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Abstract

Path space Markov chain Monte Carlo (McMC) provides a versatile framework for
simulating the structure and dynamics of condensed-phase systems aptly described
by classical and quantum Boltzmann statistics. This thesis comprises our efforts to
design, analyze, and improve path space McMC algorithms to achieve numerically
advantageous, and physically accurate, simulation of molecular processes across a
range of scales. To improve molecular dynamics (MD) simulations of atomically re-
solved systems exhibiting pronounced nuclear quantum effects, we introduce a fam-
ily of integrators for non-preconditioned path-integral MD exhibiting dimension-
free statistical accuracy and efficiency, and enabling a many-fold increase in time-
step stability relative to conventional approaches at no additional computational cost
or implementation complexity. The integrators come with robust performance guar-
antees that are borne out in thermostatted ring-polymer MD simulations of realis-
tic condensed-phase models. Concurrently, toward extending the range of accessi-
ble timescales in stochastic MD simulations of mesoscale coarse-grained molecular
systems, we introduce a parallel-in-time integrator for the overdamped Langevin
equation based on McMC evaluation of a path-integral representation of the many
time-step stochastic MD transition kernel. The parallel-in-time integrator achieves
simultaneous integration of multiple stochastic MD time-steps at no greater wall-
time cost and with no lesser accuracy than a standard Euler–Maruyama integrator
does in serial, and thus instantiates new opportunities to accelerate stochastic dy-
namics simulations on massively parallel computer architectures. Our work along
these two methodological avenues extends the utility of path space McMC across
applications in molecular simulation and has broader implications in other disci-
plines that require accurate and efficient simulations of Markov diffusion processes
in state spaces or path spaces.



v

Published Content and Contributions

[3] J. L. Rosa-Raíces, J. Sun, N. Bou-Rabee, and T. F. Miller III, “A generalized
class of strongly stable and dimension-free T-RPMD integrators”, The Journal of
Chemical Physics 154, 024106 (2021) 10.1063/5.0036954.
J.L.R.-R. participated in conceiving the project, participated in the formulation, analy-
sis, and implementation of some of the methods introduced, prepared the simulations
to illustrate the methods, and contributed to writing the article.

[2] R. Korol, J. L. Rosa-Raíces, N. Bou-Rabee, and T. F. Miller III, “Dimension-
free path-integral molecular dynamics without preconditioning”, The Journal of
Chemical Physics 152, 104102 (2020) 10.1063/1.5134810.
J.L.R.-R. prepared the simulations to illustrate some of the methods introduced, par-
ticipated in the formulation, analysis, and implementation of some of the methods
introduced, and contributed to writing the article.

[1] J. L. Rosa-Raíces, B. Zhang, and T. F. Miller III, “Path-accelerated stochastic
molecular dynamics: Parallel-in-time integration using path integrals”, The Jour-
nal of Chemical Physics 151, 164120 (2019) 10.1063/1.5125455.
J.L.R.-R. participated in designing and implementing the methods introduced, pre-
pared the simulations to illustrate the methods, and contributed to writing the article.

https://doi.org/10.1063/5.0036954
https://doi.org/10.1063/5.0036954
https://doi.org/10.1063/5.0036954
https://doi.org/10.1063/1.5134810
https://doi.org/10.1063/1.5134810
https://doi.org/10.1063/1.5134810
https://doi.org/10.1063/1.5125455
https://doi.org/10.1063/1.5125455
https://doi.org/10.1063/1.5125455


vi

Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I Dimension-free ring-polymer molecular dynamics 8
Chapter 2: Thermostatted ring-polymer molecular dynamics integrators with

dimensionality freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Non-preconditioned PIMD . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 BCOCB avoids pathologies in the infinite-bead limit . . . . . . . . . 14
2.4 Consequences for the primitive kinetic energy expectation value . . . 18
2.5 Dimensionality freedom for OBCBO via force mollification . . . . . 21
2.6 Results for anharmonic oscillator . . . . . . . . . . . . . . . . . . . 26
2.7 Results for liquid water . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 Appendix A: Other splittings . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3: Generalization and optimization of dimension-free integrators for
thermostatted ring-polymer
molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Appendix A: Necessary and sufficient condition for eigenvalues of a

2× 2 real matrix to be inside the unit circle . . . . . . . . . . . . . . 60
3.6 Appendix B: Stability condition for harmonic external potentials . . . 62
3.7 Appendix C: Dimension-free quantitative contraction rate for har-

monic external potentials in the infinite-friction limit . . . . . . . . . 63
3.8 Appendix D: Total variation bound on the equilibrium accuracy error

for harmonic external potentials . . . . . . . . . . . . . . . . . . . . 65
3.9 Appendix E: Asymptotic variance of kinetic energy observables for

harmonic external potentials in the infinite-friction limit . . . . . . . 66
3.10 Appendix F: Stability interval calibration for liquid water simulations 68
3.11 Appendix G: Simulation and estimation details . . . . . . . . . . . . 69



vii

II Parallel-in-time stochastic molecular dynamics 81
Chapter 4: Path-accelerated stochastic molecular dynamics: Parallel-in-time

integration using path integrals . . . . . . . . . . . . . . . . . . . . . . . 82
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Calculation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



viii

List of Illustrations

Number Page
2.1 Illustration of the consequences of dimensionality freedom, and lack

thereof, to the statistical accuracy of non-preconditioned path-integral
molecular dynamics (PIMD) simulations. . . . . . . . . . . . . . . . 19

2.2 Convergence with increasing path dimension of kinetic energy ex-
pectation values for a weakly anharmonic potential with standard and
dimension-free non-preconditioned PIMD. . . . . . . . . . . . . . . 27

2.3 Stability with increasing time-step of kinetic energy expectation val-
ues for weakly and strongly anharmonic potentials, using standard
and dimension-free non-preconditioned PIMD integrators. . . . . . . 29

2.4 Convergence with increasing path dimension of the expected kinetic
energy per proton in a strongly anharmonic model of room-temperature
liquid water, as per standard and dimension-free non-preconditioned
PIMD integration schemes. . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Stability with increasing time-step of the expected kinetic energy per
proton in a strongly anharmonic model of room-temperature liquid
water, as per standard and dimension-free non-preconditioned PIMD
integration schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Dynamical properties of liquid water within the thermostatted ring-
polymer molecular dynamics (T-RPMD) model, computed using the
standard, Bussi–Parinello “OBABO” and the dimension-free, Cayley-
modified Leimkuhler “BAOAB” integration schemes. . . . . . . . . . 34

3.1 Spectra of generalized symplectic propagators for the jth mode of a
free ring polymer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Spectral properties of the T-RPMD update for the free ring polymer
for various choices of θ. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Dimension-free convergence to equilibrium of BAOAB-like T-RPMD
schemes with a harmonic external potential. . . . . . . . . . . . . . . 51

3.4 Performance at equilibrium of various BAOAB-like T-RPMD schemes
applied to the one-dimensional quantum harmonic oscillator. . . . . . 54

3.5 Performance of various BAOAB-like T-RPMD schemes applied to
q-TIP4P/F liquid water at room temperature. . . . . . . . . . . . . . 56



ix

3.6 Molecular dipole autocovariance function, corresponding infrared ab-
sorption spectrum, and molecular velocity autocovariance function
in room-temperature liquid water for various BAOAB-like T-RPMD
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 General properties of the eigenspectrum of a symplectic ring-polymer
mode propagator within a strongly stable T-RPMD scheme. . . . . . 61

3.8 Stability interval calibration for q-TIP4P/F room-temperature liquid
water simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9 Using the automatic windowing method to estimate integrated auto-
correlation times of several observables of the one-dimensional har-
monic oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Thermalization of various BAOAB-like schemes applied to q-TIP4P/F
water at room temperature. . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Illustration of a simple path-based MD integration scheme. . . . . . . 86
4.2 Illustration of a path-accelerated molecular dynamics (PAMD). . . . 87
4.3 The interplay of path length, shift length and number of sampling op-

erations in determining the accuracy of the PAMD integration scheme. 89
4.4 PAMD integrates equilibrium trajectories by relaxing non-equilibrium

path segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Illustration of the multilevel sliding and sampling (S&S) algorithm

for MC updates of the PAMD path configuration. . . . . . . . . . . . 95
4.6 Benchmarks of PAMD for an overdamped harmonic oscillator. . . . . 99
4.7 Hard-sphere schedule employed to precondition MC path sampling

in the reported Lennard–Jones PAMD simulations. . . . . . . . . . . 101
4.8 Benchmarks of PAMD for a Lennard–Jones colloid. . . . . . . . . . 103



x

List of Tables

Number Page
4.1 Summary of notation employed to describe the PAMD integration

scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Summary of PAMD simulation parameters used for the harmonic os-

cillator application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 Summary of PAMD simulation parameters used for the application

to the Lennard–Jones liquid. . . . . . . . . . . . . . . . . . . . . . . 104



1

Chapter 1

Introduction

This thesis addresses the expansive field of molecular simulation, which comprises
an ever-growing palette of computational tools for studying the structure and dynam-
ics of molecular systems through the evaluation of principled models. Molecular
simulation offers the prospect to observe molecular processes in greater spatiotem-
poral resolution than is possible with modern experimental techniques, prospec-
tively yielding insights into the structure and dynamics of matter at length-scales
ranging from the electronic to the macroscopic [1]; into macromolecular conforma-
tional transition rates and their underlying mechanisms [2]; into chemical reactions
mediated by complex environments [3]; and into the dynamical response properties
of materials in relation to their microstructural fluctuations. Contingent on sufficient
modeling accuracy, as increasingly provided by the upscaling of ab initio electronic
structure techniques via data-driven and machine-learning avenues [4, 5], molecular
simulation can therefore help predict and interpret experimental outcomes, as well
as guide the design of materials and technologies toward the betterment of society.

Despite impressive progress [6–8], it could be argued that the potential of molecu-
lar simulation to deliver on the above prospects remains largely unrealized; this is
especially so for molecular processes governed by strong and long-ranged quantum-
mechanical effects [9, 10] and that involve long time-scale, large length-scale, and
mechanistically complex conformational and chemical transformations [11, 12]. The
state of affairs calls for further development of theoretical models and computational
methods, implementable on suitably optimized hardware [13, 14], that advance the
accurate molecular simulation of processes exhibiting these traits. The current thesis
aims to facilitate the application of path space Markov chain Monte Carlo (McMC)
methods toward this overarching goal.

Besides its modern applications in Bayesian inference [15–17], mathematical fi-
nance [18], and various areas of statistical and machine learning [19], path space
McMC has proven to be a versatile framework for molecular simulation as demon-
strated by the long-standing success of transition path sampling (TPS) [20–23] and
path-integral molecular dynamics (PIMD) [24–28]. Like McMC simulation schemes
formulated on the state space (e.g., position space or phase space) of a molec-
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ular model, such as stochastically thermostatted molecular dynamics (MD) [29],
Metropolis–Hastings Monte Carlo (MC) [30], and hybrid MD/MC schemes [31,
32], path space McMC entails the Markovian, step-wise evolution of a path, or an
ordered collection of replicas of the molecular model, in accordance with a dis-
cretized equation of motion or update rule designed to ensure that admissible path
configurations are visited in accordance with prescribed relative probabilities in the
long-time limit [21, 33]. The prescribed stationary distribution of path configura-
tions is determined by the features of the underlying molecular model, as illustrated
in Ref. [20] in the case of TPS and in Ref. [28] in the case of PIMD. While recasting
a state-space McMC sampling problem as a path-space McMC sampling problem
might appear computationally disadvantageous due to the intrinsically higher di-
mensionality of the latter, it can result in enhanced performance as evidenced by the
success of (i) non-preconditioned PIMD at estimating the effects of nuclear quan-
tization (as manifest in, e.g., zero-point energy motion and quantum tunneling) on
the structural and dynamical properties of condensed-phase systems [3, 10], and
of (ii) diffusive TPS at generating mechanistically insightful transition path ensem-
bles between metastable conformational states that would be more computationally
demanding to discover via direct diffusive MD simulations [22, 34]. Employing
molecular paths as variables to be sampled via McMC nevertheless entails unique
methodological challenges, and the current thesis collects some of our efforts to
address them.

Part I of this thesis concerns non-preconditioned PIMD integration, where path-
discretization artifacts had previously encumbered the performance and limited the
stability of conventional time-discretization schemes [35]. Colleagues recently ob-
served that conventional non-preconditioned PIMD integrators are incompatible with
structural features unique to the path space distributions they intend to sample, re-
sulting in a sharp deterioration of their performance and stability under path-discreti-
zation refinements [16, 36, 37]. Through the work detailed in Chapters 2 and 3, we
introduce a host of dimension-free integration schemes for the non-preconditioned
PIMD equations of motion that are free of stability-limiting artifacts in both toy-
model and realistic applications. The dimension-free integrators are furthermore
designed to yield greater long-time statistical accuracy, higher long-time sampling
efficiency as measured by the asymptotic variance of observables of practical in-
terest, and faster convergence to the stationary Boltzmann–Gibbs path distribution
than conventional schemes. Having found their way into widely available molecular
simulation libraries [38, 39], our dimension-free non-preconditioned PIMD inte-
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grators are already extending the utility of path space McMC toward elucidating the
effects of nuclear quantization in the structure and dynamics of molecular processes
modeled at all-atom resolution with ab initio potential energy landscapes [40].

Part II of this thesis explores how path space McMC can enhance long time-scale
MD simulation of mesoscale coarse-grained molecular systems. Direct sampling of
the trajectory space might appear a convenient avenue to evaluate a long MD trajec-
tory at a lower wall-time cost than with direct integration, but a naïve implementa-
tion would be hindered by the slow mixing of McMC schemes when sampling long
paths [41, 42]. To effectively apply path space McMC to accelerate the integration
of long time-scale stochastic MD, Chapter 4 introduces the path-accelerated molec-
ular dynamics (PAMD) scheme, which enables parallel-in-time integration of a long
stochastic MD trajectory through McMC-based evaluation of a relatively short path
distribution governing the near-term evolution of a system over the course of several
MD time-steps. Compared to competing parallel-in-time integration schemes for
stochastic MD [43, 44], which are based on a prediction-correction paradigm [45]
and whose performance can be limited by the quality of the prediction employed, the
PAMD scheme shows greater potential for speedup due to its McMC-based formu-
lation, which admits implementations through a plethora of path space sampling
methods that can efficiently leverage massively parallel computing architectures.
The implementation of PAMD outlined in Chapter 4 is numerically shown to sub-
stantially outperform a standard serial-in-time integration scheme for overdamped
Langevin dynamics in simple systems, and encourages efforts toward refined imple-
mentations amenable to real-world applications in molecular simulation and other
disciplines.
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Chapter 2

Thermostatted ring-polymer molecular dynamics
integrators with dimensionality freedom

Adapted from

R. Korol, J. L. Rosa-Raíces, N. Bou-Rabee, and T. F. Miller III, “Dimension-free
path-integral molecular dynamics without preconditioning”, The Journal of Chem-
ical Physics 152, 104102 (2020) DOI: 10.1063/1.5134810.

Abstract

Convergence with respect to imaginary-time discretization (i.e., the number of ring-
polymer beads) is an essential part of any path-integral-based molecular dynamics
(MD) calculation. However, an unfortunate property of existing non-preconditioned
numerical integration schemes for path-integral molecular dynamics (PIMD), in-
cluding essentially all existing ring-polymer molecular dynamics (RPMD) and ther-
mostatted RPMD (T-RPMD) methods, is that for a given MD time-step, the over-
lap between the exact ring-polymer Boltzmann–Gibbs distribution and that sam-
pled using MD becomes zero in the infinite-bead limit. This has clear implications
for “Metropolized” MD sampling schemes such as hybrid Monte Carlo, and it also
causes the divergence with bead number of the primitive path-integral kinetic energy
expectation value when using standard RPMD or T-RPMD. We show that these and
other problems can be avoided through the introduction of “dimension-free” numer-
ical integration schemes for which the sampled ring-polymer position distribution
has non-zero overlap with the exact distribution in the infinite-bead limit for the case
of a harmonic potential. Most notably, we introduce the BCOCB integration scheme,
which achieves dimension freedom via a particular symmetric splitting of the inte-
gration time-step and a novel implementation of the Cayley modification [J. Chem.
Phys. 151, 124103 (2019)] for the free ring-polymer half-steps. More generally, we
show that dimension freedom can be achieved via mollification of the forces from
the external physical potential. The dimension-free path-integral numerical integra-
tion schemes introduced here yield finite error bounds for a given MD time-step,
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even as the number of beads is taken to infinity; these conclusions are proven for
the case of a harmonic potential and borne out numerically for anharmonic systems
that include liquid water. The numerical results for BCOCB are particularly strik-
ing, allowing for nearly three-fold increases in the stable time-step for liquid water
with respect to the Bussi-Parrinello (OBABO) and Leimkuhler (BAOAB) integra-
tors while introducing negligible errors in the calculated statistical properties and ab-
sorption spectrum. Importantly, the dimension-free, non-preconditioned integration
schemes introduced here preserve strong stability, symplecticity, time reversibility,
and global second-order accuracy; and they remain simple, black-box methods that
avoid additional computational costs, tunable parameters, or system-specific imple-
mentations.

2.1 Introduction

Considerable effort has been dedicated to the development of numerical integration
schemes for imaginary-time path-integral molecular dynamics (PIMD) [1]. In com-
parison to standard classical molecular dynamics, PIMD numerical integration faces
the additional challenge of the highly oscillatory dynamics of the ring-polymer inter-
nal modes. Work on numerical integrators for PIMD generally falls into two distinct
categories. In the first, the PIMD equations of motion are preconditioned by modify-
ing the ring-polymer mass matrix [2–10]; this approach, which includes the widely
used staging algorithms [11], causes the integrated trajectories to differ from those of
the ring-polymer molecular dynamics (RPMD) model for real-time dynamics [12,
13], but it can lead to efficient [4–6] sampling of the quantum Boltzmann–Gibbs
distribution [14, 15]. In the second category, no modification is made to the ring-
polymer mass matrix, i.e., the equations of motion are non-preconditioned [13, 16–
21].

With the aim of providing useful models for real-time quantum dynamics, as well as
simple and efficient algorithms for equilibrium thermal sampling, the current chap-
ter focuses on non-preconditioned PIMD numerical integration, notable examples of
which include RPMD [12, 13] and its thermostatted variant T-RPMD [20]. Numeri-
cal integration schemes for these methods typically employ symmetric factorizations
of the time-evolution operator of the form [11, 16–25]

e∆tLn ≈ ea
∆t
2
One

∆t
2
Bne

∆t
2
Ane(1−a)∆tOne

∆t
2
Ane

∆t
2
Bnea

∆t
2
On

with a ∈ {0, 1} ,
(2.1)
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where the operator Ln = An + Bn + On includes contributions from the purely
harmonic free ring-polymer motion (An), the external potential gradient (Bn), and
a thermostat (On), and where n is the (typically large) number of beads or modes
comprising the ring polymer. Note that the standard microcanonical RPMD numer-
ical integration scheme is recovered in the limit of zero coupling to the thermostat,
and that Eq. (2.1) yields the “OBABO” scheme of Bussi and Parrinello [22] when
a = 1 and the “BAOAB” scheme of Leimkuhler [25] when a = 0.

In a recent publication [26], it was emphasized that earlier PIMD numerical integra-
tion schemes had overlooked a fundamental aspect of the exp((∆t/2)An) sub-step
of the time evolution in Eq. (2.1). Standard practice in these integration schemes
has been to exactly evolve the harmonic free ring-polymer dynamics associated with
exp((∆t/2)An) using the uncoupled free ring-polymer normal modes [11, 16–18],
which was shown to lack the property of strong stability in the numerical integration,
leading to resonance instabilities for microcanonical RPMD and loss of ergodicity
for T-RPMD [26]. Use of the Cayley modification to the free ring-polymer motion
was shown to impart strong stability to the time-evolution, thereby improving numer-
ical stability for microcanonical RPMD and restoring ergodicity for T-RPMD [26].

In the current study, we focus on the accuracy of both statistical and dynamical
properties of the OBABO and BAOAB schemes, as well as the corresponding inte-
grators obtained when the exact free ring-polymer step is replaced by the strongly
stable Cayley modification (OBCBO and BCOCB, respectively). Particular atten-
tion is paid to the effect of finite-time-step error with these integrators in the limit
of large bead numbers. Of these four integrators, it is found that only BCOCB is
dimension-free, in the sense that the sampled ring-polymer position distribution has
non-zero overlap with the exact distribution in the infinite-bead limit for the case of
a harmonic potential. Further, it is demonstrated that the OBCBO scheme can be
made dimension-free via the technique of force mollification. It is shown that the
newly introduced BCOCB integrator yields better accuracy than all other considered
non-preconditioned PIMD integrators and allows for substantially larger time-steps
in the calculation of both statistical and dynamical properties. Importantly, these
gains are made without loss of computational efficiency or algorithmic simplicity.
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2.2 Non-preconditioned PIMD

Consider a one-dimensional quantum particle with the Hamiltonian operator

Ĥ =
1

2m
p̂2 + V (q̂) , (2.2)

where m is the particle mass, q̂ and p̂ the position and momentum operators, and
V (q̂) a potential energy surface. Ignoring exchange statistics, the properties of this
system at thermal equilibrium are encoded in the quantum partition function

Q = Tr[e−βĤ ] , (2.3)

where β = (kBT )
−1, kB is the Boltzmann constant and T the thermodynamic tem-

perature. Using a path-integral discretization (i.e., a Trotter factorization of the
Boltzmann–Gibbs operator [27]), Q = limn→∞Qn can be approximated by the
classical partition function Qn of a ring polymer with n beads [14, 15],

Qn =
mn

(2πℏ)n
w
dnq

w
dnv e−βHn(q,v) , (2.4)

where q = [q0, . . . , qn−1]
T is the vector of bead positions and v the corresponding

vector of velocities. The ring-polymer Hamiltonian is given by

Hn(q,v) = H0
n(q,v) + V ext

n (q) , (2.5)

which includes contributions from the physical potential

V ext
n (q) =

1

n

n−1∑
j=0

V (qj) (2.6)

and the free ring-polymer Hamiltonian

H0
n(q,v) =

mn

2

n−1∑
j=0

[
v2j + ω2

n(qj+1 − qj)
2
]
, (2.7)

where mn = m/n, ωn = n/(ℏβ) and qn = q0.

Non-preconditioned PIMD evolves the phase [q(t)T,v(t)T]T of the ring polymer as
per

q̇(t) = v(t) ; v̇(t) = −Ω2q(t) +m−1
n F (q(t))

− Γv(t) +
√
2β−1m−1

n Γ1/2Ẇ (t) ,
(2.8)
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which corresponds to the Hamiltonian dynamics of Hn(q,v) with an Ornstein–
Uhlenbeck thermostat. In Eq. (3.1) we introduced F (q) = −∇V ext

n (q), an n-
dimensional standard Brownian motion W (t) and the n× n matrices

Ω = U diag (0, ω1,n, . . . , ωn−1,n)U
T and

Γ = U diag (0, γ1, . . . , γn−1)U
T ,

(2.9)

where γj ≥ 0 is the jth friction coefficient, U an n × n real orthogonal discrete
Fourier transform matrix such that

Ω2 = −ω2
n



−2 1 0 · · · 0 1

1 −2 1 0 · · · 0
. . . . . . . . .

. . . . . . . . .
0 · · · 0 1 −2 1

1 0 · · · 0 1 −2


, (2.10)

and the ωj,n, with j = 0, . . . , n−1, are the so-called Matsubara frequencies [28]

ωj,n =

2ωn sin
(
πj
2n

)
if j is even ,

2ωn sin
(

π(j+1)
2n

)
else .

(2.11)

Observe that the zero-frequency (i.e., centroid) ring-polymer mode is uncoupled
from the thermostat, and the coefficients {γj}n−1

j=1 in Eq. (2.9) constitute the friction
schedule applied to the non-centroid modes.

The standard method for discretizing Eq. (2.8) is to use a symmetric splitting method
of the form of Eq. (2.1) that consists of a combination of three types of sub-steps:
(i) exact free ring-polymer evolution of time-step τ ,[

q

v

]
← exp(τA)

[
q

v

]
with A =

[
0 I

−Ω2 0

]
, (2.12)

where A is the Hamiltonian matrix associated to the free ring polymer, (ii) velocity
updates of time-step τ due to forces from the external potential,

v ← v + τm−1
n F (q) , (2.13)

and (iii) velocity updates of time-step τ due to the thermostat,

v ← exp(−τΓ)v +
√

β−1m−1
n (I − exp(−2τΓ))1/2 ξ , (2.14)
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where I is the n×n identity matrix and ξ is an n-dimensional vector whose compo-
nents are independent, standard normal random variables. The acronyms “OBABO”
and “BAOAB” indicate the order in which these sub-steps are applied, as specified
in Eq. (2.1) with a = 1 or a = 0, respectively.

In previous work [26], some of us showed that the matrix exponential for the free
ring polymer evolution in Eq. (2.12) is not a strongly stable symplectic matrix, and
that as a consequence, the OBABO and BAOAB schemes can display non-ergodicity
at time-steps ∆t = kπ/ωj,n for any 1 ≤ j ≤ n and k ≥ 1. We also identified a
maximum safe time-step size∆t⋆ = βℏπ/(2n), below which the matrix exponential
is strongly stable. As n→∞, this maximum safe time-step goes to zero, such that
no finite time-step for the scheme in Eq. (2.1) is safe in this limit from non-ergodicity.

This non-ergodicity motivates the Cayley modification [26] which consists of ap-
proximating the matrix exponential appearing in Eq. (2.12) with the Cayley trans-
form. Specifically, for the Cayley-modified OBABO scheme (called OBCBO), we
replace the exact free ring-polymer update of time-step τ = ∆t with

cay(∆tA) = (I − (1/2)∆tA)−1(I + (1/2)∆tA) . (2.15)

For the Cayley-modified BAOAB scheme (called BCOCB), we replace the two exact
free ring-polymer updates of half-time-step τ = ∆t/2 with cay(∆tA)1/2. While it
might be expected that these half-time-step updates would instead be replaced with
cay((∆t/2)A), such a choice leads to a loss of strong stability. Our use of the square
root of the Cayley transform preserves strong stability, symplecticity, time reversibil-
ity, local third-order accuracy, and guarantees that cay(∆tA)1/2 cay(∆tA)1/2 =

cay(∆tA). Furthermore, the square root of the Cayley transform is no more com-
plicated to evaluate than the Cayley transform itself. Both the OBCBO and BCOCB
Cayley modifications of Eq. (2.1) are ergodic for a fixed time-step, irrespective of
the number of beads; moreover, like Eq. (2.1), the Cayley modified integrators ex-
hibit locally third-order accuracy in the time-step and leave invariant the free ring-
polymer Boltzmann–Gibbs distribution in the special case of a constant external
potential (V ≡ const.) [26].

2.3 BCOCB avoids pathologies in the infinite-bead limit

In this section, we show that of the OBABO, BAOAB, OBCBO and BCOCB integra-
tion schemes, only BCOCB is dimension-free. Although the current section presents
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analytical results for the specific case of a harmonic external potential, these results
are supported by numerical results for anharmonic external potentials in Secs. 2.6
and 2.7.

To this end, consider the jth internal ring-polymer mode with frequency ωj,n, in the
presence of a harmonic external potential V (q) = (1/2)Λq2 and a Langevin thermo-
stat with friction γj . Expressed in terms of the normal mode coordinates, obtained
from the Cartesian positions and velocities via the orthogonal transformation

ϱ = UTq and φ = UTv (2.16)

where U is defined in Eq. (3.2), the non-preconditioned PIMD equations of motion
for this mode are[

ϱ̇j(t)

φ̇j(t)

]
= Kj,n

[
ϱj(t)

φj(t)

]
+

[
0√

2β−1m−1
n γjẆj(t)

]
Kj,n = Aj,n +B +Oj ,

(2.17)

where Ẇj is a scalar white-noise and we have introduced the 2× 2 matrices

Aj,n =

[
0 1

−ω2
j,n 0

]
, B =

[
0 0

−Λ/m 0

]
and Oj =

[
0 0

0 −γj

]
.

The solution (ϱj(t), φj(t)) of Eq. (2.17) is a bivariate Gaussian, and in the limit
as t → ∞, the probability distribution of (ϱj(t), φj(t)) converges to a centered
bivariate normal distribution with covariance matrix

Σj,n =
1

βmn

[
s2j,n 0

0 1

]
where s2j,n =

1

Λ/m+ ω2
j,n

. (2.18)

For this system, a single time-step of Eq. (2.1) can be compactly written as[
ϱj(t+∆t)

φj(t+∆t)

]
= Mj,n,∆t

[
ϱj(t)

φj(t)

]
+ R

1/2
j,n,∆t

[
ξ0

η0

]
, (2.19)

where ξ0 and η0 are independent standard normal random variables and we have
introduced the 2× 2 matrices

Mj,n,∆t = ea
∆t
2
Oje

∆t
2
Be

∆t
2
Aj,ne(1−a)∆tOje

∆t
2
Aj,ne

∆t
2
Bea

∆t
2
Oj

Rj,n,∆t =
1− e−2(1−a)γj∆t

βmn

Nj,n,∆tPNT
j,n,∆t

+
1− e−aγj∆t

βmn

(
(Mj,n,∆te

−a∆t
2
Oj)P (Mj,n,∆te

−a∆t
2
Oj)T + P

)
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where P = [ 0 0
0 1 ] and Nj,n,∆t = ea

∆t
2
Oje

∆t
2
Be

∆t
2
Aj,n,∆t . The corresponding step

for the Cayley modification is obtained by replacing exp((∆t/2)Aj,n) in Eq. (2.19)
with cay(∆tAj,n)

1/2, which is given by

cay(∆tAj,n)
1/2 =

√
1

4 + ω2
j,n∆t2

[
2 ∆t

−ω2
j,n∆t 2

]
. (2.20)

A sufficient condition1 for ergodicity of Eq. (2.19) is

1 > A2
j,n,∆t cosh

2((∆t/2)γj) , (2.21)

where
Aj,n,∆t = cos(∆tωj,n)−

(Λ/m)∆t

2ωj,n

sin(∆tωj,n) .

For the Cayley modification of Eq. (2.19), Eq. (2.21) still provides a sufficient con-
dition for ergodicity, except with

Aj,n,∆t =
4− (ω2

j,n + 2(Λ/m))∆t2

4 + ω2
j,n∆t2

.

Due to the lack of strong stability in the exact free ring-polymer evolution, Eq. (2.19)
fails to meet the condition in Eq. (2.21) and becomes non-ergodic whenever ∆t =

kπ/ωj,n where k ≥ 1 [26]; no such problem exists for the Cayley modification.
Regardless, assuming that the condition in Eq. (2.21) holds, the numerical stationary
distribution is a centered Gaussian with 2×2 covariance matrix Σj,n,∆t that satisfies
the linear equation

Σj,n,∆t = Mj,n,∆tΣj,n,∆tM
T
j,n,∆t +Rj,n,∆t ,

for which the solution is

Σj,n,∆t =
1

βmn

[
s2j,n,∆t 0

0 r2j,n,∆t

]
. (2.22)

The variances in the position and velocity marginals of the numerical stationary dis-
tribution with the covariance matrix in Eq. (2.22) are, respectively, (βmn)

−1s2j,n,∆t

1In the special case when Λ = 0, the given condition for OBCBO corrects a sign error in Eq. (37)
of Ref. [26].
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and (βmn)
−1r2j,n,∆t with

s2j,n,∆t =


1

ω2
j,n +

Λ∆tωj,n

m
cot(∆tωj,n)− (Λ∆t

2m
)2

a = 1

1

ω2
j,n +

Λ∆tωj,n

2m
cot(∆t

2
ωj,n)

a = 0
(2.23)

r2j,n,∆t =


1 a = 1

2mωj,n − Λ∆t tan(∆t
2
ωj,n)

2mωj,n

a = 0
(2.24)

For the Cayley modification of Eq. (2.19),

s2j,n,∆t =
4m

4m− a∆t2Λ
s2j,n , (2.25)

r2j,n,∆t =
4m− (1− a)∆t2Λ

4m
. (2.26)

Note that these numerical stationary distributions are independent of the friction pa-
rameter γj , which is a benefit of schemes based on splitting the non-preconditioned
PIMD dynamics into Hamiltonian and thermostat parts, and using the exact Ornstein–
Uhlenbeck flow in Eq. (2.14) to evolve the thermostat part. Moreover, comparing
the exact covariance matrix in Eq. (2.18) with the finite-time-step approximations
in Eqs. (2.22)–(2.26), note that in all cases Σj,n = lim∆t→0Σj,n,∆t. These results
have previously been reported for the OBABO (Eqs. (2.23) and (2.24), a = 1) and
BAOAB (Eqs. (2.23) and (2.24), a = 0) schemes [8, 29] but not for the OBCBO
(Eqs. (2.25) and (2.26), a = 1) or BCOCB (Eqs. (2.25) and (2.26), a = 0) schemes.

In normal mode coordinates, the exact and numerical position-marginals can be
written as an infinite product of one-dimensional centered normal distributions with
variances given by (βmn)

−1s2j,n and (βmn)
−1s2j,n,∆t, respectively. By Kakutani’s

theorem [30, 31], these two distributions have a non-zero overlap in the infinite-
bead limit if and only if the limit series

lim
n→∞

n−1∑
j=1

(
1− sj,n

sj,n,∆t

)2

(2.27)

converges. For OBABO and BAOAB, due to the oscillatory cotangent term appear-
ing in sj,n,∆t, the limit limn→∞(1 − sn−1,n/sn−1,∆t)

2 does not exist, and therefore,
the series does not converge. For OBCBO, the jth summand of this series is

∆t4Λ2

16m2

(
1 +

√
4m−∆t2Λ

4m

)−2

,
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which more obviously diverges. Therefore, for OBABO, OBCBO, and BAOAB, the
numerical stationary distribution has no overlap with the exact stationary distribu-
tion in the infinite-bead limit; it is in this sense that these schemes fail to exhibit the
property of dimensionality freedom. Remarkably, BCOCB is exact in the position-
marginal and thus exhibits dimensionality freedom. See Sec. 2.9 for a brief summary
of the properties of other symmetric splittings that were considered.

2.4 Consequences for the primitive kinetic energy expectation value

In the current section, we show that the non-overlap pathology of the OBABO,
BAOAB, and OBCBO schemes causes a divergence with increasing bead number of
the primitive path-integral kinetic-energy expectation value, an issue that is numer-
ically well known for OBABO and BAOAB [8, 29, 32, 33]. We further show that
this divergence is fully eliminated via the BCOCB scheme, as expected.

The primitive kinetic energy expectation value is given by [34, 35]

⟨KEpri
n ⟩ =

n

2β
−

n∑
j=1

mnω
2
n

2
⟨(qj − qj−1)

2⟩ (2.28)

=
1

2β
+

n−1∑
j=1

(
1

2β
− mnω

2
j,n

2
⟨ϱ2j⟩

)
(2.29)

where the first equality involves a sum over the ring-polymer beads in Cartesian
coordinates (with qn = q0) and the second equality performs the summation in
terms of the ring-polymer normal modes. The divergence of this expectation value
is numerically illustrated for the simple case of a harmonic oscillator (Figs. 2.1a-d);
note that for larger MD time-steps, the OBABO, BAOAB, and OBCBO schemes
fail to reach a plateau with increasing bead number and dramatically deviate from
the exact result (dashed line). The same divergence for OBABO and BAOAB has
been numerically observed in many systems [8, 29, 32, 33], including liquid water
which we discuss later. A striking observation from Figs. 2.1a-d is that the BCOCB
exhibits no such divergence or error in the primitive kinetic energy expectation value
at high bead number, regardless of the employed time-step.

Using Eq. (2.18), note that the contribution to the primitive kinetic energy expecta-
tion value from the jth ring-polymer mode is

⟨KEpri
j,n⟩ =

1

2β

(
1− ω2

j,ns
2
j,n

)
,
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(c) t= 1.0 fs

4 8 16 32 64 128 256
# of beads

0

1

2

3

4

P
ri

m
it

iv
e
 K

E
 (
k
B
T
)

(d) t= 2.0 fs

Figure 2.1. Primitive kinetic energy expectation values for a harmonic potential V (q) =
1
2Λq

2 with force constant Λ = 256, ℏ = 1, mass m = 1 and reciprocal temperature β = 1;
choosing energies to be in units of kBT at room temperature (300 K), βℏ ≈ 25.5 fs and
Λ = mω2 whereω = 3315 cm−1. (Panels a–d) For various MD time-steps∆t, the primitive
kinetic energy expectation value as a function of the number of ring-polymer beads, with
the exact kinetic energy indicated as a dashed gray line. The standard error of all visible
data points in each plot is smaller than the symbol size. (Panel e) Per-mode error in the
variance of position coordinate of the normal modes for simulations run with 128 ring-
polymer beads and a time-step of 1 fs; solid lines are analytic predictions from Eq. (2.33)
with (2.23) and (2.25) defining s2j,n,∆t for the different schemes; points indicate the results of
numerical PIMD simulations using the various integration schemes. The BCOCB scheme
is not shown since it has zero error for all internal modes. The black vertical line indicates
the crossover frequency (ωx = 2/∆t) for the error of OBCBO and OMCMO based on the
bounds in Eqs. (2.43) and (2.44).
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such that in the infinite-bead limit,

lim
n→∞

n−1∑
j=1

⟨KEpri
j,n⟩ =

ℏ
4

√
Λ

m
coth

(
βℏ
2

√
Λ

m

)
. (2.30)

Similarly using Eq. (2.22), the jth-mode contribution to the kinetic energy from the
finite-time-step numerical expectation value is

⟨KEpri
j,n,∆t⟩ =

1

2β

(
1− ω2

j,ns
2
j,n,∆t

)
. (2.31)

Thus, the per-mode error in kinetic energy is

| ⟨KEpri
j,n⟩ − ⟨KEpri

j,n,∆t⟩ | =
mnω

2
j,n

2
ρj,n,∆t , (2.32)

where the per-mode error in the position-marginal for internal mode j is

ρj,n,∆t =
1

βmn

∣∣s2j,n − s2j,n,∆t

∣∣ , (2.33)

where sj,n,∆t is given by Eq. (2.23) for the cases of OBABO (a = 1) and BAOAB
(a = 0) and by Eq. (2.25) for the cases of OBCBO (a = 1) and BCOCB (a = 0).
Note that this error vanishes only for the BCOCB scheme, which satisfies ρj,n,∆t = 0

for each mode j, irrespective of the time-step ∆t.

Equations (2.32) and (2.33) indicate that the primitive kinetic energy estimator is a
sensitive measure of the finite-time-step error in the sampled ring-polymer position
distribution associated with the high-frequency modes. Figure 2.1e resolves this
per-mode error, ρj,n,∆t, for each internal mode in simulations that employ a total of
128 beads, including results from OBABO (red), BAOAB (magenta), and OBCBO
(blue), using a time-step of 1 fs, with the solid lines indicating the analytical predic-
tions in Eq. (2.33) and with the dots indicating the result of numerical simulations.
The analytical results are fully reproduced by the simulations. Note that the OB-
ABO per-mode error exhibits dramatic spikes for ωj,n∆t = kπ where 1 ≤ j ≤ n

and for some k ≥ 1, which coincide with the loss of ergodicity of that integration
scheme. The BAOAB scheme exhibits these resonance instabilities at even values
of k. However, it is the failure of this per-mode error to sufficiently decay as a func-
tion of the mode number for all three of OBABO, BAOAB, and OBCBO that gives
rise upon summation to the divergence of the primitive kinetic energy expectation
value, as seen for this particular time-step value in Fig. 2.1d. Since ω2

j,ns
2
j,n → 1

as n → ∞, the convergence of limn→∞
∑n−1

j=1 | ⟨KEpri
j,n⟩ − ⟨KEpri

j,n,∆t⟩ | reduces to
the convergence of the series limn→∞

∑n−1
j=1

∣∣s2j,n − s2j,n,∆t

∣∣, which diverges for both
OBABO and OBCBO due to the same reasons as discussed in Sec. 2.3.



21

2.5 Dimensionality freedom for OBCBO via force mollification

Sections 2.3 and 2.4 have demonstrated that whereas the BCOCB integrator exhibits
dimensionality freedom, the OBCBO integrator does not. In the current section,
we show that this shortcoming of OBCBO can be addressed by the use of force
mollification, in which the external potential energy in Eq. (2.6) is replaced by

Ṽ ext
n (q) = V ext

n (sinc(Ω̃∆t/2)q) , (2.34)

where Ω̃ is any positive semi-definite n×n matrix that has the same eigenvectors as
Ω (Eq. (3.2)) while possibly having different eigenvalues. Force mollification has
not previously been employed for PIMD, although the strategy originates from a
variation-of-constants formulation of the solution to Eq. (2.8) [36–39]; specifically,
the protocol in Eq. (2.34) is a generalization of the mollified impulse method [36].

The use of force mollification for enhancing non-preconditioned PIMD integra-
tion can be motivated on physical grounds: In the absence of a physical poten-
tial, four of the considered integration schemes (OBABO, BAOAB, OBCBO, and
BCOCB) leave invariant the exact free ring-polymer Boltzmann–Gibbs distribu-
tion [26]. Therefore, the loss of any overlap between the exact stationary distri-
bution of the position marginals in the infinite-bead limit for OBABO, BAOAB, and
OBCBO must be attributed to the influence of the time-evolution from the external
potential in the schemes (i.e., the “B” sub-step) as implemented in Eq. (2.13); the
BCOCB scheme does not suffer from this problem. To remove this pathology in
the OBCBO scheme, we thus use mollification to “taper down” the external forces
on the high-frequency modes, such that the resulting integration correctly reverts
to free-particle motion for those modes, which should become decoupled from the
external potential as the frequency increases. The specific appearance of the 1/2

factor in the sinc function argument ensures that the sinc function switches from
its high-frequency effect to its low-frequency effect when the period of the Matsub-
ara frequency is commensurate with ∆t; the zero-frequency ring-polymer centroid
mode is untouched by mollification.

Force mollification requires only a small algorithmic modification of the OBCBO
integrator. Specifically, the “B” sub-step in Eq. (2.13) is replaced with

v ← v +
∆t

2
m−1

n F̃ (q) , (2.35)

where the mollified forces are

F̃ (q) = sinc(Ω̃∆t/2)F (q̃) = UD∆tU
TF (q̃) (2.36)
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where q̃ = UD∆tU
Tq are the mollified bead positions and where D∆t is the diag-

onal matrix of eigenvalues associated with sinc(Ω̃∆t/2), i.e.,

D∆t = diag (sinc(ω̃0,n∆t/2), . . . , sinc(ω̃n−1,n∆t/2)) (2.37)

where ω̃j,n is the jth eigenvalue of Ω̃. In practice, the mollified forces are computed
in normal mode coordinates as follows:

(a) Starting with the ring-polymer bead position in normal mode coordinates, ob-
tain a copy of the mollified bead positions via

q̃ = UD∆tϱ . (2.38)

(b) Evaluate the external forces at the mollified ring-polymer bead positions,F (q̃).

(c) Apply the remaining mollification to the forces in Eq. (2.36) via

UTF̃ (q) = D∆tU
TF (q̃) . (2.39)

We emphasize that in comparison to the standard force update (Eq. (2.13)) the use of
the mollified force update (Eq. (2.35)) introduces neither additional evaluations of
the external forces nor n× n matrix multiplies associated with the discrete Fourier
transform; it therefore avoids any significant additional computational cost.

This mollification scheme preserves reversibility and symplecticity as well as local
third-order accuracy of the OBCBO scheme with time-step. We emphasize that the
sinc-function-based mollification scheme in Eq. (2.35) is not unique and alterna-
tives can certainly be devised. Even within the functional form of the mollification
in Eq. (2.35), flexibility remains with regard to the choice of the matrix Ω̃, which al-
lows for mode-specificity in the way the mollification is applied. A simple choice for
this matrix is Ω̃ = Ω, such that mollification is applied to all of the non-zero ring-
polymer internal modes. With this choice, we arrive at a fully-specified integration
scheme that replaces the original “B” sub-step in Eq. (2.13) with the mollified-force
sub-step in Eq. (2.35); we shall refer to this force-mollified version of OBCBO inte-
gration scheme as “OMCMO.” In Sec. 2.5.1, we propose a partially mollified choice
for Ω̃ that further improves accuracy.

For the harmonic external potential, the previously derived relations for OBCBO
(most notably Eqs. (2.21), (2.25)–(2.26) and (2.32)–(2.33)) also hold for OMCMO
with Λ suitably replaced by Λ̃j = sinc2(ωj,n∆t/2)Λ. Note that Λ̃j ≤ Λ, since
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sinc2(x) ≤ 1 for all x ≥ 0, making clear that the mollification reduces the effect of
the external potential on the higher-frequency internal ring-polymer modes.

We now show that mollifying the forces in the B sub-step fixes the pathologies of
OBCBO in the infinite-bead limit, by restoring overlap between the sampled and
exact stationary distributions. To see this, note that the jth summand in Eq. (2.27)
for OMCMO satisfies(

1− sj,n
sj,n,∆t

)2

≤
(
1− s2j,n

s2j,n,∆t

)2

≤ f(ωj∆t/2)
∆t4Λ2

16m2
,

where f(x) =
(
(1 − sinc2(x))/ x2 + sinc2(x)

)2 and we have used the infinite-bead
limit for the ring-polymer internal-mode frequencies

ωj = lim
n→∞

ωj,n =


πj

ℏβ
if j is even ,

π(j + 1)

ℏβ
else .

(2.40)

since2
∞∑
j=1

f(ωj∆t/2) ≤ 6
ℏβ
π∆t

+ 4 ,

we obtain

lim
n→∞

n−1∑
j=1

(
1− sj

sj,n,∆t

)2

≤
(
6
ℏβ
π∆t

+ 4

)
∆t4Λ2

16m2
. (2.41)

Again invoking Kakutani’s theorem (Eq. (2.27)), it follows that the numerical sta-
tionary distribution has an overlap with the exact stationary distribution. As a byprod-
uct of this analysis, we can also quantify the amount of overlap between the exact

2This inequality comes from using Eq. (2.40) to write
∑∞

j=1 f(ωj∆t/2) = I + II where

I = 2

⌊ℏβ/(π∆t)⌋∑
j=1

f(jπ∆t/(ℏβ)) and II = 2

∞∑
j=⌈ℏβ/(π∆t)⌉

f(jπ∆t/(ℏβ)) .

Then the first term admits the bound

I ≤ 2f(1)ℏβ/(π∆t) < 4ℏβ/(π∆t) ;

for the second term, we use

II ≤ F (1) + ℏβ/(π∆t)
w ∞

1
F (x)dx

where F (x) = 2((1− sinc2(x))/x2 + 1/x2)2 is monotone decreasing on [1,∞) with F (1) ≤ 4 andr∞
1

F (x)dx ≤ 2.
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and numerically sampled stationary distributions, revealing that the total variation
distance [40] between these distributions is given by3

dTV(µ, µ∆t) ≤
√(

6
ℏβ
π∆t

+ 4

)
∆t2Λ

2m
. (2.42)

In summary, the force mollification strategy introduced here provably removes the
pathologies due to the “B” sub-step in the case of a harmonic oscillator potential.
Moreover, for any finite number of beads, the total variation distance between the
exact and numerically sampled stationary distribution can be bounded by Eq. (2.42),
and thus OMCMO admits dimension-free error bounds.

Before proceeding, we first return to Fig. 2.1 to compare the accuracy of OMCMO
with the un-mollified OBCBO scheme for the internal mode position marginal of
the harmonic oscillator. As seen in Fig. 2.1e for the results with a time-step of
1 fs, the per-mode error obtained by the mollified scheme (OMCMO, green) decays
more rapidly with mode number than does OBCBO. Figure 2.1d further illustrates
that upon summation of the per-mode contributions, the OMCMO prediction for
the primitive kinetic energy converges to a well-defined asymptote with respect to
the number of ring-polymer beads, whereas OBCBO diverges as discussed earlier.
Similar behavior is seen for shorter MD time-steps (panels a-c), although the failure
of OBCBO becomes less severe with this range of bead numbers as the time-step is
reduced.

Although it is satisfying that mollification via OMCMO both formally and numer-
ically ameliorates the problems of the OBCBO scheme in the high-bead-number
limit, the OMCMO results in Fig. 2.1 are not ideal, since in some cases the OM-
CMO error is substantially larger than that of OBCBO when a modest number of
beads is used (e.g., for 16 beads in panel d). This observation points to a simple and
general refinement of the OMCMO scheme, which we discuss in the next subsection.

3This quantification uses: (i) dTV ≤ 21/2dH where dTV is the total variation distance and dH is
the Hellinger distance; and (ii) subadditivity of the squared Hellinger distance, which implies that

d2H(µ, µ∆t) ≤ lim
n→∞

n−1∑
j=1

d2H(N (0, s2j,n),N (0, s2j,n,∆t))

≤ lim
n→∞

n−1∑
j=1

(1− s2j,n/s
2
j,n,∆t)

2 ≤ (3ℏβ/(π∆t) + 2)
∆t4Λ2

8m2
.
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2.5.1 Partial mollification

Comparison of the per-mode errors from OBCBO and OMCMO in Fig. 2.1e reveals
that lower errors for OMCMO are only enjoyed for internal modes that exceed a
particular frequency (indicated by the vertical black line). This observation suggests
that if a “crossover frequency” could be appropriately defined, then a refinement to
OMCMO could be introduced for which mollification is applied only to the ring-
polymer internal modes with frequencies that exceed this crossover value.

For the case of a harmonic external potential, this crossover frequency ωx can be
found by comparing a bound for the per-mode error (Eq. (2.33)) for OBCBO

ρj,n,∆t ≤
(

1

mnω2
j,nβ

∆t2Λ

4m−∆t2Λ

)
(2.43)

to that for OMCMO

ρj,n,∆t ≤ g(ωj,n∆t/2)

(
1

mnω2
j,nβ

∆t2Λ

4m−∆t2Λ

)
, (2.44)

where g(x) = (1 − sinc2(x))/x2 + sinc2(x). Since g(x) ≥ 1 only when x ≤ 1, we
expect better accuracy if mollification is only applied to those ring-polymer internal
modes with frequencies ωj,n ≥ ωx, where ωx = 2/∆t. Although this result was
derived for the case of a harmonic potential, it does not depend on Λ. We call this
resulting partly mollified integration scheme “OmCmO.” This scheme has the nice
properties of OMCMO, including strong stability and dimensionality freedom.

Implementation of OmCmO is a trivial modification of OMCMO, requiring only
that the diagonal elements of D∆t in Eq. (2.37) are evaluated using

sinc(ω̃j,n∆t/2) =

1 for ωj,n < ωx

sinc(ωj,n∆t/2) otherwise ,
(2.45)

where j = 0, . . . , n− 1. In physical terms, the emergence of 2/∆t in the crossover
frequency is intuitive, since as was previously mentioned, it corresponds to having
the ring-polymer mode undergo a full period per time-step ∆t.

Finally, numerical results for the case of a harmonic potential (Figs. 2.1a-d) reveal
that the partially modified OmCmO scheme (cyan) achieves both robust convergence
of the primitive kinetic energy with increasing bead number, as well as consistently
better accuracy than the OBCBO and OMCMO integration schemes, as expected.
However, it must be emphasized that for all panels of Fig. 2.1, the BCOCB scheme
(which requires no force mollification) is by far the most accurate and stable.
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2.6 Results for anharmonic oscillator

Having numerically characterized the performance of the various non-preconditioned
PIMD integrators for the case of the harmonic oscillator external potential in Fig. 2.1,
we now turn our attention to anharmonic external potentials. In this section, we con-
sider both a weakly anharmonic (aHO) potential

V (q) = Λ

(
1

2
q2 +

1

10
q3 +

1

100
q4
)

(2.46)

and the more strongly anharmonic quartic potential

V (q) =
1

4
q4 . (2.47)

All calculations are performed using ℏ = 1, m = 1 and β = 1. Assuming
the system to be at room temperature (300 K), the thermal timescale corresponds
to βℏ ≈ 25.5 fs and Λ = mω2, where ω = 3315 cm−1 for Λ = 256. The
trajectories are performed with the centroid mode uncoupled from the thermostat
(i.e., in the manner of T-RPMD); for the remaining n − 1 internal modes, sim-
ulations performed with the OBABO and BAOAB schemes use the standard [18,
20] damping schedule of Γ = Ω, and simulations performed using the Cayley
modification (i.e., BCOCB, OBCBO, OMCMO, and OmCmO) use friction γj =

min{ωj,n, 0.9γ
max
j (Λ), 0.9γmax

j (0)} for the jth mode, where γmax
j (Λ) is the friction

that saturates the inequality in Eq. (2.21); for the quartic potential, we set Λ = 1 in
this calculation of γmax

j .

Figures 2.2a and 2.2b presents kinetic energy expectation values for the aHO po-
tential corresponding to 3315 cm−1 at room temperature. For the primitive kinetic
energy expectation value, the results obtained using the various integration schemes
with time-steps of both 0.5 fs (panel a) and 1.0 fs (panel b) are consistent with the
observations for the harmonic potential in Fig. 2.1; specifically, the integrators with-
out dimensionality freedom (OBABO, BAOAB, and OBCBO) fail to converge with
increasing bead number, while the mollified integrators (OMCMO and OmCmO)
smoothly converge with increasing bead number and the partially mollified scheme
(OmCmO) is consistently more accurate than OBCBO and OMCMO. However, it
is also clear that BCOCB exhibits the best accuracy with increasing bead number,
converging to the exact result without perceivable time-step error.

Figures 2.2c and 2.2d present the corresponding results for the virial kinetic energy
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Figure 2.2. Primitive and virial kinetic energy expectation values as a function of bead num-
ber for the weakly anharmonic potential corresponding to 3315 cm−1 at room temperature,
with results obtained using a time-step of 0.5 fs (panels a and c) and 1.0 fs (panels b and d).
The standard error of all visible data points in each plot is smaller than the symbol size. The
exact kinetic energy is indicated with a dashed line.

expectation value,

⟨KEvir
n ⟩ =

1

2β
− 1

2

〈
(q − q̄1n)

TF (q)
〉

(2.48)

where q̄ is the centroid (bead-averaged) position and 1n is the n-dimensional vector
with all entries equal to 1. Whereas the virial kinetic energy for all of the strongly
stable integration schemes is well behaved, the OBABO and BAOAB schemes per-
form erratically at large time-steps due to their provable non-ergodicities [26]. Ap-
pealingly, the BCOCB scheme is consistently the most accurate for the virial kinetic
energy expectation value, as it was for the primitive kinetic energy expectation value.

Figure 2.3a-d shows the results of the various numerical integration schemes for
the primitive and virial kinetic energy expectation values, as a function of the MD
time-step using 64 ring-polymer beads. Results are shown for both the aHO and the
strongly anharmonic quartic oscillator. In all cases, the BCOCB scheme is consis-
tently the most accurate across this array of model systems.
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Finally, Fig. 2.3e illustrates the use of the BCOCB integrator for the calculation of
real-time quantum dynamics within the T-RPMD approximation, where it replaces
the often-employed OBABO integration scheme. Using 64 beads, the T-RPMD re-
sults are plotted for a range of integration time-steps. Strikingly, over the entire
range of considered time-steps, BCOCB introduces negligible error in the calcu-
lated position time autocorrelation function; it is confirmed that these results are
graphically indistinguishable from those obtained using the OBABO integrator in
the small-time-step limit.

2.7 Results for liquid water

In model systems, Sec. 2.6 demonstrated the strong performance of the BCOCB
integrator at evaluating both PIMD statistics and real-time dynamics through the T-
RPMD model. In the current section, we test the accuracy and stability of the various
un-mollified integration schemes (i.e., OBABO, OBCBO, BAOAB, and BCOCB)
in liquid water, a high-dimensional and relatively complex system. Specifically, we
consider a periodic 32-molecule water box at a temperature of 298 K and a density
of 0.998 g/cm3, as described by the q-TIP4P/F force field [41].

In Fig. 2.4, we compare the accuracy achieved by the different integrators for the av-
erage kinetic energy per hydrogen atom as a function of the number of ring-polymer
beads. As in previous sections, we consider both the primitive (Eq. (2.29)) and
virial (Eq. (2.48)) estimators for the kinetic energy. For each choice of integra-
tor, time-step and bead number, the primitive and virial estimators for the kinetic
energy of a single hydrogen atom were averaged over a 1-nanosecond trajectory in-
tegrated in the manner of T-RPMD (i.e., with the centroid mode uncoupled from
the thermostat); for the remaining n − 1 internal modes, simulations performed
with the OBABO and BAOAB schemes use the standard [18, 20] damping schedule
of Γ = Ω, and simulations performed using the Cayley modification use friction
γj = min{ωj, 0.9γ

max
j (0)}, where γmax

j (Λ/m) saturates the inequality in Eq. (2.21)
for the given values of j and Λ/m at the given time-step. Multi-nanosecond staging
PIMD [8, 11] simulations at the small time-step of 0.1 fs were performed to obtain
a bead-converged reference value for the H-atom kinetic energy, plotted as a dashed
line in Figs. 2.4 and 2.5.

The primitive kinetic energy expectation values in Figs. 2.4a and 2.4b show similar
trends to those seen in Figs. 2.1 and 2.2 for the harmonic and weakly anharmonic
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Figure 2.3. Primitive and virial kinetic energy expectation values as a function of the time-
step for the weakly anharmonic potential corresponding to 3315 cm−1 at room temperature
(panels a and b), and for the quartic potential (panels c and d). The exact kinetic energy
is indicated with a dashed line. The standard error of all visible data points in each plot is
smaller than the symbol size. Also, the position autocorrelation function (panel e) for the
quartic oscillator at room temperature computed using T-RPMD with the BCOCB integrator.
Results are obtained using 64 ring-polymer beads using time-steps of ∆t = 0.125, 2, 4, and
8 fs.
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oscillators. For a 0.5-fs time-step (Fig. 2.4a), at which all integrators exhibit strong
stability for ring polymers with up to 64 beads at the system temperature [26], the
OBABO, BAOAB, and OBCBO primitive kinetic energy estimates diverge from the
converged result as the number of beads increases, in agreement with the proven
result that the error in the ring-polymer configurational distribution generated with
these schemes grows unboundedly with increasing bead number. At the larger, 0.8-fs
time-step, (Fig. 2.4b), OBABO and BAOAB formally lose strong stability and their
respective primitive kinetic energy estimates dramatically diverge for bead numbers
greater than 32; the strongly stable OBCBO scheme also yields a divergent result
for the same reason as in Fig. 2.4a. As seen on the HO and aHO model systems, the
primitive kinetic energy expectation value from the BCOCB integrator monotoni-
cally converges to the reference value with increasing bead number, avoiding any
perceptible time-step error.

Figures 2.4c and 2.4d show the corresponding virial kinetic energy expectation val-
ues. For the smaller time-step of 0.5 fs, which is a common choice for path-integral
simulations of water, all of the integrators perform similarly. However, upon in-
creasing the time-step to 0.8 fs, significant differences in the performance of the
integrators emerges, with only BCOCB avoiding perceptible time-step error.

To further compare the accuracy and stability of the OBABO, BAOAB, OBCBO,
and BCOCB integrators, Fig. 2.5 considers the average kinetic energy per hydrogen
atom obtained using 64 beads over a wide range of time-steps. These results show
that BCOCB remains remarkably accurate for time-steps as large as 1.4 fs for liq-
uid water, which corresponds to the limit of stability for Verlet integration of the
centroid mode. In comparison, OBCBO diverges monotonically as the time-step in-
creases, reaching unphysical values for the primitive expectation value and yielding
sizable error (20%) for the virial expectation value. The erratic performance of both
OBABO and BAOAB is due to the emergence of numerical resonance instabilities at
time-steps greater than 0.6 fs at 64 beads; indeed, the largest safe time-step at which
OBABO and BAOAB remain strongly stable at this bead number, ∆t⋆ ≈ 0.63 fs,
precedes the range of time-steps in Fig. 2.5 where these two integrators vary errati-
cally.

Extending beyond statistics, we now consider quantum dynamical properties of liq-
uid water within the T-RPMD approximation. Given the outstanding performance
of the BCOCB scheme for the calculated statistical properties in Figs. 2.4 and 2.5,
we present results that focus on this scheme in comparison to the most widely used
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Figure 2.4. Primitive and virial kinetic energy expectation values as a function of the bead
number for the hydrogen atom in liquid water at 298 K and 0.998 g/cm3 at time-step ∆t =
0.5 fs (panels a and c) and ∆t = 0.8 fs (panels b and d). The reference kinetic energy,
converged along a staging PIMD simulation at time-step ∆t = 0.1 fs and 256 beads, is
indicated with a dashed line. The standard error of all visible data points in each plot is
smaller than the symbol size.

OBABO scheme. In particular, we consider the liquid water infrared absorption
spectrum [42], which is proportional to ω2Ĩ(ω) where the dipole spectrum Ĩ(ω) =
r
R dt e

−iωtC̃µ·µ(t) is the Fourier transform of the Kubo-transformed dipole autocor-
relation function C̃µ·µ(t). The latter is approximated in the RPMD model by [16]
C̃µ·µ(t) =

1
N

∑N
i=1 ⟨µ̄i(t) · µ̄i(0)⟩, where N is the number of molecules in the liq-

uid, µ̄i(t) is the bead-averaged dipole moment of molecule i at time t and the angle
brackets denote an average against the ring-polymer thermal distribution. To obtain
the time-correlation functions and spectra shown in Fig. 2.6 for the OBABO and
BCOCB integration schemes, 12-nanosecond T-RPMD trajectories were simulated
for a ring-polymer with 64 beads and time-steps ranging from 0.2 to 1.4 fs, using
the same friction schedule as described for Figs. 2.4 and 2.5.

Along each trajectory, the velocities of all degrees of freedom in the system were
drawn anew from the Maxwell–Boltzmann distribution every 20 ps; the autocorrela-
tion function was evaluated out to 2 ps by averaging over staggered windows of that
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Figure 2.5. Primitive and virial kinetic energy expectation values as a function of the time-
step for the hydrogen atom in liquid water at 298-K and 0.998 g/cm3 as described by a
64-bead ring polymer. The reference kinetic energy, converged along a staging PIMD simu-
lation at time-step ∆t = 0.1 fs and 256 beads, is indicated with a dashed line. The standard
error of all visible data points in each plot is smaller than the symbol size.

time-length within every 20-picosecond trajectory segment; and exponential-decay
extrapolation was used to extend the autocorrelation function before evaluating its
numerical Fourier transform to obtain the infrared absorption spectrum.

Figures 2.6a and 2.6b present the dipole autocorrelation functions obtained using the
OBABO and BCOCB integrators with a range of time-steps. For the OBABO inte-
grator, the calculated correlation function is qualitatively incorrect for time-steps as
large as 0.8 fs. For the BCOCB integrator, the resulting correlations functions are far
more robust with respect to time-step. Although modest differences are seen in the
exponential tail of the correlation function, the dynamics on vibrational timescales
(see inset) is largely unchanged as the time-step is varied from 0.2 fs to 1.4 fs. Fig-
ure 2.6c further emphasizes this point by showing the absorption spectrum that is
obtained from the BCOCB time-correlation functions with the various time-steps.
To minimize bias, we avoided any smoothing of the spectra shown in panel c. It is
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clearly seen that the librational and bending features (below 2500 cm−1) are graphi-
cally indistinguishable over the entire range of considered time-steps. To clarify the
comparison for the stretching region above 3000 cm−1, we smooth the raw spectra in
that region by convolution against a Gaussian kernel with a width of 150 cm−1 (see
inset). Again, the robustness of the simulated spectrum over this span of time-steps
is excellent, with the only significant effect due to finite-time-step error being a slight
blue-shifting of the OH stretching frequency for the results using a 1.4-fs time-step,
which is nearly three times larger than the typical value employed for the OBABO
scheme for simulations with 64 beads. Taken together, these results indicate that
the BCOCB integrator provides an excellent description of both PIMD statistics and
T-RPMD dynamics in realistic molecular systems, substantially improving the ac-
curacy and stability of previously employed numerical integrators.

2.8 Summary

In previous work [26], some of us showed that several widely used schemes for
the non-preconditioned equations of motion of PIMD, including the widely used
OBABO scheme, lack strong stability due to the use of exact free ring-polymer time
evolution in the “A” sub-step, and we proved that this lack of strong stability gives
rise to a lack of ergodicity in the thermostatted trajectories. We further showed
that ergodicity can be restored by simply replacing the “A” sub-step with the Cayley
transform.

In the current chapter, we show that a completely distinct, yet equally important,
pathology exists in the “B” sub-step of previously developed non-preconditioned
PIMD integrators, due to the outsized effect of the external potential on the dynam-
ics of the high-frequency ring-polymer modes. Specifically, we show that previous
integrators (including OBABO, BAOAB, and OBCBO) yield a numerical stationary
distribution for which the overlap with the exact stationary distribution vanishes in
the infinite-bead limit. We then show that this pathology is completely avoided in
the BCOCB scheme, and we further show that the pathology can be eliminated in the
OBCBO scheme by suitably mollifying the “B” sub-step, yielding the dimension-
free non-preconditioned PIMD integrators, namely BCOCB, OMCMO, and Om-
CmO. Implementation of the dimension-free integration schemes involves no sig-
nificant additional computational cost, no additional parameters, and no increase in
algorithmic complexity in comparison to either OBABO or BAOAB. Furthermore,
since the integrators considered here are all non-preconditioned, they can immedi-
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Figure 2.6. Dynamical properties of liquid water computed using T-RPMD with the
(panel a) OBABO and (panels b and c) BCOCB integration schemes. Panels a and b present
the Kubo-transformed dipole autocorrelation function computed with various time-steps,
and panel c presents the absorption spectrum from the BCOCB correlation function at each
time-step. The inset to panel c presents the OH stretching region with smoothing.
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ately be used for computing the equilibrium statistical properties as well as dynam-
ical properties within the T-RPMD approximation. The numerical performance of
the BCOCB scheme is particularly striking, yielding results that are markedly better
in terms of accuracy and time-step stability than any of the other considered inte-
grators. For liquid water, it is shown that BCOCB allows for time-steps as large as
1.4 fs while exhibiting minimal time-step error in the calculation of both equilibrium
expectation values and the dipole absorption spectrum.
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2.9 Appendix A: Other splittings

There are exactly four locally third-order accurate symmetric splitting schemes that
involve one new force evaluation per integration step and that involve splitting the
T-RPMD dynamics into Hamiltonian and thermostat sub-steps: OBABO, BAOAB,
OABAO, and ABOBA. In Sec. 2.3, we quantified the properties of OBABO, BAOAB,
and their Cayley modifications in the case of a harmonic external potential. The cor-
responding properties of the Cayley modifications of OABAO and ABOBA are given
below.

• OCBCO is exact in the velocity marginal, but the variance in the position
marginal is (βmn)

−1s2j,n,∆t where s2j,n,∆t = (4m−∆t2Λ)/(4Λ + 4mω2
j,n);

• CBOBC is exact in the position marginal, but the variance in the velocity
marginal is (βmn)

−1r2j,n,∆t where r2j,n,∆t = 4m/(4m−∆t2Λ).

Numerical experiments confirmed these properties but did not show significant im-
provement in accuracy compared with BCOCB. Therefore, we did not include nu-
merical results for these schemes.
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Chapter 3

Generalization and optimization of dimension-free
integrators for thermostatted ring-polymer

molecular dynamics

Adapted from

J. L. Rosa-Raíces, J. Sun, N. Bou-Rabee, and T. F. Miller III, “A generalized class of
strongly stable and dimension-free T-RPMD integrators”, The Journal of Chemical
Physics 154, 024106 (2021) DOI: 10.1063/5.0036954.

Abstract

Recent work, some presented in Chapter 2, showed that strong stability and dimen-
sionality freedom are essential for robust numerical integration of thermostatted
ring-polymer molecular dynamics (T-RPMD) and path-integral molecular dynam-
ics (PIMD), without which standard integrators exhibit non-ergodicity and other
pathologies [J. Chem. Phys. 151, 124103 (2019); J. Chem. Phys. 152, 104102
(2020)]. In particular, the BCOCB scheme, obtained via Cayley modification of
the standard BAOAB scheme, features a simple reparametrization of the free ring-
polymer sub-step that confers strong stability and dimensionality freedom and has
been shown to yield excellent numerical accuracy in condensed-phase systems with
large time-steps. Here, we build upon these findings by benchmarking the perfor-
mance of BCOCB against a broad class of numerical integrators that also exhibit
strong stability and dimensionality freedom for commonly used T-RPMD friction
schedules. In addition to considering equilibrium accuracy and time-step stability
as in Chapter 2, we compare the integrators on the basis of their rates of convergence
to equilibrium and their efficiency at evaluating equilibrium expectation values. We
find BCOCB to be optimal within this generalized class with respect to asymptotic
statistical accuracy and efficiency for various configuration-dependent observables,
although other integrators within the generalized class perform better for the evalu-
ation of velocity-dependent quantities and exhibit faster convergence to equilibrium
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at large bead numbers. Numerical evidence indicates that this result, here proven
analytically for the harmonic oscillator, also holds for a strongly anharmonic model
of liquid water. Both analytical and numerical results indicate that BCOCB outper-
forms other strongly stable and dimension-free T-RPMD integrators in terms of con-
figurational accuracy, asymptotic sampling efficiency, and time-step stability across
both toy-model and real-world applications.

3.1 Introduction

Path-integral molecular dynamics (PIMD) provides a practical and popular tool to
simulate condensed-phase systems subject to strong nuclear quantum effects [1, 13,
43]. Based on the ring-polymer correspondence between quantum and classical
Boltzmann–Gibbs statistics [14, 15], PIMD exploits the computational methods of
molecular dynamics [44–47] to approximate quantum thermodynamics and kinet-
ics through various classical models [12, 48–52]. Applications of PIMD include
calculations of chemical reaction rates [53, 54], diffusion coefficients [16, 17], ab-
sorption spectra [42, 55], solid and liquid structure [56, 57], and equilibrium isotope
effects [58, 59].

Many numerical integration schemes for PIMD are based on a symmetric Trotter
splitting [27, 60] of the exact time-evolution operator, and feature a sub-step for free
ring-polymer propagation [8, 11, 18]. Due to fast harmonic motions present in the
free ring polymer, a strongly stable implementation of this sub-step is essential [61,
62]. Strong stability can be achieved by one of two approaches. The first approach
introduces a preconditioned form of the equations of motion by modifying the ring-
polymer mass matrix. Preconditioning improves the stability of the exact free ring-
polymer update at the expense of consistent dynamics [3, 6, 8–11]. The second
approach does not modify the ring-polymer mass matrix, leaving the dynamics non-
preconditioned [7, 18–21], and instead replaces the exact free ring-polymer update
with a strongly stable approximation [26]. We apply the latter approach in the current
chapter to thermostatted ring-polymer molecular dynamics (T-RPMD) [20], a non-
preconditioned variant of PIMD featuring an Ornstein–Uhlenbeck thermostat that
approximately preserves the real-time dynamical accuracy of RPMD for quantum
correlation functions of a wide range of observables [63].

In addition to strong stability of the free ring-polymer update, another basic require-
ment of a numerical integrator for T-RPMD is non-zero overlap between the numer-
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ically sampled and exact ring-polymer configurational distributions in the limit of an
infinite number of ring-polymer beads. As argued in Chapter 2, standard integrators
fail to satisfy this requirement at any finite integration time-step, which motivates
the introduction of dimension-free T-RPMD schemes that allow for accurate con-
figurational sampling with large time-stepping and arbitrarily many ring-polymer
beads. We showed in Chapter 2 that standard integrators can be made dimension-
free through the introduction of a suitable strongly stable ring-polymer update, and
the current chapter investigates this finding in much greater generality.

To this end, we introduce a function θ that defines the free ring-polymer update and
deduce how the choice of θ impacts the properties and performance of the corre-
sponding T-RPMD integrator. The case θ(x) = x, i.e., θ is the identity, corresponds
to the exact free ring-polymer update. Therefore, to ensure second-order global ac-
curacy, θ must approximate the identity near the origin, i.e., θ(0) = 0, θ′(0) = 1

and θ′′(0) = 0. Moreover, strong stability requires that the range of the function θ

is within (0, π) for x > 0, and ergodicity and dimensionality freedom of the corre-
sponding T-RPMD integrator impose additional requirements on θ. There are many
choices of θ that fulfill the identified conditions, including θ(x) = 2 arctan(x/2)

which leads to the BCOCB scheme introduced in Chapter 2. In fact, we find that
this choice of θ may be optimal for the estimation of configurational averages via
T-RPMD from the perspectives of accuracy and efficiency in general applications.

This chapter is organized as follows. In Sec. 3.2 we recall T-RPMD and its time dis-
cretization, present the new function θ that determines the free ring-polymer update,
and obtain sufficient conditions on θ to guarantee strong stability and dimensional-
ity freedom of the corresponding T-RPMD integrator. In Sec. 3.3, we compare the
performance of various θ in applications to the one-dimensional quantum harmonic
oscillator and to a quantum-mechanical model of room-temperature liquid water.
Section 3.4 summarizes the chapter, and subsequent appendices provide supporting
mathematical proofs and list calculation details.

3.2 Theory

3.2.1 T-RPMD integrator desiderata

We review the setting addressed by T-RPMD integrators, recalling details from
Chapter 2 as necessary. Consider a one-dimensional molecular system with po-
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tential energy function V (q), mass m, and Hamiltonian Ĥ as defined in Eq. (2.2).
Following the arguments and definitions in Sec. 2.2, the equations of motion for the
corresponding n-bead ring polymer held at constant temperature T by an Ornstein–
Uhlenbeck thermostat are

q̇(t) = v(t) , v̇(t) = −Ω2q(t) +m−1
n F (q(t))

− Γv(t) +
√

2β−1m−1
n Γ1/2 Ẇ (t) ,

(3.1)

which reproduces Eq. (2.8). Here, W is an n-dimensional standard Brownian mo-
tion, q(t) = (q0(t), . . . , qn−1(t))

T is the vector of positions for the n ring-polymer
beads at time t ≥ 0, v(t) are the corresponding velocities, mn = m/n, β =

(kBT )
−1, and F (q) = −∇V ext

n (q) where V ext
n is the bead-averaged potential de-

fined in (2.6). Moreover, Ω2 is the n × n symmetric positive semi-definite matrix
given in Eq. (2.10), diagonalizable by an n × n orthonormal real discrete Fourier
transform matrix U as

Ω = U diag (0, ω1,n, . . . , ωn−1,n)U
T , (3.2)

where ωj,n is the jth Matsubara frequency defined in (2.11). Similarly, Γ in Eq. (2.8)
is an n× n symmetric positive semi-definite friction matrix of the form

Γ = U diag (0, γ1,n, . . . , γn−1,n)U
T , (3.3)

where γj,n is the friction factor in the jth normal mode.

In RPMD and T-RPMD calculations, one is often interested in the dynamics of
Eq. (3.1) with initial conditions drawn from the stationary distribution with non-
normalized density exp(−βHn(q,v)), where Hn(q,v) is the ring-polymer Hamil-
tonian defined by Eqs. (2.5)–(2.7). We shall consider this case, as well as the case
of initialization from non-equilibrium distributions, later in this chapter.

Numerical integrators for Eq. (3.1) typically employ symmetric propagator splittings
of the form given in Eq. (2.1), where the operator Ln = An + Bn + On includes
contributions from the n-bead free ring-polymer motion (An), the external potential
(Bn) and the thermostat (On), and ∆t is a sufficiently small time-step. Recall from
Chapter 2 that the standard RPMD integrator is recovered in the limit of zero cou-
pling to the thermostat [18], and that Eq. (2.1) yields the OBABO scheme of Bussi
and Parrinello [22] if a = 1 and the BAOAB scheme of Leimkuhler [25] if a = 0.
Standard implementations of the T-RPMD splittings in Eq. (2.1) use the exact free
ring-polymer propagator exp((∆t/2)An) to evolve the free ring polymer; however,
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previous work by some of us [26] showed that such implementations exhibit poor
ergodicity if large numbers n of ring-polymer beads are employed in conjunction
with large time-steps ∆t, and suggested replacing the exact ring-polymer propa-
gator with its Cayley approximation [64] for improved performance. Subsequent
work, presented in Chapter 2, introduced a Cayley-modified BAOAB scheme, de-
noted BCOCB, and presented numerical evidence that cemented the scheme as an
improvement over standard BAOAB due to its superior equilibrium accuracy and
time-step stability.

Generalizing beyond the Cayley modification, the current chapter studies a family
of modified BAOAB schemes that contains BCOCB and introduces others with sim-
ilar theoretical guarantees. These BAOAB-like schemes are obtained by replacing
the exact free ring-polymer update in Eq. (2.1) with approximations that endow the
properties listed below.

(P1) Strong stability. For a free ring polymer (i.e., for V ≡ const.), the integrator
with γj,n = 0 is both strongly stable and second-order accurate in ∆t.

(P2) Free ring-polymer ergodicity. For a free ring polymer, the integrator with
γj,n > 0 is ergodic with respect to the distribution with density proportional
to exp(−βH0

n(q,v)).

(P3) Dimension-free stability. For a harmonically confined ring polymer (i.e., for
V (q) = (Λ/2) q2), the integrator with γj,n = 0 is stable for any n if ∆t leads
to stable integration for n = 1.

(P4) Dimension-free ergodicity. For a harmonically confined ring polymer, the
integrator with γj,n > 0 and stable ∆t is ergodic with respect to its stationary
distribution for any n.

(P5) Dimension-free equilibrium accuracy. For a harmonically confined ring poly-
mer, the integrator leaves invariant an accurate approximation of the distri-
bution with density proportional to exp

(
−(βmn/2) q

T(Λ/m + Ω2)q
)
, with

bounded error for any n.

To obtain integrators satisfying properties (P1)–(P5), we introduce a function θ that
defines the free ring-polymer update and then place conditions on θ that lead to the
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desired properties. To this end, let

S1/2
j,n,∆t = Qj,n

[
eiθ(ωj,n∆t)/2 0

0 e−iθ(ωj,n∆t)/2

]
Q−1

j,n , (3.4)

where Qj,n =
[

1 1
iωj,n −iωj,n

]
and essential properties of θ are determined in the se-

quel. We focus on T-RPMD schemes derived from the BAOAB splitting (i.e., a = 0

in Eq. (2.1)) with the exact free ring-polymer update replaced by S1/2
j,n,∆t. For such

schemes, an integration time-step is comprised by the following sequence of sub-
steps:

B: Update velocities for half a step: v ← v + ∆t
2
m−1

n F (q).

Convert bead Cartesian coordinates to normal modes using

ϱ = UTq and φ = UTv . (3.5)

A: Evolve the free ring polymer in normal-mode coordinates for half a step:[
ϱj

φj

]
← S1/2

j,n,∆t

[
ϱj

φj

]
for 0 ≤ j ≤ n− 1 .

O: Perform an Ornstein–Uhlenbeck velocity update for a full time-step:

φj ← e−γj,n∆tφj +

√
1− e−2γj,n∆t

βmn

ξj ,

where ξj are independent standard normal random variables and 0 ≤ j ≤
n− 1.

A: Evolve the free ring polymer in normal-mode coordinates for half a step:[
ϱj

φj

]
← S1/2

j,n,∆t

[
ϱj

φj

]
for 0 ≤ j ≤ n− 1 .

Convert back to bead Cartesian coordinates using the inverse of U , which is
just its transpose since U is orthogonal.

B: Update velocities for half a step: v ← v + ∆t
2
m−1

n F (q).

In the remainder of this section, we identify conditions on the choice of θ that imply
properties (P1)–(P5) for the corresponding T-RPMD integrator. Despite our focus
on BAOAB-like splittings, we describe how the conditions on θ can be adjusted to
construct integrators derived from the OBABO splitting (i.e., a = 1 in Eq. (2.1))
that satisfy properties (P1)–(P5).
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3.2.2 Strong stability of RPMD with a constant external potential

In this section, sufficient conditions on θ are identified to satisfy property (P1) in
Sec. 3.2.1. Let V ≡ const. and γj,n = 0 for 1 ≤ j ≤ n − 1, corresponding to the
free ring polymer. The jth normal mode [ϱj, φj]

T satisfies[
ϱ̇j

φ̇j

]
= Aj,n

[
ϱj

φj

]
where Aj,n =

[
0 1

−ω2
j,n 0

]
. (3.6)

In this case, the algorithm from Sec. 3.2.1 reduces to a step ofSj,n,∆t ≈ exp(∆tAj,n),
i.e., [

ϱj

φj

]
← Sj,n,∆t

[
ϱj

φj

]
for 0 ≤ j ≤ n− 1 , (3.7)

where Sj,n,∆t = S1/2
j,n,∆tS

1/2
j,n,∆t follows from Eq. (3.4) and the function θ is such that

property (P1) holds.

We proceed to identify sufficient conditions on θ such that the corresponding free
ring-polymer update satisfies property (P1). First note that for any function θ such
that θ(−x) = −θ(x) for x > 0, the structure of S1/2

j,n,∆t guarantees that the corre-
sponding free ring-polymer update is reversible, symplectic, and preserves the free
ring-polymer Hamiltonian H0

n(q,v). Now, observe that Sj,n,∆t is exact if θ(x) = x;
therefore, second-order accuracy requires that θ approximates the identity near the
origin, i.e.,

θ(0) = 0, θ′(0) = 1, and θ′′(0) = 0. (C1)

Moreover, strong stability follows if the eigenvalues exp(±iθ(ωj,n∆t)) of Sj,n,∆t

are distinct [26]; to this end we require that

0 < θ(x) < π for x > 0 . (C2)

Jointly, conditions (C1) and (C2) guarantee that the update in Eq. (3.7) satisfies
property (P1). There are many different choices of θ that obey these conditions,
e.g., θ(x) = arctan(x), θ(x) = arccos(sech(x))1 and θ(x) = 2 arctan(x/2). The
latter choice leads to the Cayley approximation of the free ring-polymer update, as
can be verified by substitution in Eq. (3.4) and comparison of the resulting S1/2

j,n,∆t

with Eq. (17) in Chapter 2. Figure 3.1 compares the eigenvalues of Sj,n,∆t with
θ(x) = x and several choices of θ that meet conditions (C1) and (C2).

1The function θ(x) = arccos(sech(x)) is not differentiable at the origin and hence, strictly
speaking, does not satisfy condition (C1). Moreover, the function has even symmetry and hence fails
to yield a reversible free ring-polymer update. These formal shortcomings can be fixed by multiplying
the function by sign(x), which we implicitly do for this and other functions θ with similar features.
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(d) ✓(x) = arccos(sech(x))(c) ✓(x) = 2 arctan(x/2)

(b) ✓(x) = arctan(x)(a) ✓(x) = x

Figure 3.1. Eigenvalues of Sj,n,∆t for 50 different time-steps between 0.05 and 5.0 (evenly
spaced) and fixed Matsubara frequency ω = 3. The colors go from blue (smallest time-step)
through green and yellow to red (largest time-step). In panel a, the eigenvalues rotate around
the unit circle several times, which indicates that the corresponding Sj,n,∆t is not always
strongly stable. In panels b, c, and d, the eigenvalues are distinct and on the unit circle; thus
the corresponding Sj,n,∆t is strongly stable.

3.2.3 Ergodicity of T-RPMD with a constant external potential

In this section, it is shown that condition (C2) implies property (P2) in Sec. 3.2.1.
Let V ≡ const. and γj,n > 0 for 1 ≤ j ≤ n − 1, corresponding to the free ring
polymer with a Ornstein–Uhlenbeck thermostat. In this case, the jth normal mode
satisfies [

ϱ̇j

φ̇j

]
= (Aj,n +Oj,n)

[
ϱj

φj

]
+

 0√
2γj,n
βmn

Ẇj

 , (3.8)

where Oj,n =
[
0 0
0 −γj,n

]
and Ẇj is a scalar white-noise. The solution [ϱj(t), φj(t)]

T

of Eq. (3.8) is an ergodic Markov process, and in the limit as t→∞, its distribution
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converges to the centered bivariate normal with covariance

Σj,n =
1

βmn

[
s2j,n 0

0 1

]
where s2j,n =

1

ω2
j,n

.

This distribution corresponds to the jth marginal of the free ring-polymer equilib-
rium distribution with density proportional to exp(−βH0

n(q,v)).

The choice of γj,n > 0 in Eq. (3.8) determines the rate at which the associated
Markov process converges to its stationary distribution if initialized away from it.
When γj,n < 2ωj,n, the process is dominated by the deterministic Hamiltonian dy-
namics and is characterized as underdamped; on the other hand, when γj,n > 2ωj,n,
the process is overdamped; and at the critical value γj,n = 2ωj,n the process is char-
acterized as critically damped and converges to equilibrium fastest [65, 66]. This
analytical result motivates the so-called PILE friction schedule [18, 20]. We spe-
cialize to this schedule in the remainder of this section and set γj,n = 2ωj,n for
1 ≤ j ≤ n− 1.

The BAOAB-like update in Sec. 3.2.1, applied to Eq. (3.8) with PILE friction, can
be written compactly as[

ϱj

φj

]
← Mj,n,∆t

[
ϱj

φj

]
+ R1/2

j,n,∆t

[
ξj

ηj

]
for 0 ≤ j ≤ n− 1 , (3.9)

where ξj and ηj are independent standard normal random variables and we have
introduced the 2× 2 matrices

Mj,n,∆t = S1/2
j,n,∆tOj,n,∆tS1/2

j,n,∆t , Oj,n,∆t =

[
1 0

0 e−2ωj,n∆t

]
and

Rj,n,∆t =
1− e−4ωj,n∆t

βmn

S1/2
j,n,∆t

[
0 0

0 1

]
(S1/2

j,n,∆t)
T .

Since S1/2
j,n,∆t and the Ornstein–Uhlenbeck update are individually preservative irre-

spective of the chosen θ, Eq. (3.9) exactly preserves the free ring-polymer equilib-
rium distribution for any choice of θ that satisfies (C1) and (C2).

The ergodicity of the integrator specified by Eq. (3.9) depends entirely on the asymp-
totic stability of Mj,n,∆t, that is, on whether ∥Mk

j,n,∆t∥ → 0 as k → ∞, where
∥ · ∥ is a matrix norm. The matrix Mj,n,∆t is asymptotically stable if its spectral
radius (i.e., the modulus of its largest eigenvalue) is smaller than unity [62], which
depends on

det(Mj,n,∆t) = e−2ωj,n∆t and Tr(Mj,n,∆t) = cos(θ(ωj,n∆t))(1 + e−2ωj,n∆t) .
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In particular, the eigenvalues of Mj,n,∆t are both inside the unit circle if and only if

|Tr(Mj,n,∆t)| < 1 + det(Mj,n,∆t) < 2 ;

a proof of this claim is provided in Appendix 3.5. This inequality reveals that condi-
tion (C2) implies property (P2). Moreover, if Tr(Mj,n,∆t)

2− 4 det(Mj,n,∆t) ≤ 0,
then the spectral radius of Mj,n,∆t is minimal and equal to

√
det(Mj,n,∆t) =

e−ωj,n∆t; this occurs when | cos(θ(ωj,n∆t))| ≤ sech(ωj,n∆t) for all ωj,n∆t, which
holds if the function θ satisfies

arccos(sech(x)) ≤ θ(x) ≤ π − arccos(sech(x)) for x > 0 . (3.10)

Any choice of θ that does not satisfy Eq. (3.10) will be overdamped in some modes,
in the sense that the corresponding Mj,n,∆t will have a spectral radius strictly larger
than e−ωj,n∆t.

The function θ(x) = arccos(sech(x)) saturates the (left) inequality in Eq. (3.10)
while satisfying conditions (C1) and (C2), and hence provides a strongly stable and
critically damped integrator for the thermostatted free ring polymer. As illustration
of this, Fig. 3.2a shows that θ(x) = arctan(x) is overdamped for all modes whereas
the Cayley angle θ(x) = 2 arctan(x/2) exhibits mixed damping. In contrast, the
function θ(x) = arccos(sech(x)) preserves the critically damped behavior of its
continuous counterpart under the PILE friction schedule. Figure 3.2b confirms that
the spectral radius of Mj,n,∆t is minimal at θ(x) = arccos(sech(x)) for x > 0;
consequently, this choice of θ optimizes the convergence of the integrator to station-
arity.

Conditions (C1) and (C2) also imply property (P2) for the OBABO-like update
associated with a compliant choice of θ, because the matrices S1/2

j,n,∆tOj,n,∆tS1/2
j,n,∆t

and O1/2
j,n,∆tSj,n,∆tO1/2

j,n,∆t have equal spectral radii.

3.2.4 Dimension-free stability of RPMD with a harmonic external potential

In this section, we identify a condition on θ that yields property (P3) in Sec. 3.2.1.
Let V (q) = (Λ/2) q2 and γj,n = 0 for 1 ≤ j ≤ n − 1, corresponding to the non-
thermostatted ring polymer with a harmonic external potential. In this case, the jth
normal mode satisfies [

ϱ̇j

φ̇j

]
= (Aj,n +B)

[
ϱj

φj

]
(3.11)
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Figure 3.2. Spectral properties of the T-RPMD update for the free ring polymer for var-
ious choices of θ. Panel a plots the functions θ(x) = arccos(sech(x)), arctan(x) and
arctan(x/2), and regions of overdamping and underdamping with PILE friction, separated
at the locus of points where | cos(θ(x)) cosh(x)| = 1. The dynamics is underdamped in the
gray region (| cos(θ(x)) cosh(x)| < 1), while in the white region (| cos(θ(x)) cosh(x)| > 1)
the dynamics is overdamped. The function θ(x) = arctan(x) lies in the overdamped region
for x > 0, whereas θ(x) = 2 arctan(x/2) is in the underdamped region for x ⪅ 2.4 and
in the overdamped region otherwise. The function θ(x) = arccos(sech(x)), however, is
critically damped for x > 0 and optimizes the convergence rate of the integrator. Panel b
plots the spectral radius of Mj,n,∆t corresponding to each choice of θ as a function of x.

where B =
[

0 0
−Λ/m 0

]
, and conserves the Hamiltonian

Hj,n(ρj, φj) =
mn

2

(
|φj|2 + (ω2

j,n + Λ/m)|ϱj|2
)
.

For this system, the BAOAB-like update in Sec. 3.2.1 reduces to[
ϱj

φj

]
← Mj,n,∆t

[
ϱj

φj

]
for 0 ≤ j ≤ n− 1 , (3.12)

where we have introduced the 2× 2 matrices

Mj,n,∆t = B1/2Sj,n,∆tB1/2 and B1/2 =

[
1 0

−∆t(Λ/m)/2 1

]
.
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This update may be interpreted as a symplectic perturbation of the free ring-polymer
update in Eq. (3.7) due to the harmonic external potential [26], and conserves a
modification of Hj,n that depends on the choices of θ and ∆t [67].

The update in Eq. (3.12) is stable if [9]

max
0≤j≤n−1

1

2
|Tr(Mj,n,∆t)| = max

0≤j≤n−1
|Aj,n| < 1 , (3.13)

where
Aj,n = cos(θ(ωj,n∆t))− ∆t2(Λ/m)

2

sin(θ(ωj,n∆t))

ωj,n∆t
.

Moreover, the 0th (i.e., centroid) mode, like the single-bead ring polymer, evolves
through the velocity Verlet algorithm, whose stability requires that ∆t2Λ/m < 4.
Combining this requirement with condition (C2) yields a sufficient condition for
Eq. (3.13) to hold at any n,

0 < θ(x) ≤ 2 arctan(x/2) for x > 0 . (C3)

A proof of this result is provided in Sec. 3.6. The functions θ(x) = 2 arctan(x/2),
θ(x) = arctan(x) and θ(x) = arccos(sech(x)) all satisfy condition (C3), which
ensures that the corresponding RPMD integrator meets property (P3).

3.2.5 Dimension-free ergodicity and equilibrium accuracy of T-RPMD with a
harmonic external potential

In this section, it is shown that condition (C3) implies property (P4) in Sec. 3.2.1,
and an additional condition is introduced to ensure that property (P5) holds. Let
V (q) = (Λ/2) q2 and γj,n = 2ωj,n for 1 ≤ j ≤ n − 1. In this case, the jth normal
mode satisfies [

ϱ̇j

φ̇j

]
= (Aj,n +B +Oj,n)

[
ϱj

φj

]
+

 0√
4ωj,n

βmn
Ẇj

 . (3.14)

The solution [ϱj(t), φj(t)]
T of Eq. (3.14) is an ergodic Markov process, and its dis-

tribution as t → ∞ converges to the centered bivariate normal with covariance
matrix

Σj,n =
1

βmn

[
s2j,n 0

0 1

]
where s2j,n =

1

Λ/m+ ω2
j,n

; (3.15)

the associated position-marginal is the jth marginal of the ring-polymer configura-
tional distribution with density exp(−(βmn/2) q

T(Λ/m+Ω2)q).



48

For this system, the BAOAB-like update in Sec. 3.2.1 is of the same form as Eq. (3.9)
with

Mj,n,∆t = B1/2S1/2
j,n,∆tOj,n,∆tS1/2

j,n,∆tB
1/2 and

Rj,n,∆t =
1− e−4ωj,n∆t

βmn

B1/2S1/2
j,n,∆t

[
0 0

0 1

]
(B1/2S1/2

j,n,∆t)
T .

(3.16)

As in the case of a constant external potential, the ergodicity of this integrator de-
pends on the spectral radius of Mj,n,∆t. By Theorem 1 in Appendix 3.5 and the
fact that

det(Mj,n,∆t) = e−2ωj,n∆t and Tr(Mj,n,∆t) = Aj,n(1 + e−2ωj,n∆t) ,

it follows that condition (C3) gives a simple and sufficient condition for ergodicity
at any bead number n and hence implies property (P4) for the BAOAB-like update
specified by Eqs. (3.9) and (3.16). Furthermore, because the matrix Mj,n,∆t of the
corresponding OBABO-like update has equal trace and determinant, condition (C3)
also guarantees property (P4) in that case.2

If condition (C3) holds, the BAOAB-like update is ergodic with respect to a centered
bivariate normal distribution whose covariance matrix Σj,n,∆t satisfies the linear
equation

Σj,n,∆t = Mj,n,∆tΣj,n,∆tMT
j,n,∆t +Rj,n,∆t , (3.17)

for which the solution is

Σj,n,∆t =
1

βmn

[
s2j,n,∆t 0

0 r2j,n,∆t

]
(3.18)

where the variance in the position- and velocity-marginal is respectively (βmn)
−1s2j,n,∆t

and (βmn)
−1r2j,n,∆t with

s2j,n,∆t =

(
ω2
j,n +

Λ

m

ωj,n∆t/2

tan (θ(ωj,n∆t)/2)

)−1

and

r2j,n,∆t = 1− ∆t2Λ

4m

tan (θ(ωj,n∆t)/2)

ωj,n∆t/2
.

(3.19)

Because the tangent function is monotonically increasing on the range of θ specified
by condition (C3), we have the correspondence

0 < s2j,n,∆t ≤ s2j,n and 1− ∆t2Λ

4m
≤ r2j,n,∆t < 1 (3.20)

2Condition (C3) may be viewed as a relaxation of the sufficient condition for ergodicity given
in Eq. (18) of Chapter 2. Indeed, condition (C3) implies ergodicity irrespective of the Ornstein–
Uhlenbeck friction schedule, whereas Eq. (18) in Chapter 2 does not imply ergodicity for friction
schedules that lead to overdamped dynamics.
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between the exact and numerical variances of the jth ring-polymer mode. Equa-
tion (3.19) reveals that θ(x) = 2 arctan(x/2) is the unique function that com-
plies with condition (C3) and saturates the inequality s2j,n,∆t ≤ s2j,n in Eq. (3.20);
consequently, the corresponding BAOAB-like scheme preserves the exact position-
marginal in all modes and trivially satisfies property (P5). The BCOCB integrator
introduced in Chapter 2 corresponds to this choice of θ and thus uniquely provides
optimal equilibrium position-marginal accuracy for harmonic external potentials.

To identify other BAOAB-like schemes compliant with condition (C3) that satisfy
property (P5), we examine the overlap between the numerical stationary position-
marginal distribution µn,∆t and the exact distribution µn where

µn =
n−1∏
j=1

N
(
0,

s2j,n
βmn

)
and µn,∆t =

n−1∏
j=1

N
(
0,

s2j,n,∆t

βmn

)
.

Centroid-mode marginals have been suppressed in the definitions of µn and µn,∆t. A
BAOAB-like scheme is dimension-free if it admits ann-independent upper bound on
the distance dTV(µn, µn,∆t) between µn and µn,∆t, where dTV is the total variation
metric [40]. In particular, if we require

x

1 + |x| ≤ θ(x) ≤ 2 arctan(x/2) for x > 0 , (C4)

then we have the dimension-free bound

dTV(µn, µn,∆t) <

(√
4

3

ℏβ
∆t

)
∆t2Λ

m
. (3.21)

A proof of this claim is provided in Sec. 3.8. Condition (C4) ensures that any
BAOAB-like integrator with a compliant choice of θ meets property (P5).

For OBABO-like schemes, the bound in condition (C4) must be tightened to guar-
antee non-zero overlap between µn and µn,∆t for arbitrarily large n. In particular,
replacing 2 arctan(x/2) with min{2 arctan(x/2), C} for some C ∈ (0, π) in the
upper bound of condition (C4) yields a n-independent bound on dTV(µn, µn,∆t) for
all compliant OBABO-like integrators, as can be shown through arguments similar
to those in Sec. 3.8.

Taken together, conditions (C1)–(C4) specify a family of BAOAB-like schemes with
dimension-free stability, ergodicity and equilibrium accuracy for applications with
harmonic external potentials. Numerical results in Sec. 3.3 suggest that the integra-
tors exhibit similar properties in a more realistic setting with a strongly anharmonic
external potential.
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3.2.6 Dimension-free convergence to equilibrium of T-RPMD with a harmonic
external potential

Beyond ensuring ergodicity of the T-RPMD update in Eq. (3.16), condition (C3)
leads to explicit dimension-free equilibration rates for compliant schemes. Theo-
rem 4 in Sec. 3.7 proves this result in the infinite-friction limit for ring-polymer
modes with arbitrarily high frequency. In detail, the theorem shows that the con-
figurational transition kernel associated with the T-RPMD update of the jth mode
in Eq. (3.16) is contractive in the 2-Wasserstein metric [68] and equilibrates any
given initial distribution at a rate determined by the function θ, the (external) po-
tential curvature Λ, and the (stable) time-step ∆t if condition (C3) holds. The rate
in Theorem 4, though obtained in the infinite-friction limit, holds for finite friction
coefficients γj,n leading to spectral radii ρ(Mj,n,∆t) ≤ |Aj,n|, whereAj,n is defined
in the display after Eq. (3.13) and |Aj,n| = limγj,n→∞ ρ(Mj,n,∆t) is the spectral
radius at infinite friction.

To illustrate dimension-free convergence, Fig. 3.3 plots the 2-Wasserstein distance
between the stationary configurational (i.e., position-marginal) distribution µn,∆t

and the distribution µk
n,∆t at the kth T-RPMD step evolved from a point mass at the

origin using the schemes specified by θ(x) = arccos(sech(x)) (Fig. 3.3a), θ(x) =
2 arctan(x/2) (Fig. 3.3b), and θ(x) = arctan(x) (Fig. 3.3c) for a range of bead
numbers n. These choices of θ respectively lead to overdamped, critical, and Cayley
evolution of the thermostatted free ring polymer under PILE friction (see Sec. 3.2.3),
and are identified accordingly in Fig. 3.3. The ring-polymer system considered in
Fig. 3.3 approximates the O–H stretch dynamics in liquid water at room temperature
with the parameters listed in Sec. 3.3.1. Velocity-marginals were initialized as in the
setting of Theorem 4 (see Sec. 3.7), and the position of the jth ring-polymer mode
at time k∆t follows a centered normal distribution with variance (βmn)

−1(skj,n,∆t)
2,

where

(skj,n,∆t)
2 = (Mk

j,n,∆t)
2
12 + βmn

k−1∑
ℓ=0

(
Mℓ

j,n,∆tRj,n,∆t(Mℓ
j,n,∆t)

T
)
11

for k > 0 .

Here and throughout, the notation ( · )ij chooses the element in the ith row and jth
column of the matrix enclosed in the parentheses. The 2-Wasserstein distances in
Fig. 3.3 were evaluated using a well-known result for multivariate normal distribu-
tions [69].
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Figure 3.3. Dimension-free convergence to equilibrium of BAOAB-like T-RPMD schemes
with a harmonic external potential. The physical parameters of the ring-polymer system (i.e.,
Λ, m, and β) are listed in Sec. 3.3.1. Panels a, b, and c plot the normalized 2-Wasserstein
distance between the configurational ring-polymer distribution at stationarity and at time
k∆t, as evolved via various BAOAB-like schemes from an initial point-mass distribution.
Regions with darker color indicate smaller 2-Wasserstein distance to stationarity, and black
lines mark iso-distance contours. The contours plateau at some value of n for all tested
schemes, which checks that they exhibit dimension-free convergence as predicted by Theo-
rem 4.
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Figures 3.3a and 3.3c clearly show that the critical and overdamped schemes con-
verge at dimension-free rates, but this is less evident from Fig. 3.3b for the Cay-
ley scheme. The latter scheme nonetheless displays an n-independent, and hence
dimension-free, distance to stationarity at all times k∆t > 0, indicated by plateauing
of the contour lines towards the right of Fig. 3.3b. The ladder-like pattern that pre-
cedes this plateau shows a transition from geometric (i.e., fast) to sub-geometric (i.e.,
slow) convergence upon introducing higher-frequency modes into the ring polymer.
The transition manifests with the Cayley scheme because of its aggressive overdamp-
ing of the high-frequency modes, which is absent in the other two schemes (see
Fig. 3.2).

The example considered in this section illustrates that the equilibration timescale
(e.g., the time until the 2-Wasserstein distance decays below 10−6) of the Cayley
scheme at large n can dramatically exceed that of other BAOAB-like schemes. Al-
though this negative feature may render the scheme impractical for pathological ap-
plications, we find in the next section that the Cayley scheme’s superior configu-
rational sampling provides compelling justification for its preferred use in realistic
settings.

3.3 Numerical results

The current section provides numerical comparisons of the BAOAB-like T-RPMD
integrators in Sec. 3.2, on applications featuring harmonic (Sec. 3.3.1) and anhar-
monic (Sec. 3.3.2) external potentials. Three choices of θ are considered in the
numerical comparisons, namely θ(x) = arctan(x), θ(x) = arccos(sech(x)), and
θ(x) = 2 arctan(x/2). These choices respectively lead to overdamped, critical,
and Cayley evolution of the thermostatted free ring polymer under PILE friction
(Sec. 3.2.3), and are identified accordingly throughout this section. It is borne out
from the numerical comparisons that the Cayley scheme exhibits superior configu-
rational sampling among the tested schemes in both applications.

3.3.1 One-dimensional quantum harmonic oscillator

In the current section, we numerically integrate Eq. (3.1) with the harmonic potential
V (q) = (Λ/2) q2 using PILE friction (i.e., Γ = 2Ω), m = 0.95 amu,

√
Λ/m =

3886 cm−1, and T = 298 K. This choice of physical parameters corresponds to a
harmonic approximation of the Morse contribution to the O–H bond potential in
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the q-TIP4P/F force field for water [41], and sets a least upper bound for the T-
RPMD stability interval at ∆tmax = 2/

√
Λ/m = 2.74 fs. The simulations reported

throughout this section employ the time-step ∆t = 0.73×∆tmax = 2.00 fs.

Figure 3.4 compares the accuracy and efficiency of various BAOAB-like T-RPMD
schemes at equilibrium as a function of the bead number n. For a description of
the numerical simulation and statistical estimation procedures used to generate the
numerical data (filled circles) in Fig. 3.4, the reader is referred to Sec. 3.11. Fig-
ures 3.4a and 3.4c report the mean quantum kinetic energy at equilibrium as per the
primitive and virial estimators,

KEpri
n (q) =

n

2β
−

n−1∑
j=0

mnω
2
n

2
(qj+1 − qj)

2 and

KEvir
n (q) =

1

2β
+

1

2

n−1∑
j=0

(qj − q) ∂qjV
ext
n (q) ,

(3.22)

where q = 1
n

∑n−1
j=0 qj is the centroid position of the n-bead ring polymer. For these

two observables, Figs. 3.4b and 3.4d quantify the equilibrium sampling efficiency of
the schemes in terms of the integrated autocorrelation time (or normalized asymp-
totic variance) [70–74]

aVar(On)

Var(On)
=

limK→∞Var
(

1√
K

∑K−1
k=0 On(ξ

(k∆t))
)

Var
(
On

)
= 1 + 2

∞∑
k=1

Cor(On(ξ
(0)),On(ξ

(k∆t))) , (3.23)

where On is an n-bead observable, {ξ(k∆t)}∞k=0 = {(q(k∆t),v(k∆t))}∞k=0 a T-RPMD
trajectory initialized at stationarity, Var(On) the variance of On at equilibrium, and
Cor(On(ξ

(0)),On(ξ
(k∆t))) the lag-k∆t autocorrelation of On along the T-RPMD

trajectory. The integrated autocorrelation time of On is interpreted as the timescale
over which adjacent observations along an equilibrium trajectory become statisti-
cally uncorrelated [70–74] and is hence a measure of the efficiency of a T-RPMD
scheme at estimating the mean of On with respect to the numerically sampled equi-
librium distribution. Figures 3.4a-d show that the scheme specified by the Cayley
angle (orange) outperforms others in terms of both accuracy and efficiency at esti-
mating the equilibrium average of the quantum kinetic energy observables.

From the perspective of configurational accuracy, the optimality of the Cayley angle
displayed in Figs. 3.4a and 3.4c is not surprising in light of the findings in Sec. 3.2.5.



54

0

2

4

6

8
pr

im
iti

ve
 K

E
KE

pr
i

n

(a)

filled: numerical
empty: analytical

equilibrium mean (kBT)

1.5

2.0

2.5

3.0

3.5
(b)

integrated
autocorrelation time (fs)

0

2

4

6

8

vi
ria

l K
E

KE
vi

r
n

(c)

t = 2.0 fs
1.5

2.0

2.5

3.0

3.5
(d)

critical
Cayley
overdamped

4 16 64 256 1024
bead number n

2

4

6

8

cla
ss

ica
l K

E
KE

cla n

1e 1
(e)

4 16 64 256 1024
bead number n

100

101

102

103

104
(f)

Figure 3.4. Performance at equilibrium of various BAOAB-like T-RPMD schemes ap-
plied to the one-dimensional quantum harmonic oscillator with physical parameters listed in
Sec. 3.3.1. Panels a, c, and e, respectively, plot the equilibrium mean primitive kinetic en-
ergy, virial kinetic energy, and non-centroid classical kinetic energy per mode as a function
of bead number n; the corresponding means in the exact infinite-bead limit are plotted as
dashed lines. Panels b, d, and f plot the integrated autocorrelation times (Eq. (3.23)) of the
respective observables. Exact (resp. numerically estimated) values of the plotted quantities
are shown with empty (resp. filled) circles. Numerical estimates were obtained using the
protocol described in Sec. 3.11.
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Less expected are the results in Figs. 3.4b and 3.4d, which suggest that the Cayley
angle is also optimal from the standpoint of configurational sampling efficiency for
the quantum kinetic energy observables in Eq. (3.22). Sec. 3.9 supports this conjec-
ture with an analytical result for harmonic external potentials.

Figure 3.4e plots the mean classical kinetic energy at equilibrium as computed from
the non-centroid ring-polymer velocities,

KEcla
n (v) =

mn

2(n− 1)

n−1∑
j=0

(v2j − v2) ≈ 1

2β
, (3.24)

and Fig. 3.4f plots the corresponding integrated autocorrelation time as given by
Eq. (3.23). For this observable, the equilibrium accuracy and efficiency of the Cay-
ley scheme are significantly worse than those of the others as n increases. This is a
consequence of the strongly overdamped behavior of Cayley T-RPMD at high fre-
quencies (see Fig. 3.2), for which the integrator’s ergodicity degrades as its spectral
radius approaches unity. Note that this shortcoming of the Cayley scheme presents
no adverse implications to the equilibrium sampling of observables that exclusively
depend on the ring-polymer configuration, as confirmed by Figs. 3.4a-d.

In summary, Fig. 3.4 establishes that the T-RPMD scheme specified by the Cayley
angle provides optimally accurate and efficient configurational sampling at equilib-
rium. To exploit this remarkable feature in practice, the scheme must manifest rapid
converge to equilibrium when initialized away from it, as is necessary in most real-
istic applications of T-RPMD. Fortunately, Theorem 4 guarantees that any BAOAB-
like scheme compliant with conditions (C1)–(C4) features a contractive configu-
rational transition kernel for any number of ring-polymer beads, and Fig. 3.3 in
Sec. 3.2.6 illustrates this fact for the quantum harmonic oscillator considered in the
current section.

3.3.2 Room-temperature liquid water

While theoretical analysis and numerical tests of BAOAB-like T-RPMD schemes
in Secs. 3.2.1 and 3.3.1 have focused on harmonic external potentials, the current
section demonstrates that the resulting insights carry over to a realistic, strongly
anharmonic model of room-temperature liquid water. Our test system is a peri-
odic box containing 32 water molecules at a temperature of 298 K and a density of
0.998 g/cm3, with potential energy described by the q-TIP4P/F force field [41]. As in
Sec. 3.3.1, we compare the performance of various BAOAB-like T-RPMD schemes
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Figure 3.5. Performance of various BAOAB-like T-RPMD schemes applied to q-TIP4P/F
liquid water at room temperature. As a function of the bead number n and for a 1.4-fs
time-step, panels a and c plot the equilibrium kinetic energy per H atom as per the primi-
tive and virial estimators (Eq. (3.22)), and panels b and d plot the corresponding integrated
autocorrelation times. Likewise, panels e and g plot the equilibrium potential energy per
H2O molecule due to the O−H-stretch and H−O−H-bend contributions, as defined in the
q-TIP4P/F force field, and the corresponding autocorrelation times are plotted by panels f
and h. Finally, panel i plots the classical kinetic energy per H atom computed from the non-
centroid velocity estimator (Eq. (3.24)), and panel j plots the corresponding autocorrelation
time. The numerical estimates and reference results (dashed lines) were obtained using the
protocols described in Sec. 3.11.
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for integrating the many-dimensional analogue of Eq. (3.1) with PILE friction, using
the simulation time-step ∆t = 1.4 fs in all simulations. Numerical tests reported
in Sec. 3.10 show that this value of ∆t closely approximates the upper limit of the
Verlet (i.e., n = 1) stability interval for q-TIP4P/F liquid water. In agreement with
Sec. 3.3.1, the experiments reveal that among the tested T-RPMD schemes, the Cay-
ley scheme offers superior configurational sampling. For details on the numerical
simulation and statistical estimation procedures used to generate the data presented
in this section, the reader is referred to Sec. 3.11.

Figure 3.5 compares the equilibrium accuracy achieved by the tested schemes in
terms of the quantum and classical kinetic energy per hydrogen atom (Figs. 3.5a,
3.5c, and 3.5i) and the intramolecular potential energy per water molecule (Figs. 3.5e
and 3.5g); also plotted are the respective integrated autocorrelation times as a func-
tion of bead number n. The kinetic energy estimates in Figs. 3.5a and 3.5c exhibit
similar trends to those seen in Fig. 3.4 for the one-dimensional harmonic oscillator.
In particular, the T-RPMD scheme specified by the Cayley angle outperforms oth-
ers in terms of quantum kinetic energy accuracy as n increases, most outstandingly
with a highly accurate primitive kinetic energy estimate despite the large time-step
employed. Still in close agreement with the harmonic oscillator results, Figs. 3.5b
and 3.5d show that the Cayley scheme displays the shortest integrated autocorre-
lation time among the tested schemes for the quantum kinetic energy observables.
Similar trends manifest in the intramolecular potential energy averages and their
autocorrelation times (Figs. 3.5e-h), where the Cayley scheme also achieves supe-
rior accuracy and efficiency. Finally, Figs. 3.5i and 3.5j confirm that the relative
performance of the compared schemes in terms of velocity-marginal sampling is
qualitatively consistent with the harmonic results. Taken together, the results in
Fig. 3.5 suggest that the superiority of the Cayley scheme for configurational sam-
pling, proven in the model setting of a harmonic external potential, is also reflected
in realistic applications.

In a final numerical test, Fig. 3.6 confirms that the sampling advantages of the
Cayley T-RPMD scheme are obtained without downside in the estimation of dy-
namical quantities of typical interest. Specifically, Fig. 3.6b shows (unnormalized)
infrared absorption spectra for room-temperature liquid water, computed from the
128-bead T-RPMD trajectories used to generate Fig. 3.5 using linear response the-
ory and the T-RPMD approximation to real-time quantum dynamics [20, 42]. Lin-
ear response dictates that the absorption spectrum is proportional to ω2Ĩ(ω), where
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Ĩ(ω) =
r
R dt e

−iωtC̃µµ(t) is the Fourier transform of the quantum mechanical Kubo-
transformed dipole autocorrelation function C̃µµ(t). The latter is approximated within
the T-RPMD framework [12, 16] by C̃µµ(t) ≈ 1

NH2O

∑NH2O
i=1 ⟨µi(t) · µi(0)⟩, where

NH2O is the number of molecules in the liquid, µi(t) is the bead-averaged dipole
moment vector of molecule i at time t, and the covariance ⟨µi(t) · µi(0)⟩ is esti-
mated from a stationary T-RPMD trajectory as indicated in Sec. 3.11. Figure 3.6a
plots the T-RPMD estimates of C̃µµ(t) leading to the absorption spectra in Fig. 3.6b.
On the scale in which the absorption spectrum exhibits its key features, the spectra
in Fig. 3.6b show very minor qualitative discrepancies. A similar conclusion holds
for Fig. 3.6c, where the T-RPMD approximation of the Kubo-transformed veloc-
ity autocovariance function C̃vv(t) ≈ 1

NH2O

∑NH2O
i=1 ⟨vi(t) · vi(0)⟩ is plotted for the

three tested T-RPMD schemes. Collectively, these observations indicate that the
accuracy of dynamical properties computed with BAOAB-like schemes is not sig-
nificantly affected by the particular θ employed if conditions (C1)–(C4) in Sec. 3.2
are met. This result is expected due to the fact that the considered dynamical prop-
erties depend on bead-averaged (i.e., centroid-mode) coordinates, whose evolution
is largely independent of the choice of θ under weak coupling between the centroid
and non-centroid ring-polymer modes.

3.4 Summary

Recent works showed that strong stability [26] and dimensionality [75] are essential
features of a robust T-RPMD integration scheme that many widespread integrators
do not possess. A T-RPMD scheme with these features, denoted BCOCB, was in-
troduced via a simple and inexpensive Cayley modification of the free ring-polymer
update (i.e., the “A” sub-step) of the standard BAOAB integrator. The BCOCB
scheme was then shown to dramatically outperform BAOAB at estimating static and
dynamic properties of various systems with remarkable accuracy at unprecedented
time-steps.

The current chapter generalizes beyond the Cayley modification by introducing a
simple parameterization of the free ring-polymer update and a corresponding family
of strongly stable and dimension-free modifications of the BAOAB scheme. Among
these schemes lies BCOCB, which is found to exhibit superior configurational sam-
pling despite exhibiting worse accuracy and efficiency for observables that depend
on the non-centroid ring-polymer velocities. This conclusion is obtained theoreti-
cally via exhaustive analysis of a harmonic model, and numerically via simulation
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Figure 3.6. Molecular dipole autocovariance function (panel a), corresponding infrared
absorption spectrum (panel b), and molecular velocity autocovariance function (panel c)
in room-temperature liquid water for various BAOAB-like T-RPMD schemes. The plot-
ted quantities autocovariance exhibit minor qualitative discrepancies across schemes, which
suggests that all schemes compliant with conditions (C1)–(C4) exhibit comparable accu-
racy in the computation of dynamical properties. Numerical estimates of the autocovariance
functions were obtained using the protocol described in Sec. 3.11.
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of a realistic quantum-mechanical model of liquid water at room temperature. In
this way, the chapter supports the outstanding utility of BCOCB for accurate and
efficient equilibrium simulation of condensed-phase systems with T-RPMD.

To conclude, we stress that implementing BCOCB or any of the new dimension-free
and strongly-stable schemes adds no cost, no algorithmic parameters and insignif-
icant coding overhead relative to the standard BAOAB integrator. The modified
integrators thus provide “turnkey” means to significantly improve the accuracy and
stability of existing RPMD and T-RPMD implementations [76, 77].

Acknowledgments. J. L. R.-R. and J. S. contributed equally to the work presented
in this chapter. The work was supported in part by the U.S. Department of Energy
(DE-SC0019390) and the National Institutes of Health (R01GM125063) N. B.-R.
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3.5 Appendix A: Necessary and sufficient condition for eigenvalues of a 2 × 2

real matrix to be inside the unit circle

This section provides a proof of the standard result used in Secs. 3.2.3 and 3.2.5
to infer ergodicity of the T-RPMD update for free and harmonically-confined ring
polymers.

Theorem 1. The spectral radius of a 2 × 2 real matrix M is strictly less than one
if and only if

|Tr(M )| < 1 + det(M ) < 2 . (3.25)

Figure 3.7 plots eigenvalue pairs λ1, λ2 that satisfy Eq. (3.25) for a fixed value of
det(M) = λ1λ2. Note that the spectral radius of M is minimized when λ1 and λ2

are on the circle with radius r =
√

det(M ).

Proof. Let λ1, λ2 be the (possibly complex) eigenvalues of M . By definition, the
spectral radius of M is max(|λ1|, |λ2|) =: ρ. Since M is real, both Tr(M) =

λ1 + λ2 and det(M ) = λ1λ2 are real. Thus, either:

1. λ1, λ2 are a complex conjugate pair; or,

2. λ1, λ2 are both real.
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Figure 3.7. All possible eigenvalue pairs λ1, λ2 of a matrix M that satisfies Eq. (3.25) with
det(M) = λ1λ2 = 1/4. The eigenvalue pairs either lie on the circle with radius r = 1/2
or are both real, and in the former case, the spectral radius of M is minimal.

In the first case, λ1 = a + ib and λ2 = a − ib for some real numbers a and b with
b ̸= 0, and hence, det(M) = λ1λ2 = a2+b2 > 0, and ρ = |λ1| = |λ2| =

√
a2 + b2,

i.e., the eigenvalues lie on the circle with radius ρ =
√
a2 + b2 =

√
det(M ). In

this case, the first inequality in Eq. (3.25) holds since b ̸= 0 implies

|Tr(M)| = 2|a| < 2ρ ≤ 1 + ρ2 = 1 + det(M) .

Hence, Eq. (3.25) is equivalent to 1 + det(M ) < 2 or ρ < 1.

In the second case, λ1, λ2 are both real, and the condition |Tr(M )| < 1 + det(M )

is equivalent to

1 + λ1λ2 + λ1 + λ2 = (1 + λ1)(1 + λ2) > 0 , and

1 + λ1λ2 − λ1 − λ2 = (1− λ1)(1− λ2) > 0 .

Together with det(M) = λ1λ2 < 1, these conditions imply ρ = max(|λ1|, |λ2|) <
1.
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3.6 Appendix B: Stability condition for harmonic external potentials

This section proves that condition (C3) implies property (P3), as claimed in Sec. 3.2.4.
For notational brevity, we define

A(x) := cos(θ(x))− ∆t2(Λ/m)

2

sin(θ(x))

x
.

Note that A(x) is equal to Aj,n in the display under Eq. (3.13) if x = ωj,n∆t.

Theorem 2. For any α⋆ > 0, (F2) implies (F1).

(F1) For all Λ ≥ 0, m > 0 and ∆t > 0 satisfying ∆t2Λ/m < α⋆, the function θ

satisfies
|A(x)| < 1 for x > 0 .

(F2) The function θ satisfies:

0 < θ(x) < 2 arctan(2x/α⋆) for x > 0 .

Proof. Let α = ∆t2(Λ/m). For notational brevity, define

ϕα(x) := arctan(α/(2x)) for x > 0 .

By the harmonic addition identity

cos(θ)− tan(ϕα) sin(θ) =
cos(θ + ϕα)

cos(ϕα)
,

note that (F1) can be rewritten as∣∣∣∣cos(θ(x) + ϕα(x))

cos(ϕα(x))

∣∣∣∣ < 1 for x > 0 , 0 < α < α⋆ . (3.26)

For 0 < θ(x) < π, Eq. (3.26) holds if and only if

ϕα(x) < θ(x) + ϕα(x) < π − ϕα(x) ,

which can be rewritten as

0 < θ(x) < 2 arctan(2x/α) , (3.27)

where we used the identity

π − 2 arctan(x) = 2 arctan(1/x) valid for x > 0 .
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Since arctan is monotone increasing, and 0 < α < α⋆ by assumption, we may
conclude that

0 < θ(x) < 2 arctan(2x/α⋆) < 2 arctan(2x/α) .

Thus, if (F1) holds, then Eq. (3.27) holds and therefore (F1) holds.

Fix ϵ ∈ (0, 1). Since Theorem 2 is true for arbitrary α⋆, if we take α⋆ = 4 − ϵ,
then the theorem holds with ∆t2Λ/m < 4 − ϵ in Theorem 2 (F1), and θ(x) <

2 arctan(2x/(4 − ϵ)) in Theorem 2 (F1). Since ϵ > 0 is arbitrary, and arctan is
monotone increasing, we can conclude that the theorem holds with ∆t2Λ/m < 4

and θ(x) ≤ 2 arctan(x/2). Summarizing,

Corollary 3. Suppose that the function θ satisfies

0 < θ(x) ≤ 2 arctan(x/2) for x > 0 .

Then for all Λ ≥ 0, m > 0 and ∆t > 0 satisfying ∆t2Λ/m < 4, we have

|A(x)| < 1 for x > 0 .

3.7 Appendix C: Dimension-free quantitative contraction rate for harmonic
external potentials in the infinite-friction limit

In the infinite-friction limit, Eq. (3.16) simplifies to

Mj,n,∆t = B1/2S1/2
j,n,∆t

[
1 0

0 0

]
S1/2

j,n,∆tB
1/2 and

Rj,n,∆t =
1

βmn

B1/2S1/2
j,n,∆t

[
0 0

0 1

]
(B1/2S1/2

j,n,∆t)
T .

The kth step of the corresponding T-RPMD integrator can be written compactly as[
ϱ
(k)
j

φ
(k)
j

]
= Mj,n,∆t

[
ϱ
(k−1)
j

φ
(k−1)
j

]
+ R1/2

j,n,∆t

[
ξ
(k−1)
j

η
(k−1)
j

]
,

where ξ(k−1)
j and η(k−1)

j are independent standard normal random variables. Suppose
that the initial velocity is drawn from the Maxwell–Boltzmann distribution, φ(0)

j ∼
N (0, (βmn)

−1), and the initial position is drawn from an arbitrary distribution µj on
R, ϱ(0)j ∼ µj . Let pkj,n denote the k-step transition kernel of the position-marginal,
i.e., µjp

k
j,n is the probability distribution of ϱ(k)j with ϱ

(0)
j ∼ µj .
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The next theorem shows that starting from any two initial distributions µj and νj on
R, the distance between the distributions µjp

k
j,n and νjp

k
j,n is contractive. We quan-

tify the distance between these distributions in terms of the 2-Wasserstein metric.
For two probability distributions µ and ν on R, the 2-Wasserstein distance between
µ and ν is defined as:

W2(µ, ν) :=
(
inf
X∼µ
Y∼ν

E(|X − Y |2)
)1/2

,

where the infimum is taken over all bivariate random variables (X, Y ) such that
X ∼ µ and Y ∼ ν [68], and where E(·) denotes a mathematical expectation.

Theorem 4. Suppose that the function θ satisfies

0 < θ(x) ≤ 2 arctan(x/2) for x > 0 .

Then for all k > 1, Λ ≥ 0, m > 0 and ∆t > 0 satisfying ∆t2Λ/m < 4, and for all
initial distributions µj and νj on R,

W2(µjp
k
j,n, νjp

k
j,n) ≤


A(ωj,n∆t)k−1W2(µj, νj) if A(ωj,n∆t) > 0,

1

2(k − 1)
W2(µj, νj) else.

(3.28)

Proof. In the infinite-friction limit, the eigenvalues of Mj,n,∆t are {0, A(ωj,n∆t)},
where A(x) is defined in Appendix 3.6. Let ϱ(0)j ∼ µj and ϱ̃

(0)
j ∼ νj be an opti-

mal coupling of µj and νj , which implies that W2(µj, νj) = E(|ϱ(0)j − ϱ̃
(0)
j |2)1/2.

Conditional on ϱ
(0)
j and ϱ̃

(0)
j , ϱ(k)j and ϱ̃

(k)
j are Gaussian random variables with equal

variances, but different means. By a well-known result for the 2-Wasserstein dis-
tance between Gaussian distributions [69],

W2(µjp
k
j,n, νjp

k
j,n)

2 = |A(ωj,n∆t)|2(k−1)(Mj,n,∆t)
2
11W2(µj, νj)

2

= |A(ωj,n∆t)|2(k−1) (1 + A(ωj,n∆t))2

4
W2(µj, νj)

2 , (3.29)

where we used (Mj,n,∆t)11 = (1 + A(ωj,n∆t))/2.

Now we distinguish between two cases. In the case whereA(ωj,n∆t) > 0, we obtain
the required result since |A(ωj,n∆t)| < 1 by Corollary 3, and therefore,

(1 + A(ωj,n∆t))2

4
≤ 1 . (3.30)
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Otherwise, for−1 < A(ωj,n∆t) ≤ 0 the quantity |A(ωj,n∆t)|2(k−1)(1+A(ωj,n∆t))2

is maximized at
(
(1− k)/k

)2k
(k − 1)−2, and therefore,

|A(ωj,n∆t)|2(k−1) (1 + A(ωj,n∆t))2

4
≤ 1

4(k − 1)2
. (3.31)

Inserting Eq. (3.30) and Eq. (3.31) into Eq. (3.29), and then taking square roots,
gives the required result.

3.8 Appendix D: Total variation bound on the equilibrium accuracy error for
harmonic external potentials

In this section, we show that Eq. (3.21) follows from conditions (C1)–(C4) in the
setting of Sec. 3.2.5. It is helpful to recall the quantities

ωj = lim
n→∞

ωj,n =


πj

ℏβ
if j is even ,

π(j + 1)

ℏβ
else .

(3.32)

In the following, µj,n,∆t and µj,n respectively denote the jth factor of the product
distributions µn,∆t and µn introduced in Sec. 3.2.5.

Theorem 5. Suppose that the function θ satisfies conditions (C1)–(C4). Then for
all Λ ≥ 0, m > 0 and ∆t > 0 satisfying ∆t2Λ/m < 4, the total variation distance
between µn and µn,∆t is bounded as in Eq. (3.21).

Proof. Subadditivity of the total variation distance dTV between product distribu-
tions and its equivalence with the Hellinger distance [40] dH lead to the inequalities

dTV(µn, µn,∆t)
2 ≤

n−1∑
j=1

dTV(µj,n, µj,n,∆t)
2

≤
n−1∑
j=1

2 dH(µj,n, µj,n,∆t)
2 ≤

n−1∑
j=1

2(sj,n − sj,n,∆t)
2

(s2j,n + s2j,n,∆t)

≤
n−1∑
j=1

(
1− sj,n

sj,n,∆t

)2

≤
n−1∑
j=1

(
1− s2j,n

s2j,n,∆t

)2

, (3.33)

where the second-to-last step uses Eq. (3.20) and the last step uses the elementary
inequality (1− x2)2 ≥ (1− x)2 valid for all x ≥ 0.

Since tan increases superlinearly on the interval (0, π), we have

θ(x)/2 ≤ tan(θ(x)/2) ≤ x/2 for x > 0 ,
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where the second inequality uses (C3). Consequently, the jth summand in Eq. (3.33)
admits the bound(

1− s2j,n
s2j,n,∆t

)2

=

(
Λ/m

ω2
j,n + Λ/m

(
ωj,n∆t/2

tan (θ(ωj,n∆t)/2)
− 1

))2

≤
(
∆t2Λ/m

(ωj,n∆t)2

(
ωj,n∆t

θ(ωj,n∆t)
− 1

))2

≤
(
∆t2Λ

m

)2
1

(ωj,n∆t)2
,

where the last line uses the lower bound in (C4). Using that for any even positive
integer n

n−1∑
j=1

1

ω2
j,n

< lim
n→∞

n−1∑
j=1

1

ω2
j,n

=
∞∑
j=1

1

ω2
j

<

(
ℏβ
π

)2 ∞∑
j=1

2

j2
,

where we used the definition in Eq. (3.32), the bound in Eq. (3.33) becomes

dTV(µn, µn,∆t)
2 <

(
∆t2Λ

m

)2( ℏβ
π∆t

)2 ∞∑
j=1

2

j2
.

Taking square roots and using the Riemann zeta function [78] to evaluate the infinite
sum yields Eq. (3.21).

3.9 Appendix E: Asymptotic variance of kinetic energy observables for har-
monic external potentials in the infinite-friction limit

In Sec. 3.3.1, Figs. 3.4b and 3.4d show that the T-RPMD scheme specified by θ(x) =
2 arctan(x/2), which coincides with the Cayley-modified BAOAB scheme intro-
duced in Chapter 2, provides the smallest integrated autocorrelation time (Eq. (3.23))
for quantum kinetic energy observables (Eq. (3.22)) among several schemes with
properties (P1)–(P5). In this section, we show that this scheme minimizes an up-
per bound (Eq. (3.35)) on the integrated autocorrelation time of the quantum kinetic
energy among all dimension-free and strongly-stable BAOAB-like schemes for har-
monic external potentials.

To this end, note that for a n-bead thermostatted ring polymer with external potential
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V ext
n (q) = Λ

2n
|q|2, Eq. (3.22) can be rewritten

KEpri
n (ϱ) =

n

2β
−

n−1∑
j=1

mnω
2
j,n

2
ϱ2j and

KEvir
n (ϱ) =

1

2β
+

n−1∑
j=1

Λ

2n
ϱ2j

(3.34)

where ϱ is defined in Eq. (3.5). In the following, we denote both observables in
Eq. (3.34) as KEn and distinguish between the two as needed.

To control the integrated autocorrelation time of KEn, we need the stationary auto-
correlation Cor

(
KEn(ϱ

(0)),KEn(ϱ
(k∆t))

)
for k ≥ 0. Note that the distributions of

ϱ(k∆t) and ϱ(0) are equal by stationarity, and that components (ϱj)n−1
j=0 are uncorre-

lated in a harmonic external potential. Thus,

Cor
(
KEn(ϱ

(0)), KEn(ϱ
(k∆t))

)
=

n−1∑
j=1

wj,nCor
(
|ϱ(0)j |2, |ϱ(k∆t)

j |2
)
,

where

wj,n =
κ2
j,nVar

(
|ϱ(0)j |2

)∑n−1
i=1 κ2

i,nVar
(
|ϱ(0)i |2

)
and

κj,n =


mnω

2
j,n

2
for KEpri

n ,

Λ

2n
for KEvir

n .

If the evolution of the ring polymer is governed by the BAOAB-like update in Eq. (3.9),
then the jth mode satisfies

Cor
(
|ϱ(0)j |2, |ϱ(k∆t)

j |2
)
=

Cov
(
|ϱ(0)j |2, |ϱ(k∆t)

j |2
)

Var
(
|ϱ(0)j |2

)
= (Mk

j,n,∆t)
2
11 ,

where we used that the phase [ϱ
(k∆t)
j , φ

(k∆t)
j ]T follows a centered Gaussian distri-

bution with covariance given in Eq. (3.18) for all k ≥ 0. Therefore, in the infinite-
friction limit whereMj,n,∆t is given in Appendix 3.7, the integrated autocorrelation
time of KEn evaluates to

aVar(KEn)

Var(KEn)
= 1 + 2

n−1∑
j=1

wj,n

∞∑
k=1

(Mk
j,n,∆t)

2
11

≤ 1 +
1

2
max

1≤j≤n−1

∣∣∣∣1 + A(ωj,n∆t)

1− A(ωj,n∆t)

∣∣∣∣ , (3.35)
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where simplification of (Mk
j,n,∆t)11 was aided by the Cayley–Hamilton theorem for

2 × 2 matrices [79], A(x) is defined in Appendix 3.6, and in the last line we used
that

∑n−1
j=1 wj,n = 1. Equation (3.35) states that the integrated autocorrelation time

of KEn can only be as small as that of the component |ϱj|2 exhibiting the slowest
decorrelation at stationarity.

Having derived Eq. (3.35), we now prove our claim for this section. Let x :=

ωj,n∆t > 0 and α := ∆t2Λ/m ∈ (0, 4). For fixed x and α, the function A(x) =

cos(θ(x)) − α
2x

sin(θ(x)) monotonically decreases toward −1 as the angle θ(x) in-
creases toward π. Consequently, the function

∣∣(1 + A(x)
)
/
(
1− A(x)

)∣∣ decreases
(toward 0) as θ(x) increases (toward π), but condition (C3) requires that θ(x) ≤
2 arctan(x/2) to achieve stable evolution. Therefore, because it yields the largest
stable angle, the choice θ(x) = 2 arctan(x/2), corresponding to the Cayley angle,
minimizes the upper bound in Eq. (3.35).

A similar argument can be made to support the conjecture, suggested by Fig. 3.4f,
that the non-centroid velocity estimator for the classical kinetic energy KEcla

n in
Eq. (3.24), equivalently written

KEcla
n (φ) =

mn

2(n− 1)

n−1∑
j=1

φ2
j (3.36)

with φ defined in Eq. (3.5), exhibits a maximal integrated autocorrelation time if the
Cayley angle θ(x) = 2 arctan(x/2) is used. Indeed, the integrated autocorrelation
time of this estimator is bounded by

aVar(KEcla
n )

Var(KEcla
n )
≤ 1 +

1

2
max

1≤j≤n−1

∣∣∣∣1− A(ωj,n∆t)

1 + A(ωj,n∆t)

∣∣∣∣ , (3.37)

where the function
∣∣(1− A(x)

)
/
(
1 + A(x)

)∣∣ monotonically increases as θ(x) ap-
proaches the largest stable angle for fixed x and α, which again corresponds to the
Cayley angle.

We stress that the conclusions of this section hold for arbitrary friction schedules
despite our use of the infinite-friction limit in Eqs. (3.35) and (3.37).

3.10 Appendix F: Stability interval calibration for liquid water simulations

This section describes the computational procedure used to identify ∆t = 1.4 fs as
close to the upper bound of the stability interval of T-RPMD applied to q-TIP4P/F
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liquid water at 298 K and 0.998 g/cm3. Starting from an ensemble of 104 thermally
distributed initial conditions obtained as per the following paragraph, we integrated
an ensemble of 104 T-RPMD trajectories using the algorithm outlined in Sec. 3.2.1 in
its single-bead realization (which is identical to velocity Verlet in classical MD [46]).
We then counted the fraction of trajectories that did not “blow up,” or exhibit nu-
merical overflow, throughout their duration for each tested time-step. A time-step
was deemed “stable” if 99% or more of the corresponding trajectories did not ex-
hibit numerical overflow over a 50-ps time period. A range of time-steps between
1 ps and 2 ps was tested, and the fraction of stable trajectories at each time-step is
reported in Fig. 3.8.

To avoid initialization bias in the stability interval estimation, thermalized initial
phase-points were generated with a Metropolized Markov-chain Monte Carlo sam-
pler targeted at the equilibrium configurational distribution of the liquid. Specif-
ically, a randomized Hamiltonian Monte Carlo [9, 80] (rHMC) simulation of suf-
ficient length was used to thermalize a crystalline configuration of the system at
the target density, and 102 configurations were extracted from well-separated points
along the rHMC trajectory. Each of these (approximately) independent draws from
the equilibrium configurational distribution of the liquid at the target physical con-
ditions was subsequently paired with 102 independent velocities drawn from the
corresponding Maxwell–Boltzmann distribution, yielding 104 (approximately) in-
dependent draws from the phase space distribution of the liquid at thermal equilib-
rium.

3.11 Appendix G: Simulation and estimation details

This section compiles simulation protocols and statistical estimation methods used
to generate Figs. 3.4 for the one-dimensional quantum harmonic oscillator, and
Figs. 3.5 and 3.6 for room-temperature liquid water.

3.11.1 One-dimensional quantum harmonic oscillator

Numerical equilibrium averages and integrated autocorrelation times for the quan-
tum harmonic oscillator were estimated by averaging over a 10-nanosecond T-RPMD
trajectory integrated using the algorithm listed in Sec. 3.2.1, and initialized at an ex-
act sample from the numerical stationary distribution (listed for the jth ring polymer
mode in Eq. (3.19)) corresponding to the physical parameters (i.e., Λ, m, and β) and
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Figure 3.8. Stability interval calibration for q-TIP4P/F room-temperature liquid water simu-
lations. Data points correspond to the fraction of thermally initialized single-bead T-RPMD
trajectories that “survived” (i.e., did not exhibit numerical overflow) over a 50-ps time pe-
riod at the respective integration time-step ∆t. Error bars correspond to the standard error
of the fraction of surviving trajectories across initialization points with different configura-
tions. The gray dashed line marks the≥99% trajectory survival threshold beyond which we
deem a time-step “stable.” Note that no time-step beyond ∆t = 1.4 fs reaches the survival
threshold.

simulation parameters (i.e., n, ∆t, and the function θ) listed in Sec. 3.3.1. Specif-
ically, the statistics reported in Fig. 3.4 were obtained by partitioning the T-RPMD
trajectory into 10 disjoint blocks, estimating the equilibrium average and autocorre-
lation time within each block, and computing the sample mean and standard error
among the resulting block estimates with 1000 bootstrap resamples.

We now describe the formulas and methods used to obtain block estimates for the
equilibrium mean and integrated autocorrelation time. The equilibrium average µOn

of observable On within each block of the partitioned T-RPMD trajectory was esti-
mated using the standard estimator [81]

µ̂On =
1

K

K−1∑
k=0

O(k∆t)
n , (3.38)

where K is the number of steps in the block (i.e., the block size) and O
(k∆t)
n the

value of On at the kth step within the block. Similarly, the lag-k∆t autocovariance
COn(k∆t) was estimated using [81]

ĈOn(k∆t) =
K−k−1∑
ℓ=0

(
O

(ℓ∆t)
n −µ̂On

)(
O

((ℓ+k)∆t)
n −µ̂On

)
K − k

for 0 ≤ k∆t ≤ (K − 1)∆t = 1 ns. The integrated autocorrelation time was



71

subsequently estimated using [71, 81]

âVarOn

VarOn

(M) = 1 + 2
M∑
k=1

ĈOn(k∆t)

ĈOn(0)
, (3.39)

where 0 < M ≤ K is a suitable cutoff. The choice of M is nontrivial, as it car-
ries a trade-off between bias (more pronounced at small M ) and variance (more
pronounced at large M ) [71]. To choose M judiciously, we follow the automatic
windowing (AW) method described in Appendix C of Ref. [82]. The AW method
dictates that M should correspond to the smallest lag that satisfies the inequality

M ≥ c
âVarOn

VarOn

(M) ,

where the parameter c > 0 dictates the variance-bias trade-off in place of M , and is
chosen as large as possible to reduce the bias of the estimator for a given variance
threshold.

Fig. 3.9 illustrates usage of the AW method for integrated autocorrelation time es-
timation, using trajectory data generated by the T-RPMD scheme with the choice
θ(x) = 2 arctan(x/2) at n = 64 beads and ∆t = 2.0 fs, and focusing on the ob-
servables KEpri

n (black), KEvir
n (red), and KEcla

n (cyan) introduced in Sec. 3.3.1. The
estimated integrated autocorrelation times are plotted with solid lines in Fig. 3.9a
for various values of c, and the corresponding cutoffs M are plotted in Fig. 3.9b. Ex-
act integrated autocorrelation times are plotted with dashed lines in Fig. 3.9a. Note
that as c (and thus M ) increases, the estimates converge to the corresponding exact
values at the expense of a larger variance, which can nonetheless be controlled by
adjusting the block size K.

3.11.2 Room-temperature liquid water

The equilibrium averages and integrated autocorrelation times reported in Fig. 3.5
were obtained by averaging over 10-nanosecond T-RPMD trajectories integrated for
each considered bead number n, time-step ∆t, and function θ. All trajectories were
initialized at an approximate sample from the corresponding numerical equilibrium
distribution, obtained by thermalizing for 20 ps a classical (i.e., n = 1) configuration
of the system into the n-bead ring-polymer phase space. Figure 3.10 below checks
that this thermalization protocol indeed lead to near-equilibrium initialization of the
T-RPMD trajectories. The reference equilibrium averages plotted with dashed lines



72

0

4

8

12

16

in
t. 

au
to

co
rr.

tim
e 

aV
ar

O n
/V

ar
O n

 (f
s)

(a)
On = KEpri

n

On = KEpri
n

On = KEcla
n

1 2 3 4 5
AW parameter c

0

25

50

75

100
AW

 c
ut

of
f M

t (
fs

) harmonic oscillator
n = 64, t = 2.0 fs

(b)

Figure 3.9. Integrated autocorrelation times of several observables of the one-dimensional
harmonic oscillator in Sec. 3.3.1, estimated with the AW method. Trajectory data for the
estimates was generated using the T-RPMD scheme with θ(x) = 2 arctan(x/2) at n = 64
beads and ∆t = 2.0 fs, and processed as described in the current section. Estimated (resp.
exact) integrated autocorrelation times for observablesKEpri

n (black), KEvir
n (red), andKEcla

n

(cyan) are shown in solid (resp. dashed) lines in panel a as a function of the windowing
parameter c. Panel b plots the cutoffs determined by the choice of c for the three observables,
where the linear relation between M∆t and c at large values of the latter corroborates the
non-spurious convergence of the autocorrelation time estimates.

in Fig. 3.5 were obtained by averaging over a one-nanosecond, 256-bead staging
PIMD [11] trajectory integrated at a 0.1-fs time-step with the mass and friction pa-
rameters recommended in Ref. [8], and initialized with the same protocol used for
the T-RPMD simulations.

The observables considered in Fig. 3.5 measure properties per H atom or per H2O

molecule, and thus the reported values are averages over estimates obtained for each
simulated moiety. The equilibrium mean and integrated autocorrelation time of ob-
servable On for each moiety was estimated by partitioning the trajectory of the moi-
ety into 10 disjoint 1-nanosecond blocks, evaluating Eqs. (3.38) and (3.39) within
each block, and determining the sample mean and standard error among the block es-
timates with 1000 bootstrap resamples. The AW method [82] was applied to choose
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a cutoff lag M ≤ 1 ns in Eq. (3.39), as illustrated in Fig. 3.9 for the harmonic
oscillator application.

The T-RPMD trajectories used to generate Fig. 3.5 also yielded Fig. 3.6, where pan-
els a and c plot autocovariance functions of the form 1

NH2O

∑NH2O

i=1

〈
Ōi(0)·Ōi(k∆t)

〉
,

where NH2O = 32 is the number of simulated H2O molecules and Ōi(k∆t) is the
bead-averaged value of observable O (e.g., the molecular dipole moment or center-
of-mass velocity) on the ith molecule at time k∆t along a stationary T-RPMD tra-
jectory. The autocovariance

〈
Ōi(0) · Ōi(t)

〉
was estimated for the lags k∆t shown

in Fig. 3.6 by

〈
Ōi(0) · Ōi(k∆t)

〉
≈

K−k−1∑
ℓ=0

Ō
(ℓ∆t)
i · Ō((ℓ+k)∆t)

i

K − k
,

where K∆t = 1 ns is the length of each block in a partitioned 10-nanosecond
T-RPMD trajectory. As with the results in Fig. 3.5, statistics for each molecule
were obtained from block estimates via bootstrapping, and Figs. 3.6a and 3.6c report
molecule-averaged statistics.

Figure 3.10 validates the 20-ps thermalization interval used to initialize the tra-
jectories that generated Figs. 3.5 and 3.6. In detail, Figs. 3.10a and 3.10b (resp.,
Figs. 3.10c and 3.10d) plot the non-equilibrium mean of the primitive and virial
quantum kinetic energy per H atom (resp. the mean O−H bond and H−O−H

angle potential energy per water molecule) as it approaches the equilibrium value
in Figs. 3.5a and 3.5c (resp., Figs. 3.5e and 3.5g) for a 64-bead ring polymer at a
1.4 fs time-step with the considered choices of θ. At each time k∆t within the 20-
ps time interval, the non-equilibrium mean is estimated by averaging across 1000

independent trajectories initialized at a point-mass distribution on the n-bead ring-
polymer phase space centered at the classical (i.e., n = 1) sample used to initialize
the reported simulations. Within statistical uncertainty, the non-equilibrium mean
for each observable converges to its equilibrium value within the 20-ps interval at
visually indistinguishable rates across the tested choices of θ.
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Figure 3.10. Convergence to equilibrium of the BAOAB-like schemes considered in
Sec. 3.3.2 with n = 64 ring-polymer beads and a ∆t = 1.4 fs time-step. With respect
to the non-equilibrium 64-bead configurational distribution evolved from a point mass at
a classical (i.e., n = 1) configuration, panels a and c plot the mean kinetic energy per H
atom for the n-bead system as per the primitive and virial estimators, respectively, for times
up to 1.0 ps. Panels b and d, respectively, plot the non-equilibrium mean O−H-bond and
H−O−H-angle potential energy per q-TIP4P/F water molecule, for times up to 10 ps. The
lightly shaded interval around each curve corresponds to the standard error of the estimated
non-equilibrium mean, computed with 1000 bootstrap resamples from a sample of 1000 in-
dependent trajectories.



75

References Cited in Part I

[1] M. Parrinello and A. Rahman, “Study of an F center in molten KCl”, The
Journal of Chemical Physics 80, 860 (1984).

[2] G. J. Martyna, A. Hughes, and M. E. Tuckerman, “Molecular dynamics al-
gorithms for path integrals at constant pressure”, The Journal of Chemical
Physics 110, 3275 (1999).

[3] P. Minary, G. J. Martyna, and M. E. Tuckerman, “Algorithms and novel ap-
plications based on the isokinetic ensemble. I. Biophysical and path integral
molecular dynamics”, The Journal of Chemical Physics 118, 2510 (2003).

[4] A. Beskos, G. Roberts, A. Stuart, and J. Voss, “MCMC methods for diffusion
bridges”, Stochastics and Dynamics 8, 319 (2008).

[5] A. Beskos, F. J. Pinski, J. M. Sanz-Serna, and A. M. Stuart, “Hybrid Monte
Carlo on Hilbert spaces”, Stochastic Processes and their Applications 121,
2201 (2011).

[6] J. Lu, Y. Lu, and Z. Zhou, “Continuum limit and preconditioned Langevin
sampling of the path integral molecular dynamics”, Journal of Computational
Physics 423, 109788 (2020).

[7] Z. Zhang, X. Liu, Z. Chen, H. Zheng, K. Yan, and J. Liu, “A unified thermostat
scheme for efficient configurational sampling for classical/quantum canonical
ensembles via molecular dynamics”, The Journal of Chemical Physics 147,
034109 (2017).

[8] J. Liu, D. Li, and X. Liu, “A simple and accurate algorithm for path integral
molecular dynamics with the Langevin thermostat”, The Journal of Chemical
Physics 145, 024103 (2016).

[9] N. Bou-Rabee and J. M. Sanz-Serna, “Geometric integrators and the Hamil-
tonian Monte Carlo method”, Acta Numerica 27, 113 (2018).

[10] N. Bou-Rabee and A. Eberle, “Two-scale coupling for preconditioned Hamil-
tonian Monte Carlo in infinite dimensions”, Stochastics and Partial Differen-
tial Equations: Analysis and Computations 9, 207 (2021).

[11] M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, “Efficient
molecular dynamics and hybrid Monte Carlo algorithms for path integrals”,
The Journal of Chemical Physics 99, 2796 (1993).

[12] I. R. Craig and D. E. Manolopoulos, “Quantum statistics and classical me-
chanics: Real time correlation functions from ring polymer molecular dynam-
ics”, The Journal of Chemical Physics 121, 3368 (2004).



76

[13] S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller III,
“Ring-polymer molecular dynamics: Quantum effects in chemical dynamics
from classical trajectories in an extended phase space”, Annual Reviews of
Physical Chemistry 64, 387 (2013).

[14] R. P. Feynman, Quantum mechanics and path integrals (McGraw-Hill, 1965).

[15] D. Chandler and P. G. Wolynes, “Exploiting the isomorphism between quan-
tum theory and classical statistical mechanics of polyatomic fluids”, The Jour-
nal of Chemical Physics 74, 4078 (1981).

[16] T. F. Miller III and D. E. Manolopoulos, “Quantum diffusion in liquid water
from ring polymer molecular dynamics”, The Journal of Chemical Physics
123, 154504 (2005).

[17] T. F. Miller III and D. E. Manolopoulos, “Quantum diffusion in liquid para-
hydrogen from ring-polymer molecular dynamics”, The Journal of Chemical
Physics 122, 184503 (2005).

[18] M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, “Efficient
stochastic thermostatting of path integral molecular dynamics”, The Journal
of Chemical Physics 133, 124104 (2010).

[19] M. Ceriotti, D. E. Manolopoulos, and M. Parrinello, “Accelerating the con-
vergence of path integral dynamics with a generalized Langevin equation”,
The Journal of Chemical Physics 134, 084104 (2011).

[20] M. Rossi, M. Ceriotti, and D. E. Manolopoulos, “How to remove the spurious
resonances from ring polymer molecular dynamics”, The Journal of Chemical
Physics 140, 234116 (2014).

[21] M. Rossi, V. Kapil, and M. Ceriotti, “Fine tuning classical and quantum molec-
ular dynamics using a generalized Langevin equation”, Journal of Chemical
Physics 148, 102301 (2018).

[22] G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through ve-
locity rescaling”, The Journal of Chemical Physics 126, 014101 (2007).

[23] N. Bou-Rabee and H. Owhadi, “Long-run accuracy of variational integra-
tors in the stochastic context”, SIAM Journal on Numerical Analysis 48, 278
(2010).

[24] N. Bou-Rabee and E. Vanden-Eijnden, “Pathwise accuracy and ergodicity of
metropolized integrators for SDEs”, Communications on Pure and Applied
Mathematics 63, 655 (2010).

[25] B. Leimkuhler and C. Matthews, “Rational construction of stochastic numeri-
cal methods for molecular sampling”, Applied Mathematics Research eXpress
2013, 34 (2013).



77

[26] R. Korol, N. Bou-Rabee, and T. F. Miller III, “Cayley modification for strongly
stable path-integral and ring-polymer molecular dynamics”, The Journal of
Chemical Physics 151, 124103 (2019).

[27] H. F. Trotter, “On the product of semi-groups of operators”, Proceedings of
the American Mathematical Society 10, 545 (1959).

[28] T. Matsubara, “A new approach to quantum-statistical mechanics”, Progress
of Theoretical Physics 14, 351 (1955).

[29] D. Li, X. Han, Y. Chai, C. Wang, Z. Zhang, Z. Chen, J. Liu, and J. Shao,
“Stationary state distribution and efficiency analysis of the Langevin equation
via real or virtual dynamics”, The Journal of Chemical Physics 147, 184104
(2017).

[30] S. Kakutani, “On equivalence of infinite product measures”, Annals of Math-
ematics 49, 214 (1948).

[31] V. I. Bogachev, Gaussian measures, Vol. 62, Mathematical Surveys and Mono-
graphs (American Mathematical Society, 1998).

[32] A. Pérez and M. E. Tuckerman, “Improving the convergence of closed and
open path integral molecular dynamics via higher order Trotter factorization
schemes”, The Journal of Chemical Physics 135, 064104 (2011).

[33] O. Marsalek, P.-Y. Chen, R. Dupuis, M. Benoit, M. Méheut, Z. Bačić, and
M. E. Tuckerman, “Efficient calculation of free energy differences associated
with isotopic substitution using path-integral molecular dynamics”, Journal
of Chemical Theory and Computation 10, 1440 (2014).

[34] J. A. Barker, “A quantum-statistical Monte Carlo method; path integrals with
boundary conditions”, The Journal of Chemical Physics 70, 2914 (1979).

[35] M. F. Herman, E. J. Bruskin, and B. J. Berne, “On path integral Monte Carlo
simulations”, The Journal of Chemical Physics 76, 5150 (1982).

[36] B. García-Archilla, J. M. Sanz-Serna, and R. D. Skeel, “Long-time-step meth-
ods for oscillatory differential equations”, SIAM Journal on Scientific Com-
puting 20, 930 (1998).

[37] E. Hairer and C. Lubich, “Long-time energy conservation of numerical meth-
ods for oscillatory differential equations”, SIAM Journal on Numerical Anal-
ysis 38, 414 (2000).

[38] J. M. Sanz-Serna, “Mollified impulse methods for highly oscillatory differen-
tial equations”, SIAM Journal on Scientific Computing 46, 1040 (2008).

[39] R. I. McLachlan and A. Stern, “Modified trigonometric integrators”, SIAM
Journal on Scientific Computing 52, 1378 (2014).

[40] A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics”,
International Statistical Review 70, 419 (2002).



78

[41] S. Habershon, T. E. Markland, and D. E. Manolopoulos, “Competing quantum
effects in the dynamics of a flexible water model”, The Journal of Chemical
Physics 131, 024501 (2009).

[42] S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, “Comparison of
path integral molecular dynamics methods for the infrared absorption spec-
trum of liquid water”, The Journal of Chemical Physics 129, 074501 (2008).

[43] T. E. Markland and M. Ceriotti, “Nuclear quantum effects enter the main-
stream”, Nature Reviews Chemistry 2, 0109 (2018).

[44] D. Frenkel and B. Smit, Understanding molecular simulation: From algo-
rithms to applications, 2nd (Academic Press, 2002).

[45] D. C. Rapaport, The art of molecular dynamics simulation, 2nd (Cambridge
University Press, 2004).

[46] B. Leimkuhler and C. Matthews, Molecular dynamics, Vol. 39, Interdisci-
plinary Applied Mathematics (Springer International Publishing, 2015).

[47] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 2nd edition
(Oxford University Press, 2017).

[48] J. Cao and G. A. Voth, “The formulation of quantum statistical mechanics
based on the Feynman path centroid density. II. Dynamical properties”, The
Journal of Chemical Physics 100, 5106 (1994).

[49] J. Liu, “Path integral Liouville dynamics for thermal equilibrium systems”,
The Journal of Chemical Physics 140, 224107 (2014).

[50] T. J. H. Hele, M. J. Willatt, A. Muolo, and S. C. Althorpe, “Boltzmann-
conserving classical dynamics in quantum time-correlation functions: “Mat-
subara dynamics””, The Journal of Chemical Physics 142, 134103 (2015).

[51] T. J. H. Hele, M. J. Willatt, A. Muolo, and S. C. Althorpe, “Communica-
tion: Relation of centroid molecular dynamics and ring-polymer molecular
dynamics to exact quantum dynamics”, The Journal of Chemical Physics 142,
191101 (2015).

[52] J. R. Cendagorta, Z. Bačić, and M. E. Tuckerman, “An open-chain imaginary-
time path-integral sampling approach to the calculation of approximate sym-
metrized quantum time correlation functions”, The Journal of Chemical Physics
148, 102340 (2018).

[53] I. R. Craig and D. E. Manolopoulos, “Chemical reaction rates from ring poly-
mer molecular dynamics”, The Journal of Chemical Physics 122, 084106
(2005).

[54] I. R. Craig and D. E. Manolopoulos, “A refined ring polymer molecular dy-
namics theory of chemical reaction rates”, The Journal of Chemical Physics
123, 034102 (2005).



79

[55] A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, “On the applicability
of centroid and ring polymer path integral molecular dynamics for vibrational
spectroscopy”, The Journal of Chemical Physics 130, 194510 (2009).

[56] J. A. Morrone and R. Car, “Nuclear quantum effects in water”, Physical Re-
view Letters 101, 017801 (2008).

[57] B. Cheng, E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti, “Ab initio ther-
modynamics of liquid and solid water”, Proceedings of the National Academy
of Sciences 116, 1110 (2019).

[58] T. Zimmermann and J. Vaníček, “Path integral evaluation of equilibrium iso-
tope effects”, The Journal of Chemical Physics 131, 024111 (2009).

[59] D. L. Eldridge, R. Korol, M. K. Lloyd, A. C. Turner, M. A. Webb, T. F. Miller
III, and D. A. Stolper, “Comparison of experimental vs theoretical abundances
of 13CH3D and 12CH2D2 for isotopically equilibrated systems from 1 to 500
◦C”, ACS Earth and Space Chemistry 3, 2747 (2019).

[60] G. Strang, “On the construction and comparison of difference schemes”, SIAM
Journal on Numerical Analysis 5, 506 (1968).

[61] M. P. Calvo and J. M. Sanz-Serna, “Instabilities and inaccuracies in the inte-
gration of highly oscillatory problems”, SIAM Journal on Scientific Comput-
ing 31, 1653 (2009).

[62] V. I. Arnol’d, Mathematical methods of classical mechanics, 2nd edition, Vol. 60,
Graduate Texts in Mathematics (Springer Science & Business Media, 2013).

[63] B. J. Braams and D. E. Manolopoulos, “On the short-time limit of ring poly-
mer molecular dynamics”, The Journal of Chemical Physics 125, 124105
(2006).

[64] N. Bou-Rabee, “Cayley splitting for second-order Langevin stochastic partial
differential equations”, Preprint (2017).

[65] G. Metafune, D. Pallara, and E. Priola, “Spectrum of Ornstein-Uhlenbeck op-
erators inLp spaces with respect to invariant measures”, Journal of Functional
Analysis 196, 40 (2002).

[66] G. A. Pavliotis, Stochastic Processes and Applications, Vol. 60, Texts in Ap-
plied Mathematics (Springer, 2014).

[67] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian problems, Vol. 7,
Applied mathematics and mathematical computation (Chapman & Hall, 1994).

[68] C. Villani, Optimal transport: Old and new, Vol. 338, Comprehensive Studies
in Mathematics (Springer Science & Business Media, 2008).

[69] C. R. Givens and R. M. Shortt, “A class of Wasserstein metrics for probability
distributions”, Michigan Mathematical Journal 31, 231 (1984).



80

[70] C. J. Geyer, “Practical Markov chain Monte Carlo”, Statistical Science 7, 473
(1992).

[71] A. Sokal, “Monte Carlo methods in statistical mechanics: Foundations and
new algorithms”, in Functional integration: Basics and applications, edited
by C. DeWitt-Morette, P. Cartier, and A. Folacci (Springer Science & Busi-
ness Media, 1997), pp. 131–192.

[72] S. Asmussen and P. W. Glynn, Stochastic simulation: Algorithms and analysis,
Vol. 57, Stochastic Modelling and Applied Probability (Springer, 2007).

[73] R. D. Skeel and Y. Fang, “Comparing Markov chain samplers for molecular
simulation”, Entropy 19, 561 (2017).

[74] Y. Fang, Y. Cao, and R. D. Skeel, “Quasi-reliable estimates of effective sample
size”, preprint (2017).

[75] R. Korol, J. L. Rosa-Raíces, N. Bou-Rabee, and T. F. Miller III, “Dimension-
free path-integral molecular dynamics without preconditioning”, The Journal
of Chemical Physics 152, 104102 (2020).

[76] Y. V. Suleimanov, J. W. Allen, and W. H. Green, “RPMDrate: Bimolecular
chemical reaction rates from ring polymer molecular dynamics”, Computer
Physics Communications 184, 833 (2013).

[77] V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T. Spura, B. Cheng,
A. Cuzzocrea, R. H. Meißner, D. M. Wilkins, B. A. Helfrecht, P. Juda, S. P.
Bienvenue, W. Fang, J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme,
C. Corminboeuf, T. D. Kühne, D. E. Manolopoulos, T. E. Markland, J. O.
Richardson, A. Tkatchenko, G. A. Tribello, V. Van Speybroeck, and M. Ceri-
otti, “i-PI 2.0: A universal force engine for advanced molecular simulations”,
Computer Physics Communications 236, 214 (2019).

[78] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, with
formulas, graphs, and mathematical tables (Dover Publications, Inc., 1965).

[79] T. Andreescu, Essential linear algebra with applications (Birkhäuser Basel,
2016).

[80] N. Bou-Rabee and J. M. Sanz-Serna, “Randomized Hamiltonian Monte Carlo”,
Annals of Applied Probability 27, 2159 (2017).

[81] M. B. Priestly, Spectral analysis and time series (Academic Press, 1981).

[82] N. Madras and A. Sokal, “The pivot algorithm: A highly efficient Monte
Carlo method for the self-avoiding walk”, Journal of Statistical Physics 50,
109 (1988).



Part II

PARALLEL-IN-TIME STOCHASTIC
MOLECULAR DYNAMICS



82

Chapter 4

Path-accelerated stochastic molecular dynamics:
Parallel-in-time integration using path integrals

Adapted from

J. L. Rosa-Raíces, B. Zhang, and T. F. Miller III, “Path-accelerated stochastic
molecular dynamics: Parallel-in-time integration using path integrals”, The Jour-
nal of Chemical Physics 151, 164120 (2019) DOI: 10.1063/1.5125455.

Abstract

Massively parallel computer architectures create new opportunities for the perfor-
mance of long-timescale stochastic molecular dynamics (MD) simulations. Here,
we introduce the path-accelerated molecular dynamics (PAMD) method that takes
advantage of distributed computing to reduce the wall-clock time of MD simulation
via parallelization with respect to stochastic MD time-steps. The marginal distri-
bution for the time evolution of a system is expressed in terms of a path integral,
enabling the use of path sampling techniques to numerically integrate MD trajec-
tories. By parallelizing the evaluation of the path action with respect to time and
by initializing the path configurations from a non-equilibrium distribution, the al-
gorithm enables significant speedups in terms of the length of MD trajectories that
can be integrated in a given amount of wall-clock time. The method is demonstrated
for Brownian dynamics, although it is generalizable to other stochastic equations of
motion. We apply the method to two simple systems, a harmonic oscillator and a
Lennard–Jones liquid, and we show that in comparison to the conventional Euler
integration scheme for Brownian dynamics, the new method can reduce the wall-
clock time for integrating trajectories of a given length by more than three orders of
magnitude in the former system and more than two in the latter. This new method for
parallelizing MD in the dimension of time can be trivially combined with algorithms
for parallelizing the MD force evaluation to achieve further speedup.
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4.1 Introduction

Molecular dynamics (MD) [1, 2] is the central tool for simulating chemical, biolog-
ical, and materials systems, with new algorithms and hardware expanding the range
of accessible scales in space and in time [3–5]. Faster processors have played an im-
portant role in this expansion, although the most dramatic improvements in recent
years have come from the number of available processors, rather than the clock-
speed of the individual cores [6, 7]. In particular, highly multi-threaded computer
architectures have been used to parallelize the MD force evaluation, greatly reduc-
ing the wall-clock time needed to perform an individual MD step [8–13]. However,
despite this progress in the parallelization of MD simulations with respect to the
force evaluations (i.e., in space), less attention has been dedicated to the notion of
parallelization with respect to the MD time-steps (i.e., in time).

The sequential nature of MD (i.e., the need to have access to a given time-step be-
fore the next time-step can be computed) would seem to discount the possibility of
exploiting parallelization in time; nonetheless, methods for parallel-in-time integra-
tion are being developed and applied to MD simulation. Most approaches [14–17]
are based on a prediction-correction paradigm that combines fine (i.e., accurate and
expensive) and coarse (i.e., inaccurate and inexpensive) solvers to iteratively refine
approximations of a trajectory in a convergent and parallel-in-time fashion. A range
of coarse solvers and iteration schemes have been employed to evaluate MD trajec-
tories of molecular systems with parallelization in the time domain [18–23], leading
to order-of-magnitude reductions in the wall-clock time-to-solution with respect to
sequential integration at the fine level of accuracy. Schemes for approximate long-
timescale integration via trajectory splicing are an alternative route to parallelization
in time, yielding accurate time evolution for systems that exhibit strong timescale
separation on well-characterized regions of the potential energy landscape [24].

The current chapter takes a different approach to parallelizing MD in time, focus-
ing on stochastic MD equations of motion for systems in contact with a thermal
bath. We demonstrate that by working with ensembles of trajectories in a path-
integral framework, multiple processors can be employed to reduce the wall-clock
time needed to evolve a stochastic MD trajectory of arbitrary length, without resort-
ing to parallelization of the MD force evaluation. This method of parallelization for
MD trajectories is independent of, and thus entirely complementary to, paralleliza-
tion of the MD force evaluations, and it creates new opportunities to harness large



84

numbers of available computer processors for the generation of long-timescale MD
trajectories.

4.2 Method

4.2.1 MD integration based on path distributions

While our approach generalizes to other stochastic equations of motion, we illustrate
it in the current chapter for Brownian (i.e., overdamped Langevin) dynamics under
potential V at temperature β−1,

ẋ(t) = −γ−1 V ′(x(t)) +
√
2D ẇ(t) , (4.1)

where the diffusion coefficient D and the friction coefficient γ are related by the
Einstein relation D = (βγ)−1, and where w(t) is a standard Wiener process. MD
trajectories can be generated by discretizing Eq. (4.1) with various numerical inte-
gration schemes [25–29], such as the forward Euler algorithm [2]

x(t+ dt)− x(t) = −γ−1 V ′(x(t)) dt+
√
2Ddt ξ , (4.2)

where dt is the discretization time-step and ξ is a standard Gaussian random vari-
ate. The marginal distribution associated with time evolution of the system by dt

according to Eq. (4.2) is [30]

K(x(t+ dt)|x(t); dt) ∝

exp

{
− dt

4D

(
x(t+ dt)− x(t)

dt
+

V ′(x(t))

γ

)2
}

, (4.3)

such that the likelihood of a MD trajectory of length T = N dt that evolves the
system along positions X = {x(t0), x(t1), . . . , x(tN)} at times tn = t+ n dt is

N−1∏
n=0

K(x(tn+1)|x(tn); dt) ≡ e−SN [X] , (4.4)

where SN [X] is the action associated with the MD trajectory and, for the case of
Eq. (4.1), is equivalent to the Onsager–Machlup action functional in a suitably de-
fined continuous-time limit [31, 32].

From Eq. (4.4), the position of the time-evolved system at time T has a marginal
distribution given by the path integral

K(x(T + t)|x(t);T ) ∝
w

R
dx1 · · ·

w

R
dxN−1 e

−SN [X] , (4.5)
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where xn = x(tn). It is clear that this path-integral formulation of the ensemble of
MD trajectories provides an equivalent description of the time evolution of the sys-
tem as Eq. (4.2); for this reason, trajectories generated using the scheme introduced
in this section are correctly referred to as MD trajectories. Numerous studies have
explored path-based formulations of MD, with variations of the underlying equation
of motion and of the discretization of the action [33–45].

Setting aside issues of efficiency until Sec. 4.2.2, we note that the path-integral for-
mulation of the marginal distribution for the time-evolved system offers a simple
MD integration scheme, illustrated in Fig. 4.1. First, sampling from the distribution
of paths of length T , with likelihood given by Eq. (4.4), is performed using Monte
Carlo (MC) or related methods (Fig. 4.1A) [46–48]; by drawing a random realiza-
tion from this distribution, we obtain a segment of MD trajectory from time 0 to time
T (illustrated by the heavy orange path in Fig. 4.1A). Then, by shifting from x(0) to
x(T ) along the sampled path, we resolve a trajectory from x(0) to x(T ) (represented
by the heavy green path in Fig. 4.1B) that is statistically equivalent to a realization
from the Euler algorithm defined in Eq. (4.2). After shifting the left endpoint of the
path from x(0) to x(T ), we restart the path sampling to extend the trajectory from
time T to time 2T . Iteration of this scheme will lead to the numerical integration of
a MD trajectory of arbitrary length in time.

Figure 4.2 illustrates a generalization of the integration scheme presented in Fig. 4.1.
Figure 4.2A repeats Fig. 4.1A; we first sample a path of length T that is discretized
into Npath time-steps (where Npath = T/dt) to obtain a realization of the path that
is consistent with the marginal distribution of the time-evolved system for each time
∆t ≤ T . Then, in Fig. 4.2B, we shift the left endpoint of the sampled path (indi-
cated in orange) by Nshift time-steps (where Nshift = ∆t/dt) to the position x(∆t).
With the remaining segment of the path now located at positions {x(∆t), x(∆t +

dt), . . . , x(T )}, we grow the path out of x(T ) by Nshift time-steps to regenerate the
original number of time-steps in the path. The positions of the system at the regen-
erated time-steps can be drawn from any distribution (and in Fig. 4.2B they are ob-
tained via straight-line extrapolation). Finally, as illustrated in Fig. 4.2C, sampling
is again performed to generate a path consistent with evolution from time ∆t to time
T +∆t; this sampling removes any artifacts introduced by the arbitrary distribution
used to grow the shifted path. As for the scheme in Fig. 4.1, iterating through the
sampling, shifting, and regeneration steps of the scheme in Fig. 4.2 yields a MD tra-
jectory of arbitrary length in time that is statistically equivalent to a realization from
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Figure 4.1. Illustration of a simple path-based MD integration scheme. A Sampling of the
distribution of paths for the period of time from 0 to T . A particular path drawn from this
distribution is indicated in orange. B Shifting along a sampled path (orange path in A) from
x(0) to x(T ), thereby resolving the segment of MD trajectory indicated in green, and then
resuming the sampling of the paths for the period of time from T to 2T .

the Euler algorithm. The only difference between these two path-based integration
schemes is that Fig. 4.1 involves shifting along the full length of the sampled path,
whereas Fig. 4.2 involves shifting only a fraction of the way along the sampled path.

Just like the Euler scheme in Eq. (4.2), the schemes illustrated in Figs. 4.1 and 4.2 en-
able the numerical integration of MD trajectories. Each of these integration schemes
consist of sequential iterations of an elementary step that predicts the state of the
system at some later time. In the Euler scheme, the prediction can be conducted
analytically based on the distribution defined in Eq. (4.3). In path-based integra-
tion schemes employing path lengths longer that dt, however, no such analytical
expression exists for general systems; path sampling is therefore needed before each
shifting event to generate time-evolved system positions consistent with the correct
marginal distribution.

For the scheme in Fig. 4.2, it is assumed that the path distributions in parts A and C
are well sampled. For MC path sampling algorithms, this implies that the number
of configurations of the path that are sampled in parts A and C, Nsample, is large
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Figure 4.2. Illustration of a path-accelerated molecular dynamics (PAMD). A Sampling of
the distribution of paths for the period of time from 0 to T . A particular path drawn from
this distribution is indicated in orange. B Shifting along a sampled path (orange path in A)
from x(0) to x(∆t), thereby resolving the segment of MD trajectory indicated in green, and
regenerating the full length of the path by drawing positions for the system from time T +dt
to T + ∆t from an arbitrary distribution. C Sampling of the distribution of paths for the
period of time from ∆t to ∆t+ T .

in comparison to the number that is needed to generate uncorrelated realizations
of the path. If Nsample is smaller than this decorrelation number, then the distri-
bution of paths that is generated in part C may be biased by the way in which the
path was regenerated in part B. However, the only requirement for generating ac-
curate MD trajectories using the scheme in Fig. 4.2 is accurate sampling of paths
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consistent with the marginal distribution K(x(∆t)|x(0);∆t); it is not essential that
the marginal distribution associated with the full path, K(x(T )|x(0);T ), be sam-
pled without error. Recalling that T = Npath dt and ∆t = Nshift dt, this suggests
that for a given path sampling algorithm, there is an interplay between parameters
Nsample, Npath and Nshift; for given values of Npath and Nshift, there is an associated
number of path configurations (Nsample) that must be sampled in order to generate a
sufficiently accurate marginal distribution K(x(∆t)|x(0);∆t).

This interplay betweenNsample,Npath, andNshift is illustrated in Figs. 4.3A-C, which
plot the error in the marginal distribution generated using the scheme in Fig. 4.2
for the Brownian dynamics of a harmonic oscillator. Full calculation details are
provided in Sec. 4.3. The error plotted in Figs. 4.3A-C corresponds to the Kullback–
Leibler divergence,

DKL(t) =

〈w
R
dxt P (xt|x0; t) log

P (xt|x0; t)

Q(xt|x0; t)

〉
, (4.6)

where Q(xt|x0; t) is the marginal distribution estimated using sampled paths from
the scheme in Fig. 4.2, and P (xt|x0; t) is the exact marginal distribution. The an-
gled brackets denote averaging with respect to the Boltzmann distribution of posi-
tions that is sampled by the exact dynamics, P (x0) = Z−1e−βV (x0), where Z =
r
R dx0 e

−βV (x0) is the partition function. For a harmonic oscillator with potential
V (x) = 1

2
kx2 [49],

P (xt|x0; t) ∝ exp

{
−βk

2

(xt − e−γ−1ktx0)
2

(1− e−2γ−1kt)

}
, (4.7)

and we employ k = 1 for the oscillator force constant, β−1 = 1 for the tempera-
ture and γ = 1 for the friction coefficient. DKL(t) returns non-negative values that
approach 0 as Q(xt|x0; t) more accurately reproduces P (xt|x0; t). As a function of
time t along the sampled paths, DKL(t) is plotted in Figs. 4.3A-C for seven simula-
tions that employ the scheme in Fig. 4.2 with different values of Nsample, Npath, and
Nshift. The results correspond to sampled paths of length T ≥ 1 that are discretized
into time-steps of dt = 1/32, and DKL(t) is evaluated for the numerically generated
marginal distributions at times dt ≤ t ≤ 1.

Figure 4.3A addresses the case where Nsample and Npath are held fixed and various
values of Nshift are used. Comparison of the blue (Nshift = 4), green (Nshift = 8),
and red (Nshift = 16) curves shows that for a given value of Nsample, smaller val-
ues of Nshift lead to smaller errors in the numerically generated marginal distri-
bution. Using the scheme in Fig. 4.2, a given segment of the path is sampled
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Figure 4.3. The interplay of the parameters Nsample, Npath, and Nshift in determining the
accuracy of the PAMD integration scheme. Panels A, B and C show the Kullback–Leibler
divergence DKL(t) defined in Eq. (4.6), from the marginal distribution generated using the
scheme in Fig. 4.2 to the exact marginal distribution for the dynamics of an overdamped
harmonic oscillator. Panels D, E, and F plot the position distributions P (x) sampled by
the MD trajectories integrated using the numerically generated marginal distributions from
panels A, B, and C, respectively, in comparison to the exact position distribution shown in
black dots. It is seen that the accuracy of the numerically generated marginal distribution
dictates that of the integrated MD trajectory, and improves with decreasing Nshift (panels
A and D), increasing Nsample (panels B and E), or increasing Npath (panels C and F) for
given values of the remaining parameters (indicated at the top of each panel).

Npath · Nsample/Nshift times before it is used to generate the marginal distribution
for the integration of the MD trajectory; therefore, smaller values of Nshift lead to
better sampling of the path distribution and smaller errors in the marginal distribu-
tion.

Figure 4.3B illustrates a second scenario where Nshift and Npath are held fixed and
increasing values of Nsample are used. Comparison of the blue (Nsample = 1), green
(Nsample = 2), and red (Nsample = 4) curves shows that for a given value of Nshift,
larger values ofNsample (i.e., more sampling per shifting event) lead to smaller errors
in the numerically generated marginal distribution for integrating the MD trajectory.
This result is intuitive, as more sampling leads to elimination of the bias associated
with the arbitrary distribution used in the regeneration of the full length of the path.
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In Fig. 4.3C, Nshift and Nsample are held fixed as the length of the sampled path
(Npath) is increased while keeping the path discretization time-step unchanged. Com-
parison of the blue (Npath = 32), green (Npath = 128), and red (Npath = 512) curves
demonstrates that increasing the total lengthNpath ·dt of the sampled paths improves
the accuracy of the numerically generated marginal distribution. Like decreasing
Nshift for a given Npath (as in Fig. 4.3A), increasing Npath for a given Nshift allows
for more sampling of each segment of the path employed to generate the marginal
distribution associated with the MD time evolution.

While Figs. 4.3A-C illustrate the errors in the marginal distribution generated us-
ing the scheme in Fig. 4.2, Figs. 4.3D-F illustrate the corresponding errors in the
equilibrium distribution that is sampled by the integrated MD trajectories. For the
various employed parameters, the results from path-based MD integration are com-
pared to the exact Boltzmann distribution (dots) and, as expected, the errors in the
marginal distribution with given values of Nsample, Npath, and Nshift are reflected
in the distribution of positions that are visited in the MD trajectories. Supplemen-
tary movies M1 and M2 (see Supplementary Material at the end of this chapter),
respectively, illustrate the integration scheme in Fig. 4.2 as it generates the position
distributions for the cases Nsample = 1 (blue curve) and Nsample = 4 (red curve) in
Fig. 4.3E.

In summary, Fig. 4.3 demonstrates that decreasing Nshift, increasing Nsample, or in-
creasing Npath leads to greater accuracy in the integrated MD trajectories; as will
be shown in Sec. 4.2.2, the interplay between these three parameters is also critical
for determining the computational efficiency of MD integration using the scheme in
Fig. 4.2.

Before addressing efficiency, however, Fig. 4.4 illustrates that the integration scheme
in Fig. 4.2 is a non-equilibrium relaxation process for the segments of the sampled
path. For the case of the harmonic oscillator, Figs. 4.3A-C indicate that errors in the
numerically generated marginal distributions are typically larger at the right end-
point of the sampled path. This trend emerges because the integration scheme re-
generates path segments in configurations that are out of equilibrium (Fig. 4.2B).
The light gray paths in Fig. 4.4 correspond to independent realizations of the sam-
pled path (orange) obtained while integrating a harmonic oscillator trajectory. Since
the segment at the nose of the path has undergone little sampling after regeneration,
it is far from equilibrium with respect to the distribution of segments of an equilib-
rium harmonic oscillator trajectory (Fig. 4.4A; distributions at right). However, as
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Figure 4.4. PAMD integrates equilibrium trajectories by relaxing non-equilibrium path
segments. The state of the sampled path is shown for three consecutive iterations of the path-
based integration scheme applied to a Brownian harmonic oscillator on the left of panels A,
B, and C. The gray box in each panel highlights the configuration of a particular segment
of the path after each iteration of the integration scheme. On the right of each panel are
plotted the distributionsP (x(3∆t)) of positions x(3∆t) sampled by the boxed path segment
at time 3∆t (orange curves), along with the distribution of configurations sampled by the
integrated trajectory (green curve). The path segment inside the gray box in each panel
reaches equilibrium by undergoing sampling as it shifts from the nose (right endpoint) to
the tail (left endpoint) of the sampled path; accordingly, the distribution of sampled positions
approaches that sampled by the integrated trajectory.

that segment works its way from the nose (right endpoint) to the tail (left endpoint)
of the path, it is sampled with increasing accuracy (Figs. 4.4B and C). This relax-
ation process is illustrated by the distribution of positions, P (x(3∆t)), sampled by
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the foremost end x(3∆t) of the path segment in the gray box throughout Fig. 4.4;
as the orange curves indicate, this distribution approaches that sampled by the har-
monic oscillator trajectory (green curve) as the segment relaxes toward equilibrium
and simultaneously approaches the tail of the sampled path.

4.2.2 An opportunity for speedup

At face value, the path-based integration scheme in Fig. 4.2 may appear to be inef-
ficient, given the difficulties of sampling uncorrelated paths [38, 46, 50, 51]. Yet, it
has several potential advantages: Firstly, there is an opportunity for parallelization,
given that typical expressions for the path action incur a dominant source of com-
putational cost from the evaluation of the forces in the system along the path (V ′(x)

in Eq. (4.3)). These forces can be evaluated independently, enabling straightforward
parallelization of the action with respect to time. Secondly, regeneration of the path
to its full length following shifting (Fig. 4.2B) can be performed using an arbitrary
distribution to obtain the system positions for the regenerated time-steps; conse-
quently, it is possible to carry out this operation at a cost that is negligible relative
to evaluation of the MD forces. Thirdly, MC path sampling provides a numerically
more stable way for generating trajectories than integration of the discretized equa-
tions of motion [34]; thus, a sufficiently accurate MD trajectory may be obtained
with the path-based integration scheme at a larger time-step than a conventional
Brownian dynamics integrator would allow.

The above considerations suggest that the scheme in Fig. 4.2 could lead to reduction
of the wall-clock time associated with MD integration, in comparison with standard
methods. To quantify the speedup achieved with the new scheme, we introduce
a measure χ, with χ−1 defined as the number of force evaluations per processor
per step of time dtE, where dtE is the time-step used by the Euler algorithm to inte-
grate the Brownian dynamics. The wall-clock speedup of the path-based integration
scheme is thusχ, assuming that (i) evaluation of the MD forces dominates the cost of
the evaluation of the path action, (ii) parallel computer processors are used to inde-
pendently evaluate the forces along the discretized path, and (iii) regeneration of the
full length of the path following shifting (Fig. 4.2B) is performed without evaluating
the MD forces. It is clear that for the Euler algorithm, χ = 1, such that this mea-
sure provides a simple basis of comparison of the wall-clock time for the proposed
path-based integration scheme (which employs parallelization in time) versus the
wall-clock time for a conventional stochastic MD integration scheme (which does
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not). In the current chapter, we set aside the complementary issue of speeding up
MD integration via parallelization within the force evaluation.

For a general implementation of the integration scheme in Fig. 4.2, the expression
for χ is obtained as follows. Recalling previously introduced notation, we employ
sampled paths of length T that are discretized with a time-step of dt, which may
be different (and is typically larger [34]) than the numerically stable time-step for
the Euler algorithm, dtE. Let Nforce be the number of MD force evaluations that are
required during path sampling per shifting event, which depends on bothNsample and
the details of the path sampling algorithm, and let Nprocs be the number of employed
parallel processors. Since the number of force evaluations per processor per shifting
event is given by Nforce/Nprocs, the speedup is

χ = Nshift ·
Nprocs

Nforce

· dt
dtE

. (4.8)

Equation (4.8) shows that the path-based integration scheme in Fig. 4.2 offers the
possibility for reduction of the wall-clock time needed to compute MD trajectories,
relative to conventional stochastic MD. Factors that enable this speedup include the
increase in the path discretization time-step (dt) relative to that possible for conven-
tional stochastic MD (dtE), maximization of the number of integrated time-steps per
shifting event (Nshift), maximization of the number of parallel processors to perform
the independent force evaluations associated with the calculation of the path action
(Nprocs), and minimization of the number of force evaluations needed per shifting
event (Nforce). As will be shown in Sec. 4.4, this approach indeed enables substan-
tial speedups in the integration of MD trajectories while preserving the accuracy of
the dynamics, and we henceforth refer to the method as path-accelerated molecular
dynamics (PAMD).

4.3 Calculation details

We implement the PAMD method with sampling of the path distribution through
the multilevel sliding and sampling (S&S) algorithm introduced in Ref. [38]. For
a path of Npath time-steps, a total of L = log2Npath levels are defined (Fig. 4.5A);
finer levels (smaller values of the level index 1 ≤ l ≤ L) correspond to partitions
of the path into fragments of increasingly smaller length where the local configu-
ration of the path is sampled. In accordance with the S&S algorithm, neighboring
path fragments share endpoints that are chosen randomly such that the length of the
fragments varies from 1 to 2l time-steps; we call this random fragmentation. For
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all fragmentations of the path at level l, internal fragments of the path are of length
2l and fragments at the termini of the path have a combined length of 2l. During a
MC step for a given fragmentation of the path (Fig. 4.5B), the system positions at
shared endpoints of neighboring path fragments are held fixed to permit mutually
independent updates of the fragment configurations. Furthermore, the position of
the system at the tail endpoint of the path is always fixed throughout the MC step,
whereas that at the nose endpoint of the path undergoes sampling together with the
nose fragment. Path fragment configurations are updated through application of
the standard Metropolis–Hastings criterion [52, 53], with trial configurations drawn
from a distribution that satisfies the boundary conditions at the fragment endpoints.
Random fragmentation of the path is performed between MC steps, so that fixed
system positions at previous fragment endpoints can be sampled during subsequent
steps (Fig. 4.5C).

Table 4.1. Summary of notation employed to describe the PAMD inte-
gration scheme. The last three rows define parameters specific to the path
sampling algorithm used.

dt time-step for discretization of the sampled path
Npath number of time-steps in the sampled path

Nprocs
number of processors for parallel-in-time force

evaluations
Nforce number of force evaluations per shifting event
Nsample number of MC steps per shifting event
Nshift number of time-steps shifted
L total number of levels in the sampled path
lmin finest sampled level of the path
lmax coarsest sampled level of the path

At each MC step, a level is randomly selected between lmin and lmax, with 1 ≤
lmin ≤ lmax ≤ L. The calculations reported here employ lmin > 1 and lmax < L,
such that not all levels are directly sampled. The choice of lmax < L corresponds to
excluding the direct sampling of levels associated with long path fragments, on the
basis of negligible acceptance. The choice of lmin > 1 corresponds to excluding the
direct sampling of levels associated with short path fragments, as these are trivially
updated via the direct sampling of longer fragments at coarser levels. Despite these
choices, the sampling remains ergodic due to the random fragmentation of the path
that occurs between MC steps [38, 54].
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Our choice of the multilevel S&S algorithm over other sampling algorithms offering
gradient-based global path updates, based on an effective Hamiltonian or Langevin
dynamics on the path space [47, 55–58], is motivated by at least three practical con-
siderations specific to the context where PAMD applications are envisioned. The
first pertains to the computational cost of each MC sampling step, which varies
drastically across algorithms. While gradient-based algorithms, at least in their
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Figure 4.5. Illustration of the multilevel sliding and sampling (S&S) algorithm. A Multi-
level representation of a path with Npath = 16 time-steps (L = 4 levels), shown for one
Cartesian coordinate. An initial configuration of the path is shown in orange. B Update of
the path configuration in A via a MC step at level l = 2. Fixed system positions along the
path are represented with black dots, configurations of the path before the update in gray, and
the configuration of the path after the update in orange. C MC step at level l = 3 following
that shown in B. The new fragmentation of the path allows for updates of system positions
that were held fixed in previous MC steps.
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Metropolis-unadjusted variants, can provably exhibit faster mixing than gradient-
free counterparts and exhibit robustness to arbitrary refinement of the MD time-
step toward the continuous-time limit [55–58], they require the evaluation of higher
derivatives of the physical potential that are often unavailable or considered too ex-
pensive in applications. On the other hand, gradient-free path sampling algorithms
can be combined with a symmetrized choice of the discretized path-action func-
tional [38, 45] to fully bypass all need for higher-order potential derivatives.

The second consideration is the requirement that the sampled path ensemble not ex-
hibit spurious artifacts associated with the sampling method employed or the chosen
discretization of the Onsager–Machlup functional. Observations have surfaced that
gradient-based path sampling algorithms can produced unphysical path ensembles
when combined with certain discretizations of the Onsager–Machlup functional [41,
59]; such artifacts are also avoided with gradient-free updates such as the celebrated
Crank–Nicolson [60] (or Brownian tube [48]) method.

The third and final consideration is to avoid the slow MC mixing associated with
global updates in long paths. The above-mentioned gradient-based and gradient-
free methods are all formulated to induce updates of the full configuration of the
sampled path in each MC step. The acceptance rate of such global updates can
scale poorly with sampled path length at fixed time-step size [51, 61], and thus lead
to slow equilibration within the long sampled-path lengths envisioned to be neces-
sary for effective application of the PAMD algorithm. This scaling consideration
also jeopardizes the performance of semi-local spectral Metropolis-within-Gibbs
schemes that sequentially update the components of a normal-mode representation
of the sampled path across its full length [62, 63].

The distribution of paths used to generate trial configurations for multilevel S&S
in each application is chosen to maximize the statistical efficiency of the sampling
(i.e., minimize Nsample) without requiring evaluation of the MD forces. For the har-
monic oscillator, trials are drawn from the distribution of free particle paths. For
simulations of the Lennard–Jones liquid, trials are drawn from the path distribution
of a fluid of hard spheres with diameter σHS; this strategy reduces the number of
force evaluations needed to obtain likely Lennard–Jones path configurations by ex-
cluding those with high interparticle overlap from the ensemble of trial paths. The
likelihood of a path at the hard-sphere level is evaluated using an approximation of
the pair propagator for diffusive hard spheres [64]. For both the harmonic oscillator
and the Lennard–Jones applications, regeneration of the sampled path after shifting
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is performed with the same distribution used to generate trial configurations for the
path sampling.

In total, each MC step involves a total number of Npath MD force evaluations. Since
Nforce is defined as the number of force evaluations per shifting event, and since
Nsample is the number of MC steps per shifting event, we have

Nforce = Nsample ·Npath . (4.9)

As we seek to maximize the wall-clock speedup via parallelization of these inde-
pendent force evaluations, we employ one processor per force evaluation, and thus

Nprocs = Npath . (4.10)

Additional parallelization within the force evaluation is of course possible, but is not
considered in the current chapter. Thus, we insert Eqs. (4.9) and (4.10) into Eq. (4.8)
to arrive at the following expression for the PAMD speedup:

χ =
Nshift

Nsample

· dt
dtE

. (4.11)

See Tbl. 4.1 for a summary of terms.

4.4 Results

We now apply the PAMD algorithm to two model systems, considering time evo-
lution according to Brownian dynamics (Eq. (4.1)), with β = 1 unless otherwise
indicated and with γ = 1 in appropriately reduced units. Like the Euler algorithm
(Eq. (4.2)), PAMD is a rigorous and formally exact way to integrate Brownian dy-
namics, yet the numerical accuracy of the trajectories depends on the parameters
employed. In each application, we examine the relationship between the number of
parallel processors employed and the speedup in the PAMD algorithm relative to
the Euler algorithm (χ in Eq. (4.11)), subject to the requirement that the MD trajec-
tories integrated using both PAMD and the Euler algorithm preserve well-defined
measures of accuracy.

In the current chapter, we focus exclusively on wall-clock speedups achieved via
parallelization of the MD integration in time, setting aside the separate and comple-
mentary issue of parallelizing the force evaluation at each time-step. All reported
speedups for PAMD in the current study are theoretical; they are obtained from
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Eq. (4.11) under the stated assumptions. The computational cost associated with
each speedup can be obtained by multiplying the reported value with the number of
parallel processors, Nprocs, employed in each application.

4.4.1 Harmonic oscillator

Here, we consider the example of an overdamped harmonic oscillator, with potential
V (x) = 1

2
x2. Two measures of the accuracy of the integrated MD trajectories are

considered. The first reports on the degree to which the trajectories sample the
correct equilibrium distribution,

Eeq =

√r
R dx |P (x)− Ps(x)|2

Z
(4.12)

where P (x) is the exact Boltzmann distribution, Z is the associated partition func-
tion, and Ps(x) is the equilibrium distribution of positions sampled by the numerical
integration schemes. The second measure of error reports on the accuracy of the MD
time evolution. Specifically, we consider the autocovariance function

C(t) = ⟨x(t′)x(t′ + t)⟩ = lim
T→∞

1

T

w T

0
dt′ x(t′)x(t′ + t) , (4.13)

which is a simple exponential function for the overdamped harmonic oscillator [49],

C(t) =
〈
x2
〉
exp(−κt) , (4.14)

where the angled brackets indicate Boltzmann averaging. The second measure of
error is thus

Edyn =
|κ− κs|

k
(4.15)

where κ = γ−1 = 1 is the exact decay constant and κs is the decay constant obtained
by fitting the exponential decay of the autocovariance from the numerically inte-
grated MD trajectories. Specifically, κs is obtained by averaging over 100 indepen-
dent trajectories of length 105 time units that are divided into 103 non-overlapping
time series, for which the log-autocovariance is linearly fit in the range t ∈ [0, 4].
Simulation parameters for integration of the MD trajectories in this application are
chosen to ensure that both measures of error remain below 3%.

Table 4.2 indicates that with a time-step of dtE = 0.025, the Euler algorithm yields
error values of Eeq = 0.3% and Edyn = 1.0%. Also shown in the table are parame-
ters for three separate PAMD simulations that obtain speedups of χ = 16, 128, and
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1024 with respect to the Euler algorithm. For both the equilibrium distribution and
the autocovariance function, Fig. 4.6 shows the comparison of the exact results and
those obtained using PAMD with the aforementioned speedups. The accuracy of the
PAMD trajectories is clearly preserved in all simulations, as indicated by the plotted
results and the reported values of Eeq and Edyn.

BA

Figure 4.6. For the harmonic oscillator, comparison of PAMD results (colored lines) with
exact results (black dots) for A the Boltzmann distribution P (x) and B the autocovariance
function C(t). The PAMD results correspond to Simulation 1 (red), Simulation 2 (green),
and Simulation 3 (blue) in Tbl. 4.2, which respectively achieve speedups of χ = 16, 128,
and 1024 relative to the Euler algorithm.

For all PAMD simulations reported in Tbl. 4.2, a significant fraction of the speedup
comes from the 16-fold larger time-step that can be employed in the path-based
scheme (dt = 0.4 vs. dtE = 0.025). The larger speedups achieved in Simulation 2

(χ = 128) and Simulation 3 (χ = 1024), in comparison to Simulation 1 (χ = 16),
arise from the larger ratios of Nshift to Nsample that are used in these simulations
(Nshift/Nsample = 8 for Simulation 2 and Nshift/Nsample = 64 for Simulation 3) in
comparison to Simulation 1 (for whichNshift/Nsample = 1). The higher frequency of
shifting events associated with larger values of the ratioNshift/Nsample places greater
demand on the efficiency of the path sampling, and a larger number of time-steps
in the sampled path (Npath; hence, a larger number of parallel processors, Nprocs,
per Eq. (4.10)) is needed to allow path segments to undergo a sufficient number
of MC steps before they are used to generate the marginal distribution for the MD
trajectories, as discussed in connection with Figs. 4.3 and 4.4. Accordingly, the
value ofNpath in each of the simulations in Tbl. 4.2 is set as large as needed to ensure
accurate MD integration at the corresponding value of Nsample, which is kept small
(Nsample = 2 in Simulation 1, and Nsample = 1 in Simulation 2 and Simulation 3) to
enhance the PAMD speedup.
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Table 4.2. Summary of PAMD simulation parameters used for the har-
monic oscillator application. Parameters L, lmin, and lmax are specific to
the path sampling algorithm used, described in Sec. 4.3.

Euler
dtE 0.025
Eeq 0.3%
Edyn 1.0%

PAMD
Simulation 1 Simulation 2 Simulation 3

dt 0.4 0.4 0.4
Npath 16 256 4096
Nsample 2 1 1
Nshift 2 8 64
L 4 8 12
lmin 3 4 4
lmax 3 5 8
χ 16 128 1024
Eeq 0.3% 0.3% 0.5%
Edyn 0.3% 1.1% 2.9%

4.4.2 Lennard–Jones liquid

Here, we apply PAMD to a model for a molecular liquid. The pairwise interaction
between particles is described using the standard energy- and force-shifted Lennard–
Jones potential [2],

U(r) =

{
u(r)− u(rc)− (r − rc)u

′(rc), r ≤ rc

0, r > rc
, (4.16)

where u(r) = 4ϵ {(σ/r)12 − (σ/r)6}; throughout, we take ϵ = 1 and σ = 1. The
system consists of 27 particles placed in a cubic box at reduced density ρσ3 = 0.50

and at constant reduced inverse temperature βϵ = 0.74. Simulations are performed
with periodic boundary conditions at constant volume, and the cutoff distance rc

corresponds to half of the simulation box-length.

As described in Sec. 4.3, the reported simulations for the Lennard–Jones liquid em-
ploy trial configurations drawn from a distribution of paths for a fluid of hard spheres
with diameter σHS. To prevent the path-sampling bias from affecting the accuracy of
the integrated trajectories, we employ a hard-sphere schedule that varies as a func-
tion of the path-time τ , σHS(τ); path configurations are then sampled in accordance
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with the path-time dependent potential

V (r;σHS(τ)) = U(r) + UHS(r;σHS(τ)) , (4.17)

where U(r) is defined in Eq. (4.16), and UHS(r;σHS) is the hard-sphere potential

UHS(r;σHS) =

{
+∞, r ≤ σHS

0, r > σHS

. (4.18)

The schedule σHS(τ) is chosen such that configurational volume is excluded at the
nose of the path for enhanced sampling efficiency, and no volume is excluded at
the tail of the path where the marginal distribution for MD integration is sampled
(Fig. 4.7); in this way, path segments regenerated from the hard-sphere distribution
are subsequently relaxed into the Lennard–Jones distribution as they shift from the
nose to the tail of the path. A worthy direction for future work is to systematically
optimize the schedule σHS(τ), which in general will depend on the simulation pa-
rameters reported in Tbl. 4.1.

nosetail

path regenerationpath sampling

scaled path-time

Figure 4.7. Hard-sphere schedule σHS(τ), versus scaled path-time τ , employed in the re-
ported Lennard–Jones simulations. Insets show slices of the path-time dependent poten-
tial V (r;σHS(τ)) employed to sample path configurations (Eq. (4.17)) at schedule values
corresponding to biased (σHS ≃ 1) and unbiased (σHS = 0) sampling of the equilibrium
path distribution, and the hard-sphere potential U(r;σHS) used to regenerate path segments
(Eq. (4.18)).

The accuracy of the integrated MD trajectories is evaluated in terms of the radial
distribution function g(r) and the self-diffusion coefficient D, using the respective
error measures

Eeq =

√r rc
0

dr |g(r)− gs(r)|2
r rc
0

dr g(r)
(4.19)
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and
Edyn =

|D −Ds|
D

, (4.20)

where g(r) and D are reference quantities obtained using the Euler algorithm with
a small time-step (5 × 10−5 Lennard–Jones time units), and gs(r) and Ds are ob-
tained using PAMD and the Euler algorithm with larger time-steps. The diffusion
coefficient is given by D = 1

6
limt→∞

d
dt
⟨R2(t)⟩, where

〈
R2(t)

〉
= lim

T→∞

w T

0
dt′

1

N

N∑
i=1

|ri(t′ + t)− ri(t
′)|2 (4.21)

is the mean-square displacement, ri the position of the ith particle, and N the num-
ber of particles [1]. ⟨R2(t)⟩ is obtained by averaging over 100 independent trajecto-
ries that are divided into 100 non-overlapping time series of length 1, in Lennard–
Jones time units, and a linear fit is performed in the range t ∈ [0.2, 1] to evaluate Ds

for the PAMD and Euler simulations.

Table 4.3 indicates that at a time-step of dtE = 2.5×10−4, the Euler algorithm yields
error values of Eeq = 1.4% and Edyn = 0.1%; larger time-steps were found to lead
to unstable Euler trajectories. Also shown in Tbl. 4.3 are two PAMD simulations
that lead to 16-fold (χ = 16; Simulation 1) and 128-fold (χ = 128; Simulation 2)
reductions of the wall-clock time required to generate equivalently accurate MD
trajectories for the Lennard–Jones liquid via the Euler algorithm, using simulation
parameters that keep error values below 5%. The radial distribution functions and
mean-square displacements obtained from these two simulations are plotted with
the corresponding reference quantities in Figs. 4.8A and B. Excellent agreement
between the PAMD and reference quantities is evident in the plots and from the
values of Eeq and Edyn reported in Tbl. 4.3.

As in the harmonic oscillator application, the speedups reported in Tbl. 4.3 for the
Lennard–Jones liquid are partially enabled by the use of a larger time-step in PAMD
(dt = 5×10−4) than is possible for stable numerical integration via the Euler method
(dtE = 2.5× 10−4). The remaining speedup in both simulations comes from using
shift lengths that integrate Nshift = 8 (Simulation 1) and Nshift = 64 (Simulation 2)
time-steps of MD trajectory at a rate of Nsample = 1 MC steps per shifting event.
Accurate integration at these speedups requires efficient sampling of path modes that
are commensurate with the shifting timescale (8 dt in Simulation 1 and 64 dt in Sim-
ulation 2); accordingly, long paths (Npath = 128 in Simulation 1 and Npath = 4096

in Simulation 2) are employed in both simulations so that segments can undergo a
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BA

Figure 4.8. For the Lennard–Jones liquid at βϵ = 0.74 and ρσ3 = 0.50, comparison
of PAMD results (colored lines) with numerically exact results (black dots) for A the radial
distribution function and B the mean-square displacement. The PAMD results correspond to
Simulation 1 (red) and Simulation 2 (green) in Tbl. 4.3, which respectively achieve speedups
of χ = 16 and 128 relative to the Euler algorithm.

sufficient number of MC steps before they are used to generate the respective MD
trajectories (Fig. 4.4).

4.5 Conclusions

The field of MD simulation faces important challenges in harnessing massively par-
allel computer architectures. Although successful parallelization of the the force
evaluation can be expected as the system size grows (i.e., weak scaling), there ex-
ists a much more difficult challenge of employing ever-larger numbers of parallel
processors to accelerate the simulation of systems of a fixed size (i.e., strong scal-
ing). Remarkable success has been achieved in this vein [8–13], but fundamental
limitations are inevitable.

The work comprising this chapter suggests that parallelization in the dimension
of time via path integrals offers a promising avenue for future progress in terms
of strong scaling. We introduce the PAMD approach, which achieves significant
speedups over conventional algorithms for stochastic dynamics by parallelizing eval-
uation of the MD forces along trajectory segments with respect to time. The method
strives to be applicable in greater generality than alternative approaches to long-
timescale simulation of stochastic trajectories, such as milestoning [65], Markov
state modeling [66], and trajectory splicing [24], by enabling the direct simulation of
long-timescale processes without assuming separation of timescales, and without re-
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Table 4.3. Summary of PAMD simulation parameters
used for the application to the Lennard–Jones liquid.
L, lmin, and lmax are parameters specific to the path
sampling algorithm used, described in Sec. 4.3.

Euler
dtE 2.5× 10−4

Eeq 1.4%
Edyn 0.1%

PAMD
Simulation 1 Simulation 2

dt 5× 10−4 5× 10−4

Npath 128 4096
Nsample 1 1
Nshift 8 64
L 7 12
lmin 3 4
lmax 5 7
χ 16 128
Eeq 3.5% 3.7%
Edyn 1.0% 1.9%

quiring the specification of a suitable configuration-space tiling or a set of collective
variables. Proof-of-principle applications to overdamped systems show that PAMD
can accelerate trajectory integration by several orders of magnitude with respect to
the conventional Euler scheme for Brownian dynamics, and even greater speedups
are possible with the use of larger numbers of parallel processors and enhancement
of the MC path sampling efficiency.

Looking forward, the PAMD approach will likely require additional methodologi-
cal developments to become viable for large-scale simulations of complex systems.
Central to this effort will be the refinement of path sampling methodologies that
lead to the reduction in the number of parallel processors that are needed for a given
amount of speedup with the method. Our application to the Lennard–Jones liq-
uid shows that preconditioned sampling of paths from an approximate dynamical
model [67], constructed a priori based on known features of the dynamics or gen-
erated on-the-fly via adaptive inference techniques for stochastic process approxi-
mation [68–70], provides an avenue for efficiency improvements in more general
applications. Regardless, we feel that the natural parallelization of path-integral for-
mulations, combined with the increasing availability of massively parallel computer
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resources, should motivate increased attention to the opportunities of parallelizing
molecular dynamics simulation in time.

Supplementary Material

Supplementary movies M1 and M2, respectively, show execution of the PAMD in-
tegration scheme as it accumulates position histograms during simulations of the
Brownian harmonic oscillator, for the cases Nsample = 1 (blue curve) and Nsample =

4 (red curve) in Fig. 4.3E. These cases illustrate distinct operational regimes of the
PAMD algorithm, respectively corresponding to inaccurate and accurate stochastic
MD trajectories as a function number of path sampling steps per PAMD iteration.
The movies are available from CaltechDATA at DOI: 10.22002/D1.20111.
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