
Combinatorics and Stochasticity
for

Chemical Reaction Networks

Thesis by
Andrés Ortiz-Muñoz

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2022
Defended November 12, 2021



ii

© 2022

Andrés Ortiz-Muñoz
ORCID: 0000-0003-1824-3230

All rights reserved



iii

Dicen que no soy poeta,
tiene razón quien lo diga.

A veces escribo versos
cuando la tristeza obliga,

para bendecir a Dios
o elogiar a una hormiga.

Tan sólo digo que escribo,
jamás diré que compongo,

pues los francotiradores
dirán que los descompongo.
Mis versos son una caricia,

a veces es un rezongo.

Cuando un versillo concibo
lo confío a un papel,

luego veo que lo levanta
algún remolino cruel,

otros coleccionan polvo
en un antiguo anaquel.

Así voy por las veredas
pepenando consonantes,

a mis versos no llegó

la retórica brillante;
si algo brilla en mis palabras
es un vidrio, no un diamante.

Igual que Ponce de León
que buscaba aquella fuente

de la eterna juventud
y falleció por impotente,
busco yo la inspiración

y cada día estoy más ausente.

Seguiré escribiendo versos
no porque me crea poeta,

sólo para denunciar
profunda inquietud secreta
que en mi viaje por la vida
se introdujo en mi maleta.

Mi raído gabán lleva consigo
el polvo de todos los caminos.

En mi peregrinar abro un paréntesis:
no dejé rastro, examino,

mis huellas y mis remendados versos
se los llevaron los impíos remolinos.

Pascual Ortiz Saucedo,
“No Soy Poeta” Antología
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Figure 0.1: Flowers are theorems. My vision of mathematical biology consists of blurring the
distinction between mathematics and biology. Mathematical theorems emerge from alphabets,
syntax, and deduction. Biological structures emerge from biomolecules, chemistry, and catalysis.
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ABSTRACT

Stochastic chemical reaction networks (SCRNs) are a mathematical model which serves as a first
approximation to ensembles of interactingmolecules. SCRNs approximate suchmixtures as always
being well-mixed and consisting of a finite number of molecules, and describe their probabilistic
evolution according to the law of mass-action. In this thesis, we attempt to develop a mathematical
formalism based on formal power series for defining and analyzing SCRNs that was inspired by two
different questions. The first question relates to the equilibrium states of systems of polymerization.
Formal power series methods in this case allow us to tame the combinatorial complexity of polymer
configurations as well as the infinite state space of possible mixture states. Chapter 1 presents an
application of these methods to a model of polymerizing scaffolds. The second question relates to
the expressive power of SCRNs as generators of stochasticity. In Chapter 2, we show that SCRNs
are universal approximators of discrete distributions, even when only allowing for systems with
detailed-balance. We further show that SCRNs can exactly simulate Boltzmann machines. In
Chapter 3, we develop a formalism for defining the semantics of SCRNs in terms of formal power
series which grew as a result of work included in the previous chapters. We use that formulation to
derive expressions for the dynamics and stationary states of SCRNs. Finally, we focus on systems
that satisfy complex balance and conservation of mass and derive a general expressions for their
factorial moments using generating function methods.
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1

OVERVIEW

Whereas mathematical physics has succeeded in making impressive predictions about the phe-
nomena it is meant to model, biology has not yet seen mathematical models with such degree
of predictive power, let alone the unification that theories of physics have achieved. The lack of
predictive and unifying models in biology in comparison with physics reflects the bewildering
difference in the complexity of the phenomena they are concerned with.

Still, the study of molecular interaction networks has helped theorists gain some perspective on
and understanding of the inner workings of living cells. The mathematical machinery used in the
analysis of such networks is that of chemical reaction networks (CRNs) (Feinberg, 1972; Horn,
1972; Horn and Jackson, 1972). A key feature of CRNs is their high level of abstraction in which
molecules are devoid of internal structure and represented by real-valued variables reporting their
concentration. The qualifier chemical is therefore slightly inappropriate since a CRN does not
capture the combinatorial and generative aspects that are characteristic of actual chemistry. Rather,
in a CRN, the set of molecular types is merely a list of proper names and all reactions must be
specified at the outset; they are explicitly stated in the model as opposed to being implicit by virtue
of chemical reactivity linked to structure. A CRN is chemical only in that its kinetics are based on
the law of mass action. CRNs are therefore inherently phenomenological models (Gunawardena,
2014). In other words, they constitute falsifiable hypotheses about mechanisms and reactivities of
a mixture. The predictive power of CRNs is limited by the extent to which their assumptions are
correct about the systems they are meant to describe.

An important consideration in modeling biomolecular systems is their inherent stochasticity as
a result of small molecular counts. This requires a stochastic generalization of the traditional
ordinary differential equation semantics for CRNs. Such models are known as stochastic chemical
reaction networks (SCRNs) (Anderson and Kurtz, 2015; D. Gillespie, 1976; D. T. Gillespie, 1977;
Van Kampen, 1992). SCRNs are more fundamental than deterministic CRNs in the sense that
the latter can be derived from the former as the right limit of large volumes (Kurtz, 1972). Yet,
SCRNs remain agnostic to the combinatorial nature of biochemical structures. A description of
reaction mixtures that can address both stochasticity and combinatorics would be more faithful to
the reality of molecular biology and hence more predictive. Already a number of abstract models of
reaction networks exist that incorporate both stochastic and combinatorial aspects (Benkö, Flamm,
and Stadler, 2003; Blinov et al., 2004; Danos et al., 2007; Johnson and Winfree, 2020; Phillips and
Cardelli, 2009). In order to understand what these systems are capable of and how they relate to
one another, we will need a general theory of stochastic/combinatorial reaction networks that can
accommodate the various existing models.
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In this thesis, I develop a formal approach to CRNs that serves as a precursor to a general,
combinatorial theory of reaction networks. I conceived these ideas in the context of applications that
incorporate stochastic and combinatorial aspects (Cappelletti et al., 2020; Ortiz-Muñoz, Medina-
Abarca, and Fontana, 2020; Poole et al., 2017). The approach is based on formal power series,
which are often used for counting general classes of combinatorial objects such as trees, graphs,
strings, etc. (Flajolet and Sedgewick, 2009; Wilf, 1994). I believe that the versatility of formal
power series can be harnessed to incorporate general graphical models of reaction networks. We
will now proceed to overview the structure of the thesis.

Chapter 1 consists of a publication that arose from explorations in the context of abstract models of
polymerization aimed at elucidating the role polymerizing scaffolds might play in cellular signaling
(Ortiz-Muñoz, Medina-Abarca, and Fontana, 2020). A system capable of polymerization can in
principle generate an unlimited number of different molecule types, rendering a traditional CRN
model infeasible. Although it would be possible to write equations describing the polymerization
dynamics, the infinitely many distinct types of possible molecules would require more careful
considerations of limits that standard CRN theory is not equipped to handle. In the paper, we
restrict our attention to stationary states so that we can circumvent some of the difficulty inherent
in computing dynamic solutions. My contribution to this paper was in the development of the
mathematical formalism for computing equilibrium concentrations when the model is conceived
deterministically (i.e. with continuous concentrations and hence no limit as to the maximal polymer
length), as well as probabilities and expectation values when conceived stochastically (i.e. with
discrete particle numbers and hence a limit on the maximal size of polymers). The bulk of
complexity of the problem lies in considering mass conservation constraints. Methods based on
generating functions are capable of handling the combinatorial complexity of polymers as well as
their stochastic equilibria. I further develop these techniques in Chapter 3.

In addition to using CRNs as a means for understanding chemical or biological phenomena, another
conception of CRNs is as models of computation (Chen, Doty, and Soloveichik, 2014a,b; Cook
et al., 2009; Cummings, Doty, and Soloveichik, 2014; Soloveichik et al., 2008). In this case,
the assumptions of the CRN model are taken to be ideal and real systems as approximations of
the resulting ideal behavior. From this perspective if a computation can be embedded into the
ideal mathematical behavior of a CRN, then an engineered chemical system that approximates its
assumptions will also approximate that computation. Hence, in this context, CRNs are not so
much meant to be predictive than prescriptive. Of particular interest is the ability of stochastic
CRNs to perform probabilistic inference as this would enable engineered chemical systems to act
“intelligently” in some loose sense. Since probabilistic inference depends on the ability to represent
distributions, an important matter is the scope of distributions that can be observed in SCRNs.
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Chapter 2 reports my perspective and contributions to two publications aimed at exploring the
probabilistic expressive power of SCRNs (Cappelletti et al., 2020; Poole et al., 2017). In Cappelletti
et al., 2020, we show that in fact SCRNs are capable of approximating any desired discrete
distribution. This remains true even in the case when the CRNs are required to satisfy detailed
balance. A hypothetical combinatorial reaction network model would be at least as expressive as
CRNs so that it suffices to show the universality of CRNs in order to establish that of more general
combinatorial models. In Poole et al., 2017, we show that SCRNs are also capable of faithfully
reproducing the equilibria of Boltzmann Machines (BM). Although the model used there is that of
CRNs, the existence of an underlying graphical structure in the BM invites a combinatorial model.
My contribution to this paper was in the form of a CRN model that exploits this combinatorial
aspect to simulate BMs exactly while preserving detailed balance.

In Chapter 3, I develop a formalism based on formal power series to define the stochastic semantics
of CRNs following the proposal in Baez and Biamonte, 2018. Most of the material in this chapter
was conceived as applications to the projects I was a part of as a graduate student. Of central
importance to my motivation was the fact that the combinatorics and stochasticity of reaction
networks can be readily handled by formal power series methods. The first part of the chapter
focuses on formal expressions for representing the dynamics of SCRNs. The second half focuses
on stationary solutions to complex-balanced SCRNs. I develop a generalization of the formalism
presented in Chapter 1 with the purpose of computing equilibrium factorial moments of general
assembly systems.

Each chapter in the thesis is preceded by a preface in which I present my personal perspective of
the chapter as well as the way in which some of the ideas were conceived. This is in addition to the
technical introduction that places the work in its scholarly context.

I believe that in order to move in the direction of a more unified theory of mathematical biology
we may need to rehash the current foundations of mathematics to bring them closer to the objects
of biology. Just as metabolic pathways, such as the citric acid cycle, are conserved across species,
there are mathematical themes that are pervasive throughout mathematics. Category theory (CT)
is a mathematical discipline and a foundation of mathematics aimed at the study of such universal
themes and analogies betweenmathematical disciplines (Mac Lane, 2013; Spivak, 2014). Naturally
CT has been recognized for its ability to unify concepts and theories. One example of this kind of
unification is Lawvere’s fixed-point theorem, which has as special cases all the classical paradoxes
of self reference such as Cantor’s theorem, Russell’s paradox, Turing’s halting problem, andGödel’s
incompleteness theorem (Lawvere, 1969; Yanofsky, 2003). The theory of species uses CTmethods
to clarify the streamlining role that formal power series play in combinatorics (Bergeron, Labelle,
and Leroux, 1997; Joyal, 1981). Although not mentioned in the thesis, the formal power series
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semantics developed in Chapter 3 lends combinatorial semantics to SCRNs via species theory and
places SCRNs in the context of CT. This was proposed by Baez and Dolan, 2001, in the context
of quantum mechanics in order to formalize the concept of Feynman diagrams. For a while I
have speculated about the role that Lawvere’s fixed point theorem could play in the mathematical
understanding of recursive phenomena in biology such as replication, the origins of life, and even
novel models of chemical computation. Formulating the theory of SCRNs in categorical language
would allow me to explore such questions. These are ideas that I intend to explore in the future.
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PREFACE

In the summer of 2013, I was a summer intern at Harvard Systems Biology under the mentorship of
ProfessorWalter Fontana. My project that summer revolved around roughly the following question:
suppose you have a system of particles that can polymerize linearly and asymmetrically. If the total
number of particles in the system is conserved, what is the equilibrium concentration of a polymer
of length n? Below I will describe the steps I followed in answering the question and the insights I
obtained in the process.

We will consider the system defined by the following set of reactions

Am + An
k+−−⇀↽−−
k−

Am+n,

where Ai denotes a polymer of length i. This model assumes that any two polymers may bind
to form a longer polymer, and that a polymer may break into any two polymers with the same
total length (See Figure 1.1). Furthermore, the model assumes that the binding and dissociation
rate constants are independent of the lengths of the polymers involved. Other mechanisms of
polymerization are possible, but this is the one I felt was sufficiently complex while remaining
mathematically tractable. The system of ordinary differential equations (ODEs) that results from
this mechanism and assuming the law of mass action is

dan

dt
=

n−1∑
i=1

k+aian−i + 2
∞∑

i=1
k−ai+n − 2

∞∑
i=1

k+aian −
n−1∑
i=1

k−an, (1.1)

where ai denotes the concentration of Ai at time t. This system bears similarities to Smoluchowski’s
coagulation equation, with the exception that said equation does not incorporate polymer fission
(Smoluchowski, 1916). My summer project amounted to solving the system in Equation 1.1 in
equilibrium, where the derivatives vanish.

Figure 1.1: Model of asymmetric linear polymerization. Polymers of arbitrary length bind asym-
metrically and polymers can break along any of their bonds.
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Equation 1.1 simplifies significantly with the observation that, in equilibrium, it admits solutions
satisfying for all natural numbers m, n ≥ 1

k−am+n = k+aman,

which is a much simpler system to solve. In this case, an denotes the equilibrium concentration of
An. That the system can be cast in this simple form is a result of of the fact that it satisfies detailed
balance (Horn and Jackson, 1972; Onsager, 1931; Wegscheider, 1902). The resulting system of
equations can be solved via a recursion in which one obtains the concentration of polymers An in
terms of the concentration of monomers A1 as follows

an = κ
n−1an

1,

where κ = k+/k− is an association constant. For convenience, let us use the unit-less variables
αn = κan so that the above equation becomes

αn = α
n
1 . (1.2)

Since all concentrations are expressed in terms of the (unit-less) monomer concentration α1, it only
remains to determine its value in order to solve for the concentrations of all polymer lengths. We
assume that the total number of protomers is conserved and known. Since each polymer of length
i contains i protomers, we must have that

α =

∞∑
i=1

iαi, (1.3)

where α denotes the (unit-less) total protomer concentration in the mixture, i.e. the concentration
of monomers when no polymer has formed yet. Notice that using Equation 1.2, we can express the
summand in Equation 1.3 above in terms of the following derivative

iαi = iαi
1 = α1

dαi
1

dα1
.

Applying the same derivative and multiplication by α1 to a geometric series of powers of α1, we
can find an expression for the known total protomer concentration α1 in terms of the unknown
variable α1

α = α1
d

dα1

∞∑
i=1

αi
1 = α1

d
dα1

(
α1

1 − α1

)
=

α1

(1 − α1)2
. (1.4)

This equation is quadratic in α1 so it can be solved explicitly yielding

α1 = α

(
1 −
√

1 + 4α
2α

)2

.
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Finally, the concentration of polymers of length n in terms of the unit-less total concentration α is
given by1

αn = α
n

(
1 −
√

1 + 4α
2α

)2n

.

Pleased with the outcome of my summer project, I returned to my undergraduate institution, the
University of Texas at El Paso, for one last semester. I graduated in December of that year, which
meant that I had a fewmonths before starting graduate school, whcih I spent working in the Fontana
lab. Motivated by my summer project, I decided that in those months I would pursue a stochastic
generalization of the same polymerization system whose deterministic formulation I had previously
cracked.

The stochastic analog to Equation 1.1 is the chemical master equation (CME) (Van Kampen, 1992).
The CME is an equation that defines the evolution of a probability distribution over discrete counts
of molecules, or states, according to the reaction mechanism of a system. The state space of a
system of linear polymerization is fairly complex. Given a finite amount of protomers the state
space is the set of different ways of distributing those protomers into polymers. The size of that set
corresponds to what in number theory is known as the integer partitions of n (Andrews, 1984). For
example, if a total of 4 protomers exist in a mixture, the state space corresponds to the 5 different
ways of expressing the number 4 as a sum of positive integers: 1+ 1+ 1+ 1, 1+ 1+ 2, 1+ 3, 2+ 2,
and 4. These 5 sums can also be seen as states where each term is the length of a polymer. For
example, the sum 1 + 1 + 2 corresponds to a state with two monomers and a dimer.

As opposed to writing down a general expression for the CME, which would have been extraordi-
narily complex, I opted to solving a small case explicitly and sought generalizations of that simple
solution. As we have already seen, a system with 4 protomers has 5 possible configurations, which
in equilibrium results in a system of 5 linear equations. The state space of the system with its
transitions is summarized in Figure 1.2. The solution to the resulting system of equations is a
5-dimensional vector of probabilities for each of the states of the state space. It can be obtained
through standard linear algebra methods. Rather than writing down here the full 5-dimensional
vector solution, we will focus our attention on the following common denominator to all 5 entries
of that vector

Z4 = 1 + 12κ + 36κ2 + 24κ3. (1.5)
1An interesting property of this system is that when we have α = 1, the equilibrium concentrations of polymers

can be written in terms of even powers of the golden ratio

αn =

(
1 −
√

5
2

)2n

.

I have never made much of this curious result, but it was a lovely way to conclude my summer project.
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Figure 1.2: State space for linear polymerization system with 4 protomers. Each of these states
corresponds to a class of microstates in which the constituting protomers are distinguishable from
ona another.

This expression is known as the partition function of the system. The partition function is a
normalization factor consisting of the sum of weights associated to each state. Each term in
Equation 1.5 corresponds to a class of states sharing the same total number of bonds, indicated
by the power of κ. The coefficient of the power of κ is the degeneracy of the class, given by the
number of ways of achieving the corresponding number of bonds and taking into consideration the
distinguishability of the protomers. For example, the term 36κ2 is the contribution to the partition
function from states that have a total of 2 bonds, which are represented by the sums 2 + 12 and
1 + 3. Those two states can be collectively realized in 36 different ways using 4 distinguishable
protomers. We also say that the class consists of 36 microstates.

Since the weight of a single state is easy to calculate —it is given by κ raised to the power of
the total number of bonds in the state— knowing the partition function is enough to compute all
probabilities. The partition function we calculated above corresponds to a single case, that of
having a total of 4 protomers, but its form suggests a hypothesis about the solution to the general
case: the partition function of a system with n protomers is given by the sum of Boltzmann terms
over all energy states weighted by their degeneracies. This kind of combinatorial reasoning became
the basis with which I solved for the equilibria of a number of different assembly systems. Later I
would learn that the form of this partition function arises from a general product-of-Poisson pattern
of equilibrium distributions for systems with detailed balance (Anderson, Craciun, and Kurtz, 2010;
Whittle, 1986).

In addition to working on the stochastic formulation of linear polymerization, I spent my time after
undergraduate and before graduate school solving a variety of simple molecular assembly systems
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Figure 1.3: Assembled structure consisting of a scaffold joined to 4 particles via 4 bonds.

such as dimerization, scaffolds, branching structures, rings, etc, always assuming that the systems
satisfied detailed balance and that the total numbers of protomers were conserved. I observed
that, in their deterministic formulations, the equilibrium concentration of an assembled structure
was given by the exponential of its energy of formation and the product of the concentrations of
monomers of the components it is made of. This was uncanny since it revealed a correspondence
between the graphical structure of an assembly and its equilibrium concentration. For example, the
assembly in Figure 1.3 would have a concentration of

c = κ4ab4,

where c is the concentration of the assembly, κ is an association constant, a is the concentration of
the middle component, and b is the concentration of the outer component. Notice that each of the
components of the assembly contributes one factor to the concentration. At this point, I began to
understand that I could reason graphically about the algebraic structures I was working with and
I began to wonder how far I could take that kind of reasoning. For stochastic systems, I observed
that the partition function could always be written as a sum over bond counts of the corresponding
energy term multiplied by the degeneracy of those bond counts. The complexity of these problems
lay mainly in counting those degeneracies for the different assembly systems.

Already as a graduate student, I spent on the order of a week each year in Boston working on
progressivelymore generalmodels of linear polymerization in both their deterministic and stochastic
formulations. As already noted, the equilibrium concentration of a polymer can be expressed as
the product of concentrations of its constituent monomers and the affinities of its bonds. The
problem in those cases was therefore mainly to compute the concentrations of monomers in terms
of the known concentrations of total monomers. Of central importance to these problems was the
expression for the the total concentration of the system in equilibrium, i.e. the concentration of
the mixture regardless of molecular species. Its centrality was owed to the fact that the different
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total protomer concentrations appeared as its derivatives, as it was the case in Equation 1.4. To
see this notice that, for example, for the assembly in Figure 1.3, which has concentration given by
c = κ4ab4, its contribution to the total concentration of b is given by 4c = bdc

db = 4κ4ab4. As a
result, the total concentration of a protomer x in an assembly system can be obtained by applying the
operator x d

dx to the sum of the concentrations of all polymers —the mixture concentration. Given
the above-mentioned correspondence between the concentration of a polymer and its graphical
structure it turns out that the mixture concentration plays the role of a generating function of
polymers. The complexity for the deterministic formulations in equilibrium lay mainly in finding
simple expressions for this generating function and computing its derivatives.

For their stochastic formulations, I employed the technique delineated above of computing partition
functions as sums of Boltzmann terms weighted by degeneracies. The complexity in this case
was mainly in computing those degeneracies. Initially I employed a number of different forms of
combinatorial reasoning to compute the degeneracies of the various polymerization systems I was
considering. Given the increasing complexity of those systems, the bulk of my time in Boston
was initially spent in deriving combinatorial schemes for computing degeneracies. Some time in
2016 my mentor Walter Fontana suggested I read the book Analytic Combinatorics (Flajolet and
Sedgewick, 2009). The book presents generating function methods for counting combinatorial
classes of objects as well as the insights that complex analysis brings in approximating their co-
efficients. I focused mostly on the combinatorics, formal methods for writing and manipulating
generating functions, and not so much on the analytics, methods from complex analysis for extract-
ing numbers from those functions. Still, using those methods I was able to derive in 5 minutes the
partition functions of assembly systems that had previously taken me days of hard work to derive.
Needless to say being able to compute partition functions so swiftly felt like magic compared to
the brute-force methods I had been using before. One of the main insights I obtained was that by
taking the exponential of the mixture concentration function from the deterministic formulations,
which is also the polymer generating function, I could obtain a generating function for the partition
functions themselves. When interpreted combinatorially, the exponential function is the generating
function of finite sets, and hence the exponential of the generating function for polymers gives
the generating function of multisets of polymers, which correspond to states of the polymerization
system.

Not much later, I learned that what I had been doing informally —working with algebraic expres-
sions as if they were combinatorial objects— was in fact elegantly made rigorous in the theory
of combinatorial species (Bergeron, Labelle, and Leroux, 1997). My desire to better understand
the correspondence between algebra and combinatorics led me down a rabbit hole of progressively
more fundamental perspectives on combinatorics and formal power series culminating in a formu-
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lation in terms of homotopy type theory (HoTT) (Univalent Foundations Program, 2013; Yorgey,
2014). Such perspectives lie at the vanguard of contemporary mathematics and it is my hope to
gain a better understanding of them so I can contribute to facilitating their assimilation into the
standard methods of mathematical biology. None of that deeper, more fundamental perspective
perspective appears in the formalism of the article that follows. Rather, the mathematics used there
is at the level of what can be found in Flajolet and Sedgewick, 2009. That is the case also for the
further development performed in Chapter 3. Formulation of these techniques in the context of
HoTT is, however, underway and will be part of my research agenda for years to come.

My contribution to this article was mainly in the form of the mathematical methods, theorems,
proofs, and analysis of equations. The writing was mainly done by my mentor Walter Fontana, with
the exception of sections 1.7.7 and 1.7.8 of the supplementary material, which were done by me.
Although I participated in all aspects of the conception of the project, the biological perspective is
mainly due to my collaborators. All plots and simulations were done also by Walter Fontana.
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ABSTRACT

Scaffold proteins organize cellular processes by bringing signaling molecules into interaction,
sometimes by forming large signalosomes. Several of these scaffolds are known to polymerize.
Their assemblies should therefore not be understood as stoichiometric aggregates, but as com-
binatorial ensembles. We analyze the combinatorial interaction of ligands loaded on polymeric
scaffolds, in both a continuum and discrete setting, and compare it with multivalent scaffolds with
fixed number of binding sites. The quantity of interest is the abundance of ligand interaction
possibilities—the catalytic potential Q—in a configurational mixture. Upon increasing scaffold
abundance, scaffolding systems are known to first increase opportunities for ligand interaction and
then to shut them down as ligands become isolated on distinct scaffolds. The polymerizing system
stands out in that the dependency of Q on protomer concentration switches from being dominated
by a first order to a second order term within a range determined by the polymerization affinity.
This behavior boosts Q beyond that of any multivalent scaffold system. In addition, the subsequent
drop-off is considerably mitigated in thatQ decreases with half the power in protomer concentration
than for any multivalent scaffold. We explain this behavior in terms of how the concentration profile
of the polymer length distribution adjusts to changes in protomer concentration and affinity. The
discrete case turns out to be similar, but the behavior can be exaggerated at small protomer numbers
because of a maximal polymer size, analogous to finite-size effects in bond percolation on a lattice.
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1.1 Introduction
Protein-protein interactions underlying cellular signaling systems are mediated by a variety of
structural elements, such as docking regions, modular recognition domains, and scaffold or adapter
proteins (Bhattacharyya et al., 2006; Good, Zalatan, and Lim, 2011). These devices facilitate
both the evolution and control of connectivity within and among pathways. Since the scaffolding
function of a protein can be conditional upon activation and also serve to recruit other scaffolds,
the opportunities for plasticity in network architecture and behavior are abundant.

Scaffolds are involved in the formation of signalosomes —transient aggregations of proteins that
process and propagate signals. A case in point is the machinery that tags β-catenin for degradation
in the canonical Wnt pathway. β-catenin is modified by CK1α and GSK3β without binding any
of these kinases directly, but interacting with them through the Axin scaffold (Ikeda et al., 1998;
Liu et al., 2002). In addition, the DIX domain in Axin allows for oriented Axin polymers (Fiedler
et al., 2011), while APC (another scaffold) can bind multiple copies of Axin (Behrens et al., 1998),
yielding Axin-APC aggregates to which kinases and their substrates bind.

By virtue of their polymeric nature, scaffold assemblies like these have no defined stoichiometry and
may only exist as statistical ensembles rather than a single stoichiometrically well-defined complex
(Deeds et al., 2012; Suderman and Deeds, 2013). As a heterogeneous mixture of aggregates with
combinatorial state, the β-catenin destruction system thus appears to be an extreme example of
what has been called a “pleiomorphic ensemble” (Mayer, Blinov, and Loew, 2009).

Scaffold-mediated interactions are characteristically subject to the prozone or “hook” effect. At
low scaffold concentrations, adding more scaffold facilitates interactions between ligands. Beyond
a certain threshold, however, increasing the scaffold concentration further prevents interactions by
isolating ligands on different scaffold molecules (Bray and Lay, 1997; Ferrell, 2000; Levchenko,
Bruck, and Sternberg, 2000). For a scaffold S that binds with affinity α an enzyme A and a substrate
B, present at concentrations tA and tB, the threshold is at 1/α + (tA + tB)/2.

In this contribution, we define and analyze a simplemodel of enzyme-substrate interactionmediated
by a polymerizing scaffold. The model does not take into account spatial constraints of polymer
chains and therefore sits at a level of abstraction that only encapsulates combinatorial aspects of
a pleiomorphic ensemble and briefly peeks down the trail of critical phenomena often associated
with phase-separation (Bergeron-Sandoval, Safaee, and Michnick, 2016; Li et al., 2012).

1.2 The polymerizing scaffold system
Let S (the scaffold) be an agent with four distinct binding sites {a,b,x,y}. At site y, agent S can
reversibly bind site x of another S with affinity σ, forming (oriented) chains. For the time being, we
exclude the formation of rings. Sites a and b can reversibly bind an agent of type A (the enzyme)
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and of type B (the substrate) with affinities α and β, respectively. All binding interactions are
independent. When the system is closed, the total concentrations of A, B, and S are given by tA,
tB, and tS. This setup allows for a variety of configurations as shown on the left of the arrow in
Fig. 1.4. We posit that each enzyme A can act on each substrate B bound to the same complex.
We refer to the number pq of potential interactions enabled by a configuration with sum formula
ApSnBq as that configuration’s “catalytic potential” Q. By extension we will speak of the catalytic
potential Q of a mixture of configurations as the sum of their catalytic potentials weighted by their
concentrations.
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Figure 1.4: Enzyme-substrate interaction on a polymeric scaffold. In the polymerizing model,
scaffold protomers S binding each other with affinity σ yield a distribution of polymers of varying
length to which enzymes A and substrates B bind with affinities α and β, respectively. For each
configuration, the rate of conversion to product is a function of the configuration’s catalytic potential
Q, which is the number of possible interactions between bound A and B agents. Here, each of the
four As can interact with each of the three Bs for a total of Q = 12 possible interactions.

If we assume that the assembly system equilibrates rapidly, the rate of product formation is given by
Qkcat with kcat the catalytic rate constant and Q the equilibrium abundance of potential interactions
between A- and B-agents. Rapid equilibration is a less realistic assumption than a quasi-steady
state but should nonetheless convey the essential behavior of the system. In the following we first
provide a continuum description of equilibrium Q in terms of concentrations (which do not imply
a maximum polymer length) and then a discrete statistical mechanics treatment for the average
equilibrium Q (where tS is a natural number and implies a maximum length).

In the present context, molecular speciesYi that assemble from T distinct building blocks (“atoms”)
X j through reversible binding interactions have a graphical (as opposed to geometric) structure that
admits two descriptors: ωi, the number of symmetries of Yi (here ωi = 1 because the polymers are
oriented), and µi, j , the number of atoms X j inYi. The equilibrium concentration yi of anyYi is given
by yi = εi

∏T
j=1(x j)µi, j , where εi = 1/ωi

∏
r∈P Kr is the exponential of the free energy content ofYi,

with Kr ∈ {α, β, σ} the equilibrium constant of the rth reaction along some assembly path P. The
x j are the equilibrium concentrations of free atoms of type j (here T = 3). Hence, εi = α

pβqσr

for a Yi that contains p bonds between A and S, q bonds between B and S, and r bonds between S

protomers.
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Consider first the polymerization subsystem. From what we just laid out, the equilibrium concen-
tration of a polymer of length l is σl−1sl , where s is the equilibrium concentration of monomers of
S. Summing over all polymer concentrations yields the total abundance of entities in the system,
W(s) = ∑∞

l=1 σ
l−1sl = s/(1 − σs). W(s) gives us a conservation relation, tS = s dW(s)/ds, from

which we obtain s as:

s =
1

4σ

(√
4 + 1/(σtS) −

√
1/(σtS)

)2
. (1.6)

Using (1.6) in σl−1sl yields the dependence of the polymer size distribution on parameters tS and
σ. W(s) has a critical point at scr = 1/σ, at which the concentrations of all length classes become
identical. It is clear from (1.6) that s can never attain that critical value for finite σ and tS.

1.3 The chemostatted case
In a chemostatted system, s can be clamped at any desired value, including the critical point 1/σ at
which ever more protomers are drawn from the reservoir into the system to feed polymerization. We
next include ligands A and B at clamped concentrations a and b. Let ApSnBq be the sum formula of
a scaffold polymer of length nwith p A-agents and q B-agents. There are

(n
p

) (n
q

)
such configurations,

each with the same catalytic potential Q = pq. Summing up the equilibrium abundances of all
configurations yields

W(s, a, b) = a + b +
s(1 + αa)(1 + βb)

1 − σs(1 + αa)(1 + βb) . (1.7)

(1.7) corresponds to the W(s) of ligand-free polymerization by a coarse-graining that only sees
scaffolds regardless of their ligand-binding state, i.e. by dropping terms not containing s and
substituting s(1+αa)(1+ βb) → s. (1.7) indicates that, at constant chemical potential for A, B and
S, the presence of ligands lowers the critical point of polymerization to scr = 1/(σ(1+αa)(1+ βb))
because, in addition to polymerization, free S is also removed through binding with A and B.

Qpoly, the Q of the system, is obtained by summing up the Q of each configuration weighted by its
equilibrium concentration (SI section 1). Using W , we compute Qpoly as

Qpoly = ab
∂2

∂a∂b
W = αaβb s

1 + σ s(1 + αa)(1 + βb)
(1 − σs(1 + αa)(1 + βb))3

. (1.8)

Note that Qpoly inherits the critical point of W . The behavior of the chemostatted continuum model
is summarized in Fig. 1.5.

Qpoly (red) diverges as the polymerization system approaches the critical point. The inset of Fig.
1.5A shows the scaffold length distribution at the black dot on theQpoly-profile. The red dotted curve
reports the length distribution in the presence of ligands, [{A∗Sk B∗}] = σ−1(σs(1+ αa)(1+ βb))k ,
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Figure 1.5: Catalysis in a chemostatted polymerizing scaffold system. A: The red graph shows
the catalytic potential Q as a function of chemostatted s according to (1.8) for α = β = 106 M−1,
σ = 108 M−1, and a = b = 15 · 10−9 M (about 2 104 molecules in 10−12 L). The blue curve is
the special case of σ = 0, which is the monovalent scaffold system, Q = αaβb s. The inset shows
the scaffold length distribution at s = 7.15 nM, corresponding to Q at the black filled circle. The
critical point in this example is scr ∼ 9.7 nM. Panel B: The catalytic potential at s = 7.15 nM as a
function of clamped b (the substrate); other parameters as in A. Red: polymerizing scaffold system;
blue: monovalent scaffold; green: chemostatted Michaelis-Menten in which A binds directly to B
with affinity α.

whereas the black dotted curve reports the length distribution in the absence of ligands, sk ≡ [Sk] =
σk−1sk . The presence of A and B shifts the distribution to longer chains. The blue curve in Fig.
1.5A shows the catalytic potential of the monovalent scaffold, σ = 0. It increases linearly with s,
but at an insignificant slope compared with the polymerizing case, which responds by raising the
size (surface) distribution, thus drawing in more S from the reservoir to maintain a given s; this, in
turn, draws more A and B into the system. In Fig. 1.5B, s is fixed and b, the substrate concentration,
is increased. The green straight line is the Michaelis-Menten case, which consists in the direct
formation of an AB complex and whose Q = α a b is linear in b. The red line is the polymerizing
scaffold system whose scr can be attained by just increasing b, (1.8). All else being equal, there is
a b at which more substrate can be processed than through direct interaction with an enzyme. The
slope of the monovalent scaffold (blue) is not noticeable on this scale.

1.4 The continuum case in equilibrium
We turn to the system with fixed resources tS, tA and tB, expressed as real-valued concentrations.
(1.8) for Qpoly is now evaluated at the equilibrium concentrations s, a and b of the free atoms.
These are obtained by solving the system of conservation equations, tS = s ∂W/∂s, tA = a ∂W/∂a,
tB = b ∂W/∂b (solutions in SI, section 1). The orange curve in Fig. 1.6A depicts the saturation curve
of the catalytic potential Qdirect of the Michaelis-Menten mechanism for a fixed concentration tA of
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enzyme as a function of substrate tB. The green curves are saturation profiles of the polymerizing
scaffold system at varying protomer abundances tS under the same condition. As in the chemostatted
case, beyond some value of tS, the catalytic potential of the polymerizing system exceeds that from
direct interaction.
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Figure 1.6: Catalysis in a closed polymerizing scaffold system. A: The orange curve shows the
saturation of catalytic potential Q of the direct enzyme (A)-substrate (B) interaction, a classic
Michaelis-Menten mechanism, as a function of tB for β = 107 M−1 and tA = 15 · 10−9 M. The
green curves depict the saturation curves for Q of the poly-scaffold with affinities α = β = 107 M−1

and σ = 108 M−1 at various protomer abundances tS. B: The catalytic potential surface for the
poly-scaffold as a function of tS and σ; other parameters as in panel A. The red ball corresponds to
the conditions marked by the red dot in panel A (tB = 5 · 10−7 M). The flat yellow surface is the Q
for the direct enzyme-substrate interaction (i.e. the intersection of the vertical dotted line in panel
A with the orange curve). See text for discussion.

Qpoly can be modulated not only by the protomer concentration tS, but also the protomer affinity σ
(Fig. 1.6B). Increasing tS improves Qpoly dramatically at all affinities up to a maximum after which
enzyme and substrate become progressively separated due to the prozone effect. At all protomer
concentrations, in particular around the maximizing one, Qpoly always increases with increasing
affinity σ. Fig. 1.6B suggests that for the modulation through σ to be most effective the protomer
concentration should be close to the maximizing tS.



22

1.4.1 Comparison with multivalent scaffold systems
With regard to Q, a polymer chain of length n is equivalent to a multivalent scaffold agent S(n) with
n binding sites for A and B each. It is therefore illuminating to compare the polymerizing system
with multivalent scaffolds and their mixtures.

It is straightforward to calculate the equilibrium concentration of configurations ApS(n)Bq for
an n-valent scaffold by adopting a site-oriented view that exploits the independence of binding
interactions. The calculation (SI section 2) yields as a general result that the catalytic potential for
an arbitrary scaffolding system, assuming independent binding of A and B, consists of two factors:

Q = p(tsit, tA, α)p(tsit, tB, β)︸                      ︷︷                      ︸
I

Qmax(®tS)︸    ︷︷    ︸
I I

. (1.9)

The dimensionless function p(tsit, tX, γ) denotes the equilibrium fraction of X-binding sites, with
total concentration tsit, that are occupied by ligands of type X , with total concentration tX :

p(tsit, tX, γ) =
γtX − γtsit − 1 +

√
4γtX + (γtX − γtsit − 1)2

γtX − γtsit + 1 +
√

4γtX + (γtX − γtsit − 1)2
.

This expression is the well-known dimerization equilibrium, computed at the level of sites rather
than scaffolds and taken relative to tsit (SI section 2).

Factor I depends on the total concentration of ligand binding sites (for each type) but not on how
these sites are partitioned across the agents providing them. For example, a multivalent scaffold
S(n), present at concentration tS(n) , provides tsit = ntS(n) binding sites and the probability that a site
of any particular agent is occupied is the same as the probability that a site in a pool of ntS(n) sites
is occupied. For a heterogeneous mixture of multivalent scaffold agents, we have tsit =

∑n
i=1 i tS(i);

for a polymerizing system in which each protomer S exposes one binding site, we have tsit = tS.

Factor II is the maximal Q attainable in a scaffolding system. This factor depends on how sites
are partitioned across scaffold agents with concentrations ®tS = (tS(1), . . . , tS(n)), but does not depend
on ligand binding equilibria. For example, a system of multivalent agents at concentrations ®tS has
Qmax =

∑n
i=1 i2tS(i) . The polymerizing scaffold system is analogous, but n = ∞ and the tS(i) are

determined endogenously by aggregation: tS(i) = si = σ
i−1si. This yields simple expressions for

the catalytic potential of a polymerizing scaffold, Qpoly, and multivalent scaffold, Qmulti:

Qpoly = p(tS, tA, α)p(tS, tB, β)
s(1 + σs)
(1 − σs)3

(1.10)

Qmulti = p(n tS(n), tA, α)p(n tS(n), tB, β)n2tS(n)

with s in (1.10) given by (1.6). (1.10) is equivalent to (1.8). While (1.8) requires solving a system
of mass conservation equations to obtain a, b, and s, Qpoly as given by (1.10) does not refer to a
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and b, but only to s as determined by the ligand-free polymerization subsystem. The Q that shapes
the Michaelis-Menten rate law under the assumption of rapid equilibration of enzyme-substrate
binding has the same structure as (1.9): Qdirect = p(tA, tB, α)tA, where tA and tB are the total enzyme
and substrate concentration, respectively. The presence of a second concurrent binding equilibrium
in (1.9) characterizes the prozone effect.

Adding sites, all else being equal, necessarily decreases the fraction p of sites bound. Specifically,
factor I tends to zero like 1/t2

sit for large tsit. In contrast, Qmax increases monotonically, since adding
sites necessarily increases the maximal number of interaction opportunities between A and B. For
a multivalent scaffold Qmax diverges linearly with tsit. For the polymerizing system Qmax diverges
like t3/2

sit (SI section 5).

Fig. 1.7A provides a wide-range comparison of Qpoly (red) with Qmulti for various valencies (blue)
at the same site concentration tsit = tS.
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Figure 1.7: Multivalent scaffolds and polymerizing scaffold. A: Large-scale view of the catalytic
potentialQ as a function of site concentration tS. The blue curves depictQmulti for n-valent scaffolds
(lower: n = 1, higher: n = 10). The location of the peak of Qmulti is independent of the valency
n when expressed as a function of tsit = tS (SI section 5, Eq. 38). The red and orange curves
depict Qpoly for two affinities (red: σ = 108 M−1, orange: σ = 1010 M−1). Other parameters:
α = β = 107 molecules−1, tA = 1.5 · 10−8 M, tB = 5 · 10−7 M. On a log-log scale, the up-slope
of Qpoly is 1 initially—the same as for multivalent scaffolds—and increases to 2 prior to reaching
the prozone peak. The down-slope is −1/2, whereas it is −1 for multivalent scaffolds (SI section
5). B: Close-up of the peak region in panel A for the red curve; multivalent scaffolds were added
for n = 2, 3, 5. The slight asymmetry in the Q profiles of multivalent scaffolds stems from the
differences in ligand concentrations of our running example; see also SI, section 11. The yellow dot
on the Qpoly curve corresponds to the red dot in Fig. 1.6. A pink square on a blue curve of valency
n marks Qmulti when the scaffold concentration tS(n) is the same as the concentration of polymers
of size n (sn) at the tS at which the length class n dominates the polymerizing system (SI section 3
Fig. S2B). A blue dot indicates the Qmulti when the scaffold concentration tS(n) = 1/σ, which is the
asymptotic (and maximal) value of sn, for all n, in the limit of infinite tS. These markers serve to
show that within the most populated length classes the prozone peak is never reached. MM labels
the Michaelis-Menten case of Fig. 1.6 for comparison. See text for details. C: The solid lines in
the graph exemplify the absence of a prozone within an isolated length class n, here n = 3, and
the presence of a prozone for the same class in the context of all other classes. Green solid: Qmulti
for n = 3 using tS(3) = s3 and tsit = 3 tS(3) . Red solid: Qmulti for n = 3 using tS(3) = s3 but tsit = tS.
The dotted lines illustrate the situation for the length class n = 3 as a function of affinity σ (upper
abscissa, same ordinate). In this dimension, the bending of the curves is not due to a prozone effect,
since the number of sites does not increase; see text. D: Cumulative sums from i = 1 to n = 30 of
Qmulti with tS(i) = si and tsit =

∑n
i=1 i tS(i) .
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On a log-log scale, scaffolds of arbitrary valency n exhibit a Qmulti whose slope as a function of tsit
is 1, with offset proportional to n, until close to the peak. For the polymerizing scaffold, the first
order term of the series expansion of Qpoly is independent of the affinity σ (SI section 5), whereas
the second order term is linear in σ. Hence, for small tsit, the polymerizing system behaves like a
monovalent scaffold and any multivalent scaffold offers a better catalytic potential. However, as tS

increases, the equilibrium shifts markedly towards polymerization, resulting in a slope of 2, which
is steeper than that of any multivalent scaffold. The steepening of Qpoly is a consequence of longer
chains siphoning off ligands from shorter ones (SI, section 4). All n-valent scaffolds reach their
maximal Qmulti at the same abundance of sites tsit = n tS(n) = tS and before Qpoly. The superlinear
growth in Qmax of the polymerizing system softens the decline of Qpoly to an order t−1/2

S for large tS.
In contrast, the decline of Qmulti is of order t−1

sit . In sum, the polymerizing scaffold system catches
up with any multivalent scaffold, reaches peak-Q later, and declines much slower.

The mitigation of the prozone effect begs for a mechanistic explanation, since a prozone could occur
not only within each length class but also between classes. To assess the within-class prozone, we
think of a length class k as if it were an isolated k-valent scaffold population at concentration tS(k) =

sk = σ
k−1sk with Qmulti = p(k sk, tA, α)p(k sk, tB, β)k2sk . For all k, sk approaches monotonically

the limiting value 1/σ as tS → ∞ (SI section 2, Fig. S1A). Assuming equal affinity α for both
ligands A and B, peak-Qmulti for a k-valent scaffold occurs at tpeakS(k)

= k−1(α−1 + (tA + tB)/2). Thus,
when established through a polymerization system, tS(k) can never exceed the concentration required
for peak-Qmulti for any k up to k = σ/α (Fig. 1.7B, blue dots). For the α used in the red curve of Fig.
1.7B this lower bound is k = 10 and the actual value, given employed values of tA and tB, is about
k = 35. At the yellow marker and at peak-Qpoly in Fig. 1.7B 98% and 68%, respectively, of all sites
are organized in length classes below 10. Thus, the most populated lengths avoid the within-class
prozone entirely (for example k = 3 as depicted in Fig. 1.7C, green solid line). Yet, the actual
behavior of the kth length class occurs in the context of all other classes, i.e. at site concentration
tS, not just k sk . In this frame, the class indeed exhibits a prozone (Fig. 1.7C, red solid line). The
overall prozone of the polymerizing scaffold system is therefore mainly due to the spreading, and
ensuing isolation, of ligands between length classes. This “entropic” prozone becomes noticeable
only when including all length classes up to relatively high k because the majority of sites are
concentrated at low k where they are even jointly insufficient to cause a prozone, Fig. 1.7D.

At constant tS and in the limit σ → ∞, sk tends toward zero for all k (SI, Fig. S3C). In the
σ-dimension, unlike in the tS-dimension, the class sk itself has a peak. As σ increases, the k of the
class that peaks at a given σ increases. Consequently, the Qmulti of each length-class in isolation
will show a “fake” prozone with increasing σ, due entirely to the polymerization wave passing
through class k as it moves towards higher k while flattening (Fig. 1.7C, dotted lines). Since there
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is no site inflation, the overall Qpoly increases monotonically.

Effects of ligand imbalance and unequal ligand binding affinities are discussed in the SI, section
11.

1.4.2 Interaction horizon
The assumption that every A can interact with every B attached to the same scaffold construct
is unrealistic. It can, however, be tightened heuristically without leaving the current level of
abstraction. We introduce an “interaction horizon,” qmax(l, h), defined as the radius h in terms of
scaffold bonds within which a bound A can interact with a bound B on a polymer of size l. In this
picture, an A can interact with at most 2h + 1 substrate agents B: h to its “left,” h to its “right”
and the one bound to the same protomer. The interaction horizon only modulates the Qmax of a
polymer of length l, replacing the interaction factor l2 with (SI section 6):

qmax(l, h) =
{

l(2h + 1) − h(h + 1), for 0 ≤ h ≤ l − 1
l2, for h ≥ l .

The horizon h could be a function of l. One case, in which h covers a constant fraction of a
polymer, is treated in section 6 of the SI. In a more restrictive scenario, we assume a fixed horizon
independent of length, which could reflect a constant local flexibility of a polymer chain. With the
assumption of a constant h, (1.10) becomes (SI section 6)

Qpoly = p(tS, tA, α)p(tS, tB, β)
s
(
1 + σs − 2(σs)h+1)
(1 − σs)3

. (1.11)

In (1.11), the numerator of the Qmax term of (1.10) is corrected by −2s(σs)h+1. Since σs < 1 for
all finite tS and σ, even moderate values of h yield only a small correction to the base case of a
limitless horizon.

1.5 The discrete case in equilibrium
Replacing concentrations with particle numbers tS, tA, tB ∈ N in a specified reaction volume yields
the discrete case. In this setting, we must convert deterministic equilibrium constants, such as σ to
corresponding “stochastic” equilibrium constants σs through σs = σ/(AV), where A is Avogadro’s
constant and V the reaction volume to which the system is confined. For simplicity, we overload
notation and use σ for σs.

The basic quantity we need to calculate is the average catalytic potential 〈Qpoly〉 =
∑

l,i, j i j 〈nli j〉,
where 〈nli j〉 is the average number of occurrences of a polymer of length l with i and j ligands of
type A and B, respectively. Conceptually, 〈nli j〉 counts the occurrences of an assembly configuration
AiSl B j in every possible state of the system weighted by that state’s Boltzmann probability. In the
SI (section 7), we show that 〈nli j〉 is given by the number of ways of building one copy of AiSl B j
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from given resources (tS, tA, tB) times the ratio of two partition functions—one based on a set of
resources reduced by the amounts needed to build configuration AiSl B j , the other based on the
original resources. The posited independence of all binding processes in our model implies that
the partition function is the product of the partition functions of polymerization and dimerization,
which are straightforward to calculate (SI section 8). While exact, the expressions we derive for
〈Qpoly〉 (SI, section 8, Eq. 66) and 〈Qmulti〉 (SI, section 8, Eq. 69) are sums of combinatorial
terms and therefore not particularly revealing. For numerical evaluation of these expressions, we
change the size of the system by a factor ξ (typically ξ = 0.01), i.e. we multiply volume and
particle numbers with ξ and affinities with 1/ξ. Such re-sizing preserves the average behavior. Our
numerical examples therefore typically deal with 10-1000 particles and stochastic affinities on the
order of 10−2 to 10 molecules−1.
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Figure 1.8: Maximer. A: The surface depicts the probability of observing the maximer as a
function of tS and σ. B: Here the maximer probability is graphed as function of the probability
p that a bond exists between two protomers. p is a function of tS and σ and can be calculated
exactly. Each curve corresponds to a particular tS with varying σ. tS ranges from 10 (topmost
curve) to 100 (bottom curve) in increments of 10, while σ ranges from 1 to 1000. C: Mass
distributions in the polymerizing scaffold model. Any curve depicts the fraction of protomers in all
length classes n, computed as nσn−1tS!/(tS − n)! Z (poly)

tS−n /Z
(poly)
tS with Z (poly)

tS the partition function
for polymerization with tS protomers (SI, section 8). Each curve corresponds to a given number
of protomers: tS = 5 (blue), 10 (green), 15 (plum), 20 (red), 25 (orange), 30 (purple), 40 (brown);
affinity σ = 3 in all cases. When tS is small, the longest possible polymer—the “maximer”—is
realized with appreciable frequency and dominates the mass distribution. As tS increases, at fixed
σ, the maximal length class increases too but its dominance fades.
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The key aspect of the discrete case is the existence of a largest polymer consisting of all tS protomers.
We refer to it as the “maximer”; no maximer exists in the continuum case because of the infinite
fungibility of concentrations (Fig. S9). Since there is only onemaximer for a given tS, its expectation
is the probability of observing it: 〈smax〉 = tS!σtS−1/Z (poly)

tS , where Z (poly)
tS is the partition function

of polymerization (SI, sections 8 and 9). This probability is graphed as a function of tS and σ in Fig.
1.8A. At any fixed tS, the probability of observing the maximer will tend to 1 in the limit σ →∞.
This puts a ceiling to Qmax that is absent from the continuum description. In the tS-dimension, the
maximer probability decreases as tS increases at constant σ.

Polymerization as considered here has a natural analogy to bond percolation on a 1-dimensional
lattice (SI, section 9). The probability of percolation (in which the entire lattice becomes one
connected component) is parametrized by the probability p of a bond between adjacent lattice sites.
In the case of polymerization we can compute the probability p that any two protomers are linked
by a bond as a function of tS and σ. For continuum but not for discrete polymerization, the analogy
to percolation on an infinite 1D lattice is actually an exact correspondence (SI, section 9). For
the present purpose, the percolation perspective is useful in that it combines the two main model
parameters tS and σ in the single quantity p (Fig. 1.8B). As in finite-size percolation, the salient
observation is that for small tS the maximer has a significant probability of already occurring at
modest affinities; for example, given 10 protomers and discrete binding affinity 1, p is already
0.78 and the maximer probability a respectable 0.06. For larger tS, the maximer loses significance
unless the affinity is scaled up correspondingly (SI section 10). This is also reflected in the mass
distribution, Fig. 1.8C.

Fig. 1.9A compares the discrete polymerizing scaffold system with discrete multivalent scaffolds,
much like Fig. 1.7A for the continuum case. The behavior of the discrete case is essentially similar
to that of the continuum case—with a few nuances that are prominent at low particle numbers and
high affinities, such as the topmost orange curve. Its 〈Qpoly〉-profile does not hug the monovalent
profile (bottom green chevron curve) to then increase its slope into the prozone peak as in the
continuum case (Fig. 1.7A). A behavior like in the continuum case is observed for the lower orange
and red curves, for which σ is much weaker. In the continuum case, the affinity does not affect
slope—the slope always shifts from 1 to 2 within some region of protomer abundance; rather,
the affinity determines where that shift occurs (Fig. 1.7A). The higher the affinity, the earlier the
shift. The topmost orange curve could be seen as realizing an extreme version of the continuum
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Figure 1.9: Multivalent and polymerizing scaffolds in the discrete case. A: Comparison of poly-
merizing scaffold (orange and red) with multivalent systems of various valencies (green). Orange:
tA = tB = 40, α = β = 0.9, σ = 10 (upper) σ = 0.01 (lower). All affinities in units of molecules−1.
Red: tA = tB = 80, α = β = 0.9, σ = 0.01. Green: tA = tB = 40, α = β = 0.9, valency n = 10
(top), n = 5 (middle), n = 1 (bottom). B: 〈Qpoly〉 as a function of affinity σ. tA = tB = 40,
α = β = 0.9, tS = 300 (green), tS = 10 (red), tS = 50 (blue).

behavior in which an exceptionally high affinity causes a shift to slope 2 at unphysically low
protomer concentrations. That such a scenario can be easily realized in the discrete case is due
to the significant probability with which the maximer occurs at low particle numbers, similar to
finite-size percolation. It bears emphasis that, as the number tS of protomers increases, the maximer
probability decreases (Fig. 1.8C), since the length of the maximer is tS. Yet, once the maximer has
receded in dominance, the increased number of length classes below it have gained occupancy and
control the catalytic potential much like in the continuum case. Likewise, affinity does not appear
to affect the slope of the downward leg as tS increases.

The discrete multivalent scaffold system behaves much like its continuum counterpart.

In the affinity dimension, Fig. 1.9B, the discrete system shows a behavior similar to the continuum
casewith the qualification that 〈Qpoly〉must level off to a constant, rather than increasing indefinitely.
This is because, at constant tS, an ever increasing affinity will eventually drive the system into its
maximer ceiling. Because of the volume-dependence of stochastic equilibrium constants, such an
increase in affinity at constant protomer number can be achieved by any physical reduction of the
effective reaction volume, for example by confinement to a vesicle or localization to a membrane
raft.

We determined standard deviations using stochastic simulations of the cases presented in Fig. 1.9A
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(SI, section 12). For a given 〈Q〉, the standard deviation is larger after the prozone peak than before.
Upon adding ligand binding sites, the ratio of standard deviation to mean (noise) increases much
slower for the polymerizing system than for multivalent scaffolds.

1.6 Main conclusions
Our theoretical analysis of a polymerizing scaffold system shows that, at constant chemical potential,
the system can be driven into criticality not only by increasing protomer concentration or affinity,
but by just increasing ligand concentrations.

In equilibrium, the system stands out in how the prozone effect plays out. Comparedwithmultivalent
scaffolds, the polymerizing system boosts catalytic potential on the upward leg beyond a certain
protomer concentration; delays the prozone peak; and dramatically mitigates the collapse on the
downward leg. We explain this behavior by how the polymer length distribution adjusts to changes
in protomer concentration and affinity. The discrete case behaves likewise, but, at small protomer
numbers, the existence of a maximal polymer manifests itself in behavior only attainable at extreme
parameter values in the continuum case.

A polymerizing scaffold could be viewed as a programmable surface whose extent can be regulated
by varying parameters such as protomer concentration, polymerization affinity and, in a discrete
setting, reaction volume. The system effectively concentrates interacting ligands, much like a vesicle
would, but through a simpler mechanism. Given the pervasive potential for scaffold polymerization
through DIX domains and the like, we suspect that many systems of this kind will be discovered.

Our model is a stylized vignette amenable to analytic treatment and exploitable for insight. Adding
a bond distance constraint to the interaction among ligands did not alter the fundamental picture.
Taking into account conformational aspects of polymeric chains would be a useful step, as would
generalizations in which scaffolding units of distinct types formmultiply interconnected aggregates
facilitating diverse ligand interactions. We would expect variations in the concentration of scaffold
units to have wide ranging effects on the equilibrium mixture of assemblies and the overall catalytic
potential.

Acknowledgements. We gratefully acknowledge discussions with Tom Kolokotrones, Eric Deeds,
and Daniel Merkle.
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1.7 Supplementary information
1.7.1 W and Q in the polymerizing scaffold model
In this section, we step through the treatment of the polymerizing scaffold model with more
granularity.

A polymerizing scaffold protomer S has 1 binding site for each ligand A and B. Let {ApSnBq} be
the set of complexes (configurations) consisting of a scaffold polymer with n protomers, p agents
of type A and q agents of type B; let [{ApSnBq}] denote their aggregate equilibrium concentration.
The equilibrium concentration of any particular representative ApSnBq of that class is given by

[ApSnBq] = σn−1αpβqsnapbq = σn−1sn(αa)p(βb)q, (1.12)

where a, b, s are the equilibrium concentrations of free A, B, and S, respectively; α denotes the
equilibrium constant of A binding to S and, similarly, β and σ are the equilibrium constants for
B binding to S and for S binding to S, respectively. All binding interactions are posited to be
mechanistically independent of one another.

In an equilibrium treatment, a system of reactions only serves to define a set of reachable complexes
and could be replaced with any other mechanism, no matter how unrealistic, as long as it produces
the same set of reachable configurations. Hence we could posit that a polymer of length n is
generated by a reversible “reaction” in which all constituent protomers come together at once. The
equilibrium constant of such an imaginary reaction must be the exponential of the energy content
of a polymer of length n, which in our case is simply (n − 1) times the energy content of a single
bond, i.e. lnσ. Thus, the equilibrium constant of the fictitious one-step assembly reaction is σn−1

and (1.12) follows.

To aggregate the equilibrium concentrations of all molecular configurations in the class {ApSnBq}
we note that the set {ApSnBq} includes

(n
p

) (n
q

)
configurations with the same energy content

σn−1αpβq. Summing over all p and q, yields the contribution of the polymer length class n,
{A∗SnB∗}

[{A∗SnB∗}] = σn−1sn


n∑
p=1

(
n
p

)
αp ap




n∑
q=1

(
n
q

)
βq bq

 = σn−1sn(1 + α a)n(1 + β b)n

=
1
σ
(σ s (1 + α a)(1 + β b))n . (1.13)

Summing over all equilibrium concentrations defines a function W :

W = a + b +
1
σ

∞∑
n=1
(σ s (1 + αa) (1 + βb))n = a + b + s(1 + αa)(1 + βb)

∞∑
n=0
(σs(1 + αa)(1 + βb))n .

(1.14)
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When viewing a, b, and s as formal variables, W acts as a generating function of energy-weighted
configurational counts. By differentiating W with respect to s, each s-containing term gets multi-
plied with the exponent of s, which is the S-content of the respective configuration. Multiplying
by s then restores the exponent and recovers the equilibrium concentration of the respective con-
figuration. Summing over all configurations so treated yields the total amount of S protomers in
the system and thus a conservation relation. This holds for all formal variables representing the
“atoms,” or building blocks, of the system:

tA = a
∂W(a, b, s)

∂a
, tB = b

∂W(a, b, s)
∂b

tS = s
∂W(a, b, s)

∂s
. (1.15)

By solving the equations (1.15), we obtain the equilibrium concentrations of free A, B, and S

needed to compute the equilibrium concentration of any configuration:

a =
αtA − αtS − 1 +

√
(αtA + αtS + 1)2 − 4αtAαtS

2α
(1.16)

b =
βtB − βtS − 1 +

√
(βtB + βtS + 1)2 − 4βtBβtS

2β
(1.17)

s =
2

σ2tS

2σtS + 1 −
√

4σtS + 1(
αtA − αtS + 1 +

√
(αtA + αtS + 1)2 − 4αtAαtS

) (
βtB − βtS + 1 +

√
(βtB + βtS + 1)2 − 4βtBβtS

) .
(1.18)

Carrying out the geometric sum in (1.14) yields equation (2) in the main text:

W(a, b, s) = a + b +
s(1 + αa)(1 + βb)

1 − σs(1 + αa)(1 + βb) . (1.19)

The same manipulation of W used to obtain (1.15) can be carried out twice, once for a and once
for b, to yield the catalytic potential of the system:

Q = a b
∂2

∂a∂b
W(a, b, s), (1.20)

given as equation (3) in the main text.

By setting a = b = 0, we recover the standalone polymerization system with

W(s) = s
1 − σs

(1.21)

and s obtained from solving tS = dW(s)/ds:

s =
1

4σ

(√
4 +

1
σtS
−

√
1
σtS

)2

, (1.22)
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as in equation (1) of the main text. We discuss the main properties of the standalone polymerization
system in section 1.7.3 of this Appendix. In an equilibrium setting, the critical point of the model
with ligands A and B should be the same as that of the polymerization system without ligands,
namely tS → ∞ or σ → ∞. This is not obvious from W (whose critical point Q inherits) as given
in (1.19) with solutions (1.16)-(1.18). However, it is made explicit in an alternative, more insightful
derivation of the equilibrium catalytic potential Q given in section 1.7.2 of this Appendix.

1.7.2 Derivation of the general expression for the catalytic potential
In this section, we derive expression (4) of the main text.

We consider a multivalent scaffold agent S with nA binding sites for A and nB binding sites for
B. Our goal is to calculate the catalytic potential Qmulti of a system consisting of A-agents at
concentration tA, B-agents at concentration tB, and S-agents at concentration tS.

The function W(a, b, s), introduced in the main text for the polymerizing scaffold system, sums up
the equilibrium concentrations of all possible entities in the system. The same concept applies to a
multivalent scaffold:

Wmulti(a, b, s) = a + b + s(1 + αa)nA(1 + βb)nB (1.23)

with a, b, and s the equilibrium concentrations of the free A, B, and S, respectively. The catalytic
potential Qmulti of the multivalent scaffold system is

Qmulti = a b
∂2

∂a∂b
Wmulti(a, b, s) = s α β a b nA nB (1 + αa)nA−1(1 + βb)nB−1. (1.24)

The equilibrium concentrations a, b, and s are determined by the system of conservation equations

a
∂

∂a
W = tA, b

∂

∂b
W = tB, s

∂

∂s
W = tS . (1.25)

However, we can bypass solving these equations by calculating the concentrations directly, which
serendipitously gives us an intelligible expression for the catalytic potential Q in general.

We first calculate the equilibrium concentration of the fully occupied scaffold configuration,
[AnASBnB] by reasoning at the level of binding sites. The concentration of sites available for
binding to S are denoted by a, which is also the concentration of free A-agents. Since each A-
binding site on S is independent, the equilibrium fraction of S-agents that are fully occupied with
A-agents is simply

[{AnAS}]
tS

=
( αa
1 + αa

)nA

. (1.26)
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The expression in parentheses is the single-site binding equilibrium. Likewise, let [s] be the
concentration of free A-binding sites on S-agents and [as] the concentration of bonds between A-
and S-agents. In equilibrium, we have that

αa [s] = [as], nAtS = [s] + [as], tA = a + [as]. (1.27)

Hence, a = [as]/(α[s]) or a = (tA−a)/(α[s]) = (tA−a)/(α(nAtS− tA+a)), which yields a quadratic
in a whose solution is

a =
1

2α

(
αtA − nAαtS − 1 +

√
(αtA − nAαtS − 1)2 + 4αtA

)
. (1.28)

We plug (1.28) into (1.26) to obtain

[{AnAS}]
tS

=

(
αtA − nAαtS − 1 +

√
(αtA − nAαtS − 1)2 + 4αtA

αtA − nAαtS + 1 +
√
(αtA − nAαtS − 1)2 + 4αtA

)nA

. (1.29)

The same reasoning holds for the (independent) binding of B to S:

[{SBnB }]
tS

=

(
βtB − nBβtS − 1 +

√
(βtB − nBβtS − 1)2 + 4βtB

βtB − nBβtS + 1 +
√
(βtB − nBβtS − 1)2 + 4βtB

)nB

. (1.30)

At this point, it is useful to abbreviate

a± ≡ a±(tA, tS, α, nA) = αtA − nAαtS ± 1 +
√
(αtA − nAαtS − 1)2 + 4αtA

b± ≡ b±(tB, tS, β, nB) = βtB − nBβtS ± 1 +
√
(βtB − nBβtS − 1)2 + 4βtB

. (1.31)

Note that these abbreviations are dimensionless functions of the parameters tA, tS, α, and nA/B.
Because A and B bind independently, we can combine (1.29) and (1.30) to obtain:

[AnASBnB] = tS
anA−
anA
+

bnB−
bnB
+

= (αa)nA(βb)nB s, (1.32)

where the last equation is the equilibrium concentration in terms of free A, free B, and free S,
as mentioned in the Introduction of the main text (and section 1.7.1 of this Appendix). The
expression a for free A is given by (1.28), or a = a−/(2α). The expression b for free B is analogous,
b = b−/(2β). Equation (1.32) now yields s:

s = tS
1

(αa)nA(βb)nB
anA−
anA
+

bnB−
bnB
+

= tS
2nA2nB

anA
+ bnB
+

. (1.33)

To summarize, using abbreviations (1.31):

a =
a−
2α
, b =

b−
2β
, s = tS

(
2
a+

)nA
(

2
b+

)nB
. (1.34)
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Keep in mind that a+/− and b+/− are not constants, but functions of the system parameters. We
now insert (1.34) into (1.24) to obtain

Qmulti = nA nB s
( αa
1 + αa

) (
βb

1 + βb

)
(1 + αa)nA(1 + βb)nB

= nA nB tS

(
2
a+

)nA
(

2
b+

)nB ( αa
1 + αa

) (
βb

1 + βb

)
(1 + αa)nA(1 + βb)nB

= nA nB tS

( αa
1 + αa

) (
βb

1 + βb

) (
2 + 2αa

a+

)nA
(
2 + 2βb

b+

)nB

= nA nB tS

( αa
1 + αa

) (
βb

1 + βb

)
= nA nB tS

a−
a+

b−
b+
. (1.35)

The cancellations are due to 2αa = a− (from (1.34)) and a+ = a− + 2 (from (1.31)).

Return to equation (1.29) and set nA = 1. This gives the fraction of A-binding sites (of monovalent
scaffold agents) that are occupied, that is, the probability that an A is bound:

p(tS, tA, α) =
a−(tA, tS, α, 1)
a+(tA, tS, α, 1)

=
αtA − αtS − 1 +

√
(αtA − αtS − 1)2 + 4αtA

αtA − αtS + 1 +
√
(αtA − αtS − 1)2 + 4αtA

. (1.36)

In the site-oriented view, it does not matter whether an A-binding site belongs to a monovalent
scaffold agent or to an n-valent scaffold agent. At the same agent concentration tS, the n-valent
agent simply provides n times more sites. Thus, the probability that an A is bound if the scaffolds
are n-valent is

p(ntS, tA, α) =
a−(tA, tS, α, n)
a+(tA, tS, α, n)

=
a−(tA, ntS, α, 1)
a+(tA, ntS, α, 1)

, (1.37)

since the number of binding sites only scales tS in (1.31). With these observations, we can rephrase
(1.35) as the product of two terms:

Qmulti = p(nAtS, tA, α)p(nBtS, tB, β)︸                           ︷︷                           ︸
I

nA nB tS︸  ︷︷  ︸
I I

. (1.38)

Term (I) is the probability that a site of some S is occupied by A and a site of some S is occupied
by B. Term (II) counts the maximal number of possible interactions between A and B agents in the
system.

Let S(i) denote an agent of valency i for both ligands and let tS(i) denote its concentration. In a
mixture of multivalent scaffold types of distinct valencies i = 1, . . . , n present at concentrations
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tS(i) , the catalytic potentials of each type add up to that of the mixture, Qmix:

Qmix = p
(∑n

i=1i tS(i), tA, α
)

p
(∑n

i=1i tS(i), tB, β
) n∑

i=1
i2tS(i) . (1.39)

Generally, we can write Qmix as

Qmix = p(tsit, tA, α)p(tsit, tB, β)Qmax(®tS). (1.40)

In (1.40), tsit is the total concentration of binding sites, regardless of how they are partitioned across
scaffold agents, ®tS = (tS(i), . . . , tS(n)) is a partition of sites across scaffold molecules of different
valencies, and Qmax is the maximal attainable number of enzyme-substrate interactions in the
system, which depends on the concentration of scaffolds and their valency.

If the mixture results from a polymerization process between monovalent scaffolds S ≡ S(1), we
identify a polymer of length l with an l-valent scaffold agent (Figure 1.10).
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Figure 1.10: A multivalent scaffold agent can be thought as representing a particular scaffold
polymer configuration.

The concentrations tS(l) are endogenously determined by polymerization at equilibrium:

tS(l) = σ
l−1sl,

where the expression for s is given by the expression for the equilibrium concentration of free
monomer in the polymerization system absent ligands, expression (1.22) in section 1.7.1 (equation
(1) in the main text). Using these tS(l) in the sum (1.39), which in the continuum case runs to n = ∞,
yields the expression (5) for Qpoly in the main text:

Qpoly = p(tS, tA, α)p(tS, tB, β)
∞∑

n=1
n2σn−1sn = p(tS, tA, α)p(tS, tB, β)

s(1 + σs)
(1 − σs)3

, (1.41)

with p(· · · ) given by (1.36).



37

1.7.3 Overview of the polymerization system
In this section, we summarize some combinatorial properties of the polymerization subsystem.
Understanding the concentration profile of the polymer length distribution is useful for rationalizing
the overall behavior with respect to catalytic potential, because we can view the polymerizing
scaffold system as a mixture of multivalent scaffolds whose concentration is set by polymerization.
Since this is the simplest conceivable polymerization system, it would surprise us if anything being
said here isn’t already known in some form or another. Some of the features described can be found
in Flory (Flory, 1936).

Let Sn be a polymer of length n and let sn denote the equilibrium concentration of polymers in length
class n. To conform with our previous notation, we shall refer to the equilibrium concentration of
the monomer as s ≡ s1 and to the monomer species as S ≡ S1. As stated repeatedly,

sn = σ
n−1sn with s =

1
4σ

(√
4 +

1
σtS
−

√
1
σtS

)2

. (1.42)

Figure 1.11 shows the dependency of sn on the total protomer concentration tS (panels A and B)
and the affinity σ (panels C and D). Obviously, sn is a geometric progression, thus linear in a lin-log
plot for all parameter values (insets of panel A and C).

In the tS dimension, sn approaches 1/σ from below for each n and there is no value of tS that
maximizes sn. In the σ dimension, sn approaches 0 like 1/σ (in the lin-log plot, inset of panel C,
the straight lines become less tilted and sink toward 0); see also expansions (1.47) and (1.48) below.
However, for any given length class n, there is a σ that maximizes the concentration of that class:

σ =
n2 − 1

4tS
. (1.43)

At that σ, the respective sn is the most frequent, i.e. the most dominant, length class. It does not
mean that sn is at its most frequent, for sn rises to 1/σ as tS →∞. In the continuum description, the
most frequent polymer class is always the monomer, for any tS or σ. This is much more pronounced
in the tS dimension than the σ dimension.

Panels B and D of Figure 1.11 show the “mass” distribution, nsn, i.e. the concentration of protomers
in each length class. For all values of tS and σ, the mass exhibits a maximum at some class length.
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Figure 1.11: The dependence of the length distribution on the protomer concentration tS and the
affinity σ. A: The curves depict the length distribution si of the linear polymerization subsystem
with varying tS at σ = 108 M−1. Blue: tS = 2 ·10−7 M, orange: tS = 4 ·10−7 M, green: tS = 6 ·10−7

M, red: tS = 8 · 10−7 M, purple: tS = 1 · 10−6 M. The inset plots the same curves in lin-log. B: The
curves depict the concentrations of protomers in each length class, that is, the “mass” distribution
i si under the same conditions as in panel A. C: The curves depict the length distribution si with
varying polymerization affinity σ at tS = 6 · 10−8 M. Blue: σ = 106 M−1, orange: σ = 107 M−1,
green: σ = 108 M−1, red: σ = 109 M−1, purple: σ = 1010 M−1, brown: σ = 1011 M−1, light blue:
σ = 1012 M−1. D: As in panel B, but with varying affinity σ (as in panel C) at tS = 6 · 10−8. For
all panels α = β = 107 M−1, tA = 15 · 10−9 M and tB = 5 · 10−7 M.

This maximum wanders towards ever larger n with increasing tS and σ, while its value steadily
increases with tS, whereas it decreases with increasing σ. The length class n whose mass is
maximized at a given tS and σ is

nmax =

log
©­­«

4tSσ(√
1 + 4tSσ − 1

)2

ª®®¬

−1

, (1.44)

and, for given σ and n, the tS at which the class n becomes the most massive of all classes is given
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Figure 1.12: Concentrations within length classes. These panels are complementary to those
in Figure 1.11. Each curve tracks the concentration of a particular length class n as protomer
concentration tS and affinity σ are varied, effectively following the changes along a vertical cut
across the curves in Figure 1.11. Blue: n = 1, orange: n = 2, green: n = 3, red: n = 5, purple:
n = 10. All other parameters as in Figure 1.11. A: Concentration sn of length class n with varying
tS. B: Concentration nsn of the mass in length class n with varying tS. Panel C: Concentration sn
of length class n with varying σ. Panel D: Concentration nsn of the mass in length class n with
varying σ.

by

tS =
exp(1/n)

σ(1 − 2 exp(1/n) + exp(2/n)) . (1.45)

The pink squares on the blue multivalent scaffold curves in Figure 4B of the main text correspond
to the catalytic potential Q that obtains at this concentration of sites. The same expression obtains
for σ by swapping tS and σ. At the tS at which the mass in class n peaks, the concentration of the
class is

snmax =
1

eσ
, (1.46)

independent of nmax. Equation (1.44) assumes a continuous n; thus, to account for the discrete
nature of polymer length, the actual nmax should be the nearest integer to the nmax given in (1.44).
Accordingly, the actual value of snmax in expression (1.46) will wobble slightly.
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Switching perspective from the length distribution to the behavior within a length class yields
Figure 1.12. The expansion of sn shows how each length class approaches its limit as tS → ∞ or
σ →∞ (multiply by n for the mass distribution):

As tS →∞, sn →
1
σ

with
1
σ
− n
σ3/2

1
t1/2
S

+O
(

1
tS

)
(1.47)

As σ →∞, sn → 0 with
1
σ
− n

t1/2
S

1
σ3/2 +O

(
1
σ2

)
. (1.48)

1.7.4 Mixtures of multivalent scaffolds
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Figure 1.13: Mixtures of multivalent scaffolds. A: The graphics renders the Qmulti-surface of a
mixture of a bivalent and trivalent scaffold. The orange line is the Q-profile when both agents
are added in equal amounts to the mix. The dotted lines are projections of the orange line for
comparison with the homogeneous scaffold systems. B: Same as in panel A but for a mixture of S(2)
and S(30); only the portion of the surface at low scaffold concentrations is shown. The green curve
shows the Q-trajectory for the binary mixture that would obtain when [S(2)] and [S(30)] are set by the
polymerizing scaffold system with increasing tS. The green curve is the whole trajectory, because
both [S(2)] and [S(30)] converge to 1/σ = 10−8 M (Figure 1.12). Other parameters: α = β = 107

M−1, tA = 15 · 10−9 M, tB = 5 · 10−7 M.

Figure 1.13A shows the Qmix-surface (1.39) of a bivalent and trivalent scaffold mixture. The main
observation is the asymmetry in the effect on Q upon adding S(3) to a fixed amount of S(2) compared
to the other way around—blue versus red mesh lines in Figure 1.13. Upon adding S(3), the ligands
A and B re-equilibrate over the available binding sites. Over a range of [S(2)], this equilibration
is more likely to result in A and B agents ending up on the same S(3) scaffold than on the same
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S(2) scaffold. This is most pronounced at small [S(2)] and disappears gradually as the addition of
binding sites drives the system past the prozone peak due to the p2 term in (1.39). The orange
curve shows the Q-profile of a mixture in which S(3) and S(2) are increased in equal amounts. The
dotted curves are the projections of the mixture curve on each component axis for the purpose of
comparison with the Q-curves of each component in isolation. This behavior is more dramatic in
binary mixtures of multivalent scaffolds with large valency differences (Figure 1.13B).

In a polymerizing scaffold system, the concentrations si ≡ [S(i)] and s j ≡ [S( j)] do not increase in
equal amounts when tS is increased, but are related by a factor (σs)i− j . Since σs < 1 for tS < ∞,
there is a lag between the rise of S(i) and S( j), where S(i) increases before S( j) for i < j; this lag is
more dramatic the bigger the difference |i − j | (Figure 1.13B, green curve). In the polymerizing
system, as tS increases, the ratio of S(i) and S( j) will tend to 1, but by then the between-class prozone
is taking its toll. In sum, the “stealing” of ligands by higher length classes from lower ones is the
reason for the turn towards a steeper slope of Qpoly at tS values at which polymerization becomes
effective (Figure 4A in the main text). Incidentally, the shift of ligands from lower towards higher
valency classes also tends to flatten the intrinsic slope of the downward leg of lower valency classes
after the prozone peak, contributing further to prozone mitigation in the overall system.

1.7.5 Comparison between polymerizing and multivalent scaffold systems
In the main text, Figure 4A and 4B, we compare multivalent scaffolds with the polymerizing
scaffold system. Figure 1.14 places that comparison in the context of the full Qpoly surface to show
the effectiveness of regulating the affinity σ.

While even for nA = nB = n and α = β, Qmulti is a cumbersome expression, determining the
concentration of scaffold agents tS for which dQmulti/dtS = 0 yields a simple solution

tS =
1
n

(
1
α
+

tA + tB

2

)
. (1.49)

Equation (1.49) shows that when plotting Qmulti against the concentration of sites tsit = ntS, as in
Figure 1.14 and Figure 4A of the main text, the prozone peaks line up for all valencies n.

Expanding Qmulti (assuming nA = nB = n) in tS near zero, yields

Qmulti =
αtAβtB

1 + αtA + βtB + αβtAtB
n2tS +O(t2

S). (1.50)

Hence in a log-log plot, the up-leg of Qmulti(n) has, to leading order, slope 1 and offset n when
plotted against sites tsit = ntS as in Figure 4A of the main text. Similarly, expanding Qmulti in tS

near infinity, yields

Qmulti = tAtB
1
tS
+O(1/t2

S), (1.51)
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Figure 1.14: Polymerizing scaffold and multivalent scaffolds. The surface shows Qpoly as function
of tS and σ, giving more context to Figure 4B in the main text. The emphasized mesh line (red) at
σ = 108 corresponds to the Q-function of the polymerizing scaffold system shown in Figure 4B of
the main text. α = β = 107 M−1, tA = 15 · 10−9 M, tB = 5 · 10−7 M.

and hence, to leading order, a slope of −1 in a log-log plot in the down-leg after the prozone peak
and an offset of n when plotted against tsit as in Figure 4A of the main text.

The expansion of Qpoly in tS (= tsit) around zero yields

Qpoly =
αtAβtB

1 + αtA + βtB + αβtAtB
tS + [ f (α, β, tA, tB) + g(α, β, tA, tB)σ] t2

S +O(t3
S) (1.52)

with f () and g() functions of the indicated parameters. The leading-order term is the same as
the Qmulti of the monovalent scaffold, and is independent of σ, which enters the second-order
term. Accordingly, for small tS, Qpoly hugs the Q of the monovalent scaffold as if there was no
polymerization; as tS increases, σ (i.e. polymerization) becomes effective and Qpoly doubles its
slope upward. This is clearly seen in Figure 4A of the main text. Some microscopic consequences
from building up a length distribution as tS increases are discussed in section 1.7.4.

Expanding Qpoly in tS at infinity yields

Qpoly = 2tAtB
√
σ

√
1
tS
+O(1/t3/2

S ), (1.53)

where the p(tS, tA, α)p(tS, tB, β) component scales with tAtB/t2
S and the Qmax component with

2t3/2
S
√
σ to leading order. As a result, the slope of the down-leg of Qpoly after the prozone

peak in a log-log plot is −1/2.



43

1

horizon of 1

horizon of 3

3 4 5

horizon of 4

horizon of 5

62

B
s

A
s

S yx S yx S yx S yx S yx S yx

a

b

a

b

a

b

a

b

a

b

a

b

B
s

B
s

A
s

A
s

A
s

1 3 4 5 62
S yx S yx S yx S yx S yx S yx

a

b

a

b

a

b

a

b

a

b

a

b

b-sites within the 2-horizon 
of the a-site at position #4

BA

Figure 1.15: Interaction horizon. The schematic illustrates the case in which the horizon h is
less than the polymer length n. In this case, each A-binding position can interact with at most h
B-binding positions on its “left” or “right” side. When h ≥ n, every A-position can interact with
every B-position.

1.7.6 Interaction horizon

Structural constraints might prevent every catalyst A on a polymeric scaffold from interacting with
all substrates B bound to the same polymer. To obtain a rough sense of how such constraints could
impact the catalytic potential Q, we define an “interaction horizon,” h, Figure 1.15. The horizon h

is the farthest distance in terms of scaffold bonds that a bound A can “reach.” This means that a
given bound enzyme A can interact with at most 2h + 1 substrate agents B: h to its “left,” h to its
“right” and the one bound to the same protomer, Figure 1.15A. For example, in Figure 1.15B, the
2-horizon of the A at position 1 includes the Bs at positions 2 and 3, but not at position 5. Likewise,
the B at position 2 is outside the 2-horizon of the A at position 5, whereas all Bs are within reach of
the A at position 3. Clearly, the interaction horizon only modulates the Qmax in equation (1.40) of a
polymer of length n; more precisely, it modulates the interaction factor—the n2 in the first equation
of (1.41). We now write this factor as qmax(n, h); it replaces the n2 in (1.41).

To reason about the catalytic combinations, we first consider the case 0 ≤ h ≤ bn/2c:

qmax(n, h) = (n − 2h)(2h + 1)︸               ︷︷               ︸
I

+ 2h(h + 1)︸     ︷︷     ︸
II

+ 2
h−1∑
k=1
(h − k)︸        ︷︷        ︸
III

= n(2h + 1) − h(h + 1). (1.54)

Term I refers to the n − 2h positions in the middle region of the chain that can interact with the
full complement of 2h + 1 sites within its horizon. Term II refers to the h positions at each end
of the chain and accounts for all h + 1 sites reachable towards the interior of the chain. Term III
accounts for the remaining h − k locations towards the end of the chain that can be reached from a
position considered in term II; these locations depend on that position’s distance k from the end of
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the chain. For bn/2c < h ≤ n − 1, we obtain

qmax(n, h) = (2h − n)n︸     ︷︷     ︸
I’

+ 2(n − h)(h + 1)︸             ︷︷             ︸
II’

+ 2
n−h∑
k=1
(k − 1)︸        ︷︷        ︸
III’

= n(2h + 1) − h(h + 1). (1.55)

In analogy to (1.54), Term I’ refers to the 2h − n positions that can access the whole chain; term II’
accounts for the h + 1 locations spanned by the inward-facing side of the remaining n− h positions
at each end of the chain. Finally, term III’ accounts for the locations covered by the outward facing
side of these n − h positions.

If the horizon h is larger than the polymer length n, then every A-position can interact with every
B-position on the polymeric scaffold and qmax(n, h) = n2. Merging this with (1.54) and (1.55)
yields

qmax(n, h) =
{

n(2h + 1) − h(h + 1), for 0 ≤ h ≤ n − 1
n2, for h ≥ n (1.56)

which appears in the main text. The corner cases are covered correctly: qmax(n, 0) = n and
qmax(n, n − 1) = n2. (Note that h = n yields the same result as h = n − 1, which is useful below.)

We use (1.56) to calculate two scenarios. In scenario 1, h is a simple linear function of the length
n: h = ξn with 0 ≤ ξ ≤ 1. In other words, every A can monitor the same fraction ξ of B-binding
sites on a polymer of any size. This seems rather unrealistic (and makes h a continuous variable,
although that appears to work just fine). However, scenario 1 may serve as a comparison with the
subsequent, more realistic scenario 2.

When h = ξn, h is always less or equal than n and the first case of (1.56) applies. Using qmax(n, h)
with h = ξn instead of n2 in the first equation of (1.41) yields

Qmax(ξ) =
∞∑

n=1
[n(2h + 1) − h(h + 1)]σn−1sn =

∞∑
n=1
[n(2ξn + 1) − ξn(ξn + 1)]σn−1sn

=
1
σ

[
ξ(2 − ξ)

∞∑
n=1

n2σnsn + (1 − ξ)
∞∑

n=1
nσnsn

]
= ξ(2 − ξ) s(1 + σs)

(1 − σs)3
+ (1 − ξ) s

(1 − σs)2
,

(1.57)

which leads to

Q = p(tS, tA, α)p(tS, tB, β)
(
ξ(2 − ξ) s(1 + σs)

(1 − σs)3
+ (1 − ξ) s

(1 − σs)2

)
. (1.58)
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For ξ = 1, the expression (1.58) becomes (1.41), as a horizon that equals the length of any polymer
does not affect Qmax . For ξ = 0, we get

Q = p(tS, tA, α)p(tS, tB, β)
s

(1 − σs)2
= p(tS, tA, α)p(tS, tB, β)tS, (1.59)

because of tS = s dW/ds for the polymer-only system. Thus, for ξ = 0, we recover the Q of the
simple monovalent scaffold, since in this case the organization of protomers into polymers does not
affect catalytic potential. Scenario 1 is shown in Figure 1.16, panels A and B.

In scenario 2, h = const for all lengths n, which means a “hard” horizon independent of polymer
size. This scenario is more realistic. Qmax(h) becomes

Qmax(h) =
∞∑

n=1
qmax(n, h)σn−1sn =

h∑
n=1

n2σn−1sn +

∞∑
n=h+1

[n(2h + 1) − h(h + 1)]σn−1sn

=
1
σ

{
h∑

n=1
n2(σs)n + (2h + 1)

∞∑
n=h+1

n(σs)n − h(h + 1)
∞∑

n=h+1
(σs)n

}

=
1
σ

{
σs(1 + σs) − (σs)h+1[(h + 1)2 − (2h2 + 2h − 1)σs + h2(σs)2]

(1 − σs)3

+ (2h + 1) (σs)h+1(h + 1 − hσs)
(1 − σs)2

− h(h + 1) (σs)h+1

1 − σs

}
=

s
(
1 + σs − 2(σs)h+1)
(1 − σs)3

, (1.60)

yielding

Q = p(tS, tA, α)p(tS, tB, β)
s
(
1 + σs − 2(σs)h+1)
(1 − σs)3

, (1.61)

which is equation (6) of the main text. Expression (1.61) becomes (1.59) for h = 0, as we would
expect. As h increases, (1.61) quickly converges to the infinite horizon case (1.41), since σs < 1
raised to the power of h becomes negligible. Scenario 2 is shown in Figure 1.16, panels B and D.
As suggested in Figure 1.17, even restrictive structural constraints (small h) make only a relatively
modest dent in the catalytic potential of the polymerizing scaffold when compared to that of the
plain Michaelis-Menten scenario.
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Figure 1.16: Interaction horizon scenarios. A: qmax(n, h), equation (1.56), for scenario 1 when
h = ξn (0 ≤ ξ ≤ 1). B: qmax(n, h), equation (1.56), for scenario 2 when h is a constant independent
of n. The difference to panel A is that the surface of scenario 2, once h exceeds n, is a quadratic
extension of the surface of scenario 1 in panel A at ξ = 1. C: The Q-surface (1.58) for scenario 1
as a function of substrate concentration tB. D: The Q-surface (1.61) for scenario 2 as a function of
substrate concentration tB. In Figure 1.17, this surface is compared against the Michaelis-Menten
case. The parameter values in C and D are: α = β = 107 M and σ = 108 M, tA = 15 · 10−9 M, and
tS = 60 · 10−9 M.

1.7.7 The discrete case
While we strive for a reasonably self-contained exposition, some details are only asserted for brevity
and are developed in a forthcoming manuscript providing a more general treatment of equilibrium
assembly.

In the following, we use the same symbols for the binding affinities α, β, and σ as in the continuum
case, but they must now be understood as “stochastic affinities.” Specifically, if γ′ is a binding
affinity in the continuum case, the stochastic affinity γ (in units of molecules−1) is related as
γ = γ′/(AV), where V is the effective volume hosting the system and A is Avogadro’s constant.
Thus a polymerization affinity of 3 molecules−1 in the discrete case corresponds to about 1.8 · 1012

M−1 in a cell volume of 10−12 L in the continuum setting.
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Figure 1.17: The impact of the interaction horizon. The Q-surface (1.61) with hard horizon h,
gray, and the plain dimerization (Michaelis-Menten) surface, orange, for the parameter settings
corresponding to Figure 3A in the main text (α = β = 107 M−1 and σ = 108 M−1, tA = 15 · 10−9

M, tS = 60 · 10−9 M). At tS = 60 nM (the curve with the red dot in Figure 3A of the main text) a
horizon h = 2 is already sufficient to achieve a higher catalytic potential than the direct binding of
enzyme to substrate. This suggests that structural constraints forcing a small interaction horizon
might not undermine the efficacy of a polymerizing scaffold.

Average catalytic potential

Our objective is to calculate the average catalytic potential 〈Q〉 of a scaffold mixture, defined as

〈Q〉 =
min(tA,n)∑

i=0

min(tB,n)∑
j=0

i j 〈Si j〉, (1.62)

where Si j is any scaffold (polymer or multivalent) with n A-binding sites, of which i are occupied,
and n B-binding sites, of which j are occupied. More precisely, Si j is the set of all configurations,
or molecular species, with i and j agents of type A and B bound, respectively. 〈Si j〉 is the average
or expected total number of such configurations in an equilibrium system with resource vector
®t = (tA, tB, tS)′ ∈ N3

0. The
′ means a transpose. (tS is typically the number of scaffolds of a given

valency n or the number of protomers in a polymerizing system. When considering mixtures of
scaffolds of different valencies i, tS is generalized accordingly.)

This raises the need to compute 〈Si j〉, which requires a little detour. We start by defining a few
well-known quantities.

Assume a system of molecular interactions with a set of atomic building blocks, or atoms for
short, {X1, . . . , XT } (in the main text typically T = 3, namely A, B, and S) that give rise to a set
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of configurations {Y1, . . . ,YC}. Since we are interested in equilibrium, the precise nature of the
interactions is irrelevant as long as the resulting systems have the same set of reachable molecular
species. The assembly scenarios considered in the main text only require binding and unbinding
interactions.

Boltzmann factor of a molecular species

Each molecular species Yi has a Boltzmann factor given by

εi =
∏

r

γr, (1.63)

where γr = exp(−∆G0
r

kT ) is the binding constant of the r-th reaction and the product runs over a series
of reactions r that constitute an assembly path from atomic components (A, B, and S). Note that, in
the discrete case, εi is not divided by the number of symmetries ωi as in the continuum case (main
text leading up to Eq. [1]). The effect of symmetries is accounted for in the state degeneracy, Eq.
(1.65) below, which considers all instances of Yi in a given state. As a consequence, −kT log εi is
not the free energy of formation, but just the internal energy due to bond formation.

Boltzmann factor of a state

By extension, the Boltzmann factor of a system state ®n = (n1, n2, . . . , nC)′, where ni is the number
of particles of species Yi, is given by

ε(®n) =
C∏

i=1
(εi)ni . (1.64)

More precisely, (1.64) is the Boltzmann factor associated with a particular realization of the state
®n, as all atoms are labelled (distinguishable).

Degeneracy of a state

A state ®n is the specification of a multiset of species in which atom labels are ignored. The
degeneracy d(®t, ®n) of a state ®n with resource vector ®t = (t1, . . . , tT ) is the number of distinct ways
of realizing it by taking into account atom labels. Let µi, j denote the number of atoms of type
X j contained in one instance of Yi. For a given resource vector ®t the set Σ(®t) of states ®n that are
compatible with it satisfy t j =

∑C
i=1 µi, jni for every atom type X j . Hence, the degeneracy of a state

®n ∈ Σ(®t) is given by

d(®t, ®n) =

T∏
i=1

ti!

C∏
i=1

ni!
C∏

i=1
(ωi)ni

. (1.65)
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The numerator counts all permutations of the atoms that constitute the system, the first product in
the denominator corrects for all orderings among the ni copies of species Yi and the second product
corrects for all symmetries associated with Yi.

The partition function for a given resource vector

As usual,

Z(®t) =
∑
®n∈Σ(®t)

d(®t, ®n)ε(®n), (1.66)

where the sum runs over all admissible states given resource vector ®t. The equilibrium probability
of a state ®n is given by

p(®t, ®n) = d(®t, ®n)ε(®n)
Z(®t)

. (1.67)

The average number of instances of a specific configuration in equilibrium

For a given resource vector ®t a species Yi occurs in various numbers ni across the states ®n in the
admissible set Σ(®t). The average abundance of Yi, 〈ni〉 then is

〈ni〉 =
∑
®n∈Σ(®t)

ni p(®t, ®n) =
1

Z(®t)

∑
®n∈Σ(®t)

nid(®t, ®n)ε(®n). (1.68)

The workhorse for the discrete treatment of the scaffolding systems discussed in the main text is
the following Theorem.

Theorem:
The average equilibrium abundance 〈ni〉 of species Yi in an assembly system with resource vector ®t
is given by

〈ni〉 = %(®t,Yi)εi
Z(®t − ®µi)

Z(®t)
, (1.69)

where ®µi = (µi,1, . . . , µi,T )′ is the atomic content vector of speciesYi; %(®t,Yi) is the number of distinct
realizations of a single instance of Yi given resources ®t; and Z(®t − ®µi) is the partition function of
a system in which the atomic resources have been decreased by the amount needed to build one
instance of Yi.

It is immediate from (1.65) that

%(®t,Yi) = d(®t, ®Yi) =

T∏
j=1

t j!

T∏
j=1
(t j − µi, j)!ωi

, (1.70)



50

where ®Yi denotes a unit vector in theYi direction. We provide a proof of the theorem using generating
functions elsewhere. However, to see why the claim holds, we reason as follows. The subset of
Σ(®t) in which we restrict ourselves to states ®n that contain at least one copy of Yi stands in a 1-1
correspondence to the unrestricted state space Σ(®t − ®µi), because any realization of Yi in Σ(®t) occurs
in all possible contexts and these contexts are precisely the states of Σ(®t − ®µi). The question then is
how the degeneracy and the energy content of a state ®n ∈ Σ(®t − ®µi) change by adding ®µi atoms to
realize one instance of Yi. The degeneracy of state ®n ∈ Σ(®t − ®µi) is amplified (multiplied) by %(®t,Yi)
realizations of Yi, but one instance of Yi is added to those the state already had and so we also need
to divide by ni + 1 to compensate for indistinguishable permutations within the instances of Yi, see
(1.65). Thus, d(®t, ®n + ®Yi) = (%(®t,Yi)/(ni + 1))d(®t − ®µi, ®n) and the Theorem follows as summarized
symbolically:

1
Z(®t)

∑
®n∈Σ(®t)
ni≥1

nid(®t, ®n)ε(®n) =
1

Z(®t)

∑
®n∈Σ(®t− ®µi)

(ni + 1) %(
®t,Yi)

ni + 1
d(®t − ®µi, ®n)εiε(®n) = %(®t,Yi)εi

Z(®t − ®µi)
Z(®t)

.

(1.71)

It remains to compute the partition function of the assembly systems discussed in the main text,
which is not too difficult and provided in the subsequent section 1.7.8.

1.7.8 Partition functions and average catalytic potential
Polymerizing scaffold without ligands

Let a state contain i bonds (not necessarily in the same polymer). Any such state has a Boltzmann
factor σi, where σ is the binding affinity between two scaffold protomers. We count the number
of ways to realize i bonds as follows. Line up the tS (labelled) protomers and observe that there
are tS − 1 slots between protomers where a bond could be inserted. Thus there are

(tS−1
i

)
ways of

inserting i bonds and the insertion of i bonds always creates tS − i molecules. For each choice
of i slots there are tS! permutations of the protomers. Since the order in which a choice of bond
locations creates the tS− i molecules is irrelevant, we must reduce the label permutations by (tS− i)!
object permutations to obtain the degeneracy di of a state with i bonds. The partition function is
therefore

Zpoly
tS =

tS−1∑
i=0

σi
(
tS − 1

i

)
tS!
(tS − i)! . (1.72)

The number of possible realizations of a single polymer sn of length n is tS!/(tS − n)!, which yields
with (1.69) for the average number of polymers of length n, 〈sn〉:

〈sn〉 =
tS!

(tS − n)!σ
n−1 Zpoly

tS−n

Zpoly
tS

. (1.73)
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Figure 1.18 compares the length distributions of equivalent continuum and discrete polymerization
systems.
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Figure 1.18: Length distribution in continuum and discrete polymerization. A continuum and
discrete polymerization system are set up with equivalent parameters assuming a base volume
V = 10−15 L (the order of magnitude of a bacterial cell). Their length distributions are compared
for three volumes: V1 = 0.05V , V2 = 0.02V , V3 = 0.01V . A change in volume means a change in
affinity for the discrete system and a change in protomer concentration for the continuum system,
i.e. tS = 100 protomers or tS = 100/(AVi) M; discrete affinity σs = 108/(AVi) molecules−1 or
continuum affinity σd = 108 M−1. The green curves are associated with the continuum system
(equation 1.42 and the red ones with the discrete case (equation 1.73. Associated volumes are as
indicated in the graph. Since the curves cross, the maximer is also marked with the corresponding
volume. The continuum distribution is cut off at 150.

Average catalytic potential of the polymerizing scaffold with ligands

Because of binding independence, the partition function of this system is the product of three
partition functions: Zpoly

tS Zdimer
tS,tA Zdimer

tS,tB , with Zdimer
tS,tX the partition function of a system in which S-

agents and X-agents can dimerize with affinity γ. Zdimer
tS,tX is simple to obtain: choose i agents of

type A, i agents of type S, and pair them:

Zdimer
tS,tX =

min(tS,tX )∑
i=0

γi
(
tS

i

) (
tX

i

)
i!. (1.74)
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Putting this together yields the partition function for resource vector ®t = (tA, tB, tS)

Z(®t) =
[

tS−1∑
k=0

σk
(
tS − 1

k

)
tS!

(tS − k)!

] [min(tS,tA)∑
i=0

αi
(
tA

i

) (
tS

i

)
i!

] 
min(tS,tB)∑

j=0
β j

(
tB

j

) (
tS

j

)
j!


= Zpoly
tS Zdimer

tS,tA Zdimer
tS,tB . (1.75)

The total number of realizations, %(®t, {AiSl B j}) of polymers of length l with i A-agents and j

B-agents attached, and thus each with Boltzmann factor σl−1αiβ j , is given by

%(®t, {AiSl B j}) =
tS!

(tS − l)!

(
l
i

) (
tA

i

)
i!

(
l
j

) (
tB

j

)
j! =

(
l
i

) (
l
j

)
tS!

(tS − l)!
tA!
(tA − i)!

tB!
(tB − i)!

=

(
l
i

) (
l
j

) ®t!
(®t − ®v)!

(1.76)

where ®v = (i, j, l) is the composition vector of the configuration and we define for brevity the
factorial of a vector as the product of the factorials of its components. Putting all this together
yields the average catalytic potential 〈Q〉

〈Qpoly〉 =
tS∑

l=1

min{l,tA}∑
i=0

min{l,tB}∑
j=0

i j︸︷︷︸
# of

interactions

(
l
i

) (
l
j

) ®t!
(®t − ®v)!︸            ︷︷            ︸

total realizations of
configurations with ®v

σl−1αiβ j Z(®t − ®v)
Z(®t)

︸                                       ︷︷                                       ︸
average total counts

. (1.77)

Average catalytic potential of the multivalent scaffold with ligands

The case of a multivalent scaffold with m binding sites for A and n binding sites for B follows the
lines of section 1.7.8. For each type of binding sites, one can formulate a partition function in full
analogy to Zdimer

tS,tX , but with m tS (or n tS) sites available to bind i agents of type A (or j agents of
type B) to yield a state with Boltzmann factor αiβ j . Thus, the partition function for a multivalent
scaffold system is

Zmulti
tA,tB,tS =

min(m tS,tA)∑
i=0

min(n tS,tB)∑
j=0

αi β j
(
tA

i

) (
m tS

i

)
i!
(
tB

j

) (
n tS

j

)
j! (1.78)

The average number of scaffolds loaded with i ligands of type A and j ligands of type B in a
particular configuration then becomes

〈ni j〉 =
tA!
(tA − i)!

tB!
(tB − j) tS α

i β j
Zmulti

tA−i,tB− j,tS−1

Zmulti
tA,tB,tS

. (1.79)
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Finally, for the average catalytic potential we have

〈Qmulti〉 =
min(tA,m)∑

i=0

min(tB,n)∑
j=0

i j
(
m
i

) (
n
j

)
〈ni j〉. (1.80)

1.7.9 Remarks on numerical evaluation
While expressions (1.77) and (1.80) are explicit, their use with large particle numbers—tS, tA and

tB—is limited by numerical instabilities (even after efficiency rearrangements). In a separate paper,
we connect assembly systems with the theory of analytic combinatorics (Flajolet and Sedgewick,
2009), which provides direct approximations based on viewing generating functions as analytic
functions over the complex numbers. In our hands, these approximations are not accurate enough
over the entire parameter range for the present context. Our figures were therefore generated using
the exact expressions (1.77) and (1.80), using arbitrary-precision calculations (to 100 significant
digits) in Mathematica (Wolfram Research Inc., 2019), and employing relatively modest particle
numbers to keep computation times reasonable.

1.7.10 The maximer probability and 1D percolation
The probability of observing the longest possible polymer, given protomer resources, is obtained
from (1.73) by setting n = tS:

〈smax〉 =
tS!σtS−1

Zpoly
tS

. (1.81)

This probability is graphed as a function of tS and σ in Figure 5A of the main text.

There is an analogy between 1Dbond percolation and polymerization at our level of abstraction. The
analogy is an exact correspondence in the case of continuum polymerization and bond percolation
on an infinite 1D lattice.

A basic quantity in 1D percolation is the mean number of chains (clusters) of size n normalized
per lattice site, which is given by pn−1(1 − p)2, where p is the probability of a bond between
adjacent lattice sites and functions as a parameter. The same expression obtains in terms of the
concentration of polymers of length n normalized per protomer (Flory, 1936; Reynolds, Stanley,
and Klein, 1977):

sn

tS
= pn−1(1 − p)2. (1.82)

In the context of polymers, the bond probability is not the primary parameter, but a function of the
basic parameters tS and σ. Following Flory (Flory, 1936), we can express p as

p =
tS −W

tS
= 1 − 1

tS

s
1 − σs

, (1.83)
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with W the concentration of all polymers as defined in (1.14) for a = b = 0 and given more
compactly by (1.21). The first equality defines p in terms of the difference between the maximal
possible concentration of objects in the system (tS) and the actual concentration of objects; this
difference is the concentration of bonds. Using (1.42) for s yields

p = 1 − 2
1 +
√

1 + 4σtS
. (1.84)

Together, expressions (1.82) and (1.84) are equivalent to (1.42) and connect simple polymerization
to percolation. As well-known, in the infinite/continuum case, percolation can only occur at p = 1,
which is to say in the limit of tS →∞ or σ →∞.

0.0

0.2

0.4

0.6

0.8

1.0

0.90 0.92 0.94 0.96 0.98 1.0
bond probability

m
ax

im
er

 p
ro

ba
bi

lity

A

0.0

0.2

0.4

0.6

0.8

1.0

0.90 0.92 0.94 0.96 0.98 1.0
bond probability

1D
 p

er
co

lat
ion

 p
ro

ba
bi

lity

B

Figure 1.19: Finite size 1D bond percolation and polymerization. A: This panel is panel B of
Figure 5 in the main text. It depicts the probability of the maximer (1.81) as a function of pbond
as given by (1.85). Each curve represents a particular tS-value for which σ sweeps from 1 to 1000
molecules −1. tS ranges from 10 (topmost curve) to 100 (lowest curve) in increments of 10. B: The
plot depicts the 1D bond percolation probability (1.86) as a function of the same bond probabilities
used in panel A. The comparison serves to illustrate the difference between 1D bond percolation
and polymerization while also emphasizing the analogy. On the other hand, bond percolation on an
infinite 1D lattice is equivalent to polymerization described in terms of continuous concentrations.

The analogy persists, but the exact correspondence breaks down in the finite, i.e. discrete, case.
The percolation probability in the polymerization case is 〈smax〉 as given by (1.81). The bond
probability, pbond, is the expected fraction of bonds and can be computed following the arguments
that led to (1.72). We obtain

pbond =
1

tS − 1

tS−1∑
i=1

iσi
(
tS − 1

i

)
tS!
(tS − i)!

Zpoly
tS

. (1.85)
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In 1D bond percolation, the percolation probability is

pperc = 1 − (1 − p)2
tS−2∑
i=0

ipi−1 = ptS−2(tS − p(tS − 2) − 1), (1.86)

with tS the size of the lattice and p the bond probability.

In Figure 5B of the main text, we sweep across a range for tS and σ. For each (tS, σ) pair, we
calculate the corresponding pbond via (1.85) as the abscissa and 〈smax〉 via (1.81) as the ordinate.
This graph is reproduced as Figure 1.19B for comparison with finite-size bond percolation, Figure
1.19A. Clearly in (1.86) p is just a parameter, but in Figure 1.19A, we compute it via (1.85) using
the same sweep over tS and σ as for Figure 1.19B to make comparison meaningful. The view from
percolation is useful because it packages the dependency on tS and σ into the single quantity p (or
pbond).

1.7.11 Scaling behavior
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Figure 1.20: Scaling behavior of the maximer distribution. The panels illustrate the approximate
scaling behavior of 〈smax〉 from different perspectives implied by (1.88). In all three panels, the
ordinate is the maximer probability as given by (1.81). A: The graph exemplifies the relation (1.88)
by plotting three curves, blue: 〈smax〉[10, 0.1σ], red: 〈smax〉[100, σ], and green: 〈smax〉[1000, 10σ]
as a function of the affinity σ. The blue and green graphs are related to the (arbitrary) red
baseline graph by scale factors ξ = 0.1 and ξ = 10, respectively. The red and blue graphs sit
on top of each other, while green has a slight (and slightly σ-dependent) shift to the left. B:
This panel illustrates the scaling version (1.89), comparing red: 〈smax〉[1000, r 1000] with green:
〈smax〉[10, r 10], sweeping along r . C: The graph in this panel shows an integer sweep of the scale
factor ξ, as per (1.88), for two pairs, [tS, σ] = [10, 5] (red), [tS, σ] = [10, 6] (blue). The scaling
relation is well fulfilled except for very small particle numbers.
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We refine the notation for the maximer probability (1.81) to emphasize the dependence on the
parameters tS and σ,

〈smax〉[tS, σ] ≡ 〈smax〉, (1.87)

in order to note an approximate scaling relation that we observe numerically:

〈smax〉[tS, σ] ≈ 〈smax〉[ξtS, ξσ], (1.88)

with ξ > 0 a dimensionless scale factor. Two systems are approximately equivalent if their protomer
numbers and affinities are related by the same scale factor: t(1)S = ξt(2)S and σ(1) = ξσ(2). This
implies that t(1)S /t

(2)
S = σ(1)/σ(2) or r = σ(1)/t(1)S = σ(2)/t(2)S . The latter says that two systems

behave approximately the same if the ratio r of their respective affinity to protomer number is the
same, which yields another way of expressing the scaling observation as

〈smax〉[t(1)S , r t(1)S ] ≈ 〈smax〉[t(2)S , r t(2)S ]. (1.89)

These relations are depicted in Figure 1.20.

1.7.12 Unequal ligand concentrations and ligand binding affinities
Polymerizing scaffold system

As in Figure 6 of the main text, Figure 1.21A evidences the σ-dependence of the initial slope in
the discrete system and illustrates the effect of ligand imbalance: Once the scarcer ligand, here
A, is mostly bound up and the number of scaffold protomers increases further, A-ligands must
spread across an increasingly wider range of length classes, thereby reducing the likelihood of
multiple occupancy on the same polymer. As a result, although the binding opportunities for the
more abundant ligand, here B, increase (up to the overall prozone peak), B-particles bound to a
particular polymer are less likely to encounter any As bound to it. The result is a slope reduction
compared to a situation in which both ligands are present in equal numbers. A substantive difference
between ligand binding constants causes not only a slope reduction prior to the prozone but has,
in particular, the effect of delaying the prozone peak considerably beyond what one would expect
based on particle numbers alone. It is worth noting that in the Wnt signaling cascade, ligand
affinities——enzyme-scaffold, i.e. GSK3β–Axin, and substrate-scaffold, i.e. β-catenin–Axin—are
regulated by the signaling process (Luo et al., 2007; Willert, Shibamoto, and Nusse, 1999).

In the continuum case, unlike the discrete case, the initial slope is independent of the polymerization
constant σ until a level of protomer abundance is reached sufficient for making polymerization
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Figure 1.21: Effects in discrete and continuum polymerizing scaffold systems. A: The panel
illustrates the effects of the polymerization constant σ, of ligand imbalance, and of unequal ligand
affinities on discrete polymerization. Red, ligand imbalance: tA = 20, tB = 80, α = β = 0.9
molecules−1, σ = 0.01 (lower), σ = 0.1 (middle), σ = 1 (upper). Green, unequal ligand affinities:
tA = tB = 20, α = 0.01, β = 1 molecules−1, σ = 1 molecules −1. tS on the abscissa. B: This panel
illustrates the effects of ligand imbalance and of unequal ligand binding constants on continuum
polymerization. Blue, unequal binding constants: α = 102 M−1, β = 109 M−1, tA = tB = 10−7 M,
σ = 108 M−1. Green, ligand imbalance: tA = 10−8 M, tB = 10−4 M, α = β = 107 M−1, σ = 108

M−1.

effective, as discussed in section 1.7.5 (equation 1.52). The inflection point at which the slope
changes from 1 to 2 (in a log-log plot) will shift accordingly. After that slope change, the responses
to ligand imbalance and to differences between ligand binding constants are analogous to the
discrete case, as seen in Figure 1.21B.

Neither ligand imbalance or differences in binding constants appear to affect the downward slope
at large tS in the continuum or the discrete case.

Multivalent scaffold system

The responses to ligand and affinity imbalances in a multivalent scaffold system follow similar lines
as in the polymerizing case. When both ligand types are present with the same number of particles,
the ligand with higher affinity experiences the prozone later, since the amount of scaffold-bound
ligand is higher compared to the other type. This is seen in Figure 1.22B with the steepening
of the downward slope associated with the stronger binding ligand. The situation with ligand
imbalance is analogous. The ligand with higher abundance keeps binding while the scarcer ligand
is undergoing its prozone; thus the subdued effect on catalytic potential, which, in the example of
Figure 1.22C is mainly holding a constant level until the prozone for the more abundant ligand
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Figure 1.22: Catalytic potential of multivalent scaffolds (discrete case). A: 〈Qmulti〉, equation
(1.80), when particle numbers and binding affinities are the same for both ligand types: A and B
are 100 particles each, binding affinities are 0.9 molecules−1. Valencies: 1 (blue), 2 (orange), 3
(green), 4 (red). The abscissa shows the total number of sites, but 〈Qmulti〉 is calculated for site
increments that reflect the valency of each scaffold. B: Like panel A, but unequal ligand binding
affinities: α = 0.01 and β = 9 molecules−1. C: Like panel A, but unequal numbers of ligand
particles: A = 30 and B = 300, binding affinities for both are 0.9 molecules−1. Colors indicate
valencies as in panel A.
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Figure 1.23: Catalytic potential of multivalent scaffolds (continuum case). A: The panel provides
an example for the effect of unequal ligand binding affinity. tA = tB = 10−7 M, α = 102 M−1,
β = 109 M−1, valencies: 1, 2, 3, 4. B: The panel illustrates the effect of ligand concentration
imbalance. tA = 10−8 M, tB = 10−3 M, α = β = 107 M−1, valencies: 1, 2, 3, 4.

sets in. Although affinity and number imbalance mimic each other, the affinity imbalance exhibits
a much less pronounced plateau around the prozone peak and consequently the drop-off is less
sharp than in the case of number imbalance. Extremely high affinity differences would be required
to generate a plateau similar to number imbalance. This is seen in the continuum case, shown in
Figure 1.23A, where affinities differ by 7 orders of magnitude. The concentration imbalance in the
continuum case yields a similar picture as in the discrete case (Figure 1.23B).
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1.7.13 Stochastic simulations
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Figure 1.24: Stochastic simulations. For all stochastic simulations, we used a volume on the order of
a human erithrocyte,V = 10−12 L. All summary statistics were computed with 500 samples, each an
independent and equilibrated state. A: The solid curves in this panel are identical to those in Figure
3A of the main text. Stochastic simulations were performed by converting deterministic affinities
into stochastic affinities as described in the main text (section “The discrete case in equilibrium”)
and by converting concentrations into particle numbers at the given volumeV . Averages of catalytic
potnetial are indicated by filled squares. Green: polymerizing system at various protomer numbers,
descending from top: 36120 molecules (60 nM), 27090 molecules (45 nM), 18060 molecules
(30 nM), 9030 molecules (15 nM). Orange: reference Michaelian system with 60200 (100nM)
enzymes. Because of the large numbers of particles, the standard deviation is smaller than the
squares at the chosen scale. This panel is meant as a sanity check that simulations at large particle
numbers indeed reproduce the continuum picture as we derived it analytically. B: The curves in this
panel are identical to those in Figure 6A of the main text and refer to discrete scaffolding systems.
Stochastic simulations were performed using the same parameters listed in that Figure. The squares
mark the average catalytic potential, which coincides with the theoretical calculations; the error
bars mark one standard deviation. In the polymerizing scaffold case, the simulation allowed us to
extend the range of the rather time-consuming calculations using the analytical expression 1.77.
Note the log-log scale of the axes distorting the error bars; for a linear-log scale see Figure 1.25.
Green: multivalent scaffolds of valencies n = 10 (upper), n = 5 (middle), and n = 1 (lower).
Orange: polymerizing scaffold system with polymerization affinities σ = 10 (upper) and σ = 0.01
(lower). Red: polymerizing scaffold system at the same affinity as the lower orange curve, but with
twice the number of ligand particles. C: The curves are identical to those in Figure 1.20B. As in
that Figure, r is the ratio of affinity to the number of protomers. Squares mark the average number
of maximers and error bars mark one standard deviation. Green: system with 10 protomers. Red:
system with 1000 protomers.

Our analysis of the discrete case focuses on average behavior. Analytic techniques for higher
moments are beyond the scope of this contribution and will be presented elsewhere. In lieu
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Figure 1.25: Variance and noise. A: This panel reproduces a subset of data from Figure 1.24B
on a linear-log scale to enable a more direct visual interpretation of fluctuations. The green
curve in this panel corresponds to the lowest green curve in Figure 1.24B. It belongs to a system of
multivalent scaffolds with valency 1. The orange curve belongs to the polymerizing scaffold system
and corresponds to the lowest orange curve in Figure 1.24B. Because the valency of individual
scaffolds in both systems is 1, the number of sites on the abscissa corresponds to the number of
scaffold agents, polymerizing or not. The main observation is that for the same average catalytic
potential 〈Q〉 the standard deviation is larger after the prozone peak than prior to it. B: This panel
recasts the information in panel A by directly displaying the standard deviation (solid curves). The
dashed curves (right ordinate) depict the noise, i.e. the ratio of standard deviation to the mean. The
main observation here is that the polymerizing system (orange) is significantly less noisy than the
monovalent scaffold system (green).

of an analytic treatment, we performed several stochastic simulations using the Kappa platform
(Boutillier, Feret, et al., 2018; Boutillier, Maasha, et al., 2018) and GNU Parallel (Tange, 2018).
Figure 1.24 displays the essential observations in the context of Figures 3A and 6A of the main text
and 1.20B of this Supplement.

Fluctuations in the binding of ligands translate into Q-fluctuations on the basis of how sites are
partitioned into agents. There are three regimes, which we describe in the case of a monovalent
scaffold system for simplicity (lowest green curve in Figure 1.24; green curve in Figure 1.25; and
Figure 1.26): (i) At low scaffold numbers, prior to the prozone peak, most scaffolds are fully
occupied by both ligands. Fluctuations cause transitions between system states with similar Q and
variance is therefore low (see red distributions in Figure 1.26). (ii) Just past the prozone peak, many
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Figure 1.26: Distributions of catalytic potential. Panels A (monovalent scaffold system) and B
(polymerizing scaffold system) depict the distribution of catalytic potential for a state sampled prior
to the prozone peak (10 scaffold particles, red), just past the peak (100 particles, green) and well
past the peak (1000 particles, blue). Other parameters as in Figure 6A of the main text.

scaffolds are still occupied by both ligands, but there is an increasing number of singly bound and
some empty scaffolds. Unbinding from a fully occupied scaffold is statistically offset by re-binding
to the pool of singly-bound scaffolds, which yields a net effect similar to situation (i). However,
in addition, singly-bound scaffolds may also lose their ligand. This event is neutral in Q, but free
ligands may re-bind an already singly-bound scaffold, thereby increasing Q. Likewise, dissociation
from a fully occupied scaffold an re-association with an empty one will decrease Q. As a result of
this expanded Q-range, the variance has increased compared to a situation with similar average Q

prior to the prozone peak (see green distributions in Figure 1.26). (iii) Well past the prozone peak,
a number of scaffolds are bound by one ligand and many have no ligands at all. Ligand binding
fluctuations will mainly shift ligands from singly-bound scaffolds to empty scaffolds with no effect
on Q. As a result, Q-variance is now decreasing again (see blue distributions in Figure 1.26).
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PREFACE

Up to when I started my Ph.D. all I had ever studied in the way of stochastic chemical reaction net-
works (SCRNs) was their stationary distributions when detailed balance is satisfied. In such cases,
the stationary distributions can be taken to describe a system in equilibrium and the mathematical
expressions describing equilibria are as simple as they can get. In particular, they can be expressed
as restrictions of multidimensional Poisson distributions, which are well understood. When formu-
lated as generating functions, the equilibrium distributions can be written as exponentials of linear
functions. In my contributions to the article in Chapter 1, I harnessed this simplicity in order to
analyze the equilibria of systems of polymerization, which due to the complexity of their sets of
species and their state spaces would be otherwise intractable.

When I joined the Winfree lab Erik gave me a project that challenged my understanding of SCRNs
as it required that I look beyond detailed balance. The project was based on the following question:
given an appropriate measure of descriptive complexity for SCRNs and probability distributions
over an integer lattice, is it possible to show that any given distribution can be produced as the
stationary distribution of some SCRN with complexity matching that of the distribution? Does it
remain true when restricting to certain classes of SCRNs such as detailed-balanced, bimolecular,
unit rate constants, etc.? A related question, which is the one I ended up focusing on and which
gave rise to the content of this chapter is the following: given a probability distribution over
a positive integer lattice, henceforth a discrete distribution, is it possible to find a SCRN with
stationary distribution approximating the given distribution? I liked this question because it was
mathematically precise and because I saw it as an opportunity to venture beyond detailed balance
into the more general stationary distributions of SCRNs. I had many failed attempts at attacking
this problem, but each of those failures was nevertheless of immense value for me because they
broadened my perspective on SCRNs and helped me develop an original vision and style that I hope
to further develop in the coming years. Needless to say, each of my failed ventures was successful
in bringing me a great deal of joy.

The first venture that I embarked upon made me dream of a kind of algebra of SCRNs whose
algebraic operations would translate neatly into corresponding operations for their stationary distri-
butions. This way, I imagined, one would be able to translate a constructive approach for discrete
distributions into some constructive image in the context of SCRNs and their algebraic operations.
I still believe that such a theory could be developed rigorously and elegantly and I am fascinated by
such possibility. My starting point was the following observation: for a given discrete distribution
q the set of SCRNs with q as a stationary distribution form a vector space, let us refer to it as the
q-space. This can be seen by observing that if A and B are the transition matrices of two SCRNs,
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if Aq = 0 and Bq = 0, meaning q is a stationary distribution of both SCRNs, then we have that
(A + B)q = 0. I imagined that finding a basis for the q-space would amount to finding a set of
optimal SCRNs that generate q. Further reduction could be achieved if the q-space was an algebra1,
as would be the case if one could define a tensor operation for SCRNs. In that case a subbasis
—a generating set for the basis with respect to multiplication— would play the role that the prime
numbers play for the integers but in this case for the q-space. A related idea to computing the
q-space of a distribution q is that of finding a space of SCRNs capable of producing distributions q

parametrized by some vector of parameters x, let us call them q(x)-spaces. One example of this is
the case where the distributions q(x) are multidimensional Poisson distributions with parameters x.
The q(x)-space of these parametrized distributions is known to be the space of detailed-balanced
SCRNs with energies provided by the vector of logarithms − log xi (Cappelletti and Wiuf, 2016).
We give a simple proof of this result in Chapter 3 using generating functions.

Some time before joining the Winfree lab, I came across an early version of the book Quantum
Techniques for Stochastic Mechanics by Baez and Biamonte, 2018. The book formulates SCRNs
in terms of their probability generating functions in order to establish a number of correspondences
between SCRN theory and quantum field theory. I do not understand quantum field theory so the
comparison was not all that useful for me; however, I have since been inspired by the elegance
that generating functions lend to SCRN theory. For example, the chemical master equation (CME)
becomes a partial differential equation on the probability generating function. Since the generating
functions ofmultidimensional Poisson distributions are exponentials of linear functions, their partial
derivatives are particularly simple so the CME is easy to evaluate. One can use this in order to prove
the above-mentioned result that SCRNs with stationary multidimensional Poisson distributions are
generated by detailed-balanced SCRNs, or more generally, by complex-balanced SCRNs, as we do
in Chapter 3. Given the often tractable interaction between derivatives and exponential functions
one of the many threads, I wish to follow in the future is that of characterizing the structure of
SCRNs that generate distributions q(x) with generating functions given by exponentials of, say,
quadratic functions, or other classes of functions beyond linear ones. In another one of my ventures,
I sought to understand what stationary distributions are like in general. My question was, if the
stationary distributions of complex-balanced SCRNs are multidimensional Poisson distributions,
what is the form of stationary distributions for SCRNs in general? I thought that if I knew the
general form of stationary distributions I could harness it to produce distributions at will. I began
with simple SCRNs, for example with a finite and small reachable state space. In one occasion, I set
out to solve one of those systems by hand, which amounts to solving a linear system of equations.
Inspired by the graphical methods I had discovered when I worked with polymerization systems, I
wrote down the linear system and left the entries of the transition matrix as formal variables. What

1In the sense of a vector space with a multiplication operation that is bilinear.
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I obtained was that each of the terms in the solution corresponded to a spanning tree in the state
space transition graph. The result is well known, but my having arrived at it independently was a
reassuring sign that my ideas were at least catching up to history.

As it may transpire from the previous paragraphs, I have a penchant for closed-form expressions.
I am not so much interested in numerical approximations to solutions as much as I am interested
in the structure of solutions themselves. It is this proclivity that led me to the graphical methods,
I have described in this preface and that of Chapter 1. Closed-form expression are, however, a tall
order so my insistence on them was one of my main obstacles when it came to tackling the problem
I described before regarding the ability of SCRNs to generate discrete distributions, henceforth the
generating distributions problem. It turns out that generating distributions is better framed in the
language of approximations. I was always better at, or at least I enjoyed more, algebra and discrete
math than analysis2. For this problem it arrived the time when I realized that I had no option but
to confront those dreaded “epsilons” and “deltas.”

We can formulate the problem of generating distributions as follows. First, we say that a discrete
distribution can be approximated by SCRNs if for each positive real number ε there is a SCRN, and
an initial condition, that converges to a stationary distribution that is, at most, a distance ε away
from q. The question is then whether all discrete distributions can be approximated by SCRNs in
this way. This formulation requires that one define a metric for discrete distributions. Any choice
of metric furbishes the set of discrete distributions with the structure of a topological space. The
set of SCRNs with initial conditions can also be given topological structure. Each reaction can be
associated with the space comprised of the positive real numbers and their usual topology as this
is the set of values that its rate constant can take. A set of reactions can similarly be associated
with the product topology of the space of rate constant values for each of its reactions. The set
of SCRNs in this way becomes a topological space consisting of many disconnected components,
one for each finite set of reactions. If we restrict our attention to some set of well-behaved SCRNs,
such as those with well-defined stationary distributions, the function that maps a SCRN and its
initial condition to their limit distribution is likely to be continuous. This is since, intuitively,
a small change in rate constants will give rise to a small change in stationary distribution. The
generating distributions problem can be therefore phrased topologically without any mention to the
approximation parameter ε as follows: is the image of the space of SCRNs and initial conditions
dense3 in the space of discrete distributions? It is this question that we explore in the present
chapter.

2Results such as Stone duality, Isbell duality, and Gelfand duality, which are forms of duality between algebra and
geometry would suggest that such a preference is simply that of a choice of language (nLab authors, 2021).

3A subset A of a topological space X is said to be dense if every open set containing a point in X also contains a
point in A. This means that any point of X can be approximated arbitrarily well with points of A.
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In addition the chapter contains my contribution to a publication (Poole et al., 2017) that explores
a related but more particular question: can SCRNs generate the scope of distributions that can be
generated with Boltzmann machines (BMs)? BMs are early thermodynamically-inspired models of
neural networks with the ability to perform inference (Hinton and Sejnowski, 1983). Mimicking the
behavior of BMs renders SCRNs as kinds of inference machines and thus potentially seen as acting
intelligently in some way. For this problem, we sought to devise SCRN constructions inspired by
the formalism of BMs. My contribution to the article was in the form of a SCRN construction
that generated exactly the distributions of BMs, while satisfying detailed balance. I arrived at the
construction by following graphical reasoning, this time translating the structure of a BM graph
into molecules and their corresponding energies.

As I have already alluded to, my multiple approaches to the generating distributions problem were
not fruitful for the problem itself. The construction provided in the chapter for approximating
discrete distribution was devised by my advisor Erik Winfree. My job was simply to perform
proofs wherever they were needed. One contribution that is original to me is that of a SCRN that
can approximate point mass distributions, i.e. discrete distributions where all the probability is
concentrated in a single point. That construction is particularly simple and analytically tractable and
it necessarily requires that a system violates detailed balance, as opposed to the above-mentioned
construction. Furthermore, the construction is robust in the sense that it is independent of initial
conditions. That was one of my first results regarding the generating distributions project. Those
point-mass SCRN can be “combined” to generate any discrete distribution point by point. Although
Erik and I had come up with the construction that would achieve that, I was never able to generate
the required proof. For that we had to recruit the help of SCRN experts David Anderson and his
then-postdoc Danielle Cappelletti. The proof itself was performed by Daniele and it comprises
the bulk of the 15-page appendix to Cappelletti, Ortiz-Muñoz, et al., 2020. Although the proof
established the desired proposition, that our combination scheme for point-mass SCRNs works,
its style is much different from the approaches I had attempted. I wish to one day go back to
this problem and try to find an approach that is more aesthetically pleasing to me and hopefully
more insightful. Some of the techniques in Chapter 3 for computing the dynamics of SCRNs were
developed with that desire in mind.
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ABSTRACT

We show that the set of discrete distributions that arise as the marginals of limit distributions of
stochastic chemical reaction networks (CRNs) is dense in the space of all distributions. We do so by
providing a construction of a class of detailed-balanced CRNs that can produce arbitrary discrete
distributions with finite support. Given that the set of distributions with finite support is already
dense in the space of distributions, we conclude that stochastic CRNs are universal approximators
of discrete distributions. In addition we provide a CRN construction that faithfully captures the
equilibrium distributions of Boltzmann machines.
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2.1 Introduction
Cells are the fundamental units ofmulticellular organisms, meaning that they are the building blocks
out of which all living things are assembled. As such, the world of cells and their interaction reflects
on the world of macroscopic organisms, like ourselves. For example, understanding of cellular
processes has been fundamental for a greater understanding of human disease. If something
goes wrong at the level of cells it is likely to manifest at the organism level. Similarly cellular
processes reflect on the correct functioning of organism and therefore help in the understanding of
the processes that constitute a healthy organism. A cell is a complex object on its own, and in an
analogous way to the cellular world is reflected by the whole organism, the world of molecules and
their interactions is reflected by the workings of a single cell and its interactions with other cells.
Due to their fundamental role in biology, an understanding of cells as complex molecular machines
is an important part of an understanding of biological phenomena.

Mathematizing real phenomena, meaning the development of mathematical theories capable of
modeling and predicting measurable data about a real phenomenon, liberates us from the confines
of reality and puts us in the relatively freer world of abstract mathematics. Mathematics, too, is a
complex machinery. Like molecules and cells, mathematical propositions interact with one another
through the rules of mathematics in order to create complex mathematical theories. The difference
between biological and mathematical machines is that mathematical experiments can be carried
out on a piece of paper, in our heads, or in a computer, which are generally vastly more accessible
than actual biological systems. Metaphorically speaking, a mathematical theory of biology should
then allow us to perform approximate biological experiments in a piece of paper. Of course, the
extent to which these mathematical experiments say anything about the biological world depends
on how closely a mathematical model reflects the biological phenomena it is intended to model.

We use chemical reaction networks (CRNs) as models for thinking about the behavior of a hypothet-
ical cell conceived as a complex chemical system. One way to think about CRNs is as mathematical
models of well-mixed chemical mixtures. A cell is hardly a well-mixed chemical reactor; it is highly
compartmentalized and the medium is dynamical and complex. Yet, the well-mixing assumption is
a good first approximation to the behavior of a cell. The complexity of well-mixed chemical systems
stems from the idiosyncratic ways in which molecules interact with one another, its “interaction
network”. We use CRNs as general models for such networks of interactions of molecules in a
well-mixed medium.

We understand well-mixing as the assumption that under some spatial and temporal scales, each
fixed number of molecules in the system has essentially the same probability of all coming into
physical proximity with one another. When a number of molecules in the system can react, they
will do so if they come together in just the right way, yielding a small change in the chemical
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composition of the system. Hence, due to the irrelevance of spatial information for well-mixed
systems we can describe them in terms of the concentrations of each of the different types of
molecules in the system. Furthermore, even if molecular interactions were to be deterministic,
since we lose information by forgetting everything about the system but the concentrations, its
behavior will appear stochastic in general. In the limit of large concentrations random fluctuations
vanish in comparison and the behavior of the system becomes deterministic. Although some small
molecules in a cell do exist in high concentrations, key large molecules like proteins and nucleic
acids exist in low concentrations. Therefore, when we define the dynamics of CRNs we opt for a
model with a discrete state space and stochastic dynamics, which we refer to simply as a stochastic
CRN. To the extent that cells are approximated by such chemical systems, the study of stochastic
CRNs is a worthwhile pursuit for mathematical biology.

The mathematics of CRNs is based on empirical observations of real chemical reactors rather than
on first principles. As such the value of CRNs is not so much in prediction but as falsifiable
models of biochemical reaction networks that, along with experiments, can help us uncover the
vast complexity of chemical processes tht constitute a cell. Beyond biology, a different perspective
on CRNs is that one can begin with a system that we can prove has a certain behavior, and then
engineer a real chemical system that recapitulates that behavior. In this case, we can see CRNs as
constituting a formal language or a model of computation, and the closer we can get a chemical
system to match the assumptions of a model, the better they will carry out the computations that
we can prove a CRN simulates.

One perspective on biological systems is that they resist dissipation by virtue of their encoding
beliefs about their environment and minimizing an informational free energy functional of those
beliefs, approximating a process of Bayesian inference (Conant and Ashby, 1970; Friston, 2012).
Each of the internal states of the system can be seen as a hypothesis about the state of its environment,
and a probability distribution over such states can be seen as prior beliefs about the state of the
environment. Given this, it is reasonable to hypothesize that a system that can effectively encode a
large number of probability distributions would be potentially capable of handling a wide range of
different environments. The question then arises as to what kinds of distributions can be produced
by chemical systems.

In this document, we will provide a general CRN construction that is capable of approximating
any discrete probability distribution. The idea is that if we can engineer a physical system that
reproduces the behavior of our construction, then such system would in principle be capable of
representing any prior belief about its environment. We will only focus on the mechanism for
generating distributions and not on mechanisms for updating prior beliefs or for decision-making.
The construction we provide here was included in a publication, which also explores more general
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frameworks for encoding distributions (Cappelletti, Ortiz-Muñoz, et al., 2020). In particular that
paper places emphasis on universal approximation under a robustness condition, which dictates
that the encoded distribution be independent of initial conditions.

The question of the range of distributions attainable as stationary distributions of SCRNs has been
explored by other authors. In Cardelli, Kwiatkowska, and Laurenti, 2018, the authors provide a
construction that is capable of exactly generating any discrete distribution with finite support. Their
construction, however, does not satisfy detailed balance and it is in fact not even ergodic. Similarly,
Fett, Bruck, andRiedel, 2007, provide a construction that, although it can also approximate arbitrary
distributions, it is highly dependent on initial conditions and it is also not ergodic. In Plesa et al.,
2018, they develop methods for controlling the noise of SCRNs while preserving their deterministic
behavior. It is not clear, however, if their methods are capable of encoding arbitrary distributions
as this is not their focus.

In addition to the general construction for approximating arbitrary distributions, we include a
construction that is designed to exactly simulate Boltzmann machines (BMs). This construction
appears, among other ones, in Poole et al., 2017. Although the previous results already imply that
the equilibria of BMs can be produced with SCRNs, this construction is crafted to resemble a BMs
in important ways, such as probabilistic inference.

Our constructions consist of abstract chemical systems, however, the ability of a chemical system to
actually be able to produce arbitrary probability distributions will depend on that system’s ability
to produce rates and interactions that match our constructions. Still, our results imply that the more
programmable a biochemical system is, either by humans or by evolution, the larger the class of
steady-state distributions that are accessible to them. Our results for our chemical models of BMs
constitute one of potentially many ways in which a cell may employ its stationary distribution as a
generative, inferential mechanism. Although our constructions are arbitrary they demonstrate that
programming stochastic behavior using interaction network topology is possible and suggest that
the networks of real biological systems could have been selected by evolution partly for their ability
to produce complex probability distributions.

2.2 Preliminaries
Our basic objects of study are chemical reaction networks (CRNs). A CRN is a specification of
a set of species and a set of reactions, each of which has a corresponding stoichiometry, which
itself consists of pairs of multisets of species (Gunawardena, 2003; Horn and Jackson, 1972).
Furthermore, each reaction has a corresponding rate constant, which is a positive real number. We
proceed to define CRNs formally below.

For convenience, in the following we will denote the set of natural numbers with N, the set of real
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numbers with R, and the set of positive real numbers with R+. For sets A, B, we use the notations
A→ B and BA for the set of functions from A to B interchangeably.

Definition 2.2.1. A chemical reaction network is a quadruple (S, R, n, k), where S is a set of species,
R is a set of reactions, n : 2 × R × S → N is a stoichiometric function, and k : R → R+ is a rate
constant function. We denote the collection of all CRNs with CRN.

LetΛ = (S, R, n, k) be a CRN. We refer to multisets x : S → N as states or counts. For each species
s ∈ S, we denote the number of molecules of type s in x as xs. We write states as formal sums of
species as follows

x =
∑
s∈S

xss.

The stoichiometric function n says, for each reaction, the number of molecules of each species that
participate in that reaction. Hence, n0,r,s is the number of molecules of type s that participate in
the reactants of r , while n1,r,s is the number of molecules of type s that are produced by reaction r .
We can summarize the stoichiometry and rate constant of a reaction as follows

n0,r
kr−→ n1,r ≡

∑
s∈S

n0,r,ss
kr−→

∑
s∈S

n1,r,ss.

Let us consider a concrete example, which will hopefully make the above abstract definitions
clearer. We consider a CRN Λ = (S, R, n, k), where S = {A, B}, R = {0, 1}. We summarize the
stoichiometric function as a pair of matrices n0, n1 : R × S → N, where the rows correspond to
reactions and columns to species, as follows

n0 =

[
2 0
0 1

]
, n1 =

[
0 1
2 0

]
.

We can also summarize the rate constant function as a matrix, in this case of dimension R × 1 as
k = [1, 2]. Using the reaction notation we defined above, we can summarize the stoichiometric and
rate constant functions as follows

2A
1−⇀↽−
2

B. (2.1)

Here, the double arrows denote a pair of reactions that are the reverse of each other.

We are interested in how the chemical system specified by a CRN evolves over time after it is
initialized in some initial condition. We will assume that the description of an instantaneous state
is given by the discrete counts of molecules present in a mixture, which consequently gives rise to
stochasticity in the time evolution of the system. We will consider here probability distributions
over all multisets of species. A probability distribution can represent uncertainty with regards to the
state of a system, or a statistical ensemble of systems. In either case, the probability distributions we
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Figure 2.1: Graphical representation of a CRN. Each black rectangle represents a reaction with the
tails of the arrows being connected to the reactants of the reaction and the head being connected to
the products. Next to each reaction we show the corresponding rate constant.

consider are functions that assign to each state, i.e. multiset of species, a non-negative real number
corresponding to the probability that one will find the system in such state, and where the sum of
the probabilities of all states must add up to 1. We will ultimately be interested in approximating
multiset distributions, not necessarily originating from a CRN, using the probability distributions
obtained from CRNs. In order to be able to speak of approximation, we must have a means of
comparing two distributions and saying how far apart they are from each other. We will do this by
taking two distributions, then, for each state, consider the absolute value of the difference between
their probabilities, and finally the distance between the distributions is given by the supremum of
the set of values obtained this way. Given that the element-wise difference between two probability
distributions is not necessarily a probability distribution, meaning it may have negative values or
it may not add up to 1, we will consider a general notion of norm defined over all real-valued
functions over multisets.

Definition 2.2.2. A multiset distribution is a pair (A, p), where A is a set, and p : NA → R is a
probability function satisfying px ≥ 0 and

∑
px = 1. We denote the collection of all distributions

with Distr, and the set of all distributions with underlying set A as DistrA. For each pair (A, f ) of
multiset functions, where A is a set and f : NA → R, its norm is given by

‖ f ‖ = max
x∈NA
| fx |.

For each set A, we will regard the set NA → R of multiset functions as a vector space, meaning that
we can add multiset functions and we can multiply them by scalars. Recall that multiset functions
comprise not only probability distributions but all real-valued functions over the setNA of multisets
of A. Each multiset x ∈ NA gives rise to a basis vector [x] : NA → R defined by [x]y = δx,y. We
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can write a function f : NA → R in terms of basis vectors as follows

f =
∑

x∈NA

fx[x].

Notice that a scalar multiple of a basis vector has the general form c[x], where c ∈ R is a scalar
and x ∈ NA is a multiset, which could give rise to confusion as it could be interpreted as a function
c evaluated at x. In this chapter, however, a state x appearing inside square brackets universally
denotes the basis vector corresponding to x.

2.3 Dynamics
Given some CRN, we are interested in how a probability distribution over its set of states evolves
according to the reactions and rate constants of the CRN. The probability distribution must evolve
according to a master equation. Below we will consider as an example the CRN in Equation 2.1
and derive its master equation in order to give an idea of what the general case should look like.
We then proceed to give definitions of operators from which we can extract master equations of
general CRNs. The style of presentation and the choice of notation here are suitable for use in a
framework in which multiset distributions are presented as generating functions. We will develop
that framework in Chapter 3.

In what follows, the word operator will simply mean a linear transformation T : RNS → RNS

from the space RNS of multiset functions to itself. If a family {Ti}i∈I of operators indexed by a
set I commutes, we will use the product notation

∏
i∈I Ti to denote their composition. Finally, we

denote the repeated application of an operator with T n, where n is the number of times that the
operator is applied. Notice that the two notations are related by T n =

∏n
i=1 T .

Let us consider the CRN in Equation 2.1. A general state of such system is a multiset aA + bB,
for natural numbers a and b. The master equation, with px being the time-dependent probability of
state x, in this case would be the following

dpaA+bB

dt
= (a+2)(a+1)p(a+2)A+(b−1)B+2(b+1)p(a−2)A+(b+1)B−a(a−1)paA+bB−2bpaA+bB. (2.2)

The first term corresponds to probability flowing into the state aA+bB from state (a+2)A+(b−1)B
when applying the reaction 2A→ B, which removes two A and creates one B, leading to the state
aA+ bB. Although multisets only account for counts but not identity of molecules, we assume that
a multiset is a coarse-grained description of a state in which each molecule is identifiable. In that
case, the number of ways of applying a reaction will take into consideration the distinguishability of
molecules present in a state. Hence the first term has a factor of (a+2)(a+1), which corresponds to
the number of ways of applying reaction 2A→ B when the counts are given by (a+2)A+ (b+1)B.
The second term corresponds to probability flowing in from state (a−2)A+ (b+1)B when applying
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B → 2A. In this case, we multiply the probability of (a − 2)A + (b + 1)B by 2(b + 1), taking into
consideration that the reaction has rate constant 2 and that there are b+1 ways of applying it. Notice
that the first two terms are positive, indicating that they contribute to the increase of probability at
state aA+ bB. The last two terms, which are negative, correspond to probability flowing out of the
state due to the action of both reactions. The third term is multiplied by a(a − 1) and the last term
by 2b, again, taking into consideration the rate constants and the number of ways that the reactions
can be applied in the current state.

Notice that the master equation above gives the rate of change of probability at a given state as
a linear combination of probabilities of other states. This means that it should be possible to
find some linear transformation A such that, when it is applied to the time-dependent probability
distribution vector p, it gives a vector of corresponding rates of change. In other words, we would
like to find a linear transformation A : RNS → RNS such that

dp
dt
= A p.

If we integrate the above equation and make use of the fundamental theorem of calculus, we can
obtain an equivalent formulation of the master equation in integral form

p = p0 +

∫ t

0
A pdt,

where p0 is the distribution at t = 0. The integral form reveals the recursive nature of the master
equation, as it expresses the dynamics of a CRN in terms of itself. Moreover, it makes explicit the
dependence on the initial distribution p0. As it turns out, it is possible to define a time-dependent
operator E = eA t such that when applied to an initial distribution p0 it returns the time evolution
of the distribution. In other words, E satisfies p = E p0 = eA t p0. We will deal with this expression
more in detail in Chapter 3.

Below we define the dynamics of a stochastic CRN in terms of creation and annihilation operators
and then use them to extract the usual notion of propensities and of the chemical master equation.
The idea behind an annihilation operator is that it removes one instance of some species in a state,
while the creation operator inserts an instance of a species. Multiple application of either operator
results in the removal or insertion of multiple instances of a species.

Definition 2.3.1. Let Λ = (S, R, n, k) be a CRN. We define the annihilation operator ∂s and the
creation operator ∂†s for each s ∈ S by

∂s[x] = xs[x − s], ∂†s [x] = [x + s].

Recall that [x] denotes a basis vector for state x so that a linear operator can be defined by its action
on basis vectors, which extends uniquely to all vectors by linearity. For each multiset x ∈ NS, we



78

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 2.2: Example stochastic CRN. This system has 2 species, represented by a blue circle
and a yellow triangle, and two reactions, given by the reaction diagram. On the top right is the
master equation for the probability of being in state (2, 2). At the bottom left corner is a diagram
representing the state space of the system, with the incoming and outgoing transitions in blue and
red. The plot on the right shows the probability distribution for the reachable states, with transition
arrows as before.

define multiset annihilation and creation operators as follows

∂x =
∏
s∈S

∂xs
s , ∂†x =

∏
s∈S

∂†xss .

We define the infinitesimal stochastic operator AΛ : RNS → RNS in terms of annihilation and
creation operators as follows

AΛ =
∑
r∈R

kr(∂†n1,r − ∂†n0,r )∂n0,r .

Finally, we define the evolution operator EΛ : DistrS × (0,∞) → DistrS as follows

EΛ = 1 +
∫ t

0
AΛEΛdt,

where 1 denotes an identity operator. For each distribution p ∈ DistrS, we refer to EΛp as the
stochastic dynamics of Λ with initial distribution p.

Having defined the infinitesimal stochastic operator AΛ, we will now confirm that it does indeed
generalize the example we gave in Equation 2.2. As we mentioned previously, the annihilation
operator ∂s applied to the basis vector [x] gives the number of ways of annihilating one instance of
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s in state x. There are xs different choices of s to annihilate, and after annihilating we are left with
one s less, meaning we end up in state x − s. If it happens that xs = 0, the result will simply be
the zero vector, since there are no s available to annihilate. The creation operator ∂†s applied to x

creates one instance of s within x. There is only one way of creating one s and the resulting state
is x + s. Repeated application of ∂s results in the annihilation of multiple instances of s, which can
happen in a number of different ways. For example, consider the triple application

∂3
s [x] = xs∂

2
s [x − s] = xs(xs − 1)∂s[x − 2s] = xs(xs − 1)(xs − 2)[x − 3s].

The coefficient of [x − 3s] is a combinatorial factor indicating the number of ways of annihilating
one s, then another one, and then one more. Equivalently, the combinatorial factor gives the number
of ways of permuting 3 elements out of xs elements. In general, we will have

∂m
s [x] =

xs!
(xs − n)! [x − ms],

where m is the number of times the operator is applied. For multiset powers of ∂, we have

∂n[x] = x!
(x − n)! [x − n],

where n is a vector of natural numbers and where the multiset factorials are given by

x! =
∏
s∈S

xs!.

We define the propensity %r,x of reaction r at state x as follows

%r,x = kr
x!

(x − n0,r)!
.

The propensity gives the probability per unit time that a reaction will take place in a given state.
We have the following identity involving annihilation operators and propensity

kr∂
n0,r [x] = %r,x[x − n0,r].

The above identity allows us to write the action of the infinitesimal stochastic operator as follows

AΛ[x] =
∑
r∈R

%r,x([x − n0,r + n1,r] − [x]). (2.3)

Let p0 ∈ DistrS be some initial condition and let p = EΛp0 be the corresponding stochastic dynamics.
By taking a time derivative of the evolution operator, we obtain the following expression

dp
dt
= AΛp.
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Using our expression in Equation 2.3 for the action of AΛ in terms of propensities and rearranging,
we obtain

AΛp =
∑
x∈NS

pxAΛ[x] =
∑
x∈NS

px

∑
r∈R

%r,x([x − n0,r + n1,r] − [x])

=
∑
x∈NS

[x]
∑
r∈R

%r,x+n0,r−n1,r px+n0,r−n1,r − %r,x px .

Finally, we can use the above expression to write the rate of change of probability at a particular
state

dpx

dt
=

∑
r∈R

%r,x+n0,r−n1,r px+n0,r−n1,r − %r,x px .

The above expression is also known as the chemical master equation. We conclude thatAΛ behaves
as we expect it to do.

For the CRN in Equation 2.1, the infinitesimal stochastic operator takes the form

AΛ = (∂†B − ∂
†2
A )∂

2
A + 2(∂†2A − ∂

†
B)∂B.

The action of the operator is given by

AΛ[aA+bB] = a(a−1)[(a−2)A+(b+1)B]−a(a−1)[aA+bB]+2b[(a+2)A+(b−1)B]−2b[aA+bB].

The propensities at a generic state aA + bB are given by

%A→B,aA+bB = a(a − 1), %B→A,aA+bB = 2b.

Finally, the chemical master equation is given by
dpaA+bB

dt
= (AΛp)aA+bB

= (a + 2)(a + 1)p(a+2)A+(b−1)B + 2(b + 1)p(a−2)A+(b+1)B − a(a − 1)paA+bB − 2bpaA+bB,

as desired.

2.4 Reacting systems
We would like to model a scenario in which a hypothetical experimenter is able to prepare a
chemical mixture with specified counts of molecules. As the experimenter allows the system to
evolve, they are able to measure the counts of a set of species that are visible to them. Such a set
may consist of all the species, or of a proper subset of species. By performing multiple trials with
the same initial state, the experimenter is able to determine the stationary probability distribution
that the system converges to. The definition below is intended to model such a scenario.

In order to model the long-term behavior of the system when given an initial state, we will consider
the limit of the evolution operator when it is applied to the given initial state.
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Definition 2.4.1. For each distribution (A, p) and subset V ⊆ A, we define the marginal MV p ∈
DistrV of p onto V as follows

(MV p)x =
∑

y∈x+NA−V

py,

where x+NA−V = {x+ y | y ∈ NA−V }. A reacting system is a triple (Λ, x,V), whereΛ = (S, R, n, k)
is a CRN, x : S → N is an initial condition, and V ⊆ S is a set of visible species. We denote the
collection of all reaction systems with RxnSys. For each reacting system (Λ, x,V), its visible limit
distribution πΛ,x,V ∈ DistrV is given by

υΛ,x,V =MV lim
t→∞

E [x].

Let us consider the CRN in Equation 2.1. Suppose that we are given the initial condition 8A. With
this initial condition, we get that the set of reachable states and their connectivity are described by
the following

8A
56−−⇀↽−−
2

6A + B
30−−⇀↽−−
4

4A + 2B
12−−⇀↽−−
6

2A + 3B
2−⇀↽−
8

4B,

where the numbers in the arrows correspond to propensities. Given that this system is ergodic, the
limiting distribution coincides with the stationary distribution whose support is the set of reachable
states. Notice that the set of reachable states is also the set of states aA + bB with the conserved
property that a + 2B = 8. We can therefore express the limit distribution as follows

(
lim
t→∞

E [8A]
)

aA+bB
=


0, a + 2b , 8

πaA+bB, a + 2b = 8

where the stationary distribution π satisfies

A π = 0.

The above equation for the stationary distribution π is equivalent to the linear system

AΛ[8A] = −56π8A + 2π6A+B = 0

AΛ[6A + B] = 56π8A − 32π6A+B + 4π4A+2B = 0

AΛ[4A + 2B] = 30π6A+B − 16π4A+2B + 6π2A+3B = 0

AΛ[2A + 3B] = 12π4A+2B − 8π2A+3B + 8π4B = 0

AΛ[4B] = 2π2A+3B − 8π4B = 0.
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We can solve this system explicitly after which we obtain the solution

π =
1

764
[8A] + 28

764
[6A + B] + 210

764
[4A + 2B] + 420

764
[2A + 3B] + 105

764
[4B]. (2.4)

LetV = {B} be a set of visible species consisting only of the species B. The visible limit distribution
of the resulting reacting system with initial condition x = 8A is given by

υΛ,x,V =
1

764
[0] + 28

764
[B] + 210

764
[2B] + 420

764
[3B] + 105

764
[4B].

What we have done is simply to project the distribution onto states involving only B by forgetting
the counts of A. In this case, for each of the counts of B appearing in the reachable states, the
counts of A are uniquely determined. It is possible, however, that in a given system with initial
condition, there are multiple states with the same counts of a set of visible species. In such case,
the projection will not be as simple as in our example, as we will need to add the probabilities of
all states that share the same counts of visible species.

Before we present our construction for approximating arbitrary distributions, we will briefly review
detailed-balanced CRNs.

Definition 2.4.2. A CRN (S, R, n, k) satisfies detailed balance if it is reversible, meaning that for
each reaction r ∈ R, there uniquely exists r− ∈ R such that r−− = r , n0,r = n1,r− and n1,r = n0,r− , and
if there exists a function β : S → R+ satisfying

kr β
n0,r = kr−β

n1,r,

where βn =
∏

s∈S β
ns
s .

CRNs that satisfy detailed balance are well-behaved and, in particular, they have nice stationary
distributions, namely, they are product-of-Poisson form4 (Whittle, 1986). Furthermore, given an
initial condition, they are ergodic in the set of reachable states, meaning that the limit distribution
coincides with the unique stationary distribution whose support is the set of reachable states. We
capture this result in the following lemma.

Lemma 2.4.1. Let Λ = (S, R, n, k) be a CRN satisfying detailed balance with some β : S → R+,
and x ∈ NS be some initial condition. Then, the limit distribution with initial condition x is given
by

πΛ = lim
t→∞

EΛ[x] = M
∑
x�y

βy

y!
[y],

4More generally, complex-balancedCRNs also have product-of-Poisson form of stationary distributions (Anderson,
Craciun, and Kurtz, 2010).



83

Figure 2.3: Illustration of detailed balance for CRNs. Here we denote the β in Definition 2.4.2 with
ε to highlight its connection to energy. In particular, the negative of its natural log corresponds to
chemical potential.

where x � y denotes that x can reach y through reaction transitions, and where the quantity M is
a normalization constant

M =

(∑
x�y

βy

y!

)−1

.

Let us consider again the CRN in Equation 2.1. Notice that that CRN satisfies detailed balance
since it is reversible, and for β defined by βA =

√
2 and βB = 1, we have

k2A→Bβ
2
A = 2 = kB→2AβB.

According to the lemma, for initial condition 8A, we must have

π = M
(

24

8!0!
[8A] + 23

6!1!
[6A + B] + 22

4!2!
[4A + 2B] + 2

2!3!
[2A + 3B] + 1

0!4!
[4B]

)
.

If we multiply and divide by 24/8!, we can rewrite this solution as follows

π =
24

8!
M ([8A] + 28[6A + B] + 210[4A + 2B] + 420[2A + 3B] + 105[4B]) ,

which clearly corresponds to the solution we had obtained before in Equation 2.4.

2.5 Boltzmann machines
In this section, we will show that CRNs can be used to reproduce the equilibrium distributions of
Boltzmann machines.

Definition 2.5.1. A Boltzmann machine is a triple B = (n,w, θ), where n ∈ N is a natural number
indicating the number of nodes, w ∈ Rn×n is a weight matrix satisfying wi, j = w j,i and wi,i = 0, and
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Figure 2.4: Illustration of Lemma2.4.1. The stationary distributions of two detailed-balancedCRNs
are shown. On the top, all states are reachable and the stationary distribution is a multivariate
Poisson. On the bottom the reactions give rise to reachability classes and hence the stationary
distribution is a truncated multivariate Poisson.
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θ : RX is a bias vector. A state of a Boltzmann machine is a vector x ∈ 2n with binary entries. The
energy function εB : 2n → R of a Boltzmann machine define is defined as follows

εB
x = −

∑
i< j

xi x jwi, j −
n∑

i=1
xiθi .

The equilibrium distribution πB : 2n → R of a Boltzmann machine is defined as follows

πB
x =

e−ε
B
x

ZB
,

where ZB =
∑

x∈2n e−ε
B
x is the partition function.

Definition 2.5.2. For each Boltzmann machine B = (n,w, θ), we define the reaction system
αBCRN(B) = (Λ, x, X), where Λ is a CRN with species given by the sets X = {X0

i }
n
i=1 ∪ {X

1
i }ni=1and

W = {W0
i, j}i< j ∪ {W1

i, j}i< j , reactions given by

X0
i +

∑
j,i

Xσj

j +
∑
j,i
σj=1

W0
i, j

ki,σ−−−⇀↽−−−
1

X1
i +

∑
j,i

Xσj

j +
∑
j,i
σj=1

Wσj

i, j , for 1 ≤ i ≤ n and σ ∈ 2n−1,

initial condition given by x =
∑n

i=1 X0
i +

∑
i< j W0

i, j , and visible species given by the set X . We
assume that W s

i, j = W s
j,i for s ∈ 0, 1 (See Figure 2.5 for an illustration of the reactions.). The rate

constants ki,σ are given by
ln ki,σ = θi +

∑
i, j

σjwi, j .

Notice that the above CRN satisfies detailed balance with

βX0
i
= 1, βX1

i
= eθi, βW0

i, j
= 1, βW1

i, j
= ewi, j .

Indeed, we have that

ki,σβX0
i

∏
j,i

βX
σj
j

βW0
i, j
= exp

(
θi +

∑
j,i

σj(θ j + wi, j)
)
= βX1

i

∏
j,i

βX
σj
j

βW
σj
i, j

.

Theorem 2.5.1. For each Boltzmannmachine B = (x, n, θ)we have that the visible limit distribution
υα(x,n,θ) = π

B.

2.6 Finite-support distributions
In this section we will show that, in principle, for any given distribution, an experimenter can always
find a reacting system whose visible limit distribution is the desired distribution. We will begin by
showing that each distribution with finite support is the visible limit distribution of some reacting
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Figure 2.5: On the left is shown a Boltzmann machine transition. Nodes 3, 4, 5, and 6 are initially
on as well as their joining edges. Subsequently, node 1 is turned on and the additional joining
edges are turned on as well. On the right is shown the corresponding reaction in the Boltzmann
CRN. The circles correspond to the species Xi either on or off, and the rectangles correspond to the
species Wi, j , also on or off. The grayed-out species correspond to the species that do not participate
in the reaction but that are present in the mixture.

system. In more detail, each distribution is mapped to a reacting system whose underlying CRN
satisfies detailed balance (defined below), and whose visible species coincide with the underlying
set of the target distribution. Then, we will show that distributions with finite support get arbitrarily
close to any distribution, so that in fact every distribution can be approximated by the construction
we provide below.

We will now present our construction for approximating distributions.

Definition 2.6.1. For each distribution (V, p) ∈ Distr with finite support and with x ∈ suppp a
state in the support, we define the reacting system α(V, p, x) = (Λ, x + Cx,V) ∈ RxnSys, where
Λ = (S, R, n, k) is given by S = V ∪ {Cy}y∈suppp; the reactions, stoichiometry, and rate constants
given by

Cy + y
y!py−−−⇀↽−−−
z!pz

Cz + z,

for y, z ∈ suppp and y , z; and with initial condition x + Cx .
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Figure 2.6: Illustration of a variant in the construction in Definition 2.6.1. The construction
illustrated here follows the same principle as that of Definition 2.6.1, which is that each point in the
support is associated with a hidden species, shown in black, and a number of reactions that inter-
convert between the hidden species, while updating the counts of the visible species appropriately.
The rate constants are set up so that the desired probabilities are obtained in steady state.

The idea behind the above construction is the following. Each of the states y in the support of p

gets a species Cy. By initializing the system at state Cx + x, the reactions guarantee that there are
only ever one Cy species present. Moreover, if the species Cy is present, the counts of V species
will be precisely y. The rate constants are chosen so that the CRN satisfies detailed balance with

βs = 1, βCy = y!py,

for s ∈ V and y ∈ suppp. Indeed, we have that

kCy+y→Cz+zβ
Cy+y = (y!py)(z!pz) = kCz+z→Cx+xβ

Cz+z .

Now we show that the visible limit distribution of the reacting system defined in the construction
is the desired distribution.

Lemma 2.6.1. For each distribution (V, p) ∈ Distr with finite support and with x ∈ suppp an
element of the support, we have that υα(V,p,x) = p.

Proof. Let (V, p) be a distribution with finite support with x ∈ suppp, and α(V, p, x) = (Λ,Cx +

x,V). We know thatΛ satisfies detailed balance and that the set of reachable states is {Cy+y}y∈suppp.
Therefore, we have that the limit distribution of Λ with initial condition [Cx + x] satisfies

lim
t→∞

EΛ[Cx + x] =
∑

y∈suppp

βCy+y

(Cy + y)! [Cy + y] =
∑

y∈suppp

py[Cy + y].
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Finally, by taking the marginal onto V , we obtain

υα(V,p,x) =MV lim
t→∞

EΛ[Cx + x] =
∑

y∈suppp

py[y] = p.

�

Let us consider the distribution in Figure 2.7, which we can think of as a distribution p ∈ Distr{A,B}
over multisets of two species A and B. This distribution has finite support, which means that by
the Lemma above, we can generate it with some reacting system. The reacting system will have set
of visible species V = {A, B}. Furthermore, for each non-zero pixel x in the “mushroom,” we will
have a corresponding species Cx . We will not write the reactions since in this case they are of the
order of 162, but there will be a pair of reversible reactions

Cx + xAA + xBB
yA!yB!py−−−−−−−⇀↽−−−−−−−
xA!xB!px

Cy + yAA + yBB

for each non-zero pixels x, y in the image. The initial condition can be Cx + x for any non-zero
pixel x.

1 5 10 16

1

5

10

16

1 5 10 16

1

5

10

16

Figure 2.7: A distribution over two-dimensional state space.

2.7 Universality
Having showed that our construction is able to produce all distributions with finite support, it only
remains to show that an arbitrary distribution can be approximated with finite-support distributions.
To be more precise, we want to establish that for any distribution and positive real number there
exists a distribution with finite support such that the norm of the difference of the distributions is
less than the given positive real number.

Theorem 2.7.1. For each distribution (V, p) ∈ Distr and ε > 0, there exists a reacting system
(Λ, x,V) ∈ RxnSys such that

‖υΛ,x,V − p‖ < ε.
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Proof. Let (V, p) ∈ Distr and ε > 0. Consider a bijection5 x : N → NV with the property that
pxi ≤ pxj whenever j ≤ i. Let n ∈ N be a natural number with the property that

∑n−1
i=0 pxi > 1 − ε.

Let us define the distribution (V, q) given by

qy =


pxi, y = xi, 0 ≤ i ≤ n − 1∑n

i=0 pxi, y = xn

0, y = xi, i ≥ n + 1

.

We know from Lemma 2.6.1 that υα(V,q,x) = q for any x = xi, where i ≤ n. Furthermore, we have
that

‖p − q‖ = |pn − qn | =
∞∑

i=n+1
pxi < ε.

�

2.8 Discussion
We have established that any arbitrary distribution can be approximated with the visible limit
distribution of some reacting system. We say that the set of CRNs is universally approximating. In
fact, we have proved a stronger result, namely, that the set of detailed-balanced CRNs is universally
approximating. In Cappelletti, Ortiz-Muñoz, et al., 2020, we show in addition that universal
approximation is also possible if we require that the stationary distribution be independent of
initial conditions, a property we refer to as robustness. When the target distribution is a point
mass distribution, the detailed-balanced construction in this chapter yields a trivial CRN with
no reactions and with initial condition simply being centered at the desired point. The robust
constructions, however, are more meaningful since we must be able to approximate a point mass
distribution starting at any state.

Some results exist that establish limits to the degree to which fluctuations in the quantity of a
molecule can be reduced (Lestas, Vinnicombe, and Paulsson, 2010) and therefore appear to be in
conflict with our robustness results mentioned above, which allow us to approximate point mass
distributions, and thus reduce noise, arbitrarily. The claims of Lestas, Vinnicombe, and Paulsson,
2010, however, can apply only to a restricted class of reaction networks as, for example, the system
given by6

(n + 1)X → nX, ∅ → X, (2.5)

is capable of reducing noise arbitrarily by appropriately modulating the rate constants. Other
unpublished constructions that arose when working on our article can also achieve arbitrary noise

5Such a bijection is guaranteed to exist since V is finite and thus NV has the same cardinality as N.
6This simple system was one of my original contributions to Cappelletti, Ortiz-Muñoz, et al., 2020.
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reduction without the need for high molecularity reactions as they incorporate only reactions that
are at most bimolecular. Three assumptions in Lestas, Vinnicombe, and Paulsson, 2010, are that
the regulated molecule X decays linearly, that X regulates the creation of a molecule Y , and that
some arbitrary system depending onY can create X . These conditions are encoded by the following
schema

X → ∅, u(Y ) → u(Y ) + X, f (X) → f (X) + Y,

where f (Y ) represents some general catalytic action ofY for producing X and u(Y ) is some “demon”
that can use the whole history of Y to control the production of X . The explicit construction in
Equation 2.5 as well as the unpublished ones mentioned above each violate at least one of those
assumptions.

The results in this chapter as well of those in Cappelletti, Ortiz-Muñoz, et al., 2020, that do
not appear here are relevant in a biological context. Cells and biological systems in general are
believed to resist decay with the aid of an internal model of their surrounding (Friston, 2012). Such
a model appears as a probability distribution representing beliefs about the state of the environment,
which by following a process similar to Bayesian inference a system can make predictions about
its surroundings. It is therefore of interest to understand which kinds of beliefs, in the form of
probability distributions, can be held by a chemical system such as a cell. Our results indicate
that, in principle, all internal models can be produced by stochastic chemical systems. Our work
focuses on the generation of distributions but has the drawback that those distributions are fixed.
More work would be necessary to incorporate ways of updating the target distributions according
to measurements of the environment. Preliminary forms of this appear in Poole et al., 2017, where
by “clamping” the values of certain species the system can perform probabilistic inference.

It is important to note that our approach for representing probability distributions with chemical
systems is one of many potential methods that can be implemented. In particular, we propose
to represent distributions by means of stationary distributions of stochastic chemical systems;
however, it is also possible to, for example, represent them with a deterministic CRN in which
the concentrations of species are proportional to concentrations. In Baez and Pollard, 2016, a
framework is proposed that places deterministic CRNs in the context of the replicator equation
used in evolutionary game theory and relates the concept of free energy to that of fitness. Other
forms of representing distributions with CRNs, deterministic or stochastic, are possible, and more
work in that direction could bring insight into the way chemistry relates to biology.
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C h a p t e r 3

FORMAL SEMANTICS FOR STOCHASTIC CHEMICAL REACTION
NETWORKS
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PREFACE

This chapter is a shadow of the thesis I had originally conceived. I decided that I would leave
my original vision for my postdoctoral work, where I will be able to develop it adequately and
thoughtfully. What I present here is the starting point of a generalization that will result in a
combinatorial/topological framework for formal power series and stochastic chemical reaction
networks in particular. I believe such a framework could provide a more adequate mathematical
foundation for biology that is at the same time inherently computational.

The idea behind a lot of this material is that of never evaluating variables —treating variables
as formal rather than numerical. Doing so results in a picture in which functions acquire a
combinatorial interpretation as ways of organizing formal variables into discrete structures. For
example, if one restrains from using commutativity, the expression (z + 1)3 can be expanded as

(z + 1)3 = z · z · z + z · z · 1 + z · 1 · z + 1 · z · z + z · 1 · 1 + 1 · z · 1 + 1 · 1 · z + 1 · 1 · 1.

Written this way, this expression reveals that, for example, the terms containing two z’s correspond
to ways of choosing two positions out of three, which we know from the binomial formula that
their number is given by a binomial coefficient. Working formally often reveals combinatorial
patterns behind algebraic expressions and can be helpful in reasoning with them more clearly (see
Figure 3.1).

Using generating functions in my work has led me on a research trajectory that I am likely to
follow for many years ahead. It began when I worked on polymers, the subject of Chapter 1, and I
realized that manipulating certain functions mathematically paralleled structural manipulations of
polymer-related structures. When I worked on the universality of SCRNs, the subject of Chapter
2, I discovered, among other things, that general stationary distributions can be expressed in
terms of spanning trees, which are combinatorial objects1. This observation makes me wonder
about whether there is a general way of interpreting the objects of SCRN theory combinatorially
and whether doing so can be fruitful for mathematical biology, which is rife with combinatorial
structures.

In an attempt to gain a better understanding of generating functions and their usefulness for
combinatorics, I came across the theory combinatorial species (Bergeron, Labelle, and Leroux,
1997; Joyal, 1981). Combinatorial species make use of category theory in order to give a clear
picture of the combinatorial interpretation of formal power series. Despite its elegance and ability

1This result is well-known and can be seen as a version of Kirchoff’s matrix tree theorem (Chaiken and Kleitman,
1978). In the context of continuous time Markov-chains, of which SCRNs are an example, it is known as the Markov
chain tree theorem (Leighton and Rivest, 1983).
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Figure 3.1: Illustration of the combinatorics of generating functions. One way to see generating
functions is as each monomial representing a structure. In particular, we can interpret xn as a unary
string of length n. In this example we see how we can exploit algebraic tricks in order to obtain
combinatorial insights.

to explain many aspects of combinatorial generating functions, combinatorial species theory falls
short of being able to encompass all formal power series. In particular, the only power series that
can arise from combinatorial species are of the form

f (z) =
∞∑

n=0

an

n!
zn, (3.1)

where an is the cardinality of a finite set of structures, and thus a natural number. This is insufficient
for my work as I make use of probability generating functions, which can have coefficients with
values anywhere in the unit interval.

In order to move to more general frameworks in which all power series can be interpreted com-
binatorially, one needs generalizations of combinatorial species. One of such generalizations was
proposed as a way of formalizing the combinatorics of Feynman diagrams in quantum mechanics
(Baez and Dolan, 2001). The framework rests on the concept of groupoid, which can be seen as
generalizations of sets where each element can potentially have non-trivial symmetries (Brown,
1987; Weinstein, 1996). Better still, groupoids are generalizations of equivalence relations in which
transitivity, reflexivity and symmetry are upgraded to compositionality, existence of identities, and
existence of inverses, respectively. By introducting groupoid cardinality, which as opposed to the
cardinality of sets can acquire values spanning all positive real numbers, the authors show that
formal power series can be seen as projections of structures defined in terms of groupoids. The
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result is that in Equation 3.1 the an are now the cardinalities of some groupoid of structures, rather
than a set of structures, and thus can be any positive real number. I need to at least upgrade sets to
groupoids in order to develop a structural theory of chemical reaction networks.

This line of inquiry has led me naturally to homotopy type theory (HoTT) (Univalent Foundations
Program, 2013). HoTT is a foundation of mathematics based on homotopy types, which can be
seen as infinite-dimensional generalizations of groupoids. Just as groupoids are generalizations of
sets, 2-groupoids are similarly a generalization of groupoids, and this trend can of generalization
be carried out all the way to ∞-groupoids. ∞-groupoids can be seen as consisting of points, paths
between points, 2-dimensional paths between paths, and so on. Hence their connection to topology.
Formulating formal power series and SCRNs in the framework of HoTT would give them not only
combinatorial but also topological interpretation. I believe that this perspective could be useful
for mathematical biology. For example, whereas we usually speak of a set of conformations of a
molecule it would be more adequate to speak of a space of conformations. Similarly, it would be
more useful to speak of a space of species and a space of reactions in a chemical reaction network
rather than merely sets. Furthermore, the computational aspect of HoTT could be harnessed to
understand computation in chemical and biological systems.

The purpose of this chapter is to serve as a starting point for a combinatorial/homotopical inter-
pretation of the objects of SCRN theory. The starting point is, as proposed in Baez and Biamonte,
2018, to reformulate SCRNs in terms of their probability generating functions. Following that
to incorporate combinatorial generating functions in order to describe structured collections of
species. Once formulated in this way, the idea is to use the generalizations of combinatorial species
in the language of HoTT (Yorgey, 2014) in order to place SCRN theory in such a context.

It is well known that linear systems described by an eqeuation of the form
dp
dt
= Ap,

where p is some vector and A a linear transformation, admit solutions of the form p = eAt p0, where
p0 is an initial condition and eAt is a matrix exponential (Moya-Cessa and Soto-Eguibar, 2011). In
the case of SCRNs, and continuous-time Markov chains (CTMCs) in general, A is what is known
as the transition rate matrix(McQuarrie, 1967). Expanding the matrix exponential, we obtain

eAt = 1 + At + A2 t2

2!
+ · · · =

∞∑
n=0

An tn

n!
. (3.2)

In Baez and Biamonte, 2018, the authors describe the terms of the above sum conceptually as
describing “sums over histories.” In particular, the term with An would correspond to “histories”
where four reactions took place. I found this description illuminating but at the same time conflicting
with other notions of history that I had learned in different places.
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In my first year at Caltech, I took a course called order of magnitude biology with professors Rob
Phillips and Justin Bois. One of our homework sets included a problem that asked us to calculate
the probability that a kinesin protein would take one step on a microtubule. Such an event consists
of kinesin first detaching from the microtubule and then reattaching. This calculation is equivalent
to computing the probability that a generic CTMC will undergo two given transitions in a given
amount of time, which is proportional to

pi→ j→k(t) = ai→ ja j→k

∫ t

0
e−aite−aj (t−τ)dτ = aia j

e−ait − eaj t

a j − ai
, (3.3)

where i, j, and k are states, ai→ j and a j→k are transition rates, and ai and a j are the sums of
the transition rates for transitions starting at i and j, respectively. This exercise motivated me to
generalize the formula for an arbitrary number of transitions as I understood that such a calculation
would ultimately allowme to write down a generic solution to the chemical master equation (CME)
for SCRNs in terms of sums of those integrals ranging over all possible trajectories of the system.
Yet, a solution written in that form looked very different from the exponential solution referred to
above, and the “histories” given by the terms in Equation 3.2 were certainly not the ones I could
obtain from generalizations of the integral in Equation 3.3. The material in Section 3.3 was my
attempt at reconciling these two views. Although generating functions were not essential, formal
methods were what allowed me to arrive at my desired result.

I spent a great deal of time during my PhD thinking about detailed-balanced SCRNs and their
mathematical properties. Their equilibria are mathematically elegant and very pleasant to work
with. One thing I was always curious about was whether there were more general systems that
displayed the same kind of equilibria. I knew that indeed complex-balanced SCRNs had the same
form of stationary distributions (Anderson, Craciun, and Kurtz, 2010), but I wondered whether
there were a yet more general class of systems that had the same form of stationary distributions.
What is more, I wondered whether it was possible to characterize the class of all SCRNs that had
stationary distributions with product-of-Poisson form. By considering The generating functions
of Poisson distributions are exponential functions. Furthermore, the CME becomes a partial
differential equation when translated into the language of generating functions. Since it is easy to
take derivatives of exponential functions, I set out to characterize the class of SCRNs that could
have exponentials as stationary probability generating functions. What I obtained was basically the
definition of complex balance, which revealed to me that complex-balanced SCRNs were in fact
the most general class of systems that admitted product-of-Poisson-form stationary distributions.
The same result was established in Cappelletti and Wiuf, 2016, using standard SCRN semantics
in terms of CTMCs, but the proof using generating functions is much more concise. This is the
subject of Section 3.4.
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When we were working on the article Cappelletti, Ortiz-Muñoz, et al., 2020, our collaborator
David Anderson came up with a construction aimed at controlling the noise in the counts of some
molecular species Y through a collection of catalysts Xi. In his analysis of the construction, he
made use of Dynkin’s formula (Øksendal, 2010), which in the context of SCRNs describes the time
evolution of the expectation value of a quantity. In particular, for the construction in question,
we wanted to know what the variance of Y was. David’s proof inspired me to search for general
expressions for other higher-order moments of SCRNs. It was then that I came across the notion
of factorial moments. I discovered that factorial moments were much more elegantly described for
SCRN than regular moments. I found out also that it was possible to completely characterize the
dynamics of SCRNs in terms of their factorial moments, as it is the case for regular moments. I
derived an expression analogous to the CME for factorial moments, but it was very complicated.
In an attempt at simplifying it I encountered that the probability generating function f (z) and the
factorialmoment generating functionm(z) are related bym(z) = f (z+1). The findingwas startlingly
simple, especially since the CME for factorial moments was pretty complicated. A special case
of this relationship for the case of there being only one species appears in Behr, Duchamp, and
Penson, 2017. Others have explored methods for solving factorial moment hierarchies, which is
not something we do here (Krishnamurthy and Smith, 2017; Smadbeck and Kaznessis, 2012, 2013;
Smith and Krishnamurthy, 2017, 2021; Sotiropoulos and Kaznessis, 2011). For some time I have
dreamt of working out the combinatorial interpretation of factorial moments. The fact that zn is
mapped to (z+1)n tells me that it must have something to do with subsets and binomial coefficients.
I intend to work on this problem in the future. I report my findings about factorial moments in
Section 3.5.

The last section focuses onmethods for computing the stationary distributions of SCRNs for which a
rough notion of structure and molecular content exists. I refer to these as assembly systems because
they are intended to model systems composed of atomic units that assemble into more complex
structures. I exploit the results on complex balance from Section 3.4 in order to extract partition
functions from the exponential stationary generating functions. Finally, I apply these methods
in conjunction from those of Section 3.5 in order to derive general expressions for the factorial
moments of assembly systems. I see this section as a starting point for a generalization of SCRNs
in which species are not merely names of molecules but discrete structures composed of units, such
as molecules composed of atoms or protein complexes made up of proteins. A formalism parallel
to mine with use of generating functions for assembly systems appears in Whittle, 1986, but they
do not focus on partition functions or factorial moments.
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ABSTRACT

We define the semantics of stochastic chemical reaction networks (SCRNs) in terms of formal
power series. The chemical master (CME) equation becomes a formal partial differential equation
on the probability generating function of a SCRN. We define a class of regular solutions to the
CME as ones where the probability of infinite paths vanishes at all finite times. Equivalently,
regular solutions to the CME are those that can be expressed as the exponential of an infinitesimal
stochastic operator. We focus on stationary solutions to the CME, which are time-independent.
We show that complex-balanced SCRNs are precisely those that admit an exponential power series
as a stationary solution. We define factorial moments and their generating function and derive a
simple relationship between the factorial moment generating function and the probability generating
function. Finally, we define assembly systems, which are complex-balanced SCRNs where each
species has a composition, and for which all reactions preserve composition.
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3.1 Introduction
As we saw in the previous chapter, the sole structure of a network of interactions in a chemical
system can produce highly complex behavior, that is not even considering the additional expressive
power that we would gain by considering spatial heterogeneity. In a CRN, we need to specify the
complete sets of molecules and interactions as part of their definition. For a real chemical system
such as a biological cell it can be hard, or impossible, to know a priori the complete set of molecules
and reactions due to the combinatorial complexity of ever larger molecular structures and potential
interactions between them. Instead, the process is generative, meaning that from a set of constituent
atoms and rules that govern their local interactions we can inductively generate larger and more
complex molecules. As such we can see the programmable part of a chemical system not as the
complete interaction network itself but as the set of atoms and their local interactions. The species
of a CRN would then become derived, structured entities themselves. Due to the discrete nature of
molecules these structures are of a combinatorial nature.

In the case of biology the set of atoms from which other molecules are generated are not atoms in
the sense of physics; rather, they are the basic constituents of a given level of description, such as
nucleotides, amino acids, or proteins. A mathematical model of such systems would be in the form
of a CRN generated by a set of atomic constituents and local interactions. Such models would give
rise to a higher level of precision in terms of elucidating biomolecular phenomena by producing
combinatorial interaction models that can be compared to experiment.

Formal power series in the form of generating functions are used in combinatorics and probability
theory to summarize collections of numbers such as probability distributions or counts of combi-
natorial structures (Flajolet and Sedgewick, 2009; Wilf, 1994). Once distributions and counts are
represented in the power series form one can usually use the familiar operations of calculus and
algebra in order to convert a power series into a closed-form that can be more easily manipulated
than mere collections of numbers. In this chapter we will develop a formalism for stochastic chem-
ical reaction networks based on formal power series. The ideas are inspired by Baez and Biamonte,
2018, where they introduce such formalism under the name of stochastic mechanics, and they use
it to draw parallels with quantum mechanics.

We use the stochastic mechanics formalism in order to define the corresponding chemical master
equation (CME) and define expressions for the stochastic dynamics. The CME has a standard
universal solution in terms of a matrix exponential (Moya-Cessa and Soto-Eguibar, 2011). We use
formal methods to show that the standard operator exponential solution can be expressed in a form
where probabilities of specific paths can be more readily extracted.

We show that complex-balanced SCRNs can be identified with those that admit an exponential
function as the stationary distribution. We do this by first showing that complex-balanced systems
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admit a stationary distribution whose generating function is an exponential. This was also done in
Baez and Biamonte, 2018. This result is well known for SCRNs, though the proofs do not always
employ generating functions (Anderson, Craciun, and Kurtz, 2010; Whittle, 1986). We show the
converse, namely that if a SCRN admits an exponential stationary solution, then it must be complex
balanced. This characterizes complex-balanced SCRNs as those that admit exponential functions
as stationary solutions. This result was proved in Cappelletti andWiuf, 2016, using standard SCRN
methods, but the proof we provide here is much shorter and concise.

We will also define factorial moments and their generating function. We show that the probability
and factorial moment generating functions are related to one another by a simple transformation:
adding a unit to each variable. A special case of this result appears in Behr, Duchamp, and Penson,
2017, for the case of systems having a single species. This result is hinted at in Krishnamurthy and
Smith, 2017; Smith and Krishnamurthy, 2017, but it does not appear explicitly.

We define assembly systems as SCRNs that conserve mass and are complex balanced. We develop
a method for computing the partition function of the different conservation classes, which can
be used to compute probabilities. Similar ideas appear in Whittle, 1986, however, they do not
provide rigorous proofs and their methods are restricted to detailed balance. We derive a formula
for computing the factorial moments of assembly systems.

3.2 Preliminaries
We are interested in well-mixed chemical solutions with a small number of molecules. At any given
moment one of such solutions is described by the positions and velocities of all the molecules in
the mixture but such a description is too specific for our purposes. In particular, since the solution
is well-mixed, we consider not a low level description of the mixture but a high level one in which
we only specify the number of molecules present. This is because the well-mixing assumption
means that the states of the solution do not spend more time in any one region of phase space than
another. As a result, the only informative variable regarding the chemical solution is the number
of molecules it contains. Mathematically this means that the state of a system is described by a
function that assigns to each kind of molecule, or species, a whole number, its counts. We formalize
this below with the concept of a multiset.

For sets A and B, we will use the notations A → B and BA for the set of functions from A to B

interchangeably. We will denote the set of natural numbers, i.e. non-negative integers, with N, the
set of real numbers with R, and the set of positive real numbers with R+.

Let A be a set. A multiset over A is a function x : A→ N with the property that the sum
∑

a∈A xa

is finite. Although the set NA may include functions that are not multisets because their total is not
finite, whenever we write the symbol NA, we will hereafter mean the set of multisets over A. We
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write multisets x ∈ NA as formal sums of elements of A as follows

x =
∑
a∈A

xaa.

The sum of two multisets x, y ∈ NA is given by

x + y =
∑
a∈A

(xa + ya)a.

Example 3.2.1. Let A = {X,Y }. Examples of multisets over A are

0, X, Y, X + Y, 10X + 3Y .

An example of a multiset sum is

(3X + 2Y ) + (5X + 10Y ) = 8X + 12Y .

We will be interested in how our chemical mixtures evolve over time. Given that our description of
a mixture is in terms of multisets of species, we choose to model the evolution as a random process.
At any given state of the mixture, given by a multiset of species, any of a number of reactions
may occur, each with a different probability. As a result, the time evolution of the mixture is
non-deterministic. We choose to model this situation by means of probability distributions, which
assign a probability to each of themultisets that are reachable from some initial multiset or ensemble
of multisets. Mathematically a probability distribution over multisets is a function that assigns a
real number, its probability, to each multiset. In general, we will need more than probability
distributions as there may be calculations that involve real-valued functions over multisets that
either do not add up to 1 or that have negative values. We therefore consider not just probability
distributions but general functions that assign real numbers to multisets.

Formal Power Series

Instead of working with simple functions over multisets, we will be using the notion of a formal
power series. In a formal power series, we assign a formal variable to each element of a given set.
Then, to each multiset over that set, we associate a monomial consisting of the product of powers
of formal variables, where the powers of each variable are given by the values of the multiset. Note
that since multisets use natural numbers, the powers of the formal variables in a formal power series
are always nonnegative. The value in doing this is that we can take advantage of the algebra of
formal power series in order to perform various manipulations of functions over multisets. We will
now define formal power series and their algebra.
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Definition 3.2.1. Let A be some set. The ring R[[z]] of formal power series over the formal
variables z = (za)a∈A, or simply a power series over A, consists of functions f : NA → R. For a
power series f ∈ R[[z]], we use the notation

f =
∑

x∈NA

fx zx,

where zx =
∏

a∈A zxa
a . For power series f , g ∈ R[[z]] over A, we define addition and multiplication

as follows

f + g =
∑

x∈NA

( fx + gx)zx,

f g =
∑

x∈NA

∑
0≤y≤x

fygx−yzx,

where the order of multisets is component-wise, i.e. y ≤ x iff ya ≤ xa for each a ∈ A.

Although formal power series are very similar to regular power series, which are functions of one
or multiple real variables, a difference is that since the variables of a formal power series are not to
be thought of as real numbers, we do not need to worry about issues of convergence. For example,
the formal power series

∑∞
i=0 i!zi is a well-defined object, whereas the corresponding power series

diverges everywhere except at z = 0. A regular power series is the representation of a partial
function f : Rn → R of n variables, which assigns to vectors z ∈ Rn of real numbers a real number
f (z), whenever f (z) is defined. The reason a power series representation is in general a partial
function is that a power series may not converge for some values of z and hence it is not defined for
all input values. The concept of a radius of convergence is precisely that of establishing the range
with which a power series converges around a point. A formal power series, on the other hand, does
not encounter the convergence issue since it is not a function of a real variable. Instead a formal
power series f : NA → R, where |A| = n, is a total function that assigns to each multiset x ∈ NA a
real number fx . A more suggestive notation for f being a formal power series is f ∈ RNA, because
it highlights the vector-like nature of f . In this vector picture, RNA is a vector space of infinite
dimension |NA |, fx is the x-th entry of f , and zx is the basis vector in the x direction. Hence, unless
we invoke an infinite sum of formal power series, a formal power series obtained by applying the
operations of formal power series a finite number of times will always be well-defined, as long
as we start with well-defined formal power series. This is the case for the operations of addition
and multiplication we defined above, as well as for some of the ones we will define below in this
chapter.

To be more concrete, let us consider an example in which an operation fails to produce a legitimate
formal power series. As mentioned above, if we begin with a set of well-defined formal power
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series and use them to construct new formal power series by applying the addition andmultiplication
operations a finite number of times, what we obtain will always be a well-defined formal power
series. It is possible to prove this by induction but we will not do that here. For a proof of this
statement see, for example, Flajolet and Sedgewick, 2009. One operation between formal power
series that arises naturally in many contexts is that of composition. The composition of formal
power series should generalize to composition of analytic functions (without requiring the formal
power series to be analytic). Let us consider two formal power series on a single variable, f , g : RN.
It would be tempting to define composition as follows

f ◦ g =
∑
n∈N

fngn,

where gn denotes the n-fold multiplication of g times itself, which is well-defined by the discussion
above. Notice that the constant term of f ◦ g is a number given by the following infinite sum

( f ◦ g)0 =
∑
n∈N

fngn
0,

which we cannot guarantee will converge in general. Hence, in order to yield a well-defined
operation, composition of formal power series requires that the right term of the composition, in
this case g, has a null constant term, namely g0 = 0. If this is the case then it is possible to show
that the summations arising in f ◦ g are all of a finite number of terms (see for example Flajolet
and Sedgewick, 2009 or Wilf, 1994).

In spite of the difference between regular and formal power series, the notation for formal power
series invites us to use our intuitions about regular power series to think about formal ones. For
example, the notation zx for unit vectors resembles a monomial, i.e. a regular power series with one
term. The multiplication of formal power series is designed to match the behavior of multiplication
of regular power series. For example zx zy = zx+y. One must be careful, however, not to be too
liberal in the application of regular power series concepts to formal power series. In particular,
the notions of continuity, radius of convergence, and derivative, are meaningless for formal power
series. One example of using old intuitions for formal power series is the geometric series. Let us
define a geometric series in a single variable as the formal power series

1
1 − z

≡ 1 + z + z2 + · · · =
∞∑

i=0
zi .

Notice that the expression on the left is purely formal. We did not give a definition of the reciprocal
of a formal power series. Instead, we use that notation to emphasize the fact that if we multiply
the geometric series by 1 − z we obtain the following by applying the definitions of addition and
multiplication of formal power series

(1 − z) 1
1 − z

≡ (1 − z)(1 + z + z2 + · · · ) = (1 + z + z2 + · · · ) − (z + z2 + z3 + · · · ) = 1.
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We must therefore be careful to remember that in the expression 1/(1 − z) we are not actually
dividing by 1− z; instead, it is reminding us that 1− z is the multiplicative inverse of the geometric
series. Furthermore, since z is not a number, to say that 1/(1 − z) is not well-defined for z = 1 is
meaningless.

Henceforth, by power series we will mean a formal power series unless we state otherwise.

Example 3.2.2. Let A = {1, 2}. Examples of formal power series over A are

0, 1, z1, z2, 1 + 2z1 + 2z2 + 4z1z2,
∑

x∈NA

zx1
1

x1!
zx2

2
x2!
,

∑
x∈NA

zx1
1 zx2

2 .

Examples of additions and multiplications of power series over A are the following

(1 + 2z1) + (1 + z2) = 2 + 2z1 + 2z2,

(1 + 2z1)(1 + 2z2) = 1 + 2z1 + 2z2 + 4z1z2,( ∑
x∈NA

zx1
1

x1!
zx2

2
x2!

)
+

( ∑
x∈NA

zx1
1 zx2

2

)
=

∑
x∈NA

(
1 +

1
x1!x2!

)
zx1

1 zx2
2 ,( ∑

x∈NA

zx1
1

x1!
zx2

2
x2!

) ( ∑
x∈NA

zx1
1 zx2

2

)
=

∑
x∈NA

∑
0≤y≤x

1
y1!y2!

zx1
1 zx2

2 .

3.3 Dynamics
So far we have talked about states of well-mixed chemical solutions, which we have chosen to
model mathematically as multisets, and probability distributions over states, which we have chosen
to model as formal power series. We are ultimately interested in how these states or distributions
evolve over time according to reactions, so we need to nail down a mathematical model for
reactions. For our purposes, a reaction will be a rule that specifies a number of reactants, which
are a collection of species, which can be converted into a number of products, also a collection
of species. In addition, each reaction will have a probability rate of occurring at a given state
of the mixture, and that probability rate will be proportional to the number of ways in which the
reactants can be chosen from the mixture. Formally then a reaction is a pair of multisets of species,
its reactants and products, along with a positive real number that gives the proportionality of the
probability rate of the reaction to the number of ways of picking out the reactants from a mixture.
In a given chemically-reacting mixture, there may be a number of reactions possible, and we refer
to the collection of reactions as a network of reactions. We will now provide the formal definition
of a chemical reaction network.
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Definition 3.3.1. A chemical reaction network is a quadruple (S, R, n, k), where S is a set of species,
R is a set of reactions, n : 2 × R × S → N is a stoichiometric function, and k : R → R+ is a rate
constant function.

In order to know the reactants of a given reaction r ∈ R, we evaluate the stoichiometric function at
the pair (0, r), which gives the reactant multiset n0,r : S → N. Similarly, the evaluation n1,r : S → N
gives the product multiset of r . We will use the following notation for the stoichiometry and rate
constant of reactions ∑

s∈S

n0,r,ss
kr−→

∑
s∈S

n1,r,ss.

As we discussed, the rate constant is a constant of proportionality that when multiplied times the
number of ways of selecting the reactants of a reaction out of a mixture it gives the probability per
unit time that that reaction will take place within such mixture. The number of ways the reactants of
a reaction can be selected out of a mixture is a combinatorial factor that we now explore. Suppose
that the state of a mixture is described by a multiset x ∈ NS, and that we want to know how many
ways we can pick out the reactants of some reaction r ∈ R. Although the multiset description
only provides the amounts of each species in a mixture and hence does not take into consideration
the fact that the molecules contained in the mixture are all distinct, we must take the latter into
consideration in order to obtain the correct combinatorial factor we are after. Let us focus on
one species s ∈ S for the moment. There are a total of xs instances of s in the mixture, and the
reaction requires n0,r,s of them. There are

( xs
n0,r,s

)
=

xs!
n0,r,s!(xs−n0,r,s)! number of ways of choosing n0,r,s

molecules out of the xs that are available. However, since the level of abstraction that we have
chosen for reactions is such that they only specify how many molecules are required but not how
they are required, we choose to assume that all molecules in the reactant play a different role in
the reaction. As a result, we must consider not combinations but permutations, and, therefore,
the number of ways of picking out the species in the reactants is xs!

(xs−n0,r,s)! . If in a fine-grained
description of a reaction it turns out that all the molecules participate identically, or if there are any
symmetries, the rate constants at our level of abstraction must absorb that information. Our analysis
was for a single species, but the combinatorial factor giving the total number of ways of picking
out the reactants from the mixture is the product of the respective permutations for each species.
With our combinatorial factor in hand, we can now compute the probability rate, also known as the
propensity, at which the reaction will take place within the given mixture. Hence, the propensity
of reaction r for a multiset x, which we denote as %r,x is given by

%r,x = kr
x!

(x − n0,r)!
,

where x! ≡∏
s∈S xs! for any multiset x ∈ NS.
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Example 3.3.1. Let (S, R, n, k) be a CRN with S = {X,Y }, R = {1, 2}, and with stoichioemtries
and rate constants given by

2X + Y
1.2−−→ X, 0 0.3−−→ X + Y .

The propensities at multiset 10X + 6Y are given by

%1,10X+6Y = 1.2(10 · 9)(6) = 648, %2,10X+6Y = 0.3.

There is a nice way of extracting the propensities of a reaction by exploiting the formal power series
formalism. First, let us notice that if we take multiple derivatives of a monomial zn, where for the
moment z is a single formal variable and not a tuple of formal variables, we obtain permutations as
coefficients. For example, for a third derivative we obtain

d3

dz3 (z
n) = d2

dz2 (nzn−1) = d
dz
(n(n − 1)zn−2) = n(n − 1)(n − 2)zn−3 =

n!
(n − 3)! zn−3.

If we let z = (za)a∈A again be an S-tuple of formal variables, we see that the multiple application of
derivatives obtains the combinatorial factor of the form appearing in the formula for propensities.
For example, if S = {a, b, c}, the multiple derivative below obtains

∂6

∂z3
a∂z2

b∂zc
(zx) = xa(xa − 1)(xa − 2)xb(xb − 1)xczxa−3

a zxb−2
b zxb−1

c =
x!

(x − 3a − 2b − c)! zx−3a−2b−c,

where x ∈ NS is a multiset. Let us now give a more general and formal treatment of the preceding
ideas.

For the rest of the chapter, an operator O : R[[z]] → R[[z]] will be a linear function from power
series to power series. We would like to define a differential operator that recapitulates the behavior
of the familiar differential operator in calculus. In particular, a differential operator must satisfy
the power rule

∂

∂za
(zx) = xazx−a,

as we have already made use of in the above discussion. Since an operator is linear and every power
series is a linear combination of monomials, the power rule in fact uniquely determines the action
of the differential operator. We will now provide the formal definition of the differential operators.
In order to keep notation more succinct, we opt to use the symbol ∂a in place of ∂

∂za
.

For each a ∈ A, we define a differential operator ∂a : R[[z]] → R[[z]] as follows

∂a f =
∑

x∈NA

(xa + 1) fx+azx .
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For each multiset x ∈ NA we define the multi-differential operator ∇x : R[[z]] → R[[z]] as follows

∇y f =
∑

x∈NA

(x + y)!
x!

fx+yzx .

The reason for the notation for the multi-differential operator is that it can be seen as multiset powers
of a gradient operator ∇ = (∂a)a∈A. More explicitly, since the differential operators commute with
one another, we can write the expression

∇x =
∏
a∈A

∂xa
a ,

where the product indicates repeated application of an operator. We leave it to the reader to verify
that our definition of the multi-differential operator does in fact coincide with the above product of
differential operators.

With the multi-differential operator in hand, we observe that propensities appear as coefficients of
the following operator application

kr∇n0,r f =
∑
x∈NS

kr
(x + n0,r)!

x!
fx+n0,r zx =

∑
x∈NS

%r,x+n0,r zx .

Applied to a single monomial we have

kr∇n0,r zx = %r,x zx−n0,r .

As we discussed previously, the propensity of a reaction at a state gives the probability per unit
time that the reaction will take place at the given state. When a reaction takes place, it changes the
state, which results in a corresponding decrease of probability of being at that state. Accordingly,
if a given state is the result of applying a reaction at some other state, the probability of the given
state will increase when such a reaction takes place. By taking into consideration all the reactions
that may lead out of a state, as well as all the reactions that may lead into that state, we can use the
propensities to compute the rate of change of probability at a state. The following equation for the
rate of change of probability is known as the chemical master equation

∂t fx =
∑
r∈R

%r,x+n0,r fx+n0,r − %r,x fx,

where fx denotes the time-dependent probability of being in state x. The chemical master equation
characterizes the dynamics of a probability distribution described by a chemical reaction network.

The chemical master equation above involves time-dependent probabilities, as well as a time
derivative, which we have not yet defined. In the spirit of formal semantics, rather than defining
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Figure 3.2: Illustration of probability generating functions. On the top is a general probability
generating function and its combinatorial interpretation. Below is the probability generating
function of a multivariate Poisson, which is given by a product of exponentials.

time-dependence as dependence on a real-valued time variable, we will treat time itself as a formal
variable. What this means is that we will regard time-dependent power series as power series with
an additional formal variable corresponding to time. As we will see later, making time a formal
variable will come in handy, especially when taking integrals with respect to time. As opposed
to the z variables, which we think of as strictly formal, the formal time variable will eventually
be evaluated in order to obtain probabilities at given times. In later sections, we will introduce
formal devices for evaluating the formal time variable at desired positive real numbers. We will
now provide the formal definition of time-dependent formal power series.

A dynamic power series over A is a power series over the variables z = (za)a∈A and the formal time
variable t. We denote the ring of dynamic power series by R[[z, t]]. For a dynamic power series
f ∈ R[[z, t]], we use the notation

f =
∑
i∈N

x∈NA

fi,xtizx .

We will also make use of the following notation

f =
∞∑

i=0
fiti,

where each fi ∈ R[[z]] is a power series over A. Finally, we will also use the notation

f =
∑

x∈NA

fx zx,
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Figure 3.3: Illustration of reaction operator. The terms of the infinitesimal stochastic operator are
reaction operators. Their combinatorial interpretation is shown here for an example reaction.

where each fx ∈ R[[t]] is a formal power series on the single variable t. These last two notations
will come into conflict as the symbol f0 may mean i = 0 or x = 0. Whenever ambiguity may arise,
we will write f0,· or f·,0 in order to distinguish each case; otherwise, we will deduce the meaning
from context. The differential operator for t will be analogous to the differential operator for the z

variables

∂t f =
∞∑

i=0
(i + 1) fi+1ti .

Having defined dynamic power series and explored the link between differential operators and
propensities, we are ready to define the stochastic dynamics of a CRN in terms of formal power
series. We will do so by introducing an operator whose action on a dynamic power series is to give
the time derivative of the dynamics and recovers the chemical master equation.

The infinitesimal stochastic operator A : R[[z]] → R[[z]] is given by

A =
∑
r∈R

kr(zn1,r − zn0,r )∇n0,r .

A stochastic dynamics f ∈ R[[z, t]] of a CRN is a dynamic power series satisfying

∂t f = A f .

Wewill now show that the stochastic dynamicswe defined above indeed corresponds to the chemical
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master equation. Using the relationship between differential operators and propensities, we obtain

A f =
∑
r∈R

kr(zn1,r − zn0,r )∇n0,r f =
∑
r∈R

∑
x∈NS

(zn1,r − zn0,r )%r,x+n0,r fx+n0,r zx

=
∑
x∈NS

∑
r∈R

%r,x+n0,r fx+n0,r (zx+n1,r − zx+n0,r ) =
∑
x∈NS

∑
r∈R

(%r,x+n0,r−n1,r fx+n0,r−n1,r − %r,x fx)zx

=
∑
x∈NS

∂t fx zx = ∂t f .

Example 3.3.2. Let S = {A, B,C} and let (S, R, n, k) be a CRN with the following reactions

A + B
7−⇀↽−
5

2C,

where the double arrow indicates that the reaction is reversible. The infinitesimal stochastic operator
for this CRN is

A = 7(z2
C − zAzB)∂A∂B + 5(zAzB − z2

C)∂2
C .

The chemical master equation for this CRN has the form

∂t fx = 7(xA + 1)(xB + 1) fx+A+B−2C + 5(xC + 2)(xC + 1) fx+2C−A−B + (7xAxB − 5xC(xC − 1)) fx .

We will now begin to look at methods for finding solutions for stochastic dynamics of CRNs.
Our first strategy will consist of integrating the CME. We begin by defining time integration for
the time variable. As we did for derivatives of formal power series, we want integration to be a
generalization of the usual notion of integration. As we know from calculus, the definite integral
of a monomial satisfies ∫ t

0
tndt =

tn+1

n + 1
.

Since all dynamic power series are linear combinations of powers of t (with coefficients in R[[z]]),
the above integral operation extends uniquely to all dynamic power series, which leads to the
following definition.

The time integral operator
∫ t

0 dt : R[[z, t]] → R[[z, t]] on a dynamic power series f ∈ R[[z, t]] is
given by ∫ t

0
f dt =

∞∑
i=1

fi−1
i

ti .

With regards to time integration and differentiation, we should expect them to satisfy some gener-
alized version of the fundamental theorem of calculus. If we focus on a single monomial, we see
that the following is true ∫ t

0
∂ttndt =

∫ t

0
ntn−1dt = n

tn

n
= tn,
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so long as n ≥ 1. In the case that n = 0, we obtain∫ t

0
∂tt0dt =

∫ t

0
0dt = 0.

Taking these identities together, we have the formal fundamental theorem of calculus∫ t

0
∂t f dt =

∞∑
i=0

fi

∫ t

0
∂tti =

∞∑
i=1

fiti = f − f0,

where f0 ∈ R[[z]]. We now use the fundamental theorem to integrate the CME. We obtain

f − f0 =
∫ t

0
∂t f =

∫ t

0
A f dt,

which leads to the following fixed point equation

f = f0 +
∫ t

0
A f dt. (3.4)

We refer to this as the integral form of the CME. This equation gives f as the result of doing
something to f itself. We can therefore apply the same transformation twice and obtain

f = f0 +
∫ t

0
A f dt = f0 +

∫ t

0
A f0dt +

∫ t

0
A

∫ t

0
A f dtdt = f0 + tA f0 +

∫ t

0
A

∫ t

0
A f dtdt .

Notice that repeated integration of the constant series 1 yields the recursion(∫ t

0
A dt

) i

1 =
(∫ t

0
A dt

) i−1
A t =

(∫ t

0
A dt

) i−2 t2

2
A 2 =

(∫ t

0
dt

) i−3 t3

6
A 3 = · · · = ti

i!
A i .

In order to obtain a more general formula for f , we continue the recursion in Equation 3.4, applying
the transformation of the integral CME an arbitrary number of times, and obtain

f =
(∫ t

0
A dt

)n+1
f +

n∑
i=0

(∫ t

0
A dt

) i

f0 =
(∫ t

0
A dt

)n+1
f +

n∑
i=0

ti

i!
A i f0.

Intuitively, we would expect that, if we let n go to infinity, we would obtain

f = lim
n→∞

(∫
0
A dt

)n

f +
∞∑

i=0

ti

i!
A i f0,

however, we do not know if the limit in the first term is well-defined. We will focus on stochastic
dynamics that can be expressed as the sum in the second term. Notice that the sum in the second
term has the form of the series of an exponential, which leads to the following definition.
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Figure 3.4: Pictorial representation of the exponential solution to the chemical master equation and
its derivation.

We define the operator exponential as

etA =

∞∑
i=0

ti

i!
A i .

We say that a stochastic dynamics f ∈ R[[z, t]] is regular if it has the form

f = etA f0.

We will now look at an alternative way of obtaining the same exponential solution. Recall the
formula for the geometric series

1
1 − t

=

∞∑
i=0

ti .

This suggests a definition for inverses of operators of the form 1 − O as

1
1 − O

=

∞∑
i=0

O i,

provided the sum is well-defined. We can express the CME as follows

f0 = f −
∫

A f =
(
1 −

∫
A

)
f ,
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where we have used
∫
=

∫ t
0 dt for brevity. Using the above operator inverse formula, we obtain

f =
1

1 −
∫

A
f0 =

∞∑
i=0

(∫
A

) i

f0 =
∞∑

i=0

ti

i!
A i f0 = etA f0.

Let us define positive and negative parts of the infinitesimal stochastic operator as follows

A = A+ −A− =
∑
r∈R

kr zn1,r∇n0,r −
∑
r∈R

kr zn0,r∇n0,r .

We can write the CME as follows

f0 +
∫

A+ f = f +
∫

A− f =
(
1 +

∫
A−

)
f .

Using the operator inverse formula, we obtain

f =
1

1 +
∫

A−
f0 +

1
1 +

∫
A−

∫
A+ f .

We define the waiting operator as

W =
1

1 +
∫

A−
=

∞∑
i=0

(
−

∫
A−

) i

.

The waiting operator corresponds to all the instances of no reactions happening in a given amount
of time. Notice that when applied to a time-independent function, the waiting operator gives

W f0 =
∞∑

i=0

(
−

∫
A−

) i

f0 =
∞∑

i=0

(−t)i
i!

A i
− f0 = e−tA− f0,

so thewaiting operator simplifies to the exponential operator e−tA− . In terms of thewaiting operator,
we can express the CME as

f = e−tA− f0 +W

∫
A+ f .

Example 3.3.3. Let S = {A, B} and let (S, R, n, k) be a CRN defined by

A
k1−−⇀↽−−
k2

B.

We will compute the probability that a system starts with 5A, converts one A into a B, and then
converts a B into an A, leading back to 5A. We have the following transitions and propensities

5A
5k1−−⇀↽−−
k2

4A + B
4k1−−→ 3A + 2B.
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Figure 3.5: Pictorial representation of the waiting operator and of the derivation of the path integral
solution to the CME.

We have the following operator sequence∫
k2zA∂BW

∫
k1zB∂AW z5

A = k1k2

∫
zA∂BW

∫
zB∂Ae−t5k1 z5

A

= 5k1k2

∫
zA∂BW

∞∑
i=1

ti

i!
(−5k1)i−1z4

AzB

= 5k1k2

∫
zA∂B

∞∑
j=0

∞∑
i=1

(
−

∫
A−

) j ti

i!
(−5k1)i−1z4

AzB

= 5k1k2

∫
zA∂B

∞∑
j=0

∞∑
i=1

ti+ j

(i + j)! (−4k1 − k2) j(−5k1)i−1z4
AzB

= 5k1k2

∞∑
i=1

∞∑
j=1

ti+ j

(i + j)! (−4k1 − k2) j−1(−5k1)i−1z5
A

= 5k1k2

∞∑
i=2

i−2∑
j=0

ti

i!
(−4k1 − k2)i− j−2(−5k1) j z5

A.

3.4 Stationarity
We will now, and for the rest of this chapter, focus on stationary solutions to the CME. A stationary
dynamics is one which is equal to its initial condition. In other words, the stochastic dynamics is
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time invariant. Stationary solutions contain an important class of dynamics, those that are obtained
as the long-term dynamics of systems initialized at a pure mixture. Such limit distributions
are stationary. On the other hand, not all stationary distributions are limit distributions. In
particular, any linear combination of stationary distributions is itself a stationary distribution, up to
normalization, so a stationary distribution composed of two limit distributions may not in general
be the limit distribution of any pure state. If we consider the limits of dynamics with arbitrary
initial conditions, then limit dynamics coincide with stationary dynamics. We have already argued
that limit dynamics are stationary. Conversely, if the initial condition of a stochastic dynamics is
stationary then it is also the limit dynamics. For this reason, we will focus on stationary dynamics,
which are easier to define.

We say that a stochastic dynamics f is stationary if it satisfies

f = f0 +
∫

A f = f0.

A regular stochastic dynamics f is stationary if and only if

f = f0, and A f = 0.

As we previously discussed, a positive linear combination of stationary dynamics is a stationary
dynamics. We can think of stationary dynamics obtained this way as being composite. Accordingly,
we think of stationary dynamics which cannot be obtained as positive linear combinations of other
stationary dynamics as being atomic, or indivisible.

Let (S, R, n,K). We say that a stationary dynamics f ∈ R[[z]] is irreducible if for any positive
series g, h ∈ R[[z]] with f = g + h, if g is a stationary dynamics, then h = 0.

3.4.1 Complex balance
We will now focus on stationary series that can be expressed as exponential functions. The
generating functions of product of Poisson distributions are exponential functions, and are also
stationary solutions for the dynamics of complex-balanced CRNs. We will review the definition of
complex balance and show that it is equivalent to exponential stationary series.

We say that a CRN is complex balanced if there exists a function c : S → R+ such that for all
multisets x ∈ NS, we have ∑

r∈R:
n0,r=x

kr cn0,r =
∑
r∈R:

n1,r=x

kr cn0,r .

For a function c : S → R+, we define the exponential power series ecz as follows

ecz =
∑
x∈NS

cx

x!
zx .
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Let us assume that a CRN has a stationary dynamics of the form f = ecz. Observe that applying a
differential operator to an exponential series, we obtain

∇xecz = cxecz .

If we apply the infinitesimal stochastic operator to an exponential power series, we obtain

A ecz =
∑
r∈R

kr(zn1,r − zn0,r )∇n0,r ecz =
∑
r∈R

kr(zn1,r − zn0,r )cn0,r ecz

= ecz
∑
r∈R

kr(zn1,r − zn0,r )cn0,r = ecz
∑
x∈NS

©­­­«
∑
r∈R:

n1,r=x

kr cn0,r −
∑
r∈R:

n0,r=x

kr cn0,r
ª®®®¬ zx .

If we wish to have A ecz = 0, as required for a stationary dynamics, we must either have ecz = 0 or∑
r∈R:

n1,r=x

kr cn0,r −
∑
r∈R:

n0,r=x

kr cn0,r = 0,

for each x ∈ NS, which is the definition of complex balance. Since ecz , 0, we must have that
a CRN is complex balanced if, and only if, there exists an exponential power series ecz that is
stationary

A ecz = 0.

3.5 Factorial moments
Wewill now be interested in a characterization of stochastic dynamics in terms of factorialmoments.
The factorial moments are the expected values of the numbers of ways of permuting a multiset
onto mixtures of an ensemble. In order to formally define expected values, we introduce the inner
product of power series.

The inner product between power series f , g ∈ R[[z]] is given by

〈 f , g〉 =
∑

x∈NA

x! fxgx

where x! =
∏

a∈A xa!. When it is well defined, the inner product between two power series is a
real number. With this definition of inner product, we can express the sum of the coefficients of a
power series as the inner product with ez

〈ez, f 〉 =
∑
x∈NS

fx .

Also, we can extract coefficients of power series using the inner products with〈
zx

x!
, f

〉
= fx .
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Suppose we are interested in the expected value of a function α : NS → R. We consider the
following exponential series of α

ᾱ =
∑
x∈NS

zx

x!
αx .

Then, the expected value of α with respect to a normalized power series f , if it exists, is given by

E f [α] = 〈ᾱ, f 〉 =
∑
x∈NS

αx fx .

Given a distribution f , the factorial moment of order x ∈ NS is the expected value of α with
αy =

y!
(y−x)! :

mx =
∑
y∈NS

y!
(y − x)! fy .

Let x ∈ NS and αy =
y!
(y−x)! for y ∈ N

S so that mx = E[α]. Hence, we have that the exponential
series of α satisfies

ᾱ =
∑
y∈NS

zy

(y − x)! = zxez .

We have therefore that
mx = 〈zxez, f 〉.

Let us define the factorial moment operator as follows

M f =
∑
x∈NS

zx

x!
〈zxez, f 〉.

Notice that the variables z inside the inner product disappears after taking the inner product. We
could therefore substitute for any equivalent tuple of variables and have the same effect. Let us
assume that the inner products are taken over the tuple z′ = (z′s)s∈S. We can now take the sum
inside the inner product and obtain

M f =
∑
x∈NS

zx

x!
〈z′xez′, f 〉 = 〈ez′zez′, f 〉 = 〈ez′(z+1), f 〉 =

∑
x∈NS

(z + 1)x fx .

If we define the evaluation of f at z + 1 = (zs + 1)s∈S by

f (z + 1) =
∑
x∈NS

(z + 1)x fx,

then we have that
M f (z) = f (z + 1).

We would now like to obtain the dynamics of the moment series. We will do so by taking the
time derivative of the moment operator applied to a stochastic dynamics, and then use the CME to
derive an expression for the dynamics of the moment series.
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If we take the time derivative of the moment operator applied to a stochastic dynamics, we obtain

∂tM f =M ∂t f =MA f .

Let us define the factorial moment series as the application of the moment operator to the stochastic
dynamics

µ =M f .

We therefore have that
∂tµ =MA f =MA M −1µ.

The operator MA M −1 is analogous to the infinitesimal stochastic operator, where in this case it
generates the dynamics of the moment series rather than the probability series. Let us examine the
operator MA M −1 by looking at its action on pure mixtures

MA M −1zx =MA (z − 1)x =M
∑
r∈R

kr(zn1,r − zn0,r )∇n0,r (z − 1)x

=
∑
r∈R

kr((z + 1)n1,r − (z + 1)n0,r )∇n0,r zx .

We can therefore conclude that

∂tµ =MA M −1µ =
∑
r∈R

kr((z + 1)n1,r − (z + 1)n0,r )∇n0,r µ.

In order to derive an equivalent to the chemical master equation but for factorial moments, we use
the inner product operation as before

∂tµx =

〈
zx

x!
, ∂tµ

〉
=

〈
zx

x!
,
∑
r∈R

kr((z + 1)n1,r − (z + 1)n0,r )∇n0,r µ

〉

=

〈∑
r∈R

((∇ + 1)n1,r − (∇ + 1)n0,r ) z
x

x!
,∇n0,r µ

〉

=

〈∑
r∈R

∑
0≤y≤n1,r

kr

(
n1,r
y

)
zx−y

(x − y)! −
∑

0≤y≤n0,r

kr

(
n0,r
y

)
zx−y

(x − y)!,∇
n0,r µ

〉

=
∑
r∈R

©­«
∑

0≤y≤n1,r

kr

(
n1,r
y

) (x − y + n0,r)!
(x − y)! µx−y+n0,r −

∑
0≤y≤n0,r

kr

(
n0,r
y

) (x − y + n0,r)!
(x − y)! µx−y+n0,r

ª®¬ .
Finally, for the factorial moments, we obtain

∂tmx =
∑
r∈R

©­«
∑

0≤y≤n1,r

kr

(
n1,r
y

)
x!

(x − y)!mx−y+n0,r −
∑

0≤y≤n0,r

kr

(
n0,r
y

)
x!

(x − y)!mx−y+n0,r
ª®¬ .
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3.6 Assembly
We will now focus on CRNs where there is a well defined notion of composition and energy of
species. The composition we see as consisting of a number of atoms of different types and reactions
as rearranging atoms in a mixture, but never creating them or destroying them. We assume that
the energy gives rise to a complex balance system, which then enables us to compute the factorial
moments.

An assembly system is a complex balanced CRN (S, R, n, k, c) with a set of atoms A and an atomic
content function α : S → NA with the following conservation property∑

s∈S

n0,r,sαs =
∑
s∈S

n1,r,sαs,

for each reaction r ∈ R. For x ∈ NS, we define αx ∈ NA as follows

αx =
∑
s∈S

xsαs .

With this notation, the conservation property looks like αn0,r = αn1,r .

For a multiset τ ∈ NA of total atoms, we consider a conservation classΩτ consisting of all multisets
x ∈ NS whose total of atoms is equal to τ

Ωτ = {x ∈ NS : αx = τ}.

Notice that the conservation of atoms in assembly systems implies that reactions will never lead
out of a given conservation class. A different question is whether it is possible to use reactions to
reach each mixture in a conservation class.

For multisets x, y ∈ NS, if there exists a finite sequence of reactions that lead from x to y, we say
that y is reachable from x and we write x � y. We say that an assembly system is thorough if for
each τ ∈ NA, we have that for all x, y ∈ Ωτ, x � y. Then an assembly system is thorough if from
each mixture, we can reach each state in its conservation class.

We will now focus on stationary dynamics restricted to a given conservation class. By definition,
assembly systems satisfy complex balance, which means that they have a stationary dynamics of
exponential form. This stationary dynamics, however, will be a mixture of stationary dynamics of
all conservation classes. Since we want the stationary dynamics of specific conservation classes,
we need something better. For that purpose we introduce a new set of formal variables, one for
each atom type, which keep track of the atomic contents of species, and then harness them in order
to extract specific stationary dynamics from the general exponential solution.
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Figure 3.6: Example of a conservation class function. Here the conservation class function is
denoted with W instead of ω. The function W was featured in Chapter 1 and it is the generating
function of scaffold complexes. Each variable is color-coded to correspond to a unit in the structures.

We define the conservation class functionω ∈ R[[z,w]], where w = (wa)a∈A is an A-tuple of formal
variables, as follows

ω = eczwα,

where wα = (∏a∈A w
αs,a
a )s∈S. If we expand the conservation class function, we obtain

ω = eczwα =
∑
x∈NS

zx

x!
cxwαx =

∑
τ∈NA

∑
x∈Ωτ

zx

x!
cxwτ .

For each τ ∈ NA, we define the following function

ωτ =
∑
x∈Ωτ

zx

x!
cx .

We can therefore write the conservation class function as follows

ω =
∑
τ∈NA

ωτw
τ .

Notice that for each x ∈ NS, we can use conservation of atoms and complex balance to obtain

∑
r∈R:

n1,r=x

kr cn0,rwαn0,r −
∑
r∈R:

n0,r=x

kr cn0,rwαn0,r = wαx
©­­­«

∑
r∈R:

n1,r=x

kr cn0,r −
∑
r∈R:

n0,r=x

kr cn0,r
ª®®®¬ = 0,
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which implies that A ω = 0. We therefore have that

A ω =
∑
τ∈NA

A ωτw
τ = 0,

and therefore A ωτ = 0 for all τ ∈ NA. We conclude that each ωτ is a stationary dynamics.
Furthermore, if the assembly system is thorough, then ωτ is irreducible.

Applying the factorial moment operator to the conservation class function, we obtain

Mω = ec(z+1)wα = eczwαecwα =
∑
x∈NS

∑
τ∈NA

zx

x!
cxwαx 〈ez, ωτ〉wτ

=
∑
τ∈NA

∑
x∈NS

zx

x!
cx 〈ez, ωτ−αx〉wτ .

Therefore, the moment function of a conservation class Ωτ has the form

Mωτ =
∑
x∈NS

zx

x!
cx 〈ez, ωτ−αx〉.

The factorial moment of order x for conservation class Ωτ is therefore

mτ,x = cx 〈ez, ωτ−αx〉
〈ez, ωτ〉

.

3.7 Discussion
In The barrier of objects: From dynamical systems to bounded organizations (Fontana and Buss,
1996), the authors propose that the traditional dynamical systems approach to the study of complex,
and, in particular, biological systems is inadequate because it is unable to address the fact that the
objects studied cannot be reduced to numerical values given that their structural nature is dynamic
and central to their function. In their words: “In Nature, interaction involves objects directly and
never by a numerical value describing them. Stepping outside of conventional dynamical systems
requires taking this observation seriously.” This thesis and especially this chapter are the beginning
of an attempt at “taking their observation seriously.”

The first step inmy approach to taking their observation seriously is by shifting focus fromnumerical
evaluation of functions into structural analysis of expressions by treating variables as formal rather
than numerical. The result is that of a foundation based on the concept of generating functions, or
formal power series. This is the approach taken in this chapter. This is nevertheless not quite the
“direct interaction of objects” that Fontana and Buss observe. A formal power series approach is
a stepping stone into a theory that takes objects and their structure seriously and works with them
directly rather than with their numerical projections.
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As an example, let us consider finite sets and arithmetic. If we focus on the part of arithmetic
concerned with the study of positive integers, with the operations of addition and multiplication,
we can see that arithmetic is like a shadow of the theory of finite sets and the functions between
them. Sets also have operations of addition and multiplication, but they usually go by the names of
disjoint union and Cartesian product. Take, for example, sets A = {a, b, c} and B = {a, α}, their
disjoint union and Cartesian product are given by the following sets

A t B = {(1, a), (1, b), (1, c), (2, a), (2, α)}, A × B = {(a, a), (a, α), (b, a), (b, α), (c, a), (c, α)}.

Notice that, despite A and B having one element in common, labeling guarantees that they are
mapped to different elements in the disjoint union. At the end, we have that the cardinality of a
disjoint union is the sum of cardinalities of the summands: |At B| = |A| + |B|; and the cardinality
of a Cartesian product is the product of the cardinalities of the multiplicands: |A × B | = |A| |B|.
We can thus see that working with finite sets instead of natural numbers is a way of “working with
objects directly rather than their numerical values.” The picture of finite sets is richer than that
of arithmetic as, for example, there is only one number 5 but many sets with cardinality 5. Also,
two natural numbers are either equal to one another or not, i.e. equality is an equivalence relation.
In contrast, two finite sets with the same cardinality are isomorphic to one another in potentially
many ways, n! ways for a set with cardinality n to be precise. The latter observation gives rise to
the concept of a bijective proof (Loehr, 2011), which is a way of establishing the equality between
two expressions denoting natural numbers by finding a bijection between two sets with cardinalities
given by the expressions in question.

The problem of using sets as representatives of objects in chemistry, biology, or complex systems
in general is that they lack any structure beyond the numerosity of their elements. This can be seen
by the fact that two sets are isomorphic precisely when they have the same number of elements.
In order to have a mathematical foundation that is more adequate for developing mathematical
biology, we need the foundational objects to be closer to the objects of biology. One possible such
foundations is homotopy type theory (HoTT). The purpose of this chapter is to prime SCRN theory
for formulation in HoTT. It achieves that by formulating SCRN theory in terms of formal power
series. Then, by employing existing proposals (Yorgey, 2014) for using HoTT to give formal power
series meaning in terms of homotopy types, we can lift SCRNs to the level of HoTT.

Within HoTT, it is also possible to add, multiply, and exponentiate objects as it is possible for sets;
however, division is also possible, which it is not the case for sets. Furthermore, the cardinalities
of homotopy types span all positive real numbers rather than just the positive integers such as is the
case for finite sets. I believe that using HoTT as a foundation for SCRN theory will bring us closer
to taking seriously the observation made by Fontana and Buss.
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One advantage of formulating SCRNs in HoTT is that the language is an extension rather than a
replacement of the language of sets. What this means is that one can continue to use the usual
language in which SCRNs are formulated, for example, to speak of sets of species and reactions,
but lurking in the background lie a myriad of features ready for use on demand. Those features
include the ability to speak of spaces of species and reactions, which would be appropriate when
those are more structures, such is the case for virtually all biological systems.

In addition to the topological features of HoTT, another advantage is that HoTT is, as its name states,
a type theory, which means that it can be given computational content. Formulating SCRN theory
in the language of HoTT would make it possible to study questions of molecular and biological
computing by exploiting its computational content.
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