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Thesis Abstract 

 

 The thesis herein describes the application of time-resolved spectroscopic techniques to the 

understanding of a variety of electronic and magnetic relaxation phenomena in molecular systems. 

Chapter I presents the techniques and theory behind transient absorption spectroscopy and electron 

paramagnetic resonance spectroscopy, which are two tools that are used throughout the thesis. 

Chapter II recounts the study of singlet fission in a series of bipentacene dipyridyl pyrrolides, 

including HDPP-Pent, Li2(DPP-Pent)2, and KDPP-Pent. Using transient absorption and kinetic 

modeling, we found that deprotonation and metal coordination induced a change in the rate of 

singlet fission (~7 fold increase going from HDPP-Pent to Li2(DPP-Pent)2) and ultimate triplet 

yield. Chapter III details the study of the temperature-dependent magnetic relaxation studies of S 

= ½ spin systems copper (II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc). 

Although the spin-lattice relaxation time (T1) of CuPc is greater than that of VOPc at low 

temperatures (<30 K), the CuPc T1’s decline more substantially with temperature than those of 

VOPc, which we attribute to the increased spin-orbit coupling constant of Cu over V. Ultimately, 

the phase memory times (T2) are T1-limited in CuPc by 150 K, whereas room temperature 

coherence is observed in VOPc. In Chapter IV, 2,9-dialkyl substituted 1,10-phenanthroline 

complexes of Cu(I) are studied computationally to assign entatic energies to the steric 

contributions attributed to the ligand that dictate the electrochemical and photophysical properties 

of the complexes. We performed experimental validation of reduction potential, low-temperature 

emission bandwidth and excited state relaxation energies, and 3MLCT lifetimes to support the 

computational work. In Chapter V, we present ongoing work toward the characterization of triplet 

and triplet pair states generated via singlet fission in HDPP-Pent, Li2(DPP-Pent)2, and KDPP-Pent 
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by time-resolved electron paramagnetic resonance spectroscopy in collaboration with Drs. Jens 

Niklas and Oleg Poluektov. Finally, in Chapter VI, we present data collected toward the 

photophysical characterization of a series of Ni(II) 2,2’-bipyridine aryl halide complexes 

synthesized by David Cagan, which are relevant for photochemical transformations. We provide 

supporting materials for Chapters II, III, and V in Appendices A, B, and C, respectively. 
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