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ABSTRACT

Research in decision neuroscience has characterized how the brain makes decisions
by assessing the expected utility of each option in an abstract value space that affords
the ability to compare dissimilar options. Experiments at multiple levels of analysis
in multiple species have localized the ventromedial prefrontal cortex (vmPFC) and
nearby orbitofrontal cortex (OFC) as the main nexus where this abstract value
space is represented. However, much less is known about how this value code is
constructed by the brain in the first place. By using a combination of behavioral
modeling and cutting edge tools to analyze functional magnetic resonance imaging
(fMRI) data, the work of this thesis proposes that the brain decomposes stimuli into
their constituent attributes and integrates across them to construct value. These
stimulus features embody appetitive or aversive properties that are either learned
from experience or evaluated online by comparing them to previously experienced
stimuli with similar features. Stimulus features are processed by cortical areas
specialized for the perception of a particular stimulus type and then integrated into
a value signal in vmPFC/OFC.

The project presented in Chapter 2 examines how food items are evaluated by their
constituent attributes, namely their nutrient makeup. A linear attribute integration
model succinctly captures how subjective values can be computed from a weighted
combination of the constituent nutritive attributes of the food. Multivariate analysis
methods revealed that these nutrient attributes are represented in the lateral OFC,
while food value is encoded both in medial and lateral OFC. Connectivity between
lateral and medial OFC allows this nutrient attribute information to be integrated
into a value representation in medial OFC.

In Chapter 3, I show that this value construction process can operate over higher-level
abstractions when the context requires bundles of items to be valued, rather than
isolated items. When valuing bundles of items, the constituent items themselves
become the features, and their values are integrated with a subadditive function to
construct the value of the bundle. Multiple subregions of PFC including but not
limited to vmPFC compute the value of a bundle with the same value code used to
evaluate individual items, suggesting that these general value regions contextually
adapt within this hierarchy. When valuing bundles and single items in interleaved
trials, the value code rapidly switches between levels in this hierarchy by normalizing
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to the distribution of values in the current context rather than representing all options
on an absolute scale.

Although the attribute integration model of value construction characterizes human
behavior on simple decision-making tasks, it is unclear how it can scale up to
environments of real-world complexity. Taking inspiration from modern advances
in artificial intelligence, and deep reinforcement learning in particular, in Chapter
4 I outline how connectionist models generalize the attribute integration model
to naturalistic tasks by decomposing sensory input into a high dimensional set of
nonlinear features that are encoded with hierarchical and distributed processing.
Participants freely played Atari video games during fMRI scanning, and a deep
reinforcement learning algorithm trained on the games was used as an end-to-
end model for how humans evaluate actions in these high-dimensional tasks. The
features represented in the intermediate layers of the artificial neural network were
found to also be encoded in a distributed fashion throughout the cortex, specifically
in the dorsal visual stream and posterior parietal cortex. These features emerge from
nonlinear transformations of the sensory input that connect perception to action and
reward. In contrast to the stimulus attributes used to evaluate the stimuli presented
in the preceding chapters, these features become highly complex and inscrutable
as they are driven by the statistical properties of high-dimensional data. However,
they do not solely reflect a set of features that can be identified by applying common
dimensionality reduction techniques to the input, as task-irrelevant sensory features
are stripped away and task-relevant high-level features are magnified.
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C h a p t e r 1

INTRODUCTION

Decision Neuroscience
The human experience is fundamentally a series of moments, characterized by
perception action loops, where we perpetually perceive what’s happening in our
immediate environment and take an action to causally affect that environment in
the service of our goals. Taking the right actions in the right situations to achieve
a diverse set of goals is the hallmark of human intelligence, yet exactly how this
happens still remains a mystery. This process is mediated by the computations in
the brain and broader nervous system, as the world is perceived through sensory
input that projects to the brain and acted on by motor output that is sent by the
brain. Due to the overwhelming complexity of this organ that houses 86 billion
neurons, neuroscience has been studied with subdivisions that try to identify the
neural mechanisms at different levels of analysis or different aspects of cognition.
For example, visual neuroscience tries to understand how visual perception works in
the brain. On the other side of the perception action loop lies decision neuroscience,
a more recently developed subfield that focuses on how choices and actions are pro-
duced by the brain. For the past few decades, researchers have produced pioneering
work that lays the foundation for the projects I outline in this dissertation. This
work is heavily interdisciplinary, as it often involves mathematical modeling of the
decision-making process. Below I will outline the progress made by two interdis-
ciplinary subdivisions of decision neuroscience: neuroeconomics, which utilizes
tools from economics to examine how value and choice emerges in the brain, and
reinforcement learning, a framework originating from computer science and animal
psychology that outlines how agents (biological or artificial) can select actions to
maximize reward.

Neuroeconomics
As evidenced by its name, neuroeconomics draws heavily from the field of eco-
nomics. In particular, economists have developed methods to characterize how
people make choices. Neoclassical economists outlined normative frameworks for
how rational actors should act to maximize utility (Glimcher, et al., 2009). These
frameworks are built from simple axioms such as that individuals will make choices
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that are consistent and transitive. If a person chooses a chocolate bar over a banana
in one situation, they should not choose the banana over a chocolate bar in another
situation. Additionally, expected utility theory was developed (Morgenstern and
Von Neumann, 1944) to model choices with uncertain outcomes with continuous
utility functions. These axiomatic approaches form the basis of microeconomics
and thus explain a wide variety of consumer behavior in aggregate and can be used
to predict the consequences of policy decisions.

In the second half of the 20th century, a group of economists and psychologists
moved past analyzing choice behavior from first principles and axioms, and took
on a more descriptive approach to model how human behavior appeared in practice
(Simon, 1957; Glimcher, et al., 2009). Naturally, this connected with elements of
psychology and led to emergence of a new subfield, behavioral economics. As you
might expect, humans are not always optimally rational agents, and our behavior
is often biased in systematic ways that vary from neoclassical theories such as ex-
pected utility theory. Due to resource constraints and a neural architecture with
quirks and limitations that are shaped by our evolutionary history (Simon, 1957;
Gigerenzer and Selten, 2002), our behavior is not just noisy, but is predictably
irrational (Ariely and Jones, 2008). One prominent contribution came from psy-
chologists Daniel Kahneman and Amos Tversky (Kahneman and Tversky, 2013)
called prospect theory. Prospect theory describes how individuals make choices
involving risk and uncertainty, and how in practice their decisions diverge from
the predictions of expected utility theory. For example, people weigh losses more
than gains of equivalent monetary amounts, a phenomenon known as loss aversion.
Additionally, people tend to overweight outcomes with low probabilities and under-
weight highly certain outcomes, a cognitive bias that has real-world implications
for human behavior in areas like insurance, gambling, and risk assessment. The de-
scriptive insights of prospect theory and other findings from behavioral economics
have sparked considerable interest in uncovering the psychological and cognitive
mechanisms of our decision-making systems. The field of neuroeconomics emerged
from perspective, as reverse-engineering the mechanisms that produce choices is
fundamentally a neuroscientific pursuit.

Lesion studies provided the first clue as to which neural regions are causally involved
in choice. Patients with damage to their prefrontal cortex (PFC) consistently exhibit
various decision-making deficits, stemming from an inability to evaluate the future
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consequences of their actions or to learn from feedback (Bechara et al., 1994). In
the past few decades, further electrophysiological and neuroimaging research has
helped illuminate the functions that PFC regions have in decision-making.

Researchers sought out to identify whether the economic concept of value is rep-
resented in the brain. Both the neoclassical and behavioral schools of economic
thought are built on the concept of subjective value, where a decision between mul-
tiple options is made by comparing the values of the available options. Value is an
abstract representation of the utility or reward one expects when choosing an option,
and therefore value allows dissimilar stimuli to be compared in a common currency
(ie. would you rather have a hamburger or a lottery ticket?). This abstraction is
also divorced from its specific sensory or motor contingencies in the raw stimulus
or experimental setup. The value of a banana, for example, should not vary de-
pending on whether a subject chooses the banana with a button press or with an eye
movement, whereas the motor signals involved in initiating the choice will diverge.
In a series of electrophysiological experiments with monkeys, Padoa-Scioppa and
Assad identified neurons in the orbitofrontal cortex (OFC; a subregion of PFC) that
coded for economic value when choosing between juice rewards of various quan-
tities (Padoa-Schioppa and Assad, 2006). OFC neurons coded for three different
variables: the value of a particular juice (called offer value), the value of the chosen
juice (chosen value), or a binary response when a particular juice was chosen (taste).

A multitude of functional imaging studies in humans have additionally identified
neural correlates of subjective value in OFC and in the adjacent ventromedial pre-
frontal cortex (Chib et al., 2009; Hare, Camerer, Knoepfle, et al., 2010; Kable
and Glimcher, 2007; De Martino et al., 2009; Plassmann, John P. O’Doherty, and
Rangel, 2007; Tom et al., 2007). Several of these studies elicited subjective values of
food items and consumer goods from subjects by using Becker-DeGroot-Marschack
(BDM) auctions, which ask “how much would you be willing to pay for this item?”
(Becker, DeGroot, and Marschak, 1964; McNamee, Rangel, and John P O’Doherty,
2013; Plassmann, John P. O’Doherty, and Rangel, 2007). At the end of an exper-
iment, a price is randomly generated, and if the subjects reported a bid higher or
equivalent to the randomly generated price, then they can buy the item at this random
price. This procedure therefore incentivizes subjects to report their true willingness
to pay price, and is thus a reliable way to obtain subjective values for items in an
experiment and we use the BDM auction for the experiments presented in Chapters 2
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and 3. Additionally, several fMRI studies indicate that vmPFC value signals reflect
a common currency value code, with overlapping areas coding for value across a
diverse set of stimuli, such as food, money, consumer goods (clothes, books, etc.),
and social reward (Chib et al., 2009; Levy and Glimcher, 2011; Lin, Adolphs, and
Rangel, 2012; McNamee, Rangel, and John P O’Doherty, 2013). However, dis-
tributed non-overlapping value codes for food items and consumer items were also
found more ventrally in vmPFC with multivariate analyses (McNamee, Rangel, and
John P O’Doherty, 2013).

These studies have been foundational for neuroeconomics by establishing a clear
neural basis for value-based decision-making, but there are still many open questions.
How are the value codes in OFC and vmPFC constructed? To compute a general
value code that is abstracted from the specific features that constitute a stimulus, the
neural system needs to first perceive the stimulus and infer its desirability from its
features. This is one of the central questions of this thesis, and two projects designed
to investigate this are presented in Chapters 2 and 3. Moreover, before making a
decision, the brain has to construct a representation of the decision problem (Rangel,
Camerer, and Montague, 2008). Internal and external states need to be perceived
(for example: “I am hungry and I see food”), and the actions available to choose
between need to be identified. This component of the decision-making process is
relatively trivial in simple experimental settings where subjects choose between two
options, but task representation becomes a much larger issue in real-world domains
that are high-dimensional in the sensory space and the action space. Chapter 4 of this
thesis addresses this question directly by using naturalistic decision-making tasks
that are more representative of the high-dimensional decision-making scenarios the
brain encounters in daily life.

Reinforcement Learning
Reinforcement learning (RL) is a theoretical framework that can be used to char-
acterize any decision-making problem where an agent takes actions and receives
reward or punishment based on these actions (Sutton and Barto, 2018). Due to this
generality, RL can model how any type of agent can learn from feedback, regardless
if the agent is an animal, a human, or an AI. An RL environment is typically modeled
as a Markov Decision Process (MDP), where an agent traverses an environment by
moving from state to state. In each state, an agent chooses an action which determin-
istically or stochastically puts the agent in another state, and reward is accumulated
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depending on the state an agent reaches. The objective is then for an agent to learn
by trial and error which actions to take in each state to maximize reward.

The original inspiration to mathematically formalize trial and error learning comes
from research on pavlovian and operant conditioning in animal psychology. Pavlo-
vian conditioning occurs when an initially neutral stimulus (called a conditioned
stimulus CS) is paired with a reward or punishment (unconditioned stimulus US),
which was first observed when Ivan Pavlov rang a bell before delivering food to
dogs. After training, the dogs would salivate to the bell even without the presence of
food. This conditioned response is due to the predictive relationship the bell had to
reward and thus illustrates a basic form of learning. A simple mathematical model
explains this learning process (Rescorla, 1972). The value of a stimulus V(s) is
equal to the amount of reward that stimulus predicts. Before learning, the stimulus
has no value V(s), but when it is paired with reward, V(s) is compared with the
reward received, with the difference between the two quantities called a prediction
error (PE).

𝑃𝐸 = 𝑟 −𝑉 (𝑠)

The prediction error is positive when more reward is received than expected from
the previous V(s), and PE is then used to update V(s) with the following learning
rule:

𝑉 (𝑠) = 𝑉 (𝑠) + 𝛼(𝑃𝐸).

Alpha (𝛼) here refers to a learning rate, which is a parameter between 0 and 1 that
controls the speed of learning by weighing the previous value estimate versus the
current reward received. A large learning rate will put more weight on the current
reward, and a small learning rate will put more weight on the previous estimate
of V(s). After repeated trials where a neutral CS (ie. bell) predicts a rewarding
US (ie. food), the value estimate of the CS gravitates towards the value of the
reward, which makes the CS desirable itself and leads to an appetitive response
(ie. salivation) when it is presented. This Rescorla Wagner model explains many
important experimental effects in pavlovian conditioning, including the blocking
effect where conditioning can be impaired when a CS is presented with a second CS
that has already been trained to predict the US.
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While Pavlovian conditioning only refers to reflexive behaviors that occur when
an organism passively observes a stimulus associated with reward or punishment,
extensions of this model can also account for the form of conditioning that is action-
dependent: operant conditioning (also called instrumental conditioning). Operant
conditioning occurs when a behavior itself is reinforced by reward (or weakened
by punishment). For example, if a rat pressing a lever produces food pellets to be
delivered, that behavior will be repeated in the future. Here, the stimulus-response
(see lever -> press lever) becomes predictive of reward, and can be similarly learned
as an action value estimate of a state-action pair Q(s,a). These action values can be
similarly learned through error driven mechanisms mediated by prediction errors.

𝑃𝐸 = 𝑟 −𝑄(𝑠′, 𝑎′)

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼(𝑃𝐸)

An agent can then select the action with the highest action value in order to maximize
reward. Q-function models such as this explain animal and human choices well in
operant conditioning paradigms (Daw and Tobler, 2014).

The error-driven learning framework has been expanded to more complex environ-
ments with multiple states and sequential state to state transitions. This generaliza-
tion now encapsulates the majority of decision-making environments reinforcement
learning researchers care about, ranging from a rat navigating a maze to an AI play-
ing chess or backgammon. As outlined above, a state value V(s) (or action values
Q(s,a)) can be computed at every state in the environment. The temporal difference
algorithm (TD) allows you to incorporate future rewards into the state value function
(Sutton and Barto, 2018), so the value of a state is not just the reward expected at
that state but also the cumulative expected reward following that state.

𝑉 (𝑠𝑡) = 𝑟 (𝑠𝑡) + E[𝑟 (𝑠𝑡+1) + E[𝑟 (𝑠𝑡+2) + ...|𝑠𝑡+1] |𝑠𝑡]

Future rewards can also be downweighted with a discount factor gamma in contexts
where reward is less valuable when it is delayed.
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𝑉 (𝑠𝑡) = 𝑟 (𝑠𝑡) + E[𝛾𝑟 (𝑠𝑡+1) + E[𝛾2𝑟 (𝑠𝑡+2) + ...|𝑠𝑡+1] |𝑠𝑡]

The trick of temporal difference learning is to leverage the recursive structure of
this equation to compactly represent all expected future rewards with the value of
the next state V𝑡+1. Therefore the value at any state is equal to the reward received
in that state plus the value of the successor state s𝑡+1.

𝑉 (𝑠𝑡) = 𝑟 (𝑠𝑡) + E[𝑟 (𝑠𝑡+1) |𝑠𝑡]

Due to the recursion, the value of the s𝑡+1 encapsulates the sum of all future rewards
at s𝑡+1, s𝑡+2. . . s𝑡+𝑛. By bootstrapping from the value estimate of the next state,
learning can efficiently propagate backwards from rewarding states to the states
preceding them. Learning the value estimates are similarly mediated by prediction
errors, but now prediction errors are equal to the difference between the V(s𝑡) and
r𝑡 + V𝑡+1.

𝛿𝑡 = 𝑟 (𝑠𝑡) +𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡)

By adding V𝑡+1 to the equation, TD learning has the ability to not only learn about
the immediate reward but the reward accumulated in subsequent states as well. Thus,
if an agent lands in a state that is better than expected, it can update its value of
the preceding state similarly to if reward was unexpectedly received at that state. In
chess for example, raw reward is not received until the game ends and the winner is
declared, but if an agent estimates the value of every game state it encounters (which
becomes a proxy for win probability), it can learn about the quality of decisions that
lead to sharp changes in state value/win probability. To construct an action-selection
policy from TD learning in this way, it is combined with Q-functions that estimate
the value of state-action pairs as explained above.

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟 (𝑠𝑡) + E[𝑟 (𝑠𝑡+1) |𝑠𝑡 , 𝑎𝑡]

This algorithm, known as Q-learning, uses a similar update rule at TD learning, but
replaces the value estimate of the successor state with the maximum q-value of the
successor state.
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𝛿𝑡 = 𝑟 (𝑠𝑡) + max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) −𝑄(𝑠𝑡 , 𝑎𝑡)

These models have been highly influential in neuroscience as well. In a series
of landmark electrophysiological experiments in which monkeys undergo pavlovian
conditioning, signaling of the dopamine neurons in the ventral tegmental area (VTA)
and substantia nigra showed striking resemblance to reward prediction errors of a
TD learning algorithm (W. Schultz, Dayan, and Montague, 1997). As in a typical
conditioning protocol, an appetitive fruit juice was used as reward and paired with
a preceding conditioned stimulus. Before learning, dopamine neurons fired directly
after fruit juice was delivered. After learning however, the dopamine neurons began
to fire at the onset of the conditioned stimulus and did not fire above baseline
when reward was received. Additionally, if after learning the CS was presented
but the reward failed to occur, then dopamine neurons fired at the presence of the
CS and the firing rate went below baseline when the reward was absent. These
dopaminergic firing patterns are neatly explained by TD models. When reward is
initially unexpected, dopamine neurons only fire when a reward appears signaling
a positive prediction error, and they do not fire at the presence of a stimulus that
is not yet predictive of reward. Once the CS becomes associated with reward
through learning, a positive prediction error occurs (via dopaminergic neurons
increasing their firing rate) when the CS is presented and there is no prediction
error at the time reward is received as expected. Moreover, if reward fails to be
delivered, a negative prediction error is conveyed with dopaminergic firing below
baseline. The dopaminergic neurons in the midbrain project to the striatum, the
amygdala, and diffusely throughout the frontal cortex, which affords the opportunity
for the prediction error signal to reinforce distributed motor pathways (Daw and
Tobler, 2014). Voltammetry techniques have been used to confirm that dopamine is
released in targets such as the ventral striatum in a manner consistent with the reward
prediction error hypothesis (Day et al., 2007). Human fMRI experiments have
additionally identified correlations between blood oxygen level dependent (BOLD)
activation in the striatum and reward prediction errors in a wide variety of tasks
(Abler et al., 2006; McClure, Berns, and Montague, 2003; John P. O’Doherty,
Dayan, Friston, et al., 2003; Spicer et al., 2007; Tobler et al., 2007). Altogether,
these results point to a tight correspondence between neural experimental results and
computational theories of learning, thereby highlighting the roles of the dopamine
system and the striatum in learning.
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The reinforcement learning approaches discussed thus far do not explain the entirety
of how humans learn however. Algorithms that implement trying and error learning
like TD learning and Q-learning do remarkably well in modeling implicit learning
tasks with a small set of stimuli, a type of learning that has been primarily in-
vestigated experimentally through bandit tasks, but they fall short of accounting for
many cognitive capacities that make human intelligence powerful, such as reasoning
and planning. This is because they make no attempt to model the environmental
dynamics but only try to learn cached values about state-action pairs. They are
therefore referred to as model-free algorithms. In contrast, model-based algorithms
construct an internal model of the environment by learning about the structure of
state to state transitions. This affords the ability to plan with this world model or
to quickly adapt a policy when the reward structure of the environment changes
(Daw and O’Doherty, 2014). A current hypothesis is that the brain contains both
model-free and model-based systems and arbitrates between them (Lee, Shi- mojo,
and O’Doherty, 2014). Much less is known about model-based learning in the
brain however, other than the likely possibility that it is PFC dependent (Daw and
O’Doherty, 2014).

The model-free algorithms discussed thus far encounter other challenges too when
applied to tasks with a high-dimensional state space. The complexity of the learning
process scales exponentially with the number of states to learn about, and therefore
these algorithms fail to scale to environments with a large number of variables, such
as ones involving vision. In the real-world, animals and humans use perception
to identify what state they are in. In addition, we can encounter completely novel
states (in fact the exact information that hits our retina is almost always unique) and
instinctively know which actions to take by generalizing from our past experience
of similar states. In classic RL however, a new state is defined any time a part of
the visual space is novel, even if just one pixel is changed, and the action values
at this state would have to be inefficiently learned by scratch without generalizing
from previously learned states. This issue motivates the project presented in Chap-
ter 4. Therefore, recent approaches in machine learning that solved the curse of
dimensionality will be outlined in detail below.

Deep Reinforcement Learning
To combat the issues with classic RL outlined above, in 2015 Google DeepMind
developed the deep Q-network (DQN) that could learn to play dozens of Atari
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video games at human to superhuman levels from scratch (Mnih et al., 2015).
The algorithm takes in the pixels of the game as input and processes this input
with a artificial neural network/deep neural network in order to approximate a Q-
value function. The last layer of the network computes Q-values for all of the
available actions in the game and takes the action with the highest Q-value as in
classic Q-learning. DQN specifically uses a convolutional neural network (CNN)
architecture to process the frames of the games. CNN architectures are very useful
for processing images, and had previously been used with much success in object
recognition (LeCun, Bottou, et al., 1998; Krizhevsky, Sutskever, and Hinton, 2012).
CNNs are loosely inspired by how early visual cortex neurons only respond to visual
input in a certain receptive field, as the artificial neurons are only locally connected
to the neurons in tangential layers with similar receptive fields, in contrast to the
full connectivity of multilayer perceptrons. The parameters in a CNN layer consist
of a set of learnable filters that detect visual features in the input, which are then
convolved across the input to produce a 2-dimensional activation map that gives the
responses of that filter at every spatial position. As the receptive fields increase from
early layers to later layers, the filters tend to encode visual features in a hierarchical
fashion. Filters in early layers may encode an edge of a particular orientation, while
filters in later layers represent complex textures or parts of objects such as eyes. DQN
also introduced other improvements that improved the stability of approximating a
Q-function with a nonlinear function. As previously described, the value of a state-
action pair Q(s,a) represents the reward received by taking that action plus the max
action value at the next state (𝑟 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′)), and the discrepancy between

Q(s,a) and this TD target becomes a prediction error used to update Q(s,a) towards
its optimal value.

𝑄(𝑠, 𝑎) := 𝑄(𝑠, 𝑎) + 𝛼

(
𝑟 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)

)
DQN turns this into a regression problem parametrized by the weights of the deep
neural network, so the discrepancy between Q(s,a) and the TD target can be mini-
mized with backpropagation and modern optimization tools.

L(𝜃) = E𝑠,𝑎,𝑟,𝑠′
(
𝑟 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′, 𝜃′) −𝑄(𝑠, 𝑎, 𝜃)

)2

Additionally, DQN uses a fixed target network with parameters 𝜃′ to improve the
stability of the optimization process. The parameters of the target network are
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periodically updated to match the parameters of the online network. In order to
optimize this function with stochastic gradient descent, DQN introduces one other
method that takes biological inspiration from hippocampal replay mechanisms. For
stochastic gradient descent to work well, the data needs to be independent and
identically distributed (i.i.d.), however sequences of frames in an Atari video game
or similar RL environment are highly correlated. An experience replay buffer was
developed to tackle this issue, which involves storing the states of the game and
uniformly sampling the stored samples during training to break this correlation.

This marriage of RL and deep learning was a breakthrough in AI that led to the
emergence of the deep reinforcement learning field. Since DQN’s development,
numerous improvements and subfields have emerged, as deep RL has been used to
beat human experts in Go and StarCraft (Silver et al., 2016; Vinyals et al., 2019),
develop chatbots (Cuayáhuitl, Keizer, and Lemon, 2015), advance robotics (Tai
et al., 2016), and much more (Li, 2017). A parallel line of deep RL algorithms
do not use value functions, but seek to directly optimize a policy that maximizes
the RL objective (Sutton and Barto, 2018). These methods use a general class
of optimization that can be applied to many domains including environments with
continuous action spaces. However, policy-based methods are sample inefficienct
and suffer from high variance gradients. Many of the current state of the art
algorithms combine these policy-based methods with the value-based methods to
get the best of both worlds (Lillicrap et al., 2015; Schulman et al., 2017; Haarnoja
et al., 2018; Espeholt et al., 2018), in a class of models known as actor-critics
(policy: actor, critic: value function).

Neuroimaging
The projects presented in this thesis utilize functional magnetic resonance imaging
(fMRI) methods to record human brain activity during the decision-making pro-
cess. fMRI non-invasively records brain activity via blood oxygen-level dependent
(BOLD) signals, which are caused by the compensatory blood flow that follows
neural activity (Ogawa et al., 1992). BOLD signals increase the brightness of the
volumetric pixels (voxels) in an MRI image, which allows cognitive neuroscientists
to record from the entire brain at once in the scanner, with spatial resolution much
better than other neuroimaging methods such as electroencephalography (EEG) and
magnetoencephalography (MEG). In contrast to these methods, fMRI has a more
limited temporal resolution due to the slow dynamics of the BOLD response (BOLD
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peaks around 5s after neural activity).

Traditionally, fMRI data has been analyzed with the general linear model (GLM),
which implements mass univariate regressions to model every voxel independently
as a function of the experimental variables (Penny et al., 2011). More recently,
cutting-edge techniques have been developed to better link brain activity to the
computational mechanisms that produce behavior. In model-based fMRI analysis,
computational models are developed to capture the cognitive process humans use to
behave on a task, and then components of the model are regressed against the BOLD
signal (John P. O’Doherty, Hampton, and Kim, 2007). For example, this method
has identified neural correlates of the prediction errors from a temporal difference
learning model in the ventral striatum and OFC (John P. O’Doherty, Dayan, Friston,
et al., 2003). Additionally, another fMRI analysis approach involves using methods
from machine learning and data science to examine how information is distributed
across voxels, in contrast to modeling every voxel independently. These multivariate
pattern analysis (MVPA) tools are heavily utilized in each of the projects presented
in this thesis. Therefore, I will outline these tools in more detail.

Multivariate Pattern Analysis (MVPA)
MVPA has revolutionized fMRI research by using decoding methods to examine
what information is encoded in a region. A common approach is to use classifi-
cation techniques from machine learning to distinguish patterns of voxel responses
associated with different classes of stimuli. In 2001, Haxby and colleagues used
a classifier to dissociate the brain’s representation of faces, animals, and other ob-
jects by using voxel patterns in ventral temporal cortex as the features fed to the
classifier (Haxby, Gobbini, et al., 2001). The idea is that viewing stimuli in these
different categories does not necessarily lead to different regions being activated
for each category, but that the ventral temporal cortex encodes information about
all the categories with a population code distributed across hundreds or thousands
of overlapping voxels. Each object category was found to have a distinct signature
response profile across the voxel population, which could be picked up by a nearest
neighbor classifier that identify pattern similarity within and between classes in the
high-dimensional voxel space. Similar decoding analyses have been used to dis-
tinguish information held in working memory (Harrison and Tong, 2009), decode
abstract cognitive states (Mitchell et al., 2004), and probe the encoding of variables
related to value and choice (Kahnt et al., 2010; McNamee, Rangel, and John P
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O’Doherty, 2013; McNamee, Liljeholm, et al., 2015).

The MVPA procedure first requires partitioning the data into independent training
and test data sets. Voxels from a particular region or from even the entire brain are
used as features (independent variables or predictors, in regression). The stimulus
categories are used as labels to classify (dependent variables, in regression). A
classifier, such as a Support Vector Machine or a logistic regression classifier, are
trained to predict the labels from the features in the training set and tested on the
labels in the test set. Performance can then be quantified with any accuracy metric
such as classification accuracy, precision, recall, etc.. To make use of all the data
available, cross-validation is most often used, where the data is partitioned into
a number of folds, with each fold taking turns being included in the training and
testing sets. Since training and testing sets should be independent, the fMRI run is
most commonly used as the partition with leave-one-run-out cross-validation.

Representational Similarity Analysis (RSA)
Decoding approaches come with some disadvantages. Sophisticated classifiers
can pick up on any type of information encoded in neural patterns that is related
to the categories of experimental interest. Therefore, classifier performance may
be high in regions that represent confounding variables that are correlated to the
categories of interest, and thus MVPA can provide an incomplete or even misleading
picture about what variables are represented in a region. Representational similarity
analysis methods offer a more data-driven approach by empirically examining the
geometry of neural patterns (Kriegeskorte, Mur, and Bandettini, 2008). This is done
with representational dissimilarity matrices (also called RDMs or DSMs), which
convert neural responses in each trial or condition to a response vector and compare
response vectors between trials or conditions in this multidimensional vector space
with a distance metric (like Euclidean or correlation distance). These pairwise
comparisons then afford the researcher the ability to probe how similar or dissimilar
neural responses are in a region between conditions. The neural DSMs can then
be compared to model DSMs that represent how similar stimulus features or other
variables are across trials, such as stimulus category, stimulus value, or variables of
no interest like reaction time or fMRI run. This allows the empirical neural DSMs
to be compared to multiple model DSMs without the bias of classifying one feature
at a time.

In a seminal paper, monkeys and humans viewed images of real-world objects
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and responses in the inferior temporal cortex (IT) were measured (Kriegeskorte,
Mur, Ruff, et al., 2008). With RSA, it was found that IT clusters categories of
images similarly across species, with the largest dissimilarity between animate and
inanimate objects. Within the animate category, faces are bodies were represented in
another cluster with higher similarity within category than between category. RSA
also allows comparison of the representational geometry across different data types
and models with varying numbers of dimensions. As previously stated, comparisons
can be made across species, imaging modalities (such as EEG, MEG, fMRI), and
between biological neural networks and artificial neural networks as we show in
Chapter 4.
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C h a p t e r 2

ELUCIDATING THE UNDERLYING COMPONENTS OF FOOD
VALUATION IN THE HUMAN ORBITOFRONTAL CORTEX

Abstract
The valuation of food is a fundamental component of our decision-making. Yet
little is known about how value signals for food and other rewards are constructed
by the brain. Using a food-based decision task in human participants, we found that
subjective values can be predicted from beliefs about constituent nutritive attributes
of food: protein, fat, carbohydrates, and vitamin content. Multivariate analyses of
functional MRI data demonstrated that, while food value is represented in patterns of
neural activity in both medial and lateral parts of the orbitofrontal cortex (OFC), only
the lateral OFC represents the elemental nutritive attributes. Effective connectivity
analyses further indicate that information about the nutritive attributes represented
in the lateral OFC is integrated within the medial OFC to compute an overall value.
These findings provide a mechanistic account for the construction of food value
from its constituent nutrients.
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Introduction
There is accumulating evidence, from an array of studies using diverse methods in
multiple species, of a key role for the OFC and adjacent medial prefrontal cortex
(PFC) in representing the expected value or utility of options at the time of decision-
making (Clithero and Rangel, 2014; Padoa-Schioppa and Assad, 2006; Rich and
Wallis, 2016; Rudebeck and Murray, 2014; Grabenhorst and Rolls, 2011). It
has been suggested that such value signals can serve as inputs into the decision
process, thereby enabling individuals to choose actions yielding outcomes that
maximize expected gains (Clithero and Rangel, 2014; Padoa-Schioppa and Assad,
2006). Value signals have been found in this region in response to cues or actions
associated with many different types of potential outcomes, including food rewards,
monetary rewards, consumer goods, and even more abstract goals such as pursuing
imaginary leisure activities (Clithero and Rangel, 2014; McNamee, Rangel, and
John P O’Doherty, 2013; Chikazoe et al., 2014; Howard, Gottfried, et al., 2015;
Lebreton et al., 2009; Small et al., 2003; Kable and Glimcher, 2007; Stalnaker
et al., 2014; Gross et al., 2014; Chib et al., 2009; Levy and Glimcher, 2011; Suzuki,
Harasawa, et al., 2012; Suzuki, Adachi, et al., 2015). However, while value signals
in OFC have been well characterized, much less is known about how it is that value
signals are constructed in the first place.

In the present study, we focus on valuation for food rewards. The valuation of
food is a fundamental component of the decision-making process that all humans
complete on a daily basis. A dysfunctional food valuation process may result in
the development of obesity and eating disorders (Foerde et al., 2015; Carnell et al.,
2012). Recent human neuroimaging studies have begun to elaborate functional
contributions of OFC in food value computations. Medial OFC encodes value
signals independent of the identity of food rewards (Howard, Gottfried, et al., 2015),
irrespective of whether the value information is acquired through direct experience
or through imagining the consequences of a new experience (Barron, Raymond J.
Dolan, and Behrens, 2013). On the other hand, lateral OFC encodes value in an
identity-specific manner (Howard, Gottfried, et al., 2015; Klein-Flügge et al., 2013).
However, the constituent attributes that underlie the construction of food value and
how these constituent attributes are represented and integrated in the OFC remain
elusive.



17

We hypothesized that the value of a food reward is at least in part computed by taking
into account beliefs about the properties of the constituent nutritive attributes of a
food item. We focused on beliefs about the amount of protein, carbohydrates, and
fat, and we also included beliefs about the specifically sweet carbohydrates (sugar),
sodium, and vitamin content contained in a food item. We further hypothesized that
the OFC would play a role in representing these elemental attributes, which could
thereby constitute precursor representations used to generate an integrated value
signal.

In the human brain, value signals for food rewards have been reported throughout
the orbital surface, most prominently in the medial OFC (Clithero and Rangel,
2014; Grabenhorst and Rolls, 2011; McNamee, Rangel, and John P O’Doherty,
2013; Chib et al., 2009; Levy and Glimcher, 2011). However, sensory inputs from
the visual, auditory, gustatory, olfactory and somatosensory systems arrive into the
OFC primarily in the lateral portions of the orbital surface (Öngür and Price, 2000).
Thus, we hypothesized that more lateral parts of the OFC would be especially
involved in encoding elemental attributes about a food outcome, in contrast to the
medial OFC, which we hypothesized would be especially involved in encoding an
overall subjective goal-value signal for the foods, as found in many previous reports
(Clithero and Rangel, 2014; McNamee, Rangel, and John P O’Doherty, 2013; Gross
et al., 2014).

Results
Experimental task and behavior
To test these hypotheses, we scanned 23 human participants using functional MRI
(fMRI) while they reported their ‘willingness to pay’ (WTP; i.e., subjective value)
for 56 food items (WTP task; Fig. 2.1a) (McNamee, Rangel, and John P O’Doherty,
2013). After the MRI scan, the participants provided subjective ratings about the
constituent nutrient attributes for the same set of items. Specifically, we asked
participants to rate the quantities of fat, sodium, carbohydrates, sugar, protein, and
vitamins contained in the foods, as well as to provide an estimate of the overall
caloric content (Tang, Fellows, and Dagher, 2014) (attribute-rating task; Fig. 2.1b).
In this task, subjective ratings about the nutrient factors were found to be significantly
correlated with the objective factors (P<0.01 for all factors; Fig. 2.1c). Moreover,
while performing the WTP task in the scanner, the participants were not aware that
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they would be subsequently required to rate the nutrient attributes of the items, and
thus they were not biased by experimenter-demand effects to artificially reflect on
information about nutrient attributes during the food valuation phase.

We first conducted behavioral analyses to test our hypothesis that participants’ ratings
of the elemental nutritive attributes of a food would predict the subjective valuation
of the food items. As some nutritive attribute ratings were tightly coupled with others
(Supplementary Fig. 1), including all the attributes in the predictive model did not
necessarily provide the best prediction of value. To specify which combinations
of subjective nutrient factors provided the best prediction about subjective value,
we performed a series of linear regression analyses (Methods). In the regression
analyses, performance of the prediction was assessed by leave-one-item-out cross-
validation. Comparing every possible combination of the six nutrient factors (i.e.,
26 = 64 models), we found that subjective value was best predicted by a model
including the following four subjective nutrient factors: fat, carbohydrates, protein,
and vitamin (Supplementary Table 1). Consistent with this result, among the best
10 models, protein, and vitamin appeared in all 10 models; fat and carbohydrate
appeared in 8 and 6 models, respectively; and sodium and sugar were present only
in 5 and 4 models, respectively (Supplementary Table 1).

Here we note that sugar content did not make a significant contribution to the food
valuation, despite previous findings showing a role for sugar content in food intake
behaviors (Zuker, 2015; De Araujo et al., 2008; Tellez et al., 2016). Given that
sugar is a subcomponent of carbohydrates and that subjective ratings about the
two factors were indeed highly correlated (Supplementary Fig. 2.1b), a reasonable
interpretation of this result is that the effects of sugar content are subsumed under the
more general carbohydrate category. This interpretation was further supported by
an additional analysis demonstrating that including sugar instead of carbohydrate to
the regression model significantly reduced the accuracy of the model for predicting
subjective value (P<0.05).

The prediction performance of the best fitting model was better than chance-level
(at P<0.01; Fig. 2.1d). Even when implementing Bonferroni corrections for every
possible combination of variables we ran (n=64), the prediction performance of
the best fitting model was nevertheless still significant at P<0.01. In addition to
testing for the role of subjective beliefs about the nutritive content of the foods,
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we also extracted objective information about the nutritive content of the foods and
used that information in a regression analysis similar to that performed using the
subjective ratings. We found that the best fitting model with subjective nutrient
factors outperformed the best fitting model with objective factors ( Fig. 2.1d).
Furthermore, the regression model that included subjective beliefs about all four
nutritive factors also performed better than subjective or objective estimates of
overall caloric content ( Fig. 2.1d).

We further validated these results by using logistic regression analyses with cate-
gorical binary predicted variables (constructed by splitting subjective value into low
and high categories based on a median split). That is, the model providing the best
prediction in the original linear regression analyses outperformed the other models
also in the logistic regression analyses ( Fig. 2.1e and Supplementary Table 1).
Collectively, these behavioral analyses support the notion that food value is com-
puted through integrating information about the subjective beliefs about the nutrient
factors of fat, carbohydrates, protein, and vitamin content.

Representation of subjective value in the OFC
Having established that the subjective value of food items can be predicted in part
from subjective beliefs about nutritive content, we set out to replicate previous
findings of a role for OFC in encoding the subjective value of the food items,
using multivoxel pattern analyses (MVPA) (Haynes, 2015) with leave-one-run-out
cross-validation. In this analysis, a linear classifier was trained on patterns of fMRI
response to categorize food items as being either high or low in subjective value
based on each participant’s ratings (Methods).

Consistent with our hypothesis, value representations could be decoded from medial
parts of the OFC at the time of valuation. In addition, subjective value codes were
also found in parts of lateral OFC, consistent with other previous reports (Chikazoe
et al., 2014; Howard, Gottfried, et al., 2015). Specifically, subjective value could be
decoded above chance from patterns of fMRI response within anatomically defined
medial as well as lateral OFC regions of interest (ROIs; P<0.01 for both ROIs, t
test and permutation test; Fig. 2.2a; and see Supplementary Fig. 2a for information
about the ROIs). Value information could also be decoded both at the time of
bidding and at the time of feedback (Supplementary Fig. 2b). A searchlight analysis
(Haynes, 2015) also identified significant codes of subjective value in both medial
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and lateral OFC (P<0.05, family-wise error rate small-volume corrected (FWE
SVC); Fig. 2.2b). Furthermore, we found that for each classifier, the classification
weights of the voxels were broadly distributed across the range of negative to positive
values (Supplementary Fig. 2c,d), suggesting that the subjective value codes in the
OFC are multivariate in nature.

Representation of nutrient factors in the OFC
We then tested whether, while evaluating a food item for decision-making (i.e.,
during the WTP task), the OFC represented information about the four subjective
nutrient factors identified as predictors of the value. To this end, we applied the same
MVPA procedure used for value coding (see above) to each of the four subjective
nutrient factor ratings. Consistent with our initial hypothesis, information about the
subjective nutrient factors could be significantly decoded at the time of valuation in
the lateral OFC ROI (P<0.05, conjunction test against the conjunction null (Nichols
et al., 2005) based on t and permutation tests; Fig. 2.3a; see Methods for detailed
information about the conjunction test; classification scores are plotted as functions
of subjective nutrient factors in Supplementary Fig. 3) but not in the medial OFC
ROI (P>0.05, conjunction test; Fig. 2.3b). On the other hand, at the time of bidding
or feedback, we found no significant decoding of the subjective nutrient factors
either in lateral or medial OFC (P>0.05, conjunction test; Supplementary Fig. 4a,b),
suggesting that the lateral OFC represents information about the nutrient factors only
at the timing of valuation. Searchlight analyses confirmed encoding of information
for each of the subjective nutrient factors at the time of valuation in various loci within
the lateral OFC ( Fig. 2.3c), with clusters encoding fat, protein, and carbohydrate
content all significant at P<0.05 under voxel-level multiple-comparison correction
within the anatomically defined lateral OFC ROI (i.e., FWE SVC), while the cluster
encoding vitamin content bordered on significance (P=0.080 FWE SVC; Fig. 2.3c).
Moreover, the distributions of the classification weights across the voxels were
not highly biased toward negative or positive values (Supplementary Fig. 4c,d),
consistent with the notion that the representations of subjective nutrient factors are
multivariate. In sum, these results suggest that, during food valuation, information
about subjective nutrient factors is encoded in the lateral OFC but not in the medial
OFC.

We also examined whether linear classifiers can decode the subjective nutrient
factors of novel food items. Given that, in our experiment, half of the items were
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presented in run 1 and 3 while the other half were presented in runs 2 and 4, we
trained the classifiers on the data from runs 1 and 3 and tested them on runs 2
and 4 (and vice versa; accuracy scores were averaged; c.f. the leave-one-run-out
cross-validation used in the above main analyses). The analysis revealed that, in
the lateral OFC, decoding accuracies were significantly greater than chance for fat,
carbohydrates and vitamins (P<0.05; Supplementary Fig. 4e), while the accuracy
for protein was at the trend level (P<0.10; Supplementary Fig. 4e).

Here we note that the differential decoding performance between the lateral and
medial OFC cannot be attributed to any differences in the number of voxels contained
in the ROIs (although the lateral and the medial OFC ROIs contained 2,325 and
533 voxels, respectively). To demonstrate this, we randomly resampled the same
number of adjacent voxels from the lateral OFC as found in the medial OFC ROI
(i.e., forming a continuous cluster consisting of 553 voxels), and we then tested
whether information about the subjective nutrient factors could still be decoded
within this reduced ROI (Supplementary Fig. 4f). The analysis demonstrated that,
even with the smaller number of voxels, we could still decode information about
the subjective nutrient factors from patterns of fMRI activity in the lateral OFC
(P<0.05, conjunction test; Supplementary Fig. 4f).

Furthermore, we examined whether distinct patterns of voxel activity in the lateral
OFC represent each of the four subjective nutrient factors. Since the classification
weights of each voxel were correlated across some combinations of the nutrient
factors (Supplementary Fig. 4g), the alternative possibility would be that the same
patterns of voxel activity represent two or more nutrient factors. To exclude the
alternative possibility, we performed a cross-decoding MVPA procedure across the
nutrient factors. In this analysis, for each pair of the four nutrient factors, we
trained a classifier on one factor and tested it on the other factor (and the reverse;
decoding accuracy was assessed by the average across both directions). Here we
reasoned that if the subjective nutrient factors were coded in different patterns, the
cross-decoding analysis would not provide any significant results. The analysis
indeed revealed that the cross-category decoding accuracy was not significantly
different from chance (P>0.05; Supplementary Fig. 4h), except for only one pair:
fat and vitamins. In the fat–vitamins pair, decoding accuracy was significantly
below chance (P<0.01; Supplementary Fig. 4h). There are at least two possible
interpretations for the negative accuracy. One is that, in the lateral OFC, a highly
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similar pattern of fMRI response codes for fat and vitamins in the opposite directions
of a multivariate decision boundary. The other possibility is that distinct patterns
code for the two factors, but these are not dissociable in our dataset, given the highly
negative correlation between subjective fat and vitamins in the behavioral ratings
(r=–0.44±0.15, mean±s.d. across participants; Supplementary Fig. 1b) and the
neural classifiers’ weights (r=–0.41±0.18, mean±s.d.; Supplementary Fig. 4g). To
tease apart these two possibilities, we conducted the following additional analysis:
(i) 42 food items were randomly resampled from the original set of 56 items to ensure
that the fat and vitamins were less correlated (mean r > –0.3); (ii) MVPA was then
performed on the resampled data; and (iii) the above procedure was repeated ten
times (accuracies were averaged). On the resampled data, we found that, consistent
with results from the original dataset (Fig. 2.3a), a classifier trained on fat (or
vitamins) could decode information about fat (or vitamins; P<0.05; Supplementary
Fig. 4i). On the other hand, in the cross-decoding (i.e., a classifier was trained on fat
and tested on vitamins, and vice versa), the accuracy was not significantly different
from chance (P>0.05; Supplementary Fig. 4i). These findings together suggest that,
in the lateral OFC, different patterns of voxel activity represent information about
different subjective nutrient factors.

While we have so far focused on the four subjective nutrient factors identified as
value predictors in our behavioral analyses, we also nevertheless tested for evidence
of representations of the other factors we included in our experiment (but which
were found to not be significantly associated with value): subjective sodium and
sugar content. Information about subjective sugar content could be significantly
decoded in the lateral OFC (P<0.01; Supplementary Fig. 4j) but not in the medial
OFC (P=0.100; Supplementary Fig. 4k). On the other hand, neither the lateral
nor the medial OFC showed significant decoding of sodium content (P=0.474 and
P=0.557, respectively; Supplementary Fig. 4j,k).

We also investigated the extent to which objective (as opposed to subjective) nu-
trient content could be decoded from the OFC by training the MVPA classifiers
on labels extracted from the objective nutrient content as opposed to the subjective
content. This analysis identified a weaker overall effect of objective nutrient factors
in the lateral and medial OFC (i.e., no significant conjunction effect at P>0.05;
Supplementary Fig. 4l), although a subset of the individual objective factors could
be significantly decoded in the lateral OFC. These results suggest that subjective
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nutrient factors are more robustly represented in the OFC than objective factors.

Representation of the relative content of the subjective nutrient factors in the
OFC
To further explore how nutritive information is represented in the OFC, we im-
plemented a representational similarity analysis (RSA) (Kriegeskorte and Kievit,
2013) to examine the extent to which the pattern of subjective ratings of the nutritive
factors was related to encoding of these factors in the orbitofrontal cortex. In the
RSA, we compared the voxel-wise similarity structure obtained from the fMRI data
with the similarity structure of the subjective nutritive components for each item
(Supplementary Fig. 5 and Methods). In this analysis, the voxel-wise similarity is
defined as the correlation across voxel activity for each pair of items (Supplementary
Fig. 5a), while the nutritive similarity is defined as the correlation in bundles of the
four subjective nutrient factors (fat, carbohydrates, protein, and vitamins) for each
item pair (Supplementary Fig. 5b). In other words, because correlation distance is
employed to measure similarity, the nutritive similarity between two items is defined
in terms of the relative content of the nutrient factors. The RSA revealed that the
similarity of fMRI responses significantly reflected the similarity of the relative
content of the nutrient factors in the lateral OFC ROI (P<0.01; Supplementary Fig.
2.5c) but not in the medial OFC. We also conducted a searchlight RSA and found
a significant association between the voxel-wise fMRI and the subjective nutritive
similarity across diffuse regions of the lateral OFC (P<0.05 FWE SVC; Supplemen-
tary Fig. 5d). These results suggest that there is a representation in lateral OFC of
the relative content of each nutritive attribute.

Representation of low-level visual features in the OFC
Here we aimed to rule out the possibility that the lateral OFC contains information
about low-level visual features such as luminance and contrast, which could poten-
tially be detected by the classifier if there were inadvertent correlations between
such low-level sensory features and value and/or subjective nutrient factors. For
this purpose, we extracted eight low-level visual features (luminance, contrast, red
intensity, green intensity, blue intensity, hue, saturation and brightness) from the
food images presented to participants, and then examined whether the visual features
could be decoded in the OFC. Moreover, as a positive control, we also tested for
the primary visual cortex (V1, Brodmann area 17). These analyses showed that nei-
ther the lateral nor the medial OFC contains significant information about low-level
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visual features (P>0.05 for all features; Fig. 2.4a), while, as would be expected,
primary visual cortex did indeed contain significant information about low-level
visual features (P<0.05, conjunction test; Fig. 2.4b). These results suggest that the
lateral OFC encodes information about value and subjective nutrient factors but not
low-level visual information about the food images.

Effective connectivity between OFC subregions at the time of valuation
By leveraging MVPA on fMRI data, we were able to demonstrate that during food
valuation, lateral OFC contains information about the elemental nutritive attributes
of food. However, to compute an overall subjective value, the individual nutritive
representations need to be integrated. We hypothesized that this integration of the
individual nutritive representations would occur in regions found to encode subjec-
tive value in either the medial or lateral subregions of OFC. To test which of the
value-encoding OFC subregions is primarily involved in the integration process,
we performed an effective connectivity analysis: a psychophysiological interaction.
The connectivity analysis is based on the reasoning that if a region is implicated
in the integration process, the region must (i) contain information about the overall
subjective value and (ii) have enhanced effective connectivity at the time of valuation
with regions encoding each of the constitutive nutritive attributes of a food. The
psychophysiological interaction analysis tested whether the value-related OFC sub-
regions, identified in the searchlight MVPA (Fig. 2.2b), had increased task-related
connectivity at the time of valuation with the lateral OFC subregions encoding each
of the four subjective nutrient attributes (Fig. 2.3c). We found evidence for a
significant increase in effective connectivity at the time of valuation between the
value-related medial OFC subregion and the lateral OFC subregions representing
the nutrient attributes (P<0.05, conjunction test; Fig. 2.5a). This result was further
validated by a nonparametric bootstrap test (Efron and Tibshirani, 1994) (P<0.05;
Methods), which is known to be relatively robust against potential outliers. On
the other hand, we found no significant increase in the effective connectivity at the
time of bidding or feedback (P>0.05, conjunction test; Supplementary Fig. 6a,b),
although a subset of the individual attributes did show a connectivity effect. Also,
we did not find robust evidence for a significant integration of nutrient attribute sig-
nals in the value-related lateral OFC region (P>0.05, conjunction test; Fig. 2.5b).
These results indicate that the medial OFC satisfies both of the above two criteria
for a brain region implicated in information integration, consistent with the notion
that representations about elemental nutritive attributes of food in the lateral OFC
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are primarily integrated at the time of valuation in the medial OFC to compute
subjective values.

Representation of value and nutrient factors in other brain regions
Previous studies demonstrated that value or reward signals are ubiquitously encoded
not only in the OFC but also in other cortical regions, as well as in the amygdala
(Vickery, Chun, and Lee, 2011; Kahnt, Park, et al., 2014; Gottfried, O’Doherty,
and Dolan, 2003). As post hoc investigations beyond our original hypotheses, we
tested for encoding of value and subjective nutrient factors in the following six ROIs:
dorsomedial PFC (including anterior cingulate cortex), dorsolateral PFC, ventrolat-
eral PFC, posterior parietal cortex (PPC), insula and amygdala (see Supplementary
Fig. 7a for information about the ROIs). Consistent with previous findings, all
these ROIs were found to significantly encode information about subjective value
(P<0.05 for all; Supplementary Fig. 7b). On the other hand, information about the
four subjective nutrient factors identified as value predictors could be significantly
decoded only in the PPC (P<0.05, conjunction test; Supplementary Fig. 7c), while
ventrolateral PFC and dorsolateral PFC represented only one and two factors, re-
spectively (Supplementary Fig. 7c). However, when we applied a correction for
multiple comparisons across these post hoc ROIs, the PPC ceased to be significant
(P>0.05, conjunction test with Bonferroni correction). We also implemented a
whole-brain searchlight analysis, which revealed that V1 also contained information
about the four subjective nutrient factors (P<0.05 cluster-level FWE correction with
the cluster-forming threshold P=0.001, conjunction test; Supplementary Fig. 8).
These results are consistent with the possibility that not only lateral OFC but also
V1 and potentially PPC represent information about the nutrient factors.

To further characterize the functional roles of the three regions, we performed the
following additional analyses. First, we assessed whether those regions contain in-
formation about low-level visual features of the food images. The analyses revealed
that information about low-level visual features could be decoded from both PPC
and V1 (P<0.01; Supplementary Fig. 7d), consistent with the previous findings
that PPC and V1 are major parts of a visual pathway (Mishkin, Ungerleider, and
Macko, 1983) (i.e., the ‘dorsal stream’). However, we note that this is not the case in
the lateral OFC, where basic visual features were not represented (Supplementary
Fig. 7d; see also Fig. 2.4a). Second, we compared the decoding accuracies of
the low-level visual features with those of the subjective nutrient factors. Accuracy



26

for the visual features was found to be significantly higher only in V1 (P<0.01;
Supplementary Fig. 7d), while we found the opposite pattern in PPC and the lateral
OFC (P<0.05; Supplementary Fig. 7d). These results together may suggest a func-
tional gradient from V1 to PPC and lateral OFC: V1 predominantly represents the
visual information, lateral OFC predominantly represent the nutritive information,
and PPC is the intermediate locus. However, because the PPC result did not survive
correction for multiple comparisons across ROIs, this result should be treated with
caution until it can be independently replicated.

Discussion
This study elucidates the constituent nutritive attributes underlying valuation of food
rewards. Behaviorally, we demonstrated that the subjective value of a food was best
predicted by beliefs about the content of fat, carbohydrates, protein, and vitamins.
This result suggests that food value is computed at least in part through integrating
information about elemental nutritive attributes.

We then uncovered how information about the constituent attributes is represented
and integrated in the brain. MVPA of fMRI data revealed that, while both lateral
and medial parts of the OFC represented value signals, only lateral OFC represented
information about the subjective nutrient factors. Furthermore, we found evidence
for effective connectivity between the value-related medial OFC subregion and the
lateral OFC subregions representing each of the individual nutrient attributes. Re-
cent human neuroimaging studies have demonstrated that medial OFC and adjacent
regions of medial PFC encode value information independently of the category of
goods as a ‘common currency’ (McNamee, Rangel, and John P O’Doherty, 2013;
Howard, Gottfried, et al., 2015), while lateral OFC encodes value in an identity-
specific manner (Howard, Gottfried, et al., 2015; Klein-Flügge et al., 2013), and
that identity-specific value representations are modulated by selective devaluation
(Howard and Kahnt, 2017). Our findings go beyond these previous studies, in that
we elucidate which constituent attributes underlie the construction of food value and
how the constituent attributes are represented in the OFC.

There has been substantial debate in the literature about the distinct roles of the lateral
and medial OFC in value-based decision-making (Noonan et al., 2010). Based on
cytoarchitectonic structures and patterns of connectivity, neuroanatomical studies
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have identified a broad distinction between the medial part of the OFC, including
adjacent vmPFC and the lateral part of the OFC (Öngür and Price, 2000). It has also
been suggested that lateral OFC is involved in the initial assignment or representation
of value (Padoa-Schioppa and Assad, 2006; Noonan et al., 2010) while medial OFC
is more involved in a value comparison necessary for decision-making (Noonan
et al., 2010). The present study, together with these previous findings, could lead
to the conjecture that information about the elemental nutritive attributes of food is
first represented in the lateral OFC and then subsequently integrated in the medial
OFC to guide behavior. Our finding that the initial integration of food attributes
needed to compute subjective value occurs in the medial OFC, alongside a lack of
evidence that such integration occurs in the lateral OFC, raises the question of how
the subjective value signal located in the lateral OFC is generated. One possibility is
that this signal is a secondary representation elicited via reciprocal inputs from value
signals in the medial OFC. However, further work will be necessary to investigate the
nature of the local circuits within OFC in more detail in order to test this possibility.

In our experiment, participants were asked to report subjective values of food items
(WTP task), and then rate the quantities of six nutrient factors contained in the same
foods, as well as to provide an estimate of the overall caloric content (attribute-rating
task). Due to the experimental design, one might argue that ratings about nutrient
factors could be biased, in that the participants justified their subjective value ratings
a posteriori. We believe this was not the case in our experiment. It is unlikely that
participants were able to solve the complex multidimensional inverse problem: that
is, to remember and artificially manipulate their ratings about the six nutrient factors
to ensure consistency with the prior ratings of subjective value. Furthermore, an
easier way to ensure the consistency would be to manipulate ratings about overall
caloric content, but we found that the subjective caloric content was a poor predictor
of the subjective value. Taken together, we conclude that the participants were
unlikely to manipulate their ratings about nutrient factors to justify the subjective
value ratings post hoc.

It is important to note that, while we have shown here that the value of a food reward
can in part be predicted from beliefs about its subjective nutrient qualities, the
overall value of a stimulus such as food is unlikely to depend exclusively on beliefs
about nutritive composition. Instead, an individual’s history of past experience with
that food, including the amount of past exposure to the food and the past pairing of
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that food with other positive and negative experiences, are also likely to play critical
roles in determining overall value. Moreover, we have left open the possibility
that the overall value of a food is driven by some nonlinear combinations of the
constitutive nutritive attributes corresponding to hidden superordinate properties of
the food. It is also worth noting that the overall value of a food can be affected by
cultural factors (Rozin and Vollmecke, 1986). While we recruited participants from
the general population in the greater Los Angeles area (California, USA), people
living in other regions such as Asia and Africa might potentially have different
preferences for food. Yet while such overall preferences might vary based on culture,
and this might lead to differences in the weightings given to different nutritive
attributes in computing subjective value across cultures, there is no reason to expect
that the fundamental aspects of the neuronal organization of the computation of
food value from its elemental attribute representations would differ across cultures.
This notwithstanding, a fruitful research agenda will involve quantifying all of the
additional elemental and cultural factors that influence valuation, determining the
neural representation of those variables and establishing how those various signals
get integrated in order to compute an overall value.

To conclude, in this study, we provide substantial insights into how a value signal
for a food reward can be constructed from its constituent nutritive attributes in the
brain. Given that dysfunctional food-valuation processes may play a large role in the
development of obesity and anorexia (Foerde et al., 2015; Carnell et al., 2012), our
findings have implications for understanding neural and psychological mechanisms
underlying eating disorders, which is an important step toward the goal of developing
novel treatments for such disorders.

Methods
Participants
We recruited 24 healthy participants from the general population as part of the
recruitment pool for the NIMH Caltech Conte center for social decision-making.
Data from one participant were excluded due to technical problems with the fMRI
scan. We therefore used the data from the remaining 23 participants (8 females;
age 30.7±4.12 years, mean±s.d.; and BMI 23.51±4.00, mean±s.d.). All the par-
ticipants were preassessed to exclude those with any previous history of neurologi-
cal/psychiatric illness. We also confirmed that the participants were not on a diet or
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seeking to lose weight for any reason. They gave their informed written consent and
received monetary and food rewards depending on their performance in the WTP
task (see below) in addition to the participation fee of $50. No statistical methods
were used to predetermine the sample size, but our sample size was motivated by
those used in previous studies (McNamee, Rangel, and John P O’Doherty, 2013;
Chib et al., 2009). The study protocol was approved by the Institutional Review
Board of the California Institute of Technology.

Stimuli
In our experiment, we used 56 food items (for example, snacks, fruits, salads,
etc.; some were selected from the previous study (Hare, Malmaud, and Rangel,
2011); Supplementary Table 2). These items were highly familiar and available at
local stores. Indeed, during the attribute-rating task (see below), on average only
1.43±2.84 (mean±s.d.) food items of the 56 were rated as ‘not familiar at all’.
Information about the objective nutrient factors of the items was obtained from the
package label or from an online calorie counter.

All the items were presented to participants as high-resolution color images. In-
formation about the low-level visual features of the images (luminance, contrast,
red intensity, green intensity, blue intensity, hue, saturation and brightness) was
extracted using the Image Processing Toolbox included with Matlab. For each of
the images, red, green and blue intensities in each pixel were extracted using the
toolbox, and then luminance was computed as the weighted sum of the intensities
(0.2126 × 𝑟𝑒𝑑 + 0.7152 × 𝑔𝑟𝑒𝑒𝑛 + 0.0722 × 𝑏𝑙𝑢𝑒). We also computed hue, satura-
tion, and brightness in each pixel using Matlab’s rgb2hsv function. For each whole
image, each low-level visual feature was defined as the averaged values across all of
the pixels. Finally, the (local) contrast of each image was defined as the s.d. of the
pixel luminance values (Chikazoe et al., 2014).

Experimental Tasks
Participants performed the WTP task inside the MRI scanner, and then subsequently
performed the attribute-rating task outside the scanner. To enhance participants’
motivation for the foods, we asked them to refrain from eating or drinking any
liquids, besides water, for 3hr before the experiment. Compliance was confirmed
by self-reports, and the participants’ hunger rating was on average 4.13 0.92 (mean
± s.d.; scaled from 1, ‘not at all hungry,’ to 6, ‘very hungry’). Furthermore,
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participants were asked to stay at the laboratory for 30 min after the experiment,
during which time the only thing they were able to eat was the food obtained in the
experiment.

WTP task (inside the MRI scanner)

Following the procedure used in previous studies from our laboratory (McNamee,
Rangel, and John P O’Doherty, 2013; Chib et al., 2009), we employed a modified
version of the BDM auction task (Becker, DeGroot, and Marschak, 1964) to measure
participants’ willingness to pay (i.e., subjective value) for food items (Fig. 2.1a). In
each trial of this task, a participant was endowed with $3 and made a bid ($0, $1, $2
or $3) for one of the 56 items. At the end of the experiment, the computer randomly
selected one of the trials to be implemented. For the selected trial, a random counter-
bid was drawn from $0, $1, $2, $3 with equal probability. If the participant’s bid
was equal to or greater than the counter-bid, he or she paid the counter-bid and
received the food item. Otherwise, the participant kept the initial endowment $3
and received no food. The auction mechanism is incentive-compatible in the sense
that the optimal strategy for the participants is to always bid the number closest
to their true willingness to pay for obtaining that item (Becker, DeGroot, and
Marschak, 1964). Participants were explicitly instructed in the optimal strategy, and
using a questionnaire, we confirmed that they correctly understood the experimental
mechanism. Furthermore, to control for effects of retail price, we instructed the
participants that the amount of each food item was determined so that the retail
price is around $4.

This task consisted of four fMRI runs of the 56 trials. In each of the runs 1 and 3,
a randomly selected 28 of the 56 items were presented twice in random order (i.e.,
56 trials per run). The other 28 items were presented twice in each of the runs 2
and 4. In total, participants made a bid four times for each food item. We refer
to the averaged amount of bid (i.e., willingness to pay) over the four trials as the
‘subjective value’ of the item.

At the beginning of each trial, a participant was shown one food item (valuation
phase, 3s; Fig. 2.1a). In the next phase, the participant made a bid for that item by
pressing the key on a numeric keypad that corresponded to the bid dollar amount (bid
phase, within 2.5s). Here to dissociate the bid amount from the spatial information,
mappings between keys and bid amounts were randomized across trials. The bid the
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participant made was immediately presented (feedback phase, 0.5s), followed by a
jittered intertrial interval (ITI phase, 2–12s). During this task, participants failed to
make a response only in 1.55 ± 2.94% of trials (mean ± s.d.), and the missed trials
were modeled as a nuisance regressor in the fMRI analysis (see below).

Attribute-rating task (outside the MRI scanner)

Participants rated the subjective nutrient factors of the 56 food items (Fig. 2.1b).
Notably, the instructions for the attribute-rating task was given after completing the
WTP task, and thus the participants were not aware during the WTP task that they
would be subsequently required to rate nutrient factors of the items. This helped
us exclude an explanation for the behavioral and fMRI results in terms of somehow
biasing or artificially inducing participants to focus on such food attributes at the
time of valuation.

This task consisted of eight sessions. In each session, participants were asked to
answer one of the following eight questions for the 56 items about the six nutrient
factors as well as the overall calorie content and the familiarity:

(1) how high is the item in fat?

(2) how high is the item in carbohydrates?

(3) how high is the item in protein?

(4) how high is the item in vitamins?

(5) how high is the item in sugar?

(6) how high is the item in sodium (salt)?

(7) how high is the item in calories?

(8) how familiar is the item?
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The order of the eight questions was randomized across participants. Notably, in
this task the participants were asked to rate the ‘density’ of the nutrient factors in
each food item. In the instruction sheets, we explicitly told participants, “please
indicate your guess about the density of the nutrient, that is, the amount of the
nutrient contained per unit of weight (for example, 10 oz. of the item).”

On each trial, the participant answered a question for one item on a continuous scale
from ‘not at all’ to ‘very much’ by moving a red pointer, with no time constraint
(Fig. 2.1b). The initial position of the pointer was randomized on each trial, and the
pointer moved toward the right (or left) by pressing the key [1] (or [2]) on a numeric
keypad. The answer was finally registered by pressing the key [3].

Behavioral analyses
Regression analysis with subjective nutrient factors

To examine which combination of the six subjective nutrient factors provided the best
prediction of the subjective value, we ran the following linear regression analysis.
For each participant, we regressed the value of each item against the subjective
nutrient factors. Comparing all the possible 26 = 64 models including none,
some, or all of the six factors, we found that a combination of the four factors,
fat, carbohydrates, protein, and vitamins provided the best prediction performance
(Supplementary Table 1).

Here the prediction performance of each model (i.e., combination of the nutrient
factors) was assessed by a leave-one-item-out cross-validation. That is, for each
participant and each model, (i) we ran the regression analysis, leaving out one of
the 56 items; (ii) computed the predicted value of the left-out item on the basis
of the obtained regression coefficients; (iii) repeated the above procedure for each
of the 56 items; and (iv) computed the correlation between the predicted and the
actual values. The overall performance of the model was obtained by averaging the
correlation across participants.

As a robustness check, we also conducted a logistic regression with the categorical
predicted values (low and high subjective values split for each participant by the
median value). The procedure was the same as for the linear regression, except that
we used ‘accuracy’ as a measure of performance instead of the correlation between
the predicted and actual values. The analysis demonstrated that, consistent with
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the linear regression results, the combination of the four factors fat, carbohydrates,
protein, and vitamins provided the best prediction (Supplementary Table 1).

Regression analysis with objective nutrient factors

We ran the same linear and logistic regression analyses, using the objective nutrient
factors as explanatory variables (Fig. 2.1d,e).

Regression analysis with the overall calorie content

We also ran the same analyses using subjective or objective estimates of total calorie
content (Fig. 2.1d,e).

fMRI data acquisition
We collected the fMRI images using a 3 T Siemens (Erlangen) Trio scanner located at
the Caltech Brain Imaging Center (Pasadena, CA) with a 32-channel radio frequency
coil. The BOLD signal was measured using a one-shot T2*-weighted echo planar
imaging sequence (Volume TR = 2,780 ms, TE = 30 ms, FA = 80°). We acquired 44
oblique slices (thickness = 3.0 mm, gap = 0 mm, FOV = 192 × 192 mm, matrix = 64
× 64) per volume. The slices were aligned 30° to the AC–PC plane to reduce signal
dropout in the orbitofrontal area Deichmann et al., 2003. After the four functional
runs, high-resolution (1 mm3) anatomical images were acquired using a standard
MPRAGE pulse sequence (TR = 1,500 ms, TE = 2.63 ms, FA = 10°). The fMRI data
were analyzed using SPM8 in Matlab R2013b on a MacBook Pro (Retina, 15-inch,
mid-2015; Mac OS X 10.11.6). Data collection and analysis were not performed
blind to the conditions of the experiments.

fMRI data preprocessing
fMRI images for each participant were preprocessed using the standard procedure in
SPM8: after slice-timing correction, the images were realigned to the first volume to
correct for participants’ motion, spatially normalized and temporally filtered (using a
high-pass filter width of 128s). Spatial smoothing with an 8-mm FWHM Gaussian
kernel was applied to the fMRI images only for psychophysiological interaction
analysis (see below) but not for MVPA or representational similarity analysis (RSA).
For searchlight MVPA and RSA, smoothing was applied to the accuracy and the
correlation maps, respectively, but not to the fMRI images (see below).
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Multivoxel pattern analysis (MVPA)
To examine whether information about subjective value can be decoded from patterns
of fMRI response, we conducted a classification analysis, multivoxel pattern analysis
(see below). Also, the same procedure was applied to the classification analyses for
nutrient factors and low-level visual features.

Classification samples

We extracted voxel-wise fMRI responses to each food item as classification samples.
For each participant and each run, we designed a general linear model (GLM). The
GLM contained 28 regressors indicating the valuation phases (duration = 3s) of
the 28 different food items, as well as four regressors indicating the bid phases
(duration = reaction time), feedback phases (duration = 0.5s), timing of the key
press (duration = 0s) and missed trials (valuation phase, duration = 3s). All the
regressors were convolved with a canonical hemodynamic response function. In
addition, six motion-correction parameters and the linear trend were included as
regressors of no interest to account for motion-related artifacts. For each voxel, the
parameter estimates of the first 28 regressors corresponded to the fMRI responses
to each of the 28 food items in each run. The fMRI responses to each food item
were then entered into the classification analysis as classification samples.

Classification algorithm

We employed a linear support vector machine with a cost parameter C = 1 as a
classifier. We performed the classification analysis using The Decoding Toolbox
(TDT) (Hebart, Görgen, and Haynes, 2015). Classification accuracy was estimated
using a leave-one-run-out cross-validation: for each of the four runs, a classifier
was trained on the other three runs and tested on the remaining focal run; and the
procedure was repeated for the four runs (accuracy scores were averaged).

More specifically, to avoid label imbalance bias in each run (see the “Classification
label” section, above), we performed a bootstrap sampling procedure repeated 1,000
times (Hebart, Görgen, and Haynes, 2015). That is, we randomly removed some
samples (without replacement) to ensure that the number of samples in each label
was equalized for each run; the above classification analysis was then performed
on the balanced data; and the procedure was repeated 1,000 times resulting in an
average classification accuracy.
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ROI analysis

We anatomically defined regions of interest (ROIs), lateral OFC, medial OFC and
other areas based on the AAL database (Tzourio-Mazoyer et al., 2002). See Sup-
plementary Figures 2a and 7a for details. fMRI responses in each of the ROIs
were entered into the above classification analysis. We then examined, for each
ROI, whether the mean accuracy across participants was greater than 50% (chance,
given the binary label) using one-sampled t tests (one-tailed). A two-tailed test was
employed only for the cross-decoding analysis (see main text) to examine whether
the mean accuracy was greater or less than 50%. We also employed a permutation
test (permuting the classification labels within each participant 1,000 times; one-
tailed) to check whether the mean accuracy was significantly greater than chance.
See Allefeld, Görgon, & Haynes for advanced issues pertaining to population-level
inferences in MVPA studies.

Searchlight analysis

We also conducted a searchlight decoding analysis (Kriegeskorte, Goebel, and
Bandettini, 2006) with a radius of 3 voxels (i.e., 9 mm), as in our previous studies
(McNamee, Rangel, and John P O’Doherty, 2013; McNamee, Liljeholm, et al.,
2015), within the entire OFC ROI (i.e., summation of the lateral and medial OFC).
In this analysis, each participant’s accuracy map was spatially smoothed with an
8-mm FWHM Gaussian kernel and entered into the second-level analysis performed
by SPM8. The statistical significance was assessed by t test vs. 50% with a voxel-
level FWE small-volume correction within the lateral and medial anatomical OFC
ROIs. For the whole-brain analysis, we employed a cluster-level FWE correction
for multiple comparisons (cluster-forming threshold, P = 0.001).

Conjunction test

In the conjunction test (Nichols et al., 2005), if all of the individual factors are
significantly decoded (P < 0.05), we reject the null hypothesis that at least one of the
factors was not represented; such result thus supports the alternative hypothesis that
all of the factors were represented. In this study, we mainly employed conjunction
analyses using t tests, while for some key results we also performed conjunction
tests based on a permutation test (Fig. 2.3a).
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Additional analysis (regressing out the effects of value)

In this analysis, we regressed out the effect of value from both the ratings about
nutrient factors (i.e., classification labels) and the fMRI responses to each food item
(i.e., classification samples), and then tested whether each of the nutrient factors
could be still decoded. For the ratings data, in each participant we regressed values
of food items against the ratings about each of the nutrient factors and took the
residuals. We also regressed values against the fMRI responses to food items and
then obtained the residuals (note: this procedure was performed for each participant
and each run).

Representational similarity analysis (RSA)
To further examine the manner in which subjective nutritive information is rep-
resented in the OFC, we performed a representational similarity analysis (RSA)
(Kriegeskorte and Kievit, 2013; Kriegeskorte, Mur, and Bandettini, 2008).

Voxel-wise representational dissimilar matrix (RDM)

As in the case of MVPA (see the “Classification samples” section, above), we
extracted voxel-wise fMRI responses to each food item for each participant and
each run. Averaging the fMRI responses over the runs, we estimated each voxel’s
response to each item for each participant (Supplementary Fig. 5a). We then created
an RDM based on the correlation distance (i.e., 1 – Pearson’s correlation coefficient
across voxels) for each pair of the 56 items (Supplementary Fig. 5a).

Behavioral RDM

A behavioral RDM was created based on the correlation distance for each item
pair in bundles of the four subjective nutrient factors (fat, carbohydrates, protein,
and vitamins; and for each nutrient factor, rating values were z-normalized across
the items). Note that the correlation distance in bundles reflects the dissimilarity
between two items in terms of the relative contents of the four nutrient factors
(Supplementary Fig. 5b).

Comparison of voxel-wise and behavioral RDMs

We computed the Spearman’s rank correlation between upper triangular portions
of the voxel-wise and the behavioral RDMs. The Fisher z-transformed correlation
coefficient for each participant was then entered into the population-level inference.
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ROI analysis

For the lateral and medial OFC ROIs (Supplementary Fig. 2a), we performed the
above analysis and then examined whether the mean correlation coefficient was
greater than 0 using one-sampled t tests (one-tailed).

Searchlight analysis

We also conducted a searchlight analysis (Kriegeskorte, Goebel, and Bandettini,
2006) with a radius of 3 voxels (i.e., 9 mm), as in the MVPA, within the entire
OFC ROI (i.e., summation of the lateral and medial OFC ROIs). In this analysis,
each participant’s correlation map was spatially smoothed with an 8-mm FWHM
Gaussian kernel and entered into the second-level random-effect analysis performed
by SPM8. The statistical significance was assessed by performing a t test vs. 0 with
a voxel-level FWE small-volume correction within the lateral and medial anatomical
OFC ROIs.

Psychophysiological interaction (PPI) analysis
Following the standard procedure in SPM8, we performed a PPI analysis on the
spatially smoothed fMRI images, as follows.

Extraction of BOLD signals

We first constructed a GLM for the extraction of BOLD signals. The GLM contained
regressors indicating the valuation phase (duration = 3s), bid phase (duration =
reaction time), feedback phase (duration = 0.5s), timing of the key press (duration =
0s), missed trials (valuation phase, duration = 3s), six motion-correction parameters
and the linear trend, as well as parametric modulators of the valuation phase regressor
depicting the subjective value and the four subjective nutrient factors (z-normalized
across items). Based on the GLM, we extracted BOLD signals (eigenvariates
adjusted for the valuation phase) from the lateral and medial OFC ROIs identified
as encoding value information by the searchlight MVPA (Fig. 2.2b; spheres with a
radius of 3 voxels centered at the respective peak voxels).

PPI model specification and estimation

We then constructed another GLM for the PPI analysis including the following re-
gressors: (i) a physiological factor, the BOLD signal from lOFC; (ii) a physiological
factor, the BOLD signal from mOFC; (iii) a psychological factor, the boxcar regres-



38

sor indicating the valuation phase (duration = 3s; we call this regressor VAL); (iv)
a psychophysiological interaction (PPI) factor, an interaction of the deconvolved
lOFC BOLD signal and the psychological factor (VAL); and (v) a PPI factor, an
interaction of the deconvolved mOFC BOLD signal and the psychological factor
(VAL):

𝛽1lOFC + 𝛽2mOFC + 𝛽3VAL + 𝛽4OFCxVAL + 𝛽5mOFCxVAL + 𝜒𝛽 + 𝜖

where Y denotes a BOLD signal in the target ROI, 𝜒 is a set of the other regressors
(see below), 𝛽 values indicate regression coefficients, and 𝜖 represents the residual.
Note that in the PPI analysis, the mOFC BOLD signal, the lOFC BOLD signal and the
corresponding PPI factors were included in the same GLM. To control for nuisance
effects, we included four regressors indicating bid phases (duration = reaction time),
feedback phases (duration = 0.5s), timing of the key press (duration = 0s) and
missed trials (valuation phase, duration = 3s), as well as parametric modulators
of the valuation-phase regressor representing the subjective value and the four
subjective nutrient factors of the presented food item. All of the regressors except
for the physiological factors were convolved with a canonical HRF. In addition, six
motion-correction parameters were included as regressors of no interest to account
for motion-related artifacts. For each participant, regression coefficients of the PPI
factors were estimated at the lateral OFC ROIs identified in the searchlight MVPA
as representing each of the four subjective nutrient factors (Fig. 2.3c; spheres with
a radius of 3 voxels centered at the respective peak voxels).

Statistical test of the PPI effect

We then examined for each of the four ROIs to determine whether the mean re-
gression coefficient across participants was greater than 0 using one-sampled t tests
(one-tailed). To further support the examination, we also employed a bootstrap
test (Efron and Tibshirani, 1994), which is known to be relatively robust against
potential outliers. In the bootstrap test, we obtained 100,000 bootstrap datasets of
the same size as the original sample size by resampling from the original data with
replacement; then obtained the distribution of their mean values; finally we tested
whether the 5% quintile of the distribution was greater than 0.
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Overview of the statistical tests used in the present study
Parametric tests were used with the assumption of normality (the normality of the
data was not formally tested). This approach is typical in the analysis approaches
used for neuroimaging (McNamee, Rangel, and John P O’Doherty, 2013; McNamee,
Liljeholm, et al., 2015; Penny et al., 2011). It is worth noting that, for some key
results, we also conducted permutation tests and bootstrap tests, which do not
require normality assumptions about the data. We employed one-tailed tests unless
otherwise noted, as the tests examined whether the decoding accuracy is greater
than chance. A two-tailed test was employed for the cross-decoding analysis (see
the main text) to examine whether the mean accuracy was greater or less than
50%. In searchlight analyses, the statistical significance was assessed with a voxel-
level FWE small-volume correction for the ROI analyses and a cluster-level FWE
correction (cluster-forming threshold, P = 0.001) for the whole-brain analysis. A
Life Sciences Reporting Summary is available.

Data and code availability
The data and code that support the findings of this study are available from the
corresponding author upon reasonable request. The MRI data will also be posted
to the NDARS data repository at https://ndar.nih.gov/edit_collection.
html?id=2417afterpublication.
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Figure 2.1: Experimental task and behavior.
a. Timeline of one trial in the WTP task. On each trial, participants reported their
willingness to pay (i.e., subjective value) for one food item. Note that in the bid
phase, mappings between keys and dollar amounts were randomized across trials.
b. Timeline of one trial in the attribute-rating task. On each trial, participants
answered one question (for example, ‘How high is the item in fat?’) for one item on
a continuous scale from ‘not at all’ to ‘very much’ by moving a red pointer, with no
time constraint.
c. Correlations between the subjective and the objective nutrient factors (n = 23
participants). In each box and whisker plot, the central line denotes the median,
and the bottom and top edges of the box indicate the 25th and 75th percentiles
(q25 and q75, respectively). The ends of the whiskers represent the maximum and
minimum data points not considered outliers. Data points are considered outliers
(open circles) if they are greater than q75 + 1.5 × (q75 – q25) or less than q25 – 1.5 ×
(q75 – q25). **P < 0.01, t test (fat: t22 = 17.73, P < 0.001; sodium: t22 = 18.38, P <

0.001; carbohydrates (carb.): t22 = 7.71, P < 0.001; sugar: t22 = 26.34, P < 0.001;
protein: t22 = 18.64, P < 0.001; vitamins: t22 = 23.70, P < 0.001).
d. Prediction performance of the subjective value in each regression model (n = 23
participants). Performance was assessed by the cross-validated correlation between
the predicted and actual values. Box and whisker plots are as in c. **P < 0.01, t
test (subjective factors: t22 = 12.36, P < 0.001; objective factors: t22 = 8.34, P <

0.001; subjective calories: t22 = –0.26, P = 0.607; objective calories: t22 = –1.18, P
= 0.875).
e. Prediction performance of the subjective value in each logistic regression model
(n = 23 participants). Performance was assessed by cross-validated accuracy. Box
and whisker plots are as in c. **P < 0.01 and *P < 0.05, t test vs. 50% (subjective
factors: t22 = 13.61, P < 0.001; objective factors: t22 = 9.98, P < 0.001; subjective
calories: t22 = 2.05, P = 0.026; objective calories: t22 = 2.43, P = 0.012).
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Figure 2.2: Neural representation of subjective value.
a. Subjective value signals can be decoded in both lateral and medial OFC (lOFC
and mOFC, respectively). Decoding accuracy is plotted for the lOFC and the mOFC
ROIs (n = 23 participants). Left: box and whisker plots are as in Fig. 2.1c. **P
< 0.01, t test vs. 50% (lOFC: t22 = 4.75, P < 0.001; mOFC: t22 = 3.57, P <

0.001). Right: each point denotes the mean accuracy across participants. Gray
horizontal lines indicate the 95th percentiles of the null distributions obtained from
the permutation test procedure (lOFC: P < 0.001; mOFC: P < 0.001).
b. Subregions of the OFC encoding subjective value. The decoding accuracy map
obtained from the searchlight analysis is thresholded at P < 0.005 (uncorrected) for
display purposes (n = 23 participants). Peak voxels: Montreal Neurological Institute
coordinates (MNI): x, y, z = –36, 26, –11 and 12, 53, –8 (P < 0.05, small-volume
corrected).
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Figure 2.3: Neural representation of subjective nutrient factors.
a. Subjective nutrient factors can be significantly decoded from lOFC. Decoding
accuracies are plotted for the lOFC ROI (n = 23 participants). Significant encoding
was found for each of the nutrient factors, thereby indicating a significant conjunction
effect18 at P < 0.05. Left: box and whisker plots are as in Fig. 2.1c. *P < 0.05
and **P < 0.01 for each factor, t test vs. 50% (fat: t22 = 2.40, P = 0.013; carb.: t22
= 2.77, P = 0.006; protein: t22 = 2.31, P = 0.015; vitamins: t22 = 2.32, P = 0.015).
Right: as in Fig. 2.2a (right). Permutation test (fat: P = 0.004; carb.: P < 0.001;
protein: P = 0.013; vitamins: P = 0.001).
b. As in a but for mOFC. Subjective nutrient factors were not significantly decodable
above chance levels in mOFC (n = 23 participants). Left: t test vs. 50% (fat: t22
= 0.68, P = 0.250; carb.: t22 = –1.74, P = 0.952; protein: t22 = 0.75, P = 0.230;
vitamins: t22 = –0.02, P = 0.508). Right: permutation test (fat: P = 0.238; carb.: P
= 0.923; protein: P = 0.159; vitamins: P = 0.519).
c. Subregions of lOFC encoding each of the subjective nutrient factors (n = 23
participants). Decoding accuracy maps obtained from the searchlight analyses,
thresholded at P < 0.005 (uncorrected) for display purpose. Peak voxels: MNI
x, y, z = –21, 56, –8 for fat (P < 0.05, small-volume corrected); –15, 14, –17 for
carbohydrates (P < 0.05, small-volume corrected); 33, 38, –14 for protein (P < 0.05,
small-volume corrected); and 18, 17, –20 for vitamins (P = 0.080, small-volume
corrected).
d. Decoding of subjective nutrient factors in lOFC after regressing out the effect of
value (n = 23 participants). Box and whisker plots are as in a. + P < 0.10, *P < 0.05
and **P < 0.01 for each factor, t test vs. 50% (fat: t22 = 1.53, P < 0.070; carb.: t22
= 2.20, P < 0.020; protein: t22 = 4.06, P < 0.001; vitamins: t22 = 2.90, P = 0.004).
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Figure 2.4: Neural representation of low-level visual features.
a. Low-level visual features could not be significantly decoded from lOFC or mOFC
above chance levels. Decoding accuracies are plotted for lOFC and mOFC ROI (n
= 23 participants). Box and whisker plots are as in Fig. 2.1c. Left: t test vs. 50%
(luminance: t22 = 0.83, P = 0.208; contrast: t22 = 1.64, P = 0.058; red: t22 = 0.88, P
= 0.195; green: t22 = 1.64, P = 0.057; blue: t22 = 0.29, P = 0.387; hue: t22 = –1.30,
P = 0.896; saturation: t22 = 0.00, P = 0.520; brightness: t22 = –0.86, P = 0.800).
Right: t test vs. 50% (luminance: t22 = –0.26, P = 0.603; contrast: t22 = 0.22, P =
0.414; red: t22 = 0.81, P = 0.212; green: t22 = 0.87, P = 0.200; blue: t22 = –0.15, P
= 0.440; hue: t22 = –3.12, P = 0.998; saturation: t22 = 0.50, P = 0.313; brightness:
t22 = 1.05, P = 0.153).
b. Low-level visual features could be robustly decoded from V1 (n = 23 participants).
Box and whisker plots are as in Fig. 2.1c. *P < 0.05 and **P < 0.01 for each factor,
t test vs. 50% (luminance: t22 = 5.07, P < 0.001; contrast: t22 = 4.60, P < 0.001;
red: t22 = 6.30, P < 0.001; green: t22 = 5.03, P < 0.001; blue: t22 = 4.60, P < 0.001;
hue: t22 = 2.20, P = 0.019; saturation: t22 = 8.32, P < 0.001; brightness: t22 = 5.38,
P < 0.001).
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Figure 2.5: Effective connectivity between OFC subregions at the time of valu-
ation.
a. Results of an effective connectivity analysis between the value-encoding mOFC
subregion and the lOFC subregions encoding each of the four nutrient factors. A
significant connectivity effect was found for each of the nutrient factors, thereby
indicating a significant conjunction effect18 at P < 0.05. Effect sizes of the psy-
chophysiological interaction (PPI) regressors are plotted (n = 23 participants). Box
and whisker plots are as in Fig. 2.1c. **P < 0.01 and *P < 0.05 for each factor, t
test (fat: t22 = 1.74, P = 0.048; carb.: t22 = 2.85, P = 0.005; protein: t22 = 5.05, P <

0.001; vitamins: t22 = 3.25, P = 0.002).
b. Results of an effective connectivity analysis between the value-encoding lOFC
subregion and other lOFC subregions encoding each of the four nutrient factors.
Box and whisker plots are as in a; t test (fat: t22 = 0.62, P = 0.272; carb.: t22 = 1.78,
P = 0.045; protein: t22 = 1.12, P = 0.137; vitamins: t22 = 1.78, P = 0.045). While a
significant connectivity effect was found for two of the factors (carb. and vitamins),
the other two factors did not reach significance, and thus an overall significant con-
junction effect was not found in lateral OFC. A.u., arbitrary units.
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Figure 2.6: Supplementary Figure 1: Ratings of nutrient factors.
a. Subjective ratings about the 56 food items. For each item, we plot the partic-
ipants’ ratings about the six nutrient factors (cyan: fat; magenta: sodium; black:
carbohydrate; red: sugar; green: protein; and blue: vitamin). See Table S2 for
the item list. The rating data were z-normalized across the food items, within each
participant and each nutrient factor. (b) Pair-wise correlations among subjective
ratings of the nutrient factors (MEAN across participants; n = 23).
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Figure 2.7: Supplementary Figure 2: Supplementary results of the neural rep-
resentation of subjective value.
a. Anatomical OFC ROIs used in this study. The ROIs are defined
based on the AAL database as follows: lOFC, bilateral MNI_Frontal_Mid_Orb
+ MNI_Frontal_Inf_Orb + MNI_Frontal_Sup_Orb; and mOFC, bilateral
MNI_Frontal_Med_Orb. lOFC, lateral orbitofrontal cortex; and mOFC, medial
orbitofrontal cortex.
b. Evidence for significant decoding of subjective value at the Bid phase (left) and
at the Feedback phase (right) (n = 23 participants). The format is the same as in
Fig. 2.2a (left). **P < 0.01 and *P < 0.05, t-test against 50% (Bid phase, lOFC: t22
= 2.78, P = 0.005; mOFC: t22 = 1.96, P = 0.031; and Feedback phase, lOFC: t22 =
2.23, P = 0.018; mOFC: t22 = 3.40, P = 0.001).
c. Weights of voxels in the value classifiers obtained from the ROI analyses (see
Fig. 2.2a). We plot the weights of the voxels for each participant within the lOFC
(left) and the mOFC (right) ROIs separately. Format of the box and whisker plots is
the same as in Fig. 2.1c.
d. Weights of voxels in the value classifiers obtained from the searchlight analyses
(see Fig. 2.2b). We plot the weights of the voxels within a radius of 3 voxels (i.e.,
9 mm) around the peak voxels in lOFC (left) and mOFC (right). See Fig. 2.2b for
information about the peak voxels. Format of the box and whisker plots is the same
as in Fig. 2.1c.
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Figure 2.8: Supplementary Figure 3: Classification scores in the decoding
analysis for subjective nutrient factors. We plot the classification scores in the
lOFC ROI obtained by the classifier trained on fat, carb., protein, and vitamin
respectively, as functions of the subjective nutrititive ratings (MEAN±SEM across
participants; n = 23; see Fig. 2.3a). Note that ratings for each nutrient factors were
binned based on the rank order; that each classifier is trained to discriminate high vs.
low ratings (i.e., 1 & 2 vs. 3 & 4); and that the classification weights of each voxel
were estimated on a subset of the data and the classification scores were computed
on the other subset of the data (i.e., leave-one-run-out cross-validation; see Methods
for details). lOFC, lateral orbitofrontal cortex; and Carb., carbohydrade.
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Figure 2.9: Supplementary Figure 4: Supplementary results of the neural rep-
resentation of subjective nutrient factors.
a. Decoding accuracies of subjective nutrient factors at the time of bidding revealing
a lack of significant decoding at this time-point (n = 23 participants). The format is
the same as in Fig. 2.3a (left). Left. t-test against 50% (fat: t22 = 1.38, P = 0.091;
carb.: t22 = -2.47, P = 0.989; protein: t22 = 1.11, P = 0.139; and vitamin: t22 = 0.48,
P = 0.320). Right. t-test (fat: t22 = -0.42, P = 0.660; carb.: t22 = 0.14, P = 0.444;
protein: t22 = 1.26, P = 0.110; and vitamin: t22 = 0.42, P = 0.339). lOFC, lateral
orbitofrontal cortex; mOFC, medial orbitofrontal cortex; and Carb., carbohydrate.
b. Decoding accuracies of subjective nutrient factors at the time of feedback reveal-
ing little evidence for significant decoding at this time-point (n = 23 participants).
The format is the same as in Fig. 2.3a (left). Left. t-test against 50% (fat: t22 =
0.72, P = 0.239; carb.: t22 = -0.43, P = 0.664; protein: t22 = 1.38, P = 0.090; and
vitamin: t22 = 0.18, P = 0.431). Right. t-test (fat: t22 = 0.90, P = 0.190; carb.: t22 =
-0.80, P = 0.783; protein: t22 = 1.07, P = 0.149; and vitamin: t22 = 1.01, P = 0.162).
c. Weights of voxels in the classifiers for each of the subjective nutrient factors
obtained from the ROI analyses (see Fig. 2.3a). We plot the weights of the voxels
for each participant within the lOFC ROI. Format of the box and whisker plots is
the same as in Fig. 2.1c.
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d. Weights of voxels in the classifiers for each of the subjective nutrient factors
obtained from the search analyses (see Fig. 2.3c). We plot the weights of the voxels
within a radius of 3 voxels (i.e., 9 mm) around the peak voxels in lOFC. See Fig.
2.3c for information about the peak voxels. Format of the box and whisker plots is
the same as in Fig. 2.1c.
e. Decoding accuracies of the subjective nutrient factors for novel food items (n =
23 participants). The format is the same as in Fig. 2.3a (left). + P < 0.10, *P <

0.05 and **P < 0.01 for each factor, t-test against 50% (fat: t22 = 2.42, P = 0.012;
carb.: t22 = 1.90, P = 0.035; protein: t22 = 1.41, P = 0.087; and vitamin: t22 = 1.84,
P = 0.039).
f. Decoding accuracies of the subjective nutrient factors in the reduced lOFC ROIs
(n = 23 participants). In this analysis, (i) we randomly re-sampled adjacent 533
voxels from the lOFC ROI (i.e., forming a continuous cluster consisting of the 553
voxels); then (ii) we tested if information about the subjective nutrient factors could
be decoded from the re-sampled voxels; and (iii) the above procedure was repeated
100 times (the decoding accuracies were averaged). The format is the same as in
Fig. 2.3a (left). *P < 0.05 and **P < 0.01 for each factor, t-test against 50% (fat:
t22 = 2.45, P = 0.011; carb.: t22 = 1.81, P = 0.042; protein: t22 = 2.59, P = 0.008;
and vitamin: t22 = 2.46, P = 0.011).
g. Pair-wise correlations among the classifiers’ weights for the four nutrient factors
(MEAN across participants; n = 23). For each pair of the nutrient factors, we
obtained the correlation coefficient in the classification weights of the voxels within
the lOFC ROI.
h. Decoding accuracies in the cross-decoding analyses (n = 23 participants). Format
of the box and whisker plots is the same as in Fig. 2.1c. Two nutrient factors in
each parenthesis denote the pair used for the cross-decoding. **P < 0.01, two-tailed
t-test against 50% ([fat, carb.]: t22 = 1.59, P = 0.127; [fat, protein]: t22 = -0.35, P
= 0.729; [fat, vitamin]: t22 = -3.18, P = 0.004; [carb., protein]: t22 = -1.96, P =
0.062; [carb., vitamin]: t22 = -1.06, P = 0.299; and [protein, vitamin]: t22 = 0.84, P
= 0.408).
i. Decoding accuracies on the re-sampled food items (see the main text; n = 23
participants). Format of the box and whisker plots is the same as in Fig. 2.1c. Left,
accuracy of fat and vitamin (one classifier was trained and tested on fat; the other
classifier was on vitamin; and the accuracy scores were averaged). Right, accuracy
in the cross-decoding analysis between fat and vitamin. Two nutrient factors in
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the parenthesis denote the pair used for the cross-decoding. That is, we trained a
classifier on one factor and tested it on the other factor (and the reverse; and the
decoding accuracy was assessed by the average across both directions). *P < 0.05,
two-tailed t-test against 50% ([fat, fat] & [vitamin, vitamin]: t22 = 2.10, P = 0.048;
and [fat, vitamin]: t22 = -1.10, P = 0.282).
j. Significant decoding of sugar but not sodium content in lOFC (n = 23 participants).
The accuracies are plotted for the lOFC ROI. Format of the box and whisker plots
is the same as in Fig. 2.1c. **P < 0.01, t-test (Sodium: t22 = 0.06, P = 0.474; and
Sugar: t22 = 2.67, P = 0.007). (k) Neither sodium nor sugar content was significantly
decodable in mOFC (n = 23 participants). t-test against 50% (Sodium: t22 = -0.15,
P = 0.557; and Sugar: t22 = 1.34, P = 0.100). mOFC, medial orbitofrontal cortex.
Format of the box and whisker plots is the same as in Fig. 2.1c. (l) Decoding
accuracies of objective nutrient factors at the time of valuation, demonstrating
relatively weak effects of objective nutrient factors (n = 23 participants). The format
is the same as in Fig. 2.3a (left). Left. *P < 0.05, t-test against 50% (fat: t22 =
-0.33, P = 0.626; carb.: t22 = 1.58, P = 0.064; protein: t22 = 2.05, P = 0.026; and
vitamin: t22 = 2.26, P = 0.017). Right. t-test (fat: t22 = -3.10, P = 0.997; carb.: t22 =
0.29, P = 0.387; protein: t22 = 0.78, P = 0.222; and vitamin: t22 = 0.08, P = 0.469).
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Figure 2.10: Supplementary Figure 5: Procedure and results of the represen-
tational similarity analysis (RSA).
a. Procedure for construction of the voxel-wise Representational Dissimilarity Ma-
trix (RDM). The voxel-wise RDM is created based on the correlation across the
voxels’ activities for each pair of the items. See Methods for details. Corr., Pear-
son’s correlation coefficient.
b. Procedure for construction of the behavioral RDM. The behavioral RDM is
created based on the correlation in bundles of the four subjective nutrient factors for
each item pair. See Methods for details.
c. Results of the ROI analyses. Spearman’s rank correlation (z-transformed) be-
tween the voxel-wise neural and the behavioral RDMs is plotted for the lOFC and
the mOFC ROIs (n = 23). Format of the box and whisker plots is the same as in Fig.
2.1c. **P < 0.01, t-test (lOFC: t22 = 2.85, P = 0.005; and mOFC: t22 = 1.13, P =
0.135). lOFC, lateral orbitofrontal cortex; and mOFC, medial orbitofrontal cortex.
d. Results of the searchlight analysis. The RSA correlation map is thresholded at P
< 0.005 (uncorrected) for display purposes, generated by performing a t-test (n = 23
participants). Peak voxels, [MNI: x, y, z = 12, 23, -23] and [-21 38 -23] (P < 0.05
small-volume corrected) for right and left OFC, respectively. OFC, orbitofrontal
cortex.
e. Pattern of fMRI response to each of the 56 food items in a space of the pair-wise
correlation across voxels’ activities in the lOFC. We plot the voxel-wise neural RDM
averaged over the participants (top left, n = 23). To visualize the approximate geo-
metric structure, we also show the same data as a two-dimensional MDS plot (top
center) and a dendrogram plot obtained by an agglomerative hierarchical clustering
(bottom right). In the MDS plot, the digits depict the food items’ ID. See Table S2
for detailed information about the food items. MDS, multi dimensional scaling.
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Figure 2.11: Supplementary Figure 6: Effective connectivity between OFC
subregions at the time of bidding and the time of feedback.
a. Results of an effective connectivity analysis at the time of bidding. Effect sizes
of the PPI regressors are plotted (n = 23 participants). The format is the same as
in Fig. 2.5ab. **P < 0.01 for each factor. Left. t-test (fat: t22 = 1.37, P = 0.092;
carb.: t22 = 1.28, P = 0.108; protein: t22 = 3.20, P = 0.002; and vitamin: t22 = 1.40,
P = 0.088). Right. t-test (fat: t22 = 1.59, P = 0.063; carb.: t22 = 1.61, P = 0.060;
protein: t22 = 1.54, P = 0.068; and vitamin: t22 = 1.33, P = 0.099). lOFC, lateral
orbitofrontal cortex; mOFC, medial orbitofrontal cortex; Carb., carbohydrate; and
PPI, psychophysiological interaction.
b. Results of an effective connectivity analysis at the time of feedback. Effect sizes
of the PPI regressors are plotted (n = 23 participants). The format is the same as in
Fig. 2.5ab. **P < 0.01 for each factor. Left. t-test (fat: t22 = 1.30, P = 0.104; carb.:
t22 = 1.67, P = 0.055; protein: t22 = 1.22, P = 0.118; and vitamin: t22 = 1.02, P =
0.159). Right. t-test (fat: t22 = 1.64, P = 0.058; carb.: t22 = 1.32, P = 0.100; protein:
t22 = 2.80, P = 0.005; and vitamin: t22 = 1.01, P = 0.161).
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Figure 2.12: Supplementary Figure 7: Decoding of subjective value and nutrient
factors in other brain regions.
a. Anatomical ROIs used in the additional post hoc analyses. The ROIs are defined
based on the AAL database42 as follows: dmPFC, bilateral MNI_ Frontal_ Sup_
Medial + MNI_ Cingulum_ Ant; dlPFC, bilateral MNI_ Frontal_ Mid + MNI_
Frontal_ Sup; vlPFC, bilateral MNI_ Frontal_ Inf_ Oper + MNI_ Frontal_ Inf_ Tri;
PPC, bilateral MNI_ Parietal_ Inf + MNI_ Parietal_ Sup; Insula, bilateral MNI_
Insula; and Amygdala, bilateral MNI_ Amygdala. dmPFC, dorsomedial prefrontal
cortex; dlPFC, dorsolateral prefrontal cortex; vlPFC, ventrolateral prefrontal cortex;
and PPC, posterior parietal cortex.
b. Decoding accuracies of subjective value across the ROIs (n = 23 participants).
The format is the same as in Fig. 2.2a (left). **P < 0.01 for each region, t-test
against 50% (dmPFC: t22 = 4.55, P < 0.001; dlPFC: t22 = 7.30, P < 0.001; vlPFC:
t22 = 4.39, P < 0.001; PPC: t22 = 6.52, P < 0.001; Insula: t22 = 3.48, P = 0.001; and
Amygdala: t22 = 2.92, P = 0.004).
c. Decoding accuracies of subjective nutrient factors (n = 23 participants). The
format is the same as in Fig. 2.3a (left). *P < 0.05 and **P < 0.01 for each factor.
Top left. t-test against 50% (fat: t22 = 1.57, P = 0.066; carb.: t22 = 1.12, P = 0.137;
protein: t22 = 0.98, P = 0.168; and vitamin: t22 = 1.71, P = 0.050).
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Top middle. t-test (fat: t22 = 2.25, P = 0.018; carb.: t22 = 1.26, P = 0.111; protein:
t22 = 1.52, P = 0.071; and vitamin: t22 = 2.57, P = 0.009). Top right. t-test (fat:
t22 = 0.51, P = 0.307; carb.: t22 = 0.52, P = 0.305; protein: t22 = 2.44, P = 0.012;
and vitamin: t22 = 0.90, P = 0.189). Bottom left. t-test (fat: t22 = 4.11, P < 0.001;
carb.: t22 = 2.37, P = 0.014; protein: t22 = 4.46, P < 0.001; and vitamin: t22 = 4.50,
P < 0.001). Bottom middle. t-test (fat: t22 = 0.65, P = 0.261; carb.: t22 = 0.83, P =
0.209; protein: t22 = 0.83, P = 0.208; and vitamin: t22 = 0.05, P = 0.481). Bottom
right. t-test (fat: t22 = -0.79, P = 0.780; carb.: t22 = 0.73, P = 0.236; protein: t22 =
0.50, P = 0.312; and vitamin: t22 = -0.23, P = 0.592).
d. Decoding accuracies of low-level visual features and comparison with subjective
nutrient factors in lOFC, PPC and V1. The decoding accuracies of the low-level
visual features (averaged over the eight features) and the subjective nutrient factors
(averaged over the four factors identified as value predictors) are plotted for the
lOFC, the PPC and the V1 (BA17) anatomical ROIs (n = 23 participants). Format
of the box and whisker plots is the same as in Fig. 2.1c. * and ** on each plot,
respectively, denote P < 0.05 and P < 0.01, for each factor, t-test against 50%. * and
** on the horizontal lines denote significant differences between the indicated pairs
of data at P < 0.05 and P < 0.01 respectively, two-tailed paired t-test. Left. t-test
(subjective nutrient factors: t22 = 4.72, P < 0.001; low-level visual features: t22 =
0.70, P = 0.247; and subjective nutrient factors vs. low-level visual features: t22 =
3.18, P = 0.004). Middle. t-test (subjective nutrient factors: t22 = 7.04, P < 0.001;
low-level visual features: t22 = 4.01, P < 0.001; and subjective nutrient factors vs.
low-level visual features: t22 = 2.62, P = 0.0157). Right. t-test (subjective nutrient
factors: t22 = 5.85, P < 0.001; low-level visual features: t22 = 8.34, P < 0.001;
and subjective nutrient factors vs. low-level visual features: t22 = -3.15, P = 0.005).
lOFC, lateral orbitofrontal cortex; PPC, posterior parietal cortex; V1, primary visual
cortex; and BA17, Brodmann area 17.
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Figure 2.13: Supplementary Figure 8: A region of V1 in which all of the four
subjective nutrient factors can be decoded.
The decoding accuracy map obtained from the whole-brain searchlight analysis
is thresholded at P < 0.05 (cluster-level FWE correction with the cluster-forming
threshold P = 0.001; n = 23 participants), conjunction-test. Peak voxel, [MNI: x, y,
z = -9, -94, 7]. V1, primary visual cortex.
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Rank Explanatory variable Performance

Linear regression 1 fat, carbohydrate, protein, vitamin 0.481
2 fat, sodium, carbohydrate, protein, vitamin 0.478
3 fat, sodium, protein, vitamin 0.474
4 fat, protein, vitamin 0.465
5 sodium, carbohydrate, protein, vitamin 0.463
6 fat, sodium, sugar, protein, vitamin 0.455
7 fat, carbohydrate, sugar, protein, vitamin 0.455
8 carbohydrate, protein, vitamin 0.453
9 fat, sodium, carbohydrate, sugar, protein, vitamin 0.452
10 fat, sugar, protein, vitamin 0.440

Logistic regression 1 fat, carbohydrate, protein, vitamin 69.95%
2 fat, sodium, carbohydrate, protein, vitamin 69.64%
3 fat, sodium, protein, vitamin 69.26%
4 fat, protein, vitamin 69.10%
5 sodium, carbohydrate, protein, vitamin 68.94%
6 fat, sodium, sugar, protein, vitamin 68.79%
7 fat, carbohydrate, sugar, protein, vitamin 68.79%
8 carbohydrate, protein, vitamin 68.79%
9 fat, sodium, carbohydrate, sugar, protein, vitamin 68.48%
10 fat, sugar, protein, vitamin 68.25%

Table 2.1: Prediction performances of the subjective value.
Prediction performances of the best 10 models are shown for linear and logistic
regression analyses (the best model in each analysis is shown in bold). Performance,
z-transformed correlation between the predicted and the actual values for the linear
regression analysis, and prediction accuracy for the logistic regression analysis. See
Methods for details.
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Food items used
1. 3 Musketeers𝑑 29. Sun Chips𝑒
2. Barnum’s Animal Crackers𝑑 30. Dole Mixed Fruit𝑎
3. Doritos Nacho Cheese𝑒 31. Grapefruit𝑎
4. Chips Ahoy!𝑑 32. Banana Chips𝑑
5. Kit Kat𝑑 33. Dark Chocoloate Bananas𝑑
6. Pop-Tarts Brown Sugar Cinnamon𝑑 34. Crispy Apple𝑒
7. Pop-Tarts Brown Sugar Strawberry𝑑 35. Vegetable Chips𝑒
8. Hostess Powdered Donettes𝑑 36. Sweet Potato Chips𝑒
9. Twix Cookie Bars𝑑 37. Chopped Salad Chicken𝑐
10. Hershey’s Whatchamacallit Candy𝑑 38. Mexicali Salad𝑐
11. Apple Pie𝑑 39. Caesar Salad𝑐
12. Avocado𝑎 40. Veggie Wrap𝑐
13. Blackberries𝑎 41. Super Burrito𝑐
14. Cauliflower𝑎 42. Chocolate and Berry𝑑
15. Ritz Crackers’n Cheese Dip𝑒 43. Green Beans Chips𝑒
16. Cherry Pie𝑑 44. Salami𝑏
17. Chocolate Muffins𝑑 45. Smoked Turkey𝑏
18. Hostess Donuts𝑑 46. American Cheese𝑏
19. Granny Smith Apple𝑎 47. Chicken and Roasted Beet𝑐
20. Green Grapes𝑎 48. Mozzarella Cheese𝑏
21. Mango𝑎 49. Roast Beef𝑏
22. Milano Cookies𝑑 50. Caprese Sandwich𝑐
23. Orange𝑎 51. Tuna Salad Wrap𝑐
24. Raspberries𝑎 52. Smoked Salmon𝑏
25. Red Velvet Cake𝑑 53. Plain Yogurt𝑏
26. Quaker Chewy Granola Bar𝑑 54. Strawberry Yogurt𝑏
27. Starburst Candy𝑑 55. Blueberry Yogurt𝑏
28. Strawberry𝑎 56. Deviled Eggs𝑏

Table 2.2: 𝑎 fresh vegetables and fruits (e.g., Orange and Apple), 𝑏 meet and dairy
products (e.g., salami and yogurt), 𝑐 cooked products (e.g., salad and wrap), 𝑑 sweet
snacks (e.g., chocolate bar and cake), and 𝑒 salty snacks (e.g., chips and crackers).
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C h a p t e r 3

INVESTIGATING THE NEURAL MECHANISMS OF BUNDLE
VALUATION

Abstract
The computational mechanisms of multiattribute decision-making have begun to
be uncovered at the behavioral and neural level. The results of Chapter 2 suggest
that the brain decomposes stimuli into their constituent attributes and computes
value as a weighted integration of these attributes. Here we test this framework
as human participants evaluated bundles of multiple items. An extension of the
multiattribute integration model explains significant variance in how bundles are
valued, as the constituent items themselves become the features to be integrated.
This integration occurs with a subadditive function for which bundle values are
systematically discounted versus the sum of the individual item values. A distributed
network throughout the prefrontal cortex (PFC) computes the value of a bundle with
the same value code used to evaluate individual items, suggesting that these general
value regions contextually adapt within this hierarchy. Additionally, the value
representation moves across levels in this hierarchy with a normalization process
that rescales the code to the distribution of values in the current context, as opposed
to an absolute value code.
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Introduction
In daily life, humans have to evaluate options that contain multiple isolated compo-
nents, such as a meal, a vacation package, bundles of channels on cable TV, or an
investment fund. Valuing bundles such as these must require a hierarchical process
of valuing the bundle’s constituent items and then integrating them to value the bun-
dle as a whole. This process is analogous to attribute integration theories of value,
which propose that the value of a stimulus is constructed by assigning values to the
stimulus’s attributes and integrating them (Bettman, Luce, and Payne, 1998; Suzuki,
Cross, and O’Doherty, 2017). Recent human neuroimaging studies have identified
encoding of stimulus attributes in cortical areas specialized in the processing of
these features (Suzuki, Cross, and O’Doherty, 2017; Lim, John P. O’Doherty, and
Rangel, 2013). For example, when evaluating food items, the elemental nutritive
attributes of the food are encoded in the lateral orbitofrontal cortex (OFC). No-
tably, the areas encoding stimulus features exhibit functional connectivity to medial
OFC and the nearby ventromedial prefrontal cortex (vmPFC) (Suzuki, Cross, and
O’Doherty, 2017; Lim, John P. O’Doherty, and Rangel, 2013). Given that value
signals have been identified in mOFC and vmPFC in association to a wide variety
or rewards (Clithero and Rangel, 2014; McNamee, Rangel, and John P O’Doherty,
2013; Kable and Glimcher, 2007; Gross et al., 2014; Chib et al., 2009), this evi-
dence suggests that attribute values are integrated in mOFC/vmPFC to compute the
value of the item being assessed. In the present study, we generalize this attribute
integration theory of value to the process of valuing bundles of items, for which the
components that need to be integrated operate on a different level of abstraction:
they are items themselves. To our knowledge, no studies have formally examined
how bundles of items are evaluated in the human brain, as most neuroeconomics
studies have solely investigated how individual items are valued.

Therefore, in this study participants valued food items, noncomestible consumer
goods, and bundles of these items. Then participants made choices with these items
and bundles while being scanned with functional MRI (fMRI). Our first item was
to characterize how the values of bundles are constructed from the values of their
constituent items. We hypothesized that participants would discount bundles in
relation to the sum of the values of the bundle’s items, and therefore bundle value
could be modeled as a subadditive function of the individual item values.
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At the neural level, there is conflicting evidence in the literature about whether the
brain uses the same neural code to represent the value of stimulus independently
of the category of the stimulus or the task context. There is evidence from neu-
roimaging and electrophysiology studies that OFC/vmPFC regions encode value
with a ’common currency’ across different types of goods and stimuli (Padoa-
Schioppa and Assad, 2008; Chib et al., 2009; Lin, Adolphs, and Rangel, 2012;
Levy and Glimcher, 2011). In contrast, another study demonstrated that by using a
more sensitive fMRI analysis method called multivariate pattern analysis (MVPA),
category-dependent distributed value representations could be identified in spatially
distinct areas of OFC/vmPFC for valuing food items and consumer items separately
(McNamee, Rangel, and John P O’Doherty, 2013). Additionally, this study char-
acterized a topographical gradient of value representations in vmPFC, with more
anterior regions encoding the value of more abstract rewards and more dorsal regions
implementing a ’common currency.’ Therefore, we tested whether spatially distinct
regions separately compute the values of single items and bundles, or whether the
same regions utilize the same value representation across these two conditions in
accordance with a general value code.

A related question concerns how the neural value code represents bundle values
in relation to single item values. Recent evidence suggests that decision-making
regions in the brain implement a relative value code by adapting to the temporal
and spatial context of the choice set (Louie, Glimcher, and Webb, 2015). As
bundle values are higher on average than single item values, we hypothesize that
value regions switch between levels in this hierarchy by rescaling the value code
according to the distribution of values in the current context, rather than encoding
the absolute value of an option.

Results
To investigate the neural mechanisms involved in evaluating a bundle of items, we
recruited participants in a 3 day experiment. On each day, a participant first reported
how much they would be willing to pay (WTP) for various foods and non-comestible
consumer goods (trinkets) and pairs of these items (bundles) (Figure 3.1a). These
WTP ratings represent an item’s/bundle’s subjective value and are recorded with an
incentive compatible procedure used in previous studies (see Methods for details)
(Becker, DeGroot, and Marschak, 1964; Chib et al., 2009; McNamee, Rangel,
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and John P O’Doherty, 2013; Suzuki, Cross, and O’Doherty, 2017). Participants
were allocated a budget of $0-$20 and submitted a wide distribution of WTP bids
across categories, albeit with most items and bundles valued at small dollar amounts
(Figure 3.2a; mean WTP value for each category: individual item food = $3.34 ±
3.30 s.d., individual item trinket = $3.30 ± 3.50 s.d., food bundle = $5.96 ± 4.44
s.d., trinket bundle = $4.92 ± 4.81 s.d., mixed bundle $5.394 ± 4.65 s.d.).

After the WTP task on each day, participants were scanned using functional MRI
(fMRI) while they performed a choice task with the same items and bundles. Three
participants were scanned with a high-resolution fMRI protocol (voxel size = 1.5mm
isotropic) designed to record from medial prefrontal cortex (mPFC) regions with
high fidelity (Figure S1). The remaining eleven participants were scanned with a
standard wholebrain protocol (2.5 mm isotropic). On each trial in the choice task,
a participant made a choice between an item (or a bundle) vs a reference monetary
amount equal to their median WTP bid on that category (Figure 3.1b). This ensured
that participants would value the item/bundle in isolation and choose the item/bundle
about half the time and the reference monetary amount about half the time, which
was seen empirically in the data other than a slight bias to choosing the money on
individual item trials (Figure S2).

Bundle value is a subadditive function of the individual item values
Behaviorally, we first examined how a bundle’s value is constructed from the values
of its constituent items. This relationship can be qualitatively visualized in the
density plot in Figure 3.2b; as the sum of the individual item values increases,
bundle value tends to also monotonically increase as expected. However, if bundle
value was equal to a simple addition of the values of the individual items, the data
would lie along the diagonal. Instead, there is more density below the Y=X diagonal,
suggesting that bundle value is a subadditive function of the individual item values.

To test this hypothesis quantitatively, we modeled bundle value as a function of
the constituent item values with regression analyses. The simplest model involved
predicting the value of a bundle as a linear combination of the individual item values
(Bundle Value = 𝛽0+𝛽1 * Item1 Value + 𝛽2 * Item2 Value), and this model explained
a large amount of the variance in bundle WTP ratings (R2=0.777). Both parameter
estimates for the individual items were significantly less than 1 (𝛽1=0.726, P <

10−10, T=6.24; 𝛽2=0.734, P < 10−11, T=6.72; Intercept 𝛽0=0.832), consistent with
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the hypothesis that bundle value is a subadditive function of the individual item
values (Figure 3.2b). We additionally tested three nonlinear models, a polynomial
model, a power model, and a logarithmic model (see Methods). The power model
and logarithmic marginally fit the data better than the linear model, even when con-
trolling for the number of parameters (Table 1). Additionally, these two nonlinear
models are concave (Figure 3.2b), thus participants discount their subjective value
of a bundle more as the individual item values increase.

We next analyzed how this utility function varies depending on the category of
the bundle. The linear model fit to the data of each type of bundle is shown in
Figure 3.2c. The slopes of this model are smallest for bundles that are dupli-
cates of the same item (𝛽1 = 0.615±0.013sem, 𝛽2 = 0.615±0.013sem, Intercept
𝛽0 = 0.987±0.126sem), which is consistent with the economic principle that the
utility of an item decreases with each additional unit (diminishing marginal util-
ity). Moreover, food and mixed bundles have larger slopes than same item bun-
dles and trinket bundles (Food: 𝛽1 = 0.742±0.039sem, 𝛽2 = 0.773±0.041sem,
Intercept 𝛽0 = 1.073±0.261sem; Mixed: 𝛽𝐹𝑜𝑜𝑑 = 0.708±0.047sem, 𝛽𝑇𝑟𝑖𝑛𝑘𝑒𝑡 =
0.710±0.059sem, Intercept 𝛽0 = 0.772±0.255sem; Trinket: 𝛽1 = 0.671±0.062sem,
𝛽2 = 0.633±0.060sem, Intercept 𝛽0 = 0.700±0.191sem).

Altogether, these behavioral results show that the value of a bundle is computed as
a subadditive combination of the individual item values. This process is analogous
to attribute integration theories of value (citations), which state that the value of a
good is computed by integrating the value of the good’s component attributes. In
this scenario where bundles are evaluated, the attributes that are integrated are the
values of the tangible goods that constitute a bundle rather than the values of abstract
features that constitute a good.

Neural representation of subjective value and choice
We next investigated how subjective value and choice are encoded in the brain during
the choice task. To do so, we constructed a univariate general linear model (GLM)
that included regressors for a stimulus’s WTP rating time locked to the onset of the
trial, and a regressor for the choice made on that trial time locked to the time of
choice (in addition to a regressor for trial type and other covariates of no interest; see
Methods). Several regions were more active when participants choose an item or
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bundle vs. when they choose the reference monetary amount, including clusters in
dmPFC areas such as superior frontal gyrus (SFG), anterior cingulate gyrus (ACC),
vmPFC, and the angular gyrus (P < 0.001 FDR corrected cluster-level, Figure 3.3a).
By including the regressor for the WTP of the item/bundle shown in a trial in the
same GLM, we were also able to isolate subjective value signals independent of
choice. After cluster-level false discovery rate correction (P < 0.001, FDR), one
large cluster in the anterior portion of vmPFC and frontal pole showed a positive
correlation to subjective value (Figure 3.3b). These results are consistent with
previous results (Clithero and Rangel, 2014; Bartra, McGuire, and Kable, 2013),
and set the stage for further probing how the representations in these regions are
modulated trial type.

A central question about value computations in the brain is whether the same
neural resources code for the value of a stimulus independently of the category
of the stimulus or the broader context. In the context of this study, this would
imply that the same regions compute the value of individual items and the value
of bundles. An alternative hypothesis is that additional regions are recruited when
computing the value of bundles, since this involves a hierarchical process of valuing
the individual items and then integrating them to evaluate the bundle. A previous
study identified a spatial topography of category-dependent value codes in which
food value was represented in posterior mOFC and consumer good values (trinkets)
were represented in anterior mOFC (McNamee, Rangel, and John P O’Doherty,
2013). This result is also consistent with a meta-analysis that reported an anterior
versus posterior gradient according to the abstractness or complexity of the reward,
with more abstract reinforcers encoded in anterior regions (Kringelbach and Rolls,
2004). The study additionally identified a ventral-dorsal gradient in vmPFC, with
ventral OFC regions encoding category-dependent value codes and more dorsal
regions encoding a category-independent common currency (McNamee, Rangel,
and John P O’Doherty, 2013).
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In order to examine whether the brain recruits additional circuitry when evaluating
a bundle versus valuing a single item, we tested for the interaction of value and trial
type in the previously described GLM (contrasts: bundle value > single item value
and single item value > bundle value). At the group level, no clusters survived
correction for either comparison, thereby providing no evidence for a topography
of separable single item value and bundle value codes at the univariate level in the
current dataset (Figure S3).

However, as previously reported neural activity can scale with value similarly across
categories while also containing distinct and distributed category-dependent codes
in the same region (McNamee, Rangel, and John P O’Doherty, 2013). Since mul-
tivariate pattern analysis (MVPA) is more sensitive to picking up these distributed
codes, we implemented decoding analyses across conditions to test for the existence
of distinct bundle value codes, single item value codes, or general value regions. A
ridge regression decoder was trained on distributed voxel patterns in several regions
of interest (ROIs) in PFC. The decoder was trained on samples from one trial type
(ie. single item trials) for 14/15 runs and tested on the both trial types separately
on the held out run (and cross validated with the leave-one-run-out method). De-
coder performance was assessed with the Pearson correlation between the predicted
values and the true values in the test set. To test for condition-independent general
value regions, we analyzed if the decoder could predict the value of samples drawn
from the opposite condition from what it was trained on. This would identify gen-
eral value regions that utilize the same distributed code when computing the value
of both single items and bundles. To test for condition-dependent value regions,
we analyzed if the decoder could only predict samples within the condition it was
trained on, while failing to predict samples from the opposite condition. This would
identify distinct single item value regions or bundle value regions.

Value could be predicted above chance on all four types of train/test splits (‘train
and test on single items,’ ‘train and test on bundles,’ ‘train on single items/test on
bundles,’ ‘train on bundles/test on single items’) in vlPFC, dmPFC, dlPFC, MFG,
and IFG (Figure 3.3c, two-sided one-sample Wilcoxon signed rank test P < 0.05
and FDR-corrected for multiple comparisons q = 0.05). By being able to decode
value across conditions in these regions, this analysis suggests that they possess
distributed general value codes that are independent of condition. Additionally, value
was decoded above chance for the ‘train on single items/test on bundles’ partition in



65

rACC, dACC, vmPFC, anterior OFC, lateral OFC, and medial OFC, providing some
evidence for generalized value codes in these regions as well (although prediction
accuracies were not significant for the reverse partition ‘train on bundles/test on
single items’). To identify a condition-dependent value region, we assessed if a
region’s decoder only had significant prediction accuracy when trained and tested
on a single condition (ie. only significant for ‘train and test on single items’ but not
for the other three partitions). No region met this criteria. Additionally, there were
no significant differences in a decoder’s prediction accuracy between conditions
for any ROI (two-sided two-sample Wilcoxon signed rank test P < 0.05 and FDR-
corrected for multiple comparisons q = 0.05). For example, although there is a 0.06
difference in pearson correlation between ‘train on bundles/test on single items’ and
‘train and test on bundles’ for dACC, this difference is not significant after correcting
for multiple comparisons (P = 0.426). Thus, the cross decoding analyses do not
yield any evidence for the existence of a distributed condition-dependent value code
in any ROI.

Normalization of the value code
Thus far we have demonstrated that the brain’s value regions represent value in
a fashion that generalizes across evaluating individual item values and bundles of
those items. A subsequent question emerges from this pattern: does the value code
adaptively normalize to trial type? The common currency hypothesis suggests that
options are encoded with the same value scale so they can be compared (Padoa-
Schioppa and Assad, 2008; Chib et al., 2009; Lin, Adolphs, and Rangel, 2012;
Levy and Glimcher, 2011), thereby value regions may code for items and bundles
on the same range that scales with their WTP ratings. However, given the biological
constraints of neurons, in order to evaluate decisions about which house to buy or
which entree to buy with the same valuation system, the brain must also adaptively
normalize the value code to the distribution of values available in a decision-making
context (Louie, Glimcher, and Webb, 2015). Since the distribution of bundle values
is systematically larger than the distribution of single item values (Figure 3.2a), the
neural code may normalize to the context of the current trial. A value region could
therefore encode a $4 rated item very differently than a $4 rated bundle if options
are appraised based on their utility relative to the other options within a condition
(Figure 3.4a). Relative value coding has been observed empirically in experiments
where a different distribution of values is presented in each block (Padoa-Schioppa,
2009; Louie, Grattan, and Glimcher, 2011), but crucially in this experiment, bundle
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trials and single item trials are randomly intermixed within a block.

To test whether the neural representation codes for value in absolute or relative
terms, we constructed GLMs with different value regressors. One GLM included
a regressor for value according to the WTP bid in dollars for the item or bundle
displayed in that trial, while in a separate GLM value was normalized (with a z-score)
by trial type. Value contrasts were then compared at the second level (normalized
value > absolute value and absolute value > normalized value). A significant cluster
in vmPFC emerged for the normalized value > absolute value comparison (peak
voxel: x=-2, y=62, z=-7; t13=5.75; P < 0.001 uncorrected cluster forming threshold
followed by P < 0.001 FDR cluster-level correction), suggesting that the neural
representation of value in vmPFC is normalized. No significant clusters emerged
after correction for the opposite analysis (absolute value > normalized value).

An alternative explanation for this result is that vmPFC is computing the difference
in value between the item/bundle presented in a trial and the reference monetary
amount it is choosing against. This computation would also produce a relative value
code, but is a simpler form of adaptation that does not put the single item value
and bundle value distributions on the same scale. Thus, another GLM was built
with a modified value regressor equal to the WTP bid minus the reference monetary
amount, and the resulting value contrast was tested against the fully normalized
value contrast. Again, a significant cluster in vmPFC resulted from the normalized
value > value difference contrast (peak voxel: x=0, y=52, z=-14; t13=4.83; P <

0.001 uncorrected cluster forming threshold followed by P < 0.005 FDR cluster-
level correction), and the opposite contrast yielded no significant clusters. These
results demonstrate that at least at the univariate level, vmPFC normalizes the value
code by condition.

To test the same hypothesis at the multivariate level, we completed another cross
decoding analysis. With ridge regression, decoders were trained on 14/15 runs with
one condition (single item trials or bundle trials) and tested on samples from both
conditions in the held out run (with leave-one-run-out cross validation). The held
out predictions are then compared (with pearson correlation) to the true value labels
in their absolute value WTP < amount and their relative value after normalizing
by condition. If the decoder systematically predicts that the bundle trial samples
in the test set are higher value than the single item samples in the test set, the
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distribution of these held out predictions will look similar to an absolute value code
as in the left histogram of Figure 3.4a. The held out predictions would thus have
a higher correlation to the absolute value representation. In contrast, if the region
tested normalizes value, the decoder’s predictions will place the bundle samples and
single item samples in the same distribution (Figure 3.4a right), and these held out
predictions will have a higher correlation to the relative value code. The results
demonstrate that the normalized value representation better matches the neural data,
as predictions were significantly more correlated to the relative value code in every
ROI tested (two-sided Wilcoxon signed rank tests, P < 0.05 and FDR-corrected for
multiple comparisons (q = 0.05).

To ensure that these results were not just due to the parametric nature of the ridge
regression decoder, we additionally performed representational similarity analysis
(RSA) to assess whether the representational geometry in these regions was more
reflective of an absolute value or relative value code. RSA provides a more data-
driven method to examine the structure of neural representations by constructing
dissimilarity matrices (DSMs) according to how the multidimensional voxel space
changes from trial to trial or from condition to condition (Kriegeskorte, Mur, and
Bandettini, 2008). These data-driven DSMs can then be compared to model DSMs
that encode how the features of the task, such as value, evolve from trial to trial.
Here, trial by trial DSMs were built for every ROI and correlated to model DSMs
for absolute value and relative/normalized value. Similarly to the decoding analysis,
the relative value DSM had significantly higher correlations to the neural DSMs
in every ROI (two-sided Wilcoxon signed rank tests, P < 0.05 and FDR-corrected
for multiple comparisons (q = 0.05). Altogether these analyses show that these
PFC regions encode value in a normalized fashion, both at the univariate level and
distributed multivariate level.

Discussion
In real-world decision-making, consumers often have to make choices between
options that are each made up of multiple goods. However, it is unknown how the
human brain constructs the value of bundles of multiple items. To investigate this
question, we used a BDM auction procedure to elicit subjective values for food items,
noncomestible consumer goods, and bundles of these items. Then participants made
choices with these items and bundles during fMRI scanning.
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WTP behavior could be predicted by modeling bundle value with an weighted
integration model that uses the individual item values as attributes. It was found
that bundle value is computed with a subadditive function of the individual item
values. With parameter estimates of a linear model that are significantly less than
1, bundles are systematically discounted in relationship to the sum of the individual
item values. Concave nonlinear models additionally capture this behavior, and this
concavity suggests that participants discount their subjective value of a bundle more
as the individual item values increase.

These results are are compatible with the expectation most consumers have that
bundles of multiple goods are usually discounted in comparison to the total price
of the constituent products purchased separately (Thorne, 2004; Nagle and Holden,
1987). Value meals at fast food restaurants, snack variety packs, vacation packages,
and season tickets for sports teams all represent discounted bundles in the real-world
marketplace. However, the incentives of buyers and sellers in the marketplace are
usually different than the one in our experimental setup. Sellers offer bundles at
a discount to increase the probability of a buyer purchasing an additional good
they would not have purchased otherwise, similarly to discounting the purchase
of the same item in bulk. For example, a McDonald’s customer always has the
optionality to buy a hamburger and fries separately, so a bundle of the two needs to
be discounted in order to become an attractive package. In our experiment, each item
and bundle is bid on separately and a BDM auction trial is selected at random, so
when evaluating a bundle, participants do not have the optionality usually afforded
to them in the marketplace to purchase them separately. Therefore, the results of
our experiment suggests that bundle discounting is a more general phenomenon
of multi-item valuation and not just the result of market equilibrium prices. This
pattern is analogous to the law of diminishing marginal utility, which describes how
one receives a reduction in utility per unit for each additional unit consumed of a
good. In our experiment, bundles of the same item were discounted slightly more
than the other bundles, which suggests that bundles of different items are discounted
similarly to bulk quantities of the same item but not as much.

Microeconomic theory also accounts for the possibility that bundles of goods are
substitutes or complements (Varian, 2014). Substitutes have interchangeable func-
tions, and therefore are often discounted when bundled together. For example, tea
and coffee could be viewed as substitutes as they both over a caffeine boost. A
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consumer typically does not buy both at cafe because of this, and their utility bun-
dled together is likely less than the sum of their independent utilities to the average
consumer. Complements are products which are typically bought and used together,
such as pasta and pasta sauce. Other examples, like left and right shoes, can exhibit
superadditivity, where the value of the left shoe by itself is much lower than half
of the value of both shoes together. We did not optimize our experiment to include
substitutes or complements, but it would be interesting to pick an item set that probes
how substitutes and complements are evaluated in future work.

At the neural level, we tested for condition-dependent and condition-independent
value signals at the univariate and multivariate levels. Previous research identified a
spatial topography in OFC where food value was represented in posterior mOFC and
value codes for consumer goods were represented in anterior mOFC (McNamee,
Rangel, and John P O’Doherty, 2013). However, we found no evidence for separate
single item value regions or bundle value regions or a topography of value complex-
ity. An anterior portion of vmPFC showed a correlation to subjective value across
both individual item trials and bundle trials. In a cross decoding analysis similar to
methods previously used to identify category-dependent and category-independent
value codes (McNamee, Rangel, and John P O’Doherty, 2013), a decoder was
trained on samples from one trial type and tested to predict value for the other trial
type. Distributed condition-independent value codes were revealed throughout PFC,
including in dmPFC, vlPFC, and MFG. Although these regions encode value in a
general way across trial types, they may not be implementing a common currency as
previously suggested (Levy and Glimcher, 2012). A true common currency would
map all stimuli to the same shared scale. Our results show that value is represented
by the same distributed voxel patterns across all trial types, but this value code
normalizes to the context and does not encode absolute value through a common
currency representation. The possibility remains that general value regions encode
a common currency for all stimuli within a context (Padoa-Schioppa and Assad,
2008), but context-dependent modulation of value has also been observed when
choices are made between stimuli of the same type (Louie, Grattan, and Glimcher,
2011).

However, this project can only provide a coarse grained snapshot into the mechanism
of normalization operating in these regions due to the limited spatial and temporal
resolution of fMRI. Value can be encoded by a relative code with many different
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types of normalization (Miller and MacKay, 1994; Louie, Khaw, and Glimcher,
2013). Since vmPFC activity was more correlated to the normalized value regres-
sor (via z-score) than the value difference regressor, our results are more consistent
with divisive normalization models than subtractive normalization models. Elec-
trophysiological studies of bundle valuation are needed to shed more light on the
computations neural populations implement to rescale the value code, similarly to
what has already been done in other neural circuits. (Carandini and Heeger, 2012).

Methods
Participants
Participants (N=14) were recruited from the general population through the Caltech
Brain Research Participant System (7 females, 7 males, 24.9 ± 3.74 years, mean
± s.d.). They did not have any food allergies and were not dieting at the time
of the experiment. They were given a participation fee of $40 ($20 per hour),
in addition to receiving monetary, food, and non-comestible consumer goods as
rewards depending on their choices in the experiment. Each subject gave their
informed consent, and the study was approved by the Institutional Review Board of
the California Institute of Technology.

Stimuli
Across participants, 70 food items and 40 non-comestible consumer goods were
used as stimuli in the experiment. Food items included fruits, snacks, and mains
(including microwaveable meals) that are available at local grocery stores. Con-
sumer goods included a diverse array of items under $40 in price, including cell
phone chargers, kitchen items, Caltech memorabilia, and books. Many of these
items have been used in previous studies (Suzuki, Cross, and O’Doherty, 2017).
The full list of items can be found in the Supplementary Table 1.

Experimental tasks
Participants performed the experiment in three sessions on three separate days in
order to maximize the amount of fMRI data within-subject. On each day, participants
first performed a willingness-to-pay (WTP) task outside the scanner, then performed
the choice task in the scanner where they were asked to choose between an item or
bundle of two items versus a reference monetary amount. Participants were asked
to refrain from eating 4 hours before the experiment in order to ensure that food
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items were valuable to them. Compliance was confirmed by self-reports.

Each day, a participant performed these tasks with 20 items, 10 food items and 10
non-food items. 10 of these items were presented in all three days, and 10 new
items were introduced every day, adding up to a total of 40 unique items presented
throughout the experiment. To construct bundles, every item was paired with each
other, including pairs of the same items. Thus, 210 bundles were included each day
(20 choose 2 = 190 + 20 pairs of the same item). On the final day of the experiment
after the choice task, outside the scanner participants rated how familiar they were
with each of the 40 items. For each item, the participant indicated their familiarity
with the item on a continuous scale from ‘not at all’ to ‘very much’ by moving a
red pointer, with no time constraint, as done in the previous experiment presented
in Chapter 1 (Suzuki, Cross, and O’Doherty, 2017).

WTP Task (outside the MRI scanner)
Participants completed an untimed BDM auction task to measure their willingness-
to-pay for items and bundles, with a procedure similar to previous studies, including
the task presented in Chapter 1 (Chib et al., 2009; McNamee, Rangel, and John P
O’Doherty, 2013; Suzuki, Cross, and O’Doherty, 2017). The BDM auction is a
reliable incentive-compatible method to elicit subjective values for items (Becker,
DeGroot, and Marschak, 1964). Participants were endowed with a $20 budget in
cash, and instructed that they can use this cash to purchase items from our laboratory
store (and keep the money they do not use). In each trial, an item or bundle was
shown and the participant was asked to type in how much they would be willing
to pay from $0-$20 for that item/bundle (Figure 3.1a). Participants first bid on the
individual items (20 each day) and then bid on the bundles (210 each day).

Each trial was to be treated independently, as a random trial from the entire exper-
iment was selected at the end of the experiment. If the selected trial was from the
WTP task, the participants’ bid on that trial was then compared against a randomly
generated price (uniform probability from $0-$20), and if their bid was greater than
or equal to that price, they received the item(s) and paid the corresponding price
with their $20 budget. If their bid was less than the price, they did not receive the
item(s), and they did not have to pay anything. Participants were explicitly instructed
about this auction procedure, and about how the optimal strategy is to bid their true
subjective value for a given item/bundle. With a questionnaire, we confirmed that
participants understood the mechanism of the auction.



72

Choice Task (inside the MRI scanner)
In the scanner, participants made choices involving the items and bundles previously
bid on in the WTP task. Each trial involved a binary choice between an item or bundle
and a reference monetary amount (Figure 3.1b). The reference monetary amount
was equal to the participant’s median WTP bid for that category (individual items
were chosen against the median bid on individual items and bundles were chosen
against the median bid on bundles). This ensured that the participants would choose
the reference monetary amount about half the time and choose the item or bundle
half the time. For a trial, the stimulus appeared in the middle of the screen, and the
word ‘ITEM’ appeared on the bottom left or right with equal probability while the
reference monetary amount in ‘$X’ appeared on the other side. Participants selected
their choices with a button box, with the leftmost button indicating choosing the left
option and vice versa for the rightmost button. Participants had 5 seconds to make
a decision, after which their choice was presented on the screen for 0.5 seconds and
followed by a jittered intertrial interval (ITI phase, 2–7s).

On each of the three days, participants were scanned for five runs. Each run included
62 trials, where each of the 20 individual items was presented once per run, and each
of the 210 bundles in a day was presented once on that day. On day 1, anatomical
scans were collected after the choice task.

fMRI Data Acquisition
The fMRI data was acquired on a Siemens Prisma 3T scanner at the Caltech Brain
Imaging Center (Pasadena, CA) with a 32-channel radio frequency coil. At the end
of the first day of scanning, T1 and T2 weighted anatomical high-resolution scans
were collected with 0.9mm isotropic resolution.

High resolution data

A high-resolution partial volume slab was collected in three participants with a
1.5mm isotropic voxel size (Figure S1) and the following parameters: multiband
acceleration = 4, 64 slices, TR = 1100ms, TE = 26ms, flip angle = 63°, FOV=
192mm x 192mm, in-plane GRAPPA (R = 2), echo spacing = 0.68ms. The protocol
is optimized to view mPFC in high-resolution and therefore the partial volume
slab cuts off portions of the motor cortex and parietal lobe. EPI-based fieldmaps
of positive and negative polarity were also collected before each run with similar
parameters as the sequence.
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Standard resolution data

A wholebrain multiband echo-planar imaging (EPI) protocol was collected in eleven
participants with a 2.5 mm isotropic voxel size and the following parameters: multi-
band acceleration = 4, 72 slices, TR = 1120ms, TE = 30ms, A-P phase encoding,
-30 degrees slice orientation from AC-PC line, flip angle = 54°, FOV= 192mm x
192mm. EPI-based fieldmaps of positive and negative polarity were also collected
before each run with similar parameters as the sequence.

fMRI Preprocessing
Data was preprocessed using a standard pipeline for preprocessing of multiband data.
Using FSL (Smith et al., 2004), images were brain extracted, realigned, high-pass
filtered (100s threshold), and unwarped. Images were denoised by ICA component
removal. Components were extracted using FSL’s Melodic, classified into signal
or noise with a classifier trained on separate datasets or manually classified for the
high-resolution dataset. T2 images were aligned to T1 images with FSL FLIRT,
and then both were normalized to standard space using ANTs (using CIT168 high
resolution T1 and T2 templates (Avants et al., 2009; Tyszka and Pauli, 2016)). The
functional data was first co-registered to anatomical images using FSL’s FLIRT,
then registered to the normalized T2 using ANTs. For univariate analyses, data was
spatially smoothed in FSL with a 5-mm FWHM Gaussian kernel. For multivariate
analyses, data was spatially smoothed with a 2-mm FWHM Gaussian kernel.

Behavioral Analyses
Linear and nonlinear regression analyses were performed to model how bundle
value is computed as a function of the values of the constituent items in the bundle
(𝐵𝑢𝑛𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒 = 𝑓 (𝐼𝑡𝑒𝑚𝑉𝑎𝑙𝑢𝑒𝑠)). The linear model represents bundle value as a
linear combination of the individual item values:

𝐵𝑢𝑛𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒 = 𝛽0 + 𝛽1 ∗ 𝐼𝑡𝑒𝑚1𝑉𝑎𝑙𝑢𝑒 + 𝛽2 ∗ 𝐼𝑡𝑒𝑚2𝑉𝑎𝑙𝑢𝑒

Item 1 and item 2 simply correspond to the item shown on the left and right,
respectively, during stimulus presentation. A mixed-effects model was estimated
across all subjects, with subject-specific random effects terms for intercept and
slope. Nonlinear mixed effects models were also constructed:
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Polynomial: 𝐵𝑢𝑛𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒 =

𝛽0+ 𝛽1 ∗ 𝐼𝑡𝑒𝑚𝑉𝑎𝑙𝑢𝑒12+ 𝛽2 ∗ 𝐼𝑡𝑒𝑚𝑉𝑎𝑙𝑢𝑒13+ 𝛽3 ∗ 𝐼𝑡𝑒𝑚𝑉𝑎𝑙𝑢𝑒22+ 𝛽4 ∗ 𝐼𝑡𝑒𝑚𝑉𝑎𝑙𝑢𝑒23

Power: 𝐵𝑢𝑛𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒 = 𝛽0 + 𝛽1 ∗ 𝐼𝑡𝑒𝑚𝑉𝑎𝑙𝑢𝑒1𝛽2 + 𝛽3 ∗ 𝐼𝑡𝑒𝑚𝑉𝑎𝑙𝑢𝑒2𝛽4

Logarithmic:
𝐵𝑢𝑛𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒 = 𝛽0 + 𝛽1 ∗ 𝑙𝑜𝑔(𝛽3 + 𝐼𝑡𝑒𝑚𝑉𝑎𝑙𝑢𝑒1) + 𝛽4 ∗ 𝑙𝑜𝑔(𝛽5 + 𝐼𝑡𝑒𝑚𝑉𝑎𝑙𝑢𝑒2).

All models and model statistics were estimated with Matlab, with the fitlme and
nlmefit functions, and model fits were evaluated with BIC and R2 (Table 1). To
plot the fitted line/curve for each model in Figure 3.2b, bundle value was computed
with the fitted function parameters with ItemValue1 set equal to ItemValue2 for all
values from 0-10 (with a 0.01 step size). The sum of these values (double of the
value set both for ItemValue1 and ItemValue2) is represented by the x-axis.

The linear models were also separately fit on data from each type of bundle, food,
trinket, mixed, and duplicates of the same item. Due to a small amount of data per
subject, random effects terms could not be properly estimated for bundles of the
same item, and therefore only a fixed effects model was estimated.

Regions of interest
Regions of interest (ROIs) were defined using the AAL database (Tzourio-Mazoyer
et al., 2002). The labels used in the paper are mapped to the original ROI
names as follows: ACC_pre: rACC, ACC_sup: dACC, Frontal_Inf_Orb_2: vlPFC,
Frontal_Med_Orb: vmPFC,OFCant: OFCant, OFClat: OFClat,
OFCmed: OFCmed, OFCpost: OFCpost , Frontal_Sup_Medial: dmPFC,
Frontal_Sup_2: dlPFC, Frontal_Mid_2: MFG, Frontal_Inf_Tri: IFG.

Univariate Analyses
Univariate analyses were conducted in SPM12. General linear models (GLMs) were
constructed to examine how subjective value and choice are encoded in the brain
during the choice task. This GLM included a regressor for value time locked to
the onset of the trial as a parametric modulator, which was modified in separate
GLMs to test hypotheses about value representation. The stimulus onset regressor
additionally had another parametric modulator for trial type (-1s for single item
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trials and 1s for bundle trials). Thus, a contrast corresponding to the representation
of bundle value or single item value could be computed as the interaction between
value and trial type. Reaction times were additionally included as a third parametric
modulator. Regressor for the choice made on a trial was time locked to the time
of choice, with separate regressors for choosing and item/bundle and choosing the
reference monetary amount. Regressors of no interest were included: left and right
button presses (duration=0), motion regressors, and run. Missed trials were not
modeled. Data across all three days in a subject were included in the same model,
with different days and separate regressors per day entered as different sessions.

Different representations of value were included in the value regressor. The value
contrast in Figure 3.3b used a normalized version of value, where value was z-
scored by trial type (item or bundle). The absolute value model uses the raw WTP
$ amount that the subject rated an item/bundle outside the scanner. WTP minus
reference (value difference) used WTP minus the reference monetary amount on
that trial.

Multivariate Analyses (MVPA)
To examine the nature of the bundle value code as the fine-grained distributed level,
we implemented MVPA and RSA analyses. All analyses used the PyMVPA toolbox
(Hanke et al., 2009), Scikit-learn functions, and custom Python code.

MVPA samples

To prepare for MVPA and RSA, we extracted trial by trial voxel-wise fMRI re-
sponses. A GLM was designed for each participant that modeled the onset and
duration of each trial separately to extract the voxel responses that were unique to
each trial. Other regressors of no interest modeled the other events and were not
separated by trial (one regressor across an entire day): outcome phase (onset and
duration), left and right button presses (duration=0). As in the univarate analy-
ses, data across all three days in a subject were included in the same model, with
different days and separate regressors per day entered as different sessions. After
estimating the models, the parameter estimate maps (beta maps) for each trial were
concatenated into a 4D dataset, with length equal to the number of trials a subject
completed across the experiment.
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Cross Decoding Analysis

To test for distinct bundle value codes, single item value codes, and general value
regions, we implemented a cross decoding analysis similar to previously used meth-
ods (McNamee, Rangel, and John P O’Doherty, 2013) at the ROI level. The 4D
dataset of beta maps for every trial were loaded with PyMVPA functions. Value
was z-scored by trial type (item or bundle) and included as the targets to predict
in the PyMVPA dataset. Then the voxels for each ROI were entered as features
for the cross decoding procedure. Ridge regression was used as the decoder in
all analyses (Scikit-learn’s, linear_model.Ridge), with alpha = 103 (this parameter
was optimized with sweeping). Each run was used as a separate cross-validation
fold. Decoders were trained on the training samples from one trial type at a time
and tested on samples from the held out run (leave-one-run-out cross-validation).
Decoders were tested on the samples from both trial types in the test set, even though
they were trained on one type. However, decoder predictions were quantified sepa-
rately for individual item samples in the test set and bundle samples in the test set.
This ensured that performance could be compared across trial type separately from
within trial type. Prediction accuracy was quantified by the Pearson correlation
between the predictions and true value labels and averaged across cross-validation
folds. This resulted in four decoder prediction accuracy metrics for each ROI and
subject according to the four train/test splits: ‘train and test on single items,’ ‘train
and test on bundles,’ ‘train on single items/test on bundles,’ ‘train on bundles/test on
single items’. The average prediction accuracy across participants for each of these
train/test splits is plotted in Figure 3.3c. Significance was assessed for each split
vs. chance level (r=0) with two-sided one-sample Wilcoxon signed rank tests at P
< 0.05 and FDR-corrected for multiple comparisons (ROIs) at q = 0.05. To assess
if a decoder’s prediction accuracy was significantly different between conditions in
the test set, we used two-sided two-sample Wilcoxon signed rank tests at P < 0.05
and FDR-corrected for multiple comparisons (ROIs) at q = 0.05.

Cross Decoding — Normalization of the value code

A similar cross decoding analysis was performed to test whether the neural rep-
resentation codes for value in absolute or relative terms at the multivariate level.
Ridge regression decoders were trained on 14/15 runs in one condition as described
above. The only difference in the decoder procedure is that absolute value codes
were used as targets rather than the relative/normalized values used in the first cross
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decoding analysis. The decoder is then tested on the samples from both trial types
in the test set. In this analysis the decoder’s is tested on both the individual item
samples and bundle samples at the same time, in order to test if the decoder ranks
the samples across trial types in an absolute or relative fashion. This procedure
thus outputs predictions on all trials in the held out run, and these predictions are
correlated to 1. the true labels in absolute value (WTP $ amount) and 2. the true
labels normalized by condition (relative value). These prediction accuracy metrics
were then averaged across participants and plotted in Figure 3.4d. Differences in
prediction accuracy between absolute value and relative value were tested against
chance with a nonparametric version of the Paired T-test, the two-sided two-sample
Wilcoxon signed rank test P < 0.05 and FDR-corrected for multiple comparisons
(ROIs) (q = 0.05).

Representational Similarity Analysis (RSA)

To examine whether the representational geometry of the regions of interest cor-
related to an absolute value or relative value code, we conducted representational
similarity analysis (RSA). The 4D dataset of beta maps for every trial were loaded
with PyMVPA functions as in the cross decoding analysis. Trial by trial neural dis-
similarity matrices (DSMs) were constructed for every ROI by computing pairwise
comparisons of the beta map across trials with PyMVPA’s PDist function. Euclidean
distance was used as the distance metric. Two model DSMs were constructed: 1.
trial by trial pairwise distances according to the difference in absolute $ value of the
stimuli between trials 2. trial by trial pairwise distances according to the difference
in normalized value of the stimuli between trials (where value was z-scored by trial
type (item or bundle)). For all DSMs, within day comparisons were removed to
avoid potential confounds due to similarity being driven by patterns being in the
same run or day. Neural DSMs and model DSMs were then compared with Pearson
correlations. Differences in the correlations between absolute value and relative
value were tested against chance with a nonparametric version of the Paired T-test,
the two-sided two-sample Wilcoxon signed rank test P < 0.05 and FDR-corrected
for multiple comparisons (ROIs) (q = 0.05).
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Figure 3.1: Experimental Design
a. WTP task. Participants reported how much they would be willing to pay for
items and bundles of two items in a BDM auction. This was untimed outside the
scanner.
b. Choice task. Inside the scanner, participants made choices with the items and
bundles. During single item trials, a choice was made between an item and a
reference monetary amount equal to the median bid of single item trials in the
WTP task. Similarly during bundle trials, a choice was made between a bundle
and a reference monetary amount equal to the median bid of WTP bundle trials.
Participants had up to 5s to make a choice indicated by a right or left button press.
The experiment involved 3 days of scanning 5 runs of the task for a total of 15 runs.
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Model R2 BIC
Linear 0.7771 39151
Polynomial 0.7722 39510
Power 0.7797 39049
Logarithmic 0.7777 39097

Table 1. Behavioral models of bundle value
R2 and BIC scores reflect fit across participants. Each model fits random effects
parameters per participant. See Methods for model details.
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Figure 3.2: WTP Behavior
a. Histograms of WTP bids for individual items and bundles across all subjects.
b. Density plot of the WTP value of a bundle vs the sum of the values of the
constituent items in a bundle in all subjects. If bundle value was equal to a linear
addition of the constituent item values, bundle values would lie along the diagonal
Y=X. Three models were constructed to predict the value of a bundle as a function of
the individual item values: a linear model, a nonlinear power model, and a nonlinear
logarithmic model. The fitted curves for each model are plotted along the density
plot. All three models display that bundle value is a subadditive function of the
individual item values, as they extend below the Y=X line.
c. The fitted linear model stratified by bundle type.
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Figure 3.3: Neural representation of subjective value and choice.
a. Areas more active when the item or bundle was chosen than when the reference
monetary amount was chosen. Significant clusters in dmPFC/SFG, ACC, vmPFC,
and angular gyrus (N=11). Clusters are defined by a P < 0.001 uncorrected cluster
forming threshold followed by P < 0.001 FDR cluster-level correction. Second
level result shown without high-resolution subjects due to the partial volume high
resolution scan’s limited coverage in dorsal frontal areas such as SFG.
b. Neural correlates of the value of the item/bundle presented. Significant cluster
in anterior vmPFC (N=14). Clusters are defined by a P < 0.001 uncorrected cluster
forming threshold followed by P < 0.001 FDR cluster-level correction.
c. MVPA cross decoding analysis results. Ridge regression decoders were trained
on samples from one condition and tested on samples from a held out run in both
conditions. Left: decoders trained on trials of single items. Right: decoders trained
on bundle trials. Asterisks * represent significant prediction accuracies on a test
partition (two-sided one-sample Wilcoxon signed rank test P < 0.05 and FDR-
corrected for multiple comparisons q = 0.05). There were no significant paired
differences in prediction accuracies between test conditions for any ROI (two-sided
two-sample Wilcoxon signed rank test P < 0.05 and FDR-corrected for multiple
comparisons q = 0.05). Error bars reflect SE across participants.
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Figure 3.4: Normalization of the value code.
a. A depiction of the distributions of value by condition with absolute value and
relative value codes. An absolute value code (left) represents value according to the
participants’ WTP bids, an incentive compatible measure of the subjective value of
an item or bundle. A relative value code normalizes value by condition, plotted here
after z-scoring individual item values and bundle values separately (left). A relative
code adapts to the context of the task and puts values from different distributions on
the same scale.
b. Contrast normalized value > absolute value. A cluster in vmPFC is better fit by
the normalized value model, indicating that the value representation in this region
is normalized. Clusters are defined by a P < 0.001 uncorrected cluster forming
threshold followed by P < 0.001 FDR cluster-level correction.
c. Contrast normalized value > value difference, with a cluster in vmPFC emerging
similarly to B. Value difference is the WTP bid $ amount - the reference $ amount.
P < 0.005 FDR cluster-level corrected (P < 0.001 uncorrected cluster forming
threshold).
d. Cross decoding analysis results with absolute and relative value. Results depicted
for 12 ROIs in PFC. Ridge regression decoder is trained on one condition (single
items: left; bundles: right) and tested on both conditions in a held-out run with leave-
one-out cross validation. Depending on how the decoder ranks the held out samples
in both conditions, predictions will yield a higher correlation to the absolute or
relative value code. Predictions were more correlated to a relative value code for all
ROIs, significant two-sided Wilcoxon signed rank test P < 0.05 and FDR-corrected
for multiple comparisons (q = 0.05). Error bars reflect SE across participants.
e. Representational Similarity Analysis (RSA) results comparing absolute value and
relative value DSMs to neural DSMs in each ROI. Neural DSMs show a significantly
higher correlation to the relative value DSM in each ROI with two-sided Wilcoxon
signed rank tests P < 0.05 and FDR-corrected for multiple comparisons (q = 0.05).
Error bars reflect SE across participants.
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Figure 3.5: Supplementary Figure 1. High Resolution Sequence
High-resolution partial volume scans were collected in three participants with a
1.5mm isotropic voxel size.
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Figure 3.6: Supplementary Figure 2. Behavior on the choice task.
Percentage of trials in which the item or bundle was chosen vs. the reference
monetary amount.
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Figure 3.7: Supplementary Figure 3. Bundle Value vs Single Item Value.
Univariate contrasts testing the interaction of value and trial type. No clusters
survived in either comparison after multiple comparisons correction.
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Food items used
1. 3 Musketeers 36. Sun Chips
2. Barnum’s Animal Crackers 37. Dole Mixed Fruit
3. Doritos Nacho Cheese 38. Grapefruit
4. Chips Ahoy! 39. Banana Chips
5. Kit Kat 40. Dark Chocoloate Bananas
6. Pop-Tarts Brown Sugar Cinnamon 41. Crispy Apple
7. Pop-Tarts Brown Sugar Strawberry 42. Vegetable Chips
8. Ghiradelli Chocolates 43. Sweet Potato Chips
9. Twix Cookie Bars 44. Chopped Salad Chicken
10. Hershey’s Whatchamacallit Candy 45. Mexicali Salad
11. Apple Pie 46. Caesar Salad
12. Avocado 47. Veggie Wrap
13. Blackberries 48. Super Burrito
14. Cauliflower 49. Chocolate and Berry
15. Ritz Crackers’n Cheese Dip 50. Green Beans Chips
16. Cherry Pie 51. Salami
17. Chocolate Muffins 52. Smoked Turkey
18. Powdered Donuts 53. American Cheese
19. Granny Smith Apple 54. Chicken and Roasted Beet
20. Green Grapes 55. Mozzarella Cheese
21. Mango 56. Roast Beef
22. Milano Cookies 57. Caprese Sandwich
23. Orange 58. Tuna Salad Wrap
24. Raspberries 59. Smoked Salmon
25. Red Velvet Cake 60. Plain Yogurt
26. Quaker Chewy Granola Bar 61. Strawberry Yogurt
27. Starburst 62. Blueberry Yogurt
28. Strawberry 63. Deviled Eggs
29. Crunchy Donuts 64. Smore’s Chewy Bars
30. Chicken Tikka Masala 65. Gnocci
31. Lamb Vindaloo 66. Magherita Pizza
32. Pollo Asado Burrito 67. Macarons
33. Bean and Cheese Burrito 68. Blueberry Crisp Clif Bars
34. Chocolate Chip Clif Bars 69. Yogurt Pretzels
35. Ferrero Chocolates 70. Chocolate Pretzels
Consumer goods used
1. A Brief History of Time book 21. Lock
2. Freakonomics book 22. Notebook
3. 1984 book 23. Bathroom scale
4. Water bottle 24. Playing cards
5. Wireless mouse 25. Honey clementine candle
6. Yoga mat 26. Roses candle
7. Hitchhikers book 27. Umbrella
8. Lord of the Rings book 28. Android charger
9. Caltech backpack 29. iPhone charger
10. Caltech hat 30. Clothes hangers
11. Caltech banner 31. Beach towel
12. Caltech keychain 32. Cooking supplies
13. USB stick 16GB 33. Kitchen utensils
14. Caltech mug 34. Pens
15. Caltech drawstring bag 35. Plates
16. Desk lamp 36. Portable charger
17. Stapler 37. Portable speaker
18. Over the ear headphones 38. Screwdrivers
19. Head backpack 39. Sunglasses
20. Batteries 40. Surge Protector

Table 3.1: Items used in experiment.
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C h a p t e r 4

USING DEEP REINFORCEMENT LEARNING TO REVEAL
HOW THE BRAIN ENCODES ABSTRACT STATE-SPACE

REPRESENTATIONS IN HIGH-DIMENSIONAL
ENVIRONMENTS

Abstract
Humans possess an exceptional aptitude to efficiently make decisions from high-
dimensional and noisy sensory observations in the real-world. However, it is largely
unknown how the brain compactly represents the current state of the environment to
guide this decision-making process. Deep reinforcement learning algorithms, such
as the deep Q-network (DQN) (Mnih et al., 2015) solve this problem by using a deep
neural network to capture highly nonlinear mappings from multivariate inputs to
the values of potential actions. We deployed DQN as an end-to-end model of brain
activity and behavior in participants playing three Atari video games during fMRI
scanning. We found that stimulus features in hidden layers of the DQN agent exhibit a
striking resemblance to voxel activity patterns in a distributed sensorimotor network,
extending throughout the dorsal visual pathway into posterior parietal cortex (PPC).
By comparing various feature sets to fMRI activity, we found that neural state-space
representations emerge from nonlinear transformations of the pixel space that bridge
perception to action and reward. Furthermore, we show that these transformations
reshape axes to reflect relevant high-level features and strip away information about
task-irrelevant sensory features. Taken together, our findings shed light on how
the brain solves the thorny computational problem of identifying and encoding the
relevant states of the world needed to drive decision-making in real-world situations.
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Introduction
The human brain is adapted to effortlessly act on the world and can do so effectively
even in environments it has not seen before. The decision-making system is in-
terlinked with a hierarchical perceptual system that rapidly infers low-dimensional
and abstract structure from the high-dimensional information the nervous system
directly senses. The development of the reinforcement learning framework has led
to an unprecedented collaboration between researchers in artificial intelligence, neu-
roscience, and psychology that has yielded substantive insights into how a decision-
making system should learn from feedback in the environment (Niv and Langdon,
2016). This theory characterizes the decision-making process as one where an agent
interacts with the environment in a series of state-action-reward loops. Two decades
of research has identified efficient algorithmic strategies for learning which actions
to take in a given environmental state (Sutton and Barto, 2018; Watkins, 1992), and
revealed neural substrates of these processes (John P. O’Doherty, Dayan, J. Schultz,
et al., 2004; W. Schultz, Dayan, and Montague, 1997; W. Schultz, 1998; Steinberg
et al., 2013).

However, much of this work has focused on the mechanisms of learning signals and
value representations, divorced from the perceptual systems that are actively coupled
to these mechanisms in the real-world. Additionally, in typical reinforcement learn-
ing experiments performed in neuroscience, the state-spaces are low-dimensional
and discrete, which is often characterized by a small set of distinctive stimuli and
actions to learn about. In more naturalistic environments however, the brain faces
a continuous stream of high-dimensional inputs, and the brain has to identify and
extract the relevant states by constructing a lower dimensional state-space represen-
tation internally (Botvinick, Wang, et al., 2020; Niv, 2019). The brain is then able
to efficiently select actions with even completely novel sensory inputs by using this
state-space to generalize from past experience given what previously worked well
in similar states.

This computational problem is so challenging that it proved to be a major barrier to
progress in artificial intelligence, until the recent emergence of deep reinforcement
learning. For example, the deep Q-network (DQN) is capable of learning high-
dimensional tasks like Atari video games with human level performance (Mnih
et al., 2015). The marriage of reinforcement learning and deep learning provides a
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framework for solving the task representation problem by leveraging the outstanding
ability of deep neural networks to extract useful features from naturalistic raw input.
In addition, deep reinforcement learning algorithms represent end-to-end models
for how sensory processing systems can be linked to action evaluation and selection
mechanisms. Thus, the human brain may utilize similar computational principles
in dynamic decision-making environments, which motivates our current study.

To uncover the mechanisms the brain uses to solve state-space representation prob-
lems, we scanned human participants with fMRI while they played three different
classic Atari video games: Pong, Enduro, and Space Invaders. These Atari games
are highly complex and unstructured compared to standard trial-based tasks, and
posed severe challenges to computational reinforcement learning approaches in ar-
tificial intelligence before the advent of deep reinforcement learning (Mnih et al.,
2015). Thus, we used DQN as a model for how the brain might solve the dimension-
ality reduction, state representation, and action evaluation problems humans face
when mapping high-dimensional pixel inputs to actions.

We first tested whether human behavior during Atari gameplay could be predicted
using the features in the hidden layers of a DQN that was independently trained on
the same games. This allowed us to establish whether the DQN ended up converging
on a similar behavioral policy to that used by human participants during gameplay.
We next examined the relationship between the features encoded in the hidden layers
of the DQN and patterns of activity in the human brain while human participants
played the Atari games. This enabled us to test whether the human brain utilizes
similar mechanisms for encoding state space representations as the DQN.

Additionally, comparing the neural predictivity of various control models and dif-
ferent features within DQN helped reveal which computational principles the brain
uses to encode a compact state-space representation and how this representation
changes between regions. We reasoned that abstract state-space representations
should only encode sensory information that is relevant for gameplay behavior, by
encoding the most important high-level features such as the position of the Pong
ball, while ignoring low-level features that are irrelevant. The richness of two out of
three of the Atari games (Space Invaders and Enduro) enabled us to determine that
abstract features which generalize across perceptually different inputs are mapped
to posterior parietal cortex areas.
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Results
We used three Atari tasks of varied complexity (Pong, Enduro, and Space Invaders,
Figure 4.1A). The relatively simple game of Pong involves getting the ball past your
opponent’s paddle while avoiding being scored against. Enduro is a driving game
where a player needs to drive as fast as possible while avoiding other cars, and
Space Invaders is a fixed shooter game where a player shoots enemy spaceships.
The trained DQN reaches human-level performance on all three games (Mnih et al.,
2015) (Table S1). Therefore, we hypothesized that the DQN agent could be utilized
as an end-to-end model for how the brain maps high-dimensional inputs to actions,
and that its hidden layers could serve as a model for state-space representation
(Figure 4.1B).

We acquired fMRI data from 6 participants who each completed 4.5 hours of
gameplay (1.5 hours on each game). This in-depth fMRI approach has been utilized
in previous studies utilizing similar encoding analyses (Güçlü and Gerven, 2015;
Kay et al., 2008). Rather than testing a large group of participants for a short
period of time as is typical in group fMRI studies, here we obtained sufficiently
large amounts of data in a small set of participants to enable us to robustly establish
in each participant the relationship between that individual’s gameplay and DQN’s
representations. For our analyses, we ran the frames from the human gameplay data
through DQN models that were trained independently from any human data. This
produced Q-value outputs and a large set of nonlinear stimulus features represented
by the activations in the four hidden layers (three convolutional, one fully connected)
for every time point the participants experienced.

DQN state-space representations resemble human state-space representations
Since DQN training was done completely independently of human data, it is unclear
whether the state-space representations learned by the DQN agent would resemble
the state-space used by human participants or if DQN would develop a policy that
resembled that of human players at all. For example, the DQN agent may have
not sampled and learned about the states the human participants visit during their
gameplay trajectories or may have developed strategies beyond or tangential to that
of humans.

The distribution of human actions appeared to diverge from the DQN’s when fed
human gameplay frames (Figure S1A). However, these differences are largely trivial
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due to an increased propensity for humans to take NOOP actions (meaning no action)
and a reduced tendency for action combinations. This is expected, since unlike DQN,
humans encounter a metabolic cost for taking actions and physical constraints limit
rapid switching from one action to another. Consequently, we focused on DQN
action values when human participants take a “move left” or “move right” action
(or any combination with fire or brake). Across all games, DQN action values were
significantly higher for the corresponding human action (Figure 4.2A). For example,
when a human participant moves left to avoid hitting a car in Enduro, DQN also
values moving left more than right. This suggests that the DQN mirrors human
policies at these crucial decision points.

The DQN’s state-space is not explicitly represented by the output action value layer;
rather, it is encoded in the four hidden layers preceding this output layer, as the
Q-values used for action selection are linearly computed from the last hidden layer.
Therefore, to investigate whether these internal representations could similarly map
to human policies, we tested whether the hidden layer activations could be used
to predict human behavior. Using a linear decoder, human actions (move left
vs. move right) in each of our 6 participants could be reliably predicted from the
hidden representations in all three games, demonstrating that DQN encodes stimulus
features about the state-space that can be used to model human actions (average
accuracy Enduro=84.3, Pong=75.0%, Space Invaders=67.9%; cross-validated by
run; chance level accuracy=50%; P < 0.001, block permutation test; Figure 4.2B).
We were also able to isolate contributions from different features and different layers
by averaging the absolute value of the coefficients across a layer (Figure S2). For
Enduro and Space Invaders, features from the last two layers, the last convolutional
layer and the fully connected layer after it, were the most useful for predicting
actions. This suggests that more nonlinear transformations of the sensory input
are needed to construct the features humans use to evaluate actions. For Pong, the
simplest game of the three, layers 1 and 2 contributed more, and the contribution of
each layer was more varied across participants.

Encoding model reveals a distributed network representing a state-space
After validating the use of DQN hidden layers as a model for human state-space
representation that could predict behavior, we wanted to localize brain regions
involved in encoding this state-space. In order to isolate brain responses with similar
representations to DQN hidden layers, we employed an encoding model analysis to
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create a linear mapping of neural network activations to voxel responses, as done in
previous studies that utilized deep neural networks for object recognition (Güçlü and
Gerven, 2015; Yamins, Hong, et al., 2014). After reducing the dimensionality of
the four hidden layers to 100 features each with PCA, the neural network activations
from all hidden layers were then used to model and predict the response of individual
voxels with ridge regression (Figure 4.3A).

Across the three games, we found that the DQN model could significantly predict
voxel responses throughout the dorsal visual stream and posterior parietal cortex
(PPC) (cross-validated by run; P < 0.001, FDR corrected; block permutation tests;
Figure 4.3B-E, Figure S2). prediction accuracies were significantly higher in the
dorsal visual stream regions extending into the parietal cortex, in comparison to
ventral stream regions extending into temporal cortex, suggesting a specific role for
the dorsal visual pathway in state-space representation for naturalistic visuomotor
tasks like video games (two-sample T-test, P < 1e-10, Figure S3A).The encoding
model also captured fMRI responses in motor and premotor cortex, SMA, and
superior frontal gyrus in all three games. Outside of primary sensory and motor
areas, many additional regions of PPC were mapped to DQN hidden layers, including
the superior parietal lobule, supramarginal gyrus, and precuneus. Previous studies of
object recognition have found evidence for a gradient in neural activity in the ventral
visual stream such that later neural network layers better explain neural activity in
higher order visual regions, while early layers better explain activity in the early
ventral visual pathway (Güçlü and Gerven, 2015). To determine whether a similar
pattern exists in our analysis, we examined the coefficients in the encoding models.
For example, to evaluate whether early visual regions were more selective of early
DQN layers, we averaged the coefficient magnitudes (absolute valued to account
for negative coefficients) across the 100 regressors in a layer to see if the first two
layers had higher coefficient magnitudes. However, no clear gradient was identified
for Enduro and Pong (Figure S3B). For Space Invaders only, the coefficients for
the first two layers were lower in PPC, motor, and frontal regions than early visual
regions. For all games, every region had very high magnitude coefficients for the
last convolutional layer (hidden layer 3). One possible explanation for the apparent
lack of evidence supporting a regional selectivity gradient across layers could be
that different subsets of features within a layer are mapped to different regions rather
than entire layers being mapped to different regions. We investigate this possibility
later in this chapter.
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Control analyses
An alternative explanation for the encoding model results is that they reflect basic
visual features and not information related to reward or action evaluation. To test this,
we performed control analyses with feature representations of variable complexity.
We used motor regressors as a basic motor control and principal components (PCs)
of the pixel space to control for low-level visual properties. We also included two
deep neural network (DNN) controls: a DQN agent trained on a separate game,
and a variational autoencoder (VAE) (Kingma and Welling, 2013), an unsupervised
representation learning method used previously to extract state representations (Ha
and Schmidhuber, 2018; Higgins, Pal, et al., 2017; Watter et al., 2015) (see Methods
and Figure S4A for examples of VAE outputs). Since the VAE does not encode
value or action information, this allows us to test whether this information is needed
to reach the prediction accuracies of the DQN encoding model.

DQN outperformed all control models (p < 1e-10, paired t test across voxels)
across games except in one participant (Figures 4A and S4B). Furthermore, DQN
was best in all regions of interest (ROIs) (except in one participant), especially
in PPC (Figures 4B and S5A). The relative performance of different feature sets
reveals the computational principles accounting for DQN’s ability to explain neural
activity. Nonlinear feature representations outperformed linear ones, as both the
DQN trained on another game and the VAE consistently showed higher prediction
accuracies than a linear principal-component analysis (PCA) model. Additionally,
the original DQN surpasses the other two DNN models by linking perception to
action and reward.

We next examined whether neural to DQN feature correlations are maintained when
all models are included in the same analysis to compete for variance. This reveals
whether DQN offers unique predictive information even after controlling for basic
visual and motor activity and alternative sensory models. For this, we constructed a
general linear model with the first 10 PCs of the most relevant models (DQN layers
1–4, VAE, and PCA) and other regressors of no interest such as game events.

We found that many voxels within each ROI are significantly modulated by unique
variance in each model, particularly DQN layers 3 and 4 (p < 0.001 family-wise
error rate [FWER] corrected, cluster level, F-test; Figure 4.4C). In Figure 4.4C,
the results show the proportion of voxels per ROI correlating with a given model
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above and beyond variance explained by every other model. After controlling for
both VAE and PCA, all DQN layers still explain significant variance in a substantial
proportion of the voxels per ROI. Additionally, VAE and PCA models explain
significant variance after controlling for the effects of the DQN layers. Since early
visual and motor regions encode features in DQN layers 3 and 4 when controlling
for the other models, this suggests that even these primary sensory regions process
more complex sensorimotor features than in conventional visual and motor models.

Representational geometry of DQN’s internal representations
The highly distributed representation and numerous parameters within a DNN make
its representation rather opaque. To shed light on what DQN is encoding, we utilized
representational similarity analysis (RSA). RSA allows comparison of the represen-
tational space of many different data types and models of varying dimensionality
(e.g., deep network, fMRI patterns, and hand-drawn features), helping to illustrate
how a model’s representation changes throughout a task as well as aiding compari-
son across models (Haxby, Connolly, and Guntupalli, 2014; Kriegeskorte, Mur, and
Bandettini, 2008).

We first examined Pong, which can be fully characterized with a few high-level
features that we manually annotated frame by frame: the positions of the two
paddles, the ball position (X and Y), and the ball’s velocity (X and Y). A useful and
compact state-space should encode this information in some form. An exemplar
dissimilarity matrix (DSM; see Methods) for these hand-drawn features is illustrated
in Figure 4.5A alongside the DSM of the last convolutional layer in DQN (layer
3) for the same game frames. Similarity is high between two time points when
feature vectors in those time points are close in a distance metric (i.e., Euclidean).
The representational geometry of DQN resembles the hand-drawn feature DSM,
suggesting that it may encode these game-relevant features directly.

To quantify similarities among different DQN layers, hand-drawn features, and
other models, we correlated the model DSMs with each other. In Pong, the internal
representations in DQN start to become highly similar to hand-drawn features in
layers 3 and 4 (Figure 4.5B; Spearman 𝜌 = 0.53, 0.55, respectively), suggesting
that DQN constructs a compact state-space representation by realigning its axes to
code for these high-level features in later layers. Although this object information
is present in the input pixels, they share a relatively low correlation with the pixel
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space (𝜌 = 0.058), suggesting some form of nonlinear transformation is required to
disentangle this information from the input (DiCarlo and Cox, 2007; Higgins, Amos,
et al., 2018). Additionally, the first layer of DQN in Pong is highly similar to the
pixel space and PCA model (𝜌 = 0.9; 𝜌 = 0.78), suggesting that the input data are not
yet highly compressed in the first layer of DQN. In contrast, the later layers become
increasingly dissimilar to the pixel and PCA representation as they start encoding
a lower-dimensional subspace for game-relevant features. A similar pattern is seen
in Space Invaders, where the first DQN layer is highly correlated to the pixel space
and PCA model (𝜌 = 0.91; 𝜌 = 0.69), but the last layer is highly dissimilar (𝜌 =
0.16; 𝜌 = 0.04). In Enduro, representations in all four layers are highly similar to
each other, suggesting that differences between them might be more subtle, raising
the possibility that there may be more interesting variance within a layer rather than
between layers. In all games, the VAE representations are moderately similar to the
DQN’s, especially for the first three DQN layers.

The brain’s state-space representation in Pong encodes the spatial information
about objects
Next, we tested whether the brain similarly encodes the spatial positions of the
objects in Pong by computing DSMs from voxel activity and correlating these
DSMs with a hand-drawn feature DSM (downsampled to fMRI resolution). For all
subjects, the hand-drawn feature DSM was significantly correlated to all brain areas
in the sensorimotor pathway previously identified in the encoding model analyses
(Figures 5C and S6 for individual subjects; block permutation tests, p < 0.01, FWER
corrected for multiple comparisons). This suggests that similarly to DQN, the brain’s
state-space representation in Pong involves coding for high-level features tracking
the spatial positions of the relevant objects.

Additionally, brain DSMs are significantly correlated to DQN layers 3 and 4 for all
subjects in early visual, PPC, and motor/frontal ROIs (and to DQN layer 2 for early
visual regions). Representations in early visual areas are already highly correlated
to hand-drawn features, which may explain why these regions prefer DQN layers 3
and 4 rather than earlier layers.

Action values encoded in motor and premotor areas
DQN hidden layers encode a state-space to compute Q-values in the output of the
network for action evaluation. To identify whether similar action value computations
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occur in the brain, we implemented a computational model-based general linear
model (GLM) analysis (John P. O’Doherty, Hampton, and Kim, 2007) using the
DQN output as the computational model.

The action value regressor identifies regions encoding continuous values for the
chosen DQN action as a function of the state the participant sees (action advantages
used; see Methods). Significant encoding of action values was found in premotor,
SMA, and primary visual and motor cortex in all games (Figures 6B and S7).
Significant clusters at p < 0.001 (FWER corrected, cluster level) are located in motor
or SMA/premotor regions for all participants in Enduro, five out of six participants
in Pong (six out of six at uncorrected p < 0.001), and three out of six participants
in Space Invaders. These results indicate that action values are computed in SMA
and premotor cortex during Atari gameplay.

Convolutional filter analyses
Thus far, we have shown that a brain-like representation emerges most notably in
DQN layers 3 and 4. We see that all ROIs, even early visual regions, prefer these last
two DQN layers, suggesting multiple nonlinear transformations of the input pixels
are necessary to derive features most predictive of cortical responses during Atari
gameplay. However, even though the last two layers best predict voxels across the
brain, different regions might prefer different artificial neurons or features within
these layers. If so, could we leverage this variability to further shed insight into the
features the brain is encoding and how the brain’s internal representations transform
from one region to another?

We test this by retraining the encoding model on each convolutional filter in the
last convolutional layer separately (layer 3, 64 filters; DQN architecture illustrated
in Figure 4.1B). The convolutional filter of a convolutional neural network (CNN)
represents a feature the network is looking to detect in the input, and this feature can
be somewhat visualized with guided backpropagation/deconvolution (Springenberg
et al., 2014; Zeiler and Fergus, 2014) (Figure 4.7E). For example, early layers in a
typical CNN encode low-level features such as edges and contours.

We then estimated how well each filter predicted voxel responses by averaging pre-
diction accuracies across voxels in our ROIs, a metric we term “neural predictivity.”
This quantifies how well each filter explains neural responses in general and enables
us to test whether neural predictivity changes across different ROIs.
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The RSA results in Pong suggested that the shared representation between the
brain and DQN in Pong corresponds to a mutual encoding of the spatial positions of
objects. We tested this explicitly with our neural predictivity metric, as convolutional
filters containing more information about high-level features may better explain brain
responses. To quantify this, we calculate the degree to which a layer 3 filter encodes
the Pong hand-drawn features with a mutual information metric.

We found that filters with higher neural predictivity encode more information about
the hand-drawn features. These correlations are significant for ball position, ball
velocity, and paddle positions in every participant (p < 0.0001; Figure 4.7A), indi-
cating that the nature of the DQN to brain mapping in Pong lies at the representation
of the high-level features.

Filter neural predictivity across regions
To estimate whether different regions prefer different filters, we averaged prediction
accuracies for each filter across each ROI. We then computed correlations between
the 64 filter scores across regions. For Pong, high correlations between filter
scores were found across all regions, suggesting that the same filters are useful for
explaining responses uniformly across the brain (Figure 4.7B).

However, in Enduro and Space Invaders, different ROIs only have partially overlap-
ping sets of filters mapped to them, suggesting a more heterogeneous representation
across regions (Figure 4.7B). We found visual, parietal, and motor clusters of filter
encoding with high correlations within cluster and moderate correlations between
cluster. These patterns may differ from the more homogeneous filter selectivity in
Pong because of the increased complexity of these games.

Neurally predictive filters generalize across participants and can predict be-
havior
To investigate if all our participants converge on similar useful representations
for solving the task, we correlated each filter’s neural predictivity score across
participants. We observed high correlations between all participants in all games
(Figure 4.7C), meaning the same filters were mapped to the brain across participants.

This result also suggests that some filters in the network are universally useful for
explaining neural responses and some are universally useless. Enduro layer 3 filter
40 was one of the best-fitting filters for explaining brain activity in every participant.
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Through guided backpropagation (Springenberg et al., 2014), we could see that the
filter detects cars and the sides of the road, which are useful features for acting in the
game (Figure 4.7E). By contrast, Enduro layer 3 filter 56 was one of the worst-fitting
filters for explaining brain activity in five out of six participants. This filter detects
the score at the bottom of the screen, which is correlative of reward, since the score
board changes when reward is received, but not causally related to reward.

A sample of filter deconvolutions for five random filters in each game is also plotted
in Figure S8A.

Next, we evaluated how well each filter modeled human behavior by retraining the
decoding human behavior model (Figure 4.2B) on every filter in layer 3 separately.
Similar to the neural predictivity analysis, this allows us to probe how useful every
layer 3 filter is for predicting human actions. We found correlations between how
well a filter explains voxel activity (the neural predictivity score) and how well a
filter explains human behavior (Figure 4.7D). This correlation was most pronounced
for Enduro and Pong (p < 0.05 in six out of six participants in Enduro and six out
of six participants in Pong, but only two out of six participants in Space Invaders).
Thus, the brain encodes the features most relevant for behavior, and DQN encodes
features that not only are brain-like in a universal way across participants, but also
predict human actions.

State-space representations are nuisance invariant in PPC
An abstract state-space representation should ideally be pruned of sensory features
not necessary for learning or behavior. For Pong, this involves encoding high-level
features about the relevant objects in the game. However, the other two games
are more complex and involve a large number of features that are difficult to hand
label. Thus, rather than isolating relevant high-level features in these games, we
next identify irrelevant features that an abstract state-space should ignore.

We wanted to find brain regions where the state-space encoding is insensitive to
sensory information irrelevant for task performance, a pattern known as nuisance
invariance (Lenc and Vedaldi, 2015). For Enduro, one nuisance variable is the
weather and time of day. Driving gameplay starts off during the day and gradually
becomes nighttime with various weather patterns. The colors of the pixels and visual
input dramatically change, while the overall gameplay remains mostly the same.
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Formally, this weather variable had no relationship with the participant’s actions in
an information-theoretic sense (see Methods). A good state-space representation
should localize objects independently of colors in the game. Thus, it should often
project inputs that are very far away in the pixel space to similar regions of the latent
state-space if an agent should act similarly across them (illustrated in Figure 4.8A).
In contrast, even small changes in pixel space may necessitate opposite actions.
For example, in Figure 4.8A, an agent should move left or right depending on the
location of the car in front of it, even though the two pairs of frames are perceptually
similar.

For Space Invaders, the number of on-screen invaders explains a lot of variance
in the pixel space but has a marginal effect on what actions participants take (see
Methods). This is because as an agent kills more invaders, the screen becomes more
and more black. This information does not heavily impact which actions an agent
should take, because the relative positions of the invaders above an agent matter the
most.

To estimate whether ROI representations are nuisance invariant, we quantified the
mutual information between a filter and the nuisances identified for Enduro and
Space Invaders, giving each filter a metric for how insensitive it was to the nui-
sances (see Methods). We computed the correlation between each filter’s nuisance
invariance, and its neural predictivity in a ROI, which we define as a nuisance invari-
ance score for each region (normalized across voxels; see Methods). Simply put,
this score estimates how each region prefers the filters that are nuisance invariant.

Regions in PPC and in the late dorsal visual stream (i.e., lateral occipital cortex
[LOC]) were more insensitive to nuisances than early visual cortex regions V1–V4
(Figures 8B, 8C, S8B, and S8C) in both games. Early visual cortex regions exhibited
the lowest nuisance invariance scores in both games, suggesting that filters mapped
to these regions still encoded the low-level nuisance variables. Additionally, LOC,
which is later in the dorsal visual pathway, had a higher nuisance invariance score
than these earlier visual regions. For Enduro, a PPC region exhibited the highest or
second highest score of any region in every participant. In five out of six participants
in Space Invaders, premotor/prefrontal cortex regions also exhibited high nuisance
invariance scores.
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These results suggest that irrelevant visual input is stripped from the neural code
as information passes through the dorsal visual stream to the PPC. This leads to
a lower-dimensional, compressed, and abstract representation that projects similar
game situations to the same part of the state-space as depicted in Figure 4.8A.

Discussion
One of the major unresolved questions in decision-making neuroscience is how
relevant features from the environment are identified, extracted, and relationally
structured to be used for action evaluation and selection in real-world environments.
Here we aimed to address this question by using a highly complex set of tasks,
whereby humans were asked to play three different classic Atari games (Pong, En-
duro, and Space Invaders) while undergoing fMRI scans. Taking our cue from
recent advances in machine-learning and artificial intelligence (Mnih et al., 2015),
we utilized a computational modeling approach where a deep neural network, which
has classically been applied to high-dimensional categorization problems, is mar-
ried to a reinforcement learning system. Using the deep reinforcement learning
approach, we were able to demonstrate that representations in DQN show a re-
markable similarity to representations used by humans. Features in DQN hidden
layers could predict human actions and fMRI activity in a distributed sensorimo-
tor network extending from the dorsal visual stream and posterior parietal cortex
to premotor areas. Not only did the DQN model significantly outperform control
models of varying levels of complexity, but DQN features also explained unique
variance in these ROIs when controlling for the other models. These results suggest
that these regions do not simply encode low-level sensory information, but produce
a state representation that links sensory information to reward and action selection.
Further validating this approach of using DQN as an end-to-end model of how the
brain maps pixel inputs to actions, we found an encoding of the action value output
of the DQN agent in the supplementary motor area, along with primary visual and
motor cortex. In alignment with previous results from a more traditional trial-based
study (Wunderlich, Rangel, and John P. O’Doherty, 2009), our results support a role
for SMA in action valuation and generalize this neural process to an environment
with fast moving and high-dimensional state dynamics. When taken together, these
results help unveil the nature of the shared representation between DQN and the
human brain during Atari gameplay.
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The present findings build on a growing catalogue of intriguing similarities shared
by deep neural networks and the human brain (Eickenberg et al., 2017; Güçlü and
Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014; Wen et al., 2018; Yamins,
Hong, et al., 2014; Yamins and DiCarlo, 2016; Wang et al., 2018; Iigaya et al.,
2020). Neural activity across regions of the ventral visual system have been found
to resemble activation patterns in different layers of deep learning networks trained
to recognize objects or even to predict the value of visual art (Iigaya et al., 2020).
In a converging line of research, we also found strong representational similarities
between a model network that can perform complex tasks in an intelligent manner
and activity in the brain while human participants performed those same tasks.
Nevertheless, to our knowledge this is the first study directly applying a deep RL
model to neuroscientific data in a naturalistic task, as research to connect these two
fields is still in its early stages (Botvinick, Wang, et al., 2020).

Unlike the passive visual feature encoding used for object recognition or aesthetic
valuation, we did not find evidence for a gradient of abstraction in the mapping of
early layers to early visual regions and later layers to brain regions further along in
the processing pathway. All regions of interest consistently preferred DQN layers
3 and 4 over the first two layers of the network. By examining the representational
geometry of different DQN layers and other models, we were able to identify compu-
tational principles that could account for this pattern. For Pong and Space Invaders
especially, the internal representation is not highly dissimilar to the pixel space
until DQN layers 3 and 4, whereas the information reaching early visual cortex may
already be heavily compressed. Prior research suggests that a considerable amount
of compression and nonlinear processing of visual input before the cortex, with a
combination of retina, LGN processing, eye movements, and recurrence/feedback
connections (Gollisch and Meister, 2010; Hayhoe and Ballard, 2005; Hosoya, Bac-
cus, and Meister, 2005; Kietzmann et al., 2019). The relative roles of each of these
components in shaping the representation in the visual cortex necessitates future
research. For Pong, the RSA and convolutional filter analyses also suggest that both
the brain and later layers of DQN exhibit a state-space representation that encodes
high-level features about the spatial positions of the ball and paddles. This may
account for why early visual regions have more similarity to layers 3 and 4, since
DQN only begins to disentangle these features from the pixel space in these later
layers. Additionally, many of the DNNs used in visual neuroscience have 8 or more
layers, with layers 2-4 often constituting the most similarity to early visual cortex,
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rather than layer 1 (Khaligh-Razavi and Kriegeskorte, 2014; Seeliger et al., 2018;
Wen et al., 2018). Thus, if the network had more layers, it is possible that gradient
of representation at the layer level would emerge, with early visual regions still
preferring layers 3 and 4, but more anterior regions mapping to even deeper layers.
In addition to more layers, future studies could also utilize architectures with a wide
number of more biologically plausible characteristics, such as attention processes
and recurrent connectivity. However, for our purposes DQN provides a satisfactory
account of both behavior and neural data, and the most interesting variance for ex-
plaining cortical activity is packed into layers 3 and 4. Therefore, we analyzed how
the different features within layer 3 (the last convolutional layer) explain activity
across the brain.

To do so, we retrained separate encoding models on stimulus features from the
convolutional filters in DQN layer 3. This analysis showed that filters most predictive
of voxel activity are also predictive of human behavior, suggesting that these features
are used by the brain to guide behavior. Filter selectivity is highly correlated between
participants, indicating a common task representation across individuals. For Pong,
the filter analysis provided more evidence that this common state-space represents
high-level features such as the spatial positions of the relevant objects. This is in
line with a recent proposal that the dorsal stream and PPC encode spatial positions
of objects by projecting high-dimensional inputs onto a low-dimensional manifold
of physical space (Summerfield, Luyckx, and Sheahan, 2020).

For Enduro and Space Invaders, the mapping from DQN features to neural responses
was more heterogeneous between regions, suggesting that different regions preferred
different underlying features in the network. We found that the posterior parietal
cortex (PPC) encodes features that are more generalizable and nuisance invariant
than early visual regions. Thus, the representation in PPC is able to ignore and
abstract away information from the sensory stream that is not relevant for behavioral
performance, such as the changing colors and backgrounds in Enduro. These
findings directly support a recently proposed theory that PPC regions act as a
central interface for isolating behaviorally relevant stimuli by integrating visual,
cognitive, and motor information (Freedman and Ibos, 2018). These ideas can
also be synthesized with a substantial literature in motor neuroscience that suggests
PPC regions are involved in sensorimotor transformations, linking perception to
decision-making and action (Andersen and Buneo, 2002; Andersen and Cui, 2009;
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Gold and Shadlen, 2007). This function is highly compatible with the role we
ascribe to PPC regions in this paper, as a state-space representation that links
perception to action in a reinforcement-learning system. Past studies have also
associated the parietal cortex with updating the state-space representations needed
for reinforcement-learning, with a specific role in encoding the relationship between
states, actions and subsequent states (Gläscher et al., 2010). The present work
suggests that these past findings and proposed theories can be integrated into a
broader conceptualization of the posterior parietal cortex as encoding abstract state-
space features that link perception to learning and action selection.

Overall, our results point toward key properties fostering an effective state-space for
tasks of real-world complexity. Initially, compression to a lower-dimensional space
takes place to avoid the curse of dimensionality, where learning complexity scales
exponentially with the number of states to learn about. However, exploiting the
raw statistical properties of the input data, as in unsupervised learning techniques,
is not enough; it must also disentangle a purely sensory manifold into appropriate
axes linked to rewards and the actions that deliver them (DiCarlo and Cox, 2007;
Higgins, Amos, et al., 2018). For Pong, these axes code for relevant data-generating
factors, the spatial positions of the ball and paddles. In addition, a state-space would
likely benefit from being invariant to nuisances irrelevant for task performance
(Lenc and Vedaldi, 2015). This property further reduces state-space dimensionality
by only transmitting useful signals through an information bottleneck (Achille and
Soatto, 2018; Shwartz-Ziv and Tishby, 2017). This added compression helps protect
against overfitting by shaping an abstract task representation orthogonal to low-level
sensory properties that can change in future settings. Humans are clearly equipped
with abstract representations with this property (Behrens et al., 2018), as they can
seamlessly adapt to novel circumstances, such as driving on new roads without
having to relearn the driving process.

It should be noted that the DQN objective function and architecture itself does
not explicitly promote the learning of nuisance invariant representations, and most
filters still retain information about the nuisances we highlighted (weather/time of
day in Enduro, number of invaders left in Space Invaders). Additionally, DQN
performance is not robust to even moderate visual changes such as the contrast
of the image space during the testing of the algorithm if the change was not in the
training distribution. Most deep reinforcement learning algorithms are not explicitly
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trained to learn a representation (unlike representation learning algorithms), but are
only trained to approximate value-based and policy-based functions with a deep
neural network and thereby learn a task representation as a side-effect. These
approaches are plagued with sample efficiency and generalization issues (Kaiser
et al., 2019; Lake et al., 2017). Therefore, we suggest that the sample efficiency and
generalization performance of deep reinforcement learning algorithms would greatly
benefit from explicitly learning a representation with the principles we previously
outlined and other characteristics in line with the inductive biases humans possess
about the structure of the world (Botvinick, Ritter, et al., 2019). Promising work
has started to develop methods for accomplishing this goal in the emerging field
of state representation learning (Anand et al., 2019; Botvinick, Ritter, et al., 2019;
Ha and Schmidhuber, 2018; Higgins, Pal, et al., 2017; Jaderberg et al., 2016; Van
den Oord, Li, and Vinyals, 2018; Lesort et al., 2018; Srinivas, Laskin, and Abbeel,
2020; Zhang et al., 2020). We also hope that our work will promote more cross-talk
between decision neuroscientists and artificial intelligence researchers at the level
of representations for a reinforcement learning system, whereas thus far most of
the interaction between these fields has occurred at the level of learning signals
(Botvinick, Wang, et al., 2020; Dabney et al., 2020; Niv and Langdon, 2016).

The present findings suggest that even with notable architectural differences between
the human brain and deep RL models, DQN still does remarkably well in capturing
variance in both human behavior and brain activity throughout the dorsal visual
stream and the parietal and premotor cortices in high-dimensional decision-making
contexts. These findings further help to establish the deep and sustained relationship
between progress in artificial intelligence and in computational neuroscience. Our
results suggest that this interdisciplinary interplay is continuing to evolve and that in
particular, a synergy between deep RL and decision neuroscience offers the contin-
uing prospect to yield rich insights about the internal representations of intelligent
systems.

Methods
Participants
We recruited six healthy participants from the Caltech and Pasadena community
(4 male and 2 females, age 26 ± 3.4). All participants performed the tasks over
the course of four separate days and received a participation fee of $40 a day. The
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Caltech Institutional Review Board approved the protocol, and all participants gave
their informed consent on each day of the experiment.

Experimental Paradigm/Atari Gameplay
Across the four days of the experiment, each participant went through 33 runs of
gameplay. The runs were 10 minutes in duration, with 8 minutes of gameplay in
between a minute of rest and a fixation cross before and after gameplay. Eyetracking
was recorded, but not analyzed for this paper. Each participant played the games
Space Invaders, Pong, and Enduro 11 times each. On day 1, each game was played
twice, in random order with the one constraint of never playing the same game twice
in a row. The six runs were then followed by anatomical scans on day 1. On days
2-4, each game was played three times, in random order with the same constraint of
never playing the same game twice in a row. Before scanning on the first day, each
participant went through a training session to become familiar with each game by
playing each game for 5 minutes on a laptop.

The Atari games were presented through the Arcade Learning Environment (Belle-
mare et al., 2013), with modified code to log actions, rewards, MRI pulses, and
frames with proper timestamps. A button box with four buttons was used as an
Atari controller (Figure 4.1A). Participants held the button box with two hands,
using their left thumb to press the 1 and 2 buttons corresponding to move left and
move right, respectively, and using their right thumb to press the 3 and 4 buttons to
hit brake and fire, respectively. Brake is only used in Enduro, and fire is only used
in Enduro and Space Invaders.

In Enduro, participants control a race car that must move as fast as possible while
avoiding other cars on the road. Participants get a reward of 1 for every car they pass,
and the main objective is to pass a certain number of cars before the end of the day
(200 cars in level 1 and 300 cars in level 2). The sky and weather patterns change
throughout the gameplay to simulate the passing of time in the day (’sunny,’ ’snow,’
’blue dusk,’ ’red dusk,’ ’night,’ ‘fog,’ ’sunrise’), with the sky eventually becoming
black and the sun beginning to rise before time runs out after 13312 frames.

In Pong, points are awarded to a player when the white ball moves past their
opponent’s paddle. Participants control the green paddle on the right side of the
screen and try to defend their goal and score on their opponent’s goal by moving
their paddle up and down in the white ball’s path.
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In Space Invaders, participants control a green ship that can move from left to right
at the bottom of the screen. The objective is to destroy enemy ships to get reward
and avoid being hit by missiles from the enemy ships while having 3 lives before
the game ends.

fMRI data acquisition
We collected two datasets on two separate scanners at the Caltech Brain Imaging
Center (Pasadena, CA). The first dataset included two participants and was collected
using a 3T Siemens Magneto TrioTim scanner. After an upgrade to a Siemens
Prisma, a second dataset was collected with four participants. Both datasets used
a 32-channel radio frequency coil. These parameters were shared across the two
sequences: whole-brain BOLD signal acquired using multiband acceleration of 4,
56 slices, voxel size = 2.5mm isotropic, TR = 1,000ms, TE = 30 ms, FA = 60°, FOV
= 200mm x 200mm. At the end of the first day of scanning, T1 and T2 weighted
anatomical high-resolution scans were collected with 0.9mm isotropic resolution.

fMRI preprocessing
Data was preprocessed using a standard pipeline for preprocessing of multiband data.
Using FSL (Smith et al., 2004), images were brain extracted, realigned, high-pass
filtered (100 s threshold), and unwarped. Images were denoised by ICA component
removal. Components were extracted using FSL’s Melodic, classified into signal or
noise with a classifier trained on separate datasets for the first dataset, and manually
classified for the second dataset since the scanner was different from the one used in
the classifier training set. T2 images were aligned to T1 images with FSL FLIRT,
and then both were normalized to standard space using ANTs (using CIT168 high
resolution T1 and T2 templates (Avants, Tustison, Song, et al., 2009; Tyszka and
Pauli, 2016). The functional data was first co-registered to anatomical images using
FSL’s FLIRT, then registered to the normalized T2 using ANTs. For GLMs in SPM
12 (Penny et al., 2011) (encoding model control GLM and action value analysis)
the data was spatially smoothed in FSL with a 5-mm FWHM Gaussian kernel.
Smoothing was not initially applied to the fMRI images for the voxelwise encoding
model analyses to preserve fine-grained detail at the voxel level but was applied with
a 5-mm kernel for visualization.
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Deep Q-Network training
Deep Q-networks were trained separately for each of the three games using the
Neon deep learning library, by making modifications to open source code https:
//github.com/tambetm/simple_dqn. As in the original paper (Mnih et al.,
2015), DQN takes a tensor of four input frames as input, has three convolutional
layers (Layer 1: 32 filters of 8x8 with stride of 4; Layer 2: 64 filters of 4x4 with stride
of 2; Layer 3: 64 filters of 3x3 with stride of 1) followed by one fully connected layer
(512 units), and outputs Q-values for every available action. DQN takes the action
with the highest Q-value. Convolutional layers are locally connected with each
neuron having a receptive field. Convolutional filters learn visual features which
are then convolved across the input to detect the presence of that feature. Fully
connected layers do not have this local connectivity as every neuron is connected to
every neuron in the previous layer.

The Arcade Learning Environment was used as the Atari environment during train-
ing (Bellemare et al., 2013). The training consisted of 100 epochs of 250,000 steps
in each epoch for each game. One modification was made for Pong by restricting
the action set to noop, up, and down, since the default available action set for this
game includes redundant actions up/right, and down/left.

To output Q-values and hidden unit activations that are used for all analyses, the
human gameplay frames were run through the trained network. Since the input
to DQN is a tensor of four consecutive images, a frame from the human data is
concatenated with its three preceding frames. Thus, the fourth frame in a run is
the first one put through DQN. In Enduro, each level is won after passing 200 cars
in the first level and 300 cars in the second level, signified by flags appearing on
the scoreboard. When this happens, the game engine no longer gives reward until
the day ends/clock stops even though the participant is still tasked with controlling
the car and trying to avoid other cars. Thus, the network would detect the flags
and predict 0 reward when this happened, resulting in meaningless Q-value traces.
This would happen occasionally in a participant’s run and would last a couple of
minutes. To ensure that the activations and Q-values we extracted from the network
were useful, we altered the images from Enduro human gameplay before they were
put through DQN so that the scoreboard would never change. Specifically, the
scoreboard from a reference image midway through a run was copied into every
frame.
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Human actions analyses
To analyze the human state-space in relation to the DQN’s state space, we analyzed
the actions participants took and how these compare to the actions DQN selects when
fed the human gameplay data. This initially involved plotting the distributions for the
actions executed by DQN and human participants (Figure S1A). To analyze DQN’s
action values with respect to human actions, the Q-values for every participant
were included after downsampling by 10 and removing the first 100 frames in a
run. Action values were computed with an action advantage function by subtracting
the average Q-value as an action-independent baseline (Sutton and Barto, 2018).
This allows us to isolate action related variance from state value related variance.
Action values/advantages were then LOWESS smoothed across frames (using the
Statsmodels Python package with the “frac” parameter = 0.005) and normalized
with Scikit-learn’s StandardScaler. All the frames involving a “move-left” or “move-
right” human action were selected, including combination actions (ie. “fire left”).
Then average action values for the corresponding frames are computed across a
human action category. For Enduro and Space Invaders that have combination
actions, the maximum Q-value for a “move” action was taken (ie. for the “move
left” Q-value in a frame in Enduro, we take the max between “move left,” “brake
left,” and “fire left”). To test for significance, we test the interaction term in the
linear model Action Value C(DQN Action Value) + C(Human Action) + C(DQN
Action Value):C(Human Action) with Statsmodels.

For decoding human actions, we model human actions with the hidden layers of DQN
using LASSO logistic regression (L1 regularization) using Scikit-learn functions and
custom Python code. Each hidden layer was projected to a dimensionality of 100
using PCA, giving a concatenated feature set of 400. Time points were downsampled
by a factor of 10 to ease computation. The PCA transformation matrices were
estimated using the frames for Sub001. These transformation matrices were used in
every participant, to ensure that the PCs of every participant would be in the same
space. LASSO logistic regression classifiers were then trained to predict left versus
right actions, after frames where no action or other actions occurred were removed.
The time points when other actions were selected in combination with left versus
right were also included. Decoding accuracy was determined by cross-validating
across runs. Optimal regularization parameters were found through grid search and
were fixed across participants per game. Decoding accuracies were tested against a
null distribution created from permutation tests of 1000 permutations. To maintain
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the autocorrelation of action trajectories, the cross validated data was shuffled in
blocks of 40 time points (Wen et al., 2018). The predicted responses from the
model were then compared against these shuffled datasets. The accuracy of every
model in every participant exceeded the accuracy of the maximum value in the null
distributions. To determine which layers were most useful for decoding actions, the
model was trained on all runs (no cross-validation) and coefficients were absolute
valued and averaged by layer.

Encoding model
To map hidden representations in DQN to voxels in the brain, we performed deep
learning based encoding model analyses (Güçlü and Gerven, 2015). All analyses
were run in custom Python code using functions from PyMVPA (Hanke et al., 2009)
and Scikit-learn. First, image frames from the participant’s gameplay data were run
through the trained DQNs in order to generate neural network activations in every
layer at every time point. As done in the decoding human actions analysis, PCA
is used to reduce the dimensionality to 400 (100 PCs per layer). To downsample
from the video game framerate to the TR of 1 Hz, each feature’s values are averaged
over a second. Then, copied time courses are shifted by both 5 s and 6 s to account
for the hemodynamic delay of the fMRI signal. These two shifted time courses
are concatenated into a feature set of 800. Next, voxelwise ridge regression (L2
regularization) is performed to predict each voxel’s responses as a linear combination
of this feature set. Optimal regularization parameters were found using grid search.
Voxels are preprocessed as described above without spatial smoothing. Each voxel’s
response is z-scored to ensure every voxel is on the same scale. Accuracy is estimated
using cross-validation across runs and calculating the Pearson correlation between
predicted and actual time courses.

Statistical significance was quantified through permutation tests (since fMRI data
may not be normally distributed) methods similar to previous approaches where
100,000 permutation tests are performed on 14 random voxels (Eickenberg et al.,
2017). In each permutation, the time course of the held-out validation set was
shuffled in a blockwise manner of blocks of 40 TRs to keep autocorrelation intact
(Wen et al., 2018). The Pearson correlation between the shuffled time course and
the predicted responses from the model were then computed. These permuted
distributions are then concatenated, and voxel accuracy scores are compared to this
concatenated null distribution to obtain one-sided p values for every voxel. Rather
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than selecting 14 completely random voxels to estimate a global null hypothesis
for all brain voxels, we took a more conservative approach and selected 14 random
voxels who were in the 90th percentile or above of scores in the encoding model
analysis. This condition ensured that voxels with strong signal were selected.
Voxels were then multiple comparisons corrected using FDR and plotted at the
corrected threshold as indicated. Maps are transformed to standard space and
spatially smoothed (5mm kernel) for visualization. To estimate layer selectivity, the
coefficients from the models were absolute valued, averaged across layer, and then
averaged across region. Average coefficients across participants are shown in Figure
S3B.

Regions of interest and atlases
To define regions of interests for visualization and further analyses, we used the
Harvard-Oxford Atlas. To distinguish V1, V2, V3, and V4 in the visual cortex,
we used the Juelich Histological Atlas. Both atlases were accessed with FSLview.
The early visual ROI consists of V1-V4; PPC includes LOC superior, superior
parietal lobule, supramarginal gyrus, precuneus; Motor/Frontal includes motor and
premotor cortex, SMA, and superior frontal gyrus.

Encoding model control analyses
Various control models were tested in the encoding model to help identify what
computational principles play a role in the DQN model explaining neural responses.
In an identical pipeline as the DQN encoding model analysis, these control feature
sets were downsampled and time shifted by 5 s and 6 s (other than motor regres-
sors where this preprocessing has already taken place) before cross-validated ridge
regression was performed to compute prediction accuracies for every voxel.

Motor
Two motor regressors corresponding to making responses with the left and right
hands were used. These regressors were taken directly from the GLMs in SPM for
action value that are described below.

PCA
To construct a control model for basic visual features that represented the statis-
tical structure of the images, the 84x84x4 pixel tensor was linearly projected to
dimensionality 100 with principal component analysis using Scikit-learn. Although
the DQN encoding model includes 400 features and we match this dimensionality
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with the cross game DQN and VAE control models, using 100 principal compo-
nents outperformed using 400. This linear projection of the input uncovers features
that explain the low-level statistical structure in the input that vary the most during
gameplay without any representation of reward. Similar approaches have been used
to explain neural responses to a remarkable degree throughout the visual pathway
(Chang and Tsao, 2017; Olshausen and Field, 1996) (Chang and Tsao, 2017; Ol-
shausen and Field, 1996). Additionally, since we perform PCA on the tensor of
4 consecutive frames that are input into DQN, the principal components uncover
statistical properties of motion and change detection that are appropriate to model
the dorsal visual pathway. As with the other PCA analyses, transformation matrices
were estimated using sub001’s data and used across participants to project every all
data to the same space.

These principal components were also used to estimate their representation of the
nuisance variables. Scikit-learn’s ‘mutual_info_classif’ function was used to calcu-
late the mutual information between the first principal component and the nuisance
variables.

Cross game DQN
We also compared our encoding model results with a DQN trained on a different
game. The Space Invaders network was used as this control for Enduro, Enduro for
Pong, and Pong for Space Invaders. Other than shifting the networks, the regressors
were constructed identically to the original encoding model.

VAE
To compare DQN with another state of the art method for state representation learn-
ing using a deep neural network (Higgins, Pal, et al., 2017; Mohamed and Jimenez
Rezende, 2015; Watter et al., 2015), we trained variational autoencoders in Ten-
sorflow for each game by modifying an existing template https://github.com/
tensorflow/docs/blob/master/site/en/tutorials/generative/cvae.ipynb.
The architecture we used was designed to be as similar as possible to DQN.

This consisted of an encoder of three convolutional layers (Layer 1: 32 filters of
8x8 with stride of 4; Layer 2: 64 filters of 4x4 with stride of 2; Layer 3: 64 filters
of 3x3 with stride of 1), followed by a fully connected layer to output the set of
mean and log-variance parameters for the latent representation of dimensionality
400. The decoder architecture consisted of a fully connected layer followed by four
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convolution transpose layers (Layer 1: 64 filters of 4x4 with stride of 1; Layer 2:
64 filters of 4x4 with stride of 2; Layer 3: 32 filters of 8x8 with stride of 2; Layer
4: 1 filter of 8x8 with stride of 1). All activation functions are rectified linear
units (ReLU). The network was trained on each game separately by maximizing the
evidence lower bound (ELBO) on the marginal log-likelihood of the training data.
Data frames of the first 8 runs of the first participant were used as the training set,
and frames from the last 3 runs were used as the test set for tracking generalization
(training sets and test sets were downsampled by 5 to ease computation). Training
included 1000 epochs over the entire training set, but converged well before that for
every game (training loss for first 500 epochs plotted in Figure 4.4A). After training,
performance on the test set was nearly equivalent to performance on training set.

The human frames from every participant were then run through the trained encoder
to map them to the latent distribution, which outputs 400 means and log-variances
for the latent dimensions. The means were then used as a 400 dimensional stimulus
feature set for the control encoding model, and preprocessed with downsampling
and time lags identically to the other feature sets used for encoding models.

General linear model (GLM) control analysis
In order to test for whether brain responses could still be predicted by DQN when
controlling for the other models and game events, we constructed GLMs in SPM12
similarly to previous approaches (Iigaya et al., 2020). The first 10 principal com-
ponents for each DQN layer, VAE, and PCA models were added as parametric
modulators to the same onset at the temporal resolution of the 1 Hz TR after av-
eraging across volumes. Orthogonalization was turned off. Other regressors of no
interest included all of the regressors described in the computational model-based
GLM section below, including regressors for motor responses, reward/punishment,
and action values. To quantify a voxel’s correlation to the unique variance in each
of the six models (four DQN layers, VAE, PCA) F-tests were computed on the betas
for the 10 PCs in each model, which tests whether a voxel is significantly modulated
by at least one principal component in a model. The percentage of significant voxels
in a region of interest for each model is reported in Figure 4.4C.

Control region analysis
To rule out the possibility that our analyses are picking up on artifacts such as head
motion that affect the entire properties of the fMRI images, we completed a control
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region analysis with one subject (sub001). A control region was represented by two
spheres of air drawn directly in front of the brain. The encoding model was then
run on every voxel within those spheres and the distribution of prediction accuracies
were plotted alongside comparison ROIs (V1 and superior parietal lobule) in Figure
S5B. No voxels in these spheres had significant prediction accuracies and the whole
distribution of scores were very close to zero.

Representational similarity analysis
We performed representational similarity analyses (RSA) to examine how the rep-
resentations transform throughout the DQN layers. Dissimilarity matrices (DSMs)
were constructed at the frame level for DQN layers 1-4, VAE, PCA, the pixel space,
and the hand drawn features for Pong. Each model was first downsampled by 20 and
data was concatenated across runs within subject. DSMs were constructed by com-
puting pairwise comparisons across frames for each model with pyMVPA. Within
day comparisons were removed to avoid potential confounds due to similarity being
driven by patterns being in the same run or day. For the pixel space, the 84x84x4
tensor of images that are fed to DQN were reshaped into a 28224 dimensional re-
sponse vector. For the PCA model, weights fit to the data of sub001 were again
used to transform the pixel space into a 100 dimensional space. In Pong, each hand
drawn feature (the positions of the two paddles, the ball position X and Y, and the
ball’s velocity X and Y) was z-scored and input into one response vector. Euclidean
distance was used as the distance metric for the Pong hand drawn features, and
correlation distance was used for every other model. Every DSM was rank-ordered
to compare model DSMs without assuming a linear relationship between models.
Models were then compared with Spearman correlations (the Pearson correlation
on the rank-ordered DSMs).

For comparing model DSMs and fMRI DSMs in Pong, each DSM was created
at the TR level. This involved using the same feature sets that were used in the
encoding model, where responses were averaged across volumes to downsample
to TR resolution (1 Hz) and shifted by 6 s to account for hemodynamic delay.
Again, correlation distance was used for every model except the hand drawn features
(Euclidean) and DSMs were rank-ordered.

For fMRI data, DSMs for three brain areas were constructed, early visual, posterior
parietal cortex (PPC), and motor/frontal. Early visual regions included all visual
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cortex ROIs. PPC included superior lateral occipital cortex, superior parietal lobule,
supramarginal gyrus, and precuneus. Motor/frontal included motor and premotor
cortex, SMA, and superior frontal gyrus.

To test for significance we performed block permutation tests for every model,
since the data may not be normally distributed. Similarly to the encoding model
permutation tests, fMRI data volumes were shuffled blockwise in blocks of 40 TRs
to keep autocorrelation intact (Wen et al., 2018), then DSMs were reconstructed
and correlated to the non shuffled model DSMs. Then, to test if the correlation in a
model was significantly different than zero, the correlation score had to be greater
than the maximum correlation in the permutation test distribution (one-sided). To
test if the differences between models were significant, this difference was tested
(two-sided) against a distribution based on computing the differences between the
models in every permutation. All scores were corrected for multiple comparisons.

Computational model-based GLMs
To localize the neural correlates of action value computations, we conducted compu-
tational model-based generalized linear model (GLM) analyses (John P. O’Doherty,
Hampton, and Kim, 2007). This novel analysis differs from previous approaches in
two ways: a deep neural network is used to approximate the value function that is
used to construct regressors, and the model is trained independently of any human
behavioral data.

All univariate GLMs were conducted using SPM12 software. Initially the image
frames from the human gameplay data were run through the trained DQN to output
Q-values at every frame in a run as described above. Next, the Q-values were
decomposed into action advantages/values to separate action related variance from
reward related variance. Taking inspiration from actor critic approaches to isolate
action advantages (Sutton and Barto, 2018), we define state value (V(s), s = state)
as the average of all Q-values, and action advantages (A(s,a), s = state, a = action)
as the difference between an actions Q-value and the state value.

𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) −𝑉 (𝑠)

𝑉 (𝑠) = 1
|𝐴|

∑
𝑎′ 𝑄(𝑠, 𝑎)
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Similar to the analysis in a previous study (Wunderlich, Rangel, and John P.
O’Doherty, 2009), the action value regressor here is computed as the chosen value
(the maximum) between move left value and move right value. Chosen value is then
LOWESS smoothed across frames, and downsampled to 10 Hz for every volume
(TR = 1 s). The regressor is then z-scored and entered into a GLM where it is con-
volved with a hemodynamic response function. Across the games, other covariates
included left and right hand motor responses, parametric regressors for both positive
reward and negative reward, game presentation (8 minutes of gameplay per run with
one minute of rest before and after), run, and day. Losing a life was included as
the negative reward regressor in Space Invaders, although the Atari engine does not
explicitly deliver negative reward for loss of life, and the negative ramifications are
reflected in the opportunity cost of gaining more points. Additional regressors for
Space Invaders also included fire action value and the number of invaders left on
the screen. For Enduro, the action value for the brake action was also included
(which simultaneously approximates the anti-correlated fire action value, thus the
fire action value was not also included).

Filter analyses
To further interpret the encoding model results, we wanted to identify which filters
were useful for modeling neural responses, and whether this varied between regions
of interest. To do this, we retrained the encoding model on each filter in layer 3 (the
last convolutional layer) on each voxel that was significant in the encoding model
analyses. This layer had 64 filters of 7x7 receptive field size. We use cross-validated
prediction accuracy of a voxel response using a convolutional filter’s explanatory
features to quantify that filter’s Neural Predictivity. This Neural Predictivity score
was averaged across a region to estimate how well that filter predicted responses in
a region. With 64 Neural Predictivity scores per region, correlations of these scores
across regions were computed to evaluate the variability of filter selectivity between
regions and to construct a similarity matrix (Figure 4.7B). This similarity matrix
reflects the average similarity matrix across the six participants. A similar procedure
was used to compute correlations of Neural Predictivity across participants, where in
this case filter scores were averaged across all voxels in all ROIs in a participant rather
than by region (Figure 4.7C). For computing a filter score for decoding human actions
(Figure 4.7D), we similarly retrain the model from “Decoding Human Actions” on
each filter separately in layer 3. These filter scores were then rescaled with min-max
normalization for subsequent correlation analyses and visualizations. Thus, the best
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filter has a score of 1 and the worst filter has a score of 0.

To visualize the features encoded by the filters (Figure 4.7E), we use Neon’s decon-
volution visualization function and modified code from https://github.com/
tambetm/simple_dqn. This procedure finds frames from the human gameplay
data that activate a filter the most (which is depicted on the right side), then uses
guided backpropagation to identify parts of the image that led to this activation (left
side). The colors reflect changes and motion across the image tensor of three frames,
meaning the filter detects motion in this location.

We annotate six high-level features in Pong using custom Python code that local-
izes the corresponding objects in the pixel space: ball X position, ball Y posi-
tion, ball X velocity, ball Y velocity, left paddle position, and right paddle posi-
tion. To assess how much each filter encodes each feature, we use Scikit-learn’s
‘mutual_info_regression’ function to calculate the mutual information between a
filter and these continuous variables. The mutual information scores were averaged
across ball X and Y positions to get one score for ball position. We similarly aver-
aged across the ball X and Y velocity and the left and right paddle position to get
scores for ball velocity and the paddle positions, respectively. This outputs a MI
score for each of the 7x7 receptive fields in a filter, which were then averaged to get
one metric per filter for each high-level feature. These metrics are then correlated
with each filter’s Neural Predictivity across the whole brain in Pong (Figure 4.7A).

Nuisance invariance scores
We completed additional analyses to identify how the regions of interest encode
sensory information that is irrelevant for task performance. To uncover this, we
utilized a concept from the machine-learning sub-field of representation learning:
nuisance invariance (Lenc and Vedaldi, 2015). A nuisance variable is any variable in
the input that is irrelevant to the task, and is mathematically defined as any variable
where the mutual information between it and the task output is zero (I(y;n) = 0),
where y is a task label and n is a nuisance variable). Common examples include
translation and illumination invariance in object recognition, as the location of an
object on an image and the overall brightness of a picture are usually unrelated to
classifying it correctly. Thus, nuisance invariance in neural networks suggests that
a compressed and abstract representation has been learned.

The game Enduro has a unique feature that we leveraged to study nuisance invariance
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in the gameplay environment. The colors on the screen constantly change as the
weather and time of day in the game frequently changes. These stages include sunny,
snowy, foggy, dusk, and night-time. Therefore, the pixel space changes dramatically
while the overall gameplay dynamics are stable. In fact, we calculated that the mutual
information between human left and right actions and the weather/time of day
variable equals zero using Scikit-learn’s ‘mutual_info_regression’ function (I(time
of day; actions) = 0), which indicates that weather/time of day is a nuisance variable.
This metric can only be zero if and only if two random variables are independent.
To put this in perspective, the mutual information between weather/time of day and
the first principal component of the pixel space is 1.70 (I(time of day; PC 1) = 1.70),
and the mutual information of weather/time of day with itself is 1.81. This shows
that a large amount of variance in the pixel space is due to these changing weather
patterns as the first principal component codes for these conditions.

Although there was no factor that is as obviously a nuisance variable in Space
Invaders as the changing colors on the screen was in Enduro, the total number of
invader ships on the screen explains a lot of variance in the visual pixel space, and
has a high mutual information with the first principal component of the pixel space
(I(num. invaders; PC 1) = 1.52). However, in this game the relative positions of
the invaders above an agent matter more than their absolute position and the global
features, as the invaders above an agent will be in the agent’s line of fire and the
agent will be in the invader’s line of fire. One exception is when there is one invader
left and it starts to speed up faster than usual. To quantify this pattern, we calculated
that the mutual information between the number of invaders on the screen and left
and right actions is relatively low (I(num. invaders; action) = 0.07).

To compute a nuisance invariance score for each filter, we again use sklearn’s
‘mutual_info_regression’ function to calculate the mutual information between a
filter and a nuisance variable (weather/time of day for Enduro, number of invaders
on the screen for Space Invaders — calculated with downsampled data from sub001
to ease computation).This function outputs a MI score for each of the 7x7 receptive
fields, thus these scores were averaged to get a single score per filter. This score
was multiplied by -1 to get the inverse of this MI metric, to denote insensitivity
of the nuisance rather than encoding of the nuisance. Next, the 64 filter nuisance
invariance scores are Pearson correlated with the 64 Neural Predictivity scores in
a region. Intuitively, this analysis estimates whether a region prefers filters that
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are more insensitive to the nuisances (positive correlation) or filters that code for
the nuisance (negative correlation). To increase interpretability and enhance the
variability across regions that we are most interested in assessing, we z-score this
metric across voxels in a participant. Thus, a nuisance invariance score of 0 is
average with respect to the other voxels in a participant and the magnitude of the
score reflects how many standard deviations it is from the mean.
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Figure 4.1: Atari game setup and DQN
a. Participants played Atari games in the fMRI scanner (Pong, Enduro, and Space
Invaders). A button box was used as a controller.
b. DQN is used as a model for how the brain maps high-dimensional inputs to
actions. See (Mnih et al., 2015) and Methods for more details.
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Layer Features

*Interaction
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a
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Figure 4.2: Predicting human behavior using DQN hidden layers.
a. DQN action values are higher for actions that participants chose. DQN action
values depicted for “left” and “right” actions for frames where human participants
took either a “left” or “right” action of any combination with fire or brake. Action
values correspond to normalized action advantages (see Methods).
b. Human actions are linearly decodeable from the features in DQN hidden layers.
Logistic regression models were trained to predict left versus right actions in all
games. Features in the model included 100 principal components (PCs) of each
DQN layer. Graphs depict cross-validated classification accuracy. Error bars depict
SE across 11 cross-validation folds. Dashed lines correspond to the max and min
accuracies of null distributions computed with block permutation tests of 1,000
shuffles.
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Figure 4.3: Encoding model: DQN hidden layers mapped to distributed network
across the brain, including dorsal stream.
a. Visualization of encoding model analysis. Human gameplay frames were run
through a trained DQN to extract neural network activations in the hidden layers
at every time point in an fMRI run. Voxel responses were modeled using ridge
regression. The explanatory features included the first 100 PCs from each DQN
hidden layer.
b. Voxels mapped to hidden layers for Pong. Cross-validated prediction accuracy
uses Pearson correlation between the predicted and actual voxel responses. Whole-
brain threshold at p< 0.001 or p< 0.0001 FDR corrected. Thresholds are determined
via cross-validated prediction accuracy against the null distribution using block
permutation testing on a subset of voxels. Data are from two participants; others are
shown in Figure S2A.
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c. Same as in (B), but for Enduro.
d. Same as in (B), but for Space Invaders.
e. Percentage of voxels in a region of interest that are significant in the respective
thresholds in (B)–(D). ROIs are noted as V1/V2, V3/V4, LOC Inf. (inferior lat-
eral occipital cortex), MTG (middle temporal gyrus), IT (inferior temporal lobe),
LOC Sup. (superior lateral occipital cortex), SPL (superior parietal lobule), SMG
(supramarginal gyrus), PREC (precuneus), MC (motor cortex), SMA (supplemen-
tary motor area), and SFG (superior frontal gyrus). Plots for individual participants
are shown in Figure S2B.
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a DQN Model vs. Control Models
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b Model Comparison by Region
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c GLM Control Analysis
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Figure 4.4: Control models.
a. Encoding analysis control models: motor regressors, PCA on the input pixels,
DQN trained on one of the other games, and a VAE. Bar plots show prediction
accuracies for the 90th percentile of prediction accuracies across the whole brain for
each model (averaged across six participants with each participant’s values shown).
Boxplots for distribution of scores in the upper 20th percentile for each model and
participant shown in Figure S4B.
b. T-scores by region of interest comparing DQN prediction accuracies to prediction
accuracies from control models. T-values reflect average T-scores across participants
with each participant’s T-scores shown. Plots for individual participants are depicted
in Figure S5A.
c. Percentage of significant voxels for each ROI in a GLM where all DQN layers,
VAE model, and PCA model compete for variance (p < 0.001 FWER corrected,
cluster level, F-test across 10 PCs representing a model’s regressors).
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b

Representational Similarity Analysis of DQN
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Representational Similarity Analysis of Pong fMRI Data
c

RSA on Pong fMRI data

Figure 4.5: Representational similarity analysis.
a. Illustrations of what dissimilarity matrices (DSMs) look like for Pong. DSMs
represent pairwise comparisons of model representations across time, depicted here
for the first 1,000 frames in an example Pong run. The DSM on the left represents
the DSM for DQN layer 3 and the DSM on the right represents the DSM for the
hand-drawn features in Pong: the positions of the two paddles, the ball position, and
the ball’s velocity.
b. Representational similarity analysis on DQN. Correlations of all the model
DSMs for all games and also the hand-drawn features (HDFs) for Pong. The
internal representations in Pong become more dissimilar to the pixel space and PCA
model and more similar to the hand-drawn features from DQN layers 1–4. DQN
representations in later layers also become more dissimilar to the input space in
Space Invaders.
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c. Representational similarity analysis on fMRI data for Pong. fMRI DSMs for three
ROIs were correlated with model DSMs including HDFs, each layer of DQN, PCA,
and VAE. Asterisks (∗) above bars indicate significance in six out of six subjects
(block permutation tests, p < 0.01, FWER corrected for multiple comparisons).
Dotted lines above bars indicate significant differences between models in six out
of six subjects (block permutation tests, p < 0.01, FWER corrected for multiple
comparisons). All brain areas in all subjects were significantly correlated to the
HDF DSM and DQN layers 3 and 4. See Figure S6 for individual subject plots.



126

Human Gameplay 

Data 
Up
Down

NoopA
(s

,a
)

Chosen value 

timecourse

Action Values

Model-based

Action Value 

fMRI regressor

HRF

a

b
Action Value

Sub006

x=1

Sub001

x=2

Pong

x=3

x=0

Enduro

Space 

Invaders

x=-2

x=-3

FWER corr. p < 0.001 at cluster level

3 T 7+ 

Figure 4.6: Action value results.
a. Depiction of action value GLMs. Human gameplay frames were run through
DQN to evaluate action/chosen values. Traces were then downsampled to 10 Hz
and convolved with a hemodynamic response function to reveal GLM regressors for
action values.
b. Neural encoding of action value in premotor/SMA areas. Whole-brain maps were
thresholded at p < 0.001 (FWER corrected, cluster level). Significant representation
of action value was also found in primary visual and motor cortex. Other participants
are shown in Figure S7.



127

Good filter example:
Layer 3 Filter 40 in Enduro

detects side of the road and cars
Neural Predictivity Rank: 5

Bad filter example:
Layer 3 Filter 56 in Enduro

detects score on bottom of screen
Neural Predictivity Rank: 56
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Correlation of Filter Neural Predictivity Across Regions

Correlation of Filter Neural Predictivity Between Subjects

d Correlation of Filter Predictivity for Modeling Actions and Voxels

a Neurally Predictive Filters Encode Pong Hand Drawn Features

Figure 4.7: Filter analyses on brain activity.
a. Neurally predictive filters in Pong encode the spatial positions of objects. En-
coding models were run separately on each layer 3 filter to estimate filter neural
predictivity. Separately, each filter was assessed on how much it encoded the hand
labeled features in Pong. Significant correlations were found between the filter
neural predictivity scores and the metric about how much information the filters
encoded about the hand-labeled features in every participant (p < 0.0001). The
average scores and correlations across participants are plotted.
b. Correlations in filter neural predictivity scores across regions. Neural predictivity
scores were correlated across regions to estimate whether the same filters are useful
for predicting all neural responses or whether the mapping is more heterogeneous.
In both Enduro and Space Invaders, more clustering occurs separating visual, pari-
etal, and motor networks.



128

c. Filter scores are correlated across participants. There are high correlations across
all participants and nearly perfect correlations for Pong.
d. Correlations between neural predictivity and behavioral predictivity. Axes
represent normalized scores with worst filter at 0 and best filter at 1. Data aggregated
across participants are depicted.
e. Visualization of two example filters using guided backpropagation in Neon.
Images to the right of each example represent an image from the human gameplay
data that activate the filter the most. Gray images to the left of each example
represent which parts of the pixel space affect the activation of the filter the most
from this input image. Red, green, and blue reflect pixels that changed across the
frames in the input. Five randomly selected filters for each game are also visualized
in Figure S8A.
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Figure 4.8: Representations become more insensitive to nuisances in posterior
parietal cortex.
a. Illustration of what a useful representation would do in Enduro. The sky color
changes frequently, but these changes have no effect on human actions. The input
space on the left depicts how situations are clustered by perceptual features such as
color in the pixel space. Within each night/day cluster, there are examples of a car in
front of an agent on both the right and left. Therefore, one must take opposite actions
in each scenario to avoid a collision. A good state-space localizes the positions of
the relevant objects independently of visual nuisances. The resulting state-space
representation on the right clusters together perceptually dissimilar situations if they
share the same underlying semantic meaning for the policy.
b. Nuisance invariance to weather/time of day in Enduro. We calculate a nuisance
invariance score in every region. This score is defined as the correlation of a filter’s
neural predictivity in a region and that filter’s nuisance invariance to weather. The
motor area ROI includes both the primary motor cortex and premotor cortex.
c. Nuisance invariance to number of invaders on the screen in Space Invaders. We
similarly calculate a nuisance invariance score for every region as defined in (B). For
the game Space Invaders, the proxy nuisance variable was the number of invaders
on the screen.
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Figure 4.9: Supplementary Figure 1
a. Distribution of actions for human participants and DQN. For Enduro and Space
Invaders, F/R and F/L correspond to the pairwise combination of fire and move
right or move left respectively. For Enduro, B/R and B/L similarly correspond to
the pairwise combination of brake and move right or move left.
b. Absolute value of the coefficients in the decoding human actions logistic regres-
sion model averaged across layers. For Enduro and Space Invaders, layers 3 and 4
were the most useful for predicting human actions in every participant. For Pong,
the contributions of each layer were more heterogeneous across participants with
layers 1 and 2 having larger coefficients. Error bars depict SE across neurons in a
layer.
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Figure 4.10: Supplementary Figure 2
a. Encoding model results for other participants. As in Figure 4.3, whole brain
maps are thresholded as noted.
b. Encoding model results by ROI for individual participants. As in Figure 4.3e.
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Figure 4.11: Supplementary Figure 3
a. Encoding model prediction accuracies are higher in dorsal visual stream than
in ventral visual stream. Prediction accuracies (Pearson r) for regions of interest
in the dorsal visual stream and/or parietal lobe (superior lateral occipital cortex,
superior parietal lobule, supramarginal gyrus, and precuneus) and in the ventral
visual stream and/or temporal lobe (inferior lateral occipital cortex, middle temporal
gyrus, inferior temporal lobe). Prediction accuracies are significantly higher in
dorsal stream/parietal lobe ROIs for all subjects and all games (two-sample T-test,
P < 1e-10, signified by *).
b. Average coefficient magnitude by layer. Absolute value of the coefficients by
layer in the encoding model analysis averaged across participants. Each layer has
100 coefficients corresponding to 100 principal components of that layer. Error
bars reflect SEM across voxels in all participants. Early visual ROI includes V1-
V4; PPC includes LOC superior, superior parietal lobule, supramarginal gyrus,
precuneus; Motor/Frontal includes motor and premotor cortex, SMA, and superior
frontal gyrus.
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Figure 4.12: Supplementary Figure 4
a. VAE Control Model. Top row shows the training performance for the first 500
training epochs. Models were trained to maximize the evidence lower bound (ELBO)
on the log-likelihood of the data. Bottom row: examples of VAE generated outputs.
Images are generated by sampling latent vectors from a Gaussian distribution and
inputting these samples into the VAE decoder.
b. Control models prediction accuracy distributions. Boxplots show distributions
of the prediction accuracies in the upper 20th percentile for each model. Outlier
points represent the voxels with the highest prediction accuracies in the model.The
DQN outperforms all other models in every game and participant other than sub004
(shown P < 1e-10 with * symbols).
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Figure 4.13: Supplementary Figure 5
a. DQN vs. control models by region for individual participants. As in Figure 4.4B.
b. Control Region Analysis. To rule out the possibility that the encoding model
analysis is picking up on motion related artifacts or other nuisances that affect the
whole fMRI image, we ran the encoding model pipeline on two spheres of air
directly outside of the brain (anterior) for sub001. The distribution of scores were
around zero for every game and no voxels had significant prediction accuracies.
The distribution of scores for V1/V2 and the superior parietal lobule are shown for
comparison.
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RSA on Pong fMRI data

Figure 4.14: Supplementary Figure 6 Representational Similarity Analysis on
fMRI data for Pong for individual subjects. As in Figure 4.5C. Asterisks (*) above
bars indicate significance (block permutation tests, P < 0.01, FWER corrected for
multiple comparisons). Dotted lines above bars indicate significant differences
between models (block permutation tests, P < 0.01, FWER corrected for multiple
comparisons).
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Figure 4.15: Supplementary Figure 7
Representational Similarity Analysis on fMRI data for Pong for individual
subjects. As in Figure 4.5C. Asterisks (*) above bars indicate significance (block
permutation tests, P < 0.01, FWER corrected for multiple comparisons). Dotted
lines above bars indicate significant differences between models (block permutation
tests, P < 0.01, FWER corrected for multiple comparisons).
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Figure 4.16: Supplementary Figure 8
a. Visualization of example DQN layer 3 filters using guided backpropagation.
Five randomly selected filters for each game are visualized for each game (as in
Figure 4.7E), along with their Neural Predictivity rank. Images to the right of each
example represent one image from the human gameplay data that activates the filter
very highly. Gray images to the left of each example represent which parts of the
pixel space affect the activation of the filter the most from this input image. Red,
green, and blue colors reflect pixels that changed across the frames in the input.
b. Nuisance invariance to weather/time of day in Enduro in individual participants.
Results depicted as in Figure 4.8B. The Motor Areas ROI includes both the primary
motor cortex and premotor cortex.
c. Nuisance invariance to number of invaders on the Screen in Space Invaders in
individual participants. Results depicted as in Figure 4.8C.
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DQN DQN
(Mnih
2015)

Sub
001

Sub
002

Sub
003

Sub
004

Sub
005

Sub
006

Rand.
Agent

Pong 17.2
±2.7

18.9
±1.3

-0.6
±3.4

0.7
±2.6

-1.9
±4.3

1.5
±3.2

-3.1
±2.6

-0.1
±2.2

-20.6
±0.9

Enduro 348.0
±108

301.8
±25

230.0
±37

201.7
±5.1

202.2
±3.7

198.3
±7.4

201.6
±1.8

199.5
±4.1

0

Space
In-
vaders

910
±335

1976
±893

949
±514

890
±601

1399
±827

1242
±632

778
±280

664
±336

158
±135

Table 4.1: Game performance for all participants and the DQN agent we
trained.
DQN from Mnih 2015 included for reference along with a random agent. ± refers
to standard deviation of scores. For evaluation, DQN tested with 𝜖-greedy policy (𝜖
= 0.05) to minimize risk of evaluating an overfit policy. Subject scores were often
limited by game cutting off prematurely due to time constraint of 8 minute runs.
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DISCUSSION

Summary
Pioneering work in the tangential fields of decision neuroscience, neuroeconomics,
and reinforcement learning has begun to uncover the neurobiology of value-based
decision making (Rangel, Camerer, and Montague, 2008; Glimcher and Fehr, 2013).
Each option or action up for consideration when making a decision is assigned a
value related to the expected utility of the decision outcomes. Options can then
be compared in this abstract value space. A multitude of neuroimaging studies in
humans have isolated subjective value representations in the ventromedial prefrontal
cortex (vmPFC) and orbitofrontal cortex (OFC) (Levy and Glimcher, 2012; Clithero
and Rangel, 2014). An important open question emerges from this research: how is
this value code constructed?

This thesis outlines a theory for how value is constructed in the brain: stimuli are
decomposed into their constituent attributes which are then integrated to compute
an abstract value signal that is used to compare options and select actions. The
nature of the attributes that are integrated is highly dependent on what features are
useful within the context of the task. In Chapter 2, we demonstrated that food items
are evaluated by a weighted combination of their constituent nutrient attributes,
such as protein, fat, carbohydrates and vitamin content. Items themselves can also
become features when valuing bundles of multiple items. This is described in detail
in Chapter 3. By using a connectionist deep reinforcement learning model, we
generalize this feature integration approach to an environment with more real-world
complexity, Atari video games. In naturalistic and high-dimensional environments
such as these games, features are processed in a hierarchical topography, as mul-
tistep nonlinear transformations of the input reshape a sensory space into a task
representation that encodes the high-level features that are relevant for maximizing
reward. The value of states and actions can then be constructed as a nonlinear
weighted combination of these high-level features.

By decomposing stimuli into features and integrating across them, even the value of
novel stimuli that have never been encountered can be actively constructed. Humans
flexibly do this in daily life when they explore novel dishes at a new restaurant or
drive in neighborhoods they have never been in before by representing stimuli in a
multidimensional feature space. When you read about a new dish on a restaurant
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menu, you use this information to infer its nutrient makeup and flavor profile and
can compute how rewarding its expected to be as a function of these features (and
potentially other higher-level features, discussed below). In the latter example, you
do not need to relearn the driving process from scratch when you drive on a new
street, you can generalize from your past experience in similar states. Moreover,
this generalization process can operate at the level of high-level features that may
be divorced the from high-dimensional stream of sensory input. The concept of
’turn left’ should implement similar motor actions irrespective of the colors of the
cars on the road or the amount of clouds in the sky even if these irrelevant variables
dramatically change the image directly projected on the retina.

Additionally, the values of stimuli can rapidly change depending on the external
or internal context, and decomposing a stimulus into features allows them to be
reweighted between contexts (O’Doherty, Rutishauser, and Iigaya, 2021). For ex-
ample, fatty foods can become less desirable after consuming a double cheeseburger
or more valuable after a 24 hour fast. Therefore, this contextual information needs
to be integrated as well with the other appetitive and aversive properties of a stim-
ulus. Further research is needed however to uncover the exact mechanisms of how
interoceptive information and other contextual information is combined with the
low-level and high-level features of a stimulus. Similarly, the broader implications
of each of the projects presented in this thesis bring forth exciting new research
questions. These implications and further directions will be outlined below.

Broader Implications and Future Directions
In Chapter 2, we apply this weighted feature integration theory of value construction
to the evaluation of food items. The value of a food was best predicted by the
beliefs about its density of carbohydrates, protein, fat, and vitamins. Crucially, the
subjective ratings participants gave about the nutrient factors was more predictive of
value than the objective quantities of nutrients. This demonstrates that beliefs about
a stimulus’s features are also actively constructed and inferred rather than recovered
with perfect fidelity from the objective world, and these beliefs are used downstream
to compute value. This process may account for framing effects and other context-
dependent modulations of subjective value (Tversky and Kahneman, 1985), as a
person’s beliefs about a stimulus’s attributes will be influenced by how that stimulus
is presented. Marketers understand how to highlight the positive features of a good:
would you rather have 80% fat free yogurt or yogurt with 20% fat?
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Additionally, humans likely use other features other than the nutrient attributes when
computing the value of a food item. Before an item is consumed for the first time, its
visual properties probably play a large role computing a value. An interesting future
direction would involve including the visual properties of a stimulus in combination
with the nutrient factors in a model predicting food preference, similarly to what has
been done with visual art (Iigaya et al., 2020). High-level features, such as brand,
food category (ie. snack, lunch, dessert, cuisine type), healthiness (Hare, Camerer,
and Rangel, 2009), personal history, and cultural factors (Rozin and Vollmecke,
1986) also likely influence a persons food preferences. There may also be nonlinear
interactions between the attributes, even between the sensory features and high-
level features. For example, a salty dessert may be less desirable than a sweet one.
The attribute integration framework presented in this thesis is amenable to all of
these caveats. Our model may be expanded upon with the inclusion of many types
of features at multiple levels of abstraction and by adding nonlinear interactions
between features.

In the neural data, we used multivariate pattern analysis (MVPA) to localize infor-
mation about the nutrient factors in lateral OFC, while value signals were found in
both lateral and medial OFC. Since the lateral OFC contains the secondary taste
cortex (Rolls, 1996), it is unclear whether stimulus features are always encoded in
lOFC, or if this computation is specific to food valuation. On the other hand, lOFC
also receives input from the visual, auditory, olfactory, and somatosensory systems
(Rolls, 1996; Grabenhorst and Rolls, 2011), which suggests that its role in attribute
integration may generalize to other types of stimuli beyond food. Our analyses
uncovered no evidence of mOFC or lOFC encoding information about low-level
visual features, but this may potentially be because these features are not utilized in
the computation of value in our experiment. A clarifying experiment could perform
the same analysis when participants evaluate non-comestible consumer goods and
examine whether stimulus attributes can be decoded from lOFC. A related question
concerns where high-level features are encoded when computing the value of a
good. When evaluating a piece of art, there is a hierarchical organization of fea-
ture encoding, such that early visual regions in the ventral stream encode low-level
features and higher-order visual areas in the temporal cortex represent higher-level
features (Iigaya et al., 2020). There may similarly be a topographical gradient of
organization of feature encoding when one values consumer goods, within OFC or
distributed throughout other cortical areas.
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More work is also needed to characterize how the regions that contain information
about stimulus features interact with each other and vmPFC/OFC value regions dur-
ing the value integration process. Our research sheds some light on this topic at the
level of functional connectivity, as effective connectivity between mOFC and lOFC
increased at the time of valuation. However, due to the limited temporal and spa-
tial resolution of fMRI, these analyses only provide a coarse grained picture about
the circuit level mechanism. Detailed electrophysiological and causal perturbation
studies (with tools like optogenetics) need to be performed to delineate exactly how
attribute information is projected to vmPFC/mOFC. It is also likely that recurrent
connections and other top-down modulatory processes influence the coding of stim-
ulus features. Given the context, some features are more important than others and
therefore attention mechanisms and feedback connections may modify the weights
of the integration process accordingly.

The features used to compute the value of an option are also not always sensory
properties or high-level stimulus attributes; they can be items themselves. In Chapter
3, we describe how bundles of items are valued as a subadditive function of the values
of the constituent items. Therefore, the value construction process can operate over
higher-level abstractions if the decision-making context affords decomposing the
stimuli in this way.

In future work, we wish to examine how feature representations change depending
on the context. Are substimulus attributes such as nutrient factors encoded by the
same brain areas when valuing an individual item and valuing a bundle? Or does
a region like lOFC only encode the features relevant to the current level of analysis
required by the context, such that it encodes the substimulus attributes when items
are valued in isolation and only encodes representations of items and their values
when bundles are valued? Relatedly, another open question concerns how this
hiearchical multistep valuation process happens at the circuit level. Are values of
the constituent items evaluated first and then integrated subsequently? Or is this all
happening in pallelel? Methods with higher temporal resolution are needed to test
these hypotheses.

As discussed in Chapter 3, the valuation of bundles of goods can be modulated by
their relationship to each other. Substitutes are alternative goods that provide the
same function, such as coffee and tea. Complements are goods with synergistic
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effects when used together, such as pasta and pasta sauce. We posit that these inter-
active effects happen at the level of stimulus attributes. A subsequent experiment
could select an item set that systematically varies how the constituent items of a
bundle fit together, and model how stimulus features interact to modulate value.

Our results also show that the value representation in PFC rescales to the distribution
of values in a context as one switches between levels of the valuation hierarchy. It is
unknown whether similar normalization processes operate over stimulus attributes.
Recent work suggests that range adaptation and hierarchical normalization processes
occur at the attribute level (Louie, Glimcher, and Webb, 2015; Soltani, De Martino,
and Camerer, 2012; Hunt, Raymond J Dolan, and Behrens, 2014). Therefore, this
canonical neural computation may be implemented at multiple steps of the decision-
making process (Carandini and Heeger, 2012). Additionally, this computation may
be ubiquitous because it efficiently encodes and transmits information, in accordance
with the efficient coding hypothesis (Louie and Glimcher, 2012).

The experiments presented in Chapters 2 and 3 precisely control the stimuli par-
ticipants evaluate and use event-related designs that afford segregation of various
decision-related signals. However, decision-making in the real-world often does
not embody this simplicity. The brain continually processes a stream of high-
dimensional exteroceptive and interoceptive input and must extract the features that
are relevant from the noise. In chapter 4, we tackle the question of how the brain
makes decisions in more ecologically valid environments by scanning participants
as they played Atari video games. The model we used to analyze behavior and
neural data during Atari gameplay is a high-dimensional extension of the weighted
integration models described in chapters 2 and 3. This model, the deep Q-network
(DQN), combines the deep learning approach with reinforcement learning, which
allows it to learn to play dozens of games at superhuman levels (Mnih et al., 2015).
Deep neural networks in general have an outstanding ability to extract useful features
from naturalistic raw input (LeCun, Bengio, and Hinton, 2015). They do this by
processing input features with connection weights that are integrated into activations
of artificial neurons at the next layer. Another step of weighted integration occurs
to nonlinearly combine the features represented by neural activations at this layer.
This process repeats again and again to construct a hierarchical set of features that
are useful for the objectives of the task. Deep learning is therefore a useful tool in
computational neuroscience for multiple reasons.
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First, deep learning provides methods for extracting stimulus features in a data-
driven way, in contrast to hand labeling the features the brain might represent. In
environments as complex as the Atari games, it is difficult to hand label relevant
features or even identify what features are important. By training DQN, a large
set of features at multiple levels of complexity are encoded in its intermediate
layers. Using these features, we could predict neural responses throughout the
dorsal visual pathway and posterior parietal cortex (PPC). Additionally, this feature
set outperformed control models that similarly computed features by exploiting
the structure of the input data (a variational autoencoder and principal component
analysis). We believe that DQN outperforms these models because it incorporates
reward information and links perception to action and reward.

Secondly, as artificial networks are directly inspired by the brain, deep learning is
also useful as a direct model of how neural systems solve tasks. Even though the
deep learning framework is only a coarse grained analogue of a neural circuit, and a
lot of the important biological structure is stripped away, research in the past decade
has identified many similarities between deep neural networks and the brain at the
representational level (Eickenberg et al., 2017; Güçlü and Gerven, 2015; Khaligh-
Razavi and Kriegeskorte, 2014; Wen et al., 2018; Yamins, Hong, et al., 2014;
Yamins and DiCarlo, 2016; Wang et al., 2018; Iigaya et al., 2020). Therefore, the
weighted integration of attributes may be the canonical computation performed by
the brain, and may explain not only value-based decision-making but other aspects
of cognition such as object recognition (Yamins and DiCarlo, 2016), audition (Kell
et al., 2018), and language (Schwartz and Mitchell, 2019).

Our results suggest that DQN and the human brain converge to a similar state-
space representation that is useful for solving the task. Training separate encoding
models with stimulus features from different convolutional filters demonstrated that
the filters that are most predictive of voxel activity and also predictive of behavior.
Additionally, this filter selectivity is highly correlated between participants. These
analyses suggest that different people and DQN utilize a shared set of features that
are useful for evaluating states and actions. For Pong, this common space represents
high-level features such as the spatial positions of the relevant objects in the game.
In Enduro and Space Invaders, PPC encodes abstract features that are more invariant
to task-irrelevant features like color.
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These findings point to several key takeaways about what makes a good task rep-
resentation in environments of real-world complexity. High-dimensional input is
projected to a lower-dimensional space that has disentangled a sensory manifold into
an abstract space that represents behaviorally relevant features (DiCarlo and Cox,
2007; Higgins et al., 2018a). These features are representative of the data generating
factors and elements of the environment that can acted on or controlled. Thus, they
may represent affordance-like features that are codetermined by the agent and the
environment rather than objective properties of a stimulus (rosch1991embodied;
Gibson, 1977). The relevant data generating factors that are encoded in Pong’s
abstract state-space include the spatial positions of the ball and paddles. This infor-
mation needs to be carefully extracted from the input, since the geometry of the pixel
space is more reflective of low-level visual properties than these object features. For
Enduro, the optimal state-space should be abstracted away from the sensory input
even more, and become invariant to nuisance features like the changing colors in
the background. The latter property is crucial for an agent to generalize beyond the
exact data distribution it is trained on. For example, an agent only trained in the
sunny day context in Enduro, would break when tested on the snow or night-time
context if its internal representation were not divorced from the sensory particular-
ities of the sunny day context. In contrast, if it possesses an internal representation
of higher-level concepts, such as the positions of the cars on the road in Enduro
and the ball and paddles in Pong, it is more robust to dramatic changes in low-level
visual properties (which happens all the time for humans even due to something as
simple as a change in ambient light levels). This concept connects to the idea of
factorized representations, which isolate structural representations of the world from
the raw sensory information they are associated with. Factorized representations
have been linked to the interaction between the entorhinal cortex and hippocampus
in more cognitive tasks (Behrens et al., 2018; Manns and Eichenbaum, 2006). Here,
we show that the posterior parietal cortex plays a fundamental role in encoding an
analogous abstract representation during visuomotor tasks like Atari video games.

Our findings highlight the contribution of the dorsal visual stream, the parietal
cortex in particular, as encoding abstract state-space representations during Atari
gameplay. In contrast, the orbitofrontal cortex (OFC) has also been implicated in
encoding of stimulus features in the work described in Chapter 2. Additionally,
other studies have described how OFC plays a role in the representation of task
state-space (Niv, 2019; Schuck et al., 2016; Wilson et al., 2014). The OFC has
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been found to contribute in situations where the relevant states have to be inferred
on the basis of partially observable information (Niv, 2019). In the present study
we did not find evidence for the involvement of the OFC, which may pertain to
the fact that the Atari games we used here involve fully observable states, thereby
not relying on the hidden state inference process attributed to the OFC. Moreover,
in order to perform the Atari game tasks, it is necessary for individuals to rapidly
select actions based on fast-moving, multivariate sensory information. By contrast,
previous tasks implicating the OFC relied instead on trial-based tasks with low
dimensional (Schuck et al., 2016; Wilson et al., 2014). Thus, the involvement of the
parietal cortex may be especially pertinent under conditions where rapid visuomotor
integration is required for task performance.

In future work, we hope to uncover not only what properties make up a useful
state representation, but how state representations change throughout the learning
process and across human players of varying skill levels. How does the brain
reshape its representation of a task on the path to expertise? One possibility is
that DQN and other deep RL algorithms become the most predictive of behavior
and neural data once a human reaches a certain performance level or within certain
high performing blocks of gameplay. Or alternatively, human experts may encode
unique task representations that branch away from the local optima that deep RL
algorithms tend to converge to. Additionally, it would be informative to project
the neural patterns within different humans and artificial agents of the same skill
level to a common representational space (Chen et al., 2015; Haxby, Guntupalli,
et al., 2011; Lu et al., 2018). This would afford us a way to examine exactly how
different substrates and different instantiations of a network in the same substrate
can converge to similar state-space representations.
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