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ABSTRACT

Theoretical analysis of the dynamics of charge transfer in charge
coupled devices is central to the intelligent design and proper estima-
tion of the usefulness of this new device concept. In this report, a
detailed study of the electrostatics and dynamics of buried channel
charge coupled devices (BCCDs) is presented. Both theoretical and exper-

imental study of BCCD has been very difficult due to the additional
complexity in the BCCD structure in contrast to the original simpler
structure of surface charge coupled devices (SCCDs). And up to present,
no comprehensive study of BCCD which includes the complete electro-
static and dynamic analysis of BCCD operations has been reported. It is
the purpose of this thesis to assist physicists, device engineers, and
applications engineers interested in BCCD by presenting all essential
information on the buried channel CCDs in one place and in a compre-
hensive form so that the background laid on BCCD can be applied immedi-
ately to the case of the SCCD studies achieved in the past and also to
the investigation of a future CCD structure.

The work reported in this thesis consists of three major contribu-
tions to the rapidly progressing CCD research and is described in the
main text, Chapter 1, 4, and 5 of this thesis. |

In Chapter 1 the relations between the electrostatic potential and
the charge distribution in one dimensional structure for BCCD are
analyzed in detail. An expression for the channel potential in terms of
salient physical parameters is obtained by depletion approximation. And

its implications on doping levels, and profiles; charge storage capa-



city;geometrical structure and gate voltages are discussed in detail to
provide a useful reference and guide-work in design and analysis of
buried channel CCDs. The results obtained numerically for the case of
Gaussian doping profile are also presented and correlated with the
uniform doping model. In Chapter 4 a detailed two dimensional electro-
static analysis of buried channel CCDs is presented. By a simple capac-
itance network model the two dimensional Poisson equation appropriate
for the structure is reducedinto a second order differential equation
in a single spatial dimension. The resulting equation relates the signal
charge and the minimum channel potential under all the relevant electro-
des and interelectrode regions. A diffusion equation describing the
charge transfer is coupled to this equation 1in order to incorporate
the static model in dynamic charge transfer description. The results of
a detailed numerical simulation of the charge transfer process in the
resulting realistic model of a high density buried channel CCD
remain  to be studied in Chapter 5. It is shown that the limitations
on the device performance due to incomplete free charge transfer are
reduced considerably by powerful field-aided charge transfer. The pro-
cedure to estimate the significance of this reduction in terms of the

charge remaining as a function of time is formulated analytically.
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Chapter 1

ELECTROSTATIC ANALYSIS OF BASIC ONE
DIMENSIONAL MOS STRUCTURE FOR BURIED CHANNEL CCDs

1.0 Introduction to Charge Coupled Devices

In 1970, Boyle and Smith*in Bell Labs showed that a signal charge
packet in a metal-oxide-semiconductor (MOS) structure could be stored
in a potential well under a depletion-biased metal electrode and moved
from under one electrode to the next by appropriate pulsing of the
electrode potentials. For the structure to be used as a signal process-
ing device, the electrodes must be placed close enough to make the
potential wells couple and the signal charge packets move smoothly from
one well to the next. The resulting structure is commonly known as the
charge coupled device (CCD).

In the past few years there have been tremendous advances in the
fabrication of this new class of semiconductor devices. These advances,
occurving in an already sophisticated technology, were made possible by
earlier parallel developments in the parent field of large scale
integrated circuits.

Analog-signal-processing developments in CCDs have been very
significant, for the first time bringing the full impact of monolithic

integrated-circuit technology to bear on sophisticated analog communi-

* Boyle, W. S., and Smith, G. E. "Charge Coupled Semiconductor
Devices," B.S.T.J., 49, No.4 (April 1970), pp.587-593



cation systems. CCD delay-line, multiplexing and filtering components
are by now operating in developmental systems, where they provide such
complex and vital signal-processing operations as matched filtering in
spread-spectrum communication, bandpass and low- pass filtering, Hilbert
and Fourier transforms for single-side band modulation and complex cod-
ing for military communications. However, most significant of all their
commercial implications are CCU menory systems. Here progress has been
slow, mostly due to the already high level of bipolar and MOS memory
technology and the fact that CCD memories, owing to their charge-transfer
process, are basically serial. Nevertheless, CCD memories have been gain-
ing momentum. The first to arrive is 16,000~ to 32,000-bit serial CCD
'memory element capable of operating at respectable 1- to 5-megahertz
kilobits on a chip in the next two years, at last ushering in the age of
mass-memory chip technology.

A typical two dimensional CCD structure is illustrated in Fig.1l.1
as one unit cell of the overlapping gate structure using the standard
silicon technology. The device is a series of simple metal-oxide-
semiconductor (MOS) capacitors coupled in such a way that the signal
charge on the capacitors can move from under one storage to the next.

The storage site is actually a potential well created under the

electrodes at the semiconductor insulator interface. In Fig. 1.2a and
Fig. 1.2b the band diagram of a metal-insulator-n semiconductor is
shown to illustrate the creation of potential wells at the interface
when a voltage pulse is applied to the metal electrode. Minority carri-

ers, injected in response to a digital or analog signal or generated by
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photons, are stored as charge packets in these potential wells result-
ing in a decrease in depth of the potential well.

The storage and transfer of the charge packets are controlled by
the clocking pulses driving the closely spaced electrodes as shown in
Fig. 1.3 where a three phase clocking scheme is used. 1, the three

phase operation three electrodes are needed to store one bit of informa-
tion and obtain a directionality in the signal flow. The figures illus-
rate how the 4-bits information in a 1-0-1-0 pattern is transferred to
the right.

The original charge coupled device, as introduced in 1970, operates
by moving minority carriers along the surface of a semiconductor with
voltage pulses applied to metal electrodes which are separated from the
semiconductor by an insulating layer (Si02). Today, this type of charge
coupled devices is referred Bassurface charge coupled devices (SCCD). The
anlysis of charge-transfer characteristics of SCCD in terms of free-
charge losses, (see Appendix I) and losses due to the trapping by fast
interface states (see Appendix II) has been central to the intelligent
design and proper estimation of the usefulness of this new device concept.
In these detailed studiesin Appendix I and II it is shown that the transit

characteristics of SCCD from one electrode to the next is determined by

the minority carrier transport under the influence of thermal diffusion
and electric fields due to the external electrode voltages and the self-
induced carrier repulsions. It is now known that the transport limit-
ations are largely determined by device geometry; for long electrodes,

thermal diffusion is predominantly responsible for transfering the last
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Figure 1.3

Schematic cross section of a three-phase charge coupled

device structure. The electrodes are pulsed in the

sequence d)] ¢2¢3 s



small amount of charge forward and Timits efficient operation to clock
frequencies below 10 MHz. Surface state trapping is much less disper-

oll states/cmé-eV can impose the

sive, and even at low frequencies 1
requirement for regeneration after as few 2s 100 transfers.

To overcome these problems in 1972, a modified CCD structure was
introduced by a group of scientists in Bell Labs. However, due to the
additional complexity in structure, the first-fabricated devices did
not work at all. And further detailed experimental and theoretical
investigations remained to be carried out. This new type of CCD is today
referredfas buried channel charge coupled devices (BCCDs) in contrast to
the original surface charge coupled devices (SCCus). The new buried
channel CCD is the subject of investigation in this thesis. The cross-
sectional view of this BCCD is illustrated in Fig. 1.4. In this modified
BCCD structure, the charge does not flow at the semiconductor surface;
instead it is confined to a channel in the p-layer which lies beneath
the surface. The buried channel device has the potential of eliminating
surface trapping because the signal charge packets now move away from
the interface. And it is also expected that this modification in struc-
ture will give rise to incfeased fringing fields under the electrodes

and that the diffusion will be replaced by the more powerful field-aided

* Walden,R.H., Krambeck,R.H., Strain,R.J., McKenna,J., Schryer,N.L.,
and Smith,G.E. "The Buried Channel Charge Coupled Devices" B.S.T.J.
BRIEF, 51, No.7 (September 1972), pp.1635-1640
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transfer as an important factor in the final charge transfer process.
This should lead to fast, efficient transport even when little charge
remains to be transfered.

However, both the theoretical and the experimental study of BCCD
devices has been very difficult due to the additional complexity in
structure. Up to present, no comprehensive study of BCCD which includes
the complete electrostatic and dynamic analysis of BCCD operations has
been reported. It is the purpose of this thesis to assist physicists,
device engineers, and applications engineers interested in BCCD. By
presenting all essential information on the buried channel CCDs in one
place and in a comprehensive form they can immediately apply this
analysis of BCCD to the case of the SCCD studies in the past (see
Appendix I and II) and also to the investigation of a future CCD struc-
ture discussed in Appendix III. With these motivations, a detailed
study of the electrostatics and dynamics of this new BCCD is presented
in the main text, Chapter 1, 4, and § of this thesis.

1.1 Introduction

Electrostatics play an important role in the design of a function-
ing buried channel device. The connection between geometrical structure;
doping levels, and profiles; charge storage capacity; gate voltages are
all determined by simple electrostatic analysis. This analysis must be
carried out before any consideration of the actual charge transfer pro-
cess is made. In principle the electrostatic analysis could be made by
solving the Poisson equation with all the relevant charge distributions
and applied potentials for the correct three dimensional geometry. How-

ever, in general this would require numerical solutions which would be
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both expensive to generate and difficult to use in considering the
impact of varying some of the physical parameters on the performance of
the device. Hence, it is desirable to idealize the actual device struc-
ture so that one can obtain an accurate but approximate analytic solu-
tion to the electrostatic problem which will indicate how all the device

parameters interact.

In this chapter I take just such an approach. The charge distri-
butions and potential under a CCD gate are assumed to be one dimensional.
As we will see this approximation makes it possible to obtain inter-
esting and very usefu] results for the electrostatics of the buried
channel device. While these results are very useful, they are not
accurate enough for our considerations of the charge transfer and we
will present a numerical solution of the electrostatic problem in two
dimensions in the chapter 4.

To be specific we will consider only a p-channel device.

However, n-channel could be done in exactly the same way.

This chapter is organized according to the following format. In
1.2 the problem is set up with the definition of charge densities
and relevant geometrical parameters assuming a uniform doping profile.
The solution to this problem in terms of charge stored Q , gate voltage
dg> and the potential of the buried channel ¢, are presented in 1.3
within the depletion approximation. The implication of these results
in the design of buried channel CCD's is given in the following three
sections 1.4, 1.5, and 1.6. The changes in these parameters brought

about changing the doping profile from uniform to Gaussian in the
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region near the oxide is discussed in section 1.7. Section 1.8 contains

the conclusion.

1.2 Electrostatic Potential and Charge Distribution

The one dimensional geometric structure for a buried p-channel
charge coupled device is illustrated in Fig. 1.5a. The structure consists
of a metal gate followkd by a layer of silicon dioxide which rests on
silicon that has been doped p-type near the surface on a n-type substrate.
The potential energy versus position is shown in Fig. 1.5b. Throughout
this discussion we will reference all potentials to the Fermi level in
the n-type substrate. Since we will be dealing with holes throughout
this problem, we will take the electrostatic potential to be positive
in the standard sense, that is, the potential will increase downward on
the figure. As a consequence of this definition, the position of the

conduction edge in eV is given by AE such that

Ey and E. are the respective values of the band edges referenced to the
potential zero, ¢= 0, far into the substrate. We note that E. = -AE
Geep in the substrate since ®= 0. The electrostatic problem is further
specified by giving various contributions to the charge uensity. The

free carrier densities for electrons and holes are given by

E. - d>n
n = N. exp [—_] , (1-1a)

and kT
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(b)

(c)

Fig. 1.5 (a) MOS Structure for buried channel CCD,
(b) the band and electrostatic potential
profiles, and (c) the charge distribution.
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¢ -E
_ ’p v
p =N, exp XTEET"] : (1-1b)

where NC and NV are the effective densities of states in the conduction
and valence bands, respectively; and ¢n and ¢p are the quasi-Fermi
levels within the semiconductor.

;urther we need to specify the position of the zero of potential
(the Fermi level) with respect to the band edges. Using the standard
results for a semiconductor doped to a level ND, we have the deviation
of the conduction band edge AE.

To accomplish this, we note that EC = -AE deep in the substrate,

and we define the intrinsic electron or hole density n; deep in the

substrate by

2 E-Ey
n.- =np = Nch exp ( T > . (1-2a)

i

Then, after a little algebra, using the relation Nd = p-n, with
Egs. (1-1a) and (1-1b) we obtain the difference AE in term of the sub-

strate dobing Nd as seen by

N
AE = ¢ * KT In (;f?> x (1-3a)
1

where ¢olis defined by

2
N N
_ d ‘/ d ) i
b, = KT In|z=+§ 1 +(2n1 . (1-3b)

i

The derivation is as following:

We observe in Fig. 1.5b that the curves for the conduction band, E.,

and the electrostatic pptentia],<b, run parallel to each other, and that
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the displacement, AE, is a constant quantity everywhere in the semi-
conductor. We calculate the value of AE deep in the substrate therefore,
where we observe that ¢y = ¢p = ¢= 0. Hence, using the relation Ny

= p-n, with Eqgs. (1-1a) and (1-1b) we obtain an equation which relates
the conduction band E. and valence band Ev deep in the substrate as seen

by
-E

Ny=p-n=Ny, exp (:—!> — N¢ exp fﬁi)
‘ ki b
Eliminating E, from this equation by Eq. (1-2a), we obtain an equation

for E. as seen by

NN : A\
_._C_d__ = exp -—E-C— e _fig exp EE
n12 kT nj kT

Then, noting that deep in the substrate AE = -E., this equation gives

AE in terms of the substrate doping Ng and the intrinsic semiconductor
parameters Nc and n; as seen in Eq. (1-3a) with @ defined by Eq. (1-3b).
END OF DERIVATION

This quantity ¢, can be used to write the electron and hole densities in
a symmetric form and we obtain, after some manipulation, by usina

Egs. (1-1) and (1-2),

(6=¢_)-9
n = n; exp [———E%—-—ﬂl s (1-4a)
and
¢ -(o-¢ )~
p=n, exp [—ETT‘O—J : (1-4b)



15

The derivation is as following:

From Eq. (1-3a) with aE = ¢-E. we obtain

/N
KT ]r\k———- = ¢ - E¢ - g

Ny
That 1is,
§ 95 —-960
Ne exp(Ec/kT) = nj exp T
Including ¢ in both sides we obtain Eq. (1-4a) from Eq. (1-1a).

If we apply Eq. (1-2a) to the above equation we obtain
n 1- 2 ¢" ¢O\
" >exp( Ey,/KT) = n; exp ';ﬁf“>
Ny

: %—°
Wy exp(-E,/kT) = n; exp KT

Including ¢p in both sides we obtain Eq. (1-4b) from Eq. (1-1D).

This gives

ENUD OF DERIVATION

With these equations (1-4a) and (1-4b) for the electron and

hole densities we can write the one dimensional Poisson equation as

1
» or [p(¢,¢p) - n(4,0,) + d(xﬂ s {1-5)

o

where we denote the impurity doping concentration in the semiconductor

by d(x), and the dependence of the hole and electron densities upon
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the potential ¢ and the quasi-fermi Tlevels ¢p and ¢n is indicated
explicitly by means of Eq. (1-4), and we note that the impurity doping
concentration d(x) is a positive quantity in the n-type substrate and
negative in the p-diffusion region. Specifically, d(x) = Nd deep in
the substrate, but we consider the doping to be not necessarily uniform
in the vicinity of the p-diffusion layer. It can be a Gaussian in
particular.

When the minority carriers are neglected, the Poisson equation in

the n-type substrate can be approximated by

2 :
d—%= - E"L [d(X) - n(¢,¢n)} . (1-6a)
dx S

Correspondingly, when the electron concentration is neglected in the

p-diffusion layer, we obtain

d—z% = - —E]— [d(x) ¥ p(¢,¢p)} ,  (1-6b)
dX Si
where €q is the semiconductor dielectric constant.

Wle have now set up the problem with the definition of charge den-
sities and relevant geometrical parameters. One more point, however,
remains to be made clear before considering the implications of this
problem. It is about the relation between the built-in voltage ¢B of
the p-n juntion and the minimum potential ¢y Of the potential well.

For the uniformly doped abrupt p-n junction shown in Fig. 3.1c
at the thermal equilibrium, the minimum potentiql ¢m in the p-diffusion
layer is equal to the built-in voltage of the p-n junction which is given

by depletion approximation as
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NN
bg = KT In <—flé}> . (-7
n.

3
However, the presence of the signal charge Q and the gate voltage dg
control the actual value of the minimum potential ¢m' We will study
this effect by applying depletion approximation to the one dimensional
MOS structure for the uniformly doped abrupt p-n junction doping
profile. That is, d(x) = Ny in the substrate and d(x) = -Ny in the

p-diffusion layer. The expression for Om will be obtained accordingly.

1.3 Depletion Approximation

We define x-coordinate along the depth of the semiconductor as
indicated in Fig. 1.5c by the horizontal Tine. The origin of x-
coordinate is taken to be at the oxide-semiconductor interface. That
is, the p-diffusion region is defined as 0 < X < Xd' The problem is
to obtain an expression for the minimum potential o in terms of the
gate voltage ¢q and thg signal charge Q which is defined as

Q = NpXey = Np(Xy4=X1-X,) . (1-8a)

where NA is the p-channel ddping density, XCH is the width of the
channel, Xd the p-layer depth. X] and X2~are the surface field and
metalurgical junction depletion widths respectively. These parameters
are seen in Fig. l.5c.

Correspondiné to X] and X2, we define the respective depletion

capacitance as Cy = eq;/Xy and C, = ¢q./X, where gc. is the silicon

dielectric constant.
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The gate voltage b controls the surface electric field ES at the
oxide-semiconductor interface, which is related to the oxide electric
field by Gauss's law. The oxide electric field is given by the poten-
tial drop across the oxide divided by the oxide thickness Xo' And the
potential drop is given by the difference of the gate voltage ¢g and
the surface potential ¢S adjusted by the metal-oxide work function
¢MO and the oxide-semiconductor barrier height dgq S illustrated in
Fig. 1.5b. These simple facts lead to a relation between Eg and .

Assuming the presence of positive interface charge st’ we obtain

esiEs
¢s = ¢SF - CO ) (]'8b)

where CO is the oxide capacitance per unit area, ¢ the surface potential.

oo 18 defined by

= ¢ - 3 % 935 (1-8¢)
%F = % " ®mo * %50 ¢, .

We note OcF is the surface potential when the band is flat at the

interface, that is when ESY? 0. Equation (1-8b) gives one boundary

condition for the Poisson equation (1-6b) in the p-diffusion layer.
Integrating Poisson equation from X = 0 to X = X], that is, in

the surface field induced depletion region, we obtain

N
= <——5> X, . (1-8d)
€54

[
i

and

Sy ‘
_ S1\
o = 95 " <2N ) Es > (B
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where X] is the surface field induced depletion width. The p-side and n-
side junction depletion width must be connected by the relation

X2NA = X3Nd because 6f charge neutrality deep in the substrate. The p-
side junction depletion width X2 can be written in terms of the minimum

potential ¢y aS seen by

X -
= \& . (1-8f)
d q
where 2
N, X N
A*d A
o = ﬁ + ——J . (1-89)
G fegy Ng

If the value of the minimum potential & is known, we first obtain
the p-n junction depletion width (X2 + X3) from Eq. (1-8f) and then
Eq. (1-8g). If the amount of the signal charge Q is prescribed,
Eq. (1-8a) gives the surface field induced depletion width X1+ Then
the surface electric field ES,-and then the surface potential 9¢» Can be
calculated from Eq. (1-8d) and (1-8e) respectively. The corresponding
gafe voltage ¢g can be evaTqated from Eq. (1-8b) knowing the relation

between the gate voltage ¢G and ¢sF as seen in Eq. (1-8c).

In those equations there are four fixed parameters, X, X, NA,
and Ny that can be controlled in the fabrication of device, and three
more variables, Q, ¢y, and ¢qF ?mong which there is only one constraint
during the device operations. The associated constraint among the three
varibles can be written as an expression of the minimum potential ¢, in
terms of the gate voltage ¢, and the signal charge Q. In the following,

the procedure to calculate the expreEEion is described.
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To write the analytic expression for the minimum potential as simple

as possible, we introduce three parameters, ¢,, ¢d and R defined by

¢t = D ] (]-9a>

) (1-9b)

| &
t+ Q.
]
O] O
D.iO
/__‘_\
1
OO
Q.
N
1
~no
o+
O] O
oo
s
]
OO
Q.
R
| |

and

Ny ¢4 - ¢
R = __A._Q_;_Eéf , (1-9¢)
2Ny oq T ¥y

with Qd = NAXd and Cd = ESi/Xd' ¢t is just a geometrical constant (in
volt) determined by the p-channel doping density NA and the oxide
capacitance CO. ¢4 is proportional to ¢4 and the proportionality constant
given in Eq. (1-9b) is actually a quadratic function of the single
charge Q. The dimensionless constant R is of the order of 10 to 20 in
normal device configurations because NA is 10 to 20 times larger than
the substrate doping Nd' The physical significance of these
parameters, ¢t’ dq and R are explained more in detail as we go further
in interpretation and results of depletion approximation in next section.

In terms of these parameters, the minimum potential ¢, CaN be
expressed as

N4
¢y (Ao p) = - <1 + NK> [¢d - ¢SF] f(R) . (1-10a)

where f(R) is a slowly varying fynction of R and defined by

£(R) = i . (1-10b)

1+R+\j1+2R
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The derivation is_as following:

Eq. (1-8a) with Q4 = NyXy gives

T el vy
Qq X4 X
With kq. (1-8f) for X2/Xd we obtain
¢ Q X
-__"3_=.(1__)_<_L) *)

Also form Eq. (1-8e) substituting ¢¢ by Eq. (1-8b) and X by Eq. (1-8d)

we obtain

2egq Xy

" . ,2

NaXq X N X .

Ard, A1 AM X1, 2
) ) (—)

Using Eq. (1-9a) for bt and cd=esi/xd we obtain

C. X C ., X
, 2,1
b = b - 20D - 0, (2)F=)°
This equation and tq. (*) above give
X ) Q X Q 2
)E = - 21— - 1-—)
X4 ¢q Q Xyg Qq
C, o berr - ¢ C, X
2| ¢sF 1
- (9= - a D=
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Solving for Xj/X4 we obtain

Q C X )
(1-—) + 4|2 (--— sF
1 Qq ' Co (Xd) 1 Qy Co [

e o)

Substituting X;/Xy of the above equation to Eq. (*) we obtain

3, 0 (1) e (R (D
L I * Co 4 \eg
¢ 0y
Cq
21(1--) + —
Qd Co ’
This equation can be rearranged to give
2
Q C,l/¢
4 la—) +-4 .J#>
Qd Co ¢q
Q Q 2C4 L ¢ ¢ ¢
{a—)la—)—=2 |- _9)2[ sFm | (.E)
Qd Qd CQ CO ¢t ¢q .(**)
Knowing from Eq. (1-9b) that
l

¢d C
<} + -——‘> = 1 $ s (1_?_4
"t G QU

the LHS of the above equation (**) becomes
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Also substituting ¢4 of Eq. (1-9b) into the RHS of Eq. (**) above, we

can write the RHS of Eq. (**) as seen by

¢\ C,\2
G%fi — g%(ﬁi;ﬁg_<%>
Consequently the Eq. (**) above becomes

¢
-4 < 1+ __S ><%T>
ot /\¢

q

- - - — g
Co ot C0¢t Cyq bq i Sld

Furthermore noting by Eq. (1-8g) and Eq. (1-9a) that

Coty Cavg/ \Co ot/ (1 + Nd/NA) ;

the RHS of this equation (**%) becomes

©-

2 2

N¢ "
oy C, (1 + Narig) (o s
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Knowing from Eq. (1-8g) and (1-9a) that

¢q

(ﬁ)(%) =< Z:) <.1 i Nd/NA)

and defining the parameter f by the equation as seen by

f = ¢nl
(1+ Na /iy )( 94 " ¢SF) (eseser )

the above equation (***) can be written as

2 f 2

—:;‘ =(1-f) (F—

where R is given by Eq. (1-9c).

Solving this equation for f(R) in terms of R we obtain the Eq. (1-10b).
Since f(R) is originally defined by the kq. (a%%*) above, we immediately
obtain the analytic expression for the minimum potential ¢h as seen by
Eq. (1-10a). In the above derivations, the four equations (), (%),
(#%%) and (x%xxx) are all the same relation expressed in terms of differ-
ent physical parameters, and the parameters R and f(R) seem to play

very important roles in studying the mutual interactions among the
important device parameters such as the oxide thickness Xo’ the p-layer
diffusion depth Xy, the p-layer doping Ny, and the substrate doping Ny;

and the three more variables, Q, ¢SF’ and P

END OF DERIVATION
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For large values of R, f(R) approaches unity very slowly. If we want
to know a rough value of the minimum potential without going through the
calculation procedure defined by Eqs. (1-9) and (1-10), we can estimate
the value by computing ¢, from Eq. (1-9b) and setting o as-<¢d-¢SF),
where we note the gate voltage o is related to ¢sF by Eq. (1-8c).

The general characteristics of the physical parameters implied in
the analytic expression for the minimum potential can be seen by the
relationships implied in the above equations. It is clear from
Eq. (1-10a) that the dependence of the minimum potential ¢, Upon the
gate voltage is quite Tinear. On the other hand because 94 defined
by Eq. (1-9b) depends quadratically upon the signal charge, we expect
that the minimum potential will also show a quadratic dependence on
the signal charge. We also note that a thicker oxide produces a deeper
minimum potential. This effect can be calculated quantitatively by
Eq. (1-9a) in which we see the value of ¢, Ts proportional to the square
of the oxide thickness. For a given gate voltage, the minimum potential
is different for different oxide thicknesses, because the value of ¢,
will be different. But dq does not depend on ¢gp OF on the gate
voltage. Hence we observe, when tw6 MOS structures with different
oxide thickness are given, the difference of the minimum potentials
will not depend appreciably upon the gate voltage applied on both
structures. These observations are important in designing a working
buried channel CCD and clocking schemes, and so we will discuss these

points more clearly in detail in the next section.
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1.4 Interpretation and Results of Depletion Approximation

We first describe qualitatively how the parameters ¢t and 94 depend
on the oxide thickness XO and the signal charge Q. This consideration
is important to describe qualitatively how the minimum potential ¢m
depends on the salient physical parameters.

94 for two different values of oxide thickness is plotted in
Fig. 1.6 as a function of the signal charge noymalized by the maximum
depletion charge Qd = NAXd’ In this case study, the p-channel depth
Xd is taken to be 1u and the p-channel doping density to be 20,000 e/u3

16 e/cm3. The silicon dielectric constant

which is equal to 2 x 10
€gi is taken to be 11.7 €5 which is equal to 648 e/volt-u and the sili-
con oxide dielectric constant ESiOZ to be 3.9 €y OF 216 e/volteyu

Observe in Fig. 1,6 . that the nonlinear dependence of 94 prevails
when more signal charge Q is present in the channel.

Knowing the value of 94> the difference (¢SF-¢d) can be calculated
for a given value of s This difference is of the order of the
minimum potential L Hence 9q> gives a rough estimate of the voltage
drop of the minimum potential b relative to the gate voltage (¢SF).
Specifically, Fig. 1.6 shows for zero gate voltage (¢SF = 0) and the
zero signal charge (Q = 0), the channel potential is rough -45 volt
for XO = 0.32p and -25 volt for Xo = 0.12u. Hence the thicker the
oxide, the Tlower the channel potential for the charge carriers.

In Fig.1.7 > ¢t and ¢d are plotted against the oxide thickness for

zero-signal charge. As seen in the figure, and as one can easily see

from Eq. (1-9b) when ¢4 is expressed in terms of Xo’ by is a linear
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50 I T T l

Na =20,000 e/u3
Xd = l/J.

o 0.2 0.4 0.6 0.8 1.0
—Q/Qq—*

Fig. 1.6 ¢4 defined by Eq. (1-9b) plotted against the signal
charge Q normalized by the sheet doing density Qq in

the p-layer for the oxide thickness X, of 0.12u
and 0.32y.
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Fig. 1.7 The dependence of the parameters &;'and

¢y defined by Eq. (1-9a) and Eq. (1-9b) upon
the oxide thickness X0 is illustrated in the

figure.
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function of the oxide thickness when no signal charge is present. As a
matter of clarity, for Q = 0 from Eq. (71-9b), we obtain

%

S, 1
E{ - CO i 2C . (]‘]OC)

d

The Tinear dependence of ¢4 upon the oxide thickness X0 also implies
qualitatively the linear dependence of the minimum potential ¢p> UPON
Xo' The quadratic dependence of ¢4 upon the oxide thickness XO is clear
from Fig. 1.7 and also from Eq. (1-9a).

We have shown how the parameters ¢t and 94 depend quantitatively on
the oxide thickness and the signal charge, and also described qualita-
tively how the minimum potential - depends on these parameters. As
for Eq. (1-10a) we have considered only for the factor (¢SF—¢d) and
if we wish to have a more accurate value, we can calculate the value of
R from Eq. (1-9c) to obtain the correction factor f(R) for the minimum
potential. But this correction is only about 10 ~ 20% of the first
rough estimate. This point can be made clear as we consider the actual
values of R and f(R) as follows.

For the range of interest, the values of R will be between 5.0 and
50.0 as shown in Fig. 1.8a. In this figure, R is plotted against the
normalized signal charge Q/Qd for a pair of typical values of oxide
thickness XO and of ¢sF' Observe that the values of R may vary in a
wide range but the corresponding factor f(R) will be fairly constant as
clearly seen in Fig. 1.8bwhen one compares Figs.1.8a and 1 8b.

For a special case of interest with no signal charge present, the

minimum potential is plotted against OcF for different oxide thickness
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in Fig. 1.9. As we claimed earlier, note that the dependence of the
minimum potential upon sF (hence, upon the gate voltage) is quite
Tinear. We also observe the lines are for practical purposes parallel.
That is, the difference of the minimum potentials will not depend on the
gate voltage applied on a pair of MOS structures with different oxide
thickness.

In Fig.1.10a, the dependence of the minimum potential upon the
signal charge is illustrated for typical values of oxide thickness
and gate voltages (actually ¢SF). The top two solid curves are for
¢sF = 0.0 volt, and the bottom two for ¢sF = - 18.0 volt. These four
curves define the minimum potential levels, that is, the four points
at Q = 0 in the figure, which may be applied for two phase buried
channel CCD operations. This point is discussed further in the next
section and the full treatment of two phase buried channel CCD opera-
tions is given in the next chapter.

We are now in the position to discuss one of the most important
aspects in the metal oxide semiconductor system for our one
dimensional buried channel CCD structure, that is, the condition for
zero surface electric field, or flat band.

The dashed curve in Fig. 10.a was obtained by calculating the
values of the minimum potential as a function of the signal charge with
the constraint that the surface electric field ES is zero. That is,
for the case of zero-depletion width X] by Eq. (3-8d), we obtain from

Eqs. (1-8a) and (1-8f) after some manipulation for E. = 0, that is, for
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Ng =1000 e/

Xd‘:ly.
Q=0.0
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Fig. 1.9 The minimum potential O plotted

against ¢SF for various oxide thickness X,.
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.. <1 ] %)2 ‘ . (1-1a)

Recall that the parameter ¢q was originally introduced in Eq. (1-8f) to
relate the p—side depletion width X2 to the minimum potential ¢m' Here,
we also note the band is flat at the semiconductor-oxide interface.
Hence, we have ¢m = ¢sF' When the signal charge increases beyond the
dashed curve, the signal charge will "touch" the oxide-semiconductor
interface.

The surface electric field is zero and the band is flat when, for
given gate voltage (¢SF), the amount of the signal charge becomes, from

the Eq. (1-11a) above,

= Q l:] -4/- f§f_ jl (1-11b)

E =0 q
S

When no signal charge is present (Q = 0), then from Eq. (3-11a)
we note that the magnitude of the gate voltage OcF must be set equal to
¢q given by Eq. (1-11b). For the values used in the case study, this
gives bp = - ¢q = - 324 volt for Es =0and Q = 0. For this value of
ésF’ Eq. (71-11a) gives Q = 0. The dashed curve in Fig.1,10a is given
by Eq. (1-11a) and the values of the signal charge Q for E, =0 (cal-
culated by Eq. (1-11b) for g = 0.0 volt and -18 volt) give the two
points that are arrowed in Fig. 1.10a.

The surface potential ¢ is plotted against signal level in
Fig.1.10b. Note the dependence of the surface potential upon the signal

charge is quite linear as compared to the minimum potential. The

slope is proportional to the oxide thickness X0 and given by the
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reciprocal of the oxide capacitance Co‘ Note the pairs of lines for
.Xo = 0.12 and X0 = 0.32 are parallel to each other respectively. As we
observe in the relation given by Eq. (1-8b), the surface potential
depends on the surface electric field in a linear fashion. Hence we
observe that the surface electric field is also a linear function of
the signal charge Q in a good accuracy.

The surface electric field ES is plotted in Fig.1.11. The slope is

roughly the reciprocal of the silicon dielectric constant ¢ The

Si®
analytic expression for the surface electric field is as messy as the
one for the minimum potential O To complete the discussion, we
present the expression anyway.

Define two parameters A(Q) and B(Q) as seen by

N N, C
AT 9_> Ng Cq )
A 1 + - (1-11
(@) ( : NA>< ) c)
and \ )
o NV o Eﬁ} ]
B(Q) (1 + NA>{<1 Qd) + 5 . (1-11d)

Both A(Q) and B(Q) are functions of the signal charge Q. Then the sur-
face electric field ES can be calcutated from the expression

Ay - 2]
ES = E—ST [ = 1 - B/A . (1-”8)

The condition for zero surface electric field is B(Q) = 0. Then from
Eq. (1-11d) we have the relation as seen in Eq. (1-11c). For the range
of interest, the right factor in RHS of (1-1le) is fairly constant with
values between 0.6 and 0.8 and the surface electric field is propor-

tional to A, which is a linear function of the signal charge Q.
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Xo= 0.12 4 [ N,=20,000 e /3
w=m—— Xu=0.32 7 Nd= 1000 e/,u.3
| Xg= 1p i

T T T I

Fig.

1.11 The strength of the surface electric field‘ES

is piotted against the signal level Q/Qy for typical
values of the oxide thickness X, and the flat band
voltage ¢SF corresponding to the gate voltage 9

as related by Eq. (1-8c).
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1-5 Constraints on Gate Voltage and Signal Charge

We are now in the position to describe the upper and lower bounds
imposed on the minimum potential for normal device operations. Without
this consideration, the device operation is practically impossible and
the important results are summarized as a graphic illustration in
Fig. 1.12.

We will first give the physical background for the upper and lower
bounds and then derive the equations which represent the constraints
between the gate voltage (¢SF) and the signal charge Q for normal device
operations. The conditions outside the normal device operations, that
is, the accumulation and inversion conditions will then be discussed.

Returning to Fig.1.10a for oF = 0.0 volt, we observe the minimum
potential approaches to zero as the amount of signal charge approaches
the maximum possible capacity Qd. However, we note the minimum potential
must be always Tower than the ground reference at least by the amount
of the p-n junction built-in voltage ¢g given by Eq. (1-7). For our
case study, Ny = 20,000 e/u> and Ny = 1000 e/u’ and o5 is about 0.63
volt. If the minimum potential is raised beyond this point by the
excess signal charge, the p-n junction will be forward-biased momentarily
and the signal charge will be dumped to the substrate as a current
through the p-n junction.

To prevent the p-n junction from becoming forward-biased, the gate
voltage and fhe signal charge must be controlled so that the minimum
potential - is always lower than the ground reference potential at least

by ¢g- That is,
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Fig. 1.12 The range of the permissible values of the

gate voltage ¢G is implied by the flat band voltage
¢5F plotted against the signal level Q/Qy for typical

oxide thickness of 0.12p and 0.32y.
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¢m(¢sF’Q) e ¢B . (] -12a)

On the other hand, when the surface electric field Es becomes zero,
the signal charge starts accumulating at the interface. Then, the
trapping in interface states at the semiconductor oxide interface imposes
limitations on the performance of CCD operations. To prevent the signal
charge from "touching" the interface, we must have, referring to
Eq. (1-17a) or Fig.1.10a and Fig.1.10b

2
6 (6.0) > - < - %d—> 4, . (1-12b)
From the above two equations, it is clear that we cannot have the signal
charge Q equal to_Qd in any circumstances during CCD transfer operations.

Combining the constraints (1-12a) and (1-12b) we obtain

Q 2
B < 0y % S % S " % . (1-12¢)

This inequality imposes a smaller upper bound than the previous one
(Qd) upon the signal chqrge Q. That is, we must always have Q < QMAX
where QMAX is defined as

_ B
uax = % [‘ - &Tq_J , (1-12d)

This condition, Q < QMAX’ must be satisfied regardless of the gate
voltage ¢sF’ The signal charge must be always smaller than this value
at least. (The gate voltage actually restricts the value of Q further
into a narrow range.) For the case study in this presentation, QMAX

is smaller than Qd by 4.5% for ¢q = 308 volt and ¢B = 0.63 volt.
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The problem is to rewrite Egs. (1-12a) and (1-12b) in terms of
the gate voltage ¢sF and the signal charge Q explicitly. When o =
- dg» we have a functional dependence between the signal charge Q and
the gate voltage LR This functional relation gives the boundary
for the range of Q and ¢ p constrained by Eq. (1-12a). The calculation

is tedious but the result can be obtained by solving Eq. (1-8) for

o = ~0p- And we obtain the constraint corresponding to Eq. (1-12a)
as seen by
Quay-Q C Quay-Q
MAX 0 MAX
P & |=————— ]+ < ) - ¢ . (1-13a)
sF Co 2Cd Qd B

This is the constraint to keep the signal charge from being washed away
to the substrate. Note for the maximum signal charge Q = QMAX'
s £ - g

The other constraint (7-12b) can be written simply as

2
dsF 2 - (1 : 8;—) % ., (1-13p)

because ¢ = ¢ for E_ = 0 as seen in Eq. (1-11a).

These formulations are very important when one is involved in
designing a working buried channel CCD structure. Figurel.l2 shows the
range of the permissible values of dsF and Q. The boundary lines can
be obtained from Eqs. (1 -13a) and (1-13b). Observe the oxide capacitance
C, appears in the epxression f.-13a) but the lower bound for dsF
which is given by Eq. (1-13b) does not depend on the oxide thickness.
These characteristics are clearly observed in Fig. 1.12.

The conditions under normal device operations are clear from the
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above discussion, The conditions outside the normal device operations,
that 1is, the accumulation and inversion conditions can be described
more intuitively with the aid of Fia,] .13a3. and1.13b. Ye now first
consider the condition depicted in Fig., 133, that is, the accumulation.

Suppose a certain amount of siaonal charge is present in the p-
diffusion layer and we would like to consider how the cate voltaae
influences the hand structure, !'hen a larce negative voltace is
applied to the aate, the resultina interface electric field becomes
attractive to the signal charae. That is, ES < U and the constraint
aiven by Eq. (;_13b) and shown in Fia.1.12 will not be satisfied, In
this case, as depicted in Fia.] 13a, an accumulation layer will be
formed at the interface whose thickness is small compared to the
insulator thickness Xo' Consequently, under accumulation the capaci-
tance measured will be essentially that of the insulator Co. The
mobile charge and fixed charae distributions are illustrated in the
lower fiqure,

flow suppose we raise the gate voltace suddenly to a very large
positive value. Then, the constraint defined by Eq. (1-13a)
suddenly becomes not satisfied and all of the signal charae will be
washed away into the substrate suddenly. If the gate voltage is in a
reasonable ranae, some of the siqnal charge can be "saved" in the p-
diffusion reaion. As we increase the gate voltage, the signal charae
will be repelled from the surface, then also from the p-diffusion
reaion, partially by the positive surface state charae st and
the positive imaqe charce at the cate, resultina in the arowth of a

depletion layer which extends deeper into the p-diffusion layer., A
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further increase of the voltage causes the p-layer near the interface
to collect thermally cenerated minority carriers (electrons) forming

an inversion layer. The situation is illustrated in Fig.1.13b. The
time required for this process is called the storage time. For a

aood device, the storaae time is of the order of one second. Since the
storace time is much oreater than the typical operation time of CCD,
the effect of the formation of an inversion layer is not so serious

and indeed in this way we can refresh the CCD, that is, we can delete

all the sianal charqes,

1.6 Device Capacitance

The gate capacitance Cq is the most important parameter when one
is concerned with the clock Toad and the actual speed of the device
operation. In this section we first consider the gate capacitance and
describe how it changes under the condition of inversion, Then the
relevant relations among the qgate capacitance and other capacitance,
such as oxide capacitance and depletion capacitance, are presented in
terms of the physical parameters discussed in the previous sections.

The gate capacitance Cg may be defined as the change of the imaage
charge on the metal gate with respect to the gate voltace. The
charge on the metal cate is by definition the image charae of the total
charce at the interface and inside the semiconductor. We now describe
how it changes under the condition of inversion depicted in Fig, 1.13b

When the device is static, the large positive gate voltage causes
thermally generated minority carriers to shield effectively the

depletion region from any increase in field so that the capacitance
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becomes dominated by the inversion layer and approaches that of the
insulator CO. However, durina dynamic operations of the device the
positive voltage results in the growth of a depletion layer which
extends deeper into the p-diffusion layer, and the increasing distance
between it and the charge on the metal causes the capacitance to

fall further with increasing aate voltage.

We now approach the problem more quantitatively to obtain the
relevant expressions among the cate, oxide and depletion capacitances
and other physical parameters.

In normal device operations, using the relations given by Eqs, (1-8)
it can be shown that the gate capacitance is proportional to the
change of the surface electric field with respect to the nate voltaae
o (or ¢gp ). Specifically, we have

oF

S
= Ees T s (1-14a)
a Si a¢SF

C

and ‘this can be also rewritten as

1

1 2

O =
o —
o7
OI—-‘

where C] =’€Si/xl is the surface depletion capacitance and
N
C, = eci/(1 + —QJX is the p-n junction capacitance.
2 Si M 2

In principle, it is possible to obtain the change 44, of the
mininum potential in terms of the chanaes, 4¢.r and 2Q, of the surface
flatband voltace and the signal charge. After a dilicent work of

symbol manipulations, one would find



Ap = , (1-15a)

This expression can be easily obtained by considering the differential
capacitor network shown in Fig, 1.5 ¢, The change of the minimum
potential with respect to the surface flatband voltace ¢p is fairly
constant. As we observe from Fig.1.9 its value is about 0,8, The
influence of the gate voltace upon the minimum potential is attenuated

by the presence of the capacitors, that is, from Eq. (1-15a) we have

m__ 1 2 1 ) (1-15b)

With the introduction of the p-n junction capacitance Cz, we can

express the aate capacitance Cq in a neat form as seen by

3¢
C. =L, =0

_m_ (1-15¢)
g 2 a¢sF

The chanae of the minimum potential upon the change in the signal

charces can be expressed as

3 9
O [l_+ 2;——] *m . (1-15d)
aQ Co 1 a¢sF
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e have aiven all the important analytic formulag for the gate
capacitance and other important physical parameters. And from these
equations above, we can obtain quantitatively how the capacitances
C], C2 and Cg depend on the salient physical parameters., The relevant
calculations have been performed and the surface depletion capacitance
C], the p-n junction capacitance Cz, and the gate capacitance Cg are
plotted in Fig. 1.14a, 1.14b, and 1,14c respectively.

In practice during the operations of CCD, the amount of the signal
charge Q would not be more than 50% of Qq. Hence as seen in Eq. (1-15b)
the chanae of the minimum potential upon the gate voltage is fairly
constant, and its value is always around 0,8, This is because of the
small p-n junction and capacitance C2 compared to the oxide and surface
depletion capacitance, C0 and C]. Fiqure L 14c is useful when one
wishes to estimate the load upon the clock-drive. For small sianal
level, we note the gate capacitance Cq is always about 100 e/vo]t-uz.
If one drives the clock with 1 MHz with the voltage swing of 20 volts,

the current to be supplied to the gate is 2 x 109 e/sec-u2 . If the

agate dimension is 100 by 100w, the current is 2 x 1012

e/sec or about
0.32 uA per gate, If one unit cell of the device consists of four
gates, we must supply 1.28 uA per bit., For a thousand bit shift-
register, the current would be 1.28 mA,

It should be noted at this stage that the gate capacitance Cq Y¢)

defined above is actually a function of the gate voltage ¢, and the

sianal charge 0. In a specific device operation, one more constraint
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amona the cate voltage ¢sF’ the signal charce 0 and the minimum poten-
tial ¢, Must be specified.

For example, in actual CCD operations, the signal charge Q is to
move relatively slowly with respect to the gate voltace swina and the
cate capacitance corresponds to the value with fixed signal charoce
while the gate voltage is chanaing, On the other hand, in the case
of surface field-effect transistors with metallurgical p-diffusion
channel, the sianal (channel) charge Q can be supplied or extracted
readily through the source and drain metalluraical contacts., The
charaee Q responds quickly to the cate voltage but the channel potential
is fixed by the source and drain voltages while the cate voltaae is
chanaing rapidly,

An analytic expression for the gate capacitance Cq in terms of the
aate potential ¢.p and the signal charge Q can be obtained by tedious
symbolic manipulations from Eq, (1-8)., But the result can be expressed
quite compactly by usina the two parameters A and B defined by

Egs. (1-11c) and (1-11d). The gate capacitance is found to be

NgCq

n2_g

Cy = Cy (8ps0) = (1-15¢)

g9 g
N
A
The acate capacitance is a very useful measure in estimating the clock
load and the operation frequency., But when the dynamic charae transfer
process in CCD is under consideration, the information reaardina the

channel potential ¢ and the amount of the siaqnal charge 0 is essential
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in the calculation of charae transfer efficiency. Specifically we must
know how the channel potential . depends on the sianal charoe Q,

In Fig.1.15 we have plotted the gradient of the minimum potential against
the signal charage. Observe the dependence is quite linear upon the

signal charge, That is, the actual dependence of the minimum potential
upon the sianal charce is quadratic as we have claimed earlier

referring to Figl.10a. The slope of the curves we see in Fig., 318

will be steeper for lighter p-diffusion doping level NA' This point

can be understood clearly from the relation given by Eq., (1-15d) if

one notes that the p-n junction capacitance C2 is small compared to the

oxide and surface depletion capacitance. In this case, we find, taking

3¢ /30 p = 1.0,

1 1

m Na ]_..__ l..._ :ﬁ._.._.__N.__.__.._ i
2 N‘zﬁ[c*c} BQ[CJ“' eo iy . (-16a)

Or differentiating Eq, (1 =10a) twice with respect to the signal

charge Q, we obtain in a better approximation

m 1 N4
S % - — []+—-—}f(R) > (1-16b)

where the factor f(R) is taken to be a constant with respect to the
siagnal charge 0, The values of f(R) for O = 0.0 are seen from

Fig. 1 1gand are around 0.7, For ¢.¢ = 0.0, Fig.1.15 shows

9¢./3Q = 0.0, This fact can be explained using Eq. (1-11b). For

bep = 0.0, Q = Qd at £ = 0.0, ES = 0.0 gives X] = 0,0. Also 0 = Qd
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Fig. 1.15 The change of the minimum potential ¢, with respect

to the change in the signal Q is plotted against the signal
level. The fact that the slope is practically constant for
small values of Q/Qy allows us to approximate ¢ by a quadra-

tic function of the signal charge Q as seen in Eq. (1-17)
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gives X+ X2 = 0, Hence X2 is also zero. That is, C] and C2 in
Eqs. (1-15d) and (1-15b) must be infinite, resultino in 3¢./3Q = 0.0.
Of course, this condition is outside of the normal device operations,
and never realized in practice,

The fact that the slope is fairly constant for low sianal level
in Fig., 1.15 sugaests a quadratic approximation of the minimum
potential with respect to the siagnal charae 0. That is, we expand

¢om about € = 0,0 as a second order polynomial of Q as seen by

(1-17)

¢m(¢sF’Q) ~ ¢m(¢sF’0) + m—'

The values of ¢m(¢sF,0) have been plotted in Fig., 1.9. The values of
the coefficients of the second and third terms have been calculated
exactly. And the values of the potential calculated by Eq. (1-17)
agree with the exact values by Eq, (1-10) within the errors of 0,1%
for the range of interest. If we had plotted these values on FG.LIDA
the corresponding points would fall on the lines, and there is
no way to see the differences in the figure.

When one analyzes the dynamic charge transfer process in CCD, it
is very important to express the minimum potential in the form given
by Eq. (G -17). In the analysis, one is interested in the sianal charge
Q and the minimum potential e The simpler the relation between these
two quantities O and Q is expressed, the betler for the charge

transfer analysis in multi-cate structures.
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1.7 Gaussian Doping Profile

For uniformly doped abrupt p-n junction, the depletion approxima-
tion gives excellent agreements with the exact solution which is solved
numerically usino Eq. (1-6). Formany realistic devices the doping in
the p-diffusion layer is typically introduced by ion-implantation
folTowed by drive in diffusion. The resulting fixed charge distribution
is a Gaussian doping profile characterized by the two parameters, the
surface charge density Ng and the p-n junction depth Xa‘ To apply the
results of the previous sections we first describe the procedure to
obtain the effective p-diffusion density NA and the effective diffusion
depth X, -from Ng and XS' This correlation allows us to estimate the
deneral dependence of the minimum potential O and the gate capacitance

C, on other salient physical parameters,

g
In this case, the fixed charge distribution d(x) can be given

quite accurately by a Gaussian profile as seen by

d(x) - Ny - (NS + Nd) exp [—az(é—dz} , (1-18a)
g

and

' N
o = n <1 ¥ %) . (1218b)

where NS is the surface density of the p-diffusion layer and Xg is the
position of the p-n junction of the semiconductor. The total sheet

charce density Qd in the p-diffusion layer is then civen by
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g
Q4 = —J d(x)dx > 0 . (3-19a)
0

This quantity may be thought of as the product of the effective average
doping density NA and the effective depth Xd of the p-diffusion layer.

That is, as before
Q = NpXy . (1-19p)

If we take the effective depth of the p-diffusion layer to be equal to
the p-n junction depth, that is, Xd = Xg, then the relation (7-19b)
determines the value of the effective doping NA‘ However, the exact
numerical calculation of the electrostatic potential gives a better
agreement to the solution of the depletion approximation if we choose
the effective depth to be at the reflection point of the Gaussian
doping profile. By differentiating Eq. (j -18a) twice with respect to

x and setting it to be zero, we obtain
X
Xy =+ . (1-20)

That is, for a Gaussian doping profile, the effective depth is actually
shallower and the position of the minimum potential is closer to the
oxide-semiconductor interface. Consequently, the signal charge will
be transferred along the potential valley closer to the interface.

The effective p-diffusion density N, can be oBtained by Eq. (7-19b)
if the actual value of Qd is computed from Eq. (]—19a) for the doping

profile d(x) given by Eq. (1-18a). The result is given as seen by



2
04 - ’Ndxg’} - 2 erf (aﬂ : (1-20b)

This quantity Qd is by definition equal to NAXd by Eq. (71-19b). Hence

from Eq. (1-20a) Xd/Xg = 1/a. Hence we have

Q 2
NA = —..q_ = Nd [l_ _‘/;__e_.)}_g_(_g__). erf (Ol.)} % (]"ZOC)
d ¢ 20,

Therefore, we observe Xd/Xg, NA/Nd and Qd/NdXg are all functions of
a, hence, NS/Nd only.

In Fig. 1.16a the effective average doping NA and the sheet charge
density Qd are plotted against the surface doping Ns‘ The units are
normalized by the substrate doping Nd for NA and Ns’ and Ndxg for Qd‘
In Fig. 1.76b the effective diffusion layer depth Xd is plotted also
against Ns/Nd‘

We have now estabished a procedure to correlate the results of
the uniform doping case to that of the Gaussian doping case. And the
general characteristics of the potential profile and charge distribution
can be easily compared for both cases.

In Fig. 1 .17 the approximate potential profile is compared with
the exact numerical solution. Observe that in the p-diffusion layer,
the charge distribution is such that the entire sianal charge packet
is a neutral zone. The signal charge packet arranges itself
according to the doping concentration so that the electrostatic
potential is at its minimum value in the entire neutral signal charge

packet.
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-30- Pm
Exact solution for Gaussian doping profile
Depletion approximation for uniform doping
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8 ;o %d = 0.400 for uniform doping
o2 x|o“—§—7/———‘——1 Np= 20,114 e/u® = 0.428 for Gaussian doping
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Fig. 1.17 The potential profiles ¢ by the depletion
approximation and the exact numerical solution of the
Gaussian doping profile are compared. Xd=1.0u and

the p-layer doping Np of 20,000e/u3.
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The oxide thickness X0 is taken 0.32 and the gate voltage ¢sF equal to
-18.0 volt. Since the gate voltage is fixed, the minimum potential

¢m and the signal charge Q are not independent of each other. Demanding
the minimum voltage ¢m to be -28.5 volts, the corresponding signal
charge Q/Qd is 0.400 for uniform doping and 0.428 for Gaussian doping.
In principle, it is possible to fix the signal charge Q/Qd to be 0.400
and obtain the corresponding minimum potential O for the uniform doping
(which is -28.5 volt as before) and for the Gaussian theory case

(which will be sTightly lower than -28.5 volt) respectively. But the
actual numerical computation for the Gaussian Profile case turns out
easier if the minimum potential O is fixed at the start rather than

Q. This fact can be understood easily if one recalls the form of the
Poisson's equation ( -6b) in the p-channel region, which includes the
minimum potential o in the expression. Then after computing the
potential ¢(x) as a function of the spatial coordinate X, we obtain

the amount of the signal change from the relation given by

X ¢ -¢

e m B 5 36
Q= —.[ d(x)exp <"7?T> dx = Qq - eg; 5% -
0

€54 3x
=0 X=X
X g

, (1 -20d)
which gives the total signal charge from the minimum potential o and
the electrostatic potential profile ¢.

We are now in the position to describe the general dependence of
the minimum potential ¢m and the gate capactiance Cg for the case of
the Gaussian doping profile and compare with the approximation made by

the depletion approximation.
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For our case study, the surface doping density NS is taken to be
24,000 e/u3 and the effective p-diffusion layer depth Xd to be 1 . Then,
from Fig. 1.12a or Eq. 1-20c, the effective p-layer density NA is found
to be 20,114 e/u3. The corresponding actual p-n junction depth Xg
for the Gaussian doping profile is found from Fig. 1.16b or Eq. (1-20a)
to be 1.82 u. The substrate doping is fixed and taken to be 1000 e/u3.
The dependence of the minimum potential ¢, UpPON the gate voltage (¢SF)
for zero signal charge Q = 0.0 is illustrated in Fig. 1.18 for compari-
son with the results of the depletion approximation.

Figure 1.19 shows the dependence of the minimum potential ¢, UpON
the signal charge. The illustration format is similar to Fig. 1.10a
The slope of the minimum potential shown in Fig. 1.19 is plotted in
Fig. 1.20. The gate capacitance Cg for the Gaussian doping case is
also plotted in Fig. 1.21. The solutions of the exact numerical
calculation for the Gaussian profile follows the general characteristics
of the solutions obtained by the depletion approximation with surpris-
ing accuracy.

There may be several ways to compute the minimum potential and
other salient physical parameters in the exact numerical calculations.
We outline below one possible procedure to obtain the gate capacitance
Cg and other relevant physical parameters.

By numerical calculations, we can obtain the electrostatic poten-
tial everywhere inside the semiconductor. The equation to be solved
numerically is given by Eq. (1-6) and identified to be the form of a

nonlinear differential equation seen by
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— Exact Gaussian
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Fig. 1.18 The dependence of the minimum potential upon

the flat band surface potential bsp defined by Eq. (1-7c¢)
is illustrated for different oxide thickness X, for

the Gaussian doping profile .
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Fig. 1.19 The dependence of the minimum potential upon

the signal charge is {1lustrated for the case of the

Gaussian doping profile. Observe the similar character-

istics between Fig. 1.10a and this figure.
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Fig. 1.20 The change of the minimum potential with respect to
the change in the signal charge is illustrated for a Gauss-
jan doping profile. Observe for the range of interest, the

slope is fairly constant.
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Fig. 1.21  The format is similar to Fig. 1.l4c. The gate
capacitance Cg for the Gaussian doping case is plotted
against the signal charge Q. Observe the similar
characteristics between Fig. l4c and this figure. The

values are computed by Eq. (-14a) numerically.
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2

ng(t = f(q),x) for 0 < X < = . (] -203)

The boundary condition at the Si—SiO2 interface is given by Eq. {1-8b)

and can be written as

Ece -
- Si'9¢ _ -
¢ = ¢ * T 5x at  x =0 . (1-20b)

At x = =, that is, deep in the substrate, the potential is grounded,

hence we have the remaining boundary condition:

¢ = 0.0 at X (1-20c)

i
+
8

Solving Eq. (1-20) we obtain the potential ¢(x) as a function of the
spatial coordinate everywhere for 0 < x < =, In order to calculate the
derivatives of the salient physical parameters, we introduce a param-

eter ¢y defined by

g o= 20 . (1-21a)

Then, corresponding to Eq. (1=20) by differentiating them with respect
to b we obtain an ordinary linear differential equation with respect

to ¢y given as

9-%—= g(x)p(x) for 0<X<ow ] (1-21b)

where the boundary conditions for this corresponding case are given by

Eas
=1 + EEl'%%' at X
0

0.0 : (1-21c¢)

==
I

and

v = 0.0 at X = o , (1-21d)
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where

9(x) éi%)—xl— el o) . (1-21e)
ap (X

Solving Eq. (3-21) we obtain y(x) everywhere for 0 < x < ». Hence from

Eq. (3-14a) we obtain the gate capacitance Cg by the relation

Cq = - <5 g—‘)‘:- . (1-22a)

From the solution ¢(x) of the Eq. (1-21), we obtain the minimum poten-
tial o and its location Xm. Then we can identify a¢m/a¢SF to be

the value of v ét X = Xm' That is,

¢
= y(x) . (1-22b)
8¢SF m

Then from Eq. (1-15c) we can compute the p-n junction capacitance CZ'
Then from the relation (71-14b) we have the surface depletion capacitance
C]. The change of the minimum potential with respect to the signal

charge can be computed from Eq. (1-15d).

1.8 Conclusion

Since buried channel CCD operates in the reverse biased p-n junc-
tion depletion region, which is under thermal nonequilibrium, care must
be taken in specifying the form of the Poisson's equation applicable
for the structure. Unlike the surface CCD, the signal is to be
transferred as a neutral packet away from the semiconductor-oxide

interface and the concept of quasi-fermi levels has to be specified in
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order to obtain the electrostatic potential and the signal level. By
Tinear depletion approximation the relations among the minimum potential
and other physical parameters are studied in detail. The procedure for
the Gaussian profile to obtain the effective p-diffusion density NA
and effective depth Xd from the surface density NS and the p-n junction
depth Xq is presented. The agreement between the exact numerical cal-
culation and the analytic approximation presented in this paper has been
shown to be excellent. The actual numerical computation is outlined
and we believe the detailed results presented in this presentation will
serve as a useful reference and guide-work for those people who are
designing the device and studying the transfer mechanism in details.
This work is a stepping stone to the two dimensional analysis of buried
" channel CCD structures which begins with the analysis given herein as
basis.
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IMPORTANT FORMULAS
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Abstract—The final stages of transfer of charge from under a
storage gate is formulated analytically including both fringing-field
induced drift and diffusion. Analytic solutions to these equations are
presented for constant fringing fields, and a system of equations for
spatially varying fields is developed. Approximate solutions for
spatially varying fringing fields, when combined with a lumped-
parameter model of the self-induced field effects, are shown to give
a reasonably accurate representation of the free-charge transfer
process.

I. INTRODUCTION

EARLY descriptions [17, [2] of the charge transfer in
charge-coupled devices (CCD) assumed that during
the final stage of the charge transfer, the mechanism of
transfer would be diffusion from under the storage gate.
However, subscquent studies of the surface-potential pro-
files under the gates [3] indicated that fringing-field
induced’ drift could act as an additional charge-transfer
mechanism. In certain designs of CCD. this second mech-
anism can actually act as the dominant mechanism for
transfer and enhance the rate of transfer during the final
stage of charge transfer [4], [5].

These 2 mechanisms of transfer are characterized by 2
time constants, the thermal-diffusion time constant, 7,
and the single-carrier transit time constant, 7. In the
case when the fringing fields are 0, the final stages of the
diffusion processes are characterized by a profile which is
a cosine function in shape and which decays exponentially
with a time constant given by

* 4L?

Tth =
=D

(1)

where L is the length of the storage electrode, and D is the
diffusion constant.

On the other hand, if we negleet diffusion phenomenon,
the charge remaining under the storage gate will be swept
out in a single-carrier transit tinie

/L dr
T = = .
o rE(r)
In this paper, we study these results analytically. We
show that it is possible to obtain an analyvtic solution of
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part by the Olfice of Nuval Research under Grant NOOO14-67-A-
0094-0032 and the Naval Research Laboratories under Grant
00173-3-006252.
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A. M. Mohsen is with Bell Laboratories, Murray Hill, N. J. 07060.

the continuity equation in which the combined effects of
diffusion and a uniform fringing field are included. A set
of equations for spatially varying fringing ficlds are de-
veloped to show that the analytie solution for spatially-
varyving fields can also be written in a form analogous to
that for constant fringing ficlds.

The standard variational method is applied to obtain
an approximate analytic expression for the characteristic
time constants for spatially varving fringing ficlds. Self-
induced drift terms are included by using an approximate
lumped-circuit model.

I1. TRANSPORT DYNAMICS

The transport dynamies along the insulator-semiconduc-
tor interface are described by the continuity equation

aq a
i (T S
o + py 0 (3a)
and the diffusion equation
g a¢.
;= —D—+ — 3b
' J D py 4 uq( Br) (3b)

where ¢ is the surface-charge density, ¢, is the surface
potential, and z is the distanee along the interface in the
direction of charge transfer. J, is the sheet-current density.

In this paper, we want to consider the solution to (3)
for boundary conditions and approximations appropriate
to the case where the storage gate contains a small amount,
of charge. This condition will arise in the final stage of
the charge transfer, in the complete charge-transfer mode
[5], or when the CCD is operated in a low-level injection
application, such as low light-level imaging. In these
cases, we can to the first approximation negleet the self-
induced field terms.

When a CCD s operated in the complete charge-
transfer mode, detailed numerical simulation of the trans-
port dynamies under all the relevant gate clectrodes and
intercleetrodes regions show that the charge transfer in
the last stages of the transfer process can be approximately
deseribed by the discharge of the storage gate with an
almost perfect sink at one end [5]). Therefore, we have
considered the solution of (3) for the discharge of the
storage gate using the boundary eonditions

q(t.L) =0,
J:(1,0) =0.

(4a)
(4b)

fort > 0
for t > 0.

Condition (4a) corresponds to assuming a perfeet sink at
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the right-hand end of the storage gate » = L; (4b) corre-
sponds to azsuming that no current flows out of the bucket
under the storage gate through the edge at x = 0.

III. CONSTANT FFRINGING FIELD

Assuming a constant fringing field ¥ under the storage
gate and neglecting the self-induced field term, the re-
sidual surface-charge profile under the storage gate is
given by solving (3) to obtain

= E
gtr) = 3 A, exp (’7»9)

-sin [7_: (’,.‘(l - l%)} exp (—- }) (5)

where 17T 1s the thermal voltage and 7 is a summing index.
The solution is given by a Fourier expansion multiplied by
a common funetion, exp (£ 2kT), with constants C,,., 7.,
and 1, to be determined as follows.

(', is determined by the boundary condition at r = 0
and is given by solving the transcendental equation (see

Fig. 1)
' p kT
tan <:) C’,,) + (;;) #Cy =

where C, is in the range given by

2n — 1< C, < 2n, for n=12,---. (6b)

I
o

(6a)

7. 18 given by substituting (5) into (3) to obtain

1 D (uE)?
= 2 -
By Sy @)

Noting that the exponential term, exp (Ez/2kT) in (5)
can be taken outside of the summation, we then obtain

4 2 L —Er
" T I = (sinxCy) "'rrC,.]/; 9(0.2) CXP(‘sz)

.sin [’; c. (1 - 7’)} de (8)

where use of the boundary condition (6a) has been made.

Detailed numerical simulations (4], [5] of charge trans-
fer, including the cffects of fringing ficlds, show that the
profile of charge changes for a single-carrier transit time
and then becomes stationary with an exponential time
decay of the amplitude. This result is ecasily understood
in light of the solution presented in the previous discus-
sion. From (7) and (6h), one can see that 7, is a decreas-
ing function of n. Hence, for reasonably smooth initial
charge distributions which produce finite values of A,
which cither remain relatively constant or decrease with
iereasing n, we expeet that eventually the first term in
the series in (5) dominates the series, and g(¢,r) can be
approximated by

EEN . x t
q(t,r) X Ayexp (}H‘) sin [g C,y (1 — Z)] exp (— r—/>

(9)
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Fig. 1. The graph illustrates how to obtain C; and € defined by
(6a). Note 1 < (' < 2and 3 < €, < 4 for any value of LE/KT.
This is the condition given by (6b) for numbering the root C,
(the intersection) of the straight line with each branch of the
tangent function.

where we have replaced 7, by 7, to indicate that it is the
time constant characterizing the final deeay of the charge.
Using (7), we find that

e 2 =D (uE)? ) (10)
7 FYZIAY))

Hence, we find for times which are greater than some as
yet to be determined time (sce Scetion I1V), the charge
profile remains constant, and the amplitude decays expo-
nentially with time. The charge profiles at several different
times are shown in I'igs. 2 and 3 to illustrate the details of
the charge transfer.

Determination of the value of 7, depends upon the value
of (. The results of a numerical solution of (6a) for Cy,
as a function of the dimensionless parameter £L/ET, are
plotted in Fig. 4. From this plot, we sce that C; ranges
from 1 for EL/kT = 0 to a value of 2 as KL/KT ap-
proaches infinity. (Note the first term in (6a) is negative.)

To compare this final decay constant with the 2 charac-
teristic times defined in Scetion I, we have computed the
value of the ratio of 7, to 7w to be

Ty 1

LN T 11
e Ct+ (LE/xkT)? (11a)
and the value of the ratio of 7, to 7, to be
1LE/n*kT
LA - (11b)

rw O+ (LE/zkT)*
These ratios as a function of LE/kT are plotted in Fig. 5.
IV. STATIONARY PROFILE WITH CONSTANT
FRINGING FIELD

According to the detailed numerical simulation [4], [5]
of charge transfer under the influence of fringing fields,
the charge profile under the storage gate drifts for a
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POSITION

Fig. 2. The details of the charge decav at different instances are
Ulustrated for three diffcrent values EI/KT of constant fringing-
field strength. The initial charge profile is taken to be uniform.
The total initial charge is 70 percent of the full bucket chiurge
(14.6 C/u?). Note in all three cuses, the relative charge profile

becomes stationary within a single-carrier transit time. The -

Eosilion of the peak of the final charge profile is given exactly
y (14). (8) EUKT == 3.35. The total number of protiles shown 13
18. The corresponding timex are 0.01, 0.02, 0.03, 0.05, 0.07, 0.10,
0.15, 0.2, 0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, 1.0, 1.5, and 2.0 of a single-
carrier transit time. (b) ElU/kT = 6.74. The total number of

rofiles shown is 16. The corresponding times are similar to

ig. 2(a). The profiles at ¢ = 1.5 and 2.0 are deleted. (¢) El/kT =
31.0. The total number of profiles shown is 16. The corresponding
times are the same as Fig. 2(b).

single-carrier transit time and then becomes stationary.
No matter how strong the fringing ficlds are for reasonable
initial charge distributions, such as uniform or a cosine
shape, in the final stage of charge transfer, the stationary
profile results eventually because of the thermal-diffusion
mechanism. This is to say that the first term in the infinite
series in (5) becomes the dominant one within an elapsed
time, ¢, of the order of a single-carrier transit time.

We now return to the question of what is the value of
the lower time limit for the validity of approximation of
keeping only the first term in the series in (5). To gauge
this time, we consider the ratio rs of the first two terms
in the series in (5). Assuming that 4, is the same as A,
and-neglecting spatial variation, this ratio is given by

t
T2 = exp [‘r— (sz = Cx2):|
th

where use of (7) has been made. In terms of the single-
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carrier transit time, this ratio can be written as

t =kT

Tu = exp [Z 4LE

(Cy? — C(‘)] -

Taking as our criterion the fact that the value of the expo-
nent in this expression is greater than one, we find that
(9) is valid for

4EL/x*%T
t> 7"[6’_— C#] : (12)

The right-hand side of this inequality is a multiple of the
7o, with the constant multiplying the transit time depend-
ing on the value of the parameter ET. kT. The valuc of
this multiplier can be approximated as follows.

The value of Cy? — C}? varies monotonically between 8
when EL/kT is 0 to 12 when EL/kT approaches infinity.
Thus we can replace the inequality by

EL .
t> T ‘k—T /27r“.

This inequality shows that for EL/ET between 0 and
about 30 (the values normally encountered in devices),
the approximation is valid for times greater than a single-
carrier transit time. Hence, the results of the numerical
simulations are. in good agreement with the analytical
results obtained here, and we can deseribe the final charge
profile by (9). '

The peak position of the charge packet, rp.ak. after it
becomes stationary under the storage gate, is given by
differentiating (9) with respeet to r and =etting the result-
ing cquation to be 0. Then using the condition (6a), we

obtain
1
eak = 2L{ 1 — — ).
Foesk ( cn)

This expression shows the peak-position varies with the
strength of the fringing field. For 0 field. C, is unity. The
surface-charge profile is a cosine function with a maximum
at r = 0, and it decays exponentially with the time con-
stant equal to the thermal-diffusion time constant.

For large fringing ficlds, the value of C'y approaches 2 as
shown in Fig. 4, but never becomes larger than 2. For
extremely large fringing fields, C; & 2 and rpea & L, -
plying that the peak position approaches the sink edge at
x = L. At times, the exponential decay is observed satisfy-
ing the inequality in (12), and the characteristic decay
time is a factor approximately § of the single-carrier transit
time, as we observe in Fig. 5. Figs. 2 and 3 illustrate the
details of the charge decay as we have discussed so far.

(13)

(14)

V. SPATIALLY VARYING FRINGING FIELDS

We now note that the constant and spatially varying
fringing ficlds both give similar charge-decay characteris-
tics. This is to say that the analytic solutions of both
spatially varying and constant fringing ficlds can be writ-
ten in similar forms. Both solutions can be expressed by
infinite series, and as time clapses, the term with the
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ELECTRIC FIELD PROFILE

<E>*140.4 volt/cm

FIELD (volt/em)

Enmin® 74 volt/cm

CHARGE

POSITION

Fig. 3. The details of the charge decay at different stages. The condition ix similar to the results of Fig. 2 except
the fringing field is <patially varving in this case. An average fringing field computed by (2) is 140 V/em. The
minimum field is 74 V/em. The total number of profiles shown is 16. The corresponding times are the same as
Fig. 2(b) and (c).

29 T T
L %/ Ty 4
0.5 -
L w/7, .
1
000 10 20 30 40
o i f ) EL/KT
] S e . ; . :
: Elf(/)ﬂ 0 e Fig. 5. The final decay time constant, 7, normalized hy the single-
. . N R X carrier transit time 7,, and by the thermal-diffusicn time constant
Fig. 4. Values of €, defined by (6), plotted against the normalized T, plotted ugainst the normalized fringing-ficld strength EL/kT.
fringing-tield strength EL/kT.

. . L Q(t,r), as scen by
largest time constant 7, hecomes dominant, resulting in

the exponential deeay characteristies and the constant

: . s . X (tr) = / (t,z") dr'. 15)
charge profile. In this case, it is convenient to work with Qb 0 sl (
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Using the definition for Q and the fact that current flows
only ont of one end of the gate (sce (4b)), we can write
(3) as ;
Q _  oQ Q

el
D — — pE(x) =

a = ar k%

L
[ [u [ Cdn/deF dz + (u/2)
0

1

where the boundary condition equivalent to (d4a) is
given by

2(t2)

= 0. 17
e (17a)

~-L
The boundary condition (4b) is used to derive (16). We
now have instead, a different boundary condition at » = 0,
which follows directly by the definition of Q(t,x) given
by (15) and is seen as

Q(1,0) = 0,

To eliminate the first derivative from (16), we intro-
duce the following transformation:

for all ¢. (17b)

Q(t,r) = exp (’—:'i' /-x E(x) dx) R(tr). (18)
2 0

Then, (16) becomes

R PR u[E2) dls’]
S e pe B S
at a.r? 2[ kT dr i {10)
with the new boundary conditions given by ‘
R | E(x) . . 5
ax:+ kT R =0, at X = L (20a)
and
R(1,0) =0, for all ¢. (20b)

The solution of (19) together with the boundary condi-
tions is given by an infinite series of the form
R(t,r) = 3 Baya(2) exp (—t/7,) (21)
Rl

where B, is to be determined by the initial values of
R(0,r). v.(xr) and 7, are the eigenfunctions and cigen-
values, respectively, of the eigenvalue problem given in

(19) and (20).
The results in the case of constant fringing fields com-
bined with the results of detailed numerical simulations
suggest strongly that for times which are a few times the

single-carrier transit time, we can approximate the series
in (21) by the first term and write
1
Q(t,r) = Byexp (;k.i'/ E(x) d:) y1(x) exp (—t/7s)
= 0

(22)

L L
/ [E*(2)/2kT — dE/dcTvd(z) d:] / / y(2) dr.
0 0
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where again, we have replaced r, by r,.

The largest time constant 7, could, in general, be ob-
tained by solving (19) and (20). However, a good estimate
can be obtained from the standard variational procedure
for lowest eigenvalues [87. According to this procedure,
the exact value of 7, is obtained by minimizing

(23)

The solution of (19) with K(r) constant suggests the
trial function for the first eigenfunction

y(z) = sin [T%] .

(24)
This trial function must satisfy the boundary conditions
of (20). That is, the value of Cy is to be determined by
the strength of the fringing field (L) at the sink edge of
the gate (see (20a)). Since the fringing ficlds at the ends
of storage gates are very large [3], [5], we have

E(L) > kT/L. (25)

Hence, substituting yi(r) of (24) into R of (20a), we

obtain
—tan (ﬂ) = 7(Cy —*}fZ* «1 (26a)
2 LE(L)
and hence,
Ci=2. (26b)

With this value of €}, substituting the trial function given
by (24) into (23), we obtain

L_4

p2E.
4D

27a
1 Tth ( )
E, is an equivalent constant fringing ficld for the spatially
varying fringing ficld £(z) and is given by

2 rt dE e
Ee=3 [ [Ez 2) — 2P = | gint [ 22
<=1 (x) el R dr. (27b)

Note that, due to the weighting function sin? (z.r/L),
the integral vanishes at both ends of the gate; » = 0 and
L. The contribution of the intergrand at the ends of the
storage gate is relatively small, but the fringing ficlds at

‘the positions of high-charge concentration are weighted

heavily in the integral. If the fringing field is slowly vary-
ing and is at its minimum value F;, under most of the
storage gate (except at the ends), then we obtain £(r) ~
Eoin and dFE/dX = 0. Hence, from (27h), we have
F.q & Fnin. Finally, we obtain an approximate analytic
formula of the time constant for spatially varying fringing
ficlds, which is

4

Tth

.
U Emin?

4D

1

1
— =
Ty T

(28)

Care must be taken in applying this formula. This formula
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was obtained for slowly varyving fringing fields under niost
of the storage gate. and other configurations mayv give
different fringing-field profiles leading to different results,

For example. in CCD straetures with short storage-ware
length L. . may be a few times larger than £, Tt
case, 27b) could be used 1o obtain £, if the fringing-
field profile i known. For short storage-gate fength L. the
spatial dependence of the fringing ficlds can be approx-
imated by [3]

for OLX L2 iy~

Sty B L2EX 2L a2
Substituting (29) into (27h), we obtain £, = LA,
for the same trial funetion s () given by (240, In either
case. as seen in (28 we note that the reduction of the
final decay time constant by the fringing-field strength is
quadratic rather than lincar.

If we inehade the nonlinear self-induced field drift, exact
analytic xolutions"of 3) become difficult. However, using
# lumped-cirenit model ! the charge-transfer characteristies
can be obtained by =olving the discharge equation (47, [6]

(—L(-)(t.lz’
dt

I (30a)
where J; is the steady-state discharge current density
assumed constant across the gate. and Q(t,L) is the total
charge under the gate.

The relation between  the surface potential ¢, and
surface-charge density ¢, under the transfer gate, is given
according to the gradual channel approximation [47. [5]

(330b)

b = o+ ¢ .

where ¢, ix the surface potential with no charge, and (' is
the effective oxide- and depletion-layer capacitance per
unit arca. When the fringing fields are negligible compared
to the sclf-induced field, we have

A, 1dq
=BG (30¢)
ar ~Cor o

Then. if the diffierence in the surface potential between
the beginning and end of the gate i< 17, by integrating the
diffusion equation (3b) over space. we obtain [53], [7]

c 5
o ‘:I [V + 2TV (31a)

where. we note
g(0) = CV. (31b)

Since J: in (3b) is assumed constant for 0 < r < L, we

s According to this model, the storage gate 1= considered, in this
case, &~ 4 capacitor discharged through a transfer channel which is
the sume storage gate.
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obtain g(r) for 0 < r < L. Then, by integrating q(z),
we obtain
V + 3kT/2

By = ey 2 :
QI = IOV 0 (31c)

Then, the solution of (30a) is of the form

QtL)

Q(0.L)

o exp (—t/7))
T 1R QQO.L) 2CL(L2ET) (/) [1 — exp (—t/70) ]

(32)

where Q(0,1) is the initial total charge under the storage
gate, and 77 1s given by (28).

VI. NUMERICAL RESULTS

The exact fringing-field profile can be obtained by solv-
ing the two-dimensional Poisson cquation for the CCD
structure with the applied gate voltages. In Fig. 6, we
have plotted the surface potential and surface-potential
gradient along the semiconductor-insulator interface. The
voltages on the gate electrodes (see Iig. 6) are those
corresponding to the last stage of the charge transfer.
NMost of the signal charge was taken to bein the receiving
storage cleetrode.? Periodic boundary conditions were used.
The minimum fringing field £, in this case, 1s equal to
74 V/em.

To check the acceuracy of the approximate solution for
7o given by (28), we have solved (3) numerically for the
fringing-ficld profile given in Iig. 6 [2]. The full-line
curve in Fig. 7 represents the numerically caleulated re-
sidual charge under the storage gate versus transfer time
with the seli-induced ficlds The dashed-line curve in Fig.
7 is the residual charge caleulated using (32). The value

T For two-phase push-clock scheme, the actual receiving gate
voltage is =150 Vinstead of =08 Vin Fig. 3, and the difference of
5.2\ corresponds to the amount of the signal churge present under
the receiving gate.
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100

—— Exact Numerical Solution
-~- Approximation

_~—T70% INITIAL CHARGE

/— 20% INITIAL CHARGE

RESIDUAL CHARGE AS A PERCENTAGE OF A FULL BUCKET

0.00! L
50 100 150 200

— TIME (nsec) —

Fig. 7. Total residual charge under the left Si-source gate as a
unction of time. The effective oxide capacitance is 3.22 F/u?,
and the full bucket charge is 14.6 C/u2 The solid curve represents
exact numerical solution of (3). and the dashed curve is an ap-
proximation by (32). 7, is for the slope of the two purailel olid
lines and 7 for the (I:\s{uctl lines. The final slope (hence, also the
final time constant) does not depend on the total amount of the
initial charge under the storage gate.

of the final decay time constant 7, calculated from (28)
is 22.7 ns compared to 21.2 ns obtained from the numerieal
solution.

VIIl. CONCLUSION

Incomplete transfer of free charge in CCD with small
-amounts of charge to be transferred was characterized
analytically, including the cffects of diffusion and fringing
fields. We have found that, independent of the fringing-
field profile, the exponential decay characteristic is solely
due to diffusion. However, the characteristic time con-
stant 7, for the decay depends on diffusion and fringing
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fields and is found to be always a fraction of the single-
carrier transit time 7. (sce Fig. 5).

The standard variational procedure was applied to ob-
tain an approximate analytic expression for the character-
istic time constant (See (23)), and the expression was
evaluated for spatially varving fringing ficlds (sce (26))
which vary relatively slowly over most of the storage gate
length but increase considerably at the edges of the gates.
Such fringing-ficld profiles are typical for most minimum
geometry CCD structures (minimum gate dimension of
about 10 x) and substrate doping greater than 10'/em?,
The constant and spatially varying fringing ficlds both
were found to give exponcntial charge-decay character-
istics. When the magnitude of the field becomes greater
than a few times k7'/L, the discharge is considerably en-
hanced by the fringing-field drift.

If the self-induced ficld terms are introducced, then.
using a lumped-circuit model, the frec-charge transfer
process is given quite aceurately by the formula given.
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The Influence of Interface States on Incomplete Charge

Transfer in Overlapping Gate Charge-Coupled Devices

AMR M. MOHSEN, T. C. McGILL, YOSHIAKI DAIMON, axo CARVER A. MEAD

Abstract—A simple and accurate model is used to estimate the
incomplete charge transfer cue to interface states trapping in the
overlapping gate charge-coupled devices. It is concluded that
trapping in the interface states under the edges of the gates parallel
to the active channel limits the performance of the devices at
moderate and low frequencies. The influence of the device param-
eters, dimensions, and clocking waveforms on the signal degradation
is discussed. It is shown that increasing the clock voltages, increas-
ing the signal charge, or using push clocks reduces the incomplete
charge transfer due to interface state trapping.

I. INTRODUCTION

HE incomplete charge transfer due to trapping in
interface states at the semiconductor-oxide inter-
face imposes limitations on the performance of

charge-coupled devices at moderate and low frequencies,
where the incomplete free charge transfer is very small
[1]-[5]. Several authors [6]-[8] have studicd the effects
of interface state trapping. Carnes and Kosonocky [7]
have measured the large signal losses duc to the interface
states trapping in charge-coupled devices. Tompsett [8]
has also calculated the transfer inefficiency and the re-
duction in the signal-to-noise ratio (SNR) of the output
signal due to interface states for three-phase charge-
coupled devices.

This paper presents a study of the incomplete charge
transfer due to trapping in interface states in overlapping
gate charge-coupled devices! operated with a background

Manuscript received October 23, 1972. This work was supported
in part by the Office of Nuval Research (A. Shostak) and the
Naval Rescarch Laboratory (D. F. Barbe).

The authors are with the California Institute of Technology,
Pasadena, Calif. 91109.

1We have considered the ov erlapping gate structure as it scems
presently to be the most technically promising CCD structure for
the potential large scale applications of these devices (2], [4].
However, most of the analysis, discussion, and conclusions given
in this paper apply also to the other CCD structures.

charge and its dependence on frequency, device parame-
ters, dimensions. and clocking waveforms, to establish
guiding design rules for the operation of these devices
with optimum performance. Section II describes how
trapping in interface states results in incomplete transfer.
Section III presents the theoretical model and the basis
of our approximations. Sections IV-VII derive expres-
sions for the net charge trapped in the interface states
under the storage gates, the transfer gates, and the edges
of the gates. Section VIII calculates the signal degrada-
tion due to trapping in interface states for a two-phase

. overlapping gate charge-coupled device. A discussion of

the results and conclusions is presented in Sections I1X
and X.

II. IncomMPLETE CHARGE TrANSFER DUE TO TRAPPING
IN INTERFACE STATES

In Fig. 1, one unit cell of an overlapping gate charge-
coupled device using silicon gate technology is shown
[9]. If & voltage is applied to one of the storage elec-
trodes, a potential well is created at the interface where
signal charge can be stored. Some of this charge will be
trapped in interface states. During the first stages of the
transfer of charge to the next storage site, some carriers
will also be trapped in interface states under the transfer
gates. In the latter stages of the transfer process, the
relatively large fringing fields under the transfer gates
sweep out the mobile carriers very rapidly and the inter-
face states then start to emit the captured carriers.
According to the Shockley-Read-Hall rate equations
[10] the emission time constant r. of the interface states
varies exponentially with their energy level relative to
the band edge. If the emission time constant of the inter-
face states in a given energy range is smaller than the
transfer time, then most of the trapped carriers in these
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Fig. 1. One unit cell of the overlapping gate structure using the
“silicon gate technology.

states are emitted and can join the main packet. Inter-
face states with an emission time constant equal or
larger than the transfer time will emit only a fraction
of the trapped carriers. Since the storage gate is longer
and has a thinner oxide than the transfer gate, the
fringing fields under it are much smaller than under the
transfer gate. The residual charge under the storage
gate, in the latter stages of the charge transfer process,
decreases exponentially with a time constarit that de-
pends on thermal diffusion and the small fringing fields
[11-[3], [14]. Interface states continue to capture car-
riers from the residual signal charge until the residual
charge becomes so small that emission from the traps
becomes dominant. The nonemitted trapped carriers un-
der the storage gate and the transfer gate are thus lost
from the signal charge and will be emitted in the succeed-
ing packets. If the next signal samples do not contain
any charge, the interface states continue to emit the
captured carriers until a signal sample containing charge
passes. Then the empty interface state fil] by capturing
carriers from that signal sample. After its transfer, the
trapped carriers are emitted and so on.

The charge captured by interface states from a large
charge packet passing through the device is larger than
the charge emitted into that packet, unless it has been
preceded by an equal or larger charge packet. But the
charge captured by interface states from a small charge
packet passing through the device is smaller than the
charge emitted into that packet, unless it has been pre-
ceded by an equal or smaller charge packet. Thus the
interaction of the signal charge with the interface states
results in incomplete transfer of charge from one storage
site to another and imposes limitations on the perform-
ance of the overlapping gates charge-coupled devices.

The signal degradation due to the trapping of carriers
in the interface states can be considerably reduced by
using the fat zero scheme. In this scheme the zero signal
is represented by a small background charge or “fat
zero,” so that charge packets are always flowing across
the device [6]. Hence the interface states under the
storage and transfer electrodes arc filled every cycle.
The net charge trapped from a signal charge packet will
then be the difference hetween the captured charge it
lost at each transfer and the charge emitted into that
packet, by the interface states under the storage and
transfer gates, which was trapped from the preceding
charge packets. Since for a sufficiently large fat zero
charge the capture time constant of the interface state

is very small (as discussed later), the interface states
will be almost eompletely filled during each cycle and
similar net trapping occurs during every cycle. The in-
complete transfer due to trapping in interface states is
consequently reduced by orders of magnitude.

III. MobEL anp APPROXIMATIONS

The interface states at the semiconductor-oxide inter-
face are characterized by their density Ne(E) and
capture cross section o, (E). The capture and release of
charge from these states is deseribed by the Shockley-
Read-Hall equation [10]. Assuming a p-channel® de-
vice and assuming that the interface is always kept.
under depletion to exclude the majority carrier and sup-
press any recombination between the trapped holes and
electrons, the rate equation describing the oceupation of
the interface states at any cnergy £ above the valence
band is given by

Bt = KuNoo = m.)p ~ Kima, exp (~E/KD) (k&)
K, = Vil (1b)
Kz =i UAVﬁ:Nn (IC)

where N, is the interface state density (states/cm? - eV),
ng, the density of filled interface (states/em® - eV), and

" p the density per unit area of the mobile holes in the

valence band at the interface. o3 is the trap capture cross
section for holes and ¥y, the average thermal velocity
of the mobile carriers. d is the average thickness of
the inversion layer at the interface, N, the density of
states in the valence band, and KT the electron-volt
equivalent of temperature.

The first term describes the rate of capture of the
mobile carrier and is proportional to the density p of
the available mobile carriers and the density of the
empty traps (N,, — n,). The sccond term describes the
rate of emission of the trapped carrier. This term is
proportional to the density of the filled interface states
and decreases exponentially as the trap energy increases.

The total rate of capture of the mobile carrier is then
given by

" dn.,

E
dtd’

rate of capture = —ZJ? l = 2

capture 0

2 The same discussion and analysis given below holds for n.
channel devices. In this case the mulnloplectrons interact mostly
with interface states near the conduction band edge,
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where E, is the energy gap. The mobile carrier con-
tinuity equation that describes the performance of the
device must be modified to include this capture rate
[2] (neglecting thermal generation currents) :

Y _ g P
sr= =Vl - e f @®

capture

where .q is the surface charge density of the mobile
carrier, e the electronic charge, J the sheet current den-
sity, and z the distance along the interface.

Thus, from the rigorous standpoint, the continuity
equation (3) should be solved simultancously with the
nonequilibrium rate equations (la) and (2) in the re-
gions under the source and receiving storage gates and
transfer gate. While a rigorous treatment is conceptually
possible, the uncertainty in the parameters characterizing
the interface states makes such an elaborate calcula-
tion unwarranted. Howcver, with suitable approxima-
tions one can make calculations that give qualitatively
reliable and quantitatively suggestive estimates of the
incomplete transfer due to interface state trapping.

When charge-coupled devices are operated with the
circulating background charge, interface states having an
emission time constant larger than the cycle time re-
main almost completely filled all the time. These states

" capture carriers every cycle and do not get a chance to
reemit an appreciable fraction of the captured carriers
.during the cycle time. Interface states with an emission
time constant much less than the cycle time will be
emptying and filling every cycle. These interface states
have an energy of a few KT above the valence band
edge (as shown later). Hence the interface states that
make a substantial contribution to the incomplete trans-
fer will be those with a time constant of the order of
the clock cycle period and will lie within -an energy
range of the order of the thermal voltage. For the low
interface state density obtainable with the present ther-
mally grown oxide [11]-[13] the rate of capture or
emission is quite small compared to the other terms in
(3). Thus, one can obtain an accurate solution by the
following procedure. First, the term in (3) due to trap-
ping is neglected, and the continuity equation is solved
to obtain the free charge transfer characteristics. The
surface charge density profiles g(z, t) are then used with
the rate equations (1) and (2) to calculate the incom-
plete charge transfer due to trapping in interface states.

The precise values of the interface state density N,
and capturc cross section o, of the interface states;
their distribution in energy over the bandgap; and their
dependence on temperature, normal and tangential sur-
face fields are not well known, and vary strongly with
the type and preparation of the oxide over the active
channel of the device [11]-[13]. For our purposes here,
we will take Ny, and o, independent of all the previously
mentioned parameters. However, if the exact energy de-
pendence of N,, and o in the relevant part of the band-
gap is accurately known, it can be easily incorporated
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in this model. Consistent with the same order of accuracy
of the previous assumptions, we can also use average
values of the mobile carrier concentration and neglect
the effect of their spatial distribution under the elec-
trodes, to further simplify the numerical calculation.

IV. Trap OccuUPATION IN STEADY STATE AND TRANSIENT
In steady state, the trap occupation can be obtained
from (la) and is given by
N..
(1 + K, exp (—E/KT))
Kp

The interface states are in equilibrium with the mobile
carriers. Their occupation is described by the same quasi-
Fermi level as the mobile carriers.

Ny =

c )

E = KTh = = KT m%—‘i ®)

Following a sudden abrupt change in the mobile car-

rier concentration, say po to p;, the trap occupation

changes to the new steady-state value corresponding to

the new mobile carrier concentration p; with an effective
time constant given by

1
= Kp F K, oxp (=E/KT)’ ©

If the effective time constant of the interface states regr
is smaller than the time constant r measuring the varia-
tion of the mobile carrier density, then the trap occupa-
tion reaches steady state very rapidly and effectively
equilibrates with the varying carrier density. That is, if
™ > Ter, then

nu() = N, [1 4 Ksexp (“E/K <”E/Kﬂ]. @

Tert

Kip(t)

Thus, the quasi-Fermi levels of the traps follows the
quasi-Fermi level of the mobile carriers

N,-d
10)

On the other hand, if r < 7.¢, then the trap occupation
fails to follow the variation of the mobile carrier. If
we let Kyp(t) » K, exp (—E/KT), then this occurs
when the mobile carrier density falls to a level such that

E,(t) = KT In

®

K,mp(t) < 1. )

For charge transfer from under a gate, we can define
two regimes. First, when K;p(t)r > 1, the mobile charge
is in effective equilibrium with the trapped charge. The
total number of trapped carriers p,, is given by

K,

Lt =N..[E,-—KTln——’—:|~ 10
Pt Xad (10
Second, when K;p(¢)r < 1, the mobile charge is no longer
in equilibrium with the trapped charge. If we let ¢4 be
the time the emission mechanism becomes dominant,
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then for ¢ > ¢, the trap occupation is given by

N.,
1+ K, exp (—E/KT)
Kip(ts)

-exp [—(t — t)K, exp (—E/KT)];  (11)
and the interface states start to empty with a time con-
stant that increases exponentially with the trap energy.
The total number of trapped carriers is given by

n“(t) =

Pull) = N[E — &AM - 3 - (7?71%‘;“%]

t> . (12)
So in this case the interface states above E; = KT In
Ko(t — tg) are almost full and those below it are

nearly empty. The last terms in (10) and (12) show
the dependence of the interface state occupation on the
mobile carrier density.

V. TRAPPING IN INTERFACE STATES UNDER THE
STORAGE GATES

When a signal charge packet is stored under the stor-
age gate, all the interface states trap carriers and are
filled very rapidly down to a quasi-Fermi level given by
(5). As the charge transfers to the next storage site,
the residual charge decreases. In the complete charge
transfer mode® the transfer of charge at the end of the
charge transfer process (say after a time t3) becomes
limited by thermal diffusion and f{ringing fields. The
residual charge under the storage gate is then given by

p(f) = p(ts) exp [—(t — t;)/7], (13)
where the characteristic time constant 7 depends on
diffusion and fringing fields [2], [14].

Since the fringing fields under the storage gate are
relatively small giving a rather large value of = and the
charge p(t3) is relatively large, the inequality

t> 1,

Kp(t) > 1 (14)

is satisfied at the beginning of this time interval. Hence,
the mobile charge is in equilibrium with the trapped
charge. However, at later times the free carrier density
may fall to such a value that the interface states are
no longer in equilibrium with the free carriers and the
interface states begin to simply emit the charge trapped
in them. This state pretains for times t such that

t> = t; + 7 In (K;p(ts)7). (15)

If the clock frequency fo is such that the charge trans-
fer ends at a time ¢ less than ¢4, then the interface states
will remain filled down to an energy defined by (8).
When the next charge packet arrives, it fills all the
interface states, and after it transfers the total number

3In the complete charge transfer mode all the charge under the
storage gate is transferred to the following gates: none is delib-
erately retained. (See [2) and [5].)
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of trapped carriers is given by (10) with the proper
value of p(t). So, when the device is operated with a
circulating background charge, or fat zero, the net charge
trapped from a signal charge packet is maximum when
it is preceded by a fat zero and is given by

Aq,, = ¢A, N, KT lng'—(ﬁ )
Po(t)

where Aq, is the net charge trapped per transfer, 4, the
area of the storage gate, po(t) and p,(¢) are the residual
charge under the storage gate at the ¢nd of the transfer
time ¢ for the fat zero charge and the signal charge,
respectively. When the difference between p,(t) and
po(t), is relatively small, then

(16)

Ag.. = ¢A, N, KT (p.(0) — pu(1)
Po(t)
It follows from (13) and (17) that the net charge
trapped is alnost independent of frequency. In addition
all the interface states above an energy E; where

17

. K,

R SR
will always be filled with captured holes. If the charge
transfer ends after a time ¢ > ¢, then in the complete
charge transfer the interface states under the original
storage gate continue to emit the trapped charge for one
whole transfer (or (m — 1) transfer times for m trans-
fers/cycle). This released charge is added to the next
packet transferred into this storage bucket. When the
next charge packet comes along, all the interface states
are filled again. After this charge packet transfers, the
interface states start to emit and so on. So when the
device is operated with a circulating background charge,
the net charge trapped from a signal charge packet at
each transfer, for transfer time ¢ > ¢ty + r, is also maxi-
mum when preceded by a fat zero and can be obtained
directly from (12). ’

; 1 1 1
Ag,. = eRAN, KT T= 0k, [po([‘) = p.(t.)] (19)

where po(ts) and p,(ty) are the residual charge under
the storage gate after a time ¢y [as defined in (15)] for
the fat zero charge and the signal charge, respectively,
and R is a fraction given by

(18)

m—1 1

1 = futc ’
where m is the number of transfers/bit. If ¢4 is smaller
than the cycle time, then t,f; < 1 and form =2, R ~ §.
If the difference between p,(t5) and po(ty) is relatively
small, then

o (m =1t
R_ml—t._ m

(20)

T .[P.(“) - Pn(lt)],
(t = t) palts)
Thus, for transfer times ¢t > t; + =, the net charge
trapped/transfer decreases almost direetly with the clock

Aq,. = 3eA, N, KT

(@1
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frequency. Also, all the interface states above an energy
E, are filled with captured holes. F, is almost inde-
pendent of the signal charge and is given by

E, = KT In K,(mt — (,). (22)

VI. TRAPPING IN INTERFACE STATES UNDER THE
TRANSFER GATES

The surface potential and the surface potential gra-
dient under the gates of an overlapping gate charge-
coupled device along the silicon-silicon oxide interface
are plotted in Fig. 2. These plots arc obtained from a
solution of the two-dimensional Poisson equation for
substrate doping of 8 x 10''/em*® and 10'*/cm?® [14].
The electrode voltages correspond to the latter stages of
the charge transfer with a signal charge in the receiv-
ing storage gate. Since the transfer gate is shorter and
has a thicker oxide than the storage gate, the fringing
fields under it are much larger than under the storage
gate. Typical values of single carriers transit time under
the transfer gate are of the order of a few nanoseconds.

When a signal charge packet transfers from one stor-
age site to the next, interface states under the transfer
gate trap some of the charge during the first stages of
the transfer process. Since fringing ficlds under the trans-
fer gates are relatively large, the mobile carriers are
swept out very rapidly and the emptying of the inter-
face states begins earlier in the transfer process. Thus
for all transfer times ¢ of interest

£ > b (23)

The trapped carriers emitted before the transfer ends
will join the main packet. During the latter times of
the cycle, a larger fraction y of the emitted carrier will
drift backwards to join the succeeding packet of charge,
and a smaller fraction (1 — y) will drift forward to
join the original packet of charge. Because of the asym-
metrical surface potential distribution y is greater than
one half. Then in the next cycle, during the transfer
of the next packet of charge, the interface states under
the transfer gate capture some charge, and so on. From
the plots of the average mobile carrier concentration un-
der the transfer gates for a two-phase overlapping gate
CCD in Figs. 3 and 5, it is clear that the interface
states will capture carriers for a time interval At. Dur-
ing that time interval an average carrier concentration
Pay may be defined. The traps fill with an effective time
constant e given by

1 ~_1
Kip., + K exp (—E/KT) — Kip.,
The filling probability or the fill factor F of the traps
is given by

(29)

Tett =

F = [1 — exp (—At/re1))]. (25)

For transfer times ¢ > {,,, the interface states empty
according to (11) and the total trapped carriers is given

129

gV -6¥ -15Y R YA
o.szpf—-‘—— - |

o By e 14y ——— B —

0

4012,

18y —=

@5
(Volts)
-3

-0}
s
Es
(Volts/u)
0

sk Y v

-77v -7V -1sV -9.8Y
an,:—; — ! ""l"‘ L tci2,
PGy B e e
O S e e
]
(Volts)
-5
-1l
Es
(Voltsfu)
o]

5

(b)

Fig. 2. Plots of the surface potential and surface potential gradi-
ent along the silicon-silicon oxide interface obtained from the
solution of the two-dimensional Poisson equation of the struc-
ture in Fig. 1 with minimum geometry dimensions. lai = 8 g,
lsi = 14 p, dsi = 1200 A, dar = 3200 X. £si = 05 u, and tar =
0.5 u. The electrode voltages correspond to the latter stages of
the charge transfer, with a signal charge in the receiving storage
gate. The substrate doping 1s 08 X 10'% donors/cmn? in Fig.
2(a) and 10'* donors/cm? in Fig. 2(b).

by (12). When the device is operated with a circulating
background charge or fat zero, the net charge trapped
from the signal charge in interface states under the transfer
gates is maximum when it is preceded by a fat zcro and
is given by

Ag., = veA N, KT

| . (- ) (7~ v-)

1 n (—_*1‘— ’ ”‘) - FO Il ——
mfo T lier,
+

. >(Ki‘ KI;)} (26)
mfy )

where R is a fraction given by (20). p..o, Pav: are the
average mobile carrier concentration under the transfer
gate during the interval At for a background charge and
a signal charge, respectively. F,, F, are the filling prob-
ability as defined by (25) for a background charge and a
signal charge, respectively. A,, is the area under the
transfer electrodes and (,,,., {,,, are the times at which the
emptying of the interface states start for the background
charge and the signal charge.

Two special cases are of interest. First, if the fill factors
F, and F, are less than one and unequal, then the first two

R
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terms dominate. Fory = 1and {,,, X t,..., (26) reduces to

U= L)
(1= "lfoth.r

Ay = €A NLKT(F, — F)) In m

For fol,, € 1and m = 2,
Ag., = eA, N, KT(F, — Fo) In 2. ©n

Sccond, if the fill factors are equal to one (At/ruf > 1),
then (26) reduces to

= eA N, KT

'{(z

() R (1 1
- ’Jlr) B+ (t = lllv) ( Ipnv() K P,v.)}

For foty K 1, m = 2, R = }

Aq“

= eA,,N,,KT{fn 8(t) + fg( K};_“)} , (28)

Age: K\pavo
where 8(¢y) is the difference in the time ¢; at which
the emptying of the interface states start for the signal
charge and the background charge. '

In the first case, the net charge trapped is almost
frequency independent. While in the second case it in-
creases almost linearly with frequency.

All the interface states under the transfer gate above
an cnergy I, are filled with captured holes. E, is almost
independent of the signal charge but depends on the
clock frequency and is given by

E,=KThkK ( ) KT ln (29)

fo fo

VII. TRAPPING IN THE INTERFACE STATES UNDER THE
Ebses or THE GATES

Trapping in the interface states under the edges of the
storage and transfer gates also add to the incomplete
charge transfer [8]. Since the precise area covered by
the charge being transferred at the interface depends
upon the surface potential profiles under the gates which
in turn depends on the surface charge density, the num-
ber of interface states at the edges that come in contact
with the charge is dependent upon the amount of sur-
face charge. The surface potential profile for a given
surface charge density and scquence of potentials applied
to the gate clectrodes is obtained by solving the two
dimensional Poisson equation for the CCD structure. So-
lutions [2], [9], [14] to this cquation along and per-
pendicular to the active channel show that fringing fields
penctrate under the cdges of the gates for a distance of
approximately a depletion layer thickness. The onset of
these fringing ficlds define the spatial extent of the mobile
charge. For fixed voltages applied to the gates, the de-
pletion layer thickness and the penctration of fringing
fields increase with decreasing surface charge. Hence a
small surface charge is confined to a smaller arca at the
interface than a larger charge.
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In the treatment of trapping and release of charge by
these interface states, we must distinguish between the
interface states at the gate edges parallel to the channel
from those at the gate edges perpendicular to the chan-
nel.

In the case of the interface states at the cdges per-
pendicular to the channcl, the signal charge or the
background charge flows over the interface states during
every cycle. Thus the interface state can capture car-
rier from both the signal charge and background charge.
Hence, the filling and emptying of these interface states
is similar to that under the transfer gates.*

The net charge trapped from a signal charge in the
interface state under the perpendicular edges when the
device is operated with fat zeros is maximum when it
is preceded by a fat zero. If the probability of filling
of the interface states by the background charge is less
than unity, then from (27)

Ag., = eA N, KT(1 — Fj) In2 (30)

where A,, is the arca under the perpendicular edges and
Fq is the fill factor for the background charge defined
by (25). In the case F, is almost equal to unity, then

from (28)
K Dav )}.
1Pav edge

(31)

In the case of the interfuce states parallel to the edges
we 1must distinguish between two clocking schemes, the
drop clock and the push clock. With drop clocks the
signal charge is stored below a gate at a holding volt-
age V, which is a fraction of the largest clock voltage
V,» that the MOS structure can tolerate; charge transfer
occurs when V,, is then applied to the adjacent gates, and
the charge flows to the potential minimum thus created.
With push clocks the charge is stored under a gate
held at V,, and transferred to a nearby gate, also at
V., by raising the potential of the gate where the charge
has been residing and thus “pushing” the charge to the
next gate. Charge-coupled devices can be operated with
two-phase, three-phase, or four-phase clocking schemes
by push clocks, drop clocks, or a combination of push
and drop clocks [2], [5], [15].

So with drop clocks, the charge transfer is effected by
creating decper potential wells under the next gates; and
the background charge does not flow over the edges of
the gates parallel to the channel. Thus the interface states
under the parallel edges capture carriers from the signal
charge but do not trap any carriers from the background
charge; and the parallel edges are residual areas of the

Aq.x === eAnLNuKT{/O ta) + IO(I\ o

4 Note that in this case, sinee the signal charge remains under
the storage clectrode for one whole transfer time, the probability
of filling the interface states by the signal (}mrgo F, is cqual to
unitv. As diseussed in Scenon VI we miay also obtain the average
mobile charge density under the edges pay eage and Pawn and the
tune interval A/, for which the background charge is 10 contact
with the cdges from the charee transfer dynamics and the surface
charge density profile of the signal charge under the electrodes.
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active channel that the background change cannot reach.
For example, after a signal charge is transferred from
under the storage gate, the interface states under the par-
allel edges of this gate continue to emit the trapped car-
riers until the next signal charge passes, then the interface
states fill again. The net charge trapped from the signal
charge in the interface states under the parallel edges of
the storage and transfer gates increases with increasing
the number of fat zeros preceding it. This is unlike the net
trapped charge in interface states under the storage gates,
transfer gates, and the perpendicular edges that is almost
independent of the number of fat zeros preceding the
signal charge.

The net charge trapped in the interface states under
the parallel edges increases logarithmically with the clock
frequency (similar to the charge trapped when no fat
zeros are used) [7]. For digital signals, the net trapped
charge per transfer in the interface states under the par-
allel edges from the first “one bit” preceded by ngero
“zero bits” can be easily obtained from (12).

Ag, = eKT(N, A,y + N, F.A\y)

el )/ -] o

- where A4,,; and A,,; are the area of the edges parallel to
the channel under the storage and transfer gates respec-
tively. ., is the time at which the emptying of the inter-
face states under the parallel edges start. For foly < 1
and m = 2 (32) reduces to

Agy = eKT(N.,Awa + N JF AL, In 20, + 1), (33)

In this case, all the interface states under the parallel
edges above an energy E;, where for e, > 1

E, 2 KT In Kz((num -+ 1) } - luu), (34)
o
are filled with the captured holes.

But with push clocks, the trapping effects under the
parallel edges are reduced. The charge transfer charac-
teristics and the charge profiles under the gates for the
signal charge and the fat zero charge tend to be more
similar with push clocks, [2], [5], [15]; hence the inter-
action of the traps with the mobile carricrs of both
charges is almost the same. For example, with the two-
phase push clock, the charge transfer does not start until
the surface potential under the storage gate is larger than
that under the next transfer gate for both the fat zero
charge and the signal charge. Hence the {at zero charge
covers almost the same area covered by the signal charge
at the interface under the storage gates before the charge
transfer begins. Thus with push clocks, the behavior of
most of the parallel edge area of the storage gates is
similar to the behavior of the perpendicular edges and
hence is described by (30) and (31). So the effective arca
of the parallel edges under the gates that interact with
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Fig. 3. Average carrier concentration under the transfer gates
versus transfer time for the fat zero and signal charge. A two-
phase drop clock with zero fall and rise time is used. Van =
—15V, Vi=—-7V.

the mobile carriers according to (32) and (33) is much
smaller with push clocks than with drop clocks.

VIII. NunmericaL RESULTS

When the device is operated with a circulating back-
ground charge the total net charge trapped from a large
charge packet in interface states at each transfer is ob-
tained by summing the diffierent contributions.obtained
above:

Ag = Aqu + Aqi. + Aguy + Ag.. (35)

The same net charge Ag is emitted to the background

charge by the interface states when it is preceded by a

large signal charge. The influence of this incomplete
charge transfer due to trapping in interface states on the
signal degradation is best described by the signal degra-
dation factor ¢, defined by Berglund [16]:

S S 6t &+ e €y,

= 36,
B (36)

where g, is the signal charge and g, is the background
charge, so ¢, = edup, and go = eAuPa. e, @ €y, € are
the signal degradation factors due to trapping in inter-
face states under the storage gate, transfer gate, and the
perpendicular and parallel edges of the gates, respec-
tively. p, and po are the mobile carrier densities for the
signal charge and the background charge, respectively.
We have evaluated the relative magnitudes of the sig-
nal degradation factors for an overlapping gate charge-
coupled device with dimensions consistent with typical
layout tolerances of silicon gate technology. The storage
polysilicon gates are 14 u long and 8 p apart. The chan-
nel width is 8 w. The results in ¥igs. 3-6 are taken from
a dctailed numerical solution of the transport dynamics
in p-channel devices with a substrate doping of 0.8 X
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AVERAGE CARRIER CONCENTRATION UNDER

10%/em?® and minimum geometry dimensions operated in
the complete charge transfer modes [2]. In Figs. 3 and 4
the average mobile carrier concentration under the stor-
age and transfer gates is plotted versus time when a two-
phase drop clock is used. The same plots for a two-phase
push clock are shown in Figs. 5 and 6.

In Table I we have listed the values of the quantities
used to evaluate the signal degradation from the previous
equations. An average value of N,, and ¢, was taken in
agreement with the published values in the literature [11]-
[13]. With a substrate doping of 0.8 X 10" /em® and for
the minimum geometry dimensions, fringing fields under
the storage electrodes are negligible [1], [2], [14]. Henee the
time constant of the exponential decrease of the residual
carricr under the storage gate is the thermal diffusion
time constant 7, = l;°/2.5D. The time intervals At (which
are the times the carriers spend under the transfer gates
and the perpendicular edges) are taken from Figs. 3 and 5.

AVERAGE CARRIER CONCENTRATION UNDER
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Zero fall and rise time for the two-phase drop clock and
zero fall time and 13-ns rise time for the two-phase push
clock were used in the numerical simulation of the charge
transfer characteristics shown in Figs. 3-6. For larger rise
and fall times, the values of At are larger. The fill factors
F, and F, are then calculated using an average carrier
density under the transfer gates during the time intervals
At from Figs. 3 and 5. They are almost unity for the drop
and push clocks. Hence 28 and 31 should be used to esti-
mate Aq,, and Aq,,. The value of n,.,, in (33) was taken as
unity to give the minimum value of ¢,,. The ratio of the
area of the edges to the storage gate arca depends on the
width of the channcl W, the lengths of the storage and
transfer gates, and the substrate doping concentration.
The values of A,.../A,, A.a/d.., and 4,,/A.. arc
taken from surface potential plots of the solutions of the
two-dimensional Poisson equation of the device similar to
those in Fig. 2. With push clocks, the effective area of
the parallel edges under the storage gates that interacts
with the mobile carriers according to (32) and (33) was
taken as one-tenth of the total parallel edge area under the
storage gates. Actually a smaller value is expected because
of the neutralization ceffect mentioned previously during
the pushing of the charge.

In Table II we have listed the values of €, €., €., €.,
and ¢ for the drop and push two-phase clock at a frequency
of 1 Me for the minimum geometry device. In our cal-
culations, we chose a suitable background charge to
represent a fat zero ep, and a large charge to represent
the signal charge ep, as would be used, for example, to
represent the zero and the one bit in a digital serial
memory. In Figs. 7 and 8 we have plotted the signal
degradation factor duc to incomplete free charge transfer
and due to trapping in interface state versus frequency.
Several conclusions become apparent for this particular
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TABLE I
p; Values of Parameters and Constants Used in the Calculation

N, = 2 X 10°/cm?-eV Vuw = 10" cm/s ts ~ 150 ns

ap = 1078 cm? d =254 tie ~ 500 ns

K, = 1/25 cm?/s Co = 2.86 X 10~ F/cm? = 117 ns

K, = 10M 5! p(ts) = 4.5 X 10°/cm? Ay /As = 058

A /A, = 0.156
. Static Drop Clock

p, = 6.25 X 10" /cm? Pav edge = 1.57 X 10'/cm? Letr = 35 0

po = 1.79 X 10"/cm? %;M = 1.75 X 10~ Fi=1—e¢"=1
Pavs = 0.5 X 101/cm? PR = 6 s Fo=1—et =1
Pave = 0.27 X 10"/cm? Aty 22 35 ns Ava + A 1

At 7ns A.. Wty 10
Dynamic Push Clock
P, = 9.8 X 10"/cm? Pav edge = 2.45 X 10" /cm? Alero =2 40 ns
Po = 4.6 X 101/cm? ’ﬁﬁ%ﬁ——"(") = 1.75 X 10 tr 2 45 1s
4
Pare = 0.6 X 10'/cm? 8(ty) = 1.5ns F,=1—¢m18 =1
Pave = 0.4 X 10/cm? Aty 2~ 44 ns Fo=1—¢em=1
Aleo = 13 ns
Ay + Astalerreceive .
A Wetu 00

device. Trapping effects due to the interface states under
the storage gate are larger than those under the transfer
gate and under the perpendicular edges of the storage
gate.’ Trapping in interface states under the parallel
edges of the gates is dominant at low frequencies. Also
the incomplete charge transfer due to trapping in interface
states when the device is operated with push clock is
much less than when it is operated with drop clock. At
low clock frequencies the signal degradation due to
trapping interface states is larger than that due to in-
complete free charge transfer. But at high frequency,
the device performance is limited by the free charge
.transfer process.

It should be emphasized that the results shown in Figs.
7 and 8 are for a minimum geometry overlapping gate
charge-coupled devices under a specific set of operation
conditions. The specific values of the signal degradation
due to trapping in interface states depend on the device
geometry and the operating conditions. So care should
be taken in extrapolating the specific values of the signal

3 This is actually due to the following reasons. Flrst for a suf-
ficiently large background charge, the mobile carriers durmg the
first stages of the charge transfer process effectively equilibrate
with the interface states under the transfer gates and the perpen-
dicular edges. Second the area under the transfer gates and the
perpendicular edges in the overlapping gate structure is usually
smaller than the arca under the storage gates. Third, because of
the larger fringing ficlds under the transfer gates and the per-
pendicular edges, the mobile curriers are swept out very rapdly
and the emptying of the interface state begin earlier in the trans-
fer process. But under the storage gate the residual charge de-
creases with a relatively large time constant. The interface states
under it continue to capture carriers from the residual charge and
the quasi-Fermi level follows the quasi-Fermi level of the residual
charge. When the residual charge becomes small enough, emission
from the traps becomes dominant. This results i in a change of the
slope of the signal degradation due to trapping in interface states
\;nde&' éhe storage gates versus clock frequency as shown in Figs.

an

degradation factors in Figs. 7 and 8 to other CCD strue-
tures with other dimensions under other operating con-
ditions. The equations derived in the previous sections
should be used with the device and model parameters
appropriate to each case.

IX. Discussion

The analysis and results given in the previous sections
reveal some important and gencral features of the incom-
plete charge transfer due to trapping in interface states
in charge-coupled devices. In this section we discuss some
of these important features, such as the relative contri-
bution to the signal degradation of the interface states
under the stqrage and transier gates and their edges; the
influence of clocking waveforms and voltages, device di-
mensions, and parameters on the incomplete charge trans-
fer due to trapping in interface states, and design fea-
tures of CCD structures to reduce it.

When charge-coupled devices are operated with fat
zeros, trapping in interface states under the edges of the
gates parallel to the channel is the dominant effect at low
frequencies. The parallel edges are the areas parallel to
the channel at the interface under the storage and trans-
fer gates that are covered by the signal charge and are
not covered by the background charge. The interface
states under the parallel edges capture charge from the
signal charge only. The resulting signal degradation is
almost frequency independent, varies inversely with the
chanuel width, and depends on the information content
of the signal. At low frequency the signal degradation
due to trapping in the interface states under the storage
gates, the transfer gates, and the perpendicular edges is
relatively smaller. These interface states capture charge
from both the signal charge and the background charge.
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Signal Deﬁradation
Factor Due to

Value for

Trapping in Inter- Value for Push
face States Under: Equation Drop Clock Clock
Storage gate ¢, (16) 8.4 X 1073 1.7 X 1073
Transfer gate e, (28) 3.62 X 10~ 0.975 X 10~¢
Perpendicular edges

€, s (31) 1.33 X 10-¢ 0.464 X 10~¢
Parallel edges e, (33)  1.64 X 10 7.0 X 10-
Total ¢ (36) 2.53 K 10~ 3.54 X 1078

T T T T
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Fig. 7. Signal degradation factors versus clock frequency for the
minitnum geometry device operated with a two-phase drop clock.

Hence the background charge is effective in reducing the
effect of trapping in these interface states on the incom-
plete charge transfer. For a sufficiently large background
charge the effective time constant of the interface states
is typically a fraction of a nanosccond. With the finite
rise and fall times obtained with the practical clock driv-
ers, and for the minimum geometry CCD devices we
have considered, these interface states can equilibrate
with both the signal charge and background charge. This
leads to a small signal degradation that is directly pro-
portional to frequency.

From the equations derived in Sections V-VII, and
[2], (5], [15), we may conclude that increasing the clock
voltage amplitude and the signal charge reduces the
incomplete transfer due to trapping in interface states
and the incomplete free charge transfer. Clocking wave-
forms that tend to reduce the incomplete free charge
transfer by making the charge transfer for large and small
charge similar will also rcduce the incemplete charge
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Fig. 8. Signal degradation factors versus clock frequency for the
minimnum geometry device operated with a two-phase push clock.

transfer due to trapping in interface states because the
effective parallel edge area is reduced and the charges
under the storage and transfer gates, and the time at
which emptying of the interface states begins tend to be’
less dependent on the initial charge. For example, when
the device is operated with a two-phase push clock, the
incomplete charge transfer due to the interface state is
reduced by over an order of magnitude over that when it
is operated with a drop clock. If the device is operated
in the complete charge transfer mode the other details
of the clocking waveforms such as its rise time and wave-
shape affect mainly the time interval At the charge spends
under the transfer gate and the time {, at which the
interface states starts to empty. For example, if the rise
time increases, At and {, increase and the signal degrada-
tion ,, due to the interface states under the storage gates
increases slightly. The signal degradation due to interface
states under the transfer gates and the perpendicular
edges ¢,, and e,, also increase very slightly if At/r, > 1,
but decrease if the fill factor F, and F, are less than unity.

Certain design features of CCD structures may reduce
the incomplete charge transfer due to the interface states.
A wide active channel increases the signal charge relative
to the net charge trapped in the parallel edges and hence
reduces the signal degradation factor at low frequencies.®
Thinner oxide over the active channel increases the oxide
capacity and the signal charge density. Thus, the net
charge trapped under the storage gates, transfer gates,

6 Increasing the active. channel width increases also the SNR
and dyvnamic range of the CCD. The noise introduced to the sig-
nal charge in the storage process through the leakage and thermal
generation current is proportional to the square root of the gates’
area. The noise introduced during the transfer process through
the fluctuations of the curriers trapped in the interface states and
through suppressed transfer loss fluctuations is also proportional
to the square root of the gates' area [17], [18). But the signal
charge is directly proportional to the gate arca. Hence the
dynamic range and SNR can be increascd by increasing the active
channel width of the device without degrading its high-frequency
performance.
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and the i)erpendicular edges decreases, and the area of
the edges is reduced. A higher substrate doping reduces
the edges’ area, but also reduces the fringing fields under
the storage gates and hence decreases the rate of free
charge transfer. A structure with a high substrate doping
(or channel stop diffusion) and a low doping under the
active channel reduces the parallel cdge area and in-
creases the fringing fields at the same time. The large
fringing fields reduce the incomplete free charge transfer
at high frequency. The net charge trapped under the
transfer and storage gates is also reduced as the interface
states start to empty earlier in the transfer process. The
perpendicular edge area is increased in this structure, but
since in the overlapping gate CCD the effect of the per-
pendicular edges is relatively small, the overall effect of
interface states on incomplete transfer is reduced at low
frequencies. Such a structure can be easily achieved with
ion implantation or otherwise. Reduction of the signal
degradation due to trapping in interface states also can
be achieved by decreasing the interface state density N,,,
for example, by using the (100) instead of the (111) sub-
strate. Moving the charge pockets in potential wells in the
bulk rather than at the interface as in buried channel
CCD [19] eliminates the incomplete charge transfer and
fluctuation noise due to trapping of the signal charge in the
interface states. Since trapping in the defect states of the
buried channel is expected to be much smaller than inter-
face state trapping, the signal degradation in buried chan-
nel charge-coupled devices is much smaller than in sur-
face channel CCD.

The signal degradation due to trapping in interface
states limits the perfermance of CCD devices at low fre-
quency, but at high frequency the signal degradation due
to incomplete free charge transfer is dominant. Accord-
ing to the simple model we have considered, the capture
cross section o, and the interface state density N, were
taken constant for simplicity. Actually the variation of
N, and o, with energy will change the frequency de-
pendence of the signal degradation due to trapping in in-
terface states from that plotted in Figs. 7 and 8. How-
ever, the frequency dependence of the signal degradation
factor due to the interface states will still be weaker than
that due to incomplete frec charge transfer. The latter
changes very rapidly with frequency, for example, in Fig.
8 it changes by more than four orders of magnitude over
only one decade of frequency.

So far, we have assumed that the background charge
and the signal charge are sufficiently large so that the in-
terface states under the transfer gates and the perpendicu-
lar edges can effectively equilibrate with the mobile car-
riers. However, if the background charge, or the capture
cross section oy, or the time interval at the carriers spend
under the transfer gates and the perpendicular edges is
too small, then these interface states cannot equilibrate
with the mobile carriers in transit. The fill factors F, and
Fqy are thus less than unity, and the first two terms in
(26) dominate at sufficiently low frequency. In this case
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the contribution to the signal degradation from the inter-
face states under the perpendicular edges and the trans-
fer gates tends to a constant value at low frequency given
by (27) and (30). This contribution is due to the differ-
ence in the filling probabilities of the interface states for
the background charge and the signal charge The con-
tribution to the signal degradation from the interface
states under the parallel edges and the storage gates in-
crease also by decreasing the background charge. How-
ever, the trapping in the interface states under the paral-
lel edges still remains the dominant effect especially from
minimum geometry devices.

If the storage and transfer gate lengths are reduced, the
time interval Af that the charge spends under the transfer
gate decreases and the relative arca of the perpendicular
edges increases. Also the time ¢, at which the emptying
of the interface states starts decreases. Thus e,, slightly
decreases but e,, increases, e, decreases very slightly in
the case At/7.¢ > 1, but increases considerably if the
filling probabilities F, and F, are less than unity. The
signal degradation due to the parallel edges e,., which is

- the dominant effect, also decreases very slightly.

The interface states under the storage gates, the trans-
fer gates, and the perpendicular edges can capture carriers
every cyele from the signal charge and the fat zero
charge. Hence the interface states with energy levels
above K, [given by (18), (22), (29), and (34)] do not
get a chance to reemit the captured carriers and are filled
all the time. The interface states with energy between the
valence band edge and the energy E, will be emptying
and filling every cycle.” For example, for digital signals,
the net trapped charge from the first “one bit” in the in-
terface states under the storage and transfer gates and
the perpendicular cdges is almost independent of the
number of preceding “zero bits.” But the net trapped
charge fromn the first one bit in the interface states under
the parallel edges increases logarithmically with the
number of preceding zero bits. If a two-phase device is
operated with no fat zeros, then the net trapped charge
per transfer from the first one bit preceded by 7n,er, zero
bits can be easily obtained from (12).

_ ; Moo + 1/2 )/(_1_ )
Aq v CAM.K7N.. In ( /0 tiae 2’0 [ 799

+ eA KTN, P, In (Ree ® 12, N /(L
fo 2fo

Myero + 1/2

+ ¢A.KTN., In (_'_/T,—'“ - z) / (31,—0 - t.‘.)

and for ta,, < 1/2fo and ty., < 1/2f,

Ag = eKTN, (A, + A.F. + A) In @noo + 1. (37)

7 Thus the incomplete charge transfer due to trapping in inter-
face states under the storage and transfer gates and the perpen-
dicular edges is due to the variable mean occupation of the state
with enerey close to Ey. Therefore the values of V,, and oa at
the energy E, should be used to cstimate the trapping effects in
these states.
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The above result was used by Carnes and Kosonocky [7]
to measure Ny, by measuring the slope of the charge loss
versus In Ngero. However, (37) shows that the so mea-
sured value of N, is some average value of N,, under the
transfer and storage gate. A typical value of the signal
degradation factor e at each transfer in this case is about
1072, if 7Moo 15 equal to unity.

Measurements of the signal degradation factor in
charge-coupled devices are difficult and require long reg-
ister strings for a good accuracy. The signal degradation
factor-due to incomplete free charge transfer at high fre-
quencies was measured by Carnes and Koesonocky [20]
using a 64-bit two-phase overlapping gate shift register.
They measured a signal degradation factor of 107 at
1 Mec. Using feedback to increase the effective number of
transfers, Levine [21] measured a signal degradation of
3 x 10~ at 200 ke and 9 X 10 ® at 10 ke. Presently, the
experimental data of the signal degradation factor in the
overlapping gate charge-coupled devices are relatively
sparce. So experimentally, the precise values of the signal
degradation due to trapping in the interface states at low
frequencies and its frequency dependence are not pres-
ently well known. ’

X. CONCLUSIONS

Using a simple model we have estimated the signal
degradation due to interface states trapping in overlap-
ping gates charge-coupled devices operated with a back-
ground charge taking into account the refilling of the in-

e = KiN,, exp [— f " (Kp(t) + K exp (—E/KT)) dt']
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terface states during transfer. Our results show that the
incomplete transfer due to interface states limit the per-
formance of these devices at low frequencies. The most
dominant cffect is trapping in the interface states under
the parallel edges (the areas parallel to the active chan-
nel at the interface under the storage and transfer gates
that are covered by the signal charge and are not covered
by the background charge).

For a sufficiently large background charge the interface
states under the storage gates, transfer gates, and the
perpendicular edges of the gates can effectively equili-
brate with both the signal and background charge. Hence
the incomplete charge transfer due to trapping in these
interface states varies almost directly with frequency and
becomes very small at sufficiently low frequency.

Some design features of CCD structures were shown to
reduce the incomplete charge transfer due to interface
state trapping. We have shown also that increasing the
clock voltages or increasing the signal charge or using
push clock instead of drop clocks reduces the incomplete
charge transfer due to interface states trapping.

APPENDIX

If the mobile carrier concentration p(t) is varying with )
time, then the transient average eccupation of the inter-
face states at an energy E above the valence band is ob-
tained by integrating the rate equation (1). Assuming
p(t) > KT-N,, then we get

: f " il v [[o " Ko@) + Ka exp (—E/KT)) dv] ar

N..
K, exp (—E/KT)
K.p(0)

If p(t) = p(ts) exp (—(t — t)/7) for

3T
1+

t > t,, then

exp [_ f " (Kp(t) + K, exp (—~E/KT)) dt’] for ¢>0. (Al

7. () = KiN,, exp [—Kip(t)7(1 — exp (= (t — t:)/7)) — Ku(t — &) exp (—E/KT)]

N

X, exp"g—E/KT) exp |~
Kp(ts) '

This can be easily reduced to
() = N, K7 exp [K,mp(t) — Ki(t — t;) exp (—E/KT)]

+
1+

[ ) exp [Kip() (1 = exp (~(¢ = t)/7) + Kalt' — ) exp (~E/KT)) ¥

Kip(ts)7(1 — exp (—=(t = t)/7)) — Kat — t) exp (—E/KT)] for t > t;. (A2)

“[p(t) exp (K exp (—E/KT)E(K,mp()) — p(t)E(Ki7p(t))]

N..

K, exp (—E/KT)
K,p(ts)

4
1 =

exp [—Kp(t)r(1 — exp — (¢t — t;)/7) + Ka(t — &) exp (—E/KT)] for t 2t

(A3)
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where E.(r) is the exponential integral of order ¢ defined
by
B o= fﬂ exp (—av) a0 (A4)
1

and

Pee = N,,KT[E,(K;(! -
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where t; is the time the emission of carriers becomes
dominant and the refilling of the traps becomes negligi-
ble. It is given by

Kp(t)r = 1. (AL1)

Similarly integrating (A10), we get

t) exp (—E,/KT)) — E\[Ky(t — t)]

— E\(K,(t — ) exp (—E,/KT) + K\(t — t)p(t) + E(K(t — t) + Ki(t — t)p(t))].

¢ = 7K, exp (—E/KT). (Ab)
If Kyrp(t) > 1, then the asymptotic expansion of E.(z)
can be used:

If 1/K, < t — ty < 1/K, exp (E,/KT) and t — t4 >
[1/Kip(ts) ], then we may use the asymptotic expansion
of the exponential integral for small and large arguments

to get
E@ =157 P L Y T (—;,—K)IT(—W—)]-

Fort > t; + [1/Kip(t3)], (A3) reduces to b (A12)

N., N..
nll) = | 4 Kooxp (CE/RT) 1 . Ko oxp (ZB/KT)

Kip() Kip(ts)

cexp [~ Kip(t)r(1 — exp (= (t — t;)/7)) — Ky-(t — &) exp (=E/KT)]. (A7)

Two special cases are of interest. First, if Kip(t3)r > 1, REFERENCES
then the sccond term is negligible for ¢ > ¢3 + 7, and (1] A. M. Mohsen, T. C. McGill, and C. Mead, “Charge

(A7) reduces to

N.,
K, exp (—E/KT)’

K\p(t) )
Thus the interface states have a small effective time con-
stant ree and can equilibrate very rapidly with the mo-
bile carrier. Assuming a constant interface state density
N, states/em’-eV and a constant capture cross scction
o cm?, the total density of trapped carriers p. is given
by

n.(f) = (A8)

1+

E,
pu = [ nu(0 dB

[exp (E,/KT) + Klf;(t)]

K,
[‘ mm]

If 1/Kz < [1/Kip(8)] < 1/K; exp(E,/KT), then
— KT n X2 )

r = Nu(
P Kp(t)
Second, if Kip(t)r < 1, (A7) reduces to

Ny
K, K, exp ( E/KT)

lp(tc
“exp [—=K,(t — t)] exp (—E/KT)

= N, KT In

(A9)

Ny =

L+ ==

t> t, (A10)
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Chapter 4

TWO DIMENSIONAL ELECTROSTATIC ANALYSIS OF
BURIED CHANNEL CHARGE COUPLED DEVICES

4.1 Introduction

Although one dimensional electrostatic calculations give a fairly
good understanding of the device characteristics, it is not enough' to
describe the complete electrostatic characteristics of the device
structure. The reason js as following: In the case of surface CCD's
the minimum potential is directly controlled by the gate voltage
through the thin silicon dioxide, and the resulting fringing field is
relatively small. However, in the buried channel CCD the minimum
potential is in the buried layer deep in the bulk and the influence of
the gate voltage upon the minimum potential is smoothed out more
effectively, by the neighboring electrodes resulting in high fringing
fields along the direction of the charge transfer. This fact makes it
necessary to consider variation of the potential not only normal to
the insulator semiconductor interface but also along the direction of
charge transfer. Thus, the two dimensional electrostatic analysis of
buried channel CCD becomes essential to the understanding and estima-
tion of the usefulness of this device.

In this chapter, a detailed two dimensional electrostatic analysis
of buried channel CCD is presented. In the next section the results
of the electrostatic analysis of the basic one dimensional MOS struc-

ture for buried channel CCD are reviewed and summarized in order to
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establish a basis to the two dimensional electrostatic analysis. The
simplest standard two dimensional electrostatic analysis is first
described in Section 4.3 for a surface field effect transistor with
p-type, epitaxially grown, metallurgical channel. This transistor
structure is simple but complex enough to have many of the character-
istics that are found in buried channel CCD. The gradual channel
approximation for the transistor is first presented and compared with
the exact two dimensional numerical calculation. Furthermore the
analysis is extended to the case in which there is no mobile charge in
the channel, that is, in the completely depleted channel. And it is
shown that the correction in the channel potential tb the gradual
channel approximation is proportional to the curvature of the potential
with a fairly good accuracy. In Section 4.4, the resultsof the two
dimensional numerical calculation of the minimum potential profile in
buried channel CCD are presented and it is shown in Section 4.5 that
the speculation given in Section 4.3 about the relation between the
minimum potential and its curvature is also valid in the more compli-
cated structure of buried channel CCD. This physical interpretation
leads to a simple capacitance model which is also discussed in

Section 4.5. This simple electrostatic model replaces the two
dimensional nonlinear Poisson equation by a Tinear second order differ-
ential equation with a single spatial coordinate. In Section 4.6, the
complete dynamic charge transfer model compatible with actual
numerical calculations is established with this simple capacitance

model. The consequence of this dynamic charge transfer model remains to



93

be studied in the next chapter.

4.2 Basic One Dimensional MOS Structure

In this section we first present the channel potential o and the
gate capacitance Cg in terms of the signal charge Q and the gate vol-
tage OcF- Furthermore, for a Gaussian doping profile we describe the
procedure to obtain the effective p-diffusion density NA and the
effective diffusion depth Xd from the surface charge density NS and the
p-n junction depth Xg.

The expressions appearing in this section are essential in develop-
ing the Tater sections and are frequently quoted. To make this chapter
as independent as possible from the other chapters, the review and
summary of the one dimensional analysis are given here.

The salient physical parameters which appear in the basic one
dimensional MOS structure consists of four fixed parameters that can be
controlled in the fabrication of device, and three more variables,
among which there is only one constraint during the device operations.
The four fixed parameters are the oxide thickness Xo’ the p-diffusion
depth Xd’ the p-diffusion doping concentration NA’ and the substrate
doping Nd‘ The other three parameters are the equivalent gate voltage
OF> the signal charge Q and the channel potential O The associated
constraint among the three variables can be written as an expression
of the potential o in terms of the gate voltage and the signal charge
Q.

This expression establishes a procedure for calculating the

minimum potential o if the gate voltage OcF and the signal
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charge Q are pre-specified. The procedure is outlined below.
First calculate the three parameters ¢t’ 4y and R defined by the

following three equations

N ga.
A~Si
¢ = ) (4']a)
t 2C 2
0
¢ C C
e (g2 0] SCR
t d d d d
and
Ny oo -0
R = A d)t +¢ SF s (4_]C)
2Nd d it

where Qd = Ndxd and Cd = eSi/Xd‘ €q3 is the silicon dielectric con-
stant (648 e/volteu). CO is the oxide capacitance.
Then the channel potential ¢m can be expressed as
Nd
By = <1 ", f(R) [¢d . ¢SF] »  (4-1d)

where f(R) is a slowly varying function of R and defined by

f(R) = —= . (8-1e)

1+R+ Y1 +2R

From these equations given above, it is also possible to express the
signal charge Q in terms of the gate voltage and the minimum potential

¢ The result is presented below for future use:

m
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C -6 2 bep = ¢
- <] + Ed—>-‘/7¢—-m— - \K—Cc-‘i> + (__________qu) L > . (4-2a)
d 0 q 0 p

where ¢p and ¢q are defined by

L ‘O

N
by = 2o : , (4-2b)
and NA
de = (1 + Na) o . (4-2¢)

The gate capacitance Cq can be written in general as a series com-
bination of the oxide capacitance CO, the surface depletion capacitance

C] and the metallurgical junction capacitance C2 as seen by

1.1

Cg CO

e

1
+ N . (4-3a)

If we define the two parameters A and B as seen by

N N; C
_ d Q. 'd-“d
A=+ (1 } + . (4-3b)
_ NA Qd NA Co
and
B = (1 + ﬁé) [(1 Q2 féf} (4-3c)
NA Qd d’q

Then the gate capacitance Cq can be calculated from A and B by the

expression given below:

N.C
Cy = d d . (4-3d)
o
NA «vA - B

Observe that the parameter ¢q is of the order of 324 volts but the range

of the gate voltage OcF is of the order of 20 volts. Hence, the parameter



96

B does not change much during the gate voltage swing. Hence the gate
capacitance Cg is fairly constant with respect to gate voltage.

We are now in a position to describe the procedure to obtain the
effective p-diffusion density NA and the effective diffusion depth Xd
from the surface density NS and the p-n junction depth Xg'

The total sheet charge density Qd in the p-diffusion layer is
then given as before by Qd = NAXd' This quantity is equal to the
spatial integration of the charge density from the S1‘-S1‘O2 interface
to the p-n junction depth Xg. The charge density is described by the

Gaussian charge distribution function d(x) given by

2 X |2
d(x) = Ny - (NS + Nd) exp |- a (X;Q . (4-4a)
where
2 Ns
a” = 1In (1 + N—J . (4-4b)
d

We choose the effective depth Xd to be at the reflection point of the

Gaussian dopinag profile and obtain the expression as seen by

X
- g
X4 = - 4 . (4-4c)
>)
In(1 + ==
N4
Since the total sheet charge density Qd is given by
X
g /e 2
- -y _ /mexp (o) | ] i
Qq J~ d(x)dx ”dyg [1 5= rf(a) , (4-4d)
0

where erf is the error function, we then obtain the effective p-

diffusion density NA from the relation given by
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SO

2
Ny = ~d _ Nd[:g__ /?'exp(g ) erf(a)} . (4-te)
d 20

4.3 Surfacé Field Effect Transistor with Metallurgical Channel

The structure of a surface field effect transistor with p-type,
epitaxial grown, metallurgical channel is depicted in Fig. 4.la. We
analyze this simple structure first in order to understand the basic
underlying principles applicable also in the more complicated buried
channel charge coupled device structure shown in Fig. 4.1b. Specifically
we consider first the current-voltage characteristics, the turn-off
voltage, the saturation current, the transconductance and the
response time of the transistor. These characteristics are essential
in defining the functional capabilities of the transistor and in return
give a good guide line in design and estimation of the usefulness of
the more complicated structure of buried channel CCD. Furthermore, the
channel potential at the onset of saturation is analyzed in gradual
channel approximation and compared with the exact numerical solutions.
This analysis is extended to the case of the completely depleted
channel, that is, no mobile charge in the channel. This study leads to
a very interesting result about the channel potential profile. The
channel potential seems to decay exponentially, as we go farther from
the source to drain, to the final value of the drain saturation
voltage. This speculation leads to the simple capacitance model to be
discussed in the subsequent sections.

Returning to Fig. 4.7a, we begin the analysis with the qualitative
description of the surface field effect transistor. In the following

calculations, we consider only that portion of the channel which can be
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Fig. 4.1a The structure of a surface field effect transistor
with a metalurgical channel. The channel is p-type,
epitaxially grown.

Fig. 4.1b One unit cell of overlapping gate buried channel CCD.
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modulated by the application of the gate voltage. In reality, there
are series resistances present, both near the source and near the
drain, which impose an IR drop between the source and drain contacts
and the channel.

In normal operations, the source and drain voltages will be biased
negative with respect to the substrate to maintain the p-n junction
reverse biased. If the drain voltage ¢b is further biased negative
with respect to the source voltage ¢g, the mobile signal charges
(holes in this p-channel device) will flow from source to drain through
the p-type region enclosed between the two depletion regions. The p-
diffusion layer doping NA is normally made 20 ~ 30 times larger than
the substrate doping Nd’ And the corresponding p-n junction depletion
layer will not modulate the channel width significantly. However, the
gate voltage will influence the channel width significantly through the
surface electric field. The actual channel width XCH can be calculated
from Eq. (4-2a), knowing that the signal charge Q is simply given by
the product NAXCH' In the relation (4-2a) we note the value of ¢q is
much larger than ¢p‘ The last term in RHS of Eq. (4-2a) presents the
modulation of the channel by the surface electric field which in turn 1S
controlled by the effective gate voltage dp- On the other hand, the
p-n junction depletion width will be influenced by the channel potential

d But because of the large value of ¢q’ the middle term in Eq. (4-2a)

n
is very small and the corresponding p-n junction depletion Tayer does
not have a significant effect upon the total channel width XCH'

The most important characteristic of any type of transistor is
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the current-voltage relationship, and we now formulate our analysis to
this goal. The calculations of the turn-off voltaae, the saturation
current and the transconductance are the natural extension of this
following analysis.

The resistance dR of the elemental section dy of the channel is

given accordina to gradual channel approximation by

dy

Z gy Q050 »  (4-5a)

dR =

where 7 desianates the width of the p-diffusion layer. (Recall the
depth of the p-diffusion layer is denoted by Id ). The hole mobility
My in the bulk silicon is taken to be 480 cmz/vnlt‘sec in the later
calculation, The amount of the mobile signal charge Q depends on
the aate voltage bcF and the local channel potential . which is also
a function of the spatial coordinate y, taken alona the direction of the
charae transfer. The source and drain ends are defined to be located
at y = 0 and y = L respectively.

The voltage drop across the elemental section of the channel is

then aiven by

—Id dy
dvV = -1 dR =

»  (4-5b)
d Z 1504 50p)

vihere Id is the drain current which we would like to calculate in terms

of the gate, source, and drain voltages. The intearation of

Eq. (4-5b) with the epxression Q(¢, ¢SF) substituted from Eq. (4-2a)
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yields the drain current Id as seen by

Tg(ogpstg00q) = G [F(¢sF’¢s) - F(¢sF’¢d)] . (4-5¢)

where F(¢SF,¢) is defined by

/ Cd ) ( )3/2 ) Cd 2 ¢ F_¢ 3/2
= ) 28=9) L2, [(d),1s
F(¢SF’¢) b +'CO)¢ + 3 /g— + 3 ¢p [(CO) ¥ ¢p J , (4“5d)
q

and Go is the conduction of the p-type diffusion layer, discounting the
presence of the two depletion regions altoaether, and given by
ZUde/L-

The channel conductance g in the linear reaion can be calculated
by expanding the drain current at the source and takina (¢4 = ¢S) very
small, That is, in the linear reaion, the drain current will be given
as

_ ] ) , (4-5e)

Ly(ogpstgaty) = 6 0, (oo - 04)
and the corresponding channel conductance q is given by takino the qgate
voltage L constant and as seen by

ao o) - 21y e 0o pat)

S\TgF* ¥ 0 Q )

3o, - 94) d
S d _
¢sF = constant

(4-5F)

We note that Q(¢SF,¢S) is given by Eq. (4-2a), replacing the channel

potential ¢m by the source veltaage ¢S. The channel potential g in the
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linear reaion is independent of the relative voltage difference (¢d-¢s)
between the source and drain, but depends on the source ¢S and the cate
voltage depe (Of course, in the range of validity of linear expansion,
¢g =~ ¢S)'

We are now in the position to extend the above analysis to obtain
the expressions for the turn-off voltage, the saturation current and
the transconductance. These physical parameters are important not
only in characterizing the surface field effect transistor but also in
understanding the qualitative aspects pf dynamic charge transfer
process in buried channel CCD's |

For a fixed source voltage ¢g» S We increase the ogate voltaae
¢sps the channel conductance decreases because the surface depletion
width increases as seen in the last term in RHS of Eq. (4-2a). At a
certain gate voltage, the conductance vanishes altogether. This turn-
off voltace can be calculated from the condition q=0.0o0r

Q(¢SF,¢S) = 0,0 of Eq. (4-2a) to be the value ¢gp = Vo with V; given by

T

- ch —¢S
Vo = o + o <1-V._S_>(] + ———-‘/ — . (4-6a)
T S P ¢q Co ¢q

In the Tinear reaion (¢q4 =~ ¢S) with the fixed source voltage ¢ the
condition of the zero channel width XCH is given by the gate voltaae oq
to the turn-off voltace V; as seen above.

On the other hand, for a fixed cate voltage ¢, the drain satura-

tion voltaae Sdsat (or the pinch-off voltage) is defined to be the
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value of the drain voltage at the zero channel width, XCH = 0.0, at the
drain terminal., This implies that the relation between the gate
voltage and the drain saturation voltage ¢4 sat AN be written exactly

in the form aiven by Eq. (4-6a) and we obtain

[% sat Ly P zat
%sF T 9% sat ¢p = ¢q 1+ CO . ¢q . (4-6b)

We must solve Eq., (4-6b) to obtain the drain saturation voltage

¢d sat
in terms of the fixed gate voltaae ¢G‘ But this has been done. And

the result is simply given by Eq., (4-1d) with the zero sional charge
Q = 0,0, Substitution of the so-obtained drain saturation voltaage
b4 sat into the current-voltace relationship Eq, (4-5¢) gives the
maanitude of the drain saturation current, Id sat®
Another important property of the transistor is the transconduc-
tance defined as the chanae of drain current at a given drain voltaae
upon a change in gate voltace, This quantity is necative for p-channel
devices because the channel resistance increases as we increase the

cate voltage resulting the decrease in the drain voltaace. The maanitude

of the transconductance can be calculated from (4-5c) to be

2 2 \
- n \/Eg_ & *sF%y _\/ Eg_ N *sF?s
0 C ) C b

0 p 0 5

BID

a¢sF

O~

¢d=const
(4-6¢)
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The transconductance in the linear region can be obtained by expand-
ing the bracketed terms in Eq. (4-6c) above. Conversely, the transcon-
ductance in the saturation region can be calculated by inserting
¢d = 94 sat into Eq. (4-6c). This yields, applying the relation (4-6b),
the same expression (4-5f). This shows that the transconductance in
the saturation reagion is exactly equal to the channel conductance in
the linear reaion,

One more aspect of the transistor characterization remains to be
studied. This is the response time of the transistor. Uhen the qate
voltace ¢sF changes by an amount A¢SF, the channel width XCH will be
modulated because there is also the correspondino chanage in charae
contained within the depletion regions surroundina the channel. This
additional charae in the depletion reaion is equal to the amount of
the induced charage Ag on the cate. The response time of the system
can then be defined as that time in which the chanage in the drain
current makes up the chanoce in the total charae on the gate, that is,

tAID = AQg. Thus it follows that this response time is aiven by

AQG Ad)sF - C
B By &/ I »  (4-73)

=

where a is the transconductance aiven by Eq. (4-6¢c) and C. is the total

G
cate capacitance we must intearate Cg(¢SF,Q) over the area of the gate.

That is,

Calogpsdqo0,) = Z ng(dJSF,Q)dy . (4-7b)

0
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The use of the relation (4-5b) and regardina the sianal charge Q to
be a function of the local channel potential ¢ as aiven by Eq. (4-2a)
results in a simple procedure to calculate the total cate capacitance

CG in terms of the aate, source and drain voltages.

2 &
JARY
P =
Ce T Uospgp) Cologp,Q) de . (4-7c)
i

The instantaneous current on the gate (or the clock load) is simply

given by

j = CG dt ° (4-7d)

We have now come to the stace of the most important discussion in
this section. This is about the channel potential at the onset of
saturation, The validity of the gradual channel approximation fails
in this transit condition. And we have to rely on the exact two
dimensional numerical calculation,

Figure 4.2a illustrates the conditions that prevail under the onset
of saturation. The values of the salient parameters in this calculation
are Ny = 20,000 e/u3, Ny = 1,000 e/u>, Xy = Tu , X_ = 0,12 , o = =20.0
volt, OsF = -18.0 volt, and L = 12y, The drain voltage 94 is computed
by Eq. (4-1d) with Q = 0.0 (the condition of the drain saturation
voltaae) and is found to be -32.8 volt. The solid curve in Figa. 4.2b
represents the channel potential along the direction of the charge

transfer computed by the aradual channel approximation. The validity
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4.2a The ideal condition at the onset of saturation is
i]1ustrated.¢d=¢dsat=-32.8 volt and ¢ =-20volt.

4.2b The channel potentials computed by the gradual
channel approximation and the numerical computation

are compared. The gate length L is 12y. ¢SF=-18 volt.
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of this approximation is confirmed by the actual two dimensional numer-
ical calculation shown as a dashed curve in Fia, 4,2b,

This calculation is done under the condition of steady state and
the channel potential depends strongly upon the charge profile., If
there is no mobile charge at the onset of saturation, that is, when the
source voltage is raised from %4 sat to the present value of -20 volt
very suddenly, there is still some time to ao for the system to reach
the steady state illustrated in Fig. 4.2a. The channel will be opened
from the source to the drain gradually. And the correspondina channel
potential charaes as illustrated qualitatively in Fiqg. 4.3. The
validity of the qradual channel approximation fails in this transit
condition, And we have to rely on the exact two dimensional numerical
calculation for the channel potential. Moreover, to obtain the exact
transit curves 1, 2, 3 and 4 depicted in Fiqg. 4.3, we must couple the
two dimensional continuity equation to the Poisson's eaquation. We have
not done this, Ve simply showed the qualitative channel boundary and
potential profile in the transit conditions. However the actual channel
potential at t = 0.0 can be computed by the two dimensional Poisson's
equation above, And the curve shown in Fig. 4.,3a is the result of the
exact numerical calculation. The channel potential seems to decay
exponentially, as we ao further from the source to drain, to the final
value of the drain saturation voltaae %4 sat- This speculation is
verified when the curvature 82¢/ay2 is plotted against the difference

(¢ - 94 Sat) as shown in Fia., 4.3c. Indeed the channel potential
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Fig. 4.3a The boundary of the channel at the transition period

when the drain voltage changes suddenly from ¢ to ¢4 .
sa

Fig. 4.3b  The channel potential at transit times. The profiles
at t = 0 and t = = are calculated exactly.

Fig. 4.3c  The curvature of the channel potential.
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follows the simple relation aiven by

AT —5 = (¢ - d)d sat) [} (4'8)

with A = 0,67 ., The deviation (¢ - 94 Sat) from the gradual channel
approximation is proportional to the curvature of the potential with a
fairly good accuracy. This characteristic can also be observed in the
more complicated structure of Fia. 4.1b. The physical interpretation

of Eq. (4-8a) leads to the simple capacitance model to be discussed in the
later section.

This concludes thelreview of the basic underlying principles of

the field effect transistor with the metallurcical p-type channel,
With this amount of knowledae, it is now a straichtforward procedure to
extend the above analysis to the electrostatic problem of two

dimensional Buried Channel Charge Coupled Devices.

4,4 Minimum Potential Profile in Buried Channel Charge Coupled Devices

In this section we will describe the general characteristics of
the channel potential profile and the resulting fringing field in buried
channel charoe coupled devices. The detail of the solution of the two
dimensional Poisson equation is further studied and the results are
compared with the relations implied in one dimensional depletion approx-
imation. In order to clarify the computational procedure, the nature
of two dimensional Poisson's equation for the buried channel charae
coupled devices is also discussed. The interpretation of the detailed

results presented in this section remains to be studied in the next
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section.

One of the major factors causina the buried channel device to
differ from the surface channel device, can be illustrated by the rela-
tionship of the cate oxide capacitance to the depth of the potential
well produced by that gate. fGiven two identical aate electrodes at
the same potential, in a surface channel device the gate with the larcer
oxide capacitance will produce the deeper well at the interface. In a
buried channel device, the cate with the smaller oxide capacitance
will produce the deeper well in the depleted channel. Hence the
aluminum and silicon qate should be used as storage and transfer aates,
respectively in buried channel charage coupled devices, In the
structure illustrated in Fig. 4.1b, the oxide thickness is 0.12u under
polysilicon electrodes and 0,32y under the aluminum electrodes.

For two-phase operation the one dimensional analysis shows that
the values of 0,0 volt for the source gates and -18,0 volt for the
receiving qates should give the optimum minimum potential profile alona
the direction of the sianal charge transport. Two dimensional Poisson's
equation corresponding to the structure shown in Fia, (4,1b) is solved
numerically for zero signal charge, The result is shown in Fiq. 4.4,
The minimum frinoing fields are found to be 824 volt/cm under the silicon
transfer aate and 1796 volt/cm under the aluminum gate, These values
are one order of magnitude bigger than the surface CCD frinaing fields
strenath,

Under these physical conditions present, it is of interest to con-

sider how the mobile signal charge profile would affect the overall
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Nd=1000 e/u3 , and Xd=l.OM.. The shaded region is the

potential 1ift due to the signal charge in the well.
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view of the minimum potential profile. As the sianal charge is beino
transferred into the storage well under the aluminum drain cate, the
signal charge should raise the minimum potential from the zero-sional
level (-39.9 volts). But as seen in Fia, 4.4, the minimum potential
under the aluminum drain gate should not be raised higher than the
level (=31.6 volt) of the minimum potential under the silicon transfer
nate., This condition limits the maximum sional capacity down to 30%
of Qd = NA XCH’ i.e., 6000 e/uz. If the gate dimension is 100u by
124, then the maximum sianal charce that can be processed is 7.2
million electron charages.

However, for three or four phase clockina schemes, the maximum
siagnal charge processing capacity will be quite possibly laraer,

In Fiq., 4.5, we have plotted the frinaing field profiles under
the aluminum source oate and silicon transfer gate in an expanding
scale.

The above result is the most important one in the two dimensional
electrostatic analysis of buried channel CCD's, and needsto be studied
in order to obtain the important correlations between the one dimensional
and two dimensional analysis, Specifically, we expect the solution of
one dimensional depletion approximation to cive fairly good agreements
with the solution of the two dimensional Poisson's equation in the most
of the area except at the interelectrode reqions. In Fig. 4.6, we have
plotted the following three quantities which represent errors involved

in the linear depletion approximation
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Fig. 4.5 The fringing field profile in an exponential scale
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transfer electrode.
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In one dimensional structure these three quantities €1s € and €4 are
theoretically all zero. This error estimate indicates that our
results are in aood aareement in all but the small interelectrode
regions,

To complete our discussion we have plotted in Fio. 4,7 the surface
electric field ES perpendicular to the interface and the depth Xy of the
surface field induced space charge reaion, Note x] denotes the position
of the minimum potential from the interface. The surface potential ¢S
and the minimum potential ¢, are compared in Fiq. 4,8,

It is very important at this staage to describe the nature of the
two dimensional Poisson equation appropriate for the structure of buried
channel CCD's, The detailed results presented above can be reproduced

with the aid of the discussions given below.

Poisson's equation for two dimensional buried channel charoe coupled
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devices has a similar form to that of one dimensional form in which the
quasi-fermi level ¢ of electrons is approximated to be a constant
throughout in the semiconductor whose value is equal to the fermi level
d¢ deep in the substrate. The presence of signal charge determines the
form of the quasi-fermi level ¢p of holes in the p-diffusion region.
But in the n-type Si-substrates, its value can be approximated by the
fermi level ¢f. In the operation of buried channel charge coupled
devices, the quasi-fermi level ¢p of holes in the p-diffusion reaion
can be assumed to be a function of the y-coordinate only, which is
defined parallel to the direction of charage transfer. From Boltzmann
statistics (which is a qood approximation for Fermi-Dirac statistics
for energies at least several kT away from quasi-fermi levels), we have

the concentration of holes in the form as seen by

_ p
P =n;expy kT

Fo, - (¢ +0)
s ] ., (4-10a)

where n, is the intrinstic electron or hole density and ¢0 is determined

by the definition of the reference potential deep in the substrate to be

d \/ N
d)o = kT In . + 1+ (’z'?r') . (4-10[’))

Note Nys ¢o and ¢p are all constant along the depth of the semiconductor,

that is, alona x-axis.
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Hence we observe that the condition of no x-coordinate dependence of the

quasi-fermi level ¢, of holes is equivalent to no sianal charce motion

p
alona x-coordinate (perpendicular to semiconductor surface)

= _p 3P _ 9% .
Jx D 3% = P 3x 0

(4-10¢)
This assumption is essential in the description of the dvnamic sianal
charage transfer which will be discussed later in this thesis. The

Poisson's equation in the p-diffusion reaion is civen by

QEsM o [d(x) + p(¢,¢p)] ,
dx2 dy2 €54

(4-10d)

where ¢p is assumed to be a function of y-coordinate only, In the n-

type Si substrate, the Poisson's equation is aiven by

2y d2 [d(x) - Hyexp(o/kT)]

T T T € . (4-10e)

After solving the Poisson's equation, we obtain the potential ¢(x,y)
everywhere, And if we obtain the position Xm(y) of the minimum potential
alono the direction of charce transfer. Ve can write the mobile sicnal

charae density p(x,y) as

p(x,y) = ~d(X ) exp () . (4-10f)
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where the quantity ¢h is related to the quasi-fermi level of holes in

the p-diffusion recion by

(4-10q)

When the doping d(x) is considered uniform and qiven by ('NA) in the p-

diffusion layer, Ea. (4-100) becomes

NN _
_ Ad (4-10h)
= ¢ - kT In \-25 .
;

And the mobile sional charce is written as

/
b, = ¢
p(x,y) = Ny exp (igpﬁf“> . (4-107)

tq is the minimum potential for this case alono the direction of the
signal charge transfer. ¢4 = oY),

The condition of zero sional charge everywhere corresponds to the
case in which the quasi-fermi level ¢p for holes is such that the
quantity (¢q—¢)/kT in Eq. (4-10q) is a very large neaative value
everywhere, In this case, in p-diffusion laver, we can write the

Poisson's equation as

d® , &% . . (4-105)

dxl  dy? €g;

We assume that the doping profile d(x) does not vary alona the
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direction of charge transfer (y-axis).

4.5 Capacitor Network Model for Buried Channel Charae Coupled Devices

In the previous sections we have shown that the exact numerical
calculation of the two dimension Poisson's equation results in the
channel potential which differs from the one dimensional aradual channel
approximation by an amount which is proportional to the second spatial
derivative of the exact channel potential (Ref. Eq. (4-8)). Numerically
we have found the decay length A to be 0.67p for the particular values
of the physical parameters., We now give a simple physical system which
may explain this result better, The following is the derivation of
the simple capacitance network model for buried channel CCD's,

For two dimensional BCCD structure, we consider the differential
capacitor network shown in Fia. 4,9b, which is obtained by inter-
connectina the cne dimensional series capacitance structure shown in
Fig. 4.9a by another capacitance C. Note that CO, C] and C2 are in
capacitance per unit area while C has a dimension of capacitance., And
physically we expect the value of the capacitance C to be of the order
of eSiXd' From Fia. 4,9b the differential sional charge per unit

lenath is aiven by

andy =(n¢mj—n¢5 ) C]dy + a¢m_ C2dy +(a¢m_-a¢m ) C/dy +(a¢m.—a¢m >C/dy

J J ] j-1 j j+1
(4-11a)

Note 30j has a dimension of charge per unit area. The differential,

a¢m, of the minimum potential is related to the differential cate
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voltage a¢G by

@¢sj'3¢ej) LAy * <3¢Sj-3¢mj> Cidy =0 . (4-11b)

Hence the differential surface potential is qiven by

Co 3%, T Cq 3¢9y

- J . 4-11
S9e T (-Tie)
J 0 1

Substitution of Eq. (4-11c) into Eq. (4-11a) results in a differential

equation for the differential minimum potential M

¢ = 9¢
2 m m
N I T o (a-114)
dys " m
90 5
where (a¢m/aQ)0 and 3¢y, are the solutions when we take one dimensional
n s

case depicted in Fia, 4,9a. Finally by addina constants, we obtain

2 o _ ¢
d”¢ m m0

mo_ 4-12
2 (é¢m/ao)0 ( )

dy

This simple equation implies that the minimum potential profile O is
linearly dependent upon its second derivative wherever 3, and
(a¢m/80)0 are constant, In two dimensional BCCD structure? these two
quantities are indeed constant except at the interelectrode reaions
where the effective oxide thickness and gate voltace are chanaina

abruptly. But these interelectrode reaions are extremely narrow and

their field effect on the overall minimum potential profile is quite
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nealigible. Hence we can approximate ¢m0 and (a¢m/aQ)O by step functions
whose values are to be obtained by solving the Tinear MOS capacitance
by standard depletion approximation.

The Tinkage capacitance C is an adjustable parameter in this
model which depends only on the geometrical device parameters and its
value must be computed from the solution of two dimensional Poisson's
equation to give the best fit in Eq. (4-12)., The solution of Eq. (4-
12) is compared with the exact numerical solution in Fiq., 4.10 for no
sianal charce present in the channel. In Fia. 4,11 we present the.
phase diagram of the minimum potential which stronaly confirms the
walidity of this linkage model for BCCD structure. Notice that the

2¢m/ay2, is indeed a piecewise linear function of

second derivative, 3
the minimum potential ¢m as implied by Eq., (4-12)

However as seen in Fia, (4-12) the surface potential ¢é is not
quite piecewise linear. This linear dependence of the potential upon
its derivative is a valid assumption only for the minimum potential.

This capacitance model is successfully applied in actual dynamic
charge transfer calculation in buried channel CCD's.

In the actual charge transfer description, the minimum frinaing
field is the most important parameter to be considered. In Fia., 4.13,
we show how the values of the linkage capacitance C influence the
estimated minimum potential calculated by Eq. (4-12).

When the signal charce is present in the channel and qiven as a
function of y-coordinate, we can still compute the minimum potential

¢ and its signal-charae derivative (a¢m/aQ)0 by the linear depletion

Mo
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Fig. 4.10 The potential profile (dashed curve) obtained by
the capacitance model (Eq. 4-6) is compared with the
nunerical solution. The value of the linkage capacitance

C that gives the best fit is found to be 7.5 Esixd'
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Fig.4.12 The surface potential plotted against its second
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approximation., Then the use of [q. (4-1c) results in Fig. 4,14 which
shows the actual minimum potential profile in the two dimensional
BCCCD with signal charae present, whereby we use the same linkaqe
capacitance value C obtained previously.

When the aradual channel approximation is used, the minimum poten-
tial profile is not as smooth as the one solved by the linkaae capaci-
tance model, Physically we expect the electrostatic potential to change
smoothly as seen~in Fig., 4.14. Rewritina Eq. (4-12) as

bp(Q) = ¢mo(Q) - (55“) _—T;H (4-13)
we observe that the standard aradual channel approximation is equivalent
to assumine C = 0,0, Indeed, the second term in PHS of Eq, (4-13) aqives
a very small correction to the actual channel potential, Whenever there
is appreciable signal charoe present in the channel, the potential is
more or less aiven by the first term of PHS with a aood accuracy,
However, at the final stage of the charge transfer, there is very little
residual charage in the channel and the charge decay will be influenced
strongly by the fringing field., This fringino field actually
originates from the second term of Eq. (4-13) and it is important to
adjust the value of the capacitance C from the actual numerical date

of the potential profile with no signal present.
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Fig. 4.14 The physical location of the charge packet in the p-layer
is shown in the upper figure. The lower figure is the

minimum potential with signal charge present.
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4,6 Dynamic Charae Transfer Model

The transport dynamics in the p-diffusion channel in BCCD are

described by the two dimensional continuity equation,

3d 3d
P x_ Y -
ot X dy i (4-142)

where p is the signal charge concentration per unit volume. Integrating
over the p-diffusion depth and assuming no signal charge leakage at the
interface and p-n junction boundaries, that is, Jx =0 at x =0 and

X = Xd’ we obtain

X4
0Q _ _ 2 -
0

where we note

X4 X4
- p2Q _ 3% -
J Jydx D 5y UJ‘ p 5% dx . (4-14c¢)
0 0
Also we note from Eq. (4-10a)
LYo
3¢ _ _p kT dP . (4-14d)

3y  ay p dy

We have assumed the quasi fermi level of holes ¢p is independent of the
x-axis. Hence the first term of RHS of Eq. (4-14d) is independent
of the X-axis. We also assume that whenever there is appreciable hole

density, the density along the transverse direction with respect to the
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signal charge transfer will smooth out and be uniform., If we assume
this, the potential gradient 34/9y becomes a constant value along the
x-axis in the reaion where the signal charge is appreciable,

Therefore we can take the potential gradient 23¢/3y outside of
the intearal of Eq. (4-14c), And fimally the continuity equation

describina the charge transfer dynamics becomes

2 ¢
3Q 230, 2 [ __m} . 4-15
Tl ayz gy Q dy ( )

Intuitively this result might have been expected but what was not clear
is what physical assumptions lead to this result. First we assumed

the quasi-fermi level ¢p does not depend on x-coordinate in the p-
diffusion layer. This assumption immediately gives the current density

3¢
along the x-axis to be zero. J_ = —P = 0,0, But this condition

x - "M 5X

was not enough to derive Eq. (4-15). We must speculate that the mobile
signal charge p also does not have the x-coordinate dependencé wherever
there is appreciable signal charae, That is, the mobile sianal charage
density is not graded along the transverse direction with respect to the
signal charge transfer,

We have now established the complete dynamic charae transfer model
compatible to actual numerical calculations. The simultaneous computa-
tion of the signal charae Q(y) and the channel potential ¢m(y) from the

two final equations (4-13) and (4-15) aives the actual time dependent

solutions of Q(y) and ¢m(y). The initial condition is the signal
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charge profile O(y) at t = 0,0. Using Eq. (4-13) alone, we compute the
channel potential ¢m(y) at t = 0.0, Before specifying the initial
charae profile Q(y), the constant C must be adjusted from the actual
two dimensional calculation of the Poisson's equation relevant to the

dynamic system.

4,7 Conclusion

Choosing adequate values for the device parameters two dimensional
Poisson's equation was solved numerically., The resulting minimum
potential and its fringing field profiles were presented and compared
with the linkage capacitance model developed in the content., The
continuity equation for the charge transfer in BCCD was discussed,
The fundamentals of the computational procedure for the charge transfer

dynamics of BCCD have been established herein.
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Chapter 5

FREE CHARGE TRANSFER IN RURIED CHANNEL CHARGE COUPLED DEVICES

1.1 Introduction

Previous theoretical work on the operation of charce transfer
devices has focused upon surface charge coupled devices and inteqrated
circuit versions of the bucket bricade shift reaisters. Another type of
charae transfer device, namely buried channel charge coupled device, is
known to have several advantaaes over the former two devices, However,
up to the present, only a static two dimensional model of buried channel
charae coupled devices has been considered. The static model has not
been incorporated in dynamic charge transfer description; and, conse-
quently, our understanding of the device operation has been quite
qﬁa]itative.

In this chapter we present the results of a detailed numerical
simulation of the charce transfer process in a realistic model of a
hiah density buried channel CCD. The aeneral set of partial differ-
ential equations describinc charce transfer and the electrostatic
potential has been reduced to a set of two partial differential equations
involvina a sinale spatial dimension and the time. To accomplish this
we have used a simple capacitance network model to reduce the appropriate
two dimensional Poisson's equation into a second order differential
equation in a single spatial dimension, The resultina equation
relates the sional charae and the minimum channel potential under all

the relevant electrodes and interelectrode reaions. A diffusion
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equation describing the charge transfer is coupled to this equation. The
resulting coupled differential equations were solved and the results are
presented in this presentation.

In Section 5.2 the general set of partial differential equations
describing charge transfer and electrostatic potential is presented. The
equations are further simplified to obtain approximate but valid analytic
solutions in the subsequent sections. It is shown that the charge
transfer process in buried channel CCDs divides into three distinct
stages. In the first stage, the charge is confined under the source
storage gate and spreads itself according to the rapidly changing clock
voltages. This process is shown to take less than a nanosecond in Section
5.3. During the second stage discussed in Section 5.4, the charge
transfer occurs in a manner analogous to the operation of a buried
channel IGFET (see Section 4.3). The storage electrodes act as source
and drain, and the transfer electrode acts as the control gate. This
process is shown to take a few nanoseconds. In the final stage described
in Section 5.5, the charge transfer is characterized by transfer induced
by the relatively large fringing fields. It is shown in Section 5.6 that
the residual charge decays exponentially with a final characteristic
time constant of the order of a nanosecond. This process is shown to
require a time of the order of ten nanoseconds.

The entire charge transfer characteristics can be summarized in the
two illustrations shown in Fig. 5.1 and 5.2: in Fig. 5.la the
minimum potential, charge profile and current density at t=0.221 nano-

second are illustrated. At t = 0, the transfer and drain gate voltages
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start dropping to the final value (-10 volt) from the initial value

(10 volt). The plot is shown at the gate voltages of -8 volt. The
barrier and source gate voltages are set to be 10 volt throughout the
transfer process. Charge is normalized by 935 electron charges/u?.
Current density is normalized by 23.4 electron charges/u-nanosec. The
Tength L of one unit cell of the device is 48u consisting of two poly-
silicon gates and two aluminum gates. Fig. 5.1b depicts the charge
transfer at t = 0.443 nanosecond. Note the current density under the
transfer gate is almost constant. The charge transfer in this stége can
be described quite accurately by buried channel iGFET. Fig. 5.1c depicts
the charge transfer at t = 1.05. Note the slope of the current density
indicates that the net charge under the transfer gate is decreasing.

In the top of Fig. ¢, the net charging, charging and discharging of the
transfer gate are shown by the curves (a), (b) and (c). Current density
is normalized by QtotalD/Lz = ¢3.4 electron charges/m-nanosec. Time is
normalized by t = (0.001)L2/D = 1.92 nanoseconds with L = 48 and D = 12
cmz/sec. In the lower figure, the charge is shown as a percentage of the
total signal charge of 45,000 electron charges/w. The lines (a), (b),
and (c) represent the total residual charge under the source and trans-
fer gates, the charge under the source gate only, and the charge under
the transfer gate respectively. Note that the curves eventually become
straight, implying the exponential decay characteristics of the power-
ful field-aided transfer. The final slope ( hence, the characteristic
time constant) is 0.765 nanosecond for, lines (a) and (c), and u.165

nanosecond for line (b).
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Fig. 5.2 The charge and the current density plotted against

the transfer time normalized by (0.001)L2/D = 1.92 nsec.
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5.2 Transport Equations

Due to the two dimensional nature ofthe buried channel CCD struc-
ture, the storage and transfer of charae alona the buried channel should
be described by the two dimensional continuity equation together with
the two dimensional Poisson's equation. While this ricorous approach is
conceptually possible, the cost of such analysis leads us to seek some
valid approximation to simplify the solution, To accomplish this, in
Chapter 4 we have developed a set of two partial differential equations
involving a sinale spatial dimension and the time. According to this
model, the storace and transfer of charce alonag the buried channel is

described by the continuity equation

3 _ _ 3d
ot X ’ (5-1a)
where the diffusicon equation is aiven by
3
- 3 g m (5-1b)
J D 3% = ¥4 T5x ’

q is the she¢t charge density of the free mobile carriers in the buried
channel, J is the sheet current density and O is the minimum channel
potential. D and p are the carrier diffusion constant (12 cmz/sec)
and mobility (480 cmz/volt sec) in silicon,

The minimum channel potential aradient, a¢m/ax, is due to the
variable channel charoe density and the two dimensional nature of the

buried channel CCD structure. Accordina to the simple capacitance model
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developed in Chapter 4 the minimum channel potential profile can be
approximated by solvina the second order differential equation in a

sinale spatial dimension

JANECS
& - + C N
¢ = Vo (a5x) 5 5 (5-2)

where Vm(q,x) is the solution of the one-dimensional Poisson's equétion
with the parameters of the solutions chosen to correspond to the one
dimensional cut throuah the structure, In the standard aradual channel
approximation, ¢m is determined uniquely by the local sheet charce
density q and is oiven by Vm alone, (That is, in Fa, (5-2 ) above
C = 0.0). In this case, we note that, at the interelectrode reaions
where the charge density q changes abruptly, the electrostatic
potential ¢, also changes abruptly. However, physically the electro-
static potential must be continuous even thouah the charae density is
discontinuous., The electric field isthe one that becomes discontinuous
in this case. Hence, the aradual channel approximation is valid only
inder the electrode plates where the charae density is (spatially)
chanoing qradually. In Chapter 4 we have developed this differential
equation (5-2) to obtain an accurate minimum channel potential profile
under all the relevant electrodes and interelectrode reqgions,

The capacitance C was found to be of the order of XdESi where Xd

is the depth of the p-diffusion buried layer and e.. is the silicon

Si
dielectric constant. In the calculations presented below we have

considered p-channel device with dimensions consistent with typical
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layout tolerance of present silicon gate technology: Oxide thickness
is 0.12u under the silicon cates and 0,.32u under the aluminum gates, Xd
is taken to be 1.00p with the diffusion layer doping NA 25000 donors/u3,

the substrate doping Nd of 1000 donors/u3, and C = 7.5 XdeSi’

5.3 Self-Induced Drift Effect in the First Stage

In this section we study the charage transfer process in the first
stace. Specifically we will first show that the charge profile under the
source gate is of elliptic shape. This result is derived from the fact
that the current density under the ‘'source gate is a linear function in
spatial coordinate. The spatial integration of this charge profile is
the total charge Q(t) under the source gate, and the analytic expression
for the total charge Q(t) will be derived. This expression implies the
hyperbolic charge decay characteristics. And the further considerations
lead to the fact that this hyperbolic charce decay characteristic is not
the consequence of the constant current assumption but rather of much a
general nature, It is concluded that the Tumped circuit model aives
excellent aoreement with numerical results even though the current den-
sity at the beginnina of discharge is not really uniform in the spatial
coordinate.

We now begin the analysis, returning to the situation depicted in
the Fia, 5.1a in which the charae profile under the source gate is under
consideration.

As the adate voltages on the transfer gate and drain cate start
dropping from +10 volt to -8 volt, the charge under the source adate

spreads itself according to the rapidly changing channel potential, The
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response time is of the order of silicon relaxation time constant

t = ESi/“NA = 0,054 picosecond which is much smaller than values of

relax
interest, The charge takes about 0.2 nanoseconds propagating under the
transfer cate to reach its end, Fiaqure 5.1a illustrates the details of
the charge transfer at this stage., Note that the gradient of the current
density indicates the charage under the transfer ocate is still increasina.
The Tinear dependence of the aradient upon the spatial coordinate implies
that the time rate of chanae in the charage density (3q/3t) is the same
everywhere under the source cate. In this case, the current density

J(t,x) can be approximated by a linear function in spatial coordinate

and is given by
_ (X
J(t,x) = (E> J(t,0) R (5-3a)

where 2 is the lenath of the aluminum source gate (12yu)., Since at the
beainning of discharae the charae density under the source ocate is very
hiah, the field drift is predominantly due to the self-induced field

effect., Hence, neolectino also the thermal diffusion effect we obtain
m d -
Jz—q—-—z-%—qég , (5-3b)

where CO is the effective oxide capacitance. Solvinc Eqs. (5-3) we obtain

C
q(t,x) = ‘/ q2(t,o) e <;%>.J(t,g) . (5-4)
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That is, the charae profile is of elliptic shape. We indeed observe this
shape both in the charge and potential profiles under the source aate in
Fia. 5.1a

To obtain the total charge Q(t) under the source cate as an unique
function of time, we need one more condition., In general treatment of
charae transfer in surface CCD , this condition has been imposed on
the charaoe density a(t,2) at the end of the source cate and set to be
zero., This condition is based on the fact that the frinaina field at the
intérelectrode is so larce that we can assume a perfect sink at the end
of the transfer aate., However, as we observe in Fiaq, 5.,1a, the charge
density at the interelectrode reqion is relatively small but does not
diminish to zero. Inspecting Fia, 5.1a and 5,1b, we note that, at the
end of the source nate, the charge density decreases to about one-half
of the peak charae density q(t,0). Assuming q(t,2) q(t,0)/2 for the
time of interest, then by integrating Eq. (5-3b) for the current density

assumed in the form given by Eq. (5-3a), we obtain

3]J 2(

q
42Co

J(t,2) = t,0) ; (5-5a)

q(t,x) = q(t,0) W1 - %— ) . (5-5b)

and

0(t) =./. q(t,x)dx = %&-q(t,o) (5-5¢)
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Solving the continuity equation,

%%_z “J(t,2) . (5-6a)
We obtain
T
0 -
Ttk e .+ (5-60)
and
3(t,n) = at.0)
[1+ 0(0) _t ] . (5-6c)
Tk 220)
with
_4 Qo) _0(0)
3(t,0) =
(&0 =3 (/D) aC KT . (5-6d)

The form of the expression (5-6b) is a familiar form appearing in the
standard lumped circuit model in which the current density has been
assumed to be constant. In our case, however, as we can see in Fiq. 5.1a,
the current density is not constant at all. But we have obtained the
similar expression (5-6b) in our discharae model.

We will now show that the hyperbolic charge decay characteristic
as seen in Eq., (5.6b) above is not the consequence of the constant-
current assumption but rather is due to the nonlinear self-induced drift

effect alone., That is, independent of the assumption made on the current
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density profile, if we solve the nonlinear diffusion equation

3 )
—2—%=-——[—ﬂ—9] ., (5-7)

aX CO X
with appropriate boundary conditions we should obtain a similar expres-
sion to Eq, (5-6b). To make this point clear, we solve this Eq. (5-7)

in Appendix A by separation of variables with the following boundary

conditions

J(t,0)

)
- %i' 5%' =0 » (5'83)

and

q(t,2) = aq(t,o0) (5-8b)

with o being a fraction of unity. The solution is indeed qgiven by a

similar form to Eq. (5-6b):

o(t) = —o)
Q(o) t
1 flo
t fla) kT 20

) (5'9)

where f(a) is defined in the Appendix I and has been computed numerically.

In Appendix B, the same problem is treated for the case of uniform
current density in space. Q(t) is acain given as in Eq., (5-9) above but
in this case with f(a) beina a rational function of a«. The function

f(a) is plotted in Fig. 5.3 and compared for the both cases. Note that
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Fig. 5.3 f(a) defined by Eq. (A.6b) in Appendix A and
by Eq. (b.5) in Appendix B are shown in curve

(a) and (b) respectively.



147

the characteristic difference between the two cases is quite nealigible,
This observation supports the fact that the lumped circuit model qives
excellent agreement with numerical results even though the current density

at the beaginning of discharge is not really uniform in the spatial

coordinate.

5.4 Buried Channel IGFET in the Beainnina of the Second Staae

In this section we first describe the characteristics of the poten-
tial profile under the transfer cate at the beainnino of the second stage.
It is shown that the potential profile which we observe under the trans-
fer gate in Fig, 5.1b is a loaarithmic function in space. Assumina the
charae density at the beainnina of the transfer gate to be a constant
in time, the charae propagation time Tp for the charae to reach the end
of the transfer cate from the beoinning of the transfer cate is estimated.
The duration of the steady state after this propagation time is also
considered in this section,

In the Tumped circuit model, the current density under the transfer
gate is assumed to be uniform. Fiaure 5.1b 111ustr§tes the details of the
charae transfer at this stage. Ve observe in the fiqure that the charaqe
profile under the transfer gate is very much a linear function of the

spatial coordinate. Hence we write the charce density as

a(ton) = a(t,0) + (& act.n) - atso) . (5-100)
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Then, solving the expression (5-1b) for the potential profile in the
case of uniform current density, we obtain

6 (x) = ¢ (o) + 2J - kTt an |1 - (1-q) <5>

m m (T-a)uq(0) "\ s (5-11)

where o is defined by Eq. (5-8b) as before. Hence, the potential pro-
file which we observe under the transfer gate in Fia, 5.1b is a
looarithmic function in space. Since the current density under the
source cate in Fig, 5.1b is still quite linear in space, the charqge and
potential profiles under the source aates must be of elliptic shape as
we have discussed in the previous section. This stane should last as
lona as the source storage aate supplies the sicnal charae to flow
through the transfer qate. And the charce transfer in this stace is
quite adequately described by Ruried Channel IGFET,

e are now in the position to consider the propacation time and
the duration of the steady state in the beainninag of this second stane
of the charoce transfer,

We assume the charce density q(t,0) at the beainning of the trans-
fer gate to be a constant q 1in time. In this stace, the charce
propacation time o for theocharqe to reach the end of the transfer qate
from the beainnina of the transfer cate is estimated in Appendix C , and

is given by

C kT 2
- 0 2
L (0.38) <‘ q )('{j") . (5-11)
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Durino the transient period illustrated in Fig. 5.1a and 5.1b, we
observe the peak charge density at the beainning of the transfer cate
is fairly constant. This observation is supported by the fact that the
oradient of the current density goes throuagh zero in the interelectrode
reaion because the source gate is discharging and the transfer aate is
being charged in this period. (See the current density profiles in
Fig. 5.1a and 5.1b), Hence as a consequence of conservation of charae,
the total charge under the transfer gate must not chance in time. That
is, from the results illustrated in Fig. 5.2, we conclude this. staae
lasts only for a very short period. Note that Fia. 5.1b illustrates the
details of the charge transfer at the instant when the net charqina of
the transfer cate is zero. That is, in Fio, 5,2 (top), this is the
time when the line (a) passes throuah the zero. At the same time, in
Fia, 5.2 (bottom), the curve (c) is at its peak value and the curve (a)

starts decreasina,

5.5 Lumped Circuit Model in the Second Stace

In this section we first give the general description of the
charae transfer in the second stage, leadino to the calculation of the
total charae under the source qgate as a function of time., In this
calculation we assume an appropriate shape for the charae profile,
Furthermore, we will discuss the time it takes for the frinaina field
effect to become compatible to the self-induced field drift, and then
the time it takes more to observe the final exponential decay character-
istics., The analysis is extended to the calculation of the total charae

under the transfer gate as a function of time. And the time when the
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residual charge under the source gate becomes less than the charge under
the transfer gate is estimated,

In this second stage with minor modifications, the charae transfer
under the source aate is described quite adequately in the manner presented
in the Section 5.3. Since the charge density under the source aate is
diminishing to the amount that the thermal diffusion and fringina field
drift may soon become compatible to the self-induced field drift effect,
we include in the following analysis all of the three effects,

The presence of charge g raises the local channel potential - by
q/C0 whose qradient is the self-induced field, The difference of the
potential we observe in Fig. 5.1 is plotted as a function of the local
charge density q in Fig. 5.4, The potential difference is indeed propor-
tional to q and its proportionality constant is 1/C0. Hence formally

we can write the minimum channel potential as

(X)+91(;~>5)—
p 0

o (x) = ¢

m m " (5-12a)

where O (x) is the channel potential without any charge, Substitution
0
of Eq. (5-12a) into Eq. (5-16) results in

99

’ro
_ 3 u a3 0
J"D‘%"C;q'a%'“qax . (5-12b)

The total current density is aiven as a sum of thermal diffusion, self-
induced field drift and fringing field drift terms. This equation can

be solved in two different approaches. One way is to assume the current
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CHARGE DENSITY UNDER THE TRANSFER GATE

Fig. 5.4 Plot of the potential difference due to he charge

under the transfer gate. The curves (a),(b), and (c) cor-
respond to the three stages shown in Fig. 5.1. Note the
potential difference is roughly proportional to the charge
density. The effective capacitance (slope) is Cy=aq/aV

= 0.75 normalized charge density per volt.
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density to be constant, and obtain the charge profile by solving
Eq. (5-12b) for q. The other way is to assume a form for the charae
profile and evaluate the current density by Eq., (5-12b). We now qive a
simple arcument to obtain a solution of Eq. (5-12b) following the
latter approach.

From the plot of the charge profile in Fig. 5.1c, we simply note

that the charge profile can be roughly approximated by a linear function:

a(t,x) = q(t,0) [1 t {a-1) (%ﬂ . (5-13a)

.

Hence the total charge under the source gate is qgiven by
9
1 +
00) = [ a(eaex = M) ge,0) . (5-13)
0

We note from Fia. 5.1c, the charge density under the source gate can be
approximated by a linear function of space as was given by Eq. (5-3a).
The integration of Eq. (5-12b) over space results in the discharace
current density J(t,2) at the end of the source gate in terms of the

total charce under the source gate Q(t):

t) . (5-14a)

where LN is the exponential decay time constant when the second term in
RHS of Eaq, (5-14a) above becomes small compared to the first term and

given by
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Tty 1

T
- ] . (5-14b)

Tth

B is a constant (whose value is around unity) and aiven by

g = 16 [ 1 -« . (5-14c¢)
ﬂ2 1 o

The thermal diffusion and sinale carrier transit time constants, Teh and

Typs ar€ defined as

2
44
Tep = 7D . (5-15a)
7D
and
v, B S
tr na . (5=15b)

In this formalization the frinaing field is assumed to be constant for
simplicity and aiven by E. The effective strenath E may be estimated

by evaluating
2
&=f L dx
E . < 3¢)m> » (5']5C)

where 3¢, /3x is the gradient of the channel potential without any

0
charae shown in Fia. 5,5 (bottom) with solid line. Solving the
continuity equation (5-6a) we obtain the total charaoe under the source

gate as a function of time.
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and the reciprocal of the fringing field strength.
The dashed curve in the bottom is with the charge
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1 +8 TO %éQ%T.[1 - exp(—t/ro) . (5-16)

th “7o -
This equation has been derived under the assumption that the charae pro-
file is given by a linear function of the form given by Eq. (5-13a).
Hence, the peak of the charge profile is assumed to be always at the
beainning of the source gate,

We are now in the position to calculate the time it takes for the
frinqging field effect to become compatible to the self-induced field
drift and then, the time it takes more to observe the final exponential
decay characteristics,

According to Eq. (5-16) above, after the time yet to be determined,
the charae will decay exponentially in time. This time T can be
estimated as followina, Ue equate the maanitude of the first term of
PHS of the expression (5-14a) for the current density to the second
term, Then, we obtain the minimum charge Qm for which the self-induced
field effect is compatible to the fringina field drift and thermal
diffusion effects:

= L
Ay = 8

(;m)(ﬁ%”) . (5-17a)

0

Solvina Eq. (5-16) for Q(t) = Om’ we obtain the time t, at which the
charae transfer begins to be influenced by the frinaing field and

thermal diffusion mechanism:
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r 2 N
t = T MM [ T+, /0(0) ] = (0.69) T, . (5-17b)

Accordina to the detailed numerical simulation of the charoe transfer
illustrated in Fia., 5.1, the peak of the‘charqe profile indeed stays at
the beainning of the source gate for a while. And during this period, the
charae decays in the manner characterized in this section., And for
t>t, the total charae Q(t) given by Eq. (5-16) can be described quite

accurately by

(t-t)
Q(t) = 0 exp <—————°—> . (5-17¢)

After this time to, the fringing field influences the charge transfer as
the main mechanism. Then as have analyzed in detail in Ref. [4], at
some time later the peak of the charge profile starts moving towards the
end of the gate, Fiaure 5.6 illustrates the details of the charce
transfer under the transfer aate at this stage. After this transition
time, the relative shape of the charae becomes stationary and the charace
decays exponentially in time. The transition time At in this process

has been estimated inChapter 2 and is aiven by

T -
t E ‘ -18
e <2n;> <k—-’i:-) (5-182)

At the time t] = to + At, the charae will start decaying expohentia]]y

with the final decay time Tge In this stace, the self-induced field
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drift effect has become completely negligible compared to the thermal
diffusion and fringing field drifts. (See. Fig. 5.7). In this final
stage of the charge transfer, the total charge is approximately given

by

,  (5-18b)

where

Qp = Qm exp (— —A—t—> . (5-18¢)

T
0

We now focus our attention upon the charge under the transfer gate.
Specifically we will calculate the total charge under the transfer gate
as a function of time. The time rate of the change in the total charge
under the transfer gate is given by the difference of the current density
J(t,0) at the beginning of the transfer gate from the current density

J(t,2) at the end of the transfer gate:

g_% = J(t,0) - J(t,8) . (5-19)

The readers should not be confused by the dual = usage of the symbols

Q, J and space coordinate X under the source gate and transfer gate.

When we are discussing the charge transfer under one particular gate,

we define the beginning of the gate to be a x = 0 and the end of the gate
to be at x = ¢. The symbol Q in Eq. (5-19) is meant to be the total
charge under the transfer gate whereas in Eq. (5-14a) and (5-16) the same
symbol is used for the total charge under the source gate.

We note the current density J(t,o) is given as an independent
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quantity which is a function of time only. This function can be
obtained from Eq. (5-14a) with use of Eq. (5-16). Care must be taken in
applying these equations in Eq. (5-19).

As we see in Fig. 5.7c, the current density under the transfer gate

can be quite adequately approximated by a linear function:

J(t,x) = J(t,o0) + <%> {J(t,z) - J(t,oﬂ . (5-20a)

The charge profile under the transfer gate can be approximated again by
Eq. (5-13a) as in the case of the source gate. Then, integrating with .
Eq. (5-12b) the charge density given by Eq. (5-20), we obtain the dis-
charge density J(t,2) at the end of the transfer gate in terms of the

total charge under the transfer gate Q(t):

L8 (1) ’
Tth 2CokT

Q(t)

J(t,2) + J(t,0) = (5-20b)

where To> Ttn? and B are defined as before. Then, eliminating the

t
charage density J(t,2) at the end of the transfer by using Egs. (5-19)

and {5-21), we obtain

20 < 20(t,0) - [ng) i fth lgzﬁ)] . (5-20c)
The total charge under the transfer gate Q(t) can be obtained as a func-
tion of time by solving this equation (5-20c) =bove. As we observe in
Fig. 5.2 (top), the charging current J(t,0) becomes negligible compared
to the discharge current J(t,0) at the time, to’ given by Eq. (5-17b).
This is approximately the time when the total charge under the source

gate becomes quite negligible compared to the total charge under the
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transfer gate. At this time, the Tines (a) and (c) in Fig. 5.2 (bottom)
start joining together, and the line (b) starts to exhibit the final
exponential charge decay characteristics. Hence after this time, the
charging current term J(t,o) in Eq. (5-20c) above can be ignored. And
we obtain the solution of Q(t) in the same form as was given previously
in Eq. (5-16).

The entire charge transfer analysis in this second stage will now
be complete with the estimation of the time when the residual charge
under the source gate becomes less than the charge under the transfer
gate.

We note in Fig. 5.2 (bottom), when the lines (b) and (c) coincide,
the total charge under the source gate is equal to the total charae
under the transfer gate. Since the sum of the two quantities are the
total initial charge under the source gate, we observe that at this time
the charge under the source gate decreased to 50% of what was there
originally. This time, Tp can be estimated by setting Q(t) = Q(0)/2 in

Eq. (5-16). And we obtain for Q(o) >> Q_,

i (ﬂgQ Q(Sgl/(l (%) . (5-21)

At this time (t 2:Tp), as we observe in Fig. 5.2, the head of the charge

packet reaches at the end of the transfer gate and the discharge current
starts rising as seen in line (c) of Fig. 5.2 (top). We recall this time
has been estimated by a different method in Appendix € , and is given

by Eq. (5-11). Note the similarity in Eqs. (5-11) and (5-21)
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5.6 The Exponential Decay Characteristics in the Final Stage

In this section we first describe qualitatively the channel poten-
tial profile and the charge distribution at the completion of the second
stage of the charge transfer. We will then describe and outline how to
estimate the final decay time constant in the final stage of the charge
transfer. The actual analytic formula for the final decay time constant
with appropriate fringing field profile and the charge distribution is
also presented.

In Fig. 5.5, we have plotted the minimum channel potential, charge
density, and reciprocal of the potential aradient at the completion of
charge transfer. The solid curve in the bottom figure is the plot for
the potential gradient with no charge everywhere. The dashed curve is
the one with all the signal charge resting finally under the drain
gate. The presence of the charge under the source gate lowers the
minimum field strength under the transfer gate by 158 volt/cm. That is,
the minimum field strength is 318 volt/cm with charae and 493 volt/cm with
no charge. The minimum field strength under the source gate remains
almost the same value of 844 volt/cm.

Note the charge and potential profile under the drain gate is
everywhere flat. This is expected because the charge is at rest and the
current density J in Eq. (5-1b) is zero. Hence the charge density is

given as an exponential function of the potential:

q=q.exp [— f@:_fﬂo] (5-22)
0 kT )
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where ¢mo is the Tocal minimum channel potential under the drain gate
and a4 is the peak charge density. A small increase in the potential ¢h
results in a drastic reduction in the charge density q. And only way to
pack the total charge under the drain cate is to have ¢mymm~¢mo wherever
the charge is present: Inside the charge packet, there’is no field.

We will now describe and outline how to estimate the final decay
time constant in the final stage of the charge transfer.

In Chapter 2 we have analyzed the charge transfer process in this
final sfage. According to the detailed analysis of the charge transfer
under the influence of fringing fields, the profile of charge under the
source and transfer gates changes for approximately a single carrier
transit time and then becomes stationary with an exponential time decay

of the amplitude. The exponential time constant tf is estimated by the

standard variational procedure and given by

2
(uE_ )
L, o
f th

where s is a dimensionless quantity determined by the final charge profile

g(x) under the transfer gate.

] dx

(5-23b)

q(

Z
[

Eeq is an equivalent constant fringing field for the spatially varying

fringinj field E(x) and is given by
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9

f [Ez(x) - 2kT -ﬂ-)—E(-] a2 (x)dx
) S

2

(5-23c)

To estimate the value of the final decay time constant, the know-
ledge of the fringing field profile and the final charage density profile
is required. In Fig. 5.6 and 5.7 we presented the charge profiles at
several instances till the profile reaches the final form and decays
with an exponential time constant, Te

If we use the final charage profile shown in Fig. 5.7 and the frina-
ing field profile shown in Fig. 5.5 (bottom) in evaluating the final
exponential decay time constant Te from Eqs. (5-23), the calculated
value is exactly the same value we obtained from the results of the
detailed numerical simulation of the charge transfer process. This is
expected from the consequence of the variational calculus. The varia-
tional procedure is a powerful tool to estimate the eigenvalues of a
physical system when the eigenfunctfons (or states) are not known
exactly. When they are known, the calculated eigenvalues are the exact

eigenvalues of the system. Hence the true usefulness of the procedure

described in Egs. (5-23) lies upon the fact that we can obtain a good
estimate of the value of the final decay tihe constant without knowing
the values of the fringing field and the charge density at every point in
space. That is, the knowledge of general characteristics of t?ese pro-
files should be enough to obtain a good estimate of the final decay time

constant.
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The results we presented in Fig. 5.5 suggests that the fringing

field can be approximated roughly by

E . %
E(x) = -0 for 0<x < ;
2X v £
E . 2
E(x) = —%ﬂﬂ~—-5 for %-< X < & . (5-24a)
2(2 - x

From Fig. 5.6, accordingly we approximate the charge profile by

_[2x 4 %
q(x) = (5”5 q, for 0 < x < > ,
n Xy g
q(x) = 2°(1 - EJ q, for 5 <X <R , (5-24b)

where we have introduced one parameter n whose value is to be determined
by minimizing Tf(n) of Eq. (5-23a), according to the standard variational
procedure. The calculation is somewhat involved but the results are very
useful in estimating the final decay time constant and are presented in
Fig. 5.8a for our case study. The same procedure may be applied for
different gate length and other physical parameters. Hence we have
plotted in Fig. 5.8b the ratio of the final decay time constant to the
thermal diffusion time constant as a function of the normalized fringing

field strength zEeq/kT:

Tf = l - (5-25&)
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The computational procedure to compute e is described briefly in Appendix

D. Since from Egs. (5-15)

5 €q -
5 ,  (5-25b)

we obtain the ratio of the final decay time constant to

carrier transit time:

2
T¢ : 4s Eeq/w kT

T
tr s + (2 Eeq/kT

)2 X (5-25¢)

This quantity is also plotted in Fig. 5.8b.

5.7 Numerical Results

In this section we will first give the values of relevant physical
parameters in our case study and describe the normalization units for the
illustrations. Then we will describe in general how to estimate the
quantities To» Qm, to, and Te in the final stage of charae transfer.

The outline and results of the detailed calculation procedure of the
related physical parameters such as Too t0 At, t], Qm, and Qt are also
presented.

The analysis we have done so far is intended to characterize the
entire charge transfer quantitatively with reasonable accuracy. For our
case study, the diffusion layer depth is Xd = Tu and the channel
doping is set to be NA = 25,000 electron charges/u3. The average width
of the charge packet is XCH = 0.15p. Hence the total charge is

Qotal = NAXCHE = 45,000 electron charges/u where the aluminum or silicon
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gate length & is taken to be 12u. The charge density shown in the fig-

ures are normalized by Qtota1/L = 935 electron charges/u2 where the

length L of one unit cell of the device is 48y in our case study. Accord-
ingly, the time is normalized by (0.001) LZ/D = 1.92 nanoseconds and the

current density by onta] D/L2 = 23.4 electron charges/u<nanosec. The

effective oxide capacitance CO under the transfer gate is (as seen in

Fig. 5.4) 0.75 normalized charge density per volt. Hence QCOkT = 21

electron, charges/u. For the gate length & = 12y, the thermal diffusion

time constant Ten is equal to 48.6 nanosecond by Eq. (5-15a).

We will now describe in general how to estimate the quantities
Too Qm, to’ and Te in the final stage of charge transfer. If the
effective fringing field strength E at this final stage is known, we can
compute T from Eq. (5-14b). Then the minimum charge Q, and the time t,
can be estimated by Egqs. (5-17a) and (5-17b). From the numerical results
shown in Fig. (5.2) we can read off the values of 0 and t, and compare
them with the values predicted by Eqs. (5-17a) and (5-17b). The final
decay time constant t. appearing in Eq. (5-18) can also be read off from
Fig. 5.2 (bottom) and compared with the calculations done in the previous
section which is summarized in Fig. 5.8a and 5.8b.

We have now reached to the final part of this section. In this last
part we will first outline and then give results of the detailed calcula-
tion procedure of the related physical parameters such as Ty to’ at, Qm
and QE'

The minimum fringing field as shown in Fig. 5.5 in the final stage of

charge transfer is 315 volt/cm under the transfer agate and 844 volt/cm
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under the source gate. Then with these values of the field strength,
the plots of Fig. 5.8a predict the final decay time constants of 0.640
nanoseconds under the transfer gate and 0.155 nanoseconds under the
source gate. The actual observed values in Fig. 5.2 (bottom) are 0.765
nanoseconds and 0.165 nanoseconds.

The effective fringing field E can be estimated by Eq. (5-15¢) for
the fringing field profile shown with the solid line in Fig. 5.5 (bottom),
and is found to be 1250 volt/cm. The corresponding single c;rrier tran-
sit time Tip is 2 nanoseconds by Eq. (5-15b) where the hole mobility
u in silicon is taken to be 480 cm2/vo1t—sec. Then since the ratio of
Tep divided by Teh (48.6 nanoseconds) is very small, we note from
Eq. (5-14), T is about one-half of the single carrier transit time.

That is, Ty 1 nanosecond. Hence from Eq. (5-17b), tozu 0.5 nanosecond.
That is, the charge under the transfer gate should start decaying
exponentially at t = tofw 0.5 nanosecond with the exponential decay time
1=t * At
where At is given by Eq. (5-18a). Since EL/kT = 60, we obtain At =

constant Ty & 1 nanosecond. This period should last till t

6 nanoseconds. Hence we expect t]iw 6.5 nanoseconds. The actual value
t observed in lines (a) and (c) in Fig. 5.2 (bottom) is about 8
nanoseconds.

Qm computed from Eq. (5-17a) for B = 1 is 1000 electron charges/u
which is about 23% of the initial total charge Q. .., = Q(o) = 45,000
electron chargesfu. Then from Eq. (5-18c), since At/Tofu 6, we
obtain QEsu 2.5 electron charges/u, which is about 0.055% of the

initial charge. The actual value QE observed in Fig. 5.2 (bottom) is
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about 0.07%.

.9 Conclusion

The results of a detailed numerical simulation of free charge
transfer in buried channel Charge Coupled Devices have been presented.
Qur analysis shows that except for a very short time the current
density is not gquite uniform. However the time dependence of the charge
decay (see Section 5.3) is quite independent of the form assumed for
the current density profile. The dominant effect was shown to be the
fringing field effect and there are two time constants(r0 and rf)
associated with the entire charge transfer process. The approximate ana-
lytic expressions for the two time constants and other important physical

parameters (Q to,t and At) are derived and the corresponding charge

e O
transfer characteristics are explained in detail. The most important
quantity in this analysis is the residual charge Q(t) as a function of
time and we have obtained an explicit analytic expression of this
quantity Q(t). For 12y gate structure, we have shown that the charge
transfer efficiency can be achieved as high as 99.99.% at 100MHz (see
Fig. 5.2) and that this efficiency can be improved much further for

compact CCU structures (shorter gate length, etc.) as discussed in

Section 5.6 and summarized in Fig. 5.8.
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Appendix A
SPATIALLY VARYING CURRENT DENSITY

We assume the solution of Eq. (5-7) to be the form given by

q(t,x) = q(o,0) A(t) VB(X) > (A-1a)

with

A(o) =1 . (A-1b)

Hence from Eqs. (A-Ta) above at t = 0 we obtain

B(o) =1 , (A-1c)
and
. 2
Q(o) =/q(o,x)dx = q(o,o)/ /B(x) dx . (A-1d)
0 0

Then, the boundary conditions for B(x) corresponding to Egs. (5-8a) and

(5-8b) are given by

[aNEaR
x| @
1
(e

at x =0 s (A-2a)

and
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B(2) =« . (A-2b)

Substituting Eq. (A-1a)into Eq. (5-7) we obtain

2

A 21 %%_= ) ZE q(0,0) d g (A-3)
A(t) o VB(x) dx

where g is a constant to be determined from the shape of the function

B(x) to be solved. Solving Eq. (A-3 ) further, we obtain

A(t) = , (A-4a)
1+ 8t

dB 2 8 COB %

(&) = T alooT 1T - B" (x) ) (A-4b)

Hence the function B(x) can be expressed implicitly by the integral

f o —— . (a-52)
B(x) 7 . g3/2
where
]
a(a) f B . (A-5b)
2 ‘/1 - e
and ’
p = 3af0:0) g2y . (A5
8C02

Use of Eq. (A-1d) allows us to write the constant B in the form:

fla
(o) SSOQT , (A-6a)
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where
3 ng(u)
f(a) = 3 3 . (A-6b)
J{ VB(x) dx
0
Now from Eq. (A-5a) we note
- 2 (-dB) _
dx [g(aj] - B_:W_Z_ 3 (A 7a)
Hence
9 B(o) dB
/ BX) dx = —(—“7/ /B : (A-7b)
gl 372
0 B(2) 1-8

This integral can be calculated analytically. The Timits of the integra-

tion are given by Eq. (A-1c) and (A-2b). Hence

. (A-7c)
j? VB(x) dx = 44 1 - a3
o 3g(a)
Hence from Eq. (A-6b) above we obtain
2
flo) = 5y o) . (A-7d)
'3
1 -«

When o = 0, from Eq. (A-5b) we obtain

1 /2
_ dB _
g(o) -f ————ea
0 J] - p3/e

/ sin/39do=1.73 . (A-8a)
0
Hence from Eq. (A-7d) we obtain

wl &

f(o) = 1.44 x (A-8b)
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To compute f(o) numerically for 0 < a < 1, we note from Eq. (A-5b) by
transforming the variable in the integral we can write

m/2

/ s,1'n]/3 6 do . (A-9)
(a 2/°)

arcvsin

_4
g(a) = ]

Hence we evalute g(a) from this Eq. (A-9) above to obtain f(a) from

Eq. (A-7d).
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Appendix B
UNIFORM CURRENT DENSITY

If we assume the current density J to be uniform in space, then

from Eq. (5-3b) we obtain

2
o) = Ut du 2(¢ ) . ()
0

where we assume q(t,&) = aq(t,o) as before. The charge profile is

given by

atx) = alt,0) §I - (1-2) (%) . (8-2)

The total charge under the source gate is then given by integrat-

ing Eq. (B-2) above to obtain

2
g2y (1 + o+ o _
a(t) = (5) (——-——-———] - >z q(t,0) . (B3)
Hence the current density in terms of the total charge is given by
gy = @ 0D ) w2y (8-4)
dt 8 (1 + o + a2)2 C 23

Solving for Q(t), we obtain the same formula (Egq. 5-9) with

(1-0%) (1+a)°

(1 + o+ a2)2

o) = (3) (B-5)

This function is plotted in Fig. 5.3 and compared with the results

of the spatially-varying current-density case of Appendix A
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Appendix C.
PROPAGATION TIME UNDER TRANSFER GATE

The propagation time under the transfer gate can be calculated by
solving the continuity Eq. (5-Ta) with the self-induced field drift of
Eq. (5-3b). We assume the current density at the beginning of the
transfer gate is always a constant 942 and no charge is present under

the transfer gate at t = 0. Therefore, we have

q(t,o0) = a, for t>0 , (C-1a)
and
q(o,x) =0 for 0<x<2& . (C-1b)
Introducing the Boltzmann's transformation,
C
= A 0 -
and normalizing the charge density by
P = (392 ., (c-2p)
9
the continuity equation becomes
2
dp_ _2y dp , (Cc-3a)

dy oW
with boundary conditions

p =1 at y =0 . (C-3b)
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and

p=20 at y = . (C-3c)

Numerical integration is required to obtain a solution of Eq. (C-3a)
above. The solution p(y) decreases [5] monotonically from 1 at y = 0
to zero at y = 0.81. Hence by using Eq. (C-2a) we observe the head of

the charge profile reaches the end of the transfer gate at t = o such

C
_L o P
0.81 = 3

Hug

that

T

0 p

Solving the Eg. (C-4) for T, Ve obtain Eq. (5-1.).
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Appendix D

EVALUATION OF Te

Substitution of Eqs. (5-24b) into Eq. (5-23b) results in an

expression for the parameters in terms of n:

o= 18 n% (2n +1) . (51}
m (2n - 1)

The equivalent constant fringing field can be evaluated by Eq. (5-23c)
from Eq. (5-24a) togethér with Eq. (5-24b):

2 _(2n+1) 2 -
z eq  (2n - 1) E min (D-2)
Hence from Eq. (5-23a) we obtain
2—1
1 _ (211 16, BEnin (-3}
T 2n - 1 T 2 4D ’
f th =«

or from Eq. (5-25) we obtain

T LE .
L ﬂ2/f<___r;}n) . (D-4a)
th

~

where

f(x) = (%—i—}—xw ne + x2> . (D-4b)

For a given value of x = 2E/kT, we compute n such that
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(x° + 4)

= 0 . (D-5
(2n - )% )

of _

Sh=4 |8 +4-
Then with this value of n, we compute f(x) from Eq. (D-4b). Figure 5.7
results immediately from Eqs. (D-3) and (D-4a). For practical purposes,
we first compute the value of n for x = 0 from Eq. (D-5). That is,

rewriting Eq. (D-5) we obtain

2 2 n ]
X~ = 32n [n -5 - J : (D-6)

N—

Hence for x = 0,
n = 15 0.809 . (D-7)
0 4
For a larger n greater than , = 0.809, we first calculate x from
Eq. (D-6), then evaluate f(x) from Eq. (D-4b) to obtain Tf/rth from
Eq. (D-4a). If the effective gate length 2 is known, we can calculate

Teh by Eq. (5-15a) and obtain T from Eq. (D-4a) or (D-3).
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Chapter 6
APPENDIX III

SCHOTTKY BARRIER BURIED CHANNEI CHARGE COUPLED DEVICES

I. INTRODUCTION

In this chapter we discuss a new active semiconductor decvice.
The device is analogous to the buried channel device discussed
in previous chapters except that channel potential is controlled
through Schottky barriers formed by metal electrodes deposited
directly on the semiconductor. In contrast the standard buricd
channel device consists of conducting gates deposited on an insuluator
wnich rests upon the semiconductor.

This device has one principa} advantage which may make it useful
when the CCD concept is extended to materials other than silicon.
The metal-oxide-semiconductor technology is excecedingly suvccesslul
when based on silicon. However, when attenpts have been made to
extend this technology to other semiconductors there lias been little
success., The primary reason for this lack of success is the poor
behavior of the semiconductor insulator interface. The new device
discribed and analyzed in this chapter has the benefit of doing awa:
with the semiconductor insulator interface under.the control electrodes
and going directly to a metal semicon@uctor interface which is well
defined on semiconductors such as GaAs.

In this chapter we present an electrostatic analysis of the
Schottky Barrier Buried Channel Charge Coupled Devices (SBBCCCD),
which could be constructed with presently available technology on

GaAs. Special attention was focused on making the electrostatic
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potential in the channel such that one would expect smooth 1ﬁancfé( of
the éharge and, hence, not encounter the difficulties which were found
in the first buried channel charge coupled dcvices[l].

It was found that, if the structure was fabricated by simply put-
ing metal pads on GaAs surface and leaving gaps between the pads, then
the electrostatic potential had very undesirable , wells in this gap
region. These clectrostatic wells would act as traps for the signal
charge and, hence, prevent the satisfactory operation of the device.
This important problem was solved by adding a high dielectric constant
material (Si3N4) to the region between the metal electrodes. This
solution is found to virtuallv eliminate the potential traps and make
possible the operation of the device.

This chapter is organized in the following fashion. Section II
contains a detailed description of the physical structure of the device.
Section 117 contains a one dimensional clectrostatic analysis of the
device. Section ]y contains a two-dimensional clectrostatic analysis,
and Section v contains conclusion and a discussion of the results,
TI.  DEVICE STRUCTURE

An obvious extension of the well-known buricd channcl char o
coupled device [1] is a Schottky Barvier buricd channel CCID which
o;erates by moving majority carriers along the buried channel. This
channel can be controlled by the gate voltages applied on the metal
electrodes which form Schottky barriers with respect to the semi-
conductor in contact,

The proposed Schottky barrier buried channcl structure is showg

in Fig. 1 as a unit cell of three-phasc n-channcl CCD. It consists
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of an n-type layer of GaAs on a p-type GaAs substrate with metal
electrodes forming Schottky contacts at the semiconductor surface.

The structure is completed with an SigNy, film which can be deposited
by a radic frequency glow discharge reaction [é] of silane and ammonia
at a fixed substrate temperature of 300°C. The-silicon nitride was
chosen in this calculation because of its relative high dielectric
constant of the order of 8. The thickncss, X3, is 20 times the
acceptor density, Nu, of the sﬁbstrate, which is IOOOGOLB.

In order to form a buried channel, it is necessary to completely
drain the n-type layer and part of the adjacent regions at the Schottky
barrier and the metalurgical n-p junction. This can be accowplished by
reverse-biasing the n-layer and p-type substrate, with respect to the
Schottky ciectrodes, strongly enough to drain all of the electrons out
of the n-layer. The signal charge is to be transported along the buried
channel in this depleted condition.

111 ONE DIMENSTONAL STRUCTURE

The band diagram of the one dimensional Schottky barrier buried
channel structure is shown in Fig.1 . We define the x-coordinatevalong
the depth of the semiconductor as indicated by a horizontal line in the
figure. The n-layer is defined by the condition 0<x < Xj.

The most important expression of interest is the analytic
expression of the channel potential ¢m in terms of -the gate voltage ¢G
and the signal charge Q. This expression can be derived by the standard
dépletion approximation for the rectangular charge distribution and is

given as
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Figure 2 One Dimensional Band Diagram and Charge Distribution for Schottky

Barrier p-n junction structure.
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N

oy ~ (] * ﬁ)(%-%swd)f(f?) ; @

where f(R) is a factor of order unity and defined as

£(R) = L . @a)
1+R+ /T ¥R
and the dimensionless parameter is defined by
N én t ¢
R=§§—(1+ G ‘MS>, ’ @b)
A °q
with
2
o = nd g (]_(L)Z | . Qo
d = Zegaps Q
and
Q = X4Ny ' , (2d)

The general characteristics of the dependence of the channel potential
¢m upon the pertinent device parameters are clear from above
relationships. The factor f(R) is a slow varying parameter. lence onec
would note from Eq. g that the channel potential changes quite
linearly with respect to gate voltage ¢b but not with the signal

charge Q.

1v, TWO DIMENSIONAL ELECTROSTATIC CALCULATION

A solution of two dimensional Poisson equation. for this three-
phase CCD structure has been solved numerically by over-relaxation
method and the computed channel potential is shown in Fig. 3. The

solid curve is with silicon nitride deposited by a radio frequency glow
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Figure 3 The channel potential profile along the direction of charge transfer.
The solid curve is with silicon nitride deposited by a radio
freguency glow discharge reaction. The dashed curve is without

silicon nitride layer.
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discharge reaction. This method is ideal since the resulting dielectric
layer has a relatively high dielectric constant of 8., The dashed curve
is obtained with no dielectric filling in the interelectrode gaps. The
finite interelectrode gaps give rise to the potential minima similar to
the results reported Ior the insulated gate buried channel CCD. The
minimum fringing field for the case of silicon nitride denosition was
found to be 553.4 volt/u. The details of the potential gradient for
this situation is illustrated in Fig. 4

The undesirable gap effect can be understood with the aid of
Fig. 5 in which we show the clectrostatic potential alonyp the
distance from the interface to the substrate at the midgzap of the
source and drain gates. By Gauss's law, the electric ficld becones
discontinuous at the interface due to the abrupt change in the value
of the dielectric constant. Since GaAs has the d-c dielectric constaut
12 times larger than that of the vacuum, the surface electric field
perpendicular to the interface must be very small inside the semi-
conductor, This situation is illustrated in the Fig. 5 Note the
dashed curve increases itgslope abruptly at the interface.

When the silicon nitride is present, the abrupt increase in the
potential gradient is negligible at the interface as seen by the silicon
nitride to the vacuum. In this calculation the thickness of silicon
nitride is taken to be 0.9u .

In Fig. 6 , we have plotted the surface potential along the
direction of the charge transfer. The abrupt change in the potential at

the interelectrode gaps is obvious from the figure. It would be
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Figure 4 The potential gradient a¢m/ay and its reciprocal ay/a¢m plotted

along the direction of charge transfer.
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Figure.S The electrostatic potential profile along the distance from the
interface to the substrate is shown at the midgap of the source

and drain gates.
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Figure 6 The surface potential profile along the.direction of charge
transfer. The solid curve is with silicon nitride deposition.

" The dashed curve is without silicon nitride layer.
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desiral:le_ + to have the interelctrode potential vary monotonically
across the gap; one way to do this would be to let the'spacing go to
zero. However, in the actual device fabrication, lp cap is the narrow-
est gap one can realize in the present state of art. Fig. 6 shows
that the gap effects can be reduced by filling the gap with high
dielectric materials for a finite-gap structure.

The device can still be operated if the gap minimum is higher than
the channel potential. Fig. 7 shows that this is indeed the case
for the conditions we have applied in the calculation. In this ficure,
we have plotted the surface potential and channecl votential in the
same graph to illustrate their re}ative positions.

v.  CONCLUSION

A new active semiconductor device, namely Schottky Barrier buried
channel CCD is described and some pertinent design considcrations are
discussed on the basis of the one ‘dimensional clectrostatic analysis
(depletion approximation) for the pinimum channel potential, The two
dimensional Poisson equation , appropriate for the structure, has
been solved numerically with snecial attention focussed wupon the
final gap effect in the three phase structure. And it is concluded
that the monotonic channel potential can be achieved by filling the

gap with a high dielectric material.
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Figure 7 The surface potential and the channel potential along the direction
of charge transfer. Both curves were calculated for.the case of

S13N4 deposition.
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