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ABSTRACT

Quantum simulation is a powerful tool for chemists to understand the chemical
processes and discover their nature accurately by expensive wavefunction theory or
approximately by cheap density function theory (DFT). However, the cost-accuracy
trade-offs in electronic structure methods limit the application of quantum simula-
tion to large chemical and biological systems. In this thesis, an accurate, transfer-
able, and physical-driven molecular modelling framework, i.e., molecular-orbital-
based machine learning (MOB-ML), is introduced to provide accurate wavefunction-
quality molecular descriptions with at most mean-field level computational cost.
Instead of directly predicting the total molecular energies, MOB-ML describes the
post-Hartree-Fock correlation energy from molecular orbital information at the cost
of Hartree-Fock computations. Preserving all the physical constraints, molecular
orbital based (MOB) features represent the chemical space faithfully in both super-
vised clustering and unsupervised learning for chemical space explorations. The
development of local regressions with scalable exact Gaussian processes within
clusters further allows MOB-ML to provide the most accurate approach in both
low and big data regimes. As exciting and general new tool to tackle various prob-
lems in chemistry, MOB-ML offers great accuracies of predicting total energies and
serves as a universal density functional for organic molecules and non-covalent in-
teractions in various chemical systems. With the availability of analytical nuclear
gradients, MOB-ML is also capable of generating accurate PESs with few reference
high-level electronic structure computations in the diffusion Monte Carlo accurately
and efficiently for computational spectroscopy.
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C h a p t e r 1

INTRODUCTION

Quantum simulations have been shown to be powerful and widely-used tools to
enhance our understanding of chemical and biological processes and facilitate the
discovery of new drugs and materials. The ultimate goal of quantum simulations
is to find the accurate numerical solutions to the Schrödinger equation (SE) with
a reasonable computational cost. The Born-Oppenheimer approximation [1, 2]
allows us to solve the SE by treating the nuclear and electronic wavefunctions sep-
arately since nuclei are much heavier than the electrons. The heavy nuclei can
then be well-approximated as classical particles, while the proper treatment of elec-
trons requires quantum mechanics. Electronic structure is the area that focuses
on solving the wavefunctions of electrons after this wavefunction separation. This
thesis introduces a physically-informed machine learning (ML) approach for elec-
tronic structure, known as molecular-orbital-based machine learning (MOB-ML),
to solve the wavefunctions accurately and transferably in different chemical appli-
cations. To provide readers with more motivations for our work, in this chapter,
we first introduce the commonly-used electronic structure theories and illustrate
the high computational costs of the accurate theories. Then, we discuss the recent
ML approaches to speed up and scale up the quantum simulations and the contribu-
tions of our MOB-ML approach to the field of ML for electronic structure. Finally,
the overview of the contents of this thesis on the development and applications of
MOB-ML is also provided.

Brief review of the theoretical developments in electronic structure During
the past few decades, many traditional electronic structure methods in quantum
chemistry have been developed to solve the electronic SEs accurately and approxi-
mately to obtain the ground and excited state energies and other molecular proper-
ties (Fig. 1.1). The exact quantum mechanical treatment can be realized by the Full
Configuration Interaction (FCI) [3] method. It allows the many-body wavefunction
to be represented as a linear combination of all possible electronic configurations,
and thus its solution approaches the exact solution to the SE in the complete basis
limit. However, the number of such possible configurations grows exponentially
with the number of electrons (N), limiting it to systems with only a few electrons.
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Wavefunction theories and density functional theory (DFT) [4] have been pro-
posed in theoretical chemistry to solve the SE approximately. As the commonly
used wavefunction theories, HF and methods like Møller-Plesset perturbation the-
ory (MP) [5] and coupled cluster (CC) [6] are briefly introduced here.

In HF theory, the wavefunction can be represented as the Slater determinant of
single-electron orbitals {χ}.

|Φ⟩=

∣∣∣∣∣∣∣∣∣∣
χ1(1) χ2(1) . . . χN(1)
χ1(2) χ2(2) . . . χN(2)

...
... . . . ...

χ1(N) χ2(N) . . . χN(N)

∣∣∣∣∣∣∣∣∣∣
(1.1)

The orbitals {χ} are chosen to minimize the total energy of the system iteratively.
Practically, the electron orbitals relax under the mean field created by other elec-
trons self-consistently during the iterations, and this entire process is known as
the self-consistent field (SCF) method. HF is an SCF method that captures most
molecular energies in a mean-field way but does not include the crucial correlations
between electrons for most chemical applications. In the MOB-ML approach, HF
theory will provide input information to make predictions.

Based on HF theory, post-HF methods are designed to systematically correct the HF
wavefunctions and energies by capturing the electron correlations. The perturbation
theory treatment divides the full Hamiltonian Ĥ to an unperturbed Hamiltonian Ĥ0

and a perturbed Hamiltonian Ĥ1 (Ĥ = Ĥ0 +λ Ĥ1) and then expands the wavefunc-
tion into the power series of the perturbation strength.

|Ψ⟩= ∑
i=0

λ
i|Ψ⟩(i)

E = ∑
i=0

λ
iE(i),

(1.2)

where λ is taken to be one after the expansion. As the most commonly used case
of the perturbation theory, the MP theory takes the unperturbed Hamiltonian Ĥ0

as the Fock operator, which is defined as the effective one-electron Hamiltonian
in HF, and leaves the rest part as the perturbed Hamiltonian Ĥ1. In this setup, the
sum of the zeroth-order and the first-order energy equals the HF energy. Therefore,
the second-order perturbation energy is the first non-vanishing correction in the
MP theory. The method computing this correction is thus known as the second-
order Møller–Plesset perturbation theory (MP2), which will be one of the reference
theories learned by MOB-ML.
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Another common treatment for electron correlation is CC, where the wavefunction
is expressed as an exponential ansatz

|Ψ⟩= eT̂ |Φ⟩, (1.3)

where |Φ⟩ is the HF ground state and the cluster operator T̂ is the sum of series of
excitation operators T̂ = T̂1 + T̂2 . . . , where

T̂1|Φ⟩= ∑
i,a

ta
i Φ

a
i ,

T̂2|Φ⟩= ∑
i> j,a>b

tab
i j Φ

ab
i j ,

. . .

(1.4)

In practice, T̂ is truncated to a specific order to reduce the computational cost,
and the highest order term in truncated form can be treated perturbatively. The
most common truncations are coupled cluster singles and doubles (CCSD) [7] and
coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) [8]. CCSD(T)
is usually viewed as the gold-standard method in quantum chemistry for accurate
energies and molecular properties.[9, 10]

Although the post-HF methods introduced above have good approximations to FCI,
they are generally computationally expensive and thus are prohibitive for large
chemical systems. For instance, MP2, CCSD, and CCSD(T) have a complexity of
O(N5), O(N6) and O(N7), respectively. The complexity of HF is as low as O(N4),
but the electron correlations are not included. To calculate larger systems with rea-
sonable computational costs, theoretical chemists also put much effort into devel-
oping DFT to capture electron correlations. DFT is built on the Hohenberg-Kohn
theorem [4], which states that for any system with a non-degenerate ground state,
its ground state energy is a unique functional of the ground state electron density
n(r), and such ground state can be obtained variationally. Kohn-Sham DFT [11]
further writes the electron density as the sum of the density of Kohn-Sham orbitals
{ϕi(r)} and expresses the energy functional as the sum of the Kohn-Sham kinetic
energy, external potential energy, Coulomb interaction energy, and the exchange-



4

correlation energy:

n(r) = ∑
i
|ϕi(r)|2, (1.5)

E[n] =
N

∑
i=1

∫
drϕ

∗
i (r)(−

h̄2

2m
∇

2)ϕi(r)+
∫

drvext(r)n(r) (1.6)

+
e2

2

∫
dr

∫
dr′

n(r)n(r′)
|r− r′|

+Exc[n].

The ground state energy can then be obtained by minimizing the functional E[n].
Since the exact exchange-correlation functional Exc[n] is unknown, the accura-
cies of DFT energies depend on how good the estimations of the exact exchange-
correlation functionals are. The simplest but less accurate DFT is the local-density
approximation (LDA) [12]. More accurate but more expensive functionals include
generalized gradient approximations (GGA) and meta-GGA and hybrid-GGA. [13–
15]

Figure 1.1: The pyramid for common methods in computational chemistry to solve
Schrödinger equation. The computational costs and complexity scaling generally
decrease, but the largest treatable system sizes increase from the top to the bottom.
The accuracy of the computational methods is also considered decreasing from top
to bottom. The three post-HF theories introduced in this thesis are also highlighted.

Besides the quantum mechanical treatment methods mentioned above, some clas-
sical force fields methods express the potential energies as functions of a set of
atomic parameters, such as masses, coordinates, charges, and Lennard-Jones pa-
rameters. Such parametrizations could enable the computations of large systems
but are not always accurate and transferable in different chemical applications due
to the heavily numerical fitting towards some applications.
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Brief review of the machine learning developments for electronic structure
The application of machine learning (ML) to electronic structure theory has been
developing rapidly with an increasing number of studies in various chemical sys-
tems and applications [16, 17], such as directly predicting the molecular properties,
developing force fields and interatomic potentials, and designing novel and efficient
catalysts [18, 19], drugs [20–23] and materials [24, 25]. The major applications of
ML in quantum simulations include predicting chemical properties to reduce com-
putational costs by supervised learning [26, 27], detecting the patterns of chemical
spaces by unsupervised learning [28, 29], and proposing more suitable chemical
systems by reinforcement learning [22, 30] and generative models [31, 32]. This
thesis will briefly review the different representations in supervised learning ap-
proaches to predict the molecular energies to reach chemical accuracy (1 kcal/mol)
at different levels of electronic structure theories.

Figure 1.2: Atomic and physically informed molecular-orbital-based (MOB) repre-
sentations to describe chemical systems in ML for electronic structure. The exam-
ple system in this figure is H2O. a. Common atomic representations in literature. b.
Novel MOB representations introduced in this thesis.

There are two main categories of ML approaches to facilitate the electronic struc-
ture computations of energies in practice. The first category focuses on reaching
excellent accuracy at the level of DFT with a computational cost of classical force
fields [33–51]. These ML approaches usually describe the chemical systems using
atomic representations (Fig. 1.2a) and have shown great advantages to replace the
more expensive electronic structure potential energy surfaces [33–36] and to facil-
itate the molecular dynamics (MD) simulations in a large chemical system more
than 100,000 atoms with an accuracy of DFT [33]. However, there are two notable
disadvantages of these atomic representations. First, the complication of building
an ML model to describe a diverse set of elements and chemistries leads to the
rapid growth of features with the increasing number of atom and bond types. In ad-
dition, there are significant accuracy losses in the predictions of the untrained types
of chemical environments due to the lack of information. Both issues result in the
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unavoidable need for vast amounts of reference data in training (usually more than
50,000) to achieve the desired accuracy using atomic representations and hinder the
degree of chemical transferability of existing ML models to new systems.

The second category of ML methods targets achieving an accuracy at wavefunc-
tion level using information from lower-level electronic structure theory, which
usually describes the chemical systems using physically informed representations
computed from quantum simulations (or known as quantum representations). The
quantum information used in ML includes atomic orbitals [52–56], molecular or-
bitals[57–62], and slate determinants [63] obtained from HF or DFT. To reach the
same accuracy, the approaches using quantum representations require much fewer
data points (usually less than 5,000) than the ones using atomic representations and
can also achieve better model transferability.

One of these approaches is MOB-ML that uses the information of the set of molec-
ular orbitals from HF computations to describe the chemical systems (Fig. 1.2b).
MOB-ML uses information from HF to create a simpler and more direct mapping
from the input features to the molecular energies. A molecular orbital (MO) de-
scribes the spatial distribution of an electron in a molecule and represents the single-
electron wavefunctions faithfully in all the system. Thanks to the generality of MO,
the MO theory has also become a valuable tool to predict and interpret molecular
properties and understand chemical processes in chemistry. We note that the types
of MOs, including σ and π MOs, are much fewer than the atomic connectives in
chemistry. Therefore, the usage of molecular-orbital-based (MOB) representation
in ML improves the transferability of MOB-ML across chemical systems that are
not trained in the model with very few training data. MOB-ML has achieved signif-
icantly better accuracy with training data smaller than 200 training molecules and
slightly better accuracy with 6500 than all other literature results for datasets com-
posed of drug-like organic molecules. MOB-ML is the first generation of ML ap-
proach that shows the benefits of incorporating the properties of electronic structure
theories (e.g., symmetries and size-consistency) and quantum information into data
generation or ML framework to improve the learning efficiency and the transferabil-
ity for highly accurate predicted molecular energies. As the first ML approach us-
ing MO representations, MOB-ML inspires many benchmark ML approaches using
quantum information as input, such as NeuralXC [52], DeePHF [53], DeePKS [64],
PauliNet [63], and OrbNet [54–56], and provides promising directions for the field
of ML for electronic structure.
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Overview of theories and applications of MOB-ML in this thesis In this the-
sis, we will introduce the problem setup, feature designs, specialized ML algo-
rithms, and the applications of the MOB-ML approach for molecular energy learn-
ing in various chemical systems. In Chapter 2, we introduce this novel approach of
molecular-orbital-based machine learning (MOB-ML) to accurately and transfer-
ability predict molecular energies at the levels of MP2, CCSD, or CCSD(T) using
MOB features and information from HF . Instead of directly predicting the total
energies, MOB-ML learns the pairwise contributions of a wavefunction correlation
energy as a function of MOs via Gaussian process regression (GPR) , and thus pro-
vides accurate energy predictions at a wavefunction level with a mean-field compu-
tation cost. Its accuracy and transferability are illustrated by training and testing on
chemical systems of various sizes and chemical nature. Although MOB-ML shows
the great potential of being a universal density functional, the cubic scaling of the
training cost for GPR becomes a bottleneck to include more training examples for
better prediction accuracy. A clustering/regression/classification framework is thus
introduced in Chapter 3 to improve the learning efficiency and scale up the training
in MOB-ML. The training data are first clustered into subsets by a supervised clus-
tering approach known as regression-clustering, and then independently regressed
using GPR or linear regressions. The test data are classified by a classifier and
predicted by their corresponding local regressors. The resulting MOB-ML models
significantly reduce the training costs by over 4500-fold while preserving prediction
accuracy and transferability for the thermalized drug-like organic molecule datasets
with different molecular sizes, i.e., QM7b-T and GDB-13-T. The key accuracy loss
in this clustering/regression/classification framework is attributed to the classifica-
tion step, and we also discuss the difficulty of unsupervised clustering due to the
design of MOB features.

Husch et al. [60] addresses the issues of original MOB feature design and pro-
poses an improved MOB feature (or size-consistent feature) design by consistently
ordering and numerically adjusting the features. The introduction of this improved
MOB feature design not only enhances the prediction accuracy and transferability
of MOB-ML but also enables the unsupervised clustering on the chemical space.
In addition, Sun et al. [62] further applies a scalable GPR with exact GP inference
but a lower scaling (O(N2)), i.e. blackbox matrix-matrix multiplication (BBMM)
algorithm, to scale up the Gaussian Process (GP) training of molecular energies.
An alternative implementation (AltBBMM) is also proposed to further improve the
performance of MOB-ML to predict molecular energies. In Chapter 4, by apply-
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ing the improved MOB feature design, an enhanced clustering algorithm is pro-
posed to unsupervisedly cluster the chemical space via the Gaussian mixture model
(GMM) and then regress molecular energies via alternative blackbox matrix-matrix
multiplication (AltBBMM) for MOB-ML and to eliminate the training of an addi-
tional classifier. This improved clustering accurately reproduces chemically intu-
itive groupings of frontier molecular orbitals, and regression on top of the resulting
clusters provides the most accurate molecular energy predictions for QM7b-T and
GDB13-T compared with other state-of-the-art (SOTA) approaches.

The availability of analytical gradient of MOB-ML in Ref. 61 opens an avenue of
applying MOB-ML to provide accurate potential energy surfaces (PESs). We thus
explore the efficiency of MOB-ML as PESs in the diffusion Monte Carlo (DMC)
simulations for H2O, CH +

5 and C2H +
5 in Chapter 5. The most popular ML-assisted

PES approaches usually require over 10,000 to 100,000 high-level reference elec-
tronic structure computations (e.g., CCSD(T)/aug-cc-pVTZ level), while MOB-ML
only needs under 3000 reference data to achieve the same level of accuracy. To fur-
ther facilitate the larger DMC simulations and reduce the simulation costs compara-
ble to mechanical force fields, neural networks (NNs) referred as NN + MOB-ML
are trained to refit the MOB-ML potential energy surfaces. As a result, the PESs
from MOB-ML and NN + MOB-ML achieve comparable accuracy as the standard
literature PESs and provide insights of the experimental spectroscopy results for
H2O and CH +

5 .

As an ML approach, it is of great significance for MOB-ML to achieve SOTA re-
sults on the benchmark systems and push the accuracy limits higher and higher.
More importantly, MOB-ML has become a valuable tool for computational chemists
to perform accurate simulations for larger systems without unaffordable costs. This
thesis not only shows the power of ML to study molecular properties with a much
lower scaling compared with traditional quantum simulations, but also emphasizes
the importance of incorporating physical and chemical knowledge, such as con-
sistent ordering and size-consistence, to improve the design of features and ML
algorithms. As a universal density matrix functional and general PES generator,
it is promising to extend MOB-ML to more complicated systems and theories and
apply it to simulate large chemical systems accurately.
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C h a p t e r 2

A UNIVERSAL DENSITY MATRIX FUNCTIONAL FROM
MOLECULAR ORBITAL-BASED MACHINE LEARNING:
TRANSFERABILITY ACROSS ORGANIC MOLECULES.

Adapted and reprinted with permission (©2018 ACS and ©2019 AIP Publishing).

1. Welborn, M., Cheng, L. & Miller III, T. F. Transferability in machine learn-
ing for electronic structure via the molecular orbital basis. J. Chem. Theory
Comput. 14, 4772–4779 (2018).

2. Cheng, L., Welborn, M., Christensen, A. S. & Miller III, T. F. A univer-
sal density matrix functional from molecular orbital-based machine learn-
ing: Transferability across organic molecules. J. Chem. Phys. 150, 131103
(2019).

In this chapter, we present a machine learning (ML) method for predicting elec-
tronic structure correlation energies using Hartree-Fock input, i.e., molecular or-
bital based machine learning (MOB-ML). The total correlation energy is expressed
in terms of individual and pair contributions from occupied molecular orbitals, and
Gaussian process regression is used to predict these pairwise contributions from a
feature set that is based on molecular orbital properties, such as Fock, Coulomb,
and exchange matrix elements. With the aim of maximizing transferability across
chemical systems and compactness of the feature set, we avoid the usual spec-
ification of ML features in terms of atom- or geometry-specific information, such
atom/element-types, bond-types, or local molecular structure. Refined strategies for
feature design and orbital localizations are shown to provide better accuracy. This
method maintains accuracy while providing transferability both within and across
chemical families; this includes predictions for molecules with atom-types and ele-
ments that are not included in the training set. To explore the breadth of chemical
diversity that can be described, MOB-ML is also applied to new datasets of ther-
malized geometries of 7211 organic molecules with up to seven heavy atoms and
1000 organic molecules with up to thirteen heavy atoms. MOB-ML holds promise
both in its current form and as a proof-of-principle for the use of ML in the design
of generalized density-matrix functionals.
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2.1 Introduction
Recent interest in the use of machine learning (ML) for electronic structure has
focused on models that are formulated in terms of atom- and geometry-specific
features, such as atom-types and bonding connectivities. The advantage of this
approach is that it can yield excellent accuracy with computational cost that is com-
parable to classical force fields.[27, 34, 35, 37–51, 65–67] However, a disadvantage
of this approach is that building an ML model to describe a diverse set of elements
and chemistries requires training with respect to a number of features that grows
quickly with the number of atom- and bond-types, and also requires vast amounts
of reference data for the selection and training of those features; these issues have
hindered the degree of chemical transferability of existing ML models for elec-
tronic structure. For example, previous methods have not demonstrated predictions
for molecules with chemical elements that are not included in the training data.

In this work, we focus on the more modest goal of using ML to describe the
post-Hartree-Fock correlation energy. Assuming willingness to incur the cost of
a Hartree-Fock (HF) self-consistent field (SCF) calculation, we aim to describe the
correlation energy associated with MP [5], CC [68], or other post-HF methods. Our
approach focuses on training not with respect to atom-based features, but instead
using features based on the HF molecular orbitals (MOs), which have no explicit
dependence on the underlying atom-types and may thus be expected to provide
greater chemical transferability. We then demonstrate the performance of MOB-
ML across a broad swath of chemical space, as represented by the QM7b [39] and
GDB-13 [69] test sets of organic molecules.

2.2 Theory
The current work aims to predict post-HF correlated wavefunction energies using
features of the HF molecular orbitals (MOs). The starting point for the MOB-ML
method[57] is that the correlation energy can be decomposed into pairwise occupied
MO contributions[7, 70]

Ec =
occ

∑
i j

εi j, (2.1)

where the pair correlation energy εi j can be written as a functional of the full set of
MOs, {φp}, appropriately indexed by i and j

εi j = ε
[
{φp}i j] . (2.2)

The functional ε is universal across all chemical systems; for a given level of cor-
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related wavefunction theory, there is a corresponding ε that maps the HF MOs to
the pair correlation energy, regardless of the molecular composition or geometry.
Furthermore, ε simultaneously describes the pair correlation energy for all pairs
of occupied MOs (i.e., the functional form of ε does not depend on i and j). For
example, the pair correlation energies in MP2 [5] are

ε
MP2
i j =

1
4

virt

∑
ab

|⟨i j| |ab⟩|2

ea + eb− ei− e j
, (2.3)

where a and b index virtual MOs, ep is the HF orbital energy corresponding to MO
φp, and ⟨i j| |ab⟩ are antisymmetrized electron repulsion integrals.[7] A correspond-
ing expression for the pair correlation energy exists for any post-HF method, but it
is typically costly to evaluate in closed form.

In MOB-ML, a machine learning model is constructed for the pair energy functional

εi j ≈ ε
ML [fi j

]
, (2.4)

where fi j denotes a vector of features associated with MOs i and j. Eq. 2.4 thus
presents the opportunity for the machine learning of a universal density matrix func-
tional for correlated wavefunction energies, which can be evaluated at the cost of
the MO calculation.

Following our previous work [57], the features fi j correspond to unique elements of
the Fock (F), Coulomb (J), and exchange (K) matrices between φi, φ j, and the set
of virtual orbitals. In the current work, we additionally include features associated
with matrix elements between pairs of occupied orbitals for which one member of
the pair differs from φi or φ j (i.e., non-i, j occupied MO pairs). The feature vector
takes the form

fi j =(Fii,Fi j,Fj j,Fo
i ,F

o
j ,F

vv
i j , (2.5)

Jii,Ji j,J j j,Jo
i ,J

o
j ,J

v
i ,J

v
j ,J

vv
i j ,

Ki j,Ko
i ,K

o
j ,K

v
i ,K

v
j ,K

vv
i j ),

where for a given matrix (F, J, or K) the superscript o denotes a row of its occupied–
occupied block, the superscript v denotes a row of its occupied–virtual block, and
the superscript vv denotes its virtual–virtual block. Redundant elements are re-
moved, such that the virtual–virtual block is represented by its upper triangle and
the diagonal elements of K (which are identical to those of J) are omitted. To in-
crease transferability and accuracy, we choose φi and φ j to be localized molecular
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orbitals (LMOs) rather than canonical MOs and employ valence virtual LMOs[71]
in place of the set of all virtual MOs (as detailed in Ref. 57). We separate Eq. 2.4
to independently machine learn the cases of i = j and i ̸= j,

εi j ≈

εML
d [fi] if i = j

εML
o

[
fi j
]

if i ̸= j,
(2.6)

where fi denotes fii (Eq. 2.5) with redundant elements removed; by separating
the pair energies in this way, we avoid the situation where a single ML model is
required to distinguish between the cases of i = j and φi being nearly degenerate to
φ j, a distinction which can represent a sharp variation in the function to be learned.

In the current work, several technical refinements are introduced to improve training
efficiency (i.e., the accuracy and transferability of the model as a function of the
number of training examples). These are now described.

Occupied LMO symmetrization. The feature vector is preprocessed to specify a
canonical ordering of the occupied and virtual LMO pairs. This reduces permu-
tation of elements in the feature vector, resulting in greater ML training efficiency.
Matrix elements Mi j (M = F, J, K) associated with φi and φ j are rotated into gerade
and ungerade combinations

Mii←
1
2

Mii +
1
2

M j j +Mi j (2.7)

M j j←
1
2

Mii +
1
2

M j j−Mi j

Mi j←
1
2

Mii−
1
2

M j j

Mip←
1√
2

Mip +
1√
2

M jp

M jp←
1√
2

Mip−
1√
2

M jp

with the sign convention that Fi j is negative. Here, p indexes any LMO other than i

or j (i.e. an occupied LMO k, such that i ̸= k ̸= j, or a valence virtual LMO).

LMO sorting. The virtual LMO pairs are sorted by increasing distance from occu-
pied orbitals φi and φ j. Sorting in this way ensures that features corresponding to
valence virtual LMOs are listed in decreasing order of heuristic importance, and that
the mapping between valence virtual LMOs and their associated features is roughly
preserved. We recognize this issue could also potentially be addressed through the
use of symmetry functions,[72] but these are not employed in the current work.
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For purposes of sorting, distance is defined as

Ri j
a =

∥∥⟨φi| R̂ |φi⟩−⟨φa| R̂ |φa⟩
∥∥+∥∥〈φ j

∣∣ R̂
∣∣φ j

〉
−⟨φa| R̂ |φa⟩

∥∥ , (2.8)

where φa is a virtual LMO, R̂ is the Cartesian position operator, and ∥.∥ denotes the
2-norm.

∥∥⟨φi| R̂ |φi⟩−⟨φa| R̂ |φa⟩
∥∥ represents the Euclidean distance between the

centroids of orbital i and orbital a. Previously,[57] distances were defined based on
Coulomb repulsion, which was found to sometimes lead to inconsistent sorting in
systems with strongly polarized bonds. The non-i, j occupied LMO pairs are sorted
in the same manner as the virtual LMO pairs.

Orbital localization. We employ Boys localization[73] to obtain the occupied LMOs,
rather than intrinsic bond orbital (IBO) localization[71] which was employed in our
previous work.[57] Particularly for molecules that include triple bonds or multiple
lone pairs, it is found that Boys localization provides more consistent localization
as a function of small geometry changes than IBO localization; and the chemically
unintuitive mixing of σ and π bonds in Boys localization (“banana bonds”)[74]
does not present a problem for the MOB-ML method.

Feature selection. Prior to training, automatic feature selection is performed using
random forest regression [75] with the mean decrease of accuracy criterion (some-
times called permutation importance).[76] This technique was found to be more
effective than our previous use[57] of the Gini importance score[75] which led to
worse accuracy and failed to select any features for the case of methane.

The reason for using feature selection in this way is twofold. First, GPR perfor-
mance is known to degrade for high-dimensional datasets (in practice 50-100 fea-
tures);[77] and second, the use of the full feature set with small molecules can lead
to overfitting as features can become correlated.

2.3 Computational details
Results are presented for a single water molecule; a series of alkane molecules; a
thermalized version of the QM7b set of 7211 molecules with up to seven C, O, N,
S, and Cl heavy atoms; and a thermalized version of the GDB-13 set of molecules
with thirteen C, O, N, S, and Cl heavy atoms. All datasets employed in this work
are provided in Ref. 78.

Training and test geometries are sampled at 50 fs intervals from ab initio molecular
dynamics trajectories performed with the Q-CHEM 5.0 software package,[79] using
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the B3LYP[80–83]/6-31g*[84] level of theory and a Langevin thermostat[85] at 350
K.

The features and training pair energies associated with these geometries are com-
puted using the MOLPRO 2018.0 software package[86] in a cc-pVTZ basis set un-
less otherwise noted.[87] Valence virtual orbitals used in feature construction are
determined with the Intrinsic Bond Orbital method.[71] Reference pair correlation
energies are computed with MP2[5, 88] CCSD[68, 89] as well as CCSD(T).[8, 90]
Density fitting (DF) for both Coulomb and exchange integrals [91] is employed for
all results below except those corresponding to the water molecule. The frozen core
approximation is used in all cases.

Gaussian process regression (GPR)[92] is employed to machine learn εML
d and εML

o

(Eq. 2.6) using the GPY 1.9.6 software package. [93] The GPR kernel is Matérn
5/2 with white noise regularization[92]. Kernel hyperparameters are optimized with
respect to the log marginal likelihood objective for the water and alkane series re-
sults, as well as for εML

d of the QM7b results. We use the Matérn 3/2 kernel instead
of the Matérn 5/2 kernel for the case of εML

o for QM7b results, as it was empirically
found to yield slightly better accuracy. 1 Feature selection is performed using the
random forest regression implementation in the SCIKIT-LEARN v0.20.0 package.
[94]

2.4 Results
The ML model of Eq. 2.6 is a universal functional for any molecular Hamiltonian.
In principle, with an adequate feature list and unlimited training data (and time), it
should accurately and simultaneously describe all molecular systems. In practice,
we must train the ML model using a truncated feature list and finite data. These
choices determine the accuracy of the model.

Below, we examine the performance of the MOB-ML method in three increasingly
broad regions of chemical space: (i) training on randomized water molecule geome-
tries and predicting the energies of other water molecule geometries; (ii) training on
geometries of short alkanes and predicting the energies of longer alkanes; and (iii)
training on a small set of organic molecules and predicting the energies of a broader
set of organic molecules. In all cases, we report the ML prediction accuracy as a
function of the number of training examples and all the results are trained using

1In principle, the smoothness of the Matérn kernel could be taken as a kernel hyperparameter;
however, this possibility was not explored in this work.
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different selected feature sets obtained from feature selections.

Transferability across different geometries
As a first example, we consider the performance of MOB-ML for a single water
molecule. A separate model is trained to predict the correlation energy at the MP2,
CCSD, and CCSD(T) levels of theory, using reference calculations on a subset of
1000 randomized water geometries to predict the correlation energy for the remain-
der. Feature selection with an importance threshold of 1× 10−3 results in 12, 11,
and 10 features for εML

o for MP2, CCSD, and CCSD(T), respectively; ten features
are selected for εML

d for all three post-HF methods.

Figure 2.1 presents the test set prediction accuracy of each MOB-ML model as
a function of the number of training geometries (i.e., the "learning curve"). MOB-
ML predictions are shown for MP2, CCSD, and CCSD(T), and the model shows the
same level of accuracy for all three methods. Remarkably, all three models achieve
a prediction mean absolute error (MAE) of 1 mH when trained on only a single wa-
ter geometry, indicating that only a single reference calculation is needed to provide
chemical accuracy for the remaining 999 geometries at each level of theory. Since it
contains 10 distinct LMO pairs, this single geometry provides enough information
to yield a chemically accurate MOB-ML model for the global thermally accessible
potential energy surface.

For all three methods (Fig. 2.1), the learning curve exhibits the expected[95] power-
law behavior as a function of training data, and the total error reaches microhartree
accuracy with tens of water training geometries. As compared to our previous re-
sults, where training on 200 geometries resulted in a prediction MAE of 0.027 mH
for the case of CCSD,[57] the current implementation of the MOB-ML model is
substantially improved; the improvement for this case stems primarily from the use
of Boys localization,[73] which specifies unique and consistent LMOs correspond-
ing to the oxygen lone pairs.

To further illustrate the excellent performance of MOB-ML in predicting different
geometries in single molecule, a set of small molecules are tested with all three
theory levels at cc-pVTZ basis sets if not specified. Table 2.12 summarizes the
corresponding results for these small molecules, with εML

d and εML
o trained on ran-

domly selected 10 geometries and used to predict correlation energy for other 90
2Results listed here are regenerated using the feature design introduced in this chapter to make

the content consistent, and are different from the ones shown in Ref. 57
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Figure 2.1: Learning curves for MOB-ML models trained on the water molecule
and used to predict the correlation energy of different water molecule geometries at
three levels of post-Hartree-Fock theory. Prediction errors are summarized in terms
of mean absolute error (MAE).

geometries. The MAEs are smaller than 1 milliHartree for all the small molecules
at all three theory levels, and the relative error (Rel. Error) is also very small (rang-
ing from 0.00003% to 0.1717%). As pointed in Fig. 2.1 and shown in Table 2.1,
MOB-ML is insensitive to the choice of theory level. In addition, the water results
for basis sets of double-zeta and triple-zeta suggest that the choice of basis set will
not affect the MOB-ML performance as well.

Transferability across within chemical families
Next, we explore the transferability of MOB-ML predictions for a model that is
trained on thermalized geometries of short alkanes and then used for predictions on
thermalized geometries of larger and more branched alkanes (n-butane and isobu-
tane). For these predictions, the absolute zero of energy is shifted for each molecule
to compare relative energies on its potential energy surface (i.e., parallelity errors
are removed). These shifts are reported in the figure caption; for no other results
reported in the paper are parallelity errors removed.

In our previous work,[57] this test was performed using training data that combined
of 100 geometries of methane, 300 of ethane, and 50 or propane; the resulting
predictions are reproduced here in Fig. 2.2a. This earlier implementation of MOB-
ML led to predictions for n-butane and isobutane with substantial errors (0.59 mH
for n-butane and 0.93 mH for isobutane) and noticable skew with respect to the true
correlation energy.
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Table 2.1: MOB-ML predictions of MP2, CCSD and CCSD(T) correlation energies
for a collection of small molecules with 10 training and 90 test geometries.

MAE (milliHartree) Rel. Error (%)
Molecule MP2 CCSD CCSD(T) MP2 CCSD CCSD(T)
H2 1.00e-5 1.05e-5 1.05e-5 0.00003 0.00003 0.00003
N2 9.53e-3 4.00e-3 4.92e-3 0.0023 0.0010 0.0012
F2 2.13e-2 4.02e-2 1.27e-2 0.0041 0.0076 0.0023
HF 8.73e-5 1.67e-4 1.53e-4 0.00003 0.00006 0.0001
NH3 1.43e-2 1.33e-2 1.24e-2 0.0062 0.0053 0.0048
CH4 2.23e-2 1.35e-2 1.72e-2 0.0112 0.0062 0.0076
CO 1.46e-4 1.46e-4 3.96e-4 0.00004 0.00004 0.0001
CO2 1.20e-3 1.46e-3 1.75e-3 0.0005 0.0005 0.0006
HCN 1.46e-2 1.05e-2 1.17e-2 0.0042 0.0030 0.0032
HNC 2.75e-2 3.52e-2 3.77e-2 0.0082 0.0103 0.0105
C2H2 1.02e-1 1.03e-1 1.11e-1 0.0327 0.0319 0.0327
C2H4 4.08e-1 6.20e-1 5.34e-1 0.1212 0.1717 0.1421
C2H6

† 1.42e-1 1.41e-1 1.48e-1 0.0381 0.0351 0.0356
CH2O 1.75e-2 2.59e-2 5.01e-2 0.0044 0.0064 0.0119
HCO2H 4.34e-1 3.22e-1 4.56e-1 0.0686 0.0505 0.0689
CH3OH 2.98e-1 2.11e-1 3.70e-1 0.0693 0.0472 0.0801
CH2F2 7.87e-1 5.60e-1 7.68e-1 0.1156 0.0811 0.1078
H2O† ‡

cc-pVDZ 3.38e-3 2.65e-3 2.61e-3 0.0017 0.0012 0.0012
cc-pVTZ 3.62e-3 5.23e-3 6.37e-3 0.0014 0.0019 0.0023

†Training and test sets contain 50 and 950 geometries, respectively.
‡Results for two basis sets.

The predictions of MOB-ML in the current work (Fig. 2.2b) are markedly im-
proved. First, the overall prediction accuracy is improved for all four summary
statistics (inset in Fig. 2.2) despite substantial reduction in the number of training
examples used. (The current work uses only 50 geometries of ethane, 20 geometries
of propane, and no methane data.) Second, n-butane and isobutane are predicted
with nearly identical accuracy. Finally, the prediction errors are no longer skewed
as a function of true correlation energy. The primary methodological sources of
these improvements are found to be symmetrization of occupied orbitals (Eq. 2.7)
and the improved feature selection methodology. The MOB-ML features in the
current work are selected with an importance threshold of 1×10−4, resulting in 27
features for εML

d and 12 features for εML
o ; results presented in Fig 2.2b for CCSD(T)

are qualitatively identical to those obtained for CCSD (not shown).
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Figure 2.2: MOB-ML predictions of the correlation energy for 100 n-butane and
isobutane geometries, using MOB-ML features described in the (b) current work,
compared to (a) the previous MOB-ML features of Ref. 57. Training sets are in-
dicated in each panel of the figure. MOB-ML prediction errors are plotted versus
the (a) true CCSD and (b) true CCSD(T) correlation energy. To remove parallelity
error, a global shift is applied to the predictions of n-butane and isobutane by (a)
3.3 and 0.73 mH and (b) 0.90 and 0.17 mH, respectively. Summary statistics that
include this shift (indicated by an asterisk) are presented, consisting of mean abso-
lute error (MAE*), maximum absolute error (Max*), MAE* as a percentage of Ec
(Rel. MAE*), and Pearson correlation coefficient (r)[96]. The gray shaded region
corresponds to errors of ±2 mH.
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Transferability across drug-like molecules
We now examine the transferability of the MOB-ML method across a broad swath
of chemical space. Specifically, we consider the QM7b dataset,[97] which is com-
prised of 7,211 plausible organic molecules with 7 or fewer heavy atoms. The
chemical elements in QM7b are limited to those likely to be found in drug-like
compounds: C, H, O, N, S, and Cl. We refer to the dataset used herein as QM7b-T
to reflect the fact that it contains geometries sampled at a temperature of 350 K (as
described in Sec. 2.3), as opposed to DFT-optimized geometries. The MOB-ML
model is trained on a randomly chosen subset of QM7b-T molecules and used to
predict the correlation energy of the remainder. Active learning was also tested as a
training data selection strategy, but was not found to improve the predictions in the
regime of chemical accuracy, and in fact led to slightly worse transferability.

For comparison, a ∆-ML model[42] was trained on the same molecules using kernel-
ridge regression using the FCHL representation[98] with a Gaussian kernel func-
tion (FCHL/∆-ML), as implemented in the QML package.[99] All hyperparameters
of the model were set to those obtained in Ref. 98, which have previously been
demonstrated to work well for datasets containing structures similar to those in
QM7b-T.[99]

A possible source of concern for MOB-ML is that the number of selected features
would grow with the chemical complexity of the training data. For example, 27
features for εML

d and 12 features for εML
o were selected in the alkane test case using

ethane + propane training data (Fig. 2.2b), whereas only 10 features for εML
d and

10 features for εML
o were selected for the water test case at the CCSD(T) level of

theory (Fig. 2.1). To examine this, we perform feature selection on increasing num-
bers of randomly selected molecules from the QM7b-T dataset. Table 2.2 presents
two statistics on the feature importance as a function of the number of training
molecules: (i) the number of "important features" (i.e., those whose permutation
importance[76] exceeds a set threshold of 2×10−4 and 5×10−5 for εML

d and εML
o ,

respectively) and (ii) the inverse participation ratio[100] of the feature importance
scores. The latter is a threshold-less measure of the number of important features;
it takes a value of 1 when only 1 feature has nonzero importance and N when all
N features have equal importance. Although the QM7b-T dataset contains many
different chemical elements and bonding motifs, Table 2.2 reveals that the selected
features remain compact and do not grow with the number of training molecules.
Indeed, for a large number of training molecules, the number of selected features
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slightly decreases, reaching 42 and 24 selected features for εML
d and εML

o , respec-
tively, for the largest training sizes considered.

Table 2.2: Number of features selected as a function of the number randomly cho-
sen training molecules for the QM7b-T dataset at the CCSD(T)/cc-pVDZ level. The
number of features that exceed an importance threshold as well as the inverse par-
ticipation ratio (IPR) of the feature importance scores are reported (see text).

# of important features feature weight IPR
Training size εML

d εML
o εML

d εML
o

20 50 28 4.720 1.116
50 46 28 3.718 1.097
100 46 26 3.450 1.115
200 42 24 3.430 1.120

The learning curves for MOB-ML models trained at MP2/cc-pVTZ and CCSD(T)
/cc-pVDZ levels of theory are shown in Fig. 2.3a, as well as the FCHL/∆-ML learn-
ing curve for MP2/cc-pVTZ. At the MP2 level of theory, the MOB-ML model
achieves an accuracy of 2 mH with 110 training calculations (representing 1.5% of
the molecules in the QM7b-T dataset), whereas the FCHL/∆-ML requires over 300
training geometries to reach the same accuracy threshold. Fig. 2.3a also illustrates
the relative insensitivity of MOB-ML to the level of electronic structure theory, with
the learning curve for CCSD(T)/cc-pVDZ reaching 2 mH accuracy with 140 train-
ing calculations. An analysis of the sensitivity of the MOB-ML predictions to the
number of selected features is presented in Appendix Fig. 2.4, which indicates that
the reported results are robust with respect to the number of selected features.

As a final test of transferability of the MOB-ML and FCHL/∆-ML methods across
chemical space, Figs. 2.3b and 2.3c show results in which the ML methods are
trained on QM7b-T molecules and then used to predict results for a dataset of
13-heavy-atom organic molecules at thermalized geometries, GDB-13-T, which
includes six thermally sampled geometries each of 1,000 13-heavy-atom organic
molecules chosen randomly from the GDB-13 dataset.[69] Like QM7b, the mem-
bers of GDB-13 contain C, H, N, O, S, and Cl. The size of these molecules pre-
cludes the use of CC to generate reference data; we therefore make comparison
at the MP2/cc-pVTZ level of theory, noting that MOB-ML has consistently been
shown to be insensitive to the employed post-Hartree–Fock method (as in Fig.
2.3a). Transfer learning results as a function of the number of training molecules
are presented in Figs. 2.3b (on a linear-linear scale) and 2.3c (on a log-log scale).
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Figure 2.3: Learning curves for MOB-ML trained on QM7b-T and applied to
QM7b-T and GDB-13-T (see text for definition of these datasets). FCHL/∆-ML
[98] results are provided for comparison. (a) Predictions are made for QM7b-T at
the MP2/cc-pVTZ (red) and CCSD(T)/cc-pVDZ (orange) levels of theory. (b) Us-
ing the same models trained on QM7b-T, predictions are made for GDB-13-T, and
reported in terms of MAE per heavy atom. (MOB-ML predictions for QM7b-T are
included for reference.) (c) As in the previous panel, but plotted on a logarithmic
scale and extended to show the full range of FCHL/∆-ML predictions. Error bars
for FCHL/∆-ML represent prediction standard errors of the mean as measured over
10 models. The gray shaded area corresponds to errors of 2 mH per 7 heavy atoms.
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Using the MOB-ML model that is trained on 110 seven-heavy-atom molecules (cor-
responding to a prediction MAE of 1.89 mH for QM7b-T), we observe a prediction
MAE of 3.88 mH for GDB-13-T. Expressed in terms of size-intensive quantities, the
prediction MAE per heavy atom is 0.277 mH and 0.298 mH for QM7b-T and GDB-
13-T, respectively, indicating that the accuracy of the MOB-ML results are only
slightly worse when the model is transferred to the dataset of larger molecules. On
a per-heavy-atom basis, MOB-ML reaches chemical accuracy with the same num-
ber of QM7b-T training calculations (approximately 100), regardless of whether it
is tested on QM7b-T or GDB-13-T.

In contrast with MOB-ML, the FCHL/∆-ML method is found to be significantly
less transferable from QM7b-T to GDB-13-T. For models trained using 100 seven-
heavy-atom molecules, the MAE per heavy atom of FCHL/∆-ML is over twice that
of MOB-ML (Fig. 2.3b). Moreover, whereas MOB-ML reaches the per-heavy-
atom chemical accuracy threshold with 140 training calculations, the FCHL/∆-ML
method only reaches that threshold with 5000 training calculations.

2.5 Conclusions
Molecular-orbital-based machine learning (MOB-ML) has been shown to be a sim-
ple and strikingly accurate strategy for predicting correlated wavefunction energies
at the cost of a Hartree-Fock calculation, benefiting from the intrinsic transferability
of the localized molecular orbital representation. The starting point for the MOB-
ML method is a rigorous mapping from the Hartree-Fock molecular orbitals to the
total correlation energy, which ensures that the use of sufficient training data and
molecular orbital features will produce a model that matches the corresponding
correlated wavefunction method across the entirety of chemical space. The current
work explores this possibility within the subspace of organic molecules. It is shown
that MOB-ML predicts energies of the QM7b-T dataset to within a 2 mH accuracy
using only 110 training calculations at the MP2/cc-pVTZ level of theory and using
140 training calculations at the CCSD(T)/cc-pVDZ level of theory. Direct compar-
ison with FCHL/∆-ML reveals that MOB-ML is threefold more efficient in reach-
ing chemical accuracy for describing QM7b-T. Further, a transferability test of a
MOB-ML model trained on QM7b-T to GDB-13-T reveals that MOB-ML exhibits
negligible degradation in accuracy; as a result, chemical accuracy is achieved with
36-times fewer training calculations using MOB-ML versus FCHL/∆-ML. With the
similar level of costs, MOB-ML provides much more reliable atomization energies
compared with several commonly used DFTs using CCSD/cc-pVTZ as a reference
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theory. These results suggest that MOB-ML provides a promising approach to-
ward the development of density matrix functionals that are applicable across broad
swathes of chemical space.

2.6 Appendix
The datasets used in this work are available for download[78] and they include
MOB-ML features, HF energies, pair correlation energies, and geometries. MOB-
ML and FCHL/∆-ML predictions corresponding to Fig. 2.3 are shown in Table 2.3
and 2.4. An analysis of the sensitivity of the results of Fig. 2.3 to the number of
selected features are available in Fig. 2.4.

Table 2.3: MAE and MAE/heavy atom (MAE/HA) of MOB-ML on predicting
QM7b-T and GDB-13-T using a model trained on QM7b-T (energies in mH).

QM7b-T GDB-13-T
Training MP2/cc-pVTZ CCSD(T)/cc-pVDZ MP2/cc-pVTZ

size MAE MAE/HA MAE MAE/HA MAE MAE/HA
20 4.536 0.6664 4.962 0.7314 8.711 0.6701
30 3.966 0.5844 3.865 0.5690 7.554 0.5811
40 3.183 0.4696 3.605 0.5309 5.731 0.4408
50 2.938 0.4338 3.180 0.4678 5.375 0.4135
60 2.774 0.4094 2.960 0.4371 5.020 0.3862
70 2.660 0.3906 2.540 0.3751 5.055 0.3888
80 2.519 0.3701 2.538 0.3755 4.669 0.3591
90 2.165 0.3116 2.266 0.3354 4.161 0.3201

100 2.085 0.3076 2.187 0.3235 4.150 0.3192
110 1.878 0.2768 2.037 0.3017 3.880 0.2985
120 1.797 0.2650 2.040 0.3023 3.809 0.2930
130 1.747 0.2582 2.013 0.2987 3.746 0.2882
140 1.681 0.2484 1.967 0.2921 3.692 0.2840
150 1.674 0.2475 1.998 0.2962 3.665 0.2820
160 1.645 0.2429 1.921 0.2855 3.654 0.2810
170 1.620 0.2394 1.911 0.2834 3.652 0.2809
180 1.577 0.2333 1.865 0.2778 3.611 0.2778
190 1.511 0.2240 1.827 0.2728 3.592 0.2763
200 1.511 0.2244 1.802 0.2696 3.605 0.2773
210 1.443 0.2140 1.801 0.2696 3.607 0.2774
220 1.427 0.2115 1.802 0.2698 3.617 0.2782
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Table 2.4: MAE of FCHL/∆-ML on predicting QM7b-T and GDB-13-T using a
model trained on QM7b-T (energies in mH). The standard error of the mean (SEM)
over 10 trials is also reported.

QM7b-T, MP2/cc-pVTZ GDB-13-T, MP2/cc-pVTZ
Training MAE SEM MAE SEM MAE SEM

size /HA /HA
1 227.7 16.94 444.4 44.37 34.18 3.413
2 120.5 16.38 212.3 35.36 16.33 2.720
3 94.65 24.05 169.4 32.20 13.03 2.477
4 51.88 9.660 115.1 20.51 8.857 1.578
5 34.99 4.574 78.56 11.20 6.043 0.8618
6 20.37 1.943 56.29 5.873 4.330 0.4518
7 23.07 3.799 51.16 8.810 3.935 0.6777
8 19.04 1.639 42.21 5.878 3.247 0.4521
9 19.23 1.975 43.06 8.492 3.313 0.6532

10 14.22 1.671 43.05 6.783 3.312 0.5217
20 7.823 0.5624 22.80 2.744 1.754 0.2111
30 6.501 0.5400 17.72 2.161 1.363 0.1663
40 5.219 0.1874 15.87 1.477 1.221 0.1136
50 4.567 0.2395 13.64 1.549 1.049 0.1192
60 3.887 0.1713 11.57 0.6267 0.8897 0.04821
70 3.889 0.1453 10.11 0.9725 0.7780 0.07480
80 3.608 0.2412 9.704 1.311 0.7465 0.1008
90 3.283 0.1016 9.062 0.6463 0.6971 0.04971

100 3.205 0.08087 8.787 0.7807 0.6759 0.06006
200 2.396 0.03973 7.265 0.5289 0.5588 0.04068
300 2.022 0.03468 5.722 0.2212 0.4401 0.01701
400 1.870 0.01906 5.706 0.2140 0.4389 0.01646
500 1.760 0.02530 5.615 0.6035 0.4319 0.04642
600 1.648 0.01538 5.128 0.2007 0.3945 0.01544
700 1.581 0.02471 4.946 0.1344 0.3805 0.01034
800 1.503 0.02184 5.140 0.3127 0.3954 0.02405
900 1.445 0.01963 5.134 0.2843 0.3949 0.02187

1000 1.408 0.02135 5.584 0.5120 0.4295 0.03938
2000 1.135 0.01120 4.626 0.1944 0.3559 0.01495
3000 0.9837 0.003951 4.094 0.1812 0.3149 0.01394
4000 0.8995 0.006155 3.816 0.1211 0.2935 0.00931
5000 0.8618 0.005251 3.865 0.1691 0.2973 0.01301
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Figure 2.4: Prediction MAE for MOB-ML models trained on the QM7b-T dataset
as a function of the number of MOB-ML features selected. Predictions are made for
the training set and for a test set comprised of the remainder of QM7b-T, with the
number of molecules included in the training set indicated in parentheses. Features
are included in order of decreasing RFR-MDA importance. The gray line indicates
the number of features employed for training on the QM7b-T dataset in the main
text (Fig. 2.3); here, the ratio of the number of diagonal features to off-diagonal
features is fixed at 42:24. Regardless of whether the MOB-ML models are trained
using either 50, 80, 100 and 120 molecules, the accuracy of the test-set prediction
is relatively insensitive to the number of selected MOB-ML features.
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C h a p t e r 3

REGRESSION-CLUSTERING FOR IMPROVED ACCURACY
AND TRAINING COST WITH MOLECULAR-ORBITAL-BASED

MACHINE LEARNING

Reprinted with permission and adapted from (©2019 American Chemical Society):

1. Cheng, L., Kovachki, N. B., Welborn, M. & Miller III, T. F. Regression clus-
tering for improved accuracy and training costs with molecular-orbital-based
machine learning. J. Chem. Theory Comput. 15, 6668–6677 (2019).

In previous chapter, MOB-ML employed Gaussian Process Regression (GPR) has
been show to provides good prediction accuracy with small training sets; however,
the cost of GPR training scales cubically with the amount of data and becomes
a computational bottleneck for large training sets. In this chapter, we address
this problem by introducing a clustering/regression/classification implementation of
MOB-ML. By independently regressing these subsets of the data, we obtain MOB-
ML models with greatly reduced training costs while preserving prediction accu-
racy and transferability. For a dataset of thermalized (350 K) geometries of 7211
organic molecules of up to seven heavy atoms (QM7b-T), the chemical accuracy (1
kcal/mol prediction error) can be reached with only 300 training molecules, while
providing 35000-fold and 4500-fold reductions in the wall-clock training time, re-
spectively, compared to MOB-ML without clustering. The resulting models are also
demonstrated to retain transferability for the prediction of large-molecule energies
with only small-molecule training data. Finally, it is shown that capping the num-
ber of training datapoints per cluster leads to further improvements in prediction
accuracy with negligible increases in wall-clock training time.
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3.1 Introduction
We has introduced a rigorous factorization of the post-HF correlation energy into
contributions from pairs of occupied molecular orbitals and showed that these pair
contributions could be compactly represented in the space of molecular-orbital-
based (MOB) features to allow for straightforward ML regression.[57, 58] This
MOB-ML method was demonstrated to accurately predict MP2[5, 88] and CCSD(T)[8,
90] energies of different benchmark systems, including the QM7b-T and GDB-13-T
datasets of thermalized drug-like organic molecules. While providing good accu-
racy with a modest amount of training data, the accuracy of MOB-ML in these ini-
tial studies was limited by the high computational cost (O(N3)) of applying Gaus-
sian Process Regression (GPR) to the full set of training data.[58]

In this chapter, we combine MOB-ML with regression clustering (RC) to overcome
this bottleneck in computational cost and accuracy. The training data are clustered
via RC to discover locally linear structures. In a first step, regression clustering
(RC) is used to partition the training data to best fit an ensemble of linear regression
(LR) models; in a second step, each cluster is regressed independently, using either
LR or GPR; and in a third step, a random forest classifier (RFC) is trained for the
prediction of cluster assignments based on MOB feature values.

Upon inspection, RC is found to recapitulate chemically intuitive groupings of the
frontier molecular orbitals, and the combined RC/LR/RFC and RC/GPR/RFC im-
plementations of MOB-ML are found to provide good prediction accuracy with
greatly reduced wall-clock training times. The resulting models are also demon-
strated to retain transferability for the prediction of large-molecule energies with
only small-molecule training data. It is also shown that capping the number of
training datapoints per cluster leads to further improvements in prediction accuracy
with negligible increases in wall-clock training time.

3.2 Theory
Local linearity of MOB feature space
It has been previously emphasized that MOB-ML facilitates transferability across
chemical systems, even allowing for predictions involving molecules with elements
that do not appear in the training set,[57] due to the fact that MOB features provide
a compact and highly abstracted representation of the electronic structure. How-
ever, it is worth additionally emphasizing that this transferability benefits from the
smooth variation and local linearity of the pair correlation energies as a function
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of MOB feature values associated with different molecular geometries and even
different molecules.

Figure 3.1 illustrates these latter properties for a σ -bonding orbital in a series of
simple molecules. On the y-axis, we plot the diagonal contribution to the correlation
energy associated with this orbital (εii), computed at the MP2/cc-pvTZ level of
theory. On the x-axis, we plot the value of a particular MOB feature, the Fock
matrix element for the that localized orbital, Fii. For each molecule, a range of
geometries is sampled from the Boltzmann distribution at 350 K, with each plotted
point corresponding to a different sampled geometry.

It is immediately clear from the figure that the pair correlation energy varies smoothly
and linearly as a function of the MOB feature value. Moreover, the slope of the lin-
ear curve is remarkably consistent across molecules. This illustration suggests that
MOB features may lead to accurate regression of correlation energies using sim-
ple ML models (even linear models), and it also indicates the basis for the robust
transferability of MOB-ML across diverse chemical systems, including those with
elements that do not appear in the training set.

Figure 3.1: The diagonal pair correlation energy (εii) for a localized σ -bond in four
different molecules at thermally sampled geometries (at 350 K), computed at the
MP2/cc-pvTZ level of theory. The diagonal pair correlation energies for HF, NH3,
and CH4 are shifted vertically downward relative to those of HF by 3.407, 6.289,
and 7.772 kcal/mol for H2O, NH3, and CH4. Illustrative σ -bond LMOs are shown
for each molecule.

Regression clustering with a greedy algorithm
To take advantage of the local linearity of pair correlation energies as a function
of MOB features, we propose a strategy to discover optimally linear clusters using
regression clustering (RC).[101] Consider the set of M datapoints {ft ,εt}⊂Rd×R,
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where d is the length of the MOB feature vector and where each datapoint is indexed
by t and corresponds to a MOB feature vector and the associated reference value
(i.e., label) for the pair correlation energy. To separate these datapoints into locally
linear clusters, (S1, ...,SN), we seek a solution to the optimization problem

min
S1,...,SN

N

∑
k=1

∑
t∈Sk

|A(Sk) · ft +b(Sk)− εt |2, (3.1)

where (A(Sk) ∈ Rd) and (b(Sk) ∈ R) are obtained via ordinary least squares (OLS)
solution, 

fT
t1 1
...

...
fT
t|Sk |

1


[

A(Sk)

b(Sk)

]
=


εt1
...

εt|Sk |

 . (3.2)

Each resulting Sk is the set of indices t assigned to cluster k composed of |Sk| data-
points. To perform the optimization in Eq. 3.1, we employ a modified version of the
greedy algorithm proposed in Ref. 102 (Algorithm 1). In general, solutions to Eq.
3.1 may overlap, such that Sk ∩ Sl ̸= /0 for k ̸= l; however, the proposed algorithm
enforces that clusters remain pairwise-disjoint.

Algorithm 1 Greedy algorithm for the solution of Eq. 3.1.
Input: Initial clusters: S1, . . . ,SN
Output: Data clusters S1, . . . ,SN

1: for k← 1 to N do
2: A(Sk),b(Sk)← OLS solution of Eq. 3.2
3: end for
4: while not converged do
5: for k← 1 to N do
6: Sk←{t ∈ {1, . . . ,M} : argmin

n∈{1,...,N}
|A(Sn) · ft +b(Sn)− εt |2 = k}

7: end for
8: for k← 1 to N do
9: A(Sk),b(Sk)← OLS solution of Eq. 3.2

10: end for
11: end while

Algorithm 1 has a per-iteration runtime of O(Md2), since we compute N OLS solu-
tions each with runtime O(|Sk|d2) and since ∑

N
k=1 |Sk|=M. However, the algorithm

can be trivially parallelized to reach a runtime of O(max(|Sk|)d2). A key opera-
tional step in this algorithm is line 6, which can be explained in simple terms as
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follows: we assign each datapoint, indexed by t, to the cluster to which it is closest,
as measured by the squared linear regression distance metric,

|Dn,t |2 = |A(Sn) · ft +b(Sn)− εt |2, (3.3)

where Dn,t is the distance of this point to cluster n. In principle, a datapoint could be
equidistant to two or more different clusters by this metric; in such cases, we ran-
domly assign the datapoint to only one of those equidistant clusters to enforce the
pairwise-disjointness of the resulting clusters. Convergence of the greedy algorithm
is measured by the decrease in the objective function of Eq. 3.1.

Figure 3.2: Comparison of clustering algorithms for (a) a dataset composed of
two cluster of nearly linear data that overlap in feature space, using (b-d) RC and
(e) standard K-means clustering. (b) Random initialization of the clusters for the
greedy algorithm, with datapoint color indicating cluster assignment. (c) Cluster
assignments after one iteration of the greedy algorithm. (d) Converged cluster as-
signments after four iterations of the greedy algorithm. For panels (b-d), two linear
regression lines at each iteration are shown in black. (e) Converged cluster assign-
ments obtained using K-means clustering, which fails to reveal the underlying linear
structure of the clusters.
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Figure 3.2 illustrates RC in a simple one-dimensional example for which unsuper-
vised clustering approaches will fail to reveal the underlying linear structure. To
create two clusters of nearly linear data that overlap in feature space, the interval
of feature values on [0,1] is uniformly discretized, such that ft = (t− 1)/(M− 1)
for t = 1, . . . ,M. Then, M/2 of the feature values are randomly chosen without
replacement for cluster S1 while the remainder are placed in S2; the energy labels
associated with each feature value are then generated using

εt = ft +ξt,1, t ∈ S1

and
εt =−ft +1+ξt,2, t ∈ S2

, where ξt,k ∼N (0,0.12) is an i.d.d. sequence. The resulting dataset is shown in
Fig. 3.2a.

Application of the RC method to this example is illustrated in Figs. 3.2(b-d). The
greedy algorithm is initialized by randomly assigning each datapoint to either S1

or S2 (Fig. 3.2b). Then, with only a small number of iterations (Figs. 3.2c and d),
the algorithm converges to clusters that reflect the underlying linear character. For
comparison, Fig. 3.2e shows the clustering that is obtained upon convergence of
the standard K-means algorithm,[103] initialized with random cluster assignments.
Unlike RC, the K-means algorithm prioritizes the compactness of clusters, result-
ing in a final clustering that is far less amenable to simple regression. While we
recognize that the correct clustering could potentially be obtained using K-means
when the dimensions of ft and εt are comparable, this is not the case for MOB-ML
applications since ft is typically at least 10-dimensional and εt is a scalar; the RC
approach does not suffer from this issue. Finally, we have confirmed that initializa-
tion of RC from the clustering in Fig. 3.2e rapidly returns to the results in Fig. 3.2d,
requiring only a couple of iterations of the greedy algorithm.

3.3 Computational Details
Results are presented for QM7b-T,[58] a thermalized version of the QM7b set [97]
of 7211 molecules with up to seven C, O, N, S, and Cl heavy atoms, as well as
for GDB-13-T, [58] a thermalized version of the GDB-13 set [69] of molecules
with thirteen C, O, N, S, and Cl heavy atoms. The MOB-ML features employed
in the current study are identical to those previously provided. [58] Reference pair
correlation energies are computed using MP2 [5] and using CCSD(T). [8, 90] The
MP2 reference data were obtained with the cc-pVTZ basis set, [87] whereas the
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Figure 3.3: General clustering/regression/classification workflow for MOB-ML. (a)
Clustering of the training dataset of MOB-ML feature vectors and energy labels
using RC to obtain optimized linear clusters and to provide the cluster labels for the
feature vectors. (b) Regression of each cluster of training data (using LR or GPR),
to obtain the ensemble of cluster-specific regression models. (c) Training a classifier
(RFC) from the MOB-ML feature vectors and cluster labels for the training data.
(d) Evaluating the predicted MOB-ML pair correlation energy from a test feature
vector is performed by first classifying the feature vector into one of the clusters,
then evaluating the cluster-specific regression model. In each panel, blue boxes
indicate input quantities, orange boxes indicate training intermediates, and green
boxes indicate the resulting labels, models, and pair correlation energy predictions.

CCSD(T) data were obtained using the cc-pVDZ basis set. [87] All employed train-
ing and test datasets are provided in Ref. 58.

Regression Clustering (RC)
RC is performed using the ordinary least square linear regression implementa-
tion in the SCIKIT-LEARN package [94]. Unless otherwise specified, we initialize
the greedy algorithm from the results of K-means clustering, also implemented in
SCIKIT-LEARN; K-means initialization was found to improve the subsequent train-
ing of the random forest classifier (RFC) in comparison to random initialization.
It is found that neither L1 nor L2 regularization had significant effect on the rate
of convergence of the greedy algorithm, so neither is employed in the results pre-
sented here. It is found that a convergence threshold of 1×10−8 kcal2/mol2 for the
loss function of the greedy algorithm (Eq. 3.1) leads to no degradation in the final
MOB-ML regression accuracy (Fig. S2); this value is employed throughout.
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Regression
Two different regression models are employed in the current work. The first is ordi-
nary least-squares linear regression (LR), as implemented in SCIKIT-LEARN. The
second is Gaussian Process Regression, as implemented in the GPY 1.9.6 software
package [93]. Regression is independently performed for the training data associ-
ated with each cluster, yielding a local regression model for each cluster. Also, as
in our previous work,[57, 58] regression is independently performed for the diago-
nal and off-diagonal pair correlation energies (εML

d and εML
o ) yielding independent

regression models for each.

GPR is performed using a negative log marginal likelihood objective. As in our
previous work,[58] the Matérn 5/2 kernel is used for regression of the diagonal
pair correlation energies and the Matérn 3/2 kernel is used for the off-diagonal pair
correlation energies; in both cases, white noise regularization[92] is employed, and
the GPR is initialized with unit lengthscale and variance.

Classification
An RFC is trained on MOB-ML features and cluster labels for a training set and
then used to predict the cluster assignment of test datapoints in MOB-ML feature
space. We employ the RFC implementation in SCIKIT-LEARN, using with 200
trees, the entropy split criteria,[104] and balanced class weights.[104] Alternative
classifiers were also tested in this work, including K-means, Linear SVM,[105] and
AdaBoost;[106] however, these schemes were generally found to yield less accurate
MOB-ML energy predictions than RFC.

For comparison, a “perfect" classifier is obtained by simply including the test data
within the RC training set. While useful for the analysis of prediction errors due to
classification, this scheme is not generally practical because it assumes prior knowl-
edge of the reference energy labels for the test molecules. Since the perfect clas-
sifier avoids mis-classification of the test data by construction, it should be regarded
as a best case scenario for the performance of the clustering/regression/classification
approach.

The clustering/regression/classification workflow
Fig. 3.3 summarizes the combined work flow for training and evaluating a MOB-
ML model with clustering. The training involves three steps: First, the training
dataset of MOB-ML feature vectors and energy labels are assigned to clusters using
the RC method (panel a). Second, for each cluster of training data, the regression
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model (LR or GPR) is trained, to enable the prediction of pair correlation energies
from the MOB-ML vector. Third, a classifier is trained from the MOB-ML feature
vectors and cluster labels for the training data, to enable the prediction of the cluster
assignment from a MOB-ML feature vector.

The resulting MOB-ML model is specified in terms of the method of clustering
(RC, for all results presented here), the method of regression (either LR or GPR),
and the method of classification (either RFC or the perfect classifier). In referring
to a given MOB-ML model, we employ a notation that specifies these options (e.g.,
RC/LR/RFC or RC/GPR/perfect).

Evaluation of the trained MOB-ML model is explained in Fig. 3.3d. A given
molecule is first decomposed into a set of test feature vectors associated with the
pairs of occupied MOs. The classifier is then used to assign each feature vector to
an associated cluster. The cluster-specific regression model is then used to predict
the pair correlation energy from the MOB feature vector. And finally, the pair cor-
relation energies are summed to yield the total correlation energy for the molecule.

To improve the accuracy and reduce the uncertainty in the MOB-ML predictions,
ensembles of 10 independent models using the clustering/regression/classification
workflow are trained, and the predictive mean and the corresponding standard error
of the mean (SEM) are computed by averaging over the 10 models; a comparison
between the learning curves[95] from a single run and from averaging over the 10
independent models is included in Appendix Fig. 3.11. As described here, the
predicted correlation energies may exhibit discontinuities as a function of nuclear
position, due to changes in the assignment of feature vectors among the clusters;
moving forward, this may be avoided with the use of soft (or fuzzy) clustering
algorithms.[107]

3.4 Results
Clustering and classification in MOB feature space
We begin by showing that the situation explored in Fig. 3.2, in which locally linear
clusters overlap, also arises in realistic chemical applications of MOB-ML. We con-
sider the QM7b-T set of drug-like molecules with thermalized geometries, using the
diagonal pair correlation energies εML

d computed at the MP2/cc-pVTZ level. Ran-
domly selecting 1000 molecules for training, we perform RC on the dataset com-
posed of these energy labels and feature vectors, using N = 20 optimized clusters;
the sensitivity of RC to the choice of N is examined later.
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In many cases, the resulting clusters are well separated, such that the datapoints
for one cluster have small distances (as measured by the linear regression distance
metric, Eq. 3.3) to the cluster which it belongs to and large distances to all other
clusters. However, the clusters can also overlap. Fig. 3.4a illustrates this overlap for
two particular clusters (labeled 1 and 2) obtained from the QM7b-T diagonal-pair
training data.

Each datapoint assigned to cluster 1 (blue) is plotted according to its distance to
both cluster 1 and cluster 2; likewise for the datapoints in cluster 2 (red). The
datapoints for which the distances to both clusters approach zero correspond to
regions of overlap between the clusters in the high-dimensional space of MOB-ML
features, akin to the case shown in Fig. 3.2.

Finally, in Fig. 3.4b, we illustrate the classification of the feature vectors into clus-
ters. An RFC is trained on the feature vectors and cluster labels for the diagonal
pairs of 1000 QM7b-T molecules in the training set, and the classifier is then used
to predict the cluster assignment for the feature vectors associated with the remain-
ing diagonal pairs of 6211 molecules in QM7b-T. For clusters 1 and 2, we then
analyze the accuracy of the RFC by plotting the linear regression distance for each
datapoint to the two clusters, as well as indicating the RFC classification of the
feature vector. Each red datapoint in Fig. 3.4b that lies above the diagonal line of
reflection is mis-classified into cluster 2, and similarly, each blue datapoint that lies
below the line of reflection is mis-classified into cluster 1. The figure illustrates
that while RFC is not a perfect means of classification, it is at least qualitatively
correct. Later, in the results section, we will analyze the sources of MOB-ML pre-
diction errors due to mis-classification by comparing energy predictions obtained
with perfect classification versus RFC.

Chemically intuitive clusters
To address this, we employ a training set of 500 randomly selected molecules from
QM7b-T, and we perform regression clustering for the diagonal pair correlation en-
ergies εML

d with a range of total cluster numbers, up to N = 20. For each clustering,
we then train an RFC. Finally, each trained RFC is independently applied to a set
of test molecules with easily characterized valence molecular orbitals (listed in the
caption of Fig. 3.5), to see how the feature vectors associated with valence occupied
LMOs are classified among the optimized clusters.

Figure 3.5 presents the results of this exercise, clearly indicating the agreement be-
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Figure 3.4: (a) Illustration of the overlap of clusters obtained via RC for the training
set molecules from QM7b-T. (b) Classification of the datapoints for the remaining
test molecules from QM7b-T, using RFC. Distances correspond to the linear re-
gression metric defined in Eq. 3.3.

Figure 3.5: Analyzing the results of clustering/classification in terms of chemical
intuition. Using a a training set of 500 randomly selected molecules from QM7b-T,
RC is performed for the diagonal pair correlation energies, εML

d , with a range of
cluster numbers, N, and for each clustering, an RFC is trained. Then, the trained
classifier is applied to a set of test molecules (CH4, C2H6, C2H4, C3H8, CH3CH2OH,
CH3OCH3, CH3CH2CH2CH3, CH3CH(CH3)CH3, CH3CH2CH2CH2CH2CH2CH3,
(CH3)3CCH2OH, and CH3CH2CH2CH2CH2CH2OH) which have chemically intu-
itive LMO types, as indicated in the legend. The LMOs are successfully resolved
according to type by the classifier as N increases. Empty boxes correspond to clus-
ters into which none of the LMOs from the test set is classified; these are expected
since the training set is more diverse than the test set.
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tween chemical intuition and the predictions of the RFC. As the number of clus-
ters increases, the feature vectors associated with different valence LMO types
are resolved into different clusters; and with a sufficiently large number of clus-
ters (15 or 20), each cluster is dominated by a single type of LMO while each
LMO type is assigned to a small number of different clusters. The empty boxes
in Fig. 3.5 reflect that the training set contains a larger diversity of LMO types
than the 11 test molecules, which is expected. The observed consistency of the
clustering/classification method presented here with chemical intuition is of course
promising for the accurate local regression of pair correlation energies, which is
the focus of the current work; however, the results of Fig. 3.5 also suggest that the
clustering/classification of chemical systems in MOB-ML feature space provides a
powerful and highly general way of mapping the structure of chemical space for
other applications, including explorative or active ML applications.[108]

Sensitivity to the number of clusters
We now explore the sensitivity of the MOB-ML clustering/regression/classification
implementation to the number of employed clusters. In particular, we investigate
the mean absolute error (MAE) of the MOB-ML predictions for the diagonal (∑i εii)
and off-diagonal (∑i̸= j εi j) contributions to the total correlation energy, as a function
of the number of clusters, N, used in the RC. The MOB-ML models employ linear
regression and RFC classification (i.e., the RC/LR/RFC protocol); the training set
is composed of 1000 randomly chosen molecules from QM7b-T, and the test set
contains the remaining molecules in QM7b-T.

Figure 3.6 presents the result of this calibration study, plotting the prediction MAE
as a function of the number of clusters. Not surprisingly, the prediction accuracy for
both the diagonal and off-diagonal contributions improves with N, although it even-
tually plateaus in both cases. For the diagonal contributions, the accuracy improves
most rapidly up to approximately 20 clusters, in accord with the observations in
Fig. 3.5; and for the off-diagonal contributions, a larger number of clusters is useful
for reducing the MAE error, which is sensible given the greater variety of feature
vectors that can be created from pairs of LMOs rather than only individual LMOs.
Appealingly, there does not seem to be a strong indication of MAE increases due
to "over-clustering". While recognizing that the optimal number of clusters will, in
general, depend somewhat on the application and the regression method (i.e., LR
versus GPR), the results in Fig. 3.6 nonetheless provide useful guidance with regard
to the appropriate values of N. Throughout the remainder of the study, we employ
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a value of N = 20 for the MOB-ML prediction of diagonal contributions to the cor-
relation energy and a value of N = 70 for the off-diagonal contributions; however,
we recognize that these choices could be further optimized.
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Figure 3.6: Illustration of the sensitivity of MOB-ML predictions for the diago-
nal and off-diagonal contributions to the correlation energy for the QM7b-T set of
molecules, using a subset of 1000 molecules for training and the RC/LR/RFC pro-
tocol. The standard error of the mean (SEM) for the predictions is smaller than the
size of the plotted points.
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Figure 3.7: Learning curves for various implementations of MOB-ML applied to (a)
MP2/cc-pVTZ and (b) CCSD(T)/cc-pVDZ correlation energies, with the training
and test sets corresponding to non-overlapping subsets of the QM7b-T set of drug-
like molecules with up to heavy seven atoms. Results obtained using GPR without
clustering (green) are reproduced from Ref. 58. The gray shaded area corresponds
to a MAE of 1 kcal/mol per seven heavy atoms. The prediction SEM is smaller than
the plotted points. The log-log version of this plot is provided in Fig. S3.

Performance and training cost of MOB-ML with RC
We now investigate the effect of clustering on the accuracy and training costs of
MOB-ML for applications to sets of drug-like molecules. Figure 3.7a presents
learning curves (on a linear-linear scale) for various implementations of MOB-ML
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Figure 3.8: Training costs and transferability of MOB-ML with clustering
(RC/LR/RFC, red; RC/GPR/RFC, blue) and without clustering (green, Ref. 58),
applied to correlation energies at the MP2/cc-pVTZ level. Prediction errors are
plotted as a function of wall-clock training time. Training sets are composed of
subsets of the QM7b-T dataset, with the number of training molecules indicated
via datapoint labels. Correlation energy predictions are made for test sets com-
posed of the remaining seven-heavy-atom molecules from QM7b-T (circles) and
the thirteen-heavy-atom molecules from GDB-13-T (diamonds). Both MAE pre-
diction errors and parallelized wall-clock training times are plotted on a log scale.
The gray shaded area corresponds to a MAE of 1 kcal/mol per seven heavy atoms.
The prediction SEM is smaller than the plotted points. Details of the parallelization
and employed computer hardware are described in the text.

applied to MP2/cc-pVTZ correlation energies, with the training and test sets cor-
responding to non-overlapping subsets of QM7b-T. In addition to the new results
obtained using RC, we include the MOB-ML results from our previous work (GPR
without clustering).[58]

Figure 3.7a yields three clear observations. The first is that the use of RC with RFC
(i.e., RC/GRP/RFC and RC/LR/RFC) leads to slightly less efficient learning curves
than our previous implementation without clustering, at least when efficiency is
measured in terms of the number of training molecules. Both the RC/GPR/RFC and
RC/LR/RFC protocols require approximately 300 training molecules to reach the
1 kcal/mol per seven heavy atoms threshold for chemical accuracy employed here,
whereas MOB-ML without clustering requires approximately half as many training
molecules. The second observation is that the classifier is the dominant source
of prediction error in these results. Comparison of results using RFC versus the
perfect classifier (which utilizes prior knowledge of the energy labels and thus is not
generally practical), reveals a dramatic reduction in the prediction error, regardless
of the regression method. This result indicates that there is potentially much to be
gained from the development of improved classifiers for MOB-ML applications. A
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third observation is that with a perfect classifier, the LR slightly outperforms GPR,
given that the clusters are optimized to be locally linear; however, GPR slightly
outperforms LR in combination with the RFC, indicating that GPR is less sensitive
to classification error that LR.

Figure 3.7b presents the corresponding results at the CCSD(T)/cc-pVDZ level of
theory. The same trends emerge as the ones at the MP2/cc-pVTZ level of theory.
As seen in previous work, the training efficiency of MOB-ML with respect to the
size reference dataset is found to be largely insensitive to the level of electronic
structure theory.[57, 58]

Figure 3.8 explores the training costs and transferability of MOB-ML models that
employ RC. In all cases, the models are trained on random subsets of molecules
from QM7b-T with up to seven heavy atoms, and predictions are made either on
the remaining molecules of QM7b-T (circles) or on the GDB-13-T set (diamonds);
it has previously been shown than that MOB-ML substantially outperforms the
FCHL atom-based-feature method in terms of transferability from small to large
molecules.[58] The parallelization of the training steps are implemented as follows.
Within the RC step, the LR for each cluster is performed independently on a differ-
ent core of a 16-core Intel Skylake (2.1 GHz) CPU processor. Within the regression
step, the LR or GPR for each cluster is likewise performed independently on a
different core. For RFC training, we apply parallel 200 cores using the parallel im-
plementation of SCIKIT-LEARN, since there are 200 trees. The regression and RFC
training are independent of each other and are thus also trivially parallelizable.

Focusing first on the predictions for seven-heavy-atom molecules (circles), it is
clear from Fig. 3.8 that RC leads to large improvements in the efficiency of the
MOB-ML wall-clock training costs. Although it requires somewhat more training
molecules than MOB-ML without clustering, MOB-ML with clustering enables
chemical accuracy to be reached with the training cost reduced by a factor of ap-
proximately 4500 for RC/GPR/RFC and of 35000 for RC/LR/RFC. Remarkably,
for predictions within the QM7b-T set, chemical accuracy can be achieved using
RC/LR/RFC with a wall-clock training time of only 7.7 s.

Figure 3.8 also demonstrates the transferability of the MOB-ML models for pre-
dictions on the GDB-13-T set of thirteen-heavy-atom molecules (diamonds). In
general, it is seen that the degradation in the MAE per atom is greater for the
RC/LR/RFC than for RC/GPR/RFC, due to the previously mentioned sensitivity of
LR to classification error. However, we note that the RC/GPR/RFC enables predic-
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tions on GDB-13-T (blue, diamonds) that meet the per-atom threshold of chemical
accuracy used here, whereas that threshold was not achievable without clustering
(green, diamonds) due to the prohibitive training costs involved.

The improved efficiency of MOB-ML training with the use of clustering arises from
the cubic scaling of standard GPR in terms of training time (O(M3), where M is
number of training pairs).[92] Trivial parallelization over the independent regres-
sion of the clusters reduces this training time cost to the cube of largest cluster. We
note that other kernel-based ML methods with high complexity in training time,
like Kernel Ridge Regression,[109] would similarly benefit from clustering. For
the RC/LR/RFC and RC/GPR/RFC results presented in Fig. 3.8, a breakdown of the
training time contributions for each step of the clustering/regression/classification
workflow as a function of the size of the training dataset is shown in Fig. S4; this
supporting information figure confirms that the GPR regression dominates the to-
tal training (and prediction) costs for the RC/GPR/RFC implementation, whereas
training the RFC dominates the training costs for RC/LR/RFC. In addition to im-
proved efficiency in terms of training time, clustering also bring benefits in terms
of the memory costs for MOB-ML training, due to the quadratic scaling of GPR
memory costs in terms of the size of the dataset.

Finally, returning to the learning curves, we compare the results for MOB-ML both
with and without clustering to recent work[110] using Faber-Christensen-Huang-
Lilienfeld (FCHL) features. Fig. 3.9 shows these various learning curves for the
MP2/cc-pVTZ correlation energies. For Fig. 3.9a, the training and test sets corre-
spond to non-overlapping subsets of QM7b-T, and Fig. 3.9b shows the transferabil-
ity of the same models trained using QM7b-T to predict the energies for GDB-13-T.
Fig. 3.9a again shows that MOB-ML RC/GPR/RFC requires slightly more training
geometries than MOB-ML without clustering, yet both MOB-ML protocols are
more efficient in terms of training data than either the FCHL18[98] or FCHL19 im-
plementations[110]. Like MOB-ML with clustering, the FCHL19 implementation
was developed to reduce training times.

Capping the cluster size
Since the parallelized training time for RC/GPR/RFC is dominated by the GPR re-
gression of the largest cluster (Fig. S4), a natural question is whether additional
computational savings and adequate prediction accuracy could achieved by sim-
ply capping the number of datapoints in the largest cluster. In doing so, we define
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Figure 3.9: Comparison of learning curves for MP2/cc-pVTZ correlation ener-
gies obtained using MOB-ML (with and without clustering) versus FCHL18 and
FCHL19. Part (a) presents results for which both the training and test sets include
molecules from QM7b-T, and part (b) presents results for which the training set
includes molecules from QM7b-T and the test set includes molecules from GDB-
13-T. The MAE are plotted on a log-log scale as a function of number of train-
ing molecules. The gray shaded area corresponds to a MAE of 1 kcal/mol per
seven heavy atoms. Results for FCHL18 and FCHL19 were digitally captured from
Ref. 110.

SNcap
max to be the number of datapoints in the largest cluster obtained when the RC

with the greedy algorithm is applied to a training dataset of Ncap molecules from
QM7b-T. Upon specifying Ncap (and thus SNcap

max), the RC/GPR/RFC implementa-
tion is modified as follows. For a given number of training molecules (which will
typically exceed Ncap), the RC step is performed as normal. However, at the end
of the RC step, datapoints for clusters whose size exceeds SNcap

max are discarded at
random until all clusters contain SNcap

max or fewer datapoints. The GPR and RFC
training steps are performed as before, except using this set of clusters that are
capped in size. The precise value of SNcap

max will vary slightly depending on which
training molecules are randomly selected for training and the convergence of the
greedy algorithm, but typical values for SNcap

max are 672,1218,1863,3005, and 4896
for Ncap = 100,200,300,500, and 800, respectively, and those values will be used
for the numerical tests presented here.

Figure 3.10a demonstrates that capping the maximum cluster size allows for sub-
stantial improvements in accuracy when the number of training molecules exceeds
Ncap. Specifically, the figure shows the effect of capping on RC/GPR/RFC learn-
ing curves for MP2/cc-pVTZ correlation energies, with the training and test sets
corresponding to non-overlapping subsets of QM7b-T. As a baseline, note that
with 100 training molecules, the RC/GPR/RFC implementation yields a predic-
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tion MAE of approximately 1.5 kcal/mol. However, if the maximum cluster size
is capped at Ncap = 100 and 300 training molecules are employed, then the predic-
tion MAE drops to approximately 1.0 kcal/mol while the parallelized training cost
for RC/GPR/RFC will be unchanged so long as it remains dominated by the size
of the largest cluster. As expected, Fig. 3.10a shows that the learning curves sat-
urate at higher prediction MAE values when smaller values of Ncap are employed.
Nonetheless, the figure demonstrates that if additional training data is available,
then the prediction accuracy for MOB-ML with RC can be substantially improved
while capping the size of the largest cluster.

Figure 3.10b demonstrates the actual effect of capping on the parallelized train-
ing time, plotting the prediction MAE versus parallelized training time as a func-
tion of the number of training molecules. For reference, the results obtained using
RC/LR/RFC and RC/GPR/RFC without capping are reproduced from Fig. 3.8. As
is necessary, the RC/GPR/RFC results obtained with capping exactly overlap those
obtained without capping when the number of training molecules is not greater than
Ncap. However, for each value of Ncap, a sharp drop in the prediction MAE is seen
when the number of training molecules begins to exceed Ncap, demonstrating that
prediction accuracy can be greatly improved with minimal increase in parallelized
training time. For example, it is seen that for RC/GPR/RFC with Ncap = 100, chem-
ical accuracy can be reached with only 7.4 s of parallelized training, slightly less
than even RC/LR/RFC. For small values of Ncap, this prediction MAE eventually
levels-off versus the training time, since the RFC training step becomes the domi-
nant contribution to the training time.

3.5 Conclusions
Molecular-orbital-based (MOB) features offer a complete representation for map-
ping chemical space and a compact representation for evaluating correlation en-
ergies. In the current work, we take advantage of the intrinsic structure of MOB
feature space, which cluster according to types of localized molecular orbitals, as
well as the fact that orbital-pair contributions to the correlation energy contributions
vary linearly with the MOB features, to overcome a fundamental bottleneck in the
efficiency of ML correlation energies. Specifically, we introduce a regression clus-
tering (RC) approach in which MOB features and pair correlation energies are clus-
tered according to their local linearity; we then individually regress these clusters
and train a classifier for the prediction of cluster assignments on the basis of MOB
features. This combined clustering/regression/classification approach is found to
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Figure 3.10: The effect of cluster-size capping on the prediction accuracy and
training costs for MOB-ML with RC. Results reported for correlation energies
at the MP2/cc-pVTZ level, with the training and test sets corresponding to non-
overlapping subsets of the QM7b-T set of drug-like molecules with up to heavy
seven atoms. (a) Prediction MAE versus the number of training molecules, with
the clusters capped at various maximum sizes. The RC/GPR/RFC curve without
capping is reproduced from Fig. 3.7a. (b) Prediction MAE per heavy atom versus
parallelized training time as a function of the number of training molecules, as in
Fig. 3.8. The results for MOB-ML with clustering and without capping cluster size
(RC/LR/RFC, red; RC/GPR/RFC, blue) are reproduced from Fig. 3.8. Also, the
results for RC/GPR/RFC with various capping sizes Ncap are shown. For part (a),
the gray shaded area corresponds to a MAE of 1 kcal/mol, and for part (b), it corre-
sponds to 1 kcal/mol per seven heavy atoms, to provide consistency with preceding
figures. The prediction SEM is smaller than the plotted points.

reduce MOB-ML training times by 3-4 orders of magnitude, while enabling pre-
diction accuracies that are substantially improved over that which is possible using
MOB-ML without clustering. The use of a random forest classifier for the cluster
assignments, while better than alternatives that were explored, is found to be the
limiting factor in terms of MOB-ML accuracy within this new approach, motivat-
ing future work on improved classifiers. This work provides a useful step towards
that development of accurate, transferable, and scalable quantum ML methods to
describe ever-broader swathes of chemical space.

3.6 Appendix
Figures in this Appendix show the effect of averaging over independently trained
MOB-ML-models (Fig. 3.11), the sensitivity of the prediction accuracy to the RC
convergence threshold (Fig. 3.12), learning curves for various implementations of
MOB-ML plotted on a log-log scale (Fig. 3.13), and a detailed breakdown of the
parallelized wall-clock timings (Fig. 3.14). Tables 3.1, 3.2, 3.3, 3.4, and 3.5 provide
the numerical data for the plots appearing in the main text.
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Figure 3.11: Learning curves for various implementations of MOB-ML applied to
MP2/cc-pVTZ correlation energies, with the training and testing sets corresponding
to non-overlapping subsets of QM7b-T. Results obtained from averaging over 10
independent models are compared to results from a single model (/1X) without av-
eraging. For both the RC/GPR/RFC and RC/LR/RFC implementations, averaging
over independent models reduces the prediction MAE.
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Figure 3.12: Sensitivity of MOB-ML predictions to the RC convergence threshold.
Results are obtained using the RC/LR/RFC implementation of MOB-ML applied to
MP2/cc-pVTZ correlation energies, with the training and testing sets corresponding
to non-overlapping subsets of QM7b-T. The prediction MAEs for the contributions
from the (a) diagonal and (b) off-diagonal pair energies are shown for two differ-
ent training set sizes. For both the diagonal and off-diagonal pair contributions, a
threshold value of 1×10−8 kcal2/mol2 for the RC loss function (Eq. 4 in the main
text) provides similar results as tighter convergence thresholds.
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Figure 3.13: Learning curves for various implementations of MOB-ML applied to
(a) MP2/cc-pVTZ and (b) CCSD(T)/cc-pVDZ correlation energies, with the train-
ing and test sets corresponding to non-overlapping subsets of the QM7b-T set of
drug-like molecules with up to heavy seven atoms. These results are identical to
those of Fig. 7 in the main text, except plotted on a log-log scale.

 1

 10

 100

 1000

 10000
 40000

 100  200  500  1000  2000

P
a
ra
lle
liz
e
d

 t
ra
in
in
g

 t
im
e

 (
s
)

Number of training molecules

RC
RFC
GPR
LR

 1

 10

 100

 1000

 10000
 40000

 100  200  500  1000  2000

Figure 3.14: Breakdown of the wall-clock timings for RC, RFC, GPR and LR for
different number of training molecules from the QM7b-T set at the MP2/cc-pvTZ
level of theory. The parallelization is implemented as follows. Within the RC step,
the LR regression of each cluster is performed independently on a different core
of a 16-core Intel Skylake (2.1 GHz) CPU processor. With in the regression step,
the LR and GPR regression of each cluster is likewise performed independently on
a different core. For RFC training, we apply employ parallel 200 cores using the
parallel implementation of SCIKIT-LEARN, since there are 200 trees.
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Table 3.1: MOB-ML prediction accuracy for the RC/GPR/RFC implementation,
applied to correlation energies at the MP2/cc-pVTZ level. Training sets are com-
posed of subsets of the QM7b-T dataset, with the number of training molecules
indicated. Correlation energy predictions are made for test sets composed of the re-
maining seven-heavy-atom molecules from QM7b-T and the thirteen-heavy-atom
molecules from GDB-13-T. Energies in kcal/mol.

QM7b-T QM7b-T prediction GDB-13-T prediction
Training size MAE SEM MAE SEM MAE/HA SEM/HA

100 1.520 0.025 3.415 0.046 0.2431 0.0035
200 1.194 0.014 2.785 0.024 0.1992 0.0018
300 0.9109 0.0056 2.366 0.027 0.1724 0.0020
500 0.8028 0.0048 2.278 0.023 0.1655 0.0018
800 0.7048 0.0036 2.161 0.020 0.1564 0.0015

1000 0.6517 0.0043 2.088 0.021 0.1497 0.0016
1300 0.5791 0.0032 2.062 0.019 0.1482 0.0015
1500 0.5414 0.0052 1.993 0.012 0.1432 0.0009
2000 0.4654 0.0027 1.913 0.016 0.1332 0.0012

Table 3.2: MOB-ML prediction accuracy for the RC/LR/RFC implementation, ap-
plied to correlation energies at the MP2/cc-pVTZ level. Training sets are composed
of subsets of the QM7b-T dataset, with the number of training molecules indicated.
Correlation energy predictions are made for test sets composed of the remaining
seven-heavy-atom molecules from QM7b-T and the thirteen-heavy-atom molecules
from GDB-13-T. Energies in kcal/mol.

QM7b-T QM7b-T prediction GDB-13-T prediction
Training size MAE SEM MAE SEM MAE/HA SEM/HA

100 1.442 0.041 3.427 0.086 0.2636 0.0066
200 1.199 0.018 2.935 0.035 0.2258 0.0027
300 0.9909 0.0084 2.596 0.029 0.1997 0.0023
500 0.8869 0.0051 2.412 0.016 0.1855 0.0013
800 0.7984 0.0042 2.394 0.020 0.1842 0.0015

1000 0.7586 0.0062 2.301 0.026 0.1770 0.0020
1300 0.7100 0.0038 2.321 0.021 0.1786 0.0017
1500 0.6769 0.0037 2.257 0.014 0.1736 0.0011
2000 0.6115 0.0028 2.218 0.022 0.1706 0.0017
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Table 3.3: MOB-ML prediction accuracy for the RC/GPR/Perfect and
RC/LR/Perfect implementations, applied to correlation energies at the MP2/cc-
pVTZ level, with the training and testing sets corresponding to non-overlapping
subsets of QM7b-T. Energies in kcal/mol.

RC/GPR/Perfect RC/LR/Perfect
Training size MAE SEM MAE SEM

100 0.6235 0.0331 0.3031 0.0574
200 0.3254 0.0113 0.1481 0.0231
300 0.2246 0.0075 0.1153 0.0031
500 0.1734 0.0052 0.1120 0.0029
800 0.1470 0.0031 0.1104 0.0031

1000 0.1361 0.0026 0.1096 0.0032
1300 0.1324 0.0014 0.1099 0.0033
1500 0.1230 0.0019 0.1095 0.0034
2000 0.1127 0.0010 0.1085 0.0035

Table 3.4: MOB-ML prediction accuracy for the RC/GPR/RFC and RC/LR/RFC
implementations, applied to correlation energies at the CCSD(T)/cc-pVDZ level,
with the training and testing sets corresponding to non-overlapping subsets of
QM7b-T. Energies in kcal/mol.

RC/GPR/RFC RC/LR/RFC
Training size MAE SEM MAE SEM

100 1.607 0.041 1.718 0.065
200 1.314 0.016 1.412 0.025
300 1.013 0.006 1.075 0.012
500 0.9026 0.0036 0.9951 0.0063
800 0.7880 0.0031 0.8876 0.0051
1000 0.7194 0.0053 0.8253 0.0062
1300 0.6495 0.0047 0.7559 0.0035
1500 0.6116 0.0034 0.7251 0.0034
2000 0.5243 0.0026 0.6402 0.0028
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Table 3.5: MOB-ML prediction accuracy for the RC/GPR/RFC implementation
with cluster-size capping, applied to correlation energies at the MP2/cc-pVTZ
level, with the training and testing sets corresponding to non-overlapping subsets
of QM7b-T. Energies in kcal/mol.

Training size Ncap = 100 Ncap = 200 Ncap = 300 Ncap = 500 Ncap = 800
100 1.520 1.520 1.520 1.520 1.520
200 1.217 1.194 1.194 1.194 1.194
300 0.9827 0.9318 0.9109 0.9109 0.9109
500 0.9211 0.8370 0.8049 0.8028 0.8028
800 0.9066 0.8028 0.7368 0.7054 0.7048

1000 0.8532 0.7745 0.7178 0.6676 0.6534
1300 0.8602 0.7568 0.6983 0.6261 0.5980
1500 0.8432 0.7353 0.6740 0.5892 0.5511
2000 0.8549 0.7456 0.6620 0.5753 0.5148
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C h a p t e r 4

IMPROVED ACCURACY OF MOLECULAR ENERGY
LEARNING VIA UNSUPERVISED CLUSTERING FOR THE

ORGANIC CHEMICAL SPACE WITH
MOLECULAR-ORBITAL-BASED MACHINE LEARNING

Adapted from:

1. Cheng, L., Sun, J. & Miller III, T. F. Improved accuracy of molecular energy
learning via unsupervised clustering for organic chemical space with
molecular-orbital-based machine learning. In preparation.

In this chapter, we consider improved clustering and regression algorithms to unsu-
pervisedly cluster the chemical space via the Gaussian mixture model (GMM) and
then regress molecular energies via alternative blackbox matrix-matrix multipli-
cation (AltBBMM) for MOB-ML. Although regression clustering (RC) combined
with local Gaussian process regression (GPR) or linear regression (LR) provides
a useful framework for accurately constructing local regression models for MOB-
ML, the accuracy loss associated with classification limits this approach’s ability to
provide the most accurate energy predictions. The improved feature design allows
unsupervised clustering, and the introduction of an exact scalable GPR algorithm,
i.e., AltBBMM, further scales the training of MOB-ML up. Without any addi-
tional information from label space, the resulting clusters from GMM agree with
the chemically intuitive groupings of MO types. This unsupervised clustering with
AltBBMM local regression provides superior accuracy over all other learning pro-
tocols and the state-of-the-art learning efficiency on the QM7b-T and GDB-13-T
benchmark systems by training on 6500 QM7b-T molecules.
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4.1 Introduction
Machine learning (ML) approaches have attracted considerable interest in the chem-
ical sciences for a variety of applications, including molecular and material de-
sign, [22, 31, 44, 111–115], protein property prediction [116–118], reaction mech-
anism discovery [112, 119–123], and analysis and classification tasks for new in-
sight [124–126]. As an alternative to physics-based computations, ML has also
shown promise for the prediction of molecular energies [46–49, 51, 52, 127–135],
intermolecular interactions [133, 136], electron densities [48, 127, 137–139], and
linear response properties [50, 99, 140–143]. ML applications in the chemical sci-
ences have relied on atom- or geometry-specific representations in the majority of
cases, yet wavefunction-specific and deep-learning representations are becoming
increasingly available [43, 52, 57, 58, 60, 134, 144–146]. Among these recent
approaches, MOB-ML [57–61] has been shown to exhibit excellent learning effi-
ciency and transferability for the prediction of energies of post-Hartree-Fock (post-
HF) wavefunction methods.

MOB-ML initially had a limited training size due to the high computational cost
of Gaussian process regression (GPR) training. A local regression with supervised
clustering algorithm and a scalable exact GPR algorithm, termed as Regression-
clustering (RC) algorithm (RC/GPR) [59] and alternative blackbox matrix-matrix
multiplication algorithm (AltBBMM) [62], respectively, are introduced to reduce
training costs and enable training on large datasets.

In this work, we use an unsupervised clustering method, namely the Gaussian mix-
ture model (GMM), to accurately cluster the organic chemical space using MOB
features. The current work determines clusters via GMM in an entirely blackbox
manner and simplifies an earlier supervised clustering approach in Chap.3 by elim-
inating the necessity for user-specified parameters and the training of an additional
classifier. Unsupervised clustering produces clusters that are consistent with chemi-
cally intuitive groupings of chemical space and exhibit linear relationships between
pair energies and MOB features. All the regression (GPR or linear regression)
with clustering (supervised or unsupervised) methods offer exceptional efficiency
and transferability for molecular energy learning. GPR with GMM clustering is
the most efficient training protocol for MOB-ML and delivers the best accuracy on
QM7b-T and transferability on GDB-13-T out of all the available literature results.
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4.2 Theory
Size consistency and feature ordering consistency in MOB-ML and the im-
proved MOB feature design
Feature ordering consistency in MOB-ML MOB features have to be properly
sorted to ensure consistent feature ordering according to an appropriate importance
criterion, which is one of the challenges in this vector representation of MOB fea-
tures. [57–60] In Ref. 60, the sorting strategy is to determine the importance of
each element of fi j by its contribution to εi j estimated from the MP2 (Eq. 2.3) or
third-order MP (MP3) expression.

Size consistency in MOB-ML Size consistency is one of the most significant
properties of an electronic structure theory since it provides a correct scaling with
the system size. It states that for two infinitely separated subsystems A and B, the
energy should satisfy E(A+B) = E(A)+E(B). This principle requires the inde-
pendence of the energies of two subsystems A and B and zero interactions at infinite
distances. In the MOB-ML framework, the requirement for energy reduces to the
requirement for predicted pair energies, and furthermore reduces to the following
four feature conditions:

• The dependence of f i j on k decays as 1/r3
ik when rik→ ∞.

• f i j is independent of k when rik = ∞.

• f i j decays as 1/r6
i j when ri j→ ∞.

• f i j = 0 when ri j = 0.

Unfortunately, the MOB feature design introduced in Chapter 2 satisfies none of
these criteria, which hinders the prediction accuracies of MOB-ML in many-body
systems and large molecules[60]. The Coulomb interaction elements are changed
from Jpq to J3

pq according to the first condition. To satisfy the second condition, each
matrix element is also multiplied by its corresponding feature ordering importance.
A global factor of (1+ 1

6(
ri j
r0
)6)−1 is also multiplied to each feature vector according

to the third requirement. However, all the manipulations above cannot guarantee the
condition 4. To ensure the prediction of the zero feature vector 0 is always 0, we
manually add a small number of zero training points (0,0) in the GPR instead of
changing feature elements directly.
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We have made all the above changes in an improved MOB feature design in Ref. 60
and proved its enhanced abilities to predict the energies of organic molecules, closed-
shell transition metal complexes, non-covalent interactions, and the transition states.
More detailed discussions about this improved feature design and changes for each
feature are shown in the Supporting Information of Ref. 60. In this chapter and
Chapter 5, we employ the same feature generation and sorting approach described
in Ref. 60.

Supervised and unsupervised clustering schemes for chemical spaces
A straightforward application of Gaussian progress regression (GPR) with MOB
features encounters a bottleneck due to computational demands since GPR intro-
duces the complexity of O(N2) in memory and O(N3) in training cost. The prop-
erty of local linearity for MOB features has been investigated, which allows pair
energies to be fitted as a linear function of MOB features within local clusters. [59]
Thanks to this property, we proposed a comprehensive framework for local regres-
sion with clusters to further scale MOB-ML to the large data regime with lower
training costs in Ref. 59. Our previous work applied supervised clustering, i.e.,
regression-clustering (RC), to cluster the training set and then performed GPR or
linear regression (LR) as local regressors. A random forest classifier (RFC) is also
trained to classify the test data.

However, supervised clustering has its limitations. RC requires a predetermined
number of clusters and an additional classifier [59]. The performance of the su-
pervised clustering scheme is also hindered by the classifier, which struggles to
classify the results from RC due to the fact that the pair energy label information
is only provided to RC but not RFC [59]. Therefore, a more precise and efficient
clustering and classification strategy is needed to enhance the performance of the
entire framework.

Improved MOB feature engineering results in a continuous MOB feature space
[60], and consequently enables the unsupervised clustering scheme for MOB-ML.
The points close in the feature space have similar chemical groupings, cluster iden-
tities, and label values, and therefore distance is an appropriate measure to clus-
ter the MOB feature space. As a result, any distance-based clustering approach
should perform well using the improved MOB features. K-means is the simplest
and fastest distance-based unsupervised clustering method, which can effectively
cluster the MOB feature space and produce reliable regression results when used in



54

conjunction with GPR (details are shown in Appendix). Unfortunately, the lack of
intrinsic probability measure and the assumption of isotropy makes it not as accu-
rate as other distance-based clustering methods, such as DBSCAN [147], OPTICS
[148] and Gaussian mixture model (GMM).

GMM can be treated as a generalized k-means method and is chosen for further
investigation in this study. It assumes that all the N data points belong to a mixture
of a certain number of multivariate Gaussian distributions in the feature space with
means and covariance to be determined, and each distribution can represent a clus-
ter. For a number of K clusters (or Gaussian distributions) with D feature dimen-
sions, the cluster centers (or means of the distributions) {µi ∈ RD, i = 1,2, ...,K}
and their corresponding covariance matrices {Σi ∈RD×D, i = 1,2, ...,K} are solved
by maximizing the likelihood L using Expectation-Maximization (EM) algorithm.
The expectation, parameters, and clusters identities are computed and reassigned in
the Expectation (E) stage, and the parameters to maximize likelihood are updated
in the Maximization (M) stage. The two stages are repeated until reaching conver-
gence. For a test point, GMM can not only provide hard cluster assignments with
the maximum posterior probability, but also enable soft clustering by computing
the normalized posterior probability of a test point belonging to each cluster [149].
To make the GMM training completely blackboxed, we also perform the model se-
lection using the Bayesian information criterion (BIC) to determine the number of
clusters used in GMM via scanning a reasonable series of candidate cluster sizes
based on the training size N. BIC penalizes the likelihood increase due to including
more clusters and more fitting parameters to avoid overfitting with respective to the
number of clusters (Eq. 4.1),

BIC = qln(N)−2ln(L), (4.1)

where q is the number of parameters in the GMM model.

Local regression by alternative blackbox matrix-matrix multiplication algo-
rithm
While the general framework of regression with clustering considerably improves
the efficiency of MOB-ML [59], local regression with full GPR with a cubic time
complexity remains the computational bottleneck for MOB-ML. The computational
bottleneck is the calculation of GP inference, ω = K̂−1y, when we only care about
the predicted mean, where K̂ =K(X ,X)+σ2

n I is the regularized kernel, K is the ker-
nel, and σ2

n is the Gaussian noise variance. The standard Cholesky decomposition
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treatment has a computational complexity of O(N3) in time and O(N2) in memory.
Blackbox matrix-matrix multiplication (BBMM) is a SOTA exact GP algorithm
[150, 151] that applies the pivoted Cholesky decomposition (pCD) preconditioner
to precondition the kernel and conjugate gradient (CG) approach to solve the GP
inference. A low Gaussian noise (10−8 ∼ 10−6) is preferred to obtain an accurate
prediction in MOB-ML but less efficient by slowing down the convergence speed of
CG. To improve the learning efficiency in MOB-ML, an alternative implementation
of BBMM, known as AltBBMM, has been proposed to improve the performance
by adapting a symmetric preconditioner to increase stability and the block conju-
gate gradient (BCG) method to speedup the CG convergence [62]. The derivation
and implementation details for AltBBMM are discussed in Ref. 62. AltBBMM
has been shown to be able to speed up and scale the GP training in MOB-ML for
molecular energies with exact inferences. It reduces the training time complexity
to O(N2), enables the training on 1 million pair energies, or equivalently, 6500
QM7b-T molecules without sacrificing transferability across chemical systems of
different molecular sizes[62]. By applying AltBBMM as the local regressor within
each cluster, the efficiency of MOB-ML training can be further increased compared
with regressing with full GPR.

4.3 Computational details
The performance of clustering and subsequent local regression approaches are eval-
uated on QM7b-T and GDB-13-T benchmark systems, which comprise molecules
with at most seven and only thirteen C, O, N, S, and Cl heavy atoms, respectively.
Each molecule in QM7b-T and GDB-13-T has seven and six conformers, respec-
tively, and only one conformer of each randomly selected QM7b-T molecule is
picked in the training set. The features are computed at HF/cc-pVTZ level with the
Boys–Foster localization scheme [73, 152] using ENTOS QCORE [153], and refer-
ence MP2 [5, 88] pair energy labels with cc-pVTZ basis set [87] are generated from
Molpro 2018.0 [86]. All the features, selected features and reference pair energies
employed in the current work are identical to those reported in Ref. 60.

Supervised Clustering with MOB features
RC can cluster the organic chemical space represented by QM7b-T and GDB-13-T
[59] by maximizing the local linearity of the MOB feature space. On the MOB
feature space, we apply the same standard RC protocol introduced in Ref. 59 using
k-means cluster initialization [59] and ordinary least square linear regressions (LR)
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implemented using CUPY [154]. The RC step is fully converged (zero training
MAE change between two iterations) to obtain the training clusters. Random forest
classification (RFC) with 200 balanced-tress implemented in SCIKIT-LEARN [59]
is performed to classify the test data. To reduce the cost of training RFC and local
regressors for the off-diagonal clusters with a large number of pairs, we adapted
the same capping strategy illustrated in Ref. 59 with a capping size of 10,000 for
each training off-diagonal cluster during the training over 2000 QM7b-T molecules.
There is no capping applied to all diagonal and off-diagonal pairs with training sizes
of less than 2000 molecules.

Unsupervised clustering with MOB features
Following the implementation in SCIKIT-LEARN, we reimplemented GMM to en-
able multi-GPU usage using CUPY, which is initialized by k-means clustering and
constructed with a full covariance matrix. The objective function of GMM is to
maximize the likelihood, which is solved iteratively by the EM algorithm. A regu-
larization of 1e-6 is added to its diagonal terms to ensure the positive definiteness
of the covariance matrix of GMM.

The number of clusters Kbest used in GMM is automatically detected by scanning
a series of reasonable cluster sizes and finding the GMM model with the most neg-
ative BIC score. According to the previous study in Ref. 59, the optimal numbers
of clusters for 1000 training molecules in RC are 20 and 70, respectively. The
scanning series of possible K are {5i|i = 1,2, ...,10} and {5i|i = 7,8, ...,32} for
diagonal and off-diagonal pairs, receptively. Empirical equations for estimating
the scanning range of the number of clusters are also presented. We note that this
auto-determination procedure is completely unsupervised and does not require any
cross-validation from regression.

A hard clustering from GMM assigns the test point to the cluster with the high-
est probability, and a soft clustering from GMM provides probabilities of the point
belonging to each possible cluster. Only a few pairs (under 10%) in QM7b-T can
have a second most probable cluster with a probability over 1e-4 (Table 4.3). More
details about soft clustering are described in Appendix. The current work presents
and analyzes the results from hard clustering without specifying any parameters.
To demonstrate the smoothness and continuity of GMM clusters constructed using
MOB features on the chemical space, the Euclidean distance between the feature
vector of each diagonal pair and the corresponding hard cluster center µi is com-
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puted and analyzed.

MO type determinations
To compare the cluster compositions and the MO compositions in QM7b-T and
GDB-13-T, we also apply an algorithm to determine MO types represented by
atomic connectivity and bond order for closed-shell molecules following the octet
rule. This procedure requires the coordinates of atoms and the centroids of MOs
computed using HF information. More details and the pseudo-code of the MO
detection algorithm are included in the Appendix (Algorithm 2).

Regression within local clusters
Regressions by GPR or LR on top of RC or GMM clustering are used to predict
molecular energies. For LR, we use the ordinary least square linear regression with
no regularization for diagonal and off-diagonal pairs. To reduce the training cost of
local GPRs, as a scalable exact GP algorithm, AltBBMM [62] is performed with
Matérn 5/2 kernel with white noise regularization of 1e-5 for both diagonal and
off-diagonal pair energies. For the clusters with training points fewer than 10,000,
GPR models are directly obtained by minimizing the negative log marginal likeli-
hood objective with the BFGS algorithm until full convergence. For the clusters
with more than 10,000 training points, the variance and lengthscale are first op-
timized using randomly selected 10,000 training points within the cluster, and the
Woodbury vector [92] is further solved by the block conjugate gradient method with
preconditioner sizes of 10,000 and block sizes of 50.

In order to improve the accuracy and reduce uncertainty, without specifications, the
predicted energies are reported as the averages of ten independent runs for all MOB-
ML with clustering protocols. We abbreviate the RC then RFC classification and
GPR regression as RC/GPR since no other classifier is used with RC. Similarly, RC
then RFC classification and LR regression, GMM clustering with GPR regression,
and GMM clustering with LR regression are abbreviated as RC/LR, GMM/GPR,
and GMM/LR, respectively. The entire workflow on the general framework of
MOB-ML with clustering is also introduced in Ref. 59.

4.4 Results and discussions
Number of clusters detected in GMM
Rather than predetermining the number of clusters through pilot experiments [59],
GMM automatically selects the most suitable model among the ones with different
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cluster numbers by finding the lowest BIC score, which prevents overfitting due to
a large number of clusters and is faithful to the intrinsic feature space structure in
the training set [155]. Figure 4.1 depicts the optimal number of clusters determined
by BIC scores as a function of the number of training QM7b-T molecules. The
numbers of diagonal and off-diagonal clusters are roughly proportional to the train-
ing sizes in a logarithm scale if the training set is larger than 250 molecules, and
the best number of clusters can be estimated as functions of the number of training
molecules Nmol from this set of results as Kd and Ko for diagonal and off-diagonal
pairs, respectively.

Kd = 0.296N0.579
mol , (4.2)

Ko = 2.117N0.502
mol . (4.3)

These two empirical equations serve as estimation functions to avoid searching an
excessive amount of candidate clustering numbers. For the future multi-molecule
dataset training, it is sufficient to construct the scanning region of possible K values
as [Kest − 10, Kest − 5, Kest , Kest + 5, Kest + 10], where Kest is the five multiple
closest to the estimated value computed by the above empirical equations.
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Figure 4.1: Numbers of clusters in GMMs for diagonal and off-diagonal pairs de-
tected by BIC scores. The average number of clusters over ten runs is plotted versus
the number of training molecules in QM7b-T on a logarithm scale.

Unsupervised clustering organic chemical space
Chemically intuitive clusters from unsupervised clustering

A specific MO can be one-to-one represented by its diagonal feature space, and thus
all the MO analyses are conducted with the clustering results from GMMs trained
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Figure 4.2: MO types and cluster compositions of (a) QM7b-T and (b) GDB-13-T
predicted by GMM model trained on diagonal features of 250 QM7b-T molecules
(250 GMM model). The layers from outer to inner are the atomic connectivity of
MOs, the bond orders (BO) of MOs, and the GMM classification results, respec-
tively. The abundance of each type of atomic connectivity in each dataset is labeled.
The BOs are only marked for cases where one type of atomic connection has more
than one possible bond order. If the two atoms of a MO can only form a single bond
or the MO is a lone pair, the bond order is not listed in the figure.

on diagonal features using different numbers of QM7b-T molecules. The GMM
clustering results and MO types are categorized by multiple pie charts layer by
layer for QM7b-T and GDB-13-T datasets in Fig. 4.2. The first (outermost) layer
depicts the atomic connectivity of a MO, which is further classified by the bond
order in the second (intermediate) layer. The third (innermost) layer illustrates the
classification results for each type of MO obtained from the diagonal GMM model
trained on 250 QM7b-T molecules.

MOB-ML has been shown to be transferable in supervised clustering and regression
tasks by creating an interpolation to weak extrapolation tasks between different
chemical systems using the MOB representation. [57–60] When the first and second
layers of two sets of pie charts in Fig. 4.2a and b are compared, it becomes clear that
QM7b-T and GDB-13-T share the same categories of MOs with slightly different
abundances. CH MO is the most prevalent MO type in QM7b-T, and its popularity
declines as the popularity of other less-trained MOs increases in GDB-13-T. This
discovery implies that QM7b-T has the majority of the information necessary to
predict the properties of molecules in GDB-13-T with any MO-based representation
and any transferable ML approach. The almost identical grouping patterns in the
third layers of Fig. 4.2a and b suggest that unsupervised clustering via GMM is
transferable as expected. In addition, the cluster assignments match the chemically
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intuitive groupings for both QM7b-T and GDB-13-T (Fig.4.2a inner layer). Each
type of MO is clustered into one type of cluster except CC single bond, while most
clusters contain more than one type of MOs. For example, all CC double bonds are
clustered into Cluster 2, but Cluster 2 contains CC single, double, and triple bonds,
CN double and triple bonds, and lone pairs on the N atom. More training points are
required to capture finer clustering patterns in the chemical space using GMM.

We note that while clustering based on intuitive groupings or MO types is theo-
retically feasible, but not practical as a general approach in MOB-ML to predict
molecular properties. It is hard to intuitively define the types of MOs within chem-
ical systems with complicated electronic structures, such as transition states, while
MOB features can still represent these MOs. As demonstrated in the first layers in
both Fig. 4.2a and b, the organic chemical space is biased heavily towards CH and
CC MOs significantly. To avoid tiny clusters and achieve accurate local regression
models, a careful design of training sets is also required by including various MO
types for clustering based on MO types. In addition, the local regression models
with clusters based on MO types cannot predict the properties of a new type of MO
without explicitly including it in the training set.

Resolutions of GMM clustering with different training sizes

As the number of training pairs increases, the number of clusters recognized by
GMM for diagonal feature space increases from 5 at 250 training molecules to 15
at 1000 training molecules (Fig. 4.1). Figure 4.3a and b compares the clustering
patterns predicted by GMMs trained on different training sizes for QM7b-T and
GDB-13-T, respectively. In both panels, the layers show the cluster compositions
determined by the GMM trained on 250 molecules (250 GMM model) in the outer
layer and 1000 molecules (1000 GMM model) in the inner layer. Training on more
molecules not only provides more diverse chemical environments for the same type
of MOs, but also aids in the resolution of the local structures in the MOB feature
space. The MO types with high abundance in QM7b-T and GDB-13-T could be
split into multiple clusters. For instance, the one cluster for CH single bond trained
on 250 molecules is split into two clusters trained on 1000 molecules. In addition,
the MO types with low abundances in QM7b-T and GDB-13-T could be resolved
with more training data, rather than mixed into one cluster. For example, CO single
bonds and CO double bonds are classified into two clusters by the 1000 GMM
model instead of one cluster by the 250 GMM model.
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Figure 4.3: Cluster assignments of (a) QM7b-T and (b) GDB-13-T predicted by the
diagonal GMM models trained on 250 (250 GMM model) and 1000 (1000 GMM
model) QM7b-T molecules. The outer layers display the same clustering results
as the most inner layers in Fig. 4.2 predicted by the GMM model trained on 250
molecules with five detected clusters. The inner layers show the clustering results
predicted by the GMM model trained on 1000 molecules with 15 detected clusters.
In both panels, the clusters in the inner layers further split up the ones in the outer
layers. The MO identities of example clusters analyzed in the main text are labeled
in the figure as well.

Molecular energy learning by regression with clustering
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Figure 4.4: Learning curves for MP2/cc-pVTZ energy predictions with different
clustering methods trained on QM7b-T and applied to (a) QM7b-T and (b) GDB-
13-T. The models are the same ones trained on QM7b-T for (a) and (b). The predic-
tion performance is reported in terms of MAEs and MAE per 7 heavy atoms (7HA)
for (a) and (b), respectively, by averaging over ten runs. All the data are plotted on
a logarithm scale, and the shaded areas correspond to an MAE/7HA of 1 kcal/mol.

We now present the results of predicting molecular energies utilizing GPR or LR on
top of supervised or unsupervised clustering methods in MOB-ML. The RC/LR and
GMM/LR training results on 50 molecules are omitted due to the instability of local
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LR models with 50 training molecules. The prediction accuracy is assessed by mean
absolute error (MAE) of total energies predicted by each MOB-ML model on test
sets and plotted as a function of the number of training molecules on a logarithm
scale ("learning curve" [95]) in Fig. 4.4. The test sets consist of all remaining
QM7b-T thermalized geometries not included in the training sets in Fig.4.4a and all
the GDB-13-T thermalized geometries in Fig.4.4b. All the test errors for different
training protocols with different training sizes are reported in Appendix Table 4.1
and Table 4.2.

Among all four training protocols, GMM/GPR provides the best learning accu-
racy on QM7b-T and transferability on GDB-13-T. By training on 6500 molecules,
GMM/GPR can achieve an MAE of 0.157 kcal/mol and an MAE/7HA of 0.462
kcal/mol for QM7b-T and GDB-13-T, respectively. The performances of all three
other approaches are similar on QM7b-T, but RC/GPR and RC/LR have slightly
better performance on GDB-13-T than GMM/LR. For the models clustered by RC,
LR provides similar accuracy and transferability compared with GPR since RC
maximizes the local linearity for each local cluster. While the accuracy loss due
to non-linearity of local regression is more significant with GMM clustering with
an MAE of 0.202 kcal/mol and an MAE/7HA of 0.298 kcal/mol for QM7b-T and
GDB-13-T, respectively, training on 6500 molecules. Although GMM/LR is not
as accurate as GMM/GPR, the reasonably accurate predictions from GMM/LR for
both QM7b-T and GDB-13-T infer that GMM still can capture local linearity to
some degree, despite the fact that GMM is not trained to maximize local linear-
ity. In comparison to GMM/GPR, the learning efficiency of RC/GPR is harmed
by the classification errors from RFC for test points[59], and hence RC/GPR pro-
vides twice as large errors for QM7b-T and 0.111 kcal/mol worse MAE/7HA for
GDB-13-T.

With the same clustering method, GPR is a more accurate local regressor com-
pared with LR and generally offers superior accuracy across all the training sizes.
GMM/LR has 1.47 to 2.28 times higher MAEs than GMM/GPR, and RC/GPR
also marginally outperforms RC/LR. The chemical accuracy of 1 kcal/mol for test
QM7b-T molecules can be reached by training on 100 and 250 training molecules
using GPR and LR local regressors, respectively in Fig. 4.4a. In addition, GMM/
GPR only requires 100 training molecules to reach the chemical accuracy for GDB-
13-T.
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Figure 4.5: Accuracy comparison between different ML methods trained on QM7b-
T and tested on (a) QM7b-T and (b) GDB-13-T. The learning curves of RC/GPR
and GMM/GPR are the same ones shown in Fig. 4.4. Results from RC/GPR in
Ref. 59 were trained on non-size consistent features and therefore different from
the ones obtained from RC/GPR in this work. In addition, MOB-ML regressed
with AltBBMM (MOB-ML (AltBBMM)) [62] and DeePHF (ext. NN) [134] are
also plotted for comparison. All the data are digitally extracted from the corre-
sponding studies and plotted on a logarithm scale. The shaded area corresponds to
the chemical accuracy of 1 kcal/mol.

Comparison with molecular energy learning results from literature
In Fig.4.5, the learning curves of RC/GPR and GMM/GPR in this study are further
compared to those of state-of-the-art methods in literature trained on randomly se-
lected QM7b-T molecules, including MOB-ML regressed with RC/GPR using out-
dated MOB features from Ref. 59(MOB-ML (RC/GPR)), DeePHF trained with an
NN regressor [134] (DeePHF (ext. NN)), and MOB-ML regressed with AltBBMM
(MOB-ML (AltBBMM)) [62].

The introduction of the most recent improved MOB features [60] considerably en-
hances the accuracy of MOB-ML, and therefore RC/GPR from this work is more
accurate than the literature RC/GPR with outdated features. Training on the best
available MOB features leads to over around 30 % accuracy improvements with
RC/GPR on both QM7b-T and GDB-13-T test molecules. This observation sug-
gests that better feature engineering not only can improve the accuracy for GPR
without clustering [60], but also can enhance the efficiency of regression with clus-
ters. GMM/GPR achieves slightly higher prediction accuracy than AltBBMM with-
out clustering when using the same MOB feature design, indicating that an addi-
tional GMM clustering step prior to regression benefits the entire training process
by replacing the global regression model with more accurate local regression mod-
els.

As another ML framework to predict molecular energies at HF cost, DeePHF [134]
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also achieves accurate predictions for QM7b-T, while its transferability on GDB-
13-T is less than MOB-ML [60]. GMM/GPR training on 6500 molecules (MAE=0.157
kcal/mol) outperforms the best DeePHF model training on 7000 molecules (MAE=0.159
kcal/mol) on the total energies of QM7b-T test molecules. Without sacrificing trans-
ferability on GDB-13-T, the best model from GMM/GPR can achieve half of the
error from DeePHF on GDB-13-T and become the most accurate model for molec-
ular energies in GDB-13-T.

Efficient learning by local AltBBMM with GMM clustering
Due to the limited resources of GPUs, we report the results and timing of single-
run regression with clustering in this section. Figure 4.6 plots the test MAEs of
QM7b-T and GDB-13-T from single-run models as a function of parallelized train-
ing time on 8 NVIDIA Tesla V100-SXM2-32GB GPUs for three most accurate
MOB-ML training protocols. GMM/GPR provides slightly improved accuracy and
transferability compared to direct regression by AltBBMM without clustering and
significantly reduces the training time of MOB-ML by 10.4 folds with 6500 training
molecules. As the most cost-efficient and accurate training protocol for MOB-ML,
a single run of GMM/GPR only requires 2170.4s wall-clock time to train the best
model with 6500 molecules.

We note that the computational costs of GMM and local AltBBMM in GMM/GPR
are comparable and lower than AltBBMM without clustering. The complexity anal-
ysis is as follows. The training complexity of GMM of each EM iteration is O(NK)

with a fixed number of features[156], where N is the number of training points and
scales linearly with Nmol , and K is the number of clusters. Local AltBBMM has
a training complexity of O(KN2

loc), where Nloc is the number of training points in
each local cluster[92]. Since Nloc roughly scales as O(N/K), the complexity of lo-
cal AltBBMM in GMM/GPR can be approximated as O(N2/K). Therefore, GMM
becomes the computational bottleneck in GMM/GPR when K grows faster than
N0.5; otherwise, local AltBBMM is more expensive than GMM. As discussed in
Sec. 4.4, the optimal Kd and Ko for QM7b-T are fitted as functions of N with an
approximate scaling of O(N0.579) and O(N0.502), respectively. GMM and local Al-
tBBMM share similar computational costs in this case, and the overall complexity
of GMM/GPR using local AltBBMM is around O(N1.58), which is lower than Al-
tBBMM without clustering. Therefore, GMM/GPR is no longer the computational
bottleneck in training and is able to scale MOB-ML to train more than 1 million
data.



65

 0.1

 0.25

 0.5

 1

 2

 10  100  1000  10000

P
re
d
ic
tio
n

 M
A
E
/

7
 H
A
(k
c
a
l/m

o
l)

Parallelized training time (s)

QM7b-T to QM7b-T
QM7b-T to GDB-13-T

Figure 4.6: Accuracy and training costs of MP2/cc-pVTZ energy using
single-run GPR with RC and GMM clustering (RC/GPR/single-run, green;
GMM/GPR/single-run, blue) and AltBBMM without clustering (red, Ref. 62). Pre-
diction MAEs of test QM7b-T (circles) and GDB-13-T (diamonds) from single
runs are plotted as a function of wall-clock training time with parallelization on 8
NVIDIA Tesla V100 GPUs on a log scale. The models are the same as the ones
reported in Fig. 4.4 and the corresponding training sizes of QM7b-T are labeled in
the figure. The shaded areas correspond to an MAE/7HA of 1 kcal/mol.

4.5 Conclusion
We extend our previous work on supervised clustering to unsupervised clustering
the organic chemical space with the improved MOB features, and introduce an ac-
curate, efficient, and transferable regression with clustering scheme to learn molec-
ular energies of QM7b-T and GDB-13-T. Without specifying the number of clus-
ters ahead, unsupervised clustering via Gaussian mixture model (GMM) is fully
blackboxed and able to cluster the organic chemical space represented by QM7b-
T and GDB-13-T in ways consistent with the chemically intuitive groupings of
MO types. As the amount of training data increases, the finer grouping patterns
of MOB feature space are captured, and the resulting clusters are gradually sepa-
rated following the chemical intuition. As the most efficient training protocol for
MOB-ML, GMM/GPR surpasses RC/GPR and AltBBMM without clustering in
prediction accuracy and transferability with a training cost at a tenth of the one of
AltBBM without clustering. GMM/GPR not only reaches the chemical accuracy for
QM7b-T and GDB-13-T by only training on 100 QM7b-T molecules, but also of-
fers superior performance to all other state-of-the-art ML methods in literature with
an MAE of 0.157 kcal/mol for QM7b-T and an MAE/7HA of 0.462 kcal/mol for
GDB-13-T. We finally illustrate that the overall complexity of GMM/GPR is lower
than AltBBMM without clustering and local AltBBMM regression is no longer the
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computational bottleneck in GMM/GPR. As a future direction, it is promising to
apply GMM/GPR to even larger datasets with more diverse chemistry due to its
low complexity. The unsupervised nature of GMM also opens an avenue to regress
other molecular properties with MOB features by GMM/GPR.

4.6 Appendix
MO type determination
The raw atomic connectivity of each MO is identified by searching the two atoms
which have the smallest euclidean distances to the centroid of the corresponding
MO. For each MO, we assume that its final atomic connectivity can only be two
cases. If this MO is a bond, then two selected atoms are connected; and if this MO
is a lone pair, it only belongs to the atom with smaller distance to its centroid. To
judge the MO identity (a bond or a lone pair), we define "atom-bond angle", i.e.,
∠ACB, where C is the centroid position of this bond, and A,B are its two nearest
atoms. Ideally, the center of the bond between two atoms should be collinear with
these two atoms, i.e. the atom-bond angle is 180°. The final atomic connectivity is
determined by iteratively classifying the MOs with small atom-bond angles as lone
pairs until all atoms satisfying the octet rule in chemistry (details see Appendix).
The bond order of each MO is computed by the number of bonds between the two
corresponding detected atoms.

Algorithm 2 states the details of determination process of MO types of a closed-
shell molecule using the MO centroid coordinates {M1, ...,MN} ∈ R3 and the atom
coordinates {A1, ...,An} ∈ R3. Additionally, for each atom ai with certain number
of connected bonds, we define Ŝi as the expected number of bonds connected to
each atom i (i.e. 1 for H, 2 for O, 3 for N, 4 for C, 1 for Cl, and not defined for
S) also as part of the algorithm input. The output of this algorithm is the atomic
connectivity represented as tuple (Ik,1, Ik,2,BOk) for each MO k, where Ik,1, Ik,2 are
the two connected atoms of the MO k, and BOk is its bond order.

For each MO k, a boolean variable Tk is introduced to determine if the MO k is a
bond (B) or a lone pair (L). We initialize the atomic connectivity of the MO k as
the atoms αk and βk, which equal to the indices of the first and second smallest
elements in {Di

k|i = 1, ...,n}, where Di
k is the euclidean distance between Mk and

Ai. We define the atom-bond angle of the MO k as θk = ∠αkMkβk, which tends to
be large for bond because it is 180◦ in the ideal case. For the MO k, we initialize
Tk = L if θk < 72◦, and Tk = B if θk > 72◦, because 72◦ is small enough that, for
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any MO k, θk < 72◦ guarantees Tk = L. The number of the bonds connected to each
non-sulfur atom i, i.e., Si, is computed. We iteratively converge {Si} by decreasing
the values until Si = Ŝi for each non-sulfur i (which leads to "success"), or there is
at least one Si < Ŝi so that {Si} is no longer possible to agree with {Ŝi} (which leads
to "failure"). We note that sulfur is not checked because it is more complicated than
the rest types of atoms. In each iteration, a atom u satisfying Su > Ŝu is selected
randomly, and then we find the set of bonds connected to u. We change Tp with the
smallest θp in this set to lone pair, i.e., Tp = L, and update Sαp and Sβp by decreas-
ing one. After the iteration finishes, each Tk has been successfully determined, so
we can now determine (Ik,1, Ik,2) as (αk,βk) if Tk = B, or as (αk,None) if Tk = L.
Finally, for each MO k that Tk = B, the bond order BOk can be determined by the
number of bonds having the same unordered pair (αk,βk) with it, which finishes the
algorithm.

Since randomness is introduced in the algorithm, we repeat the algorithm several
times until success or it fails more then 10 times so that we believe a solution cannot
be found. In this work, all the MO types of 99.9% of QM7b-T and 98.7% of GDB-
13-T molecules have been successfully recognized without any contradictions to
the octet rule. The molecules with at least one atom violating the octet rule are
excluded only in the analysis of unsupervised clustering on organic chemical space
but included in the energy predictions.

Molecular energy learning with k-means and GMM clusters with single run
In the main text, learning curves of molecular energies obtained from four regres-
sion with clustering protocols are plotted and investigated. In fact, other unsuper-
vised clustering method like k-means can also work well in this general framework
for energy learning. Here we include learning curves of single run with k-means
and GMM unsupervised clusters using GPR as regressors in Fig. 4.7. The number
of clusters in k-means is auto-detected by Davies-Bouldin index, which compares
distance between clusters with the size of the clusters themselves[94]. Although
averaging over 10 independent runs offers slightly better prediction accuracy for
GMM/GPR, the results from single run GMM/GPR (GMM/GPR/1X) only have
little accuracy loss. GMM is considered as a general and better clustering and
classifier method than k-means. In this application, k-means is found to be a rea-
sonably good choice for clustering and classification. The prediction accuracies
of K-means/GPR/1X is only at most 36.57% and 10.30% worse for QM7b-T and
GDB-13-T than the ones of GMM/GPR/1X, respectively.
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Algorithm 2 MO type determination algorithm
Input: MO coordinates M1, . . . ,MN , atoms coordinates A1, . . . ,An, expected num-

ber of bonds for atoms Ŝ1, ..., Ŝn
Output: Success or Failure of the process, a set of MO type descriptors
{(Ik,1, Ik,2,BOk)}k=1,...,N if the process is successful

1: for k← 1 to N do
2: Compute {Di

k}i=1, ..., n
3: αk,βk← First two i sorted by increasing order of {Di

k}i=1, ..., n
4: if θk < 72◦ then
5: Tk← L
6: else
7: Tk← B ▷ Temporarily classify them to be bonds, may be changed to

lone pair later
8: end if
9: end for

10: Compute S1, ..., Sn from T1, ..., TN ▷ Initialization of {Si}
11: while (∃Si > Ŝi) do
12: if (Si > Ŝi) then
13: return Failure
14: end if
15: randomly pick u ∈ {i|Si > Ŝi}
16: p← argmax

k
θk, subject to Tk = B,u ∈ {αk, βk}

17: (Tp, Sαp, Sβp)← (L,Sαp−1, Sβp−1)
18: end while
19: for k← 1 to N do
20: if Tk = B then
21: Ik,1← αk, Ik,2← βk, BOk = #{ j|{α j,β j}= {αk,βk}, Tj = B} ▷

Unordered pair, i.e. {a,b}= {b,a}
22: else
23: Ik,1← αk, Ik,2← None, BOk = 0
24: end if
25: end for
26: return Success, {(Ik,1, Ik,2,BOk)}k=1,...,N
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Figure 4.7: Learning curves for MP2/cc-pVTZ energy predictions with different
clustering methods trained on QM7b-T and applied to (a) QM7b-T and (b) GDB-
13-T. The MAEs of GMM/GPR are also plotted for comparison. All the data are
plotted on a logarithmic scale, and the shaded areas correspond to an MAE/7HA of
1 kcal/mol.

Molecular energy learning with unsupervised clustering
In Table 4.1 and 4.2, we summarize the MAEs of molecular energies in kcal/mol
using different clustering-then-regression protocols plotted in Fig. 4.4 in the main
text for QM7b-T and GDB-13-T, respectively.

Table 4.1: MOB-ML prediction accuracy (kcal/mol) for four regression with clus-
tering protocols applied to MPC/cc-pVTZ energies of QM7b-T. The training and
testing sets corresponding to non-overlapping subsets of QM7b-T.

Training sizes GMM/GPR/10X RC/GPR/10X GMM/LR/10X RC/LR/10X
50 1.187 1.289 – –

100 0.788 0.968 1.156 1.344
250 0.579 0.648 0.889 0.800
500 0.429 0.520 0.718 0.605

1000 0.313 0.468 0.549 0.531
1500 0.270 0.416 0.499 0.479
2000 0.239 0.383 0.445 0.456
2500 0.219 0.373 0.414 0.446
4000 0.189 0.338 0.375 0.420
5000 0.169 0.325 0.362 0.413
6500 0.157 0.315 0.359 0.407

Comparison between training costs of supervised clustering and unsupervised
clustering
Figure 4.8 plots the wall-clock timing of RC and GMM clustering on 8 NVIDIA
Tesla V100-SXM2-32GB GPUs as functions of number of training sizes. The costs
of RC and GMM are similar across all the training sizes.
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Table 4.2: MOB-ML prediction accuracy (kcal/mol) for four regression with clus-
tering protocols applied to MPC/cc-pVTZ energies of GDB-13-T. Models are the
same as the ones in Table 4.1

Training sizes GMM/GPR/10X RC/GPR/10X GMM/LR/10X RC/LR/10X
50 1.286 1.428 – –

100 0.945 1.145 1.383 1.477
250 0.873 0.980 1.120 1.086
500 0.702 0.795 0.968 0.830

1000 0.613 0.781 0.873 0.752
1500 0.577 0.743 0.865 0.709
2000 0.549 0.715 0.809 0.696
2500 0.521 0.701 0.809 0.685
4000 0.498 0.608 0.770 0.637
5000 0.466 0.591 0.763 0.626
6500 0.462 0.573 0.760 0.613
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Figure 4.8: Wall-clock timings for RC+RFC and GMM for different number of
training molecules from the QM7b-T set with 8 NVIDIA Tesla V100 GPUs. The
LR regression of each cluster is performed independently on a different core in
the RC step and RFC is trained using parallel implementation of SCIKIT-LEARN.
GMM is trained using parallel implementation of EM algorithm.
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Soft clustering from GMM
GMM provides probabilities of every possible cluster for a test point, the predic-
tions of molecular energies with soft clustering are possible. The prediction εML

i j,so f t

of each pair energy is a weighted average of the predictions εML
i j,n[fi j] from all K

possible clusters evaluated as Eq. 4.4.

ε
ML
i j,so f t =

K

∑
n=1

Pn[fi j]∗ ε
ML
i j,n[fi j], (4.4)

where fi j is the set of MOB features for pair i j, n = 1,2, ...,K is the cluster ID;
and Pn is the corresponding probability of the pair i j being classified into cluster n

satisfying ∑
K
n=1 Pn = 1.
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Figure 4.9: Comparison between hard clustering and soft clustering on molecular
energy learning regressed by LR for (a) QM7b-T and (b) GDB-13-T. The results
from hard clustering (purple circles) and the ones from soft clustering (dark gold
diamond) overlap with each other well. All the data are plotted on a logarithmic
scale, and the shaded areas correspond to an MAE/7HA of 1 kcal/mol.

Figure 4.9 displays the comparison of the prediction accuracies of molecular ener-
gies regressed by LR on top of hard and soft clustering from the same set of GMMs
for QM7b-T and GDB-13-T. In both panels, the results from soft clustering method
(GMM,soft/LR) overlap with the ones from hard clustering (GMM/LR) with ac-
curacy differences smaller than 0.003 kcal/mol, which suggests that soft clustering
does not provide any extra benefits in this application. Since we create an interpo-
lation to weak extrapolation problem, the cluster identities of the tests points are
therefore unambiguous. Table 4.3 shows the percentages of pairs that have more
than one clusters with probability higher than 0.0001, namely, how many pairs can
be influenced by adapting soft clustering method during the predictions of energies.
For QM7b-T, under 10% of pairs in both diagonal and off-diagonal feature spaces
have more than one possible clusters. The numbers of pairs with more than one pos-
sible cluster identities increase for GDB-13-T, but are still not significant enough to
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change the predicted energies in Fig. 4.9. We note that soft clustering from GMM
might provide some accuracy improvements in some future applications.

Table 4.3: Percentages of pairs in QM7b-T and GDB-13-T having n number of
clusters that their predicted probability over 0.0001 by GMMs

Pair type GMM training size QM7b-T GDB-13-T
n =2 n≥3 n =2 n≥3

Diagonal
250 0.37% 0 0.69% 0

1000 6.29% 0 8.83% 0

Off-diagonal
250 8.74% 0.83% 20.42% 1.85%

1000 6.40% 1.21% 10.63% 3.99%
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C h a p t e r 5

NEAR AB INITIO POTENTIAL ENERGY SURFACES FOR
DIFFUSION MONTE CARLO USING MOB-ML AND NEURAL

NETWORK REFITTED MOB-ML

Adapted from:

1. DiRisio, R. J., Cheng, L., Boyer, M. A., Lu, F., Sun, J., Lee, S. J. R., Deustua,
J. E., Miller III, T. F. & McCoy, A. B. Near ab Initio potential energy surfaces
for diffusion Monte Carlo using machine learning1. In preparation.

Reprinted with permission from all other authors.

The molecular-orbital-based machine learning (MOB-ML) method provides an ac-
curate, efficient, and general approach for obtaining high-level electronic energies
at the same cost as a Hartree-Fock calculation for an arbitrary molecular system. In
this chapter, we explore the applicability of the MOB-ML method for the generation
of potential energy surfaces suitable for the computation of ground- and vibrational
excited-state wavefunctions and energies. Specifically, we use small-scale diffu-
sion Monte Carlo (DMC) simulations to evaluate the zero-point energies of H2O
and CH +

5 . In the case of H2O, we also calculate vibrationally excited state ener-
gies. To facilitate the larger DMC simulations, a Neural Network (NN) is trained
on MOB-ML energies. The resulting MOB-ML-based NN-DMC method allows
us to take advantage of GPU accelerated energy evaluations, with which we can
perform large-scale DMC simulations on both systems as well as the five deuter-
ated isotopologues of CH +

5 . For CH +
5 , we achieve excellent agreement with the the

ground state energies and probability amplitudes obtained using a potential surface
that had been fit to more than two orders of magnitude more CCSD(T) energies
than were used to train the MOB-ML potential.

1RJD and LC contributed equally to this work
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5.1 Introduction
Quantum descriptions of molecular vibrations require an accurate representation of
the potential energy surface (PES) for the system of interest. For systems where the
vibrational ground state is localized near the potential minimum, and which undergo
small amplitude vibrational motions, harmonic treatments of the potential may be
sufficient.[157] Such a description can be readily achieved at a broad range of lev-
els of electronic structure theory and bases using electronic structure packages, as
all that is required is the optimized geometry and Hessian. Significant insights may
also be obtained from quartic expansions of the potential about the minimum, as
this forms the basis for second-order perturbation theory calculations.[158] Unfor-
tunately, there are many problems for which such low-order expansions of the po-
tential are insufficient, and it becomes desirable to be able to evaluate the potential
at arbitrary molecular configurations.

A common strategy for developing potentials for molecular spectroscopy, quantum
dynamics or other non-local quantum applications is to evaluate the electronic ener-
gies over a broad range of geometries, and fit this data to a potential function. This
has often involved fitting the electronic energies to functional forms that reflect the
expected physics.[159–163] Consider, for example, the two systems explored in
the present study. Partridge and Schwenke fit a potential surface for H2O based on
1056 ICMRCI energies, and adjusted the parameters to include Born-Oppenheimer
corrections and match experimental data[159]. This surface will be referred to as
the PS potential in the remainder of this paper. Jin, Braams and Bowman (JBB)
fit a potential surface for CH +

5 to more than 35 000 energies, which were evaluated
at the CCSD(T)/aug-cc-pVTZ level of theory/basis. To allow the ion to properly
dissociate to CH+

3 + H2, they extrapolated their fit surface to long range by splicing
a long-range CH+

3 + H2 potential onto the fit surface using a switching function in
the CH+

3 -H2 distance.[164]

More recently, ML approaches have been successfully used to fit potential surfaces
to calculated electronic energies[165–167]. Many studies provide potential energy
surfaces at the level of DFT with classical force field costs atom- and geometry-
specific representations [168–172] have received much attention. Several alterna-
tive ML approaches adapting quantum level representations are proposed to repro-
duce energies from highly accurate electronic structure methods beyond DFT[52,
53, 110], for instance MP[5] and CC[173]. As one of the representative approaches
to provide highly accurate electronic structure energies with HF computations, the
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MOB-ML approach[57–60] allows for the prediction of high-level post-HF corre-
lation energies, such as those provided by CC calculations. By exploiting localized
molecular orbitals obtained from HF calculations, MOB-ML is able to reproduce
highly accurate potential energy surfaces at a fraction of the cost incurred by the
target high-level methods, even when small data sets are employed during train-
ing of the MOB-ML models [57, 58, 60]; meanwhile, other ML methods require
hundreds of thousands of molecules to reach the same level of accuracy [61].

In the present study, we explore the accuracy and utility of the MOB-ML approach
to generate potential energy surfaces for use in diffusion Monte Carlo (DMC)[174–
177] calculations. Even though MOB-ML replaces the N7 scaling of CCSD(T) with
the N3 scaling of HF, which already represents substantial computational savings,
a typical DMC calculation requires on the order of 108 single-point energy evalua-
tions. This becomes a computationally demanding task even with the N3 scaling of
HF calculations. To make this study feasible, we have developed an implementation
of DMC for use in high-performance computing (HPC) environments, as well as a
GPU-based NN regression scheme to generate potential energy surfaces for use in
the DMC calculations of ground-state wavefunctions and zero-point energies.[178]
In the remainder of the discussion, we will refer to this approach as NN-DMC. To
explore the efficacy of the combined MOB-ML/NN-DMC approach results will be
compared to those obtained using the well-established PS and JBB potential sur-
faces for H2O and CH +

5 , respectively. These are two systems that we previously
studied using the NN-DMC approach,[178] however the computational cost of the
MOB-ML approach leads to challenges in the collection of training data compared
to previous studies. As such, we will examine the possibility of using the previ-
ously outlined neural network training procedure in the context of the MOB-ML
approach. The water monomer provides an example of a molecule that is straight-
forward to study by a variety of approaches, but where the relatively large amplitude
OH stretching vibrations sample into the dissociative part of the potential even in
the ground vibrational state. CH+

5 , on the other hand, is a ion that undergoes large
amplitude vibrational motions in its ground vibrational state. In fact, the ground
state wavefunction has been shown to have comparable amplitude at the 120 equiv-
alent minima on the potential and the 180 low-energy saddle points that connect
these minima.[179]
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5.2 Theory and methods
Molecular-Orbital-Based Machine Learning (MOB-ML)
MOB-ML is a method for accurately predicting high-level molecular energies, such
as those provided by CC, MP, and other wave-function-based electronic structure
theories, by using only molecular orbital information obtained from HF compu-
tations with much reduced costs. The main idea behind MOB-ML is rooted in
Nesbet’s theorem (Eq. 5.1),[7, 70] which ensures that the correlation energy of an
N-electron system, Ecorr, can always be expressed as the sum over energy contribu-
tions comprising pairs of occupied orbitals

Ecorr =
occ

∑
i j

εi j. (5.1)

The pair energies, εi j, take various functional forms, which can be readily defined
for the specific electronic structure theory of choice, such as CCSD(T) or MP2.[60]
Indeed, computing pair energies is of ten times computationally intractable since the
high-order polynomial costs associated with CC, MP, and other theories far exceed
HF CPU time steps. MOB-ML is designed to alleviate this issue by approximating
the pair energy contributions via the general ML mapping

εi j ≈ ε
[
{φp}i j] , (5.2)

which associates pair energies to MOs directly, bypassing high-level calculations
altogether.

This general MOB-ML approach can be imbued with any particular ML method-
ology to define the mapping and trained to approximate energies of virtually any
wave-function-based electronic structure method. We employ GPR to fit pair ener-
gies computed at the CCSD(T) level of theory. We do this by first subdividing Eq.
5.2 into diagonal and off-diagonal contributions

εi j ≈

εML
d [fi] if i = j

εML
o

[
fi j
]

if i ̸= j,
(5.3)

which separates the different character of both types of pair energies and improves
on the accuracy of the machine-learned models. The feature vectors fi and fi j are
constructed from consistently ordered Fock, Coulomb, and exchange interaction
matrix elements using localized HF molecular orbitals. We employ the IBO or
Boys localization procedures to guarantee the transferability of MOB-ML models
across different chemical systems and conformations [57, 58, 60]. We note there
are several key invariances and physical properties that MOB-ML satisfies:
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• Rotational invariance: ensured by HF.
• Translational invariance: ensured by HF.
• Atom index permutation invariance (fi j({Aµ}) = fi j(P{Aµ}): ensured by HF.
• Pair energy index symmetry (εi j = ε ji): ensured by LMO symmetrization

[58].
• Orbital index permutation invariance (fi j({φp}) = fi j(P{φk}), ensured by ap-

propriate ordering of the feature vector elements. [60]
• Size-consistency (E(A+B) = E(A)+E(B) for non-interacting subsystems

A and B): ensured by the careful design of MOB-ML features to satisfy the
corresponding properties in the long-distance limit. [60]

In this study, we use the same feature generation protocol described in Ref. 60 to
ensure these invariances, the correct physical limit of the features and consistent
feature ordering. The details of MOB feature designs have been fully described in
our previous studies. [57, 58, 60]

Diffusion Monte Carlo (DMC)
DMC and the details of our implementation have been described elsewhere.[175–
177, 180–182] In this study, we use both guided and unguided DMC simulations to
obtain the ground state energy and wavefunction for the systems of interest. We also
use our recently developed NN-DMC approach,[178] in which we replace the po-
tential energy surface with a neural network potential energy surface for the DMC
simulation. This results in a significant savings in the computational resources re-
quired for the DMC calculations.

In an unguided DMC simulation, the ground state wavefunction, Φ0, is represented
by an ensemble of Nw localized functions, which we will refer to as walkers. The
density of walkers in a particular region of configuration space provides the ampli-
tude of the ground state wavefunction at that geometry. The ensemble of walkers
explores the potential energy surface of the system of interest through a propa-
gation in imaginary time, τ = it/h̄, based on the imaginary-time time-dependent
Schrödinger equation,

Φ0(τ +∆τ) = exp [−(H−Vref(τ))∆τ]Φ0(τ)

≈ exp [−{V (xi(τ))−Vref(τ)}∆τ]exp [−T ∆τ]Φ0(τ). (5.4)
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At each time step, ∆τ , the position, xi(τ), and weight, wi(τ), of each of the walkers
are updated. Specifically, the coordinates of each of the atoms that are described
by the walkers are displaced according to a Gaussian distribution, with a standard
deviation of

√
∆τ/m j, where m j is the mass of the atom that is displaced. The

weight of the ith walker is updated based on

wi(τ +∆τ) = exp [−{V (xi(τ))−Vref(τ)}∆τ]wi(τ) (5.5)

To ensure that a small fraction of walkers do not carry most of the weight, a branch-
ing step is introduced. In this step, the weights of the walkers are compared to
upper and lower bound thresholds. All walkers with weights that are smaller than
the lower bound threshold are removed from the ensemble. To keep the ensem-
ble size and sum of the weights constant, an equal number of walkers with the
highest weight are duplicated, and each of the walkers and their copies are given a
weight that is half the original weight of the duplicated walker. After all the low-
weight walkers have been removed from the ensemble, walkers that have a weight
larger than the upper bound threshold are also duplicated, as described above, and
an equal number of walkers with the lowest weights are removed from the simu-
lation. For the NN-DMC simulations, the weights of all walkers in the simulation
are constrained to 1, and the duplication or removal of walkers is achieved by an
additional Monte Carlo step.[183] In this case, the ensemble size will fluctuate as
the simulation progresses. This technique is referred to as discrete weighting, and
the algorithm that allows the weights of the walkers to evolve with τ is called con-
tinuous weighting.

Next,

Vref(τ) =
∑

Nw
i=1 wi(τ)V (xi(τ))

∑
NW
i=1 wi(τ)

−α

[
∑

Nw
i=1 wi(τ)−wi(τ = 0)

∑
Nw
i=1 wi(τ = 0)

]
(5.6)

is evaluated, where α = 0.5/∆τ . The introduction of the second term in Eq.5.6
ensures the sum of the weights of the walkers is roughly constant throughout the
simulation. The time averaged value of Vref provides the zero-point energy of the
system once the simulation has equilibrated.

The main difference between guided DMC simulations and unguided DMC simu-
lations is that in the guided simulations, f = Φ0ΨT is represented by the ensemble
of walkers, where ΨT is the guiding function. This change leads to the potential
energy evaluations being replaced by evaluations of the local energy,
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EL =
HΨT

ΨT
. (5.7)

When ΨT provides a good approximation to Φ0, the local energy is approximately
constant. Using a guiding function also introduces a drift term that moves the walk-
ers away from regions where the amplitude of ΨT is small and towards regions with
large amplitude.

In several recent studies, we showed that using guiding functions that are direct
products of one-dimensional wavefunctions in the high frequency stretches and, in
the case of H2O, the HOH bend, provide effective guiding functions for H2O and
CH +

5 [181, 182]. Finally, descendant weighting is used to obtain projections of the
probability amplitude onto coordinates of interest.[177, 180, 184] The unguided
NN-DMC simulations were performed using PyVibDMC, a general-purpose, open
source simulation package.[185]

Diffusion Monte Carlo in High-Performance Computing Environments
The MOB-ML surfaces provide CCSD(T)-quality potential energy evaluations in a
computationally efficient way by reducing the cost of a single point energy calcu-
lation to effectively that of a HF calculation[57, 58, 60]. Unfortunately, DMC can
require tens of millions of potential energy evaluations per simulation, which means
that even for relatively simple systems, performing that many HF calculations on
the fly still requires a considerable amount of computational resources. To make
these calculations computationally tractable, we adapted the DMC procedure for
high-performance computing (HPC) environments through a hybrid MPI/threading
parallelism paradigm. In this approach, the DMC calculation is run in parallel over
a restricted number of MPI jobs, usually equal to the number of compute nodes
available to the calculations. Because a constant simulation size simplifies the MPI
communication, these DMC calculations are run using the continuous weighting
scheme described above. Each MPI job then has access to a number of threads to
parallelize potential calls. The threading is handled either through Intel’s Threaded
Build Blocks (TBB) library or OpenMP. The MOB-ML surfaces used in the study
were accessed through the ENTOS QCORE software package.[153]

To minimize the effects of process-to-process communication latency in the po-
tential evaluations and to improve load balancing, we introduced a small variation
to the continuous weighting DMC algorithm described above. In this modified
approach, we propagate the coordinates and evaluate the potential energy of each
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of the walkers for Nτ steps before considering branching. Once the Nτ potential
evaluations are complete, we update Vref, the weights, and perform branching as
necessary at each time step. This introduces an approximation into the DMC algo-
rithm. Although we check for branching after each time step in the simulation, the
branching is only applied every Nτ steps. For the purposes of this study, such an
approach does not impact the overall accuracy of the DMC simulation, as typically
fewer than 0.5% of the walkers undergo branching at each time step. By perform-
ing a smaller number of total MPI calls, we are able to cut down on the latency
overhead involved in node-to-node communication. Additionally, both TBB and
OpenMP have schedulers that can start a new potential evaluation the moment a
previous one finishes. This improves load balancing, because some geometries re-
quire more time to complete the HF calculations. With threading, multiple faster
evaluations can be completed while a more expensive one is calculated. Therefore,
less time is spent waiting for all potential evaluations to complete. This package
has previously been used to obtain zero-point energies for the water hexamer[186],
running simulations with up to 106 walkers for 15 000 time steps.[187]

5.3 Computational details
Numerical details of training the MOB-ML potential energy surfaces
The 3000 training and test configurations for H2O and CH +

5 , and 1000 training and
test configurations for validation molecules are sampled at 50 fs intervals from ab

initio molecular dynamics (AIMD) trajectories performed with the Q-CHEM 5.0
software package,[79] using the B3LYP[80–83]/6-31G*[84] level of theory. Fol-
lowing the same configuration generation protocol in Ref. 57 and 58, for eight
validation molecules, single AIMD trajectories are performed by staring the corre-
sponding optimized geometries at B3LYP/6-31G* level of theory with a Langevin
thermostat at 350 K. In order to show the ability of MOB-ML to regress global
PESs, we perform AIMDs starting from the optimized geometries at B3LYP/6-
31G* level of theory at a Langevin thermostat[85] of 3000 K for the validation
molecules. To ensure the full coverage of the two potential energy surfaces, a
Langevin thermostat[85] at 6003 K is applied for the H2O AIMD trajectory starting
from the optimized H2O geometry at B3LYP/6-31G* level of theory. For CH +

5 ,
three AIMD trajectories are performed by staring from the three literature local
minima of CH +

5 [188] with a Langevin thermostat at 350 K, and each trajectory
provides 1000 sampled configurations.

We follow the same feature generation protocol described in Husch et al.[60] to
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compute the associated features at density-fitted HF with aug-cc-pVTZ[189] basis
set and aug-cc-pVTZ-JKFIT density fitting basis set [190] using ENTOS QCORE

[153]. In this study, valence virtual orbitals are all localized by Intrinsic Bond Or-
bital method [71]. Valence occupied orbitals are localized by Boys–Foster localiza-
tion for H2O, and by Intrinsic Bond Orbital localizations [73, 152] for all the rest of
molecules, including 8 small validation molecules and CH +

5 . Reference pair corre-
lation energies are computed at the level of density-fitted CCSD(T)[8, 90] with the
aug-cc-pVTZ-JKFIT density fitting basis sets. All these correlation computations
are performed with frozen core approximation and full iterative triples treatments
using the same LMOs computed by ENTOS QCORE.

For all the training, we employ GPRs [92] with white noise regularized Matérn 5/2
kernel to model the diagonal and offdiagonal pair energies separately using GPY

1.9.6 software package [93]. The generated reference dataset for each molecule is
divided into training and test without data overlaps. The learning curves for H2O
and CH +

5 are generated by training on the listed sizes and tested on the remainder.
The results for 8 small validation molecules are collected by training on 500 config-
urations and testing on the 500 rest configurations. We note that since the numbers
of valid features are under 80 and will not cause overfitting due to the small sizes
of two molecules, all the valid features are used in the training without feature se-
lection. The negative log marginal likelihood objective of GPR is optimized with
respect to the kernel hyperparameters with a scaled conjugate gradient scheme for
100 steps and then apply the BFGS algorithm until full convergence [57, 58, 60].

DMC details
The guiding functions used in the guided DMC simulations are products of one-
dimensional wavefunctions of the high frequency vibrations as described in our
previous work.[182] The HOH bend is described by a harmonic oscillator with
a frequency of 1668 cm−1 and a G−matrix element[157] of 2.338 amu−1 Å−2.
One-dimensional discrete variable representation (DVR) calculations were used to
obtain the rOH and rCH wavefunctions.[191] The rOH wavefunction was obtained via
a potential scan along the rOH coordinate with 900 rOH bond lengths ranging from
0.27 Å to 1.59 Å. These potential values were then used as the potential function
in the one-dimensional DVR calculation. A similar scan was done along the rCH

coordinate with 900 rCH bond lengths ranging from 0.53 Å to 2.12 Å, keeping all
other rCH bond lengths and HCH angles constant.
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All DMC simulations in this study were performed using a time step (∆τ) of 1 a.u.
The zero-point energies reported in Table 5.5 are calculated by averaging Vref over
the last two-thirds of the simulation time. For the guided MOB-ML DMC simu-
lations, the minimum weight threshold was set at 0.01, and the maximum weight
threshold is 1% of the ensemble size (e.g. 50 for a 5000 walker simulation). Each
DMC simulation is run independently five times. The uncertainty of the reported
zero-point energy is the standard deviation of these five simulations. In the H2O
MOB-ML guided DMC calculations, we propagated 2304 walkers for 10 000 a.u.
and for CH +

5 we propagated 5120 walkers for 5000 a.u. For the H2O NN+(MOB-
ML) unguided DMC simulations, we propagated 60 000 walkers for 50 000 a.u.
and for CH +

5 , we propagated 60 000 walkers for 20 000 a.u. We ran analogous PS
H2O and JBB CH +

5 calculations to compare energies and wavefunctions with the
NN+(MOB-ML) unguided simulations.

Training the NN+(MOB-ML) potential energy surfaces
We used the Keras API implemented in the TensorFlow library[192] to construct,
train, and evaluate the NN+(MOB-ML) surface. The neural network structure,
hyperparameters and training procedure are identical to previous work[178]. To
collect training data for the NN+(MOB-ML) surfaces, we performed two unguided
DMC calculations for each system using the MOB-ML surface. For one of the
DMC simulations, we multiplied all of the masses of each of the walkers by 0.5, and
for the other we use standard masses. We propagated 7168 walkers for each DMC
simulation. For all simulations used to collect training data, starting at the second
time step, we collected all of the walkers and energies every 5 time steps until time
step 50. Then, we collected all walkers every 50 time steps. The resultant training
data consisted of approximately 8.6×105 configurations and energies for H2O and
1.5× 106 configurations and energies for CH +

5 , since for H2O we propagated the
walkers for 2500 a.u. and for CH +

5 we propagated the walkers for 5000 a.u.

This procedure differs from previous work, where the masses were decreased during
the second half of the simulation until the masses reached one-tenth of the original
value. This is because the underlying HF calculation that is performed when calling
the MOB-ML surface occasionally does not converge when unphysical geometries
are used as input, resulting in simulation crashes. Based on our analysis, the training
data collected from the DMC simulation in which the mass is multiplied by 0.5
sufficiently covers the high energy region, while the training data collected from
the DMC simulation where the masses are multiplied by 1 adequately samples the
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ground state.

We also collected two types of test data sets to examine the error of the NN+(MOB-
ML) surfaces. The NN+(MOB-ML) H2O and CH +

5 modified DMC test error re-
ported in table 5.3 is evaluated using 10 000 geometries and energies collected from
the same simulations as the training data sets where the masses are multiplied by
0.5. The NN+(MOB-ML) ground state DMC test set, also reported in Table 5.3
for each system, consists of three snapshots of walkers collected during the guided
MOB-ML DMC simulations used to calculate the zero-point energy reported in the
first column of Table 5.5. The H2O ground state test set consists of 6912 configura-
tions and the CH +

5 ground state test set consists of 15 360 configurations.

Variational calculation [see also Supporting Information of Ref. 178]
The calculations of the vibrational levels of water were performed in Jacobi coor-
dinates. While these are not the most efficient coordinates for describing low-lying
vibrational levels of water, they have the advantage of a simple kinetic energy op-
erator,

Ĥ =
p̂2

r
2µr

+
P̂2

R
2µR

+

(
1

2µRR2 +
1

2µrr2

)
ĵ2 +V (R,r,θ), (5.8)

where r represents one of the OH bond lengths, with reduced mass µr, R provides
the distance between the second hydrogen atom and the center of mass of the OH
bond described by r, and θ is the angle between r⃗ and R⃗. The reduced mass associ-
ated with R is

µR =

(
1

mH
+

1
mH +mO

)
(5.9)

To start, three cuts through the potential were taken, one along each of the three
coordinates with the other two coordinates set to their equilibrium values. Each cut
was used in a 1D Discrete Variable Representation (DVR) calculation[193], where a
DVR based on the Hermite polynomials was used for R and r and the DVR in θ was
based on Legendre Polynomials. For each DVR calculation, 250 DVR points were
used. The resulting wavefunctions were used to obtain potential-optimized DVR
points, with 35 in R and r and 30 in θ . These DVR points and the associated kinetic
energy terms were used to set up the full Hamiltonian along with a potential cutoff
of 35 000 cm−1. With these parameters, we were able to converge the energies of
the vibrational states of interest to within 1 cm−1.
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High performance computing DMC load balancing
Diffusion Monte Carlo (DMC), as an algorithm, only requires all-to-all communi-
cation between cores for the updating of weights, the calculation of Vref, and the ap-
plication of branching. Moreover, in the absence of branching, every walker would
propagate independently of the others in the simulation, which would allow for a
so-called "embarrassingly parallel" implementation in which multiple independent
simulations are run and the data is brought back together only at the end. Obviously,
branching is necessary. However, in the case that it occurs relatively rarely, we are
able to get closer to the situation of truly independent simulations. To that effect,
we have written our implementation of HPC DMC so that it can not only evaluate
the potential in a distributed manner, but can also perform the diffusion of walkers
in a distributed manner. When coupled with taking Nτ steps per propagation, this
can significantly improve the performance of the simulation by minimizing latency.

5.4 Results and Discussion
Since we will be using several approaches for evaluating energies, before discussing
the results we define the notation used to indicate how energies are evaluated. As
noted in the Introduction, we will refer to the H2O potential energy surface gen-
erated by Partridge and Schwenke as the PS surface and the global CH +

5 potential
energy surface generated by Jin, Braams, and Bowman as the JBB surface. We
will refer to surfaces generated using the MOB-ML technique, as the MOB-ML
surfaces, and we will refer to the neural network generated potential energy surface
that was trained using the MOB-ML energies as the NN+(MOB-ML) surface. The
energies obtained by using these surfaces will be denoted as Epotential

system , where po-
tential is replaced by JBB, PS, MOB-ML, or NN+(MOB-ML), while system is
replaced with either H2O or CH +

5 .

Validation and comparison of the MOB-ML potential energy surfaces to pre-
vious work
The quality of the MOB-ML approach is commonly assessed by the mean absolute
error (MAE) of the predicted CCSD(T)/aug-cc-pVTZ energies of a test set consist-
ing of thermalized geometries. In our previous study [57], MOB-ML models that
were based on small numbers of training configurations were shown to accurately
predict the energies of geometries sampled at room temperature. The MAE for
these models are provided in the right column of Table 5.1. Before applying DMC
to studies of H2O and CH +

5 , we explore the accuracy obtainable by MOB-ML pro-
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tocols described in Ref. 60 when applied to eight small molecules considered in the
earlier study, which we will refer to as the validation molecules. In this applica-
tion, the training and test configurations are sampled from thermalized geometries
at 3000 K. The results of this analysis are provided in Table 5.1.

Table 5.1: Predicted errors of the MOB-ML models relative to CCSD(T)/aug-cc-
pVTZ energies. The models are trained on 500 configurations and tested on the rest
500 configurations

System MAEa MSEb RMSEc Maxd MAE (Ref. 57)
CH4 1.800 -0.035 4.159 87.208 6.58
NH3 1.046 0.106 3.169 45.969 35.12
HF 0.014 -0.008 0.188 3.436 6.58
CO 0.006 -0.004 0.041 0.228 6.58
N2 0.028 0.026 0.845 13.119 13.17
F2 0.544 -0.521 10.058 224.126 6.58

HCN 1.924 -0.809 16.467 303.119 8.78
HNC 2.388 1.034 23.560 191.068 19.75

a Mean Absolute Error in cm−1.
b Mean Signed Error in cm−1.
c Root Mean Square Error in cm−1.
d Maximum Error in cm−1.

As can be seen, with the revised protocols, the MOB-ML model achieves accura-
cies of better than 2.5 cm−1 for all eight molecules by training only on 500 con-
figurations. This reflects a substantial improvement over the previously described
approaches.[57]. Of equal importance for the DMC calculations is the fact that the
errors are uniformly distributed, as indicated by the sub cm−1 mean signed errors
reported in Table 5.1. It is notable that when there are the same number of electrons
in the molecular system, the accuracy decreases with increased numbers of vibra-
tional degrees of freedom. This can be seen by comparing the MAE for HF, NH3,
and CH4. All three of these molecules have the same number of electrons as H2O
and CH +

5 , which are the focus of the remainder of this study.

Based on this analysis, for the development of the potentials for CH +
5 and H2O,

we employ slightly larger training sets, and, in the case of H2O sample geometries
based on a thermalized trajectory at 6000 K. We are able to obtain MAE’s of 1.8 and
2.0 cm−1 for H2O and CH +

5 respectively. To further explore the accuracy of these
potentials, in Figure 5.1, we show a set of MAEs of predicted energies as functions
of number of training configurations on a log-log scale, which are commonly re-



86

101 102 103 104

Number of Training Configurations

10 1

100

101

102

M
e
a
n
 A

b
so

lu
te

 E
rr

o
r 

(c
m

1
)

H2O

CH+
5

Figure 5.1: Prediction mean absolute errors (MAE) for total energies as a function
of the number of training configurations (learning curves) of H2O (blue circles,
solid line) and CH +

5 (green squares, dotted line) on a logarithm scale. The slopes
of learning curves represent the learnability of the MOB-ML model for H2O and
CH +

5 energies, and steeper learning curve suggests a higher learning efficiency.

ferred to as learning curves[95], for both H2O and CH +
5 . The test geometries are

the subset of 3000 randomized H2O or CH +
5 configurations that are not included

in the training sets. By comparing the slopes of learning curves, we find that the
MOB-ML approach has a slightly better learning efficiency for H2O than for CH +

5 .
This observation is consistent with the expectation that the larger number of vibra-
tional degrees of freedom associated in CH +

5 should make its potential surface a
more difficult learning problem compared to H2O. In both cases, high accuracies
comprising MAEs below 5cm−1 are attainable by only including 200 configura-
tions in the training set. Compared with the number of configurations used in the
traditional parametric PESs, for instance, 1056 configurations in PS, and 36 173
configurations in JBB, MOB-ML requires significantly smaller number of con-
figurations to provide high quality energies, closely resembling the ones provided
by CCSD(T) calculations. Even when considering the most accurate MOB-ML
models for the prediction of H2O and CH +

5 energies, which were trained on 1000
configurations each, MOB-ML achieves high accuracies with MAEs of only 1.04
and 1.38cm−1, respectively. Throughout this work, we utilize these high-accuracy
models to predict H2O and CH +

5 energies. Further details on the development of
these models can be found in the Appendix.

The high accuracy of our MOB-ML model in describing the H2O PES is further
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Figure 5.2: Comparison of the calculated energies of MOB-ML training and test set
data. (A) The number of geometries plotted as a function of the CCSD(T) energy
and the difference between the calculated MOB-ML and CCSD(T) energies. (B)
The number of geometries plotted as a function of the MOB-ML energies and the
difference between the PS[159] and the MOB-ML energies. (C) The number of
geometries plotted as a function of the difference between the MOB-ML and PS
energies and the sum of rOH distances and (D) the HOH angle.

supported by comparing our MOB-ML predictions to a set of 2000 data points
calculated at the CCSD(T)/aug-cc-pVTZ level of theory. As can be seen in panel
(A) of Figure 5.2, 96% of the MOB-ML-predicted energies lie within 0.5 cm−1 of
the corresponding CCSD(T) energies, while including all points only increases this
value to 4 cm−1. Nevertheless, MOB-ML accuracy is only as good as the under-
lying CCSD(T) level of theory. By comparing single-point energies obtained from
MOB-ML predictions, EMOB-ML

H2O , and the PS PES, EPS
H2O, as shown in panel (B),

(C), and (D), we immediately notice a large discrepancy over an order of magni-
tude larger than errors between MOB-ML and CCSD(T). These differences are also
non-uniform, with a mean signed error (MSE) of -130 cm−1. The large errors can
be attributed to the failures of CCSD(T), and other CC methodologies based on per-
turbative energy corrections, in describing non-dynamical correlation effects, such
as those dominating the symmetrically stretched geometries of the water molecule.
[194, 195]
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Figure 5.3: The comparison of the training and test geometries used to generate
the CH +

5 MOB-ML surface. The number of geometries plotted a function of the
CCSD(T) energy and the difference between the MOB-ML and CCSD(T) energies
(top), and the number of geometries plotted as a function of the MOB-ML energies
and the difference between the MOB-ML and JBB[164] energies (bottom).

In Figure 5.3, we make an analogous comparison for CH +
5 . By comparing the

MOB-ML and CCSD(T) energies computed for a combined selection of 3000
molecular geometries, containing both training and test set configurations, 99.5%
of the MOB-ML predictions show energy errors smaller than 25 cm−1, and 97 %
are within 10 cm−1 of ECCSD(T)

CH +
5

. Similarly, when we compare MOB-ML energies
to those coming from the JBB PES, we find that 88% of the energy differences are
smaller than 25 cm−1, with the remaining higher energy configurations showing
slightly larger errors. The MSE for configurations with calculated energies below
1500 cm−1 is 0.1 cm−1, while for geometries with energies above 1500 cm−1 the
MSE increases to 12.6 cm−1. These differences mirror the root-mean squared fit-
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ting error (RMSE) for the JBB surface, which the authors report as approximately
10 cm−1 for energies below 1500 cm−1 and approximately 17 cm−1 for energies
between 1500 and 4500 cm−1.[164]

Calculating vibrational wavefunctions and energies using MOB-ML surfaces
While comparing single-point energies between MOB-ML, CCSD(T), and other
previously reported sources provides a strong sense of the accuracy attainable by
MOB-ML energy predictions, a more demanding task is to compute accurate molec-
ular properties, such as vibrational energies and wavefunctions. To this end, we
employ two different approaches combining MOB-ML-generated PESs and DMC
simulations. In the first, the energies are evaluated using the MOB-ML surface di-
rectly. Even with the parallel implementation of DMC described above, these cal-
culations are expensive. Therefore, to make this approach tractable, we performed
the smallest calculations that are expected to provide reliable results. The param-
eters for these calculations were based on a previous DMC study performed using
the PS PES for water[181], and the JBB surface for CH +

5 ,[182] and are provided in
the Supporting Information. While the parameters for these calculations were cho-
sen to be as small as possible, while still providing accurate results, they are still
expensive. In order to perform larger DMC calculations, we used the NN-DMC
approach.[178] Finally, variational calculations were performed to obtain excited
state energies for H2O. We start by considering the ground state of H2O. As shown

Table 5.2: Harmonic frequencies for H2O from underlying electronic structure cal-
culations (cm−1)

Mode ω
MRCI,a
H2O ω

CCSD(T)
H2O

1 1653.1 1646.0
2 3830.7 3810.7
3 3940.5 3919.8

a Ref. 159

in Table 5.5, the calculation based on the MOB-ML energies gives a zero-point
energy of 4616(2) cm−1, which is roughly 20 cm−1 lower than the corresponding
zero-point energy obtained by performing a variational calculation using the PS
potential. The smaller zero-point energy is consistent with the results plotted in
Figure 5.2B, which show that the energies obtained from the MOB-ML surface
are generally smaller than those obtained from the PS surface. It is also consistent
with the 24 cm−1 lower harmonic zero-point energy obtained at the CCSD(T) level
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Figure 5.4: Comparison of the NN+(MOB-ML) and MOB-ML energies of the
NN+(MOB-ML) ground state test data set for H2O. This data is also used to cal-
culate the ground state MAE in Table 5.3. The predicted NN+(MOB-ML) energy
plotted as a function of the MOB-ML energy (left), and the number of geometries
in the test set plotted as a function of the difference between the energies evaluated
using the two surfaces and the MOB-ML energy (right).

compared to the MRCI calculations used to generate the PS surface (see Table 5.2).
On the other hand, this result is based on a small DMC calculation. To verify this
zero-point energy, we have performed a larger NN-DMC calculation, which gives
a zero-point energy of 4615(1) cm−1. This energy agrees with the results of the
smaller calculation. While these results are promising, to further ensure that the
NN+(MOB-ML) technique is adequately learning the MOB-ML surface for the
purposes of DMC, we provide comparisons of the single point NN+(MOB-ML)
energies to MOB-ML energies for both H2O and CH +

5 in Figures 5.4 and 5.5 the
Supporting Information. Based on these comparisons, the NN+(MOB-ML) surface
provides a similar level of accuracy when compared to our previous work, where the
same neural network structure was used to learn the PS surface[178]. This gives us
confidence in applying the neural network method to the MOB-ML surface beyond
H2O.

To this end, we performed a variational calculation of the vibrational energies of
water. The details of this calculation are reported in a previous study[178] and
reproduced in the Supporting Information. As can be seen in the results reported in
Table 5.4, the energies obtained from the variational calculation using the MOB-
ML surface and the NN+(MOB-ML) surface are in very good agreement, further
validating the NN-DMC approach on the MOB-ML surface. When we compare the
energies based on the MOB-ML and PS potentials, larger differences are observed.
The anharmonic zero-point energy on the MOB-ML surface is approximately 20
cm−1 lower than the PS surface, and the energies of the levels with one quantum of
excitation in the OH stretches each deviate by an additional 20 cm−1. As mentioned
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Table 5.3: MAE of the NN+(MOB-ML) training and test sets of H2O and
CH +

5 (cm−1).

System Training Error Test Error Test Error
Modified DMCa Ground State DMCb

H2O 18 24 4
CH +

5 115 153 68
a Calculated based on the energies of 10 000 configurations collected from

the training MOB-ML DMC simulation in which the masses of
each atom are multiplied by 0.5.

b Calculated based on the energies of three sets of walkers collected from
the small-scale MOB-ML DMC simulation whose zero-point
energy is reported in the first column of Table 5.5.
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Figure 5.5: Comparison of the NN+(MOB-ML) and MOB-ML energies of the
NN+(MOB-ML) ground state test data set for CH +

5 . This data is also used to cal-
culate the ground state MAE in Table 5.3. The predicted NN+(MOB-ML) energy
plotted as a function of the MOB-ML energy (left), and the number of geometries
in the test set plotted as a function of the difference between the energies evaluated
using the two surfaces and the MOB-ML energy (right).

above, the harmonic zero-point energy between the two surfaces differ by around
24 cm−1, and the deviation can be traced to a 20 cm−1 discrepancy in each of the
OH stretch frequencies. Finally, the difference between the energies of the bend
states, calculated using these two potentials, differ by 1 to 4 cm−1.

We also calculated the ground state energy and wavefunction for CH +
5 based on the

MOB-ML potential. Due to its larger number of vibrational degrees of freedom,
two of which are large-amplitude vibrations, we have only performed ground state
DMC calculations for this ion. Additionally, the increased dimensionality makes
the evaluation of the MOB-ML potential approximately twice as expensive, and the
minimum number of walkers needed to obtain a reliable ground state wavefunction
and energy are roughly twice as large as for H2O. This makes DMC calculations
based on the MOB-ML potential barely feasible. Using this approach, we obtain a



92

Table 5.4: Calculated ground and excited state vibrational energiesa for H2O (cm−1)

vb
s vb va MOB-ML MOB-ML − NN+(MOB-ML) PSc

0 0 0 4614.6 −0.01 4636.8
0 1 0 1594.1 −0.01 1594.4
0 2 0 3151.8 0.8 3150.8
1 0 0 3638.8 −0.3 3656.2
0 0 1 3734.5 −0.2 3755.1
0 3 0 4669.5 −0.3 4665.7
1 1 0 5216.3 0.2 5233.8
0 1 1 5308.9 −0.5 5330.0

a The first row corresponds to the calculated zero-point energy E0,
and all subsequent rows correspond to E-E0.

b vs, vb, and va correspond to the number of quanta in the symmetric
OH stretch, HOH bend, and antisymmetric OH stretch, respectively.

c Ref. 178.

zero-point energy of 10 912(15) cm−1. When we use the NN-DMC approach, the
zero-point energy becomes 10 909(2) cm−1. While both values are slightly lower
than the energies reported based on the global EJBB

CH+
5

surface, they are in excellent
agreement with the DMC zero-point energy of 10 908(5) reported by Johnson and
McCoy using the CCSD(T)-based surface (JBB:CC) from which the global surface
was developed[188]. These results are summarized in Table 5.5.

Table 5.5: Calculated zero-point energies obtained using DMC (cm−1)

System MOB-ML NN+(MOB-ML) PSa/JBBb JBB:CCc

H2O 4616 (2) 4615 (1) 4637 (2) –
CH +

5 10 912 (15) 10 908 (2) 10 917 (5) 10 908 (5)
CH4D+ – 10 301 (2) 10 303 (4) 10 298 (5)
CH3D +

2 – 9689 (4) 9698 (7) 9690 (5)
CH2D +

3 – 9086 (3) 9010 (3) 9090 (5)
CHD +

4 – 8553 (2) 8565 (3) 8559 (5)
CD +

5 – 8040 (3) 8044 (2) 8039 (5)
a Results of DMC simulations using the Partridge-Schwenke surface[159].
b Results of DMC simulations using the Jin, Braams, and Bowman surface[164].
c Results of DMC simulations on the CCSD(T) surface on which the

JBB potential is based.[188]

CH +
5 is an unusual ion in that it exhibits two large amplitude motions, which re-

sult in low barriers for permutation of the hydrogen atoms. Specifically, there are
120 equivalent minima on the potential surface that describes CH +

5 . Based on the
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Figure 5.6: The DMC probability amplitude projected onto DD (left) and HD
(right) distances using wavefunctions from the JBB surface (upper panels) and the
NN+(MOB-ML) surface (lower panels).

CCSD(T) calculations used to develop the MOB-ML surface, these minima are
separated by a series of transition states none of which is higher than 332 cm−1. As
a result, the ground state wavefunction for CH +

5 has roughly equal amplitude at all
120 equivalent minima as well as the 180 low-energy transition states that connect
these minima.[196] While isomerization is facile, the five CH bonds are not equiv-
alent at any of the low-energy stationary points. This is illustrated by the harmonic
frequencies for the CH stretches, which range from 2400 to 3250 cm−1[164, 188].
As a result, when one or more of the hydrogen atoms is replaced by a deuterium
atom, the ground state probability amplitude is no longer equally distributed among
the 120 minima on the potential surface. This can be seen in the plots of the pro-
jection of the probability amplitude onto the HH distances, shown in Figure 5.7.
In this figure, we compare the distributions obtained using NN-DMC calculations
based on the NN+(MOB-ML) potential to results obtained running the analogous
unguided DMC calculations on the JBB potential. The distributions change as
hydrogen atoms are replaced with deuterium atoms, and the evolution of the distri-
butions with deuteration reflects the localization described above. This effect has
been discussed previously,[197, 198] and the important observation for the current
study is that calculations of the ground state probability amplitude based on both
the NN+(MOB-ML) potential and the JBB potential yield nearly identical distribu-
tions. Analogous distributions, which show similar agreement for the HD and DD
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distance distributions, are provided in Figure 5.6 in the Supporting Information. For
all isotopomers, the difference in the zero-point energies calculated using the JBB
and the NN+(MOB-ML) potentials remain smaller than 15 cm−1. The deviations
in the energies among isotopomers reflect a sensitivity of this quantity to small dif-
ferences among the potentials. As mentioned above, the primary source of these
differences is most likely from the introduction of a switching function that allows
the JBB surface to dissociate properly. When that correction is not included, the
differences between the zero-point energies reported in Ref. 188, and reproduced
in Table 5.5, and those obtained using the NN+(MOB-ML) surface are less than 6
cm−1. This difference is within the uncertainties of the previously reported values.
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Figure 5.7: The calculated DMC probability amplitude projected onto all H/D dis-
tances (left) and HH distances (right) for the appropriate isotopologues of CH +

5 .
The top two panels show the DMC probability amplitude using the JBB potential
energy surface[164], where the bottom two are using the NN+(MOB-ML) surface.

The above agreement between the results of these two sets of calculations should
not be surprising, as both the MOB-ML and the JBB surface are based on the
same levels of electronic structure theory. On the other hand, whereas the earlier
surface is based on fitting more than 35 000 electronic energies with energies up to
150 000 cm−1 to a potential function with 2300 coefficients[197], the MOB-ML
potential is based on 1000 electronic energies with energies below 4500 cm−1. The
similarity between the calculated properties based on these two surfaces provides
an illustration of the power of the MOB-ML approach.
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5.5 Conclusion
In this work, we introduce a general approach to generate efficient and highly ac-
curate potential energy surfaces for their use in large-scale molecular simulations.
Specifically, we take advantage of the MOB-ML approach to generate CCSD(T)-
quality potential energy surfaces for H2O and CH +

5 systems, at a small fraction of
the computational cost relative to CCSD(T). We show that by relying on a training
set of only 1000 molecular configurations and CCSD(T) energies, we can construct
accurate MOB-ML models suitable for demanding DMC simulations. Furthermore,
we demonstrate that by employing a NN approach to refit the MOB-ML energies,
we can increase the computational efficiency of the MOB-ML approach by exploit-
ing GPU technology, and achieve large scale DMC simulations while maintaining
high accuracy.
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