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Abstract

Several novel aspects of the microphase separation transition of block copolymers
have been studied. These aspects are exemplified by the following three systems:

(1) ABC triblock copolymers;

(2) Weakly charged diblock copolymers;

(3) Diblock copolymers in confined geometries.

For ABC' triblock copolymers, results from theoretical calculations of the mor-
phological phase diagrams in the strong segregation limit are presented. The chain
conformation free energy is approximated following an approach proposed by Ohta
and Kawasaki. Our study focuses on two unique features of the ABC triblock copoly-
mers, namely, the dependence of the morphology on the sequence of the triblock chain
and the relative strength of the various interaction parameters. Our results compare
favorably with experimental observations. In addition, we predict the existence of
some new structures that have yet to be observed experimentally.

For weakly charged diblock copolymers, a theoretical framework is developed.
This framework combines the Random Phase Approximation and the Poisson-
Boltzmann equation in order to consistently treat the electrostatic interactions be-
tween all charged species and the free energy contributions from the connectivity of
the diblock copolymers. A Landau-Ginzburg effective free energy is derived and is
used to study the microphase separation of charged-neutral block copolymers with an
arbitrary amount of added salt in the weak segregation limit. Study of the spinodal
limit of the system shows not only greatly enhanced compatibility between A and
B blocks in comparison with the corresponding neutral system, but also inhibition
of microphase separation under certain conditions. A criterion for microphase sepa-
ration is derived and phase diagrams under various conditions are presented. Study
of concentration fluctuation near the order-disorder transition demonstrates that the

breaking of the interchange symmetry leads to new scaling of fluctuation corrections
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at a fixed value of monomer charge density a.

The morphology of diblock copolymer melt confined between two solid walls in the
strong segregation limit is studied by extending the method developed by Ohta and
Kawasaki to include surface effects. We focus on two new features which are absent
in simple diblock copolymers: the competition between the surface interactions and
the confinement effects, and the breaking of the rotational and translational symme-
try. The first new feature is demonstrated by studying the equilibrium properties
of symmetric/nearly symmetric diblock copolymers confined between two identical
walls with a small preferential surface affinity. The second feature is illustrated by
studying the phase behavior of diblock copolymers with arbitrary value of volume
fraction. For phase transition involves morphologies with three dimensional struc-
ture, the broken rotational and translational symmetry leads to the dependence of
the transition volume fraction on the distance between the two plates. The influence
of surface effects on diblock copolymers confined between two distinct plates is also

studied by presenting phase diagrams for two special cases.
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Chapter 1 Introduction

1.1 Motivation

A polymer is a large molecule composed of many fundamental units, called monomers,
connected by chemical bonds. If these monomers are identical, the result is a “ho-
mopolymer”; if the monomers are of two or more kinds, the product is a hetero- or
copolymer that can be either random or have a well-defined sequence.

Polymers are the most commonly encountered complex material in the world.
With the exception of metals and inorganic compounds, most of the materials that
we come into contact with everyday are polymeric. These include proteins and nucleic
acids in our bodies; the fibers we use for clothing; the protein and starch we eat; the
elastomers in our automobile tires, paints, plastic wall and floor coverings, foam
insulation, and so forth, in our house.

Although there are many varieties of polymers, they all have some common fea-
tures. The rapid growth of polymer science over the past few decades has been due in
large part to deepening understanding of the relationship between the physical char-
acteristics of polymers and the structure of the polymer molecules. It has become
apparent that molecular properties such as chain length, chain stiffness, degree of
branching, molecular architecture, and the number of charge groups are more signif-
icant than the detailed chemical make-up of polymers in determining their physical
characteristics [1]. An understanding of the relationship between such molecular
properties and the physical characteristics can help efficiently direct the synthesis of
new materials with useful properties.

One of the more interesting and extensively studied class of polymers are the block
copolymers. A block copolymer is a polymer composed of two or more sequences of
monomers joined together by chemical bonds. Several commonly encountered block
copolymers are depicted in Figure 1.1. Block copolymers are fascinating materi-
als with unique mechanical, optical, and structural properties. They can be used

as surfactants, as compatibilizing agents in polymer blends, and as adhesives. The
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most important property of block copolymers is their ability to self-assemble. Due to
the incompatibility between different polymer species in a block copolymer, the very
low value of entropy of mixing for macromolecules, and the fact that the different
polymer blocks are connected by chemical bonds, block copolymers undergo a mi-
crophase separation and assemble into various ordered structures [8]- [18]. Recently,
self-assembled ordered polymer structures with periodicities on the nanometer scale
have become an important area of study because of their potential applications in
nano-technology. For instance, it has been suggested that block copolymers can be
used in the development of new classes of electronic devices [19] , [20] and in the syn-
thesis of mesoporous solids which can be used as catalysts and sorption media [21],
[22]. An important factor contributing to the block copolymers’ widespread popular-
ity is the controllability of the size and morphology of the microstructure, and hence
the material properties, by varying the molecular weight, molecular architecture, and

composition of the copolymers.

1.2 Definition and Background

The equilibrium phase behavior of block copolymer is controlled by four factors: (1)
molecular architecture (see Figure 1.1), (2) degree of polymerization, (3) composition,
and (4) choice of monomers. The number of molecular configurations available to con-
nect chemically distinct polymer species is almost unlimited. Some of the commonly

encounted _molecular architectures in block copolymers are shown in Figure 1.1. The

degree of polymerization is the total number of repeat units (i.e., monomers) that

make up a polymer chain, and is denoted as N. Composition generally refers to the
overall volume fraction of a component. In a diblock copolymer A — B, if A and B
have monomer volumes v4 and vp, respectively, and the degree of polymerization of
blocks A and B are Ny and Npg, respectively, then the composition of the diblock
copolymer f = Nava/(Nava + Npvg). If monomer A and B have the same volume,
then f = Na/(Na + Ng). The choice of a particular pair of monomers establishes
the sign and magnitude of the mixing energy. This can, in general, be approximated
by the Flory-Huggins segment-segment interaction parameter yx,

1 1

X = knT €AB — §(€AA + €pp) (1.1)
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where ¢;; represents the contact energy bewteen ¢ and j segments. A negative value
of x results in a favorable energy of mixing, i.e., A — B contacts on average produce a
lower system energy than the sum of A—A and B— B contacts. Certain types of A—B
interactions, such as hydrogen bonding, can result in a negative x. Positive values
of x occur when the system energy increases upon forming A — B contacts from
unmixed components. Most nonpolar polymers such as polyethylene, polystyrene,
and polyisoprene have a positive xy. Experiments show that x is of order 1073 — 107!
for most polymer mixtures. (It should be pointed out that in reality, many factors
such as the compressibility of the system, anisotropic monomer structures can cause
deviation of x from the simple form expressed in Eq.(1.1) [7]. However, most block
copolymer melt can be treated as incompressible and nearly isotropic, we therefore
ignore this complication.)

The simplest and best understood block copolymer is an incompressible diblock
copolymer melt. In order to establish some of the common concepts for all block
copolymers and to provide a natural basis against which the new features of the
systems that we are going to study can be best illustrated and appreciated, we will
review the microphase separation of diblock copolymers.

The free energy density of diblock copolymers contains both enthalpic and entropic
contributions. The enthalpic energy density is proportional to x, while the entropic
energy scales as S ~ 1/N. For positive x, monomers A and B repel each other.
Therefore, there is a tendency to decrease the numbers of contacts between monomer
A and B in order to lower the contribution of the interaction energy (equal to the
enthalpic energy in an incompressible system) to the free energy. However, a decrease
in the number of contacts between monomers A and B decreases the entropy of
the system and consequently increases the free energy. The equilibrium state of
diblock copolymers is the result of a “competition” between these two opposite trends.
Hence it is the product xN that controls the state of segregation [8]. For xN < 10,
the entropic factor dominates and diblock copolymers exist in a homogeneous state
[8]. Increasing xN shifts the free energy balance and leads to local composition
fluctuations on a scale proportional to the polymer radius of gyration (R* = R4+ R%).
When xN =~ 10, a delicate balance exists between the entropic and enthalpic energy.
Increasing x N further induces a first order transition to an ordered state. This

phase transition, known as the order-disorder transition (ODT), is analogous to the
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solidification of liquids, although the periodicity of the ordered structure of diblock
copolymers (of nanometer scale) is much larger than the periodicity of crystal lattice.
When xN > 10, the microdomain boundaries become sharp as the number of A — B
contacts decreases at the expense of additional chain stretching. In this limit, called
the strong segregation limit, the enthalpic factor is dominant and ordered structures
have narrow interfaces. Figure 1.2 is a schematic representation of the evolution of
the structure of symmetic diblock copolymers from a disordered state to an ordered
state with increasing x V.

Changes in the composition, f, of diblock copolymers, primarily affect the shape
and packing symmetry of the ordered structure. In order to determine the equilib-
rium properties, and in particular, the dependency of the morphology on f and x NV,
many theories have been developed. These theories can be broadly grouped into
two categories: (i) the weak segregation limit (xN > 10) [8], [3], and (ii) the strong
segregation limit (xV > 10) [10]-[18].

The weak segregation theories are based on the assumption that composition
fluctuations are small and the effective free energy can be written in the Landau-
Ginzburg form. The strong segregation theories assume that the microdomain struc-
tures are well developed with very narrow interfaces and account for chain stretching.
Although both the weak and strong segregation theories have involved various ap-
proximations, by combining results from the different methods the general behavior
of diblock copolymers has been revealed. Recently, with the help of modern com-
puters, Matson and Schick [17], Matsen and Bates [9] were able to use the full self-
consistent field theory without approximations to study the equilibrium properties
of diblock copolymers at the mean field level. The calculation traverses from the
weak to the strong segregation regimes [9]. Their results can be summarized as fol-
lows. In the weak and intermediate segregation regime, the diblock copolymer melts
exhibit the following ordered morphologies upon increasing the volume fraction f:
BCC — HEX — Gyroid - LAM — Gyroid - HEX — BCC. Here BCC
denotes body-centered-cubic packed spheres, HEX is hexagonally packed cylinders,
LAM is alternating lamellar structures, and the Gyroid phase is a bicontinuous cubic
phase characterized by Ia3d space group symmetry. The gyroid phase terminates at a
triple point, with a lamellar to hexagonal transition in the weak segregation limit. The

stable regions of the gyroid phase pinch off as the strong segregation regime is entered.
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Therefore, in the strong segregation limit, the sequence of ordered morphologies upon
increasing the volume fraction f is: BCC - HEX — LAM — HEX — BCC.

1.3 Objectives and Outlines

The purpose of this thesis is to investigate the novel aspects in microphase separation
transition of three distinct block copolymer systems resulting from modifications of
the simple diblock copolymers:

(1) ABC triblock copolymers,

(2) Weakly charged diblock copolymers,

(3) Diblock copolymers in confined geometries.

An ABC triblock copolymer consists of three different polymer segments A, B,
and C joined together by chemical bonds. There are three interaction parameters,
XaB, XBc, and xca, in ABC' triblock copolymers, as opposed to one interaction
parameter, x4p, in AB diblock copolymers. The morphological structure of triblock
copolymers depends not only on the temperature, the overall molecular weight, and
the fraction of each block, but also crucially on the sequence of the blocks in the chain
(i.e., whether it is sequenced A — B —C, B—C — A, or C — A — B). Furthermore,
there are more ways for ABC' triblock copolymers to segregate, thus richer and more
complex morphological behaviors are expected in ABC' triblock copolymers than in
AB diblocks. Indeed,several intriguing new morphologies have been reported in recent
experiments [23], [24].

In chapter 2, the morphological phase diagrams for ABC triblock copolymers
are calculated in the strong segregation limit. The chain conformation free energy
is approximated following an approach proposed by Ohta and Kawasaki [12]. The
study focuses on two unique features of the ABC triblock copolymers, namely, the
dependence of the morphology on the sequence of the triblock chain, and the relative
strength of the various interaction parameters. The results are compared with exper-
imental observations. In addition, the existence of some new structures is predicted.

A charged-neutral diblock copolymer is a block copolymer composed of a charged
block A joined to a neutral block B. The system that we are going to study consists of
charged-neutral diblock copolymers and some salt ions. This system combines the cel-

ebrated microphase separation properties of uncharged diblocks with the properties of
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charged polymers. In charged-neutral diblock copolymer systems, the long-range elec-
trostatic interactions and increased mixing entropy due to free ions are influential in
determining the microphase separation transition (M ST), where the system changes
from a disordered state to a periodic structure. Studies of the spinodal instability in
charged-neutral diblock copolymers by Marko and Rabin [10], and Mozuelos and de
la Cruz [13] show that charged-neutral blocks have greatly enhanced compatibility
between A and B in comparison with the corresponding neutral system. However,
these works did not study the effects of the charge on the relative stability of the vari-
ous ordered structures; and the full equilibrium properties of charged-neutral diblock
copolymers remained an open question.

In chapter 3, a theoretical framework is developed for charged-neutral diblock
copolymers which combines the Random Phase Approximation and the Poisson-
Boltzmann equation. This approach allows a consistent treatment of the electrostatic
interactions between all charged species and the free energy contributions due to the
connectivity of the polymer chains. A Landau-Ginzburg effective free energy is de-
rived and is used to study the microphase separation and the equilibrium properties
of charged-neutral block copolymers with an arbitrary amount of added salt in the
weak segregation limit. The concentration fluctuation effect near the critical point
is studied by extending the method of Fredrickson and Helfand [3]. The scaling of
fluctuation corrections is studied in various situations.

As block copolymers are finding increasing applications as thin-film adhesives and
surfactants, surface effects on the microphase separation of diblock copolymers has
attracted widespread attention. The system consisting of a diblock copolymer melt
confined between two solid walls combines both the surface interactions and confine-
ment effects. Recent experimental and theoretical studies show that the presence
of surface interactions, in an otherwise homogeneous diblock copolymer melt, yields
various interesting surface induced ordering phenomena [17]- [23]. In addition, the
existence of two walls introduces a new length scale L (the distance between the two
plates) and breaks the rotational and translational symmmetry present in the isotropic
bulk system. Therefore, the equilibrium state of confined diblock copolymer melts is
a result of competition among the surface interactions, the confinement effects, and

the intrinsic driving force for microphase separation in diblock copolymers.
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In chapter 4, the morphology of diblock copolymer melts confined between two
rigid plates in the strong segregation limit is studied by extending the method devel-
oped by Ohta and Kawasaki [12] to include surface effects. By studying the equilib-
rium properties of symmetric/nearly symmetric diblock copolymers confined between
two identical walls with small preferential affinity for one of the blocks, we want to
explicitly demonstrate the effect of the competition between the surface interactions
and the confinements. In order to explore the surface effects on the stability of various
morphologies (lamellar, cylinder, and sphere), we study the phase behavior of diblock
copolymers with arbitrary volume fraction f and illustrate the effect of the broken

rotational and translational symmmetry on the phase transition.
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Chapter 2 Morphology of ABC Triblock

Copolymers

2.1 Introduction

Bloclk copolymers have received considerable attention, both experimentally and the-
oretically, due to their fascinating ability to self-agsemble into a variety of ordered
nanoscale morphologies. Recently. self-assembled ordered structures with periodic-
ities on the nanometer scale have become an important area of study because of
their applications in nano-technology. For instance, it has been suggested that block
copolymers can be used in the development of new clagses of electronic devices [1], [2];
and in the synthesis of mesoporous solids, which can be used as catalysts and sorption
media (3], 4]. One of the distinct advantages of block copolymers is the controllability
of the size and morphology of the nanostructures by changing the molecular weight,
molecular architecture, and composition of the copolywmers.

Ordered morphologies and phase transitions in linear AB-type diblock copolymers
have been studied for many vears. Helfand et. al [5], Semenov [6], and Ohta and
KKawasaki |7, [8] developed approaches for studying the strong segregation limit, while
Leibler studied the case of the weak segregation limit by using an order parameter
Landau mean field theory [9,. Fredrickson and Helfand [10] incorporated the effects
of concentration fluctuations in the order-disorder transition by reducing the effective
Hamiltonian of block copolymers to a form previously studied by Brazovskii [11].
Noolandi et al. developed a self-consistent mean-field theory for studying hoth the
strong and weak scgregation limits [12]. Recently, Melenkevitz and Muthukumar [13],
Muthukumar [14], Matsen and Schick [15], and Olmsted and Milner [16] have made
important contributions to the further development of theory of diblock copolymers.

It is now well recognized that the phase behavior of AB diblock copolymers is
determined by three factors: the overall degree of polymerization, N = Ny + Npg;
the composition of the copolymer characterized by f = N,/N: and the temperature

expressed in terms of the Flory-Huggins interaction parameter y. For symmetric
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diblocks (f=0.5), an order-disorder transition takes place at x/N ~ 10 [9]. Depending
on the composition and/or temperature, b.c.c ordered spheres, hexagonally ordered
cylinders; lamellae, and more complex bicontinuous structures have been obtained
below the order-disorder transition temperature [17].

While the equilibrium morphologies of AB diblock copolymers have been rela-
tively well understood theoretically (except for some uncertainties with regard to the
bicontinuous phases [16], [18]-[20]), considerably less theoretical work exists for the
ABC type triblock copolymers [21]-[24]. The recent experimental discovery of ex-
otic new morphologies in ABC triblocks, as well as a growing interest in using these
copolymers to synthesize new nanoscale structures have increased the need for the
theoretical study of these systems.

ABC triblock copolymers consist of three different polymer segments A, B, and
C, that are chemically bonded together, as illustrated in Figure 2.1. Since there are
three interaction parameters, x 48, XBc, and x¢a, in ABC' triblock copolymers, as op-
posed to one interaction parameter, x4p, in AB diblock copolymers, the microphase
separation of ABC triblock copolymers is much more complicated than that in di-
block copolymers. More importantly, some distinctively new features arise in triblock
copolymers that are absent in the diblock counterpart. For example, the morphologi-
cal structure of triblock copolymers depends not only on the temperature, the overall
molecular weight, and the fraction of each block, but also crucially on the sequence
of the blocks in the chain ( i.e., whether it is sequenced A — B -~ C, B — C — A,
or C — A — B). Indeed, recent experiments have shown that the lamellar morphol-
ogy is formed in the system of poly(isoprene-b-styrene-b-2-vinylpyridine)(ISP) with
volume fraction 1:1:1 [25], whereas the hexagonally ordered co-axial cylinder phase
was obtained in the system of SIP with the same composition [26]. The schematic
representations of the lamellar phase and the co-axial cylinder phase are shown in
Figure 2.2(a) and 2.2(b) respectively.

Even for a given sequence, say A — B — C, one can obtain different morphologies,
depending on the relative magnitudes of the three Flory-Huggins parameters and the
composition. Thus, richer and more complex morphological behaviors are expected in
ABC triblock copolymers than in AB diblocks. In addition to the discovery of ordered
spherical, cylindrical , lamellar, and ordered tricontinuous double-diamond structures

(OTDD) [25)-[27] which bear the same basic structural features as the corresponding
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structures in AB diblock copolymers, several intriguing new morphologies have been
reported in recent experiments. Auschra et al. [28] , [29] demonstrated the formation
of three new phases: a lamella-cylinder combination phase, a lamella-sphere combi-
nation phase, and a cylinder-ring combination phase. The schematic representation
of the three new phases are given in Figure 2.2(c), (d), and (e) respectively. The
possibility of forming morphologies which were combination of the lamellar, cylin-
der, and sphere phases in triblock copolymers was first predicted by Riess et al.[22],
[23]. These combination morphologies, which often have characteristics of one, two,
and three dimensional order simultaneously, can have unique mechanical properties.
Nanostructures templated after these morphologies are also expected to have unusual
electronic and transport properties.

Considering the novel features which are alluded to above, we feel that the study
of triblock copolymers represents a significantly new direction in self-assembling poly-
mers. In this paper, we map out the three-component phase diagrams of ABC' triblock
copolymers in the entire range of f4, fp, and fo in the strong segregation limit by
applying a simple, approximate theory put forth by Ohta, Kawasaki and Nakazawa
[7], [8], [21] to the most general cases in which x 45, XBc, and xca are not necessarily
equal to each other. By varying the interaction parameters and the composition of
copolymers, we seek to establish relationship between the molecular characteristics
of the system and its morphologies.

The key simplification in the Ohta and Kawasaki theory is the separation of the
free energy of the copolymer system into a short range interaction, which accounts for
the interfacial free energy of the system, and a long range interaction, which accounts
for the chain conformation energy. In addition, these authors assume that the long
range interaction can be approximated by a term proportional to 1/k?, as suggested
by the small £ behavior of the structure factor calculated in the random phase ap-
proximation. A similar approximation was proposed by Stillinger [30] in his study
of miceller self-assembly. Although the validity of this last assumption is difficult to
justify theoretically, previous results of Ohta and Kawasaki [7], Nakazawa and Ohta
[21], and Muthukumar and Melenkevitz [13] on block copolymers, and of Stillinger
[30] and Chandler and co-workers [31] on short surfactant systems suggest that such a
representation seems to be capable of capturing many of the essential features of the

microphase separation of block copolymer systems. Here we adopt this approximate



17

approach for its simplicity in implementation. More accurate approaches, such as the
method of electrostatic analogy developed by Semenov [6], and the “wedge” approach
developed by Milner and Olmsted [16] can be employed in principle, as demonstrated
in the recent work of Kane and Spontak [32], who has extented Semenov’s approach to
strongly-segregated lamellar phase of ABC' triblock copolymers; however, extensive
computational efforts will be required if these methods are to be applied to the com-
plicated morphologies studied in this paper. Although the results presented herein
are subject to the inherent approximation in the approach, and hence may not be
quantitatively accurate, we believe that the features of the phase diagrams presented
can be useful in providing a guide for further experimental and theoretical studies.
More precise results can be obtained by the self-consistent method.

The organization of the paper is as follows: In section II, we discuss the gen-
eral formulation of the free energy of a triblock copolymer system, by following the
Ohta-Kawasaki approach. In section III, we present and discuss phase diagrams
of triblock copolymer systems; these phase diagrams are classified according to the
relative strength of the interaction parameters. In section IV, we compare our cal-
culations with some available experimental results. Section V is the conclusion. The
Appendix contains a detailed calculation of the free energy of lamella-sphere phase,

which illustrate the method we employed.

2.2 Model and Free Energy

We consider a model system containing n monodisperse triblock copolymer chains
with an overall degree of polymerization N. Each chain consists of three types of
monomers, a, b, and ¢, with interaction parameters Xas, Xoe, and xq.. Henceforth,
we will use the lower-case “ a”, “b”, and “¢” to designate the segmental position of
the three blocks such that “a” and “¢” are the outer blocks while “b” is the middle
block. The upper-case letters refer to the chemical makeup of the blocks. Thus we
will always designate a triblock copolymer as a — b — ¢, even though there can be
three chemically distinct sequences A — B—C, B—C — A, and B—- A — C. For the
sake of simplicity, we will assume that all three blocks have the same Kuhn statistical

segment length, which we take to be unity, and the same monomeric volume v,. The
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volume fraction of blocks a, b and c in a chain are f,, fy, and f. respectively, which
satisfy f, + fo + fc = 1. We assume that the system is incompressible.

In the strong segregation limit, the microdomains form a regular arrangement,
giving rise to periodic structures with the interfacial width much smaller than the
lattice dimensions. The free energy of the system can be separated into two parts:
an entropic chain-conformational free energy, and an interfacial free energy, whose
strength is characterized by the Flory-Huggins parameters. We define a characteristic
length scale (or one of the characteristic length scales) of a periodic structure to be
[. For example, [ can be the period in the lamellar phase, or the lattice constant of
the square lattice in the cylinder phase, or one of the periods in the lamella-cylinder
phase.

The free energy per chain can be written as

l2 Oav NV,

F: (faafc) ]

(2.1)

where ®(f,, f.) is a scaling function which depends on the morphology of the system,
v, is the volume of a monomer, and o, is an average interfacial tension to be explained
later.

While Equation (2.1) is formally exact in the strong segregation limit, further
progress requires an explicit expression for the scaling function ®(f,, f.). Here we
use the approximation suggested by Nakazawa and Ohta [21]. In this approximation,
®(fa, fe) is calculated from the asymptotic behavior of the structure factor in the long

wave length limit. More specifically, ®(f,, f.) is written as

O(for fo) = S Z LA (S f W (Q)T5(Q) (2.2)

af= aCQ

where ¥, (Q) is the Fourier Transform of U, (7), which is the local volume fraction

deviation of monomers « from its uniform distribution, ie.

/ i (Peap(iGF) (2.3)

cell

with Ve being the volume of the unit cell. The quantity Q is the reciprocal lattice
vector scaled by [, i.e. Q = @l. In Equation (2.2), \Ilb(Q) has been eliminated by the
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use of incompressibility. The coefficient A%ﬂ (fa, fe) is given by

2(1 — f.)?

s = p2= S fgf) (2.4)
1 — 2 f2

ac g = B———_—_J{:fc Je (2.5)

2(1 — f,)?
4y = p2LZ L) fgf ) (2.6)

with

B 0 (2.7)

T B2t ) = a1 (A~ fu— )2

The average interfacial tension is given by

Oqv = Z Saﬂ Uaﬂ/f/::ell (28)
af

where V.. is the volume of the unit cell scaled by 3, and Saﬂ is the interfacial
area between o andf domains in a unit cell scaled by 2. If there is more than one
disconnected interface between the o and [ domains in a unit cell, the interfacial area
is the sum of all the disconnected interfacial areas. The variable 0,4 is the interfacial
tension between the o and 3 domains. In the strong segregation limit, if we ignore
the presence of the third component in the interfacial region between o and 3, 044 is
proportional to Xi/; and independent of the block ratio [8], [33].

Minimization of F' with respect to [ yields the length scale [* and the corresponding

free energy F*

I = [0aw N*0o/®(fa, f)]'? (2.9)
F* = C*[60,®(fo, f)]'° (2.10)
where C* = 3(02,v2N/2)'/® is the free energy of a three-phase four-layer lamellar

phase (see Figure 2.2(a)) with interfacial tension o4=04.. The quantity &,, is given
by

. 1 4 A A ~

Ogy = §[Sab + Sbc(gbc/aab) + Sac(aac/aab)]/‘/cell (211)
Thus the equilibrium state of the system, which is determined by the minimum value

of F', depends on the relative strength of interfacial tensions op./04 and o,./04, in
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addition to the composition.

For some simple morphologies such as the lamellar, cylinder, and spherical phases,
where there is only one characteristic length, the obtained F™ is the minimum free
energy of the morphology. However, for the more complex morphologies such as the
lamella-cylinder phase in which there are two characteristic length scales, F* depends
on the ratio of the two length scales through ®(f,, f.) and 6,4,, and the minimum
free energy is obtained by further minimization of F* with respect to this ratio. The
detailed calculation of the free energy of the lamella-cylinder phase is presented in the
Appendix; the calculation of the free energies of the other morphologies are carried
out in a similar fashion. Although of great current interest, we do not consider the
ordered tricontinuous phases in this paper. Our preliminary analysis shows that the
ordered tricontinuous phases in triblocks are much more complex and subtle than the
corresponding bicontinuous phases in diblocks. Furthermore, even for diblocks, there
is controversy as to the stability of these phases in the strong segregation limit [16],
[18]-[20].

2.3 Phase Diagrams of ABC Triblock Copolymers

Three different types of homopolymers A, B, and C, with interaction parameters
XaB, XBC, and xca, can be bonded together to form A — B — C, or A— C — B,
or B — C — A copolymers. If xap, xpc and xc4 are not equal to one another, the
different sequences will have different phase behaviors. For a system with a given
sequence and volume fractions, using “a”, “b”, and “c” to label the three blocks as
explained in the section II, we determine the equilibrium phase diagrams in terms of
the ratios of the interfacial tensions 0,./04 and op./04. For convenience, we assume
that o4 < op.. If the opposite is true, we may always re-label the blocks such that
Oap < 0pe. We define y; = oy /04 and o = 04¢/04. The a — b — ¢ triblock copolymer
systems can be classified into six classes according to the relative strength of the

interfacial tensions vy, 9, as shown in Table I

Table 1
Mm=1L7%<l|@n=1,7n=1|8n=11r>1
Dmn>Lyne<l| G)m>r>1 6)ye>m >1




21

Once the relative strength of the interaction parameters are specified, the mor-

phology is uniquely determined by the composition of the system.

2.3.1 Variation of Morphologies With Composition

In this section, we focus on the variation of morphologies with composition. To this
end, we set 7; = v = 1. The three-component triangle phase diagram is shown
in Figure 2.3(a). The increment of the volume fractions f,, fy, and f. in the phase
diagram is 0.1. At each grid point of the phase diagram, the free energies of all
the morphologies listed in Figure 2.2 are calculated and the equilibrium state is de-
termined by the morphology with the lowest free energy. From Figure 2.3(a), it is
evident that with an increasing value of fy, the equilibrium morphology of the system
changes from the lamellar structure to the cylindrical domains in the square lattice
structure, and finally to the spherical domains in the CsCl-type structure. Their
schematic representations are shown in Figure 2.2(a), 2(f), and 2(g), respectively.
When f, = f., the free energies of spherical, cylindrical, and lamellar phases are as
shown in Figure 2.3(b), a result consistent with that of Nakazawa and Ohta [21].
Near the edge of the triangle phase diagram, where at least one of the three
components f,, fy, and f; is less then 0.1, other morphologies are possible, although
these are not shown in Figure 2.3(a). At the the edge ac of the triangle phase diagram
where f, < 0.1, we find several other phases competing for stability in addition to
the stable lamellar phase. For f, = 0.1 and f, ~ f., the free energies of the lamella-
cylinder and lamella-sphere phases are very close to that of the lamellar phase. Their
schematic representations are shown in Figure 2.2(c) and 2(d). The free energies of the
lamellar, lamella-cylinder, and lamella-sphere phases, for f, = f., are shown in Figure
2.3(c). The free energy of the lamella-cylinder phase is lowest for 0.025 < f, < 0.1,
and that of the lamella-sphere phase is lowest for f, < 0.025. In the lamella-cylinder
or lamella-sphere phases, the minority species b blocks form cylindrical or spherical
domains along the a/c lamellar interface, rather than flat layers in the lamellar phase.
By reducing the interfacial area of a/b and b/c interfaces, the interfacial energy is
reduced so that the total free energy is lowered. Although f, must be quite small to
form the lamella-cylinder and lamella-sphere phases in this case, we will show later

that when the value of 7,, the interfacial tension between the two outer blocks a and
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¢, is reduced in comparison to the interfacial tension between the center block and
the outer blocks, these phases can form at much larger values of f,.

At the other two edges of the triangle phase diagram, i.e. ab (or bc ), where the
volume fraction of one of the two end-blocks f. (or f,) is very small and f, ~ f, (orf. ~
fs), two other morphologies compete for stability with the lamellar phase. One of
these phases is demonstrated in Figure 2.2(h); we call this phase the lamella-cylinder-
II phase. In this phase, the minority species, say a, forms cylindrical domains located
regularly inside the b domains of the b/c lamellar stacking. Another morphology is
shown in Figure 2.2(i); we call this phase the lamella-sphere-1I phase. In this case ,
the minority species a forms spheres located hexagonally inside of b domains, with
blocks b and ¢ forming a lamellar structure. Although these two morphologies have
a similar appearance to the previously studied lamella-cylinder and lamella-sphere
phases respectively, they are different structures. The cylindrical or spherical domains
in the lamella-cylinder-IT or lamella-sphere-II phases respectively are formed by one
of the outer blocks and are located inside the domains formed by the center blocks
while the cylindrical domains and spherical domains in the lamella-cylinder and the
lamella-sphere phases respectively are formed by the center blocks and located at the
interface of the two outer blocks. The lamella-cylinder-II phase becomes stable when
fo < 0.016 at f, = f. = 0.492, whereas the lamella-sphere-II phase is alway near
stable even when f, < 107% The stability of both morphologies can be enhanced
when the surface tension 7y; is decreased. We are not yet aware of any experiments
which show these new phases.

At the a or ¢ corner of the phase diagram, where f, and f., or f, and f,, respec-
tively are very small, our calculations show that the co-axial cylinder and cylinder-
sphere phases are nearly stable. In the co-axial cylinder phase, the minority species,
say ¢, form inner cylinders, blocks b form the shells around these cylinders, and
blocks a form the matrix. In the cylinder-sphere phase, blocks ¢ form spheres which
are embedded in the cylindrical domains formed by blocks b, and and blocks a
form the matrix. Schematic representations of these phases are shown in Figure
2.2(b) and 2(j). At f., fy = 0.1, 0.1 (or f., fo = 0.1,0.1), the free energy ratios
Feo—agial cytinder/ Flametiar = 1.026 and Foyinger—sphere/ Flametiar = 1.060. However, the
co-axial cylinder phase becomes the dominant phase at f, < 0.05 and f. < 0.05, while

the cylinder-sphere phase is always nearly stable when v; = 1.0 and v, = 1.0. As we
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will show later, the cylinder-sphere phase is stable only in the region of f./f, < 1.0
when v, is increased to a large value.

It should be pointed out that near the edges of the phase diagram of Figure 2.3(a)
where at least one of the volume fraction of the blocks is very small, the the size of
domains formed by the minority species is also very small. As the size of the domains
becomes smaller, an increasing number of wave vectors are needed to obtain a given
accuracy in the free energy calculation.

A more serious problem arises when one of the volume fraction f, (o = a,b,¢)
becomes very small. The three edges of the triangle phase diagram are the phase
diagrams of a — b, b — ¢, and ¢ — a diblock copolymers where one of the three volume
fractions f., f, and f, is zero. It is well-known that diblock copolymers, in the
strong segregation limit, undergo the following sequence of morphology changes as
the asymmetry in the lengths increases: lamellar — hexagonal cylinders — b.c.c
spheres. (Different theories give slightly different values of f at the transitions [6], [7].
) Our calculated phase diagrams do not seem to approach the corresponding diblock
phase diagrams as one of the volume fractions vanishes. There are two reasons for this
discrepancy. The first reason is that we have used a rather coarse grid (f, changes by
increment of 0.1). The second, and more fundamental, reason is the assumption of
strong segregation. The theory that we employ assumes strong segregation between
all pairs in the triblock; no intermixing is allowed. This assumption clearly becomes
invalid as the volume fraction of one of the blocks becomes small. Rather than forming
three distinct domains containing a, b, and ¢ components respectively, the tiny block
will become soluble in the matrix of the other two blocks. If strong segregation is
insisted upon, then one does not in general expect the triblock phase behavior to
approach the diblock phase behavior in the limit of vanishing fraction of one of the
blocks. This is because in a true diblock copolymer system, the two ends of the
diblock chain are unconstrained. However, in an a — b — ¢ triblock, the two ends of
the b block are connected with the a and ¢ blocks on either end, and consequently,
when one insists on three distinct domains consisting of the three blocks, the ends of
the b blocks are always tethered, even when one of the end blocks (a or ¢) becomes
vanishingly small. This argument leads us to conclude that the diblock phase behavior

is approached only in the limit of f, — 0, but not in the limit of f,or f. — 0.
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We have performed a separate calculation on the lamellar to cylinder (the core-
shell structure as shown in Figure 2.2(b)) transition and studied the shift of the phase
boundary as one of the volume fractions become vanishingly small. Results of this
calculation are consistent with the conclusion given above [34]. We have also used
the Ohta-Kawasaki-Nakazawa approach to study the behavior of the phase diagram
for decreasing f, (below 0.1). Our results show that very close to the ac edge, the
phase behavior indeed becomes qualitatively similar to the a —c diblock. Quantitative
recovery of the a — ¢ diblock behavior is not expected because of the approximate

nature of the theory.

2.3.2 Effects of Interfacial Tensions

The region of morphologies which appear near the edges and corners of triangle phase
diagram in Figure 2.3(a) can be greatly enlarged when we change the relative strength
of interaction parameters v, and 7,. To focus on the influence of 75, we set v = 1. A
system can be classified into one of the three groups shown in the first row of Table
I according to the relative strength of v5. In the first group, v, < 1, and the contact
between the two outer blocks is more favorable than that between the center block and
the two outer blocks. Consequently there is a greater tendency to form morphologies
such as the lamella-cylinder, lamella-sphere and cylinder-ring phases, in which some
parts of a/b and b/c interfaces are replaced by a/c interfaces. In the second group,
the interaction between the two outer blocks is comparable to the interaction between
the outer blocks and the center blocks, and morphologies with a/c interfaces can only
exist in a small portion of the phase diagram as discussed in section III.A and shown
in Figure 2.3(c). In the third group, v, > 1, the interaction between the two outer
blocks is less favorable than the interaction between the center block and the two
outer blocks, hence morphologies with a/c interfaces are greatly suppressed.

Figure 2.4(a) shows the phase diagram of a system for which v, = 1 and v, = 0.2.
In particular, for a symmetric triblock copolymer, where f, = f. and ; = 1, the
phase diagram shows that the transition from the lamellar to the lamella-cylinder
phase occurs at f, = 0.35 and that the transition from the lamella-cylinder to the
lamella-sphere occurs at f, = 0.17. These results qualitatively agree with those in

a recent paper by Stadler et al. [24] who studied the morphologies of symmetric
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triblock copolymers by using the Meier/Alexander/de Gennes/Semenov approach.
However, their calculation also shows a stable cylinder-ring phase when 7, is reduced
to 0.1. This result is puzzling in view of the architectural symmetry of the triblock
copolymer and the obvious microstructural asymmetry of the cylinder-ring phase.

We show in Figure 2.4(b) a phase diagram of symmetric triblock copolmers in
terms of f, and 7, for transitions from the lamellar, to the lamella-cylinder, and then
to lamella-sphere phases. It is clear that the regions for the lamella-cylinder and
lamella-sphere phases are greatly enlarged when v, is reduced.

To study the influence of v; on the morphology of triblock copolymers, we fix
72 at some large value. Under the assumption that o, < 0y, the system can be
classified into two types: 1 = 0p/0a = 1 Or 71 = 0p./0as > 1. For v, = 1, the
morphology of the system remains unchanged when the volume fraction of blocks a
and c are exchanged. It is a common feature of systems with v, = 1 that the three-
component triangle phase diagrams have a reflection symmetry with respect to the
vertical line f, = f.. The reflection symmetry disappears when ~y; # 1. When v, > 1,
i.e. the interfacial tension oy, > 04, near the edge ab, the system can achieve a low
interfacial energy by forming a co-axial cylinder phase with ¢ blocks forming the inner
cylinder, b blocks forming the shell, and a being the matrix. In Figure 2.5(a), the
phase diagram of a system with v; = 2.0 and 7, = 5.0 is presented, and the region of
the co-axial cylinder phase near the edge ab of the phase diagram is greatly enlarged
in comparison with that in Figure 2.3(a). Figure 2.5(b) shows the free energies of
the lamellar, co-axial cylinder, and cylinder-sphere phases as «y, varies, with f, = 0.8,
fe=0.1and vy, = 5.0. When 7; > 1.55, the co-axial cylinder phase becomes the stable
state. However, the cylinder-sphere phase remains near stable in Figure 2.5(b). The
cylinder-sphere phase become stable only when an additional condition f./f, < 1.0
is satisfied. Figure 2.5(c) shows the free energies of the lamellar, co-axial cylinder
and cylinder-sphere phases as a function of f, at v, = 2.0, v, = 5.0, and f, = 0.8.
The cylinder-sphere phase is the stable phase when f. < 0.046, i.e. f./f, < 0.3.
Therefore, the relative stability of the co-axial cylinder phase and cylinder-sphere

phase is enhanced when y; increases.
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2.4 Discussion

A theoretical understanding of the effect of volume fractions and the various interfacial
tensions on the morphology of triblock copolymers enables us to predict and explain
a variety of structures that can be formed by these system. We now discuss several
interesting experimental results in light of our calculated phase diagrams.

In a series of experiments by Auschra et al. [28], [29], the lamella-cylinder, lamella-
sphere and cylinder-ring phases were discovered for the first time. Using poly(styrene-
b-ethylene-co-1-butene-b-methacrylate) (P (S-b-EB-b-MMA)) triblock copolymers, they
demonstrated that the lamellar phase was formed at the composition 0.24/0.38/0.38,
the lamella-cylinder phase was formed at 0.48/0.17/0.35, and the cylinder-ring phase
was formed at 0.45/0.06/0.49. The literature data for the interfacial tensions between
the components of P(S-b-EB-b-MMA) is given in Table II [35] .

Table 11

PS/PMMA | PS/PEB | PEB/PMMA
o (150°C)/(dyn cm™1) 1.5 5.0 9.5

If we denote “A”as PS, “B” as PEB, and “C” as PMMA, their relative interfacial
tensions are v, = 04c/0ap = 0.3 and v; = opc/oap = 1.9. The system consisting of
P(S-b-EB-b-MMA) belongs to the first type in the second row of Table I. Figure 2.6(a)
is our calculated phase diagram of such A — B — C copolymers. The phase diagram
indicates that the system is in the lamellar phase at the composition 0.24/0.38/0.38,
and in the lamella-cylinder phase at 0.48/0.17/0.35; both are consistent with the
experimental results of Auschra et al. [28]. However, there is a notable discrepancy
at 0.45/0.06/0.49. Our calculation predicts that the system should be in the lamella-
sphere phase, while a cylinder-ring phase was observed experimentally by Auschra et
al. From Figure 2.6(a), it is clear that the cylinder-ring phase with C blocks forming
the cylinder can appear only at the corner of a where f, < 0.3 and f. < 0.2. Although
our free energy calculation is approximate, we do not believe that the error due to
the approximation can be large enough to lead to this discrepancy. It should also be
noted that our calculations predict that cylinder-ring domains on a hexagonal lattice
always have a lower energy than on a square lattice.

Figures 6(b) and 6(c) show the phase diagrams of P(S-b-MMA-b-EB) and P(EB-



27
b-S-b-MMA), simply designated as A—C — B and B — C — A respectively. Using the
definition of v, and 7y, the system consisting of A — C' — B has the relative interfacial
tensions v, = 3.33 and v, = 6.33, and B — A — C has the relative interfacial tensions
v9 = 6.33 and ~y; = 3.33, which belong to the second and the third in the second row
of Table L. It is obvious that switching the sequences of the three blocks leads to very
different structures of the phase diagrams.

Another interesting experimental observation can also be explained and the rela-
tive interfacial tension of the system can be estimated by the understanding of the
effect of v, and v, on the morphology of triblock copolymers. Mogi et al.[25] ob-
served a lamellar phase in 1:1:1 P(isoprene-b-styrene-b-2-vinypyridine) (ISP) triblock
copolymers whereas a co-axial cylinder phase of P and 1 in an S matrix was found in
P(S-b-I-b-P) by Gido et al. [26]. Our free energy calculation of the lamellar and the
co-axial cylinder phases shows that when oy./04 > 4.3, the co-axial cylinder phase,
with C forming the inner cylinders is the stable phase. The fact that the lamellar
phase was formed at 1:1:1 of P(I-b-S-b-P) indicates that 1/4.3 < o;5/0sp < 4.3. On
the other hand, the fact that the co-axial cylinders was formed t 1:1:1 of SIP indi-
cated that o;p /015 > 4.3. These results enable us to bracket the range of the relative

interfacial tensions for I, S and P.

2.5 Conclusion

In this paper, we have presented a systematic study of the rich and fascinating mor-
phologies that can form in ABC' triblock copolymers in the strong segregation limit.
Our results demonstrate the crucial dependence of the phase behavior of an ABC
triblock copolymer system on the sequencing of the three blocks. The effects of the
interaction parameters have also been investigated. In contrast to the AB diblock
copolymers where, in the strong segregation limit, the morphology is determined
uniquely by the composition, the relative strengths of the interaction parameters in a
triblock copolymer system affect the morphology phase diagrams in a significant way.

Our calculation has made use of an approximation proposed by Ohta and Kawasaki
in which the chain conformation free energy is approximated by a Coulomb-like in-
teraction. Because of this approximation our phase diagrams can only be considered

as qualitatively correct. However, the quantitative accuracy of this approximation



28

may not be as poor as it appears to be. Since the calculation of the phase diagrams
involves taking the difference between the free energies of the different ordered phases,
it is possible that the errors caused by this approximation may cancel to some extent.

Another (technical) approximation involves our representation of the ordered
structures, in that we only considered domains with uniform curvature. In real-
ity, the cylinders and spheres are deformed due to the lattice structures in which they
are embedded. Allowing this deformation will lead to lower free energies for struc-
tures involving curved domains relative to the lamellar structure, hence increasing
the stability of these phases.

In spite of these approximation, our calculation does seem to have captured many
of the essential features of the ABC triblock copolymer systems in the strong segre-
gation limit. Our results compare favorably with experimental observations. In addi-
tion, we have predicted the existence of some new structures: the lamella-cylinder-I1I
phase, the lamella-sphere-1I phase, and the cylinder-sphere phase; it will be of interest
to observe these new phases experimentally. It is hoped that this study provides a
systematic (although crude) guide for future experiments and more refined theories

of the morphology of ABC' triblock copolymers.
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2.6 Appendix

In this Appendix, we present the details of the free energy calculation for the lamella-
cylinder phase to illustrate the method that has been used. The calculation of other
morphologies which are considered in determining the lowest free energy in the phase
diagrams are carried out in a similar way. Instead of presenting the detailed calcula-
tions of their free energy, we only provide their schematic representations in Figure

2.2.
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The lamella-cylinder phase was first discovered by Auschra et al. [28]. A schematic
representation of this structure is given in Figure 2.2(c).

We choose our coordinate system such that the cylinder axis in the lamella-cylinder
structure is oriented in the Z direction. In the xy plane, the primitive translation
vectors are [, % and [, 7. The thickness of the @ and ¢ domains are [, and [, respectively,
and r is the radius of the cylinders containing the b blocks, as shown in Figure 2.7.
For simplicity, we have assumed that the two half circles containing blocks b in a
domains and ¢ domains have the same curvature. The reciprocal lattice vectors are
given by

Q= QZ—:mle}'c + ZZ—yﬂmze}; (2.12)
with m; and m, being integers. The unit cell has been chosen as shown in Figure 2.7

with unit cell volume V. equal to 1,1, L.

The form factor of a domain and ¢ are given by
U, (Q) = exp{iQ.l,/2} ¥, (Q) (2.13)

\IIC(Q) = emp{—ZQzlc/Z}\I/C(Q) (214)

where ¥ (Q) and W,(Q) are given by

v, (Q) =

Veeur Jo

, 4L fla/2 Iy /2
d:c/ dy cos(Qz)cos(Qyy) (2.15)

Yao(z)

with
0 0<zx<{,/2—71
Yo(z) = 12 Osesil/ ) (2.16)
[r? = (@ —1a/2)7"" (lb/2-7 <2 <o)
and o = q,c.
The form factors can be evaluated numerically. We choose [, as the characteristic
length scale { and scale @, 4, [, I, and r in equation A(2)-A(5) by I,. The scaled
variables fa, l;, Zy and 7 are not independent of each other, but are related by the

equations:

lo+1.=1 (2.17)

lo — 7721, = f, (2.18)
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2t l, =1~ fo — f (2.19)

Equation A(7) and A(8) arise from the constraint that the volume fraction of a

and c in a unit cell is f, and f., respectively. Thus we have

b= fut 50~ fu £ (220
~ 1
= 50= fu= 1) (2.21)
F =l (1= fu— f)/2m (2.22)

Substituting equation A(9)-A(11) to Equation (2.1), we have the long range part
of the free energy FJ,

2 -
FL - é—]\?@(fmfc; ly) (223)
where
A 1 PR PN
O(fo, fely) = Z o2 (AF (fas fo) Wo(Q) + AL (fa, fo) ¥.(Q)*

Q

+ 2 c05(Qu/2) A% (fo, fo) V. (Q) v,(Q))
with Q, = Q, [.

The short range part of the free energy is given by

av ON
Fg=2 ;’ (2.24)
where
Oav = [(Oap + Ope) 27T + 20“(1; — 27?)]/lAy (2.25)

Substituting ®(f,, fc;fy) and o4, in Equation (2.10), we can obtain F*. Since
D(fo, fe;9) and oy, are both functions of Zy, which is the ratio of the two characteristic
length scales [, and [, the minimum free energy of the lamella-cylinder-1 phase can

be obtained by numerically minimizing F* with respect of Zy

2.7 Figures
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Figure 2.1: Schematic representation of an ABC triblock copolymer. For a given
sequence, we use “a” and “c” to denote the end blocks and “b” to denote the center
block.

(h)

Figure 2.2: Schematic representation of all the phases considered. Dark: a, white:
b, and gray: c. : (a) lamellar phase; (b) co-axial cylinder phase; (c) lamella-cylinder
phase; (d) lamella-sphere phase; (e) cylinder-ring phase; (f) cylindrical domains in a
square lattice structure; (g) spherical domains in the CsCl-type structure; (h) lamella-
cylinder-II; (i) lamella-sphere-II; (j) cylinder-sphere; (k) co-centric spherical domain
in the bce structure.
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Figure 2.3: Figure 2.3(a) Phase diagram for v; = 1.0 and v = 1.0. Figure 2.3(b)
Equilibrium free energy F*/C* for lamellar, cylindrical, and spherical structures for
fa = feand 7 = 1.0 and vy, = 1.0. Figure 2.3(c) Equilibrium free energy F*/C* for
the lamellar, lamella-cylinder, lamella-sphere phases for v; = 1.0 and v, = 1.0.
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Phase diagram in terms of f; versus -y, for a system with f, = f, and v, = 1.0.
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Figure 2.5: Figure 2.5(a) Phase diagram for v; = 2.0 and v, = 5.0. Figure 2.5(b)
Equilibrium free energy F*/C* for the lamellar, co-axial cylinder, and cylinder-sphere
phases as a function of v, at volume fractions f, = 0.8 and f. = 0.1 and ~, = 5.0.
Figure 2.5(c) Equilibrium free energy F*/C* for the lamellar, co-axial cylinder, and
cylinder-sphere phases as a function of fc at fixed f, = 0.8 and v, = 2.0, v = 5.0.
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Figure 2.9: Cross-sectional view of lamella-cylinder phase (see also Figure 2.2(c)). I,
and [, are the primitive translation vectors in the xy plane, [, and [, are the thickness

of the a and ¢ domains respectively, and 7 is the radius of the cylinder containing the
b blocks.
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Chapter 3 Microphase Separation of Weakly
Charged Diblock Copolymers

3.1 Introduction

Diblock copolymers are macromolecules composed of two sequences of chemically dis-
tinct repeat units A and B joined together by covalent bonds. They are fascinating
materials with unique mechanical, optical, and structural properties [1], [2]. Due to
the incompatibility between monomers A and B and the very low value of mixing en-
tropy for macromolecules, diblock copolymers undergo a microphase separation and
assemble into various ordered structures [3]-[6]. It is now well recognized that the
phase behavior of AB diblock copolymers is determined by three factors: the overall
degree of polymerization, N = N4 4+ Npg; the composition of the copolymer charac-
terized by f = N4/N; and the temperature expressed in terms of the Flory-Huggins
interaction parameter x. For symmetric diblocks (f=0.5), an order-disorder transi-
tion takes place at xN ~ 10 [9]. Depending on the composition and/or temperature,
alternating lamellar domains (L), hexagonal packed cylinders (H), body-centered-
cubic packed spheres (B), and bicontinuous gyroid structure (G) have been obtained
below the order-disorder transition temperature [5], [6].

The distinction between uncharged molecules and electrolytes composed of ions
has its counterpart in the field of macromolecules. Recently, considerable attention
has been paid to various polyelectrolyte and copolyelectrolyte systems in which a small
fraction of charge is incorporated into one or both of the components [7]- [15]. It has
been found that the attachment of ionized groups to the backbone of a molecular
chain produces striking modifications of the polymer characteristics. For instance, it
is well known that a binary mixture of two neutral polymers has a strong tendency
toward macroscopic phase separation due to the low values of the mixing entropy
[16],[17]. However, even a small amount of charge on one of the polymers can lead
to an substantial increase of compatibility and, more surprisingly, alter the character

of the transition from macro- to micro-phase separation under certain conditions [8],
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[9]. This result is explained by the fact that in the polyelectrolyte system, there
are additional contributions to the free energy: the translational entropy of free ions
(counterions and salt ions) and the electrostatic interaction among all charged species.
The former leads to enhanced compatibility, while the later results in microphase
separation due to the new length scale, the Debye screening length.

Charged-neutral diblock copolymers, composed of a charged block A joined to
a neutral block B, combine the celebrated microphase separation properties of un-
charged diblocks with certain characteristics of charged polymers. In charged-neutral
diblock copolymer systems, the long-range electrostatic interactions and the increased
mixing entropy due to free ions are influential in determining the microphase separa-
tion transition (M ST'), where the system changes from a disordered state to a periodic
structure. Studies of the spinodal instability in charged-neutral diblock copolymers
by Marko and Rabin [10], [11], and Mozuelos and de la Cruz [13] show that charged-
neutral blocks have greatly enhanced the compatibility between A and B in compar-
ison with the corresponding neutral system. The degree of incompatibility xy and/or
the degree of polymerization N at which the microphase separation transition occurs
are much larger than in the case of uncharged block copolymers. The most probable
wavelength of fluctuation is only weakly affected.

The few limited studies focus on the spinodal limit of the charge-neutral diblock
copolymers. The influence of the charge on the relative stability of various ordered
structures, the equilibrium properties of charged-neutral diblock copolyemrs remain
open questions. In this paper, we theoretically develop a framework which combines
the Random Phase Approximation and the Poisson-Boltzmann equation to consis-
tently treat the electrostatic interactions between all charge species as well as the
copolymeric contributions to the free energy. Within this framework we then study
the microphase separation and the equilibrium properties of charged-neutral block
copolymers with an arbitrary amount of added salt in the weak segregation limit.

There are five parameters in the formulation of this system: the Flory-Huggins
interaction parameter X, the monomer charge density «, the molecular weight NN,
the volume fraction of charged blocks f, and the salt concentration ¢,. The different
relative strengths of the five parameters give rise to the particular phase behavior

of the system. Our analysis of the spinodal instability demonstrates not only the



42

considerable enhancement of compatibility between A and B, but also the inhibition
of the microphase separation under certain conditions.

In order to determine the phase behavior of charged-neutral diblock copolymers,
we study the stability of various ordered phases (e.g. lamellae, cylinder, sphere, and
gyroid phase) and map out the phase diagrams with various parameter combinations.
Due to the breaking of the interchange symmetry between A and B, some new fea-
tures appear in the phase diagrams that are absent in the neutral case. The mean
field critical point, where a direct transition from the disordered to the lamellar phase
occurs, is no longer fixed, but rather depends on «, IV, and ¢,. It is expected that an
understanding of the relationship between the relative magnitudes of the five param-
eters and the phase behavior will provide an important guide for future experimental
and theoretical studies.

Since the effective Hamiltonian for charged-neutral block copolymers falls in the
same universality class as the Brazovski Hamiltonian [18], concentration fluctuations
are important near the mean field critical point. We extend the method of Fredrick-
son and Helfand [4] to charged-neutral block copolymers by including the fluctuation
corrections in the order-disorder transition. The breaking of the interchange symme-
try leads to new scaling of fluctuation corrections at a fixed value of monomer charge
density a.

The organization of this chapter is as follows: In section 3.2, we derive the effective
free energy functional for charged-neutral diblock copolymers by using the Random
Phase Approximation. In section 3.3, we discuss the spinodal limit of the system
predicted by our model. Some of the results in [10] are reproduced. In section
3.4, we present phase diagrams of charged-neutral diblock copolymers under various
conditions. The new features in the phase diagrams are discussed. In section 3.5,
fluctuation corrections to the order-disorder transition are discussed. Section 3.6
is the conclusion. In the Appendix, we present the formulas of the self-consistent

approach for charged-neutral diblock copolymers.

3.2 Model and Effective Free Energy

We consider a system consisting of charged-neutral diblock copolymers chains. Each

chain is made of polyelectrolyte block A of length fNa and neutral block B of length
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(1 — f)Na joined together by a chemical bond, where N is the overall degree of
polymerization, f is the fraction of monomers of block A in a block copolymer, and
a is the Kuhn segment length. For convenience, monomers A and B are assumed
to have the same monomeric volume v, and dielectric constant e. Without loss of
generality, we assume that block A is positively charged and contains af N charged
ion. There are afN counterions dissociated from each of the block copolymers, so
that the system remains macroscopically neutral. For simplicity we assume that the
valency of the charged groups in A blocks and counterion is unity.

In experimental situations, salt is usually added to control the phase behavior of
the system. In order to achieve the dissociation of ions (counterions and ions from
salt), the average Coulombic energy between two ions has to be much smaller than the
thermal kinetic energy (~ kpT’). This requirement leads to the condition: cpl} < 1,
where cr is the total number density of the counterions and salt ions, and [z is the
Bjerrum length g = e€?/ekpT. This inequality is often referred to as the condition for
the validity of the Debye-Hiickel approximation [19]. The condition can be satisfied by
having a low charge density and using polymers with fairly large dielectric constants
(e =~ 20), such as polynitriles or polymers with side-chain alcohols whose backbones
will dissolve the ions [10]. An alternative is to add a polar solvent, such as water,
to the system to ensure the high polarity of the media. In this paper, we assume
that block copolymers have high dielectric constant and the system does not contain
solvent, we assume further that the ions are mobile and do not form pairs.

Furthermore, we assume that the counterions are the same species as the negative
ions from salt, and hence are not distinguishable. The volume fraction of free ions is
negligible. Therefore, the volume fractions of A and B components add to unity and
the block copolymers are incompressible.

In a system consisting of charged-neutral diblock copolymer melts and free salt
ions, charged species (charged links on block A and free ions) interact by Coulombic
interaction, while monomer units A and B interact via a Flory-Huggins interaction.

The model Hamiltonian for the system is:

RS

3 dr(s) R
= ; 2Na2/0 ds( Tds )2+kaTpo/d3r¢A(f7¢B(f) + §/d3r/d3r %

(3.1)
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where the first two terms are the Hamiltonian for neutral block copolymers, y is the
Flory-Huggins interaction parameter for blocks A and B, and ¢4(7) and é5(7) are

the dimensionless monomer-density operators of A and B. They are given by

on) = 5 3 [ dss(r— i) 2)
. NI 1 L
ool = - ; /f dsd (7 — 7(s)) (3.3)

where p, = 1/v, is the monomer density per unit volume. The third term in Eq. (3.1)
accounts for the electrostatic interaction among all charged species. In the system
that we are considering, the charge density of polyelectrolyte A is eapoqﬁﬂA(f'), and the

charge density of the positive/negative free ions are e¢™(7) and —eé™ (7), respectively,

given by
G = 26(?— ) (3.4)
¢(7) = gé(f'— ) (3.5)

The overall charge density p.(7) at the point 7 is:
Pe(7) = eapoda(F) + e (F) — eé™ () (3.6)

In order for the system to have overall electroneutrality, the space avarage < g,(7) >
must vanish.

In real physical systems, certain amounts of salt are added. For convenience,
we choose to use the grand canonical essemble in which the charged-neutral diblock
copolymers are in contact with a salt reservoir. The grand canonical partition function

of the system is:

N4 T

= XY /Hdwnd“ndm (GalF)+ 6a(F) — 1)

i=1j=1 "'

e%‘p{ /3H o _/d3 pe]r")__pe

[1]
|

(')

T + Bpyng + Bu_n_} (3.7)
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where n,,ny,n_ are the number of block copolymers, positive free ions and negative
free ions, respectively. The number of charged-neutral diblock copolymers n, is fixed,
and the numbers of free ions n, and n_ are summed from 0 to oo since the system is in
contact with a salt reservoir. p and p_ are the respective chemical potentials of the
positive and negative ions. The delta function selects out only those configurations
satisfying the incompressible condition.

Applying the Kac — Hubbard — Stratnovich (K HS) transformation to the elec-
trostatic energy in Eq.(3.7), we obtain:

ny n_

= 2 npm In_| /1;[(13%’[;[0137«; Ilg[darﬁ(‘f%(ﬂ +¢p(7) — 1)

=1 j=1

/Dfexp{——ﬁHo -
+upny + pon_}

1
— / Previe — z-i« / Pre(7) 5 (F) (3.8)

The field i£(7) is shown below to be the dimensionless potential of the electrostatic
field of the system. The K HS transformation introduces the electric potential and
decouples the electrostatic interactions between the charged species. The partition
function = can be written as a product of the partition functions of charged-neutral

block copolymers, and the positive and negative free ions in the electric potential

i&(r), ie.,

== [ Deeap{g—s [ dreVHEIQ 12 EE-1€) (3.9)

1
8w e?

where

=, - i o [Trtespi=i [ @@ o)+ fum) 310

’I'L—“

=€ = /Hd3r exp{z/ddrf (F)e=(7) + Bu_n_} (3.11)

n_—O

%l = o ljldgrfewp{“ﬂﬂo —iap, [ drE(Moa)}
8(6a(7) + 6u(7) ~ 1) (3.12)

Since the electrostatic interactions between charged species are decoupled, the par-

tition functions of the free ions Z, and Z_ are simply those of an ideal gas in an
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external field &, and thus can be simplified as =, = exp[Q4] and Z_ = exp[Q_],

where

Qi = [ dreapl{—i&(®) + b} (3.13)
Q = [dremplic(r) + pu_} (3.14)

The configurational partition of block copolymers @),, on the other hand, cannot
be obtained in closed form. However, we can proceed by using the Random Phase Ap-
proximation (RPA). The Random Phase Approximation casts the resultant effective
free energy into a Ginzburg-Landau form by performing an order parameter expan-
sion. Here we are going to adopt the RPA approach. The derivation of the effective
free energy within the RPA is straightforward extension of that presented by Ohta
and Kawasaki [20]. The effective free energy thus obtained is most useful for studying
the microphase separation transition in the weak segregation limit. An alternative
approach is to use the self-consistent method which involves solving the equations
obtained within the Saddle Point Approximation numerically in configuration space.
The formulas of self-consistent approach is presented in Appendix.

Within the RPA, the partition function (), can be written as

»= [ Dbep(~Flv] — iap, [ d*rlp() + f16(7) (3.15)

where the order parameter () represents the deviation of the volume fraction of

block A from its average value f

(1) = da(F) — f (3.16)

and F,[¢] is the effective free energy for the neutral diblock copolymers expanded in

terms of the order parameter (7).
RlY) = 5 [Tale~aw@w(-0
+———-/ F3(q1, g2, =01 — @) ()9 (@2)¥(—a1 — ¢2)
3! q1 Y q2

1
+—‘/ / L4(q1, 92,93, —1 — @2 — ¢3)
4. q1 Jq2 743
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V(q)¥(g2)v(as)(—q1 — g2 —g3) + -+ (3.17)

The first four terms of F,[¢] have been derived by Leibler [3], and Ohta and Kawasaki
[20]. The coefficients T',(q1, ..., ¢), are related to the nth order correlation functions
of non-interacting Gaussian copolymer chains G, ..;,, n = 2,3,4,---, and are given

in ref [3] and ref [20]. In particular,

9(1,)

D= NG D= o) - aLe) — (1) — 9l — F.a)E/D)

-2y (3.18)

where g(f,z) = 2(fz+e/®—1)/2? is the Debye function. The variable z = ¢?R? with
R = (Na?/6)"/? denoting the radius of gyration of an ideal chain of N monomers.
Substitution of Eq.(3.15) into Eq.(3.9) yields:

/ DeDiperp{- 1ﬂ g / Previe — Fy)
~iap, [ dThB() + FIEF) + Q416 + Q4 (€]} (3.19)

In order to obtain the effective free energy F[¢], we need to evaluate the functional
integral [ D¢ in the above equation. However, this cannot be done exactly. Instead
we apply the Saddle Point Approximation (SPA) to € in Eq.(3.19), i.e., approximate
the integral [ D¢ by the extremum of the integrand. The Saddle Point Approximation
will enable us to solve for the electric field &, which can be expanded in term of order
parameter ).

Within the Saddle Point Approximation, the function & must satisfy

47r562 VHE(T) = —apopa(r) — ¢ (7) + ¢ (7) (3.20)

where apd 4(7), ¢t (7), and ¢~ (7) are the respective local number densities of charged
blocks, positive, and negative free ions. It is evident that i obey a dimensionless
Poisson-Boltzmann equation, and hence is the dimensionless electric potential due
to all charge species. For notational convenience, we simply replace £ by £ in the
following discussion.

The free ion distributions are derived by taking the derivative of =, [¢] and Z_[¢]
with respect to & and making use of the relations between =, [¢], Z_[¢] and Q,[¢],
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Q_[&]. The result is

() = exp{—€(F) + Bus ) (3.21)
(7)) = eapl€(F) + Buus ) (3.22)

However, there is no equivalent simple relation between the density distribution ¢ 4(7)
and the electric potential €.

Since the free ion distributions are related to the electric potential ¢ according to
Eq.(3.21) and Eq.(3.22), the electric potential field is uniquely determined once the
monomer distribution ¢ 4(7) is given. One can solve £(7) and express it as expansion of
¥ (7) using the Poisson-Boltzmann equation. For the convenience of future discussions,
we will define some notation from two special cases where the Poisson-Boltzmann
equation has simple solutions.

(A) Neutral diblock copolymers The diblock copolymers are neutral when o = 0,

and there are no counterions in the system. The free ions are all from the salt reservoir
and distributed uniformly in space. The electric potential is constant, which can be
set to zero. The Poisson equation simply yields ¢t = ¢, i.e., the reservoir contains
the same amount of positive and negative ions. Let us define ¢y, to be the free ion

(positive or negative) density of reservoir. From Eq.(3.21) and (3.22), one obtains

py = p_ = kT logce (3.23)

(B) Homogeneous Phase In a homogeneous phase, all species are distributed

uniformly in space and the electric potential £ is a constant. Let us denote the
electric potential in the homogeneous phase as &, According to Eq.(3.21), (3.22),
and (3.23), the free ion density distributions are ¢t = cexp(—&,) for positive ions
and ¢~ = coexp(€,) for negative ions. Substituting these expressions into the Poisson

equation, we obtain

0 o 2 4go
& =1In apfﬂ/(;;p f)tde (3.24)

We define the number density of positive free ions in the homogeneous phase as c;,
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which will be referred to as the salt concentration of the system. ¢, is given by

—ap,f +/(ep.f)? + 4c,
2

Cs = (3.25)
The negative free ion density can be expressed as: ¢ = ¢, + ap,f. The positive free
ions are from the salt resevior, while the negative free ions consist of contributions
both from counterions and from the salt reservoir. In the homogeneous phase, the
density of free ions (postive or negative) from the reservoir is uniquely determined
once the monomer charge density «, volume fraction of charged blocks f, and the
free ion density of the reservoir, ¢, are given.

When the system is in an ordered mesophase with a specific symmetry, the electric
potential has the same symmetry as the density distribution. In the weak segregation
limit, the deviation of the electric potential §¢(7) from its uniform value &, is small.
This deviation can be determined by expanding the quantities in the Poisson equation

about their value in uniform phase and the result is

n=1"9

The first three coefficients of h, (g, -, ) are

hi(@) = G(q) (3.27)
M ®) = 166 +a6@6a) (3.29)

Wl 8, @) = 56U+ &+ B)G@)GEG)()
{FIG@+ @)+ G+ 3)+G(@ + @) - %33313.29)

where G(q) = uaN/(xz + u(aN f + 2n,)) and the symbol n, denotes the free ions per

copolymer volume Nv, in the corresponding homogeneous phase, i.e.,

ns = ¢sNu, (3.30)

Once the expression of the electric field ¢ in term of the order parameter 1 is

obtained, we can use Eq.(3.19) to obtain the effective free energy F[¢]. Substituting
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the expansion of 6¢ in Eq.(3.19) and expanding (), Q4+ and Q_ in term of the order

parameter 1), we obtain the effective free energy

NF[p} = %/q%(q, —q)¥(q)¥(—q)
b [ o=~ @)@ - )

+;11‘! /q1 /q2 /q3 Y4(q1, 92,93, — @1 — @2 — G3)
Y(q1)¥(q2) (@)Y (—q1 — g2 — g3)

b (3.31)

where Vo (q1, -, @n) = NTn(q1, ooy @u) +NOLn(q1, -, @n), n = 2,3, 4, - - - The corrections
oI',, are the result of the presence of the charges in diblock copolymers and the free

ions. Their expressions are:

N 2
o2(0,=q) = z + quc(v(;[Vf)+ 2n;) (3:32)
3 N 4
6l3(q, 02, —1 — @2) = “[a: +;(05?Vf)+f2ns)]3 (3.33)
ut(aN)*
P +u(aNf +2n,)]
u(aN f)?
R (q1 + @2)* + u(aNf + 2n,)
u(aN f)?
R?(q2 + q3)? + u(aN f + 2n,)
u(aN f)?
R2(gs + q1)% + u(aN f + 2n,)
—(aNf +2n,)} (3.34)

(@1, G2, 43—t — G2 — q3) =

where the constant u = (4we?/6eakpT)a®/v, is essentially the ratio of the Bjerrum
length Ip = €?/ekpT to the monomer size a, renormalized by the factor a®/v,. For
water at 300K with € &~ 80, the Bjerrum length is about 7A4. The dielectric constant
e of a polymer is usually smaller than that of water. However, if it is too small, the
assumption of mobile counterions is not valid. We assume that the block copolymers
have a high dielectric constant ¢ ~ 20 with Kuhn length a = 7A and monomer

volume v, = 10043, thus the constant v = 28. The quantity n, = ¢,Nv, is uniquely
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determined by ¢, @ and f as shown in Eq.(3.25) and (3.30).

Equations (3.31)-(3.34) completely define the free energy of the system in the weak
segregation limit. Minimizing the free energy with respect to the order parameter
¥ (r) determines the equilibrium structure of the system. Once the order parameter
¥(7) is solved, the electric potential and density distribution of free ions are also
determined. We would like to emphasize that the average values of densities of free
ions (positive or negative) in an ordered phase are different from their values in the
corresponding homogeneous phase. For a particular ordered strucutre, the average

density of positive free ions is
1 3 ~
Cord = CSV/d rexplo&(7)] (3.35)

Since, in general, %/— [ d®rexp|dE (~F)] # 1, the average values of densities of positive
free ions in an ordered phase ¢,y # ¢s, although their difference is rather small.
Similarly, the average density of negative free ions in an ordered phase does not equal
the negative free ion density in the corresponding homogeneous phase.

For neutral diblock copolymer melts without including the fluctuation effect, the
MST and the phase behavior are completely determined by two parameters: f and
xN. In charged-neutral diblock copolymer system, the free energy contains five pa-
rameters:

a, X, Na f: Coo (336)

or, equivalently,

o, x, N, f,c (3.37)

These parameters control the behavior of the system. Our goal is to find the
region of stability of the microscopically structured phase in the phase diagram of
the system and to understand how the parameters Eq.(3.36) or (3.37) control the

properties of the phase. Notice that under the simultaneous scaling

1 1
a— A, X = A, N = =N, ¢ = Moo, D - =D (3.38)

A A

where D is the period of ordered structure, the free energy remains unchanged. So the

property of the system after such scaling remains similar to that before the scaling.
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3.3 Spinodal Limit of the Homogeneous Phase

In order to investigate the stability of the homogeneous phase and microphase sepa-
ration transition (MST) in charged-neutral diblock copolymer systems, we study the
concentration fluctuation of the system. The fluctuation may be characterized by the

density-density correlation function
S(F ') =< P(F)y(r') > (3.39)

The Fourier transform of the correlation function S(g), also called the structure func-
tion in scattering experiments, can be studied by elastic scattering experiments,
such as X-ray or neutron scattering ( ¢ denotes the scattering vector with length

4m[sin(0/2)]/ A, where A is the wavelength and # the scattering angle). Its inverse
S71(q) is given by 72(q, —q)

g(1,z)
(9(f,2)9(1 = fo2) — [9(1,z) — g(f,x) — g(1 = f,)]?/4)
N u(aN)?
z + u(aN f + 2ng)

NS™Hq) = —2xN

(3.40)

where the first two terms come from the structure function of neutral diblock copoly-
mers, x is the Flory-Huggins interaction parameter, and the third term is the con-
tribution from the electrostaic interaction between charged blocks and free ions. The
third term has the form of a screened Coulomb interaction with the Debye-Hiickel
screening length I[p = Ru™Y2(aNf + 2n,)"'/2. The screening is due to the pres-
ence of free ions and the rearrangement of them at a given block copolymer density
distribution (7).

For neutral diblock copolymers, it has been shown that only certain fluctuations
become anomalously large when the interaction parameter y approaches the transition
point x;: S(¢) has a very narrow maximum for a certain value of |§] = ¢* # 0. As
XN becomes greater than x; /N and is equal to a certain value x* N, fluctuations with
a wavevector |¢] = ¢* diverge: S(¢*) — oo. This is the spinodal point. The spinodal

point determines the limit of metastability of the homogeneous states.
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The spinodal wavevector ¢* is determined by minimizing

9(1,2)
(9(f,2)g(1 = f,z) = [9(L,2) — g(f,2) — g(1 — f,2)]?/4)

F(z) = (3.41)
with respect to z, where z* = (¢*R)?. An interesting property of neutral diblock
copolymers is that ¢* only depends on f, while ¢* of charged-neutral diblock copoly-
mers depends on the volume fraction f, the molecular weight N, the monomer charge
density «, and the free ion concentration of the reservoir c,,. The spinodal value of
X*N for neutral diblock copolymers is given by x*N = 0.5F (z*). Thus, in neutral di-
block copolymer systems, the MST can be reached either by reducing the temperature
(increasing x) or by increasing the molecular weight N so that YN > x*N.

In charged-neutral diblock copolymer systems, the MST depends on the five pa-
rameters in Eq.(3.36) or (3.37). Their relative magnitude plays an important role in
determining the MST. For a system with a given IV, «, f, and ¢, the system can
reach the MST by reducing the temperature (increasing x). However, for a system

with a fixed temperature, the system cannot always reach the MST with increasing

N; certain relations among ¢, @, x and f must be satisfied in order to achieve MST.
We will discuss each of the possible situations in detail.

MST by reducing temperature In charged-neutral block copolymer systems,
if we allow a change in temperature, the spinodal wavevector can be obtained using

a similar method that used for neutral chain system, i.e., by minimizing

u(aN)?
F 42
(x)+x+u(aNf+2ns) (342)
with respect to x. The spinodal value of x* is given by
0.5 u(aN)?
—{F(z* 4
N{ (x)+:c*+u(aNf+2ns)} (343)

Both the spinodal value x* and the corresponding wavevector ¢*R depend on the
parameters f, a, N and n,.

Figure 3.1 shows the dependence of x*N on number of charges a/N on a block
copolymer for two salt concentrations n; = 0,10 with f equals to 0.5. It is shown that

a small amount of charge in a polyelectrolyte can greatly enhance the compatibility
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of monomers A and B. The interaction x*/N increases far above the corresponding
neutral diblock copolymers value. and a microphase separation takes place at a lower
temperature. On the other hand, as a/V increases the critical wavevector ¢*R is
weakly affected and the MST occurs at a slightly shorter length scale.

When alN f > n,, the electrostatic energy dominates the free energy. For the salt
free case, a linear dependence of x*N on aN was first observed by Marko and Rabin
[10]. For an arbitrary value of the volume fraction, f, and a small amount of salt, it
can easily be shown that x*N ~ aN/(2f) — n,/f2

Figure 3.2(a) and (b) show the dependence of spinodal value x*N and the corre-
sponding wavevector as functions of charges a/N with the volume fractions f = 0.2,
0.5, and 0.8 in a salt free system. These figures demonstrate that adding charge to
block A breaks the A— B interchange symmetry. Thus, the dependence of the critical
parameters on aN differs for the two cases. For the same monomer charge density
a, the system with f = 0.2 has a much higher spinodal point of x* than that of the
system with f = 0.8. Thus, for a system with a given monomer charge density «,
the smaller the volume fraction of charged block the more stable the system in the
homogeneous phase.

Figure 3.3(a) shows the dependence of x*N on the salt concentration ng with f =
0.5 and aN = 10, 20, and 50 respectively. Addition of salt reduces the electrostatic
interactions due to screening. The spinodal value of x*N approaches the neutral
chain limit as ny; — oo. The corresponding wavevector ¢*R also decays toward its
neutral limit as the salt concentration n; increases (Figure 3.3(b)). Notice that ¢*R
decays toward its neutral limit much faster than the spinodal value x*N does.

MST with fixed value of Flory-Huggins parameter x For a given diblock
copolymer A — B, the Flory-Huggins parameter x (of order 1072 — 107!) is the net
interaction (van der Waals interaction) between segements A and B, divided by kgT.
Due to the chemical and physical nature of a particular diblock copolymer, the tem-
perature can be varied only within a certain range (e.g. temperature should not be
smaller than glass transition temperature), thus the interaction parameter y can vary
only within a certain range as well. For a given value of x, the system is not always
able to reach the MST with increasing molecular weight N. In this situation, certain

relations among the monomer charge density «, salt concentration ¢, and volume
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fraction f has to be satisfied in order to achieve MST. To investigate the MST con-
dition at a fixed temperature, we rewrite the inverse of structure function NS~!(q)
as follows:
2 2
NS™a) = Flof) = 2N+ T+ ﬁx]z\Lfi((fo)Zns/aN)
o (xN)H{uB* — 2up(f + 2n,/aN)}
+XN{F(z)up(f + 2ns/aN) — 2z} + F(x)x (3.44)

where 3 = a/x. The solution of spinodal instability exists only when u3? — 2uB(f +
2ns/aN) <0, ie.,
degvpfa > (B —2f) (3.45)

This inequality is a criterion for the MST at fixed temperature. It shows that:

(a) For a system with given values of monomer charge density «, temperature
X, and volume fraction f, if 8 < 2f, the MST is possible even without additional
salt from the reservoir, however, if § > 2f, the compatibility of A and B is enhanced
to the extent that without a sufficient amount of additional salt from reservoir the
homogeneous phase is always stable.

(b) For a system with given value of salt concentration cg, temperature y, and

volume fraction f, the MST is possible only if o < quper = fx + \/(fx)2 + 4egvoX.
(c) For a system with given value of salt concentration c,, monomer charge
density «, and temperature x, MST is possible only if f > 0.5(8 — 4¢;v,). Thus for
a system with 8 < 4c,v,, MST is possible at any value of f, while for a system with
B > 4csv,, MST is possible only when the volume fraction of the charged block A is
sufficiently large.
When the condition stated in Eq.(3.45) is satisfied, the minimum value of N at

which the spinodal occurs is
N* = (=b~— Vb?* — 4ac)/(2ax) (3.46)

where a = uf® —2uf(f+2¢,v,/), b = F(z*)uf(f +2¢,v,/c) —22*, and ¢ = F(z*)z*.

For a system with a given Flory-Huggins parameter y, only when the condition in



96

Eq.(3.45) is satisfied can the MST be achieved by increasing N > N*.

In Figure 3.4, we have plotted the solutuions expressed in Eq.(3.46). The molec-
ular weight N dependence on « for given values of x, f, and ¢, is clearly illustrated
in the figure. When « = 0, the system is a neutral diblock copolymer and N* equals
its neutral limit. The critical value N* of charged-neutral block copolymers is always
larger than that of neutral block copolymers, and increases as « increases. At a suf-
ficiently large value of «, the minimum value of molecular weight N* for spinodal
instability approaches infinity, i.e., microphase separation is inhibited. In a salt free
system, the minimum molecular weight N* increases drastically even for a small in-
crease of charge, while in a system with salt concentration c;v, = 0.01, the minimum
molecular weight N* increases slowly as « increases from zero and N* approaches
infinity only when « approaches its maximum value @,,,,. In a system with a fixed
value of Flory-Huggins parameter, the MST cannot always be reached by increasing
molecular weight alone, but can always be reached by increasing salt concentration

and molecular weight so that the criterion in Eq.(3.45) is satisfied.

3.4 Transition between Different Ordered Phases

In this section, we study the stability of various microdomain patterns including the
lammellar, cylinder, bce, and gyroid phases, and determine how molecular weight,
temperature, monomer charge density, and salt concentration affect the equilibria of
various morphologies. These calculations allow the constructions of phase diagrams
of the charged-neutral diblock copolymers under various conditions.

(A) Free Energy for Lamellar, Cylinder, and BCC phases In order to
determine the equilibrium property of charged-neutral diblock copolymers, we want
to further simplify the Landau-Ginzburg expansion of the free energy density given

in Eq.(3.31)-(3.34). The order parameter can be written as
P(r) = Zl/)ifi(m (3.47)

where f;(7) are basis functions which posses the symmetry of that particular structure.
For lamellar, cylinder, and becc structures, we use a one-mode approximation, i.e., we

consider only the first shell of reciprocal space. This approach becomes exact in the
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limit that S{(q) = §(q — q*), i.e., in the limit that the composition profile is exactly
sinusoidal. Although this is not the case, in practice the correlation function has a very
pronounced maximum for |§] = ¢* near the spinodal, i.e., the important fluctuations
are those with wavevector |g] = ¢*. As a result the one-mode approximation is a good
approximation.

Within the one-mode approximation, the order parameter for lamellar, cylinder,

and bcc phases takes the form

00 = e Y feapliG+ g + e (3.48)
@il = ¢, i=1,.n (3.49)

In the above expression, the equilibrium values of the amplitude v,, and the phase ¢
are determined by minimizing the free energy. There are three simple cases: the case

n = 1 corresponds to the lamellar phase; the case n = 3 with
~ * S 1 * =3 1 *
Ql =4q [13070]7 Q2 - Eq [—17\/57017 QB - iq [—1,—\/57 0] (350)

corresponds to the hexagonally arranged cylinder phase; and the case n = 6 with

Ql = 2—1/2(]*(17 1) O) QQ = 2“1/2(]*(_“1’ 19 O)
Qs =272¢(0,1,1) Qs =2""2¢"(0,1,-1)
Qs = 27'2¢*(1,0,1) Qs = 2712¢*(1,0, —1) (3.51)

corresponds to the bce phase.

The vertex functions 7, defined in Eq.(3.32)-(3.34) can also be simplified using the
one-mode approximation. The coefficient v3(g1, ¢2, ¢3) vanishes unless ¢ +@+ g3 = 0.
The wavevectors ¢i, ¢, ¢s form an equilateral triangle with magnitude |¢;| = ¢*. All
nonvanishing v3(q1, 2, ¢3) are equal and depend on f, o, N, and ¢y, which will be
denoted as v3(f, o, N, ¢oo). The coefficient v4(qi, &, @, @) # 0 only if i, G = 0, so
that 74 depends only on two independent angles: that between vectors ¢ and ¢, and

that between vectors ¢ and ¢y (since |g;| = ¢*) . For convenience, we approximate
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v4(q1, G2, G3, G4) by setting ¢1+¢> = 0 and g1+¢s = 0. This approximation has been
used by other authors [4] and can be shown to be fairly accurate. The coefficient 4
also depends on f, a, N, and ¢, and is denoted as v4(f, a, N, ¢x0)-

Substituting the order parameter expression in Eq.(3.48) and (3.49) into the
Landau-Ginzburg expression for free energy, Eq.(3.31), the free energy of the lamellar,

cylinder, and bcc phases within a one-mode approximation can be written as

FN/kgT = 2N(x* — x)¥2 — on ) + Bpif’ (3.52)

where the coefficients o, and 3, for various phases were first given by Leibler [3] and

are listed in the following table for convenience:

Table I
lamellar n=1 cylinder n=3 bcc n=26
Hn 0 a3 = ‘3‘\2/—573 Qg = —ﬁ’)’s
B B=2 By = s =

(B) Free Energy for the Gyroid Phase The gyroid phase is a bicontinuous
cubic structure whose symmetry belongs to space group Ja3d. The structure consists
of a channel-forming minority phase embedded in a matrix of the majority compo-
nent. The minority and majority components are continuous and periodic in all three
principle directions. The channels are subdivided into two distinct, interpenetrating
networks. The channels join as triads and the two networks are mirror images of
one another. Underlying the topology is an infinity triply periodic minimum surface,
called a G’ minimal surface, as mathematically discovered by Schoen [21].

The gyroid phase was first experimentally observed in lipid-water system a few
decades ago [22]. In block copolymer systems, it was first observed by Gobran in
polystyrene-polyisoprene diblock copolymers consisting of 37wt% styrene [23] and
was identified by Gruner, Thomas and co-workers [24] in a weakly segregated melt.

The first few basis functions of the gyroid phase are:

f(® =1 (3.53)
f1(F) = 1/8/3[cos(X)sin(Y)sin(2Z) + cos(Y)sin(Z)sin(2X)
+cos(Z)sin(X)sin(2Y)] (3.54)
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f2(7) = (4/3)[cos(2X)cos(2Y)
+c0s(2Y )cos(2Z) + cos(2Z)cos(2X )] (3.55)
f5() = J(4/3){sin(2X)[cos(3Y)sin(Z) — sin(3Y )cos(Z))]
+sin(2Y)[cos(3Z)sin(X) — sin(3Z)cos(X)]
+sin(27)[cos(3X)sin(Y) — sin(3X)cos(Y)]} (3.56)
fa(P) = /2/3[cos(4X) + cos(4Y) + cos(47))] (3.57)

where X = 27z/D is a dimensionless length, ¥ and Z are defined similarly, and D is
the size of the cubic unit cell. The order parameter of the gyroid phase must contain
at least the first three basis functions in order to capture the main features of the

struture,i.e.,

V() = ¥1/1(D) + ¥2f2(Q) (3.58)

where the coeflicient ¢y vanishes because the space average of the order parameter
< 1 > is zero. The function f;(§) is the Fourier transform of the basis function f;(7),

which can be written explicitly as

—

@) = 30 CPs(g - G (3.59)
k=1

i=1,2,--

where n; = 24 and ny = 12. The vector Q"E’“) is the kth wavevector contained in f;(7),
and the coefficient C**) = l/vfd3rfi(f‘)ea:p(-z’@§k)?).

Substituting the order parameter of the gyroid phase as expressed in Eq.(3.59)
into the Landau-Ginzburg free energy in Eq.(3.31), we obtain the free energy of the
gyroid phase:

FN/kgT = 059257 (¢*) + 0.5¢257'(/4/3¢")
(a3 P; + a Sy + a3 ?/11) V3
+(b4 Pl + b4 Yiys + b4 V) Va (3.60)

where af = 0.068041, a{? = —0.144338, a{¥ = 0.192450, 6" = 0.088542, b —
0.124998, bfl = 0.15625. In the derivation of the above free energy, all nonvanishing
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(@1, @, @), and va(qr, &, @, G1), where ¢ € G, i =1,2, o = 1,2,..n;, have
been approximated as constants v3(f, &, NV, ¢oo) and y4(f, o, N, co) respectively. The
correction due to this approximation is negligible.

(C) The Third and Fourth Order Vertex Functions Before we start to
calculate the phase diagram for charged-neutral diblock copolymers, we study the
quantitative relation between the vertex functions s and ~,, and the parameters f,
alN, and c,. The vertex functions 73, v4 of neutral diblock copolymers have been
studied by Leibler. Within the one-mode approximation they depend only on the
volume fraction f, and their dependence on f is shown in Figure 3.5(a) and (b) as
dotted lines. For neutral diblock copolymers, v; is antisymmetric with respect to
f = 0.5, which reflects the interchange A — B symmetry. At f # 0.5, v3 of neutral
diblock copolymers does not vanishes identically and the MST is, in general, a first
order phase transition according to the Landau theory. At f = 0.5, the coefficient 3
vanishes and the MST is a second order transition.

The influence of monomer charge density « and the reservoir salt concentration
Coo ON the vertex functions y3 and <y, of charged-neutral diblock copolymers are shown
in Figure 3.5. In Figure 3.5(a), we have plotted 3 as a function of the volume fraction
fat aN = 40, cxov,N = 0 and alN = 40, cxv,/N = 20 respectively. In contrast
to 3 of neutral diblock copolymers, 3 of charged-neutral diblock copolymers does
not vanishes at f = 0.5. Instead, it vanishes at an f larger than 0.5. Clearly, adding
charges to A blocks breaks the A — B interchange symmetry. The amount of shift
increases as a/N increases and decreases as the salt concentration increases. In Figure
3.5(b), we have plotted the corresponding 74 as a function of f for charged-neutral
diblock copolymers. The value of y4 of charged-neutral diblock copolymers in the salt
free case (cy = 0) is much larger than its neutral limit. To explicitly demonstrate
the influence of monomer charge density « on <4, we have plotted ~4 as a function of
aN at a volume fraction of f = 0.5 and various reservoir concentrations n, = 0, 5, 10
in Figure 3.6, where n, denotes the number of positive/negative ions per volume N,
in the reservoir. When the system does not have added salt, 4 increases linearly as
aN increases. In fact, it can be shown that for n, >~ 0, v, increases as 2aN/ f3. The
addition of salt reduces the electrostatic interaction, thus reducing the value of v4 to

it neutral limit.
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(D) Phase Diagrams The analysis of the microphase separation transition fol-
lows from the minimization of the free energy with respect to the amplitudes of order
parameters. At a given set of parameters f, x, N, a, and ¢, the morphology which
has the lowest free energy is the equilibrium state of the system. By varying the five
parameters, we can map out the phase diagrams under various conditions.

(1) Dependence of the Morphology on x and f

The dependence of the morphology of the charged-neutral block copolymers on the
Flory parameter y and the volume fraction f is demonstrated in Figure 3.7. The
phase diagram is set at constant monomer charge density « and constant reservoir
concentration ¢, such that a/N = 50 and c,,v,N = 30. In the phase diagram, the
molecular weight N is fixed, although its value can be arbitrary so that the phase
diagarm presents a class of systems related to each other through the scaling relation
in Eq.(3.36).

The difference between the charged-neutral diblock copolymers and neutral di-
block copolymers was pronounced. In contrast to the phase diagram for neutral di-
block copolymers which shows that the disordered phase always transits to bee phase
and is first order, except at f = 1/2 where the transition is second order and to the
lamellar phase [3]. For charged-neutral block copolymer, the symmetry of interchange
A — B is broken. At f = 1/2, the transition is to bcc phase and first order. The
second order transition from disorder to lamellar occurs at f. which depends on the
monomer charge density «, the molecular weight N, and the reservoir concentration
Coo- In this particular case f = 0.561. In mapping out the phase diagram in Figure
3.7, we have considered the free energies of the lamellar, cylinder, bee, and gyroid
phases. In addition, we also calculated the free energy of structures of simple-cubic
packed sphere (sc) and face-centered-cubic packed sphere (fcc) which are not stable
in neutral diblock copolymers in the weak segregation limit. We found that the fcc
and sc phases are not stable in charged-neutral diblock copolymers either.

Unlike the other phases which extend to the critical point, the gyroid phase ends
at the triple points: f = 0.525, xN = 30.116816 and f = 0.610, xN = 30.579898,
where it coexists with the lamellar, cylinder phases. For a system with 0 < f < 0.525
or 0.610 < f < 1, the system will go from Dis — Becc — Hex — Gyroid — Lam

as temperature decreases (x increases). For a system with 0.525 < f < 0.561 or
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0.561 < f < 0.610, the gyroid phase is not stable at any temperature, and the system
will go from Dis — Bec — Hex — Lam as temperature decreases.

At phase boundaries where two different morphologies coexist, the chemical po-
tentials of the free ions of the two phases are the same: they all equal to the chemical
potential of the reservoir (1 = log(cy)). However, the average value of positive free
ion concentrations in the two coexisting phases are different. For a given phase,
the average value of free ion concentration is related to the reservoir concentration
through Eq.(3.25) and (3.35). In the phase diagram shown in Figure 3.7, the differ-
ences of the average the free ion concentrations of the coexisting phases are ~ 2% at
xN = 50, and decrease as x/N decreases. The ion concentration difference vanishes
at xN = 29.65, where the phase transition is second order.

(2) Dependence of the Morphology on ¢, and f

The dependence of the equilibrium state of the charged-neutral block copolymer melts
on the volume fraction f and the concentration of the reservoir ¢y, (or equivalently,
the chemical potential of the reservoir) is Figure 3.8. The phase diagram is set
at a constant Flory parameter x (equivalently constant temperature) and constant
monomer charge density oe. We choose x/N = 30 and a/N = 50. The phase diagram
demonstrates that the concentration of the reservoir plays a similar role in controlling
the morphology of the system at constant temperature as the Flory parameter y does
at constant free ion density. When c,v, /N is large enough the microphase separation
occurs. The system transfers from the disordered phase to the bce phase through a
first order transition except at f = 0.57, where the disordered phase transfers directly
to lamellar phase through a second order transition. As the reservoir concentration
CooUo N increases further, depending on the value of f, the system transfers to various
ordered phases such as lamellar, cylinder, bec, and gyroid phases. The triple points
at which the lamellar, cylinder, and gyroid phases coexist are at f = 0.528, cooU,N =
19.4, and f = 0.589, coov,N = 18.4, which are indicated on Figure 3.8. For a system
with 0 < f < 0.528 or 0.589 < f < 1, the system goes from Dis — Becc — Hex —
G — Lam as ¢, increases; for a system with 0.528 < f < 0.570 or 0.570 < f < 0.589,
the gyroid phase is always unstable and the system goes from Dis — Bcc — Hex —
Lam as c. Increases.

(3) Molecular Weight N Dependence of Morphology

The dependence of the equilibrium states of charged-neutral block copolymer melts
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on the molecular weight N and the volume fraction f is shown in Figure 3.9. We have
set ao/x = 2.0, and oo/ = 0.86. As with the previous two phase diagrams, we
have not assigned a specific value to x so that the phase diagram can represent a class
of systems that relate to each other by Eq.(3.36). The phase diagram shows that as
molecular weight N increases, the system can transfer from the disordered phase to
various ordered structures depending on the value of the volume fraction f. The direct
transition from the disordered to the lamellar phase occurs at f = 0.55, yN = 30.07.
The triple points are at f = 0.512, YN = 32.5, and f = 0.595, yN = 31.50.

For a system with given volume fraction f, monomer charge density «, and the
Flory parameter x, the equilibrium state of the system depends on the molecular
weight and the concentration of the reservoir ¢. Figure 3.10 shows the phase dia-
grams of charged-neutral block copolymers at volume fraction f = 0.4, a/x = 2.0
(Figure3.10{a)) and «/x = 0.6 (Figure3.10(b)), respectively. The variable on verti-
cal axis is ¢,ov,/x. At the limit ¢, approaches infinite, the values of x N at phase
transitions approach their neutral limit. In Figure 3.10(a), the MST occurs only
when cv,/c is largesr than some minimum value. This is due to the fact that
afx = 2.0 > 2f, and that in order to satisfy the condition in Eq.(3.45), ¢ev,/c has
to be greater than 0.46. On the other hand, the ratio a/x = 0.6 < 2f in Figure
3.10(b), thus the MST can occurs at ¢oov,/a = 0.

3.5 Fluctuation Effects

Although charged-neutral diblock copolymer melts seems to be a more complicated
system than the corresponding neutral diblock copolymers, the effective Hamilto-
nian for charged-neutral block copolymers is in the same universality class as that
of neutral block copolymers, which belongs to a model Hamiltonian first considered
by Brazovskii [18]. A Brazovskii Hamiltonian is characterized by having a large field
fluctuation in the vicinity of a shell of nonzero wavevector. The fluctuation diverges as
the system approaches the order-disorder transition. Using a self-consistent Hartree
approximation, Brazovskii has shown how to handle the divergent terms and demon-
strated that systems in this universality class exhibit a fluctuation-induced first order
phase transition in place of the continuous second order transition predicted by mean

field theory. This is a consequence of the increased volume in the reciprocal space of
3 P
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important field fluctations. Fredrickson and Helfand applied the Brazovskii analysis
to the particular case of diblock copolymers [4]. They found: (i) For a symmetric
diblock copolymers (f = 0.5), the nature of phase transition is changed from sec-
ond order to weakly first order. The location of the transition is predicted to be
at (xN); = 10.495 4 41.022N~'/3_ (ii) There are windows in composition, with fi-
nite width, through which it is possible to pass from the disordered phase to each of
the ordered microphases (lamellar, hexagonal, and body-centered-cubic) by changing
temperature.

An interesting feature of diblock copolymer melts that distinguish them from other
systems in the Brazovskii universality class is that the fluctuation corrections to the
mean field theory can be made arbitrarily small by increasing the molecular weight
(polymerization) N of the chains, and that when N — oo, the mean field theory is
recovered. This feature is commom in neutral macromolecule systems. For instance,
in homopolymer blends the nonclassical corrections to mean field critical behavior
vanish as the length of the chains approaches infinity [25], although homopolymer
blends belongs to a different universality class (Ising universality class), which show
critical singularity near the onset of phase transition.

Since charged diblock copolymers belongs to the same universality class as neutral
diblock copolymers (Brazovskii universality class), we expect that large fluctuations
near the order-disorder transition will also change the nature of the phase transition
and exhibit true critical behavior in the vicinity of the MST. On the other hand, a
charged diblock copolymer system is a more complicated system: it contains more
parameters, and the A — B interchange symmmetry is broken due to the added charge
in one of the blocks. Hence, the fluctuation effect on charged diblock copolymer
systems gives rise to some interesting features in phase diagrams which are absent in
neutral block copolymers.

The fact that effects of fluctuations become vanishingly small in the limit of infinite
molecular weight is not obviously valid for charged-neutral block copolymers. The
vertex functions NT's, NI'y of neutral block copolymers depend on N in a simple
fashion: NT'3, NT'y~ O(1), while the vertex functions NT'3, NI’y of charged-neutral
block copolymers are more complicated functions of N, and in particular, NT, is
proportional to IV (see Figure 3.6) at large values of @ N and small salt concentration.

However, as we will show below, the molecular weight N still plays the role of a
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Ginzburg parameter in charged diblock copolymer systems and the mean field theory
is recovered as N approaches infinite.

In order to study the fluctuation effect on charged diblock copolymers, we apply
the Brazovskii and Fredrickson and Helfand theory to the system. The Hamiltonian
for charged-neutral diblock copolymers is similar to that for neutral diblock copoly-
mers, and the application is straightforward.

The fluctuation of the order parameter can be characterized by the strucutre
function S~1(g). Near the MST, the structure function S~1(q) is very sharply peaked
about ¢ = ¢* as is shown in Section 3, and the dominant composition fluctuations are

those with ¢ = ¢*. Hence we can expand the structure function about g*

S™Hq) ~2(x" = x) + (g — ¢)* (3.61)

where x* is given by Eq.(3.43), and

_[1é?57'(9)]

Since S~!(q), which is given by Eq.(3.40), depends on f, @, N, and ¢, the coefficient
¢ also depends on these parameter. The effective free energy of the system under

consideration can be written in Brazovskii form as:

Flol/kaT = 57 [17+ (0= V(@60
+4 [ [ e@e@e(-a - @)
L] s@re@ee-i - a - a)
+ [ h@o(-) (363)

where 7 is a reduced temperature variable that is a measure of the distance from the

spinodal, i.e.,
2[(x*N) — xN]

2N
and ¢(§) = c(q), i = 13/SN, A\ = 14/cN. In eq.(3.63) the external field h(q)

couples to the order parameter and allows us to generate the self-consistent Hartree

7=

(3.64)
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equations. At the end of the calculation this field is set equal to zero [26].
The free energy can be recast in terms of the mean value of the order parameter
?(q) =< ¢(¢) >, and its fluctuation d¢(q) = #(q) — ¢(¢). The resulting free energy

has the form
F(¢)/ksT = F[§]/ksT + F(9,6()]/ kT (3.65)

where the first term F[@]/kpT is similar to the effective free energy in Eq.(3.63),
except that the order parameter ¢(q) is replaced by its mean field average ¢(q). The

second term depends on the fluctuation

FI6.66@) = 5 / 7+ (0 — )N 66(@56(~0) + 268(@)30(~0)

2'
+35¢(q1)5¢( ) ( —‘72)

+4(5¢ ) ¢('§)¢_5(—(f1 — G — 3)
+55¢(41)5¢(42)¢3(ﬂ3)€5(“q1 — ¢ — G5)
+460(q1) P (%) (@) (—G1 — ¢ — §3)] (3.66)
The partition function is given by
7 = cop{~Fl]/kpT} [ D36 exp{~F(3,56(a)]} (3.67)

and the free energy is given by W = —kgTInZ. From 6Z/66¢ = 0, we obtain
< 6F /86¢ >= 0, which leads to Brazovskii’s equation of state

Ma) = {f—+<q—q*>2]<5<q>+5 [#@éa

[, o)) 6 @+ [ [ @i

where g(q) is given by < §¢()6¢(7) >= g(@)6(¢+ @'). The self-consistent equation

‘S~ |

+ ) (3.68)

BO | >t
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for g(q) in the one-loop approximation is

T ) =F+(a—q)+ / B(@)p(—q) (3.69)

b >
NSRS

/q, 9(q) +

Equations (3.68), (3.69) and the effective free energy F[@]/kpgT can be simplified
to determine the equilibrium structure of the system. Near the MST, the important
composition fluctuations in the system will be plane waves or superpositions of plane
waves with wave vectors of magnitude ¢ = ¢*. The mean value of order parameter

#(§) can be written as

T

Q) = an Y [exp(iQy - ) + exp(iQy - 7)) (3.70)

k=1

The 2n wave vectors {£Qx},k = 1,...,n with magnitude |Qx| = ¢* are given in
Section 4 for various periodic structures. With the above definitions, the equation of
state can be written [h = h(Q;)]

h =ra, — 0,02 + n,a’ (3.71)

where the coefficients 8,, and n, for various phases are listed in Table II. The renor-

malized inverse susceptibility r = g7!(q*) satisfies
r=T1+d)\(rN)Y* + nia? (3.72)

where d = 32*/2, 7 = N7, p = Nji, A = N

Table 11
lamellar n=1 cylinder n =3 bcc n==6
Hn 0 03 = U 96 = -—2,&
Tin T :”‘)\/2 773:'")\/2 776:3)\/3

The thermodynamic potential can be obtained by using the relation 0®[¢]/da, =
2nh, thus

P[] = /Oan da2nh
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. 2 1
(r/2 — Tl/l) — “nbpad + =nn,al (3.73)

. 1 2 2
- (T 'ro) o 3 2 n

3 M
with r, being the inverse susceptibility of the disordered phase given by

dA
roVN

To =T+ (3.74)
The potential ¢ is minimized by the amplitude a,, which satisfies the equation of
state with A =0, i.e.,

M@ — Opay, +1 =0 (3.75)

The thermodynamic potential ®[¢] in Eq.(3.73) together with Eq.(3.72), (3.74), and
(3.75) completely determine the equilibrium properties of a charge-neutral diblock
copolymer system with given set of parameters f, o, N, x, and cy. The morphology
with the lowest value of ® is the equilibrium state of the system.

The microphase separation transition in the Hartree approximation is given by

the solution of
(¢, x) =0 (3.76)

For a given set of parameters f, a, N, and co, Eq.(3.76) is solved for each possible
order structure (lamellar, cylinder, bee, and gyroid phase). The lowest x; that results
corresponds to the MST temperature and the corresponding microstructure is the
equilibrium state that first appears at the transition.

Similar to the fluctuation corrections to the phase diagram of neutral block copoly-
mers in the Hartree approximation, the fluctuation corrections to the charged-neutral
diblock copolymers gives rise to a first order transition to lamellar phase at f = f,,
where p turns to zero. Unlike neutral block copolymer system where f. = 0.5, the
critical value f. of charged-neutral block copolymers depends on aN and salt con-
centration ng, as shown in Figure (3.11). The transition temperature from disorder

to lamellar phase is obtained by solving Eq.(3.76)

(d/\)2/3

(XN)¢ = (xN)* 4 1.0154 - CZ_NTE“

(3.77)

The first term on the right-hand side of this equation is the Landau mean field

value of (xN)* at volume fraction f, and the second term is the correction obtained
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by including fluctuations in the Hartree approximation. The sign of A is positive,
indicating that fluctuations always decrease the stability of the ordered phases.

In neutral diblock copolymers, the critical point of the MST is (xN)* = 10.495,
A is independent of N (A ~ 1/N, A = NX ~ O(1)), d is a constant. The molecular
weight dependence of the Hartree correction is N~/3. (It has been proved that this
molecular weight dependence of fluctuation correction is universal in neutral block
copolymers regardless of their architecture [27].) In the limit N — oo, the transition
temperature (xN); — (xN)*, hence the mean field theory result is recovered.

In charged-neutral diblock copolymers, A is a function of f, N, and n,. There are
two different situations which result in two different molecular weight dependencies
of the fluctuation corrections. (1) For a system with given N and salt concentration
ns, A is a constant, thus, (x/V); — (xN)* in the limit N — co. (2) For a system with
given «a and salt concentration, increasing molecular weight N results in increasing A.
As a consequence the Hartree correction, which is proportional to A%/3/N'/3 inceases
according to N° (0 < § < 1), as N approaches infinity as shown in Figure 3.13.
Eq.(3.77) can be written

(d/\)2/3
N4/3

(xN): = N |x* +1.0154 - ¢ (3.78)

The second term inside of bracket ~ \?/3/N*/3 vanishes in the limit N — oo, thus
X=X
At the transition to the lamellar phase, the amplitude a; jumps from zero in the

disordered phase to a nonzero value at the transition:
ay = 1.4554(d* /AN)Y/6 (3.79)

For a system with a given «, X increases as N increases (A ~ N®+U/2) Hence, the
amplitude a; has molecular weight dependence ~ N~C+U/4 approaching its mean
value slower than N~1/6,

Figure 3.14(a) and 3.14(b) show the phase diagrams of charged-neutral diblock
copolymer systems with a/N = 40, and salt concentration n, = 0 using the mean field
theory and the Hartree approximation, respectively. Figure 3.14(a) demonstrates that

the transition is to bce phase except at f. = 0.77, where transition is second order
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and is to the lamellar phase. Figure 3.14(b) is the phase diagram with the fluctuation
correction from the Hartree approximaition with N = 10°. The asymmetric features
of charged block copolymers noted from the mean field theory are even more striking
here. The phase diagram indicates that direct first order transition between the
disordered and hexagonal phases is possible in the volume fraction range f < 0.767,
and that direct first order transition between the disordered and the lamellar phase
are possible in the volume fraction range f > 0.767. However, we find that the bce
phase is never more stable than the hexagonal phase or the lamellar phase at the
MST for N = 10°. Whether this feature is physical in the charged-neutral block
copolymers or an artifact due to the break down of the Hartree approximation is not
clear.

For neutral diblock copolymers, the validity of the Hartree approximation is ex-
amed by Fredrickson and Helfand by considering the value of those diagrams not in-
cluded in the approximation. Although, their calculation indicated that the Hartree
approximation is only rigorously accurate for N of order 10'? or larger, they pointed
out that such approximations are often accurate well beyond their range of rigorous
validity. They demonstrated that the Hartree approximation gave reasonable results
for molecular weight N = 10, while breaking down at N = 10*. We can apply the
requirements of accuracy of the Hartree approximation to the charged-neutral block
copolymer system with aN = 40, and n, = 0, and find that the approximation is
valid when N > 10'°. Since the requirement is very stingent, we have reason to

believe that the approximation should be valid here.

3.6 Conclusion

A charged-neutral diblock copolymer system is studied in a theoretical framework
which combines the Random Phase Approximation and the Poisson-Boltzmann equa-
tion for consistently treating the electrostatic interactions between all charged species
and the neutral diblock copolymer contributions to the free energy. Within this frame-
work, we have studied the microphase separation and the equilibrium properties of
charged-neutral block copolymers with an arbitrary amount of added salt in the weak
segregation limit. Our spinodal instability analysis demonstrates not only the con-

siderable enhancement of compatibility between A and B, but also the inhibition
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of the microphase separation under certain conditions. A criterion for microphase
separation in the system is derived.

In order to determine the phase behavior of charged-neutral diblock copolymer
system, we have studied the stability of various ordered phases (e.g. lamellae, cylin-
der, sphere, and gyroid phase) and mapped out the phase diagrams under various
parameter variations. We find out that gyroid phase is stable between the lamellar
and cylinder phases, and it terminates at a triple point, with a lamellar to hexagonal
transition occuring in the weak segregation limit. Due to the breaking of the inter-
change symmetry between A and B, some new features appear in the phase diagrams.
The critical point, where a direct transition from the disordered to the lamellar phase
occurs, is no longer fixed but rather depends on o, IV, and c;.

The concentration fluctuation near the order-disorder transition is also studied
by extending the method of Fredrickson and Helfand method to the charged-neutral
diblock copolymer system. We find out that the breaking of the interchange symmetry

leads to new scaling of fluctuation corrections at a fixed value of «.
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3.7 Appendix

Self-Consistent Approach to Charged-Neutral Diblock Copolymers

The grand canonical partition function of charged-neutral diblock copolymers is given
in Eq.(3.9) with the partition functions of free ions Z,, =_ and diblock copolymer
@y given in Eq.(3.10)-(3.12). To make the functional @, more tractable, we insert
functional integral, 1 = [ quKé[(bK—(b}(], K = A, B, and present the delta functionals

by standard integral representations, thus we have:
Q, = / Dé4DésDWaDWpDyexp{—F/kpT) (3.80)
where

F,/kpT = —logQ—/d3r[ Y iWadatin(l—¢a—dp)—Xpodads—ap.lda) (3.81)

a=A,B
with
1 & 36, dri(s) : 2
Q= p | Mdnenn{=gaz [ (2 = 3 [driwa(dn} (352

The partition function ) of n, noninteracting Gaussian chains is a functional of the
effective fields W, and Wi, i.e., Q@ = Q[W4.Wpg]. It can be written as a product of

partition functions of a single chain:
L n,
Q=—0, (3.83)

where

A 3 L d N f Nt
Q1 :/d3r erp [MQNﬂaZ/o ds( ;iS))2~Z;5; ; dsWA(r(s))—z;; ; dsWB(r(s))}

Substitution of Eq.(3.81) and (3.82) to Eq.(3.9), we have

== / Do, / Dés / DW, / DWy / Dy / Déexp{—F/kyT} (3.85)
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where

FikT = = [ 1] Y iWaba+in(l = 64— 65) — Xpsbadp — apeben
a=A,B

—logQ@ —InE,[(] -InE_[¢] -

3 2%
T ﬂ g /d rEV2e (3.86)
In the self-consistent theory, one approximate the functional integral in Eq(3.83)
by the extremum of the integrand, thus the free energy, —kpT InZ, is given by
Floa, o5, Wa, Wg, &, n], where ¢4, dp, Wa, Wg, £, and 7 are the functions for which
F attains its minimum. Taking functional derivatives of F' with respect to these

functions, we obtain the self-consistent equations

Wa(r) = xNép(F) + aNE(T) + n(r) (3.87)
Wi(7) = xNoa(r) + n(r) (3.88)

an an
Pa(F) = — o aW. (3.89)

N an an
¢5(F) = — o oWy (3.90)
¢a+op=1 (3.91)
y 592 VHE(F) = —apepa(7) — ¢ (7) + ¢ (7) (3.92)

In deriving the above equations, we have scaled W4, W, and n by a factor iN/p,.
The density distribution ¢4 and ¢p in Eq.(3.91) and (3.92) can be written explicitly

as
da(F) = % Of dsq(F, s)q'*‘(f', s) (3.93)
op(7) = _Q‘% fl dsq(7, s)q* (T, s) (3.94)

where ¢(7, s) and ¢* (7, s) are the two end-segment distribution functions,

- 30 ! X dr(s) 2 s
q(7, s) /Drae:cp{ SN Jo ds( 7 ) —/0 dt

[Y(OWa(Te) + (1 = v(8))Wa(7a)]} (3.95)
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The distribution function ¢*(7,s) is defined similarly except that integration over
7o(t) is done for t=f to 1. The distribution function satisfies the modified diffusion
equation,

dq(7, s) sNa?V2qg — Wa(f)g if0<s<f

_ (3.96)
0s ING?V2q — Wg(P)g if f<s<1

with the initial condition, ¢(7,0) = 1. A similar diffusion equation can be derived for
q* (7, s) with initial condition ¢*(7,1) =1

Eq.(3.89), (3.90), (3.93)-(3.96), (3.98) together with Eq.(3.21) and (3.22) are a
complete set of self-consistent equations for determining the thermodynamic property
of the system. Solutions of the equations can be obtained numerically and the free

energy can be determined.



3.8 Figures

75



76

100.0

(a)

P e — e

1.98 [, -

. 1.96 T

q R "
1.94 | n= -
—==n=10
1.92 | -
LI T ———
0.0 50.0 100.0

(b)

Figure 3.1: (a) The spinodal value xN as a function of charges aN for systems with
volume fraction f = 0.5 for two different salt concentrations per chain: n, = 0.0
(solid line), ny = 10 (long dashed line); (b) the corresponding critical wavevector ¢*R
as functions of alN.
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Figure 3.2: (a) The spinodal value xN as a function of charges alN for systems with
salt concentration per chain n, = 0 and three different volume fractions f = 0.2 (solid
line), f = 0.5 (dot-dashed line), and f = 0.8 (dotted line); (b) the corresponding
critical value wavevector as a function of V.
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Figure 3.3: (a) The spinodal value xN as a function of salt concentration per chain
ns for systems with volume fraction f = 0.5 and different charges aN = 10 (solid
line), aN = 20 (dashed line), a/N = 50 (long dashed line); (b) the corresponding
critical wavevectors
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Figure 3.4: The spinodal value xy N as a function of monomer charge density « for
systems with (a) volume fraction f = 0.5, and salt concentration per monomer volume
sV, = 0.01; (b) f =0.35, and ¢4v, = 0.01; (c) f = 0.35, and ¢4v, = 0.0; (d) f = 0.50,

and c,v, = 0.0.
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Figure 3.5: The vertex functions (a) v3 (b) 4 as a function of volume fraction f
at charges n. = 0, and dimensionless reservoir concentration n, = 0 (dotted line);
n. = 40, and n, = 0 (dashed line); n. = 40, and n, = 40 (solid line), where n, = aN
and the dimensionless reservoir concentration n, = ¢y, N
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Figure 3.6: (a) The vertex function -y, as a function of charges aN at: dimensionless
reservoir salt concentration n, = 0 (dotted line); n, = 5 (dashed line); and n, = 10
(solid line), where n, = cxNv,
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Figure 3.9: Phase diagram at constant value of monomer charge density «, Flory
parameter , and reservoir salt oncentration ¢, where a/x = 2.0, and ¢,/ = 0.86
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Figure 3.10: Phase diagram for a system with constant monomer charge density c«,
Flory parameter x, and volume fraction f, where (a) a/x = 2.0 and f = 0.4; (b)
a/x =0.6 and f = 04.
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Figure 3.14: Phase diagram for a system with charges a/NV = 40, dimensionless reser-
voir salt concentration n, = 0, where n, = c,v,/N. (a) the mean fiels theory result;
(b) the Hartree approximation.
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Chapter 4 Morphology of Diblock Copolymer

Melts in Confined Geometries

4.1 Introduction

Most prior research on block copolymer melts has focused on the bulk properties
of the material. Block copolymers with mutually incompatible components have the
remarkable feature that they form microphase-separated structures. Extensive exper-
imental and theoretical studies have been conducted on the microphase separation
transition (M ST) of diblock copolymers (AB) in bulk [1]- [16]. It is well known that
for temperatures below the order-disorder temperature, Topr, depending on the com-
position and/or temperature, diblock copolymers self-assemble in the melt to form
lamellae, hexagonally packed cylinders, body-centered-cubic spheres, or bicontinuous
structures (gyroid phase). This microphase separation is the key to many valuable
properties which make block copolymers of great technological interest.

Recently block copolymers are finding increasing applications as thin-film adhe-
sives and surfactants. As a result, surface effects on the microphase separation of
diblock copolymers have attracted widespread attention. Most studies have focused
on the influence of external surfaces on the behavior of symmetric diblock copoly-
mers. Recent experimental and theoretical studies show that the presence of surface
interactions, in otherwise homogeneous diblock copolymer melt, yields several in-
teresting surface induced ordering phenomena. Experimental studies of symmetric
block copolymer thin films demonstrate that the interactions of the blocks with the
surfaces induce a nearly perfect orientation of lamellar microdomains parallel to the
film surface, thus producing a multilayered structure. As consequence, the film thick-
ness in the ordered state is quantized. When the film thickness is not commensurate
with the bulk lamellar thickness, the films are geometrically frustrated. “Islands” or
“holes” are observed in the upper-most layer [17] - [24]. The thermal equilibrium
state consists of regions of two discrete thickness correponding to neighboring free

energy minima.
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Theoretical studies of surface effects on the microphase separation of diblock
copolymers were first undertaken by Fredrickson who extended Leibler’s mean field
theory to study nearly-symmetric diblock melts in the vicinity of a solid wall or free
surface having preferential affinity for A (or B) repeat units [25]. He found that a
composition oscillation exists near the surface even when the bulk copolymer is dis-
ordered. The oscillations are characterized by a decay length which diverges at the
critical point. Shull applied a quantitative mean-field theory to diblock copolymer
melts, as well as surfaces and thin films of these melts [19]. For thick films and small
values of the order parameter, his results reduce to the analytical results of Fredrick-
son. For thin films, he found that the free energy is an oscillatory function of the
film thickness due to the interference between the composition oscillations originating
from the two surfaces. The thickness between different thickness minima is equal to
the bulk repeat period, which is consistent with experimental results [19], [23], [24].

Microphase separation of diblock copolymer melts in confined geometries is a in-
teresting system that combines both the surface interactions and confinement effects.
Since the film cannot relax by creating islands on top of an ideal structure, the equi-
librium morphology has to ajust to achieve overall minimum free energy. Turner
has studied the equilibrium behavior of the lamellar phase of A — B diblock copoly-
mers in the strong segragation limit [30]. Assuming that each lamellar layer is an
A — B, B — A structure parallel to two identical flat plates (Figure 4.1), he calcu-
lated the phase diagrams of both integer number, n, and half-odd-integer number,
(2n + 1)/2, layers in terms of the distance between two plates L and the interfacial
parameter 8, § = (yps — Yas)/vap, where y4p is the A — B interfacial tension, yag
and yps are surface tensions between the A, B blocks and the plates, respectively.
He found that the configurations with a half-odd-integer number of layers occur when
the difference between the two polymer-plate surface tensions is small and L is below
some critical plate separation.

The above mentioned studies on diblock copolymer films or diblock copolymers in
confined geometries have focusd on symmetric or nearly symmetric diblock copoly-
mers. Furthermore, only the lamellar structure parallel to the surface of the plates,
or the variation of the density profile in the direction perpendicular to the surface are

considered. Therefore, potential structures in the zy plane have not been addressed.
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In general, depending on the strength of surface tensions and the plate separation,
the microdomains can align either parallel or perpendicular to the plates even for
symmetric diblock copolymers. On the one hand, a lamellar structure parallel to the
plates is favored because of the surface interactions; on the other hand, if the distance
between the two plates L is not commensurate to the lamellar period in bulk, the
diblock copolymer chains are either stretched or compressed, which gives rise to a
higher energy than lamellae perpendicular to the plates. Hence, the orientation of
lamellar structure for symmetric or nearly symmetric diblock copolymers is the result
of competition between the surface interactions and the confinement effects. This has
been demonstrated by Kikuchi and Binder [27] and Brown and Chakrabati [28].

Kikuchi and Binder used Monte Carlo simulation of a lattice model to study the
microphase separation of symmetric diblock copolymer melts between two rigid walls.
They found tilted or deformed lamellar structure, as well as coexistence of lamellae in
different orientations when the distance between the two plates is strongly incompati-
ble with the bulk equilibrium lamellar period L* [27]. Brown and Chakrabati studied
the morphology of symmetric diblock copolymers confined between two plates by
simulating a coarse-grain model without presupposing the basic shape. In the case
where the two plates are identical, they observed horizontally and vertically oriented
integer number lamellae. However, they did not observe any horizontally oriented
half-odd-integer number lamellar phase, which has been shown to be stable at some
range of § and L by Turner [30].

In this paper, we study the morphology of symmetric and asymmetric diblock
copolymer melts confined between two rigid plates in the strong segregation limit
by extending the method developed by Ohta and Kawasaki [7] and [8]. Instead
of restricting the diblock copolymers to be nearly symmetric, we allow the volume
fraction f to vary and explore possible changes in morphology as the asymmetry in the
volume fraction increases. It is well known that bulk diblock copolymers undergo the
following sequence of morphology changes as the asymmetry in the volume fraction
increases: lamellar — hexagonal cylinders — b.c.c spheres. In the strong segregation
limit, the morphology is determined by the volume fraction f except for very weak
dependence on xN (Figure 1.3a). Diblock copolymers confined between the two plates
can also form cylindrical and spherical structures as the asymmetry in the volume

fraction increases. However, the existence of the two plates introduces interactions
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between the surfaces of the plates and repeat units of diblock copolymers as well as
a new length scale L (the distance between the two plates), in addition, it breaks the
rotational and translational symmetry present in the isotropic bulk system. Thus,
we expect modifications to the phase diagrams from that observed in bulk. The
competition between the confinement and the surface interactions has a profound
effect on the formation of the equilibrium phase.

In order to focus on the effects of confinement and the surface interactions on the
morphology of diblock copolymers, we restrict the distance between the two plates L
to be of the same order of magnitude as the period L* of the lamellar structure in
the bulk sample. Thus, only a monolayer or bilayers can be formed between the two
plates. When the plate distance is much larger than L*, the surface interactions only
affect the layers near the surfaces. In the middle of the two plates where the surface
effect can be ignored, the stable phase is the same as that in bulk. As demonstrated
by Turner, Rubinstein, and Marques, lamellar ordering is induced in a hexagonal
phase of diblock copolymers in the presence of a single flat surfaces [31]. A similar
situation is expected for a block copolymer melt confined between two plates, i.e.,
when L is large enough the morphology can contain a gradual transition between the
surface-induced ordering and the bulklike order. Once L is restricted to be an order
of L*, morphologies that form between the two plates are purely due to effects of
surface interaction and confinement.

We have sketched the possible morphologies that can form between the two plates
in Figure 4.2. We calculate the free energy of each morphology by extending Ohta
and Kawasaki’s method for diblock copolymers in the strong segregation limit [7],
[8] and calculate various phase diagrams in a parameter space consisting of volume
fraction f, distance between the two plate L, and §; = (v4 — v4s)/7a (1 = 1,2),
where 7%, vhe are the surface tensions between the plates 7 and blocks A and B,
respectively.

The organization of the paper is as follows: In section 4.2, we present the general
formulation of the free energy of diblock copolymers confined between two rigid walls
by extending the theory of Ohta-Kawasaki to include the surface effect. In section
4.3, we discuss the equilibrium property of diblock copolymers between two identical
plates. Subsection 4.3.1 focuses on the symmetric and nearly symmetric diblock

copolymers and Subsection 4.3.2 explores the possible morphologies which include
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cylindrical or spherical domains as the asymmetry of diblock copolymers increases.
In section 4.4, we discuss the equilibrium property of diblock copolymers confined

between two distinct plates. Section 4.5 is the conclusion.

4.2 Free Energy of Diblock Copolymers Confined
between Two Plates

The system that we consider is a diblock copolymer melt confined between two solid
walls as depicted in Figure 4.3. We choose the coordinates such that the surfaces of
walls are parallel to the xy plate and the surface normal is in the z direction. Plate 1
is located at z = 0 and the plate 2 is located at z = L. Each block copolymer chain
consists of N f segements of the A block and N(1— f) segments of the B block. For the
sake of simplicity, we assume that both block A and B have the same Kuhn statistical
segment, length, which we take to be unity, and the same monomeric volume v,. The
interfacial tension between block A and block B is v4p, and the interfacial tensions
between the two plates and blocks A and B are g, ¥4s, Ths> Tas, respectively. In
this paper, we study two cases: (1) The two plates are identical, i.e., vhs = 745 and
Yhs = Tas; (2) the two plates attract different blocks differently.

To study the equilibrium properties of diblock copolymers confined between two
plates in the strong segregation limit, we extend the theory of Ohta and Kawasaki [7],
[8] to take into account the surface effects. The free energy per chain of the system

can be written as a sum of the bulk and surface contributions:
FU] = F[¥] + F[¥] (4.1)

where F,[¥] is the bulk free energy, the driving force for microphase separation, and
F,[¥] is the surface energy.

In the strong segregation limit, diblock copolymers form microdomains with peri-
odic structures. The interfacial width of the domains is much smaller than the lattice
dimensions. The free energy of the bulk system, Fy[¥], can therefore be separated
into two parts: an entropic chain-conformational free energy, and an interfacial free

energy, whose strength is characterized by the Flory-Huggins parameters [33]. The
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free energy density of bulk part can be written as:

Fy[¥] = CL*®(f) + 1‘-‘%%@ (4.2)
where C' = 3v,/(8N?b?) is a constant. A is the contact area of diblock copolymers
with one of the plates within a unit cell. A,p is the total interfacial area of blocks A
and B within a unit cell. ®(f) is a scaling function which depends on the morphology
of the system. Using the approximation suggested by Ohta and Kawasaki, in which
®(f) is calculated from the asymptotic behavior of the structure factor in the long

wave length limit [7], [8], we obtain

12 L 9.QwQ (4.3)

*0= mr—r % o

where U, (Q) is the Fourier Transform of ¥,(7) which is the local volume fraction
deviation of monomers « from its uniform distribution. It can be proved rigorously

that the ¥,(Q) can be expanded as

mne

U,(Q) = L dzdy - dzexp(—i(Qzx + Qyy))cos( WWalz,y, 2) (4.4)
AL Js 0 L

The normal modes in the z direction are chosen to be cos(mnz/L) withm = 0,1,2,- - -
which satisfy the reflecting boundary conditions on the surfaces of both plates.
The surface energy density of a diblock copolymer melt confined between two

surfaces can be written as

_ YhsAhs + VisAks " VbsAbs + VbsAhs

Y] AL AL

(4.5)

where A’ys and Az¢ (¢ = 1,2) are the contact areas of blocks A and B with plates 1
and 2 in the unit cell, respectively, which satisfy A%q + As = A, i =1,2.
Hence, the total free energy density of diblock copolymer melt confined between

two plates is

YapAap n YhsAhs + vasA%s n VbsAps + ThsAbs

. 2
F=CL(f) + =47 AL AL

(4.6)

This free energy density F' can be used to evaluate the equilibrium free energy of
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the bulk sample. In the bulk sample, the surface interactions vanish, i.e., v ¢ = 0,

where K = A, B and 7+ = 1,2. Thus, the free energy of bulk lamellar phase is:

2748

F¥) =CL* + 7

(4.7)
Minimization of the free energy in Eq.(4.6) with respect to L gives the equilibrium

layer thickness
L* = [y4p/C]'? (4.8)

which correctly predicts the experimentally observed scaling of the lamellar period
with diblock copolymer molecular weight, L* ~ N?/3. The corresponding bulk free
energy is given by

F* = 305" (4.9)

For diblock copolymer melts confined between two plates the free energy can be
simplified by normalizing all lengths by L*, and all energies by F™*. The normalized

free energy is

LAt 1 2

i=1,2

where 0ap = Aap/A, d= L/L*, and

8 = (Yps — Vas)/van i=1,2 (4.11)

The interfacial parameter ¢; is a quantitative measure of the difference between the
interfacial tension of the blocks A and the surface ¢ and that of the blocks B and the
surface 7. The last term in Equation (9) is independent of the morphology, and thus
does not play a role in the calculation of phase diagrams.

For two identical plates which have the same preferential affinity for, say A blocks,

the free energy of diblock copolymers can be further simplified as

F =

é‘{d%(f) n 023 N 25(21':1,;14335)/14 n Q’YAsd/’YAB}

where 6 = (yps — Yas)/vap is the interfacial parameter.

(4.12)
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Thus, when the two plates are identical the free energy of confined diblock copoly-
mer melt depends on the three parameters: the normalized distance between the
plates, the interfacial parameter é, and the volume fraction of the diblock copoly-
mers. For two distinct plates, the free energy of confined diblock copolymers depends
on four parameters: the interfacial parameters §; and J,, the normalized distance

between the plates, and the volume fraction of the diblock copolymers.

4.3 Diblock Copolymers Confined between Two
Identical Plates

In this section, we study the equilibrium behavior of diblock copolymer melts confined
between two identical plates. The free energy of the system is given in Eq.(4.12). We
assume that v45 < 7ygs, i.e., the plates attract A blocks.

In the simple diblock copolymer melts in the strong segregation limit, the mophol-
ogy is mainly determined by the volume fraction f and has very weak dependence
on xN. The morphology of diblock copolymer melts confined between two identical
plates, however, strongly depends on the three physical parameters: the copolymer
volume fraction f, the normalized distance d, and the interfacial parameter §. The
existence of two plates introduces both the surface interactions and a new length
scale. In addition, it breaks the rotational and translational symmetry of the bulk
copolymer melt. In order to focus on each of the effects, we divide this section to two
parts. In section 4.3.1, we study the morphology of symmetric or nearly symmetric
diblock copolymers. In this case, the basic structure is lamellar. The competition
between the surface interactions and the confinement effects is manifested itself in
the change of the orientation of the lamellar structure or leads to the breaking of
reflecting symmetry with respect to the midplane of the system. In section 4.3.2, we
study the phase behavior of diblock copolymers with an arbitrary volume fraction f.
The changes in the volume fraction f primarily affect the shape (lamellar, cylinder,
or sphere) and packing symmetry of the ordered structure. Due to the breaking of
the rotational and translational symmetry, the transition point f depends not only

on the distance between the two plates, but also on the interfacial parameter.
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4.3.1 Symmetric or Nearly Symmetric Diblock Copolymers

For symmetric/nearly symmetric diblock copolymers, the basic structures are lamel-
lar. We define one lamellar layer to be an entire A — B, B — A repeat unit. The
number of lamellar layers n can be either an integer or half-odd-integer, as shown
in Figures 4.1(a) and 4.1(b). Configurations consisting of integer number of layers
with a horizontal orientation is refered to as the “symmmetric” horizontal lamellar
phase (HL(n)), those with a half-odd-integer number of layers as the “asymmetric”
horizontal lamellar phase (AHL(n)), and vertically oriented lamellae as VL (Figure
4.1(c)).

Obviously, the HL structure consisting of an integer numbers of layers with A
blocks preferentially segregating to the surfaces can achieve the minimum surface
interaction energy. However, when the distance between the two plates is incommen-
surate to the period of bulk lamellar layers, L*, the symmetric horizontally oriented
lamellar structure posses an large inherent tensile or compressive strain and thus is
geometrically frustrated. The vertically oriented lamellar structure (VL) or asym-
mertic lamellar structure (AH L) can achieve relatively low overall energy when the
interfacial parameter J is small. In certain cases, the entropic penalty associated with
the chain deformation is larger than the energetic penalty of having the B blocks
adjacent to the surfaces. To be more specific, for a vertical lamellar structure the im-
posed thickness constraint acts perpendicularly to the lamellar ordering and the bulk
lamellar period is realized. For asymmetric lamellar structure, when the distance be-
tween the two plates is most incommensurate to the bulk length, i.e., L ~ L*(n+1/2),
the size of each domain is the about the same as that in bulk and the polymer chains
are not stretched or compressed. Hence both the VL and AH L morphologies have
low entropic energy.

On the other hand, at a sufficiently large value of the interfacial parameter §, the
surface interactions dominate the free energy. Even when the distance between the
two plates is most incommensurate with the lamellar period in bulk, both the VL
and AH L phases have very high overall free energy due to the contact between the B
blocks and the surfaces, and thus are unfavorable. In this case, the large tension can
lead to undulations in the horizontal directions. The undulating phase does not have

high surface interaction, since A-rich domains are adjacent to the plates, while the
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tension due to the stretching of chains can be relieved by forming undulation where
the true distance between the two adjacent layers is less than the vertical distance.
This undulation instability is well-known for semetic-A liquid crystals [34] and has
been shown to exist in a bulk lamellar phase under tension [35].

Small § — The Stability of HL vs. VL and AHL
We study the stability of the HL, VL, and AHL phases for symmetric/nearly sym-

metric diblock copolymers confined between two identical plates with small interfacial
parameter . The free energies of these three morphologies can be calculated accord-

ing to Eq.(4.12). They are:

1 d2 2n, 2’YAS/7AB
Fyp = §{¥+7+—Wd (4.13)
1 21— f)0 | 2yas/vaB
Fyi, =3 {3 L (4.14)
1 d? 2n+1/2) & 2vas/vaB
Fapgr = 3 { n1/2) + 7 PR I (4.15)

where n is the number of A — B, B — A repeat units of lamellar layers.

The free energies of these three phases is plotted in Figure 4.4 as a function of the
normalized distance between the two plates d with the interfacial paramter 6 = 0.2.
The volume fractions of the diblock copolymers are f = 0.4 (Fig.4.4a), f = 0.5 (Fig
4.4b), and f = 0.6 (Fig. 4.4c), respectively. From the figures we can see that the
vertically oriented lamellar phase is always accessible when the distance between the
two plates is incommensurate to the bulk lamellar period. For diblock copolymers
with volume fraction f < 0.5, the horizontally oriented lamellar phase has the lowest
free energy when the distance between the two plates is most incommensurate to the
bulk lamellar period, i.e., d ~ n+0.5; for the volume fraction f > 0.5, the free energy
of the AHL phase is always higher than that of the VL phase and, therefore, the
AHL phase is not accessible. For f = 0.5, the free energy of the AHL is higher than
that of the V' L phase except at d = n + 0.5.

The above observation can be verified by considering the free energy difference
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between the AHL and V L phases.

1 d? 2(n+1/2) 5(1=2(1 = f))
FAI{L—FVI,—E{(TL+1/2)2 + 7 -3+ J (4.16)
The free energy difference reaches its minimum value at d.:
_ 61— 21— )"
d. = (n+1/2) [1+ o 1 (4.17)
with 23
0(1—2(1 - f))
— Fvip)min = |1 -1 4.1
(Fanur vL) { + o+ 1 (4.18)

The minimum is always larger than zero when f > 0.5 and equals zero at f = 0.5,
d =n+0.5. Only when f < 0.5, is the minimum of the energy difference negative,
which implies that the Eq.(4.15) has two roots and that the AHL phase can be
realized between the two roots.

The Maximum ¢ for the Existence of AHL and V L Phases
It should be reiterated that the existence of the AHL and V L phases as equlibrium

morphologies for symmetric/nearly symmetric diblock copolymer melts is a result of
the balance between the surface interactions and entropic energy due to confinement
effects. At a sufficiently large interfacial parameter 6, the surface interactions are
dominant, and neither the AHL nor the VL phases is favored over the HL phase.
The maximum values of § below which VL and AHL are accessible can be obtained
though comparing the free energies of the three phases.

For a system with f > 0.5, we only need to compare the free energy of the VL and
HL phases (AHL is unstable at any value of §). The maximum ¢ for the existence
of the VL phase is

Smaz = di(n) {d(n) /n® + 2n/dy(n) - 3} /(2(1 - f)) (4.19)

with d; = [2n%(n + 1)2/(2n + 1)]"/® where the energies of the HL(n) and HL(n + 1)
states coincide.
For the system with f < 0.5, the maximum value of ¢ can be obtained by com-

paring the free energies of the AHL and the HL(n) phases since the free energy of
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AHL phase is lower than that of the VL phase when d ~ n + 0.5. The result is

6n? +6n + 1

6mam - w (420)

Therefore, when 6 > d,,,, both the AHL and VL phases are inaccessible. Note
that the maximum § decreases as the number of layers n increases and vanishes
as n approaches infinity. This means that for diblock copolymers confined between
two plates with large separation, the symmetric horizontal lamellar phase is always
stable even when it is deformed. This conclusion is not surprising, since in this case
the deformation can be distributed over many layers, thus effectively eliminating the
entropic penalty that stablizes the V'L and AH L phases.

Large 6 — The Undulation Phase
At a sufficiently large value of the interfacial parameter §, neither the V'L nor the AHL

phase is stable, even when the distance between the two plates is incommensurate with
L*. The diblock copolymers in the horizontal oriented lamellar structure are stretched.
However the tension can released by forming the undulating lamellar phase (1dUL,
Figure 4.2¢). Indeed, the undulating lamellar phase is accessible at n + A when A
exceeds a critical value. The transition from HL(n) to the undulation lamellar phase
is a second order transition.

We study the one dimensional undulation phase at 1 < d < 2, where d = L/L*.

The profile of the two interfaces between the A and B domains can be described by
w1z, 2) = uocos(kz) + 0.5d + 0.5(1 — f)d (4.21)

ug(x, 2) = uocos(kx) + 0.5d — 0.5(1 — f)d (4.22)

where u, and k are the amplitude and the wavevector of the undulation, respectively.
The ampliude of undulation u, < 0.5fd.

In the strong segregation limit, the free energy per chain of the undulation phase
can be obtained by applying Eq.(4.11) to the undulation morphology. To fourth order

in the amplitude, we obtain

Frayr = Fur(1,d) + Co(d, f, k)u2 + Cy(d, f, k)u (4.23)
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For a system with given f, the undulation instability sets in when the coefficient
Cy(d, f, A) first becomes negative at a critical value of d, and a wave vector k. which
minimizes C5. In general, the critical value of d, depends on f. We found that
d. = 1.31 for a system with f = 0.5, and d. = 1.37 for a system with f = 0.4, which
corresponds to 31% and 37% strains respectively. The amplitude u, can be obtained

by minimizing the free energy,

—02(d7 f) )\C)
Uo = | oA 7T 7oy 4.24
20a(d, 1,20 (424
and the corresponding free energy is
& d’ 7kc 2
Fign = Fui(1,d) — 2(d, /, k) (4.25)

404(d7 f: kC)

In Figure 4.5, we show the period of the undulation A, A = 27/k, the coefficient
Cs(d, f, k.), and the free energy difference between the lamellar and undulating phases
AF as functions of the distance between the two plates. The volume fraction is set
at f = 0.5. The transition from HL(1) to the undulation phase is a second order
phase transition, and the transion from the undulation phase to HL(2) is a first order
transition.

Phase Diagram for Symmetric/Nearly Symmetric Diblock Copolymers

The phase diagrams for symmetryic/nearly symmetric diblock copolymers with the
volume fractions f = 0.5 and f = 0.4 are shown in Figures 4.6(a) and 4.6(b) respec-
tively. In calculating the phase diagrams, we have considered all the morphologies
listed in Figure 4.2. The diagrams explicitly demonstrate the conclusions that we
have drawn in the above discussion.

For large 4, the structure of equilibrium phase of the diblock copolymers is es-
sentially horizontal. The system undergo the following morphology changes as the
distance between the two plates increases: HL(1) — 1dUL — HL(2). For small 6,
depending on the volume fraction f, the VL and AHL (for f < 0.5 only) phases
are accessible when the distance between the two plates is incommensurate with the
lamellar period in bulk. In Figure 4.6a, the stable regions for the AHL phase are
represented by long dashed lines. There is a little island between the VL and HL(1)

phases where the morphology consisting of B blocks forming half cylinders located on
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the surfaces of the plates is stable (T'CY, Fig. 4.2g). We suspect that tilted lamellar

structure could be stable in that region, since the structure of the TCY phase is very
close to a tilted lamellae. In Figure 4.6b we do not show the stable region of the
1dUL phase since the width of 1dUL phase decreases with decreasing f and is very

narrow when f = 0.4.

4.3.2 Asymmetric Diblock Copolymers

In this section, we explore the morphological change as the asymmetry of the volume
fraction increases when diblock copolymers are confined between two rigid walls. The
morphologies considered are shown in Figure 4.2. In Figures 4.7, 4.8, and 4.9, we
present the phase diagram of diblock copolymers confined between two plates with
d =0, =0.5, and & = 1.0 respectively.

The phase diagram for diblock copolymers confined between two identical walls
with ¢ = 0 is depicted in Figure 4.7. The solid lines are phase boundaries, the
horizontal long dashed line and the dot-dashed lines indicate the coexistence of the
VL/HL and VL] AHL phases, and the dashed lines indicate the coexistence of the
VCY | TCY phases. Since the surface interaction between the two plates and the A
and B blocks are the same, the phase diagram has A— B interchange symmetry. In this
case, the confinement effect plays an important role in determining the equilibrium
state of the system.

When f ~ 0.5, the VL phase is the most favored for diblock copolymers, since
the distance of bilayer can be ajusted to be the same as that in bulk and there is
no additional surface interactions penalty. The HL(n) phase has the same energy as
that of the VL only when d = n. When d # n, the HL(n) phase is subjected to
compressive or tensile stress and thus has a higher energy than the VL phase.

When f > 0.35 (or f < 0.65) , the VL phase transfers to the vertically aligned
cylinder phase (VCY, Fig.4.2h) with minority components B (or A) forming the
hexagonally packed cylinders in a matrix of A blocks. Since the confinement effect
only acts perpendicularly to the lamellar and hexagonal ordering, the VL and VCY
phases have the same structure as their corresponding structures in bulk. Therefore,
the volume fraction f of the transition from the V'L to the VCY is exactly the same
as in the bulk. In the phase space where the VL is stable, the TCY phase has the
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same energy as the VCY phase at the dashed lines.

When the volume fraction is further reduced (or increased), the minority compo-
nents B(or A) form spherical domains located on a horizontally oriented hexagonal
lattice (HS(1)) or even on two such layers (HS(2)), depending on the distance be-
tween the two plates. The schematic representation of the HS(1) phase is shown
in Fig.4.2k. In the HS(2) phase, the spherical domains are located on two sets
of horizontal square lattices, which are translated with each other by the vector
e = (a/2,a/2,b), where a is the lattice spacing and b is the distance between the two
plates that contain the centers of the spherical domains. Both a and b can be deter-
mined by minimizing the free energy. The breaking of translational and rotational
symmetry due to the confinement effects gives rise to the HS which has a different
symmetry as its corresponding phase in bulk (spherical domains located on a b.c.c
lattice). Therefore, the value of f where transition from VCY to HS occurs is dif-
ferent from that found in bulk. More importantly, the transition value of f depends
on the distance between the two plates.

The phase diagram for interfacial parameter 6 = 0.5 is shown in Figure 4.8. Since
d > 0, the two surfaces have a preferential affinity for blocks A, and as a consequence,
the phase diagram has some new features in comparison with the phase diagram in
Fig.4.7.

The regions of the HL(1), HL(2), and AHL(0.5) are greatly enlarged while the
regions of the VL and VCY are reduced. This due to the fact that the VL and VCY
phases have the advantage of achieving the minimum of the entropic energy but do
not have the advantage of achieving the minimum of the surface interactions. As a
result, their stable region in the phase diagram is reduced as ¢ increases from 0 to 0.5.
The HL(1) and HL(2) phases, which have the advantage of minimizing the surface
interactions, have an increasingly large stable region as ¢ is increased from 0 to 0.5.

When the distance between the two plates d ~ 0.5, at the left side of phase
diagram where the volume fraction of A blocks is small, the A-rich domains form half
spheres on tops of the plates (T'S phase, Fig.4.2j), while at the right side of the phase
diagram where the volume fraction of the B blocks is small, the B-rich domains form
spheres located in the midplane between the two blocks (HS(1)). This reflects the
fact the surface attracts the A blocks but not the B blocks.
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When the distance between the two plates d ~ 1.5, the minority components (the
A blocks at the left side of phase diagram and the B blocks at the right side of the
phase diagram) simply form vertically oriented cylindrical domains (VCY (A4) and
VCY(B).

Figure 4.9 presents the phase diagrams for interfacial parameter § = 1.0. As the
interfacial parameter increases further, the regions of the HL(1) and HL(2) phases
are further enlarged and the regions of the VL and VCY phases are further reduced.
The AHL phase between the HL and VL and VCY phases disappears in the phase
diagram due to the high surface interactions. For the same reason, at left side of phase
diagram, the T'S and VCY phase also disappear even when the volume fraction of
the A blocks is very small, instead the blocks A completely covered the surfaces and

the contacts between theB blocks and the surfaces are completely ruled out.

4.4 Diblock Copolymers Confined between Two
Distinct Plates

We now study the morphologies that can form between two distinct plates that have
different preferential affinity for blocks A and B. The free energy is given by Eq.(4.10),
which depends on morphology and four physical parameters: copolymer volume frac-
tion f, the normalized distance between the two plates d, and the two interfacial
parameters ¢; and d,. We study two special cases: (1) plate 1 attract blocks A and
plate 2 attracts B; (2) plate 1 attract A and plate 2 has the same interaction with
blocks A and B.

The analysis of surface effects on the equilibrium properties of diblock copolymer
melts confined between two distinct plates can be done in the same way as that on
diblock copolymer melts confined between two idenitcal plates. In particular case
when the strength of attraction bewteen plate 1 and the A blocks is the same as that
of the attraction between the plate 2 and the B blocks, and the diblock copolymers
are symmetric/nearly symmetric, the AHL phase always has the minimum surface
energy while it can achieve the minimum entropic energy when the distance between
the two plates d = n+0.5. The HL phase, on the other hand, always has high surface

energy while it can achieve minimum entropic energy at d = n. Similar to the VL
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phase in two identical plates, the V'L in the two distinct plates can always achieve
the minimum entropic energy at penalty of relatively high surface energy. Thus, the
AHL and the HL phase in two distinct plates are similar to the HL and AHL in two
identical plates respectively. The quantitative analysis of the surface effect on the
morphology can be done similarly as in section 4.3. However, we will simply present
the phase diagrams.

The phase diagram of diblock copolymer melt confined between two distinct plates
with plate 1 attracts A blocks and plate 2 attracts B blocks is shown in Figure 4.10.
The prefrential affinities of the two plates are §; = 0.5 and d, = —0.5 respectively.
The phase diagram is symmetric with respect to f — 1 — f. When d = 0.5 and
0.045 < f < 0.954, the diblock copolymer melt forms the AHL phase with blocks A
forming a layer on the surface of plate 1 and blocks B forming a layer on the surface
of plate 2. In this case, the morphology has both the minimum surface energy and
entropic energy. When f < 0.045 (or f > 0.954), the minority components A blocks
form half spheres located on a hexagonal lattice on plate 1 where they are attracted
to (AS, Fig.4.21), while plate 2 are completely covered by B blocks. When reducing
L, the system transform from the AHL to the VL and VCY phases depending on
the asymmetry in the volume fraction. We include in our analysis the morphology
where the minority components form half cylinders layered on the surface to which
it is attract to (Fig.4.2i), however, it is not stable and therefore does not appear in
the phase diagram.

The phase diagram with one of the plates attracs A blocks and another has the
same surface interactions with blocks A and B is depicted in Figure 4.11. We set
01 = 0.5 and &, = 0.0. The phase diagram does not have the symmetry with respect
to f— 1—f. When L ~ 0.5 and 0.12 < f < 0.72, the stable state is the AH L phase.
When f < 0.12 (f > 0.72), the system form the T°S phase (Fig.4.2j). When reducing
L, the system transform to the VL, VCY, and AS phases depending on the value of

f.

4.5 Conclusion

The equilibrium property of diblock copolymers confined between two rigid plates

in the strong segregation limit is studied by extending Ohta and Kawasaki’s theory
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to take into account the surface effects. Unlike bulk diblock copolymer melts in the
strong segregation limit, where the mophology is determined by the volume fraction f
except for a very weak dependence on x/V, the morphology of diblock copolymer melts
confined between two plates depends on four physical parameters: the copolymer
volume fraction f, the normalized distance d, and the two interfacial parameters §;
and d, defined in Eq.(4.11).

The existence of two plates introduces the surface interactions and a new length
scale. In addition, it also breaks the rotational and translational symmetry that
exists for diblock copolymers in bulk. By studying the phase behavior of symmet-
ric/nearly symmetric diblock copolymers, we have demonstrated that for small values
of interfacial parameter J§, the competition between the surface interactions and the
confinement effects can not only change the orientation of the lamellar structure but
also leads to the breaking of reflecting symmetry with respect to the midplane of the
system. We find that there are the maximum values of § for the existence of the VI
and AHL phases beyond that the surface interactions dominate, and the VL and
AHL phases are unstable. For large values of interfacial parameter &, we have shown
the possibility of one dimensional undulation instability.

We have studied the phase behavior of diblock copolymers with arbitrary vol-
ume fraction f to explore the surface effects on the stability of various morphologies
(lamellar, cylinder, and sphere). We have shown that the volume fraction f at the
transition between the VL and VCY phases is the same as its corresponding value in
the bulk copolymer due to the fact that the confinement effects act perpendicularly
to the lamellar and hexagonal ordering. On the other hand, the volume fraction f at
the transition between the VCY and the HS phases depends on the distance between
the two plates, since the HS phase is a three dimensional structure and the presence
of two plates changes the symmetry of the structure. The distance dependence of the
transition volume fraction is a consequence of the broken translational and rotational
symmetry. The phase diagrams under various conditions have been mapped out.

We also studied the equilibrium property of diblock copolymers confined between
two distinct plates by studing two special cases. In one of the cases, one of the plates
attracts block A and the other attracts block B, in the other case, one of the plates
attracts block A, and the other plate has no preferential affinity for either blocks.

The phase diagrams in both cases are presented.
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HL(1)
(a)

AHL(0.5) VL

(b) (c)

Figure 4.1: Schematic illustration of horizontally oriented one layer lamellar structure
(HL(1)), horizontally oriented half layer lamellar structure (AH L), and the vertically
oriented lamellar structure (V' L).
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(a) HL(1) () AHL(0.5)

(d) HCY (e) 1dUL (f) AHL(1.5)

i ACY

i) TS D AS
v (k) HS(1) ()

Figure 4.2: Schematic illustration of all the phases considered. (a) Horizontally ori-
ented lamellae (HL); (b) Vertically oriented lamellae (V' L); (¢) Horizontally oriented
asymmetric lamellae (AHL(0.5)); (d) Horizontally oriented cylinders (HCY); (e)
One dimensional undulation (1dUL); (f) Horizontally oriented asymmetric lamellae
(AHL(1.5)); (g) Horizontally oriented half cylinders on tetragonal lattice (TCY); (h)
Vertically oriented cylinders (VCY); (i) Asymmetric, half cylinders on one of the
surfaces (ACY); (j) Spheres on tetragonal lattice on the surfaces (T'S); (k) Spheres
on horizontal plane (HS) (1) Asymmetric, half spheres on hexagonal lattice on one
of the surfaces (AS).
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Figure 4.3: Schematic illustration of the system considered in the present chapter.
Diblock copolymers are confined between two solid plates 1 and 2. The distance
between two plates is L.
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Figure 4.4: Free energy of diblock copolymer melt confined between the two identical
plates as a function of the normalized distance d. The volume fractions of the diblock
copolymers are (a) f = 0.4; (b) f=0.5; (c) f=0.6. HL(1) (solid), HL(2) (dotted),
AHL(0.5) (dashed), AHL(1.5) (dot-dashed)
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Figure 4.5: The free energy difference between 1dU L and H L (solid line), the period of
interface profile A (dotted line), and the quadratic order coefficient Cy (long dashed)
as functions of the normalized distance d for diblock copolymer melt with volume
fraction f = 0.5
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Figure 4.6: Phase diagram for (a) symmetric diblock copolymer melt, (b) nearly
symmetric diblock copolymer melt (f = 0.4) confined between two identical walls.
The interfacial parameter 6 = 0.2
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Figure 4.7: Phase diagram for a diblock copolymer melt confined between two identi-
cal plates with interfacial paramter § = 0.0. The solid lines are phase boundaries, the
horizontal long dashed line and the dot-dashed lines indicate the coexistence of the
VL/HL and VL/AHL phases, the other two dashed lines indicate the coexistence of
the VCY/TCY phases.
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Figure 4.8: Phase diagram for a diblock copolymer melt confined between two iden-
tical plates with interfacial paramter § = 0.5.
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Figure 4.9: Phase diagram for a diblock copolymer melt confined between two iden-
tical plates with interfacial paramter é = 1.0.
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Figure 4.10: Phase diagram for a diblock copolymer melt confined between two dis-
tinct plates. One of the plates attracts block A and other attracts block B. The
interfacial parameters are §; = 0.5 and d3 = —0.5
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Figure 4.11: Phase diagram for a diblock copolymer melt confined between two dis-
tinct plates. One of the plates attracts block A and other does not have preferential
affinity for either A or B blocks. The interfacial parameters are §; = 0.5 and §, = 0.0
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