
Charge Transfer in Charge Coupled Devices 

Thesis by 

Yoshiaki Daimon-Hagihara 

In Partial Fulfillment of the Requirement 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena California 91125 



i; 

To Tomi~ and Akinori 



i; i 

ACKNOWLEDGEMENTS 

The author expresses his deepest gratitude to Dr. T. C. McGill 

for his guidance with enduring patience. Special appreciations go to 

Dr. C. A. Mead for exciting discussions and valuable insight, 

Dr. F. B. Humphrey for critical reviews and valuable suggestions which 

have greatly improved the readability of this thesis, and Dr. A. M. 

Mohsen for discussions during the initiation of this work. Grateful 

thanks are due to Mrs. Kathy Ellison for typing and preparing 

manuscripts for publication. 

The work reported here was supported in part by the Office of 

Naval Research and the Naval Research Laboratory. The financial 

assistance at the California Institute of Technology in the form of 

several research and teaching assistan\hips and tuition scholarships 

is gratefully acknowledged. 



iv 

ABSTRACT 

Theoretical analysis of the dynamics of charge transfer in charge 

coupled devices is central to the intelligent design and proper estima­

tion of the usefulness of this new device concept. In this report~ a 

detailed study of the electrostatics and dynamics of buried channel 

charge coupled devices (BCCDs) is presented. Both theoretical and expev-

imental study of BCCD has been very difficult due to the additional 

complexity in the BCCU structure in contrast to the original simpler 

structure of surface charge coupled devices (SCCDs). And up to present, 

no comprehensive study of BCCD which includes the complete electro­

static and dynamic analysis of BCCD operations has been reported. It is 

the purpose of this thesis to assist physicists, device engineers, and 

applications engineers interested in BCCD by presenting all essential 

information on the buried channel CCDs in one place and in a compre­

hensive form so that the background la~d on BCCD can be applied immedi­

ately to the case of the SCCD studies achieved in the past and also to 

the investigation of a future CCD structure. 

The work reported in this thesis consists of three major contribu­

tions to the rapidly progressing CCD research and is described in the 

main text, Chapter 1, 4, and 5 of this thesis. 

In Chapter 1 the relations between the electrostatic potential and 

the charge distribution in one dimensional structure for BCCD are 

analyzed in detail. An expression for the channel potential in terms of 

salient physical parameters is obtained by depletion approximation. And 

its implications on doping levels, and profiles; charge storage capa-
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city;geometrical structure and gate voltages are discussed in detail to 

provide a useful reference and guide-work in design and analysis of 

buried channel CCDs. The results obtained numerically for the case of 

Gaussian dopirtg profile are also presented and correlated with the 

uniform doping model. In Chapter 4 a detailed two dimensional electro­

static analysis of buried channel CCDs is presented. By a simple capac-

itance network model the two dimensional Poisson equation appropriate 

for the structure is reducedinto a second order differential equation 

in a single spatial dimension. The resulting equation relates the signal 

charge and the minimum channel potential under all the relevant electro­

des and interelectrode regions. A diffusion equation describing the 

charge transfer is coupled to this equation in order to incorporate 

the static model in dynamic charge transfer description. The results of 

a detailed numerical simulation of the charge transfer process in the 

resulting realistic model of a high density buried channel CCU 

remain to be studied in Chapter 5. It is shown that the limitations 

on the device performance due to incomplete free charge transfer are 

reduced considerably by powerful field-aided charge transfer. The pro­

cedure to estimate the significance of this reduction in terms of the 

charge remaining as a function of time is formulated analytically. 
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Chapter 1 

ELECTROSTATIC ANALYSIS OF BASIC ONE 

DIMENSIONAL MOS STRUCTURE FOR BURIED CHANNEL CCDs 

1.0 Introduction to Charge Coupled Devices 

* In 1970, Boyle and Smith in Bell Labs showed that a signal charge 

packet in a metal-oxide-semiconductor (MOS) structure could be stored 

in a potential well under a depletion-biased metal electrode and moved 

from under orie electrode to the next by appropriate pulsing of the 

electrode potentials. For the structure to be used as a signal process­

ing device, the electrodes must be placeJ close enough to make the 

potential wells couple and the signal charge packets move smoothly from 

one well to the next. The resulting structure is commonly known as the 

charge coupled device (CCO). 

In the past few years there have been tremendous advances in the 

fabrication of this new class of semiconductor devices. These advances, 

occurvin3 in an a 1 ready sophi sticatcJ tech no 1 ogy, were made poss i b 1 e by 

earlier parallel developments in the parent field of large scale 

integrated circuits. 

Analog-signal-processing developments in CCDs have been very 

significant, for the first time bringing the full impact of monolithic 

integrated-circuit technology to bear on sophisticated analog communi-

* Boyle, W. S., and Smith, G. E. "Charge Coupled Semiconductor 

Devices," B.S.T.J., 49, No.4 (April 1970), pp.587-593 
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cation systems. CCD delay-line, multiplexing and filtering components 

are by now operating in developmental systems, where they provide such 

complex and vital signal-processing operations as matched filtering in 

spread-spectrum communication, bandpass and low- pass filtering, Hilbert 

and Fourier transforms for single-side band modulation and complex cod­

ing for military communications. However, most significant of all their 

commercial implications are CCU memory systems. Here progress has been 

slow, mostly due to the already high level of bipolar and MOS memory 

technology and the fact that CCD memories, owing to their charge-transfer 

process, are basically serial. Nevertheless, CCD memories have been gain­

ing momentum. The first to arrive is 16,000- to 32,000-bit serial CCD 

memory element capable of operating at respectable 1- to 5-megahertz 

kilobits on a chip in the next two years, at last ushering in the age of 

mass-memory chip technology. 

A typical two dimensional CCD structure is illustrated in Fig.1.1 

as one unit cell of the overlapping gate structure using the standard 

silicon technology. The device is a series of simple metal-oxide­

semiconductor (MOS) capacitors coupled in such a way that the signal 

charge on the capacitors can move from under one storage to the next. 

The storage site is actually a potential well created under the 

electrodes at the semiconductor insulator interface. In Fig. 1.2a and 

Fig. 1.2b the band diagram of a metal-insulator-n semiconductor is 

shown to illustrate the creation of potential wells at the interface 

when a vo 1 tage pulse is app 1 i ed to the meta 1 electrode. Minority carri -

ers, injected in response to a digital or analog signal or generated by 
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photons, are stored as charge packets in these potential wells result­

ing in a decrease in depth of the potential well. 

The storage and transfer of the charge packets are controlled by 

the clocking pulses driving the closely spaced electrodes as shown in 

Fig. 1.3 where a three phase cl ocking scheme is used. In the three 

phase operation three electrodes are needed to store one bit of informa­

tion and obtain a directiona l ity in the signal flow. The figures illus­

rate how the 4-bits information in a 1-0-1-0 pattern is transferred to 

the right. 

The original charge coupled device, as introduced in 1970, operates 

by moving minority carriers along the surface of a semiconductor with 

voltage pulses applied to metal electrodes which are separated from the 

semiconductor by an insulating layer (Si02). Today, this type of charge 

coupled devices is referYtdio~surface charge coupled devices (SCCD). The 

anlysis of charge-transfer characteristics of SCCD in terms of free­

charge losses, (see Appendix I) and losses due to the trapping by fast 

interface states (see Appendix II) has been central to the intelligent 

design and proper estimation of the usefulness of this new device concept. 

In these deta i led studiesin Appendix I and II it is shown that the transit 

characteri st ics of SCCD from one electrode to the next is determined by 

the minority carrier transport under the influence of thermal diffusion 

and electric fields due to the external electrode voltages and the self­

induced carrier repul-sions. It is now known that the transport limit­

ations are largely determined by device geometry; for long electrocies, 

thermal diffusion is predominantly responsible for transfering the last 
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Figure 1. 3 

Schematic cross section of a three-phase charge coupled 

devfre structure. The electrodes are pulsed in the 

sequence ¢1¢2¢3 . 
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small amount of charge forward and limits efficient operation to clock 

frequencies below 10 MHz. Surface state trapping is much less disper­

sive, and even at low frequencies 1011 states/cm2-ev can impose the 

requirement for regeneration after as few ? S 100 transfers. 

To overcome these problems in 1972, a modified CCD structure was 

introduced by a group of scientists*in Bell Labs. However, due to the 

additional compl exity in structure, the first-fabricated devices did 

not work at all. And further detailed experimental and theoretical 

investigations remained to be carried out. This new type of CCU is today 

referredt~ buried channel charge coupled devices (BCCDs) in contrast to 

the original surface charge coupled devices (SCCOs) . The new buried 

channel CCD is the subject of investigation in this thesis. The cross­

sectional view of this BCCIJ is illustrated in Fig. 1.4. In this modified 

BCCD structure, the charge does not flow at the semiconductor surface; 

instead it is confined to a channel in the p-layer which lies beneath 

the surface. The buried channel device has the potential of eliminating 

surface trapping because the signal charge packets now move away from 

the interface. And it is also expected that this modification in struc­

ture will give rise to increased fringing fields under the electrodes 

and that t he diffusion will be replaced by the more powerful field-aided 

* Walden,R.H., Krambeck,R.H.,' Strain,R.J., McKenna,J., Schryer,N.L., 

and Smith,G.E. 11 The Buried Channel Charge Coupled Devices 11 B.S.T.J. 

BRIEF, 51, No.7 (September 1972), pp.1635-1640 
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transfer as an important factor in the final charge transfer process. 

This should lead to fast, efficient transport even when little charge 

remains to be transfered. 

However, both the theoretical and the experimental study of BCCD 

devices has been very difficult due to the additional complexity in 

structure. Up to present, no comprehensive study of BCCU which includes 

the complete electrostatic and dynamic analysis of BCCD operations has 

been reported. It is the purpose of this thesis to assist physicists, 

device engineers, and applications engineers interested in BCCD. By 

presenting all essential information on the buried channel CCDs in one 

place and in a comprehensive form they can immediately apply this 

analysis of BCCO to the case of the SCCD studies in the past (see 

Appendix I and II} and also to the investigation of a future CCD struc­

ture discussed in Appendix III. With these motivations, a detailed 

study of the electrostatics and dynamics of this new BCCD is presented 

in the main text, Chapter 1, 4, and 5 of this thesis. 

1.1 Introduction 

Electrostatics play an important role in the design of a function­

ing buried channel device. The connection between geometrical structure; 

doping levels, and profiles; charge storage capacity; gate voltages are 

all determined by simple electrostatic analysis. This analysis must be 

carried out before any consideration of the actual charge transfer pro­

cess is made. In principle the electrostatic analysis could be made by 

solving the Poisson equation with all the relevant charge distributions 

and applied potentials for the correct three dimensional geometry. How­

ever, in general this would require numerical solutions which would be 
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both expensive to generate and difficult to use in considering the 

impact of varying some of the physical parameters on the performance of 

the device. Hence, it is desirable to idealize the actual device struc­

ture so that one can obtain an accurate but approximate analytic solu­

tion to the electrostatic problem which will indicate how all the device 

parameters interact. 

In this chapter I take just such an approach. The charge distri-

butions and potential under a CCD gate are assumed to be one dimensional. 

As we will see this approximation makes it possible to obtain inter­

esting and very useful results for the electrostatics of the buried 

channe 1 device. ltJhil e these results a re very usefu 1 , they are not 

accurate enough for our considerations of the charge transfer and we 

will present a numerical solution of the electrostatic problem in two 

dimensions in the chapter 4. 

To be specific we will consider only a p-channel device. 

However, n-channel could be done in exactly the same way. 

This chapter is organized according to the following format. In 

1.2 the problem is set up with the definition of charge densities 

and relevant geometrical parameters assuming a uniform doping profile. 

The solution to this problem in terms of charge stored Q, gate voltage 

¢G, and the potential of the buried channel ¢ are presented in 1.3 
~ m 

within the depletion approximation. The implication of these results 

in the design of buried channel CCD's is given in the following three 

sections 1.4, 1.5, and 1.6. The changes in these parameters brought 

about changing the doping profile from uniform to Gaussian in the 
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region near the oxide is discussed in section 1.7. Sectio~ 1.8 contains 

the conclusion. 

1.2 Electrostatic Potential and Charge Distribution 

The one dimensional geometric structure for a buried p-channel 

charge coupled device is illustrated in Fig. 1.5a. The structure consists 

of a metal gate foll~d by a layer of silicon dioxide which rests on 

silicon that has been doped p-type near the surface on an-type substrate. 

The potential energy versus position is shown in Fig. 1.5b. Throughout 

this discussion we will reference all potentials to the Fermi level in 

then-type substrate. Since we will be dealing with holes throughout 

this problem, we will take the electrostatic potential to be positive 

in the standard sense, that is, the potential will increase downward on 

the figure. As a consequence' of this defi ni ti on, the position of the 

conduction edge in eV is given by ~E such that 

~E == cf> - Ee > Q 

Ev and Ec are the respective values of the band edges referenced to the 
I 

potential zero, cf>= 0, far into the substrate. We note that Ec = -~E 

deep in the substrate since <P= 0. The electrostatic problem is further 

specified by giving various contributions to the charge oensity. The 

free carrier densities for electrons and holes are given by 

and 
[

E -cf>] C n n = Nc exp 
kT 

, (1-la) 
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(a) cpG p N 

(b) 

(c) 

Fig. 1.5 (a) MOS Structure for buried channel CCD, 

(b) the band and electrostatic potential 

profiles, and (c) the cbarge distribution. 

cp 
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let> -E] p = N exp ' P v 
v . kT (1-1 b) 

where Nc and Nv are the effective densities of states in the conduction 

and valence bands, respectively; and cpn and cpp are the quasi-Fermi 

levels within the semiconductor. 

Further we need to specify the position of the zero of potential 

(the Fermi level) with respect to the band edges. Using the standard 

results for a semiconductor doped to a level N
0

, we have the deviation 

of · the conduction· band edge tE. 

To accomplish this, we note that Ec = -tE deep in the substrate, 

and we define the intrinsic electron or hole density n. deep in the , 
substrate by 

n 2 = np = N N exp 
i C V 

·(Ec-kTEv) (l-2a) 

Then, after a little algebra, using the relation Nd= p-n, with 

Eqs. (1-la) and (1-lb) we obtain the difference tE in term of the sub­

strate doping Nd as seen by 

LIE = <p 
O 

+ kT 1 n c~) ( 1 - 3a) 

where ¢ is defined by 

o <p 
O 

= kT 1 n [ 2~~ + ✓ 1 + ( ~~/ ] ( 1 -3b) 

The derivation is as following: 

We observe in Fig. 1.5b that the curves for the conduction band, Ee, 

and the electrostatic potential,¢, run parallel to each other, and that 
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the displacement, L\E, is a constant quantity everywhere in the semi­

conductor. We calculate the value of 4E deep in the substrate therefore, 

where we observe that <Pn = <Pp = <P = 0. Hence, using the re 1 a ti on NJ 

= p-n, with Eqs. (1-la) and (1-lb) we obtain an equation which relates 

the conduction band Ee and valence band Ev deep in the substrate as seen 

by 

Eliminating Ev from this equation by Eq. (1-2a), we obtain an equation 

for Ee as seen by 

NcNd 

ni2 
= exp(-Ec) .... (Nc)

2 
exp(Ec) 

kT n· kT 
1 

Then, noting that deep in the substrate~E = -Ee, this equation gives 

~E in terms of the substrate doping Nct and the intrinsic semiconductor 

parameters Ne and ni as seen in Eq. (1-3a) with <P0 defined by Eq. (1-3b). 

END OF DERIVATION 

This quantity¢ can be used to write the electron and hole densities in 
0 

a symmetric form and we obtain, after some manipulation, by usinq 

Eqs. (l-1) and ( l -2), 

(l -4a) 

and 

(l - 4b) 
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The derivation is as follov~i_Q_g_: 

From Eq. (1-Ja) with tE = ~-Ee we obtain 

That is, 

kT ln CJ= $ - Ee - $0 

Ne exp(Ec/kT) = n; expek~<f,o) 
Including ¢n in both sides we obtain Eq. (l-4a) from Eq. (l-la). 

If we apply Eq. (l-2a) to the above equation we obtain 

This gives 

Including¢ in both sides we obtain Eq. (l-4b) from Eq. (l-llJ). 
p 

ENU OF U~RIVATION 

With these equations (l-4a) and {l-4b) for the electron and 

hole densities we can write the one dimensional Poisson equation as 

(l -5) 

where we denote the impurity doping concentration in the semiconductor 

by d(x), and the dependence of the hole and electron densities ijpon 
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the potential ¢ and the quasi-fermi levels¢ and¢ is indicated 
p n 

explicitly by means of Eq. (1-4), and we note that the impurity doping 

concentration d(x) is a positive quantity in then-type substrate and 

negative in the p-diffusion region. Specifically, d(x) = Nd deep in 

the substrate, but we consider the doping to be not necessarily uniform 

in the vicinity of the p-diffusion layer. It can be a Gaussian in 

particular. 

When the minority carriers are neglected, the Poisson equation in 

then-type substrate can be approximated by 

(1-6a) 

Correspondingly, when the electron concentration is neglected in the 

p-diffusion layer, we obtain 

(l-6b) 

where Es; is the semiconductor dielectric constant. 

We have now set up the problem with the definition of charge den­

sities and relevant geometrical parameter~. One more point, however, 

remains to be made clear before considering the implications of this 
'· 

problem. It is about the relation between the built-in voltage ~B of 

the p-n juntion and the minimum potential •m ,of the potential well. 

For the uniformly doped abrupt p-n junction shown in Fig. 3.lc 

at the thermal equilibrium, the minimum potentiaJ ¢min the p-diffusion 

layer is equal to the built-in voltage of the p-n junction which is given 

by depletion approximation as 
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(
NANd) 

¢8 = kT ln --2 n. 
1 

(1 -7) 

However, the presence of the signal charge Q and the gate voltage ¢G 

control the actual value of the minimum potential ¢ • We will study 
m 

this effect by applying depletion approximation to the one dimensional 

MOS structure for the uniformly doped abrupt p-n junction doping 

profile. That is, d(x) = Nd in the substrate and d(x) = -NA in the 

p-diffusion layer. The. expression for ¢m will be obtained accordingly. 

1.3 Depletion Approximation 

We define x-coordinate along the depth of the semiconductor as 

indicated in Fig. 1.5c by the horizontal line. The origin of x­

coordinate is taken to be at the oxide-semiconductor interface. That 

is, the p-diffusion region is defined as O < X < Xd. The problem is 

to obtain an expression for the minimum potential ¢ in terms of the 
m 

gate voltage ¢G and the siqnal charge Q which is defined as 

(1-8a) 

where NA is the p-channel ddping density, XCH is the width of the 

channel, Xd the p-layer depth. x1 and x2 are the surface field and 

metalurgical junction depletion widths respectively. These parameters 

a re seen i n Fi g . 1. 5 c . 

Corresponding to x
1 

and x2, we define the respective depletion 

capacitance as c1 = Es;lf1 and c2 = ESi;x2 where Es; is the silicon 

dielectric constant. 
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The gate voltage ¢G controls the surface electric field Es at the 

oxide-semiconductor interface, which is related to the oxide electric 

field by Gauss's law. The oxide electric field is given by the poten­

tial drop across the oxide divided by the oxide thickness X
0

• And the 

potential drop is given by the difference of the gate voltage¢~ and 
u 

the surface potential ¢s adjusted by the metal-oxide work function 

¢Mo and the oxide-semiconductor barrier height ¢so as illustrated in 

Fig. 1.5b. These simple facts lead to a relation between Es and ¢s· 

Assuming the presence of positive interface charge Qss' we obtain 

s 5 .E 
l S 

<Ps = ¢sF - C 
0 

( 1-8 b) 

where C
0 

is the oxide capacitance per unit area, cps the surface potential. 

¢sF is defined by 

( 1-8 c) 

We note <PsF is the surface potential when the band is flat at the 

interface, that is when Es~ 0. Equation (l-8b) gives one boundary 

condition for the Poisson equation (l-6b) in the p-diffusion layer. 

Integrating Poisson equation from X = 0 to X = x1, that is, in 

the surface field induced deplet1on region, we obtain 

(l-8d) 

and 

\ 
(l-8e) 
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where x1 is the surface field induced depletion width. The p-side and n­

side junction depletion width must be connected by the relation 

X2NA = X3Nd because of charge neutrality deep in the substrate. The p­

side junction depletion width x2 can be written in terms of the minimum 

potential ¢mas seen by 

(1-8f) 

where 

(1-8g) 

If the value of the minimum potential ¢mis known, we first obtain 

the p-n junction depletion width (X2 + x3) from Eq. (l-8f) and then 

Eq. (1-89). If the amount of the signal charge Q is prescribed, 

Eq. (l-8a) gives the surface field induced depletion width x1. Then 

the surface electric field Es' and then the surface potential ¢s' can be 

calculated from Eq. (l-8d) and (l-8e) respectively. The corresponding 

gate voltage ¢G can be eval~ated from Eq. (1-8b) knowing the relation 

between the gate voltage ¢G and ¢sF as seen in Eq. (1-8c). 

In those equations there are four fixed parameters, X0 , Xd, NA, 

and Nd that can be controlled in the fabrication of device, and three 

more variables, Q, <Pm, and <Psf ~mong which there is only one constraint 

during the device operations. The associated constraint among the three 

varibles can be written as an expression of the minimum potential <Pm in 

terms of the gate voltage <PsF and the signal charge Q. In the following, 

the procedure to calculate the expre'ssion is described. 
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To write the analytic expression for the minimum potential as simple 

as possible, we introduce three parameters, cf>t' cpd and R defined by 

and 

¢ = NAES; 
t 2 C 2 

0 

(l-9a) 

(l•9b) 

(l-9c) 

with Qd = NAXd and Cd= Es;IXd. ¢tis just a geometrical constant (in 

volt) determined by the p-channel doping density NA and the oxide 

capacitance C
0

• ¢dis proportional to ¢t and the proportionality constant 

given in Eq. (l-9b) is actually a quadratic function of the single 

charge Q. The dimensionless constant R is of the order of 10 to 20 in 

normal device configurations because NA is 10 to 20 times larger than 

the substrate doping Nd. The physical significance of these 

parameters, ¢t' ¢d and Rare explained more in detail as we go further 

in interpretation and results of depletion approximation in next section. 

In terms of these parameters, the minimum potential ¢m can be 

expressed as 

where f(R) is a slowly varying f~nction of Rand defined by 

R f(R) = ------

1 + R + ✓ l + 2R 

(1-lOa) 

(1-lOb) 
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Jhe derivation is as followil'!9_: 

With tq. (l-8f) for x2;xd we obtain 

Also form Eq. (1-8e) substituting cps by Eq. {l-8b) anti x1 by Eq. (1-8c.J) 

we obtain 

This equation and Eq. (*) above give 

X 4>m Q Xl Q t: (_! )2 = -- - + 2(1- - )(-) (1--) 
Xd <Pq Qd Xd Qd 

{ct)2,~sr - ~m l - C X 
= c (-2.) (_l) 

co <Pt Co Xd 
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Solving for X1/Xd we obtain 

Substituting x1;xd of the above equation to Eq. (*) we obtain 

(1-~)2 + ( cct)f sF-4m] +(~) 
Qd Co ct> t <+> q 

2 

This equation can be rearranged to give 

Knowing from Eq. (1~9b) that 
2 

the LH5 of the above equation (**) becomes 

_ 4 ( :: ) 
2 

( 1 + : : )( : : ) 
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Also substituting ~d of Eq. (l-9b) into the RHS of Eq. (**) above, we 

can write the RHS of Eq. (**) as seen by 

Consequently the Eq. (**) above becomes 

= 

Furthermore noting by Eq. {l-89) and Eq. (l-9a) that 

the RHS of this equation (***) bec9mes 

<Pm 

( 1 + NJ/ NA) ( <Pd 
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Knowing from Eq. (l-8g) and (l-9a) that 

and defining the parameter f by the equation as seen by 

f = 
- cp rit 

the above equation(***) can be written as 

2 f 

R 

where R is given by Eq. (l-9c). 

(****) 

(*****) 

Solving this equation for f(R) in terms of R we obtain the Eq. (1-lOb). 

Since f(R) is originally defined by the Eq. (****) above, we immediately 

obtain the analytic expression for the minimum potential <Pm as seen by 

Eq. (1-lOa). In the above derivations, the four equations(*),(**), 

(***)and(*****) are all the same relation expressed in terms of diffeY-

ent physical parameters, and the parameters Rand f(R) seem to play 

very important roles in studyin! the mutual interactions among the 

important device parameters such as the oxide thickness X
0

, the p-layer 

diffusion depth Xct, the p-layer doping NA, and the substrate doping Nd; 

and the three more variables, Q, <Psf' and <Pm-

END OF DERIVATION 
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For large values of R, f(R) approaches unity very slowly. If we want 

to know a rough value of the minimum potential without going through the 

calculation procedure defined by Eqs. (1-9) and ( 1-10), we can estimate 

the value by computing ¢d from Eq. (l -9b) and setting ¢m ~ -(¢d-¢sF)' 

where we note the gate vo l tage ¢G is related to ¢sF by Eq. ( I-Be). 

The general characteristics of the physical parameters implied in 

the analytic expression for the minimum potential can be seen by the 

relationships implied in the above equations. It is clear from 

Eq. (1-lOa) that the dependence of the minimum potential ¢m upon the 

gate voltage is quite linear. On the other hand because ¢d defined 

by Eq. (l-9b) depends quadratically upon the signal charge, we expect 

that the minimum potential will also show a quadratic dependence on 

the signal charge. We also note that a thicker oxide produces a deeper 

minimum potential. This effect can be calculated quantitatively by 

Eq. (1-9a) in which we see the value of ¢tis proportional to the square 

of the oxide thickness. For a given gate voltage, the minimum potential 

is different for different oxide thicknesses, because the value of ¢d 

will be different. But ¢d does not depend on ¢sF or on the gate 

voltage. Hence we observe, when two MOS structures with different 

oxide thickness are given, the difference of the minimum potentials 

will not depend appreciably upon the gate voltage applied on both 

structures. These observations are important in designing a working 

buried channel CCD and clocking schemes, and so we will discuss these 

points more clearly in detail in the next section. 
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1.4 Interpretation and Results of Depletion Approximation 

We first describe qualitatively how the parameters ¢t and ¢d depend 

on the oxide thickness X
0 

and the signal charge Q. This consideration 

is important to describe qualitatively how the minimum potential ¢ 
m 

depends on the salient physical parameters. 

¢d for two different values of oxide thickness is plotted in 

Fig. 1.6 as a function of the signal charge nor~alized by the maximum 

depletion charge Qd = NAXd. In this case study, the p-channel depth 

Xd is taken to be lµ and the p-channel doping density to be 20,000 e/µ 3 

which is equal to 2 x 1016 e/cm3. The silicon dielectric constant 

s 5; is taken to be 11 .7 s
0 

which is equal to 648 e/volt•µ and the sili~ 

con oxide dielectric constant sSiO to be 3.9 s
0 

or 216 e/volt•µ 
2 

Observe in Fig. 1~6. that the nonlinear d~pendence of ¢d prevails 

when more signal charge Q is present in the channel. 

Knowing the value of ¢d' the difference (¢sF-¢d) can be calculated 

for a given value of ¢sF· This difference is of the order of the 

minimum potential ¢m • Hence ¢d ' gives a rough estimate of the voltage 

drop of the minimum potential ¢m relative to the gate voltage (¢sF). 

Specifically, Fig. 1 ~ shows for zero gate voltage (¢sF = 0) and the 

zero signal charge (Q = 0), the channel potential is rough -45 volt 

for X
0 

= 0-.32µ and -25 volt for X
0 

= 0.12µ. Hence the thicker the 

oxide, the lower the channel potential for the charge carriers. 

In Fig. 1~7, ¢t and ¢dare plotted against the oxide thickness for 

zero-signal charge. As seen in the figure, and as one can easily see 

from Eq. (1-9b) when ¢dis expressed in terms of X
0

, ¢dis a linear 
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function of the oxide thickness when no signal charge is present. As a 

matter of clarity, for Q = 0 from Eq. (l-9b), we obtain 

(1-lOc) 

The linear dependence of ¢d upon the oxide thickness X
0 

also implies 

qualitatively the linear dependence of the minimum potential ¢m' upon 

X
0

. The quadratic dependence of ¢t upon the oxide thickness X
0 

is clear 

from Fig. 1. 7 and also from Eq . ( 1-9a). 

We have shown how the parameters ¢t and ¢d depend quantitatively on 

the oxide thickness and the signal charge, and also described qualita­

tively how the minimum potential ¢m depends on these parameters. As 

for Eq. (1-lOa) we have considered only for the factor (¢sF-¢d) and 

if we wish to have a more accurate value, we can calculate the value of 

R from Eq. (l-9c) to obtain the correction factor f(R) for the minimum 

potential. But this correction is only about 10 "'20% of the first 

rough estimate. This point can be made clear as we consider the actual 

values of Rand f(R) as follows. 

For the range of interest, the values of R will be between 5.0 and 

50.0 as shown in Fig. 1. 8a. In this figure, R is plotted against the 

normalized signal charge Q/Qd for a pair of typical values of oxide 

thickness X and of¢ F" Observe that the values of R may vary in a 
0 S 

wide range but the corresponding factor f(R) will be fairly constant as 

clearly seen in Fig. 1. Sb when one compares Figs. l..8a and 1 .8b. 

For a special case of interest with no signal charge present, the 

minimum potential is plotted against ¢sF for different oxide thickness 



50l
 

, 
, 

, 
1 

J 
l 

, 
, 

, 
, 1 
r 

40
 ~ (□

)--
Xo 

=
 0

.1
2

µ
 

(b
l 

: 
-4

0 
-
-
-

X
o

=
0

.3
2

µ
 

f {
R

) 
=

 
R

 

t 3
0

 
I+

 R
 +

 .
ji

+
2

R
 

3
0

 
f 

er:
 

c/
>

sF
=

-1
8.

0v
ol

t 
er:

 

I 2
0

 
2

0
 
I 

r-
'P

S
F

 =
 0

.0
 v

ol
t 

,o
c-

--
--

--
--

--
1\

~
 

~
 

l 
/ 

1,o 

0
1 
-
-
~

-
-
-
~

-
-
~

-
-
,
~

 
I 

1 
~
 1 

1 
1 0 

0 
0

.2
 

0
.4

 
0.

6 
0

.8
 

1.
0 

0 
0

.2
 

0
.4

 
0

.6
 

0
.8

 
1.

0 
-a

/a
d

--
-

-
f
{
R

)
_

.
 

F
ig

. 
1.

8a
 

Th
e 

va
lu

es
 o

f 
R

 d
ef

in
ed

 
by

 E
q.

 
(l

-9
c)

 
ar

e 
pl

ot
te

d 
ag

ai
ns

t 
Q/

Q1
 f

or
 

ty
pi

ca
l 

va
lu

es
 o

f 
ox

id
e 

th
ic

kn
es

s 
X 0 

an
d 

su
rf

ac
e 

fl
a
t 

ba
nd

 
vo

lt
ag

e 

¢S
F 

co
rr

es
po

nd
in

g 
to

 t
he

 g
at

e 
vo

lt
ag

e 
~G

 a
nd

 
th

e 
ox

id
e 

th
ic

kn
es

s 
X 0

• 

F
ig

. 
1.

8b
 

Th
e 

va
lu

es
 o

f 
R

an
d 

th
e 

fu
nc

ti
on

 f
(R

) 
de

fi
ne

d 
by

 E
q.

 
(1

-l
0

b
) 

ar
e 

pl
ot

te
d 

fo
r 

a 
qu

ic
k 

es
ti

m
at

e 
of

 f
(R

) 
fo

r 
a 

gi
ve

n 
si

gn
al

 
le

ve
l 

Q
/Q

d.
 

w
 

0 



31 

in Fig. 1 .9. As we claimed earlier, note that the dependence of the 

minimum potential upon ¢sF (hence, upon the gate voltage) is quite 

linear. We also observe the lines are for practical purposes parallel. 

That is, the difference of the minimum potentials will not depend on the 

gate voltage applied on a pair of MOS structures with different oxide 

thickness. 

In Fig. l . lOa, the dependence of the minimum potential upon the 

signal charge is illustrated for typical values of oxide thickness 

and gate voltages (actually ¢sF). The top two solid curves are for 

¢sF = 0.0 volt, and the bottom two for ¢sF 18. 0 VO lt. These four 

curves define the minimum potential levels, that is, the four points 

at Q = 0 in the figure, which may be applied for two phase buried 

channel CCD operations. This point is discussed further in the next 

section and the full treatment of two phase buried channel CCD opera­

tions is given in the next chapter. 

We are now in the position to discuss one of the most important 

aspects in the metal oxide semiconductor system for our one 

dimensional buried channel CCD structure, that is, the condition for 

zero surface electric field, or flat band. 

The dashed curve in Fig. 10.a was obtained by calculating the 

values of the minimum potential as a function of the signal charge with 

the constraint that the surface electric field E is zero. That is, s 

for the case of zero-depletion width x1 by Eq. (3-8d), we obtain from 

Eqs. (1 -8a) and (l-8f) after some manipulation for Es = 0, that is, for 

X1 = 0, 
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(1-lla) 

Recall that the parameter¢ was originally introduced in Eq. (1-8f) to 
q 

relate the p-side depletion width x2 to the minimum potential ¢m• Here, 

we also note the band is flat at the semiconductor-oxide interface. 

Hence, we have ¢m = ¢sF· When the signal charge increases beyond the 

dashed curve, the signal charge will 11 touch 11 the oxide-semiconductor 

interface. 

The surface electric field is zero and the band is flat when, for 

given gate voltage (¢sF), the amount of the signal charge becomes, from 

the Eq. (1-lla) above, 

Q 

E =O s 

(1-llb) 

When no signal charge is present (Q = 0), then from Eq. (3-lla) 

we note that the magnitude of the gate voltage ¢sF must be set equal to 

¢q given by Eq. (1-llb). For the values used in the case study, this 

gives ¢sF = - ¢q = - 324 volt for Es= 0 and Q = 0. For this value of 

¢sF' Eq. (1-lla) gives Q = 0. The dashed curve in Fig~l~lOa is given 

by Eq. (1-lla) and the values of the signal charge Q for Es= 0 (cal­

culated by Eq. (1-11 b) for ¢sF = 0.0 volt and -18 volt) give the two 

points that are arrowed in Fig. 1.10a. 

The surface potential ¢sis plotted against signal level in 

Fig. 1.1Gb. Note the dependence of the surface potential upon the signal 

charge is quite linear as compared to the minimum potential. The 

slope is proportional to the oxide thickness X
0 

and given by the 
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reciprocal of the oxide capacitance C . Note the pairs of lines for 
0 

X = 0.12 and X = 0.32 are parallel to each other respectively. As we 
· 0 0 

observe in the relation given by Eq. (1-8b), the surface potential 

depends on the surface electric field in a linear fashion. Hence we 

observe that the surface electric field is also a linear function of 

the signal charge Qin a good accuracy. 

The surface electric field Es is plotted in Fig.1.11. The slope is 

roughly the reciprocal of the silicon dielectric constant ss;. The 

analytic expression for the surface electric field is as messy as the 

one for the minimum potential ¢m• To complete the discussion, we 

present the expression anyway. 

Define two parameters A(Q) and B(Q) as seen by 

( 1-11 C) 

and 

Both A(Q) and B(Q) are functions of the signal charge Q. Then the sur­

face electric field Es can be calculated from the expression 

E =AQd [1-J1 -B/A2] (1-lle) 
S SSi 'J 

The condition for zero surface electric field is B(Q) = 0. Then from 

Eq. (1-lld) we have the relation as seen in Eq. (1-llc). For the range 

of interest, the right factor in RHS of (1-lle) is fairly constant with 

values between 0.6 and 0.8 and the surface electric field is propor­

tional to A, which is a linear function of the signal charge Q. 
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voltage ~SF corresponding to the gate voltage ~G 

as related by Eq. (l-8c). 
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1 .5 Constraints on Gate Voltage and Siqnal Charge 

We are now in the position to describe the upper and lower bounds 

imposed on the minimum potential for normal device operations. Without 

this consideration, the device operation is practically impossible and 

the important results are summarized as a graphic illustration in 

Fig. 1.12. 

We will first give the physical background for the upper and lower 

bounds and then derive the equations which represent the constraints 

between the gate voltage (¢sF) and the signal charge Q for normal device 

operations. The conditions outside the normal device operations, that 

is, the accumulation and inversion conditions will then be discussed. 

Returning to Fig.l.lOa for ¢sF = 0.0 volt, we observe the minimum 

·potential approaches to zero as the amount of signal charge approaches 

the maximum possible capacity Qd. However, we note the minimum potential 

must be always lower than the ground reference at least by the amount 

of the p-n junction built-in voltage ¢8 given by Eq. (1-7). For our 
3 3 case study, NA= 20,000 e/µ and Nd= 1000 e/µ and ¢8 is about 0.63 

volt. If the minimum potential is raised beyond this point by the 

excess _signal charge, the p-n junction will be forward-biased momentarily 

and t~e signal charge will be dumped to the substrate as a current 

through the p-n junction. 

To prevent the p-n junction from becoming forward-biased, the gate 

voltage and the signal charge must be controlled so that the minimum 

potential ¢mis always lower than the ground reference potential at least 

by ¢8. That is, 
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(l-12a) 

On the other hand, when the surface electric field Es becomes zero, 

the signal charge starts accumulating at the interface. Then, the 

trapping in interface states at the semiconductor oxide interface imposes 

limitations on the performance of CCD operations. To prevent the signal 

charge from 11 touching" the interface, we must have, referring to 

Eq. (1-lla) or Fig.l.lOa and Fig.1.lOb 

q,m(q'sF'Q) ~ - (1 - ~ )2 <l>q 
. d 

(1-12b) 

From the above two equations, it is clear that we cannot have the signal 

charge Q equal to_Qd in any circumstances during CCD transfer operations. 

Combining the constraints (l-12a) and (1-12b) we obtain 

- (, - g_)2 ¢ < ¢ < - ¢ 
Qd q - m - B 

This inequality imposes a smaller upper bound than the previous one 

(Qd) upon the signal cha;ge Q. That is, we must always have Q: QMfa,X 

where QMAX is defined- as 

QMAX = Qd [ l -~] (l-12d) 

This condition, Q: QMAX' must be satisfied regardless of the gate 

voltage ¢sF· The signal charge must be always smaller than this value 

at least. (The gate voltage actually restricts the value of Q further 

into a narrow range.) For the case study in this presentation, QMAX 

i~ smaller than Qd by 4.5% for ¢q = 308 volt and ~B = 0.63 volt. 
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The problem is to rewrite Eqs. (1 -12a) and (l-12b) in terms of 

the gate voltage ¢sF and the signal charge Q explicitly. When¢ = m 

- ¢8, we have a functional dependence between the signal charge Q and 

the gate voltage ¢sF· This functional relation gives the boundary 

for the range of Q and ¢sF constrained by Eq. (l-12a). The calculation 

is tedious but the result can be obtained by solving Eq. (1-8) for 

¢m = -¢8 . And we obtain the constraint corresponding to Eq. (1-12a) 

as seen by 

[ QMAX-Q ] [, +(~gJ Q~1Ax-O 
]- ~B 

( 1-13a) ¢ F < Qd s - C 
0 

This is the constraint to keep the signal charge from being washed away 

to the substrate. Note for the maximum signal charge Q = QMAx· 

¢sF ~ - ¢B. 

The other constraint (l-12b) can be written simply as 

¢ > - (1 - g_ ) 2 ¢ 
sF - . Qd q 

because¢ = ¢ for E = 0 as seen in Eq. (1-lla). sF m s 

(1-13b) 

These fonnulat"ions are very important when one is involved in 

designing a working buried channel CCD structure. Figurel.12 shows the 

range of the permissible values of ¢sF and Q. The boundary lines can 

be obtained from Eqs. u -13a) and ( 1-13b). Observe the oxide capacitance 

C
0 

appears in the epxression ~-13a) but the lower bound for ¢sF 

which is given by Eq. ( 1- l 3b) does not depend on the oxide thickness. 

These characteristics are clearly observed in Fig. 1.12. 

The conditions under normal device operations are clear from the 
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above discussion. The conditions outside the normal device operations, 

that is, the accumulation and inversion conditions can be described 

more intuitively with the aid of Fig.1.1Ja. and 1.13b. He now first 

consider the condition depicted in FigJ.13a, that is, the accumulation. 

Suppose a certain amount of sional charge is present in the p­

diffusion layer and we would like to consider how the gate voltaqe 

influencesthe band structure. Phen a larqe neqative voltaqe is 

applied to the oate, the resulting interface electric field hecornes 

attractive to the siqnal charqe. That is, E < u and the constraint s 

qiven by Eq. (1_ 13b) and shown in Fi9.1.12 will not be satisfied. In 

this case, as depicted in Fiq.l.lJa, an accumulation layer will be 

formed at the interface whose thickness is small compared to the 

insulator thickness X. Consequently, under accumulation the capaci-
o 

tance measured will be essentially that of the insulator C
0

• The 

mobile charge and fixed char0e distributions are illustrated in the 

lower fi riure. 

Mow suppose we raise the gate volta0e suddenly to a very large 

positive value. Then, the constraint defined by Eq. (l-13a) 

suddenly becomes not satisfied and all of the signal charqe will be 

washed away into the substrate suddenly. If the qate voltage is in a 

reasonable ranqe, some of the siqnal charge can be "saved" in the p­

diffusion region. As we increase the gate voltage, the siqnal char0e 

will be repelled from the surface, then also from the p-diffusion 

reqion, partially by the positive surface state char~e Qss and 

the positive imaqe charoe at the qate, resultino in the nrowth of a 

depletion layer which extends deeper into the p-diffusion layer. A 
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further increase of the voltaqe causes the p-layer near the interface 

to conect thermally oenerated minority carriers {electrons, forminq 

an inversion layer. T.he situation is illustrated in Fig.l.13b. The 

time required for this process is called the storaqe time. For a 

~ood device, the storage time is of the order of one second. Since the 

storaqe tiTT'e is r:iuch 0reater than the typical operation time of CCD, 

the effect of the formation of an inversion layer is not so serious 

and indeed in this way we can refresh the CCD, that is, we can delete 

all the sional charqes. 

1.6 Device Capacitance 

The gate capacitance Cq is the most important ~arameter when one 

is concerned with the clock load and the actual speed of the device 

operation. In this section we first consider the gate capacitance and 

describe how it chanqes under the condition of inversion. Then the 

relevant relations among the ~ate capacitance and other capacitance, 

such as oxide capacitance and depletion capacitance, are presented in 

terws of the physical parameters discussed in the previous sections. 

The qate capacitance c9 may be defined as the change of the image 

charge on the metal gate \'Jith respect to the gate volta9e. The 

charge on the metal qate is by definition the image charge of the total 

charge at the interface and inside the semiconductor. We now describe 

how it changes under the condition of inversion depicted in Fiq. 1.13b 

When the device is stati.c, the large positive qate voltaqe causes 

thermally qenerated minority carriers to shield effectively the 

depletion reqion from any increase in field so that the capacitance 
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becomes dominated by the inversion layer and approaches that of the 

insulator C • However, durino dynamic operations of the device the 
0 

positive voltage results in the qrowth of a depletion layer which 

extends deeper into the p-diffusion layer, and the increasing distance 

between it and the charqe on the metal causes the capacitance to 

fall further with increasing qate voltage. 

We now approach the prohlern more quantitatively to obtain the 

relevant expressions among the gate, oxide and depletion capacitances 

and other physical parameters. 

In norma 1 device operations, using the re 1 ati ons given by Eqs. Cl -8) 

it can be shown that the gate capacitance is proportional to the 

chanqe of the surface electric field with respect to the nate voltaqe 

¢8 (or <PsF ). Specifically, we have 

and this can be also rewri~ten as 

where c1 = s 51 ~x1 is the surface depletion capacitance 

c2 = £51/(l + M:)x2 is the p-n junction capacitance. 

In principle, it is possible to obtain the chanqe 

( 1-14a ) 

( 1-14b) 

and 

~iniwum potential in terms of the chan0es, ~<Psr and ~Q, of the surface 

flatband voltaoe and the siqnal charqe. After a diliqent work of 

symbol manipulations, one would find 
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[
l l l 1 + c2 c + c 

o l -J 

(1 - 1 5a) 

This expression can be easily obtained by considering the differential 

capacitor nebmrk shown in Fig.1.5 c. The change of the minimum 

potenti al with respect to the surface flatband voltage ¢sF is fairly 

constant. As we observe from Fig. 1.9 its value is about 0.8. The 

influence of the gate voltaoe upon the minimum potential is attenuated 

by the presence of the capacitors, that is, from Eq. (l-15a) we have 

< 1 

With the introduction of the p-n junction capacitance c2, we can 

express the ~1ate capacitance Cq in a neat form as seen by 

(l-15b) 

(1-15c) 

The chanqe of the minimum potential upon the change in the signal 

char9es can be expressed ~s 

(1-15d) 



46 

\,Je have 9iven all the important analytic formula! for the gate 

capacitance and other important physical parameters. And from these 

equations above, we can obtain quantitatively how the capacitances 

c1, c2 and c9 depend on the salient physical parameters. The relevant 

calculations have been performed and the surface depletion capacitance 

c1, the p-n junction capacitance c2, and the gate capacitance c
9 

are 

plotted in Fig. 1.14a, 1.14b, and l. 14c respectively. 

In practice during the operations of CCD, the amount of the signal 

char~e Q would not be more than 50% of Qd. Hence as seen in Eq. (1-15b) 

the chan0e of the minimum potential upon the ~ate voltage i:s fairly 

constant, and its value is always around 0.8. This is because of the 

small p-n junction and capacitance c2 compared to the oxide and surface 

depletion capacitance, C
0 

and c1• Figure ~l4c is useful when one 

wishes to estimate the load upon the clock-drive. For small si~nal 

level, we note the gate capacitance c9 is always about 100 e/volt•µ 2. 

If one drives the clock with 1 MHz with the volta9e swing of 20 volts, 

the current to be supplied to the gate is 2 x 109 e/sec•µ 2 If the • 

qate dimension is l Qµ by 1 OOll , the current is 2 X 1012 e/sec or about 

0.32 µA per gate . If one unit cell of the device consists of four 

qates, we must supply 1.28 µA per bit. For a thousand bit shift­

register, the current would be 1.28 mA. 

It should be noted at this staqe that the gate capacitance c
9 

so 

defined above is actually a function of the gate voltaqe ¢5 F and the 

signal charge Q. In a specific device operation. one more constraint 



N
 ::1.

. 

0 >
 

....
....

.. 

~
 u 

5
C

X
)O

,-
--

--
-,

--
--

..
..

..
--

--
.-

--
..

,.
..

..
..

--
~

--
--

1
0

0
0

.
-
-
-
-
-
-
,
-
-
-
-
-
-
.
-
-
-
-
-
,
-
-
-
-
-
r
-
-
-
-
-
-
.
 ....

 
5

0
0

.-
-
-
-
-
,-

-
-
-
-
,-

-
-
-
-
-
,-

-
-
-
-
-
,-

-
-
-
r
-
-
"
T

O
 

4
0

0
0

 

3
0

0
0

 

2
0

0
0

 

10
00

 

0
0

 

-
-

X
0

•0
.1

2µ
. 

-
-
-

X
0
•0

.3
2

µ
. 

0.
2 

0
.4

 
0

.6
 

0
.8

 
1.

0 

-
Q

/
Q

d
-

8
0

0
 

t 
6

0
0

 
N

 ::1.
. 

0 >
 ' Cl

> N
 

U
 

4
0

0
 

I 

2
0

0
 

0
0

 

-
-

X
0

•0
.1

2µ
. 

-
-
-

X
0

= 
0

.3
2

 µ
. 

--
- ----

---
---

---
---

--

0
.2

 
0

.4
 

0
.6

 

-
o

/o
d

-
0

.8
 

I I I I I 

1.
0 

4
0

0
 

t 
3

0
0

 
N

 ;i.
. 

0 -z
 

Cl
> a

, 
u I 

2
0

0
 

10
0 

-
-

X
0

= 
0

.1
2 

µ.
 

-
-
-

X
o

=
0

.3
2

µ
. 

I 

I 11
, 

I I I I I I I l I I I I I I I I I I I I I I I I 

0 o 
.0

.2
 

0
.4

 
0

.6
 

0
.8

 
1.

0 

-
o

/o
d

-

F
ig

. 
1

.1
4

 
Th

e 
su

rf
ac

e 
de

pl
et

io
n 

ca
pa

ci
ta

nc
e 

c 1 
(a

),
 t

he
 

p-
n 

ju
nc

ti
on

 c
ap

ac
it

an
ce

 C
2 

(b
),

 

an
d 

th
e 

ga
te

 c
ap

ac
it

an
ce

 c
9 

(c
) 

ar
e 

p
lo

tt
ed

 a
ga

in
st

 t
he

 s
ig

na
l 

le
ve

l 
Q/

Qd
 

fo
r 

x 0 
o

f 
o:

12
µ 

an
d 

0.
32

µ;
 

an
d 

fo
r~

 
of

 0
.0

 v
o

lt
 a

nd
 

-1
8 

v
o

lt
. 

N
ot

e 
l0

0e
/v

ol
t-

µ
2 

is
 

SF
 

eq
ua

l 
to

 1
.6

 x
 1

0-
5 

pF
/µ

. 

+=
> 

-..
.J

 



48 

amon9 the gate voltaqe ¢sF~ the signal charqe n and the minimum poten­

tial ¢m must be specified. 

For example, in actual CCD operations, the signal charge Q is to 

move relatively slo~~Y with respect to the gate voltaoe swing and the 

gate capacitance corresponds to the value with fixed signal charae 

while the ~ate voltage is chanqing. On the other hand, in the case 

of surface field-effect transistors with metallurgical p-diffusion 

channel, the sional (channel) charqe Q can be supplied or extracted 

readily through the source and drain meta 11 urqi ca 1 contacts. The 

charqe Q responds quickly to the gate voltage but the channel potential 

is fixed by the source and drain voltages while the qate voltaoe is 

chanqinq rapidly. 

An analytic expression for the gate capacitance Cq in terms of the 

9ate pote~tial ¢
5
F and the signal charqe Q can be obtained by tedious 

symbolic ~anipulations fro~ Eq. (1-8). But the result can be expressed 

quite compactly by using the two parameters A and B defined by 

Eqs. (1-llc) and (1-lld). The gate capacitance is found to be 

( 1- l 5e) 

The C1ate capacitance is a very useful measure in estimatinq the clock 

load and the operation frequency. But when the dynamic charge transfer 

process in CCD is under consideration, the information regardin9 the 

channel potential ¢m and the amount of the siqnal charge Q is essential 
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in the calculation of char~e transfer efficiency. Specifically we must 

know how the channel potential ¢m depends on the signal charoe Q. 

In Fig. 1.15 we have plotted the qradient of the minimum potential against 

the signal charge. Observe the dependence is quite linear upon the 

signal charge. That is, the actual dependence of the minimum potential 

upon the signal char9e is quadratic as we have claimed earlier 

referring to Fig.1.lOa. The slope of the curves we see in Fig. 3JS 

will be steeper for lighter p-diffusion doping level NA. This point 

can be understood clearly from the relation given by Eq. (1-lSd) if 

one notes that the p-n junction capacitance c2 is small compared to the 

oxide and surface depletion capacitance. In this case, we find, takinq 

(I- l6a) 

Or differentiating Eq. o -lOa) twice with respect to the signal 

charge Q, we obtain in a better approximation 

(1-l6b) 

where the factor f(R) is taken to be a constant with respect to the 

si9nal charge Q. The values of f(R) for Q = O.O are seen from 

Fig. 1.10and are around 0.7. For ¢sF = 0.0, Fig.1.15 shows 

3¢m/ aQ = 0.0. This fact can be explained using Eq. 0- llb). For 

¢sF = 0.0, Q = Qd at Es= 0.0. Es= 0.0 gives x1 = o.o. Also O = Qd 
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1.15 
-Q/Qd--. 

potential <Pm with The change of the minimum respect 

to the change in the signal Q is plotted against the signal 

level. The fact that the slope is practically constant for 

small values of Q/Qd allows us to approximate $m by a quadra­

tic function of the signal charge Q as seen in Eq. (1-17) 
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gives x1 + x2 = o. Hence x2 is also zero. That is. c1 and c2 in 

Eqs. (1-lSd) and (1-lSb) must be inffnite, resultin9 in a¢m/aQ = 0.0. 

Of course, this condition is outside of the normal device operations, 

and never realized in practice. 

The fact that the slope is fairly constant for low signal level 

in Fig. 1.15 suggests a quadratic approximation of the minimum 

potential with respect to the si9nal charge Q. That is, we expand 

¢m about Q = o.o as a second order polynomial of Q as seen by 

8¢ a2
¢ 

$m($sF'Q) ::e $m($sF'O) + aQm Q +} 
30

2m 02 
(1-17) 

Q = 0.0 Q = 0.0 

The values of ¢m( ¢5F,O) have been plotted in Fig. 1.9. The va·lues of 

the coefficients of the second and third terms have been calculated 

exactly. And the values of the potential calculated by Eq. (l-17) 

agree with the exact values by Eq. ( 1-10) within the errors of 0.1% 

for the ran~e of interest. If we had plotted these values on Fij- l.10~ 

the corresponding points would fall on the lines, and there is 

no way to see the differences in the figure. 

When one analyzes the dynamic charge transfer process in CCD, it 

is very important to express the minimum potential in the form qiven 

by Eq. O -17). In the analysis, one is interested in the signal charge 

Q and the minimum potential ¢m· The simpler the relation between these 
• 

two quantities ¢rn and Q is expressed, the better for the charge 

transfer analysis in multi-9ate structures. 
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}.7 Gaussian Doping Profile 

For uniformly doped abrupt p-n junction, the depletion approxima­

tion qives excellent agreements with the exact solution which is solved 

numerically using Eq. ( 1-6). For, many rea 1 is tic devices the doping in 

the p-diffusion layer is typically introduced by ion-implantation 

followed by drive in diffusion. The resulting fixed charge distribution 

is a Gauss i an dopin0 profile characterized by the two parameters, the 

surface char0e density Ns and the p-n junction depth x
9

• To apply the 

results of the previous sections we first describe the procedure to 

obtain the effective p-diffusion density NA and the effective diffusion 

depth Xd .from Ns and x9• This correlation allows us to estimate the 

general dependence of the minimum potential ¢m and the gate capacitance 

c9 on other salient physical parameters. 

In this case, the fixed charge distribution d(x) can be given 

quite accurately by a Gaussian profile as seen by 

(1-l 8a ) 

and 

(1 - 18b) 

where Ns is the surface density of the p-diffusion layer and x9 is the 

position of the p-n junction of the semiconductor. The total sheet 

charqe density Qd in the p-diffusion layer is then given by 



X 

Qd ~ -f 9 d(x)dx > 0 

0 
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This quantity may be thought of as the product of the effective average 

doping density NA and the effective depth Xd of the p-diffusion layer. 

That is, as before 

( 1 -19b) 

If we take the effective depth of the p-diffusion layer to be equal to 

the p-n junction depth, that is, Xd = Xg, then the relation (1 -l9b) 

determines the value of the effective doping NA. However, the exact 

numerical calculation of the electrostatic potential gives a better 

agreement to the solution of the depletion approximation if we choose 

the effective depth to be at the reflection point of the Gaussian 

doping profile. By differentiating Eq. (1 -18a) twice with respect to 

x and setting it to be zero, we obtain 

X 
X = _g_ 
d a 

(l -20) 

That is, for a Gaussian doping profile, the effective depth is actually 

shallower and the position of the minimum potential is closer to the 

oxide-semiconductor interface. Consequently, the signal charge will 

be transferred along the potential valley closer to the interface. 

The effective p-diffusion density NA can be obtained by Eq. (1 -19b) 

if the actua 1 va 1 ue of Qd is computed from Eq. ( 1 - l 9a) for the doping 

profile d(x) given by Eq. (l -18a). The result is given as seen by 
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~ exp(a2) erf (a)l 
·2a J 

This quantity Qd is by definition equal to NAXd by Eq. (1-l9b). 

from Eq. (l-20a) Xd/X
9 

= 1/a. Hence we have 

Q [ 2 N = _g_ = N l _;:;- exp(a ) erf (a)l 
A xd d a 2a2 j 

a, hence, Ns/Nd only. 

(l-20b) 

Hence 

(l-20c) 

In Fig. 1.16a the effective average doping NA and the sheet charge 

density Qd are plotted against the surface doping Ns. The units are 

normalized by the substrate doping Nd for NA and Ns' and NdX for Qd. g 

In Fig. 1.16b the effective diffusion layer depth Xd is plotted also 

against N/Nd. 

We have now estabished a procedure to correlate the results of 

the uniform doping case to that of the Gaussian doping case. And the 

general characteristics of the potential profile and charge distribution 

can be easily compared for both cases. 

In Fig. 1 . l 7 the approximate potential profile is compared with 

the exact numerical solution. Observe that in the p-diffusion layer, 

the charge distribution is such that the entire signal charge packet 

is a neutral zone. The signal charge packet arranges itself 

according to the doping concentration so that the electrostatic 

potential is at its minimum value in the entire neutral signal charge 

packet. 
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Exact solution for Gaussian doping profile 

Depletion approximation for uniform doping 

Depth from Si -Si02 Interface {µ) 

Xg 
Qd = XdNA = /d(x)dx 

0 

~ = 0.400 for uniform doping 

d = b.428 for Gaussian doping 

4'm = -28.5 volts 

X 

Fig. 1.17 The potential profiles~ by the depletion 

approximation and the exact numerical solution of the 

Gaussian doping profile are compared. Xd=l.Oµ and 

the p-layer doping NA of 20,000e/µ 3. 
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The oxide thickness X
0 

is taken 0.32 and the gate voltage ¢sF equal to 

-18.0 volt. Since the gate voltage is fixed, the minimum potential 

¢m and the signal charge Qare not independent of each other. Demanding 

the minimum voltage ¢m to be -28.5 volts, the corresponding signal 

charge Q/Qd is 0.400 for uniform doping and 0.428 for Gaussian doping. 

In principle, it is possible to fix the signal charge Q/Qd to be 0.400 

and obtain the corresponding minimum potential ¢m for the uniform doping 

(which is -28.5 volt as before) and for the Gaussian theory case 

(which will be slightly lower than -28.5 volt) respectively. But the 

actual numerical computation for the Gaussian Profile case turns out 

easier if the minimum potential ¢mis fixed at the start rather than 

Q. This fact can be understood easily if one recalls the form of the 

Poisson's equation ~ -6b) in the p-channel region, which includes the 

minimum potential ¢min the expression. Then after computing the 

potential ¢(x) as a function of the spatial coordinate X, we obtain 

the amount of the signal change from the relation given by 

x=O X=X 
g 

U -20d) 

which gives the total signal charge from the minimum potential ¢m and 

the electrostatic potential profile¢. 

We are now in the position to describe the general dependence of 

the minimum potential ¢ and the gate capactiance C for the case of m g 

the Gaussian doping profile and compare with the approximation .made by 

the depletion approximation. 
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For our case study, the surface doping density Ns is taken to be 

24,000 e/µ 3 and the effective p-diffusion layer depth Xd to be l . Then, 

from Fig. 1.12a or Eq. 1-20c, the effective p-layer density NA is found 

to be 20,114 e/µ 3. The corresponding actual p-n junction depth X 
g 

for the Gaussian doping profile is found from Fig. 1.16b or Eq. (l-20a) 

to be 1 .82 µ. The substrate doping is fixed and taken to be 1000 e/µ 3. 

The dependence of the minimum potential ¢ upon the gate voltage (¢ F) m s 
for zero signal charge Q = 0.0 is illustrated in Fig. 1.18 for compari-

son with the results of the depletion approximation. 

Figure 1.19 shows the dependence of the minimum potential ¢m upon 

the signal charge. The illustration format is similar to Fig. 1.10a 

The slope of the minimum potential shown in Fig. 1.19 is plotted in 

Fig. 1.20. The gate capacitance Cg for the Gaussian doping case is 

also plotted in Fig. 1.21. The solutions of the exact numerical 

calculation for the Gaussian profile follows the general characteristics 

of the solutions obtained by the depletion approximation with surpris­

ing accuracy. 

There may be several ways to compute the minimum potential and 

other salient physical parameters in the exact numerical calculations. 

We outline below one possible procedure to obtain the gate capacitance 

c
9 

and other relevant physical parameters. 

By numerical calculations, we can obtain the electrostatic poten­

tial everywhere inside the semiconductor. The equation to be solved 

numerically is given by Eq. (1-6) and identified to be the form of a 

nonlinear differential equation seen by 
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-- Exact Gaussian 

--- Depletion approximati.on 

~ 
~~ 

....-:::~ 
~ 

~....-::: 

-15 

~~-

~~~ X0 =0.12µ. 

-10 

C?sF (volt) 

-5 0 

Fig. l.lZ The dependence of the minimum potential upon 

the flat band surface potential ~SF defined by Eq. (l-7c) 

is illustrated for different oxide thickness X
0 

for 

the Gaussian doping profile . 
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Fig. 1.19 The dependence of the minimum potential upon 

the signal charge is illustrated for the case of the 

Gaussian doping profile. Observe the similar character­

istics between Fig. 1.10a and this figure. 
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Fig. 1.20 The change of the minimum potential with respect to 

the change in the signal charge is illustrated for a Gauss­

ian doping profile. Observe for the range of interest, the 

slope is fairly constant. 
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300 
I 

Exact Gaussian I 
--- Depletion approximation I 

I 
X0 = 0.12µ. I 

I 
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I 
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100 
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0/Qd 

Fig. 1.21 The fonnat is similar to Fig. 1.14c. The gate 

capacitance c
9 

for the Gaussian doping case is plotted 

against the signal charge Q. Observe the similar 

characteristics between Fig. 14c and this figure. The 

values are computed by Eq. (-14a) numerically. 
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32¢ 
~ = f(¢,x) 
ax 

for o < X < 00 (1 -20a) 

The boundary condition at the Si-Si02 interface is given by Eq. (l-8b) 

and can be written as 

at X = 0 

At x = 00 , that is, deep in the substrate, the potential is grounded, 

hence we have the remaining boundary condition: 

¢ = 0.0 at X = + oo (l -20c) 

Solving Eq. (1-20) we obtain the potential ¢(x) as a function of the 

spatial coordinate everywhere for 0 < x < 00 • In order to calculate the 

derivatives of the salient physical parameters, we introduce a param­

eter \jJ defined by 

( 1 -21 a) 

Then, corresponding to Eq. (1~20) by differentiating them with respect 

to ¢sF we obtain an ordinary linear differential equation with respect 

to \jJ given as 

for 0 < X < 00 (1-2lb) 

where the boundary conditions for this corresponding case are given by 

\jJ = 1 at X = 0.0 (J-21c) 

and 

\jJ = 0.0 at X = oo (l-2ld) 
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where 
__ af(¢~x) g(x) -~-- = g(¢(x),x) (l-2le) 

8¢(x) 

Solving Eq. (3-21) we obtain ~(x) everywhere for O < x < 00 • Hence from 

Eq. (3-14a) we obtain the gate capacitance Cg by the relation 

(l -22a) 

X = 0 

From the solution ¢(x) of the Eq. (1-21), we obtain the minimum poten­

tial ¢m and its location Xm. Then we can identify 8¢m/a¢sF to be 

the value of~ at X = X That is, m· 

= ~(X) 
m (1 -22b) 

Then from Eq. (1-15c) we can compute the p-n junction capacitance c2. 

Then from the relation (1-14b) we have the surface depletion capacitance 

c1• The change of the minimum potential with respect to the signal 

charge can be computed from Eq. (1-15d). 

1 .8 Conclusion 

Since buried channel CCD operates in the reverse biased p-n junc­

tion depletion region, which is under thermal nonequilibrium, care must 

be taken in specifying the form of the Poisson's equation applicable 

for the structure. Unlike the surface CCD, the signal is to be 

transferred as a neutral packet away from the semiconductor-oxide 

interface and the concept of quasi-fermi levels has to be specified in 
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order to obtain the electrostatic potential and the signal level. By 

linear depletion approximation the relations among the minimum potential 

and other physical parameters are studied in detail. The procedure for 

the Gaussian profile to obtain the effective p-diffusion density NA 

and effective depth Xd from the surface density Ns and the p-n junction 

depth X is presented. The agreement between the exact numerical cal-
q 

culation and the analytic approximation presented in this paper has been 

shown to be excellent. The actual numerical computation is outlined 

and we believe the detailed results presented in this presentation will 

serve as a useful reference and guide-work for those people who are 

designing the device and studyino the transfer mechanism in details. 

This work is a stepping stone to the two dimensional analysis of buried 

channel CCD structures which begins with the analysis given her~in as 

basis. 
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IMPORTANT FORMULAS 

l. Minimum Potential ¢m 

N 
~m = - (l + N:) (~d - ~sF) f(R) 

R f(R) = -----

+ R + ✓1 + 2R 

2. Surface Flat Band Condition 

3. Surface Electric Field E s 

AQd ✓ 2 
E = - [l - l - B/A ] 
s E:Si 
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4 . . Constraints on Gate Voltage~ 'f'sF 

5. Device Capacitance 

M = m 

NdCd 
C = -----

g NA ✓i - B 

6. Gaussian Doping Profile 

X 
X = _g_ 
d a 

2 
a = 
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Final Stage of the Charge-Transfer Process 

m Charge-Coupled Devices 

YOSHIAKI DAnIO:N, A:_\!R ~1. T\IOHSEK, ,\Kn T. c. ::--.1cc111, MEMuER, IEEE 

Abstract-The final star;es of transfer of charge from under a 
storage gate is formulated analytically including both fringing-field 
induced drift and diffusion. Analytic. solutions to these equations are 
presented for constant fringing fields, and a system of equations for 
spatially varying fields is developed. Approximate solutions for 
spatially varying fringing fields, when combined with a lumped­
parameter model of the self-induced field effects, are shown to give 
a reasonably accurate repre_seotation of the free-charge transfer 
process. 

I. IXTRODUCTIOX 

EARLY descriptions [I], [:2] of the charge transfer in 
chargc-coupkd devices (CCD) assumed that during 

the final stage of the charg,: tran:;fN, the mcchani:;m of 
transfer would be di !fusion from under the :;toraµ;e gate. 
However, subsequent studiPs of t!tc surfacE'-potcntial pro­
files und(:r the gatl'.~ [:{] indicated t hat fringing-field 
induced' drift could act as an additional charge-transfer 
mechanism. In cPrtain designs of CCD. this second mech­
anism can actually act as the dominant mechanism for 
tramfer and enhance the rate of transfer during the final 
stage of charge tran:-;fp r [4], [ii]. 

These 2 mechanisms of t rnnsfcr arc characterized by 2 
time constants, the thermal-diffusion time constant, Tih, 

and the single-carrirr tranc;it time constant, Ttr· In the 
case when the fringing fields are 0, the final stages of the 
diffusion proccsse,; are chnmctcrizcd by a profile which is 
a cosine function in shapf~ and \\·hi ch d ecays exponentially 
with a tinw constnnt given by 

4L2 
Ttb = 1r2D 

( 1) 

where L is the length of the storagP elc-ct rode. and D is the 
diffusion constant. 

On the other hand, if we neglect di !fusion plH'nOtn(•11011, 
the charge remaining 11nder th(' ::;toragc gate will be s\\·cpt 
out in a single-carrier tra nsit time 

. 1L di: 
Ttr = 0 µE ( i:) . (2) 

In this paper, wr :-;tudy t hrsP n'sult;.; nna lyt irally . We 
show that it is pos::;ibk to ohtain an anal.,·tic solution of 

l\lanu:;criµt received :\lay :rn. l!J7:l. Thi~ work wa.~ ~11pportcd in 
p!lrt by the Olliee of !lo"aval He:::earch under c;rnnt :\()!101 4-67-A­
OO\H-0U:32 nn<l t.lic Kami Hc~can:h Lal><>rntoric,; under Grant 
00173-:l-006:!,i:.!. 

Y. Daimon and T. C. :\lcGi:I nre with the California Institute of 
Technology, Pasadena, Calif. VI LOU. 

A. :\1. :.lohsen i.:; with Bell Laboratories, :\Iurray Hill, N. J. 07060. 

the continuity Pquation in whic-h the c:omhined effrc-t:-; of 
diffusion and a uniform fri11ging fip]d arc incl11<lc•d . .\ ;.;P.t 

of ecpiatinns for spat iall,· va rying fringing llC'lds ar,• dc­
velopPd 1.o sho w that the analytic sol u ti,,n for spatial ly· 
varyinJ!; l1d<l s can also be \Hi tt1·n in a form analog()us to 
that for constant fringing fields. 

The standard variational method is app li ed to obtain 
an approximate nnal~·t ic expression for the characteristic 
time constants for spatia ll y var:,ing fringing fiPlds. Self­
induced drift terms arc included by u ;;ing an approximn te 
lumped-circuit model. 

II. TRAXSPORT DY~.-\:,\IICS 

The transport. dyn::imir,s along t he insulator-::H:micondue­
tor interface arc described by the continuity equati on 

(3a) 

and the diffusion pquat ion 

J' = - D ~.2 -1- µq (- ~~.!) ox iJ;; 

where q is the surface-c-harge densit~·, cf,, is thf• surface 
potential, and x is thl' distance along the int erface in the 
dircctio11 of charg1· tn111sf Pr. J, is the i:i hrrt-eurrcnt drn,;ity. 

In this paper, \\"1' ,\·ant to con;;idcr thf: solut ion tu ! :n 
for bo11n<lary conditions nnd approximatinns appropriate 
to the case whrrc: tlw stor:.ige gate• c<>11tai11s a :oma ll amount, 
of charge. This eonrlitio11 will ari;-;e in thP fi11:\\ st:q.(c· <>f 
th<> chargr transft·r , in th!' comp]Ptc charµ:r·-transft•r 111ndf' 

[;i] , or when tlw CCD is ni.wrat!'CI in a lr1\\·-lc-vc•l inj 1·c:tiun 
appliratio11, such as Im,· light-h•vf'I imaging . f11 tht•,;c 
casPs, we can to tlw fir;-;t appn,xim:ltion 11rgl<"et the self­
induced fif'ld !Prm:- . 

Whrn a CCD is op<"ratpd i11 thl' c-ompll't<· charge­
trnn,;fer mo<lP, dctuikd numrric-:d ,;imubtion of the trans­
port dynamics u11d cr all tlt1· rl'h·vant gate rlectrodc-,- and 
interckr.trndrs n•gio1 1s show that tlw c·hargc tran--fc·r in 
the last stagc~s of th<' tra11:;fer prnrl•.,s c:1n be approximately 
desc ribed by thP dischargp of thc- storagP gat e with :1.11 

almo:;t perfect sink at onP Plld [-'>]. Therefore, \Y e have 
cnnsidPrt><l th e solution · of ( :~ ) for the disr h:1rgc of the 
storage gate using t hr boundary conditions 

q( t.L ) = 0, 

J,, ( t,0) = 0. 

fur t > 0 

fort > 0. 

(4a) 

(4b) 

Condition (-!a) corresponds to assuming a perfect sink at 
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thP right-hand end of the ;;toragc gate :r = L; (4b) corre­
,-;pnnd:.: to :1.-:.:uming th:.11 no c·urrc•nt flow::; out of the bucket 
umlc-r the ,:torag<' g:1t1· thruugh the edge at .r = 0. 

III. CO:'.\ST.\:'.\T FHT:'.\GIKG FIELD 

,\:,;;:urning a c,m;:tant fringin r:; fip]d E undN the storage 
gate and ncgk et i11g the ,.,l'lf-induccd field term , the re­
sidual surfa e0-eharg1· prnfilP und0r thf' storage gate is 
given b_\· :::olving ( :3) to obtain 

" ·h0n• l:T i:.: tlw tlwrm:11 vol tng0 and n is a summing index. 
The ""hiti,,n i::- g i\·1•11 b_\· :1 FouriPr cxpan,-;im1 multiplir.d by 
:1 c·1immon functi on. c•xp (Er ''21.:T _), wi t h constant s Cn, r,. , 
and .-1 .. to hf' clt'IPrn1inC'd a;. follows. 

C:,, i,:; dctnmim·cl by the· boundary condition at .r = 0 
and is given by s0lving the tran::-ccndcntal equation (see 
Fig. 1) . 

tan (~ C ) + (~ ) 1rC = 0 
:2 " LE " 

(6a) 

where· C" is in the range given by 

211 - 1 ~ C,, < '211, for n= 1,2, ···. (6b) 

r,, is given b,\· sub,-tituting (:'i) into (3) t-0 obtain 

rr 2D (µE) 2 

C.2 4U+ 4D . r,. 
(7) 

:'.'foting that the cxp,11H'11tial term, exp {Ex / 2/...:T) in (;°>) 
can be taken outside of the summation , we then obtain 

A,,-= /,[l - . 2 f L q(O,.r) exµ (- Ex) 
( ,: in rrCn) 1;rC,,] 0 21.:T 

•::- in[~ c.(1-i)]ax (8) 

wll<'rc 11se of the bou11d:uy cn11ditio11 (tia) has brcn made. 
Detail<'d n11mrrieal simulntio11.'- [4J, [i] of charge trans­

fer, including the cff Pcts of fringing fi eld ;;, sho\,. that the 
profile of rhargr C'hangc:; for a single-carrier transit time 
and th r n becr rnws st :1tiu11ary \\'ith an exponentia l time 
dc,ea>· of the amplitudl'. This result i:s easily understood 
in light of the solution µn·s cnt ed in t he previous discus­
sion. h1Jm ( 7 ) and (Gb ), orH• can see that rn is a d ecreas­
in g function of 11. H ence, fur -reaso nably ~mooth initial 
ch:t rgP dis t ributitJn ,- \1·hi('h produee finite values of A . 
which <' ith C' r l' t• main n·latively constant or decrease with 
incrca.,ing n , 11·<· l'X JW C.:t that f'Vl'l1tually tl\C' first term in 
the se ries in (,-,) domina tc1- the scrie::-, and g(t ,r) can be 
approximated by 

q(t ,rJ ~A1Pxp({;)sin[~c1(1 -i)]exp(-D 

(9) 

267 

Fig. L The grnph illu8t rn.tes how to obtain C, and C, defined by 
(6a) . N tite 1 < C, < '.2 and:! < C, < 1 for any v:tluc of LE/ kT. 
This i~ t.hc <·,mdition given by (61i ) for rll1mberi11g the root C0 

(the intcr~cct ion) of t he Etrnight line with each uranch of the 
tangent function. 

where we have replo.cd r1 by r1 to indica te that it is the 
time consta nt charactrrizing the final J cray ,yf the charge. 
Using (7), we find that 

(IO) 

Hrnce, we find for tin1es 1rhich are grea t.pr than smnc a.8 

yet to be d etermined t im e (sec Sedicm IV ), the charge 
pmfile remains constant, and the amplitude decays expo­
nentially with t ime. The charge profiles at !,PV<)rn l different 
times arc shown in Figs. 2 and 3 to illu,,trate the d etails of 
t.he charge transfer. 

DPtermination of the vah\C' of r1 depends upo11 the value 
of C1• The rcsul t1- of a nunwrical solution of (6a) for C1, 

a s a funr t ion of the dimen :=;ionlc:~s parameter J~'J,/kT, arc 
plotted in Fig. 4. From this plot, 1rc sec that C1 ranges 
from l for Ef, / kT = 0 to a valt1<> of 2 as J~'f, / k1' ap­
proach<'s infinity. ( :fotp the first tf'rm i11 (Ga) is nq~at ivc.) 

To compare~ this final cl< !Cay c;1y11,-ta11t \1·ith the 2 charac­
teristic times dcfirwd in Section I, 1rc have computed the 
value of the ratio of r 1 to r,h to be 

( l la) 

and the value of the ratio of r1 tor" to be 

~ = 4l,E/ 1r1kT 
Ttr Ci2 + (LE/ 7/...:'1') 2 . 

(llb) 

These ratios as a function of Ln'/ k'I' arc plotted in Fig. 5. 

IV. ST.\TJO:--JAHY PHOFrLE WITH CO?-:"STANT 
FHI.\'GI.\'G FIELD 

Ae('ordiri!!; tn thP cktailed 11t1rnerica l :;irnulation [-1], [,>] 
of charge' t ra11sfer und,·r the influcnr<> of fringing fields, 
the charge profile u11dcr the storage gate drifts for a 
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POSITION 

Fi~. 2. The dct11;il,-. of the <'harge dccav at different in,;tances nre 
il lustrated for tl_iri>e_ d1ffc:rc11t v:duc., fl / kT of cunsta11t frinu;inJi:­
fiel<l !-treu~h. 1 he 1111llal ch:lrJi:e pr11hlc 1" taken to he 1111iform. 
The total initial chari:;c i~ 70 p <' rl'Cllt of the ful l liwk ct cl,arJ!:e 
(14.6 C/ µ'). ::\' ote i11 1111 thrl'e l':s,c~ . the relat ive r-11:trgl' prn file 
become:< ~tatiunnry within a s i11~le-rnrrier trnrL~it time. The· 
posit ion of the peak of 1 he final l'h:trf?;e profile i~ l!iven exact h · 
by (14). (a) f.'/,'kT •• :3 .:1.-,. The t otal nnn1ber of profile., , how11 i"s 
18. The eorre:;po11d in~ time:< arc 0.0 I, 0.02, 0.0:3, O.o.-,, 0.07, O. IO, 
0.15! 0.2, 0.:1,_0A, 0.:i, 0.6, 0 .? , 0.8, 0.\J, 1.0, l..'i, and 2.0 of a single­
earner tran~1t tune. (I..,) El/ kT = 6.74. The total number r,f 
p~ofiles shown i~ . 16. The rurre,-pond i11g time:; arc ,-imihr to 
Fig. 2(a). The profile" at I = I .r, and 2.0 are deleted. (r) f,'/ / kT = 
31.0. The total numl>er uf profiles shown is 16. The corrc.-;ponding 
times are the same as Fig. 2 (1.., ). 

single-carrirr transit timr and then becomes stationarv. 
No .matter how ~trong the frinp;ing fields arc for reasonab.lc 
initial chargP- distribution:-;, such as uniform or a cosine 
shape, in the final stagr of charge t ransfer, the stat ionary 
profile results eventually because of thr thermal-diffusion 
mechanism. This is to say that the fir:st term in the infinite 
series in (;3) brcomcs the dominant one within an elapsed 
time, t, of the ordrr of a sinp;l c--carrier transit time. 

We now return to the qu (•s tion of \\'hat is the value of 
the lower time li.rnit for tlw validity of approximatirm of 
keeping only tlw first. trrm in the ~rrirs in (;'j). To µ;auµ;e 
this time, we consider th(' ratio r12 of the first tml tPrms 
in the S<'rics in (:i). Assuming that A 1 is the same a:; _.\ 2 

and.neglecting spatial variation, this rntio is given by 

ru = exp[_!_ ( Ci - C1
2)] 

Tth 

where use of ( 7) has bce11 made. In terms of the single--
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carrier transit time, this ratio can be v.Titten as 

Taking as our criterion the foct that the value of the t>xpo­
nent in this expression is greater than onP, we find that 
(9) is valid for 

(12) 

The right-hand sidr of this inPqualit~· i" a multiple of the 
r,h, with the constant multipl_\·ing the tr:111::;it tinw OC'!Wnd­
ing on the value of the parameter RT, /...:T. The value of 
this multiplier can be approximated as fqJlo,,·s. 

The value of C2
2 - C1

2 varies mo11otrn1ically between 8 
when Ef, / k'T is Oto 12 when EL/ kT approaches infinity. 
Thus we can replace the inequal ity by 

(13) 

This inequality shows that for EL/ kT betwren O and 
about 30 (the values normall:v en0ount0rcd in devicPs), 
the approximation is valid for timt•s gr<':1 ter than a single-­
carrier transit time. Hcncr, the result., of the numerical 
simulations arc. in good agrr('mrnt \Yitli the analytical 
results obtained here, and we ran describe the final charge 
profile by (9). · 

The pPak position of the charge packet, l'p,•ak, after it 
b ecomC's stationary undrr the s!oragr gate, is ginn by 
diffPrrnti:1ting (9) with rC'spcct tor. and f'C'tting tlir n·~ult­
i11µ; equat ion to be 0. TIH'n us ing; the cnnd ition /Ga), we 
obtain 

Xpoak = 2L ( 1 - ~) . (14) 

This expression shows the peak-posit inn varies with the 
strength of the fringing fidd. For O fit>ld , C1 is unity. The 
surface-charge profi le is a cosine function with a maximum 
at x = 0, and it decays exponentially with the time con­
stant equal to the thermal-difTusion tim(• constant. 

For large fringing fields, the value of Ci approac:lws 2 as 
shown in Fig. 4, but never becomes larger than :.?. For 
extremely large fringing fields, C1 ;:::::; 2 and .Tpc~k;:::::; L, im­
plyinp; that the peak position approaches the sink edge at 
x = L. At times, the exponential decay is observed satisfy­
ing the inequality in (12 ) , and the characteristic decay 
time is a factor approximate!_\·-} of the sillgle-carrier transit 
time, as we observe in Fig. ;j_ Figs. 2 and ;3 ill ustrat e the 
details of thechargc decay as we have discussed so far. 

V. SPATIALLY V.-\TI.Yl:-JG FTI.IN'GIN'G FIELDS 

We now note that the constant and ,;;patially varying 
fringing ficld:s bot Ii give similar chaqi;P-df'cay rhar:1ctcris­
tics. This is to say that the analytic :-;olution,-; of both 
spatially varying and constant fringing f-ields ran he writ­
ten in similar forms . Both solutions can be rxpre:-:sed by 
infinite series, and as time elapses, the trrm with the 
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c, 

Fig. 4. 
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10 

ELECTRIC FIELD PROFILE 

POSITION 

Fig. 3. Thc> d<•tnib "f the 1·hurge rlcc·ny 11t difTcrent st.ages. Thc> f'Onditio11 is simil ar to the result s of Fig. 2 except 
the fri11i,:i1 1i.: fit•ld i.- .-patiall~- varyii111; i11 this 1':l~C' . An averni.:e frini.:ing fi r. Id 1·omp11t.ed hy (2) is 140 V / r-n1. The 
minim111n field i., 74 V/ tm . The total n11nil,er of profile::; shown is 16. Thr eo rrespo11di11g times are the same as 
Fig. 21b ) and (c). 
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\ ':d111'~ ,,f (', ddi1"·d l,y 1fi J. pl1Jth'd ngRinst the 1u,rmalizcd 
fri11i.:i11i.:-litld ~tre11i;th J:..'J, / kT. 

Fip. .. -,. The fi11nl dc .. a.\· ti rue 1·1J11., t 1\J1t . r 1 , normali zed hy the si11gle-
1·:1rri.-r tnu, , it timer., :ind l,y tl•r tl1l'rn1:1l-difT11, inn time 1·onstant 
r,1,. plotted agai11,t t.he 111Jn11 :di zcd fri11µ:ing-f i,·ld .,trenv;t.11 EL/k1'. 

lar~1 ·,-t tinl<' ,-.,11,-1:rnt r1 lwr·, Hnc ·,-; J"111ina11t , rc,-ulting in 
tlw 1·xp"111·11tial dt'<':ty <'harar·tc•ristiC's and the <"onstant 
.-!1:tr);l' prufilP. In this rnsc, it is ro11v<'nient to work with 

Q( l ,.r ) , as Stien by 

Q(t,.tJ [ q(t,x') d.c'. 
0 

(l!i) 
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Using the definition for Q and the fact that current flows 
only 011t of one end of thP gate (sec ( 4b)), we can ,Hit e 
(3) as 

aQ a2Q aQ 
- = D - - µE(x) -
at ax2 ax 

(16) 

IEEE TRANSACTIONS ON ELECTRON DEVICES, APRIL }!}7"4 

where again, ''" e have replaced r 1 hy r_,. 
The lari<?st tinw ronstant r 1 could, in general, be ob­

tained by solving ( 10) and (20). HO\\"C~ver. a good Pstimate 
can be obtainPd from the standard variational pruce<lure 
for lowest t>igPnvnluC':5 [SJ. According tn this proce<lurC', 
the exact value of r1 is obtained by minimizing 

!_ = [v 11,, [d-yi/dxJ dx + (µ/ 2) { [E'Z (x) /2kT - dE/ d.c]-y/(x) dx] / 11,, -y 1
2 ( .c) d:r. 

T1 0 0 0 
(23) 

where the boundary condition equivalent to ( 4a} is 
given by 

aQ(t,x) I = 0. 
ax r-L 

(17a) 

The boundary condition (-lb) i:-: used tu derive (lG). We 
now hnve instt'ad , a di ffl'rl'llt boundary condition at .c = 0, 
which follows direct!_\· by the definition of Q(t ,x) given 
Ly (l.'i) and is seen as 

Q(l,0) = 0 , for all t. (17b) 

To eliminate tllP fir:-t <ll'rivativc from ( lG), we intro­
duce the following tran:-;formation: 

Q(l,.r) = exp (
2
:'J' f E(x) dx) R(l,:r). (18) 

Then, ( 16) becomes 

aR = D ~2!!_ _ ~ [/i)Z(x) _ di~'] H 
at a.c2 2 2kT dx 

(19) 

with the new boundary conditions given by 

aR E(x) 
ax + 2kT R = O, at X = L (20a) 

and 

R(t,0) = 0, for all 1. (20b) 

The solution uf (19) together with the boundary condi­
tions is given by an infinite series of the form 

where B" is to be determined hy the initial values of 
R(0,i:). -Yn(.r) and r. are thC' eigen functions and C'igen­
values, respectively, of thC' eigenvalue problem given in 
(19) and (20). 

The result s in the rasc of cun:-:tant fringing fields rom­
bincd with th<· rc•sults of drtaikd numcric·al sim ulatillnS 
sugg('st strong!)· that for tinws which are a fpw time's the 
single-carrier tran:-it tinlP, we can approximate the series 
in (21) by the first term and ,nitc 

Q(t,.r) = B1 C'Xp (
2
:1' f E(.c) cl.r) -Y1(x) exp (-t/r1) 

The solution of (19) ,,·ith E(:r.) ronstant suggests thP 
trial function for the fir:-;t rigenfunction 

. [1rC1x] 1'1(x) = sm -- . 
2L 

(24) 

This trial function must safr,fy the boundary r·onditions 
of (20). That is, thP vahH• of C1 is to b<· drtPrmin<·d by 
the s trC'ngt.h of the fringing fiPld R(l, ) at the sink edge of 
the gate (see (20a)). Siner. the fringing fir Id,; at the C'll(ls 
of storage gates arc ve ry large[:~] , [ .-,], ,,·c have 

E(L) » kT/ L. (25) 

Hence, substituting -Y1(.r ) of (24) intu R of (20u ) , we 
obtain 

(2Ga) 

and hence, 

(2Gb) 

With this value of C1, substituting the trial function given 
by (24) into (23), we obtain 

·1 4 µ2Ecq2 

; = Tth + 4D. (27a) 

Eeq is an equivalent constant fringing fi<·ld for the spatially 
varying fringing field E(-.r) and i:-; given by 

E./ = if [ };'l,x) - 2kT ~:] sin2 [¥ J dx. (27b) 

Note that, due. to the weighting function sin2 (u/ L), 
the integral vanishes at lioth ends of the gate; x = O and 
L. The contribution of the intergrand at the ends of t lw 
st.orage gate is rclativrly small. but the fringing fi c l<ls at 
·the positions of high-('hargc concentration are weight ed 
heavi ly in thr integral. If the fringing field is slowly vary­
ing and is at i ts minimum value Rm;., under mo:-;t of the 
storage gate (except at the ends). then WP obtain E(.r ) ~ 
Emin and ciJ,; / dX ~ 0. lfonc<'. from (Db), we have 
E,.q ~ J,;min• Finally, we obtain an approximatl' analytic 
formula of the time constant for spatially varying fringing 
fields, which is 

(28) 

(22) Care must be taken in applying this formula. This formula 



74 

l>.H}IOS et al .: C'flAH(iE-TllA S Sf"[H pnoer.,:-: 

wa~ obtairwd f11r ~l11w l.,· ,·nryin_g frin~ing fi,,Jd:-: u1 11 lPr 111, ... , 

nf th,, :-::tnr:tgf• gatP. :1.nd <•thc•r c1111fiµ:urati1111..: 111 :1_\· gl\·1• 

difT<'r• Ill fri11i:i 11 !!'.-fit•ld profiJ,,, l1 ·:: di11i: to dilT,•r,•11! 1'1"1111-. 
For (•xamplr. in ('( ·n :-:t r\l('t un •_..;: \\'it h :--h11rt :--t 11r:q.!1 •- ~ :J' , . 

l1·nj!th f. /:·,.'1 may he • :1 f,·w 1i111t ·:-- l:trg, •r th :, 11 /-." 1,.;1. l 11 1! :i~ 

c·a:-:1_•. -~'ib ) c·ould ht· 11,, ,d 111 1Jht :1i n 1~·•<1 if th,, fri11.!.!'.i 11c:­
field prufil,· i:-: known . F11r :--h11rt :--t,1r:tg1·-g:ati · lc· 111,! t li / .. tlu­
spatial d1•1w11d ,·11e·e• cof till' fri11J:(i11i: fi,·ld.- (':Ill h ,· :lJl) •I'».\· 

irnat,·d hy [:!] 

f,,r O ~ .\" '.'o /. 

'2(/, - .\" 1 
,,. ,. I . :.? ~ . .\" <, / .. 

Suh-.:ti :uting <:!'J J in t11 1:.!7h1. we ,J)t:1i11 1~· .. 1 ;= l .!l.-,/-.',, ,i i. 
f• 1r t ht• :.::1n w t ri:il ft111C'I i, 111 :·1 Ir l gi,·,·n by i :.! -1,. [ 11 t•it lic •r 
(·a~l·. :1-- :-;c•en in t'2-" · ,,·(· n 1 1ll' that thl' n·du<'ti1111 of 1lH1 

final dr e·ay tinw , . .,11,1a111 I"· thl' iringing-fi, ·ld .,1 rc·ngth is 
quadra i'ic rathrr 1h:1n li11C'ar. 

Jf \\'t• i1l<'l11cle• th, , n1>11l i1ll·:1r sc -lf-induce•d fip)d drift , l'X:ltt 
a11aly tic· ~ol 11tio11~·,1f r:q l >1·•·11mc• diffiC'ult. Hr1wc:vcr1 u:,;ing 
a l11111 1«·d-l'irruit 1111 ,d..J.1 1 h<· ,-harg: .. -1 ra;,sfn ('harac-teri,1 ie·s 
can bl' ,.J,1 ai 11 l'd by S<,h·i11!! 11,c• di,cha rgr· e·quatinn [,iJ, [li] 

271 

Fil.! ti . Tli,· ,1 11f:wt · Jl"lt•11ti:,J a11d t'lc•<'lri,· field along the ~j.:~ i02 
1: •t1·ri.1, 1· .. i,1. 111, .-.1 lr11t1 1 i11t· :-11\11ti1111 ,,f t lw t,,·1H !i11 1~n~io11al 
J•,,1,,, ·:1· .... 1·1p 1:1!1 ,,11 Tlw t·h· (' t :·,1d1• v11lt :q.!1·:- 1·11 1Tr:•p11rnl "to t he 
l ,: · t ·1 - 1:•l!• •., ,. f ti · ,· ,- ll'n •!t' tr:1 11,-f1·r. 1 with :i :- ignal ,·han.!.t' in thP 
1, ,, •·1,·111 c ,t,,1: I !!•· L'.:IJt • . Ttw .,11IHratt• dupi1rc: ; .... 111 11 tl,inor:; / nn3. 

T rw !: 'l:1·tl ,,1t rf: w 1·- ,1 :1tt · d1:1r~1• i;o- :u; X 10 11 (.' 11). t, i11 thi...: caku­
h111111. 

coh1a i11 q ( I ) f" r O $,.$ I .. ThPn , by int, ·grating q( .c ), 
\\'(• ub1n in 

C l ) 'UT V + :ikT /'2. 
/ (/, ' = ' V + '!.kT 

Tl.i<'n, th" ,1 ,lut i,111 of noa) is of the forrn 

Q ( t,/,) ,/Q ( t.T, ) 
J, = - ---

cit 
(:,Oa) Q(O./, ) 

,rherr J, is t lw st<·:id.,·-,1:11" di,rlw rgr current density 
:1.,.,u11~•·d 1·011,1:1111 an<1.-s 1)11, gal<·. and Q{I,/, ) is th<· tutal 
rharg,· Ull(lrr the gatr. 

Tlw n·l:ttiem b,•t\\·1·e•n th<' surfacr potentia l cj,, and 
surfa <·,.-d1argr de•11sity q. und,·r th,, lransfrr gate. is giv!'n 
arcnrclini: t<) thC' gradual 1·h:111nl'I approximat ion [·I J. U)J 

\\"ht•n· O,, i:- th e· :,u rf;11·1· p11t1"11tial ,,·itli 110 ,·ltarg('. and(' i~ 
th,• ,,ffl•1·tiY1· oxid, ·- :1n,! 1l1•pkti1 ,n-layc·r e:1µ~1tita 11cc· pc·r 

un it ar,.a. \\ 'hPn th,, fr i11i:i 11g fic •ld, an· 11c·gligihlt- ,·n111p:m·d 
tu th,, .,,·lf-indu ce·d fie•ld, we• have 

Thc•11 . if th<' diffP1'C'IH'<' in the· ,urf:l<'<' pnt!'ntial hrt\\·e·c·n 
tlu• hq!inning and ,~nd of th e• ~:it<' i . ..: 1·. h~· intf'µ;ratir1g the· 
difTu,i,,n e·quatinn , :Jb) 0\'o 'r .,p;IC·e•. \\(' ohtain u,J. [7] 

\\'hC' rr. \\'e• note 

C . 
J, = ~-- [1"' + :!/,TV] 

'2/, 

:3incC' J . in (:l h ) iti a,~u111 c1.I con~tanl for O ~ :r ~ L , \\'l' 

: :\cc·11 rdin~ tu thi~ llH•llt·l. tlie :- torn~r i:att- 1...: ,·011 -..i dn1·d, in !hi., 
l':'\."'{', !1., ti cttp:u· itor d1~c.:liur11:C'<l tl1rl111gh n trau:-fcr <·hn11nrl wli i,-h i:; 
the sarnl' :-tor;tgt• ~ate. 

1dt<·rc ()(OJ,) is th<' initial total r hnrgc undC'r the stnrnge 
gal<·, a11d r 1 is g; ive• n by ('!.8). 

\'I. :--;O\IE IU CAL llESC LTS 

Tl11· e·.\al't fri11gi11g-fi,·lci prufil<' !'an IH' 11blai 1,c•d by solv­
ing tlw twn-d i11 H·n:--ion:il Poi!--:-011 c·quation fc,r thf' CCD 
struc·tun' \\'ith the• ap pli,•d gat,, voltng,·.,. In Fig. Ii, we 
hav<' plo1i<'d ti«· .-11rfa r,, p11t1 ·n1i,,l and surfarC'-p11IC'nt ial 
gradiC'11t :ilo11g the sc•111ic1111<.lue·lor-i11s 11 lator interfa('r. The 
vi,)tag('s 011 thl' gate clc·e·trocl<-,; (sc,1• Fig. 6) arc those 
corr<·sponding to the· last ,1,1gc of the charge> transfer. 
\l o,t of tlw signal ,·hn rl-(P wa,; take·11 lo I><· in the· n' e'l'iving 
:--I or:iJ!C' C'll'et n>d(•.1 i'< •ri,,di1· lu,111Hlary <"011di1 inn :..: \\'l'rf' used. 
Thr min imum fri11gi11g fil'id };',,,;,. in thi ,; 1':l."<', is equal to 
74 V/ cm. 

To eh('l'k tlw accurac.,· of th<' ap pr1>.\imatl' ,;olutio11 for 
r1 i:ive 11 h~· ('.?S ) . \\·e· hav<' sol\'l'd ( :1 ) 11u111,•rically for the 
fri11gi11g-fi 1• ld prolil <' giv,!n in 1-'ig. ti ['!]. The full-line 
curve• i11 Fig. 7 .1·1·1iri•sc· 11t ,; thr 11unH·ril'ally C'alc-ulatcd rc­
~id ual charg(' und rr tlw st<,ra~i· ~att· v1•r.--u:-- tran:-;fc•r t ime 
11·ith th,, .,,.Ji-i11dtw1·d fi, ·ld .- Th,· cla , l11•d-li11<· curve in Fig. 
7 is the· r,·,idual diarge· c·ali-ulatc-d u, i11g (:l'J. ) .. The• value 

1 Fc,r tw1 ,-11h:1 -..i• 1111 -.. h-1·1,wk ~dwnw, ttu- 1u·t11:il ren•ivin~ gnte 
vul 1:1g1· i:- - 1.·, .11 \ ' iu .... 11 •:1.J 1,f - ~I.X \' i11 1-'iJ! . :!. :rnd the diflcn:ncc of 
:,.:,! \ ' 1·orn•,p1111\I~ t,o the :u 11u1111t. of the :-.ig11al r h1.1r~e present uniter 
the rc1 ·<•ivi11g g,ttR. 
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Fig. 7. Totnl residual c-hari(e under the left Si-so11rec p:ate ns a 
function of time. The e!Tcdi\·e oxide r:1 paC'ita11 <:e is 3.:2:2 F / µ', 
anci the full bucket. r h:irµ; ,• i., 1-1 .u C µ'. The ,,olid c11rve reµ rc~e11ts 
exact numeri cal solutio n o f (:3) , a nd the das hed c11rvc is :\II ap­
proximation by (:!:!). , 1 is fnr lhc , lope of the two pa r,dlcl ,:olid 
lines and , for the d a,:Ji cd li1tcs. Thr final slopP (he11ce. :.d :;o the 
final time constant ) dors lint depc11d on the t,,tal :imou11t of t.he 
initial char~e under the storuge gate. 

of the final decay tinw con,; t:111t r 1 calculated from (28) 
is 22.7 ns compared to 21.2 ns uht:.iincd front the 11tlllH:rical 
solution. 

VII I. CO:'.'\CLUSIO:'.'\ 

Incomµlctc transf('r of fr et> charge in CCD \\"ith small 
· amounts of charge t., be tr:rn ,-frrn·d wm; characll'ri1.,·d 

analyticnlly , including tlH' dT(•rts of diffusion and fringing 
fields . \Yr haw found that, independent of the' frin~ing­
field profile, the expnnP11ti:1l ckcay charactl'ristic: is sokly 
due to diffusion. Ho\\"CVl'r, the characteristic ti11w con­
stant r1 for the decay d,·µend s on diffusion and fringing 
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fields and is found to he always a fraction of the: single­
carrier traMit tinw rt, (sc ·P Fig. :i). 

The standard variational procedmr. w a:-i upplir•d to ob­
tain an approximat e anul_\·tic ,·xpress ion fr,r till' charactN­
istic time con:-tant (Sec (::?1)), and tlw rxpr<':-,-,ion \\"as 
evaluated for spatially var:ving frin ging fi,·lds (;;pp ( :!H )) 
which var_\' rdativc•ly sin\\"]_\· ov1· r mr,.--t of the stnrag<' g:1t" 
length but inrrca,-f' cun;;id('rably at tlw <'dge:-1 of t lw µ;at< ':'<. 
Such fringing-firld profil1 's arc typical for mmit minimum 
geometry CCD st ructun•.'! (rni11 irn11rn gate dimrnsinn of 
about 10 µ) and suhstrat<' doping grPat(•r than 1011 / rm 3• 

The constant and spat ial]_\· varying fringing fi1 •ld:; h'lth 
were found to give Pxpon1·11tia l chargi•-drcay eharnctPr­
istics. When th<· mngnitudr• of the fi p]d bccornPs gr<!af Pr 

than a fc\\" timPs k1'/ l,, the discharge is considernbly 1·n­
hancro by tlw fringing-firlcl drift. 

If the ::,elf-induced fip]d terms arc introducPd , thrn . 
using a lumpPd-circuit modPI , tlw frcC'-charg<' transfpr 
process is giv<'n quite accuratr.ly by the formula given . 
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PJ< I N T E O IN THE L' .S. ,\ . 

The Influence of Interface States on Incomplete Charge 
Transfer in Overlapping Gate· Charge-Coupled Devices 

AMR M. MOHSEN, T. C. McGILL, YO$HIAKI DAIMON, AND CARVER A. MEAD 

Abstract-A simple and accurate model is used to estimate the 
incomplete charge transfer due to interface states trapping in the 
overlapping gate charge-coupled devices. It is concluded that 
trapping in the interface states under the edges of the gates parallel 
to the active channel limits the performance of the dev ices at 
moderate and low frequenc ies. The influence of the device param­
eters, dimensions, and clocking waveforms on the signal d egradation 
is discussed. It is shov..'ll that increasing the clock voltages, increas­
ing the signal charge, or using push clocks reduces the incomplete 
charge transfer due to int (; rface state trapping. 

l. INTRODUCTION 

T HE ine;omplcte charge transfer due to trappin g in 
interface states at the semiconductor-oxide inter­
face imposes limitations on the performance of 

charge-coupled dev ices at moderat e and low fr equ encies, 
where the incomplete free ch a rge tran sfer is very :; ma ll 
[1]-(5]. Several authors (6]-[8] have studied th e effPcts 
of interface sta te trapping. Carnes and l(osonocky [i] 
have measured the largt> signa l losses due to th e interface 
states trapping in cha rge-coup Je ri devi ces . Tompsett [8] 
has also cal culated the transfer in efficien cy a nd the re­
duction in th e signal-to-noise ra t io (SNTI) of the output 
signal due to interface statf's for three-ph ase cha rge­
coupled devices. 

This paper pre$cnts n sludy of the incomplet e charge 
transfer clue to t rapping in inte r fa ce states in ove rlapping 
gate charge- coupled devices 1 operated with a background 

Mnnuscript rccei \' C' d Octohc r· 23, 1972. This work 11·ns support ed 
in pa rt by the 011i ,·e o f ::s; uval Heseareh (:\ _ Shostak) and tlte 
Naval R r~earch Laboratory (D . F . Da rbe ). 

The autho r:. Are with t'hc C a li fo rnia Institute of Technology, 
Pasadenn , Cnlif. 91109. 

1 We have co nsid erC' rl th e o,·erla ppin g gat e structure ns it see ms 
pres'!ntly to bt' the most tec hni ca lly promising CC D structure for 
the po tential h1rge sca le npp!i C"n ti ons of th eHe devi ces [2 ], [4]. 
However, most of the nnnl_ys is , di ,c ti ,~ion, and conclusions given 
in this paper apply a lso to th e o ther CCD structures. 

charge and its dependence on frequency, device parame­
ters, dimensions . and clocking wa\"cforms, to establish 
guiding design rules for the operation of these devices 
with optimum performance. Section II d escribes how 
trapping in interface states results in incomplete transfer. 
Section III presents the theoretical mod el and the basis 
of our approximations . Sections IV-VII deri,·e expres­
sions for the net charge trapped in the interface states 
under the storage gates, the trans fer gates, and the edges 
of the gates. Section VIII calculatPs the signa l degrada­
tion due to trappin g in interface states for a two-pha,,e 
overlapping gate charge-coupled device. A di scuss ion of 
the result:; and conclusio11s is presented in Sections IX 
and X. 

II . INCOMPLETE CHARGE TRA:-:SFER DuE TO TRAPPING 

IN INTERFACE STATES 

In Fig. 1, one unit cell of an overlappin g gate charge­
coupl ed device using silicon ga te technology is shown 
[9] . If a volta ge is appl ied to one of the storage elec­
trodes, a potenti a l well i:; created at the interface where 
signal charge can be stored. Some of this charge will be 
trapped in interf n.ce states. During the first stages of the 
transfer of charge to the next storage site, some carriers 
will also be trapped in interface sta t es under the transfer 
gates . In the latter stages of the transfer process, the 
relatively large fringing fields under the transfer gates 
sweep out the mol,i)e carriers very rapidly and the inter­
face states then start to emit the captured carriers. 
According to the Shockley-Read- Hall rate equations 
(10] the emission time constant Te of the interface states 
varies exponential ly with their energy level relative to 
the band e<lge. If the emission time con stant of the inter­
face states in a given energy range is smaller than the 
transfer time, then most of the trapped carriers in these 
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where Eu is the energy gap. The mobile carrier con­
tinuity equation that describes the performance of the 
device must be modified to include thi s · capture rate 
[2] (neglecting thermal grnrration currents) : 

127 

in this model. Consistent with the same order of accuracy 
of the previous assumptions, we can also use average 
values of the mobile carrier concentration and neglect 
the effect of their spatial distribution und er the elec-
trodes, to further simplify the numerical calculation. 

iJ-2 = -V.·(J) - e1E I 
at dt c•o•u•• 

(3) IV. TRAP OccuPATION rn STEADY STATE AN1> TRANSIENT 

where .q is the surface charge density of the mobile 
carri~r, e the electronic charge, J the sheet current den­
sity, and x the distance along the interface. 

Thus, from the rigorous standpoint , the continuity 
equation (3) should be solved simultaneously with the 
noncquilibrium rate equat ions ( la) and (2) in the re­
gions under the source and rccciYing storage gates and 
transfer gate. Whi le a ri gorou s treatment is conceptually 
possible, the uncertainty in the parameters characterizing 
the interface states makes such an elaborate calcula­
tion unwarranted . However, with suitable approxima­
tions one can make ca lculations that give qualitatively 
reliable and qunntitativcly suggestive est imates of the 
incomplete transfer due to interface state trappillg. 

When charge-coupled devices are operated with the 
circulating background charge, interface states having an 
emission time constant larger than the cycle time re­
main almost completely filled all the time. These sta tes 
capture carriers every cycle and do not get a chance to 
reemit an appreciable fraction of the captured carriers 

. during the cycle time. Interface states with an emission 
time constant much less than the cycle time will b~ 
emptying and filling every cycle. These interface states 
have an energy of a few KT above the valence band 
edge (as shown later). Hence the interface states that 
make a substantial contribution to the incomplete trans­
fer will be those with a time constant of the order of 
the clock cycle period and will lie within · an energy 
range of the order of the thermal voltage . For the low 
interface state density obtainable with t.he present ther­
mally grown oxide [ll]-[13] the rate of capture or 
emission is quite small compared to the other terms in 
(3). Thus, one can obtain an accurate solution by the 
following procedure. First, the term in (3) due to trap­
ping is neglected, and the continuity equation is solved 
to obtain the free charge transfer characteristics. The 
surface charge density profiles q (x, t) are then used with 
the rate equations (I) and (2) to calculate the incom­
plete charge transfer due to trapping in interface states. 

The precise values of the interface state den sity N., 
and capture cross section ah of the interface states; 
their distribution in energy over the bandgap; and their 
dependence on temperature, normal and tangential sur­
face fields are not well known, and vary strongly with 
the type and preparation of the oxide over the active 
channel of the device [ 11 ]- [ I 3]. For our purposes here, 
we will take N., and ah independent of all the previously 
mentioned parameters. However, if the exact energy de­
pendence of N., and <Th in the relevant part of the band­
gap is accurately known, it can be easily incorporated 

In steady state, the trap occupation can be obtained 
from ( la) and is given by 

n,. = . N,. · ' (4) 

(
l + Ki exp (-E/ K1')) 

Kip 

The interface states are in equilibrium with the mobile 
carriers. Their occupation is desc ribed by the same quasi­
Fermi level as the mobile carriers. 

E, = KT In JS.2.... = KT In N,•d_ (5) 
Kip p 

Following a sudden abrupt change in the mobile car­
rier con cent ration, say p 0 to Pi, the trap occupation 
changes to the new steady-state valu e corresponding to 
the new mobile carrier concentration p1 with an effective 
time constant given by 

1 
Terr= Kip

1 
+ Ki exp (-E/ KT)° (6) 

If the effective time constant of the interface states Terr 

is smaller than the time constant T measuring the varia­
tion of the mobile carrier density, then the trap occupa­
tion reaches steady state very rapidly and effectively 
equilibrates with the vary ing carrier density. That is, if 
T > Tett, then 

(t) = N / [i + Ki exp (-E/KT)] . (7) n'., · .. K1p(t) 

Thus, the quasi-Fermi levels of the traps follows the 
quasi-Fermi level of the mobile carriers 

N ·d 
E,(t) = KT In p(t) · (8) 

On the other hand, if -r < Terr, then the trap occupation 
fails to follow the variation of the mobile carrier. If 
we let K 1p(t) » K 2 exp (-E/KT), then this occurs 
when the mobile carrier density fall s to a level such that 

(9) 

For charge transfer from under a gate, we can define 
two regimes. First, when K 1p(t)-r > 1, the mobile charge 
is in effective equilibrium with the trapped charge . The 
total number of trapped carriers Ptr is given by 

p,,(t) = N .. [E, - KT ln K:i(tJ (10) 

Second, when K 1p(th < I, the mobile charge is no longer 
in equ ilibrium with the trapped charge. If we let t4 be 
the time the emission mechanism becomes dominant, 
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then for t > t, the trap occupation is given by 

n (t) - N .• 
•' -

1 
+ K 2 exp ( - EI KT) 

K 1p(tt) 

·exp [-(t - l 4)K2 exp (-E/KT) ]; (11) 

and the interface states start to empty with a time con­
stant that increases exponen tially with the trap energy. 
The total number of trapped carriers is given by 

p .. (t) = N .. [ E. - KT In Kit - t.) - (t _ t~~.p(t.)], 

t > t.. (12) 

So in this case the interface states above E1 = KT In 
K 2 (t - t4 ) are almost full and those below it are 
nearly empty. The last terms in (10) and (12) show 
the dependence of the interface state occupation on the 
mobile carrier density . 

V. TRAPPING .IN I~TERFACE STATF.S UNDER THE 

STORAGE GATES 

When a signal charge packet is stored under the stor­
age gate, all the interface states trap carriers and are 
filled very rapidly do\\'n to a quasi-Fermi level given by 
(5). As the charge transfers to the next, storage site, 
the residual charge decreases. In the complPlc ch:uge 
transfer mode3 the tramfer of charge at the end of the 
charge transfer process ( say after a time t3) becomes 
limited by th ermal diffusion and fringing fields. The 
residual charge under the storage gate is then given by 

p(t) = p(t3) exp [-(t - l3)/rl, t > t3, (13) 

where the characteristic time constant r depends on 
diffusion and fringing fields [2], [14l 

Since the fringing fields under the storage gate are 
relafo·ely small giving a rather large value of r and the 
charge p (t3 ) is re latively large, the inequality 

(14) 

is satisfied at the beginning of this time interval. Hence, 
the mobile charge is- in equilibrium with the trapped 
charge. However, at later times the free carrier density 
may fall to such a valu e that the in terface ~tates are 
no longer in rquilibrium with the free carriers a nd the 
interface states begin to simply emit the charge trapped 
in them. This state pretains for times t such that 

(15) 

If the clock frequency / 0 is such that the charge trans­
fer ends at a time t less than t~, then the interface states 
will rrmain filled down to an rnergy defined by (8). 
Wh en the next charge packet arrives, it fills all the 
interface states, and after it transfers the total number 

3 In the complete charge transfer mo<l r_ a ll the r:harge under the 
stora~e ~ate is transfc> rred to the following gates: none 1s delib­
erately retained. (See [2) and [51 .) 
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of trapped carriers is given by (10) with the proper 
value of p ( t) . So, when the device is operated with a 
circulating background charge, or fat zero, the net charge 
trapped from a signal charge packet is maximum when 
it is preceded by a fat zero and is given by · 

' p,(t) 
ti.q., = eA .. N,.KT In - () , 

Po t 
(16) 

where tiq. 1 is the net charge trapped per transfer, A,t the 
area of the storage gale, p0 (t) and p,(t) are the residual 
ch:nge under the storage gate at the ('nd of the transfer 
time t for the fat zero charge and the signal charge, 
respect ively. When the difference between p, (t) and 
p0 (t), is re latively small, then 

" = A ~ KT (p.(l) - po(t)) · (17) 
uq.. e ,,, .. Po(l) 

It follows from (13) and (17) , that the net charge 
trapped is almost independent of frequency. In addition 
all the interface states above an energy E 1 where 

E 1 = KT In k.p~j2f o) 

will always be nllerl with captured holes . If the charge 
transfer ends aftrr a time t > l 1, tlirn in the complete 
charge transfPr the int c rfa r,, states under the original 
storage gate continue lo emit the trapped charge for one 
whole transfer (or ( m - 1 J tran::;fer timl'::; for m trans­
fers/cycle). This rc:l cnscd charge is adderl to the next 
packet. transferred into this storage bucket. When the 
next charge packet comes along, all the interface states 
are filled again. After this charge packet transfers, the 
interface states start to emit and so on. So when the 
device is operated with a circulating bal'kground charge, 
the net charge trapped from a signal charge packet at 
each transfer, for trnnsfer time t > t~ + r, is also maxi­
mum \\"hen preceded by a fat zero and can be obtained 
directly from (12). · 

1 [ 1 1 ] 6q,, = eRA .. N,.KT (t - t,)K. Po(l,) - p,(l.) (19) 

where p 0 (t4 ) and p,(t4 ) nre the residual charge under 
t he storage gate after a time t, [ n~ denned in (15)] for 
the fat zero charge :rnd the signa l charge, rr~pectively, 
and R is a fraction given by 

R _ (m - l)l _ m =-! __ I _ (20) 
- mt - t, - m 1 - fol• ' 

where m is the number of transfers/hit. If t. is smaller 
than the cycle timl', then l4fo < 1 and form. = 2, R '.:::'. ½­
If the difference between p,(t 4 ) and polt.) is relatively 
small, then 

1 T [p,(t,) - pn(t,)]. ) 
6q,, = ½eA,.N .. K1 (t - t.) . Po(l4) (21 

Thus, for tran sfer time~ l > t 4 + r. the net charge 
trapped/transfer decreases almost directly with the clock 
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frequency. Also, all th e int C'rface states above an energy 
E 1 ure fill ed with ca ptured holes . F, 1 is a lmost inde­
pendent of the s ignal charge a nd if' give n by 

E 1 = K T In K 2(m l - l,). 

VI. TRAPPI NG IN INTERFACE STATE.<; l:NDF,R THE 

TRANSFER GATES 

(22) 

The surface potential and the surface potential gra­
dient under the gates of an onrlapp ing gate charge­
coupled device along the silicon- silicon oxide interface 
arc plotted in Fig. 2. These plots arc obtained from a 
solution of the two-<lirncnsiona l Poisrnn equat ion for 
substrate doping of 8 x 10"/ cm3 a nd lQH/ crn 3 [1 4 ) . 
The electrode voltages corrc;;po nd to the latter stages of 
the charge trans fe r ,,·ith a signa l charge in the receiv­
ing storage gate. S in ce the transfer gate is shortn a nd 
has a thicker oxide than the storage gate, the fringing 
field s under it arc much large r than under the storage 
gate. Typi cal va lu es of s ingl e carriers t ra nsit time under 
the transfe r gate a rc of the order of a few nan oseconds. 

When a signa l charge packet tran sfers from one stor­
age site to the next, interface states under the transfer 
gate trap some of the cha rge during the first stages of 
the transfor process. S in ce fringing fi elds und er the trans­
fer gates are rela tively la rge, th e mobile carriers a re 
swept out wry ra pidly and t he emptyin g o f the inter­
face sta t es bC'gins earl ie r in the trans fer process. Thus 
for all trander times t of interest 

(23) 

Th e trapped carriers em itt ed before th e transfer ends 
will join the main packet. During the latter times of 
the cyc le, a larger frac t ion y of the emitted carrier will 
drift backwards to join the succeeding packet of charge, 
and a smaller fra ction (1 - y) will drift forward to 
join the original packet of charge. Because o f the a::ym­
metri ca l surface potential distribution y is greater t ha n 
one ha lf. Then in th e next cycle, during the tra nsfer 
of th e next packrt of cha rge, t he in terface statrs und er 
the transfer gnte capture some charge, a rid so on. From 
the plots of t he average mobile carrier concentration un­
der the transfer gates for a two-phase overlapping gate 
CCD in Figs. 3 and 5, it is clea r that the in terface 
states will capture carriers for a time interval t.t. Dur­
ing tha t time interval an average carrier concentration 
p ... may be defined. The traps fill with an effective time 
constant Terr given by 

T eff c:::. 
1 1 

Kip .. + K 1 exp (- E/KT) ~ K 1p ••. 
(24) 

The filling probability or the fill factor F of the traps 
is given by 

F = [I_- exp (-.1t/r. 11)). (25) 

For transfer times t > t.,, the interface states empty 
according to (11) and the total trapped carriers is givrn 
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Fii;. 2. Plots o f the surface potenti :-tl and surface potential v.radi­
ent a long t he silicon--si licon oxide in tcrfacP obtained from the 
so lution of the two-ri im cnsional l'oi~~on <' qu at ion oi the ~truc­
ture in Fig. 1 with minimum grcirnct ry dim ensions. /,. = 8 µ., 

Is, = 14 µ., dsi = 1200 A, rl.., = 3200 .l.. I s , = 0.5 µ. , and 1., = 
0.5 µ.. The e lc-c trode volLagPs ro rrrsp011d to the latte r stages of 
t he charge transf,·r, with a ~i,:na l charge· in rtw rf'ce i\· inv. ~torngc 
ga te. The subst rn tc dopini,: is 0.8 X 10" donors/vrn 3 in Fig. 
2(a) and 10" donon,/cm 3 in fig. 2(b ). 

by (12) . Wh C'n the device is operated with a circulating 
background charge or fat zero, the net charge trapped 
from the signal cha rge in intrrface states under the transfer 
gates is maxi mum when it is preceded by a fat zero and 
is given b y. 

6.q,, = -yeA ,,N .. K1' 

(26) 

where R is a fraction given by (20) . p._.0 , p •• ; are the 
average mobile carrier conC'entration under the transfer 
gate during the interval 6.t for a background charge and 
a signal charge, resprctively. F0 , F, arc the filling prob­
abi lity as defi ned by (25) for a background char~e a nd a 
signal charge, respectively. A ., is the area under the 
transfer electrodrs a n<l t, .. . , 14 , ,. arc the timPs at which the 
emptying of the inlt~rface states start for the background 
charge and the f'ig nal charge. 

Two sprcial cases arc of interest. F irst, if the fill factors 
F. and F0 are less than one and unequal , then the first two 



82 

130 

terms dominate. For-y ~ I and t, ... ~ t, ... , (26) reduces to 

For f 0t ... « I and m = 2, 

t::,.q" = eA .. N .. KT(F. - F0 ) ln 2. (27) 

Seco nd , if th e fill fac to rs are cqu.'.l l to one (M/ r,.rr » l ), 
th en (26) reduces to 

D.q,, = eA,,N .. KT 

{ 
o(t,) R ( 1 

(t - t .. ,) R + (I - t, .. ) K,p •• o 

For f 0t4 « I, m = 2, R ::::::: ½ · 

D.q" = eA .. N .. KT{to o(t,) + to(~ - -K 
1
-)}, (28) 

1PavO 1Pavo 

whPre S(t4 ) is the d ifference in the time t4 nt which 
the emptying of the in tNfacc states start for the signal 
ch arge and the background charge. · 

In the first case, the net charge trapped is a lmost 
frequency in dependent. Wh ile in the second case it in­
creases almost linenrly with frequency. 

All the in terface s t a tes und er the transfer gate above 
an energy E 1 are fill ed with captured holes. E 1 is almost 
independent of t he signa l charge but depends on the 
clock frequency a nd is given by 

( 1 ) K E 1 = KT ln K 2 lo - t, ~ KT ln t/ · (W) 

VII. TRAPPING IN TIIE INTERFACE STATES UNDER THE 

EDGE:3 OF THE GATES 

Trapping in the interface states under the edges of the 
s torage and tran ~fer g:itcs also add to the incomplete 
ch a rge tram fer (8 ] . Sinre the precise area covered by 
the charge being tran s ferred at the interface depends 
upon the surface potenti a l profiles under the gates which 
in turn depends on thr ::urface charge density, the num­
ber of interface states at t he edgrs that come in contact 
with the charge is dependent upon the a moun t of sur­
fac e charge. Th e surface pot ential profile for a given 
surface charge density and t'equence of potential s applied 
to the gate clectrodrs i::; obtained by soh· in g the l\\"O 

dimensiona l Poi :e~on equat ion for the CCD stru cture . So­
lu ti ons [2], [9], (1 4] to this· equation a long and p er­
pendi cubr to the acti\·e chann el show that fringin g fields 
penet rate under th e L-dgrs of thr gates for a distance of 
approximately a depl etion laye r t hickness . The onset of 
th ese fringir,g fic !df-- defin r th e ~patial extent of the mobile 
chnrge. For fixed vo ltagps appli ed to the gates, the de­
pl rt ion lay er thickne::;s and thr prn rtration of irin ging 
field;:: in crt'::t$e with decreas ing ~urface charge. H Pnce a 
small ~urfa ce charge is confined to a smaller area at the 
interface than a larger ,,charge. 
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In the treatment of trapping and release of charge by 
these interface states, we must distingui sh between the 
interface states at the gate edges parallc-1 to the channel 
from those at the gate edg1~s perpendi cular to the chan­
nel. 

In thc C.'.lsr of the interface states at the edges pcr­
PO!'\di cular to the channe:I, th e sip;nal charge or the 
bac kground charge fl ow,; over the int crfacl' states during 
eYery cycle. Thus the intnfare state can capture car­
ri er from both the t' ignal charge ·and back grou nd charge. 
H ence, the fi llin g and rmptying of these interface states 
is similar to that, under th e trnnsfer gates . ◄ 

The net ch a rge trapped from a s ignal charge in the 
inter face sta te unJt•r the perpendirulnr edges wh en the 
device is operated with fat zeros is maximum when it 
is preceded by a fat zero . 1f th e prouability of filling 
of the interface s tates by the background charge is less 
than uni ty, then from (27) 

D.q,i. = eA.i.N .. KT(l - F0 ) In 2, (30) 

where A ,.L is the area under the pcrpPn<licula r edges and 
Fij is the fill factor for the background charge defined 
by (25). In the case F 0 is a lmost equal to unity, then 
from (28) 

.1q,.L = eA,.LN .. KT{to o(t,) + to(~ - Ir-)}· 
1PavO 1Pav edre 

(31) 

In the case of the interface states pa ralle l to the edges 
we must distingui:sh between two clocking schemes, the 
d rop clock and the push clock. With drop clocks the 
signa l charge is s tored l1elow a gate at n holding volt­
age l' 1 which is a fraction of the larges t clock voltage 
l''" that the 1\10S st ructure ca n tolerate ; charge transfer 
occurs when l' m is then app lied to t he adjacent gates , and 
the chnrge flows to the potential minim\lm thus created . 
With push clocks t h (:> charge is stored under a gate 
lw lri aL l',,,, and transferred to a nearby gate, also at 
V m, by ra ising the potential of the gate where th e charge 
has been residing and thus "pushing" the charge to the 
next gate. Charge-roup lcd devices can be operated with 
two-phase, three-phase, or four -phase clocking schemes 
by push clocks, drop clocks, or a cornuination of push 
and drop clocks [2], (5], [15]. 

So with drop clocks, the charge tran:::fer is effected by 
crea ting deeper potential well s unde r the next gates; and 
the back ground cha rge does not fl ow owr the edges of 
the gates parallel to the channel. Thus the interface states 
under the parallel edges capture carriers from the signal 
charge but do not t ra p any carriers from the background 
charge; and the para llel edges are residua l a reas of the 

•. rote th a t, in this c!,~ , sinr-r thr siim:il charge rema ins nnd cr 
Llw sloral(r r lrC' trod c for onr whol,. t r r. n~fr r tirne , the prohnbi lil y 
of fillinµ: thr int c•rforr• st:1 1r•~ hv 1hr ,igna l d,nrµ:r F, is equa l to 
un itv. As disru R~r d in ~,•, ·110 11 VI. wr ni:, _\· :dso ol,tain thC' nvcrage 
rnnhi lP rh tirl(r d rn~il _\' 1111,kr 1hr r d)!•'~ p, . ,,,, and P••" nnd the 
11111<' int<·l'l" :tl :,., ,. f11 r "lii..J, 11 11· l.:1..\; gru11nrl c·lin rgl" is in contact. 
wi1li th<· ,-rig, -~ from th r• ,·li :mu· tr:in -fc· r d_n1arnirs an d th r surface 
('barge drnslly profile of thr E1gnal r hargc under .th e e lec trodes. 
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active channel that the background change cannot reach . 
For example, after a signal charge is transferred from 
under the storage ga te , the in te rface states under the: par­
allel edges of this gate con t inue to emit the trapped ca r­
riers until the next signal charge passes, th rn the interface 
states fill again . The net charge trapped from the signal 
charge in the interface states under the parallel ed ges of 
the storage and transfer gates increases wi t h increas ing 
the number of fat zeros precedin g it. This is unlik e the net 
trapped charge in intrr face stat es under t he s tora ge gates, 
transfer gates , and the perpendicular edges that is a lmo~t 
independent of the number of fat zeros preceding the 
signal charge. 

The net charge trapped in the interface st a tes under 
the parallel edges increases logarithmic ally with the clock 
frequency (similar to the charge trapped when no fat 
zeros are used) [7]. For digita l signals, the net trapped 
charge per transfer in the interface st at es und er th e par­
allel edges from the first "one bit" preceded by n.ero 

"zero bits" can be easily obtained from (12) . 

(32) 

where A ,,1 and A .. 0 arc the area of the edges parallel to 
the channel under the storage and transfer gat es respcc­
tively. t4 , 1 is the time at which the emptyi ng of t he inter­
face states under the pa rallel edges sta rt. For / 014 , 1 « 1 
and m = 2 (32) reduces to 

~q. 1 = eKT(N.,A.,. 1 + N,.F,A,,, 1) In (2n,., 0 + ]). (33) 

In this case, all the interface states under the parallPl 
edges above an energy E 1 , where for n,0 , 0 » 1 

are filled with the captured holes . 
But with push clocks , the trapping effects under the 

parallel edges are reduced . The charge transfer charac­
teristics and the charge profiles under the gates for the 
signal charge and th e fat zero charge tend to be more 
similar with push clocks, [2], [5], (15]; hence the inter­
action of the traps wi th the mobile carriers of both 
charges is almost the same. For example, with the two ­
phase push clock, the charge t ram-fer does not start until 
the surface potential und er the storage ga te is largrr than 
that under the next tra~sfer gate for both the fat zero 
charge and the si gnal cha rge. Hence the fa t zero charge 
covers almost the same area covered by th e signal charge 
at the interface under the storage gates before the charge 
transfer begins. Thus with push clocks, the behavior of 
most of the parallel edge area of the storage gates is 
similar to the behavior of the perpendicular erlges anJ 
hence is described by (30) and (31) . So the effective arra 
of the parallel edges under the gates that interact with 
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Fiir. 3. Avera~e ca rrier con centra tion under the transfer ~a tes 
versus transfer time for th e fat zero and signal clrn rge. A two­
phase ·drop clock with zero fall aud rise time is usC'd . t' M = 
-15V,V,=-7V. 

the mobile carriers according to (32) and (33) is much 
smaller with push clocks t ha n with drop clocks . 

VIII. NUMERICAL RESULTS 

When the device is operated with a circulating back­
ground charge the total net charge trapped from a large 
charge packet in interfa ce states at each transfer is ob­
tained by summing the different rontributions obtained 
above: 

tiq = ~q., + t::,,q., + t1q,1. + t::,,q, ; . (35) 

The same net charge t:.q is emitted to the background 
charge by the interface states whc11 it is preceded !Jy a 
large signal ch arge. The influenc e: of this incomplete 
charge t ransfer due to trapping in interface states on the 
signal degradation is best described by th e signal degra­
dation factor<, defined by Berglund [ 16] : 

E = ~ = Eu + Et, + E,.1. + E, 1 , (36) 
q, - qo 

where q, is the signal charge and q0 is the background 
cha rge, so q. = eA .tp, and Qo = eA ,.pn. (, t, <tr, <r .L , <c u are 
the signa l degradation factors due to trapping in inter­
fa ce states under the storage gate, transfer gate, and the 
perpendicular and parallel edges of the gates, respec­
tively. p, and p 0 are the mobile carri er densities for the 
signal charge and the background charge, respectively. 

We ha\'C evaluated the relative magnit,udes of the sig­
nal degradation factors for an overlapping gate charge­
coupled device with dimensions consistent with typical 
layout tolerances of silicon gate technology . Th e storage 
polysilicon gatrs arc 14 µ. long and 8 µ. apart. The rha,n­
nel width is 8 µ. The results in Fig:;. 3- 6 arc taken from 
a ddailrct numerical so lu tion of the transport dynamics 
in p-channrl deYices with a suLstrate doping of 0.8 X 
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Fig. 4. Average carrier concentration under the storage gates 
versus transfer time for the fat zero and signnl cha rge. A two­
phase drop clock with zero fall and rise times is used. V. = 
-15 V, V, = -7 V. 

l01 5/cm3 and minimum geometry dimensions operated in 
the complete charge transfer modes [2] . In Figs. 3 and 4 
the average mobile carrier concentration under th e stor­
age and transfpr gates is plotted ,·ersus time when a two­
phase drop clock is used. The same plots for a two-pha$c 
push clock are ~hown in Figs. 5 and 6. 

In T able I we have listed t he valtws of the quantit irs 
used to evaluate t he signal drgradation from the previous 
rquationR. An avPrngr valur of N .. and uh was takrn in 
ngrrement with t he pulili :-:hPd valuPR in the litc-raturr [11] ­
[13]. With a subq rat,, doping of 0.8 X 10'~/ cm 3 and for 
the minimum gromcl r\' climron,- ion:-: , fringin g Gr.Ids undrr 
the storagP C'10etrndrs :,,-, , rwgligih!P [1], [2], [1 4). Jfonc<' the 
t.ime constant of th<' 0xponen t ial drcreasc of t.hc rPsidual 
carrier undr r the f'tnragP gate is the thPrmal difTusion 
timE' con:-tant rd = /8 ; z /'2.SD. The tim(' intervals ti/ (which 
are the timrs th<> carriers sprnd und<>r t.he transkr gatPs 
and the perpcndicular edges) arc taken from Figs. 3 and ,5. 
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Fig. 6. Average carrier conC'ent ration under the storage gates 
vrrsus transfer time for t he fat zero nnd signnl charge . A two­
phase push clock is used. 1', = 13 ns, V m = -15 V, and V, = 
-6V. 

Zero fall an<l ri;;e time for the two-phase drop clock and 
zero fall time and 13-ns rise time fnr the t wo-phase push 
clock were usrd in t he numerical simulation of the charge 
transfer charart Pris t ics :-lhown in Figs. 3- 6. For larger rise 
and fall timc•s, the valu<·s of tit arc l::i.rger . Thc fill factors 
F0 and F, arc thrn ralculatcJ using an average carrier 
density undrr th <' transfer gatrs during t he time intervals 
6./ from Figs. 3 a nd 5. They arc almost. unity for the drop 
and push clocks. Hence 28 and 31 should be used to esti­
mate t:,.q" and 6.q<J., The value of n.., 0 in (33) was taken as 
unity to give thr minimum value of E, ,1. The ratio of the 
area of the cdgrs to the storage gate area depend~ on the 
width of the channd TV, the lengths of the storage and 
transfer gates, and the substrate doping concentration. 
Thr. values of A,., ,/A,., A,,.R/A.,, and At.LIA" arc 
t aken from surface potential plots of the solutions of the 
two-dimrnsiona l Poi,:;son equation of the device similar to 
those in Fig. 2. With push clocks, the effective area of 
the parallel edgrs under the storage gatc-1 that interacts 
with t he mobile earrierR according to (32) and (33) was 
taken as one-tent.Ii of th0, total parallPI edge area under the 
storage gates. Actu!llly a sma ll0r value is expected because 
of the neutralization C' ff 0,c t mentioned previously during 
the pushing of th<' charge. 

In Table II we have li sted the values of E,,, Etr, E,J.., E,n, 

and E for the drup and push 1 wo-phasc clock at a frcqurnr,y 
of 1 ;\,fc for the minimum g<'omPtry drvi<' e. In our cal­
culations, we cho.'-'r: a suit.able backg ro und cha.rg<' to 
rr~present a fat zrro cp0 a11d a large charg<' to r<>prrsent 
thr signal charge ep, as would be usPJ, for Pxample, to 
rP.prcs<mt the zero and th<> 0nc bit in a. digital sr.rial 
m P.mory. In Figs. 7 [rnd ~ we have plott ed the signal 
degrada tion fo et.nr dut· to inr.omplct<' free charge trnnsfn 
and due to trapping in intr•rfa cc r--tate vrrsu;; frequPncy. 
SevPrnl conclusions bc:comc• apparent for this particular 
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TABLE I 

Values of P arame ters and Constants Used i_n the Calcula tion 

N,. = 2 X 1010 /c rn'-eV 
<rA = 10- u cm' 

V th = 10' cm/s 
d = 25 A 

t, ~ 150 ns 
t.,, ~ 500 ns 

T = 117 ns 
A,,/A., = 0.58 

K1 = 1/ 25 cm'/ s 
K, = 1011 s-1 

Co = 2.86 X 10-• F /cm' 
p(ta) = 4.S X 109/cm2 

A,.1./A,, = 0.156 

Static Drop Clock 
p, = 6.25 X 10 11 /cm' 

po = 1.79 X 1011 / cm' 

Pava = 0.5 X 1011 /cm' 
Pavo = 0.27 X 1011 /cm' 

Pav •dro = 1.57 X 1011 /cm 2 

p,(t,) - po(t,) = 1.75 X 10-2 

po(t,) 

t«, ~ 35 ns 

F, = 1 - e-,s 

o(I,) = 6 ns 
61,, ~ 3.5 ns 
61,o ~ 7 ns 

F'o = 1 - e~" l 
A,,. 1 + A,,,·,, l 

A,, w-s p = 10 
Dynamic Push Clock 

p, = 9.8 X 1011 / crn' 

p 0 = 4.6 X 1011/cm' 

Pa,, = 0 .6 X 1011 /cm2 

Pavo = 0.4 X 1011 / crn' 

Pav •dr• = 2.45 X l011 /cm2 

p,(t,) - po(I,) = 1.75 X 10- 2 
po(/,) 

iit1ro ~ 40 ns 

t.,, ~ 45 ns 

o(I,) = 1..5 ns 
lit,,.~ 44 ns 

F, = 1 - e~1u = 1 
Fo = 1 - e-12 = 1 

iil,o ~ 13 ns 
A ,,.a + A,,,nlerfectlvel 1 

A,1 w-s~ = 200 

device. Trapping effects due to the interface states under 
the storage gate arc larger than those under the transfer 
gate and under the prrpPndicular edges of the storage 
gate.~ Trapping in in terface states under the parallel 
edges of the gates is dominant at low frequencies. Also 
the incomplct0 charge trnnsfer due to trapping in interface 
states when the device is opcra trcl with push clock is 
much less than wh en it is operated with drop cl ock. At 
low clock frequencies the signal dcgraaation due to 
trapping interface states is larger than that due to in­
complete free charge transfer. But at high frequency, 
the device performance is limited by the free charge 

. transfer process. 
It should be emphasized that the results shown in Figs. 

7 and 8 arc fo r a minimum geometry overlapping gate 
charge-coupled devices under a specific set of operation 
conditions. The specific Yalues of the signal degradat ion 
due to trapping in interface states depend on the device 
geomct.ry and the operating conditions. So care should 
be taken in extrapolating the specific values of the signal 

~ This is actually due to the following reasons. First , for a suf­
ficien t ly large background chnqz:e , lhc mobile carri ers during the 
first stages of the cha rge t ransfer proce,~ efTectively equilibrate 
with the interface states und er th <: t rnn~fer gates a nd th e perpen ­
dicular edges. Second the area und er the transfrr gates and the 
perpendicular edges in the O\·e rl appi ng gate st rn cture is usua lly 
smaller th an the area un ck r t he storage 11;ates . Third, berause of 
the lnrger fringin11: fic lci s under the transfer gat rs and thr per­
pendi cular edge~. the rn ob il <' c·a rri ers ore f \\' P. pt. out. very rnpidly 
and the c mptyiu g of the in u,rf11cr stair hq! in ca rliPr in th P trans ­
fer process. But under th l' ~toragc gnt r thf> r,,s id11al r-liarge de­
crease~ with a rclnti\'r lv l:trgr tirnr ronstont . The intNfar,' s l:1t rs 
under it ronlinur to ra i1111rr ca rri l' rs from thP rrsici11al r h:lrf!<' and 
the qua1,i-Fermi lr vl'l fo llow$ thr (]Uasi-Fermi lenl o f th e rl's idual 
charge. \\' hen thl' rc-siduu l rliar11:c b,,romrs sma ll cnoui; h. cmi.,s10n 
from the traps b l'rn mes domin ant. Th is results in a change of th e 
slope of the siirnal degradation due to trapping in inte rfn re s tnt rs 
under the s torn ge gntes versus clock frequency as shown in Figs. 
7 and 8. 

degradation factors in Figs. 7 and 8 to other CCD struc­
tures with other dimension s under other operat.ing con­
dition s. The equat ions derind in the previous sections 
should be used with the device and model parameters 
appropriate to each ·case. 

IX. D!SCUSSION 

The analysis ancl results gi-..en in the previous l:iections 
revea l some important ancl general features of the incom­
plete charge transfer due to trapping in interface states 
in charge-coupled devices . In this section we discuss some 
of these important features, such as the relative contri­
bution to the signal degraclation of the interface states 
under the storage· and transier gates and their edges ; the 
influence of clocking wa\'cforms and \'Oltages, clcvice di­
mensions, and parameters on the incomplete charge trans­
fer due to trapping in interface states, and design fea­
tures of CCD st ructures to reduce it. 

When charge-coupled de\'ices are operated with fat 
zeros , trapping in interface statrs under thr edges of the 
gates parallel to the channel is the dominant effect at low 
frequencies. The parallel edges are the areas parallel to 
the channel at the interface uncler the storage and trans­
fer gates that are co,·ered by the signal charge a ncl are 
not covered by the hackgrouncl charge. The interface 
states under the parallel edges capt.ure charge from the 
signal charge only. The resulting signal degradation is 
alrno~t frequency ind cpenclent, varies inYcrscly with the 
channel width, and depends on the information content 
of the signal. At low frequency the signal degradation 
due to trnpping in the interface states under the storage 
gates, the transfer gates, and the perpendicular edges is 
relatively sma ller. These interface states capture charge 
from both the signal charge and the background charge. 
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TABLE II 
Nl: MER IC.\L °VALU F.S OF SIGS .\L DF.GR.\D .\TI 0:-1 F ACTO RS FOR A 

P-CHANNF.L ,\l1NIMFM Gi-:m1ETRY Two-PHASf: CClJ .\T l-!\lc 
CLOC K FRf:Q UENCY 

Si~:~~:~;~1~a~on Vnlne for 
Trapping in In te r- Vn.luefor Push 
face Stn.tcs Under: Equation Drop Clock C lock 

StorA.ge gate ,,, ( 16) 8 1 X 10-s 1. 7 X 10-s 
Trn.nsfe r gate ,,, ('28) 3 62 X 10-a 0.975 X 10-a 
P e rpe ndicula r edges 

0 . ·164 X 10-• 
P /\~~llel edges ,,1 

(11) 1 .33 X 10-1 

(33) 1 .64 X 10- • 7 .0 X 10-a 
Total• (36) 2 .5~ X 10-• '.6.54 X 10-a 

SIG'IAL DEGRADATION <ACTO R • ~~~:~• 
•· ·• •• ••• · !Rt1PP 1P-.(j 11, ~ Tt ~fdC[ S UT( S ll',()(R T~(. P[RP["«)tCULA~ 

t~<.E.S OF T11( C,:.T[S 

~ 
f-u -4 
<1 10 
Li.. 

- ·- - ~~ AW1, e, it'I 1"1(Q-<A(E ST!.T [S •>CER TM( ~AAllEL 
£0 (,£5 (.'Ir htf G!\T( S 

- - ---- TPAPP1NC, ~ f,,IT[RrA(.[ STAT(S 1./f',()(A THE 
TRA~'$f(l,t r,Al(S 

- - - TPA~,1\IC, lf-4 JNT(.AfAC[ S TATES uNO(R THC 
s • vHA(,( ( ,t;,T[C, 

- · - IN((.)t.APL [ T[ fR[( Cl"ft..ri'G( TRANSFER 
-- TO TAt.. 

Fig. 7. Signal d 1:p;rn<l11t ion factors vt:r~us clock frequen c_v for the 
minimum geometry devi ce oper:lled wit h a. two-ph::ife drop clock. 

Hence the background charge is effective in reducing the 
effect of trapping in thc:;e interface states on the incom­
plete charge transfer. For a sufficiently large background 
chrnge the eff~ctivc time constant of the interface stales 
is typically a fr :1ction of a nanosecond. With the finite 
ri so a nd fa ll tim es obtained with the p ractica l clor.k driv­
ers, and for th e minimum geometry CCD devices we 
have considered, these interface stat.es can equilibrate 
with both the signal charge and background chnrgc. This 
leads to a sma ll signal degradation that is directly pro­
portional to frequency. 

From the equations <ll'rived in Sections V-VII, and 
(2]. [5], [15), we ma.y conclude t hat increasing the clock 
voltage amplitudr. and the signal charge reduces the 
incomplete transfer due to trapping in interface states 
and tbe incomplete frpe charge transfer. Clocking wave­
forms that tend to reduce the incomplete free charge 
trn.m,fer b:v making the charge transfer for large and sm:i ll 
charg0 similar will also red uce the incomplete charge 

l£F.E JOURN.\L OF SOLll.>-STATE CIRCU IT:<, APRIL 1973 

1c?~---~~-~~--~~-~-~--~~ 

0:: 
0 
I-

~ 104 

LL 

z 
Q 
t=i 
0 165 
<1 
0:: 

8 
0 

'</. 106 

z 
<..'.) 
fr, 

SIG NAL DEGRADATION FACTOR• ~~::: 

•·••• •·• • •· T~t1PP1NC, .,._ "" ' (Rf.ti (( STo.T(S '-"'IO(R ht[ P( RP{h01(UL 4R 
c:ic.~ s er '"l c. :.1c ~ 

- - - T~:,UP ,.._(,1N,,,_l( h-rt.Cf STAT[S UN()lA 11-t(PARA.L.Lh 
f (.,,j.!S :)I" Tt,t Gl, TL !:, 

-----· rn :. i>P,NC, ..... -.. •l 1.1fo, ( ( S ' f.'(S I.I'~~ ~ h•( 'A A~4':,' f CI C, t. '£~ 
-•- 1~,vf•,,;v :", ~l( Af l( [ Sl t.TlS L."IOfA T,< ~T(-'<AVl C,~ T(S 
- - - 1N(:..,J.APl_[ T( fQ[( CHA~(,,{ TAAN<,l[R 
--TO TA ~ 

{ 
I 

I 
,,.-f---

----~====··-lJ __ _ 
// / 

/ 1· / 
_/ ·----­/ ,/ ,,,,---f ........ •· 

,c/L...--~__.___.__../~-~/.......i.-..,..:...-'_,,_-~--_..-.e.:..,~·-·_···~···_···.LJ···;c.,._1.........._Jo..L,~~___, 

102 101 
10° 

FREQUENCY MC 

Fig. 8 . Signal dcgra<la t ion factors ve rsus clock frequen cy for the 
minimum geometry device opNateci with a two-phase push clock. 

transfer due to trapping in interface states because the 
effective parallel edge area is reduced and the charges 
undt>r the storage and transfer gates, and the t ime at 
which emptying of the interface states begins tend to be 
less dependent on the initial charge. For example, when 
the device is operated "·ith a two-phase push clock, the 
incomplete charge transfer due to the interface state is 
reduced by over an order of magnitude over that when it 
is operated with a drop clock. If the device is operated 
in t he compl ete charge transfer mode the other details 
of the clocking waveforms such as its rise time and wave­
shape affect mainly the time interval t:;.t the charge spends 
under the transfer gate and the time I, at which the 
interface states starts to empty. For example, if the rise 
time increases, t:;.t and I, increase and the signal degrada­
tion E,, due to the interface states under the storage gates 

. increases slightly. The signal dPgradation due to interface 
states under the transfer gates and the perpendicular 
edges E,, and Eo.L also increase very slight ly if !:;.1/r.r, » 1, 
but decrease if the fill fa ctor F, and F0 are less than unity. 

Certain design features of CCD structures may reduce 
the incomp lete charge transfer dup to the interface states. 
A wide active channel in crca~eti the signal charge rein.live 
to the net charge tra pped in the parallel edges and hence 
reduces the signal degradation factor at low fr C' riucncies. 6 

Thinner oxide over the acti ,'c channel incrcatiCS the oxide 
capacity and the :;i~nal charge density . Thus, the net 
charge trapped under the storage gates, transfer gates, 

e Increasing th e nr tive . channel width in<· r!'ases nlso the SNR 
and dvnam ic r::ingP of the CCD. The noise in t roducP<l to the sig­
nal dian:c in th e ~torng:c p rocc~~ th~O\tgh the lt·akagc Rn<l thermal, 
gencrn ti on currrnt. is p roporlion:il to the ,qunrr root of the ga tes 
arc:i. Thr no i~e int rodu,·l·d during the tr3n sfc ,r p rocess th rough 
the Aurtuat io ns of th" f':i rri r: rs trapped in the intNfnrc states_ and 
throuf!h suppr!'s.<C'd tr::in.,fer lo~_. fl.ictuations is aim proportional 
to the squa rr> root of t h,- ~at<·~· a rra (17]. [181. But the signa l 
ch nr,:?:e i:s directly propor1 1o n:tl to th e, gate Rre11_- H ence th e 
rhua mi r runJ.(c nnd S:\' H can he in r rensr·d h~- m r rensm~ t hr artive 
ci1anm·l width of the dP.,·ic,: without degradmg its high -frequency 
performance. 
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and the perpendicular edges decreases, and the area of 
the edges is reduced. A hi gher substrate doping reduces 
the- rdgrs ' a rea , hut also rc:duccs the- frin gi11g fi elds under 
the storage gate's and hence deC'feases the rate- of free 
charge transfer. A structure with a high suh:;trate doping 
(or channel stop diffusion) and a low dopine; under the 
active channel reducrs the parallel edge area and in­
creases the fringing fields at the same time. The large 
fringing field s reduce the incomplek free charge transfer 
at high ·frequency. The net charge trapped under th e 
transfc·r and storage gate's is also reduced as the intrrface 
states start to empty earlier in the transfrr process. The 
perpendicular edge area is increased in thi s structure, but 
since in the oYerlapping gate- CCD the effrct of the per­
pendicular edges is relatively sma ll, the overall efTect of 
interface states on incomplete transfer is reducerl at low 
frequencirs. Such a struc ture can be easily achieved with 
ion implantation or otherwise. Reduction of the signal 
dcgrarlation clue to trapping in interface states also can 
be achieved by dccrcasi11g the interface state density N,., 
for example, by using the (100) instead of the (111) suh­
strate. ~loving the charge pockets in potential WC'lb in the 
bulk rather than at the interface as in buried channel 
CCD [19] eliminates the incomplete charge transfer and 
fluctuation noise- due to trapping of the signal charge in the 
interface states. Siner. trapping in the dcf ect states of the 
buried channel is expected to be much smaller than inter­
face state trapping, the signal degradation in buried chan­
nel charge-coupled deYices is much smallrr than in sur­
face channel CCD. 

The signal degradatio11 due to trapping in interface 
states limits the perforrn:rnce of CCD devices at low fre­
quency, but at high frequency tlie signal degradation due 
to inromplete free charge trnnsfer is dominant. Accord­
~ng to the simple model we have considered, the capture 
cross section a,, and the interface state- dcmity N •. , were 
taken constant for simplicity. Actually the Yariation of 
N., and ah with energy will change the freriuency de­
pendence of the signal degradation due to trapping in in­
terface states from that plotted in Figs. 7 and 8. How­
ever, the frequency drpendencc of the signal drgradat ion 
factor due to the interface states will still be weaker than 
that due to incomplete free charge transfer. The latter 
changes very rapidly with frequency, for exa mple, in Fig. 
8 it changes by more than four orders of magnitude over 
only one decade of frequency. 

So far, we have assumed that the background charge 
and the signal charge arc sufficiently large so that the in­
terface states unrl r r the trant:fer gate's and the 1wrprnd icu­
lar edges can rffecti\'rly equi librate with thr mobile car­
riers. However, if the background charge, or the capture 
cross section a,,, or the time interval M the carriers spend 
under the transfer gates and the perpendicular edges is 
too small, then these interface states cannot equilibrate 
with the mobile carriNs in transit. The fill factors F, and 
Fo arc thus less than unity, and th<' first two terms in 
(26) dominate' at sufficiently low frequency. In this case 
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the contribution to the signal degradation from the inter­
face states under the perpendicular edges and the trans­
fer gates tends to a constant Ya lu e at low frequency given 
hy (27) and (30). This contribution is due to the diffe r­
ence in the filli ng probabilitie::; of the interface states fur 
the background charge and the sigrul charge The con­
tribution to the signa l dcgradn tion from the interface 
states under th e parallr l edges and the storage gates in­
crea!,C also by decreasing the background charge. How­
ewr, the trapping in the intrrface stale~ und er the pnnd­
lel edges st ill remains the dominant effect especially from 
minimum geometry devices. 

If the storagr and transfer gate lengths arc reduced, the 
time int r rval 6.1 that the chargr ~pend:-; under the transfer 
gate decrca!':eS and th<' relative area of the perpendicular 
edges increases. Al,;o the time 14 at which the emptying 
of the interface states starts decrease:'!. Thus t,, slightly 
<lrcrcases but E..t incrca~es, t" dccr0nsrs very slightly in 
the case t.l / r .. ,, » 1, but increasrs considerably if the 
filling probabilities F, and F 0 are less tban unity . The 
signal degradation due to the parallel edges t, ,, , which is 
the dominant effect, ah,o decreasc·s very slightly. 

The i11terface states under the storage gates, the trans­
fer gates, and the perpendicul ar edges can capture carriers 
ewry cycle from the signal charge and the fat zero 
charge. Hence the interface sta tes with energy levels 
aho\'C E 1 [given by· (18), (22), (29), and (34)] do not 
get a chance to recrnit the captured carriers and arc filled 
all the time. The interface states with energy betwern the 
valence band edge and the energy E 1 will be emptying 
and filling enry cyclc. 7 For c·:-.:ample, for di gita l sign:ils, 
the net trapped charge from the first "one bit" in th e in­
terface states under the ~toragc and transfer gates and 
the pcrpendiculnr Pdges is almost independent of the 
number of prccrding "zero bits." But the net trapped 
charge from the first one bit in the interface states under 
the- parallel edges incrruses logarithmically with the 
numbrr of preceding zero bits. If a two-phase device is 
operated with no fat zrros, then the 11et trapped charge 
pn tran!':fer from thr first one bit preceded by 71.-mo zero 
bits can be easily obtained from ( 12). 

t.q '."' eA.,K1'N .. In (~" 0 t 1~ - t • .,) / (2~
0 

t.,,) 

+ eA,,KTN,.P. ln (n··:0 t 112 
- t ... ) I c~o -t.,,) 

+ A KTN 1 (n,..0 + 1 /2 ) / ( 1 . ) e • .. n fo - t.,, 2/ o - t., 

and fort.,, < l/2f0 and 14., « 1/2f 0 

t.q = eKTN .. (A., + A,,F, + A,) In (2n,uo + 1). (37) 

7 Thus the incompl r te charge trun~fer due to trapping in in tE>r­
fncr $(Airs unJt•r thr ~tt>r:1gr :ind trnn:,:fE>r g11tr:i and thr J.,CrpE>n­
dirular edJ1;r~ is due to thr rnriablr m ea n oerupation of the srnte 
with rn<'n!,. do~c to E,. Thrrcfo rr the valurs of N .. nnd "• at 
th,, C'tH'r~_,. · E, should be usrd to rstimate the trapping dTccts in 
thrse states. 
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Tlw above result was used by Carnes and Kosonocky [7] 
to measure.\' ., by measuring the slope of the charge loss 
versus ln 11.,..,,0 • !IOWl'Hr, (37) shows that the so mN1-

surr d vnlue of .VH is some nnrage ,·alue of N., under the 
transfer and storage gate . A typical value of the si101a l 
degradation factor t at each transfer in this cai'c is about 
10-3, if n...,"' is equal to unity. 

l\feasurements of the signal degradation factor in 
charge-coupled de\·ices a re difficult a11d require .lon g reg­
ister strings for a good accuracy . The signa l degradation 
factor ·due to incomplet e fr ee ch:nge transfer at high fre­
qucnr.irs was nwarn rrd by C:1.rnrs and Ko~onocky [201 
usi1;g a 64-bit two-µh:1. se owrl npping gate shift regis ter. 
Thl'y mr asm ed a signal <lrgradation factor of IO-• ut 
1 :\Ic. U:5 ing fcl'<lback to increase the effective number of 
transfers, Levine [21) measured a signal degradation of 
3 x 10-5 at 200 k c anJ 9 x W O at 10 kc. Presently, the 
experimental data of the signal degradation factor in the 
overlapping gatr charge-coupled de\·ices arc relatively 
sparcc. So experimentally, the precise Yalues of the s ignal 
degradation <lue to trapping in the interface states at low 
frequencies and its frpquency dependence are not pres­
ently well known. 

X. CONCLUSIONS 

Using a simple model we have estimated the signal 
degradation due to in te rfacP s tates trapping in overlap­
ping gates charge-coupled devices operated with a back­
ground charge taking into account the refilling of the in-

n,, K,N., exp [- { (Kip(t') + K2 exp (-E/KT)) dt'] 
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terface states during transfer. Our results show that the 
incomplete transfer due to interface states limit the per­
forrnan ee of these deYices at low frequencies . The most 
dominant effect is trapping in the interface states under 
the parallel edges (the areas parallel to the active chan­
nel at the interface under the storage f\nd transfer gates 
that are covered by the s ignal charge and are not covered 
by the background charge). 

For a suffici ent ly large background charge the interface 
statrs under the _storage 'gates~ transfer gates, and the 
perpendicular edges qf the gates can effectiwly equili­
bratr with both ·the sig~ril a~1d bnckground charge. Hence 
the incornpl ete eh~ rgc transfrr due to trapping in these 
interface statrs Yaries a lrno:;t directly with frequency and 
becomes very sma ll at su ffici ently low frequency. 

Some <lesign features of CCD structures were shown to 
reduce the incomplete charge transfer due to interface 
state trapping. We have shown also that increasing the 
clock voltages or increasing the signal charge or using 
pwih clock instead of drop clocks rcciuces the incomplete 
charge transfer <lue to interfacP states trapping. 

APPENDIX 

If the mobile carrier concentration p(l) is varying with· 
time, then the transient average occupation of the inter­
face sta tes at an energy E above the valence band is ob­
tained by integrating the rate equation ( 1). As"uming 
p(t) » KT·N., then we get 

· f p(t') exp [f (K1p(v) + K2 exp (-E/KT)) dv] dt' 

+ 
1 

+ K
2 
e:"(-E/ KT) exp [ -{ (K1p(t') + K2 exp (-E/KT)) dt'] for t > 0. (Al) 

K 1p(O) 

If p(t) = p(t3) exp (-(t - ta)/r) for t > ta, then 

n.,(t) = K,N., exp [-K 1p(t3)r(l - exp (-(t - t3)/r)) - Kit - ta) exp (-E/KT)J 

· [ p(t') exp [K1p(t3)r{l - exp (-(t' - ta)/r) + K2(t1 - /3) exp (-E/K'l1] dt' 

+ 
1 
+ K

2 
e~;•(-E/KT) exp [-K1p(t3)r(l - exp (-(t - t3)/r)) - K 2(t - ta) exp (-E/KT)] for t > t3 • (A2) 

K1p(t3) 

This can be easily reduced to 

n .. (t) = N.,K, r exp [K1 rp(t) - Kit - l3) exp (-E/KT)J 

· [p(t) exp (K 2 e:q> (-E/ KT))E,(K 1rp(t)) - p(ta)E,(K,rp(ta))] 

+ , N., , exp [-K1p(t3)r(l - exp - (t - t3)/r) + K 2(t - la) exp (-E/ KT)] for t ~ ta (A.3) 
l + /\. 2 exp (-E/ KTJ 

Kip(ta) 
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where Ec(x) is the exponential integral of order c defined 

by 

{ _ex-=p~( -_n~•) dv (A4) 
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where t4 is the time the em1ss10n of carrier~ becomes 
dominant and the refilling of the trap,, becomes negligi­
ble. It is given by 

and Similarly integrating (AIO), we get 

p,, N,.KT[E1(Kit - t,) exp (-E./ KT)) - E1[Kit - t~)] 

- E1(K2 (t - t,) exp (-E./ KT) + K,(t - t,)p(t,)) + E1(Kit - l 4 ) + K 1(t - l 4)p(t 4))]. 

c = rK 2 exp (-E/K'l'). (A5) 

If K 1rp(t) > 1, then the asymptotic expansion of Ec(x) 

can be used: 

Ec(x) 
x+c 

Fort> t3 + [1/K1p(t 3 )], (A3) reduces to 

(Au) 

n,,(t) --~- - + N., 
l + K2 exp (-E/ KT) l + K 2 exp (-E/ KT) 

K 1p(t) K1p(l3) 

If l/.f(2 < t - l4 < l/K2 exp (E 9 /KT) an~ t - t 4 > 
[ 1/ K 1p (tJ], then we may use the asymptotic expansion 
of the exponential integral for sma ll and large arguments 
to get 

·exp [-K 1p(t3)r(l - exp (-(l (A7) 

Two special cases ar_e of interest. First, if K1p(t 3 )r > 1, 
then the second term is negligiL,le for t > t3 + r, and 
(A 7) reduces to 

l + K2 exp (-E/KT) 
K1p(l) 

n,.(t) 
N., 

(A8) 

Thus the interface states have a sma ll effective time con­
stant rett and can equilibrate wry rapidly ~ith the mo­
bile carrier. Assuming a constant interface state density 
N,, states/cm 1 ·eV and a constant capture cro,,s ~l'ction 
uh cmZ, the total density of trapped carriers p 1, is given 
by 

Ptr 18

' n,.(t) dB 

[exp (E. /K1') + -f.tw] 
= N .,KT ln [ ] . 

I+__&_ 
K1p(t) 

If l/K2 < [1/Kip(t)] < 1/K2 exp(E9/KT), then 

p,, = N,,(E. - KT In K:
2(tJ (A9)· 

Second, if K 1p(t)r $ I, (A7) reduces to 

N., 
n,, = I+ K 2 exp (-H/ KT) 

K1p(t.) 

·exp [-Kit - t4)] exp (-E/KT) t > t., (AIO) 
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Chapter 4 

TWO DIMENSIONAL ELECTROSTATIC ANALYSIS OF 

BURIED CHANNEL CHARGE COUPLED DEVICES 

Although one dimensional electrostatic calculations give a fairly 

good understanding of the device characteristics, it is not enough· to 

describe the complete electrostatic characteristics of the device 

structure. The reason ·s as following: In the case of surface CCD's 

the minimum potential is directly controlled by the gate voltage 

through the thin silicon dioxide, and the resulting fringing field is 

relatively small. However, in the buried channel CCD the minimum 

potential is in the buried layer deep in the bulk and the influence of 

the gate voltage upon the minimum potential is smoothed out more 

effectively, by the neighboring electrodes resulting in high fringing 

fields along the direction of the charge transfer. This fact makes it 

necessary to consider variation of the potential not only normal to 

the insulator semiconductor interface but also along the direction of 

charge transfer. Thus, the two dimensional electrostatic analysis of 

buried channel CCD becomes essential to the understanding and estima­

tion of the usefulness of this device. 

In this chapter, a detailed two dimensional electrostatic analysis 

of buried channel CCD is presented. In the next section the results 

of the electrostatic analysis of the basic one dimensional MOS struc­

ture for buried channel CCD are reviewed and summarized in order to 
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establish a basis to the two dimensional electrostatic analysis. The 

simplest standard two dimensional electrostatic analysis is first 

described in Section 4.3 for a surface field effect transistor with 

p-type, epitaxially grown, metallurgical channel. This transistor 

structure is simple but complex enough to have many of the character­

istics that are found in buried channel CCD. The gradual channel 

approximation for the transistor is first presented and compared with 

the exact two dimensional numerical calculation. Furthermore the 

analysis is extended to the case in which there is no mobile charge in 

the channel, that is, in the completely depleted channel. And it is 

shown that the correction in the channel potential to the gradual 

channel approximation is proportional to the curvature of the potential 

with a fairly good accuracy. In Section 4.4, the resultsof the two 

dimensional numerical calculation of the minimum potential profile in 

buried channel CCD are presented and it is shown in Section 4.5 that 

the speculation given in Section 4.3 about the relation between the 

minimum potential and its curvature is also valid in the more compli­

cated structure of buried channel CCD. This physical interpretation 

leads to a simple capacitance model which is also discussed in 

Section 4.5. This simple electrostatic model replaces the two 

dimensional nonlinear Poisson equation by a linear second order differ­

ential equation with a single spatial coordinate. In Section 4.6, the 

complete dynamic charge transfer model compatible with actual 

numerical calculations is established with this simple capacitance 

model. The consequence of this dynamic charge transfer model remains to 
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be studied in the next chapter. 

4.2 Basic One Dimensional MOS Structure 

In this section we first present the channel potential ¢m and the 

gate capacitance Cg in terms of the signal charge Q and the gate vol­

tage ¢sF· Furthermore, for a Gaussian doping profile we describe the 

procedure to obtain the effective p-diffusion density NA and the 

effective diffusion depth Xd from the surface charge density Ns and the 

p-n junction depth x
9

. 

The expressions appearing in this section are essential in develop­

ing the later sections and are frequently quoted. To make this chapter 

as independent as possible from the other chapters, the review and 

summary of the one dimensional analysis are given here. 

The salient physical parameters which appear in the basic one 

dimensional MOS structure consists of four fixed parameters that can be 

controlled in the fabrication of device, and three more variables, 

among which there is only one constraint during the device operations. 

The four fixed parameters are the oxide thickness X
0

, the p-diffusion 

depth Xd, the p-diffusion doping concentration NA, and the substrate 

doping Nd. The other three parameters are the equivalent gate voltage 

¢sF' the signal charge Q and the channel potential ¢m• The associated 

constraint among the three variables can be written as an expression 

of the potential ¢min terms of the gate voltage and the signal charge 

Q. 

This expression establishes a procedure for calculating the 

minimum potential ¢ if the gate voltage 
m ¢sF and the signal 
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charge Qare pre-specified. The procedure is outlined below. 

First calculate the three parameters ¢t, ¢d and R defined by the 

following three equations 

and 
NA ¢t - ¢sF 

R = -
2Nd ¢d +¢t 

(4-la) 

(4-lb) 

(4-lc) 

where Qd ~ NdXd and Cd~ s 5i/Xd. £Si is the silicon dielectric con­

stant (648 e/volt•µ). C
0 

is the oxide capacitance. 

Then the channel potential ¢m can be expressed as 

¢ = - (1 + Nd ) f ( R) [¢ - ¢ ] 
m NA d sF (4-ld) 

where f(R) is a slowly varying function of Rand defined by 

f(R) = __ R ___ _ 

1 + R + ✓l + 2R 
(4-le) 

From these equations given above, it is also possible to express the 

signal charge Qin terms of the gate voltage and the minimum potential 

¢m. The result is presented below for future use: 



where¢ and p 

and 
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(4-2a) 

(4-2b) 

(4-2c) 

The gate capacitance C can be written in general as a series com­g 

bination of the oxide capacitance C
0

, the surface depletion capacitance 

c1 and the metallurgical junction capacitance c2 as seen by 

If we define the two parameters A and Bas seen by 

and 

Then the gate capacitance C can be calculated from A and B by the 
g 

expression given below: 

NA ✓A2 - B 

(4-3a) 

(4-3b) 

(4-3c) 

(4-3d) 

Observe that the parameter ¢q is of the order of 324 volts but the range 

of the gate voltage ¢sF is of the order of 20 volts. Hence, the parameter 
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B does not change much during the gate voltage swing. Hence the gate 

capacitance Cg is fairly constant with respect to gate voltage. 

We are now in a position to describe the procedure to obtain the 

effective p-diffusion density NA and the effective diffusion depth Xd 

from the surface density Ns and the p-n junction depth x
9

. 

The total sheet charge density Qd in the p-diffusion layer is 

then given as before by Qd = NAXd. This quantity is equal to the 

spatial integration of the charge density from the Si-Si02 interface 

to the p-n junction depth X . The charge density is described by the 
g 

Gaussian charge distribution function d(x) given by 

where 
2 N 

a = l n ( l + 2 ) 
Nd 

(4-4a) 

(4-4b) 

We choose the effective depth Xd to be at the reflection point of the 

Gaussian doping profile and obtain the expression as seen by 

X 
X = --------
d N 

ln(l + j) 
d 

Since the total sheet charge density Qd is given by 

X 2 
Qd = Jg d(x)dx = NdXg [1 - Irr exL(") erf(ci)] 

0 

where erf is the error function, we then obtain the effective p­

diffusion density NA from the relation given by 

(4-4c) 

(4-4d) 
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(4-4e) 

4.3 Surface Field Effect Transistor with Metallurgical Channel 

The structure of a surface field effect transistor with p-type, 

epitaxial grown, metallurgical channel is depicted in Fig. 4.la. We 

analyze this simple structure first in order to understand the basic 

underlying principles applicable also in the more complicated buried 

channel charge coupled device structure shown in Fig. 4.lb. Specifically 

we consider first the current-voltage characteristics, the turn-off 

voltage, the saturation aurrent, the transconductance and the 

response time of the transistor. These characteristics are essential 

in defining the functional capabilities of the transistor and in return 

give a good guide line in design and estimation of the usefulness of 

the more complicated structure of buried channel CCD. Furthermore, the 

channel potential at the onset of saturation is analyzed in gradual 

channel approximation and compared with the exact numerical solutions. 

This analysis is extended to the case of the completely depleted 

channel, that is, no mobile charge in the channel. This study leads to 

a very interesting result about the channel potential profile. The 

channel potential seems to decay exponentially, as we go farther from 

the source to drain, to the final value of the drain saturation 

voltage. This speculation leads to the simple capacitance model to be 

discussed in the subsequent sections. 

Returninq to Fig. 4.la, we beqin the analysis with the qualitative 

description of the surface field effect transistor. In the following 

calculations, we consider only that portion of the channel which can be 
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(a) 

cps cf>G 

I 
p+ I 

p-Si 
\ p+ / ' _, .... _ , __ ,, 

n-Si 

_l._ 

p-Si 

n-Si 

Fig. 4.la The structure of a surface field effect transistor 

with a metalurgical channel. The channel is p-type, 

epitaxially grown. 

Fig. 4.lb One unit cell of overlapping gate buried channel CCD. 
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modulated by the application of the gate voltage. In reality, there 

are series resistances present, both near the source and near the 

drain, which impose an IR drop between the source and drain contacts 

and the channel. 

In normal operations, the source and drain voltages will be biased 

negative with respect to the substrate to maintain the p-n junction 

reverse biased. If the drain voltage ¢0 is further biased negative 

with respect to the source voltage cps' the mobile signal charges 

(holes in this p-channel device) will flow from source to drain through 

the p-type region enclosed between the two depletion regions. The p­

diffusion layer doping NA is normally made 20 ~ 30 times larqer than 

the substrate doping Nd. And the corresponding p-n junction depletion 

layer will not modulate the channel width significantly. However, the 

gate voltage will influence the channel width significantly throuqh the 

surface electric field. The actual channel width XCH can be calculated 

from Eq. (4-2a), knowing that the signal charge Q is simply given by 

the product NAXcH· In the relation (4-2a) we note the value of ¢q is 

much larger than ¢p• The last term in RHS of Eq. (4-2a) presents the 

modulation of the channel by the surface electric field which in turn is 

controlled by the effective gate voltage ¢sF· On the other hand, the 

p-n junction depletion width will be influenced by the channel potential 

¢ . But because of the large value of¢ , the middle term in Eq. (4-2a) m q 

is very small and the corresponding p-n junction depletion layer does 

not have a significant effect upon the total channel width XcH· 

The most important characteristic of any type of transistor is 
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the current-voltaqe relationship, and we now formulate our analysis to 

this goal. The calculations of the turn-off voltaqe, the saturation 

current and the transconductance are the natural extension of this 

followinq analysis. 

The resistance dR of the elemental section dy of the channel is 

given accordina to gradual channel approximation by 

where Z desiqnates the width of the p-diffusion layer. {Recall the 

depth of the p-diffusion layer is denoted by Id). The hole mobility 

µ in the bulk silicon is taken to be 480 cm2/volt-sec in the later 
p 

calculation. The amount of the mobile signal charge Q depends on 

the gate voltage ~sF and the local channel potential ~m which is also 

a function of the spatial coordinate y, taken along the direction of the 

char~e transfer. The source and drain ends are defined to be located 

at y = O and y = L respectively. 

The voltage drop across the elemental section of the channel is 

then given by 

-Id dy 
=---T----

z µ p Q ( ¢ m ' cl\ F) 
, {4-Sb) 

where Id is the drain current which we would like to calculate in terms 

of the gate, source, and drain voltages. The inteoration of 

Eq. {4-5b) with the epxression Q{~m' ~sF) substituted from Eq. (4-2a) 
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yields the drain current Id as seen by 

(4-5c) 

where F(¢
5

F,<t>) is defined by 

(4-5d) 

.and G
0 

is the conduction of the p-type diffusion layer, discountinq the 

presence of thP. two depletion regions alto9ether, and qiven by 

ZµpQ/L. 

The channel conductance gin the linear re~ion can be calculated 

by expandinq the drain current at the source and taki no (<t>d - <f>s) very 

small. That is, in the linear region, the drain current will be ~iven 

as 

(4-5e) 

and the corresponding channel conductance 0 is given by taking the qate 

voltage ~sF constant and as seen by 

(4-5f) 

replacin~ the channel 

potential <Pm by the source voltage ¢s• The channel potential q in the 
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linear region is independent of the relative voltage difference (<f>d-¢
5

) 

between the source and drain, but depends on the source¢ and the o.ate s ~ 

voltage ¢sF· (Of course, in the ranqe of validity of linear expansion, 

4>d ~ <f>s). 

We are now in the position to extend the above analysis to obtain 

the expressions for the turn-off volta~e, the saturation current and 

the transconductance . These physical parameters are important not 

only in characterizinq the surface field effect transistor but also in 

understanding the qualitative aspects of dynamic charge transfer 

process in buried channel CCD's 

For a fixed source voltage <f>s• as we increase the gate voltage 

¢sF• the channel conductance decreases because the surface depletion 

width increases as seen in the last term in RHS of Eq. (4-2a). At a 

certain gate voltaqe, the conductance vanishes alto~ether. This turn­

off volta9e can be calculated from the condition~= 0.0 or 

Q(¢5F,¢s) = 090 of Eq. (4-2a) to be the value ¢sF = VT with VT qiven by 

(4-6a) 

In the linear re9ion (¢d ~ <f>s) with the fixed source voltaqe <f>s the 

condition of the zero channel width XcH is given by the gate voltaqe <f>G 

to the turn-off voltaae VT as seen above. 

On the other hand, for a fixed Qate voltaqe ¢G, the drain satura­

tion voltage ~dsat (or the pinch-off volta~e) is defined to he the 



103 

value of the drain voltage at the zero channel width, XCH = o.o, at the 

drain terminal . This implies that the relation between the gate 

voltage and the drain saturation voltage $d sat can be written exactly 

in the fonn given by Eq . (4-6a) and we obtain 

¢ = ¢ + er (-~cpd sat)(l + 
2

Cd -W<t>d sat~ sF d sat p ¢ C ¢ • q O q (4-6b) 

We must -solve Eq . (4-6b) to obtain the drain saturation volta~e $ d sat 
in terms of the fixed qate volta~e ~G. Rut this has been done. And 

the result is simply qiven by Eq. (4-ld) with the zero si~nal charqe 

Q = o.o. Substitution of the so-obtained drain saturation volta9e 

~d sat into the current-voltaqe relationship Eq. (4-5c) gives the 

magnitude of the drain saturation current, Id sat· 

Another important property of the transistor is the transconduc­

tance defined as the change of drain current at a 9iven drain voltaae 

upon a change in qate voltaqe. This quantity is negative for p-channel 

devices because the channel resistance increases as we increase the 

qate voltage resulting t he decrease in the drain volta~e. The maqnitude 

of the transconductance can he calculated from (4-5c) to be 

(4-6c) 
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The transconductance in the linear reqion can be obtained by expand-

inq the bracketed terms in Eq. (4-6c) above. Conversely, the transcon­

ductance in the saturation reqion can be calculated by inserting 

~d = ¢d sat into Eq. (4-6c). This yields, applying the relation (4-6b), 

the sa~ expression (4-5f). This shows that the transconductance in 

the saturation reqion is exactly equal to the channel conductance in 

the linear reoion. 

One more aspect of the transistor characterization remains to be 

studied. This is the response time of the transistor. When the qate 

volta~e •sF changes by an amount ~~sF' the channel width XcH will be 

modulated because there is also the correspondinq chanoe in charae 

contained within the depletion regions surroundino the channel. This 

additional charqe in the depletion reqion is equal to the amount of 

the induced charqe ~0G on the qate. The response time of the system 

can then he defined as that time in which the chanoe in the drain 

current makes up the chanoe in the total charoe on the gate, that is, 

t~I 0 = tQG . Thus it follows that this response time is 9iven by 

(4-7a) 

where gm is the transconductance given by Eq. ( 4-6c) and CG is the tot a 1 

oate capacitance we must integrate c9(~sF,0) over the area of the qate. 

That is, 

(4-7b) 
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The use of the relation (4-Sb) and regarding the signal charge Q to 

be a function of the local channel potential ¢mas qiven by Eq. (4-2a) 

results in a simple procedure to calculate the total gate capacitance 

CG in terms of the oate, source and drain voltages. 

(4-7c) 

The instantaneous current on the gate (or the clock load) is simply 

qiven by 

(4-7d) 

We have now come to the stage of the most important discussion in 

this section. This is about the channel potential at the onset of 

saturation. The validity of the gradual channel approximation fails 

in this transit condition. And we have to rely on the exact two 

dimensional numerical calculation. 

Figure 4.2a illustrates the conditions that prevail under the onset 

of saturation. The values of the salient, parameters in this calculation 

are NA= 20,000 e/µ 3, Nd= 1,000 e/µ 3, Xd = lµ , X
0 

= 0.12µ , ~s = -20.0 

volt, ¢sF = -18.0 volt, and L = 12µ. The drain voltage ~dis computed 

by Eq. (4-ld) with Q = 0.0 (the condition of the drain saturation 

voltaae) and is found to be -32.8 volt. The solid curve in Fig. 4.2b 

represents the channel potential alonq the direction of the charge 

transfer computed by the qradual channel approximation. The validity 
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Fig. 4.2a The ideal condition at the onset of saturation is 

illustrated.~d=•dsat=-32.8 volt and ~5=-20volt. 

Fig. 4.2b The channel potentials computed by the gradual 

channel approximation and the numerical computation 

are compared. The gate length Lis 12~. •sr=-13 volt. 
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of this approximation is confirmed by the actual two dimensional numer­

ical calculation shown as a dashed curve in Fig . 4.2b. 

This calculation is done under the condition of steady state and 

the channel potential depends strongly upon the charge profile. If 

there is no mobile charge at the onset of saturation, that is, when the 

source voltaqe is raised from ~d sat to the present value of -20 volt 

very suddenly, there is still some time to qo for the system to reach 

the steady state illustrated in Fiq. 4.2a. The channel will be opened 

from the source to the drain qradually. And the corresponding channel 

potential charqes as illustrated qualitatively in Fig. 4.3. The 

validity of the qradual channel approximation fails in this transit 

condition. J.\nd we have to rely on the exact two dimensional numerical 

calculation for the channel potential. Moreover, to obtain the exact 

transit curves 1, 2, 3 and 4 depicted in Fig. 4.3, we must couple the 

two dimensional continuity equation to the Poisson's eouation. We have 

not done this . ~·le simply showed the qualitative channel boundary and 

potential profile in the transit conditions. However the actual channel 

potential at t = 0.0 can be computed by the two dimensional Poisson's 

equation above. And the curve shown in Fiq. 4.3a is the result of the 

exact numerica l calculation. The channel potential seems to decay 

exponentially, as we go further from the source to drain, to the final 
. 

value of the drain saturation volta<1e cpd sat· This speculation as 

verified when the curvature a2cp/ay2 is plotte~ against the difference 

(~ - <Pd sat) as shown in Fi9. 4.3c. Indeed the channel potential 
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Fig. 4.3a The boundary of the channel at the transition period 

when the drain voltage changes suddenly from~ to ~d . s sat 

Fig. 4.3b The channel potential at transit times. The profiles 

at t = O and t = 00 are calculated exactly. 

Fig. 4.3c The curvature of the channel potential. 
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follows the simple relation 9iven by 

(4-8) 

with A= 0.67 • The deviation (~ - ~d sat) from the gradual channel 

approximation is proportional to the curvature of the potential with a 

fairly qood accuracy . This characteristic can also be observed in the 

more complicated structure of Fig. 4. lb. The physical interpretation 

of Eq. (4-8a) leads to the simple capacitance model to be discussed in the 

later section. 

This concludes the revie~ of the basic underlyinq principles of 

the field effect transistor with the metallur0ical p-type channel. 

With this amount of knowled9e, it is now a strai9htforward procedure to 

extend the above analysis to the electrostatic problem of two 

dimensional Buried Channel Char~e Coupled Devices. 

4.4 Minimum Potential Profile in Buried Channel Charge Coupled Devices 

In this section we will describe the general characteristics of 

the channel potential profile and the resulting fringinq field in buried 

channel charoe coupled devices. The detail of the solution of the two 

dimensional Poisson equation is further studied and the results are 

compared with the relations implied in one dimensional depletion approx­

imation. In order to clarify the computational procedure, the nature 

of two dimensional Poisson's equation for the buried channel charqe 

coupled devices is also discussed. The interpretation of the detailed 

results presented in this section remains to b~ studied in the next 
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section .. 

One of the major factors causinq the buried channel device to 

differ from the surface channel device, can be illustrated by the rela­

tionship of the qate oxide capacitance to the depth of the potential 

well produced by that qate. Given two identical qate electrodes at 

the same potential, ,n a surface channel device the gate with the laroer 

oxide capacitance will produce the deeper well at the interface. In a 

buried channel device, the qate with the smaller oxide capacitance 

will produce the deeper well in the depleted channel. Hence the 

aluminum and silicon qate should be used as storaqe and transfer qates, 

respectively in buried channel charqe coupled devices. In the 

structure illustrated in Fig. 4.lb, the oxide thickness is O. 12u under 

polysilicon electrodes and 0.32µ under the aluminum electrodes. 
,,> 

For two-phase operation the one dimensional analysis shows that 

the values of 0. 0 volt for the source gates and -18.0 volt for the 

receivinq gates should qive the optimum minimum potential profile alon9 

the direction of the siqnal charge transport. Two dimensional Poisson's 

equation correspondinq to the structure shown in Fig4 (4. lb) is solved 

numerically for zero signal charge. The result is shown in Fig. 4.4. 

The minimum frinqinq fields are found to be 824 volt/cm under the silicon 

transfer qate and 1796 volt/cm under the aluminum qate. These values 

are one order of maqnitude bigger than the surface CCD frin~inq fields 

stren~th. 

Under these physical conditions present, it is of interest to con­

sider how the mobile siqnal charge profile would affect the overall 
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Fig. 4.4 The minimum potential and the potential gradient 

along the direction of charge transfer. NA=20,000e/µ 3, 
3 

Nd=lOOO e/µ , and Xd=l.Oµ. The shaded region is the 

potential lift due to the signal charge in the well. 
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view of the minimum potential profile. As the siqnal charge is beinq 

transferred into the storaqe well under the aluminum drain oate, the 

signal charqe should raise the minimum potential from the zero-signal 

level (-39.9 volts). But as seen in ' Fig. 4.4, the minimum potential 

under the aluminum drain gate should not be raised higher than the 

level (-31 . 6 volt) of the minimum potential under the silicon transfer 

0ate. This condition limits the maximum siqnal capacity down to 30% 

of Qd = NA XCH' i.e., 6000 e/µ 2• If the gate dimension is 100µ by 

12µ, then the maximu~ si~nal charne that can be processed is 7.2 

million electron charqes. 

However, for three or four phase clockino schemes, the maximum 

signal charqe processing capacity will be quite possibly larqer. 

In Fi0. 4.5, we have plotted the frin~inq field profiles under 

the aluminum source qate and silicon trans~r qate in an expandinq 

scale. 

The above result is the most important one in the two dimensional 

electrostatic analysis of buried channel CCD's, and needsto be studied 

in order to obtain the important correlations between the one dimensional 

and two dimensional analysis. Specifically, we expect the solution of 

one dimensional depletion approximation to oive fairly good aqreements 

with the solution of the two dimensional Poisson's equation in the most 

of the area except at the interelectrode reqions. In Fiq. 4.6, we have 

plotted the following three quantities which represent errors involved 

in the linear depletion approximation 
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2 
U dx 1 dx 
dy2 ( 4-9a) 

(4-9b) 

(4-9c) 

In one dimensional structure these three quantities e: 1, e:2 and e: 3 are 

theoretically all zero. This error estimate indicates that our 

results are in oood aqreement in all but the small interelectrode 

regions. 

To complete our discussion we have plotted in Fiq. 4.7 the surface 

electric field E
5 

perpendicular to the interface and the depth x1 of the 

surface field induced space charqe reqion. 

of the minimum potential from the interface. 

Note x1 denotes the position 

The surface potential ¢ s 

and the minimum potential ¢ are compared in Fig. 4.8. m 

It is very important at this staqe to describe the nature of the 

two dimensional Poisson equation appropriate for the structure of buried 

channel cco•s. The detailed results presented above can be reproduced 

with the aid of the discussions given below. 

Poisson I s equation for two di mens ion al huri ed channe 1 cha rqe coup led 
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the oxide-semiconductor interface. 
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devices has a similar form to that of one dimensional form in which the 

quasi-fermi level ¢ of electrons is approximated to be a constant 
n 

throuqhout in the semiconductor whose value is equal to the fermi level 

¢f deep in 'the substrate. The presence of signal charge determines the 

form of the quasi-fermi level ~p of holes in the p-diffusion region. 

But in then-type Si-substrates, its value can be approxi~ated by the 

· ferrni level <f,f. In the operation of buried channel charge coupled 

devices, the quasi-fenni level 4>p of holes in the p-diffusion reqion 

can be assumed to he a function of the y-coor~inate only, which is 

defined paralle l to the direction of charge transfer. From Boltzmann 

statistics (which is a qood approximation for Fermi-Dirac statistics 

for energies at least several kT away from quasi-fenni levels), we have 

the concentration of holes in the form as seen by 

(4-lOa) 

where n. is the intrinstic electron or hole density and¢ is determined 
1 0 

by the definition of the reference potential deep in the substrate to be 

(4-lOb) 

Note n;, ~o and ¢Pare all constant along the depth of the semiconductor, 

that is, alon~ x-axis. 
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Hence we observe that the condition of no x-coordinate dependence of the 

quas i-fern,i level ~p of holes is equivalent to no siqnal char9e motion 

nlonq x-coordinate (perpendicular to semiconductor surface) 

J = -D 12._ - µp ~ = 0 x ax ax (4-lOc) 

This assumption is essential in the description of the dynamic sional 

charge transfer which will be discussed later in this thesis. The 

Poisson's equation in the p-diffusion reqion is 0iven by 

d2¢ + ~ = _ [d(x) + p( ¢,¢0 ) ] 

dx2 cty2 c: Si 
(4-lOd) 

where¢ is assurned to be a function of y-coordinate only. In then-. p 

type Si substrate, the Poisson ' s equation is given by 

[d(x) - Ndexp(¢ /kT)] 

E Si ( 4- lOe) 

After solvinq the Poisson's equation, we obtain the potential <1>{x,y) 

everywhere. Anrl if we obtain the position X {y) of the minimum potential 
m 

alonr the direction of char9e transfer. We can write the mobile signal 

charCTe density p(x,y) as 

¢ - ¢ 
p(x,y) = -d(Xn) exp ( 9 kT ) {4-lOf) 
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whe re the quantity <Pq is related to the quasi-fen,,i level of holes in 

the p- diffusion reoion by 

¢q = ¢ - ¢ - kT ln p 0 

When the dopinq d(x) is considered uniform and given by (-NA) in the p­

diffusion layer, Eq. (4-100) becomes 

(
NANd\ 

¢ = ¢ - kT ln --2·/) 
q P n. 

l 

And the mobile siqnal char~e is written as 

( 4- lOh) 

(4-l0i) 

tq is the minimum potential for this case alon9 the direction of the 

signal charge transfer. ¢q = ~m(y). 

The condition of zero si9nal charqe everywhere corresponds to the 

case in which the quasi-fenni level ~P for holes is such that the 

quantity (~q-¢)/kT in Eq. (4-lOq) is a very large neoative value 

everywhere& In this case, in p-diffusion layer, we can write the 

Poisson's equation as 

( 4-1 Oj) . 

We assume that the doping profile d(x) does not vary alon0 the 
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di rection of charge transfer {y-axis). 

4$5 Capacitor Network Model for Buried Channel Charqe Coupled Devices 

In the previous sections we have shown that the exact numerical 

cal cu lation of the two dimension Poisson's equation results in the 

channe l potential which differs from the one dimensional oradual channel 

approximat i on by an amount wh ich is proportional to the second spatial 

deri va t ive of the exact channel potential (Ref. Eq. (4-8)). Numerically 

we have found the decay lenqth A to be 0.67u for the particular values 

of the physical parameters. ~le now qive a simple physical system which 

may explain this result better. The following is the derivation of 

the simpl e capacitance network model for buried channel CCD's. 

For two di nensional BCCO structure, we consider the differential 

capaci to r ne twork shown in Fig. 4.9b, which is obtained by inter­

connecti no the one dimensional series capacitance structure shown in 

Fi g8 4. 9a by another capacitance C. Note that c0• c1 and c2 are in 

capaci t ance per unit area while C has a dimension of capacitance. And 

phys ical ly we expect the value of the capacitance C to be of the order 

of £s ;Xd.. From Fio . 4.9b the differential si!1nal char9e per unit 

lenath is oiven by 

d~ .dy = \ri¢ - ;) ¢ , ) cl dy + u¢rl . C2dy + ( a¢ - 0¢ ) C/dy + (a(p - c) cp ) C/dy 
J rn . ...) . J m J. rn 1· 1 rnJ. m 1· + 1 J J . ·. . - ' 

(4-ll a ) 

Note aoj has a dimension of charge per unit area. The differential, 

a~ , of t he minimum potenti al is related to the differentirtl nate 
m 
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voltaqe a4>G by 

( 4-11 b} 

Hence the differential surface potential is ~iven by 

( 4-11 C) 

Substitution of Eq. ( 4-11 c) into Eq. { 4-11 a) results in a di fferenti a 1 

equation for the differential minimum potential a4>m 

2 
C ~ [a¢ ] = 

dy m 

acpm - a¢mo 

acpm 

800 

( 4-11 d} 

where (a$ /aQ) and 3<f>m are the solutions when we take one dimensional 
m o 

0 

case depicted in Fi9. 4.9a. Finally by addino constants, we obtain 

(a¢ /aQ) m o 
(4-12) 

This simple equation implies that the mininium potential profile$ is 
m 

linearly dependent upon its second derivative wherever a4>m and 
0 

(a~ /aQ) are constant. In two dimensional BCCD structure, these two m o 
quantities are indeed constant except at the interelectrode reoions 

where the effective oxide thickness and gate voltaqe are chanqino 

abruptly. But these interelectrode re9ions are extrerrely narrow and 

their field effect on the overall minimum potential profile is quite 
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negligible. Hence we can approximate• and (at /aQ) by step functions m
0 

m o 
whose values are to be obtained by solving the linear MOS capacitance 

by standard depletion approximation. 

The linkage capacitance C is an adjustable parameter in this 

model which depends only on the geometrical device parameters and its 

value must be computed from the solution of two dimensional Poisson's 

equation to give the best fit in Eq. (4-12). The solution of Eq. (4-

12) is compared with the exact numerical solution in Fig. 4. 10 for no 

sional charqe present in the channel. In Fio. 4. 11 we present the 

phase diagram of the minimum potential which stronqly confirms the 

\6lidity of this linkage model for BCCD structure. Notice that the 

second derivative, a2~ /ay2, is indeed a piecewise linear function of m 

the minimum potential ~ as implied by Eq. (4-12) 
m 

However as seen in Fig. (4-12) the surface potential ~sis not 

quite piecewise linear. This linear dependence of the potential upon 

its derivative is a valid assumption only for the minimum potential. 

This capacitance model is successfully applied in actual dynamic 

charge transfer calculation in buried channel CCD's. 

In the actual charqe transfer description, the minimum frinqing 

field is the mos t important parameter to be considered. In Fiq. 4. 13, 

we show how the values of the linkage capacitance C influence the 

estimated minimum potential calculated by Eq. (4-12). 

When the siqnal char9e is present in the channel and qiven as a 

function of y-coordinate, we can still compute the minimum potential 

¢m
0 

and its signal-charge derivative (a¢m/aQ)
0 

by the linear depletion 
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approximation. Then the use of Eq. {q-lL) results in Fig. 4.1~ which 

shows the actual minimum potential profile in the two dimensional 

BCCCD with signal charoe present, whereby we use the same linkaqe 

capacitance value C obtained previously. 

When the qradual channel approximation is used, the minimum poten­

tial profile is not as smooth as the one solved by the linkaqe capaci­

tance model. Physically we expect the electrostatic potential to chanqe 

smoothly as seen· 1 in Fi0. 4.14. Rewriting Eq. (4-12) as 

J (4-13) 

we observe that the standard oradual channel approximation is equivalent 

to assuming C = o.o. Indeed, the second tefm in RHS of Eq. (4-13) qives 

a very sma 11 correction to the actual channe 1 potenti a 1. Whenever there 

is appreciable signal charqe present in the channel, the potential is 

more or less ~i ven by the first term of RHS with a oood accuracy. 

However, at the final staqe of the charge transfer, there is very little 

residual charge in the channel and the charge decay will be influenced 

stronqly by the frin9inq field. This fringin9 field actually 

ori9inates from the second term of Eq. (4-13) and it is important to 

adjust the value of the capacitance C from the actual nurrerical dat? 

of the potential profile with no signal present. 
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Fig. 4.14 The physical location of the charge packet in the p-layer 

is shown in the upper figure. The lower figure is the 

minimum potential with signal charge present. 
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4.6 Dynamic Charge Transfer Model 

The transport dynamics in the p-diffusion channel in BCCD are 

described by the two dimensional continuity equation. 

aJ aJ __ x _ _y_ 
ax ay t (4-14a) 

where pis the signal charge concentration per unit volume. Integrating 

over the p-diffusion depth and assuming no siqnal charge leakage at the 

interface and p-n junction boundaries, that is, Jx =Oat x = O and 

x = Xd, we obtain 

where we note 

Id J d aQ µ f d = -D - -y X ay 
0 0 

Also we note from Eq. (4-lOa} 

~ = ~ _ kT dP 
ay ay p dy 

(4-14b) 

P ~ dx 
a~ 

(4-14c) 

(4-14d) 

We have assumed the quasi fermi level of holes ~Pis independent of the 

x-axis. Hence the first tenn of RHS of Eq. (4-14d) is independent 

of the X-axis. We also assume that whenever there is appreciable hole 

density, the density alonq the transverse direction with respect to the 
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signa l charge transfer will smooth out and b~ uniform. If we assume 

this, the potential gradient a<t,/ay becomes a constant value alonq the 

x-axis in the region where the signal charge is appreciable. 

Therefore we can take the potential gradient a~/ay outside of 

the inte oral of Eq. (4-14c). And finally the continuity equation 

describin9 the charge transfer dynamics becomes 

(4-l5) 

Intuitively this result might have been expected but what was not clear 

is what physical assumptions lead to this result. First we assurred 

the quasi-fe~mi level ~P does not depend on x-coordinate in the p­

diffusion layer. This assumption immediately gives the current density 
3¢ 

along the x-ax,is to be zero. Jx = - µp ~ = o.o. But this condition 

was not enough to derive Eq. ( 4-15). We must specllll ate that the mobile 

signal charge p also does not have the x-coordinate dependence wherever 

there is appreciable signal charoe. That is, the mobile siqnal charqe 

density is not graded along the transverse direct~on with respect to the 

signal charge transfer. 

We have now established the complete dynamic char9e transfer model 

compatible to actual numerical calculations. The simultaneous computa­

tion of the signal charqe Q{y) and the channel potential ~ (y) from the 
m 

two final equations (4-13) and (4-15) qives the actual time dependent 

solutions of Q{y) and ~m{y). The initial condition is the siqnal 
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charqe profile Q(y) at t = o.o. Using Eq. (4-13) alone, we compute the 

channel potential ~m(Y) at t = o.o. Before specifying the initial 

charqe profile Q(y), the constant C must be adjusted from the actual 

two dimensional calculation of the Poisson's equation relevant to the 

dynamic system. 

4.7 Conclusion 

Choosinq adequate values for the device paraneters two dirrensional 

Poisson's equation was solved nurrerically. The resulting minimum · 

potential and its frinqinq field profiles were presented and compared 

with the linkage capacitance model developed in the content. The 

continuity equation for the charge transfer in BCCD was discussed. 

The fundamentals of the computatfonal procedure for the charqe transfer 

dynamics of BCCD have been established herein. 
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Chapter 5 

FREE CHARr,E TRANSFER IN RURIED CHANNEL CHARGE COUPLED DEVICES 

1 .1 Introduction 

Previous theoretical work on the operation of charge transfer 

devices has focused upon surface charqe coupled devices and inteqrated 

circuit versions of the bucket brigade shift reqisters. Another type of 

charge transfer device, namely buried channel charqe coupled device, is 

known to have several advantaqes over the former two devices. However, 

up to the present, only a static two dimensional rrodel of buried channel 

charqe coupled devices has been considered. The static model has not 

been incorporated in dynamic charqe transfer description; and, conse­

quently, our understanding of the device operation has been ~uite 

qualitative. 

In this chapter we present the results of a detailed numerical 

simulation of the char~e transfer process in a realistic model of a 

hiqh density buried channel CCD. The general set of partial differ-

ential equations describing charoe transfer and the electrostatic 

potential has been reduced to a set of two partial differential equations 

involving a sin9le spatial dimension and the time. To accomplish this 

we have used a simple capacitance network model to reduce the appropriate 

two dimensional Poisson's equation into a second order differential 

equation in a sinqle spatial dimension. The resultino equation 

relates the si9nnl charae and the minimum channel potential under all 

the relevant electrodes and interelectrode reoions. A diffusion 
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equation describing the charge transfer is coupled to this equation. The 

resulting coupled differential equations were solved and the results are 

presented in this presentation. 

In Section 5.2 the general set of partial differential equations 

describing charge transfer and electrostatic potential is presented. The 

equations are further simplified to obtain approximate but valid analytic 

solutions in the subsequent sections. It is shown that the charge 

transfer process in buried channel CCDs divides into three distinct 

stages . In the first stage, the charge is confined under the source 

storage gate and spreads itself according to the rapidly changing clock 

voltages. This process is shown to take less than a nanosecond in Section 

b.3. During the second stage discussed in Section 5.4, the charge 

transfer occurs in a manner analogous to the operation of a buried 

channel IGFET (see Section 4.3). The storage electrodes act as source 

and drain, and the transfer electrode acts as the control gate. This 

process is shown to take a few nanoseconds. In the final stage described 

in Section 5.5, the charge transfer is characterized by transfer induced 

by the relatively large fringing fields. It is shown in Section 5.6 that 

the residual charge decays exponentially with a final characteristic 

time constant of the order of a nanosecond. This process is shown to 

require a time of the order of ten nanoseconds. 

The entire charge transfer characteristics can be summarized in the 

two illustrations shown in Fig. 5.1 and 5.2: in Fig. 5.la the 

minimum potential, charge profile and current density at t=0.221 nano­

second are illustrated. At t = 0, the transfer and drain gate voltages 
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start dropping to the final value {-10 volt) from the initial value 

{10 volt). The plot is shown at the gate voltages of -8 volt. The 

barrier and source gate voltages are set to be 10 volt throughout the 

transfer process. Charge is normalized by 935 electron charges/µ2. 

Current density is normalized by 23.4 electron charges/µ-nanosec. The 

length L of one unit cell of the device is 48µ consisting of two poly-

silicon gates and two aluminum gates. Fig. b.lb depicts the charge 

transfer at t = 0.443 nanosecond. Note the current density under the 

t ransfer gate is almost constant. The charge transfer in this stage can 

be described quite accurately by buried channel IGFET. Fig. ~.le depicts 

the charge transfer at t = 1.05. Note the slope of the current density 

indicates that the net charge under the transfer gate is decreasing. 

In the top of Fig. 2, the net charging, charging and discharging of the 

transfer gate are shown by the curves (a), {b) and (c). Current density 

is normalized by QtotalD/L2 = 23.4 electron charges/µ-nanosec. Time is 

normalized by t = (0.001)L2/D ~ 1.92 nanoseconds with L = 48 and D = li 

cm2/sec. In the lower figure, the charge is shown as a percentage of the 

total signal charge of 45,000 electron charges/µ. The lines (a), (b), 

and (c) represent the total resi dual charge under the source and trans­

fer gates, the charge under the source gate only, and the charge under 

the transfer gate respectively. Note that the curves eventually become 

straight, implying the exponential decay characteristics of the power­

ful field-aided transfer. The final slope ( hence, the characteristic 

time constant) is 0.765 nanosecond for, lines (a) and (c), arid \J.165 

nanosecond for line (b). 
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Fig. 5.2 The charge and the current density plotted against 

the transfer time normalized by (0.00l)L2/D = 1.92 nsec. 
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5.2 Transport Equations 

Due to the two dimensional nature ofthe burierl channel CCD struc­

ture, the storage and transfer of charoe alono the buried channel should 

be described by the two dimensional continuity equation toqether with 

the two dimensional Poisson's equation. While this rir.iorous approach is 

conceptually possible, the cost of such analysis leads us to seek some 

valid approximation to simplify the solution. To accomplish this, in 

Chapter 4 we have developed a set of two partial differential equations 

involvinq a sinqle spatial dimension and the time. According to this 

model, the stora9e and transfer o~ char~e ~lonq the buried channel is 

described by the continuity equation 

2..9.. = aJ 
at ax (5-la) 

where the diffusion equation is qiven by 

(5-lb) 

q is the she~t charge density of the free mobile carriers in the buried 

channel, J is the sheet current density and ~mis the minimum channel 

potential. D and~ are the carrier diffusion constant (12 cm2/sec) 

and mobility (480 cm2/volt sec) in silicon. 

The ~ini~um channel potential qradient, a~m/ax, is due to the 

variable channel char~e density and the two dimensional nature of the 

buried channel CCD structure . Accordinq to the simple capacitance model 
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developerl in Chapter 4 the minimum channel potential profile can he 

approximated by solvinq the seconrl order differential equation in a 

sinnle spatial dimension 

tm = Vm(q,x) + C (:~m) :::m 
(5-2) 

where V (q,x) is the solution of the one-dimensional Poisson's equation 
m 

with the pa rameters of the solutions chosen to correspond to the one 

dimensional cut throuah the structure. In the standard oradual channel 

approximation,~ is determined uniquely by the local sheet charqe 
m 

density q and is oiven bv V alone. (That is, in EQ. (5-2 ) above 
- V rn 

C = 0.0 ). In this case, we note that, at the interelectrode reoions 

where the charge density q changes abruptly, the electrostatic 

potential ¢m also changes ahrurtly. However, physically the electro­

static potential must be continuous even thouqh the charoe density is 

discontinuous. The electric field is the one that becomes discontinuous 

in this case. Hence, the qradual channel approximation is vali<l only 

under the electrode plates where the charge density is (spatially) 

chanoinq qradually. In Chapter 4 we have developed this rlifferential 

equation (5-2) to obtain an accurate minimum channel potential profile 

under all the relevant electrorles and interelectrode reqions. 

The capacitance C was found to be of the order of XdESi where Xd 

is the depth of the p-diffusion buried layer and £s• is the silicon l . 

dielectric constant. In the calculations presented below we have 

considered p-channel device with dimensions consistent with typical 
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layout tolerance of present silicon qate technolo9y: Oxide thickness 

is 0.12µ under the silicon qates and 0.32µ under the aluminum gates. Xd 

is taken to be 1.00µ with the diffusion layer doping NA 25000 donors/µ 3, 

the substrate doping Nd of 1000 donors/µ 3, and C = 7.5 xd~si· 

5.3 Self-Induced Drift Effect in the First Staqe 

In this section we study the charqe transfer process in the first 

sta9e. Specifically we will first show that the charge profile under the 

source gate is of elliptic shape. This result is derived from the fact 

that the current density under the -·source gate is a 1 i near function in 

spatial coordinate. The spatial integration of this charge profile is 

the total charge Q(t) under the source gate, and the analytic expression 

for the total char~e Q(t) will be derived. This expression implies the 

hyperbolic charqe decay characteristics. And the further considerations 

lead to the fact that this hyperbolic charge decay characteristic is not 

the consequence of the constant current assumption hut rather of much a 

general nature. It is concluded that the lumped circuit model 0ives 

excellent agreement with numerical results even thouqh the current den­

sity at the beginning of discharge is not really uniform in the spatial 

coordinate. 

We now begin -rt-e analysis, returning to the situation depicted in 

the Fi9. 5.la in which the charge profile under the source qate is under 

consideration. 

As the qate voltages on the transfer gate and drain oate start 

droppinq from +10 volt to -8 volt, the charge under the source 9ate 

spreads itself according to the rapidly changinq channel potential. The 
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response time is of the order of silicon relaxation time constant 

trelax = ESi/~NA = 0.054 picosecond which is much smaller than values of 

interest. The charqe takes about 0.2 nanoseconds propagating under the 

transfer 9ate to reach its end. Fi0ure 5. la illustrates the details of 

the charge transfer at this sta0e. Note that the gradient of the current 

density indicates the charge under the transfer oate is sti 11 increasina .. 

The linear dependence of the qradient upon the spatial coordinate implies 

that the time rate of chanqe in the charge density (3q/at) is the same 

everywhere under the source gate. In this case, the current density 

J(t,x) can he approximated by a linear function in spatial coordinate 

and is given by 

J(t,x) = m J(t,i) 

where i is the len0th of the aluminum source gate (12~). Since at the 

beginning of rlischar9e the char~e density under the source ~ate is very 

hi 0h, the fiel<l drift is predominantly due to the self-induced field 

effect. Hence, neolectino also the thermal diffusion effect we obtain 

- q µ ~ c q ax 
0 

(5-3b) 

whe re C
0 

is the effective oxide capacitance. Solvin~ Eqs. (5-3) we obtain 
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That is, the char~e profile is of elliptic shape. We indeed observe this 

shape both in the charqe and potential profiles under the source 9ate in 

Fiq. 5. la 

To obtain the total charge Q(t) under the source 9ate as an unique 

function of time, we need one rrore condition. In general treatment of 

charqe transfer in surface CCD , this condition has been imposed on 

the charoe density q(t,R) at the end of the source oate and set to be 

zero. This condition is based on the fact that the frin9inq field at the 

interelectrode is so laroe that we can assume a perfect sink at the end 

of the transfer oate. However, as we ohserve in Fiq. 5.la, the charqe 

density at the interelectrode reqion is relatively smal l but does not 

diminish to zero . Inspecting Fi~. 5.la and 5. lb, we note that, at the 

end of the source riate, the char(Je density decreases to ahout one-half 

of the peak char~e density q(t,O). Assuming q(t,i) q(t,0)/2 for the 

time of interest, then hy integrating Eq. (5-3b) for the current density 

assumed in the form given by Eq . ( 5-3a), we obtain 

and 

Q(t ) =l 
0 

3,Q, 
q(t,x )dx ~ 4 q(t,o) 

(5-Sa) 

(5 - 5b) 

(5-5c) 
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Solving the continuity equation, 

We obtain 

and 

with 

dQ 
-· = -J (t £) 
dt ' 

J(t,o) - 4 Q(o) 
- 3 (£2 / D) 

Q(o) 
£C kT 

0 

(5-6a) 

t (5-6b) 

(5 - 6c) 

(5-6d) 

The form of the expression (5-6b) is a familiar form appearinq in the 

stanrlard lumped circuit model in which the current density has been 

assumed to be constant. In our case, however, as we can see in Fio. 5. la, 

the current density is not constant at all. But we have obtained the 

similar expression (5-6b) in our discharoe model. 

We will now show that the hyperbolic charge decay characteristic 

as seen in Eq. (5.6b) above is not the consequence of the constant­

current assumption but rather is due to the nonlinear self-induced drift 

effect alone. That is, independent of the assumption made on the current 
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density profi_le , if we solve the nonlinear diffusion equation 

(5-7) 

with appropriate boundary conditions we should obtain a similar expres­

sion to Eq. (5 -6b). To make this point clear, we solve this Eq. (5 - 7) 

in Appendix A by separation of variables with the following boundary 

conditions 

J(t,0) = 0 (5-8a) 

X = 0 

and 

q(t,£) = aq(t,o) (5-8b) 

wi th a bein0 a fraction of unity. The solution is indeed given by a 

similar form to Eq. ( 5-6b): 

Q(t) = 
Q(o) 

l + f( a ) Q(o) t 
{5-9) £C kT (£2/0) 0 

where f(a) is defined in the Appendix I and has been computed numerically. 

In Appendix B , the same problem is tre~ted for the case of uni form 

current density in space. Q(t) is again given as in Eq. (5-9) above but 

in this case with f(a) beino a rational function of a. The function 

f(a) is plotted in Fiq. 5.3 and compared for the both cases. Note that 
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Fig. 5. 3 f(a) defined by Eq. (A.6b) in Appendix A and 

by Eq. (b.5) in Appendix B are shown in curve 

(a) and (b) respectively. 
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the characteristic difference between the two cases is quite ne9liqible. 

This observation supports the fact that the lumped circuit model gives 

excellent aqreement with numerical results even thouqh the current density 

at the be9inning of discharge is not really uniform in the spatial 

coordinate. 

5.4 Buried Channel IGFET in the Beoinnino of the Second Staoe 

In this secti on we first describe the characteristics of the poten­

ti al profile unde r the transfe r gate at the beoinnin9 of the second staqe. 

It is shown that the potential profile which we observe under the trans­

fe r gate in Fiq. 5.lb is a loqarithmic function in space. Assumino the 

charoe densi ty at the be0innino of the transfer gate to be a constant 

in time, the charoe propaqation time rp for the charqe to reach the end 

of the transfer oate from the be9inning of the transfer 9ate is estimated. 

The du ration of the steady state after this propagation time is also 

considered in this section. 

In the lumped circuit model, the current density under the transfer 

qate is assumed to be uniform. Fiqure 5. lb illustrates the details of the 

char9e transfer at this staqe. We observe in the figure that the charqe 

profile under the transfer gate is very much a linear function of the 

spatial coordinate. Hence we write the charqe density as 

q ( t, X) = q ( t, 0) + (I)[ q ( t, i) - q ( t, 0 )] (5-lOa) 
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Then, solvinq the expression (5-lb) for the potential profile in the 

case of uniform current density , we obtain 

(5-11) 

where a is defined by Eq. (5-8b) as before. Hence, the potential pro­

file which we observe under the transfer gate in Fi~. 5. lb is a 

loqarithmic function in space. Since the current density under the 

source oate in Fio. 5.lb is still quite linear in space, the charge and 

potential profiles under the source nates must be of elliptic shape as 

we have discussed in the previous section. This sta~e shoul·d last as 

lonq as the source storaqe 0ate supplies the signal char~e to flow 

throuqh the transfer qatee And the charoe transfer in this staoe is 

quite adequately described by Puried Channel IGFET. 

We are now in the position to consider the propaqation time and 

the duration of the steady state in the beqinnin0 of this second sta0e 

of the charoe transfer. 

We assume the charoe density q(t,O) at the beoinninq of the trans­

fer 0ate to be a constant q in time. In this staqe, the charoe 
0 

propanation time TP for the charqe to reach the end of the transfer qate 

from the beoinnin0 of the transfer oate is estimated in Appendix C , and 

is given by 

( 5-11) 
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Ourino the transient period illustrated in Fiq. 5. la and 5. lb, we 

observe the peak charge density at the beginning of the transfer gate 

is fairly constant. This observation is supported by the fact that the 

gradient of the current density goes through zero in the interelectrode 

reqion because the source qate is discharqing and the transfer qate is 

being charged in this period. (See the current density profiles in 

Fig. 5. la and 5 .. lb). Hence as c, consequence of conservation of char9e, 

the total charqe under the transfer gate must not chanoe in time. That 

is, from the results illustrated in Fig. 5.2, we conclude this staoe 

lasts only for a very short period. Note that Fiq. 5. lb illustrates the 

details of the charge transfer at the instant when the net char0inq of 

thP- transfer 9ate is zero. That is, in Fiq. 5.2 (top), this is the 

time when the line (a) passes throw1h the zero. At the same time, in 

Fi~ . 5.2 (bottom), the curve (c) is at its peak value and the curve (a) 

starts decreasing. 

5~5 Lumped Circuit ~odel in the Second Staqe 

In this section we first give the general description of the 

charoe transfer in the second staqe, leading to the calculation of the 

total charae under the source qate as a function of time. In this 

calculation we assume an appropriate shape for the charqe profile. 

Furthermore, we will discuss the time it takes for the frinoina field 

effect to become compatible to the self-induced field drift, and then 

the time it takes more to observe the final exponential decay character­

istics. The analysis is extended to the calculation of the total charoe 

under the transfer gate as a function of time. And the time when the 
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residual charge under the source ~ate becomes less than the charge under 

the transfer gate is estimated. 

In this second staqe with minor modifications, the charqe transfer 

under the source oate is described quite adequately in the manner presented 

in the Section 5.3. Since the charge density under the source qate is 

diminishinq to the amount that the thermal diffusion and fringinq field 

drift may soon become compatible to the self-ind~ced field drift effect, 

we include in the following analysis all of the three effects. 

The presence of charge q raises the local channel potential $ by 
m 

q/C whose nradient is the self-induced field. The difference of the 0 ~, 

potential we observe in Fig. 5. 1 is plotted as a function of the local 

charqe density q in Fig. 5.4. The potential difference is indeed propor­

tional to q and its proportionality constant is 1/C . Hence formally 
0 

we can write the minimum channel potential as 

¢ (x) 
m 

where ~m (x) is the channel potential without any charge. 
0 

of Eq • ( 5- l 2 a ) into Eq 8 ( 5 - 16 ) res u 1 ts i n 

8¢ 
, TDO 

J = -0 ~ - L q ~ - µq -;--x 
8X C 8X 0 

0 

(5-12a) 

Substitution 

(5-l2b) 

The total current density is 0iven as a sum of thermal diffusion, self­

induced field drift and fringin0 field drift tenns. This equation can 

be solved in two different approaches. One way is to assume the current 
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density. The effective capacitance (slope) is C
0
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= 0.75 normalized charge density per volt. 
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density to be constant, an<l ohtain the charqe profile by solving 

Eq. (5-12b) for q. The other way is to assume a fonn for the charoe 

profile and evaluate the current density by Eq. (5-12b). We now qive a 

simple argument to obtain a solution of Eq. (5-12b) followinq the 

latter approach. 

From the plot of the charge profile in Fig. 5. le, we simply note 

that the charge profile can be rouqhly approximated by a linear function: 

q(t,x) = q(t,0) [1 + {a-1) (f)] (5-13a) 

Hence the total charge under the source gate is given by 

£ 

Q(t) = J q(t,x)dx = i (l 2+ a) q(t,o) 

0 

(5-13b) 

We note from Fig. 5.lc, the charge density under the source 9ate can be 

approximated by a linear function of space as was given by Eq. (5-3a). 

The inteqration of Eq. (5-12b) over space results in the discharqe 

current density J(t,i) at the end of the source gate in terms of the 

total charae under the source gate Q(t): 

(5-14a) 

where T is the exponential decay time constant when the second term in 
0 

RHS of ~q. (5-14a) above becomes small compared to the first term and 

given by 
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(5-14h) 

Bis a constant (whose value is around unity) and 9iven by 

(3 = }&. ·( 1 - a) 
2 1 + a 

TI 

(5-14c) 

The thermal diffusion and sin0le carrier transit tine constants, 1th and 

ttr' are defined as 

4,Q,2 
Tth - n2o (5-15a) 

and 

Q, 

Ttr - wE (5-15b) 

In this fonnalization the frinoing field is assumed to be constant for 

simplicity and qiven by E. The effective strenqth E may be estimated 

by evaluating 

,Q, 

£ J - dx 

E = o (- :>) (5-15c) 

where a~m /ax is the qradient of the channel potential without any 
0 

charqe shown in Fig. 5.5 (bottom) with solid line. Solving the 

continuity e~uation (5-6a) we obtain the total charoe under the source 

qate as a function of time. 
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Q(o) exp(-t/T
0

) 

Q ( t) = -------=--------,.. 
l + B ~ Q(o) [1 - exp(-t/T

0
~ 

L th tC/T J 
(5-16) 

This equation has been derived under the assumption that the charqe pro­

file is given by a linear function of the fonn given by Eq. (5-13a). 

Hence. the peak of the charqe profile is assumed to be always at the 

beginning of the source qatee 

We are now in the position to calculate the time it takes for the 

f r in0ing field effect to become compatible to the self-induced field 

drift and then. the time it takes more to observe the final exponential 

decay characteristics. 

According to Eqe (5-16) above. after the time yet to be determined, 

the charqe will decay exponentially in time. This time T can be 
0 

estimated as followin9. He equate the rna~mitude of the first tenn of 

RHS of the expression (5-14a) for the current density to the second 

terme Then, we obtain the minimum charge Om for which the self-induced 

field effect is compatible to the frinqin~ field drift and thermal 

diffusion effects: 

(5-17a) 

Solvin~ Eq. (5-16) for Q(t) = nm, we obtain the time t
0 

at which the 

char0e transfer beqins to be influenced by the frinqinq field and 

thennal diffusion mechanism: 
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] (5-17b) 

Accordinq to the detailed numerical simulation of the char~e transfer 

illustrated in Fio. 5.1, the peak of the charqe profile indeed stays at 

the be9inning of the source gate for a while. And during this period, the 

char0e decays in the manner characterized in this section. And for 

t > t
0 

the total charqe Q(t) given by Eq. (5-16) can be described quite 

accurately by 

(5-17c) 

~fte r this time t
0

, the fringing field influences the char9e transfer as 

the main mechanism. Then as have analyzed in detail in Ref. [4], at 

some time later the peak of the charge profile starts movinq towards the 

end of the gate. Fi9ure 5.6 illustrates the details of the charqe 

transfer under the transfer gate at this staqe. After this transition 

time, the relative shape of the charge becomes stationary and the char9e 

decays exponentially in time. The transition time ~tin this process 

has been estimated in Chapter 2 and is qiven by 

(5-18a) 

At the time t 1 = t
0 

+ 6t, the charqe will start decayinq exponentially 

with the final decay tin-e Tf. In this staqe, the self-induced field 
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drift effect has become completely negligible compared to the thermal 

diffusion and fringing field drifts. (See. Fig. 5.7). In this final 

stage of the charge transfer, the total charge is approximately given 

by 

(5-l8b) 

where 

Q = Q exp (- M) E m -r 
0 

(5-l8c) 

We now focus our attention upon the charge under the transfer gate. 

Specifically we will calculate the total charge under the transfer qate 

as a function of time. The time rate of the change in the total charge 

under the transfer gate is qiven by the difference of the current density 

J(t,o) at the be ginning of the transfer gate from the current density 

J(t~i) at the end of the transfer gate: 

~~ = J(t,o) - J(t,£) (5-19) 

The readers should not be confused by the dual usage of the symbols 

Q, J and space coordi nate X under the source gate and transfer 9ate. 

When we are discussing the charge transfer under one particular gate, 

we def i ne the beginning of the gate to be ax= 0 and the end of the gate 

to be at x = £. The symbol Qin Eq. (5-19) is meant to be the total 

charge under the transfer gate whereas in Eq. (5-14a) and (5-16) the same 

symbol is used for the total charge under the source gate. 

We note the current density J(t,o) is given as an independent 
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quantity which is a function of time only. This function can be 

obtained from Eq. (5-14a) with use of Eq. (5-16). Care must be taken in 

applying these equations in Eq. (5-19). 

As we see in Fig. 5.lc, the current density under the transfer gate 

can be quite adequately approximated by a linear function: 

J ( t , X ) = J ( t , 0 ) + ( n [J ( t , t ) - J ( t , 0 ~ (5-20a) 

The charge profile under the transfer gate can be approximated again by 

Eq. (5-l3a) as in the case of the source gate. Then, integrating with . 

Eq. (5-12b) the charge density given by Eq. (5-20), we obtain the dis­

charge density J(t,i) at the end of the transfer qate in terms of the 

total charge under the transfer qate Q(t): 

2 
J(t i) + J(t o) = Q(t) + _s - Q (t) 

' ' T T ic kT o th o 
(5-20b) 

where T
0

, Tth' and Sare defined as before. Then, eliminating the 

charge density J(t,i) at the end of the transfer by using Eqs. (5-19) 

and {5-21), we obtain 

(5-20c) 

The total charge under the transfer gate Q(t) can be obtained as a func­

tion of time by solving this equation (5-20c) 1bove. As we observe in 

Fig. 5.2 (top), the charging current J(t,o) becomes negligible compared 

to the discharge current J(t,O) at the time, t
0

, given by Eq. (5-l7b). 

This is approximately the time when the total charge under the source 

gate becomes quite negligible compared to the total charge under the 
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transfer gate. At this time, the lines (a) and (c) in Fig . 5.2 (bottom) 

start joining together, and the line (b) starts to exhibit the final 

exponential charge decay characteristics. Hence after this time, the 

charging current term J(t,o) in Eq. (5 -20c) above can be ignored. And 

we obtain the solution of Q(t) in the same form as was given previously 

in Eq. (5-16). 

The entire charge transfer analysis in this second stage will now 

be complete with the estimation of the time when the residual charge 

under the source gate becomes less than the charge under the transfer 

gate. 

We note in Fig. 5.2 (bottom), when the lines (b) and (c) coincide, 

the total charge under the source gate is equal to the total charge 

under the transfer gate. Si nce the sum of the two quantities are the 

total initial charge under the source gate, we observe that at this time 

the charge under the source gate decreased to 50% of what was there 

originally. This time, Tp' can be estimated by setting Q(t) = Q(o)/2 in 

Eq. (5-16). And we obtain for Q(o) >> Qm, 

TP = Us)~ ot~l~:) ( i~ ) 
(5-21) 

At this time (t ~Tp), as we observe in Fig. 5.2, the head of the charge 

packet reaches at the end of the transfer gate and the discharqe current 

starts rising as seen in line (c) of Fig . 5.2 (top) . We recall this time 

has been estimated by a different method in Appendix C , and is given 

by Eq. (5-11). Note the similarity in Eqs. (5 -11) and (5-21) 
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5.6 Th~ Exponential Decay Chatacteristics in the Final Stage 

In this section we first describe qualitatively the channel poten­

tial profile and the charge distribution at the completion of the second 

stage of the charge transfer. We will then describe and outline how to 

estimate the final decay time constant in the final stage of the charge 

transfer. The actual analytic formula for the final decay time constant 

with appropriate fringing field profile and the charge distribution is 

also presented. 

In Fig. 5.5, we have plotted the minimum channel potential, charge 

density, and reciprocal of the potential gradient at the completion of 

charge transfer. The solid curve in the bottom figure is the plot for 

the potential gradient with no charge everywhere. The dashed curve is 

the one with all the signal charge resting finally under the drain 

gate. The presence of the charge under the source gate lowers the 

minimum field strength under the transfer gate by 158 volt/cm. That is, 

the minimum field strength is 318 volt/cm with charqe and 493 volt/cm with 

no charge. The minimum field strength under the source gate remains 

almost the same value of 844 volt/cm. 

Note the charge and potential profile under the drain gate is 

everywhere flat. This is expected because the charge is at rest and the 

current density Jin Eq . (5 -lb) is zero. Hence the charge density is 

given as an exponential function of the potential; 

[ 
t - ¢ ] q = q exp - m mo 

o kT (5-22) 
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where ¢m
0 

is the local minimum channel potential under the drain gate 

and q
0 

is the peak charge density. A small increase in the potential s6m 

results in a drastic reduction in the charge density q. And only way to 

pack the total charge under the drain qate is to have ¢m~9r ¢m wherever 
0 

the charge is present: Inside the charge packet, there·is no field. 

We will now describe and outline how to estimate the final decay 

time constant in the final stage of the charge transfer. 

In Chapter 2 we have analyzed the charge transfer process in this 

final stage. According to the detailed analysis of the charge transfer 

under the influence of fringing fields, the profile of charge under the 

source and transfer gates changes for approximately a single carrier 

transit time and then becomes stationary with an exponential time decay 

of the amplitude. The exponential time constant tf is estimated by the 

standard variational procedure and given by 

(µEeg)2 

4D (5-23a) 

wheres is a dimensionless quantity determined by the final charge profile 

q(x) under the transfer gate . 

.£ 2 

f [~] dx 
_ 4t2 o s - - -----

2 .£ 

7T J q2
(x)dx 

0 

(5-23b) 

Eeq is an equivalent constant fringing field for the spatially varying 

fringinj field E(x) and is given by 
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(5-23c) 

To estimate the value of the final decay time constant, the know-

ledge of the fringing field profile and the final charge density profile 

is required. In Fig. 5.6 and 5.7 we presented the charge profiles at 

several instances till the profile reaches the final form and decays 

with an exponential time constant, Tf. 

If we use the final charge profile shown in Fig. 5.7 and the frinq­

ing field profile shown in Fig. 5.5 (bottom) in evaluating the final 

exponential decay time constant Tf from Eqs. (5-23), the calculated 

value is exactly the same value we obtained from the results of the 

detailed numerical simulation of the charge transfer process. This is 

expected from the consequence of the variational calculus. The varia­

tional procedure is a powerful tool to estimate the eigenvalues of a 

physical system when the eigenfunctions (or states) are not known 

exactly. When they are known, the calculated eigenvalues are the exact 

ei genvalues of the system. Hence the true usefulness of the procedure 

described in Eqs. (5-23) lies upon the fact that we can obtain a good 

estimate of the value of the final decay time constant without knowing 

the values of the fringing field and the charge density at every point in 

space. That is, the knowledge of general characteristics of these pro­

files should be enough to obtain a good estimate of the final decay time 

constant. 
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The results we presented in Fig. 5.5 suggests that the fringing 

field can be approximated roughly by 

E . t 
( ) mm EX = -- for 

2x 

for (5-24a) 

From Fig. 5.6, accordingly we approximate the charge profile by 

for 0 < X 
Q, 

< -2 

(5-24b) 

where we have introduced one parameter n whose value is to be determined 

by minimizing Tf(n) of Eq. (5-23a), according to the standard variational 

procedure. The calculation is somewhat involved but the results are very 

useful in estimating the final decay time constant and are presented in 

Fig. 5.8a for our case study. The same procedure may be applied for 

different gate length and other physical parameters. Hence we have 

plotted in Fig. 5.8b the ratio of the final decay time constant to the 

thermal diffusion time constant as a function of the normalized fringing 

field strength tE /kT: eq 

1 

2 
s + (tE /kT) - eq 

(_5-25a) 
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The computational procedure to compute Tf is described briefly in Appendix 

D. Since from Eqs. (5-15) 

4£ E eq 
/ KT 

we obtain the ratio of the final decay time constant to 

carrier transit time: 

Tf 4£ E ;i kT 
= eg 

Ttr s + ( £ E /kT) 2 
eq 

This quantity is also plotted in Fig. 5.8b. 

5.7 Numerical Results 

(5-25b) 

(5-25c) 

In this section we will first give the values of relevant physical 

parameters in our case study and describe the normalization units for the 

illustrations. Then we will describe in general how to estimate the 

quantities T
0

, Qm, t
0

, and Tf in the final stage of charge transfer. 

The outline and results of the detailed calculation procedure of the 

related physical parameters such as T
0

, t
0 

~t, t 1, Qm' and Qt are also 

presented. 

The analysis we have done so far is intended to characterize the 

entire charge transfer quantitatively with reasonable accuracy. For our 

case study, the diffusion layer depth is xd = lµ and the channel 

doping is set to be NA= 25,000 electron 3 charges/µ . The averaqe width 

of the charge packet is XCH = 0.15µ. Hence the total charge is 

Qtotal = NAXCHi = 45,000 electron charges/µ where the aluminum or silicon 
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gate length i is taken to be 12µ. The charge density shown in the fig­

ures are normalized by Qtotal/L = 935 electron charges/µ 2 where the 

length L of one unit cell of the device is 48µ in our case study. Accord­

ingly, the time is normalized by (0.001) L2;o = 1 .92 nanoseconds and the 
2 current density by ~total D/L = 23.4 electron charqes/wnanosec. The 

effective oxide capacitance C
0 

under the transfer gate is (as seen in 

Fig. 5.4) 0.75 normalized charge density per volt. Hence ic kT = 21 
0 

electron. charges/µ. For the gate length i = 12µ, the thermal diffusion 

time constant Tth is equal to 48.6 nanosecond by Eq. (5-15a). 

We will now describe in general how to estimate the quantities 

T
0

, Qm, t
0

, and Tf in the final stage of charge transfer. If the 

effective fringing field strength Eat this final stage is known, we can 

compute T from Eq. (5-14b) . Then the minimum charge Q and the time t 
o m o 

can be estimated by Eqs. (5-l?a) and (5-l7b). From the numerical results 

shown in Fig. (5.2) we can read off the values of Om and t
0 

and compare 

them with the values predicted by Eqs. (5-l7a) and (5-l?b). The final 

decay time constant Tf appearing in Eq. (5-18) can also be read off from 

Fig. 5.2 (bottom) and compared with the calculations done in the previous 

section which is summarized in Fig. 5.8a and 5.8b. 

We have now reached to the final part of this section. In this last 

part we will first outline and then give results of the detailed calcula­

tion procedure of the related physical parameters such as T , t , ~t, Q 
o o m 

and QE. 

The minimum fringing field as shown in Fiq. 5.5 in the final stage of 

charge transfer is 315 volt/cm under the transfer gate and 844 volt/cm 
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under the source gate. Then with these values of the field strength, 

the plots of Fig. 5.8a predict the final decay time constants of 0.640 

nanoseconds under the transfer gate and 0.155 nanoseconds under the 

source gate. The actual observed values in Fig. 5.2 (bottom) are 0.765 

nanoseconds and 0.165 nanoseconds. 

The effective fringing field E can be estimated by Eq. (5-15c) for 

the fringing field profile shown with the solid line in Fig. 5.5 (bottom), 

and is found to be 1250 volt/cm. The corresponding single carrier tran­

sit time Ttr is 2 nanoseconds by Eq. (5-15b) where the hole mobility 

µ in silicon is taken to be 480 cm2/volt-sec. Then since the ratio of 

Ttr divided by Tth (48.6 nanoseconds) is very small, we note from 

Eq. (5-14), T
0 

is about one-half of the single carrier transit time. 

That is, T
O 
~ l nanosecond. Hence from Eq. ( 5-17b), t

0 
~ 0. 5 nanosecond. 

That is, the charge under the transfer gate should start decaying 

exponentially at t = t
0 
~ 0.5 nanosecond with the exponential decay time 

constant To~ l nanosecond. This period should last till t 1 = t 0 + ~t 

where ~tis given by Eq. (5-18a). Since Ei/kT = 60, we obtain ~t = 

6 nanoseconds. Hence we expect t 1 ~ 6.5 nanoseconds. The actual value 

t 1 observed in lines (a) and (c) in Fig. 5.2 (bottom) is about 8 

nanoseconds. 

Qm computed from Eq. (5-l?a) for f3 = 1 is 1000 electron charges/µ 

which is about 23% of the initial total charge Qtotal = Q(o) = 45,000 

electron charges,.+µ. Then from Eq. (5-18c), since ~t/T ~ 6, we 
0 

obtain QE ~ 2.5 electron charges/µ, which is about 0.055% of the 

initial charge. The actual value QE observed in Fig. 5.2 (bottom) is 



170 

about 0.07%. 

b.9 Conclusion 

The results of a detailed numerical simulation of free charge 

transfer in buried channel Charge Coupled Devices have been presented. 

Our analysis shows that except for a very short time the current 

density is not quite uniform. However the time dependence of the charge 

decay (see Section 5.3) is quite independent of the form assumed for 

the current density profile. The dominant effect was shown to be the 

fringing field effect and there are two time constants (t-0 and 1: f) 

associated with the entire charge transfer process. The approximate ana­

lytic expressions for the two time constants and other important physical 

parameters (Qm, QE,t
0
,t and 6t) are derived and the corresponding charge 

transfer characteristics are explained in detail. The most important 

quantity in this analysis is the residual charge Q(t) as a function of 

time and we have obtained an explicit analytic expression of this 

quantity Q(t). For 12µ gate structure, we have shown that the charge 

transfer efficiency can be achieved as high as 99.99.% at 100MHz (see 

Fig. 5.2) and that this efficiency can be improved much further for 

compact CCD structures (shorter gate length, etc.) as discussed in 

Section 5.6 and summarized in Fig. 5.8. 



171 

Appendix A 

SPATIALLY VARYING CURRENT DENSITY 

We assume the solution of Eq. (5-7) to be the form given by 

q(t,x) = q(o,o) A(t) /B[xf (A-la) 

with 

A( o) - (A-lb) 

Hence from Eqs. (A-la) above at t = 0 we obtain 

B(o) = l (A-le) 

and 

£ £ 

Q(o) =1 q(o,x)dx = q(o,o) f IB[xT dx 

0 0 

(A-ld) 

Then, t he bounda ry conditions for B(x) corresponding to Eqs. (5-8a) and 

(5-8b) are given by 

and 

dB_ 
dx - O at X = 0 (A-2a) 
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B(,Q,) = o:2 (A-2b) 

Substituting Eq . (A-la)into Eq. (5-7) we obtain 

s - - (A-3) 

whe re B is a constant to be determined from the shape of the function 

B(x) to be solved. Solving Eq. (A-3) further, we obtain 

A(t ) = 
l (A-4a) 

l + St 

(A-4b) 

Hence the functi on B(x) can be expressed implicitly by the integral 

r1 dB = (.!5.) g(a) (A-Sa) 
j B(x) ✓l _ 83/2 

2 

where 

and 

1 

g(a) ~1 dB 

✓l -
83/2 

a 

8 = 3 g(o,o) 
9
2(a) 

SC ,Q,
2 

0 

Use of Eq. (A-ld) allows us to write the constant Bin the form: 

Q(o) 
sic kT 

0 

(A-5b) 

(A-5c) 

(A-6a) 
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vJhe re 

f(a) = fr £ 
(A-6b) i IB(x) dx 

Now from Eq. (A-5a) we note 

dx - r £ ] (-dB) 
- LgT;;T ✓ 3;2 

1 - B 

(A-7a) 

Hence 

£ B(o) 

1 /BTxT dx = g(~) f 
o ls(i) 

~ dB 

✓l - B3/ 2 
(A-7b) 

This integral can be calculated analytically. The limits of the integra-

tion are given by Eq. (A-le) and (A-2b). Hence 

l /BTxT dx = 
41 p 

0 
3g(a) 

Hence from Eq. (A-6b) above we obtain 

When 

Hence 

- 9 f(a) - 32 
2 g ( a) 

-~ 11 - a 

a= 0, from Eq. (A-5b) we obtain 

l rr/2 

g(o) =1 dB 4 1 sinl/3 = 3 
✓l _ 83/2 

from Eq. (A-7d) we obtain 

f(o) = 1 .44 

e de 

(A-7c) 

(A-7d) 

= l. 73 (A-8a) 

(A-8b) 
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To compute f(a) numerically for O <a< l, we note from Eq. (A-5b) by 

transforming the variable in the integral we can write 

n/2 

g(o:) = ½ J sin113 e de 
arc sin (a 213 ) 

(A-9) 

Hence we evalute g(a) from this Eq. (A-9) above to obtain f(a) from 

Eq. (A-7d). 
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Appendi X B 

UNIFORM CURRENT DENSITY 

If we assume the current density J to be uniform in space, then 

from Eq. (5-3b) we obtain 

where we assume q(t,i) = aq(t,o) as before. The charge profile is 

given by 

(B-2) 

The total charge under the source gate is then given by integrat-

ing Eq. (B-2) above to obtain 

Q(t) = (_g_) (l +a+ a
2 

3 l + a )£ q(t,o) (B-3) 

Hence the current density in terms of the total charge is given by 

dQ 9 - - = J(t) = (-) dt 8 

2 2 ( 1-a ) ( l +a ) 
(l +a+ /) 2 (B-4) 

Solving for Q(t), we obtain the same formula (Eq. 5-9) with 

2 2 
f(a) = (~) (1-a )(l+a) 

8 (l +a+ a2)2 
(B-5) 

This function is plotted in Fig. 5.3 and compared with the results 

of the spatially-varying current-density case of Appendix A 
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Appendi X C 

PROPAGATION TIME UNDER TRANSFER GATE 

The propagation time under the transfer gate can be calculated by 

solving the continuity Eq . (5-la) with the self-induced field drift of 

Eq. (5-3b). We assume the current density at the beginning of the 

transfer gate is always a constant q , and no charge is present under 
0 

the t ransfer gate at t = 0. Therefore, we have 

for t > 0 (C-la) 

and 

q(o,x) = 0 for 0 < X < ,Q, (C-lb ) 

Introducing the Boltzmann's transformation, 

y = ~ ✓µq:~ (C-2a) 

and normalizing the charge density by 

(C-2b) 

the continuity equation becomes 

ct2 2 d _g__e_ = - _:y_ Q.P__ 
dy2 Ip dy 

(C-3a) 

with boundary conditions 

p = 1 at y = 0 (C-3b) 
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and 

p = 0 at y = 00 (C-3c) 

Numerical integration is required to obtain a solution of Eq. (C-3a) 

abo ve. The solution p(y) decreases [5] monotonically from l at y = 0 

to zero at y = 0. 81. Hence by using Eq. (C-2a) we observe the head of 

the charge profile reaches the end of the transfer gate at t = T such 
p 

tha t 

- £ -ire; o.s1 - -2 V--+ pq T 
0 p 

Solving the Eq. (C-4) for Tp' we obtain Eq. (5-1 , ). 

(C-4) 
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Appendix D 

EVALUATION OF Tf 

Substitution of Eqs. (5-24b) into Eq. (5-23b) results in an 

expression for the parameters in terms of n: 

s = 16 n2 (2n + 1) 
-r/ (2n - 1) 

( D-1) 

The equivalent constant fringing field can be evaluated by Eq. (5-23c) 

from Eq. (5-24a) together with Eq. (5-24b): 

= (2n + 1) 
(2n - l) 

Hence from Eq. (5-23a) we obtain 

or from Eq. (5-25) we obtain 

where 

For a given value of x = £E/kT, we compute n such that 

(D-2) 

(D-3) 

(D-4a) 

(D-4b) 
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4 [sn + 4 - ( x
2 

+ 4) 2 ] = o 
(2n - l) _ 

(D-5) 

Then with this value of n, we compute f(x) from Eq . (D-4b). Figure 5.7 

results immedi a t ely from Eqs. (D-3) and (D-4a ). For practical purposes, 

we first compute the value of n for x = 0 from Eq . (D-5). That is, 

rewriting Eq. ( D-5) we obtain 

2 [ 2 n 1 7 x = 32n n - 2 - 4 J 

Hence for x = 0, 

n = 
0 

+..Js ~ 0. 809 
4 

For a larger n greater than n = 0.809, we first calculate x from 
0 

(D-6 ) 

(D-7) 

Eq. (D-6), then evaluate f(x) from Eq. (D-4b) to obtain Tf/Tth from 

Eq. (D-4a). If the effective gate length i is known, we can calculate 

Tth by Eq. (5-15a) and obtain -rf from Eq. (D-4a) or (D-3). 
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Chapter 6 
APPENDIX II I 

SCHOTTKY BARRIER BURIED CHANNEL CHARGE COUPLED DEVICES 

I. INTRODUCTIOI\J 

In this charter we discuss a new active semiconductor device. 

The device is .::inalogous to the buried channel device discussed 

in previous chapters except that channel potential is controlled 

through Schottky barriers forme d by metal electrodes deposited 

directly on the semiconductor. In contn:i st t he s ta nd.::i rd bur.i.c d 

channc 1 device cons is ts of conductinz gates clepos i te<l on an insu l .1 ::0r 

which rests upon the semiconductor. 

This device has one principal advantage which may make it us 0fu l 

when the CCD concept is extended to material s ot;her than silicon. 

The meL.1 l-oxide-scmiconduc tur t ec hnology is c:-:cccding ly success [u l. 

when ba secl on s i 1 icon. However, 1-1hen d t ternp t s hcivc been md de to 

extend this tcchnol ogy to other s~miconduc t ors then: k: s been 1 it t l c 

success. The prirn.::iry reason for this lack of su ccess is the puor 

behavior of the semicunduc tor insu lc:i tor interface. The ne\•.' device 

discribecl a nd .::i11 c:1lyzcd in this clvipter has the bene .. fi t of doing i.l'.-1.1: 

with the s emiconductor insulator interf.::ice under- the control electrodes 

ind going directly to a metal semicon~uctor interface which is well 

defined on semiconductors such as GaAs. 

In this chapter we present ,n1 e lee tros tn tic analysis of the 

Schottky Barrier Buried Ch.::innel Charge Coupled Devices (SDBCCCD), 

which could be constructed with presently ,1v<1il.:1ble tecimoJogy on 

GaAs. Spccia 1 attention was focused on making the elcctrostc1 tic 
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potentia 1 in the channe 1 such that one wou 1 d expect smooth t"""Yl'fe-," of 

the charge and, hence, not encounter the difficulties which were found 

in the first buried channel charge coupled devices [1]. 

It was found chat, if the structure was fabricated by simply put­

ing metal pads on GaAs surface and leaving gaps between the pads, then 

the electrostc1U.c potential had very undesirable ,i wells in this ~ap 

region. These electrostatic wells would act as traps for the si gnal 

charge and, hence, prevent the satisfa ctory operation of the device. 

This important problem was solve d by adding a l1i e h diele c tric constant 

material (Si 3 Nt~ ) to the region between the me tal electrode s. This 

solution is found to virtua J.ly eliminate the pot en tia 1 trc:i ps and ma kc 

possibl e the operation of the device. 

This chapter is organized in the following 1ashion. Section II 

contains a detailed description of the physica l structure of the device. 

Section Ill contains a orie dimensional electrostatic an~lysis o( the 

device. Section IV contains a two-dime nsion;-d cle'ctrostatic anc1lys:i_c;, 

c::md St~c ti on v con ta ins cone 1 us ion and .:1 discus t, j_on of the resu l ts. 

JI. DEVICE STRUCTURE -- - --- -----· --- - ·-·-

operates by moving mJjorit:;: ca rriers ,.don ~: the buri.e:d c!i .:i nnc l . This 

cha nnel can be controlled by the gate volt ~gc s clpplied on the me tal 

electrodes which form Schottky barriers with respect to tlie semi­

conductor in contact. 

The proposed Schottky bart-ier buried ch.Jnncl structure is shown 

in Fig. 1 as a unit cell of three-phase n-channel CCD. It c onsists 
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of an n-type layer of GaAs on a p-type GaAs substrate with metal 

el ectrodes forming Schottky contacts at the semiconductor surface. 

The structure is completed ·with an Si3N4 film which can be dcposi ted 

by a radio frequency glow discharge reaction [2] of silane and arrunonia 

at a fixed substrate temperature of 300°C. The silicon nitride was 

chosen in this calculation because of its· relative high dielectric 

constant of the order of 8. The thic~ncss, Xd, is 20 times the 

3 
acceptor density, NA, of the substrate, which is lOOOe/µ.,. 

!Yi- order to form a huricd channel, it is necessary to compl e tely 

drain then-type layer and part of the adja cent regions at the Schott ky 

barrier and the metalurgi.cal n-p junction. This can he accornpli.shed by 

reverse-biasing then-layer and p-type substrate, with res pect to the 

Schottky electrodes, strongly enough to drain all of the electrons out 

of then-layer. The si gnal char ge is to be transported alon~ the buried 

channel in this depleted condition. 

The band dia gram of the one dimensional Schottky barrier buried 

channel s true ture is shown in Fig. l . We define the x-coordinate along 

the depth of the semiconductor as indicated by a horizontal line in the 

figure. The n-layer is defined by the condition O ~ x ::; Xd. 

The ~ost important expression of interest is the analytic 

expression of the channel potential <l>m in terms of the gate voltage <l>c 

and the signal charge Q. This expression can be derived by the standard 

d~pletion approximation for the rectangular charge distribution and is 

given as 
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Ometal 

Ee 

figure 2 One Dimen~ional Band Diagram and Charge Distribution for Schottky 

Barrier p-n junction structure. 
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( 1) 

where f(R) is a factor of orde r unity and defined as 

f (R) 
1 + R + ✓l + 2R 

(2a) 

and the dimensionless para meter is defin~d by 

(2h) 

with 

tc) 

and 

( 2d) 

The general characteristics of the dependence of the cl1c1nneJ i> otcntic:l 

<Pm upon the pertinent device parameters arc clear from aoovc 

relationship s . The factor f(R) is a slow varying pararnetero Hence one 

would note from Eq. 6 that the channel potential changes quite 

linearly with respect to gate voltage </>G but not with the signal 

charge Q. 

IV . 1WO DIMENSIONAL ELECTROSTATIC CALCULATION 

A solution of two dimensional Poisson equation . for this three­

phase CCD structure ha s been solved numerically by over-relaxation 

method and the computed channel potential is shown in Fig. 3. The 

solid curve is with silicon nitride deposited by a radio frequency glow 



15 

--+-

0 
> -
E 

--&- 20 

25 

2 10 
~~_J~--

186 

18 

' 
with Si3N4 

---- . without Si3N4 

Emin = 553.4 volt/µ-

\., 

2 

Figure 3 The channel potential profile along the direction of charge transfer. 

The solid curve is with silicon nitride deposited by a radio 

frequency glm1 discharge reaction. The dashed curve is without . . 

silicon nitride layer. 
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discharge renction. This method is ideal since the resulting dielectric 

layer has a relatively high dielectric constant of 8. The dashed curve 

is obtained with no dielectric filling in the interelectrode gaps. The 

finite intere lectrode gaps give rise to the potential minima similar to 

the results reported ..:or the insulated goc1te buried channel CCD. The 

minimum frin ging field for the case of silicon nitride cle ~osition was 

found to be 553. 4 volt/µ,. The details of the potcntia 1 gra client for 

this situation is illustrated in Fig. 4 

The undesir).b-le gap effec t ca_n be understood \,·ith the a 1.d of 

in which we show the electrostatic potent .i.al ,:don?, the 

distance from the interface to the substrate at the mid ;:;ap o f the 

sourc e and drain cates. By Gauss's law, the electric field becomes 

discontinuo!JS .:it the int erface due to th e .1bru pt change ir. the va }_ue 

of the die.lectric constant. Since Gc11\s has the d-c t'.ielcctr:i.c cons ta nt 

12 times lQ rger than that of the v.'..lcuum, the su r fa cc e l2c tr i c f ii.::l d 

perpendicular to the interface must be ve ry s111c11·1 inside the semi-

conductor; Thi s situation is illustrated in the Fig. 5 

dashed curve incr eas e s i!:$slopc abruptly a l the interface. 

No t e the 

When the silicon nitride is present, the abrupt increase in the 

potential gradient is negligible ot the interface as seen by the silicon 

nitride to the vacuum. In this calculation the thickness of silicon 

nitride is taken to be 0.9µ,. 

In Fig. 6 we have plotted the surface potential along the 

directi on of the charge transfer. The abrupt change in the potential at 

the interelectrode gaps is obvious from the figure. It would be 
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Figure 4 The potential gradient a~m/ay and its reciprocal ay/a¢m plotted 

along the direction of charge transfer. 
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Figure _5 The electrostatic potential profile alqng the distance from the 

interface to the substrate is shown at the midgap of the source 

and drain gates. 
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desirable. . . , to have the int e relctrode potentia 1 vary monotonically 

across t he gap; one way to do this would be to let the . spacing go to 

zero . However, in the actual device fabrication, lµ ~ap is the narrow-

est gap one can realize in the present state of art. Fig. 6 

that the gap effects can be reduced by filling the gap with high 

dielectric materials for a finite-gap structure. 

shows 

The device can s ti 11 be operated if the gap minimum is hi. gher than 

the channe I potentia 1. Fig. 7 shows th.qt this is indeecl t he c ase 

for the condi tions we have applied in the cc11 c~1l a ti on . In this fi ,c:-, ure, 

we h[lvc plotted the sur fac e potential and ch ,rnncl !,otcn ti.al i n the 

same g raph to illus tra tc their rel a tf v e pos i tj_ ons. 

v. CONCLUSION 

A new active semiconductor dev ic e , na me l y Schottky 3arrier buried 

chann el CCD is described_ an d SOine pertinent design consi derations are 

discussed on t he basis of the one ~i~ensional ele~tr ost □ tic analy s is 

(dep let i on approximation) fo r the r.iini.mu m chnr:.nel putenti a 1. The two 

dimensional. Poisson equati,m , a ri) ropr .:. ate fu r the structure , has 

been solved numerical l y wi.th special c1ttention focussed u pon the 

final 55.::ip effect i n th~ three r, h cJse structure. And it is concluded 

that the monotonic ch .. rnnel potential can be achieved by filling the 

ga p with n hi ~1,h die l.ectric ma t e ri..11. 
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Figure 7 The surface potential and the channel potential along the direction 

of charge transfer. Both curves were calculated for the case of 

Si 3N4 deposition. 
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