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C h a p t e r V

Extrapolating Beyond the Limits of Optical Microscopy: Transport
Model of Bubble Growth

Time itself must come to a stop.
You can’t get to a time before the
big bang, because there was no
time before the big bang.

Stephen Hawking

Prof. Richard Flagan of Caltech first proposed to me the idea of estimating
the nucleation time of a bubble by fitting a model and extrapolating backward in
time. Prof. John Brady stressed the importance of radial convection until I found
out how to account for it. Dr. Valeriy Ginzburg and Dr. Irfan Khan of Dow, Inc.
offered helpful feedback on the early drafts of the model presented in this Chapter.

Time marches forward—the opportunity to observe is lost forever. The
opportunity to imagine, however, is always at hand. In our imagination, we can
travel to any time we wish, future, past, or present. How much can we trust our
imagination to illuminate the unseen? This is the question that challenges each
scientific model; by repeated agreement between the newly seen and previously
imagined, the imagined models gain our trust.

Likewise, this question challenges our ability to draw any conclusions about
bubble nucleation from the method proposed in Chapter III. While we hope that
X-ray or light scattering might someday permit nanoscopic bubble nuclei to be
detected in the present apparatus, the optical microscopy used for the present work
could not detect bubbles smaller than 1 𝜇m, two orders of magnitude larger than a
bubble nucleus based on the predictions of our nucleation model (Chapter VI). This
challenge is depicted in Figure V.1, but so is our solution. Using image processing,
we can measure the size of bubbles with high precision over the range of 1–10 𝜇m.
As Stephen Hawking traced the expansion of the universe back to the Big Bang
based on a model fit to measurements of later growth, so do we hope to trace the
growth of the bubbles we observe back to their nucleation—their “Little Bang,” if
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you will—using a model of bubble growth fit to our measurements of their later
growth.

Figure V.1: Schematic of the limitations of optical microscopy in detecting bubble
nucleation. Top: superposed images of the growth of a bubble from first detection
inside the inner stream of polyol and CO2 within a schematic of the outer stream
(blue cylinder). The bubble was detected in an inner stream of 1k3f polyol (see
Table II.1) saturated with CO2 at 70 bar (7 MPa, 1015 psi) flowing at 50 𝜇L/min
inside a sheath of 1k5f polyol flowing at 230 𝜇L/min inside a quartz capillary with
an inner diameter of 300 𝜇m and a length of 100 mm at 67 mm from the inlet
under a 10x objective (see Table III.1). At the left side of the image of the inner
stream, white dots of decreasing size indicate hypothetical bubble sizes too small
to detect with optical microscopy, leading back to a hypothetical moment of bubble
nucleation (star with “?”). Lower left: The size of the expected bubble nucleus of
about 10 nm is shown relative to the size of the smallest bubble detectable with
optical microscopy of 1 𝜇m (bubbles are shown to the same relative scale). Lower
right: segment of the same image of superposed bubble detections from the top but
with image segmentation from the image-processing algorithm highlighted in red to
show the quality of measurement and the estimated bubble radius in 𝜇m written in
white above each bubble detection. The blue star at the right marks the same bubble
observation as is marked by the blue star in the top image.

Here, we first explore the dominant physics driving bubble growth to moti-
vate our decision to model it with the classic Epstein–Plesset model [1] in Section
V.1. We consider several modifications to the original form of the model in Section
V.2 and discuss how we fit these models to the data in Section V.3. The model that
fits the data best assumes a diffusive flux as much as an order of magnitude larger
than predicted based on the measured transport properties. We suggest that convec-
tion along the surface of the bubble steepens the concentration gradient at the surface
to account for this enhanced flux and propose possible causes of this convection in
Section V.3. In Section V.4, we estimate the time of nucleation during a bubble’s
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journey along the observation capillary by fitting the visible portion of its spherical
growth (1–10 𝜇m) to a model of bubble growth and extrapolating backward in time
to the critical radius of nucleation. Finally, we close with recommendations for
future work in Section V.5.

V.1 Models of Bubble Growth in Supersaturated Liquids
The growth of a bubble in a supersaturated liquid is governed by several

coupled effects. In general, the primary driving force for growth is considered to be
the diffusion of dissolved gas from the supersaturated liquid into the bubble. This
problem was solved by Epstein and Plesset for the case of a single bubble in an
infinite bath of incompressible liquid held at constant temperature and pressure with
a uniform diffusivity constant and fixed interfacial tension [1]. The Epstein–Plesset
model neglects the effect of radial convection, which was not incorporated until the
work of Scriven, who noted the similarity of this problem to the growth of a bubble
in a superheated liquid [2]. Scriven also noted that many of the other factors at play
in bubble growth, such as viscous resistance, inertia, and interfacial tension become
negligible early in the growth of the bubble, so he only considered the asymptotic
growth of the bubble at times late enough that these factors could be safely neglected.
Barlow and Langlois presented a model for bubble growth that include these factors
yet decouples the diffusion from the hydrodynamics by a Lagrangian transform [3].
Due to the nonlinearity of the governing equation, however, a solution could only
be obtained numerically, which they achieved by assuming that the concentration
primarily varies within a thin shell much smaller than the size of the bubble, similar
to the work of Plesset and Zwick on the problem of bubble growth in a superheated
liquid [4]. Venerus and Yala later reported that this approximation is only valid in
the case of rapid bubble growth [5]. While the growth of bubbles in a foam is limited
by the finite supply of dissolved gas and competition with neighboring bubbles, first
modeled using the “cell model” of Amon and Denson [6], the scope of this Chapter
is limited to the growth of bubbles in isolation, however.

In the present analysis, we assume that the dominant driving forces for growth
are diffusion and radial convection. We neglect the effects of inertia, viscosity, and
interfacial tension. As noted by Scriven [2], these factors become negligible after
a short time. Barlow and Langlois [3] estimated this time scale with the following
equation,
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𝜌𝛾2D
8𝑝𝑎𝑡

+ 2𝜂
𝑝𝑎𝑡
+ 2𝜎
𝑝𝑎𝛾
√
D𝑡
≫ 1 (V.1)

where 𝜌 is the density of the fluid, 𝛾 is a coefficient that scales the rate of bubble
growth to incorporate the effects of radial convection caused by the advancing
boundary of the bubble (𝛾 = 2𝛽 for 𝛽 described in equation 46 and Figure 5 of
Scriven’s work [2]), 𝑝𝑎 is the pressure in the bulk liquid, 𝜂 (written as 𝜇 is the
original paper) is the viscosity of the bulk liquid (assumed to be constant), 𝜎 is the
interfacial tension along the bubble surface (assumed to be constant), and 𝑡 is the
time. The first term indicates the time scale over which inertia is important, the
second indicates the time scale over which viscous resistance is important, and the
third indicates the time scale over which the interfacial tension is important. Inertia
and viscous resistance become negligible for larger bubbles because the bubble
decelerates as it grows unless there is an additional driving force (e.g., decreasing
pressure or raising temperature). The decreasing effect of viscous resistance was
shown by Venerus et al. [5]. From the work of Szekely and Fang, it can be seen
that increasing the importance of inertia (quantified by the dimensionless parameter
𝐵𝐼 in their work) does not affect the rate of growth at later times, but appears
just to extend the period of slower growth at the beginning [7]. Inertia may still
affect bubble growth if the bubble expands extremely rapidly or takes place in a
liquid metal with significantly higher density. Viscous resistance may still affect
bubble growth in highly viscous media like polymer melts or viscoelastic media
[8]. Interfacial tension becomes negligible for larger bubbles because the Laplace
pressure decreases with the inverse of the bubble radius, as shown by Epstein and
Plesset [1].

For the present work, the time scale over which these factors are important
is negligible relative to the time scale of observation (hundreds of microseconds),
so we neglect these factors in estimating the growth of bubbles. A rough time scale
beyond which each factor becomes negligible is estimated by setting each of the
three terms individually to 1 in the scaling from Barlow and Langlois (equation V.1),
with the first term corresponding to inertia, the second term to viscous resistance,
and the third to interfacial tension. Because each term decreases with time, times
larger than this time scale will cause the terms to decrease well below one, which
is the condition for these effects to be negligible according to Barlow and Langlois.
To determine the maximum value for each time scale based on the properties of the
system explored in the present thesis, we select the values of each parameter from
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the relevant range that maximize the time scale. Those ranges are: 𝜌 ∈ [0.95, 1.01]
g/mL between 31 ◦C and 60 ◦C (see Figure II.2), 𝛾 ∈ [1, 100] (see discussion later
in this Section), D ∈ [10−10, 2 × 10−9] m2/s (see Figure II.4), 𝑝𝑎 ∈ [5 × 105, 107]
Pa (see Figure III.2 and note that bubbles are not measured in foamed region),
𝜂 ∈ [10−2, 0.3] Pa.s (see discussion of effect of CO2 on viscosity and measurements
of pure polyol viscosity for 3k2f in Figure III.S1), and 𝜎 ∈ [0.005, 0.03] N/m (see
Figure II.3a).

• Inertia:

𝑡𝜌 ∼
𝜌𝛾2D
8𝑝𝑎

<
(1000 kg/m3) (100)2(10−9 m2/s)

8(5 × 105 Pa)
∼ 1 ns

• Viscous Resistance:

𝑡𝜂 ∼
2𝜂
𝑝𝑎

<
2(0.3 Pa.s)
5 × 105 Pa

∼ 1 𝜇s

• Interfacial Tension:

𝑡𝜎 ∼
(

2𝜎
𝑝𝑎𝛾
√
D

)2

<

(
2(0.03 N/m)

(5 × 105 Pa) (1)
√

10−10 m2/s

)2

∼ 40 𝜇s

Therefore, even if these three effects were to completely halt bubble growth
over the time period that they are relevant, a model that neglects them would result
in a discrepancy from the true growth of no more than 100 𝜇s, which would have a
negligible effect on the estimate of bubble nucleation in Chapter VI.

The flow in the microfluidic flow-focusing channel used to induce bubble
nucleation in the present work introduces two additional factors that affect bubble
growth: decreasing pressure and depletion of CO2 by diffusion into the outer stream.
The decreasing pressure results from the shear stress along the inner walls of the



163

observation capillary, which leads to a roughly linear decrease in pressure along the
capillary (see Figure III.2). As the pressure in the bulk fluid decreases, so does the
pressure inside the bubble, though it is elevated by the Laplace pressure. As the
pressure inside the bubble decreases, the gas inside expands, accelerating bubble
growth. The time scale for this process is slow unless near the end of the channel
relative to the field of view in experiments (about 1 mm, which corresponds to a
change in pressure of about 1 bar, as in Figure III.2). Because the inner stream is
ensheathed by an outer stream of pure polyol without CO2, CO2 dissolved in the
inner stream gradually diffuses out into the outer stream. While the residence time of
the fluid is typically around 100 ms and the fluids have a high viscosity—and, thus,
low diffusivity—the loss of CO2 can be significant because of the narrow dimension
of the inner stream. The depletion boundary layer along the outer edge of the inner
stream will grow roughly as

√
𝐷𝑡 ∼

√︁
10−9 m2/s × 0.1 s ∼ 10 𝜇m. Given that the

inner stream radius is typically around 25 𝜇m (see micrographs of flow channel in
Figure III.3, for example), even the concentration of CO2 at the center of the inner
stream may decrease before reaching the end of the channel. The effect of depletion
of CO2 will slow bubble growth by reducing the effective bulk concentration of
CO2.

After diffusion, the most important factor affecting bubble growth is radial
convection. Radial convection plays a significant role in bubble growth in the
present system due to the fast growth relative to the diffusivity in the window of
observation. In their review, Plesset and Prosperetti noted that the scale for the ratio
of the diffusive to the convective term in the convection–diffusion equation isD/𝑅 ¤𝑅.
As can be seen in the measured bubble radii in Figure V.7 (open black circles), a
typical bubble might grow from 3 𝜇m in radius to 10 𝜇m in radius over about 1 ms.
Fitting the asymptotic growth profile of 𝑅(𝑡) ≈ 𝑎

√
𝑡 − 𝑡𝑛𝑢𝑐 to these two points gives

𝑎 ≈ 3×10−4m/
√
s. The value 𝑅 ¤𝑅 ≈ 𝑎2/2 ≈ 5×10−8 m2/s, while the diffusivity is at

most 2×10−9 m2/s (see Figure II.4). Thus, the ratio of the diffusive to the convective
term is D/𝑅 ¤𝑅 < 0.04, indicating that convection is more significant than diffusion
in the convection–diffusion equation. To demonstrate the importance of convection,
a model was constructed that incorporates all effects except for inertia and viscous
resistance given that they become negligible within 1 𝜇s. The model incorporates
material properties measured using G-ADSA for the exact polyols involved and is
discussed in greater depth in the SI. The model significantly underestimates the
measured bubble growth, as seen in Figure V.2.
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Figure V.2: Model of bubble growth excluding the effects of convection and ac-
counting for the concentration dependence of the diffusivity plotted alongside mea-
surements of the radius of a bubble (open black circles) over time since the estimated
moment of nucleation 𝑡 − 𝑡𝑛𝑢𝑐. The measurements were taken of the same bubble
shown in Figure V.1. The model estimates several properties over time: the radius
of the bubble 𝑅𝑝𝑟𝑒𝑑 [𝜇m] (blue line), the density of CO2 𝜌𝐶𝑂2 [g/mL] (red line), the
pressure estimated inside the channel 𝑝 [MPa] (orange line), the pressure estimated
inside the bubble 𝑝𝑏𝑢𝑏𝑏𝑙𝑒 [MPa] (green dashed line), and the interfacial tension
along the bubble surface [mN/m] (purple line). The inset zooms in on the region
around the bubble radius measurements and highlights the underestimation of the
bubble growth by the model, as well as the difference in power law behaviors (the
data are matched a square root but the prediction is matched by a higher power).

Modeling the effect of radial convection explicitly can be challenging be-
cause it introduces a nonlinearity to the governing equation [3] and convection tends
to introduce more numerical instability. Rather than model the effect of convection
explicitly in the governing equations, we note that Scriven observed that the asymp-
totic solution to these equations is 𝑅 ∝

√
𝑡, just as in the static case modeled by

Epstein and Plesset. Radial convection caused by growth in the radius of a bubble
at a rate of ¤𝑅 produces a velocity field 𝑢 = 𝑅2

𝑟2
¤𝑅 by conservation of mass assuming

spherical symmetry and an incompressible fluid. This velocity field decreases in
speed with 𝑟, such that the advancing front of the bubble travels faster than the sur-
rounding fluid. This velocity gradient causes the concentration profile of dissolved
gas to be compressed into a smaller shell, increasing the concentration gradient and
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the flux of gas into the bubble [9]. Because the asymptotic growth is the same with
or without radial convection and the asymptotic growth regime is reached before we
can detect bubbles (within about 10 𝜇s based on the time scales estimated above),
we choose to model the bubble growth using the simpler static model of Epstein and
Plesset and lump all the effects of convection, as well as other neglected effects, into
a coefficient 𝐶 by which the concentration gradient is multiplied. We will refer to
this coefficient 𝐶 as the “convection coefficient.” This coefficient is one of several
modifications made to the Epstein–Plesset model in developing the model of bubble
growth used in the present work, which is discussed in the next Section.

Loss of Dissolved Gas to Pure-polymer Outer Stream Decreases Diffusion
V.2 Modified Epstein–Plesset Model Fits Measured Bubble Growth

As mentioned in the previous Section, the Epstein–Plesset model of bubble
growth applies Fick’s Laws to model the concentration profile of gas outside the
bubble and the flux of gas into the bubble that results from the gradient, all while
the surface of the bubble expands. The system and model are shown schematically
in Figure V.3.

The system is assumed to be spherically symmetric, quasistatic, with no
convective effects, at constant temperature and pressure, and with uniform diffusiv-
ity. In a supersaturated system, the concentration of gas in the bulk fluid 𝑐𝑏𝑢𝑙𝑘 is
greater than the concentration of gas in equilibrium with the bubble at the surface
𝑐𝑠𝑎𝑡 (𝑝). As described by Fick’s First Law, this concentration gradient at the surface
of the bubble causes a total flux of gas into the bubble proportional to the surface
area of the bubble (4𝜋𝑅2 for bubble radius 𝑅), the diffusivity of the gas in the fluid
D, and the negative concentration gradient at the surface − 𝜕𝑐

𝜕𝑟

��
𝑟=𝑅
. As this flux

depletes CO2 at the surface of the bubble, Fick’s Second Law describes how the
CO2 in the bulk diffuses toward the depleted area. Because we have assumed that
the bubble is in an infinite bath with no other bubbles around it, the boundary con-
ditions are that the concentration at infinite radius at the unreachable end of the bath
is the bulk concentration 𝑐𝑏𝑢𝑙𝑘 and the concentration at the surface of the bubble
is the equilibrium concentration 𝑐𝑠 (𝑝). The initial condition is a uniform fluid of
concentration 𝑐𝑏𝑢𝑙𝑘 . In the case of a static boundary, Fick’s Laws can be solved
with a similarity variable or integral transform. Because the surface of the bubble
expands as CO2 diffuses into the bubble to maintain a constant internal density, the
geometry of the concentration profile changes with time. Epstein and Plesset solved
this problem—ignoring convective effects—by transforming to a simpler coordinate
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Figure V.3: Schematic showing the Epstein–Plesset model. Top: schematic of the
system considered. A bubble (gray circle) with radius 𝑅 and CO2 density 𝜌𝐶𝑂2 is
situated in an infinite fluid initially uniformly supersaturated with dissolved CO2
(blue background) and fixed at a constant pressure 𝑝 and temperature 𝑇 . At the
surface of the bubble, the concentration of CO2 is fixed at the saturation pressure
𝑐𝑠 (𝑝𝑏𝑢𝑏) for the bubble pressure 𝑝𝑏𝑢𝑏, which is lower than the bulk concentration
of CO2 𝑐𝑏𝑢𝑙𝑘 . Consequently, CO2 diffuses into the bubble (dashed black arrows),
depleting CO2 surrounding the bubble over time (white lines on the axes on the
left). Bottom: flow of equations for computing bubble growth using the work of
Epstein and Plesset [1]. First, Fick’s Second Law (left) describes the diffusion of
CO2 outside the bubble. Next, the Epstein–Plesset result calculates the resulting
concentration gradient at the surface of the bubble (middle). Finally, the flux of CO2
into the bubble is calculated by substituting the Epstein–Plesset result into Fick’s
First Law (right).

system and solving for the concentration gradient at the surface of the bubble. The
result is

𝜕𝑐

𝜕𝑟

����
𝑟=𝑅

= (𝑐𝑏𝑢𝑙𝑘 − 𝑐𝑠 (𝑝))
[

1
𝑅
+ 1
√
𝜋D𝑡

]
(V.2)

which can be substituted into Fick’s First Law to determine the change in mass of
gas enclosed in the bubble.

Solving for Flow and Pressure
Unlike the Epstein–Plesset system, bubbles observed in the microfluidic

flow-focusing channel experience a pressure that decreases over a time scale set
by the flow speed of the inner stream. Although the change in pressure during the
observable growth of a bubble has a negligible effect on the size, the pressure dictates
the degree of supersaturation of the mother phase, which drives the diffusion of gas
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into the bubble through a chemical potential gradient. We therefore must estimate
the pressure at each point along the channel. Because the pressure results from the
shear stress along the walls of the capillary, we must determine the properties of the
flow to estimate the pressure. To determine the pressure profile and flow speed, we
solved the Stokes equation for cylindrically symmetric sheath flow of two streams
with different viscosities and flow rates, as shown in Figure V.4.

Figure V.4: Schematic showing amodel of the flow in themicrofluidic flow-focusing
channel. Top: schematic of sheath flow with known parameters (not circled: inner
stream flow rate 𝑄𝑖, outer stream flow rate 𝑄𝑜, outer stream viscosity 𝜂𝑜, inner
stream center speed 𝑣𝑚𝑎𝑥 , atmospheric pressure 𝑝𝑎𝑡𝑚, inner radius of the observation
capillary 𝑅𝑐𝑎𝑝, and length of the observation capillary 𝐿) and parameters to solve
for (circled: inlet pressure 𝑝𝑖𝑛, inner stream viscosity 𝜂𝑖, inner stream radius 𝑅𝑖,
and speed along the interface of the inner and outer streams 𝑣𝑖𝑛𝑡𝑒𝑟 𝑓 ). Bottom left:
axial velocity profiles as a function of radius 𝑟 determined by solving pressure-
driven Stokes flow in a pipe and assuming cylindrical symmetry. Bottom right: four
conditions providing four equations to solve for the four unknown quantities.

We considered as known inputs the inner stream flow rate 𝑄𝑖, the outer
stream flow rate 𝑄𝑜, the outer stream viscosity 𝜂𝑜, the outlet pressure 𝑝𝑎𝑡𝑚, the
length of the capillary 𝐿, the radius of the capillary 𝑅𝑐𝑎𝑝, and the centerline speed
𝑣𝑚𝑎𝑥 (since it could be measure by tracking a small bubble in a video). The inlet
pressure 𝑝𝑖𝑛, the inner stream radius 𝑅𝑖, the velocity at the interface between the
streams 𝑣𝑖𝑛𝑡𝑒𝑟 𝑓 , and the inner stream viscosity 𝜂𝑖 were unknowns to be solved for
(although the inlet pressure could be compared to the pressure measured by the
inner stream ISCO pump, which is close to the inlet pressure because the pressure
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across the low-viscosity inner stream fluid is low and the inner stream radius could
be compared to rough estimates from videos, although identifying the interface
precisely was challenging). These four unknowns could be solved by solving Stokes
flow equations in cylindrically symmetric coordinates under pressure-driven flow
along the 𝑧 axis (see orange box in lower left of Figure V.4) and applying four
conditions: (1) continuity of velocity at the interface 𝑣𝑜 (𝑅𝑖) = 𝑣𝑖 (𝑅𝑖) = 𝑣𝑖𝑛𝑡𝑒𝑟 𝑓 ,
(2) known centerline speed 𝑣𝑖 (𝑟 = 0) = 𝑣𝑚𝑎𝑥 , (3) inner stream flow rate 𝑄𝑖 passes
through cylinder of radius 𝑅𝑖, and (4) outer stream flow rate 𝑄𝑜 passes through
cylindrical shell from 𝑅𝑖 to 𝑅𝑐𝑎𝑝.

In solving for these flow properties, we have assumed that the viscosities
of the inner and outer streams are uniform throughout their respective streams. In
reality, the viscosity may change by an order of magnitude or more as CO2 diffuses
into or out of a region of fluid, an estimate we base on the strong sensitivity of
diffusivity on CO2 concentration in Figure II.4 and the inverse proportionality of
diffusivity and viscosity based on the Stokes–Einstein–Sutherland relationship. We
have also assumed that the flow remains in steady state and that the inlet pressure
is constant. In reality, we have observed that the flow may fluctuate sometimes,
typically as a result of the passing of bubbles, and the inlet pressure may vary over
several minutes unless the flow rate is adjusted to counteract the changes.

We validate the estimates of the inlet pressure 𝑝𝑖𝑛 and inner stream radius
𝑅𝑖 against additional measurements. While 𝜂𝑖 is not directly measured, we can
vary its value until the model solves for values of the other parameters consistent
with measurements. Having measured the dimensions of the tubing from the inner
stream ISCO pump to the inlet of the observation capillary, we can estimate the inlet
pressure by estimating the pressure drop from the measured pressure in the ISCO
pump (reported by the ISCO pump’s internal pressure transducer) using the formula
for pipe flow. We can do the same with the ISCO pump for the outer stream. These
estimates of the inlet pressure provide a range in which the value calculated from
solving the flow equations shown in Figure V.4 should lie. We can also measure a
range from the inner stream radius 𝑅𝑖 by visual observation of the recorded videos.
Often, the inner stream interface is blurred due to lensing caused by the gradient in
index of refraction between the inner stream of polyol and CO2 and the outer stream
of polyol. Nevertheless, bounds can be placed on the radius in which the calculated
value should lie. Finally, we measure the inner stream maximum speed 𝑣𝑚𝑎𝑥 by
tracking small bubbles, which we assume are traveling at roughly the same speed as
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the flow (they do not seem to accelerate until reaching the width of the inner stream
based on the data in Figure VIII.5). By measuring the speed of several bubbles,
we can place a range on the input value of 𝑣𝑚𝑎𝑥 as well. Because the inner stream
viscosity 𝜂𝑖 cannot be measured directly, we vary its value until the calculation for
each of the measured values falls within the measured range. An example of the
result of this estimation is shown in Figure V.5. At 𝜂𝑖 = 0.01 Pa.s, the calculated
values of the inner stream radius 𝑅𝑖, centerline velocity 𝑣, and the pressure drop
across the observation capillary (Δ𝑝) are all in agreement with the measured ranges.

Figure V.5: Plot used to estimate the inner stream viscosity 𝜂𝑖 [Pa.s]. Calculated
values for the pressure drop across the observation capillary Δ𝑝 [bar] (red), inner
stream radius 𝑅𝑖 [𝜇m] (blue), and centerline speed 𝑣 [cm/s] (green) are plotted as a
function of the inner stream viscosity 𝜂𝑖 as solid lines. Ranges of measured values
are plotted as horizontal dashed lines. A value for 𝜂𝑖 for which the calculated values
are within the range of measured values is selected (0.01 Pa.s, marked by vertical
black line). In this experiment, PPG 2700 g/mol saturated with CO2 at 7.0 MPa and
22 ◦C was used as the inner stream.

Incorporating Material Properties
To improve the accuracy of our bubble growth model, we incorporate mea-

sured material properties of both CO2 and polyol–CO2 mixtures. Rather than
assume that the gas inside the bubble is ideal, we determine its equation of state by
interpolating 𝑝𝑣𝑇 on CO2 available from NIST [10]. We estimate the concentration
of CO2 at the bubble surface 𝑐𝑠 (𝑝𝑏𝑢𝑏𝑏𝑙𝑒), where 𝑝𝑏𝑢𝑏𝑏𝑙𝑒 is the pressure inside the
bubble, and the bulk concentration of CO2 𝑐𝑏𝑢𝑙𝑘 (𝑝𝑠𝑎𝑡), where 𝑝𝑠𝑎𝑡 is the pressure at
which CO2 was saturated in the polyol–CO2 mixture, by interpolating the solubility
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data measured with G-ADSA (see Figure II.6. We then estimate the interfacial
tension along the surface of the bubble with the measurements from G-ADSA at
different pressures (see Figure II.3a). While we measured the diffusivity of CO2 in
polyol–CO2 mixtures at a range of pressures and temperatures (see G-ADSA mea-
surements in Figure II.4), the Epstein–Plesset model assumes a uniform diffusivity.
We explored the effect of a concentration-dependent diffusivity D(𝑐) based on the
measurements made with G-ADSA and report our findings in the SI. Surprisingly,
we found that assuming a constant diffusivityD and constant convection coefficient
𝐶 leads to a good fit of the measured bubble sizes, so we focused on this empirical
approach instead (see next Section).

We assume that the bubble begins at a radius similar to the critical radius
predicted by the model of bubble nucleation based on the string method discussed in
Chapter VI, which is about 3 nm. At such small sizes, the Laplace equation 𝑝𝑏𝑢𝑏𝑏𝑙𝑒 =
𝑝 + 2𝜎(𝑝𝑏𝑢𝑏𝑏𝑙𝑒)/𝑅 predicts enormous Laplace pressures on the order of 1 MPa.
These values are unphysical, however, because the extreme curvature of nanoscopic
bubbles reduces the interfacial tension because the tension is applied with a radius of
curvature comparable to the molecular size. This correction to interfacial tension for
small droplets was derived by Tolman and is inversely proportional to an empirical
“Tolman length” [11]. We considered Tolman lengths from 5–100 nm, but found
that while it provides more physical bubble pressures at the early stages of bubble
growth, it does not affect the radius of the bubble by more than 1% at any point
during the growth for any of the Tolman lengths considered. We selected a Tolman
length of 5 nm for consistency.

Numerical Algorithm
Because the pressure inside the bubble 𝑝𝑏𝑢𝑏𝑏𝑙𝑒 in our model depends non-

linearly on itself through the dependence of the interfacial tension in the Laplace
pressure on 𝑝𝑏𝑢𝑏𝑏𝑙𝑒 and the dependence of the radius of the bubble 𝑅 on the density
of CO2 𝜌𝐶𝑂2 on 𝑝𝑏𝑢𝑏𝑏𝑙𝑒, the modified Epstein–Plesset model in the present dis-
sertation cannot be solved purely with finite difference methods. Instead, at each
timestep, a system of self-consistent equations must be solved to determine 𝑝𝑏𝑢𝑏𝑏𝑙𝑒
and 𝑅 with a nonlinear solver (the root function was used from the optimize
library of the scipy package [12]). A schematic of this procedure is provided in
Figure V.6.

A bubble nucleus is used as the starting point for computing the bubble
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Figure V.6: Schematic of the numerical algorithm used to compute bubble growth
from the modified Epstein–Plesset model. a) The bubble is initialized at a guessed
nucleation time 𝑡𝑛𝑢𝑐, estimated radius 𝑅𝑛𝑢𝑐, and estimated pressure 𝑝. The pressure
inside the bubble 𝑝𝑏𝑢𝑏𝑏𝑙𝑒 is solved self-consistently and used to estimate the mass
of the bubble by using the equation of state of CO2 to estimate the density 𝜌𝐶𝑂2 at
that pressure. b) The bubble growth is estimated by iteratively advancing in time.
Each timestep consists of two parts. First, the diffusion of CO2 into the bubble is
estimated by taking an Euler timestep according to the Epstein–Plesset result for
the concentration gradient at the bubble surface. Second, the bubble radius and
pressure are allowed to equilibrate by self-consistently solving for their values.

growth profile with the modified Epstein–Plesset model (see Figure V.6a). The time
of nucleation 𝑡𝑛𝑢𝑐 is guessed (the algorithm for fitting 𝑡𝑛𝑢𝑐 is described in Section
V.3) and used to calculate the pressure at the corresponding location along the
observation capillary using the flow parameters from the flow calculations (Figure
V.4),

𝑝0 = 𝑝𝑎𝑡𝑚 + (𝑝𝑖𝑛 − 𝑝𝑎𝑡𝑚)
𝑡0

𝑣𝑚𝑎𝑥/𝐿
(V.3)

The radius of the nucleus 𝑅𝑛𝑢𝑐 is taken from the prediction of our nucleation
model based on the string method (described in Chapter VI). Next, the pressure
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inside the bubble is solved self-consistently due to the dependence of the interfacial
tension 𝜎(𝑝𝑏𝑢𝑏𝑏𝑙𝑒) in the Laplace pressure on the pressure in the bubble (see Figure
II.3a),

𝑝0
𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝0 +

2𝜎(𝑝0
𝑏𝑢𝑏𝑏𝑙𝑒

)
𝑅0 (V.4)

where the radius of the bubble 𝑅0 is held fixed at 𝑅𝑛𝑢𝑐 and the interfacial
tension 𝜎(𝑝0

𝑏𝑢𝑏𝑏𝑙𝑒
) is estimated by interpolating the values measured with G-ADSA

(Figure II.3a). Finally, the pressure inside the bubble is used to determine the density
of CO2 𝜌𝐶𝑂2 given the temperature 𝑇 (held at laboratory temperature, 𝑇 ≈ 22 ◦C)
and from that calculate the mass inside the bubble by multiplying by the bubble
volume 4

3𝜋(𝑅
0)3.

Once the initial condition is set, the system is updated using an Euler timestep
that assumes a first-order Taylor approximation of the dynamics as modeled by the
Epstein–Plesset model in eq V.2 (Figure V.6b). The timestep is adapted to ensure
that the discrepancy between a timestep of Δ𝑡 and two timesteps of Δ𝑡/2 is below a
tolerance (usually 1%). If the discrepancy is greater than the error tolerance, then the
calculation for that timestep is rejected, the timestep Δ𝑡 is halved, and the timestep
is recalculated. If the discrepancy is smaller than the error tolerance, the calculation
for that timestep is accepted and the timestep is increased by a small fraction (usually
30%). This adaptive timestep algorithm ensures that the fast dynamics at early times
are calculated accurately with short timesteps while the slower dynamics at later
times are calculated efficiently with larger timesteps.

Once a timestep is accepted, the properties of the bubble and the flow are
updated in accordance with the increase in CO2 in the bubble and the movement of
the bubble down the observation capillary. The pressure is updated as in equation
V.3 using the new time 𝑡𝑖 instead of 𝑡0. To calculate the pressure in the bubble
𝑝𝑖
𝑏𝑢𝑏𝑏𝑙𝑒

and the radius of the bubble 𝑅𝑖, the bubble pressure equation and the
bubble radius equation must be solved self-consistently (step 3 in Figure V.6b), as
mentioned earlier. The system is then ready to compute the next timestep. This
process is repeated until the bubble reaches the end of the observation capillary, i.e.
𝑡𝑖 = 𝐿/𝑣𝑚𝑎𝑥 .
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V.3 Fitting Model to Data to Extrapolate Bubble Growth Back to Its Birth
The goal of this Chapter was to develop a model of bubble growth that

could fit the observed bubble growth from about 1–10 𝜇m in radius and extrapolate
backward to the critical radius of nucleation to determine the time of nucleation.
A similar technique was previously demonstrated by Leung et al. using the cell
model of bubble growth [6] to model the growth of CO2 bubbles in supersaturated
polystyrene [13]. They explored the effects of other parameters like viscosity,
interfacial tension, and the relaxation time of the polymer.

Here, the semi-empirical model used to model bubble growth has two fitted
parameters: the nucleation time 𝑡𝑛𝑢𝑐 and the “effective diffusivity” D𝑒 𝑓 𝑓 . As
discussed in the previous Sections, we chose to lump the effects of convection and
other effects not included in the modified Epstein–Plesset model (Section V.2) into
a convection coefficient 𝐶 and fix the diffusivity to a constant value D. Because
both are arbitrary constants, their product is an arbitrary constant. We call their
product the “effective diffusivity” D𝑒 𝑓 𝑓 ≡ 𝐴 × D because although the diffusivity
is unaffected by convection, convection ultimately leads to bubble growth that looks
like an accelerated static diffusion problem.

Fitting Procedure for Nucleation Time
We first fit the nucleation time 𝑡𝑛𝑢𝑐 using a bisection algorithm. We first

guess a range for 𝑡𝑛𝑢𝑐, typically choosing the upper bound 𝑡ℎ𝑖𝑛𝑢𝑐 to be the time at
which the bubble of interest was first observed and the lower bound as some fraction
of that time (e.g., 95%). We then take the average of the upper and lower bounds
𝑡𝑙𝑜𝑛𝑢𝑐 as our guess for 𝑡𝑛𝑢𝑐 and calculate the bubble growth profile predicted by our
modified Epstein–Plesset model (see Figure V.6).

The error between the model prediction for bubble growth and the measured
bubble growth to determine if the guess for 𝑡𝑛𝑢𝑐 should be improved. Because the
effective diffusivity D𝑒 𝑓 𝑓 is not yet fit to the data, the slope of the model prediction
may differ significantly from the slope of the measured bubble growth. Additionally,
we want to know if the guessed nucleation time is too soon or too late. For these
two reasons, we calculate the root mean signed squared fractional error (RMSSFE),
meaning that we compute the square of the fractional error at each measurement of
bubble growth and multiply by the sign of the error before taking the mean,
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𝑅𝑀𝑆𝑆𝐹𝐸 =

{
1
𝑁

𝑁∑︁
𝑖=1
sgn[𝑅𝑝𝑟𝑒𝑑 (𝑡𝑖) − 𝑅𝑚𝑒𝑎𝑠 (𝑡𝑖)]

[
𝑅𝑝𝑟𝑒𝑑 (𝑡𝑖) − 𝑅𝑚𝑒𝑎𝑠 (𝑡𝑖)

𝑅𝑚𝑒𝑎𝑠 (𝑡𝑖)

]2}1/2

(V.5)

where 𝑁 is the number of measurements of bubble size, 𝑅𝑚𝑒𝑎𝑠 (𝑡) is the measured
bubble radius at time 𝑡, 𝑅𝑝𝑟𝑒𝑑 (𝑡) is the bubble radius predicted by the modified
Epstein–Plesset model (Section V.2) at time 𝑡, and 𝑡𝑖 is the time of the 𝑖th mea-
surement of the bubble radius. If the RMSSFE is within the tolerance (usually
0.3%), then the guessed nucleation time is accepted and the calculation proceeds
to fit the effective diffusivity D𝑒 𝑓 𝑓 (see below). If the RMSSFE is not within the
tolerance, the nucleation time 𝑡𝑛𝑢𝑐 is updated. If the RMSSFE is negative, then the
model underestimated the bubble growth, meaning that the nucleation time should
be decreased to give the model more time to grow. The new guess for 𝑡𝑛𝑢𝑐 is
then 𝑡𝑛𝑢𝑐 ← (𝑡𝑙𝑜𝑛𝑢𝑐 + 𝑡𝑛𝑢𝑐)/2 and the upper bound is updated to 𝑡ℎ𝑖𝑛𝑢𝑐 ← 𝑡𝑛𝑢𝑐. If the
RMSSFE is positive, then the model overestimated the bubble growth, meaning that
the nucleation time should be increased to reduce the time that the model grows
the bubble before reaching the measurement times. The new guess for 𝑡𝑛𝑢𝑐 is then
𝑡𝑛𝑢𝑐 ← (𝑡𝑛𝑢𝑐 + 𝑡ℎ𝑖𝑛𝑢𝑐)/2 and the lower bound is updated to 𝑡𝑙𝑜𝑛𝑢𝑐 ← 𝑡𝑛𝑢𝑐.

Fitting Procedure for Effective Diffusivity
Once the nucleation time 𝑡𝑛𝑢𝑐 is optimized, the effective diffusivity D𝑒 𝑓 𝑓 is

optimized. As for 𝑡𝑛𝑢𝑐,D𝑒 𝑓 𝑓 is fit using a bisection algorithm: an upper boundDℎ𝑖
𝑒 𝑓 𝑓

and lower bound D 𝑙𝑜
𝑒 𝑓 𝑓
are selected by the user and a satisfactory fit is searched for

by bisecting the interval based on the direction of the discrepancy of the model from
the measurements. Because D𝑒 𝑓 𝑓 appears to affect the slope of the bubble growth
on a log-log plot predicted by the model, the value is updated by comparing the
slope on a log-log plot of the model to that of the measurements. Specifically, a line
is fit on a log-log plot to the predicted values and another line is fit to the measured
values (like a power-law fits), both at the times of measurement, and the ratio of the
slope of the prediction divided by the slope of the measurement is sufficiently close
to 1 (typically within 3%), the effective diffusivity D𝑒 𝑓 𝑓 is accepted along with the
nucleation time 𝑡𝑛𝑢𝑐 and the fit is complete. If the ratio is outside the tolerance
from 1, the guess for D𝑒 𝑓 𝑓 is improved and the algorithm refits 𝑡𝑛𝑢𝑐 using the new
guess for D𝑒 𝑓 𝑓 . If the ratio is greater than one, the effective diffusivity is too large,
so it is decreased D𝑒 𝑓 𝑓 ← (D 𝑙𝑜

𝑒 𝑓 𝑓
+ D𝑒 𝑓 𝑓 )/2 and the upper bound is updated to

Dℎ𝑖
𝑒 𝑓 𝑓
← D𝑒 𝑓 𝑓 . If the ratio is less than one, the effective diffusivity is too small,
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so it is increased D𝑒 𝑓 𝑓 ← (D𝑒 𝑓 𝑓 + Dℎ𝑖
𝑒 𝑓 𝑓
)/2 and the lower bound is updated to

D 𝑙𝑜
𝑒 𝑓 𝑓
← D𝑒 𝑓 𝑓 .

The resulting nucleation time 𝑡𝑛𝑢𝑐 can be used to estimate the location of
nucleation along the observation capillary 𝑑𝑛𝑢𝑐 and, from that, the pressure at
which the bubble nucleated 𝑝𝑛𝑢𝑐. The location of nucleation 𝑑𝑛𝑢𝑐 is calculated
by multiplying the nucleation time 𝑡𝑛𝑢𝑐 by the centerline flow speed 𝑣𝑚𝑎𝑥 to get
𝑑𝑛𝑢𝑐 = 𝑣𝑚𝑎𝑥𝑡𝑛𝑢𝑐. The pressure of nucleation 𝑝𝑛𝑢𝑐 can then be computed by assuming
a linear decrease in the pressure from the inlet 𝑝𝑖𝑛 to atmospheric pressure 𝑝𝑎𝑡𝑚 at
the outlet, 𝑝𝑛𝑢𝑐 = 𝑝𝑖𝑛 − (𝑝𝑖𝑛 − 𝑝𝑎𝑡𝑚) 𝑑𝑛𝑢𝑐𝐿

. The location and pressure of nucleation
will be more relevant for the discussion of bubble nucleation in Chapter VI.

Epstein–Plesset Model Fits Bubble Growth when Multiplied by Empirical Fac-
tor

Upon completion of the algorithm described above, the fitted values of the
nucleation time 𝑡𝑛𝑢𝑐 and the effective diffusivity D𝑒 𝑓 𝑓 typically yield a surprisingly
accurate fit to the measured bubble radius. The accuracy is surprising given that the
diffusivity, effect of convection, effect of depletion of the inner stream by diffusion of
CO2 into the outer stream, and any other effects not incorporated into the model are
lumped together into a single fitted coefficient D𝑒 𝑓 𝑓 . This coarse-graining is only
possible because many of the factors at play (e.g., viscosity, inertia) are negligible
or become so at times so early as to not affect the model prediction at the relevant
scales and because the effect of convection is purely a quantitative increase in the
concentration gradient in the asymptotic limit. An example fit of the modified
Epstein–Plesset model to the growth of bubble measured in the microfluidic flow-
focusing channel with image processing is shown in Figure V.7. The uncertainty in
the measurements is smaller than the marker size (open circles), yet the predicted
radius 𝑅𝑝𝑟𝑒𝑑 remains well within that margin for each measurement. Note that only
measurements of the bubble for sizes smaller than the inner stream are considered
to reduce the effects of confinement and depletion near the edge of the inner stream.
Thanks to the 60,000 fps frame rate of the high-speed camera, this restriction still
left a sufficient number of points to demonstrate a good fit to the data.

An advantage of incorporating the various material properties into the mod-
ified Epstein–Plesset model, as discussed in Section V.2, is that they, too, are
estimated by the model. We therefore compare their trends with those of the bubble
radius over time as shown in Figure V.7. The predicted bubble radius 𝑅𝑝𝑟𝑒𝑑 begins
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Figure V.7: Plot of the estimates of several bubble and flow properties by the
modified Epstein–Plesset model fit to measured bubble radii (𝑅𝑜𝑏𝑠 [𝜇m], open black
circles, same data as in Figure V.2) as a function of time since nucleation 𝑡 − 𝑡𝑛𝑢𝑐
on a log-log plot. As in Figure V.2, the measured bubble radii grow with a 1/2
power law; the uncertainty in measurement is smaller than the marker size. The
radius predicted by the model 𝑅𝑝𝑟𝑒𝑑 [𝜇m] (blue line) passes within the uncertainty
of each measurement. The moment of nucleation (star with “?”) is estimated
to be 𝑡𝑛𝑢𝑐 due to the goodness of fit, which occurred about 100 𝜇s before the first
observation (marked by vertical dashed yellow line). As in Figure V.2, the interfacial
tension (purple line), bubble pressure 𝑝𝑏𝑢𝑏𝑏𝑙𝑒 (green dashed line), channel pressure
𝑝 (orange line), and density of CO2 in the bubble 𝜌𝐶𝑂2 (red line) are also plotted.

somewhat suppressed by interfacial tension, but quickly accelerates to the asymp-
totic limit of 𝑅𝑝𝑟𝑒𝑑 ∝ (𝑡−𝑡𝑛𝑢𝑐)1/2 (indicated by slope triangle). At longer time scales
(several milliseconds), the pressure in the bubble decreases enough that the growth
accelerates beyond square-root growth, as seen by the uptick in 𝑅𝑝𝑟𝑒𝑑 at the end of
the displayed trajectory. The interfacial tension is initially lower due to the Tolman
correction for the effect of high curvature, then plateaus until slightly increasing as
the density of CO2 in the bubble decreases at longer time scales. The pressure in
the channel decreases linearly, which appears to be slowly-then-quickly on a log-log
plot. The pressure in the bubble follows the pressure in the channel once the bubble
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exceeds 100 nm, but at smaller sizes the effect of interfacial tension is large enough
that the Laplace pressure is a significant fraction of the channel pressure. Finally,
the density of CO2 inside the bubble is at first high (0.2 g/mL) due to the high
pressure in the channel and the added Laplace pressure (2𝜎(𝑝𝑏𝑢𝑏𝑏𝑙𝑒)/𝑅) due to the
small bubble radius 𝑅. It later tracks the pressure inside the bubble 𝑝𝑏𝑢𝑏𝑏𝑙𝑒 since
CO2 is not strongly non-ideal at lower densities.

Based on this model, the bubble would have nucleated at a radius around 3
nm about 100 𝜇s before the first observation of the bubble at about 3 𝜇m (marked by
vertical dashed yellow line). While it is likely that the neglected effects of viscous
resistance and inertia further hindered the earliest, invisible bubble growth relative
to the model prediction, the discrepancy is likely comparable to the time scale at
which the asymptotic behavior, 𝑅 ∝ (𝑡 − 𝑡𝑛𝑢𝑐)1/2 is reached, which is around 100
ns. Such errors are negligible relative to the measurement errors (e.g., the precision
with which I can estimate the time for the bubble to reach the point of observation
from the entrance of the observation capillary).

In this particular example, the effective diffusivity D𝑒 𝑓 𝑓 ≈ 2.75 × 10−9

m2/s. This value is roughly the diffusivity of CO2 in PPG 2700 g/mol at the
saturation pressure for this experiment of 7 MPa (70 bar, 1015 psi). Nevertheless,
the diffusivity near the surface of the bubble, where the pressure is at most 3.3
MPa (33 bar, 480 psi), would be less than 10−9 m2/s, and we would expect that the
concentration gradient would be decreased by the depletion of CO2 into the outer
stream. Such a fit could not be achieved without incorporating this enhancement of
the growth through what we call the effective diffusivity D𝑒 𝑓 𝑓 and attribute largely
to convective effects unless a more sophisticated model were developed. Some
values for the effective diffusivity exceeded 10 times the measured diffusivity for
the saturated solution, suggesting a strong effect of convection, but a correlation
between flow or convective effects and the effective diffusivity has not yet been
found. These values are consistent with predicted enhancement of growth based on
the work of Scriven [2].

V.4 Bubble Nucleation Can Be Estimated Accurately with 𝑅 ∝ (𝑡 − 𝑡𝑛𝑢𝑐)1/2

While we learn a lot about the state of the bubble during its growth from the
modifiedEpstein–Plessetmodel, it is prone to numerical errors near the condensation
pressure of CO2. Even if the pressure is not physically achieved in the bubble, it
may cause sudden changes in density while solving for the pressure self-consistently
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when the pressure is near the condensation pressure. The model is also slow due
to the need to solve for the entire growth profile for each guess of 𝑡𝑛𝑢𝑐 and D𝑒 𝑓 𝑓 ,
requiring hours to process the videos from a day of experiments, which amounts to
a few minutes of real time recorded on high-speed video. Given that the growth
quickly approaches the asymptotic behavior of 𝑅 ∝ (𝑡 − 𝑡𝑛𝑢𝑐)1/2 derived by Scriven
[2], we compared the prediction of the nucleation time by fitting an asymptotic
model 𝑅(𝑡) = 𝑎(𝑡 − 𝑡𝑛𝑢𝑐)1/2 to the bubble growth to the prediction by the modified
Epstein–Plesset model (Figure V.8). The asymptotic square-root model was fit to
the data using the same bisection algorithm as used for fitting the modified Epstein–
Plesset model, but because the bubble growth could be predicted by a function
evaluation instead of a series of numerical timestepping and nonlinear equation-
solving, the model could be fit to a day’s experiments in minutes instead of hours.
While the asymptotic square-root model does not provide other bubble properties
like internal pressure and interfacial tension, it does model the growth as accurately
as the modified Epstein–Plesset model (see Figure V.8a,b). The model fails at
long times when the bubble growth is driven more by the decrease in pressure
in the observation capillary, and the difference between its early predicted growth
and that of the modified Epstein–Plesset model is relatively high. Nevertheless,
the absolute difference between the models at early stages is small, on the order
of microseconds typically. As a result, when converted to the nucleation location
along the observation capillary 𝑑𝑛𝑢𝑐 by multiplying the nucleation time 𝑡𝑛𝑢𝑐 by the
centerline flow speed 𝑣𝑚𝑎𝑥 to get 𝑑𝑛𝑢𝑐 = 𝑣𝑚𝑎𝑥𝑡𝑛𝑢𝑐, the discrepancy in the prediction
of the nucleation time between the models was below 100 𝜇m for a population of
104 bubbles for all but one bubble, for which the discrepancy was about 1.2 mm,
which is not catastrophically different (see Figure V.8c).

Because the asymptotic square-root model is faster and more stable numer-
ically, while still agreeing closely with the predictions of nucleation time of the
modified Epstein–Plesset model, we estimated the nucleation time for large pop-
ulations of bubbles using the asymptotic square-root model fit. In the following
Chapter, we discuss our analysis of the nucleation times and locations estimated
with the bubble growth models presented in this Chapter for a large population of
bubbles. In particular, we focus on the distribution of nucleation events over time and
position along the observation capillary to estimate the nucleation rate at different
degrees of supersaturation and demonstrate that nucleation is homogeneous.
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a) b)

c)

Figure V.8: a) The estimate of bubble growth using the modified Epstein–Plesset
model (E - P, red dashed line) and the asymptotic square-root model (∝ 𝑡1/2, blue
line) are plotted as a function of time 𝑡 since their respective estimates of the
nucleation time 𝑡𝑛𝑢𝑐. The measured radius of a bubble observed in experiment is
plotted as well. The measurements are plotted twice: once in open circles with
the time measured relative to the 𝑡𝑛𝑢𝑐 estimated with the modified Epstein–Plesset
model and once in open triangleswith the timemeasured relative to the 𝑡𝑛𝑢𝑐 estimated
with the asymptotic square-root model. The estimated values of 𝑡𝑛𝑢𝑐 are so similar
that distinguishing the two sets of markers for the measured data is difficult. b)
Same as (a) but zoomed out to show the discrepancy at longer time scales due to
the exclusion of pressure effects in the asymptotic square-root model. The bubble
whose measured radii are plotted was observed in an inner stream of PPG 2700
g/mol and CO2 saturated at 72 bar (7.2 MPa, 1045 psi) ensheathed in 1k5f polyol
(see Table II.1) 83 mm along a 100 mm capillary with inner diameter 300 𝜇m, at
which point the pressure is estimated to be 23 bar (2.3 MPa, 335 psi). c) Histogram
of the difference in the estimated nucleation location Δ𝑑𝑛𝑢𝑐 [mm] between the two
models for 104 bubbles (see Chapter VI for details on estimating the nucleation
location based on the nucleation time).
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V.5 Recommended Future Work
The bubble growth models presented in this Chapter provide sufficient pre-

cision in estimating the nucleation time of bubbles for us to draw conclusions about
bubble nucleation in Chapter VI. Nevertheless, questions remain as to why the mod-
els we selected succeed and what underlying physics is lumped into the effective
diffusivity. While we expect that the increase in the effective diffusivity relative to
the true diffusivity is caused by convection, as demonstrated by Scriven [2], a study
of how the addition of convection into the model affects bubble growth would be of
interest. Specifically, to our knowledge, the literature lacks a clear comparison of
the role of convection in accelerating bubble growth. As a suggestion, the model
of Barlow and Langlois [3] could be numerically evaluated, as was done for the
Epstein–Plesset model in this Chapter, but the convection term could be scaled
by a dimensionless parameter 𝜖 ∈ [0, 1]. A plot of the predicted bubble growth
for values of 𝜖 in that range would provide useful insight into the extent to which
convection accelerates diffusion. An extension of such a study would also solve
for the concentration profile outside the bubble to test rigorously the idea that the
increased bubble growth due to radial convection can be estimated by the steepening
of the concentration gradient at the bubble surface. By quantitatively estimating
the degree to which convection increases diffusive flux, one could elucidate the role
of the other factors lumped into the effective diffusivity, such as the depletion of
CO2 or axial convection (which can also increase diffusive flux as demonstrated by
the Sherwood number [14]). Another extension of such a study would explore the
possibility of modeling the observed bubble growth with an Epstein–Plesset model
adapted to consider a concentration-dependent diffusivity measured experimentally
(e.g., with G-ADSA, as in Chapter III), but scaled by a convection coefficient 𝐶.
We hypothesize that the growth could be accurately modeled in this way, in which
case the convection coefficient would more accurately represent the role of convec-
tion since it would be separated from the diffusivity. Such a model could also be
extended to model the effect of depletion of CO2 through diffusion into the outer
stream, disentangling that factor from the effect of convection.

A study of the effect of the flow on bubble growth would also be useful in
disentangling the various factors at play. We have so far assumed that the dominant
form of convection is radial because the velocity gradient in the inner stream is
small around small bubbles that nucleate at the center. When bubbles grow larger,
or in the rare case that a bubble nucleates off-center, the bubble may no longer travel
at the same speed as the surrounding fluid and, therefore, may experience non-
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negligible shear convection along the surface of the bubble that might be expected
to affect growth (see the work of Jae-Tack Jeong on the relative speed of a bubble in
Hagen–Poiseuille flow to the surrounding fluid [15]).

Additionally, if an accurate estimate of the role of convection can be achieved,
a survey of how various flow properties and bubble properties affect the role of con-
vection would helpfully illuminate the mystery of why some bubbles have signifi-
cantly higher effective diffusivities than others. While Scriven provides a formula
and plot indicating the effect of different properties of the fluid on the enhancement
of growth by convection, connecting that formula to measurable quantities in the ex-
periments measuring bubble growth would extend the predictive power of Scriven’s
work to allow the experimentalist to estimate the role of convection under different
flow or bubble conditions a priori.

Lastly, a convincing test of our mental model of how flow and bulk diffu-
sion affect bubble growth would be to simulate the growth of an observed bubble
with a computational fluid dynamics (CFD) simulation, such as with COMSOL or
OpenFOAM. Ideally, such a model would incorporate the sheath flow profile, the
radial convection caused by bubble growth, and the depletion of CO2 from the inner
stream through diffusion into the pure-polyol outer stream, as mentioned earlier, but
it would also account for the effect of CO2 concentration on the local viscosity of the
fluid and the subsequent effect of viscosity variations on the flow and concentration
profile in the bulk. Because measurements of the viscosity as a function of dissolved
gas concentration are limited in the literature and challenging to perform due to the
high pressures involved, a simple model based on the Stokes–Einstein–Sutherland
relation that the viscosity 𝜂 ∝ 1/D could estimate viscosity as a function of the
dissolved CO2 concentration 𝑐𝐶𝑂2 using the diffusivity measurements D(𝑐𝐶𝑂2)
provided by G-ADSA (Figure II.4).
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