like deep learning, are not designed to tackle. These include
strong spatiotemporal correlations, imperfect data quality, fine-grained categories,
and long-tailed distributions. Our work seeks to overcome these challenges, and this
thesis includes methods which can learn from imperfect data, systematic frameworks
and benchmarks for measuring and overcoming performance drops due to domain
shift, and the development and deployment of efficient human-AlI systems that have

real-world conservation impact.
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NOMENCLATURE

(visual) Descriptor. Higher-level statistics extracted from data that are supposed
to summarize, or pronounce, more abstract differences within the data point
to facilitate the task of the subsequent machine learning model, also called
a feature. For example, a common descriptor used in traditional vegetation
mapping on remote sensing imagery is the Normalized Difference Vegeta-
tion Index (NDVI), whose values are highly contrastive between vegetated
and non-vegetated areas than bare pixel values alone. Traditional machine
learning algorithms require manual definition and calculation of such fea-
tures, whereas deep learning methods learn them automatically in the training
process.

Artificial Intelligence (AI). The concept of a machine being able to perform higher-
level, semantic reasoning.

Big data. Many definitions exist, but we cast big data as information content for
analyses whose volumes are too large to handle for users with conventional
hardware. Many sensors addressed produce big data, in particular remote
sensing, social media and camera trap networks. Analysis of such volumes of
data quickly becomes intractable for conventional machine learning methods,
in particular if the study area of interest exceeds regional ecosystems.

Classification. Assigning an entire image or video to a single category.

Computer Vision. A field of research that seeks to enable computers to derive
information from images, videos and other structured inputs, often involving
methods and techniques from machine learning..

Convolutional Neural Network (CNN). Deep learning models that contain at least
one convolution layer. In such layers, neurons are organized into banks
of filters that are convolved with the inputs (i.e., the same filter weights
are applied across multiple locations in the image). This allows reducing
the number of required neurons while also providing a limited amount of
translation invariance.

Data science. Like big data, data science is a less-well-defined term, denoted here
as an inter- or multidisciplinary research field on automated information
extraction from observations or other content sources.

Deep learning. Family of prediction models that consist of neurons, grouped into
three or more sequential layers, where each neuron receives the output from
one (or more) previous neurons and itself predicts an output, consisting of
weighted combinations of its inputs.
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Detection. Localizing the area within an image that corresponds to a category of
interest, usually represented by a rectangular bounding box—the tightest box
that could be drawn around that object while still containing all of its pixels.

Detection rate. See recall.

Domain Adaptation. Methods to describe, evaluate, and/or tackle the challenge of
out-of-domain data.

False positive. Incorrect prediction of a data point, object, or background area (e.g.,
in an image) as a certain class.

Feature. See (visual) Descriptor.

Fine-grained classification. Label classes are denoted as fine-grained if they be-
long to a common supercategory (e.g., “American Robin” and “Guineafowl”
both belong to the supercategory “bird”). Fine-grained classification can be
challenging if categories exhibit similar visual properties..

Individual identification. Recognizing unique instances of an object in an image
or video (frame). Individual identification is usually performed through
recognizing of unique visual cues that serve as fingerprints for an individual,
such as the striping pattern of zebra or dot pattern on the back of whale shark
individuals.

Inference. The act of performing prediction with a (trained) machine learning
model.

Instance Segmentation. Grouping every pixel in an image with the other pixels
corresponding to that same instance or object. If the image contained seven
lions, each lion would be categorized with a different pixel label, even if the
lions’ pixel masks touch each other.

Localization. Identifying the position of an object within an image or video (frame).
Unlike Detection, localization may not always include estimation of the full
extents of an object, e.g., through a bounding box, but might be limited to
spatial coordinates of the object’s center.

Loss function. Numerical criterion that measures the disagreement between an ma-
chine learning model prediction and the Ground Truth labels. For example,
the cross-entropy loss function returns the negative log likelihood between a
predicted model probability and the label class.

Machine Learning. The ability of a computer to perform prediction tasks by learn-
ing from data (i.e., without primarily relying on hard-coded cascades of
rules).

Object detection. See detection.
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Open-set. Scenario where a dataset may exhibit categories at test time that were
unseen during machine learning model training. For example, a model for
individual identification may be presented with images of an individual that

got newly introduced to the area after training, and needs to be able to
recognize it as a new individual accordingly.

Out-of-domain. Data that is not drawn from the identical set that an machine
learning model was trained on. A good example of this would be images
from a camera trap that was not seen during training.

Overfitting. Training an machine learning model to achieve (near-) perfect accuracy
on the training set, but unacceptable accuracy on the validation or test set.
Overfitting can occur if the model has too many free parameters or if the
training set is not representative enough. See also underfitting.

Pose estimation. 2D: predicting the pixel location of known parts of an object, for
example, localizing the nose, eyes, joints, and tail of a lion. 3D: predicting
the parts location in space, or predicting the 3D rotation of an articulated
animal skeleton.

Posture Estimation. See pose estimation.

Precision. Class-wise measure of exactness of machine learning model predictions.
A precision of 1.0 means that every prediction made by a model is correct,
while one approaching 0.0 means that there is a high number of wrong
predictions (see false positive).

Recall. Class-wise measure of completeness of machine learning model predic-
tions. A recall of 1.0 means that every data point with a given true label
class has been correctly predicted as such by the model, while a recall of 0.0
means that the model has missed all data points of that class.

Semantic Segmentation. Assigning every pixel in an image to a specific class, i.e.,
all “lion pixels” would be labeled as such, regardless of the actual individual
they belong to.

Semi-supervised learning. Training an machine learning model on data for which
only a small subset contains labels.

Supervised learning. Training an machine learning model on data that consists of
inputs (e.g., images) and labels (e.g., species names, bounding boxes).

Tracking. Localizing individual objects and correctly match them between frames
throughout a video or temporal sequence of images.

Training. Altering the free (learnable) parameters of an machine learning model to
optimize it to the training dataset, usually performed by minimizing values
of a Loss function.
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Underfitting. A machine learning model underfits the training set if it cannot ap-
propriately capture the data distribution, resulting in unacceptable accuracy.
Underfitting usually occurs if the model does not have a sufficient number of
free parameters. See also overfitting.

Unsupervised learning. Training a machine learning model on data that only con-
sists of inputs, but not of labels.



Chapter 1

INTRODUCTION

Biodiversity is declining at an unprecedented rate worldwide. The World Wildlife
Fund 2020 Living Planet Report [6] found that between 1970 and 2016, the the
number of living mammals, birds, amphibians, reptiles, and fish has decreased by
an average of 68%. This figure jumps to 94% in the American tropics, some of
the most highly biodiverse regions in the world. These numbers are the result of
a collaborative effort from hundreds of ecological experts from around the globe
based on decades of data. However, though they are the best estimates we currently
have, in many cases we still do not have enough information to build an accurate
understanding of the scope of our current loss and prioritize measures to counteract
it. For example, 14% of the threatened species on the International Union for
Conservation of Nature (IUCN) Red List are considered data deficient—they may be

in even more danger than is currently known [21]]. Increased biodiversity monitoring
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is necessary not only to understand ecosystems and how they are changing in
response to climate change and human encroachment, but also to get necessary

feedback on the effectiveness of conservation actions.

Automatic and manual biodiversity monitoring is in place in many protected ar-
eas. The data collected is used to understand the effects of climate change and
conservation policies on the size and diversity of species populations across the
taxonomic tree. It provides feedback on land management policies and conserva-
tion interventions. This information is vital to those seeking to preserve natural
resources and react quickly and appropriately to ecosystem threats. The data col-
lected by biodiversity monitoring systems is also used in many aspects of ecological
research, including predicting where a species might be found based on environ-
mental variables (species distribution modeling), estimating the size of a population
of a certain species in an area (population estimation), and understanding changes in
plant and animal behavior in reaction to human encroachment and climate change.
However, most data processing and analysis is done manually, which prevents these
systems from scaling up spatiotemporally and taxonomically to the magnitude of

data necessary to capture complex global ecosystem dynamics in near-real-time.

1.1 Biodiversity monitoring’s data challenge

Biodiversity data can be time consuming and expensive to collect, as it frequently
relies on humans manually collecting samples or purchasing, deploying, and main-
taining networks of sensors—often cameras or microphones—in the field. In addition
to the cost of data collection, experts must invest significant effort to filter, cate-
gorize, and analyze the resulting data. Even small-scale biodiversity monitoring
systems can generate data far faster than researchers can analyze it. For example,
it can take years for scientists to manually process and interpret a single season of
data from a network of camera traps. As a concrete example, our collaborators at
the Idaho Department of Fish and Game were previously five years behind in their
camera trap data processing even with a team of ecologists working full-time to
categorize their data. Producing real-time estimates of fish escapement upstream
—necessary to maintain sustainable fisheries—requires teams of field ecologists work-
ing in shifts to watch near-continuous streams of sonar data [24]. Only a handful of
monitoring points can be managed with this level of effort. The challenge is even
greater for taxa that are studied by trapping and collecting, such as beetles and other
insects. Entomologists can collect thousands of beetles in a few days, but it may

require months or years for an expert to exhaustively identify all of the specimens



(a) Camera traps. Our net-
work of 100 camera traps
deployed at Mpala Research
Center in Kenya collected over
10M images in 2021.
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(b) Community science. (c) Aerial surveys. A single

There are over 100M observa- survey flight, such as the ones
tions of species that have been undertaken in [22]], can collect

collected by volunteers via up to 200TB of video.
the iNaturalist platform

Figure 1.1: Ecological data is collected in many different ways. Camera traps,
community science projects, and aerial surveys are three types of ecological data
currently collected to help monitor biodiversity. Each of these data collection types
generate vast amounts of data, making it difficult to analyze the data by hand and
extract insights quickly.

to the species level. This pace and scale of analysis is insufficient to keep up with
impact from human activity and a rapidly changing climate. To make effective
conservation decisions, policymakers need to know how different ecosystems are

reacting quickly and in greater detail.

Luckily, new advances in technology, data collection, data processing, and data
management are making it possible to scale and speed up biodiversity monitoring
efforts worldwide. These advances provide a diverse perspective on our natural

world, capturing data at different scales and across modalities.

Since the advent of global-scale earth observation missions in the 1970s, remote
sensing data collected from satellites, and low-flying aircraft has been used as a proxy
for direct biodiversity observations, including monitoring forest habitat intactness
and estimating populations of large colonies of birds. However, the high-spatial-
resolution imagery necessary for direct wildlife observation and analysis can only
be collected with aircraft and more recently, drones, which are expensive, restricted

in some geographies, and sometimes dangerous to operate.
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Data collected from fixed networks of sensors such as camera traps, phenocams,
bioacoustic sensors, and sonar provide consistent temporal sampling, allowing ecol-
ogists to monitor changes over time. Camera traps, for example, provide inexpensive
high-resolution in situ imagery, even under the forest canopy, and are used by ecol-

ogists to monitor a broad set of wildlife species.

On-animal sensors, like GPS collars and radio tags, are used to track single animals
and provide remarkable insight into animal behavior and movement patterns. They
are also used to collect contextual environmental metadata, such as ambient temper-
ature. Manually collected samples of insect populations, scat, or soil can be used in
eDNA analysis, which is able to recognize genetic barcodes for species. This can be
used to provide insight into animal behavior and species interactions, such as which
species are drinking at a given watering hole. However, placing on-animal sensors

is invasive, labor intensive, and sometimes very expensive.

Community scientists can collect vast sets of species observation data via images,
sound recordings, or species checklists, which are community and expert curated
in data repositories such as iNaturalist and eBird. These data collection methods
have an impressive ability to scale, but the data can be noisy due to inexpert species
identification and tends to be spatially biased towards areas of high human traffic,

like cities or well-traveled nature preserves.

Recent reductions in sensor costs have allowed many of these types of data collection
to scale up far beyond what was previously possible. Open-source, modular, and
accessible data collection systems such as AudioMoth [20] and FieldKit [34] are
helping to build strong communities of conservation technologists. These groups
share resources, best-practices, and even source code. All this has led to the creation
of vast collections of data which need to be stored, processed, shared, and analyzed
to derive insights from the data. Each data collection method is optimal for some
subset of species, areas, and monitoring needs. They are complementary—no one
data collection method can capture the entire biodiversity picture. Together they
may one day span the tree of life and the globe. With these already vast and growing
sets of diverse data comes a significant data processing challenge that bottlenecks
our ability to extract needed ecological insight from raw data streams. We need to

automate ecological data processing.
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Figure 1.2: Models trained using machine learning can be used to automatically
extract relevant ecological information directly from the raw data. For example,
computer vision detection models can be used to find and categorize animal species
in images collected by camera traps.

1.2 Biodiversity data poses new challenges for machine learning

Computer vision models trained on large repositories of data curated by teams of
experts play a role in many diverse applications (for example, self-driving cars,
Instagram filters, and Google image search). The success of these systems, as well
as their ability to process large, complex datasets efficiently, have led ecologists
and conservation technologists to explore how these methods can be used to help
monitor our planet. There have been hundreds of papers in the last year alone
applying machine learning and computer vision methods across the breadth of
biodiversity data sources. As further incentive for ecologists to explore automated
data processing methods, there is a large amount of “bycatch” hidden in the data.
For example, observations of certain plant species can be extracted from imagery
originally collected for wildlife monitoring. From the point of view of a wildlife
researcher, the plant images are bycatch that they don’t have the capacity to label
or curate from their existing datasets. Targeted and well-trained machine learning
models could do so quickly and scalably, drastically increasing the accessibility of

bycatch observations and the taxonomic scope of our current databases.

Machine learning is already being used in practice to process ecological data at
scale. The Microsoft Al for Earth MegaDetector [10], an animal, human, and

vehicle detection model for camera trap data, is used as a first data filtration step
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in the ecological data pipelines of over thirty organizations worldwide, including
the Wildlife Conservation Society, San Diego Zoo Global, and Island Conservation.
The publicly-hosted MegaDetector API is queried hundreds of thousands of times
per month. The model works off-the-shelf for most camera trap data due to a
combination of community building, data science, and machine learning research.
The MegaDetector is trained to localize animals but not predict their species, which
has been shown to be more robust to both new species and new camera deployments
than species-specific models [8]. There is a significant need in the camera trapping
community to filter out images containing animals, humans, or vehicles from large

sets of mostly empty imagery, and this model does so efficiently and accurately.

However, biodiversity data still presents challenges that are not well addressed by

existing machine learning methods:

To begin with, we must develop machine learning methods that can learn from fewer
examples and handle significant bias in datasets due to data imbalance. The distri-
bution of species worldwide is long-tailed. This means most observations are for
common species, and the vast majority of species have few, if any, observations [36].
This results in highly-imbalanced datasets, with most rare species having insuffi-
cient data representation to be learned accurately by traditional machine learning
frameworks. Another factor which adds to this imbalance is the use of passive
ecological monitoring sensors which collect a large amount of “empty” data, that
is, data without any observations of the study’s target species. For example, The
Snapshot Serengeti project estimates that 90% of the images from their camera
traps are empty [29] (note that this data can still contain valuable information on

non-target species—bycatch—that machine learning can help to extract).

Secondly, machine learning models assume that each data point is collected in-
dependently from the same underlying distribution. However, many biodiversity
monitoring systems capture signals that are correlated in time and space. This
correlation can result in model overfitting, particularly for static sensors or sparsely-

sampled drone flights, causing poor model generalization to new deployments.

Further, the computer vision and machine learning communities usually work on
high-quality datasets curated by human experts, with well-framed objects of interest
and clean, accurate data labels. By contrast, biodiversity monitoring data is collected
from sensors with limited intelligence, such as camera traps which collect data based
on motion triggers. This leads to observations of interest that are too close or too

far from the sensor, low resolution, or obscured by noise.
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Finally, ecological data can also require expertise to categorize correctly. This
involves challenging tasks like distinguishing between species of gulls or identifying
species-specific behaviors. Labels curated from community scientists or non-experts
frequently contain errors. Unlike relatively simple classification tasks, such as
identifying stop signs on a street, building machine learning models for biodiversity
monitoring requires technologists to connect task-specific expert knowledge with

machines and data.

These challenges provide an exciting opportunity for the computer vision and ma-
chine learning research communities to develop creative solutions. New method-
ologies are being developed to tackle these challenges, often incorporating expert
domain knowledge via ecologists collecting and labeling additional data, and pro-
viding guidance around the structure inherent to data collected from different sensor
types and across taxa. Exciting recent work includes using synthesized data for rare
species to improve rare-class performance [12], incorporating learned geospatial
priors to improve species identification by letting the model know which species are
most likely to be seen in a given area at a specific time [28]], and building models
that can share information across data collected by a given static sensor, helping the

model adapt to previously unseen environments [13]].

1.3 Making data accessible

This increase in the amount and variety of data being collected and processed has
necessitated the creation of data standards, data management tools, data sharing
repositories, data aggregation, and analysis platforms. All of these share a similar
goal: to help ecologists and conservationists easily and effectively share data and
insights. Large-scale data repositories such as the Global Biodiversity Information
Facility (GBIF) and the Macaulay Library pull together occurrence records and
media from scientific studies and other large-scale but more targeted data collection
and management platforms. These latter include iNaturalist for community science
species observations (currently at 64M observations worldwide) and Wildlife In-
sights for networks of static camera traps (currently at 12.6M global camera trap
images). Analysis platforms such as Map of Life seek to aggregate and analyze data
from global repositories, governmental surveys, and scientific publications in order
to produce ecological insights. Map of Life finetunes IUCN global range maps for
most species on earth. Aggregating data allows researchers to share the cost and
scale up, in collection effort, data processing effort, and across jurisdictions. These

repositories provide the framework for researchers to combine their efforts.



(a) Estimated map of global alpha biodi-
versity (Licensed under CC BY 3.0. See P.
D. Mannion. Patterns in Palaeontology: The
latitudinal biodiversity gradient. Palacontol-
ogy Online 4, 3 (2020), 1-8.)

(b) Species occurrence data
in GBIF (Occurrence down-
load. GBIF.org. April 9, 2020;
https://doi.org/10.15468/dl.wyv3d4.
Biodiversity heatmap image licensed
under CC BY 3.0)
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(c) Camera trap records in Wildlife In-
sights (Created by Fabiola lannarilli, Yale
University, on behalf of Wildlife Insights;
https://www.wildlifeinsights.org/home)

Figure 1.3: Global data curation platforms such as GBIF are curating data from many
different types of sensors and across ecological studies, and aggregate data from
sensor-specific data management and hosting platforms such as Wildlife Insights.
However, there are biases in where and when data was collected and how much data
is available for a given species, and these biases are not consistent across sensor
types. There are currently many more species occurrence records available in the
United States and Europe, but if we look at a global heatmap of biodiversity we
see that there is greater diversity in the Amazon, Subsaharan Africa, and East Asia.
This means that for the areas with greatest available biodiversity we have less access
to information about how to protect the species that are there, and how those species
are being affected by climate change and human encroachment.



9

There are many challenges that biodiversity monitoring and modeling systems still
face. As mentioned above, different data types have biases based on where the data is
collected, or which species are likely to be seen. One of the biggest open challenges
in ecological modeling is how to understand and compensate for the sampling biases
of each of these types of data, while still benefiting from their complementary
geospatial and taxonomic coverage in order to build an accurate, unbiased picture
of our world’s biodiversity. By understanding bias and associated uncertainty in
ecological models, ecologists could target their data collection efforts to reduce
these uncertainties and optimize their data collection practices to choose the type
and placement of sensors that maximize coverage geospatially and taxonomically

given the available resources.

1.4 Looking to the future

Complementary and parallel technological advances in data collection, data process-
ing, and data management are driving the field of biodiversity monitoring forward
every day, and there is a growing interdisciplinary community of researchers sharing
resources, best-practices, and skills. The machine learning community has shown
ever-growing interest in tackling biodiversity data challenges, with increasing num-
bers of biodiversity-focused workshops [2-4]] and competitions [14, [17] seen each
year. Looking to the future, the accessibility and standardization of ecological data
and the expansion of reliable, automated ecological data processing will allow us to
build systems that can efficiently answer increasingly detailed ecological questions
at scale. They will go beyond merely identifying the species in a given image to
answering questions about their number, their age, the behaviors they are exhibiting,
and how they are interacting with the environment [37]. As we build robust data
collection, processing, and management systems across different data modalities we
can share context and fill in spatial, temporal, and taxonomic data gaps. We can
aggregate information from remote sensing, passive and active monitoring sensors,
ecological samples, and the natural history record to paint a cohesive picture of

global biodiversity in order to help conservation efforts become more effective.

1.5 How my research fits into the big picture

I develop computer vision methods that enable scientific understanding of life on
earth, and I pioneer and solve novel challenges for computer vision. Working jointly
with stakeholders, I deploy my methods to improve sustainability and conservation

worldwide.
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Computer vision (CV) can play a fundamental role in sustainability and conser-
vation. We are currently witnessing an unprecedented loss of biodiversity [6]], yet
biodiversity is vital to sustainable development [16], public health [31], and miti-
gating climate change [39]. Earth observation, the gathering of information about
the biological, physical, and chemical systems of the planet, is necessary for conser-
vation and sustainability across spatial and temporal scales—micro to macro. I posit
that CV, along with machine learning (ML) and data science (DS), will prove crucial

to extract scientific insight from quickly-growing repositories of natural world data.

In order to make a difference in the fields of conservation and sustainability we must
shift the CV paradigm. Currently, CV research focuses on designing methods
tailored to highly curated datasets coming mostly from consumer applications.
These curated datasets frequently fail to capture the complexity of the real world,
resulting in methods that fall short when deployed even within these consumer
applications. Further, consumer application datasets do not mirror the statistics of
ecological data which presents a number of obstacles that current methods struggle
to master, including strong spatiotemporal correlations, imperfect data quality, fine-
grained categories, and long-tailed distributions. These challenges are shared by
many real-world applications, and my methodological contributions confer benefit

across domains [[13]].

My research program aims to empower Al-assisted scientific discovery in a chang-
ing world. I collaborate with diverse stakeholders—including governmental agencies,
non-governmental organizations, conservation land managers, and local communities—
allowing me to identify universal challenges in conservation and sustainability. This
understanding allows me to create benchmarks that matter—that truly capture the
complexity of these real-world problems and enable the research community to
come together and tackle them. Notable improvements on the benchmarks I develop
translate to real-world gains, and I design novel methods that make progress on these
challenges. I work with industry partners to build accessible and inclusive human-
Al systems enabling the widespread use of my methods and models by end users
from geographic locations worldwide, variable access to computational resources,

with diverse sets of prior expertise.
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Learning from imperfect, limited data

Data captured by human photographers, the norm in computer vision benchmarks,
usually contains well-framed, in-focus objects of interest. In contrast, biodiversity
monitoring data is often collected from sensors with limited intelligence, such as
camera traps which collect data based on motion triggers. This leads to pictures
where the animals are too close or too far from the sensor, low resolution, or
obscured. Humans use temporal information, sometimes over long time horizons, to
confidently ID species in challenging images. However, camera trap data is collected
with a motion trigger and low frame rate, leading to failures from most video-based
temporal approaches which have heavy reliance on the significant frame-to-frame
visual similarity that comes with high frame rates. We proposed Context R-CNN
[13]], which learns to attend to relevant context from up to a month of data at a single
static sensor. Our model improves upon baseline methods by up to 17% mAP, and
is able to correctly label cases with occlusion, poor lighting, even in severe fog. It
is applicable to any static sensor—e.g., traffic cameras or home security systems. We
are implementing Context R-CNN within the global-scale Wildlife Insights platform
[S], where I serve as a core member of the Al team. At the time of writing this thesis
Wildlife Insights provides data management and Al-assisted categorization for >900
users from 40 countries and has ingested over 20M camera trap images globally, and
its use is growing rapidly. The distribution of species worldwide is long-tailed: most
observations are of common species, and the vast majority of species have few, if
any, observations. This results in highly-imbalanced datasets, with insufficient data
to learn rare species accurately [8]]. Rare, at-risk species can be the most important
to accurately categorize, but their rarity makes collecting additional training images
for those species challenging—14% of the International Union for Conservation of
Nature (IUCN) Red List is considered data deficient [21]. We built a system to
generate synthetic examples for rare species using modern game engines and used
this synthetic data to decrease rare-class error by 70% without affecting performance

on common species [12, 18}, 27].

Measuring domain generalization under distribution shift

Generalization to novel domains poses a fundamental challenge for computer vision.
Near-perfect accuracy on benchmarks is now common [29], but these models do
not work as expected when deployed. For example, models trained on a set of static
cameras do not generalize to new cameras. We built a systematic framework and

benchmark for analyzing generalization performance [8]. Our work promoted a



12

paradigm shift in how CV researchers build image recognition benchmarks for real-
world applications, and our evaluation protocols have become the standard across
data types including passive monitoring cameras [38]], aerial surveys [23]], and bioa-
coustics [19]. Challenges stemming from domain shift are ubiquitous in real-world
problems, from medical diagnosis to code autocompletion. To better understand the
generality of methods built to tackle these challenges across domains, we published
the WILDS benchmark suite [25] 33]].

Evaluation protocols that match as closely as possible the intended use of a system in
its target domain are crucial for understanding potential impact. Via our evaluation
framework, we found class-agnostic animal detection generalizes far better to new
deployments than species categorization [8]. Motivated by the community’s need,
we built a robust, generalizable animal detection model for camera trap data, the
MegaDetector [10]. Our open-source API has processed over 100M images to
date, and has been integrated into the wildlife monitoring workflows of over 50
organizations, including The Nature Conservancy and San Diego Zoo Global. Our
model is used as a key component in many computer vision papers for camera trap
data [12,[13},130, 32].

Building human-Al systems for efficient, active, lifelong learning

Effective human-Al systems make human experts efficient, allowing them to extract
scientific insight from large datasets with minimal manual labeling. The human
in the loop provides quality control, probing model performance in new regions
and correcting mislabeled rare or out-of-sample categories. My work in this space
focuses in three main directions. First, we explore active learning to efficiently
categorize species in new static sensor deployments [30]. Our method matches
fully supervised accuracy on a 3.2M image dataset with as few as 14K manual
labels, decreasing manual labelling effort on new deployments by over 99.5%.
Second, when a user is provided with a CV-based automated solution, such as
species identification, they immediately come back with more questions: How old
is it? Is it healthy? What is it doing? We must build computer vision systems
that can work with experts to efficiently answer new questions. Towards this goal,
we compared supervised and self-supervised representations learned from 2.7M
iNaturalist species observation images on 164 novel ecologically-relevant tasks
[37]]. Third, we built and deployed ElephantBook [26], an Al-assisted elephant re-

identification system that combines robust contour matching, metric learning, and
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human-in-the-loop attribute labeling to enable long-term monitoring of the shifting,

open-set elephant population in the Greater Mara Ecosystem.

Connecting the AI and conservation research communities

Interdisciplinary communication and understanding is vital when developing au-
tomated methods for scientific fields. As interest in Al for conservation grew, I
saw a need for a space where practitioners on both sides could share opportunities
and find collaborators, so I launched a community, called Al for Conservation,
that has grown to include over 1000 interdisciplinary researchers and conservation
technologists worldwide as of August 2022. Dan Morris, head of Microsoft Al for
Earth, says “the ‘Al for Conservation’ community that Sara Beery launched has
become the de facto rallying point for energy in this area, and it’s where we point
everyone that comes to us asking how they can get involved.” To bring conservation
challenges to the attention of the CV community, I designed four distinct iWild-
Cam challenges for the Fine-Grained Visual Categorization Workshop at CVPR
[7, 9, 11, [14]]. Each competition defined a difficult, multimodal task and over 500
teams of CV researchers have taken part to date. Bridging the gap between two com-
munities requires an understanding of both, and the ability to translate fundamental
concepts for both audiences. In the last year I have written a review of species
distribution modeling aimed at machine learning practitioners [[15], and a review of

CV for biodiversity monitoring aimed at ecologists [35]].

1.6 Breaking down the thesis, chapter by chapter

I will briefly summarize the chapters in this thesis and the relevant contributions.
This work was done in collaboration with many others across academia, industry,
governmental organizations, and nonprofits, and would not have been possible with-
out the significant efforts of these collaborators. The relevant collaborators for each
chapter are listed in the co-author lists for the associated publications included in

that chapter, which appear at the beginning of the chapter texts.

In Chapter 2, my collaborators and I provide a broad overview of the interdisciplinary
field of machine learning for wildlife conservation. We cover newly-developed
sensors for collecting wildlife data, machine learning approaches for processing that

data automatically, and attention points and opportunities moving forward.

In Chapter 3, we provide a review of ecological monitoring techniques, and species
distribution modeling (SDM) in particular, aimed at machine learning practitioners.

We cover different methods to represent the distribution of species, historic and
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current, commonly-used environmental covariates, properties of and algorithms
for SDMs, and discuss the challenges of evaluation and open problems. We also
contribute a useful guide to which datasets and covariates are publicly accessible

and ready to be used to develop novel ML-based SDM approaches.

In Chapter 4, we formalize the challenge of generalization to new sensor location
and present the Caltech Camera Traps dataset along with a systematic framework for
evaluating gaps in generalization performance by providing two separate validation
and test sets, one from sensor locations seen during training and one from novel
sensor locations. We present baseline comparisons that demonstrate a significant
drop in performance on the out-of-domain test data for species categorization on full
images and on object-centric crops, even when temporally aggregating data across
short time scales. We additionally demonstrate that class-agnostic object detection
generalizes surprisingly well, which led to the development and deployment of the
MegaDetector[10].

In Chapter 5, we present the iWildCam competition dataset and its evolution over
the past 5 years. iWildCam was designed to provide yearly novel challenges for
the computer vision community centered in real ecological needs. From empty/not
empty categorization in 2018, open-set species categorization in 2019, multi-modal
generalization in 2020, to species-specific counting in 2021, the competition has
been run yearly at the Fine-Grained Visual Categorization Workshop at CVPR and
has engaged over 600 competition teams worldwide. In recent years, iWildCam has
expanded to be included as a core challenge in the WILDS benchmark, the first to
provide real-world domain shift challenges across application domains, and later in
WILDS 2.0, which extends WILDS to include unsupervised data.

In Chapter 6, we address the few-shot learning challenge for rare species and dis-
cuss our development of a novel camera trap data synthesizer to produce diverse
synthetic data for rare species. We demonstrate that this synthetic data can be used
to significantly improve rare-species categorization accuracy, without hurting the
performance of the model on common classes. In follow up work led by students I
mentored and not included in this thesis [18, [27]], we further increased the efficacy
of the synthetic data using generative adversarial networks to mimic the low-level
image statistics of the real data and adapting a method for domain adaptation to

handle the single-class synthetic data.

In Chapter 7, we present a novel method for incorporating long-term temporal

context for per-camera object detection inspired by how ecologists label challenging
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images in camera traps. Instead of looking at just one image at a time, ecologists
look at all of the data for one camera trap in chronological order. As they start to
learn where to look and what to look for for a specific sensor, they become much
better at identifying species in images with heavy occlusion from foliage or poor
weather conditions. We build an attention-based approach that enables the model
to make predictions with access to up to a month of context for any one sensor,
and show that our method significantly improves performance over single-frame

baselines and baselines designed for video.

In Chapter 8, we present the Auto Arborist Dataset, a multiview fine-grained visual
categorization dataset that contains over 2 million trees in 23 cities across the US
and Canada built to foster the development of robust methods for large-scale urban
forest monitoring. Our Auto Arborist dataset contains over 2.5M trees and 344
genera and is >2 orders of magnitude larger than the closest dataset in the literature.
We introduce baseline results on our dataset across modalities as well as metrics for
the detailed analysis of generalization with respect to geographic distribution shifts,

vital for such a system to be deployed at-scale.

In Chapter 9, we present ElephantBook, a human-Al system for elephant population
monitoring that combines human attribute labeling with computer vision approaches
in order to robustly and accurately identify individual elephants. Our system has
been deployed in the Greater Mara Ecosystem by the Mara Elephant Project since
January 2021, and we can currently identify over 1000 elephants.

In Chapter 10, we discuss pitfalls and risks when using automated data processing
methods such as computer vision or machine learning for ecological applications
and present a case study on the risks of publishing biodiversity data that contains

images of at-risk species.

Finally, in Chapter 11, I discuss potential directions for future work.
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Chapter 2

OVERVIEW AND LITERATURE REVIEW OF MACHINE
LEARNING FOR WILDLIFE CONSERVATION

Devis Tuia, Benjamin Kellenberger, Sara Beery, Blair R Costelloe, Silvia Zuffi,
Benjamin Risse, Alexander Mathis, Mackenzie W Mathis, Frank van Langevelde,
Tilo Burghardt, et al. Perspectives in machine learning for wildlife conservation.
Nature Communications, 13(1):1-15, 2022.

2.1 Abstract

Inexpensive and widely-available sensors are accelerating data acquisition in an-
imal ecology. These technologies hold great potential for large-scale ecological
understanding, but are limited by current processing approaches—such as manual
expert data categorization—which inefficiently convert raw data into relevant and
usable information. We argue that animal ecologists can capitalize on large datasets
generated by modern sensors by combining machine learning approaches with do-
main knowledge. Incorporating machine learning into ecological workflows could
improve inputs for ecological models and lead to integrated hybrid modeling tools.
This approach will require close interdisciplinary collaboration to ensure the quality
of novel approaches and train a new generation of data scientists in ecology and con-
servation. This chapter provides a broad overview and literature review of the field
as it currently stands, features several existing successful projects and emphasizes
what made them successful, and highlights future directions across disciplines that

have potential to make significant impact.

2.2 Technology to accelerate ecology and conservation research

Animal diversity is declining at an unprecedented rate [33]. This loss comprises
not only genetic, but also ecological and behavioral diversity, and is currently not
well understood: out of more than 120,000 species prioritized for monitoring by
the IUCN Red List of Threatened Species, up to 17,000 have a ‘Data deficient’
status [36]. We urgently need tools for rapid assessment of wildlife diversity and
population dynamics at large scale and high spatiotemporal resolution, from indi-
vidual animals to global densities. In this chapter we aim to build bridges across

ecology and machine learning to highlight how relevant advances in technology can
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be leveraged to rise to this urgent challenge in animal conservation. We also point
out major challenges and opportunities for future technological development in this

space.

How are animals currently monitored? Conventionally, management and conser-
vation of animal species are based on data collection carried out by human field
workers who count animals, observe their behavior, and/or patrol natural reserves.
Such efforts are time-consuming, labor-intensive and expensive [176]. They can
also result in biased datasets due to challenges in controlling for observer subjectiv-
ity and assuring high inter-observer consistency, and often unavoidable responses of
animals to observer presence [30,113]]. Human presence in the field also poses risks
to wildlife [38, 93], their habitats [171], and humans themselves: as an example,
many wildlife and conservation operations are performed from aircraft, and plane
crashes are the primary cause of mortality for wildlife biologists [[138]]. Finally, the
physical and cognitive limitations of humans unavoidably constrain the number of
individual animals that can be observed simultaneously, the temporal resolution and
complexity of data that can be collected, and the extent of physical area that can be

effectively monitored [5, 82].

These limitations considerably hamper our understanding of geographic ranges,
population densities and community diversity globally, as well as our ability to as-
sess the consequences of their decline. For example, humans conducting counts of
seabird colonies [/3] and bats emerging from cave roosts [20] tend to significantly
underestimate the number of individuals present. Furthermore, population estimates
based on extrapolation from sparsely sampled locations have large uncertainties and
can fail to capture the spatiotemporal variation in ecological relationships, result-
ing in erroneous predictions or extrapolations [[135]. Failure to monitor animal
populations impedes rapid and effective management actions [[176]. For example,
insufficient monitoring, due in part to the difficulty and cost of collecting the nec-
essary data, has been identified as a major challenge in evaluating the impact of
primate conservation actions [78] and can lead to the continuation of practices that
are harmful to endangered species [146]. Similarly, poaching prevention requires
intensive monitoring of vast protected areas, a major challenge with existing technol-
ogy. Protected area managers invest heavily in illegal intrusion prevention and the
detection of poachers. Despite this, rangers often arrive too late to prevent wildlife
crime from occurring [119]. In short, while a rich tradition of human-based data

collection provides the basis for much of our understanding of where species are
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found, how they live, and why they interact, modern challenges in wildlife ecology

and conservation are highlighting the limitations of these methods.

Advances in sensor technologies are drastically increasing data collection capacity
by reducing costs and expanding coverage relative to conventional methods (see
Section [2.3), thereby opening new avenues for ecological studies at scale (Fig-
ure 2.1) [96]. Many previously inaccessible areas of conservation interest can
now be studied through the use of high-resolution remote sensing [S9], and large
amounts of data are being collected non-invasively by digital devices such as cam-
era traps [149], consumer cameras [[/0]] and acoustic sensors [[152]. New on-animal
bio-loggers, including miniaturized tracking tags [[15,/173] and sensor arrays featur-
ing accelerometers, audiologgers, cameras, and other monitoring devices document
the movement and behavior of animals in unprecedented detail [68], enabling re-
searchers to track individuals across hemispheres and over their entire lifetimes at

high temporal resolution and thereby revolutionizing the study of animal movement
(Figure [2.1c) and migrations.

Modern ecology studies produce more data than ecologists can analyze manually.
Effectively, ecology has entered the age of big data and is increasingly reliant
on sensors, advanced methodologies, and computational resources [52]. Central
challenges to efficient data analysis are the sheer volume of data generated by mod-
ern collection methods and the heterogeneous nature of many ecological datasets,
which preclude the use of simple automated analysis techniques [52]. Crowdsourc-
ing platforms like eMammal (emammal.si.edu), Agouti (agouti.eu) and Zooniverse
(www.zooniverse.org) function as collaborative portals to collect data from different
projects and provide tools to volunteers to annotate images e.g., with species labels
of the individuals therein. Such platforms drastically reduce the cost of data process-
ing (e.g., [97] reports a reduction of seventy thousand dollars, a 23.6% decrease in
cost), but the rapid increase in the volume and velocity of data collection is making
such approaches unsustainable. For example, in August 2021 the platform Agouti
hosted 31 million images, of which only 1.5 million were annotated. This is because
images are still annotated by hand, with a human reviewing every image, and this
manual effort does not scale at the same rate as data collection. We need automated
methods for cataloging, searching, and converting data into relevant information in
order to increase human efficiency and keep up with incoming data. These have the
potential to broaden and enhance animal ecology and wildlife conservation in scale

and accuracy and pave the way forward towards new, integrated research directives.


https://emammal.si.edu/
https://www.agouti.eu/
https://www.zooniverse.org/
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Figure 2.1: Examples of research acceleration by machine learning-based systems
in animal ecology. a: The BirdNET algorithm [79] was used to detect Carolina
wren vocalizations in more than 35,000 hours of passive acoustic monitoring data
from Ithaca, New York, allowing researchers to document the gradual recovery of
the population following a harsh winter season in 2015 (H. Klinck, unpublished). b:
Machine-learning algorithms were used to analyze movement of Savannah herbi-
vores fitted with bio-logging devices in order to identify human threats. The method
can localize human intruders to within 500m, suggesting ‘sentinel animals’ may be
a useful tool in the fight against wildlife poaching [41]. ¢: TRex, a new image-based
tracking software, can track the movement and posture of hundreds of individually-
recognized animals in real-time. Here the software has been used to visualize the
formation of trails in a termite colony [164]. d, e: Pose estimation software, such as
DeepPoseKit (d) [60] and DeepLabCut (e) [77,[110] allows researchers to track the
body position of individual animals from video imagery, including drone footage,
and estimate 3D postures in the wild. See Acknowledgements for credits and per-
missions.
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Machine learning (ML) deals with learning patterns from data [69]]. Presented with
large quantities of inputs (e.g., images) and corresponding expected outcomes, or
labels (e.g., the species depicted in each image), a supervised ML algorithm learns
a mathematical function leading to the correct outcome prediction when confronted
with new, unseen inputs. When the expected outcomes are absent, the (this time un-
supervised) ML algorithm will use solely the inputs to extract groups of data points
corresponding to typical patterns in the data. ML has emerged as a promising means
of connecting the dots between big data and actionable ecological insights [35] and
is an increasingly popular approach in ecology [93, 94]. A significant share of this
success can be attributed to deep learning (DL [98]]), a family of highly versatile ML
models based on artificial neural networks that have shown superior performance
across the majority of ML use cases (see Table [2.2). Significant error reduction
of ML and DL with respect to traditional generalized regression models has been
reported routinely for species richness and diversity estimation [87,130]. Likewise,
detection and counting pipelines moved from rough rule of thumb extrapolations
from visual counts in national parks to ML-based methods with high detection rates.
Initially, these methods proposed many false positives which required further hu-
man review [[133]], but recent methods have been shown to maintain high detection
rates with significantly fewer false positives [12]. As an example, large mammal
detection in the Kuzikus reserve in 2014 was improved significantly by improving
the detection methodologies, from a recall rate of 20% [133]], to 80% [84] (for a
common 75% precision rate). Finally, studies involving human operators demon-
strated that ML enabled massive speedups in complex tasks such as individual and
species recognition [45,/142] and large-scale tasks such as animal detection in drone
surveys [86]. Recent advances in ML methodology could accelerate and enhance
various stages of the traditional ecological research pipeline (see Figure 2.2)), from
targeted data acquisition to image retrieval and semi-automated population surveys.
As an example, the initiative Wildlife Insights [4] is now processing millions of
camera trap images automatically (17 million in August 2021), providing wildlife
conservation scientists and practitioners with the data necessary to study animal
abundances, diversity and behavior. Besides pure acceleration, use of ML also
massively reduces analysis costs, with reduction factors estimated between 2 and
10 [49]].

A growing body of literature supports the use of ML in ecology by educating domain
experts about ML approaches [35} 156} [169]] for analyzing big data [52, [128]], and
for ecological inference (e.g., understanding the processes underlying ecological
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Figure 2.2: Traditional ecological research pipeline (colored text and boxes) and
contributions of ML to the different stages discussed in this paper (black text).

patterns, rather than only predicting the patterns themselves) [[107,181]]. Ecological
data is challenging, it has strong spatiotemporal biases and is often sparsely sam-
pled, the distribution of species in the data is long-tailed, the signal to noise ratios
in the data can be very low, and many different modalitites of data are collected
from diverse sensing platforms across spatial scales (each requiring different exper-
tise and contextual understanding to process). These challenges are compounded
by the size of the datasets generated by larger-scale sensor deployments and novel
sensors—e. g., increasingly small and lightweight animal tags [/6l], DNA sequencing
on the edge via Nanopores [47]. Methods that address these challenges will require
a collaborative approach that harnesses the expertise of both the ML and animal
ecology communities. The rising interdisciplinary field of hybrid environmen-
tal algorithms (leveraging both deep learning and bio-physical models [31) [132])
and, more broadly, by theory-guided data science [80]] has generated models which
are less data-intensive, avoid incoherent predictions, and are generally more inter-
pretable than purely data-driven models. The relation between ecology and ML
should similarly not be unidirectional: integrating ecological domain knowledge
into ML methods is essential to designing models that are accurate in the way they
describe animal life. With this objective in mind, we review recent efforts at the
interface of the two disciplines, present success stories of such symbiosis in animal

ecology and wildlife conservation, and sketch an agenda for the future of the field.

2.3 New sensors expand available data types for animal ecology

Sensor data provide a variety of perspectives to observe wildlife, monitor populations
and understand behavior. They allow larger studies in space, time, and across the
taxonomic tree and, thanks to open science projects (Table 2.1, to share data
across parks, geographies and the globe [122]. Sensors generate diverse data types,
including imagery, soundscapes, and positional data (Figure [2.3). They can be

mobile or static, and can be deployed to collect information on individuals or species
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Satellite (optical, SAR, LIDAR)

Figure 2.3: A variety of sensors used in animal ecology. Studies frequently combine
data from multiple sensors at the same geographic location, or data from multiple
locations to achieve deeper ecological insights.

of interest (e.g., bio-loggers, drones), monitor activity in a particular location (e.g.,
camera traps and acoustic sensors), or document changes in habitats or landscapes
over time (satellites, drones). Finally, they can also be opportunistic, as in the case
of community science. Below, we discuss the different categories of sensors and

the opportunities they open for ML-based wildlife research.

Stationary sensors. Stationary sensors provide close-range continuous monitor-
ing over long time scales. Common stationary sensors used in ecology include
motion triggered or timelapse camera traps, passive and active bioacoustic sensors,
and environmental sensors such as rain gauges and temperature sensors. These
sensors collect data vith varying temporal frequency, from high frame rate video to
daily captures, and are used to record species presence/absence, identify individuals,
analyze behavior, and study predator-prey interaction. However, because of their
stationary nature, their data is highly spatiotemporally correlated. Based on where
and when in the world the sensor is placed, there is a limited number of species
that can be captured. Furthermore, many animals are highly habitual and territorial,
leading to very strong correlations between data taken days or even weeks apart

from a single sensor [13]].

* Camera traps are among the most used sensors in recent ML-based animal
ecology papers, with more than a million cameras already used to monitor
biodiversity worldwide [149]. Camera traps are inexpensive, easy to install,

and provide high-resolution image sequences of the animals that trigger them,
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sufficient to identify the species, sex, age, health, behavior, and predator-prey
interactions. Coupled with population models, camera trap data has also been
used to estimate species occurrence, richness, distribution and density [149].
Software tools such as TimeLapse [62] and AIDE [85] (see Table [2.2)) have
been developed to help ecologists more quickly annotate their camera trap
datasets, which are often large (for example, the SnapShot Serengeti network
collects 1M images/year [2]). Many ecologists have already incorporated
open source ML approaches for filtering out blank images (such as the Mi-
crosoft AI4Earth MegaDetector [12], see Table [2.2] and Box [2.4)) into their
camera trap workflows [13,161, 118} 141]. However, automated species iden-
tification systems struggle to generalize to new sensor deployment locations
and new sensor types, and require large numbers of labeled examples for every
species [[11]. Organizations like Wildlife Insights (www.wildlifeinsights.org)
and LILA science (www.lila.science) are making it easier for researchers to
share their data, which is making it easier to curate diverse, large-scale ML

training datasets across regions and taxa.

Bioacoustic sensors are an alternative to camera traps, using microphones
and hydrophones to study vocal animals and their habitats [152]. Networks
of static bioacoustic sensors, used for passive acoustic monitoring (PAM), are
increasingly applied to monitor wildlife in terrestrial [178]], aquatic [44]], and
marine [40]] ecosystems. Compared to camera traps, PAM is mostly unaffected
by light and weather conditions (some factors like wind still play arole), senses
the environment omnidirectionally, and is cost-effective when data needs to be
collected at large spatial and temporal scales with high resolution [[177]. While
ML has been extensively applied to camera trap images, its application to
long-term PAM datasets is still in its infancy and the first deep-learning-based
studies are only starting to appear (see Fig[2.Th, [79]). Significant challenges
remain when utilizing PAM. First and foremost among these challenges is the
size of data acquired. Given continuous and high-frequency acquisition rates,
datasets often exceed the terabyte scale—the National Centers for Environ-
mental Information (NCEI) are a recently-established U.S. national archive
for passive acoustic data which already contain over 100TB of data [163].
Handling and analyzing these datasets efficiently requires access to advanced
computing infrastructure and solutions. Second, the inherent complexity of
soundscapes requires noise-robust algorithms that generalize well and can sep-

arate and identify many animal sounds of interest from confounding natural


https://www.wildlifeinsights.org/
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and anthropogenic signals in a wide variety of acoustic environments [[150].
The third challenge is the lack of large and diverse labeled datasets. As for
camera trap images, species- or region-specific characteristics (e.g., regional
dialects [S3]) affect algorithm performance. Robust, large-scale datasets have
begun to be curated for some animal groups (e.g., www.macaulaylibrary.org
and www.xeno-canto.org for birds), but for many animal groups as well as
relevant biological and non-biological confounding signals, such data is still

nonexistent.

Remote sensing. Collecting data on free ranging wildlife has been restricted tradi-
tionally by the limits of manual data collection (e.g., extrapolating transect counts),
but have increased greatly through the automation of remote sensing [133]]. Using
remote sensing, i.e., sensors mounted on moving platforms such as drones, aircraft,
or satellites—or attached to the animals themselves—allows us to monitor large areas

and track animal movement over time.

* On-animal sensors are the most common remote sensing devices deployed in
animal ecology [82]. They are primarily used to acquire movement trajec-
tories (i.e., GPS data) of animals, which can then be classified into activity
types that relate to the behavior of individuals or social groups [75}82]. Sec-
ondary sensors, such as microphones, video cameras, heart rate monitors and
accelerometers, allow researchers to capture environmental, physiological,
and behavioral data concurrently with movement data [[175]. However, power
supply and data storage and transmission limitations of bio-logging devices
are driving efforts to optimize sampling protocols or pre-process data in order
to conserve these resources and prolong the life of the devices. For example,
on-board processing solutions can use data from low-cost sensors to identify
behaviors of interest and engage resource-intensive sensors only when these
behaviors are being performed [89]. Other on-board algorithms classify raw
data into behavioral states to reduce the volume of data to be transmitted [[180].
Various supervised ML methods have shown their potential in automating be-
havior analysis from accelerometer data [28,,106], identifying behavioral state

from trajectories [1635]] and predicting animal movement [[172]].

* Satellite data is widely available globally, and machine learning and deep
learning methods have been developed for satellite data analysis across many

applications, including land cover and land use categorization, agricultural
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monitoring, and chlorophyl concentration estimation [31,[183]. Public pro-
grams such as Landsat and Sentinel provide free and open imagery at medium
resolution (between 10 and 30 m per pixel). This resolution, though usually
not sufficient for direct wildlife observations, can be useful for studying their
habitats [43,87]. Commercial very high resolution imagery (with resolutions
less than one meter per pixel), is opening up opportunity for direct observa-
tion of large animals such as whales [63]] or elephants [48]], though there are
significant challenges due to occlusion from, for example, weather or trees.
When focusing on smaller-bodied species, studies often focus on the detection
of proxies instead of the detection of the animal itself (e.g., the detection of
penguin droppings to locate colonies [56]). Image bands beyond the visible
spectrum are also available from many satellite imaging systems, and are
widely utilized in plant ecology [27]. Multi- and hyperspectral deep learn-
ing approaches [8] are yet to be widely used in animal ecology. They could
potentially contribute to the characterization of habitats and the detection of
wildlife colonies such as walrus haulouts [54]]. The main bottlenecks to the
widespread use of commercial very high resolution imagery is the cost of
purchasing the data at large scale, though platforms such as Planet sometimes
donate imagery to ecological research, and the computational and systems
infrastructure required to process high resolution satellite imagery from large

regions.

Unmanned aerial vehicles (UAVs), or drones, capture imagery at lower-
altitudes and significantly higher resolutions (with some platforms providing
sub-millimeter resolution), and have been highlighted as a promising tech-
nology for animal conservation [72} [104]. Recent studies have shown the
promise of UAVs and deep learning for posture tracking 60, 110, 111]], semi-
automatic detection of large mammals [49, 183]], birds [86] and, in low altitude
flight, even identification of individuals [6]. Drones are agile platforms that
can be deployed rapidly—theoretically on demand—and with limited cost, mak-
ing them useful for local population monitoring. Lower altitude flights in
particular can provide oblique view points that partially mitigate occlusion by
vegetation. The reduced costs and operation risks of UAVs further make them

an increasingly viable alternative to low-flying manned aircraft.

Common multi-rotor UAV models are built using inexpensive hardware and

consumer-level cameras, and only require a trained pilot with flight permis-
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sions to perform the survey. Fully autonomous UAV platforms are also be-
ing explored in order to remove the need for a trained pilot [6]. However,
multi-rotor drone-based surveys have limited spatial footprint primarily due
to battery limitations (which become even more stringent in cold climates
like Antarctica). Though these are of course dependent on the UAV platform,
as an example the widely commercially available DJI Mavic 3 series can fly
a maximum of 19 horizontal meters per second and has a maximum flight
time of 46 minutes without wind and at moderate temperatures [46]. Lo-
cal legislation further restricts the possible horizontal footprint of multi-rotor
drone-based surveys [121]. Using drones also has a risk of modifying the
behavior of the animals. A recent study [144]] showed that flying at lower
altitudes (e.g., lower than 150 m) can have a significant impact on group
and individual behavior of mammals, although the severity of wildlife dis-
turbance from drone deployments will depend heavily on the focal species,
the equipment used, and characteristics of the drone flight (such as approach
speed and altitude) [[17]-this is a rapidly changing field and advances that will
limit noise are likely to come. More research to quantify and qualify such
impacts in different ecosystems is timely and urgent, to avoid both biased
conclusions and increased levels of animal stress. Combustion-driven fixed
wing UAVs flying at high altitudes and human-piloted airplane-based acquisi-
tions reduce possible behavioral impacts and can cover much larger horizontal
footprints, but capture lower-resolution imagery due to the increased distance
as well as encounter weather and vegetation-based occlusion that can limit

high-resolution visual measurements on animals.

Community science for crowd-sourcing data

An alternative to traditional sensor networks (static or remote) is to engage com-
munity members as wildlife data collectors and processors [24, [114, [162], which
also increases public engagement in science and conservation. In this case, commu-
nity participants (often volunteers) work to collect the data and/or create the labels
necessary to train ML models. Models trained this way can then be used to bring
image recognition tasks to larger scale and complexity, from filtering out images
without animals in camera trap sequences to identifying species or even individuals.
Several annotation projects based on community science have appeared recently
(Table @) For simple tasks like animal detection, community science effort can

be open to the public, while for more complex ones such as identifying bird species
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with subtle appearance differences (“fine-grained classification,” also see the glos-
sary), communities of experts are needed to provide accurate labels. A particularly
interesting case is Wildbook (see the text box on Page [35] and Table [2.2), which
routinely screens videos from social media platforms with computer vision models
to identify individuals; community members (in this case video posters) are then
queried in case of missing or uncertain information. Recent research shows that
ML models trained on community data can perform as well as annotators [155].
However, it is prudent to note that the viability of community science services
may be limited depending on the task and that oftentimes substantial efforts are
required to verify volunteer-annotated data [157]. This is due to annotator errors,
including misdetected or mislabeled animals due to annotator fatigue or insufficient
knowledge about the annotation task, as well as systematic errors from adversarial
annotators [23,90,147]]. Another form of community science is the usage of images
acquired by volunteers: in this case, volunteers replace camera traps or UAVs and
provide the raw data used to train the ML model. Although this approach sacri-
fices control over image acquisitions and is likewise prone to inducing significant
noise to datasets, for example through low-quality imagery, it provides a substan-
tial increase in the number of images and the chances of photographing species
or single individuals in different regions, poses and viewing angles. The Great
Grevy’s Rally, a community science-based wildlife census effort occurring every
two years in Kenya [124]], is a successful demonstration of the power of community

science-based wildlife monitoring via volunteer-acquired images.
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[ posture estimation
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Figure 2.4: Setting a common vocabulary: ecology tasks vs corresponding ones
in computer vision. Imagery can be used to capture a range of behavioral and
ecological data, which can be processed into usable information with ML tools.
Aerial imagery (from drones, or satellites for large species) can be used to localize
animals and track their movements over time (pink and purple), and model the 3D
structure of landscapes using photogrammetry (blue). Posture estimation tools allow
researchers to estimate animal postures (orange), which can then be used to infer
behaviors using clustering algorithms. Finally, computer vision techniques allow
for the identification and re-identification of known individuals across encounters
(green).
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Table 2.1: Examples of community science projects in digital wildlife conservation

Name

Spatial cover-
age

Sensor

Task

Impact

" iNaturalist[158]

Global

Human pho-
tographers

Classification,
Detection

>100M  ob-
servations
collected by
volunteers,
near-global
coverage,
primary data
contributor to
GBIF [1]

“[SAVMAP[120]

Kuzikus
Reserve,
Namibia

UAV images

Detection

Near real-time
ultrahigh-
resolution
drone imag-
ing and data
labeling  to
monitor bio-
diversity and
land use at a
large  nature
reserve.

~[Zooniverse[147]

Global

Images, Text,
Video

Classification,
Detection

Enables

>2.5M  vol-
unteers to
contribute

>700M data
labels and
counting for
hundreds

of  different
projects [[1L67].

~iRecord[[131]]

" Great
Rally[124]

Grevy’s

United King-
dom

Photographic
records

Classification

Collects
images of
species from
volunteers
across the
UK, has >2M
observations
of >15K
species.

Northern
Kenya

Safari
tures

pic-

Classification,
Detection,
Identification

One of the
only complete
population

censuses of a
species, via
the combina-
tion of CV
and targeted
volunteer data
collection.

Used by the
Kenyan gov-
ernment to set
conservation
policy  and
allocate  re-
sources [18]].



https://www.inaturalist.org
http://www.epfl.ch/savmap
https://www.zooniverse.org/projects/zooniverse
https://www.brc.ac.uk/irecord/
http://www.greatgrevysrally.com
http://www.greatgrevysrally.com
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Figure 2.5: The Wildbook Ecosystem. Wildbook allows scientists and wildlife
managers to leverage the power of communities and machine learning to monitor
wildlife populations. Images of target species are collected via research projects,
community science events (e.g., the Great Grevy’s Rally; see text), or by scraping
social media platforms using Wildbook Al tools. Wildbook software uses computer
vision technology to process the images, yielding species and individual identities
for the photographed animals. This information is stored in databases on Wildbook
data management servers. The data and biological insights generated by Wildbook
facilitates exchange of expertise between biologists, data scientists, and stakeholder
communities around the world.
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Box 1: Wildbook: successes at the interface between community science

and deep learning

Wildbook, a project of the non-profit Wild Me, is an open source software platform that blends
structured wildlife research with artificial intelligence, community science, and computer
vision to speed population analysis and develop new insights to help conservation (Figure[2.5).
Wildbook supports collaborative mark-recapture, molecular ecology, and social ecology
studies, especially where community science and artificial intelligence can help scale up
projects. The image analysis of Wildbook can start with images from any source — scientists,
camera traps, drones, community scientists, or social media — and use ML and computer
vision to detect multiple animals in the images [[125]] to not only classify their species, but
identify individual animals applying a suite of different algorithms [7, [168]]. Wildbook
provides a technical solution for wildlife research and management projects for non-invasive
individual animal tracking, population censusing, behavioral and social population studies,
community engagement in science, and building a collaborative research network for global
species. There are currently Wildbooks for over 50 species, from sea dragons to zebras,
spanning the entire planet. More than 80 scientific publications have been enabled by
Wildbook. Wildbook data has become the basis for the IUCN Red List global population
numbers for several species, and supported the change in conservation status for whale
sharks from “vulnerable” to “endangered.” Wildbook’s technology also enabled the Great
Grevy’s Rally, the first ever full species census for the endangered Grevy’s zebra in Kenya,
using photographs captured by the public. Hosted for the first time in January 2016, it has
become a regular event, held every other year. Hundreds of people, from school children
and park rangers, to Nairobi families and international tourists, embark on a mission to
photograph Grevy’s zebras across its range in Kenya, capturing approximately 50,000 images
over the two-day event. With the ability to identify individual animals in those images,
Wildbook can enable an accurate population census and track population trends over time.
The Great Grevy’s Rally has become the foundation of the Kenya Wildlife Service’s Grevy’s
zebra endangered species management policy and generates the official [IUCN Red List
population numbers for the species. Wildbook’s Al enables science, conservation and global
public engagement by bringing communities together and working in partnership to provide
solutions that people trust.

2.4 Machine learning to scale-up and automate animal ecology and conser-
vation research

The sensor data described in the previous section and collected at increasingly large

spatial and temporal scales has the potential to unlock ecological understanding

on a much larger scale, moving from local studies of a single species in a single

protected area at a single point in time to (potentially one day) global-scale studies

across hundreds of thousands of species in near-real time. To move towards this

goal, we need systems that automatically interpret data and convert it to usable
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information for ecological research. For example, such conversion can take the
form of abundance mapping, individual animal re-identification, herd tracking, or
digital reconstruction (three dimensional, phenotypical) of the environment the
animals live in. The measures yielded by this conversion, reviewed in this section,
are also sometimes referred to as animal biometrics [91]. Interestingly, the tasks
involved in the different approaches show similarities with traditional tasks in ML
and computer vision (e.g., detection, localization, identification, pose estimation),

for which we provide a matching example in animal ecology in Figure 2.4

Wildlife detection and species-level classification

Conservation efforts of endangered species require knowledge on how many indi-
viduals of the species in question are present in a study area. Such estimations
are conventionally realized with statistical occurrence models that are informed
by sample-based species observations often collected via imaging sensors (camera
traps, UAVs, etc.), and converting the raw sensor data into species observations is a
significant bottleneck. Early works attempted to automate this process with classical
supervised ML algorithms such as support vector machines [71] (see Supplemen-
tary Table 2): these algorithms were used to make the connection between a set of
characteristics of interest extracted from the image (visual descriptors, e.g., color
histograms, spectral indices, efc., also see the nomenclature) and human-labeled
annotations (presence of an animal, species, etc.) [133] [182]. Particularly in cam-
era trap imagery, motion-based foreground (animal) segmentation was occasionally
performed as a pre-processing step to discard image parts that were potentially con-
fusing for a classifier [[115]. These classical approaches suffered from two major
limitations: first, the visual descriptors often needed to be hand-crafted for the prob-
lem and dataset at hand, and frequently could not be used effectively outside of that
specific dataset without significant manual parameter tuning as they were specific
to the associated environmental conditions (e.g., camera type, background foliage
amount and movement type), a challenge known in ML as “domain adaptation” or
“generalization.” Secondly, these methods were often computationally expensive,
which limited the amount of data that could be used to train the models at the ex-
pense of limiting variations in data (temporal, seasonal, efc.), thus further reducing

the generalization capabilities to new sensor deployments or regions.

Modern computer vision approaches such as deep convolutional neural networks
(CNNs [123], which often outperform classical machine learning approaches by

a significant margin and remove the need for handcrafted feature engineering) are
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widely used for species detection and classification in images [S1, (118, (140, [154),
1611 [174], acoustic spectrograms [79, [108], and videos [74,1139]. Models that have
been shown to perform accurately and robustly across projects and do not need to
be retrained for every new user—such as the MegaDetector, a model which detects
animals in camera trap data; see Table and the text box on page [39}-are used
widely and integrated within open-source systems helping ecologists to efficiently
process and label their data. Modern computer vision models still struggle to
generalize outside of their “domain" (the locations, distributions, and types of data
that they were trained on) [11} 88], and much of the current research in automated
wildlife detection and species-level classification focuses on building benchmark
datasets which enable the study of how and why these models fail to generalize and
working to build methods and models that work reliably out-of-domain [[12, 13} 81,
170].
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Table 2.2: Resources for machine and deep learning-based wildlife conservation

Name

Description

AIDE [83]

Tasks: Annotation; detection; classification; segmentation

Free, open source, web-based, collaborative labeling platform specifi-
cally designed for large-scale ecological image analyses. Users can con-
currently annotate up to billions of images with labels, points, bounding
boxes, or pixel-wise segmentation masks. AIDE tightly integrates ML
models through Active Learning [145]], where annotators are asked to
provide inputs where the model is the least confident. AIDE further offers
functionality to share and exchange trained ML models with other users
of the system for collaborative annotation efforts in image campaigns
across the globe.

MegaDetec-
tor [12]

Tasks: Detection

Free and open source detector based on deep learning hosted by Mi-
crosoft Al4Earth. The current model is trained with the TensorFlow
Object Detection API using several hundred thousand camera trap im-
ages labeled with bounding boxes from a variety of ecosystems. The
model identifies animals (not species-specific), humans, and vehicles,
and is robust to novel sensor deployment locations and taxa not seen
during training. Updates of the model, trained with additional data,
are periodically released. Microsoft AI4Earth provides support to assist
ecologists in using the model, including a public API for batch inference,
and integration with commonly-used camera trap data management plat-
forms such as TimeLapse and Camelot.

Wildbook
(19]

Tasks: Individual Re-Identification

Wildbook blends structured wildlife research with artificial intelligence,
community science, and computer vision to speed population analysis
and develop new insights to help fight extinction. They host community-
run individual re-identification systems and global data repositories for
a broad and expanding set of species, including Grevy’s Zebra, Whale
sharks, Manta Rays, and many more.

URL
GitHub

GitHub

URL

Wildlife In-

Tasks: Filtering

sights [4] Large-scale platform for camera trap data management with computer
vision in the backend. Currently open for whitelisted users, extensible
via a waitlist. Wildlife Insights filters blank images and provides species
identification for images that the computer vision model scores highly,
allowing expert ecologists to focus on labeling only challenging images.

DeepLabCut | Tasks: Pose estimation and behavioral analysis.

[110] Free and open source pose estimation toolbox based on deep learning.
Pre-trained models (for instance for primate faces and bodies, as well as
quadruped) as well as a light-weight, real-time version are available.

DeepPoseKit| Tasks: Pose estimation and behavioral analysis.

[60] Free and open source pose estimation toolbox based on deep learning.

URL

GitHub

GitHub


https://github.com/microsoft/aerial_wildlife_detection
https://github.com/microsoft/CameraTraps/blob/master/megadetector.md
https://www.wildme.org/#/wildbook
https://www.wildlifeinsights.org/home
https://github.com/DeepLabCut/DeepLabCut
https://github.com/jgraving/DeepPoseKit

Box 2: Box 2. Al for Wildlife Conservation in Practice: the MegaDetector

One highly-successful example of open source Al for wildlife conservation is the Microsoft
Al for Earth MegaDetector [12] (Figure [2.6). This generic, global-scale human, animal,
and vehicle detection model works off-the-shelf for most camera trap data, and the publicly-
hosted MegaDetector API has been integrated into the wildlife monitoring workflows of over

30 organizations worldwide, including the Wildlife Conservation Society, San Diego Zoo

Global, and |https://www.islandconservation.org/f We would like to highlight two MegaDe-

tector use cases, via Wildlife Protection Solutions (WPS) and the Idaho Department of Fish
and Game (IDFG). WPS uses the MegaDetector API in real-time to detect threats to wildlife
in the form of unauthorized humans or vehicles in protected areas. WPS connect camera
traps to the cloud via cellular networks, upload photos, run them through the MegaDetector
via the public API, and return real-time alerts to protected area managers. They have over 400
connected cameras deployed in 18 different countries, and that number is growing rapidly.
WPS used the MegaDetector to analyze over 900K images last year alone, which comes out
to 2.5K images per day. They help protected areas detect and respond to threats as they occur,
and detect at least one real threat per week across their camera network. Idaho is required
to maintain a stable population of protected wolves. IDFG relies heavily on camera traps to
estimate and monitor this wolf population, and need to process the data collected each year
before the start of the next season in order to make informed policy changes or conservation
interventions. They collected 11 million camera trap images from their wolf cameras last
year, and with the MegaDetector integrated into their data processing and analysis pipeline,
they were able to fully automate the analysis of 9.5 million of those images, using model
confidence to help direct human labeling effort to images containing animals of interest.
Using the Megadetector halved their labeling costs, and allowed IDFG to label all data before
the start of the next monitoring season, whereas manual labeling previously resulted in a
lag of approximately five years from image collection to completion of labeling. The scale
and speed of analysis required in both cases would not be possible without such an Al-based

solution.

Individual re-identification

Another important biometric is animal identity. The standard for identification of
animal species and identity is DNA profiling [9], which can be difficult to scale to
large, distributed populations [91, 141]. As an alternative to gene-based identifica-
tion, manual tagging can be used to keep track of individual animals [82,91]]. Similar
to counting and reconstruction (see next section), computer vision recently emerged
as a powerful alternative for automatic individual identification [19, 125,141} 159].
Identifying individuals from images is more challenging than species recognition,
since the distinctive body patterns of individuals might be subtle or not be visible

due to occlusion, motion blur, or overhead viewpoint in the case of aerial imagery.


https://github.com/microsoft/CameraTraps/blob/master/megadetector.md
https://github.com/microsoft/CameraTraps/blob/master/megadetector.md
https://www.wcs.org/
https://sandiegozoo.org/sdzglobal/
https://sandiegozoo.org/sdzglobal/
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Figure 2.6: Al for Wildlife Conservation in Practice: the MegaDetector. The
near-universal need of all camera trap projects to efficiently filter empty images
and localize humans, animals, and vehicles in camera trap data, combined with
the robustness to geographic, hardware, and species variability the MegaDetector
provides due to its large, diverse training set makes it a useful, practical tool for
many conservation applications out of the box. The work done by the Microsoft
Al for Earth team to provide assistance running the model via hands-on engineer-
ing assistance, open source tools, and a public API have made the MegaDetector
accessible to ecologists and a part of the ecological research workflow for over 60
organizations worldwide.

Conventional [168] and more recently deep-learning-based [29} (141}, [142]] methods
have reached strong performance for some taxa, especially across small popula-
tions. Some species have individually-unique coat or skin markings that assist
with re-identification: for example, tigers [102]], whalesharks [7]], or zebra [126].
However, effective re-identification is also possible in the absence of patterned mark-
ings: a study of a small group of twenty-three chimpanzees in Guinea applied facial
recognition techniques to a 14-year video dataset comprising 20,000 tracked faces
exctracted from 50 hours of video (a total of 10M face images) and achieved > 90%
accuracy on tracks from held-out years of data not seen during training, though
it should be noted that this is the best-case scenario for evaluation: a small, closed
set of individuals in a single location (i.e. no unknown individuals were evaluated
against) with very large sets of labeled data for each individual, and multiple images
over a short period of time which provide different angles and illumination on the
face for each individual video track. This study compared their model to manual
re-identification by humans on a subset of 100 images from their dataset: where
humans achieved identification accuracy between 20% (novices) and 42% (experts),

the model achieved an identification accuracy of 84% on the subset.
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Animal (re)-identification in open, wild populations has several particular chal-
lenges. It is difficult to curate representative, accurately manually labeled datasets
for training and evaluation, population sizes are large, animals change in appearance
(e.g., due to scars, growth), and there are often very few sightings per individual.
Perhaps most significantly, the populations change over time due to birth, death,
and immigration, therefore creating an “open-set” problem [16] wherein the model
must deal with “classes” (individuals) unseen during training. The methods must
have the ability to identify not only animals that have been seen just once or twice
but also recognize new, previously unseen animals, as well as adjust decisions that
have been made in the past, reconciling different views and biological stages of an

animal.

Animal synthesis and reconstruction

3D shape recovery and pose estimation of animals can provide valuable, non-
invasive insights on wild species in their natural environment. The 3D shape of an
individual can be related to its health, age or reproductive status; the 3D pose of the
body can provide finer information with respect to posture attributes and allows, for
instance, kinematic as well as behavioral analyses. For pose estimation, marker-less
methods based on DL have tremendously improved over the last years and already
impacted biology [112]. Various user-friendly toolboxes are available to extract the
2D posture of animals from videos (Fig. @h,e), while the user can define which
body parts should be estimated (reviewed in [111]). Extracting a dense set of body
surface points is also possible, as elegantly shown in [137/]], where the DensePose
technique originally developed for humans was extended to chimpanzees. The
reconstruction of the 3D shape and pose of animals from images often follows a
model-based paradigm, where a 3D model of the animal is fit to visual data. Recent
work defines the SMAL (Skinned Multi Animal Linear) model, a 3D articulated
shape model for a set of quadruped families [184]]. Biggs et al. built on this work
for 3D shape and motion of dogs from video [21] and for recovery of dog shape and
pose across many different breeds [22]. In [185] the SMAL model has been used
in a DL approach to predict 3D shape and pose of the Grevy’s zebra from images.
3D shape models have been recently defined also for birds [[166]. Image-based 3D
pose and shape estimation methods provide rich information about individuals but

require prior knowledge about the animal’s shape and 3D motion.
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Reconstructing the environment

Wildlife behavior and conservation cannot be dissociated from the environment
animals evolve and live in. Studies have shown that animal observations like trajec-
tories highly benefit from additional cues included in the environmental context [[67]].
Satellite remote sensing has become an integral part to study animal habitats, biolog-
ical diversity and spatio-temporal changes of abiotic conditions [129]], since it allows
to map quantities like land cover, soil moisture or temperature at scale. Reconstruct-
ing the 3D shape of the environment has also become central in behavior studies:
for example, 3D reconstructions of kill sites for lions in South Africa revealed novel
insights into the predator-prey relationships and their connection to ecosystem sta-
bility and functioning [39], while 3D spatial reconstructions shed light on the impact
of forest structures on bat behavior [57]. Such spatial reconstructions of the envi-
ronment can either be extracted by using dedicated sensors such as LiDAR [134]
or can be reconstructed from multiple images, either by stitching the images into
a unified two-dimensional panorama (e.g., mosaicking [66]]) or by computing the
three-dimensional environment from partially overlapping images (e.g., Structure
from Motion [143] or Simultaneous Localization and Mapping [116]). All these
approaches have strongly benefited from recent ML advancements [92], but have sel-
dom been applied for wildlife conservation purposes, where they could greatly help
when dealing with images acquired by moving or swarms of sensors [105]. However,
applying these techniques to natural wildlife imagery is not trivial. For example,
unconstrained continuous video recordings at potentially high frame-rates will result
in large image sets which require efficient image processing [66]. Moreover, am-
biguous environmental appearances and structural errors such as drift accumulate
over time and therefore decrease the reconstruction quality [143]]. Last but not least,
a variety of inappropriate camera motions or environmental geometries can result in
so-called critical configurations which cannot be resolved by the existing optimiza-
tion schemes [179]]. As a consequence, cues from additional external sensors are
usually integrated to achieve satisfactory environmental reconstructions from video
data [53]].

Modeling species diversity, richness and interactions

Analyses of biodiversity, represented by such measures as species abundance and
richness, are foundational to much ecological research and many conservation ini-
tiatives. Spatially explicit linear regression models have been conventionally used

to predict species and community distribution based on explanatory variables such
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as climate and topography [64, 100]]. Non-parametric ML techniques like Random
Forest [26] have been successfully used to predict species richness and have signif-
icantly reduced error with respect to the traditional counterparts used in ecology,
for example in the estimation of richness distributions of fishes [127, [148]], spiders
[32], and small mammals [10]. Tree-based techniques have also been used to pre-
dict species interactions: for example, regression trees significantly outperformed
classical generalized linear models in predicting plant-pollinator interactions [[130]].
Tree-based methods are well-suited to these tasks because they perform explicit
feature ranking (and thus feature selection) and are able to model nonlinear relation-
ships between covariates and species distribution. More recently, graph regression
techniques were deployed to reconstruct species interaction networks in a commu-
nity of European birds with promising results, including better causality estimates

of the relations in the graph [S0]].

2.5 Attention points and opportunities

Machine and deep learning are becoming necessary accelerators for wildlife research
and conservation actions in natural reserves. We have discussed success stories of
the application of approaches from ML into ecology and highlighted the major
technical challenges ahead. In this section, we want to present a series of “attention

points” that highlight new opportunities between the two disciplines.

What can we focus on now?

State-of-the-art ML models are now being applied to many tasks in animal ecology
and wildlife conservation. However, while an out-of-the-box application of existing
open tools is tempting, there are a number of points and potential pitfalls that must

be carefully considered to ensure responsible use of these approaches.

* Inherent model biases and generalization. Most ecological datasets suffer
from some degree of geographic bias. For example, many open imagery
repositories such as |Artportalen.se, Naturgucker.de and Waarneming.nl col-
lect images from specific regions, and most contributions on iNaturalist [[158]]
(see Table 2.1) come from the Northern hemisphere. Such biases need to
be understood, acknowledged and communicated to avoid incorrect usage of
methods or models that by design may only be accurate in a specific geographic
region. Biases are not limited to the geographical provenance of images: the

type of sensors used (RGB vs. infrared or thermal), the species they depict


https://artportalen.se/
https://naturgucker.de/
https://waarneming.nl/
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and the imbalance in the number of individuals observed per species [11,/158]
must also be considered when training or using models to avoid potentially
catastrophic drop-offs in accuracy, and transparency around the training data

and the intended model usage is a necessity [37].

Curating and publishing well-annotated benchmark datasets without doing
harm. The long-term advancement of the field will ultimately require the
curation of large, diverse, accurately labeled, and publicly available datasets
for ecological tasks with defined evaluation metrics and maintained code
repositories. However, opening up existing datasets (and especially when
using private-owned images acquired by non-professionals as in [[124]) is
both a necessary and difficult challenge for the near future. Fostering a
culture of individual and cross-institutional data sharing in ecology will allow
ML approaches to improve in robustness and accuracy. Furthermore, proper
credit has to be given to the data collectors, for example through appropriate
data attribution and Digital Object Identifiers (DOIs) for datasets [37]].

Understanding the ethical risks involved. Computer scientists must also be
aware of the ethical and environmental risks of publishing certain types of
datasets. Itis important to understand the limits of open data sharing in animal
conservation in nature parks. In some cases it is imperative that the privacy of
the data be preserved, for instance to avoid giving poachers access to locations
of animals in near-real-time [[101]. Security of rangers themselves is also at
stake; for example the flight path of drones might be backtracked to reveal

their location.

Standards of quality control are urgently needed. Accountability for open
models needs to be better understood. The estimations of models remain
approximations and need to be treated as such: population counts without
uncertainty estimation can lead to erroneous and potentially devastating con-
clusions. Increased quality control on the adequacy of a model to a new
scientific question or study area is important and can be achieved by close co-
operation between model developers (who have the ability to design, calibrate,
and run the models at their best) and practitioners (who have the domain and
local knowledge). Without such quality control measures, relying on model-
based results is risky and could have difficult-to-evaluate impacts on research
in animal ecology, as incorrect results hidden in a suboptimally trained model

will become more and more difficult to detect. Computer scientists must be
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aware that errors by their models can lead to erroneous decisions on site that
can be catastrophic for the population they are trying to preserve or for the

populations that live at the border of human/wildlife conflicts.

» Environmental and financial costs of machine learning. ML is not free. Train-
ing and running models with millions of parameters on large volumes of data
requires powerful, somewhat specialized hardware. Purchasing prices of such
machines alone are often prohibitively high especially for budget-constrained
conservation organizations; programming, running and maintenance costs
further add to the bill. Although cloud computing services exist that forgo
the need of hardware management, they likewise pose per-resource costs that
quickly scale to several thousands of dollars per month for a single virtual ma-
chine. Besides monetary costs, ML also uses significant amounts of energy:
recently, it has been estimated that training a large, state-of-the-art model for
understanding natural language emits as much carbon as several cars in their
entire lifetime [151]]. It is of course important to put these carbon costs into
perspective, and consider the societal benefit posed by a model to determine
whether this cost is justified. However, as many of these large language mod-
els have been shown to carry biases that pose significant risk to minoritized
groups [3} 1103, 117, [160], the benefit to society of a model can be both con-
troversial and difficult to quantify. Further, the environmental costs of Al are
often disregarded or ignored, as energy consumption of large calculations is
often considered an endless resource (assuming that the money to pay for it
is available). The models currently used in animal ecology are far from such
a carbon footprint, but as model and data size grown it is important to take
the environmental costs into account—we do not want to exchange one source
environmental harm (loss of biodiversity) for another (increase of emissions
and energy consumption). Particular care needs to be paid to designing mod-
els that are not oversized and that can be trained efficiently. Smaller models
are not only less expensive to train and use, their lighter computational costs
allow them to be run on smaller devices, opening opportunities for real-time

ML “on the edge”—i.e., within the sensors themselves.

What’s new: vast scientific opportunities lie ahead
In the previous sections, we describe the advances in research at the interface of ML,
animal ecology and wildlife conservation. The maturity of the various detection,

identification and recognition tools opens a series of interesting perspectives for
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genuinely novel approaches that could push the boundaries towards true integration

of the disciplines involved.

* Involving domain knowledge from the start. The ML and DL fields have fo-
cused mainly on black box models that learn correlations from data directly,
and domain knowledge has been repeatedly ignored in favor of generic ap-
proaches that could fit to any kind of dataset. Such universality of ML is
now strongly questioned and the inductive bias of traditional DL models is
challenged by new approaches that bridge domain knowledge, fundamental
laws and data science. This “hybrid models” paradigm [80,132] is one of the
most exciting avenues in modern ML and promises real collaboration between
domains of application and ML, especially when coupled with algorithmic
designs that allow interpretation and understanding of the visual cues that are
being used [136]. This line of interdisciplinary research is small but growing,
with several studies published in recent years. A representative one is Context
R-CNN [13] for animal detection and species classification, which leverages
the prior knowledge that backgrounds in camera trap imagery exhibit little
variation over time and that camera traps acquire data with low sampling
frequency and occasional dropouts. By integrating image features over long
time spans (up to a month), the model is able to increase mean species identifi-
cation precision in the Snapshot Serengeti dataset [153]] by 17.9%. In another
example [42], the hierarchical structure of taxonomies, as well as locational
priors, are leveraged to constrain plant species classification from iNaturalist
in Switzerland, leading to improvements of state-of-the-art models of about
5%. Similarly, [[109] incorporate knowledge about the distribution of species
as well as photographer biases into a DL model for species classification in
images and report accuracy improvements of up to 12% in iNaturalist over
a baseline without such priors. Finally, [65] used expert knowledge of park
rangers to augment sparse and noisy records of poaching activity, thereby
improving predictions of poaching occurrence and enabling more efficient
use of limited patrol resources in a Chinese nature reserve. These approaches
challenge the dogma of ML models learning exclusively from data and achieve
more efficient model learning (since base knowledge is available from the start
and does not have to be re-learnt) and enhanced plausibility of the solutions
(because the solution space can be constrained to a range of ecologically

plausible outcomes).
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* Laboratories as development spaces. In recent years modern ML has rapidly
changed laboratory-based non-invasive observation of animals [111} [112].
Neuroscience studies in particular have embraced novel tools for motion track-
ing, pose estimation (Figure [2.1d, ) and behavioral classification (e.g., [38]]).
The high level of control (e.g., of lighting conditions, sensor calibration, and
environment) afforded by laboratory settings facilitated the rapid development
of such tools, many of which are now being adopted for use in field studies of
free-moving animals in complex natural environments [60, [/7]. Additionally,
algorithmic insights gained in the lab can be transferred back into the wild—
studies on short videos or camera traps can leverage lab-generated data that
is arguably less diverse, but easier to control.This opens interesting research
opportunities for the adaptation of lab-generated simulation to real world con-
ditions, similar to what has been observed in the field of image synthesis for
self driving [34] and robotics [99] in the last decade. Thus, laboratories rightly

serve as the ultimate development space for such in-the-wild applications.

» Towards a new generation of biodiversity models. Statistical models for
species richness and diversity are routinely used to estimate abundances and
study species co-occurrence and interactions. Recently, DL methods have
also started to be employed to model species’ ecological niches [235) 43|,
facilitated by the development of machine-learning-ready datasets such as
GeoLifeCLEF. GeoLifeCLEF curated a dataset of 1.9 million iNaturalist ob-
servations from North America and France depicting over 31,000 species,
together with environmental predictors (land cover, altitude, climatic data,
etc.), and asked users to predict a ranked list of likely species per geospatial
grid cell. The task is complex: only positive counts are provided, no absence
data are available, and predictions are counted as correct if the ground truth
species is among the 30 predicted with highest confidence. This challenging
task remains an open challenge—the winners of the 2021 edition achieved only

an approximate 26% top-30 accuracy.

A recent review of species distribution modeling aimed at ML practitioners
[14]] provides an accessible entry point for those interested in tackling the
challenges in this complex, exciting field. Open challenges include increasing
the scale of joint models geospatially, temporally, and taxonomically, building
methods that can leverage multiple data types despite bias from non-uniform

sampling strategies, incorporating ecological knowledge such as species dis-
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persal and community composition, and expanding methods for the evaluation

of these models.

Finally, we wish to re-emphasize that the vision described here cannot be achieved
without interdisciplinary thinking: for all these exciting opportunities, processing
big ecological data is necessitating analytical techniques of such complexity that
no single ecologist can be expected to have all the technical expertise (plus domain
knowledge) required to carry out groundbreaking studies [[175]. Cross-disciplinary
collaborations are undeniably a critical component of ecological and conservation
research in the modern era. Mutual understanding of the field-specific vocabularies,
of the fields’ expectations and of the implications and consequences of research
ethics are within reach, but require open dialogues between communities, as well as

cross-domain training of new generations.

2.6 Conclusions

Animal ecology and wildlife conservation research needs to make sense of large and
ever-increasing streams of data to provide accurate estimations of populations, un-
derstand animal behavior, prevent poaching and mitigate biodiversity loss. Machine
learning and deep learning are tools that can help scale local studies to a global

understanding of the animal world.

In this chapter we presented a series of success stories at the interface of ML
and animal ecology. We highlighted a number of performance improvements that
were observed when adopting solutions based on ML and new-generation sensors.
Such improvements require ever-closer cooperation between ecologists and ML
specialists, since recent approaches are complex and require strict quality control
and detailed design knowledge. We note the existence of useful ML-based tools
for ecology stemming from corporate (e.g., Wildlife Insights) and research (AIDE,
MegaDetector, DeepLabCut) efforts, but that there is still much room (and need) for
the development of new interdisciplinary methods, in particular hybrid models and
new habitat and species distribution models at scale. Inspired by these observations,
we provided our perspective on the missing links between animal ecology and ML
via a series of attention points, recommendations and vision on future exciting

research avenues.

We hope that this chapter can provide a jumping off point for students and
researchers across both fields to understand the work in this space and to
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find relevant literature for diverse applications of machine learning in wildlife
ecology. We strongly incite the two communities to work hand-in-hand to find
digital, scalable solutions that will elucidate the loss of biodiversity and its drivers
and lead to global actions to preserve nature. Computer scientists have yet to
integrate ecological knowledge such as underlying biological processes into ML
models, and the lack of transparency of current DL models has so far been a major
obstacle to incorporating ML into ecological research. However, an interdisciplinary
community of computer scientists and ecologists is emerging, which we hope will

tackle this technological and societal challenge together.
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Chapter 3

OVERVIEW OF SPECIES DISTRIBUTION MODELING FOR
MACHINE LEARNING PRACTITIONERS

Sara Beery*, Elijah Cole*, Joseph Parker, Pietro Perona, and Kevin Winner.
Species distribution modeling for machine learning practitioners: A review. Pro-
ceedings of the 4th ACM SIGCAS Conf. on Computing and Sustainable Societies,
2021.

3.1 Abstract

Conservation science depends on an accurate understanding of what’s happening
in a given ecosystem. How many species live there? What is the makeup of the
populations? How is that changing over time? Species Distribution Modeling
(SDM) seeks to predict the spatial (and sometimes temporal) patterns of species
occurrence, i.e., where a species is likely to be found. The last few years have
seen a surge of interest in applying powerful machine learning tools to challenging
problems in ecology [[13| 14, [16]. Despite its considerable importance, SDM has
received relatively little attention from the computer science community. Our goal
in this work is to provide computer scientists with the necessary background to read
the SDM literature and develop ecologically useful ML-based SDM algorithms.
In particular, we introduce key SDM concepts and terminology, review standard

models, discuss data availability, and highlight technical challenges and pitfalls.

3.2 Introduction

Ecological research helps us to understand ecosystems and how they respond to
climate change, human activity, and conservation policies. Much of this work starts
by deploying networks of sensors (often cameras or microphones) to monitor the
organisms living in a fixed study area. Ecologists must then invest significant effort
to filter, label, and analyze this data. This step is often a bottleneck for ecological
research. For example, it can take years for scientists to process and interpret a
single season of data from a network of camera traps. In another case, building real-
time estimates of salmonid escapement requires teams of field ecologists working
in shifts to watch streams of sonar data 24 hours a day. The challenge is even greater

for taxa that are studied by trapping specimens, such as beetles and other insects.
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Entomologists can collect thousands of beetles in a few days, but it may require
months or years for a suitable expert to exhaustively identify all of the specimens to

the species level.

Machine learning methods can significantly accelerate the processing and analysis
of large repositories of raw data [1} 2,4}, 9,133], which can increase the speed and ge-
ographic scope of ecological analysis. For instance, ongoing collaborations between
machine learning researchers and ecologists have lead to tremendous progress in
automating species identification from images in community science data [[18, [187]]
and camera trap data [4,30]. However, unfamiliar ecological concepts and terminol-
ogy can present a barrier to entry for many computer scientists who might otherwise
be interested in contributing to ecological problems. This is particularly true for
more involved ecological problems which may not fit neatly into existing machine

learning paradigms.

One such area is species distribution modeling (SDM): using species observations
and environmental data to estimate the geographic range of a species[T| This prob-
lem has received significant attention from ecologists and statisticians, and there
has been increasing interest in machine learning methods due to the large amounts
of available data and the highly complex relationships between species and their
environments. This document is meant to serve as an easy entry point for computer
scientists interested in SDM. In particular, we aim to highlight the exciting technical
challenges posed by SDM while also emphasizing the needs of end-users to encour-
age ecologically meaningful progress. Our hope is that this document can serve
as a quick resource for computer science researchers interested in getting started

working on conservation and sustainability applications.

The rest of this chapter is organized as follows. In Section[3.3] we discuss different
ways to represent the distribution of a species. We discuss species distribution
modeling in Section[3.4] and we consider other related ecological modeling problems
in Section [3.5] In Section[3.6] we point out pitfalls and challenges in SDM. Finally,

we provide pointers to available data (Section [3.7) and discuss open problems

(Section [3.8)).

"'We will use the term “species distribution modeling” throughout this document, though some-
times the closely related term “ecological niche modeling” would be more appropriate [142].
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Figure 3.1: Species distribution models describe the relationship between environ-
mental conditions and (actual or potential) species presence. However, the link
between the environment and species distribution data can be complex, particularly
since distributional data comes in many different forms. Above are four different
sources of distribution data for the Von Der Decken’s Hornbill [8)]: (from left to
right) raw point observations, regional checklists, gridded ecological surveys, and
data-driven expert range maps. All images are from Map of Life [99].

Data collection method Example Observation type
Community science observations iNaturalist Presence-only
Community science checklists eBird Presence-absence
Static sensors Camera traps Presence-absence
Sample collection Insect trapping Presence-absence
Expert field surveys Line transects Presence-absence
Historic records, natural history collections | Herbarium sheets | Presence-only

Table 3.1: Sources of species observation data. Each of these examples repre-
sents a method of collecting or accessing observations of different species. One
important distinction is whether the observations are presence-only or presence-
absence. Presence-only data consists of locations where a species has been sighted.
Presence-absence data also includes locations where a species was checked for but
not observed.

3.3 Representing the distribution of species

The distribution of a species is typically represented as a map which indicates the
spatial extent of the species. These maps can be created in a variety of ways,
ranging from highly labor-intensive expert range maps to fully automatic species
distribution models. We show four examples in Fig. [3.1] In this section we give
a high-level overview of three important sources of maps: raw species observation

data, predictions from statistical models, and expert knowledge.

Raw species observation data

Any representation of the distribution of a species begins with some sort of species
observation data. In general, species observation data consists of records indicating
whether a species is present or absent at certain locations. Species observation data
can take many forms—see Table[3.1|for examples. Species observation data falls into

two general categories: presence-only data reports known sightings, or occurrences,
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of a species, while presence-absence data also provides information on where a
species did not occur. Data collection strategies define whether absence data will be
available. For instance, iNaturalist collects opportunistic imagery of species from
community scientists, which produces presence-only species observations. On the
other hand, eBird uses species checklists where all bird species seen and/or heard
within a time span at a given location are reported. Since exhaustive reporting is
expected from observers, any bird species not reported is assumed to be absent. In

this sense, checklists are treated as presence-absence data.

One of the simplest ways to convey the distribution of a species is to simply show
all of the locations where the species is known to be present or absent on a map.
However, this sort of highly simplified “species distribution” is not able to make any
predictions about whether a species might be present or absent at locations which

have not been sampled.

Statistical models

To create species distributions that can extrapolate beyond sampled locations, we
can pair species observations with collections of environmental characteristics (al-
titude, land cover, humidity, temperature, etc.) and fit statistical models that use
the environmental characteristics to predict species presence or absence. These
models can make predictions at any place and time for which these environmental
characteristics are known. Species distribution models fall into this category, and

are our focus throughout this document.

Expert range maps

Species range maps have traditionally been heavily influenced by the individual
scientists who study those species. These maps are often based on a complex
combination of heterogeneous information sources, including personal observa-
tions, understanding of the species’ habitat preferences, local knowledge/reports,
etc. From our discussions with practitioners, we find that these expert range maps
(ERMs) are often the most trusted source of distribution information. Perhaps the
most widely-known expert range maps are those published by IUCN [81]] as part
of their Red List of vulnerable and endangered species. An example of the [UCN
range map for the caracal can be seen in Fig. [3.2] Studies have shown both agree-
ment [[17] and disagreement [77, 98] between ERMs and species observation data.
Expert range maps have also been found to be highly scale-dependent, tending to

overestimate the occupancy area of individual species and ranges < 200km [97].
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It is important to note that ERMs come in many forms, from hand-drawn maps to
data-driven maps that are slightly refined by experts. In the latter case, ERMs are
partially based on species observation data, so the two cannot be treated as indepen-
dent sources. As we will discuss in more detail in Section [3.4] the lack of a solid
“ground truth” information about the true underlying distribution of species across
space and time makes it difficult to analyze the accuracy of any species distribution
model, including those drawn by experts.

Scientific or Common name
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Figure 3.2: The International Union for Conservation of Nature (IUCN) publishes
expert range maps for many species, particularly those on their “Red List of Threat-
ened Species” [193]. Here we show the [UCN Range Map for the Caracal caracal
[22].

3.4 Species distribution models

The terminology in this area can be confusing, so we will start with a definition and
a few clarifications.

Intuitive definition. A species distribution model is a function that uses the charac-
teristics of a location to predict whether or not a species is present at that location.
This can be understood as a supervised learning problem. The input is a vector of
environmental characteristics for a location and the output is species presence or
absence. In principle one could use almost any classification or regression technique
as the basis for an SDM.
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Formal definition. The key components of a simple species distribution modeling
pipeline are: (1) species observation data, (2) a method for encoding locations, and
(3) a function which maps location encodings to predictions. Formally, we define

these components as follows:

1. A dataset of species observations. This is a collection of records indicating
that a species is present or absent at given location and time. We write
this as {(xl-,yi)}fi , Where x; € X is a spatiotemporal location and y; €
{0, 1} indicates presence (1) or absence (0). The spatiotemporal domain X
is typically something like X = [0, 180) x [0,360) x [0, 1) which encodes

global longitude and latitude as well as the time of year.

2. A location representation 4 : X — Z < R*. This is typically a simple “look-
up” operation, where x € X is cross-referenced with k pre-defined geospatial
data layers to produce a vector of location features 4(x) € R¥. That is, (x) is

a representation of the location x € X in some environmental feature space.

3. Amodel fy : Z — [0,1] where 6 is a parameter vector. The goal is to
find parameters 6 of f so that fy(h(x)) = 1 when the species is present and
fo(h(x)) = 0 otherwise. This is usually framed as a supervised learning
problem on the dataset {(A(x;), y,-)}f.\il.

Note that this is a streamlined formalization meant to capture the essence of SDM.
While there are many variants in practice, almost any species distribution modeling

will include these core concepts.

What does an SDM actually predict? An SDM takes as input a vector of envi-
ronmental features and predicts a numerical score (usually between 0 and 1) for a
location. An important distinction to note regarding SDMs is geographic space vs.
environmental space, elucidated in Fig. [3.3] This score is often interpreted as a
prediction of habitat suitability. Typically the score may not be interpreted as the
probability a species is present. Note that here we are only considering presence vs.
absence - predicting species abundance is a more challenging problem, which we
discuss in Section

How is an SDM used? The most common end product is a map of the SDM
predictions, which is produced by simply visualizing the SDM predictions across
an area of interest. Binary predictions can be obtained by applying a threshold to

the continuous predictions of the SDM.
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A brief history of species distribution modeling

Early predecessors for SDM include qualitative works that link patterns within
taxonomic groups to environmental or geographic factors, such as Joseph Grinnel’s
1904 study of the distribution of the chestnut-backed chickadee [80], among others
[116] (128160, [196].

Modern SDMs are primarily statistical models fit to observed data. Early quanti-
tative approaches used multiple linear regression and linear discriminant function
analyses to associate species and habitat [41, [168]]. The application of generalized
linear models (GLMs) [20, [131]] provided more flexibility by allowing non-normal
error distributions, additive terms, and nonlinear relationships. The explosive prolif-
eration of large “presence-only” datasets (see Table[3.1]) in recent years has led to the
development of new modeling approaches to SDMs such as the popular “Maximum
Entropy Modeling” (MaxEnt) approach [[144] with roots in point process modeling
[152].

The first modern SDM computing package, BIOCLIM, was introduced in 1984 on
the CSIRO network [335) 140]. This package took observation information, such as
the species observed, location, elevation, and time, and used them to determine what
environmental variables correlated with that species’ occurrence. These variables
were then used to map possible distributions of the species under consideration. Cli-
mate interpolation techniques developed for BIOCLIM are the basis of the existing
WorldClim database [66] and are still widely used in SDMs today. Many different
implementations of various SDM methods are now publicly available. We would
like to highlight Wallace [106], which is a well-documented R implementation of
historic and modern techniques.

As earth observation technology has improved, the scope of what is possible to
include as an environmental covariate in a model has vastly increased. Improvements
in weather monitoring systems gave access to high-temporal-frequency temperature,
wind, and precipitation measurements. Recently, ecologists have turned to remote
sensing imagery to estimate high-spatial-coverage ecological variables such as soil
composition or density of sequestered carbon, as well as mapping land cover type
across regions [90]. Modern SDM methods pair these covariate estimates with
increasingly accurate global elevation maps, and selected high-quality but sparse

in-situ measurements [[111, [150].
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Figure 3.3: Geographic vs. environmental space. Observation data can be
associated with a geographical location, or mapped into a feature space based on
environmental covariates. Most SDMs operate under the assumption that with
the right set of environmental variables and an appropriate model, one could use
environmental characteristics to map species distribution. Figure reproduced with
permission, originally published in [61]].

Several excellent, detailed reviews of SDMs have been published within the ecology
community [61) 184, 85 153, 1163, [168l]. We direct the reader to the excellent
summary by Elith and Leathwick [61]].

Covariates for species distribution modeling

In this section we discuss several environmental characteristics (often called co-
variates) that can be used for species distribution modeling. Here we are focused
on describing the different categories of covariates—details on specific covariate
datasets are available in Section Some of the covariates we discuss are widely
used in the species distribution modeling literature, while others are more recent or
speculative. It is also important to keep in mind that many covariates are themselves
based on sophisticated predictive models due to the cost of densely sampling any

property of the earth’s surface.

Climatic variables

Temperature and precipitation are critical characteristics of an ecosystem. Perhaps
the most commonly used climate dataset for SDM 1s the WorldClim bioclimatic
variables [66] dataset, which provides 19 climate-related variables averaged over
the period from 1970 to 2000 at a spatial resolution of around 1km?>. We show a

few examples of variables from this dataset in the top row of Fig.[3.5]
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Pedologic (soil) variables

Soil characteristics are intimately related to the plant life in an area, which naturally
influences the entire ecosystem. One example of a comprehensive pedologic dataset
is SoilGrids250m [93]], which consists of soil properties like pH, density, and organic
carbon content at a 250m? resolution globally. We show a few examples of variables
from this dataset in the bottom row of Fig.[3.5]

Vegetation indices

A vegetation index (VI) is a number used to measure something about the plant
life in an area, and is typically computed from remote sensing data like satellite
imagery. Many different VIs have been proposed. A review paper published in
1995 discussed 40 different vegetation indices that had been developed by different
researchers [24]]. One of the most popular examples is the normalized difference
vegetation index (NDVI). If a remote sensing image includes the red and near-
infrared (NIR) bands, then the corresponding NDVI image can be computed by
applying the formula

NIR — Red
NDVI = ——— 1
NIR + Red G-

independently at each pixel. NDVI is meant to indicate the presence of live green
plants. From a computer vision perspective, these VIs are essentially hand-designed

features for remote sensing data.

Land use / land cover

The term land cover refers to the physical terrain at a location, while the closely
related term land use tends to emphasize the function of a location. For instance,
an area with the land cover label “dense urban” may have a land use label like
“school” or “hospital.” We provide an example in Fig. [3.4, which shows RGB
imagery and land cover from two different sources for the same 1km? area. It is
not obvious what the best label set would be for species prediction, but practically
speaking many of the available land use / land cover datasets are focused on relatively
coarse categories related to agriculture, natural resources, or urban development.
For instance, the U.S. National Land Cover Database assigns one of 20 land cover
classes to every 30m? patch of land in the United States at a temporal resolution
of 2-3 years [95)]. The classes cover various general habitat types (water, snow,

developed land, forests...) but are not tuned for species prediction in particular.
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Measures of human influence

Humans have had a profound impact on the natural world, so it is reasonable to
include measures of human influence as environmental characteristics. For instance,
the Human Influence Index [[159] uses eight factors (human population density,
railroads, roads, navigable rivers, coastlines, nighttime lights, urban footprint, and
land cover) to compute a score that is meant to quantify how much an environment

has been reshaped by humans.

Remote sensing imagery

Imagery collected by satellites, planes, or drones can provide substantial information
about an environment. To start with, we note that vegetation indices, land cover,
land use, and many measures of human influence are all derived from some form
of overhead imagery like that in Fig.[3.4] In addition, there may be more abstract
patterns that can be extracted using modern computer vision techniques like convo-
lutional neural networks. Research on the use of raw overhead imagery (instead of
derived products) for SDM is in its early stages [46, 53] [175]].
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Figure 3.4: RGB imagery (left column) and land cover maps (right column) from
two different remote sensing sources covering the same 1km? area, from [156]. RGB
imagery is manually or semi-automatically annotated to produce the land cover la-
bels. As this example demonstrates, the set of land cover labels can vary depending
on the organization doing the labeling. Figure reproduced with permission, origi-
nally published in [156].
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Figure 3.5: Visualizations of some of the bioclimatic variables (top row: bio_1 -
bio_6 from left to right) and pedologic variables (bottom row: orcdrc, phihox,
cecsol, bdticm, clyppt, sltppt from left to right) provided for the GeoLifeCLEF
2020 competition [46]. The area shown in each image is approximately 64 km?
centered in Montpellier, France. While we visualize each environmental variable
as a 2D raster, most species distribution modeling methods are only compatible
with relatively low-dimensional vectors of environmental variables (not “stacks” of
2D patches). As is typical in a collection of covariates, we see that the pedologic
variables have a different resolution than the bioclimatic variables.

Properties of species distribution models

In this section we describe important properties that can be used to categorize
species distribution models. Any particular species distribution model may or may
not have any of these properties. The categories we describe are in general nested

or overlapping, not mutually exclusive.

Presence only vs. presence-absence models

Species observation datasets may be either presence-absence or presence-only.
While presence-only data is easier to collect, the are limitations on what can be
estimated from such data [89]. Typically a species distribution model is designed
to handle either presence-absence or presence-only data, though there is growing
interest in developing methods that can use both [70, 76, [139]].

Single vs. multi-species models

Many SDMs are designed to model the distribution of a single species. This is
in contrast to multi-species models which are meant to capture information about
several species. Many of the earlier models are single-species models [61], [144],
though interest in multi-species models has grown over time 96, 134].
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Multi-species models: stacked vs. joint

Multi-species SDMs can be classified as either stacked or joint. In a stacked model,
a single-species SDM is fit for each species and the resulting maps are ““stacked” on
top of one another to provide a multi-species map. This approach is simple, but it
cannot take advantage of patterns in how species co-occur. This is the motivation
for joint SDMs, in which the estimated distribution of each species also depends on
occurrence data for other species. Recent work has begun to systematically compare
the results from stacked and joint species distribution models for different species
and regions [92} 1134} 204]].

Spatially explicit models

Typically species distribution models use environmental characteristics to make
predictions about the presence or absence of species. Such models represent a
location in terms of these environmental features, so two different locations with the
same environmental characteristics will lead to the same predictions, even though the
two locations may be far apart. Models that mitigate this concern by incorporating
geographical location information directly are referred to as spatially explicit [S5]]

models.

Occupancy models

It is easier to confirm that a species is present than it is to confirm that a species
is absent. One confident observation of a species suffices to confirm its presence
at a given location. However, failing to observe a species at a location does not
suffice to prove absence, since the species could have been present but not observed.
Occupancy models are meant to account for imperfect detection by modeling the
probability that a species is present but unobserved at a given location conditional

on the sampling effort that has been invested [23} [117]].

Understanding uncertainty and error

Species distribution models attempt to capture the behavior of a complex system
from data, which is a challenging and error-prone process. [157] describes 11
sources of uncertainty and error in species distribution models, and groups them
into two clusters: (i) uncertainty in the observation data itself and (ii) uncertainty due
to arbitrary modeling choices. [56] studies the effect of making different reasonable

modeling choices on final projections of species distribution under different future
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climate scenarios. Similarly, [172] considers the uncertainty introduced by the
arbitrary choice of covariates while [167] analyzes the effect of uncertainty in the
values of the covariates themselves. [130] focuses on the effect of uncertainty
in the location of species observations. [26] reviews sources of uncertainty for
different types of species distribution models, as well as best practices for minimizing

uncertainty and methods for incorporating uncertainty directly into the model.

Algorithms for species distribution modeling

In this section we provide a high-level overview of the space of algorithms commonly
used for species distribution modeling in the ecological community. This section
draws heavily from the organization of [134]], which is an excellent comparative
study of different species distribution modeling techniques. We discuss several
commonly used models, and note that the different methods can have very different
properties, assumptions, and use cases. Unlike some classes of algorithms, different

species distribution modeling methods are generally not readily interchangeable.

Presence-only methods

Perhaps the most popular approach for presence-only SDM is MaxEnt [144]. We
follow the description given in [63]. The basic idea is to estimate the probability
of observing a given species as a function of the environmental covariates. The
estimate is chosen to be (i) consistent with the available species observation data
and (ii) as close as possible (in KL divergence) to the marginal distribution of the
covariates. Criterion (ii) is necessary because there are typically many distributions
that satisfy criterion (i). Another simple approach for presence-only SDM is to
introduce artificial negative observations called pseudonegatives or pseudoabsences
based on some combination of domain knowledge and data. Once pseudonegatives
have been generated, they are combined with the presence-only data and traditional

presence/absence methods are applied.

Traditional statistical methods

Perhaps the most common methods in species distribution modeling are workhorse
methods drawn from the statistics literature such as generalized linear models [71,
73,1137, 1190, [194]. Important special cases include logistic regression [140] and
generalized additive models [202]. Some species distribution modeling algorithms
are better thought of as general frameworks whose particular realization depends

on the available data sources and modeling goals. As an example, the Hierarchical
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Modeling of Species Communities (HMSC) framework [137] minimally requires
species occurrence data with corresponding environmental features. The species
occurrences are related to environmental features by a generalized linear model.
However, the framework can be extended to incorporate e.g., information on species

traits and evolutionary history.

Machine learning methods

The relationship between species and their environment is complex and may not
satisfy traditional statistical assumptions such as linear dependence on covariates
or i.i.d. sampling. For this reason, machine learning approaches have also enjoyed
considerable popularity in the species distribution modeling literature. Examples
include boosted regression trees [62]], random forests [48], and support vector ma-
chines [58]]. In addition, neural networks have been used for species distribution
modeling since well before the deep learning era [37, [138} [180, 203]]. Interest in
joint species distribution modeling with neural networks has only grown as deep
learning has come to maturity [88]. Convolutional neural networks in particular
have created a new opportunity: the ability to extract features from spatial arrays
of environmental features [43) 51] instead of using hand-selected environmental

feature vectors.

The challenge of evaluation

How can we tell whether a species distribution model is performing well or not?
The typical approach in machine learning is to use the model to make predictions on
a held-out set of data and compute an appropriate performance metric by comparing
the model predictions to ground-truth labels. But what is “ground truth” for a

species distribution model?

Notions of Ground Truth

We describe several common approaches to the challenging problem of how to
evaluate SDMs in practice. For further detail, [[126] provides an excellent discussion
of different metrics for evaluating SDMs and the extent to which they are ecologically

meaningful.

Compare against presence-absence data. ldeally, for each location, an expert
observer would determine whether each species of interest is present or absent at

that location. Conducting this kind of survey for a single species in a limited area is
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expensive, and the survey would need to be repeated periodically to monitor change
over time. These exhaustive surveys quickly become extraordinarily expensive as
we expand the number of species of interest or the geographic extent of the survey.
Even if the resources were available, the observations would have some degree of
noise - in particular, confirming that a species is absent from an area can typically
only be done up to some degree of certainty. (See the discussion of occupancy
modeling in Section [3.4]) For most species and most locations on earth, this sort
of ideal ground truth data is just not available. However, this kind of evaluation is
possible for select species and locations at sparse time points. For instance, [64]
includes presence-absence data for 226 species from 6 parts of the world collected

at various time points.

Compare against presence-only data. Unfortunately, presence-absence data is often
unavailable. We describe a few simple methods for comparing predictions against

presence-only data along with their shortcomings.

* False negative rate: how often are locations which are known to be positive
predicted to be negative? The false negative rate measures whether the model
is consistent with the observed positives, but does not assess the model’s

behavior at other points.

 Top-k classification accuracy: how often is the observed species among the k
most likely species under the model? However, there is not an obvious way to
choose k. Moreover, for any fixed £ it is likely that some locations will have

more than k species while others will have fewer.

» Adaptive top-k classification accuracy: this is a variant of the top-k classi-
fication accuracy that assumes that the number of species is k on average,
while allowing some locations to have more than k species while others may
have fewer. See [46]] for details. Like standard top-k classification accuracy,

choosing k may be difficult.

Note that adaptive top-k and top-k are both metrics for multi-species models, while

the false negative rate can be computed for single species models as well.

Compare against community science data. Community science projects like iNat-
uralist and eBird are generating species observation data at an extraordinary rate and
frequency. iNaturalist alone generates millions of species observations per month

[10]. However, the data produced by such projects can vary in terms of how easy
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it is to use and interpret depending on the sampling protocol [110]]. For instance,
iNaturalist accepts presence-only observations, which allows the user base to scale
broadly but limits the utility of the data for ground truthing. iNaturalist data tells us
where different species have been observed by humans, but not where those species
are either absent or present without human observation. eBird uses a more rigorous
sampling protocol that records both presences and absences, but their observations
are limited to birds. The quality of these reports depends on the skill of the user at
identifying all bird species they see or hear. Citizen science data has been found to
produce results similar to those from (coarse) professional surveys under the right
circumstances [94), 110, [183]].

Compare against expert range maps. Another possibility is to compare the model
predictions against one or more range maps that are hand-drawn by experts (see
Section [3.3). However, this raises the question: how do we validate those range
maps? A hand-drawn map may be biased by an individual’s experience or by
the data sources the expert prefers. It can also be hard to find a suitable expert to
generate a map for a given species. Another challenging question relates to temporal
progression: is each expert updating their maps according to the latest data? If so,
when was that data collected? The IUCN has a published set of standards for

creating species range maps [81]], but not all creators of maps match these standards.

In addition, there is the methodological question of how one should evaluate a model
against an expert range map, which is explored in [118]. Approaches range from
very qualitative (ask an expert whether the map looks reasonable to them) to very
quantitative (compute a well-defined error metric between the SDM predictions
and the expert range map). Important to note here, expert range maps are most
often categorical, with hard boundaries drawn representing temporal categories like
“breeding”, “non-breeding”, “year-round”, etc. On the other hand, SDM predictions
are often real-valued on [0, 1] over both space and time. While continuous predic-
tions can be converted to binary maps by applying a threshold, it can be unclear how

to choose this threshold if a robust validation method is not available.

Evaluation on downstream tasks. Instead of evaluating whether a species distri-
bution model produces a faithful map of species presence, we may instead check
whether it is useful for some other downstream task. For example, [18] builds a
simple SDM and demonstrates that it improves accuracy on an image-based species
classification task. However, it is certainly possible for an SDM to be useful whether

or not it accurately reflects the true species distribution.
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Evaluation pitfalls

Even when suitable ground truth data is available, there are some pitfalls that can
hinder meaningful evaluation. In this section we discuss some of these pitfalls and
make specific recommendations to the machine learning community for handling

them.

Performance overestimation due to spatial autocorrelation. In the machine learn-
ing community it is common to sample a test set uniformly at random from the
available data. However, this strategy can lead to overestimation of algorithm per-
formance for spatial prediction tasks since it is possible to obtain high performance
on a uniformly sampled test set by simple interpolation [154]]. This effect is called
spatial autocorrelation. Similar concerns are relevant for evaluating camera trap
image classifiers [28]. For ecological tasks, it is important to evaluate models as
they are intended to be used. In many cases, the more ecologically meaningful
question is whether the model generalizes to novel locations, unseen in the training
set. In these cases it is important to create a test set by holding out spatial areas. In
other cases, the ecologist seeks to build a model that will perform accurately in the
future at their set of monitoring sites. In these cases, instead of holding out data in
space, we can split the data to hold out a test set based on time. A randomly sampled

test set is not a good proxy for the use case of either scenario.

Hyperparameter selection. The performance of an algorithm typically depends
on several hyperparameters. In the machine learning community these are set using
cross-validation on held-out data. However, selecting and obtaining a useful valida-
tion set can be particularly challenging in SDM due to the data collection challenges
described elsewhere. Recent work has also studied the sensitivity of SDMs to hy-
perparameters [86] and developed techniques for hyperparameter selection in the

presence of spatial autocorrelation [162].

Spatial quantization. A natural first step when working with spatially distributed
species observations is to define a spatial quantization scheme. By “binning”
observations in this way, we can associate many species observations with a single
vector of covariates. Additionally, spatially quantized data can be more natural from
the perspective of many machine learning algorithms since the domain becomes
discrete. However, the choice of quantization scheme (grid cell size) is difficult to
motivate in a rigorous way. This is a problem because different quantization choices
can result in vastly different outcomes - this is known as the modifiable areal unit

problem [136]. It is possible to cross-validate the quantization parameters, but only
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in those limited cases where there is enough high-quality data for this to be a reliable

procedure. Furthermore, that process may be computationally expensive.

The long tail. Many real-world datasets exhibit a long tail: a few classes represent a
large proportion of the observations, while many classes have very few observations
[28l [186]]. Species observation data is no exception - for example, in the Snapshot
Serengeti camera trap dataset [[169] there are fewer than 10 images of gorillas out out
of millions of images collected over 11 years. This presents at least two problems.
The first problem is that standard training procedures will typically result in a model
that perform well on the common classes and poorly on the rare classes. The second
is that many evaluation metrics are averaged over all examples in the dataset, which
means that the metric can be very high despite poor performance on almost all
species. It is much more informative to study the performance on each class or on
groups of classes (e.g., common classes vs. rare classes). One common solution
is to compute metrics separately for each class and then average over all classes to

help avoid bias towards common classes in evaluation.

Model trust

Once a model has been built, the previously discussed challenges of model evaluation
make it difficult to determine where, how much, and for how long a model is
sufficiently accurate to be used. The accuracy needed may also vary by use case and
subject species. In our discussions with ecologists, we find that this leads to a lack
of trust in SDMs. What verification and quality control is needed to ensure a model
is still valid over time? This is an open question, and an important one to answer if

our models are to be used in the real world.

3.5 Other types of ecological models

Species distribution modeling is only one of many ways that ecologists seek to
describe and understand the natural world. To give readers a sense of how SDM fits
into the broader scope of ecological modeling, we provide a high-level overview of

other common modeling tasks.

Mechanistic models

Mechanistic models make assumptions about how species depend on the environ-
ment or on other species. One example is to use an understanding of a plant’s
biology to predict the viable temperature range where the plant can grow [170].

Such models are useful but difficult to scale, as they require species-specific expert
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knowledge. Our focus in this work is on correlative species distribution models,

which do not require mechanistic knowledge.

Abundance modeling

Abundance modeling goes beyond species presence or absence, aiming to charac-
terize the absolute or relative number of individuals at a given location. We define
abundance and related concepts in Section

Population estimation

Population estimation is concerned with counting the total number of individuals
of a species, typically within some defined area [161l]. Population size is most
frequently estimated using capture-recapture models, which require the ability to
distinguish between individuals of the same species. Traditionally this individual
re-identification was based on physical tags or collars [78]], but some recent efforts
have relied on the less invasive method of identifying visually distinctive features,
such as stripe patterns or the contour of an ear [33]].

Density estimation

Density estimation seeks to model spatial abundance, the abundance of a species
per unit area, to understand where a species is densely versus sparsely populated
(158} [191].

Data collection procedures for abundance

As mentioned above, capture-recapture requires an individual to be re-identifiable.
In the absence of the ability to re-identify individuals, several other data collection
procedures are used. One that is frequently used for insects and fish populations is
the harvest method, where individuals are collected in traps which are open for a
set amount of time and then counted [148, [164]]. Sampling strategies for other taxa

include:

* Quadrat sampling: A quadrat is a fixed-size area where species are to
be sampled. Within the quadrat, the observer exhaustively determines the
occurrence and relative abundance of the species of interest. Quadrat sampling

1s most commonly used for stationary species like plants. The observer will
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sample quadrats throughout the region of interest to derive sample variance

and conduct further statistical analysis [87].

* Line intercept sampling: A line intercept or line transect is a straight line
that is marked along the ground or the tree canopy, and is primarily used for
stationary species [91]. The observer proceeds along the line and records all
of the specimens intercepted by the line. Each transect is regarded as one

sample unit, similar to a single quadrat.

* Cue counting: Cue counting is based on observing cues or signals that a
species is nearby, such as whale or bird calls. It is used primarily for species

that are underwater or similarly difficult to sight [[119].

* Distance sampling: Distance sampling refers to a class of methods which
estimate the density of a population using measured distances to individuals
in the population [38]. Distance sampling can be added to line transects in
order to incorporate specimens that are off the transect line but still visible.
Appropriately calibrated camera traps can also benefit from distance sampling
[158].

* Environmental DNA (eDNA) sampling: Samples of water or excrement
collected in the field can be sequenced to provide species identifications.
The ratios of environmental DNA for each species can be used to estimate
abundance [ 115, 185]].

Each of these procedures produces different types of data, and each method comes
with its own innate collection biases. These biases can add to the challenge of

evaluating ecological models, as discussed in Section[3.4]

Biodiversity measurement and prediction

While it is important to understand the distribution of particular species, in many
cases the ultimate goal is to understand the health of an ecosystem at a higher
level. Biodiversity is a common surrogate for ecosystem health, and there are many
different ways to measure it [103] (104, [197]. In this section we define and discuss
several biodiversity metrics and related concepts. Note that some sources give

different definitions than those presented here, so caution is warranted.

We now define some preliminary notation. We let R denote an arbitrary spatial unit

such as a country. Many biodiversity metrics are computed based on a partition of
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R into N sub-units, which we denote by {Ri}f.\i .- The choice of partition can have a
significant impact on the value of some metrics, but for the purposes of this section

we simply assume a partition has been provided.

Species richness. The species richness of R is the number of unique species in R,

which we write as S(R).

Absolute abundance. The absolute abundance of species k in R is the number of

individuals in R who belong to species k. We write this as A (R).

Relative abundance. The relative abundance of species k in R is the fraction of
individuals in R who belong to species k, which is
Ar(R)

pr(R) = SR o

: (3.2)
Zj:l Aj (R)

Since ngf) pj(R) = 1 and p;(R) > O for all j € {1,...,S(R)}, the vector of
relative abundances p(R) = (p1(R),...,ps) (R)) forms a discrete probability
distribution. The species richness can then be alternately defined as the support of

this distribution, given by

S(R)={j e{l,....,S(R)} : pj(R) > O}|. (3.3)
Of course, we can replace p; with A; everywhere and get an identical quantity.

Shannon index. The Shannon index of R is the entropy of the probability distribu-
tion p(R), so

S(R)
H(p(R)) == )" p;(R)logp;(R). (3.4)

j=1
The Shannon index quantifies the uncertainty involved in guessing the species of an
individual chosen at random from R. Sometimes H is instead written as H’, and

sometimes the argument is written as R instead of p(R).

Simpson index. The Simpson index of R is the probability that two individuals
drawn at random from the dataset (with replacement) are the same species, and is

given by
S(R)

AR) = " pi. (3.5)
i=1
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Alpha diversity. The alpha diversity of R is the average species richness across the

sub-units {R,-}f.i |» given by

N
1
R)=— ) S(R). 3.6
a(R) = 21] (R) (3.6)
Gamma diversity. The gamma diversity of R is defined as
y(R.q)=| > p! (3.7)
j=1

where g € [0, 1)U (1, o0) is a weighting parameter [103]. Note that gamma diversity

is also commonly denoted by ¥ D, (R). There are several interesting special cases:

* If g = 0 then gamma diversity reduces to species richnessi.e. y(R,0) = S(R).

* Gamma diversity is also related to the Shannon index, since lim,—,1 y(R, ) =
exp H(p(R))[103].

* If g = 2 then gamma diversity reduces to the inverse of the Simpson index i.e.
¥(R,2) = 1/A(R).

Beta diversity. The beta diversity of R is meant to measure the extent to which
sub-units R; are ecologically differentiated. This can be interpreted as a measure of
the variability of biodiversity across sub-regions or habitats within a larger area. It
is defined as

_v(R,q)
B(R,q) = «(R)

where ¢ is the same weighting parameter we say in the definition of gamma diversity

(3.8)

[103,182]]. Beta diversity quantifies how many sub-units there would be if the total
species diversity of the region y and the mean species diversity per sub-unit

remained the same, but the sub-units had no species in common.

3.6 Common challenges and risks

Differences in tools

R is the dominant coding language in ecology and statistics, but Python is dominant
in machine learning. This language barrier limits code sharing, which in turn limits
algorithm sharing. It is also important to note that some machine learning models
are extremely computationally demanding to train, and some ecologists may not

have access to the necessary computational resources.
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Differences in ideas and terminology

Differences in concepts and terminology can make it difficult for machine learning
practitioners to find and read relevant work from the ecology community (and vice-
versa). However, there is a growing body of interdisciplinary work which brings
ecologists and computer scientists together [13-15]. It is important for computer
scientists working in this area to establish ties with ecologists who can help them

understand how to make ecologically meaningful progress.

Combining data sources

Species observation data is collected according to many different protocols, which
means that effectively combining different data sources can be nontrivial 75} 109,
124, 139]]. For instance, observations collected in a well-designed scientific sur-
vey have significantly different collection biases from observations collected via
iNaturalist. Handling these biases in a robust, systematic way can be quite challeng-
ing, particularly for large collections of data encompassing thousands of different
projects, each with their own sampling strategies. In many cases, understanding
the protocols used for a specific data collection project within a larger repository
requires one to delve into the literature for that project. However, for many projects

there do not exist accessible, standardized definitions or quantitative analysis of bias.

Black boxes, uncertainty, and interpretability

Machine learning models are frequently “black boxes,” meaning that it is difficult to
understand how a prediction is being made. Ecologists are accustomed to models
that are simpler to inspect and analyze, where they can confidently determine what
factors are most important and what the effect of different factors might be. Because
the results of ecological models are used to drive policy, being able to interpret how
amodel is making predictions and avoid inaccuracies due to overfitting is important.
This is closely related to trust (or lack thereof) in model outputs and the need for
uncertainty quantification, particularly in scenarios where models are being asked

to generalize to new locations or forward in time.

Norms surrounding data sharing and open sourcing in ecology

Computer science has benefited from strong community norms promoting public
data and open-sourced code. One consequence of this shift is that it is easy for
computer scientists to take data for granted and to be frustrated when a scientist is

unwilling to share their data publicly. However, it is important to remember that
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in some fields data can be extremely expensive to collect and curate. The cost of
the hardware, travel to the study site, and the time needed to place the sensors and
maintain the sensor network quickly adds up. Add to this the number of hours it
takes for an expert to process and label the data so that it is ready for analysis, and it
is easy to see why a researcher would want to publish several papers on their hard-
won data before sharing it publicly. On the other hand, public datasets like those
hosted on LILA science [2] have clear benefits for the community such as promoting
reproducible research. Properly attributing data to the researchers who collected it
(e.g., through the use of “DOIs for datasets” [[155]) could encourage more open data
sharing in ecology. Data sharing norms are changing and many researchers are now
happy to share their data and are pushing for more open data practices [[149, [151]],
but it is important to be aware of this cultural difference between computer science
and other fields.

Model handoffs, deployment, and accessibility

Once a machine learning method has been rigorously evaluated and found to be
helpful, it is important to ensure these techniques are accessible to those who can
put them to good use. In computer science, we have a culture of “open code, open
data” which means that for most papers, all of the data and code is publicly avail-
able. However, ecologists may be less familiar with machine learning packages like
PyTorch and TensorFlow, and may not have access to the computational resources
required to train models on their data. If a method is to have real impact for the
ecology community, it is important to provide models and code in a format that
is accessible to end-users and well-documented. If the model is meant to become
an integral part of an ecology workflow, plans for model maintenance and upkeep

should be discussed.

Sensitive species

It is common for ecologists to obfuscate geolocation information before publishing
any data containing rare or protected species to avoid poaching or stress from
ecotourism. However, it is unclear whether obfuscation of GPS signal is sufficient
to obscure the location of a photograph. It may be that a better solution is to remove
any photos containing sensitive species, or to restrict sensitive access to a list of
verified members of the research community. Second, the obfuscation distance of
GPS location in published datasets might have a large effect on the accuracy of an

SDM or other ecological model, particularly when both the training and validation
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data have been obfuscated. This obfuscation will further effect the reproducibility

of a study, as results with or without obfuscation might be quite different.

3.7 What data is available and accessible?

There is an increasing number of publicly available ecological datasets that can be
used for model training and evaluation. In this section we provide a few useful data
sources as a starting point. We make a distinction between “analysis-ready” datasets
which package species observations and covariates together and other data sources

which can be combined to produce analysis-ready datasets.

Traditional analysis-ready datasets for multi-species distribution modeling

* The comprehensive SDM comparison in [134] uses five presence-absence
datasets covering different species and parts of the world. Each dataset has a
different set of covariates (min 6, max 38) and a different set of species (min
50, max 242). The datasets are available for download on Zenodo [132].

* The recently released benchmark dataset [64] covers 226 species from 6
regions. Each region has a different set of covariates (min 11, max 13) and a

different set of species (min 32, max 50).

Note that many “traditional” SDM datasets may not be large enough to train some

of the more data-hungry machine learning methods.

Large-scale analysis-ready datasets for multi-species distribution modeling

* The GeoLifeCLEF datasets combine 2D patches of covariates with species
observations from community science programs. The GeoLifeCLEF 2020
dataset [46] consists of 1.9M observations of 31k plant and animal species
from France and the US, each of which is paired with high-resolution 2D co-
variates (satellite imagery, land cover, and altitude) in addition to traditional
covariates. Previous editions of the GeoLifeCLEF dataset [36, [50] are also
available, and are suitable for large-scale plant-focused species distribution
modeling in France using traditional covariates. Note that all of the GeoLife-
CLEEF datasets are based on presence-only observations, so performance is

typically evaluated using information retrieval metrics such as top-k accuracy.

e The eBird Reference Dataset (ERD) [127]] is built around checklists collected

by eBird community members. In particular, it is limited to checklists for
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which the observer (i) asserts that they reported everything they saw and (i)
quantified their sampling effort. This allows unobserved species to be in-
terpreted as absences if sufficient sampling effort has been expended. The
resulting presence/absence data is combined with land cover and climate vari-
ables. Unfortunately, the ERD does not appear to be maintained or publicly
available as of November 2020.

Sources for species observation data

* The Global Biodiversity Information Facility (GBIF) [[1]] aggregates and orga-
nizes species observation data from over 1700 institutions around the world.

We discuss a few specific contributors below.

* iNaturalist [9] is a community science project that has produced over 70
million point observations of species across the entire taxonomic tree. The

data can be noisy as it is collected and labeled by non-experts.

* eBird [3)] is a community science project hosted by the Cornell Lab of Or-
nithology which has produced more than 77 million birding checklists. These
checklists provide both presence and absence, but absences can be noisy as it
is possible the birder did not observe every species that was present at a given

location.

* Movebank [3] is a database of animal tracking data hosted by the Max Planck
Institute of Animal Behavior. It contains GPS tracking data for individual

animals, covering 900 taxa and including 2.2 billion unique location readings.

Sources for covariates

Earth observation datasets and their derived products can be freely obtained from
many sources, including the NASA Open Data Portal [12], the USGS Land Processes
Distributed Access Data Archive [11], ESA Earth Online [7], and Google Earth

Engine [6]. Also see the detailed discussion of covariates in Section [3.4]

Sources for training species identification models
Species observation data can be produced by classifying the species found in geolo-
cated images. Those who are interested in the species classification problem may

be interested in the datasets below.
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» The iNaturalist species classification datasets [[187, [188]] are curated species

classification datasets built from research-grade observations in iNaturalist.

» LILA.science [2} 28] [135] hosts a number of biology-focused image classifi-
cation datasets, including camera trap datasets covering diverse species and

locations.

* The Fine-Grained Visual Categorization (FGVC) workshop [16] at CVPR
hosts a number of competitions each year [[16} 27, 29} 131} 132, 129, 174} [176|

18’7] which focus on species classification and related biodiversity tasks.

3.8 Open problems
There are many open problems in SDM that may benefit from machine learning
tools. In this section we discuss a few of these problems which we find particularly

interesting.

Scaling up, geospatially and taxonomically

One of the main challenges in modern SDMs is scale. This includes scaling up
SDMs to efficiently handle large geographic regions [100, 107, [178], many-species
communities [[133}[145.1179,199], and large volumes of training data [[122,/179.200].
One particularly interesting question is whether jointly modeling many species could
lead to SDMs which are significantly better than those based on modeling species

independently.

Incorporating ecological theory and expert knowledge

There is a considerably amount of domain knowledge and ecological theory which
would ideally be incorporated into SDMs [85]]. This might include knowledge about
species dispersal [25) 152, [72, [125], spatial patterns of community composition
[44) 49/ [102], and constraints on species ranges (e.g., cliffs, water) [47, 165, 169,
125]]. Another area of significant interest is to factor in cross-species biological
processes such as niche exclusion/competition [[146, 198]], predator/prey dynamics
[57, 1146, 181], phylogenetic niche evolution [42, 74, [141]], or models linked across
functional traits [45, 147, 192]. These types of “domain-aware” algorithms are an

active research area in the machine learning community [34} 54, 182, [171].

Fusing data
A third open area of investigation centers on how to best incorporate and utilize

data collected at different spatiotemporal scales or in heterogeneous formats. This
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includes combining presence-only, presence-absence, abundance, and individual
data such as GPS telemetry data [67, 101} [139, [143]]. It also includes multi-scale
or cross-scale modeling [[173} [184]], such as microclimate niche vs. macroscale
niche [[112], individual niche variance vs. species level niche variance[67]], and
cross-scale ecological processes[83, [120]. Finally, it may also include models of
temporal ecological processes, such as seasonal range shifts and migrations [166),
1771.

Evaluation

How should we compare competing models and decide which models to trust? Natu-
rally, fair head-to-head evaluation of different models will be important [[19,160,134]].
Future large-scale evaluations may require accounting for biases in species observa-
tion data [68, 114, 189, 195], especially that which comes from community science
projects. It is important to keep in mind that there is no single metric which makes
one SDM better than another. It may be significant to understand how a model’s
predictions change under novel climate scenarios [21} 139,169, 113]] or different con-
servation policies [39, 121} [165] or how well-calibrated the SDM predictions are
[19,[79]]. One promising avenue is to study models in increasingly realistic simula-
tion environments [[105} 123, 201]], which allows for more comprehensive analysis.
Many of these topics are directly related to active areas of machine learning research,

such as domain adaptation and overcoming dataset bias and imbalance [108]].

3.9 Conclusion

We have sought to introduce machine learning researchers to a challenging and
important real-world problem domain. We have discussed common terminology
and highlighted common pitfalls and challenges. To lower the initial overhead,
we have inventoried some available datasets and common methods. We hope that
this document is useful for any computer scientist interested in bringing machine

learning expertise to species distribution modeling.
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4.1 Abstract

It is desirable for detection and classification algorithms to generalize to unfamiliar
environments, but suitable benchmarks for quantitatively studying this phenomenon
are not yet available. We present a dataset designed to measure recognition gen-
eralization to novel environments. The images in our dataset are harvested from
twenty camera traps deployed to monitor animal populations. Camera traps are
fixed at one location, hence the background changes little across images; capture
is triggered automatically, hence there is no human bias. The challenge is learn-
ing recognition in a handful of locations, and generalizing animal detection and
classification to new locations where no training data is available. In our exper-
iments state-of-the-art algorithms show excellent performance when tested at the
same location where they were trained. However, we find that generalization to new

locations is poor, especially for classification systems|T]

4.2 Introduction

Automated visual recognition algorithms have recently achieved human expert per-
formance at visual classification tasks in field biology [29, 45, 47] and medicine
[10} 33]. Thanks to the combination of deep learning [[12, 23], Moore’s law [36]
and very large annotated datasets [9, [25] enormous progress has been made during
the past 10 years. Indeed, 2017 may come to be remembered as the year when

automated visual categorization surpassed human performance.

However, it is known that current learning algorithms are dramatically less data-
efficient than humans [44], transfer learning is difficult [30]], and, anecdotally, vision
algorithms do not generalize well across datasets [43, [50] (Fig. A.I). These obser-
vations suggest that current algorithms rely mostly on rote pattern-matching, rather

than abstracting from the training set ‘visual concepts’ [27] that can generalize well

I'The dataset is available at https://beerys.github.io/CaltechCameraTraps/


https://beerys.github.io/CaltechCameraTraps/

116

to novel situations. In order to make progress we need datasets that support a careful
analysis of generalization, dissecting the challenges in detection and classification:
variation in lighting, viewpoint, shape, photographer’s choice and style, contex-
t/background. Here we focus on the latter: generalization to new environments,

which includes background and overall lighting conditions.

Applications where the ability to generalize visual recognition to new environments
is crucial include surveillance, security, environmental monitoring, assisted living,
home automation, automated exploration (e.g. sending rovers to other planets). En-
vironmental monitoring by means of camera traps is a paradigmatic application.
Camera traps are heat- or motion-activated cameras placed in the wild to monitor
and investigate animal populations and behavior. Camera traps have become inex-
pensive, hence hundreds of them are often deployed for a given study, generating a
deluge of images. Automated detection and classification of animals in images is a
necessity. The challenge is training animal detectors and classifiers from data com-
ing from a few pilot locations such that these detectors and classifiers will generalize
to new locations. Camera trap data is controlled for environment including lighting
(the cameras are static, and lighting changes systematically according to time and
weather conditions), and eliminates photographer bias (the cameras are activated

automatically).

Camera traps are not new to the computer vision community

[6, 115, 24) 26, 29, 35, 140, 48, 151, 153}, 154, 157, 58]. Our work is the first to identify
camera traps as a unique opportunity to study generalization, and we offer the first
study of generalization to new environments in this controlled setting. We make here
three contributions: (a) a novel, well-annotated dataset to study visual generalization
across locations, (b) a benchmark to measure algorithms’ performance, and (c)
baseline experiments establishing the state of the art. Our aim is to complement
current datasets utilized by the vision community for detection and classification[9,
114 21}, 25] by introducing a new dataset and experimental protocol that can be
used to systematically evaluate the generalization behavior of algorithms to novel
environments. In this work we benchmark the current state-of-the-art detection and

classification pipelines and find that there is much room for improvement.
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(A) Cow: 0.99, Pasture: 0.99, (B) No Person: 0.99, Water: (C) No Person: 0.97, Mammal:
Grass: 0.99, No Person: 0.98, 0.98, Beach: 0.97, Outdoors: 0.96, Water: 0.94, Beach: 0.94,
Mammal: 0.98 0.97, Seashore: 0.97 Two: 0.94

Figure 4.1: Recognition algorithms generalize poorly to new environments.
Cows in ‘common’ contexts (e.g. Alpine pastures) are detected and classified
correctly (A), while cows in uncommon contexts (beach, waves and boat) are not
detected (B) or classified poorly (C). Top five labels and confidence produced by
ClarifAl.com shown.

4.3 Related work

Datasets

The ImageNet [9], MS-COCO [25]], PascalVOC [11]], and Open Images datasets
are commonly used for benchmarking classification and detection algorithms. Im-
ages in these datasets were collected in different locations by different people, which
enables algorithms to average over photographer style and irrelevant background
clutter. However, as demonstrated in Fig. [4.1] the context can be strongly biased.
Human photographers are biased towards well-lit, well-focused images where the
subjects are centered in the frame 37)]. Furthermore, the number of images per
class is balanced, unlike what happens in the real world [44].

Natural world datasets such as the iNaturalist dataset [47], CUB200 [49], Oxford
Flowers [28], LeafSnap [22], and NABirds700 are focused on fine-grained
species classification and detection. Most images in these datasets are taken by
humans under relatively good lighting conditions, though iNaturalist does contain
human-selected camera trap images. Many of these datasets exhibit real-world long-
tailed distributions, but in all cases there is a large amount of diversity in location

and perspective.

The Snapshot Serengeti dataset [4Q] is a large, multi-year camera trap dataset col-
lected at 225 locations in a small region of the African savanna. It is the single
largest-scale camera trap dataset ever collected, with over 3 million images. How-

ever, it is not yet suitable for controlled experiments. This dataset was collected
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from camera traps that fire in sequences of 3 for each motion trigger, and provides
species annotation for groups of images based on a time threshold. This means
that sometimes a single species annotation is provided for up to 10 frames, when in
fact the animal was present in only a few of those frames (no bounding boxes are
provided). Not all camera trap projects are structured in a similar way, and many
cameras take shorter sequences or even single images on each trigger. In order to
find a solution that works for new locations regardless of the camera trap parameters,
it is important to have information about which images in the batch do or do not
contain animals. In our dataset we provide annotations on a per-instance basis, with

bounding boxes and associated classes for each animal in the frame.

Detection

Since camera traps are static, detecting animals in the images could be considered
either a change detection or foreground detection problem. Detecting changes
and/or foreground vs. background in video is a well studied problem [38], [2].
Many of these methods rely on constructing a good background model that updates
regularly, and thus degrade rapidly at low frame rates. [S3]] and [3] consider low
frame rate change detection in aerial images, but in these cases there are often very
few examples per location.

Some camera traps collect a short video when triggered instead of a sequence of
frames. [24,57, 58] show foreground detection results on camera trap video. Data
that comes from most camera traps take sequences of frames at each trigger at a
frame rate of ~ 1 frame per second. This data can be considered “video," albeit with
extremely low, variable frame rate. Statistical methods for background subtraction
and foreground segmentation in camera trap image sequences have been previously
considered. [35] demonstrates a graph-cut method that uses background modeling
and foreground object saliency to segment foreground in camera trap sequences. [26]
creates background models and perform a superpixel-based comparison to determine
areas of motion. [15] uses a multi-layer RPCA-based method applied to day and
night sequences. [S3]] uses several statistical background-modeling approaches as
additional signal to improve and speed up deep detection. These methods rely on a
sequence of frames at each trigger to create appropriate background models, which
are not always available. None of these methods demonstrate results on locations

outside of their training set.
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Classification

A few studies tackle classification of camera trap images. [S1] showed results
classifying squirrels vs. tortoises in the Mojave Desert. [S4] showed classification
results on data that provides image sequences of 10 frames. They do not consider the
detection problem and instead manually crop the animal from the frame and balance
the dataset, resulting in a total of 7,196 images across 18 species with at least 100
examples each. [6] were the first to take a deep network approach to camera trap
classification, working with data from eMammal [1]]. They first performed detection
using the background subtraction method described in [335]], then classified cropped
detected regions, getting 38.31% top-1 accuracy on 20 common species. [48]] show
classification results on both Snapshot Serengeti and data from jungles in Panama,
and saw a boost in classification performance from providing animal segmentations.
[29]] show 94.9% top-1 accuracy using an ensemble of models for classification on
the Snapshot Serengeti dataset. None of the previous works show results on unseen

test locations.

Generalization and domain adaptation

Generalizing to a new location is an instance of domain adaptation, where each
location represents a domain with its own statistical properties such as types of flora
and fauna, species frequency, man-made or other clutter, weather, camera type, and
camera orientation. There have been many methods proposed for domain adaptation
in classification [8]. [13]] proposed a method for unsupervised domain adaptation
by maximizing domain classification loss while minimizing loss for classifying the
target classes. We generalized this method to multi-domain for our dataset, but
did not see any improvement over the baseline. [14] demonstrated results of a
similar method for fine-grained classification, using a multi-task setting where the
adaptation was from clean web images to real-world images, and [3]] investigated

open-set domain adaptation.

Few methods have been proposed for domain adaptation outside of classification.
[7, 119} 156] investigate methods of domain adaptation for semantic segmentation,
focusing mainly on cars and pedestrians and either adapting from synthetic to real
data, from urban to suburban scenes, or from PASCAL to a camera on-board a car.
[17, 131} 139,142 152]] look at methods for adapting detectors from one data source to
another, such as from synthetic to real data or from images to video. Raj, et. al.,
[34]] demonstrated a subspace-based detection method for domain adaptation from
PASCAL to COCO.
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4.4 The Caltech Camera Traps dataset

The Caltech Camera Traps (CCT) dataset contains 243,187 images from 140 camera
locations, curated from data provided by the USGS and NPS. Our goal in this paper
is to specifically target the problem of generalization in detection and classification.
To this end, we have randomly selected 20 camera locations from the American
Southwest to study in detail. By limiting the geographic region, the flora and fauna
seen across the locations remain consistent. The current task is not to deal with
entirely new regions or species, but instead to be able to recognize the same species
of animals in the same region with a different camera background. In the future we
plan to extend this work to recognizing the same species in new regions, and to the
open-set problem of recognizing never-before-seen species. Examples of data from
different locations can be seen in Fig.

Camera traps are motion- or heat-triggered cameras that are placed in locations of
interest by biologists in order to monitor and study animal populations and behavior.
When a camera is triggered, a sequence of images is taken at approximately one
frame per second. Our dataset contains sequences of length 1 — 5. The cameras
are prone to false triggers caused by wind or heat rising from the ground, leading
to empty frames. Empty frames can also occur if an animal moves out of the field
of view of the camera while the sequence is firing. Once a month, biologists return
to the cameras to replace the batteries and change out the memory card. After it
has been collected, experts manually sort camera trap data to categorize species and
remove empty frames. The time required to sort and label images by hand severely
limits data scale and research productivity. We have acquired and further curated a
portion of this data to analyze generalization behaviors of state-of-the-art classifiers

and detectors.

The dataset in this paper, which we call Caltech Camera Traps-20 (CCT-20), consists
of 57, 868 images across 20 locations, each labeled with one of 15 classes (or marked
as empty). Classes are either single species (e.g. "Coyote" or groups of species, e.g.
"Bird"). See Fig. 4.4]for the distribution of classes and images across locations. We
do not filter the stream of images collected by the traps, rather this is the same data
that a human biologist currently sifts through. Therefore the data is unbalanced in the
number of images per location, distribution of species per location, and distribution

of species overall (see Fig. {.4).
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Figure 4.2: Camera trap images from three different locations. Each row is a
different location and a different camera type. The first two cameras use IR, while
the third row used white flash. The first two columns are bobcats, the next two
columns are coyotes.

(1) INlumination (3) ROI Size

(4) Occlusion (5) Camouflage (6) Perspective

Figure 4.3: Common data challenges: (1) Illumination: Animals are not always
salient. (2) Motion blur: common with poor illumination at night. (3) Size
of the region of interest (ROI): Animals can be small or far from the camera.
(4) Occlusion: e.g. by bushes or rocks. (5) Camouflage: decreases saliency in
animals’ natural habitat. (6) Perspective: Animals can be close to the camera,
resulting in partial views of the body.
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Figure 4.4: (Left) Number of annotations for each location, over 16 classes. The
ordering of the classes in the legend is from most to least examples overall. The
distribution of the species is long-tailed at each location, and each location has a
different and peculiar distribution. (Right) Visualization of data splits. “Cis" refers
to images from locations seen during training, and “trans" refers to new locations
not seen during training.

Detection and labeling challenges

The animals in the images can be challenging to detect and classify, even for humans.
We have determined that there are six main nuisance factors inherent to camera trap
data, which can compound upon each other. Detailed analysis of these challenges
can be seen in Fig. [4.3] When an image is too difficult to classify on its own,
biologists will often refer to an easier image in the same sequence and then track
motion by flipping between sequence frames in order to generate a label for each
frame (e.g. is the animal still present or has it gone off the image plane?). We
account for this in our experiments by reporting performance at the frame level and
at the sequence level. Considering frame level performance allows us to investigate

the limits of current models in exceptionally difficult cases.

Annotations

We collected bounding box annotations on Amazon Mechanical Turk, procuring
annotations from at least three and up to ten mturkers for each image for redundancy
and accuracy. Workers were asked to draw boxes around all instances of a specific
type of animal for each image, determined by what label was given to the sequence
by the biologists. We used the crowdsourcing method by Branson et al.[16] to
determine ground truth boxes from our collective annotations, and to iteratively

collect additional annotations as necessary. We found that bounding box precisions
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varied based on annotator, and determined that for this data the PascalVOC metric
of IoU> 0.5 is appropriate for the detection experiments (as opposed to the COCO
IoU averaging metric).

Data split: cis- and trans-

Our goal is exploring generalization to new (i.e. untrained) locations. Thus, we
compare the performance of detection and classification algorithms when they are
tested at the same locations where they were trained, vs new locations. For brevity,
we refer to locations seen during training as cis-locations and locations not seen

during training as frans-locations.

From our pool of 20 locations, we selected 9 locations at random to use as trans-
location test data, and a single random location to use as trans-location validation
data. From the remaining 10 locations, we use images taken on odd days as cis-
location test data. From within the data taken on even days, we randomly select 5%
to be used as cis-location validation data. The remaining data is used for training,
with the constraint that training and validation sets do not share the same image
sequences. This gives us 13,553 training images, 3,484 validation and 15, 827
test images from cis-locations, and 1,725 val and 23,275 test images from trans-
locations. The data split can be visualized in Fig. .4, We chose to interleave the
cis training and test data by day because we found that using a single date to split
the data results in additional generalization challenges due to changing vegetation
and animal species distributions across seasons. By interleaving, we reduce noise

and provide a clean experimental comparison of results on cis- and trans-locations.

4.5 Experiments

Current state-of-the-art computer vision models for classification and detection
are designed to work well on test data whose distribution matches the training
distribution. However, in our experiments we are explicitly evaluating the models
on a different test distribution. In this situation, it is common practice to employ
early stopping [4] as a means of preventing overfitting to the train distribution.
Therefore, for all classification and detection experiments we monitor performance
on both the cis- and trans-location validation sets. In each experiment we save two
models, one that we expect has the best performance on the trans-location test set
(i.e. a model that generalizes), and one that we expect has the best performance on

the cis-location test set (i.e. a model that performs well on the train distribution).
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Table 4.1: Classification top-1 error across experiments. Empty images are removed
for these experiments.

Cis-Locations | Trans-Locations | Error Increase

Sequence Information | Images Bboxes | Images Bboxes | Images Bboxes
None 19.06 8.14 | 41.04 19.56 | 115% 140%
Most Confident 17.7 7.06 | 3453 1577 | 95% 123%
Oracle 1492 552 | 28.69 12.06 | 92% 118%
Classification

We explore the generalization of classifiers in 2 different settings: full images and
cropped bounding boxes. For each setting we also explore the effects of using and
ignoring sequence information. Sequence information is utilized in two different
ways: (1) Most Confident we consider the sequence to be classified correctly if
the most confident prediction from all frames grouped together is correct, or (2)
Oracle we consider the sequence to be correctly classified if any frame is correctly
classified. Note that (2) is a more optimistic usage of sequence information. For
all classification experiments we use an Inception-v3 [41] model pretrained on Ima-
geNet, with an initial learning rate of 0.0045, rmsprop with a momentum of 0.9, and
a square input resolution of 299. We employ random cropping (containing at least

65% of the region), horizontal flipping, and color distortion as data augmentation.

Full Image.

We train a classifier on the full images, considering all 15 classes as well as empty
images (16 total classes). On the cis-location test set we achieve a top-1 error of
20.83%, and a top-1 error of 41.08% on the trans-location test set with a 97%
cis-to-trans increase in error. To investigate if requiring the classifier to both detect
and classify animals increased overfitting on the training location backgrounds, we
removed the empty images and retrained the classifiers using just the 15 animal
classes. Performance stayed at nearly the same levels, with a top-1 error of 19.06%
and 41.04% for cis- and trans-locations respectively. Utilizing sequence information
helped reduce overall error (achieving errors of 14.92% and 28.69% on cis- and
trans-locations respectively), but even in the most optimistic oracle setting, there is
still a 92% increase in error between evaluating on cis- and trans-locations. See
Table @.1] for the full results.
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Bounding Boxes.

We train a classifier on cropped bounding boxes, excluding all empty images (as
there is no bounding box in those cases). Using no sequence information we achieve
acis-location top-1 error of 8.14% and a trans-location top-1 error of 19.56%. While
the overall error has decreased compared to the image level classification, the error
increase between cis- and trans-locations is still high at 140%. Sequence information
further improved classification results (achieving errors of 5.52% and 12.06% on cis-
and trans-locations respectively), and slightly reduced generalization error, bringing
the error increase down to 118% in the most optimistic setting. See Table for
the full results. Additional experiments investigating the effect of number of images
per location, number of training locations, and selection of validation location can

be seen in the supplementary material.

Analysis

Fig. .5|provides a high level summary of our experimental findings. Namely, there
i1s a generalization gap between cis- and trans-locations. Cropped boxes help to
improve overall performance (shifting the blue lines vertically downward to the red
lines), but the gap remains. In the best case scenario (red dashed lines: cropped
boxes and optimistically utilizing sequences) we see a 92% increase in error between
the cis- and trans-locations (with the same number of training examples), and 20x
increase in training examples to have the same error rate. One might wonder whether
this generalization gap is due to a large shift in class distributions between the two
locations types. However, Fig. shows that the overall distribution of classes
between the locations is similar, and therefore probably does not account for the

performance loss.

Detection

We use the Faster-RCNN implementation found in the Tensorflow Object Detection
code base [20] as our detection model. We study performance of the Faster-RCNN
model using two different backbones, ResNet-101 [[18] and Inception-ResNet-v2
with atrous convolution [20]]. Similar to our classification experiments we analyze
the effects of using sequence information using two methods: (1) Most Confident
we consider a sequence to be labeled correctly if the most confident detection across
all frames has an IoU> 0.5 with its matched ground truth box; (2) Oracle we

consider a sequence to be labeled correctly if any frame’s most confident detection
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Figure 4.5: Classification error vs. number of class-specific training examples.
Error is calculated as 1 - AUC (area under the precision-recall curve). Best-fit
lines through the error-vs-n.examples points for each class in each scenario (points
omitted for clarity), with average 7> = 0.261. An example of line fit on top of data
can be seen in Fig. 4.7] As expected, error decreases as a function of the number of
training examples. This is true both for image classification (blue) and bounding-
box classification (red) on both cis-locations and trans-locations. However, trans-
locations show significantly higher error rates. To operate at an error rate of 5.33%
on bounding boxes or 18% on images at the cis-locations we need 500 training
examples, while we need 10,000 training examples to achieve the same error rate at
the trans-locations, a 20x increase in data.
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Figure 4.6: Trans-classification failure cases at the sequence level: (Based on
classification of bounding box crops) In the first sequence, the network struggles
to distinguish between ‘cat’ and ‘bobcat’, incorrectly predicting ‘cat’ in all three
images with a mean confidence of 0.82. In the second sequence, the network
struggles to classify a bobcat at an unfamiliar pose in the first image and instead
predicts ‘raccoon’ with a confidence of 0.84. Little additional sequence information
is available in this case, as the next frame contains only a blurry tail, and the last
frame is empty

has IoU> 0.5 with its matched ground truth box. Note that method (2) is more
optimistic than method (1).

Our detection models are pretrained on COCO [25]], images are resized to have a max
dimension of 1024 and a minimum dimension of 600; each experiment uses SGD
with a momentum of 0.9 and a fixed learning rate schedule. Starting at 0.0003 we
decay the learning rate by a factor of 10 at 90k steps and 120k steps. We use a batch
size of 1, and employ horizontal flipping for data augmentation. For evaluation, we

consider a detected box to be correct if its [oU> 0.5 with a ground truth box.

Results from our experiments can be seen in Table {.2] and Fig [4.9] We find that
both backbone architectures perform similarly. Without taking sequence information
into account, the models achieve ~ 77% mAP on cis-locations and ~ 71% mAP
on trans-locations. Adding sequence information using the most confident metric
improves results, bringing performance on cis- and trans-locations to similar values
at ~ 85%. Finally, using the oracle metric brings mAP into the 90s for both locations.

Precision-recall curves at the frame and sequence levels for both detectors can be
seen in Fig. F.9]
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Figure 4.7: (Top) Distribution of species across the two test sets. (Bottom) An
example of line fit used to generate the plots in Fig. @]

Analysis

There is a significantly lower generalization error in our detection experiments
when not using sequences than what we observed in the classification experiments
(~ 30% error increase for detections vs ~ 115% error increase for classification).
When using sequence information, the generalization error for detections is reduced

to only ~ 5%.

Qualitatively, we found the mistakes can often be attributed to nuisance factors that
make frames difficult. We see examples of all 6 nuisance factors described in Fig.
M4.3] causing detection failures. The errors remaining at the sequence level occur
when these nuisance factors are present in all frames of a sequence, or when the

sequence only contains a single, challenging frame containing an animal. Examples



Figure 4.8: Trans-detection failure cases at the sequence level: Highest-
confidence detection in red, ground truth in blue. In all cases the confidence of
the detection was lower than 0.2. The first two sequences have small ROI, com-
pounded with challenging lighting in the first and camouflaged birds in the second.
In the third the opossum is poorly illuminated and only visible in the first frame.

of sequence-level detection failures can be seen in Fig. [.8] The generalization
gap at the frame level implies that our models are better able to deal with nuisance

factors at locations seen during training.

Our experiments show that there is a small generalization gap when we use se-
quence information. However, overall performance has not saturated, and current
state-of-the-art detectors are not achieving high precision at high recall values (1%
precision at recall= 95%). So while we are encouraged by the results, there is still
room for improvement. When we consider frames independently, we see that the
generalization gap reappears. Admittedly this is a difficult case as it is not clear what
the performance of a human would be without sequence information. However, we
know that there are objects that can be detected in these frames and this dataset
will challenge the next generation of detection models to accurately localize these

difficult cases.
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Figure 4.9: Faster-RCNN precision-recall curves at an IoU of 0.5, by frame and

by sequence, using a confidence-based approach to determine which frame should
represent the sequence

Table 4.2: Detection mAP at IoU=0.5 across experiments.

Cis-Locations Trans-Locations Error Increase
Sequence Information | ResNet Inception | ResNet Inception | ResNet Inception

None 7710  77.57 | 70.17  71.37 30% 27.6%

Most Confident 84.78  86.22 | 84.09 85.44 4.5% 5.6%

Oracle 9495 9504 | 9213  93.09 | 55.8% 39.3%

130
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4.6 Conclusions

The question of generalization to novel image statistics is taking center stage in
visual recognition. Many indicators point to the fact that current systems are data-
inefficient and do not generalize well to new scenarios. Current systems are, in

essence, glorified pattern-matching machines, rather than intelligent visual learners.

Many problem domains face a generalization challenge where the test conditions are
potentially highly different than what has been seen during training. Self driving cars
navigating new cities, rovers exploring new planets, security cameras installed in new
buildings, and assistive technologies installed in new homes are all examples where
good generalization is critical for a system to be useful. However, the most popular
detection and classification benchmark datasets [9, /11, 21}, [25]] are evaluating models
on test distributions that are the same as the train distributions. Clearly it is important
for models to do well on data coming from the same distribution as the train set.
However, we argue that it is important to characterize the generalization behavior of
these models when the test distribution deviates from the train distribution. Current
datasets do not allow researchers to quantify the generalization behavior of their

models.

We contribute a new dataset and evaluation protocol designed specifically to analyze
the generalization behavior of classification and detection models. Our experiments
reveal that there is room for significant improvement on the generalization of state-
of-the-art classification models. Detection helps to improve overall classification
accuracy, and we find that while detectors generalize better to new locations, there

is room to improve their precision at high recall rates.

Camera traps provide a unique experimental setup that allow us to explore the
generalization of models while controlling for many nuisance factors. Our current
dataset is already revealing interesting behaviors of classification and detection
models. There is still more information that we can learn by expanding our dataset in
both data quantity and evaluation metrics. We plan to extend this dataset by adding
additional locations, both from the American Southwest and from new regions.
Drastic landscape and vegetation changes will allow us to investigate generalization
in an even more challenging setting. Rare and novel events are frequently the most
important and most challenging to detect and classify, and while our dataset already
has these properties, we plan to define experimental protocols and data splits for
benchmarking low-shot performance and the open-set problem of detecting and/or

classifying species not seen during training.
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Chapter 5

IWILDCAM: BRINGING NOVEL CAMERA TRAP
CHALLENGES TO THE COMPUTER VISION COMMUNITY
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5.1 Abstract

The iWildCam competition serves as a yearly competition at the Fine-Grained
Visual Categorization Workshop at the Computer Vision and Pattern Recognition
Conference. It brings open, novel challenges to the computer vision community
each year, helping to bridge the gap between the development of novel computer
vision methods and the creation of impactful tools for the camera trap ecology
community. Over the past 5 years, over 500 international teams from the computer
vision and the ecology communities have taken part in the competition, increasing
the visibility of these interdisciplinary and impactful problems. The iWildCam 2020

dataset was also included as a core challenge within the WILDS benchmark, the
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first large-scale cross-application domain shift benchmark, as well as its extension
WILDS 2.0 which introduces unlabeled data for 8 of the original WILDS datasets.

5.2 iWildCam 2018

Camera traps are a valuable tool for studying biodiversity, but research using this
data is limited by the speed of human annotation. With the vast amounts of data
now available it is imperative that we develop automatic solutions for annotating
camera trap data in order to allow this research to scale. A promising approach
is based on deep networks trained on human-annotated images [83]. 1WildCam
2018 is a challenge dataset designed to explore whether such solutions generalize to
novel locations, since systems that are trained once and may be deployed to operate

automatically in new locations would be most useful.

Dataset

All images in the iWildCam 2018 dataset come from the American Southwest. By
limiting the geographic region, the flora and fauna seen across the locations remain
consistent. The current task is not to deal with entirely new regions or species, but
instead to be able to recognize the same species of animals in the same region with a
different camera background. In the future we plan to extend this dataset to include
other regions, in order to tackle the challenges of both recognizing animals in new
regions, and to the open-set problem of recognizing species of animals that have
never before been seen. Examples of data from different locations can be seen in Fig.
@ Our dataset consists of 292, 732 images across 143 locations, each labeled as
either containing an animal, or as empty. See Fig. [5.1]for the distribution of classes
and images across locations. We do not filter the stream of images collected by
the traps, rather this is the same data that a human biologist currently sifts through.
Therefore the data is unbalanced in the number of images per location, distribution
of species per location, and distribution of species overall (see Fig. [5.1)). The class
of each image was provided by expert biologists from the NPS and USGS. Due to
different annotation styles and challenging images, we approximate that the dataset

contains up to 5% annotation error.

Data Challenges

The animals in the images can be challenging to detect, even for humans. We find
six main nuisance factors inherent to camera trap data (Fig. 4.3). When an image

is too difficult to classify on its own, biologists will often refer to an easier image in
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Figure 5.1: Number of annotations for each location, over the two classes. The
distribution images per location is long-tailed, and each location has a different and
peculiar class distribution.

the same sequence and then track motion by flipping between sequence frames in
order to generate a label for each frame (e.g.is the animal still present or has it gone
off the image plane?). This implies that sequence information is a valuable tool in

difficult cases.

Data Split and Baseline

From our pool of 143 locations, we selected 70 locations at random to use as training
data. We selected 10% of the data from our training locations and 5 random new
locations to use as validation data. The remaining 68 locations are used as test data.

This gives us 149, 359 training images, 17, 784 validation and 125, 589 test images.

We trained a baseline model using the InceptionV3 architecture, pretrained on Ima-
geNet, with an initial learning rate of 0.0045, rmsprop with a momentum of 0.9, and
a square input resolution of 299. We employed random cropping (containing most of
the region), horizontal flipping, and random color distortion as data augmentation.

This baseline achieved 74.1% accuracy on the test set.

Competition Results

The iWildCam Challenge 2018 was conducted through Kaggle as part of FGVCS5
at CVPR18 and had 10 participating teamg’} The final leaderboard from the held-
out private test data can be seen in Fig. [5.2l The winning method by Stefan

Uhttps://www.kaggle.com/c/iwildcam2018
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Figure 5.2: The final private leaderboard from the iWildCam Challenge 2018. These
results show accuracies on the 50% held-out private test data randomly selected by
Kaggle.

Schneider achieved an accuracy of 93.431%. It consisted of an ensemble of 5
models considering 5 different image sizes (50, 75, 100, 125, 150), all based on
the VGG16 architecture. The models were trained from scratch using the Adam
optimizer and data augmentation tools were used to randomly flip the images along
the horizontal axis and add a range of blurring during training. Stefan considered a
variety of models including AlexNet, Googl.eNet, DenseNet, ResNet and his own
personal networks in the ensemble but found VGG16 outperformed all of them. He
also considered a domain adaption model in an attempt to remove associations of

location from the model but found this did not improve overall performance.

5.3 iWildCam 2019

As we try to expand the scope of computer vision models that identify species in
camera traps from specific regions where we have collected training data to different
areas we are faced with an interesting problem: how do you classify a species in a

new region that you may not have seen in previous training data?

In order to tackle this problem, we have prepared a dataset and challenge where
the training data and test data are from different regions, namely The American
Southwest and the American Northwest. We use the Caltech Camera Traps dataset,
collected from the American Southwest, as training data. We add a new dataset
from the American Northwest, curated from data provided by the Idaho Department
of Fish and Game (IDFG), as our test dataset. The test data has some class overlap

with the training data, some species are found in both datasets, but there are both
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species seen during training that are not seen during test and vice versa. To help
fill the gaps in the training species, we allow competitors to utilize transfer learning
from two alternate domains: human-curated images from iNaturalist and synthetic

images from Microsoft’s TrapCam-AirSim simulation environment.

Dataset

The data for the 2019 challenge is curated from the Caltech Camera Traps (CCT)
which was also used for the iWildCam 2018 Challenge [13], a new camera trap
dataset from Idaho (IDFG), and two alternate data domains: iNaturalist and Mi-

crosoft TrapCam-AirSim.

Caltech Camera Traps

All images in this dataset, which was used for the iWildCam 2018 Challenge, come
from the American Southwest. By limiting the geographic region, the flora and
fauna seen across the locations remain consistent. Examples of data from different
locations can be seen in Fig. 4.2] This dataset consists of 292, 732 images across 143
locations, each labeled with an animal class, or as empty. The classes represented
are bobcat, opossum, coyote, raccoon, dog, cat, squirrel, rabbit, skunk, rodent, deer,
fox, mountain lion, empty. We do not filter the stream of images collected by the
traps, rather this is the same data that a human biologist currently sifts through.
Therefore the data is unbalanced in the number of images per location, distribution
of species per location, and distribution of species overall (see Fig. [5.4). The class
of each image was provided by expert biologists from the NPS and USGS. Due to
different annotation styles and challenging images, we approximate that the dataset

contains up to 5% annotation error.

IDFG

The Idaho Department of Fish and Game provided labeled data from Idaho to use as
an unseen test set, which we call IDFG. The test set contains 153,730 images from
100 locations in Idaho. It covers the classes mountain lion, moose, wolf, black bear,
pronghorn, elk, deer, and empty. See Fig. for the distribution of classes and
images across locations. Similarly to CCT, we do not filter the images so the data is

innately unbalanced.
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Figure 5.3: Altenate domain examples. (Left) iNaturalist, (Right) TrapCam-
AirSim

Additional Data Domains

iNaturalist iNaturalist is a website where citizen scientists can post photos of
plants and animals and work together to correctly ID the photos, an example of an
iNaturalist image can be seen in Fig. [5.3] We allow the use of iNaturalist data from
both the 2017 and 2018 iNaturalist competition datasets [126]. For ease of entry, we
did the work to map our classes into the iNaturalist taxonomy. We also determined
which mammals might be seen in Idaho using the iNaturalist API: bobcat, opossum,
coyote, raccoon, dog, cat, squirrel, rabbit, skunk, rodent, deer, fox, mountain lion,
moose, small mammal, elk, pronghorn, bighorn sheep, black bear, wolf, bison, and
mountain goat. We curated an iNat-Idaho dataset that contains all iNat classes that
might occur in Idaho, mapped into our class set in order to make adapting iNaturalist

data for this challenge as simple as possible.

Microsoft TrapCam-AirSim This synthetic data generator utilizes a modular natu-
ral environment within Microsoft AirSim [16), that can be randomly populated
with flora and fauna. The distribution and types of animals, trees, bushes, rocks,
and logs can be varied and randomly seeded to create images from a diverse set
of classes and landscapes, from an open plain to a dense forest. An example of a

TrapCam-AirSim image containing a bison can be seen in Fig. [5.3]

Challenge
The iWildCam Challenge 2019 was conducted through Kaggle as part of FGVC6
at CVPR19 and had 336 participating teamsg? We used macro-average F1 score as

our competition metric, to slightly emphasize recall over precision and to encourage

Zhttps://www.kaggle.com/c/iwildcam-2019-fgvc6
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Figure 5.4: Number of annotations for each location. (Top) CCT locations,
containing 14 classes. (Bottom) IDFG locations, containing images of 8 classes.
The distribution of images per location is long-tailed, and each location has a
different and peculiar class distribution.

more emphasis on rare classes, as opposed to rewarding high performance on

common classes proportionally to their unbalanced level of occurrence.

Data Split and Baseline

We do not explicitly define a validation set for this challenge, instead letting competi-
tors create their own validation set from the CCT training set and the two external
data domains, iNat and TrapCam-AirSim. We use the IDFG data as our test set.
Unsupervised annotation of the test set, using the provided detector or any clustering

methods, is allowed. Explicit annotation of the test set is not.

We trained a simple whole-image classification baseline using the Inception-Resnet-
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V2 architecture, pretrained on ImageNet and trained simultaneously on the CCT and
iNat-Idaho datasets with no class rebalancing or weighting, with an initial learning
rate of 0.0045, rmsprop with a momentum of 0.9, and a square input resolution of
299. We employed random cropping (containing most of the region), horizontal
flipping, and random color distortion as data augmentation. This baseline achieved

0.125 macro-averaged F1 score and accuracy of 27.6% on the IDFG test set.

Camera Trap Animal Detection Model

We also provide a general animal detection model which competitors are free to
use as they see fit. The model is a tensorflow Faster-RCNN model with Inception-
Resnet-v2 backbone and atrous convolution. Sample code for running the detector
over a folder of images can be found at https://github.com/Microsoft/CameraTraps.
We have run the detector over each dataset, and provide the top 100 boxes and

associated confidences for each image.

5.4 iWildCam 2020

As we try to expand the geographic scope of species identification models for camera
trap data from a few regions to regions worldwide we are faced with an interesting
question: how do we train models that perform well on diverse new (unseen during
training) camera trap locations? Can we utilize data from other modalities, such as
citizen science data and remote sensing data? In order to tackle this problem, we
have prepared a challenge where the training data and test data are from different

cameras spread across the globe.

The 2020 iWildCam challenge includes a new component: the use of multiple data
modalities (see Fig. [5.5). An ecosystem can be monitored in a variety of ways
(e.g. camera traps, citizen scientists, remote sensing) each of which has its own
strengths and limitations. To facilitate the exploration of techniques for combining
these complementary data streams, we provide a time series of remote sensing
imagery for each camera trap location as well as curated subsets of the iNaturalist
competition datasets matching the species seen in the camera trap data. It has
been shown that species classification performance can be dramatically improved
by using information beyond the image itself [[17,74] so we expect that participants

will find creative and effective uses for this data.
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Figure 5.5: The iWildCam 2020 dataset. This year’s dataset includes data from
multiple modalities: camera traps, citizen scientists, and remote sensing. Here we
can see an example of data from a camera trap paired with a visualization of the
infrared channel of the paired remote sensing imagery.

Dataset
The dataset consists of three primary components: (i) camera trap images, (ii)

citizen science images, and (iii) multispectral imagery for each camera location.

Camera Trap Data

The camera trap data (along with expert annotations) is provided by the Wildlife
Conservation Society (WCS) [5]. We split the data by camera location, so no images
from the test cameras are included in the training set to avoid overfitting to one set
of backgrounds [12].

The training set contains 217,959 images from 441 locations, and the test set
contains 62, 894 images from 111 locations. These 552 locations are spread across
12 countries in different parts of the world. Each image is associated with a location
ID so that images from the same location can be linked. As is typical for camera
traps, approximately 50% of the total number of images are empty (this varies per

location).
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Figure 5.6: Camera trap class distribution. Per-class distribution of the camera
trap data, which exhibits a long tail. We show examples of both a common class (the
African giant pouched rat) and a rare class (the Indonesian mountain weasel). Within
the plot we show images of each species, centered and focused, from iNaturalist. On

the right we show images of each species within the frame of a camera trap, from
WCS.

There are 276 species represented in the camera trap images. The class distribution
is long-tailed, as shown in Fig. [5.6] Since we have split the data by location, some
classes appear only in the training set. Any images with classes that appeared only

in the test set were removed.

iNaturalist Data

iNaturalist is an online community where citizen scientists post photos of plants and
animals and collaboratively identify the species [3]]. To facilitate the use of iNatu-
ralist data, we provide a mapping from our classes into the iNaturalist taxonomy[|
We also provide the subsets of the iNaturalist 2017-2019 competition datasets [126]
that correspond to species seen in the camera trap data. This data provides 13,051

additional images for training, covering 75 classes.

Though small relative to the camera trap data, the iNaturalist data has some unique
characteristics. First, the class distribution is completely different (though it is

still long tailed). Second, iNaturalist images are typically higher quality than the

3Note that for the purposes of the competition, competitors may only use iNaturalist data from
the iNaturalist competition datasets.
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corresponding camera trap images, providing valuable examples for hard classes.

See Fig. for a comparison between iNaturalist images and camera trap images.

Remote Sensing Data

For each camera location we provide multispectral imagery collected by the Landsat
8 satellite [[125]]. All data comes from the the Landsat 8 Tier 1 Surface Reflectance
dataset [49] provided by Google Earth Engine [50]. This data has been been atmo-

spherically corrected and meets certain radiometric and geometric quality standards.

Data collection. The precise location of a camera trap is generally considered to be
sensitive information, so we first obfuscate the coordinates of the camera. For each
time point when imagery is available (the Landsat 8 satellite images the Earth once
every 16 days), we extract a square patch centered at the obfuscated coordinates
consisting of 9 bands of multispectral imagery and 2 bands of per-pixel metadata.
Each patch covers an area of 6km X 6km. Since one Landsat 8 pixel covers an area
of 30m?, each patch is 200 x 200 x 11 pixels. Note that the bit depth of Landsat 8
data is 16.

The multispectral imagery consists of 9 different bands, ordered by descending
frequency / ascending wavelength. Band 1 is ultra-blue. Bands 2, 3, and 4 are
traditional blue, green, and red. Band 5-9 are infrared. Note that bands 8 and 9 are
from a different sensor than bands 1-7 and have been upsampled from 100m?/pixel
to 30m2/pixe1. Refer to [49] or [[125]] for more details.

Each patch of imagery has two corresponding qguality assessment (QA) bands which
carry per-pixel metadata. The first QA band (pixelga) contains automatically
generated labels for classes like clear, water, cloud, or cloud shadow which
can help to interpret the pixel values. The second QA band (radsatqa) labels the
pixels in each band for which the sensor was saturated. Cloud cover and saturated
pixels are common issues in remote sensing data, and the QA bands may provide
some assistance. However, they are automatically generated and cannot be trusted

completely. See [49] for more details.

Baseline Results
We trained a basic image classifier as a baseline for comparison. The model is
a randomly initialized Inception-v3 with input size 299 x 299, which was trained

using only camera trap images. During training, images were randomly cropped
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Figure 5.7: Camera trap data (left) vs iNaturalist data (right). (1) Animal is
large, so camera trap image does not fully capture it. (2) Animal is small, so it
makes up a small part of the camera trap images. (3) Quality is equivalent, although
iNaturalist images have more camera pose and animal pose variation.
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and perturbed in brightness, saturation, hue, and contrast. We used the rmsprop

optimizer with an initial learning rate of 0.0045 and a decay factor of 0.94.

Let C be the number of classes. We trained using a class balanced loss from [32],

given by

B
= ﬁnyﬁ(p, y)

where p € RC is the vector of predicted class probabilities (after softmax), y €

L'(p,y) =

{1,...,C} is the ground truth class, £ is the categorical cross-entropy loss, ny is

the number of samples for class y, and 8 is a hyperparameter which we set to 0.9.

This baseline achieved a macro-averaged F1 score of 0.62 and an accuracy of 62%
on the iWildCam 2020 test set.

Challenge
The iWildCam Challenge 2020 was conducted through Kaggle as part of FGVC7 at
CVPR20 and had 121 participating teamg*

5.5 iWildCam 2021

In order to estimate the abundance of a species from camera trap data, ecologists
need to know not just which species were seen, but also how many individuals
of each species were seen. Object detection techniques can be used to find the
number of individuals in each image. However, since camera traps collect images in
motion-triggered bursts, simply adding up the number of detections over all frames
is likely to lead to an incorrect estimate. Overcoming these obstacles may require
incorporating spatiotemporal reasoning or individual re-identification in addition to

traditional species detection and classification.

The computer vision community has been making steady progress improving auto-
mated systems for species classification and localization in camera trap images over
the past decade [[12, 14, (16} 17,17, 126,'47.[77, 183,184,104} 120, 1311140, 147, 152].
Classifications of species seen in a given image or sequence are used by ecologists
to generate species richness models [38]], species occurrence models [75] or species
distribution models [42]], which describe (stated simply) where in a region or around
the world a species might live (or be able to live). However, these types of models
do not typically describe the abundance (population size of a given species in an

area) or density (how that population is spatially distributed [97]) of the species.

4https://www.kaggle.com/c/iwildcam-2020-fgvc7
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Figure 5.8: How many pigs are there? This year’s challenge focuses on counting
individuals across a sequence of camera trap images. Because the images are taken
no faster than one frame per second, there are often temporal discontinuities between
frames that make traditional tracking methods perform badly. However, humans are
able to use a combination of spatio-temporal logic and visual re-identification to
match individuals between frames.

A common method for population estimation is mark-recapture, which requires in-
dividual animals to be identified and recognized in future imagery [112]. Though
strides are being made in visual re-identification for species with strong biometric
markings such as zebras [[105] [130], many species are not visually re-identifiable by
humans, making data collection and analysis difficult. To address this, ecological
models have been developed that estimate abundance from counts of individuals of a
species captured in each camera across short time windows [80,/97]]. The iWildCam
2021 competition [} seeks to automate that counting process to enable abundance
estimation to scale efficiently to large data collections, and one day to global data
repositories such as Wildlife Insights [6]].

Competitors will categorize and count species across short bursts of images in
the test data. No count labels have been provided for the training set, in hopes
that competitors will develop methods that can learn to count without explicit
training labels, as most public camera trap data is not labeled with counts [1]. We
provide competitors with species labels along with weakly-supervised detections
[14] and instance segmentations [19] to help them to disambiguate individuals. The
competition also maintains the multi-modal aspects of the iWildcam 2020 challenge
[13] by providing citizen science images for the species of interest, remote sensing

imagery for each camera location, and obfuscated geolocation for most cameras.

3iWildCam 2021 is hosted on Kaggle: https://www.kaggle.com/c/iwildcam2021-fgvc8
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Dataset

The 2021 training set contains 203,314 images from 323 locations, and the WCS
test set contains 60, 214 images from 91 locations. These 414 locations are spread
across 12 countries in different parts of the world. Each image is associated with
a location ID so that images from the same location can be linked. In some cases,
WCS biologists placed multiple cameras at the same location. We denote this with
a sub-location ID, which communicates that the background and hardware of the
camera at these sub-locations is different, but the physical location is the same. As
is typical for camera traps, approximately 50% of the total number of images are
empty (this varies per location). The iWildCam 2021 dataset is slightly smaller than
the iWildCam 2020 dataset. We removed images from iWildCam 2020 that were

found to be corrupted, mislabeled, or labeled with ambiguous categories like ‘start’.

There are 206 species represented in the camera trap images. The class distribution
is long-tailed, as shown in Fig. [5.6] Since we have split the data by location, some
classes appear only in the training set. Any images with classes that appeared only

in the test set were removed.

Count Labels Count labels for the test data were collected in collaboration with
Centaur Labs [2]. We showed human annotators sequences of images that they could
freely scroll through. Each sequence was labeled by between 3 and 30 individual
annotators, with additional annotations collected for examples where annotators did
not agree. Final counts were determined by majority vote, weighted by annotator
performance on an expert-labeled subset. Sequences found to have multiple species

were manually annotated by experts.

Obfuscated GPS Locations In order to allow competitors to try to use the geo-
graphic location of the cameras to improve their classification [74]], we worked with
WCS to release obfuscated GPS coordinates for most of the camera trap locations.
The precise coordinates of the cameras have been obfuscated randomly to within 1
km for privacy and security reasons, and correspond to the centers of the provided
remote sensing imagery. Some of the obfuscated GPS locations were not released
at the request of WCS, but we can confirm that all locations without GPS are from

the same country.

iNaturalist Data

iNaturalist is an online community where citizen scientists post photos of plants and

animals and collaboratively identify the species [3]. Similar to iWildCam 2020, we
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provide a mapping from our classes into the iNaturalist taxonomy/§| We also provide
the subsets of the iNaturalist 2017-2019 competition datasets [[126] that correspond
to species seen in the camera trap data. This curated set provides 13, 051 additional

images for training, covering 75 classes.

Though small relative to the camera trap data, the iNaturalist data has some unique
characteristics. First, the class distribution is completely different (though it is
still long tailed). Second, iNaturalist images are typically higher quality than the
corresponding camera trap images, providing valuable examples for hard classes.

See [15] for a comparison between iNaturalist images and camera trap images.

Remote Sensing Data

In addition to the raw remote sensing data for each camera location outlined in
[LS]], this year we have provided pre-extracted ImageNet [34] features. We use an
ImageNet-pretrained ResNet-50 [52] to extract features from the RGB channels of

each multispectral image.

Provided Models

The MegaDetector Competitors are free to use the Microsoft Al for Earth MegaDe-
tector [14] (a general and robust camera trap detection model )as they see fit.
Megadetector V3 detects animal and human classes, while the MegaDetector V4
adds a vehicle class. Any version of the MegaDetector is allowed to be used in
this competition. The models can be downloaded on the Microsoft Camera Traps
GitHub repository [4]. We provide the top MegaDetector V3 boxes and associated

confidences along with our WCS image metadata.

DeepMAC Along with MegaDetector box labels, we also provide a method to extract
corresponding segmentation masks within each detected box. The segmentations
are derived from the DeepMAC model [19]. Although DeepMAC is designed as
an instance segmentation model (i.e. detection+segmentation), for this competition
we provide an instance of the model which takes boxes as input from the user.
Combined with the MegaDetector box labels, or a user-provided detection model,
this can be used to extract a per-detection segmentation mask. We provide the
DeepMAC masks associated with MegaDetector V3 boxes on Kaggle. Examples of
segmentation results paired with MegaDetector V3 boxes can be seen in Fig.

®Note that for the purposes of the competition, competitors may only use iNaturalist data from
the 2017-2021 iNaturalist competition datasets.
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The DeepMAC model was originally trained on all of COCO [70] and achieves a
detection and mask mAP of 44.5 % and 39.7 % respectively.

2013-07-28 9:23:38 AM ™M

aninafiméf0.96

animal:1.00 znimal:1.00

animal:1.00

Figure 5.9: Segmentation results from DeepMAC, paired with MegaDetector V3
boxes. You can see in the lower right example that if the boxes are in error, the
segmentation model will still provide its best guess at a segmentation (here it has
segmented part of a plant that was a MegaDetector false positive).

Evaluation

Figure 5.10: Here, the MegaDetector correctly boxed all animals and the classifica-
tion model also correctly predected “baboon" as the class for all three images in the
sequence. Our majority vote classification for the sequence is therefore “baboon"
(correct) and our baseline model would see 5 boxes in both the second and 3rd image
(the maximum number of boxes in any frame across the sequence) and predict “5
baboons". This prediction is close, but in fact there is one baboon in image 2 that is
not visible in image 3, and one baboon in image 3 that is new, so the correct answer
for this sequence would be “6 baboons".

Let X € {0,1,2,...}"" be a matrix of predictions, so each entry x;; is the pre-
dicted count for species j € {l,...,m} in sequence i € {1,...,n}. LetY €

{0, 1,2,...}>" be the matrix of corresponding ground truth counts. Submissions
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will be evaluated using mean columnwise root-mean-squared error (MCRMSE)

given by

m

1 1 v
MCRMSE(X.Y) = — Z‘ J - Zl"(xij —yi))2. (5.1)
Jj= i=

We selected this metric out of the options provided by Kaggle in order to capture
both species identification mistakes and count mistakes as well as to ensure false
predictions on empty sequences would contribute to the error. Because many
sequences are empty in camera trap data and because many species are rare, the
metric tends to be a small number even when the actual errors in counts are large. To
convert the metric to something more interpretable, we can un-normalize the metric
from MCRMSE to the summed columnwise root summed squared error (SCRSSE)
given by

SCRSSE(X,Y) = mynMCRMSE(X, Y)

:iJZn:(xij - vij)? (5.2)
g

i=1

Baseline Results

We built our simple counting baselines from our iWildCam 2020 classification
baseline model (see details in [[15]), the iWildCam 2020 winning submission, and
the provided MegaDetector V3 results. The results can be seen in Table[5.1] and the

simple baselines are described below.

* Max boxes:. We assume that all high-confidence animal boxes (> 0.8) for an
image are correct, and that the species in all boxes match our majority-vote
classification prediction for that sequence. We take the maximum number of
boxes from any image in the sequence and use that as our count. This will be
a lower bound on the actual number of individuals across the sequence since
it prevents double counting multiple images of the same individual. Example
in Fig

* Sum boxes: We assume that all high-confidence animal boxes (> 0.8) for
each image are correct, and that the species in all boxes match our majority-
vote classification prediction for that sequence. We take the sum of boxes
across the sequence and use that as our count. This will be a upper bound
on the actual number of individuals since individuals seen in multiple frames

will be double counted.
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Baseline MCRMSE | SCRSSE
All zeros 0.03938 844.73
Max boxes A 0.05890 1263.50
Sum boxes A 0.17550 3753.49
One per predicted species A | 0.04061 871.15
Max boxes B 0.03720 798.051
Sum boxes B 0.19897 4268.13
One per predicted species B | 0.03593 770.72

Table 5.1: Simple baseline results on the test set. For the (A) set, we used the
classification predictions from our naive classification baseline from the iWildCam
2020 competition [15]. For the (B) set we used the classification predictions from
the iWildCam 2020 competition winning solution from Megvii Research Nanjing.
We use the MegaDetector V3 boxes and a set of simple heuristics to generate counts
from the species prediction.

* One per predicted species: We add a count of one for each unique species
predicted by our image-level classification model across the sequence. This
will be a lower bound on the actual number of individuals across the sequence
as it just assumes that one animal was seen per species, regardless of detection

results.

» All zeros: Just predict zero for all instances. Under our chosen metric this
performs surprisingly well. This is for two reasons. First, camera trap data
frequently has a small number of animals for any given species. Second, the
model is double penalized if the count is correct but the species is incorrect
(one penalty for missing the correct species count and one for overpredicting

the incorrect species count).

Challenge
The iWildCam Challenge 2021 was conducted through Kaggle as part of FGVCS at
CVPR21 and had 42 participating teamg’]

5.6 iWildCam in the WILDS distribution shift benchmark

We included iWildCam in WiLps, a curated benchmark of 10 datasets (see Fig.
reflecting a diverse range of distribution shifts that naturally arise in real-world
applications, such as shifts across hospitals for tumor identification; across camera

traps for wildlife monitoring; and across time and location in satellite imaging

Thttps://www.kaggle.com/c/iwildcam2021-fgvc8
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Domain generalization Subpsogglation Domain generalization + subpopulation shift
Dataset WildCam Camelyon17 RxRx1 OGB-MolPCBA GlobalWheat CivilComments FMoW PovertyMap Amazon Py150
Input (x) camera trap photo tissue slide cellimage molecular graph wheat image online comment satellite image satellite image product review code
Prediction ()  animal species tumor perturbed gene  bioassays wheat head bbox  toxicity land use asset wealth sentiment  autocomplete
Domain (d) camera hospital batch scaffold location, time demographic  time, region country, rural-urban user git repository
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Figure 5.11: The WiLDs benchmark contains 7 datasets across a diverse set of appli-
cation areas, data modalities, and dataset sizes. Each dataset comprises data from
different domains, and the benchmark is set up to evaluate models on distribution
shifts across these domains.

and poverty mapping. On each dataset, we show that standard training yields
substantially lower out-of-distribution than in-distribution performance. This gap
remains even with models trained by existing methods for tackling distribution shifts,
underscoring the need for new methods for training models that are more robust to the
types of distribution shifts that arise in practice. To facilitate method development,
we provide an open-source package that automates dataset loading, contains default
model architectures and hyperparameters, and standardizes evaluations. The full

paper, code, and leaderboards are available athttps://wilds.stanford. edu.

WILDS Benchmark Overview

Distribution shifts—where the training distribution differs from the test distribution—
pose significant challenges for machine learning (ML) systems deployed in the wild.
In this work, we consider two common types of distribution shifts: domain gen-
eralization and subpopulation shift (5.12). Both of these shifts arise naturally in
many real-world scenarios, and prior work has shown that they can substantially
degrade model performance. In domain generalization, the training and test dis-
tributions comprise data from related but distinct domains, such as patients from
different hospitals [148]], images taken by different cameras [[12]], bioassays from dif-
ferent cell types [68], or satellite images from different countries and time periods
[S9]. In subpopulation shift, we consider test distributions that are subpopulations

of the training distribution, with the goal of doing well even on the worst-case
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Domain generalization
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Figure 5.12: In the WiLDps datasets, each data point (x,y,d) is drawn from a
domain d. Each domain corresponds to a distribution P; over data points that
are similar in some way, e.g., molecules with the same scaffold structure, satellite
images from the same region, or patients from the same hospital. We study two
types of distribution shifts over domains. Top: In domain generalization, the
training and test distributions comprise disjoint sets of domains, and the goal is to
generalize to domains unseen during training, e.g., molecules with a new scaffold
structure in OGB-MoLPCBA [58]]. Bottom: In subpopulation shift, the training
and test domains overlap, but their relative proportions differ. We typically assess
models by their worst performance over test domains, each of which correspond to a
subpopulation of interest, e.g., different geographical regions in FMoW-wiLps [29].

subpopulation; e.g., we might seek models that perform well on all demographic

subpopulations, including minority individuals [21].

Despite their ubiquity, these real-world distribution shifts are under-represented in
the datasets widely used in the ML community today [45]. Most of these datasets
were instead designed for the standard i.i.d. setting, with training and test sets

from the same distribution, and prior work on retrofitting them with distribution
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shifts has focused on shifts that are cleanly characterized but not necessarily likely
to arise in real-world deployments. For instance, many recent papers have studied
datasets with shifts induced by synthetic transformations, such as changing the color
of MNIST digits [8]], or by targeted data splits, such as generalizing from cartoons
to photos [65]]. Datasets like these are important testbeds that allow for systematic
studies; but to develop and evaluate methods for real-world distribution shifts, it is
also necessary to complement these existing datasets with ones that capture shifts

in the wild.

WiLps is a curated collection of benchmark datasets with evaluation metrics and
train/test splits that represent the kinds of distribution shifts that ML models face
in the wild (5.14). WiLps datasets span a broad array of societally-important
applications with natural distribution shifts: animal species categorization [15]],
tumor identification [[10], bioassay prediction [S8, [141]], text toxicity classification
[20], sentiment analysis [82], land use classification [29], and poverty mapping
[146]. These 7 datasets reflect distribution shifts arising from different cameras,

hospitals, molecular scaffolds, demographics, users, countries, and time periods.

WiLbs builds on extensive data-collection efforts by domain experts, who are often
forced to grapple with distribution shifts to make progress on problems in their
applications. To design WiLDps, we worked with them to identify, select, and adapt
datasets that fulfilled the following criteria:

1. Distribution shifts with performance drops. The train/test splits reflect
shifts that substantially degrade model performance, i.e., with a large gap

between in-distribution and out-of-distribution performance.

2. Real-world relevance. The training/test splits and evaluation metrics are
motivated by real-world scenarios, and chosen in conjunction with domain

experts to be consistent with prior work in their corresponding applications.

3. Potential leverage. Distribution shift benchmarks must be non-trivial but
also possible to solve, as models cannot be expected to generalize to arbitrary
distribution shifts. We constructed each WiLDs dataset to have training data
from multiple domains, with domain annotations and other metadata available
at training time. We hope that these can be used to learn robust models: e.g.,
for domain generalization, one could use these annotations to learn models that
are invariant to domain-specific features, while for subpopulation shift, one

could learn models that perform uniformly well across each subpopulation.
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We chose the WiLps datasets to collectively encompass a diversity of tasks, data
modalities, dataset sizes, and numbers of domains, so as to enable evaluation across
a broad range of real-world distribution shifts. To make these datasets accessible,
we have substantially modified most of them, e.g., to clarify the distribution shift,

standardize the data splits, or preprocess the data for use in standard ML frameworks.

Datasets are significant catalysts for ML research. Likewise, benchmarks that curate
and standardize datasets—e.g., the GLUE and SuperGLUE benchmarks for language
understanding [133] [134]] and the Open Graph Benchmark for graph ML [S8]—
can accelerate research by focusing community attention, easing development on
multiple datasets, and enabling systematic comparisons between approaches. With
WiLbps, we aim to facilitate progress on handling real-world distribution shifts in a

broad range of societally-important ML applications.

Problem settings

Each WiLps dataset is associated with a type of domain shift: domain generalization,
subpopulation shift, or a hybrid of both (5.14). In each setting, we can view the
overall data distribution as a mixture of D domains D = {1, ..., D}. Each domain
d € D corresponds to a fixed data distribution P, over (x, y, d), where x is the input,
y is the prediction target, and all points sampled from P, have domain d. We encode
the domain shift by assuming that the training distribution P& = % qta',ai”Pd

has mixture weights qzai” for each domain d, while the test distribution P®t =

test

Ydep 457 Py is a different mixture of domains with weights ¢

d
train
d

. For convenience,
we define the set of training domains as D" = {d € D | ¢
the set of test domains as D" = {d € D | ¢*' > 0}.

> 0}, and likewise,

At training time, the learning algorithm gets the domain annotations d, i.e., the
training set comprises points (x,y, d) ~ P""_ At test time, the model gets either x

or (x,d) drawn from P!, depending on the application.

Domain generalization (5.12}Top). In domain generalization, we aim to generalize
to test domains that are similar to but distinct from the training domains, i.e., the
training domains D" and test domains D*! are disjoint, with DN N Plest = ¢,
For example, in CAMELYON17-wILDS, we train on data from some hospitals and test
on a different hospital. We typically seek to minimize the average error on the test
distribution.

Subpopulation shift (5.12}Bottom). In subpopulation shift, we aim to perform

well across a wide range of domains seen during training time. For example, in
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CrviLCoMMENTS-WILDs, the domains d represent particular demographics, some
of which are a minority in the training set, and we seek high accuracy on each of
these subpopulations without observing their demographic identity d at test time.
Concretely, all test domains are seen during training time, with D"t ¢ D" byt

test + qtram.

the proportions of the domains change, with ¢ We typically seek to

minimize the maximum error over all test domains.

Hybrid settings. Some settings are a combination of both domain generalization
and subpopulation shift. For example, in the FMoW-wiLDs dataset, the inputs are
satellite images and the domains correspond to the year and geographical region in
which they were taken. We simultaneously consider domain generalization across
time (i.e., the training set comprises images taken before a certain year, and the test
set comprises images taken afterwards) and subpopulation shift across geographical
regions (i.e., there are images from the same geographical regions in the training

and test sets, but at different proportions).

Baseline algorithms for distribution shifts

Many algorithms have been proposed for training models that are more robust to
particular distribution shifts than standard ERM models. Unlike ERM, these algo-
rithms tend to utilize domain annotations during training, with the goal of learning
a model that can generalize across domains. In this section, we evaluate several
representative algorithms from prior work and show that the out-of-distribution

performance drops remain.

Domain generalization baselines. Methods for domain generalization typically
involve adding a penalty to the ERM objective that encourages some form of invari-

ance across domains. We include two such methods as representatives:

* CORAL [117], which penalizes differences in the means and covariances
of the feature distributions (i.e., the distribution of last layer activations in a
neural network) for each domain. Conceptually, CORAL is similar to other
methods that encourage feature representations to have the same distribution
across domains [44., 67,69, 71, 124].

* IRM [8]], which penalizes feature distributions that have different optimal
linear classifiers for each domain. This builds on earlier work on invariant

predictors [90].
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Other techniques for domain generalization include conditional variance regulariza-

tion [54]]; self-supervision [24]]; and meta-learning-based approaches [9, 39, 66].

Subpopulation shift baselines. In subpopulation shift settings, our aim is to train
models that perform well on all relevant subpopulations. We test the following

approach:

* Group DRO [57,199], which uses distributionally robust optimization to ex-
plicitly minimize the loss on the worst-case domain during training. Group
DRO builds on the maximin approach developed in Meinshausen and Biihlmann
[76].

Other methods for subpopulation shifts include reweighting methods based on class/-
domain frequencies [32,110]; label-distribution-aware margin losses [22]]; adaptive
Lipschitz regularization [23]]; slice-based learning [28, 94]; style transfer across
domains [48]]; or other DRO algorithms that do not make use of explicit domain

information and rely on, for example, unsupervised clustering [86, [114].

Subpopulation shifts are also connected to the well-studied notions of tail perfor-
mance and risk-averse optimization (Chapter 6 in Shapiro et al. [107]). For example,
optimizing for the worst case over all subpopulations of a certain size, regardless
of domain, can guarantee a certain level of performance over the smaller set of

subpopulations defined by domains [40} 41]].

The IWiLDCaM2020-wiLps Benchmark in WiLps

Animal populations have declined 68% on average since 1970 [[7]. To better under-
stand and monitor wildlife biodiversity loss, ecologists commonly deploy camera
traps—heat or motion-activated static cameras placed in the wild [136]—and then
use ML models to process the data collected [6} 14, 84,119, [137]. Typically, these
models would be trained on photos from some existing camera traps and then used
across new camera trap deployments. However, across different camera traps, there
is drastic variation in illumination, camera angle, background, vegetation, color,
and relative animal frequencies, which results in models generalizing poorly to new

camera trap deployments [12].

We study this shift on a variant of the iWildCam 2020 dataset [15].
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Setup

Problem setting. We consider the domain generalization setting, where the domains
are camera traps, and we seek to learn models that generalize to photos taken
from new camera deployments (5.3)). The task is multi-class species classification.
Concretely, the input x is a photo taken by a camera trap, the label y is one of 186
different animal species, and the domain d is an integer that identifies the camera

trap that took the photo.

The training set contains 142,202 images from 245 camera traps, and the test set
contains 38,943 images from 47 camera traps. A total of 324 camera traps are spread
across multiple countries in different parts of the world. Each image is associated
with a camera trap ID. As is typical for camera traps, approximately 50% of the total

number of images are empty (this varies per location).

Data. The dataset comprises 217,609 images from 324 different camera traps spread
across 12 countries in different parts of the world. The original camera trap data
comes from the Wildlife Conservation Society[’| Approximately half of the images
do not contain any animal species; this corresponds to one of the 186 class labels.

We split the dataset by randomly partitioning the data by camera traps:

1. Training: 142,202 images taken by 245 camera traps.
2. Validation (OOD): 20,784 images taken by 32 different camera traps.
3. Test (OOD): 38,943 images taken by 47 different camera traps.

4. Validation (ID): 7,819 images taken by the same camera traps as the training

set (but distinct from the training images).

5. Test (ID): 7,861 images taken by the same camera traps as the training set

(but distinct from the training images).

The camera traps were randomly distributed across the training, validation (OOD),
and test (OOD) sets.

The original iWildCam 2020 Kaggle competition similarly split the dataset by
camera trap, though the competition focused on average accuracy. We consider a
smaller subset of the data here; see[5.6]

8http://lila.science/datasets/wcscameratraps
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Table 5.2: Baseline results on iIWiLbCamM2020-wILDS.

Test (ID) Test (OOD)
Algorithm Macro F1  Average accuracy  Macro F1 ~ Average accuracy
ERM 82.5(1.3) 96.5(0.2) 27.8(1.3) 62.9 (0.5)
CORAL 68.3 (8.8) 93.1(22) 263(14) 62.5 (1.7)
IRM 16.45 (2.8) 57.26 (6.8) 13.93 (2.3) 50.78 (3.0)
Group DRO  58.6 (2.2) 89.3(1.8) 23.8(0.7) 63.0 (0.8)

Evaluation. We evaluate models by their macro F1 score (i.e., we compute the
F1 score for each class separately, then average those scores). We also report the
average accuracy of each model across all test images, but primarily use the macro
F1 score to better capture model performance on rare species. In the natural world,
protected and endangered species are rare by definition, and are often the most
important to accurately monitor. However, common species are much more likely
to be captured in camera trap images; this imbalance can make metrics like average

accuracy an inaccurate picture of model effectiveness.

Potential leverage. Though the problem is challenging for existing ML algorithms,
adapting to photos from different camera traps is simple and intuitive for humans.
Repeated backgrounds and habitual animals, which cause each sensor to have a
unique class distribution, provide a strong implicit signal across data from any one
location. We anticipate that approaches that utilize the provided camera trap anno-
tations can learn to factor out these common features and avoid learning spurious

correlations between particular backgrounds and animal species.

Baseline results

ERM results and performance drops. We trained a ResNet-50 [52] that was
pretrained on ImageNet. Model performance dropped substantially and consistently
going from in-distribution (ID) to out-of-distribution (OOD) camera traps (5.2),
with a macro F1 score of 82.5 on the ID test set but only 27.8 on the OOD test
set. Similarly, the model obtained an average accuracy of 96.5% on the ID test set
but only 62.9% on the OOD test set. The large discrepancy between ID and OOD
model performance suggests that there is significant room for improvement.

Additional baseline methods. We trained CORAL, IRM, and Group DRO models,

treating each camera trap as a domain. However, these did not improve upon the



165
ERM baseline (Table[5.2). We observed that as the F1 score on the OOD validation

set tends to converge more quickly than on the ID validation set, early stopping on
OOD validation sometimes leads to selecting an early epoch, which in turn leads
to low scores on the ID validation and test sets. For example, this occurred for
one random seed out of three in the CORAL models, which partially contributes
to its lower and more variable ID accuracy and F1 scores. The IRM models
performed especially poorly on this dataset; we suspect that this is because the
default estimator of the IRM penalty term can be negatively biased when examples
are sampled without replacement from small domains, but further investigation is

needed.

Discussion. Even though there is significant label imbalance, the overall label dis-
tribution is approximately the same in the ID and OOD split, suggesting that it is
not primarily label shift that accounts for the performance drop. Across locations,
there is drastic variation in illumination, camera angle, background, vegetation, and
color. This variation, coupled with considerable differences in the distribution of
animals between camera traps, likely encourages the model to overfit to specific ani-
mal species appearing in specific locations, which may account for the performance

drop.

The original iWildCam 2020 competition allows users to use MegaDetector [14],
which is an animal detector trained on a large set of data beyond what is provided
in the training set. The MegaDetector training set is not publicly available. To
facilitate more controlled experiments, we intentionally do not use MegaDetector in
our baselines for IWILDCaM2020-wiLbps. We welcome leaderboard submissions that
use MegaDetector, as it is useful to see how much better models can perform when
they use MegaDetector or other similar animal detectors, but we will distinguish

these submissions from others that only use what is provided in the training set.

Broader context

Differences across data distributions at different sensor locations is a common chal-
lenge in automated wildlife monitoring applications, including using audio sensors
to monitor animals that are easier heard than seen such as primates, birds, and
marine mammals [31} 111, [115]], and using static sonar to count fish underwater
to help maintain sustainable fishing industries [91, 103} [128]]. As with camera
traps, each static audio sensor has a specific species distribution as well as a sensor

specific background noise signature, making generalization to new sensors challeng-
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Table 5.3: The number of examples and camera traps in each split for
1IWILDCAaM2020-wiLDs.

Split # Examples # Camera traps
Training 142,202 245
Validation (ID) 7,819 223
Test (ID) 7,861 224
Validation (OOD) 20,784 32
Test (OOD) 38,943 47

ing. Similarly, static sonar used to measure fish escapement have sensor-specific
background reflectance based on the shape of the river bottom. Moreover, since
species are distributed in a non-uniform and long-tailed fashion across the globe,
it is incredibly challenging to collect sufficient samples for rare species to escape
the low-data regime. Implicitly representing camera-specific distributions and back-
ground features in per-camera memory banks and extracting relevant information
from these via attention has been shown to help overcome some of these challenges

for static cameras [17]].

More broadly, shifts in background, image illumination and viewpoint have been
studied in computer vision research. First, several works have shown that object
classifiers often rely on the background rather than the object to make its classifi-
cation [96, [109, 142]]. Second, common perturbations such as blurriness or shifts
in illumination, tend to reduce performance [37,155,1122]. Finally, shifts in rotation

and viewpoint of the object has been shown to degrade performance [11].

Additional details

Data processing. We generate the data splits in three steps. First, to generate the
OOD splits, we randomly split all locations into three groups: Validation (OOD),
Test (OOD), and Others. Then, to generate the ID splits, we split the Others group

uniformly at random into three sets: Training, Validation (ID), and Test (ID).

When doing the ID split, some locations only ended up in some of but not all of
Training, Validation (ID), and Test (ID). For instance, if there were very few dates
for a specific location (camera trap), it may be that no examples from that location
ended up in the train split. This defeats the purpose of the ID split, which is to test

performance on locations that were seen during training. We put these locations in
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the train split. Finally, any images in the test set with classes not present in the train

set were removed.

Modifications to the original dataset. In the competition on Kaggle there is a
held-out test set that we are not utilizing, as the test set is intended to be reused in a
future competition and is not yet public. Instead, we constructed our own test set by
splitting the Kaggle competition training data into our own splits: train, validation
(ID), validation (OOD), test (ID), test (OOD).

Images are organized into sequences, but we treat each image separately. In the
1WildCam 2020 competition, the top participants utilize the sequence data and also
use a pretrained MegaDetector animal detection model that outputs bounding boxes
over the animals. These images are cropped using the bounding boxes and then
fed into a classification network. As we discuss in[5.6] we intentionally do not use

MegaDetector in our experiments.

Baseline model details. We train a ResNet-50 with batch size 16 for 18 epochs, on
images resized to 224 by 224. We pick hyperparameters by doing a grid search over
different learning rates, 1073, 10~* and 107> and different weight decay, 0, 10~* and
1072, The optimizer is Adam. We pick the best hyperparameters and run 3 seeds.

When training the CORAL baseline, we use the best best learning rate and weight
decay from ERM. To pick the penalty weight we do a grid search over {0.1, 1, 10}.

5.7 iWildCam in WILDS 2.0

Machine learning systems deployed in the wild are often trained on a source dis-
tribution but deployed on a different target distribution. Unlabeled data can be a
powerful point of leverage for mitigating these distribution shifts, as it is frequently
much more available than labeled data and can often be obtained from distribu-
tions beyond the source distribution as well. However, existing distribution shift
benchmarks with unlabeled data do not reflect the breadth of scenarios that arise
in real-world applications. 1WiLDCam2020-wiLbs was included in the WiLps 2.0
update, which extends 8 of the 10 datasets in the WiLps benchmark of distribution
shifts to include curated unlabeled data that would be realistically obtainable in
deployment. These datasets span a wide range of applications (from histology to
wildlife conservation), tasks (classification, regression, and detection), and modali-
ties (photos, satellite images, microscope slides, text, molecular graphs). The update
maintains consistency with the original WiLbps benchmark by using identical labeled

training, validation, and test sets, as well as the evaluation metrics. We systemat-
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ically benchmark state-of-the-art methods that leverage unlabeled data, including
domain-invariant, self-training, and self-supervised methods, and show that their
success on WiLps is limited. To facilitate method development and evaluation, we
provide an open-source package that automates data loading and contains all of the
model architectures and methods used in this paper. Code and leaderboards are
available at https://wilds.stanford. edu.

Overview of WiLDs 2.0

Distribution shifts—when models are trained on a source distribution but deployed
on a different target distribution—are frequent problems for machine learning sys-
tems in the wild 92]]. In this update, we focus on the use of unlabeled
data to mitigate these shifts. Unlabeled data is a powerful point of leverage as it is
more readily available than labeled data and can often be obtained from distributions
beyond the source distribution. For example, in the crop detection task in[5.13] we
wish to learn a model that can extrapolate to a set of target domains (farms) [33],
and while we only have labeled training examples from some source domains, we
have many more unlabeled examples from the source domains, from extra domains,

and even directly from the target domains.

Extra Validation

Labeled j

Unlabeled g

i g NP L ™oz 5
Canada Mexico China United States

elgi Frne Nay B
Figure 5.13: Each WiLps dataset [61] contains labeled data from the source domains
(for training), validation domains (for hyperparameter selection), and target domains
(for held-out evaluation). In the WiLps 2.0 update, we extend these datasets with
unlabeled data from a combination of source, validation, or target domains, as
well as extra domains from which there is no labeled data. The labeled data is
exactly the same as in WiLbs 1.0. In this figure, we illustrate the setting with the
GrLoBALWHEAT-WILDS dataset, where domains correspond to images acquired from

different locations and at different times.
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Many methods for leveraging unlabeled data have been highly successful on some
types of distribution shifts [18, [150]. However, the datasets typically used for
evaluating these methods do not reflect many of the realistic shifts that might occur
in the wild. These evaluations tend instead to focus on shifts between photos and
stylized versions like sketches [65,189,|129] or synthetic renderings [88], or between
variants of digits datasets like MNIST [62] and SVHN [81]]. Unfortunately, prior
work has shown that methods that work well on one type of shift need not generalize
to others [36, (78,1121, [144]], which raises the question of how well they would work
on a wider array of realistic shifts.

In WiLps 2.0, we extend 8 of the 10 WiLps datasetd® with curated unlabeled data
acquired from the same source and target domains as the labeled data, as well as
from extra domains of the same type: e.g., in the GLOBALWHEAT-wILDs dataset
pictured in[5.13] we acquired unlabeled photos of wheat fields from the source and
target farms as well as extra farms that were not in the original labeled dataset. In
total, WiLps 2.0 adds 14.5 million unlabeled examples, expanding the number of
examples for each dataset by 3—13x and allowing us to combine the real-world
relevance of WiLps with the leverage of unlabeled data.

We developed a standardized and consistent protocol for evaluating methods that
leverage the unlabeled data in WiLps 2.0. We assessed representatives from three
popular categories: methods for learning domain-invariant representations [44,
11°7]], self-training methods [63, [113] [143], and pre-training methods that rely on
self-supervision [25, 135)]. These methods have been successful on some types of
shifts, such as going from photos to sketches, or from handwritten digits to street
signs [18} [150].

Our results across the WiLps datasets are mixed: many methods did not outper-
form standard supervised training despite using additional unlabeled data, and
the only clear successes were on two image classification datasets (CAMELYON17-
wiLDs and FMoW-wiLps). Successful methods relied heavily on data augmentation
[25}1143], which limited their applicability to modalities where augmentation tech-
niques are not as well developed, such as text and molecular graphs. The same
methods were unsuccessful on the image regression and detection tasks, which
have been relatively understudied: e.g., pseudolabel-based methods do not straight-

forwardly apply to regression. For the text datasets, continued language model

9We omitted Py150-wiLps, as code completion data is always labeled by nature of the task, and
RxRx1-wiLDs, as unlabeled data for that genetic perturbation task is not typically available.
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Figure 5.14: The WiLps 2.0 update adds unlabeled data to 8 WiLps datasets. For
each dataset, we kept the labeled data from WiLbs and expanded the datasets by
3—13x with from the same underlying dataset. The type of unlabeled
data (i.e., whether it comes from source, extra, validation, or target domains) depends
on what is realistic and available for the application. Beyond these 8 datasets, WiLDs
also contains 2 datasets without unlabeled data: the Py150-wiLbs code completion
dataset and the RxRx1-wiLbps genetic perturbation dataset. For all datasets, the
labeled data and evaluation metrics are exactly the same as in WiLps 1.0. Figure
adapted with permission from Koh et al. [61].

pre-training did not help, unlike in prior work [51]. These results suggest fruit-
ful avenues for future work, such as developing data augmentation techniques for

non-image modalities and more realistic hyperparameter tuning protocols.

Overall, our results underscore the importance of developing and evaluating methods
for unlabeled data on a wider variety of real-world shifts than is typically studied. To
this end, we have updated the open-source Python WiLps package to include unla-
beled data loaders, compatible implementations of all the methods we benchmarked,
and scripts to replicate all experiments in this paper. Code and public leaderboards
are available athttps://wilds.stanford.edu. By allowing developers to easily
test algorithms across the variety of datasets in WiLps 2.0, we hope to accelerate
the development of methods that can leverage unlabeled data to improve robustness

to real-world distribution shifts.

Finally, we note that WiLps 2.0 not a separate benchmark from WiLps 1.0: the
labeled data and evaluation metrics are exactly the same in WiLps 1.0 and WiLDs 2.0,
and future results should be reported on the overall WiLps benchmark, with a note
describing what kind of unlabeled data (if any) was used. In this paper, we discuss

the addition of unlabeled data and analyze the performance of methods that use the
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unlabeled data. For a more detailed description of the datasets, evaluation metrics,

and models used, please refer to the original WiLps paper [61]].

Baseline Algorithms

For our evaluation, we selected representative methods from the three categories
described below. These methods exemplify current approaches to using unlabeled
data to improve robustness, and they have been successful on popular domain adap-
tation benchmarks like DomainNet [89] and semi-supervised settings like improving

ImageNet accuracy by leveraging unlabeled images from the internet [25, [143]].

Domain-invariant methods. Domain-invariant methods learn feature representa-
tions that are invariant across different domains by penalizing differences between
learned source and target representations [44, [71-73) (102, (117,145,149, [151]].

For our experiments, we evaluate two classical methods:

* Domain-Adversarial Neural Networks (DANN) [44] penalize representations on
which an auxiliary classifier can easily discriminate between source and target

examples.

* Correlation Alignment (CORAL) [1177, 118] penalizes differences between the

means and covariances of the source and target feature distributions.

Self-training. Self-training methods “pseudo-label” unlabeled examples with the
model’s own predictions and then train on them as if they were labeled examples.
These methods often also use consistency regularization, which encourages the
model to make consistent predictions on augmented views of unlabeled examples
[18, (113, [143]. Self-training methods have recently been successfully applied to

unsupervised adaptation [18,101,150]. We include three representative algorithms:

* Pseudo-Label [63] dynamically generates pseudolabels and updates the model
each batch.

» FixMatch [113]] adds consistency regularization on top of the Pseudo-Label al-
gorithm. Specifically, it generates pseudolabels on a weakly augmented view of
the unlabeled data, and then minimizes the loss of the model’s prediction on a

strongly augmented view.
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* Noisy Student [143] leverages weak and strong augmentations like FixMatch,
but instead of dynamically generating pseudolabels for each batch, it alternates
between a few teacher phases, where it generates pseudolabels, and student phases,

where it trains to convergence on the (pseudo)labeled data.

Self-supervision. Self-supervised methods learn useful representations by train-
ing on unlabeled data via auxiliary proxy tasks. Common approaches include
reconstruction tasks [35, 43, 146, 164, |132]], and contrastive learning [25} 127,153, 93],
and recent work has shown that self-supervised methods can reduce dependence
on spurious correlations and improve performance on domain adaptation tasks
[79,123/[135]]. We use these self-supervision methods for unsupervised adaptation
by first pre-training models on the unlabeled data, and then finetuning them on the
labeled source data [108]]. We evaluate popular self-supervised methods for vision

and language:

* SwAV [23]] is a contrastive learning algorithm that maps representations to a set

of clusters and then enforces similarity between cluster assignments.

* Masked language modeling (MLM) [35] randomly masks some of the tokens from

input text and trains the model to predict the missing tokens.

The 1WILDCaM2020-wiLps Benchmark in WiLps 2.0

The iIWI1LDCaM2020-wiLDs dataset was adapted from the iWildCam 2020 competi-
tion dataset made up of data provided by the Wildlife Conservation Society (WCS)
[15][®] Camera trap images are captured by motion-triggered static cameras placed
in the wild to study wildlife in a non-invasive manner. Images are captured at
high volumes—a single camera trap can capture 10K images in a month—and anno-
tating these images requires species identification expertise and is time-intensive.
However, there are tens of thousands of camera traps worldwide capturing images of
wildlife that could be used as unlabeled training data. For example, Wildlife Insights
[6] now contains almost 20M camera trap images collected across the globe, but a
large proportion of that data is still unlabeled. Ideally we could capture value from
those images despite the lack of available labels. We extend iIW1LDCaM2020-wiLDs
with unlabeled data from a set of WCS camera traps entirely disjoint with the labeled

dataset, representative of unlabeled data from a newly-deployed sensor network.

10The WCS Camera Traps Dataset can be found at http://lila.science/datasets/
wcscameratraps
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Problem setting. The task is to classify the species of animals in camera trap
images. The input x is an image from a camera trap, and the domain d corresponds to
the camera trap that captured the image. The target y, provided only for the labeled
training images, is one of 182 classes of animals. We seek to learn models that
generalize well to new camera trap deployments, so the test data comes from domains
unseen during training. Additionally, we evaluate the in-distribution performance

on held-out images from camera traps in the train set.

Data. The data comes from multiple camera traps around the world, all provided
by the Wildlife Conservation Society (WCS). The labeled data is the same as in Koh
et al. [61]] and the unlabeled data comprise 819,120 images from 3215 WCS camera
traps not included in iWildCam 2020:

1. Source: 243 camera traps.
2. Validation (OOD): 32 camera traps.
3. Target (OOD): 48 camera traps.

4. Extra: 3215 camera traps.

The four sets of camera traps are disjoint. The distributions of the labeled and
unlabeled camera traps are very similar, except that the labeled data does not contain

cameras with photos taken before LandSat 8 data was available.

Table 5.4: Data for IWiLbCam2020-wiLps. Each domain corresponds to a different
camera trap.

Split # Domains (camera traps) # Labeled examples # Unlabeled examples
Source 243 129,809 0
Validation (ID) 7,314 0
Target (ID) 8,154 0
Validation (OOD) 32 14,961 0
Target (OOD) 48 42,791 0
Extra (OOD) 3215 0 819,120

Total 3538 203,029 819,120
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Broader context. There are large volumes of unlabeled natural world data that
have been collected in growing repositories such as iNaturalist [85]], Wildlife Insights
[6], and GBIF [95]. This data includes images or video collected by remote sensors
or community scientists, GPS track data from an-animal devices, aerial data from
drones or satellites, underwater sonar, bioacoustics, and eDNA. Methods that can
harness the wealth of information in unlabeled ecological data are well-posed to
make significant breakthroughs in how we think about ecological and conservation-
focused research. Natural-world and ecological benchmarks that provide unlabeled
datainclude NEWT [127], investigating efficient task learning, and Semi-Supervised
iNat [116], which provides labeled data for only a subset of the taxonomic tree.
Recent work has begun to adapt weakly-supervised and self-supervised approaches
for these natural world settings, including probing the generality and efficacy of
self-supervision [30], incorporating domain-relevant context into self-supervision
[87], or leveraging weak supervision from alternative data modalities [138]] or pre-
trained, generic models [14,139]. Active learning also plays a role here in seeking
to adapt models efficiently to unlabeled data from novel regions with only a few

targeted labels [60, |84].

Table 5.5: The in-distribution (ID) and out-of-distribution (OOD) performance
of each method on 1WiLbCam2020-wiLps. Following WiLps 1.0, we ran 3-10
replicates (random seeds) for each cell. We report the standard deviation across
replicates in parentheses; the standard error (of the mean) is lower by the square
root of the number of replicates. Fully-labeled experiments use ground truth labels
on the “unlabeled” data. We bold the highest non-fully-labeled OOD performance
numbers as well as others where the standard error is within range.

TWILDCAM2020-wILDS
(Unlabeled extra, macro F1)

In-distribution  Out-of-distribution
ERM (-data aug) 46.7 (0.6) 30.6 (1.1)
ERM 47.0(1.4) 32.2(1.2)
CORAL 40.5 (1.4) 27.9 (0.4)
DANN 48.5 (2.8) 319 (1.4)
Pseudo-Label 47.3 (0.4) 30.3(0.4)
FixMatch 46.3 (0.5) 31.0 (1.3)
Noisy Student 47.5(0.9) 32.1 (0.7)
SwAV 473 (1.4) 29.0 (2.0)
ERM (fully-labeled) 54.6 (1.5) 44.0 (2.3)
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Baseline Results

[5.5]shows that most methods do not improve over standard empirical risk minimiza-
tion (ERM) on iWiLpCam2020-wiLps despite access to unlabeled data and careful
hyperparameter tuning. In contrast, these methods have been shown to perform well
on prior unsupervised adaptation benchmarks; we verify our implementations by
showing that these methods (with the exception of CORAL) outperform ERM on the
real — sketch shift in DomainNet, a standard unsupervised adaptation benchmark
for object classification [89,[100].

Data augmentation improved OOD performance on iWiLpCam2020-wiLps. How-
ever, none of the benchmarked methods improved OOD performance compared
to ERM even though we had access to 4X as many unlabeled images from extra
domains (distinct camera traps). Note we did not have access to any images from
the target domains. This was surprising, as many of these methods were originally
shown to work in semi-supervised settings. One difference could be that the labeled
and unlabeled examples in IWILDCaM2020-wiLDs differ more significantly (as they
originate from different camera traps) than in the original FixMatch paper [113],
which used i.i.d. labeled and unlabeled data, or the Noisy Student paper [143],
which used ImageNet labeled data [98] and JFT unlabeled data [S6].

Fully-labeled ERM models that used ground truth labels for the “unlabeled” data
were available for iIWiLDCamM2020-wiLps. They significantly outperformed other

methods, suggesting room for improvement in how we leverage the unlabeled data.

5.8 Conclusion

The 1WildCam datasets and suite of benchmarks has provided an entrypoint for many
computer vision researchers into the ecological domain. The growth of interest in
the competition and the additional challenges introduced over time, as well as the
inclusion of iWildCam in the WILDS benchmark, has provided visibility for ecol-
ogy and environmental applications as useful and impactful testbeds for computer
vision research. The competitions have captured and sometimes introduced novel
challenges to the computer vision community and have generated useful insight
about what works and what doesn’t for camera trap Al that has enabled ecology
and conservation technology practitioners to prioritize their efforts when seeking to
use computer vision as part of their data processing pipelines. This emphasizes the
value of careful benchmark dataset curation and design, both to the computer vision

community and within the application domain that the benchmark exemplifies.
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Chapter 6

SYNTHETIC EXAMPLES IMPROVE GENERALIZATION FOR
RARE CLASSES

Sara Beery, Yang Liu, Dan Morris, Jim Piavis, Ashish Kapoor, Neel Joshi, Markus
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Computer Vision, pages 863-873, 2020.

6.1 Abstract

The ability to detect and classify rare occurrences in images has important applications—
for example, counting rare and endangered species when studying biodiversity, or
detecting infrequent traffic scenarios that pose a danger to self-driving cars. Few-shot
learning is an open problem: current computer vision systems struggle to catego-
rize objects they have seen only rarely during training, and collecting a sufficient
number of training examples of rare events is often challenging and expensive, and
sometimes outright impossible. We explore in depth an approach to this problem:

complementing the few available training images with ad-hoc simulated data.

Our testbed is animal species classification, which has a real-world long-tailed
distribution. We present two natural world simulators, and analyze the effect of
different axes of variation in simulation, such as pose, lighting, model, and simula-
tion method, and we prescribe best practices for efficiently incorporating simulated
data for real-world performance gain. Our experiments reveal that synthetic data
can considerably reduce error rates for classes that are rare, that as the amount of
simulated data is increased, accuracy on the target class improves, and that high

variation of simulated data provides maximum performance gain.

6.2 Introduction

In recent years, computer vision researchers have made substantial progress towards
automated visual recognition across a wide variety of visual domains [8, 20, 47/,
51,157, 168]. However, applications are hampered by the fact that in the real world
the distribution of visual classes is long-tailed, and state-of-the-art recognition
algorithms struggle to learn classes with limited data [67]. In some cases (such

as recognition of rare endangered species) classifying rare occurrences correctly is
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Figure 6.1: Day and night examples for each simulation method. We compare
four different simulation methods and compare the effects of each on classification
performance.

crucial. Simulated data, which is plentiful, and comes with annotation “for free,”
has been shown to be useful for various computer vision tasks [24],
149, 53], 55, 1611, [69]. However, an exploration of this approach in a long-tailed

setting is still missing (see section [6.3)).

As a testbed, we focus on the effect of simulated data augmentation on the real-world
application of recognizing animal species in camera trap images. Camera traps are
heat- or motion-activated cameras placed in the wild to monitor animal populations
and behavior. The processing of camera trap images is currently limited by human
review capacity; consequently, automated detection and classification of animals is
a necessity for scalable biodiversity assessment. A single sighting of a rare species
is of immense importance. However, training data of rare species is, by definition,
scarce. This makes this domain ideal for studying methods for training detection
and classification algorithms with few training examples. We utilize a technique
from [8] which tests performance at camera locations both seen (cis) and unseen
(trans) during training in order to explicitly study generalization (see Section [6.4]for

a more detailed explanation).

We introduce two novel natural world simulators based on popular 3D game devel-
opment engines for generalizable, realistic and efficient synthetic data generation.
We investigate the use of simulated data as augmentation during training, and how
to best combine real data for common classes with simulated data for rare classes
to achieve optimal performance across the class set at test time. We consider four

different data simulation methods (see Fig. [6.1)) and compare the effects of each
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on classification performance. Finally, we analyze the effect of both increasing
the number of simulated images and controlling for axes of variation to provide
best practices for leveraging simulated data for real-world performance gain on rare

classes.

6.3 Related work

Visual categorization datasets

Large and well-annotated public datasets allow scientists to train, analyze, and
compare the performance of different methods, and have provided large performance
improvements over traditional vision approaches [31, 34, 63]. The most popular
datasets used for this purpose are ImageNet, COCO, Pascal VOC, and Openlmages,
all of which are human-curated from images scraped from the web [[17, 21,39, 43]].
These datasets cover a wide set of classes across both the manufactured and natural
world, and are usually designed to provide “enough” data per class to avoid the low-
dataregime. More recently researchers have proposed datasets that focus specifically
on long-tailed distributions [8, 41, |68]. The Caltech Camera Traps dataset [§]
introduced the challenge of learning from limited locations, and generalizing to new

locations.

Handling imbalanced datasets

Imbalanced datasets lead to bias in algorithm performance toward well-represented
classes [12]]. Algorithmic solutions often use a non-uniform cost per misclassifica-
tion via weighted loss [19, 29, 30]. One example, focal loss, was recently proposed

to deal with the large foreground/background imbalance in detection [44].

Data solutions employ data augmentation, either by 1) over-sampling the minority
classes, 2) under-sampling the majority classes, or 3) generating new examples for
the minority classes. When using mini-batch gradient descent, oversampling the
minority classes is similar to weighted loss. Under-sampling the majority classes is
non-ideal, as this reduces information about common classes. Our paper falls into the
third category: generating new training data for rare classes. Data augmentation via
pre-processing, using affine and photometric transformations, is a well-established
tool for improving generalization [33) 140]]. Data generation and simulation have

begun to be explored as data augmentation methods, see section

Algorithmic and data solutions for imbalanced data are complementary, algorithmic

advances can be used in conjunction with augmented training data.
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Low-shot learning

Low-shot learning attempts to learn categories from few examples [42]. Wang and
Herbert [70] do low-shot classification by regressing from small-dataset classifiers to
large-dataset classifiers. Hariharan and Girshick [27] look specifically at ImageNet,
using classes that are unbalanced, some with large amounts of training data, and
some with little training data. Metric learning learns a representation space where
distance corresponds to similarity, and uses this as a basis for low-shot solutions
[14]]. We consider the low-shot regime with regard to real data for our rare target
class, but investigate the use of added synthetic data based on a human-generated
articulated model of the unseen class during training instead of additional class-
specific attribute labels at training and test time. This takes us outside of the
traditional low-shot framework into the realm of domain transfer from simulated to

real data.

Data augmentation via style transfer, generation, and simulation

Image generation via generative adversarial networks (GANs) and recurrent neural
networks (RNNs), as well as style transfer and image-to-image translation have all
been considered as sources for data augmentation [[11},25}135,145,152,166,73]]. These
techniques require large amounts of data to generate realistic images making them
non-ideal solutions for low-data regimes. Though conditional generation allows for

class-specific output, the results can be difficult to interpret or control.

Graphics engines such an Unreal [1) [71] and Unity [2] leverage the expertise of
human artists and complex physics models to generate photorealistic simulated
images, which can be used for data augmentation. Because ground truth is known at
generation, simulated data has proved particularly useful for tasks requiring detailed
and expensive annotation, such as keypoints, semantic segmentations, or depth
information [24} 28| 132} 149, 150, 53,155,161, 169]]. Varol et al. [69] use synthetically-
generated humans placed on top of real image backgrounds as pretraining for human
pose estimation, and suggest fine-tuning a synthetically-trained model on real data.
[[61]] uses a combination of unlabeled real data and labeled simulated data of the same
class to improve real-world performance on an eye-tracking task by using GANs
[24]. This method requires a large number of unlabled examples from the target
class. [32,150% 53] find that simulated data improves detection performance, and the
degree of realism and variability of simulation affects the amount of improvement.
They consider only small sets of non-deformable man-made objects. Richter et

al. [S5] showed that a segmentation model for city scenes trained with a subset of
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their real dataset and a large synthetic set outperforms a model trained with the
full real dataset. [49] proposes a dataset and benchmark for evaluating models for
unsupervised domain transfer from synthetic to real data with all-simulated training
data, as opposed to simulated data only for rare classes. While this literature is
encouraging, a number of questions are left unexplored. The firstis a careful analysis
of when simulated data is useful and, in particular, if it is useful in generalizing to
new scenarios. Second, whether simulated data can be useful in highly complex
and relatively unpredictable scenes such as natural scenes, as opposed to indoors
and urban scenes. Third, whether it is just the synthetic objects or also the synthetic

environments that contribute to learning.

Simulated datasets

Previous efforts on synthetic dataset generation focus on non-deformable man-made
objects and indoor scenes [32} 138, 153) 158, 162, [72]], human pose/actions [[16} |69], or
urban scenes [18, 122,126/, |36, (55, [56]].

Bondi et al. [10] previously released the AirSim-w data simulator within the domain
of wildlife conservation, focused on creating aerial infrared imagery. The resolution
and quality of the assets is designed to replicate data from 100 meters in the air, but
is not realistic close-up. We contribute the first image data generators specifically for
the natural world with the ability to recreate natural environments and generate near-
photorealistic images of animals within the scene, including real-world nuisance

factors such as challenging pose, lighting, and occlusion.

6.4 Data and simulation

Real data

Our real-world training and test data comes from the Caltech Camera Traps (CCT)
dataset [8]. CCT contains 243, 187 images from 140 camera trap locations covering
30 classes of animals, curated from data provided by the United States Geological
Survey and the National Park Service. We follow the CCT-20 data split laid out in
[8], which was explicitly designed for in-depth generalization analysis. The split
uses a subset of 57,868 images from 20 camera locations covering 15 classes in
CCT to simultaneously investigate performance on locations seen during training
and generalization performance to new locations. Bounding-box annotations are
provided for all images in CCT-20, whereas the rest of CCT has only class labels. In
the CCT-20 data split, cis-locations are defined as locations seen during training and

trans-locations as locations not seen during training (see Fig.[6.3)). Nine locations
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are used for trans-test data, one location for trans-validation data, and data from the
remaining 10 locations is split between odd and even days, with odd days as cis-test
data and even days as training and cis-validation data (a 95% of data from even days

for training, 5% for testing).

(d) iNaturalist images

Figure 6.2: Cis vs. Trans: The cis-test data can be very similar to the training data:
animals tend to behave similarly at a single location even across different days, so
the images collected of each species are easy to memorize intra-location. The trans
data has biases towards specific angles and lighting conditions that are different
from those in the cis locations, and as such is very hard to learn from the training
data. iNaturalist data represents a domain shift to human-curated images.
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Figure 6.3: (Top) Number of training examples for each class. Deer are rare in
the training locations from the CCT-20 data split. We focus on deer as a test species
in order to investigate whether we can improve performance on a “rare” class. Since
deer are not rare at other camera locations within the CCT dataset, we have enough
test data to thoroughly evaluate the effect. (Bottom) Number of examples for each
data split, for deer and other classes. In the CCT-20 data split there were no
trans examples of deer. We added annotations to the trans val and test sets for an
additional 16K images across 65 new locations from CCT, including 6K examples
of deer. We call these augmented sets trans+.

To study the effect of simulated data on rare species, we focus on deer, which are
rare in CCT-20, with only 44 deer examples out of the 13, 553 images in the training
set (see Fig.[6.3). To focus on the performance of a single rare class, we remove
the other two rare classes in CCT-20: badgers and foxes. We note that there are
no deer images in the established CCT-20 trans sets. In reality, deer are far from
uncommon: unlike a truly rare species, there exist sufficient images of deer in the
CCT dataset outside of the CCT-20 locations to rigorously evaluate performance.
To facilitate deeper investigation of generalization we have collected bounding-box
annotations for an additional 16K images from CCT across 65 new locations, which
we add to the trans-validation and trans-test sets to cover a wider variety of locations
and classes (including deer). We call this augmented trans set trans+ (see Fig.[6.3)
and will release the annotations at publication. To further analyze generalization,
we also test on data containing deer from the iNaturalist 2017 dataset [68], which
represents a domain shift to human-captured and human-selected photographs. We
consider Odocoileus hemionus (mule deer) and Odocoileus virginianus (white-
tailed deer) images from iNaturalist, the two species of deer seen in the CCT data.

In Supplementary Material we show results on an additional class, wolf.
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To assess generality we leverage multiple collections of woodland and animal models
to create two simulation environments, which we call TrapCam-Unity and TrapCam-
AirSim. Both simulation environments and source code to generate images will be
provided publicly, along with the data generated for this paper. To synthesize daytime
images we varied the orientation of the simulated sun in both azimuth and elevation.
To create images taken at night we used a spotlight attached to the simulated camera
to simulate a white-light or IR flash and qualitatively match the low color saturation
of the nighttime images. To simulate animals’ eyeshine (a result of the reflection of
camera flash from the back of the eye), we placed small reflective balls on top of the

eyes of model animals.

TrapCam-AirSim. We create a modular natural environment within Microsoft
AirSim [60] that can be randomly populated with flora and fauna. The distribution
and types of trees, bushes, rocks, and logs can be varied and randomly seeded
to create a diverse set of landscapes, from an open plain to a dense forest. We
used various off-the-shelf components such as an animal pack from Epic Studios
[4] (Animals Vol 01: Forest Animals by GiM [3]]), background terrain also from
Unreal Marketplace [[1], vegetation from SpeedTree [7]], and rocks/obstructions from
Megascans [6]. The actual area of the environment is small, at 50 meters, but the

modularity allows many possible scenes to be built.

TrapCam-Unity. Unity 3D game development engine is a popular game devel-
opment tool that offers realistic graphics, real time performance and abundant 3D
assets. We take advantage of the “Book of The Dead” environment [3]], a near-
photorealistic, open-source forest environment published by Unity to demonstrate
its high definition rendering pipeline. This off-the-shelf environment is large and
rich in details, it has a diversity of subregions with significantly different statistics.
We change the lighting and move throughout this large, static environment to collect
data with various background scenes. We make use of 17 animated deer models
from five off-the-shelf model sets, purchased from Unity Asset Store and originally
developed for game development, including the GiM models used in TrapCam-
AirSim. A single gaming PC (Core 17 5820K, 16GB RAM, GTX 1080T1) generates
over 300,000 full-HD images with pixel-level instance annotation per day and the

throughput linearly scales to additional machines.

Simulated animals on empty images. Similar to the data generated in [69], we

generate synthetic images of deer by rendering deer on top of real camera trap
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images containing no animals, which we call Sim on Empty (see Fig. [0.I). We
first generate animal foreground images by randomizing the location, orientation in
azimuth, pose and illumination of the deer, then paste the foreground images on top
of the real empty images. A limitation is that the deer are not in realistic relationships
or occlusion scenarios with the environment around them. We also note that the
empty images used to construct this data come from both cis and trans locations,
so Sim on Empty contains information about test-set backgrounds unavailable in
the purely simulated sets. This choice is based on current camera trap literature,
which first detects the presence of any animal, and then determines animal species
[8,47]. After the initial animal detection step, the empty images are known and can

be utilized.

Segmented animals on empty images. We manually segment the 44 examples
of deer from the training set and paste them at random on top of real empty cam-
era trap images, which we call Real on Empty (see Fig. [6.1). This allows us to
analyze whether the generalization challenge is related to memorizing the training
deer+background or memorizing the training deer regardless of background. Similar
to the Sim on Empty set, these images do not have realistic foreground/background

relationships and the empty images come from both cis and trans locations.

6.5 Experiments

Beery, et al.[8] showed that detecting and localizing the presence of an “animal”
(where all animals are grouped into a single class) both generalizes well to new
locations and improves classification performance. We focus on classification of
cropped ground-truth bounding boxes as opposed to training multi-class detectors in
order to disambiguate classification and detection errors. We specifically investigate
how added synthetic training data for rare classes effects model performance on both

rare and common classes.

We find that the Inception-Resnet-V2 architecture [64] works best for the cropped-
box classification task, based on performance comparison across architectures (see
Supplementary Material). Most classification systems are pretrained on Imagenet,
which contains animal classes. To ensure that our “rare” class is truly something the
model is unfamiliar with, as opposed to something seen in pretraining, we pretrain
our classifiers on no-animal ImageNet, a dataset we define by removing the “animal”
subtree (all classes under synset node n00015388) from ImageNet. We use an initial

learning rate of 0.0045, RMSprop with a momentum of 0.9 [65], and a square
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Figure 6.4: Error as a function of number of simulated images seen during
training. We divide this plot into three regions. The leftmost region is the baseline
performance with no simulated data, shown at x=0 (Note x-axis is in log scale). In
the middle region, additional simulated training data increases performance on the
rare class and does not harm the performance of the remaining classes (trend lines
are visualized). The rightmost region, where many simulated images are added to
the training set, results in a biased classifier, hurting the performance of the other
classes (see Fig.[6.5] (b-c) for details). We compare the class error for “deer” and
“other classes” in both the “cis” and “trans+” testing regimes. Lines marked “deer”
use only the deer test images for the error computation. Lines marked “other classes”
use all the images in the other classes (excluding deer) for the error computation.
Error is defined as the number of incorrectly identified images divided by the number
of images.

input resolution of 299. We employ random cropping (containing at least 65% of
the region), horizontal flipping, color distortion, and blur as data augmentation.
Model selection is performed using early stopping based on trans+ validation set

performance [9].

Effect of increase in simulated data

We explore the trade-off in performance when increasing the number of simulated
images, from 5 to 1.4 million, spanning 5 log units (see Fig. [6.4). Very little
simulated data is needed to see a trans+ performance boost: with as few as 5

simulated images we see a 10% decrease in per-class error on trans+ deer, with
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Figure 6.5: (a) Trans+ PR curves for the deer class: Note the development of a
biased classifier as we add simulated training data. The baseline model (in blue)
has high precision but suffers low recall. The model trained with 1.4M simulated
images (in grey) has higher recall, but suffers a loss in precision. (b-c) Evidence of
a biased classifier: Compare the deer column in the confusion matrices, the model
trained with 1.4M simulated images predicts more test images as deer.

< 0.5% increase in average per-class error on the other trans+ classes. As we
increase the number of simulated images, trans+ performance improves: with 100K
simulated images we see a 39% decrease in trans+ deer error, with < 0.5% increase
in error for the other trans classes. There exists some threshold (> 325K) where,
if passed, an increase in simulated data noticeably biases the classifier towards the
deer class (see Fig.[6.5): with 1.4 million simulated images, our trans+ deer error
decreases by 88%, but it comes at the cost of a 13% increase in average per-class

error across the other classes. At this point there is an overwhelming class prior
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Figure 6.6: Error as a function of variability of simulated images seen during
training: 100K simulated deer images. Error is calculated as in Fig. [6.4] and all
data is from TrapCam-Unity. Trans+ deer performance is highlighted. In the legend
“CCT” means the model was trained only on the CCT-20 training set with no added
simulated data. “P” means “pose,” “L” means “lighting,” and “M” means “model,”
while the prefix “f” for “fixed” denotes which of these variables were controlled for
a particular experiment. For example “fPM” means the pose and the animal model
were held fixed, while the lighting was allowed to vary. The variability of simulated
data is extremely important, and that while all axes of variability matter, simulating
nighttime images has the largest effect.

towards deer: the next-largest class at training time would be opossums with 2, 514

images, 3 orders of magnitude less.

Unsurprisingly, cis deer performance decreases with added simulated data. Al-
though the images were taken on different days (train from even days, cis-test from
odd days) the animals captured were to some extent creatures of habit. Thus, training
and test images can be nearly identical from within the same locations (see Fig.[6.2)).
Almost all cis test deer images have at least one visually similar training image. As
simulated data is added at training time, the model is forced to learn a more complex,
varied representation of deer. As a result, we see cis deer performance decrease. To
quantify robustness, we ran the 100K experiment three times. We found that trans+
deer error had a standard deviation of 2% and cis deer error had a standard deviation
of 4%, whereas the average error across other classes had a standard deviation of
0.2% for both cis and trans.

We also investigate performance on deer images from iNaturalist [68]], which are in-
dividually collected by humans and are usually relatively centered and well-focused

(and therefore easier to classify) but represent a domain shift (see Fig.[6.2). Adding
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Figure 6.7: Error as a function of simulated data generation method: 100K simulated
deer images. Per-class error is calculated as in Fig. [6.4] Trans+ deer performance
is highlighted. Oversampling decreases performance, and there is a large boost in
performance from incorporating real segmented animals on different backgrounds
(Real on Empty). TrapCam-Unity with everything allowed to vary (model, lighting,
pose, including nighttime simulation) gives us slightly better trans+ performance,
without requiring additional segmentation annotations. Combining Real on Empty
with TrapCam-Unity (50K of each) gives us the best trans+ deer performance.

simulated data improves performance on the iNaturalist deer images (see Fig. [6.4)),

demonstrating the robustness and generality of the representation learned.

Effect of variation in simulation

In order to understand which aspects of the simulated data are most beneficial, we
consider three dimensions of variation during simulation: pose, lighting, and animal
model. Using the TrapCam-Unity simulator, we generate 100K daytime simulated
images for each of these experiments. As a control, we create a set of data where
the pose, lighting, and animal model are all fixed. We then create sets with varied
pose, varied lighting, and varied animal model, each with the other variables held
fixed. An additional set of data is generated varying all of the above. Unsurprisingly,
widest variation results in the best trans+ deer performance. The individual axes of
variation do have an effect of performance, and some are more “valuable” than others
(see Fig.[6.6). There are many more dimensions of variation that could be explored,
such as simulated motion blur or variation in camera perspective. For CCT data,
we find adding simulated nighttime images has the largest effect on performance.
We have determined that for deer 49% of training images, 53% of cis test images,

and 56% of trans+ test images were captured at night, using either IR or white flash.
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Figure 6.8: Visualization of network activations (Left is no simulated deer,
right is with 1.4M simulated deer): more deer are classified correctly as we
add synthetic data, despite the synthetic data being clustered separately. The
pink points are real deer, the brown are simulated day images and the grey are
simulated night images. Large markers are points that are classified correctly, while
small markers are points classified incorrectly. The plots were generated by running
200-dimensional PCA over the activations at the last pre-logit layer of the network
when running inference on the test sets, and then running 2-dimensional tSNE over
the resulting PCA embedding.
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Simulating only daytime images injects a prior towards deer being seen during the
day. By training on half day and half night images we match the day/night prior
for deer in the data. Not all species occur equally during the day or night, some
are strictly nocturnal. Our results suggest that a good strategy is to determine the
appropriate ratio of day to night images using your training set and match that ratio

when adding simulated data.

Comparing simulated data generation methods

We compare performance gain from 4 methods of data synthesis, using 100K added
deer images for each (see Fig. The animal model is controlled (each simulated
set uses the same GiM deer model for these experiments) for fair comparison of
the efficacy of each generation method. As an additional control, we consider
oversampling the rare class. This creates the same sampling prior towards deer
without introducing any new information. Oversampling performs worse than just
training on the unbalanced training set by causing the model to overfit the deer class
to the training images. By manually segmenting out the deer in the 44 training images
and randomly pasting them onto empty backgrounds we see a large improvement in
performance. Cis error goes down to 6% with this method of data augmentation,

which makes sense in the view of the strong similarities between the training and
cis-test data (see Fig.[6.2)).

Real on Empty and Sim on Empty are able to approximate both “day” and “night”
imagery, a deer pasted onto a nighttime empty image is actually a reasonable ap-
proximation of an animal illuminated by a flash at night (see Fig. [6.I). They also
have the additional benefit of using backgrounds from both cis and trans sets, giving
them trans information not provided by the simulated datasets. TrapCam-Unity
with all variability enabled is our best-performing model without requiring addi-
tional segmentation annotations. If segmentation information is available, Real on
Empty combined with TrapCam-Unity (50K of each) improves both cis and trans
deer performance: trans deer error decreases to 36% (a 54% decrease compared to

CCT only), with < 2% increase in error on trans other classes.

Visualizing the representation of data

In order to visualize how the network represents simulated data vs. real data, we
use PCA and tSNE [46] to cluster the activations of the final pre-logit layer of the
network. These visualizations can be seen in Fig.[6.8] Interestingly, the model learns

“deer” bimodally: simulated deer are clustered almost entirely separately from real
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deer, with a few datapoints of each ending up in the opposite cluster. Even though
those clusters overlap only slightly, the network is surprisingly able to classify more

deer images correctly.

6.6 Conclusions and future work

We present two fast, realistic natural world data simulators based on popular 3D
game development engines. Our simulators have 3 major advantages. First, they
are generalizable. Thanks to the abundant 3D assets available online in the game
development community, integrating a new species in a new environment from
off the shelf assets is simple and fast. Second, not only are the graphics near-
photorealistic, the pipeline also generates animals with realistic pose, animation,
and interactions with the environment. Third, data generation is efficient. A
single gaming PC generates over 300,000 full-HD images with pixel-level instance

annotation per day and the throughput linearly scales to additional machines.

We explore using the simulated data to augment rare classes during training. To-
wards this goal, we compare multiple sources of natural-world data simulation,
explicitly measure generalization via the cis-vs-trans paradigm, examine trade-offs
in performance as the number of simulated images seen during training is increased,
and analyze the effect of controlling for different axes of variation and data generation

methods.

From our experiments we draw three main lessons. First: using synthetic data
can considerably reduce error rates for classes that are rare, and with segmentation
annotations we can reduce error rates even further by additionally randomly pasting
segmented images of rare classes on empty background images. Second: as the
amount of simulated data is increased, accuracy on the target class improves. How-
ever, with 1000x more simulated data than the common classes, we see negative
effects on the performance of other classes due to the high class imbalance. Third:
the variation of simulated data generated is very important, and maximum variation

provides maximum performance gain.

While an increase in simulated data corresponds to an increase in target class
performance, the representation of simulated data overlaps only rarely with real
data (see Fig. [6.8). It remains to be studied whether embedding techniques [59],
domain adaptation techniques [23), [74]], or style transfer [24, |61]] could be used to
encourage a higher overlap in representation between the synthetic and real data, and

if that overlap would lead to an increase in categorization accuracy. Additionally,
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the bias induced by adding large amounts of simulated data could be addressed with
algorithmic solutions such as those in [[15} 19, 29, 30]. We have not discussed the
drawbacks related to model training with large quantities of synthetic data (epoch
time, data storage, etc.). In future, we will explore merging the simulator and
classifier so that highly variable synthetic data could be requested “online” without

storing raw frames.

Simulation is a fast, interpretable, and controllable method of data generation that
is easy to use and easy to adapt to new classes. This allows for an integrated
and evolving training pipeline with new classes of interest: simulated data can
be generated iteratively based on needs or gaps in performance. Our analysis
suggests a general methodology when using simulated data to improve rare-class
performance: 1) generate small, variable sets of simulated data (even small sets
can drive improvement), 2) add these sets to training and analyze performance to
determine ideal ratios and dimensions of variation, 3) take advantage of ease and
speed of generation to create an abundance of data based on this ideal distribution,
and determine an operating point of number of added simulated images to optimize

performance between rare target class and other classes based on the project goal.

Further, the performance gains we have demonstrated, along with the data generation
tools we contribute to the community, will allow biodiversity researchers focused
endangered species to improve classification performance on their target species.
Adding each new species to the simulation tools currently requires the assistance
of a graphics artist. However, automated 3D modeling techniques, such as those
proposed in [13} 37, 48], 154]], might eventually become an inexpensive and practical

source of data to improve few-shot learning.

The improvement we have found in rare-class categorization is encouraging, and
the release of our data generation tools and the data we have generated will provide
a good starting point for other researchers studying imbalanced data, simulated data

augmentation, or natural-world domains.
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Chapter 7

LONG TERM TEMPORAL CONTEXT FOR PER CAMERA
OBJECT DETECTION

Sara Beery, Guanhang Wu, Vivek Rathod, Ronny Votel, and Jonathan Huang.
Context R-CNN: Long term temporal context for per-camera object detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13075-13085, 2020.

7.1 Abstract

In static monitoring cameras, useful contextual information can stretch far beyond
the few seconds typical video understanding models might see: subjects may exhibit
similar behavior over multiple days, and background objects remain static. Due to
power and storage constraints, sampling frequencies are low, often no faster than
one frame per second, and sometimes are irregular due to the use of a motion
trigger. In order to perform well in this setting, models must be robust to irregular
sampling rates. In this paper we propose a method that leverages temporal context
from the unlabeled frames of a novel camera to improve performance at that camera.
Specifically, we propose an attention-based approach that allows our model, Context
R-CNN, to index into a long term memory bank constructed on a per-camera
basis and aggregate contextual features from other frames to boost object detection

performance on the current frame.

We apply Context R-CNN to two settings: (1) species detection using camera traps,
and (2) vehicle detection in traffic cameras, showing in both settings that Context
R-CNN leads to performance gains over strong baselines. Moreover, we show that
increasing the contextual time horizon leads to improved results. When applied to
camera trap data from the Snapshot Serengeti dataset, Context R-CNN with context
from up to a month of images outperforms a single-frame baseline by 17.9% mAP,

and outperforms S3D (a 3d convolution based baseline) by 11.2% mAP.

7.2 Introduction
We seek to improve recognition within passive monitoring cameras, which are static

and collect sparse data over long time horizons[!| Passive monitoring deployments

Models and code will be released online.
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Figure 7.1: Visual similarity over long time horizons. In static cameras, there
exists significantly more long term temporal consistency than in data from moving
cameras. In each case above, the images were taken on separate days, yet look
strikingly similar.

are ubiquitous and present unique challenges for computer vision but also offer

unique opportunities that can be leveraged for improved accuracy.

For example, depending on the triggering mechanism and the camera placement,
large numbers of photos at any given camera location can be empty of any objects
of interest (up to 75% for some ecological camera trap datasets) [30]. Further, as
the images in static passive-monitoring cameras are taken automatically (without
a human photographer), there is no guarantee that the objects of interest will be
centered, focused, well-lit, or an appropriate scale. We break these challenges
into three categories, each of which can cause failures in single-frame detection

networks:

* Objects of interest partially observed. Objects can be very close to the cam-
era and occluded by the edges of the frame, partially hidden in the environment

due to camouflage, or very far from the camera.
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* Poor image quality. Objects are poorly lit, blurry, or obscured by weather

conditions like snow or fog.

* Background distractors. When moving to a new camera location, there can

exist salient background objects that cause repeated false positives.

These cases are often difficult even for humans. On the other hand, there are aspects
of the passive monitoring problem domain that can give us hope—for example,
subjects often exhibit similar behavior over multiple days, and background objects
remain static, suggesting that it would be beneficial to provide temporal context
in the form of additional frames from the same camera. Indeed we would expect
humans viewing passive monitoring footage to often rewind to get better views of a

difficult-to-see object.

These observations forms the intuitive basis for our model that can learn how to find
and use other potentially easier examples from the same camera to help improve
detection performance (see Figure [7.2). Further, like most real-world data [41],
both traffic camera and camera trap data have long-tailed class distributions. By
providing context for rare classes from other examples, we improve performance in

the long tail as well as on common classes.

More specifically, we propose a detection architecture, Context R-CNN, that learns
to differentiably index into a long-term memory bank while performing detection
within a static camera. This architecture is flexible and is applicable even in the
aforementioned low, variable framerate scenarios. At a high level, our approach can
be framed as a non-parametric estimation method (like nearest neighbors) sitting
on top of a high-powered parametric function (Faster R-CNN). When train and test
locations are quite different, one might not expect a parametric method to generalize
well [4], whereas Context R-CNN is able to leverage an unlabeled ‘neighborhood’

of test examples for improved generalization.
We focus on two static-camera domains:

* Camera traps are remote static monitoring cameras used by biologists to
study animal species occurrence, populations, and behavior. Monitoring
biodiversity quantitatively can help us understand the connections between
species decline and pollution, exploitation, urbanization, global warming,

and policy.
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* Traffic cameras are static monitoring cameras used to monitor roadways and

intersections in order to analyze traffic patterns and ensure city safety.

In both domains, the contextual signal within a single camera location is strong,
and we allow the network to determine which previous images were relevant to
the current frame, regardless of their distance in the temporal sequence. This is
important within a static camera, as objects exhibit periodic, habitual behavior that
causes them to appear days or even weeks apart. For example, an animal might
follow the same trail to and from a watering hole in the morning and evening every

night, or a bus following its route will return periodically throughout the day.
To summarize our main contributions:

* We propose Context R-CNN, which leverages temporal context for improving
object detection regardless of frame rate or sampling irregularity. It can be
thought of as a way to improve generalization to novel cameras by incorpo-

rating unlabeled images.

* We demonstrate major improvements over strong single-frame baselines; on

a commonly-used camera trap dataset we improve mAP at 0.5 IoU by 17.9%.

* We show that Context R-CNN is able to leverage up to a month of temporal
context which is significantly more than prior approaches.

7.3 Related Work

Single frame object detection. Driven by popular benchmarks such as COCO [23]]
and Open Images [21], there have been a number of advances in single frame
object detection in recent years. These detection architectures include anchor-based
models, both single stage (e.g., SSD [26], RetinaNet [24]], Yolo [31} 32]]) and two-
stage (e.g., Fast/Faster R-CNN [14, [17, 133]], R-FCN [[10]), as well as more recent
anchor-free models (e.g., CornerNet [22], CenterNet [55], FCOS [40]). Object
detection methods have shown great improvements on COCO- or Imagenet-style

images, but these gains do not always generalize to challenging real-world data (See
Figure[7.2).

Video object detection. Single frame architectures then form the basis for video
detection and spatio-temporal action localization architectures, which build upon

single frame models by incorporating contextual cues from other frames in order
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(a) Object moving out of frame.

04.03.2011 18:45:08

(b) Object highly occluded.

10-10-2010 12:41:54 DLGoovert.com 10-10-2010 12:41:54

(c) Object far from camera.

10-30-2010 20:41:18  DLGoovert.com 10-30-2010 20:41:18

(d) Objects poorly lit.

(e) Background distractor.

Figure 7.2: Static Monitoring Camera Challenges. Images taken without a
human photographer have no quality guarantees; we highlight challenges which
cause mistakes in single-frame systems (left) and are fixed by our model (right).
False single-frame detections are in red, detections missed by the single-frame
model and corrected by our method are in green, and detections that are correct in
both models are in blue. Note that in camera traps, the intra-image context is very
powerful due to the group behavior of animal species.
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to deal with more specific challenges that arise in video data including motion
blur, occlusion, and rare poses. Leading methods have used pixel level flow (or
flow-like concepts) to aggregate features [/, 56H58]] or used correlation [13] to
densely relate features at the current timestep to an adjacent timestep. Other papers
have explored the use of 3d convolutions (e.g., 13D, S3D) [8, 28, 4/] or recurrent
networks [20, 23] to extract better temporal features. Finally, many works apply
video specific postprocessing to “smooth” predictions along time, including tubelet
smoothing [[15] or SeqNMS [16].

Object-level attention-based temporal aggregation methods. The majority of the
above video detection approaches are not well suited to our target setting of sparse,
irregular frame rates. For example, flow based methods, 3d convolutions and LSTMs
typically assume a dense, regular temporal sampling. And while models like LSTMs
can theoretically depend on all past frames in a video, their effective temporal
receptive field is typically much smaller. To address this limitation of recurrent
networks, the NLP community has introduced attention-based architectures as a
way to take advantage of long range dependencies in sentences [3, 12, 42]. The
vision community has followed suit with attention-based architectures [27, 137, 38]]

that leverage longer term temporal context.

Along the same lines and most relevant to our work, there are a few recent works
[L1} 36,45, 146] that rely on non-local attention mechanisms in order to aggregate
information at the object level across time. For example, Wu et al [45] applied non-
local attention [44] to person detections to accumulate context from pre-computed
feature banks (with frozen pre-trained feature extractors). These feature banks
extend the time horizon of their network up to 60s in each direction, achieving
strong results on spatio-temporal action localization. We similarly use a frozen
feature extractor that allows us to create extremely long term memory banks which
leverage the spatial consistency of static cameras and habitual behavior of the
subjects across long time horizons (up to a month). However Wu et al use a 3d
convnet (I3D) for short term features which is not well-suited to our setting due to
low, irregular frame rate. Instead we use a single frame model for the current frame
which is more similar to [11} 136, 46] who proposed variations of this idea for video
object detection achieving strong results on the Imagenet Vid dataset. In contrast
to these three papers, we augment our model with an additional dedicated short
term attention mechanism which we show to be effective in experiments. Uniquely,

our approach also allows negative examples into memory which allows the model
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to learn to ignore salient false positives in empty frames due to their immobility;
we find that our network is able to learn background classes (e.g., rocks, bushes)

without supervision.

More generally, our paper adds to the growing evidence that this attention-based
approach of temporally aggregating information at the object level is highly effective
for incorporating more context in video understanding. We argue in fact that it
is especially useful in our setting of sparse irregular frame samples from static
cameras. Whereas a number of competing baselines like 3d convolutions and flow
based techniques perform nearly as well as these attention-based models on Imagenet
Vid, the same baselines are not well-suited to our setting. Thus, we see a larger
performance boost from prior, non-attention-based methods to our attention-based

approach.

Camera traps and other visual monitoring systems. Image classification and
object detection have been increasingly explored as a tool for reducing the arduous
task of classifying and counting animal species in camera trap data [4-6} 29| 30,134,
43,149, 150, 153]]. Detection has been shown to greatly improve the generalization of
these models to new camera locations [4]. It has also been shown in [4, 30, |49]] that
temporal information is useful. However, previous methods cannot report per-image
species identifications (instead identifying a class at the burst level), cannot handle
image bursts containing multiple species, and cannot provide per-image localizations

and thus species counts, all of which are important to biologists.

In addition, traffic cameras, security cameras, and weather cameras on mountain
passes are all frequently stationary and used to monitor places over long time scales.
For traffic cameras, prior work focuses on crowd counting (e.g., counting the number
of vehicles or humans in each image) [2, 9, 35, 152, 154]. Some recent works have
investigated using temporal information in traffic camera datasets [48,[51], but these
methods only focus on short term time horizons, and do not take advantage of long

term context.

7.4 Method

Our proposed approach, Context R-CNN, builds a “memory bank” based on con-
textual frames and modifies a detection model to make predictions conditioned on
this memory bank. In this section, we discuss (1) the rationale behind our choice
of detection architecture, (2) how to represent contextual frames, and (3) how to

incorporate these contextual frame features into the model to improve predictions.
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Due to our sparse, irregular input frame rates, typical temporal architectures such as
3d convnets and recurrent neural networks are not well-suited, due to a lack of inter-
frame temporal consistency (there are significant changes between frames). Instead,
we build Context R-CNN on top of single frame detection models. Additionally,
building on our intuitions that moving objects exhibit periodic behavior and tend
to appear in similar locations, we hope to inform our predictions by conditioning
on instance level features from contextual frames. Because of this last requirement,
we choose the Faster R-CNN architecture [33]] as our base detection model as this
model remains a highly competitive meta-architecture and provides clear choices
for how to extract instance level features. Our method is easily applicable to any

two stage detection framework.

As a brief review, Faster R-CNN proceeds in two stages. An image is first passed
through a first-stage region proposal network (RPN) which, after running non-max
suppression, returns a collection of class agnostic bounding box proposals. These
box proposals are then passed into the second stage, which extracts instance-level
features via the ROIAlign operation [[18,[19] which then undergo classification and

box refinement.

In Context R-CNN, the first-stage box proposals are instead routed through two
attention-based modules that (differentiably) index into memory banks, allowing the
model to incorporate features from contextual frames (seen by the same camera) in
order to provide local and global temporal context. These attention-based modules
return a contextually-informed feature vector which is then passed through the
second stage of Faster R-CNN in the ordinary way. In the following section (7.4),
we discuss how to represent features from context frames using a memory bank
and detail our design of the attention modules. See Figure for a diagram of our

pipeline.

Building a memory bank from context features

Long Term Memory Bank (M!°"¢). Given a keyframe i;, for which we want to
detect objects, we iterate over all frames from the same camera within a pre-defined
time horizon i;_x : i;+, running a frozen, pre-trained detector on each frame. We
build our long term memory bank (M'°"¢) from feature vectors corresponding to
resulting detections. Given the limitations of hardware memory, deciding what to
store in a memory bank is a critical design choice. We use three strategies to ensure

that our memory bank can feasibly be stored.
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(a) High-level Context R-CNN architecture.
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(b) Single attention block.

Figure 7.3: Context R-CNN Architecture. (a) The high-level architecture of the
model, with short term and long term attention used sequentially. Short term and
long term attention are modular, and the system can operate with either or both. (b)
We see the details of our implementation of an attention block, where 7 is the number
of boxes proposed by the RPN for the keyframe, and m is the number of comparison
features. For short term attention, m is the total number of proposed boxes across
all frames in the window, shown in (a) as M short - Eor long term attention, m is the
number of features in the long term memory bank M'°"8 associated with the current
clip. See sectionEfl for details on how this memory bank is constructed.
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Figure 7.4: Visualizing attention. In each example, the keyframe is shown at a
larger scale, with Context R-CNN'’s detection, class, and score shown in red. We
consider a time horizon of one month, and show the images and boxes with highest
attention weights (shown in green). The model pays attention to objects of the same
class, and the distribution of attention across time can be seen in the timelines below
each example. A warthogs’ habitual use of a trail causes useful context to be spread
out across the month, whereas a stationary gazelle results in the most useful context
to be from the same day. The long term attention module is adaptive, choosing to
aggregate information from whichever frames in the time horizon are most useful.

* We take instance level feature tensors after cropping proposals from the RPN
and save only a spatially pooled representation of each such tensor con-
catenated with a spatiotemporal encoding of the datetime and box position

(yielding per-box embedding vectors).

* We curate by limiting the number of proposals for which we store features—we
consider multiple strategies for deciding which and how many features to save

to our memory banks, see section 7.6 for more details.

* Werely on a pre-trained single frame Faster R-CNN with Resnet-101 backbone
as a frozen feature extractor (which therefore need not be considered during
backpropagation). In experiments we consider an extractor pretrained on
COCO alone, or fine-tuned on the training set for each dataset. We find that
COCO features can be used effectively but that best performance comes from
a fine-tuned extractor (see Table[7.1{c)).

Together with our sparse frame rates, by using these strategies we are able to
construct memory banks holding up to 8500 contextual features—in our datasets,

this is sufficient to represent a month’s worth of context from a camera.
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Short Term Memory (M*"°'"), In our experiments we show that it is helpful
to include a separate mechanism for incorporating short term context features
from nearby frames, using the same, trained first-stage feature extractor as for
the keyframe. This is different from our long term memory from above which
we build over longer time horizons with a frozen feature extractor. In contrast
to long term memory, we do not curate the short term features: for small win-
dow sizes it is feasible to hold features for all box proposals in memory. We take
the stacked tensor of cropped instance-level features across all frames within a
small window around the current frame (typically < 5 frames) and globally pool
across the spatial dimensions (width and height). This results in a matrix of shape
(# proposals per frame = # frames) X (feature depth) containing a single embedding
vector per box proposal (which we call our Short Term Memory, M*"™), that is

then passed into the short term attention block.

Attention module architecture

We define an attention block [42] which aggregates from context features keyed
by input features as follows (see Figure [7.3): Let A be the tensor of input features
from the current frame (which in our setting has shape [n X 7 X 7 x 2048], with n
the number of proposals emitted by the the first-stage of Faster R-CNN). We first
spatially pool A across the feature width and height dimensions, yielding A”°°! with
shape [nx2048]. Let B be the matrix of context features, which has shape [m X dp].
We set B = Mot or M'"8. We define k(-;6) as the key function, ¢(-;6) as the
query function, v(-; 0) as the value function, and f(-; #) as the final projection that
returns us to the correct output feature length to add back into the input features. We
use a distinct 6 (67°"8 or 6*"°'") for long term or short term attention respectively. In
our experiments, k, g, v and f are all fully-connected layers, with output dimension

2048. We calculate attention weights w using standard dot-product attention:

w = Softmax ((k(Af’”"l; 6) - (B:6)) / (T\/E)) , (7.1)

where T > 0 is the softmax temperature, w the attention weights with shape [n xm],
and d the feature depth (2048).

We next construct a context feature F°°¢*" for each box by taking a projected,

weighted sum of context features:

Feomext — £(y . y(B;0);0), (7.2)
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where F¢"¢* has shape [n X 2048] in our setting. Finally, we add F<"¢*" as a

per-feature-channel bias back into our original input features A.

7.5 Data

Our model is built for variable, low-frame-rate real-world systems of static cameras,
and we test our methods on two such domains: camera traps and traffic cameras.
Because the cameras are static, we split each dataset into separate camera locations

for train and test, to ensure our model does not overfit to the validation set [4].

Camera Traps. Camera traps are usually programmed to capture an image burst
of 1 — 10 frames (taken at 1 fps) after each motion trigger, which results in data
with variable, low frame rate. In this paper, we test our systems on the Snapshot
Serengeti (SS) [39] and Caltech Camera Traps (CCT) [4] datasets, each of which
have human-labeled ground truth bounding boxes for a subset of the data. We
increase the number of bounding box labeled images for training by pairing class-
agnostic detected boxes from the Microsoft Al for Earth MegaDetector [S] with
image-level species labels on our training locations. SS has 10 publicly available
seasons of data. We use seasons 1 — 6, containing 225 cameras, 3.2M images,
and 48 classes. CCT contains 140 cameras, 243K images, and 18 classes. Both
datasets have large numbers of false motion triggers, 75% for SS and 50% for CCT;
thus many images contain no animals. We split the data using the location splits
proposed in [1]], and evaluate on the images with human-labeled bounding boxes
from the validation locations for each dataset (64K images across 45 locations for
SS and 62K images across 40 locations for CCT).

Traffic Cameras. The CityCam dataset [52]] contains 10 types of vehicle classes,
around 60K frames and 900K annotated objects. It covers 17 cameras monitoring
downtown intersections and parkways in a high-traffic city, and “clips” of data are
sampled multiple times per day, across months and years. The data is diverse,
covering day and nighttime, rain and snow, and high and low traffic density. We use
13 camera locations for training and 4 cameras for testing, with both parkway and

downtown locations in both sets.

7.6 Experiments

We evaluate all models on held-out camera locations, using established object
detection metrics: mean average precision (mAP) at 0.5 IoU and Average Recall
(AR). We compare our results to a (comparable) single-frame baseline for all three

datasets. We focus the majority of our experiments on a single dataset, Snapshot
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Snapshot Serengeti | Caltech Camera Traps | CityCam

Model | mAP AR mAP AR mAP AR
Single Frame | 37.9 46.5 56.8 53.8 38.1 282
Context R-CNN | 55.9 58.3 76.3 62.3 42.6 30.2

(a) Results across datasets

Snapshot Serengeti | mAP AR Snapshot Serengeti | mAP AR
One minute | 50.3 51.4 One box per frame | 55.6 57.5
One hour | 52.1 52.5 COCO features | 50.3 55.8
One day | 52.5 52.9 Only positive boxes | 53.9 56.2
One week | 54.1 53.2 Subsample half | 52.5 56.1
One month | 55.6 57.5 Subsample quarter | 50.8 55.0
(b) Time horizon (c) Selecting memory

Snapshot Serengeti | mAP AR
Single Frame | 37.9 46.5

Maj. Vote | 37.8 46.4

ST Spatial | 39.6 36.0

S3D | 44.7 46.0

CityCam | mAP AR
Single Frame | 38.1 28.2

SF Attn | 449 502 TOT(’;’];E:; jg-g gz.;
ST Attn | 46.4 55.3 P . .

LT Attn | 55.6 57.5 (e) Adding boxes to M!°"8
ST+LT Attn | 55.9 58.3

(d) Comparison across models

Table 7.1: Results. All results are based on Faster R-CNN with a Resnet 101
backbone. We consider the Snapshot Serengeti, Caltech Camera Traps, and CityCam
datasets. All mAP values employ an IoU threshold of 0.5, and AR is reported for
the top prediction (AR@1).

Serengeti, investigating the effects of both short term and long term attention, the
feature extractor, the long term time horizon, and the frame-wise sampling strategy

for M'°"¢ . We further explore the addition of multiple features per frame in CityCam.

Main Results

Context R-CNN strongly outperforms the single-frame Faster RCNN with Resnet-
101 baseline on both the Snapshot Serengeti (SS) and Caltech Camera Traps (CCT)
datasets, and shows promising improvements on CityCam (CC) traffic camera data
as well (See Table (a)). For all experiments, unless otherwise noted, we use

a fine-tuned dataset specific feature extractor for the memory bank. We show an
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absolute mAP at 0.5 IoU improvement of 19.5% on CCT, 17.9% on SS, and
4.5% on CC. Recall improves as well, with AR@1 improving 2% on CC, 11.8%
on SS, and 8.5% on CCT.

For SS, we also compare against several baselines with access to short term temporal
information (Table [7.1(d)). All short term experiments use an input window of 3

frames. Our results are as follows:

* We first consider a simple majority vote (Maj. Vote) across the high-
confidence single-frame detections within the window, and find that it does

not improve over the single-frame baseline.

* We attempt to leverage the static-ness of the camera by taking a temporal-
distance-weighted average of the RPN box classifier features from the key
frame with the cropped RPN features from the same box locations from the
surrounding frames (ST Spatial), and find it outperforms the single-frame
baseline by 1.9% mAP.

* S3D [47/]], a popular video object detection model, outperforms single-frame
by 6.8% mAP despite being designed for consistently sampled high frame

rate video.

 Since animals in camera traps occur in groups, cross-object intra-image con-
text is valuable. An intuitive baseline is to restrict the short term attention
context window (M*"°"*) to the current frame (SF Attn). This removes tempo-
ral context, showing how much improvement we gain from explicitly sharing
information across the box proposals in a non-local way. We see that we
can gain 7% mAP over a vanilla single-frame model by adding this non-local

attention module.

* When we increase the short term context window to three frames, keyframe

plus two adjacent, (ST Attn) we see an additional improvement of 1.5% mAP.

* If we consider only long term attention with a time horizon of one month (LT

Attn), we see a 9.2% mAP improvement over short term attention.

* By combining both attention modules into a single model (ST+LT Attn), we
see our highest performance at 55.9% mAP, and show in Figure that we

improve for all classes in the imbalanced dataset.
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Figure 7.5: Performance per class. Our performance improvement is consistent
across classes: we visualize SS per-species mAP from the single-frame model to
our best long term and short term memory model.

Changing the Time Horizon (Table[7.1(b))

We ablate our long term only attention experiments by increasing the time horizon
of M'" and find that performance increases as the the time horizon increases.
We see a large performance improvement over the single-frame model even when
only storing a minute-worth of representations in memory. This is due to the
sampling strategy, as highly-relevant bursts of images are captured for each motion
trigger. The long term attention block can adaptively determine how to aggregate
this information, and there is much useful context across images within a single
burst. However, some cameras take only a single image at a trigger; in these cases
the long term context becomes even more important. The adaptability of Context
R-CNN to be trained on and improve performance across data with variable frame
rates and with different sampling strategies (time lapse, motion trigger, heat trigger,

and bursts of 1-10 images per trigger) is a valuable attribute of our system.

In Figure we explore the time differential between the top scoring box for each
image and the features it most closely attended to, using a threshold of 0.01 on the
attention weight. We can see day/night periodicity in the week- and month-long
plots, showing that attention is focused on objects captured at the same time of
day. As the time horizon increases, the temporal diversity of the attention module
increases and we see that Context R-CNN attends to what is available across the time

horizon, with a tendency to focus higher on images nearby in time (see examples in

Figure [7.4)).
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Figure 7.6: Attention over time. We threshold attention weights at 0.01, and plot
a histogram of time differentials from the highest-scoring object in the keyframe to
the attended frames for varied long term time horizons. Note that the y-axis is in
log scale. The central peak of each histogram shows the value of nearby frames, but
attention covers the breadth of what is provided: namely, if given a month worth
of context, Context R-CNN will use it. Also note a strong day/night periodicity
when using a week-long or month-long memory bank.

Contextual features for constructing M3,

Feature extractor (Table [7.1(c)). For Snapshot Serengeti, we consider both a
feature extractor trained on COCQO, and one trained on COCO and then fine-tuned
on the SS training set. We find that while a month of context from a feature extractor
tuned for SS achieves 5.3% higher mAP than one trained only on COCO, we are
able to outperform the single-frame model by 12.4% using memory features that

have never before seen a camera trap image.

Subsampling memory (Table[7.1(c)). We further ablate our long term memory by
decreasing the stride at which we store representations in the memory bank, while
maintaining a time horizon of one month. If we use a stride of 2, which subsamples
the memory bank by half, we see a drop in performance of 3.1% mAP at 0.5. If
we increase the stride to 4, we see an additional 1.7% drop. If instead of increasing

the stride, we instead subsample by taking only positive examples (using an oracle
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to determine which images contain animals for the sake of the experiment), we find

that performance still drops (explored below).

Keeping representations from empty images. In our static camera scenario, we
choose to add features into our long term memory bank from all frames, both empty
and non-empty. The intuition behind this decision is the existence of salient back-
ground objects in the static camera frame which do not move over time, and can
be repeatedly and erroneously detected by single-frame architectures. We assume
that the features from the frozen extractor are visually representative, and thus suffi-
cient for both foreground and background representation. By saving representations
of highly-salient background objects, we thus hope to allow the model to learn
per-camera salient background classes and positions without supervision, and to

suppress these objects in the detection output.

In Figure we see that adding empty representations reduces the number of
false positives across all confidence thresholds compared to the same model with
only positive representations. We investigated the 100 highest confidence “false
positives” from Context R-CNN, and found that in almost all of them (97/100),
the model had correctly found and classified animals that were missed by human
annotators. The Snapshot Serengeti dataset reports 5% noise in their labels [39],
and looking at the high-confidence predictions of Context R-CNN on images labeled
“empty” is intuitively a good way to catch these missing labels. Some of these are
truly challenging, where the animal is difficult to spot and the annotator mistake is
unfortunate but reasonable. Most are truly just label noise, where the existence of
an animal is obvious, suggesting that our performance improvement estimates are

likely conservative.

Keeping multiple representations per image (Table[7.1(e)). In Snapshot Serengeti,
there are on average 1.6 objects and 1.01 classes per image across the non-empty
images, and 75% of the images are empty. The majority of the images contain a
single object, while a few have large herds of a single species. Given this, choosing
only the top-scoring detection to add to memory makes sense, as that object is likely
to be representative of the other objects in the image (e.g., keeping only one zebra
example from an image with a herd of zebra). In CityCam, however, on average there
are 14 objects and 4 classes per frame, and only 0.3% of frames are empty. In this
scenario, storing additional objects in memory is intuitively useful, to ensure that
the memory bank is representative of the camera location. We investigate adding

features from the top-scoring 1 and 8 detections, and find that selecting 8 objects
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Figure 7.7: False positives on empty images. When adding features from empty
images to the memory bank, we reduce false positives across all confidence thresh-
olds compared to the same model without negative representations. Note that the
y-axis is in log scale. The single frame model has fewer high-confidence false
positives than either context model, but when given positive and negative context
Context R-CNN is able to suppress low-confidence detections. By analyzing Con-
text R-CNN’s 100 most high-confidence detections on images labeled “empty" we
found 97 images where the annotators missed animals.

per frame yields the best performance (see Table[7.1e)). A logical extension of our
approach would be selecting objects to store based not only on confidence, but also

diversity.

Failure modes. One potential failure case of this similarity-based attention ap-
proach is the opportunity for hallucination. If one image in a test location contains
something that is very strongly misclassified, that one mistake may negatively in-
fluence other detections at that camera. For example, when exploring the confident
“false positives” on the Snapshot Serengeti dataset (which proved to be almost uni-
versally true detections that were missed by human annotators) the 3/100 images
where Context R-CNN erroneously detected an animal were all of the same tree,

highly confidently predicted to be a giraffe.

7.7 Conclusions and Future Work
In this work, we contribute a model that leverages per-camera temporal context

up to a month, far beyond the time horizon of previous approaches, and show
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that in the static camera setting, attention-based temporal context is particularly
beneficial. Our method, Context R-CNN, is general across static camera domains,
improving detection performance over single-frame baselines on both camera trap
and traffic camera data. Additionally, Context R-CNN is adaptive and robust to
passive-monitoring sampling strategies that provide data streams with low, irregular

frame rates.

It is apparent from our results that what and how much information is stored in
memory is both important and domain specific. We plan to explore this in detail
in the future, and hope to develop methods for curating diverse memory banks
which are optimized for accuracy and size, to reduce the computational and storage

overheads at training and inference time while maintaining performance gains.
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Chapter 8

THE AUTO ARBORIST DATASET: A LARGE-SCALE
BENCHMARK FOR MULTIVIEW URBAN FOREST
MONITORING UNDER DOMAIN SHIFT

8.1 Abstract

Generalization to novel domains is a fundamental challenge for computer vision.
Near-perfect accuracy on benchmarks is common, but these models do not work
as expected when deployed outside of the training distribution. To build computer
vision systems that truly solve real-world problems at global scale, we need bench-
marks that fully capture real-world complexity, including geographic domain shift,

long-tailed distributions, and data noise.

We propose urban forest monitoring as an ideal testbed for studying and improving
upon these computer vision challenges, while working towards filling a crucial
environmental and societal need. Urban forests provide significant benefits to urban
societies. However, planning and maintaining these forests is expensive. One
particularly costly aspect of urban forest management is monitoring the existing
trees in a city: e.g., detecting tree locations, species, and health. Monitoring efforts
are currently based on tree censuses built by human experts, costing cities millions

of dollars per census and thus collected infrequently.

Most previous investigations into automating urban forest monitoring focused on
datasets from one or two cities, usually covering only common categories. To
address these shortcomings, we introduce a new large-scale dataset that joins public
tree censuses from 23 cities with a large collection of street level and aerial imagery.
Our Auto Arborist dataset contains over 2.5M trees and 344 genera and is >2 orders
of magnitude larger than the closest dataset in the literature. We introduce baseline
results on our dataset across modalities as well as metrics for the detailed analysis of
generalization with respect to geographic distribution shifts, vital for such a system

to be deployed at-scale.

8.2 Introduction
Urban forests provide critical benefits to the over 4B people living in urban areas

worldwide [[106]. They filter air and water, capture stormwater runoff, sequester
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Figure 8.1: The Auto Arborist dataset covers 23 cities across North America, and
contains paired aerial and multiview ground-level imagery for 2.6M trees across
344 unique genera.

Dataset Ground-level images Aerial Images Sites Classes
Registree [27]] 46,321 28,678 1 40
Pasadena Re-ID [100]] 6,141 (panos) 0 1 1
NEON Tree Evaluation* 0 25,949 (boxes) 22 1
IDTreeS Classification* 2017 [97]] 0 613 (boxes) 1 9
IDTreeS Classification* 2020 [56]] 0 452 (boxes) 2 34
Auto Arborist (Ours) 6,479,077 2,637,208 23 344

Table 8.1: Comparison of our dataset to previous tree detection and identification
datasets. Note that for Pasadena Re-ID, there is only one class (“tree”) but the task
is re-identification as opposed to categorization. The three datasets with an * are
from wilderness forests, as opposed to urban forests.
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atmospheric carbon dioxide, limit erosion and drought, and save energy in a variety
of ways (e.g., by providing shade and thus reducing cooling costs and urban heat
islands [99, 119, 138l [141]]). In the US alone, urban forests cover 127M acres and
produce ecosystem services valued at >$18B [105]. These forests make up the
foundations of our urban ecosystems, and provide habitat for diverse urban wildlife
and insect populations [44]]. Urban forest monitoring, measuring the size, health and
species distribution over time, allows us to (1) quantify ecosystem services including
air quality improvement [20, 47]], carbon sequestration [91, 105, [121]], and benefits
to public health [28| 47, [125] [125], (2) track damage from extreme weather events
[8,167,198]], and (3) target planting to improve robustness to climate change, disease
and infestation [24} 164, 113, [114]]. Further, lack of access to urban greenery is a key
aspect of urban social inequality [56} 93} 103], including socioeconomic inequality
[52) 73} 185] and racial inequality [21} [129]. Urban forest monitoring enables the

quantification of this inequality and the pursuit of its improvement [22, [117]].

To enable automated urban forest monitoring, we focus on the fundamental task of
building a tree census (sometimes called a tree inventory). Due to their significant
cost (a recent tree census in Los Angeles cost $2M and took 18 months [120]), tree
censuses are typically conducted only by cities with the means and will to invest in
these undertakings, and even then they are conducted rarely (e.g., once every 5-10
years). We seek to dramatically lower the cost of a tree census by using computer
vision to help find, label, and monitor individual trees using a combination of street
level and aerial imagery. An automated system could democratize access to urban
forest monitoring, providing this valuable information to under-resourced cities that

are already disproportionately affected by climate change [[108].

While there have been prior works on urban tree species recognition from aerial [3},4,
63, (78),1124,1137,1139,(140] or street level [94] imagery (or both, in a limited number
of cases [27,1130]), a major limitation has been a lack of large-scale labeled datasets.
To our knowledge, all prior works have focused on single or limited numbers of cities,
and have included only the most common categories. We introduce the Auto Arborist
dataset, a multiview urban tree classification dataset which, at 2.6 million trees is
two orders of magnitude larger than those in prior work [27, 130] and contains 344
genera (and many more species). To build Auto Arborist, we draw on public tree
censuses from 23 cities in the US and Canada and merge these public records with
street level and overhead RGB imagery. As the first urban forest dataset to cover

multiple cities, Auto Arborist allows for previously-impossible detailed analysis of
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generalization with respect to geographic distribution shifts, vital to building systems
that scale. We propose a set of metrics to evaluate performance with respect to these
geographic distribution shifts and show the strengths and weaknesses of typical deep

learning models when applied to the Auto Arborist dataset.

Going beyond its immediate application to sustainability and conservation, Auto
Arborist can serve as an important challenge benchmark for computer vision. There
has been increasing interest in domain generalization, which is ubiquitous in real-
world applications [13, 51} 81, 96]. For example, prior works have observed that a
model for self-driving cars that can drive safely in San Diego may not work equally
well in Seattle [50, 68, 69]]. In terms of number of domains, objects, classes,
and images, Auto Arborist presents a scale not seen in previous real-world domain
generalization benchmarks [[13H17,181]]; it focuses on detailed cross domain analysis,

and incorporates multiple views and modalities.

To summarize, our main contributions are as follows:

* We develop a pipeline for combining public tree census data with street level and
aerial imagery.

* We introduce the Auto Arborist dataset built using this pipeline — the largest
dataset of its kind covering >2.6M trees, >9.1M images and 344 categories and
first one of its kind to cover multiple cities (23 cities).

* We show that for Auto Arborist, geographic domain shift and the category imbal-
ance are major factors in performance of typical deep learning models.

* We show that diverse geographic coverage is important for generalization to a novel

city, and that both multiple views and multiple data modalities are beneficial.

8.3 Related work

Tree detection, localization, and taxonomic identification have been studied in mul-
tispectral aerial imagery [49, (78, [140], ground-level imagery [94, [101], and LI-
DAR [46,[70], with some recent approaches combining data across modalities [6,27]].
Costly high-resolution data collected from low-flying aircraft has been shown to im-
prove performance [18, [109], but this data is not available for much of the world.
Though past studies have considered tree detection and categorization, many of these
have been limited by perspective (aerial vs ground-level views), geospatial cover-
age, and taxonomic coverage. Our work seeks to expand upon all three, providing

a testbed for urban forest monitoring that is broad in scope and relies on datatypes
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Region W (West)
City Trees Genera
San Francisco, CA 154,698 195
San Jose, CA 225,655 201
Cupertino, CA 15,300 104
Vancouver, BC 121,249 93
Seattle, WA 150,983 142
Surrey, BC 62,251 72
Santa Monica, CA 25,381 126
Los Angeles, CA 391,788 202
Total West 1,147,305 328
Region C (Central)

City Trees Genera
Boulder City, CO 29,489 65
Denver, CO 175,438 97
Calgary, AB 64,576 35
Sioux Falls, SD 13,277

Edmonton, AB 76,164 32
Total Central 358,944 104

Region E (East)

City Trees Genera
Washington, DC 152,983 71
Charlottesville, VA 1571 56
Pittsburgh, PA 23,382 79
Montreal, QC 208,097 61
New York, NY 560,069 68
Buffalo, NY 29,527 74
Kitchener, ON 21,265 26
Cambridge, ON 14,757 57
Columbus, OH 114,536 81
Bloomington, IN 4,772 53
Total East 1,130,959 102

Table 8.2: Cities by region. The holdout city for each region is in bold.
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which are available across cities (aerial and street level RGB imagery) to enable
the development of general models and methods which can be used off-the-shelf in

novel cities.

Tree detection and localization from aerial data

There have been successful, broad-scale studies of tree density, canopy cover, and
individual tree delineation from aerial data [9, [25, 38, 40, 46, 62, 66, [77, 92,
107, 1109, 1114 122} [131]], including tree crown detection across sites from the US
National Ecological Observatory Network (NEON) [131,[134]], tree canopy mapping
in urban forests in cities across the US [93]], and counting individual trees in Sub-
Saharan Africa [25]. These methods rely on a diverse set of aerial data modalities,
from low-resolution RGB or hyperspectral sattelite data to high-resolution RGB,
hyperspectral, and LIDAR data collected from low-flying aircraft and UAVs [18]].
However, there are still open challenges in maintaining performance of methods
in novel regions [97, 132, [133]], and methods must be well-validated and possibly
adapted for any novel region before use. Tree crown delineation in dense forests
remains a challenge, leading to several studies (e.g., in sub-Saharan Africa [25]])
focusing on low-tree-density regions or trees outside forests [43,/116]. Further, there
is only so much that can be understood from an aerial view alone. A large amount
of the woody vegetation in a forest is hidden under the tree canopy. Understory trees
have been mapped with very-high-resolution UAV-collected data [32} 160, 61, [86l],
but this data is rarely available. Our combined approach allows us to use available

ground level imagery to see under the canopy.

Tree taxonomic identification from aerial data

Automated tree identification in aerial data from satellite or low-flying aircraft,
including RGB, hyperspectral, LIDAR, or some combination thereof, is well-studied
in the remote sensing community. [49] is a thorough review of species classification
from remote sensing data which notes the lack of studies considering large spatial
extents. Many studies focus on predicting species occurrence, presence/absence, or
abundance for a limited set of species [2, 23 29-31, [33] 134} 41]]. Detecting and
categorizing individual trees presents further complexity [3} 26} 35,136, 41} 142, 48|,
48, 153, 155, 159, 165, 70472, 74, [75, [79, 180, 82, 110, 112} [115, [128]], and recently
deep learning approaches have been shown to outperform more traditional methods
on this task [39, 57, 163, 189, 113, 127, [142]]. Generalization to novel regions is a
known challenge with many of the proposed methods [109]. The IDTrees challenges
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[S6, 97| were the first to propose a public benchmark for cross-site individual tree
categorization, but provided limited labeled data (<1000 labeled trees from <=34
tree categories at 3 NEON wilderness forest plots). Further challenge arises when
predicting species in an urban environment, where human intervention leads to a
much higher diversity of tree species, with a much longer tail, than is seen in the
wild [1335]]. For this reason, many studies of urban tree categorization focus only on
common species [3, 4} 10, 114163, 78, 124, (1377, 1139, [140]].

Tree detection and localization in the urban forest from ground-level data

Ground-level data, (e.g., from Google Street View [7|], Mapillary [95], and iNat-
uralist [1]]), have been identified as an important source of information for urban
monitoring applications [19]. Automated measures of urban “greenness” and tree
cover mapping from ground-level data have been proposed, with implications in
social justice and public health [45] |87, [88) 118} [123]. Datasets such as Map-
illary Vistas [104] and Cityscapes [37] facilitate semantic segmentation of urban
categories, including vegetation, but do not provide instance-level information or
fine-grained taxonomic labels. Similarly, most current computer vision studies of
the urban forest focus on species-agnostic individual tree detection [76} [126] and

localization [183), 94} [100-102] across multiple ground-level views of the same tree.

Tree taxonomic identification from combined aerial and ground-level data

Previous large-scale datasets that combine aerial and ground-level data, such as
CVUSA [136], were designed for alternative tasks such as image geolocalization.
Several methods exist for combining aerial + ground-level data, with tree identi-
fication as a key application [84, [116]. Here, ground-level data can include RGB
imagery, LIDAR, and even physical measurements such as tree diameter or hyper-
spectral signature [54]. [[130] and [27] proposed a system for identifying street trees
using paired aerial and ground-level RGB imagery for urban forests and released a
dataset of paired imagery for Pasadena. [6] proposed a class-agnostic tree detection
method from aerial imagery and ground-level LIDAR. Recently, [5] used GNNs to
map individual trees across aerial and ground-level community science imagery in
forests. All of these prior works trained on a single city and could benefit from a

much larger dataset such as ours.
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Figure 8.2: Distribution of genera in train and test, with frequent, common, and rare
classes delineated.

8.4 The Auto Arborist dataset

We have generated the largest, and most geographically diverse, computer-vision-
ready multi-view dataset of urban trees to date. The Auto Arborist dataset contains
2,637,208 trees across 23 cities. Each tree is represented by a 512 x 512 pixel
aerial image where each pixel is Scm X 5cm, as well as up to three 768 x 1152
pixel street level images [7]] of the tree (for a total of 9,116,285 images in the
datasetf] To avoid taxonomic complexity arising from hybrid and sub-species
when developing methods, we have chosen to focus on genus prediction (instead
of species-level prediction) as our primary task and have confirmed with ecologists
and city planners that a genus-level map would be highly useful as a first step. Our
dataset includes 344 unique genera, with a real-world long-tailed class imbalance

and unique class distribution for each city on the dataset (Figure [8.2)).

Dataset curation

To curate Auto Arborist, we started from existing tree censuses which are provided
by many cities online. For each tree census considered, we verified that the data
contained GPS locations and genus/species labels, and was available for public

use. This resulted in data from 23 cities which we then parsed into a common

'We are publishing all tree records (after curation/merging c.f. and a subset of the imagery
(verified to obtain consistent results to the full dataset) with personally identifiable information
removed. For more information, please visit https://google.github.io/auto-arborist.


https://google.github.io/auto-arborist
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format, fixing common data entry errors (such as flipped latitude/longitude) and
mapping groundtruth genus names (and their common misspellings) to a universal
label map consisting of 344 categories. We also removed records with invalid genus
names, such as “unidentified.” Aggregated into a single dataset, this process yielded

localized records for ~5M trees.

Figure[8.1]shows a map of the 23 selected cities as well as example imagery from the
dataset. We partition the cities into three separate regions for evaluation purposes
(discussed further in Section [8.5)). Table [8.2] summarizes the contribution from
each of the cities to the Auto Arborist dataset organized by these regions. For this
“v1” version of Auto Arborist, we restrict our focus to the US and Canada, with
a single genus prediction task. There is room for Auto Arborist to grow in tasks
and geographic area: many public tree censuses contain additional metadata (e.g.,
tree age, health, and trunk diameter), and there are many more cities we might
include both in the US and Canada, and globally. We place our dataset in context
with previously published tree classification datasets in Table (8.1} and emphasize
the significantly enhanced scope in number of images across modalities, number of

regions, and number of categories.

Extracting street level and aerial imagery

For each city, starting from the parsed tree census, we associate each tree census
record to both street level and aerial images. For each tree in our dataset, we sample
a 15m x 15m, 300 x 300 pixel RGB aerial image centered on the tree’s latitude
and longitude. We consider all street level images taken within 2-10 meters of the
record’s latitude and longitude, filtering out any images which do not meet all of the

following criteria:

e Taken on or after Jan 1, 2018.

* Contains the base of the tree near the horizontal center of the image based on
the projection of the tree’s latitude/longitude onto the image, based on estimated
camera pose generated by the API.

* Contains a significant number of “tree” pixels based on a semantic segmentation
model (to avoid cases when the tree has died or been removed, when possible)
and does not contain any “person” or “bike rider” pixels based on a semantic

segmentation model (to remove personally identifiable information).

After filtering, we have 2.6M tree records, each of which is associated with one

aerial image and 1-3 street level images, along with a date and GPS location.



248

Figure 8.3: Noise in the Auto Arborist dataset includes trees that have died since
the tree census was taken (top), aerial data quality, including failures causing black
squares (middle), and temporal variation in deciduous trees (bottom—aerial image
has leaves, but street level images are bare), which affects northern cities more than
southern ones.

Challenging aspects of the Auto Arborist data

By matching street level images from existing public records rather than collecting
groundtruth labels from scratch, we have been able to achieve a scale much larger
than any previous datasets. As we show, scale is important for generalizing to novel
cities (which is the ultimate goal). But using public records to generate data across

cities also introduces a number of challenges.

Sources of noise and ambiguity. First, we address several known sources of noise

and ambiguity in our dataset. See Figure[8.3|for examples of the following.

» Label noise: There is a known discrepancy between label accuracy of volunteer
citizen scientists vs. experts (e.g., with a PhD in Ecology) [12], and there is also
no ecologically-agreed-upon definition of tree vs. bush. Cities differ in their

labeling protocol.
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* Presence noise: Tree records in censuses can often be outdated. Specifically,
depending on the amount of time since the data was originally collected, there
is increasing possibility that trees will have been removed or have died, and new
trees planted.

* Location noise: Different cities use different data collection protocols and differ-
ent sensors, leading to discrepancy in the accuracy of the position readings (e.g.,
by GPS). We estimate visually that they are usually accurate within ~3 meters.

» Image quality: Quality of aerial imagery varies for different cities. The primary
tree in a street level image can sometimes be occluded—though we try to guard
against this by removing images that are too far from the tree, sometimes vehicles
block the tree from view. Qualitatively, access to multiple views frequently helps
mitigate occlusion issues. Finally, deciduous trees vary in appearance across
seasons, with leaves turning color and then dropping in the winter.

* Unlabeled visible trees: Trees on private property (e.g., yards) are not labeled
in public censuses, but are visible in the background. While the tree of interest
is often the most prominent, the presence of trees of other genera can create

classification confusion.

Distribution shift and the long tail. One of our primary challenges is to be able
to do well on novel cities that were not part of the training set, but in order for a
model to do so, it will have to contend with distribution shift, where the training
distribution of cities differs from the novel test distribution on some new city. We
remark that there are two kinds of shift that we observe in our data— what we might
call “label shift,” and “appearance shift.” Label shift refers to when the marginal
distribution P(y) of labels (genera) differs from city to city even if the appearance
distribution of image x conditioned on a particular label P(x|y) does not change
(e.g., [90]). In our setting this simply can mean that species distributions vary
geographically (e.g., we tend to see Palm trees in Southern California and less in
Canada), but can also come from cities having different sizes (for example, Los

Angeles is much larger than Santa Monica and thus contains many more species).

Figure [8.4] visualizes the distribution shift between every pair of cities (using L
distance between normalized genus distributions). In some cases we can see little
overlap between genera from two cities, and for cities with similar location, i.e.
Denver and Boulder, we tend to see high overlap in genus distribution. However
even when two cities are very similar both in size and location, it is still generally

the case that one city will contain a number of genera not found in the other due to
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Figure 8.4: (Top) The distance between the distributions of training and test data for
each training split and each test city (red lines represent regional boundaries). We
use the L1 distance between the normalized per-class count vectors for each set as
our measure of distributional distance. Because the class distribution is long-tailed
and our test sets are split geographically within each city to prevent data poisoning,
the train and test distribution are not identical within each city (the diagonal is non-
uniform, and the matrix is not symmetric). (Bottom) Pairwise train/test accuracy
from street level baselines.
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the long tailed genus distribution. In the extreme setting of “train on one city, test
on one city” we thus always have many test genera for which there are no training
examples. And even in the regime of training on many cities and testing on a single
holdout city, we still typically have classes for which there are no training examples,

implying value in expanding the dataset in future.

Beyond label shift, we also see “appearance shift” — the images of a particular genus
can look different depending on the city. This is partly due to different backgrounds
(which can in principle be handled by masking out the background pixels, but is
out of scope for this work), but it can also be due to other external factors such as
weather conditions (for example, we are likely to see more leafless trees from images
in Edmonton than we are to see them in LA) or even “terroir” related factors like

soil composition.

8.5 Evaluation protocol
Since distribution shift is such a big factor in performance, we have chosen to set
up our evaluation protocol to explicitly evaluate distribution shift based on 3 unique

types of train/test splits, defined hierarchically:

1. Per-city splits: At the first level, we are interested in how well a city generalizes
to itself. Here, each city has a defined training region and a defined test region,
split geographically (usually based on latitude or longitude) to avoid overfitting
on background characteristics. The test sets for each city are never used for
training.

2. Regional splits: Next, we are interested in generalization within and across
larger regions (e.g., how would we fare in cities on the East coast if we trained
on West coast trees?)—for this level of evaluation, we split the cities into three
regions, Region W (West), Region C (Central), and Region E (East) (Table[8.2).
We build our regional training sets from the per-city training sets for that region.
We hold out one city from each region (which we call “holdout cities”) to capture
performance on an in-region novel city, and also show results on all out-of-region
cities.

3. Full dataset: For the final and largest split, we combine training data across
the three regions. We maintain the same holdout cities as the regional splits for

training, and test on the test sets of all cities (including the holdouts).

Evaluation metrics. Due to the long-tailed distribution of the data across genera,

a pure accuracy measure is insufficient to capture performance, as it is highly biased
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towards frequent species. Thus, we report accuracy alongside class-averaged recall
(AR), calculated as average over all classes of the proportion of correct predictions
for the set of examples of that class (this is sometimes also called class-averaged
accuracy). To capture performance in a more nuanced way, we also introduce an
LVIS [58]-inspired breakdown of class-averaged recall for frequent (n > 20, 000
examples), common (100 < n < 20,000 examples) and rare (n < 100 examples)
subsets of our data. This results in 29 frequent, 150 common, and 165 rare genera,

and we denote these metrics as FAR, CAR, and RAR respectively.

8.6 Experiments

We now demonstrate the benefits of having a multi-city, multiview dataset by training
models on Auto Arborist. In this section we train separate aerial and street level
baseline ResNet 101 models for each training split described in Section[8.5] including
the training sets for each individual city, the regional splits, and the full dataset.

Training details can be found in Appendix D}

Single city vs. regional vs. full dataset training. We begin by experimenting
with single-view street level models (as the street level modality gives the most
accurate results in isolation). In Figure[8.5] we compare performance on a city’s test
set when training on that city’s training set (city), the aggregation of training sets
from that city’s region (region), and all available training data (full). Unsurprisingly,
we find that more data is better—we see an average improvement of 21.3% AR across
cities when going from training on a single city to the full dataset. However we note
that training on a region also gives strong performance gains over training on a city
itself (average improvement of 18.3% AR), and for some test cities regional training

can be on par with (or even slightly better than) training on the full set.

Cross-city generalization. Next we examine cross-city generalization, where we
are interested in how effective it would be to train on a certain city A if we are
interested in testing on B. For this analysis, we first perform all possible cross
training combinations, training on every train split (including per-city, regional and
full) and testing each model on the test set for each city. Results for these pairwise
combinations are visualized in Figure [8.4] (bottom). Here we see regional “blocks”
of strong generalization, reflecting that cities generalize well to cities in the same
geographical area. For example, we tend to get good performance training on one

of the Pacific Northwest cities (Seattle, Vancouver, Surrey) and testing on another.
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We can also see that some cities tend to generalize quite well to other cities on
average whereas some cities tend to generalize poorly to other cities. Figure [8.6]
shows this effect in more detail-here we use a given city as a training set and report
the spread of performance when applied to other cities’ test sets. In this plot, a
larger gap between “self-test” (red stars) and the box implies less generalizability.
Here, to remove confounding factors due to test genera not seen or rarely seen during
training, we restrict computation of AR for train city A and test city B to only the

“frequent” genera seen in the train split of A and the test split of B.

We observe that cities that are poor “training cities” (on the left side of Fig. [8.6)
tend to be smaller and have poor performance overall, though this is not universally
true (consider San Francisco). On the other hand, large cities (e.g., NYC) tend to
generalize well on average. But we also see that there are no cities which generalize
optimally to all others, and optimal generalization performance is only reached
by training on the full dataset. Even restricting our attention to frequent, shared
classes, we find that generalization ability continues to be highly correlated with label
distribution similarity. In Figure we compare AR across these shared, frequent
genera with the L1 distribution distance for three cities and show they are negatively
correlated—increased label distribution distance implies worse performance, even on

frequently-seen classes shared between train and test cities.

Value-add of multiple views. Finally, in Table [8.3] we show that the multiview
aspects of our dataset bring value. Overall, our street level models perform much
better than the aerial models, generally with a difference of >20% AR and we see
that using multiple views of a tree outperforms a single view. We have experimented
with several techniques to combine information across street level views and aerial
imagery, and find that while most of the predictive value comes from the street
level imagery, there is benefit in incorporating aerial information. We combine the
modalities via a simple method: average pooling the logits from multiple street
level images and then combining with aerial logits via a Mixture of Experts (MoE)
model:

f(xsp,xa) =xsz - sigmoid(w) + x4 - (1 — sigmoid(w)). (8.1)

where xg; and x4 are street level and aerial logits, w € R”" are learned parameters,
and n is the number of classes.
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Figure 8.5: Performance growth when adding regional and continental diversity.
For each city, we show test performance from a model trained on that city, trained
on the respective region for that city, and trained on the full dataset. Note that
performance improves on our holdout cities as well, despite the regional and full
training sets not including data from those cities. Average performance from models
trained on per-city, regional, and full are shown as horizontal lines.

Combining modalities in this way yields an average ~ 1% boost for each regional
model, compared to average-pooling logits across multiple street level views, and
a 3-5% boost over predicting from a single street level image. For the full training
set, we find that preserving the regional variations in learned MoE weights (w) is
important—thus our best model (which achieves 49.96% AR) uses street level and
aerial models trained on the full dataset but MoE weights specialized for the region to
which a city belongs. We conjecture that this regional dependence is due primarily
to regional variations in aerial image quality/availability. In Fig.[8.8] we visualize
the per-genus weights learned by the MoE per region. Looking more closely at the
MoE weights, we find that our models only assigns nonzero weights to aerial data
for classes that have >400 training examples. Moreover, we see that we are able to

rely on aerial images more in Region W compared to the other two regions.

We show results from our best model in Table [8.4] reporting accuracy and AR for
the full dataset, and broken down by frequent and common genera. Notably, many

cities have >80% accuracy, and Vancouver and Sioux Falls see >90%. There is
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Figure 8.6: For each training set, we show the distribution of AR across the test
cities, and highlight the “self test” case where a city is tested on its own test set.
A larger gap between “self test” and the box implies less generalizability. Here,
to remove confounding factors due to test genera not seen or rarely seen during
training, we compute AR for train city A and test city B to be the average per-genus
recall across the “frequent” genera seen in both train(A) and test(B).
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Figure 8.7: Digging further into the generalizability of a given training set, we
visualize the generalization gap between AR on shared, frequent genera testing on
that same city (‘“self-test,” in red) vs other cities, and plot against the L1 distance
between the genus distribution of train vs. test, as seen in Fig. 8.4, We see that
frequently these are anti-correlated, but training sets for some cities (like Buffalo)
struggle to perform well across the board.
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Train Set Aerial 1SL 3SL A+SL
Region W 20.63 41.53 45.12 46.07
Region C 18.8 4477 4691 47.12
Region E 17.54 4325 45.13 46.21
Full 18.7 46.13 49.0 49.23
Full w/ Regional MoE 49.96

Table 8.3: City-averaged percent AR for different regions and ensembling strategies.
Street level imagery is much more informative than aerial, and combining multiple
street level images gives a further boost. However, even though aerial performance
on its own is quite low, we see benefit in adding the aerial imagery when making
predictions. We find that while the features from the full model are more discrimina-
tive, we see best performance using full model features paired with region-specific
Mixture of Experts to combine aerial and street level predictions.

Region W Region C Region E
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Figure 8.8: Each regional MoE learns to use aerial information only for genera with
more than ~400 training examples. Notably, the distribution of the three is quite
different, and there are certain genera that are more “aerially distinctive” (we have
highlighted one for each region).

still significant room to improve on AR across the board. Rare class performance
was 0.0 for every city, unsurprising given most rare classes have <10 examples.
This points to potential gain from low-shot and long-tail learning methods such as
logit-adjustment, but we find that such methods struggle to perform well under such

a high degree of imbalance (see Supplementary).

8.7 Limitations and future work

We have presented a baseline modeling approach meant to highlight the performance
of a typical CNN and present simple methods for combining signals from multiple
views — there is much room for improvement, particularly on rare classes. In future,
to predict on cities with no past census, we would need to first localize and geocode

the trees to be classified. We also hope to expand our dataset to include more cities,
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City Acc AR FAR CAR
Vancouver, BC 9328 67.51 82.76 63.35
Surrey, BC 8235 5896 75.82 48.80
Seattle, WA 79.68 46.55 74.65 43.08
San Francisco, CA  58.71 2639 37.87 31.37
San Jose, CA 7771 40.07 63.35 41.13
Cupertino, CA 74.14 56.86 65.28 55.40

Santa Monica, CA 5626 4329 6493 44.09
Los Angeles, CA 76.24 32.62 5256 35.80
Boulder City, CO  73.23 4223 58.61 32.88

Denver, CO 76.46 29.72 57.16 22.02
Sioux Falls, SD 93.78 76.76 81.52 62.50
Calgary, AB 88.81 62.18 70.92 52.32
Edmonton, AB 87.55 56.67 62.58 43.99

Washington, DC 77.44 4449 67.31 30.05
Charlottesville, VA 73.52 5777 73.38 42.16
Pittsburgh, PA 78.84 5493 71.83 43.97

Montreal, QC 85.51 4949 6499 39.08
New York, NY 82.54 4277 6638 28.16
Buffalo, NY 86.03 54.01 7192 4341
Kitchener, ON 3396 17.94 21.31 4.49
Cambridge, ON 72.16 47.69 65.84 34.38
Columbus, OH 69.28 5571 6829 47.32

Bloomington, IN 85.50 7352 79.82 64.46

Table 8.4: Per-city performance (%) with our best model trained on the full dataset
combining aerial and multiview street level modalities. AR is class-averaged recall
for each city, averaged over the test classes for that city. FAR is “Frequent” AR,
CAR is “Common” AR, which serve to further disentangle the commonality of a
species in the training data with its per-city performance. Holdout cities in bold.

both in North America and worldwide, and include species level predictions and

additional features such as tree size and health.

Auto Arborist represents an important first step towards global-scale urban forest
monitoring. This has implications for environmental justice: given that marginalized
communities have less access to urban greenery, systems trained on Auto Arborist
could help equitize access to urban forests by empowering quantifiable analysis and
targeted replanting. However we must be responsible with our technology — to
this end, we protect the privacy of residents of these urban and suburban areas
by explicitly filtering out any imagery containing humans, and blur vehicle plates.
Secondly, we will need efficient human-in-the-loop validation protocols before such
a system could be trusted, to ensure science policy is not based on poorly-generalized

ML predictions.
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8.8 Seeing the forest for the trees (Conclusions)

Climate change and loss of ecological diversity are among the most pressing issues
of our time. Monitoring is a first crucial step to understanding and mitigating the
effects of global warming on urban forests, but many cities cannot afford regular
tree censuses. Towards the goal of broad, accessible, and affordable urban forest
monitoring, we have introduced the Auto Arborist dataset. This dataset is the first
of its kind to expand beyond a single city and common categories: Auto Arborist
contains 2.6 million trees across 23 cities, covering 344 unique genera. This dataset
will enable the computer vision community to tackle urban forest monitoring at scale,
and our evaluation protocols help us measure performance without data poisoning,

and to evaluate generalization to novel cities.
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Chapter 9

ELEPHANTBOOK

Peter Kulits, Jake Wall, Anka Bedetti, Michelle Henley, and Sara Beery. Elephant-
book: A semi-automated human-in-the-loop system for elephant re-identification.
In ACM SIGCAS Conference on Computing and Sustainable Societies, pages 88—
98, 2021.

9.1 Abstract

African elephants are vital to their ecosystems, but their populations are threatened
by a rise in human-elephant conflict and poaching. Monitoring population dynam-
ics is essential in conservation efforts; however, tracking elephants is a difficult
task, usually relying on the invasive and sometimes dangerous placement of GPS
collars. Although there have been many recent successes in the use of computer
vision techniques for automated identification of other species, identification of ele-
phants is extremely difficult and typically requires expertise as well as familiarity
with elephants in the population. We have built and deployed a web-based plat-
form and database for human-in-the-loop re-identification of elephants combining
manual attribute labeling and state-of-the-art computer vision algorithms, known
as ElephantBook. Our system is currently in use at the Mara Elephant Project,
helping monitor the protected and at-risk population of elephants in the Greater
Maasai Mara ecosystem. ElephantBook makes elephant re-identification usable by

non-experts and scalable for use by multiple conservation NGOs.

9.2 Introduction

Reliable wildlife population monitoring is critical for effective conservation and
species management. Accurate measurement of wildlife density and distribution
across landscapes provides insight into trends and ecological processes such as
population growth, fecundity, survival, mortality, and density-dependent regula-
tion. A range of measurement techniques have been developed which include aerial
surveys, camera trap networks, ground survey techniques, and individual-based re-
identification (e.g., spatially explicit mark-recapture [S6]]). Individual-based recog-
nition techniques can also be used in behavioral studies and human-wildlife conflict

cases. The emergence of computational systems based on image algorithms has
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Figure 9.1: ElephantBook: a system for human-in-the-loop elephant re-
identification. Our system can be linked to the EarthRanger conservation land
management platform [3]], and it helps humans efficiently monitor elephant popula-
tions and locations from elephant sightings in the wild.

recently made traction enabling re-identification of certain species (e.g., whales,
sharks, zebras, seals, lynx, and sea turtles) that present distinct morphology or
patterns (e.g., contours, spots, or stripes) that facilitate visual separability among
individuals [16]. However, many species are cryptic and difficult to observe, dif-
ficult even for experts to distinguish, or currently lack sufficient training data for

application of computer-vision approaches.

Vital to their ecosystems, African elephants are especially important to monitor
closely; they are considered ecosystem engineers who have the capacity to shape the
environments in which they live, and their population density and distribution can
impart multiple cascading effects on ecosystems, biodiversity, and tourism-based
economies [26, 47, 53]. Both species of African elephants are threatened: the
savanna elephant (L. africana) is endangered, and the forest elephant (L. cyclotis)
was recently listed as critically endangered by the TUCN Red List [4]. Some
populations have suffered as much as 62% population loss in recent years [43] with
the ivory trade and associated poaching being the main drivers of their decline.
Characterizing elephant population demographics across their range is therefore

essential to conservation of the species.

Ecologists have recently attempted to create a general re-identification method that

can be used by non-experts. The best known of these methods is System for
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Elephant Ear-pattern Knowledge (SEEK) coding, developed by Elephants Alive [8]],

which uses manual attribute labels such as sex and the presence/absence of tusks
to improve the accuracy and efficiency of re-identification. The Mara Elephant
Project, in collaboration with the California Institute of Technology and Elephants
Alive, has developed a semi-automated ensemble visual-recognition system using
photographs taken by rangers and research field teams along with manual SEEK
attribute labeling. ElephantBook is a novel online software solution with the goal of
making elephant re-identification accessible by non-experts and scalable to multiple

conservation NGOs.

9.3 Background

The Greater Mara Ecosystem

The Greater Mara Ecosystem (GME) in Kenya is a critical ecosystem given its bio-
diversity, large wildlife populations, and rich cultural history. It forms the northern
extent of the annual migration of 2.2 million wildebeest, zebra, and gazelle from
the Serengeti, and it is the most-visited tourist destination in Kenya. The most
recent census results estimate there are 2,493 elephants in the GME [61]. Elephants
typically live in family units consisting of related females and their offspring. Adult
male elephants roam alone or in bachelor herds after they’ve reached an age of sex-
ual maturity. Despite its status as one of the most beautiful and important wildlife
areas in the world, the GME faces significant conservation threats: 374 elephants
have been illegally killed since 2012, and there has been a 60% increase in recorded
incidents of human-elephant conflict since 2017 (Mara Elephant Project unpub-
lished data). The expansion of agriculture, infrastructure, and human populations
is infringing into current elephant ranging areas and severing movement corridors.

50% of elephant range now falls outside of protected areas [70]].

The Mara Elephant Project

The Mara Elephant Project (MEP), established in 2011, protects savanna elephants
and works to conserve the greater Maasai Mara ecosystem (GME) in Kenya. MEP,
in conjunction with the Kenyan Government, has deployed ranger teams to follow
the locations of elephant groups fitted with real-time GPS tracking collars, which
has led to the arrest of 373 poachers, the seizure of 1,676.5 kg of ivory, and the
identification of core movement patterns of approximately 500 elephants [5]. MEP
also frequently dispatches rangers to help mitigate conflicts involving “crop-raiding”

elephants. Identifying which individual elephants are involved in crop-raiding is
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important because raiders are typically repeat offenders. Ongoing field monitoring,
data analysis, and conservation efforts are needed to ensure the long-term survival
of elephants and the overall GME.

Elephants Alive

Elephants Alive is a South Africa-based non-profit organization that operates across
the Greater Limpopo Transfrontier Conservation Area and the southern part of
Mozambique. Although officially registered with the Kruger National Park in
2003, Elephants Alive draws on data collected over a quarter of a century. Its
work contributes to the long-term survival of African elephants through a greater
understanding of the complex relationship between elephants and the ecosystems
they occupy and by identifying science-based solutions that enable elephants and

people to coexist.

EarthRanger

Vulcan’s EarthRanger [3]] is a real-time system for conservation-related data aggre-
gation, storage, visualization, and dissemination [69]. It includes tracking data from
wildlife, rangers, and vehicles, and it records “Events,” which range from human-
elephant conflict to poaching to illegal logging. Events are reported from the field
using a mobile application called Cybertracker; these reports include the time, the
location, and information specific to each event type. The Mara Elephant Project,
along with many other NGOs in Sub-Saharan Africa, now uses EarthRanger daily
to record elephant Group Sightings, including information about group size and
composition. However, EarthRanger does not currently support or have any type of

interface for individual-based elephant re-identification.

Human expert elephant re-identification

Elephant re-identification is a difficult task, and ecologists may spend thousands
of hours over their careers cataloging and charting features that can be used to
distinguish elephants. These approaches are often heavily subjective and based on
the interpretation and skill of the observer, making the process difficult to repli-
cate across multiple observers or elephant populations. Quantitative approaches are
needed to reliably re-identify elephants without dependence on the one or two ex-
perts typically available within an organization. One of the most successful existing
methods of differentiating between elephants relies on comparison of the elephants’

ears including notches, tears, holes, and other identifiable patterns. Several orga-
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Figure 9.2: Database schema of major models in ElephantBook

Save the Elephants, Elephants Alive, Elephant Voices, Amboseli

]

nizations (e.g.

Elephant Trust) use this expert-based approach for elephant identification.

Elephants Alive developed SEEK [8], which involves a comprehensive identification

dataset comprised of photos, drawings, and codes of elephant ear patterns that were

collected over 25 years (since 1996). The identification system has been refined over
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time to exclude observer bias and accelerate the photographic identification process.
We believe SEEK is the least subjective or expert-reliant elephant re-identification

system in-use by any organization to date.

Automated animal re-identification

The most commonly studied re-identification problems in computer vision focus
on humans, with popular benchmarks and vast literature for human facial re-
identification [38}, [73], [74]. There have been many recent successes in computer vi-
sion for automated species identification, in both camera trap data [9-14,48. 157,163
and human-captured community science data [21, 22, 42| 65-67]. Automated re-
identification of individual animals using computer vision is an increasingly popular
topic, with publications and workshops on the subject at major computer vision con-
ferences [l1]. There are several excellent reviews of computer vision for animal re-ID
[54. 58, 168].

One of the main, and significant, differences between animal re-identification and
other fine-grained categorization tasks is that populations are not fixed, making
re-ID an open-set categorization problem [75]. You must be able to recognize if and
when an individual does not already exist in your database. The set of individuals
might also be quite large: even for the relatively small global population of Grevy’s
zebra, your full set of identities would be 8,000 individuals [49] 50].

The earliest proposed semi-automated re-identification systems go back as far as
1990, with works on whale re-identification based on human-annotated attribute
similarity [46]]. The next big breakthroughs in the field relied on traditional feature-
engineered computer vision techniques for pattern matching (including SIFT-based
feature matching) [7, [16} 18}, 29, 130, 134} 41} 45, 164]] and numerical representations
of unique contours [6, 31} 32]. Animal re-identification, like most of computer
vision, has seen significant advances with the onset of deep learning, including
several neural-network-based approaches [[17, (19} 20} 25} 28} [35H37, 160]]. The field
has recently explored metric-learning-based methods [24, 59, [75]], inspired by the
success of these methods for human re-identification [38, /3, [/4]]. Metric-learning
methods are also more robust to open-set categorization, as they are similarity-
based and require only a single example of an individual with which to compare, as
opposed to the tens or hundreds of examples needed by data-hungry CNNs. Another
common tactic for handling the open-set and data-scarce nature of re-identification

is hybridizing deep networks for notable part localization with previous pattern or
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contour feature-based matching methods which do not require large amounts of

training data per individual [62, 72]].

Automated elephant re-identification

In 2010, Dabarera and Rodrigo proposed an image-based algorithm to identify
individual elephants based on full-frontal facial images [23]]. Korschens et al.
proposed a matching algorithm based on human-labeled whole-head annotations,
including the elephant’s ears and tusks, where present [36]. In an extension, they
released a dataset, ELPephants, and demonstrated good results on a closed set of
individuals with localized feature extraction using deep nets and SVM-based feature
discrimination [35]. Recent methods of robustly differentiating between elephant
images in an open-set population rely on finding and matching the contours of the
ear (Figure[9.9), similar to many human-expert re-identification methods like SEEK.
Multi-curve matching algorithms based on human-annotated contours of elephant
ears were proposed by Ardovini et al. [6] and Weideman et al. [71]. Weideman’s
CurvRank algorithm was originally designed for re-identification of whale flukes
and dorsal fins. Recently, Weideman et al. [72] proposed an extension of CurvRank
that is capable of automatically extracting matchable contours from images, and

report strong results matching contours of elephant ears.

9.4 ElephantBook

Our solution, which we call ElephantBook, by default integrates with EarthRanger
through its REST API to consume Group Sightings recorded by field teams. Ele-
phantBook can also be reconfigured for use without EarthRanger if needed. It is
web-based and built primarily with the Django Python package [2]. This configu-

ration allows our system to be both lightweight and easily reconfigurable.

Human-in-the-loop re-identification pipeline
Data Collection in the Field

Rangers at the Mara Elephant Project routinely survey the Maasai Mara in search
of elephants. Rangers record the time and location of every elephant sighting and
submit it to EarthRanger. When possible, rangers photograph each elephant from
multiple angles. If no photographs are taken, the event is resolved in EarthRanger,

and no re-identification occurs.
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Figure 9.3: Workflow of elephant re-identification.

Adding a Group Sighting to ElephantBook via EarthRanger

ElephantBook pulls a list of active elephant sighting events from EarthRanger. Users
select the appropriate EarthRanger event and create a corresponding ElephantBook
“Group Sighting.” A Group Sighting is one or more elephants spotted at the same
time and place. This step is usually performed after returning from the field.
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Uploading Photos

All photos taken at the same time and place of the Group Sighting are uploaded to
ElephantBook. However, only photos labeled with boxes (in the next step) are used

for re-identification.

Boxing Elephants

Once all photos are uploaded, elephants in each photo are boxed with an image
annotation tool. While the human annotator likely will not know the name of each
individual elephant in the Group Sighting photos, the annotator should be able
to differentiate between elephants and identify the same elephant across multiple
images. If it is impossible to tell elephants apart in a single instance, matching over
a period of months is unlikely. Boxes are marked with numbers unique to each
specific elephant within the Group Sighting. This identification marking reduces
the number of matches we must make from the sum of the number of elephants in all

photos to the number of actual elephants sighted. See Section[9.5|for more details.

Human Attribute Labeling

An “Individual Sighting” is created for each elephant identified in the previous
step. An Individual Sighting is an elephant encounter at a single time and place,
and it is always connected to a parent Group Sighting. Manual attribute-labeling
is performed for each Individual Sighting. We use the recently-developed SEEK
coding system [8]. See Section [9.6/for more details.

Computer Vision
Confidence-producing computer vision matching algorithms are run to identify
potential matches. See Section[9.7|for more details.

Matching

Manual attributes are combined with the output from the computer vision algorithms
to provide a list of the most likely previously identified elephants. See Section[9.§]

for more details.
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9.5 Bounding box annotation

We customized an open-source online bounding box annotation tool from the Visi-
pedia project [15]. Because annotators need to match individual elephants across
photos taken at a sighting, a second pane was added to allow annotators to compare

multiple photos at once.

Image 7 /151 Image 91 /151
e Previous | Next | Add Elephant to List of Identities | Submit

Il

Image ID: d41e4071-921-4616-ab01-4b3b462347e2/DSC_2398.JPG

Image ID: d4fe407f-9d21-4616-ab01-4b3b462341e2/DSC_2502.JPG

1 @ Indvidual
Sighting 10

Figure 9.4: Bounding box annotation interface.

9.6 SEEK

In SEEK, each elephant is assigned a unique descriptive code which is used to
narrow the set of potential matches that must be considered by human experts. The
code begins with the elephant’s sex and age, followed by the presence or absence
of tusks (Figure [9.5)). The code further defines the type and position of prominent
and secondary tears and holes found on the right and left ears. Finally, it notes the

presence of any extreme features on the ears and body, such as a missing tail.

9.7 Computer vision
Elephant ear localization
To allow CurvRank to focus on the ear, the localization of which is key to extracting

accurate ear contours, we trained a simple elephant-ear detector.

The ELPephants dataset from the Elephant Listening Project [35]—consisting of
images of African forest elephants visiting the Dzanga bai clearing in the Dzanga-
Ndoki National Park in the Central African Republic—was used for training and
validation. After removing duplicates, the dataset consisted of 1935 images of 276
unique individuals. The dataset is provided with the identities of the elephants, but
each image was manually annotated for bounding-boxes of left and right ears. Only

ears where the contours were fully visible were annotated. Annotations were made
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Figure 9.6: Frequency of SEEK attributes.

on 910 left ears and 1,045 right ears (Figure[9.8)). Two-hundred randomly sampled

images were reserved for object detection validation.

We trained a Faster R-CNN object detection model [55] with a ResNet-50 backbone
and added Feature Pyramid Networks (FPN) [40] in Pytorch [51]. Beginning
with a model checkpoint pretrained on the Microsoft COCO dataset [39]], we trained
our model on 1,735 images to detect and categorize left and right ears. Our detector
achieves a Mean Average Precision (mAP) [39] of 95% on our held-out test dataset

of 200 randomly-selected images.

Matching ear contours with CurvRank
After extracting ear images from out ear detection model, we use CurvRank [72] to

filter possible matches.

CurvRank was initially developed to recognize individual cetaceans based on con-
tours of flukes and dorsal fins [71]]. As elephant ears are also a strong re-identifiable
feature and are delineated by a contoured edge, applying CurvRank to elephant

re-identification was an intuitive next step, and the authors determined the transfer-



284

1.0

0.81

0.6

0.4/

0.2

Match

?
Non-Match

0.0-

Right Ear Secondary Hole Location I I I _

- -+
EWCECCC CCCC"E"E"E“EC
()] o O O o O O O
o] O O = = = =2 = =2 =2 0 0 0 O O
< aaR B RERERBRRR Yy
8§ ££83888388csc4ks
Mi_‘_‘_l _‘_‘_I_IGJQ-Q-(UGJ
6 U5 0k s o s o0 22220
> 3 el e = 25 S5 35 S5 5
v O W O O 0o © & & B o B
L DTS TETETEEEE S
&
'g,tvi‘iz‘ > > > L o UoLow
= - © ©g ® T 8 ® 8 0 U T %" ©
* EEER2EEEREET T
~ T O T O v O O
aF o S 90 35 E5E 3893 &
L 0 L 00 X X un o n wun
T © 0N fﬂmlnmLuLuLL>‘
Wow o Ww o U © o 68 6 3B
-~ © ©
£z88¢§¢ 8888823
[ < — 439 £ & @
¥ = <© S £ & 2 &£ 5 0
x 5 [T T] o 2 2a
g - 2 2 2 %
o 4

Figure 9.7: Agreement of annotators by attribute for pairs of SEEK codes on the
same individual.

l\f)%rmalized Object Center Distribution

Figure 9.8: We visualize the center of the ground truth annotated boxes across our
training set, and see that there is a strong bias in the imagery towards ears being in
the upper center of the image, with modes slightly to the right and left.

ability of the matching algorithm from cetaceans to elephants by analyzing results

on hand-drawn contours.

Recently the CurvRank authors proposed a deep-learning based algorithm to au-

tomatically extract the contours used as input to their matching algorithm [72].
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They evaluated this automated approach on humpback whales and African savanna
elephants, with impressive results. Their method relies on two fully convolu-
tional neural networks for curve extraction, one coarse-grained and one fine-grained
(CG-FCNN and FG-FCNN). Annotators initially traced the identifying contour in
cropped images with a broad line, using a single brushstroke, to produce coarse-
grained training data for the CG-FCNN. In the second step, the FG-FCNN is trained
to predict for each pixel in the (ear or fluke) image the probability that it would
be covered by the coarse brush stroke, producing a probability image at the same
resolution as the initial image. By using the coarse, easily extracted training data to
train the FG-FCNN, tedious manual effort is avoided. These pixel-level probability

maps guide the third step: a shortest path contour extraction algorithm.

Once the contour is extracted, it is represented as an ordered sequence of (X, y)
coordinate pairs. Then CurvRank builds an integral curvature by sliding multiple
disks of increasing radius along the contour [72]]. For each scale, every point is
represented as the ratio of the areas of the disk for that scale on either side of
the contour [72]. Feature keypoints are defined at local extrema of the integral
curvature representation 33| [72], and feature descriptors are extracted from the
regions between all pairs of keypoints. This set of feature descriptors forms a
densely sampled, overlapping representation of the entire individual contour across
multiple scales. Match similarity is determined and possible matching individuals
ranked via the local naive Bayes nearest neighbors (LNBNN) algorithm [44].

The method reported a top-1 matching accuracy of 84% for high-quality, high-
resolution images of elephant ears on the closed set of 132 individuals on which
the model is also trained [72]]. The authors remark that elephant ear recognition is
more difficult than whale fluke identification, due to challenges of contour extrac-
tion against more-highly textured image backgrounds and because the identifying

information is more localized and subtle.

9.8 Matching

To allow rangers to efficiently identify an individual from the large set of previously
encountered elephants, rangers are presented with a ranked list of possible matches
to visually examine. These matches are computed with a score function that is a
linear combination of manual attribute differences and computer vision matching
confidence. Each SEEK attribute of the new Individual Sighting is compared to the

SEEK code of all known Individuals. For each attribute in the codes, the distance
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Figure 9.9: Here we show successful (top) and failed (bottom) CurvRank examples.
CurvRank is highly successful in high-quality, high-resultion imagery, but perfor-
mance drops off in lower-resolution or blurry data as the edge of the ear is harder to
distinguish.

is zero if the attributes match, one if they differ, and 0.6 if either of them contain a
wildcard character. Additionally, the weight of the age component of the distance is
set to 0.4 because of the known difficulty in accurately aging elephants (Figure[9.7).
The mean of these differences is taken. The weighting parameters were learned

separately on a training set of codes to optimize matching accuracy.

CurvRank produces an unbounded matching score between the new Individual
Sighting and all Individuals. A greater score indicates greater likelihood of a true
match. CurvRank scores are subtracted from the SEEK score and multiplied by
0.1. The parameter weight of 0.1 was learned in a training set of SEEK codes and

CurvRank contours.

Evaluating matching accuracy

To evaluate the robustness of SEEK, CurvRank, and our proposed combination of
the two, we trained a non-expert team of seven college undergraduates to perform
SEEK labeling, and we collected labels from two to three students annotator for a
set of Individual Sightings from the Elephant Voices collected by Joyce Poole [52].
In total, we have three annotations for 75 Individual Sightings and two annotations
for 26 Individual Sightings.
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We held out individuals that had at least two SEEK code annotations and two right-
ear CurvRank contours. There are 45 individuals with a pair of SEEK codes and
33 individuals with a triplet of codes. Comparisons of top-k matching performance
for SEEK, CurvRank, and our ensembled approach can be seen in Figure[0.12] We
observe that matching performed with SEEK codes generally outperforms that of
CurvRank alone, but that a combined approach is able to leverage the best of both,
leading to more accurate matching. Using our combined system, with only two
previous sightings of an individual in our database, we are able to match to the
correct individual within the top 15 for 92.9% of sightings, and within the top 5 for
66.7%, helping rangers reduce the time needed to find the correct matched individual
in the database. As Mara Elephant Project continues to collect and label Individual
Sightings we will continue to analyze and hopefully improve matching performance.
We expect additional sightings to improve accuracy, as it presents more potential
sightings per individual to match with correctly. However, as we collect additional
sightings we will also be increasing the number of individuals in the database,

making the matching task more nuanced and potentially more challenging.

9.9 Mara Elephant Project initial deployment

The Mara Elephant Project began using ElephantBook in January 2021 after a
six-month prototyping period and so far has logged 140 Group Sightings and 251
Individual Sightings and has ingested and boxed 10,462 images of elephants. Be-
ginning in March 2021, the organization has hired and trained a full-time team
of four research assistants for collecting elephant sightings in the field, processing
photos, and developing SEEK codes for individual elephants. Initial training on
both field methodology for cataloging elephant Group Sightings and in the use of
ElephantBook and SEEK labeling took one week. MEP’s goal is to character-
ize and document the majority of the Mara’s 2500 individuals. Extension of the
ElephantBook system with partner organizations in Tanzania would further enable
documenting the greater, connected elephant population stretching south into the

Serengeti and consisting of >7000 individuals.

Initial experience using ElephantBook is that it is an intuitive system that mimics
a typical re-identification workflow. Optimizations for low-bandwidth connections,
such as compression of photos before viewing them, but also keeping original full-
resolution versions available for detailed scrutiny by a SEEK coder, have greatly
improved the user experience. Boxing individuals has been relatively straight-

forward even for novice users. Accurately labeling SEEK codes is perhaps the



288

=
o

s SEEK
= CurvRank
mmm Combined

© o o
EN o 0

o
[N}

Proportion of Individuals

8cm 0.0 top-1 top-5 top-15

Figure 9.10: One code per individual
1.0

s SEEK
W CurvRank
B Combined

© o o
EN o 0

o
N

Proportion of Individuals

o
o

8cm top-1 top-5 top-15
Figure 9.11: Two codes per individual

Figure 9.12: Comparing matching accuracy for our SEEK-based matching algo-

rithm, CurvRank, and our hybrid SEEK-CurvRank aggregated approach. We see

that SEEK and CurvRank are complementary, with the combined approach outper-

forming either method on its own for tests with both one and two database example
for each individual.

most challenging component of the ElephantBook system, particularly the correct
estimation of age category which requires considerable expertise and, to a lesser

degree, the determination of sex.

9.10 Conclusions and future work

We have built a robust semi-automated system for human-in-the-loop elephant re-
identification, and we have deployed our system on the ground in the Greater Mara
Ecosystem. This system allows the Mara Elephant Project to track a much larger
population of elephants over time, as they will no longer need to collar an elephant
to track its movements. The system is a needed tool to assist in their vital elephant
conservation efforts. As we move forward, we will expand ElephantBook to ad-

ditional parks, including the Grumeti Game Reserve in Serengeti National Park in
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Tanzania and Greater Limpopo Transfrontier Conservation Area in South Africa

and Southern Mozambique.

In the coming months, we will continue to collect new elephant sightings and refine
our matching system to further reduce the human effort needed for re-identification.
We plan to investigate automating SEEK coding and integrating additional computer
vision methodology into our system, building learned representations of individual
elephants beyond their ear contours. The data collected will also allow us to further
analyze how these elephant features change over time and allow us to conduct deeper

analysis of our current system on an expanding set of known elephants.
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Chapter 10

PITFALLS AND RISKS

Sara Beery* and Elizabeth Bondi*. Can poachers find animals from public camera
trap images? CV for Animals Workshop at CVPR, 2021.

Sara Beery* and Ellie Warren*. The Promise and Pitfalls of Machine Learning for
Conservation. WILDLABS Series on Technical Difficulties, 2021.

Machine learning is often touted as conservation technology’s silver bullet, a tool
that will make conservation work easier, faster, and more effective. But those in
conservation who work with machine learning can tell you from experience that it’s
far from a magic solution, and in fact, all the hype surrounding machine learning’s
potential makes its failures both surprising and frustrating. When machine learning
tools fail to deliver consistent results, i.e. when a model achieves very high accuracy
on a prototype dataset but doesn’t work in the field, the cause is often that the
prototype data wasn’t representative of the end use case. This means that when the
model “fails” it’s really being asked to do something significantly outside the scope
of what it has been trained to do. And because many conservation practitioners
don’t yet understand exactly what machine learning is capable of, they’re more
likely to buy into hype and sky-high expectations, resulting in a feedback loop that
leads them to expect near-perfect performance, and then feel disappointed by the

inevitable letdown.

One real challenge is that data curated for ecology tends to be project-specific,
covering limited geographic areas or taxonomic groups, and collected from project-
specific sensors. To build a one-size-fits-all machine learning model, you would
need to collect a dataset that covers all possible use cases—which in a changing world
is essentially impossible. So how does that relate to our expectations for machine
learning, built around promises like 99% accuracy? In almost every paper that
promises those kinds of results for the ecological community at large, the data the
authors have trained their model on will not support their broad claims. Beginners
expect that training a ML model is the challenging part, but really, the careful
curation of diverse and representative training and evaluation data for a new task

is equally if not more challenging than training the model. It is possible to attain
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deceptively high accuracy in a highly controlled setting—fixed sensors, time periods,
sensor placement strategies, etc. The problem is that a model trained on data from
one highly controlled setting is unlikely to work well in other settings, making it
“fail” when used on e.g., data collected by other ecologists. Often the literature does
not test their trained models in a way that shows how the models will work for other
potential users. Exacerbating this, media hype makes it seem like 99% accuracy
for one project means 99% accuracy for everyone, with no additional effort. That
disconnect between expectations and reality leads to the perception that anything
less than almost perfect results in actual practice is a failure an unusable, when in
fact, a slightly-less-perfect machine learning model can still save you a lot of time
and effort. When we evaluate models with generalizability as our goal, testing on
data that is representative of the types of extrapolations to novel settings the model
is likely face during use, it enables us to learn which models work well enough to
be deployed and used off-the-shelf and which models need to be retrained for each

new setting.

Another challenge is lack of clarity among conservation practitioners about the
common metrics for measuring machine learning’s success. Metrics like accuracy
can be misleading depending on the data in question. For example, if a model
achieves 90% classification accuracy while predicting whether an image is of a dog
or of a mountain lion, that seems exceptional. But if the data used to measure that
performance is 90% dogs, the model could get that accuracy by predicting ‘dog’ for
every single image. When data is imbalanced, sometimes a class-averaged metric is
more interpretable, because it better captures how well the model is doing across all
of the possible classes. However, optimizing for class-averaged metrics frequently
result in models that make more errors on common species, and if a common species
is 90% of the data that can lead to a lot of errors. We often recommend users break
down performance across classes, and if applicable across sensor deployments,
seasons, and regions, to better understand what the model is doing for their use case
and to decide which images to trust the results for, and which images to send for

additional human review.

Beyond the prototyping data for training and evaluation, the choice of evaluation
metrics, and the model itself, there are additional tools needed to effectively deploy
ML models for conservation, including systems to get the data from the field to the
models and tools for visualizing, correcting, and analyzing the results. Models like

MegaDetector [2]], which we trained to detects humans, vehicles, and animals (here
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“animal” is a single, generic class) in camera trap data, save users time combing
through massive amounts of empty photos. A significant amount of effort has gone
into code that makes it easy to try MegaDetector on data from new projects and to
make the results of the model easy to interact with, analyze, and interpret. This
code includes interactive Google CoLab Notebooks, a batch processing API to run
large amounts of data through the model in parallel on the cloud, and even tools for
filtering out possible repeat detections for a given camera, which sometimes occur

when the model is confused by an object in the background of the frame like a rock.

When considering whether and which machine learning tools will successfully
meet your needs, it is important to consider your priorities, resources, and the risk
associated with errors for your study. When MegaDetector first became available
to users, there was a lot of uncertainty among users about the types of possible
error and how to put MegaDetector into practice most effectively and reliably for
their specific camera network and target species. The model was built to work as
well as possible off the shelf, anywhere in the world and for any animal taxa. That
said, every user has different needs and requirements depending on their study, so
each user has to weigh their own pros and cons when it comes to how they use
the model. No two user’s needs are the same. For example, if an ecologist is
seeking to monitor invasive rodents on islands, any sighting of a rodent is highly
significant, so missed detections are very high risk. For this use case, you’d use a
lower confidence threshold on model detections, which reduces the risk of missing a
rodent but requires human effort to filter through a larger number of false positives.
With any trained machine learning model, you can pick an operating threshold that
will trade off between high recall, avoiding missed detections but resulting in more
potential false positives to analyze, and high precision, where your predicted results
are more accurate, but you may have a higher risk of missing something important.
Knowing which one of those options will lead to the right tradeoff between human
processing effort and risk for a given study should be rooted in the user’s expertise

and knowledge of the specific application in question and the resources available.

Those without previous experience working through meeting machine learning’s
intrinsic challenges can be frustrated by the fact that off-the-shelf tools don’t work
perfectly and cannot fully automate data processing. In contrast, expectations for use
should shift to include investing time to carefully analyze how well any off-the-shelf
tool works for the data of interest and learning how to fine-tune an existing model

if project-specific predictions are needed (e.g., species, gender, age, or behavior).
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We should adjust our expectations around the use of ML for conservation from
ML completely replacing human data processing to ML providing assistance to
reduce the human effort needed to process newly collected data. For example,
MegaDetector user Beth Gardener at the University of Washington said, “We had
a big image processing party last week [...] Because of the MegaDetector; 6 of us
processed over 100,000 images in one day. That would have taken weeks or months
before.” Despite not completely removing the need for human eyes on the data, this

is a notable speedup in processing, and a resounding success for conservation Al.

Further, expectations of use should include doing continual quality control of a
model for new seasons or new deployments, and understanding that models often
must be iteratively re-trained to handle new data as conditions change. ML systems
for conservation should be treated as continually changing and adapting with human

help as opposed to assuming model training and evaluation are a one-time thing.

One example that demonstrates the need to practice diligence and good quality
control habits comes from Wildlife Insights, a machine learning platform that seeks
to tackle the challenge of robust, global species identification by curating diverse
camera trap data from around the world, and simultaneously provides users with
a powerful platform for data management and analytics. An issue arose when our
team started to analyze the performance of a new model version before its release.
The new version included a large amount of training data from a new projects, and to
everyone’s surprise, for no apparent reason, the model began frequently predicting
the presence of domestic cats. Lots and lots of cats, on images that were clearly

deer or dogs or cows, species the model had handled very well in the past.

In what seemed like a sudden catastrophic failure, we were getting detections of
cats in what felt like almost every photo from certain camera trap projects. To
understand what went wrong, we must go back to a potential issue that our team
thought had been thoroughly investigated. Every camera trap brand has its own
logo or watermark on photos. We’d previously wondered if all those different logos
would bias our machine learning models or impact performance. But in earlier
testing, we found that different logos in different locations in the image frame didn’t

seem to throw off generalization or make a difference in our results.

The mysterious abundance of cats turned out to be the result of a large project from
an urban area that captured lots of cats and used only Bushnell cameras. By some
chance, most other projects already in WI were using other camera trap models, so

the algorithm learned the “easy’ association that an orange Bushnell logo meant the
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image contained a cat. The team was reminded the hard way how machine learning
models will always take the easy way out, and memorize spurious correlations in
the data if possible. This model was so good at everything else, but was making
these weird cat errors that just didn’t make sense! It took us a while to figure out
what had gone wrong. We might’ve realized that the Bushnell logo was causing
the problem sooner if we hadn’t already invested time into analyzing whether logos
caused issues in previous versions of the model. Because we’d already invested that
time and energy, it was easier for us to overlook it because it wasn’t on our radar
anymore as a potential problem. But that’s a good example of accepting that just
because your model doesn’t have a problem with something now, it doesn’t mean
it’ll never have a problem. Don’t trust the results of any model without corroborating
them; otherwise, you won’t recognize those problems when they do pop up. Because
the Wildlife Insights team caught the error and were able to determine the cause,
we were able to retrain their model after cropping out logos and verify that it fixed

the issue. The new model version no longer has a love affair with cats.

With more established and familiar types of conservation technology, like camera
traps themselves, the idea of failure may be easier to digest. After all, hardware can
malfunction, especially when exposed to the elements and unpredictable wildlife.
But with all machine learning’s hype as the future of conservation tech, our own
expectations may be setting machine learning up to fail. And that’s unfair. Machine
learning will very likely play a huge role in conservation’s future, particularly
as tools like MegaDetector and Wildlife Insights make it more and more user-
friendly. But like we’ve come to accept mishaps with hardware, we need to accept
machine learning’s realities and current limitations in order to realize its full eventual

potential.

Equally important is recognizing that machine learning’s current capabilities are not
its ultimate destination. This technology, like all technologies, will only improve
and become more accurate and accessible over time. And with increased acces-
sibility, we see a bright future full of promise for machine learning. Ecologists
and conservationists will need to develop their intuition for and critical analysis of
machine learning, and that comes with use and experience. We must to break down
knowledge barriers to make machine learning more accessible for ecologists to use
practically. By giving people the skills to experiment with machine learning, we
can open the door to innovative ideas, and new, exciting human-Al solutions for

conservation and sustainability challenges.
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10.1 A case study in the risks of publishing ecological data: can poachers find
animals from public camera trap images?
To protect the location of camera trap data containing sensitive, high-target species,
many ecologists randomly obfuscate the latitude and longitude of the camera when
publishing their data. For example, they may publish a random location within a
1km radius of the true camera location for each camera in their network. In this
paper, we investigate the robustness of geo-obfuscation for maintaining camera trap
location privacy, and show via a case study that a few simple, intuitive heuristics and
publicly available satellite rasters can be used to reduce the area likely to contain
the camera by 87% (assuming random obfuscation within 1km), demonstrating that

geo-obfuscation may be less effective than previously believed.

Introduction

Monitoring biodiversity quantitatively can help us understand the connections be-
tween species decline and pollution, exploitation, urbanization, global warming,
and conservation policy. Researchers study the effect of these factors on wild ani-
mal populations by monitoring changes in species diversity, population density, and
behavioral patterns using camera traps. Camera traps are placed at specific, often
hard-to-reach locations in the wild, and capture images when there is movement.
Recently, there has been a large effort in the biology community to open-source
camera trap data collections to facilitate reproducibility and provide verification
(since mistakes can cause overestimates [7]), as well as promote global-scale sci-
entific analysis. By open-sourcing the images - not just metadata - collected across
organizations, scientists studying a specific taxa can pool resources and leverage
bycatch (images of species that were not the target of the original study, but are still
scientifically valuable) from other camera trap networks. They will also be able to
study animal behavior. A great deal of camera trap images are publicly available
from all over the world, including via websites hosted by Microsoft Al for Earth and

University of Wyoming [1]] and Google [11].

However, as mentioned on the Wildlife Insights FAQ page [12], “Won’t Wildlife
Insights images reveal the locations of endangered species to poachers?” They an-
swer that “While Wildlife Insights is committed to open data sharing, we recognize
that revealing the location for certain species may increase their risk of threat. To
protect the location of sensitive species, Wildlife Insights will obfuscate, or blur,

the location information of all deployments made available for public downloadT|

'Public downloads are not yet available in Wildlife Insights.
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so that the exact location of a deployment containing sensitive species cannot be
determined from the data. Practices to obfuscate the location information associated
with sensitive species may be updated from time to time with feedback from the
community.” Community science (also known as citizen science) initiatives have
also obfuscated locations to protect endangered species, such as eBird and iNatu-
ralist, as there have been cases where community science and/or other open source

data has informed poaching [6]].

While obfuscating locations is encouraging, it is not clear whether it is sufficient to
prevent geolocalization, or whether it is also necessary to blur or otherwise obfuscate
portions of the images themselves. For example, for images in cities, geolocalization
is typically based on recognizable landmarks and geometries, such as relationships
between buildings and roads, heights of buildings, and strong architectural features
or signage. The more recognizable a feature (such as a famous landmark or horizon),
the easier an image is to geolocate. If you see an image containing the Chrysler
building, it’s easy to know that you’re most likely in NYC. If you can see the outline
of Mount Rainier, you’re most likely in or near Seattle. An image of the exterior of
a nondescript chain hotel or stretch of highway might be more difficult to place. We
believe both human intuition and automated methods such as [10] take advantage
of these features. The same might be said of camera trap imagery: if your image
contains a noticeable landmark (for example a set of large rocky outcroppings or a
body of water), it might be easier to estimate its location. In contrast, an image of
dense undergrowth is only as potentially geolocalizable as your ability to recognize
and model the distributions of its visible flora and fauna, and your ability to estimate
a latitudinal band based on the timings of sunrise and sunset. In order to make these
data publicly available, it is imperative that we understand whether these camera
trap images can reveal locations, and if so, how to prevent locations from being

revealed.

In this case study, we investigate how “obfuscated” these camera locations are, both
with existing off-the-shelf geolocalization models and with a human-in-the-loop
algorithmic approach we define as a proof-of-concept. We show that while existing
models struggle to accurately locate camera trap images, a systematic method of
filtering targeted to a specific conservation area using publicly available satellite
rasters can be used to find specific candidate areas that are quite accurate, rendering
the geo-obfuscation ineffective and indicating that the answer to our titular question

is yes.
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It has been shown in prior work that geolocation can be determined from images. For
example, PlaNet [10], an open-source deep learning approach pairing ground-level
views and satellite data (see examples in Fig. [10.2), can predict a set of plausible
locations of any image, including nature scenes. Most of these methods require
multiple images for better performance, which are readily available for camera trap
image collections. Other approaches focus on identifying objects in the scene,
and using those identities to predict the locations [13]. Preventing locations from
being revealed from images has also been considered in previous work, should this
be necessary for camera trap images [14]]. In particular, [14] applies to general
image collections, such as those that might be posted to social media by users, and
strategically deletes images until the location is ambiguous. However, all camera
trap images taken from a single camera will have the same background, making it
difficult to strategically remove images to reduce geolocalizability in a set of camera
trap images. Camera trap images may also have very specific local landmarks, such
as a well-known rock or tree, known to those familiar with an area but potentially

hidden from generic deep learning methods.

Case study with Mpala Research Center

Our goal with this case study is to simply prove that geolocation is possible from
camera trap imagery and metadata, indicating that sensitive animal locations could
be vulnerable. We focus on Mpala Research Center and explore both an off-the-shelf

deep learning method for geolocalization, as well as a human-in-the-loop method.

Mpala camera traps

The network of cameras we selected for our proof-of-concept is located at Mpala
Research Center in Laikipia, Kenya. These 100 camera traps were initially placed
as part of the 2020 Great Grevy’s Rally, and have been continually collecting data
over the past year. They capture a variety of habitats and backgrounds, including
open savanna, two types of forested area, changes in elevation, and sites with visible

horizon and without. You can see the diversity of landscapes across Mpala in the

map in Fig. [10.1]
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Figure 10.1: Map of Mpala Research Centre in Laikipia, Kenya, where the camera

traps we studied were located.
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Figure 10.2: PlaNet results on an image from a Mpala camera trap. The blue marker
is an approximation of the ground truth location, the white marker is the model
prediction.

Off-the-shelf results

We tried the existing PlaNet model on examples of camera trap data from Mpala,
with results in Fig. [10.2] Given images from Mpala, PlaNet predicted large potential
location areas covering Kenya, Tanzania, and South Africa. This may be due to
the large amount of animal safari-based ecotourism in these countries. These
areas are much larger than the potential randomness in location prescribed by most
geo-obfuscation policies, rendering the off-the-shelf model unhelpful in further
localizing the cameras. However, given camera trap-specific training data, similar
deep learning-based methods may prove significantly more accurate. It is also
interesting to note that the model seems to focus attention on the sky, which may

imply that we should minimize the visibility of landmarks and horizons.

Satellite Rasters

We primarily utilized two sources of imagery from Google Earth Engine, specifi-
cally, (i) elevation data [8], which were collected in 2000 with a native resolution
of 30 m and ranging from about 1600-1800m in our region, and (ii) Sentinel data
[3], specifically the red, green, and blue bands, which were collected in 2020 at a
native resolution of 10 m. We downloaded each through Google Earth Engine’s

platform at 10 m resolution (the minimum of the two) over the same area to cover
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Mpala Research Centre, and all 100 camera traps. We then stacked these to form a
multi-layer GeoT'IFF.

We also considered using a landcover map from Google Earth Engine [3]], but we
found that the classes did not have a great deal of distinction or resolution over our
particular area of interest. We also note that if you know what part of the world you
are in, and approximate sunrise and sunset directions, then it is possible to guess
the approximate camera facing from just a few images (see Fig. [10.4). Methods
for automatically determining sun direction [9] and camera position [4]] based on
shadows have been investigated in the computer vision literature, and could be used
to scale up facing estimation for a large set of cameras. These and other data could

certainly be included in the future to further improve geolocation results.

Human-in-the-loop geolocalization

We manually sampled one location from the camera traps to attempt to geolocate.
We chose this location because it seemed to have recognizable features, for example,
red-tinted soil and a large rock nearby (see examples in Fig. [10.4), as we discussed
in Sections [I0.1]and [I0.1 We decided to look for exactly these traits based on our
observations. First, we computed the gradient of the elevation band and filtered
for steep elevation change. We next searched for areas that were primarily red by
thresholding the red band of the Sentinel data. We knew from our image that the
camera trap was not in the red area itself, so we used morphological operators
to select a small area surrounding red areas. In particular, we first did a closing
operation to fill in gaps between small areas of the mask, then dilated this twice:
first to represent a minimum distance away from the red area, then to represent
a maximum distance away from the red area. We then subtracted the minimum
dilation to get a “donut” shape around the red areas. We needed to do this for at
least one of the two features in order to observe the areas of overlap (i.e., a red area

nearby a rock).

Once we found these two areas, we simply carried out an AND operation between
the two masks. The remaining mask represented our candidate locations for the
camera trap view. However, the camera is placed at some distance to view this
scene. Therefore, we carried out the same operation as when searching for “near
red” areas. In particular, we estimated the distance of the camera from the landmarks
in the image, and set the minimum and maximum dilation distances accordingly.

We also adjusted the dilation distances to account for the fact that the camera might
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(a) Elevation change (EC) (b) Red dirt (RD)

(¢) RD near EC (d) RD near EC, within
Mpala

(e¢) RD near EC, 10km ob-(f) RD near EC, 1km obfus-
fuscation cation

Figure 10.3: Human-in-the-loop geolocation filtering. In each example, the park
boundary has been overlaid for context, and the camera location is represented by
a small blue dot. The red portions of the image are “potential locations” for the
camera.
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Filter type Area (km?)
RD near EC 6.8301
RD near EC, within Mpala 2.0688
RD near EC, 10km obfuscation 5.1373
RD near EC, 1km obfuscation 0.2641

Table 10.1: Remaining area (in square kilometers) needed to search on foot to find
the camera location, using our “red dirt near elevation change” human-in-the-loop
filtering method and varying levels of geo-obfuscation.

Figure 10.4: Images taken at sunrise (above) and sunset (below) imply that this
camera is facing south by southeast.

be located diagonally from the area of interest, and the kernels used for dilation are
pixel- rather than distance-based, resulting in differing growth distance with each

dilation diagonally vs. horizontally and vertically.

This provided us with final candidate locations for the camera trap. We therefore
calculated the area of these locations by simply computing the final number of
candidate pixels, and then multiplying by the area of these pixels, which is 10m =

10m = 100m?2. This gives us the final “searchable area,” which we report in Table

[10.1] row 1.

Geo-obfuscation

Mpala Research Centre is about 200 sq km in area, and the result from Table [I0.1]

row 1 contains a slightly larger region due to the rectangular image encompassing
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the park. To synthesize the case where we release imagery and don’t provide
coordinates but do provide the park name, we restrict our final candidate locations
by the boundaries of the park exactly. Similarly, we repeat the calculation as though
we were provided the coordinate geo-obfuscated by 10km and 1km. Our full results
can be found in Table Providing the park name and using these simple image
processing techniques can narrow the search space from 200 sq km to 2 sq km, and
if the provided coordinates are known to be obfuscated by 1km this can narrow the
search space to 0.26 sq km. For reference, 0.005 sq km is the area of an American
football field, meaning 0.26 sq km is about 52 football fields. While this is still large,
we believe that it would be possible to traverse this already, and likely further refine
the predictions from satellite imagery with more sophisticated methods, including
estimating camera facing and/or landcover, which could cut the search area in half.
We emphasize that this reduction in search space was largely due to the presence of
features in the image, especially the rock and soil landmarks. Again, this implies
that we should further investigate avoiding or hiding such landmarks in camera trap

imagery to protect the geolocation.

Case Study Discussion

Using a very simple set of operations on human-generated heuristics based on
publicly-available satellite rasters, we have shown that it is possible to drastically
reduce the potential areas in which a camera may have been placed, meaning that
poachers could theoretically find animals from public camera trap images. Based
on our findings, one simple way to restrict the potential geolocalizability of your
camera trap data could be to consciously place cameras in positions where the
horizon and/or landmarks are not visible. In future work, we hope to further analyze
the performance of human-in-the-loop methods and investigate fully-automated
methods for geolocalization based on deep learning to better understand how to
protect sensitive species while promoting scientific understanding. We therefore
bring this new challenge to the computer vision community: Can we analyze which
types of features in a camera trap view lead to easier geolocalization? And if so,
can we adversarially remove the localizeable features to preserve privacy without

removing vital ecological information?

10.2 Conclusions
While Machine learning and Computer Vision can provide significant benefits, cases

like this one show that automated solutions can also provide risks to endangered
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species. It is vital that end users of these models be provided with the tools to
evaluate the risks of using the models in real-world settings in a nuanced way.
Similarly, though de-siloing ecological data can significantly improve the scale at
which we are able to monitor species, we must be careful that the data we publish

doesn’t contain information, explicitly or implicitly, that could be used for harm.
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Chapter 11

CONCLUSIONS AND FUTURE DIRECTIONS

We require a real-time, adaptive, global-scale earth observation system that unites
efforts across research groups in order to provide the information necessary to
prioritize sustainability and conservation efforts and optimize our allocation of
resources. The development of such systems requires collaborative, interdisciplinary
approaches that translate diverse sources of raw information into accessible scientific
insight. In this thesis, I, in collaboration with my coauthors, have contributed curated
benchmark datasets that help bridge the gap between CV&ML researchers and
impactful environmental challenges, novel computer vision methods that address
challenges raised by these benchmarks, and robust human-Al systems that have seen

widespread use in the ecological community.

I see four significant open challenges in the pursuit of global-scale environmen-
tal monitoring, and expand upon each below. These fundamental and unsolved
challenges are (1) making effective use of all available modalities of data, (2) incor-
porating expert knowledge systematically, (3) ensuring these systems are equitable
and ethical, and (4) expanding the capacity of interdisciplinary knowledge needed

to work effectively on these problems.

Learning from everything: reasoning across non-homogeneous data

Data is increasingly accessible in large volumes, collected from multitudes of di-
verse sensors and platforms. These modalities are complementary: no one data
collection method can capture the entire picture. Valuable information is captured
in everything from text-based historical records to social media posts to satellite
imagery. There have been amazing recent successes in multimodal CV, particularly
with video+audio and images+text. However, these methods barely scratch the
surface of what is possible, focusing primarily on highly correlated pairs of modal-
ities. There has also been extensive work on multimodal data fusion in domains
like diagnostic medical imagery and land cover prediction, focusing on accurate
co-registration of spatial data and generating interpretably fused imagery. I seek to
expand the scope, building methods that reason about data across modalities despite
non-homogeneous structure and vastly inconsistent spatial and temporal scales of
sampling.
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Ecosystem monitoring across modalities at global scale is an exciting and im-
portant testbed for extracting scientific insight from diverse, non-homogeneous
data. We have built the foundation of a multi-year research program in this space—
collaborating with researchers at Google, we are undertaking the first large-scale
study of tree species categorization in urban forests. Our study covers 23 cities
across North America and over 2.5M trees so far, as outlined in Chapter @ We
are combining satellite imagery from Google Earth Engine with on-the-ground data
from Google Street View, iNaturalist, and local tree censuses, and are developing
novel methods which use cross-modal agreement over time as self-supervision to
efficiently adapt to unseen cities. One of the largest challenges we must face is
how to efficiently sample data for human verification (data-efficient evaluation),
particularly under long-tailed distributions where rare classes are the most scien-
tifically important. We hope to collaborate with local ecologists and community
scientists to investigate a combination of self-supervision, anomaly detection, and
active learning to enact efficient validation and model adaptation via community
science “bio-blitzes.” In the future we hope to expand our methods to wild forests,
using data from the National Ecological Observatory Network (NEON) and Wildlife
Insights.

Incorporating knowledge systematically into learning

There is a considerable amount of domain-specific knowledge and theory, which is
almost completely ignored by current CV methodology in pursuit of “pure” data-
centric approaches. This causes real harm: biases in data are propagated through
to systems without a priori understanding of domain-specific risk. Further, results
from black-box models are uninterpretable, making these systematic errors difficult
to catch without domain experts carefully probing models with known high-risk

corner cases.

General methods provide opportunity for outsize impact when designed carefully,
keeping in mind the diverse set of potential use cases and risks [2]. We need to
understand the tradeoffs between generality and domain specificity in our methods
in order to develop rigorous ways to think about designing impactful end-to-end
solutions—computer vision systems that are general purpose but optimal for each
stakeholder. We have begun to study this tradeoff in large-scale systems where
each user has a unique and specific goal for their ecological study, such as Wildlife
Insights and our ongoing project on sustainable fisheries management [4]]. We will

investigate methods that can efficiently and systematically capture domain expertise
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as a model is training, such as risk-aware CV and data programming, or at inference

time via active model adaptation.

Equitable, ethical technology

Conservation and sustainability are time-sensitive global challenges: to make rapid
progress we must build and deploy solutions that are accessible to any stakeholder
(academic research groups, policymakers, on-the-ground conservationists, etc.) that
would benefit from, and would like to use, the technology. I witnessed firsthand
the gap between cloud-based methods and user need when I deployed a network
of 100 camera traps in Kenya. The fastest, most cost-effective way to extract
information from the raw imagery is to mail terabytes of data to the US, where it
can be quickly uploaded to the cloud and analyzed at-scale with our CV models.
The cost of computation, data storage, and data movement make many automated
solutions inaccessible to researchers and practitioners outside of wealthy countries
like the US and Europe. I seek to make CV more equitable and deployable by
developing methods which (1) increase efficiency of training, inference and data
storage, and (2) incorporate and expand federated learning to enable models to learn
from multiple organizations without data needing to be centralized, vital in cases
where data privacy must be preserved (as we show in [1]) and where data movement

is resource-constrained as bandwidth is limited (e.g., in the remote ocean).

Building interdisciplinary knowledge capacity

Another bottleneck to the widespread use of CV for conservation is access to the
knowledge and skills needed to build, train, and deploy Al-based solutions for the
environment. There are many more potential uses for and applications of CV in
ecology then their are trained experts who are able to undertake these challenges. I
am passionate about democratizing access to the powerful tools and technical skills
found in in CV/ML, in order to empower conservation practitioners and ecological
researchers to build their own CV systems to address their own research questions or
protected area management needs. I have developed the curriculum for a three week
summer school[T|designed to teach applied computer vision to senior graduate-level
ecologists, where each student will bring their own ecological question and relevant
data and leave the course with a prototype system to process the data using state of
the art computer vision methodologies.

Ievdecology.caltech.edu
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We have secured funding for the school for the first three years (2021-2023) from
the Resnick Sustainability Institute, Microsoft Al for Earth, and Amazon AWS. One
of the main goals of this summer school is teaching the thought process behind
computer vision. Beyond fundamental concepts, we teach the intuition behind how
a computer vision researcher might (1) define a specific ecological problem within
the framework of ML, (2) build a dataset, (3) select model architectures, and (4)
evaluate performance—teaching how we think, instead of what we know [3]].
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Appendix A

RECOGNITION IN TERRA INCOGNITA: SUPPLEMENTARY
MATERIAL

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita.
In Proceedings of the European Conference on Computer Vision (ECCV), pages
456-473, 2018.

A.1 Additional experiments

Varying the amount of training data per location

We chose to use a small number of locations as this is a key variable of the gen-
eralization problem. In the limit, we would study the behavior of models trained
on a single location with “unlimited” training data. We did not have access to
such a dataset, and therefore used 10 training locations in order to have a suffi-
cient number of training examples. To verify whether 10 training locations would
yield significantly different results than 1 training location, we ran our bounding
box experiments with a quarter, half, and all of the images available per training
location, and saw trans test accuracies of 80.6%, 83.0%, and 83.4% respectively.
This implies that increasing the number of images per location would not solve the

generalization problem.

Varying the number of training locations

As an additional control, we experimented with varying the number of training
locations (see Fig. [A.T(Left)), and find that trans performance is stable as the
number of training locations is increased beyond 2. Thus, we are confident that our
dataset is adequate to measure generalization ability. We expect the generalization
gap to narrow with N >> 10, but as the number of training locations increases the
focus of the experiment shifts. We want to provide a test bed to specifically study

generalization when provided with few training locations.

Varying the validation location
To analyze the effect of the validation split, we repeated our experiments with 2
other validation locations (see Fig. [A.I(Right)). We find that test performance
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Figure A.1: Generalization metrics are robust to N. locations and to validation.
Both plots are based on bounding box classification. (Left) Error per class vs.
number of training examples (best-fit line width denotes number of training locations
in 1,2,3,5,10). Trans performance is stable for N locations with 2 < N < 10.
We chose 10 training locations to study generalization behaviors while providing
maximal data for experimentation. (Right) Loss curves using different locations for
trans-validation. The test loss for the selected model for each validation set remains
stable, implying that the choice of validation location does not greatly impact trans
test performance.
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is relatively stable regardless of the validation split. Fig. [A.I(Right) also shows

training and validation curves for the three different validation experiments.

A.2 Data format
We chose to use an adapted version of the JSON format used by the COCO dataset

with additional camera trap-specific fields, which we call COCO-CameraTraps. The
format can be seen in Fig.

We added several fields for each image in order to specify camera-trap specific
information. These fields include a location id, a sequence id, the number of frames
in that sequence, and the frame number of the individual image. Note that not all
cameras take sequences of images at a single trigger, so for some images the number

of frames in the associated sequence will be one.

Alldatacanbe accessed athttps://beerys.github.io/CaltechCameraTraps/.


https://beerys.github.io/CaltechCameraTraps/
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{
"info" : info,
"images" : [imagel,
"categories" : [category],
"annotations" : [annotation]
+
info{
"year" : int,
"version" : str,
"description" : str,
"contributor" : str
"date_created" : datetime
+
image{

"id" : str,

"width" : int,
"height" : int,
"file_name" : str,
"rights_holder" : str,
"location": int,
"datetime": datetime,
"seq_id": str,
"seq_num_frames": int,
"frame_num": int

+
category{
"id" : int,
"name" : str
+
annotation{
"id" : str,
"image_id" : str,
"category_id" : int,
"bbox": [x,y,width,height]
}

Figure A.2: COCO-CameraTraps data format
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Appendix B

SYTHETIC EXAMPLES IMPROVE GENERALIZATION IN
RARE CLASSES: SUPPLEMENTARY MATERIAL

Sara Beery, Yang Liu, Dan Morris, Jim Piavis, Ashish Kapoor, Neel Joshi, Markus
Meister, and Pietro Perona. Synthetic examples improve generalization for rare
classes. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 863-873, 2020.

B.1 Architecture selection

To select a single classification architecture to use across our experiments, we trained
three classifiers: ResNet-101 V2, Inception V3, and Inception-ResNet V2. All
three classifiers were pretrained on no-animal ImageNet then trained on the Caltech
Camera Traps (CCT) training set (described in the main paper, Section 3.1) with
no added simulated images. We found that Inception-ResNet V2 performed best on
deer in cis and trans scenarios (see Table[B.1)), so we decided to use Inception-ResNet

V2 as the base architecture for all further experiments.

Table B.1: Error for different architectures. Error is defined as the number of
incorrectly identified images divided by the number of images for each test set,
where “Deer" contains only deer images and “Other" contains all non-deer images.

Cis Test Trans+ Test
Architecture Deer Other | Deer Other
Resnet 101 V2 47.86 11.18|88.63 29.76
Inception V3 50.00 11.74|81.73 32.74

Inception Resnet V2 | 29.28 10.17 | 77.69 31.07

B.2 Additional analysis

Per-class analysis of the effect of adding simulated deer images

By averaging over the performance of the non-deer classes in Figure 5 in the main
paper, we have not changed the overall trend. The performance on each non-deer
class stays reasonably constant until the number of added deer images goes above
325K.
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Figure B.1: Per-class performance on non-deer classes when adding simulated
deer images. The trends seen in Figure 5 in the main paper when averaging across
classes hold for each individual class. Performance stays relatively constant until
the number of added simulated deer images starts to bias the classifier, above 325K
added images.

Analyzing the value of real images

We find that our simulated data is sufficient to learn to recognize some deer even
without real examples, though the real examples give a large boost in performance.
The performance breakdown can be seen in Table[B.2] These results are promising
for both researchers studying zero-shot learning and biologists studying highly
endangered species: it is possible to learn a species with no real training data. This

avenue remains open for further study.
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Comparing night and day performance

We further analyze the effect of day and night simulation by comparing three
experiments: one trained with only simulated daytime images, one trained with only
simulated nighttime images, and one trained with half day and half night (see Fig
[B.2). We find that the models trained on only day and only night perform similarly
on trans deer, and that the 50/50 split performs best on trans deer (highlighted region
in Fig [B.2). Training on day or night alone gives us a 20% performance boost on
trans deer, while training on both gives us a 40% performance boost. This suggests
that the day and night simulated images help the classifier in complementary ways:
day helps with day images and night helps with night images. Performance on other
classes is not strongly effected. Cis performance is quite noisy, and performs best

with no added simulated data, see Fig. 2 in the main paper for further analysis.

Table B.2: Error with and without the 44 real deer examples when adding 100K
simulated deer images. Error is computed as in Table @

Cis Test Trans+ Test
Real Training Data Deer Other | Deer Other
CCT train w/o deer 9429 18.64|68.56 34.42
CCT train w/ deer 52.14 1091 [44.05 30.47
% decrease from real deer | 44.7 41.5 | 357 11.5
1.0
B CCT
B Day sim only
0.8 4 Night sim only
I Night+day sim

0.6 1

Error

0.4

0.2 1

trans+ cis

trans+ cis
deer deer other

(avg)

other
(avg)
Test set

Figure B.2: Error as a function of day or night simulated images: 100K simulated
deer images. Error is calculated as in Fig. 4 in the main paper. Trans+ deer
performance is highlighted. Models trained on added night- or day-only simulated
data perform better on trans deer than CCT alone, but the best trans deer performance
comes from the 50/50 day/night split of added simulated data.
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Figure B.3: Error as a function of deer or coyote simulated images: 100K simulated
images. Error is calculated as in Fig. 4 in the main paper. Trans+ deer and coyote
performance are highlighted.

| () Coyte 31 h J 7 (b) Wolf [16]

Figure B.4: Wolves and coyotes are visually similar.

Investigating the effect of adding simulated data for a common class

In order to investigate how added simulated data might effect a common class, as
opposed to a rare one, we created “coyote" simulated data with TrapCam-Unity,
using rendered models of wolves as a proxy for coyotes. Off-the-shelf, high-quality
wolf models were more widely available, and wolves and coyotes are visually very
similar (see Fig[B.4). This is a coarse-grained experiment, and it remains to be seen
what would happen if simulated data from two visually similar classes (e.g.wolves
and coyotes) was added at the same time.

We find that adding simulated “coyote" data improves trans+ coyote performance
slightly, while cis coyote performance remains the same. Unsurprisingly, for the
deer class (which has few training examples) adding a large amount of simulated

coyote data harms both cis and trans+ deer performance.
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B.3 Creating sim and real on empty data

Alternative to the full synthetic methods of data generation with AirSim and Unity,
we generated synthetic images by overlaying either simulated deer or real cropped
deer on real empty background images from the CCT dataset (see Fig. [B.5).

For the Sim on Empty dataset generation, we posed either a stag or a doe deer
from the GiM model set in front of a simulated camera in Unity. We randomized
the animation, orientation in azimuth (0-360 degrees), position, direction of light

orientation in azimuth (0-360 degrees), and elevation (20-90 degrees).

For the Real on Empty dataset, we manually segmented and cropped out the 44
instances of deer from the CCT training set. Then we pasted the cropped deer
foreground images on top of empty camera trap images in random locations. It
is worth noting that we use real empty background to investigate the effect of real
versus sim foreground deer, it is possible in future work to combine either type of

foreground with sim background images.

B.4 TrapCam-AirSim details

It took time and thought to derive the overall requirements for the AirSim TrapCam
environment. With a sizable number of potential biomes globally, we narrowed the
scope of what we intended to build to a SW United States environment similar to
what is seen in the CCT data. Eventually we settled on a sub-alpine woodland scene
that is readily found across most of the Western/ Southwest US. A major requirement
and challenge was how to get the most data out of a relatively small, but detailed,
area - this was key to the project without expanding the size of the area of interest.
The overall intent was to leverage Microsoft AirSim’s computer vision mode to

move a pre-configured camera around the scene, providing varied background.

We used various off-the-shelf components such as an animal pack from Epic Studios
[6] (Animals Vol 01: Forest Animals by GiM [7]), background terrain from Un-
real Marketplace [2]], vegetation from SpeedTree [14], and rocks/obstructions from
Megascans [11]. In other AirSim environments, the general scenery is fairly static
with exception of particle effects (snow/rain/dust/etc). For this effort we wanted
a method to vary the background, to replicate a variety of terrains within a single
environment (see Fig. The actual area of the environment is small, at 50 me-
ters long, but the modularity allows many possible scenes to be constructed. The
randomization was designed to facilitate artists by allowing them to make a list of

different objects to randomize from. Those objects are prioritized based on their
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(a) Simulated (b) Cropped real
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Figure B.5: Sim and Real on Empty Generation. (a),(c),(e) demonstrate the process
of overlaying a simulated deer on top of an empty background image from the CCT
dataset. (b),(d),(f) show the process of overlaying a cropped real deer on top of an
empty background image from the CCT dataset.

order on the list. The BiomeTerrain class generates them by tracing random areas
across the field based on a global seed. If there’s space available it spawns the desired
object. There are a number of object types available in TrapCam-AirSim; animal
type, rocks, logs, grasses, shrubs, trees, and each type can be varied by density and
distribution. Additionally, we provide 9 GiM animal models: deer (doe/stag), wolf,
fox, rat, spider, bear, raccoon, and buffalo. The doe model was created by removing
the antlers from the stag model with Maya [10], a common modeling tool. All

animal objects were assigned segmentation IDs for efficient ground truth extraction.

We created a simple UI to vary parameters, along with a command line API for
parameter configuration. The UI was constructed with Unreal Motion Graphics
(UMG) Widgets and allows for future flexibility for modifications, DPI resolutions
and platforms. The main core functionalities were created with C++ for better

performance as a parent class for data-only blueprints, which allows the technical
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Figure B.6: TrapCam-AirSim environment. The TrapCam-Airsim envionment was
designed to be modular and randomizeable, which allows a variety of biomes to be
synthesized within a limited simulated area.

artists to easily swap assets for different environments without re-compiling the C++

code.

We started the requirements and scoping in mid-August 2018 with a go-ahead
approximately September 6th, and produced a working prototype two weeks later,
with continued development and refining through mid-October. A second phase
late in the year modified the camera system to include flash capability, and animals
were updated to provide eye-shine, and the UI was modified to include variability

for that eye-shine.

B.5 TrapCam-Unity details

Simulation

The overall goal of our simulation is to take advantage of off-the-shelf components
crafted for game development as much as possible so that we minimize manual
labor and make the method more scalable and generalizeable. Specifically, we used

off-the-shelf animal models and environment.

The “Book of The Dead" environment [4] we use is published for free by Unity.
As shown in Fig[B.§] the near-photorealistic environment simulates a large patch of

forest in a valley with volumetric grass, a variety of high definition trees, logs, and
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(a) Models of deer

(b) Models of wolves

Figure B.7: Models of deer and wolves. In TrapCam-Unity, we used 17 different
models of deer from 5 different artists and 5 models of wolves from 5 different
artists. We used the wolf models as proxies for coyotes (see Section [B.2). Model
details are available in Section@

bushes, as well as rocks and terrain. The environment is a irregular area of roughly
20,000 m?2. It runs on a desktop PC in real time and enables us to generate large

amounts of images efficiently.

To create daytime images we varied the orientation of the simulated sun in both
azimuth and elevation. To create images taken at night we created a spotlight attached
to the simulated camera to simulate a white-light or IR flash and qualitatively match
the low color saturation of the night time images. To simulate animals’ eyeshine (a
result of the reflection of camera flash from the tapetum lucidum), we placed small

reflective balls on top of the eyes of model animals (see Fig[B.9).

For deer simulation, we used 17 animated deer models from 5 publishers on Unity
(GiM[8], 4toon[1]], Protofactor[[12]], Red Deer[13]], Janpec[9]). For coyote simu-
lation, we used 5 models from 5 publishers (GiM[8]], 4toon[1]], Protofactor[12],
Janpec[9], WDallgraphics[15]). We created the GiM doe model by removing the
antlers of the GiM stag model with Blender[3]. For each of the animated models,
we included an animation controller that contains several animation clips ranging
from commonly seen behavior episodes like walking and eating, to rare occurrences

like attacking and sleeping. During dataset generation, we randomly picked a clip
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Figure B.8: TrapCam-Unity environment. The Book of The Dead environment is a
large natural environment with diverse sub regions.

for each instance of animals and freeze it at a random time point, then we move the

cameras around to sample a static scene with animals and environment.

Figure B.9: Example of eyeshine simulation.

We had 300 seed locations and randomly placed animals in the vicinity of a subset
of the seed locations. This process was repeated multiple times to simulate animals
in random locations within the environment. A similar random placement process
was used to determine the locations of the cameras. All images generated are in full
HD resolution (1980 x 1080).

For ground truth generation, we turned off the lighting and rendered each instance
of the animal in a unique color by replacing the original animal shader with an unlit
shader. We then used customized python scripts to extract animal bounding boxes

by extracting pixels with these unique colors.
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Scalability and Generalizability

All synthetic examples in this study are generated with off the shelf environments
and models. We use our simulators to generate deer images for the sake of this

study, but the simulators each currently include up to 30 simulation-ready species.

A large number of high quality assets already exist online in the game development
community. For example, Unity Asset Store alone has 1382 items under the Animal
category. There are also many environments available online, like the “A Boy
and His Kite" environment for Unreal. Despite the abundance of readily made
animal models and environments, it might still remain challenging if the species-
environment combination is not covered by existing assets as the 3D assets need to
be created by artists first. However, recent work in automating 3D model generation
[17-20]], might reduce the need for hand-crafted assets in the future.
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Appendix C

LONG TERM TEMPORAL CONTEXT FOR PER-CAMERA
OBJECT DETECTION: SUPPLEMENTARY MATERIAL

Sara Beery, Guanhang Wu, Vivek Rathod, Ronny Votel, and Jonathan Huang.
Context R-CNN: Long term temporal context for per-camera object detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13075-13085, 2020.

C.1 Implementation Details

We implemented our attention modules within the Tensorflow Object Detection
API open-source Faster-RCNN architecture with Resnet 101 backbone [2]. Faster-
RCNN optimization and model parameters are not changed between the single-frame
baseline and our experiments, and we ensure robust single-frame baselines via
hyperparameter sweeps. We train on Google TPUs (v3) [3]] using MomentumSGD
with weight decay 0.0004 and momentum 0.9. We construct each batch using
32 clips, drawing four frames for each clip spaced 1 frame apart and resizing to
640 x 640. Batches are placed on 8 TPU cores, colocating frames from the same
clip. We augment with random flipping, ensuring that the memory banks are flipped
to match the current frames to preserve spatial consistency. All our experiments use
a softmax temperature of 7 = .01 for the attention mechanism, which we found in

early experiments to outperform .1 and 1.

C.2 Dataset Statistics and Per-Class Performance

Each of the real-world datasets (Snapshot Serengeti, Caltech Camera Traps, and
CityCam) has a long-tailed distribution of classes, which can be seen in Figure
[C.3] Dealing with imbalanced data is a known challenge across machine learning
disciplines [1} S]], with rare classes (classes not well-represented during training)
frequently proving difficult to recognize. Recognizing categories from only a few
training examples is an open area of research, often referred to as “low-shot learning”

or “few-shot learning.”

In Figure 5 in the main text, we demonstrate that the per-class performance univer-
sally improves for Snapshot Serengeti (SS). In Figure we show the per-class
performance for Caltech Camera Traps (CCT). and CityCam (CC). Performance on
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Figure C.1: Performance per class. Performance comparison from single-frame
to our memory-based model. Note this reports mAP for each class averaged across
IoU thresholds, as popularized by the COCO challenge [4]].

CCT improves for all classes from the single frame model. We see that for one class
in CC, “Middle Truck,” our method performs slightly worse; however, this class is

relatively ambiguous, as the concept of “middle” size is not well-defined.

C.3 Spatiotemporal Encodings

We normalize the spatial and temporal information for each object we include in the
contextual memory bank. In order to do so, we choose to use a single float between
0 and 1 to represent each of: year, month, day, hour, minute, x center coordinate, y
center coordinate, object width, and object height.

‘We normalize each element as follows:

* Year: We select a reasonable window of possible years covered by our data,

1990-2030. We normalize the year within that window, representing the year

year—1990

in question as 2030-1990

* Month: We normalize the month of the year by 12 months, i.e. %’;’h
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08-08-2010 15:51:57 DLCcovert.com

(a) Before. (b) After.

Figure C.2: Our system is robust to a static camera being accidentally shifted.
Before and after example of a camera that had been bumped by an animal. The
images are from the same camera. The first image was taken August 8, 2010, the
next August 9, 2010. We find that the system can still utilize contextual information
across a camera shift.

C4

Day: We normalize the day of the month by 31 days for simplicity, regardless
day

of how many days there are in the month in question, i.e. =;-.

hour

Hour: We normalize the hour of the day by 24 hours, i.e. “5;*.

Minute: We normalize the minute of the hour by 60 minutes, i.e. %.

X Center Coordinate: We normalize the x coordinate pixel location by the

x_center_location (pixels)
image_width (pixels)

width of the image in pixels, i.e.

Y Center Coordinate: We normalize the y coordinate pixel location by the

y_center_location (pixels)
image_height (pixels)

height of the image in pixels, i.e.

Width of Object: We normalize the object width in pixels by the width of
object_width (pixels)
image_width (pixels) *

the image in pixels, i.e.

Height of Object: We normalize the object height in pixels by the height of
object_height (pixels)

the image in pixels, i.e. fmage height (pixels) -

Camera Movement

Our system has no hard requirements about the camera being static, instead we

leverage the fact that it is static implicitly through our memory bank to provide

appropriate and relevant context. We find that our system is robust to static cameras

that get moved, unlike traditional background modeling approaches. In Snapshot

Serengeti in particular, the animals have a tendency to rub against the camera posts
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Figure C.4: Visualizing attention. In each example, the keyframe is shown at a
larger scale, with Context R-CNN'’s detection, class, and score shown in red. We
consider a time horizon of one month, and show the images and boxes with highest
attention weights (shown in green). The model pays attention to objects of the same
class, and the distribution of attention across time can be seen in the timelines below
each example.

and cause camera shifts over time. Figure [C.2] shows a “before and after” example

of a camera being bumped or moved.

C.5 Attention Visualization

In Figure 4 in the main text, we visualize attention over time for two examples from
Snapshot Serengeti. In Figure[C.4 we show examples from Caltech Camera Traps.
Similarly to the visualizations of attention on SS, we see that attention is adaptive to
the most relevant information, paying attention across time as needed. The model

consistently learns to attend to objects of the same class.

In Figure [C.5] we visualize how Context R-CNN learns to learn and attend to
unlabeled background classes, namely rocks and bushes. Remember that these
exact camera locations were never seen during training, so the model has learned to
use temporal context to determine when to ignore these salient background classes.
It learns to cluster background objects of a certain type, for example bushes, across
the frames at a given location. Note that these attended background objects are not
always the same instance of the class, which makes sense as background classes may
maintain visual similarity within a scene even if they aren’t the exact same instance

of that type. Species of plants or types of rock are often geographically clustered.
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Figure C.5: Visualizing attention on background classes. In each example, the
keyframe is shown at a larger scale, with Context R-CNN’s detection, class, and
score shown in red. We consider a time horizon of one month, and show the images
and boxes with highest attention weights (shown in green). The first example is
from SS, it shows a detected bush (an unlabeled, background class), and shows that
Context R-CNN attends to the same bush over time, as well as different bushes in
the frame. In the second example, from CCT, we see a similar situation with the
background class “rock.”
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Appendix D

AUTO ARBORIST: SUPPLEMENTARY MATERIAL

D.1 Model training details

Each baseline model was trained with a batch size of 128 on 32 TPU cores on full-
resolution images (input size 512x512 for aerial, 1152x768 for street level). Train
time data augmentation included random horizontal flipping and minimal random
cropping (at least 80% of the image maintained after the crop) for both data types.
For simplicity, we used a linear warmup for one epoch, then trained for an additional
4 epochs at a 0.01 learning rate, then a final epoch at a 0.001 learning rate. We
anticipate that training for additional epochs would improve all models, but that the

relative performance would be maintained.

D.2 Further analysis

Accuracy vs. distribution distance In Supplementary Figure we show the
pairwise accuracy vs distribution distance for all train/test pairs, with markersize
denoting the number of training examples. We note the correlation between accuracy
and distribution distance, as well as note that the same accuracy level can be achieved
between train and test pairs with less training data if the distributions are more similar

(the markers tend to get larger as you move from left to right on any horizontal line).

Dirichlet constant AR FAR CAR RAR
baseline 41.66 5897 39.77 0.0

1 922 140 13.28 6.39
10 25771 1246 33.1 17.88
100 3946 36.52 45.11 6.85
1K 43.13 4949 46.09 0.58
10K 42.83 5434 4394 0.0
100K 4198 60.48 40.04 0.02

Table D.1: Logit-adjusted loss ablation study, training on Region W with Santa
Monica holdout. Metrics are averaged across the test sets of all 8 cities in the region
(see Table 2 in the main paper).
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Figure D.1: There is a strong correlation between distribution similarity and per-
formance, notably models can achieve the same accuracy with significantly less

training data if their distributions are similar.

Handling the data imbalance We consider the logit-adjustment method for train-

ing on imbalanced data proposed in []]. Eqn. [D.T|defines the logit adjusted softmax

cross-entropy loss we used in our experiments:

e fy(x)+logmy
I(y, f(x)) = —log

yequy e OHOET

(D.1)

where [L] is the set of all genera. We construct our logit adjustment term 7 based

on the per-genus counts in the training set, and expand the logit-adjusted loss to

include a Dirichlet smoothing term to regularize the highly long-tailed nature of our

data.
my = (count(y) + ¢) ' fory e [L]

(D.2)
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Figure D.2: Loss balancing results per-city as well as averages across the Region W
cities, for different values of our Dirichlet smoothing constant c. You can see the
explicit tradeoff between frequent and common classes, with rare classes remaining
a significant challenge. Baseline results are shown as a black line.

where c is our Dirichlet smoothing constant. We experiment on Region W and find
that while ¢ = 1000 gives us a 2% boost in city-averaged AR, this is not a clear win,
as it improves city-averaged AR-C (by 6.32%) but decreases city-averaged AR-F
(by 9.48%). See Table [D.1] for ablation results on Region W, different parameters
perform better for different rarity subsets and different cities (see Fig. [D.2] for
additional detail).

D.3 Data sources and licenses

The public tree censuses for the 23 cities in our dataset are linked in Supplementary
Table [D.2] along with the licensing information for each. We visualize the data
per-city in Figure [D.3] showing the coordinates of each tree as well as coloring the

most common genera to show regional shifts in distribution.
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City

BC

Surrey,

BC

WA

cisco, CA

CA

CA

Santa
Monica,
CA

Los An-
geles, CA

City, CO

Denver,
CO

Sioux
Falls, SD

AB

AB

Vancouver,

Seattle,

San Fran-

San Jose,

Cupertino,

Boulder

Calgary,

Edmonton,

Data Source
https://opendata.vancouver.
ca/explore/dataset/street-
trees/information/
?disjunctive.species_name&
disjunctive.common_name&
disjunctive.height_range_id
https://data.surrey.ca/
dataset/park-specimen-trees

https://www.seattle.gov/
transportation/projects-and-
programs/programs/trees-and-
landscaping-program/seattle-
tree-inventory-map
https://data.sfgov.org/City-
Infrastructure/Street-Tree-
List/tkzw-k3ng
https://gisdata-
csj.opendata.arcgis.
com/datasets/

7db16e012fe8402db45074cd260c8f4édb16e012fe8402db45074cd260c8 1

510
https://gis-cupertino.
opendata.arcgis.
com/datasets/

caa50a924b7d4b5ba8e8adcbfddd7£f13/about

https://data.smgov.net/
Public-Assets/Trees-
Inventory/w8ue-6cnd
https://geohub.
lacity.org/datasets/

266c6255b1fc4ae8b8£100d8696elfad_

0

https://boulder.maps.
arcgis.com/apps/
opsdashboard/index.html#

/328aac5a588840c99edee239672f7ca2

https://www.denvergov.org/
opendata/dataset/city-and-
county-of-denver-tree-
inventory
https://opendata.
arcgis.com/datasets/

c880d62ae5fb4652b1f8ebcbca244107_

10.csv

Aildcense
https://opendata.vancouver.
ca/pages/licence/

Afhttps://data.surrey.ca/
pages/open-government-
licence-surrey

Aihttps://opendatacommons.org/ B
licenses/pddl/summary/

" https://opendatacommons.org/ i
licenses/pddl/1-0/

Aihttps://gisdata—
csj.opendata.arcgis.
com/datasets/

510/explore

" https://gis-cupertino.
opendata.arcgis.com/
datasets/Cupertino: :trees-

https://opendatacommons.org/ | |
licenses/by/1-0/

Usage was approved by StreetsLA

"~ https://creativecommons.org/ | |
publicdomain/zero/1.0/

https://creativecommons.org/ B
licenses/by/3.0/

Aihttps://creativecommons.org/ B
licenses/by/3.0/

https://data.smgov.net/
Public-Assets/Trees-
Inventory/w8ue-6cnd
https://data.edmonton.ca/
Environmental-Services/
Trees-Map/udbt-eiax

https://data.calgary.ca/d/
Open-Data-Terms/u45n-7awa

" https://data.edmonton.ca/
stories/s/City-of-Edmonton-
Open-Data-Terms-of-Use/msh8-
1£28/

Table D.2: Data location and licensing information for the public tree censuses used
to curate our dataset.


https://opendata.vancouver.ca/explore/dataset/street-trees/information/?disjunctive.species_name&disjunctive.common_name&disjunctive.height_range_id
https://opendata.vancouver.ca/explore/dataset/street-trees/information/?disjunctive.species_name&disjunctive.common_name&disjunctive.height_range_id
https://opendata.vancouver.ca/explore/dataset/street-trees/information/?disjunctive.species_name&disjunctive.common_name&disjunctive.height_range_id
https://opendata.vancouver.ca/explore/dataset/street-trees/information/?disjunctive.species_name&disjunctive.common_name&disjunctive.height_range_id
https://opendata.vancouver.ca/explore/dataset/street-trees/information/?disjunctive.species_name&disjunctive.common_name&disjunctive.height_range_id
https://opendata.vancouver.ca/explore/dataset/street-trees/information/?disjunctive.species_name&disjunctive.common_name&disjunctive.height_range_id
https://opendata.vancouver.ca/pages/licence/
https://opendata.vancouver.ca/pages/licence/
https://data.surrey.ca/dataset/park-specimen-trees
https://data.surrey.ca/dataset/park-specimen-trees
https://data.surrey.ca/pages/open-government-licence-surrey
https://data.surrey.ca/pages/open-government-licence-surrey
https://data.surrey.ca/pages/open-government-licence-surrey
https://www.seattle.gov/transportation/projects-and-programs/programs/trees-and-landscaping-program/seattle-tree-inventory-map
https://www.seattle.gov/transportation/projects-and-programs/programs/trees-and-landscaping-program/seattle-tree-inventory-map
https://www.seattle.gov/transportation/projects-and-programs/programs/trees-and-landscaping-program/seattle-tree-inventory-map
https://www.seattle.gov/transportation/projects-and-programs/programs/trees-and-landscaping-program/seattle-tree-inventory-map
https://www.seattle.gov/transportation/projects-and-programs/programs/trees-and-landscaping-program/seattle-tree-inventory-map
https://opendatacommons.org/licenses/pddl/summary/
https://opendatacommons.org/licenses/pddl/summary/
https://data.sfgov.org/City-Infrastructure/Street-Tree-List/tkzw-k3nq
https://data.sfgov.org/City-Infrastructure/Street-Tree-List/tkzw-k3nq
https://data.sfgov.org/City-Infrastructure/Street-Tree-List/tkzw-k3nq
https://opendatacommons.org/licenses/pddl/1-0/
https://opendatacommons.org/licenses/pddl/1-0/
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510/explore
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510/explore
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510/explore
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510/explore
https://gisdata-csj.opendata.arcgis.com/datasets/7db16e012fe8402db45074cd260c8f4e_510/explore
https://gis-cupertino.opendata.arcgis.com/datasets/caa50a924b7d4b5ba8e8a4cbfd0d7f13
https://gis-cupertino.opendata.arcgis.com/datasets/caa50a924b7d4b5ba8e8a4cbfd0d7f13
https://gis-cupertino.opendata.arcgis.com/datasets/caa50a924b7d4b5ba8e8a4cbfd0d7f13
https://gis-cupertino.opendata.arcgis.com/datasets/caa50a924b7d4b5ba8e8a4cbfd0d7f13
 https://gis-cupertino.opendata.arcgis.com/datasets/Cupertino::trees-2/about
 https://gis-cupertino.opendata.arcgis.com/datasets/Cupertino::trees-2/about
 https://gis-cupertino.opendata.arcgis.com/datasets/Cupertino::trees-2/about
 https://gis-cupertino.opendata.arcgis.com/datasets/Cupertino::trees-2/about
https://data.smgov.net/Public-Assets/Trees-Inventory/w8ue-6cnd 
https://data.smgov.net/Public-Assets/Trees-Inventory/w8ue-6cnd 
https://data.smgov.net/Public-Assets/Trees-Inventory/w8ue-6cnd 
https://opendatacommons.org/licenses/by/1-0/
https://opendatacommons.org/licenses/by/1-0/
https://geohub.lacity.org/datasets/266c6255b1fc4ae8b8f100d8696e1fa4_0
https://geohub.lacity.org/datasets/266c6255b1fc4ae8b8f100d8696e1fa4_0
https://geohub.lacity.org/datasets/266c6255b1fc4ae8b8f100d8696e1fa4_0
https://geohub.lacity.org/datasets/266c6255b1fc4ae8b8f100d8696e1fa4_0
https://streetsla.lacity.org/
https://boulder.maps.arcgis.com/apps/opsdashboard/index.html#/328aac5a588840c99edee239672f7ca2
https://boulder.maps.arcgis.com/apps/opsdashboard/index.html#/328aac5a588840c99edee239672f7ca2
https://boulder.maps.arcgis.com/apps/opsdashboard/index.html#/328aac5a588840c99edee239672f7ca2
https://boulder.maps.arcgis.com/apps/opsdashboard/index.html#/328aac5a588840c99edee239672f7ca2
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-tree-inventory
https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-tree-inventory
https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-tree-inventory
https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-tree-inventory
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://opendata.arcgis.com/datasets/c880d62ae5fb4652b1f8e6cbca244107_10.csv
https://opendata.arcgis.com/datasets/c880d62ae5fb4652b1f8e6cbca244107_10.csv
https://opendata.arcgis.com/datasets/c880d62ae5fb4652b1f8e6cbca244107_10.csv
https://opendata.arcgis.com/datasets/c880d62ae5fb4652b1f8e6cbca244107_10.csv
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://data.smgov.net/Public-Assets/Trees-Inventory/w8ue-6cnd 
https://data.smgov.net/Public-Assets/Trees-Inventory/w8ue-6cnd 
https://data.smgov.net/Public-Assets/Trees-Inventory/w8ue-6cnd 
https://data.calgary.ca/d/Open-Data-Terms/u45n-7awa
https://data.calgary.ca/d/Open-Data-Terms/u45n-7awa
https://data.edmonton.ca/Environmental-Services/Trees-Map/udbt-eiax
https://data.edmonton.ca/Environmental-Services/Trees-Map/udbt-eiax
https://data.edmonton.ca/Environmental-Services/Trees-Map/udbt-eiax
https://data.edmonton.ca/stories/s/City-of-Edmonton-Open-Data-Terms-of-Use/msh8-if28/
https://data.edmonton.ca/stories/s/City-of-Edmonton-Open-Data-Terms-of-Use/msh8-if28/
https://data.edmonton.ca/stories/s/City-of-Edmonton-Open-Data-Terms-of-Use/msh8-if28/
https://data.edmonton.ca/stories/s/City-of-Edmonton-Open-Data-Terms-of-Use/msh8-if28/
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City Data Source
Charlottesvillet tps: //hub.arcgis. com/
VA datasets/charlottesville::

tree-inventory-point/

explore?location=38.038850%

2C-78.483500%2C13.89
Pittsburgh, https://data.wprdc.org/

PA dataset/city-trees
QC ville-de-montreal/arbres
New https://data.cityofnewyork.

York, NY us/Environment/2015-Street-
Tree-Census-Tree-Data/pi5s-

Agilicense
https://creativecommons.org/
licenses/by/4.0/

Afhttps://creativecommons.org/
licenses/by/4.0/

Montreal, https://donnees.montreal.ca/ Aihttps://donnees.montreal.ca/ i

licence-d-utilisation
https://opendata.
cityofnewyork.us/overview/

Inventory/n4ni-uuec/data

ON datasets/KitchenerGIS::tree-
inventory/about

Cambridge, https://data.waterloo.ca/

ON datasets/cityofcambridge::

street-trees/explore
Columbus, https://opendata.columbus.
OH gov/datasets/public-owned-
trees/explore?location=39.
974897%2C-82.996371%2C14.00&
showTable=true

Kitchener, https://data.waterloo.ca/

9p35
Buffalo, https://data.buffalony. https://creativecommons.
NY gov/Quality-of-Life/Tree- org/share-your-work/public-

domain/cc®/

" https://data.waterloo.ca/
datasets/KitchenerGIS::tree-
inventory/about

Afhttps://maps.cambridge.ca/
images/opendata/Open%20data%
201licence.pdf

Afhttps://creativecommons.
org/share-your-work/public-
domain/cc®/

Bloomingtorhttps://data.bloomington.
IN in.gov/dataset/public-tree-
inventory

https://opendefinition.org/
od/2.1/en/

Table D.3: (Part 2) Data location and licensing information for the public tree

censuses used to curate our dataset.


https://hub.arcgis.com/datasets/charlottesville::tree-inventory-point/explore?location=38.038850%2C-78.483500%2C13.89
https://hub.arcgis.com/datasets/charlottesville::tree-inventory-point/explore?location=38.038850%2C-78.483500%2C13.89
https://hub.arcgis.com/datasets/charlottesville::tree-inventory-point/explore?location=38.038850%2C-78.483500%2C13.89
https://hub.arcgis.com/datasets/charlottesville::tree-inventory-point/explore?location=38.038850%2C-78.483500%2C13.89
https://hub.arcgis.com/datasets/charlottesville::tree-inventory-point/explore?location=38.038850%2C-78.483500%2C13.89
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://data.wprdc.org/dataset/city-trees
https://data.wprdc.org/dataset/city-trees
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://donnees.montreal.ca/ville-de-montreal/arbres
https://donnees.montreal.ca/ville-de-montreal/arbres
 https://donnees.montreal.ca/licence-d-utilisation
 https://donnees.montreal.ca/licence-d-utilisation
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/pi5s-9p35
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/pi5s-9p35
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/pi5s-9p35
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/pi5s-9p35
https://opendata.cityofnewyork.us/overview/
https://opendata.cityofnewyork.us/overview/
https://data.buffalony.gov/Quality-of-Life/Tree-Inventory/n4ni-uuec/data
https://data.buffalony.gov/Quality-of-Life/Tree-Inventory/n4ni-uuec/data
https://data.buffalony.gov/Quality-of-Life/Tree-Inventory/n4ni-uuec/data
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://data.waterloo.ca/datasets/KitchenerGIS::tree-inventory/about
https://data.waterloo.ca/datasets/KitchenerGIS::tree-inventory/about
https://data.waterloo.ca/datasets/KitchenerGIS::tree-inventory/about
https://data.waterloo.ca/datasets/KitchenerGIS::tree-inventory/about
https://data.waterloo.ca/datasets/KitchenerGIS::tree-inventory/about
https://data.waterloo.ca/datasets/KitchenerGIS::tree-inventory/about
https://data.waterloo.ca/datasets/cityofcambridge::street-trees/explore
https://data.waterloo.ca/datasets/cityofcambridge::street-trees/explore
https://data.waterloo.ca/datasets/cityofcambridge::street-trees/explore
https://maps.cambridge.ca/images/opendata/Open%20data%20licence.pdf
https://maps.cambridge.ca/images/opendata/Open%20data%20licence.pdf
https://maps.cambridge.ca/images/opendata/Open%20data%20licence.pdf
https://opendata.columbus.gov/datasets/public-owned-trees/explore?location=39.974897%2C-82.996371%2C14.00&showTable=true
https://opendata.columbus.gov/datasets/public-owned-trees/explore?location=39.974897%2C-82.996371%2C14.00&showTable=true
https://opendata.columbus.gov/datasets/public-owned-trees/explore?location=39.974897%2C-82.996371%2C14.00&showTable=true
https://opendata.columbus.gov/datasets/public-owned-trees/explore?location=39.974897%2C-82.996371%2C14.00&showTable=true
https://opendata.columbus.gov/datasets/public-owned-trees/explore?location=39.974897%2C-82.996371%2C14.00&showTable=true
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://data.bloomington.in.gov/dataset/public-tree-inventory
https://data.bloomington.in.gov/dataset/public-tree-inventory
https://data.bloomington.in.gov/dataset/public-tree-inventory
https://opendefinition.org/od/2.1/en/
https://opendefinition.org/od/2.1/en/

345
References
[1] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu

Jain, Andreas Veit, and Sanjiv Kumar. Long-tail learning via logit adjustment.
arXiv preprint arXiv:2007.07314, 2020.



	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	Nomenclature
	Introduction
	Biodiversity monitoring’s data challenge
	Biodiversity data poses new challenges for machine learning
	Making data accessible
	Looking to the future
	How my research fits into the big picture
	Breaking down the thesis, chapter by chapter

	Bibliography
	Overview and Literature Review of Machine Learning for Wildlife Conservation
	Abstract
	Technology to accelerate ecology and conservation research
	New sensors expand available data types for animal ecology
	Machine learning to scale-up and automate animal ecology and conservation research
	Attention points and opportunities
	Conclusions

	Bibliography
	Overview of Species Distribution Modeling for Machine Learning Practitioners
	Abstract
	Introduction
	Representing the distribution of species
	Species distribution models
	Other types of ecological models
	Common challenges and risks
	What data is available and accessible?
	Open problems
	Conclusion

	Bibliography
	Recognition in Terra Incognita
	Abstract
	Introduction
	Related work
	The Caltech Camera Traps dataset
	Experiments
	Conclusions

	Bibliography
	iWildCam: Bringing Novel Camera Trap Challenges to the Computer Vision Community
	Abstract
	iWildCam 2018
	iWildCam 2019
	iWildCam 2020
	iWildCam 2021
	iWildCam in the WILDS distribution shift benchmark
	iWildCam in WILDS 2.0
	Conclusion

	Bibliography
	Synthetic Examples Improve Generalization for Rare Classes
	Abstract
	Introduction
	Related work
	Data and simulation
	Experiments
	Conclusions and future work
	Acknowledgements

	Bibliography
	Long term temporal context for per camera object detection
	Abstract
	Introduction
	Related Work
	Method
	Data
	Experiments
	Conclusions and Future Work
	Acknowlegdements

	Bibliography
	The Auto Arborist Dataset: A Large-Scale Benchmark for Multiview Urban Forest Monitoring Under Domain Shift
	Abstract
	Introduction
	Related work
	The Auto Arborist dataset
	Evaluation protocol
	Experiments
	Limitations and future work
	Seeing the forest for the trees (Conclusions)

	Bibliography
	Elephantbook
	Abstract
	Introduction
	Background
	ElephantBook
	Bounding box annotation
	SEEK
	Computer vision
	Matching
	Mara Elephant Project initial deployment
	Conclusions and future work

	Bibliography
	Pitfalls and Risks
	A case study in the risks of publishing ecological data: can poachers find animals from public camera trap images?
	Conclusions

	Bibliography
	Conclusions and Future Directions
	Bibliography
	Recognition in Terra Incognita: Supplementary Material
	Additional experiments
	Data format

	Sythetic Examples Improve Generalization in Rare Classes: Supplementary Material
	Architecture selection
	Additional analysis
	Creating sim and real on empty data
	TrapCam-AirSim details
	TrapCam-Unity details

	Bibliography
	Long Term Temporal Context for Per-Camera Object Detection: Supplementary Material
	Implementation Details
	Dataset Statistics and Per-Class Performance
	Spatiotemporal Encodings
	Camera Movement
	Attention Visualization

	Bibliography
	Auto Arborist: Supplementary Material
	Model training details
	Further analysis
	Data sources and licenses

	Bibliography

