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C h a p t e r VI

The Nucleation Nursery

The Lord took Abram [Abraham]
outside and said, “Look up at the
sky and count the stars—if indeed
you can count them.” Then he said
to him, “So shall your offspring
be.”

The Book of Genesis, Chapter 15,
Verses 3–5, New International

Version

Understand, then, that those who
have faith are children of Abraham.

St. Paul’s Letter to the Galatians,
Chapter 3, Verse 7, New
International Version

Thanks to Dr. Huikuan Chao for developing the string method model of
bubble nucleation and teaching me how to use it. Thanks to Prof. Richard Flagan
for suggesting the idea of comparing the bubble statistics to Poisson statistics to
evaluate whether the nucleation observed is uncorrelated.

Bubbles do not often nucleate homogeneously. As discussed in Chapter I,
bubbles prefer to nucleate with the assistance of a surface or contamination through
heterogeneous nucleation or grow from an existing microbubble when they have
the chance to do so. A bubble that nucleates homogeneously has therefore avoided
an easier pathway through a site that is seen until the mother phase can nucleate
all bubbles at once through the unseen thermal fluctuations. At this moment, all
bubbles emerge as children of the same mother phase and grow together in the same
nursery of its mother. We cannot know the location or time of the nucleation of any



185

individual bubble, but through faith in the unseen workings of the mother phase,
everywhere bubbles will gain life.

In this Chapter, these are the fingerprints by which we will distinguish
homogeneous bubble nucleation from heterogeneous: randomness and rapid onset.
They are also the features of homogeneous bubble nucleation that make it difficult
to measure (as discussed in Section III.1). Homogeneous bubble nucleation results
from thermal fluctuations, so nucleation events are independent of each other and
uncorrelated. Such events are described by the Poisson statistical distribution.
In Section VI.1, we show that the time interval between observations of bubble
nucleation indeed follows behavior expected of Poisson distributed events, at least in
the experiments for which sufficient bubbles were observed for meaningful statistics.
Additionally, because homogeneous bubble nucleation occurs homogeneously, all
nucleation “sites” can nucleate bubbles simultaneously. Given the high sensitivity
of the nucleation barrier to the degree of supersaturation (see discussion of classical
nucleation theory in Section I.4), the onset of an observable rate of bubble nucleation
will be rapid in a systemwith an increasing supersaturation like the present apparatus
(see pressure profile sketched in Figure III.2). We estimate the nucleation rate as a
function of the supersaturation (estimated by the pressure) in Section VI.2 and show
that the rate increases rapidly within a short window of the degree of supersaturation
(pressure in the capillary).

We chose these fingerprints to distinguish homogeneous bubble nucleation
because drawing the distinction from the observation of a single bubble is often not
possible. In some cases, the distinction is obvious: a cluster of bubbles emanating
from an oddly shaped particle is likely the result of heterogeneous nucleation from
the cavities along with the contaminant particle. In most cases, however, an individ-
ual bubble that nucleates by homogeneous nucleation and a bubble that nucleates
by heterogeneous nucleation appear the same. This similarity is even true in the
apparatus described in Chapter III because, while the inner stream of polyol and
CO2 does not come into contact with the interior walls of the apparatus, it may
contain sub-micron particles or metastable microbubbles not detectable with optical
microscopy [1]. Bubbles can nucleate heterogeneously on sub-micron particles or
emerge from microbubbles and leave no optically detectable trace of a particle,
which often limits the experimentalist’s ability to declare that a bubble nucleated by
homogeneous nucleation (see Section 1.6 of [2]).

While we cannot ever prove that the bubbles observed nucleated homoge-
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neously without more careful elmination of sub-micron nucleation sites, we can at
least identify the bubbles whose behavior is consistent with homogeneous nucleation
(which we will define as having the two fingerprints mentioned in the introduction:
stochasticity and rapid onset with supersaturation) and estimate their rate of nucle-
ation. We can then more meaningfully compare our experimental measurements
to theoretical models of homogeneous bubble nucleation. Most models describe
homogeneous bubble nucleation because heterogeneous nucleation is dependent on
the microscopic geometry of the nucleating particles, which is often not known.
In Section VI.3, we describe a model for estimating the nucleation energy barrier
by applying the string method to the density functional theory described in Section
II.4. We then show that this model of the nucleation energy barrier can be fit to the
nucleation rates estimated from experiments in Section VI.4, while noting the lim-
itations of modeling the nucleation rates with classical nucleation theory. Finally,
we offer recommendations for the extension of this work in Section VI.5.

VI.1 Time between Nucleation Events Described by Poisson Statistics
The Poisson statistical distribution describes the occurrence of discrete,

independent, and identically distributed probabilistic events. A classic example of
such an event is the emission of a radioactive particle from an isotope undergoing
radioactive decay because the emission of one particle has essentially no effect on
the emission of the next. Under the proper circumstances, homogeneous bubble
nucleation is also described by Poisson statistics. Given a collection of identical
samples of fluid held at a fixed supersaturation, the nucleation of a bubble inside
a sample is described by the Poisson distribution. This concept was used by Dr.
AdamOlsen to estimate the nucleation rate of polyethylene oxide crystals in aqueous
droplets at different activities of water [3]. In that case, the nucleation of crystals
could take up to an hour and individual droplets could be held under fixed conditions
and observed by Mie scattering inside a droplet levitation chamber. In the present
apparatus (Chapter III), samples of polyol and CO2 in the inner stream rapidly
change in supersaturation as they flow down the observation capillary, so Olsen’s
experimental approach cannot be exactly replicated. Nevertheless, when the flow is
stable, the degree of supersaturation at a particular location along the observation
capillary remains constant. If we assume that the inner stream fluid is uniform,
the segment of fluid observed at one moment has the same likelihood of nucleating
as the segment of fluid observed at any other moment. Therefore, while the fluid
particles themselves are not identical, the properties of the fluid under observation
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are identical with respect to the factors relevant to bubble nucleation, so we treat the
fluid within the field of view as the same sample over time.

One key property of Poisson-distributed events is that their occurrences are
governed by first-order kinetics [4]. Consequently, given a collection of 𝑁0 samples,
the number of samples that has not yet nucleated decays exponentially with time
𝑁 = 𝑁0𝑒

−𝑘𝑡 , where the decay constant 𝑘 gives the frequency of nucleation events
(see discussion on pp. 2-24 to 2-25 of [3]). In the present experiment, we do
not continuously observe a sample of fluid, but although the fluid in the section
of the flow observed is constantly replaced, its replacement is essentially identical
throughout the experiment until a bubble appears. By assuming that the fluid in the
section of the flow observed does not significantly change in properties, in particular,
supersaturation of dissolved CO2, we can treat the fluid in that section as a single
“sample” in between bubbles.

The fluid within the field of view is not identical when it contains a bubble.
A bubble reduces the volume of fluid in which another bubble can nucleate both by
its volume and by the volume of fluid surrounding it from which it has collected its
CO2. Consequently, the fluid within the field of view is only identical in between
observations of bubbles. Therefore, we treat the fluid within the field of view as
if it is a single sample of fluid held at fixed supersaturation, neglecting the small
variation in the pressure and, thus, the supersaturation along the field of view. From
this perspective, the fluid within the field of view between bubble observations is
like one of the droplets in Olsen’s work, and the time between bubble observations
is a reasonable estimate for the time that a single fluid sample would take to nucleate
a bubble. However, bubbles are sometimes observed long after nucleation (see
Chapter VIII). In these cases, we cannot consider the observable segment of fluid
to have nucleated a bubble, but because it has been disturbed by the passing of a
bubble, we also cannot consider it to be an identical sample. Consequently, we only
consider segments of fluid observed between two bubbles that nucleated within the
field of view, ignoring the rest of the experiment for this analysis.

Because we only consider segments of fluid between bubbles that nucleate
within the field of view, the number of measured incubation times is few for most
experiments. Nevertheless, in a couple of experiments, enough incubation times
could be measured to compare 𝑁 to exponential decay. Measurements from two
such experiments are shown in Figure VI.1. In these experiments, the inner stream
was composed of PPG 2700 g/mol (see Table II.1) saturated with CO2 at 72 bar (7.2
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Figure VI.1: a) Time between consecutively observed nucleation events (“inter-
nucleation time”) plotted in decreasing order with schematic of an exponential decay
fit. Data taken at 77 mm while flowing a 5:1 mixture of PPG 2700 g/mol polyol
with cyclopentane saturated with CO2 at 7.2 MPa with an inlet pressure of 13.4 MPa
(too few bubbles without cyclopentane). b) The natural logarithm of the fraction of
not-yet-decayed samples log(𝑁/𝑁0) is fit to a straight line (dashed black) passing
through the origin (𝑁 (𝑡 = 0) ≡ 𝑁0), indicating exponential decay. The slope of the
fit is proportional to the nucleation rate 𝐽. c) and d) Data were taken in an identical
experiment in the absence of cyclopentane. The location of each measurement is
depicted schematically above each plot. From exponential fits (dashed lines), the
nucleation rate 𝐽 is calculated (see legend for values). The measurements in (c) were
taken at 83 mm along the observation capillary (2.3 MPa) with an inlet pressure of
13.4 MPa; the estimated nucleation rate will be represented by an orange star. The
measurements in (d) were taken at 95 mm along the observation capillary (0.4 MPa)
with an inlet pressure of 8.4 MPa; the estimated nucleation rate will be represented
with a yellow star.

MPa, 1045 psi), and flowed at 50 𝜇L/min inside a sheath of 1k5f polyol, within a
quartz capillary of 300 𝜇m inner diameter. For the data shown in Figure VI.1a,c,
the outer stream was flowed at 320 𝜇L/min, resulting in an inlet pressure of 134 bar
(13.4 MPa, 1945 psi). For the data shown in Figure VI.1b,d, the outer stream was
flowed at 210 𝜇L/min, resulting in an inlet pressure of 84 bar (8.4 MPa, 1220 psi).
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In the top row, the incubation time of each sample (horizontal axis) is plotted
to give a visual depiction of the stochasticity. The number of samples that have not
nucleated 𝑁 is computed from the data in the top row by drawing a horizontal
line at each time point on the vertical axis and counting how many bars it passes
through. In the bottom row, the natural logarithm of the fraction of the number
of samples that have not nucleated log(𝑁/𝑁0) is plotted as a function of time.
While fewer measurements were available in this experiment to draw a definitive
conclusion about the quality of the fit, at both pressures considered, 2.3 MPa (Fig.
VI.1a,c) and 0.4 MPa (Fig. VI.1b,d), the exponential decay fits reasonably well.
Note that the incubation times differ by two orders of magnitude between the two
pressures due to the significantly higher nucleation rate at the lower pressure. That
the number of samples that have not nucleated decays exponentially suggests that
the bubble nucleation observed is a Poisson process and thus is likely homogeneous.
For stronger evidence of this conclusion, see Figure VII.2.

The decay of 𝑁 is not always fit well by an exponential function. In some
cases, log(𝑁/𝑁0) contains clusters of nucleation times that follow different decay
rates. We suspect that the different clusters correspond to variations in the flow
conditions or supersaturation. Such variations may arise due to variations in the
volume occupied by bubbles at the end of the observation capillary or other flow
fluctuations. We have not explored the factors that correlate with these clusters,
however. In other cases, a few fluid samples have a significantly longer incubation
time than the others, such that most incubation times follow a single decay rate with
a few outliers. Given that we only record ∼ 10 measurements per experiment, we
suspect that these variations would be lessened by taking more measurements, as
observed in Chapter VII where nucleation rates are higher.

Asmentioned, the decay rate 𝑘 is equal to the frequency of bubble nucleation
in the sample volume. Therefore, the nucleation rate per volume 𝐽 can be computed
by dividing the frequency by the volume of the fluid sample 𝑘/𝑉 , where 𝑉 =

𝜋𝑅2
𝑖
𝐿𝐹𝑂𝑉 , with 𝑅𝑖 as the inner stream radius and 𝐿𝐹𝑂𝑉 as the length of the field

of view within which we can detect bubbles during an experiment. This estimation
method likely underestimates the nucleation rate because the cross-sectional area
of fluid that is actually at the reported degree of supersaturation is smaller than the
cross-sectional area of the inner stream due to depletion of CO2 by diffusion into
the outer stream (as discussed in Chapter V). Because we have not developed and
validated an accurate estimate for this depletion of CO2, we assume no depletion
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for consistency. The reported nucleation rates 𝐽 should thus not be interpreted
as precise estimates of the true nucleation rate, but rather as rough estimates for
comparison within the context of the present work. The nucleation rates estimated
by this method are reported in the legends of Figure VI.1c,d. These nucleation rates
are compared to the string method model in Figure VI.6. The ability to be described
by the model gives further support for our hypothesis that the bubble nucleation is
homogeneous and described by Poisson statistics.

VI.2 Estimation of Nucleation Rate vs. Pressure Indicates Rapid Onset of
Bubble Nucleation
The other property we use to demonstrate that bubble nucleation is homo-

geneous is the rapid onset with increasing supersaturation. Heterogeneous bubble
nucleation can occur at much lower degrees of supersaturation and is limited in
rate by the rate at which bubbles leave the nucleation site. Homogeneous bubble
nucleation occurs rapidly and throughout the bulk and is extremely sensitive to the
degree of supersaturation. The sensitivity of homogeneous bubble nucleation to
the supersaturation was demonstrated in the measurements of bubble nucleation in
superheated liquids by Avedisian [5] (see Figure 2, in particular).

To demonstrate the onset of bubble nucleation, we count the number of
nucleation events per time at points along the observation capillary, each corre-
sponding to a different degree of supersaturation. As discussed in Section V.3,
by fitting a model of bubble growth to a sequence of measurements of the radius
of a bubble over time, we can estimate the nucleation time by extrapolating the
model backward in time to the critical radius of nucleation. This time 𝑡𝑛𝑢𝑐 can be
converted into a distance along the observation capillary 𝑑𝑛𝑢𝑐 by multiplying by the
centerline flow speed 𝑣𝑚𝑎𝑥 (since bubbles rarely nucleate away from the center of the
inner stream). This distance can be converted to an estimate for the fluid pressure
𝑝 ≈ [(𝐿 − 𝑑𝑛𝑢𝑐)/𝐿]𝑝𝑖𝑛 for capillary length 𝐿 and inlet pressure 𝑝𝑖𝑛.

Because nucleation events can be rare, we count the number of nucleation
events within a segment of the inner stream of length 𝑑𝐿. The size of 𝑑𝐿 is chosen
such that it is larger than the uncertainty in the capillary position (about 500 𝜇m) but
smaller than the distance over which the pressure varies significantly (𝑝/(d𝑝/d𝑧),
which depends on the local fluid pressure 𝑝). In general, we bin in segments of
d𝐿 = 500 𝜇m, which corresponds to a volume of 𝑉 = 𝜋𝑅2

𝑖
d𝐿 for an inner stream

width of 𝑅𝑖. Inside each bin, we count the number of bubble nucleation events over
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the course of a video recording (or series of recordings) that lasts a length of time
𝑡. During the recording, bubbles may be observed that are larger than the width
of the inner stream and have elongated (see Chapter VIII). Because we have only
shown that our model for bubble growth is accurate for spherical bubbles, we cannot
estimate the nucleation time for these elongated bubbles. Instead, we exclude these
bubbles from the count of nucleation events. We show the number of nucleation
events in each such bin in Figure VI.2a. The data were taken from the same set of
experiments used to produce Figure VI.1a,c.

Figure VI.2: a) A histogram of the observed bubbles estimated to nucleate within the
field of view of themicroscope fromvideo recordings taken at several locations along
the observation capillary. Error bars represent one standard deviation of Poisson
noise. Data were collected from the same experiment as Figure VI.1a,c. Location
of the measurements is depicted schematically in the diagram of the microfluidic
channel. b) By assuming that the number of nucleation events observed in a segment
of the observation capillary is the number of observed nucleation events 𝑁 in a
volume 𝑉 over a time 𝑡, the nucleation rate is calculated 𝐽 = 𝑁/(𝑉𝑡) and plotted as
a function of distance along the observation capillary (bottom axis) and estimated
fluid pressure (top axis). Error bars are Poisson noise except in the case where no
bubbles were observed (see text for explanation). The orange star represents the
nucleation rate estimated by the exponential fit in Figure VI.1c.

Having shown that the nucleation events follow Poisson statistics in the pre-
vious Section, we plot error bars representing one standard deviation of the Poisson
noise (proportional to the square root of the number of counts). From the counts
alone, the rapid increase in bubble nucleation rate at 82 mm along the observation
capillary is apparent. Nevertheless, different segments of the observation capillary
may be observed for different amounts of time, so the relevant comparison is the
nucleation rate. The nucleation rate is calculated by dividing the number of counts,
which we assume is the expected number of counts ⟨𝑁⟩, by the volume of the fluid
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segment𝑉 and the time of recording 𝑡 to get 𝐽 = ⟨𝑁⟩ /(𝑉𝑡). The resulting nucleation
rate is shown in Figure VI.2b. Note that the apparent decrease in the peak at 82 mm
relative to the other values when converting from counts in (a) to nucleation rate in
(b) is due to the longer time for which this location happened to have been observed.

While the Poisson noise offers a reasonable estimate of the uncertainty in the
number of counts, it is zero for cases where no bubbles were observed. Nevertheless,
a Poisson process may present no counts in an experiment even if it has an expected
number of counts ⟨𝑁⟩ > 1. Given an expected number of counts ⟨𝑁⟩ for a Poisson
process, the probability of observing no counts is 𝑒−⟨𝑁⟩. As a simple, first-order
approximation of the uncertainty in a measurement of no counts, we assumed that a
measurement of no counts is most likely an indication that the expected value was
less than 1.15. We chose the cutoff of 1.15 because the probability of observing
no counts given an expected value of 1.15 is 𝑒−1.15 ≈ 0.32, which is the likelihood
that a measurement of a Gaussian process is beyond one standard deviation from
the mean. Therefore, the height of the error bars for measurements of zero counts in
Figure VI.2b is the nucleation rate corresponding to the observation of 1.15 counts.

From Figure VI.2, we see that the nucleation rate rapidly increases with
distance along the capillary 𝑑 at 𝑑 = 82 mm. For 𝑑 < 82 mm, zero or one bubble
nucleation events were observed during the experiment, while for 𝑑 = 82 mm, 20
nucleation events were observed, corresponding to an increase in the nucleation rate
of at least an order of magnitude over 500 𝜇m of capillary or less than 0.1 MPa.
While the increase may appear to be small on a log scale, an order of magnitude
is a significant increase for such a small change in the supersaturation. This rapid
rise also looks less rapid due to the apparent decrease in the nucleation rate for 𝑑 >

82 mm. The nucleation rate appears to decrease because the inner stream becomes
increasingly filled with elongated bubbles, which are not included in the count of
bubble nucleation events. More measurements are needed to reduce the uncertainty
enough to probe the possibility of a sharper increase in the nucleation rate.

In Figure VI.2b, an orange star is plotted at 𝑝 = 2.3 MPa to show the pre-
diction of the bubble nucleation rate by the exponential decay method shown in
Figure VI.1c. The predicted rate is slightly below the lower bound of the error bar.
Given that nucleation rates are notoriously imprecisely measured to their exponen-
tial dependence on the system properties, we consider this agreement reasonable
between the two methods. Nevertheless, we note that the estimation of nucleation
rate by counting nucleation events likely underestimates the true nucleation rate
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due to the exclusion of elongated bubbles, leading to an underestimate of ⟨𝑁⟩, and
not accounting for the depletion of CO2 along the edges of the inner stream, lead-
ing to an overestimate of 𝑉 . Therefore, we do not comment on the possibility of
inconsistencies between the methods.

In this Chapter, we used the asymptotic square-root model to model the
bubble growth due to the greater efficiency and simplicity with little loss in accuracy,
as discussed in Section V.4. In that Section, we showed in Figure V.8 that the error
in the nucleation location 𝑑𝑛𝑢𝑐 introduced by using the square-root fit instead of
the modified Epstein–Plesset model is less than 100 𝜇m, with one outlier out of
104 having an error of 1.2 mm. To demonstrate that this error is negligible for our
analysis of bubble nucleation rates, we plot the nucleation rate estimated using each
model in Figure VI.3. The conditions are identical to those used to produce Figure
VI.1b,d. The estimated nucleation rate is identical for every segment except the four
marked with a star above. In each of these four cases, the discrepancy is within the
uncertainty. This Figure demonstrates another advantage of the square-root model
inside the red dashed box. At these values of 𝑝 and laboratory temperature (𝑇 = 22
◦C), the bubble may reach the condensation pressure of CO2 (6 MPa [6]) as a result
of the Laplace pressure during computations. Near the phase change, the model
becomes stuck in an infinite loop trying to correct for the resulting errors and no
estimate for the nucleation time is found. With the square-root model, the properties
of CO2 are all lumped into the effective diffusivity, so the nucleation time can be
estimated at these higher pressures. The accuracy cannot be evaluated relative to
the modified Epstein–Plesset model in this regime, however.

In the preceding Sections, we demonstrated that we can identify bubbles that
nucleate stochastically according to Poisson statistics (Section VI.1) and suddenly
upon small changes in the supersaturation (Section VI.2). As described in the in-
troduction to this Chapter, these two properties are unique to homogeneous bubble
nucleation and are not expected for heterogeneous bubble nucleation. Showing that
the bubbles observed have these properties is not sufficient to prove that the bubbles
nucleated homogeneously. Jones et al. suggest that significantly higher supersat-
uration ratios (order 100 or greater) are necessary for homogeneous nucleation of
bubbles from a supersaturated solution. They instead propose that bubbles that
nucleate at lower supersaturation ratios, such as those considered in this Chapter,
emerged from metastable microbubbles temporarily stabilized by trace surfactants
in the solution at sizes smaller than the spatial resolution [1]. While we cannot
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Figure VI.3: a) Nucleation rate 𝐽 estimated as a function of distance along the
observation capillary 𝑑 (bottom axis) and estimated fluid pressure 𝑝 (top axis) based
on the prediction of the nucleation time from fitting the modified Epstein–Plesset
model (see Section V.3). Error bars indicate Poisson noise except if no bubbles
were observed (see main text for discussion). The location of the measurements
is shown schematically with the diagram of the microfluidic channel. b) Same as
(a), but the nucleation time is estimated from fitting the asymptotic square-root
model (see Section V.4). This model permits the estimation of the nucleation rate
at higher pressures (red dashed box). The four locations with different estimates
for the nucleation rate between the models are marked with stars; all are within the
statistical uncertainty.

completely rule out the possibility that the bubbles observed emerged from mi-
crobubbles or other sub-micron particles due to the limited spatial resolution of our
optical microscope, we find that the behavior of the bubbles we observe to emerge
from a sub-micron size is consistent with homogeneous bubble nucleation. Thus, we
believe that they can be meaningfully compared to models of homogeneous bubble
nucleation.
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VI.3 Model of Bubble Nucleation Energy Barrier by Applying the String
Method to a Density Functional Theory
Due to the limitations of classical nucleation theory, such as assuming an

infinitesimal interface with constant interfacial tension (see discussion in Section
I.4), we developed our own model of bubble nucleation. We wanted a platform that
could incorporate the system-specific measurements of the mother phase provided
by G-ADSA (Chapter II). Having demonstrated in Section II.4 that our density
functional theory (DFT) could predict the interfacial tension between polyol-rich
and CO2-rich phases reasonably accurately, we built our model on this DFT. The
string method [7] can find the minimum free energy pathway through the free energy
landscape defined by the DFT, as demonstrated by Xu et al. [8]. A schematic of this
process is shown in Figure VI.4a,b. Figure VI.4a shows the physical process of a
bubble expanding from state 𝐴 to state 𝐵 to state 𝐶 and, finally to state 𝐷. In Figure
VI.4b, the same expansion is mapped along a two-dimensional projection of the
free energy heatmap, with lines indicating system states with the same free energy.
The initial guess for the nucleation pathway (straight black line with black circles
directly from 𝐴 to 𝐷) is pulled “taut” along the free energy landscape, shifting in the
direction of the white left-pointing arrow until the minimum free energy pathway
is found (pink line with pink circles tracing through each state). Based on the work
of Xu et al., collaborator Dr. Huikuan Chao applied the string method to the DFT
he created for modeling the interfacial tension of the polyol–CO2 mother phase
to predict the nucleation energy barrier at different points along the observation
capillary.

The output of the string method model is the density profile at each point
along theminimum free energy path to nucleation. Using the DFT, the free energy of
each density profile can be computed and plotted as a function of the volume of the
bubble, where the surface of the bubble is usually estimated by the Gibbs dividing
surface. An example of such a plot is shown in Figure VI.4c. The conditions were
chosen to match those of the experiment analyzed to estimate the nucleation rates in
the previous Section: PPG 2700 g/mol saturated with CO2 at 7 MPa (70 bar, 1015
psi) and 24 ◦C. The free energy follows the qualitative behavior expected from the
classical nucleation theory of a single nucleation barrier (marked by a star) followed
by a steady decrease in the free energy. The string method assumes a quasistatic
process that can partially equilibrate at each location along the string. In reality,
equilibrium is only achieved at the nucleation barrier where the free energy reaches
a saddle point, but the model is nevertheless valid if nucleation is slow enough
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Figure VI.4: a) Schematic of bubble nucleation (light-colored circles) in a supersat-
urated mother phase (blue background) passing through states 𝐴, 𝐵, 𝐶, and 𝐷. b)
Heatmap representing a free energy landscape for the different states passed through
during nucleation (for schematic purposes only—not related to the present work).
A pathway is guessed between the start (𝐴) and end (𝐷) states (black line with black
circles). The string method then pulls the string connecting them “taut” (follow
left-pointing white arrow) to find the minimum free energy path (pink line with
pink circles). Adapted from Alberto Giacomello et al. PNAS 2016 113(3):E262
Copyright 2016 National Academy of Sciences. c) Prediction by the string method
of the free energy along the string tracing the minimum free energy path for bubble
nucleation. The conditions are: PPG 2700 g/mol polyol saturated with CO2 at 7
MPa and 24 ◦C quenched to 0.1 MPa. The peak of the free energy (black star) is
the nucleation energy barrier (height of white upward arrow). The indices (i)–(iv)
indicate the points corresponding to the density profiles in (d). d) Density profiles
from the DFT on which the string method is based of polyol (blue lines) and CO2
(red lines) plotted in reduced units (number of beads of each compound per volume
equal to the cube of the CO2 bead size, which is 2.79 Åas given in Table II.2) as a
function of radius 𝑟 from the bubble center (in Angstroms). The free energy of each
density profile (i)–(iv) is marked in c). The region between the bubble center and
the mother phase plotted in (d) is shown schematically in the lower right with the
radial direction 𝑟 indicated.

that the state space can be explored before each nucleation event (see discussion in
Section I.4). For more details on the formulation of the string method, refer to the
presentation by Wang et al. [9].

While there is no evidence that the density profiles predicted by the DFT
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along the path found by the string method are realized in physical systems, they
provide insight into the nucleation process. Four density profiles from different
points along the nucleation pathway are shown in Figure VI.4d, which are labeled
(i)-(iv) with their size and free energy indicated by the same label in panel (c).
In this case, the nucleation process begins from a uniform mother phase (i). To
nucleate a bubble, CO2 must be collected while expelling polyol, which costs free
energy (ii). At the nucleation energy barrier, the bubble has grown to its largest size
without achieving a bulk density inside. The high free energy cost is mostly driven
by the large concentration gradients. Once the nucleation barrier is overcome, the
bubble achieves a bulk density at its core (iv). Because the bulk phase inside the
bubble is thermodynamically favorable (otherwise nucleation would not occur), the
free energy cost decreases and the bubble continues to grow. Beyond this point, the
predictions of the string method are not physically meaningful because they neglect
diffusion limitations, convection and flow, and other macroscopic behaviors.

Because the string method is based on DFT, and the DFT is based on PC-
SAFT (see Section II.4), the predictions of bubble nucleation by the string method
depend on the selection of parameters for the PC-SAFT model. As discussed in
Section II.4, an infinite set of PC-SAFT parameters can model the CO2 solubility
and interfacial tension measured with G-ADSA, but none can accurately model the
specific volume. Rather, we found one set of parameters that accurately models the
qualitative behavior of the specific volume (increases with pressure) and is similar
to those predicted by the group contribution method [10]. Another set of parameters
more accurately models the specific volume quantitatively (smaller discrepancy
from the measurements) but predicts the opposite qualitative behavior (predicts that
specific volume decreases with pressure instead of increasing). The nucleation
energy barrier predicted by the string method with each of these sets of parameters
is shown in Figure VI.5.

The conditions are the same as those used to generate the string method
predictions shown in Figure VI.4c,d. The nucleation barrier (markedwith a star) was
calculated at four ambient pressures, each corresponding to a different point along
the observation capillary: 4.0MPa, 2.0MPa, 1.0MPa, and 0.1MPa (outlet pressure)
and plotted on the right. The prediction for the parameters that achieved a more
quantitative fit of the specific volume (parameters listed in caption of Figure VI.5) is
shown on the top; on the bottom is the prediction for the parameters that achieved a
more qualitative fit (parameters listed in Table II.2). While these parameters lead to
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Downstream
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Figure VI.5: Left) Free energy Δ𝑤 in units of thermal energy as a function of the
bubble volume along nucleation pathways predicted by the string method for PPG
2700 g/mol polyol saturated with CO2 at 7 MPa at 24 ◦C and quenched to 𝑝𝑎𝑚𝑏 =
4.0 MPa, 2.0 MPa, 1.0 MPa, and 0.1 MPa (in order of increasing lightness of blue),
which corresponds to points further downstream along the observation capillary
(marked by white arrow). Right) The nucleation energy barrier (marked by a star) is
plotted as a function of the quench pressure 𝑝𝑎𝑚𝑏. The model used for the top uses
the PC-SAFT parameters listed in Table II.2. The model used for the bottom uses
the PC-SAFT parameters that yield a better quantitative fit of the specific volume
(see Figure II.2): 𝜎 = 3.17 Åand 𝜖 = 253 𝑘𝐵.

models that predict the sameCO2 solubility and interfacial tension, aswell as specific
volumes within 15% of each other, they caused differences in the prediction of the
nucleation barrier by the string method of 20–40 𝑘𝐵𝑇 . Given that the nucleation
rate depends on the negative exponent of the nucleation energy barrier scaled by
𝑘𝐵𝑇 , these discrepancies correspond to multiplicative differences of 108–1017 in the
nucleation rate.

Because of the extreme sensitivity of the string method’s prediction of the
nucleation rate on the PC-SAFT parameters, the value of the string method for
quantitative predictions is limited without a more rigorous and precise method for
estimating the PC-SAFT parameters. While the string method provides helpful
qualitative insights into the nucleation pathway by estimating the density profiles
along the way, the uncertainty in the nucleation energy barrier is likely too high
to be useful. Furthermore, the string method does not provide an estimate of the
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coefficient 𝐽0 needed to estimate the nucleation rate 𝐽 = 𝐽0𝑒
−Δ𝑊/𝑘𝐵𝑇 . The value

of 𝐽0 may vary by several orders of magnitude depending on whether nucleation is
limited more by diffusion, interfacial tension, or viscosity [11], none of which is
accounted for in the string method. Despite these limitations of the application of
the string method, we explore the possibility of modeling the measured nucleation
rates with the string method in the following Section.

VI.4 String Method Model Can Be Fit to Measured Nucleation Rate While
Classical Nucleation Theory Cannot Be
Despite the extreme sensitivity of the string method predictions of the nu-

cleation barrier to the PC-SAFT parameters used in the model, we attempt to use its
predictions to model the data from Sections VI.1 and VI.2. Given that the PC-SAFT
parameters that achieved a qualitative fit of specific volume (see Table II.2) led to
reasonable nucleation barriers near 10 𝑘𝐵𝑇 (bottom right of Figure VI.5), we select
that parameter set for our model. Because the string method does not treat the
nucleation coefficient 𝐽0, we treat it as a fitting parameter to the nucleation rates
reported in Figure VI.2. We find that the value 𝐽0 = 1020 /m3.s yields a reasonable
model for the data, as shown in Figure VI.6, with the experimental measurements
shown in panel (a) and the predictions of the fitted string method model in panel
(b). While we cannot comment on why such a value yields a reasonable agreement,
especially given the likelihood that the estimates of the measured nucleation rate are
lower than the actual rate, the model qualitatively captures the observed behavior.
In the experiment, an increase in the nucleation rate by a factor of 10 was observed
from 2.5 MPa to 2.4 MPa. The model shows an increase in the nucleation rate by a
factor of 10 from 1012 to 1013 / m3.s from 2.6 MPa to 2.2 MPa (see inset). While
the model predicts a steeper decrease in the nucleation rate at higher pressures,
the uncertainty in the measurements is too large to determine if the nucleation rate
decreased as rapidly in the experimental system.

We also compared the measured nucleation rate estimated using the fit to
Poisson statistics from Section VI.1. The estimated nucleation rate 𝐽 from Figure
VI.1c for a pressure of 2.3 MPa is plotted with an orange star and that from Figure
VI.1d for a pressure of 0.4MPa is plottedwith a yellow star. Surprisingly, both values
are close to the model predictions. While the string method model is not robust
to parameter selection, the model resulting from this particular set of parameters
captures the measurements of nucleation rate available.
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Figure VI.6: a) Same plot of estimated nucleation rate from experiments as a
function of degree of supersaturation along the observation capillary as in Figure
VI.2b, repeated for convenience, now with the fitted model from the string method
plotted as a black dashed line. b) Model of bubble nucleation rate 𝐽 using the
string method model used to generate the top plots in Figure VI.5. Black box
indicates the axis limits of (a) for more direct comparison. The orange star indicates
the nucleation rate estimated from Figure VI.1c and the yellow star indicates the
nucleation rate estimated from Figure VI.1d.

Classical Nucleation Theory
While we focused on the string method model, we want to address the

limitations of classical nucleation theory (CNT) that persuaded us not to pursue it
as a model of bubble nucleation. CNT assumes that (1) the interface between the
bubble and the mother phase is infinitesimal and (2) the interfacial tension remains
constant during nucleation. However, the present thesis has shown that (1) the
interface between the bubble and the mother phase has a significant accumulation
of CO2 (see Figure II.S14) and (2) the interfacial tension varies significantly during
bubble nucleation (see purple line in Figure V.7). Therefore, we do not expect
CNT to model bubble nucleation in the present system accurately, although it is
sometimes used to model bubble nucleation in polymer foams in the literature [12].

To give quantitative evidence of the poor suitability of CNT for modeling
bubble nucleation in this system, we estimate the nucleation energy barrier predicted
by CNT at the outlet of the observation capillary under the same conditions as used
for the string method model in this Section. Based on the more convenient form of
the nucleation energy barrier in equation I.6, the nucleation energy barrier
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Δ𝐺∗

𝑘𝐵𝑇
=

16𝜋
3

𝛾3

(Δ𝑝)2𝑘𝐵𝑇

where Δ𝑝 = 𝑝𝑠𝑎𝑡 − 𝑝 with 𝑝𝑠𝑎𝑡 representing the pressure at which the gas was
originally saturated into the fluid.

At the outlet of the observation capillary, the pressure is atmospheric pres-
sure, 0.1 MPa. At this pressure, the interfacial tension between the polyol-rich
and CO2-rich phases is 𝛾 ≈ 30 mN/m (see Figure II.3a), assuming equilibrium is
rapidly attained. In our example, the saturation pressure was 𝑝𝑠𝑎𝑡 = 7 MPa. This
formulation of CNT thus estimates the nucleation barrier to be

Δ𝐺∗ ≈ 16𝜋
3

(0.03 N/m)3

(7 × 106 Pa − 105 Pa)2(10−23 J/K) (300 K)
∼ 1000

Anucleation energy barrier of 1000 𝑘𝐵𝑇 is unphysically low and suggests that
nucleation would be impossible, despite our observations that nucleation happens
readily at higher pressures. While CNT could be adapted to achieve more physically
relevant results, such as by adjusting the interfacial tension based onDFT predictions
[8], we focused on the string method model due to the greater physical insight it
provided.

In the present Section, we showed that some observations of bubble nu-
cleation in a mixture of polyol supersaturated with CO2 occur both stochastically
and increase in nucleation rate sharply with supersaturation. We showed that the
nucleation is stochastic by fitting the time between nucleation events, the “incuba-
tion time” of the inner stream, to an exponential decay, which is characteristic of
the independent and identically distributed events of a Poisson process (see Figure
VI.1). We showed that the nucleation rate sharply increases with supersaturation by
estimating the nucleation rate at various locations along the observation capillary,
which corresponds to various fluid pressures and thus degrees of supersaturation.
The rate of bubble nucleation increased by at least an order of magnitude over a
change in the pressure of about 0.1 MPa (see Figure VI.2). These two properties
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provided support for our hypothesis that most of the bubble nucleation included in
the analysis is consistent with homogeneous nucleation rather than heterogeneous.
Therefore, we compared these estimates of bubble nucleation rate to a theoretical
model that applied the string method to the density functional theory discussed
in Chapter II. While the model was extremely sensitive to certain parameters (see
Figure VI.5), it could reasonably model the estimated nucleation rates with the
introduction of a fitted coefficient (see Figure VI.6). Classical nucleation theory,
however, predicted extremely high nucleation barriers that would have suggested
bubble nucleation were impossible under the conditions considered.

VI.5 Recommendations for Future Work
The most natural next step for future work on this topic is to take more

measurements of bubble nucleationwith the currentmethod and perform the analysis
presented on a larger dataset. By taking more measurements, the number of bubbles
observed at each location increases, decreasing the relative size of the Poisson
noise. By reducing uncertainty in the estimated nucleation rate, we can more
precisely test our hypothesis that the bubble nucleation rate increases sharply with
supersaturation, as is typical for homogeneous bubble nucleation. Taking more
measurements can also expand the parameter space explored and reveal trends. For
example, by varying the saturation pressure of CO2, the assumption by classical
nucleation theory that only the difference between the saturation pressure and the
fluid pressure determines the bubble nucleation energy barrier (assuming a fixed
interfacial tension; see equation I.6) could be tested. Additionally, by varying the
flow speed, the role of depletion of CO2 could be tested.

Another flow property that could be varied would the width of the inner
stream. Because the number of nucleation events is proportional to the volume
of the supersaturated fluid, for a given volume of fluid, only a limited range of
nucleation rates will result in enough bubble nucleation events to be detected but
not so many that they significantly deplete the available CO2 and space to nucleate
in. By increasing that volume, smaller nucleation rates can produce a detectable
quantity of nucleation events; by decreasing that volume, larger nucleation rates
will nucleate few enough bubbles to be measured. The width of the inner stream
affects many other properties, however. The wider the inner stream, the faster the
flow. Flow that is too fast will cause motion blur, reducing spatial resolution, and
increase the distance traveled between frame captures, reducing time resolution. A
wider inner stream will also lose a smaller fraction of CO2 through diffusion into the
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outer stream. In fact, in experiments, the number of observed bubbles dramatically
increased with the increase in the inner stream flow rate despite a negligible change
in the inlet pressure. If the inner stream is too narrow, it will lose its CO2 more
quickly both due to the smaller quantity of CO2 contained and the longer residence
time due to the slower flow speed. Within these limits, however, the variation of
the inner stream radius can increase the range of bubble nucleation rates that can be
probed with this method.

The conclusions of this Chapter could also be probed more rigorously
through more careful and thoughtful analysis. In the present analysis, the entire
inner stream is considered to be uniformly supersaturated based on the assumption
that no CO2 has been lost to diffusion and no bubbles are occupying space in the
stream. In reality, a significant fraction of the inner stream has typically lost enough
CO2 that bubble nucleation is significantly suppressed. Additionally, not only can
bubble nucleation not occur when a bubble is occupying a region of the inner stream,
but it may also be suppressed in the wake of CO2-depleted fluid it leaves behind
(see discussion of the wake in Chapter VIII for more details). Accounting for the
reduction in the volume of supersaturated fluid that can nucleate bubbles caused by
these phenomena may significantly increase the estimated nucleation rate.

Another important part of the analysis is the accurate estimation of the fluid
pressure. Because of the small dimensions of the capillary and the impossibility
of machining ports into it, the pressure along the observation capillary cannot be
directly measured with a pressure transducer. The introduction of mechanophores or
compressible microbubbles could someday provide an estimate of the local pressure,
assuming that they can be tailored to tolerate pressures over 10 MPa and adjust to
the local pressure on the scale of milliseconds. Nevertheless, the pressure could
also be estimated through indirect means. For example, given that we can estimate
the inlet pressure reasonably accurately, we assume that deviations from a linear
pressure drop are the result of bubbles in the inner stream, over which the pressure
drop is negligible (see Figure 8 of Khandekar et al. [13]). By measuring the fraction
of the time that the inner stream is occupied by a bubble along its length, one could
estimate the reduction in the pressure drop across that portion of fluid by integrating
this fraction from the outlet of the observation capillary.

While we showed reasonable agreement between a string method model
and estimated nucleation rates from experiments, the high sensitivity of the string
method model to the PC-SAFT parameters limits its utility without precise estima-
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tion of these parameters. A more precise estimate of these parameters would thus
increase the utility of the string method, although it may require the incorporation
of association interactions (see discussion in Section II.5).

More precise comparison with the string method predictions of the nu-
cleation barrier could also be achieved by estimating the nucleation barrier from
measurements of the nucleation rate at different temperatures but fixed supersatura-
tion using the second nucleation theorem, as originally presented by Ford [14] and
further explained by Laaksonen and Malila [15]. The second nucleation theorem
relates the derivative of the logarithm of the nucleation rate with temperature at
fixed supersaturation to the nucleation energy barrier. Changing the temperature
changes the degree of supersaturation, so to keep the degree of supersaturation
consistent between measurements of the bubble nucleation rate taken at different
temperatures, nucleation must be observed at higher pressures for higher tempera-
tures. The pressure corresponding to the desired degree of supersaturation at a given
temperature could be determined using the PC-SAFT model discussed in Section
II.4. The distance along the observation capillary corresponding to that pressure
could be estimated based on our assumption of a constant pressure gradient from
the entrance to the exit of the observation capillary with a small correction for the
reduced pressure gradient in the region near the exit of the capillary where a foam
is formed.
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