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ABSTRACT

Quantum mechanical effects of nuclei are ubiquitous in chemistry. For a typical
example, zero-point energies and tunneling effects of the nuclei shift the chemical
equilibrium and manipulate the reaction rate. However, theoretical investigation
of such nuclear quantum effects in chemical reactions remains a challenge due to
the heavy computation cost. To this end, imaginary-time path-integral based ap-
proximate methods have been previously introduced, which allows the inclusion of
nuclear quantization in real-time chemical dynamics simulations at the efficiency of
classical Newtonian dynamics. In the dissertation, we further extend the applica-
bility of those path-integral methods and exploit the methods for practical chemical
investigations. Specifically, we introduce novel dynamics approaches based on ring-
polymer molecular dynamics methodology to incorporate nuclear quantum effects in
the simulations of excited state dynamics and microcanonical scattering processes,
and to examine the nuclear quantum effects in Hydrogen/Deuterium sticking to the
graphene surface.
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C h a p t e r 1

INTRODUCTION

Quantum mechanical effects of nuclei are ubiquitous in chemistry. Liquid Helium
does not freeze even at the temperature of absolute zero (at the standard atmo-
spheric pressure) [1]; atomically thin membrane material that permits only proton
penetration is designed and fabricated [2]; long-range charge transfer in the bacte-
rial proteins cannot occur fast without the help from the fluctuating hydrogen bonds
around the reaction center [3]; and even the sense of smell may rely on the quantum
mechanical vibrations of odourant molecules [4, 5]; just to name but a few. From the
simplest elementary substance to the materials, and to the life processes, it is clear
to observe that nuclear quantum effects are not merely a concept at the microscopic
scale, but can lead to significant consequences in the macroscopic world.

However, theoretical investigation of such nuclear quantum effects in chemical re-
actions remains a challenge nowadays due to the heavy computation cost. The
problem has long been recognized as ‘a curse of dimensionality’ in quantum me-
chanical simulations, and the most powerful computer soon feel exhausted when
increasing the number of particles included in the simulations, if one chooses to
stick with a fully exact quantum representation of the atoms and electrons. To this
end, imaginary-time path-integral-based approximate methods have been previously
introduced. In the approach, the original quantum mechanical degrees of freedom
are mapped to an isomorphic classical system where the exact quantum statistical
distribution is faithfully preserved. As a result, one is able to describe the effects
of nuclear quantization in real-time chemical dynamics by simulating the classical
Newtonian dynamics of the path-integral isomorphic system, that is to say, at a clas-
sical mechanical computational efficiency, and with support from the whole mature
field of classical dynamics simulations.

As will be presented, the topics of my graduate research close surround the central
idea, to capture the nuclear quantum effects at classical efficiency. In the disser-
tation, one will see how the applicability of imaginary-time path-integral methods
grows as newly developed members join the family; one will also see how the
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imaginary-time path-integral methods advance the exploration of nuclear quantum
effects in various beautiful chemistry contexts. The remaining dissertation is orga-
nized as follows.

Chapter 2 presents a path-integral approach for including nuclear quantum effects in
electronically non-adiabatic chemical dynamics simulations. We derive an isomor-
phic Hamiltonian such that for any given physical system with multiple electronic
states, the Boltzmann sampling of the isomorphic Hamiltonian with classical nu-
clear degrees of freedom yields the exact quantum Boltzmann distribution for the
original physical system. The isomorphic Hamiltonian can be straightforwardly
combined with existing mixed quantum-classical dynamics methods, and the nu-
merical results demonstrate the use of the method for the inclusion of nuclear
quantum effects, when in combination with either fewest-switches surface hopping
or the quantum-classical Liouville equation. The development leads to a variety
of promising, novel dynamics methods that retain the simplicity and robustness of
both imaginary-time path-integrals for nuclear quantization and the parent mixed
quantum-classical method.

Chapter 3 presents the further extension of the aforementioned isomorphic Hamil-
tonian framework to perform state-resolved thermal reaction rate calculations where
nuclear quantum effects play an important role. We describe an efficient flux-
side formulation of ring-polymer surface hopping in the isomorphic Hamiltonian
framework, which is able to calculate multiple state-resolved non-adiabatic ther-
mal reaction rates with only a single free-energy surface calculation, whereas pre-
vious non-adiabatic flux-side formulations for surface hopping involve multiple
free-energy surface calculations. The method is shown to be robust and straightfor-
wardly implemented, and numerical results reveal that the method leads to better
transition-state dividing-surface independence, due to improved preservation of the
path-integral statistics. The combined accuracy and simplicity of the method make
it amenable to useful application in realistic chemical systems.

Chapter 4 presents the approaches to calculate microcanonical reaction rates for pro-
cesses involving significant nuclear quantum effects using ring-polymer molecular
dynamics, both with and without electronically non-adiabatic transitions. After il-
lustrating the shortcoming of the naive direct-shooting method, for which the results
are strongly sensitive to the internal ring-polymer temperature that is employed,
we investigate alternative strategies based on the expression for the microcanoni-
cal rate in terms of the inverse Laplace transform of the thermal reaction rate. It
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is found that accurate microcanonical rates are obtained from inversions using ei-
ther the stationary phase approximation or the numerically exact maximum entropy
method. We also point out that the use of an internal temperature based on the
stationary-phase approximation partially took account of the tunneling effects in the
low incidence energy region. The work suggests general strategies for the extraction
of microcanonical dynamical quantities from ring-polymer molecular dynamics or
other approximate thermal simulations.

Chapter 5 presents the study of nuclear quantum effects in H/D sticking to the
graphene surface, comparing scattering experiments at near-zero coverage with
classical simulation, transition-state calculations, and quantized simulation with
ring-polymer molecular dynamics. Experiment shows H/D sticking probabilities
that are indistinguishable from one another and markedly smaller than those expected
from a consideration of zero-point energy shifts of the chemisorption transition state.
The inclusion of dynamical effects and vibrational anharmonicity via ring-polymer
molecular dynamics yields results that are in good agreement with the experiment.
RPMD also reveals that nuclear quantum effects, while modest, arises primarily
from carbon and not from H/D motion, confirming the importance of a C-atom
re-hybridization mechanism associated with H/D sticking on graphene.
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C h a p t e r 2

PATH-INTEGRAL ISOMORPHIC HAMILTONIAN FOR
INCLUDING NUCLEAR QUANTUM EFFECTS IN

NON-ADIABATIC DYNAMICS

This chapter is based on the following publication:

1. Tao, X., Shushkov, P. & Miller III, T. F. Path-Integral Isomorphic Hamiltonian
for Including Nuclear Quantum Effects in Non-Adiabatic Dynamics. Journal
of Chemical Physics 148, 102327. doi:10.1063/1.5005544 (2018).

2.1 Abstract
We describe a path-integral approach for including nuclear quantum effects in non-
adiabatic chemical dynamics simulations. For a general physical system with multi-
ple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced,
such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear
degrees of freedom yields the exact quantum Boltzmann distribution for the origi-
nal physical system. In the limit of a single electronic energy level, the isomorphic
Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics
(RPMD) or centroid molecular dynamics Hamiltonians, depending on implementa-
tion. An advantage of the isomorphic Hamiltonian is that it can easily be combined
with existing mixed quantum-classical dynamics methods, such as surface hopping
or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic pro-
cesses with nuclear quantum effects. We present numerical applications of the
isomorphic Hamiltonian to model two- and three-level systems, with encouraging
results that include improvement upon a previously reported combination of RPMD
with surface hopping in the deep-tunneling regime.

2.2 Introduction
Chemical processes that involve transitions among different electronic states play
a central role in photo-induced [6, 7], redox [8, 9], and collisional processes [10,
11]. Widely used mixed quantum-classical (MQC) methods—including Ehrenfest
dynamics [12] and surface hopping [13]—have been developed for the simulation of
electronically non-adiabatic processes in cases for which the nuclei can be described
using classical mechanics. However, nuclear quantum effects are important in many
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electronically non-adiabatic processes [14–17], creating the need for new methods
that robustly and accurately describe the interplay between nuclear and electronic
quantum mechanical effects.

For chemical dynamics on a single electronic surface, approximate methods based
on imaginary-time Feynman path integrals [18, 19] have proven useful for describ-
ing nuclear quantization. These methods include ring-polymer molecular dynamics
(RPMD) [20, 21] and centroid molecular dynamics (CMD) [22–24], which involve
classical molecular dynamics trajectories governed by an isomorphic Hamiltonian
that includes the effects of zero-point energy and tunneling. RPMD and CMD ex-
hibit various exact formal properties, including time-reversibility and preservation
of the quantum Boltzmann distribution for the physical system, and RPMD addi-
tionally recovers semiclassical instanton rate theory in the deep-tunneling regime
[25]. The simplicity and robustness of these path-integral-based methods has led to
the development of mature technologies [26–29] and enables the study of complex
systems [30–33].

These successes motivate the development of path-integral-based methods for de-
scribing electronically non-adiabatic dynamics. Previous work includes non-adiabatic
extensions of instanton theory [34–36], CMD [37, 38], and RPMD [39–45]. A unify-
ing feature of these previous efforts is that they employ a case-specific development
strategy, in which path-integral quantization of the nuclei is specifically tailored
for combination with a particular approximation to the electronically non-adiabatic
dynamics, such as instanton theory [34–36, 42, 43], surface-hopping [41, 46],
linearized semiclassical [47–52], or other approximation. This strategy typically
limits each resulting method to the application domain for which the associated
non-adiabatic dynamics approximation is valid.

The current work employs an alternative strategy to take full advantage of the diver-
sity of previously developed MQC methods for describing non-adiabatic dynamics.
We use path integration to obtain a general isomorphic Hamiltonian that incorpo-
rates nuclear quantization and that can be easily combined with any MQC method.
As will be shown, this leads to a variety of promising, new dynamics methods
that retain the simplicity and robustness of both imaginary-time path-integrals for
nuclear quantization and the parent MQC method. In the following, we derive
the new isomorphic Hamiltonian, and we present applications of it in combination
with non-adiabatic dynamics based on either surface hopping [13] or the quantum-
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classical Liouville equation [53, 54]. These results illustrate the flexibility with
which the isomorphic Hamiltonian may be employed, as well as implementations
that are readily applicable for the study of complex systems.

2.3 Theory
We begin by reviewing the path-integral-based RPMD and CMD methods, which
employ an isomorphic Hamiltonian for the description of quantized nuclear dynam-
ics in electronically adiabatic systems. We then extend this approach to obtain an
isomorphic Hamiltonian for the description of quantized nuclear dynamics involving
multiple electronic states.

Isomorphic Hamiltonian for one-level systems: RPMD and CMD
For a system obeying the Born-Oppenheimer approximation in the electronic ground
state, we consider the Hamiltonian operator

𝐻̂ =
𝑝2

2𝑚
+𝑉 (𝑥), (2.1)

where 𝑥, 𝑝, and 𝑚 are the nuclear position, momentum, and mass, respectively, and
𝑉 (𝑥) is the potential energy surface. Throughout this work, results will be presented
for a single nuclear degree of freedom; generalization to multiple dimensions is
straightforward.

The path-integral discretization of the quantum mechanical canonical partition func-
tion for this system is given by [18, 19, 55]

𝑄 = tr[𝑒−𝛽𝐻̂]

= lim
𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑x

∫
𝑑p 𝑒−𝛽𝐻

iso
𝑛 (x,p) , (2.2)

where 𝛽 is the reciprocal temperature, 𝑛 is the number of ring-polymer beads in the
path-integral discretization, x = {𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑛)} is the vector of ring-polymer
positions such that 𝑥 (1) = 𝑥 (𝑛+1) , and p is the vector of ring-polymer momenta. 𝐻iso

𝑛

is the ring-polymer Hamiltonian (see Appendix A)

𝐻iso
𝑛 (x, p) =

𝑛∑︁
𝛼=1

𝑝2
𝛼

2𝑚𝑛
+𝑈spr(x) +

1
𝑛

𝑛∑︁
𝛼=1

𝑉 (𝑥𝛼), (2.3)

which includes the inter-bead potential

𝑈spr(x) =
1
2
𝑚𝑛 𝜔

2
𝑛

𝑛∑︁
𝛼=1

(𝑥𝛼 − 𝑥(𝛼+1))2, (2.4)
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where 𝑚𝑛 = 𝑚/𝑛, 𝜔𝑛 = (𝛽𝑛ℏ)−1, and 𝛽𝑛 = 𝛽/𝑛.

Approximate real-time quantum dynamics is obtained in the RPMD method [20] by
running classical molecular dynamics trajectories associated with the ring-polymer
Hamiltonian, which are given by

¤𝑥𝛼 = 𝑝𝛼/𝑚𝑛 (2.5)

¤𝑝𝛼 = 𝑚𝑛𝜔
2
𝑛

(
𝑥(𝛼+1) + 𝑥(𝛼−1) − 2𝑥𝛼

)
− 1
𝑛

𝜕

𝜕𝑥𝛼
𝑉 (𝑥𝛼)

for 𝛼 = 1, . . . , 𝑛.

Equation 2.2 can be further reduced with respect to the intra-ring-polymer degrees
of freedom, yielding

𝑄 =

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑𝑥

∫
𝑑𝑝 𝑒−𝛽𝐻̄

iso (𝑥,𝑝) , (2.6)

where 𝐻̄iso is the centroid Hamiltonian

𝐻̄iso(𝑥, 𝑝) = 𝑝2

2𝑚
+ 𝑉̄ (𝑥) (2.7)

which includes the centroid potential of mean force

𝑒−𝛽𝑉̄ (𝑥)∝ lim
𝑛→∞

∫
𝑑x

∫
𝑑p 𝛿(𝑥 − 1

𝑛

∑︁
𝛼

𝑥𝛼)𝑒−𝛽𝐻
iso
𝑛 (x,p) . (2.8)

Approximate real-time quantum dynamics is obtained in the CMD method [24]
by running classical molecular dynamics trajectories associated with the centroid
Hamiltonian, which are given by

¤̄𝑥 = 𝑝/𝑚 (2.9)

¤̄𝑝 = − 𝜕

𝜕𝑥
𝑉̄ (𝑥) .

Both Eqs. 2.3 and 2.7 provide an isomorphic Hamiltonian for the one-level physical
system described by Eq. 2.1, in the sense that classical mechanical trajectories asso-
ciated with the isomorphic Hamiltonian yield the approximate quantum mechanical
time-evolution for the physical system. Moreover, classical Boltzmann sampling of
the isomorphic Hamiltonian (i.e., by running the classical trajectories in Eqs. 2.5 or
2.9 in contact with a thermal bath) rigorously preserves the exact quantum Boltz-
mann statistics associated with the physical system. In the following, we derive
both RPMD and CMD versions of the corresponding isomorphic Hamiltonian for
physical systems involving multiple electronic surfaces, with the RPMD version
presented in the main text and the CMD version in Appendix B.
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Isomorphic Hamiltonian for multi-level systems
Path-integral discretization

Consider the Hamiltonian in the diabatic representation for a system with 𝑓 electronic
energy levels,

𝐻̂ =
𝑝2

2𝑚
+ 𝑉̂ (𝑥) (2.10)

=
𝑝2

2𝑚
+


𝑉1(𝑥) 𝐾12(𝑥) · · · 𝐾1 𝑓 (𝑥)
𝐾12(𝑥) 𝑉2(𝑥) · · · 𝐾2 𝑓 (𝑥)
...

...
. . .

...

𝐾1 𝑓 (𝑥) 𝐾2 𝑓 (𝑥) · · · 𝑉 𝑓 (𝑥)


.

Discretizing the partition function with respect to both electronic state, 𝑖, and nuclear
position, 𝑥, and employing a Trotter factorization such as

𝑒−𝛽𝑛𝐻̂ = 𝑒−𝛽𝑛𝑉̂/2𝑒−𝛽𝑛𝑇𝑒−𝛽𝑛𝑉̂/2 + O(𝛽3
𝑛), (2.11)

we obtain the path-integral representation

𝑄 = lim
𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛
(2.12)

×
∫
𝑑x

∫
𝑑p 𝑒−𝛽(

∑𝑛
𝛼=1

𝑝2
𝛼

2𝑚𝑛
+𝑈spr (x))𝜇(x),

where

𝜇(x) = tre

[
𝑛∏
𝛼=1

𝑒−𝛽𝑛𝑉̂ (𝑥𝛼)
]
. (2.13)

The subscript ‘e’ in Eq. 2.13 indicates the trace taken over only the electronic states.
Although path-integral discretization of multi-level systems can also be performed
in the adiabatic representation [56], the diabatic representation employed here is
particularly convenient.

Note that 𝜇, which describes the statistical weight of a given ring-polymer nuclear
configuration after thermally averaging over the electronic states, is a familiar and
easily evaluated quantity. It is the central object in the Schwieters-Voth non-adiabatic
instanton theory [35–37] and mean-field non-adiabatic RPMD [42, 57, 58], both of
which provide a thermally averaged (i.e., mean-field) description of the electronically
non-adiabatic dynamics. Moreover, as is discussed in Appendix C, 𝜇 is non-negative
when evaluated in the limit of large 𝑛, and both 𝜇 and its derivative with respect to
the ring-polymer nuclear coordinates can be evaluated using O(𝑛) operations.
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The Isomorphic Hamiltonian

We now address the central goal of this work: Given the physical system associated
with the 𝑓 -level Hamiltonian in Eq. 2.10, determine the corresponding 𝑓 -level
isomorphic Hamiltonian for which classical Boltzmann sampling of the nuclear
degrees of freedom yields the exact quantum Boltzmann distribution for the physical
Hamiltonian. It follows from Eq. 2.12 that this requirement is satisfied by an
isomorphic Hamiltonian of the form

𝐻̂iso
𝑛 (x, p) =

𝑛∑︁
𝛼=1

𝑝2
𝛼

2𝑚𝑛
+𝑈spr(x) + 𝑉̂ iso(x), (2.14)

where 𝑉̂ iso is the isomorphic potential energy given by the 𝑓 × 𝑓 matrix that obeys

tre

[
𝑒−𝛽𝑉̂

iso (x)
]
≡ 𝜇(x). (2.15)

Special case of a two-level system

For a system with two electronic states ( 𝑓 = 2), the isomorphic potential energy has
the form

𝑉̂ iso(x) =
[
𝑉 iso

1 (x) 𝐾 iso
12 (x)

𝐾 iso
12 (x) 𝑉 iso

2 (x)

]
. (2.16)

Given the symmetry of the off-diagonal term, the matrix has only three independent
elements at any given ring-polymer configuration. To specify the two diagonal
terms, we require that the usual RPMD surfaces be recovered in the regime of zero
electronic coupling, such that

𝑉 iso
𝑖 (x) = 1

𝑛

𝑛∑︁
𝛼=1

𝑉𝑖 (𝑥𝛼). (2.17)

The only remaining term is the off-diagonal isomorphic coupling, 𝐾 iso
𝑖 𝑗

(x), which
must satisfy Eq. 2.15, such that(

𝐾 iso
𝑖 𝑗 (x)

)2
= acosh2

[
𝑒

𝛽

2

(
𝑉 iso
𝑖

(x)+𝑉 iso
𝑗
(x)

)
𝜇𝑖 𝑗 (x)/2

]
/𝛽2

−
(
𝑉 iso
𝑖 (x) −𝑉 iso

𝑗 (x)
)2

/4, (2.18)

where

𝜇𝑖 𝑗 (x) = tre

[
𝑛∏
𝛼=1

exp

(
−𝛽𝑛

[
𝑉𝑖 (𝑥𝛼) 𝐾𝑖 𝑗 (𝑥𝛼)
𝐾𝑖 𝑗 (𝑥𝛼) 𝑉 𝑗 (𝑥𝛼)

])]
. (2.19)
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For the case of a two-level system, 𝜇𝑖 𝑗 (x) = 𝜇(x), where the latter is defined in
Eq. 2.13. Eq. 2.18 fully specifies 𝐾 iso

𝑖 𝑗
(x) to within an absolute sign, which we take

to be equal to that of the physical potential coupling evaluated at the ring-polymer
centroid position, sgn(𝐾𝑖 𝑗 (𝑥)).

For a two-level system, the isomorphic Hamiltonian is given by Eq. 2.14 and
Eqs. 2.16-2.18. Inspection of the matrix elements of the isomorphic potential
reveals that the diagonal matrix elements (Eq. 2.17) include RPMD-like corrections
to the diabatic potential energy surfaces, while the off-diagonal elements (Eq. 2.18)
include the effect of nuclear quantization on the pairwise (i.e., two-body) coupling
between the electronic states. Before discussing other properties of the isomorphic
Hamiltonian, we generalize it to multi-level systems.

General case of a multi-level system

Following the two-level case, we now present the generalization of the isomorphic
Hamiltonian to systems with 𝑓 > 2. We define an 𝑓 × 𝑓 potential energy matrix

𝑉̂ iso
2-body(x) =


𝑉 iso

1 (x) 𝐾 iso
12 (x) · · · 𝐾 iso

1 𝑓 (x)
𝐾 iso

12 (x) 𝑉 iso
2 (x) · · · 𝐾 iso

2 𝑓 (x)
...

...
. . .

...

𝐾 iso
1 𝑓 (x) 𝐾 iso

2 𝑓 (x) · · · 𝑉 iso
𝑓
(x)


(2.20)

for which the diagonal and off-diagonal terms are defined in Eqs. 2.17 and 2.18.
And finally, to ensure that Eq. 2.15 is satisfied, we define the isomorphic potential
energy to be

𝑉̂ iso(x) = 𝑉̂ iso
2-body(x) +𝑉

iso
many-body(x), (2.21)

where

𝑉 iso
many-body(x) = −1

𝛽
ln


𝜇(x)

tre

[
𝑒
−𝛽𝑉̂ iso

2-body (x)
]  (2.22)

and 𝜇(x) is defined in Eq. 2.13.

Combined with Eq. 2.14, Eqs. 2.20-2.22 present the central result of this work:
the isomorphic Hamiltonian for a general multi-level system. We now point out a
number of important properties that make the isomorphic Hamiltonian amenable
to the description of complex, multi-level systems, much like standard RPMD and
CMD are amenable to the description of complex, one-level systems.
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First, the isomorphic Hamiltonian can immediately be employed with any MQC
method for describing nonadiabatic dynamics; by simply running the MQC dynam-
ics on the isomorphic Hamiltonian, nuclear quantum effects are included via the
path-integral description. Naturally, the dynamics run on the isomorphic Hamilto-
nian will inherit the strengths and weaknesses of the MQC method that is employed.
As is illustrated in the Results section, the MQC dynamics can either be run directly
using the diabatic representation or by diagonalizing it to obtain the corresponding
adiabatic states and derivative couplings.

Second, by construction, the isomorphic Hamiltonian satisfies the requirement that
classical Boltzmann sampling of the nuclear degrees of freedom yields the exact
quantum Boltzmann distribution for the physical system. It employs a path-integral
discretization that involves no approximation to the quantum statistics of the sys-
tem. For an (idealized) MQC method for which the equations of motion rigorously
preserve the MQC Boltzmann ensemble, then running the corresponding dynamics
on the isomorphic Hamiltonian would rigorously preserve the exact quantum Boltz-
mann distribution; however, we note that most MQC methods do not rigorously
preserve the MQC Boltzmann ensemble [59].

Third, as for standard RPMD, evaluation of the matrix elements in the isomorphic
Hamiltonian is numerically robust and scales linearly in cost with the number
of ring-polymer beads. Quantities that arise in the evaluation of the isomorphic
Hamiltonian, such as 𝜇(x), 𝜇𝑖 𝑗 (x), or tre

[
𝑒
−𝛽𝑉̂ iso

2-body (x)
]

(and their derivatives with
respect to nuclear position), can be obtained from simple diagonalization of an 𝑓 × 𝑓
matrix or with O(𝑛) operations. Furthermore, the argument of the logartithm in
Eq. 2.22 involves a ratio of positive quantities and is thus well behaved. It should be
noted that the numerical robustness of the isomorphic Hamiltonian is an important
and non-trivial feature; whereas evaluation of the path-integral representation for the
underlying density matrix of a many-level system generally gives rise to a numerical
sign problem [60], we have expressed the isomorphic Hamiltonian in terms of
non-oscillatory quantities.

We further note that the isomorphic Hamiltonian obeys various satisfying limits. In
the classical mechanical limit for the physical nuclei (i.e., the 1-bead ring polymer
limit), the isomorphic Hamiltonian reduces to the original physical Hamiltonian in
Eq. 2.10. In the limit of zero coupling among the states in the physical system
(i.e., when 𝐾𝑖 𝑗 = 0), the isomorphic Hamiltonian reduces to the standard RPMD
Hamiltonian for the diabatic potential energy surfaces. Finally, in the limit for



12

which the electronic states only couple via separate pairs, 𝑉 iso
many-body(x) = 0, the

many-level isomorphic Hamilton simply reduces to the previously discussed two-
level result. In this sense, 𝑉̂ iso

2-body(x) includes the effect of nuclear quantization
on the pairwise (i.e., two-body) coupling between the electronic states, whereas
𝑉 iso

many-body(x) provides a mean-field many-body coupling between the electronic
states due to nuclear quantization. As will be seen in the results, this many-body
coupling is found to be much smaller than the two-body coupling, but inclusion
of the many-body term is necessary to rigorously preserve the quantum Boltzmann
statistics.

Finally, we note that the specification of the matrix elements of the isomorphic
potential presented here is not unique. For example, direct inversion of the electronic
density matrix within the trace operation of Eq. 2.13 was explored and found to be
numerically ill-conditioned. Other alternative choices that satisfy the condition in
Eq. 2.15 may be devised, although any revision should both preserve the formal
properties listed above and improve upon the numerical results presented in the
Results section. We do recognize that a representation-invariant specification of
the matrix elements of the isomorphic potential would be a worthy goal for future
development. Similarly, we recognize the mathematical possibility that the RHS
of Eq. 2.18 may become negative in our specification (although we have found no
such case in which this occurs), and we note that the positivity of 𝜇 guarantees
the existence of a specification for which the matrix elements of the isomorphic
potential are everywhere real.

2.4 Applications
The isomorphic Hamiltonian can be used to incorporate nuclear quantum effects in
any MQC simulation. To illustrate this, present applications in which the isomorphic
Hamiltonian is combined with either quantum-classical Liouville equation (QCLE)
or fewest-switches surface hopping non-adiabatic dynamics. Below, we briefly
summarize the equations of motion associated with these two MQC methods.

QCLE Dynamics
The time evolution of a general operator in a multi-level system according to QCLE
dynamics is given by [53, 54, 61]

𝜕𝑂̂W(𝑥, 𝑝, 𝑡)
𝜕𝑡

= L̂𝑂̂W(𝑥, 𝑝, 𝑡), (2.23)
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where
L̂ =

𝑖

ℏ

[
Ĥ , •

]
− 1

2

({
Ĥ , •

}
−

{
•, Ĥ

})
. (2.24)

In these equations, 𝑂̂W(𝑥, 𝑝, 𝑡) is an 𝑓 × 𝑓 matrix that corresponds to the partial
Wigner distribution for a given operator with respect to a subset of the degrees of
freedom [62, 63], and Ĥ is a generic Hamiltonian in the diabatic representation.

Our motivation for using the QCLE approach is to obtain a MQC limit in which
the electronic dynamics evolves quantum mechanically and the nuclear dynamics
evolves classically. Taking the limit of small ℏ, the partial Wigner distribution
reduces to the MQC phase-space distribution 𝑂̂, such that the QCLE dynamics
retains the same form, except that

𝜕𝑂̂ (𝑥, 𝑝, 𝑡)
𝜕𝑡

= L̂𝑂̂ (𝑥, 𝑝, 𝑡). (2.25)

Eqs. 2.24 and 2.25 thus cleanly define a MQC limit, where the first term in the
RHS of Eq. 2.24 describes the quantum evolution of the electronic states via the
commutator, and the second term describes both the classical evolution of the nuclear
coordinates and the back-reaction to the quantum subsystem via the symmetrized
Poisson bracket.

Having taken the classical limit for the nuclei, the Kubo-transformed position-
autocorrelation function

𝑐𝑥𝑥 (𝑡) =
1
𝛽𝑄

∫ 𝛽

0
𝑑𝜆 tr

[
𝑒−(𝛽−𝜆)𝐻̂ 𝑥 𝑒−𝜆𝐻̂ 𝑥(𝑡)

]
(2.26)

becomes
𝑐𝑥𝑥 (𝑡) =

∫
𝑑𝑥 𝑑𝑝

2𝜋ℏ
tre

[
𝑥𝑒−L̂𝑡

(
𝑒−𝛽Ĥ 𝑥

)]
, (2.27)

where we have taken advantage of time-reversal symmetry to ensure that the time-
evolved distribution in Eq. 2.27 is conveniently numerically evaluated.

In this study, we consider the correlation function in Eq. 2.27, with the nuclei clas-
sically evolved either with respect to the physical Hamiltonian (Ĥ = 𝐻̂, where 𝐻̂ is
given in Eq. 2.10) or with respect to the CMD version of the isomorphic Hamiltonian
(Ĥ = 𝐻̂iso

c , where 𝐻̂iso
c is given in Eq. 2.43). The resulting dynamics is used to

study two- and three-level systems with a single nuclear degree of freedom. Specifi-
cally, we investigate a two-level system comprised of shifted quartic oscillators with
constant potential coupling, as well as a three-level system comprised of shifted
harmonic oscillators with constant potential coupling.
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The equations of motion in Eqs. 2.24 and 2.25 are evolved exactly on a numerical
grid, using the interaction picture with Heisenberg evolution applied to the quan-
tum subsystem; the resulting time-evolution is both numerically stable and avoids
additional approximations to the QCLE dynamics, such as the momentum-jump
approximation [64]. The midpoint finite-difference method [65] is used to integrate
the partial differential equations. We employ a numerical grid that spans the range
of positions for which the classical Boltzmann probability density exceeds 10−12,
257 grid points in both 𝑥 and 𝑝 directions, and an integration timestep of 2.5× 10−4

a.u. The matrix elements of the isomorphic potential, 𝑉̄ iso
𝑖

and 𝐾̄ iso
𝑖 𝑗

, are sampled to
convergence using path-integral Monte Carlo with 16𝛽 ring-polymer beads.

In the Results section, for comparison with the approximate QCLE dynamics de-
scribed by Eqs. 2.24 and 2.25, we additionally obtain numerically exact quantum
mechanical results by propagating the Schrodinger equation in the discrete variable
representation (DVR) [66, 67] on a grid. As is necessary, we confirm that the DVR
results are identical to the QCLE dynamics in the high-temperature limit. Addition-
ally, for any temperature, we confirm that the DVR results are identical to the QCLE
dynamics for the case of a two-level system comprised of linearly coupled harmonic
oscillators when Ĥ = 𝐻̂ and the dynamics is initialized from the multi-level partial
Wigner phase-space distribution (Appendix 2.7) [53, 54].

Surface Hopping Dynamics
Consider a generic 𝑓 -level system with 𝑑 nuclear degrees of freedom and diabatic
Hamiltonian

Ĥ =
1
2

𝑑∑︁
𝑗=1
𝑚 𝑗 ¤𝑦 𝑗 + V̂(y), (2.28)

where V(y) is the diabatic potential energy matrix that depends on the nuclear
positions, y = {𝑦1, . . . , 𝑦𝑑}, and 𝑚 𝑗 is the mass of the 𝑗 th degree of freedom. In
fewest-switches surface hopping [13], quantum evolution of the electronic wave-
function 𝜓(y, 𝑡) along a given trajectory obeys

𝑖ℏ
𝜕

𝜕𝑡
𝜓(y, 𝑡) = V̂ (y)𝜓(y, 𝑡), (2.29)

and classical evolution of the nuclear coordinates obeys

𝑚 𝑗 ¥𝑦 𝑗 = − 𝜕

𝜕𝑦 𝑗
E𝑘 (y), (2.30)
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where E𝑘 is the 𝑘 th adiabatic Born-Oppenheimer surface obtained by diagonalizing
the diabatic potential matrix. The nuclear trajectory evolves along a particular Born-
Oppenheimer surface, subject to stochastic hops to other surfaces with probability

𝑝𝑘𝑙 = max
{
− 2
𝑎𝑘𝑘

Re((𝑑𝑙𝑘 · 𝑣)𝑎𝑘𝑙)Δ𝑡, 0
}

(2.31)

where 𝑎𝑘𝑙 is the element of the electronic density matrix in the adiabatic represen-
tation, (𝑑𝑙𝑘 · 𝑣) is the inner product of the first-derivative non-adiabatic coupling
with the nuclear velocity vector, and Δ𝑡 is the integration timestep. During hopping
events, the total energy associated with the Hamiltonian in Eq. 2.28 is conserved by
modifying the component of the velocity along the non-adiabatic coupling vector
that connects the two surfaces; hops are forbidden if there is insufficient velocity
in this component to ensure energy conservation. We implement forbidden hops
without momentum reversal [68, 69], and we neglect decoherence corrections [70,
71], although either could easily be implemented in the current context.

In this study, we consider various implementations of fewest-switches surface hop-
ping in a two-level gas-phase scattering system that is a function of a single nuclear
coordinate:

(i) For the standard case of surface-hopping with classical nuclei (hereafter referred
to as SH-classical), we employ Eqs. 2.28-2.31 using the physical Hamiltonian (Ĥ =

𝐻̂, given in Eq. 2.10) which includes the physical diabatic potential matrix (V̂ = 𝑉̂)
as a function of the single nuclear coordinate, such that y = 𝑥.

(ii) To quantize the nuclei in the surface hopping dynamics with the CMD version
of the isomorphic Hamiltonian (referred to as SH-C-iso), we employ Eqs. 2.28-2.31
using Ĥ = 𝐻̂iso

c (given in Eq. 2.43), which includes the CMD version of the diabatic
potential matrix (V̂ = 𝑉̂ iso

c , given in Eq. 2.46) as a function of the centroid nuclear
coordinate, such that y = 𝑥.

(iii) To quantize the nuclei in the surface hopping dynamics with the RPMD version
of the isomorphic Hamiltonian (referred to as SH-RP-iso), we employ Eqs. 2.28-
2.31 using Ĥ = 𝐻̂iso

𝑛 (given in Eq. 2.14), which includes the RPMD version of the
diabatic potential matrix (V̂ = 𝑈spr + 𝑉̂ iso, given in Eqs. 2.4 and 2.21, respectively)
as a function of the ring-polymer coordinates, such that y = x.

(iv) Finally, for comparison with an earlier effort to combine RPMD with surface
hopping, we also employ the method described in Reference [41] using the “centroid-
approximation” defined therein; this method is referred to as SH-RP-nokinks, since
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it neglects the contribution of the “kinked” ring-polymer configurations that span
multiple diabatic surfaces, such that Eq. 2.15 is not obeyed and the quantum Boltz-
mann statistics are approximated.

Note that for all surface-hopping calculations reported here, the dynamics is run
in a representation for which the number of electronic states is the same as for the
physical system. For results obtained using the various versions of the isomorphic
Hamiltonian, the surface-hopping dynamics involves transitions between the adia-
batic potential surfaces obtained by diagonalizing the isomorphic diabatic potential
energy matrix.

Following the implementation in Reference [41], Eq. 2.29 is evolved in the interac-
tion representation using a fourth-order Runge-Kutta integrator [65], and Eq. 2.30
is evolved using the velocity Verlet algorithm [72]. As in previous RPMD simula-
tions, each timestep for the nuclear degrees of freedom involves separate coordinate
updates due to forces arising from the adiabatic potential and due to exact evo-
lution of the purely harmonic portion [21, 30]. Matrix elements of the centroid
isomorphic potential, 𝑉̄ iso

𝑖
and 𝐾̄ iso

𝑖 𝑗
, are sampled to convergence using path-integral

Monte Carlo with either 8𝛽 ring-polymer beads (for 𝛽 ≤ 9) or 24𝛽 ring-polymer
beads (for 𝛽 > 9); the larger number of ring-polymer beads was found to be more
important for improving statistical sampling of the centroid potential surfaces than
for converging the path-integral discretization. The SH-RP-iso results were likewise
performed using 8𝛽 ring-polymer beads. For all cases, Eq. 2.30 is integrated with
a timestep of 10−4 a.u. Thermal rates in this study are calculated via Boltzmann
averaging of the microcanonical reactive probabilities, initializing trajectories out-
side of the interaction region with a momentum range for which the ratio of the
corresponding Boltzmann-weighted microcanonical reactive probability to the total
thermal rate is greater than 10−8 a.u. For the SH-classical and SH-C-iso calcu-
lations, for which the microcanonical reactive probability changes abruptly at the
threshold energy, we discretize this momentum interval at a resolution of 0.01 a.u;
for the SH-RP-iso and SH-RP-nokinks calculations, we use a discretization of 0.05
a.u. The microcanonical reactive probabilities are calculated using from 104 to 105

trajectories.

In the results section, for comparison with the various surface-hopping implemen-
tations, we additionally obtain numerically exact quantum mechanical results via
wavepacket propagation, using the split-operator Fourier transform method of Feit
and Fleck [73] extended to multiple potential energy surfaces. A wavepacket was
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initialized in the asymptotic reactant region and evolved forward in time until the
scattering event was completed. An absorbing potential was placed in the asymp-
totic reactant region that eliminated the reflected portion of the scattered wavepacket,
while the transmitted component was projected out in the asymptotic product region.
The scattering amplitudes were calculated by Fourier transform of the transmitted
fraction of the wavepacket, properly normalized, and the squared modulus of the
scattering amplitudes is numerically integrated to obtain the quantum rates.

To illustrate the full details of our implementation of the SH-RP-iso method, we
have provided an example program online.1

2.5 Results
We now present numerical results for two possible combinations of the new path-
integral isomorphic Hamiltonian with MQC methods. First, to investigate a well-
defined limit for MQC non-adiabatic dynamics in combination with the isomorphic
Hamiltonian, we employ the QCLE method, considering both a two-level system
of coupled quartic oscillators and a three-level system involving a donor-bridge-
acceptor model. Then, to investigate a broadly applicable combination of MQC non-
adiabatic dynamics with the isomorphic Hamiltonian, we employ fewest-switches
surface hopping to study a model for state-resolved gas-phase reactive scattering.
Unless otherwise specified, quantities are reported in atomic units, and we employ
a nuclear mass of 𝑚 = 1.

QCLE Dynamics
Two-level system: Coupled quartic oscillators

We begin by considering a two-level system involving a single nuclear coordinate,
for which the physical potential energy matrix, 𝑉̂ (𝑥), is comprised of diagonal
elements that are strongly anharmonic quartic oscillators, 𝑉1(𝑥) = (𝑥 + 𝑥0)4/16 and
𝑉2(𝑥) = (𝑥 − 𝑥0)4/16, and the off-diagonal elements, 𝐾12(𝑥) = Δ, are constant.
The lateral shift of the potentials is 𝑥0 = (32/𝛽)1/4, such that the activation energy
associated with the crossing of the diabats is consistently 2/𝛽. In studying this
system, we will consider (i) numerically exact quantum dynamics, (ii) the classical
nuclear limit in which the QCLE dynamics is run using the physical Hamiltonian,

1See https://github.com/thomasfmiller/SH-RP-iso for the available code.
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𝐻̂ (𝑥), and (iii) the case of quantized nuclei in which the QCLE dynamics is run
using the CMD version of the isomorphic Hamiltonian, 𝐻̂iso

c . Methodological and
computational details are provided in Section 2.4.

Figs. 2.1A-D illustrate the matrix elements of the CMD version of the isomorphic
potential, 𝑉̂ iso

c (Eq. 2.46). In solid lines, panels A and B present the diagonal elements
of the isomorphic potential, 𝑉̄ iso

1 (𝑥) and 𝑉̄ iso
2 (𝑥), at high and low temperature,

with the physical diabatic potentials 𝑉1(𝑥) and 𝑉2(𝑥) shown in dashed lines for
comparison. Given that these isomorphic potential matrix elements are identical
to the CMD potentials of mean force for the two diabats, they exhibit the familiar
features of converging to the physical potential at high temperature (Fig. 2.1A) and
exhibiting larger nuclear quantization effects at low temperature (Fig. 2.1B).

For weak coupling (𝛽Δ = 0.1) and intermediate coupling (𝛽Δ = 1), Figs. 2.1C
and D, respectively, present the off-diagonal matrix elements of the isomorphic
potential, 𝐾̄ iso

12 , at both low (red) and high (black) temperature. Unlike the coupling
in the physical potential for this model, Δ, the coupling in the isomorphic potential
is position dependent, reflecting the changing thermal probability of kinked ring-
polymer configurations at different nuclear configurations. In all cases, the inclusion
of nuclear quantization via exact path-integral statistics leads to an increase in the
effective coupling between the two diabatic surfaces in the vicinity of the diabatic
crossing (𝑥 = 0), with more pronounced effects at lower temperature.

Figs. 2.1E and F present results for the Kubo-transformed position-autocorrelation
function (Eq. 2.26) in the weak-coupling regime (𝛽Δ = 0.1) at high and low temper-
ature, respectively. At the higher temperature (Fig. 2.1E), there is little difference in
the QCLE dynamics obtained with classical nuclei (QCLE-classical; blue, dashed)
versus with nuclei quantized via the CMD version of the isomorphic Hamiltonian
(QCLE-C-iso; red, solid), and both implementations of QCLE are in good agreement
with exact quantum mechanics (black, dots) due to the small role of nuclear quantum
effects. At low temperatures, however, substantial nuclear quantum effects emerge,
as evidenced by the difference between the blue and black curves in Fig. 2.1F. In this
low-temperature case, the QCLE-C-iso dynamics exhibit substantial improvement,
recovering the exact quantum result at 𝑡 = 0 as a necessary consequence of the
path-integral statistics and showing better agreement with the quantum mechanical
period of oscillation.
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Finally, Figs. 2.1G and H present results for the Kubo-transformed position au-
tocorrelation function in the intermediate-coupling regime (𝛽Δ = 1) at high and
low temperature, respectively. As before, at high temperature (Fig. 2.1G), the
QCLE-classical dynamics differs little from the QCLE-C-iso dynamics; however,
both differ substantially from the exact quantum result at longer times. At low
temperature (Fig. 2.1H), even larger differences are observed. As is necessary,
QCLE-C-iso recovers the exact quantum result at short times, but it deviates from
both QCLE-classical and exact quantum results at longer times.

As is familiar from standard CMD and RPMD in one-level systems [20, 22], the
results in Figs. 2.1E-H highlight that the newly introduced isomorphic Hamiltonian
provides a means of exactly incorporating the statistical effects of nuclear quan-
tization while only approximately including the dynamical effects. Moreover, the
dynamics obtained from the isomorphic Hamiltonian will reflect the particular short-
comings of the employed MQC method—in this case, QCLE initialized with the
MQC phase-space distribution. In Appendix D, we illustrate that a leading source
of error for the QCLE-C-iso results in Figs. 2.1E-H is non-preservation of the MQC
phase-space distribution in the QCLE dynamics at lower temperatures, where the
MQC phase-space distribution differs substantially from the partial Wigner distri-
bution.

Three-level system: Donor-Bridge-Acceptor model

For systems with more than two levels, a many-body correction appears in the
isomorphic potential to ensure exact Boltzmann statistics (𝑉 iso

many-body in Eq. 2.21 and
𝑉̄ iso

many-body in Eq. 2.46). To investigate the nature of this many-body term, we consider
a previously studied model for a three-level donor-bridge-acceptor system [36]. For
this system, the physical potential energy, 𝑉̂ (𝑥), is comprised of diagonal elements
that are harmonic oscillators (𝑉1(𝑥) = (𝑥 + 𝑥0)2/2, 𝑉2(𝑥) = 𝑥2/2, and 𝑉3(𝑥) =

(𝑥 − 𝑥0)2/2), and the off-diagonal elements are constant (𝐾12(𝑥) = 𝐾23(𝑥) = Δ,
𝐾13(𝑥) = 0). The lateral shift of the potentials is 𝑥0 = 4/𝛽1/2, such that the
activation energy associated with the crossing of the diabats is 2/𝛽. For the case of
𝛽 = 1, the diagonal elements of the physical potential are shown in Fig. 2.2A.

Upon computing the matrix elements for the CMD version of the isomorphic po-
tential, 𝑉̂ iso

c (Eq. 2.46), it is found that the diagonal (not shown) and off-diagonal
(Fig. 2.2B) contributions to the two-body isomorphic potential (Eq. 2.47) are quali-
tatively similar to those illustrated in Figs. 2.1A-D. The many-body contribution to
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Figure 2.2: The isomorphic potential for a three-level donor-bridge-acceptor
system. (A) Diagonal matrix elements of the physical potential for the three-level
donor-bridge-acceptor system with 𝛽 = 1. (B) Off-diagonal matrix elements of
the CMD version of the isomorphic potential, 𝐾̄ iso, normalized by Δ. (C) Many-
body contribution to the isomorphic potential of the three-level system, 𝑉̄ iso

many-body,
normalized by Δ. Results are presented for weak coupling and high temperature
(𝛽Δ = 0.1, 𝛽 = 1; black, solid), weak coupling and low temperature (𝛽Δ = 0.1,
𝛽 = 8; red, solid), intermediate coupling and high temperature (𝛽Δ = 1, 𝛽 = 1;
black, dashed), and intermediate coupling and low temperature (𝛽Δ = 1, 𝛽 = 8;
red, dashed). In panel B, the high-temperature results (black lines) are graphically
indistinguishable.
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Figure 2.3: Matrix elements of the physical potential for the two-level reactive
scattering system. The elements include diabat 1 (red), diabat 2 (black), and the
off-diagonal coupling (blue, dashed, with 10-fold magnification).

the isomorphic potential of the three-level system, 𝑉̄ iso
many-body, is plotted in Fig. 2.2C,

divided by Δ to illustrate the magnitude of this many-body term in comparison to
the two-body potential coupling. As is clear from the log-scale in Fig. 2.2C, we
find in all studied cases that the many-body contribution is negligible in comparison
to the two-body coupling between the electronic states. As a result, the dynamics
for this system exhibits very little three-body character, and the computed time cor-
relation functions (not shown) exhibit the qualitative features of those discussed in
Figs. 2.1E-H. We thus find that the isomorphic Hamiltonian can be straightforwardly
applied in multi-level systems and that, at least for the three-level system studied
here, the many-body contribution to the isomorphic potential plays a minor role.

Table 2.1: Parameter values for the physical potential of the two-level reactive
scattering system, given in Eq. 2.32.

Parameter Value Parameter Value
𝐴1 7 𝑎1 1
𝐴2 −18/𝜋 𝑎2

√
3𝜋/4

𝐴3 0.25 𝑎3 0.25
𝐵1 −0.75 𝑥1 −1.6
𝐵2 54/𝜋 𝑥3 −2.625
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Surface-hopping dynamics
We finally consider the state-to-state reactive scattering in a two-level model for a
gas-phase system with a single nuclear degree of freedom. The physical potential
for this system is given by matrix elements

𝑉1(𝑥) =
𝐴1

1 + 𝑒−𝑎1 (𝑥−𝑥1)
+ 𝐵1

𝑉2(𝑥) =
𝐴2

1 + 𝑒−𝑎2𝑥
+ 𝐵2

4 cosh2 ( 𝑎2𝑥
2

) (2.32)

𝐾12(𝑥) = 𝐴3𝑒
−𝑎3 (𝑥−𝑥3)2

with parameters given in Table 2.1. Both the diagonal and off-diagonal potential
matrix elements are plotted in Fig. 2.3, with reactants at 𝑥 → −∞ and products at
𝑥 → ∞. The basic features of this model resemble the F+H2 co-linear reaction,
exhibiting both endothermal and exothermal reactive channels. We consider the
thermal reaction rate 𝑘1 for the channel that enters on diabatic state 1 and exits on
diabatic state 2, as well as the thermal reaction rate 𝑘2 for the channel that enters on
diabatic state 2 and exits on diabatic state 2. The state-to-state thermal reaction rates
are calculated using methods that include (i) numerically exact quantum dynamics,
(ii) surface hopping with classical nuclei (SH-classical), (iii) surface hopping with
nuclei quantized via the ring-polymer surface hopping method in Reference [41] that
approximates the path-integral statistical distribution (SH-RP-nokinks), (iv) surface
hopping with nuclei quantized via the CMD version of the isomorphic Hamiltonian
(SH-C-iso), and (v) surface hopping with nuclei quantized via the RPMD version
of the isomorphic Hamiltonian (SH-RP-iso). Both the SH-C-iso and SH-RP-iso
methods are newly presented in this work. Results were also obtained using classical
Ehrenfest dynamics [12], but are excluded due to their poor quality for this model.
Computational details are provided in Section 2.4, and an example program that
runs the SH-RP-iso trajectories for the system studied here is provided online.2

Figure 2.4A presents results for the thermal reaction rate 𝑘1 obtained using the
various methods as a function of reciprocal temperature, with the inset providing
an expanded view of the lowest-temperature results. The large differences between
the exact quantum and SH-classical results at low temperature illustrate the strong
role of nuclear quantum effects. Although the SH-RP-nokinks method qualitatively
recovers the effect of nuclear tunneling in this process, it overestimates the thermal
reaction rate at low temperatures by at least an order of magnitude (see inset). Since

2See https://github.com/thomasfmiller/SH-RP-iso for the available code.
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SH-RP-nokinks neglects ring-polymer configurations that span the two electronic
surfaces, it underestimates the role of the low-lying excited state in suppressing
nuclear tunneling; similar errors are observed when standard RPMD on the lower
adiabatic surface is used to approximate tunneling through an avoided crossing (see
Fig. 2 of Reference [45]). It is clear that both the SH-C-iso and SH-RP-iso results
in Fig. 2.4A are in better agreement with the exact quantum results, with the RPMD
version of the isomorphic Hamiltonian leading to particularly accurate results.

Figure 2.4B presents the corresponding results for the thermal reaction rate 𝑘2.
Again, large nuclear quantum effects at low temperature are indicated by the dif-
ference between the exact quantum and SH-classical results. The inset reveals that
for this reactive channel, the SH-C-iso method exhibits the largest errors among the
quantized surface hopping methods, overestimating the reaction rate by an order
of magnitude in the deep-tunneling regime (𝛽 > 𝛽c ≈ 8 for diabat 2). This result
illustrates a well-known shortcoming of CMD for deep-tunneling across asymmetric
barriers [74], which is the precise nature of the reaction channel associated with 𝑘2.
For this process, the SH-RP-iso and SH-RP-nokinks are graphically indistinguish-
able and are in good agreement with the exact quantum results.

We note that this simple model for a gas-phase scattering reaction reveals a significant
shortcoming of both the SH-RP-nokinks and CMD-based methods for describing
non-adiabatic chemical dynamics. Surface hopping combined with the RPMD ver-
sion of the isomorphic Hamiltonian (SH-RP-iso) avoids these pitfalls and provides
the best accuracy for both reactive channels at all temperatures.

2.6 Summary
The current work strives to decouple the methodological challenge of describing
electronically non-adiabatic dynamics from that of describing nuclear quantization.
For a general physical system with multiple electronic energy levels, we derive
a corresponding isomorphic Hamiltonian, such that Boltzmann sampling of the
isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact
quantum Boltzmann distribution for the original physical system. The key advantage
of this isomorphic Hamiltonian is that it can be combined with existing mixed
quantum-classical (MQC) methods for non-adiabatic dynamics, allowing for the
straightforward inclusion of nuclear quantum effects.
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The isomorphic Hamiltonian is presented in two versions, one of which recovers
standard ring-polymer molecular dynamics (RPMD) in the limit of a single elec-
tronic surface, and the other that recovers standard centroid molecular dynamics
(CMD). Numerical results are presented using both the RPMD and CMD versions
of the isomorphic Hamiltonian, in combination with either fewest-switches sur-
face hopping or the quantum-classical Liouville equation (QCLE) descriptions of
MQC non-adiabatic dynamics. Investigation of a simple model for non-adiabatic
gas-phase scattering reveals that a particularly promising approach is to combine
surface-hopping dynamics with the RPMD version of the isomorphic Hamiltonian
(i.e., the SH-RP-iso method), which exhibits the best accuracy among the studied
methods for two different reactive channels at all temperatures.

Future work will include applications of the isomorphic Hamiltonian to explore the
role of nuclear quantum effects in the non-adiabatic dynamics of complex systems.
Methodological extensions of the current work are also of interest, including al-
ternative specification of the matrix elements of the isomorphic Hamiltonian (as
discussed in Section 2.3), and combination of the isomorphic Hamiltonian with
other MQC methods for describing non-adiabatic dynamics. Also of interest are
dimensionality-reduction strategies based on generalization of the isomorphic po-
tential energy in Eq. 2.21 to describe the correlated dynamics of a local subset of
electronic states embedded in a mean-field treatment of the environment (akin to
quantum embedding strategies for electronic structure [75]).

2.7 Appendix
A. Equivalent forms of the ring-polymer Hamiltonian
The ring-polymer Hamiltonian is usually introduced [20, 21] by writing the partition
function as

𝑄 = lim
𝑛→∞

(2𝜋ℏ)−𝑛
∫
𝑑x

∫
𝑑p 𝑒−𝛽𝑛𝐻𝑛 (x,p) , (2.33)

where

𝐻𝑛 =

𝑛∑︁
𝛼=1

𝑝2
𝛼

2𝑚
+ 𝑛𝑈spr(x) +

𝑛∑︁
𝛼=1

𝑉 (𝑥𝛼) (2.34)

and 𝑈spr(x) is defined in Eq. 2.4. The RPMD equations of motion associated with
this form of the Hamiltonian are

¤𝑥𝛼 = 𝑝𝛼/𝑚 (2.35)

¤𝑝𝛼 = 𝑚𝜔2
𝑛

(
𝑥(𝛼+1) + 𝑥(𝛼−1) − 2𝑥𝛼

)
− 𝜕

𝜕𝑥𝛼
𝑉 (𝑥𝛼)
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or
¥𝑥𝛼 = 𝜔2

𝑛

(
𝑥(𝛼+1) + 𝑥(𝛼−1) − 2𝑥𝛼

)
− 1
𝑚

𝜕

𝜕𝑥𝛼
𝑉 (𝑥𝛼) (2.36)

for 𝛼 = 1, . . . , 𝑛, and the Lagrangian associated with this Hamiltonian is

L =

𝑛∑︁
𝛼=1

1
2
𝑚 ¤𝑥2

𝛼 − 𝑛𝑈spr(x) −
𝑛∑︁
𝛼=1

𝑉 (𝑥𝛼). (2.37)

Now, we introduce a new Lagrangian that is obtained by constant scaling of the
original,

Liso ≡ L/𝑛, (2.38)

which yields the corresponding Hamiltonian

𝐻iso
𝑛 =

𝑛∑︁
𝛼=1

(𝑝iso
𝛼 )2

2𝑚𝑛
+𝑈spr(x) +

1
𝑛

𝑛∑︁
𝛼=1

𝑉 (𝑥𝛼). (2.39)

The classical equations of motion associated with this Hamiltonian are

¤𝑥𝛼 = 𝑝iso
𝛼 /𝑚𝑛 (2.40)

¤𝑝iso
𝛼 = 𝑚𝑛𝜔

2
𝑛

(
𝑥(𝛼+1) + 𝑥(𝛼−1) − 2𝑥𝛼

)
− 1
𝑛

𝜕

𝜕𝑥𝛼
𝑉 (𝑥𝛼)

or
¥𝑥𝛼 = 𝜔2

𝑛

(
𝑥(𝛼+1) + 𝑥(𝛼−1) − 2𝑥𝛼

)
− 1
𝑚

𝜕

𝜕𝑥𝛼
𝑉 (𝑥𝛼) . (2.41)

Comparison of Eqs. 2.36 and 2.41 confirms that since the two forms of the Hamil-
tonian (in Eqs. 2.34 and 2.39) are obtained from constant scaling of the same
Lagrangian, they yield the same equations of motion.

Finally, we can rewrite the exponand in Eq. 2.33 as

−𝛽𝑛𝐻𝑛 = −𝛽
[
1
𝑛

𝑛∑︁
𝛼=1

𝑝2
𝛼

2𝑚
+𝑈spr(x) +

1
𝑛

𝑛∑︁
𝛼=1

𝑉 (𝑥𝛼)
]

= −𝛽
[
𝑛∑︁
𝛼=1

1
2
𝑚𝑛 ¤𝑥2

𝛼 +𝑈spr(x) +
1
𝑛

𝑛∑︁
𝛼=1

𝑉 (𝑥𝛼)
]

= −𝛽
[
𝑛∑︁
𝛼=1

(𝑝iso
𝛼 )2

2𝑚𝑛
+𝑈spr(x) +

1
𝑛

𝑛∑︁
𝛼=1

𝑉 (𝑥𝛼)
]

= −𝛽𝐻iso
𝑛 .

We have thus shown that the partition function in Eq. 2.33 can equivalently be
rewritten as

𝑄 = lim
𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑x

∫
𝑑piso 𝑒−𝛽𝐻

iso
𝑛 (x,piso) (2.42)
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and that the Hamiltonian in Eq. 2.39 yields the usual RPMD equations of motion. In
the main text, we employ Eqs. 2.42 and 2.39 for the partition function and the ring-
polymer Hamiltonian, respectively, and for succinctness, we drop the superscript
“iso” in denoting the bead momenta.

B. CMD version of the isomorphic Hamiltonian
The CMD version of the isomorphic Hamiltonian is

𝐻̂iso
c (𝑥, 𝑝) = 𝑝2

2𝑚
+ 𝑉̂ iso

c (𝑥), (2.43)

where 𝑉̂ iso
c is the isomorphic potential energy given by the 𝑓 × 𝑓 matrix that obeys

tre

[
𝑒−𝛽𝑉̂

iso (𝑥)
]
≡ 𝜇̄(𝑥), (2.44)

𝜇̄(𝑥) = lim
𝑛→∞

𝐶

∫
𝑑x 𝛿(𝑥 − 1

𝑛

∑︁
𝛼

𝑥𝛼) 𝑒−𝛽𝑈spr (x) 𝜇(x), (2.45)

𝐶 =
√
𝑛

(
𝑚𝑛

2𝜋𝛽ℏ2

) (𝑛−1)/2
, and 𝜇(x) is given by Eq. 2.13. Following the logic of the

main text, we obtain the centroid isomorphic potential energy of the form

𝑉̂ iso
c (𝑥) = ˆ̄𝑉 iso

2-body(𝑥) + 𝑉̄
iso
many-body(𝑥), (2.46)

which includes the two-body contribution

ˆ̄𝑉 iso
2-body(𝑥) =


𝑉̄ iso

1 (𝑥) 𝐾̄ iso
12 (𝑥) · · · 𝐾̄ iso

1 𝑓 (𝑥)
𝐾̄ iso

12 (𝑥) 𝑉̄ iso
2 (𝑥) · · · 𝐾̄ iso

2 𝑓 (𝑥)
...

...
. . .

...

𝐾̄ iso
1 𝑓 (𝑥) 𝐾̄ iso

2 𝑓 (𝑥) · · · 𝑉̄ iso
𝑓
(𝑥)


(2.47)

for which the diagonal terms are the centroid potential of mean force for each diabatic
surface,

𝑒−𝛽𝑉̄
iso
𝑖

(𝑥) = lim
𝑛→∞

𝐶

∫
𝑑x 𝛿(𝑥 − 1

𝑛

∑︁
𝛼

𝑥𝛼) (2.48)

×exp

[
−𝛽

(
𝑈spr(x) +

1
𝑛

𝑛∑︁
𝛼=1

𝑉𝑖 (𝑥𝛼)
)]

for 𝑖 = 1, . . . , 𝑓 , and the off-diagonal terms are given by(
𝐾̄ iso
𝑖 𝑗 (𝑥)

)2
= acosh2

[
𝑒

𝛽

2

(
𝑉̄ iso
𝑖

(𝑥)+𝑉̄ iso
𝑗
(𝑥)

)
𝜇̄𝑖 𝑗 (𝑥)/2

]
/𝛽2

−
(
𝑉̄ iso
𝑖 (𝑥) − 𝑉̄ iso

𝑗 (𝑥)
)2

/4, (2.49)
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where
𝜇̄𝑖 𝑗 (𝑥) = lim

𝑛→∞
𝐶

∫
𝑑x 𝛿(𝑥 − 1

𝑛

∑︁
𝛼

𝑥𝛼) 𝑒−𝛽𝑈spr (x) 𝜇𝑖 𝑗 (x), (2.50)

and 𝜇𝑖 𝑗 (x) is given by Eq. 2.19. Also included in the isomorphic potential is the
many-body contribution,

𝑉̄ iso
many-body(𝑥) = −1

𝛽
ln


𝜇̄(𝑥)

tre

[
𝑒
−𝛽 ˆ̄𝑉 iso

2-body (𝑥)
]

, (2.51)

which vanishes for the case of a two-level system.

C. The positivity and evaluation of 𝜇
In the limit of large bead number, 𝜇 can be expressed as a continuous path integral

lim
𝑛→∞

𝜇(x) = lim
𝑛→∞

tre

[
𝑛∏
𝛼=1

𝑒−𝛽𝑛𝑉̂ (𝑥
(𝛼) )

]
(2.52)

= tre

[
exp(Ô)

(
−

∫ 𝛽

0
𝑉̂ (𝑥(𝜏))𝑑𝜏

)]
,

where exp(Ô) is the time-ordered exponential, which is needed since 𝑉̂ (𝑥) may not
commute with itself at different imaginary times along the path, 𝑥(𝜏). Application
of the generalized cumulant expansion [76] to this time-ordered exponential yields

lim
𝑛→∞

𝜇(x) = exp ©­«
∞∑︁
𝑗=1

(−1) 𝑗 𝐾 𝑗 (x(𝜏))
ª®¬ , (2.53)

where 𝐾 𝑗 is the 𝑗 th-order cumulant

𝐾 𝑗 (x(𝜏)) =
∫ 𝛽

0
𝑑𝜏1

∫ 𝜏1

0
𝑑𝜏2 · · ·

∫ 𝜏𝑛−1

0
𝑑𝜏𝑗

tr(c)
e

[
𝑉̂ (x(𝜏1)) · · · 𝑉̂ (x(𝜏𝑗 ))

]
, (2.54)

and tr(c)
e [·] is the cumulant partial trace defined in Eq. 2.9 of Reference [76].

Given that the exponand in Eq. 2.53 is thus a sum of real numbers, it follows that
lim𝑛→∞ 𝜇(x) > 0, providing that the cumulant expansion series converge (which is
true for most conventional dynamics systems).

In practice, for the 𝑛-bead discretization of the path integral, both 𝜇 and its derivatives
𝜕𝜇/𝜕𝑥 (𝛼) are evaluated using Bell’s algorithm [77], which requires only O(𝑛)
operations. Details of this algorithm are provided elsewhere [42, 58].
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Figure 2.5: Time-evolution of the initial phase-space distribution under QCLE
dynamics. (A) Kubo-transformed position-autocorrelation functions for two lin-
early coupled harmonic oscillators, with physical potential energy matrix elements
of 𝑉1(𝑥) = 1

2 (𝑥 − 𝑥0)2, 𝑉2(𝑥) = 1
2 (𝑥 + 𝑥0)2, and 𝐾12(𝑥) = 1.25, where 𝑥0 = 2,

and 𝛽 = 8. (B) Time-evolution of the second moment of the phase-space dis-
tribution with respect to position, ⟨𝑥2(𝑡)⟩, for the system in panel A. Results are
obtained using exact quantum dynamics (QM; black, dots), QCLE dynamics with
nuclei initialized from the classical phase-space distribution on the physical poten-
tial (QCLE-classical; blue, dashed), QCLE dynamics with nuclei initialized from
the classical phase-space distribution on the isomorphic Hamiltonian (QCLE-C-iso;
red, solid), and QCLE dynamics with nuclei initialized from the multi-surface par-
tial Wigner distribution (QCLE-Wigner; black, solid).
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D. Time-evolution of the initial phase-space distribution under QCLE dynamics
Here, we examine a source of error for the QCLE dynamics presented in Fig. 2.1E-
H of the main text. In particular, we quantify the extent to which the QCLE
dynamics preserves the MQC phase-space distribution that arises in the classical
limit for the nuclear degrees of freedom (Section 2.4). For a two-level system
comprised of linearly coupled one-dimensional harmonic oscillators (see caption),
Fig. 2.5A shows results for the Kubo-transformed position-autocorrelation function,
and Fig. 2.5B shows the second moment of the time-evolved initial phase-space
distribution with respect to position, ⟨𝑥2(𝑡)⟩.

The results in Fig. 2.5A are similar to those discussed in Fig. 2.1E-H, with substantial
errors emerging for both the QCLE-classical and QCLE-C-iso at lower temperature
and higher coupling; as is necessary for the system studied in this appendix [64],
the QCLE dynamics initialized from the multi-level partial Wigner distribution
(QCLE-Wigner in Fig. 2.5A) recovers exact quantum mechanics. As is seen in
panel B, the QCLE dynamics exactly preserves the second moment of the initial
Wigner phase-space distribution for this system [54, 64], but it does not preserve the
initial MQC phase-space distribution associated with either the physical potential
(QCLE-classical) or the isomorphic potential (QCLE-C-iso). Indeed, the erroneous
features in the time correlation functions in panel A coincide with non-conservation
of the MQC phase-space distribution in panel B.

Although use of an initial MQC phase-space distribution for the QCLE dynamics
emerged (Section 2.4) from our goal of obtaining a classical limit for the nuclear
degrees of freedom without double-counting of nuclear quantum effects from the
initial distribution, it is clear that the MQC phase-space distribution is not conserved
by the QCLE dynamics, leading to erroneous time correlations in both the QCLE-
classical and QCLE-C-iso results.



32

C h a p t e r 3

SIMPLE FLUX-SIDE FORMULATION OF STATE-RESOLVED
THERMAL REACTION RATES FOR RING-POLYMER

SURFACE HOPPING

This chapter is based on the following publication:

1. Tao, X., Shushkov, P. & Miller III, T. F. Simple Flux-Side Formulation of
State-Resolved Thermal Reaction Rates for Ring-Polymer Surface Hopping.
Journal of Physical Chemistry A 123, 3013–3020. doi:10.1021/acs.jpca.
9b00877 (2019).

3.1 Abstract
Employing the recently developed isomorphic Hamiltonian framework for includ-
ing nuclear quantum effects in mixed quantum-classical non-adiabatic dynamics [J.
Chem. Phys., 148, 102327 (2018)], we present a flux-side formulation of state-
resolved thermal reaction rates for ring-polymer surface hopping (iso-RPSH). An
appealing aspect of the new approach is that calculation of multiple state-resolved
non-adiabatic thermal reaction rates is enabled with only a single free-energy sur-
face calculation, whereas previous non-adiabatic flux-side formulations for surface
hopping involve multiple free-energy surface calculations. The method is shown
to be robust and straightforwardly implemented, and numerical results reveal that
RPSH in the isomorphic Hamiltonian framework leads to better dividing-surface
independence than alternative RPSH methods, due to improved preservation of the
path-integral statistics.

3.2 Introduction
Ring polymer molecular dynamics (RPMD) [20, 21, 30, 31, 78, 79] provides a
simple method for including nuclear quantum effects (NQEs), such as zero-point
energy and tunneling, in rate calculations for electronically adiabatic processes.
RPMD is based on the imaginary time path-integral formalism [18, 19, 55] and
captures NQEs by evolving classical trajectories of a ring-polymer Hamiltonian that
exactly preserve quantum Boltzmann statistics. The RPMD thermal reaction rate
is rigorously independent of the choice of dividing surface for the reaction [79],
numerically exact at high temperature limit and for a parabolic barrier [78], and
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connected with instanton theory in the deep tunneling region [25]. These properties,
in combination with favorable scaling of the computational cost of RPMD with
respect to system size, have led it to be widely applied for the study of thermal
reaction rates and mechanisms in complex systems [3, 33, 44, 45, 80–90].

Recent effort has focused on extending RPMD for the description of processes in-
volving multiple electronic states [39, 40, 42, 43, 57, 58, 91, 92]. To this end, we
recently introduced a multi-state isomorphic ring-polymer Hamiltonian [93] that al-
lows for the inclusion of NQEs in any mixed quantum-classical (MQC) non-adiabatic
dynamics method, including surface hopping [13], Ehrenfest dynamics [12], and
other widely used methods [53, 54, 61, 94, 95]. The isomorphic Hamiltonian was
shown to provide a natural and accurate way to combine RPMD with fewest switches
surface hopping (i.e., iso-RPSH) [93], although the previously reported thermal rate
calculations were performed using the relatively inefficient method of calculating
rates from direct dynamics (i.e., without rare-event sampling). Here, we address this
inefficiency by developing the theory for state-resolved iso-RPSH thermal reaction
rates in the flux-side formulation. The new approach has the appealing feature of
requiring only a single free energy calculation to obtain the quantum transition state
theory (QTST) rate, and the subsequent dynamical recrossing correction makes
the rate prediction state-resolved and (nearly) dividing-surface independent. The
method is illustrated in a model for the non-adiabatic F+H2 reaction and compared
to other implementations of ring-polymer surface hopping.

3.3 Method
We begin by reviewing the multi-state isomorphic ring-polymer Hamiltonian and
its combination with fewest switches surface hopping [93]. The methodology is
then extended for the calculation of state-resolved thermal rates in the flux-side
formulation.

The isomorphic Hamiltonian
Consider a general Hamiltonian for a physical system with 𝑁 electronic states in the
diabatic representation,

𝐻̂ =
𝑝2

2𝑚
+ V(𝑞), (3.1)

where 𝑝, 𝑞 and 𝑚 are the nuclear position, momentum, and mass, respectively. The
physical potential, V, is expressed as an 𝑁 ×𝑁 Hermitian matrix where the diagonal
terms correspond to the diabatic potential energy surfaces and the off-diagonal terms
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correspond to electronic couplings. Throughout this paper, results are presented for
a single nuclear degree of freedom, although extension to higher dimensions is
straightforward.

By considering the path integral discretization of the canonical partition function,𝑄,
we thus introduce the multi-state isomorphic ring-polymer Hamiltonian, Hiso

𝑛 (p, q)
[93], such that

𝑄 = tr
[
𝑒−𝛽𝐻̂

]
= lim
𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑p𝑑q tre

[
𝑒−𝛽Hiso

𝑛 (p,q)
]
, (3.2)

where 𝛽 and 𝑛 are the inverse temperature and the number of imaginary time
discretization steps, respectively. The vector q = {𝑞1, 𝑞2, . . . , 𝑞𝑛} represents the
positions of the ring-polymer beads, and p represents the corresponding momenta.
The symbol ‘tre’ denotes a partial trace over the electronic subspace. The resulting
isomorphic Hamiltonian describes a ring-polymer comprised of 𝑛 replicas, or beads,
associated with copies of the original physical system,

Hiso
𝑛 (p, q) =

𝑛∑︁
𝛼=1

𝑝2
𝛼

2𝑚𝑛
+𝑈spr(q) + Viso

𝑛 (q) (3.3)

with 𝑚𝑛 ≡ 𝑚/𝑛. Neighboring beads are connected by harmonic springs,

𝑈spr(q) =
1
2
𝑚𝑛𝜔

2
𝑛

𝑛∑︁
𝛼=1

(𝑞𝛼 − 𝑞𝛼+1)2 , (3.4)

where 𝜔𝑛 = (𝛽𝑛ℏ)−1, 𝛽𝑛 = 𝛽/𝑛, and following Reference [93], the isomorphic
potential Viso

𝑛 is an 𝑁 × 𝑁 matrix that satisfies

𝜇(q) ≡ tre

[
𝑒−𝛽Viso

𝑛 (q)
]
= tre

[
𝑛∏
𝛼=1

𝑒−𝛽𝑛V(𝑞𝛼)
]

(3.5)

and is chosen to have the form

Viso
𝑛 = Vdiag

𝑛 + Vcoup
𝑛 +𝑉mb

𝑛 I, (3.6)

where I is the identity matrix. The diagonal elements of the isomorphic potential
correspond to the usual ring-polymer potentials associated with each diabatic state,[

Vdiag
𝑛 (q)

]
𝑖 𝑗
= 𝛿𝑖 𝑗

1
𝑛

𝑛∑︁
𝛼=1

[V(𝑞𝛼)]𝑖𝑖 (3.7)
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with 𝛿𝑖 𝑗 the Kronecker delta function. The potential coupling between pairs of states
in the isomorphic potential is given by[

Vcoup
𝑛

]2
𝑖 𝑗
= (1 − 𝛿𝑖 𝑗 )

{
acosh2

[
𝑒
𝛽

( [
Vdiag
𝑛

]
𝑖𝑖
+
[
Vdiag
𝑛

]
𝑗 𝑗

)
/2
𝜇𝑖 𝑗/2

]
/𝛽2

−
( [

Vdiag
𝑛

]
𝑖𝑖
−

[
Vdiag
𝑛

]
𝑗 𝑗

)2
/4

}
, (3.8)

where

𝜇𝑖 𝑗 (q) = tre

[
𝑛∏
𝛼=1

exp

(
−𝛽𝑛

[
[V(𝑞𝛼)]𝑖𝑖 [V(𝑞𝛼)]𝑖 𝑗
[V(𝑞𝛼)] 𝑗𝑖 [V(𝑞𝛼)] 𝑗 𝑗

])]
, (3.9)

and the sign of the potential coupling is kept to be the same as that of the physical
potential evaluated at the ring-polymer centroid position. Lastly, the many-body po-
tential term ensures that path-integral isomorphism (Eq. 3.2) is rigorously satisfied,

𝑉mb
𝑛 (q) = −1

𝛽
ln


𝜇(q)

tre

[
𝑒
−𝛽

(
Vdiag
𝑛 (q)+Vcoup

𝑛 (q)
) ]  . (3.10)

Like the standard ring-polymer Hamiltonian for a single-level system [20], the
Hamiltonian in Eq. 3.3 exploits the quantum-classical ring-polymer isomorphism,
in the sense that Boltzmann sampling in the classical limit for the nuclear degrees of
freedom on Eq. 3.3 yields the exact quantum Boltzmann distribution for the physical
system.

iso-RPSH
An appealing feature of the isomorphic Hamiltonian (Eq. 3.3) is that it immediately
can be combined with any mixed quantum-classical (MQC) dynamics method,
thereby including nuclear quantum effects. The case for which the MQC method is
trajectory surface hopping [13] leads to the iso-RPSH method [93]. For iso-RPSH,
the evolution of the nuclei is described via the extended classical equations of motion

𝑚𝑛 ¥𝑞𝛼 = 𝑚𝑛𝜔
2
𝑛 (𝑞𝛼−1 + 𝑞𝛼+1 − 2𝑞𝛼) −

𝜕

𝜕𝑞𝛼
𝜀iso
𝛾 (q), (3.11)

where 𝜀iso
𝛾 (q) is the 𝛾th adiabatic potential energy surface that is obtained by di-

agonalizing the isomorphic potential Viso
𝑛 (q), and the evolution of the electronic

wavefunction, 𝜓, is described using the time-dependent Schr¥odinger equation along
the nuclear trajectories,

𝑖ℏ
𝜕

𝜕𝑡
𝜓(q, 𝑡) = Viso

𝑛 (q)𝜓(q, 𝑡). (3.12)
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Figure 3.1: Schematic illustration of a hopping ring-polymer near avoided
crossing. In RPSH dynamics, ring-polymer moves along a single surface until
interrupted by instantaneous state transitions. The ring-polymers hop as a whole.

As illustrated in Fig. 3.1, the ring-polymer evolves on a particular adiabatic poten-
tial energy surface until all ring-polymer beads simultaneously hop to a different
adiabatic potential energy surface with probability

𝑝𝛾→𝜁 =max

{
− 2
𝑎𝛾𝛾

Re
(
𝑎𝛾𝜁

∑︁
𝛼

𝑑𝜁𝛾 ¤𝑞𝛼
)
Δ𝑡, 0

}
. (3.13)

Here, 𝑎𝛾𝜁 and 𝑑𝜁𝛾 are the elements of the adiabatic electronic density matrix and first-
derivative non-adiabatic coupling, respectively, and Δ𝑡 is the propagation timestep.
A hop can only occur under the condition of energy conservation, and hops are
rejected if the ring polymer has insufficient velocity component along the non-
adiabatic coupling vector; exactly as in classical surface hopping [13], the velocity
of each nuclear degree of freedom is modified along the direction of the non-adiabatic
coupling vector. Although the current paper only presents results obtained using
the Tully-surface hopping algorithm in its simplest form [13], modified algorithms
[69, 70, 96] including momentum reversal, decoherence corrections, and extension
to Liouvillian space can also be straightforwardly and unambiguously implemented
in the isomorphic Hamiltonian framework.
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Flux-side formulation of the iso-RPSH thermal rate
By extension of classical surface hopping rate theory [97], the flux-side formulation
of the RPSH thermal reaction rate is [41]

𝑘RPSH
𝑖→ 𝑓 𝑄𝑟 = lim

𝑛→∞
lim
𝑡→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑p0𝑑q0 𝜌𝑛

(
p0, q0

)
× 𝛿(𝑞0 − 𝑞‡) 𝑣̄0 ℎ(𝑞𝑡 − 𝑞‡) 𝛿𝑖𝜃−𝑡 𝛿 𝑓 𝜃𝑡 . (3.14)

Here, 𝑖 and 𝑓 specify the state upon which the system enter and exit, respectively,𝑄𝑟
is the reactant partition function, and 𝑡→∞ defines a time period that is sufficiently
long to allow for dynamical recrossing. The ring-polymer centroid position at
time 𝑡 is given by 𝑞𝑡 , and 𝑣̄0 denotes the initial centroid velocity, 𝑣̄0 =

∑
𝛼 ¤𝑞0,𝛼/𝑛.

𝑞‡ indicates the position of the dividing surface that separates the reactant and
product regions in position space, and 𝜌𝑛 (p, q) is the path-integral representation
of the equilibrium quantum Boltzmann distribution for the multi-level system. The
Heaviside function, ℎ(𝑞 − 𝑞‡), is non-zero only if the position of the system is in
the product region, and the Kronecker 𝛿 function, 𝛿𝑖𝜃 , is non-zero only if the system
resides on adiabatic surface 𝑖, with 𝜃𝑡 specifying the active adiabatic surface upon
which the RPSH trajectory resides at time 𝑡.

In the earlier work [41], 𝜌𝑛 was approximated using a Boltzmann-weighted sum of
adiabatic ring-polymer surfaces,

𝜌𝑛 (p, q) ≃
∑︁
𝛾

𝑒−𝛽𝐻𝑛,𝛾 (p,q) , (3.15)

where

𝐻𝑛,𝛾 (p, q) =
𝑛∑︁
𝛼=1

𝑝2
𝛼

2𝑚𝑛
+𝑈spr(q) +

1
𝑛

𝑛∑︁
𝛼=1

𝜀𝛾 (𝑞𝛼), (3.16)

and 𝜀𝛾 (𝑞𝛼) is the 𝛾th eigenvalue of the physical potential V(𝑞𝛼). A quantum
transition state theory (QTST) rate [98, 99] was computed for each adiabatic potential
energy surface,

𝑘nokinks
QTST,𝛾 (𝑞

‡)𝑄𝑟 = lim
𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑p0𝑑q0 𝑒

−𝛽𝐻𝑛,𝛾 (p0,q0)

× 𝛿(𝑞0 − 𝑞‡)𝑣̄0 ℎ(𝑝0), (3.17)

to yield the state-resolved thermal rate,

𝑘nokinks-RPSH
𝑖→ 𝑓 =

∑︁
𝛾

𝑘nokinks
QTST,𝛾 (𝑞

‡) 𝜅𝑖→ 𝑓 ,𝛾 (𝑞‡), (3.18)
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where 𝜅𝑖→ 𝑓 ,𝛾 is the recrossing factor [41] associated with trajectories that are initial-
ized at the dividing surface on adiabat 𝛾 and that reside on adiabat 𝑖 as 𝑡→−∞ and
on adiabat 𝑓 as 𝑡→∞. Here, the superscript “nokinks” is included to indicate the
approximation to the path-integral statistics made in Eq. 3.15. Note that to calculate
a single state-resolved rate, this protocol requires the independent calculation of 𝑁
free energy surfaces and 𝑁 recrossing factors.

In the current work, the quantum Boltzmann distribution is expressed exactly in
terms of the isomorphic Hamiltonian,

𝜌𝑛 (p, q) =tre

[
𝑒−𝛽Hiso

𝑛 (p,q)
]

(3.19)

=𝑒−𝛽pTp/2𝑚𝑛 𝑒−𝛽𝑈spr (q) 𝜇(q) (3.20)

=
∑︁
𝛾

𝑒−𝛽𝐻
iso
𝑛,𝛾 (p,q) , (3.21)

where

𝐻iso
𝑛,𝛾 (p, q) =

𝑛∑︁
𝛼=1

𝑝2
𝛼

2𝑚𝑛
+𝑈spr(q) + 𝜀iso

𝛾 (q) , (3.22)

and 𝜀iso
𝛾 (q) is the 𝛾th eigenvalue of the isomorphic potential, Viso

𝑛 (q). The analog
of Eqs. 3.17 and 3.18 is still applicable with QTST rate now defined in terms of the
adiabats of the isomorphic Hamiltonian, such that

𝑘 iso
QTST,𝛾 (𝑞

‡)𝑄𝑟 = lim
𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑p0𝑑q0 𝑒

−𝛽𝐻iso
𝑛,𝛾 (p0,q0)

× 𝛿(𝑞0 − 𝑞‡)𝑣̄0 ℎ(𝑝0). (3.23)

The resulting expression for the state-resolved thermal rate is

𝑘 iso-RPSH
𝑖→ 𝑓 =

∑︁
𝛾

𝑘 iso
QTST,𝛾 (𝑞

‡) 𝜅iso
𝑖→ 𝑓 ,𝛾 (𝑞

‡), (3.24)

where the 𝜅iso
𝑖→ 𝑓 ,𝛾

(𝑞‡) are the same state-resolved recrossing factors as in Eq. 3.18,
except with trajectories run on the adiabats of the isomorphic Hamiltonian. As in
Eq. 3.18, for a single state-resolved rate calculation, Eq. 3.24 requires the indepen-
dent calculation of 𝑁 free energy surfaces and 𝑁 recrossing factors.

A central result of the current work is that, by combining Eqs. 3.23 and 3.24 with
Eq. 3.20, the state-resolved thermal rate expression can be formulated more simply,

𝑘 iso-RPSH
𝑖→ 𝑓 = 𝑘MF

QTST(𝑞
‡) 𝜅iso

𝑖→ 𝑓 (𝑞
‡), (3.25)
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in terms of a state-unresolved (i.e., mean-field) QTST,

𝑘MF
QTST(𝑞

‡)𝑄𝑟 = lim
𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑p0𝑑q0 𝑒

−𝛽𝐻MF
𝑛 (p0,q0)

× 𝛿(𝑞0 − 𝑞‡)𝑣̄0 ℎ(𝑝0), (3.26)

where

𝐻MF
𝑛 (p, q) =

𝑛∑︁
𝛼=1

𝑝2
𝛼

2𝑚𝑛
+𝑈spr(q) −

1
𝛽

ln 𝜇(q) (3.27)

is the familiar mean-field (MF)-RPMD Hamiltonian [42, 57, 58]. In this formulation,
state-resolution of the rate appears only via the dynamical recrossing factor,

𝜅iso
𝑖→ 𝑓 (𝑞

‡) =
lim
𝑛→∞

lim
𝑡→∞

∫
𝑑p0𝑑q0 𝜌𝑛

(
p0, q0

)
𝛿(𝑞0 − 𝑞‡) 𝑣̄0 ℎ(𝑞𝑡 − 𝑞‡) 𝛿𝑖𝜃−𝑡 𝛿 𝑓 ,𝜃𝑡

lim
𝑛→∞

∫
𝑑p0𝑑q0 𝜌𝑛

(
p0, q0

)
𝛿(𝑞0 − 𝑞‡) 𝑣̄0 ℎ(𝑝0)

.

(3.28)

Practical evaluation of the dynamical recrossing factor in Eq. 3.28 involves ini-
tialization of the iso-RPSH trajectories from the quantum Boltzmann distribution
with the ring-polymer centroid constrained to the dividing surface. First, using
that 𝜌𝑛 (p, q) = 𝑒−𝛽𝐻

MF
𝑛 (p,q) , nuclear configurations and velocities are sampled from

the constrained distribution 𝑒−𝛽𝐻MF
𝑛 (p0,q0)𝛿(𝑞0 − 𝑞‡); then, using Eq. 3.21, the elec-

tronic state at the dividing surface, 𝛾, is conditionally sampled from the Boltzmann
weight of the isomorphic adiabatic surfaces at that ring-polymer nuclear configura-
tion. The initialized trajectories are propagated both backwards and forwards in time
using the iso-RPSH Hamiltonian in the adiabatic representation (Eq. 3.22) and with
transitions induced by non-adiabatic couplings that are derived from Eq. 3.3. This
leads to characterization of the position-space recrossing, as well as determination
of the initial and final electronic state for each trajectory.

The primary advantage of the rate expression in Eq. 3.25 is that evaluation of the
state-resolved reaction rates requires only the single MF-QTST in Eq. 3.26 and
thus only a single free-energy calculation with respect to the well-behaved MF
Hamiltonian in Eq. 3.27. This is a distinct feature of the method proposed here.

It is worth noting, however, that although the rate expression in Eq. 3.25 provides
importance sampling with respect to the ring polymer nuclear configurations, it
does not involve importance sampling with respect to the electronic states. That is,
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the electronic state of the trajectory at the dividing surface is sampled directly from
the conditional probability distribution

∑
𝛾 𝑒

−𝛽𝐻iso
𝑛,𝛾 (p0,q0)𝛿(𝑞0 − 𝑞‡), such that more

trajectories will be initialized from electronic states that are thermally accessible
at the dividing surface. As a result, the rate expression in Eq. 3.25 will provide
a simple and efficient avenue to obtaining the state-resolved reaction rates that are
most thermally accessible, whereas the rate expression in Eq. 3.24 may provide a
more efficient means of obtaining state-resolved rates that make small contributions
to the total thermal reaction rate.

Finally, we note that in direct analogy to Eqs. 3.25-3.27, the state-resolved thermal
rate for the no-kinks approximation to RPSH can be expressed in terms of a state-
unresolved MF-QTST, so that it too can be obtained with only a single free-energy
calculation,

𝑘nokinks-RPSH
𝑖→ 𝑓 = 𝑘MF-nokinks

QTST (𝑞‡) 𝜅nokinks
𝑖→ 𝑓 (𝑞‡), (3.29)

in terms of a no-kinks approximation to the MF-QTST,

𝑘MF-nokinks
QTST (𝑞‡)𝑄𝑟 = lim

𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑p0𝑑q0 𝑒

−𝛽𝐻MF-nokinks
𝑛 (p0,q0)

× 𝛿(𝑞0 − 𝑞‡)𝑣̄0 ℎ(𝑝0), (3.30)

where

𝐻MF-nokinks
𝑛 (p, q) = − 1

𝛽
ln

(∑︁
𝛾

𝑒−𝛽𝐻𝑛,𝛾 (p,q)
)
. (3.31)

For the evaluation of the recrossing factor in Eq. 3.29, the initialized trajectories are
propagated both backwards and forwards in time using the nokinks-RPSH Hamil-
tonian in the adiabatic representation (Eq. 3.16)) and with transitions induced by
non-adiabatic couplings that are averaged over the bead positions (i.e., the “bead
approximation” from Reference [41]).

3.4 Computational Details
Calculations are presented for the one-dimensional, two-state model of gas-phase
F+H2 reactive scattering introduced in Reference [93], which exhibits both substan-
tial nuclear tunneling and electronically non-adiabatic effects.
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Table 3.1: Parameter values for the potential of two-level reactive scattering model
in Eq. 3.32.

Parameter Value Parameter Value
𝐴1 7 𝑎1 1
𝐴2 −18/𝜋 𝑎2

√
3𝜋/4

𝐴3 0.25 𝑎3 0.25
𝐵1 −0.75 𝑞1 −1.6
𝐵2 54/𝜋 𝑞3 −2.625

Potential energy surfaces and couplings for the system in the diabatic representation
are

𝑉1(𝑞) =
𝐴1

1 + 𝑒−𝑎1 (𝑞−𝑞1)
+ 𝐵1

𝑉2(𝑞) =
𝐴2

1 + 𝑒−𝑎2𝑞
+ 𝐵2

4 cosh2 (𝑎2𝑞/2)
𝐾12(𝑞) = 𝐴3𝑒

−𝑎3 (𝑞−𝑞3)2
(3.32)

with parameters given in Table 3.1. Both diabatic and adiabatic surfaces are plotted
in Fig. 3.2A, with the reactant region at 𝑞→−∞ and the product region at 𝑞→∞. For
the computed state-resolved thermal reaction rates, we will use the notation that 𝑘1

indicates the rate for the system that entering on adiabat 1 and exiting to the product
region on adiabat 1, and 𝑘2 indicates the rate for the system that entering on adiabat
2 and exiting to the product region on adiabat 1. Note that the reaction channels
are named here differently from those in Reference [93]. We indicate the total
(state-unresolved) thermal reaction rate as 𝑘 total, mainly consisting of contributions
from above two channels at the investigated temperature range 𝛽 ≥ 1. All the rate
results below are reported in the unit of m·molecule−1 s−1.

Three different surface hopping rate calculations are compared: (i) RPSH with the
isomorphic Hamiltonian, called iso-RPSH, using Eqs. 3.25-3.27, (ii) RPSH with the
no-kinks Hamiltonian, called nokinks-RPSH, using Eqs. 3.29-3.31, and (iii) classi-
cal surface hopping using the (shared) 1-bead limit of these expressions. We note
that iso-RPSH employs an exact expression for the quantum Boltzmann distribution,
nokinks-RPSH employs an approximate for the quantum Boltzmann distribution,
and classical surface hopping employs the classical Boltzmann distribution. Ex-
act quantum results are provided using wavepacket propagation the split-operator
technique based [73, 100].
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Figure 3.2: The potential and the quantum transition state theory rates of a gas-
phase scattering model. (A) Potential of the model system described as in Eq. 3.32.
Diabatic and adiabatic states are shown in solid and dash lines, respectively. The
filled area is the region in which following dividing surface independence tests
are performed. (B) Optimized positions of the dividing surface as a function of
reciprocal temperature is shown in the dotted line. Solid green lines depict the
mean-field quantum transition state theory (MF-QTST, Eq. 3.26) rate on a log
scale as a function of the dividing surface position for three different temperatures.
Position of the reaction barrier on ground adiabat is indicated with a thin solid line.



43

Each of the surface-hopping rate calculations is implemented in two stages—a
statistical and a dynamical part. As in previous RPMD simulations [81, 82], the
QTST rate for a biomolecular reaction is calculated using the Bennett-Chandler
procedure [101, 102]. An auxiliary dividing surface, 𝑞∗, is placed in the reactant
asymptotic region, and the QTST rate is then given by

𝑘QTST(𝑞‡) = 𝑘QTST(𝑞∗)
𝑘QTST(𝑞‡)
𝑘QTST(𝑞∗)

=
1

(2𝜋𝛽𝑚)1/2
𝜌𝑐 (𝑞‡)
𝜌𝑐 (𝑞∗)

(3.33)

with

𝜌𝑐 (𝑞‡) =
∫
𝑑q 𝑒−𝛽𝑈spr (q) 𝜇(q) 𝛿(𝑞 − 𝑞‡) (3.34)

the MF centroid density. For all the results presented in this section, QTST rates are
obtained with importance sampling in the path-integral representation. Monte Carlo
(MC) samplings with both 8𝛽 and 16𝛽 ring-polymer beads are conducted to make
sure imaginary-time discretization convergence is reached. Statistical convergence
is achieved for all the simulations with up to 109 MC moves. Optimized dividing
surfaces in QTST calculations are obtained with a scan accurate to 0.01 a.u.

The dynamical recrossing factor 𝜅 is computed for each method by trajectory sim-
ulations. The ring-polymer Hamiltonian is integrated using the velocity Verlet
algorithm [72], with the Liouville operator for nuclei motion factorized such that
the free ring-polymer movements are solved analytically [30, 31]. The isomorphic
Hamiltonian and its derivatives are calculated using Bell’s algorithm [93]. The
electronic Schr¥odinger equation is evolved in the interaction representation with an
unitary nuclear-position-coupled mid-point propagator [103] for four times during
each nuclear timestep. The trajectories are initialized from a thermal distribution at
the dividing surface. The thermal ensemble is generated using Metropolis algorithm
while velocities are sampled from the Maxwell-Boltzmann distribution. Utilizing
a standard reweighting strategy [97], trajectories are first propagated backward in
time to determine the correct quantum amplitude at the dividing surface, before they
are propogated forward in time. The trajectories are simulated using a timestep of
0.0001 a.u. Dynamics simulation for ring-polymers with both 8𝛽 and 16𝛽 beads
have been performed to check the convergence of the path-integral discretization.
Rate results below are obtained using 105 trajectories, although we emphasize that
to within graphical accuracy, identical results could have been obtained using only
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103 trajectories. For the calculations reported with the dividing surface placed away
from the optimized position, 8×105 trajectories are performed to fully describe the
trajectory recrossing at each dividing surface position.

3.5 Results
We begin by demonstrating ring-polymer surface hopping (RPSH) in the flux-side
formulation for a one-dimensional, two-state model of gas-phase F+H2 reactive
scattering (Fig. 3.2A). Given that the flux-side calculations involve a dynamical
recrossing correction (Eq. 3.28, for example) to a QTST, Fig. 3.2B illustrates how
the QTST estimate in Eq. 3.26 for the total thermal reaction rate varies as a function
of the choice of dividing surface over a range of temperatures. Consistent with
previous observations of electronically adiabatic RPMD [79], the optimal position
of the dividing surface shifts away from the position of the barrier-top for the ground-
state adiabat at lower temperatures (𝛽 > 1), due to significant nuclear tunneling
effects. However, in a strictly non-adiabatic effect, Fig. 3.2B also shows that the
optimal position of the dividing surface shifts away from the barrier-top position at
high temperatures (𝛽 < 1), due to the influence of the excited electronic state.

Fig. 3.3 presents the state-resolved thermal reaction rate versus inverse temperature
for two different reactive channels, obtained using exact quantum mechanics, clas-
sical surface hopping, iso-RPSH [93], and nokinks-RPSH [41]. As is clear from
comparison of the exact quantum results and classical surface hopping, the nuclear
tunneling effects accelerate the reaction rate and becomes more significant at lower
temperatures. Flux-side formulation of iso-RPSH dynamics provides accurate state-
resolved rates for the full range of temperatures, as seen previously when employed
with the side-side formulation of the rate [93]. The key difference using the flux-
side formulation in the current work is that substantially smaller statistical errors
are achieved with 1000-fold fewer dynamical trajectories than in the previous study.
The nokinks-RPSH method overestimates the rate for both channel, but the effect
is much more stubstantial for rate 𝑘1, which corresponds to the system entering
and exiting on the lower electronic adiabat; the deviation of nokinks-RPSH from
exact results is due to underestimation of the influence of the low-lying excited state,
which acts to suppress the rate (see for example, Fig. 2 in Reference [45]).

We now explore the robustness of the RPSH methods to the choice of dividing
surface position. The RPSH calculations in Fig. 3.3 were obtained using the flux-
side formulation with the optimal choice of dividing surface for the associated
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Figure 3.3: Arrhenius plots of state-resolved thermal rates versus reciprocal
temperature for two reaction channels. More specifically, (A) for adiabat 1→ 1
and (B) for adiabat 2 → 1. Rates are calculated from exact quantum mechanics
(QM, thick solid black), classical surface hopping (classical SH, dashed black),
ring-polymer surface hopping dynamics with the no-kinks approximation (nokinks-
RPSH, dotted green) and RPSH in the isomorphic Hamiltonian framework (iso-
RPSH, solid red). Mean standard deviations for all the data points plotted are
smaller than the size of markers. Dividing surfaces in the RPSH calculations are
placed at the optimal positions.

MF-QTST (i.e., Eq. 3.26 for iso-RPSH and Eq. 3.30 for the nokinks-RPSH). For
the inverse temperature 𝛽 = 8, Fig. 3.4A presents total (state-unresolved) thermal
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Figure 3.4: (Continued on the following page.)
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Figure 3.4: Dividing surface dependence of thermal rates at 𝛽 = 8. More
specifically, (A) for state-unresolved total rate, (B) and (C) for channels adiabat
1 → 1, and adiabat 2 → 1, respectively. Rates are calculated from exact quantum
mechanics (QM, thick grey), classical surface hopping (classical SH, dash-dotted
black), mean-field quantum transition state theory (MF-QTST, dashed red, Eq. 3.26),
mean-field ring polymer molecular dynamics (MF-RPMD, dashed violet), and three
implementations of ring-polymer surface hopping as described in the main text
(RPSH, solid red, dashed blue and dotted green lines). For data points for which
the error bars are not explicitly shown, the standard error is smaller than the size of
marker. Optimal positions for the dividing surface are shown in dashed grey.

reaction rate for the reaction, using a variety of methods, as a function of the dividing
surface position. As is necessary [104], the exact quantum mechanical rate is strictly
independent of the choice of dividing surface, and in stark contrast, the MF-QTST
of Eq. 3.26 is exponentially dependent on the position of the dividing surface. The
classical surface hopping result differ substantially from the quantum result due to
the exclusion of nuclear tunneling effects, and as has been seen previously [68],
they vary as a function of dividing surface position due to inexact preservation of
the mixed quantum-classical Boltzmann distribution by the dynamical trajectories
[59, 105], although the degree of variation (∼40%) is small on the scale of this plot.
Both RPSH methods likewise vary slightly on this scale as a function of dividing
surface position due to inexact preservation of the quantum Boltzmann distribution
by the dynamical trajectories. Notably, the rate obtained using MF-RPMD is strictly
independent of the dividing surface position due to exact preservation of the quantum
Boltzmann distribution by the dynamical trajectories, although this method has the
disadvantage of not enabling state-resolved rate calculations.

Figs. 3.4B and C present the state-resolved thermal reaction rate for the adiabat 1→1
channel (𝑘1) and the adiabat 2 → 1 channel (𝑘2), computed using exact quantum
mechanics, iso-RPSH (red), and nokinks-RPSH (green). Again, it is seen that the
exact quantum results are strictly independent of the position of the dividing surface,
and as in Fig. 3.3, it is seen that nokinks-RPSH (green) substantially overestimates
the 𝑘1 rate while iso-RPSH (red) provides the best estimate of both channels. Given
the more narrow range of rates plotted in these panels, the variation of the RPSH
methods is more clearly seen with both iso-RPSH and nokinks-RPSH varying by a
similar degree (∼25%) as a function of dividing surface position.
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Also shown in Figs. 4B and C is the result of a rate expression that uses MF-QTST
with the exact quantum Boltzmann distribution (Eq. 26), while the recrossing factor
is evaluated by trajectories that are initialized from the exact quantum Boltzmann
distribution and are propagated using nokinks-RPSH dynamics. Whereas this hybrid
method, analogs of which have been suggested in other contexts [57], improves the
rate associated with the lower adiabat (𝑘1), it does so at the cost of introducing a much
stronger dependence on the position of the dividing surface. This example illustrates
the statistical importance of kinked ring-polymer configurations in describing these
non-adiabatic reaction rates, as well as the fact that iso-RPSH does a substantially
better job of preserving the true quantum Boltzmann distribution than the nokinks-
RPSH method.

3.6 Summary
The development of practical, robust, and accurate quantum methods that incorpo-
rate both nuclear quantum effects and allow for electronically non-adiabatic transi-
tions remains an important challenge for the description of complex photochemical,
charge-transfer, and energy-transfer processes. In this work, we present an efficient
flux-side formulation of ring-polymer surface hopping on the isomorphic path-
integral Hamiltonian (iso-RPSH). The method is straightforwardly implemented,
involving no greater complexity than a standard trajectory surface hopping rate cal-
culation, and it is shown to be accurate and relatively insensitive to the position of the
transition-state dividing surface. A novel and appealing aspect of the flux-side for-
mulation presented here is that calculation of multiple state-resolved non-adiabatic
thermal reaction rates is enabled with only a single free-energy surface calculation.
The combined accuracy and simplicity of iso-RPSH make it amenable to useful
application in realistic chemical systems.
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C h a p t e r 4

MICROCANONICAL RATES FROM RING-POLYMER
MOLECULAR DYNAMICS: DIRECT-SHOOTING,

STATIONARY-PHASE, AND MAXIMUM-ENTROPY
APPROACHES

This chapter is based on the following publication:

1. Tao, X., Shushkov, P. & Miller III, T. F. Microcanonical Rates from Ring-
Polymer Molecular Dynamics: Direct-Shooting, Stationary-Phase, and Maximum-
Entropy Approaches. Journal of Chemical Physics 152, 124117. doi:10.
1063/1.5144307 (2020).

4.1 Abstract
We address the calculation of microcanonical reaction rates for processes involv-
ing significant nuclear quantum effects using ring-polymer molecular dynamics
(RPMD), both with and without electronically non-adiabatic transitions. After il-
lustrating the shortcomings of the naive free-particle direct-shooting method, in
which the temperature of the internal ring-polymer modes is set to the translational
energy scale, we investigate alternative strategies based on the expression for the
microcanonical rate in terms of the inverse Laplace transform of the thermal reac-
tion rate. It is shown that simple application of the stationary-phase approximation
(SPA) dramatically improves the performance of the microcanonical rates using
RPMD, particularly in the low-energy region where tunneling dominates. Using
the SPA as a Bayesian prior, numerically exact RPMD microcanonical rates are
then obtained using maximum entropy inversion of the thermal reaction rates, for
both electronically adiabatic and non-adiabatic model systems. Finally, the direct-
shooting method is revisited using the SPA-determined temperature for the internal
ring-polymer modes, leading to a simple, direct-simulation method with improved
accuracy in the tunneling regime. This work suggests a general strategy for the ex-
traction of microcanonical dynamical quantities from RPMD (or other approximate
thermal) simulations.
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4.2 Introduction
Ring-polymer molecular dynamics (RPMD) [20, 21] has proven to be a useful tool
for the calculation of chemical reaction rates [78, 79], spectra [26, 32], and transport
coefficients [30, 31]. The method has been widely applied for the study of elec-
tronically adiabatic processes for which nuclear quantum effects play an important
role [29, 33, 44, 45, 80, 81, 83, 86, 87, 89, 90, 106–116], and extensions of the
method for systems involving electronically non-adiabatic processes are increasingly
common [3, 39–43, 57, 58, 91–93, 117]. However, despite the utility of RPMD
for calculating quantities in terms of thermal transport coefficients, less work has
focused on the extension of the method to non-thermal initial distributions [118]
or for the calculation of properties associated with non-thermal ensembles, such as
microcanonical reaction rates, which would be of use for both benchmarking and
practical applications.

Application of RPMD beyond the canonical ensemble immediately encounters the
question of how to treat the temperature associated with the intra-bead ring-polymer
potential. This temperature is well-defined in thermal applications for which RPMD
was initially developed [20, 21], and it has been justified for RPMD with particular
non-equilibrium initial conditions [118]. In the context of microcanonical reaction
rates, a direct-shooting method based on the free-particle temperature has been
proposed [119], in which the internal ring-polymer temperature is fixed based on the
microcanonical energy, i.e. 𝑇 = 𝐸/𝑘B. This protocol has been employed in several
model calculations [46, 119], although its reliability has not been systematically
examined.

The current work addresses the challenge of microcanonical rate calculations us-
ing RPMD. In addition to analyzing the previously proposed free-particle direct-
shooting protocol, we introduce alternative stationary-phase and maximum-entropy
inversion methods to extract microcanonical rates from thermal reaction rates, the
calculation of which is well established using RPMD. Finally, we return to the
direct-shooting method for microcanonical RPMD rates, replacing the free-particle
temperature with the optimal temperature from the stationary-phase inversion, which
is shown to yield greatly improved microcanonical RPMD rates in the low-energy
regime. Numerical examples of these microcanonical RPMD methods are presented
for both electronically adiabatic and non-adiabatic systems.
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4.3 Methods
Thermal reaction rates from RPMD
We begin by briefly reviewing RPMD and its use for the calculation of thermal
reaction rates. The theory is presented for a one-dimensional system, and extension
to multiple dimensions is straightforward. Consider an electronically adiabatic
system with the Hamiltonian

𝐻̂ =
𝑝2

2𝑚
+𝑉 (𝑞), (4.1)

where 𝑉 (𝑞) is the potential energy function. Expressing the quantum canonical
partition function, 𝑄, in the path-integral representation yields [18, 19, 55]

𝑄 = tr
[
𝑒−𝛽𝐻̂

]
= lim
𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑p𝑑q 𝑒−𝛽𝐻

iso
𝑛 (p,q) , (4.2)

where 𝛽 and 𝑛 are the reciprocal temperature and the number of imaginary time
discretization steps, respectively; q = {𝑞1, 𝑞2, . . . , 𝑞𝑛} denotes the positions of the
ring-polymer beads, and p denotes the corresponding momenta. Eq. 4.2 introduces
the classical isomorphic ring-polymer Hamiltonian,

𝐻iso
𝑛 (p, q) =

𝑛∑︁
𝛼=1

𝑝2
𝛼

2𝑚𝑛
+𝑈spr(q) +

1
𝑛

𝑛∑︁
𝛼=1

𝑉 (𝑞𝛼), (4.3)

with 𝛽𝑛 = 𝛽/𝑛, 𝑚𝑛 = 𝑚/𝑛, and neighboring ring-polymer beads are connected via
harmonic springs

𝑈spr(q) =
1
2
𝑚𝑛

𝛽2
𝑛

𝑛∑︁
𝛼=1

(𝑞𝛼 − 𝑞𝛼+1)2 . (4.4)

Classical sampling of the ring-polymer Hamiltonian faithfully preserves quantum
Boltzmann statistics. The classical equations of motion associated with the ring
polymer Hamiltonian are given by

¥𝑞𝛼 =
1
𝛽2
𝑛

(𝑞𝛼+1 + 𝑞𝛼−1 − 2𝑞𝛼) −
1
𝑚

𝜕𝑉 (𝑞𝛼)
𝜕𝑞𝛼

. (4.5)
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The calculation of thermal rates from RPMD then simply follows from the appli-
cation of classical rate theory to the dynamics associated with the ring-polymer
Hamiltonian [21, 78, 79]. Specifically, calculation of the thermal RPMD rate in the
flux-side formulation yields

𝑘𝑄𝑟 = lim
𝑛→∞

lim
𝑡→“∞”

( 𝑛

2𝜋ℏ

)𝑛 ∫
𝑑p0𝑑q0 𝑒

−𝛽𝐻iso
𝑛 (p0,q0)

× 𝛿(𝑞0 − 𝑞‡) 𝑣̄0 ℎ(𝑞𝑡 − 𝑞‡), (4.6)

which correlates the positions and velocities of the ring-polymer beads at time 𝑡
following evolution according to the ring-polymer equations of motion (Eq. 4.5)
from an initial distribution in which the ring-polymer centroid is positioned at the
dividing surface for the reaction. Here, 𝑞0 and 𝑞𝑡 indicate the ring-polymer centroid
position at time zero and 𝑡, respectively, and 𝑣̄0 indicates the centroid velocity at
time zero. 𝑄𝑟 denotes the reactant partition function, 𝑞‡ indicates the position of the
dividing surface that separates the reactant and product, ℎ is the Heaviside function,
and 𝛿 is the Dirac delta function.

Microcanonical reaction rates from RPMD
In the following, we describe three alternative strategies for calculating microcanon-
ical reaction rates from RPMD. The first involves an inverse Laplace transform of
the thermal RPMD reaction rates and introduces no approximations beyond that of
the thermal RPMD rate theory, although it is numerically the most demanding. The
subsequent two methods introduce additional approximations (i.e., the stationary
phase approximation and the direct shooting approximation) with the benefit of
reduced numerical complexity.

Maximum entropy inversion

Reaction rates in the microcanonical1 and canonical ensembles are connected via
the Laplace transform [120]

𝑘 (𝛽)𝑄𝑟 (𝛽) =
1

2𝜋ℏ

∫ +∞

−∞
𝑑𝐸 𝑒−𝛽𝐸𝑁 (𝐸), (4.7)

which can be inverted to yield [121–123]

𝑁 (𝐸) = (2𝜋ℏ) 1
2𝜋𝑖

∫ 𝛾+𝑖∞

𝛾−𝑖∞
𝑑𝛽 𝑒Φ(𝛽) (4.8)

1Following previous work [120], we refer to 𝑁 (𝐸) as the microcanonical rate, although it is
also known as the cumulative reaction probability. The quantity 𝑟 (𝐸) = 𝑁 (𝐸)/[2𝜋ℏ 𝜌(𝐸)] is also
commonly referred to as the microcanonical rate, where 𝜌(𝐸) is the density of states; by estimating
𝜌(𝐸) with statistical mechanical methods, the quantities can be interconverted.
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with

Φ(𝛽) = 𝛽𝐸 + log (𝑘𝑄𝑟) . (4.9)

The line integral in Eq. 4.8 is performed along Re[𝛽]=𝛾, where 𝛾 is greater than the
real part of all points for whichΦ is singular. However, numerical implementation of
this inverse Laplace transform is typically ill-conditioned and sensitive to statistical
noise [65], which is unavoidable in simulation-based thermal rate calculations.

To ameliorate this problem, we first employ the maximum entropy (MaxEnt) method
[124, 125], which utilizes statistic inference and a Bayesian prior to regularize the
numerical inversion [89, 125–128]. MaxEnt is implemented by rewriting the integral
in Eq. 4.7 in matrix form,

𝜿 = B 𝝂, (4.10)

where 𝜿 is the vector of thermal rate input data at discrete temperature points {𝛽𝑖},
and 𝝂 is the vector of microcanonical rate outputs at discrete energy values {𝐸 𝑗 }.
Specifically, the elements of 𝜿 and 𝝂 are 𝜅𝑖 = 2𝜋ℏ 𝑘 (𝛽𝑖)𝑄𝑟 (𝛽𝑖) and 𝜈 𝑗 = 𝑁 (𝐸 𝑗 ).
The matrix B is comprised of the Boltzmann kernel 𝐵𝑖 𝑗 = 𝑒−𝛽𝑖𝐸 𝑗Δ𝐸 𝑗 , where Δ𝐸 𝑗 =
𝐸 𝑗+1 − 𝐸 𝑗 is the integration stepsize. MaxEnt yields the microcanonical rate by
maximizing the objective function

𝑄(𝝂;𝛼) = 𝛼𝑆(𝝂) − 𝜒2(𝝂)/2 +𝑉reg(𝝂), (4.11)

where the information entropy 𝑆 describes the degree to which solution is faithful
to a prior model 𝝀({𝐸 𝑗 }),

𝑆(𝝂) =
∑︁
𝑗

(
𝜈 𝑗 − 𝜆 𝑗 − 𝜈 𝑗 log

𝜈 𝑗

𝜆 𝑗

)
, (4.12)

and the likelihood function 𝜒2 describes the accuracy with which the reference
thermal rate data is fit,

𝜒2(𝝂) = (𝜿 − B𝝂)T C−1 (𝜿 − B𝝂). (4.13)

Here, C is the covariance matrix for the thermal rate data with elements

𝐶𝑖𝑖′ =𝛿𝑖𝑖′𝜎
2
𝑖 , (4.14)

where 𝛿𝑖𝑖′ is the Kronecker delta function, and 𝜎𝑖 is the standard deviation for the
𝑖-th thermal rate datapoint. The parameter 𝛼 balances between accurately fitting the
reference data while preserving the prior model.
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Finally, 𝑉reg(𝝂) penalizes those trial solutions that violate the physical constraints
of the microcanonical rate constant, namely that it satisfy 𝑁 (𝐸) ∈ [0, 1]. The lower
bound is enforced by conducting a solution search only in the positive subspace
while the upper bound is enforced via the functional form

𝑉reg(𝝂) = −
∑︁
𝑗

1
2
𝜁 𝐼2(𝜈 𝑗 − 1), (4.15)

where

𝐼 (𝜈 𝑗 − 1) =

𝜈 𝑗 − 1, 𝜈 𝑗 ≥ 1,

0, 𝜈 𝑗 < 1,
(4.16)

and 𝜁 is chosen according to a tolerance criterion.

Stationary phase approximation

As an alternative to numerically exact inversion, we apply the stationary phase ap-
proximation (SPA) [129] to Eq. 4.8. Implementation of the SPA involves finding
the stationary point of the phase function Φ in Eq. 4.9 and then approximating the
integrand as a Gaussian function along the imaginary axis. Setting the first-order
derivative of the phase function to zero yields the energy-temperature correspon-
dence [130, 131]

𝐸st = − 𝜕 log [ 𝑘 (𝛽)𝑄𝑟 (𝛽) ]
𝜕𝛽

����
𝛽st

, 𝛽st ∈ R (4.17)

where 𝛽st is the stationary temperature that is assumed to dominate the integrand.
The resulting SPA microcanonical rate prediction is given by

𝑁SPA(𝐸st) =
2𝜋ℏ
√

2𝜋

(
𝜕2 log [ 𝑘 (𝛽)𝑄𝑟 (𝛽) ]

𝜕𝛽2

����
𝛽st

)−1/2

× 𝑒𝛽st𝐸st 𝑘 (𝛽st)𝑄𝑟 (𝛽st). (4.18)

We note that semiclassical instanton theory can also yield approximate microcanon-
ical rates via the SPA [132–134].

A well-known shortcoming of the SPA is that the calculated microcanonical rate
violates the constraint 𝑁 (𝐸) ≤ 1 in the high-energy limit [131]. In this regime,
the barrier-crossing dynamics reduces to free particle motion, and the thermal rate
becomes

[𝑘𝑄𝑟]FP = 1/(2𝜋𝛽ℏ) . (4.19)
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Substituting Eq. 4.19 into Eqs. 4.17 and 4.18 yields the energy-temperature corre-
spondence relation

𝐸FP
st = 1/𝛽FP

st , (4.20)

and the corresponding microcanonical rate in the high-energy limit is

𝑁FP
SPA(𝐸) = 𝑒/

√
2𝜋 ≃ 1.084, (4.21)

in excess of the correct upper limit.

Direct shooting approximation

By analogy with classical rate theory, a physically intuitive strategy for approximat-
ing microcanonical rates from RPMD is to simply (i) initialize trajectories from the
reactant side with specified translational energy, (ii) propagate those trajectories us-
ing the microcanonical equations of motion in Eq. 4.5, and (iii) count the proportion
of trajectories that reach the product region, such that

𝑁direct(𝐸, 𝛽int)

= lim
𝑛→∞

lim
𝑡→“∞”

𝑛𝑛

(2𝜋ℏ)𝑛−1

∫
𝑑p0𝑑q0

𝑒−𝛽int𝐻
iso
𝑛 (p0,q0)

𝑒−𝛽int𝐸

× 𝛿
[
𝑝0 −

√︁
2𝑚(𝐸 −𝑉𝑎)

]
𝛿(𝑞0 − 𝑞‡) ℎ(𝑞𝑡 − 𝑞‡), (4.22)

where 𝑝 =
∑
𝛼 𝑝𝛼 is the centroid momentum, and 𝑉𝑎 is the potential energy in the

reactant asymptotic region. The centroid kinetic energy for the RPMD trajectories
are initialized to match the physical incident energy (as indicated by the 𝛿 func-
tion), while the internal modes are thermally sampled from an internal temperature
𝛽int, the appropriate value of which is not obvious. Previously [119], the direct
shooting method for calculating microcanonical rates has been applied with the in-
ternal temperature set in correspondence to the physical incident energy 𝛽int = 1/𝐸 ,
which we call the free-particle protocol; in the current work, we shall also con-
sider a prescription for the internal temperature that is derived from the SPA. We
note that direct shooting is similar in practical implementation to the calculation
of non-equilibrium time-correlation functions using RPMD with momentum-kick
initial conditions [106, 118], although the theoretical justification is more clearly
established for the case of non-equilibrium time-correlation functions than for the
calculation of microcanonical rates as considered here.
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4.4 Computational Details
Unless specified, all results are reported in atomic units.

Implementation of the direct-shooting approach for microcanonical rates employs
Eq. 4.22. Initial configurations for the ring polymer are sampled from the thermal
distribution associated with the specified internal temperature (𝛽int), while dynam-
ical evolution is performed using the standard RPMD integration scheme with a
timestep of 0.3. This choice of timestep is confirmed to avoid resonance instabili-
ties, although we note that the best practice for future applications is to employ the
Cayley-modification to the RPMD integration [135, 136]. Calculations with up to
144 ring-polymer beads are performed to ensure the convergence of the path-integral
discretization.

Implementation of the SPA utilizes Eqs. 4.17 and 4.18. Eq. 4.17 is first solved
to obtain the stationary temperature from the thermal rate data. Then, the SPA
microcanonical rate is obtained using Eq. 4.18. First- and second-order derivatives
of 𝑘𝑄𝑟 are obtained from a standard basis-spline interpolation procedure [137, 138].
Validation of the numerical procedure is performed by comparison with independent
SPA results obtained from path-integral Monte Carlo sampling methods (Appendix
A).

Implementation of the MaxEnt approach closely follows the Bryan algorithm [124,
125]. Calculations are performed with a modified version of an open-source code.2
Quantum mechanical and RPMD thermal rates are the fitting targets in these calcu-
lations, while SPA microcanonical rates are employed as the Bayesian prior. For the
exact quantum mechanical rate inversion, the diagonal elements of the covariance
matrix in Eq. 4.14 are set to 0.4 ‰ of the rate value, as is consistent with the
statistical noise in the RPMD thermal rate calculations. While not included here,
MaxEnt results were also obtained using the flat Bayesian prior, 𝝀(𝐸) = 1; however,
the numerics of these calculations were found to be less stable than those based
on the SPA, which requires no additional information beyond the thermal rates that
are also used for the fitting target. To ensure that the SPA priors are nonzero and
sufficiently smooth, they are filtered with a low threshold value of 10−3, followed
by a simple moving average procedure to suppress the statistical fluctuations. A
regulation potential (Eq. 4.15) with 𝜁 = 107 is sufficient to enforce the upper bound
of 𝑁 (𝐸) to a tolerance of tight 10−4 in all reported calculations.

2See https://github.com/jgreitemann/maxent for the available code kindly provided by Jonas
Greitemann.
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Figure 4.1: An illustrative example of the “L-curve” that is used to determine
the parameter 𝛼 in each MaxEnt calculation. The optimal value of 𝛼 coincides
with the kink in the curve (indicated by a red point). This example corresponds
to the Eckart barrier, using RPMD thermal rate data for the fitting target and the
SPA-RPMD microcanonical rates for the Bayesian prior.

To specify the parameter 𝛼 in the objective function of the MaxEnt calculations
(Eq. 4.11), the ‘L-curve’ rule was employed as in many previous studies [89, 126,
127]. As illustrated with a representative example in Fig. 4.1, the balance between
fitting accuracy and solution likelihood when plotted as a parametric function of
𝛼 yields a hockeystick-shaped curve. We take the kink of the curve (red point) to
correspond to the optimal balance between these attributes.

4.5 Results
Microcanonical RPMD rates for electronically adiabatic reactions
We begin by analyzing the effectiveness of the direct shooting approach with different
choices of ring-polymer internal temperatures, 𝛽int. The symmetric Eckart barrier
model for H+H2 reactive scattering [79] is chosen as the test example, with potential
energy function

𝑉 (𝑞) = 𝑉0

/
cosh2(𝑞/𝑞0) (4.23)
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using parameters 𝑚 = 1061, 𝑉0 = 0.425 eV, and 𝑞0 = 0.734. Analytical solution of
the microcanonical rate for this model yields

𝑁 (𝐸) = 𝑓 /( 𝑓 + 𝑔) , where

𝑓 = sinh2
(
𝜋𝑞0

√
2𝑚𝐸/ℏ

)
, and

𝑔 = cosh2
(
𝜋

√︃��2𝑚𝑉0𝑞
2
0/ℏ2 − 1/4

��) , (4.24)

and the exact thermal rate is obtained by integrating 𝑁 (𝐸) over Boltzmann kernel,
following Eq. 4.7.

Free-particle direct shooting

Fig. 4.2A plots the microcanonical rate prediction from classical mechanics, exact
quantum mechanics, and the direct shooting scheme (Eq. 4.22), as a function of
energy. As expected, the step-function shape of the classical result is smoothed due
to nuclear quantum effects. It is clear from the figure that the direct-shooting scheme
is strongly sensitive to the choice of internal ring-polymer temperature, particularly
at low energies for which tunneling plays an important role; irrespective of the
employed value of 𝛽int, the direct-shooting scheme reverts to classical behavior in the
high-energy regime. Strikingly, almost all nuclear quantum effects are absent using
the free-particle protocol (𝛽int = 1/𝐸) for the internal ring-polymer temperature.

Fig. 4.2B presents the canonical reaction rates for the Eckart barrier as a function of
temperature, including exact quantum and classical results, as well as the standard
RPMD calculation of thermal reaction rate (green) [78, 79]. As is well known for
such problems, RPMD allows for the direct calculation of thermal reaction rates
with good accuracy. it is exact at high temperatures [79] and works well at low
energies due to its connection to semiclassical instanton theory [25]. However,
the figure also shows the results of the RPMD thermal rate prediction obtained by
transforming (via Eq. 4.7) the microcanonical RPMD rates from the free-particle
direct-shooting protocol (magenta). Consistent with the results of Fig. 4.2A, this
direct-shooting protocol provides an essentially classical description of the thermal
reaction rate across the entire range of temperatures. Fig. 4.2B clearly demonstrates
that approximation of microcanonical rates via the free-particle direct-shooting
method (magenta vs. solid black) is a far greater source of error than the intrinsic
approximation of RPMD for calculating thermal rates (green vs. solid black). This
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Figure 4.2: Microcanonical reaction rate predictions for the Eckart barrier
model from the direct shooting methods. (A) Microcanonical reaction rate pre-
dictions for the Eckart barrier model. Results are calculated with classical mechanics
(classical MD, dashed black), analytical quantum mechanics (QM, solid black) and
direct shooting approach with different internal ring-polymer temperatures (direct,
solid cyan, orange and magenta). The free-particle direct shooting protocol is la-
beled 𝛽int = 1/𝐸 . (B) Thermal rates obtained by substituting microcanonical rates
from various levels of theory (classical MD, QM, and free-particle direct shooting)
into Eq. 4.7. For comparison, the standard RPMD thermal rates (green) are also
included.

figure illustrates the hazards of using direct shooting for RPMD microcanonical
rates, and it suggests that better results for microcanonical rate should be achievable
on the basis of RPMD dynamics.
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Stationary phase approximation

We now turn our attention to the use of the SPA to calculate RPMD microcanonical
reaction rates for the example of the Eckart barrier. Fig. 4.3A presents the calculated
stationary temperature 𝛽st as a function of energy, obtained via Eq. 4.17 with
input from either exact quantum thermal rates (blue) or standard RPMD thermal
rate calculations (red, dashed). For comparison, we also show the temperature
associated with the free-particle protocol (𝛽 = 1/𝐸), which differs significantly
from the stationary temperature at each energy, as well as an analytical expression
for the high-energy stationary temperature [𝛽 = 1/(𝐸 − 𝑉0)] that is derived in
Appendix A. In the low-energy regime, only the RPMD thermal rate data provides
a satisfactory description of the stationary temperature obtained from the exact
quantum results.

Fig. 4.3B presents microcanonical rates from the SPA (Eq. 4.18) using input from
RPMD thermal rates. To provide a baseline of accuracy associated with the SPA,
we first compare the microcanonical rate from exact quantum mechanics (black,
solid) with that obtained via SPA applied to exact quantum thermal rates (blue).
The difference in these curves presents a best-case scenario for the accuracy of a
method that approximates microcanonical rates via SPA; and it is seen that while
the agreement at low energy is excellent, there is substantial deviation associated
with energies in the high-energy regime. Encouragingly, essentially identical per-
formance is seen when the microcanonical rates are obtained via application of the
SPA to RPMD thermal rates (red, dashed). This indicates that the RPMD thermal
rates are a smaller source of error than the SPA in the high-energy regime. Finally,
comparison of the results in Fig. 4.3B with Fig. 4.2A makes clear that RPMD offers
a much more accurate avenue to the calculation of microcanonical rates than might
be concluded from simulations that employ direct shooting.

We again note that the SPA errors at high energy in Fig. 4.3B that are well known and
due to the neglect of higher-order terms in the phase function [131]. As anticipated
form Eq. 4.21, both sets of SPA results in the figure converge to the erroneous
high-energy asymptote of 1.084.

Maximum entropy inversion

As the third alternative for obtaining microcanonical rates from RPMD, Fig. 4.4A
presents results for the Eckart barrier obtained using MaxEnt inversion. To establish
the baseline error for the MaxEnt procedure, the dashed blue curve presents the
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Figure 4.3: Stationary phase approximation (SPA) results for the Eckart bar-
rier. (A) The stationary temperature calculated with QM (blue) and RPMD (dashed
red) thermal rates, respectively, as a function of incident energy. For comparison,
the classical asymptote of the stationary temperature (dashed black), and the free-
particle temperature (magenta) are also included. (B) Microcanonical rates obtained
using the SPA with input from QM (blue) and RPMD (dashed red) thermal rates,
respectively. For comparison, the microcanonical rates from exact QM and classical
MD are also included. The inset expands the low-energy regime.
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results obtained via inversion of the exact QM thermal rates using the SPA-QM
microcanonical rates (Fig. 4.3B) as the Bayesian prior. Also, the dashed red curve
presents the MaxEnt results obtained via inversion of the RPMD thermal rates using
the SPA-RPMD microcanonical rates as the Bayesian prior. This last result utilizes
input from RPMD thermal rates alone.

It is clear from Fig. 4.4A that the MaxEnt procedure provides excellent accuracy
across the entire range of energies on the scale plotted, avoiding the incorrect high-
energy asymptote of the SPA results. Closer examination of the low-energy regime
in the inset shows that the agreement persists even in the regime of strong tunneling.
Comparison in Fig. 4.4B of the SPA results (SPA-QM and SPA-RPMD) with their
MaxEnt refinements reveals that MaxEnt can introduce significant relative errors in
the rate predictions at low temperatures for which the rates are very small. Taken
together, the results in Fig. 4.4A and B indicate that for this example, the use
of MaxEnt inversion helps to improve the quality of the SPA at intermediate and
higher energies, but it does little to improve the quality of the SPA in the low-energy
regime. Finally, as a self-consistency check, Fig. 4.4C presents the thermal rates
obtained by transforming (via Eq. 4.7) the microcanonical rates obtained from the
MaxEnt inversion of the RPMD thermal rates (red, dashed). For comparison, the
exact quantum, classical, and standard RPMD thermal rates are also included. As
expected, the MaxEnt RPMD rates are fully consistent with the standard RPMD
thermal rates, and both are in good agreement with the exact QM results.

Stationary-temperature direct shooting

Given the success of the SPA for extracting microcanonical rates from standard
RPMD thermal rates, it is tempting to see whether data obtained from the SPA can
be used to improve the direct shooting method. Specifically, we explore the use of
the stationary temperature as the ring-polymer internal temperature for initializing
and propagating the direct-shooting trajectories, i.e., setting 𝛽int = 𝛽st in Eq. 4.22.
This strategy is physically appealing, since the stationary temperature (which is a
function of incident energy, see Fig. 4.3A) dictates the delocalizaton of the ring-
polymer in its barrier-crossing configuration [25, 130, 132]; also note that the
stationary temperature approaches the free-particle temperature at high incident
energies.
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Figure 4.4: Maximum entropy (MaxEnt) inversion results for the Eckart bar-
rier. Methods are labeled with the format “MaxEnt-[thermal rate input type]/[prior
type].” (A) MaxEnt solutions for the microcanonical reaction rate as a function of
incident energy, with the inset expanding the low-energy regime. Microcanonical
rates from classical MD and exact QM are also presented for reference. (B) An
expanded view of panel A in the low-energy regime, plotted on a log-log scale. (C)
Thermal rates obtained by integrating 𝑁 (𝐸) in panel A over the Boltzmann kernel.
For comparison, exact QM, classical MD, and standard RPMD thermal rates are
also included.
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Figure 4.5: Revisiting the microcanonical rate predictions for the Eckart bar-
rier from the direct shooting methods. The plot compares the direct-shooting
method with the ring-polymer internal temperature set to either the stationary tem-
perature (red) or the free-particle temperature (magenta). Also included are the
exact QM and classical MD results.

Fig. 4.5 plots the microcanonical rate for the Eckart barrier, obtained using the
stationary-temperature direct-shooting method (red). For comparison, the free-
particle direct-shooting (magenta), classical MD (black, dashed), and exact quantum
(black, solid) results are all reproduced from Fig. 4.2A. While stationary-temperature
direct shooting remains qualitatively less accurate than the SPA and MaxEnt inver-
sion methods, it nonetheless substantially improves the results of the free-particle
direct-shooting approach in the low-energy region where tunneling is important.
These results indicate that stationary-temperature direct shooting is a less quanti-
tative tool than SPA or MaxEnt for the calculation of microcanonical rates from
RPMD trajectories, but it may nonetheless prove useful in exploratory studies for
which a direct trajectory-based simulation approach is needed, or in applications to
high-dimensional systems for which obtaining precise thermal reaction rate in the
whole temperature region is computationally expensive.

Microcanonical RPMD rates for non-adiabatic systems
Although we have thus far only discussed the SPA and MaxEnt inversion methods
in the context of single-level (i.e., electronically adiabatic) processes, both methods
can be naturally extended to multi-level systems. Specifically, given state-resolved
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thermal reaction rates for a non-adiabatic process, both the SPA and MaxEnt methods
can be used to compute state-resolved microcanonical rates for different reaction
channels.

For the SPA method, state-resolved thermal reaction rates are substituted into Eqs.
4.17 - 4.18, respectively, yielding a single stationary temperature and a single state-
resolved microcanonical rate for each reaction channel. For the MaxEnt method,
we solve the coupled integral equation(

𝜿1→2

𝜿2→2

)
=

(
B

B

)
·
(
𝝂1→2

𝝂2→2

)
(4.25)

for a system with two reaction channels (e.g., diabat 1 → 2, and diabat 2 → 2), with
𝜿, B and 𝝂 defined in Eq. 4.10. The MaxEnt objective function for the two-level
system is

𝑄(𝝂1→2, 𝝂2→2;𝛼) = 𝛼𝑆(𝝂1→2) − 𝜒2(𝝂1→2)/2

+ 𝛼𝑆(𝝂2→2) − 𝜒2(𝝂2→2)/2

+𝑉reg(𝝂1→2, 𝝂2→2) (4.26)

which sums the information entropy and likelihood function contributions for the
state-resolved rates. The regularization potential is likewise generalized,

𝑉reg(𝝂) = −
∑︁
𝑗

1
2
𝜁 𝐼2(𝜈1→2, 𝑗 + 𝜈2→2, 𝑗 − 1), (4.27)

to enforce unitarity (with the detailed balance condition)

𝑁1→2(𝐸 𝑗 ) + 𝑁2→2(𝐸 𝑗 ) ≤ 1 ∀ 𝑗 . (4.28)

The constraint of non-negativity

𝑁1→2(𝐸 𝑗 ) ≥ 0, 𝑁2→2(𝐸 𝑗 ) ≥ 0, ∀ 𝑗 , (4.29)

is enforced as before by confining the solution search to the positive subspace.

As a numerical demonstration for non-adiabatic reaction dynamics, we use a two-
state gas-phase reactive scattering model that has been previously introduced [93,
139]. In the diabatic representation, the potential energy functions for this system
are

𝑉11(𝑞) =
𝐴1

1 + 𝑒−𝑎1 (𝑞−𝑞1)
+ 𝐵1

𝑉22(𝑞) =
𝐴2

1 + 𝑒−𝑎2𝑞
+ 𝐵2

4 cosh2 (𝑎2𝑞/2)
𝑉12(𝑞) = 𝑉21(𝑞) = 𝐴3𝑒

−𝑎3 (𝑞−𝑞3)2
(4.30)
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Figure 4.6: State-resolved microcanonical rates for the two-level model in
Eq. 4.30. Dashed lines indicate the 1→ 2 diabatic reaction channel and solid lines
indicate the 2→ 2 diabatic reaction channel. (A) Microcanonical rates from clas-
sical surface hopping (orange) and numerically exact QM wavepacket propagation
(black). (B) SPA results for the microcanonical rate, with input from exact QM
(blue) and iso-RPSH (red) thermal rates. (C) MaxEnt results for the microcanonical
rate, with input from exact QM (blue) and iso-RPSH (red) thermal rates.
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with parameters specified in Table 4.1 and with reactant and product regions corre-
sponding to 𝑞→−∞ and 𝑞→∞, respectively.

Table 4.1: Parameters for the two-level model in Eq. 4.30.

Parameter Value Parameter Value
𝐴1 7 𝑎1 1
𝐴2 −18/𝜋 𝑎2

√
3𝜋/4

𝐴3 0.25 𝑎3 0.25
𝐵1 −0.75 𝑞1 −1.6
𝐵2 54/𝜋 𝑞3 −2.625

We focus on microcanonical rates in the range of incident energies for which the
higher-energy state is unavailable as a product channel (i.e., the only two available
reactions channels correspond to the 1 → 2 and 2 → 2 processes on the diabatic
states). Calculation of state-resolved thermal rates for the two channels is performed
with the flux-side formulation [139] of iso-RPSH [93], with both the methodological
details and thermal-rate results both reported elsewhere [139]. The only difference
in the current work is that 1000-fold more trajectories are performed to suppress
statistical error in the thermal rates for the MaxEnt calculations, although the thermal
rate results are graphically indistinguishable from those previously published [139].

For comparison, Fig. 4.6A presents the state-resolved microcanonical rates obtained
from numerically exact quantum mechanics [73, 100] and using classical surface
hopping [13] as implemented in our previous work [93]. As for the one-level
system, the microcanonical rates with classical nuclear dynamics exhibit a sharp
increase when the incident energy reaches the barrier height. Although classical
surface hopping qualitatively includes the effect of the non-adiabatic transition and
performs well in the high-energy regime, it fails to capture the significant nuclear
quantum effects in this problem.

Fig. 4.6B presents the microcanonical rates obtained via application of the SPA
to state-resolved thermal rates from exact QM (blue) and from iso-RPSH (red).
Comparison of the QM and SPA-QM results indicate that the SPA approximation
is a good approximation in this example. Furthermore, comparison of these curves
with the SPA-iso-RPSH results indicates that the iso-RPSH thermal rate data is
an even smaller source of error than the SPA. At higher energies, the SPA results
exhibit the same pathologies as those discussed in connection with Eq. 4.21, and the
better performance of SPA-iso-RPSH versus SPA-QM in this regime is likely due
to fortuitous error cancellation.
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Fig. 4.6C presents the microcanonical rates obtained via application of the MaxEnt
method to the state-resolved thermal rates. As for the one-level system described in
Fig. 4.4, the MaxEnt method improves the description for the two-level system at
high energies but does little to refine the description of the SPA at lower energies.

Taken together, these results indicate that the iso-RPSH method can be staightfor-
wardly extended for the accurate calculation of state-resolved microcanonical rates.
Moreover, these results show that iso-RPSH provides an accurate description of both
the thermal and microcanonical reaction rates of this system in a regime for which
both non-adiabatic and nuclear quantum effects play an important role, although
the method has been shown to underestimate the asymmetry in the Marcus inverted
regime in the golden-rule limit of electron transfer [140].

4.6 Summary
Whereas the ring-polymer molecular dynamics (RPMD) thermal rate theory has
proven immensely successful in many chemical application domains, far less at-
tention has been paid to the problem of calculating microcanonical reaction rates
using RPMD, which may be of considerable value in the context of gas-phase and
surface-molecule scattering processes for which nuclear quantization plays an im-
portant role [141–143]. The current work addresses this shortcoming by exploring
a variety of strategies to calculate microcanonical reaction rates with RPMD. It is
found that the ad hoc strategy of direct shooting of RPMD trajectories is strongly
sensitive to the internal ring-polymer temperature that is employed; this is somewhat
ameliorated in the tunneling regime via the use of an internal temperature based on
the stationary-phase approximation (SPA), but the resulting direct-shooting results
remain overly classical in the barrier-crossing energy regime. Far more accurate mi-
crocanonical rates are obtained from RPMD thermal rate data via Laplace transform
inversion using either the SPA or the numerically exact maximum entropy method.
In general, we find that the SPA applied to RPMD thermal rate data provides the
best compromise between good accuracy and numerical feasibility, particularly in
the low-energy tunneling regime, although we point out that the alternative direct-
shooting and maximum entropy methods described here may also prove useful in
particular application cases. While the current paper focuses only on the calculation
of microcanonical rates from RPMD (or other approximate) thermal rate data, we
note that the same strategy can be applied for the calculation of collisional cross
section, and other time correlation functions, spectra, and transport coefficients in
the microcanonical ensemble.
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4.7 Appendix
Evaluation of the stationary temperature via path-integral Monte Carlo sam-
pling methods
As an alternative method for evaluating the stationary temperature 𝛽st in Eq. 4.17, we
apply path-integral Monte Carlo sampling methods in combination with quantum
transition state theory (QTST) approximation [98] to the reaction rate [144–146]

𝑘 (𝛽) ≃ 𝑘QTST(𝛽, 𝑞‡o) = min
𝑞‡

[
𝑘QTST(𝛽, 𝑞‡)

]
, (4.31)

with a dividing surface 𝑞‡o that minimizes dynamical recrossing effects. Using the
path-integral representation of the QTST rate in the case of a single-surface system

𝑘QTST(𝛽, 𝑞‡o)𝑄𝑟 = lim
𝑛→∞

( 𝑛

2𝜋ℏ

)𝑛∫
𝑑p0𝑑q0 𝑒

−𝛽𝐻iso
𝑛 (p,q)

× 𝛿(𝑞0 − 𝑞‡o) 𝑣̄0 ℎ(𝑣̄0), (4.32)

together with Euler’s theorem for homogeneous functions [147], we derive a virial-
like expression for the stationary energy-temperature relation, which can be conve-
niently evaluated using path-integral Monte Carlo sampling methods

𝐸st =
1
𝛽st

+
〈

1
2𝑛

∑︁
𝛼

(𝑞𝛼 − 𝑞0)
𝜕𝑉 (𝑞𝛼)
𝜕𝑞𝛼

+ 1
𝑛

∑︁
𝛼

𝑉 (𝑞𝛼)
〉
𝑞
‡
o

. (4.33)

Here, ⟨Q⟩
𝑞
‡
o

is a constrained ensemble average defined by

⟨Q⟩
𝑞
‡
o
=

∫
𝑑q0 𝜌𝑐 (q0) Q(q0)∫

𝑑q0 𝜌𝑐 (q0)
, (4.34)

with

𝜌𝑐 (q0) = 𝛿(𝑞0 − 𝑞‡o) 𝑒−𝛽𝑈spr (q0) 𝑒−𝛽𝑛
∑

𝛼 𝑉 (𝑞𝛼) . (4.35)

This approximate method for obtaining 𝛽st works well for the numerical examples
considered here, although it is more limited than the general numerical differentiation
method that is described in the Computational Details section.

Now let us proceed by analyzing the high-temperature asymptotic behavior of the
stationary temperature. At high temperatures, Eq. 4.33 approaches the classical
limit for the stationary energy-temperature relation

lim
𝛽st→0

𝐸st =
1
𝛽st

+𝑉 (𝑞‡o), (4.36)
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with 𝑞‡o approaching the barrier top. This classical limit can be also obtained upon
the substitution of the classical transition state theory rate,

[𝑘𝑄𝑟]CTST =
1

2𝜋𝛽ℏ
𝑒−𝛽𝑉 (𝑞

‡
o) , (4.37)

into Eq. (4.17), yielding

𝐸st = −
𝜕 log

[
𝑘CTST(𝛽)𝑄𝑟 (𝛽)

]
𝜕𝛽

�����
𝛽st

=
1
𝛽st

+𝑉 (𝑞‡o). (4.38)
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C h a p t e r 5

SMALL NUCLEAR QUANTUM EFFECTS IN SCATTERING OF
H AND D FROM GRAPHENE

This chapter is based on the following publication:

1. Jiang*, H., Tao*, X., Kammler, M., Ding, F., Wodtke, A. M., Kandratsenka,
A., Miller III, T. F. & Bünermann, O. Small Nuclear Quantum Effects in
Scattering of H and D from Graphene. Journal of Physical Chemistry Letters
12, 1991–1996. doi:10.1021/acs.jpclett.0c02933 (2021).

5.1 Abstract
We study nuclear quantum effects in H/D sticking to graphene, comparing scattering
experiments at near-zero coverage with classical, quantized, and transition-state cal-
culations. Experiment shows H/D sticking probabilities that are indistinguishable
from one another and markedly smaller than those expected from a consideration
of zero-point energy shifts of the chemisorption transition state. Inclusion of dy-
namical effects and vibrational anharmonicity via ring-polymer molecular dynamics
(RPMD) yields results that are in good agreement with experiment. RPMD also
reveals that nuclear quantum effects, while modest, arises primarily from carbon
and not from H/D motion, confirming the importance of a C-atom re-hybridization
mechanism associated with H/D sticking on graphene.

5.2 Introduction
Nuclear quantum effects (NQEs) are ubiquitous in chemistry, typically resulting from
quantum resonances, zero-point energy or tunneling. H/D substitution forms the
basis of nearly all experiments designed to reveal NQEs, as the resulting energy shifts
to the quantum levels influence differential reactive scattering cross-sections [148],
alter rate constants or even shift equilibria in chemical reactions [149]. However,
NQEs in chemistry are far from being fully understood, particularly in the context
of interfacial chemical reactivity for which the classical phonon approximation is
by necessity widely made but rarely tested. Within this context, graphene is an
ideal test system to examine NQEs in surface chemistry. The combination of light
C-atoms and stiff C-C bonds drives graphene’s phonon spectrum to high frequency,
where quantum effects might be important.
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The simplest reaction on graphene is adsorption of an H or a D atom. A physisorption
well with a depth of ∼40 meV is found at C-H distances of ∼4 Å [150, 151] and
at a C-H distance of ∼1.1 Å, there is an ∼800 meV deep chemisorption well.
Since chemisorption involves sp2 to sp3 re-hybridization of a C atom, there is a
pronounced barrier between the physisorbed and chemisorbed states [152, 153].
Saturated H/D atom adsorption shows an inverse isotope effect, possibly due to
the interplay between the adsorption, reflection and associative desorption [154].
Hydrogen ions also penetrate through a graphene sheet faster than deuterium ions
[155]. Additionally, previous computational studies [156, 157] have predicted
evident nuclear quantum effects to hydrogen sticking on graphene at low temperature,
a prediction that awaits experimental confirmation.

Recently, H atom scattering experiments were combined with first-principles theory
to show that H collisions at graphene induce concerted in-plane motion of the carbon
atom framework and extraordinarily fast energy dissipation leading to chemisorption
[106]. The experiments produced nearly mono-energetic H atoms and could be
performed at near-zero coverage, removing well-known ambiguities associated with
the energy and coverage dependence of C-H bond formation on graphene [158, 159].

In this paper, we present new scattering experiments comparing H and D interactions
at graphene, and we analyze the role of NQEs using both transition-state theory,
classical molecular dynamics, and a quantized molecular dynamics approach. We
employ a tight-binding potential energy surface (PES) reparametrized to match
electronic structure data obtained with a hybrid exchange-correlation functional,
while maintaining a high level of numerical efficiency. This represents a significant
improvement over our previously reported PES [106], correctly reproducing the
graphene phonon density of states spectrum (PDOS), a quantity that is critically
important to testing the classical phonon approximation.

As we will show below, experiment reveals little or no evidence of an H/D isotope
effect. This contradicts the prediction of a microcanonical transition-state theory
treatment based on the Rice–Rampsberger–Kassel–Marcus (RRKM) rate theory
(SI Sec. B), which exhibits a five fold enhancement of stickng for D versus H
at the experimentally investigated normal incidence energies. While RRKM is
obviously not suited to simulating a scattering experiment, the RRKM predicted
H/D isotope effect arises from differences in the zero-point energy of the isotopes
at the transition-state, and it might reasonably be expected that these effects are also
important in non-equilibrium scattering experiments. To test this idea, ring-polymer
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molecular dynamics (RPMD) simulations are performed, which, in agreement with
experiment, show that the longer interaction time of D with the graphene flake
compared to H leads to only an extremely small increased sticking probability for
D, a result of classical inertia. Within the RPMD framework, we perform mixed
quantum/classical calculations where only selected degrees of freedom are treated
quantum mechanically. This approach shows that the largest NQEs in this system
are associated with the C-atom motion of the graphene—these NQEs are not present
when using a PES that fails to reproduce the high frequency region of graphene’s
PDOS spectrum, those that are directly involved in the chemisorption reaction.
These results show that the classical approximation for solid phonons leads to errors
in the description of the dynamics of transient C-H bond formation in H collisions
with graphene, providing guidance concerning the validity of this assumption in
other systems.

5.3 Experiment
The experimental setup has been described in detail in Reference [160–162]. All
D experimental measurements are newly reported in this work. H/D atoms are pro-
duced via photodissociation of a supersonic molecular beam of hydrogen/deuterium
iodide with a 10 ns pulsed KrF laser producing atoms with incidence energy E𝐼 ∼
1.0 eV. A portion of the atoms go through a skimmer and two differential pumping
stages, enter the ultra-high vacuum chamber and scatter from the graphene sample.
The sample is held on a 6-axis manipulator, allowing variation of the incidence
angle 𝜗𝑖. About 0.7 mm above the surface, the scattered H or D atoms are excited to
a long-lived Rydberg state (𝑛 = 34) by two spatially and temporally overlapped laser
pulses at 121.57 nm and 365.90 nm via a two step excitation. The neutral Rydberg
atoms travel 250 mm before they are field-ionized and detected by a multi-channel
plate detector. The arrival time is recorded by a multi-channel scalar. The rotatable
detector allows data to be recorded at various scattering angles 𝜗𝑠. The graphene
sample is epitaxially grown in situ on a clean Pt(111) substrate by dosing ethylene
(partial pressure 3 × 10−8 mbar) at 700 ◦C for 15 mins [106].

5.4 Computational Methods
The all-atom potential energy surface (PES) employed in this study is obtained
from the “Geometry, Frequency, Noncovalent, eXtended Tight Binding” (GFN-
xTB) method [163]. While an accurate C-H adsorption barrier and binding well
can be obtained [164] with a hybrid density functional theory (DFT) [165, 166], the
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associated computational costs make it impossible to simulate scattering energy and
angular distributions. We found however, that a reparameterization of GFN-xTB
within the entos software package [167] to best reproduce the minimum energy path
of a hybrid functional DFT calculation resulted in an accurate all-atom PES at low
computational cost. Details are presented in the SI Sec. A. Notably, we are able to
compute the GFN-xTB PES 1000-fold more efficiently than a similar PES using a
hybrid DFT functional. We are thus able to run far more trajectories than would
otherwise be possible.

We use ring-polymer molecular dynamics (RPMD) under the influence of GFN-
xTB potential energies to model the quantized molecular dynamics of the system.
RPMD [20, 21] is a trajectory-based dynamics method, in which the NQEs are
taken into account based on Feynman’s imaginary-time path-integral formalism
[18]. Although approximate, the method successfully describes both zero-point
energy and tunneling effects in simulations at thermal equilibrium [21, 80, 168]
and more recently, it was applied to systems with non-equilibrium initial conditions
[118]—for instance, the dissociative molecular sticking process [107]—and in the
microcanonical ensemble [169]. It is worthwhile mentioning that RPMD reproduces
exact quantum dynamics at the short-time and within the harmonic limit [20, 21].
This makes it well suited to the study of ultrafast scattering processes involving
surface phonons that are largely harmonic, like H sticking at graphene.

RPMD allows for the inclusion of NQEs by propagating classical trajectories of an
isomorphic system. The isomorphic system consists of 𝑛 replicas of the physical
one, and is constructed such that exact quantum Boltzmann statistics are preserved
[18, 19, 55]. If 𝒒 = (𝒓H1, 𝒓C1, 𝒓C2, ...) denotes the column vector of positions of all
atoms and 𝑉 (𝒒) the potential energy for a geometry 𝒒, then the RPMD equations of
motion (EOM) are

¥𝒒𝛼 = 𝜔2
𝑛 (𝒒𝛼−1 + 𝒒𝛼+1 − 2𝒒𝛼) − 𝒎−1 · ∇𝒒𝛼

𝑉 (𝒒𝛼), (5.1)

where 𝛼 = 1, 2, ..., 𝑛 is the index for different replicas, 𝜔𝑛 = 𝑛𝑘B𝑇 is the strength of
the harmonic springs that connect neighbouring replicas with 𝑇 , being the system
temperature, and 𝒎 = diag (𝑚H1, 𝑚C1, 𝑚C2, ...) the mass matrix for all the atoms
involved. Note that with Eq. 5.1, all the atoms in the system are described quantum
mechanically on the same footing.
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Not only does RPMD provide an accurate and efficient way to perform quantum
simulations, the fact that it captures NQEs via trajectory propagation in classical
phase space bridges the gap between classical and quantum mechanics. RPMD
recovers exact quantum statistics in the limit 𝑛 → ∞ [18] and reduces to ordinary
classical molecular dynamics when 𝑛 = 1. Hence, RPMD can be used for mixed
quantum/classical (MQC) calculations where some degrees of freedom are described
quantum mechanically and others classically [45, 87, 89, 116, 170].

For a system partitioned into quantum 𝒒 and classical 𝑸 parts, MQC-RPMD evolves
the dynamics for the quantum mechanical portion using RPMD EOM (for 𝑛 replicas
of the original system), and evolves the dynamics for the classical portion with
Newton’s EOM [89], i.e.

¥𝒒𝛼 = 𝜔2
𝑛 (𝒒𝛼−1 + 𝒒𝛼+1 − 2𝒒𝛼) − 𝒎−1∇𝒒𝛼

𝑉 (𝒒𝛼,𝑸),

¥𝑸 = −𝑴−1∇𝑸𝑉 ( 𝒒̄,𝑸), 𝒒̄ =
1
𝑛

𝑛∑︁
𝛼=1

𝒒𝛼 (5.2)

where 𝒎 and 𝑴 are the mass matrices for the quantum and classical degrees of
freedom, respectively.

As in Reference [106], we perform quantized molecular dynamics simulations by a
non-equilibrium RPMD approach [118]. The graphene surface is modelled with a
free-standing cluster of 42 carbon atoms. This model is sufficiently large to describe
the PDOS spectrum of graphene obtained from calculations using periodic boundary
conditions—see Fig. 5.9. The boundary of the carbon cluster is terminated with H
atoms, which are held fixed throughout the calculation using a RATTLE scheme
[171]. A suspended graphene flake with 80 C-atoms is used to eliminate the edge
effects under conditions with larger values of 𝜗𝑖.

RPMD simulations are initialized by separately preparing the initial configurations
for the non-interacting graphene sheet and H/D atom. The initial flake geometries
are sampled from a thermalized ring-polymer trajectory at 300 K, performed using
the Andersen thermostat [172]. The position and velocity of the centroid of the
H/D atom ring-polymer is then determined according to the values of scattering
energy and incidence angle in the experiment. The internal modes for the H/D-atom
ring-polymer are thermalized at the surface temperature 300 K following the non-
equilibrium RPMD formulation [106, 118], and it is confirmed that the results are
insensitive to this choice of internal temperature—see SI Fig. 5.11. The temporal
evolution of the system is then found from either Eq. 5.1 or 5.2 using a time step
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of 0.5 fs [136]. Propagation continues until the fate of the H or D atom is decided
by trajectory analysis. For scattered atoms, the energy loss and outgoing angle is
recorded for each trajectory. Convergence of the path-integral discretization was
confirmed to be reached with 8 beads. All reported simulations were performed
using the entos software package [167] and the trajectory visualization is rendered
with the OVITO software [173]. Further details of the trajectory calculations are
reported in the SI Sec. C.

5.5 Results
Fig. 5.1(a) and (b) show examples of experimental scattering distributions for H
and D, respectively, colliding with graphene. Both scattering distributions peak
close to the specular angle and energy loss is small but slightly larger for D than for
H. Additional scattering distributions for other values of 𝜗𝑖 are shown in Fig. 5.6.
The scattered flux comes from atoms reflected at the barrier to chemisorption; it
therefore decreases as 𝜗𝑖 is reduced, because ever more projectile atoms pass over
the barrier to chemisorption with higher normal energy of incidence [106].

Fig. 5.1(c) and (d) show RPMD simulations of the experimental results of Fig. 5.1 (a)
and (b); see also Fig. 5.6. Agreement is excellent. These trajectory calculations also
show that the scattered flux is due to H/D atoms that never reach the chemisorption
well; those that do remain trapped. Thus, the observed signals are a direct measure
of the H/D survival probability.

Experimentally derived sticking probabilities are shown in Fig. 5.2(a). See SI Sec. D
and Fig. 5.7. The sticking probability increases with the normal component of the
incidence energy. Thresholds near∼0.35 eV are seen for both H and D, a clear sign of
the adsorption barrier. No H/D isotope effect can be discerned from the experiment.
Fig. 5.2(a) also shows the sticking probabilities from RPMD simulations, which are
in good agreement with experiment. As the focus of the article is on the isotope and
nuclear quantum effects, a horizontal shift (for both H and D) is introduced before
comparing to experiment in Fig. 5.2(a), in order to account for the influence of the
Pt substrate, which is neglected in the theory. We note the shift is introduced based
on our published analysis and the value of the shift is consistent with that presented
previously [106]. A small inverse H/D isotope effect is clearly present—D sticking
is ∼10% more likely than H sticking.
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(a) (b)

(c) (d)

H

H

D

D

Figure 5.1: Comparing theory with experiment for H and D scattering dis-
tributions from graphene. (a-b) Experimental distributions. (c-d) Theoretical
distributions. Result shown are from RPMD trajectories under the influence of
GFN-xTB potential energies. The incidence energy of H/D translation, E𝐼 , was
∼ 1 eV. In all images, the normalized scattering energy, E𝑆/E𝐼 , is shown along the
radial coordinate and the scattering angle, 𝜗𝑠, is shown on the polar coordinate. The
distributions are normalized to their integrals. The red ticks indicate the specular
scattering angle.

5.6 Discussion
By comparing the predictions of sticking probabilities from different computational
approaches, we gain insight into how classical and quantum effects manifest in
the dynamics of H and D sticking to graphene. Fig. 5.2(b) compares the sticking
probability results from the classical molecular dynamics (cMD) and RPMD, for
H and D atom scattering. cMD simulations predict an increased sticking for D
compared to H (Fig. 5.2(b): solid red vs. solid black lines). This results from
the ∼1.4x longer interaction time of the D atom compared to the H atom—see
Fig. 5.10—a result of classical inertia [174, 175]. The longer interaction time of D
allows greater relaxation of the C flake during the trajectory, reducing the height of
the effective barrier to sticking.
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Figure 5.2: Comparison of experiment and theory for H/D sticking probabilities
to graphene. (a) Experimental sticking probabilities (filled circles with error bars)
for H (black) and D (red) are compared to ring polymer molecular dynamics (RPMD,
dashed lines and symbols) simulations. (b) Sticking probabilities for H and D from
classical (solid lines and symbols) simulations are compared to those from quantized
RPMD simulations. The incidence energy was held constant and the incidence angle
was varied to control the normal component of incidence energy. The statistical
error associated with the trajectory calculations is less than 1.1%. The simulation
curves are shifted on the horizontal axis by -0.12 eV to compare with the experiment
results.

We argue next that Fig. 5.2(b) shows that the NQEs arising from the C-atom motion
influence the reaction, enhancing both H and D sticking. First note that NQEs are
present for both H and D scattering—the deviation of RPMD from cMD predictions
for both isotopes make this clear. To investigate the role of C atoms, we calculated
sticking probabilities with the MQC implementation of RPMD [45, 87, 89, 116,
170]—see Fig. 5.3(a). In the MQC-RPMD simulations, either the projectile atom or
the graphene flake was described quantum mechanically, while the remainder of the
system was described classically. When the projectile is quantized but the graphene
flake moves classically (dashed green line), no difference is found in comparison
to the conventional cMD (black solid line). However, when the C atom motion
is quantized but the projectile atom is treated classically (dashed blue line), no
difference is seen compared to full RPMD (dashed black line). We emphasize that
the NQEs associated with the C atoms, although modest, are much larger than the
statistical uncertainty of the ensemble averages.

Fig. 5.3(b) presents the phonon density of states (PDOS) spectrum of a free-standing
graphene flake obtained with the GFN-xTB potential energy surface. Calculation
details are discussed in SI Sec. E. The PDOS of graphene consists of two major
branches, i.e., the out-of-plane vibrations, which are softer in frequencies and are
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(a) (b)

Figure 5.3: Nuclear quantum effects in the H/D-on-graphene sticking. (a). Sim-
ulated H-on-graphene sticking probability as a function of normal incidence energy.
Results are obtained with classical MD, all-atom quantized RPMD (with Eq. 5.1),
and the mixed quantum/classical implementations of RPMD (with Eq. 5.2). (b).
Out-of-plane (blue) and total (red) phonon density of states spectrum of the graphene
flake from molecular dynamics simulations. Previously published simulation result
[176] (filled gray) is also included for reference.

relevant to C puckering out (blue branch); and the in-plane vibrations, which are
at higher frequencies (the optical branch from 1200–1600 cm−1). The NQEs
from the C-atom motions that encourage H/D sticking are from the high frequency
group of vibrational modes, because these NQEs entirely disappear when we use
the same approach with a PES that fails to capture the distribution of those higher
vibrational frequencies of the graphene flake (see Figs. S5 and S6). This comparison
emphasizes the role that the in-plane C motions play in driving the reaction center
C atom to pucker out of the graphene plane and capture the scattering projectile. As
a result, when those in-plane optical phonons are modelled with quantized instead
of classical simulations, the NQEs from those neighbouring C atoms make it easier
for the system to cross the chemisorption barrier and therefore increase the sticking
probability. We also note that the importance of those NQEs originating from C
atoms reveals a failure of the classical approximation for describing processes that
are sensitive to high frequency phonons.

While RPMD provides only an approximate description of quantum dynamics, there
are reasons to expect that it is well suited to H scattering from graphene. First, for
both equilibrium and non-equilibrium processes, RPMD is exact in the limit of
short-time, where the relevant timescale is 𝛽ℏ ∼ 25 fs at the temperatures used
in these simulations. This is substantially longer than the classical timescale of
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H/D-surface interaction, which is only 10 fs (Fig. 4A of Reference [106]). Second,
RPMD is exact in the classical mechanical limit, giving us confidence that it can
accurately describe the small NQEs seen here. Finally, although the exactness of
RPMD for both the short-time and classical limits holds regardless of whether the
simulated property corresponds to a correlation function of linear or non-linear
operators, we note that the RPMD approximation is typically more accurate for
time correlation functions (TCFs) of linear operators than for non-linear operators;
[21] while this might raise concern because the fluctuation-dissipation description
of vibrational energy relaxation involves a TCF of non-linear operators [177], the
centroid position of H/D atom that dictates whether sticking occurs is in fact a linear
function of position. All in all, these considerations suggest that RPMD provides a
reliable description of the physical processes considered here, while allowing for the
full-dimensional simulations that are needed to capture key aspects of the sticking
mechanism [106].

Regardless of these methodological considerations, we emphasize that the mecha-
nistic picture that emerges is physically intuitive and consistent with our previous
interpretation [106]. Although perhaps at first surprising, the results are easily un-
derstood when considering the dynamical mechanism for sticking. Ultrafast energy
loss of H atom translation is associated with in-plane C-atom excitation adjacent
to the reaction center. When the in-plane C-atom motion important to the stick-
ing is more realistically modelled using quantum simulations rather than classical
simulations, sticking is influenced.

We began this study with the intention to investigate H/D isotope effects in adsorption
at graphene; however, it turns out that the H/D isotope effects are negligible. By
contrast, our work shows that the quantum motion of C-atoms can have an influence
on H/D sticking at graphene. This reflects the fact that the high frequency C-C
vibrations—those that are most quantum mechanical—are diretly involved in the
formation of a C-H chemical bond during the adsorption process.

5.7 Supplementary Materials
A. Modified GFN-xTB Hamiltonian
For the purpose of studying the scattering dynamics of H and D from graphene,
it was necessary to modify the GFN-xTB Hamiltonian [163], originally developed
for near-equilibrium geometries. Following Eq. 16 in Reference [163], the potential
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energy of the system is

𝐸GFN-xTB-mod = 𝐸GFN-xTB + 𝐸RE (5.3)

with

𝐸RE =

atoms∑︁
A

CNA 𝑓A. (5.4)

𝑓A is the element-specific atomization correction energy, and CNA represents the
coordination number for atom A [178], defined as follows.

CNA =

atoms∑︁
B≠A

(
1 + 𝑒−𝜆[𝜇(𝑅A+𝑅B)/𝑟AB−1]

)−1
(5.5)

𝑅A/B and 𝑟AB are the covalent radius of atoms A/B and the distance between atoms
A and B, respectively. We fit 𝑓 , 𝜆 and 𝜇 to benchmark density functional theory
(DFT) calculations at the B3LYP/cc-pVDZ/JKFIT [165, 166, 179, 180] level, with
reference configurations consisting of an H atom interacting with a C42H16 graphene
cluster. Values for the optimized parameters are reported in Table 5.1.

Fig. 5.4(a) shows the minimum energy path (MEP) for an H atom’s perpendicular
approach to a carbon atom on the graphene flake, comparing the B3LYP and opti-
mized GFN-xTB-mod energies. Fig. 5.4(b) shows the two-dimensional cut through
the high dimensional potential energy landscape, with all other degrees of freedom
are allowed to relax at each C-H distance. The ability of GFN-xTB-mod to repro-
duce the B3LYP barrier and well-depth is remarkably good. Furthermore, its use
accelerates the dynamics calculations of this work by one-thousand fold, compared
to calculations with a hybrid functional. This allows the GFN-xTB-mod approach
to be further tested by simulations of experimental scattering distributions, where
good agreement is also seen. See the main text.

B. Transition state theory estimation of the isotope effect
To investigate the isotope effect in the H/D-on-graphene reactive system, we first
employ the Rice–Rampsberger–Kassel–Marcus (RRKM) rate theory [181]—a stan-
dard microcanonical transition state theory (mTST)—to compare the difference

Table 5.1: Results for the reactive energy term that describes C-H interaction, as
defined in Eqs. 5.4 and 5.5.

Parameters Value Parameters Value
𝑓H 0.6448 eV 𝜆 7.141
𝑓C 0.0261 eV 𝜇 1.144
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Figure 5.4: The minimum energy pathway (MEP) for the perpedicular ap-
proach of an H atom on top of a carbon atom on the graphene flake. (a) Com-
paring the one-dimensional surface at the GFN-xTB-mod and B3LYP/cc-pVDZ
levels of theory as a function of the C-H distance, with all other degrees of freedom
optimized at each C-H distance. (b) Using GFN-xTB-mod, the two-dimensional
surface as a function of the C-H distance and the displacement of the interacting C
atom from the plane of the graphene flake, again with all other degrees of freedom
optimized. All energies are in eV.

between the chemisorption rates of H and D atom onto the surface, respectively.
The RRKM is applied in a microcanonical manner consistent with that laid out in
Reference [182] for surface collisions. We assume that the rate-determining step
in the chemisorption is a unimolecular process where the reactant is an activated
pre-cursor complex (PC) [183] that corresponds to the H/D atom in a physisorbed
complex with the surface at a distance 4Å [150]. Activated PC is also assumed
to have sufficiently rapid intramolecular energy distribution such that the statistical
mechanical treatment in mTST is applicable.

The RRKM microcanonical rate is

𝑘 (𝐸) = 𝑁‡(𝐸 − 𝐸‡)
ℎ 𝜌PC(𝐸)

. (5.6)
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Here 𝑁‡ is the transition state sum of states, 𝐸‡ is the energy difference between the
PC and the transition state geometry (including zero-point energy contributions),
and 𝜌 is the PC density of states. Note that the PC consists of a structureless H/D
atom and the C atoms that vibrate at the graphene phonon frequencies with no
chemical interactions to the H/D atom. As a result, the denominator in the Eq. 5.6 is
solely determined by the graphene phonon frequencies and the isotopic difference
of the microcanonical rate then becomes

𝑘D(𝐸)
𝑘H(𝐸)

=
𝑁

†
D(𝐸 − 𝐸†

D)
𝑁

†
H(𝐸 − 𝐸†

H)
. (5.7)

Fig. 5.5 presents the microcanonical rate ratio of the H/D chemisorption, obtained
by calculations with Eq. 5.7 on the GFN-xTB potential energy surface. The sum
of the states in Eq. 5.7 is calculated with the Beyer-Swinehart algorithm [184] at
the level of separable harmonic vibrations. It is predicted that a large isotope effect
more than 250% favors D sticking is observed, in contrary to the experimental
observation of almost no isotope effect. The inconsistency between the mTST result
and the experiment measurement emphasizes the highly non-equilibrium nature of
the chemisorption process in the scattering experiment and the ultrafast reaction
timescale that prohibits a sufficient energy redistribution of the reactive system,

Figure 5.5: Isotope differences in the H/D-on-graphene scattering events pre-
dicted with theories at different levels. The ratio of microcanonical transition state
theory rates (mTST, Eq. 5.7, with and without the inclusion of the zero-point energy
(ZPE) in the transition state complex) and Eckart barrier transmission probabilities
are presented to examine the isotope effect. The filled grey area indicates no isotope
effect.
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Figure 5.6: Comparing theory with experiment—Scattering distribution of
H/D collision with graphene. (a)-(c) H scattering experiment; (d)-(f) H scattering
theory; (g)-(i) D scattering experiment; (j)-(l) D scattering theory. In all figures,
the scattering energy, 𝐸𝑠, is shown along the radial coordinate as a fraction of
𝐸𝑖 and the scattering angle, 𝜗𝑠, is shown on the polar coordinate. All theoretical
scattering distributions were obtained with RPMD trajectories under the influence of
GFN-xTB potential energies. Each heat map is multiplied by the indicated number
shown in red. We encourage the reader to compare this figure to Fig. S10 of [106].
Such a comparison shows that the new GFN-xTB PES provides an equally accurate
representation of the forces during scattering. 𝐸𝑖 = 0.99 eV for H and 𝐸𝑖 = 0.94 eV
for D scattering experiments.
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which leads to this particular breakdown of the statistical rate theory. Furthermore,
the approximation of those non-phonon active modes as harmonic vibrations might
also degrade the accuracy of mTST result. To this end, those inadequacies in the
mTST modelling urges the need for an appropriate inclusion of the dynamical effects
and vibrational anharmonicity in the simulation of H/D-on-graphene scatterings.

As a simplified alternative, we also estimate the isotopic difference between H and D
atom transmission through the adsorption barrier with the one-dimensional Eckart
barrier model [185, 186]. The result is also presented in Fig. 5.5. Significant
difference is shown at lower incidence energies between the transmission proba-
bilities that the scattering system tunnels through the adsorption barrier; while at
the energies that higher than the barrier, Eckart barrier model predicts exactly the
same classical transmission for H/D atoms and no isotope difference is seen. This
reduced-dimensional transmission model is extremely intuitive to describe the scat-
tering process, however is also a grossly oversimplified one that lacks the capability
to describe the collective graphene motions which are orthogonal to the reaction
coordinate. The latter has proven to be essential for quantitatively understanding the
reactivity in the H/D scattering on the graphene surface [106].

C. Trajectories and comparison to Experiment
Trajectory calculations (cMD or RPMD) were initialized following the procedure in
Reference [106] For a given incidence energy 𝐸𝑖 and angle 𝜗𝑖 at which comparison
with experiment is to be made, the following steps are performed.

(1) The initial configurations of the graphene flake are sampled from a trajec-
tory propagated using either with cMD or RPMD and thermalized at the
experiment’s temperature of 300 K. More specifically, the trajectory is pre-
equilibrated for 40 ps and then propagated for another 30 ps, during which
initialization geometries are sampled.

(2) The collision point of H/D atom on the surface (𝑥𝑜, 𝑦𝑜, 𝑧𝑜 = 0 Å) is randomly
selected from within the center unit cell of the graphene flake.

(3) The azimuthal scattering angle 𝜑𝑖 is drawn from a uniform distribution be-
tween [0, 2𝜋).



86

Figure 5.7: Experimentally derived total survival fluxes.

(4) The initial height of the projectile atom is set at 4 Å from the surface. The
(centroid) position to initialize the projectile atom (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is then calculated
using (𝑥𝑜, 𝑦𝑜, 𝑧𝑜), 𝜗𝑖 and 𝜑𝑖, i.e.

𝑥𝑖 = 𝑥𝑜 + (𝑧𝑖 − 𝑧𝑜) tan 𝜗𝑖 cos 𝜑𝑖,

𝑦𝑖 = 𝑦𝑜 + (𝑧𝑖 − 𝑧𝑜) tan 𝜗𝑖 sin 𝜑𝑖,

𝑧𝑖 = 4 Å. (5.8)

(5) The magnitude of the H/D atom’s velocity vector is calculated from 𝐸𝑖, and
its direction is found geometrically by connecting a line between the initial
position of the H atom and the collision point.

(6) The relative positions and momenta of the internal ring-polymer beads with
respect to those of the centroid are thermally sampled at 300 K.

Fig. 5.6 presents the scattering distribution at 𝜗𝑖 between 60◦ and 30◦ from experi-
mental measurement and RPMD simulations. They quantitatively agree with each
other.

D. Experimentally derived survival and sticking probabilities
Experimental data like that of Fig. 2 and Fig. 5.6 were used to derive the H and
D survival probabilities as function of normal incidence translational energy. The
experiments are only sensitive to scattered atoms within 2.8◦ of the plane defined
by the incidence atom beam and the surface normal. We integrate over the out of
plane scattered flux assuming cylindrical symmetry of the angular distribution with
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Figure 5.8: Phonon density of states spectrum calculated with GFN-xTB and
EMFT-REBO potential at 300 K, respectively. The phonon power spectrum is
calculated as the Fourier transform of the velocity autocorrelation function of the
carbon atoms, which is obtained from classical molecular dynamics calculations.
Reference spectrum are took from Fig. 5 of Reference [176].

respect to a line coincident with the specularly scattered atoms. This assumption
was validated in Reference [161]. Fig. 5.7 shows the Survival fluxes at incidence
angles from 60◦ to 30◦—it increases with 𝜗𝑖, reaching a plateau below 𝐸n = 0.35
eV, with 𝐸𝑛 = 𝐸𝑖 cos2 𝜗𝑖 the normal incidence energy. We set the absolute scale of
the survival probability to 1 at this plateau. From this, we easily obtain the sticking
probabilities shown in Fig. 2.

E. Comparing GFN-xTB with EMFT-REBO potential
In this work, we have developed a new PES for the H/graphene system using the
GFN-xTB method. Using it, we are able to accurately reproduce experimentally
measured H and D atom scattering distributions using cMD and RPMD. Previously,
using a PES [106] based on reactive empirical bond order (EMFT-REBO) formalism
[187] with training data from quantum embedding calculations [188–190].

Fig. 5.8 shows the graphene phonon density of states spectra (PDOS) generated from
xTB and REBO potential, respectively, compared with the published periodic DFT
calculations at the GGA level [176] (black solid line). The phonon power spectrum
is calculated as the Fourier transform of the velocity autocorrelation function of the
carbon atoms, which is obtained from classical molecular dynamics calculations.
The PDOS spectrum obtained from the GFN-xTB PES is shown in red, while that
obtained with EMFT-REBO is shown in green. The three theories model a free
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Figure 5.9: Sticking probability of H/D scattering on graphene as a function
of normal incidence energy. The calculation is performed using the EMFT-REBO
PES reported previously [106] .

standing graphene sheet. It is immediately clear that GFN-xTB describes the high
frequency phonons of graphene much better than does EMFT-REBO. Furthermore,
the phonon band gap between 1000 and 1300 cm−1 is not captured by EMFT-REBO.
The high frequency phonons so poorly described by EMFT-REBO are attributed to
in-plane optical phonons, precisely those so critical to the H sticking process [106].

These deficiencies in the EMFT-REBO PES leads to an absence of significant nuclear
quantum effects. Fig. 5.9 shows EMFT-REBO based sticking probabilities for H
and D using both cMD and RPMD trajectories. No difference between classical and
quantum dynamics is seen. Contrast this with Fig. 3, which show analogous results
using GFN-xTB.

F. Interaction time of H/D with graphene
See Fig. 5.10.

G. Robustness with respect to the RPMD simulation protocol
In Fig. 5.11, classical molecular dynamics (cMD, in black) and RPMD (in red) are
reproduced from Fig. 2, with the label 𝑇int,𝐻 = 300 K indicating the non-equilibrium
RPMD method reported in the main text. Also shown are RPMD simulations with
the H/D internal ring-polymer temperature is set to 𝑇int,𝐻 = E𝑛/𝑘𝐵 = E𝑖 cos2 𝜗𝑖/𝑘𝐵,
following the ‘free-particle direct shooting’ protocol [169]. All other simulation
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Figure 5.10: Interaction time of the scattered H/D atom with the graphene
surface from simulations. The symbols present the mean value of the interaction
time from trajectory statistics and the shadow area in black and red, respectively,
present the distribution width. The interacting period is defined that the distance of
H/D projectile and the nearest neighbouring C atom is shorter than 2.5 Å.

Figure 5.11: H atom sticking probability as a function of normal incidence
energy—testing sensitivity with respect to the initialization of the H/D internal
ring-polymer temperature.

details in these two sets of RPMD results are kept to be the same. The fact that
both RPMD results are in complete agreement indicates that the results reported
here are insensitive to the protocol used for initializing the internal temperature of
the H/D ring-polymer in the non-equilibrium simulations. This is also consistent
with the conclusion from the main text that the NQE associated with the H/D atom
is negligible for the sticking dynamics studied here (Fig. 5.3).
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