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ABSTRACT

Despite decades of research, the accurate and efficient modeling of turbulent flows
remains a challenge. However, one promising avenue of research has been the resol-
vent analysis framework pioneered by McKeon and Sharma (2010) which interprets
the nonlinearity of the Navier-Stokes equations (NSE) as an intrinsic forcing to the
linear dynamics. This thesis contributes to the advancement of both the linear and
nonlinear aspects of resolvent analysis (RA) based modeling of wall bounded turbu-
lent flows. On the linear front, we suggest an alternative definition of the resolvent
basis based on the calculus of variations. The proposed formulation circumvents the
reliance on the inversion of the linear operator and is inherently compatible with any
arbitrary choice of norm. This definition, which defines resolvent modes as station-
ary points of an operator norm, allows for more tractable analytical manipulation
and leads to a straightforward approach to approximate the resolvent (response)
modes of complex flows as expansions in any arbitrary basis. The proposed method
avoids matrix inversions and requires only the spectral decomposition of a matrix
of significantly reduced size as compared to the original system, thus having the po-
tential to open up RA to the investigation of larger domains and more complex flow
configurations. These analytical and numerical advantages are illustrated through
a series of examples in one and two dimensions. The nonlinear aspects of RA are
addressed in the context of Taylor vortex flow. Highly truncated and fully nonlinear
solutions are computed by treating the nonlinearity not as an inherent part of the
governing equations but rather as a triadic constraint which must be satisfied by the
model solution. Our results show that as the Reynolds number increases, the flow
undergoes a fundamental transition from a classical weakly nonlinear regime, where
the forcing cascade is strictly down scale, to a fully nonlinear regime characterized
by the emergence of an inverse (up scale) forcing cascade. It is shown analytically
that this is a direct consequence of the structure of the quadratic nonlinearity of the
NSE formulated in Fourier space. Finally, we suggest an algorithm based on the
energy conserving nature of the nonlinearity of the NSE to reconstruct the phase
information, and thus higher order statistics, from knowledge of solely the velocity
spectrum. We demonstrate the potential of the proposed algorithm through a series
of examples and discuss the challenges and potential applications to the study and
simulation of turbulent flows.
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:,20=24;,\
, derived in §4.3 are plotted in dashed

and dotted black lines. Top row : = 1 − 3, middle row : = 4 − 6,
bottom row: : = 7 − 9. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Projections of the velocity due to individual triadic interactions onto
the full Fourier mode, Γ:1,:2,:3 , at ' = 100. Top row : = 1 − 2,
bottom row: : = 3 − 4. . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Projections of the velocity due to individual triadic interactions onto
the full Fourier mode, Γ:1,:2,:3 , at ' = 400. Top row : = 1 − 3,
middle row : = 4 − 6, bottom row: : = 7 − 9. . . . . . . . . . . . . 77

4.9 Projections of the velocity due to individual triadic interactions onto
the full Fourier mode summed over common wavenumbers. ' = 100
in red, ' = 200 in blue squares, and ' = 400 in black circles. Top
row : = 1 − 3, middle row : = 4 − 6, bottom row: : = 7 − 9. . . . . 77

4.10 Norm of the Fourier modes computed from DNS at ' = 100, 200,
400, 650, 1000, 2000. Dashed black line is ∼ :−1. Inset shows
exponent of best fit power law as in (4.50). Power law fit performed
over the range 1 < : < 5 for ' = 100 and 1 < : < 10 for all ' > 100. 82

4.11 Expansion coefficients of the velocity f:, 9 j:, 9 (blue circles) and
nonlinear forcing j:, 9 (green squares), and singular values f:, 9 (red
triangles) for ' = 400. Expansion coefficients are normalized by
their maximum value at a given wavenumber and plotted against the
left y-axis. Singular values are plotted against the right y-axis. Top
row : = 1 − 3, middle row : = 4 − 6, bottom row: : = 7 − 9. . . . . 84

5.1 Axial wave numbers which maximize the singular value separation
of the resolvent operator at a given Reynolds number. . . . . . . . . . 92



xiii

5.2 Mean velocity profile computed from self sustaining model (color)
and DNS (black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 General outline of the phase reconstruction algorithm starting from
the user defined reference phase for mode k = [1, 1] to the phase of
any arbitrary wavenumber k = [<, =]. Note that at each step, there
is only a single unknown phase. . . . . . . . . . . . . . . . . . . . . 105

6.2 The four general steps in the proposed algorithm. a) From the ref-
erence mode [1, 1] (solid red) Fourier symmetries give ±[1,−1]
(dashed red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Phase shifts from reference mode for :G = 0 (black), :G = 1 (blue),
and :G = 2 (red). Algorithmic prediction (circles) and reference
phase shifts computed from data (triangles). Solutions EQ3 - EQ6
(a) - (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Phase shifts from reference mode for turbulent channel flow at '4g =
550 for 2/*0 = 0.1. Algorithmic prediction (circles) and reference
phase shifts computed from data (triangles). :G = 0, 1, 2, 3 (a) - (d). . 112

6.5 Phase shifts from reference mode for turbulent channel flow at '4g =
550 for 2/*0 = 0.5. Algorithmic prediction (circles) and reference
phase shifts computed from data (triangles). :G = 0, 1, 2, 3 (a) - (d). . 112

A.1 Absolute value of the Orr-Sommerfeld eigenfunctions E 9 ( 9 = 1...8)
for :G = 0, :I = 6, and l = 0.1. . . . . . . . . . . . . . . . . . . . . 119

A.2 Select elements of input resolvent basis: @(H, I) = ψ:G ,:I ,l, 9 (H)48:I I

for :G = 0.5, l = 0.375, 9 = 1 and !I:I/2c = 1 (a,e), 2 (b,f), 3 (c,g),
and 4 (d,h). Top row: E, bottom row: [. . . . . . . . . . . . . . . . . 121

A.3 Select elements of input resolvent basis: @(G, H) = ψ:G ,:I ,l, 9 (H)48:GG

for [:I, l] = [44.0, 0.65*∞/:G] (a) and [:I, l] = [11.0, 0.8*∞/:G]
(b). In both cases !G:G/2c = 3 (top panel) and 12 (lower panel), and
in all cases 9 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



xiv

LIST OF TABLES

Number Page
3.1 Global parameters (:I, l), spatial discretization of the full system

(#G , #H), modeling parameters of theVRAmodel (#:G , #2, #(+� , 2<8=, 2<0G),
and model reduction from full system to VRA model. . . . . . . . . . 41

3.2 Wall time and memory requirements for the LU/Arnoldi-based SVD
and the VRA model with the parameters in Table 3.1. The construc-
tion of linear operator L2� is required for both methods and is thus
not included in this comparison. . . . . . . . . . . . . . . . . . . . . 41

4.1 Numerical details of DNS . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Reynolds numbers, fundamental wavenumber VI, truncation values,

degrees of freedom: # , final residuals: 6∗, and error metrics defined
by (4.30), (4.33), and (4.35) for the three model solutions presented. . 65

4.3 Percentage reduction in convergence time using model TVF solution
as initial condition compared to random perturbation as a function
of Reynolds number. All cases use the ' = 400 model result as an
initial condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



1

C h a p t e r 1

INTRODUCTION

1.1 Motivation
From the design of airplanes and spacecraft, to the study of natural phenomena
ranging from the earth’s oceans and atmosphere to the blood flowing through our
veins, the physics of fluids is a crucial part of many fields of science and engineering.
We make no attempt to summarize the vast history and scope of the field here, but
at its heart are the Navier-Stokes equations (NSE) which enforce the conservation
of momentum in a fluid. In multi-physics applications, the NSE may be augmented
by other equations, however this thesis is restricted to incompressible and purely
hydrodynamic flows. In such cases, the NSE are parameterized by a single nondi-
mensional number, the Reynolds number, which quantifies the ratio of inertial to
viscous forces. The Reynolds number can generally be interpreted as a measure of
overall flow rate or speed of the flow. For low Reynolds numbers, the flow is in an
ordered and steady state known as laminar flow. If the Reynolds number is increased
beyond a critical value, the flow begins to transition to turbulence (Reynolds, 1883).

Despite decades of research, turbulence remains a challenging problem from both a
scientific and engineering point of view. The vast range of spatial and temporal scales
make direct simulation of the governing equations impossible for most practical
applications. State of the art direct numerical simulations (DNS) generally remain
restricted to canonical flows at Reynolds numbers orders of magnitude below those
of most engineering applications (Hoyas and Jiménez, 2006). Despite the advent
of super-computing, this will likely remain to be the case for the foreseeable future
(Pope, 2000; Smits et al., 2011). However, despite its inherently chaotic and high-
dimensional nature, it is known that turbulence exhibits a considerable amount of
structure in both space and time. The state-space of turbulence seems to preferably
visit solutions which exhibit a high degree of spatial and/or temporal coherence,
known as coherent structures (Kline et al., 1967; Jiménez, 2018). These coherent
structures are known to play important roles in the dynamics of wall-bounded flows
(Marusic et al., 2010). Therefore it is often the case that the investigation of a
turbulent flow proceeds in two steps. First expensive simulations or experiments
are carried out which generate large amounts of data. Second, from the data,
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which in its raw form is generally hard to interpret or even visualize, the coherent
structures are then extracted using modal analysis techniques such as dynamic mode
decomposition (DMD) or proper orthogonal decomposition (POD) (Taira et al.,
2017). In other words, the current paradigm of physics discovery is in many ways
incredibly inefficient, requiring expensive computations only for most of the data to
be thrown out.

These computational challengesmotivate the need for reduced ordermodels (ROM’s)
which allow for the prediction of the dominant coherent structures without direct
simulation of the full equations. Such models can generally be grouped into two
categories, “data-driven models” and “equations-driven models”. The former ex-
ploit the increasing availability of data from simulations and experiments that have
already been performed to find patterns without relying on knowledge of the gov-
erning equations (Brenner et al., 2019; Kochkov et al., 2021). The latter, the focus
of this thesis, aims to predict the dominant physics by deriving or computing one
of the following: approximate solutions to the exact equations, exact solutions to
approximate equations, or, as is mostly the case, approximate solutions to approxi-
mate equations. The term “equations-driven” encompasses a vast range of models
from still relatively costly numerical approaches, such as large eddy simulation or
generalized-quasi-linear simulations, to cheap numerical models such a linear sta-
bility theory, and finally to analytical methods such as weakly-nonlinear theory and
asymptotic analysis (Pope, 2000; Schmid and Henningson, 2001; Drazin and Reid,
2004; Marston et al., 2016). This thesis is concerned with highly truncated models.
All the results presented herein are either analytical models derived by direct (by
hand) manipulation of the governing equations or are able to be cheaply computed
on a personal laptop.

In fluid mechanics, the primary mathematical difficulty is the nonlinearity of the
governing equations, and thus this subset of of equations-driven ROM’s can gener-
ally be further categorized into linear (modal) and nonlinear analysis. The former
is concerned with the dynamics linearized about a reference state such as a laminar
or a turbulent mean solution. Since the linearized equations are independent of the
magnitude of the solution, in their most basic form, linear methods are restricted
to qualitative predictions. Nonlinear models on the other hand have, in theory, the
capability to provide quantitative predictions. However, the inclusion of the non-
linearity generally leads to a significant increase in complexity which often restricts
the practical applications of these approaches.
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The aim of this thesis is to extend the capabilities of both linear and nonlinear
equations-driven models through the implementation of variational calculus and
optimization-based techniques. These extensions contribute to the scientific com-
munity in two ways. First, by improving the efficiency of numerical ROM’s, we aim
to increase the scope of problems that may be tackled on a personal computer. Sec-
ond, by deriving analytical models, we allow for interpretable insights into nonlinear
mechanisms underlying the sustenance of turbulence.

1.2 Linear (Modal) Analysis
Due to the difficulty introduced by the nonlinearity, it is common to consider only
the linearized form of the governing equations. These are generally derived by
performing an asymptotic expansion about some known reference state and consid-
ering only the leading order terms (Schmid and Henningson, 2001; Drazin and Reid,
2004). Such methods generally revolve around a matrix decomposition of the lin-
earized differential operator, which results in a set of what are generally referred to as
“modes.” These modes may in some cases give insight into physical mechanisms in
the flow, or may be used as a basis to efficiently represent the solution in conjunction
with some other model or calculation. The most basic matrix decomposition is the
spectral- or eigen-decomposition. However, many systems in mathematical physics,
including the NSE, are non-normal, meaning their eigenvectors are not orthogonal,
and in many cases can be nearly parallel. This obscures the physical interpretation
of the structures represented by the different eigenmodes and from a practical point
of view leads to an ill-conditioned problem susceptible to numerical errors. The
singular value decomposition (SVD) circumvents this issue of non-normality and
therefore forms the basis of most modern matrix decomposition techniques (Taira
et al., 2017).

Linear Stability Theory
In many scientific and engineering applications it is crucial to determine whether a
certain solution or configuration is robust (or not) to small perturbations. Therefore,
the most widely used avenue of linear analysis is linear stability theory (LST) which
determines the stability of the reference state to an infinitesimal perturbation. In
LST, one makes the assumption that the solutions to the linearized equations obey
an exponential time dependence. This results in an eigenvalue problem for the
eigenvalues and eigenvectors of the spatial differential linear operator. If the real
part of all eigenvalues is negative, the solution will exhibit exponential decay back
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to the reference state for long times, while, if at least one eigenvalue has positive
real part, the solution is unstable. In the context of fluid mechanics, one application
of such an analysis is the estimation of under what conditions a flow will transition
to turbulence. However, some flows transition to turbulence at Reynolds numbers
far below those predicted by LST. In these cases the LST prediction fails since
stable eigenvalues only signify long time exponential decay, and cannot account
for transient growth due to the non-normality of the eigenvectors. This linear
transient growth can trigger nonlinear dynamics which lead to transition (Schmid
and Henningson, 2001; Drazin and Reid, 2004; Barkley, 2016).

Linear methods have also been used to investigate the stability of time averaged
turbulent mean flow profiles. However, since the mean flow is not itself a solution,
the physical interpretation of such analyses is not universally agreed upon. This
concept was introduced by Barkley (2006) who observed that in the case of cylinder
flow the turbulent mean flow was approximately neutrally stable. This property,
formally coined “real zero imaginary frequency” (RZIF) by Turton et al. (2015),
due to the resulting eigenvalues being purely imaginary, has since been observed in
a variety of flow configurations (Bengana and Tuckerman, 2019, 2021). The RZIF
property has been used to derive iterative algorithms to self-consistently predict the
mean velocity profile in a variety of settings including cylinder flow, thermosolutal
convection, and channel flow (Mantič-Lugo et al., 2014, 2015; Beaume et al., 2015;
Rosenberg and McKeon, 2019a; Bengana and Tuckerman, 2021). In Chapter 5 of
this thesis we extend this approach to a polar coordinate system through the analysis
of Taylor Couette flow, the flow between two cylinders.

Resolvent Analysis
Resolvent analysis (RA) considers the forced response of non-normal dynamical
systems. This concept was introduced by Trefethen et al. (1993) and Jovanović
and Bamieh (2005) who considered the stability and amplification of linearly stable
flows to external forcing. Central to RA is the SVD of the resolvent operator, the
inverse of the linearized dynamics. The SVD circumvents the non-normality of
the operator and provides an orthogonal basis for both the forcing and response.
These ideas were later applied to turbulent flows by McKeon and Sharma (2010)
who interpreted the nonlinear term in the Navier-Stokes equations as a forcing to
the linearized system.

The conceptual framework that has historically been the core of resolvent analysis
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Figure 1.1: Feedback control interpretation of resolvent analysis.

is inspired by control theory (CT). The resolvent operator is interpreted as a transfer
function from the forcing to the response. The (velocity) response then feeds back
onto the forcing through the nonlinearity of the NSE in a process reminiscent of
a feedback control loop, as illustrated in Figure 1.1. The singular values of the
resolvent operator represent the linear gain from the input of each resolvent forcing
mode to the corresponding response mode. This CT-inspired framework has proven
theoretically useful since it is conceptually straightforward and benefits from years
of established mathematical machinery. However, from a practical point of view, the
reliance on the inversion of the linear operator poses some difficulties. It obscures
the analytical tractability of the equations and is computationally costly for all but
the simplest systems. Chapter 3 presents an alternative framework based on the cal-
culus of variations which bypasses this inversion. Early on, RA was largely applied
to the study of canonical shear flows with only a single non-homogeneous spatial
dimension for which the computational cost of the inversion and SVD of the operator
is trivial (Jovanović and Bamieh, 2005; McKeon and Sharma, 2010; Hwang and
Cossu, 2010; Moarref et al., 2013; Sharma et al., 2017). In these cases, linearly am-
plified length scales identified by RA were found to correlate with the energetically
active scales observed in experiments and simulations, and the corresponding re-
solvent modes capture the qualitative features of the coherent structures observed in
wall turbulence (McKeon, 2017). In particular, resolvent modes have been found to
exhibit self-similar behavior characteristic of the attached eddy hypothesis proposed
by Townsend (Townsend, 1951; Moarref et al., 2013; McKeon, 2019). Towne et al.
(2018) have elaborated on the assumptions under which resolvent response modes
correlate with spectral proper orthogonal decomposition (SPOD) modes computed
from data, illustrating that RA can predict coherent structure in the full flow field.
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More recently, RA has also been extended to 2D flows such as boundary layers
(Sipp and Marquet, 2013; Rigas et al., 2021), the flow behind bluff bodies (Symon
et al., 2018, 2020), exact coherent states (ECS) (Rosenberg and McKeon, 2019b),
and turbulent jets (Schmidt et al., 2018; Pickering et al., 2021). In particular, modal
analysis techniques including RA have been used by a variety of authors to imple-
ment flow control strategies, for example, to suppress vortex shedding (Gómez and
Blackburn, 2017) and delay flow separation (Yeh and Taira, 2019). For these 2D
flows, the computational cost and memory requirements becomes considerable and
thus the further extension to 3D flows has generally remained limited.

Over the years, these computational challenges have inspired innovative alternative
methods of estimating resolvent modes. One area of research has been in so
called “matrix-free” methods such as the work of Martini et al. (2021) who use
the transient and steady state responses of the periodically forced linearized system
and its corresponding adjoint system to estimate the action of the resolvent operator.
Another avenue of investigation inspired by the field of data analysis has been in
“equation-free” methods such as Herrmann et al. (2021) who use dynamic mode
decomposition (DMD) modes to estimate the linear dynamics of a system from a
time series of data. Others have made use of iterative Arnoldi Algorithms that
replace the cost of calculating the SVD and a matrix inverse with the cost of an LU
decomposition and a small amount of matrix multiplications (Sipp and Marquet,
2013; Schmidt et al., 2018). Furthermore, algorithms such as randomized SVD and
others have made it possible to efficiently and accurately compute singular modes
of data sets that would otherwise be prohibitively expensive (Halko et al., 2011;
Moarref et al., 2013; Tropp et al., 2019; Ribeiro et al., 2020).

Resolvent analysis has historically been successful in exploiting the linear dynam-
ics to identify structures in turbulence (McKeon and Sharma, 2010). However,
turbulence is by nature a nonlinear phenomenon, therefore recently attempts have
been made to explicitly characterize and quantify the influence of nonlinear dy-
namics within the resolvent framework. For example, Moarref et al. (2014a) and
McMullen et al. (2020) used convex optimization to compute reduced order rep-
resentations of turbulent statistics and Rigas et al. (2021) studied solutions of the
Harmonic-Balanced Navier-Stokes equations to identify optimal nonlinear mecha-
nisms leading to boundary layer transition. Additionally, Morra et al. (2021) and
Nogueira et al. (2021) have directly computed the nonlinear forcing statistics for
minimal channel and Couette flow, respectively, and analyzed the efficacy of low
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rank resolvent reconstructions in capturing the relevant dynamics. In this thesis we
address both the linear and nonlinear aspects of resolvent analysis.

1.3 Nonlinear Reduced Order Models
While linear models have proven useful in gaining understanding of a variety of
physical mechanism in range of canonical and engineering flows, turbulence is a
fundamentally nonlinear phenomena and a wide range of physics remains hidden to
purely linear models. In particular, since the linearized equations are independent
of the magnitude of the state of the system, this approach can not lead to quantitative
predictions of the velocity field. In addition to the inherent nonlinearity, another
defining characteristic of turbulence is thewide range of relevant spatial and temporal
scales. The interaction, and associated energy transfer, between these various scales
is the key to the sustenance of the turbulence. When direct simulation of the full
equations is not possible, nonlinear reduced order models can provide qualitative
and quantitative insight into these scale interactions and provide simplified models
of highly complex physics which may be obscured, or difficult to extract from high
fidelity data.

Over the decades, a wide range of nonlinear modeling strategies have been proposed,
here we focus on two particular models, ‘weakly nonlinear (WNL) theory’ and
‘quasilinear (QL) theory’which aremost relevant to this thesis. Both of thesemodels
proceed by limiting the spatio-temporal scales which are permitted to interact,
however they approach this truncation from opposite directions. WNL theory
starts with the results of linear models and systematically introduces nonlinearity
through an asymptotic expansion. QL theory, on the other hand, begins with the
fully nonlinear equations and neglects certain nonlinear interactions to simplify the
equations.

Weakly Nonlinear Theory

Weakly nonlinear theory is concerned with flows at conditions near the bifurcation
from the laminar state. The foundation is the assumption that spatial structure of the
flow in this supercritical regime is given by the unstable eigenmode of the governing
equations linearized about the laminar base flow (Barkley, 2006;Gallaire et al., 2016;
Ducimetière et al., 2021). The amplitude of this structure, as well as the Reynolds
stress driven correction to the base flow, is derived through an asymptotic expansion
which sequentially reintroduces the nonlinear interactions under the assumption that



8

the velocity field at a given length scale is affected only by scales of equal or larger
size. The benefits of WNL theory are that it is a primarily analytical theory which
allows for simple and interpretable models and since the nonlinearity is reintroduced
on a scale-by-scale basis, the fidelity and complexity of the model can be increased
in a systematic fashion.

Weakly nonlinear theory is an expansion about the critical Reynolds number, and
is therefore only formally valid at Reynolds numbers near that critical Reynolds
number. In practice however, some results of WNL theory have been shown to
remain accurate at Reynolds numbers significantly above the bifurcation from the
laminar state (Stuart, 1960; Yahata, 1977; Jones, 1981; Gallaire et al., 2016). WNL
theory fails however if the flow under investigation exhibits subcritical transition,
since in such cases the critical Reynolds number predicted byLST is either inaccurate
or non-existent, as for example in pipe flow which is linearly stable for arbitrary
Reynolds numbers (Schmid and Henningson, 2001; Drazin and Reid, 2004; Barkley,
2016).

Quasilinear Approximation

Quasilinear (QL) and generalized quasilinear (GQL) theory are simplified models
of the Navier-Stokes equations which neglect the direct effect of the nonlinear
interaction between small scales on the evolution of those small scales. The flow
is decomposed into large scales, defined as the Fourier modes corresponding to
the # largest streamwise wavelengths, and small scales, all the remaining Fourier
modes. QL refers to the limit of # = 1, and GQL is the general case of # > 1,
such that a GQL solution becomes an exact representation of the equations in the
limit as # approaches the spectral resolution. The interaction between the small
scales is neglected from the equations governing the evolution of those same small
scales, while the equation governing the large scales remains unaltered (Marston
et al., 2016; Hernández and Hwang, 2020; Hernández et al., 2021). This results in a
system where the equations governing the large scales is fully nonlinear, while the
equation for the small scales is linear, although still coupled to the large scales.

This approach is closely related to what is been called a reduced-nonlinear (RNL)
model which replaces the neglected term in the QL equations with stochastic forc-
ing (Farrell and Ioannou, 2012; Thomas et al., 2014; Farrell et al., 2016) and the 2
dimensional, 3 component (2D/3C) model which further considers only the stream-
wise constant component (Gayme et al., 2010). All of these approaches have been
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shown to result in flow features similar to those observed in true turbulence. In
particular GQL approaches have shown that only a small amount of streamwise
varying modes lead to very accurate solutions and reproduce the scaling behaviour
observed in the exact equations (Marston et al., 2016; Hernández et al., 2021).

1.4 Thesis Outline
In Chapter 2, we derive the basic mathematical foundations of the resolvent frame-
work. Chapter 3 presents an alternative formulation of resolvent analysis based on
the calculus of variations. This variational definition allows for improved analytical
tractability of the equations, and is used to derive a method to efficiently compute the
resolvent modes of 2D/3C systems for which the direct singular value decomposition
of the resolvent is computationally expensive. Chapters 4-6 explore the nonlinear
aspects of resolvent modeling. In Chapter 4, we use an optimization-based approach
to compute accurate models of Taylor vortex flow, a time invariant exact solution
of the NSE. This approach leads to a highly truncated, yet fully nonlinear solution
through which we investigate the nature of the nonlinear energy cascade. We iden-
tify the emergence of an inverse forcing cascade which sets the limits of the domain
of validity of weakly nonlinear analysis. Chapter 5 extends the self-consistent mean
flow technique introduced by Mantič-Lugo et al. (2014) and Beaume et al. (2015)
to the cylindrical geometry of Taylor vortex flow. Finally, in Chapter 6 we suggest
an algorithm based on the energy conservation of the NSE for the reconstruction
of phase information from the spatio-temporal energy spectrum of turbulent flows.
We conclude in Chapter 7 with a discussion of the significance of our results and
the avenues for future research.
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C h a p t e r 2

RESOLVENT FRAMEWORK

2.1 Background
The resolvent formulation of the NSE introduced by McKeon and Sharma (2010)
offers a natural bridge from (forced) linear to explicitly nonlinear analysis. The
nonlinearity is replaced with a forcing term, but the nonlinear coupling between
the forcing and velocity is formally retained. Here we present the derivation of the
resolvent formulation based on the formalism described by McKeon (2017).

2.2 Mathematical Formulation: Linear Analysis
The majority of this thesis will be focused on wall-bounded shear flows, however,
let us first consider a general forced linear system

mu
mC
− Au = f (2.1)

where A represents a spatial-linear differential operator and u(x, C), f (x, C) ∈ C∞.
The state variablesu and f are referred to as the ‘response’ and ‘forcing,’ respectively.
We consider the temporal Fourier transform of (2.1) and define the spatio-temporal
linear operator

L (l) ≡ 8lI − A (2.2)

as well as the resolvent operator

H (l) ≡ L (l)−1 (2.3)

which is classically interpreted as a transfer function from the forcing to the response.

û = Hf̂ (2.4)

For readability, we have dropped explicit reference to the dependence on l. An
SVD of the resolvent

H =

∞∑
9=1
ψ 9f9φ

�
9 (2.5)

results in a pair of distinct sets of basis functions for the response (ψ 9 ) and forcing
(φ 9 ) and are referred to as the resolvent ‘response modes’ and ‘forcing modes,’
respectively. These are ordered by their gains f9 that are ordered in descending
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order, representing the 9 th largest linear gain possible. The optimal forcing mode,
φ1, represents “the most dangerous” input, in that it leads to a response with the
highest possible linear gain, f1. The corresponding optimal response modeψ1 then
represents the linearly most amplified structure.

The benefit of such a decomposition is that in many applications of interest the re-
solvent operator is very low rank, meaning that the first few singular values are much
greater than the rest. This allows for highly truncated “low rank” representations of
the resolvent which can lead to drastic model reduction (McKeon, 2017). Here and
throughout this thesis superscript � denotes the Hermitian adjoint, or for discrete
matrices the conjugate transpose. By the definition of the SVD, both the response
and forcing modes are orthogonal with respect to the relevant inner products.

〈ψ8,ψ 9 〉D = 〈φ8,φ 9 〉 5 = X8 9 (2.6)

We will see in the following chapters that the inner products 〈〉D and 〈〉 5 depend
on the system under investigation, are generally distinct, and in any numerical
implementation may generally be defined by the user. Finally, we note that if the
operator H is normal, then the SVD is equivalent to a spectral decomposition, and
the response and forcing modes will be equal to each other and (up to a complex
phase) the eigenvectors of H.

2.3 Mathematical Formulation: Nonlinear Analysis
Resolvent analysis is relevant to any type of forced linear system, however our focus
is on the NSE for which the forcing f is a quadratic nonlinear function of the state u
which represents the fluctuation about some known base state.

mu
mC
− Au = f ≡ N (u, u) (2.7)

The wall-bounded shear flows considered here are statistically stationary and homo-
geneous in at least one spatial dimension, x, motivating the spatio-temporal Fourier
transform of the state

ûk(y) ≡
∫ ∞

−∞
u(x, y, C)4−8(kx·x−lC)dx3C (2.8)

as well as the forcing

f̂k(y) ≡
∫ ∞

−∞
f (x, y, C)4−8(kx·x−lC)dx3C (2.9)

where k ≡ [kx, l]. The spatial variable y represents the non-homogeneous spatial
dimension(s), which includes, but it not necessarily limited to, the wall normal
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direction. The explicit Fourier transform of the nonlinear term allows us to write
the NSE as a linear system

ûk = Hkf̂k (2.10)

coupled to the nonlinear definition of the forcing

f̂k =

∫
k0+k1=k

N̂
(
ûk0 , ûk1

)
dk0dk1 . (2.11)

Here the resolvent operator Hk is defined at each wave number k as the inverse of
the linear dynamics as in (2.3) and N̂ (·, ·) is the Fourier transformed nonlinear term
in (2.7). The restriction of the convolution integral over the wave number vectors
k0 + k1 = k is a result of the quadratic nature of the nonlinearity and is referred to
as the “triadic compatibility” constraint. Physically this implies that the solution
at a particular spatio-temporal scale (wave number vector) is forced through the
nonlinear interactions of a highly restricted subset of scales. As we will see in
Chapter 4, the subset of permissible triadic interactions will be limited even further
if the solution exhibits any discrete spatio-temporal symmetries such as for example
a characteristic wavenumber or frequency. The SVD of the resolvent operator (2.5)
provides a basis for the Fourier modes of the state as well as the forcing

ûk(y) =
∞∑
9=1
fk, 9 jk, 9ψk, 9 (y) (2.12)

f̂k(y) =
∞∑
9=1

jk, 9φk, 9 (y) (2.13)

where ψk, 9 , φk, 9 , and fk, 9 are the singular vectors and singular values of Hk. The
unknown jk, 9 are the projections of the forcing modes φk, 9 onto the full forcing f̂k.

jk, 9 ≡ 〈φk, 9 , f̂k〉 5 (2.14)

Plugging the resolvent mode expansions (2.12) and (2.13) into the definition of the
nonlinear forcing (2.11) results in
∞∑
9=1

jk, 9φk, 9 =
∑

k0+k1=k

∞∑
90=1

∞∑
91=1

jk0 , 90 jk1 , 91fk0 , 90fk1 , 91N̂
(
ψk0 , 90 ,ψk1 , 91

)
(2.15)

where we have replaced the integral over the wave numbers with a summation, since
in all practical applications the relevant wave numbers will be discrete. Projecting
both sides of (2.15) onto each of the orthonormal forcing modes φk, 9 results in

jk, 9 = jk0 , 90 jk1 , 91#k,k0 ,k1 , 9 , 90 , 91 (2.16)
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where we have dropped the summations for clarity such that the summation over
k0, k1, 90, 91 is implied. The #k,k0 ,k1 , 9 , 90 , 91 are known as the ‘interaction coeffi-
cients’ (Moarref et al., 2014b) and are defined as

#k,k0 ,k1 , 9 , 90 , 91 ≡ fk0 , 90fk1 , 91 〈φk, 9 , N̂
(
ψk0 , 90 ,ψk1 , 91

)
〉 5 Xk0+k1 ,k (2.17)

where the Xk0+k1 ,k enforces the triadic compatibility constraint. Note that these
interaction coefficients depend only on the linear resolvent operator (Sharma et al.,
2017). Equation (2.16) constitutes an infinite set of coupled polynomial equations
for the resolvent weights jk, 9 . We note that so far we have made no assumptions
or simplifications and thus the solution of these polynomial equations represents an
exact solution of the continuous nonlinear system (2.7).

To summarize, a resolvent analysis-based approach to solve a nonlinear system of
the form (2.7) aims to express each Fourier mode of the solution as an expansion
in resolvent modes as in (2.12). Generally speaking the solution involves two steps.
First, a linear calculation: the singular value decomposition of the resolvent operator
(2.5), which is assumed to be known a priori. Second, a nonlinear calculation:
solving an appropriately truncated version of the polynomial interaction coefficient
Equation (2.16). This thesis explores innovations in both the linear and nonlinear
aspects of the resolvent analysis.
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C h a p t e r 3

A VARIATIONAL DEFINITION OF RESOLVENT ANALYSIS

3.1 Introduction
The majority of past resolvent analysis research has focused on the control theory in-
terpretation of resolvent analysis and the SVD-based definition of resolvent modes
introduced in Chapter 2. Here we take an alternative approach and propose an
equivalent definition based on an extension of the min-max principle. The min-max
principle itself and the concept of an optimal forcing and maximum gain are well
understood and have been used extensively by a wide range of authors. For exam-
ple, Dawson and McKeon (2019) derived analytical models of the optimal resolvent
mode in wall bounded shear flows, Monokrousos et al. (2010) and Garnaud et al.
(2013) investigated the optimal forcing structure in a Blasius boundary layer and
incompressible jets, respectively, and Towne et al. (2015) computed data-driven
resolvent modes in the context of turbulent jets. However, we present an explicit
extension from the min-max principle, to what we coin “variational resolvent anal-
ysis” (VRA), which constitutes an alternative definition of the resolvent basis that
includes all modes. 1

This variational definition is based on the solutions of the Euler-Lagrange equations
associated with the constrained variation of the operator norm of the linearized
equations. Critically, this definition does not involve the inversion of any operator,
which is useful from both a theoretical and practical sense. The inversion of large
matrices is both costly and obscures the intuitive interpretation of the underlying
linear differential operator. The extension of the min-max principle to include all
resolvent modes was used by Sipp and Marquet (2013) who defined the resolvent
forcing modes as the solutions to a generalized eigenvalue problem. The current
work builds on their results by additionally avoiding the inversion of the linear
operator and the need for any adjoint equations. While in general the resulting
Euler-Lagrange equations remain difficult to solve exactly, this variational formu-
lation allows for the approximation of two- or three-dimensional resolvent modes
as an expansion in any convenient basis, such as for example a much cheaper one-
dimensional resolvent basis, an analytical basis such as that described by Dawson

1The contents of this chapter have been published in Physical Review Fluids, 7(1): 013905.
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and McKeon (2019), or a data-driven one. Further, it requires only the eigenvalue
decomposition of a matrix of significantly reduced size. In this chapter, we illustrate
how this variational definition is useful in both gaining physical insights by allowing
for analytical progress in simplified systems, and by reducing computational cost
in complex systems. To illustrate the former, we consider the case of streamwise
constant fluctuations in wall bounded shear flows. To investigate the latter, we first
perform RA about a 2D/3C exact coherent solution, where we find that we can
accurately approximate the resolvent response modes and reduce the computational
complexity by an order of magnitude. Finally, the VRA formulation is applied to
a streamwise developing turbulent boundary layer, where the near wall modes can
be predicted with a 97% reduction in computational cost using resolvent modes
calculated using a 1D mean flow.

A Variational Definition of Resolvent Modes
As introduced in Chapter 2, we consider a forced linear system

mu
mC
− Au = f (3.1)

where A represents a spatial-linear differential operator and u(x, C), f (x, C) ∈ C∞

are defined on a domain x ∈ Ω and C ∈ [0,∞). We restrict our analysis to fields
u(x, C) and f (x, C) which are infinitely differentiable and satisfy either periodic or
homogeneous Dirichlet or Neumann boundary conditions on the boundary mΩ. As
in Chapter 2 we consider statistically stationary flows, and thus define the temporally
Fourier transformed linear operator

L (l) ≡ 8lI − A. (3.2)

A key contribution of this thesis is the observation that resolvent response modes
(2.5) defined in Chapter 2 as the singular modes of the resolvent operator H ≡ L−1

may be equivalently defined as the stationary points, q∗, of the operator norm
of the linear operator L under the condition that the argument q∗ satisfies some
norm constraint. More explicitly, the resolvent response modes are defined as the
stationary points of the functional

� = ‖Lq‖20 (3.3)

subject to the constraint
‖q‖21 = 1, (3.4)
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where again the boundary conditions on q are understood to be either homogeneous
or periodic. In general, the norms ‖x| |0 ≡ x�Q0x and ‖x| |1 ≡ x�Q1x need not
be the same, such as for example in the Orr-Sommerfeld and Squire decomposition
discussed in §3.2. In hydrodynamic analysis these norms generally represent kinetic
energy, but in other context other types of norms may be of physical or practical
interest. Following the notation of Herrmann et al. (2021) the Cholesky factorization
may be used to decompose the weight matrix

Q0 = F�0 F0 . (3.5)

This allows a general norm to be related to the Euclidean 2 norm. In other words,
we can express any arbitrary user defined norm as

‖x| |U = ‖FUx| |2 (3.6)

where U is simply a label used to distinguish between different norms.

The method of Lagrange multipliers allows us to combine (3.3), (3.4) and the defi-
nition (3.6) to formulate a constrained variational problem and define a Lagrangian

L (q) = ‖F0Lq| |22 − f
−2‖F1q‖22 = q�L�Q0Lq − f−2q�Q1q. (3.7)

Because we have restricted ourselves to homogeneous or periodic boundary condi-
tions, the boundary terms arising in the variational analysis drop out. Therefore,
L and F may be either interpreted as continuous differential operators or discrete
matrices. The vanishing of the variation with respect to the conjugate state q∗ is a
necessary and sufficient condition for the stationarity of (3.7). The reader is referred
to Appendix A.1 for a derivation of this property based on the work of Wirtinger
(1927) and Brandwood (1983). The resolvent response modes of H = L−1 are then
defined as the solutions to the Euler-Lagrange equations given by

XL
Xq = L�Q0Lq − f−2Q1q = 0. (3.8)

Equation 3.8 constitutes an eigenvalue problem and thus has a countably infinite set
of solutions which we index by the subscript 9 .

L�Q0Lψ 9 = f
−2
9 Q1ψ 9 (3.9)

Wehave denoted the eigenvaluef−2
9

and the eigenfunctionsψ 9 , such that the singular
values and resolvent response modes of H are given by f9 and k 9 respectively. The
resolvent forcing modes are recovered through

φ 9 = f9Lψ 9 . (3.10)
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Note that theψ 9 are guaranteed to be orthogonal w.r.t Q1 since the matrices in (3.9)
are Hermitian, and the φ 9 are orthogonal w.r.t Q0 since

φ�8 Q0φ 9 = f8f9ψ
�
8 L�Q0Lψ 9 = f8f

−1
9 ψ

�
8 Q1ψ 9 = X8 9 . (3.11)

These results can alternatively be derived through successive applications of the
min-max principle. Therefore, this variational formulation is not novel in it’s
mathematical results, but rather in its philosophical interpretation of them. While
we consider only quadratic norm, the variational formulation is not restricted to
this choice. It thus has the potential to expand the resolvent framework to norm
spaces not accessible through linear algebra based approaches, which are generally
restricted to quadratic norms. However, we reiterate that such extensions are beyond
the scope of this work and are not pursued in this thesis

Other researchers have used variational-based approaches to the study of forced
linear dynamics and we would like to comment briefly on how Equations (3.9)
and (3.10) differ from these past studies. Monokrousos et al. (2010) formulated a
variational problem to identify the optimal forcing structure, which as formulated
therein necessitated the introduction of an adjoint equation, which is avoided in
the current formulation. Sipp and Marquet (2013) solved a generalized eigenvalue
problem to compute the resolvent forcing modes and then recovered the response
modes by solving the linear system in Equation 3.10. Here we avoid any operator
inversion by first computing the response modes and then recovering the forcing
modes afterwards. More fundamentally, we view the variational definition proposed
herein as a theoretical framework rather than simply a computational strategy. In
§3.1, we present one possible technique for how this framework can be used in
practice.

Proof of Equivalence
Wewill now illustrate the equivalence of (3.9) to the standard SVD-based definition,
focusing on the casewhere ‖x| |0 = ‖x| |1. Again, following the notation ofHerrmann
et al. (2021), the SVD of the properly weighted resolvent operator is given by

H� ≡ FHF−1 = 	���
�
� . (3.12)

The physical resolvent forcing and response modes are then recovered by left mul-
tiplication by F−1, such that � = F−1�� and 	 = F−1	� , whose columns give the
individual modes φ 9 and ψ 9 , respectively. We focus first on the resolvent response
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modes 	. Beginning from the definition of the weighted resolvent, we can write

H�H�
� = 	��

2	�
� . (3.13)

Next we use (2.3), (3.5), and (3.12) to write the above expression in terms of the
linear operator L,

F
(
L−1Q−1L−�

)
F� = 	��

2	�
� . (3.14)

Taking the inverse of both sides and noting the unitary nature of 	� , we find

F−�
(
L�QL

)
F−1 = 	��

−2	�
� . (3.15)

Finally, we right multiply by 	� and left multiply by F� to arrive at(
L�QL

)
	 = Q	�−2 (3.16)

which is equivalent to (3.9). Again, the resolvent forcing modes are then recovered
through

� = L	�. (3.17)

This establishes the equivalence of the variational and SVD-based definitions of
resolvent modes. We would like to emphasize that a consequence of this equiva-
lence is that the completeness property of the SVD-based basis also applies to the
variational computed basis.

Resolvent Mode Estimation
In general, the Euler-Lagrange Equations (3.9) are both analytically intractable
and computationally intensive for complex flows with multiple non-homogeneous
spatial dimensions. However, the variational definition introduced here provides a
convenient way to estimate resolvent modes as an expansion in any convenient basis.
Suppose we wish to estimate the resolvent response modes, ψ(x), of some system
defined on a particular domain. Then let q 9 (x) with ( 9 = 1...A) be some known
basis defined on that same domain. We can then write the resolvent response modes
as an expansion in this basis.

ψ = 0 9q 9 (3.18)

Inserting this expansion into (3.7) transforms the continuous vector field q ∈ C∞ into
a discrete field a ∈ CA , where a is the vector of amplitudes 0 9 . The Euler-Lagrange
Equation (3.8) then takes the form

Ma − f−2Qa = 0, (3.19)
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where M,Q ∈ CA×A , "8 9 ≡ q�
8

L�Q0Lq 9 , and &8 9 ≡ q�
8

Q1q 9 . The eigenvectors
a contain the amplitudes 0 9 which optimally approximate the resolvent response
modes in the known basis q 9 and the f are the associated optimally approximated
singular values. For A basis elements, we will have M,Q ∈ CA×A and thus we will
obtain A eigenvalue/eigenvector pairs, representing A singular mode/singular value
pairs. The necessary A depends on both the efficiency of the model basis and the
desired level of accuracy. Since (3.19) does not include any inherent approximations,
if the input basis is orthogonal the VRA approximation does converge to the exact
solution computed via SVD as A → ∞. However, any Galerkin type method, such
as the one proposed here, is only valuable as long as the size of the basis, A, is
significantly smaller than the size of the discretized system, =. If A ∼ $ (=) it would
be preferable to compute the SVD directly, since one would not be restricted to the
span of the input basis, which if poorly chosen, may not accurately model the true
resolvent modes. However, we show in the following examples that for large systems
a reduction of order A/= of two orders of magnitude is possible.

Throughout this chapter, we use lower dimensional resolvent modes as a modeling
basis. In such cases, the input basis elements q 9 are periodic in the wall parallel
direction and generally localized around a critical layer (where the wave speed 2
is equal to the local mean velocity) in the wall normal direction. For example, we
might have q 9 (G, H) ∼ g(H; 2)48:G where : is the imposed wavenumber. Thus, for
this type of basis, the number of retained spatial wave numbers determines the wall
parallel resolution of the VRA model and the number and range of retained wave
speeds determines the wall normal span of the VRA reconstruction. Numerically,
the primary advantage of the proposed method is the reduction in order , A � =, and
thus its application relies on the condition of having a good modeling basis, which
spans the global modes of interest. In the examples discussed here, this choice is
guided by physical mechanisms such as the critical layer localization, however if
applied to a completely unknown flow some amount of tuning would be required to
arrive at a useful basis.

However, we note that other types of modeling basis are possible, for example
Towne et al. (2015) used a data driven basis to estimate global resolvent modes in
turbulent jets. While the derivation of the model presented in Towne et al. (2015),
based on successive applications of the min-max principle, differs from the direct
variational derivation presented here, the final eigenvalue problem being solved is
mathematically equivalent to (3.19). Their work, coined empirical resolvent mode
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decomposition aims to estimate resolvent modes that are constrained to lie in the
span of the input basis, computed from the full flow field data. This constraint is
intended to ensure that the modes are physical in the sense that they reflect structures
observed in the real flow (Towne et al., 2015). The variational approach described
in this chapter is on the other hand an alternative mathematical definition of the
resolvent modes without any reference to external data.

3.2 1D Resolvent Analysis: Turbulent Channel Flow
The Orr-Sommerfeld Squire System
As a first example, we consider the incompressible linearized NSE for streamwise
constant fluctuations about a turbulent mean in a wall bounded shear flow. This
example illustrates the fundamental theory and highlights the analytical manipula-
tion enabled by the VRA framework. The equations are nondimensionalized using
the channel half-height and friction velocity. A Fourier transform in the homoge-
neous spatial directions and time results in a system parametrized by the Reynolds
number, ', and the wave number triplet, k = [:G , :I, l]. Here :G and :I denote
the wavenumbers in streamwise and spanwise directions, respectively, and l again
represents the temporal frequency. We focus on streamwise constant fluctuations
which are useful models of the streamwise elongated structures known to play a
crucial role in the sustenance of turbulence (Jiménez and Moin, 1991). Therefore,
for the remainder of §3.2, we assume :G = 0.

The forced linearized NSE can be written as[
!$( 0
*̄H !(&

] [
E(H)
D(H)

]
=

[
6E (H)
6D (H)

]
. (3.20)

Here H ∈ [−1, 1] and [E, D] are the wall-normal and streamwise velocity fluctuations
about the streamwise, spanwise, and temporal averaged mean velocity *̄. The
spanwise velocity is recovered through the continuity equation as F = 8:−1

I EH. The
right hand side [6E, 6D]) represents an unknown forcing. The relevant boundary
conditions are thus E(±1) = EH (±1) = D(±1) = 0. Note that we write (3.20) in
terms of D instead of the classical formulation in terms of the wall normal vorticity
[ ≡ 8:ID − 8:GF. This is because if :G = 0 then D ∼ [. Note that this implies that
the off-diagonal term in (3.20) does not include the 8:I present in more classical
formulations. The Orr-Sommerfeld and Squire operators in (3.20) simplify to

!$( = −8l∇2 − 1
'
∇4 (3.21)
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!(& = −8l −
1
'
∇2 (3.22)

where ∇2 ≡ mHH − :2
I . The inner product defining the kinetic energy norm is

〈q8, q 9 〉 � ≡ 〈E∗8 E 9 + :−2
I E
∗
8,HE 9 ,H + D∗8 D 9 〉 (3.23)

where 〈 5 (H)〉 ≡
∫ 1
−1 5 (H)3H, q = [E, D], and ‖q‖ � =

√
〈q, q〉

 �
. It is convenient

to also define the following norm associated with the OS operator induced by

〈·〉$( ≡ 〈E∗8 E 9 + :−2
I E
∗
8,HE 9 ,H〉 (3.24)

which represents the contribution of E (and thus F) to the kinetic energy and where
again the norm is defined as ‖E‖$( =

√
〈E, E〉

$(
. Lastly, it is numerically convenient

to implement (3.20) as[
∇−2!$( 0
*̄H !(&

] [
E

D

]
=

[
∇−26E

6D

]
=

[
6̃E

6D

]
. (3.25)

In order to compare our variational results to the direct SVD, we use the definition
(3.25) going forward.

The Orr-Sommerfeld and Squire Families
It is instructive to decompose the system into the Orr-Sommerfeld (OS) and Squire
(SQ) families of modes as suggested by Rosenberg and McKeon (2019b). The OS
family corresponds to the forced response due to 6E,[

∇−2!$( 0
*̄H !(&

] [
E$(

D$(

]
=

[
6̃E

0

]
(3.26)

which upon elimination of 6̃E from the equation for D$( results in a decoupled
system reminiscent of the classical OS/SQ decomposition of linear stability theory
(Drazin and Reid, 2004; Schmid and Henningson, 2001).

∇−2!$(E
$( = 6̃E (3.27)

!(&D
$( = −*̄HE$( (3.28)

The SQ family of modes, on the other hand, is the forced response to 6D, where by
construction E(& = 0.

!(&D
(& = 6D (3.29)
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Since (3.29) is a normal scalar operator, the resolvent forcing and response modes
are proportional to the eigenmodes of !(& , and the singular values are equal to the
inverse of the norm of the eigenvalues of !(& .

k
(&

9
(H) =

[
0, sin

(
9c

2
(H + 1)

)]
(3.30)

q
(&

9
(H) =

[
0, 4

8 arctan
(
−4'l

c2 92+4:2
I

)
sin

(
9c

2
(H + 1)

)]
(3.31)

f
(&

9
=

(
1

16'2

(
c2 92 + 4:2

I

)2
+ l2

)−1/2
(3.32)

The problem thus reduces to finding the OS family of modes associated with (3.26),
which in accordance with §2.2, are defined as the stationary points of the associated
Lagrangian

L
(
q$(

)
= ‖∇−2!$(E

$( | |2$( − f
−2‖q$( | |2 � (3.33)

where q$( ≡ [E$(, D$(], and we have made use of the fact that 6D = 0 to simplify
the operator norm. In order to eliminate the streamwise velocity D$(, we expand
the solution to (3.28) in eigenfunctions of !(& given by (3.30).

D$( = − 1
_
(&
=

〈E$(*̄HD(&= 〉D(&= (3.34)

This allows us to write the kinetic energy constraint as

‖q‖2 � = 〈|E |2 + :−2
I |EH |2 + |D(E) |2〉 = ‖E‖2 � (3.35)

where the third term D(E)2 is given by the square of (3.34). This allows us to rewrite
(3.33) as

L
(
E$(

)
= ‖∇−2!$(E

$( | |2$( − f
−2‖E$( | |2 � (3.36)

with associated Euler-Lagrange equation

X

XE

(
‖∇−2!$(E

$( | |2$( − f
−2‖E$( | |2 �

)
= 0. (3.37)

For :G = 0, the eigenfunctions of !$( may also be derived analytically (Dolph and
Lewis, 1958; Jovanović and Bamieh, 2005). Using standard methods, they are found
to be

E 9 (H; :I) = � 9
[
cos

(
W 9 (H + 1)

)
− cosh (:I (H + 1))

]
+

� 9
[
sin

(
W 9 (H + 1)

)
− W 9 :−1

I sinh (:I (H + 1))
] (3.38)
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_$(9 =
1
'

(
W2
9 + :2

I

)
− 8l (3.39)

where � 9 , � 9 and W 9 are defined in Appendix A.2 and satisfy !$(E 9 = _$(9 ∇2E 9 and
〈E8, E 9 〉$( = X8 9 . Expanding the solution to (3.37) in the basis of OS eigenfunctions
(3.38) such that

E$( = 0<E< (3.40)

allows us to transform the variation into an optimization over the coefficients 0 9 .

m

m0

(
‖∇−2!$(0 9E 9 ‖2$( − f

−2(‖0 9E 9 ‖2 � − 1)
)
=

m

m0

(
|_$(9 |202

9 − f−2080 9 (X8 9 +*8=*�
= 9 )

)
= 0 (3.41)

Here the quantity *8= represents the projection of the OS eigenfunctions onto the
SQ eigenfunctions through (3.34) such that

*8= ≡ −
1
_
(&
=

〈E8*̄HD(&= 〉. (3.42)

Upon carrying out the above differentiation with respect to 0, we find the eigenvalue
problem

‖�$(‖2a = f−2
(
I + UU�

)
a (3.43)

where �$(8 9 = |_$(
8
|2X8 9 . The eigenvectors a correspond to the coefficients which

optimally represent the resolvent response modes of the system (3.26) as a linear
combination of the eigenbasis (3.38).

ψ$(9 = [0 9<E<, D(0 9<E<)] (3.44)

The singular values f9 are given by the eigenvalues of (3.43) and the forcing modes
are recovered through

φ$(9 = [f9∇−2!$(E
$(
9 , 0] = [f9_$(< 0

9
<E<, 0] . (3.45)

Together with the Squire family of resolvent modes (3.30-3.32), the Orr-Sommerfeld
family given by (3.44) and (3.45) fully describe the resolvent basis. In Figures 3.1,
we plot the real part of the variationally reconstructed Orr-Sommerfeld response
and forcing modes along side their numerically computed counterparts for the wave
number triplet [:G , :I, l] = [0, 6, 0.1] and ' = 1000. The singular values plots
are plotted in 3.2a. For this example, the VRA model uses A = #$( = 20 basis
elements, this value is chosen to show a balance between the accuracy and model
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Figure 3.1: Real part of the wall normal component E (a), streamwise component D
(b), and forcing 6E (c) of the 1BC , 3A3 , and 5Cℎ, Orr-Sommerfeld family of resolvent
modes. Reference modes computed via direct SVD are shown in solid lines, VRA
reconstruction using 20 basis eigenmodes is shown in symbols. :I = 6, l = 0.1,
and ' = 1000.

reduction capabilities of the method. Although for this example the computational
cost is trivial, the reduction in size of the relevant matrices and avoiding the need
for matrix inversion reduces the computation time by two orders of magnitude.
To quantify the convergence of our method, we plot in Figure 3.2 the error in the
VRA reconstruction of E, D, and f as a function of the number of retained OS
eigenfunctions (A = #$() included in the variational reconstruction. The error is
defined as

4@ =

√∫ 1

−1
|@BE3 − @EA0 |23H (3.46)

where @ = D, E and the subscripts EA0 and BE3 denote the quantities computed using
the VRA model and direct SVD, respectively. In all cases we observe monotonic
convergence. In this example theVRAmodel is extremely effective at reconstructing
the results of the direct SVD since our model basis exactly spans the range of !$(.

Analytical Approximation of k1

In this section, we demonstrate how, under certain assumptions, the variational
resolvent formulation allows for the analytical approximation of the leading OS
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Figure 3.2: Orr-Sommerfeld family of singular values (a) with reference values
computed via direct SVD in red, and variational reconstruction using 20 basis
eigenmodes in black. Error in variational reconstruction as a function of basis
elements in f9 (b), E 9 (c), and D 9 (d) of ψ 9 for 9 = 1, 3, 5, 7, 9. :I = 6, l = 0.1, and
' = 1000 as a function of the retained basis elements A = #$(.

resolvent mode ψ$(1 . Written explicitly, the Lagrangian associated with (3.20) is

L(E) =
(
l2

(
∇2E

)2
+ 1
'2

(
∇4E

)2
)
+

1
:2
I

(
l2

(
∇2EH

)2
+ 1
'2

(
∇4EH

)2
)
− 1
f2

1

(
D(E)2 + E2 + :−2

I E
2
H

)
(3.47)

where D is the solution to

−8lD − 1
'
∇2D = −*̄HE. (3.48)

Here D and E are the streamwise and wall normal components of ψ$(1 and f1 is
the leading OS singular value. The associated Euler-Lagrange equation written in
terms of E is then

1
:2
I

(
1
'2∇

10 + l2∇6
)
E + 1

f2
1

((
!−1
(&*̄H

)�
!−1
(&*̄HE −

1
:2
I

∇2E

)
= 0 (3.49)

with boundary conditions E(±1) = EH (±1) = D(±1) = 0. Note that we use the
original definition (3.20), not the numerical implementation (3.25), to derive (3.49).
This is done to avoid the analytically cumbersome treatment of the ∇−2 operator.
The problem is now parameterized by l, ', and :I. Our analysis will consider the
appropriate limits of each in turn.
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It has been shown that for :G = 0, the most linearly amplified frequency is l = 0,
therefore we will consider the limit as l→ 0. Since in this limit (3.49) is regularly
perturbed problem, the leading order solution may be found by simply setting
l = 0. We may further simplify (3.49) by considering a high Reynolds number
limit ' → ∞. Analysis of (3.26) reveals that for l = 0, f1 ∼ '2 as ' → ∞ (see
Appendix A.3). This allows us to introduce the small parameter n ≡ '−1 such that
(3.49) and (3.48) take the form

1
:2
I

∇10E + n
2

f̃2
1

(
1
n2

(
∇−2*̄H

)�
∇−2*̄HE −

1
:2
I

∇2E

)
= 0 (3.50)

n∇2D0 = *̄HE (3.51)

where f̃ ≠ 5 ('). We note that (3.51) implies that E ∼ nD and expand the solution
in an asymptotic series.

E = nE1 + n2E2 + O(n3)
D = D0 + nD1 + n2D2 + O(n3)

(3.52)

The leading order solution to (3.50) and (3.51) then satisfy

1
:2
I

∇10E1 +
1
f̃2

1

((
∇−2*̄H

)�
∇−2*̄HE1

)
= 0 (3.53)

∇2D0 = *̄HE1 (3.54)

and the norm constraint takes the form

‖D0‖2 = 1. (3.55)

Here we focus on the leading order solution, and thus to avoid notational clutter, we
drop the subscripts 0 and 1 moving forward.

While we have managed to simplify the governing equations, the second term in
(3.53) remains prohibitive to analytical progress. In order to proceed, we consider
the H → −H symmetry of (3.20) which dictates that the resolvent modes come in
pairs, one of which is even about the center of the channel, and one of which is odd.
If additionally, the modes have compact support, as is generally the case, we have
ψ1(H) = ψ1(−H) = ψ2(H) = −ψ2(−H), and therefore it is sufficient to solve for the
mode shape in one half of the domain.

We assume that E is indeed locally supported and thus introduce the scaling . =

:I |H ± 1| under the assumption :I � 1 and make the transformation D(H), E(H) →
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* (. ), + (. ). We note that this scaling differs from the :1/2
I and :2/3

I scaling derived
by Arratia and Chomaz (2013) in the context of inviscid transient growth. Formally
taking the limit :I →∞, allows us to transform the finite domain, H ∈ [−1, 1], to the
“semi-infinite” half channel: . ∈ [0,∞]. The solution in the other half of the domain
is then recovered through the symmetries: ψ1(H) = ψ1(−H) = ψ2(H) = −ψ2(−H).

Finally, in order to make progress, we require some suitable approximation of the
mean velocity profile. Since we are working within a high Reynolds number limit,
we choose to assume that the mean velocity obeys a logarithmic profile over the
entirety of the semi-infinite domain. This is a reasonable assumption since in
high Reynolds number channel flow the log-law applies to a large fraction of the
channel. Our approach thus implicitly assumes the support of the resolvent modes
is localized within this region where the log-law approximation is valid. The mean
shear is then given in our scaled variables by *̄. = :I (^. )−1, where ^ is the Von
Karman constant. We note that the mean shear diverges as like .−1 as . → 0,
however, since + (0) = +. (0) = 0 we have + (. ) ∼ .2 as . → 0, and thus the right
hand side of (3.54) remains bounded as . → 0.

Inspection of (3.54) and (3.55) reveals that the appropriate scaling of the velocity
components is given by *̃ (. ) = :1/2

I * (. ) and +̃ (. ) = :3/2
I + (. ). Additionally, we

define the scaled Laplacian ∇̃2 ≡ m.. − 1 such that ∇2 → :2
I ∇̃2, and note that for

:G = l = 0 and :I →∞ the singular value scales as f̃1 ∼ :−3
I (see Appendix A.3).

Thus we can write (3.53) in our scaled variables as

∇10+̃ + 1
^2:4

IW
2
1

((
∇̃−2.−1

)�
∇̃−2.−1

)
+̃ = 0 (3.56)

where W1 is a constant. We expand *̃ and +̃ in asymptotic series

+̃ = +̃0 + :−4
I +̃1 + O(:−8

I )
*̃ = *̃0 + :−4

I *̃1 + O(:−8
I )

(3.57)

which upon substitution into (3.56) allows us to eliminate the norm constraint at
leading order and reduce the problem of deriving the leading OS resolvent mode to

∇̃10+̃ = 0 (3.58)

∇̃2*̃ =
1
^.
+̃ (3.59)

where we have again dropped the subscripts to avoid notational clutter. The relevant
boundary conditions are +̃ (0) = +̃. (0) = *̃ (0) = +̃ (∞) = *̃ (∞) = 0. The remain-
ing constants of integration are then chosen such that ‖∇−2!$(+ ‖2$( is minimized
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and ‖*‖2 = 1. Here we choose to minimize ‖∇−2!$(+ ‖2$( instead of ‖!$(+ ‖2$(
in order to facilitate comparison with the numerically computed modes. However,
minimizing the latter functional leads to a very similar solution. Using standard
methods, the solutions satisfying the boundary conditions are found to be

+ (. ) = :
3/2
I

'

(
0 + 1. + 2.2

)
.24−. (3.60)

* (. ) = − :
1/2
I

24^

(
32.3 + (41 + 62).2 + (60 + 61 + 92) (. + 1)

)
.4−. . (3.61)

The three remaining constants of integration, 0, 1, 2, are found by minimizing
‖∇−2!$(+ ‖2$( subject to the constraint ‖*‖2 = 1. Straight forward integration
results in

‖∇−2!$(+ ‖2$( =
1
'2 ‖∇

2+ ‖2$( = 4
:6
I

'4

(
602 + 912 + 3612 + 7222

)
(3.62)

and

‖*‖2 = 1
^2

(
7

32
02 + 1

128
(1121 + 2282)0 + 31

32
12 + 351

64
12 + 1089

128
22

)
= 1.

(3.63)
Minimizing (3.62) subject to (3.63) results in the eigenvalue problem
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 . (3.64)

Assuming ^ = 0.4, the minimizing solution that satisfies the norm constraint is
found to be

[0, 1, 2] = [0.1283, 0.1066, 0.0431]
√

2. (3.65)

The leading singular value is

f1 = ‖∇−2!$(‖−1
$( =

'2

2:3
I

. (3.66)

The wall normal component 6E of the optimal resolvent forcing mode φ$(1 is recov-
ered through

∇26E = f1!$(E (3.67)

subject to the boundary conditions 6E (±1) = 0. Using (3.66) and letting 6E (H) →
�+ (. ), this takes the form

∇̃2�E (. ) = f1!$(E = −
'

2:I
∇̃4+ (. ). (3.68)
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The solution satisfying the boundary condition �+ (0) = 0 is found to be

�+ (. ) = :1/2
I

(
42.3 + (31 − 62).2 + (20 − 31).

)
4−. . (3.69)

The solutions (3.60), (3.61), and (3.69) with optimal coefficients (3.65) are plotted
in Figure 3.3 alongside numerically computed resolvent modes for ' = 10, 000 and
l = 0 over a range of :I. Note that for :G = 0, and l→ 0 the symmetries of (3.25)
result in numerical resolvent modes with constant arbitrary phase, which for ease of
comparison we set to zero. With the exception of the D component for the smallest
wave number (:I = 6), the derived scaling laws lead to reasonable collapse in both
the numerically computed resolvent response and forcing modes. As :I → 1 the
assumption of local support in H is no longer valid. In this limit ψ1 tends to have
significant support at the channel center.

For the responsemodes, the analytically-derivedmode accurately predicts the shape,
amplitude, and localization of the numerically computed modes. The analytical
prediction of the wall normal velocity is most accurate for the largest wave numbers,
tending to slightly over predict the amplitude of the smaller wave number modes.
This is most likely due to the fact that the amplitude of E is smaller by a factor of
' = 10, 000 and is thus susceptible to some numerical uncertainty since it does not
meaningfully contribute to the norm. The streamwise velocity more closely obeys
the derived scaling laws, and thus the analytical model accurately predicts the shape
of the numerically computed modes for all :I > 6.

The prediction of the forcing mode is slightly less accurate. While we capture
the location and amplitude of the peak, the model underpredicts the true mode
closer to the wall. The discrepancy in the forcing despite accurate reconstruction
of the response is due to the sensitivity of the action of linear operator !$(E to
perturbations in the argument E. This is discussed in detail in §3.5.

Finally, in Figure 3.3 we also plot the numerically computed leading singular values
alongside the analytical prediction (3.66). While the analytically obtained value of
f1 slightly under-predicts the true singular values for the smaller values of :I, the
numerical singular values do converge to the analytical prediction with increasing
:I, consistent with the assumption made in our model that :I � 1. This under-
prediction is consistent with the fact that the true singular value represents the global
maximum gain.
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Figure 3.3: Optimal resolvent modes: E (a), D (b), 6E (c) and singular value
(d) for :G = 0, l = 0, ' = 10, 000 and a range of :I. Numerically calcu-
lated modes/singular values are shown in colored lines/dots, analytically derived
modes/singular values are shown in black open circles/dashed line. From light to
dark, colors indicate increasing :I from 6 to 100 (a-c).

3.3 2D Resolvent Analysis: Periodic Mean Flow
In this section, we use VRA to efficiently and accurately compute resolvent modes
about a 2D/3C mean flow. We consider the equilibrium solution EQ1 found in
plane Couette flow by Nagata (1990). The data was obtained from the open-source
database channelflow.org (Gibson et al., 2008; Gibson, 2014). The 2D/3C resolvent
calculations used to validate the VRA algorithm were performed using a code
developed byRosenberg (2018). In this example, the flowhas two non-homogeneous
spatial dimensions, the wall normal direction H ∈ [−1, 1] and the spanwise direction
I ∈ [−!I/2, !I/2] with !I = 0.8c. The spanwise periodic EQ1 solution is shown in
Figure 3.4. The resolvent modes computed about this flow are then parameterized
by the streamwise wavenumber and frequency pair, [:G , l]. We choose as our
modeling basis the local 1D resolvent modes about the mean flow *̄ (H) given by the
spanwise average of the EQ1 solution: @ 9 (H, I) = ψ1�

9
(H; :I, :G , 2)48:I I. In other

words, we seek to approximate the 2D resolvent modes from the 1D resolvent basis
as

ψ2� (H, I; :G , 2) = 0 9@ 9 (H, I). (3.70)

The expansion coefficients 0 9 are found by solving the eigenvalue problem

Ma − f−2Qa = 0 (3.71)
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where "8, 9 = 〈L2�@8,L2�@ 9 〉, and &8, 9 = 〈@8, @ 9 〉. The operator L2� is the NS
operator, in velocity-vorticity form, linearized about the 2D/3C mean flow, the
details of which are discussed in Rosenberg and McKeon (2019a). The operator is
discretized in #H = 33 Chebychev points in the wall normal direction, and #I = 32
linearly spaced points in the spanwise direction, for a total of #2� = 2 × #H × #I =
2112 degrees of freedom.

The 1D resolvent modes are computed for the same :G as the 2D modes, and a range
of #2 = 3 linearly spaced wavespeeds 0.82 ≤ 21� ≤ 1.22 where 2 = l/:G . We use
a range of 21� since the 2Dmode is expected to be localized near but not necessarily
exactly at the critical layer where 2 = *̄ (H). To account for the variation in I we
include a range of #:I = 11 spanwise wavenumbers :I = [−5...0...5] × 2c/!I. We
found that increasing the number of retained harmonics beyond this range did not
meaningfully change the results. At each wave number triplet [:G , :I, 2] we include
#(+� = 8 resolvent modes, resulting in a total of A = #2×#:I×#(+� = 254 degrees
of freedom. These values were chosen to demonstrate a balance between accuracy
and the cost saving potential of the proposed method. (The reader is referred to
Appendix A.4 for an illustration of some representative basis elements.) Once
L2� is known, the construction of the matrices M and Q takes approximately 0.5
seconds and the associated eigendecomposition takes approximately 0.01 seconds
on a personal laptop. Meanwhile, the inversion and direct truncated SVD of the
original system takes approximately 5 seconds using the built in Matlab functions
<;38E834() and BE3B().

In Figures 3.5 and 3.6, we compare the real part of the first four resolvent response
modes of the variational reconstruction and the modes computed directly through
the SVD of the 2D resolvent for :G = 0.5 and 2 = 0.75 and ' = 400. The variational
approach very accurately reconstructs the true response modes considering the
significant reduction in computational complexity.

In Figures 3.7 and 3.8, we plot resolvent forcing modes computed from the response
modes through φ 9 = f9L2�ψ 9 . Interestingly we find that while the 6E component
is reproduced accurately, the 6[ component shows significant discrepancy. While
the qualitative shape of the [ component of the forcing mode is predicted by the
VRA model, the mode is contaminated by higher harmonics. This contamination
observed in the VRA reconstruction of the forcing modes, φ 9 , despite the accurate
reconstruction of the response modes, ψ 9 , is due to the directional amplification
of the resolvent operator or equivalently, a sensitivity of the action of the linear
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operator L2�q, to perturbations in the input q. This phenomenon is discussed in
detail in §3.5.

Additionally, in Figure 3.9a we compare the variationally computed singular values
with the true values computed via direct SVD. The singular values are estimated
relatively accurately, with our model tending to slightly underestimate the leading
singular values. As before, the true singular values represent the optimal gains
and the predicted singular values are bounded above by the true values. For this
combination of spanwisewavenumber and temporal frequency, there is no significant
separation of singular values, in other words the resolvent operator is not low rank,
and yet ourmethod still accurately predicts the singular values and resolvent response
modes.

In order to quantify the convergence properties of the proposed method, for this
example we fix 21� = 22� , include :I = [−5...0...5] × 2c/!I such that #2 = 1 and
#:I = 11 and compute the error as a function of the number of retained singular
modes #(+� . The error is based on the kinetic energy norm and is defined as

4 ≡

√
1

2!I

∫ !I

0

∫ 1

−1
|ψ2�

BE3
−ψ2�

EA0 |23H3I (3.72)

where ψ = [D, E, F]. The error is plotted in Figure 3.9 alongside the relative error
in singular values for two values of the wave speed, 2 = 0.75 and 2 = 0. The former
corresponds to the example plotted in Figures 3.5 through 3.9a where there is no
significant singular value separation. The latter case corresponds to a case where
the 2D resolvent is more low rank, (f1/f2 ≈ 6). In both cases, our method is not
only able to accurately approximate the leading singular mode and value but also a
large range of suboptimal modes and singular values. Interestingly, we see that our
method is more accurate in the case where there is less singular value separation.
Furthermore, for the low rank case, (2 = 0) the largest error in singular value is
for f1. Again, these findings are a result of the directional nature of the resolvent
operator and are discussed in detail in §3.5.
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Figure 3.4: Exact coherent state EQ1 at ' = 400 used to compute 2D resolvent
modes: * (H, I) (a), + (H, I) (b), , (H, I)(c) and spanwise average *̄ (H)(d) used to
compute the 1D basis modes.

Figure 3.5: Real part of the E component of the first 4 resolvent response modes
(ψ 9 ) for :G = 0.5, 2 = 0.75, and ' = 400. Top row: true modes, bottom row: VRA
model with #:I = 11, #2 = 3, and #(+� = 8. From left to right: 9 = 1, 2, 3, 4.
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Figure 3.6: Real part of the [ component of the first 4 resolvent response modes
(ψ 9 ) for :G = 0.5, 2 = 0.75, and ' = 400. Top row: true modes, bottom row: VRA
model with #:I = 11, #2 = 3, and #(+� = 8. From left to right: 9 = 1, 2, 3, 4.

Figure 3.7: Real part of the E component of the first 4 resolvent forcing modes (φ 9 )
for :G = 0.5, 2 = 0.75, and ' = 400. Top row: true modes, bottom row: VRA
model with #:I = 11, #2 = 3, and #(+� = 8. From left to right: 9 = 1, 2, 3, 4.
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Figure 3.8: Real part of the [ component of the first 4 resolvent forcing modes (φ 9 )
for :G = 0.5, 2 = 0.75, and ' = 400. Top row: true modes, bottom row: VRA
model with #:I = 11, #2 = 3, and #(+� = 8. From left to right: 9 = 1, 2, 3, 4.

Figure 3.9: Singular values for :G = 0.5, 2 = 0.75, and ' = 400 (a). SVD reference
(red squares) and VRA model(black circles), same model parameters as in Figures
3.5-3.8. Integrated error of variational reconstruction of first six resolvent response
modes (b) and (c), plotted separately for clarity, and first six singular values (d) as a
function of retained singular basis elements #(+� for #2 = 1 and #:I = 11. Results
with 2 = 0.75 are plotted in plain lines and those with 2 = 0 are plotted with lines
with open circles. From light to dark, colors indicate increasing 9 from 1 to 6.



36

3.4 2D Resolvent Analysis: Streamwise Developing Mean Flow
In this section, we use VRA to approximate the resolvent modes for a streamwise
developing zero pressure gradient turbulent boundary layer (ZPGTBL). The stream-
wise developing nature of this flow necessitates large spatial domains and requires
nonreflecting boundary conditions at the inlet and outlet of the domain. In this case,
the direct computation of the resolvent operator becomes impossible on a personal
computer, and the size of the resulting matrices lead to memory requirements which
become cumbersome even for high performance computers. Again we choose as
our modeling basis 1D resolvent modes, in this case calculated using the mean flow
*̄ (H) at the inlet of the domain. Thus we have @ 9 (G, H) = ψ1�

9
(H; :G , :I, 2)48:GG .

The reference 2D resolvent modes are computed using L2� , the NS operator lin-
earized about the mean flow, Ū(G, H), under the assumption that the streamwise
and wall normal directions are nonhomogenous.2 The mean flow is interpolated
from mean profiles of a ZPGTBL DNS dataset described in Schlatter and Örlü
(2010a) with inlet '4g = DgX99/a ≈ 700. Variables without superscript are nondi-
mensionalized with the velocity scale *∞, the free stream velocity, and X99, the
inlet boundary layer thickness, and variables with superscript + denote rescaling
with the local friction velocity, Dg (G), and local friction lengthscale ℓ(G) = a/Dg.
The nonhomogeneous directions are discretized using a Chebyshev-Chebyshev grid,
with #H points in H ∈ [0, H<0G] and #G points in G ∈ [G8, G8 + !G], where !G is the
domain length in outer units. Our state q = [D, E, F, ?]) assumes the following wall
normal boundary conditions: u(G, 0) = 0, EH (G, H) = 0, and uH (G, H<0G) = 0. At the
inlet and outlet, we use Dirichlet boundary conditions and extrapolation boundary
conditions with an artificial sponge layer applied to damp any artificial reflections
due to the boundary conditions Ran et al. (2017, 2019). The discretization was val-
idated with the results from Ran et al. (2017). We note that using finite differences
results in sparser operators that would reduce the computation times, but this was not
explored in this thesis. The modes are parametrized by the spanwise wavenumber
:I and the temporal frequency, l. Here we consider three wavenumber-frequency
combinations, two inner modes: [:I, l] = [43.9, 1.8] and [183, 3.6], and an outer
mode localized in the wake region: [:I, l] = [11.0, 2.3]. The latter is used to
illustrate the current limitations of the proposed method.

Because the dimension of matrix L2� is 4#G#H × 4#G#H, the matrix inversion and
singular value decomposition are expensive, and scale with O((4#G#H)3). To avoid

2The code used to compute these reference modes was developed by Salvador Gomez.
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such expensive calculations, an LU decomposition and Arnoldi Method is applied
as in Sipp and Marquet (2013) and Schmidt et al. (2018) to compute the SVD of
the resolvent by solving linear systems, as opposed to computing the matrix inverse.
Themost expensive computation, the LU decomposition, is handledwith PARDISO,
a sparse linear algebra solver which is part of the Intel math kernel library, as in
Jeun et al. (2016). Because of the low rank behavior that is often exhibited by
the resolvent operator, the Arnoldi Method converges to the singular values and
singular vectors in a few iterations. Although this strategy is considerably faster
than computing the inverse and taking the SVD, the LU decomposition is still an
expensive O((4#G#H)3) operation.

The 1D resolvent modes used as the model basis are all calculated using the inlet
mean velocity profile, the same :I as the 2D modes, a range of #:G streamwise
wavenumbers defined as integer multiples of 2c/!G , and #2 wavespeeds, 2. Al-
though the model basis is computed using knowledge at one streamwise location,
the coefficients of the basis are determined using L2� , which includes the stream-
wise variation of the mean. The multiple wavenumbers allow for constructive and
destructive interference, creating the structure seen in the true response mode. Due
to the critical layer mechanism, the 1D modes are localized at the critical layer,
where *̄ (H) = 2. To cover the wall-normal extent where we expect the 2D mode
to be localized we then include a range of #2 linearly spaced wavespeeds. At each
wave number triplet [:G , :I, 2], we also include the leading #(+� resolvent modes,
resulting in a total of A = #:G × #2 × #(+� degrees of freedom. The modeling
parameters, global mode spatial resolutions, and overall model reduction for the two
examples considered here are summarized in Table 3.1. The reader is referred to
Figure A.3 in Appendix A.4 for an illustration of some representative basis elements.

Inner Modes
In Figures 3.10 and 3.11, we compare the first four resolvent modes of the varia-
tional reconstruction and the modes computed directly through the classic resolvent
analysis of the 2D resolvent for [:I, l] = [43.9, 1.8] and [:I, l] = [183, 3.6].
The former’s spanwise wavelength _+I ∼ 100 is representative of near wall streaks
whereas the latter’s spanwise wavelength _+I ∼ 25 is representative of smaller struc-
ture close to the wall (Kline et al., 1967). In both cases, we note that all modes
display streamwise oscillations at wavelengths on the order of X99. Additionally, we
also note the presence of a larger wavelength in the form of a modulating envelope
with wavelength !G/ 9 where 9 is the rank of the mode. In both cases, the character-
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istic streamwise wavelength and the modulating envelope of the modes are captured
by the VRA model for both the optimal and the higher order modes. We note that
this streamwise evolution in both shape and amplitude is not present in the VRA
basis functions (see Appendix A.4). Because of this streamwise scale separation, the
VRAmodel requires basis functions with a large range of streamwise wavenumbers.
Despite this, the number of retained wave numbers #:G is still significantly less than
the required streamwise spatial discretization, #G , of the full system.

For the wider (smaller :I) modes plotted in Figure 3.10, we see that the VRA
model predicts the mode shape and amplitude present in the SVD-based modes and
replicates many of the general features. Especially in the interior of the domain,
the VRA modes capture the reference modes relatively accurately. However, near
the streamwise boundaries there are some significant discrepancies. Here, the VRA
modes have less support as compared to the reference modes. This difference
is likely due to the basis functions not satisfying the same streamwise boundary
conditions as the 2D modes. The basis has periodic boundary conditions while the
2D modes are treated with nonreflecting boundary conditions. The nonreflecting
boundary conditions, through the sponge, cause the SVD modes to abruptly decay
to zero near the inlet and outlet of the domain.

The narrower (larger :I) modes plotted in Figure 3.11 show relatively good agree-
ment between theVRAprediction and the SVD-basedmodes throughout the domain.
This is likely because in this case the shorter domain restricts the streamwise devel-
opment of the mean flow, (700 < '4g < 740), as opposed to the case of :I = 43.9
where (700 < '4g < 1040). Additionally, the narrower modes have less streamwise
extent and are localized in the near wall region H+ < 35 where they are less sus-
ceptible to streamwise development of the wake (Ruan and Blanquart, 2021). Since
the mean flow is nearly parallel in this region, the fact that the 1D resolvent modes
used in the VRAmodel are periodic in G is less of an impediment. However, as seen
for example in Figure 3.11c, there is still some discrepancy between the suboptimal
SVD and VRA based modes with the VRA mode being slightly shifted towards the
inlet relative to the reference mode.

Figure 12 shows all three components of the optimal forcing mode: φ1 for both
:I = 43.9 and :I = 183. We plot all three components of the forcing modes to
illustrate the component-wise amplification present in non-normal operators. For the
response modes, the streamwise component accounts for > 95% of the total norm
of the leading modes investigated here, whereas for the leading forcing modes,
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the streamwise components account for less than 5% of the total norm. In wall
bounded flows, this discrepancy in the amplification is associated with the lift up
mechanism, where disturbances with large spanwise and wall normal components
lead to flow responses with large streamwise components. Physically, this is related
to the counter rotating vortices that lead to streamwise velocity streaks as recently
reviewed by Brandt (2014). In Figure 3.13, we compare the exact singular values
and the VRA prediction. Unlike the previous examples we have analyzed, we see
that in both cases the VRA model significantly underpredicts the singular values.
The error is greater for :I = 43.9 with errors of approximately 33% in f1 compared
to around 15% for :I = 183.

In this example, the VRA model largely fails to predict the shape of the forcing
modes, most notably in the streamwise component of the forcing, and displays
significant error in the prediction of the singular values. While the cross-stream
components of the VRA approximations capture some of the features seen in the
SVD-based forcing modes, the VRA modes exhibit a c/2 phase shift not seen in
the SVD-based mode. Interestingly, the phase shift seems to be centered at different
wall normal locations for all three velocity components. We note that despite
the differences in the shape, the VRA forcing modes still replicate the component
amplitude trends of the SVD-based forcing modes. Again the significant difference
in the VRA and SVD-based singular values and forcingmodes, despite the similarity
in the responsemodes, illustrates howH acts as a directional amplifier. The resolvent
identifies the most amplified forcing mode, however, L does not preferentially
amplify the leading response. This is discussed in detail in §3.5.

Outer Modes
To illustrate the limits of our method, we consider a wavenumber frequency combi-
nation for which the resolvent mode is localized in the wake region of the boundary
layer: [:I, l] = [11.0, 2.3]. The model parameters, #:G , #2, and # 9 (summarized
in Table 3.1) were chosen such that further increasing the degrees of freedom no
longer provided a meaningful speed up over the SVD of the original system. While
the range of '4g is the same as for the mode with :I = 44, here the global re-
solvent mode has a much larger wall normal extent and is strongly affected by the
streamwise development of the mean flow (Ruan and Blanquart, 2021). Figure 3.14
shows the comparison of the VRA reconstruction of the resolvent response mode
and the true reference response mode. As is clear from the figure, the VRA model
completely fails to capture the broad support of the true mode in the outer wake
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region, and is instead much more localized closer to the wall and further upstream.
Despite the lack of agreement between the VRA prediction and the RA mode, the
VRA does reasonably predict the streamwise wavelength of the oscillations of this
outer scaled mode and the relative amplitudes between D, E, and F (not shown).
This example illustrates that for strongly streamwise dependent flows, local, and
thus streamwise periodic resolvent modes are inadequate as a modeling basis for
even qualitative reconstructions of the global resolvent modes. More generally, if
the boundary conditions of the modelling basis differ too much from those of the
system being investigated the results of the VRA reconstruction may be inaccurate.
Better agreement could potentially be obtained by artificially altering the streamwise
variation of the input basis to more closely match the desired result. While such
basis optimization is beyond the scope of this thesis, it is a focus of ongoing and
future research.

Computational Complexity
Finally, in Table 3.2 we compare the wall time and memory usage of the VRAmodel
to the SVD of the original system for the modes in §3.4. We do not include the outer
mode since this case the VRA method failed to even qualitatively replicate the true
mode. The computations were all carried out on the Richardson computing cluster
at Caltech using the same discretization and mode parameters as summarized in
Table 3.1. The direct SVD computations include the inversion and SVD of L2�

using the LU decomposition and Arnoldi method described above. For the VRA
model the computation includes the computation of the local resolvent mode basis
as well as the construction and spectral decomposition of the variational matrices
(3.19). Both methods require the construction of L2� and thus we do not include it
in this comparison. The construction of L2� takes approximately 90 and 20 seconds
for :I = 43.9 and :I = 183, respectively. For both cases, we see a roughly 97%
reduction in wall time. The memory savings are significant but less drastic at 42%
and 76%, respectively. While the VRA model does not require any inversion, it still
requires knowledge of the full size 4#G#H×4#G#H matrixL2� leading to thesemore
modest gains in memory usage. We acknowledge that in this case, the VRA method
does not reproduce the SVDmodes exactly and so this comparison should be viewed
in the context of a trade-off in cost and accuracy. However, considering that the
VRA model replicates all the characteristic features of the SVD modes, we believe
our method alleviates a significant computational bottleneck in the computation of
resolvent modes of non-periodic 2D systems such as the ZPGTBL considered here.
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:I l #G #H #:G #2 #(+� 2<8= 2<0G
#:G#2#(+�

4#G#H
43.9 1.8 192 81 26 3 6 0.2*∞ 0.65*∞ 1/133
183 3.6 96 81 16 3 1 0.05*∞ 0.25*∞ 1/648
11.0 2.3 192 81 32 6 10 0.6*∞ 0.99*∞ 1/33

Table 3.1: Global parameters (:I, l), spatial discretization of the full system
(#G , #H), modeling parameters of the VRA model (#:G , #2, #(+� , 2<8=, 2<0G), and
model reduction from full system to VRA model.

Method Wall time RAM used
LU/Arnoldi SVD (:I = 43.9) 72 min 5.98 GB

VRA (:I = 43.9) 2 min 3.47 GB
LU/Arnoldi SVD (:I = 183) 14 min 5.34 GB

VRA (:I = 183) <1 min 1.26 GB

Table 3.2: Wall time and memory requirements for the LU/Arnoldi-based SVD and
the VRAmodel with the parameters in Table 3.1. The construction of linear operator
L2� is required for both methods and is thus not included in this comparison.

(a) (b)

(c) (d)

Figure 3.10: First four resolvent response modes (ψ 9 ): real part of the streamwise
component D. 9 = 1, 2, 3, 4 (a - d) for '4g ≈ 700 and [:I, l] = [43.9, 1.8]. Top
panels: true global modes, bottom panels: VRA model. Upper x-axis: represents
outer units G, lower x-axis represents inner units G+. Model basis parameters are:
#:G = 26, #2 = 3, #(+� = 6.



42

(a) (b)

(c) (d)

Figure 3.11: First four resolvent response modes (ψ 9 ): real part of the streamwise
component D. 9 = 1, 2, 3, 4 (a - d) '4g ≈ 700 and [:I, l] = [183, 3.6]. Top
panels: true global modes, bottom panels: VRA model. Upper x-axis: represents
outer units G, lower x-axis represents inner units G+. Model basis parameters are:
#:G = 16, #2 = 3, #(+� = 1.
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3.5 Sensitivity Analysis: The Influence of Rank and Condition Number
In both §3.3 and §3.4, we observed that even when the resolvent response modes,
ψ 9 , were modeled accurately by the VRA method, the singular values, f9 , and the
forcing modes, φ 9 = f9Lψ 9 , may be susceptible to significant error. This is due to
the directional amplification of the resolvent operator H which in the classical CT
view of RA minimizes error in the response to errors in the forcing, but in this VRA
framework amplifies errors in the predicted forcing due to errors in the response.
This phenomenon can be demonstrated using the definition of the SVD (2.5). We
note that similar analysis has been performed by Schmid and Brandt (2014), who
considered the sensitivity of the eigenvalues and eigenvectors of the linearized NS
operator to wide range of types of perturbations.

Consider the action of H and L on arbitrary inputs φ̃ and ψ̃, respectively:

Hφ̃ =
∑
9

f9ψ 9

〈
φ 9 , φ̃

〉
(3.73)

Lψ̃ =
∑
9

f−1
9 φ 9

〈
ψ 9 , ψ̃

〉
. (3.74)

where φ̃ and ψ̃ have unit norm. Suppose we chose φ̃ = 0φ1 + 1f and ψ̃ = 0ψ1 + 1q
such that 〈φ1, f〉 = 0 and 〈ψ1, q〉 = 0 as separate approximations for φ1 and ψ1,
respectively. Equation 3.73 demonstrates that the higher order response modes are
weighted by f9 < f1 for 9 > 1, indicating that the component of φ̃1 along φ1 is
weighed more heavily than the error f when approximating the leading response
mode. On the contrary, (3.74) demonstrates that the output in the direction of φ1

is weighted by the smallest singular value of L, f−1
1 , whereas the higher order

components are weighted by the larger singular values, f−1
9

with 9 > 1. When
using (3.10) to predict φ1 based on an approximation of ψ1, this projection of the
error onto higher order modes corrupts the prediction by weighing the output onto
higher order forcing modes.

The differences between the error in approximating the gain in H and L can be
quantified through a perturbation analysis of the singular values. The singular
values are related to the resolvent response and forcing modes by

f2
9 =

(
Hφ 9

)� Q
(
Hφ 9

)
=

( (
Lψ 9

)� Q
(
Lψ 9

) )−1
. (3.75)

We consider the sensitivity of f9 to perturbation in either the resolvent forcing or
response modes: ψ 9 ,n = ψ 9 + nr and φ 9 ,n = φ 9 + ng, where n � 1 and | |ψ 9 | | =
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Leading resolvent forcing mode (φ1) for '4g ≈ 700. [:I, l] =
[43.9, 1.8], 5D(a), 5E(c), 5F(e). [:I, l] = [183, 3.6], 5D(b), 5E(d), 5F(f). In each
subplot, top panels: true global modes, bottom panels: VRA model.Upper x-
axis: represents outer units G, lower x-axis represents inner units G+. Model basis
parameters are the same as in Table 3.1.

(a) (b)

Figure 3.13: Singular values from the direct SVD (red squares) and variational
reconstruction (black circles) at '4g ≈ 700. [:I, l] = [43.9, 1.8] (a), [:I, l] =
[183, 3.6] (b).
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(a) (b)

Figure 3.14: Real part of optimal resolvent response mode (ψ1) for [:I, l] =
[11.0, 2.3]: D (a) and E (b). Top panels: true global modes, bottom panels: VRA
model. Upper x-axis: represents outer units G, lower x-axis represents inner units
G+.

| |φ 9 | | = | |r| | = | |g| | = 1. We define the perturbed singular value: f9 ,n ,! ≡ f9
(
ψ 9 ,n

)
and f9 ,n ,� ≡ f9

(
φ 9 ,n

)
. We may then derive the bounds on the error induced by the

n small perturbation in the singular modes:

|f9 ,n ,! − f9 |
f9

≤ nf9 | |L| | (3.76)

|f9 ,n ,� − f9 |
f9

≤ n f1
f9
. (3.77)

The details of the derivation are included inAppendixA.5. We can perform a similar
analysis to investigate the sensitivity of the predicted forcing modes to perturbations
in the response modes and vice versa.

φ 9 ,n ,k ≡ f9 ,n ,!L
(
ψ 9 + nr

)
(3.78)

ψ 9 ,n ,q ≡ f9 ,n ,�H
(
φ 9 + ng

)
(3.79)

Here the f9 ,n ,! and f9 ,n ,� are the same as defined above. The error in the resolvent
modes may be bounded as follows

‖φ 9 ,n ,k − φ 9 ‖ ≤ n
(
f9 ‖L‖ + 1

)
f9 ‖L‖ (3.80)

‖ψ 9 ,n ,q −ψ 9 ‖ ≤ n
(
f1
f9
+ 1

)
f1
f9

(3.81)

where again we relegate the details to Appendix A.6. These results imply that as
long as f9/f1 is not too large an O(n) perturbation to φ leads to an error of $ (n)
in f and φ; however, an $ (n) perturbation in ψ leads to an error in f and φ that
is expected to be larger by a factor of f9 ‖L‖. To analyze how large the factor
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is expected to be, we follow the analysis of Symon et al. (2018) and consider the
spectral decomposition of L = V�V−1 which allows us to rewrite (3.76) as

|f9 ,n ,! − f9 |
f9

≤ n^
f9

f<8=
≤ n^ f1

f<8=
(3.82)

where

f<8= ≡ min
f9∈�H

f9 =

(
max

_ 9∈�(L)

(
_ 9

) )−1
(3.83)

is the minimum singular value of the resolvent and ^ ≡ ‖V‖‖V−1‖ is the condition
number. The latter is always greater than one and quantifies the non-orthogonality
of the eigenvectors, and thus the non-normality of the operator. This non-normality
leads to the phenomenon of pseudo-resonance, where small perturbations to the
operator lead to large perturbations to the eigenvalues (Trefethen and Embree, 2005).
Thus, there are two mechanisms which lead to an increased sensitivity of singular
values and forcing modes to perturbations in the response modes. First, the relative
resonant amplification of the mode quantified by f9/f<8=, and second, the pseudo-
resonant amplification of the linear dynamics quantified by ^.

Perturbation Analysis of a Simplified Example
To illustrate the effects of resonant and pseudo-resonant amplification on the error
in singular values and singular modes, we compute |f1,n ,! − f1 |, |f1,n ,� − f1 |,
|q1,n ,! − q1 |, and |k1,n ,� − k1 | for the model operator

L =

[
0 2

0 1

]
(3.84)

for a range of n . To test the resonant amplification, we compare the error in singular
values for normal operators L with the parameters set to [0, 1, 2] = [1, 1.5, 0] and
[0, 1, 2] = [1, 50, 0]. To test the pseudo-resonant effects, we introduce and vary the
off-diagonal term 2 that makes L non-normal. We compare [0, 1, 2] = [1, 1.5, 0.1]
and [0, 1, 2] = [1, 1.5, 5]. In each case, we set the perturbation vectors r and g to be
orthogonal to k1 and q1, respectively. The error in singular values is plotted in the
top row of Figure 3.15 and the error in the singular modes is plotted in the bottom
row of Figure 3.15. These plots reveal that, as expected, the error grows with n ,
but, when the resonant or pseudo-resonant effects are increased, the error due to a
perturbation in ψ is greater by several orders of magnitude than the error due to
perturbations in φ. The error in singular modes is proportional to n as predicted
by the derived error bounds, while for small n the error in singular values actually
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grows as n2. This is due to the fact that for this toy problem the perturbation is
chosen to be orthogonal to the singular vectors which causes the O(n2) contribution
to dominate.

Implications and Limitations
This analysis illustrates an inherent drawback of the proposed VRA-based method.
The benefits of circumventing the inversion of the linear dynamics come at the cost
of losing the directional amplification of the resolvent operator. Since H = L−1, the
largest singular values of H correspond to the smallest singular values of L and vice
versa. Thus, the action ofL on the response modes, as in (3.10), amplifies the higher
order forcing modes. Furthermore, the greater the singular value separation of H,
the more difficult it becomes for spectral decomposition algorithms to disambiguate
the desired modes from numerical artifacts and other spurious modes. This marks a
difference between VRA and RA algorithms that approximate the SVD with matrix
sketching where the convergence is improved when H is low rank (Ribeiro et al.,
2020). From a practical point of view these issues are compounded by the fact that
it is difficult to accurately compute the smallest eigenvalues of a matrix. Even if the
order reduction A/= � 1 is significant, the reduced matrix of size A × A may still be

Figure 3.15: Top row: relative error in singular value, normal(2 = 0): 1/0 = 1.5
(a), 1/0 = 50 (b), non-normal: 2/0 = 0.1 (c), 2/0 = 5 (d). Bottom row: relative
error in singular modes, normal(2 = 0): 1/0 = 1.5 (e), 1/0 = 50 (f), non-normal:
2/0 = 0.1 (g), 2/0 = 5 (h). Color code: error due to perturbation to k (solid black),
error due to perturbation to q (solid red), and derived upper bound (dashed green).
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sufficiently large such numerical issues may be a limiting factor. However, the focus
of this thesis is the theoretical framework, and not the optimization of the numerical
algorithms involved, and thus a detailed analysis of the numerical error is beyond
the scope of this work.

Furthermore, since our method relies on multiplication by the generally non-normal
linear operator L to recover the forcing modes through (3.10), the VRA approxima-
tion of these forcing modes is susceptible to errors if ^(L) is large. Although we
note that since the matrices in (3.19) are normal, the VRA-based estimation of the
resolvent response modes is robust to the non-normality of the linear dynamics.

Another factor leading to the increased error in the singular values and forcingmodes
we have observed is that the continuous linear differential operators being analyzed
have unbounded spectra. Therefore, the maximum eigenvalue of the discretized
operator L ∈ C=×= grows with its size =. In particular, we expect the maximum
eigenvalue of second order differential equations like the ones considered here to
scale with =2. However, depending on the numerical discretization used, the largest
eigenvalues may be spurious, as in the case of Chebyshev differentiation matrices,
where the largest eigenvalue scales with =4 for these second order differential equa-
tions (Trefethen, 2000). This implies that the VRA reconstruction of the singular
values and forcing modes becomes increasingly sensitive to errors in the response
modes as the number of basis elements grows.

These are noteworthy limitations of our proposed method since the cost saving
potential of the proposed method is greatest for larger systems and, in many flows
of interest, the resolvent operator is, in fact, low rank. Nonetheless, in most cases
the aim of equation-driven modal analysis techniques such as resolvent analysis is
to identify coherent structures or obtain an efficient modeling basis (Rosenberg and
McKeon, 2019b; Nogueira et al., 2019; Barthel et al., 2021). In these cases, the
resolvent response modes, which our method can predict independent of condition
number or singular value separation, are of primary interest. In the resolvent
formulation of the nonlinear NSE, the forcing modes arise through their projection
onto the nonlinear interaction of the response modes: 〈φ,ψ · ∇ψ〉 (McKeon, 2017;
Barthel et al., 2021). As discussed in §3.5, the error in the forcing modes arises due
to higher order ( 9 � 1) response modes with very small f9 being amplified through
the action of L. However, since these higher order modes are not expected to be
dynamically relevant (Morra et al., 2021), especially if the resolvent is low rank, they
generally will not have significant projection onto the actual nonlinear interaction
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of the response. This may, in some cases, ameliorate the practical implications of
the error in forcing modes since even if there is significant error in φ, the error in
the relevant metric, 〈φ,ψ · ∇ψ〉, is expected to be small.

3.6 Discussion
The examples presented in this chapter illustrate the avenues of progress enabled
by the VRA formulation of resolvent analysis. First, circumventing the inversion
of the linear operator in the definition of the resolvent modes allows for analytical
manipulation. This facilitates the derivation of scaling laws and parametric depen-
dencies as we have done in §3.2. Second, from a numerical point of view, the VRA
method avoids the calculation of a matrix inverse and applying expensive linear
algebra decompositions to the matrices. Figure 3.16 outlines the matrix operations
and computational complexity of the VRA method presented herein and the direct
SVD. For a matrix of dimension = × =, calculating the inverse, performing an LU
decomposition, and applying an SVD are each O(=3) operations. The resolvent ma-
trix, calculated as the inverse of a matrix, is in general, a dense matrix which leads
to large memory costs in terms of storage. Even avoiding the inverse by applying
the LU decomposition as explained in §3.4 would require storage of large dense tri-
angular matrices. Typically when the Linearized NS (LNS) operator is discretized,
the resulting matrix is sparse. Sparse matrices have the advantage that only their
nonzero elements are stored and sparse matrix operations can be computed more
efficiently. Even though the discretizations described herein use spectral methods,
the discretized LNS operator described in §3.4, L2� , boasts sparsity of less than 1%.
In the VRA method, the sparse discretized LNS operators are only used for matrix
multiplication with the basis to create the A × A matrices M and Q for the eigenvalue
problem in (3.19). Since the analytical form of the LNS operator is known, the
matrix multiplications can be avoided altogether if the basis is defined with analytic
functions, as demonstrated in §3.2. Although the resulting matrices M and Q are
dense, the eigenvalue problem can be solved almost trivially with standard methods
as it scaled with O(A3) where A � =. Even if the number of basis elements, A,
becomes large, the eigenvalue problem could be solved with approximate methods
like the Arnoldi Algorithm with the Shift and Invert method.

We acknowledge that the the computational cost comparison we have made may not
reflect the exact speed up enabled by our method, since these sparsity promoting
strategies could of course also be applied to the SVD based techniques. Utilizing the
shift and Invert method for example can lead to operation counts which are of order
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=1.5, or =2 rather than the =3 of more straightforward approaches. One example of a
direct method for the computation of global resolvent modes is the one way Navier
Stokes equations (OWNS) proposed by Towne et al. (2021) which addresses the
computation of resolvent modes for slowly varying base flows such as the ZPGTBL
considered here. The OWNS framework splits the action of the linear operator into
upstream- and downstream-traveling components and is thus of particular use in
compressible flows, which are beyond the scope of this work. This thesis is primarily
concerned with the fundamental variational framework of resolvent analysis. We
view the VRA based computation of global modes described here as simply one
potential application of this framework, and therefore the algorithmic optimization
thereof is beyond the scope of this thesis.

As discussed in §3.5, the VRA method is prone to error in predicting the singular
values and forcing modes when there is strong non-normality or the operator is very
low rank. In this sense, the herein proposed VRAmethod provides a natural compli-
ment to the recently developed randomized resolvent analysis method proposed by
Ribeiro et al. (2020), which is particularly effective when the resolvent is low rank.
However, we reiterate that response modes can be modeled accurately regardless
of these properties and at a fraction of the cost of a direct SVD. Furthermore, it is
these response modes that are generally of primary interest. They have been shown
to be an efficient basis for a variety of flows including turbulent jets (Schmidt et al.,
2018; Pickering et al., 2021), boundary layers (Sipp andMarquet, 2013; Rigas et al.,
2021), exact coherent states, (Sharma et al., 2016; Rosenberg and McKeon, 2019b)
and others. Notably, Sharma et al. (2016) showed that using five response modes
per Fourier mode for the N3L lower branch solution in a pipe, fluctuations were
reconstructed retaining 98% of the fluctuation energy. Using only one response
mode per Fourier mode, they were able to reconstruct 95% of the fluctuation energy.
Towne et al. (2018) also studied the similarities between RA and SPOD. They found
that the response modes and the data driven SPODmodes are equivalent when there
is uncorrelated, white-noise forcing. This implies that in certain conditions RA
could be used as a predictive tool to model near wall structures in the simulation
of high Reynolds number wall bounded flows, where large numerical resolution is
needed to resolve the near wall structures. Furthermore, since the proposed method
is derived directly from the definition of the forced linear system, the method is not
fundamentally limited to linear systems or a certain type of input basis.

The primary limitation is that the spatial support of the input basis needs to overlap
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with the spatial support of the resolvent modes being estimated. In particular we
saw in §3.4 that a sufficiently strong mismatch between the boundary conditions
of the input basis and the linear operator can lead to significant errors in the VRA
reconstruction. In general, a critical layer mechanism (as in §3.3) or scaling laws
(as in §3.4) dictate the spatial localization and length scale of resolvent modes and
thus one can reliably predict this region of support a priori. However, for flows
where the general region of spatial support can not be predicted, a larger input basis
with a broader range of wave numbers and spatial support may be necessary. We
found the most important parameter is the number of retained spatial wavenumbers,
#:I or #:G , and if the largest relevant wavenumber is not known a priori it may be
necessary to progressively increase these parameters until convergence is obtained.
Additionally, unlike some recent equation-free methods such as Herrmann et al.
(2021), our method relies on knowledge of the linearized dynamics of the system,
which in some cases may not be known a priori. In this regard the primary challenge
is generally lack of knowledge of the mean flow. However, recently several authors
have developed methods to efficiently estimate the mean dynamics for a range
of flows (Mantič-Lugo et al., 2014, 2015; Rosenberg and McKeon, 2019a). Such
techniques could be combinedwith themethod presented in this chapter to efficiently
compute resolvent modes in situations were the mean dynamics are unknown, or
would be costly to compute directly, although this is beyond the scope of this thesis.
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Figure 3.16: Comparison of the matrix operations and computational complexity
involved in the VRA and SVD-based computations of resolvent modes. VRA
operations are shown in blue, SVD operations are shown in red.

3.7 Summary
In this chapter, we have suggested an alternative conceptual framework based on
the calculus of variations from which to view resolvent analysis. In this variational
framework, the resolvent response modes are defined as the stationary points of an
operator norm subject to a relevant norm constraint. We proved that this variational
formulation is equivalent to the standard SVD-based definition, and introduced
a method to estimate the resolvent modes of complex systems as expansions in
lower dimensional basis functions. This formulation is a contrast to the traditional
control theory inspired framework. The crucial advantage of this formulation and the
method presented herein is the lack of reliance on the inversion of the linear operator,
which from a theoretical point of view allows for easier analytical manipulation, and
from a practical point of view, enables drastic model reduction and leads to a
significant reduction in computational complexity.

The analytical advantages were illustrated on the example of streamwise constant
structures in a turbulent channel flow, where we derived a closed form solution
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to the Euler-Lagrange equations governing the optimal resolvent mode. Resolvent
modes have shown to encode physically relevant features of turbulence (McKeon,
2017), and therefore we believe the improved analytical tractability of the variational
formulation will open the door to the further understanding and discovery of the
underlying physics.

The numerical advantages were illustrated first for both a 2D/3C equilibrium solu-
tion in plane Couette flow and a streamwise developing turbulent boundary layer.
In the first example, we showed that if the model basis satisfies the same boundary
conditions as the full system, the VRA model converges to the true modes as more
basis are included in the VRA model. In the second case, we showed that even
if the basis does not satisfy the correct boundary conditions, and the streamwise
development of the mean flow is not too strong, the VRA model is able to repro-
duce the characteristic features of the SVD-based modes with a reduction of order
of over two orders of magnitude resulting in an order of magnitude reduction in
computation time and a 40−75% reduction in RAM usage. As formulated here, the
current method fails for flows with very strong streamwise development. In such
cases, a more carefully chosen modeling basis, which already encodes some of the
anticipated streamwise development, is likely needed for our method to be viable.
This is a focus of ongoing research.

For the examples considered here the proposed method accurately modeled the
resolvent responsemodes, however we observe significant error in the reconstruction
of the forcing modes. We performed a sensitivity analysis and demonstrated that the
error in the VRA estimate of the forcingmodes is due to the directional amplification
of the resolvent and is enhanced in situations were the resolvent operator is very low
rank or highly non-normal. Nonetheless, we believe that this conceptual approach
to resolvent analysis can open the door for further analysis of the NSE and the
discovery of new physics, as well as enabling the real time computation of resolvent
modes in applications such as experiments and simulations where the cost of the
standard SVD-based approach is prohibitive.
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C h a p t e r 4

NONLINEAR MODELING OF TAYLOR VORTEX FLOW

4.1 Introduction
This chapter addresses the nonlinear aspects of resolvent modeling.1 Here the
resolvent basis is assumed to be known a priori, computed either through a direct
SVD, or through other means, such as the VRA algorithm discussed in chapter
3. This chapter focuses on approximating solutions to the nonlinear interaction
coefficient Equation (2.17) defined in Chapter 2. As a test case, we seek a flow
configuration which gives rise to stable nonlinear (non-laminar) yet relatively low
dimensional solutions. Lower dimensional (non-turbulent) solutions allow us to
study the nonlinear dynamics in a systematic manner at relatively low computational
cost. One such configuration is Taylor-Couette flow (TCF), the flow between two
concentric and independently rotating cylinders.

Taylor-Couette flow is one of the canonical problems in fluid mechanics, and a
paradigm for the study of linear stability, pattern formation, and rotationally driven
turbulence. From the original investigations of Taylor (1923) to the pioneering
experiments of Coles (1965), recent theoretical analyses (Gebhardt and Grossmann,
1993; Jones, 1981; Maretzke et al., 2014), high Reynolds number simulations (Os-
tilla et al., 2013; Ostilla-Mónico et al., 2014a; Grossmann et al., 2016; Sacco et al.,
2019), and experimental investigation (van Gils et al., 2011; Huisman et al., 2014;
vanGils et al., 2012), TCF has remained a problem of interest formost of the last cen-
tury. Perhaps the most well-known characteristic of TCF is the incredibly rich array
of stable flow states that exist over a range of geometries and relative rotation rates
of the inner and outer cylinders (Coles, 1965; Andereck et al., 1986). We consider
the case of pure inner cylinder rotation, for which the problem is parameterized by
the ratio of the inner and outer radii, [ ≡ A8/A>, and a single Reynolds number: '. In
this case the laminar velocity profile becomes linearly unstable at a critical Reynolds
number: '2 ∼ O(102). A centrifugal instability leads to the formation of a periodic
array of toroidal vortex structures known as Taylor vortices or Taylor rolls. For a
given geometry, these steady, axisymmetric Taylor vortices are stable and exist for
some range of Reynolds number in what is known as the Taylor vortex flow (TVF)

1The contents of this chapter have been published in the Journal of Fluid Mechanics, 924:A9.
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regime. As the rotation rate of the inner cylinder is increased further, the Taylor
vortices experience a secondary instability giving rise to azimuthally travelingwaves
whose phase speed is determined by the geometry but whose azimuthal periodicity
is not unique (Coles, 1965). This regime is known as wavy vortex flow (WVF) and
is characterized by being time periodic in a stationary reference frame but steady
in a frame corotating with the traveling wave (Marcus, 1984). WVF is again stable
for some range of Reynolds numbers before the traveling waves themselves become
unstable, and a second temporal frequency arises causing the traveling waves to
become modulated in space and time in what is known as modulated wavy vortex
flow (MWVF). As the driving of the inner cylinder is increased further still, the flow
becomes disordered and begins to transition to turbulence. However, while the main
sequence of transitions from laminar flow to the bifurcation to TVF at '2 ≈ 100, to
WVF, to MWVF, and finally on to turbulence at ' ≈ 1000 occurs over a relatively
narrow range of Reynolds numbers, the large scale Taylor vortices are present up to
' ∼ O(105) (Grossmann et al., 2016).

In recent years, there has been renewed interest (Dessup et al., 2018; Sacco et al.,
2019) in the dynamics of TVF and WVF as a model system to study the self-
sustaining process (SSP) proposed by Waleffe (1997). The SSP consists of stream-
wise rolls which advect the mean shear giving rise to streaks of streamwise velocity,
which become unstable to wave-like disturbances, which in turn nonlinearly inter-
act to sustain the rolls (Waleffe, 1997; Hamilton et al., 1995). Dessup et al. (2018)
performed direct numerical simulations (DNS) to show that themechanism of transi-
tion from TVF to WVF follows the same path as described in the SSP: the traveling
waves of WVF arise due to an instability of the streamwise velocity component
(streaks) of TVF with the cross-stream velocity (rolls) playing a negligible role in
the instability mechanism. Sacco et al. (2019) extended this line of study to higher
Reynolds numbers and showed that despite their origin as a centrifugal instability,
turbulent Taylor vortices are preserved in the limit of vanishing curvature and are
thus not dependent on rotational effects, but rather are sustained through a nonlinear
feedback loop between the rolls and streaks.

The SSP is believed to be one of the building blocks of turbulence and thus the study
of self sustaining solutions of the Navier-Stokes equations (NSE), known as exact
coherent states (ECS) has been of great interest to researchers since they were first
discovered byNagata (1990). The field has grown immensely since in the intervening
years and we make no attempt to summarize it all here. Of primary interest is the
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observation that many of these solutions resemble streamwise elongated vortices
and streaks, and thus resemble structures observed in experiments and simulations
of turbulent flows (Beaume et al., 2015). This has led to the idea that ECS make up
the phase space skeleton of turbulence, and that the observation of these structures
indicates the turbulent trajectory passing by one of these ECS solutions.

Due to the significant mathematical simplification, it is useful to model these elon-
gated structures as being infinitely long in their streamwise extent. Illingworth
(2020) studied the linear amplification mechanism of such streamwise invariant
structures to identify the most amplified spanwise length scales in both channel and
plane Couette flow (PCF), and found that the latter was far more efficient in ampli-
fying these structures. However, no structures actually observed in channel or plane
Couette flow are truly invariant in the streamwise direction. Additionally, ECS are
generally unstable; while the turbulent trajectory may visit these states, they do not
actually persist in nature. TVF is thus a valuable test case to study the nonlinear
dynamics sustaining ECS in general since it is in fact a stable solution observed in
experiment and due to the cylindrical geometry is exactly streamwise constant.

In this chapter, we use optimization-based methods to explicitly model the self-
sustaining nonlinear system. This helps us bridge the gap between linear stability
theory, which accurately predicts the genesis of Taylor vortices, and higher Reynolds
numberswhereTaylor vortices are sustained by fully nonlinearmechanisms as shown
by Sacco et al. (2019).

4.2 Mathematical Description
In Chapter 3, we considered a variety of flow configurations and geometries, with
the focus of deriving the resolvent modes of general linear operators. Here we
focus specifically on the flow of an incompressible Newtonian fluid with kinematic
viscosity a between two concentric cylinders. Such a flow is governed by the NSE
in cylindrical coordinates,

mũ

mC
+ ũ · ∇ũ − 1

'
∇2ũ − ∇ ?̃ = 0 (4.1)

∇ · ũ = 0 (4.2)

on the domain A ∈ [A8, A>], \ ∈ [0, 2c], I ∈ [−!I/2, !I/2]. We will consider the
case where the outer cylinder is held fixed while the inner cylinder rotates with a
prescribed azimuthal speed*8. The equations are nondimensionalized using the gap
width 3 ≡ A> − A8 and the azimuthal velocity of the inner cylinder*8. The Reynolds
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number is defined as ' ≡ *83/a. In these nondimensional variables the limits of
the radial domain are given as a function of the radius ratio [ by A8 = [/(1 − [) and
A> = 1/(1 − [). Throughout this chapter we fix [ = 0.714, for which the critical
Reynolds number '2 = 81. This [ was chosen to allow for comparison to past
studies such as Ostilla et al. (2013) and since it allows for a larger range of Reynolds
numbers for which TVF is a stable solution of (4.1).

We decompose the state [ũ, ?̃] = [D̃A , D̃\ , D̃I, ?] into a mean and fluctuating compo-
nent,

[ũ(A, I, \, C), ?̃(A, I, \, C)] = [U(A), %(A)] + [u(A, I, \, C), ?(A, I, \, C)] (4.3)

with

(·) ≡ lim
),!→∞

1
2c)!

∫ )

0

∫ 2c

0

∫ !

0
(·) 3I 3\ 3C, (4.4)

which, upon substitution into (4.1) and averaging over I, \, and C, results in the mean
momentum equation

U · ∇U − 1
'
∇2U − ∇% = −u · ∇u (4.5)

∇ · U = 0. (4.6)

Subtracting (4.5) from the full NSE then results in a governing equation for the fluc-
tuations, where we have grouped those terms which are nonlinear in the fluctuations
on the right hand side in anticipation of the following analysis.

mu
mC
+ U · ∇u + u · ∇U − 1

'
∇2u − ∇? = −

(
u · ∇u − u · ∇u

)
(4.7)

∇ · u = 0 (4.8)

U|A8 = 4̂\ , U|A> = u|A8 = u|A> = 0 (4.9)

Direct Numerical Simulation
In order to validate our model solution, we perform DNS of TCF for a range of
Reynolds number, 100 < ' < 2000, for a radius ratio [ = 0.714 and an aspect ratio
!I/3 = 12. However, our analysis is focused primarily on the cases ' = 100, 200,
and 400. The details of the numerical method can be found in Verzicco and Orlandi
(1996); van der Poel et al. (2015); Zhu et al. (2018), and the details of the simulations
performed in the context of the work presented here are summarized in Table 4.1.
Since the DNS is intended as a reference, and not a result of this research, the
numerical details of the simulation were not necessarily optimized for maximum
efficiency.2

2The numerical simulations were performed by our collaborator Xiaojue Zhu.
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' #A #\ #I DOF (#A × #\ × #I)
100 101 768 512 39,714,816
200 101 768 512 39,714,816
400 129 768 512 50,724,864
650 129 768 512 50,724,864
1000 193 1024 640 126,484,480
2000 193 1024 640 126,484,480

Table 4.1: Numerical details of DNS

Resolvent Modeling
Here we apply the resolvent framework introduced in Chapter 2 to the set of Equa-
tions (4.7-4.9) under the assumption that the one dimensional mean velocity profile
U(A) is known. Chapter 5 discuss how the mean flow may be predicted from the
laminar profile, without relying on data. We briefly review the derivation presented
in Chapter 2, and go into detail of the specific case of the NSE in a cylindrical
geometry. We begin by writing (4.7) and (4.8) as a balance between the linear
dynamics and the nonlinear term which we group into a forcing term denoted by f
as introduced in (2.7). For notational simplicity we define the state u to include both
the three components of velocity, [DA , D\ , DI] as well as the pressure ?. We then
Fourier transform the state u(A, I, \, C) and the nonlinear forcing f (A, I, \, C) in time
as well as the homogeneous spatial directions, I and \. For a function q(A, I, \, C)
the Fourier transform is defined as

q̂(A, :I, =, l) ≡
∫ ∞

−∞

∫ ∞

∞

∫ 2c

0
q(A, I, \, C)4−8(:I I+=\−lC) 3\ 3I 3C. (4.10)

Because the domain is periodic in the azimuthal direction and we formally consider
the case !I = ∞, we have = ∈ Z and :I, l ∈ R. This results in system of
coupled ordinary differential equations (ODEs) for the Fourier modes ûk(A) and
f̂k(A) parameterized by the wavenumber triplet k ≡ [:I, =, l].

(Lk − 8lM) ûk = f̂k (4.11)

The explicit expressions for the Fourier transformed linear operator Lk and the
weight matrix " are given in Appendix B.1. As introduced in Chapter 2, a singular
value decomposition (SVD) of the resolvent provides an orthonormal basis for the
velocity as well as the forcing. In this geometry the resolvent modes ψk, 9 and φk, 9

are vector fields over A which are orthonormal with respect to an !2 inner product
over the three velocity components
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〈a, b〉 ≡
∫ A>

A8

0∗< (A)1< (A) A 3A (4.12)

with associated norm
‖a‖ ≡ 〈a, a〉1/2 (4.13)

where summation over < is implied, such that

〈ψk,8,ψk, 9 〉 = 〈φk,8,φk, 9 〉 = X8 9 . (4.14)

In this basis, each Fourier mode of the velocity and forcing may be written as

ûk =
∞∑
9=1
fk, 9 jk, 9ψk, 9 (4.15)

f̂k =
∞∑
9=1

jk, 9φk, 9 (4.16)

where jk, 9 ≡ 〈qk, 9 , f̂k〉 represents the projection of the (unknown) forcing onto the
forcing modes.

Symmetries of Taylor Vortex Flow
The various flow states observed in TCF (TVF, WVF, and MWVF) may be defined
by their spatio-temporal symmetries (Rand, 1982). We define TVF, the focus of
this study, as a solution to (4.1) which is steady, axisymmetric, and axially periodic
with fundamental wavenumber VI, meaning we restrict ourselves to wavenumber
vectors of the form k = [:I, =, l] = [:VI, 0, 0] where : ∈ Z. This fundamental
wavenumber VI is related to the axial height of the Taylor vortices and is generally
constrained by the experimental apparatus or computational box since the domain
must contain an integer number of vortices. The resolvent formulation assumes
an infinite axial domain so the choice of VI is not immediately obvious. However,
we found that the results shown in here are robust to changes in VI as long as
c/2 . VI . 4c/3. Therefore, we choose the axial periodicity of our model to match
that observed in our DNS, allowing for a direct comparison between our model and
the DNS. The specific values of VI are listed in Table 4.2. Given these symmetries,
our model solution will consist of an expansion in Fourier modes

u(A, I) =
#:∑
:=1

û: (A)48: VI I + 2.2. (4.17)

where each Fourier mode û: is itself an expansion in resolvent modes given by
(4.15) and 2.2. denotes the complex conjugate. We truncate the model at #: Fourier



60

modes, each of which is expanded in # :
(+�

resolvent modes such that the final form
of the TVF solution is given by

u(A, I) =
#:∑
:=1

# :
(+ �∑
9=1

f:, 9 j:, 9ψ:, 9 (A)48: VI I + 2.2. (4.18)

Treatment of the Nonlinearity
At any given wavenumber, the forcing f̂: is given by a convolution sum of the
interactions of all triadically compatible velocity modes.

f̂: = −
∑
<≠0

∑
=≠0
(û< · ∇û=) X<+=,: (4.19)

Here X0,1 is the Kronecker delta which implies that the forcing at a given wave
number : contains only interactions between Fourier modes whose wavenumbers
sum to : . Throughout this chapter, we use the terminology “:1 = :2+ :3” to refer to
a single (resonant) triad involving the nonlinear interaction between Fourier modes
with wavenumbers :2 and :3 forcing the Fourier mode with wavenumber :1.

Equating the two expressions for the forcing mode given by (4.16) and (4.19) and
substituting (4.15) for the velocity modes gives
∞∑
9=1

j:, 9φ:, 9 =
∑
<≠0

∑
=≠0

∞∑
?=1

∞∑
@=1
−j<,?j=,@f<,?f=,@

(
ψ<,? · ∇ψ=,@

)
X<+=,: . (4.20)

Projecting both sides of (4.20) onto each forcing φ:,8 and dropping the summation
symbols for simplicity gives

j:,8 = j<,?j=,@#:<=,8?@ (4.21)

where the complex scalars #:<=,8?@ are called the interaction coefficients and are
given by

#:<=,8?@ ≡ −f<,?f=,@ 〈φ:,8,
(
ψ<,? · ∇ψ=,@

)
〉X<+=,: (4.22)

which, critically, can be computed solely from knowledge of the linear operator H.

Nonlinear interactions between the velocity fluctuations also appear in the divergence
of the Reynolds stress on the right hand side of (4.5). This term is referred to as the
“mean forcing” and is given by the sum of nonlinear interactions of all the û: and
their complex conjugates û−: , which can be directly interpreted as (4.19) evaluated
at : = 0:

u · ∇u =
∑
:≠0
(û: · ∇û−:+û−: · ∇û: ) . (4.23)
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At this point, we would like to reiterate that the mean velocity profile is assumed
to be known a priori. Thus the left hand side of (4.5), and therefore the Reynolds
stress divergence on left hand side of (4.23), is also known.

We have thus reduced the NSE (under the assumption of a known mean velocity)
to the infinite system of coupled polynomial equations (4.21) for the complex co-
efficients jk, 9 with the auxiliary condition that (4.23) is satisfied. While deriving
an exact (nontrivial) solution to (4.20) may be a daunting task, we will demonstrate
that approximate solutions can be efficiently computed by minimizing the residuals
associated with (4.21) and (4.23).

Optimization Problem
We have recast the NSE in the language of resolvent analysis as

j:, 9 − j<,?j=,@#:<=, 9 ?@ = 0, ∀ :, 9 (4.24)

u · ∇u − f0,: ′,?@j: ′,?j
∗
: ′,@ = 0, (4.25)

f0,:,?@ ≡ f:,?f:,@
(
ψ̂:,? · ∇ψ̂∗:,@ + ψ̂

∗
:,@ · ∇ψ̂:,?

)
, (4.26)

wherewehave expanded the velocity Fouriermodes in their resolvent basis according
to (4.15), and summation over <, =, and :′ is implied. We truncate the expansion
at some number of harmonics, #: , of the fundamental wavenumber, and at each
retained harmonic we truncate the singular mode expansion at # :

(+�
such that the

total number of retained modes is # =
∑#:
:=1 #

:
(+�

. We seek to minimize the
residuals (in the sense of the !2 norm) associated with (4.24) and (4.25), and thus
formulate the following optimization problem:

min
j:, 9

62(j:, 9 ) = 062
0 (j:, 9 ) + (1 − 0)6

2
CA803 (j:, 9 ). (4.27)

The first and second terms on the right hand side in (4.27) are defined as the mean
constraint,

60(j:, 9 ) ≡
‖u · ∇u − f0,: ′,?@j: ′,?j

∗
: ′,@ ‖

‖u · ∇u‖
, (4.28)

and the triadic constraint,

6CA803 (j:, 9 ) ≡ |j:, 9 − j<,?j=,@#:<=, 9 ?@ |. (4.29)

The former represents the residual in the mean momentum equation (4.5), while
the latter represents the residual in the equation for the fluctuations (4.7). The user
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defined weighting parameter 0 ∈ (0, 1) determines the relative penalization of each
of these two constraints in the residual. This optimization problem differs in two
main ways from a harmonic balance (HB) approach such as described in Rigas
et al. (2021), where the NSE are solved directly in the frequency domain. First,
the current approach assumes the mean velocity is known a priori, where as in the
HB framework the mean velocity is computed online in a self consistent manner.
Second, unlike the HB approach which minimizes the residual of the equations
governing each Fourier mode in parallel, the current approach minimizes the sum
of the integrated error in the mean and fluctuation equations.

At this point, we would like to highlight several important aspects of problem (4.27).
First, we reiterate that the left hand term in the mean constraint (4.28) is a known
function since the mean velocity profile is assumed to be known a priori. Second,
we emphasize that we have assumed no closure model and made no modeling
assumptions regarding the form of the nonlinear forcing in the derivation of (4.27).
Lastly, while in general the amplitudes j:, 9 ∈ C, for the special case of steady,
axially periodic, and axisymmetric solutions considered here, evaluating (4.11) and
(B.1) for ±: reveals that j:, 9 ∈ R ∀ 9 , : meaning the optimization need only be
carried out over a real valued domain. Note that if this method were applied to
non-axially periodic solutions, one would have to consider complex coefficients.

Finally, we note that while the reformulation of the NSE (4.7) in the resolvent
framework (4.24) is reminiscent of a Galerkin method (GM) where the governing
equations are projected onto some predetermined set of basis functions, the current
approach is appreciably different. Since we consider a steady process, we can
not integrate the equations forward in time as would be generally done in a GM.
Furthermore, since the resolvent framework provides a basis for both the velocity and
the nonlinearity, (4.24) is an exact representation of (4.7) whereas a GM represents
the governing equations only in an integral sense.

Solution Methodology
We solve the optimization problem (4.27) using a trust-region algorithm built into
Matlab’s 5 <8=D=2 function for ' = 100, 200, and 400. For each Reynolds number,
the mean velocity profile used in constructing the linear operator is taken from the
DNS described in §4.2. We note that various authors such as Mantič-Lugo et al.
(2014, 2015); Rosenberg and McKeon (2019a); Bengana and Tuckerman (2021)
have computed approximate mean velocity profiles from the laminar base flow
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for a range of flows. These methods approximate the Reynolds stress as the self
interaction of a single eigen- or resolvent mode. However, we note that Bengana and
Tuckerman (2021) have described conditions under which such approximation are
expected to fail. We do not employ such methods here, choosing instead to focus
on the prediction of the velocity fluctuations about a known mean flow.

The gradient and Hessian of (4.27) may be derived explicitly and are input to the
algorithm to improve accuracy. The weighting parameter 0 in (4.27) is set to 0.01
which means that the triadic constraint is penalized 99 times more heavily than
the mean constraint. This reflects the observation that the triadic constraint which
encodes the fully nonlinear governing equation for the fluctuations is far more
complex than the mean constraint which, given the fact that the mean profile is
known, is simply a least squares fit to a curve.

While this value of 0 was found to lead to the most consistent and accurate results,
the results are qualitatively robust to changes in 0 as long as 0.0005 . 0 . 0.8.
If 0 . 0.0005, i.e. the triadic constraint is weighted too heavily, the optimization
converges to the laminar state since the triadic constraint admits a trivial solution. If
0 & 0.8, the mean constraint is weighted too heavily and the optimization tends to
over fit to the input mean. Since the triadic constraint is simply a least squares fit to a
known curve, the error can in principle be reduced arbitrarily with increased degrees
of freedom. However, this does not guarantee that the resulting local minimum will
represent a realistic solution.

The optimization also requires an initial guess. For this, we solve the rank 1 formula-
tion of (4.27) using just one wavenumber, the fundamental, and one resolvent mode,
in which case the minimum can be found analytically, resulting in an amplitude
f1,1j1,1 ≈ 0.13. We then initialize the full optimization such that f1,1j1,1 = 0.13
and the remaining f:, 9 j:, 9 are assigned random values between -0.01 and 0.01.
This range of initial values was chosen to roughly reflect the expected roll off in the
amplitudesf:, 9 j: 9 . However, we did not find any dependence on these initial values
as long as these amplitudes were not all set to zero, in which case the optimization
tends to converge to the trivial solution.

We assess the convergence and accuracy of our model solution using three metrics.
First, we compute the final minimum residual of the cost function in (4.27) denoted
6∗. Second, we compute the error of the model solution compared to the temporal
average of the DNS solution
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43=B ≡

√√√
#:∑
:=1
‖û: − û:,3=B‖2 (4.30)

where the norm is defined in (4.13). Third, we quantify the error of our model
solution in solving the underlying governing equations (4.7), the details of which
are discussed in §4.3.

We note that the errormetric comparing ourmodel to theDNS should be viewedwith
some caution since the Fourier decomposition of the DNS involves some inherent
uncertainty. While our model is formulated in Fourier space, the DNS to which
we compare our model utilizes a finite difference method in the axial direction.
This means that the five or six Taylor vortices in the computational domain are not
necessarily exactly the same size and the fundamental wavenumber VI can only be
defined in an average sense,

VI = 2c
=A>;;

!I
(4.31)

where =A>;; is the number of Taylor vortices contained in the domain and !I is the
axial domain size. We use this average VI in the construction of our model. To
compute the DNS Fourier modes used in (4.30), we extract a single Taylor vortex
whose size is closest to the average and perform a Fourier decomposition on this
reduced domain. The largest difference between this best fit wavenumber and the
average we observed was 0.5%. Since the radial shape of the Taylor vortices is
expected to differ slightly with axial size it is unclear whether minor differences
between our results and the DNS are due to errors in our model or uncertainties in
the Fourier decomposition of the DNS.

At ' = 400, which will be the main focus in this work, it was found that #: = 9
axial wavenumbers with # :

(+�
= 22 for : ≤ 4 and # :

(+�
= 10 for : > 4 resolvent

modes were sufficient such that we did not observe any further meaningful decrease
in the residual 6∗ with increased # . A detailed discussion of the choice of these
particular truncation values is presented in §4.3. These truncation values, the total
degrees of freedom, the axial wavenumber VI, as well as the error metrics for all
three Reynolds numbers are summarized in Table 4.2.

4.3 Results
Velocity Field Reconstruction
The final result of the model is shown in Figures 4.1 and 4.2 where we compare
the model result and the DNS. We plot the mean-subtracted azimuthal velocity D\ ,
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' 100 200 400
VI 3.67 3.67 2.62
#: 4 8 9
# :
(+�

12 ∀ : 12(: ≤ 4), 8(: > 4) 22(: ≤ 4), 10(: > 4)
# 48 80 138
6∗ 2.3 × 10−3 3.5 × 10−3 5.5 × 10−3

43=B 2.5 × 10−3 4.8 × 10−3 1.5 × 10−2

40 1.8 × 10−3 1.3 × 10−3 6.0 × 10−3

4=B4 1.2 × 10−3 2.7 × 10−3 1.5 × 10−3

Table 4.2: Reynolds numbers, fundamental wavenumber VI, truncation values,
degrees of freedom: # , final residuals: 6∗, and error metrics defined by (4.30),
(4.33), and (4.35) for the three model solutions presented.

and the azimuthal vorticity l\ = mDA
mI
− mDI

mA
for ' = 100, 200 and 400. The model

solution is axisymmetric and steady by construction, and thus the radial and axial
velocity are linked through continuity; no information is omitted by plotting l\ . As
a comparison we show the azimuthal average of the mean subtracted DNS, however
at this Reynolds number the flow is axisymmetric and steady, so the average field
shown is representative of the flow at any azimuthal location and at any instance
in time. There is good agreement between the resolvent model (top rows) and the
DNS (bottom rows). The model accurately captures the dominant structure of the
flow including the strong plumes of azimuthal velocity. The azimuthal vorticity
exhibits a checkerboard pattern of regions of roughly constant vorticity of opposing
signs. Regions of higher vorticity are concentrated near the walls, while the larger
segments in the bulk of the domain have comparatively lower levels of vorticity.
These results are in agreement with the DNS of Sacco et al. (2019), who found
that as the Reynolds number increases this concentration of vorticity at the walls is
enhanced and the bulk becomes increasingly “empty” of vorticity.

Amore quantitative assessment of the model’s accuracy is shown in figure 4.3 where
we compare the individual Fourier modes of the model solution to the Fourier modes
computed from the DNS. For clarity of presentation we focus on ' = 400 and show
only (: ≤ 4). However an analysis of the accuracy of all retained Fourier modes
for all Reynolds numbers is presented in Figure 4.4 in §4.3. Compared to the
DNS, the model slightly over-predicts the amplitude of the radial velocity for the
fundamental Fourier mode, but the wall parallel components of the fundamental
are captured almost exactly. Most striking is the good agreement of the higher
harmonics. The largest scale dominates the contribution to the Reynolds stress
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divergence and is thus determined primarily by the mean constraint, which as
mentioned previously is relatively “easy” to solve. However the smaller scales
require accurately approximating the solutions to the nonlinear triadic constraint, a
much less trivial task. Furthermore, small deviations between the Fourier modes of
themodel andDNS are not necessarily indicative of errors in ourmodel, since for the
reasons discussed above, a Fourier decomposition of the DNS incurs some inherent
uncertainty. A more rigorous assessment of how accurately our model solves the
governing equations is presented in §4.3. Additionally, Figure 4.3a compares the
DNS mean velocity profile, used as an input to the model, to the mean velocity
profile computed by solving (4.5) with Reynolds stress term replaced by the mean
forcing computed from the model itself.

1
'
∇2*̄<>34; =

∑
:≠0
(û: · ∇û−:+û−: · ∇û: ) (4.32)

The input and output mean velocity profile show very good agreement, with only
some mild discrepancy at the edge of the inner boundary layer. The error in mean
velocity may be computed as

40 ≡ ‖*̄�#( − *̄<>34; ‖ (4.33)

which is associated with residual of the mean constraint (4.28) in (4.27). However,
note that while (4.33) is written in terms of the mean velocity, (4.28) is written in
terms of the Reynolds stress divergence. The values of 40 for all three Reynolds
numbers are tabulated in Table 4.2. We generally do not use (4.33) as one of the
measures of convergence since very few modes are required to accurately capture
the mean, and thus 40 reaches a minimum long before the full nonlinear flow is
converged. This is consistent with past studies which have shown that the mean
velocity profile of various flows may be accurately modeled using the Reynolds
stress divergence of a single resolvent or eigenmode (Mantič-Lugo et al., 2014,
2015; Rosenberg and McKeon, 2019a).

Overall, the success of the model in capturing this fully developed TVF indicates
that, despite its fully nonlinear nature, the full solution remains relatively low
dimensional. Nevertheless, given the relative simplicity of the flow, the model
reduction is not as drastic as one might expect from an analysis purely of the
energetic content of the flow. At ' = 400, the velocity associated with the third
harmonic (: = 4) is two orders of magnitude less than the fundamental, and yet nine
wavenumbers must be retained in order to achieve the convergence shown here. The
dynamic importance of these energetically weak harmonics is discussed in §4.3.
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Figure 4.1: Mean subtracted azimuthal velocity D\ computed from our model (top
row) and DNS (bottom row) at (from left to right) ' = 100, 200, and 400.
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Figure 4.2: Azimuthal vorticity l\ = mDA
mI
− mDI

mA
computed from our model (top row)

and DNS (bottom row) at (from left to right) ' = 100, 200, and 400.
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Figure 4.3: Model solution (lines) compared to the DNS (symbols) at ' = 400.
Mean velocity profile, *̄, computed from Reynolds stress divergence of model
compared to input mean velocity from DNS (a). First five Fourier modes of model
solution, D̂\ , D̂A , D̂I (b-d), : = 1 (black), : = 2 (blue), : = 3 (red), : = 4 (green).

Self Sustaining Solutions: Closing the Resolvent Loop
We have shown that our model accurately captures the structure of the TVF observed
in the DNS. Now we analyze the accuracy of our model viewed from the perspective
of a self sustaining process. In other words, we assess how accurately our model
approximates a solution to the governing equations (4.7). In the resolvent framework,
the nonlinear term is interpreted as a forcing to the linear dynamics. As such,
a solution is self-sustaining if the sum of all triadic interactions at a particular
wavenumber provide the correct forcing for the response at that wavenumber. This
means that we must have

û: = H:

∑
<≠0

∑
=≠0
− (û< · ∇û=) X<+=,: ∀ :. (4.34)

Note that (4.34) is simply a restatement of (4.11) with the nonlinear forcing written
explicitly in terms of û: and that our model will generally not satisfy (4.34) exactly.
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Here we refer to the direct result of our model, i.e. the quantity on the left hand side
of (4.34), as the “primary” velocity, and we denote the right hand side of (4.34),
computed from that model solution, as the “forced” velocity. In Figure 4.4 we
plot the azimuthal component of both the primary and forced Fourier modes for all
the wavenumbers and for all three Reynolds numbers. For all Reynolds numbers
and wavenumbers agreement between the primary (open circles) and forced mode
(lines) is very good indicating that our model is indeed a close approximation of a
solution to (4.7). Figure 4.4 also shows the Fourier modes computed from the DNS
for comparison (open squares). We see that there is growing discrepancy between
the model result and the DNS modes with increasing wavenumber. However note
that the discrepancy between the model and the DNS, which is only present in the
higher harmonics, is two orders of magnitude smaller than the amplitude of the
fundamental. This discrepancy is due to the structure of the nonlinear forcing and
is discussed further in §4.3. Additionally, we note that for both the model and DNS
the mode shapes of the higher harmonics, : & 3 do not seem to differ significantly
with increasing : indicating some level of universality as the length scale decreases.

We quantify the total error in nonlinear compatibility as

4=B4 =

√√√
#:∑
:=1
‖û: −H:

∑
<≠0

∑
=≠0
− (û< · ∇û=) X<+=,: ‖2. (4.35)

This may be thought of as the total residual associated with how accurately our
model solution approximates a solution to (4.7), or in other words it represents the
final residual associated with the triadic constraint (4.29). For all three Reynolds
numbers considered, the error is O(10−3), with the exact values listed in Table 4.2.

Analysis of the Forcing Structure
Here we investigate which individual triadic interactions are most important in
sustaining the flow and how these vary with Reynolds number. As previously noted,
for ' = 200, 400, the higher harmonics: : & 5, do not contribute significantly to the
energy content of the flow yet still play a crucial role in the nonlinear forcing of the
larger structures and are necessary to achieve the convergence shown in Figures 4.1
and 4.2. To identify the mechanics underlying the forcing structure, we compute the
individual terms in the summation on the right hand side of (4.34). These individual
contributions of the forced velocity, defined as

v̂:,: ′ ≡ −H:

(
û: ′ · ∇û:−: ′+û:−: ′ · ∇û: ′ (1 − X:,2: ′)

)
(4.36)
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represent the contribution of each individual triadic interaction in (4.34) and are
shown in Figures 4.5 and 4.6 for ' = 100 and ' = 400, respectively. The individual
contributions (4.36) are plotted with colored symbols and the full Fourier mode is
plotted in black. By definition the individual contributions (symbols) sum to the
full Fourier mode (solid black). To clarify the following discussion, we define a
“(forward) forcing cascade” as the forcing of mode :0 by interactions involving
strictly modes : ≤ :0 and an “inverse forcing cascade” as the forcing of mode :0

by interactions involving at least one : > :0.

At ' = 100 ≈ 1.25'2, we observe a forcing mechanism reminiscent of a weakly
nonlinear theory where the harmonics are all driven exclusively by a forward forcing
cascade. The : = 2 mode is driven primarily by the self interaction of the : = 1
mode, the : = 3 mode is driven by the interaction of the : = 1 and : = 2 modes, and
so on. In other words, modes with wavenumber :0 do not contribute to the forcing
of modes with wavenumber : < :0.

The higher Reynolds number model solutions do not exhibit the same unidirectional
forcing cascade observed close to the bifurcation from laminar flow. We plot the
same individual triadic contributions (4.36) for ' = 400 ≈ 5'2 in Figure 4.6. For
the harmonics (: > 1), the pair of contributions due to triadic interactions involving
the fundamental (: = ±1), i.e. : = (: +1) −1 and : = (: −1) +1, have large, almost
equal amplitudes but are of opposite sign and almost cancel. The same phenomenon
is observed for the triads involving the : = ±2 mode, albeit it is not as pronounced
as for the triads involving the fundamental. This raises the question of whether
or not these components exactly cancel, and thus do not play a significant role in
the dynamics, or whether the small differences in shape and amplitude dictate the
structure of the resulting mode. To investigate this, we compute the projection of
the individual triadic contributions onto the full mode

Γ:,:−: ′,: ′ ≡
〈v̂:,: ′, û:〉
〈û: , û:〉

. (4.37)

These projections are plotted in Figures 4.7 and 4.8 for ' = 100, and ' = 400,
respectively. Each sub-figure corresponds to one Fourier mode, :1, and the color
in each tile represents the magnitude and sign of the contribution to that :1 Fourier
mode from the triadic interaction between :2 and :3. As expected from Figure 4.6,
we observe pairs of strong negative and positive correlations from the two triads
involving the fundamental, : = 1, with less pronounced, but still evident, pairing
between triads involving : = ±2. Since the Γ:1,:2,:3 represent a relative fractional
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contribution, the sum over :2 and :3 of the entries in each sub-figure is equal to
unity for all :1. Note that to improve readability the sub-figures in Figure 4.8 each
have individual color scales.

In order to quantify the importance of all triadic combinations involving a certain
wavenumber :2 to the shape of the Fourier mode with wavenumber :1, we compute
sum of the Γ:1,:2,:3 over :3 for all :1 and for all three Reynolds numbers, This
metric is plotted in 4.9. Practically this can be thought of as a summation over
the columns in each sub-figure of Figures 4.7 and 4.8 as well as the equivalent
case for ' = 200 (not shown). Figure 4.9 makes it clear that, for a given : ,
it is the two pairs of triads : = (: + 1) − 1 and : = (: − 1) + 1 as well as
: = (: + 2) − 2 and : = (: − 2) + 2 which provide the dominant share of the forcing.
We note that similar instances of destructive interference have been observed by
other authors such as Nogueira et al. (2021) in their analysis of forcing statistics in
plane Couette flow and Rosenberg and McKeon (2019b) in their interpretation of
the Orr-Sommerfeld/Squire decomposition of the resolvent operator.

The large scales at ' = 200 are driven almost entirely by the pair of triads involving
: = ±1 with the pair involving : = ±2 only becoming active for : ≥ 4. At
' = 400 the forcing is more distributed among the various triadic interactions
indicating a higher degree of nonlinearity. However, the triads involving : = ±1
and : = ±2 are clearly still dominant. In fact the contribution of the triads involving
: = ±2 is comparable and sometimes greater than the contributions from those
involving : = ±1. Nevertheless, it is the triads involving the fundamental which
have the largest amplitude contributions and display the largest degree of destructive
interference.

At this point, we would like to revisit the discrepancy between the Fourier modes
of the model solution and the DNS observed in Figure 4.4. Recall that due to the
structure of the forcing, an accurate reconstruction of a particular Fourier mode with
wavenumber :0 requires accurate knowledge of its harmonic, :0 + 1. Practically,
the model must be truncated at some point, so there will always be a maximum
wavenumber :< whose harmonic :< + 1 is unknown. Therefore there will be some
error in the reconstruction of û:< since û:<+1 is unavailable to participate in the
inverse forcing cascade described above. This error will then “back propagate”
through Fourier space until it is outweighed by the influence of the large scales and
the constraint imposed on those large scales by the input mean flow. A detailed anal-
ysis of how the Fourier space truncation affects the convergence of the optimization
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Figure 4.4: Azimuthal velocity component of the model solution’s primary Fourier
mode (open circles) and forced Fourier mode (lines) as well as the Fourier modes
from DNS (open squares) for ' = 100 (red), ' = 200 (blue), and ' = 400 (black).
Top row : = 1 − 3, middle row : = 4 − 6, bottom row: : = 7 − 9.

is beyond the scope of this work, however it is interesting to note that, while the
higher harmonics of our model solution deviate slightly from the DNS, they remain
nonlinearly compatible to a very good approximation. In other words, the primary
and forced Fourier modes of the model solution in Figure 4.4 agree very well as
quantified by the small residuals as defined by (4.35) and listed in Table 4.2.
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Figure 4.5: Azimuthal velocity component of the forced Fourier modes at ' = 100.
The individual triadic contributions, v̂:,: ′, are shown in colored symbols and the
full Fourier mode, D̂:,\ , is plotted in solid black. The sum of the individual triad
components, (symbols) add up to the total forced mode (solid black). Top row
: = 1 − 2, bottom row: : = 3 − 4.
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Figure 4.7: Projections of the velocity due to individual triadic interactions onto the
full Fourier mode, Γ:1,:2,:3 , at ' = 100. Top row : = 1 − 2, bottom row: : = 3 − 4.

The Transition from Weakly to Fully Nonlinear Taylor Vortices
Many studies have approached the nonlinear modeling of TVF through weakly
nonlinear (WNL) theory, where the general premise is that the structure of the
largest scale is given by the critical eigenmode and that the higher harmonics are
all derived from that fundamental mode (Stuart, 1960; Yahata, 1977; Jones, 1981;
Gallaire et al., 2016). Despite being formally valid for only a small range of Reynolds
numbers close to '2, the mathematical difficulties associated with the nonlinearity
of the NSE often necessitate the use of WNL methods outside this domain of
validity (Gallaire et al., 2016). Our results illuminate the physical mechanisms
which lead to the eventual failure of WNL theory as the Reynolds number increases.
WNL theory proceeds by expanding the solution in an asymptotic series about
the bifurcation point such that the leading order solution D0 is the laminar base
flow and the O(n) solution D1 is given by the critical eigenmode. The O(n2)
solution D2 as well as the mean flow correction is then found by solving the linear
system forced by the nonlinear self interaction of D1. The higher order terms may
then be similarly computed sequentially by solving a forced linear system of the
form L:D: = 5 (D1, D2, ..., D:−1). At the lowest Reynolds number considered here,
' = 100, this formulation is valid since as shown in Figures 4.5 and 4.7 the forcing
for a certain û: depends only on interactions between larger scales. However, as
discussed in §4.3, at higher Reynolds numbers the forcing is dominated by pairs of
triads, one of which involves û:+1, a mechanism which is impossible in the WNL
formulation.
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Figure 4.8: Projections of the velocity due to individual triadic interactions onto the
full Fourier mode, Γ:1,:2,:3 , at ' = 400. Top row : = 1 − 3, middle row : = 4 − 6,
bottom row: : = 7 − 9.
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This means that near the bifurcation from the laminar state a model solution of the
nonlinear flow may be truncated at the highest wavenumber of interest since a given
wavenumber depends only on its sub-harmonics. We define such a flow to be in the
“weakly nonlinear” (WNL) regime. As the Reynolds number increases the forcing
cascade is no longer only from large to small scales and an equally important inverse
cascade mechanism emerges. In this case, we define the flow to be in the “fully
nonlinear” (FNL) regime. For the case of [ = 0.714 considered here, this transition
occurs around some 100 < ' < 200. These findings indicate that if one desires to
model a certain number of harmonics of a given flow, the expansion must be carried
out to significantly higher order than the highest harmonic of interest.

Sacco et al. (2019) noted a similar transition in the dynamics of turbulent Taylor
vortices. They note that while Taylor vortices first arise due to a supercritical
centrifugal instability of the laminar base flow, for ' ∼ O(104) they persist in the
limit of zero curvature i.e. in the absence of centrifugal effects Nagata (1990);
Sacco et al. (2019). At sufficiently high Reynolds numbers, they find that the
temporal evolution of the r.m.s. velocity associated with the Taylor vortex and the
mean shear are perfectly out of phase and fluctuate with a common characteristic
frequency. Their results build on the work of Dessup et al. (2018) who show that the
traveling waves in WVF arise due to an instability of the streaks and that the rolls
are sustained by the nonlinear interaction of these traveling waves. Together these
findings indicate a regenerative self sustaining process similar to the framework
suggested by Waleffe (1997); Hamilton et al. (1995). Since we consider steady
TVF, it is difficult to make a direct comparison between either of these studies and
ours. However, it is possible that the transition fromweakly to fully nonlinear Taylor
vortices that we observe is the genesis of the type of self-sustaining Taylor vortices
described by Sacco et al. (2019) and Dessup et al. (2018)

Destructive Interference Forcing Structure
As described in §4.3, we observe that in the FNL regime a crucial component
of the forcing at a given wavenumber : is the destructive interference of the two
triads : = (: − 1) + 1 and : = (: + 1) − 1. This pair of triads leads to velocity
contributions with large amplitudes but with opposite sign. This means that an
accurate reconstruction of a Fourier mode with wavenumber : requires knowledge
of both its subharmonic : − 1 and its harmonic : + 1. In this section, we show that
for streamwise constant and spanwise periodic solutions, as considered in this work,
this large amplitude destructive interference is a direct consequence of the structure
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of the Fourier representation of the nonlinear termu·∇u. In cylindrical coordinates,
the nonlinear interaction between two axisymmetric Fourier modes a = [0A , 0\ , 0I]
and b = [1A , 1\ , 1I] with axial wavenumbers :0 and :1 is given by

f0,1 ≡ a · ∇b + b · ∇a (4.38)

where the axial derivative in the gradient operator is replaced by multiplication by
8:1 and 8:0, respectively. For clarity of exposition, we limit the following analysis to
the azimuthal component of the forcing and note that analogous arguments hold for
the remaining two components. The forcing at wavenumber : due to the interactions
of : − 1 and 1 is given by

f̂+ ≡ û1 · ∇û:−1 + û:−1 · ∇û1. (4.39)

Using the continuity equation to eliminate the axial velocity, the azimuthal compo-
nent takes the form

5 +\ =

(
D̂1,A D̂

′
:−1,\ + D̂:−1,A D̂

′
1,\ +

D̂1,\ D̂:−1,A

A
+ D̂:−1,\ D̂1,A

A

)
−

(: − 1) (AD̂1,A)′D̂:−1,\

A
− (AD̂:−1,A)′D̂1,\

A (: − 1) . (4.40)

Similarly, forcing due to the interactions of : + 1 and −1 is given by

f̂− ≡ û−1 · ∇û:+1 + û:+1 · ∇û−1, (4.41)

with the azimuthal component taking the form

5 −\ =

(
D̂1,A D̂

′
:+1,\ + D̂:+1,A D̂

′
1,\ +

D̂1,\ D̂:+1,A
A

+ D̂:+1,\ D̂1,A

A

)
+

(: + 1) (AD̂1,A)′D̂:+1,\
A

+ (AD̂:+1,A)
′D̂1,\

A (: + 1) . (4.42)

Here the superscript ′ denotes partial derivatives with respect to A, and we have
made use of the fact that for the streamwise constant fluctuations considered here
û−1 = û

∗
1 = [D̂1,A , D̂1,\ ,−D̂1,I].

For some integer wavenumber : > 1, the Fourier modes associated with the nearest
neighbor wavenumbers : ± 1 are defined as

û(A):±1 ≡
∫ ∞

−∞
u(A, I)48VI (:±1)I3I =

∫ ∞

−∞
u(A, I)48VI : (1± 1

:
)I3I. (4.43)
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Since the destructive interference is most pronounced for small scales, we formally
consider the case of : � 1, for which we can expand (4.43) in a Taylor series about
:−1 = 0.

û:±1 =

∫ ∞

−∞
u

(
48VI :I ± 8VI:−148VI :I + O(:−2)

)
3I = û: + O(:−1). (4.44)

This indicates that for : � 1, û: and û:±1 differ by a quantity which is O(:−1),
meaning that for large values of : the shape of the Fourier modes does not change
drastically with increasing : . Figure 4.4 shows that this is indeed the case. Substi-
tuting û:±1 = û: + O(:−1) into (4.40) and (4.42), we find at leading order

5 +\ = 5\,4@ − :
(AD̂1,A)′D̂:,\

A
+ O(:−1) (4.45)

5 −\ = 5\,4@ + :
(AD̂1,A)′D̂:,\

A
+ O(:−1) (4.46)

where 5\,4@ is the same for both triads and is given by

5\,4@ =

[
D̂1,A D̂

′
:,\ + D̂:,A D̂

′
1,\ +

D̂1,\ D̂:,A

A
+ D̂:,\ D̂1,A

A
+ (AD̂1,A)′D̂:,\

A

]
. (4.47)

The only remaining terms are equal in magnitude but of opposite sign. Furthermore,
since both D̂1,A and D̂:,\ are bounded and nonzero, these remaining terms will scale
proportionally with : and therefore are expected to have large amplitudes since we
have assumed : � 1. Expressions (4.45) and (4.46) predict that the large amplitude
destructive interference observed in Figures 4.6 and 4.8 occurs through the terms
±: (AD̂1,A ) ′D̂:, \

A
.

Similar expressions can be derived for the other two components such that the two
vector forcing terms proportional to : which are expected to cancel are given by

f̂±:,20=24; ≡ ∓:
(AD̂1,A)′
A

û: (: � 1). (4.48)

This predictionmay be tested by computing the corresponding velocity contributions
to the Fourier mode with wavenumber : , given by

v̂±:,20=24; = −H: f̂
±
:,20=24; , (: � 1), (4.49)

and comparing its shape to that of the total velocity contributions v̂:,±1 defined
in (4.36). In Figure 4.6, we plot the v̂±

:,20=24;
alongside the individual v̂:,±1 for

2 < : < 9. We do not plot these approximations for : = 1 and 2 since they violate
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the assumption that : � 1 nor the highest retained wavenumber, : = 9, since : = 10
is not included in our model. We find that v̂±

:,20=24;
is a quite accurate approximation

of v̂:,±1 in this intermediate range of : despite the derivation having assumed that
: � 1. These findings establish that f̂±

:,20=24;
is indeed responsible for the large

amplitude destructive interference characteristic of the fully nonlinear regime.

Inspection of the spectral dynamics of the flow corroborate this finding. If we
assume that the Fourier modes û: obey a power law

‖û: ‖ ∼ :−?, (4.50)

then, from (4.48), the forcing component f̂±
:,20=24;

must obey the power law

‖f̂±:,20=24; ‖ ∼ :
1−? . (4.51)

Thus the flow will be in the WNL regime as long as ? � 1, and we expect the
flow to have transitioned to the FNL regime if ? . 1. In Figure 4.10, we plot the
norm of the Fourier modes computed from the DNS data for a range of Reynolds
numbers. For all cases, the Fourier modes decay in Fourier space faster than :−1

which is depicted by the dashed black line. However, the decay rate at ' = 100
is significantly faster than for the higher Reynolds number cases which seem to
converge to a decay rate which is roughly independent of Reynolds number. The
inset of Figure 4.10 shows the exponent of the best fit power law for all Reynolds
numbers. For ' = 100, we fit the power law only to : ≤ 5 since for 5 < : ≤ 10 the
norm of the Fourier components remains roughly constant. At ' = 100, in theWNL
regime, the best fit exponent is approximately 5 while the higher Reynolds numbers,
which are in the FNL regime, all exhibit an exponent which seems to approach an
asymptote close to 1. These findings are in agreement with the analysis presented
above which predicts that in the WNL regime the decay rate of the Fourier modes
is much faster than :−1 and the transition to the fully nonlinear regime is associated
with the decay rate approaching :−1.

Model Reduction
Herewe address how the particular truncation values # :

(+�
were chosen, and how the

number of retained wavenumbers and resolvent modes at each wavenumber affects
the accuracy of the model. At ' = 100, the flow is in the weakly nonlinear regime
and thus the flow may be arbitrarily truncated in Fourier space without appreciably
impacting the accuracy of the retained harmonics. Additionally, in this case the
optimal resolvent mode is a good approximation of the flow and thus retaining only
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Figure 4.10: Norm of the Fourier modes computed from DNS at ' = 100, 200, 400,
650, 1000, 2000. Dashed black line is ∼ :−1. Inset shows exponent of best fit power
law as in (4.50). Power law fit performed over the range 1 < : < 5 for ' = 100 and
1 < : < 10 for all ' > 100.

a single harmonic with #1
(+�

= 2 and #2
(+�

= 5 is sufficient to converge to a result
whose 2D representation (Figures 4.1 and 4.2) is visually indistinguishable from the
DNS. However, we retain more wavenumbers and resolvent modes than this in the
results discussed in §4.3 in order to highlight the structure of the nonlinear forcing.
At this Reynolds number, the increase in computational cost to do so is trivial.

For the results in the fully nonlinear regime, we focus the discussion here on
' = 400, with analogous arguments relevant to ' = 200. To establish a sufficiently
converged baseline case from which to reduce the model complexity, we increased
#: and # :

(+�
uniformly until the residual no longer decreased appreciably with

added degrees of freedom. For ' = 400, this “full” convergence was achieved with
#: = 9 and # :

(+�
= 22. In Figure 4.11, we plot the expansion coefficients f:, 9 j:, 9

in (4.15) and the j:, 9 in (4.16). The f:, 9 j:, 9 and j:, 9 represent the projection of the
velocity and nonlinear forcing on to their respective resolvent basis ψ:, 9 and φ:, 9 ,
respectively. We also plot the singular values f:, 9 on the right y-axis.

Notably, Figure 4.11 indicates that for : < 5 the nonlinear forcing has a significant
projection onto all of the retained suboptimal modes. This finding is in agreement
with Symon et al. (2021) andMorra et al. (2021) who show that the nonlinear forcing
has significant projection onto the sub-optimal resolvent forcing modes for a variety
of flows even if the resolvent operator is low rank. The former considered both ECS
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as well as flow in a minimal channel while the latter focused entirely on turbulent
channel flow. In fact, as also observed by Morra et al. (2021), the projection onto
the first two forcing modes, j:,1 and j:,2, is much lower than the projection onto
many of the suboptimal modes.

Furthermore Figure 4.11 reveals that for : = 1 the f:, 9 j:, 9 decrease rapidly with 9 ,
while for : > 1 there is not only significant projection onto suboptimal modes, up to
approximately 9 = 10, but that some of these suboptimal modes have amplitudes of
comparable magnitude to the optimal mode, 9 = 1. A lack of roll off in the f:, 9 j:, 9
despite a steep roll off in f:, 9 indicates that there is significant structure to the non-
linear forcing. In other words, this means that modes with low linear amplification
are amplified by the nonlinear dynamics. If the forcing were unstructured ‘white
noise,’ there would be equal projection onto each j:, 9 and thus the f:, 9 j:, 9 would
decay at the same rate as the singular values f:, 9 , which clearly we do not observe
in Figure 4.11. This observation is consistent with the results of §4.3 where it was
found that for the higher harmonics, : � 1, the structure of the nonlinear forcing is
paramount to the accurate reconstruction of the velocity field.

Taken together, these results reveal where the basis determined from approximation
of the resolvent (rank truncation) leads to an efficient representation of the flow and
where approximation of the forcing could lead to further efficiency in the modeling
(see also Rosenberg et al. (2019)).

From a practical point of view, we see that for 2 ≤ : ≤ 4 the model solution has
significant projection onto the majority of the retained singular response modes.
The projections of the fundamental (: = 1) and the higher harmonics, : > 4
generally have decayed to negligible levels for 9 & 10. Neglecting these suboptimal
modes for the higher harmonics does not affect the accuracy of the solution and
the associated 30% reduction in degrees of freedom results in a 90% reduction in
computational complexity since cost of computing the 6Cℎ order tensors in (4.27)
scale as #6. Neglecting these negligible sub-optimal modes in the higher harmonics
we arrive at the final truncation values cited in §4.2, # :

(+�
= 22 ∀: ≤ 4, # :

(+�
=

10 ∀: > 4. With this reduction in degrees of freedom the computational complexity
has decreased to a point where the optimization may be carried out cheaply on a
personal computer. We would like to reiterate that the results presented in §4.3 use
these reduced values of # :

(+�
. However, if only the large scales are desired or lower

levels of convergence are acceptable, the solution is robust to significantly more
truncation in both Fourier space and the SVD.
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Figure 4.11: Expansion coefficients of the velocity f:, 9 j:, 9 (blue circles) and
nonlinear forcing j:, 9 (green squares), and singular values f:, 9 (red triangles) for
' = 400. Expansion coefficients are normalized by their maximum value at a given
wavenumber and plotted against the left y-axis. Singular values are plotted against
the right y-axis. Top row : = 1 − 3, middle row : = 4 − 6, bottom row: : = 7 − 9.

4.4 Efficient Initial Conditions for DNS
It is well known, if not entirely understood, that Taylor vortices persist well into
the turbulent regime (Grossmann et al., 2016). While the nature of the Taylor
vortices does evolve with increasing Reynolds number as discussed here and Sacco
et al. (2019), the general structure does not deviate significantly from the form at
' = 400 shown in Figures 4.1 and 4.2. Given the significant model reduction
achieved by our model, we now investigate whether the large scale Taylor vortex
structure can be precomputed using our approach and then used to initialize a
DNS at a higher Reynolds number to reduce the time to converge to a statistically
stationary state. Similar ideas have been investigated by Rosales and Meneveau
(2006), who initialized DNS and LES of isotropic decaying turbulence with both
standard Gaussian and more realistic non-Gaussian vector fields. They found that
the latter, which displayed some of the physical features associated with turbulence,
led to shorter transition times before realistic decay rates were observed.

We performed two sets of DNS of Taylor Couette flow for a range of Reynolds
numbers from 400 to 2000: the first using a random perturbation as an initial
condition, and a second one using the ' = 400model solution as an initial condition.
The simulations were run until the torque at the inner and outer cylinder agreed
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' 400 650 1000 1500 2000
% 82% 80% 75% 72% 65%

Table 4.3: Percentage reduction in convergence time using model TVF solution as
initial condition compared to random perturbation as a function of Reynolds number.
All cases use the ' = 400 model result as an initial condition.

to within 1%. The simulation was then continued for an additional 200 non-
dimensional time units at which point the simulation was deemed to be converged.
We define the percent reduction in time to convergence between the two cases

% ≡ )0 − )<
)0

× 100% (4.52)

where )0 and )< are the time required to reach convergence with the random and
model initial conditions, respectively. Table 4.3 summarizes the savings for all the
Reynolds numbers we considered. As expected the percentage of run time saved
decreases as the Reynolds number increases because the Taylor vortices change
slightly and, more crucially, because the flow becomes more three-dimensional and
time dependent. However, it is remarkable that even at the highest Reynolds number,
' = 2000, which is five times the Reynolds number of the model used as an initial
condition, the run time is reduced by 65%. Physically, this finding speaks to the
robustness of the Taylor vortices, a phenomenon which has been observed by a host
of authors (Grossmann et al., 2016). However, we acknowledge that the practical
relevance of this finding may be limited. When computing a flow for a range of
Reynolds numbers, one would only need to initialize the lowest Reynolds number
case with a random perturbation and then simply initialize subsequent cases with
the final state of the previous simulation.

4.5 Summary
In this chapter, we have presented a fully nonlinear reduced order model of Taylor
vortex flow for Reynolds numbers up to five times greater than the critical value.
The resolvent formulation allows the governing equations for the fluctuations about
a known mean velocity to be transformed into a set of polynomial equations. We
approximate the solution to these equations by minimizing their associated residual
in conjunctionwith a constraint which ensures themodel generates Reynolds stresses
compatible with the input mean velocity profile. We are able to generate model
solutions which solve the NSE to a very good approximation and replicate the
flow field computed through DNS at a tiny fraction of the computational cost. We
believe this is the first explicit example of “closing the resolvent loop” published
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in the literature, although Rosenberg (2018) presented a similar analysis applied to
ECS in a channel in his doctoral thesis which inspired this work.

We analyzed the nonlinear interactions driving the flow for a range of Reynolds
numbers and identified the transition from a weakly nonlinear regime close to
the bifurcation from the laminar state where the structure of the flow is accurately
modeled by the linear dynamics and the forcing cascade is purely from large scales to
small scales. At higher Reynolds numbers, we define a fully nonlinear regime where
an inverse forcing cascade from small to large scales emerges to counter the cascade
from large to small scales. In this regime, the dominant nonlinear interactions at a
given wavenumber : involve the pair of triadic interactions : = (: ± 1) ∓ 1, with
the pair of triads : = (: ± 2) ∓ 2 also emerging as a dominant forcing mechanism
for the highest Reynolds number case. The velocity contributions from these pairs
of triads have opposite sign and almost equal amplitudes which are much larger
than the full Fourier mode. Their sum results in significant destructive interference
with the small differences in shape giving rise to the shape of the full Fourier mode.
We demonstrated that this destructive interference is a direct consequence of the
structure of the nonlinear term of theNSE formulated in Fourier space. Furthermore,
this bidirectional forcing cascade implies that in order to accurately model a flow
up to a certain order in Fourier space significantly more harmonics than desired
must be retained in order to capture this inverse forcing cascade. We postulated that
this shift from linear/weakly nonlinear to fully nonlinear dynamics is related to a
similar transition in the physics of Taylor vortices observed by Sacco et al. (2019).
Finally, we used our model solution as an initial condition to DNS of TCF at higher
Reynolds numbers and were able to significantly reduce the time to convergence
compared to initializing the simulation with a random perturbation.
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C h a p t e r 5

MEAN VELOCITY PREDICTION IN SUPERCRITICAL
TAYLOR COUETTE FLOW

5.1 Introduction
One inherent limitation of resolvent-based models is the reliance on the a priori
knowledge of the mean velocity profile from DNS or experimental data. Here we
present a method to predict the shape of the mean velocity profile in supercritical
Taylor Couette flow in order to circumvent this reliance for the model described in
Chapter 4. The main idea is to iteratively converge to a mean flow generated by
the Reynolds stress divergence of its own leading resolvent mode. Such iterative
methods have been used previously in computing exact coherent states by Beaume
et al. (2015) and Rosenberg and McKeon (2019a) as well as by Mantič-Lugo et al.
(2014, 2015) abd Gallaire et al. (2016) who used such methods to accurately model
the shedding frequency and mean flow of super-critical cylinder flow. One caveat
of such methods is that they require the amplitude of the leading resolvent or eigen
mode as an input. Mantič-Lugo et al. (2015) circumvent this requirement by actively
adjusting this amplitude throughout the iteration by noting that in physical flows the
mean profile tends to a state of neutral stability. Here we take a different approach,
and instead use a weakly nonlinear analysis to derive the equilibrium amplitude of
the dominant flow structure (in this case the Taylor vortex) as a function of Reynolds
number.

5.2 Derivation of the Stuart Landau Equation
The prediction of the mean flow requires knowledge of the amplitude of the Taylor
vortex at the bifurcation from the laminar state. This amplitude is given by the
equilibrium solution of the Stuart-Landau equation, which governs the slowly vary-
ing amplitude of a weakly supercritical disturbance (Stuart, 1958; Watson, 1960).
Related methods have been applied to Taylor Couette flow by several authors such as
Stuart (1960); Davey (1962); Yahata (1977); Zuccoli and Auteri (2019) to name just
a few. We briefly outline the derivation here, and refer the reader to the references
cited above for a more comprehensive discussion.
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We begin with the incompressible Navier Stokes equations.

mu
mC
+ u · ∇u − 1

'
∇2u − ∇? = 0 (5.1)

∇ · u = 0. (5.2)

The flow undergoes a super-critical bifurcation from the laminar state to the steady,
axisymmetric, and axially periodic Taylor vortex state at a critical Reynolds number
'2. We aim to derive the amplitude of these Taylor vortices for Reynolds numbers
near this critical point. To this end, we add and subtract 1

'2
∇2u from (5.1).

mu
mC
+ u · ∇u − 1

'2
∇2u +

(
1
'2
− 1
'

)
∇2u − ∇? = 0 (5.3)

We are interested in Reynolds numbers close to the critical point, i.e. ' such that
1
'2
− 1
'
� 1. Wewill employ themethod of multiple scales and thus we introduce the

small parameter n2 ≡ 1
'2
− 1
'
, and a long time scale) = n2C. This particular choice of

bifurcation parameter n is natural given the form of the equations andwas also shown
by Gallaire et al. (2016) to extend the range of validity of the resulting asymptotic
expansions over those found using the more traditional n′2 = (' − '2)'−2

2 , which
is actually an approximation of the former. The governing equations then take the
form

mu
mC
+ n2 mu

m)
+ u · ∇u − 1

'2
∇2u + n2∇2u − ∇? = 0. (5.4)

We expand the state q ≡ [u, ?] in an asymptotic series

q = q0 + nq1 + n2q2 + n3q3 + O(n4). (5.5)

Plugging the expansion (5.5) into (5.4) and gathering terms of O(1), we find

mu0
mC
+ u0 · ∇u0 −

1
'2
∇2u0 − ∇?0 = 0. (5.6)

This is simply the NSE at the critical Reynolds number and thus we identify the
solution u0 as the laminar solution.

u0 = �([)A +
�([)
A

(5.7)

At O(n), we find

mu1
mC
+ u0 · ∇u1 + u1 · ∇u0 −

1
'2
∇2u1 − ∇?1 = 0, (5.8)
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which we identify as the NSE linearized about the laminar base flow u0. In order to
simplify the notation going forward, we denote this operator as ! defined as

L() =
[
m
mC
+ u0 · ∇() + () · ∇u0 − 1

'2
∇2() − ∇?1 0

0 ∇()

]
(5.9)

such that
L( [u1, ?1]) ) = 0. (5.10)

We postulate that u1 is of the form

u1 = �())ψ1(A)48(:I−lC) + �∗())ψ∗1 (A)4
−8(:I−lC) , (5.11)

?1 = �())?1(A)48(:I−lC) + �∗())?∗1(A)4
−8(:I−lC) , (5.12)

where the superscript ∗ denotes the complex conjugate, �()) represents the slowly
varying amplitude, and [ψ1(A), ?1(A)] represents the radially varying mode shape,
which we take to be given by the critical eigenmode of the Navier-Stokes operator
linearized about the laminar base flow at ' = '2, normalized such that | |ψ1 | |!2 = 1.
The frequency l is the imaginary part of the eigenvalue _ = 0 + 8l at critically (in
our case l = 0).

Continuing on to O(n2), we find

L( [u2, ?2]) ) = [−u1 · ∇u1 −
1
'2
∇2u0 −

mu0
m)

, 0]) , (5.13)

which simplifies to
L( [u2, ?2]) ) = [−u1 · ∇u1, 0]) . (5.14)

Plugging the ansatz for the form of u1 given by (5.11) into the right hand side of
(5.14), we find

L( [u2, ?B]) ) = −[�2ψ1 · ∇+1ψ14
28:I I + �∗2ψ∗

1 · ∇−1ψ
∗
1 4
−28:I I

+ |�|2
(
ψ1 · ∇−1ψ

∗
1 +ψ

∗
1 · ∇+1ψ1

)
, 0]) . (5.15)

The gradient operator∇± 9 and LNS operatorL± 9 are defined here and going forward
such that the spanwise (axial) derivative takes the form

m

mI
= ±8 9 : . (5.16)

We note that the right hand side of (5.15) includes spanwise (axially) constant terms
as well as terms proportional to 4±28:I . Therefore we postulate that at this order,
the solution takes the form

u2 = �())2ψ2(A)428(:I−lC) + �∗2())ψ∗2 (A)4
−28(:I−lC) + |�1 |2u0

2(A) (5.17)
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?2 = �())2?2(A)428(:I−lC) + �∗2())?∗2(A)4
−28(:I−lC) + |�1 |2?0

2(A). (5.18)

Considering first the terms proportional to 4±28:I I, we find

L2( [ψ2, ?2]) ) = −[ψ1 · ∇+1ψ1, 0]) (5.19)

[ψ2, ?2]) = −H2 [ψ1 · ∇+1ψ1, 0]) . (5.20)

where H ≡ L−1 is the resolvent operator. Examining next the terms proportional to
40 we find

L0( [u0
2, %

0
2]
) ) = −[

(
ψ1 · ∇−1ψ

∗
1 +ψ

∗
1 · ∇+1ψ1

)
, 0]) (5.21)

− 1
'2
∇2u0

2 = −
(
ψ1 · ∇−1ψ

∗
1 +ψ

∗
1 · ∇+1ψ1

)
. (5.22)

Thus we identify ψ2 as the parasitic mode forced by ψ1, and u0
2 as the mean flow

correction induced by the self interaction of ψ1.

Finally we consider the solution at O(n3). Here we will find the appearance of
secular terms on the right hand side requiring a solvability condition which will lead
to a Stuart-Landau type equation for the slowly varying amplitude �()). Grouping
terms of O(n3) in system (5.4, 5.5), we find

L( [u3, ?3]) ) = [−u1 · ∇u2 − u2 · ∇u1 −
1
'2
∇2u1 −

mu1
m)

, 0]) . (5.23)

The solvability condition is found by gathering the terms proportional to 48:I I, which
are given by

ψ1
m�

m)
+ 1
'2
∇2ψ1�+(
ψ1 · ∇0u0

2 +U
0
2 · ∇+1ψ1 +ψ∗1 · ∇+2ψ2 +ψ2 · ∇−1ψ

∗
1

)
�|�|2. (5.24)

TheFredholm alternative requires that this right hand side forcing termbe orthogonal
to the adjoint of the homogeneous solution: ψ† which is found by solving the adjoint
LNS system

L†( [ψ†, ?†]) = 0, | |ψ† | |!2 = 1. (5.25)

Projecting (5.24) onto the adjoint eigenmode ψ† and integrating across the domain
results in the Landau equation for the slowly varying amplitude �())

01
m�

m)
+ 02� + ^�|�|2 = 0. (5.26)
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The coefficients are given by

01 = 〈ψ�
1 ψ1〉!2 (5.27)

02 = 〈ψ�
1 ∇

2ψ1〉!2 (5.28)

^ = 〈ψ�
1

(
ψ1 · ∇0u0

2 +U
0
2 · ∇+1ψ1 +ψ∗1 · ∇+2ψ2 +ψ2 · ∇−1ψ

∗
1

)
〉!2 . (5.29)

The saturation value of the amplitude function �() ; :, ') is then given by

�2
4 (:, ') = −

02
^
. (5.30)

Therefore the amplitude of the flow structure is given by

| |nu1 | |2 = A2 ≡ n2�2
4 = −

02
^
n2 = −02

^

(
1
'2
− 1
'

)
. (5.31)

This gives us a means to calculate the amplitude for our mean flow iteration scheme.

5.3 Axial Wavenumber
Since the amplitude equation is formally an expansion about a super critical Hopf
bifurcation, the mathematically rigorous choice of axial (spanwise) wave number
: for the amplitude equation (5.30) is the critical wave number :2 ≈ c predicted
by linear stability. However, for the resolvent modes computed during the iterative
scheme using this critical wave number proves to be a poor choice. The underlying
assumption on which the iterative scheme relies is the accuracy of the rank 1
approximation of the Reynolds stress divergence. Therefore it is advantageous to
choose a wave number which maximizes the accuracy of this approximation at a
given Reynolds number. We would like to choose a : that maximizes the singular
value separation quantified by f1/f2 or some other suitable metric which quantifies
the “low rankness” of the system dynamics. More specifically, we desire some some
exponent U such that :∗ ∼ 'U maximizes f1/f2. Currently a rigorous theoretical
prediction for such a power law is still outstanding, however an analysis using
mean velocity profiles from DNS suggests that such a scaling exists. In fact at
each Reynolds number there is in general a multiplicity of local maxima of f1(:).
Figure 5.1 shows both the largest and smallest most low rank (or equivalently most
amplified) wave numbers as a function of the Reynolds number. The smallest
amplified : represents the size of the most linearly amplified large structure. The
size of this most amplified large structure is found to scale (approximately) as '−0.55.
Therefore we choose the wave number : in our iterative scheme according to the
power law

: = 3.1
(
'

'2

)−0.55
. (5.32)



92

Figure 5.1: Axial wave numbers which maximize the singular value separation of
the resolvent operator at a given Reynolds number.

We do not view this empirically determined power law as a major detracting factor
from ourmodel since the same result could be attained by simply performing a sweep
over the local Fourier space at each iteration. Thus (5.32) simply allows us to bypass
such a computationally expensive step in the iterative process. We acknowledge
that choosing the optimal wavenumber (5.32) is somewhat inconsistent with the
derivation of the amplitude which uses the critical wave number. However, we view
this as a necessary and justified compromise between consistency and practicality.

5.4 Self Sustaining Mean Flow Iteration
The primary challenge of applying this iterative algorithm to the Taylor Couette
geometry is the lack of wall normal symmetry in the cylindrical coordinate system.
In the case of plane Couette flow, defined in a Cartesian coordinate system, the
underlying equations are invariant with respect to reflection about the center of the
channel. This results in resolvent modes which are either even or odd about the
center line. The NSE in the cylindrical geometry of Taylor Couette flow do not
exhibit this same explicit symmetry for Reynolds numbers ' >∼ 100. Despite the
lack of symmetry in the governing equations, the actual solution observed in Taylor
Couette flow does roughly exhibit these symmetries. In order to account for this
observation, we introduce the following symmetrizing scheme to more accurately
capture the physical structure of the TVF.
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ψ1 = [DA (A), D\ (A), DI (A)] → ψ1,BH< = [DA (A), (D\ (A) + D\ (A − A)) , DI (A)]
(5.33)

The symmetrized mode is normalized such that | |ψ1,BH< | |!2 = 1. Additionally,
we introduce a relaxation parameter suggested by Mantič-Lugo et al. (2015) which
improves the convergence properties of the algorithm. The iterative algorithm then
proceeds as follows, where W is the relaxation parameter which following Mantič-
Lugo et al. (2015) is fixed at W = 0.5.

• Calculate amplitude A(:2, '2) from (5.31)

• Set initial condition to laminar base flow*0 = *;0<

1. Construct resolvent operator from current iterate* 9 , Reynolds number ', and
wave number : (').

2. Symmetrize leading resolvent mode according to (5.33).

3. Compute 50 = −A2∇ · (k1k
∗
1).

4. Compute mean flow correction: ∇2*=4F = 50.

5. Update mean flow* 9+1 = W*=4F + (1 − W)* 9 .

6. Iterate until convergence.

5.5 Results
Figure 5.2 compares the result of the iterative scheme for ' = 100 and ' = 200 to
mean velocity profiles calculated from DNS. These values correspond to approxi-
mately 1.25 and 2.5 times the critical Reynolds number: '2 = 81. In each case, the
input amplitude and wave number are set by (5.31) and (5.32) respectively. While
the agreement is not perfect, our model captures the shape of the mean velocity
profile remarkably well in both cases. The scheme converges to the results shown in
4 iterations for both ' = 100 and ' = 200. However, we note that the convergence
can be improved by initializing higher Reynolds number cases with the results from
models at lower Reynolds numbers. Finally, we note that unlike the work of Mantič-
Lugo et al. (2015), we do not enforce the neutral stability of the mean flow, however
our results are observed to be approximately neutrally stable.
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Figure 5.2: Mean velocity profile computed from self sustaining model (color) and
DNS (black).

5.6 Wave Number Amplification Mechanism
Here we speculate on some physical mechanism which could be leading to the
preferential linear amplification of wave numbers : ∼ '−0.55 observed in figure
5.1. The first question to ask is what does linear amplification actually mean?
Since we are interested in steady TVF, we evaluate the resolvent operator at l = 0.
Therefore a peak in the norm of the resolvent operator is indicative of the linearized
NS operator having an eigenvalue, _, close to zero, since | |� | | = f1 → ∞ as
l → _ 9 ∀ 9 . Therefore the task is to find the minimum : (') s.t. | |L(', : (')) | |
is minimized. We search for the smallest minimizing : since | |L(:) | | has multiple
peaks for a given Reynolds number. Or more formally,

min
:∈R

:2, |_(:, ') |

s.t. L(:, ')q = _(:, ')q
q(A8) = q(A>) = 0.

(5.34)

The tricky thing is that the linear operator L(:, ') depends on the mean velocity
profile * (A; ') which is unknown. Therefore some physically motivated approxi-
mation of the mean velocity will be required to make progress. Furthermore, we
know from analyzing the DNS mean velocity profiles that the number of peaks in
f1(:, ') increases with increasing Reynolds number, andwe do not fully understand
why.

The amplificationmechanismwe observe is solely a function of the linearizedNavier
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Stokes operator, which depends on : , ', and * (A; '). Therefore the dependence
of the most amplified : as a function of ' arises either due to '−1 appearing in the
operator or due to the shape of the mean velocity profile changing with Reynolds
number.

First we consider the hypothesis that it is the mean velocity profile which determines
the scaling of the most amplified wave number. This view is supported by the
observation that if the mean velocity * in the resolvent operator is replaced by the
laminar base flow *0 we do not observe the same power law (5.32) and instead
observe a power law closer to '−4/3.

Let us imagine the mean velocity profile as being comprised of two distinct regions
as discussed by Ostilla et al. (2013), or Cheng et al. (2020). In this view, we have a
bulk region in the center of the domain where the mean angular velocity Ω ≡ */A
is approximately constant and two boundary layers at the walls. Examining the
mean velocity profiles in Figure 5.2, we see that while near criticality, at ' = 100
this is a poor approximation, it is a plausible model for at least ' ≥ 200 where we
do see a flat region in the center of the mean velocity profile. It is known from
several studies such as Eckhardt et al. (2007); Ostilla-Mónico et al. (2014b); Sacco
et al. (2019) that at the Reynolds numbers considered here the boundary layers are
laminar, and therefore their height scales like '−0.5. Therefore one could imagine
that the observation that :∗ ∼ '−0.5 arises due to a balance with the boundary layer
thickness.

Alternatively, wemay neglect the Reynolds number dependence of themean velocity
profile, and investigate the affect of the explicit Reynolds number dependence of the
resolvent operator. The pressure may be eliminated from the governing equations
to write the system in terms of DA and D\ . The resulting linear operator is then

L =

[
− 1
'
∇4 2:2*

A

1
A
m
mA

(
A*

)
− 1
'
∇2

]
, (5.35)

where ∇2 ≡ m2

mA2 + 1
A
m
mA
− 1

A2 − :2. Numerical tests imply that we can approximate
the Laplacian as ∇2 ≈ m2

mA2 . This is reasonable since we expect : to decrease with
Reynolds number and therefore we expect the radial derivatives to dominate. With
this approximation, the linear operator is then

L =

[
− 1
'
m4

mA4
2:2*
A

1
A
m
mA

(
A*

)
− 1
'
m2

mA2

]
. (5.36)
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We can derive the wave number scaling which minimizes the operator norm of this
approximate L which corresponds to the maximization of the leading singular value
of H = L−1.

Consider a trial function k = [DA , D\]. The norm of !k is then given by

| |!k | |2 = �1'
−2 + �2'

−1:2 + �3:
4 + �4'

−1 + �5, (5.37)

where the � 9 are Reynolds number independent integrals involving A, k, and *.
Setting the derivative of this expression with respect to : equal to zero, we find

m

m:
| |!k | |2 = 2�2'

−1: + 4�3:
3 = 0. (5.38)

This implies that the minimizing wave number :∗ is given by

:∗2 = −2�2
4�3

1
'
. (5.39)

The optimal wavenumber therefore scales as :∗ ∼ '−0.5. This result is consistent
with the scaling of '−0.55 for the smallest most amplified wave number observed
numerically in Figure 5.1. Of course this derivation neglected the wavenumber
dependence of the Laplacian operator as well as the wave number dependence
of the resolvent modes, and is therefore not a mathematically rigorous analysis.
We speculate that the multiplicity of peaks in the f1(:, ') curves seen in Figure
5.1 could potentially be accounted for by the neglected : dependent terms in the
Laplacian. However, a rigorous higher order analysis is beyond the scope of this
thesis.

5.7 Summary
In this chapter, we have extended the self-consistent mean flow prediction algorithm
described in Mantič-Lugo et al. (2014, 2015); Rosenberg and McKeon (2019a)
to Taylor-Couette flow. As with those studies, the method described here starts
from the laminar base flow and iteratively generates a mean flow sustained by the
Reynolds stress of its own leading resolvent mode. However, unlike these previous
studies, we preform an asymptotic expansion about the critical Reynolds number
to derive the equilibrium amplitude of this Reynolds stress. A further contribution
of this thesis is the extension to the cylindrical coordinate system relevant to TC
flow. This leads to the loss of wall normal symmetry of the governing equations
present in the Cartesian system. The challenge is that solutions observed in TC flow
are (roughly) symmetric about the center line, and the resolvent basis (computed
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from the non-symmetric equations) is not. To account for this, we have introduced
a step into the algorithm which enforces the symmetry about the center line of the
streamwise component of the leading resolvent mode at each iteration. The results
of our method compare favorably to the mean velocity profiles computed from DNS
for Reynolds numbers up to 2.5 times the critical Reynolds number. Extending
this strategy to higher Reynolds number and deriving a mathematically rigorous
approach to enforcing the wall normal symmetry is the topic of ongoing research.
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C h a p t e r 6

PHASE RECONSTRUCTION FROM TURBULENT SPECTRA

6.1 Introduction
In Chapter 4, we described exact representations of nonlinear, yet still relatively low
dimensional solutions. However, most flows of practical interest are high dimen-
sional and not amenable to such modeling strategies. One avenue for progress in
the modeling of these more complex flows is the reconstruction of high dimensional
representations of the solution from knowledge of lower dimensional representa-
tions. As an analogy, consider the concept of data compression. High dimensional
data, such as a high resolution image, are compressed (often through SVD-based
algorithms) for more efficient storage and transmission and then reconstructed us-
ing a second algorithm prior to use. Such data driven and machine learning-based
techniques have already become popular, if not widespread in the field of fluid me-
chanics, often replacing the consideration of the governing equations entirely (Taira
et al., 2017; Brenner et al., 2019; Kochkov et al., 2021; Brunton, 2021; Herrmann
et al., 2021). While such techniques are powerful and have the potential to revo-
lutionize all of physics, we believe that the governing equations have not taught us
everything they have to give just yet.

Lower order statistics like the mean and spectrum can be thought of as “compressed”
forms of the high dimensional flow data. Unfortunately, as yet a general decompres-
sion algorithm to reconstruct the full flow field from these statistics remains elusive.
Nevertheless these zeroth order (mean) and first order (spectrum) moments of the
velocity field are well studied and relatively well understood. The mean velocity
profile is the most studied, and for high Reynolds numbers is known to satisfy a
logarithmic profile that scales with Reynolds number. Resolvent analysis itself can
be thought of a type of “data decompression” in the sense that it extracts linearly am-
plified structures of the fluctuation field from the mean velocity profile. The velocity
spectrum is also well studied. The most famous result in this regard is that homoge-
neous, isotropic turbulence satisfies the :−5/3 velocity spectrum (Pope, 2000). For
wall bounded turbulent flows, several models for the shape of the spectrum have been
proposed, the most famous of which being the attached eddy hypothesis suggested
by Townsend (1951, 1961, 1980) and recently summarized by Marusic and Monty
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(2019). Furthermore, years of numerical and experimental research have lead to
significant empirical insight into the qualitative and quantitative characteristics of
the turbulent spectrum (Álamo et al., 2004; Smits et al., 2011). For example, the
velocity spectrum is known to exhibit a two-peaked structure corresponding to the
“near-wall cycle” and the “very-large scale structures” observed in the wake region
(Mathis et al., 2009).

At sufficiently high Reynolds numbers themean velocity and velocity spectrum scale
with Reynolds number, implying that we can predict (with reasonable certainty) their
behaviour at a given Reynolds number from data at a lower Reynolds number. If
one could derive a transformation (decompression) from the first order moment,
the velocity spectrum, to higher order moments, one could in principle extend
our predictive capabilities to higher order moments, such as the cross spectral
density or skewness, where often the Reynolds number scaling behaviour is less well
understood. In the context of turbulent flows, such a transformation is equivalent to
the reconstruction of the phase information lost in the compression of the full velocity
field to the energy spectrum. While the off-diagonal terms of the velocity spectrum
tensor, known as the cross spectral density, contains some phase information of a
particular Fourier mode, it does not encode the phase shift between Fourier modes.
Some studies such as Zare et al. (2017) have used the stochastically forced NSE to
predict second order statistics in turbulent channel flow, however a comprehensive
framework for the prediction of higher order moments remains elusive.

It has been showed by a variety of authors that these phase shifts between Fourier
modes (structures) play a significant role in the physics of turbulent flows. Of par-
ticular interest has been the interaction between very large scale motions (VLSM’s)
whose size is greater than the boundary layer, and the small scale motions which
make up the near wall cycle. It has been established that the primary mechanism in
this interaction is the amplitude modulation of the near wall small scales by the very
large scales (Hutchins and Marusic, 2007a,b; Mathis et al., 2009). Experimental
evidence has shown that this amplitude modulation strongly resembles the skewness
profile (third moment) of the velocity (Schlatter and Örlü, 2010b; Mathis et al.,
2011). The only information contained in the skewness not contained in the spec-
trum is the relative phase shifts between the large and small scales. This implies that
the amplitude modulation of the near wall cycle is related to these phase shifts. Ja-
cobi et al. (2021) developed a resolvent analysis-based model to interaction between
a single large scale and the small scale turbulent fluctuations characterized by the
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Reynolds stresses. They found that the wall normal location where the amplitude
modulation coincides with the critical layer location of the large scale structure,
indicating a relative phase shift of −c/2 between the turbulent fluctuations and the
large scale.

In this chapter, we propose a purely equations-driven algorithm for the reconstruc-
tion of this lost phase information based on an observation made by Schmid and
Henningson (2001) that the nonlinearity of the NSE is not only globally energy
conserving but also on the level of an individual triad. Throughout this chapter, the
quantity 0 ∈ [−c, c] refers to the phase of a complex number.

6.2 Phase Reconstruction from Spectra
Consider a doubly periodic simulation of a wall bounded shear flow on the domain
G ∈ [0, !G], H ∈ [−1, 1], and I ∈ [0, !I], which is statistically stationary and
homogeneous in the streamwise, G, and spanwise, I, directions. Such a flow may be
expanded in a Fourier series

u(x, H, C) =
∑

k
ûk(H)48k·x + 2.2. (6.1)

where x ≡ [G, I, C] and k = [:G , :I, l]. The three-dimensional energy spectrum is
defined as

� (H; k) = ûk(H)û∗k(H) (6.2)

and represents the wall normal kinetic energy distribution at a given length and
time scale. The energy spectrum which encodes only the kinetic energy provides
no information on either the wall normal phase variation of the Fourier modes
nor the relative phase shifts between the Fourier modes. While studies such as
Jacobi et al. (2021) have proposed models for the prediction of these phase shifts, a
comprehensive understanding remains outstanding.

Here we propose an algorithm for the reconstruction of the phase information from
solely knowledge of the spectrum. The algorithm is based on the optimization-based
resolvent reconstruction of the spectrum developed by Moarref et al. (2014a); Mc-
Mullen et al. (2020) and an observation made by Schmid and Henningson (2001)
that individual triads of Fourier modes are energy conserving. The former recon-
structs the time averaged velocity spectrum as an expansion in resolvent modes,
thereby recovering (an approximation) of the wall normal phase variation of the full
Fourier modes. The latter allows us to recover the relative phase shift between the
Fourier modes.
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6.3 Spectrum Optimization
We adopt the optimization framework introduced by Moarref et al. (2014a) and
improved upon by McMullen et al. (2020) which minimizes the differences between
the time averaged spectra from DNS and those computed from an expansion in
resolvent modes. The resolvent three-dimensional spectra may be written as

�A (H; :G , :I, l) = R
{
tr

(
Ak,AXk

)}
(6.3)

where A ∈ {DD, EE, FF, DE}, k = [:G , :I, l], R(·) indicates the real part of a
complex number and tr(·) denotes the matrix trace. The entries of the matrices ADD

are given by
Ak,DD,8 9 = fk,8fk, 9

(
ψk,8 · êG

) (
ψk, 9 · êG

)∗ (6.4)

with the other components defined similarly. These matrices are computed a priori
from the SVD of the resolvent operator for a fixed set of :G , :I, l. The matrix of
unknown weights Xk,8 9 = jk,8j

∗
k, 9 . The time averaged spectra are obtained over a

discrete integral over a range of #2 wavespeeds 2 = l/:G ∈ [0,*0] where*0 is the
mean velocity at the centerline of the channel.

�A (H; :G , :I) =
#2∑
;=1

:GR
{
tr

(
Ak,A,;Xk,;

)}
32 (6.5)

The following optimization problem is formulated for fixed :G , :I.

min
X;=1,2,...#2

‖��#(A − �A (X)‖ (6.6)

subject to (6.7)

X; � 0, ; = 1, 2, ...#2 . (6.8)

The optimization is performed using the Matlab-based convex programming appli-
cation CVX (Grant and Boyd, 2014). The finer details of the optimization are not
the focus of this work and the interested reader is referred to McMullen et al. (2020)
for more details. However, we highlight two crucial observations. First, since the
variable in the optimization is Xk,8 9 = jk,8j

∗
k, 9 = |jk,8 | |jk, 9 |48(0k,8−0k, 9 ) , we actually

recover the relative phase shift between the resolvent modes at a given wavenumber.
Second, we note that despite the fact that the optimization is performed on the time
averaged spectra, the reconstruction of the temporal spectrum usingWelch’s method
exhibits many of the features observed in observed in DNS, such as the localization
about the critical layer (McMullen et al., 2020).
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6.4 Energy Conserving Triads
Schmid and Henningson (2001) demonstrated that the nonlinearity of the NSE is
energy conserving on a triad by triad basis. We have extended their analysis, which
was formulated in the time domain, to the temporal frequency domain. Consider
a set of triadically consistent Fourier modes, ûa, ûb, and ûc, where a = b + c. We
define the “intra-triad energy transfer”

)a,b,c ≡ R{〈ûa, f̂b,c〉 + 〈ûb, f̂a,−c〉 + 〈ûc, f̂a,−b〉}, (6.9)

where
f̂U,V ≡ ûU · ∇ûV + ûV · ∇ûU (6.10)

and

〈q1, q2〉 ≡
∫ 1

−1
q∗1q23H. (6.11)

It can then be show using integration by parts that

)a,b,c = 0 ∀ a = b + c. (6.12)

A detailed derivation of (6.12) is presented in Appendix C.1. Throughout this
chapter, we define the property (6.12) as “intra-triad energy conservation” and this
general phenomenon as the concept of “energy conserving triads” (ECT).

6.5 Symmetries
The algorithm relies on the Fourier symmetries afforded by the statistically stationary
homogeneous nature of the flow. Let ûk = [D̂, Ê, F̂], k = [:G , :I, l], and k̃ =

[:G ,−:I, l]. Analysis of the resolvent formulation of the governing equations
Fourier transformed in G, I, and C reveals that

û−k = [D̂∗, Ê∗, F̂∗] (6.13)

ûk̃ = [D̂, Ê,−F̂] (6.14)

û−k̃ = [D̂∗, Ê∗,−F̂∗] . (6.15)

We note that the Fourier transform of the nonlinear term f̂k obeys the same symme-
tries. See Appendix C.2 for the detailed derivation of these symmetries. Through-
out this work, if k = [:G , :I], we use the notation k̃ to refer to the transformation
:I → −:I, and thus −k̃ refers to the transformation :G → −:G .
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Restrictions and Assumptions
As a starting point, we restrict ourselves to a single user specified wave speed 2 =
l/:G . This means that the temporal frequency l is a function of :G: l(:G) = 2:G .
This allows us to compress the 3D space time coordinates [G, I, C] into the 2D
coordinates

[G̃, I] = [G − 2C, I] . (6.16)

Thus going forward wave number vectors will be 2-dimensional: k = [:G , :I]. The
restriction to a single wave speed is approximately equivalent to the restriction to
a fixed wall normal height since the Fourier modes of the solution generally have
relatively localized support at their critical layer.

Further we assume that all Fourier modes of the solution are harmonics of the
fundamentals, that is to say all wave numbers may be written in the form k =

2c[</!G , =/!I] where <, = ∈ Z. To avoid notational clutter, we rescale :G and :I
by !G/2c and !I/2c, respectively, such that the wave number k = 2c[</!G , =/!I]
is written as k = [<, =].

The proposed approach relies on a reference wave number whose phase is taken as an
input to the algorithm. Therefore, our algorithm only predicts the phase information
up to an unknown reference phase. We define the reference wave number k0 = [1, 1]
and its phase 0k0 .

6.6 Algorithm
Using the magnitude of the resolvent weights |jk, 9 | obtained from the convex opti-
mization, we may write each Fourier mode as an expansion in resolvent modes

ûk(H) = 480k, 9 |jk, 9 |fk, 9ψk, 9 (H) (6.17)

where summation over 9 is implied, and ‖ψk, 9 ‖ = 1. Recall that the relative
phase shifts between the resolvent modes, Δk, 9 = 0k, 9 − 0k,1, are known from the
optimization described in §6.3. This allows us to write (6.17) as

ûk(H) = 480k,1
(
48(0k, 9−0k,1) |jk, 9 |fk, 9ψk, 9

)
= 480k,1

(
48Δk, 9 |jk, 9 |fk, 9ψk, 9

)
(6.18)

where everything inside the parenthesis is known from the optimization. This
implies that regardless of the number of resolvent modes retained in the optimization
there is only a single unknown phase per wavenumber vector. For the sake of brevity
and generality, we drop the subscript 1 and write 0k,1 as 0k. This allows us to write
(6.18) as

ûk(H) = 480kq̂k(H) (6.19)
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where q̂k ≡ 48Δk, 9 |jk, 9 |fk, 9ψk, 9 captures both the amplitude and wall normal shape
of the Fourier mode. The combination of (6.19) and (6.9) leads to

)a,b,c = &a,b,c4
8W +&∗a,b,c4

−8W . (6.20)

where W = −0a + 0b + 0c. The complex constant &a,b,c is then defined as

&a,b,c ≡ 〈q̂a, ĝb,c〉 + 〈q̂b, ĝa,−c〉∗ + 〈q̂c, ĝa,−b〉∗ (6.21)

where
ĝU,V ≡ q̂U · ∇q̂V + q̂V · ∇q̂U . (6.22)

First we notice that the energy transfer )a,b,c is not positive definite, and is in
fact guaranteed to have exact zeros. Second, )a,b,c does not depend independently
on the individual phases 0a, 0b, 0c but is rather a function of the single variable
W(0a, 0b, 0c). Therefore the natural strategy of minimizing the residual of |)a,b,c |
is not viable because its three gradients are equal (up to a sign). Given these two
observations, we thus look for exact zeroes of )a,b,c

)a,b,c = 0. (6.23)

Consider the wave number triad a = b + c. Solving (6.23) for the phases leads to

0a − 0b − 0c = ∠(&a,b,c) − c/2 + Ac (6.24)

where A ∈ Z the term +Ac is due to the multiplicity of the complex logarithm
and &a,b,c is a known function of the magnitudes of the resolvent weights and the
resolvent modes. In practice the only relevant options are A = 0, 1 since we can
restrict the phases such that 0k ∈ [−c, c]. This means that (6.24) can equivalently
be written as

0a − 0b − 0c = ∠(&a,b,c) ± c/2. (6.25)

Note that the ambiguity +Ac in the phase is equivalent to an ambiguity in the sign of
the Fourier mode. To avoid notational clutter, we drop the term +Ac going forward.

Outline
Using the Fourier symmetries (6.13)-(6.15), one can derive the phases, 0kG and 0kI ,
of the 1D fundamental wave numbers kG = [1, 0] and kI = [0, 1] as a function of
the reference phase 0k0 and the reference wave number k0 = [1, 1]. From there, it
is possible to sequentially derive the phase, 0<kG and 0=kI , of all harmonics of the
1D wave numbers <kG = [<, 0] and =kI = [0, =]. This then allows us to recover
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Figure 6.1: General outline of the phase reconstruction algorithm starting from
the user defined reference phase for mode k = [1, 1] to the phase of any arbitrary
wavenumber k = [<, =]. Note that at each step, there is only a single unknown
phase.

the phase of any arbitrary wave number k<,= = [<, =] using (6.24) through the triad
[<, =] = [<, 0] + [0, =].1 The outline of the general algorithm is summarized as a
flow chart in Figure 6.1 and illustrated graphically in Figure 6.2.

Step 1: Streamwise Constant Wavenumbers

We first consider the triad: a = b + c where a = 2kI = [0, 2], b = k0 = [1, 1], and
c = −k̃0 = [−1, 1]. The symmetry (6.13) reveals that the transformation :G → −:G
conjugates the resolvent weights which in this case implies that: 0c = −0b = −0k0 =

0. We can then compute the phase of a = 2kI using (6.24)

02kz −
(
0k0 − 0k0

)
= ∠(&2kI ,k0,−k̃0

) − c/2 (6.26)

02kz = ∠(&2kI ,k0,−k̃0
) − c/2. (6.27)

1Note that to reconstruct all phase information, it is not necessary to consider every possible
triadic interaction. One need only analyze enough triads such that each Fourier mode is included at
least once.
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(a) (b)

(c) (d)

Figure 6.2: The four general steps in the proposed algorithm. a) From the reference
mode [1, 1] (solid red) Fourier symmetries give ±[1,−1] (dashed red)
and their interaction gives [2, 0] (green) and [0, 2] (blue). b) The modes [2, 0] and
[0, 2] are used to compute [1, 0] and [0, 1]. c) From [1, 0] and [0, 1] one may

calculate all [<, 0] and [0, =]. d) Any arbitrary [<, =] may be computed from the
triad [<, 0] and [0, =].
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Next we consider the triad: a = b + c where a = 2kI = [0, 2], b = kI = [0, 1], and
c = kI = [0, 1]. We can again use (6.24) to compute the phase 0kI .

02kz −
(
0kz + 0kz

)
= ∠(&2kI ,kI ,kI ) − c/2 (6.28)

0kz =
1
2

(
02kz − ∠(&2kI ,kI ,kI ) + c/2

)
. (6.29)

We can then use (6.27) to write

0kz =
1
2

(
∠(&2kI ,k0,−k̃0

) − ∠(&2kI ,kI ,kI )
)
. (6.30)

This now allows us to sequentially compute the phase of all harmonics of kI.

0=kI =
(
0 (=−1)kI + 0kI

)
+ ∠(&=kI ,(=−1)kI ,kI ) − c/2 (6.31)

0=kI = 0 (=−1)kI +
1
2

(
∠(&2kI ,k0,−k̃0

) − ∠(&2kI ,kI ,kI )
)

+ ∠(&=kI ,(=−1)kI ,kI ) − c/2 (6.32)

Note that the phases of these streamwise constant modes are independent of the
reference phase 0k0 . This implies that the phase information of the streamwise con-
stant component of the flow does not depend on the streamwise varying component.
This independence is due to the symmetry (6.15) which is valid in the frequency
domain, but is generally not observed in DNS, which is formulated in the time
domain. Therefore, when applied to temporal data, this one-way coupling is not
expected to be exactly accurate.

Step 2: Spanwise Constant Wavenumbers

Next we perform the same analysis for the spanwise constant modes and consider
the triad: a = b + c where a = 2kG = [2, 0], b = k0 = [1, 1], and c = k̃0 =

[1,−1]. The symmetry (6.14) reveals that the resolvent weights are invariant to the
transformation :I → −:I which in this case implies that they have the same phase:
0c = 0b = 0k0 = 0. We can then compute the phase of a = 2kG using (6.24)

02kx −
(
0k0 + 0k0

)
= ∠(&2kG ,k0,k̃0

) − c/2 (6.33)

02kz = 20k0 + ∠(&2kI ,k0,k̃0
) − c/2. (6.34)

Next we consider the triad: a = b + c where a = 2kG = [2, 0], b = kG = [1, ], and
c = kG = [1, 0]. We can again use (6.24) to compute the phase 0kG .

02kx −
(
0kx + 0kx

)
= ∠(&2kG ,kG ,kG ) − c/2 (6.35)
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0kx =
1
2

(
02kx − ∠(&2kG ,kG ,kG ) + c/2

)
(6.36)

We can then use (6.34) to write

0kx =
1
2

(
20k0 + ∠(&2kG ,k0,k̃0

) − ∠(&2kG ,kG ,kG )
)
. (6.37)

This now allows us to sequentially compute the phase of all harmonics of kG .

0=kG =
(
0 (=−1)kG + 0kG

)
+ ∠(&=kG ,(=−1)kG ,kG ) − c/2 (6.38)

0=kG = 0 (=−1)kG + 0k0 +
1
2

(
∠(&2kG ,k0,k̃0

) − ∠(&2kG ,kG ,kG )
)

+ ∠(&=kG ,(=−1)kG ,kG ) − c/2 (6.39)

Note that unlike the streamwise constant modes, the phase of the spanwise constant
modes does depend on the phase of the reference mode k0.

Step 3: Arbitrary 2D Wavenumbers

We now have phase information for all Fourier modes which are either spanwise or
streamwise constant. This now allows us to reconstruct the phase information of
any arbitrary Fourier mode with wave number k<,= = [<, =] using (6.24).

0k<,= =
(
0<kG + 0=kI

)
+ ∠(&k<,=,<kG ,=kI ) − c/2 + Ac (6.40)

The phases 0=kI and 0<kG are given by (6.32) and (6.39), respectively. We have
thus reconstructed the phase information of the rank 1 approximation of all Fourier
modes with fixed wave speed 2 up to the as yet unspecified reference phase.

We would like to highlight a subtlety in (6.40). The first term on the right hand
side (6.39) depends on the reference phase while the second term, (6.32), does not.
There is a one-way coupling between the phases of the streamwise constant and
streamwise varying modes. The :G = 0 affect the evolution of the :G > 0 phases,
while these 3D modes do not feed back onto the streamwise constant component.

6.7 Example
Here we present several examples of how the proposed algorithm works in practice.
The effectiveness of the resolvent spectrum optimization outlined in §6.3 is well
described in McMullen et al. (2020), and we do not address it here. We focus on
the novel contributions of this thesis: the phase reconstruction based on the energy
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conserving triads described in §6.6. In order to illustrate our proposed algorithm,
we apply it to a series of exact solutions to the NSE. In this case, we have exact
knowledge of the Fourier modes and their relative phase shifts, which allows us
to test the ability of our algorithm to reconstruct the relative phase shifts with
knowledge of the exact mode shapes and amplitudes.

Such phase shifts are only defined relative to some fixed anchor point in space. If
we define the anchor point, H0, then the data may be written in the form (6.19) as
follows

ûk(H) = 48(∠ûk (H)) |ûk(H) | (6.41)

ûk(H) = 480k
(
48(∠ûk (H)−0k) |ûk(H) |

)
(6.42)

where 0k is the phase at the anchor point. The Fourier mode can then be written in
the form

ûk = 4
80k, q̂k (6.43)

such that (6.43) is equivalent to the form (6.19). We then use the “unshifted” modes
q̂k(H) as the input to our algorithm and compare the phase shifts predicted by our
algorithm to the exact phases computed from the data using (6.43). Since our
algorithm is only defined up to a reference phase, we compare the phase shift from
that reference wave number, k0 = [1, 1],

Δ0k =
0k − 0k0

c
. (6.44)

Exact Coherent States
First we analyze four time invariant equilibrium solutions: EQ3, EQ4, EQ5, and
EQ6. The solutions were taken from the open source database available at chan-
nelflow.org (Gibson, 2014). A Fourier decomposition in G and I was performed on
the data to obtain a spectral representation of the form (6.43). In this case, we define
the anchor point as the center line, and define the phase of each Fourier mode as
phase of the streamwise velocity component at the center line.

The results are plotted in Figure 6.3. The phase shifts predicted by our algorithm
are shown in circles and the reference phase shifts computed directly from data are
plotted as triangles. For the solutions considered here, themodeswith :G < 3 contain
more than 99.9% of the kinetic energy. Therefore we plot only the phase shifts for
:G = 0, 1, 2, which the algorithm is able to accurately reconstruct. Furthermore, we
exactly capture the phases of the streamwise constant modes as these do not rely on
the reference phase.
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Turbulent Channel Flow
Second, we analyze the DNS of a turbulent channel flow at '4g = 550 with channel
half height ℎ and centerline velocity*0. The DNS was computed using the spectral
code described in Flores and Jiménez (2006)2. We first interpolate the data onto
a uniform time grid and then perform a temporal Fourier transform over a time
horizon of 125ℎ/*0 to again obtain a spectral representation of the form (6.43). We
consider two fixed values of the wave speed, 2/*0 = 0.1 and 0.5. This means that
for each :G we only retain the temporal frequency l = 2:G . This then implies that
the data is parameterized by a 2D wave number as outlined in §6.5. In this case we
define the anchor point as the critical layer, the point where * (H) = 2, and define
the phase of each Fourier mode as phase of the streamwise velocity component at
that critical layer.

The results for turbulent channel flow for 2/*0 = 0.1 and 0.5 are shown in Figures
6.4 and 6.5, respectively. In this case, we plot the phase shifts for :G = 0, 1, 2, 3. The
algorithmic prediction is not exact as in the ECS example, but is reasonably accurate,
and captures the qualitative trend of the phase shifts as a function of :I. The error in
this example is in part due to the fact that the DNS solution does not generally obey
the frequency domain symmetries (6.13) - (6.15) which are central to the algorithm.
This is likely due to the fact that we have computed the frequency content through
a simple FFT of a single time signal of data, and the time interval we considered
was likely not long enough for the phases to be fully converged. These convergence
issues could potentially be addressed using a windowing method, however such an
analysis was not pursued here. It is interesting to observe that these trends exhibit
some similarities across wave speeds. This indicates that it may be possible to derive
simple rules governing inter-wavespeed phase shifts. However, such an analysis is
beyond the scope of this work.

Outlook
These results are intended as a proof of concept to illustrate the efficacy of the
proposed algorithm, and as such we would like to highlight some of the assumptions
made in this analysis. First, we reiterate that we have used the exact Fourier mode
shapes as an input, and thus the excellent prediction is expected. Applying this
algorithm to the resolvent model output from the optimization described in §6.3 is
the topic of ongoing research. Second, at each step in the algorithm the prediction
of the phase is only defined up to Ac with A = 0, 1. To illustrate the potential of our

2The DNS data was computed and generously provided by Yuting Huang.
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Figure 6.3: Phase shifts from reference mode for :G = 0 (black), :G = 1 (blue), and
:G = 2 (red). Algorithmic prediction (circles) and reference phase shifts computed
from data (triangles). Solutions EQ3 - EQ6 (a) - (d).

algorithm, at each step we choose the value of A that leads to the best approximation
of the reference phase shifts. A first principles-based prediction of the optimal value
of A is a topic of ongoing research. Finally, we note that these results does not imply
the full recovery of the phase information of the solution since the reference phase
0k0 is still unknown. Nevertheless, we believe these results show the potential of
the ECT framework to open new avenues of nonlinear physics-based models.

6.8 Discussion and Possible Extensions
Here we summarize the challenges of the proposed framework as well as potential
avenues for future research.

Limitations and Potential Problems
As illustrated by the example described in §6.7, our algorithm is capable of exploiting
the principle of intra-triad energy conservation to predict phase information given
knowledge of the mode shapes. However, this approach is not without limitations
and challenges. The primary difficulty in successfully applying our method in
practice is the sensitivity of the predicted phase to errors in the quantity &a,b,c.
Such errors are possible even with supposedly “exact” knowledge of the mode
shapes. First of all, note that roughly speaking &a,b,c scales with the cube of the
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Figure 6.4: Phase shifts from reference mode for turbulent channel flow at '4g =
550 for 2/*0 = 0.1. Algorithmic prediction (circles) and reference phase shifts
computed from data (triangles). :G = 0, 1, 2, 3 (a) - (d).

Figure 6.5: Phase shifts from reference mode for turbulent channel flow at '4g =
550 for 2/*0 = 0.5. Algorithmic prediction (circles) and reference phase shifts
computed from data (triangles). :G = 0, 1, 2, 3 (a) - (d).
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velocity, i.e. &a,b,c ∼ O(û3). If we assume the mean velocity is of order one,
then for some general triad with a, b, c ≠ 0 inspection of the data reveals that
each Fourier mode is generally O(10−3) or O(10−4) meaning that we may have
&a,b,c ∼ O(10−12) regardless of the phase of the Fourier modes. In fact, evaluating
the intra-triad energy transfer (6.9) for the full DNS solution, which mathematically
should be exactly zero, gives values which are also ∼ O(10−12). This implies that
our algorithm is searching for zeros of a quantity, which from a numerical point of
view, is vanishingly small regardless of its argument.

Furthermore, in order to compute this quantity, we perform a numerical Fourier
transform of the velocity field to obtain the Fourier modes, then numerically dif-
ferentiate these modes to obtain the gradient in the nonlinear term, and then finally
perform a numerical integration to arrive at the scalar &a,b,c. Each of these opera-
tions, particularly the numerical differentiation is susceptible to small but potentially
impactful numerical errors. In cases where the exact mode shape is not known, the
error in the mode shape would of course exacerbate these problems.

On a more fundamental level, the inherent limitation of our algorithm is the inde-
terminacy of the reference phase. While even moments are invariant with respect
to this reference phase, odd moments such as the skewness are not. Therefore, the
derivation of this phase from first principles remains a topic of ongoing research.
Naively one might assume that this phase could be computed through iteratively an-
alyzing the triad [1, 0] + [0, 1] = [1, 1], however, when evaluated for this triad, the
reference phase drops out of the expression (6.24). Additionally, the multi-valued
nature of the complex logarithm leads to the arbitrary Ac shift in (6.24). Since in
§6.7, we had the luxury of knowing the DNS phases we were able to choose the
correct value for A, however in a practical application it is not clear how this value
would be optimally chosen.

Application to Quasilinear Theory
Quasilinear (QL) and generalized quasilinear (GQL) theory are simplified models
of the Navier-Stokes equations which neglect the direct affect of the nonlinear inter-
action between small scales on the evolution of those small scales. While QL theory
has had success in the prediction of several features of turbulent flows, there are
still discrepancies between the flow predicted by QL simulations and DNS (Marston
et al., 2016; Hwang and Eckhardt, 2020; Skouloudis and Hwang, 2021). This mo-
tivates the desire to either a) augment the QL simulation by introducing a forcing
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model to replace the neglected nonlinear interactions or b) derive a transformation
on the QL solution to better approximate the DNS solution. In regards to the former,
our algorithm could augment stochastic forcingmodels such as those used byHwang
and Eckhardt (2020) to better approximate the true nonlinearity.

However, we are most optimistic about the potential of our framework to lead
to a post-hoc transformation of QL solution to something which more accurately
resembles the true DNS solution. Since the QL simulation neglects the nonlinear
interaction of small scales in the forcing of those same small scales, triads involving
only small scales do not obey the energy conservation principle discussed in §6.4.
Given the Fourier modes of the QL solution written in the form (6.19), one could
discard the phases of these Fourier modes and reconstruct them using an algorithm
similar to that described here ensuring that the small scale velocity obeys the energy
conserving properties required by the full NSE. This could be done online, at each
time step, or a posteriori.

6.9 Summary
In this chapter, we have suggested an algorithm for the reconstruction of the phase
information lost in the compression of the full velocity field to the kinetic energy
spectrum. The wall normal phase variation of the flow is recovered through the
convex optimization approach introduced by Moarref et al. (2014a) and McMullen
et al. (2020). The novel contribution of this thesis is the reconstruction of the
relative phase shifts between Fourier modes based on the intra-triad conservation
of kinetic energy. Given the magnitude and wall normal variation of the mode
shapes, the relative phase shifts are computed by setting the net intra-triad energy
transfer to zero. These triads are analyzed sequentially, such that in each step of the
algorithm there is only one unknown phase. We illustrated the phase reconstruction
capabilities of the algorithm by applying it to a series of exact solutions to the NSE,
and demonstrated that given exact knowledge of the mode shapes the algorithm is
able to accurately predict their relative phase shifts. We concluded with a discussion
of the possible application of these concepts to QL simulations through online or a
posteriori enforcement of the intra-triad energy conservation of the small scales.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

This thesis has contributed to both the linear and nonlinear aspects of resolvent
analysis and general equations driven modeling of wall-bounded flows. This chapter
summarizes the key contributions of this thesis and suggests avenues for future
research.

The first contributionwas the alternative theoretical framework for resolvent analysis
described in Chapter 2. This alternative framework, coined VRA, is based on the
calculus of variations and avoids the reliance on the inversion of the linear operator.
Instead of defining the resolvent modes as the singular value decomposition of the
resolvent operator, this framework extends the concept of the “optimal” forcing and
response to defining the entire resolvent basis as stationary points of the operator
norm of the linearized dynamics. Inverse free methods have been used by other
researchers as numerical strategies, however the rigorous variational foundation
introduced here is a novel contribution of this thesis. Furthermore, we proposed
a method based on the variational formulation which allows for the approximation
of computationally intensive 2D/3C resolvent response modes as an expansion in
cheap 1D modes. We illustrated the proposed method through a series of examples
including both streamwise periodic and streamwise developing base flows. In
the former case, the VRA prediction of the response modes displayed excellent
quantitative agreement with the SVD-based reference. In the latter case, the VRA
prediction of the response modes became progressively less accurate with increased
streamwise development of the base flow. This deterioration was found to be due
to the boundary condition mismatch between the streamwise periodic input modes
and the non-periodic nature of the base flow. Due to the directional amplification
of the resolvent operator, the VRA prediction of the 2D/3C forcing modes was
considerably less accurate. The improvement of the prediction of the forcing modes
as well as the exploration of other modeling types of basis are fruitful avenues of
future research. Finally, unlike the SVD-based formulation, the variational definition
allows for systematic and rigorous way to define the resolvent with respect to any
arbitrary type of norm. In this thesis, we consider only quadratic norms, however in
theory the variational formulation allows for other types of norms such as 1-norms
which could be used to promote sparsity in the resolvent basis.
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The second contribution was the nonlinear resolvent model of Taylor vortex flow
discussed in Chapter 4. Even though resolvent analysis formally retains the nonlin-
ear coupling between the forcing and response, the explicit nonlinearity is neglected
in most RA-based studies, some of the notable exceptions being Rosenberg (2018)
who computed nonlinear models of ECS and Nogueira et al. (2020) who analyzed
the statistics of the nonlinear forcing. We illustrate that the resolvent form of the
nonlinear fluctuation equation (2.17) can be solved effectively, thereby demonstrat-
ing an explicit closure of the resolvent loop illustrated in Figure 1.1. In Chapter 5
we augment these results by computing the mean velocity profile from the laminar
base flow alleviating the reliance of the resolvent model on an input mean velocity
profile. We expand on the results of Rosenberg (2018) and demonstrated that the
flow transitions from a regime where the forcing cascade is purely downscale to a
regime where an equal and opposite upscale forcing cascade emerges. This analysis
illustrates the explicit physical phenomenon which causes the breakdown of weakly
nonlinear analysis. We showed analytically that this transition is a direct conse-
quence of the functional form of the nonlinearity of the NSE and the decay rate of
the energy spectrum. A decay faster than :−2 is indicative of a weakly nonlinear
regime, while a slower decay indicates a fully nonlinear flow. The immediate next
steps of this branch of inquiry is the extension of the optimization-based technique
described here to higher Reynolds numbers and more complex flows. The primary
challenge in this regard is the dense 6Cℎ order tensor in (4.29) which becomes pro-
hibitively large with increasing degrees of freedom. Therefore, the application of
this method to higher dimensional flows must be accompanied by the development
of more efficient sets of basis functions. This could potentially be addressed through
an intelligent choice of norm permitted by the VRA framework. In the Taylor Cou-
ette context, this could for example be used to enforce the approximate wall normal
symmetry observed in the solution but not the resolvent basis. Another potential
strategy would be to apply the ECT framework discussed in Chapter 6 to sequen-
tially compute the solution one triad at a time. This would limit the degrees of
freedom required in each optimization, and could lead to a straightforward approach
to continue solutions to higher Reynolds numbers through the sequential inclusion
of additional triads.

The third contribution is that we have proposed an algorithm to reconstruct phase
information from the energy spectrum. The algorithm is based on the concept of
energy conserving triads introduced bySchmid andHenningson (2001), a framework
that is largely unexplored in the literature. We apply our algorithm to a series of
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exact solutions to the NSE for which we are able to accurately predict the phase
shifts between Fourier modes. The prediction of the phase information would allow
for a transformation from first order statistics to higher order moments derived
directly from the NSE. Our results have merely illustrated the potential of the ECT
framework in the development of highly truncated equations-based models. Of
particular relevance is the ability to introduce the nonlinear dynamics in a sequential
manner since each triad can be analyzed in turn, such that at each step there is only a
single unknown variable. For example our algorithm could be used to augment QL
simulations to enforce energy conservation among the small scales whose nonlinear
interaction is neglected in the QL equations, a topic of ongoing research.

Overall, we hope this thesis has highlighted the potential avenues for extending
resolvent analysis and equations driven modeling in general. Our variational for-
mulation opens up the concept of resolvent analysis to a wider range of applications
enabled by its cost saving potential as well as its theoretical framing in terms of
arbitrary norms. Additionally we have highlighted the potential for reduced order
models to accurately model nonlinear dynamics if the nonlinear interactions are
incorporated in a systematic and sequential manner.
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A p p e n d i x A

CHAPTER III

A.1 Variation Over Complex Fields
The following derivation is an extension of the theory derived in Wirtinger (1927)
and Brandwood (1983). Let � = 〈� (@, @∗,∇@,∇@∗)〉 ∈ R where @ = 0 + 81 ∈
C∞, with 0, 1 ∈ R∞. The functional � can equivalently be written as � =

〈� (0, 1,∇0,∇1)〉. The Euler-Lagrange equations defining stationary points of
� with respect to 0 and 1 are given by:

X�

X0
≡ m�
m0
− ∇ m�

m∇0 = 0 (A.1)

X�

X1
≡ m�
m1
− ∇ m�

m∇1 = 0. (A.2)

Since � ∈ R, a simple change of variables to @ and @∗ leads to

X�

X@
=

1
2

(
X�

X0
− 8 X�

X1

)
(A.3)

X�

X@∗
=

1
2

(
X�

X0
+ 8 X�
X1

)
(A.4)

which implies that
X�

X0
=
X�

X1
= 0⇒ X�

X@
=
X�

X@∗
= 0. (A.5)

Furthermore, since �, 0, and 1 are real functions, it follows that

X�

X@
= 0⇒ X�

X0
=
X�

X1
= 0 (A.6)

X�

X@∗
= 0⇒ X�

X0
=
X�

X1
= 0 (A.7)

and therefore either of the above conditions is necessary and sufficient for stationarity.

A.2 Orr-Sommerfeld Eigenfunctions
The Orr-Sommerfeld eigenvalue problem for :G = 0 on the domain H ∈ [−1, +1] is
given by

−8l∇2E 9 −
1
'
∇4E 9 = _

$(
9 ∇2E 9 (A.8)
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Figure A.1: Absolute value of the Orr-Sommerfeld eigenfunctions E 9 ( 9 = 1...8)
for :G = 0, :I = 6, and l = 0.1.

subject to the boundary condition E(±1) = EH (±1) = 0. This problem has been
analyzed by several authors including Dolph and Lewis (1958); Jovanović and
Bamieh (2005), and the solutions are found to be:

E 9 (H; :I) = � 9
(
cos(W 9 (H + 1)) − cosh(:I (H + 1))

)
+

� 9

(
sin(W 9 (H + 1)) − W 9 :−1

I sinh(:I (H + 1))
) (A.9)

_$(9 =
1
'

(
W2
9 + :2

I

)
− 8l (A.10)

where the W 9 are defined as the roots of the following equation:

cos(2W) cosh(2:I) −
(
:2
I − W2

2:IW

)
sin(2W) sinh(2:I) − 1 = 0. (A.11)

The relative amplitudes � 9 and � 9 are defined for each W 9 as the solutions of the
following system:[

cos(2W 9 ) − cosh(2:I) sin(2W 9 ) −
(
W 9 :

−
I 1

)
sinh(2:I)

−W 9 sin(2W 9 ) − :I sinh(2:I W 9 (cos(2W=) − cosh(2:I))

] [
� 9

� 9

]
=

[
0
0

]
.

(A.12)
In Figure A.1, we plot the eigenfunctions E 9 for the same parameters plotted in §3.2:
:G = 0, :I = 6, and l = 0.1.



120

A.3 Singular Value Scaling
The resolvent operator we consider in §3.2 is defined as

H =

[
!$( 0
*̄H !(&

]−1

=

[
!−1
$(

0
−!−1

(&
*̄H!

−1
$(

!−1
(&

]
. (A.13)

Noting the definitions (3.22) and (3.21), if l = 0, H may be written in the form

H =

[
'�EE 0
'2�DE '�DD

]
, (A.14)

where �EE, �DE, �DD ≠ 5 ('). This reveals that as ' → ∞, ‖�‖ = f1 →
'2‖�DE ‖ ∼ '2. If we further consider the limit :I → ∞ and rescale the wall
normal coordinate . = :IH, we find

‖�DE ‖ = ∇−2*̄H∇−2 = :−3
I ∇̃−2*̄H∇̃−2, (A.15)

where ∇̃2 = m2

m.2 − 1. Thus for :G = 0 and as l → 0, ' → ∞ and :I → ∞, we find
that

f1 ∼ '2:−3
I . (A.16)

A more in depth analysis can be found in Jovanović and Bamieh (2005).

A.4 Select Input Basis Elements
In this section, we plot a selection of representative input basis elements used in the
2D examples presented in this work. Figure A.2 shows four of the local resolvent
modes used in the VRA reconstruction of the 2D resolvent modes computed about
EQ1 in §3.3. Figure A.3 shows two of the local resolvent modes used in the
reconstruction of the 2D resolvent modes computed about the ZPGTBL in §3.4.
Figure A.3a represents a “wall-attached” mode used in the reconstruction of the
global resolvent inner-mode with [:I, l] = [44.0, 1.8]. Figure A.3b represents a
“wall-detached” mode used for the outer-mode with [:I, l] = [11.0, 2.3].
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Figure A.2: Select elements of input resolvent basis: @(H, I) = ψ:G ,:I ,l, 9 (H)48:I I
for :G = 0.5, l = 0.375, 9 = 1 and !I:I/2c = 1 (a,e), 2 (b,f), 3 (c,g), and 4 (d,h).
Top row: E, bottom row: [.

(a) (b)

Figure A.3: Select elements of input resolvent basis: @(G, H) = ψ:G ,:I ,l, 9 (H)48:GG
for [:I, l] = [44.0, 0.65*∞/:G] (a) and [:I, l] = [11.0, 0.8*∞/:G] (b). In both
cases !G:G/2c = 3 (top panel) and 12 (lower panel), and in all cases 9 = 1.

A.5 Singular Value Sensitivity
The true singular value/mode pairs satisfy

f2
9 =

(
Hφ 9

)� Q
(
Hφ 9

)
=

( (
Lψ 9

)� Q
(
Lψ 9

) )−1
. (A.17)

Consider a perturbation to either ψ 9 or φ 9 :

ψ 9 ,n =ψ 9 + nr
φ 9 ,n =φ 9 + ng

(A.18)

where | |ψ 9 | | = | |φ 9 | | = | |r| | = | |g| | = 1 and n � 1. The error in the singular value
due to a perturbation in ψ may be bounded as follows.

f−2
9 ,n ,! = (L (ψ + nr))

� Q (L (ψ + nr)) = f−2
9 + 2n<{(Lψ)� Q (Lr)} + O(n2)

(A.19)
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Using the definition Lψ 9 = f
−1
9
φ and rearranging slightly we find

f9 ,n ,! = f9

(
1 + 2nf9<{(φ)� Q (Lr)}

)−0.5
. (A.20)

Taylor expanding for small n gives

f9 ,n ,! = f9 − nf2
9<{(φ)� Q (Lr)} + O(n2). (A.21)

Further, applying the Cauchy-Schwartz inequality and noting that ‖φ 9 ‖ = ‖r‖ = 1
leads to

|f9 ,n ,! − f9 ‖
f9

≤ nf9 ‖L‖. (A.22)

Conversely, the error in the singular value due to a perturbation inφmay be bounded
as follows.

f2
9 ,n ,� = (H (φ + ng))

� Q (H (φ + ng)) = f2
9 + 2n<{(Hψ)� Q (Hg)} + O(n2)

(A.23)
Using the definition Hφ 9 = f9ψ and rearranging slightly, we find

f9 ,n ,� = f9

(
1 + 2nf−1

9 <{(ψ)� Q (Hg)}
)0.5

. (A.24)

Taylor expanding for small n gives

f9 ,n ,� = f9 + n<{ψ�Q (Hg)} + O(n2). (A.25)

Again, applying the Cauchy-Schwartz inequality and noting that given that ‖ψ 9 ‖ =
‖g‖ = 1 and ‖H‖ = f1 leads to

|f9 ,n ,� − f9 ‖
f9

≤ n f1
f9
. (A.26)

A.6 Singular Mode Sensitivity
Here we derive bounds on the sensitivity of φ 9 .

φ 9 ,n ,k = f9 ,n ,!L
(
ψ 9 + nr

)
= f9 ,n ,!Lψ 9 + nf9 ,n ,!Lr (A.27)

Again, we assume ‖ψ 9 ‖ = ‖r‖ = 1 and n � 1. Subtracting φ 9 = f9Lψ 9 from both
sides and rearranging the right hand side slightly results in

φ 9 ,n ,k − φ 9 =
(
f9 ,n ,! − f9

)
Lψ 9 + n

(
f9 ,n ,! − f9

)
Lr + nf9Lr. (A.28)

We note from the results of Appendix A.5 that
(
f9 ,n ,! − f9

)
∼ n which allows us to

write
φ 9 ,n ,k − φ 9 =

(
f9 ,n ,! − f9

)
Lψ 9 + nf9Lr + O(n2). (A.29)
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Next, we analyze the norm of both the left and right hand side, which upon appli-
cation of the triangle inequality, the Cauchy-Schwartz inequality, and (A.22) results
in

‖φ 9 ,n ,k − φ 9 ‖ ≤ n
(
f9 ‖L‖ + 1

)
f9 ‖L‖. (A.30)

The same analysis may be applied to derive bounds on the sensitivity of ψ 9 ,

ψ 9 ,n ,q ≡ f−1
9 ,n ,�H

(
φ 9 + ng

)
= f−1

9 ,n ,�Hφ 9 + nf−1
9 ,n ,�Hg, (A.31)

where again we assume ‖φ 9 ‖ = ‖g‖ = 1 and n � 1. Subtracting ψ 9 = f
−1
9

Hφ 9

from both sides and rearranging the right hand side slightly results in

ψ 9 ,n ,q −ψ 9 =
f9 − f9 ,n ,�
f9f9 ,n ,�

Hφ 9 + n
f9 − f9 ,n ,�
f9f9 ,n ,�

Hg + nf−1
9 Hg. (A.32)

Taylor expanding about n = 0 and noting that
(
f9 ,n ,� − f9

)
∼ n results in

ψ 9 ,n ,q −ψ 9 =
f9 − f9 ,n ,�

f2
9

Hφ 9 + nf−1
9 Hg + O(n2). (A.33)

Next we analyze the norm of both the left and right hand side, which upon application
of the triangle inequality, the Cauchy-Schwartz inequality, and (A.26) results in

‖ψ 9 ,n ,q −ψ 9 ‖ ≤ n
(
f1
f9
+ 1

)
f1
f9
. (A.34)
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A p p e n d i x B

CHAPTERS IV-V

B.1 Linear Operator for Taylor Vortex Flow
TheNavier-Stokes operator in cylindrical coordinates linearized about a one-dimensional
azimuthal mean flow* (A) and Fourier transformed in I, \, and C is given by

Lk =



8=*
A
+ 1
'

(
1
A2 − ∇2

)
1
'

(
28=
A2

)
− 2*

A
0 m

mA(
m*
mA
+ *

A

)
− 1

'

(
28=
A2

)
8=*
A
+ 1
'

(
1
A2 − ∇2

)
0 8=

A

0 0 8=*
A
− 1

'
∇2 8:

1
A
+ m
mA

8=
A

8: 0



, (B.1)

where the Laplacian operator is defined as

∇2 =
m2

mA2 +
1
A

m

mA
−

(
:2 + =

2

A2

)
. (B.2)

The weight matrix, " , is defined as

" ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


. (B.3)
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A p p e n d i x C

CHAPTER VI

C.1 Intra-Triad Energy Transfer in Frequency Space
Herewe verify that the results derived in the time domain by Schmid andHenningson
(2001) are also valid in the frequency domain. Consider the Triad of wavenumbers
a = b + c, where a = [U0, V0, l0], b = [U1, V1, l1], and c = [U2, V2, l2]. We
define the quantity

�a,b,c = R
{∫

û∗a,8ûb, 9
m

mG 9

(
ûc,8

)
3H

}
(C.1)

where summation over the indices 8, 9 = 1, 2, 3 is assumed. Note that since (C.1)
is defined as the real part, we have the symmetry �a,b,c = �−a,−b,−c. Integrating by
parts leads to

�a,b,c = R
{∫

m

mG 9

(
û∗a,8ûb, 9 ûc,8

)
3H −

∫
ûc,8

m

mG 9

(
û∗a,8ûb, 9

)
3H

}
. (C.2)

The first term in (C.2) vanishes due to the homogeneous Dirichlet boundary condi-
tions relevant to the wall bounded flows considered here.

�a,b,c = R
{
−

∫
ûc,8

m

mG 9

(
û∗a,8ûb, 9

)
3H

}
. (C.3)

Integrating by parts again leads to

�a,b,c = R
{
−

∫
ûc,8

(
û∗a,8

m

mG 9

(
ûb, 9

)
+ ûb, 9

m

mG 9

(
û∗a,8

))
3H

}
. (C.4)

The first term of (C.3) vanishes due to the continuity constraint that ∇ · u = 0.

�a,b,c = R
{
−

∫
ûc,8ûb, 9

m

mG 9

(
û∗a,8

)
3H

}
= −�−c,b,−a (C.5)

This indicates that
�a,b,c + �−c,b,−a = 0. (C.6)

Similarly we can show that

�a,c,b + �−b,c,−a = 0. (C.7)
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The energy transfer from the interaction of modes ûb(H) and ûc(H) to mode ûa(H)
is then given by

)a = �a,b,c + �a,c,b. (C.8)

Similarly, the energy transfer from the interaction of modes ûa(H) and û−c(H) to
mode ûb(H) and the energy transfer from ûa(H) and û−b(H) to mode ûc(H) are given
by

)b = �b,a,−c + �b,−c,a (C.9)

)c = �c,a,−b + �c,−b,a (C.10)

where

�b,a,−c + �c,a,−b = 0 (C.11)

�b,−c,a + �−a,−c,−b = 0 (C.12)

�c,a,−b + �b,a,−c = 0 (C.13)

�c,−b,a + �−a,−b,−c = 0. (C.14)

Summing (C.6), (C.7) and (C.11)-(C.14) and utilizing the fact that �a,b,c = �−a,−b,−c

leads to
)a,b,c ≡ )a + )b + )c = 0. (C.15)

We define the quantity )a,b,c as the “intra-triad energy transfer”, but reiterate that
the result (C.15) is originally due to Schmid and Henningson (2001). We simply
verify its validity in the temporal frequency domain.

C.2 Fourier Symmetries of Governing Equations
Evaluating the linearized Navier-Stokes or Orr-Sommerfeld/Squire operator reveals
that the resolvent modes ψk, 9 , φk, 9 as well as the Fourier modes of the response
and forcing, ûk, f̂k obey the symmetries (6.13-6.15). This allows us to derive the
symmetries of the resolvent weights which are defined as

jk, 9 ≡ 〈φk, 9 , f̂k〉 (C.16)

jk, 9 = 〈q∗G,k, 9 5̂G,k + q
∗
H,k, 9 5̂H,k + q

∗
I,k, 9 5̂I,k〉. (C.17)

The transformation :I → −:I leads to

j̃k, 9 = 〈q∗G,k, 9 5̂G,k + q
∗
H,k, 9 5̂H,k + (−q

∗
I,k, 9 ) (− 5̂I,k)〉. (C.18)

j̃k̃, 9 = 〈q∗G,k, 9 5̂G,k + q
∗
H,k, 9 5̂H,k + q

∗
I,k, 9 5̂I,k〉 = jk, 9 (C.19)
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The weights are unaffected by the transformation :I → −:I. This confirms that the
full Fourier mode ûk = jk, 9fk, 9ψk, 9 obeys the same symmetry as ψk, 9 , namely,

ûk = [D̂, Ê, F̂] → [D̂, Ê,−F̂] (C.20)

as :I → −:I. The transformation as :G → −:G follows immediately. The combi-
nation of the derived conclusion that jk, 9 is independent of the sign of :I and the
requirement that the physical space representation of the velocity is real necessitates
that the negation of :G results in the conjugation of jk, 9 , i.e. as :G → −:G , we have
jk, 9 → j∗k, 9 We note that these Fourier symmetries are true in the resolvent form
but generally not observed in DNS which is formulated in the time domain.
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