
147

C h a p t e r IV

Baby Videos: High-speed Optical Microscopy Observes Early
Growth of Bubbles

You can observe a lot just by
watching.

Yogi Berra

The question is not what you look
at, but what you see.

Henry David Thoreau, August 5,
1851

Data analysis was made significantly more streamlined and efficient by
Isaac Swanlund. Much thanks to Larry Vladic and Michael Estela from Elite
Motion Systems, LLC, for assistance in setting up the high-speed camera.

An apparatus is useless without detection. A powerful mode of detection for
humans is visual observation. Our eyes train our whole lives to see patterns: they are
just missing patterns to look at. While X-ray or light scattering would have provided
earlier detection of bubble nuclei, optical microscopy provided a powerful platform
for our intuition. Just by watching, we learned a tremendous amount about this
system. Unfortunately, our brains and eyes are slow: just watching all the recorded
video generated for the present thesis would take weeks, let alone analyzing it. Here,
we briefly describe the image-processing algorithms that watched and analyzed these
videos. From these videos, the algorithms detect, track, and measure each bubble,
and extract the size, speed, position, time, and other important measured properties
into a reduced dataset. This dataset provides the input for fitting the bubble growth
model presented in Chapter V that ultimately predicts the conditions of nucleation
discussed in Chapters VI and VII.



148

IV.1 Image Processing Detects, Tracks, and Measures Bubbles
Amidst the many phenomena occurring in the flow-focusing channel, the

image-processing algorithm detected, tracked, and measured bubbles observed un-
der high-speed microscopy as they flowed down the flow-focusing channel. While it
could not identify bubble nucleation due to the limited resolution of the microscope,
the algorithms could measure the early growth precisely enough to fit a model that
could predict the nucleation (Chapter V). The key components of this algorithm
were background subtraction, image segmentation, and object tracking. These al-
gorithms were primarily based on the OpenCV computer vision library [1]. The
completed CvVidProc algorithm is available on github [2], as is its implementation
for the present work bubbletracking_koe [3].

Background Subtraction
Among the most important steps of successful image processing is the dis-

tinction between objects of interest and background. Images are rich with detail, but
often only a few of those details matters to the analysis. In this case, few frames in
each video contained a bubble, and the bubble occupied a small fraction of the field
of view. A simple technique for distinguishing the objects of interest is to generate
an estimate for the parts of the image that are not interesting (the “background”) and
subtract it from each frame. In more complex measurements, this background may
change over time. Here, we fixed the position of the observation capillary within the
field of view of the microscopy during each recording, so the background remained
static, excepting an instability in the inner stream (see Section VIII.4).

We considered three methods for background subtraction, which are com-
pared in Figure IV.1: selecting a frame without any observable bubbles (usually the
first frame), taking the mean of several frames, and taking the median of several
frames. The median is typically recommended [4], but can be computationally more
expensive due to higher memory requirements without a multithreaded algorithm
like CvVidProc [2]. Indeed, taking the median provided the cleanest image of the
background despite the presence of bubbles in some of the frames (e.g., the first
frame). The median algorithm fails, however, if there are pixels that are obstructed
by objects in more than half of the frames sampled, which could occur in videos
taken near the outlet of the observation capillary where a continuous foam (see
Figure III.3) or fluid instability (see Figure VIII.11) had formed.

Using the median as the background, we subtracted the background from



149
Compute Background Subtract Background

Figure IV.1: Left) Three background-subtraction methods are compared: selecting
the first frame, taking the mean of the pixels in several frames, and taking the
median of the pixels in several frames. Selecting an individual frame can sometimes
include an anomaly or even an object, such as the bubble emerging from the left
in the example shown. The mean is sensitive to objects in the foreground like
bubbles, resulting in the darker pigment of the inner stream. The median provides
the most accurate estimate of the background (circled in blue). Right) A sequence
of three frames with the median-calculated background subtracted. The sign of
the difference is kept and given a false coloring, in which red represents positive
values (brighter than the background), blue represents negative values (darker than
the background), and green represents values near 0. A bubble can be discerned as
a blue spot growing in size from frame to frame.

each image in a high-speed video of the flow-focusing channel. Because bubbles
are always darker than the background due to their strong scattering of light, we
kept track of the sign of the image upon subtracting the background, which is not
commonly implemented in background-subtraction algorithms due to the inconve-
nience and addedmemory of changing from an unsigned to a signed datatype. When
detecting bubbles, we could ignore any positive differences from the background
(brighter regions) and apply image segmentation only to the darker regions. On the
right of Figure IV.1 are three example frames after applying background subtrac-
tion. False-coloring allows for the visualization of positive (red) and negative (blue)
differences from the background. These frames show the first optical detection
of a bubble (frame 5926) followed by its subsequent growth (bubble is blue spot
indicated by white). Due to the partial volume effect resulting from the large pixel
size relative to the initial bubble size, the first signal of the bubble is fainter than
in later frames when the bubble has grown. Nevertheless, the signal from even the
smallest bubble (∼ 1 𝜇m) is easily distinguishable from the noise in the background,
indicating that bubbles could be segmented almost at pixel scale.



150

Image Segmentation
Having removed the background and enhanced the signal from the bubbles,

we perform image segmentation, in which pixels are classified as belonging to
different objects or to the background. Image segmentation provides the basis
for measurement because it reveals the spatial extent of each object. While the
background has been subtracted, it has not yet been identified, so the first step ofmost
image segmentation is the distinction between background and foreground. This
distinction can quickly be made by applying a threshold to the image: pixels with
values (after subtracting) beyond the threshold are classified as objects (foreground)
while the rest are classified as background. The edges of bubbles tend to be fainter
than the core, however. If applying a uniform threshold, a high threshold will
exclude these dimmer edges while a low threshold will risk the inclusion of noise
in the foreground; a useful compromise is not always feasible. Instead, we apply a
hysteresis threshold, whose operation according to the scikit-image package [5]
is depicted schematically in Figure IV.2a. After applying a high uniform threshold, a
hysteresis threshold will apply a lower threshold to pixels contiguously connected to
those pixels that exceeded the high threshold. The result is more accurate detection
of edges with less detection of noise, and the resulting segmented shape more
accurately represents the object (see Figure IV.2b).

In the present work, both a uniform and hysteresis threshold are combined.
The thresholds are determined by performing the analysis at a sequence of threshold
values for a few videos and identifying a value for which the number of true bubbles
detected varies minimally under perturbations to the threshold value.

After separating foreground from background, accurate image segmentation
relies on the application of processing steps that utilize the unique properties of
the objects of interest. For example, because bubbles are generally round, we can
apply erosion and dilation steps to smooth out the edges of objects and arrive at less
noisy segmentations of bubbles. We also fill holes in our segmentation because the
center of some larger bubbles may appear translucent and thus be counted as part
of the background. Because we know that these regions are always surrounded by
pixels classified as foreground, they can be added to the foreground by filling holes.
Finally, because we cannot always distinguish the detection of a bubble the size of a
single pixel and salt-and-pepper noise in the background, we require the foreground
to include only objects larger than a minimum number of pixels (usually 4). Once
segmented, area, dimensions, orientation, centroid, position, and other properties



151

a) b)

Figure IV.2: Schematic of hysteresis thresholding, as implemented by
scikit-image [5]. a) The large array of pixels represents the pixel values following
background subtraction. The values highlighted in orange are those representing
the object (a rectangle), while the values in black text resulted from noise. Using
a uniform threshold of 5 incorrectly segments the object and detects noise (follow
orange arrow up and to the right). Perfect segmentation is achieved by using a
hysteresis threshold, which first applies a high threshold of 7 followed by a threshold
of 3 on pixels contiguously connected to those that passed the high threshold (follow
orange arrow down and to the right). b) Top image shows a background-subtracted
frame containing a small bubble (gray patch in the center). Applying a uniform
threshold that does not pick up any noise poorly segments the object and the shape
is unrecognizable (middle image). Applying a hysteresis threshold yields a better
segmentation (bottom image).

of objects in the foreground can be measured. An example result of this image-
segmentation algorithm and subsequent measurement is shown in Figure IV.3, in
which an especially complex image is parsed into reasonable representations of
bubbles. Further filtering by shape and dimensions can distinguish bubbles (round
edges and less slender) from particles (jagged edges and often more slender).

Object Tracking
To track objects between frames, we adopted the “tracking-by-detection”

paradigm, in which object detection and tracking are separate tasks, with tracking
relying on the features and position of the objects detected (for a deeper discussion of
this paradigm, refer to Chapter 2 of the thesis by Murray [6]). After segmenting the
objects in two consecutive frames, we compared the distances between the positions
of the objects. We used a custom distance metric to take into account that bubbles



152

Figure IV.3: Example of the result of applying the image segmentation algorithm
described in the text. Given a frame from a video recording of a foaming experi-
ment (top image), the image segmentation algorithm identifies which pixels belong
to which object, labels the objects (label drawn at centroid), and computes their ori-
entation and dimensions, among other properties not shown (bottom image). Gray
regions are those that passed the threshold but were excluded from the segmented
object by the segmentation algorithm. Note that non-bubble features like the con-
taminant particle at the lower left of object 1 and the particles surrounding object 0
are removed by the algorithm.

tend to travel at a consistent speed along the flow direction. Distances off the flow
axis were penalized more highly and distance along the flow axis was measured
from the predicted position based on the estimated speed. An object that appeared
upstream of an object in a subsequent frame was considered infinitely far away based
on the assumption that bubbles only travel downstream. Using this distance metric,
we applied the classic Hungarian algorithm to associate objects of the same identity
in consecutive frames [7], as depicted schematically in Figure IV.4.

After evaluating the distance metric 𝑑 between each pair of objects between
the two consecutive frames, the resulting distance matrix is searched for the smallest
value, which is 2 in this example (orange circle). Object 3 in the previous frame is
then identified as the same object as object c in the new frame, and all entries in the
corresponding row and column are removed from the matrix (indicated by orange
lines). The algorithm repeats the process, looking for the smallest distance metric
in the remaining matrix, which is 4 (blue circle). Note that, although the distance



153

Figure IV.4: Schematic depicting the implementation of the Hungarian tracking
algorithm [7] with a custom distance metric. Given a frame in which three objects
have been segmented (1, 2, and 3 in the upper left) with flow from left to right,
and given a second “New Frame” in which three other objects have been segmented
(a, b, and c in the upper center), the distance metric is computed between each
pair of objects between the frames by weighing the on- and off-flow-axis distances
differently (depicted by triangle in lower left), where any bubble that is upstream
of another bubble is treated as infinitely far away. The resulting distances are given
in the matrix 𝑑 (lower center). The algorithm successively identifies the smallest
distance in the matrix, identifies the objects corresponding to its row and column,
and removes that row and column from the matrix. Specifically, it first matches
objects 3 and c (orange circle and omission of row and column crossed out by
orange lines) and then matches objects 1 and b (same but in blue). Objects 2 and a
are not matched because they are treated as infinitely far away, so object 2 is removed
from the list and object a is registered as a new object, object 4. The new labels are
assigned and can be used for tracking in the next pair of consecutive frames (upper
right).

between object 1 and object c is smaller (3, blue dashed circle), because object c
has already been assigned to object 3, this value is omitted from the search. Object
1 in the previous frame is then identified as the same object as object b in the new
frame, and all entries in the corresponding row and column are removed from the
matrix (indicated by blue lines). Because the only remaining distance is infinite
(between object 2 and object a), we declare those two objects as distinct. Object
2 is then removed from our list of objects and object a is added as object 4 for the
next frame. This process repeats until the end of the video is reached. In a more
sophisticated implementation of this algorithm, “memory” can be implemented, in
which case objects are not removed from the list of objects in the previous frame until



154

they have been absent for multiple consecutive frames. In this implementation, the
object’s position is extrapolated from its previous locations. While this strategy may
improve the robustness of tracking some fainter bubbles through inhomogeneities in
the background, it would also incorrectly assign a speck of noise that was registered
in one frame to a true object a few frames later, so it was omitted from the final
analysis.

Measurement of radius [um]

Background Subtraction

Segmentation and

50 µm

?

Figure IV.5: The result of image segmentation and tracking is applied to a bubble
detected in an inner stream of PPG 2700 g/mol saturated with CO2 at 7.0 MPa and
22 ◦C (same conditions as plotted in Figure V.7). Top) Superimposed images of
bubble as it flows and grows along inner stream (outer stream outside field of view).
Middle) Top frame after background subtraction of the median and application of
a hysteresis threshold. Some images of the bubble are removed because they were
too faint to pass the threshold. Bottom) Result of image segmentation highlighted
in red with the estimated radius in 𝜇m listed above each observation of the bubble.
While the first detection of the bubble by the algorithm is at the blue star, the bubble
can be distinguished in earlier frames, but the algorithm can nevertheless not detect
nucleation directly. Recorded with the 10x objective listed in Table III.1.

The result of the background subtraction, image segmentation, and object-
tracking algorithms described above is the measurement of the size, shape, position,
speed, etc. of a bubble over several frames. Given a bubble whose observations are
superimposed in the frame shown in the top of Figure IV.5, background subtraction
and thresholding can highlight the bubbles as shown in the middle panel, and seg-
mentation and tracking identify the bubble (red highlights) and estimate properties
like its radius (recorded in 𝜇m above each observation of the bubble). While false
positives from fluctuations in the inner stream and other sources of noise must be
filtered out based on position, speed, orientation, shape, and growth of the object,
we can then estimate the number of true bubbles observed in an experiment. As
shown in the Figure, even a blurry image can be processed to track a reasonable
bubble size down to a radius of about 2 𝜇m. Given that the human eye can still



155

detect the bubble four frames (corresponding to about 70 𝜇s at 60,000 fps) before
the first detection by the image processing (marked by a blue star in the Figure), the
image processing could be fine-tuned further to capture the bubble at a smaller size.
Nevertheless, image processing will never detect bubble nucleation, which occurs
on the scale of less than 10 nm (see critical bubble volume predicted by the string
method in Figure VI.4).

Instead of fine-tuning the image processing, we used a theoretical model to
“see” smaller. In Chapter V, we discuss how we fit a model of bubble growth to
the bubble radius measured by the image-processing techniques discussed in this
Chapter. By extrapolating its predicted growth dynamics back to the critical radius,
we estimated the point along the observation capillary at which the bubble nucleated.

A Comment on the Importance of Efficient Algorithms
The algorithm to performing the image-processing tasks described in this

Chapter was originally developed in Python for its simplicity. While steps like object
tracking were computationally cheap enough to continue running in Python, the
calculation of the median to estimate the background and the loading and processing
of images was prohibitively slow. Analyzing a single 6 GB video, of which over 100
were collected in a typical experiment, would take several minutes to an hour. The
largest bottleneck was loading an entire image (an array of 104–106 pixel values) into
memory and processing it. Relieving this burden required distributing the image
across multiple threads so each would only need to load a fraction of the full image.
Additionally, because Python is an interpreted programming language, every thing
is compiled at run-time, slowing down computations.

To speed up this algorithm, Isaac Swanlund rewrote the computation of the
background and image segmentation steps as a parallel-computed, multithreaded
algorithm in C++ using optimized image-processing algorithms from the OpenCV
computer vision library [1]. This backend was embedded in a Python frontend so it
can be pip installed as a Python package (CvVidProc [2]; currently only available
for Linux and Mac). By distributing computations among multiple threads (usually
8–12) and performing computations with optimized algorithms in C++, a compiled
language, the analysis time was reduced by a factor of up to 100x. A 6 GB can
now be analyzed in under a minute, and typically in under 5 seconds. The analysis
performed to generate the plots in Chapters VI and VII would have taken at least
hundreds of additional hours without this speed-up.



156

IV.2 Recommendations for Further Improvements
The image-processing pipeline used in the present work, while sufficient,

can be improved by implementing a few additional steps. First, while images are
recorded with 12-bit depth (212 = 4096 pixel brightness values), the image process-
ing was performed on an 8-bit compressed image (28 = 256 pixel brightness values)
for simplicity and efficiency. This compression reduces both the sensitivity and
the contrast in the images, limiting the smallest detectable bubble size and result-
ing in less precise boundaries during segmentation. Data storage and analysis of
12-bit images will be more memory-intensive, however. Second, threshold values
are currently estimated manually by identifying the value for which the number of
true bubbles detected is least sensitive to perturbations in the threshold value. This
algorithm could be automated and made more quantitative to speed up the analysis
and make it more robust. Third, true bubbles are currently distinguished from other
detected features (contaminant particles, fluctuations of the inner stream, bubbles
and particles in the outer stream, etc.) based on a heuristic set of requirements,
including nearness to the center line, growth in size over time, range of velocities
along the flow axis, maximum width, minimum number of frames observed, dis-
appears from view upon reaching downstream side of field of view, and maximum
aspect ratio. A machine-learning algorithm could identify more salient features and
more precise parameter ranges for this classification if someone manually classified
a few hundred objects as bubbles or not. Fourth, given the bubbles tracked with the
current algorithm, the range of bubble growth could be extended by using that infor-
mation to estimate the location of the bubble in frames prior to the first detection.
In just the pixels near these locations, a more sensitive threshold and less erosive
image segmentation could be applied to have a higher sensitivity without picking
up noise. Finally, the object-tracking algorithm currently fails to detect merging
and splitting events of bubbles. More complex algorithms like MHT-X [8] could be
implemented to track objects properly through merging and splitting events, which
would expand our ability to make quantitative measurements of ripening beyond our
currently qualitative estimates (Section VIII.3).

References

1. Bradski, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools for
the Professional Programmer 25, 120–123 (2000).

2. Swanlund, I. CvVidProc: OpenCV Video Processing for Object-tracking:
v1.0.0 2022. https://github.com/UkoeHB/CvVidProc (2022).

https://github.com/UkoeHB/CvVidProc


157

3. Ylitalo, A. S. bubbletracking_koe: v0.0.1 2022. https://github.com/
andylitalo/bubbletracking_koe (2022).

4. Liu, W., Cai, Y., Zhang, M., Li, H. & Gu, H. Scene background estimation
based on temporal median filter with Gaussian filtering in 23rd International
Conference on Pattern Recognition (ICPR) (IEEE, Cancun, Mexico, 2016),
132–136. isbn: 9781509048472.

5. Van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2,
e453. issn: 2167-8359. https://peerj.com/articles/453 (June 2014).

6. Murray, S. Real-Time Multiple Object Tracking A Study on the Importance
of Speed PhD thesis (National Institute of Informatics, 2017). arXiv: 1709.
03572. https://arxiv.org/pdf/1709.03572.pdf.

7. Kuhn, H. W. The Hungarian method for the assignment problem. Naval Re-
search Logistics Quarterly 2, 83–97. issn: 00281441.https://onlinelibrary.
wiley.com/doi/10.1002/nav.3800020109 (Mar. 1955).

8. Zvejnieks, P. et al.MHT-X: offlinemultiple hypothesis tracking with algorithm
X. Experiments in Fluids 63, 1–18. issn: 14321114. arXiv: 2101.05202.
https://doi.org/10.1007/s00348-022-03399-5 (2022).

https://github.com/andylitalo/bubbletracking_koe
https://github.com/andylitalo/bubbletracking_koe
https://peerj.com/articles/453
https://arxiv.org/abs/1709.03572
https://arxiv.org/abs/1709.03572
https://arxiv.org/pdf/1709.03572.pdf
https://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109
https://arxiv.org/abs/2101.05202
https://doi.org/10.1007/s00348-022-03399-5

