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Abstract

The term “Basin effects” refers to trapped and reverberating earthquake waves in soft
sedimentary deposits overlying convex depressions of the basement bedrock, which signif-
icantly alter frequency content, amplitude, and duration of seismic waves. This has played
an important role in shaking duration and intensity in past earthquakes such as the 𝑀𝑤 8.0
1985 Michoácan, Mexico, 𝑀𝑤 6.9 1995 Kobe, Japan, and 𝑀𝑤 7.8 2015 Gorkha, Nepal
earthquakes. While the standard practice is to perform a 1D analysis of a soil column,
edge effect and surface waves are among the key contributors to the surface ground motion
within a basin. This thesis studies basin effects in a 2Dmedium to help better understand the
phenomena, better parameterize them, and suggest a path to appropriately incorporate them
in ground motion prediction equations and building design codes. After the introduction in
Chapter 1, I present the results in three main parts as follows:

In Chapter 2, we perform an extensive parametric study on the characteristics of surface
ground motion associated with basin effects. We use an elastic idealized-shaped medium
subjected to vertically propagating SV plane waves and examine the effects of basin ge-
ometry and material properties. We specifically study the effects of four dimensionless
parameters, the width-to-depth (aspect) ratio, the rock-to-soil material contrast, a dimen-
sionless frequency that quantifies the depth of the basin relative to the dominant incident
wavelength, and a dimensionless distance that quantifies the distance of the basin edges
relative to the dominant wavelength. Our results show that basin effects can be reasonably
characterized using at least three independent parameters, each of which can significantly
alter the resultant ground motion. To demonstrate the application of dimensional analysis
applied here, we investigate the response of the Kathmandu Valley during the 2015 𝑀𝑤

7.8 Gorkha Earthquake in Nepal using an idealized basin geometry and soil properties.
Our results show that a simplified model can capture notable ground motion characteristics
associated with basin effects.

Chapter 3 uses the identified parameters from the previous chapter to estimate surface
acceleration time-series given earthquake frequency content, basin geometry and material
properties, and location inside a basin. This is of practical use when the amount of available
data is limited or the fast estimation of time-series is desirable. For that, we train a neural
network to estimate surface ground acceleration time-series across a basin. Three input
parameters are needed for the estimation: basin-to-bedrock shear wave velocity ratio, aspect
ratio of the basin, and dimensionless location. These parameters define an idealized-shaped
basin and the location at which the time-series are to be computed. It will be shown that
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the model performs with high accuracy in comparison to the result of a full-fidelity Finite
Element (FE) simulation (ground truth) and generalizes well for input parameters outside
of the training set. Moreover, we will also use the model for the case of Kathmandu Valley,
Nepal, during the 2015 𝑀𝑤7.8 Gorkha earthquake and compare the results of NN versus
recordings of the mainshock, similarly to Chapter 2.

Once we have studied basin behavior in a homogeneous case in previous chapters, we focus
on material representation inside a basin in Chapter 4. Here, we study basin effects for
the cases where high-frequency response and realistic material representation are desirable.
However, the lack of sufficient information about the material properties and stratigraphy of
a basin prevents accurate simulation of the phenomena. To do that, we perform a stochastic
analysis using the Monte Carlo technique, where a random field represents basin material.
Similarly to the previous chapters, we use a 2D FE model with an idealized basin subjected
to vertically propagating SV plane waves and investigate the spatial variation of surface
ground motion (SGM) associated with basin effects by assuming different realizations
of the correlated random field. We then study various correlation lengths, coefficients
of variations, and autocorrelation functions to evaluate their contribution to SGM. We
show that the coefficient of variation is the most influential parameter on SGM, followed
by correlation lengths and type of autocorrelation function. Increasing the coefficient of
variation not only affects the mean surface amplification, but also results in a dramatic
change in the standard deviation. Correlation lengths and autocorrelation functions, on the
other hand, are of less importance for the cases we examine in this study.
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C h a p t e r 1

Introduction

This chapter provides background information about basin effects and builds a foundation
for future chapters. We first define basin effects and explain the underlying physics by
decomposing the phenomena into its building components, namely material contrast and
basin edge effects. At the end of this chapter, we present the goal of this research and the
overall structure of the thesis.

Contents of this chapter

1.1 Physics of Basin Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Current Practice and Goals of This Study . . . . . . . . . . . . . . . . . . . 6
1.3 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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1.1 Physics of Basin Effects
As shown in Figure 1.1, three aspects govern an earthquake-induced surface ground motion
in a basin scenario. Source represents the nucleation and characteristics of the rupture.
Path demonstrates waves scattering and attenuation as they propagate in the crust and
before reaching the surface. Finally, the basin represents a bowl-shaped shallow soil close
to the ground surface. Basin effects are the subject of this study, where we investigate how
a basin’s presence impacts the surface ground motion. Basin effects are a sub-category
of local site effects. They refer to trapped and reverberating earthquake waves in soft
sedimentary deposits overlying convex depressions of basement bedrock and significantly
alter the frequency content, amplitude, and duration of seismic waves. They have played an
essential role during past earthquakes, such as the 𝑀𝑤 8.0 1985 Michoácan, Mexico, 𝑀𝑤

6.9 1995 Kobe, Japan, and 𝑀𝑤 7.8 2015 Gorkha, Nepal (Kawase and Aki [1989], Pitarka
and Irikura [1996], Kawase [1996], Asimaki et al. [2017]).

Figure 1.1: Three aspects that govern earthquake ground motions: source, path, and site.
Basin shows the near-surface geology in many areas where a sedimentary deposit is located
on top of the bedrock.

Basin effects arise from a combination of (a) trapping of seismic waves due to impedance
contrast and consecutive reverberations of seismic energy (Spudich and Iida [1993]), and
(b) focusing effects at the edges of a basin, frequently referred to as basin-edge effects
(Graves et al. [1998]). Similar to 1D site response, soil-to-rock impedance contrast plays a
vital role in the amount of trapped seismic energy in a basin and, thus, in seismic motion’s
amplification and elongation.

One can readily quantify the role of material contrast by solving the three-dimensional wave
equation (Eq. 1.1) for incidence on a two-material interface (see Figure 1.2):
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Figure 1.2: Schematic representation of reflection and transmission of a plane SV wave inci-
dent with angle 𝛼 on a plane boundary of two materials.

(𝜆 + 𝜇)𝑢 𝑗 , 𝑗𝑖 + 𝜇𝑢𝑖, 𝑗 𝑗 + 𝐹𝑖 = 𝜌
𝜕2𝑢𝑖

𝜕𝑡2
𝑖, 𝑗 = 1, 2, 3 (1.1)

in which 𝜌 is the density of a medium, 𝐹𝑖 is the body force, 𝑢𝑖 are the components of the
displacement vector, and 𝜆 and 𝜇 are Lame’s constants.

Assuming the upcoming SV wave is 𝑆(cos 𝑗1, 0, sin 𝑗1) exp
{
[𝑖𝜔(𝑝𝑥 − cos 𝑗1

𝛽1
𝑧 − 𝑡)]

}
, trans-

mitted and reflected S waves are: 𝑆(cos 𝑗2, 0, sin 𝑗2)𝑇𝑠 exp
{
𝑖𝜔(𝑝𝑥 − cos 𝑗2

𝛽2
𝑧 − 𝑡)

}
and

𝑆(cos 𝑗1, 0,− sin 𝑗1)𝑅𝑠 exp
{
𝑖𝜔(𝑝𝑥 + cos 𝑗1

𝛽1
𝑧 − 𝑡)

}
, respectively. Moreover, transmitted and

reflected P waves are 𝑆(sin 𝑖2, 0,− cos 𝑖2)𝑇𝑝 exp
{
𝑖𝜔(𝑝𝑥 − cos 𝑖2

𝛼2
𝑧 − 𝑡)

}
and

𝑆(sin 𝑖1, 0, cos 𝑖1)𝑅𝑝 exp
{
𝑖𝜔(𝑝𝑥 + cos 𝑖1

𝛼1
𝑧 − 𝑡)

}
, respectively. In these equations, 𝑇𝑝, 𝑇𝑠, 𝑅𝑝,

and 𝑅𝑠 are the amplitude of transmitted P-wave, transmitted S-wave, reflected P-wave,
and reflected S-wave amplitudes, respectively. By satisfying traction equilibrium and dis-
placement compatibility conditions at the material interface, reflection and transmission
coefficients can be computed as outlined in detail in Aki and Richards [2002]:
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𝑇𝑝 = 2𝜌1
cos( 𝑗1)
𝛽1

𝐻𝑝𝛽1/(𝛼2𝐷) (1.2)

𝑇𝑠 = 2𝜌1
cos( 𝑗1)
𝛽1

𝐸𝛽1/(𝛽2𝐷) (1.3)

𝑅𝑝 = 2
cos 𝑗1
𝛽1

(
𝑎𝑐 + 𝑏𝑑 cos 𝑖2

𝛼2

cos 𝑗2
𝛽2

)
𝑝𝛽1/(𝛼1𝐷) (1.4)

𝑅𝑠 =
1
𝐷

(
(𝑏 cos( 𝑗2)

𝛽2
− 𝑐cos( 𝑗2)

𝛽1
)𝐸 − (𝑎 + 𝑑 cos(𝑖2)

𝛼2

cos( 𝑗1)
𝛽1

)𝐻𝑝2
)
. (1.5)

P is the slowness of medium 1, which is given by:

𝑝 = sin 𝜙 𝑗1/𝛽1 (1.6)

and a, b, c, d, E, F, G, H, and D are constants (reader should refer to Aki and Richards [2002]
for explanation of constants). To show the variation of the reflection and transmission
coefficients as a function of rock-to-soil shear wave velocity contrast, Figure 1.3 plots
the displacement amplification coefficients for the two welded half-spaces of Figure 1.2
subjected to a plane SV wave. As can be seen, by increasing the material contrast while
keeping all other parameters constant, the amplitude of the reflected S-wave increases, and
the amplitude of the transmitted S-wave decreases. In addition, P-waves are generated at
the interface due to mode conversion. Such amplification and mode conversion effects are
one aspect of basin effects. In a basin scenario, the softer and stiffer materials are basin and
bedrock, respectively, propagating from a soft medium toward a stiffer medium results in
more reflection as the impedance contrast increases.

On the other hand, basin-edge effects result from energy focusing and interference of seismic
waves in the wedge-shaped edges. The constructive interference between direct waves and
edge-generated surface waves is schematically depicted in Figure 1.4: when a vertically
propagating plane SV wave incites on a sloped subsurface interface between bedrock and
sediment, it generates a set of reflected and refracted P and S waves. Focusing on the latter,
Figure 1.4 illustrates the interference of SV direct arrivals, the reflections of SV waves from
the bedrock-sediment interface, and the transversely propagating surface waves, which show
a complex interaction of wave components that frequently exacerbates the intensity of the
wavefield in a basin.

Figure 1.5 shows the combined effects of impedance contrast and basin-edge surface wave
generation, in the form of simulated particle motion on the ground surface of a 20° dipping
layer, which is subjected to a unit amplitude vertically propagating SV plane wave of Ricker
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Figure 1.3: Variation of displacement reflection and transmission coefficients by changing
material contrast. This figure shows the case of incident angle 𝛼 = 5𝑜. Different patterns may
be observed for higher angles. With reference to Figure 1.2, medium 1 has softer material.

Figure 1.4: Schematic view of the coupled effect of material contrast and basin edge. P, S and
R waves stand for Primary, Shear and Rayleigh waves. 𝛽1 and 𝛼1 are S and P wave velocities
in the dipping layer, and 𝛽2 and 𝛼2 are the ones for bedrock. In this figure, 𝜔 = arcsin 𝛽1

𝛽2
sin𝛼,

𝜔′ = arcsin 𝛼1
𝛽2
sin𝛼 and 𝛼′ = arcsin 𝛼2

𝛽2
sin𝛼. Other parameters and angles are shown in the

figure.
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type. Points 1 to 5 lie on the rock outcrop, while points 6 to 16 lie on the surface of the
sedimentary dipping layer. Point 6 is located precisely at the tip of the 20° wedge. As
can be seen, the basin edge introduces a very complex particle motion compared to the
frequently assumed horizontally stratified medium, which does not generate any vertical
component. While its effects are evident on the rock outcrop motion in the vicinity of the
wedge tip, it predominantly impacts the particles’ motion inside the dipping layer. Note
that while the incident motion was purely horizontally polarized, the ground motion has a
significant vertical component arising from mode conversion, as well as very pronounced
spatial variability, both of which are likely to affect distributed systems and long components
of infrastructure such as pipelines.

1.2 Current Practice and Goals of This Study
As the title of this thesis suggests, the goal is to discuss basin effects parameterization and
modeling. As for parameterization, we examine howwe are able to incorporate basin effects
in seismic hazard analysis better. For modeling, we explain approaches through which one
is able to increase the accuracy of a basin simulation.

From the parameterization perspective, ground motion prediction equations and design
codes acknowledge the importance of basin effects. However, lack of sufficient data,
namely geometry, stratigraphy, and material properties, is a setback to fully incorporate
basin effects. In an empirical ground motion analysis, basin effects are generally taken
into account using 𝑉𝑠30 (the travel-time based average of the shear wave velocity of the
top 30𝑚). Most of the empirical studies ignore the impact of basin depth on long-period
response of surface response with some exceptions, for example Abrahamson et al. [2014],
Boore et al. [2014], Campbell and Bozorgnia [2014], and Chiou and Youngs [2014] from
NGA-West ground motion models. These studies include a measure of depth by introducing
a 𝑍𝑥 parameter which shows the depth at which the shear wave velocity reaches 𝑥 𝑘𝑚/𝑠. The
most common ones are 𝑍1 and 𝑍2.5, which show the depth that shear wave velocity reaches
1 𝑘𝑚/𝑠 and 2.5 𝑘𝑚/𝑠, respectively.

In a best-case scenario, two parameters (𝑉𝑠30 and 𝑍𝑥) are used to quantify a basin’s response.
One important missing component is the distance from basin edges. In reality, the slow
variation of basin depth results in a wedge-like outskirt. This introduces edge-induced
surface waves and results in an extensive wave interference inside a basin. By using only
𝑉𝑠30 and 𝑍𝑥 (which in theory represent a 1𝐷 column including a layer over halfspace), one
could represent different basin geometries. For example, consider two basins. One has
a total width of 𝑊 and a maximum depth of 𝐷, and the other one has a width of 4 ×𝑊



7

Figure 1.5: Particle motion diagram for a set of stations close to the tip of a dipping layer of
20°. An example is shown for material velocity contrast 2 and unit amplitude plane Ricker SV
wave with a dominant frequency of 1 Hz.
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and a maximum depth of 𝐷. At a point 𝑝, both could have the same 𝑉𝑠30 and 𝑍𝑥 while
the wavefield might be significantly different between the two. Therefore, there is not a
one-to-one mapping between (𝑉𝑠30, 𝑍𝑥) to the corresponding basin response. In addition,
such a parameterization ignores the frequency content of incoming seismic wave, which
would change basin response. In an empirical analysis, this is resolved by using a reference
site. However, selecting a reference site through which the empirical functional forms are
calibrated is not easy. Most of the GMPEs are well-calibrated for soft rock (shear wave
velocity of up to 800 𝑚/𝑠) (Pilz et al. [2021]), which restricts the generalizability of the
developed functional forms. In sum, the current practice has two main shortcomings that
Chapter 2 of this thesis will address: 1) most of the models are calibrated based on a fixed
rock shear wave velocity value that reduces their generalizability. Through dimensional
analysis (Buckingham [1914]), one is able to develop a general mapping that does not
depend on a reference site. 2) The use of two parameters that are correlated (𝑉𝑠30 and 𝑍𝑥)
may reduce the accuracy of the amplification factor. To properly incorporate basin effects,
a measure of basin geometry or distance from the corner needs to be considered.

From modeling perspective, basin simulations can be done for a specific location indepen-
dent of GMPEs or design codes. A 1𝐷 site response usually replaces 2𝐷 basin analysis in
such cases. This means that instead of a 2𝐷 domain, an oversimplified 1𝐷 homogeneous
material or a layered profile is assumed to represent basin material. While this approach
may work in some cases (middle of a very shallow and long basins), neglecting the im-
portance of basin edges and material variations could result in over- or under-prediction of
surface response. This oversimplification often arises from the computational cost of 2𝐷
simulations and/or unavailability of detailed material properties of soil, both of which can
be addressed.

Once the basin geometry is correctly defined using the information in Chapter 2, there are
two possible directions to perform numerical simulations: 1) to assume a homogeneous
medium similar to what is being done in Chapter 2, or 2) to assume a heterogeneous basin.
For the case of homogeneous basin, the computational cost is the main issue. However,
one can leverage statistical approaches to reduce the computational time significantly. In
Chapter 3, a procedure will be detailed that utilizes the power of deep Neural Networks to
learn a basin’s response given few dimensionless parameters as input. The trained model is
able to return basin surface acceleration at any point in a fraction of second.

On the other hand, for the case of heterogeneous basins, the main problem is a way to
properly account for basin material properties in situations that data is unavailable. In
Chapter 4, a Monte Carlo (MC)-based approach is presented as an alternative to address
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the problem. In this technique, by generating a sufficient number of realizations, one can
perform a stochastic analysis that quantifies basin response uncertainty accurately. The
method will be able to not only produce the expected value of the response but also it
returns the standard error. Note that the computational cost still remains an issue in this
case, but is out of scope of this thesis. In Chapter 5, a series of recommendations will be
made to lay out a plan to utilize statistical methods and machine learning to address this
shortcoming as well.

1.3 Structure of Thesis
For the rest of this thesis, we discuss the following subjects:

Chapter 2 includes a literature review and a discussion about the results of a parametric study
to examine the effects of different parameters on surface ground motion in a basin subjected
to dynamic loading. We will parameterize an idealized-shaped basin using dimensionless
parameters. The goal is to prioritize the parameters and make suggestions on incorporating
basin effects in GMPEs, design codes, among others.

Chapter 3 uses the results of Chapter 2 to build a neural network model and predict the
surface ground acceleration time-series in a basin. The network estimates the time-series of
acceleration at a location inside a basin using three parameters. The computational cost of
the model is negligible compared to a full-fidelity finite element simulation. Such a model
is valuable for cases when a fast estimation of time-series is desirable, such as early warning
systems.

Chapter 4 studies basin effects from the perspective of probability finite element simulations,
where a correlated random field represents basin material. In a deterministic scenario,
the basin geometry and material properties can impact seismic waves up to a particular
frequency. However, there are cases where the response of a basin in a high-frequency
range is of interest, but the shear wave velocity profile is not well resolved. Monte Carlo
technique and probabilistic FEM are valuable alternatives to a deterministic simulation in
such a scenario and will be addressed in this chapter.

Chapter 5 presents the conclusion of this study and suggests future directions.
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C h a p t e r 2

A Systematic Analysis of Basin Effects on
Surface Ground Motion

In this chapter, we perform an extensive parametric study on the characteristics of surface
ground motion associated with basin effects using finite element simulations. We use an
elastic medium subjected to vertically propagating SV plane waves and utilize idealized
basin shapes to examine the impact of basin geometry and material properties. We specifi-
cally study the effects of four dimensionless parameters, the width-to-depth (aspect) ratio,
the rock-to-soil material contrast, a dimensionless frequency that quantifies the depth of the
basin relative to the dominant incident wavelength, and a dimensionless distance quanti-
fying the distance of the basin edges compared to the dominant wavelength. Our results
show that basin effects can be reasonably characterized using at least three independent
parameters, each of which can significantly alter the resultant ground motion. To demon-
strate the application of dimensional analysis applied here, we investigate the response of
the Kathmandu Valley during 2015 𝑀𝑤 7.8 Gorkha Earthquake in Nepal using an idealized
basin geometry and soil properties. Our results show that a simplified model can capture
notable characteristics of the ground motion associated with basin effects, suggesting that
such studies can provide valuable insights relevant to the parameterization of basin effects
in GMPEs and design code provisions.

The contents of this chapter are adapted from our publication Ayoubi et al. [2021]:

Contents of this chapter

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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2.3 Parametric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Numerical Model Verification . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Basin Effects in Kathmandu, Nepal: A Simplified Model Approximation . . 39
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2.1 Introduction
Studies on basin effects date back half a century and have produced several analytical/semi-
analytical and numerical results. Researchers studied the out-of-plane (SH wave) problem
first due to its scalar nature and its simplicity. Among others, seminal was the work by
Aki and Larner [1970], who derived a method (Aki-Larner method) and found a strong
lateral interference of waves in a layer over bedrock medium, which is absent in the solution
of flat layer approximation (FLA, assuming horizontally stratified media). Parallel to Aki
and Larner [1970], Boore [1970] studied an irregularly shaped layer over half-space for
a transient input motion using FDM. They observed a significant Love wave perturbation
in the vicinity of the transition zone where both the amplitude and phase of the wavefield
are affected. Also, it was later shown that Aki-Larner and FDM methods are in good
agreement (Boore et al. [1971]). At the same time, the FLA could not adequately capture
the late arrivals of strong reverberations due to the lateral interference caused by the non-
planar basin shape. Shortly after, Trifunac [1971] and Wong and Trifunac [1974] used the
wave expansion method to devise a semi-analytical solution for semi-cylindrical and semi-
elliptical basins. They confirmed the inadequacy of FLA in complex geometries and found
that increasing the frequency of incident waves would complicate the wave interference in
basins, a phenomenon that can also occur due to the change in incident angle.

Studies on the more complex SV-P (in-plane) problems became more prevalent in the
following decade. Bard and Bouchon [1980] studied a cosine-shaped basin subjected to
P and SV incident motions. For wide basins with high-velocity contrast, they observed a
clear generation of Rayleigh waves and showed that higher Rayleigh modes were excited
by SV incident wave because of the lower value of shear wave velocity compared to the
compressional wave. Moreover, they observed that the maximum amplification corresponds
to the direct wave arrival for P-waves and the Rayleigh wave generation for S-waves. Later,
Dravinski [1982] examined the scattering of elastic waves by an alluvial valley of elliptical
shape subjected to harmonic in-plane and out-of-plane incident motions using the boundary
integral (BI) method. They noticed that the effects of incident motion frequency and basin
depth were interdependent and concluded that the SH incident wavefield is less sensitive to
basin depth than P and SV waves at the low-frequency regime. In addition, for Rayleigh
wave incidence (as would be the case, e.g., for a basin located next to a surface topographic),
they showed a comparable surface displacement amplification to P and SV incidences.

The 𝑀𝑤 8.1 1985 Michoàcan, Mexico Earthquake was a turning point in recognizing
the significance of basin effects. Despite the considerable distance (≥ 350km) from the
epicenter, Mexico City experienced disproportionately large amplification and a very long
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shaking duration. Many studies were prompted in the wake of the event and were mainly
focused on idealized 2D models of the basin (Bard et al. [1988], Campillo et al. [1988],
Kawase and Aki [1989]). The ensemble of studies attributed the observed amplification
to basin-edge effects and reverberation of earthquake waves in the sedimentary deposits.
The consensus was not as strong for the observed ground motion duration, and some
studies attributed it to 3D effects (Chávez-Garcia and Bard [1994]) not accounted for in
2D models. It was recently shown that the long duration could be attributed to longer
period waves reverberating in the deeper sediments of the basin not previously accounted
for (Cruz-Atienza et al. [2016]).

Following the 1985 Mexico City Earthquake, 3D models were brought forth to study basin
effects in a more realistic setting by simultaneously solving the in-plane and out-of-plane
components (Sánchez-Sesma et al. [1993], Battan and Narayan [2015]). This includes both
simplified geometries (Sánchez-Sesma and Luzón [1995]) and realistic basin configurations
(Olsen et al. [1995], Lee et al. [2008]). Horike et al. [1990] studied 3D irregularly layered
subsurface structures and observed 3D effects, namely localization, rapid growth, and strong
spatial variability of surface waves. Comparing 2D simulations confirmed that idealized
2D models could not fully reproduce the true amplitude and duration of surface motion.
Pitarka et al. [1998] performed near-fault ground motion simulations with kinematic source
models of the 1995 𝑀𝑤 6.9 Hyogo-ken Nanbu (Kobe) earthquake and showed that the
constructive interference between source and basin was the main reason for the catastrophic
consequences of the event. With the increase in stratigraphy and material information
in some regions, researchers can better capture sedimentary deposits’ responses during a
seismic event. Rodgers et al. [2019] performed a broadband (0-5 𝐻𝑧) 3D simulation of the
Hayward fault in California and showed that such high-fidelity simulations could produce
earthquake ground motions consistent with the empirical data. They also observed a site-
specific surface motion and concluded that fault dip and material heterogeneity play an
important role in site response.

In the last twenty years, spectral and pseudo-spectral methods have become prevalent for
regional-scale simulations of basin effects as a computationally efficient and highly accurate
method (Komatitsch et al. [2004], Di-Giulio et al. [2016], Hallier et al. [2008], Faccioli et al.
[1997], Komatitsch and Vilotte [1998]). Stupazzini et al. [2009] used 3D SEM to study
basin effects in the Grenoble valley. In addition to basin amplification, they also considered
source effects and sediment pseudo-nonlinear response. They found that the hypocenter
location and directivity play an influential role on surface ground motion. Moreover, the
radiation mechanism and the relative location of the Grenoble valley to the fault strike
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played a significant role on the observed ground motion.

Recently, the focus has been on large-scale simulation case studies (Wei et al. [2018],
Esmaeilzadeh andMotazedian [2019]) and some idealized-shaped basin parametric analyses
(Battan and Narayan [2015], Gelagoti et al. [2010, 2012]). The daunting computational cost
and input parameters required to capture basin effects (using realistic source models, crustal
structures, and near-surface effects) have hindered integrating these effects in GMPEs and
engineering design practice. Instead, the engineering community still relies gravely on 1D
site response models that are not appropriate to capture basin edge physics when relevant.
Although it has been shown in the past (Pilz and Cotton [2019]), and design codes (such
as Eurocode 8 (CERN [2004])) have acknowledged the importance of local site effects,
it is not yet properly taken into account. Currently, GMPEs take local site effects into
account by utilizing 𝑉𝑠30 and 𝑍1, ignoring the important role basin-edge effects have played
in the previous earthquake (such as Adams [2000]). Such an approach would completely
discard the mode conversion and strong spatial variability at the corner of a basin. Different
approaches have been proposed to bridge this gap, amongwhich is using aggravation factors.
This method claims that one may multiply the 1D site response by a factor to approximately
take basin effects into account for seismic analysis (Riga et al. [2016, 2018], Moczo et al.
[2018]).

This chapter uses dimensional analysis to conduct a comprehensive numerical parametric
study of 2D idealized basin geometries and material properties. Our goal is to identify and
prioritize parameters that govern basin effects, which could help parameterize basin effects
in ground motion models (GMM) and engineering design provisions. We wish to represent
basin-edge effects better, and their essential contribution in basin surface response since
although using 𝑉𝑠30 and 𝑍1 is the standard practice to address local site effects, it is a more
accurate way of incorporating the basin-edge effect is essential. The chapter is structured as
follows: After verifying our numerical toolbox, we examine the behavior of semi-elliptical
and half-cosine basins by varying the material properties, geometrical configuration, and
inputmotion characteristics. Tomake the results applicable for general basin configurations,
we present them in dimensionless form. Finally, to test our proposed parameterization,
we simulate the Kathmandu Valley, Nepal, during the 2015 Gorkha Earthquake. Our
simplified results compare favorably to long-period observations, suggesting that simple
basin geometries could potentially be used to investigate and parameterize key ground
motion characteristics associated with basin effects.
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Figure 2.1: An example of discretized FE domain. The green area shows the basin and the
yellow represents the bedrock. The domain is discretized using quad elements.

2.2 Description of Numerical Model
The idealized numerical model we used in this study is a 2D basin consisting of two elastic,
isotropic, and homogeneous materials for bedrock and basin. We performed an analysis
of wave propagation in a basin over halfspace using OpenSees, a FEM code that can solve
the wave equation in a heterogeneous medium subjected to initial and boundary conditions
using an implicit scheme (McKenna et al. [2000]). We discretized the numerical model by
requiring 12 quad elements per shortest propagating wavelength to resolve the frequency
range of interest, based on the dominant frequency of an incoming wave (Figure 2.1).

Free-field boundary conditions were placed along the side boundaries, at a distance greater
than two times the dominant incident wavelength (𝜆2, see Figure 2.6) from basin edges.
Free-field (FF) boundary condition comprises S- and P-wave absorbing elements (also
known as “Lysmer dashpots” (Lysmer and Kuhlemeyer [1969])), and free-field equivalent
forces corresponding to 1D wave propagation conditions as shown in Figure 2.3 (Cundall
et al. [1980]).

The dashpot coefficients for the tangential and perpendicular directions relative to the lateral
boundaries, 𝐶𝑠 and 𝐶𝑝, are estimated as follows:

𝐶𝑠 = 𝜌𝑣𝑠 (2.1)

𝐶𝑝 = 𝜌𝑣𝑝 (2.2)

where 𝜌 is the density of the halfspace, and 𝑣𝑠 and 𝑣𝑝 are the shear and compressional wave
velocities of the halfspace, respectively. Successively, the FF effective forces that represent
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the stress-field for 1D wave propagation conditions were computed as follows:

𝐹𝑥 = −(𝜌𝐶𝑝 (𝑉𝑚𝑥 − 𝑣 𝑓 𝑓𝑥 ) − 𝜎 𝑓 𝑓
𝑥𝑥 )Δ𝐴𝑦 (2.3)

𝐹𝑦 = −(𝜌𝐶𝑠 (𝑉𝑚𝑦 − 𝑣 𝑓 𝑓𝑦 ) − 𝜎 𝑓 𝑓
𝑥𝑦 )Δ𝐴𝑦 (2.4)

where 𝐹𝑥 and 𝐹𝑦 are perpendicular and tangential loads, respectively. 𝑉𝑚𝑥 and 𝑉𝑚𝑦 are nodal
velocities in 𝑥 and 𝑦 directions computed at each time step during the FE analysis, 𝑣 𝑓 𝑓𝑥 and
𝑣
𝑓 𝑓
𝑦 are FF velocities in 𝑥 and 𝑦 directions and 𝜎

𝑓 𝑓
𝑥𝑥 and 𝜎

𝑓 𝑓
𝑥𝑦 are the FF stresses in x and y

directions, respectively. The last four quantities are calculated using D’Alembert’s method
for 1D wave analysis. Δ𝐴𝑦 is the element size in the vertical direction.

For incident motion, we used a unit amplitude vertically propagating plane SV wave of
Ricker type (Ricker [1940]) (Figure 2.2, Eq. 2.5). While both SV and SH cases are
important on basin surface response, the choice of SV versus SH is mostly due to the
surface wave generation at basin corners. Input motion is applied as a shear force at the
base of the numerical domain where absorbing boundary conditions (Lysmer dashpots) are
prescribed. The force is calculated based on Eq. 2.6 where 𝐹𝑖𝑛𝑝𝑢𝑡 and Δ𝐴𝑥 are input force
and element size at the bottom, respectively.

𝐴𝑐𝑐(𝑡) = (1 − 2π2 𝑓 20 𝑡
2)𝑒−π2 𝑓 20 𝑡

2
(2.5)

𝐹𝑖𝑛𝑝𝑢𝑡 = 𝜌𝐶𝑠Δ𝐴𝑥

∫
𝐴𝑐𝑐(𝑡)𝑑𝑡 (2.6)

(a) (b)

Figure 2.2: Acceleration input time history, a Ricker wavelet in a) time-domain and b) fre-
quency domain.

Synthesizing the above, the vertical side boundaries would ideally respond as 1D columns
subjected to vertically propagating shear waves, had there not been a scattered wavefield
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Figure 2.3: Schematic view of the FEM domain and boundary conditions.

(albeit weak in this case) that is leaking from the basin sediments at each reverberation. A
schematic view of the numerical domain and prescribed boundary conditions is depicted in
Figure 2.3.

2.3 Parametric Analysis
This section investigates the variation of surface ground motion with basin geometry,
material properties, and input motion characteristics by performing a parametric study on
two idealized configurations, Semi-Elliptical (SE) and Half-Cosine (HC). The SE basin is
used as a frequently employed idealization that can easily be parameterized (Wong and
Trifunac [1974], Trifunac [1971], Mossessian and Dravinski [1987], Al-Yuncha and Luzón
[2000]). It is suitable to study the physics of wave propagation inside a basin by investigating
the effect of dimensionless parameters presented later. Moreover, the SE-shaped basin
represents cases that the basin corner has a relatively sharp angle, which happens when
the fault rupture extends to the surface of the Earth with a sharp angle. The HC basin
is a more realistic representation of the basin shape while remaining easy to parameterize
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for geometric and material properties. Eq. 3.2 gives the mathematical expression of the
bedrock-sediment interface depth for an HC basin. Parameters 𝑏, 𝐷, and 𝑎 are depicted in
Figure 2.6. 

𝑏 |𝑥 | ≤ 𝐷/2
𝑏
2 [1 + 𝑐𝑜𝑠(

π(𝑥−𝐷/2)
𝑎

)] 𝐷/2 ≤ |𝑥 | ≤ 𝐷/2 + 𝑎

0 |𝑥 | ≥ 𝐷/2 + 𝑎.

(2.7)

The dimensionless parameter space for the problem can be derived using Buckingham’s π

theorem (Buckingham [1914]). For a dynamic problem in elastodynamics, three parameters
are needed to define amaterial. Here, we use 𝑣𝑠 (shear wave velocity, denoted 𝛽 heretofore to
avoid parameters withmultiple indices), 𝜈 (Poisson’s ratio), and 𝜌 (density) as representative
parameters for each material. In total, we study the effects of six parameters, namely 𝛽1,
𝜈1 and 𝜌1 of the basin sediments, and 𝛽2, 𝜈2 and 𝜌2 of the bedrock. In addition, 𝑎, 𝑏 and
𝐷 + 2𝑎 are used to define geometry of a basin. Finally, 𝑓0, the dominant frequency of input
motion, is used to represent the excitation. Given the ten parameters and three characteristic
parameters (length ([𝐿] = 𝑏), mass ([𝑀] = 𝜌2𝑏3) and time ([𝑇] = 𝑏/𝛽1)) of the problem,
Buckingham’s theorem yields 7 dimensionless parameters (π1 − π7) defined as follows:

π1 = 𝜈1, π2 = 𝜈2, π3 =
𝑎

𝑏
, π4 =

𝛽2
𝛽1
, π5 =

𝑓0𝑏

𝛽1
,

π6 =
𝜌1
𝜌2
, π

′
7 =

𝐷 + 2𝑎
𝜆1

=
(𝐷 + 2𝑎) 𝑓0

𝛽1
. (2.8)

Note that π′
7 is derived by multiplying π7 = (𝐷 + 2𝑎)/𝑏 and π5. In terms of order of

magnitude, the dominant dimensionless parameters of our problem are π3, π4, π5, and π′
7.

To reduce the computational cost, we perform the parametric study only for these four
parameters and later show that the effects of π1, π2, and π6 are negligible for the problem in
hand. Unless otherwise stated, we assume π1 = 0.33, π2 = 0.33 and π6 = 1, as per Kawase
and Aki [1989].

In the following sections, we first present two verification examples of our numerical model
and then examine the contribution of the dimensionless parameters’ contribution. For
clarity, we refer to π3 as Aspect Ratio (𝐴𝑅), defined as 𝑎 over 𝑏 (see Figure 2.6); to
π4 as 𝜁 , the dimensionless width of the basin defined as (𝐷 + 2𝑎)/𝜆1, where 𝜆1 is the
dominant wavelength in the sediments defined as 𝛽1/ 𝑓0; and to π5 as 𝜂, the dimensionless
frequency. To compare the various realizations of the parametric space, we normalize the
peak acceleration amplitude on the ground surface by the peak amplitude on a rock outcrop
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referred to as amplification factor (AF). In addition, we utilize seismogram synthetics (SS)
on the ground surface and vector field snapshots to represent the spatiotemporal variation
of the wavefield.

2.3.1 Numerical Model Verification
We present two verification examples of our numerical models: (a) a semi-circular basin
from Mossessian and Dravinski [1987], and (b) a trapezoidal basin from Kawase and Aki
[1989]. Models are presented using dimensionless parameters explained earlier.

2.3.1.1 Semi-circular Basin: Mossessian & Dravinski (1987)

The first is a semi-circular basin, with geometry characteristics and material properties
described in Mossessian and Dravinski [1987] and listed in Table 2.1. Mossessian &
Dravinski used the indirect boundary integral method to compute the steady-state basin
response and reported the Amplification Factor (AF) along the surface as the peak ground
surface spectral amplitude normalized by the peak incident spectral amplitude (𝑈𝑥/𝑈𝑖𝑛𝑐𝑥 ).
Figure 2.4 compares the results by Mossessian & Dravinski to those of this study. To com-
pare our synthetic time-domain results with the steady-state basin response of Mossessian
and Dravinski [1987], we extracted the steady-state part of the ground surface displacement
by neglecting the first few cycles of time-series and considered the rest for further process-
ing. We then applied the Fast Fourier Transform (FFT) to the computed time-series and
finally normalized it by the peak spectral amplitude of the incident motion. The comparison
depicted in Figure 2.4 shows a very satisfactory agreement between the two studies.

Parameters

π1 π2 π3 π4 π5 π6 π7

0.333 0.333 1 2 0.5 0.66 1

Table 2.1: Material, geometry, and incident motion parameters for semi-circular basin in
Mossessian and Dravinski [1987].

2.3.1.2 Trapezoidal Basin: Kawase & Aki (1989)

The second verification example is the trapezoidal basin response published by Kawase and
Aki [1989]. Table 2.2 indicates the parameters we used to simulate this example. Figure 2.5
shows an excellent agreement of the two studies in the spatiotemporal domain.
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(a)

(b)

Figure 2.4: Surface AF in a) horizontal and b) vertical directions for semi-circular basin in
Mossessian and Dravinski [1987].
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Parameters

π1 π2 π3 π4 π5 π6 π7

0.333 0.333 2 2.5 0.25 1 2.5

Table 2.2: Material, geometry, and incident motion parameters for the trapezoidal basin in
Kawase and Aki [1989].

Figure 2.5: Comparison of ground surface seismogram synthetics in a, b) horizontal and c, d)
vertical directions between this study (left) and Kawase and Aki [1989] (right). The figures on
the right are extracted from Kawase and Aki [1989].
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The two verification tests presented here, where we tested the code against two different
geometries and material properties, serve as evidence of the capabilities and accuracy of
the numerical model.

2.3.2 Results
In this section, we present the results of the parametric study for each basin geometry. Table
2.3 lists the dimensionless parameters and the range of values used in the following sections.

Parameters

π3 = 𝐴𝑅 π4 π5 = 𝜂 π′
7 = 𝜁

0.5, 1, 2, 4 1.5, 2, 3.5, 5 0.125, 0.25, 0.5, 1, 2, 4 0.25, 0.5, 1, 1.5, 2, 2.6,

3.2, 3.8, 4.4, 5, 8, 12

Table 2.3: Parameter space considered in this study.

First, we show results from the SE basin, where we elaborate on the underlying physics of
basin effects by first investigating the effects of the aspect ratio 𝐴𝑅; followed by the impacts
of dimensionless frequency, 𝜂. We also investigate the role of material contrast, 𝛽2/𝛽1,
and dimensionless width of the basin, 𝜁 . Finally, we study the dimensionless parameters
that we claimed have a lesser impact on the ground surface motion, namely π1, π2 and π6.
For the HC basin shape, a more realistic idealized geometry for studies of basin effects, we
highlight the differences from the SE basin shape, stemming from the shape of basin edges.
At the end of the HC section, we also present the effect of material (low-strain) damping
on surface amplification. We finally demonstrate the effectiveness of our parameterization
by comparing our long-period simplified simulations to the recorded ground motions at the
Kathmandu Valley in Nepal during the M7.8 2015 Gorkha Earthquake.

2.3.2.1 Semi-Elliptical Basins

Figure 2.7 shows the maximum AF of the horizontal component of ground surface motion
from the ensemble of SE basin analyses corresponding to 𝐷 = 0, a narrow basin expected
to be characterized by a complex 2D wavefield due to the short distance of the two basin
edges. The effect of 𝜁 will be discussed later in the chapter. Note the four parameters we
will be using in the following sections with reference to Figure 2.6, 𝐴𝑅 = 𝑎/𝑏, 𝜂 = 𝑏 𝑓0/𝛽1,
𝐶 = 𝛽2/𝛽1, and 𝜁 = (𝐷 + 2𝑎) 𝑓0/𝛽1.

Results show that for a given 𝐴𝑅, the amplification factor generally increases with in-
creasing material contrast 𝛽2/𝛽1, similar to the observation for spectral amplification by
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(a)

(b)

Figure 2.6: Schematic view of a) SE and b) HC basins. 𝜆2 is defined as 𝛽2/ 𝑓0.

Narayan [2010]. This is not particularly surprising since high 𝛽2/𝛽1 implies a higher per-
centage of energy entrapment in sediments and lower energy leakage. There are, however,
a few results that merit further discussion: the case of 𝐴𝑅 = 0.5, 𝜂 = 4 and 𝛽2/𝛽1 = 1.5
(circled in the top left subfigure 2.7) is a deep basin with relatively stiff sediments sub-
jected to high-frequency ground shaking. We observe a very high amplification (AF =
2.95) close to the maximum AF that we observed from the ensemble of simulations. As
shown in Figure 2.8, this happens due to the synchronous arrival of direct waves and edge-
induced surface waves at the center of the basin, where they constructively interfere. More
specifically, Figure 2.8 illustrates the wavefield evolution in four stages outlined below:
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Figure 2.7: Maximum horizontal AF for all SE analyses. Red circles show unexpected results
due to constructive wave interference.

a) The incident wave hits the deepest part of the basin. One can identify the onset
of wavefield distortion in the basin. The sediment-rock material contrast plays an
important role since it determines the amplitude of the seismic pulse that enters the
basin and regulates the amount of time it takes to reach the basin surface.

b) Vertical-incident waves from the base, and laterally-propagating surface waves from
basin edges travel toward the basin center.

c) Waves interact while waves propagate toward the basin center.

d) Maximum amplification occurs when they constructively interfere at the center.

On the opposite end, for a very shallow basin with very soft sediments, the case of 𝐴𝑅 = 4,
𝛽2/𝛽1 = 5, and 𝜂 = 0.25 to 𝜂 = 0.5, a similar phenomenon of constructive interference in



24

(a) (b)

(c) (d)

Figure 2.8: Snapshots of the wavefield for an SE basin with 𝐴𝑅 = 0.5 and 𝛽2/𝛽1 = 1.5, sub-
jected to vertically propagating shear waves of 𝜂 = 4: a) incident wave enters the basin; b,c)
body and surface waves travel towards the basin center; d) body and surface waves generate
the maximum AF at the basin center.

the middle of the basin occurs, as shown in Figure 2.9. On the left, the spatial distribution
of amplification is displayed where the maximum amplitude occurs in the middle. Looking
at the seismogram synthetics, the maximum amplitude takes place at dimensionless time
𝑡∗ = 5. In addition to high 𝐴𝐹, due to material velocity contrast, we recognize the
reverberations of trapped energy in the sediments, which in addition to significant AF, lead
to prolonged motion duration.

Effect of Aspect Ratio (AR) AR defines the average slope of basin edges, which have
been shown to dominate the response of most basins during seismic events (Kawase [1996]).
In this subsection, we present results of surface amplification for various AR values. The
spatial variations of horizontal and vertical amplifications are portrayed in Figures 2.10 (low
frequency incident motion) and 2.12 (high frequency incident motion) for a set of aspect
ratios, velocity contrasts, and dimensionless frequencies. Figure 2.11 illustrates the SS for
the top panel of Figure 2.10, and helps to explain the observed surface amplification.

From these figures, one can observe a considerable variation associated with varying the
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(a) (b)

Figure 2.9: Result of model with 𝐴𝑅 = 4, 𝜂 = 0.5 and 𝛽2/𝛽1 = 5, a) AF and b) SS in horizontal
direction.

AF in horizontal and vertical directions. Focusing on Figure 2.10, it is clear that for this
particular setting, 𝐴𝑅 = 1 has the largest amplification in the horizontal direction for both
material contrasts due to constructive interference of direct arrival of the incident wave and
laterally propagating edge-induced surface waves, as can be seen in Figure 2.10-a and c.
The wave interference and consequent peak amplification occur closer to the basin edges for
shallower and deeper basins. The AF of the vertical component, which arises purely from
mode conversion (recall that our input motion was a vertically propagating horizontally
polarized SV wave), is generated primarily from edge-induced (Figure 2.11-d,f,h) surface
waves except for 𝐴𝑅 = 0.5 (Figure 2.11-b). For the deepest basin, the basin edges are
not playing as important a role as their shallower counterparts. Moreover, by comparing
Figures 2.10-a and b, one can see that in locations that horizontal de-amplification happens,
we observe an amplification in vertical direction. However, the energy also leaks to the
bedrock area and will finally be scattered to the half-space.

Figure 2.12 shows how higher frequency input motion would affect the resultant wavefield
while other parameters are the same as Figure 2.10. Increasing the frequency, in general,
would result in a more localized interaction of basin and incident motion. This is projected
in Figure 2.12 where higher amplification at basin corners happens over a shorter distance
(see Figure 2.12-a and c). In addition, as a result of more localized interaction, the spatial
variation of surface amplification is exacerbated (see Figure 2.10-b and d), which could
cause severe damage to long components of the infrastructure systemdue to torsional particle
motion. These results are in general agreement with Zhu and Thambiratnam [2016].

Based on the last three figures, the three parameters, namely the coupled behavior of basin
geometry, material properties, and frequency content of the incident motion, govern the
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(a)

𝛽2/𝛽1 = 2

(b)

𝛽2/𝛽1 = 2

(c)

𝛽2/𝛽1 = 3.5

(d)

𝛽2/𝛽1 = 3.5

Figure 2.10: AF in a,c) horizontal and b,d) vertical directions for SE basin for a range of ARs,
𝜂 = 1, 𝛽2/𝛽1 = 2 (top panel) and 𝛽2/𝛽1 = 3.5 (bottom panel).

surface ground motion in a basin. For the remainder of the chapter, we shall use 𝐴𝑅 = 1 as
a point of comparison and investigate other parameters by keeping the aspect ratio constant.

Effects of Dimensionless Frequency (𝜂) and Material Contrast (𝛽2/𝛽1) Figures 2.13
and 2.14 show the effects of dimensionless frequency (𝜂) and material contrast (𝛽2/𝛽1)
on the AF of surface ground motion for a basin with 𝐴𝑅 = 1. Recall that parameter 𝜂
measures the basin response sensitivity to an incoming wave by quantifying the relative size
of the basin to the incoming dominant wavelength. The physical meaning of the parameter
is depicted in Figure 2.13, where, for 𝜂 ≪ 0.5 and 𝜂 ≫ 4, the basin is too small or too
large compared to the incident wavelength, respectively. In the first case, the wave barely
“sees” the basin (basin-bedrock medium behaves as a halfspace), and in the second case,
the basin responds similarly to a 1D two-layer column. Therefore, 𝜂 = 0.125 (wavelength
8 times larger than basin depth) results in a negligible vertical component since the basin
is too small for the seismic wave to experience substantial mode conversion. This figure
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(a)

𝐴𝑅 = 0.5

(b)

𝐴𝑅 = 0.5

(e)

𝐴𝑅 = 2

(f)

𝐴𝑅 = 2

(g)

𝐴𝑅 = 4

(h)

𝐴𝑅 = 4

Figure 2.11: SS for 𝐴𝑅 = 0.5 (top panel), 𝐴𝑅 = 1 (second from top panel), 𝐴𝑅 = 2 (second
from bottom panel) and 𝐴𝑅 = 4 (bottom panel) in a, c, e, g) horizontal and b, d, f, h) vertical
directions. 𝜂 = 1 and 𝛽2/𝛽1 = 2 are assumed.
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(a)

𝛽2/𝛽1 = 2

(b)

𝛽2/𝛽1 = 2

(c)

𝛽2/𝛽1 = 3.5

(d)

𝛽2/𝛽1 = 3.5

Figure 2.12: AF in a,c) horizontal and b,d) vertical directions for SE basin for a range of ARs,
𝜂 = 4, 𝛽2/𝛽1 = 2 (top panel) and 𝛽2/𝛽1 = 3.5 (bottom panel).

also illustrates those mentioned above strong spatial variability of surface ground motion
for higher frequencies. Moreover, due to the complexity of the wavefield in the basin,
no specific 𝜂 yields a maximum AF across the basin, which can be observed in both the
horizontal and vertical components and is more pronounced near basin edges.

Figure 2.14 further details the case of 𝐴𝑅 = 1 by showing the effect of material contrast
for different 𝜂, and thus illustrating the coupled effect of parameters of interest. The AF
of the vertical ground motion component reaches a surprisingly high value. While the
incoming wave is a plane SV-wave, the AF vertical component near the edges is comparable
to the horizontal one. The spatial variability suggests that structures near the edges would
experience not only strong transverse and vertical shaking but also rotational motion. In
addition, higher frequency incident motions interact on a local scale with the geometry
and material properties of the basin, which affect the ground motion characteristics over
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(a) (b)

Figure 2.13: AF in a) horizontal and b) vertical directions for SE-shaped basin with AR=1 and
𝛽2/𝛽1 = 2.

shorter distances. The opposite is true for longer wavelengths. For the case of 𝜂 = 0.5,
both horizontal and vertical AFs reveal that the incident motion interacts with the basin
as a whole, a fact evidenced in the smooth spatial variation of AF across the basin. By
looking through this figure, the localization effect of frequency increment is noticeable. For
example, by comparing the AF in Figures 2.14-b and 2.14-d, one can see that Figure 2.14-d
indicates a more complex amplification distribution due to higher frequency content.

Effect of Dimensionless Width (𝜁) So far, we have investigated three parameters with
𝐷 = 0 to observe the wavefield in a basin. We focus on edge-induced Rayleigh waves for
this subsection by examining the effects of 𝐷 > 0. Figure 2.15 shows the effect of the
dimensionless width (𝜁) on the spatial distribution of surface amplification on a SE basin.
Note that the minimum value of 𝜁 corresponds to its value for 𝐷 = 0, namely 2𝑎

𝜆1
= 2𝜂𝐴𝑅.

By increasing 𝜁 , the amplification decreases, and separation between two corners appears.
This results in a nearly 1D response in the middle of the basin (denoted by a blue star in
Figure 2.15) while the 2D effects dominate as one moves closer to the basin edges. This
does not mean that the middle area of the basin will experience purely horizontal motion
since the Rayleigh wave’s traverse motion will still generate significant vertical movement.
This phenomenon will be explained in more detail in a later section of this chapter.

Effect of Other Dimensionless Parameters In this subsection, we examine the effects
of three dimensionless parameters we have not investigated yet (see Eq. 2.8), namely the
Poisson’s ratio of the sediments (𝜈1) and the bedrock (𝜈2), and the ratio of the mass density
of the sediments to the bedrock ( 𝜌1

𝜌2
). The range of values we consider is shown in Table 2.4.

Figure 2.16 shows the effects of Poisson’s ratio on the surface amplification for 𝛽2/𝛽1 = 2
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(a)

𝜂 = 0.5

(b)

𝜂 = 0.5

(c)

𝜂 = 1 𝜂 = 1

(d)

(e)

𝜂 = 4

(f)

𝜂 = 4

Figure 2.14: AF in horizontal (left panel) and vertical (right panel) directions for SE basin with
AR=1 and a,b) 𝜂 = 0.5, c,d) 𝜂 = 1, e,f) 𝜂 = 4. Three different 𝜂s are shown to also show the
coupled effect of material contrast and dimensionless frequency.
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(a)

*

(b)

*

Figure 2.15: Effect of dimensionless width (𝜁 = (𝐷 +2𝑎)/𝜆1) for SE basin for a) horizontal and
b) vertical components. 𝐴𝑅 = 1, 𝜂 = 1 and 𝛽2/𝛽1 = 2 are assumed.

Parameters

π1(𝜈1) π2(𝜈2) π6 = 𝜌1/𝜌2

0.25, 0.35, 0.45 0.2 2
3 , 0.8

Table 2.4: Considered parameters for studying effects of π1, π2, and π6.

and 𝛽2/𝛽1 = 3.5, 𝜂 = 1 and 𝐴𝑅 = 1. As can be readily seen, the effects of Poisson‘s ratio
are negligible compared to the four main dimensionless parameters we discussed earlier.
We should, however, note here that we expect the effects of Poisson’s ratio to be more
pronounced for nearly incompressible material behavior (𝜈 ≈ 0.5 or undrained loading
conditions).

Similarly, Figure 2.17 shows the effects of density contrast (𝜌2/𝜌1) on the spatial variability
of peak amplification, for the case of an SE basin with 𝜂 = 1 and 𝐴𝑅 = 1. Results are shown
for two velocity contrasts 𝛽2/𝛽1 = 2 and 3.5. As can be seen, the effects of density contrast
are on the order of 5% in the vicinity of the peak horizontal and vertical amplification, which
are still considered of secondary importance compared to the four parameters investigated
earlier.



32

(a) (b)

Figure 2.16: Effect of 𝜈 on surface ground motion for two different 𝛽2/𝛽1 values, for SE basin
with 𝜂 = 1 and 𝐴𝑅 = 1 in a) horizontal and b) vertical directions.

(a) (b)

Figure 2.17: Effect of 𝜌1/𝜌2 on surface ground motion for two different 𝛽2/𝛽1 values, for the
case of an SE basin with 𝜂 = 1 and 𝐴𝑅 = 1 in a) horizontal and b) vertical directions.
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2.3.2.2 Half-Cosine Basins

Although SE models have been widely used as idealized basin geometries (Trifunac [1971],
Dravinski [1982]), their sharp corners do not resemble realistic basin edges. In more
realistic scenarios, one would expect landscape evolution processes, such as weathering and
alluvial or fluvial deposits, to lead to a more gradual transition from rock to sediments near
the basin edges. Given the critical role of edges in the focusing and diffraction phenomena
that govern basin effects (see Figure 2.18), we here study a more realistic idealized basin
shape adopted from the geomorphology literature and referred to as Half-Cosine (HC) (see
Figure 2.6).

Figure 2.18 compares the particle motion of two basin geometries (SE and HC) near the
edge with otherwise identical aspect ratios, impedance contrasts, dimensionless width, and
frequency. The bottom row schematically depicts the geometry of the basin edge and the
location where the comparison is taking place. As can be seen, the wavefield is affected
by the basin edge geometry (and convexity). The particle motion change would be even
more pronounced for higher frequency components. Note that the edge geometry caused a
horizontal shift in the wavefield, and it seems that each point on the SE basin corresponds
to a further point in HC. For example, points 4 and 4∗ have similar particle motions.

For the rest of this section, we focus on the parameters directly affected by edge geometry,
namely 𝐴𝑅 and 𝜁 . Although 𝜂 and 𝛽2/𝛽1 have been shown to alter the basin’s wavefield
significantly, their effects do not differ significantly for a given 𝐴𝑅 and 𝜁 ; results are thus
demonstrated for the case of 𝜂 = 1 and 𝛽2/𝛽1 = 2, similarly to SE geometry.

Effect of Aspect Ratio (AR) The effects of 𝐴𝑅 for HC basins are depicted in Figure 2.19.
The impact of edge convexity manifests in the spatial distribution of AF. As can be seen, by
changing the basin geometry, the separation of edges does not happen as fast as it happened
in the case of the SE basin (Figure 2.10) because of gradual variation of the basin-bedrock
interface depth over distance. This shows how a more realistic basin geometry could affect
the amplification variation in a basin, especially for shallower (𝐴𝑅 > 1) configurations that
are more prevalent in urban environments.

Effect of Dimensionless Width (𝜁) Figure 2.20 shows the effect of 𝜁 on the surface ground
motion in the horizontal and vertical directions. We consider a range of 𝜁 that captures the
response of narrow and wide basins. Results illustrate the fading effect of basin edges on
the amplification factor close to the basin center. This does not mean that the basin middle
would behave as a purely 1D column due to Rayleigh waves traverse propagation within the
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Figure 2.18: Particle motion comparison for SE and HC basins in the vicinity of basin edge.
𝐴𝑅 = 1, 𝜂 = 1 and 𝛽2/𝛽1 = 2 are assumed.
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(a) (b)

Figure 2.19: AF for different 𝐴𝑅s of HC basins of 𝐷 = 0, 𝜂 = 1 and 𝛽2/𝛽1 = 2 in a) horizontal
and b) vertical directions.

basin which mainly contributes to the vertical component of surface ground motion. As can
be seen, for separation 𝜁 ≥ 5, the corner half-cosines have minimal influence in shaping the
horizontal amplification, evidenced by a uniform spatial distribution of AF over the central
part of the basin.

(a)

*

(b)

*

Figure 2.20: Effect of dimensionless width (𝜁 ) on the surface amplification in a) horizontal and
b) vertical directions. 𝐴𝑅 = 1, 𝛽2/𝛽1 = 2 and 𝜂 = 1 are assumed.
.

Results of the midpoint response for an HC basin are next compared, for representative 𝜁 ,
to the analytical solution of a 1D two-layered linear elastic soil column (Tsai and Housner
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[1970]) subjected to a vertically propagating SV Ricker wave. Figure 2.21 compares the
acceleration time series, Fourier, and response spectra at the basin midpoint calculated from
2D wave propagation simulations for 𝜁 = 3, 5, 9, and 12 to the corresponding response of
a horizontally stratified 1D layered model. As expected, by increasing 𝜁 , the basin center
(denoted by a blue star in Figure 2.20) increasingly responds like a 1D column as the two
basin edges separately. However, even for the case of 𝜁 = 12, edge-induced surface waves
traveling horizontally are evident as late arrivals in the midpoint signal, an effect that 1D
site response approximations are not able to capture.

Effect of Damping In reality, during large earthquakes, the soft sedimentary depositwould
undergo considerable deformation that causes wavefield attenuation. In this article, we have
so far studied the coupling effects of geometry, material contrast, and frequency content
without the attenuating contribution of material damping (low-strain assumption). At this
strain range, we use Rayleigh damping and change its parameters to match the frequency
range of interest. Figure 2.22 shows a comparison between two configurations with 𝐴𝑅 = 1
and 𝐴𝑅 = 4; 𝜂 = 1, 𝛽2/𝛽1 = 2 and a range of realistic damping values. Two damping values
𝜉 = 2.5% and 5% are considered, and the resultant amplification curve is compared with
the no-damping condition. In order to calibrate Rayleigh damping parameters, 𝑓𝑚𝑖𝑛 = 0.15
(Hz) and 𝑓𝑚𝑎𝑥 = 3.5 (Hz) are used while the dominant frequency of input motion is 𝑓0 = 1
(Hz) and the fundamental frequency of the soil column corresponding to the deepest part of
the basin is 𝛽14𝑏 = 0.25 (Hz). For the range of geometries and damping values studied here,
results are affected by low-strain attenuation in the horizontal direction only at the midpoint
of the basin (and no more than 𝐴𝐹 ≤ 20%, and are practically unaffected in the vertical
direction). We should, however, highlight that results are shown only for 𝜂 = 1, and that
higher frequency ground motions are expected to be more strongly affected by low-strain
damping effects.
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𝜁 = 3

𝜁 = 5

𝜁 = 9

𝜁 = 12

Figure 2.21: Comparison of the 1D analytical solution with the numerical results at the basin
center. The 𝜁 value is shown on the figure. 𝐴𝑅 = 1, 𝜂 = 1 and 𝛽2/𝛽1 = 2 are assumed.
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(a) (b)

Figure 2.22: Effect of damping of surface AF in a) horizontal and b) vertical directions. We
assumed two different damping parameters (𝜉 = 2.5 and 5.0), 𝜂 = 1, and 𝐴𝑅 = 1 and 4.

Finally, wavefield snapshots for an HC basin with 𝐴𝑅 = 1, 𝛽2/𝛽1 = 2 and 𝜁 = 3 are shown
in Figure 2.23. The middle rectangle-like part of the basin behaves similarly to a 1D column
before the edge-generated surface waves arrive. At the same time, the corner half-cosines
where surface waves originated from amplifying the wavefield via focusing. Although the
surface wave characteristics differ from the case of the SE-basin due to differences in edge
geometry, the same general four-stage wavefield evolution can be observed here as well:
(a) body wave arrival, followed by (b-c) surface wave generation at the edges, followed by
(d) interaction of body and surface waves in the middle, followed by (e-f) horizontal and
vertical wave reverberations in the basin and energy leakage towards the halfspace. The
characteristic rotational wave pattern at the base of the basin shown in Figure 2.23-f is
referred to as the “breathing zone” (Momoi [1980]), a region where energy transfer occurs
between the scattered P- and S-wavefields.



39

(a) (b)

(c) (d)

(e) (f)

Figure 2.23: Snapshots of total wavefield for HC basin with AR=1, 𝜁 = 3, 𝜂 = 1, and 𝛽2/𝛽1 = 2.
The trapezoidal black line shows the basin boundary.

HC basins with large 𝜁 are an appropriate representation of wide shallow basin geometries,
similar to the trapezoidal geometry used by Kawase and Aki [1989] to study basin effects
in Mexico City. In the following section, we use an HC idealized geometry to analyze basin
effects in Kathmandu, Nepal, that were observed during 2015 𝑀𝑤 7.8 Gorkha Earthquake.

2.4 Basin Effects in Kathmandu, Nepal: A Simplified Model
Approximation

During the 2015𝑀𝑤 7.8 Gorkha Earthquake (Asimaki et al. [2017]), macroseismic observa-
tions and recorded evidence strongly showed that basin effects had played an essential role
in the characteristics of strong-motion recordings and the distribution of damage (or lack
thereof). To test how simplified models can capture complexities of basin effects, we here
approximate the Kathmandu basin with an HC idealized model. The model was selected
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Figure 2.24: A plan view of Kathmandu basin. The location of strong ground motion stations
is shown by their name. The red line shows the cross-section used by Ayoubi et al. [2018] and
is used in this study.

to match the geometry of the top 0.5 km of basin sediments and is shown in Figure 2.25
(see Ayoubi et al. [2018] for more detail). The cross-section of the basin corresponds to the
red line shown in Figure 2.24. Hokkaido University and Tribhuvan University installed the
strong ground motion stations depicted in the same figure, and they reported the recorded
accelerations during the mainshock (Takai et al. [2016]). These records will be used to
evaluate the accuracy of the idealized model presented in this study.

To estimate the basin response of the idealized model, we use a train of two plane SV
Ricker wavelets as shown in Figure 2.26-a, to excite a range of resonant modes of the basin.
The "Data" in Figure 2.26-b shows the incident excitation used for numerical analysis by
(Ayoubi et al. [2018]), and we are trying to resemble it using two Ricker wavelets. The input
motion is derived using de-convolution of East-West component of recorded acceleration
at KTP (see Figure 2.25) by assuming a 1D column of depth 𝑏. By summing the two
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Figure 2.25: A HC-shaped basin is used in this study. The dashed line shows the basin’s
realistic geometry, which was used to find the corresponding simplified version in the current
study.

Ricker wavelets, we cover a wider range of frequencies. In Figure 2.26-b, we show the
Low Frequency (LF, in dotted blue line) and High Frequency (HF, in dashed red line)
components of input motion. These two are summed to produce the incident plane wave
that the idealized basin is subjected to (“Sum Incident Motion” in the Figure 2.26-a and b).
The time series of each wavelet and the “Sum Incident Motion” are shown in Figure 2.26-a.

We assume that the basin is made of an elastic isotropic material with properties listed
in Table 2.5. The bedrock properties are adopted from Wei et al. [2018], and the basin
shear wave velocity is calculated using 1D velocity profiles published by Bijukchhen et al.
[2017] beneath the strong motion stations shown in Figure 2.24. The profiles are shown in
Figure 2.27. We average the three profiles to estimate a 1D approximation of the sedimentary
structure inside the basin. This 1D approximation is later used to calculate the weighted
average shear wave velocity for the simplified basin model.

Parameters

π1 π2 π3 π4 π5 π6 π7

0.333 0.2441 3.6 6.4 0.312 0.79 11.15

Table 2.5: Basin and halfspace parameters with reference to dimensional analysis of section
2.3.

Figures 2.28 and 2.29 show results of our analysis. Figures 2.28-a and 2.28-b portray
surface AF of horizontal and vertical components, respectively. Basin edge effects can be
readily observed in the form of localized ground motion amplification (more than 3 with
respect to the free field) and strong spatial variability. This happens due to a complex wave
interaction inside the basin. Such a complex spatiotemporal variation of the wavefield can
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(a)

(b)

Figure 2.26: Fourier spectral amplitude of incident motion from Ayoubi et al. [2018] (dashed
cyan line) and the current study (thick black line). The low frequency (LF, shown in dotted
blue line) and high frequency (HF, shown in red dashed line) show two Ricker wavelets that
are combined to derive the input for the numerical simulation.

be better perceived by seismogram synthetics of Figures 2.28-c and 2.28-d. An elongated
motion, a strong vertical component, and a constructive wave interference are among the
reasons for such a complicated behavior. Note that the input motion we use here is a train
of two Ricker wavelets, and this complexity would be further accentuated in the case of a
broadband seismic incident motion.

Figure 2.29 shows a comparison between the amplification factor in the frequency domain
for the simplified basin of this study and the ground motion recordings from a strong-
motion array in Kathmandu during the 𝑀𝑤 7.8 Gorkha mainshock (Takai et al. [2016]).
Note that a comparison between waveforms (time-series) would not be possible since we
use a synthetic input (a train with two Ricker wavelets, Figure 2.26) instead of a broadband
earthquake acceleration. Moreover, the comparison is not shown for > 1𝐻𝑧 since the model
cannot capture a high-frequency portion of surface groundmotion due to the lack of detailed
stratigraphy andmaterial information that wouldmanifest in high frequency. As can be seen,
the simplified HC basin model can capture the characteristics of the complex ground motion
recordswith acceptable accuracy in the frequency range of< 1𝐻𝑧. We should also highlight
that the response at station TVU is governed by basin edge effects due to its proximity to
the outskirts of the basin; thus, in the absence of detailed geometry representation of the
basin edge, the predictive capabilities of the idealized model in Figure 2.29-a are less clear
than in the case of Figures 2.29-b and -c.



43

Figure 2.27: Black lines show the 1D velocity profiles by Bijukchhen et al. [2017]. The blue line
shows the averaged and smoothed velocity. We temporally averaged the “1D basin velocity
profile” (blue line) to obtain a single value for the shear wave velocity of the basin (red line).

2.5 Summary
This chapter performed an extensive parametric study to examine the coupled effects of
material properties, interface geometry, and ground motion characteristics on the ground
surface response of sedimentary basins. The simulations were carried out only for the case
of vertically propagating SV wave of Ricker type. For all the simulation, we ignored the
impact of source and incident angle in order to simplify the problem in hand. Our goal
is to prioritize the parameters affecting the surface ground motion associated with basin
effects by limiting the number of parameters that can reasonably take basin effects into
account for seismic design codes and GMPEs. These could be used to devise a spatially
varying aggravation factor curve for a specific site or could also be used as inputs to train
a neural network to analyze surface motion on a basin. However, the output of these
simulations are not able to account for how the source parameters, including incident angle
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(a) (b)

(c) (d)

Figure 2.28: Kathmandu Basin response: a) Horizontal AF, b) vertical AF, c) Horizontal SS,
and d) Vertical SS.

and distance from the basin, would impact the basin response. It was shown that in Gorkha
Earthquake, the earthquake source was producing high-frequency response in a down-dip
location and the long distance between the location of high-frequency component of the
rupture and Kathmandu city was one of the main reasons that surface response was mainly
low-frequency signal inside the basin (Avouac et al. [2015]). Such an observation is not
feasible based on the set of simulations performed in this chapter.

We first investigated a simple dipping layer. The calculated surface motion shows that
the coupled effect of material contrast and basin-edge can drastically change the wavefield
compared to a flat ground with no irregular subsurface and produce a substantial vertical
motion even when the incident motion is purely horizontal. We then defined two idealized
geometries (Semi-Elliptical, SE, and Half-Cosine, HC). We studied their effects for elastic
media subjected to vertically propagating SVwaves of Ricker type using four dimensionless
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(a) (b)

(c)

Figure 2.29: Comparison of simple HC basin (“Current Study”), and recorded motion during
the mainshock from Takai et al. [2016] for a) TVU station, b) PTN station, and c) THM station.

parameters: aspect ratio (𝐴𝑅), dimensionless frequency (𝜂), material contrast (𝛽2/𝛽1), and
dimensionless width (𝜁). Note that the materials assumed to be homogeneous for all the
simulations of this chapter. Although depth dependency is an important aspect of realistic
basin analysis, it is not something that is taken into consideration in practice. There are a
couple of reasons for that: 1) the level of required information in order to include depth
dependency of material is significantly higher than a homogeneous case. In some regions
with sufficient soil material testing, empirical shear wave velocity profiles was developed
(for example for California (Shi and Asimaki [2018])). However, this is not universal as
most regions lack enough information in order to generate such curves. 2) If there exists a
well-defined velocity profile for a basin, one is able to perform a deterministic numerical
simulation specific to the region. The use of a generic dimensionless framework to calculate
surface response of a basin is of less importance in such situations.
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Wefirst studied 𝐴𝑅, a key parameter in describing the geometry of basin edges. We observed
that the location and magnitude of maximum horizontal amplification depend on 𝐴𝑅; and
that for the same 𝐴𝑅, SE and HC edge geometries can yield different amplification patterns.
The parameter 𝜂measures the relative size of a basin to the dominant wavelength. For lower
values of 𝜂, an incoming wave treats the basin as a whole (very low 𝜂 motions completely
“miss” the basin). In contrast, very high 𝜂motions interact only locally with the basin edges.
By increasing 𝜂, the spatial variation of amplification factor (both horizontal and vertical)
enhances, and the AF changes over shorter distances. Our results show that 𝜂 = 0.125
had the most negligible impact on the amplification factor, and the response approximated
half-space conditions. We next considered material contrast between soil and rock (𝛽2/𝛽1),
a parameter that controls the energy that enters the basin and regulates the wave speed
in each medium. Increasing material contrast generally resulted in a higher amplification
factor due to the entrapment of earthquake waves within the basin and longer duration.
Last, we considered the dimensionless width parameter (𝜁) and showed that it could change
the wave interference pattern by separating the whole basin into two 2D problems (corner
half-cosine). We observed that for 𝜁 ≥ 5, the basin behaves as two decoupled dipping layers
with minimal interactions. Finally, we showed that the edge geometry plays a significant
role in shaping the surface motion and basin wavefield and recommended a cosine-shaped
basin edge for idealized basin simulations.

Our results show that dimensionless frequency, material velocity contrast, and aspect ratio
are the most influential among the seven dimensionless parameters we investigated. The
dimensionless width (𝜁) was shown to be less effective than the three parameters mentioned
above, which is expected since it stands as a proxy for lateral wave reverberations while
the scenarios we examined involved vertically propagating incidence. Other dimensionless
parameters such as density contrast, Poisson’s ratio, or low-strain damping were shown to
play a secondary role in this case. This conclusion can be crucial in developing param-
eterizations to integrate complex, non-1D phenomena such as basin effects in data-driven
models such as ground motion prediction equations (GMPEs).

In the last section of the chapter, we approximated the shape of the Kathmandu basin, Nepal,
with an idealizedHC2Dbasin and studied its response compared to the 2015𝑀𝑤 7.8Gorkha
Earthquake observations. We presented the amplification factor computed and recorded on
the four strong ground motion stations in the basin and showed that even a simplified model
could reproduce key features of the recordings associated with basin effects. We asserted
that a more complex model would be required to study the physics of the phenomenon in
more detail by incorporating source effects, 2D or 3D basin geometry models, layering, and
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nonlinear site response.

Our findings show that basin effects can satisfactorily be captured by proxies of three
parameters, 𝜂, 𝛽2/𝛽1, and 𝐴𝑅. Currently, the most up-to-date GMPEs incorporate basin
(really, 1D site) effects through the use of𝑉𝑠30 (average shear wave velocity in top 30meters)
and 𝑍1 (depth to shear wave velocity 1 𝑘𝑚/𝑠). At the same time, there is evidence that the
two parameters can be correlated within the confines of similar geologic units (Abrahamson
and Silva [2008]). This would ignore the important contribution of basin-edge effects that
significantly altered the basin surface response during past earthquakes. Our experience
shows that parameters 𝜂 or 𝛽2/𝛽1 could help improve GMPE parameterization for both
1D and non-1D conditions while including a basic measure of basin geometry such as 𝐴𝑅
should be investigated as a means of decreasing aleatory uncertainty associated with site
effects in sedimentary basin settings.
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C h a p t e r 3

Time-series Estimation Using Neural Network:
Application of Basin Effects

Although design codes and GMPEs have acknowledged the importance of basin effects,
they have not yet fully incorporated the phenomena. This is primarily due to the lack of
seismic data on sedimentary deposits and the complexity of the problem. The current state
of practice is to use the shear wave velocity of the top 30 𝑚 (𝑉𝑠30) of a soil column, and
the depth at which the shear wave velocity reaches 1000 𝑚/𝑠 (𝑍1) to take basin effects (and
local site effects in general) into account. However, combining these two parameters is
insufficient to capture 2𝐷 and 3𝐷 effects, especially the basin edge effect, as mentioned
in the previous chapter. To reconcile the issue, some suggest using a multiplicative factor
to modify the output, which is site-specific and requires generating aggravation curves for
every site. Hence, a more accurate and generic procedure is needed to better incorporate
basin effects for seismic analysis. In this chapter, we propose a new approach by which one
will be able to estimate surface ground acceleration time-series in a basin with a minimal
computation cost and few input parameters. We train a Neural Network (NN) to compute the
transfer function of acceleration time-series at a location. Three input parameters are needed
for the estimation: the basin-to-bedrock shear wave velocity ratio, the aspect ratio of the
basin, and the dimensionless location. These parameters define an idealized-shaped basin
and the location at which the time-series are to be computed. We will show that the model
performs well compared to a full-fidelity FE simulation (ground truth) and generalizes well
for input parameters outside of the training dataset. Moreover, we will also use the model
for the case of Kathmandu Valley, Nepal, during the 2015 𝑀𝑤7.8 Gorkha Earthquake to
test its generalizability similar to Chapter 2.
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3.1 Introduction
GMPEs relate an intensity measure at a site to parameters that define the source, path, and
site characteristics. Douglas [2019] made a summary of GMPEs for the past 55 years and
showed that the Peak Ground Acceleration (PGA) is the most common intensity measure
that has been used in GMPEs while Peak Ground Velocity (PGV) and response spectra are
second and third. While methods like aggregation factor (Riga et al. [2016, 2018]) have
been proposed to take basin effects into account, GMPEs and design codes gravely rely on
1D site response by using 𝑉𝑠30 and 𝑍1, to account for local site effects in their framework.
This procedure cannot fully capture the wave interference within a basin (Ayoubi et al.
[2021]) and in particular basin-edge effects.

The inclusion of site effects in design codes and GMPEs has always been a challenge due
to the complexity of the phenomena and the lack of empirical data. Nowadays, with the
advancement of computational resources and data analytics, synthetic data is an alternative
that can be used to back up empirical information. Using Finite Difference (FD) and Finite
Element (FE) methods to perform a full-fidelity analysis is one alternative to simulate a
complex geometry subjected to a seismic scenario. Such an approach, although accurate,
is computationally expensive and requires a lot of information about the geometry and
material properties in a basin. A more efficient method is to use an aggravation factor. An
aggravation factor is a multiplier applied to the result of 1D site response to approximate
2D effects in a seismic hazard assessment (Riga et al. [2016, 2018]). However, aggravation
factors are site-specific and require a new set of synthetic or empirical data for each site or
region. Therefore, a generic (not site-specific) procedure that is able to simultaneously take
into account the complex wave interference in a basin and have a negligible computational
cost is beneficial for seismic hazard analysis. The importance becomes pronounced when
a fast and accurate calculation of basin response is desirable, such as in Earthquake Early
Warning (EEW) systems (Minson et al. [2019]).

In past years, there has been a surge in the application ofMachine Learning (ML) andNeural
Networks (NN). ML techniques have shown significant success in image classification
(Vasuki and Govindaraju [2017]), natural language processing (Jozefowicz et al. [2016]),
computation vision (Voulodimos et al. [2018]), to name but a few (LeCun et al. [2015]). In
seismology and earthquake engineering, they have been used to tackle complex problems
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as well, namely phase picking (Mousavi et al. [2020]), earthquake data inversion (Yang and
Ma [2019]), structural health monitoring (Bao et al. [2019]), among others. In this chapter,
we train a NN model on synthetic data through which one is able to generate a time-series
of surface acceleration at a specific location on the surface of an idealized-shaped basin.
We define basin geometry, material properties, and earthquake frequency content similar
to the previous chapter in a dimensionless form. We particularly use shear wave velocity
contrast, aspect ratio, and dimensionless location as three input parameters to train a NN.
The model’s output is the transfer function defined as the Fourier transform of surface
acceleration time-series divided by the Fourier transform of rock outcrop. In the following
sections, we first introduce the numerical toolbox. We then detail the data generation,
data processing, and architecture of NN. We next describe the training details. Finally, we
discuss the accuracy of the trained model and evaluate its performance using a test data set
and applying it to a realistic scenario.

3.2 Data Generation and Methods
In this section, we focus on the data collection and training NN models. The data is
generated synthetically using FE simulations (§ 3.2.1). For data generation, we follow a
procedure based on the results of the previous chapter. In the last chapter, we performed a
comprehensive parametric study to evaluate the importance of each parameter on observed
acceleration on the surface of an idealized basin subjected to vertically propagated plane
SV wave of Ricker type. We concluded that three dimensionless parameters (using Buck-
ingham’s PI theorem (Buckingham [1914])) are of primary importance on basin surface
acceleration and variation. These dimensionless parameters are:

π1 = 𝐴𝑅 =
𝑎

𝑏
, π2 = 𝐶 =

𝛽1
𝛽2
, π3 = 𝜂 =

𝑏 𝑓0
𝛽1
. (3.1)

Figure 3.1 shows a representation of each parameter. 𝑓0 is the dominant frequency of
the incoming Ricker wavelet. We studied 𝐴𝑅 = 0.5, 1, 2, 4, 𝐶 = 1.5, 2, 3.5, 5, and 𝜂 =

0.125, 0.25, 0.5, 1, 2, 4. 𝐴𝑅 shows how shallow or deep a basin is and quantifies the basin
corner angle, directly correlated with the basin-edge effect. 𝐶 takes material contrast into
account and measures the amount of energy entrapment inside a basin. Lower values of
𝐶 result in a large entrapment. Finally, 𝜂 demonstrates the relative size of a basin to the
incoming wavelength, where small and large values make the incoming wave “blind” to
the basin. As mentioned in Chapter 2, there are other parameters than the three mentioned
above that impact the accuracy of basin analysis even in an idealized scenario. However,
due to practicality and ease of use, these parameters are chosen to train a NN.
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Figure 3.1: Schematic view of FEM domain together with DRM layer and PML boundary con-
dition. The coordinate system is located at the basin corner.

3.2.1 Details of Numerical Toolbox
We perform a set of FEM simulations to generate the synthetic data for training the NN.
The simulations are carried out using SeismoVLAB (Kusanovic et al. [2020]) in a 2D
elastic, isotropic, and homogeneous medium. SVL is an open-source, easy-to-use, fast,
and extendable C++ finite element code that is designed to optimally perform linear and
nonlinear wave-propagation simulations in meso-scale. The software offers various options
such as dynamic solvers for time-domain analyses of inelastic problems, Perfectly Matched
Layer (PML) to efficiently mimic realistic scenarios. More information about the code can
be found on its website: https://seismovlab.com/.

The domain includes twomaterials to demonstrate basin and bedrock. Basin is geometrically
symmetric and follows a half-cosine shape as explained in the previous chapter, similar to
Figure 3.1. We discretize the domain using quad elements, where 15 elements per shortest
wavelength are used to satisfy the CFL condition. The input motion is applied using Domain
Reduction Method (DRM), and the Perfectly Matched Layer (PML) is prescribed at side
and bottom boundaries to absorb scattering waves. The PML (yellow area in Figure 3.1) is
prescribed with a thickness of 25 elements to assure the total absorption of scattered waves.
Each numerical model is defined using two dimensionless parameters (𝐶, 𝐴𝑅) related to
basin material properties and geometry. We also define 𝑥 = 𝑥/𝑎 to consider location of
interest on a basin surface. The interface of basin and bedrock follows Eq. 3.2 as a function
of 𝑥:

𝑏(𝑧) = 𝑏

2
[1 + 𝑐𝑜𝑠(π𝑥

𝑎
)] |𝑥 | ≤ 𝑎. (3.2)

Note that in Chapter 2, we introduced a parameter 𝐷 as in Figure 2.6. We omit 𝐷 in this
chapter and assume 𝐷 = 0. The medium is subjected to a vertically propagating plane SV

https://seismovlab.com/
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wave. The input is prescribed as DRM components along a one-element stripe shown by
cyan in Figure 3.1. The input motion is a Ricker wavelet with dimensionless frequency (𝜂)
between zero and 5 for all the models. Dimensionless frequency is defined as 𝜂 = 𝑓 𝑏/𝛽1,
where 𝑓 shows the frequency range of incoming motion. This is a difference between the
current and the previous chapter. Here, instead of defining a single dimensionless frequency
(𝜂), we define a range of 𝜂 for each model.

3.2.1.1 Data Set and Preprocessing

For training, synthetic data is generated by performing a set of numerical simulations and
various dimensionless parameters, namely 𝐴𝑅 = 𝑎/𝑏, and𝐶 = 𝛽1/𝛽2 (see Figure 3.1 for each
parameter). Note that in this study, we assume a fixed range of 𝜂 for all models (0 ≤ 𝜂 ≤ 5).
We randomly chose parameters in a range of 0.5 ≤ 𝐴𝑅 ≤ 15, and 0.1 ≤ 𝐶 ≤ 1.0 and
perform a FEM simulation.

On the surface of a basin, 20 locations are selected, spanning from a basin corner to the
basin center due to symmetry (green stars in Figure 3.1). The 𝑥 coordinate of each location
is normalized by 𝑎, meaning basin corner has 𝑥 = 𝑥/𝑎 = 0 and center has 𝑥 = 1. Simulations
are performed for a fixed duration of 150 [𝑠𝑒𝑐] assuming the vertical distance between the
bottom DRM strip and deepest part of a basin is the same in all models. Simulations
stop when the amplitude of acceleration is negligible. This guarantees roughly the same
wave arrival time to the basin for all the models. Therefore, for each set of (𝐴𝑅, 𝐶, 𝑥), a
unique acceleration time-series with 𝜂 ∈ [0, 5] with the length of 150 [𝑠𝑒𝑐] is obtained. For
training, instead of learning time-series directly, we learn transfer function corresponding
to a 𝑥 on the basin surface. The transfer function is defined as:

𝑇𝐹 (𝐴𝑅,𝐶, 𝑥) = 𝐹𝐹𝑇 (𝐴𝑅,𝐶, 𝑥)
𝐹𝐹𝑇 𝑓 𝑓

(3.3)

where 𝑇𝐹 (𝐴𝑅,𝐶, 𝑥) is transfer function at location 𝑥 on surface of a basin with 𝐴𝑅 and
𝐶, 𝐹𝐹𝑇 (𝐴𝑅,𝐶, 𝑥) is the complex Fourier transform of a time-series (using fft algorithm),
𝐹𝐹𝑇 𝑓 𝑓 shows complex Fourier transform of rock outcrop. Decomposing the transfer
function into its amplitude and phase vectors, we will develop one separate model for each
of them. Note that the network for training phase vectors does not take into account the
circular nature of the phase, i.e. there is a 2π periodicity. Due to the capability of NN to
learn complex systems, this should not an issue. After generating the dataset, we use 80%,
10%, and 10% of data for training, validation, and testing, respectively.
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As can be seen in Eq. 3.4, given each input (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, matrix 𝑋), we want to predict
amplitude (shown by 𝑎𝑖𝑘 , matrix 𝐴) and phase (shown by 𝑝𝑖𝑘 , matrix 𝑃), where 𝐹 shows a
mapping from a set of input to either amplitude (mapping 𝐹1) or phase array (mapping 𝐹2).

𝐹 (𝑋) = 𝐹 (



𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

...
...

...

𝑥𝑛1 𝑥𝑛2 𝑥𝑛3


) = (



𝑎11 𝑎12 . . . 𝑎1𝑑

𝑎21 𝑎22 . . . 𝑎2𝑑

...
...

. . .
...

𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑑


,



𝑝11 𝑝12 . . . 𝑝1𝑑

𝑝21 𝑝22 . . . 𝑝2𝑑

...
...

. . .
...

𝑝𝑛1 𝑝𝑛2 . . . 𝑝𝑛𝑑


) = (𝐴, 𝑃)

(3.4)

To do that, we train two separate models 𝐹1 (Eq. 3.5) and 𝐹2 (Eq. 3.6) to estimate amplitude
and phase values, respectively.

𝐹1(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3) = [𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3, . . . , 𝑎𝑖𝑑] (3.5)

𝐹2(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3) = [𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, . . . , 𝑝𝑖𝑑] (3.6)

Finally, the 𝑇𝐹 (𝐴𝑅,𝐶, 𝑥) is calculated as

𝑇𝐹 (𝐴𝑅,𝐶, 𝑥) = 𝐹1(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3) × exp(𝑖𝐹2(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3)). (3.7)

This equation gives us a complex transfer function for the range of dimensionless frequency
of interest (0 ≤ 𝜂 ≤ 5). To reconstruct the time-series, focusing on positive frequencies,
we assume zero values for 𝜂 > 5. Given that the transfer function corresponds to a real-
valued time-series, the real part should be symmetric about 0 dimensionless frequency. In
contrast, the imaginary part of the transfer function should be anti-symmetric about the
0 dimensionless frequency. By constructing the real and imaginary part of the transfer
function for positive dimensionless frequencies, we use the properties mentioned above of
a real-values signal to reconstruct the negative frequency components and take an inverse
Fourier transform to obtain the time-series at location 𝑥 of the model with 𝐴𝑅 and 𝐶.

Before training, we preprocess the training data sets (𝑋 , 𝐴, and 𝑃). For features (𝑋),
we normalize them to have zero mean and unit variance to help with the convergence of
the optimization method. For amplitude (𝐴) and phase (𝑃) data sets, we have found that
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performing amatrix factorization helps with the training process. We apply a Singular Value
Decomposition (SVD) on both amplitude and phasematrices (Eq. 3.8 shows a representation
of SVD). We decompose the matrix into a coefficient (𝑈Σ) and basis (𝑉𝑇 ) matrices. We
do not include the basis matrix in the learning and only learn coefficients for a given set of
input parameters. We assume that our basis matrix for training data provides an appropriate
𝑛-dimensional space representing the training data, as well as validation and test data sets.
Later for testing, we use the same basis as the training dataset to assess the performance
of the trained models on out-of-sample cases. Note that while SVD is generally used to
obtain a lower rank representation of a matrix, we use all the data and do not discard any
dimension.

𝐴 = 𝑈Σ𝑉𝑇 =

©«

ª®®®®®®®®®®®®®®¬

· · · · · ·

𝑢1 𝑢𝑟 𝑢𝑟+1 𝑢𝑚

𝜎1
. . .

𝜎𝑟
. . .

𝜎𝑚

©«

ª®®®®®®®®®®®¬

©«

ª®®®®®®®®®®®®®®¬

𝑣𝑇1

𝑣𝑇𝑟

𝑣𝑇
𝑟+1

𝑣𝑇𝑛

.

(3.8)

3.2.2 Training the Neural Network
We use a Neural Network model to retrieve a time-series given three parameters as input
(Eq. 3.9). This is going to be done through learning amplitude and phase of the correspond-
ing transfer function

[𝐴𝑚𝑝, 𝑃ℎ𝑎] = [𝐹1(𝐴𝑅,𝐶, 𝑥), 𝐹2(𝐴𝑅,𝐶, 𝑥)] (3.9)

where 𝐴𝑚𝑝 and 𝑃ℎ𝑎 stand for amplitude and phase of a transfer function, respectively. In
this study, both 𝐴𝑚𝑝 ∈ 𝑅251 and 𝑃ℎ𝑎 ∈ 𝑅251 for the dimensionless frequency range of 0 to
5 where each entry of the vectors corresponds to a specific dimensionless frequency. Since
each entry of 𝑃ℎ𝑎 and 𝐴𝑚𝑝 corresponds to a specific dimensionless frequency, we do not
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No. Parameters

𝐴𝑅 𝐶 𝑥

1 2.25 0.3 1

2 12.0 0.5 0.5

3 0.5 0.5 0.0

Table 3.1: Parameters to be used to test the models. All models are chosen from a holdout
data set. Model #3 will be used with a new input motion.

include a frequency array in the learning process. For the network architecture, we use
Residual Network (ResNet) units (He et al. [2016]). After hyper-parameter tuning, we use a
batch size of 32, and Adam optimization algorithm (Kingma and Ba [2014]) with a learning
rate of 2.5× 10−3. The network consists of an input layer of size 3, and three hidden layers.
We use the same network architecture for training both amplitude (𝐴𝑚𝑝) and phase (𝑃ℎ𝑎).

Figure 3.2 shows the convergence of networks for training and validation data sets for each
model. We early-stop the learning for 𝐴𝑚𝑝 at 150 and for 𝑃ℎ𝑎 at 150 epochs to prevent
overfitting. The performance of the models and their generalization ability will be discussed
in the next section.

3.3 Results and Discussion
This section first assesses model performance by choosing two cases from a holdout test data
set. In addition, an example with a new input motion will be shown that is different from
the input motion used for generating synthetic data (i.e., single Ricker wavelet). We also
perform a case study to assess the seismic response of Kathmandu Valley, Nepal, during
the 2015 𝑀𝑤7.8 Gorkha earthquake and compare the results of trained models versus the
recording, similar to the previous chapter.

3.3.1 Testing the Model
To assess the model’s generalization ability, we use a hold-out (test) dataset. Our goal is to
evaluate the performance of trainedmodels in estimating TF, time-series, and corresponding
response spectra. We separate the test into three categories. The first category comes directly
from the hold-out data set. The second category includes one new FEM simulation with a
more complex input motion.

Figure 3.3 shows the results of the first two cases of Table 3.1. The left column shows the
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(a)

(b)

Figure 3.2: Convergence of two networks that are trained for learning amplitude and phase of
transfer functions, a) amplitude, b) phase.
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𝐴𝑅 = 2.25, 𝐶 = 0.3, �̂� = 1.0

𝐴𝑅 = 12.0, 𝐶 = 0.5, �̂� = 0.5

Figure 3.3: Comparison of NN results versus the FE simulations from test data set. Left col-
umn shows the time-series, middle columns shows transfer function amplitude, and right
column shows acceleration response spectra. Model properties are shown on the right sub-
figures.

estimated time-series, the middle column portrays the amplitude of the transfer function,
and the right column shows the response spectra of the estimated time-series. The black line
indicates the ground truth (FEM results) in all the subfigures, and the red line shows ML
prediction. The accuracy in these cases is satisfactory in comparison to the FEM results.
For time-series, the overall trend and PGA are reconstructed accurately. In addition, we can
capture variation in frequency and most of the picks for the amplitude of transfer function
(this is the direct output of ML models). Not capturing all the picks does not significantly
impact the reconstructed time-series as seen in the left column. This could be done by
deploying a more complex model, but it could have resulted in overfitting. Finally, for the
response spectra, the comparison shows a good performance of the models. The model can
capture the values and the variation over different periods correctly. Note that the response
spectra of acceleration is calculated from the reconstructed time-series of the left column.

For the second part, we want to investigate whether the trained models can generalize well.
Therefore, we perform a new FEM simulation with input values drawn from the test set. The
input motion to be used for the test is a Ricker train consisting of three Ricker wavelets with
dominant frequencies of 1 [𝐻𝑧], 2 [𝐻𝑧], and 3 [𝐻𝑧], as is shown in Figure 3.4. Figure 3.5
shows the output of the trained model versus the FE simulation results. The columns are
similar to Figure 3.3. Similar to the previous figure, we observe a satisfactory comparison
between the ML predictions and FEM simulations. This shows that the model is capable
of learning transfer functions accurately. Note that due to the linear nature of the problem,
the reconstructed time-series could have been obtained by superposition of different models
subjected to a single Ricker input.
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Figure 3.4: The new input motion that is used for testing the trained models. It consists of
three Ricker wavelets with dominant frequencies of 1 [𝐻𝑧], 2 [𝐻𝑧], and 3 [𝐻𝑧], and different
lags in time.

𝐴𝑅 = 0.5, 𝐶 = 0.7, �̂� = 0.0

Figure 3.5: Comparison of NN results versus the FE simulations for a new set of parameters.
The outputs are similar to Figure 3.3. The input is shown in Figure 3.4.

We apply the approach we have laid out throughout this chapter to a realistic scenario in the
following subsection.

3.3.2 Kathmandu Basin, Nepal During the 2015 Gorkha Earthquake
As a final test, to assess the capability of our approach in capturing basin effect in a
realistic scenario, we apply it to estimate the surface ground response in the Kathmandu
basin, Nepal, during the 2015 𝑀𝑤7.8 Gorkha Earthquake. In Chapter 2, we performed a
parametric analysis to study the capability of a homogeneous linear elastic basin to capture
the surface acceleration associated with the mainshock of the Gorkha Earthquake. We
concluded that a simple idealized-shaped model is able to capture some characteristics of
surface motion in a low-frequency range. However, we also mentioned that such a model
could not provide an accurate insight in a high-frequency range since the model is too
simplistic. Therefore, a heterogeneous basin with an arbitrary geometry may be a more
suitable model for higher frequencies. In Figure 3.6, the light green area is the idealized
model we used in Chapter 2, and we fit a cosine-shaped model to it as shown by dark
green (by removing the parameter 𝐷). Hence, we have a model with the same width,
depth, and shear wave velocity. We use the dimensionless parameters from Chapter 2 to
compute the three parameters needed for NNmodels. We then compare the Fourier spectral
amplification amplitude of surface stations and compare it with the seismogram recordings
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Figure 3.6: Schematic view of the basin we use for Kathmandu basin case study in this chapter
versus Chapter 2. The dark green shows the geometry we use in this chapter. The light green
is the one we used before.

Figure 3.7: Comparison of results of current study versus recorded motion of Takai et al.
[2016] at TVU (left), PTN (middle), and THM (right) stations.

at the three strong ground motion stations in the basin.

Figure 3.7 shows a comparison between the Fourier spectral acceleration amplification on
basin surface for recorded data and the output of NN models. The amplification (similar to
the transfer function we have used so far) is defined as the Fourier spectral amplitude at a
location in the basin divided by rock outcrop Fourier spectral amplitude. Running the full
fidelity FE simulation takes ∼ 3 hours on 4 cores of Intel(R) Xeon(R) CPU E5-2687W v3
@ 3.10 GHz, while calculating the output of the current study takes 0.8 [𝑠𝑒𝑐]. As can be
seen, the estimation of current models is similar to the recordings. The other benefit of our
ML models is that we can go to higher frequency ranges.

3.4 Algorithm to Generation Time-series
In section § 3.2.2, we provided mapping to obtain the transfer function of a system through
which one is able to obtain time-series given three parameters as input. Algorithm 1
demonstrates the procedure we used in the § 3.2.2.
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Algorithm 1 Time-series estimation.
1: The initialization step: Compute the dimensionless parameters for a site. In a general
case, having width, depth, shear wave velocity of basin and bedrock suffices to obtain
three input parameters.

𝐴𝑅 =
𝑎

𝑏
, 𝐶 =

𝛽1
𝛽2
, 𝑥 =

𝑥

𝑎

see Figure 3.1 for the definition of each parameter.
2: The input selection step: Choose a time-series as a input motion acceleration.
3: The prediction step: Multiply the complex Fourier transform of input motion with the
obtained transfer function fromNNmodels to compute the Fourier transform of surface
acceleration time-series.

4: The inverse step: Perform an inverse Fourier transform to obtain the time series at
location 𝑥.

3.5 Conclusion
In this chapter, we trained a Neural Network model to estimate surface ground acceleration
associated with basin effects. We generate a synthetic data set of 2D basin simulations,
assuming basinmaterial is homogeneous linear elastic, and the geometry follows as idealized
cosine-shaped. Our trained models were shown to perform well versus the full-fidelity FE
simulations while it takes a fraction of a second in computational time. We concluded that
the models are generalizable by performing two sets of testing. First, we assessed model
performance for both a single Ricker input and a Ricker train by choosing some cases from a
holdout test set. We also examined model performance in a realistic scenario by comparing
the results of this chapter versus recordings of the 2015 𝑀𝑤7.8 Gorkha earthquake. Our
results show a satisfactory performance of the current approach.
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C h a p t e r 4

Monte Carlo Simulation to Study the Spatial
Variation of Ground Motion Associated with

Basin Heterogeneities

While past two chapters address how we are able to better incorporate basin effects in the
seismic studies, a question still remains about how we can better simulate basin effects in
cases with limited amount of data. This chapter presents the use of correlated random fields
to study basin effects. We use a 2D finite element analysis of an idealized-shaped basin
subjected to a vertically propagating SV plane wave and investigate the spatial variation of
SGM associated with basin effects by assuming a correlated random field to represent basin
material. We generate a randommedium by adding perturbations to a homogeneous domain
with various correlation lengths, coefficient of variations, and autocorrelation functions to
evaluate their contribution to SGM. Our results show a difference between the output
of homogeneous and stochastic models, where we conclude that the former would not
represent basin response, especially in the high-frequency regime correctly. Among the
parameters we consider, the coefficient of variation has the most influential impact on
surface acceleration. We observe that increasing this parameter decreases the mean value
of surface amplification while its standard deviation increases. In addition, correlation
length affects the standard deviation of surface acceleration, but it does not significantly
impact the mean amplification. As for the autocorrelation function, where we consider von
Karman, Gaussian, and exponential, the results show that the trend of surface amplification
does not change by choosing a different autocorrelation function. Finally, by comparing
the 2D basin versus 1D layered medium, we show that one cannot accurately capture basin
response by using a 1D analysis for seismic hazard quantification.
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4.1 Introduction
Numerical studies of basin effects require a detailed geotechnical and geological informa-
tion as SGM rely on several parameters, namely bedrock depth (Dravinski [1982]), the
frequency content of earthquake (Wong and Trifunac [1974]), material properties of basin
and bedrock (Bard and Bouchon [1980]), among others (Ayoubi et al. [2021]). However,
due to the limited availability of testing and empirical data, simplifying assumptions regard-
ing geometry and material properties is widely adopted. In the bulk of the studies, a basin
with homogeneous material (or a layered basin with a discrete velocity profile) is assumed
(for example Moczo et al. [2018], Narayan and Kumar [2009]), and a single deterministic
analysis is performed to analyze ground motion, similar to Chapter 2. This neglects the
inherent heterogeneity in soil, and even a parametric study cannot fully account for it. This
becomes important where an accurate simulation of a basin in high frequency is of interest.

Probabilistic modeling techniques and Monte Carlo (MC) simulations have been used in
earth sciences (for example Frankel and Clayton [1984], El Habar et al. [2019]) and can
address the issue mentioned above by gauging the uncertainty arising from soil mate-
rial spatial variability, and testing and statistical errors (Popescu [2008]). In seismology,
earthquake source modeling (Frankel and Clayton [1984], Mai and Beroza [2002], Zielke
et al. [2017], Nakata and Beroza [2015]) and ground motion analysis (Frankel and Clayton
[1984], Frankel et al. [2018]), among others, have been the primary usage of probabilistic
approaches. On the other hand, engineers perform probabilistic studies to analyze lique-
faction, site responses, to name but a few (Boore [2003], Assimaki et al. [2003], Rota et al.
[2011], El Habar et al. [2019]). These studies generate a correlated velocity random field
to take material heterogeneity into account. For site effects application, the main focus has
been on 1D wave propagation, or a rectangular 2D medium (Rota et al. [2011], El Habar
et al. [2019]), and the lack of such analysis for basin configuration is noticeable.

In a basin setting, two types of interaction are of interest. The first one occurs when a wave
interacts with the basin as a whole (low-frequency interaction, as discussed in Chapter 2).
The second one happens when a seismic wave interacts with heterogeneities within a basin
(high-frequency interaction). The second interaction results in a different basin response
depending on the frequency and size of stochastic features (Takemura et al. [2015]). The
wave-basin interaction is easier to simulate, as has been done mainly in the literature
(Kawase and Aki [1989], Narayan and Kumar [2009], Gelagoti et al. [2012], Ayoubi et al.
[2021]). We followed the same approach in previous chapters, while wave-heterogeneities
interaction is what most studies miss due to computational challenges, practicality, and
insufficient geotechnical information. Neglecting the heterogeneities within a basin cannot
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Basin Properties Bedrock Properties

Shear Velocity Density Poisson’s ratio Shear Velocity Density Poisson’s ratio

[𝑚
𝑠
] [ 𝑘𝑔

𝑚2
] [−] [𝑚

𝑠
] [ 𝑘𝑔

𝑚2
] [−]

250 2000 0.333 500 2000 0.333

Table 4.1: Basin and bedrock material properties in background medium.

be fully justified since it is known that small-scale heterogeneities can impact seismograms
drastically through the broadening of bodywaves (Saito et al. [2005]), distortion of radiation
pattern (Sawazaki et al. [2011]), and elongation of surface motion (Aki and Chouet [1975]).

This chapter analyzes the spatial variation of SGM associated with basin heterogeneities
using a stochastic approach. We consider a 2D elastic basin overlying a bedrock subjected to
a vertically propagating SV plane wave of the Ricker type. The basin geometry is assumed
to be a generic form (half-cosine shaped like Chapter 3). We use a correlated random
field to take the spatial variability of materials into account in the numerical simulations.
Parameters such as correlation lengths, autocorrelation function (ACF), and coefficient of
variation of a random field are varied to evaluate their impact on SGM. In the following
sections, we first explain the correlated random field generation procedure. Next, we present
the results and demonstrate how each parameter would affect the spatial variation of SGM.
Finally, we show a comparison versus 1D analysis, which is the state of practice.

4.2 Monte Carlo Simulation
In this section, we first explain the FEM model. Next, we detail the random field gen-
eration procedure. The random field is generated on top of a homogeneous basin. This
homogeneous background is called “background medium/model” throughout this chapter.

4.2.1 Finite Element Model
We are going to use SVL (Kusanovic et al. [2020]) similar to Chapter 3. We use elastic
materials to represent a basin and bedrock. We neglect damping in the basin to prevent
exhausting high-frequency energy of the seismic wave and better represent the impact of
features on SGM. For the basin configuration, we choose a generic cosine-shaped basin,
similar to Figure 4.1. Table 4.1 shows the material properties of the background medium,
which will be used to generate the correlated random field (details in § 4.2.2).

The geometry of the basin is derived based on the dimensionless analysis performed in
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Figure 4.1: The numerical domain. The dark gray area represents the basin. The light gray
shows the bedrock. Cyan and yellow regions demonstrate DRM and PML, respectively. The
external boundary is fixed. Two red stars show the location at which we will show results later
in this chapter: in the basin middle, halfway between center and corner.

Chapter 2. We use following dimensionless parameters to define the model: aspect ratio
𝐴𝑅 = 𝑎/𝑏 = 4.0, material contrast 𝐶 = 𝛽2/𝛽1 = 2.0, density ratio 𝜌2/𝜌1 = 1.0, Poisson’s
ratio of basin 𝜈1 = 0.333, and Poisson’s ratio of bedrock 𝜈2 = 0.333. The input motion
is shown in Figure 4.2 which is a Ricker wavelet with the dominant frequency of 5𝐻𝑧.
We expect two separate interactions that might occur inside a basin, namely 1) wave-basin
interaction and 2) wave-features interactions in horizontal and vertical directions. The
reason for choosing 5𝐻𝑧 as the dominant frequency of the input motion is the availability
of sufficient energy at both low and high frequencies. This means that the Fourier spectral
amplitude of input motion has enough energy to interact with the heterogeneities inside a
basin.

We use 15 quad elements (each having size of 𝑑𝑥) per shortest wavelength in a domain
to resolve maximum frequency to discretize the numerical domain. We also satisfy CFL
< 0.25 condition by assuming 𝑑𝑡 = 0.005. Perfectly Matched Layers (PML) with a length
of 25 × 𝑑𝑥𝑏𝑒𝑑𝑟𝑜𝑐𝑘 are prescribed at the side and bottom boundaries to absorb scattered
wavefield. The outer boundary of PML is fixed. Finally, the input motion is applied using
Domain Reduction Method (DRM) at the cyan shaded region of Figure 4.1.

4.2.2 Random Field
In a deterministic scenario, due to a lack of sufficient information about soil mechanical
properties, one needs to either assume fixedmaterial properties for a basin or adopt a layered
velocity profile. However, the Earth’s crust is far from being homogeneous or isotropic, the
reason we are using a random field to describe the material inside a basin. This does not
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Figure 4.2: Input acceleration time-series (left) and corresponding Fourier spectral amplitude
(right).

mean that the basin is a fully randomized medium while correlations exist. The correlated
random field we are using in this chapter requires 5 parameters, namely 1) mean (𝜇),
2) Coefficient of Variation (𝐶𝑂𝑉), 3) Autocorrelation functions (ACF), and correlation
lengths in 4) horizontal (𝜃𝑥) and 5) vertical (𝜃𝑧) directions. In practice, for a geotechnical
application, skewed distributions are used for shallow layers and a symmetric distribution
for deep (Popescu et al. [1998]). In this study, given the depth of the basin, we utilize a
symmetric distribution. In addition, due to the arbitrary geometry of the basin (as opposed to
a rectangular domain), we use Karhunen-Loève expansion to generate a correlated random
field (Harbrecht et al. [2015], Pezzuto et al. [2019]). Similarly to Pezzuto et al. [2019],
Algorithm 2 shows the procedure to generate a correlated random field.

Algorithm 2 Generation of a correlated random field.
1: The initialization stage: Define random field parameters:

𝜇, 𝐶𝑂𝑉, 𝐴𝐶𝐹, 𝜃𝑥 , 𝜃𝑧 .

2: Correlation matrix generation: Generate the correlation matrix (𝑀) based on the FE
mesh nodes and above parameters. If there are 𝑛 nodes in a basin, 𝑀 ∈ 𝑅𝑛×𝑛.

3: Calculating eigenvalues and eigenvectors of 𝑀: Calculate eigenpairs (𝜆𝑖, 𝜙𝑖) of
correlation matrix 𝑀 , where 𝜆𝑖 is i-th eigenvalue and 𝜙𝑖 is the i-th eigenvector.

4: Estimating correlated random field: The correlated random field can be calculated
as:

𝑉𝑠 (𝑥) = 𝜇 + 𝜎Σ𝑚𝑖=1
√︁
𝜆𝑖𝑍𝑖𝜙𝑖 (4.1)

where 𝑍𝑖 is an independent sample drawn from the standard normal distribution. 𝑚 is
estimated using the Cholesky decomposition.

The following subsections detail different components of correlated random field generation
of Algorithm 2.
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4.2.2.1 von Karman Autocorrelation Function

The correlation structure of a random field can be characterized using an ACF in the spatial
domain or its power spectral density (PSD) in the Fourier domain (Mai and Beroza [2002]).
In this study, we use von Karman (Ishimaru [1978]) ACF as shown in Eq. 4.2 (Mai and
Beroza [2002]). von Karman ACF is an appropriate choice for solid Earth material (Savran
and Olsen [2016]), and we use it as the main ACF in this chapter

𝐶 (𝑟) = 𝐺𝐻 (𝑟)
𝐺𝐻 (0)

(4.2)

where 𝐺𝐻 (𝑟) = 𝑟𝐻𝐾𝐻 (𝑟). Here, H is the Hurst exponent (we assume 𝐻 = 0.1), 𝐾𝐻 is the
modified Bessel function of the second kind (order H). 𝑟 is called the characteristic length
and is given as a function of horizontal and vertical correlation lengths 𝑟 =

√︃
𝑥2

𝜃2𝑥
+ 𝑧2

𝜃2𝑧
.

Having set the ACF, the remaining four parameters will be discussed in the following
subsection. We will also discuss the impact of ACF on SGM in § 4.3.4 by considering two
other ACFs, namely Gaussian and exponential.

4.2.2.2 Statistical Parameters

Table 4.2 shows values for the parameters mentioned before. To generate the random
medium, we use Gaussian distribution similar to Frankel and Clayton [1984]. We define
the distribution using mean 𝜇 and coefficient of variation (𝐶𝑂𝑉 = 𝜎/𝜇, is the standard
deviation). The combination of values of Table 4.2 are used to study the effect of horizontal
and vertical correlation lengths, and𝐶𝑂𝑉 . 𝜇 = 250𝑚/𝑠 (taken from background medium),
𝐶𝑂𝑉 = 0.2, 0.3, 0.4, 𝜃𝑥 = 50𝑚, 100, 200𝑚 , and 𝜃𝑧 = 20𝑚, 40𝑚 are used. Moreover,
based on the frequency content of input motion, the values of 𝜃𝑥 and 𝜃𝑧 provide an impact
on the resultant surface response at different frequency ranges, as will be discussed later.
These values result in 13 separate numerical models as shown in Table 4.2. The parameters
are chosen to cover a reasonable range of values based on the geometry of the basin and
introduce a sufficient variation in material properties in a basin. In the table, the first 5
models has 𝐶𝑂𝑉 = 0.2. Models 6 and 7 are added to better represent the impact of 𝐶𝑂𝑉
when moving from 𝐶𝑂𝑉 = 0.2 to 𝐶𝑂𝑉 = 0.4. The last 6 models have 𝐶𝑂𝑉 = 0.4.

4.2.2.3 Statistical Significance of Monte Carlo Simulation

An essential parameter in doing Monte Carlo simulation is the number of realizations to
guarantee statistical significance. In this chapter, we measure statistical significance by
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No. Properties

𝜇 (𝑚/𝑠) 𝐶𝑂𝑉 𝜃𝑥 (𝑚) 𝜃𝑧 (𝑚)

1 250 0.2 50 20

2 100 20

3 100 40

4 200 20

5 200 40

6 0.3 100 20

7 200 20

8 0.4 50 20

9 50 40

10 100 20

11 100 40

12 200 20

13 200 40

Table 4.2: Statistical parameters for different models of this study.

repeating the simulations until the convergence rate (CR, Eq. 4.3) is less than 5% for a
specific intensity measure (IM) of interest. We examined PGA similar to El Habar et al.
[2019]. PGA is chosen for model #3 for representation given that it has parameters that
would provide the worst-case scenario.

𝐶𝑅 =
|𝐼𝑀𝑖 − 𝐼𝑀𝑖+1 |

𝐼𝑀𝑖

(4.3)

where 𝑖 is the realization number. Figure 4.3 shows the variation of the mean and standard
deviation of PGA in percent in the middle of the basin of model #3 from Table 4.2. To
assure the statistical significance of all models in our analysis, we use 50 realizations. Note
that basin configuration is helping with the statistical significance. This is the reason why a
higher realization number is necessary for non-basin geometries. For example, in El Habar
et al. [2019], 100 realizations are used to satisfy the 5% criterion.
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Figure 4.3: Convergence of the Monte Carlo simulation for mean and standard variation of
PGA at the middle of #3 basin.

4.3 Results
In this section, we present the results of the numerical simulations. We elaborate on them
by examining both time domain and frequency domain responses. We define the time
domain amplification factor as PGA at each point of basin surface divided by the far-field
PGA (it is 2 due to the doubling effect). In addition, seismogram synthetics of surface
motion is also shown to represent the spatio-temporal variation of SGM better. On the other
hand, the frequency domain amplification factor is defined as the amplitude of the Fourier
transform of a time-series divided by the corresponding Fourier transform amplitude of
rock outcrop. We also assess the impact of stochastic patches on Arias Intensity and the
fundamental frequency of a basin. Comparisons are made by considering a point at the
center of the basin (𝑝1), see Figure 4.1). In the first subsection, we study one realization
from each model #1, #2, #3 together with the background model. Note that benchmark is
a stochastic case while the background is a homogeneous model. We use the benchmark
model to observe how a stochastic model differs from the background model. Next, we
examine different statistical parameters that shape a correlated random field (Table 4.2) by
studying the ensemble of realizations both in time and frequency domains.
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4.3.1 Benchmark
As the benchmark example, we use one realization from three models and compare the
results with the background model. The models are 𝜃𝑥 = 100𝑚, 𝜃𝑧 = 20𝑚, 𝐶𝑂𝑉 = 0.2
(model #2), 𝜃𝑥 = 50𝑚, 𝜃𝑧 = 20𝑚, 𝐶𝑂𝑉 = 0.2 (model #1), and 𝜃𝑥 = 100𝑚, 𝜃𝑧 = 20𝑚,
𝐶𝑂𝑉 = 0.4 (model #3). These examples are used to portray the effect of a random medium
on SGM and how it is different from the background model. We specifically focus on 𝐶𝑂𝑉
and 𝜃𝑥 here, and we leave 𝜃𝑧 and 𝐴𝐶𝐹 for a later section. Each column of Figure 4.4
shows responses corresponding to the top-row velocity profiles (Figure 4.4-a). As can be
seen, the left column shows the background model, the second from left is model #2, the
second from the right is model #1, and the right column shows model #3. Note that these
realizations are examples of possible correlated random fields, and the results do not speak
for the ensemble of realizations. The background model is a homogeneous basin, and the
value of shear wave velocity equals the values in Table 4.1. By comparing one realization
versus the other two, one can see the effect of 𝜃𝑥 and 𝐶𝑂𝑉 in the random field generation.
Increasing 𝜃𝑥 results in a stretched stochastic patches in a basin (comparison of model #1
and model #2) while increasing 𝐶𝑂𝑉 results in a more pronounced shear wave velocity
variation in a basin (comparison of model #1 and model #3). These changes will directly
impact the wave interference in a basin. For the comparison, we will consider point 𝑃1 of
Figure 4.1.

Figure 4.4-b demonstrates horizontal and vertical time-series at 𝑝1. It turns out that the
amplitude of horizontal and vertical acceleration is lower than the background model due to
the scattering effect of heterogeneity patches. Given the horizontally polarized inputmotion,
the accentuated vertical component is of importance for all the realizations. This will
introduce a torsionalmotion in the basinwhich could impact long infrastructure components,
such as pipelines. In addition, an elongation in time-series duration is observable, especially
for model #3, which is in addition to the fact that even a homogeneous basin would increase
the duration of oscillation on the surface compared to the rock outcrop. Therefore, adding the
heterogeneities will exacerbate the situation. This phenomenon happens for both horizontal
and vertical components.

Figure 4.4-c portrays the surface amplification in time-domain. As was defined before,
it shows the division of PGA at each point on basin surface with respect to PGA of rock
outcrop in 𝑥 direction (which is twice the input PGA). This figure better quantifies the spatial
variation of surface amplification. While the middle points show both lower (model #3)
or higher (model #2) amplification with respect to the background model in the horizontal
direction, the SGM is exacerbated due to the existence of a randomized medium as we
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move toward basin edges. In addition, a significant amount of amplification occurs in the
vertical direction in the basin center while the input motion is purely horizontal. These
observations are a testament to the insufficiency of a homogeneous representation to fully
take variation andmagnitude of SGM into account, where the asymmetry and large variation
of amplification with distance better resemble what is observed in Nature. Note that the
computational cost is the main drawback of such an analysis in practice. In this study, since
we are using 50 realizations, each model of Table 4.2 has 50 times more computational cost
than the background model on average.

Lastly, Figure 4.4-d and Figure 4.4-e demonstrate the surface seismogram synthetic in
horizontal and vertical directions, respectively. A relatively noticeable difference between
randomized and background models is the “activation” of more local interactions and
accentuated reverberation. As can be seen, more intense oscillations happen on the basin
surface in the stochastic case, which is due to the fine-scale stochastic features. This could
have a significant impact on structures and infrastructure components that would not be
affected by the low-frequency component of the seismic wave.

Figure 4.5 demonstrates the difference between each realization by focusing on their relative
behavior with respect to the rock outcrop in the frequency domain. This figure portrays the
Fourier spectral amplification. The Fourier spectral amplification is defined as the division
of the Fourier transform of a time-series in a specific location (𝑝1 in this case) with respect to
the corresponding Fourier transform on the rock outcrop. In this figure, each column shows
the results of the corresponding realization at the top, including the background model,
similar to Figure 4.4. In Figure 4.5-b, the general trend of amplification is similar between
background model and realizations, which demonstrates the impact of basin geometry on
the surface response. As was seen in Figure 4.4, it also depends on the location at which the
results are being plotted, and the response varies as one moves along the basin. Stochastic
patches also impact a basin’s fundamental frequency, which will be explained in a later
section. Finally, Figure 4.5-c shows a response similar to Figure 4.4-d except here Fourier
spectral amplification is portrayed. The symmetry in the background model no longer exists
in stochastic cases. A more considerable amplification at basin edge exists for stochastic
cases, which does not exist in the background model. This is a confirmation of the previous
observations of Figure 4.4-c, in which a significant amplification happened at basin corners.

In the following subsections, we examine the impact of statistical parameters on SGM.𝐶𝑂𝑉
is studied in § 4.3.2, Correlation lengths (𝜃𝑥 and 𝜃𝑧) in § 4.3.3, and ACF in § 4.3.4. The
following figures are being discussed in later sections: 1) mean and standard deviation of
Fourier spectral amplification with respect to the rock outcrop; 2) similar to Fourier spectral
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Figure 4.4: Comparison between homogeneous and stochastic models: a) Background model
and one realization of model #2 (𝜃𝑥 = 100𝑚, 𝜃𝑧 = 20𝑚, 𝐶𝑂𝑉 = 0.2), model #1 (𝜃𝑥 = 50𝑚,
𝜃𝑧 = 20𝑚, 𝐶𝑂𝑉 = 0.2), model #3 (𝜃𝑥 = 100𝑚, 𝜃𝑧 = 20𝑚, 𝐶𝑂𝑉 = 0.4), b) acceleration time-
series at point 𝑝1, c) surface amplification in horizontal and vertical directions, d) seismogram
synthetic for surface acceleration in horizontal direction, e) seismogram synthetic for surface
acceleration in vertical direction.

amplification, response spectra amplification and its standard deviation will be discussed;
3) significance duration ratio is computed with respect to the background medium. Sig-
nificance duration is defined as the duration between 5% and 95% of final Arias Intensity;
4) fundamental frequency ratio is computed by dividing the fundamental frequency of the
stochastic model with respect to the background medium.

4.3.2 Effect of Coefficient of Variation
𝐶𝑂𝑉 affects the range of velocity variation by defining the standard deviation in the random
field as shown in Algorithm 2. By increasing 𝐶𝑂𝑉 , the random field would take a wider
range about the mean. This introduces larger shear wave velocity contrasts within a basin,
which results in more scattering. For example, given the mean shear wave velocity of
250 𝑚/𝑠 (see Table 4.1), 𝐶𝑂𝑉 = 0.2 results in standard deviation of 50 𝑚/𝑠 while 𝐶𝑂𝑉 = 0.4
introduces a standard deviation of 100 𝑚/𝑠. Such a difference would significantly impact the
shear wave velocity values in a basin and basin response under seismic loading.
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Figure 4.5: Similar to Figure 4.4: a) realizations, b) Fourier spectral amplification with respect
to rock outcrop, and c) equivalent of seismogram synthetics of Figure 4.4-d except that it
shows Fourier amplification at different frequencies. The colorbar is capped at 10.

Figures 4.6 and 4.7 show the Fourier spectral amplification and standard deviation. Fig-
ure 4.6 is divided into two sub-figures, one covering the frequency range of 0.1𝐻𝑧 to 0.8𝐻𝑧
and the other 0.8𝐻𝑧 to 10𝐻𝑧. In these figures, we focus on three models in addition to
the background. For most of the analysis of this study, model #2 is the benchmark, and for
each statistical parameter, the impact is investigated by changing values with respect to this
model. By holding 𝜃𝑥 and 𝜃𝑧 fixed, and changing 𝐶𝑂𝑉 , in Figure 4.6-a, one can see that
the fundamental frequency of basin moves toward lower frequency as we increase 𝐶𝑂𝑉 .
This can be attributed to the higher variation of shear wave velocity in the basin, resulting
in an accentuated lateral propagation of the seismic wave. The changes in the fundamental
frequency will be better quantified in Figure 4.9. Lower𝐶𝑂𝑉 value results in a medium that
is more similar to the background model, which is the reason that responses of models with
𝐶𝑂𝑉 = 0.2 better resembles the background medium than𝐶𝑂𝑉 = 0.3, 0.4. In Figure 4.6-b,
the background medium shows more oscillatory amplification in comparison to the mean of
stochastic models. However, the advantage of a stochastic simulation is to provide a range
in which the amplification value could happen, i.e., considering the standard deviation is
an essential part of the analysis. Given that the shear wave velocity values are generated
using Gaussian distribution, ±2𝜎 (𝜎 is the standard deviation.; we limit velocity values to
be within ±2𝜎 of 𝜇.) of mean is probable to happen for each model. This could result in a
higher amplification than the background model.

Figure 4.7 shows the standard deviation of Fourier spectral amplification. Regardless of the
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Figure 4.6: Mean Fourier spectral amplification at point 𝑝1 for three models with 𝜃𝑥 =

100 [𝑚], 𝜃𝑧 = 20 [𝑚] and different 𝐶𝑂𝑉s. Background model is shown in black. Fourier spec-
tral amplification is defined as the ratio of Fourier transform of acceleration time-series at
point 𝑝1 with respect to the rock outcrop. a) frequency range of 0.1 [𝐻𝑧] to 0.8 [𝐻𝑧], b) fre-
quency range of 0.8 [𝐻𝑧] to 10.0 [𝐻𝑧].

frequency range, models with higher 𝐶𝑂𝑉 have a higher standard deviation in frequencies
less than 2 [𝐻𝑧]. This is due to the enhanced shear wave velocity variation inside the basin.
By moving toward higher frequencies, the impact of the range of shear wave velocity values
becomes less pronounced as in higher frequencies; all the heterogeneities would interact
with the seismic wave inside the basin, which will produce a high enough standard deviation
for surface amplification.

Figure 4.8-a is similar to Figure 4.6 except that it shows the mean response spectra ampli-
fication and its standard deviation. Response spectra amplification shows a cleaner repre-
sentation of low-period (high-frequency). As can be seen, by adding stochasticity to the
basin, the amplification decreases. Higher values of 𝐶𝑂𝑉 will result in a de-amplification.
Figure 4.8-b shows the standard deviation of response spectra amplification, and similar
to Figure 4.7, it shows that a more considerable value of 𝐶𝑂𝑉 would result in a higher
standard deviation.

To further quantify the impact of𝐶𝑂𝑉 on significance duration and fundamental frequency
of basin, Figure 4.9 demonstrates the two outputs as a ratio with respect to the background
medium. The circles show the mean in this figure, and bars demonstrate 1 standard
deviation from the mean. Figure 4.9-a shows the significant duration ratio. As previously
mentioned, significance duration is defined as the time between 5% to 95% (𝑇5−95) of
Arias Intensity final value. As can be seen, increasing 𝐶𝑂𝑉 results in a higher mean and
standard deviation, which can be explained by enhanced scattering of seismic waves for
larger 𝐶𝑂𝑉 . 𝐶𝑂𝑉 = 0.2 shows almost 1.5 − 2 increase and 𝐶𝑂𝑉 = 0.4 has values as high
as 5 − 6 times the background model. 𝐶𝑂𝑉 = 0.4 shows a strong reverberating effect due
to heterogeneities which significantly elongate the shaking duration. Figure 4.9-b, on the
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Figure 4.7: Standard deviation of natural logarithm of Fourier spectral amplification of models
in Figure 4.6.

other hand, demonstrates the fundamental frequency ( 𝑓0) ratio. Increasing 𝐶𝑂𝑉 results in
a lower 𝑓0, as was mentioned before. The trend of the mean ratio seems to be almost linear
as a function of 𝐶𝑂𝑉 and does not change due to correlation lengths. Note that although
the mean 𝑓0 ratio decreases as 𝐶𝑂𝑉 goes up, the standard deviation of the ratio increases.
This figure shows that the fundamental frequency can go as low as 0.9 times the background
medium.

4.3.3 Effect of Correlation Length
The next component of a correlated random field that we will examine is the correlation
lengths in horizontal (𝜃𝑥) and vertical (𝜃𝑧) directions. As was shown previously, we consider
different values for each direction, namely 𝜃𝑥 = 50, 100, 200𝑚 and 𝜃𝑧 = 20, 40𝑚. The
values are chosen based on two criteria: 1) the size of patches is large enough to be “seen” by
the seismic wave, and 2) we have enough patches in the basin in each direction. The second
criterion is to ensure enough interaction between the seismic waves and heterogeneities.
𝜃𝑥 and 𝜃𝑧 show the distance from a point above which two points are not correlated.
Changing the size of patches affects the interaction of seismic waves (patches behave as
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(a)

(b)

Figure 4.8: Response spectra amplification for point 𝑝1 for three models with 𝜃𝑥 =

100 [𝑚], 𝜃𝑧 = 20 [𝑚] and different 𝐶𝑂𝑉s: a) Mean and b) standard deviation.
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(a)

(b)

Figure 4.9: Time and frequency domain response for ensemble of realizations for 8 models
of Table 4.2 with 𝜃𝑧 = 20 [𝑚]. Results are shown for 𝑝1. Circle symbols shows 𝜃𝑥 = 50 [𝑚],
square shows 𝜃𝑥 = 100 [𝑚], and diamond shows 𝜃𝑥 = 200 [𝑚]. a) significance duration ratio,
b) fundamental frequency ratio.
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points of scattering) and cause a reflection and refraction of waves within a basin. This
might eventually affect the observed SGM. Increasing the size of patches could push the
wave-patch interaction toward a larger wavelength (or lower frequency).

Assuming an average of 250 𝑚/𝑠 for shear wave velocity and amaximum frequency of 12𝐻𝑧,
the minimumwavelength is∼ 21𝑚. By decreasing the frequency, the wavelength increases,
and different interaction scales are expected depending on the size of heterogeneities. For
the horizontal component, the interference between seismic waves and stochastic patches
happens due to mode conversion at the basin corner or the decomposition of the incoming
shear wave when entering the basin, dependent on basin-edge effect and shear wave velocity
contrast. In general, increasing patch size shows the impact on surface acceleration at a
lower frequency, especially in terms of standard deviation, as will be shown later.

In deciding the importance of correlation lengths, focusing on a frequency range is necessary.
The seed for random number generation is set to guarantee the reproducibility of a correlated
random field for all the models shown here. This means that for a fixed 𝐶𝑂𝑉 , for a certain
realization, models with different 𝜃𝑥 will have similar material representation except for a
stretch or shrink of patches based on the magnitude of 𝜃𝑥 . Similar behavior is expected
for vertical correlation. Therefore, a patch with 𝜃𝑥 = 200𝑚 would interact with lower
frequency components than a patch with 𝜃𝑥 = 100𝑚.

Figure 4.10 shows two sets of comparison. Figures 4.10-a and b show themean amplification
of fourmodels. These figures are supposed to show the impact of 𝜃𝑧 on surface amplification.
We fix 𝜃𝑥 = 100 [𝑚] for this figures to assess how 𝜃𝑧 would change the mean amplification.
We do not fix 𝐶𝑂𝑉 to investigate whether the impact of 𝜃𝑧 changes with 𝐶𝑂𝑉 . The role of
𝜃𝑧 can be explained by considering the overall configuration of the model. As for the first
arrival of the SV plane wave, the horizontal component of motion shown here is impacted
by 𝜃𝑧 since the wave is horizontally polarized but vertically propagated. However, the
influence is not noticeable for lower 𝐶𝑂𝑉 . It becomes more pronounced for larger 𝐶𝑂𝑉 as
a separation between curves for 𝜃𝑧 = 20 [𝑚], 𝐶𝑂𝑉 = 0.4 and 𝜃𝑧 = 40 [𝑚], 𝐶𝑂𝑉 = 0.4. As
for the 𝜃𝑥 , Figures 4.10-c and d portray a similar pattern as Figures 4.10-a and b. Note that
in this figure, we use 𝐶𝑂𝑉 = 0.4. The influence of 𝜃𝑥 on surface amplification is through
affecting surface generated waves and decomposed body waves inside the basin due to the
interference among heterogeneities. These figures show that the level of impact of 𝜃𝑥 is not
as much as to produce a meaningful difference between different models in terms of mean
amplification.

To further study correlations lengths, Figure 4.11 shows the standard deviation of am-
plification at point 𝑝1 for vertical and horizontal correlation lengths. The influence of
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(a) (b)

(d) (e)

Figure 4.10: Four models with fixed 𝜃𝑥 = 100 [𝑚], 𝜃𝑧 = 20, 40 [𝑚], and 𝐶𝑂𝑉 = 0.2, 0.4:
a,b) mean Fourier spectral amplification to study the impact of 𝜃𝑧 . Three models with fixes
𝜃𝑥 = 20 [𝑚] and 𝐶𝑂𝑉 = 0.4, and three values of 𝜃𝑥 = 50, 100, 200 [𝑚]: c, d) Fourier spectral
amplification to study the impact of 𝜃𝑥 .

correlation lengths can be better seen in standard deviation plots. For 𝜃𝑧, Figure 4.11-a
shows two groups of graphs, which 𝐶𝑂𝑉 separates. As was previously mentioned, 𝐶𝑂𝑉 is
the dominant parameter in the correlated random field. For 𝜃𝑥 , in Figure 4.11-b, model with
𝜃𝑥 = 200𝑚 has a higher standard deviation than the model with 𝜃𝑥 = 100𝑚 (fixed 𝐶𝑂𝑉) at
lower frequencies. However, the difference narrows as we move toward higher frequencies.
Note that in the comparisons shown here, since the values are chosen realistically, and are
relatively close to each other, the distinction may not be as significant as one would expect.
The difference would have been easier to distinguish if we had for instance 𝜃𝑥 = 200𝑚 and
𝜃𝑥 = 20𝑚. The observations about correlation lengths were also observed in other studies
such as El Habar et al. [2019] for a rectangular domain.

As the final illustration to confirm our previous observation about the impact of correlation
length on SGM, Figure 4.12 shows significance duration ratio and fundamental frequency
ratio as a function of 𝜃𝑥 . Three difference 𝐶𝑂𝑉s are shown with different symbols. The
horizontal axis shows 𝜃𝑥 , and the vertical axis indicates an output of interest. As can be
seen, for both significance duration ratio and fundamental frequency ratio, changing 𝜃𝑥 does
not significantly impact the outcome, which confirms our earlier findings.
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(a)

(b)

Figure 4.11: Standard deviation of natural logarithm of amplification for a) models with 𝜃𝑥 =

100, 𝜃𝑧 = 20, 𝐶𝑂𝑉 = 0.2, 𝜃𝑥 = 100 𝜃𝑧 = 20, 𝐶𝑂𝑉 = 0.4, 𝜃𝑥 = 100, 𝜃𝑧 = 40, 𝐶𝑂𝑉 = 0.2, and 𝜃𝑥 =

100, 𝜃𝑧 = 40, 𝐶𝑂𝑉 = 0.4, and b) 𝜃𝑥 = 50, 𝜃𝑧 = 20, 𝐶𝑂𝑉 = 0.4, 𝜃𝑥 = 100, 𝜃𝑧 = 20, 𝐶𝑂𝑉 = 0.4,
and 𝜃𝑥 = 200, 𝜃𝑧 = 20, 𝐶𝑂𝑉 = 0.4.
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(a)

(b)

Figure 4.12: Time and frequency domain response for ensemble of realizations of 8 models
of Table 4.2 with 𝜃𝑥 = 20 [𝑚] with respect to the background medium. The circle symbol
shows 𝐶𝑂𝑉 = 0.2, the square symbol shows 𝐶𝑂𝑉 = 0.3, and diamond symbol shows 𝐶𝑂𝑉 =

0.4. Each point shows the mean of a model. a) significance duration ratio, b) fundamental
frequency ratio. The difference from Figure 4.9 is that the horizontal axis is 𝜃𝑥 .
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Figure 4.13: Example realizations with different ACF.

4.3.4 Effect of Autocorrelation Function
Up to now, we have used Von-Karman ACF to generate a correlated random field. There
are other common autocorrelation functions that have been used in the literature, namely
Gaussian (Eq. 4.4) and exponential (Eq. 4.5).

𝐶 (𝑟) = 𝑒−𝑟2 (4.4)

𝐶 (𝑟) = 𝑒−𝑟 (4.5)

In this section, we examine the difference in basin surface response given different ACFs.
For this comparison, we use model #2 from Table 4.2 and generate realizations based on
different ACFs. Figure 4.13 shows three example realizations. Gaussian has the smoothest
variation of shear wave velocity over stochastic patches as was shown repeatedly before,
for example, in Frankel and Clayton [1984]. Since the seed numbers for the generation
of random numbers are fixed, the general shape of heterogeneity patches is similar. The
differences arise as to how fast/slow the correlation decays over distance.

Figure 4.14 shows the comparison results. As can be seen, the trend of amplification does
not change for different 𝐴𝐶𝐹s. In Figure 4.14-a, the mean Fourier spectral amplification
curves follow a similar path for all frequency ranges with a minimal difference between
the models. For large frequencies, exponential ACF has a higher amplification over a wide
frequency range.
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(a) (b)

Figure 4.14: Geometric mean of Fourier spectral amplification at point 𝑝1 for different fre-
quency range with different 𝐴𝐶𝐹s.

Figure 4.15 shows the standard deviation of the natural logarithm of amplifications. Gaus-
sian has a higher standard deviation value in comparison to others in low frequency. This
is due to the smooth drop of Gaussian 𝐴𝐶𝐹 (Eq. 4.4), which constructs a larger chunk
of heterogeneity. More interaction with seismic waves could result in a more significant
reflection/refraction in the basin, increasing fluctuating behavior and standard deviation on
the surface. As for higher frequency, there is no clear 𝐴𝐶𝐹 that dominates the other two.
We conclude that in the scenario studied in this chapter, 𝐴𝐶𝐹 is not an influential parameter
on surface response.

4.4 Comparison Between 1D and 2D Analysis
In this section, we assess how the analysis we have discussed in this chapter would compare
with the state-of-practice. In practice, 1𝐷 wave propagation is the common approach for
seismic hazard quantification. We intend to examine whether a 1𝐷 wave analysis is able to
account for the response of a 2𝐷 heterogeneous basin. We choose three stochastic models,
namely 𝜃𝑥 = 100 [𝑚], 𝜃𝑧 = 20 [𝑚], 𝐶𝑂𝑉 = 0.2, 𝜃𝑥 = 100 [𝑚], 𝜃𝑧 = 40 [𝑚], 𝐶𝑂𝑉 = 0.2,
𝜃𝑥 = 100 [𝑚], 𝜃𝑧 = 20 [𝑚], 𝐶𝑂𝑉 = 0.4, and extract 1𝐷 shear wave velocity profile under-
neath point 𝑝1 for each realization. We simulate each column subjected to the same input
as 2𝐷 models and compare the responses in terms of 1) mean Fourier spectral amplification
and standard deviation and 2) mean response spectra amplification and standard deviation.
Note that 𝑝1 has the closest condition to a 1𝐷 soil column since it is the farthest from
the corners. As one moves toward a basin’s edge, the corner effects would introduce a
significant 2𝐷 wave interference to the surface ground motion.

Figure 4.16 shows the Fourier spectral amplification mean and standard deviation. The
amplification is defined as the Fourier transform of basin response divided by surface
response of 1𝐷 column. As can be seen in Figure 4.16-a, we observe a different surface
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Figure 4.15: Standard deviation of natural logarithm of Fourier spectral amplification at point
𝑝1 with different 𝐴𝐶𝐹s.

response in comparison to the 1𝐷 analysis. In the 1𝐷 analysis, a layered soil medium is
assumed while the 2𝐷 effects are neglected. Therefore, we expect significantly different
resultant wavefields on basin surfaces both in low and high frequencies. The response in
the low-frequency regime comes mostly from the 2𝐷 effects of the basin. On the other
hand, heterogeneities would play an important role in the difference between responses
of a 2𝐷 model and 1𝐷 layered medium for the high-frequency range. In this figure, the
𝐶𝑂𝑉 = 0.2 shows both amplification and de-amplification in low-frequencies (≤ 0.6 [𝐻𝑧]).
This observation is due to the fundamental behavior of 1𝐷 columns and basins. Similar
behavior is observed for 𝐶𝑂𝑉 = 0.4. Note the shift toward lower frequency for higher
𝐶𝑂𝑉 as was mentioned before. As the frequency increases, the impact of heterogeneities
accentuates. For𝐶𝑂𝑉 = 0.2, the resultant amplification although not zero, is not significant
since the 2𝐷 basins resemble background medium for this 𝐶𝑂𝑉 . We observe that both
models show a consistent amplification over all frequencies above 1 [𝐻𝑧]. However, for the
model with 𝐶𝑂𝑉 = 0.4, the difference is significant compared to the 1𝐷 analysis, and we
observe a significant amplification. Figure 4.16-b portrays the difference from the lens of
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standard deviation. While the model with higher 𝐶𝑂𝑉 shows a clear divergence from 1𝐷,
the other two models still demonstrate a noticeable standard deviation. This means that
1𝐷 analysis is not appropriate for estimating a heterogeneous basin response even for lower
𝐶𝑂𝑉s.

Response spectramean amplification and the standard deviation is another way to investigate
the capability of a 1𝐷 analysis to capture the 2𝐷 response of a basin with heterogeneities.
The amplification is defined similarly to the Fourier spectral amplification of Figure 4.16.
Figure 4.17 shows how the mean response spectra and standard deviation vary for different
periods. As for response spectra amplification, the 𝐶𝑂𝑉 = 0.4 shows the maximum
amplification in low period (equivalent to high frequency) and it decreases as we go to
𝐶𝑂𝑉 = 0.2. This is in agreement with Figure 4.16, and it can be seen that 1𝐷 analysis is
not able to account for 2𝐷 effects inside a basin properly.

4.5 Summary and Conclusions
In this chapter, we investigated the effect of material heterogeneity on basin surface accel-
eration during an earthquake. By means of Monte Carlo simulation, we generate various
realizations of a elastic basin velocity field and examined effects of coefficient of varia-
tion (𝐶𝑂𝑉 , § 4.3.2), correlation lengths (𝜃𝑥 and 𝜃𝑧, § 4.3.3), and autocorrelation function
(ACF, § 4.3.4) on the spatial variation of surface ground motion. Since the focus of this
study is on the material heterogeneity effects, we do not consider different basin geometries
and an idealized cosine shape with 𝐴𝑅 = 4 and 𝛽2/𝛽1 = 2 are assumed for numerical
analysis (Figure 4.1, derived from Chapter 2). The model is subjected to a vertically prop-
agating SV plane wave of Ricker type with a dominant frequency of 5𝐻𝑧. We assume
𝜃𝑥 = 50, 100, 200𝑚 and vertical 𝜃𝑧 = 20, 40𝑚, 𝐶𝑂𝑉 = 0.2, 0.3, 0.4, and three ACFs,
namely Von Karman, Gaussian, and exponential. For each parameter, we study its effect
on surface ground motion in both time and frequency domains using 1) Fourier spectral
amplification, 2) response spectra amplification, 3) significance duration ratio, and 4) fun-
damental frequency ratio. The following conclusions have been drawn through analyzing
the results.

• 𝐶𝑂𝑉 defines the range of shear wave velocity in a medium with respect to a mean,
and increasing 𝐶𝑂𝑉 results in a more considerable material contrast within a basin.
This parameter affects the interference pattern of seismic waves and surface accel-
eration significantly. Our analysis shows that 𝐶𝑂𝑉 is the most influential parameter
(among the three we examined in this chapter) on surface ground acceleration. By
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(a)

(b)

Figure 4.16: Fourier spectral amplification: a) Mean and b) standard deviation. Fourier spec-
tral amplification is defined as the ratio between Fourier transform of time-series at point 𝑝1
of 2𝐷 model versus 1𝐷 analysis of a column underneath 𝑝1.
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(a)

(b)

Figure 4.17: Response spectra amplification: a) Mean and b) standard deviation. Response
spectra amplification is defined as the ratio between response spectra of time-series at point
𝑝1 of 2𝐷 model versus 1𝐷 analysis of the column underneath 𝑝1.
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increasing 𝐶𝑂𝑉 , we observed elongation in significance duration and a decrease in
the fundamental frequency of the basin. In addition, a significant increase in the
standard deviation of surface amplification is observed.

• Correlation length (𝜃𝑥 and 𝜃𝑧) is another parameter of interest, which changes the
size of heterogeneity patches in a medium that could affect wave-patch interaction.
We observed that correlation lengths are not as important a factor as 𝐶𝑂𝑉 on surface
response. Given that the input motion is a vertically propagating horizontally polar-
ized wave, the size of 𝜃𝑧 affects the vertically propagating wave while contributing
toward the horizontal component of surface motion. 𝜃𝑥 works differently by affecting
horizontally propagating waves and contributing to the vertical component of motion
as SV waves propagate in the basin. Different mechanisms could happen for Rayleigh
and P-waves in the basin due to mode conversion and edge-induced surface waves. In
sum, the impact of correlation lengths is not significant, but it changes the standard
deviation of surface amplification in different frequency ranges depending on the size
of heterogeneities.

• The autocorrelation function (ACF) is the last parameter we studied in this chapter.
While von Karman ACF is an appropriate choice for studying solid Earth, we have
also examined two other common ACFs: Gaussian and exponential. We observed
that although there are slight differences between the mean and standard deviation of
resultant surface response for different 𝐴𝐶𝐹s, the discrepancies are insignificant.

• Finally, we compared the results of heterogeneous basins versus the 1𝐷 site analysis,
which is the standard approach in practice. We extracted all 1𝐷 columns underneath
point 𝑝1 from all realizations of 3 models. We performed a series of 1𝐷 analyses
to examine how close the response of a 1𝐷 column would be to the 2𝐷 basins.
Using amplification mean and standard deviation, we showed that 1𝐷 could not fully
account for the 2𝐷 phenomena in a basin with heterogeneities.
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C h a p t e r 5

Conclusions

Contents of this chapter

5.1 Summary of Previous Chapters . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Summary of Previous Chapters
This thesis presents the author’s research on basin effects parameterization and modeling in
2𝐷. While the practice still relies on 1𝐷 site response analysis which is not able to properly
capture basin-edge effects, this research contributes toward better incorporation of basin
effects in GMPEs and design codes. It also presents a path to reduce computational cost
and better representation of basin material in 2𝐷 simulations.

Chapter 2 presents results of a comprehensive parametric study throughwhich, wewere able
to prioritize important dimensionless parameters for basin seismic hazard quantification.
We concluded that three dimensionless parameters, namely aspect ratio (𝐴𝑅), shear wave
velocity contrast (𝛽2/𝛽1), and dimensionless frequency (𝜂) are themost influential parameters
on a SE- or HC-shaped basin response. We also showed that in the scenarios studied in
Chapter 2, damping, materials Poison’s ratio, and density are of secondary importance
on surface response. We chose HC-shaped to be a more realistic and appropriate due to
gradual increase of depth from basin edges. We finally tried to replicate strong ground
motion recordings of Kathmandu basin, Nepal during the 2015 𝑀𝑤 7.8 Gorkha earthquake
and showed that a simplified model is able to capture notable characteristics of basin
response in low-frequency range.

Chapter 3 presents results of a new approach to estimate acceleration time-series in a
basin. Based on our findings in Chapter 2, we utilize three parameters, namely aspect ratio,
velocity contrast, and dimensionless frequency, together with a dimensionless location to
train a neural network in order to return the acceleration time-series at location 𝑥 in a model
with aspect ratio 𝐴𝑅 and shear wave velocity contrast𝐶. We generate a set of synthetic data
using FEM simulations for training and train two models to learn amplitude and phase of
transfer function in 0 − 5 dimensionless frequency range. The model is able to reconstruct
time-series in comparison to the ground truth and generalizes well beyond the parameters
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they were trained on.

Chapter 4 presents results of a set of stochastic FEM simulations to study basin effects
in cases where higher frequency response is desirable and accurate basin material repre-
sentation is of interest. However, the lack of geotechnical information prevents us from
performing a deterministic analysis. Therefore, the material in the basin is presented by
a correlated random field and we studied parameters such as coefficient of variation, cor-
relation lengths and types of autocorrelation function to examine their impact on surface
acceleration using Monte Carlo technique. We concluded that coefficient of variation is the
most influential parameter on surface response, followed by correlation lengths and type of
autocorrelation function.

5.2 Future Work
As future directions, the following paths might be taken:

• In Chapter 2:

– Given the fact that all the analysis in this research assumed the simplest elastic
material for the sake of interpretability and understanding the physics, one can
extend the analysis to include nonlinearity in the simulation as it happens in
reality, for instance in Kathmandu basin during the Gorkha Earthquake.

– The analysis of this research was focused on 2𝐷 domain. Extension to 3𝐷 will
be beneficial as it was shown in the literature that in some cases, 2𝐷 analysis
may not be able to capture the full picture. This happened inMexico City during
the Michoàcan Earthquake where some attributed the long duration of shaking
to 3𝐷 effects.

– Following our goal to simplify the problem in order to better understand the
phenomena from a physical point of view, we did not include stratigraphy
information in our analysis, such a modification will impact the resultant wave
field. While the amplitude of surface motion may decrease due to a more
smooth transition of shear wave velocity in a stratified basin, one might be able
to observe more realistic response.

• In Chapter 3:

– In Chapter 3, we used a neural network to estimate surface acceleration time-
series of a basin given few parameters as input. Such an approach can be used
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to better address local site effects in general. A hybrid method can be developed
in which empirical data is supplemented by numerical simulations, and a NN
replaces arbitrary current functional format of GMPEs.

– Moreover, for the case of a basin analysis, a more accurate material representa-
tion can also be incorporated, namely including depth dependency of material.
NN or other machine learning based methods can be used to approach this
problem.

• In Chapter 4:

– Similarly to the point about stratified basin, stochastic FEM simulations can also
be helpful in such cases. Instead of defining a horizontally layered medium,
one can use a correlated random field to represent a basin while including the
variation of velocity and density with depth. This is an easy modification to
our simulations in Chapter 4 which in turn results in a more realistic basin
configurations.

– As was mentioned before, the major challenge for MC-type analysis is the
computational time. For the case of analyzes in Chapter 4, 50 realizations were
used, each taking few hours to complete. The computational time obviously
depends on the frequency level of interest, model configurations, among other
factors. Overall, this can be a setback. A procedure similar to Chapter 3 can
be followed to improve computational efficiency of the simulation procedure.
Assuming von Karman autocorrelation function is an appropriate representation
for solid Earth, three parameters, namely 𝐶𝑂𝑉 , 𝜃𝑥 and 𝜃𝑧, are parameters that
need to be considered in addition to dimensionless parameters that were used
in Chapter 3. Depending on the configuration of a basin and input motion
characteristic, it might be possible to fix one of the 𝜃𝑥 or 𝜃𝑧 parameters. Having
set the initial parameter, defining a range for each parameters and generating
synthetic training, one is able to gather available empirical data to supplement
synthetic data. Finally, a model can be trained to learn the behavior for different
scenarios.
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