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ABSTRACT 

Part I 

In Part I several applications of the equations of motion method 

for c1osed shell around states are discussed. The equations of motion 

method is used to study the excitation energies and intensities of 
+ formaldehyde, water, and CH . A formalism is developed for studying 

intraexcited state transition densities, and applications are made to He 

and i~2. This section is composed of three published manuscripts and two 

manuscripts submitted for publication. 

In H2co the calculated excitation energies and oscillator 

strengths agree well with experiment and suggest explanations for some 

unusual features recently observed in the optical absorotion and elec

tron scattering spectrum in the vacuum ultraviolet. 

To explain the inelastic feature at 4.5 eV in the spectrum of 

water and to study its spectrum in some detail, several calculations on 

the excited states of water using the equations of motion method are 

made. We conclude that the calculated vertical excitation energy of 

6.9 eV for the 3s1 state corresponds to the strong feature at 7.2 eV 

observed in low-energy el ectron scattering spectrum. The 4 .5 eV inelas

tic process almost certainly does not correspond to a vertical excita

tion of water at the ground state geometry. The other excitation 

energies and oscillator strengths agree well with experiment. 

The equations of motion method is used to study the X'I+-A'IT 

system in CH+. In a computationally simple scheme, these calculations, 

which were done in modest sized basis sets, provide transition moments 
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and oscillator strengths that agree with the best CI calculations to 

date. 

An approximation for transition moments between excited states 

consistent with the approximations and assumptions normally used to 

obtain transition moments between the ground and excited states in the 

random phase approximation and its higher order approximations is 

derived . The result is applied to the calculation of the photoioniza 

tion cross sections of the 23s and 2 1 S metastable states of helium by 

a numerical analytical continuation of the frequency dependent polariza

bility . The procedure completely avoids the need for continuum basis 

functions . The cross sections agree well with the results of other 

calculations. We also pre dict an accurate two-photon decay rate for 

t he 2 1 S metastable state of helium. The entire procedure is immediately 

appl i cable to several problems involving photoionization of metastable 

states of mol ecules . 

We report the transition moments between the excited states of 

molecular nitrogen including their dependence on internuclear distance. 

These moments are calculated non-empirically using a many-body approach 

--the equations of motion method. These results suggest that it may be 

simpler to calculate these transition moments and their variation with 

internuclear distance rather than to attempt to extract this informa

tion from available experimental intensity data. 
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Part II 

A straightforMard scheme is developed for extending the equa

tions of motion formalism to systems with simple open shell ground 

states. Equations for open shell random phase approximation (RPA) are 

given for the cases of one electron outside of a closed shell in a non

degenerate molecular orbital and for the triplet ground state with two 

electrons outside of a closed shell in degenerate molecular orbitals . 

Application to othe r open shells and extension of the open shell EOM to 

higher orders are both straightforward. Results for the open shell RPA 

for lith i um atom and oxygen molecule are given. 

Part III 

A simple method for directly calculating ionization potentials 

and electron affinities is discussed. Formulas are given through third 

order in interaction matrix elements and described in detail . Results 

are presented for the ionization potentials of He, N2, and OH- using 

several different approximations . 

Appendix 

A computer program General Mating XVI written in Fortran IV, 

which has the ability to derive formulas for second quantized excitation 

operators and Hamiltonians or various one-body and two-body operators 

using correlated or uncorrelated Hartree-Fock ground states, is described 

and listed. The program uses Wick 1s theorem to expand strings of elec

tron creation and desctruction operators . 
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Science 

Man, introverted man, having crossed 

In passage and but a little with the nature of things this 
latter century 

Has begot giant~; but being taken up 

Like a maniac with self-love and inward conflicts cannot 
manage his hybrids . 

Being used to deal with edgeless dreams, 

Now he's bred knives on nature turns them also inward: 

they have thirsty points though . 

His mind fo rb6des his own destruction ; 

Actaeon who saw the goddess naked among leaves and his 

hounds tore him. 
A little knowledge, a pebble from the shingle, 

A drop from the oceans: who would have dreamed this infinitely 

1 i ttl e too much? 

... Robinson Jeffers 
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Part I 

Application of the Equations of Motion Method for 

Excitation Energies to Molecules with Closed Shell 

Ground States 
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(A) 

Equations of Motion Method: Excitation Energies 

and Intensities in Formaldehyde 
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1. INTRODUCTION 
~ 

In recent papers
1

' 2 we have discussed the equations of motion 

method as an approach for direct calculation of the properties of physical 

interest in spectroscopy, e.g., transition frequencies, intensities and 

scattering cross sections. By using a theory specifically designed for 

studying these relative properties one can avoid many of the difficulties 

involved in obtaining accurate values for absolute quantities such as the 

total energies. We have derived several approximations to the solution 

of the equations of motion for the operator 0~ which generates the 

state I;\.) from the ground state jO). In the equations of motion method 

the approximation which includes single particle-hole (lp-lh) and two 

particle-two hole (2p-2h) components3 in 0~, referred to as the (lp-lh) + 

(2p-2h) approximation, gives results for transition frequencies and 

intensities in N2 , CO, C2 H4 , 
2 C6H6 , 

4 and CO2 
5 in good agreement with 

experiment. 

In this paper we present results on the excited states of formalde

hyde. These results include transition energies and oscillator strengths 

for transitions below 2000 A which allow us to explain some unusual 

features recently observed in the optical absorption 6 and electron 

scattering spectrum. 7 These studies were stimulated by the recent dis

covery of formaldehyde in interstellar dust clouds8 and provided accurate 

absorption coefficients between 2400 and 912 A. The absorption 

coefficients in the vacuum ultraviolet are large and hence absorption 

of photons in this spectral region is important in determining the 

fate of formaldehyde in the interstellar radiation field. Some of the 

unusual features in the spectrum that our results can explain include the 
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prediction of a 1B1(0--1r*) state at 9. 2 eV with a very low oscillator 

strength and equal oscillator strengths for the transitions to the 
1
B2 

(2b2 3pa1 ) and 1
B2 (2b24pai) states. The calculated f-value for each 

transition is 0. 04 compared with the observed value of 0. 03. This 

distribution of intensities is unusual for a Rydberg series. Another 

interesting feature of the spectrum is the apparent absence of any band 

which could be related to the 1r-rr* valence transition. Our results 
1 

show a transition to a A1 (1r, 1r*) state at 10.10 eVwith primarily intra-

valence character but with a f-value of only 0.10. From the character

istics of this state there is clearly an interaction between the neighboring 
1 
A1 (2b2npb2 ) states and the 1r* valence state as discussed by Mentall 

et al. 6 

In the next section we give a very brief outline of our method. 

Section III discusses the results of our calculations with different basis 

sets designed to study specific features in the observed spectrum. 

Section IV gives a summary of our conclusions. 

II. THEORY 
~ 

We have discussed the equations of motion method in recent 

papers1' 3 and we will give only a very brief summary of the theory in 

this section. It can be shown that the operator 0~ which generates an 

excited state l>t) from the ground state, i.e., Ix) = 0~ JO), is exactly 

a solution of the equation of motion9 

(1) 
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where oo; is a variation of the amplitudes specifying 0~ and wA the 

excitation frequency. The double commutator is defined as 

2[A, B, C] = [[A, B], C] + [A, [B, C}] (2) 

We have derived various approximations to the solution of Eq. (1). l, 3 

If o; is restricted to single particle- hole (lp-lh) form Eq. (1) becomes 

=W 
A (3) 

where the elements of A, B, and D are defined in Ref. (1). We have also 
-"-"'- -""' -""' 

shown that the theory including 2p-2h amplitudes in OA + is equivalent to a 

renormalized lp-lh theory . We have derived an approximate perturbative 

scheme for solving these equations including lp-lh and 2p-2h amplitudes. 

Unless we state otherwise the results of the equations of motion method 

will always refer to this appr oximation, i.e., lp-lh + 2p-2h approxima

tion. 

III. RESULTS 
~ 

The first step in an equations of motion calculation is to carry 

out a self- consistent field calculation on the ground state of the molecule. 

These SCF orbitals form the particle-hole basis. The ground state 

electron configuration of formaldehyde is 

(4) 

These calculations were done at the currently accepted ground state 

experimental geometry. lO In these calculations we used a [ 3s2p/ls] 
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valence basis of contracted Gaussian functions2 to which we added 

diffuse Gaussian basis functions on the atomic centers and at the center 

of charge. We have found that such a basis can adequately describe 

the intravalence transitions and also transitions to the first members 

of the Rydberg series. The basis must also contain these Rydberg com

ponents so as to study the valence-Rydberg mixing probably responsible 

for some features in the formaldehyde spectrum. Since the equations of 

motion method involves commutators that lead to operators of low rank, 

we can expect a basis with a small number of valence components to be 

adequate for carrying out calculations on most excited states including 

intravalence transitions. The diffuse components of our basis includes 

an s function with an exponent of 0. 05 on each atomic center, a p function 

with an exponent of 0. 05 on the carbon and oxygen centers, an s function 

and a set of p functions with an exponent of 0. 016 at the center of charge 

and also a p and p function with an exponent of 0. 005 at the center of 
X y . 

charge. In these calculations we truncated the particle basis slightly so 

as to use available computer programs. The resulting matrices were 

no larger than of order 30 x 30. 

Table I shows the excitation energies fortwelve transitions in 

formaldehyde along with the oscillator strengths for the 

seven dipole-allowed transitions. The calculated results listed in the 

third column agree well with the observed values in the fourth column. 

The experimental values for transitions to the 1 ~ (n-1r*) and 3 Az(n-1r*) states 

are the estimated vertical excitation energies. 
11 

The 
1
A1 -

3
A1 (1r-1r*) 

has not been observed experimentally but could probably be seen quite 

easily in low-energy high-angle electron scattering off formaldehyde. 
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The calculated excitation energy of 9. 2 eV for the 
1
A1 -

1B1 (0-1T*) 

transition is close to the value of 9 eV inferred from the observed 

spectrum by Mentall et al. 6 The oscillator strength of this transition 

is only 0. 002 in agreement with the assignment of weak absorption 
0 1 

features between 1340 and 1430 A (8. 7 .. 9.4 eV) to the B1 (a-1r*) state. 

This is the only intravalence transition assigned in the observed 

spectrum below 2000 A. 
The 1A1 (1T-1r*) state is one of the puzzling aspects in the inter

pretation of the spectrum of formaldehyde. No feature was observed 

in either the absorption 6 or electron scattering 7 spectrum which could 

be related to the 1T-1r* excitation. We predict an excitation energy of 10. 1 eV 

and an f-value of 0.1 for this transition. This state is a valence-like state 

with some admixture of Rydberg character through its interaction with nearby 

Rydberg states. 6 For example the change in the average value of i (x.2 +y.2
) 

. 1 1 
l 

for the transition is about 15 (a. u/ which is larger than typical values 
2 

for pure intravalence transitions, i.e., 2-3 (a. u.) but much smaller than 

the values of 20-50 (a. u/ which characterize the first members of Rydberg 

series. The f-value of 0.1 for this transition is clearly brought about 
1 

by the mixing of the intravalence (1T-1T*) state and the A1 Rydberg states 

with the configurations (2b2 nb2 ) and . (~b1nb 1) in the present calculation. 

This basis does not allow for the mixing of 
1 
A1 (2b2 ndb2 ) states since it does 

not contain ndb2 functions. From the model calculations of Mentall et al.~ 
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we can expect strong mixrng between the 1r-1r* state and the 

1 A 1 (2b2 ndb2 ) states. In the valence [ 3s2p/ls] basis2 the 
1
A(1r-1r*) state 

has a large f-value of about 0. 4 which decreases due to Rydberg--

valence mixing. If the final f-value for this transition does remain close 

to 0. 1 we will not expect to see a strong feature in the absorption since 

this intensity will be spread over the entire band which can easily be 

1 eV wide. Our results show a 
1
A1 state near the 2b2 ionization potential 

which has a large f-value of 0. 2 . This may be an important feature in 

the spectrum but our present results are insufficient to identify it 

reliably. We are now carrying out more extensive calculations including 
1 

the Ai(2b2 ndb2 ) states in order to understand the intensity distribu-

tion in the 8-12 eV region. This includes a study of the generalized 

oscillator strength as a function of the square of the momentum transfer. 

The presence and position of minima in these oscillator strengths as a 

function of q2 should clarify many of these questions. 

The other results in Table I are all for Rydberg transitions of 

the type 2b2 - ns and 2b2 - np. The excitation energies agree well with 

experiment and the f- values explain some interesting features in the 
1 1 

spectrum. The B2 (2b2 3pai) and B2 (2b2 4pa1) states have observed f-

values of 0. 032. This is an unusual distribution of intensities for two 

successive members of a Rydberg series. The calculated f-value of 

0. 04 for both transitions reproduces the observed distribution of intensity. 

These f-values are also far greater than the values given by the single

configuration approximation. 6· The observed term value of 2. 9 eV for 

the 1A1 ( n - 3pb2 ) state is larger than the corresponding term value in 

typical np series, e.g., around 2. 4 eV. This is again probably due to 
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the perturbation of this state by the 1A1 (1r-1r*) state. The calculated f

value of 0. 05 for the 
1
A1(n-3pb2 ) state is larger than the observed value 

of 0. 017 but here we can expect some redistribution off-values when 
1
A1 (2b2 ndb2 ) states are included. This mixing of the 1A1(2b2 ndb2 ) states 

can also put the 
1
A1 (2b2 3pb2 ) state below the 

1
B2 (2b2 3pa1). No experi

mental f-value was reported for the 1A1 (2b24pb2 ) state but a visual 

estimate of the absorption coefficients shows that the transition to this 

state is much less intense than the 
1
A1-

1B2 (2b2 4pa1) transition. The 

calculated f-values agree with this trend. We have also calculated the 

excitation frequencies to the triplet Rydberg states but these results are 

not listed in Table Isincetheyare usually within 0.3 eV of the corresponding 

singlet excitation energies. 

We also obtain excitation energies and intensities of transitions 

to Rydberg states leading to the second ionization potential. These include 

the 1B1 (rr-3s) and 1B1 (1r-3pa1) states at 11. 2 and 12. 2 eV's with f-values 

of 0_. 06 and 0. 02 respectively. 

In the fifth column of Table I we list the excitation energies for 

many of these transitions obtained by the configuration interaction (CI) 

method. Many of these are results from extensive CI studies involving 

matrices ranging in o_rder from 150 x 15012 to 450 x 450. 13 The results 

agree well with the observed values and with those obtained from the equations 

of motion method. It is not our purpose to compare the conceptual or 

computational differences between these two methods. Excitation fre

quencies and intensities are just two quantities among others which the 

EOM method is designed to obtain. Other properties include cross sections 

for processes such as photoionization and electron molecule scattering. 5 
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An interpretation of the formaldehyde spectrum in the vacuum 

ultraviolet requires an understanding of the 
1
A(7T-rr*) state and its per

turbation by the adjacent Rydberg states. For this reason we have 

carried out some additional calculations on this state and others with a 

different atomic basis. Configuration interaction calculations had 

previously placed the 
1
A(1r-1r*) state at around 11. 4 ev12, 14 with an f

value of 0.4. 12 However, Whitten13 recently obtained a vertical 

excitation energy of 9. 90 eV in a very extensive CI calculation involving 

468 configurations. This lowering relative to his previous result14 is 

partly due to the inclusion of ct-type polarization functions in the basis 

and, more importantly, to an effective inclusion of sigma-pi correlation. 

To study the behavior of this state in a more flexible valence atomic basis 

we have done two additional calculations. In the first calculation we 

used a larger valence [ 4s3p/2s] basis of contracted Gaussian functions15 

and for the sec·ond calculation this basis was augmented by xz, yz, and z2 

ct-type polarization functions and diffuse s and Px functions on the carbon 

and oxygen centers . The basis of the second calculation has both a 

larger valence component and the flexibility to reflect valence-Rydberg 

mixing. We obtained excitation energies of 9. 90 and 9. 66 eV from the 

first and second calculation respectively. The f-values are both close to 

0. 10. These results again indicate the presence of an intravalence 
1 
A1 (7T-rr*) state around 9. 9 eV. 
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IV. CONCLUSIONS 
~ 

We have used the equations of motion method to study the excita

tion energies and intensities of formaldehyde in the vacuum ultraviolet. 

This region of the formaldehyde spectrum has only recently been studied 

experimentally and shows some unusual features. 6 The calculated transi

tion energies and intensities agree well with the observed values and suggest 

explanations for some of the unusual behavior in the spectrum. In agree

ment with experiment we see that intensities in the 1A1 (2b2 npb2 ) series 

are normal but very unusual in the 
1
B2 (2b2 npa1 ) series. Another interesting 

conclusion is the location of a 
1
A1 (1r-1r*) state at around 9. 9 eV but with 

the low f-value of 0.1. This state is being perturbed by valence-Rydberg 

mixing. The generalized oscillator strength as a function of q
2 

will be 

useful in studying these perturbations quantitatively. 
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Table I. Excitation Energies and Intensities in Formaldehyde. a 

Main ~E ~E AE f f 
8tate Transition (EOM) (Obs.) (CI) (EOM) (Obs. )h 

3 Ai. n-rr* 3.46 3'. 54C 3.41e 

lAi_ n-1r* 4.04 3.84c 3. 81 

3A1 rr-rr* 5.29 5.56 

lA1 1r-1r* 10.10 9. 9of 0.10 

lB 
l a-rr* 9.19 9.0d 9.03 0.002 

lB 
2 n-3s 7.28 7.08 7.38 0.02 0. 028 

lB2 n-3pa1 8.12 8.14 8.39 0.04 0.032 

lAl n-3pb2 8.15 7.97 8.11 0.05 0.017 

lAi_ n-3pb1 8.35 7.99g 

lAl n-4pb2 9.40 9.58 0.004 i 

lAi_ n-4pb1 9.47 

lB2 n-4pa1 9.55 9.63 0.04 0. 032 

a Vertical excitation energies. 

b Results from the EOM method in the (lp-lh) +(2p-2h) approximation. All energies 

in eV's. 

cLow energy electron impact results of A. Chutjian, Jet Propulsion Laboratory 
(Pasadena) (to be published). .. · · · · · 

d The next six experimental values are from Ref. 6. 

e CI calculations of Ref. 13. 

f Reference 14. 

g Reference 15. 

h Reference 7. 

i Observed to be much weaker than the transition to the 1B2(2b24pa1 ). 
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(B) 

Assignments in the Electronic Spectrum of Water 
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I. INTRODUCTION 
~ 

Despite the importance of the water molecule there is considerable 

question as to the location, intensities, and nature of transitions to its 

lower excited electronic states. A recent study by Claydon, Segal, 

and Taylor1 which combined available experimental evidence with the 

suggestions of semiempirical calculations provided a consistent 

interpretation of the facts known at the time. Even more recently, 

however, Knoop, Brongersma, and Oosterhoff2 and Trajmar et al. 3 

have reported electron impact spectra of H20 which raise a serious 

question as to the nature of the inelastic process observed by many 

workers at 4. 5 eV in H20. Despite the fact that the calculation of the 

excitation energy to the lowest triplet state of a molecule should be straight-
. fue - _ 
forward,/calculations reported in the literature1 all find the 3B1 state to be 

the lowest excited state of H20 and to have a vertical excitation energy 

above 6 eV. Moreover there are no reliable or extensive calculations 

of the oscillator strengths for the several dipole-allowed transitions 

below 10 eV. These quantities are needed in the analysis of the relative 

intensities of several transitions observed in the electron impact spectrum 

of water. 4 

In view of this discrepancy and the questions raised by recent 

electron impact spectra of H20, 2, 3 and in order to provide reliable estimates 

of the oscillator strengths of several transitions we have carried out 

an extensive calculation of the excited state manifold of H20 at the 

vertical geometry using the equations-of-motion method. 5 One of our 

conclusions from this study is that the vertical excitation energy to the 
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3Bl state is in the vicinity of 6. 9 eV and almost certainly corresponds to 

the strong feature at 7. 2 eV observed by Knoop et al. 2 in their low-energy 

electron scattering spectrum. The triplet character of the feature 

at 7. 2 eV is also supported by the electron impact spectra of Trajmar et al. 3' 6 

The 4. 5 eV inelastic process almost certainly does not correspond 

to a vertical excitation of H2O in the ground state geometry. The 

experimental evidence regarding the existence of an inelastic feature 

at 4. 5 eV seems unambiguous6 and to put this problem into the 

perspective we shall begin by considering the experimental evidence 

regarding the 4. 5 eV and 7. 2 - 7. 5 eV regions. We shall then describe 

our calculations of the excitation energies and f-values of several transitions 

by the equations-of-motion method. The results, including the f-values 

agree well with available data. 

II. EXPERTh'IENTAL EVIDENCE FOR STATES 

AT 4.5 eV AND 7.2 - 7.5 eV 

Until the recent low-energy electron impact spectra were reportect2' 3, 6 

there had been a real question as to the nature and existence of the 

inelastic feature at 4. 5 eV in the spectrum of water. The feature is 

extremely weak and had never been observed in the gas phase optical 

spectrum. However, Larzal et al. 7 observed weak absorption at 4. 5 eV 

using a 80 cm path length of liquid water. This process presumably 

corresponds to the structure at 4. 0 ± 0. 1 eV reported by Hunter, 

Lewis, and Hamill8 in their low-energy electron reflection spectra 

of a thin film of ice at 77°K. These authors 7, 8 attribute their 
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observation to absorption to the 
3
B1 state of water, presumably in the 

Franck-Condon region. No structure was observed at lower energy. 7, 8 

This absorption observed in condensed phases could conceivably be due 

to a number of causes other than excitation to an excited state of H20. 

In particular, dimer absorption or absorption due to OH radicals formed 

through radiation damage are possible, although the dissociation energy 

for the process H20 - H(2 S) + OH(X 
2
II) is 5. 11 eV. 

Hamill and coworkers9 ' lO have, however, provided additional, 

but indirect and inconclusive evidence for the existence of a state 

around 4. 5 eV. By electron impact on alcohols a water fragment 

can be formed in an excited state. For example, for ethanol 

The ionization efficiency curve for C2H/ from ethanol exhibited several 

"breaks" which occur at the same energy intervals as those for C2H/ 

from ethane and ethylene, but 4. 3 eV above the onset for this process . 

there was an additional break in the efficiency curve. At the onset of 

the process H20 in its ground state was formed, but at 4. 3 eV above 

onset excited state water can also be formed so that an upward break 

in the efficiency curve is produced by an additional channel for C2H/ 

generation. Lewis and Hamin11 have also reported that this process 

occurs for the cyclic alcohols c-C5H9 0H and c-C6H110H to produce water 

and C5H8 + and C6H10 +,respectively. By methods similar to those used 

for ethanol, Lewis and Hamin11 found and extra "break" in the efficiency 

curves at 4. 3 eV and 4. 5 eV for c-C5H90H and c-C6H110H, respectively. 
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These experiments offer supplementary evidence for a value of the 

lowest singlet-triplet excitation energy of about 4. 5 eV . It is important 

to realize that in the case of H20 being formed as a neutral fragment of 

the electron impact on alcohols, the value measured might represent 

a minimum ( or non-vertical) transition energy rather than a transition 

determined by Franck-Condon factors. 

More definitive data for the existence of the inelastic feature at 

4.5 eV are provided by low-energy electron impact spectra since the 

cross section for excitation of triplet states is considerably enhanced 

under these conditions. These cross sections also have a distintive 

angular distribution. The 4. 5 eV feature is weak in these spectra. 

Schulz12 observed an energy loss process with an onset of about 3. 4 eV 

with the trapped electron method. A threshold electron impact spectrum using 

SF6 as a scavenger13 was similar to Schulz's spectrum except that the 

low energy electron loss feature was observed to have an onset at 4. 4 eV. 

Raff14 observed the feature on electron impact with 30 eV electrons while 

Lassettre et al~ 5 did not observe this feature in the electron impact spectrum 

at low scattering angles and impact energies above 100 eV. However 

Lassettre et a1~ 6 did observe very weak scattering with an onset of about 

4. 4 eV in another spectra at low scattering angles and impact energies 

between 30 and 60 eV. 16 From their trapped electron spectrum of 

water Azria and Fiquet-Fayard1 7 concluded that the 4. 5 eV energy loss 

feature is due to contamination, but the preponderance of evidence is 

clearly against this conclusion. From a study of the pressure and 

primary beam dependence of the trapped electron current Knopp has 

shown that it is very unlikely that the 4. 5 eV feature could be due to 

excitation of OH radicals or molecular complexes of water. 18 
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More detailed and convincing data are provided by the work of 

Trajmar and coworkers. 3, 6 They have shown that the differential cross 

section of electrons inelastically scattered with an energy loss of 4. 5 eV 

is consistent with a singlet-triplet transition. Their studies also rule 

out any contribution to this feature from water dimers or hot bands. 

In more recent spectra at very low impact energies Trajmar6 has also 

observed the 4. 5 eV feature with a very enhanced cross section and also a 

transition at 7. 2 eV with the characteristics of a singlet-triplet transition. 

Finally,Knoop et al. 2 recently reported a low-energy electron impact 

spectrum taken by the double retarding potential difference method. 

They observe the 4. 5 eV inelastic feature and, more interestingly, 

also found a strong transition peaked at 7. 2 eV which is distinct from 

the 7. 5 eV (1B 1) feature and which they assign as due to the 
3
B1 or 3A2 

state. They did not find a peak at 7. 5 eV for the cross sections for 

singlets are low in their method. 

This is the current experimental situation on the transitions in 

H20 at 4. 5 eV and also 7. 2 eV and 7. 5 eV. We now discuss our 

calculations on the spectra of the water molecule from which we will 

assign the transition at 7. 2 eV as the vertical excitation to the 3B1 

state. Our results also show that there is no vertical excitation 

energy at the ground state geometry in this molecule around 4. 5 eV. 



-20-

III. THEORY 
~ 

We have used the equations-of-motion method to calculate the 

excitation energies and oscillator strengths for several transitions in 

the water molecule. The equations-of-motion method is an approach 

for the direct calculation of the properties of physical interest in 

spectroscopy, e.g., excitation energies and intensities. By using a 

theory specifically designed for studying these relative properties 

one can avoid many of the difficulties involved in obtaining highly 

accurate values for absolute quantities such as the total energies. 

We have discussed this method in recent papers5' 19 and here we will 

give only a very brief summary of the theory. It can be shown that the 

operator o: which generates an excited state Ji\.) from the ground state, 

i.e., Ji\) =0,\ + J 0), is exactly a solution of the equation of motion 20 

(1) 

where 60i\. + is a variation of the amplitudes specifying Qi\+ and ~ the 

excitation frequency. The double commutator is defined as 

2[A,B,C] =[[A,B]C] + [A,[B,C]] (2) 

We have derived various approximations to the solution of Eq. (1). 
5

, 19 

If OA + is restricted to single particle-hole (lp-lh) form Eq. (1) becomes 

(3) 
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where the elements of A, B, and Dare defined in Ref. 5 and Y(A) 
"' "' "' 

and ~(A) are the amplitudes of OA +. We have also derived perturb-

ation-like schemes for solving Eq. (1) including both lp-lh and 2p-2h 

operators. 19 At this level of approximation we have obtained accurate 

excitation energies and oscillator strengths for transitions in N2 , 
21 

21 21 22 23 24 . . 
CO, C2H4 , H2CO, CO2 , and C6H6 • We now discuss the 

application of this method to the spectrum of the water molecule. 

IV. RESULTS 
~ 

The electron configuration of the ground state of water is 

In an equations-of-motion calculation one first carries out a self

consistent field calculation on the ground state of the molecule to 

generate a particle-hole basis. We have used the currently accepted 

ground state experimental geometry25 and carried out calculations26 

using different basis sets to study the effect of the composition of the 

orbital basis on the excitation energies and f-values. We will refer primarily 

to the results obtained in the largest basis but will also discuss the 

results in other basis sets whenever the differences in the results 

illustrate some important feature. For this largest basis we used a 

[ 3s2p/ls] valence basis contracted from a (7s3p/3s) Gaussian basis27 to 

which we added a diffuse s function with an orbital exponent of 0. 038 

on each hydrogen and two s functions with exponents of 0. 089 and 0. 022 

and two sets of p functions also with exponents of 0. 089 and 0. 022 on 

the oxygen center. Polarization functions have been shown to be 
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important in ground state SCF calculations on water28 and hence we 

added to our basis a contracted set of ct-polarization functions on 

oxygen with exponents of 1. 322 and 0. 3916 and coefficients 0. 3579 

and 0. 7596, respectively, and a set of p-polarization functions, on 

hydrogen with an exponent of 1. 16. Another calculation was done with 

this same basis but from which the polarization functions were deleted. 

The differences in the results of the two calculations are not very 

significant but may amount to 0. 3 to 0. 5 eV in the excitation energies 

to some states . In the calculations, all molecular orbital levels 

except the highest particle state and the lowest hole state are 

included. 29 

Table I shows the excitation energies for ten transitions in water 

along with the oscillator strengths for the four dipole-allowed transitions. 

These are results of the calculation using the lp-lh plus 2p-2h (lp-lh + 

2p-2h) approximation19 to the solution of the equation of motion, Eq. (1) 

and the basis set containing the polarization functions. The lowest 

calculated vertical excitation energy is about 6. 9 eV and is to the 

3B1 (lb1 - 3s) state. The corresponding singlet transition errergy is 

7. 2 eV and hence the B1 singlet-triplet splitting is 0. 3 eV. Hence we 

can now assign the peak observed by Knopp2 at 7. 2 eV as the 
3
B1 state, 

0. 2 eV below the observed transition to the 
1
B1 state. 3 Clearly the 

inelastic feature at 4. 5 e V is not a vertical transition to the 3B 1 state. 

From the accuracy of the results on several other molecules we are 

confident that the predicted value of 6. 9 eV for the vertical excitation 
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energy to the B1 state would be within 5-10% of the true value. If 

one assumes that the transition is highly non-vertical the 3B 1 potential 

energy curve would have to drop by over 2 eV relative to the vertical 

value. Bader and Gangi30 calculated the energy difference between 

linear H20 and H20 in the ground state geometry to be 0. 13 eV for the 

lowest triplet surface. Linear H20 is only a saddle point on this 

surface. The calculated f-value of 0. 05 for the transition to the A 1B 1 

state agrees well with the experimental value of 0. 04. 

We assign the peak observed at 9. 1 eV by Knopp et al. 2 as a 

transition to the 1A2 (lb1 - 3py) state with a calculated excitation energy 
. . 1 

of 9.02 eV. The~ A1 (3a1 - 3s) excitation energy of 9.54 eV agrees 

well with the observed value of 9. 67. The triplet state observed by 

Trajmar3 at 9. 81 eV is probably a transition to one of three triplet 

states, i.e., the 3A1 (3a1 ---+ 3s) at 9. 34 eV, 3A1 (lb1 ---+ 3px) at 9. 39 eV, 

or the 3B1 (lb1 ---+ 3pz) at 9. 47 eV. From the good agreement between 

the calculated and observed excitation energies for the 1 A1 ( 3a1 ---+ 3s) 

state, the assignment may be narrowed down to the 3 A1 ( lb1 ---+ 3px) or 
3B1 (lb1 ---+ 3pz) states. The B 1A1 excitation energy of 9. 54 eV agrees 

well with the observed value of 9. 67 eV while the excitation energies to 
"-' 1 "-' 1 

the C B1 (lb1 - 3pz) and D A1 (lb1 ---+ 3px) states are both about 5% 

below the observed values. The predicted f-value of 0. 06 for the transi

tion to theB 
1
A1 state, observed as a broad continuum, is close to the 

experimental value of 0. 05 . There are no experimental f-values avail-
,..., 1 .-Vl 4 

able for transitions to the D A1 and C B1 states, but Lassettre esti-

mated the ratio of f-values for these two transitions to be about 1. 3 

from high energy electron impact studies. Our calculated f-values 

give a ratio of about 3. 
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As expected, the excitation energies obtained from the calculations 

without the polarization functions are very close to those in Table I 

for transitions to states which are primarily excitations out of the lb1 

orbital. This is because the lb 1 orbital is almost the oxygen 2px 

orbital which is relatively nonbonding. However the excitation energies 

to states which arise primarily from an excitation out of the 3a1 bonding 

orbital are all about 0. 3 - 0. 4 eV lower than those of Table I. 

CONCLUSIONS 
~ 

The available experimental evidence for the existence of an 

inelastic feature at 4. 5 eV in the spectrum of water is very convincing. 

To explain the nature of this process and to study the spectrum of 

water in some detail we have carried out several calculations on the 

excited states of water at the vertical geometry using the equations

of-motion method. 5 We conclude that our calculated vertical excitation 
. 3 

energy of 6. 9 eV for the B1 state corresponds to the strong feature at 

7. 2 eV observed by Knoop et al. 2 in their low-energy electron scattering 

spectrum. The 4. 5 eV inelastic process almost certainly does not 

correspond to a vertical excitation of water at the ground state geometry. 

The other excitation energies and oscillator strengths agree well with 

experiment. We can assign the state observed at 9. 1 eV 2 as a 

1i½(lb1 _ 3py) and the triplet state at 9. 81 eV as probably a 3A1 or 3B 1 

and not a 
3 i½ excitation. 
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Table I. Vertica l Excitat ion Energie s and Oscillator 

strengths in Watera 

state Main 6. Eb ~ E .6..E C fb f 
Transition (EOM) (Obs.) (CI) (EOM) (Obs.) 

s 
7. 2 d Bl lb1 - 3s 6.89 7.3 

A 1B 1 lb1 - 3s 7.22 7. 4 e 7.6 0.05 0. 04g 

SA 
2 lbl - 3py 8. 97 9.3 

lA 
2 lbl - 3py 9.02 9. 1 d 9.5 

SA 
1 3a1 - 3s 9.34 9.4 

sA 
1 lb1 -3px 9.39 

SB 
1 lb1 - 3pz 9.47 

~ 10.of h C 1B lb1 -3pz 9.48 0.006 l 

B 1A 
1 3a1 -3s 9.54 9.67 9.8 0.06 0.05g 

~ h D 1A lb1 -3px 9.61 10.17 0.02 1 

aAll energies in eV's. 

bResults from the EOM method in the lp- lh + 2p- 2h approximation. 

See Ref. 19. 

cN. W. Winter, private communcation. 

~eference 2. 

eReference 3. 

fThe next three experimental energies are from Ref. 4 . 
. 

gK. Watanabe and M. Zelikoff, J. Opt. Soc. America, 11, 753 

{1953) . 
h ~ l ~ 

The observed ratio of f-values for the D A1 and C 1B1 states 

is about 1. 2. See Ref. 4. 
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(C) 

Oscillator Stregths for the x1r+ -A1II System in CH+ 

from the Equations of Motion Method 
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1. INTRODUCTION 
~ 

With the recent expansion of the field of astrochemistry and studies 

of the formation and evolution of interstellar clouds, the need has arisen 

for accurate and reliable molecular data1 on species not previously investi

gated in any detail either experimentally or theoretically. A thorough dis

cussion of current astrophysical and astrochemical problems related to 

molecule formation in interstellar space can be found in Ref. 2. 

A typical example of a situation where the lack of reliable molecular 

data has seriously affected the development of models for the formation of 

interstellar molecules is that of the relative abundances of CH and CH+ and 

their formation through radiative association processes from atoms and 

ions. 3 In particular, the rate of association of C and H+ to form CH+ 

depends on the oscillator strength of the X1:E+ - A1Il transition in CH+. 3- 5 

CH+ is charged and a highly reactive species, which makes spectroscopic 

studies in the laboratory difficult. Under these circumstances, detailed 

theoretical calculations become appealing. One of the early theories6 of 

the formation of CH+ was initially discarded because the assumed f-values 

lead to low rates of radiative association. However, the work of Solomon 

and Klemperer3 revived the interest in this radiative association mechanism 

by reevaluating the rates by using better f-values. 

In addition to these direct processes Julienne and Krauss4 have dis

cussed an alternative mechanism, namely, indirect radiative association 

(inverse predissociation) leading to the formation of other species as well, 

such as NO, CH, CO, C2 , etc. In these studies a reliable source of 
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intensities is necessary if we are to reduce the uncertainties in models of 

the interstellar medium. 

For these reasons, considerable effort has been put into the ab 

initio quantum mechanical calculation of the potential energy curves 7 and 

oscillator strengths8 of CH+. Similar work has been done on CH9 • 

In this paper we present the oscillator strength of the x1 ~+ - A1Il 

transition of CH+ as computed by the Equations of Motion Method. lO Our 

result is in good agreement with the extensive CI calculations of Green 

et al., 7 and Yoshimine et al. 8 The results presented are important 

because they constitute an independent confirmation of the results of Green 

et al., and Yoshimine et.al., using a different approach. Moreover, 

computationally the method is simple and relatively inexpensive. This is 

an in1portant feature since the rapidly expanding fields of astrophysics and 

astrochemistry of the interstellar medium require reliable estimates of 

molecular parameters such as excitation energies and transition moments 

at various geometries. Since it is not always possible to study the systems 

of interest experimentally, we must resort to theoretical calculations that, 

while still reliable, do not represent a major computational effort. 
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2. THEORY AND RESULTS 

The Equations of Motion (EOM) Method for calculating excitation 

energies and transition moments has been thoroughly described elsewhere10 

and here we only outline some of the central ideas. 

In this approach we define an excitation operator such that 

(1) 

where l:>c) is some excited state and I 0) is the ground state. It then can 

be shown that o; satisfies an equation of motion 11 given by 

(2) 

where the dou½le commutator is defined by 

2[A,B,C] = [[A,B],C] + [A,[B,C]] (3) 

wA is the excitation frequency and oo{ represents a variation of the 

amplitudes specifying o;. If or is assumed to be composed of single 

particle-hole pairs (lp-lh) the equations of motion become 

(4) 

The elements of the matrices~. !?, and !?, are given in Ref. 10. y and 

Z a.re the an1plitudes we wish to calculate. Higher order approxin1ations .... 
(inclusion of 2p-2h components) to the exact Eq. 2 can also be easily 

constructed. In the above approach we obtain spectroscopic quantities of 

interest,e. g. transition intensities directly, and avoid the calculation 
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of highly accurate and elaborate total wavefunctions and absolute energies 

for the different electronic states separately. 

In this paper we report calculations on CH+ using two different 

gaussian basis sets: a [ 3S2P/2S] contracted from a (9S5P/4s}1 2a 

primitive basis and a more recent version of the [ 3S 2P/2S] contraction12b 

to which we added polarization functions. The final basis was then 

[ 3S 2P1D/2S1P]'.' 

In Table I we summarize the results we obtain with the two bases 

and compare them with the best CI calculations to date. 7, 8 We have per

formed the calculation only at one internuclear distance, namely 1. 12 'A, 
which is the ground state equilibrium geometry. The first column in the 

table, labeled RPA (Random Phase Approximation) is derived from lowest 

order single particle-hole pair (lp-lh) solutions to the equations of motion. 

(See Ref. 10). The column labeled EOM, contains results that were not 

fully iterated. 10 Continuing the iterations may have improved the excitation 

energy somewhat within the rather small basis set being used. The basis 

was chosen to provide good results for the X 
1
~+ - A 

1
Il transition moment, 

since this is the one transition that bears the most astrophysical interest. 

The values we have computed are compared with those obtained 

by interpolating from the data in references 7 and 8. Overall agreement 

is good. We want to point out that the size of the problem (computational 

effort) is determined by the number of lp-lh excitations included in Eq. 4. 

In our larger basis ( [ 3S2P 1D/2S1P] ) . this amounts only to 12, which 

means that at most only 12 x 12 matrices must be diagonalized for states 

of II symmetry. Another feature of EOM calculations that makes them 
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particularly practical is that an SCF run is needed only once and on the 

ground state exclusively. From a single calculation we obtain most of 

the low-lying states (all of the symmetries allowed by the basis set being 

used). As in any basis set expansion technique the quality of the final 

results depends on the nature and the size of the basis used. However, we 

have found in general that valence basis sets of relatively poor quality 

still give very good transition moments and excitation energies to states 

with small diffuse components. 

In conclusioh, the EOM scheme can provide reliable moiecula.r 

spectral data such as excitation energies and oscillator strengths in a 

computationally simple fashion. Applications to other molecules of 

interest in astrophysics are underway. 
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Table 1. 

Vertical Excitation Energy and Oscillator Strength for the X1~:/-A1II 

Transition in CH+ 

Property t 3S2P /2S] RPA [ 3S2P1D/2S1P] EOM CI of Refs. 7, 

Excitation 
3.32a 2.37 2.50 

Energy(eV) 

Transition 
0.30a 0.34 0.31 

Moment(au) 

8 

Oscillator 
0.0147a 0.014 0.011 

Strength 

a Values interpolated from the data in references 7 and 8. 
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(D) 

Some Applications of Excited State--Excited 

State Transition Densities 
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I. INTRODUCTION 

In the equations of motion method or any of its approxima

tions, e. g. the random phase approximation or time-dependent 

Hartree-Fock, the quantities calculated directly are the transition 

densities between the ground and excited states. 1 Relative quantities 

between the ground and excited states such as transition moments 

can then be readily obtained from these transition densities and the 

necessary matrix elements between basis states. For several appli

cations excited state-excited state transition densities are needed. 

These include the study of transition intensities between excited 

states of molecules of interest in the development of gas phase lasers, 

e.g. the C
3 
nu - B3 rig lasing transition in N2 and in atmospheric 

emissions where transitions between excited states play an important 

role. Other properties such as two-photon decay of metastable states 

and the polarizabilities of excited states require infinite summations 

over excited state-excited state transition moments and frequencies. 

The purpose of this paper is to show how excited state-excited 

state transition moments can be calculated directly from the set of 

ground state-excited state transition densities obtained from a single 

equations of motion calculation. First we derive the simple relation

ship expressing the excited state-excited state transition moment 

directly in terms of the ground state-excited state transition densities. 

Then we discuss two interesting applications of this result. The 

first application is to the calculation of the photoionization cross 
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sections of the 2 
3
S and 2 

1
S metastable states of helium. In this 

calculation of photoionization cross sections we completely avoid 

the need for constructing continuum solutions of the wave equation 

normally needed to describe the final-state continuum wave functions. 

The central idea is to use the excited state-excited state transition 

moments to obtain a discrete representation of the frequency-dependent 

polarizability at complex values of the energy. Numerical analytic con

tinuation can then be used to obtain the photoionization cross sections. 

We have previously applied this procedure to obtain photoionization 

cross sections for He and H2 ground states in good agreement with 

experiment. 2, 3 As a second application we use these excited state 

moments to predict the two-photon decay rate of the 2 
1
S metastable 

state of helium. Both the calculated photoionization cross sections 
1 3 

of the 2 S and 2 S states of helium and the two-photon decay rate of 
1 

the 2 S state agree well with the results of other calculations and 

available experimental data. 
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II. THEORY 

In the study of dynamical properties of atoms and molecules 

the quantities of direct physical interest are relative quantities be

tween two states, e.g. excitation frequencies, u. 0 A' and transition 

matrix elements, < 0 I M I A >, between states IO > and I A >. 
For example in the frequency-dependent polarizability a (u..,) 

2 2 

u.O,\. - u. 
1 

(1) 

one is concerned with a set of frequencies { u.., 0 A r and the off-diagonal 
--, 

matrix elements of the dipole operator, D. The sw11mation in Eq. 

(1) implies an integration over the continuum. The evaluation of 

one-particle transition matrix elements simply requires a knowledge 

of the one-particle transition density, µ 0 ,\ (r', -;) 

- ~ I --+ I ---, / ---, I P0 A ( r , r ) = < 0 p ( r , r ) A > (2) 

where p {i= ',r') is the one-particle density operator 

(__,, __, ~ T ___,' ) ... (-) 
µ r ,r) = 41 (r 1/1 r (3) 

in second quantized form with~ T (r) and; (r) the field operators, 

e.g. 

(4) 

l where <pk (r) and ak are single-particle states and creation operators 
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respectively. The transition matrix element of a one-particle 

operator M can then be written 

< o I M l "- > = J J dr d r, 6 (r - r, ) M (r) p O A (r,, r) ( 5) 

where the integration over the o function is performed after M (r) 

is applied. Since the one-particle transition density is sufficient to 

evaluate the physically significant matrix elements, one should design 

a theory that concentrates directly on this quantity. In the equations 

of motion method as well as in several other many-body methods, 

e. g. in the theory of Green's function, we calculate the transition 

density directly. 

In the equations of motion method one calculates the elements 

of the ground state-excited state transition densities by solving the 

equation of motion of the excitation operator o} defined such that 

o} I O > = j A > . It can be shown that if the operator o1 is re

stricted to single particle-hole form, i.e. 

). Y (A) a ·t a - Z (A) a l a 
... , my m y my y m 

my 

the amplitudes Y ("-) and Z ("-) satisfy the equation 4 
my m-y 

0 

D 

y (,\) \ 
,._ \ 

Z (A) / 
,._ / 

The matrices A, B, and D are ground state expectation values of 
,._ -"" -"" 

second quantized operators 1 and c.i., 0 A the excitation energy. The 

amplitudes Y and z are elements of the transition density 
my ill}' 

(6) 

(7) 
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which, to a good approximation, can be written as 

where cpm and fy are particle and hole states respectively. The 

equations of motion, Eq. (7), can be solved straightforwardly in 

various approximations for ground to excited state transition 

energies and densities . Applications to several molecules, e. g. 

H2, N2, CO, H2O, CO2, H2CO, and C6H6 , 
5 show that the method 

yields accurate dipole transition moments. 

For several applications it would be convenient to derive 

excited state-excited state transition moments directly from the 

(8) 

set of ground state-excited state transition densities {p 0 ;,.) obtained 

from the solution of Eq. (7). Consider the matrix element of the 

one-body operator between states I\> and I Aj >. From the 

properties of the operators o/ and of. we can write 
1 J 

< 11.. \ M I 11.. > = < o \ 011. M o2 [ o > 
1 J i j 

We now exploit the formal properties of the excitation operators 

to rewrite Eq. (9) as the expectation value of commutators of the 

operators OA.' Mand o}_ 
1 J 

(9) 

<xi\ MI 11.j > = <o \ [011..' M, ol, JI o > + 1 <o I [011..' o1. ] TI o > 
1 J 1 J 

+ ½ < o \ T [oA.' o}. J I o > (lo) 
1 J 
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where the double commutator is defined as 

The advantage in going from the expectation value of the direct 

product of operators OA.' M, oj_ of Eq. (9) to the expectation 
l ) 

value of the double commutator of these operators, Eq. (11), is 

due to the observation that the double commutator is a simpler 

operator, i.e. of lower particle-hole rank, than the straightforward 

product. 6 The expectation value of the double commutator can then 

be expected to be less sensitive to the details of the ground state 

wavefunction. 4 

The right-hand side of Eq. (10) is now evaluated in three 

different approximations. First in the random phase approximation 

(RPA) the second and third terms of Eq. (10) vanish since [OA.' 
l 

= o ~ ~ , I A. > * I A- >, and the expectation value of the double 
l\. 0 A, l ) 

l ) 

l .. 
OA. J 

) 

commutator is evaluated over the Hartree-Fock ground state. In 

the RPA we obtain 

< \ I M I Aj > ~ ,?J l_, [Y* (A.) Y (A.) + Z * (A.) Z (A .) j 
nv 1 my J nv 1 mr J 

nv my 

(12) 

In Eq. (12) m and n denote particle states and y and II hole states. 

The amplitudes { Znz;} implicitly account for electron correlation 

in the ground state . The { Y } amplitudes are the dominant effect nv 
in Eq. (12) since they represent the main correlation effects in the 
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excited state. If we completely neglect electron correlation in the 

ground state, i.e. set I O > = I HF > and { Znv} = 0, we obtain 

nv my 

This corresponds to assuming that the excited state is composed 

of single excited states relative to the HF ground state, i.e. 

single excitation configuration interaction or the Tamm-Dancoff 

approximation (TDA). Equation (13) should normally be a good 

approximation to the transition matrix element. 

The third approximation to < \ I M I Aj > can be obtained 

by solving Eq. (7) for the {Ynv} and {zn,) amplitudes in a higher 

order scheme. This higher random phase approximation is dis

cussed in ref. 1 and is often needed in discussing excitations to 

low-lying triplet electronic states where the RPA may show insta

bilities. In this approximation (HRPA) we have 

) \ (. __ , l -1 
nv my 

(13) 

(14) 

where p is the ground state density matrix, y, 6 and v hole states 

and m, n, and p particle states. In the HRPA the second and third 

terms of Eq. (10) do not exactly vanish but can be expected to be 
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small and are neglected in deriving Eq. (14). We recall that these 

terms do vanish in the RPA since [OA.' o1. J = oA. A.. There are 
1 J 1 J 

examples where it is important to use Eq. (14) instead of Eq. (12) 

or Eq. (13), e.g. in certain transitions in N2 • These results will 

be discussed in a separate paper. 7 

In the next section we discuss the applications of these tran

sition moments to the calculation of photoionization cross sections 

of the 2 1s and 2 3S metastable states of helium and of the two-photon 

decay rate of the 2 1s state of helium. 
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IIl. APPLICATIONS 

A. Photoionization cross sections of metastable states 

Photoionization of excited state species plays an important 

role in several physical systems. For example, photoionization of 

rare gas excimers is an important reaction that may limit the laser 

gain of these systems. In previous calculations of photoionization 

cross sections of metastable states, B, 9 as well as for ground states, 

accurate atomic or molecular continuum eigenfunctions are needed 

to describe the final states of the systems. lO We have recently 

shown how one can completely avoid the need for continuum eigen

functions in the calculation of atomic and molecular photoionization 

cross sections. ll, 12 These calculated photoionization cross sec

tions for He11 and tt/2 in their ground states agree well with other 

calculations and experiment. The central idea is to obtain a discrete 

representation of the frequency-dependent polarizability which, al

though not directly useful at physical energies in the continuum, 

often provides an adequate representation of the polarizability for 

complex values of the energy. Numerical analytic continuation can 

then be used to return to the real energy axis where the physical 

information is desired. This L2 method for calculating photoioniza

tion cross sections was suggested by Broad and Reinhardt13 who 

applied it to atomic hydrogen. 

To apply this method to the calculation of photoionization 

cross sections of excited states we start from the frequency-dependent 
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polarizability of the excited state. For the state \ \ > we have 

f . gA. (E) dE 

I 
A.A. 00 

aA. (z) 
1 ] j 1 (15) = + 2 2 2 .2 

1 u. - z EI E - Z A. =/=A. A.A . 
1 J 1 J 

where z is complex and wA . .\., fA.A . , and gA_(E) are the transition 
1 J 1 J 1 

frequencies and the bound and continuum oscillator strengths respec-

tively and EI is the first ionization threshold of the system. In the 

neighborhood of z = u.. + i1J with YJ _, 0 

f gA._(E)dE 

I A -A. 00 

aA. (w) 
1 ] Pj 1 

+ br = + 2 2 2 2 
1 u.. - u.. EI E - u.. A. i=A- A.A . 

1 J 1 J 
2u.. 

(16) 

This gives the relation between the photoionization cross sections 

of state \ Ai>, aA., and the imaginary part of its polarizability 
1 

41rw 
C 

Im [aA. (u.. + iYJ)] 
1 

(17) 

a (z) of Eq. (15) is first approximated by a finite sum over approxi

mate oscillator strengths TA.A. and frequencies Z:A .A. 

a A. (z) 
1 

1 J 1 J 

fA.A. 
1 ] 

~ 2 2 
u., - z A.A. 

1 J 

(18) 

To continue aA. (z) analytically on to the real axis, we construct a 
1 
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low-order rational-fraction representation of aA.. (z) by fitting it to 
~ l 

the approximate a A- (z) of Eq. (18) at a number of points in the com-

plex plane. 14 With \his smooth representation of aA. (z) we can now 
1 

calculate a11.. (z), and hence a A. (z), at real energies where the 
l l 

original discrete approximation, Eq. (18) is unphysical. 
~, 

The finite set of oscillator strengths, f A.A., and transition 
~ ~ l J 

fr equencies, u.A..A . , needed to obtain aA.'11.., Eq. (18), is generated 
l ] l J 

by solving the equations of motion, Eq. (7), for the transition fre-

quencies, u. 0 A. The resulting transition amplitudes, Y nv and Znv, 

give, through Eqs. (12), (13), or (14), the excited state-excited state 

transition moments, MA.A.' which, along with [;;A.A., define TA.A. 
lJ l] l] 

-
~ f A.A . 

l J 
(19) 

Dis the dipole moment operator and the transition moment MA.A. is 
l J 

evaluated in the three approximations discussed above, i.e. Eqs. (12), 

(13), and (14) . In the calculation of the photoionization cross sections of 

the 2
1
S and 2 

3
S metastable states of helium we use a finite set of eight 

discrete oscillator strengths, i.e. f.;\,A.. (2 
1

'
3
s~,n

1
'

3
P) n = 2, 3, ... 9 in 

l J 

Eq. (18). Table I lists these oscillator strengths in the RPA which 

are used in the calculation of the photoionization cross sections . 

We do not list the oscillator strengths in the other approximations 

for all eight transitions since all the approximations can be expected 

to give similar results where excited state correlation effects are 

not critical, e . g. in the ls 2s (2
1
S) _, ls 2p (2 1 P) transition the 

main effect is included in the TDA. In Table II we do however 
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show the first three oscillator strengths and compare them with the 

results of other calculations. 

Figures 1 and 2 show the calculated photoionization cross 

sections for the 2 1s and 2 
3
S metastable states of helium. These 

cross sections are for the continuous background photoionization 

below the n = 2 threshold. The fitting points for determining the 

rational-fraction representation of a.A. (z) were chosen with a real 
1 

part between each pair of CL :.A. values of Table I and the imaginary 
1 ] 

parts were varied over a region of the complex plane. For the dif-

ferent choices of the fitting points the calculated cross sections 

agree within 2-8% of one another. In Figs. 1 and 2 we also plot 

the cross sections obtained by Norcross8 and Jacobs9 who used 

Hartree-Fock and correlated initial state wavefunctions respectively 

and close-coupling final state wavefunctions. The agreement between 

these results and the present calculation is good. Within the experi

mental uncertainty of =F 14% the various calculations agree well with 

the measured values. 15 The accuracy of our calculated cross sec

tions could be improved by using a discrete set of fA.A.'s and CLA.A.'s 
1 J 1 ] 

specifically designed to give photoionization cross sections of these 

metastable states. The f-values used in this calculation were obtained 

from a calculation originally designed to give ground-excited state 

energies and transition moments. 

Finally it should be emphasized that since this method com

pletely avoids the use of continuum eigenfunctions, the techniques 

used here can be easily extended to molecules. 16 Some immediate 
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applications would be the study of photoionization of excited states 

of rare-gas dimers and other molecular gas lasers. For example 

photoionization of the A 1 L~ state is critical in determining the 

possible gain of the proposed He2 ultra-violet laser. These calcu

lations can also provide estimates of the stimulated emission cross 

section, another important parameter in these laser systems. 

B. · Two-photon decay of the 2 1S metastable state 

As a second application and more in the purpose of a check 

on the discrete oscillator strength distribution of Table I, we now 

calculate the probability of two-photon decay of helium in the 2 1s 
level, i.e. 

(20) 

Accurate estimates, including those of a coupled Hartree-Fock 

calculation1 7 and variational procedures, 18 have been obtained for 

this decay rate and hence this application can serve as a useful 

calibration of our discrete f-distribution. 

Since the theory of two quantum processes has been discussed 

elsewhere1 7, 18 our discussion of the basic equations will be brief. 

The probability of two-photon transitions can be formally expressed 

as an infinite summation over intermediate states. If :Jiu..- of is the 

energy of the two-photon He (2 1S) - He (1 1S) transition of Eq. (20) 

the probability A (y) dy that a photon will be emitted in the frequency 

range u..- 0 r dy is given by 



-50-

3 5 3 31 12 A(y) = 5.299 x 10 "-of y (1 - y) M(y) 

where y = w 1 /"'of and M (y) is the two-photon transition matrix 

element 

(21) 

(22) 

where Dz is the z component of the dipole moment operator. The 

summation in Eq. (22) requires the transition moments between the 

ground and intermediate states, < A 
1
P I D I 11

S >, and between the 

metastable and intermediate states <2
1
S ID I A 

1
P >. The ground

excited state transition moments are directly available from the 

solution of Eq. (7) in any approximation, e.g. the RPA or time 

dependent Hartree-Fock approximation and the excited state

metastable state transition moments can be derived in any of the 

approximations discussed in Eqs. (12), (13), or (14). Direct sub

stitution of these moments and the corresponding energy differences 

yield estimates of the probability distribution A (y). The Einstein 

A coefficient for two-photon emission is just the integral 

· l 
A = ½ j A (y) dy 

0 

In Table III we list the values of A (y) obtained using the 

RPA transition moments and frequencies throughout Eq. (22). It 

(23) 
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is important to note that for excited state-excited state transition 

moments we define the RPA as our approximation of Eq. (12) to the 

exact expression, Eq. (10) . The agreement with the coupled 

Hartree- Fock calculations17 and variational calculations18 is good 

but the results are generally about 10% too high. This is partly due 

to the strong u.- 0 f frequency dependence of A (y) rather than the sum 

over intermediate states in M (y). For example, if we use the experi

mental u.; 0 f in Eq. (21), the calculatedA(y) falls within 2-3% of the 

accurate results of reference 18. These results are also listed in 

Table III. The Einstein A coefficient derived from our A (y) of the 

second column of Table I is 55. 6 sec-1 compared with 51. 3 sec-1 of 

reference 18. With the A(y) derived from the experimental u.- 0 f, 

i.e. the third column of Table III, we obtain an A coefficient of 

49. 7 sec-1
• 
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IV. CONCLUSIONS 

We have derived an approximation for transition moments 

between excited states consistent with the approximations and 

asswnptions normally used to obtain transition moments between 

the ground and excited states in the random phase approximation. 

The basic procedure is to exploit the formal properties of the exci

tation operators o-}_, defined on the ground state, i.e. oI_ j O >, 
1 1 

to rewrite the transition moment < \ j M j A.j > as an expectation 

value of double commutators, Eq. (10), over the ground state 

wavefunction. The resulting expression can then be written in 

terms of the ground-excited transition amplitudes. Eq. (12) can 

be viewed as an RPA definition of transition moments between ex

cited states. 6 Although for some applications the lower order TDA 

or single excitation CI may suffice, there are cases where a higher 

order solution is necessary to calculate excited state-excited state 

transition moments. 7 

The results for the photoionization cross sections of the 
1 3 • 

2 S and 2 S metastable states of hehwn demonstrate some of the 

useful applications of these discrete oscillator strength distribu

tions for excited state-excited state transitions. Most importantly, 

these results indicate that it is also not necessary to employ con

tinuwn basis functions in the calculation of photoionization cross 

sections of metastable states. This can be very significant for 

molecular photoionization where it is very difficult to obtain 
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adequate continuum eigenfunctions. Some immediate applications 

could be to the photoionization of rare gas excimers involved in 

proposed gas lasers, e. g. the He2 UV laser. From the calculated 
1 

two-photon emission cross sections of the 2 S state helium, the 

procedure could also be an easy and direct approach to two-photon 

emission cross sections in molecular systems. 

~ 
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TABLE IT. Transition Moments and Oscillator 

!Ml 

f 

!Ml 

f 

!Ml 

f 

!Ml 

f 

IMI 

f 

1 1 
Strengths for the 2 S - ,\ P and 

2 
3
S -+ ,\ 

3
P Transitions in Different 

Approximations 

2
1
P 3

1
P 4

1
P 

3.035 0.9255 0.6053 

.0.3824 0.1494 0. 0839 

3.021 0.9047 0.5945 

0.3917 0.1442 0.0815 

3.012 0. 9285 0.5985 

0. 3766 0.1526 0.0831 

2.916 0.9020 0.4699 

0.3764 0.1478 0.0508 

2.916 0.9129 

0.3764 0.1514 



-56-

Table II (continued) 

2 
3
S - 2 

3
P 3 

3
P 4 

3
P 

TDA !Ml 2.364 0. 4283 0. 3194 

f 0.5857 0.0480 0.0325 

RPA !M l 2.330 0.3884 0. 2971 

f 0.6094 0.0407 0.0289 

HRPA I Ml 2.341 0.4319 0. 3168 

f 0.5819 0.0497 0.0326 

Weiss !Ml 2.531 0.5230 0.2896 

f 0.5391 0.0641 0.0240 

Schiff IMI 2.5314 0.5247 

f 0.5391 0.0645 

a See text. 

b A. W. Weiss, J. Res. Natl. Bur. Std. (U.S.) 71A, 163 (1967). 

c B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964). 
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TABLE III. Relative Probabilities for Two-Photon 

Emission of the 2 
1
S Level of Helium 

Ya A(y)b A(yf A(y)d 

0.00 0.0 0.0 0.0 

0.05 28.1 24.7 25.2 

0.10 65.5 58. 2 59.9 

0.15 94 83.8 86.4 

0.20 115 103 106 

0.25 130 116 120 

0.30 141 126 130 

0.35 149 133 137 

0.40 154 138 142 

0.45 157 141 145 

0.50 158 141 145 

a y=u..,jw 0 f where w1 is the frequency of one of the two photons. 

b Using the definition of the RPA for excited state-excited state 

transition moments of Eq. (12). A (y) is in units of sec -i. 

c Eqs. (21) and (22) of text with the initial-final state experimental 

energy differences. 

d Reference 18. 
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Figure Captions 

Fig. 1. 

Fig. 2. 

Photoionization cross sections of the 2 1S state of 

helium in megabarns. The curve shows the present 

cross sections obtained by numerical analytic continua

tion. The triangles and octagons are the calculated 

results of Norcross (ref. 8) and Jacobs (ref. 9) 

respectively. 
3 

Photoionization cross sections of the 2 S state of 

helium in megabarns. The curve shows the present 

cross sections obtained by numerical analytic contin

uation. The triangles and octagons are the calculated 

results of Norcross (ref. 8) and Jacobs (ref. 9) 

respectively. 
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(E) 

Transition Moments between Excited Electronic 

States of N2 
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Introduction 
~ 

Emission intensities between the various excited states of 

molecular nitrogen are important in the analysis of radiative 

processes in the atmosphere. For example the first positive band 

of N2 (B 3110- - A 3 .6;) gives one of the major contributions to the 
b 

radiation from hot air in the visible and near infrared at tempera-

tures up to 104 Kand is a strong emitter in auroral displays. Tran

sitions between the VI 
3 .6.u and B 3 Ilg states can also be expected to 

play an important role in the aurora and in atmospheric radiative 

transfer [ Covey et al., 1973 ] . Excited state-excited state elec-
~ ~ ~ 

tronic transition moments and their dependence on internuclear 

distance are obviously needed to explain and predict these band 

intensities. These transition moments must also be known in order 

to include cascade contributions to the vibrational population of states 

of N2 in normal auroras, e.g. the B 
3
11g .:= W 3 .6.u and B 3Ilg .:= A 

3 
.6; 

cascade processes [Cartwright et al., 1971]. Transition moments 
~ ~ ~ 

between excited states can also be important in the modelling of gas 

phase lasers, e.g. the C 
3

I1u - B 3 flg lasing transition in N2 • 

In this paper we report transition moments and their depend

ence on internuclear distance for a large number of transitions be

tween excited states of N2 • These include the following band systems: 

B 
3

Ilg - A3 E; (first positive system), C 
3 
nu - B 

3
Ilg (second positive 

system), p,' 3
E~ -- B

3
1Ig (infrared afterglow system), B

3
Ilg- W

3
.6..u, 

1 1 1 1 1 - 1 ·_ 1 . 
a II - w .6. , a Il -- a .6 , and a 11 --+ b II . We also report g u g u g u 

moments for transitions between the a 
1
IIg state and the more complex 



-65-

1 ~~ states. These transition moments are calculated non-empirically 

using the equations of motion method [~, li1.Q_] 

which is a many-body approach to the direct calculation of the quan

tities of physical interest in spectroscopy, i. e. excitation energies 

and transition moments. We report results at several levels of 

approximation to the equations of motion, and from the results of 

several applications to other molecules we expect these transition 

moments in N2 to be quantitatively reliable. 

In this paper we do not emphasize the quantum mechanical 

details of the many-body theory or computational aspects of our 

solutions. Such details can be found elsewhere [~ ~-, ~]. 

The point we do want to stress is that transition moments between 

ground and excited states or between excited states themselves can 

be calculated quite accurately through the theoretical models and 

computational procedures which have been developed in the field of 

molecular quantum mechanics. This is particularly so for the 

diatomic molecules of interest in atmospheric processes. 

In the next section we give a very brief outline of the theo

retical approach we use to calculate these excited state-excited 

transition moments in N 2 • We then present the results for many 

band systems for six internuclear distances between R = 0. 90 A and 

R = 1. 40 A. The actual values are given in Tables I and II and the 

results for some transitions are plotted. The moments are also 

fitted to simple polynomials of the form a + bR and a + bR + cR
2

• · 

In these forms the results can be easily used in the analysis of 

experimental data. 
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~ 

We have recently proposed the equations of motion method as 

an approach for the direct calculation of the relative quantities, e. g. 

transition energies and moments between the ground and excited 

states of a molecule, of interest in spectroscopy [~ 

~ .!11QJ. The method is based on the solution of the equation 

of motion satisfied by the excitation operator, o], defined such that 

or IO > = I A > where I O > and I A > are the ground and excited 

state of the system respectively [Rowe, 1968 J. Excitation energies, 
~ ~ 

w O A, and transition densities, Poi\.' for the transition I O > ~ \ i\. > 
are obtained from the solution of the equation of motion. The transi

tion density provides the information needed to calculate the transi-
~ ~ 

tion moment < 0 I M I i\. > where M is the electric dipole moment 

operator. A series of approximate solutions to these equations of 

motion have been derived [~., ~j and applied to vari-

ous molecules [H2CO: ~' Wj; H20: ~, 

!_lli; CO2 : Mc Curd and Mc Ko , ~ N 2 , CO, C 2H4 : ~- , 

1973 ] . The important implication of these results for the present 
~ 

purpose is that the method yields accurate dipole transition moments. 

Recently we have also derived expressions for the transition 

moment between excited states consistent with the approximations 

and assumptions normally used to obtain transition moments between 

the ground and excited states in the equations of motion method 

[~, !11§._]. The basic procedure is to exploit the formal 

properties of the excitation operators oI, defined on the ground 
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state, Ai, to rewrite the transition moment, <'\I M I Aj > , 
between excited states in a specific and useful form. We have used 

the resulting expressions to evaluate the transition moments between 
1 3 . 1 3 

the 2 S (2 S} metastable state of helium and the n P (n P) states. In 

this paper we will use these several approximations in the equation 

of motion method to the excited state-excited state transition moments 

between the low-lying excited states of N2 • These three approxima

tions -- the Tamm-Dancoff approximation (TDA), the random phase 

approximation (RPA), and higher random phase approximation 

(HRPA) -- have been discussed in detail previously [~, 

1975]. 
~ 
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Results 
~ 

The ground state electron configuration of N 2 is (1 a / (1 a / 
g u 

2 2 4 2 
(2 a g) (2 au) (1 rr u) (3 a g) . The principal electron configuration of 

3 + ,1 ...... + 13 - 11 - 3 l 
the A 2:;u, b ~u' B 2:;u' a .6u' W Au, and w Au states is 

2 2 2 2 3 2 3 
(1 ag) (1 au) (2 ag) (2 Ju) (lrru) (3 ag) (lrrg) and that of the B ng 

l 2 2 2 2 4 
and a 11 g state is ( 1 cr ) ( 1 o- ) ( 2 er ) ( 2 <1 ) ( 1 rr ) ( 3 a ) ( 1 rr ) . In g u g u u g g 

a previous paper [~, !1TI.] we reported the excitation 

energies and dipole transition moments from the ground state to these 

excited states at several internuclear distances. The basis set used 

in these calculations and other details are given in that paper. The 

basis set consists of a valence l 4s 3p J basis contracted from a 

(9s 5p) set of primitive Gaussian functions. In addition two diffuse 

d 1T and pa Gaussian functions are included at the center of the mole

cule. We use the transition densities and other results of these calcu

lations to calculate the transition moments between the excited states 

Tables I and II give these transition moments for the triplet

triplet and singlet-singlet transitions respectively. In Table III we 

also list the coefficients of the polynomials of the form M(R) = a + bR 

and M(R) = a + bR + cR
2 

obtained by a least-squares fit of the data of 

Tables I and II. These results should be immediately useful to those 

who try to extract the dependence of the electronic transition moment 

on the r-centroid from experimental intensity data. In such analyses, 

e.g.[~~] and[~~], thetran- , 

sition moment is expanded in polynomials of the r-centroid whereas 
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our expansion of the electronic transition moment is in terms of the 

internuclear distance. These expansions are not identical but some 

approximate comparisons can be made. 

From Tables I and III we see that the transition moments for 

the B 
3
flg - W 

3 
Au and B 

3
Ilg - A 

3 
Z~ transitions are almost equal and 

both show considerable R-dependence. In their model calculations 

Cartwright [~., .!11!_] assumed a value for the B _, W 

transition moment equal to 1. 7 and 0. 85 of the B ~ A transition 

moment at R = 1. 3 A. These choices were made to see the effect 

of this transition moment on the predictions of their models. We 

see that the assumption of M (B ~ W) = 0. 85 M (B ~ A) is in fact 

close to our predictions. 

We also comment on the transitions involving the 
1 .0; states. 

Avoided crossings among these states make these states interesting. 

The c' state is primarily a 3 a g --p 3 au excitation, the b' state 

1I u ~ 1f g, and the e' state 3 a g ~ 4 pa. These are deperturbed 

states [~, ~; ~, .!1.ll,J which correspond 

to hypothetical electronic states of the same symmetry which are 

allowed to cross. For the 
1 z; states we have simply used the lowest 

two £; states in our calculations. Neither the b' nor the e' states 

are always in the two lowest states and the relative ordering may 

differ somewhat depending on the approximation used. 

Figures 1 to 6 show the transition moments of several transi

tions in various approximations. In general the HRPA results should 

be regarded as the most reliable. 
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Conclusions 
~ 

We have used a recently proposed many-body theory -- the 

equations of motion method -- to calculate the transition moments 

between excited states of molecular nitrogen. From the results of 

previous applications of this method we expect the predicted transi- · 

tion moments to be accurate. These transition moments and their 

dependence on internuclear distance can be immediately useful in 

the analysis . of experimental intensity data. With the present theo

retical methods and computational procedures of quantum chemistry 

we conclude that it is probably simpler to calculate the variation of 

transition moments with internuclear distance in diatomic molecules 

than to attempt to obtain this dependence from a detailed analysis of 

experimental intensity data. 
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TABLE I. Transition Moments Between Excited Triplet Statesa 

R(au) R (A) TDA RPA HRPA TDA RPA HRPA 

B 3Il - W
3
A g u B 3Il -A 3 ~+ 

g u 

1.701 0.90 0.308 0.318 0.311 0.329 0.350 0.362 

1.890 1.00 0.295 0.312 0.300 0.301 0.338 0.318 

· 2.068 1.094b 0.277 C 0.284 0.280 C 0.296 - -

2.268 1. 20 0.250 - 0.260 0.254 - o. 273 

2.457 1. 30· 0.222 - 0.233 0.227 - 0.248 

2.645 1. 40 0.191 - 0.203 0.197 - 0.217 

B 311 - B' 3 ~ -g u B 
3

TI - c 3
Il g u 

0.90 0.308 0.306 0.308 1. 53 1. 55 1. 55 

1.00 0.294 0.293 0.295 1. 58 1. 59 1. 60 

1.094 0.274 C 0.277 1. 59 C 1. 62 - -
1. 20 0.246 - 0.252 1. 59 - 1. 62 

1. 30 0.215 - 0.224 1. 57 - 1. 61 

1. 40 0.180 - 0.195 1. 54 - 1. 58 

a Absolute value of the transition moment in atomic units. 1 au = 

2. 542 D. See text for discussion of the headings TDA, RPA, and 

HRPA. 

b Experimental internuclear distance of the ground state. 

c - in this column indicates an instability in this approximation. 
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TABLE II. Transition Moments Between Excited Singlet States of N
2
a 

R(au) R(A) TDA RPA HRPA TDA RPA HRPA 

lfl 1 a 1r1 - c' 1 1;+ a g-w Liu g u 

1.701 0.90 0.269 0.269 0.266 0.729 0.701 0.951 

1. 890 1.00 0.263 0.263 0.263 0.430 0.404 0.555 

2.068 1.094b 0.245 0.246 0.248 0.295c 0.195c 0. 385c 

2.268 1. 20 0.218 0.220 0.224 0.251 0.252 0.334 

2.457 1. 30 0.188 0.194 0.196 0.179 0.166 0.269 

2.645 1. 40 0.155 0.176 0.167 d d 0.233 - -

a 
1
Ilg - b' 

1
~; a 1 fi - e' l ~ + 

g u 

0.90 d .· 0. 162 0.153 0.182 - - -
1.00 0.043 0.044 d 0.138 - - -
1.094 0.107c 0.247c 0.093c d d - - -
1. 20 0.051 0.066 0.027 - - -
1. 30 0.017 0.064 0.09~ - - -
1. 40 0.0002 0. 038 0.086 - - -

LI 1 1 ~ -a 1 g - a u 
l 1 

a 11g - b IIu 

0.90 0.307 0.311 0.312 1. 45 1. 47 1. 42 

1.00 0.282 0.291 0.288 1. 53 1. 54 1. 54 

1.094 0.256 0.271 0.263 1. 54 1. 56 1. 57 

1. 20 0.224 0.253 0.232 1. 53 1. 55 1. 56 

1. 30 0.191 0.264 0.200 1. 51 1. 54 1. 54 

1. 40 0.158 e 0.165 1. 47 1. 52 1. 50 -



-75-

a Absolute value of the transition moment in atomic units (au). 

1 au = 2. 542 D. See text for discussion of the headings TDA, RPA, 

and HRPA. 

b Experimental equilibrium internuclear distance of the ground state. 

c The b' 1 
~; and c' 1 

~; states are close to each other at this geom

etry and there is significant mixing of the particle-hole amplitudes 

( one-electron excitations) usually associated with each state. 

d In this column - means that at this geometry this 1 
~; state is not 

ohe of the two lowest 1 ~~ states in this approximation. 

e Unstable in this approximation. 
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c The transition moment at R = 0. 90 A was excluded from the 

M(R) =a+ bR fit for the a 111g - w 1Au, B 3 Ilg - W 3Au, 

B 3 Ilg - A 
3
£~, and B

3
flg - B' 3~~ transitions. The transition 

moments at R = O. 90 A and R = 1. 00 A were excluded from the 

linear fit for the a 111 g - c' 
1 

Z ~ transition. 
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Fig. 1. Transition moment for the a 111g - w1 ~u transition in the 

three different approximations. -- HRPA, - - - RPA, 

-- - TDA. See Shibuya et al. l 1970 J and text for an 
~ ~ 

explanation of these approximations. 

Fig. 2. Transition moment for the a 1Ilg - c' 
1 ~~ transition in the 

three different approximations. -- HRPA, - - - RPA, 

-- - TDA. See Shibuya et al. (1970 ] and text for an 
~ ~ 

explanation of these approximations. 

Fig. 3. Transition moment for the a 
1
ng - b' 1 

~; transition in the 

three different approximations. -- HRPA, - - - RPA, 

-- - TDA. _See ~- [WQ.J and text for an 

explanation of these approximations. 

Fig. 4. Transition moment for the B 
3
Ilg - A 

3 
l;~ transition in the 

three different approximations. -- HRPA, - - - RPA, 

-- - TDA. See ~- (~] and text for an 

explanation of these approximations. 

Fig. 5. HRPA transition moments for the a 
1
Ilg - a' 

1 
,6 ~ transition 

l 
(left) and the a n - b 1 f1 transition (right). g u 

Fig. 6. HRPA transition moments for the B 
3
11g - W 3Au transition 

(upper left), B 3II - B' 3
E - transition (upper right), and g u 

the B 3Il - C 3H transition (lower left). g u 
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Part II 

An Equations of Motion Approach for 

Open Shell Systems 
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I. INTRODUCTION 

In several recent papers, l, 2 we have described the equations 

of motion method as a conceptually and computationally simple method 

for obtaining properties of direct physical interest to spectroscopists, 

e.g. transition energies and moments. We have applied the equations 

of motion method at various levels of approximation to several atoms 

and small molecules including H 2, N 2, CO, H 20, CO2, H 2CO, and 
3 

C6H6. 

For closed shell systems, the simple approximations, i.e. the 

Tamm-Dancoff approximation (TDA) and the random phase approxi

mation (RPA), generally give oscillator strengths in good agreement 

with experiment. To obtain good agreement with experimental excita

tion energies and to eliminate instabilities in the triplet manifold a 

higher order scheme is required. l, 2 We have used the resulting 

transition densities and discrete oscillator strength distributions in 

these approximations to calculate frequency-dependent polarizabilities 

and photoionization cross sections from both ground4 and metastable 

states. 5 The TDA and RPA results have also been used to calculate 

transition moments between excited states in He5 and N2 • 
6 In elec

tron-molecule scattering we have calculated Born inelastic cross 

sections 7 and discussed how these RPA results can be used to con

struct an optical potential. 8 

There are many systems of chemical interest with open shell 

ground states, e.g. Li, 0 2, and many molecular ions. The purpose 

of this paper is to extend the equations of motion method to atoms 
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and molecules with simple open shell ground states in a clear straight

forward manner. Although we limit the scope of this paper to the 

open shell random phase approximation, it is easy to extend the 

method to higher orders. This is the first step in a more general 

equations of motion theory. 

In Section II, we review the equations of motion method and 

explain the modifications necessary for open shells. In particular, 

in section III the cases of one electron outside a closed shell in a 

nondegenerate orbital and two electrons outside a closed shell in two 

degenerate molecular orbitals are examined and the formulas derived 

for the open shell random phase approximation (OSRPA). 

We report results for lithium atom and oxygen molecule in 

section IV. For lithium, since most low-lying transitions are 

2s -,I np there is little change due to correlation effects between the 

TDA and the RPA. For the Schumann-Runge transition in oxygen 

(X 3 
£ ~ ~ B 3 I;~) we calculate an oscillator strength in good agree

ment with experiment. However, several excitation energies are not 

consistent, indicating that a higher order scheme is necessary to 

accurately predict spectra. For several uses, e. g. discretization 

of the continuum, when one requires a distribution of f-values, the 

RPA results may be adequate. For both Li and 0 2 no matrix larger 

than 50 x 50 was diagonalized. 
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II. THEORY 

A.~ 

Consider the excitation operator ol which when operating on 

the exact ground state I 0 > generates an excited state I A> , i.e. 

Operating with the Hermitian conjugate operator OA on the ground 

state gives 

We can solve foI'OAl and the corresponding excitation energy, 

w A = EA - E O , from the equations of motion 9 

where o OA is a variation of the operator O~v H is the Hamiltonian, 

and the symmetric double commutator is defined 

2 [A, B, CJ = [ [A, B j, CJ + [A, lB, CJ j 

We can obtain the matrix element <A I W IO> of the operator W 

from 

<AIWIO> = <ol[oA, wJ[o> 

(1) 

(2) 

(3) 

(4) 

(5) 

Equation (3) is exact. For many electron atoms and molecules 

Eq. (3) cannot be solved exactly. There are two approximations which 

can be made. The excitation operator may be expanded as sums of 
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one-body operators, two-body operators, etc. We can approximate 

of by truncating this sum. For example, in closed shell systems 

we can restrict of to be a sum over one-body operators 

(Y ' ' my 
t T C ,c ,-z I ,c ,c ,) 
m y my y m (6) 

If o} is expanded a sum of elementary excitation operators 

t Ci , which we will call p-h excitation operators, and the correspond-

ing Hermitian conjugates 

t t 0-. = ~ (Y. C. - Z . C . ) 
A . 1 1 1 1 

1 

the following matrix equation results from Eq. (3) 

(:* :*) c(A)) 
Z (A) 

= ti wA (~* -~~ 
where 

l A .. = < o I [ci, H, cj J Io> 1) 

B .. = - < o I [ci, H, cj J I o > 
1) 

t u .. = < o I [ci, cj JI o > 1) 

v .. = 
1) - < 0 I [Ci' C j ] I O > 

Matrices A and U are Hermitian, B is symmetric, 
"" "" "" 

symmetric. 

(7) 

G(A)) (8) 
Z (A) 

(9) 

and Vis anti-
"" 
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A second approximation is to use a nonexact ground state, 

e.g. the Hartree-Fock ground state or some simple correlated state. 

The use of the double commutator on the left and the commutator on 

the right of Eq. (3) reduces the particle-hole rank of the expression, 

making it less sensitive to the choice of the approximate ground state. 

Hence, in many cases, a low level choice of ground state, e.g. the 

restricted Hartree-Fock (RI-IF) in Eqs. (8) and (9) may suffice. 

B. The closed shell 
~ 

In the RPA ol is restricted to the simple sum in Eq. (6) and 

the ground state is chosen to be the Hartree-Fock ground state. In 

the TDA the Z amplitudes are assumed to be identically zero, i.e. 

correlation is completely neglected. The TDA and RPA matrix ele

ments of Eq. (9) are given elsewhere. lO 

In general, many TDA and RPA oscillator strengths agree 

well with experiment while energies do not as well. Additionally, 

in the triplet manifold low-lying states often have imaginary eigen

values which represent instabilities in the RPA. An advantage of 

the RPA solution is that by including the Z amplitudes in Eq. (8), 

we implicitly assume a correlated ground state, even though the 

Hartree-Fock ground state is used throughout and no correlation 

coefficients are explicitly calculated. The RPA oscillator strengths 

also satisfy the Thomas-Reiche-Kuhn summation rule. 

To obtain more reliable excitation energies and to eliminate 

triplet instabilities, we extend the approximations used in Eq. (3) 

to higher orders by explicitly including correlation in the ground 
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state1 and by including double excitation operators in o} in a 

perturbative scheme. 2 The method is called the equations of motion 

method including double excitation mixing (EOM (lp - lh) + (2p - 2h)). 

We have achieved excellent experimental agreement for both energies 

and oscillator strengths for several atoms and molecules. 3 

c. ~ 

An advantage of deriving the RPA from the equations of 

motion (3) is that the extension of the method to open shell ground 

states at all levels of approximation is straightforward. The form 

of the Eq. (8) for open shell cases remains the same, however, no 

general expression for the submatrices A and B can be given. - -
For the OSTDA and OSRPA we approximate \ 0 > by the 

restricted Hartree-Fock ground state. The orthonormal sets of 

molecular orbitals are obtained from the OCBSE open shell 
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Hartree-Fock method of Hunt, Dunning, and Goddard. 11 This 

method does not explicitly make use of the off-diagonal Lagrange 

multipliers to maintain orbital orthogonality. The converged SCF 

orbitals satisfy11 

< i j H k - Hi Qik j k > , k = 1, M ; i > k 

where there are P molecular orbitals, M occupied, and Qik = 0 if 

(10) 

i > M, Qik = 1 if i < M. Hk is the usual Hartree-Fock one-electron 

operator for orbita1 <pk, i.e. Hk = fF k where f is the fractional 

occupation number. If i and k are in the same shell Qik = 0. 

JC = 

= 

The Hamiltonian can be written 

\ 
l 

. I • I 
1 J 

h. , . , , c ~ C . , + ½ ),---, 
1 J 1 ] ._/ 

i' j' k' l' 

( 11) 

\' h ( t . t ) 1 \ ' \-, ( t t ) 
/ . . C. C. + C "{3 CJ. r.;: - 2 1 ; V .kk. C. c. + c. Q c . a 
,_; lJ 10'. JO' 1 f-' L_; i.-1 1 J 10:' JO:' lf-' Jt.J 
ij ij k 

1 
+ 2 ) 

_1 

ijkl 

where primed indices denote spin orbitals and unprimed indices 

oribtals. The sums are over all orbitals. In general we will use 

lower case Greek letters for pure hole orbitals; m, n, p, . . . for 

pure particle (virtual) orbitals; n1 and n2 for the open shell orbitals; 

and i, j, k, 1 for any of the three types. Figure 1 illustrates this 

nomenclature. v .. kl is defined 
lJ 
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* * 1 Vijkl = j <pi (1) ~J- (2) - cpk (1) 4-'l (2) d, 
rl2 

Throughout this paper real orbitals will be assumed. 

Equation (10) can be used to rewrite Eq. (12) in terms of 

on-diagonal Lagrange multipliers which are associated with the 

orbital energies. The exact form of the Hamiltonian will thus 

depend on the open shell case. 

(13) 

We can use Eq. (12) and an appropriate set of p-h excitation 

operators in Eq. (9). If I O > is approximated by the restricted 

Hartree-Fock wavefunction with spin S, Ms, the result is the open 

shell RPA. Equation (8) reduces to the standard closed shell RPA 

form. 

(14) 

For closed shell systems o;_ contains only one-body operators 

in the TDA and RPA. We write 0~ as in Eq. (7) 

b (Y . C ! - Z . C. ) 
· i 1 1 1 1 

(15) 

and consider that cl" operating on the open shell restricted Hartree

Fock ground state generates a configuration which is an eigenfunction 

of 82 and ivi:
8

. For open shell ground states unless certain two-body p-h 

operators are included in Eq. (14) we cannot account for all linearly inde

pendent configurations which are eigenfunctions of 82 and Ms for a given 

orbital occupancy. These two-body p-h excitation operators allow 

for spin-flipping of the open shell electron in addition to a simple 
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excitation, e. g. they include p-h operators such as c ·t c c / r~ c, . ma va l)"tJ \)ia 

A simple example will clarify this. Lithium has a 

I lsa ls{3 2sa > ground state. This state is an eigenfunction of S 2 

and MS with spin ½ and spin projection ½. If the p-h operator cT 
operating on I lsa 1s{3 2sa > excites an electron from a 1s orbital 

to a 3s orbital keeping MS = ½, there are three possibilities 

I lsa 2sa 3s{3 >, \ 1s{3 2sa 3sa >, Ilsa 2s{3 3sa > (16) 

Linear combinations of these kets must be taken to form configura-

tions which are eigenfunctions of S 2 with eigenvalue ¾ . There 

are two independent combinations which have spin 1. The third 

ket in Eq. (16) involves a change of spin of the 2s electron from a 

to /3. Its p-h excitation operator is cl= -eta cls/3 cis/3 czso, 

a two-body operator. That is 

- cJsa cls/3 cJs/3 c28a I lsa ls/3 2sa > --, I lsa 2s/3 3sa > (17) 

All cl 's are chosen to generate orthonormal states which are eigen-
..... 2 .... 

functions of S and Ms when operating on the restricted HF ground 

state. 

A further consideration in choosing the p-h operators is that 

they be tensor operators of a given rank k in spin space and that the 

Hermitian conjugate operator Ci be a tensor of the same rank and 

have the same transformation properties within a phase under rota -

tion of the spin space. Although the p-h excitation operators chosen 

in this manner are not the simplest possible, they assure a unique 
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definition of the B matrices of the equations of motion. We can form 

excited states with pure spin s' by operating with tensor operators 

T (k)T 
q 

T (k)t ISM ><kS M lkSS'M' > q S q 1S S (18) 

where r differentiates states of the same spin. A similar equation 

exists for T q (k). If k is zero, the dipole allowed states, then there 

is only one term on the right hand side of Eq. (18) and the Clebsch

Gordon coefficient is unity. For example, to generate the excited 

singlet manifold of 0 2 starting from the ground state triplet with 

Ms = 0, we can choose a set of p-h excitation operators of rank 

1 component 0 which generate pure states with s' = 0, MS = 0 when 

operating on the restricted Hartree- Fock ground state. The 

Hermitian conjugate operator Ci operating on the correlated state 

by Eq. (18) may not generate pure states. Similarly C ~- operating 
l 

on the correlated state may not generate pure states. We expect 

the ref ore the excited state manifold in higher order schemes which 

has a different spin from the ground state to have slight errors due 

to contamination of other spin states. 
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We now derive explicitly the open shell random phase approxi

mation for two simple cases. These cases are those of a single 

electron outside a closed shell in a nondegenerate molecular orbital 

and of two electrons outside a closed shell in two degenerate molec

ular orbitals in a triplet state. These cases are among the most 

common open shell ground states, e. g. for the first case lithium 

atom and many molecular ions and for the triplet case 0 2 • With 

very slight modifications the triplet case can be applied to the lowest 

triplet state of closed shell atoms and molecules. Extensions to 

other open shells are obvious. 

We have derived all formulas for these open shell systems 

via a computer program. Starting from the input p-h operators and 

Hamiltonian and by Wick's theorem 9 this program generates a set of 

formulas on magnetic tape which are in turn read into a standard 

random phase approximation program. Hence, even though 
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programming considerations for each open shell case may appear 

lengthy, in reality the entire procedure is automated. 

In summary our OSRPA procedure is 

1. Perform an open shell SCF OCBSE 11 calculation to obtain 

an orthonormal basis. 

2. Rewrite Jc in terms OCBSE orbital energies, choosing the 

particle states to be eigenfunctions of the last open shell Fock operator. 

3. Use the restricted Hartree-Fock ground state [HF> as 

an approximation to I O > in Eq. (8). 

4. Choose excitation operators o,1 such that the p-h excita-
A 

tion operators { cJ"} operating on I HF > generate configurations 

which are eigenfunctions of S2 
and M_ s. Furthermore all cJ are 

one-body operators except for those which change the spin of the 

open shell electron or which move an electron between degenerate 

open shell molecular orbitals. The latter C ! will be two-body 
l 

operators. 

5. The C ! are chosen so that C !- and C. are tensor operators 
l l l 

of the same rank and hence the Hermitian conjugate pairs transform 

in the same manner under rotation of the spin space. 

Extending this method to higher orders is straightforward. 

The ground state [ 0 > can be replaced by a simple correlated ground 

state instead of the restricted Hartree-Fock ground state. Correla

tion coefficients can be obtained from perturbation theory or possibly 

an iterative scheme. 1 This is the higher open shall random phase 

approximation (HOSRPA). Double excitations can be accounted for 
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in a manner similar to closed shell methods. 2 Again by including 

spin flipping in the open shell molecular orbitals we may have to 

include certain classes of three-body and even four-body operators 

to properly account for the number of independent configurations of 

a given spin for an orbital occupancy. 

Other open shell random phase approximations have been pro

posed for atoms and molecules. 12, 13 Our method is a simple and 

clear way to extend the RPA to open shell systems. We differ from 

Armstrong12 in that we have included certairt two-body tensors in 

our excitation operators, we use a specific restricted Hartree-Fock 

particle-hole basis, we have generalized to molecules, and we always 

require 

(19) 

Vie differ from J¢rgensen13 by choosing an approximation to \ 0 > 

that is an eigenfunction of S 2, Ms, and N where N is the number 

operator. Furthermore our CT operators include certain two-body 
1 

operators and when operating on the ground state produce kets which 
A 2 A A 

are always eigenfunctions of S , Ms, and N. We believe that our 

method offers the most straightforward extensions to higher orders. 

D. Transition moments 
~ 

For closed shell molecules, we can expand Eq. (5) in terms 

of the Y and Z amplitudes of Eq. (8) to yield 

< O ID In > = Don= ✓2 [ l (Y:Y + z:Y) <\ny 
my 

(20) 
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where D is the transition moment and dmy is < m I rl y > . For 

open shell cases Eq. (20) is no longer correct but must be modified 

to 

- -D = ~ R. (Y. + Z. ) d. 
i 1 1 l 1 

(21) 

where the sum is over all possible particle-hole pairs including those 

pairs with spin flip in the open shell and electron rearrangement among 

degenerate open shell orbitals. Ri is a number which may be zero. 

For example, for a simple doublet ground state as in Li, R. may be 
l 

1. 0, -1. O, -J 2, or O depending on the kind of excitation. 
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III. OPEN SHELL OPERATORS AND MATRIX ELEMENTS 

A. Doublet 
~ 

The ground state is I (closed shell) ft a> . We limit the equa

tions to the case where ~L is nondegenerate, although the degenerate 

case is no more difficult. For this system the Hamiltonian is 

JC = 

where 

V ) l , --, t 1 ) L 

i~tjfi - 2 t Vikkj) ( ci(ll cj(ll + ci/3 cj/3 + 2 i~l Vijkl 

t l t t 
( C i O' C k O' + C i {3 C k/3 ) ( C j O' C l O' + C j f3 c l,B ) 

b = 1 when i and j are in the closed shell or when i or j 

is a virtual and the other is in the closed shell 

b = 2 when i or j is open and the other is closed 

b = 0 all other cases. 

(22) 

(23) 

(24) 

The possible excitations are shown in Figure 2. The operators are 

given in Table I, the A matrix elements in Table II, and the B matrix 
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elements in Table III. R values from Eq. (21) are in Table IV for 

the doublet ( dipole allowed) manifold. 

B. ~ 

The ground state is I (closed shell) [" 1 aft2 a > where ri
1 

and 

[l 2 may be degenerate. For this case the Hamiltonian is 

l l "f l z ( (b - 2 ) v. ns . - v. r . ~ ) - ~ 2 v. . ) ( c. c . + c . ()_ c J. 1~ ) 
lt 1 l] 1 l] " p lpp] lG' J a 1,-., ,__, 

where 

i 
+2 

b = 1 when i and j are each either open shell or virtual 

b = 0 when i or j is open and the other is closed 

b = ½ all other cases. 

E = h + ~ (2Jyv - Kyv) + ½ ~ (2 JS - ~ ) y yy 
V S" 1,y "y 

E ~l = h["S-" + ~ (2 J r - K S ) + .6 (Jrts" - Ks t~J 
J/ " l) " S" V 

Em = hmm+ £ (2 J vm - Kvm) + ~ (J&"m - Ks"m) 
J/ s~ 

The various possible excitations are shown in Figure 3. 

~t 1 and ~t 2 are not degenerate except in g, since the same 

kinds of excitations are present for the lowest triplet excited state 

(26) 

(27) 

(28) 

(29) 
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of a closed shell molecule. Type g excitations are not included 

if S" 1 and SL 2 are not degenerate. For excitations of type e there 

are three triplets and two singlets, only one of the triplets is gener

ated by a one-body operator. Type f excitations are for the different 

possible states for the ground state orbital occupancy if S"
1 

and fL-
2 

1 1 
are degenerate, e.g. the a Ag and b L; states in 0

2
• 

The p-H operators and R values are given in Tables V and 

VI. The p-h excitation operators for the singlet manifold are appropri

ate for the M
8 

= 0 ground state while for the triplet (dipole allowed) 

manifold p-h excitation operators are for the Ms = 1 ground state. 

These formulas do not apply if ~t 1 and ~~ 2 are nondegenerate or if 

there is one or more additional orbitals degenerate with ~"i and f& 2 , 

e.g. carbon atom. However, these cases involve only minor modifi

cations and are no more difficult. The formula list for the A and B 
-" ~ 

matrices is lengthy and is not included. The formulas are available 

upon request from the authors. 



-103-

IV. APPLICATIONS 

A. Lithium 
~ 

Lithium atom provides the simplest case for the doublet open 

shell formulation of part III. The basis set used consists of 1 Os and 

8p contracted Gaussian functions. The results for this calculation 

along with experimental and Hartree-Fock results are given in 

Table VII. 

Since the low-lying transitions in Li principaliy are 2s - ns, 

np there is little change in the correlation energy upon excitation. 

Hence, the TDA and RPA results are almost identical to three figure 

accuracy. This agrees with the Hartree-Fock calculations of 

Goddard14 where no correlation effects are included. The TDA and 

RPA energies and oscillator strengths agree well with experiment. 

The Thomas-Reiche-Kuhn sum rule, i.e. 

in the TDA and RPA are 3. 03 and 2. 83 respectively. The exact value 

is of course 3. The frequency independent polarizability s (-2) = 

Z (f0 n /u.0 n 2 ) is 169 a; and 170 a
0

3 
in the TDA and RPA respectively 

compared to the variational estimate of Stacey and Dalgarno15 of 
3 

163. 1 a
0 

. 

The results for Li are in good agreement with experiment 

primarily because the low-lying lithium atom transitions involve pre

dominantly 2s - ns, np transitions. The orbital energy of the ls 
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electrons is -2. 478 au and the 2s electron -0.196 au. For cases 

where there are several valence electrons in addition to the open 

shell electron, e.g. H2co+, the TDA and RPA results will differ and 

agreement with experiment will not in general be as good. As in the 

closed shell cases, 3 higher order schemes should give close experi

mental agreement. 

We have also done an additional calculation where only one

body p-h operators are included ih the excitation operator, i.e. 

formulas 7 through 10 in Tables iI and Ill are set equal to zero 

The resulting TDA and RPA results are identical to those of Table 

IX. This is because the two-body p-h excitation operators describe 

excitations from the closed (ls)2 shell and hence are relatively unim

portant. 

The ground state Hartree-Fock orbital occupancy of 0 2 is 

2 2 2 2 2 2 2 · 
(1 J ) (1 a ) (2 J ) (2 a ) (3 v ) (1 rr ) (17T ) l rr 1 IT g u g u g ux uy gx gy 

3 - 1 1 + 
leading to Lg, Ag, and E g states. 

3 -
.E is the ground state. g 

The basis set is the < 4s 3p > set of contracted Gaussians 

of Dunning. 16 All calculations were done at the ground state experi

mental geometry of 1. 207 A. The TDA and RPA results for low-lying 

transitions are given in Table III. Columns 7 and 8 are RPA 

results where no two-body terms were included. No matrix large r 

than 50 x 50 was diagonalized. 
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Even though there are large discrepancies between these 

results and the results of large CI calculations and experiment, 

there are several interesting features. Most striking is the excellent 

agreement of the transition moment of the Schumann-Runge tr ans ition 

X 
3
.6 ~ -. B 

3 
.0 ~ regardless of approximation. Experiment gives 

0. 193. 17 For the other allowed transition, X 3 
2.; - _, 

3 1i , the 
g u 

calculated transition moment is very small and the excitation energy 

is 10. 58 eV. Experimentally this transition may have been observed 

at 9. 97 eV or 10. 29 ev. 18 The potential curve may be theoretically 

d . . t· 19 
lSSOCia 1ve. 

Both the triplet and singlet manifolds can give instabilities 

( imaginary solutions). We show in the appendix that sine e BriUouin ' s 

theorem is not satisfied for restricted Hartree-Fock ground states, 

instabilities do not necessarily imply that there is another approxi 

mation to the ground state, perhaps of broken symmetry, which lies 

below the approximate ground state used here. In fact, instabilities 

imply nothing about the ground state and may occur for an excited 

state of any spin multiplicity. 

For most of the other transitions both the TDA and RPA 

lt 1 C 3 
D. A 

3 ~ + · 
1 

·-- - This indicates that we res u s are ow, e. g. u , u , c 2J u • 

are describing the excited state much better than the ground state . 

This could be easily corrected by extending the RPA to higher orders. 

In the HRPA 1 the ground state correlation coefficients are calculated 

explicitly. Inclusion of double excitation type operators in the closed 

shell EOM then gives excitation energies in general excellent experi-
. 2 3 

mental agreement. ' 
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A simpler procedure that will improve excitation energies is 

a multiconfigurational random phase approximation approach. 
20 

In 

this procedure aiter a RHF calculation is done on the ground state, 

a limited number of correlation coefficients are calculated explicitly 

by a small configuration interaction calculation. Excitations can be 

from or to the correlated orbitals in addition to ordinary excitations 

from the strictly closed shell configuration. 21 For example in 

ethylene we could assume the ground state to be approximately 

-* 1T* 1T 

IO> ~ K0 !HF> + K1 I > (31) 
1T 1T 

K0 and K1 are determined from a 2 x 2 CI calculation. In addition to 

excitations from the HF ground state there can be excitations from the 

1r* orbitals and to the 1T orbitals. The MCRPA can also be used for ex

tending excited state potential curves to large internuclear distances. 

The MCRPA or HRPA approach is necessary in 0 2 for this 

basis set. This can be seen by examining the A and B matrices for 

3~~ states. The smallest on-diagonal elements for the A matrix is 

0. 310 au for 1T.u ~ 1r g transitions. The largest elements in the B 

matrix are off diagonal and are 0. 165 and 0. 172. They correspond to 

deexcitations from the (1 1T u / (1 1rg t and (1 1T ) 
3 

(1 7f ) 
3 

(3 a ~ 3 (J ) 
u g g u 

components of the ground state respectively. we have found for 

closed shell RPA calculations that when B matrix elements are of 

similar magnitude as the on-diagonal A matrix elements the RPA 

approximation begins to break down. Morokuma and Konishi
22 

in 
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large scale CI calculations report a contribution to the X 
3 £; ground 

state of 1. 5% for configuration (1 II )
2 

(1 n ) 4 
and 2. 0% for (1 n ) 3 

u g u 
3 

(1 ng) (3 o-g ---t 3 o-u) states. 

The discrepancies between the RPA including only one-body 

p-H operators ( colwnns 7 and 8) and the RPA with open shell spin f 

flip operators (columns 5 and 6) indicate that especially for excitation 

energies certain classes of two-body operators are important and 

should be included. 

S(O) for the TDA is 7. 19 and 5. 79 for the RPA. a 1-, the 

perpendicular component of the frequency independent polarizability, 

is 2. 78 a
0

3 in the TDA and 2. 71 a
0

3 in the RPA. a
11

, the parallel 

component, is 18. 6 ai in the TDA and 21. 5 a
0

3 in the RPA. 

Langhoff23 gives the perpendicular component as 8. 1 7 a; and the 
3 

parallel component as 15. 5 a
0

• 
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V. CONCLUSIONS 

We have derived an open shell random phase approximation 

starting from a restricted Hartree-Fock ground state. Using an 

equations of motion approach, we choose p-h excitation operators 

which are one-body and certain types of two-body spherical tensors 

which when operating on the ground state generate configurations 
A 2 A 

which are eigenfunctions of S and Ms· We have developed an auto-

mated procedure to calculate A and B matrix element formulas of 

the equations of motion which are needed in the OSTDA and OSRPA 

solutions for several different open shells with little more work than 

for closed shells. The matrices separated by spin and spatial sym

metry are usually no more than 50 x 50. 

We report results for two calculations using two different 

open shell ground states. As expected Li results agree quite well 

with experiment. 0 2 results do not except for oscillator strengths. 

These results are due to correlation effects manifested in B matrix 

elements that are large with respect to on-diagonal A matrix elements. 

Even though for a case as complicated as 0 2 the OSRPA fails 

to give a good description of the low-lying excitation spectra, we 

believe that for certain purposes useful information can be obta ined 

from a limited calculation. For example, in those applications where 

one needs all the excitation energies and transition densities as a 

discrete approximation to the complete spectrum the RPA results 

are usually sufficient. These applications include the frequency

dependent polarizabilities and their related applications to 
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photoionization and photodetachment cross sections and approximate 

optical potentials for electron-molecule scattering. H is clear from 

a comparison of the closed and open-shell RPA formulations that the 

open-shell optical potential is not a simple extension of the closed 

shell case. The resulting RPA vectors can also be used to calculate 

transition moments between excited states . 5 We can use the formalism 

to directly calculate excitation energies starting from the lowest trip

let excited state of a closed shell system. 

Furthermore, using the equations of moUon, Eq. (3), it is 

straightforward although somewhat tedious to ext.end the method to 

higher orders. These ideas are being actively investigated in this 

laboratory. We can expect good agreement with experiment a s with 

closed shell EOM calculations. 
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Table I. Spherical Tensor p-h Operators for the Doublet 

I ( closed shell) ~2 a > Ground State 

Doublet Excited State (S = ½, Ms = ½ ) 

f C ( . (00) 
ll1\lli 

1C~v (00) 

Quartet Excited State (S = } , M8 = ½ ) 

c:U 11 (10) = 1/ /3 ( c ~a c va - c~f3 c vf3 - c fna c vf3 c ~
1
, (3 ciw) 
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Table II. A Matrix Formulas for the Doublet 

I (closed shell) ,la > Ground State 

Doublet Matrices 

1. A(rt-Hl), (~-l-H2) = 6HlH2 (Eit - EHl + VQiLS"tr2 ) - VHHtH2L~ 

+ ½ VH1H2n~" 

4 · Al(Pl-Hl), (~"-H2) = l / /2 (- 6H1H2 VPl~fti~l - 2 VH1H2PH '" 

+ VH1P1H2~) 

5 · Al(Pl-Hl), (P2-S"t) = l / / 2 (oP1P2 VHlf~[i[& + 2 VHl P2PH t 

- VHl Plft P2) 

6 · Al(Pl-Hl), l(P2-H2) = 6H1H2 6P1P2 (Epl - EHl) + 6H1H2 

(VPHtP2r, - -½ VP1P2~ir) + 2 VH1H2P1P2 - VH1P1H2P2 

S. A2(Pl-Hl), (P2-~ ") = [3/2 (VH1PH~P2 - VHh t SiSt 6Pl P2) 

9· A2(Pl-Hl), l(P2-H2) = ✓3/2 (oH1H2 VP1P2S"tS.. - 5P1P2 VH1H2S tS t) 
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Table II ( continued) 

l O. A2(Pl-Hl ), 2(P2-H2) = 0H1H2 6Pl P2 (E Pl - EHl) + 0H1H2 

(VPHtP2n + ½ VP1P2rH) + 6P1P2 VHlH~lL, - VH1P1H2P2 

Quartet Matrices 

1. A(Pl-Hl), (P2-H2) = 6P1P2 5H1H2 (E Pl - EHl) + 6tt1H2 (V PHtP2rt 

- Vp1p2nr) - ½ 6P1P2 VH1I-I2fl[i - VH1P1H2P2 
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Table III. B Matrix Formulas for the Doublet 

I (closed shell) [t, a > Ground State 

Doublet Matrices 

3 . B ( p 1-~")' ( p 1-rt ) = 0 

4 · 8 l(Pl-Hl), (~,-H2) = .f2 (-VH1H2P1Q + ½ VH1H2ftP1) 

5 · 8 1(Pl-Hl), (P2-r) = -/2 (VHl P2Pl[t - ½ VHl Pl P2~) 

6 · 8 1(Pl-Hl), l(P2-H2) = 2 VH1H2P1P2 - VH1H2P2Pl 

7· 8 2(Pl-Hl), (rt-H2) = ½ ./3/2 VH1H2nP1 

8· 8 2(Pl-Hl), (P2-[t) = ½ /3;2 VH1P1P2[2i 

9· 8 2(Pl-Hl), l(P2-H2) = O 

lO. B2(Pl-Hl), 2(P2-H2) = - VH1H2P2Pl 

Quartet Matrices 

1. 8 (Pl-Hl), (P2-H2) = - /273 VH1H2P2Pl 
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Table IV. R Values for the Doublet 

I (closed shell) ~~a> Ground State 

R(~t- -Hl) = 1.0 

R(Pl- ~l) = -1. 0 

Rl(Pl-Hl) = -✓2 

R2(Pl-Hl) = 0 
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Table V. Spherical Tensor p-h Operators for the Triplet 

[ (closed shell) n 1 f1i 2 > Ground State. Sei 1 and ~" 2 

are degenerate. 

Triplet Excited States, [ (closed shell) ~"i 01ri 2 01 > Ground State 

r - CT 1 a. Clt v (00) = ft 1 O' CVO' - clt1f3 cv{3 
1 

b. T t t 
Cri v (OO) = cit 01 cva + en, f3 C v{3 

2 2 2 

t (00) 1 l c. Cm ~l 2 = cma cit a + cm{3cSc:-2f3 
2 

i 
d. Cm~t (00) = 

1 

l t t T l + 2 (-c C Cr Q C, ~ - C Q C Q C, Cr ma l)QI 'wllt,-1 -wlJ1f--' m,._, V1--1 -wlil QI ~"l O' 
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1 ·1 T t 
- ~ ( -C C C C - C C C C -2 ma va ~c. 1 /3 &" 1 /3 m{3 vf3 Se, 1 a Sr.. 1 c 

g. 

1 1 l T 
+ c c Q c, ~ c, + cm Q c 1 d.,_. c, c, Q 

ma v,.._., -w .. 2p -wc., 1 £1' ,.._., vu -wc:. 2 a 'W'-i/J 

. T t l 
+ cm1 

rll c vf)) c, c, + c {3 c ()_ c, P c,. tJ. 
u. u. -wl-10'. -wL-2a m v,.._., ~"1fJ -w"2,.._., 



-117-

~"10'~"2'3 + ~"1{3~"20' 
Singlet Excited States, I (closed shell) --------

✓ 2 

1 (10) 1 l 
C. cm~t 2 = cm{3 c~'-

213 
- c C ma ~l 2 a 

d. Cr (10) = C 
1 

C - C 
1 

C 
m~"1 ma ~" 1a m{3 ~"1{3 

> Ground State 

2C~v (10) 1/{6 f T 1 l e. = (cm/3 cv(3 c~"2f3 c~-"2f3 - cma cvo' c~t2a est 20' 



T 1 - Cr C ct C 
+CmnCvnCr , 2P,c, Q n {3' ' 1--' 1--' ..:i.., f..J ..:iCi11--' ffii--i V ..:it.20' ..:i"1 O' 

1 1 l -,- t 
5C (10) = 1/2/2 (cmn CV() Cc , n Cr r:, - C n C P. C, C, 

mv 1--' J--- y(,1/J ill2f5 ml--' lJ(J ui;lO:' 1)(,2(11 
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Table VI. R Values for the Triplet 

\(closed shell) rti 1 afi 2 a > Ground State 

R(Hl-S-tl) = -1. 0 

R (Hl- ~i-2) = 1.0 

R(Pl- [t2) = 1.0 

R(P1-n1) = -1.0 

R1 (Pl-Hl) = 12 

R2(Pl-Hl) = 0.0 

R3(Pl-Hl) = 0.0 

R4(Pl-Hl) = 0.0 

R5(Pl-Hl) = 0.0 
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Table VII. OSTDA and OSRPA Results for Li. 

Basis Set is l l0s 8p J. 

Exp a HFc TDA RPA 
AE Expb AE AE TDA ~E RPA 

State ~ f (eV) ~ f (eV) f 

2 
2
P 

2 
ls 2p 1. 85 0. 753 1. 84 1. 83 0. 758 1. 83 0.758 

3 
2s 2 

1s 3s 3.37 3.33 3.33 3.33 

3 
2
P 

2 
3.84 3. 80 ls 3p 0.006 3.80 0.004 3.80 0.004 

4 
2s 2 

ls 4s 4.34 4.30 4.30 

42p 2 
ls 4p 4.52 0.005 4.50 0.003 4.50 0.004 

a Atomic Energy Levels, compiled by C. E. Moore, National Bureau 

of Standards, Circular No. 467 (U. S. Government Printing Office, 

Washington, D. C., 1947). 

b Compiled by. T. C. Caves and A. Dalgarno, J. Quant. Spectrosc. 

Radiat. Transfer _!b 1539 (1972). 

c Ref. 14. 



T
ab

le
 V

II
I.

 
L

ow
 L

y
in

g
 T

ra
n

si
ti

o
n

s 
in

 0
2 

T
D

A
 

R
P

A
 

R
P

A
 

R
P

A
 

P
ri

n
ci

p
al

 
A

E
 

T
D

A
 

A
E

 
R

P
A

 
(o

ne
 b

od
y)

 
(o

ne
-b

od
y)

 
E

x
p

d
 

S
ta

te
 

T
ra

n
si

ti
o

n
 

(e
V

) 
f 

(e
V

) 
f 

A
E

 (
e

V
) 

f 
C

I 

C
3
A

 u 
l1

ru
-b

rg
 

3
.9

1
 

a 
a 

6
.4

1
b

 
6.

 1
 

A
 3

~+
 u 

ln
·u

-l
1

rg
 

4
.0

5
 

a 
a 

6
.5

4
b

 
6.

 1
 

31
1 g 

3u
g 

-1
1

rg
 

6
.4

2
 

5
.7

4
 

6
.3

7
 

8
.2

0c
 

B
3

~
~

 
l1

ru
-l

1
rg

 
7

.6
7

 
0

.2
0

7
 

5.
 8

1 
0

.1
9

6
 

6
.2

6
 

0
.2

0
1

 
9

.5
1

b
 

8
.3

 

31
1 

11
r 

-
3

a
 

1
0

.8
0

 
0

.0
0

0
3

 
10

.5
8 

0
.0

0
1

 
1

0
.9

2
 

0
.0

0
0

6
 

11
. 

34
C

 
9.

 9
7 

o
r 

u 
g 

u 
1

0
.2

9
 

I .....
 

N
 

__
, 

1 
a 

A
g 

0.
 7

2 
0

.5
9

 
0

.9
8

 
I 

bl
.z

:;+
 g 

2
.1

5
 

2
.0

9
 

1.
 6

3 

l~
-

C
 

U
 

l1
ru

-1
1

rg
 

3
.6

4
 

a 
a 

6
.1

9
b

 
6.

 1
 

1 
n

g
 

3
Jg

-1
1

rg
 

8
.1

9
 

7
.7

4
 

8
.4

0
 

9
.6

5
c 

. 
1 

.li
u 

l1
ru

--
1

1
rg

 
1

0
.1

1
 

9.
 7

1 
1

2
.8

1
 

1
4

.5
3

b
 

lf
' .i.u

 
b

r 
-

3o
-

g 
u 

1
2

.7
4

 
1

2
.5

7
 

1
2

.9
3

 
1

6
.3

6
c 

a 
R

P
A

 i
n

st
ab

il
it

y
. 

b 
R

ef
. 

22
. 

c 
H

. 
S

ch
ae

fe
r 

an
d

 F
. 

H
a
rr

is
, 

J.
 

C
h

em
. 

P
h

y
s.

 
~
 

49
46

 (
19

68
).

 
d 

R
ef

. 
18

. 



- l 2;2 -

APPENDIX 

Analogously to Thouless24 we examine instabilities in the 

open shell RPA wheh [ 0 ) is approximated by the restricted Hartree 

Fock ground state. 

Let I T > be a state generated by the anti-Hermitian operator 

..... 

I T > = eT I > 
.,._ 

where T is single-particle-hold form with the additional two-body 

operators which can flip the open shell spin and excite. It can 

easily be shown25 that 

(32) 

< TIHIT>= < IHl>+ < llH, TJI >+½ < llT·t,H, TJI >+ ... (33) 

For closed shell systems, the Hartree-Fock variational condition is 

that the energy be stationary with respect to all single excitations, 

that is 

< \ [H, T J I > = 0 

Equation (34) is known commonly as Brillouin's theorem. 

If Eq.(34) holds, then for the Hartree-Fock solution to be a 

true minimum 

< \ [T 1, H, T j \ > 2: 0 

(34) 

(35) 

This implies that the RPA matr ix is positive definite, i.e. has only 

positive or zero eigenvalues and that the RPA energy u.. A can never 

be complex. Of course, for finite basis set expansions for closed 
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shell Hartree-Fock ground states we can obtain imaginary solutions 

of the RPA matrix equations for triplet excited states. This means 

that a state with lower energy which is not necessarily a function of 
A2 26 
S can be found. 

For a restricted HF open shell ground state in general, only 

a limited form of Brillouin's theorem is satisfied, 2 7 that is 

< I [H, T J I > =f: 0 ( 36) 

even if T is restricted to purely one body operators. Hence, the 

RPA matrix is not necessarily positive definite. Thus, instabilities 

in the RPA solutions do not indicate that a lower ground state can be 

found. We expect for open shell RPA calculations when a restricted 

HF ground state is used as an approximation to \ 0 > fundamental 

instabilities in any spin manifold which cannot be eliminated by 

increasing the size of the basis set but may be only by going to 

higher order approximations. 
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Figure Captions 

Fig. 1. Labeling of the particle-hole basis for an open shell. 

Fig. 2. Possible excitations for the simple doublet. The figure 

on the right includes the possibility of spin flipping of 

the electron in the fl a spin orbital. 

Fig. 3. Possible excitations of the triplet I ( closed shell) 

ft 1 a {l 2 a > ground state. e includes possible spin 

flipping in the open shell. f includes different 

open shell states for the same orbital occupancy if 

~"i and ~" 2 are degenerate. g is included only for 

degenerate ~i 1 and ~i 2 • 
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• 
• • 
q 

p unoccupied 
(virtuals or particles) 

n 

m 

il2 1 } partially occupied (open she I I) n, 1 
11 1 ~ 

} y 1 ~ occupied 
(closed shell or holes) • • • 

Fig. l 
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(a) (b) --- (c) ---
i l 

j • 

~ . 
n A 
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Fig. 2 
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Appendix B. ~l and ~F Matrix Formulas for Triplet Excited States, 

I (closed shell) ft 1 a fu 2 0' > Ground State. S-" 1 and S-t 2 

are degenerate. Zero formulas are not listed. 

A Matrix Formulas 

1. A(ld-Hl), (S-d-H2) = 6HlH2 (Efd - EHl + VS°CJHuHul~i.l + 

VS-tht H,2L.2) - VHlfdH2~"1 - ½ VH1H2S-t2&"2 + i VH1H2luHH 

2 · A(n,2-Hl), (L,1-H2) = VHhdH2~t2 - VH1H2~t2~,1 + 

o H 1 H 2 (-V [t HHQ lrt 2 - VS" H l 2[ t 2fc. 2 ) 

3 · A(St 2-Hl ), (tt2-H2) = 0H1H2 ( Er"2 - EHl + V Si.2S"2Si2St 2 + 

V~lH"ht2it2) - VHhl2H2Sl,2 - ½ VH1H2St1St.1 + ½ VH1H2S-~2S-l2 

4. A (PL-r"2), ([Gl-H2) = - VH2PlrdS"2 

5. A(Pl-n2), (S"2-H2) = VH2PH"2ft2 

6. A(Pl-["2), (P2-fl2) = 0 p1p2 (Epl - En2) + Vp1p2s"2s~2 

- V PH~2P2S"2 
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lO. A(Pl-[d), (P2-~il) = 6 P1P2 (Epl - ESd) + VP1P2S"H,1 -

VPHdP2~ll 

1 
ll. Al(Pl-Hl), (&H-H2) = - .../2 °H1H2 (V PHd[dS c. 1 + 

VPHd~t2ft2) + /2 (-VH1H2PH"l + ½ VH1PlH2t:,l) 

1 12 · Al(Pi-Hl), (St2-H2) = -f2 °tt1H2 (V PHi.HtHt2 + V PHc.2St2~t2) 

+ J2 (VH1H2PH,2 - i VHiP1H2~"2) 

1 13 · Al(Pl-Hl), (P2-St2) = -/2 5P1P2 (VHH"HdSi2 + V PHt2S1,2~t2) 

+ J'l,- (VH1P2PHt2 - ½ VH1PH~2P2) 

1 14· Al(Pl-Hl), (P2-SL1) = - {2 6 P1P2 (VHH,H"H"l + VHHd~t2St2) 

- /2- (VH1P2PH,1 + ½ VH1PH,1P2) 

15 · Al(Pl-Hl), l(Pl-Hl) = 0H1H2 6P1P2 (Epl - EHl) + 

½ 6H1H2 (V P1P2~,Utl + V P1P2S~2S,2) + 2 VH1H2P1P2 -

VH1P1H2P2 

16· A2(Pl-Hl), (Hl-H2) = - VH1P1H2[d + 6H1H2 (V pH"H"2~t2 

+ VPHd~tH"l) 

l ?. A2(Pl-Hl), (U2-H2) = VHl P1H2St2 - bH1H2 (V PH"2S"U"2 + 

V Pl[d["Ht2) 
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lB. A2(Pl-Hl), (P2-it2) = - VH1P1L2P2 + 6P1P2 (VHH'"2~i2S t 2 + 

VHHtHdS."2) 

19· A2(Pl-Hl), (P2-Sd) = VH1PHdP2 - 6P1P2 (VHHdL2L2 + 

VHHtHc.Hd) 

1 20 · A2(Pl-H1), l(P2-H2) = f2 (VH1H2S.t2i"2 + VH1H2SdSd) -

1 
-f2 6 H1H2 (VP1P2S°l2St2 + VP1P2~ilft.1) 

21. A2(Pl-Hl), 2(P2-H2) = 6H1H2 6PlP2 (E Pl - EHl) + 

22. 

23. 

0H1H2 (VP1P2St.2Si.2 + VP1P2S"lH,1) + ½ 6P1P2 (VHlH2SdSd 

+ VH1H2it2~t2) - VHl P1H2P2 

1 1 
A3(Pl-Hl ), (~d-H2) = - VH1P1H2S"l + /2 6H1H2 (V PHdS-"2Sl2 ~ 

- VPH1.lnH,l) 

1 1 
A3(Pl-Hl), (fi2-H2) = n VH1P1H2L,2 + )72 6H1H2 (V PH"H "H,2 

- V Plft2S~2S-ti2) 

1 1 24· A3(Pl-Hl), (P2-S"i.2) = - -f2 VH1P1L2P2 + -f2 6P1P2 (VHH,2i"2ft2 

- VHH,H"H,2) 

1 1 25 · A3(Pl-Hl), (P2-nl) = - -v2 VH1PHdP2 + -./2 6P1P2 (VHHi.HdSd 

- VHH,1H2it2) 
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26 · A3(Pl-Hl), 1(P2-H2) = ½ 6P1P2 (VH1H2St2S"2 - VHlH2SdL1) + 

½ 0H1H2 (V Pl P2~,H"l - V Pl P2~22S"2) 

1 27· A3(Pl-Hl), 2(P2-H2) = .../2 6P1P2 (VH1H2Si2~l 2 - VH1H2S~Hd) 

1 
+ .,f'l. 0tt1H2 (V Pl P2ft2ft2 - V Pl P2Sdfd ) 

28· A3(Pl-Hl), 3(P2 - H2) = lH1H2 °P1P2 (E Pl - EHl + 

2 v[t1[HSi:2[L2) + 6H1H2 ½ (Vp1p2n2n2 + VP1P2Sd[d) -

VH1P1H2P2 

29. A4(Pl-Hl), (s-H-H2) = 

+ V PHHSt.Ht2) 

30. A4(Pl-Hl), (~l2-H2) = 

+ V PHc-2nH"2) 

31 A - - _l_ V + o l (V 
· 4(Pl-Hl), (P2-S t2) - ·./'2 H1PHHP2 PlP2 F2- HH"2S"Ht2 

+ VHH"dil2St2) 

1 1 (V 32 · A4(Pl-Hl), (P2-fd) = ['l VH1PHt2P2 - 6P1P2 Pi HHd~t H .. 2 

+ VHH"H"2~tl) 

33 · A4(Pl-Hl), l(P2-H2) = ½ 6P1P2 (VH1H2nli,2 + VH1H2~'-~ll) -

½ 0H1H2 (V Pl P2SHrt2 + V Pl P2S"2S-H) 
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1 34· A4(Pl-Hl), 2(P2-H2) = 
6P1P2 ""IT (VH1H2[d~"2 + VH1H2~ti2Sd) 

1 
+ 6H1H2 ...j'2 (V P1P2S22SH + V P1P2S"H,2) 

35 · A4(Pl-Hl), 3(P2-H2) = 6P1P2 ½ (VHlH2nHz2 - VH1H2~"2~"1) 

+ 6H1H2 ½ (-V Pl P2~,2rd + V Pl P2Sd~"2) + 

5P1P2 6HlH2 (VS-HS-tH"H"2 - VS,Ht2S"2S-t2) 

36 · A4(Pl-Hl), 4(P2-H2) = 6H1H2 6P1P2 (E Pl - EHl - VStHi2S"H"2 

+ ½ Vs,~.::2Sl2S°l2 + ½ Vs"1H1Si:.H"l) + ½ 6H1H2 (V P1P2St2L2 

1 37· A5(Pl-Hl), (S"l-H2) = - ../2 VH1PlH2S"2 + 

1 6H1H2 -12- (V PlnHz2S-tl - V Plt~lreiHt2) 

1 38· A5(Pl-Hl), (tt2-H2) = - ✓2 VH1P1H2S"d + 

1 6HlH2 -,/'l (-V PHtHt 2Sl2 + V PH"2SHrt2) 

1 39· A5(Pl-Hl), (P2-S~2) = - Fl VH1PlrtlP2 + 

1 6P1P2 ✓2 (VH1H2S"H£i2 - VHH"H~2L2) 

4o. A5(Pl-Hl), (P2-ftl} = - .A VH1PHt2P2 + 

6P1P2 ✓1- (VH1~.HI2f.1 - VH1u~,1r,2) 

41. A5(Pl-Hl), l(P2-H2) = ½ 6 P1P2 (VH1H2ftH"2 - VH1H2S"2Sd) 

+ ·;~ 5H1H2 (V PlP2SdS"2 - V P1P2S12f"l) 
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1 42 · A5(Pl-Hl), 2(P2-H2) = ✓2 6P1P2 (VH1H2~d[62 - VH1H2fti2Sd) 

1 
+ [2 °H1H2 (V pl P2S"2ld - V PlP2ftH2i2) 

43 · A5(Pl-Hl), 3(P2-H2) = 6PlP2 6H1H2 (V[d~thHS"2 + VSdf.:;2fi2~t2) 

+ °tt1H2 (2 V Pl[ll P2St.2 - ½ V Pl P2l,Ht2 - ½ V Pl P2S"2~d) 

+ 0p1 P2 (- 2 VHH"lH2lt2 + ½ VH1H2S"H"2 + ~ VH1H2S "2Ll) 

44 · A5(P1-Hl), 4(P2-H2) = ½ 6H1H2 6 PlP2 (VS-dSc.1S"lS-d -

VS"2S"2Sc.2S,2) + 0H1H2 (V PH" 1 P2Sc. l - V P1L2 P2Sc.2 + 

½ VP1P2lt2S"2 - ½ VP1P2~'"1S-d) + 0 P1P2 (VHH"2H2St2 -

VHHdHk\tl - ½ VH1H2it2~t2 + ½ VH1H2S" Ud) 
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B Matrix Formulas 

2. 8 (rt2-Hl), (id-H2) = VH1H2LH"2 - VH1H2St-2S"H 

4. B(Pl-it-2), (~tl-H2) = - VH2PHtH12 

5. B(Pl-~t2), (t>i2-H2) = l. VH2PUt2rt2 + ½ VH2PHdSd 2 

7. B(Pl-fH ), (ft 1-H2) = 3 
VH2PHtHH + ½ VH2P1L.2S'"2 2 

8. 8 (Pl-rd ), (n2-H2) = - VH2Plft2S"l 

11. 8 1(Pl-H1), (~tl-H2) = - ✓-'X (VH1H2PbH - ½ VH1H2Sl1Pl) 

12. Bl(Pl-Hl), (ft;2-H2) = ✓'2 (VH1H2PUt2 - ½ VH1H2ft2Pl) 

13. 8 1(Pl-Hl), (P2-fl2) = f2 (VH1P2Plft2 - ½ VH1P1P2L2) 

14. Bl (Pl-Hl ), (P2-fd) = - ~ (VH1P2PHil - ½ VH1P1P2S"l) 

15 · Bl(Pl-Hl), l(P2-H2) = 2 VH1H2Pl P2 - VH1H2P2Pl 

16. 8 2(Pl-Hl), (rtl-H2) = - } VH1H2~~1 Pl 

17. B2(Pl-Hl ), (rt2-H2) = 5 
VH1H2ft2Pl 8 

18. 8 2(Pl-Hl ), (P2-ft2) = - 5 VH1P1P2fi2 8 
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5 19· B2(Pl-Hl), (P2-fil) = 8 VH1P1P2~d 

21. B2(Pl-Hl), 2(P2-H2) = - VH1H2P2Pl 

22. B3(Pl-Hl), (fll-H2) = 1 V 
4 v'2 H1H2~H Pl 

23. B3(Pl-Hl), (~t2-H2) = _l_ V 
412 HlH2~1.2 Pl 

24. B3(Pl-Hl), (P2-t~2) 
1 = -

412 
VH1P1P2fti2 

25. B3(Pl-Hl), (P2-ftl) = - _1_ 
VH1Pl:i?2~~1 4-{2-

28. B3(Pl-H1 ), 3(P2-H2) = - VH1H2P2Pl 

29. B4(Pl-Hl), (fU-H2) 
3 = - 4 ✓-2° VH1H2St2Pl 

30. B4(Pl-Hl), (~,2-H2) = 3 V 
4 -/2 H1H2ft 1 Pl 

31. B4(Pl-Hl ), (P2-n2) 
3 = - 4 ✓2- VH1P1P2Ll 

32. B4(Pl-Hl), (P2-~t-1) = 3 V 
4 ✓2- Hl P1P2L,2 

36. B4(Pl-Hl), 4(P2-H2) = - VH1H2P2Pl 

3 7. B 5 ( p 1-H 1), ( ~H -H 2) = 3 V 
4 {'2 H1H2it2Pl 

38. B5(Pl-Hl), (i22-H2) 
3 = 

4 /:r V H1H2id Pl 

39. B 5 ( p 1-H 1), ( P2 -ft- 2) = 3 
4 ✓-2 VH1P1P2~d 
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40 B 3 V · 5(Pl-Hl), (P2-rtl) = 412 H1P1P2f~2 

45 · B5(Pl-Hl), 5(P2-H2) = VH1H2P2Pl 
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Appendix C. j and / :' Matrix Formulas for Singlet Excited 

States, \(closed shell) lt- 1 al" 2 /3 + ftJ3St 2 a > /-/2 

Ground State. ~t 1 and !,2 are degenerate. Zero 

formulas are not listed. 

A Matrix Formulas 

1. A(nl-Hl), (!H-H2) = 6HlH2 (trn - EHl + VS-c;l[dS'-H'-1 + 

VS-dStlft2St2) + f VH1H2~,2~-~2 + ½ VH1H2liHd - VHlftlH2SH 

2 · A(n2-Hl), (~d-H2) = VHHHH2~..,2 + VH1H2~t2ftl -

5H1H2 (VsHnHdlt2 + Vii'.1Ht2S-t2n2) 

3 · A(n2-Hl), (~t2-H2) = 0H1H2 (En2 - EHl + v~l2~t2~t-2rt2 + 

VS"dft H"2li2) - VHll"2H2ii2 + f VH1H2rtHd + ½ VH1H2ft2~"2 
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lO. A(Pl-fH ), (P2-Sd) = o Pl P2 (E Pl - ESd) + 2 V Pl P2Si2~"2 + 

VP1P2S,H"l - VPH"1P2~d 

l 1. A2 ( Pl -H 1), ( S d - H 2) = { i ( -V H 1 Pl H 2~-, 1 + 6H 1 H 2 (VP H: H d S d + 

VPH"h"2S"2)) 

12 · A2(Pl-Hl ), (s-12-H2) = -IT (VHl Pl1I2n2 - 6H1H2 (V PlL,HdL2 + 

V PH"~t2S1,2 )) 

13 · A2(Pl-Hl), (P2-~t2) = ../1 VH1PH~2P2 - 6P1P2 (VH1n2~t2S"2 -~ 

VHH"h,ls-t2) 

14· A2(Pl-Hl), (P2-S-d) = lf (-VH1PHcilP2 + bP1P2 (VHHdSd~d + 

V HHl Ht2S"2)) 

15 · A2(Pl-Hl), 2(P2-H2) = 6 P1P2 5H1H2 (E Pl - EHl) + 

5H1H2 f (V PlP2nHtl + V PlP2StJ2St2) + c·P1P2 (VH1H2~"Hd 

+ VH1H2ft2S'-2) - VHl P1H2P2 

16 · A3(Pl-Hl), (S"l-H2) = ✓'X (-VH1H2PHH + ½ VH1P1H2Sd + 

½ 6H1H2 (V Plrt1n2n2 - v Plfd[tiH"1 )) 
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lB. A3(Pl-Hl), (P2-~~2) = ✓2 (VH1P2PH,2 - 1 VH1PH"2P2) + 

0 P1P2 ~ (VHH"2~ti2~t2 - VHhd~tiH22)) 

19· A3(Pl-Hl), (P2-t~l) = ✓2 (VH1P2PH"l - ½ VH1PHdP2 + 

6P1P2 k (VHHtH"Htl - VHHd~"2n2)) 

. ✓I 20· A3(Pl-Hl), 2(P2-H2) -2- (oP1P2 (VH1H2SlHd - VH1HU(.2S"2) 

+ 0H1H2 (V P1P2~t2St2 - V P1P2l,Hd)) 

21. A3(Pl-Hl), 3(P2-H2) = 0 P1P2 6H1H2 (E Pl - EHl + 2 V&dflH, 2&,2) 

+ 0H1H2 ½ (VP1P2~tHd + VP1P2ft2S,2) + 2 VH1H2P1P2 

- VH1P1H2P2 

22 · A4(Pl-Hl), (~n-H2) = J'l (VH1H2PHt2 - ! VH1P1H2St2 + 

½ 0H1H2 (V PHtl[t,2[d + V PHHrt1n2)) 

23 · A4(Pl-Hl), (ft2-H2) = -/2- (-VH1H2PhH + i VH1P1H2~tl -

½ 5H1H2 (V PHtHt2n2 + V PHt2itH22)) 

24· A4(Pl-Hl), (P2-~i2) = ✓2 (VH1P2PHll - ½ VH1PUdP2 + 

½ 5pl P2 (VH1["2[dll2 + VHH~H"2it2)) 

25 · A4(Pl-Hl), (P2-ltl) = {'2 (-VH1P2PHl2 + J VH1PHt2P2 -
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,f~J 26 · A4(Pl-Hl), 2(P2-H2) = -2- (-oP1P2 (VHlH2nHl2 + VH1H~t2~d) 

+ 6H1H2 (V Pl P2f~2~, 1 + V Pl P2SHS~2)) 

27 · A4(Pl-H1), 3(P2-H2) = 6P1P2 6HlH2 (VSdSd[dS,2 - Vnis,2n2n2) 

+ 6HlH2 ½ (VP1P2fdL2 - VP1P2rt2Sd) + ½ 0P1P2 (VH1H2fd~"2 

28· A4(Pl-Hl), 4(P2-H2) = 
6P1P2 6H1H2 (E Pl - EHl - VStH,2~d~"2 

+ ½ Vs/.,2rtUt.2ft2 + ½ VsdnHHftl) + 6H1H2 ½ (V p1 P2Sc.2S,2 + 

29 · A5(pl-Hl), (~l l-H2) = ../2 (VH1H2PH,2 - ½ VHl PlH2fi2 + 

0H1H2 ½ (V P1Sc.Ht;2SL1 - V PH,Ht.HL2 )) 

3o. A5(P1-Hl), (S,2-H2) = -12· (VH1H2PHL1 - ·} VHl PlH2fd + 

6H1H2 ½ (V PlL2rds,2 - v PHLHl.2n2)) 

31. A5(Pl-Hl), (P2-n2) = J2 (VH1P2PHtl - -½ VH1P1Si.1P2 + 

½ op 1 P2 (V H H, 2S1 Ht 2 - V H Ht H, 2S L 2 ) ) 

32 · A5(Pl-Hl), (P2-S,l) = J2 (VH1P2PHc.2 - ½ VH1Pl(,2P2 + 

½ 0P1P2 (VHHHfl2fH - VHUHS-HS"t2 )) 
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{3 
33 · A5(Pl-Hl), 2(P2-H2) = -2- (oP1P2 (VH1H2Si::2S""l - VH1H2SdSt2) 

+ 0H1H2 (V P1P2Q2S-d - V P1P2~Hft2)) 

34· A5(Pl-Hl), 3(P2-H2) = 
6HlH2 6P1P2 (VS-,HtH,Ht.2 + Vs'-1S-t.2~t2Sz2) 

+ 6HlH2 (2 V PHH P2S,2 - ½ V Pl P2S"t2id - ½ V Pl P2S-tln2) + 

0PlP2 (- 2 VHHdH2!t2 + ½ VH1H2S"lHt2 + ½ VH1H2f"Ht2) 

35 · A5(Pl-Hl ), 4(P2-H2) = ½ 6p1 P2 6HlH2 (Vs"H' HdSd - Vs" 2Sl2~e, 2S°l2) 

+ 6ttlH2 (VPH,1P2[t1 + ½ VP1P2S",2S"t2 - ½ VP1P2S .. Hi.l -

V PH, 2P2it2) + o Pl P2 (-V HHe,lH~d - V HHdH2S,2 -

~ VH1H2St2S"2 + ½ VH1H2S"Hd) 

36 · A5(Pl-Hl), 5(P2-H2) = 6P1P2 6H1H2 (Epl - EHl + 2 VSdStHt.2S"t.2 

- VSe,Ht2L,H"2 + ½ v~i2St.2S"2~t.2 + ½ Vrt.H,lL.Hd + 

VH1PlH2P2 
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42 · Al(S-t2-fd), 3(P2-H2) 

1 V 
.f2 H2P2S,ln2 

43 · Al(!~2-Sd), 4(P2-H2) = [2 VH2SdP2fH - ✓'2 VH2it2P2Sl2 -

1 1 
[2 VH2P2S"Hd + f'l VH2P2St2~~2 

45 · Al(ft2-[d), l(n2-S,1) = 2 Vs"l[tHi2[L,2 - v[t;iSt2Ll[t2 + 

½ VSt2ft2~t2~,2 + ½ VflHdfdS"l 

46. A2(n2-n1 ), (Sd-H2) = VH2SdS12SH - VH2~ "2L2S"2 

47. A2(n2-4" 1), (ii2-H2) = VHU"htHtl - VH2fl2StH"2 

48. A2(n2-i"l), (P2-["2) = VP2fHS,1Ll - V P2St2SHSl2 

53 · A2(~"2-~d), 5(P2-H2) = f2, VH2~~1P2~d - ['2 VH~t2P2it2 -

_l_V +-1-V2222 
-./'2 H2P2Sd~d f'l H P S" St 
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55 . A2(~l2-~d), 2(L2-Ll) = - Vsc,Hc;2L,1S(;2 + 1- Vsd~i-HdS,1 + 

½ v~G2~"2s,2sL2 
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B Matrix Formulas 

2. B(~l2-Hl ), (Sd-H2) = VH1H2L~til - VH1H~tiHl2 

4. B(Pl-SL2), (~d-H2) = - VH2P1LH'"2 

5. B( Pl -~-li2), (St2-H2) 
j_ 3 

= - 2 VH2PH"2St2 - 2 VH2PHdSd 

7. B(Pl-~"1), (id-H2) = - ! VH2Plft2~'-2 - ½ V H2PHllt.l 

8. B(Pl-St1), (~t2-H2) = - VH2Pht2i~l 

11. B2(Pl-Hl), (~d-H2) 
1 

VH1H2P1Ll = ---
2 ✓1r 

12. 
1 . 

B2(Pl-Hl), (~t2-H2) = --v 
2 /fj HlH2PHt2 

13. 1 _l_V 
B2( Pl -Hl ), ( P2-S~2) = ✓ 6 V H 1 Pl P2S l 2 - 2 ../2.- Hl P2PH,2 

14. 
1 . 

VH1P2PHd 
1 

VH1PlP2~d B 2 ( P 1 -H 1 ) , ( P2 -l ti 1 ) = -- - --
2 /6- /6 

1 15 · B2(Pl-Hl), 2(P2-H2) = 3 VH1H2P2Pl 

3 
VH1H2PHd 

3 . 16. 
B3(Pl-Hl), (Sd-H2) = - -- + --v 

2/2- 4v'2- HlH2~d Pl 

3 
VH1H2Pht2 

3 
17. B3(Pl-Hl), (St2-H2) = - -- +-- V 

2 ✓2 4 ✓ -2- HlH2&",2Pl 
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= _3_ V 3 18· B3(Pl-Hl), (P2-lt2) 2 ✓2 HlP2PHt2 - 4 ✓-2 VH1P1P2Sei2 

19· 8 3(Pl-Hl),(P2-!d) = 2 : 2 VH1P2PHll -
4

~ 2 VH1PlP2Stl 

21. B3(Pl-Hl), 3(Pl-H1) = 2 VH1H2P1P2 - VH1H2P2Pl 

22. B4(Pl-Hl), (S-d-H2) 
3 3 

= 
2 -/2 VH1H2PHt2 - 4 ✓2 VH1H2fL2Pl 

23. B 4 ( P 1-H 1 ) , ( f" 2 - H 2) 
3 3 

= --V +-V 
2 ✓ 2- H1H2P1Ll 4/ 2 HlH2~dP1 

24. B 4(Pl-Hl ), (P2-~t2) 
3 3 = -V · --V 
2 ✓-f HlP2PHd 412 H1P1P2Seil 

28· B4(Pl-Hl), 4(P2-H2) = 
2 VH1H2P1P2 - VH1H2P2Pl 

29. B5(Pl-Hl ), (fd-H2) 

30. B5(Pl-Hl), (f,2-H2) 

31. B5(Pl-Hl ), (P2-ft2) 

32. B5(Pl-Hl), (P2-fH) 

36 · B5(Pl-Hl), 5(P2-H2) 

41. Bl(~t2-fll), 2(P2-H2) 

5o. B2(lt2-nl), 2(P2-H2) 

= 

= 

= 

= 

3 3 ---V +-V 
2 ✓-2 H1H2Plrt2 4✓-~t H1H2S-"2Pl 

3 3 
VH1H2ftl Pl --v +-

2{2 HlH2PHd 4/2 

3 3 
- 2 v'2 VH1P2PHd + 4 ✓2 VH1P1P2Sd 

3 3 --V +-V 
2 ✓2 Hl P2PH22 4 ✓2 Hl Pl P2~,2 

= - 2 VH1H2P1P2 + VH1H2P2Pl 

1 1 
= - ✓a VH2P2nHl2 + [B VH2P2rt2ld 

1 1 
= - ,/6 VH2P2ftH-l2 - ✓ 6 VH2P2it2rd 
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Part III 

A Simple Method for the Direct Calculation of 

Ionization Potentials and Electron Affinities 
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I. INTRODUCTION 

The determination of electron affinities and ionization potentials 

is an important problem of both theoretical and experimental interest. 

The locations and strengths of transitions are important in atmospheric, 

biological, and interstellar processes. For example, in ESCA 1 and in 

photodetachment2 and photoelectron3 spectroscopy, ionization potentials 

and electron affinities are directly measured. 

Theoretically, Koopmann's theorem 4 has been the mainstay of 

many low level calculations. From Koopmann's theorem we can say 

that ionization potentials and electron affinities can in certain cases 

be predicted by the canonical Hartree-Fock orbital energies. This 

result depends on correlation energy changes and relaxation effects 

upon electron removal or addition being approximately equal but oppo

site in sign and hence canceling. Although these effects are expected 

to be opposite in sign there is no theoretical reason for the correlation 

energy changes and relaxation to be equal in magnitude. For example, 

in H2CO using a [4s 3p/2s] contracted Gaussian basis set we obtain an 

orbital energy of -14. 64 eV for an electron in the lb1 orbital, while the 

experimental IP is 14. 47 ev . . However, the lowest ionization potential 

is by Koopmann's theorem 12. 09 eV compared to 10. 88 eV experi

mentally. An additional problem arises for electron affinities where 

basis sets in an SCF calculation must be large enough to allow for the 

SCF virtuals to converge to the more spatially diffuse negative ion 

orbitals. 

To remedy the sporadic agreement of Koopmann's 
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theorem with experiment, large scale configuration interaction 

calculations can be performed on both the molecular and ionic 

states. 5 The resulting energies are ionization potentials and 

electron affinities. These are in excellent agreement with experi

ment but can involve tedious basis set optimization and large amounts 

of computer time and core. Furthermore, in accurate configuration 

interaction calculations and in related calculations using Rayleigh

Schroedinger perturbation theory6 ionization potentials and electron 

affinities are the result of a subtraction of two large numbers to ob

tain a much smaller number. 

The equations of motion (EOM) method for atoms and mole

cules 7 can directly calculate excitation energies accurately without 

determining either total energies or wavefunctions explicitly. The 

resulting energies and amplitudes can be used to easily determine 

many properties of experimental and theoretical interest, e.g. oscil

lator strengths, transition moments between excited states, 8, 9 two 

photon decay probabilities, 8 Born inelastic scattering cross sections, 1 O 

photoionization cross sections, 8, 11 and optical potentials. 12 

In view of the relative ease of calculation and the excellent 

experimental agreement of the EOM, we proposed in 197213 a similar 

way to calculate ionization potentials, electron affinities, and the posi-

tions of simple electron-molecule resonances. It is the purpose of 

this paper to more fully expand and examine the equations and to dis-

cuss some calculations for the ionization potentials of He, N2, and OH-. 

Independently, Simons and Smith14 proposed a similar method. These methods 
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, f .. 15 are related to the Green s unction method of Cederbaum et al. and 
. 16 

the propagator method of Purvis and Ohrn. 

In section II the theory for the equations of motion method for 

ionization potentials and electron affinities will be developed and ex

panded from reference 13. We will briefly discuss the relationship 

of this method to the method of Simons14 and to Green's function and 

propagator methods. Results for He, N2, and OH- are discussed in 

section III. 
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II. THEORY 

Consider an operator o{ which when operating on the exact 

initial state I O > with N electrons generates a state with one less or 

one more electron, i. e. 

1 . 
OA I o, N > = I A, N ± 1 > (1) 

where I A > is a state which is an eigenfunction of the number operator 

with eigenvalue one greater or one less than I O > . This is similar to 

the equations of motion operator oI EX for excited states, 7 except 

that oI EX is an operator which generates excited states of a system 

with the same number of particles as the ground state. 

o! for ionization potentials and electron affinities can be 

written as a sum of operator strings with an odd number of electron 

creation and destruction operators, i.e. the net effect of o{ must be 

the addition or removal of an electron. Rowe's equation of motion17 

can be used to determine the energy change associated with the opera

tor o!- Since oI has an odd number of creation and destruction opera

tors the appropriate equation is Rowe's equation of motion for Fermi

like transfer operators, 1 7 i.e. 

where 

{ A, B, C} = ½ { l A, BJ, C} + ½ {A, [B, C J} 

= ABC - CBA +½CAB - ½ ACB + ½ BCA - ½ BAC 

(2) 

(3) 

(4) 
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u. A is the negative of the electron affinity or the ionization potential 

(5) 

Equation (2) is exact. However it cannot be solved exactly for 

most systems of chemical interest. There are two approximations 

which we can use to solve Eq. (2). or can be written as an infinite 

sum of odd numbers of creation and destruction operators. This sum 

may be truncated. For example, f o·r electron affinities o1 may be 

truncated after simple electron addition, 

,- T 0). = I; y., c., 
"- . , 1 1 

1 

where the sum is over all spin orbitals. 

(6) 

A second approximation is made in the choice for I O >, e.g. 

we can choose the ground state to be the Hartree-Fock ground state. 

The use of the symmetric double anticommutator in Eq. (2) assures 

that the equations will be of low particle-hole rank. That is, by 

writing Eq. (2) with as many commutators or anticommutators as 

we can, the resulting ionization potentials and electron affinities, 

u.., A will be relatively insensitive to the approximation used for the 

ground state. 

So far all the equations have been completely general and 

apply to both electron affinities and ionization potentials. For the 

remainder of this section only ionization potentials will be considered. 

The theory for electron affinities is analogous. In fact, exactly the 

same equations result so that one calculation may yield both ionization 
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potentials and electron affinities. 

Furthermore, we restrict either \ 0 > or I A > to be well 

described by a closed shell. This restriction is not severe since for 

many cases either the initial or final system is closed shell, e.g. to 

calculate the electron affinity of OH we can calculate the ionization 

potential of the closed shell OH-. 

The Hamiltonian is 

A t -• 
JC = Z E. ( C. C. + C .t/3 C. {3) + ~ ( ~ (V . . - 2 V. . ) 

. 1 10 10' l l . . llJVJ lVJV 
l lJ l/ 

1. I; ) ( t T ) 
- 2 Vippj cia cja + ci/3 cj/3 

p 

J. 

+2 ( 7) 

where Greek letters are holes or orbitals occupied in a Hartree Fack 

ground state calculation; m, n, p, ... are particles or virtual orbitals; 

and i, j, k, 1 are either holes or particles. V ijkl is defined 

* * 1 ViJ.kl = j <pi (1) cpj (2) - <pk (1) q;1 (2) d T 12 
rl2 

( 8) 

To determine a reasonable farm for oI consider the initial 

state IO> to be the Hartree-Fock ground state and all possible double 

excitations, i.e. 

\ 0 > ~ N0 ( \ HF > + \ X > (9) 

where N
0 

is a normalization constant and \ x > is a correlation func

tion. 
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IX> \ cmn mn 
= > (10) /___1 yv yv 

m:sn 
y :S V 

Equation (10) can be rewritten 7 

IO>~ N0 (!HF> +4 [C (0) ( 1 ct c ct c my,no 2 mayanaoa+ 

(11) 

All correlation coefficients are assumed to be small. 

The important effects for ionization potentials are: 

1. Removal of an electron from a hole. 

2. Removal of an electron from a particle level. 

3. Removal of an electron from a hole and excitation of one 

of the remaining hole electrons. 

4. Removal of an electron from a particle level and deexcita

tion of the remaining par tic le electron. 

2-4 are higher order processes for ionization potentials. 

2 and 4 do not exist unless the initial state is correlated. 

Hence we can write 

l Z y. (-c\3) 
\ -. (2) T 

- ' 

(2) ® ") OA = + i 
y (myv)r r(myv)r - Z (pmy)r H (pmy)r . 1 1 '-1 i __j 

1 r r 
myv pmy 
}Jc. y pc.m 

(12) 
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In Eq. (12) the operators are spin-adapted so the subscript r refers 

to the various possible spin couplings, e.g. there are two ways to 

couple three electrons in three different orbitals to form doublet 

states with Ms = ½. rT is an operator which has the effect of remov

ing an electron from a hole and exciting a different hole electron. 

@ is an operator which removes an electron from a particle level 

and deexcites the remaining electron in a particle state. The r T 

and (!!) operators are given in Table I. 

If Eq. (12) is used in Eq. (2) we obtain the following matrix 

equations. 

where 

/ y(2) .. 

I 

\ z(2) 
\ 
\ 

j 
I 
l 
I 

) 

(14) 



p (1, 2) 
i;(pmy)r = 

j)___ (1, 2) = 

i; (myv)r 

( ,. ( 1, 2) 
c1 i; (pmy)r 
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- <O I {r(my1') , Jc, @·- ( ) } IO> 
_v r pmy r 

[) (2, 2) t 
~ (myv)r, (myv)r = < O I {r(myv) ' r(myv) } IO> 

-r r 

(15) 

The most important process for ionization potentials is single 

electron removal. All the matrices which involve an operator that is 

simply electron removal are in Eq. (13). Equation (14) is coupled to 

Eq. (13) through the ionization potential ~ A and the vectors y(2) and 

z(2). Equation (14) can be solved for (y(2) \, i.e. 
z(2~ 
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X ( a_ (1, 2) _ w ~ (1, 2) 
.- A.-

= - R-1 R l y - -
Combining (17) with (13) 

-1 
Q (2, 2) _ ~ :J2 (2, 2)) 

_:£; (2, 2) _ w ct (2, 2) 
.- A .-

(16) 

(17) 

(18) 

(19) 

Equation (19) must be solved iteratively for wA since Aq depends 

on wA through Eq. (16). For example, the first guess for wA can be 

Koopmann's theorem value. It is used in constructing t::,,_ a. A new -
wA is chosen from the eigenvalues of (19) which is the closest to 

wAKoop. and this is used to form the new A 0-. This process con

tinues until two successive iterations do not differ by more than a 

predetermined amount, e.g. 10-5 Hartrees. The procedure usually 

converges within ten iterations. 

The formulas of Eq. (14) in terms of orbital energies and 

interaction matrix elements are derived using a formula generat

ing program. 17 The ground state is assumed to be as in Eq. 

(11). If the correlation coefficient C ;; is obtained from my, nu 

Rayleigh-Schroedinger perturbation theory, it is proportional to 

electron interaction matrix elements. All formulas used in Eq. 
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(19) are derived so that Eq. (19) is third order in the electron inter

action matrix elements, i.e. {l formulas are generated to order 
-"' 

3 2 2 
EC and VC , R formulas to order EC and VC, and R formulas to 

-"' -"' 

order E C and V. This truncation by orders is reasonable since the 

terms most important for the ionization potentials are contained in {l. 
-"' 

where 

p(2) l .6 l; C~µ, qv (S) Cpµ, qy (S) = - 2 Vy pqµ s 
(21) 

p pq 
l .6 ~ C~µ, qv (S) Cmµ, pv (S) = 2 

mµv s 

and 

c' (0) - ~ C (0) + 1:. C (1) pv, qy - 4 pv, qy 4 pv, qy 

(22) 

c~v, qy (1) = ¼ cpv, qy (0) + ¾ cpv, qy (1) 

Note that through second order in interaction matrix elements Cf .. 
lJ 

is purely on -diagonal and is given by Koopmann' s theorem. 

Matrices /) (l, 2) cf- (l, 2) (? (2, 2) and g / (2, 2) are zero. 
-"' ' -"' ' -"' ' -"' 

Matrices /Y. & (2, 2) and cf (2, 2) are unit matrices. The 
-"' ' -"' ' -"' 

a (1 2) ,,-:---:, (1 2) ., (2 2) ··· :-; (2 2) 
formulas for matrices ' b ' {)._ ' and J5 ' 

-"' ' -"' ' ' -"' 

are given in Tables II and III. 

The Y(2) amplitudes correspond to electron removal and 

excitation of another hole electron. This is a core relaxation process. 
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The z(2) amplitudes are electron removal from a particle 

level and deexcitation of the remaining particle electron. Thus, the 

Z (2) . 1·t d · amp 1 u es are a correlat10n effect. V../e expect the inclusion of 

y(
2

) amplitudes to lower the calculated ionization potential and the 

z(2) amplitudes to raise it. 

In actual calculations, the matrix sizes are reduced by 

choosing o1, operators which generate states of a specific spatial 

symmetry. However the A matrix is still very large, e.g. for a 

calculation of the OH- X 
1

2; + _, 2 II state using a < 4s 3p 2d / 
g n 

2s lp) + R s 0 + R p0 + R sH basis set the A matrix is 1050 x 1050. 

There are several approximations which can be made to reduce the 

size of the calculation. . 

The simplest approximation is to ignore the fl. (L correction -
in Eq. (19) to Cl. If simultaneously terms second order in the -
correlation coefficients are set equal to zero in a we have Koop-- . 

mann's theorem. Neither approximations works very well as will 

be shown in section III. 

A second approximation is to calculate all terms in Eq. (19) 

only to second order, i.e. CL terms to order E C2 and V C, R terms - -
to order E V and V, and A terms to order E. Also off diagonal P. - -
terms are assumed equal to zero. This approximation is identical 

to the second order Green's function techniques of Cederbaum 

et al. 15 o; the Born collision approximation of Purvis and Ohrn. 16 

Although for a few molecular cases this method works well, e. g. 

18 . 15 H2CO, usually 1t does not. 
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A slightly different approximation is to assume R diagonal -
terms are calculated to order E C and V. Off diagonal A terms are -
zero. These are the shifted Born collision results of Purvis and 

Ohrn. 16 Again results are inconsistent. 

Selective inversion of blocks of the R matrix where all f ormu-
"" 

las are calculated to second order is another possibility. This cor

responds to the spin symmetry diagonalized shifted Born collision 

approximation16 and symmetry diagonalized shifted Born collision 

approximation. 16 Ionization potentials in these approximations do 

not agree well with experiment. 

A more reliable approximation is to retain all terms in Eq. 

(18) to third order, except that F\ is assumed to be diagonal. Simons19 
-

reports agreement to± 0.15 eV with experiment for diatomic mole

cules using Slater basis sets. However, Simons19 does not spin

symmetry adapt o1 . Hence spurious quartet components exist in 

A-1 . We have also found that using the spin symmetry adapted -
operators which eliminate the spurious quartet components of 

Table I and Gaussian basis sets, agreement with experiment is 

good but not in general within± 0.15 ev. 

There are two further approximations which should result 

in good experimental agreement consistently. Selective inversion 

of A while maintaining all formulas to the order given in Tables II -
and Ill seems to be very promising. The assumption that off-diagonal 

A elements are small and hence can be zeroed may not be a valid -
assumption. The selection of the sections of the R-l matrix to -
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invert can be based on the magnitude of the corresponding on-diagonal 

A terms, e.g. if the on-diagonal A element differs by less than a - -
certain value from the Koopmann' s theorem ionization potential, then 

that element's indices are included in a list which is used to form the 

sub R matrix for inversion. Another choice is based on the kinds of -
holes and particles that compose the three indices of an A row or -
column, e.g. if we are interested in ionization from the b1 orbital of 

H2CO then all indices in R which contain the b1 orbital are included in -
the list for sub A matrix inversion. -

A second approximation is to use improved virtual orbitals 

(IV0)20 for the parts of /~ that are assumed to be diagonal. The IVO -
or frozen core orbitals are the virtual orbitals that are obtained if 

the occupied orbitals are "frozen" and the virtuals are orbitals 

appropriate for an electron in a field of N-1 electrons. For ordinary 

virtual orbitals an electron is moving in the field of N other electrons. 

IVO orbitals are obviously much more appropriate for the process of 

electron removal with electron excitation. We expect off-diagonal 

A elements to be smaller than when regular virtual orbitals are used. -
Hence, the inverted matrix will be closer to diagonal form. The 

formulas given in Tables II and III will be slightly different if IVO 

orbitals are used. 

In summary and as a practical description of an actual calcu

lation, the considerations for doing an ionization potential or electron 

affinity calculation of this kind are given. 

1. The system must be well described by an HF closed shell 
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in either its initial or final state. 

2. The basis set used must be flexible enough to describe 

both the initial and final states well. For calculations between a 

negative ion and a molecule or atom this may require the addition of 

several diffuse functions to ordinary valence basis sets. 

3. The correlation coefficients are determined by either 

Rayleigh-Schroedinger perturbation theory or self-consistently frotn 

an equations-of-motion for excited state calculation. 7 

4. Equation (19) is solved iteratively by one of the better 

· approximations described in this section. 
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III. APPLICATIONS 

A. He 
""'-

The basis set used for the SCF calculation on the ground 

state of He is composed of 10 s and 5 p Cartesian Gaussian functions. 

The basis is taken from Huzinaga21 with the p exponents approximat

ing a Slater function scaled so that the expectation value of r is the 

same as calculated by Pekeris. 22 The correlation coefficients are 

calculated by Rayleigh-Schroedinger perturbation theory. 

Results are given in Table IV. Obviously both the core 

relaxation U (l, 2) terms and the correlation J3 (l, 2) terms must 

be included in any ionization potential calculation for He where 1::t.Cl 

in Eq. (19) is not assumed to be zero. For example, row 3 without 

Jj (l, 2) terms gives an ionization potential of 23. 57 ev. The inclu

~on of B (l, 2) in row 4 gives an ionization potential of 24. 42 ev, in 

good agreement with the experimental result 24. 58 ev. 

Doll and Reinhardt23 use a large basis set of Slater's includ

ing d functions. Their result is a calculation to second order. If 

we assume that the third order terms in a are a purely additive -
effect and do not couple with any t::,,. Cl effects, from row 4 we obtain -
an ionization potential to second order of 24. 33 eV. The shifted 

denominator result of row 6 is 24. 55 eV. 

The second order results are in better agreement with experi

ment than are the third order results of rows 7 and 8. However, 
, (1 2) .~-3 (1 2) none of the results when both {( ' and J_ ' matrices are in-

eluded differ from experiment by more than 0. 27 eV. Even the 



-166-

Koopmann's theorem result is only 0. 40 ev from experiment. As 

shown by Cederbaum et al. 15, 18 second order results can give good 

experimental agreement for some molecules but for many molecules 

higher order results are required. 

The ground state configuration of N
2 

is 

We have performed a ground state SCF calculation on N2 at ground 

state equilibrium geometry, 2 .. 068 au. The basis set is < 3s 2p) 

contracted Gaussian set optimized for neutral N with the contraction 

coefficients obtained from Dunning. 24 We give the results in Table V. 

Koopmann' s theorem ionization potentials are in error by as 

much as 2. 2 eV ( B 
2 ~~ ). In addition the Koopmann's theorem result 

differentiates only slightly between the X 
1 
~: - X 

2 
~; and X 

1 £; -+ A 
2
1\i 

ionization potentials, 16. 99 ev and 17. 04 ev. Experimentally the 

difference is 1. 38 ev. The Koopmann's theorem ordering of the 

ionization potentials is correct. 

Second order calculations involve calculating Cl to order -
E C2 and V C, a_ (l, 2) and 73 (l, 2) to order EC and V, and assuming - -
A is diagonal and to order E. Second order results do not improve -
experimental agreement in N 2 and predict the ion states in the wrong 

order. 

Third order calculations with the A-1 denominators expanded -
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1 --- ~ 1 - x and only third order terms are retained improve 
1 + X 

the results considerably. However, the calculated ionization poten

tial calculations to the X
2
L; and B 

2
1;~ states are too low by 0. 88 ev 

2 
and 0. 78 ev respectively. The calculated A nu ionization potential 

is 0. 18 ev too high. 

If interaction matrix elements are kept in the 13..-1 denomina

tors the x 1 L; ~ X 
2 £; ionization potential improves to 14. 92 ev. 

This compares with Simons '26 result of 15. 69 ev. Simons uses a 

double zeta Slater basis set augmented with 3d1r ·functions. We cal

culate using this approximation except with the operators being spin 

symmetry adapted in a< 3s 2p ld ) Gaussian basis set an ioniza-
'Tf 

tion potential of 15. 13 ev. Further improvements in the basis set 

should result in better experimental agreement. We feel, however, 

that using Gaussian basis functions we cannot consistently achieve 

Simons' experimental agreement in this approximation. 

Furthermore, by not using operators which generate pure 

doublets when operating on the ground state, spurious quartet contri

butions are introduced in A-l in Simons' scheme. This may compen--
sate somewhat for the assumption that R is diagonal. --

C. OH 
~ 

The ground state configuration of OH- is 

2 2 2 4 
(la) (2a) (3a) (l1r). 

The basis set we used is the < 4s 3p/2s > Gaussian basis set of 
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Dunning27 augmented by d 1T polarization functions on O and p 

polarization functions on H. 28 A diffuse s function with exponent 

0. 09 and a diffuse set of p functions with exponent 0. 07 on oxygen 

and a diffuse s function with exponent 0. 05 are included to better 

describe the negative ion ground state. We calculate the ionization 

potential of OH- at 1. 781 au the ground state equilibrium geometry 

of both OH and OH-. Thus we calculate the vertical detachment 

energy of OH-, x+z;+ ~ 2 II. Results are given in Table VI. 

The Koopmann's theorem result is over 1 ev higher than the 

experimental energy. Second order effects overcompensate reducing 

the detachment energy to a small negative number. The third order 

result with V in the denominator in R is in excellent experimental -
agreement. 
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IV. CONCLUSION 

We have developed an equations of motion approach for 

ionization potentials and electron affinities. 13 We propose several 

approximations to obtain ionization potentials, including a method 

similar to the one used by Simons. 14 However, we spin-symmetry 

adapt all operators, thus assuring that there is no introduction of 

spurious quartet components. It is obvious that the equations must 

be solved to at least third order in the interaction. 

Using large, standard Gaussian basis sets obtained from the 

literature which are optimized for SCF calculations · on the neutral 

ground state, we do not obtain consistently ionization potentials 

which agree with experiment as well as Simons. We conclude that 

either using Gaussian basis sets extensive optimization including 

the addition of polarization and possibly diffuse functions must be 

done or that Simons use of non-spin adapted symmetry operators 

introduces compensating errors which correct for the approxima- · 

tions made inverting the large matrix A . .,..,_ 

We propose two further approximations, i.e. the selective 

inversion of sections of A in third order and the use of improved .,..,_ 

virtual orbitals for parts of A which are assumed diagonal. We .,..,_ 

feel that these approximations may lead to consistent experimental 

agreement for relatively small unoptimized Gaussian basis sets 

without extending the equations to higher orders. 
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T Table I. r and @ operators (v > y, p > m) 

rT 
myy 

= - C Cl C 
y/3 ma yll' 

T 
r (mvy)1 

T 
r (mvy)2 

@mmy 

@(pniy)l 

@(pmy)2 

= 
t l 

- 1/ {2 (cva cma cy/3 - cv/3 cma cya) 

= 
- 1 I r t ✓2/3 (cv/3 cm/3 cy/3 + 2 cva cma cy/3 + ½ cvf3 cmacya) 

·t 
= - cm/3 cya cma 
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(1 2) --3 (1 2) Table II. U ' and i ' formulas. H = hole, P = particle. - -
H 4 > H3 and P4 > P3. 

_ (1, 2) = 

CLi, P3H3H3 
-v 

i H3H3P3 

\ ' 
+ L 

H5, H6, 
P5, P6 

[-V C (0) 
i H6H3P6 P3H3, P6H6 

- V C (0) + V (C (0) + 
i P3P6P5 P5H3, P6H3 i H3P6H6 P3H3, P6H6 

C (0) ) + ½ o (V C (0) 
P3H6, P6H3 i H3 H6P5P6P3 P5H3, P6H6 

- V C (0) ) ] 
i H6H5P6 P3H5, P6H6 

/ "i ( l, 2) = 1 / 12· { V + V 
C{.. i, (P3H4H3)1 i H4H3P3 i H3H4P3 

+ L [V C (0) + V C (0) 
H5, H6 i H6H3P6 P3H4, P6H6 i H6H4P6 P3H3, P6H6 

P5,P6 

+ V (C (0) + C (0) ) 
i P3P5P6 P5H3, P6H4 P5H4, P6H3 

- V (C (0) + C (0) _ ) 
i H3P6H6 P3H4, P6H6 P3H6, P6H4 

- V (C (0) + C (0) ) 
i H4P6H6 P3H3, P6H6 P3H6, P6H3 

- ½ o (V C (0) - V C (0) ) 
i H3 H6P5P6P3 P5H4, P6H6 H5H6H4P6 P3H5, P6H6 

- ½ o (V C (0) - V C ( 0) ) J} 
i H4 H6P5P6P3 P5H3, P6H6 H5, H6H3P6 P3H5, P6H6 
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Table II ( continued} 

.. (1,2) = ~{(V -V ) 
cl_ i, (P3H4H3)2 i H3H4P3 i H4H3P3 

\ ' 
+ / 

L! 
H5, H6 
P5, P6 

[- V C (0) + V C (0) 
i H6H3P6 P3H4, P6H6 i H6H4P6 P3H3, P6H6 

+ ½ V (C (0) - C (0) ) 
i P5P6P3 P5H3, P6H4 P5H4, P6H3 

- ½ V (C(0) - C (0) ) 
i H6P6H4 P3H3, P6H6 P3H6, P6H3 

+ ½ V (C (0) - C (0) ) 
i H6P6H3 P3H4, P6H6 P3H6, P6H4 

+ ½ o (V C (0) - V C (0) ) 
i H3 H6P5P6P3 P5H4, P6H6 H5H6H4P6 P3H5, P6H6 · 

+ ½ o (V (C (0) - V C (0) ) ] } 
i H4 H5H6H3P6 P3H5, P6H6 H6P5P6P3 P5H3, P6H6 

..--i2 (1, 2) 
,D i P3 P3H3 ' . 

= V + l [ 
i H3P3P3 H5, H6 

P5, P6 

+ V C (0) 
i H6P3P6 P3H3, P6H6 

- V (C (0) + C (0) ) 
i P6H6P3 P3H3, P6H6 P3H6, P6H3 

+ V C (0) 
i H5H6H3 P3H5, P3H6 
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Table II (continued) 

- ½ o V C (0) 
i P3 H5H6H3P6 P3H5, P6H6 

+ ½ o V C (0) ] 
i P3 H6PlP6P5 P5H3, P6H6 

/· . ( l, 2) = 1 / 12· { V + V 
I ' i, (P4P3H3)1 i H3P4P3 i H3P3P4 

+ 
\ 

'....J 

H5, H6 
P5,P6 

I_ V C (0) + V C (0) 
H6iP6P4 P3H3, P6H6 H6iP6P3 P4H3, P6H6 

- V (C (0) + C (0) ) 
H6P6iP3 P4H3,P6H6 P4H6,P6H3 

- V (C (0) + C (0) ) 
H6P6iP4 P3H3,P6H6 P3H6, P6H3 

+ V ( C ( 0) + C (0) ) 
H5H6H3i P3H5,P4H6 P3H6,P4H5 

- ½ o (V C (0) - V C (0) ) 
i P3 H5H6H3P6 P4H5, P6H6 H6P5P6P4 P5H3, P6H6 

- ½ 6 (V C (0) - V C (0) ) .J} 
i P4 H5H6H3P6 P3H5, P6H6 H6P5P6P3 P5H3 , P6H6 

,, ( l , 2 ) = I 3 /2 1 V - V 
. i, (P4P3H3) 2 i H3P3P4 i H3P4P3 

+ 
, .. _, 

H5, H6 
P5,P6 

l- V C (0) + V C (0) 
H6iP6P4 P3H3, P6H6 H6iP6P3 P4H3 , P6H6 
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Table II (Continued) 

- ½ V (C (0) - C (0) ) 
H6P6iP3 P4H3,P6H6 P4H6,P6H3 

+ ½ V (C (0) - C (0) ) 
H6P6iP4 P3H3,P6H6 P3H6,P6H3 

+ {0 V (C (0) - C (0) ) 
H5H6iH3 P3H5,P4H6 P3H6,P4H5 

- ½ o (V C (0) - V C (0) 
iP3 H5H6H3P6 P4H5, P6H6 H6P5P6P4 P5H3, P6I-t6 

+ ½ 6 (V C (0) 
. l 

- V C ( 0) ) j 1 
iP4 H5H6H3P6 P3H5,P6H6 H6P5P6P3 P5H3, P6H6 
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Table III. 
· (2 2) ·. 1 (2 2) 

c ( ' and ,--:. ' formulas. H = hole, P = particle. 
-" -" 

H2 > Hl, H4 :::, H3, P2 > Pl, and P4 > P3. 

I i ( 2, 2) 0 0 ( 2 ) 
ex (PlHlHl), (P3H3H3) = H1H3 P1P3 E Pl - EHl + 

; (2,2) l 
L 1.. (P1H2H1)

1
, (P3H3H3) = 

6H1H3 - (2 VH1P1H2P3 - VH1H2P3Pl) 
/2 

- 5 P1P3 12 VH1H2H3H3 + _l_ 6H2H3 (2 VH1P1H2P3 -/2 

. (2, 2) 
cc(PlH2Hl)i, (P3H4H3)

1 
= 6H1H3 6H2H4 6 P1P3 (Epl - EHl - EH2) + 

6H1H3 (-VH2P1H4P3 + ½ VH2H4P1P3) + 5H1H4 (-VH2P1H3P3 + 

{f 0H2H3 VH1H2P1P3 

(2, 2) ../3" 
(_.c (P1H2H1)

2
, (P3H4H3)

1 
= - 5H1H3 2 VH2H4PlP3 -

-["3 - ✓ 'J 
6H1H4 -2- VH2H3P1P3 + 6H2H3 -2- VH1H4P1P3 

-.f'J 
+ 6H2H4 - 2- VH1H3P1P3 

- (2,2) . 
v : (P1H2Hl)

2
, (P3H4H3)

2 
= 6H1H3 6H2H4 6P1P3 (Epl -EHl - EH2) 
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Table III ( continued) 

3 
+ 6HlH3 (-VH2PlH4P3 + 2 VH2H4P1P3) + 

3 0HlH4 (VH2P1H3P3 - 2 VH2H3PlP3) + 6H2H3 (VH1P1H4P3 

3 3 
- 2 VH1H4P1P3) + 6H2H4 (-VH1PlH3P3 + 2 VH1H3P1P3) 

+ 5PlP3 (VH1H2H3H4 - VH1H2H4H3) 

-, (2,2) 
- .• _'1 (Pl Pl Hi), (P3P3H3) = 6HlH3 6PlP3 (EHl - 2 E Pl) -

0HlH3 VP1P1P3P3 + 0PlP3 (2 VH1P1H3Pl - VH1H3P1Pl) 

. .. (2, 2) r 
-/j (P2P1Hl)u (P3P3H3) = 0H1H3 (-v 2) V Pl P2P3P3 + 

1 5P1P3 
12 

(2 VH1P1H3P2 - VH1H3P2Pl) + 

1 6P2P3 12 (2 VH1P1H3P2 - VHlH3PlP2) 
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Table III ( continued) 

, (2, 2) _ 

- ·~\P2P1H1) 2 , (P3P3H3) - fi 0P1P3 VH1H3P2Pl + 

fl 5P2P3 VH1H3PlP2 

-·--, (2, 2) ✓3 
- t5 (P2PlH1)

2
, (P4P3H3)

1 
= -oP1P3 -2- VH1H3P2P4 -

-./'J" -./3 0P1P4 2 VH1H3P2P3 + -2- 0P2P3 VH1H3P1P4 + 

-./3 . 
-2- bP2P4 VH1H3P1P3 

. --, (2, 2) 

- t ) (P2 P1Hl )
2

, (P4P3H3)
2 

= 0ttlH3 6Pl P3 6P2P4 (EHl - E Pl - E P2) + 

6tt1H3 (VP1P2P4P3 - VP1P2P3P4) + 6P1P3 (VH1P2H3P4 -

3 3 
2 VH1H3P2P4) + 0P1P4 (-VH1P2H3P3 + 2 VH1H3P2P3) + 

3 0P2P3 (-VH1P1H3P4 + 2 VH1H3P1P4) + 6P2P4 (VH1P1H3P3 -

3 
2 VH1H3P1P3) 
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Table IV. He ionization potential in different approximations. The 

basis set is (10s 5p). 

Order of the Terms in Eg. {19} 

L_,( __ ( 1, 2) ,·:tl, 2) 
{-\ Ionization 

(.{_ Diagonal? "' Order potential (eV) 

EC,v3- 0 0 0 24.98 

EC2, vc
2 0 0 0 24.89 

EC3, vc 2 EC,V 0 yes ( 23.57 

EC3, vc
2 

EC,V EC,V yes E 24.42 

EC3, vc
2 

EC,V 0 yes EC,V 23.68 

EC3, vc
2 EC,V EC,V yes EC,V 24.64 

EC3, vc
2 2 

EC' vc 
2 

EC' vc yes EC,V 24.85 

EC3, vc 2 2 2 EC vb 24.84 EC' vc EC' vc yes 
' 

Doll and Reinhardtc 24.65 

Experimentd 24.58 

a Koopmann's theorem. 

b We have used - 1 - ~ 1 - x and have retained only third order terms 
l+x 

in A . 

c Reference 23. 

d C. Moore, Natl. Bur. Std. (US) Cir. 1.§1, Vol. 1 (1949). 
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Table V. N 2 Ionization Potentials 

Approximation Xl~+ ~ 
g 

Koopmann's Theorem 

Second ordera 

Third order with V in denominator 

Third ordera 

Cederbaum second orderb 

Propagatorc 

s· d lill0nS 

Experimente 

a See discussion in text. 

b Reference 25. 

c Reference 16. 

d Reference 26. 

e Reference 3. 

a 

Ionization Potential ( eV) 

x 2 z+ B 2 L+ 
2 

AH g u u 

16.99 21.01 17.04 

14.17 17.21 17. 42 

14.92 

14.72 18.00 17.16 

14.68 17.35 16.95 

14.91 17.55 17. 23 

15.69 18. 63 17. 03 

15.60 18.78 16.98 
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Table VI. Vertical Detachment Energies of OH-

Approximation 

Koopmann' s theorem 

Second order 

Third order, V in the 
denominator 

Simons 

Experiment 

AE (eV) 

2.929 

-0.184 

2.061 

a W. D. Smith, T. Chen, and J. Simons, "Theoretical Studies 

of Molecular Ions. Vertical Detachment Energy of OH-, " 

(to be published. 

b H. Hotop, T. A. Patterson, and W. C. Lineberger, J. Chem. 

Phys. §_Q, 1806 (1974). 
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APPENDIX 

General Mating XVI: A Program to Calculate 

Formulas from Second Quantized Operators 
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APPENDIX 

General Mating XVI: A computer program to derive 

formulas from second quantized excitation operators 

A. Introduction 

The program called general mating XVI will derive formulas 

through second order in the correlation coefficients, i.e. EC2, TC2, 

and VC, from input second quantized excitation operators using 

Wick's theorem. The program reads in and stores sets of second 

quantized operators: correlation functions, p-h excitation operator 

one, and p-h excitation operator two. 

It accepts creation or destruction operators in literal or 

integer form, converts them to three new sets of integers, one for 

the printing of input (PROP), one for actual operator input and 

Wick's theorem manipulation (OP), and one for final data treatment 

and printout (PAOP). After evaluation the formulas are printed out 

or optionally written on computer tape in coded form. 

Wick's theorem for our purposes here is1 

<HF\ABCD ... IHF> = a1 <HFIABIHF ><HFICD\HF> ... 

+a2 <HF IAC IHF > <HF I BD IHF > ... +a3 <HF IADI HF> <HF I BC I HF> ... 

+ ... 

where ABCD. . . are creation and destruction operators, I HF ) is a 

· single determinant Hartree-Fock ground state, and an is a real 

(1) 
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phase factor. < HF I AB I HF > is called a contraction. an is 

determined by the number of permutations required to rearrange 

ABCD ... so that contracted pairs are adjacent, e.g. a2 in (1) is 

~ 1 and a 3 is +1 provided there is no further rearrangement of cre

ation and destruction operators after the first tour. 

Program limitations are as follows. 

(a) Possible ground states include the closed shell, I (closed 

shell) (, a >, I ( closed shell) !t 1 a ~~ 2 QI >, and k1 I ( closed shell) n 1 a!" 1 /3 > 
+ Is I (closed shell) ~t 2 o!·c:, 2 {3 > where r,, ~"i, and ~" 2 are open shell 

molecular orbitals. 

(b) The ground state may be adjusted to another spin projec

tion or spin including multideterminants by the use of a program 

option which can change the spin component and occupation number 

of the open shell orbitals. 

(c) The open shell molecular orbitals must be obtained from 

the OCBSE method of Hunt, Dunning, and Goddard
2 

with the virtual 

(particle) orbitals eigenfunctions of the last open shell Fock operator. 

· ( d) Possible operators are 

,,._ 

1. JC where 

( + + ) l (+ + c . c . + c . Q c . {3 + 2 ~ V .. kl c . ck c · cl + 
10' JO' 11--1 J ijkl lJ 10' QI ] 0 O' 

(2) 
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E. = h.. + z; (2 J. - K. ) 
1 11 1/ ll/ ~ill 

3td = £ [ E. o .. + E (V. . - 2 V .. ) + b (½ V.nc . -V-~ -~) 
ij 1 l] V 11/J/J lvJJ/ fo"~ l J 1 "] " 

- ½ ~ V.kk· .) (c: c . + c:a C-rJ + 
k 1 J 1a JO'. 1fJ JtJ 

i ., V (+ + )(+ + ) 2 Li .. kl c. ck + c. 13 Cka c. c1 + c.a c1{). 
i j kl 1 J 1 a a 1 fJ J a a J fJ fJ 

where b = 1 when i and j are in the closed shell or when i or j is 

a virtual and the other is in the closed shell. 

b = 2 when i or j is open and the other is closed 

b = 0 all other cases 

E = h + Z ( 2 J . 
11 

- K v ) + ½ ( 2 J, - Kr ) 
y yy V y y ~'Y ~t.iy 

3{, t = ~ [ E. 0 • • + L ( V • • - 2 V • • ) + L ( b V. 1 r . - V:, , . -r ) 
ij 1 lJ 1/ ll/lJJ lV]l/ ft fol~"] llll]~l 

- ½ ~ V-kk· J (c: c. + c:a c.{3) k 1 J 1a J a lt-J J 

l 
+2 + + )(+ + ) L v .. kl (c. ck + c.Q cka c. c1 + c.f.), c1Q 

ijkl IJ 1a a lJJ JJ JO a ]JJ I-' 

where b = 1 when i and j are each either open shell or virtual 

molecular orbitals. 

(3) 

(4) 

(5) 

(6) 

( 7) 

( 8) 
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b = 0 when i or j is open shell and the other is closed 

b = ½ in all other cases. 

E = hyy + ~ (2 Jyv - K z) + ½ £ (2 Jr - Kr . ) (9) 
y V y fl i:i"y i:it..y 

E = h + L ( 2 J - K ) + £ ( J11 - K ~ ) ( 11) m mm v vm vm f, i:i"m -·um 

As usual lower case Greek letters are closed shell holes; n, ~' 

rt 1, ahd ~t 2 are opeh shell orbitals; m, n, p .... are particles; 

and i, j, k, 1 are any orbital. 

2. T = L T .. (c: c. + ct13 cj/3) (13) 
ij lJ 10! JCT 

3. 
A 

E. Q .. (c: c. + C~/3 C-{) (14) E = i; 
ij 1 lJ 1 O! JO! 1 J 

4. 

(15) 

5. Unit operator 

6. (16) 

where ct is a p-h excitation operator composed of several~ 's 

that may have up to eight creation and destruction operators a row 

(a string), i.e. 
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(17) 

where AR is a real number and C!, i is a string of creation and 

destruction operators. Ci can have at most two creation and 

destruction operators operating on the hole orbitals and two operat

ing on the particle space. There is no limitation in C"i on the num

ber of open shell creation and destruction operators (up to eight). 

One operator out of 1-5 above can be chosen and up to two 

kinds of p-h excitation operators. 

B. A brief description of each subroutine 

1. MAIN. Main contains the storage array BIGOT for 

variable dimensioning. In this subroutine the title for the run is 

read in and program options and limits are read in or set by default. 

Subroutines READIN and DOIT are called. The last card in the data 

deck is read and specifies whether the current data are to be analyzed 

and if more data follows. 

2. BLOCK DATA. Block data defines the ON and NO matrices, 

where NO contains the literal values corresponding to PROP integers 

and ON contains the literal values corresponding to PAOP integers. 

3. READIN. In READIN the operators are read in and stored. 
3 

First any changes in the Ms value of the ground state or MCRPA , 

then the ket correlation function, the first p-h excitation operator, 

and finally the last p-h excitation operator. 

4. DOIT. In DOIT each formula for input p-h excitation 



-189-

operators is expanded for calculation. That is, each p-h operator 

is expanded in terms of CR's (see equation (17)). Correlation func

tions and any change in Ms value of the ground state are expanded 

in terms of creation and destruction operators. Subroutines SETUP, 

EFORI\1 and PUNvVRT are called. 

5. SETUP. SETUP expands any commutors, locates the posi

tions of i, j, k, and 1, and processes matrices to pass to WICKET. 

6. WICKET. WICKET expands matrices M and MM passed 

to it from SETUP by Wick's theorem. TV is called. 

7. TV. Subroutine TV processes data from WICKET in 

terms of p-h operators, operators (1-5) above, or correlation functions. 

TFORM or VFORM may be called. SYM may also be called. 

8. TFORM:. Subroutine TFORM: stores resulting one-body 

formulas in submatrices according to the Kronecker delta functions 

which are in the formula. TFORM may call SYM and PUNWRT. 

9. VFORM. Subroutine VFORM stores resulting two-body 

formulas in submatrices according to the Kronecker delta functions 

which are in the formula. VFORM may call PUNWRT. 

10. EFORM. EFORM expands one-body formulas in terms 

of orbital energies and two-body interaction matrix elements. 

VFORM is called. 

11. SYM. Subroutine SYM takes care of any symmetry in 

the correlation function. 

12. PUNWRT. Subroutine PUNWRT writes out the matrices 

ETIMS, EN, EC, and ED from subroutines TFORM and EFORM and 
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matrices VTIMS, V, C, and VD from subroutine VFORM. These 

are the resulting formulas if PUNWRT is called from the appropriate 

place in subroutine DOIT. The formulas may be written out on both 

printed output and tape. 

References 

1. D. J. Rowe, Nuclear Collective Motion, Models and Theory, 

(Methuen and Co. Ltd., London, 1970). 

2. W. J. Hunt, T. H. Dunning, and W. A. Goddard, Chem. Phys. 

Lett. ~ 606 (1969); W. A. Goddard, T. H. Dunning, and W. J. 

Hunt, Chem. Phys. Lett. !, 231 (1969); W. J. Hunt, W. A. 

Goddard, and T. H. Dunning, Chem. Phys. Lett. ~ 147 (1970). 

3. D. L. Yeager, Ph.D. Thesis, California Institute of Technology, 

1975. 



C GENERAL ~ATING XVI 
C PROGRAM TO CALCULATE TOA, RPA, HRPA, AND EON fORMULAS. 
C CUPRENT LIMITUIONS 1\Rf: TrlRDUGH Sc.CWW ORDER INV FO\ SINGLE EXCITA
C TIGN MATRIX ELEMENTS ANO VC FOR OOUULE EXllTATIJN (N~ EC**2). 
C EVENTUALLY THIS PkJGRAM WILL BE ABLE TO 00 SECuNO UkDcR I~ C FOR BOTH 
C SINGLES ANO OOU~LES. 
C OPTIONS ~HICH CANNOT BE CURRENTLY USED ARE:XH XPAND NO~ WHEN lOX.NE.O 
C CONTAINS THE OPTION TO Grl4NGE T □ AN ARBITRARY MS JS GS. 

l~PLlCIT INTEGEK(A-H,0-l) 
REAL*8 ~AM;S,P~EFAC,TrlEEND,COM?(5) 
INTEGE~*2 OPOR0(41,HTEl3) 
CCMMON/CASCA/IOX 
COMMON/dANQUJ /CHMS 
CGMMCN/LIMITS/STAG,SfOG,STAM,STOM,STAl,STOl,~TAJ,STOJ,STAK,STOK,ST 

?Al,STOL,ILlHT,LCLR,UCLK,MlNICC,MAXlCC 
COMMON/AltiANY/COl,C□J,L04 , Dl,U3,04 

COMMCN/DUKE/IPRINT 
CCr-'MCN/RlCH/NEQ 
CCM~C~/HOST/CORY 
CO~ MC N/ SPEED/ GS 
COMMCN/LcAR/PMFAC,CTAPE,ENGL, GSEND,ISHOw, JTAPE 
COMMCN/FRA~CE/ISTAT,JSTAT,ISTOP,JSTOP,lLF,IRF 
CC~MCN/ANTONY/tTH 
CCMMCN/BRUTJS/W(4,b),NAC(6J,DAC(6),AQ,IOT 
CCM~C~ /TOM/ NOSP 
Dl,.,ENSION i./Q(4,6) ,DDAC(t>J ,DODAC(t>J 

C BIGOT KUST BE DlM[~SlONcD CO~Y•252+(NTY(l)+NTYtlJ)*l21 ♦ 28 
DIMENSION MARK(2b),B1GOT(8000) 
DIMENSION NA~GS(6),TITLE(20J , GC3l,L1MM(6),NT¥(2),L1MG(4) 
DATA LIMM/1,1,1,2,6,6/ 
DATA LIMG/0,2,2,6/ 
DATA CUMP/8HTHE ENu ,8HREPEAT ,SHOLD CORR,8HuUMP ,8HLIHITS / 
DATA NAMGS/'CLOSED S','HELL ','OPEN SHE','LL A ','OPEN SHE', 

X'll AA 1 / 

DAT A G/ 2 ,3, 4 / 
DATA OPORD/ 1 •,• A',' C1 ,' 8 1 / 

DATA QQ/2,4,3,1 1 4,2,3,1,2,3,4,1,3,2,4,1,3,4,2,l,4,3,2,1/ 
DATA COAC/1,-2,-2,-2,1,-2/ 
DATA DDDAC/1,-2,-2,2,-1,2/ 
DATA HfE/'E ','T ','H 1 / 

THEE~D=COMP( l) 
CCORY=O 

l REA0(5,2000)TITLE 
COl=l 
C03=1 
C04=1 
STAG=l 
STOG-=6 
STAM= l 
ST0~=6 
STAI=l 
STCI=O 
STAJ=l 
S TOJ=O 
SlAK=l 
STOK= 0 
STAL=l 
STOL=O 
LCLR= l 
UCLR=3 
lOT=O 
I RF= 0 
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1 LF=O 
REA0(5,2010JGS,NDCY,PMFAC,IPRINT,JTAPE,CTAPE,ISHU~,LORY,ILIMT,ETH, 

?ENGL,IBIT,lDX,CHMS,NEU,NOSP 
IF( IDX.NE.OIUCLR=2 

C NDCY=O NO A,B,AND C 
C NDCY=l READ IN A,B,AND C POSITIONS 
C ND C Y = 2 AC -C A 
C NOCY=3 AB-dA 
C NDCY=4 SY~METRIC OOUdLE COMMUTATOR 
C NOCY=5 S\'M11ETR1C DOUBLE ANT !COMMUTATOR 
C ETH=-1 ~O OPEKATOR 
C ETH=O E 
C Elr=l T 
C ETH=2 H 
C GS=l ORO CLOSED SHELL 
C GS=2 OFEN SHELL KESTRICTEO HF A GS 
C GS=3 CFEN SHELL RtSi~ILTED HF ~A GS 
C IDX.GT.O DOUBLE EXCITATION MATklX ELEMENTS.INE~UALITV ~E5TRICTION. 
C IOX.LT.O DOUBLt EXCITATIJ~ MATRIX ELEMfNTS.NO INEQUALITY RESTRICTION. 
C CHMS.NE.O READ IN CHANGE LN GROUND STATE 
C CHMS.LT.O CJRRELATED GS 
C CHMS.EQ.-10 COkRELAT~D GS ~{TH INDIVIDUAL FUNCTIUNS PRINTED our. 
C NEQ.NE.O CALCULATE ON DIAGUNAL FORMULAS ONLY 
C NOSP.NE.O CHANGE CJEFFICIENT OF ONE BOD'f-V(l,NU,J,NUl TERM 

IF(NOCY.EQ.O)STO~=l 
[F(ETH.LT.2)STOG=2 
IF(NDCY.LT.2)GU TO 14 
1Fl3-NDCY)4,7,ll 

4 DO 6 J=l,o 
NAC ( J )= l 
CAC(J)=CDAC(J) 
IF(NOCY.EQ.5)DAC{J)=OODAC{J) 
00 5 1=1,4 

5 Q(I,J)-=QQ(l,J) 
6 CONTINUE 

AQ-=3 
STOM=6 
IOT= l 
lRF=l 
IL F-= 1 
GO TO 14 

7 NAC ( l )=l 
NAC(2J:-l 
OAC(l>=l 
OAC ( 2) =l 
QU,1>=2 
Q(2,lt-=4 
0(3,U=l 
Q(l,2)=4 
0(2,2)=2 
Q(3,2)=1 
AQ=2 
STOM=2 
IOT==l 
ILF= l 
GO TO 14 

11 NAC ( l)-= l 
C~C(U=l 
NAC(2)-=-l 
C~C(2)-=l 
Q(l,U=2 
Ct2,1)=3 



Q(3tl)=l 
Q(l,2)-=3 
Q(2,21=2 
0(3,2)=1 
AC:=2 
STGf.1=2 
IL F= 1 
I RF= 1 

14 l~(CTAPE.EQ.O)CTAPE=JTAPE 
CORE=CORY 
IF(CORY.LT.O)CORE=O 
lF(CORY.LT.O)CORY=CCORY 
CCOR. Y=COR Y 
COl=l 
C03=l 
CC4=1 
IF(CORY.EQ.O)GO TO 15 
COl=CORY 
C03=2*CORY+l 
C04=8*CORY 

15 MARK<i>=l 
MARK(2)=CORY*8+MARK(ll+l 
MARK(3J=CORY*l6+MARK(2)+1 
MARK(4)=CDRY*2+MARK(3, ♦ 2 

MARK(5)=CORY*8+MARK(4)+1 
~ARK(6)=CORY*5+MARK(S)+l 
~4RK(7)=CORY*64+MARK(6)+1 
~ARK(8)=CORY*64+MARK(7)+1 
MARK(9)=CuRY*64+MAkK(81+1 
~ARK(lO)=MARK(9)+lb*CURY+l 
MARK(ll)=MARK(lO)+CUKY+l 
MARK(l2)=MARK(ll)+CORY+l 
MARK(l3)=MARK(l2)+CORY+l 
MARK(l4J=MARK(l3l+CORY+l 
MARK(l5)=MAkK{l4)+CORY+l 
MARK(l6)=MAkK(15)+CORV+l 
MARK(l7)=MARK(l6)+CORY+l 

-19 3-

20 WRITE(6,2020)TlTLE 
IF(lPRINT.NE.6.AND.IPRINT . NE.O)wRIT=(lPRINT,20,0)TITLE 
IF(JTAPE.GT.2)~RITE(JTAPEiflTLE 
IF(JTAPE.NE.CTAPE.AND.CTAPE.GT.2)~RITE(CTAPE)TlTLE 
IF(GS.EQ.O)GS=l . 
GSEND=G( GS) 
WRITE(6,2030)NAMGS((GS-ll*2+1),NAMGS((GS-1)*2+2) 
IF(CH~S.LT.OJGSEND=4 
If(CHMS.LT.u)wRITE(b,2210) 
lf(P~FAC.EQ.O)PMFAC=l 
IF(ISHOW.NE.O)WRITc(b,2040) 
IF(ISHOW.EQ.O.AND.JTAPE.GT.20)~RITE(6,2050)JTA?E 
[F( lSHOW.EJ.O.ANO.CO~Y.NE.O.AND.CTAPE.GT.2lWRITE(b,2U60lCORY,CTAPE 
IF(ISHO~.EQ.O.AND.C□ RY.NE.O.AND.CTAPE.LE.2)WK1TE(b,~065)CORY 
IF(CORY.NE.O.AND.CORE.EQ.O)•R1TE(6,2070) 
I F ( ID X. G T • 0 ) ~~RI TE ( o , 21 9 0 ) 
IF( I DX.LT .o )WRITE (o,21951 . 
IF(NCSP.NE.O)wRITE(6,Z200)NOSP 
PREFAC=PMFAC 
IF(ILIMT.EQ.O.ANO.THEEND.NE.COMP(5))GO TO 30 
REA0(5,2010)STAG,STOG,STAM,STOH,STAI,STOI,STAJ,SfUJ,STAK,STOK,STAL 

?,STOL,LCLR,UCLR,MINICC,MAXICC 
IF(STAG.EQ.O)STAG=l 
IF(SlOG.EQ.OJSTOG=LlHG(ETH+2) 
lF(STAM.EQ.OJSTAM=l 



IF(STCM.EQ.O)STOM=LIMM(NOCY ♦ lJ 
tF(STAI.EQ.O)SfAI=l 
lF(STAJ.EQ.OtSTAJ=l 
IF(ST~K.EQ.O)STAK=l 
IF(STAL.tQ.OJSTAL=l 
IF(LCLR.E~.O)LCLR=l 
l~(UCLR.EQ.O.ANO.IOX.NE.OJUCLK=2 
lF(UCLR.EQ.O)UCLR=3 

30 IF(STOI.EQ.O}STOI=GSfND 
IF(STOJ.EJ.u)STOJ=GSEND 
1F{STOK.EQ.0)5TOK=GSEND 
IF(STOL.EQ.O)STOL=GSEND 
IF{NCCY.NE.l)GO TO 38 
ICT=O 
IRF=O 
I LF=O 
REA0(5,2llO)Q 
DC 35 J=l,6 
STCM=J-1 
ot 31 I=l,4 
QA=I-1 
IFCCtltJ) .EQ.O}Q( I,J)=l 
tF(Q(l,J).E~.l)GO TO 32 

31 CO~JT I NUE 
32 CONTINUE 

IF(J.NE.l)GO TO 34 
AQ=QA 
DO 33 I=l,QA 
IF(QCI,J).E~.2) ILF=l 
IF(Q(I,JI.E0.3) IK.F=l 
IF(QCI,J).EQ.4)10T=l 

33 CONTINUE 
34 CONTINUE 

IF(AC.NE.QA)GO TO 36 
35 STO~=ST0,''1+ 1 
36 ~EAO(5,2OlO)NAC 

READ(5,2OlO)DAC 
IF(IOT.EQ.O)WRITEC6,2120) 
IF(ETH.GE.O)WRITE(o,2125)HTE(ETH+l) 
DO 37 l=l,STOM 

37 WRITE(b,2l30lNAC(l),DAC(I),lOPORO(QLJ,l)),J=l,AQ) 
38 CONTINUE 

IFCIOT.EQ.OJETH=-1 
IF( IOT.EQ.OlSTOG=O 
IFCNDCY.EQ.O)wRITE(6,2140) 
IFCNDCV.EQ.2)WRITE(6,2150) 
IF(NDCY.EQ.3)WRITE(6,2160)HTE(ETH+l) 
IF(NOCY.EQ.4)WRITE(6,2170}HTE(ETH+l) 
JF(NDCY.EJ.5)wRITE(6,2180)HTE(ETH•ll 
WRtTE(6,2025)PREFAC 
lF(THEEND.cQ.COMP(S).OR.ILIMT.NE.O) WR1TE(6,2100)STAG,STOG,STAH,S 

?TOM,STAI,STOI,STAJ,STOJ,~TAK,STOK,STAL,STOL,LCLK,UCLR ,MINICC,MAX{ 
?CC 

IF(IPRINT.NE.O .ANO.IPRINT.NE.o)WRITE(6,2l00)STAG,STOG,STAM,S 
?TOM,STAI,Sful,STAJ,STOJ,SfAK,STOK,STAL,STOL,LCLk,UCLR ,HINICC,MAXI 
?CC 

IF(THEEND.EQ.COMP(5))GO TO 39 
IF(IBIT.E~.O)REA0(5,20l0)NTY(l),NTY(2) 
l UF= Ilf 
ISTAT=l 
I STOP=NTY( U 
JSTAT=ISTOP+l 



J STOP= IS TOP +N TY ( 21 
IF(NTY(2l.EQ.OlJSTUP=l~TOP+NTVll) 
Ol~NTY(U+NTY(Z) 
I F ( I L F • NE • 0 • AND • I R F • N E • 0 • AND. NT Y ( 2 ) • E Q • 0) 0 l = 2 * f'4 TY-( U 
IF(IBIT.NE.U1Ilf=O 
03=01+1 
04=4•Cl 
MARK(l8)=MARK(l7}+01*2+1 
MARK(l~)=MAKK(l8)+U4*2+1 
MARK(20J=MARK(l9)+04+l 
~ARK(2l)=MA~K(20)+Dl+2 
MARKl22)=MA~K(2l)+Ci*S+l 
~ARK{2J)=MARK(22}+04*8+l 
MARK(24)=MA~K{23)+04*8+l 
MARK(25J=MARK(24)+04*8+l 
MARK(26)=MARK(Z5l+04+l 
CALL READ1~(CQ~E,BIGOT(MARK(l1),8IGQT(MARK(2)),81GOT(MARK(3)),BIGO 

?T(MARK(4t),BIGOT{MA~K(5)),B1GOT(MARK(6)),BlGJT(MA~~(7)),BIGOT(MARk 
?(8)),BlGOT(MA~K(9)),8lGOT(MARK(l0)),~1GOT(MARK(l1J),BlGOT(MARK(l2) 
? ) , 81 GOT ( MA~K ( 13) ) , bl GJ T (MARK ( 14) ) , BIGOT (MARK ( .l 5) l , 8 I GOT (MARK ( l 6) ) , 
?BIGOT(MARK(l7J),BlGOT(MARK(lB,J,dlGOT(MARK(l9))t6L~OT(MA~K(20)), 
?BIGOT(~ARK(21)) ,BIGUT(MARK(2£)l,BIGOT(MARK(l3JJ,dl~ut(MARK(24Jl, 
?BIGOT(MARK(25)),BlGOT(MAkk(26))) 

ILF=IILF 
IF(NTY(2).E~.O)JSTOP=ISTOP 

39 REAC(5,2080JTHEEND 
DO 40 I=l,5 

. IF(THEEND.EQ.COMP(IJ)GO TO 45 
40 CONTINUE 

GO TO 50 
45 CONTINUE 

C CONT=O TAPE CONTAINS ONLY ZERO ORDER 
C CONT=l TAPE CONTAINS ONLY ZE~O ANO FI~ST 
C CONT=2 TAPE CUNTAINS □ NL¥ ZERO AND S~COND 
C CONT=3 TAPE CONTAINS ONL¥ LERO THRU SECOND 
C CONT=-CONT.EXCLUDE LERO OkDER 

IF(LCLR.NE.3.AND.UCLR.EQ.2) CDNT=l 
IFCLCLR.EQ.3.AND.UCLR.EQ.3) CJNT=2 
IF(lCLR.NE.3.Ai~D.UC.U.EQ.3J CONT=3 
IF(CORY.EQ.Ol CONT=O 
OONT=-CONT 
IF(CTAPE.EQ.JTAPE)CONT=O 
IF(JTAPE.GT.2)WRITE(JTAPE)GS,NDCY,ETH,1LF,1RF,10T,NTY(l),NTY(2),CO 

?RY, CO NT, IO X 
IFlCTAPE.NE.JTAPE.ANO.CTAPE.GT.2)~RITE(CTAPEJGS,NOC¥,ETH,ILF,1RF,I 

?OT,NTY(l),NTY(2),CORY,DONT,10X 
IF(CTAPE.GT.2.AND.CORY.NE.OjWRITE(CTAPEJ(BIGOT(MARK(l5)+KQ-lj , 

?BIGOT(MARK(l6)+K~-l),~Q=l,CORY) 
CALL DOIT(blGOT(MAKK(l)J,SlGOTlMAKK(2j),BlGOT(MARK(3JJ,8IGOT{MARK( 

?4)),BIGOT(MARK(5)),uIGOT(MARK(6)),BI;Or(MARK(7)),BIGOT{MARK(8)j,BI 
?GOT(MAKK(9)j, ulGOT(~ARK(lOJ),BIGOT(MARK(lli),6l~OT(MARK(l2)),81GU 
? T( MA R K ( 13 ) ) , B l GOT{ MA ii. K t l 4 J ) , 5 I GOT ( MAR K ( 15 ) J , tH GUT ( t-1 AR. K { 16 ) ) , tH GOT ( 
?MARK(l7)),BlGOT(MAR~(ltiJ),blGOT(MARK(l9)),BIGJT(MARK(~O)), 
?BIGOT(MARK(21J),BIGOT(MARK(22)),Bl~OT(MARK(2J)J,8IG~T(MARK(24)J, 
?BJGOT(MARK(25)),8IGOT(MAKK(26))J 

IF(JTAPE.GT.2)ENO FILE JTAPE 
IFCCTAPE.NE.JTAPE.AND.CTAPE.GT.2)END FILE CTAPE 
IF(THEEND.EQ.COMPtl)JSTOP 
IF(THEEND.EQ.COMP(2)J~O TO l 
IF(THEEND.EQ.COMP(4JJCALL UABEND(99) 
CORE=O 
IF(THEEND.EQ.COMP(3).0R.THEEND.EQ.COMP(5))GO TU 20 



50 WRITE(6,2090)THEEND 
STOP 1 

2000 FORMAT(20A4) 
2010 FOR~AT(l6(2X,13)) 
2020 FCR~AT{1Hl,20A4) 
2025 FOR"1AT( lHlJ,' THE PREFAC. TOR IS • ,Fl2.8) 
2030 FORMAT(///, lHO,' THE (,fWUNU STATE rs ',3A8) 
2040 FORMAT( lHO,' TrllS IS A NONCALCuLATir~G RUN' l 
2050 FORMAT(lHO,' THE FORMULAS AKE 00TPUT ON UNIT ',12) 
2060 FORMAT(lH:),' THERE ARE 1 ,13, 1 CORRELATION FU .'lCTIO\J.) wITH FORMULAS 

XWRITTEN ON UNIT• ,l&(lX,12)) 
2065 FORMAT( lHO, • THERE ARE 1 , lj, 1 COKRELATION FUNCTICJNS. 1 ) 

2070 FCRMAT(lHJ,' THE CGRRELATlON FUNCTIONS ARE THc SAME A5 THE PREVIOU 
?S CALCULATION.') 

2080 FORM.lT(AB) 
2090 FCR~AT(lH0, 1 THEEND IS ',AB ,•.THIS IS NOT VALID.•) 
2100 FORMAT(lHO,• STA(;='tl2,' STOG=',Ii, 1 STAM=',12, 1 STOM=',12,' STAI= 

?',12,' STOI=',12,' STAJ= 1 ,12~• STOJ=',12,' STAi<.= 1 ,ll,' STOK=',12,' 
? STAL=',12,' STOL=-= 1 ,12,' LCLR=',12,' ULLR=',lc,/40X,' MINICC= 1 ,12, 
? 1 MAXICC= 1 ,I2) 

2110 F0P1AT(6(4( lX,11) ,2Xl) 
2120 FORMAT(lH0, 1 MATRIX ELEMENTS ARE EVALUATED FOR THE FOLLOWING ORDER 

?ING.A=FlRST OPERATOR.•, 1 C=SECuND OPcRATOR. 
?• /) 

2125 FORMAT(lHO,• MATRIX ELEMENTS ARE EVALUATED FOk THE FULLOWING ORDER 
?ING.A=FIRST OPERATOR.8= 1 ,A2, 1 .C=SECDND OPERATOR. 
?' /) 

2130 FORMH( lH , 20X, D, • / 1 , 13,6X,3(Ai:'.,2XJ) 
2140 FOR~AT(lHO,' NO A,8,AND C1 ) 

2150 FORMAT(lHO,• A C-C A1 ) 

2160 FORMAT(lHO,' COMMUTATOR 8= 1 ,A2l 
2170 FORMAT(lHO,• SYMMETRIC DOUBLE COMMUTATOR 8= 1 ,A2) 
2180 FORMAT(lH0, 1 SYMMETRIC DOUBLE ANflCO~MUTATDR 8= 1 ,A2) 
2190 FORMAT(lHu,• DOUBLc EXClTATlQN MATRIX ELEM~NTS.lNE~UALITV RESTRICT 

?lCN.') 
21g5 FORMAT(lHO,• DOUBLE EXCITATION MATRIX ELEME~TS.NO INEQUALITY RESTR 

?ICTIGN. 1 ) 

2200 FORMAT(lH0, 1 NOSP=',12) 
2210 FORMAT(lHO,' CORRELATED GROUND STATE.Kl(01A01B)+K2(02A028). 1 J 

END 
BLOCK DATA 
IMPLICIT INTEGER(A-H,G-l) 
COM~CN/PRINCE/ON(23) 
COMMON/SILVIA/NOC200J 
DIMENSION A(25) 
EQUIVALENCE (A(l),NO(l76l) 
DA TA ON / • H l • , • H 2 1 , • H 5 • , • H b • , • H 7 • , • H d 1 , • MU • , 1 NU • , • 

? P l • , ' P 2 ' , • P 5 ' , 1 Pb • , • P 7 ' , ' P 8 • , 1 M 1 , • N • , • 0 l ' , 1 02 
? 1

,' H3 ',' H4 •,• PJ '•' P4 ',' '/ 
DATA A/'02B-','02A-','0lB-','UlA- 1 , 1 P46- 1 , 1 P4A- 1 , 1 P38-' ,'P3A-' 

?, 1 H48-', 1 H4A- 1 , 1 H3a-•,•H3A-',' 1 , 1 H3At- 1 , 1 H3d+','H4A+ 8 , 1 H48+ 1 

? , • P 3 A+ • , • P J B + • , • P 4 A+ • , • P 4 a • • , • Ll 1 A+• , • o 1 B + • , • o~ A+ • , • o 2 u + • 1 
DATA ~0/ 1 02B- 1 , •u2A-•,•01a-•, 'OlA- 1 , 'P2B- 1 , 1 PZA-' , 1 Pl6- 1 , 1 PlA-' ,'H 

x2a-•, 'H2A-', •HU,-•,• HlA-•, • •, 1 H1A+', • Hlt:H', 'H2A+', • H2B+', • PlA+ 
x • , , P 1 s+ • , • P 2A + • , • P 2 B+ • , • o iA + • , • o 1 a+• , • 02A .. • , • 02 a+• , •Ola-• , , o 2 A-• , • 
X01B-','01A-', 1 P6B-', 1 P6A- 1 , 1 P5d- 1 , 1 P5A- 1 , 1 Hb8-','HbA-','H58- 1 , 1 H5A 
x-•, 1 • ,'H5A+-', 1 115B+•, 1 H6At 1 , 'Hob+',. P5A+•, 1 P5H•' ,'PbA+', 1 P6B+- 1

, 

X '0 l At-•, • 0 lB+ • , '02A ..- 1 , • 028 t- • , • 0 28-' , • 0 2A-' , 'Ul B- 1 , 'OJ.A-' , 1 P88-' , 1 P8 
xA- • , • P7 s- • , • P 1 A-• , • Hti s- • , • Ha A-• , • H7 a-• , • H 1 A-• , • • , • H 1 A+• , • H 78+ • 
X, 'H 8 A+• , 'H 88+ • , • P 7 A+• , • P 7 B + • , • P 8A + • , • P 8 8+ •, • 0 l A+• , • 018 + • , • 02 A+' , '0 
X28+ 1 , '02B-', 'OZA-', 'Olt3- 1 , 'OlA- 1 , 1 •, 1 •, 1 MB- 1 , • MA-',' 
x•, • • ,•Mua-• ,• MUA-' ,• • ,• MUA+•, 'MUB+', • •, • •, • MA+', 



x• MB+',' •,• ','OlA+','OlB+',' □ 2A+','U2t>+ 1 ,'02B-','02A-•,•o1 
XB-•, 'Cl A-',• 1

, 
1 

', 1 NB-•,• NA- 1 ,' •,' •,'NUB-',• NUA-' 
x,• ','NLJA+','NUo+•,• •,• •,• NA+•,• Nts+•,• •,• •,•o 
X l A+ ' , ' 0 l B + 1 , 1 0 l. A+ 1 , • 0 2. o + 1 , • 0 2 B - • , 1 0 2 A- • , 1 0 l ti- • , 1 (J1. A- • , • • , • 
X',' PB-•,• PA-',' •,• ','Plt3-•, 1 PIA-•,• ','PlA+','PIB+',' 
X •,• •,• PA+',' P8+', 
x• •,• ','OlA+','Oll3+','02A+','028+', 1 02ti-', 1 02A-','ulB-','Ol 
XA-•,• •,• •,• QB-•,• IJA-•,• •,• ','XlB-','XlA-',' 
X,'XIA+ 1 , 1 XIB+',' •,• '•' QA+';' ij8+ 1 ; 1 •,• 1 , 1 OlA+','O 
XlB+','Ll2At- 1 ,'028+'/ 

ENO 
SUBRCUTINE READIN(CORE,PKEC,CfAC,J5C,NCOP 1 TITLEC,Cu~,PAC,PRC,CAR,T 

?OC,CHS,CPS,HHPP,INUL,PSUM,HSuM,PKE,FAC,NOP,JST,llTLEl,OP,PAOP,PROP 
7,LR,BU-,GY) 

C SUBROUTINE TU READ IN ANO STO~E THE COKRELATION FUNCTlJN AND OPERATORS 
l~PLIClT INTEGcR(A-H,0-l) 
REAL*8 PREC,CFAC,PRE,FAC,MSPRE,HFAC 
C m-:MCt-1/C A SCA/ I DX 
CCM~CN/MAC8/MSPRE,HFAC(2),CrlOP(2,4J,OHOP(2,4),MMSS(2J,PACHP(2,4), 

?PAOHP(2,4t,PRCrlP(2,4j,PRDH?(2,4),LMS,BMS,88MS,NMS 
CC~MC~/BANQUO/CHMS 
CCMMCN/PRINCE/ON(23) 
tOMMC~/51LVlA/Nut200) 
co~~CN/ALBANY/CD1,C03,C04,0l,03,04 
COMMCN/LEAR/PMFAC,CTAPE,ENGL, GSEND,ISHOW, JTAPE 
CCMMCN/FRANCE/ISTAT,JSTAT,ISTO?,JSfOP,lLF,lRF 
DIMENSION CFAC(C04J,JSC(C03),NCOP(LO~J,TITLtC(C01,5l,COP 

?(C04,8J,PAC(C04,8),PRC(C04,8), TOC(CJl),~HS(COlJ,CPS(COl 
?),PREC(COl,4),CA~(COl,4,4),HHPP(COl),lNOC(C~l),PSUM(CJl),HSUM{COlJ 

Dl~ENSIU~ PRE(JU ,FAC(04) ,Ni.JP(04) ,JH(03J ,TlfLE.dOl,5) ,OP(04,8hPA 
?OP(04,8),PROP(04,81,LR(04),BUGGY(Ol) 

DIMENSION RLCH(25) 
DIM~NSION LRCH(2SJ,PA(l2,3),C(4),CEN2(8),ENG1(6) 
DAT A ENG l / • H l 1 , ' H2 • , • P l • , ' P 2 • , • 0 l ' , ' Cl 2 ' / 
DATA PA/3,3,4,4,ll,ll,12,12,17,17,18,18,l,l,2,2,9,9,lO,l0,17,l7,18 

?,18,2,2,20,20,10,10,22,22,17,17,18,iS/ 
DATA RLCH/O,o,o,o,1,1,1,1,-1,-1,-1,-1,0,1,1,1,1.-1,-1,-1,-1,o,o,o, 

?0/ 
DATA LRCH/l,-l,1,-l,1,1,1,l,-l,-l,-l,-l,0,1,l,1,l,-1,-l,-1,-l,1,-l 

X,1,-l/ 
10 JSC( 11=1 

CT=O 
MSPRE=l.DO 
HFAC ( U= 1.00 
MMSS( U=O 
NMS=O 
IFCCHMS.EQ.OlGO TO 13 

C READ IN ~E~ GROUND STATE 
REA0(5,2010)MSPRE 
IF(MSPRE.EQ.O.DO)MSPRE=l.DO 
WRITE(6,2150JMSPRE 
REAO(r;,2Q20)NMS 
IF(NMS.EQ.O)GO TO 13 
00 1290 I=l,NMS 
00 1210 J=l,4 
Cl-iOPll,J)=O 

1210 DHCP(I,J)=O 
IF(ENGL.EQ.OJREAD(5,20lOlHFAC(I),(CHOP(l,JJ,J=l,4) 
lF(E~GL.EQ.O)GU TO 1230 
REA0(5,2015)HFAC(l),(CEN2(K),K=l,4) 
DO 1220 K=l,4 
DO 1215 L=l,25 



-198-

1215 IF(CEN2(K).EQ.~0(LJ.AND.L.NE.13JCH0P(l,KJ=L-13 
1220 CONTINUE 
1230 IF(HFAC(I).E~.o.oo)HFAC(l)=l.00 

AUt-1=0 
DC 1240 J==l,4 

1240 IF(CHOP(l,J).NE.O)RUM=BUM+l 
MMSS(I)==BUM 
DO 1250 J=l, E:! UM 
OOPE=CHOP (I, J) 

DHOP( I,J)==-CHCJP( I ,BUM+l-J) 
PACHP(I ,J)=PAC IABSlD0PE) ,lj 
PRCHP(l,J)=DOPE+l3 
00PE==DH0P( 1,J) 
PADHPCI,J)=PA(IAtiSlD0PE),l) 

1250 P~DHP(l,J)=OUPE+l3 
WRITE(6,2060)HfAC(l),(N0(PRCHP(l,J)),J=l,BUM) 

1290 CONTINUE 
13 CONTINUE 

IF(CCPE.EQ.OlGO TO 310 
C READ tN CCRRELAT[0N 

DO 200 I=l,CGRE 
READ(5,2000)(TITLEC(I,J),J=l,5f,TOC(I),CHS(IJ,~PS(IJ,HHPP(l),INOCl 

? I l, P SU,'<\ ( I ) , H SWH I) 
IF( I .NE.l.AND.T0C( O.EQ.0)T0C( IJ=TOC( 1-U+l 
IF( I.EQ.l.ANJ.T0C(lJ.EQ.0)T0C(l)=l 
N0C=IN0C(I) 
DO 30 L=l,N0C 
lf(ENGL.EQ.0JHEAD( 5,2010)PREC( I ,LJ ,C 
IF(ENGL.NE.U)REAJ{5,2015JPREC(l,L),(C~N2(KJ,~=l,4) 
DO 20 K=l,4 
IF(F.NGL.EQ.O)GO TO 17 
DO 14 J=l,6 
IF(CEN2(K}.EQ.ENGl(JJ)C(K)=2*J-l 

14 IF(CEN2(K).EQ.N0(38))C(KJ=O 
17 COt-.Tlf\UE 

IF(C(K).NE.OJCAR(l,K,L)=PA(IA8S(C(KJJ,l) 
IF(C(K).EQ.O)CARtl,K,LJ=23 

20 CONTINUE 
30 IF(PR~C(I,L).[Q.O.DO)PREC(l,Ll=l.DO 

REA0(5,2020)NUM 
JSCtI+ll=JSC(I)+NUM 
JSTA=JSC(I} 
JS TO-= JSC (I+ U-1 
IF(JSTO.GT.C04)STOP 2 
DO 150 J=JSTA,JSTO 
IF(JST0.LT.JSTAJG0 TO 140 
IF(ENGL.EQ.0)READ{5,2010JCFAC,JJ,CCOP(J,K),K=l,8) 
IF(Et-.GL.EQ.OlGO TO 80 
READ(5,2015JCFAC(J),(CEN2(K),K=l,8) 
DO 60 K= 1, 8 
COP(J,Kl=O 
00 50 L=26,50 

50 JF(CEN21K).EQ.N0(Ll.AN0 . L.NE.J8)C0P(J,K)=l-3d 
60 CONTINUE 
80 JfjCFAC(J).EQ.0.0)CFAC(J)=i.oo 

BUM=O 
DO 100 K=l,8 
PRC(J,K)=38 

10 0 IF ( COP ( J , K) • NE. 0) 8 UH= 8 UH ♦ l 
NCGP(J)=BUM 
DO 120 K=l,BUM 
OOPE==COP(J,KJ 



PAC(J,K)=PA(IAoS(DuPE),l) 
120 PRC(J,K)=DOPE+b3 
140 CONTINUE 
150 CONTlt\UE 
200 CONTINUE 

WRITE (6, 2JJ0) 
CORED=JSC(CURE~l)-1 

C CALCULATE LErT CORRELATION 
DO 300 I=l,CORE 
NOC=INOC(IJ 
IF(TOC(l).NE.CT)WRITE(b,2070JTOC(IJ 
C T=TOC ( l) 
WR IT E (6,204 O) I, ( T 1 TLE C ( I , J) , J = 1, 5 J , (ON ( CAR ( 1, J, l) J , J =1, 4) , PRECt I, l 

?) 
IF(NCC.LE.l)GO TO 205 
DO 202 L-2,NOC 

202 WRITE(6,2045)(0N(CAR(I,J,L)),J=l,4J,PREC(l,L) 
205 WRITE(6,2050J 

ll=CCR::+1 
J SC ( I I + l ) = C ORE 0-+ J S CC I+ U 
JSTA=JSC(II) 
JSTC=JSC( llH)-1 
IF(JSTJ.GT . Cu4JSTOP 2 
DO 290 JJ=JSTA,JSTO 
IF(JSTO.LT.JSTA)GO TO 270 
J=JJ-CORED 
00 210 JJJ=l,8 

210 PRC(JJ,JJJJ=38 
CFAC( JJ)=CFAC(J) 
BUM= NCOP ( J) 

NCOP(JJ)=BUM 
00 220 K=l,BUM 
OOPE=COPCJ,K) 
KK= BUM• 1-K 
CCP(JJ,KK)=-OOPE 
DOPEO=COP(JJ,KK) 
IF(OOPE.EQ.3.0R.OOPE.EQ.4.0R.OOPE.EQ.7.0R.DOPE.EQ.8) COP(J,K)=DOPE 

X-2 
IF(OOPE.EQ.-3.0R.DOPE.EQ.-4.0R.OOPE.EQ.-7.0~.DJPE.EQ.-8)COP(J,K)=D 

XOPE+2 
PAC(JJ,KK)=PA(IABS(DOPE0),1) 
PRC(JJ,KK)=COP(JJ,KKJ+38 
lF(OOPtO.EQ.3.0R.DOPEO.EQ.4.0R.DOPEO.EQ.7.0R.DOPED.EQ.8)COP(JJ,KK) 

X=D0PE:0-2 
220 IF(OOPcU.EQ.-3.0R.OOPEO.EQ.-4.0R.DOPEO.EQ.-7.0R.OOPED.EQ.-8)COP(JJ 

X,KK)=OOPEDt-2 
WRITE(6,2060)CFAC(JJ,(NO(PRC(JJ,KK)),KK=l, 8 ),(NO(PRC(J,K)),K=l, 

X 8) 
00 230 K=l ,BUM 

230 PRC(J,K)=PRClJ,K)-25 
270 CCNTINUE 
280 CONTINUE 

IF(CHS(l).NE.OIWRITE(6,2080JCHS(l) 
IF(CPS(I).NE.O)WRITE(6,2090JCPS{l) 
IF(HHPP(I).NE.OlWRITE(6,2lbO!HH?P(I) 
IF(PSUM{l).GT.O)rlR1TE(6,2110) 
IF(PSUM(l).LT.OJ~RITE(b,2120) 
IF(HSUM(l).GT.O)wRITE(o,2130) 
IF(HSUM(l).LT.O)wRITE(b,2140) 

300 CONTINUE 
310 ISTA=ISTAT 

JSTG=ISTOP 



-200 -

JST(l>=l 
IF(ILF.EQ.O.AND.IRF.EQ.O)RETURN 
IJKSTA=2 
IJKST0=3 
IF( ILF.EQ.O) IJKSTA=3 
IF( IR~.EQ.O)IJKST0 =2 
IF( lLF.El.}.O)lSTA=JSTAT 
!F(ILF.EQ.O)ISTO=JSTQP 
DO 600 IJK=IJKSTA, lJKSTO 
DO 500 l=lSTA,ISTO 
READ( 5,2000) ( TI TLEU I ,JJ ,J=l,5) ,BUGGY( I) 
REA0(5,20lu)PRE(I) 
IF(PRE(I).EQ.O.O}PRE(I)=l.00 
REAC(5,2020)1'.UM 
JST(I+lJ=NUM+JST(Il 
JSTA=JST(I) 
JSTO=JST( l+l)-1 
IF(JSTJ.GT.04 )STOP 3 
DO 400 J=JSTA,JSTO 
IF(ENGL.EQ.O)REA0(5,2010JFA:(J),(OP(J,K),K=l,81 
IF(ENGL.EQ.O>GO TO 340 
REA0(5,2015)FAC(J),(CEN2(K),K=l,8) 
00 330 K=l,8 
OP(J,K)-=O 
DO 32C L=l,25 

320 IF(CEN2(K).EQ.NO(L).ANO.L.NE.l3)0P(J,K)=l-l3 
330 CONTINUE 
340 IF(FAC(J).EQ.O.O)FAC(J)=l.00 

BUM=O 
LR(J)=O 
DO 350 K=l,8 

350 IF(OP(J,K).NE.O)BUM=BUM+l 
NOP(JJ=BUM 
00 380 K=l,8UM 
LRLR=O 
OOPE=OP(J,K) 
PAO P ( J, K} =PA ( 1A 8 S ( OOP E ) , I J K) 
PROP(J,K)=OOPE+l3 
IF( IDX.EQ.OJGO TO 353 
IF(IJK.EQ.3.AND.PAOP(J,KJ.EQ.2)PAUP(J,K)-=19 
IF(IJK.EQ.J.AND.PAOP(J,Kl.EQ.lO)PAOP{J,K)=il 
1F(IJK.EQ.3)PROP(J,K)=DOPE+l88 

353 CONTINUE 
IF(IJK.EQ.2JGO TO 355 
PR=PRGP(J,Kl 
IF(PR.EQ.7.0R.PR.EQ.8.0R.PR.EQ.ll.OR.PR.EQ.12)P~JP(J,K)=PR-2 
1F(PR.EQ.l4.0R.PR.E~.15.0R.PR.EQ.18.0R.PR.EQ.l~)P~JP(J,K)=PR+2 

355 IF(OOPE.EQ.3.0R.DOPE.EJ.4.U~.OOPE.Eij.7.0R.D~PE.EQ.bJUP(J,K)=OOPE-2 
IF(DOPE.EQ.-3.0R.DDPE.EQ.-4.0R.DOPE.EQ.-7.JR.D□ PE.EQ.-8)0P{J,K)=OP 

X(J,K)+2 
IF(LR(J).EQ.2)GO TO 370 
LRLR=LRCH(DOPE+l3) 
IF(CHMS.NE.O)LRLR=RLCH(OOPE+13) 

360 IF(tR(J).EQ.O)LR(J)=LRLR _ 
IF(LR(J}.NE.LRLR.ANO.LKLR.NE.O)LR(J)=2 

370 CONTINUE 
3 8 0 CC f'-. T I NU E 
400 CONTINUE 
500 CONTINUE 

ISTA=JSTAT 
600 ISTO=JSTOP 

RETURN 



2000 FOR~AT(SA4,7(3X,12)) 
2010 FORMAT(Fl6.8,4X,8(lX,i3}) 
2015 FORMAT(Fl6.8,4X,8(A4,lX)) 
2020 FORMAT(l6{3X,12j) 
2030 FORMAT(//////,1HU,30X,' THE CORRELATION FUNCTION {SUH OVER H5,H6,H 

77,HB,P5,P6,P7,AND P8)'//) 
2040 FORMAT(lHO,I:3,lX,5i. 4,lX,'l',A4,3(',',A4),q•,• TIMES ',Fl2.8) 
2045 FORMAT(lH ,2SX,'(',A4 , 3{',',A4i,')',' TIMES ',Fl2.8) 
2050 FOFMAT(lH0,20X, 1 LEFT FU1'.C.T1UN 1 ,43X,'RIGHT FUNC.TIJN'I) 
2060 FORMAT(lH ,F12.8, l5X,B(A4,1X) ,16X,d(.A4,lX)j 
2070 FORMAT(lH0,' CuRRELATLON FuNLTIONS Of TYPE ',12) 
2080 FOR~ATllH ,30X,' UN EXCHA~GE OF INUlCES ONE ANO T~U THE SYMMETRY 1 

?S ', I 2 l 
2090 FORMAT(lH ,JOX,' ON EXCHANGE OF INDICES THREE ANO FOUR THE SYHMETR 

?Y IS ',12' 
2100 FORMAT(lH ,JOX,' ON EXCHANGE OF INOlClES ONE AND TWO WITH THREE AN 

?D FOUR THE SYM~ETRY IS ',12) 
2110 FORMAT(lH ,30X,'P4.GT.P3 1 ) 

2120 FORMAT(lH ,30X,'P4.~E.P3 1 ) 

2130 FORMAT(lH ,30X, 1 H4.GT.H3 1 ) 

2140 FORMAT(lH 1 JOX,'H4.GE.H3 1 ) 

2150 FORMAT(lHO,• CHANGt MS OPERATORS FOLLOM.THE PKEFACTOR IS ',F12.8) 
ENO 
SUBROUTINE DOlT{PREC,CFAC,JSC,NCOP,TITLEC,COP,PAC,PRC,CAR,TOC,CHS, 

?CPS,HHPP,INOC,PSUM,HSUM,PRE,FAC,NOP,JST,TITLEl,LJ?,PAOP,PROP,LR, 
?8UGG'VJ 

C SUBROUTINE TO CYCLE OVER OPERATORS AND CORRELATION FUNCTIONS. 
I~PLICIT INTEGER(A-H,O-l) 
REAL*B PRE,P~EFAC,FAC,CF~C,PREC,PREF,PlREF,P2KEF,P3REF,P4REF,P5REF 

?,MSPRE,HFAC 
REAL HIME 
COMMON/BANQUQ/CHMS 
CC~MCN/ANTONY/ETH 
COMMON/LIMITS/STAG,STOG,STAM,STOM,STAI,STOI;srAJ,STOJ,STAK,STOK,ST 

?AL,STOL,ILIMT,LCLR,UCLR,MINICC,MAXIC~ 
COMM C N/ RI CH/ NE Q 
cc~~CN/MACB/MSPRE,HFAC(2),CHUP(2,4),DHOP(2,4J,MMSS(2),PACHP(2,4), 

?PAOHP(2,4J,PRCHP(2,4),PkurlPl~,41,LMS,BMS,8bMS,NMS 
COM~CN/LEAR/PMFAC,CTAPE,ENGL, G~END,ISHOM, JTAPE 
CCMMCN/ALBANY/C01,C03,C04,0l,03,Q4 
COMMCN/FRANCE/ISTAT,JSfAT,ISTuP,JSTOP,ilF,IRF 
COMMC~/EDMUNO/PREF,NMOST,IC,CLR,RLT(5),LRlJK(256),0(44),SN(5) 
COMMON/PUCK/PC,PCC 
CCMMON/CURRAN/S(5,8),SS(5,8),SSS(5,8J,SLOP(25o,4),ROP(256,4) 
COMMCN/REGAN/IT,TAPE,CT,ICC,CTT,MSTO,lCHG 
CG~MCN/OUKE/IPRINT 
CO~MC~/HOST/CORY 
CCMMCN/GOBBO/NTU(5J,MTU(5) 
COMMC~/TUBAL/NENl5),NtMM(5) 
COMMCN/PUKTIA/PlREF(8J,CC(8l,CF(8,41,XP,XH,XHP,NOC,ISY,XXP,XXH,XXH 

?P,NNOC,MM~N,B8(4) 
co~~C~/CASCA/IDX 
CO~MCN/HAMLET/M(44),MM(44J,N(44) 
COMMCN/PR1NCE/ON(23) 
CCMMCN/SILVIA/N0(200) 
CCMMCN/JULIET/HCK,HHCK,PCK,PPCK 
DIME~SION CFAC(C04),JSC(Cu3),NCOP(:u4),TITLEC(C01,5J,COP 

?(C04,8J,PAC(C04,8),PRC(Cu4,8l, TUC(CDll,CHS(COll,CPS(COl 
?),PREC(COl,4),CAK(COl,4,4),HHPP(COl),INOC(COl),PSUM(COl),HSUMlCOll 

DIMENSION PRE(Ol),FAC(04),NOPl04),JST(03l,T1TLtl(Ol,~),OP(04,8),PA 
?OP(04,8),P~OP(u4,8J,LR(04),BUGGY(Ul) 

DIMENSION lTEST(7,12l,Kl~0(4,b),IJU~(4,5),PA(4,2),LRLl4,4),TIT8(8) 
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DATA TITB/' ',' '•' •,• •,• •,• ••• •,• 1 / 

DATA KIND/3,4,5,5,l,2,S,5,1,l,2,2,1,J,2,4,~,1,4,2,J,3,4,4/ 
DATA IJOP/l,5,9,ll,-1,-5,-~,-ll,2,6,10,12,-2,-b,-l0,-12,0,0,0,0/ 
DATA PA/7,l5,l7,l8,8,l6,17,ld/ 
OATA LKL/0,-1,o,o,o,1,o,0,0,-1,-1,-1,0,1,1,1, 
IDSTA=l 
BIMS=l 
ElPIS=NMS 
BJ~S=l 
EJt-'S=NMS 
SMN=O 
TF(CHMS.EQ.-lO)SMN=NMS 
1F(JTAPE.EQ.O)IDSTA=2 
IF(LCLR.EQ.3)IOSTA=CORY+IOSTA 
OORY=2*CORY+l 
IF(UCLR.NE.3)DORY=CORY+l 
XYZ=C 
SSTOG=STOG 

10 DO 1000 ICY=lSTAT,ISTOP 
BUG-=O 
PREFAC=PMFAC 
JSTA=HTAT 
JST0=JSTUP 
IF(JSTO.LT.JSTAT)JSTO=lCY+ISTOP 
IF(NE,.NE.O)JSTA=ICY+ISTOP 
IFINEQ.NE.O)JSTO=ICY+ISTOP 
lF(IRF.EQ.O)JSTO=O 
KSTA=l 
KSTO=O 
IF(ISTOP.EQ.O)GO TO 20 
KSTA=JSTllCY) 
KSTO=JSTCICY+l)-1 
BUG=BUGGY(ICY) 
PREFAC=PRE(ICY)*PMFAC 

20 00 % 0 JC Y= JS TA, JS TO 
BEFORE=RT[Mt(OOOD) 
OTI ~E=BEFORE 
XYl=;X'tl+l 
IF(JTAPE.GT.2)WRITt(JTAPE)(TITLEl(1CY,K),K=l,5),(TITLEl(JCY,K),K=l 

? , 5), (TIT B ( K) , K= 1, 8) 
IF(CTAPE.NE.JTAPE.AND.CTAPE.GT.2)WRITE(CTAPE)(TlTLEl(ICY,Kl,K=l,5) 

?,CTITLElCJCY,J),J=l,5),tTITBtJ),J=l,8) 
LSTA= l 
LSTO=O 
IF(JSTO.EQ.O)GO TO 40 
LSU=JSTCJC'O 
LSTO=JST(JCY+l)-1 
BUG=BUGGY(JCY) 
PREFAC=PRE(JCY)*PMFAC 

30 CCNTINUE 
IF(ISTOP.EQ.O.DR.JSTO.EQ.O)GO TO 40 
BUG=BUGGY(ICY)*BUGGY(JCY! 
PREFAC=PRE(ICY)*PRE(JCY)*PMFAC 

40 CONTINUE 
WRITE(6,20uO)XYl 
IF(IPRINT.Nt.6.AND.IPRINT.GT.O)WRITE(lPRINT,20UOlXYl 
IF(ISTOP.EQ.O)GO TO 55 
IF( JSTO.NE.O>~RITE(b,2010)(TITLEl(ICY,K),K=l,5),(TI 

?TLEl(JCY,K),K=l,5l 
IFCJSTO.EQ.O)WRITE(6,20lOl(T1TLEl(ICY,K),K=l,5) 
WRtTE{o,2030) 
~RITE(o,2025)PRE(IC¥) 
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DO 50 KCY=KSTA,KSTO 
BU,..=r..CP( KCY) 
WRITE(6,2040JFAC(KC¥J,(NO(PROP(KC¥,KlJ,K=l,8UMJ 

50 CONTINUE 
55 CONTINUE 

IF(JSTO.EQ.OJGO TO 73 
tF(ISTOP.EQ.O)wRITE(6,2010)(TlTLEllJCY,Kl,K=1,5) 
WRITEC6t2050J 
WRITE(6,2025}PRE(JCY) 
00 70 LCY=LSTA,LSTO 
BU~=r--iOP(LCY) 
WRITE(6,2040)FAC(LCYJ,<NO(PROP(LCY,K)l,K=l,dUM) 

70 CONTINUE 
00 955 CRIME=l,SMN 
00 950 KRIME=l,SMN 

73 DO 940 ID=IOSTA,DORY 
1C=ID-l0/(CORY+2)*CORY-l 
IF(ID.EQ.(CORY+l).AND.LCLR.EQ.3)IC=O 
IF(IC.NE.O.AND.MINICC.LT.O.AND.IC.LT.IA8SlMl~lCC)JGO TO 935 
IFCLCLR.GT.3.0R.UCLR.Gl.J)IC=O 
IF((LCLR.GT.3.DR.UCLR.GT.3).AND.10.Gt.IOSTA)GO TJ 935 
RLCL=LCLR 
RLCU=UCLR 
IF(UCLR.EQ.3}RLCU=2 
IF(IO.GT.CORY+l)RLCL=3 
IF( IC.GT .CORY+URLCU=J 
IF(IC.EQ.O)RLCL=l 
IF(IC.EQ.OJRLCU=O 
XP=O 
XH=O 
XHP=O 
NOC=O 
DC 15 I=l,4 
DO 74 I I= 1, 4 

74 CF(l,II>=O 
75 CONTINUE 

TAPE=JTAPE 
IF(IC.NE.O)TAPE=CTAPE 
tF(TAPE.LT.O)GO TO 935 
CT=O 
BEG=l 
BEND=l 
PlREF(l)=l.00 
IF(IC.EQ.O)GO TO 100 
CT=TOC(ICJ 
WRITE(6,2065)1C,CT 
IF(IPRINT.~E.6.AND.IPR1NT.GT.O)WRITE11PR1NT,20b5)1C,CT 

100 CONTINUE 
CCORV=O 
lF(ID.GT.CORY+l)CCORY=IC 
IF(IO.GT.CORY+l.ANO.MAXICC.NE.O)CCORY=IABS(MAXICC) 
IF(MAXICC.EQ.-99)CCORY=IC 
YROCC=l 
tF,tO.GT.CORY+l.AND.MINlCC.NE.O)VROCC=lABS(HlNICCI 
BSEG=l . 
BBENO=l 
00 g30 ICC=YROCC,CCORY 
PlREF(5J=l.DO 
XXP=O 
XXH-=O 
XXHP=O 
CTT=O 



~NCC==O 
00 107 1=1,4 
DC lC6 J=4,8 

106 CF(J,U=O 
~HlM (I)= l 
MTU(l)=l 
NE t\ ( I ) =O 

107 NTU(l)=O 
NEN(5)=0 
t\EMM(5)=l 
MTU( 5)=1 
NTU(5)=0 
IF( ID.LE.CORY+UGO TO 108 
CTT=TOC(ICC) 
IF(SSTOG.GT.l)STOG=2 
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WRITE(6,2067>1CC,CTT 
IF(IPRlNT.NE.6.AND.1PKlNT.~T.O)WRITE(lPRINT,20b7)1CC,CTT 

108 lQ=O 
IF( IPRINT.GT.O)WRITE( IPRlNT,2060) 
IF(IPR!NT.GT.OJWRITE(IPRINT,2020) 
DO 920 IMS=BIMS,EIMS 
Od 10S() K=l,12 

1080 ITEST(l,K)=O 
BMS=Mt,1.SS( IMS) 
IF(AMS.EQ.OlGO TO 1085 
00 1083 K=l, 8MS 
OCPE=OHOP(IMS,K) 
M ( K) = DOPE 
SCOPE=IABS(DJPE) 
ITEST(l,SCUPE)=ITEST(l,SCOPE)~OOPE 
MM(K)=M(K) 
N(K)=PADHP(l~S,K) 

1083 O(K)=PRDHP(IMS,K) 
1085 DO QlO JMS=BJMS,EJMS 

IF(CHMS.EQ.-10)~RITE(6,2l50JBIMS,BJMS 
P2PEF=PREFAC•MSPRE*HSPRE*HFAC(IMS)*HfAC(JMS) 
B8,-,S=MMSS,JMS) 
L.,S=J~S 
DO lC86 K=l,12 

1086 ITESt(2,K)=lTEST(l,K) 
IF(BBMS.EQ.OiGO TO 1090 
00 1087 K=l,BBMS 
OOPE=CHOP(JMS,K) 
SCOPE=IAB S( DOPE> 

1087 ITEST(2,SCOPE)=ITESTl2,SCOPE)+UOPE 
1090 CONTINUE 

00 900 CLR=RLCL,RLCU 
HST0=4 
lF(IC.EQ.O)MSTO=O 
1F(CLR.EQ.3)MST0=8 
ICtiG=l 
1F(CLR.EQ.3.AND.IC.EQ.ICCJICHG~2 
OC=IABS(2-CLR)*CORY 
JL~=l 
IF(CLR.EQ.3.AND.IC.NE.ICC)~LM=2 
I~(CLR.E0.3.ANO.MAXICC.LT.O)JLM=l 
DO 890 MMNN=l,JLM 
ZIC=O 
ZtCC=O 
IF(IC.EQ.O)GO TO 113 
BOC=(2-MM~Nl•DC+IC 
BBOC=(MMNN-ll*OC•ICC 



BEG=J SC ( ( 2-MMNN) * BOC+ ( MMNN-1) *88DC) 
8END=JSC((2-MMNN)*8DC+(MM~N-l)*BBDC+l)-l 
ZIC=(2-MMNN,*IC+(MMNN-l)*ICC 
XP=CPS( ZIC) 
XH=CHS(ZlC) 
XHP=HHPP(ZIC) 
NOC=lNOC(ZICt 
DO 110 Lll=l,NOC 
00 109 ILL=l,4 

l O 9 CF ( ILL , L I I ) =CAR ( L l C, I LL ~ ll I } 
110 PlREF(LlI)=PRtCllIC,LII) 

IF(CCOKY.E~.O)GO TO 113 
BBrG=JSC((MMNN-l)*BDC+(2-MMNNl*BBOC) 
BBENO=JSC((M MNN-l)*80C+(2-MMNN) *BBOC+l)-l 
ZICC=(MMNN-l)*lC+{2-MMNN)*lCC 
XXP=CPS( ZICC) 
XXH=CHS (l ICC) 
XXHP=HrlPP(ZICC) 
~NOC= I NOC ( lI CC) 
DO 112 lll=l,NNOC 
DO lil lll=l,4 
Lll= 1LL+4 
CF(Lll,Lil)=CAR(lICC,ILL,Lll) 
FC=CF(Lll,LII) 

111 IF(FC.NE.l7.AND.FC.NE.l8JCF(LLI,Lll)=FC+2 
LIY=Ul+4 

112 PlRfF(LIY)=PREC(ZICC ,LIi) 
113 PC=ZIC 

PCC=ZICC 
IF(CLR.EQ.2)PC=O 
IF(CLR.EQ.2)PCC=ZIC 
HCK=C 
IF(PC.NE.O)HCK=HSUM(PC) 
PCK=O 
IF(PC.NE.O)PCK=PSUM(PCJ 
HHCK=O 
IF(PPC.NE.O)HHCK=HSUM(PPCJ 
PPCK=O 
IF(PPC.NE.O)PPCK=PSUM(PPC) 
STOG=SSTOG 
IF(CLR.EQ.3.AND.STOG.GT.llSTOG=2 
DO 880 BE=BEG,BEND 
IF(BENO.LT.BEG)GO TO 870 
00 114 K=l,12 

114 ITEST(3,K)=lTESTl2,Kl 
SN( 1) =O 
RLT(l)=O 
IF(IC.EQ.OlGO TO 130 
P2REF=PREFAC*CFAC(~El*MSPRE*MSPRE*HFAC( IMS)$HfAC(JMS) 
BU~=NCOP(BEl 
IF(CLR.EQ.2)GO TO 118 
DO 115 K=l,BUM 
l=K+BMS 
M(U=COP(BE,K) 
MMH )=M(l) 
N ( L) = PAC. (BE, K) 

115 O(K)=PRC(BE,K) 
118 00 120 K=l,BUM 

OOPE=COP(BE,K) 
SCOPE=UBS(DOPE) 
ITEST(3,SCDPt)=ITEST(3,SCOPE)+OOPE 
SCl,K)=OOPE 



SS(l,K)=PAC(BE,K) 
120 SSS(l,K)~PRC(BE,K) 

SN(lJ=BUM 
130 SN(5)=0 

RLT(S)=O 
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OD 840 BBE=BBEG,BBEND 
lF(BB~NO.LT.BaEG)GO TO 830 
DO 135 K=l,12 

135 ITEST (4,KJ=l TESH 3,KJ 
IF(CLR.NE.3)GO TO 150 
BU,..=NCOPtBBE) 
P2REF=PREFAC*CFAC(BEj*CFAC(BBE)*MSPRE*~SPRE*HFAC(lMS)*HFAC(JMSJ 
00 140 K=l,BUM 
DOPE=COP(Bt3E,K) 
SC O P E = I AO S ( DO P E l 
ITEST(4,SCOPE)=ITEST(4,SCOPE)+OOPE 
5(5,K)=DOPE 
SS(5,KJ=PAC(BBE,K) 
IF(SS(S,K).NE.17.AND.SS(5,K).NE.18)SS(5,K)=5S(5,K)+2 

140 SSS(5,K)=PRC(BBE,Kl+25 
SN(5)=8UM 

150 oc ace KCY=KSTA,KSTO 
DO 16C K=l,12 

160 ITEST(5,K)=ITEST(4,K) 
P3REF=P2REF 
SN(2)=0 
IF(KSTO.EQ.O)GO TO 180 
P3REF=P2REF*FAC(KCYJ 
BU~=NOP(KCYl 
DC 170 K=l,BUM 
OOPE=OP(KCY,KJ 
SCOPE=IABS(OL)PE) 
ITEST(5,SCOPE)=ITEST(5,SCOPE)+OOPE 
$(2,K)=DOPE 
SS(2,K)=PAOP(KCY,K) 

170 SSS(2,Kl=PROP(KCY,KJ 
SN ( 2 )=BUM 
RLT(2)=LR(KCYJ 

180 00 700 LCY=LSTA,LSTO 
DO 190 K=l,12 

190 ITEST(6,KJ=ITEST(5,KJ 
P4REF::P3REF 
SN(3)=0 
IF(LSTO.EQ.O}GO TO 255 
P4REF=P3REF*FAC(LCY) 
BUt,l=NOP(LCY) 
00 250 K=l,BUM 
DOPE=OP(LCY,KJ 
SCOPE=lABS(DOPE) 
ITESTC6,SCOPE)=ITESTC6,SCOPE)+OOPE 
S(3,K)=DOPE 
S5(3,K)=PAOP(LCY,KJ 

250 SSS(3,K)=PROP(LCY,K) 
SN(3)=BUM 
RLT(3)=LR(LCY) 

255 oo · 400 GPS=STAG,STOG 
P5REF=P4REF 
IF(GPS.EQ.5.AND.ILIMT.EQ.OJGO TO 390 
IF(GPS.GT.2)P5REF=P4REF/2 
IF(GPS.EQ.4.AND.ILIMT.EQ.OlP5REF=P4REF 
NMOST=O 
KLEND=STOK 



IF(GPS.LE.2lKLEND=l 
LKENO=STOL 
1F(GPS.LE.2)LKEND=l 
SN(4)=0 
PREF=P5REF 
IF(STOG.NE.OJGO TO 258 
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DO 257 K=l,12 
[F(llEST(6,K).NE.O)GO TO 390 

257 CCNTINUE 
GO TC 381 

258 CONTINUE 
00 260 K=l,12 

260 ITEST(7,~}=ITEST(6,K) 
ISER=KINO(l,GPS) 
JSER=KINDl2,GPSl 
KSER=KIND(3,GPS) 
LSER=KIND(4,GPS) 
DO 380 I=STAl,STOI 
I QO PE= I JO P ( I , IS ER ) 
ISCOPE=MAXO( IAdS( IOOPI:) tll 
1TEST(7,ISCUPE)=tTEST(7,ISCOPEJ+lDOPE 
!ROPE=PA( I, lJ 
DO 360 J=STAJ,STOJ 
JOOPE=IJOP(J,JSERJ 
JROPE=PA(J,2) 
JSCCPE=MAXO(lABS{JDUPE),11 
ITEST(7,JSCOPE)=ITEST(7,JSCOPEJ+JOOPE 
DO 340 K=STAK,KLEND 
KDCPE=IJOP(K,KSERJ 
KROPE=PA{K, U 
KSCOPE=MAXO(IA8S(KDOPEJ,1) 
1TEST(7,KSCOPEJ=ITEST(7,KSCOPE)~KDOPE 

270 DO 320 l=STAL,LKENO 
LOOPE=IJOP(L,LSERJ 
LRCPE=PA(L,2) 
LSCOPE=MAXO(IABS(LDOPEJ,1) 
ITEST(7,LSCOPE)=lTEST(7,LSCOPE)+LOOPE 
00 300 KLKK=l,12 
IF(ITEST(7,KLKK).NE.OJGO TO 310 

300 CONTINUE 
PREF=P5REF 
NMOS T=NMOS T +l 
SLOP(~MOST,l)=lOOPE 
SLOP(NMOST,2)=JOOPE 
SLOP(NMDST,3)=KDOPE 
IF(GPS.GT.2)SLOP(~MOST,21=KOOPE 
IF{GPS.GT.2JSLUP(NMOST,3J=JDOPE 
SLOP(~MOST,4)=LOOPE 
ROP(~~OST,l)=IROPE 
ROP(~MOST,2J=JROPE 
RCP{~MOST,3)=KROPE 
IF(GPS.GT.2)ROP(NMOST,2J=~ROPE 
IF(GPS.GT.2)ROP(NMOST,JJ=JROPE 
ROF(~MOST,4)=LROPE 
LRIJK(NMOSTl=O 
IF( I.LE.2.0R.CHMS.EQ.O)LRIJK(NMOST)=LRL(l,ISER) 
RR=O 
IF(GPS.LT.J.ANO.(J.LE.2.0R.CHMS.EQ.Ol)RR=L~llJ,JSER) 
IF(GPS.GT.2.AND.{L.LE.2.0~.CHMS.EQ.O))RR=LRL(L,LSER) 
IF(LRlJK(NMOSTl.EQ.O)LRIJK(NMUST)=RR 
IF(RR.EQ.l.ANO.LR1JK(NMOST).EQ.-lJLRlJK(NMJST)=2 

310 CONT[ NUE 
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320 ITFST(7,LSCOPE)=ITEST(7,LSCOPE)-LOOPE 
340 ITf.ST(7,KSCOPEJ:ITEST(7,KSCOPEJ-KDLlPE 
360 ITEST(7,JSCOPE)=[TEST(7,JSCOPE)-JOOPE 
380 1TEST(7,ISCOPE)=ITEST(7,1SCOPE)-IDOPE 

IF(NMOST.E~.O)GO TO 390 
381 CONTINUE 

IF(lPRlNT.LE.O)GO TO 385 
Ql=1 
IF(GPS.GT.2lQl=2 
IF(QI.EQ.l.ANO.Ql.NE.IQ)WRITE(IPRINT,2120) 
IF(QI.EQ.2.ANO.Ql.NE.IQ)MR1TE(IPRINT,2130J 
IQ= QI 

385 CALL SETUP 
IF(BUG.EQ.O.OR.IPRINT.LE.O)GO TO 390 
JPR=IPRINT 
CALL PUNnRT(JPR,l,5,0) 
IF(IT.EQ.Ol~RITE(IPRINT,2110J 

390 COt\TINUE 
400 CC.NT I NUE 
700 CONTINUE 
800 CC!NTlNUE 
830 Ctt\TI~UE 
840 CCNTINUE 
870 CCNTINUE 
880 CONTINUE 
890 CONTINUE 
~00 CONTINUE 
910 · CONTINUE 
920 CONTINUE 

WRITE (6,2100) 
tF( IC.NE.O.AND.CCORY.NE.OjWRITE(o,2140JIC,1CC 
l\olTP=O 
IF(TAPE.GT.2llWTP=J 
IF(ET~.EQ.O.OR.ETH.EQ.2)CALL EFORM 
CALL PUN\olRT(6,l,S,IwTP) 
IF(IT.EQ.O)WRITE(6,2llOJ 
NEWMIO=RTIME(JOOD) 
TTIME=(OTIME-NEWMID)/1000.0 
OTIME=NEWMID 
IFCID.LE.CORY+l)WRITE(6,2080JTTIME,lC 
IF(ID.GT.CORY+lJWRITE(6,2085lTTIME,IC,ICC 

930 CONTINUE 
935 CO~Tif\UE 
940 CONTINUE 
950 CCNTINUE 
955 CONTINUE 

AFTER=RTIME(DDOD) 
TTIME=(BEFORE-AFTER)/1000.0 
WRITE(6,2090)TTIME 

960 CONTINUE 
1000 CG NT I NUE 

RETURN 
2000 FGRMAT(////,lHO,IJ,2X,'**********',28X,'**********',2dX, 1 ********* 

?*' ,28X, '**********') 
2010 FORMAT(lH0,5A4,5X,5A4) 
2020 FCRMAT(lH ,•1c•,2x,•1cc•,5x,• PUIN •,2ox, 1 0PERATORS 1 ) 

2025 FOqMAT(lH ,15X,Fl2.8,' TIMES'!) 
2030 FOPMAT(lHO, • THE FIRST OPERATOR 1 /) 

2040 FORMAT(lH ,20X,Fl2.8,4X,8(A4,l~)l 
2050 FORMAT(lHO,' THE SECOND OPER~TOR 1 /) 

2060 FORMAT(lHO,• EVALUATION FOR THE FOLLOWING OPERATORS (SUN OVER HOLE 
?S MU,NU,Pl,XI AND PARTICLES M,N,P,Qj 1 ) 
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2065 FOQMAT(lH0, 1 CORRELAT10N CO~FFICIENT ',12,' TYP~ 1 ,12) 
2067 FORMAT{lHO,lOX, 1 C0KkELATluN COErFIClENT •,12,• TYPE ',12) 
2070 FORMAT{lHO,I3,lX,5A4,lX, 1 ( 1 ,~4,3( 1 , 1 ,A4),')',' TIMES ',F.12.8,' TIM 

?ES•) 
2080 FORMH{lH ,• IT TAKES' ,F5.2,' SECONDS FOR CORRELATION FUNCTION•, 

? 13) 

2085 FORM~T(lH ,• IT TAKES ',f5.2,' SECONDS FOR CORRELATION FUNCTIONS• 
? , I 3, ' AND ' , I J) 

2090 FCRMAT(lH ,' THE FORMULA TAKES 1 ,F6.2,' SECONDS T □ GENERATE.') 
2100 FORMAT(lHJ,• THE FORMULA fOLLO~S.S0M OVER HOLES MU AND NU ANO PART 

?ICLES MAND N. 1 ) 

2110 FCRMAT(lH0,50X, '**'°'**NULL fURMULA*****'/) 
2120 FORMAT(lH ,24X,'UNE tluDY') 
2130 FOP~AT(lH ,24X,•T~O BODY') 
2140 FORMAT(lH ,lOX,'THE CORRELATION FUNCTIONS A~E IN ORDER 1 ,I2,3X,121 
2150 FOR~AT(lHO,' K{ ',12,') K(',12,'). 1 ) 

END 
SUBROUTINE SETUP 

C SUBROLTINE TO EXPAND THE COMMUTATORS. 
l~PLIClT INTEGER(A-H,0-l) 
REAL*8 PLMN,PREF,MSPkE,HFAC 
COMMC~/LIMITS/STAG,STOG,ST~M,STOM,STAI,STOI,STAJ,STOJ,STAK,STOK,ST 

?AL,STOL,ILIMT,LCLR,UCLR,HINICC,NAXICC 
co~~CN/MACB/MSPRE,HFAC(2),CHOP(2,4),0HOP{2,4l,MMSS(2J,PACHP(2,4), 

?PAOHPl2,4),PRCHP(2,4},PRDrlP(i,4i,LMS,BMS,BoM5,NMS 
COMMCN/PUCK/PC,PCC 
CCMMC~/8RUTUS/Q(4,6l,NAC(6),0ACl6),AQ,lOT 
COMMCN/LEAR/PMFAC,CTAPE,ENGL, GSEND,ISHOW, JTAPE 
CCMMCN/SILVIA/N0(200l 
CO~MON/BANQUO/CHMS 
CO~MCN/HAMLtT/M(44),MM{44),N(44) 
COMMCN/EOMUND/PREF,NMOST,IC,CLK,~LT(5),LR(JK{256),0(44),SN(5) 
CCMMON/CURKAN/S(5,8),5S{5,8J,SSS(5,8),SLOP(256,41,ROP(256,4) 
CO~MCN/DUKE/IPRINT 
CCM,-,CN/LAUNCE/SUM,P(4) 
COMMCN/PRIEST/PLMN 
Ol,-,E~SICN CUM(5) 

10 BENO=AQ+l 
IF(IC.EQ.0.0R.CLR.EQ.l)BEN0:AQ 
MBEG=l 
MENDIT=o 
IF(IC.EQ.O.ANO.STAM.LT.O)MBEG=-STAH 
IF(IC.EQ.0.AN0.ST0M.LT.0)MEN0lT=-ST0M 
IF(STAM.GT.O}MBEG=STAM 
IF(STGM.GT.O)MENDIT=STOM 
CUM ( U=BMS 
IF(CLR.NE.2)CUM(l)=5N(l)+BMS 
SN(4)=2 
IF(SL0P( l,3).NE.0)SN(4)=4 
IF(ICT.EQ.0}SN(4)=0 
P( U=O 
P(2J=O 
p (3) =O 
P(4)=0 
SJO=SN(4! 
FUN=S~ll) +SN(l)+SN(3)+SN(5)+SN(4J+8MS+l 
SUM= F UN-1 + B BM S 
DO lCCO IK=l,NMOST 
IF(STO.EQ.O)GO TO 30 
00 20 K=l,STO 
5(4,K)=SLOP(IK,K) 
SS(4,K)=ROP(IK,K) 



20 SSS(4,K)=75+(25*K)-12+S(4 1 KJ 
Rl T(4)=LIHJK( lK) 

30 DO 800 MCY=MBEG,MENOlT 
PL~N=PREF*NAC(~CY)/OAC(MCY) 
IF(DA8S(PLMN).LT.l.0-5)GO TO 790 
IT=Rll(Q{l,MCV)) 
tTT=RLT(Q(BEND,MCY)) 
IF((CLR.EQ.l.OR.IC.fQ.O).ANO.lTT.GE.l)GO TO 790 
IF( ( IC.EQ.U .. OR.CLR.E~.2).AN&).( lf.E~.-1.0R.l T.EQ.2JJGO TO 790 

50 00 600 BE=l,BEND 
F=Q(BE,MCVJ 
IF(CL~.EQ.3.AND.F.EQ.l)F=5 
OS=CC~Ct3E)+l 
CUM(RE+l)=BS+SN(F)-1 
NU"=CUr1(BE+lJ 
DO 300 O=BS,NUM 
ABC=B-8S+l 
M(B)=S(F,ABC) 
MM(B)=M(1H 
N(B)=SS(F,ABCJ 

300 O(B)=SSS(F,ABC) 
tF(f.NE.4)GO TO 590 
P(3)=0 
P(4)=C 
DO 400 B=BS,NUM 
BB=B-BS+l 

400 P(BB>=B 
IF(SLOP{IK,3).EQ.O)GO TO 590 
8=P(2) 
P(2)-=P(3) 
P(3)=B 

590. CCt\TINUE 
600 CONTINJE 

IF(BBMS.EQ.O)GO ro 710 
DO 700 K=FUN,SUM 
l-=K+l-FUN 
M(K)=CHOP(LMS,L) 
~M(K)=M(U 
N(K)=P~CHP(LMS,l~ 

700 O(K)=PRCHP(LMS,L) 
710 CCNTINUE 

IF(IPRINT.GT.OlWRITE(IP~INT,2000)PC,PCC,PLHN,lNO(O(Bl),S=l,SUHl 
IF(ISHOW.EQ.O)CALL ~lCKET 

790 CONTII\.UE 
800 CONTINUE 

1000 CCNTINUE 
RETURI'\ 

2000 FORMAT(lH ,12,2X,13,5X,Fl2.8,3X,20(1X,A4J) 
ENO 
SLBRCUTINE WICKET 

C SUBROUTINE TU DO WICK'S THEOREM 
I~PLIClT lNTEGER(A-H,O-l) 
COMMCN/BANQUO/CH~S 
CO~MCN/LAUNCE/SUM,P(4) . 
CC~MCN/HAMLET/Ml44),MM(4~l,N(44) 
COMMCN/JULIA/ESIGN,NUM,MENl22J,WOMEN(22),MATEl4) 
Dl~ENSION MP0(22),~P0(22),STAK(22),XSlGN(22J,BL!SS(22),BLESSl22,22 

?) 

10 NUM=SUM/2 
MATE(U=O 
MATE(2)=0 
MATEl3)=0 



MATE(4)=0 
l~BEG=l 
MNU=O 
WNU=C 
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C LOCAT~ POSITIONS OF MEN AND WOMEN 
DO 50 l=l,SU,'1 
f-lW=M (I) 

IF(MW.EQ.l.OR.Mw.E~.2.0R.MW.EQ.-5.0R.MW.EQ.-&)GO TO 3U 
IF(CH~S.GE.O.ANO.(MW.EQ.9.0R.MW . EQ.-lO.OR.Mw.EQ.ll.OK.MW.EQ.-12)) 

?GO TO JO 
IF(CHMS.LT.O.AND.{MW.EQ.9.0R.MW.EQ.lO.OR.M~.EQ.-11.0R.MW.EQ.-12)) 

?GO TO 30 
WNU=\iiNU+l 
WPO ( WNU )= I 
GO TC 40 

30 MNU=MNU+l 
MPC(~NU)=l 

40 CCNTINUE 
50 CONTI~UE 

DO 80 l=l, NUM 
HERR=MPU(l) 
MEN( I )=N(HERR) 
fJAt\=r,I (HERR) 
~U~=O 
DO 60 J=l,NUH 
OVEt\=wPO(J) 
WOMAf\=M(OAMENJ 
CHILD=r'1AN+WOMAN 
IF(CHILD.NE.O.QR.OAMEN.LT.HERR)GO TO 55 
"U~=MLM+l 
BLESS(MUM,l)=DAMEN 

55 CONTINUE 
60 CONTINUE 

IF(MUM.EQ.O)RETURN 
SHR(I>=O 

80 BLISSCl)=MUM 
100 DO 300 IM=IMBEG,NUM 

~I=I~ 
MJNE=f\UM+l-lM 
WSTR=STAR(MlNE)+l 
MU~=BLI SS(MlNE) 
00 120 IW=WST~,MUM 
STAR(MINE)=IW 
DAMEN=BLESS(IW,MlNE) 
WO~At\=MMCDAMEN) 
IF(WCMAN.NE.O)GO TO 150 

i20 CONTINUE 
GO TO 500 

150 HERR=MPO(MINE) 
MM ( HE RR >. = 0 
1-lf'(DAMENl=O 
WO~EN(MlNE)=N(OAMENl 
00 200 J=l,4 
IF(P(Jj.EQ.HERR}MATEJJ)=~OMEN(MlNE) 

200 If(P(J).EQ.OAMEN)MATE(Jl=MENCMINE) 
STA=HERR+ l 
S TO=CAHEN-1 
SGr..=O 
DO 250 J=STA,STO 

250 lf(MM(J).NE.O)SGN=SGN•l 
XSIGN(MINE)=SGN 

300 IF(MINE.NE.NUM)XSlGN(MlNtl=XSIGN(MINE+l)+SGN 



ESIGN=XSIGN(U 
ESIG~=(-l)**ESIGN 

400 CALL TV 
MM(HERR)=M(HERRl 

450 M~ (JA"4Et~) =MWAMEN) 
500 IMBEG=MI-l 

IF(l~BEG.EQ.O)RETURN 
STAR(MINE)=O 
MINf=~UM+l-lMBEG 
Ml=MI-1 
WI=STAtUMINE) 
HERR=MPO(MINE) 
CAME~=BLESS(wl,MINE) 
MUM=BlISS{MINEl 
fol.M(Hf.RR)=M(HERRJ 
MM(CAMEN)=M(OAMEN) 
IF(~I.EQ.MUM)GO TO 500 
GO TO 100 
END 
SUBROUTINE TV 
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C SUBROUTINE Tu SET UP AND CALL TFURM ANO VFORM 
IMPLICIT INTEGER(A-H,0-lJ 
REAL*8 RO,FACT,PLMN,PlREF,PREF 
CO~MCN/CASCA/IDX 
CCMMON/EDMUND/PREF,NMOST,IC,CLR,RLT(5),LRIJKl256j,0(36J,SN(5l 
COMMON/JULIA/ESIGN,NUM,HEN(22J,~OMEN(22),MATE(4J 
COM~C~/PORTIA/PlREF(d),CC(8J,CF(8,4l,XP,XH,XHP,NOC,IS¥,XXP,XXH,XXH 

?P,NNOC,MMNN,88(4) 
CCMMCN/PRIEST/PLMN 
CC~MON/ANTONY/ETH 
OIME~SION CN(8), IJ(4) ,TYP(4J 
DATA TYP/1,2,9,10/ 

10 GPS=2 
IF(MATE(3).EQ.O)GPS=l 
IF(IAB~(ETHJ.EQ.l)GPS=O 
SPG-=GPS*2 
1F(ETH.EQ.l)SPG=2 
TL=O 
Tt;=O 
UTLU=l 
~D=ESIGN*PLMN 
IF(tOX.EQ.O)GO TO 80 
DO 20 DD=l,4 

20 88(00!=0 
DO 30 OD=l,NUM 
MAN=MAXO(MEN(DO),WOMEN(OO)) 
WO~AN=MINOCMEN(OD),wOMEN(OD)) 
IF(WOMAN.GT.2)GO TO 25 
IF( (HAN.EQ.19.0R.MAN.EQ.20).ANu.BB(WOMAN).NE.O.ANU. 

?BB(WOMAN).NE.MANIRETURN 
IF( (HAN.EQ.l9.0R.MAN.E~.20l~Btl(wUMAN)=MAN 

25 NAMOW=WOMAN-6 
IF(WOMAN.NE.9.AND.WOMAN.NE.lO)GO TO 30 
IF( . (MAN.EQ.21.JR.MAN.EQ.22).ANO.B8 

?(NAMCW).NE.HAN.ANO.BB(NAMOWJ.NE.O)RETURN 
I F ( ( MA N • E Q. 2 l • JR. MAN • E Q • 2 2 ) j B 8 ( NAM 

?OWJ=MAN 
30 CCNTINUE 

IFCBB(3).EQ.22.ANO.B8(4).EQ.21.ANO.!OX.GT.O)RETURN 
tF(AB(lJ.EQ.20.ANO.BB(2).tU.19.~NU.IDX.GT.OlRETURN 
IF(88Cl).EQ.8Bl2).ANO.BB(l).NE.O)RETU~N 
IF(BBC3J.EQ.8d(4).AND.dB(3).NE.01REfURN 



UPH=l 
00 50 00=1,4 

50 IF(BB(uO).NE.O)UPH=UPH+l 
GC TO 100 
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80 DO 90 OD=l,NUM 
MAN=MAXO(MEN(DJ},WLiMEN(DO)) 
WO~A~=MINO(MEN(OO),WUMcN(GDJ} 
IF(WCMAN.EU.l.ANO.MAN.EQ.lJTL=2 

90 IF(MAN.E0.10.AND.WGMAN.EU.9)Tu=l 
UPH=UTLU+-TL+TU 

100 CC"-TINUE 
IF(SPG.EQ.O)GO TO 140 
MAYL=MINO(MATE(l),MATE(2),MATE(3J,MATE(4J) 
MAYU=MAXO(MATE(l),MATE(2>,~ATl(3),MATE{4)) 
IF(MAYL.EQ.7.ANO.MAYU.EQ.8.0R.MAYL.EQ.15.AND.MAYU.EQ.l6)GO TO 120 
DO 110 IJK=l,SPG 

110 IF(MATE(IJK).E~.8.0R.MATE,IJK).EQ.16)MATEllJ~)=MATE(lJK)-l 
GIJ TO 140 

120 IF(MATE(2).EQ.7.DR.MATE(2).EQ.15)MATEC21=MATE{2)+l 
IF(MATE(l).EQ.8.0R.MATE(l).EQ.l6)MATEtl)=MATE(l)-l 

140 00 300 NNN=l,NuC 
DC 290 NNNN=l,NNOC 
00 150 KJl=5,8 
. IJK=KJl-4 
IJ(IJK)=MATE(IJK) 
CC(IJKJ=CF(IJK,NNN) 
CN ( IJK)=CC( IJK) 
CC(KJl)=CF(KJl,NNNNl 
CN{KJIJ=CC(KJI) 

145 CCH INUE 
150 CCt\Tlt\'UE 

FACT=RD*PlREF(NNN)*PlREF{NNNN♦ 4) 

ISY=l 
IF(IC.EQ.O)GO TO 190 
ISY=O 
IF(ETH.EQ.l)ISY=-3 
IF(ElH.EQ.-l)ISY=-5 
JF(XH.EQ.O.ANO.XP.EQ.u.ANO.XHP.EQ.O.AND.NOC.EQ.O.AND.XXH.EQ.O.AND. 

?XXP.EQ.O.AND.XXHP.EQ.O.ANU.NNOC.EQ.O.AND.MMNN.NE.2)1SY=1 
00 180 OD=l,NUM 
MAN=~AXO(MEN(DD),WOMEN(DD)) 
WOMA~=MINO(MEN(DD),wOMEN(OO)J 
Mt,IAN=NAN 
WWCM=WOMAN 
IF((~~AN.EQ.l9.0R.~MAN.EQ.LO).AND.(WWOM.GT.2.A~O.WWOM.LT.9))MAN=WW 

?OM 
lf((MMAN.EQ.l9.0R.NMAN.EQ.iO~.ANO.(WwOM.GT.2.ANO.wWOM.LT.9))WOMAN= 

?M~AN 
IF({~MAN.EQ.21.0R.~HAN.EQ . 22).AND.(WWOM.GT.lO.AND.~WOM.LT.l9)lMAN= 

?WWCM 
IF((~MAN.EQ.21.0R.MMAN.EQ.22).AND.(WWOM.GT.l0.AND.WWOM.LT.l9))WOMA 

?N=MMAN 
IF(M~N.EQ.7.0R.MAN.EQ.8.DR.MAN.GE.15.ANO.MAN.LE.ld)GO TO 170 
IF(MAN.GT.4.ANO.MAN.LT.7.AND.WOMAN.GT.2.ANO.W~MAN.LT.5.0R.MAN.GT.l 

?2.ANO.MAN.LT.15.ANO.wOMAN.GT.lu.AND.~OMAN.LT.lJ)GU Tu 165 
DC 160 EE=l,8 
IF(~AN.E~.CN(EE) )CC(EEJ=wOMAN 

160 tF(WCHAN.EQ.CN(EE) JCC(EE)=HAN 
GO TC 170 

165 DO 168 EE=l,4 
DO 167 EEE=5, 8 

167 IF(~AN.EQ.CN(EEE).ANU.WOMAN.EU.CN(EE))CCtEEEl=WOMAN 



168 CONTINUE 
170 CONTINUE 
180 CONTINt.JE 
190 COT\TINUE 
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IF(SPG.EQ.O.OR.IDX.EQ.O)GO TO 240 
DO 230 EE=l,SPG 
DO 22'.J EEE=l,4 
1F(CC(Ec).EQ.B8(EEE))CC(EEl=TYP(EEE) 

220 IF( IJ(E~).E~.BO(EEE)) 1J(£t:j=T'IP(EEE) 
230 CONTINUE 
240 CCNTINUE 

IF( ISY.LE:.O)CALL SYM( IJ,FACT) 
IF(ISY.EQ.O)ISY=-l 

250 I=IJ(U 
J=IJt2> 
K=IJ(3J 
l=IJ(4) 
IF~GPS.LE.l)CALL TFORM( 1,J,FACT,UPH) 
IF(GPS.EQ.2)CALL VFUR~(I,J,K,L,FACT,UPH) 

260 CONTINUE 
290 CONTINL.JE 
300 CONTINUE 

RETURN 
END 
SUBROUTINE TFO~M(F,FF,T,Xl 

C SUBROUTINE TO FORM THE ENERGY MATRIX 
l~PLICIT INTEGER(A-H,O-l) 
REAL*B T,ETIMS,TT,PlREF 
COMMCN/PORflA/PlREf(d) ,CC(8),CF(8,4),XP,XH,XHP,NOC,ISY,XXP,XXH,XXH 

?P,NNCC,MMNN,88(4) 
COMMON/CLO~N/ETIMS(5,200),EN(5,200 , 2J,EC(5,Lu0,8),ED(5,200,4) 
CO~MCN/TUBAL1NEN(5),NEMM(5) 
cc~~CN/REGAN/lT,TAPE,CT,ICC,CTT,MSTu,lCHG 
DIMENSION P(41,1J(4t 
TT=T 
IJ ( 1) =F 
IJ(2)=FF 
I J(3) =O 
IJ(4)=0 
ISY=-2 
IFCIJ(2).NE.O)ISY:-4 
IF(IJ(l).EQ.O)ISY=-6 

1 NUT=NEN(X) 
TUN=NEMM(X) 
DO 19 CHG=l,ICHG 

C INTERCHA~GE CC 
IF(CHG.EQ.2)CALL SYM(lJ,TT) 
SF= Ml NO ( I J ( l), I J ( 2 H 
FS=MAXO(IJ(l),lJt2>) 
S=SF 
SS=FS 
IF(SF.EQ.O)S=FS 
IF(SF.EQ.O)SS=SF 
IF(S . EQ.l8.AND.SS.EQ.O)S=l7 
IF(NLT.£0.0)GO TO 20 

12 00 18 A=l,NUT 
B=A 
IF(TUN.LE.NUT.OR.CHG.EQ.2lGO TO 13 
IF(OABS(ETIMS(X,B)).LT.l.U-5 )ETIMS(X,B)=O.DO 
IF(ETIMS(X,Bt.EQ.O.OO)TuN=A 

13 CONTINUE 
00 14 MUST=l,MSTO 
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IF(EC(X, B ,MUSTJ.NE.CC(MUST)JGO TO 17 
14 CCt--iTINUE 

DC 15 MUST=l,4 
IF(F.O(X,8,MUSTJ.NE.BBtMUST))Gu Tu 17 

15 COf'.iTINUE 
IF(S.EQ.EN{X,6,l).AND.SS.EQ.EN(X,B,2J)GJ TO 30 

17 CONTl~UE 
18 COI\TINUE 
19 CONTINUE 
20 IF(TUN.GT.NUT)NUT=TUN 

IF{NUT.GT.200)GO TO 40 
EN ( X, TUN, l) = S 
EN(X,TUN,2)=SS 
ET IMS ( X, TUN)= TT 
N!:f\(X)=NUT 
NE~M(X)=NUT+l 
DO 21 MUST=l,4 

21 ED(X,TUN,MUST)=8B(MUST) 
DO 23 MUST=l,8 

23 EC(X,TUN,MuST)=CC(MUSTJ 
RE TURN 

30 ETI~S(X,8)=ET1MS(X,B)+TT 
IF(B.EQ.NUT.AND.tTIMS(X,8).EQ.J.00)NUT=NUT-l 
tF(A.~Q.TUN.OR.TUN.GT.NUTITJN=NUT+l 
t-.EMM(X)=TUN 
NEN(X)=NUT 
RETURN 

40 W~lTEl6,2000) 
CALL PUNWRT(6,X,X,l) 
f<.:lJTT Y=O 
N!:N( X )=0 
~EMM(XJ=l 
GO TO l 

2000 FORMAT(lHO,• ***EN ANO ETlHS MATRICES ARE NOT LAR~E ENOUGH***'//) 
END 
SLBR0UTINE VFO~M(Q,R,S,T,M,PH) 

C SUBROUTl~E TO CONSTRUCT THE T~O-oODY TERMS 
I~PLICIT INTEGER(A-H,O-ll 
REAL*8 M,VTlMS,MM,PlREF 
C0~MCN/REGAN/IT,TAPE,CT,lCC,CTT,MST0,ICHG 
COM~CN/PORTIA/PlREF(8),CC(8J,CF(8,4),XP,XH,XHP,NOC,IS¥,XXP,XXH,XXH 

?P,NNOC,MMNN,6B(4) 
COMMCN/G08B0/NTU(5J,MTU,5J 
COMMON/OSRIC/VTIMS(5,300),V(5,300,4J,C,5,300,4),VOC5,300,4) 

l MM=M 
It=MINO(Q,S) 
KK=MAXO(Q,SI 
JJ=MJN0(R,T) 
LL=MAXO(R,T) 
IF(JJ-11)10,20,30 

lO NI=II 
It=JJ 
JJ=NI 
NK=KK 
t<K=ll 
LL=~K 
GO TO .30 

20 IF((LL-KK).GE.O)GO TO 30 
NK=KK 
KK=LL 
ll=NK 

30 CONTINUE 



32 f'EW=NTU(PH) 
WEM=t-'TU( PH) 
IF(~EW.EQ.O)GO TO 50 
00 40 A=l,MEW 
e=A 
IF(kEM.LE.MEW)GO TO 33 
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IF(OABS( VTIMS(PH,AJ) .LT .0.00001 )VTIMS (PH,A) =0.00 
IF(VTIMS(PH,A).EJ.O.OO)WtM=B 

33 CCNTINUE 
00 34 MUST=l,HSTO 
IF(C(PH,A,MUST).NE.cc,MUST))GO TO 38 

34 CONTir--UE 
DO 36 MUST=l,4 
IF(VO(PH,A,MUSTJ.NE.BB(MUSTJJGO TO 38 

36 COf\lTINUf. 
IF(ll.EQ.V(PH,A,l).AND.JJ.EQ.V(PH,A,2J.AND.KK.EQ.V(Prl,A,3).AND.LL 

?.EQ.V(PH,A,4))GO TO 60 
38 CONTINUE 
40 COf\lTINUE 
50 IF(WE~.GT.MEW)MErl=WEM 

IF(MEW.GT.300)GO TO 80 
V(PH,~EM,1)=11 
V(PH,\..EM,2)=JJ 
V(PH,WEM,3)=KK 
V(PH,WEM,4)=LL 
VTlMS(PH,WEMt=MM 
NTU(PHj=MEW 
~TU( PH)=MEW+l 
00 53 MUST=l,4 
VD(PH,WEM,MUST)=BB(MUST) 

53 C(PH,WEM,MUST)=CC(MUST) 
RETURN 

60 VTJMS(PH,Bl-=VTIMS(PH,Bl+MM 
IF(B.EQ.NUT.ANO.VTIMS(PH,B).EQ.O.OOjMEW=MEW-1 
l~(B.EQ.~EM.OR.WEM.GT.ME~)WEM=ME~+l 
"1TU( PH)-=l'iE,'-1 
NTU(PHJ=MEW 
~ETURN 

80 \tlAlTE(b,2000) 
CALL PUNWRT(o,PH,PH,2J 
NTU(PH)=O 
MTU(PH)=l 
GO TO 32 

2000 FOR~AT(lHO,• ***V AND VTIMS MATRICES ARE NOT LARGE ENOUGH***'//) 
ENO 
SUBROUTINE EFORM 
l~PLICIT INTEGER(A-H,0-lj 
REAL#8 Z,SACT,PlREf,PREF,ETfMS 
COMMCN/PORTIA'PlREF(8),CC(8J,CF(8,4J,XP,XH,XHP,NOC,l$Y,XXP,XXH,XXH 

?P,NNOC,MMNN,6_,4) 
COMMC~/EDMUND/PREF,NMQST,lC,CLR,RLT,5),LRIJKl25b),0{36) ,5N(5) 
CCMM0~/8ANQUO/CHMS 
CC~MO,/SPEEO/GS 
CO~MON/ANTONY/ETH 
CC~MCN/CLOWN/ETIMS(5,lOO);EN(5,200,2),EC(5,200,8),t0(5,200,4j 
CGMMCN/TUBAL/NEN(5l,NcMM(5J 
COMMCN/CASCA/IDX 
CC~MCr-./TOM/NOSP 
Ol~E~SION XTRX(4,2),IJ(4J 
DATA IJ/0,0,0,0/ 
DATA XTRX/3,4,0,0,2,0,4,0/ 

10 DO SOC PPH=l,5 
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PH=6-PPH 
NUT=NEN(PH) 
NEMM(PHt=l 
NEN(FH)=O 
IF(NLT.EQ.OJGO TO 490 
DO 400 J=l,NUT 
IF{ETIMS(PH,J).EQ.O.DOJGO TO 390 
Z=ETIMSCPH,J) 
ETIMS(PH,Jl=0.00 
X-=ENCPH,J,l) 
Y=EN(PH,J,2) 
DC 11 K=l,4 

11 BB(K)=EO(PH,J,K) 
CO 12 K=l,8 

12 CC(K}=EC(PH,J,K) 
IFCETH.EQ.O.OR.CLR.EQ.3)GO TO 50 

15 U=7 
V=l5 
JF(X.EQ.7.0R.Y.EQ.7)U=8 
IF(X.EQ.15.uR.Y.EQ.l5)V=l6 
SACT=Z/2 
CALL VFORM(X,U,U,Y,SACT,PHl 
IF(CHMS.LT.O)CALL VfURM(X,17,17,Y,SACT,PH) 
SACT=-Z/2 
CALL VFORM(X,V,V,Y,SACT,PHj 
IF(CHMS.LT.O)CALL VFURM{X,18,ld,Y,SACT,PH) 
SACT=(-l)*2 
IF(NOSP.NE.O)SACT=(-lj*NUSP 
CALL VFORM(X,U,V,U,SACT,PHl 
IF(CHMS.LT.O)CALL VFORM(X,17,Y,17,SACT,PH) 
IF(GS.EQ.l)GO TO 50 
IF(GS.EQ.3)GO TO 20 
SACT=-Z/ 2 
IF((X.GE.9.ANO.X.LT.19.0R.X.EQ.21.0R.X.EQ.22).AND.(Y.~E.9.AND.Y.LT 

?.lq.oR.Y.EQ.21.0R.Y.EQ.22J)CALL VfOKMCX,17,17,Y,SACT,PH) 
SACT= Z/2 
IF(CXelT.9.0R.X.EQ.19.0R.X.EQ.20).ANO.Y.EQ.17.a~.X.E~.17.AND.(Y.LT 

?.9.0R.Y.EQ.l9.0R.Y.EQ.2ul)LALL VFOR~(X,17,17,Y,SACT,PH) 
SACT=-Z 
1F((X.LT.9.0R.X.EQ.l9.DR.X.EQ.20).ANO.Y.EQ.i7.0R.X.E~.17.ANO.(Y.LT 

?.9.0R.Y.EQ.l9.0R.Y.EQ.20))5ACT=SACT•2 
IF((X.LT.9.0R.X.EQ.l9.JR.X.EQ.20).0R.(Y.LT.9.UR.Y.EQ.l9.0R.Y.EQ.20 

?))CALL VFORM(X,17,Y,17,SACT,PH) 
GO TO 50 

20 SACT=O.DO 
IF(( X.GE.9.ANO.X.LT.19.0R.X.E~.21.0R.X.EQ.22).AND.(Y.GE.9.ANO.Y.LT 

?.19.0R.Y.EQ.2l.OR.Y.EQ.22))SACT=Z/2 
tF((X.LT.9.0R.X.EQ.19.0R.X.EU.20).AND.(Y.E~.ll.OR.Y.EQ.18!)SACTx-l 

?/2 
JF((Y.LT.9.0R.Y.EQ.l9.0R.Y.EQ.20).ANO.(X.EQ.l7.0R.X.EQ.l8))SACT=-Z 

112 
JF(SACT.NE.O.OO)CALL VFORM(X,17,17,Y,SACT,PH) 
IF(SACT.NE.O.OO)CALL VFORM(X,ld,lB,Y,SACT,PH) 
SACT=-Z 
CALL VFORM(X,17,Y,17,SACT;PH) 
CALL ~FORM(X,18,Y,18,SACT,PH) 

50 ~PH=PH 
XY>c=C 
XX=MtNO(X,Y) 
YY=f.tAXO(X,Y) 
IF(XX.LT.9.AND.(CYY.GT.B.ANO.YY.LT.19).0R.YY.GT.20) )GO TO 390 
IF((XX.GT.8.AND.XX.LT.17).ANO.(YY.GT.l6.AND.YY.LT.2lj)GO TO 390 
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IF((XX.EQ.l9.0R.XX.EQ.20).AND.(YY.EQ.2l.OR.YY.EQ.221)GO TO 390 
SACT=Z. 
XXX=XX 
YYY=YY 
IF({XX.GT.l0.AND.XX.LT.l9).AND.(YY.EQ.2l.OR.YY.EQ.22)JXX=YYY 
IF((XX.GT.lu.AND.XX.LT.lS).ANO.(YY.EQ.21.JR.YY.EQ.22)jVY=XXX 
IF((XX.GT.2.AND.XX.LT.9).AND.(YY.EQ.19. □R.YY.~~.2JJ )XX=YYY 
lF((XX.GT.2.ANO.XX.LT.9).ANO.(YY.EQ.l9.0R.YY.E~.20!JYY=XXX 
IF(XX.EQ.l.ANO.YY.E~.2J~YX=l 
IF{XX.EQ.1.ANO.YY.EQ.10)XYX=2 
lf(X~X.Ni.O.AND.IDX.EQ.O)MPH=XTRX(PH,XYX) 
lr:(X.[Q.Y)XYX=3 
IF(XYX.NE.O.OR.CC(l).EQ.OJGO TO 65 
XYX=4 
DO 60 K=l,8 

60 IF(YJ.EQ.CC(K))CC(K)=XX 
IJ(l)=XX 
IF( ISY.LE.O.AND.XYX.NE.O)CALL SYM(IJ,SACT) 
XX= I J ( 1) 

65 CONT.fNUE 
IF(IOX .NE.O}GO TO 70 
IF(XYX.NE.O)CALL lfORM(XX,O,SACT,MPrl) 
GO TO 390 

70 CCNTINIJE 
IF(XX.GT.2)GO TO 73 
IF(XX.EQ.l.AND.YY.EQ.2)GO TO 390 
IF(XX.EQ.1~.AND.YY.EQ.20,GO TO 390 
IF((YY.EQ.19.0R.YY.EQ.20).AND.aB(XX).NE.YY.AND.BB(XX).NE.O)GO TO 3 

?90 
IF(YY.E~.l9.0R.YY.EQ.20)88(XX)=YY 

73 NAMOW=XX-6 
IF(XX.tQ.9.AND.YY.EQ.lO)GO TO 390 
Jr(XX.EQ.21.AND.YY.E~.22JGO TO 390 
JF(XX.NE.9.ANO.XX.NE.lO)GO TO 78 
IF((YY.EQ.21.0R.YY.EQ.22).AND.SB(NAMOW).NE.YY.ANO.BB(NAMOW).NE.O)G 

?O TO 390 
IF{YY.EW.2l.OR.YY.EQ.22)BB(NAMOW)=YY 

78 CONTINUE 
1FlBB(l}.EQ.20.AND.B8(2J.EQ.l9.AND.IDX.GT.UJGu TO 390 
IF(BB(l).EQ.BB(2J.AND.88(1J.NE.OlGO TO 390 
IF(88(3).EQ.22.AND.88(4}.EQ.2l.AND.lDX.GT.OJGU TO 390 
IF(Be(3).EQ.68(4).ANO.Bu,3).NE.O)GO TO 390 

80 MPH=l 

90 
100 

DO 90 D0:;l,4 
IF{8E(OD).NE.O)MPH~MPH+l 

CALL TFORM(XX,O,SACT,MPH) 
390 CONTINUE 
400 CONTINUE 
490 CON1INUE 
500 CO.NTINUE 

RETURN 
ENO 
SUP.ROUTINE SYM( IJ,M) 

C SUBROUTINE TO MODIFY THE FORMULAS FOR CORR~LATION COEFFICIENT SYMMETRY 
HIPLIClT lNTEGErUA-H,U-ll. 
REAL•~ M,PlRl::F 
cc~~CN/PORTIA/P1REF(8},CC(ij),CF(8,4),XP,XH,XHP,NJC,ISY,XXP,XXH,XXH 

?P,NNOC,MMNN,888(4) 
OI~ENSION IJ{4),MA(dt,CN(ijJ,CCH(8),HCC(8),PS(4l 
Ol~E~SION P(4),ABC(4),CBA{4) 
DATA AdC/1,5,3,7/ 
CATA CBA/2,6,4,8/ 
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DATA CCH/4,3,12,11,6,5,14,13/ 
DATA HCC/3,4, ll,12,5,6, U, 14/ 
DATA MA/3,4,1,2,7,6,5,b/ 
IF(ISY.EQ.-l)GQ TO 200 
IF(NOC.EQ.O.AND.NNOC.~~.o.o~.ISY.EQ.-2)60 TO 95 
IF ( 15 Y. E Q. -4. OR. I SY. E Q. -o J GO TO 9 S 

C RENAMING CC DUE TU NUC 
DO 10 A=l ,4 
PS(A)=O 
IF(IJ{A).EQ.OJGO TU 9 
DC 5 B= l, 8 

5 IF ( I J ( ~ ) • E Q • CC ( 8) ) PS ( A ) =B 
9 COt\TINUE 

10 P{A)=O 
DO 3C A=5,8 
DC 20 t3=l,4 

20 IF(CC(A).EQ.HCC(BJJP{dl=A 
30 CONTINUE 

00 40 A=l,8 
40 CN(A)=CC(A) 

00 50 A=l,4 
lF(CC(A}.EQ.CCH(A).ANO.P(A).NE.OJCC(P(AJ l=HCC(4j 
IF(CC(A).EQ.CCH(A))CC(Al=HCC(A) 
e=A+4 

50 IF(CC(BJ.EQ.CCH(8l)CC(ti)=HCC(Bl 
DO 90 A=l,4 

90 IF(PS(A).Nt.O)lJ(A)=CC(PS(A)J 
g5 CONTINUE 

IF(MMNN.EQ.2.ANO.(ISY.EQ.O.OR.ISY.EQ.-3.0R.ISY.EQ.-5J)GO TO 100 
IF(ISY.EQ.-2.0R.ISY.EQ.-4.0R.1SY.EQ.-6}GO TO 100 
GO TO 200 

100 CONTINUE 
DC 1C3 A=l,4 
PS(A)=O 
IF(lJ(A).EQ.O)GO TO 102 
00 101 8=1,4 
88=8+4 
lF(JJ(A).EQ.CC(B))PS(A)=UB 

101 IF(lJ(A).EQ.CC(88))PS(AJ=8 
102 CONTit-.UE 
103 P(A)=O 

00 1C8 A=5,8 
00 106 B=l,4 

106 IF(CC(A).EQ.HCC(B)JP(B)=A-4 
108 COf'.lTI~UE 

00 110 A=l,8 
110 CN(A)=CCCA> 

00 120 A=l,4 
e=A+4 
CC(A)=CN(d) 

120 CC(B)=CN(A) 
DO 150 A=l,4 
B=A+4 
IF(P(A).NE.0)CC(P(A))=HCC(P(AlJ 
IF(P(A).NE.O)CC(B)=HCC(P(A)) 
IF(CC(A).EQ.HCC(d))CC(A)=HCC(AJ 

150 IF(CC(B).EQ.HCC(A).AND.P(AJ.EQ.0)CC(B)=HCC(B) 
DO 160 A=l,4 

160 IF(PS(A).NE.0llJ(Al=CC(PS(A)J 
C HOLE ANO PARTICLE SYMMETRY 

200 CCNTINUE 
IF(XH.EQ.O.ANO.XXH.EQ.O.A~O.XP.EQ.O.AND.XXP.EQ.OJGO ro 510 



DO 500 AB=l,4 
TF(AB.EQ.llHXP=XH 
IFlAB.EQ.2)HXP=XXH 
IF(AB.EQ.3)HXP=XP 
IF{A8.E~.4)HXP=XXP 
IF(HXP.EQ.O)GO TO 490 
00 210 A=l,4 
B=A+4 
CN(B)=CC(B) 
PS(A)=O 

210 CN(Al=CC(At 
Al=ABC(At>) 
A2=C8A(A8) 
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IFlISY.GT.-l.OR.ISY.LT.-4)GO TO 240 
IF(IJ(l).EQ.A2.0R.IJ(2).EQ.A2)GO TO 490 
IF(IJ(l).EQ.Al.OR.IJ(2~.EQ.Al1GU TO 300 

240 CC~TINUE -
IF(CN(A2).EQ~HCC(A2)lGO TO 400 
IF(CN(Al).EQ.HCC(Al))GO TO 300 
CCIAl);MJNO(CN(All,CNtA2j) 
CC(A2)=MAXO(CN(Al) ,Ci'-.l(A2JJ 
IF(CC(Al).NE.CN(AlJJM=M*HXP 
GO TC 490 

300 CC(Al)=CN(A2) 
IF(CC(Al).EQ.HCC(Al))CC(AlJ=HCC(Al) 
CC(A2)=HCC(A2J 
IF(AB.EQ.2.0R.AB.EQ.4)GO TO 3~0 
P(AU=O 
P(A2)=0 
00 310 A=5,8 
IF(CN(A).EQ.HCC(A2l)P(Al)=A 

310 IF(CN(\).EQ.HCC(Al))P(Al)=A 
IF(P(Al).NE.OICC(P(Al)}=CC(A2) 
1F(P(A2).NE.O)CC(PtA2))=CC(AlJ 

340 00 350 A=l,4 
1F(JJ(A).EQ.CN(Al))PS(AJ=A2 

350 IF(IJ(A).EQ.CN(A2))PS(A)=Al 
DO 360 A=l,4 

360 IF(PS(A).NE.OJIJ(A)=CC(PS(AJ) 
M=f,l.*HXP 
GO TO 490 

400 CONTINUE 
IF(CN{Al).NE.HCC(Al).OR.IJ(3).EQ.O)GO TO 490 
DO 410 A== 1, 4 
IF(JJ(A).EQ.HCC(Al))l=A 

410 lf(IJ(A).EQ.HCC(A2l)ll=A 
MP=MA(l) 
MPP=t'A(ZZ, 
IF{l.EQ.MPP)GO TO 490 
N=MINO(IJ(MPJ,IJ(MPP)) 
IF(N.EQ.IJ(MPt)GO TO 490 
l J CM PP J = I J ( MP J 
IJ(l-'F)=N 
M=P.*XHP 

490 CONTINUE 
500 CC~TII\UE 
510 CONTINUE 

IF(XHP.EQ.O.AND.XXHP.EQ.O)RETURN 
C HOLE-HCLE PARTICLE-PARTICLE SYMMETRY 

Q=Z 
IF(XHP.EQ.OJGO TO 690 
A SlA= 1 



AST0=4 
Al=l 
A2=2 
A3=3 
A4=4 
PHX=XHP 

530 CO 550 A=l,8 
550 CN(A)=CC(A) 
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IF(1SY.GT.-l.OR.ISY.LT.-4)GO TO 553 
IF{IJ(l).bJ.HCC(A4).0R.!J(2).cQ.HCC(A4))GO TU 690 
IF(IJ(l).EQ.HCC(A3).0R.IJ(2).EJ.HCC(~3))GO TD j~~ 

1F(IJ(l).EQ.HCC(A2J.O~.IJ(2).tQ.HCC(A2JJGO Tu 69u 
lF(IJ(lJ.EQ.HCC(Al).Uk.lJ(2).EQ.HCC(AU )GO TO 554 

553 Zl=MAXO(CN(A3J,CN(A4)) 
Z=~INO(CN(A3),CN(A4)) 
IF(ZZ.NE.9.AND.Zl.NE.lJ.ANO.LZ.NE.21.AND.ZZ.NE.22.0R.Z.NE.9.AND.Z. 

?NE.l0.AND.l.NE.2l.ANO.Z.~E.22)GO TO 5540 
lf(Z.NE.ZZ.OR.CN(l).NE.3. O~.CN(2).NE.4)GO TQ 5537 
Pl=O 
P2= 0 
DO 5535 A-=1,4 
1F(IJ(AJ.EQ.3)Pl=MA(A) 

5535 IF(IJ(A).EQ.4)P2=MA(AJ 
IF(P2.LT.Pl)GO TO ~54 

5537 cor-..TINUE 
IF{ZZ.EQ.CN(A4))GO TO 690 
GO TO 554 

5540 CCNTINUE 
HH=MAXO(CN{Al),CN(A2J) 
H =MI ~ 0 ( C N ( Al) , C N ( A2) l 
IFfHH.NE.l.AND.HH.NE.2.AND.HH.NE.19.AND.HH.NE.20. OR.H.NE.l.AND.H. 

?NE.2.AND.H.NE.l9.AND.H.NE.20)GU ro 55~5 
IF(H.NE.HH.OR.CN(3).NE.ll. OR.CN(4).NE.12)~J TJ 5j44 
P3=0 
P4-=0 
00 5532 A=l,'t 
IF(IJ(AJ.EU.ll)PJ=MA(AJ 

5532 IF(IJ(AJ.EQ.l2)P4=MA(A) 
IF(P4.LT.P3JGO TO 554 

5544 CONTINUE 
IF(HH.EQ.CN(A2)JGO TO 690 

GO TO 554 
5545 CONTINUE 

IF{ZZ.EQ.21.0R.ZZ.EQ.22)ZZ=MlNO{CN(A3),CN(A4jJ 
IF(ZZ.EQ.2l.O~.ZZ.EQ.22JZ=MAXO(CN(AJ),CN(A4)) 
IF(h~.EQ.l9.0R.HH.EQ.20)HH=MINO(CN(All,CN{A2)) 
IF(HH.EQ.19.0R.HH.EQ.20)H=MAXO(CN,Al),CN(A2)j 
IF(ZZ.EQ.CN(A4).ANO.Z.NE.HCC(A3))GO ro 690 
IF(ZZ.EQ.HCC<A4).ANO.l.EQ.HCC(A3).ANO . HH.E~.C't(A2)JGO TO 690 

554 CC(AlJ=CN(A2) 
lF(CC{Al).EQ.HCClA2J)CC(AlJ=HCC(Al) 
CCCA2J=CN(Al) 
IF(CC(A2).EQ.HCC(Al)JCC(A2J=HCC(A2) 
CC(A3)=CN(A4) . 
IF(CCCA3).EQ.HCC(A4JJCC(A3J=HCC(A3) 
CC(A4)=CN(A3) 
IF(CC(A4J.EQ.HCC(A3JJCC(A4)=HCC(A4J 
00 560 A=l,4 
PS(A)=O 
IF(IJ(A).EQ.OJGO TO 557 
00 555 8=ASTA,ASTO 

555 IF(1J(A).EQ.CN(BJJPS(AJ=MA(l+ASTU•(2-QJ•4-BJ 



557 CONTINUE 
560 P(A)=O 

IF(Q.EQ.l)GO TO 590 
DO 568 A=5,8 
DO 564 8=1,4 

564 IF (CN(A). EQ.HCC(8J )P(B)=A 
568 CONTII\UE 

00 570 A=l,4 
570 lF(P(A).NE.O)CC(P(A) )=CCH(AJ 
590 1-'=M*PHX 

DO 620 A=l,4 
620 IF(PS(AJ.NE.O)IJ(A!=CC(PS(A)) 
630 CONTINuE 
MlO C=C-1 

AS TA= 5 
AST0=8 
Al=5 
A2=6 
A3=7 
A4=8 
PHX=XXHP*Q 
IF(PHX.NE.O)GO TO 530 
RETURN 
END 
SUBROUTINE PUNWRT(~,IS,~IS,ONTOl 

C SUBROUTINE TO PRINT AN0 WRITE THE FORMULAS ON TAPE. 
l~PLICIT INTEGER(A-H,J-l) 
REAL*8 DEL(2,4J,ETIMS,VTIMS,PREF,PRM,NUM,EHOLD(200),VHOLD(300) 
REAL ENG(22J 
CO~MCN/PRINCE/ON(23) 
COMMCN/REGAN/IT,TAPE,CT,ICC,CTT,MSTO,ICHG 
COMMCN/CASCA/IDX 
COMMCN/GOB80/NTU(5J,MTU(5) 
CC~MCN/TU8AL/NEN(5),NEMM(Sa 
COMMCN/JULIET/HC~,HhCK,PCK,PPCK 
COMMCN/EDMUND/PREF,NMUST,IC,CLK,~LT(5J,LRIJK(256j,Q(36),SN(5) 
CCt-'MCN/OSRIC/VTIMS(5,JOO),V(5,300,4),C(5,3U0,4J,VU{5,300,4) 
CO~MCN/CLOWN/ETIMS(5,200J,ENl~,200,2),ECl5,2U0,8),lD(5,200,4J 
DIMENSION DUMMY(l2l,IDTYP{5f,PRTY(2,4J,TYP(4J,Ba(4) 
DATA CUMMV/O,o,o,o,o,u,o,o,o,o,0,01 
DATA DELI' •,• •,•u(Pl-P2)',' •,•D(Hl-H2>',' 

1 ','D(Pl-P2) 1 , 1 0{Hl-H2)'/ 
DATA ENG/' Hl-•,• H2-•,• •,• ',' •,• ',' •,• •, 

?' Pl-',' P2-',' •,• ',' •,• •,• •,• •,• •,• 
? ' , 'HJ ' , 'H4 • , 1 P 3 1 , • P4 ' / 

DATA IDTYP/1,8,18,o,l/ 
OATA TYP/1,2,9,10/ 

10 IT=O 
DUMM'f( U= IC 
OUMMY(2i=CT 
DU~MY(3)=1CC 
IF(CLR.NE.3)DUMMY(3)=0 
DUP'M'f l4J=CTT 
lDSTC=O 
DUM=C 
NUto'=O.DO 
DC 500 l=IS,WIS 
IF(I.EQ.5.AND.IOX.EQ.O)GO TO 490 
KK=O 
KKK=C 
KS TA= 1 
KKSTA=l 



NU~=NEN( I I 
IF(CNTO.EQ.2tNUN=O 
G=O 
IF(NU~.EQ.O)GO TO 30 
00 20 K- l,NUN 

-223-

IF(O~BS(ETIMS(l,K)l.LT.l.D-5 >ETIMS(l,K)=O.DO 
IF(ETIMS(I,KJ.EQ.O.OO)GO TO 19 
IF(ICX.EQ.O)GO TO 15 
ECl= :C( I, K, l) 
EC2=EC( I,K,2) 
IF(HCK.NE.O.ANO.(ECl.EQ.2.AND.EC2.EQ.l.OR.tCl.EQ.20.ANO.EC2.EQ.l9) 

?)GO TC 18 
IF(HCK.LT.O.AND.ECl.NE.O.AND.ECl.NE.2.3.AND.ECl.EQ.EC2)GO TO 18 
F.Cl=EC( I ,K, 3) 
EC2=EC(l,K,4) 
IF(PCK.NE.O.AND.(EC1.EQ.10.ANO.EC2.EQ.9.0R.EC1.E~.22.ANO.EC2.EQ.21 

? ) ) GO TO 18 
IF(PCK.LT.O.ANO.ECl.NE.O.AND.ECl.NE.23.AND.ECl.EQ.EC2JGO TO 18 

15 CONTINUE 
IF(~~CK.EQ.O.ANO.PPCK.EQ.OJGO TO 19 
ECl=EC(l,K,5) 
EC2=EC(l,K,2) 
IF(HHCK.EQ.OJGO TO 16 
lF(ECl.EQ.4.AND.ECl.EQ.3.AND.HCK.NE.O)GO TO 18 
IF(ICX.NE.u.AND.(ECl.EQ.2.ANu.EC2.EQ.l.OR.EC1.EQ.~O.AND.EC2.EQ.19) 

?)GC TO 18 
IFlIOX.NE.O.AND.HHCK.LT.O.ANO.ECl.NE.O.ANO.ECl.NE.2J.ANO.ECl.EQ.EC 

?2) GO TO 18 
16 CCI\Tif\lJE 

IF(PPCK.EQ.O)GO TO 19 
ECl=EC(I,K,H 
EC2=EC(I,K,8) 
IF(PCK.NE.O.AND.EC1.EQ.12.ANO.EC2.EQ.ll)GO TO 18 
IF(lDX.NE.O.ANO.(ECl.EQ.lO.~ND.EC2.EQ.9.0R.ECl.EQ.22.AND.EC2.EQ.21 

?l) GO TO 18 
lF(ICX.NE.O.AND.PPCK.LT.O.AND.ECl.NE.O.AND.ECl.NE.23.ANO.ECl.EQ.EC 

?2)GO TO 18 
GD TO 19 

18 ETIMS(I,K)=O.DO 
19 COI\TINUE 

EHOLDCK)=ETIMS(l,Kl 
2 0 I F ( E T IMS ( I , K J • N E • 0 • 0 ) G= l 

lf(G.EQ.O)NUN=G 
30 CONTINUE 

~EW=NTUCI) 
IF(OI\TO.EQ.lJMEW=O 
G=O 
IF(ME~.EQ.O)GO TO 50 
0 0 4 0 K= 1, MEW 
IF(DABS(VTIMS(l,K)).LT.l.D-5 )VTIMS(l,Kl=0.00 
IF( IDX.EQ.O.OR.VTIMS( l,K) . EQ.O)GO TO 39 
ECl=CCI,K,l) 
EC2=C(I,K,2) 
IFCHCK.NE.O.ANO.(EC1.EQ.2.ANO.EC2.EQ.l.OR.EC!.EQ.20.ANO.EC2.EQ.l9) 

?)GC TO 38 . 
IF(HCK.LT.O.AND.ECl.NE.O.AND.ECl.NE.23.AND.ECl.EQ.EC21GO TO 38 
ECl=C( I ,K,3) 
E C 2= C C I , K , 4 ) 
IF(PCK.NE.O.ANO.(ECl.EJ.lO.AND.EC2.EQ.9.0R.ECl.tQ.22.ANO.EC2.EQ.21 

?) JGO TO 38 
IF(PCK.LT.O.AND.ECl.NE.O.ANO.ECl.NE.23.ANO.ECl.EQ.EC2lGO TO 38 
GO TO 39 
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38 VT IMS( I ,K)=O.DO 
39 VHOLO(K)=VTIMS(l,K) 
40 IF(OABS(VTIMS(l,KlJ.NE.O.O)G=l 

IF(G.EQ.O)MEW=G 
50 CCNTI~UE 

IF(NUN.EQ.O.AND.MEW.EQ.O)GO TO 490 
I F ( I C X • i'~ E • 0 ) I D S TO = IDT Y P ( I ) 
IF( ICX.ECJ.O)\.IRITE(w,2000HuEUJ, I),J=l,2) 
00 450 ID=l,IDSTO 
IF ( IC X. E Q. J) GO TlJ 51 
IF(KSTA.GT.NUN)KK=O 
IF(KSTA.EQ.o.o~.NUN.EQ.O.OR.KSTA.GT.NUN)GO TO 100 
00 5000 K=KSTA,NUN 
l<K=t< 
IF(ETIMS(l,K).NE.O.DOJGO TO 5010 

5000 CONTINUE 
KK==O 

5010 CONTINUE 
KSTA=KK 
lF(KK~EU.OlGO TO 100 
JJ=O 
OC 5030 K=l,4 
BB(K)=ED( l,KK,K) 
IF(BB(Kl.EQ.O)GO TO 5020 
JJ=JJ+l 
PRTY(l,JJ)=TYP(K) 
PRTY(2,JJ)=tHHKl 

5020 CCNTINUE 
5030 CONTINUE 

IF(JJ.NE.OJWRITE(W,2lOu)(ENG(PRTY(l,JJl,ENG(PRTY(2,Jll,J=l,JJ) 
51 FLAG=-(1*2-l) 

IT=Il+l 
IF(O~TO.GT.2)wKITE(TAPE)FLAG,NUM,lDUMMY(K),K=l,12J 
IF(CNTO.GT.2.ANO.IDX.NE.O)WRITE(TAPE)(PRTY(l,Jl,PRTY(2,J),J=l,JJ) 
00 70 K=KSTA,NUN 
P ~ M= E TIMS l I , K) 
IF(PRM.EQ.O.OO)GD TO bO 
lF(lCX.EQ.OlGP TO 5120 
CO 5110 L=l,4 
IF(8BCL).Nt.ED(1,K,LJ)GO TO 60 

5110 CONTINUE 
5120 SIN=ENCI,K,l) 

SSIN=EN(I,K,2) 
FTt-'=2 
IFlSIN.EQ.O)FTH=O 
IF(SIN.NE.O.AND.SSlN.NE.OJFTH=l 
IF(FTH-1)52,54,56 

52 IFCtC.EQ.O)WRlTElW,2060)PKM 
IF(JC.NE.O.AND.CLR.NE.3)WRITE(~,2070)PRM,(UN(EC(I,K,L)) il=l,41 
IF(CLR.EQ.3)WRITE(w,2075JPRM,(ON{EC<I,K,l)A,L=l,8) 
GO TO 58 

54 IF(IC.EQ.O)WRITE(W,2080lP~M,ON(SIN),ON(SSlN) 
IF(IC.NE.O.AND.CLR.NE.3JWRITE(W,2090JPkM,ON(S1Nl,ON(SSlN),(ON(ECll 

?,K,L)),L=l,4) . 
IF(CLR.EQ.3)WRlTE(M,2095lPRM,ON(SINl,ON(SS1N),(ON(EC(l,K,L)),L=l,8 

?) 
GO TO 58 

56 IF(IC.EQ.OtWRITEtW,20lO)PRM,ONlSINl 
IF(IC.NE.O.ANO.CLR.NE.3)WRITE(W,2020)PRM,ON(SIN),(JN(EC(1,K,L)),L= 

11, 4) 
IF(CLR.EQ.3)WRITECW,l025)PRM,ONCSIN),(ON(EC(I,K,Lll,L=l,8) 

58 CONTINUE 
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IF(ONTO.GT.2)WRITE(TAPE)~UM,PRM,SIN,SSIN,DUH,UUM,(EC(1,K,Ll,L=l,8) 
ETlr-'S(l,K}=0.00 

60 CCt\TINUE 
70 CONTINUE 

KSTA=KK+l 
100 CCNTINUF. 

IF(ME~.EQ.O)GO TO 400 
IT=IT+l 
FLAG=-(1*2) 
IF(CNTO.GT.2)WRITE(TAPE)FLAG,NUM,(OUMMY(K),K=l,l2) 
IF(KK.N~.O.OR.IOX.Er~.u}GO TO 220 
tF{KKSTA.GT.~EW)GO TO 455 
DO 150 K=KKSTA,MEW 
l<KK=K 
IF(VTIMS(I,K).NE.O.DO)GO TO 160 

150 CCNTINUt 
GO TO 455 

160 CO!\TINUE 
KKSTA=KKK 
JJ=0 
00 180 K=l,4 
BB(K)=VD( I ,KKK,K) 
IF(RR(K).EQ.O)GO TO 170 
JJ=JJ+l 
PR1V(l,JJ)=TYP(K) 
PRTY(2,JJ)=8B(K) 

170 CCUINUE 
180 CONTINUE 

IF(JJ.NE.O)WRITE(W,2lOO)(ENG(PRTYll,J)),ENG(PRTV(2,JJ),J=l,JJ) 
IF(ONTO.GT.2.ANO.IOX.NE.O)wRlTE{TAPEJ(PRTYll,J),PRTY(2,Jl,J=l,JJ) 

220 DO 270 ~=KKSTA,MEw 
PRM=VTIMS(I,K) 
IF(PRM.EQ.O.OO)GO TO 260 
IF(ICX.EQ.O)GO TO 250 
DO 230 L=l,4 
IF(BBlL).NE.VD(I,K,L))GO TO 260 

230 COt\T I NUE 
250 CGNTINUE 

lF(IC.EQ.O)WRITE(W,2030)PRM,lON(V(l,K,L)),L=l,4J 
IF(IC.NE.O)WRITE(W,2040)PRM,lUN(V(l,K,Lj),L=l,4),(0NlC(l,K,L)),L=l 

?,4) 
IF(ONTO.GT.2lWRITE(TAPElDUM,PRM,lVt1,K,L),L=l,4J,(C(l,K,Ll,L=l,4) 

?,D~M,DUM,DUM,DUM 
VTIMS(l,K)==O.DO 

260 CCNTINUE 
270 CONTINUE 

IF(KKK.NE.OlKKSTA=KKK~l 
400 CONTlt\UE 
450 CCNTINUE 
455 COI\TINUE 

IF(NUN.EQ.O)GO TO 470 
DO 460 K=l,NUN 

460 ETIMS(l,K)=EHOLO(K) 
470 CONTINUE 

IF(MEW.EQ.O)GO TO 490 
00 480 K=l,MEW 

480 VTIMS(I,K)=VHOLD(KJ 
490 CO'°' TI ~UE 
500 CONTlt\UE 

FLA G= -9-l/2**1T 
IF( ONTO .GT.2)WRITE(TAPEJFL4G,NUM,(OUMMY(K),K=l,12j 

WR I TE ( W, 2 00 O) 



RETURN 
2000 FORMAT(lH0,2A8) 
2010 FORMAT(lH ,20X,Fl2.8,3X,'E( 1 ,A4,'J') 
2 0 2 0 FOR~ AT ( l Ii , 2 0 X, F l. 2. 8 , 3 X , • E ( 1 , A.:+, • } • , 3 X, 'C ( ' , A 4, 3 ( ,- , ' , A 4 ) , ' J ' ) 
2025 FORMAT(lH ,20X,Fl2.8,3X,'E( 1 ,A't, 1 ) 1 ,2,3X,'C(',A't,~(•,•,A4),')')J 
2030 FORMAT(lH ,40X,Fl2.8,3X,'V(',A4,3(•,•,A4),')') 
2040 FORMAT(lH ,40X,fl2.8,3X,'V(',A4,3(',',A4l,')' ,3X, 1 Cl',A4,3(',',A4 

?),')'} 

2060 FORMAT(lH ,10X,Fl2.8) 
2070 FORMAT(lH ,lOX,Fl2.8,3X, 1 C( ',A4,J(',',A4) 1

1 )'J 
2075 FORMAT(lH ,lOX,Fl2.8,JX,'C(',A4,3(',',A4),') 1 ,3X, 1 ~(•,A4,3(',',A4) 

? f t ) I ) 

2080 FORMAT(lH ,30X,Fl2.8,3X,'H',A4,',',A4,')') 
2090 FORMAT(lH ,30X 1 F12.8,3X 1

1 T( 1 ,A4,',',A4,')',3X,'C(',A4,3(',',A4),') 
? ' J 

2 09 5 FORMAT ( l H , 3 0 X, F 12. 8, 3 X , 1 T ( ' , A 4, 1 , 1 , A 4, ' ) 1 , 3 X, ' C ( ' , A 4, 3 ( 1 , 1 , A 4) , ' J 
? ' , 3 X , 'C ( ' , A 4, 3 ( 1 , • , A4 J , • ) • ) 

2100 FORMAH1H0,4(A4,A4JJ 
END 
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PROPOSITIONS 
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PROPOSITION I 

Abstract 

Rowe's first open shell equations of motion method is applied to 

atoms and molecules with a few large ground state correlation coeffi

cients. Explicitly including these correlation coefficients incorporates 

some effects that are present in the equations of motion method including 

double excitation mixing, EOM((lp-lh) + (2p-2h)). In the multiconfigura

tion random phase approximation (MCRPA) excitation energies and transition 

moments are expected to be better than ordinary RPA calculations. The 

triplet instability problem for low-lying states should be less important. 

In addition, multiconfiguration equations of motion methods can be used 

for cases where ordinary EOM methods break down, e.g., H2 at large 

internuclear distances. 
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Proposition I. The Multiconfiguration Random Phase Approximation 

(MCRPA). 

The equations of motion methodl,Z has been successfully applied 

to the calculation of the excitation energies and transition moments 

for atoms and molecules which can be well described by a restricted 

Hartree-Fock SCF ground state.3 The equations of motion method is a 

conceptually and computationally simple method which is used to calcu

late directly quantities of physical interest. The resulting amplitudes 

and energies can be used to calculate transition moments between 

excited states, 4 ' 5 two-photon emission probabilities,4 photoionization 

cross sections from both ground6 and metastable states~ Born inelastic 

electron-molecule scattering cross sections, 7 and optical potentials 

for electron molecule scattering. 8 

Even though computational costs for an equations of motion calcu

lation are usually not large for diatomic or small polyatomic molecules, 

for larger molecules and more flexible basis sets the computer costs 

become significant for higher order calculations, e.g., the equations 

of motion method including double excitation mixing (EOM (lp-lh) + 

(2p-2h))2 . Lower order calculations, the Random Phase Approximation 

(RPA), while cheaper, can result in inconsistent experimental agreement 

for transition energies. In addition, RPA calculations can yield 

imaginary excitation energies or instabilities which imply for closed 

shell ground states that a state of energy lower than the calculated HF 

ground state, possibly of broken symmetry, exists. 9 
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For many atoms and molecules the ground state is not well des-

cribed by a simple single determinant SCF calculation, but have two or 

more configurations which are important, e.g., the doubly excited 

TT+ TT* configuration in ethylene. 10 Many molecules cannot be des

cribed by an HF SCF calculation on dissociation but require a mixing 

of several configurations, e.g., H2 • 

Recently Rowe 11 proposed an open shell method for nuclei which 

can be applied in a straightforward manner to atoms and molecules. 

This method involves a small configuration interaction calculation to 

determine configuration coefficients and occupation numbers for the 

ground state. The limited CI ground state is used in an equations of 

motion calculation. Thus there may be both excitations to and exci

tations from certain hole and particle orbitals. 

With a multiconfiguration ground state one can achieve better 

agreements for both transition energies and moments at a low level 

approximation, i.e., the multi configuration random phase approximation 

(MCRPA), with the diagonalization of relatively small matrices. 

Thus computer times may be significantly reduced. Moreover, the 

instability problem should not be as severe and low lying triplet state 

excitation energies should be easily determined for HF closed shell 

ground states without going to higher orders. Systems which require a 

multiconfigurational approach like H2 on dissociation which cannot be 

calculated using more traditional EOM methods can be handled simply in 

the multiconfiguration equations of motion (MCEOM). Thus the MCEOM is 

a powerful extension of current molecular equations of motion proce

dures. 
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I propose developing Rowe's first open shell procedure for atoms 

and molecules. In the remainder of this proposition the equations will 

be examined and discussed. All formulas can be easily derived by use 

of formula generating programs. 1° For simplicity the discussion will 

be restricted to atoms and molecules which in a Hartree-Fock molecular 

orbital scheme have a closed shell ground state and have only two impor

tant ground state configurations, the Hartree-Fock state and a doubly 

excited configuration. Extensions to different multiconfigurational 

ground states including configurations from a CI calculation on an open 

shell HF ground state are straightforward. Also, only the multiconfig

uration TOA and RPA are discussed in detail. Multi configuration higher 

RPA and multiconfiguration EOM ((lp-lh) + (2p-2h)) are obvious exten

sions. The resultant equations can be used in several calculations 

including ethylene at ground state experimental geometry and N2 at 

large internuclear distances. 

Consider an atom or molecule with a ground state which is well 

described as 

IO>~ N
0

(K1 i(closed shell)nanS> + K21(closed shell)papS>) (I-1) 

where 
l N =----

o }K~+K~ 
(I-2) 

and K1 and K2 are correlation coefficients. A Hartree-Fock SCF cal

culation is performed on the first configuration on the right hand side 

of (l) and 2x2 configuration interaction calculation is done to obtain 

K1 and K2 . Throughout this proposition lower case Greek letters are 

orbitals occupied in the single detenninant SCF calculation; m,n,p,q, •·· 
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are virtual or unoccupied orbitals in the SCF calculation; and i ,j,k,t 

are either occupied or unoccupied orbitals. In this case the secular 

matrix to be diagonalized is 12 

2c - 2c + J + J + 2K P n nn PP Pn - 4J - ~E Pn ) 

(I-3) 

where all the orbital energies, and coulomb and exchange integrals are 

obtained from the SCF calculation. ~E is the correlation energy. An 

example of this is ethylene. DunninglO using a minimum basis set of 

Slater functions calculates K1 to be 0.968805 and K2 to be -0.247825 

where K1 is the coefficient of the HF ground state and K2 is the 

coefficient of the configuration where the n orbital is replaced by 

then* orbital. 

An operator at when acting on the ground state IO> generates 

an excited state IA> . The conjugate operator OA acting on IO> 

gives O . From these two conditions Rowe3 has shown that 

(I-4) 

where the symmetric double commutator is defined 

2[A,B,C] = [[A,B],C] + [A,[B,C]] (I-5) 

Equation (I-4) is exact. There are two approximations that can be made 

to solve (I-4). 

The ground state IO> is replaced by some approximate state. 

The use of the symmetric double commutator on the left of Eq. (I-4) 

and the commutator on the right assure that the resulting equations 
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will be of lower particle-hole rank than if fewer commutators had been 

used. Thus the resulting energies will be relatively insensitive to 

the choice of ground state. In the cases of MCTDA and MCRPA,ground 

state (I-1) is chosen. 

The second approximation is the form of ot . As for ordinary 

closed shell ground state TOA and RPA, ot is constructed of linear 

combinations of one-body p-h excitation operators. However, because 

the ground state is (I-1) certain orbitals have both excitations from 

them and excitations to them. Figure l illustrates this. at for 

singlet states is written 

0 t ( 00) = l ( Y C ( 00) - Z C ( 00) ) 
A <Ol[C (OO) ct (OO)JIO>l/2 Pn Pn Pn Pn 

where 

Pn ' Pn 

+ y l ( Y C ( 00) - Z C ( 00)) 
nrp <Ol[C (00) ct (OO)JI0>1/ 2 ny ny ny ny 
Yfn nY 'ny 

+ l l ( Y C ( 00 ) - Z C ( 00) ) 
· Yfn <Oj[C (00) ct (OO)Jlo>1/ 2 PY PY PY pY 

PY ' PY 

+ \"' 1 ( y Ct ( 00) Z C ( 00) ) 
n~p <Oj[C (00),ct (OO)JIO>l/2 np np - np np 

np np 

l l ( Y Ct ( 00) - Z C (00) ) (I -6) 
y~n <Ol[C (OO),ct (OO)]I0>1/2 ny ny ny ny ny ny 

c!.(oo) is a one-body tensor operator. 
lJ 
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Figure l. 

Possible single excitations for 

N
0

(K1 I (closed shell)nanS> + K2 1 (closed shell)papS>) 

ground state. 
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(a) ( b) 

p p~ p p 

K, +K2 K, +K2 
'T} 

H 
'TJ 

1 ► 
'TJ 

1~ 
'YJ 

( C) (d) 

p p 

K1 K I 

77 'TJ 
H 

(e) (f) 

p =;r p H 

K2 H K2 ~~ 
'T} 

~~ 77--+1-
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t l C .. ( 00) = - ( C • C • + C • a C • a ) 
1J /2 lCl JCl 11-1 J1-1 

C .. (00) = C
1 
.. ( 00) 

1 J J 

Evaluating the commutators in (I-6) using 

K2 n, = 1 

n2 = K~ 

+ I (Ynycny(00) - znycny(00)) 
n!p 
Y'fn 

+ J. ( y P l 1 / 2 C PY ( 0 0 ) - Z PY l l / 2 C PY ( 00 ) ) 
Y ~ n Y ( 1 - n 1 ) ( 1 - n 

1 
) 

( I-7) 

(I-8) 

( I-9) 

+ I (Y 
1 

112 c (00) - zny 1 
112 c

11
Y(00)) 

Y'f n ny ( 1 - n 
2 

) ny ( 1 - n ) 
2 (I-10) 

A similar equation exists for the triplet manifold. 

Use of (I-6) or (I-10) in (I-4) gives matrix equations in RPA or 

time dependent Hartree-Fock form 

(I-11) 
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where A is Hermitian and B is symmetric. 

C .. (00) 
A. . k£ = <O I [ l J t 1 /2 ' H ' 1J, <ol[c .. (oo),c .. (oo)Jlo> 

lJ lJ 

C .. (00) 
BiJ.,k,Q, = -<DI[ lJ 1/2 'H' 

<OI [c .. (oo) ,ct .(oo)Jlo> 
lJ lJ 

Ck,Q,(00) 
-------~] IO> 
<Oj[cki(oo),cti(oo)Jlo>112 

(I-12) 

(I-13) 

(I-6), (I-10), and (I-12) differ from ordinary closed shell 

ground state RPA operators and equations by the presence of terms such as 

Eq. (I-6), Eq. (I-11) results. Thus only slight modifications need to 

be made in standard RPA programs. Without the inclusion of the denom

inators in (I-6) a matrix equation of a more complicated form than (I-11) 

is obtained and hence more difficult methods are required to obtain 

energies and amplitudes. 

A and B for the MCRPA cannot be written in one form in terms of 

orbital energies and interaction matrix elements. In (I-12) and (I-13) the 

formula depends on the indices i ,j,k,£ . The formulas can easily be 

derived by means of formula writing programs. 14 
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Consider now the ordinary closed shell Tanm Dancoff Approxima-

tion for the same system. IO> is replaced by the Hartree-Fock ground 

state !HF> and o;TDA is 

(I-14) 

In the MCTDA all Z amplitudes except Zp in (I-10) are zero. From 

examining Fig. 1 in the MCTDA and hence MCRPA, we are explicitly in

cluding excitations from a correlated state and certain double excita

tions from the HF single detenninant state. In the ordinary TOA all 

excitations in Fig. (1) from the K1 configuration are allowed. The K2 

configuration in (a) corresponds to a deexcitation from a correlated 

ground state, and in (b), (e), and (f) to excitation from a correlated 

ground state. In (b) the K2 configuration is a triple excitation from 

the Hartree-Fock ground state and in (e) and (f) a double excitation. 

Performing an MCTDA or MCRPA calculation corresponds to explicitly cal

culating and including the K2 correlation coefficient. (a) and (b) 

include certain higher random phase approximation effects. 1 (e) and (f) 

explicitly account for certain ordinary double excitation mixing. Hence, 

perfonning an MCRPA calculation includes some of the effects of the 

EOM((lp-lh) + (2p-2h)). However, computationally MCRPA calculations are 

much smaller and less time consuming. 

EOM((lp-lh) + (2p-2h)) results are usually in excellent agreement 

with experiment. 3 By including certain of the more important ordinary 

higher RPA and double excitation mixing effects in the MCRPA th~ triplet 

instability problem should be reduced and good agreement with experiment 
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should result at a low level of approximation. 

Transition moments may be obtained from 

A 

where W is defined 

A 

W = l IZ T · • C · · ( 00 ) . . lJ lJ 
lJ 

Tij = <ilTlj> 

Replacing OA by the Hermitian conjugate of (I-10) yields 

{ 1/2 ( 
Wo\ = /2 (nl- n2) YPTl + ZPTl)WPTl 

+ f (Yny + Zny)Wny 
n1p 
YfTl 

+ I (l-nl )1/2 (YPY + Zpy)WPY 
Y=/-Tl 

+ I n~/2 (Ynn + znn)Wnn + L n]/2 (Ynp + znp)Wnp 
nfp nip 

(I-15) 

(I-16) 

(I-17) 

For problems in which traditional EOM methods break down because 

all correlation coefficients are not small, MCEOM methods can be used, 

e.g., the potential curves of excited states of many molecules at large 

internuclear distances. Schemes in higher order than the MCRPA can be 

employed if necessary. In the MCHRPA all correlation coefficients except 

for K1 and K2 in Eq. ( I-1) are detenni ned by Rayleigh Schrodi nger 

perturbation theory or iteratively and hence are assumed small. For 

the MCEOM ((lp-lh) + (2p-2h)) in addition to the MCHRPA correlation 
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coefficients double excitation corrections to o! are included in a 

perturbative-like scheme. 2 In this case double excitation operators 

may include excitations both to and from orbitals n and p . 

In this proposition multiconfiguration equation of motion methods 

have been developed to the extent that only small modifications to 

existing formula writing and EOM programs are required. The MCRPA 

matrix equations, (I-11), are of the same form as RPA equations. The 

MCRPA incorporates certain ordinary HRPA and double excitation effects in a 

straightforward manner. At this low level approximation oscillator 

strengths and transition energies should be obtained in good experimen

tal agreement at computer costs considerably less than higher order 

EOM schemes. Furthermore, instability problems should be reduced. 

Higher order multiconfiguration methods can be easily developed and 

may be useful for molecules at large internuclear distances. The 

MCEOM energies and vectors can be used as a discrete representation of 

the continuum and in other ways similar to EOM energies and amplitudes. 
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PROPOSITION II 

An Examination of Oscillation Stiengths in the Equations 
of Motion Method 

Abstract 

The length, velocity, and mixed forms of the oscillator strength 

in molecules are equal in the Random Phase Approximation (RPA). The 

three forms are shown to be equal through first order in the Higher 

Random Phase Approximation (HRPA or EOM (lp-lh)), and through second 

order the differences are expected to be small. It is proposed to 

make a numerical study of the three forms in the HRPA and to investi

gate the oscillator strength in the Equations-of-Motion including 

Double Excitation Mixing. 
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The strength of an electronic transition in atoms and molecules 

is proportional to the oscillator strength f of that transition. For 

fairly strong transitions f is approximately one. Recently the Random 

Phase Approximation has been utilized to calculate matrix elements for 

use in determining photoionization cross sections in atoms 1 and molecules. 2 

Thus it is important to be able to accurately and easily calculate 

dipole moment matrix elements . 

. Chandraskhar3 in 1945 explained that the use of the variational 

principle to detennine wave functions resulted with 11 
••• a good approxi

mation to the wave function only in that it yields a good approximation 

to the wave function in a region giving the main contribution to the 

energy integral, whereas other regions are important in the transition 

integral. ,.4 That is, in the dipole length formulation 

(II-1) 

where is the oscillator strength for the transition 0 + .\ , and 
A 

r is the total electronic position operator, large radial distances are 

emphasized, while in the other formulations 

(I I-2) 

+ 
where m is the total electronic momentum operator and 

(II-3) 

different regions of space are stressed. In fact, Hansen5 has shown 
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that an expression similar to (II-3) yields consistent results when 

comparisons are made between Hartree-Fock and "correlated" wave func

tions. That is, although for an exact wave function identities exist 

between (II-1), (II-2), and (II-3), for the Hartree-Fock wave function 

no equalities exist. In practice, use of a finite basis set expansion 

to approximate the Hartree-Fock ground and excited states can only make 

matters worse. 

Independently, Harris6 and Amus'ya et ~. 2 showed that while the 

Hartree-Fock wave functions can never yield consistent oscillator 

strengths and hence photoionization cross section among expressions 

(II-1) - (II-3), the Random Phase Approximation will. Perhaps somewhat 

exuberantly the author of a text on photoionization processes states 

that the 11 ••• degree of agreement between the three fonns ( of osci 11 a tor 

strengths) is often taken as a measure of the exactness of the wave 

function employed. 116 It is the purpose of this proposition to investi

gate the various forms of the Equations-of-Motion (EOM) to higher order 

than the RPA (the HRPA), to show that the three forms (II-1) - (II-3) 

are equivalent through first order terms, to propose that a numerical 

study be made of the three fonns in HRPA, and to propose a similar 

investigation including double excitations in the EOM. 

Consider the Random Phase Approximation (RPA) and the Higher 

Random Phase Approximation (HRPA) . In the latter form of the Equations

of-Motion the operator o; remains the same as in the RPA, namely, 

o:(sM) = I [Ymy(As)c~(sM) 
my 

- zmy(\S) cmy(SM)] 

( II-4) 
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where for convenience spatial symmetry is ignored. However, when 

matrix elements are evaluated the Hartree-Fock ground state jHF> is 

replaced by a better approximation to the ground state 

jO> = N
0

[jHF> + Ix>] 

<XjHF> = 0 

( II-5) 

where x is the correlation wave function for the ground state. 7 In 

either approximation, the transition amplitude is given by 

( II-6) 

where T is any one-electron operator. Substituting (II-4) into (II-6) 

yields 

where 

and 

= /'[ itr (TvmYmy(AO) + Tmv Zmy(AO)) Pyv 

-v 

(II-7) 

(II-8) 

(II-9) 

(II-10) 
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the one-body operator closed with two states which span the space of 

interest (usually the Hartree-Fock single-particle states). Notice 

that the order of writing subscripts is important on the T1 s since all 

one-body operators will not be real. 

Now if the total electronic momentum operator 
A 

for T, 

<01m1A> = 12" l mym(Ymy(AO) - Zmy(AO)) Pyv 

V 

- 12" l myn(Ymy(AO) - zmy(AO)) Pmn 

n 
A 

➔ 

m is substituted 

(II-11) 

➔ where the following property of the m operator has been used 

m = -m (rr-12) ym ~ 

Harris5 derives the following relationship 

(II-13) 

➔ ➔ 

Note that rvp = rpv . In the Random Phase Approximation, pyv = ovy' 

Pmn = 0, and from 

I [amy n~(S) Y
0
~(\S) + ~my n~(S) zn~(\S)] no(r) , u u , u u 

= w(\rS) l v~ no Yno(\S) 
no(r) ' 

(II-14) 
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we obtain 

(II-15) 

+ {2V - V ) Z ] mnyo mnoy no 

(II-16) 

- (2V - V ) Y ] mnyo mnoy no 

Substitution of (II-13), (II-14)~ and (II-15) into equation (II-11) re

sults with 

making the three fonns of the oscillator strength be equal. This is 

simply the result derived by Harris. 

Now equation (II-11) will be extended to the HRPA. From the HRPA 

equations8 

W Y - w Y + w ' ~ (2) Y - w ' p( 2) ~ y 
my my - \ my .\ ~o umn Pyo n8 \ ~o mn uyo no 

- '(2V - V ) Y - ' (2V - V ) Z 
l moyn many no l mnyo mnoy no no no 

- l srrry,no 2no - I xmy,no 2no 
no no (II-18) 
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-w Z =' (2V - V )Z +' (2V - V ) my my l moyn many no l mnyo mnoy no no 

(2) , (2) 
+ w, zmy + w, l 8 p ~ Z ~ - w, l 8 ~ p Zn~ 

I\ I\ no mn yu nu /\ n,o yu mn u 

+ l smy no Yno + I xmy no Yno 
no ' no ' 

A = A0 (0) + o [J - -2
1 (s + s - 2s ) p( 2)J my,no my,no yo mn m n y mn 

l (2) - 0 [J - .!-f2s - E - E ) p ] mn yo 2' m y o yo 

A~,n0(0) = matrix element of RPA above 

B~y,no(O) = matrix element of RPA above 

snry,n6 = - ~µ {Vmµ6p Cpµ,ny(O} + Vnµyp Cpµ,my(O)} 

l * 
Tmn = - 2 q!v {Vmqµv Cnµ,qv(O) + Vµvnq Cmµ,qv(O)} 

Ty6 =} I {Vpqyv c;6,pv(O) + v6vpqcpy,qv(O)) 
pqv 

Xnry,n6(0} = tv Vµvy6Cmµ,n)O) + ~q VmnpqCpy,qO(O) 

- l\l {Vmµp6cpy,nµ(O} + vnµpy cp6,mµ(O)} 

(II-19) 

(II-20) 
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Substitution of (II.18) and (II-19) into (II-11) and dropping all tenns 

quadratic and higher in the correlation coefficients except tenns of 
2 the type wijc to yield a consistent order in perturbation theory 

results with 

where 

A 

-+ w A 

<OlmlA> = _):_ <OlrlA> + O.T. 
. 1 

- i \ wmA (2) Y 8 \ 8 T Y 
c ~8 u Pyo no mn - ~8 yo mn no 

+ l 8mn 1 s Yns - l smy ns Zns - l xmy sZ s no yu u no , u u n8 ,nu nu 

( II-21) 

\ ( 2) \ ( 2) z + , s [T 
+ WA l O Pyo zn8 - WA l o 8 Pmn no l uy8 mn no mn · no Y no 

1 (2)] z + I s y + \ X y J 
- l wm8 Pyo no no my,n8 no ~8 my,n8 no ( II-22) 

All of (II-22) are second order terms and hence are likely to be small. 

Now if wAYno and wAZno are replaced by their values in (II-18) 

and (II-19) and higher order terms dropped, all expressions involving 

w1s in (II-22) cancel, provided 



-251-

' rm ' w o p( 2) Y ~' r ' w p( 2) y o 
~Y Y ~o no mn yo no ~Y my ~o my yo no mn 

(I I-23) 

In addition, from calculations on N2 and co9 the X tenns are small 

and can be ignored. The terms remaining 

T.R. = 12 ( l) { 1 , -;: ( v c * + v c ) 
1 2" qtv my mqµv nµ,qv µvnq mµ,qv 

mny 

l -+ * 
- 2" l rmy(VpqYvcpo,qv + vovpqcpy,qv) 

pqv 
myo 

- p~ rnry(VmµOpCpµ,ny + VnµypCpµ,mO)} (Yno - Znol (II-24) 

no,my 

do not in general cancel. However, the relatively good agreement be-

tween theoretical predictions based on the length formulation and exper

iment indicate that the effects are probably small. It would be inter

esting to evaluate the magnitude of these tenns. 

The methodology for including double excitation theory in order 

to compare forms (I-1) - (I-3) is exactly the same. It can easily be 

shown that the additional effects will be proportional to y( 2) Cmn yo 
and thus very small. 
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PROPOSITION III 

Abstract 

Partitioning techniques are discussed for bound state configura

tion interaction calculations. A simple partitioning technique is 

described which could provide a straightforward approach for calculat

ing total energies. This method could also be used as a scheme to 

select important configurations for a more complete treatment. 
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Proposition III . Partitioning Techniques in Configuration Interaction 

Calculations 

Partitioning techniques were first described by Lowdin and 

others in the late l940 1 s. 1 Since then there has been considerable in

terest in the method. 2' 3 The basic idea is to divide a linear set of 

equations so that the subspace of interest is separate. Hence in a 

large eigenvalue problem we can concentrate on the part of the space 

of importance in a particular problem. Schemes have been developed 

for calculating the coupling correction of one part of the space to 

another without using large amounts of computer time or core. 3 Since 

in many cases of interest the coupling correction is small, perturba

tive schemes seem promising both as a quick, simple method for cal

culating eigenvalues and eigenvectors, and as a way to determine a 

reliable partition where the correction is treated only approximately. 

In this proposition the partitioning technique is described. 

I propose developing a similar scheme for configuration interaction 

calculations and performing a series of calculations on simple systems 

such as He and H2 to test its efficacy. 

It may be possible to use this partitioning technique to test 

the importance of certain configurations in a calculation. A simple par

titioned CI is initially calculated. Those configurations which con

tribute to the energies perturbatively by more than a certain amount are 
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incl uded in the main matrix in the final calculation. All remaining 

configurations are treated perturbatively. 

In a configuration interaction calculation the following equations 

are solved for the energy E and the eigenvectors {C} : 

H C = E C (III-1) 

H .. 
lJ 

= <ilHlj> ( I II-2) 

I * A = ¢ H¢J d1" ( II I-3) 

A 

H is the Hamiltonian and {¢} is a complete orthonormal set which 

spans the vector space of interest. The wavefunction ~t is 

For many problems in atomic and molecular quantum mechanics the 

vector space is extremely large so that the space must be truncated, 

e.g., in a configuration interaction calculation where {¢} is trun

cated to be a Hartree-Fock SCF wavefunction and all single and double 

excitations. 

Suppose there are subsets {A} and {B} of {¢} where {A} 

is a part of the space of special interest or importance and {B} is 

the remainder, e.g., in a CI ground state calculation on a system with 

a closed shell SCF ground state {A} could include the SCF state and 

selected double excitations, and {B} could be the remaining double 

· and some quadruple excitations. 
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Equation (l) can be symbolically rewritten 

"' "' 
<AIHIA> CA+ <AIHIB> CB= E CA (III-5) 

"' "' 
<BIHIA> CA+ <BIHIB> CB= E CB ( II I-6) 

Solving (6) for CB we obtain 

(III-7) 

Using Eq. (7) in Eq. (5) results with 

(I I I-8) 

or 

(III-9) 

where 

(III-10) 

Ii> and lj> are members of {A} and lk> and Ii> are members of 

{B} • 

Equation (9) is a smaller eigenvalue problem than Eq. (1 ). How

ever, 6H contains the inverse of a matrix of {B} . For large con

figuration interaction calculations this matrix inversion can involve 

large amounts of computer time and core. Furthermore 6H contains E 

so that usually an iterative scheme must be used to solve Eq. (9). An 

advantage of using (9) is that only the {A} part of the space eigen

values and eigenvectors is calculated. For many problems this subspace 

is the most important so that 6H may be calculated by an approximate 
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scheme. 

For simplicity consider the ground state of a system that can be 

well described by the Hartree-Fock SCF closed shell ground state. A 

finite basis set expansion yields a set of basis states. We can con

sider for example in {A} the Hartree-Fock single determinant state 

and selected double excitations. In {B} we include remaining 

double, quadruple, etc. excitations. Instead of Eq. (l),for simplicity 

we solve 

(III-11) 

where E
0 

is the SCF energy, and 

~E = E - E 
~ ~O 

(III-12) 

The equations for the matrices are given by the standard formulas. 5 

Equation (10) becomes 

MH-E ) .. = I <il(H-E )lk> <kl(H-E - ~EA)-1Ii> <£1(H-E
0
)lj> 

0 lJ k,Q, 0 0 
(III-13) 

Since, for example, the number of quadruple excitations is large, the 

inverse of ~ -~
0

- ~~A is large and may involve considerable computer 

time. 

We write 

(III-14) 

where ~l is the on diagonal part of H - ~
0

- ~~A' and ~l is the off

diagonal matrix. Equation (14) can also be written 
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(III-15) 

where F2 is the on diagonal matrix of orbital energies· and 6~A' and 
t 

~2 is everything else. Equations (14) and (15) are combined 

H - E - 6EA = F - G 
~O ~ 

(III-16) 

where 

(III-17) 

(F + .•• (III-18) 

Since in both Eq. (14) and Eq. (15) F is diagonal, F-l is d,iagonal. 

In the case of Eq. (15) for quadruples 

-1 1 
~
F2 = (--------------=--) o 

s + s + s + s - s - s - s - s - 6 EA k,Q, m n p q y v n p 
(III-19) 

where k and ,Q, are quadruple excitations out of the Hartree-Fock 

ground state, 

I 
m n p q > 

Y V T) p 

s is the orbital energy, m,n,p,q are particles, and y,v,n,p are 

holes. For ~l Eq. (19) is modified by interaction matrix elements in 

the denominator. Equations (18) and (19) are similar to equations of 

many-body perturbation theory6 where the Green's function is expanded 

in terms of the free particle Green's function and the two-body inter

actions. 
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If Eq. (18) is truncated after the first tenn, Eq. (13) becomes 

for quadruple excitations 

6(H .. - E cS- .) , J O , J (s + s + s + s - s - s - s - s - 6EA+ u12 ) m n p q y v n p 

(III-17) 

where u12 is zero if Eq. (15) is used and is interaction matrix ele

rne n ts if E q . ( l 4 ) i s used . Si mil a r e qua ti on s a re used f o r do u bl e ex c i -

tation mixing corrections in the equations of motion method including 

double excitations4' 7 and equations of motion method for ionization 

potentials. 8 

If {A} contains N1 configurations and {B} contains N2 con-

figurations, an unpartitioned CI calculation involves the diagonaliza

tion of an (N 1+ N2) x (N 1+ N2) matrix. Using this partitioning tech

nique an N1xN1 matrix is diagonalized. The total number of elements 

stored in the unpartitioned case is (N 1+ N2)(N1+ N2+1)/2 and in the par-
N N 

titioned case N1(N 1+1)/2 +-¥ + N2 . Thus there can be considerable 

savings in computer costs using this scheme. 

Equation (17) is much less complicated than the actual inversion 

of(~ - ~
0

- 6~A) in Eq. (13). However, the assumption that(~ -~0 - ~~A) 

is diagonal may not be a reasonable approximation. It would be inter

esting to test the validity of Eq. (17) for several small molecules for 
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both approximations Eq. (14) and Eq. (15) using selected doubles and 

quadruples, and to compare the result with the unpartitioned CI con

taining the same configurations. If Eq. (17) or a similar partitioning 

scheme can be used there may be considerable savings in computer costs 

for configuration interaction calculations. Similar methods have been 

· independently proposed by Segal . 9 

An additional advantage of the partitioning scheme, Eq. (17), is 

that the method can be used as a test to determine which configurations 

are the most important and must be included in {A} . Again, we will 

use the example of the ground state of a closed shell SCF system. 

Initially {B} contains selected doubles and quadruples, and {A} 

contains the ground state and certain doubles. 

Eq ua ti on ( 9) i s 

(III-18) 

From perturbation theory 

(III-19) 

where 

(III-20) 

Equation (20) is an eigenvalue problem which is solved exactly. The 

energy change /J.EA ( 1) is determined from Eq. ( 19) using the scheme in 

Eq. (16) where /J.EA is approximated by /J.EiO) . Two new sets {A'} 

and {B'} are selected. The new {A'} contains {A} and all con

figurations for which l!J.Ei1)1 for that configuration is larger than a 



-261-

certain value. {8 1
} contains all remaining configurations. A parti-

tioned CI is calculated using new sets {A'} and {8 1
} • ~EA is 

determined iteratively. 

The partitioning technique in configuration interaction is 

briefly examined and discussed. An approximation scheme is developed, 

and it is proposed to use the scheme for a series of cases to test its 

validity. As shown in Eq. (19), the technique can easily be used to 

select the configurations to be used for an unpartitioned configuration 

interaction calculation. 
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PROPOSITION IV 

MOLECULAR CONTRACTIONS OF GAUSSIAN BASIS SETS 
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PROPOSITION IV 

MOLECULAR CONTRACTIONS OF GAUSSIAN BASIS SETS 

Abstract 

Two-body three and four center integrals in molecules are more 

easily calculated using Gaussian functions than Slater functions. How

ever, Gaussian basis sets do not describe the electron density as well 

as Slater functions. Consequently, larger basis sets of Gaussians are 

required for an equivalent description. To reduce the size of sub

sequent self-consistent field (SCF) or configuration interaction (CI) 

calculations, various contraction schemes have been developed. 

Usually these methods involve a contraction of the Gaussian primitives 

to approximate the atomic orbitals from an SCF calculation. Several 

new contraction schemes are discussed. These contractions involve a 

simple molecular SCF calculation. The contraction coefficients for 

atoms in a certain functional group are the coefficients which approxi

mate the optimal orbitals for that group. It is anticipated that better 

energies and properties can be calculated using these sets; or, 

equivalently, smaller basis sets may be used in many calculations. 
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To obtain molecular orbitals in a self-consistent field (SCF) 

calculation for molecules, a finite basis set expansion is used, 

where ¢ · 
l 

is the molecular orbital, 

(IV-1) 

{x} are the basis functions, 
n 

and {C} are the expansion coefficients. The best approximation to 

the Hartree-Fock molecular orbitals is obtained from1 

F¢. = s.¢. 
l l l 

(IV-2) 

where F is the Fock Operator. Equation (IV-2) is solved iteratively 

since F contains integrals involving the orbitals. 

A reasonable choice for the basis functions {x} are Slater 

functions centered on the atoms of the form 

n is the principal quantum number, Ns is a normalization constant, 

and ps is an exponent which may depend on the atom and the problem 

to be solved. 

Two-body three and four center integrals of the fonn 

(IV-4) 

are evaluated in solving Eq. (IV-2). The calculation of these inte

grals for large basis sets can involve large amounts of computer time. 2 

Boys 3 proposed using Gaussian functions 

( I V-5) 
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These functions simplify considerably the evaluation of two-body inte

grals. Since a Gaussian function lacks a cusp at r = 0 , the electron 

density near a nucleus is not described as well as with a Slater. 

Hence Gaussian basis sets several times the size of Slater basis sets 

are often needed to attain the same energy. 4 Thus the computational 

advantages of Gaussians are diminished, although not eliminated. 

A further problem is that the large basis sets result with the 

diagonalization of large SCF matrices. Dunning5 has shown that certain 

groups of basis functions can be grouped (contracted) together with 

fixed coefficients to reduce the size of the matrices. For example, 

basis composed of 9s primitive Gaussian functions and 5 p primitive 

Gaussian functions is reduced to 4s and 3p contracted Gaussian 

functions. These contraction coefficients are usually chosen to ap

proximate an atomic SCF calculation using the primitive basis. The coef

ficient of each contracted Gaussian is variationally determined in a SCF 

calculation. Although the SCF energies of molecules using con-

tracted functions are slightly higher for molecules than using equiva

lent sized Slater basis, a few of the primitive Gaussian functions in 

the valence space are allowed to vary freely so that the bonding region 

should be described fairly well. 

Empirically many properties of larger molecules can be viewed as 

cumulative effect of many local contributions. 6 For example, n ➔ n* 

transitions are observed in homologous series of molecules containing 

carbonyl groups. Similar results are seen for dipole moments, reactiv

ities, bond energies, and ionization potentials. A better primitive 
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Gaussian contraction would take into account the effects of bonding 

and possibly nearest neighbor interactions. Such optimal contractions 

for different functional groups and atoms are calculated for a repre

sentative small molecule, e.g., for carbonyl CO, H2co, or (CH3)2co. 
The resultant contraction coefficients are obtained from the invariant 

atomic orbital method of Cusachs and Aldrich7 or some other similar 

localization scheme. 8 The functional contraction coefficients are 

then used in other calculations for the group or atom, e.g., transi

tion metal carbonyls. This method will result in better energies and 

charge densities. Smaller contracted basis sets may be used than when 

atom optimized contracted sets are used. Functional contraction coef

ficients may be obtained with little expense, using molecular wave 

functions described in the literature. 

In the remainder of this paper, we will briefly describe the 

segmented contraction scheme of Dunning5 and the general method of 

Raffenetti. 9 Then we will discuss how to obtain contraction coeffici

ents from the invariant atomic orbital method of Cusachs and Aldrich. 7 

In a segmented contraction, 5 an SCF calculation is done for the 

ground state of the atom using the completely uncontracted Gaussian 

primitive basis. The exponents in Eq. (5) are obtained from an opti

mization scheme for the uncontracted basis set, e.g., see reference 4. 

The output vectors for a certain symmetry orbital are examined and a 

reasonable initial division of the primitive space into a fixed number 

of contracted functions is made. For example, a 9s primitive space 

may be divided into a (6s, ls, 2s) contracted space. The coefficients 
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of the primitives within each contracted function are fixed. They are 

usually obtained by simply selecting the coefficients from the atomic 

function and renormalizing. The partitioning of the primitive space 

is varied keeping the number of contracted functions fixed. No 

primitive is used in more than one function. The partition with the 

energy closest approaching the SCF energy of the uncontracted set is 

used for later molecular calculations. DunningS,lO has published a 

series of papers describing the method in detail and listing contrac

tion coefficients. 

Raffenetti 1 s9 general contraction scheme is physically more ap

pealing. The restriction of not using a primitive in more than one 

contracted function is dropped. For first row atoms all primitives are 

used in a contraction for the ls, 2s, and 2p functions with the fixed 

coefficients from an SCF atomic ground state calculation. In addition, 

other functions are included which are either the virtual orbitals from 

the atomic calculation or the most diffuse Gaussians of the set. Thus 

there is a rather good atomic description of the SCF ls, 2s, and 2p func

tions. Dunning's segmented scheme required only minor modifications to 

the readily available POLYATOM series of programs. However, to use 

Raffenetti's method using POLYATOM is very expensive or requires a new 

integrals program. 

Both the segmented and general contractions are optimized 

for the ground state SCF of an atom. The valence orbitals can 

change considerably upon bond formation. 11 Even core electron 

binding energies change as much as 10 eV depending on the molecular 

· 12 env, ronment. 
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Subtle changes in the electron charge density may be important for the 

calculation of one-body properties 7, and configuration interaction cal

culations where molecular orbitals based on atomic contractions are 

used may not as rapidly converge. Bearing these considerations in 

mind, a simple yet effective procedure is to optimize contractions for 

molecules and not atoms. It may be possible to choose an optimal set 

of contraction coefficients for a given atom in a molecule or for a 

given functional group. In the latter case we retain our intuitive 

ideas about molecules and the chemical bond. 

The coefficients are found by the method of Cusachs and Aldrich7 

which they used to obtain invariant atomic orbitals by radial moment 

analysis of accurate molecular orbitals. This scheme differs from 

theirs in that we do not construct optimal atomic orbitals but instead 

use the coefficients directly for an optimal molecular contraction. 

For simplicity, we describe a segmented contraction scheme. Extensions 

to general schemes are obvious. Finally, a simple method is proposed 

which should yield good molecular contractions at minimal cost. 

A simple prototype molecule or molecules is selected and a com

pletely uncontracted LCAO SCF calculation is performed. The contrac

tion scheme is chosen. It may be segmented, general, or some combina

tion. The primitives of a contracted group are renormalized for each 

molecular orbital. These new coefficients are averaged over all 

molecular orbitals with the weighting function the old normalization 

integral. Thus optimal contraction coefficients for atoms in molecules 

are easily obtained. 
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For general or combined contractions molecular orbitals that are 

primarily inner shell are separated from the other orbitals. These 

are then used to construct optimal ls contractions. The most dif

fuse primitive Gaussians are included in the contracted set and are 

allowed to vary freely. 

We can use the contraction coefficients for atoms in a certain 

functional group in more complicated molecules. The molecular environ

ment will thus be better described and we expect better theoretical 

one-body properties and energies as well as better CI convergence. 

A simple, straightforward procedure for obtaining contraction 
~ 

coefficients is to expand the invariant atomic orbitals of Cusachs and 

Aldrich7 in terms of Gaussians using 

(IV-6) 

h . b H . 4 A l 1 . ld b were a. are given y uzinaga. na ogous y, a comparison cou e 
1 

made between calculated rk moments and a Gaussian expansion to deter-

mine the -contraction coefficients. Again valence space primitive 

Gaussians are included in the contracted space and allowed to vary 

freely. 

Several basis set contraction schemes are proposed which would 

more optimally describe the molecular environment than currently used 

methods based on atomic SCF calculations. The resulting contraction 

coefficients can be used for functional groups or atoms in more com

plicated molecules. 
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PROPOSITION V 

SOME ASPECTS OF SHAKEUP STATES IN 

PHOTOELECTRON SPECTROSCOPY 
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PROPOSITION V 

Abstract 

A new method is proposed for predicting relative energies and 

intensities of shakeup satellite structure in photoelectron spectros

copy. Combinational states are shown to be weakly coupled to simple 

ionization. Hence, these states most likely are not observable. For 

closed shell ground state atoms and molecules simple shakeup states 

are actually twin peaks corresponding to the two possible ways to 

couple three unpaired electrons to doublet states. This satellite 

structure may be observable in c2o3. A calculation is proposed to 

clarify the spectra of CuO and Cu2o. 
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In photoelectron spectroscopy a photon ionizes an atom or 

molecule. 1 The intensity of the scattered electrons is measured as a 

function of kinetic energy and possibly angle. In :this proposition 

we will not be concerned with the latter. For valence electrons the 

photon source is often the vacuum UV or He(I) resonance line at 

21.22 eV or the He(II) resonance line at 40.8 ev. 1 The aluminum Ka 

line at 1487 eV and the magnesium Ka line at 1254 eV are often used 

to study both core and valence electrons. 2 

If the photon has sufficiently high energy the molecule may 

simultaneously excite or ionize in addition to the initial ionization. 

This phenomenon is observed as 1 ow intensity peaks ( "sate 11 ites 11
) in 

the electron spectra at electron energies lower (or binding energies 

higher) than the main peaks. The excitation process to bound states 

accompanying ionization is called "shakeup", and excitation to a con-

tinuum state accompanying ionization is "shakeoff." Progress has 

been made correlating shakeup and shakeoff states to molecular struc-

2-4 ture. 

In this proposition a few aspects of shakeup states in photo

electron spectroscopy are examined. Most of the examples will be for 

photoelectron spectroscopy of the inner shell. The ejected electron 

will be assumed to be of high energy so that 

ejected electron-ion interactions can be safely ignored. 

Similar ideas are of course applicable to photoelectron spectroscopy 

of the valence shell. 

We propose a new method for the calculation of positions and -

intensities of shakeup states and briefly discuss a similar method for 
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Auger spectroscopy. We then examine the predictions of shakeup ener-

gies by both relaxed ion virtual space methods and ordinary bound state 

excitation energies. The fact that closed shell photoelectron spectra 

should yield two doublet shakeup states at very close energies is 

pointed out. The possibility of observing combinational states is dis

cussed. Finally we note the feasibility of doing large scale calcula

tions on transition metal compounds to resolve such questions as the 

existence of shakeup states in dlO compou-nds like Cu2o. 

The theoretical method is simple and involves the diagonaliza

tion of relatively small matrices. We solve 

(V-1) 

where wA is the photoelectron binding energy and o: is the ioniza

tion operator composed of a linear combination of electron removal 

operators, electron removal with simple excitation and deexcitation 

operators, and possibly electron removal with double excitation and 

+ deexcitation operators. We include in OA only operators for which a 

given electron, v , is removed, except for simple electron ejection 

where electrons in any orbital including virtuals may be removed. This 

effectively limits matrix size in diagonalization. There are many 

combinational operators (electron removal with double excitation) so 

that they are not included, included perturbatively, or selectively 

diagonalized in the main matrix. For simplicity they will not be con

sidered here at present. 

Equation (V-1) is evaluated over a restricted Hartree-Fock 

ground state and no correlation coefficients are explicitly evaluated 
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(1 a.(1,2) 8(1 ,2) y 
~ ~ ~ 
Q(l,2) a(2 ,2) 0 y(2) = 

13(1,2) 0 
_8 (2,2) z(2) 
~ 

y 

(V-2) 

Matrix elements in Eq. (V-2) are given elsewhere. 6 Terms in cl cor

responding to electron removal from a particle level and B terms are 

due to electron correlation in the molecular ground state. Relaxation 

effects are in CL, a.,(l ,2), and ci( 2,2) 

In actual calculations Eq. (V-2) is block diagonalized by sym

metry and for small molecules in basis sets of double zeta quality, most 

syrrrnetry matrices will be less than 50x50. 

Intensities of shakeup peaks relative to the main peak in the 

dipole approximation are given by 

<l]J(N) lrl lµ~,(N-1) u(r)> 2 

<l]J(N)lrllJJA(N-1) u(r)> 

(V-3) 

where l]J(N) is the ground state, ~~.(N-1) is a shakeup state, l]JA(N-1) 

is the ionic state corresponding _to the main peak,and u(r) is a free 

electron plane wave state. Equation (V-3) is rewritten 

+ 2 
PS~ l<HFI CV 01, IHF>I (V-4) 
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This is simply the probability that there is a A1 shakeup peak rela-

tive to the main photoelectron peak. This equation is identical to the 

probability of observing a peak in the sudden approximation. 5 
vie do 

not consider electron ionization occurring before excitation but regard 

the processes as simultaneous. 

Since this proposition is not intended to be a detailed theoret

ical examination of Eqs. (V-l)-(V-4) but rather applications oriented, 

it is pointed out that similar methods can be used for Auger spectros

copy. Rowe's equations of motion for Bose-like transfer operators7 are 

used instead of Eq. (V-1). □1 operators now contain principally linear 

combinations of two electron removal operators and two electron removal 

with excitation and deexcitation. Again, all ejected electrons are 

assumed to have high energy. 

Two methods are in general use for the calculation of shakeup 

state positions and intensities, We feel that the method outlined above 

is probably a better approximation. Here the other two models are 

briefly described. 

A much used approach is to calculate wave functions and shakeup 

state energies for the relaxed ion. That is, the Hartree-Fock orbitals 

are allowed to relax after electron removal. The shake-up state wave 

function is then obtained from this relaxed wave function by the single 

transition approximation in which an electron is promoted to a single 

virtual orbital 8 or by single excitation cr. 9 In the former the exci

tation energy is some average energy difference between the virtual 

electron energy which moves in a potential appropriate for the N electron 

system and the core electron which moves in the ionic N-1 potential. Even 
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the single electron CI9 ignores ground state electron correlation and 

coupling between simple ionization and shakeup. 

Another cormnonly used estimation of shakeup peak positions is to 

simply use bound state excitation energies. 3' 4 This approximation as

sumes the sudden approximation is completely valid and no relaxation 

occurs upon electron removal. 

For closed shell molecules all shakeup peaks are actually twin 

peaks due to the two possible doublet spin couplings of three elec

trons in different MO's. Of course, intensities by Eq. (V-4) may differ 

considerably. Preliminary calculations on N2 at equilibrium geometry 

indicates that the splitting is usually on the order of 0-3 eV with 

most between 1-2 eV. Thus some observed satellites in photoioniza

tion2 and complexities8 in the spectra may be partially due to the twin 

satellite structure. For example, in the ESCA spectrum of c3o2 gas2 

there is a sharp satellite peak 7.9 ±0.2 eV below the main C ls peak. 

Smaller less distinct peaks are observable around 10 eV and 14 eV. The 

structure around 10 eV may be the other doublet spin state associated 

with the peak at 7.9 eV. More detailed theoretical investigation is 

obviously required. The complex structure in (C6H6)aCr between 5.7 eV 

and 30 eV may be partially due to overlapping doublets associated with 

th t ·t· 3 e same rans, ions. 

Another consideration is the possibility of combinational 

states, 3 i.e., ionization with double excitation. Although such states 

are not forbidden in photoelectron spectroscopy, an examination of the 

most important coupling matrix element between single excitation and 

combinational states in Eq. (V-2) shows that the coupling involves 
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on ly two-body interactions of the type V TIP£ where y and y_ a re 

holes and p and £. are particles. These matrix elements should 

not be very large. Hence, the probability that an ion will result in 

combinational state upon photoionization is small from Eq. (V-4). The 

assignment of the shakeup band around 7 eV from the main Cr 2p peaks 

in the X-ray photoelectron spectra of Cr(C0)6 as possibly a combination 

band3 is probably not correct. 

Finally, we ~iscuss the applicability of this method to transi

tion metal compounds and complexes. For example, the positions and 

intensities of the shakeup states related to the Cu 2p main peak in 

CuO and cu2o can be predicted. Experimentally off the shelf CuO and 

Cu2o exhibit satellite structure relative to the Cu 2p peak. This is 

surprising for Cu2o which has a dlO metal ion since satellite structure 

is predicted as 1 i ga!1d ➔ meta 1 3d. That is, octahedra 1 Cu I ion has a 

configuration (t2g) 6(eg)4 so that ignoring correlation effects, there 

is no empty 3d orbi ta 1 for the L ➔ M charge transfer. The observed 

satellites disappear after heating the sample in vacuum for 20 min at 

200°c lO and are hence most likely due to adsorbed high binding energy 

oxygen10 or to CuO contamination. 12 

Pignataro et al. 3' 4 predict that with the removal of an electron 

from a localized orbital the shakeup process is enhanced when the 

ionized electron is from an atom which is an acceptor in a charge 

transfer process. Hence, the structure observed by Sch~n11 starting 

around 5 eV higher binding energy than the O ls peaks in cu2o is 

probably M ➔ L charge transfer. 
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To theoretically examine the spectra of CuO or Cu02 using 

Eq. (V-1) - (V-4) requires large amounts of computer time and core. 

However, with rapidly developing computer technology, transition metal 

SCF calculations are no longer prohibitive. 13 Furthermore, pseudo

potential techniques 4 have been recently developed to accurately 

replace the transition metal Ar core. Of course, for the latter 

photoelectron spectra of the metal inner shell could no longer be 

predicted. The use of Eq. (V-1) to Eq. (V-4) for CuO and Cu02 should 

further elucidate the spectra, particularly the presence of absence 

of cuprous ion satellites and M+L transitions 

peaks. 

near ligand main 

In this proposition we have proposed a new method to theoreti

cally predict relative energies and intensities of shakeup satellites 

and Auger spectra. We emphasize that shakeup states arising from 

closed shell ionization are really twin states which can be as much 

as 3 eV apart. Combinational state coupling with simple electron 

removal is shown to be small, and hence these states are probably in 

most cases unobservable. He observe that structure around 535 eV in 

cu2o may be M + L charge transfer satellites, and propose a cal cula

tion to further elucidate CuO and Cu2o spectra. 

/ 



-281-

REFERENCES 

1. Electron Spectroscopy, edited by D. A. Shirley (North Holland, 
Amsterdam, 1972.) 

2. U. Gelius, C. J. Allan, D. A. Allison, H. Siegoahn, and K. 
Siegbahn, Chem. Phys. Letters l]_, 224 (1971). 

3. S. Pignataro, A. Foffani, and G. Distefano, Chem. Phys. Letters 

20, 350 ( 19 73) . 

4. S. Pignataro, R. DiMarino, G. Distefano, and A. Mangini, Chem. 
Phys. Letters~, 352 (1973). 

5. R. Manne and T. ~berg, Chem. Phys. Letters J_, 282 (1970). 

6. D. L. Yeager~ Ph.D. Thesis, California Institute of Technology, 
1975, p. 149. 

7. D. J. Rowe, Nuclear Collective Motion (Methuen, London, 1970). 

8. L. J. Aarons, M. Barber, M. F. Guest, I. H. Hillier, and J. H. 
McCartney, Mal. Phys. 26, 1247 (1973). 

9. M. H. Wood, Chem. Phys. i, 471 (1974). 

10. T. Novakov and R. Prins in Electron Spectroscopy ed. by D. A. 
Shirley (North Holland, Amsterdam, 1972), p. 821. 

11. G. Schon, Surface Sci. E_, 96 (1973). 

12. K. S. Kim, J. Electron Spectrosc. 1, 217 (1974). 

13. J. W. Richardson, T. F. Soules, D. M. Vaught, and R. R. Powell, 
Phys. Rev. B i_, 1721 ( 1971). 

14. C. F. Melius, B. D. Olafson, and W. A. Goddard, Chem. Phys. Letters 
28, 457 (1974); C. F. Melius and W. A. Goddard, Phys. Rev. A lQ_, 
1528 (1974). 




