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ABSTRACT

The atmospheric oxidation of a-pinene and [B-pinene (CioHig), emitted in
appreciable quantities from forested regions (~85 Tg y™!), contributes significantly
to the global burden of secondary organic aerosol (SOA), a substantial component
(15-80% by mass) of atmospheric fine particulate matter (PMa s), which exerts large
but uncertain effects on climate as well as adverse impacts on air quality and human
health. Deciphering the molecular composition, and in turn formation and aging
mechanisms, of a-pinene and B-pinene SOA is essential to reducing uncertainty in
assessment of their environmental and health impacts. However, molecular
characterization of a-pinene and B-pinene SOA is significantly hindered by their
chemical complexity. In this work, we constrain the formation, abundance, and
evolution of molecular products in SOA derived from ozonolysis and photooxidation
of a-pinene and B-pinene using a combination of laboratory experiments, liquid
chromatography/electrospray ionization mass spectrometry (LC/ESI-MS), and
organic synthesis. Through detailed MS/MS analysis, coupled with 3C isotopic
labeling and OH scavenging, we identify a suite of dimeric compounds (Cis-19H24-
3205-11) formed from synergistic Oz + OH oxidation of B-pinene (i.e., accretion of
Os- and OH-derived products/intermediates). Informed by these structural analyses,
together with 30 isotopic labeling and H/D exchange, we synthesize the first
authentic standards of several major dimer esters identified in SOA from ozonolysis
of a-pinene and B-pinene and elucidate their formation mechanism from targeted
environmental chamber experiments. Additionally, we synthesize a series of pinene-
derived carboxylic acid and dimer ester homologues and find that the ESI efficiencies
of the dimer esters are 19-36 times higher than that of commercial cis-pinonic acid,
a common quantification surrogate. Finally, we investigate the aqueous
(photo)chemistry (kinetics, products, and mechanisms) of the carboxylic acid and

dimer ester homologues at cloudwater-relevant concentrations as a function of pH.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Aerosol particles are ubiquitous in the atmosphere and originate from a wide
variety of human and natural sources (e.g., wildfires, desert dust, and fossil fuel
combustion). These particles range in size from a few nanometers (smaller than
viruses) to tens of micrometers (about the width of human hair) and are broadly
grouped into two size modes, those with diameters greater or less than 2.5 um,
referred to as coarse and fine particles, respectively. Fine particulate matter (PM2 5)
accounts for the vast majority of atmospheric particles by number, as well as a

substantial fraction of the total particle surface area and mass.!

Aerosol particles exert large but highly uncertain effects on Earth’s climate
directly, by scattering and absorbing solar radiation, and indirectly, by seeding cloud
formation and altering their reflectivity and lifetime;? without aerosol particles to
serve as cloud condensation nuclei (CCN), there would be many fewer clouds in the
atmosphere. Aerosol particles also adversely impact air quality and, by extension,
human health. Exposure to ambient PM>s is associated with increased risk of
respiratory and cardiovascular disease and is estimated to cause up to nine million

premature deaths per year globally.>=

Aerosol particles are either directly emitted to the atmosphere (primary aerosol),
or formed in the atmosphere through oxidation of gaseous emissions (secondary
aerosol). Globally, a substantial mass fraction (15-80%) of PMa,s consists of
secondary organic aerosol (SOA),® formed via the gas-phase oxidation of volatile
organic compounds (VOCs) emitted from biogenic and anthropogenic sources. As
emissions of biogenic VOCs (~1000 Tg y!)’ far exceed those from anthropogenic
activity (~100 Tg y'),! the biosphere is the dominant source of SOA to the global

atmosphere.



The oxidation of monoterpenes (CioHis), emitted in large quantities from
terrestrial vegetation (~150 Tg y!),” represents a significant and well established
source of SOA.#!! Deciphering the molecular composition, and in turn formation
and aging mechanisms, of monoterpene SOA is essential to reducing uncertainty in
assessment of its environmental and health impacts. However, molecular
characterization of monoterpene SOA, which generally consists of hundreds or more

compounds of diverse classes, is significantly hindered by its chemical complexity.!?

Electrospray ionization mass spectrometry (ESI-MS), typically coupled with
liquid chromatographic (LC) separation, is among the most widely used analytical
techniques for identification and quantification of SOA molecular constituents.!!3
Multifunctional carboxylic acids and high-molecular-weight dimeric compounds,
notably those proposed to contain ester linkages, have been identified via ESI-MS
methods as significant components of both laboratory-derived and ambient
monoterpene SOA,'*!5 and have been implicated as key contributors to particle
formation and growth. Due to a lack of authentic standards, however, (i) structures
of these SOA molecular products are inferred from accurate mass/fragmentation data
and, therefore, mechanistic understanding of their formation and aging remains
unconstrained and (if) commercial terpenoic acids (e.g., cis-pinonic acid) are
typically used as surrogates to quantify both monomeric and dimeric SOA
constituents, despite the strong dependence of ESI efficiency on molecular structure.
In this work, we constrain the formation, abundance, and evolution of carboxylic
acids and dimeric compounds identified via LC/ESI-MS in SOA derived from the
ozonolysis and photooxidation of a.-pinene and B-pinene (Figure 1.1), which together
account for >50% of global monoterpene emissions, using a combination of mass

spectrometric, chromatographic, and synthetic techniques.

1.2 Organization of Thesis
In Chapter 2, through detailed MS/MS analysis, coupled with 13C isotopic labeling
and OH scavenging, we identify a suite of dimeric compounds (Cis-19H24-3205-11)

formed from concerted Oz + OH oxidation of -pinene (i.e., accretion of O3- and OH-
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Figure 1.1. Proposed structures of select carboxylic acids and dimer esters identified
in a-pinene and (-pinene SOA.

derived products/intermediates). We present evidence for formation of these dimers
via both gas- and particle-phase processes, underscoring the complexity of
atmospheric accretion chemistry. The production of dimers through synergistic O3 +
OH oxidation represents a potentially significant, heretofore-unidentified source of
low-volatility monoterpene SOA, and suggests that the current treatment of SOA
formation as a sum of products originating from the isolated oxidation of individual
precursors fails to accurately reflect the complexity of oxidation pathways at play in

the real atmosphere.

In Chapter 3, we synthesize a series of pinene-derived carboxylic acid and dimer
ester homologues. We find that the ESI efficiencies of the dimer esters are 19-36
times higher than that of cis-pinonic acid, demonstrating that the mass contribution
of dimers to monoterpene SOA has been significantly overestimated in past studies.
Using the measured ESI efficiencies of the carboxylic acids and dimer esters as more
representative surrogates, we determine that molecular products measurable by
LC/ESI-MS account for only ~20% of the mass of SOA formed from ozonolysis of
o-pinene and B-pinene. The observed order-of-magnitude difference in ESI

efficiency between monomers and dimers demonstrates that the use of



unrepresentative surrogates can lead to substantial systematic errors in quantitative

LC/ESI-MS analyses of SOA.

In Chapter 4, we investigate the aqueous (photo)chemistry (kinetics, products, and
mechanisms) of the carboxylic acid and dimer ester homologues at cloudwater-
relevant concentrations as a function of pH using LC/ESI-MS together with MS/MS
analysis and H/D exchange. Characterization of the dark aqueous reactivity,
photolysis, and photooxidation of the carboxylic acids and dimer esters, which
respectively differ only in the identity of the terminal functional group (i.e., ketone
vs. carboxylic acid vs. alcohol), affords key insight into the dependence of aqueous
photochemical processing on molecular size/functionality and applicability of
aqueous-phase structure-activity relationships (SARs) for monoterpene SOA

constituents.

In Chapter 5, informed by the structural analyses presented in Chapter 2, together
with 130 isotopic labeling and H/D exchange, we synthesize the first authentic
standards of several major dimer esters identified in SOA from ozonolysis of o-
pinene and B-pinene and elucidate their formation mechanism from a series of
targeted environmental chamber experiments using chemical ionization mass
spectrometry (CIMS) and LC/ESI-MS for respective analysis of gas- and particle-
phase molecular composition. Identification of the chemistry underlying dimer ester
production provides a missing link tying the atmospheric degradation of a-pinene
and B-pinene to the observed formation of low-volatility compounds capable of

driving particle formation and growth.

Finally, Chapter 6 concludes with a brief summary of the findings presented in the
previous five chapters on the formation, identification, quantification, and fate of -
pinene and PB-pinene SOA molecular products and discusses directions for future

research.
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Chapter 2

SYNERGISTIC O3z + OH OXIDATION PATHWAY TO
EXTREMELY LOW-VOLATILITY DIMERS REVEALED IN

B-PINENE SECONDARY ORGANIC AEROSOL

Kenseth, C. M.; Huang, Y.; Zhao, R.; Dalleska, N. F.; Hethcox, J. C.; Stoltz, B. M_;
Seinfeld, J. H. Synergistic O3 + OH Oxidation Pathway to Extremely Low-Volatility
Dimers Revealed in B-Pinene Secondary Organic Aerosol. Proc. Natl. Acad. Sci.

U.S.A. 2018, 115 (33), 8301-8306. DOI: 10.1073/pnas.1804671115.
Abstract

Dimeric compounds contribute significantly to the formation and growth of
atmospheric secondary organic aerosol (SOA) derived from monoterpene oxidation.
However, the mechanisms of dimer production, in particular the relevance of gas- vs.
particle-phase chemistry, remain unclear. Here, through a combination of mass
spectrometric, chromatographic, and synthetic techniques, we identify a suite of
dimeric compounds (Cis-19H24-3205-11) formed from concerted O3 and OH oxidation
of B-pinene (i.e., accretion of O3- and OH-derived products/intermediates). These
dimers account for an appreciable fraction (5.9-25.4%) of the B-pinene SOA mass
and are designated as extremely low-volatility organic compounds. Certain dimers,
characterized as covalent dimer esters, are conclusively shown to form through
heterogeneous chemistry, while evidence of dimer production via gas-phase
reactions is also presented. The formation of dimers through synergistic O3 + OH
oxidation represents a potentially significant, heretofore-unidentified source of low-
volatility monoterpene SOA. This reactivity also suggests that the current treatment
of SOA formation as a sum of products originating from the isolated oxidation of
individual precursors fails to accurately reflect the complexity of oxidation pathways
at play in the real atmosphere. Accounting for the role of synergistic oxidation in
ambient SOA formation could help to resolve the discrepancy between the measured
atmospheric burden of SOA and that predicted by regional air quality and global

climate models.



Significance

Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a
pivotal role in climate, air quality, and health. Monoterpenes, emitted in large
quantities from forested regions, are a dominant source of SOA globally, with dimers
having been identified as key contributors to particle formation and growth. Here, we
establish the role of concerted oxidation by O3 and OH as a significant route to dimer
formation in SOA generated from B-pinene, the second-most-abundant monoterpene
emitted to the atmosphere. Production of this class of dimers is found to occur
through both gas- and particle-phase processes. Dimer formation via synergistic O3
+ OH oxidation could represent an appreciable source of “missing” SOA not included

in current atmospheric models.

2.1 Introduction

The oxidation of monoterpenes (CioHis) represents a substantial and well-
established source of atmospheric secondary organic aerosol (SOA),!? which
constitutes a dominant mass fraction (15-80%) of fine particulate matter (PM> s)* and
exerts large but uncertain effects on Earth’s radiative balance* as well as adverse
impacts on regional air quality and human health.>¢ High-molecular-weight, low-
volatility dimeric compounds have been identified as significant components of both

dl 2-22

ambient’!! and laboratory-derive monoterpene SOA, and have been implicated

th,9_14’23_26

as key players in new particle formation and grow particle viscosity,?” and

cloud condensation nuclei (CCN) activity.2426

Accumulating studies of a-pinene SOA indicate that a vast majority of these
dimers are formed only through Os- and not OH-initiated oxidation, despite the
apparent monomeric building blocks being present in both oxidative systems.!!-1?
Particle-phase reactions of closed-shell monomers [e.g., aldol addition/

162122 esterification, '3 2!

condensation,'>!® (peroxy)hemiacetal/acetal formation,
and gem-diol formation'®!7] and gas-phase reactions involving early-stage oxidation
products and/or reactive intermediates [e.g., stabilized Criegee intermediates (SCIs),

carboxylic acids, and organic peroxy radicals (RO2)*1#23-26] have been advanced as
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possible dimer formation pathways. However, the mechanisms underlying dimer
production and the relative importance of gas- vs. particle-phase chemistry remain

unresolved.

In this work, we investigate the formation, identity, and abundance of molecular
products in SOA derived from the Os- and OH-initiated oxidation of B-pinene, the
second-most-abundant monoterpene emitted to the atmosphere (global emissions
estimated at 19 Tg y!).28 Through detailed chromatographic and mass spectrometric
analysis, coupled with 13C isotopic labeling and OH/SCI scavenging, we identify a
reactive pathway to extremely low-volatility dimeric compounds in SOA formed
from  monoterpene  ozonolysis  involving  reaction of  Os-derived
products/intermediates with those generated from oxidation by OH produced in situ
via vinyl hydroperoxide (VHP) decomposition. We present evidence for formation
of these dimers via both gas- and particle-phase processes, underscoring the
complexity of atmospheric accretion chemistry. In establishing that O3 and OH can
act in concert to form nontrivial yields of dimeric SOA constituents, we highlight the

potential significance of synergistic oxidation in ambient aerosol formation.

2.2 Results and Discussion
2.2.1 Dimers in B-Pinene SOA

B-Pinene ozonolysis and photooxidation experiments were carried out in the
Caltech dual 24 m® Teflon Environmental Chambers (CTEC) (Materials and
Methods). A custom-modified particle-into-liquid sampler (PILS) integrated with
ultra-performance liquid chromatography/electrospray ionization quadrupole time-
of-flight mass spectrometry operated in negative ion mode [UPLC/(-)ESI-Q-TOF-
MS] was used to characterize the time-resolved SOA molecular composition
(Materials and Methods).?° Base peak ion (BPI) chromatograms of the Os- and OH-
derived B-pinene SOA are shown in Figure 2.1. The chromatographic fingerprint of
the O3 system displays distinct monomeric and dimeric regions. Conversely, while

the identities of the monomers in both systems are similar, dimers measurable by
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Figure 2.1. UPLC/(-)ESI-Q-TOF-MS BPI chromatograms of SOA produced from
the Os- and OH-initiated oxidation of B-pinene after ~4 h of reaction in the CTEC (S7
Appendix, Table 2.S1, Exps. 1 and 2). Numbers correspond to nominal m/z