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ABSTRACT

Part I

In Part I several applications of the equations of motion method
for closed shell around states are discussed. The equations of motion
method is used to study the excitation energies and intensities of
formaldehyde, water, and CH™. A formalism is developed for studying
intraexcited state transition densities, and applications are made to He
and NZ. This section is composed of three published manuscripts and two
manuscripts submitted for publication.

In HZCO the calculated excitation energies and oscillator
strengtns agree well with experiment and suggest explanations for some
unusual features recently observed in the optical absorption and elec-
tron scattering spectrum in the vacuum ultraviolet.

To explain the inelastic feature at 4.5 eV in the spectrum of
water and to study its spectrum in some detail, several calculations on
the excited states of water using the equations of motion method are
made. We conclude that the calculated vertical excitation energy of
6.9 eV for the 381 state corresponds to the strong feature at 7.2 eV
observed in low-energy electron scattering spectrum. The 4.5 eV inelas-
tic process almost certainly does not correspond to a vertical excita-
tion of water at the ground state geometry. The other excitation
energies and oscillator strengths agree well with experiment.

The equations of motion method is used to study the X'z AT
system in CH', In a computationally simple scheme, these calculations,

which were done in modest sized basis sets, provide transition moments
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and oscillator strengths that agree with the best CI calculations to
date.

An approximation for transition moments between excited states
consistent with the approximations and assumptions normally used to
obtain transition moments between the ground and excited states in the
random phase approximation and its higher order approximations is |
derived. The result is applied to the calculation of the photoioniza-

tion cross sections of the 23

S and 2'S metastable states of helium by

a numerical analytical continuation of the frequency dependent polariza-
bility. The procedure completely avoids the need for continuum basis
functions. The cross sections agree well with the results of other
calculations. We also predict an accurate two-photon decay rate for

the 2'S metastable state of helium. The entire procedure is immediately

applicable to several problems involving photoionization of metastable

states of molecules.

We report the transition moments between the excited states of
molecular nitrogen including their dependence on internuclear distance.
These moments are calculated non-empirically using a many-body approach
--the equations of motion method. These results suggest that it may be
simpler to calculate these transition moments and their variation with
internuclear distance rather than to attempt to extract this informa-

tion from available experimental intensity data.
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Part II

A straightforward scheme is developed for extending the equa-
tions of motion formalism to systems with simple open shell ground
states. Equations for open shell random phase approximation (RPA) are
given for‘the cases of one electron outside of a closed shell in a non-
degenerate molecular orbital and for the triplet ground state with two
electrons outside of a closed shell in degenerate molecular orbitals.
Application to other open shells and extension of the open shell EOM to
higher orders are both straightforward. Results for the open shell RPA

for 1ithium atom and oxygen molecule are given.

Part III

A simple method for directly calculating ionization potentials
and electron affinities is discussed. Formulas are given through third
order in interaction matrix elements and described in detail. Results
are presented for the jonization potentials of He, NZ’ and OH™ using

several different approximations.

Appendi x
A computer program General Mating XVI written in Fortran IV,
which has the ability to derive formulas for second quantized excitation
operators and Hamiltonians or various one-body and two-body operators
using correlated or uncorrelated Hartree-Fock ground states, is described
and Tisted. The program uses Wick's theorem to expand strings of elec-

tron creation and desctruction operators.
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Science

Man, introverted man, having crossed

In passage and but a little with the nature of things this
latter century

Has begot giants’; but being taken up

Like a maniac with self-love and inward conflicts cannot
manage his hybrids.

Being used to deal with edgeless dreams,

Now he's bred knives on nature turns them also inward:
they have thirsty points though.

His mind forbodes his own destruction;

Actaeon who saw the goddess naked among leaves and his
hounds tore him,

A Tittle knowledge, a pebble from the shingle,

A drop from the oceans: who would have dreamed this infinitely
little too much?

. Robinson Jeffers
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Ground States
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Equations of Motion Method: Excitation Energies

and Intensities in Formaldehyde
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I. INTRODUCTION

In recent papersl’ & we have discussed the equations of motion
method as an approach for direct calculation of the properties of physical
interest in spectroscopy, e.g., transition frequencies, intensities and
scattering cross sections. By using a theory specifically designed for
studying these relative properties one can avoid many of the difficulties
invoived in obtaining accurate values for absolute quantities such as the
total energies. We have derived several approximations to the solution
of the equations of motion for the operator O;: which generates the
state \A) from the ground state ‘O) . In the equations of motion method
the approximation which includes single particle~hole (1p-1h) and two
particle-two hole (2p-2h) components3 in O;, referred to as the (1p~1h) +
(2p~2h) approximation, gives results for transition frequencies and
intensities in N,, CO, C,H,, ) C.H., s and C025 in good agreement with
experiment.

In this paper we present results on the excited states of formalde-
hyde. These results include transition energies and oscillator strengths
for transitions below 2000 A which allow us to explain some unusual
features recently observed in the optical absorption6 and electron
scattering spectrum. 1 These studies were stimulated by the recent dis-
covery of formaldehyde in interstellar dust clouds8 and provided accurate
absorption coefficients between 2400 and 912 A. The absorption
coefficients in the vacuum ultraviolet are large and hence absorption
of photons in this spectral region is important in determining the
fate of formaldehyde in the interstellar radiation field. Some of the

unusual features in the spectrum that our results can explain include the
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prediction of a lBl(o-»ﬁ*) state at 9.2 eV with a very low oscillator
strength and equal oscillator strengths for the transitions to the 1B2
(2by3pa,) and lB2(2b24pa1) states. The calculated f~value for each
transition is 0.04 compared with the observed value of 0.03. This
distribution of intensities is unusual for a Rydberg series. Another
interesting feature of the spectrum is the apparent absence of any band
which could be related to the m-7* valence transition. Our results

show a transition to a lA1(1r, 7*) state at 10,10 eVwith primarily intra-
val_ence character but with a f-value of only 0.10. From the character-
istics of this state there is clearly an interaction between the neighboring
"A,(2b,npb,) states and the 7* valence state as discussed by Mentall

et al. 6

In the next section we give a very brief outline of our method.
Section III discusses the results of our calculations with different basis
sets designed to study specific features in the observed spectrum.

Section IV gives a summary of our conclusions.
II. THEORY

We have discussed the equations of motion method in recent
papersl’ . and we will give only a very brief summary of the theory in
this section. It can be shown that the operator O; which generates an
excited state |7\) from the ground state, i.e., |x) = O; IO), is exactly

a solution of the equation of motion9

(0|[80,, H, 0;1]0) = w, (0|[60,, O;]]0) (1)
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where 60; is a variation of the amplitudes specifying O; and wy the

excitation frequency. The double commutator is defined as
2[A’ B, C] = [[A’ B]’ C] + [A,[B9C]] (2)

We have derived various approximations to the solution of Eq. (1). ls 3
If O; is restricted to single particle~hole (1p-1h) form Eq. (1) becomes

A Bl D ol ¥

= wx (3)

BY -AX|Z0) O DIl 2z

where the elements of A, B, and D are defined in Ref. (1). We have also
shown that the theory including 2p~-2h amplitudes in O; is equivalent to a
renormalized 1p-1h theory. We have derived an approximate perturbative
scheme for sélving these equations including 1p~1h and 2p~-2h amplitudes.
Unless we state otherwise the results of the equations of motion method
will always refer to this approximation, i.e., 1p~1h + 2p~2h approxima-

tion.
III. RESULTS

The first step in an equations of motion calculation is to carry
out a self-consistent field calculation on the ground state of the molecule.
These SCF orbitals form the particle-hole basis. The ground state

electron configuration of formaldehyde is
1a,°2a,3a,%4a,*1b,%52," 1b, 2D, . @)

These calculations were done at the currently accepted ground state

experimental geometry. 10 1, these calculations we used a [3s2p/1s]
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valence basis of contracted Gaussian functions2 to which we added
diffuse Gaussian basis functions on the atomic centers and at the center
of charge. We have found that such a basis can adequately describe
the intravalence transitions and also transitions to the first members
of the Rydberg series. The basis must also contain these Rydberg com-~
ponents so as to study the valence~Rydberg mixing probably responsible
for some features in the formaldehyde spectrum. Since the equations of
motion method involves commutators that lead to operators of low rank,
we can expect a basis with a small number of valence components to be
adequate for carrying out calculations on most excited states including
intravalence transitions. The diffuse components of our basis includes
an s function with an exponent of 0.05 on each atomic center, a p function
with an exponent of 0.05 on the carbon and oxygen centers, an s function
and a set of p functions with an exponent of 0.016 at the center of charge
and also a Py and py function with an exponent of 0. 005 at the center of
charge. In these calculations we truncated the particle basis slightly so
as to use available computer programs. The resulting matrices were
no larger than of order 30 x 30.

Table I shows the excitation energies fortwelve transitions in
formaldehyde along with the oscillator strengths for the
seven dipole-allowed transitions. The calculated results listed in the
third column agree well with the observed values in the fourth column.
The experimental values for transitionstothe 1A2 (n—7*) and °A, (n—7*) states

11 The lAl-— 3A1 (1)

are the estimated vertical excitation energies.
has not been observed experimentally but could probably be seen quite

easily in low-energy high~angle electron scattering off formaldehyde.
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The calculated excitation energy of 9.2 eV for the 1Al - 1B1(0~ m*)
transition is close to the value of 9 eV inferred from the observed
spectrum by Mentall et al. b The oscillator strength of this transition
is only 0.002 in agreement with the assignment of weak absorption
features between 1340 and 1430 A (8.7 - 9.4 eV) to the 'B,(o—~7%) state.
This is the only intravalence transition assigned in the observed
spectrum below 2000 A.
The 'A,(n—7*) state is one of the puzzling aspects in the inter-
pretation of the spectrum of formaldehyde. No feature was observed
in either the absorption6 or electron scattering7 spectrum which could
be related to the 7—-7* excitation. We predict an excitation energy of 10.1 eV
and an f~value of 0,1 for this transition. This state is a valence-like state
with some admixture of Rydberg character through its interaction with nearby

Rydberg states. 6 For example the change in the average value of © (xiz+ yiz)
i

for the transition is about 15(&1.u.)2 which is larger than typical values

for pure intravalence transitions, i.e., 2-3 (a.u.)” but much smaller than
the values of 20-50 (a. u.)2 which characterize the first members of Rydberg
series. The f-value of 0.1 for this transition is clearly brought about

by the mixing of the intravalence (r—7*) state and the lA1 Rydberg states
with the configurations (2b,nb,) and (1b;nb,) in the present calculation.

This basis does not allow for the mixing of 1AJL(szndbz) states since it does

not contain ndb, functions. From the model calculations of Mentall et al. ,6
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we can expect strong mixing between the m-7* state and the
'A,(2b,ndb,) states. In the valence [3s2p/1s] basis® the "A(r—7*) state
has a large f~value of about 0.4 which decreases due to Rydberg-
valence mixing. If the final f-value for this transition does remain close
to 0.1 we will not expect to see a strong feature in the absorption since
this intensity will be spread over the entire band which can easily be
1 eV wide. Our results show a lA1 state near the 2b, ionization potential
which has a large f-value of 0.2 . This may be an important feature in
the spectrum but our present results are insufficient to identify it
reliably. We are now carrying out more extensive calculations including
the lA1(2b2 ndb,) states in order to understand the intensity distribu-
tion in the 8~12 eV region. This includes a study of the generalized
oscillator strength as a function of the square of the momentum transfer.
The presence and pOSitiO;l of minima in these oscillator strengths as a
function of q° should clarify mény of these questions.

The other results in Table I are all for Rydberg transitions of
the type 2b, - ns and 2b, - np. The excitation energies agree well with
experiment and the f~-values explain some interesting features in the
spectrum. The 'B,(2b, 3pa,) and 1B2(2b2 4pa,) states have observed f-
values of 0.032. This is an unusual distribution of intensities for two
successive members of a Rydberg' series. The calculated f-value of
0.04 for both transitions reproduces the observed distribution of intensity.
These f~values are also far greater than the values given by the single-
configuration approximation. 6 The observed term value of 2.9 eV for
the 1Al( n - 3pb,) state is larger than the corresponding term value in

typical np series, e.g., around 2.4 eV. This is again probably due to
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the perturbation of this state by the lA1(1r-¢1r*) state. The calculated £~
value of 0.05 for the 1Al(n-—3pb2) state is larger than the observed value
of 0.017 but here we can expect some redistribution of f~values when
"A,(2b, ndb,) states are included. This mixing of the ‘A (2b,ndb,) states
can also put the 1A1(2b23pb2) state below the JLB2 (2b, 3pa,). No experi-
mental f-value was reported for the 'A,(2b,4pb,) state but a visual
estimate of the absorption coefficients shows that the transition to this
state is much less intense than the 1Al-— 'B,(2b, 4pa,) transition. The
calculated f-values agree with this trend. We have also calculated the
excitation frequencies to the triplet Rydberg states but these results are
not listed in Table I sincethey are usually within 0.3 eV of the corresponding
singlet excitation energies.

We also obtain excitation energies and intensities of transitions
to Rydberg states leading to the second ionization potential. These include
the 'B,(r-3s) and lBl(irr—»3pal) states at 11.2 and 12.2 eV's with f-values
of 0.06 and 0. 02 respectively.

In the fifth column of Table I we list the excitation energies for
many of these transitions obtained by the configuration interaction (CI)
method. Many of these are results from extensive CI studies involving

12 5 450 x 450. 13

matrices ranging in order from 150 x 150 The results
agree well with the observed values and with those obtained from the equations
of motion method. It is not our purpose to compare the conceptual or
computational differences between these two methods. Excitation fre-
quencies and intensities are just two quantities among others which the

EOM method is designed to obtain. Other properties include cross sections

for processes such as photoionization and electron molecule scattering. &
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An interpretation of the formaldehyde spectrum in the vacuum
ultraviolet requires an understanding of the lA(7r——1r*) state and its per~
turbation by the adjacent Rydberg states. For this reason we have
carried out some additional calculations on this state and others with a
different atomic basis. Configuration interaction calculations had

previously placed the 1A(7T—~1r*) state at around 11.4 eVlz’ I

with an f-
value of 0.4, 12 However, Whitten13 recently obtained a vertical
excitation energy of 9.90 eV in a very extensive CI calculation involving
468 configurations. This lowering relative to his previous resu1t14 is
partly due to the inclusion of d~type polarization functions in the basis
and, more importantly, to an effective inclusion of sigma-pi correlation.
To study the behavior ofthis-state in amore flexible valence atomic basis
we have done two additional calculations. In the first calculation we
used a larger valence [4s3p/2s] basis of contracted Gaussian functions15
and for the second calculation this basis was augmented by xz, yz, and z°
d~type polarization functions and diffuse s and Py functions on the carbon
and oxygen centers. The basis of the second calculation has both a

larger valence component and the flexibility to reflect valence~Rydberg
mixing. We obtained excitation energies of 9.90 and 9. 66 eV from the
first and second calculation respectively. The f-values are both close to

0.10. These results again indicate the presence of an intravalence

lA1(1r-—1r*) state around 9.9 eV.
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IV. CONCLUSIONS

We have used the equations of motion method to study the excita~
tion energies and intensities of formaldehyde in the vacuum ultraviolet.
This region of the formaldehyde spectrum has only recently been studied
experimentally and shows some unusual features. 6 The calculated transi-
tion energies and intensities agree well with the observed values and suggest
explanations for some of the unusual behavior in the spectrum. In agree-
ment with experiment we see that intensities in the ‘A, (2b,npb,) series
are normal but very unusual in the 1B2(2b2npa1) series. Another interesting
conclusion is the location of a 1A1(7r-»7r*) state at around 9.9 eV but with
the low f~value of 0.1. This state is being perturbed by valence~Rydberg
mixing. The generalized oscillator strength as a function of q2 will be

useful in studying these perturbations quantitatively.
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Table I. Excitation Energies and Intensities in Formaldehyde.a

Main AE® AE AE £ £
State pransition  (EOM) (Obs.) (c1) (EOM) (Obs. )P
A, n—m* 3.46 3.54°¢ 3.41°
‘A, n—g* 4.04 3.84° 3.81
M m-m* . 5,29 ——— 5.56
‘A, T 10.10 ———- 9. 90f 0.10
B, g 9.19 9.04 9.03 0.002
'B, n-3s 7.28 7.08 7.38 0.02 0.028
'B, n-3pa, 8.12 8.14 8.39 0.04 0.032
‘A, n-3pb, 8.15 7.97 8.11 0.05 0.017
‘A, n-3pb, 8.35 ——— 7.998
1A,  n-4ph, 9.40 9. 58 )" S— i
A n-4pb, 9.47 ——--
'B, n-4pa, 9.55 9.63 0.04 0.032

2 yertical excitation energies.

b Results from the EOM method in the (1p~1h) +@2p~-2h) approximation. All energies

in eV's.
CLow energy electron impact results of A. Chutjian, Jet Propulsion Laboratory
(Pasadena) (to be published). : C

& The next six experimental values are from Ref. 6.

€ CI calculations of Ref. 13.
f Reference 14.

€ Reference 15.

h Reference 7.

1 Observed to be much weaker than the transition to the 'B,(2b,4pa, ).
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I, INTRODUCTION

Despite the importance of the water molecule there is considerable
question as to the location, intensities, and nature of transitions to its
lower excited electronic states. A recent study by Claydon, Segal,
and Taylorl which combined available experimental evidence with the
suggestions of semiempirical calculations provided a consistent
interpretation of the facts known at the time. Even more recently,
however, Knoop, Brongersma, and Oosterhoff2 and Trajmar et al. 3
have reported electron impact spectra of H,O which raise a serious
question as to the nature of the inelastic process observed by many
workers at 4.5 eV in H,O. Despite the fact that the calculation of the
excitation energy to the lowest triplet state of a molecule should be straight-
forward, /ggfculations repérted in the literature1 all ‘find the 3B1 state to be
the lowest excited state of H,O and to have a vertical excitation energy
above 6 eV. Moreover there are no reliable or extensive calculations
of the oscillator strengths for the several dipole-allowed transitions
below 10 eV. These quantities are needed in the analysis of the relative
intensities of several transitions observed in the electron impact spectrum
of water. -

In view of this discrepancy and the questions raised by recent

electron impact spectra of H,O, g

and in order to provide reliable estimates
of the oscillator strengths of several transitions we have carried out

an extensive calculation of the excited state manifold of H,O at the

vertical geometry using the equations-of-motion method. 2 One of our

conclusions from this study is that the vertical excitation energy to the
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3B1 state is in the vicinity of 6.9 eV and almost certainly corresponds to
the strong feature at 7.2 eV observed by Knoop eLgl_.z in their low-energy
electron scattering spectrum. The triplet character of the feature

at 7.2 eV is also supported by the electron impact spectra of Trajmar et al. 3,6
The 4.5 eV inelastic process almost certainly does not correspond

to a vertical excitation of H,O in the ground state geometry. The

experimental evidence regarding the existence of an inelastic feature

at 4.5 eV seems unambiguous6 and to put this problem into the

perspective we shall begin by considering the experimental evidence

regarding the 4.5 eV and 7.2 - 7.5 eV regions. We shall then describe

our calculations of the excitation energies and f-values of several transitions

by the equations-of-motion method. The results, including the f-values

agree well with available data.

I _EXPERIMENTAL EVIDENCE FOR STATES
AT 4.5eVAND 7.2 - 7.5 eV

Until the recent low-energy electron impact spectra were reportedz’ 9,8

there had been a real question as to the nature and existence of the
inelastic feature at 4.5 eV in the spectrum of water. The feature is
extremely weak and had never been observed in the gas phase optical
spectrum. However, Larzal et al. ¥ observed weak absorption at 4.5 eV
using a 80 cm path length of liquid water. This process presumably
corresponds to the structure at 4.0 + 0.1 eV reported by Hunter,

Lewis, and H.a.mill8 in their low-energy electron reflection spectra

7,8

of a thin film of ice at T7°K. These authors'’ ® attribute their
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observation to absorption to the 3Bl state of water, presumably in the
Franck-Condon region. No structure was observed at lower energy. 7,8
This absorption observed in condensed phases could conceivably be due
to a number of causes other than excitation to an excited state of H,O.

In particular, dimer absorption or absorption due to OH radicals formed
through radiation damage are possible, although the dissociation energy
for the process H,0 ~ H(*S) + OH(X ) is 5.11 eV.

Hamill and coworkersg’ 10

have, however, provided additional,
but indirect and inconclusive evidence for the existence of a state
around 4.5 eV. By electron impact on alcohols a water fragment

can be formed in an excited state. For example, for ethanol

e  + C,HOH ~ C,H,” + H,O + 2¢”

The ionization efficiency curve for C2H4+ from ethanol exhibited several
"breaks' which occur at the same energy intervals as those for C2H4+
from ethane and ethylene, but 4.3 eV above the onset for this process.
there was an additional break in the efficiency curve. At the onset of
the process H,O in its ground state was formed, but at 4.3 eV above
onset excited state water can also be formed so that an upward break

in the efficiency curve is produced by an additional channel for C2H4+

11

generation. Lewis and Hamill™~ have also reported that this process

occurs for the cyclic alcohols c-C,H,OH and c-C,H,,OH to produce water
and CSHH+ and CGH10+,respective1y. By methods similar to those used

11

for ethanol, Lewis and Hamill™~ found and extra '"break' in the efficiency

curves at 4.3 eV and 4.5 eV for c-C,H,OH and c-C.H,,OH, respectively.
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These experiments offer supplementary evidence for a value of the
lowest singlet-triplet excitation energy of about 4.5 eV. It is important
to realize that in the case of H,O being formed as a neutral fragment of
the electron impact on alcohols, the value measured might represent
a minimum (or non-vertical) transition energy rather than a transition
determined by Franck-Condon factors.

More definitive data for the existence of the inelastic feature at
4,5 eV are provided by low-energy electron impact spectra since the
cross section for excitation of triplet states is considerably enhanced
under these conditions. These cross sections also have a distintive
angular distribution. The 4.5 eV feature is weak in these spectra.
Schulz12 observed an energy loss process with an onset of about 3.4 eV
with the trapped electron method. A threshold electron impact spectrum using
SFs as a scavenger13 was similar to Schulz's spectrum except that the
low energy electron loss feature was observed to have an onset at 4.4 eV.

14

Raff™ * observed the feature on electron impact with 30 eV electrons while

15

Lassettre et al. ™ did not observe this feature in the electron impact spectrum

at low scattering angles and impact energies above 100 eV. However

16

Lassettre et al. ~ did observe very weak scattering with an onset of about

4.4 eV in another spectra at low scattering angles and impact energies

between 30 and 60 eV.

From their trapped electron spectrum of
water Azria and I*‘iquet-l“ayard17 concluded that the 4.5 eV energy loss
feature is due to contamination, but the preponderance of evidence is
clearly against this conclusion. From a study of the pressure and
primary bea;n dependence of the trapped electron current Knopp has
shown that it is very unlikely that the 4. 5. eV feature could be due to

excitation of OH radicals or molecular complexes of water. 18
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More detailed and convincing data are provided by the work of

Trajmar and coworkers. 9, 4

They have shown that the differential cross
section of electrons inelastically scattered with an energy loss of 4.5 eV
is consistent with a singlet-triplet transition. Their studies also rule

out any contribution to this feature from water dimers or hot bands.

In more recent spectra at very low impact energies Tra.jmau‘6 has also
observed the 4.5 eV feature with a very enhanced cross section and also a
transition at 7.2 eV with the characteristics of a singlet-triplet transition.
Finally,Knoop et al. % recently reported a low-energy electron impact
spectrum taken by the double retarding potential difference method.

They observe the 4.5 eV inelastic feature and, more interestingly,

also found a strong transition peaked at 7.2 eV which is distinct from

the 7.5 eV ('B,) feature and which they assign as due to the 3BJL or °A,
state. They did not find a peak at 7.5 eV for the cross sections for
singlets are low in their method.

This is the current experimental situation on the transitions in
H,Oat 4.5eVandalso 7.2 eV and 7.5 eV. We now discuss our
calculations on the spectra of the water molecule from which we will
assign the transition at 7.2 eV as the vertical excitation to the 3B1
state. Our results also show that there is no vertical excitation

energy at the ground state geometry in this molecule around 4.5 eV.
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IL_THEORY

We have used the equations-of-motion method to calculate the
excitation energies and oscillator strengths for several transitions in
the water molecule. The equations-of-motion method is an approach
for the direct calculation of the properties of physical interest in
spectroscopy, e. g., excitation energies and intensities. By using a
theory specifically designed for studying these relative properties
one can avoid many of the difficulties involved in obtaining highly
accurate values for absolute quantities such as the total energies.

5,19 and here we will

We have discussed this method in recent papers
give only a very brief summary of the theory. It can be shown that the
operator O& which generates an excited state |7\) from the ground state,

- O IA) =O)\+l 0y, is exactly a solution of the equation of motion 20

©|[0,, H,0,"7|0) =, (0[[80,,0,%]|0) (1)

where 507\+ is a variation of the amplitudes specifying O; and @, the

excitation frequency. The double commutator is defined as

2[A,B,C] =[[A,B]C] +[A,[B,C]] (2)

We have derived various approximations to the solution of Eq. (1). % 10

If O; is restricted to single particle-hole (1p-1h) form Eq. (1) becomes

">
plus]

Y(A) D O] | Y

= 3
“ lo |z ©

-B*  -Af | Z2()
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where the elements of A, B, and D are defined in Ref. 5 and Y(A)

and Z(2) are the amplitudes of 0;. We have also derived perturb-
ation-like schemes for solving Eq. (1) including both 1p-1h and 2p-2h
operators. 19 At this level of approximation we have obtained accurate

excitation energies and oscillator strengths for transitions in N,, 21

CO,21 C.H,, 7L H2C0,22 CO,, 25 and C H,. e We now discuss the

application of this method to the spectrum of the water molecule.

IV. RESULTS

The electron configuration of the ground state of water is
(1a,)%(2a,)%(1b,)*(3a,)%(1b,)?

In an equations-of-motion calculation one first carries out a self-
consistent field calculation on the ground state of the molecule to
generate a particle-hole basis. We have used the currently accepted
ground state experimental geometry25 arid carried out calcula’l:ions26

using different basis sets to study the effect of the composition of the

orbital basis on the excitation energies and f-values. We will refer primarily
to the results obtained in the largest basis but will also discuss the
results in other basis sets whenever the differences in the results
illustrate some important feature. For this largest basis we used a
[ 3s2p/1s] valence basis contracted from a (7s3p/3s) Gaussian basis?" to
which we added a diffuse s function with an orbital exponent of 0.038

on each hydrogen and two s functions with exponents of 0.089 and 0.022

and two sets of p functions also with exponents of 0.089 and 0. 022 on

the oxygen center. Polarization functions have been shown to be
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important in ground state SCF calculations on water28 and hence we
added to our basis a contracted set of d-polarization functions on
oxygen with exponents of 1.322 and 0. 3916 and coefficients 0. 3579
and 0. 7596, respectively, and a set of p-polarization functions, on
hydrogen with an exponent of 1.16. Another calculation was done with
this same basis but from which the polarization functions were deleted.
The differencels in the results of the two calculations are not very
significant but may amount to 0.3 to 0.5 eV in the excitation energies
to some states. In the calculations, all molecular orbital levels
except the highest particle state and the lowest hole state are

included. 29

Table I shows the excitation energies for ten transitions in water
along with the oscillator strengths for the four dipole-allowed transitions.
These are results of the calculation using the 1p-1h plus 2p-2h (1p-1h +
2p-2h) approximation19 to the solution of the equation of motion, Eq. (1)
and the basis set containing the polarization functions. The lowest
calculated vertical excitation energy is about 6.9 eV and is to the
°B, (1b, —~ 3s) state. The corresponding singlet transition energy is
7.2 eV and hence the B, singlet-triplet splitting is 0.3 eV. Hence we

2 at 7.2 €V as the 3B1 state,

3

can now assign the peak observed by Knopp
0.2 eV below the observed transition to the 1B1 state.” Clearly the
inelastic feature at 4.5 eV is not a vertical transition to the 3B1 state.
From the accuracy of the results on several other molecules we are

confident that the predicted value of 6.9 eV for the vertical excitation
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energy to the 3Bl state would be within 5-10% of the true value. If
one assumes that the transition is highly non-vertical the 3B1 potential
energy curve would have to drop by over 2 eV relative to the vertical

value. Bader and Gatngi30

calculated the energy difference between
linear H,O and H,O in the ground state geometry to be 0.13 eV for the
lowest triplet surface. Linear H,O is only a saddle point on this
surface. The calculated f-value of 0.05 for the transition to the A 1B1
state agrees well with the experimental value of 0. 04.

We assign the peak observed at 9.1 eV by Knopp et al. 2 as a
transition to the 'A, (1b, -~ 3py) state with a calculated excitation energy
0f 9.02 eV. The B 1A1 (3a, ~ 3s) excitation energy of 9.54 eV agrees
well with the observed value of 9.67. The triplet state observed by
Trajmar3 at 9.81 eV is probably a transition to one of three triplet
states, i.e., the °A; (3a, — 3s) at 9.34 eV, A, (1b, — 3px) at 9.39 eV,
or the °B, (1b, — 3pz) at 9.47 eV. From the good agreement between
the calculated and observed excitation energies for the *A, (3a, — 3s)
state, the assignment may be narrowed down to the 3Al (1b, — 3px) or
°B, (1b, — 3pz) states. The B A, excitation energy of 9.54 eV agrees
well with the observed value of 9. 67 eV while the excitation energies to
the C 1B1 (1b, — 3pz) and D 1AJL (1b, — 3px) states are both about 5%
below the observed values. The predicted f-value of 0. 06 for the transi-
tion to the’ﬁ 1A1 state, observed as a broad continuum, is close to the
experimental value of 0.05. There are no experimental f-values avail-

able for transitions to the D 1A1 and C JlB1 states, but Lasse’c’cre4

esti-
mated the ratio of f-values for these two transitions to be about 1.3
from high energy electron impact studies. Our calculated f-values

give a ratio of about 3.
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As expected, the excitation energies obtained from the calculations
without the polarization functions are very close to those in Table I
for transitions to states which are primarily excitations out of the 1b,
orbital. This is because the 1b, orbital is almost the oxygen 2px
orbital which is relatively nonbonding. However the excitation energies
to states which arise primarily from an excitation out of the 3a, bonding

orbital are all about 0.3 - 0.4 eV lower than those of Table 1.

CONCLUSIONS

The available experimental evidence for the existence of an
inelastic feature at 4.5 eV in the spectrum of water is very convincing.
To explain the nature of this process and to study the spectrum of
water in some detail we have carried out several calculations on the
excited states of water at the vertical geometry using the equations-
of-motion method. . We conclude that our calculated vertical excitation

energy of 6.9 eV for the 3Bl state corresponds to the strong feature at
7.2 eV observed by Knoop et al. % in their low-energy electron scattering
spectrum. The 4.5 eV inelastic process almost certainly does not

correspond to a vertical excitation of water at the ground state geometry.

The other excitation energies and oscillator strengths agree well with
experiment. We can assign the state observed at 9.1 eV 4 asa
'A,(1b, ~ 3py) and the triplet state at 9. 81 eV as probably a A, or °B,

and not a 3A2 excitation.
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Table I. Vertical Excitation Energies and Oscillator

Strengths in Water?®

Stats Main AEP  AE AEC £P £
Transition (EOM) (Obs.) (CI)  (EOM) (Obs.)

B, 1,-3 6.8 729 7.3
A'B, 1b,-3s 7.22  7.4° 7.6  0.05 0.045

°A, b, ~ 3py  8.97 9.3

A, b, ~3py  9.02  9.1% 9.5

A, 3a,-3s  9.34 9.4

%A, b, ~3px  9.39

°B, b, ~3pz . 9.47
C!B, 1, -3pz 9.48 10.0f 0.006 --- D
BlA, 3a, ~3s  9.54  9.67 9.8 0.06  0.058
DA, b, ~-3px 9.61  10.17 0.02 ----P

aA1 energies in eV's.
bResul'cs from the EOM method in the 1p-1h + 2p-2h approximation.
See Ref. 19.

°N. W. Winter, private communcation.

dReference 2.

®Reference 3.
fThe next three experimental energies ‘are from Ref. 4.
8. Watanabe and M. Zelikoff, J. Opt. Soc. America, 43, 753

(1953).
h

The observed ratio of f-values for the D 1A1 and C LB1 states

is about 1.2. See Ref. 4.
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st - AlIT system in cH

from the Equations of Motion Method
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1. INTRODUCTION

With the recent expansion of the field of astrochemistry and studies
of the formation and evolution of interstellar clouds, the need has arisen
for accurate and reliable molecular data1 on species not previously investi-
gated in any detail either experimentally or theoretically. A thorough dis-
cussion of current astrophysical and astrochemical problems related to
molecule formation in interstellar space can be found in Ref. 2.

A typical example of a situation where the lack of reliable molecular
data has seriously affected the development of models for the formation of
interstellar molecules is that of the relative abundances of CH and cu" and
their formation through radiative association processes from atoms and

3 In particular, the rate of association of C and H* to form CcH*

depends on the oscillator strength of the X'z - AMI transition in CH*. 3-8

ions.

cH' is charged and a highly reactive species, which makes spectroscopic
studies in the laboratory difficult. Under these circumstances, detailed

60f

theoretical calculations become appealing. One of the early theories
the formation of CH" was initially discarded because the assumed f-values
lead to low rates of radiative association. However, the work of Solomon
and Klemperer3 revived the interest in this radiative association mechanism
by reevaluating the rates by using better f-values.

In addition to these direct processes Julienne and Krauss4

have dis-
cussed an alternative mechanism, namely, indirect radiative association
(inverse predissociation) leading to the formation of other species as well,

such as NO, CH, CO, C,, etc. Inthese studies a reliable source of



-30-

intensities is necessary if we are to reduce the uncertainties in models of
the interstellar medium.
For these reasons, considerable effort has been put into the ab

initio quantum mechanical calculation of the potential energy curves7

and
oscillator strengths8 of CH*. Similar work has been done on CH®,

In this paper we present the oscillator strength of the X'zt - A'l
transition of CHT as computed by the Equations of Motion Method. 10 Our
result is in good agreement with the extensive CI calculations of Green
et al., 7 and Yoshimine et al. 8 The results presented are important
because they constitute an independent confirmation of the results of Green
et al., and Yoshimine et.al., using a different approach. Moreover,
computationally the method is simple and relatively inexpensive. This is
an important feature since the rapidly expanding fields of astrophysics and
astrochemistry of the interstellar medium require reliable estimates of
molecular parameters such as excitation energies and transition moments
at various geometries. Since it is not always possible to study the systems
of interest experimentally, we must resort to theoretical calculations that,

while still reliable, do not represent a major computational effort.
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2, THEORY AND RESULTS

The Equations of Motion (EOM) Method for calculating excitation
energies and transition moments has been thoroughly described elsewhere10
and here we only outline some of the central ideas.

In this approach we define an excitation operator such that
0y 0 = [n (1)

where I)\) is some excited state and IO) is the ground state. It then can

be shown that O; satisfies an equation of motion11 given by
©|[50,,H,0{]|0) = w, (0|[50,,0,]]0) (2)
where the douhle c.:ommutator is defined by
2[A,B,C] =[[A,B],C] +[A,[B,C]] ®3)

Wy is the excitation frequency and 50;: represents a variation of the
amplitudes specifying O;. If O; is assumed to be composed of single

particle~hole pairs (1p-1h) the equations of motion become

A B
-B* -A*

~

<

o) D o] [xo

@)

(4)
o pJ [z™

:.-(_,_)x

N

The elements of the matrices A, B, and D, are given in Ref. 10. Y and
Z are the amplitudes we wish to calculate. Higher order approximations
(inclusion of 2p-2h components) to the exact Eq. 2 can also be easily
constructed. In the above approach we obtain spectroscopic quantities of

interest,e. g. transition intensities directly, and avoid the calculation
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of highly accurate and elaborate total wavefunctions and absolute energies
for the different electronic states separately.
In this paper we report calculations on cu* using two different

gaussian basis sets: a [3SZP/ZS] contracted from a (S)S5P/4S)lza

primitive basis and a more recent version of the [ 3S 2P/28] contractionmb
to which we added polarization functions. The final basis was then
[3s2P1D/281P].

In Table I we summarize the results we obtain with the two bases
and compare them with the best CI calculations to date. 7,8 We have per-
formed the calculation only at one internuclear distance, namely 1.12 A,
which is the ground state equilibrium geometry. The first column in the
table, labeled RPA (Random Phase Approximation) is derived from lowest
order single particle~hole pair (1p-1h) solutions to the equations of motion.
(See Ref. 10). The column labeled EOM, contains results that were not
fully iterated. i Continﬁing the iterations may have improved the excitation
energy somewhat within the rather small basis set being used. The basis
was chosen to provide good results for the X 's* - A'M transition moment,
since this is the one transition that bears the most astrophysical interest.

The values we have computed are compared with those obtained
by interpolating from the data in references 7 and 8. Overall agreement
is good. We want to point out that the size of the problem (computational
effort) is determined by the number of 1p-1h excitations included in Eq. 4.
In our larger basis ([ 352P1D/2S1P] ) - this amounts only to 12, which

means that at most only 12 X 12 matrices must be diagonalized for states

of I symmetry. Another feature of EOM calculations that makes them
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particularly practical is that an SCF run is needed only once and on the
ground state exclusively. From a single calculation we obtain most of
the low-lying states (all of the symmetries allowed by the basis set being
used). As in any basis set expansion technique the quality of the final
results depends on the nature and the size of the basis used. However, we
have found in general that valence basis sets of relatively poor quality
still give very good transition moments and excitation energies to states
with small diffuse components. _

In conclusion, the EOM scheme can provide reliable molecular
spectral data such as excitation energies and oscillator strengths in a
computationally simple fashion. Applications to other molecules of

interest in astrophysics are underway.
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Table 1,

Vertical Excitation Energy and Oscillator Strength for the X'="-A'll

Transition in CH*

Property

[352P/ZS] RPA |[3S2P1D/2S1P] EOM |CI of Refs. 7,8

Excitation

2.87 2.50 3.322
Energy(eV)
Transition

0.34 0.31 0.302
Moment(au)
Oscillator

0.014 0.011 0.0147%
Strength

2 values interpolated from the data in references 7 and 8.
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(D)
Some Applications of Excited State--Excited

State Transition Densities
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I. INTRODUCTION

In the equations of motion method or any of its approxima-
tions, e.g. the random phase approximation or time-dependent
Hartree-Fock, the quantities calculated directly are the transition
densities between the ground and excited states. 1 Relative quantities
between the ground and excited states such as transition moments
can then be readily obtained from these transition densities and the
necessary matrix elements between basis states. For several appli-
cations excited state-excited state transition densities are needed.
These include the study of transition intensities between excited
states of molecules of interest in the development of gas phase lasers,

3. - . i 5 . .
e.g. the C i, — B’L lasing transition in N, and in atmospheric

g
emissions where transitions between excited states play an important
role. Other properties such as two-photon decay of metastable states
and the polarizabilities of excited states require infinite summations
over excited state-excited state transition moments and frequencies.
The purpose of this paper is to show how excited state-excited
state transition moments can be calculated directly from the set of
ground state-excited state transition densities obtained from a single
equations of motion calculation. First we derive the simple relation-
ship expressing the excited state-excited state transition moment
directly in terms of the ground state-excited state transition densities.

Then we discuss two interesting applications of this result. The

 first application‘is to the calculation of the photoionization cross
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sections of the 2 3S and 2'S metastable states of helium. In this
calculation of photoionization cross sections we completely avoid

the need for constructing continuum solutions of the wave equation
normaliy needed to describe the final-state continuum wave functions.
The central idea is to use the excited state-excited state transition
moments to obtain a discrete representation of the frequency-dependent
polarizability at complex values of the energy. Numerical analytic con-
tinuation can then be used to obtain the photoionization cross sections.
We have previously applied this procedure to obtain photoionization
cross sections for He and H, ground states in good agreement with
experiment. 2,3 As a second application we use these excited state
moments to predict the two-photon decay rate of the 2 'S metastable
state of helium. Both the calculated photoionization cross sections

of the 2'S and 2°S states of helium and the two-photon ‘decay rate of

the 218 state agree well with the results of other calculations and

available experimental data.
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II. THEORY

In the study of dynamical properties of atoms and molecules
the quantities of direct physical interest are relative quantities be-

tween two states, e.g. excitation frequencies, « and transition

OAd
matrix elements, < 0|M | A >, between states [0 > and |a >,

For example in the frequency-dependent polarizability a («)

- .
2wy, |<OID|A, >
2
Ai;eO @ =

OA;
1

one is concerned with a set of frequencies {uo)\} and the off-diagonal
matrix elements of the dipole operator, D. The summation in Eq.
(1) implies an integration over the continuum. The evaluation of

one-particle transition matrix elements simply requires a knowledge

—

of the one-particle transition density, po, (¥, ')

= sy 2=y

Pop (T, T) = <0|p(¥',T)|r> (2)

where p (;',?) is the one-particle density operator

-3y —

[J(I’ ,I’) = J/T

(r') ¢ (T) (3)

in second quantized form with «/: (r’) and @(?) the field operators,

e.g.

V@ - epwal 4)
k

where " (r) and a; are single-particle states and creation operators
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respectively. The transition matrix element of a one-particle

operator M can then be written
<OIM[A> = [fdTdr’ 6(x-T ) MT)Pe, (T, T) (5)

where the integration over the 6 function is performed after M (r)

is applied. Since the one-particle transition density is sufficient to
evaluate the physically significant matrix elements, one should design
a theory that concentrates directly on this quantity. In the equations
of motion method as well as in several other many-body methods,

e.g. in the theory of Green's function, we calculate the transition
density directly.

In the equations of motion method one calculates the elements
of the ground state-excited state transition densities by solving the
equation of motion of the excitation operator O)z defined such that
O; |0> = | A>. It can be shown that if the operator O):f is re-

stricted to single particle-hole form, i.e.

TN g i i
0, = /, me()x) 2 a7 - Zmy()‘) ay a (6)

my

. : . 4
the amplitudes me () and vay (A) satisfy the equation

A Y(A) D 0\ ;YW\
s L0 ‘, | L
- \z o n/ \zm,

The matrices A, B, and D are ground state expectation values of
second quantized operators1 and @y the excitation energy. The

amplitudes me and Zm)/ are elements of the transition density
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which, to a good approximation, can be written as

poy (F,F) =<0 15,0y [[0>~ ) Y o7 (¥") ¢ (F
my

ok -

* Loy ©y (T7) g (1)

where ¢ m and q)y are particle and hole states respectively. The
equations of motion, Eq. (7), can be solved straightforwardly in
various approximations for ground to excited state transition
energies and densities. Applications to several molecules, e.g.

o show that the method

H,, N, €O, H,0, CO, H,CO, and CH,,
yields accurate dipole transition moments.

For several applications it would be convenient to derive
excited state-excited state transition moments directly from the
set of ground state-excited state transition densities {po)\} obtained
from the solution of Eq. (7). Consider the matrix element of the

one-body operator between states |A; > and .)\j >. From the

properties of the operators OI_ and O, Wwe can write
1 ]

: T
<AilM[Aj>:<O[OAiMO)\j[O> (9)

We now exploit the formal properties of the excitation operators

to rewrite Eq. (9) as the expectation value of commutators of the

i
operators O, , M and O,
1

]

<Ai|MMj> = <00, , M, o;J{0>+§<o}[ok_, o;r_]fr[o>
1 ] i j

+1<o0|T [0,, 0 I]0o> (10)
i
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where the double commutator is defined as

210, , M, o;jj = 1[0, ,11,0, |+ [0, , I, o1l an
)

The advantage in going from the expectation value of the direct
product of operators O, , M, O}f of Eq. (9) to the expectation
value of the double comrlnutator of these operators, Eq. (11), is
due to the observation that the double commutator is a simpler
operator, i.e. of lower particle-hole rank, than the straightforward
product. . The expectation value of the double commutator can then
be expected to be less sensitive to the details of the ground state
wavefunction. &

The right-hand side of Eq. (10) is now evaluated in three
different approximations. First in the random phase approximation

(RPA) the second and third terms of Eq. (10) vanish since [O, , O; |
i .

J

= 6 \ A > # | A >, and the expectation value of the double

A
1]
commutator is evaluated over the Hartree-Fock ground state. In

the RPA we obtain

*

O + 2, O0) Zp () |

<Ai|M[)\j>zzl ; my %4 _—

Fod

*
ny my
LT

T (12)

nm Guy Tty Onm |

In Eq. (12) m and n denote particle states and y and v hole states.
The amplitudes {Z nv} implicitly account for electron correlation
in the ground state. The {an} amplitudes are the dominant effect

in Eq. (12) since they represent the main correlation effects in the
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excited state. If we completely neglect electron correlation in the

ground state, i.e. set |0> = [HF > and {Z | = 0, we obtain

nv}

<a M > 2 Z Yo, () Yy ) [T 8 = Ty 1 | (13)
_ ny my
This corresponds to assuming that the excited state is composed
of single excited states relative to the HF ground state, i.e.
single excitation configuration interaction or the Tamm-Dancoff
approximation (TDA). Equation (13) should normally be a good
approximation to the transition matrix element.

The third approximation to <A; | M 1Aj > can be obtained
by solving Eq. (7) for the {an} and {Z_ | amplitudes in a higher
order scheme. This higher random phase approximation is dis-
cussed in ref. 1 and is often needed in discussing excitations to
low-lying triplet electronic states where the RPA may show insta-

bilities. In this approximation (HRPA) we have

L _ E 3 * *
< Ai ‘ M l k] > & /.{/ /: LYI’IV (Al) Ym'}’ (A]) * an/()‘i) Zm')/ (AJ)J

ny my

61/7/ (‘g’ Tmp Pon * Tnpppm)

=

lTyu Pam * TnmpVy h

N~

6nm Zg (Tvé péy * Ty() pév)j (14)

where p is the ground state density matrix, v, & and v hole states
and m, n, and p particle states. In the HRPA the second and third

terms of Eq. (10) do not exactly vanish but can be expected to be
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small and are neglected in deriving Eq. (14). We recall that these

i
Al

terms do vanish in the RPA since [0, , O
i) J
examples where it is important to use Eq. (14) instead of Eq. (12)

| =0, , . Thereare
e

or Eq. (13), e.g. in certain transitions in N,. These results will

be discussed in a separate paper. 7
In the next section we discuss the applications of these tran-

sition moments to the calculation of photoionization cross sections

of the 2'S and 2°S metastable states of helium and of the two-photon

decay rate of the 2 's state of helium.
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II. APPLICATIONS

| A. DPhotoionization cross sections of metastable states

Photoionization of excited state species plays an important
role in several physical systems. For example, photoionization of
rare gas excimers is an important reaction that may limit the laser
gain of these systems. In previous calculations of photoionization
cross sections of metastable states, 4,8 as well as for ground states,
accurate atomic or molecular continuum eigenfunctions are needed

to describe the final states of the systems. 10

We have recently
shown how one can completely avoid the need for continuum eigen-
functions in the calculation of atomic and molecular photoionization

11,12

cross sections. These calculated photoionization cross sec-

tions for He11 and Hz12

in their ground states agree well with other
calculations and experiment. The central idea is to obtain a discrete
representation of the frequency-dependent polarizability which, al-
though not directly useful at physical energies in the continuum,

often provides an adequate representation of the polarizability for
complex values of the energy. Numerical analytic continuation can
then be used to return to the real energy axis where the physical
information is desired. This L’ method for calculating photoioniza-
tion cross sections was suggested by Broad and Reinhardt13 who
applied it to atomic hydrogen.

To apply this method to the calculation of photoionization

cross sections of excited states we start from the frequency-dependent
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polarizability of the excited state. For the state |\, > we have

f)\i')t- w g)\i () de
aki(Z) ) Z w2, -z ’ Je g%« i 15)
MEX AN I
where z is complex and wAiAj : fAiA. , and g.)\i(e) are the transition

frequencies and the bound and continuum oscillator strengths respec-
tively and €1 is the first ionization threshold of the system. In the

neighborhood of z =« +in withn — 0

— Y o 8 (€) de g, (@)
i : i . i
ay (w) = Z —2—3—————2— + P] —s— + 7 (16)
i Ao %A Wy — @ €I € -w 2w

This gives the relation between the photoionization cross sections

of state | >, o, , and the imaginary part of its polarizability
i

47w

O-)\i(“) = lim

: . Im [aki(u +in)] (17)
n—)

a(z) of Eq. (15) is first approximated by a finite sum over approxi-
mate oscillator strengths T, , and frequencies Z)\ N
i i)

~a

f

T A.-A.a
5. (z) = Z :_2_1_1_2_ (18)
i w -Z
Ai#:)\j Aixj

To continue a, (z) analytically on to the real axis, we construct a
i
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low-order rational-fraction representation of a, (z) by fitting it to
the approximate a )\ (z) of Eq. (18) at a number of points in the com-
plex plane. 14 With thls smooth representation of O‘A. (z) we can now
calculate o, (z), and hence O\ (z), at real energies 1vvhere the
original disclrete approximatior:;, Eq. (18) is unphysical.

The finite set of oscillator strengths, T, , , and transition
frequencies, “’)\ A needed to obtain '&)\‘A., Eq. (18), is generated
by solving the equatlons of motion, Eq. 17;, for the transition fre-
quencies, «,, . The resulting transition amplitudes, Y and Z, ,,
give, through Egs. (12), (13), or (14), the excited state-excited state

transition moments, M, , , which, along withw, , , definef, ,

1] i7j 1]

f"i)‘j - %“)‘1 |<r| D | A4 >\ (19)

D is the dipole moment operator and the transition moment M, A

J
evaluated in the three approximations discussed above, i.e. Eqgs. (12),

(13), and (14). In the calculation of the photoionization cross sections of
the 2'S and 2°S metastable states of helium we use a finite set of eight

discrete oscillator strengths, i.e. f, 5 (21’3s—anl’3P) n=2,3;...9 in
1]

Eq. (18). Table I lists these oscillator strengths in the RPA which
are used in the calculation of the photoionization cross sections.

We do not list the oscillator strengths in the other approximations
for all eight transitions since all the approximations can be expected
to give similar results where excited state correlation effects are
not critical, e.g. in the 1s 2s (218) — 1s 2p (2'P) transition the

main effect is included in the TDA. In Table II we do however
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show the first three oscillator strengths and compare them with the
results of other calculations.

Figures 1 and 2 show the calculated photoionization cross
sections for the 2'S and 2°S metastable states of helium. These
cross sections are for the continuous background photoionization
below the n = 2 threshold. The fitting points for determining the
rational-fraction representation of EA. (z) were chosen with a real

1

: . Vvalues of Table I and the imaginary
1]

parts were varied over a region of the complex plane. For the dif-

part between each pair of «

ferent choices of the fitting points the calculated cross sections

agree within 2-8% of one another. In Figs. 1 and 2 we also plot

8 and Jacobs9 who used

the cross sections obtained by Norcross
Hartree-Fock and correlated initial state wavefunctions respectively
and close-coupling final state wavefunctions. The agreement between
these results and the present calculation is good. Within the experi-
mental uncertainty of ¥ 14% the various calculations agree well with

15

the measured values. The accuracy of our calculated cross sec-

tions could be improved by using a discrete set of f}‘.h_'s and “’A.A.TS
specifically designed to give photoionization cross s;ctions of thtesle
metastable states. The f-values used in this calculation were obtained
from a calculation originally designed to give ground-excited state
energies and transition moments.

Finally it should be emphasized that since this method com-
pletely avoids the use of continuum eigenfunctions, the techniques

16

used here can be easily extended to molecules. Some immediate
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applications would be the study of photoionization of excited states
of rare-gas dimers and other molecular gas lasers. For example
photoionization of the Alz; state is critical in determining the
possible gain of the proposed He, ultra-violet laser. These calcu-
lations can also provide estimates of the stimulated emission cross

section, another important parameter in these laser systems.

B. Two-photon decay of the 2'S metastable state

As a second application and more in the purpose of a check
on the discrete oscillator strength distribution of Table I, we now
calculate the probability of two-photon decay of helium in the 2'S

level, i.e.
He(2'S) — He(1'S) + hw, + ha, (20)

Accurate estimates, including those of a coupled Hartree-Fock
calcula.tion17 and variational procedures, 18 have been obtained for
this decay rate and hence this application can serve as a useful
calibration of our discrete f-distribution.

Since the theory of two quantum processes has been discussed

elsewhere1 7,18

our discussion of the basic equations will be brief.
The probability of two-photon transitions can be formally expressed
as an infinite summation over intermediate states. If i« is the
energy of the two-photon He (2'S) — He (1'S) transition of Eq. (20)
the probability A (y) dy that a photon will be emitted in the frequency

range «,¢ dy is given by
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A(y) = 5.299x 10" o y° (1 - 3)’ | M () |’ o (21)

wherey = w,/u ¢ and M (y) is the two-photon transition matrix

element

M(@y) = Z <2's|Dy|A P><a'P|Dy|1's>
A

UJO QJO
f = { (22)

Wop + Y woy uo)\+(1-y)uofJ

where DZ is the z cqmponent of the dipole moment operator. The
summation in Eq. (22) requires the transition moments between the
eround and intermediate states, <A'P | D |1'§ >, and between the
metastable and intermediate states <2'S |D | A'P>. The ground-
excited state transition moments are directly available from the
solution of Eq. (7) in any approximation, e.g. the RPA or time
dependent Hartree-Fock approximation and the excited state-
metastable state transition moments can be derived in any of the
approximations discussed in Egs. (12), (13), or (14). Direct sub-
stitution of these moments and the corresponding energy differences
yield estimates of the probability distribution A (y). The Einstein

A coefficient for two-photon emission is just the integral
1
A=z jo A(y) dy (23)

In Table III we list the values of A (y) obtained using the

RPA transition moments and frequencies throughout Eq. (22). It



~5]=

is important to note that for excited state-excited state transition
moments we define the RPA as our approximation of Eq. (12) to the
exact expression, Eq. (10). The agreement with the coupled

Hartree-Fock calculations17

and variational calculations18 is good
but the results are generally about 10% too high. This is partly due
to the strong «, £ frequency dependence of A (y) rather than the sum
over intermediate states in M (y). For example, if we use the experi-
mental «, . in Eq. (21), the calculated A (y) falls within 2-3% of the
accurate results of reference 18. These results are also listed in
Table III. The Einstein A coefficient derived from our A (y) of the
second column of Table I is 55.6 sec™ compared with 51.3 sec™ of
reference 18. With the A (y) derived from the experimental « £

i.e. the third column of Table III, we obtain an A coefficient of

49,7 sec™.
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IV. CONCLUSIONS

We have derived an approximation for transition moments
between éxcited states consistent with the approximations and
assumptions normally used to obtain transition moments between
the ground and excited states in the random phase approximation.
The basic procedure is to exploit the formal properties of the exci-
tation operators O;. , defined on the ground state, i.e. O; | 0>,
to rewrite the translition moment <A; | M | Aj > as an expeétation
value of double commutators, Eq. (10), over the ground state
wavefunction. The resulting expression can then be written in
terms of the ground-excited transition amplitudes. Eq. (12) can
be viewed as an RPA definition of transition moments between ex-
cited states. 6 Although for some applications the lower order TDA
or single excitation CI may suffice, there are cases where a higher
order solution is necessary to calculate excited state-excited state
transition moments. T

The results for the photoionization cross sections of the
2's and 2°S metastable states of helium demonstrate some of the
useful applications of these discrete oscillator strength distribu-
tions for excited state-excited state transitions. Most importantly,
these results indicate that it is also not necessary to employ con-
tinuum basis functions in the calculation of photoionization cross
sections of metastable states. This can be very significant for

molecular photoionization where it is very difficult to obtain
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adequate continuum eigenfunctions. Some immediate applications
could be to the photoionization of rare gas excimers involved in
proposed gas lasers, e.g. the He, UV laser. From the calculated
two-photon emission cross sections of the 2'S state helium, the
procedure could also be an easy and direct approach to two-photon

emission cross sections in molecular systems.
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Transition Moments and Oscillator

Strengths for the 2 's— A'Pand

2°s — A *p Transitions in Different

Approximations

3
0

w

w

1

2P

. 035
. 3824

.021
L3917

.012
. 3766

.'816
. 3764

. 916
.3764

31

. 9255
.1494

. 9047
. 1442

. 9285
.1526

. 9020
.1478

. 9129
.1514

4'p

. 6053

. 0839

. 5945
. 0815

. 5985
. 0831

. 4699
. 0508



-56-

Table II (continued)

2°g - 2°p 3°p 4°p
TDA | M | 2. 364 0.4283 0.3194
f 0.5857 0. 0480 0.0325
RPA  |M| 2. 330 0.3884 0.2971
f 0. 6094 0. 0407 0.0289
HRPA |M | 2.341 0.4319 0.3168
f 0.5819 0. 0497 0.0326
Weiss | M | 2.531 0.5230 0.2896
f 0.5391 0. 0641 0.0240
Schiff | M | 2.5314 0.5247
f 0.5391 0.0645
2 See text.
b

A. W. Weiss, J. Res. Natl. Bur. Std. (U.S.) 71A, 163 (1967).

€ B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).
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TABLE III. Relative Probabilities for Two-Photon

Emission of the ZIS Level of Helium

y? AP A(y)° Ay
0. 00 0.0 0.0 0.0
0.05 28.1 24,7 25.2
0.10 65.5 58. 2 59.9
0.15 94 83.8 86.4
0.20 115 103 106
0.25 130 116 120
0.30 141 126 130
0. 35 149 133 137
0.40 154 138 142
0.45 157 141 145
0.50 158 141 145

a y=w, /wof where w, is the frequency of one of the two photons.

L Using the definition of the RPA for excited state-excited state

transition moments of Eq. (12). A(y) is in units of sec™.

¢ Eqgs. (21) and (22) of text with the initial-final state experimental
energy differences.

d Reference 18,
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Figure Captions

Fig. 1. Photoionization cross sections of the 2'S state of
helium in megabarns. The curve shows the present
cross sections obtained by numerical analytic continua-
tion. The triangles and octagons are the calculated
results of Norcross (ref. 8) and Jacobs (ref. 9)
respectively.

Fig. 2. Photoionization cross sections of the 2 °S state of
helium in megabarns. The curve shows the present
cross sections obtained by numerical analytic contin-
uation. The triangles and octagons are the calculated
results of Norcross (ref. 8) and Jacobs (ref. 9)

respectively.
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(E)
Transition Moments between Excited Electronic

States of N2
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Emission intensities between the various excited states of
molecular nitrogen are important in the analysis of radiative
processes in the atmosphere. For example the first positive band
of N, (B 3Hg - A?E{;) gives one of the major contributions to the
radiation from hot air in the visible and near infrared at tempera-
tures up to 10* K and is a strong emitter in auroral displays. Tran-
sitions between the W SAu and Bsﬁg states can also be expected to
play an important role in the aurora and in atmospheric radiative
transfer [m et al., J;\S,)\’fiij Excited state-excited state elec-
tronic transition moments and their dependence on internuclear
distance are obviously needed to explain and predict these band
intensities. These transition moments must also be known in order
to include cascade contributions to the vibrational population of states
of N, in normal auroras, e.g. the Bl g WA and Baﬁg = A’ =3
cascade processes [Cartwright et al., ];gjvl\]. Transition moments
between excited states can also be important in the modelling of gas

phase lasers, e.g. the C °Il, = B°Ii_lasing transition in N,.

In this paper we report transiiion moments and their depend-
ence on internuclear distance for a large number of transitions be-
tween excited states of N,. These include the following band systems:
B3Hg = AP 23:{ (first positive system), C ° IIu = BSHg (second positive
system), I;' 32\'1' = lelg (infrared afterglow system), B3Hg - WsAu,
a'll, ~w'a a'l_—a’'s7, and alng—'blnu. We also report

moments for transitions between the a'II e state and the more complex
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121’; states. These transition moments are calculated non-empirically
using the equations of motion method [Shibuza and McKoy, ’1\919\]
which is a many-body approach to the direct calculation of the quan-
tities of physical interest in spectroscopy, i.e. excitation energies
and transition moments. We report results at several levels of
approximation to the equations of motion, and from the results of
several applications to other molecules we expect these transition
moments in N, to be quantitatively reliable.

In this paper we do not emphasize the quantum mechanical
details of the many-body theory or computational aspects of our
solutions. Such details can be found elsewhere [Yeager et al., 1975 |.
The point we do want to stress is that transition moments between
ground and excited states or between excited states themselves can
be calculated quite accurately through the theoretical models and
computational procedures which have been developed in the field of
molecular quantum mechanics. This is particularly so for the
diatomic molecules of interest in atmospheric processes.

In the next section we give a very brief outline of the theo-
retical approach we use to calculate these excited state-excited
transition moments in N,. We then present the results for many
band systems for six internuclear distances between R = 0. 90 A and
R=1.40 A. The actual values are given in Tables I and II and the
results for some transitions are plotted. The moments are also
fitted to simple polynomials of the form a + bR and a + bR + cR%.

In these forms the results can be easily used in the analysis of

experimental data.
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Theory

We have recently proposed the equations of motion method as
an approach for the direct calculation of the relative quantities, e. g.
transition energies and moments between the ground and excited
states of a molecule, of interest in spectroscopy [Shibuxa and
McKoy, }\9\']\9\] The method is based on the solution of the equation
of motion satisfied by the excitation operator, O}j , defined such that
O{ |0> = |x> where | 0> and |A > are the ground and excited
state of the system respectively [Rowe, 1968 |. Excitation energies,
wg, , and transition densities, p,,, for the transition [0 >— | x >
are obtained from the solution of the equation of motion. The transi-
tion dénsity provides the information needed to calculate the transi-
tion moment < 0 | M | A > where M is the electric dipole moment
operator. A series of approximate solutions to these equations of
motion have been derived [Shibuza et al., 1973 | and applied to vari-
ous molecules [H,CO: Yeager and McKoy, 1974; H,0: Yeager et al.,
1974; CO,: McCurdy and McKoy, 1974; N,, CO, C,H,: Rose et al.,
,1\9121] The important implication of these results for the present
purpose is that the method yields accurate dipole transition moments.

Recently we have also derived expressions for the transition
moment between excited states consistent with the approximations
and assumptions normally used to obtain transition moments between
the ground and excited states in the equations of motion method
[Yeager et al., 1975 |. The basic procedure is to exploit the formal
T

properties of the excitation operators O A2 defined on the ground
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state, A to rewrite the transition moment, <A;| M |Aj >,

i’
between excited states in a specific and useful form. We have used
the resulting expressions to evaluate the transition moments between
the 2'S (2 3S) metastable state of helium and the n'P (n 3P) states. In
this paper we will use these several approximations in the equation

of motion method to the excited state-excited state transition moments
between the low-lying excited states of N,. These three approxima-
tions -- the Tamm-Dancoff approximation (TDA), the random phase
approximation (RPA), and higher random phase approximation

(HRPA) -- have been discussed in detail previously [Yeager et al.,
1975 |.
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Results

The ground state electron configuration of N, is (1 Gg)2 (1 ou)2
(2 Og)2 (2 Uu)z (1 ﬂu)4 (3 Gg)z. The principal electron configuration of
the A°S}, 0’27, B'°3, o
(1o) o) @0) @s) 1r) 30) @ d that of the B'It
o - o - Ty ( g) ng) and that of the .

and a'Ii, state is (1 og)2 (1o)” (2 og)2 (2o (1ry" @ o) (I7y). In

a previous paper [W , 1973 ] we reported the excitation

gt 12;, w°A_, and wlAu states is

energies and dipole transition moments from the ground state to these
excited states at several internuclear distances. The basis set used
in these calculations and other details are given in that paper. The
basis set consists of a valence [4s 3p| basis contracted from a

(9s 5p) set of primitive Gaussian functions. In addition two diffuse

d7 and po Gaussian functions are inciuded at the center of the mole-
cule. We use the transition densities and other results of these calcu-
lations to calculate the transition moments between the excited states
of N,.

Tables I and II give these transition moments for the triplet-
triplet and singlet-singlet transitions respectively. In Table III we
also list the coefficients of the polynomials of the form M(R) = a + bR
and M(R) = a + bR + cR’ obtained by a least-squares fit of the data of
Tables I and II. These results should be immediately useful to those
who try to extract the dependence of the electronic transition moment
on the r-centroid from experimental intensity data. In such analyses,
e.g. [Cunio and Jansson, 1968 | and [Jeunehomme, 1966 |, the tran-

sition moment is expanded in polynomials of the r-centroid whereas
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our expansion of the electronic transition moment is in terms of the
internuclear distance. These expansions are not identical but some
approximate comparisons can be made.

From Tables I and III we see that the transition moments for
the B3ng - W’A, and BT,
both show considerable R-dependence. In their model calculations

- A3E:; transitions are almost equal and

Cartwright [Cartwright et al., 1971 | assumed a value for the B— W
transition moment equal to 1. 7 and 0. 85 of the B — A transition
moment at R = 1.3 A. These choices were made to see the effect
of this transition moment on the predictions of their models. We
see that the assumption of M(B — W) = 0.85 M (B — A) is in fact
close to our predictions.

We also comment on the transitions involving the - J states.
Avoided crossings among these states make these states interesting.
The ¢’ state is primarily a 3 o, = 3 g, excitation, the b’ state

m and the ¢’ state 3 Oy 4po. These are deperturbed

u Ty
states [Dressler, 1969; Coughran et al., }\9\1@\] which correspond
to hypothetical electronic states of the same symmetry which are
allowed to cross. For the IZJ states we have simply used the lowest

<+
b
two .

states in our calculations. Neither the b’ nor the e’ states
are always in the two lowest states and the relative ordering may
differ somewhat depending on the approximation used.

Figures 1 to 6 show the transition moments of several transi-
tions in various approximations. In general the HRPA results should

be regarded as the most reliable.
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Conclusions

We have used a recently proposed many-body theory -- the
equations of motion method -- to calculate the transition moments
between excited states of molecular nitrogen. From the results of
previous applications of this method we expect the predicted transi-
tion moments to be accurate. These transition moments and their
dependence on internuclear distance can be immediately useful in
the analysis of experimental intensity data. With the present theq-
retical methods and computational procedures of quantum chemistry
we conclude that it is probably simpler to calculate the variation of
transition moments with internuclear distance in diatomic molecules
than to attempt to obtain this dependence from a detailed analysis of

experimental intensity data.
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TABLE 1. Transition Moments Between Excited Triplet States?®

R(au) R(A) | TDA RPA HRPA| TDA RPA HRPA
Bsﬂg-WSAu BSHg-A32J
1.701 0.90 | 0.308 0.318 0.311| 0.329 0.350 0.362
1.890 1.00 | 0.295 0.312 0.300| 0.301 0.338 0.318
2.068 1.004°| 0.277 - 0.284| 0.280 -  0.296
2.268 1.20 | 0.250 - 0.260| 0.254 - 0.273
2.457 1.30° | 0.222 - 0.233| 0.227 A 0.248
2.645 1.40 | 0.191 = 0.203| 0.197 - 0.217
B3Hg - B’z 133ng -C’ny
0.90 | 0.308 0.306 0.308| 1.53 1.55 1.55
1.00 | 0.294 0.293 0.295| 1.58 1.59  1.60
1.094 | 0.274 - 0.277| 1.59 ™ 1.62
1.20 | 0.246 - 0.252| 1.59 . 1.62
1.30 | 0.215 - 0.224| 1.57 - 1.61
1.40 | 0.180 - 0.195| 1.54 - 1.58

4 Absolute value of the transition moment in atomic units. 1 au=
2.542 D. See text for discussion of the headings TDA, RPA, and
HRPA.

B Experimental internuclear distance of the ground state.

€ - in this column indicates an instability in this approximation.
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TABLE II. Transition Moments Between Excited Singlet States of N,

R(au) R(A) | TDA RPA HRPA| TDA RPA HRPA
alﬂg -wiA alng -zt
1.701 0.90 |0.269 0.269 0.266 | 0.729 0.701 0.951
1.890 1.00 [0.263 0.263 0.263 | 0.430 0.404 0.555
2.068 1.094°|0.245 0.246 0.248 | 0.295° 0.195° 0.385°
2.268 1.20 |0.218 0.220 0.224 | 0.251 0.252 0.334
2.457 1.30 |0.188 0.194 0.196 | 0.179 0.166 0.269
2.645 1.40 |0.155 0.176 o0.167 | -9 4 0,233
a%%-b”z; aﬁ%-e”Z;
0. 90 A - - | o0.162 0.153 0.182
1.00 - 0.043 - |o0.04a -9 0138
1.094 |0.107° 0.247¢ o0.093¢| -4 - -d
1.20 |0.051 0.066 0.027 | - - .
1.30 |0.017 0.064 0.094 | - E -
1.40 |0.0002 0.038 0.086 | - - -
alﬂg -a'tsn] alng - ML
0.90 |0.307 0.311 0.312 | 1.45 1.47  1.42
1.00 |0.282 0.291 0.288 | 1.53 1.54 1,54
1.094 |0.256 0.271 0.263 | 1.54 1.56  1.57
1.20 |0.224 0.253 0.232 | 1.53 1.55 1.56
1.30 |0.191 0.264 0.200 | 1.51 1.54 1,54
1.40 |o0.158 - 0.165 | 1.47 1.52  1.50




-75-

2 Absolute value of the transition moment in atomic units (au).
1 au=2.542 D. See text for discussion of the headings TDA, RPA,
and HRPA.
Experimental equilibrium internuclear distance of the ground state.
€ The b’ 12:; and ¢’ lZ)J states are close to each other at this geom-
etry and there is significant mixing of the particle-hole amplitudes
(one-electron excitations) usually associated with each state.
d Iy this column - means that at this geometry this 12:; state is not

one of the two lowest 12:; states in this approximation.

€ Unstable in this approximation.
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€ The transition moment at R = 0. 90 A was excluded from the

_ . 1 ol 3 _ w3
M(R)—a+be1tfortheaHg WA, B Hg WA,
3311g - A’27, and BNl - B'*% transitions. The transition

moments at R=0.90 A and R = 1. 00 A were excluded from the

linear fit for the a'll g™ ¢’ 123 transition.
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Figure Cagtions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. o.

Fig. 6.

Transition moment for the a Il g WlAu transition in the
three different approximations. ——— HRPA, —— — RPA,
—— — TDA. See Shibuya et al. [1970 | and text for an
explanation of these approximations.

Transition moment for the a'll o c’ 12:; transition in the
three different approximations. ——— HRPA, ——— RPA,
—— — TDA. See Shibuya et al. [1970 | and text for an

explanation of these approximations.

Transition moment for the a'li o " b’ 12; transition in the

three different approximations. HRPA, ——— RPA,
—— — TDA. See Shibuya et al. [1970] and text for an
explanation of these approximations.

Transition moment for the Bl g " A3zl‘1‘ transition in the
three different approximations. ——— HRPA, ——— RPA,
—— — TDA. See Shibuya et al. [1970 | and text for an
explanation of these approximations.

HRPA transition moments for the alﬂg -a 1231'1 transition
(left) and the alng - b1l transition (right).

HRPA transition moments for the B°II g W °A,, transition
(upper left), B°II = B’ 32‘.1'1 transition (upper right), and

the B°II g~ C Il transition (lower left).
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Part II

An Equations of Motion Approach for

Open Shell Systems
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I. INTRODUCTION

In several recent papers, 1,2 we have described the equations
of motion method as a conceptually and computationally simple method
for obtaining properties of direct physical interest to spectroscopists,
e. g. transition energies and moments. We have applied the equations
of motion method at various levels of approximation to several atoms
and small molecules including H,, N,, CO, H,0, CO,, H,CO, and
Cc.H,.>

For closed shell systems, the simple approximations, i.e. the
Tamm-Dancoff approximation (TDA) and the random phase approxi-
mation (RPA), generally give oscillator strengths in good agreement
with experiment. To obtain good agreement with experimental excita-
tion energies and to eliminate instabilities in the triplet manifold a
higher order scheme is required. 1% We have used the resulting
transition densities and discrete oscillator strength distributions in
these approximations to calculate frequency-dependent polarizabilities

and photoionization cross sections from both ground4 and metastable

5

states. The TDA and RPA results have also been used to calculate

transition moments between excited states in He5 and N,. &

In elec-
tron-molecule scattering we have calculated Born inelastic cross
sections7 and discussed how these RPA results can be used to con-

struct an optical potential. 8

There are many systems of chemical interest with open shell
ground states, e.g. Li, O, and many molecular ions. The purpose

of this paper is to extend the equations of motion method to atoms
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and molecules with simple open shell ground states in a clear straight-
forward manner. Although we limit the scope of this paper to the
open shell random phase approximation, it is easy to extend the
method to higher orders. This is the first step in a more general
equations of motion theory.

In Section II, we review the equations of motion method and
explain the modifications necessary for open shells. In particular,
in section III the cases of one electron outside a closed shell in a
nondegenerate orbital and two electrons outside a closed shell in two
degenerate molecular orbitals are examined and the formulas derived
for the open shell random phase approximation (OSRPA).

We report results for lithium atom and oxygen molecule in
section IV. For lithium, since most low-lying transitions are
2s — np there is little change due to correlation effects between the
TDA and the RPA. For the Schumann-Runge transition in oxygen
(X3Zé
ment with experiment. However, several excitation energies are not

— B*? 21'1) we calculate an oscillator strength in good agree-

consistent, indicating that a higher order scheme is necessary to
accurately predict spectra. For several uses, e.g. discretization
of the continuum, when one requires a distribution of f-values, the
RPA results may be adequate. For both Li and O, no matrix larger

than 50 X 50 was diagonalized.
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II. THEORY

A. General the ory

Consider the excitation operator O; which when operating on

the exact ground state [ 0 > generates an excited state [A >, i.e.
o, 0> =|A> 1
X - (1)
Operating with the Hermitian conjugate operator O, on the ground
state gives
0,|0>=0 (2)

We can solve for\o)lT and the corresponding excitation energy,

w, = E, - E,, from the equations of motion”

<0|[60,, H, of]|0>=uk<01[oo)t, o£J10> (3)

where 60, is a variation of the operator O,, H is the Hamiltonian,

and the symmetric double commutator is defined
2[A, B, Cj=[[A B], C] + [A |B CJ] (4)

We can obtain the matrix element <A | W |0 > of the operator W

from

<a|w|o>=<0]|[0,, W[[0O> (5)

Equation (3) is exact. For many electron atoms and molecules
Eq. (3) cannot be solved exactly. There are two approximations which

can be made. The excitation operator may be expanded as sums of
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one-body operators, two-body operators, etc. We can approximate

O)\T by truncating this sum. For example, in closed shell systems

we can restrict O):f to be a sum over one-body operators

T_\ i l
O)\ = (le'yl Cm/ Cyl - Zm/yl C_y/ Cm/) (6)
m'y’

It O):f is expanded a sum of elementary excitation operators
CiT, which we will call p~h excitation operators, and the correspond-
ing Hermitian conjugates
T 7

the following matrix equation results from Eq. (3)

A B U V ®)
- - - - 8
B* A" Z<>~ A\ -u zo\

where
Ay = <0][cy, B ¢l 1[o>
Bij=-<0HCi, H, cjj|0> (9)
Uy = <0 [c;, cj“][o>
Vi = - <0][Cy Cyl 0>

Matrices A and U are Hermitian, B is symmetric, and V is anti-

symmetric.
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A second approximation is to use a nonexact ground state,
e.g. the Hartree-Fock ground state or some simple correlated state.
The use of the double commutator on the left and the commutator on
the right of Eq. (3) reduces the particle-hole rank of the expression,
making it less sensitive to the choice of the approximate ground state.
Hence, in many cases, a low level choice of ground state, e.g. the

restricted Hartree-Fock (RHF) in Egs. (8) and (9) may suffice.

B. The closed shell

In the RPA Ol is restricted to the simple sum in Eq. (6) and
the ground state is chosen to be the Hartree-Fock ground state. In
the TDA the Z amplitudes are assumed to be identically zero, i.e.
correlation is completely neglected. The TDA and RPA matrix ele-
ments of Eq. (9) are given elsewhere. 10

In general, many TDA and RPA oscillator strengths agree
well with experiment while energies do not as well. Additionally,
in the triplet manifold low-lying states often have imaginary eigen-
values which represent instabilities in the RPA. An advantage of
the RPA solution is that by including the Z amplitudes in Eq. (8),
we implicitly assume a correlated ground state, even though the
Hartree-Fock ground state is used throughout and no correlation
coefficients are explicitly calculated. The RPA oscillator strengths
also satisfy the Thomas-Reiche-Kuhn summation rule.

To obtain more reliable excitation energies and to eliminate

triplet instabilities, we extend the approximations used in Eq. (3)

to higher orders by explicitly including correlation in the ground
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1 T

state” and by including double excitation operators in OA in a
perturbative scheme. " The method is called the equations of motion
method including double excitation mixing (EOM (1p - 1h) + (2p - 2h)).
We have achieved excellent experimental agreement for both energies

and oscillator strengths for several atoms and molecules. .

C. OQ en shell sxstems

An advantage of deriving the RPA from the equations of
motion (3) is that the extension of the method to open shell ground
states at all levels of approximation is straightforward. The form
of the Eq. (8) for open shell cases remains the same, however, no
general expression for the submatrices A and B can be given.

For the OSTDA and OSRPA we approximate | 0 > by the
restricted Hartree-Fock ground state. The orthonormal sets of

molecular orbitals are obtained from the OCBSE open shell
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11 his

Hartree-Fock method of Hunt, Dunning, and Goddard.
method does not explicitly make use of the off-diagonal Lagrange
multipliers to maintain orbital orthogonality. The converged SCF

orbitals satisfy11
<i|Hp -H;Qu |k>, k=1, M; i >k (10)

where there are P molecular orbitals, M occupied, and Qik =0 if
i>M, Qik =1ifi=M. Hy is the usual Hartree-Fock one-electron
operator for orbital ¢y» i.e. Hy ={F, where { is the fractional
occupation number. If i and k are in the same shell Qik = 0.

The Hamiltonian can be written

RN T 1
JC = ZJ hilj/, C.rC.r + 3 2/ Viljlklll Cj/ Ci/ Ck/ Clr (11)
1,]I 1Ijlklll
_ T T e i i
=/, By (Ciq S0t Cig Cip) -2 /) Vikkj (Cia Sja * Cig ©jp)
ij ij k

+ 3 2/ Vijkl (ciTa Crg * ci; ckB) (chcv Clg * c].TB Clﬁ) (12)
ikl

where primed indices denote spin orbitals and unprimed indices
oribtals. The sums are over all orbitals. In general we will use
lower case Greek letters for pure hole orbitals; m, n, p, ... for
pure particle (virtual) orbitals; £, and §i, for the open shell orbitals;
and i, j, k, 1for any of the three types. Figure 1 illustrates this

nomenclature. Vijkl is defined
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Vi = J ¢; (1) ‘i/j* (2) rl—l 0y (1) ¢ (2) d7 (13)

2

Throughout this paper real orbitals will be assumed.

Equation (10) can be used to rewrite Eq. (12) in terms of
on-diagonal Lagrange multipliers which are associated with the
orbital energies. The exact form of the Hamiltonian will thus
depend on the open shell case.

We can use Eq. (12) and an appropriate set of p~h excitation
operators in Eq. (9). If [ 0 > is approximated by the restricted
Hartree-Fock wavefunction with spin S, Mg, the result is the open
shell RPA. Equation (8) reduces to the standard closed shell RPA

form.

A B\ /Y Y
S0 - hw ) (14)

For closed shell systems 0}3 contains only one-body operators

in the TDA and RPA. We write O, as in Eq. (7)

"

i

; |
o' = ?(Yic - 2, C;) (15)

A

and consider that Cl' operating on the open shell restricted Hartree-
Fock ground state generates a configuration which is an eigenfunction

of S? and 1\7IS. For open shell ground states unless certain two-body p-h
operators are included in Eq. (14) we cannot account for all linearly inde-
pendent configurations which are eigenfunctions of $? and 1\7£S for a given

orbital occupancy. These two-body p-h excitation operators allow

for spin-flipping of the open shell electron in addition to a simple
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excitation, e.g. they include p-h operators such as CI:]OZ Cla Csz’ﬁ Coar
A simple example will clarify this. Lithium has a

[ 1sa 1sB 2sa > ground state. This state is an eigenfunction of s”

and I\;IS with spin 3 and spin projection 5. If the p-h operator CiT

operating on \ lsa 1sB 2sa > excites an electron from a 1s orbital

to a 3s orbital keeping M. = 5, there are three possibilities

S

| 1sa 2sa 3sB >, |1sB2sadsa>, |lsa2sp 3sa> (16)

Linear combinations of these kets must be taken to form configura-

tions which are eigenfunctions of éz with eigenvalue ;. There

are two independent combinations which have spin 5. The third

ket in Eq. (16) involves a change of spin of the 2s electron from «
. S 7

to B. Its p-h excitation operator is C' = - C3cq ClsB CZSB Coc?

a two-body operator. That is

7 1 -
- 354 158 ®258 “2sa | 1sa 1sB 2sa > — | lsa 2sB 3sa > (17)
All Cif's are chosen to generate orthonormal states which are eigen-

functions of éz and 1(/1 when operating on the restricted HF ground

S
state.

A further consideration in choosing the p-h operators is that
they be tensor operators of a given rank k in spin space and that the
Hermitian conjugate operator Ci be a tensor of the same rank and
have the same transformation properties within a phase under rota-

tion of the spin space. Although the p-h excitation operators chosen

in this manner are not the simplest possible, they assure a unique
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definition of the B matrices of the equations of motion. We can form

excited states with pure spin S’ by operating with tensor operators
(k)T
Tq
TS Mg > = > T(k)T|SM > < kSqM¢ | kss' My > (18)
S L q S Mg S
a, MS

where T differentiates states of the same spin. A similar equation
exists for T q(k). If k is zero, the dipole allowed states, then there
is only one term on the right hand side of Eq. (18) and the Clebsch-
Gordon coefficient is unity. For example, to generate the excited
singlet manifold of O, starting from the ground state triplet with

M. = 0, we can choose a set of p-h excitation operators of rank

S
1 component 0 which generate pure states with S'= 0, M

’

S
operating on the restricted Hartree-Fock ground state. The

= 0 when

Hermitian conjugate operator Ci operating on the correlated state
by Eq. (18) may not generate pure states. Similarly CiT operating
on the correlated state may not generate pure states. We expect

therefore the excited state manifold in higher order schemes which
has a different spin from the ground state to have slight errors due

to contamination of other spin states.
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We now derive explicitly the open shell random phase approxi-
mation for two simple cases. These cases are those of a single
electron outside a closed shell in a nondegenerate molecular orbital
and of two electrons outside a closed shell in two degenerate molec-
ular orbitals in a triplet state. These cases are among the most
common open shell ground states, e.g. for the first case lithium
atom and many molecular ions and for the triplet case O,. With
very slight modifications the triplet case can be applied to the lowest
triplet stafe of closed shell atoms and molecules. Extensions to

other open shells are obvious.

We have derived all formulas for these open shell systems
via a computer program. Starting from the input p-h operators and
Hamiltonian and by Wick's theorem9 this program generates a set of
formulas on magnetic tape which are in turn read into a standard

random phase approximation program. Hence, even though
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programming considerations for each open shell case may appear
lengthy, in reality the entire procedure is automated.

In summary our OSRPA procedure is

1. Perform an open shell SCF OCBSE11 calculation to obtain
an orthonormal basis.

2. Rewrite & in terms OCBSE orbital energies, choosing the
particle states to be eigenfunctions of the last open shell Fock operator.

3. Use the restricted Hartree-Fock ground state [ HF > as
an approximation to { 0> in Eq. (8).

4. Choose excitation operators 0}3 such that the p-h excita-

tion operators {ClT | operating on l HF > generate configurations
1

which are eigenfunctions of éz and M Furthermore all Ci

g are
one-body operators except for those which change the spin of the
open shell electron or which move an electron between degenerate
open shell molecular orbitals. The latter C; will be two-body
operators.

5. The CiT are chosen so that CiT and Ci are tensor operators
of the same rank and hence the Hermitian conjugate pairs transform
in the same manner under rotation of the spin space.

Extending this method to higher orders is straightforward.
The ground state [O > can be replaced by a simple correlated ground
state instead of the restricted Hartree-Fock ground state. Correla-
tion coefficients can be obtained from perturbation theory or possibly

an iterative scheme.1 This is the higher open shall random phase

approximation (HOSRPA). Double excitations can be accounted for
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in a manner similar to closed shell methods. - Again by including
spin flipping in the open shell molecular orbitals we may have to
include certain classes of three-body and even four-body operators
to properly account for the number of independent configurations of
a given spin for an orbital occupancy.

Other open shell random phase approximations have been pro-

posed for atoms and molecules. ke 15

Our method is a simple and
clear way to extend the RPA to open shell systems. We differ from
Armstrong12 in that we have included certain two-body tensors in

our excitation operators, we use a specific restricted Hartree-Fock
particle-hole basis, we have generalized to molecules, and we always

require

0, 0> =0 (19)

We differ from J¢rgensen13 by choosing an approximation to i 0>

that is an eigenfunction of §2, MS, and I:I where I:I is the number
operator. Furthermore our Cl' operators include certain two-body

operators and when operating on the ground state produce kets which

~

are always eigenfunctions of éz, My, and N. We believe that our

S b
method offers the most straightforward extensions to higher orders.

D. Transition moments

For closed shell molecules, we can expand Eq. (5) in terms

of the Y and Z amplitudes of Eq. (8) to yield

- A \ * * -
<0|D|n>= Dy =Vv2| ) (Y, +Zy )dy,

my

(20)
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where D is the transition moment and Ay, 18 < m|r’|y >. For
open shell cases Eq. (20) is no longer correct but must be modified
to

- B - — o

D = 214 R, (Yi + Zi) di (21)
where the sum is over all possible particle-hole pairs including those
pairs with spin flip in the open shell and electron rearrangement among
degenerate open shell orbitals. Ri is a number which may be zero.
For example, for a simple doublet ground state as in Li, Ri may be

1.0, -1.0, -V2, or 0 depending on the kind of excitation.
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III. OPEN SHELL OPERATORS AND MATRIX ELEMENTS

A. Doublet

The ground state is \(closed shell) Sca > . We limit the equa-
tions to the case where {¢ is nondegenerate, although the degenerate

case is no more difficult. For this system the Hamiltonian is

., 1 T " i
Tos iy (Ciw Cia * Cip Cig) + f; (2 (V5 = 2Vipp ) + PG Viggj -
Viesie) =3 5V, .)(CT C. +c.T C:n) 2 B Vi
1§28 K ikKj io Tja iB 7jB ikl ijkl
i 1 i i
(cia Cra * Cip ckB)(Cjoz Clg * CiB Clﬁ) (22)
where

b =1 wheniandjare in the closed shell or when i or j
is a virtual and the other is in the closed shell
b =2 whenior jis open and the other is closed

b =0 all other cases.

Cp = By + BRI, K, ) v e @, - Ke,) (23)
€ = Ngg v 2@Jg, - Ky (24)
€m = Bpm * % (szV - Kmv) (25)

The possible excitations are shown in Figure 2. The operators are

given in Table I, the A matrix elements in Table II, and the B matrix
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elements in Table III. R values from Eq. (21) are in Table IV for

the doublet (dipole allowed) manifold.

B. Ogen shell triglet

The ground state is |(closed shell) &, aSi,a > where §, and

{2, may be degenerate. For this case the Hamiltonian is

T N T 1 N 2 7l
o= Zelegyciq*eip Cp) + f]' (2@ Vipyy = 2Vip) +
- 1 - - 1 ! 1
Z (b =2) Vigas - Vigjs) g 2 Vippi) (Cia Cja * Cip jp)
+3 5V (cT ¢, +clc )(cT ¢, wclc ) (26)
2 ijkl (®io Cka * Cip Ckp) (Cja C1a * Cip C1p

ijkl !

where
b =1 wheniandjare each either open shell or virtual

b=0 whenior jis open and the other is closed

b =3 all other cases.

= b> - s & (2 - K, 2
T A LR SMETIEICE AL W (27)
€= B+ 2RI, - K+ = Ugg - Ko (28)
€m = Bpm * ‘); @I )m - Kyp) + é‘u Jem ~ Kem) (29)

The various possible excitations are shown in Figure 3.
32, and 4, are not degenerate except in g, since the same

kinds of excitations are present for the lowest triplet excited state
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of a closed shell molecule. Type g excitations are not included
if &, and §., are not degenerate. For excitations of type e there
are three triplets and two singlets, only one of the triplets is gener-
ated by a one-body operator. Type f excitations are for the different
possible states for the ground state orbital occupancy if §., and ¢,
are degenerate, e.g. the alAg and blzg states in O,.
The p-H operators and R values are given in Tables V and
VI. The p-h excitation operators for the singlet manifold are appropri-

ate for the M. = 0 ground state while for the triplet (dipole allowed)

S
manifold p-h excitation operators are for the MS = 1 ground state.
These formulas do not apply if {;, and §;, are nondegenerate or if
there is one or more additional orbitals degenerate with {., and {,,
a. g, carboh atom. However, these cases involve only minor modifi-
cations and are no more difficult. The formula list for the A and B

matrices is lengthy and is not included. The formulas are available

upon request from the authors.
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IV. APPLICATIONS
A. Lithium

Lithium atom provides_the simplest case for the doublet open
shell formulation of part III. The basis set used consists of 10s and
8p contracted Gaussian functions. The results for this calculation
along with experimental and Hartree-Fock results are given in
Table VII.

Since the low-lying transitions in Li principally are 2s — ns,
np there is little change in the correlation energy upon excitation.
Hence, the TDA and RPA results are almost identical to three figure
accuracy. This agrees with the Hartree-Fock calculations of

14

Goddard™ ~ where no correlation effects are included. The TDA and

RPA energies and oscillator strengths agree well with experiment.

The Thomas-Reiche-Kuhn sum rule, i.e.

0) = & f 30
8(0) = Z £, P

in the TDA and RPA are 3.03 and 2. 83 respectively. The exact value

is of course 3. The frequency independent polarizability S (-2) =
. 3 5
Z( /uon2) is 169 a " and 170 a in the TDA and RPA respectively
compared to the variational estimate of Stacey and Dalgarno15 of
3
163.1 a, -
The results for Li are in good agreement with experiment

primarily because the low-lying lithium atom transitions involve pre-

dominantly 2s — ns, np transitions. The orbital energy of the 1s



-104-

electrons is -2. 478 au and the 2s electron -0.196 au. For cases
where there are several valence electrons in addition to the open
shell electron, e.g. H2C0+, the TDA and RPA results will differ and
agreement with experiment will not in general be as good. As in the
closed shell cases, 3 higher order schemes should give close experi-

mental agreement.

We have also done an additional calculation where only one-
body p~h operators are included in the excitation operator, i.e.
formulas 7 through 10 in Tables II and III are set equal to zero
The resulting TDA and RPA results are identical to those of Table
IX. This is because the two-body p-h excitation operators describe
excitations from the closed (ls)‘2 shell and hence are relatively unim-

portant.

B. O,

Paca

The ground state Hartree-Fock orbital occupancy of O, is

2 2 2 2 2 2 2 .
(ldg) (1 Ju) (ng) (20u) (3’Jg) (lﬂuX) (lﬂuy) .lngx lngy

leading to % _, lAg, and 12; states. Bz)é is the ground state.

The basis set is the <4s 3p > set of contracted Gaussians

16 All calculations were done at the ground state experi-

of Dunning.
mental geometry of 1.207 A. The TDA and RPA results for low-lying
transitions are given in Table III. Columns 7 and 8 are RPA

results where no two-body terms were included. No matrix larger

than 50 X 50 was diagonalized.
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Even though there are large discrepancies between these
results and the results of large CI calculations and experiment,
there are several interesting features. Most striking is the excellent
agreement of the transition moment of the Schumann-Runge transition
x’s- — B® :J:l regardless of approximation. Experiment gives

g
0.193. 17 For the other allowed transition, XSZJ; — 3Ju'u, the
calculated transition moment is very small and the excitation energy
is 10.58 eV. Experimentally this transition may have been observed

at 9.97 eV or 10.29 ey, 18

The potential curve may be theoretically
dissociative. L

Both the triplet and singlet manifolds can give instabilities
(imaginary solutions). We show in the appendix that since Brillouin's
theorem is not satisfied for restricted Hartree-Fock ground states,
instabilities do not necessarily imply that there is another approxi-
mation to the ground state, perhaps of broken symmetry, which lies
below the approximate ground state used here. In fact, instabilities
imply nothing about the ground state and may occur for an excited
state of any spin multiplicity.

For most of the other transitions both the TDA and RPA
results are low, e.g. C 3Au, ASZ):;,‘ clz;. This indicates that we
are describing the excited state much better than the ground state.
This could be easily corrected by extending the RPA to higher orders.
In the HRPA1 the ground state correlation coefficients are calculated
explicitly. Inclusion of double excitation type operators inthe closed
shell EOM then gives excitation energies in general excellent experi-

mental agreement. 2,3



-106-

A simpler procedure that will improve excitation energies is
a multiconfigurational random phase approximation approach. 4t In
this procedure after a RHF calculation is done on the ground state,
a limited number of correlation coefficients are calculated explicitly
by a small configuration interaction calculation. Excitations can be
from or to the correlated orbitals in addition to ordinary excitations
21

from the strictly closed shell configuration. For example in

ethylene we could assume the ground state to be approximately
*x X

T
|0>=~K, [HF>+ K, | _ 2> (31)
mm

K, and K, are determined from a 2 X 2 CI calculation. In addition to
excitations from the HF ground state there can be excitations from the
7* orbitals and to the 7 orbitals. The MCRPA can also be used for ex-
tending excited state potential curves to large internuclear distances.
The MCRPA or HRPA approach is necessary in O, for this
basis set. This can be seen by examining the A and B matrices for
°Z states. The smallest on-diagonal elements for the A matrix is
0.310 au for =z, — Ty transitions. The largest elements in the B
matrix are off diagonal and are 0.165 and 0.172. They correspond to
deexcitations from the (i nu)z (1 “g)q and (1 nu)3 1 ng)3 (80,730
components of the ground state respectively. We have found for
closed sheil RPA calculations that when B matrix elements are of

similar magnitude as the on-diagonal Ar matrix elements the RPA

approximation begins to break down. Morokuma and Konishi2? in
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large scale CI calculations report a contribution to the st)'g': ground
state of 1.5% for configuration (1 Il )" (1 ng)“ and 2.0% for (1 4i)’
(1 ng)3 (30, — 39,) states.

The discrepancies between the RPA including only one-body
p-H operators (columns 7 and 8) and the RPA with open shell spin f
flip operators (columns 5 and 6) indicate that especially for excitation
energies certain classes of two-body operators are important and
should be included.

S(0) for the TDA is 7.19 and 5. 79 for the RPA. «a , the
perpendicular component of the frequency independent polarizability,
is 2.178 a03 in the TDA and 2. 71 a’ in the RPA. o, the parallel
component, is 18.6 a_ in the TDA and 21.5 a ’ in the RPA.

23

Langhoff™ gives the perpendicular component as 8.17 ao3 and the

parallel component as 15.5 303.
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V. CONCLUSIONS

We have derived an open shell random phase approximation
starting from a restricted Hartree-Fock ground state. Using an
equations of motion approach, we choose p-h excitation operators
which are one-body and certain types of two-body spherical tensors
which when operating on the ground state generate configurations
which are eigenfunctions of éz and MS‘ We have developed an auto-
mated procedure to calculate A and B matrix element formulas of
the equations of motion which are needed in the OSTDA and OSRPA
solutions for several different open shells with little more work than
for closed shells. The matrices separated by spin and spatial sym-
metry are usually no more than 50 X 50.

We report results for two calculations using two different
open shell ground states. As expected Li results agree quite well
with experiment. O, results do not except for oscillator strengths.
These results are due to correlation effects manifested in B matrix
elements that are large with respect to on-diagonal A matrix elements.

Even though for a case as complicated as O, the OSRPA fails
to give a good description of the low-lying excitation spectra, we
believe that for certain purposes useful information can be obtained
from a limited calculation. For example, in those applications where
one needs all the excitation energies and transition densities as a
discrete approximation to the complete spectrum the RPA results
are usually sufficient. These applications include the frequency-

dependent polarizabilities and their related applications to
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photoionization and photodetachment cross sections and approximate
optical potentials for electron-molecule scattering. It is clear from

a comparison of the closed and open-shell RPA formulations that the
open-shell optical potential is not a simple extension of the closed

shell case. The resulting RPA vectors can also be used to calculate
transition moments between excited states. D We can use the formalism
to directly calculate excitation energies starting from the lowest trip-
let excited state of a closed shell system.

Furthermore, using the equations of motion, Eq. (3), it is
straightforward although somewhat tedious to exiend the method to
higher orders. These ideas are being actively investigated in this
laboratory. We can expect good agreement with experiment as with

closed shell EOM calculations.
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Table I. Spherical Tensor p-h Operators for the Doublet
|(closed shell) S2e@ > Ground State

Doublet Excited State (S = %, Mg = z)

T N 1 T
Cev (00) = “Cha Cva T Cop CuB
Cvf (00) = ! e + c‘T o

mss T "'moa S mpg &P

. . ~ i
1Cpy,p (00) = 1/v2 (CmB et Cma Sra

c! (00) = /z}é (- el e elc el e el e
2¥mvy - maoa vB B " Sta mp vae Sia $of3

11 f LT 1
*2 ma Sva CSa[S CSLB t2 cmﬁ CuB Coa Csa

v T T
c C c c
2 "ma vo Sia Sco

i 7
°mB Svp Csp Cop)

[\

0ol
S

Quartet Excited State (S =}, Mg =

1 PPN i i i
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Table II. A Matrix Formulas for the Doublet

| (closed shell) Sio > Ground State

Doublet Matrices

L Aq_m1), @-m2) © %mim2 o a1+ Vaoes! - VHiGH2G
1
* 2 V12,
2. Ap1-g), (sc-H2) = = VH2P1g.
3. Ap1-g,), (p2-5) = Op1p2 (€p1 - €g)
4. Ay(pr-m1), (s.-u2) = /Y2 (-Oy1p9 Vpiges ~ 2 VHim2pIs,
* Vu1p1m2s.)
- £
5. Aq(p1-u1), (p2-5) = /Y2 ©p1pa Vaigss * 2 Vi1 p2pis.
= Vy1p15p2)
6. Ayp1-m1), 1(p2-12) = Omim2 Op1p2 (€p1 - €q1) * Ohime
i -
(Vpigpos = 2 Vpipaes) * 2 Vainapip2 = VHiP1H2 P2
7. Ayp1-m1), (-12) = V32 Vhipiaag - Ouine Vpicss.)

8. Ag(p1-H1), (P2-5) = V372 Vaipigp2 - VElusu: Op1p2)

9. Ag(p1-H1), 1(P2-H2) = V3/2 Oyina Vpipass. = Opipa V

HIH26:8,)



-112-

Table II (continued)

= §

10. Ag(p1-m1), 2(P2-H2) = ®HiH2 %P1p2 €p1 = €H1) * OHim2

(Vpiopaa + 2 Vpip2as.) * 9p1p2 VHiE2:6 ~ VHIPIH2 P2

Quartet Matrices

1. = 4

Ap1-m1), (p2-H2) = %P1p2 %Hin2 ©p1 - €H1) * Onima (Vpig pac

1
- Vpipaas,) = 2 °p1p2 VH1H2GS ~ VHIPIH2P2



<118~

Table III. B Matrix Formulas for the Doublet
|(closed shell) Sca > Ground State

Doublet Matrices

1.

10.

B(¢,-n1), (2-u2) = °

SRS
Bp1-), (2-H2) = ~ 2 VH2P1S.%
B(p1-1.), (P1-0) = ©
—1— A
By (p1-H1), (5.-H2) = V2 -Vgigapig * 2 VEin2ep1)

1
By (p1-m1), (p2-2) = V2 Vgip2pie - # Vaipipas)

Bi(p1-H1), 1(P2-H2) = 2 VH1H2P1P2 ~ VHIH2P2PI

V372 Vyin2ap1

[\ L

By (p1-H1), (2-H2) =
4

By(p1-H1), (P2-&) = 2 V372 Vaipipag

Bo(p1-H1), 1(P2-H2) = 0

Ba(p1-H1), 2(P2-H2) = - VH1H2P2P1

Quartet Matrices

i

B(p1-m1), (P2-H2) = ~ V2/3 VHim2p2pi
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Table IV. R Values for the Doublet

|(closed shell) i > Ground State

R.-H1) = L0
Rip1-¢) = =L,
Rypt-m1) = V2

Ropt-p1y = O
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Table V. Spherical Tensor p-h Operators for the Triplet
[ (closed shell) §, §z, > Ground State. §, and §,

are degenerate.

Triplet Excited States, [(closed shell) §., ai,a > Ground State

i e T 1

a. CSzlu (0 = ~ €, Cva T %0, B CuB
T i i

b. CSLZV o) = €, “vat 0,8 Cup

c CT (00) = cT ! + c“ c

’ m¢z, T "ma $,a mp ", p

i I | 7

e Cmsal 00) = -¢hq “Goa T mp S B

e. (C1,(00) = 1N2 (e e +elae,)

T i T 1

i R
2Cmy (00) = 2 ((Cma “uB CSZZB cSazoz "Cmp va Cszza 50,8
+C c cT g o+ cT c cT Ce )
ma “vB B S, T Tmp Tva S a TS B
+i(-cT € Co 5k —cl e el e
2 ma va Sw,B S, TmP Tvp o S,a
. i

' 1
" Cma “va CSzza CSzza *Cmp v CSZZB CSLZB)

i T i AT 1
+2 (Cpg Cg 6,8 % 87 “mpB “vp s o S a

i i i i
g)

e B B . Cp o FE. aB aGe o
" ma “va Q0 “Q,0 T "mB VB T8, B TS,
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T 1 A
p 400 = 1/v2 ((Cmoz vp S5 o aa " me Cra ('8420‘ CSazﬁ
N ! ol 1
& ©1B cSalB CSLla °mB Cva C&ala culﬁ)
+ & (~e! ¢ el e ¢! e el

ma va LB $e,p mpB "vB “&,o CSaza

1 1 1 T

" ma “va CSazoz Chza *Cmp Cuvp CSLZB CSLQB)

Lt 1 i r
e (-Cma Cya €., 8%, “mB “vE S0 e

1 f 1

" ma Cva c&ala CSala *Cmg Cug CSLIB CSLLB))

1 ¢! ! !
, (00) = 1/¥2 (c ma “uB %, B %ot CmB Cra Gy C,p

[ 1 ! 1
¢, ©C c c
mao va S a So,o " mp up CSLIB CSLZB

+C
+ c1 ¢ cvf e + cf T
mao VB T8 ,E TSqa mp Cra Suza SLlﬁ

1 i 1 1
" ®ma “va C&za C&Llaf *Cmp Cup C&azﬁ C&blﬁ)
ol ol !
ma “vB S N Szza mB “va hla e, "

(OO) = 1 /2 (c

1 T 1
" Cma “va CSblOl CSAZCY " Cmp Cup . B C&ZB
1 1 T 1
" ®ma “vB %08 %0 T CmB “va %o % B
- c-f c cT c -C €t ¢ )
meo va s, Sea T mB v Te,p S f
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Sal()lhzﬁ + Salﬁ&.za

Singlet Excited States, }(closed shell) > Ground State
V2
a C'f (10) = cA7 c. - cmI e
Y % g a Tva S, B TVE
1 N | i
L CSazl/ (10) = "% 0 Cva %8 Cup
1 _oqt -1
N Cm&z2 A8 = ‘mB CS‘ZB ‘ma Cszza
i A1 i
d. thl g} = ‘ma Cula " ®mp CSLIB
e. .Cl (10) = 1/V6 (c‘t~ c.acl ne a-cl e el ¢
T o2¥my N mpB VB "B S, Tma Tva Ty, S,o
_ CT 1 N CT 1

ma “vB CSLBB cszza mp “va CSzza “.,8
vel e el e —el e et e
mpB “vB 6, B 8B ma va $o,o o

1 1 1 1 )

" Cmo Cup CSzlﬁ C&la *CmB Cva CSa'la csalﬁ

1 B i f ! 1
3Cmu (10) = 1/2v2 (cmB CVB CSalO’ CSala LmB CL’B nglﬁ 05“1/5

1 i i T

+C g i c -cC B8 ot
mao va S S mo o vae $o B S p

1 1 i 1
) Cmﬁ CVB CSLZQ Csta ¥ CmB CVﬁ CSL,QB CSLZB
_ el r o 1

c ¢ c ¢, . C c
ma va S,a S0 0 ma voe §,P SLZB)

1 TR i 1 1
. 1C852SL1 (10) = 2 (CSalﬁ cSaZOI CS&la c&alﬁ - CSélﬁ CSazﬁ cgalﬁ cSalﬁ
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i T T 1

+ C C (¢ C = G Ce C .
S0 “Se,0 Yo a SSe a0 T % a %6,B Sk G, a

0 1 [ i
0,6 6 a 6,0 %e,B T C,R S, B %e,B R
-cg C, ¢, ¢ ‘ .y e, \_c.i ¢ )
600 Soy 0 S S T TSe,a T8 B TS TS,
C, (10) = 3 (cT c c. i -cC & & CT &
278,80y & $o,B $e,a S a 8B $¢, B e, 5 8B SulB
Ii 7 7 1
T a C,a S B a T % a BB BB S o

T 1 T '
* 6,8 % a %, %,B T %8 OB BB S8

1 1 i 1
*Co,a %0 Ce,a S, T S S B,k Ci,o)

i ) T i 1 1
Ly (10) =1/2V2 (cmﬁ €uB %, B %8 ™ Cmp B iy S,

T 1 T 1

+cC c . C ¢ -C P -
ma “va $,B e, "ma “va CSLIO' $o,0

T 1 ] I
* Cmﬁ CVB CSazﬁ CSalB - cmB CVB ngzaf CSal(y

1 1 T 1
"Cma “va %8 % BT “marva % 0 CSalOi)

i _ i 1 1 i
Cmy (10) =1/2v2 (CmB Cup CSa‘lﬁ Cszz,e " Cmp Cup Csala S a

1 1 T 1
"C’ma Cva %, B %, T Cme “va % e S,

1 i 1 i
" %mB B B % Bt Cmp v Cseo G

1 1 + c? @ 1 )

" Cma “va %8 %, BT “ma “va “Se,o S



-119-

Table VI. R Values for the Triplet
| (closed shell) §, a§,a > Ground State

Rui-g1y = -1.0
Rpgt-gz) = 1.0
Rpi-g2y = L0
Rpi-g1) = -1.0
Ri(pi-g1) = V2
Ropr-m1)y = 0.0
Rypr-g1)y = 0.0
Rypr-my = 0.0
R - 0.0

5(P1-H1)
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Table VII. OSTDA and OSRPA Results for Li.

Basis Set is [10s 8p |.

Exp® , HF® TDA RPA
AE Exp AE AE TDA AE RPA
State (eV) f (eV) (eV) f (eV) f

2°p 1s”2p 1.85 0.753 1.84 1.83 0.758 1.83 0.758
3°s 1s”3s  3.37  -- 3,38 3.83 - 5.88 . =
3°p 1s°3p 3.84 0.006 3.80 3.80 0.004 3.80 0.004
4°s 1s®4s 4.34  -- -~ 430  -- 4.30  --

4°p 1s”4p 4.52 0.005 -- 4.50 0.003 4.50 0.004

4 Atomic Energy Levels, compiled by C. E. Moore, National Bureau

of Standards, Circular No. 467 (U. S. Government Printing Office,
Washington, D.C., 1947).

B Compiled by T. C. Caves and A. Dalgarno, J. Quant. Spectrosc.

Radiat. Transfer 12, 1539 (1972).

C Ref. 14.
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APPENDIX

Analogously to Thouless24 we examine instabilities in the

open shell RPA when { 0 > is approximated by the restricted Hartree

Fock ground state.

Let | T > be a state generated by the anti-Hermitian operator

7> = eT|> (32)

where T is single-particle-hold form with the additional two-body
operators which can flip the open shell spin and excite. It can

easily be shown25 that

<ﬂﬁm>:<hﬂ>+<HmTH>+g<HfJLTn>+”.(%)

For closed shell systems, the Hartree-Fock variational condition is
that the energy be stationary with respect to all single excitations,
that is

<|[H, T||> =0 (34)

Equation (34) is known commonly as Brillouin's theorem.
If Eq.(34) holds, then for the Hartree-Fock solution to be a
true minimum

1

<|[T, H, T||>=0 (35)

This implies that the RPA matrix is positive definite, i.e. has only
positive or zero eigenvalues and that the RPA energy « , can never

be complex. Of course, for finite basis set expansions for closed
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shell Hartree-Fock ground states we can obtain imaginary solutions
of the RPA matrix equations for triplet excited states. This means
that a state with lower energy which is not necessarily a function of
S” can be found. =

For a restricted HF open shell ground state in general, only

27

a limited form of Brillouin's theorem is satisfied, “ ' that is

<|[H, T]|>=% 0 | (36)

even if T is restricted to purely one body operators. Hence, the
RPA matrix is not necessarily positive definite. Thus, instabilities
in the RPA solutions do not indicate that a lower ground state can be
found. We expect for open shell RPA calculations when a restricted
HF ground state is used as an approximation to | 0 > fundamental
instabilities in any spin manifold which cannot be eliminated by
increasing the size of the basis set but may be only by going to

higher order approximations.
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Figure Captions

Fig. 1. Labeling of the particle-hole basis for an open shell.

Fig. 2. DPossible excitations for the simple doublet. The figure
on the right includes the possibility of spin flipping of
the electron in the .o spin orbital.

Fig. 3. Possible excitations of the triplet |(closed shell)
$¢,afi,a > ground state. e includes possible spin
flipping in the open shell. f includes different
open shell states for the same orbital occupancy if
$¢, and §:, are degenerate. g is included only for

degenerate {¢; and {.,.
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Appendix B. { and ./ Matrix Formulas for Triplet Excited States,
|(closed shell) &, @§c,a > Ground State. £, and &,

are degenerate. Zero formulas are not listed.

A Matrix Formulas

Lo Agi-m1), (e1-02) = %mime o1 ™ €1 * Velsietst *
1 1
Vete1s26.2) - Vaig1m261 ~ 2 VEIH26202 T2 VHIH2G 101
2. Ago.m1), (5.1-H2) = VHI1s1H202 T VE1H20261 7
Saime CVeinigie2 ~ Viieos2a2)
3. Aw,2-11), (2-H2) = Omim2 a2~ €H1 * Vo202 *
L L
Vot 1s262) ~ VELe 28262 ~ 2 VHiH2G 161 T2 VHIH2G 262
4. A(p1q,2) (1-H2) - ~ VH2P1G16.2

5. A(p1-u2), (.2-H2) - VH2P16.26:2

6. Api-e2), (p2-52) = Op1p2 €p1 -~ €u2) * Vpipagag2

- Vp1w.2p2s.2
7. Ap1-q1), (@1-H2) = VH2PIS161

S A(Pl-ﬂl), (.2-H2) = T YH2P1Q2G1

©

- Ap1-g1), (P2-52) = VP16L1P2s2 T VP1P26.16.2



10.

11.

12.

13.

14.

15,

16.

117.
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Ap1-g1), (P2-5:1) = Op1p2 €p1 = €,1) T Vpipasigd -

Vpi1s.1p201

1

Ay(p1-u1), @1-H2) = T 5 Cmim2 Veieicien *
1
Vpicie202) V2 (Vaigepisl * 2 Viipimast)

1
Al(pi-n1), (@2-H2) ~ 75 ‘mim2 Vpisisies * Veiasaue)

+ Y2 (Vigygopic2 = 2 VHIPIH26.2)

A1(p1-H1), (P2-5:2) = 71{ Op1p2 (VHig1s.16:2 * V1526262
+ Y2 (Vg1 pap1g2 = 7 VH1pis,2p2)
A1(p1-H1), (P2-1) = ~ ;7 Op1p2 (VHig 1161 + VHIG1026002)
- V2 (Vg1 papic1 * 2 Vuipis1p2)
= B

Ay(p1-H1), 1(P1-H1) = Omim2 %p1p2 (€p1 = €H1) *

2 012 (Vprpag 161 + Vpip2a26.2) + 2 VH1g2p1p2 -

VH1p1H2P2

Ag(p1-H1), (01-H2) = ~ VHipim2al * Omim2 (Vpig1s.26.2

+ Vpig 18161

Ag(p1-m1), (@2-H2) = VHipiH2e2 - ®mimz (Vpigos2s2 *

Vpis16.152)



18.

19,

20.

21.

22.

23.

24.

25.
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Ag(p1-H1), (P2-6.2) = ~ Vmip1e.2p2 * Op1p2 (VHig 20202 *

VHIG18:16.2)

6

Ag(p1-H1), (P2-61) = VE1p1w1p2 ~ Op1p2 (VHig 16,202

VH1G 16161 )

1
Axp1-u1), 1(P2-H2) = 73 VH1H260262 * VH1H2G161)

1

7z °

12 (Vp1p2202 * Vpipagis1)

Ag(p1-H1), 2(P2-H2) = Omim2 Op1p2 (€p1 - €g1) +
Sm1m2 Vpipas2s2 + Veip2oiel) + 2 Opip2 (VHIH2S 16,1
* Vaiu26020.2) - VHIPIH2P2

1 1

A3(p1-H1), (u1-H2) = 73 VHIPIH2G1 T 3 ©

a1u2 (Vpi1g16.26.2
- Vpig.161s.1)

1 1
A3(p1-H1), (2-H2) = 73~ VH1P1H25.2 * 75 °HiHZ2 (VP16L16162

- Vp16,26,262)

1 1
Ag(p1-H1), (P2-6.2) = 73 VH1P1s.2P2 * 73 Op1p2 (VHis2s.25.2

= VH1616.16.2)

1

1
Ag(p1-H1), (P2-21) = ~ 75 VH1PIL1P2 * 73 %p1p2 (VHIG 16161

- VH161626.2)



26.

217.

28.

29.

30.

31.

32.

33.
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o V

H1H26.26.2 =V

p1p2 (

NI

A3(p1-H1), 1(P2-H2) = H1H2G16.1) *
1
2 0q1m2 (Vpip2gis1 - Vpip2aw2s.2)

A N S (v -V )
3(P1-H1),2(P2-H2) =~ 73 °P1p2 (VHiH2020:2 = VHIH2G 11

1
* 5 %minz (Vpipagaae - Veipagigr)

Crin2 Opip2 €p1 ~€m1 *

A3(p1-H1), 3(P2-H2) =
1
2 Vo1015252) * a1z 2 Vprpag2a2 + Vpipasiis1) -
Vu1pig2p2

A S P (V
4(P1-H1), (21-H2) ~ ~ 73 vmipiH2w2 * 75 %min2 Vpigio2cl

+ Vp1616.15.2)

1 1
Ag(p1-H1), @2-H2) = J3 VHIPIH2.1 -~ 73 CHiH2 (VPiLig202

+ Vp16.26,162)

1 1
Ay(p1-n1), (P2-5.2) ~ " 75 Vmipleip2 * Opip2 73 (VEisasae2

+ Va1 10252

1 1
Ayp1-H1), (P2-21) ~ 75 vHipluzp2 - “p1p2 5 (VHitlu1e2

+ Vi16.16.261)

EY -
Ayp1-H1), 1(p2-H2) = 2 Op1p2 (VHim2c1c2 * VE1H2 201)

A
2 %12 (Vpiponia2 + Vpip2s.2s1)



34.

35.

36.

317.

38.

39.

40.

41.

-135-

= §

A 1 (V. +V )
4(P1-H1), 2(P2-H2) = °P1p2 73 VHinH2016.2 ¥ VH1H2. 251

1
+Om1n2 73 (Vpipac2gt * Veipasise)
= L -
Ag(p1-m1), 3(p2-H2) = °p1p2 2 Vgimonin2 = VE1m2:.261)

+ 0112 2 Vpipagac1 * Vpip2s1s.2) *

0 o

p1p2 m1m2 (Voo 16182 = Ve 16,25.202)

Ag(p1-H1), 4(P2-H2) = °min2 Op1p2 €p1 " €H1 - Volwos16.2
4 d L
+2 V0020002 T2 Vo1a16161) * 2 Ox1a2 (Vp1p2g.2c.2
+ Vp1pas.is.1) - VH1P1H2P2

Ag(p1-H1), (S1-H2) = ¢ VH1p1H26.2 *

1

‘mimz 73 Veieioea1 ~ Velaigiee)

Ag(p1-H1), (22-H2) = " J3 VHIPIH2G1 '
1
‘minz 73 Vpisasoe2 * Veisanioe)
A = = +
5(P1-H1), (P2-5.2) 75 VH1P161P2

1
opip2 73 (Vmim2cis2 - VEisis2e2)

N
Ag(p1-H1), (pz-a ) = " 75 VHIPLL2P2 *

Opip2 ¢2 (Vh1g16261 ™ VALG16162)

1 -
Ag(pi-m1), 1(p2-82) = 2 °p1p2 VmHin2n1s.2 - VHIH26.2501)

"2 g2 (Vpipagis2 - Vpip2gast)
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1
2. Ag(p1-m1), 2(p2-H2) - T3 °pip2 VHim2sic2 - VHim20261)

)

1
+ 75 Omm2 (Vpipasas1 - Vpipasiq?)

43. = &

Ag(p1-u1),3(p2-02) = “p1p2 %Hime (Veiwtwies * Veioosow2)

+ %12 @ Vpigip2a2 = 2 Vpip2aie? = 2 Vp1pas.2st)

1 L
+0p1p2 (-2Vhic 1202 * 2 V126162 * 2 VHIE226.1)

i

44. Ag(p1_p1), 4(p2-u2) = 2 %min2 Op1p2 Veisis161 -

Ve26.26.26.2) * %12 Vpie1pas1 = Vpisaps2 *

1 XL -
2 Vp1pag2s2 = 2 Vpipas.1a1) * 9pip2 (Viigam2c.2

A h g
VHiG 1201 ™ 2 VHIH20G202 T2 VHIH2S 16.1)

= 0

45. Ag(p1-p1),5(p2-H2) - °H1nH2 °P1p2 €p1 " 1 T Ve1s2616.2

1 i
+ 2V 1016202 * 2 V2020202 * 2 Vo101l

X1 -
Sa1m2 2 (Vpipagisa + Veip2aoa2) =~ Va1 pin2p2



11.

12.

13.

14.

15.

16.

17,

18.

=13 7=

B Matrix Formulas

B(2-11), (21-H2)
B(p1-5.2), (s21-H2)
Bor .

(P1-5:2), (:22-H2)
By o

(P1-5:1), (S21-H2)
B ‘ .

(P1-21), (522-H2)

B(p1-01), (P2-5.2)

By (p1-H1), (sc1-H2) ~

By (p1-H1), (22-H2)

Bi(p1-H1), (P2-4:2)

Bi(p1-H1), (P2-5.1) ~

B1(p1-H1), 1(P2-H2)

Bo(p1-H1), (21-H2) ~

Ba(p1-H1), (5:2-H2)

Bo(p1-H1), (P2-612) =

Vaia2s.16.2 -~ VH1H2(.201

-V

H2P1§:152

L
2 Vaapig2a2 * 2 VE2pis 151

1
2 Vyopiginl * 2 Vaapis.26.2

- Va2p162s.1

Vp1pac25.1 - Vp1p2s16.2

- V2 (V

H1H2Plw1

V2 (Vy1g2p102 -

V2 (Vi1 popig2 -

- V2 (Vg1 papigi1

i
2

z VH1m2¢.1p1)

Vain262P1)

VH1p1p26.2)

1
SV

H1P1P2s.1)

= 2Vygigap1p2 - VHIH2P2PI

-5 vy

8

g "HIH21P1

VH1H262P1

= Vy1p1p252
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_ 9
19. By(p1-m1), (P2-:1) = g VHIP1D2.1

= -V
21. By (p1-H1), 2(P2-H2) H1H2P2P1
I
22. Bg(p1-m1), (1-H2) = 275 VHIH201PI
' - ==V 2p1
23. Bg(p1-H1), (:2-H2) 177 VHIH262P
= - —— Vi p1pag2
24. Bg(p1_g1), (P2-5:2) 175 'HIPLP2G
= - == Vyipipaut
25. Bg(p1-m1), (P2-%1) 175 VHIPIP2G
= - ¥
28. B3 (p1-p1), 3(P2-H2) H1H2P2P1

-
29. By(p1-mH1), (§21-H2) 15 VHIH262P1

3
-3y
30 By(p1-n1), (u2-H2) T 5 VHIH201PI

3
y = - V )
31. By(p1-H1), (P2-022) 275 VHIPIP2G.1
= 4 Vo pipac.2
32. By(p1-u1), (P2-51) = ;5 VHIPIP2S
- -V
36. By(p1-11), 4(P2-H2) H1H2P2P1

S N
37 Bg(p1-1), (u1-H2) = ;5 VHIH242P1
' = = Vyimog1p1
38 By(p1-Hl), @2-H2) ~ 5

= v
39- Bg(p1-m1), (P2-02) = 5 VHIP1P21



40.

45.

=139~

B R
5(P1-H1), (P2-21) = 75 VHIP1P2S.2

Bs(p1-m1),5(P2-H2) ~ VHIH2P2PL
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Appendix C. ./ and ‘! Matrix Formulas for Singlet Excited
States, |(closed shell) §¢, @B + &, R, > /V2
Ground State. §:1 and $:2are degenerate. Zero

formulas are not listed.

A Matrix Formulas

Aq1-H1), @1-02) = %mim2 o1~ g1t Veiotstst

w

1 -
Viia2s.262 t2 Ve 1el - VELG1H201

0|

Voi616202) *

2. Ao.m1), (u1-H2) = VHIGIH2.2 T VHIH2 201 T

Sgir2 Voiaiciae * Ve1026202)

3. Ago-m1), @2-u2) = %Hin2 Co2 " €H1 * Vioua.202

3 1
V10162020 = VEIG2H202 * 2 VHIE2G1G1 T2 VEIH826.2
4. Ap1-g2), @1-H2) = 2 VE2pin2ul T VH2PIG 162

5. A(p1-02), (2-H2) = - VH2P1§.26:2

+2V

6. Ap1-g2), (p2-6.2) = 9p1p2 €p1 ~ €2) P1P2¢.15. 1
* Vpipag262 - Vp1s.2p252

T Ap1-gl), (u1-H2) = " VH2PL1g1

8. Ap1-g1), (2-82) = 2 VH2p1a15.2 - VH2PIS 201
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% Apr-g1), (P2-6:2) = VP1P2016.2 T VPis.1p2s.2

L0, A(Pl—szl), (P2-§:1) ~ Op1p2 (€p1 - € 1) + 2 Vp1p2s26.2 *

Vpip2cis1 = Vpis.1pasil

= 3 (-
1. Agpiop), (i-a2) = V7 Viiprazet * Orin2 Vpigisic: *

Vi, 15.26.2))

_ 3 _ ,
12. Ay pi-m1), w2-02) = Yz Vaipinaa2 = Omime (Vpisis1s.2

Vp16,200262))

Vaipie2p2 - 9p1p2 (VHiG20262 '

|
<.,
\SIReN

13, Ag(p1-H1), (P2-5:2) =

VH1S18.15:2)

U
14. Agpig1), (p2-.1) = ¥z Vgipisipz * 0p1p2 (VHicis 101 +

VH161625.2)

15. Ag(p1-m1), 2(p2-H2) = °p1p2 Omim2 €p1 - €m1) *

3
Sz = (Vpipagigl * Veip2e262) + tpip2 VHimaw1c1
+ Vaiu262¢.2) - V1 P1H2 P2

9 i
16. Ag(pi-m1), (n1-m2) = V2 (-Vmimepinl * 2 Veipiaasel *

z y1m2 Vpigio202 - Vpigisis.1)

5 1
17. Az(p1-u1), (2-02) = Y2 CVaigepio2 * 2 Va1p1H22 *



18.

19,

20.

21.

22.

23.

24.

25.
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1 =
Sq1m2 2 Vpigic1s.2 - Vpiooo2.2))

) +

o

_ 5 1
Ag(p1-u1), (P2-2) = Y2 Vipapig2 = 2 Vaipis.2p2

op1p2 2 (Vh1g.20.202 = VHLG L 16:2)

Agp1-m1), (p2-s1) = Y2 (Vgipapiet =2 VEipieip2 +

Sp1p2 z (VHig 1151 = VHLG16.2602))

. NE T
Agp1-u1), 2(P2-H2) o ©p1p2 Vaimaois1 - Vain2s.26.2)

+oq182 (Vp1p2s202 = Vpip2sis1))

Ag(p1-mu1), 3(p2-H2) = ©

*Ou1m2 2 Vpipawisel * Vpipan2s2) + 2 Vyin2pip2

- Vy1pig2p2

1
Agpi-na1), @1-u2) = V2 Vhipepises ~ @ Vaipin2e2 +

1
2 %q12 (Vpigie.201 * Veiuis162)

[' -
Ayp1-H1), (22-82) = Y2 CVaimepiel * 2 VaipiEasl

ps
z 0n1a2 (Vpigi202 * Vpio261602)

A4(P1—H1), (P2-§:.2) ~ V2 (VH1P2P13&1 -2 Vgipigip2 *

i
2 9p1p2 (Vaicac102 * VH1G16.202)

Ayp1-m1), (p2-e1) = Y2 CVhipapio2 *2 VHIP1G2P2

p1p2 %H1m2 €p1 - €H1 * 2 V166202



26.

217.

28.

29.

30.

31.

32.

T3

)

2 0p1po (VHig1616.2 + VHLG 182601))

V3

Ayp1-H1),2(P2-H2) = ~2 ®prp2 Vhinmauin2 * VHin2w2w1)

+0q1u2 (Vprpasias.1 * Vpipagis2)
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B Matrix Formulas
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Part III

A Simple Method for the Direct Calculation of

Ionization Potentials and Electron Affinities
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I. INTRODUCTION

The determination of electron affinities and ionization potentials
is an important problem of both theoretical and experimental interest.
The locations and strengths of transitions are important in atmospheric,
biological, and interstellar processes. For example, in ESCA1 and in
photodetachment2 and photoelectron3 spectroscopy, ionization potentials
and electron affinities are directly measured.

Theoretically, Koopmann's theorem4 has been the mainstay of
many low level calculations. From Koopmann's theorem we can say
that ionization potentials and electron affinities can in certain cases
be predicted by the canonical Hartree-Fock orbital energies. This
result depends on correlation energy changes and relaxation effects
upon electron removal or addition being approximately equal but oppo-
site in sign and hence canceling. Although these effects are expected
to be opposite in sign there is no theoretical reason for the correlation
energy changes and relaxation to be equal in magnitude. For example,
in H,CO using a [4s 3p/2s | contracted Gaussian basis set we obtain an
orbital energy of -14.64 eV for an electron in the 1b, orbital, while the
experimental IP is 14.47 eV. However, the lowest ionization potential
is by Koopmann's theorem 12. 09 eV compared to 10. 88 eV experi-
mentally. An additional problem arises for electron affinities where
basis sets in an SCF calculation must be large enough to allow for the
SCF virtuals to converge to the more spatially diffuse negative ion
orbitals.

To remedy the sporadic agreement of Koopmann's
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theorem with experiment, large scale configuration interaction
calculations can be performed on both the molecular and ionic
states. & The resulting energies are ionization potentials and
electron affinities. These are in excellent agreement with experi-
ment but can involve tedious basis set optimization and large amounts
of computer time and core. Furthermore, in accurate configuration
interaction calculations and in related calculations using Rayleigh-
Schroedinger perturbation theory6 ionization potentials and electron
affinities are the result of a subtraction of two large numbers to ob-
tain a much smaller number.

The equations of motion (EOM) method for atoms and mole-

7

cules’ can directly calculate excitation energies accurately without

determining either total energies or wavefunctions explicitly. The
resulting energies and amplitudes can be used to easily determine

many properties of experimental and theoretical interest, e.g. oscil-

8,9

lator strengths, transition moments between excited states,  ° two

photon decay probabilities, . Born inelastic scattering cross sections, 10

8, 11 12

photoionization cross sections, and optical potentials.

In view of the relative ease of calculation and the excellent

13 a similar

experimental agreement of the EOM, we proposed in 1972
way to calculate ionization potentials, electron affinities, and the posi-
tions of simple electron-molecule resonances. It ié the purpose of

this paper to more fully expand and examine the equations and to dis-

cuss some calculations for the ionization potentials of He, N,, and OH .

14

Independently, Simons and Smith™ ~ proposed a similar method. These methods
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are related to the Green's function method of Cederbaum et al. 15 and
the propagator method of Purvis and Ohrn. 16
In section II the theory for the equations of motion method for
ionization potentials and electron affinities will be developed and ex-
panded from reference 13. We will briefly discuss the relationship
of this method to the method of Simons14 and to Green's function and

propagator methods. Results for He, N,, and OH are discussed in '

section III.



-153-

II. THEORY

Consider an operator O}'\ which when operating on the exact
initial state | 0 > with N electrons generates a state with one less or

one more electron, i.e.
O;{‘O,N>:|)\,N:t1> (1)

where \)\ > is a state which is an eigenfunction of the number operator

with eigenvalue one greater or one less than |O > . This is similar to
the equations of motion operator Ol =
TEX
A

with the same number of particles as the ground state.

O; for ionization potentials and electron affinities can be

for excited states, 7 except

that O is an operator which generates excited states of a system

written as a sum of operator strings with an odd number of electron
creation and destruction operators, i.e. the net effect of O; must be
the addition or removal of an electron. Rowe's equation of motion17

can be used to determine the energy change associated with the opera-

tor O;\r. Since Ol has an odd number of creation and destruction opera-~
tors the appropriate equation is Rowe's equation of motion for Fermi-
like transfer operators, A 1 €.
‘ : T 1
<0]{60,,3%,0,} 0> =«, <0]|{60,,0,} |0> (2)
where
{A,B,Ci=31{[A B, C}+:{A [B Cl} (3)

= ABC - CBA + 5 CAB - 5 ACB + 3 BCA - 3 BAC (4)
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wy is the negative of the electron affinity or the ionization potential
wy, = E, - E, (5)

Equation (2) is exact. However it cannot be solved exactly for
most systems of chemical interest. There are two approximations
which we can use to solve Eq. (2). O{ can be written as an infinite
sum of odd humbers of creation and destruction operators. This sum
may be truncated. For example, for electron affinities O{ may be
truncated after simple electron addition,

ol - 5 Yy ¢l (6)
where the sum is over all spin orbitals.

A second approximation is made in the choice for [ 0>, e.g.
we can choose the ground state to be the Hartree-Fock ground state.
The use of the symmetric double anticommutator in Eq. (2) assures
that the equations will be of low particle-hole rank. That is, by
writing Eq. (2) with as many commutators or anticommutators as
we can, the resulting ionization potentials and electron affinities,

w, will be relatively insensitive to the approximation used for the

A
ground state.

So far all the equations have been completely general and
apply to both electron affinities and ionization potentials. For the
remainder of this section only ionization potentials will be considered.

The theory for electron affinities is analogous. In fact, exactly the

same equations result so that one calculation may yield both ionization
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potentials and electron affinities.

Furthermore, we restrict either [0 > or |X > to be well
described by a closed shell. This restriction is not severe since for
many cases either the initial or final system is closed shell, e.g. to
calculate the electron affinity of OH we can calculate the ionization
potential of the closed shell OH .

The Hamiltonian is

I i T

o= ey (Cig Cia + Cip Cip) +§ (E Vipy; = 2Vipg)
1 e T T

-4 ; Vippj) (€ig Cia * Cip CjB)

+3 & V (cT c +cTc ) (c. ¢ +cTc ) (7
2 sild ijkl VVia “ka T Vip "KE Vja Tla T TiB CIB

where Greek letters are holes or orbitals occupied in a Hartree Fock
ground state calculation; m, n, p,... are particles or virtual orbitals;
and i, j, k, 1are either holes or particles. Vijkl is defined

Vijk1 = J o (1) 90;(2) —rl— ¢ (1) ¢ (@) dT, (8)

12

To determine a reasonable form for O;: consider the initial
state }0 > to be the Hartree-Fock ground state and all possible double

excitations, i.e.
|0>~ N, (|[HF > + | x > (9)

where N, is a normalization constant and \ X > is a correlation func-

tion.
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-~

3 mn | mn
x>= (10)
il YV 4%
m=n
Y=V
Equation (10) can be rewritten7
~ & \A)‘ T 7 |
|0> ~ N, (|[HF > +3 /) [cm%n(5 () (z ¢y ©g Cna oo

mnyv

i T i 1 T 7

®ma Syo ®ng €68 * °mp €8 Cha %50 T2 cch},B Cnp COB) +

A 7 T 1
Crny, ne (1) (-2 cpy Cva ®na %o t Cma Cya Cng Cop T
el e el e ~iel e el ¢ ) | (11)
mp “yB "na 6o 2 "mp "yp "np "6p

All correlation coefficients are assumed to be small.

The important effects for ionization potentials are:

1. Removal of an electron from a hole.

2. Removal of an electron from a particle level.

3. Removal of an electron from a hole and excitation of one
of the remaining hole electrons.

4. Removal of an electron from a particle level and deexcita-
tion of the remaining particle electron.

2-4 are higher order processes for ionization potentials.
2 and 4 do not exist unless the initial state is correlated.

Hence we can write

B SRR S e

Oy = Zi'Yi (-eig) + Y(mw)r F(myv)r "2 Z(pm'y)r®(pm)’)r 1)
T r
myv pmy
e p=m
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In Eq. (12) the operators are spin-adapted so the subscript r refers
to the various possible spin couplings, e.g. there are two ways to
couple three electrons in three different orbitals to form doublet
states with MS = 3. I“‘T is an operator which has the effect of remov-
ing an electron from a hole and exciting a different hole electron.
CH) is an operator which removes an electron from a particle level
and deexcites the remaining electron in a particle state. The 1"T
and (@ operators are given in Table I.

If Eq. (12) is used in Eq. (2) we obtain the following matrix

equations.

Qv NS 2 (1,2)y /y(2) \_ e MY + v&(l zgm 2)y )‘ (13)
2¢) s\ \ @)

\w

e

@12 g,2) g Ja®D @2\ 3@

;
i\a(z 2! 22 \‘Z(Z)/

uh((@lz %(1,2))3[ /@(2,2) M(zz)‘. Y(z)

! \i
1

@ ;z(zz) 2@ /|

| )i ay
s \T‘ j
where
|
ij = < 0| {eigs 3, ch} |0 >
Wy = <9 {clﬁ, cigl [0> =3
a1, 2) (-
Uiy, = = <0l eigs %, Ty 110>
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(1, 2)
/ﬁl(pmw) - <0Hc15’ Q(pm'y 0>

(1, 2)
&i§(m7’V)r - <OI{CIB’ F(myy t l0>
o« (1,2)  _ Y /= "
Fimp, = “OHeip & pmy } 10>
(2 2 _ ) T { Ny
a(mw p (), ~ <0 | {P(I_n_?i’)r’ 3, L lmy), | 0>
2, 2) .
C’(mw (g, = -<0|{r(m " O(pmy }lo>
Q2% = <0 |{ fo o>
(my),., myw), = <O 1 Tmpw) > Timy) + |

2, 2)
& (my) s (pr), <°|{F@_y_v>r’@<pmy>r} [0>

(2 2 - -
\B (pm'}/) = -<0 l {@ (E’)r’ Jau, (E—I) (pnl.};)r Jl \ 0>

' (2,2) B i | |
ét(p_mz)r,(pmw)r = =0 H@(}_)ﬂ/)r’ @)(pmy)rJL 0> (15)

The most important process for ionization potentials is single
electron removal. All the matrices which involve an operator that is
simply electron removal are in Eq. (13). Equation (14) is coupled to
Eq. (13) through the ionization potential « , and the vectors Y(z) and

Z(z). Equation (14) can be solved for <Y(2)), i.e.
2)
7 (
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-1
(@) 222, Q22 0@, F@
4@ | Q(z,zﬁ_w&j(z,m“" B@Y, L2

/

N

O 7, f f
< ( 1,2) LUA@\(I, 2)  RB@Q,2 _w)\gi'f\(l’ 2y 'y (18

~ ~

- -A7"R'Y (17)

~

Combining (17) with (13)

Ay - RAMR'Y - W, Y (18)
(& - 2)Y = 0, Y (19)

Equation (19) must be solved iteratively for w, since Atii depends
on w, through Eq. (16). For example, the first guess for w, can be
Koopmann's theorem value. It is used in constructing A g:c . A new
w, is chosen from the eigenvalues of (19) which is the closest to
w}‘KOOP' and this is used to form the new A g« This process con-
tinues until two successive iterations do not differ by more than a
predetermined amount, e.g. 107°Hartrees. The procedure usually
converges within ten iterations.

The formulas of Eq. (14) in terms of orbital energies and
interaction matrix elements are derived using a formula generat-
ing program. ki The ground state is assumed to be as in Eq.

(11). If the correlation coefficient C is obtained from

my, nd
Rayleigh-Schroedinger perturbation theory, it is proportional to

electron interaction matrix elements. All formulas used in Eq.
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(19) are derived so that Eq. (19) is third order in the electron inter-
action matrix elements, i.e. é(, formulas are generated to order

e C®and vV’ R formulas to order € c” and VC, and A formulas to
order e C and V. This truncation by orders is reasonable since the

terms most important for the ionization potentials are contained in é\Z

5 _ (2) _
i = 7407 2 Py BV~ Vieyy) = 2 Ppq @ Vipjq ™ Vipg)  20)
where
(2) 1 —
LG A U S o (S) C S)
Vy P S pu, qV PL, QY
(21)
= = b
Ppq =% 2, % Comp,qr® Comp, py ©
and
) -3 ES 1
Cov,ay @ =2 Cpy o O +3Cpyp g, (1)
(22)
/ _ L 2 1
Cov, qy ) =5 Cpy, gy (O +3 Cppy g (1)

Note that through second order in interaction matrix elements U ij
is purely on-diagonal and is given by Koopmann's theorem.

Matrices oﬁg (1, 2), df 1, 2), q 2, 2), and 2?(2’ 2) are zero.
Matrices é\Q, b@ o 2), and VZ“/ 2,2) are unit matrices. The
formulas for matrices @ ({, 2), @ ({, 2), C;E (2, 2), and \{\3 (2,2)
are given in Tables II and IIL

The Y(Z) amplitudes correspond to electron removal and

excitation of another hole electron. This is a core relaxation process.
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The Z(z) amplitudes are electron removal from a particle
level and deexcitation of the remaining particle electron. Thus, the
Z(z) amplitudes are a correlation effect. We expect the inclusion of
Y(z) amplitudes to lower the calculated ionization potential and the

Z(z) amplitudes to raise it.

In actual calculations, the matrix sizes are reduced by

choosing O)'\ operators which generate states of a specific spatial

symmetry. However the A matrix is still very large, e.g. for a
calculation of the OH™ X =+ — 2Hg state using a <4s 3p Zdn/

25 1p> + R s,+ Rp, + R sy basis set the A matrix is 1050 x 1050.
There are several approximations which can be made to reduce the
size of the calculation. .

The simplest approximation is to ignore the AQZ, correction
in Eq. (19) to {i If simultaneously terms second order in the
correlation coefficients are set equal to zero in (13 we have Koop-
mann's theorem. Neither approximations works very well as will
be shown in section III

A second approximation is to calculate all terms in Eq. (19)
only to second order, i.e. (L terms to order € C* and VC, R terms
to order € V and V, and A terms to order €. Also off diagonal 5
terms are assumed equal to zero. This approximation is identical

to the second order Green's function techniques of Cederbium

15 16

et al. 01: the Born collision approximation of Purvis and Ohrn.

Although for a few molecular cases this method works well, e.g.

H,CO, 18 usually it does not. k5
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A slightly different approximation is to assume E\ diagonal
terms are calculated to order e C and V. Off diagonal Fj terms are
zero. These are the shifted Born collision results of Purvis and
Ohrn, 16 Again results are inconsistent.

Selective inversion of blocks of the A matrix where all formu-
las are calculated to second order is another possibility. This cor-
responds to the spin symmetry diagonalized shifted Born collision
approximation16 and symmetry diagonalized shifted Born collision

approximation. 16

Ionization potentials in these approximations do
not agree well with experiment.
A more reliable approximation is to retain all terms in Eq.
(18) to third order, except thatA is assumed to be diagonal. Simons19
reports agreement to £ 0.15 eV with experiment for diatomic mole-

19 does not spin-

cules using Slater basis sets. However, Simons
symmetry adapt O)f Hence spurious quartet components exist in
Q'l . We have also found that using the spin symmetry adapted
operators which eliminate the spurious quartet components of
Table I and Gaussian basis sets, agreement with experiment is
good but not in general within = 0.15 eV.

There are two further approximations which should result
in good experimental agreement consistently. Selective inversion
of Ii\ while maintaining all formulas to the order given in Tables II
and III seems to be very promising. The assumption that off-diagonal

A elements are small and hence can be zeroed may not be a valid

assumption. The selection of the sections of the /—?\'1 matrix to
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invert can be based on the magnitude of the corresponding on-diagonal
E\ terms, e.g. if the on-diagonal fi\ element differs by less than a
certain value from the Koopmann's theorem ionization potential, then
that element's indices are included in a list which is used to form the
sub A matrix for inversion. Another choice is based on the kinds of
holes and particles that compose the three indices of an E{ row or
column, e.g. if we are interested in ionization from the b, orbital of
H,CO then all indices in A which contain the b, orbital are included in
the list for sub A matrix inversion.

A second approximation is to use improved virtual orbitals
(1v0)2? for the parts of A that are assumed to be diagonal. The IVO
or frozen core orbitals are the virtual orbitals that are obtained if
the occupied orbitals are "frozen' and the virtuals are orbitals
appropriate for an electron in a field of N-1 electrons. For ordinary
virtual orbitals an electron is moving in the field of N other electrons.
IVO orbitals are obviously much more appropriate for the process of
electron removal with electron excitation. We expect off-diagonal
A elements to be smaller than when regular virtual orbitals are used.
Hence, the inverted matrix will be closer to diagonal form. The
formulas given in Tables II and III will be slightly different if IVO
orbitals are used.

In summary and as a practical description of an actual calcu-
lation, the considerations for doing an ionization potential or electron
affinity calculation of this kind are given.

1. The system must be well described by an HF closed shell
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in either its initial or final state.

2. The basis set used must be flexible enough to describe
both the initial and final states well. For calculations between a
negative ion and a molecule or atom this may require the addition of
several diffuse functions to ordinary valence basis sets.

3. r.I‘he correlation coefficients are determined by either
Rayleigh-Schroedinger perturbation theory or self-consistently from
an equations-of-motion for excited state calculation. ¢

4. Equation (19) is solved iteratively by one of the better

approximations described in this section.
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III. APPLICATIONS

A. He

The basis set used for the SCF calculation on the ground
state of He is composed of 10 s and 5 p Cartesian Gaussian functions.
The basis is taken from Huzinaga21 with the p exponents approximat-
ing a Slater function scaled so that the expectation value of r is the

22 The correlation coefficients are

same as calculated by Pekeris.
calculated by Rayleigh-Schroedinger perturbation theory.

Results are given in Table IV. Obviously both the core
relaxation (,;\((1’ 2) terms and the correlation J? (1, 2) terms must
be included in any ionization potential calculation for He where Aq_
in Eq. (19) is not assumed to be zero. For example, row 3 without
@(1’ 2) terms gives an ionization potential of 23.57 eV. The inclu-

(1,2) in row 4 gives an ionization potential of 24.42 eV, in

sAion of B
good ag;eement with the experimental result 24. 58 eV.

Doll and Reinhardt23 use a large basis set of Slater's includ-
ing d functions. Their result is a calculation to second order. If
we assume that the third order terms in @ are a purely additive
effect and do not couple with any Aé{, effects, from row 4 we obtain
an ionization potential to second order of 24.33 eV. The shifted
denominator result of row 6 is 24.55 eV.

The second order results are in better agreement with experi-
ment than are the third order results of rows 7 and 8. However,

none of the results when both . (152) ang 3L 2) patrices are in-

cluded differ from experiment by more than 0.27 eV. Even the
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Koopmann's theorem result is only 0.40 eV from experiment. As

shown by Cederbdum et al. 15,18

second order results can give good
experimental agreement for some molecules but for many molecules

higher order results are required.

B. N,

e

The ground state configuration of N, is
2 2 2 2 4 2
(1 og) 1oy (2 ag) (20y) (1 Ty 3 og) .

We have performed a ground state SCF calculation on N, at ground
state equilibrium geometry, 2.068 au. The basis set is <3s 2p >
contracted Gaussian set optimized for neutral N with the contraction
coefficients obtained from Dunning. 4% We give the results in Table V.

Koopmann's theorem ionization potentials are in error by as
much as 2.2 eV (B221+1). In addition the Koopmann's theorem result
differentiates only slightly between the X 12; — Xzzg and xlzg — A21H1
ionization potentials, 16.99 eV and 17.04 eV. Experimentally the
difference is 1.38 eV. The Koopmann's theorem ordering of the
ionization potentials is correct.

Second order calculations involve calculating C{ to order
e C’ and VC, Qg Ly 2) and @ {1, &) to order € C and V, and assuming
A is diagonal and to order e. Second order results do not improve
experimental agreement in N, and predict the ion states in the wrong

order.

Third order calculations with the Ej'l denominators expanded
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1
1+x
the results considerably. However, the calculated ionization poten-

as

~ 1 - x and only third order terms are retained improve

+
g

and 0. 78 eV respectively. The calculated Azl'iu ionization potential

tial calculations to the X22 and Bzz:f1 states are too low by 0. 88 eV
is 0.18 eV too high.

If interaction matrix elements are kept in the ~' denomina-
tors the xlz; — xzzg ionization potential improves to 14. 92 eV.

26 result of 15.69 eV. Simons uses a

This compares with Simons'
double zeta Slater basis set augmented with 3d# functions. We cal-
culate using this approximation except with the operators being spin
symmetry adapted in a <3s 2p ldﬂ = Gaussian basis set an ioniza-
tion potential of 15.13 eV. Further improvements in the basis set
should result in better experimental agreement. We feel, however,
that using Gaussian basis functions we cannot consistently achieve
Simons' experimental agreement in this approximation.

Furthermore, by not using operators which generate pure
doublets when operating on the ground state, spurious quartet contri-

“butions are introduced in E"l in Simons' scheme. This may compen-

sate somewhat for the assumption that A is diagonal.

c. o
The ground state configuration of OH™ is

(10) @20o) (30) (1n)".

The basis set we used is the <4s 3p/2s > Gaussian basis set of
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Dunning27 augmented by dm polarization functions on O and p
polarization functions on H. 28 A diffuse s function with exponent
0.09 and a diffuse set of p functions with exponent 0. 07 on oxygen
and a diffuse s function with exponent 0. 05 are included to better
describe the negative ion ground state. We calculate the ionization
potential of OH™ at 1. 781 au the ground state equilibrium geometry
of both OH and OH~. Thus we calculate the vertical detachment
energy of OH™, X*2t — 2Ii. Results are given in Table VI.

The Koopmann's theorem result is over 1 eV higher than the
experimental energy. Second order effects overcompensate reducing
the detachment energy to a small negative number. The third order
result with V in the denominator in a is in excellent experimental

agreement.
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IV. CONCLUSION

We have developed an equations of motion approach for

13

ionization potentials and electron affinities. We propose several

approximations to obtain ionization potentials, including a method

similar to the one used by Simons. 14

However, we spin-symmetry
adapt all opérators, thus assuring that there is no introduction of
spurious quartet components. It is obvious that the equations must
be solved to at least third order in the interaction.

Using large, standard Gaussian basis sets obtained from the
literature which are optimized for SCF calculations on the neutral
ground state, we do not obtain consistently ionization potentials
which agree with experiment as well as Simons. We conclude that
either using Gaussian basis sets extensive optimization including
the addition of polarization and possibly diffuse functions must be
done or that Simons use of non-spin adapted symmetry operators
introduces compensating errors which correct for the approxima-
tions made inverting the large matrix A.

We propose two further approximations, i.e. the selective
inversion of sections of A in third order and the use of improved
virtual orbitals for parts of A which are assumed diagonal. We
feel that these approximations may lead to consistent experimental

agreement for relatively small unoptimized Gaussian basis sets

without extending the equations to higher orders.
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Table 1. T ' and @ operators (v > v, p > m)

T 1
me = cha cya
T ]
r(mzzy)1 - '1/‘/—(01/0: ma “y8 ~ ®vB ®ma cya)
r = V2/3 (c +3¢€ C o+3C e c. )
(mwy), VB mB yB z va ‘ma ¥B " 2 Vv "ma ya
i
@mmy = " ’mBCama
T .'.
@D(pmy)l = -1/V2 (ch €va ®ma ~ Cpa Cva cmB)

CYY T 1 7 1 7
®(pmy) = -+v2/3 (cmB €8 o8 * % ®ma Cva Cpp * % Cmp Cva cpa)
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Table II. (1{ d,2) and f? d,2) formulas. H = hole, P = particle.
H4 > H3 and P4 > P3.

(1,2 Y
q(’ ) = -V + > [-v C (0)
i, P3H3H3 i H3H3P3 &’ e i HBH3P6 P3H3, P6H6
J ‘g
P5, P6
-V C (0) +V (C (0) +
i P3P6P5 P5H3, PGH3 i H3P6H6 DP3H3, P6H6
C (0) )+3 0 (V C (0)
P3H6, P6H3 iH3 H6P5P6P3 P5H3, P6H6
-V C (0)
i HBH5P6 P3H5, P6H6
l(l 2) - 1/¥2{V +V
i, (P3H4H3), i H4H3P3 i H3HA4P3
" Z [V C (0) +V C (0)
45w 1 H6H3P6 P3H4, PEH6 i HO6H4P6 P3HS3, PGH6
P5, P6
+V (C(0) +C (0)

i P3P5P6 P5H3, P6H4 P5H4, P6H3

-V (C (0) +C (0) )
i H3P6H6 P3H4, P6H6  P3H6, P6H4

-V (C (0) +C (0)
i H4P6H6 P3H3, P6H6 P3H6, P6H3

b (V C (0) -V C (0)
i H3 H6P5P6P3 P5H4, P6H6  H5H6H4P6 P3H5, P6H6

[N

5 (V C (0) -V C (0) ) I}
iH4 H6P5P6P3 P5H3, P6H6  H5, H6H3P6 P3H5, P6H6

|-



-174-

Table II (continued)

e = V3/2 {(v -V
"1, (P3H4H3), i H3H4P3 i H4H3P3
N C (0) +V C (0)
e 16 i HBH3P6 P3H4, P6H6 i H6H4P6 P3H3, P6H6
P5, P6
+3V (C (0) - C (0)

)
i P5P6P3 P5H3, P6H4  P5H4, P6H3

-3V - C (0)

_ (C(Og
i H6P6H4 P3H3, PBH6  P3H6, P6H3

+3V (C (0) - C (0)
i H6P6H3 P3H4, P6H6  P3H6, P6H4

+% 0 (V C (0) -V C (0) )
i H3 H6P5P6P3 P5H4, P6H6 H5H6H4P6 P3H5, P6H6

+46  (V (C (0) -V C (0)
iH4 H5H6H3P6 P3H5, P6H6  H6P5P6P3 P5H3, P6H6
! N
'5/5?’23)3 3 Vi nspaps Z [
i, P3P3H i H3P3P3 e’ pe
P5, P6

+V C (0)
i H6P3P6 P3H3, P6H6

-V (C (0) +C (0) )
i P6H6P3 P3H3, P6H6 P3H6, P6H3

+V C (0)
i HSH6H3 P3H5, P3H6
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Table II (continued)

5 Vv C (0)
i P3 H5H6H3P6 P3H5, P6H6

[\

+2 6 \' C (0)
i P3 H6PLP6P5 P5HS3, P6H6
- (1,2) - 1/V2{V LV
i, (PAP3H3), i H3P4P3 i H3P3P4
+ Y C (0) LV C (0)
e e  HOIP6P4 D3H3, PBH6  H6iP6P3 P4H3, P6H6
PS5, P6
" (C (0) +C (0)

H6P6iP3 P4H3, P6H6  P4H6, P6H3

-V (C (0) +C (0)
H6P6iP4 P3H3, PBH6  P3H6, P6H3

+V (C (0) + C (0) )
H5H6H3i P3H5, P4H6 P3H6, P4H5

-1 (V C (0) -V C (0) )
i P3 H5H6H3P6 P4H5, P6H6  H6P5P6P4 P5H3, PEH6

5 (V C (0) -V C (0) )|}
i P4 HHSHG6H3 P6 P3H5, P6H6 HOPHP6P3 P5H3,P‘6H6

-

2 (172) — \/IP3/2-‘{V -V
" 1, (P4P3H3), i H3P3P4 i H3P4P3
+ -V C (0) +V C (0)
H5, H6 H6iP6P4 P3H3, P6H6  H6iP6P3 P4H3, P6HS

P5, P6
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Table II (Continued)

-3V (C (0) - C (0) )
H6P6iP3 P4H3, P6H6 P4H6, P6H3

+3V_(C(0) - C (0) )
H6P6iP4 P3H3, PBH6  P3H6, P6H3

+3V _(c(0) - C (0) )
H5H6IH3 P3H5, P4H6  P3H6, PAHS

o=

_ils (v C (0) -V C (0)
ip3 H5H6H3P6 P4H5, P6H6  H6P5P6P4 P5H3, P6H6

+
[\

6 (Vv C (0) -V C (0) )15
iP4 H5H6H3P6 P3H5, P6H6  H6P5P6P3 PS5H3, PEHSG
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Table ITI. «{ (2,2) a4 L 2, 2)formulas. H = hole, P = particle.

~

H2 > H1, H4 > H3, P2 > P1, and P4 > P3.

(2,2)
“C(PIH1H1), (P3H3HS) = Om1u3 O p1p3 €p1 - 2€h1) +

®p1p3 Vuiniusus * %min3 Vaimipies - 2 VHipinips)
(@, 2) ; A
C(p1H2H1), , (P3H3H3) ~ OH1H3 5 (2Vy1 p1a2p3 = Vaig2psp1)
1
- 0p1p3 V2 Vuinousus * Y Syons 2 Vyipipeps -
Va1a2p1p3)
(2, 2) -5 5 5
CL(piH2H1), , (P3H4H3), = CH1H3 ‘m2m4 Op1p3 €p1 ~ €m1 " €m2) *

Suins “Vhopin4aps * 2 Va2u4p1p3) * Ouing Va2pinsps

z Viouspip3) * Op1p3 Vaimonsus * VH1H2HAHS)

2,2) _
I J ) - 6 Vi V -
C((p1H2H1),, (P3H3H3) -~ °H1H3 Yz VHI1H2P3PI

\/— H2H3 VH1H2P1P3
,(2,2)

“Y(P1H2H1),, (P3H4H3),
V3

V3
HiH4 —3— VH2H3P1P3 * %H2H3 5~ VHIHAPID3

= -0 \4

H2H4P1P3 ~

H1H3 29

o

V3
+%yoH4 —5-  VHIH3PLP3

(2, 2) - 8 5 5
' (P1H2H1),, (P3H4H3), ~

H1u3 %m2p4 Op1ps Ep1 ~ €

H1 - €H2)
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Table III (continued)

3
+ 04103 "Vuopinaps * 5 Vaamapip3) *

3
n1ma Vuopiusps - 5 Vmenspips) + ®man3 (Vaipin4ps

3 3
-5 Vuinar1ps) * On2na Vmipiusps * 5 VHin3pip3)

+ 051 p3 (Viinousus4 - Vui1u2H4H3)

- (2,2)

=7 (p1p1H1), (P3P3H3) = ©

-2¢c

H1H3 °p1p3 €H1 p1) -

8113 Veipipsp3 * Opip3 @ Vaipinspt - VHiH3PLPL)

(2,2)

!

-5 (p2piml),, (P3p3u3) = Sminu3 V2) Vpip2p3ps *

1
Sp1p3 T 2Vy1pisp2 - Vaigspapl) *

1
p2p3 Y (2Vy1p1usp2 ~ VH1H3P1IDP2)

(2, 2)

-/ (p2P1H1),, (P4P3H3), = ©

H1u3 %p1p3 Op2aps €q1 - €p1 - €p2)

- %4113 (Vp1p2p3pa + Veip2pars) * Op1p3 (VH1p2H3 P4

4 L
-2 Vgiuspeps) * Opipa (VH1p2H3PS ~ 2 VHIH3 P23

1
+0pap3 (Vaipiusps = 2z Vaiaspips) * Op2ps (VH1pP1H3PS

1
-2 Vy1u3pl P3)
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Table III (continued)

5(2,2) )
- (p2piml),, (P3p3u3) ~ Vi Op1p3 Vhimspapl *

Y? %pap3 Vyiasp1p2
2,2) e

" (P2PlH1),, (P4P3H3), = ~°P1P3 5 VH1H3P2P4 "

V3 V3
—~ VH1H3P2P3 * 5 Op2p3 VHiH3P1P4 *

bl

0p1p4
‘[36

92 P2P4

(2,2)
"'(P2P1H1),, (P4P3H3), = CH1H3

VH1H3P1P3

Sp1p3 Opapa €g1 - €py ~€p) *

q1u3 (Vpip2paps ~ Vpip2p3ps) * Op1ps (VHipouspa -

3 3
> Vuimsp2p4) * ®p1p4 " VHip2nsps * 5 VHim3p2ps) *

3

Opop3 (“Vaipinsps * 5 VEiuspip4) * Op2p4 (VH1pP1H3PS -

3
9 VH1H3P1P3)
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Table IV. He ionization potential in different approximations. The

basis set is (10s 5p).

Order of the Terms in Eq. (19)

L rv'(__(l’ 2) Cf'{‘.(l’ . Diagonal?/j Order pgt?:;%i%ltli(zlelV) '
€c, v2 0 0 -- 0 24.98
ec’, ve? 0 0 -- 0 24. 89
€eC’ VC* €C,V 0 yes E 25.87
ec’, ve® €C,V €C,V yes € 24, 42
ec® vc® eC,V 0 yes €C, V 23.68
ec’, vc®  eC,V  €C,V yes €C,V 24. 64
ec®, ve® €C?’ VC €C’VC yes €C,V 24. 85
€C’,VC? €C%LVC €C,VC  yes e, VP 24. 84
Doll and Reinhardt® 24. 65
Experimentd 24.58

a Koopmann's theorem.

b

We have used ~ 1 - x and have retained only third order terms

+ X
in A

¢ Reference 23.

d C. Moore, Natl. Bur. Std. (US) Cir. 467, Vol. 1 (1949).
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Table V. N, Ionization Potentials

Ionization Potential (eV)

. . 1+ 2 2+ 2.
Approximation X' Z . X Z‘,g B Zu A ﬂu
Koopmann's Theorem 16.99 21.01 17.04
Second order? 14.17 17.21  17.42

Third order with V in denominator® 14. 92 - -
Third order® 14.72 18.00 17.16

b 14.68 17.35 16.95

Propagator® 14.91  17.55  17.23
d 15.69 18.63  17.03

Cederbaum second order

Simons

Experiment® 15.60 18.78  16.98

2 See discussion in text.
b Reference 25.
€ Reference 16.
. Reference 26.

° Reference 3.
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Table VI. Vertical Detachment Energies of OH"

Approximation AE (eV)
Koopmann's theorem 2.929
Second order -0.184
Third order, V in the 2.061

denominator
Simons 1.74%
Experiment 1. 825‘O

Aw. D. Smith, T. Chen, and J. Simons, '"Theoretical Studies

b

of Molecular Ions.

(to be published.

Vertical Detachment Energy of OH™, "

H. Hotop, T. A. Patterson, and W. C. Lineberger, J. Chem.

Phys. 60, 1806 (1974).
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APPENDIX
General Mating XVI: A Program to Calculate

Formulas from Second Quantized Operators
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APPENDIX

General Mating XVI: A computer program to derive

formulas from second quantized excitation operators

A. Introduction

The program called general mating XVI will derive formulas
through second order in the correlation coefficients, i.e. eCz, TC2,
and VC, from input second quantized excitation operators using
Wick's theorem. The program reads in and stores sets of second
quantized operators: correlation functions, p-h excitation operator
one, and p-h excitation operator two.

It accepts creation or destruction operators in literal or
integer form, converts them to three new sets of integers, one for
the printing of input (PROP), one for actual operator input and
Wick's theorem manipulation (OP), and one for final data treatment
and printout (PAOP). After evaluation the formulas are printed out
or optionally written on computer tape in coded form.

Wick's theorem for our purposes here is1

<HF|ABCD... |[HF > = a, <HF|AB|HF > <HF|CD|HF>...

+a,<HF|AC|HF><HF |BD|HF >...+a,<HF |AD|HF ><HF|BC|HF >. ..

+ e (1)

where ABCD. .. are creation and destruction operators, |HF > is a

single determinant Hartree-Fock ground state, and a, isa real
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phase factor. <HF |AB|HF > is called a contraction. a_ is
determined by the number of permutations required to rearrange
ABCD ... so that contracted pairs are adjacent, e.g. a, in (1) is
-1 and a; is +1 provided there is no further rearrangement of cre-

ation and destruction operators after the first tour.

Program limitations are as follows.

(a) Possible ground states include the closed shell, |(closed
shell) Sca >, |(closed shell) §¢, a§e,a >, and k; |(closed shell) SzlaSalB >
+ K, |(closed shell) §¢,a8:,8 > where §,{.,, and§., are open shell
molecular orbitals.

(b) The ground state may be adjusted to another spin projec-
tion or spin including multideterminants by the use of a program
option which can change the spin component and occupation number
of the open shell orbitals.

(c) The open shell molecular orbitals must be obtained from
the OCBSE method of Hunt, Dunning, and Goddard2 with the virtual
(particle) orbitals eigenfunctions of the last open shell Fock operator.

(d) Possible operators are

1. X where
s _ =, _ L 5 1 _ )
Ty = IE] L€ 055 -2 ; Vippj * 2 @ Vipyj = 2 Vi) )

+ + 1 + +
(C{aCja * Cip Cjp) * 2 ijzkl Viikl (®ia ®ka ja ®la *

+ - + + + +
ciackaCchlﬁ + Cig Cxp Cja Cla * Cig kg ch ClB) (2)
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€ = by + 2 (2d5, - K;,)

o } L B}
Mg = ; Le3035 + 2 (V5 = 2Vi5) +P G Vigg; - Vi)
1 « o +
-1 i Vikkj) (N Cia * Cig c].[j) +

i~

where b =1 when i and j are in the closed shell or when i or j is

o + + + &
51 Vi (Cia ®ka * Cip Ckp) (¢ja 1 * B ©18)

a virtual and the other is in the closed shell.

b =
b=

m

o, = 2z I_E. 6+E(V
1 1 v

|-

I
|~

where b

1]

molecular

2 when i or j is open and the other is closed

0 all other cases

h o+ 5(2J,,-K )+ 2 (@3

) % Sy KSa'y)

= he o +i’ (2d¢,,-K,))

=hym+ % (2va - Kmv)

] i ~ 2 Vi) + 2 0 Vige - Vigig)

~ ; + +
2 Virg 1 (10 Cja * Cip ©jp)
+ + + +
ijzkl Vijkl (i Cka * Cip ckB) (Cjacla+ cig CIB)

1 when i and j are each either open shell or virtual

orbitals.

(3)

(4)

(5)

(6)

(7)

(8)
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b = 0 when i or j is open shell and the other is closed

b = 3 in all other cases.

= B 523 - Loy i
€, =h_ + V( I~ K,) +z zgg(sz K,,,) (9)
G = Mot = Bdpe, ~ Kyg) + Z'(JQQ Kaq) (10)

€_=nh +L(2Jym-K -+

m mm y

vm) S&m KSZm (11)

As usual lower case Greek letters are closed shell holes; &, &,
$2,, and §z, are open shell orbitals; m, n, p. ... are particles;

and i, j, k, 1are any orbital.

Vipa = J o5 (1 0] @) 5= 9 (1) ¢ @ dr dr, (12)
2, T = %] Tij (c;’a Cig c;’B ch) (13)
3. € = 317] €5 0j; e Cig * c;B ¢ig) (14)
4 V- 1?1(1 Vit (ja %1 ke 1 * %a Cif k6 Cla
+ c;ﬁ c;a Cro C18 * c;'B C;_B kB clB) (15)
5. Unit operator
6. c; (16)

where C)\ is a p-h excitation operator composed of several 2t s

that may have up to eight creation and destruction operators a row

(a string), i.e.
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Gy = Z Ag Ch (17)

where AR is a real number and G;

destruction operators. C’I+2 can have at most two creation and

is a string of creation and

destruction operators operating on the hole orbitals and two operat-

ing on the particle space. There is no limitation in C’E on the num-

ber of open shell creation and destruction operators (up to eight).
One operator out of 1-5 above can be chosen and up to two

kinds of p-h excitation operators.

B. A brief description of each subroutine

1. MAIN. Main contains the storage array BIGOT for
variable dimensioning. In this subroutine the title for the run is
read in and program options and limits are read in or set by default.
Subroutines READIN and DOIT are called. The last card in the data
deck is read and specifies whether the current data are to be analyzed
and if more data follows.

2. BLOCK DATA. Block data defines the ON and NO matrices,
where NO contains the literal values corresponding to PROP integers
and ON contains the literal values corresponding to PAOP integers.

3. READIN. In READIN the operators are read in and stored.
First any changes in the MS value of the ground state or MC RPAS,
then the ket correlation function, the first p-h excitation operator,
and finally the last p-h excitation operator.

4. DOIT. In DOIT each formula for input p-h excitation
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operators is expanded for calculation. That is, each p-h operator
is expanded in terms of C’R's (see equation (17)). Correlation func-
tions and any change in MS value of the ground state are expanded

in terms of creation and destruction operators. Subroutines SETUPR,
EFORM and PUNWRT are called.

5. SETUP. SETUP expands any commutors, locates the posi-
tions of i, j, k, and 1, and processes matrices to pass to WICKET.

6. WICKET. WICKET expands matrices M and MM passed
to it from SETUP by Wick's theorem. TV is called.

7. TV. Subroutine TV processes data from WICKET in
terms of p-h operators, operators (1-5) above, or correlaticn functions.
TFORM or VFORM may be called. SYM may also be called.

8. TFORM. Subroutine TFORM stores resulting one-body
formulas in submatrices according to the Kronecker delta functions
which are in the formula. TFORM may call SYM and PUNWRT.

9. VFORM. Subroutine VFORM stores resulting two-body
formulas in submatrices according to the Kronecker delta functions
which are in the formula. VFORM may call PUNWRT.

10. EFORM. EFORM expands one-body formulas in terms
of orbital energies and two-body interaction matrix elements.
VFORM is called.

11. SYM. Subroutine SYM takes care of any symmetry in
the correlation function.

12. PUNWRT. Subroutine PUNWRT writes out the matrices
ETIMS, EN, EC, and ED from subroutines TFORM and EFORM and



-190-

matrices VTIMS, V, C, and VD from subroutine VFORM. These
are the resulting formulas if PUNWRT is called from the appropriate
place in subroutine DOIT. The formulas may be written out on both

printed output and tape.
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GENERAL MATING XVI
PROGRAM TO CALCULATE TODA, RPA, HRPA, AND EOM FORMULAS.
CUPRENT LIMITATIGNS ARE THROUGH SECUND UORDER IN V FOR SINGLE EXCITA-
TICN MATRIX ELEMENTS AND VC FCR O0OuUBLE EXCITATIUN (N EC*%2),
EVENTUALLY THIS PRUGRAM WILL BE ABLE TO DO SECUND UKDcR IN C FOR BOTH
SINGLES AND DOUBLES.
OPTIONS WHICH CANNOT BE CURRENTLY USED ARE:zXH XPAND NOC WHEN IDXeNE.O
CONTAINS THE OPTION TO GHANGE TO AN ARBITRARY MS UJUS GS.
IMPLICIT INTEGER(A-H,0-2)
REAL*8 NAM3GS,PREFAC,THEEND ,COMP(5)
INTEGER*2 OPORD{(4)HTEL3)
CCMMON/CASCA/ 10X
COMMON/BANQUI /CHMS
COMMCN/LIMITS/STAG,STOGySTAMySTOMySTAL 3STOL ¢5TAJ9STOJ»STAKSTOK,ST
PAL,STOL,ILIMT,,LCLR,UCLRyMINICC,MAXICC
COMMCN/ALBANY/CO01,L03,4L04,01,03,04
CCMMCN/DUKE/ I PRINT
CCMMCN/RICH/NEQ
CCMMCN/HOST/CORY
COMMCN/SPEED/GS
COMMCN/LZAR/PMFACCTAPEENGLy GSEND,yISHOW, JTAPE
COMMCN/FRANCE/ISTAToJSTAT ,ISTOPJSTOPILF,IRF
CCMMCN/ANTONY/ETH
CCMMCN/BRUTJUS/Q(4,6) ¢ NAC(6),DACL6) s AQ 10T
CCMMCN /TOM/ NOSP
DIVMENSION WQl4,6) yDDAC{6) ,DODACI(5)
BIGOT MUST BE DIMENSIONED CORY*252+(NTY(1)+NTY{(2))¥]121+28
OIMENSION MARK(26),BIG0OT{8000)
DIMENSION NAMGS(6) ¢TITLE(20) ¢GU3)sLIMMI6) oNTY(2)oLIMG(4)
DATA LIMM/1y1ly1¢2496496/
DATA LIMG/04¢2+24¢6/
DATA CUMP/B8HTHE ENU ,8HREPEAT ¢ BHOLD CORRy BHDUMP s BHLIMITS 7/
DATA NAMGS/'CLOSED St*,*HELL S, "OPEN SHE®,'LL A ", '0PEN SHE®,
X*LL AA '/
DATA G/233,4/
DATA QOPORD/® Tt A%,% Gy BYY
DATA QQ/2¢49391949293910203949193323491¢39%402910%40392,1/
DATA CDAC/Lly=29=29=29149=2/
DATA DODAC/19=29=2¢29=192/
DATA HTE/ZYE %,'T %50 0/
THEEND=COMPI(1)
CCORY=0
1 READ(5,2000)TITLE
COo1l=1
ca3=1
C04=1
STAG=1
STOG=6
STAM=1
STOM=6
STAI=1
STCI=0
STAJ=1
ST0OJ=0
STAK=1
STOK=0
STAL=1
STOL=0
LCLR=1
UCLR=3
I10T=0
IRF=0
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READ(5,2010)GSyNDCYsPMFAC IPRINT, JTAPE CTAPE, ISHUN s CORY ¢ ILIMTETH,
PENGL,IBIT, IDXyCHMSyNEQ,NGSP
IF(IDXeNE.O)UCLR=2

NDCY=0 NO

AyByAND C

NDCY=1 READ IN A,ByAND C POSITIGNS

NDCY=2 AC-
NDCY=3 AB-

CA
3A

NDCY=4 SYMMETRIC DOUSLE COMMUTATOR
NDCY=5 SYMMETRIC DOUBLE ANTICOMMUTATOR

ETH=-1 NO
ETH=0 E
ETk=1 T
ETH=2 H
GS=1 0OR O
GS=2 OFEN
GS=3 CFEN

IDX.GT.0
IDX.LT .0
CHMS.NE.O
CHMS.LT.O0

OPERATOR

CLOSED SHELL

SHELL RESTRICTED HF A GS

SHELL RESTRICTED HF AA GS

DOUBLE EXCITATION MATKIX ELEMENTS.INEQUALITY RESTRICTION.
DOUBLE EXCITATIUN MATRIX ELEMENTS.NO INEQUALITY RESTRICTIUN.
READ IN CHANGE IN GROUND STATE

CIRRELATED 6S

CHMS.EQ.=10 COKRELATZD GS WITH INDIVIDUAL FUNCTIUNS PRINTED 0OUT.
NEQ.NE.O CALCULATE ON DIAGUNAL FORMULAS ONLY

NOSP.NE.O

CHANGE CJOEFFICIENT OF UNE BODY=V(Ie¢NUyJoyNU) TERM

IFINDCY.EQ.0)STOM=1
IF(ETH.LT.2)STOG=2
IF(NDCY<LTe2)GU TO 14
IF(3-NDCY)4,7,11

4 DO 6 J=1,6
NAC(JI)=1
CACUJ)=0DACLJY)
IF{NDCY.EQ.5)DAC{J)=DDDAC{J)
DO 5 1=1,4

5 QUIoJ)=QQ(I,J)

11

CONTINUE
AQ=3
STCM=6
I0T=1
IRF=1
ILF=1

GO 70 14
NAC(1)=1
NAC{2)=-1
CAC(1l)=1
DAC({2)=1
Q{1,1)=2
Q(2,1)=4
Q{3,1)=1
Q{l,2)=4
Ql252)=2
Q(3,2)=1
AQ=2
STOM=2
10T=1
ILF=1

GO TO 14
NAC(Ll)=1
Cac(l)=1
NAC(2)=-1
CAC(2)=1
Q{1l,1)=2
Qi{2,1)=3



Q{3,1)=1
Q(1,2)=3
Q(2,21=2
Q(3,2)=1
AQ=2
STGM=2
ILF=1
IRF=1
14 IF(CTAPE.EQ.O)CTAPE=JTAPE
CORE=CORY
IF{CORY.LT.0)CORE=0
1F(CORY.LT.0)CURY=CLORY
CCORY=CORY
col=1
c0o3=1
CCa=1
IF(CORY.EQ.0)GO TO 15
CO1=CCRY
C03=2%CORY+1
CO4=8%CORY
15 MARK(1l=1
MARK (2)=CORY*B8+MARK{1)+1
MARK (3)=CORY*16¢MARK{2) +1
MARK (4)=CORY*2¢MARK(3)+2
MARK (5)=CORY*8+MARK(4)+1
VARK (6)=CORY*5+MARK{S5) +1
MARK (7)=CORY*64+MARK(6) +1
MARK (8)=CORY*64+MARK(T7)+1
MARK (9)=CORY*64+MARK(8B) +1]
MARK{10)=MARK(9)+16%CURY+1
MARK(11)=MARK(10)+CORY+1
MARK{12)=MARK(11)+CORY+1
MARK (13 )=MARK(12)+CORY+1
MARK {14)=MARK(13) +CORY+1
MARK{15)=MAKK {14) +CORY+1
MARK (16)=MAKK{L5)+CORY+1
MARK (17)=MARK(16)+CORY+1
20 WRITE(652020)TITLE
IF{IPRINTeNE<6<ANDo IPRINT o NE<O)WRITE(IPRINT,2020)TITLE
IF(JTAPE.GT2)WRITE(JTAPEITITLE
IF{JTAPE.NECTAPE.AND.CTAPE.GT«2)WRITE(CTAPE)TITLE
IF(GS.EQ.0)GS=1
GSEND=G(GS)
WRITE(692030)NAMGS ({GS=1)%2+1)y NAMGS((GS—1)*2+2)
IF(CHMS.LT.O)GSEND=4
IF(CHMS o LT.O)WRITE(6,2210)
IF(PVFAC.EQ.O0)PMFAC=1
IF{ISHOWSNE.O)WRITE(6492040)
IF(ISHOWoEQoO e ANDoJTAPEGT o 20 IWRITE( 6420500 JTAPE
IF({ ISHOWeEQeO e ANDe LORY e NE e Qo ANDoCTAPESGT2)WRITE(6,2060)CORYCTAPE
IF{ISHOWEQeOeAND o CURYoNEo Qe ANDeCTAPELLE 2 ) WKITEL(6,52065)CORY
IF{CORYoNE <O o ANDoCORE.EQ.O)WRITE( 642070}
1IF{IDXeGT.0)WRITE(652190)
IF(IDXoLT.OIWRITE(6,2195) .
IF(NCSP.NE.O)WRITE(6,2200)N0OSP
PREFAC=PMFAC
IF(ILIMT.EQ.0 . AND.THEEND.NE.COMP{5))G0O TO 30
READ(592010)STAGySTOGySTAMySTOMeSTAL ySTOLoSTAJ,STUSSTAKeSTOKSTAL
29 STOL,LCLR,UCLR¢MINICCoMAXICC
IF(STAG.EQ.0)STAG=1
IF(STO0G.EQ.0) STOG=LIMG{ETH¢2)
IF(STAMLEQ.0) STAM=1
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34

35

37
38
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IF(STCMeEQ.O) STOM=LIMM(NDCY+1)
IF(STAI.EQ.O0)STAL=1
IFISTAJLEQ.O0)STAJ=1

IF(STAK.EQ.0) STAK=1
IF{STAL.EQ.OQ)STAL=1
IF{LCLR.EQ.0)LCLR=1
IF{UCLR<EQeO.ANDs IDXeNE-O)UCLR=2
[F(UCLR.EQ.O0)UCLR=3

IF(STOI.EQ.0) STOI=GSEND
IF(STCJeEQ.V}STOJ=GSEND
IF{STOK.EQsQ)STOK=GSEND
IF(STCL.EQ.J) STOL=GSEND
IF(NCCY.NE.1)GO TO 38

ICT=0

IRF=0

ILF=0

READ(5,21101)Q

DC 35 J=146

STCM=J-1

DC 31 I=1,4

QA=1-1

IF{QUIsJ)EQ.0)QlI ud=1
IF{Q(I4J)oEwel)GO TO 32

CONTINUE

CCNTINUE

IF{J.NE.1)GO TO 34

AQ=QA

DO 33 [=1,QA

IF(Q(IsJ)eEQ.2)ILF=1
IF(Q(I,J).EQ.3)IRF=1
IF(Q(I+J).EQ.4)10T=1

CONTINUE

CONT INUE

IF(AC.NE.QAIGO TO 36

STOM=STOM+1

READ(5,2010)NAC

READ(5,2010)DAC
IF(IOT.EQ.0)WRITE(6,2120)

TF(ETH.GE e O IWRITE(092125)HTE(ETH*1)
DO 37 [=1,S5TOM
WRITE(692130)NACCI)+DACHI) +{OPORD(QIJ1)Dod=1,4AQ)
CONT INUE

IF(I0T.EQ.0)ETH==-1
IF{I0T.EQ.0)STOG=0
IF(NCCY.EQ.O)WRITE(6+2140)
IF{NDCY.EQ.2)WRITE(6,2150)
IF(NDCY.EQe3)WRITE(692160JHTE(ETH+1)
IF{NDCY<EQ.4)WRITE(6,21TOYHTE(ETH+1)
IFINDCYeEQe5)WRITE(692180)HTE(ETH#1)
WRITE(6,2025)PREFAC
IF(THEENDoC Qe COMP(5) e ORSILIMT.NE.O) WRITE{(6+42100)STAGySTOG»STAM,S
2TOMySTAL ;STOI ¢STAJ,STOJ oSTAKySTOKy STALySTOLLCLR,UCLR 4MINICC,MAXI
?CC

IFUIPRINT.NE.O eANDeIPRINToNEG)WRITE(6,2100)STAGySTOGySTAM,S
2TOMySTAL STUIL ySTAJsSTOJY STAKySTOKySTALySTOLLCLKyUCLR ¢MINICC,MAXI
2CC

IF{THEEND.EQ.COMP(5)) G0 TO 39
IF(IBIT.EQ.0)READ(5,20L0INTY (1) oNTY(2)
ITLF=ILF

ISTAT=1

ISTOP=NTY (1)

JSTAT=[STOP+1
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JSTOP=ISTOP+NTY(2)

IFINTY(2)eEQ.O0)JSTUP=ISTOP+NTY (1)

OL=NTY(L1)#NTY(2)

IFCILFeNEaDcANDeIRFoNEe Do ANDNTY(2) oEQeQ)OL=2NTYA L)

IF(IBIT.NE.O)ILF=0

03=01+1

04=42%C1 .

MARK{18)=MARK{17)+01%2+1
MARK(13)=MARK(18)+uUa*2+1

MARK({20)=MARK{19)+04¢1

MARK(21)=MARK(20)+0Ll+2
MARK({22)=MARK(Z 1) +01i%5+1

MARK {23 )=MARK(22)+04*8+1

MARK(24)=MARK{23)+04%8+1

MARK(25}=MARK{24)+04%8+1]

MARK(26)=MARK(25)+04+1
CALL READIN(CORE,BIGUT(MARK{1))8IGOT(MARKI(2)),BIGOT(MARK(3)),BIGD
PTIMARK(4) ) yBIGOTIMARK(5) )¢y BIGOT{MARK(6))yBIGITIMARK{ 7)) BIGAT(MARK
?208)) oBIGOTIMARK(9) ) BIGOT (MARK(10))+sBIGOTIMARK(LL))sBIGOTIMARK(12)
?)9BIGOT(MARK(13)) 4BIGAT(MARK(14))BIGOT(MARK(L5)) yBIGOT(MARK(LE) ),
?BIGOT (MARK(17)) 4BIGOT (MARK(18)) 93 IGOT{MARK( L)) sBILOT(MARK(20) ),
?BIGOT{MARK(21)) yBIGUT {MARK{22)) 4BIGOT(MARK(233),BIGUTIMARK{241)),
?BIGOT (MARK(25)),BIGOT(MAKK{26)))

ILF=1ILF

IFINTY(2).EQ.0)JSTOP=ISTOP

39 REAC(S,2080)THEEND
DO 40 I=1,5
IF{THEEND.EQ.COMP(I))GO TO 45
40 CONTINUE
GO 10 50
45 CONTINUE
C CONT=0 TAPE CONTAINS ONLY ZERO ORDER
C CONT=1 TAPE CUNTAINS ONLY ZEKQO AND FIRST
C CONT=2 TAPEt CUNTAINS ONLY ZERO AND SECOND
C CONT=3 TAPE CONTAINS ONLY ZEKO THRU SECOND
C CONT=-CONT.EXCLUDE [LERQO OKDER

IFILCLRsNE+3sAND.UCLRsEQe2) CONT=1

IF{LCLR.EQe3 . AND. UCLR.EQe3) CONT=2

IF(LCLR.NEe3sAND.ULLREQa3) CONT=3

IF{CORY.EQ.O0) CONT=0

DONT=-CONT

IF(CTAPE.EQ.JTAPE)CONT=0

IF(JTAPE.GT2)WRITE(JTAPE)GS yNDCY s ETH, ILF,IRF,IOToNTY(1),NTY{(2),CO
?2RYyCCNT,IDX

IF(CTAPENEJTAPEANDCTAPEGT . 2)WRITE(CTAPE)GS)NDCYsETHILF,IRF,I
P0ToNTY(1) yNTY(2) o CORY,DONT,IDX

IF{CTAPEGT e 2 ANDeCORYeNEOIWRITE(CTAPEI(BIGOT(MARK(LS)+KQ=1) »
?BIGOT (MARK(L6)+KQ-1)9KG=1,CORY)

CALL DOIT(BIGOT(MARK{1))yBIGOT{MARKI(2))BIGUT{(MARK{3)),BIGOTIMARKI
?4) )9 BIGOT(MARK(5)) 9 BIGOTIMARK(6) ) yBISOTIMARK(T)) oBIGOT I MARK(8) 1,481
?2GOT{MARK{9) )}y BIGOT(MARK(10)),BIGOT{MARK{11))yBIGOTI(MARK{L2))+BIGU
PT(MARK(13)) yBIGUT(MARKK{14))8I1GOT (MARK{15)) 8IGUT(MARK{16))4BIGOTI{
IMARK(L7)) yBIGOTIMARK{108)) o BIGUTIMARK(19)) 4BIGUTIMARKI(20))
?BIGOY(MARK(ZL))gBIGUT(MAKK(?Z),,BlbOT(MARK‘23))'BIDJT(MARK(24))'
?BIGOT(MARK(25)) +BIGUT(MARK(26)))

IF(JTAPE.GT2)END FILE JTAPE

IF(CTAPE.NEJTAPE.AND.CTAPE-GT2)END FILE CTAPE

IF(THEEND.EQ.COMP{1))STOP

IF(THEENDEQ.COMP(2))G0 TO 1L

IF{THEENDEQ.COMP (4)) CALL UABENDI(99)

CORE=0

IF(THEEND«EQ.COMP({3) o ORo THEEND. EQ.COMP(5))G0 Tu 20



50 WRITE(6,2090) THEEND

STCOP 1

2000 FORMAT(20A4)

2010 FORMAT(16{(2X,13))

2020 FCKMAT(1HL,20A4%)

2025 FORMAT(1HO,* THE PREFACTOR IS ¢*,Fl12.8)

2030 FORMATI(///,1HOy* THE GROUND STATE IS ',3A8)

2040 FORMAT(1HO,* THIS IS A NONCALCULATING RUN®*)

2050 FORMAT(1HO,* THE FORMULAS ARE OUTPUT ON UNIT *,12)

2060 FORMAT(1HD," THERE ARE ',13,° CORRELATION FUNCTIONS WITH FORMULAS
XWRITTEN ON UNIT® ,16{1Xs12))

2065 FORMAT(1HO,* THERE ARE "415,' CORRELATION FUNCTIUNS.®)

2070 FCRMAT(LHO," THE CCRRELATION FUNCTIONS ARE THt SAME AS THE PREVIOQU
?S CALCULATION.®)

2080 FORMAT(AB)

2090 FCRMAT(1HO," THEEND IS ®*,A8 ,'.THIS IS NOT VALID.?)

2100 FORMAT(LHO,® STAG=%y124" STUG=*y12,% STAM=¢,]12," STOM=*,12,% STAl=
?2V502," STOI=0,12,° STAJU=",12," STOJ=,12¢" STAK=4 12, STOK=?,12,°"
? STAL='912," STOL=%312y°' LCLR=%4129" ULLR="412,/740X," MINICC=%,12,
?2' MAXICC=',12)

2110 FOFMAT(6(4(1XyI1)42X))

2120 FORMAT(1HO,* MATRIX ELEMENTS ARE EVALUATED FOR THE FOLLOWING ORDER

?2ING.A=FIRST OPERATOR. ', $C=SECUND CPERATOR,
P28/

2125 FORMAT(1HO, ' MATRIX ELEMENTS ARE EVALUATED FUk THE FULLOWING ORDER
?2ING.A=FIRST OPERATOR.B="4A2, *sC=SECOND OPERATOR,
28/}

2130 FORMAT(LH 420XeI3,% /*413,6X,3(A242X))
2140 FORMAT(LHO,* NO AyBsAND C?)
2150 FORMAT(1HO,* A C-C A')
2160 FORMAT{1HO,' COMMUTATOR B=',A2)
2170 FORMAT(LHO,' SYMMETRIC DOUBLE COMMUTATOR B=',A2)
2180 FORMAT(1HO,* SYMMETRIC DOUBLE ANTICOMMUTATOR 8=',A2)
2190 FORMAT(1HO,* DOUBLE EXCITATION MATRIX ELEMENTS.INEGUALITY KESTRICT

2ICN. ')
2195 FORMAT(1HO,* DOUBLE EXCITATION MATRIX ELEMENTS.NO INEQUALITY RESTR

?ICTICN.?)
2200 FORMAT(1HO,* NOSP=?,12)
2210 FORMAT(1HO, ' CORRELATED GROUND STATE.K1(O1A0LB)+K2(02A02B).*)

END
BLOCK DATA
IMPLICIT INTEGER(A-H,u-2)

COMMCN/PRINCE/ON(23)

COMMGN/SILVIA/NG(200)

DIMENSION A(25)

EQUIVALENCE (A(1),NO(176))

DATA ON/' HL "53¢ H2 ',% H5 %38 H6 "5% HT %,® H3 "¢ MU ®4* NU *,°

PPL 1,1 P2 1,0 P53 1,0 PG 0,1 PT 8,0 P8 e,1 M 1,0 N 6,0 0 ',0 Q2

20,1 H3 9,9 H4 8,0 P3 8,0 pgy o8 0 vy
DATA A/°02B-"9'02A-",%01B-"*y"01A-",*P4B=-",9P4A-","P3B~",*P3A="*
P9 'H4B-" g H4A-" 3 " H3 B~ "H3A-,* "e*H3A# %, "H33+%y TH4n+ ', "H4B+?®

29 P3AY PB4, TPLARS, 1 P4BE, 1 OLA+S L1 OLB4, COZAE, 1028+
DATA NO/®02B=", *02A=*,0018- ", *01A=4, 1P2B=0,9P2A-1, P 1B=1,'PLA-*, H
X2B=1, *H2A=' ¢ *HLB=" ' H1A=" ,* Yy THLA+¢, THLB+", CH2A+, T H2B+', *PLA+
X0y OPLIBHY, SP2A4Y y TP2B4 1, GIA+ ", 10LB+ ", *02A+" , 2 02B¢ %, °02B=1,'02A","
XO1B=",90LA=",'P6B=1,"P6A="4 ' P53=1, 'PSA=", "HOB="* 5 "HEA=" 4 'H58- 1, *H5A
X=0,0 CLTHSAE S, THEBH Y, THOAS , THOB+? 9 S PSA+S , 1P5B#® , 0PEA+!, PEBT!,
X®OLlA®#®,¢01B+%, 02A+%, 1028+, 028~ ,°02A=","ULlB-",°014A-",'P8B~",*P8
XA=® 4 S PTB="1, ¢ PTA~' y *HEB=1, "HBA=", "HTB=" , THTA=?,? Y IHTASS , CHTB+!
Xy "HBA+, PHBB+ 1, 'PTA+' ,*PTB+ ', PBAE 4P PB4, 01Aa+,10LB+",°02A¢%,'0
X2B+1, %02B="1,°02A-",101B-",'0lA="," 'y Ty MB=1, 0 MA-T,®
xl" C,I"UB-I,IHUA-I.I I’lMUA+0'IMUB+I'I .'l l'l HAfl'
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X? MB+,® 1! Yy 001A¢, 101+, 024+, U2B+ ,'02B-"','02A~-1,901
XB=%,¢(CLA-","* Yyt “9! NB-",! NA-*,* Alyi® 9 TNUB-", * NUA-"
Xy ! Ty INUA+ Y, 'NUB+Y , ¢ 1,2 1,0 NA#,' NB¢®,° Lyt %0
XLA+9, 9018+, 0 02A+°,9028+%,9028-,902A=1,%018-%,¢0U1A-"," 1,0
X¢,1 PB=1,! PA=? 0 1, L IP[B=0, 0P [A=t ¢ G IPIA4Y , IPIB+Y,
X 0, 0,0 PARY,S PRV,
X 1! "' 0LA+" ' 01B+1,102A4,902B8+%,°028-%,902A-,'018~"*,'01
XA=10, 0 0,0 1,0 QB-0,0 QA-8,t ', ¢, OXIB=Y VXA, 0
Xy OXTA+0, VX [B+1,? 1,0 Tet QA#T, 0 QB0 1, 1,901A4%,10
X1B+?,902A¢% ,0028+*/

END

SUBRCUTINE READIN(CORE)PKRECyCFAC,JSCyNCOPoTITLEC,COP¢PAC,PRCyCAR,T
?0CsCHSsCPSyHHPP y INUCy PSUMyHSUM¢PREyFACyNOPy JST,TITLEL,OP,PADP,PROP
29 LRy BUSGY)

ROUTINE TO READ IN AND STORE THE CORRELATION FUNCTION AND OPERATORS
IMPLICIT INTEGER({A-H0~2)

REAL*8 PREC,CFAC,PRE,FACy,MSPRE,HFAC

CCMMCN/CASCA/Z1IDX
CCMMCN/MACB/MSPRE HFAC(2) 3 CHOP(294) s DHOP(294) yMMSS(2) sPACHP(294)»
?PADHP (244 )y PRCHP(2,4) 4 PRDHP{294)yLMS, BMS, BBMS ¢ NMS
CCMMCN/BANQUQO/CHMS

CCMMCN/PRINCE/ONI(23)

COMMCN/SILVIA/NUL200)

COMMCN/ALBANY/CDL1,C03,C04,01,03,04

COMMCN/LEAR/PMFAC CTAPEENGLy GSENDy I SHOW, JTAPE
CCMMCN/FRANCE/ISTAT s JSTAT L ISTOPJSTUPILFeIRF

DIMENSION CFAC(CD4) ¢ JSC(CD3 )y NCOP(LUG)TITLECICOL,,5),COP
?2(C0448),PAC(CO49y8)4PRCICO%4,8), TOCICA1),LHS(COL),CPS(COL
?2) 9 PRECICOUL,4)yCAR(COL 9% 94) yHHPP(COL ) INOCICUL) »PSUMICUL) , HSUM{COL}
DIMENSIUN PRE(J1),FAC(04) yNUP(04) yJST(03),TITLEL(UL,5),0P(0%4,8)4PA
?20P(04,8),PROP(04,8)4LR{0%4),BUGGY{OL)

DIMENSION RLCH(25)

DIMENSION LRCH{25) 9y PA(12y3)9C(4)CENZ{B) yENGLL6)

DATA ENGL/%HL v,'H2 9,%p] ®,'p2 e,9(Q] ,8032 ¢/

DATA PA/3y394949l1311512512917917518918919152:+29959910,10,17+17,18
?29189292920020910,10922922417,17,18418/

DATA RLCH/04+0y0¢091l9plolslo=lo=1y=1ly=19091ly1lslslo=Lly=1y-1y-19040,0,
20/

DATA LRCH/1lo=lolo=l1lylplelylo=lp=ly=Lle=1l909lslelolo=ly=ly=le=1sly-1
Xely=1/

JSC(1i)=1

CT=0

MSPRE=1.D0

HFAC(1)=1.D0

MMSS{1)=0

NMS=0

IF(CHMS.EQ.0)GD TO 13
D IN NEA GROUND STATE

READ(5,2010)MSPRE

IF{MSPRE.EQ.0.DO}MSPRE=1,D0

WRITE(6,2150)MSPRE

READ(5,2020)NMS

IF{(NMS.EQ.0)G0O TO 13

DO 1290 I=1,NMS

DO 1210 J=1,4

CHOP(I,4)=0

DHCP{I,J)=0

IF{ENGL.EQ.O)READ{5, 2010)HFAC(I) 4 {CHOBP(I9d) 9yd=194)

IF(ENGL.EQ.O)GU TO 1230

READ(S532015)HFAC(I),{CEN2(K) oK=19%)

00 1220 K=ly4

DO 1215 L=1,25
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1215 IF{CEN2(K)<eEQeNO(L)eANDeLoNE.L13)CHOP(I K)=L~13
1220 CONTINUE
1230 IF(HFAC(I)eEQ.0.00)HFAC(I)=1.D0
BUM=0
DC 1240 J=1,4
1240 IF(CHOP(I4J) .NE-QO)BUM=BUM+]
MMSS(1)=BUM '
DO 1250 J=1,8BUM
DOPE=CHUP(I,J)
DHOP{I4J)==CHOP (] ,B8UM¢1-J)
PACHP (1 4J)=PA(TIABS{DOPE) 1)
PRCHP(1,J)=DUPE+13
DCPE=DHUP (I ,J)
PADHP(I,J)=PA([{ABSIDOPE),1)
1250 PRDHP(14J3=0UPE+13
WRITE(692060)HFACII) s INOD(PRCHP(I5J))sJd=1yBUM)
1290 CONTINUE
13 CONTINUE
IF(CCRE.EQ.0)GO TO 310
C READ IN CGRRELATION
DO 200 I=1,CORE :
READ(5,2000)(TITLEC(IsJ)9J=195)sTOCCI),CHS(IL)CPSE{I)sHHPPL{I), INOC(
213, PSUMIT) s HSUMIT)
IF(T eNEoLloANDeTOC( 1) cEQeO)TOCII)=TOC(I=-1)+1
IF{IEQel s AND.TOCI(1)EQe0)TOC(L1Y=1
NGC=INOC(I)
DO 30 L=1,NOC
IF(ENGL.EQ.O)READ(5,2010)PREC(I4L)HC
IF{ENGLoNE.O)READ{5920L5)PRECII LYy (CEN2(K) gK=194)
DO 20 K=l,4
IF(ENGL.EQ.O0)GO TO 17
DO 14 J=1,6
IF(CEN2IK) cEQ.ENGL{JDI)IC(K)=2%J~1
14 IF(CEN2{K)<EQeNO{38))C(K)I=0
17 CONTINUE
TF(CIK)NEOJCARII KoL) =PA(IABSIC{K)),y1)
IF(C(K)eEQ.OICAR{I KoL I=23
20 CONTINUE
30 IF(PREC{IsL)EQeODO)IPRECIIsL)I=1.D0
READ(5,2020)NUM
JSCUI+1)=JSC(I)+NUM
JSTA=JSCI(I)
JSTO=JSC(I+1)-1
IF(JSTOLGT.CO4)STOP 2
DO 150 J=JSTA,JSTO
IF(JSTOLLT.JSTA)GO TO 140
IF(ENGL.EQ-O)READ{5,20L0)CFACEJ) ¢ {COP(JyK)yK=1,8)
IF(ENGL.EQ.0)GO TO 80
READ(592015)CFACIJ) o (CEN2(K) y)K=1,8)
DO 60 K=1,8
CCP(JysKI=0
DO 50 L=256,50
50 TF(CEN2IK) cEQeNO{L)-ANDeLoNE-38)COP(J,yK)=L-33
60 CCONTINUE )
80 IF(CFAC(J)<EQ.0.,0)CFAC(J)=1.D0
BUM=0
DO 100 K=1,8
PRC{JosK)=38
100 IF(COP{JeK)oNE<O)BUM=BUM®+]
NCCP{J)=BUM
DO 120 K=1,8UM
DOPE=COP(J,4K)
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PAC{JsK)=PA({IA3S{DUPE),1)
120 PRC(JsK)=DIPE+63
140 CCNTINUE
150 CONTINUE
200 CONTINUE
WRITE(6,2030)
COREO=JSC{COURE+1) -1
CALCULATE LEFT CORRELATION
DC 300 I=1,CORE
NOC=INOC(I)
IF(TOC{I).NE.CTIWRITE(5,2070)TOC(1)
CT=T0C(I) .
WRITE(642040) 1o (TITLECCI9J)sJ=195), (ON(CAR(I¢Js1))J=194)PRECII,1
?)
IF(NCC.LE.L)GO TO 205
DO 202 L=2,NOC
202 WRITE(652045)(ON(CAR(IsJol)deJd=Ls4)sPRECII,L)
205 WRITE(6,2050)
II=CCRE+1
JSC(II+1)=CORED+JSC(I+1)
JSTA=JSC(II)
JSTC=4SC(Il+1)-1
IF(JSTI.GT.CU4)STOP 2
DO 280 JJ=JdSTA,JSTO
IF{JSTO.LTL.JUSTAIGO TO 270
J=JJ~CORED
DO 210 JJJ=1,8
210 PRC(JJyJJI)=38
CFAC(JJ)=CFACLI)
BUM=NCOP(J)
NCOP(JJ)=8BUM
DO 220 K=1,BUM
DOPE=COP(JyK)
KK=BUM#1 =K
CCP(JJI,KK)==-DOPE
DOPED=COP (JJ4KK) ;
IF{DOPECEQe3 e0R.DOPEEQe4sOR.DOPEEQeToORDOPEEQ.8) COP(JoK)=DOPE
X=2
IF(DOPEeEQe=3e0ReDOPE<EQe—4e0ReDOPEcEQo=To0ReDIPE«EQe=8)COP(JyKI=D
XOPE+2
PACU{JJsKK)=PALLIABS(DOPED)41)
PRC{JJKKI=COP(JJoKK)+38
IF(DCPEDeEQe3e0RDOPEDEQe4eURDIPEDEQsT «UReDOPED.EQ.8)COPIJJ9KK)
X=DOPED-2
220 IF{DOPEDeEQe=3+s0ReDODPEDEQe~4o0RoDOPEDEQe~T7T.0RDOPED.EQ.~8ICOAP(JJ
X9KK)=DOPED#+2
WRITE(592060)CFACIJ) o (INO(PRCEJJIoKK)) oKK=1y B ),y INO(PRC(J9K))oK=1,
X 8)
DO 230 K=1,BUM
230 PRCUJK)=PRCIJyK)}=-25
270 CCNTINUE
280 CONTINUE
IF(CHS(I) sNE.OJWRITE(652080)CHS(1)
IF(CPS(I)NEsO)WRITE(6,2090)CP5{1)
IF{HHPP(I)eNEO)WKITE(692100JHHPP(I)
IF(PSUM(I)oGT o0 )WRITE(6,2110)
IF(PSUM{I)oLT.0)WRITE(6,2120)
IF{HSUM(I).GT.0JWRITE(6,2130)
IF(HSUM{I) oL T.O)WRITE(6,2140)
300 CONTINUE
310 ISTA=ISTAT
ISTG=1ISTOP



320
330
340

350

353

355

360

370
380
400
500

600

-200 <~

JST(1)=1

IF(ILFeEQ.s0<ANDoIRFoEQ.O)RETURN

TJUKSTA=2

1JKSTO=3

IF(ILF.EQ.0)IJKSTA=3

IFIIRF.EQ.D)IJKSTO=2

IFCILF.EQ.O)ISTA=JSTAT

IF{ILF.EQ.0)ISTO=4STUP

DO 600 IJK=IJKSTA,[JKSTO

DO 500 I=ISTA,ISTO
READ(542000) (TITLELUI 3J)9J=1+5)yBUGGYLT)
READ(5,2010)PREL(I)

IF(PRE{I).EQ.Q0.0)PRE(I)=1.D0

REAC(5,2020)NUM

JSTUI+1J)=NUM+JST(I)

JSTA=JST(I)

JSTC=J4ST(I+1)-1

IF{JST3.GT .04 )STOP 3

DO 400 J=JSTA,JSTO
IF(ENGL.EQ.QO)READ(552010)FAZ(J) s (0P{JsK)¢K=1,8)
IF(ENGL.EQ.0IGO TO 340
READ(5,2015)FACtJ) s {CEN2(K) sK=1,8)

DO 330 K=1,8

QP(JyK)=0

DO 32C L=1,25

IF(CEN2(K) eEQeNO(L)oANDL osNEL13)0P{J,yK)=L=-13
CONTINUE

IF{FAC(J)«EQ.0.0)FAC(J)=1.D0

BUM=0

LR{J)=0

DO 35C K=1,8

TF{O0P(JsK)eNELD)BUM=BUM+]

NOP(J)=BUM

00 380 K=1,BUM

LRLR=0

DOPE=0P(J,K)

PAOP (JyK)=PA(IABS{DOPE),1JK)

PROP{JyK)=DOPE+13

IF(ICX.EQ.DJG0 TO 353
IF{IJK.EQe3oANDoPAOPIJsK)oEQa2)PADP{U,KI=19
IF(IJK.EQe3.AND. PAOP(JyK).EQaLOIPADP(JoKI=21
IF(TJK.EQ.3)PROP(J4K)=DCPE+188

CONTINUE

IF(IJK.EQ.2)G0 TO 355

PR=PRCP{J,yK)
IF(PRGEQeTeORePREQeBeORsPReEQelleORePR.EQe12)PRIP(JI9yK)=PR=-2
IF(PRoEQel4cORePRoENeLS5eURePRaENe1BoURaPREQL1IIPRUP(IJSIK)=PR*2
IF(DOPE<EQe3e0ReDOPEEIc4oUReDUPEEN.ToOReDUPELEQeBIUP(JyK)=DOPE-2
IF(DOPEcEQe-30ReDOPEcEQe-4e0RDOPEEQe~TeIRcDIPEEQ.~8)0P{JoK)I=0P

X{JyK)#2

IF(LR(J)I.EQ.2)G0 TO 370
LRLR=LRCH(DOPE+13)
IF(CHMS.NE-O)LRLR=RLCH(DOPE+L3)
IF(LR{JICEQ.O)LR(JI=LRLR
IF(LR(J) e NEs LRLRoANDoLRLRaNESO)LR(J)I=2
CONT INUE

CCNTINUE

CONTINUE

CONT INUE

ISTA=JSTAT

IS10=4STOP

RETURN



2000 FORMAT(5A4,7(3X.12))
2010 FORMAT(Fl6.8y4Xs8(2Xs103))
2015 FORMAT(Flb6eby4X,8(A4y1X))
2020 FCRMAT(16{(3x,12))
2030 FORMAT(//////y1HU;y30Xs? THE CORRELATION FUNCTION (SUM OVER HS5¢H6,H
2T sHBsP5,P6sPTHAND P8I/ /)
2040 FORMAT(LIHO I3 31X 5449 1Xe (" gA43(%,%,A4),%)%,¢% TIMES *',Fl2.8)
2045 FORMAT(LIH 425X, *{"9A4s3( %8 ,A4)9%)%,0 TIMES *,F12.8)
2050 FOFMAT({LIHO,20Xs®* LEFT FUNLCTICN® 343Xy *RIGHT FUNCTIUN'/)
2060 FORMAT(1H ,F12.8,15X8lA4ye1X)316Xy8(A4p1X))
2070 FORMAT(1HO,* CURRELATION FUNCTIONS OF TYPE ',12)
2080 FORMAT(IH ,30X,' CN EXCHANGE OF INDICES ONE AND Twu THE SYMMETKY I
S v512)
2090 FORMAT(LH ,30X,' ON EXCHANGE OF INDICES THREE AND FOUR THE SYMMETR
Y 1S %,12)
2100 FORMAT(1lH ,30X,' ON EXCHANGE OF INDICIES ONE AND TWO WITH THREE AN
?D0 FOUR THE SYMMETRY IS *,12)
2110 FORMAT(IH ,30X,'P4.GT.P3%)
2120 FORMAT{1H ,30X,'P4.0LEP3")
2130 FORMAT(1H 30Xe?H4.GT.H3?)
2140 FORMAT(1H ,30X,'H4.GE.H3¢)
2150 FORMAT(1HO,* CHANGE MS OPERATORS FOLLOW.THE PREFACTOR IS %,F12.8)
END
SUBROUTINE DOIT{PREC,CFACyJSCoyNCOPTITLECsCOP4PAC,PRCLyCAR,TOC,CHS,
PCPS yHHPP s INOC ¢ PSUMyHSUM g PREy FACoNOPoJSTyTITLELsGPoPAOP s PROP LRy
?BUGGY)
C SUBROUTINE TO CYCLE OVER OPERATORS AND CORRELATION FUNCTIONS.
IMPLICIT INTEGER(A-H,0-2)
REAL%*8 PRE,PREFAC,)FACsCFAC,PRECyPREF ¢yPLREFyP2ZREF,P3REF ¢P4REFP5REF
?9yMSPRE, HF AC
REAL TUIME
COMMON/BANQUU /CHMS
CCMMCN/ANTONY/ETH )
COMMON/LIMITS/STAGySTOGSTAMySTOM,STAT ,STOI 4STAJ,STOJsSTAK,STOK,ST
PAL,STOL, ILIMT,LCLRyUCLRyMINICCyMAXICC
COMMCN/RICH/NEQ
CCMMCN/MACB/MSPRE yHFAC(2) yCHUP(2,4) )DHOP{2¢%)yMMSS(2),PACHP(2+4),
P?PADHP{294) s PRCHP( 2,4 )y PRUHPLZ94) o LMSyBMS,BBMS s NMS
COMMOCN/LEAR/PMFACoCTAPEJENGLy GOSEND, ISHOW, JTAPE
CCMMCN/ALBANY/CO1,C03,004,01,03,04
COMMCN/FRANCE/ISTAT ¢ JSTAT ,ISTUPJSTOP{LF¢IRF
COMMCN/EDMUND/PREF yNMOST s ICsCLRyRLT{5) o LRIJK(256)90(44)oSNI(S)
CCOMMON/PUCK/PC,yPCC
CCMMON/CURKAN/S(578) 9SS(5+8)45SS(5+8)9SLOP(25694)9ROP(25644)
COMMCN/REGAN/IT,TAPECToICC,CTTyMSTO, ICHG
CGMMCN/DUKE/IPRINT
CCMMCN/HOST/CORY
CCMMCN/GOBBO/NTUL 53 4MTULS)
COMMCN/TUBAL/NEN(5}NEMM(5)
COMMCN/PUORTI A/PLREF{8) +CLLE)9CFIBy4) 9 XPyXHeXHP ¢NOC oy ISY 9 XXP g XXHy XXH
?P ¢ NNCC,MMNN,BB( &)
CCOMMCN/CASCA/IDX
CCMMCN/HAMLET/M(44) yMM{44) o N(44)
COMMCN/PRINCE/ON(23)
CCMMCN/SILVIA/NO(200)
CCMMCN/JULTET/HCK gHHCK 3 PCK ¢ PPCK
DIMENSION CFAC(CO4)sJSCECU3),NCOP(Z04),TITLEC(COL,5),C0P
?2(C04,8) yPACICO4%4+8) PRCICU4¢8)» TUC(CD1),CHS(COL1),CPS{COL
?)9PREC(COLy4)sCAR(COLy%94) yHHPPICOL) » INOC(COL1)PSUMICUL),HSUMICOL)
DIMENSION PRE(OL1)sFAC(O4)¢NOP(04)¢JST(O3),TITLEL{OLs5),0P(04,8),PA
?20P(044+8) yPROP(U%498) yLRIO%) ,BUGGY(OL)
DIMENSION ITEST(7¢12)yKIND(496)3I1JUP(495)9PAL492) s LRLEG¢4)TITB(8)



10

20

30

40

OATA TITB/I l" ',l ". .,I l'. ." l'. ./
DATA KIND/314951591920505019192929193929%93900%92930304494/
DATA IJDP/J. 75]9111!"‘1 0‘51'9"11'2’()1 10' 12"2"'6"’10"12'0'0,0.0/
DATA PA/Tol15¢17418+891l6,17,13/ =
DATA LRL/0y=1409090915090¢09=1l9=1l9=1909191,y1/
ICSTA=1

BIMS=1

E[FS=NMS

BJN¥S=1

EJNMS=NMS

SMN=0

TF(CHMS,EQ.—-10) SMN=NMS

IFIJTAPE.EQ.O0)IDSTA=2

IF(LCLR.EQ.3)IDSTA=CORY+IDSTA

DORY=2*CORY+1

IF{UCLR<NE.3)DORY=CORY+1

XY2=C

SSTOG=STOG

DO 1000 ICY=1STAT, ISTOP

BUG=0

PREFAC=PMFAC

JSTA=JSTAT

JSTO=JSTUP

IF{JSTOLLTLJUSTAT)JSTO=ICY+ISTOP
IF(NEC.NE.O)JSTA=ICY+ISTOP
IFINEQ.NEO}JSTO=ICY+ISTOP

IF(IRF.EQ.0)JSTO=0

KSTA=1

KST0=0

IF{ISTOP.EQ.0)GO TGO 20

KSTA=JST(ICY)

KSTO=JST(ICY+1)-1

BUG=BUGGY(ICY)

PREFAC=PRE({ICY)*PMFAC

DO 960 JCY=JSTA,JSTO

BEFORE=RTIME(DDDD)

OTIME=BEFORE

XYZ=XYZ+1

IF(JUTAPEGT 2 IWRITE(JTAPEI(TITLEL(ICYyK)9K=195) o {TITLELI(JCY yK)9K=1
P95)o {TITB(K) yK=1,8)

IF(CTAPE.NEJTAPEANDL.CTAPE.GT 2)WRITE(CTAPEI(TITLEL(ICY oK) ¢K=1,95)
Py{TITLELLJCY 1 J) 9J=15) 9 {TITBlJ)9J=1,8)

LSTA=1 .

LSTO=0

IF{JSTO.EQ.0)GO TO 40

LSTA=JST(JCY)

LSTO=JST{JCY+1)~-1

BUG=BUGGY (JCY)

PREFAC=PRE(JCY)*PMFAC

CCNT INUE

IF(ISTOP.EQ.0.OReJSTO.EQ.0)GO TO 40
BUG=BUGGY(ICY)*BUGGY{JCY)
PREFAC=PRE(ICY)*PRE(JCY)I*PMFAC

CONTINUE

WRITE(6,2000)XYZ

IFCIPRINT eNE 6o ANDo IPRINT o GToOIWRITE(IPRINT,2000) XYZ
IF{ISTOP.EQ.0)GO TO 55

1F¢ JSTONEOIWRITE(692010){TETLEL(ICY oK) 9K=145)9 (TI
PTLELLJCY yK) ¢K=145)
IF(JSTOEQ.O)WRITE(6,2010)(TITLELCICY K2 ,K=1,5)
WRITE{(6,2030)

WRITE(6,2025)PRE(ICY)



-203-

DO 50 KCY=KSTA,KSTO
BUM=NCP(KCY)
WRITE(652040)FACIKCY) o INO(PROP(KCY 4K} )oK=1,yB8UM)
50 CCNTINUE
55 CONTINUE
IF(JSTO.EQ.0)GO TO 73
IF{ISTOP.EQ.OIWRITE(69 20100 TITLELL{JCY oK) 9K=1,5)
WRITE(6,2050)
WRITE(6,2025)PRE{JCY)
00 70 LCY=LSTA,LSTO
BUNM=NOP(LCY)
WRITE(6,2040)FAC(LCY) y (NOC(PROPILCY oK) 3 9K=1,B8UM)
70 CONTINUE
D0 955 CRIME=1,SMN
DO 950 KRIME=1,SMN
73 DO 940 ID=IDSTA,DORY
IC=ID-1D/(CORY+2)*CORY~-1
IF(ID.EQ. (CORY+1) s ANDoLCLR-EQe3)IC=0
IF(ICeNE.O.ANDeMINICCoLT 0 ANDICLTo IABSIMINICC)IGU TO 935
IF(LCLRGTe3+.0R.UCLR<GT-3)IC=0
IFCILCLR.GT 3 s0RUCLR.GTo3) sANDoIDGTIDSTA)GO TJ 935
RLCL=LCLR
RLCU=UCLR
IF{UCLR.EQ.3)RLCU=2
IF{ID.GT.CORY+1)RLCL=3
IF(IC.GT.CORY+L)RLCU=3
IF{IC.EQ.O0}RLCL=1
IF{IC.EQ.0)RLCU=0
XP=0
XH=0
XHP=0
NOC=0
DC 75 I=1,4%
D0 74 II=1,4
T4 CF(ILI1)=0
75 CONTINUE
TAPE=JTAPE
IF{ICeNE.O)TAPE=CTAPE
IF(TAPE.LT.0)GO TO 935
CT=0
BEG=1
BEND=1
P1REF(1)=1.00
IF(IC.EQ.0)GO TO 100
CT=TG0C(IC)
WRITE(6,2065)IC,CT
IF{IPRINToNE<6o ANDo IPRINTaGTOIWRITELIPRINT4206501C,CT
100 CONTINUE
CCORY=0
IF{IDGT.CORY+1)CCORY=IC
IF(IDeGToCORY+1AND.MAXICC-NE-O)CCORY=T1ABS{MAXICC)
IF(MAXICC.EQ.~-99)CCORY=IC
YROCC=1
IF{10.GT«CORY+1ANDsMINICCoNE-O)YROCC=IABS{MINICC)
BBEG=1 ’
BBEND=1
DO 930 ICC=YROCC,CCORY
PIREF{5)=1.D0
XXP=0
XXH=0
XXHP=0
CTT=0



NNCC=0
D0 107 I=1,4
DC 1C6 J=4,8
106 CF(J,1
NEMMIT
MTU(T)=1
NEN(I)=0
107 NTUll)=0

NEN{5)=0
NEMM(5)=1
MTULS5)=1
NTU(5)=0
IF(ICJLE.CORY+1)GO TQ 108
CTT=T0C(ICC)
IF(SSTOG.GT.11ST0G=2
WRITE(6,2067)ICC,CTT
IF{IPRINT «NEc6o ANDoIPRINT oGToO)JHRITECIPRINT 42067 ICC,CTT

108 1Q=0
IF{IPRINT.GT.O)WRITE{IPRINT,2060)
IF{IPRINT.GT.OJWRITE(IPRINT,2020)
DO 920 IM3=BIMS,EIMS
DO 1080 K=1,12

1080 ITEST(14K)=0
BMS=MMSS(IMS)
IF(BMS.EQ.01GO TO 1085
DO 1083 K=1,8MS
DCPE=DHOP(IMS,K)
M(K)=DOPE
SCOPE=1ABS{DUPE)
ITEST(1,SCOPE)=ITEST(1,SCOPE)+DOPE
MM{K)=M(K)
N(K)}=PADHP{IMS,K)

1083 O(K)=PRDHP(IMS,K)

1085 DO S10 JMS=BJIMS,EJMS
IF(CHMS.EQ.~10) WRITE(692150)BIMS,BJMS
P2REF=PREFAC*MSPRE*MSPRE¥HFAC( IMS)*HFAC {JMS)
BBNMS=MMSS (UMS)
LNS=JNMS
DO 1C86 K=1,412

1086 ITEST(2,K)=ITEST(1,K}
IF{BBMS.EQ.0IG0O TO 1090
DO 1087 K=1,B8BMS
DOPE=CHOP{JMS,K)
SCOPE=IABS(DOPE)

1087 ITEST(2,SCOPE)=ITEST{29SCOPE)+DOPE

1090 CONTINUE
D0 900 CLR=RLCL,RLCU
MSTO=4
IF(IC.EQ.0)MSTO=0
IF{CLR.EQ.3)MSTO=8
ICHG=1
IF{CLR.EQe3 AND.IC-EQ.ICCIICHG=2
DC=T1ABS(2-CLR}*CORY
JLM=1
IF(CLR.EQe3 .AND.IC.NE.ICCIULM=2
IF(CLR.EQe3AND.MAXICColTo0)JLM=1
DO 890 MMNN=1,JLM
2iC=0
Z1CC=0
IF(IC.EQ.0)GO TO 113
BDOC=(2-MMNN ) *DC+IC
BBOC=(MMNN-1)*0C+ICC

=0
=1

R
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114

115
118

-2105 -

BEG=JSC{(2-MMNN)*BUC+{MMNN~-1)%88DC)
BEND=JSC{{2-MMNN) %8DC + { MMNN=1) *88DC+1)~-1
ZIC=(2-MMNN)}* [C+(MMNN-1)*ICC
XP=CPS(ZIC)

XH=CHS(ZIC)

XHP=HHPP{ZIC)

NOC=INOC(ZIC)

DO 110 LII=1,N0OC

DO 109 ILL=1,4
CRUILL,LIT)=CAR(ZIC,ILLLLII)
PIREF(LII)=PRECIZIC,LII)
IF(CCORYL.EQ.0)GO TU L13

BBEG=JSC{ (MMNN=1)*BDC+(2-MMNN)*B88DC)
BBEND=JSC({MMNN=1)*BOC+(2-MMNN)*3B8DC+1)-1
ZICC={MMNN=-1) %[ C+{2-MMNN)*ICC
XXP=CPS(ZICC)

XXH=CHS(ZICC)

XXHP=HHPP{ZICC)

ANQOC=INGC (ZICC)

DO 112 LII=1,NNOC

DO 111 ILL=1,4

LLI=ILL+4
CRLLIZLIT)=CARLZICC,yILL LI
FC=CF(LLI,LIT)
IF{FCNE.1T7oANDoFCNE-L18)CF({LLI,LIT)=FC#¢2
LIY=LII+4

PIREF(LIY)=PREC(ZICC LLII)

pPC=21C

PCC=L1CC

IFICLR.EQs2)PC=0
IF(CLR.EQ.2)PCC=ZIC

HCK=C

IF(PCNE-O) HCK=HSUM(PC)

PCK=0

IF{PC.NE.O)PCK=PSUM(PC)

HHCK=0

IF{PPC.NE<O)HHCK=HSUM{PPC)

PPCK=0

IF{PPCoNE-O)IPPCK=PSUM{(PPC)
STOG=SSTOG
IFICLReEQe3ANDeSTOGGT-1)STOG=2
DO 880 BE=BEGLyBEND
IF(BEND.LT.BEG)GO TO 870

DO 114 K=1,12
ITEST(3,K)=ITEST(2,K)

SN{1)=0

RLY(1)=0

IF(IC.EQ.0)GO TO 130
P2REF=PREFAC*CFAC(BE)*MSPRE*MSPRE*HFAC{ IMS)®*HFAC(JMS)
BUM=NCOP(BE)

IF(CLR.EQ.2)GO TU 118

DO 115 K=1,BUM

L=K+8BMS

M(L)=COP(BE K}

MM{L)=M(L)

N(L)=PAC(BEK)

O(K)=PRC(BE+K)

CO 120 K=1,BUM

DOPE=COP(BE,K)

SCOPE=IABS(DOPE)
ITEST(3,SCOPE)=ITEST(3,SCOPE)+DOPE
S{1,K)=DOPE



120

130

135

140
150

160

170

180

190

250

255

SS(1,K)=PAC(BE,K)
SSS(1,K)=PRC(BEsK)

SN(1)=8UM

SN(5)=0 =
RLT(5)=0

DO 840 BBE=BBEG.BBEND
IF(BBEND.LT.B3EGIGO TO 830

DO 13§ K=1,12
ITEST(4yK)=1TEST(3,K)
IF{CLR.NE.3)GUO TO 150

BUM=NCOP {BBE)
P2REF=PREFAC*CFAC{BE)*CFAC(BBE) *MSPRE*MSPRE*HFAC(IMS)*HFAC(JMS)
DO 140 K=1,8UM

DOPE=COP(BBE,K)

SCOPE=TABS(DOPE)
ITEST(4,SCOPE)=ITEST(4,SCOPE)+DOPE
S(5,K)=DOPE

SS(5,K)=PACIBBE,K)

IF(SS(54K) eNE«1T.ANDoSS{53K)aNEoa18)SS(5,K)=SS(5,K)+2
SSS{S5sK)=PRC(BBE,K)+25

SN(5)=8UM

DC 8CC KCY=KSTA,KSTO

DO 16C K=1,12
ITEST(S54K)=ITEST(4,K)

P3REF=P2REF

SN(2)=0

IF(KSTO0.EQ.0)GO TO 180
P3REF=P2REF*FAC(KCY)

BUM=NCP(KCY)

DC 170 K=1,BUM

DOPE=0P(KCY,K)

SCOPE=IABS(DUPE)
ITEST(5,SCOPE)=ITEST(5,SCOPE)+DOPE
S{2,K)=DOPE

SS(2,K)=PAOP(KCY,K)
SSS({24K)=PROP(KCY,K)

SN{2)=BUM

RLT(2)=LR(KCY)

DO 7C0 LCY=LSTA,LSTO

DO 190 K=1y12
ITEST(6,K)=ITEST(5,4K)

P4REF=P3REF

SN(3)=0

IF{LSTO0.EQ.0)GO TO 255
P4REF=P3REF*FAC(LCY)

BUM=NCP(LCY)

DO 250 K=1,BUM

DOPE=0P(LCY,K)

SCOPE=[ABS{DOPE)
ITEST(6,SCOPE)=ITEST(6,SCOPE)+DOPE
S{3,K)=DOPE

SS(3,K3I=PAOP(LCY:K)
SSS(3,4K)=PROP(LCY,K)

SN{3)=BUM

RLT(3)=LR(LCY) -

DO 400 GPS=STAG, STOG

PSREF=P4REF

IF(GPS.EQe5.AND ILIMT.EQ.0)G0 TO 390
IF(GPS.GT.2)PSREF=P4REF/2
IF(GPS.EQe4 s AND ILIMT.EQ.Q0)IPSREF=P4REF
NMOST=0

KLEND=STOK



257
258

260

270

300

310
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IF(GPS.LE.2)KLEND=1

LKEND=STOL

IF(GPS.LE.2)LKEND=1

SN(4) =0

PREF=PSREF

IF{STOG.NE.OJ)GO TO 258

DO 257 K=1,12

[IF(ITEST(64K)NE.O)GO TO 390

CCNTINUE

GO TC 381

CONT INUE

D0 260 K=1,12

ITEST(7,K)=1TEST(6,K)
ISER=KIND(1,4GPS)

JSER=KIND(2,GPS)

KSER=KIND(3,GPS}

LSER=KIND(4,GPS)

DO 38C I=STAI,STOI

I00PE=1JOP(I,ISER)
ISCCPE=MAXO(TA3S(IDOPE), 1)
ITEST(7,ISCUPE)=1TEST(7,ISCOPE)+IDOPE
TROPE=PA{I,s1)

DO 360 J=STAJ,STOJ

JDOPE=IJOP(J,JSER)

JROPE=PA(Jy2)
JSCCPE=MAXO{IABS{JDUPE) ,1)
ITEST(7,JSCOPE)=ITEST(7,JSCOPE) +JDOPE
DO 340 K=STAK,KLEND
KDCPE=IJOP(K,KSER)

KROPE=PA{K, 1)
KSCOPE=MAXO(IABS(KDOPE)} 1)
ITEST(7,KSCOPE)=ITEST(7,KSCOPE)+KDUPE
DO 320 L=STALsLKEND
LDOPE=IJOP(L,LSER)

LRCPE=PA(L,2)
LSCOPE=MAXO(IABSI(LDOPE)} 1)
ITEST(7,LSCOPE)=ITEST(7,LSCOPE) +LDOPE
DO 300 KLKK=1,412
IFUITEST(7,KLKK)eNE-OJ)GO TO 310
CONTINUE

PREF=P5REF

NMOST=NMOST+1

SLOP{NMOST,1)=IDOPE
SLCP(NMOST,2)=J00PE

SLOP{NMOST ,3)=KDOPE
IF(GPS<GT-2)SLOP{NMOST 42)=KDOPE
IF(GPS.GT2)SLUP(NMOST, 3)=JDOPE
SLCP{ANMOST,4)=LD3JPE
ROP(NMOST,y1)=IR0OPE

ROP{NMOSTy2)=JROPE

RCP{NMOST 43} =KROPE
IF{GPS.GT.2)ROP(NMOST ,2)=KROPE
IF(GPS.GT.2)ROP(NMOST 3)=JROPE
ROF{NMOST,4)=LROPE

LRIJK(NMOST)=0
[F(IelEa2e0ReCHMScEQeOILRIJKINMOST )I=LRL(IISER)
RR=0
IF(GPSelTe3cANDo(JolEc2eGReCHMS.EQeQ) JRR=LRLIJ» JSER)
IF(GPSeGTe2 e ANDe{LolLEe2eGRoLHMScEQeaO) JRR=LRL(LyLSER)
IF(LRIJK{NMOST) .EQeO) LRIJKINMUST)=RR
IF(RREQel e ANDo LRIJUK(NMOST ) oEQa=1)LRIJKINMIST)=2
CONTINUE
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385
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910
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935
940
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ITEST(7,LSCOPE)=ITEST(7,LSCOPE)-LDOPE
ITEST(7,KSCOPE)=ITEST{7+KSCOPE)-KDUPE
ITEST(7,JSCOPE)Y=ITEST(T7,4JSCOPE)-JDOPE
ITEST(T,ISCOPE)=ITEST(7,ISCOPE)-IDOPE
IF(NMOST.EQ.0)G0 TO 390

CONTINUE

IFCIPRINT.LE.QJIGO TO 385

Qi=1

IF(GPS.GT.2)QI=2
IF(QI.EQ.1oANDe QI e NE. IQIWRITE(IPRINT,2120)
IF(QIEQe2.AND.QI e NE IQIWRITELIPRINT,2130)
1Q=Ql

CALL SETUP

IF(BUG.EQeQsORIPRINToLE.QIGO TO 390
JPR=TPRINT

CALL PUNWRT{JPRy195,0)
IF{IT.EQ.Q)WRITE(IPRINT,2110)

CONTINUE

CCNTINUE

CONT INUE

CCNTINUE

CCANTINUE

CCNTINUE

CCNTINUE

CONTINUE

CCONTINUE

CONTINUE

CONTINUE

CONTINUE

WRITE(6,2100)
IF(ICNE+sQO.ANDoCCORY.NE-OJWRITE(642140)IC,ICC
IWTP=0

IF(TAPE.GT.2) [uTP=3
IF(ETE.EQeOOR.ETH.EQ.2)CALL EFORM

CALL PUNWRT{6413+5,1WTP)
IF(IT.EQ.Q0)WRITE(6,2110)

NEWMID=RT IME(ODOD)
TTIME=(OTIME-NEWMID)/1000.0

OTIME=NEWMID
IF(ID.LE.CORY+L)WRITE(6,2080)TTIME, IC
IF(IDGT.CORY+1)WRITE(6,2085)TTIME,IC,ICC
CONTINUE :

CONTINUE

CONTINUE

CCNTINUE

CONTINUE

AFTER=RTIME(DDDD)
TTIME=(BEFORE~AFTER)/1000.0
WRITE(6,2090) TTIME

CONTINUE

CONTINUE

RETURN

FCGRMAT(//7791HO 313 92X o " ki dekr 0y 28X,y Ikt 0 g 29X o  kkktektookedk
PR G 28X, Ukkkkkkdokk )
FORMAT(1HOy 544 5Xy 5A%)

FCRMAT(LH o *IC*92X,*ICC* 45X, PLMN %9 20Xy *OPERATORS")
FORMAT(LH ,15X,F1l2.8,® TIMES®/)
FORMAT(LHO, * THE FIRST OPERATOR °/)
FORMAT(1H 320Xy FL2.894X¢8(A491X))
FORMAT(1HO, ' THE SECOND OPERATOR ¢/)
FORMAT{1HO,' EVALUATION FOR THE FOLLOWING OPERATORS (SUM OVER HOLE
?S MUsNUsPIoXI AND PARTICLES MyNyP,Q)*)



2065 FORMAT(1HO,*CORRELATION COEFFICIENT ',12,' TYPE %,]2)
2067 FORMAT{1HO,10Xs*CORRELATIUN COEFFICIENT %412,¢ TYPE *,12)
2070 FORMAT(IHOsI3,1X95A4 3 Xe?(*9A443(%3%9A4),8)2,8 TIMES " yFl2.8,* TIM
PESY) -
2080 FORMAT(lH ,* IT TAKES ®,F5.2,% SECCNDS FOR CORRELATION FUNCTION °*
?13)
2085 FORMAT(LH ,* IT TAKES ',F5.2,' SECONDS FOR CORRELATION FUNCTIONS ¢
2913, AND ¢,13)
2090 FORMAT(1IH ,° THE FORMULA TAKES®*,F6.2,% SECONDS TU GENERATE.?)
2100 FORMAT(1HO,®* THE FORMULA FOLLOwWS.SUM OVER HOLES MU AND NU AND PART
2ICLES M AND No')
2110 FCRMAT({LHO, 50X, ¥xxexNULL FUORMULA**x%x%xkxt /)
2120 FORMATI(L1H 424X,'UNE BUDY®)
2130 FOPMAT(IH 424X, *Twd BUDY?)
2140 FORMAT(1H 10X, 'THE CORRELATION FUNCTICNS ARE IN ORDER ,12,3X,12)
2150 FORMATI1HO.® K{*y125°%) K(9,12,,%)a1)
ENC
SUBROUTINE SETUP
C SUBROULTINE TO EXPAND THE COMMUTATORS.
IMPLICIT INTEGER(A-H,U-Z)
REAL*8 PLMN,PREFsMSPRE,HFAC
COMMCN/LIMITS/STAG,STOGySTAMySTUOM,STAI ySTOI sSTAJySTOJ,STAK,STOK,ST
AL, STOL, ILIMT LCLRHUCLR¢MINICCo,MAXICC
COMMCN/MACB/MSPREyHFAL(2) ,CHOP{244) s DHOP{2,4) s MMSS(2)oPACHP{2,4),
PPADHP (274 ) s PRCHP (294) s PRDHP (94 ) 9 LMSy BMS,BBMS g NMS
COMMON/PUCK/PC,PLC
CCMMCN/BRUTUS/Q(446) ¢y NAC(6)DAC(6)4AQ,10T
COMMCN/LEAR/PMFAC,CTAPEJENGLy GSEND,y I SHOW, JTAPE
CCMMCN/SILVIA/NO(200)
COMMON/BANQUO/CHMS
COMMCN/HAMLET/M(44) sMM{44) 4N 44)
COMMCN/EDMUND/PREF yNMOST o ICsCLR pRLT IS5y LRIUK{256)90(44)ySN(5)
CCMMON/CURRAN/S(5498)9S5S{5;8)9SS5SS(5498) ySLOPI256,4) sR0OP(25644)
COMMCN/DUKE/ IPRINT
CCMMCN/LAUNCE/SUM,P(4)
CCMMCN/PRIEST/PLMN
DIMEANSICN CUM{5)
10 BEND=AQ+l
IF(ICeEQe00RCLREQs1)BEND=AQ
MBEG=1
MENDIT=6
IF{ICeEQe0.ANDe STAMLLT . 0)MBEG=-STAM
IF(IC.EQeDeANDe STUMLT o O)MENDIT==STOM
IF(STAM.GT.0)MBEG=STAM
[F(STCMo.GT.O)MENDIT=STOM
CUM(1)=BMS
IF(CLR.NE2)CUM(1)=SN(1)+BMS
SN{4)=2
IFISLOP( 193)oNE.O)SN{4)=4
IF(ICT.EQ.0)SN{4)=0
P(1}=0
P{2)=0
P(3)=0
P(4)=0
STO=SN(4)
FUN=SAN{1) +SN(2)+SNI3)+SN{S)+SN{4&)+BMS+1
SUM=FUN-1+88BMS
DO 1CCO IK=1,NMOST
[F{STO0.EQ.0)GO TO 30
DO 20 K=1,ST10
S(4,K)=SLOP(IK,K)
SS(4K)=ROP{IK,K)
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20 SSS(4,K)=T75+(25%K)~12+S5(4,K)
RLT{4)=LRIJK(IK)

30 DO 800 MCY=MBEG,MENDIT
PLMNN=PREF®NACIMCY)/DAC(MCY)
IF(DABSIPLMN)«LT-1.D-5)G0 TO 790
[T=RLT(Q{1,MCY))
ITT=RLT(Q(BENDyMCY))
IF{{CLR.EQel.OReICeEQa0)eANDoITT.GE-L)GO T3 790
TF{(ICeEQaVaUReCLReELQe2) o ANDo( ITsEQe=Ls0ReIToEQe24)G0O0 TO 790

50 DO 600 BE=1,BEND

F=Q(BE,MCY)
IF(CLR.EQe3cANDoFeEQoL)F=5
BS=CUNM(BE)+1
CUM(BE+1)=BS+SN(F)-1
NUM=CUM(BE+1)
DG 300 B=8S,NUM
ABC=B-BS+1
M(B)=S(F,ABC)
MM(B)=M(3)
N(B)=SS(F,ABC)

300 0(B)=SSS{F,ABC)
IF{F.NE.4)GO TO 590
P(3)=0
P(4)=C
DO 4CC B=BS,NUM
BB=B-BS+1

400 P(BB)=8
IF{SLOP(IK,3).EQ.0)GO TO 590
B=P(2)

P(2)=P(3)
P(3)=8

590 CCNTINUE

600 CONTINUE
IF{BEMS.EQ.0)GO TO 710
DO 700 K=FUN,SUM
L=K¢1=-FUN
M(K)=CROP(LMS,L)

MMIK)=M(L)
N{K)=PACHP(LMS,L)

700 O(K)=PRCHP(LMS,L)

710 CCNTINUE
IF(IPRINT.GT.OJWRITE(IPRINT y2000)PCyPCCoPLMNy (NOLO(B)) 9B=15SUM)
IF(ISHOW.EQ.O)CALL WICKET

790 CONTINUE

800 CONTINUE

1000 CCNTINUE

RETURN

2000 FORMAT(1H 51292X91395X9F12e893X920(1XsA%))
END
SUBRCUTINE WICKET

C SUBROUTINE TU DO WICK'S THEOREM
IMPLICIT INTEGER(A-H,0-2)
CCMMCN/BANQUO /CHMS
COMMON/LAUNCE/SUM,P(4) .
CCMMCN/HAMLET/M(44) sMM(44) yNl44)
COMMCN/JULTA/ESIGNyNUM, MEN(22), WOMEN(22) ,MATE( &)
DIMENSION MPO(22) ¢WP0(22) s STAR{22),XSIGNI22),BLESS(22)9BLESS(22,22
?)

10 NUM=SUM/2
MATE(1)=0
MATE(2)=0
MATE(3)=0
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MATE(4)=0
IMBEC=1
MNU=0
WNU=C
C LOCATE POSITIONS OF MEN AND WOMEN
DO 50 I=1,SUM
MW=M(T1)
IF(MW.EQeloORMW.EQe2.0ReMNoEQe=5.0Re MW.EQ.=6)G0O TO 30
IF(CHMS eGE e0 e AND o (MW o EQe9 e OR MW EQe=10o0R oMW EQeLllosURMW.EQ.=12))
260 TC 30
IF(CHMSeLT e00AND o {MNeEQe920R oMW eEQe10e0RoMNoEQe~L1o0Re MWoEQe=12))
260 TO 30
WNU=WNU+1
WPO(WNUI=I
GO TC 40
30 MNU=MNU+1
MPC(MNU)=1
40 CCNTINUE
50 CONT INUE
DO 80 I=1,NUM
HERR=MPU(T)
MEN(I)=N{HERR)
MAN=N [HERR)
MUN=0
DO 60 J=1,NUM
DAMEN=WPO(J)
WOMAN=M(DAMEN)
CHILD=MAN+WOMAN
IF(CHILD.NE .0.0R.DAMEN.LT<HERR)GO TO 55
NUN=MUM+1
BLESS(MUM, I )=DAMEN
55 CONT INUE
60 CONTINUE
IF(MUM.EQ.O)RETURN
STAR(I)=0
80 BLISS(I)=MUM
100 DO 300 IM=IMBEG,NUM
MI=IV
MINE=NUM¢1=IM
WSTR=STAR(MINE)+1
MUN=BLISS(MINE)
DO 120 IW=WSTR,MUM
STAR(MINE)=1IW
DAMEN=BLESS(IwWyMINE)
WOMAN=MM{DAMEN)
IF{WCMANJNE.0)GO TU 150
120 CONTINUE
GO TO 500
150 HERR=MPO(MINE)
MM{HERR) =0
MM{CAMEN)=0
WOMEN(MINE)=N(DAMEN)
DO 200 J=l,4
IF(P(J).EQ.HERRIMATE{J)=WOMENIMINE)
200 TF(P(J)<EQ.DAMENIMATE(J)=MENIMINE)
STA=HERR+1
STO=CAMEN-1
SGA=0
DO 250 J=STA,STO
250 IF(MM(J)<NE.O)SGN=SGN#+1
XSIGN{MINE)=SGN .
300 IFIMINESNENUM)XSIGN(MINE)=XSIGN(MINE+1)+SGN
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ESIGN=XSIGN(1)
ESIGN={=1)**ESIGN

400 CALL TV
MM{HERR) =M(HERR)

450 MM(DAMEN)=M{DAMEN)

500 IMBEG=MI-1
IF(IMBEG.EQ.Q)RETURN
STAR({MINE)}=0
MINE=NUM+1-1MBEG
MI=MI-1
WI=STAR(MINE)

HERR=MPO(MINE)

CAMEN=BLESS{WI,MINE)

MUM=BLISS{MINE)

MM(HERR)=M(HERR)

MM{CAMEN) =M(DAMEN)

IF(KI.EQ.MUM)GD TO 500

GO TO 100

END

SUBRQUTINE TV

C SUBROUTINE TU SET UP AND CALL TFURM AND VFORM

IMPLICIT INTEGER{A-H,0-2)

REAL*8 RDyFACT,PLMN,PLlREF,PREF
COMMCN/CASCA/ZIDX
CCMMGN/EDMUND/PREF ¢NMOST o IC sCLRyRLT (5}, LRIJKI256),0(36)4SN(5)
COMMCN/JULTA/ESIGN yNUMy MEN(22) yWOMEN{22) ¢y MATE (%)
COMNMCN/PORTIA/PLREF(B) ¢CCIB)oCFIB &)y XPgXHy XHP ¢NOC s ISY 9 XXP 9 XXHg XXH
7P s NNOC , MMNN ,BB{ &)

CCMMCN/PRIEST/PLMN

CCMMCON/ANTONY/ZETH

DIMENSION CNI8),1J(4),TYP(4)

DATA TYP/1,2:9,10/

10 GFS=2

IF(MATE(3).EQ.0)GPS=1
IF(IABS(ETH)«EQ.1)GPS=0

SPG=GPS*2

IF{ETHeEQe1)SPG=2

TL=0

TU=0

uTLU=1

RD=ESIGN*PLMN

IF(IDX.EQ.0)GO TO 80

DO 20 DD=1,4%

20 BB{DD)=0
DO 30 DD=1,NUM
MAN=MAXO(MEN(DD) y WOMEN(DD) )
WOMAN=MINO(MEN(DD) yWwOMEN(DD) )
IF (WOMAN.GT.2)GO TO 25

IF( {MANGEQo19s0RMANEQ.20) s ANU.BB(WOMAN) cNE. 0o AND.
?BB(WOMAN) s NEoMAN) RETURN
IF( {MAN. EQ.19.0R.MAN.EQ.20) 4 BB (WUMAN)=MAN

25 NAMOW=WOMAN-6
IF{WOMANNE.9ANDe HOMANSNE.LO)GO TO 30

IF( . (MAN.EQe2leJRaMAN.EQ.22) -AND.BB
2UNAMCW) NEoMANCAND BB (NAMOW ) s NE< O )RETURN

IF( {MAN.EQe21JR.MAN.EQ.22) dBBINAM
20W ) =MAN

30 CCNTINUE
IF{BB(3)eEQa22.ANDBB14)oEQe21 <AND. IDXGT.0)RETURN
IF(RB(L1)eEQe20sANDBB(2) otQoelPeaNDoIDX.GT.OIRETURN
IF(BB(1).EQaBB(2) e ANDeBB(1) NELOIRETURN
IF(BB(3).EQ.B8{4).ANDBB(3) .NE.OJRETURN



50

80

90

100

110
120

140

145
150

160
165

167

)
il
W

UPH=1

D0 50 DD=1,4%

IF(BB{VD) . NE.O)UPH=UPH+1

GC T0O 100 -

DO 90 DD=1,NUM

MAN=MAXO (MEN(DD) s WUMEN(OD) )

WONMAN=MINO(MEN(DD) yWOMcN(CDI})

IF(WCMAN.EQel cANDeMANEQe2)TL=2

IF(MANCEQe10 o ANDo WOMANSEQeF ) TU=1L

UPH=UTLU+TL+TU

CCNTINUE

IF(SPG.EQ.0)GO TO 140

MAYL=MING(MATE(1) yMATE(2) yMATE(3) yMATE(4))
MAYU=MAXO(MATE{1),MATE(2) yMATE(3),MATE(4))

IF(MAYLeEQe 7o ANDeMAYUEQeBoaORMAYLoEQal5.AND.MAYU-EQ.16)G0O TO 120
DO 110 IJK=1,SPG

TF(MATE({IJUK) oEQeB eORMATE{1UK) sEQe16)IMATE(IJIK)}=MATE(IJK)-1

G7J TO 140

IF(MATE(2)eEQe7T«ORMATE(2) s EQe15)IMATE(2)=MATE(2)+1

TF(MATE(]l) sEQeB8OR MATE(1)EQ.16)MATE(L1)=MATE(Ll)-1

DO 300 NNN=14NOC

DC 290 NNNN=1,NNGC

DC 150 KJI=5,8

[JK=KJI-4

TJUIJKI=MATE(IJK)

CCUIJK)=CFITIJKysNNN)

CN(IJK)=CC{IJK)

CCUKJITI=CF(KJII,NNNN)

CN(KJI)=CC(KJII)

CCNTINUE

CCNTINUE

FACT=RO*P1IREF{NNN)*P1REF{NNNN+4&)

ISy=1

IF(IC.EQ.0)GO TO 190

I1SY=0

IF(ETHeEQ.1)ISY=-3

IF(ETH.EQe-1)ISY==5

IF(XHeEQeOe ANDe XPoEQoe Ve ANDe XHP e EQe 0o ANDeNOCoEQe O0e ANDe XXHo EQoOosANDS
PXXPeEQoeOe ANDe XXHP 6 EQe O o ANDoNNOCoEQe Qe ANDeMMNNoNEo2) ISY=1

DO 180 DD=1,NUM

MAN=MAXO (MEN(DO} , WOMEN(DD))

WOMAN=MINO (MEN(DDJ) yWOMEN(DD) )

MMAN=MAN

WWCM=WOMAN
IF({MMANGCGEQo19e0ReMMANGEQe20) sAND o { WHOMoeGTo2e ANDe WHOMLTo9) ) MAN=WH
?20M
IF{{MMANCEQe19.0ReMMANCEQe20) cANDo{ WHOMeGTe2e ANDaWHOMeLToa9) ) WOMAN=
?MMAN

IF({MMANCEQe21 e OReMMANLEQe22) e ANDe (WHWOMeGTolOoAND e WHWOM LT o 19) IMAN=
PWWCM
IF({VMANaEQe21eOReMMANG.EQe22) e ANDo {WHOMoGT o L0 s ANDoWHWOMo LT o 19) )WOMA
PN=MMAN

IF(MANL.EQe7eORcMAN.EQeB +OReMANoGEo15:ANDeMANCLES18)GO TO 170
IF(MANeGT o4 e ANDoMANGLT o 7o ANDeWOMANGGT 62 s AND e WIMANSLT 05 0R eMANGT o1
?2eANDMANGL T 15 ANDe WOMANcGT e« 10 AND o WOMANGLTo13)G0U0 Tu 165

DC 160 EE=1,8

IF(MANCEQ.CN(EE) JCCLEE)I=WOMAN
IF(WCMAN.EQ.CNIEE) JICCLEE)=MAN
GO TC 170

DO 168 EE=1ly4
0O 167 EEE=5,8
IF(MANCEQ.CN(EEE) o AND.WOMANLEQoCNIEE) )CCLEEE)=HOMAN



=21~

168 CONTINUE
170 CONTINUE
180 CONTINUE
190 CONTINUE
IF(SPG.EQeD.0R. IDXeEQ.0)GO TO 240
DO 230 EE=1,SPG
DO 220 EEE=1,4
IF(CC(EE).EQ.BBIEEE))ICCL{EE)=TYP(EEE)
220 IF{IJIEES).EQ.BB(EEE))IJ{EEI=TYP(EEE)
230 CONTINUE
240 CCNTINUE
IF{ISY.LE.OICALL SYM(IJ,FACT)
IF(ISY.EQ.D)ISY=~1
250 I=1J(1)
J=1J12)
K=1J(3)
L=1J(4)
IF(GPSCLE.1)CALL TFORM(I+JyFACT,UPH)
IFIGPS.EQe2)CALL VFURMII»J9KyLoFACT,UPH)
260 CCNTINUE
290 CONTINUE
300 CCONTINUE
RETURN
END
SUBROUTINE TFORM(F,FF T 4X)
C SUBROUTINE TO FORM THE ENERGY MATRIX
IMPLICIT INTEGER(A-H,0-2)
REAL*8 T,ETIMS, TT,PLlREF

COMMCN/PORTIA/PLREFEB) sCC(8)oCFIBy4) 9 XPyXHo XHP g NOC o ISY 9 XXP ¢ XXH g XXH

PP o NNCC s MMANN BB ( 4)

COMMON/CLOWN/ETIMS (5, 200)yEN(5,200,2)yEC{5,200,8) yED(5+200,4)

COMMON/TUBAL/ NEN(S5) ¢ NEMM(5)
CCMMCN/REGAN/IT ,TAPE LT, ICC,LTT,MSTO, ICHG
DIMENSION Pl4)yIdl4)
T7=T
IJ(1)=F
1J(2)=FF
[J(3)=0
1J(4)=0
1Sy=-2
IF{IJ{2)-NE.O)ISY="-¢6
IF(IJ{1).EQ.Q)ISY==6
1 NUT=NEN{X)

TUN=NEMM{X)
DO 1S CHG=1, ICHG

C INTERCHANGE CC
IF(CHG.EQ.2)CALL SYM(LJ,TT)
SF=MINO(IJ(1),1J(2))
FS=MAXO(IJ(L),14(2))
S=SF
SS=FS
IF(SF.EQ.0)S=FS
IF(SF.EQ.0Q)SS=SF
IF(S.EQo183.ANDeSS.EQe0)S=17
IF(NLT.EQ.0)G0O TO 20 :

12 DO 18 A=1,NUT

B=A
IF(TUNeLE.NUT.0R.CHG.EQ.2)G0O T3 13

IF(DABS{ETIMSIXyB))olToloeD=5 JETIMS(X,B)=0.D00

IF(ETIMS(XyB)<EQ.0.00) TUN=A
13 CONTINUE
DO 14 MUST=1,MSTO



14

17

19
20

21
23

30

40

2000

C sus

10

20

30

IF(EC(Xy B yMUST)oNE-CC{MUST)IGO TO 17
CCNTINUE

DC 15 MUST=1,4

IF(ED(XyByMUST) «NE.BBIMUST))IGU TO 17
CONTINUE
ITF{SEQeENI(XyByl) s ANDeSSeEQ.EN(XyB8,2))G0 TU 30
CONTINUE

CONT INUE

CONTINUE

IF{TUNSGT e NUT)NUT=TUN

IF{NUT.GT.200)G0 TO 40

EN(XyTUN, 12)=S

EN(X,TUNs2)=SS

ETIMS{X, TUN)=TT

NEN(X)=NUT

NEMM{X)=NUT+1

DO 21 MUST=1,4

ED{Xy TUN,MUST )=BB(MUST)

DO 23 MUST=1,8

EC{Xy TUNyMUST)=CC(MUST]

RETURN

ETIMS{X,B8)=ETIMSI{X,B)+TT
IF(BEQeNUToANDETIMS{X98)eEQeDDOINUT=NUT-1
IF(RaEQeTUNGORSTUNSGT o NUT ) TUN=NUT ¢1
NEMM(X)=TUN

NEN(X)=NUT

RETURN

WRITE(6,2000)

CALL PUNWRT (69X¢Xy1l)

NUTTY=0

NEN(X)=0

NEMM(X) =1

GO 1C 1

FORMAT(1HO,* *%*EN AND ETIMS MATRICES ARE NOT LARGE ENOUGH**%9//)
END

SULBROUTINE VFORM{QsR¢S,TyMyPH)
ROUTINE TO CONSTRUCT THE TwWO-30DY TERMS
IMPLICIT INTEGER(A-Hy0-2)

REAL*8 M,VTIMS,MM,PLREF
COMMCN/REGAN/ IT s TAPE,CT o ICC,CTT MSTO, ICHG
COMMCN/PORTIA/PLREF(8) 9CCLB)sCF{Bs4)s XPoXHyXHP gNOC s ISY » XXP 9 XXHy XXH
2P ¢ NNOCyMMNN,88( 4)
CCMMCN/GOBBO/NTULS)4MTU(S)
COMMON/OSRIC/VTIMS(5,300) yV(59300¢4)9C15,30054)9VDE{5,3005%)
MM=M

IT=MINO(Q,S)

KK=MAX0{Q,S)

JJ=MINO(R,T)

LL=MAXO{R,T)

IF(JJ-11)10,20,30

NI=11

I11=4J

JJd=NI

NK=KK

KK=LL

LL=NK

GC 70O 30

IF({LL-KK)GE.0)GO TO 30

NK=KK

KK=LL

LL=NK

CONT INUE



32 MEW=NTULPH)
WEM=MTU(PH)
IF{(MEW.EQ.0)GO TO 50
DO 40 A=1,MEW
B=A
IF(WEM,LE.MEW)GO TO 33
IF{DABS(VTIMS(PHyA)}) oL T.0.00001)VTIMS(PH,A)=0.D0
IF{VTIMS(PHyA)eEQ.0.DO)WEM=8
33 CCNTINUE
DO 34 MUST=1,MSTO
IF(C{PHy,AyMUST) .NE.CC(MUST))GO TO 38
34 CONTIANUE
DO 36 MUST=1,4
IF{VD(PH,yA,MUST ). NE.BB(MUST))GO TO 38
36 CONTINUE
IF{ITEQeV(PHy A1) sANDoJJEQeVIPHIA2) e ANDeKKeEQeVIPH)A3) s ANDaLL
2sEC.V(PH,A,4))G0 TCG 60
38 CONTINUE
40 CONTINUE
S5O0 IF{WEN.GToMEW)MEW=HEM
IF(MEWL.GT-300)GO TO 80
VIPH, WEM,1)=11
VIPHsWEM,2)=JJ
V(PHsWEMy3) =KK
V{PH WEMs4)=LL
VTIMS{PH,WEM)=MM
NTU(PH)=MEW
MTU(PH) =MEW+1
DO 53 MUST=1,4
VD{PHsWEM, MUST)=BB (MUST )
53 C{PH,WEM,MUST)=CCIMUST)
RETURN
60 VTIMSIPHyB)=VTIMS(PH,8) +MM
IF(BEQeNUT AND VT IMS{PH»B) o EQeOQeDOIMEW=MEW~1
IF(BeFQeWEMeOReWEMeGT o MER ) WEM=MEW+]
MTU{PH)=wWEM
NTU(PH)=MEW
RETURN
80 WRITE(6,2000)
CALL PUNWRT(6,PHoPH92)
NTU{PH)=0
MTU{PH)=1
GO 70 32
2000 FORMAT{1HO,® x**%V AND VTIMS MATRICES ARE NOT LARGE ENOUGH***%//)
END
SUBROUTINE EFORM
IMPLICIT INTEGER{(A-Ho0-2)
REAL %8 ZSACTPIREF,PREFLETIMS
COMMCN/ PORTIA’/PLIREFIB)CC(BIyCF(Bo4) o XP o XHy XHP g NOC 9 I SY 9 XXP ¢ XXH o XXH
PP sNNCCoMMNNB_( 4) :
COMMCN/CDMUND/PREF ¢NMOSToIC sCLRyRLT(S) 3 LRIJKIZ256) 30(36) 3SN(5)
CCMMCN/BANQUO/CHMS
CCMMON/SPEED/GS
COMMON/ANTONY/ETH .
CCMMCN/CLOWN/ETIMS(5,200) yEN(5920092)9EC{5,200,8) yED{5,200,4)
CCMMCN/TUBAL/NEN(S5) ¢ NEMM(5)
COMMCN/CASCA/1DX
CCMMCN/TOM/NQSP
DINMENSION. XTRX{492),1J4( %)
DATA 14/0,050,0/
DATA XTRX/3¢49090¢29094,0/
10 DO 50C PPH=1,5



11
12

15

20

50

PH=6-FPH

NUT=NEN(PH)

NEMM(PH)=1

NEN(FH)=0 -

IF(NLT.EQ.0)GO TO 490

DO 400 J=1,NUT

ITF{ETIMS(PHyJ)«EQs0.D0)G0O TO 390

Z=ETIMS(PH,J)

ETIMS{PH,J)=0.D0

X=EN(PHyJ,1l)

Y=EN(PH.J12)

CC 11 K=1l,4

BB{K)=ED(PHyJ,yK)

CO 12 K=1,8

CC{KI=EC(PH,J+K)

IF{ETHeEQeOeORsCLREQ3)G0O TO 50

u=17

V=15

IF(XeEQe7eUR.Y.EQa7)U=8

IF(XeEQal5sURaYEQ.15)V=16

SACT=2/2

CALL VFORM{XsUsUsY SACT,PH)

IF(CHMS e LTo0JCALL VFURM(Xy17917,Y9SACT,PH)

SACT=-2/2

CALL VFORM(X,VyV,YySACT,PH)

IF(CHMS.LT.O)CALL VFURMI{Xy.8518,Y9SACT,PH)

SACT=(=-2)%*2

IF(NOSPNE.O)SACT=(=Z)%NUSP

CALL VFORM(XyUyYsUoSALT PH)

IF(CHMS.LT.O)CALL VFURMIX,179Y9179SACT,PH)

IF{GS.EQ.1)G0O TO 50

IF{GS.EQ+3)G0 TO 20

SACT==-2/2

TF((XeGEe9 s ANDoX ol Tol9eOReXoEQe2LoOReXoEQe22) s ANDo{ YoeGEeFoANDYLT
26¢19a0ReYeEQe21s0ReYeEQe22))CALL VFORMIX 17,179 YSACTHPH)

SACT=2/2
IF((XetTe9eOReXoEQolFsORXoEQe20) e ANDoYoEQel7eOReXeEQalToAND( Yol T
709 e0ReYeEQalFe0Re YaEQa20))CALL VFORMIXg174917,YySACT yPH)

SACT=-1

TF{{XelTo9¢OReXoEQelFeOReXeEQe20) eANDoYoEQedT7eOReXe EQoLlTcAND(Y LT
2¢9e0ReYeEQal19.0RaYeEQ.20))SACT=SACT*2

TR XelToe9e0ReXeEQelFeIReXeEQe20)o0Re (Yol To9eUReYoEQel9e0ReYEQa20
?))CALL VFORM(Xy17¢YelT79SACT,PH)

GO TO 50

SACT=0.00
IF({XeGEe9eANDeXeLTol9eUReXeEWo2leOReXeEQe22) sANDo{ YoeGEeFANDY LT
7019.0ReYeEQe21l.CRaYoEQe22))SACT=2/2
IF((XelTo9e0ReXeEQoe19eUReXeEN220) eANDe(YeEWolToOReYoEQa18))SACT==L
?/2

IF((YelTo9eO0RY eEQol9eOReYeEQea20) e ANDo{ XeEQel7e0ReXeEQ.18))SACT==2
?/2

IF(SACT.NE.0.DO)CALL VFORM(X9lT7317+Y9SACT,PH)

IF(SACT NE«O-DO)CALL VFURM{X918y18, Yy SACT4PH)

SACT=-2 )

CALL VFORM(XyplT74Y,179SACTsPH)

CALL VFORM(X¢l8,Ys189SACT,PH)

MPH=PH

XYX=C

XX=MINO(X,Y)

YY=MAXO(X,Y)
TF(XXelTe9oANDo ((YYoGT e 8eANDSYY oL To19).0RaYY.GT-20)1G0 YO 390
IFC{XXeGTo8eANDeXXolTol7) e ANDelYYeTol6oeANDaYYLT421))G0 TO 390
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IFI{XXeEQel9eORXXeEQe20) e ANDe( YYeEQe2ls0RaYY.EQ.22))60 TO 390
SACT=2
XXX=XX
YYY=YY -
IF{{XXeGTol0eANDeXXolTol9)eANDo(YYoEQea2leORYYoEGa22) ) XX=YYY
IF((XXeGTelOUeAND e XXl TolG) e ANDo{YYoEQe2leURaYY.EQa22))YY=XXX
TFOUXXeGT 02 e ANDeXXolTo9)aANDo(YYoEQal9eOReYYoER20))AX=YYY
IF{{XXeGTe2eANDe XX el To9)cANDa(YYeEQel19eORaYYEQe20) ) YY=XXX
[F{XXeEQelo AND.YYoEQe2)AYX=1
TF{XXeEQeFoANDYY o EQo10)IXYX=2
[F{XYXNEeQoAND e ICXeEGoO) MPH=XTRX(PH, XY X}
IF{XEQeYIXYX=3
IF(XYXeNEoOaOR.CCl1)eEQ.0)GB TO 65
XYX=4
DC 60 K=1,8
60 IF(YY.EQ.CC(K))CCIKI=XX
1J(1)=XX
IF{ISYeLEoOoANDXYXoNE-OQ)CALL SYM{IJsSACT)
XX=1d1{1)
65 CONTINUE
IF(IDX oNE.O)IGO TO 70
IF(XYXeNE<O)ICALL TFORMIXX30¢SACTyMPH)
GO TO 390
70 CCNTINUE
IF{XXe5To2)G0O TO 73
IF{XXeEQeloANDaYY.EQe2)GO TO 390
IF({XX.EQel9.AND.YY.EQ.20)G0 TO 390
IF((YY.EQel9eORYYeEQe20) e ANDoBBI( XX) o NEeYYs ANDaBB(XX)NE-OJGO TO 3
790
1F(YY.EQel9.0R.YY.EQ.20)BB(XX) =YY
73 NAMOW=XX-6
IF(XX.EQs9«AND.YY . EQ.10)G0O TA 390
IF(XXeEQo2l cANDoYY.EQ.22)60 TO 390
IF(XXeNEe9«ANDs XX NE-10)GO TO 78
TF(({YYeEQe2l eORaYYoEQe22) e ANDeBB{NAMONW) e NEoYYAND.BB (NAMOW) «NE. Q)G
20 TO 3930
IF{YY . EQe2]1 eORYY.EQ.22)BBINAMONW ) =YY
78 CONTINUE
IF(BB(1l)eEQe20.ANDBB(2)oEQelF9ANDIDXs6GT.0360 TO 390
IF{BB{1).EQeBB(2) s AND.BB(1).NE.QIGO TO 390
IF(BB(3)eEQe22.AND.BB(4)EQe21l,AND. IDXGT-0)6GU TO 390
IF(BB(3)EQeBBIl4)oAND.BBE3)Nc.0)GO TO 390
80 MPH=1
DO 90 DD=1.4
90 IF(BB(OD)eNEoOIMPH=MPH+1
100 CALL TFORM{XXy09SACT,MPH)
390 CONTINUE
400 CONTINUE
490 CONTINUE
500 CCNTINUE
RETURN
END
SUBRQUTINE SYMIIJyM)
C SUBROUTINE T3 MODIFY THE FORMULAS FOR CORRELATION COEFFICIENT SYMMETRY
IMPLICIT INTEGER{A-H,U=-2)
REAL#*3 M, PLREF
CCMMCN/PORTIA/PLREF(8) yCCUB)sCF(B94) 9 XPyXHyXHP ¢NIC o ISY 9 XXP 9 XXHy XXH
7Py NNCCoyMMNN,BB88 {4)
DIMENSION 1J(4),MA(B)sCNIBI,CCH{B8),HCC(8),PS(4)
DIMENSION P(4),ABC(4),CBAL4)
DATA A3C/1¢5¢3+7/
CATA CBA/2969%498/
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DATA CCH/443312,115655,14,13/
DATA HCC/344,y11912¢5416,13,14/
DATA MA/34441+2,74895,06/
IF(ISY.EQe=1)GO TO 2v0 -
IF(NGCeEQeV s ANDeNNOCoEQeOeORISY.EQe=2)G0 TO 95
IF(ISYeEQe=4.0RsISY.EQ.~-6)1G0T TO 95
C RENAMING CC DUE TO NuC
DO 10 A=l,4
PS(A)=0
IF(IJ{A)EQ.0JGO TU 9
DC 5 B=1,8
IF(IJ(A).EQ.CCI(B)IPSIA)=B
CCNT INUE
P{A)=0
DG 3C A=5,8
DC 20 B=1,4
20 IF(CC(A).EQ.HCC(B))IPIB)=A
30 CONTINUE
DO 40 A=1,38
40 CN{A)=CC(A)
DC 50 A=1,4
IF{CC(A) . EQ.CCH(A) cANDoP(A) NE-OJCCIP(A) )=HCC(A)
IFICC(A).EQ.CCH{A)ICC(A)=HCCLA)
B=A+4
50 IF(CC(B)«EQ.CCH(B))ICCIB)=HCC(B)
DO 90 A=1l,4
90 IF(PS(A).NELO)IIJLA)I=CCIPS(A))
95 CONTINUE
IF{MMNNeEQe2 e ANDo{ ISY2EQaOeOReISYeEQe=3.0RaISY.EQe~5})G0 TO 100
IF{ISYsEQe=2e0ReISYeEQe~4s0Re1ISY.EQe-6)G0 TO 100
GG T0O 200
100 CONTINUE
DC 1C3 A=1,4
PS(A)=0
IF(IJ(A).EQ.0)GO TO 102
DO 101 B=1l,4
BB=B+4
IF(IJLA)LEQ.CC(B)IPS(A)=8B
101 IF(IJ(A).EQ.CC(BB)}PS(A)=B
102 CONTINUE
103 P(A)=0
DO 1C8 A=5,8
DO 106 B=1l,4
106 IF(CC(A).EQ.HCC(B)IP(BI=A-4
108 CONTINUE
00 110 A=1,8
110 CN{A)=CC(A)
DO 120 A=1l,4
B=A+4
CC(A)=CNI(3)
120 CC(BI=CN{A)}
DO 150 A=1l,4%
B=A+4
IF(P(A)«NE-O)CC(P{A))=HCC(P(A))
IF(P(A)NE.O)CC(BI=HCCIPLA))
IF(CC(A).EQ.HCC(B)ICC(A)=HCCLA)
150 1F(CC(B)<EQHCC(A) sdANDePlA)EQ.0)CC(BI=HCLI(B)
DG 160 A=1,4
160 IF(PS(A)NE-OJIJCAI=CCIPS(A))
C HOLE AND PARTICLE SYMMETRY
200 CCNTINUE )
IF{XHeEQo Do ANDo XXHeEQo O e ANDeXPoEQe Do ANDo XXP.EQe0)GO TO 510

owowWm



S )

DO 500 AB=1,4
IF(AB.EQ. L)HXP=XH
IFIABLEQ.2) HXP=XXH
IF(AB.EQe3) HXP=XP
IF(ABR.EQ4 ) HXP=XXP
IF(HXP,EQ.0)GO TO 490
DO 21C A=1l,4
B=A+4
CN(B)=CCI(B)
PS(A)=0

210 CN(A)=CC(A)
Al=ABC(AB)
A2=CBA(AB)
IF(ISYeGTo~1e0ReISY.LTo=4)GO TO 240
IF(T1J(1)e€EQoA2.0R.1J(2)-EQaA2)GO TO 490
IF(IJ(1)eEQeAleORaIJ(2)EQ.ALIGU TA 300

240 CCNTINUE
IF(CN(A2).EQ.HCC(A2))GD TO 400
IF(CN(AL).EQ.HCLC(AL))IGO TO 300
CC(A1)=MINO(CN(AL) ,CN{AZ))
CC(A2)=MAXO(CN(AL) CN{A2))
IF(CC(AL)aNESCN(AL) IM=M*HXP
GO TC 490

300 CC(A1)=CN(A2)
IF{CC(AL)EQ.HCC{AZ2))ICC(AL)=HCC(AL)
CC({A2)=HCC(A2)
IF{AB.EQ.2.0RAB.EQ.4)GO TO 340
P{A1)=0
P{A2)=0
DO 310 A=5,8
IF(CN(A) . EQ.HCC(A2))P(A2)=A

310 IF(CN{A).EQ.HCC(AL))IP(AL)=A
IFIP(AL) e NEaOJICCIP(AL))I=CCLA2)
IF(P(A2).NE.O)CC(P{A2))=CCIAL)

340 DO 350 A=1l,4
IF(TJ(A)EQ.CNIAL)IPS(A)=A2

350 IF(IJ(A).EQ.CN(A2))IPS{A)=AL
DD 360 A=1l,4

360 IF(PS{A)NEOIIJLAI=CC(PS(A)Y)
M=MxHXP
GO TO 490

400 CONTINUE
IF(CN{ALl) e NE-HCC(AL)eOReIJ(3)EQ-0)GO TO 490
DC 410 A=1,4
IF(IJ{A).EQesHCC({AL))Z=A

410 TF(IJ{A).EQ.HCC(A2))ZZ=A
MP=MA(2)
MPP=NMA(L22Z)
IF{Z.EQ.MPP)GD TO 490
N=MINO(IJ(MP) I J(MPP))
IFIN.EQ.IJ(MPI)IGO TO 490
[J(MPPI=1J(MP)
IJ(MF)=N
M=M%XHP

490 CONTINUE

500 CCANTINUE

510 CONTINUE
IF(XHPoEQeOoAND e XXHP e EQoQ)RETURN

C HOLE-HCLE PARTICLE-PARTICLE SYMMETRY

Q=2
IF(XHP.,EQ.O0)GO TO 690
ASTA=1



ASTO=4
Al=1
A2=2
A3=3
Ab=4
PHX=XHP
530 CO 550 A=1,8
550 CN(A)=CC(A)
IF{1SYeGTe=1.0R.ISYeLTa=4)1G0 TO 553
IF(IJ(1).EQ.HCC(A4) sOR.IJ(2)EQ.HCCLA4))IGO TU
IF(TJ(1).EQ.HCC(A3) 0R.IJ(2)EQ.HCC(A3))GO TO
TFUIJ (1) .EQoHCC(A2) o0R.IJ(2)oEQ.HCCIAZ)IGO TU
TF(IJ(L) EQoHCCIAL ) 4URe TJ(2)4EQ.HCCIAL) )GO TO
553 ZZ=MAXO(CN(A3),CN(A4))
Z=NINO(CN(A3) ,CN(A4))

690
554
6930
554

IFUZZ eNEeGeANDeZZeNEo 1D o ANDeZZ eNEe2l cANDeZZ eNEo22e0ReZNEa9AND.Z.

P?NEo10cANDeZoaNEe 210 ANDeZoNEL22)G0 TO 5540

IFUZoNEeZZoORSCN(L)eNEo3e URSCNI2)eNEo4)GO TO 5537

P1=0
P2=0
DC 5535 A=1,4
IF(IJ(A).EQ.3)P1=MA(A)
5535 TF(IJLA).EQ.4IP2=MA(A)
IF(P2.LT.PL)IGO TO 554
5537 CONTINUE
IF(ZZ.EQ.CNLR4))GO TO 690
GO TC 554
5540 CCNTINUE
HH=MAXO{CN{Al),CN{A2))
H=MINO(CN(AL) ,CN(A2))
IF{HH.NEol s ANDeHHe NEo 2o ANDeHHoNEo19.AND o HHoNE »
P?NEe2eANDoHoNE 219+, ANDeHoNE«20)GU TO 5545

20.

OReHeNEol.ANDoH.

IF(HoNEoHH.OReCN(3)oNEslle OReCN(4)oaNE-12)63 T3 5544

P3=0
P4=0
DO 5532 A=l,4
IFLIJ{A).EQ.LL1)P3=MA(A)

5532 IF(IJ(A).EQ.12)P4=MA(A)
IF{P4.LT.P3)G0 TO 554

5544 CONTINUE
IF(HH.EQ.CN{A2))GO TD 690
GO TO 554

5545 CONTINUE
IF{Z7.EQe21 «ORe2Z.EQ.22)2ZZ=MINO(CNIA3),CN(A%))
IF{Z2.EQe210ReZZEQea22)Z=MAXOICNIA3) 4CNI(AL))
IF(HHEQol 9o0ReHHoEQe20 JHH=MINO(CN(AL) ,CN{A2))
IF(HH.EQel9e0ReHHo EGo20 )H=MAXO(CN(AL) yCN(A2))
IF(ZZ.EQeCN(A%4) s ANDoZ NEL.HCC{A3))GO TO 690

IF(2Z2.EQeHCC{A4) e ANDoZe EQeHCCIA3) cANDeHHoEQ-CN{A2))GO TO 690

554 CC(A1)=CN(A2)
IF(CC(AL).EQ.HCCLA2))CC(AL)=HCC(AL)
CC(A2)=CN(AL)
IF(CC(A2)EQ.HCC(AL))ICCLA2)=HCC(A2)
CC(A3)=CN(A4) s
IF(CC(A3).EQ.HCC{A4))CC(A3)=HCC(A3)
CCLA4)=CN(A3)
IF(CC(A4).EQ.HCC(A3))ICC(A4)=HCC(A4)
DO 560 A=1l,4
PS(A)=0
IF(TIJ(A).EQ.0)GO TO 557
DO 555 B=ASTA,ASTO

555 IF(IJ(A).EQ.CN(B)IPS(A)=MA(1+ASTU*(2-Q) *4-B)
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564
568

570
590

620
630
690
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CCNTINUE

P(A)=0

IF{Q.EQ.1)GO TO 590

DO 568 A=5,8

DO 564 B=1y4

IF(CN(A).EQ.HCC(B))IP(B)=A

CONTINUE

L0 570 A=1l,4

IF(P(A) NE-O)ICC(P(A) )=CCH(A)

M=M*xPHX

DO 620 A=1,4

TF(PS(A) NELOIIJ(AI=CCIPS(A))

CONTINUE

Q=C-1

ASTA=5

AST0=8

Al=5

A2=6

A3=7

A4=8

PHX=XXHP*Q

IF{PHX.NE.O)GO TGO 530

RETURN

END

SUBROUT INE PUNWRT (W, IS, WIS,0ONTUQ)
ROUTINE TO PRINT AND WRITE THE FORMULAS ON TAPE.

IMPLICIT INTEGER({A-H,0J-2)

REAL*8 DEL(2¢4)ETIMSyVTIMS PREF,PRMe NUMy EHOLD(200) yVHOLD(300)
REAL ENG(22)

COMMCN/PRINCE/ON(23)
COMMCN/REGAN/IT s TAPEgCToICCoCTToMSTO,ICHG

COMMCN/CASCA/ZIDX

COMMCN/GOBBO/NTU(S) sMTU(5)

CCMMCN/TUBAL/NEN(5) ¢ NEMM(5)

CCMMCN/JULIET/HCK yHHCK s PCK 9PPCK
COMMCN/EDMUND/PREF ¢yNMUST 9 ICsCLRyRLT(5) 9 LRIJK(Z56),0(36) 3SN(5)
CCMMCN/OSRIC/VTIIMS(5¢300)9V(5930094)9C{59300,429VD(59300,%)
CCMMCN/CLOWN/ZETIMS(5,200) sENI54200,2),EC{5,200,8),E£D(5,200,4%)
DIMENSION DUMMY (12),IDTYPIS)PRTY(2,4),TYP{4),83(4)

DATA CUMMY/0409090+05050,050,0,0,0/

DATA DEL/® LT 9 'W(PL=P2) %, C3¢D{HL-H2)",°*
? "y, 'DI{PL-P2) ", *D(HL-H2) "/

DATA ENG/® H1l=9,0 H2-0,? g S9! 0, 0yt 0.8 ®y
20 Pl=t,8 p2-u 0 0,0 0, 0o, 0, 1,0 0,0 v,

? %,'H3 % ,'H4 e ,'p3 s,0p4s 0/
DATA IDTYP/1,8,189841/

DATA TYP/1,299,10/

IT=0

DUMMY(1)=IC

DUMMY {2} =CT

DUMMY(3)=ICC
IF(CLR.NE-3)DUMMY(3)=0

DUMMY (4)=CTT

IDSTC=0

DUN=C

NUN=0,.D0

DC 500 I=IS,KIS
IF(I.EQeS s ANDoIDX2EQ.0)GO TO 490
KK=0

KKK=0C

KSTA=1

KKSTA=1



15

16

18
19

20

30
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NUN=NEN(T)

IF{CNTO.EQ.2)NUN=0

G=0

IF(NUNL.EQ.Q0)GO TO 30

DO 20 K= 1,NUN

IF(DABSIETIMS(I K))elTeleD~5 JETIMS{IK)=0.D0
IF{ETIMS{IK)eEQe0.DOIGO TO 19

IF{ICX.EQ.0)GO TO 15

EC1=EC(IyK,1)

EC2=EC(14K,42)

IF(HCKeNEeOeANDo (ECLloEQe26 ANDEC2eEQel eORECLEQa20.ANDeEC2.EQe1l9)
?2)G0 T1C 18

IFIHCKeLTeOeANDeECLleNEcOoANDeECLaNEe23 cAND.ECL.EQ.EC2)GO TO 18
FCI=EC(I,K,3)

EC2=EC(I,K,4)

TF(PCKeNEcDeAND o {ECLeEQelOeANDEC2:EQeF eOReECLeEN22.ANDeEC2.EQa21
?2))G0 10 18
IF{PCKolLTo0oANDECLoNEosOcANDECLeNE.23sAND.ECL.EQ.ELCR2)GO TO 18
CONTINUE

IF{FFCKeEQeOo AND.PPCK.EQ.0)GO TO 19

ECL=EC(I+K,y5)

EC2=EC(I4K,2)

IF(HHCK.EQ.0)G3 TO 16

IF(ECLoEQe4 e ANDeECLloEQe3ANDHCK.NE.Q)GO TO 18

IF{ICXeNEeOeANDe (ECLeEQe2e ANDoEC26EQeleOReECL-EQe20ANDEC2+EQel9)
?2)GC 1C 18

IFLIOXeNEe O ANDe HHCK o LT e 0o ANDECLeNEe O e ANDcECLoNE23 . AND-EC1.EQ.EC
?22)G0 TO 18

CCANTINUE

IF{PPCK.EQ.0)GO TO 19

EC1=EC(I,K,7)

EC2=EC(14K,8)

IF(PCKeNEeUeANDECLl.EQ.12.AND.EC2.EQe11)GO TO 18
IF{ICXeNEeOeAND{ECLoEQolOeANDEC2eEQeFeURcECLaEQe22sAND.EC2.EQs21
?2))G0 10 18

IF{TICXeNEeOAND o PPCKoLTo0ocANDe ECleNE e Oc ANDe ECLloNEe23.AND.EC1.EQ.EC
?2)G0 T0O 18

GO 10 19

ETIMS{I,K)=0.D0

CONTINUE 3

EHOLOD(K)=ETIMS{I,K)

IFCETIMS(I4K)eNE+D.0)G=1

IF(G.EQeO0)NUN=G

CONTINUE

MEW=NTU(T1)

IF{ONT0.EQ. L) MEW=0

G=0

IF{ME®.EQ.,0)GO TO 50

DO 4C K=1,MEW

IF(DABS(VTIMS(I¢4K))alToleD-5 I)VTIMS{IoK)=0.D0
IF(IDX.EQeQeORVTIMSL{I,K)EQe0)GO TQ 39

EC1=ClI,K,1)

EC2=C{I,K,2)

IF(HCKeNEeOaAND e (ECLleEQe2e ANDeEC2eEQeleORECL.EQe20.ANDEC2+EQ.19)
?)GC TC 38 ’

IF{HCK.LTs0sANDECLeNEoOsANDsECL eNEo23sANDECL.EQ.EC2)GO TO 38
EC1=C(IsK,3)

EC2=C(I'Kp4)
IF{PCKoNEoOoANDe{ECLoEQ010oANDEC2+EQe9eURECLoEQe22.ANDEL2,EQ421
?))G0 TO 38

IF(PCKLTo0oANDECLloNEoOcANDECL1oNE<23.AND.ECL. EQ.EC2)GO TO 38
GO TO 39



38
39
40

50

5000

5010

5020
5030

51

5110
5120

52

54

56

58
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VIIMS{I,K)=0.D0

VHOLDI(K)=VTIMSII,K)

IFIDABS(VTIMS(I4K))eNE-0.0)G=1

IF(G.EQ.Q0IMENW=G

CCNTINUE

IF(NUNeEQeOs ANDeMEW.EQ-0)GO TO 490
IF(ICXeNEL.O)IDSTA=IDTYP(I)
IF(ICXeEQeO)WRITE(Ws2000){LEL(Jy1)yJd=1,2)

DO 450 ID=1,1DSTOQ

IF(ICX.EQ.J)1GO TO 51

IF(KSTA.GT « NUN)KK=0
IF(KSTAGEQeOoUR eNUNsEQe 0a DR KSTA.GT.NUN)IGO TO 100
00 5000 K=KSTA,NUN

KK=K

IF(ETIMS(IsK)eNE.0Q-DO)GO TO 5010

CONTINUE

KK=0

CONTINUE

KSTA=KK

IF(KK.EQ.0)GO TO 100

JJ=0

DC 5030 K=1,4

BBIK)=ED(I KKyK)

IF(BBIK).EQ.0)GO TO 5020

Jd=JdJ+l

PRTY(1,JJ)=TYP(K)

PRTY(2,J4)=B8B(K)

CCNTINUE

CONTINUE
IF{JJIeNEOIWRITE(Wo2100) (ENGIPRTY(LsJd) sENGIPRTY(2,J)) 9d=19JdJ)
FLAG=~(1%*2-1)

IT=17T+1
IF(ONTO.GT2)WRITE(TAPE)FLAG,NUM, {DUMMY (K)9K=1,512)
IF(CNT0eGTo2 ANDoIDXeNEOIWRITE(TAPE) IPRTY{19J)oPRTY(29d)9d=1,dJ)
DO 70 K=KSTA,NUN

PRM=ETIMS(I,K)

IF{PRM.EQ.0.D0)GO TO 60

IF(ICX.EQ.0IGD TY 5120

CC 5110 L=1+4

TF{BB(L) «NELED(IsK5L))GO TO 60

CONTINUE

SIN=EN(I¢Kyl)

SSIN=EN{I,K,2)

FTE=2

IF{SIN.EQ.0) FTH=0

IF(SINGNE«OoANDoSSINNE.Q)FTH=1

IF{FTH=-1)52,54,56

IF(ICEQeO)WRITE(W,2060)PKM
IF{ICeNEcOAND.CLReNEe3)WRITE L We2070) PRMy (UNCECLI 4KyL)) yL=194)
IF(CLR.EQe3)WRITE(Wo2075)PRMe {ON(ECII KoL ))pL=1,8)
GO TO 58
TF(IC.EQ.OIWRITE(W,2080)PIMyON(SIN) ON(SSIN)
IF{ICoNEe O ANDeCLReNE 3 )WRITE(W2090)PRKMe ON(SIN) yON{SSIN), (ON{EC(I

?9sKeL)dyl=1,4)

IF(CLR.EQ.3)NRITE(Hy2095)dRM.ON(SIN).ON(SSIN).(DN(EC(I.K.L)!pL=1'8

?)

GO TO 58
IF(IC.EQ.OIWRITE(Wy2010)PRM,ON{SIN)
IF(ICeNEcO.ANDeCLRoNES3)WRITE(W,2020)PRMy ONISIN) » (IN(EC(IoK,oL))oL=

?1,4)

IF(CLREQ.3IWRITE(Ws2025)PRMyUN(SIN) ¢ {ON{EC(IsK,L) ) oL=1,8)
CONTINUE



60
70

100

150

160

170
180

220

230
250

260
270

400
450
455

460
470

480
490
500

IF(CNTOeGTe2)WRITE(TAPEILUMsPRMySINy SSINyDUM;DUMy(EC(I 3 KoL) sL=1,8)
ETIMS(I+,K)=0.D0

CCNTINUE

CCNT INUE

KSTA=KK+1

CCNT INUE

IF(MEW.EQ.0)GO TO 400

IT=1T7+1

FLAG=-(1%*2)

IF{CNTO.GT.2) WRITE(TAPE)FLAG,NUM, (DUMMY {K)sK=1,12)
IF(KKeNEeQeORIDXoEQa0)GG TO 220

IF{KKSTA.GT .MEW)GO TO 455

DO 150 K=KKSTA,MEW

KK K=K

IF(VTIMS(I+K)eNE-O.DOIGO TO 160

CCNTINUE

GO TO 455

CONTINUE

KKSTA=KKK

JJ=0

D0 180 K=194

BBIK)=VD(I,KKK,K)

IF(BB(K).EQ.0)GO TO 170

Jd=JJ+l

PRTIY(1,JJ4)=TYP(K)

PRTY(2,JJ)=88(K)

CCNTINUE

CONT INUE
IF{JINEOIWRITE(W,2100)(ENGIPRTY(1+J))sENGIPRTY(2,J))9J=19JJ)
[F(CNT0eGT o2 ANDo IDXeNEO)WRITE(TAPE) (PRTY(LyJ)yPRTY{2,J)9d=14dJ)
DO 270 X=KKSTA,MEW

PRM=VTIMS(I,K)

IF(PRM.EQ.0.D0)GO TO 260

IF(ICX.EQ.0)GO TO 250

DO 230 L=1,4

IF(BBI(L)NE.VD(I,KyL))GO TO 260

CCNTINUE

CCNTINUE

IF(ICEQeO)WRITEIW,2030)PRMy IONIVII sKol))ol=154)
IF(ICNESOIWRITE(W 2040 )PRMy LUNIVII sKoL))sL=194) o (ONC(CUI,KoL)DpL=1

?94)

IF(ONTOLGT2)WRITE(TAPE)DUM yPRMyUIVET o KyL) ol =194d o (CUIsKoLdpL=1y4)

?90UMy DUMe DUM, DUM

VIIMS(I,K)=0.D0
CCNTINUE

CONTINUE
IF(KKKe NEoO) KKSTA=KKK#1
CONTINUE

CCNTINUE

CCNTINUE

IFI{NUN.EQ.0IGO TO 470
DO 460 K=1,NUN
ETIMSI{I,K)=EHOLD{(K)
CONT INUE

IF{MEW.EQ.0)GO TO 490
DO 480 K=1,MEW
VTIMS(I¢K)=VHOLD(K)
CONTINUE

CONTINUE

FLAG= -9-1/2%%[T
IF(ONTOLGT2)WRITE(TAPE)FLAGyNUM, (DUMMY (K} 9K=1512)
WRITE (W, 2000)



RE TURN
2000 FORMAT(1HQ,2A8)
2010 FORMAT(LH 420X3F128¢3Xs"E(®A4%,%)¢)
2020 FORMAT(LIH 420X)FLl2e893Xe"E(® 9AG" )¢ 43X 'C{ " 3A4e3("y",A4),%)")
2025 FORMAT({1H s20XoF12e893X s E("9A%y? )0 32{3XyCl sA4y3{%,%3A4),%)?%))
2030 FORMAT(LH 340XsFLl2e893 X" V(% 3A%,3(%,793A4),%)%)
2040 FORMAT(LIH ,40XyFLl2e893Xs V(' gA%,3(" 3% 3A%),%)°" 43Xe'CLO9A4,3(%9%,A4
2),9)%) N
206C FORMAT(1H ,10X,F12.8)
2070 FORMAT(1H s10X9F12e833Xy°Cl®3A493(0,9,A4),)")
2075 FORMAT(LH ¢l0XsF12e893X s Cl%3A%93( %) "3A4)s% )" 93Xy Ll 9A%+3{%9%9A%)
?2:%)0)
2080 FORMAT(1H 330XyFLl2e893Xy T " yA%4,y 3% ,A4,%)")
2090 FORMAT{(LH 330XsFLl2e893Xe®TU93A%%,% ;A% )%33Xs2Cl"3A%93(%,%,A4),")
20)
2095 FORMAT(LH 930X9F1l2e893X s T{03A%9" % gA%r ) "33X9 'CUP3A%4,3(%5,A4),°)
2V 93Xy 9C( " gA493( 9" 4A%),%)0)
2100 FORMAT(1HO0y4(A%yA%))
END
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PROPOSITIONS
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PROPOSITION I
Abstract

Rowe's first open shell equations of motion method is applied to
atoms and molecules with a few large ground state correlation coeffi-
cients., Explicitly including these correlation coefficients incorporates
some effects that are present in the equations of motion method including
double excitation mixing, EOM((1p-1h) + (2p-2h)). In the multiconfigura-
tion random phase approximation (MCRPA) excitation energies and transition
moments are expected to be better than ordinary RPA calculations. The
triplet instability problem for low-lying states should be less important.
In addition, multiconfiguration equations of motion methods can be used
for cases where ordinary EOM methods break down, e.g., H2 at large

internuclear distances.
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Proposition I. The Multiconfiguration Random Phase Approximation

(MCRPA).

The equations of motion method]’2 has been successfully applied
to the calculation of the excitation energies and transition moments
for atoms and molecules which can be well described by a restricted
Hartree-Fock SCF ground state.3 The equations of motion method is a
conceptually and computationally simple method which is used to calcu-
late directly quantities of physical interest. The resulting amplitudes
and energies can be used to calculate transition moments between

excited states,4’5 two-photon emission probabi]ities,4

photoionization
cross sections from both ground6 and metastable states? Born inelastic
electron-molecule scattering cross sections,7 and optical potentials
for electron molecule scattering.8

Even though computational costs for an equations of motion calcu-
lation are usually not large for diatomic or small polyatomic molecules,
for larger molecules and more flexible basis sets the computer costs
become significant for higher order calculations, e.g., the equations
of motion method including double excitation mixing (EOM (1p-1h) +
(2p—2h))2. Lower order calculations, the Random Phase Approximation
(RPA), while cheaper, can result in inconsistent experimental agreement
for transition energies. In addition, RPA calculations can yield
imaginary excitation energies or instabilities which imply for closed

shell ground states that a state of energy lower than the calculated HF

ground state, possibly of broken symmetry, exists.9
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For many atoms and molecules the ground state is not well des-
cribed by a simple single determinant SCF calculation, but have two or
more configurations which are important, e.g., the doubly excited

™+ m* configuration in éthy1ene.]O

Many molecules cannot be des-
cribed by an HF SCF calculation on dissociation but require a mixing
of several configurations, e.qg., H2 ]

Recently Rowe]]

proposed an open shell method for nuclei which
can be applied in a straightforward manner to atoms and molecules.
This method involves a small configuration interaction calculation to
determine configuration coefficients and occupation numbers for the
ground state. The limited CI ground state is used in an equations of
motion calculation. Thus there may be both excitations to and exci-
tations from certain hole and particle orbitals.

With a multiconfiguration ground state one can achieve better
agreements for both transition energies and moments at a low level
approximation, i.e., the multiconfiguration random phase approximation
(MCRPA) , with the diagonalization of relatively small matrices.
Thus computer times may be significantly reduced. Moreover, the
instability prob]em\shou]d not be as severe and Tow lying triplet state
excitation energies should be easily determined for HF closed shell
ground states without going to higher orders. Systems which require a
multiconfigurational approach like H, on dissociation which cannot be
calculated using more traditional EOM methods can be handled simply in
the multiconfiguration equations of motion (MCEOM). Thus the MCEOM is
a powerful extension of current molecular equations of motion proce-

dures.
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I propose developing Rowe's first open shell procedure for atoms
and molecules. In the remainder of this proposition the equations will
be examined and discussed. A1l formulas can be easily derived by use

of formula generating progr‘ams.]0

For simplicity the discussion will
be restricted to atoms and molecules which in a Hartree-Fock molecular
orbital scheme have a closed she]lgrdund state and have only two impor-
tant ground state configurations, the Hartree-Fock state and a doubly
excited configuration. Extensions to different multiconfigurational
ground states including configurations from a CI calculation on an open
shell HF ground state are straightforward. Also, only the multiconfig-
uration TDA and RPA are discussed in detail. Multiconfiguration higher
RPA and multiconfiguration EOM ((1p-1h) + (2p-2h)) are obvious exten-
sions. The resultant equations can be used in several calculations
including ethylene at ground state experimental geometry and N2 at
large internuclear distances.

Consider an atom or molecule with a ground state which is well

described as

10> = NO(K]I(c]osed shell)nanB> + Kzl(closed shell)papB>) (I-1)

where

TN — (1-2)

and K] and K2 are correlation coefficients. A Hartree-Fock SCF cal-
culation is performed on the first configuration on the right hand side
of (1) and 2x2 configuration interaction calculation is done to obtain
K] and K2 . Throughout this proposition lower case Greek letters are

orbitals occupied in the single determinant SCF calculation; m,n,p,q,---



-232-
are virtual or unoccupied orpitals in the SCF calculation; and i,j,k,%

are either occupied or unoccupied orbitals. In this case the secular

matrix to be diagonalized 1512
- AE Kpn
(I-3)
- + + + - -
Kpn 2€p Zen Jrm Jpp 2Kpn 4Jpn AE

where all the orbital energies, and coulomb and exchange integrals are
obtained from the SCF calculation. AE 1is the correlation energy. An

example of this is ethylene. Dunm'ng]O

using a minimum basis set of
Slater functions calculates K] to be 0.968805 and Ko to be -0.247825
where K] is the coefficient of the HF ground state and K2 is the
coefficient of the configuration where the w orbital is replaced by
the ™ orbital.

An operator 0; when acting on the ground state |0> generates
an excited state |A> . The conjugate operator OA acting on |0>

3

gives 0 . From these two conditions Rowe® has shown that

<0} [80,,H,0]7]0> = w, <0[[50,,0]7]0> (1-4)
where the symmetric double commutator is defined

2[A,B,CJ = [[ASB]SC] + [A,[B’C]] (I‘S)

Equation (I-4) is exact. There are two approximations that can be made
to solve (I-4).

The ground state |0> 1is replaced by some approximate state.
The use of the symmetric double commutator on the left of Eq. (I-4)

and the commutator on the right assure that the resulting equations
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will be of Tower particle-hole rank than if fewer commutators had been
used. Thus the resulting energies will be relatively insensitive to
the choice of ground state. In the cases of MCTDA and MCRPA, ground

state (I-1) is chosen.

The second approximation is the form of OI . As for ordinary
closed shell ground state TDA and RPA, OI is constructed of linear
combinations of one-body p-h excitation operators. However, because
the ground state is (I-1) certain orbitals have both excitations from
them and excitations to them. Figure 1 illustrates this. OI for

singlet states is written

+
A

1
.1.
<O|[CPH(O ) CPH
¥ ; : 1/2 (Yn n 0): ny n
n#p <0J[C_ (00),CT (00)1]0> L vy
ny ny
Y#n

0,(00) = Y C_(00)-z_ C_(00))

OO ]|0>1/2 ( Pn pn Pﬂ Pn

+ ] ‘ 77 (Yo Coy (00) = 7, C (00))

YA <0] ¢, (00), ch (00)]]0> PY"PY WP

1
+
n;p <0|[C,, (00), c* (00)7|0>

72 (YnnCnn(OO) - Znn nn(OO))

1 +
* (v_c' (00) - z_C_(00))
n;P <0| [Cp(00), c*p (00)7|0>'/2 * nP7np np-np

1
an <0|[cnY(oo),c:Y(00)]|0>

. .
172 (VoS (00) = 24 €, (000) (1-6)

where C?j(OO) is a one-body tensor operator.



i

Figure 1.

Possible single excitations for
NO(K][(c1osed shell)nanB> + Kzl(closed she11)popp>)
ground state.
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t =
C]J(OO) - 72_ (c'iOLCjOL + C'IB CJB) (1—7)
Cij(bﬁ) = C.ij(OO) (1-8)

.

np =K
(I-9)

2

n, = Ky

oty 1 t i 1 e
OO = U (o 72 (@) = T2 Cpn (00))

Y (Yo Gy (00) - 2, € (00))

1 A
+ (Y c, (00) -2 —— C_(00))
n;p nn n}/? nn nn n}/2 nn
) (Yop "T%?'CIP(OO) Znp _T%?'Cnp(ﬁTy))
n#p n,
T ]
+ ) (Y 177 €,y (00) - Z 777 Copy (00))

A similar equation exists for the triplet manifold.
Use of (I-6) or (I-10) in (I-4) gives matrix equations in RPA or

time dependent Hartree-Fock form

(52 () -a() o

o =
P> o
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where A is Hermitian and B is symmetric.

A olf i) :
> . = <
9K 0l 1e4(00) 6] (00) 10>
.f‘
C,,(00)
ke 7 110> (1-12)

<0[[C,,(00),C,,(00)1]0>

C..(00)
Bij,ke = ~<0IL - st s

<0|[¢;3(00),¢15(00) 70>/

iy, (00)
<0/ [y, (00 ,Cf, (00) 105172

110> (1-13)

(I-6), (I-10), and (I-12) differ from ordinary closed shell
ground state RPA operators and equations by the presence of terms such as

. and ——~—J—~—T7§-. By choosing O+ as in
)

<0/[¢4;(00),¢}5(00)7]0>1/2 (n- 1, :

Eq. (I-6), Eq. (I-11) results. Thus only slight modifications need to
be made in standard RPA programs. Without the inclusion of the denom-
inators in (I-6) a matrix equation of a more complicated form than (I-11)
is obtained and hence more difficult methods are required to obtain
energies and amplitudes.

Q and § for the MCRPA cannot be written in one form in terms of
orbital energies and interaction matrix elements. In (I-12) and (I-13) the
formula depends on the indices 1i,j,k,2 . The formulas can easily be

derived by means of formula writing programs.14
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Consider now the ordinary closed shell Tamm Dancoff Approxima-

tion for the same system. 0> s replaced by the Hartree-Fock ground
state |HF> and OITDA is
+TDA -
OA (00) = EY YnchY(OO) (I-14)

In the MCTDA all Z amplitudes except Z_ in (I-10) are zero. From

P
examining Fig. 1 in the MCTDA and hence MCRPA, we are explicitly in-
cluding excitations from a correlated state and certain double excita-
tions from the HF single determinant state. In the ordinary TDA all
excitations in Fig. (1) from the K] configuration are allowed. The K,
configuration in (a) corresponds to a deexcitation from a correlated
ground state, and in (b), (e), and (f) to excitation from a correlated
ground state. In (b) the K2 configuration is a triple excitation from
the Hartree-Fock ground state and in (e) and (f) a double excitation.
Performing an MCTDA or MCRPA calculation corresponds to explicitly cal-
culating and including the K, correlation coefficient. (a) and (b)

1 (e) and (f)

include certain higher random phase approximation effects.
explicitly account for certain ordinary double excitation mixing. Hence,
performing an MCRPA calculation includes some of the effects of the
EOM((1p-1h) + (2p-2h)). However, computationally MCRPA calculations are
much smaller and less time consuming.

EOM((1p-1h) + (2p-2h)) results are usually in excellent agreement
with experiment.3 By including certain of the more important ordinary

higher RPA and double excitation mixing effects in the MCRPA the triplet

instability problem should be reduced and good agreement with experiment
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should result at a Tow level of approximation.

Transition moments may be obtained from

Wy, = <0|[0,,H]|0> (1I-15)

where ﬁ is defined

=>
1

Z' VZ Tijcij(OO)
iy (1-16)

Tij

<ilT]5>

Replacing OA by the Hermitian conjugate of (I-10) yields

=
1]

1/2
/?'{(n]- no,) (an + an)wpn

+ (Y + 7 W
n;p ny ny’ ny
Y#n

1/2
Y;n (1-n7) S (Y + Zp W

oA

+

pY

-+

L ny/% (v Moy + I on/2 (v 2

+ 7
n
n#p

nn n

-+

172
Y;n L n2) (YnY * va)wny (1-17)

For problems in which traditional EOM methods break down because
all correlation coefficients are not small, MCEOM methods can be used,
e.g., the potential curves of excited states of many molecules at large
internuclear distances. Schemes in higher order than the MCRPA can be
employed if necessary. In the MCHRPA all correlation coefficients except
for K] and K2 in Eq. (I-1) are determined by Rayleigh Schrodinger
perturbation theory or iteratively and hence are assumed small. For

the MCEOM ((1p-1h) + (2p-2h)) in addition to the MCHRPA correlation
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coefficients double excitation corrections to OI are included in a

perturbative-Tike scheme.2

In this case double excitation operators
may include excitations both to and from orbitals n and p .

In this proposition multiconfiguration equation of motion methods
have been developed to the extent that only small modifications to
existing formula writing and EOM programs are required. The MCRPA
matrix equations, (I-11), are of the same form as RPA equations. The
MCRPA incorporates certain ordinary HRPA and double excitation effectsin a
straightforward manner. At this low level approximation oscillator
strengths and transition energies should be obtained in good experimen-
tal agreement at computer costs considerably less than higher order
EOM schemes. Furthermore, instability problems should be reduced.
Higher order multiconfiguration methods can be easily developed and
may be useful for molecules at large internuclear distances. The

MCEOM energies and vectors can be used as a discrete representation of

the continuum and in other ways similar to EOM energies and amplitudes.
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PROPOSITION II

An Examination of Oscillation Strengths in the Equations
of Motion Method

Abstract

The Tength, velocity, and mixed forms of the oscillator strength
in molecules are equa]‘in the Random Phase Approximation (RPA). The
three forms are shown to be equal through first order in the Higher
Random Phase Approximation (HRPA or EOM (1p-1h)), and through second
order the differences are expected to be small. It is proposed to
make a numerical study of the three forms in the HRPA and to investi-
gate the oscillator strength in the Equations-of-Motion including

Double Excitation Mixing.
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The strength of an electronic transition in atoms and molecules
is proportional to the oscillator strength f of that transition. For
fairly strong transitions f 1is approximately one. Recently the Random

Phase Approximation has been utilized to calculate matrix elements for

1 2

use in determining photoionization cross sections in atoms and molecules.
Thus it is important to be able to accurately and easily calculate
dipole moment matrix elements. |

Chandraskhar3 in 1945 explained that the use of the variational
principle to determine wave functions resulted with "...a good approxi-
mation to the wave function only in that it yields a good approximation

to the wave function in a region giving the main contribution to the

energy integral, whereas other regions are important in the transition

integra]."4 That is, in the dipole length formulation
#r) 2 2y Jao)Fe)? (11-1)
o\ 3 "o

oA
¥ is the total electronic position operator, large radial distances are

where f(r) is the oscillator strength for the transition 0 - X , and

emphasized, while in the other formulations

f(()r;\]) = %(|<0|fﬁ|)\>l2/w)\o) (I1-2)

A

where m is the total electronic momentum operator and

£mr) = 2 Dyp<o[#|r - <ali]o> (11-3)

A

<O[m|A> « <A|¥]0>]

5

different regions of space are stressed. In fact, Hansen™ has shown
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that an expression similar to (II-3) yields consistent results when

comparisons are made between Hartree-Fock and "correlated" wave func-
tions. That is, although for an exact wave function identities exist
between (II-1), (I1I-2), and (II-3), for the Hartree-Fock wave function
no equalities exist. In practice, use of a finite basis set expansion
to approximate the Hartree-Fock ground and excited states can only make
matters worse.

Independently, Harris® and Amus 'ya gg_gl,z showed that while the
Hartree-Fock wave functions can never yield consistent oscillator
strengths and hence photoionization cross section among expressions
(IT-1) - (I1-3), the Random Phase Approximation will. Perhaps somewhat
exuberantly the author of a text on photoionization processes states
that the "...degree of agreement between the three forms (of oscillator
strengths) is often taken as a measure of the exactness of the wave
function emp1oyed."6 It is the purpose of this proposition to investi-
gate the various forms of the Equations-of-Motion (EQM) to higher order
than the RPA (the HRPA), to show that the three forms (II-1) - (II-3)
are equivalent through first order ferms, to propose that a numerical
study be made of the three forms in HRPA, and to propose a similar
investigation including double excitations in the EOM.

Consider the Random Phase Approximation (RPA) and the Higher
Random Phase Approximation (HRPA). In the latter form of the Equations-

of-Motion the operator 01 remains the same as in the RPA, namely,

07(SM) = § [Y_(AS)C' (SM)
K L " (11-4)

- sz(xS) CmY(—S_M)]
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where for convenience spatial symmetry is ignored. However, when
matrix elements are evaluated the Hartree-Fock ground state |HF> is

replaced by a better approximation to the ground state

|0> = NJLIHF> + [%>]

| (11-5)
<X|HF> = 0
where X 1is the correlation wave function for the ground state.7 In
either approximation, the transition amplitude is given by
<0[Fx> = <o|[f,01]0> (11-6)

where T 1is any one-electron operator. Substituting (II-4) into (II-6)

yields
OIT|n = vZ ) T.. <0|[ct.(00), Y (as)ch (sm) (11-7)
71 I Tig OITC3;(00), ¥y, ()6
ny
- Iy, (A8)C, (S]] 0>
=v7%Y(RmmWUO)+Tm)Zm#AM)p“) (11-8)
\V
- /7'%Y (T Yy (20) + T 70 (20)) op
n
where
pis = /§'<o|c;j(00)|0> (11-9)
and
Ty = <i|T]3> (11-10)
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the one-body operator closed with two states which span the space of
interest (usually the Hartree-Fock single-particle states). Notice
that the order of writing subscripts is important on the T's since all
one-body operators will not be real.

N

Now if the total electronic momentum operator m is substituted

for ? .
<lmra> =vZ 7 m (Y (X0) - Z_ (A0))
ry ymemy my Pyv
v (I1-11)
-
-vZ ] om (Yo (A0) - Z, (A0)) opy
my
n
where the following property of the m operator has been used
-> >
= - 11-
- Moy (I1-12)
Harm‘s5 derives the following relationship
-> _ > + . > _ T
My (wpv/1)rvp (]/1)§q qu(qupV Vqup) (I1-13)
> > . . _
Note that rvp = rpv . In the Random Phase Approximation, va = Svy’
P = 0, and from
B
L Dy () Yo 0) + By 1g(S) 24,0907
=w(rs)y 0 ns (AS)
ns(r) "™ s !
*
Ly Wiy (V2s 08 * B s (81 45)

= -w(ATS) ) : mv nsZns(AS) (11-14)
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we obtain

w, Y + 3 [(2v v )

Ay = Py iy b msyn = Vmeny! Yns (11-15)

* (vanya B anay) Znsd

-wy L = [(2v

0= Oy oy gé noyn -V (11-16)

m6ny) Zn6

- (2v v

mnY$S mnéY) Yné]

Substitution of (II-13), (II-14), and (II-15) into equation (II-11) re-
sults with

~

<O|$|A> =

A

i |
= <0[F[x> (11-17)

making the three forms of the oscillator strength be equal. This is
simply the result derived by Harris.

Now equation (II-11) will be extended to the HRPA. From the HRPA

equations8
= (2) . (2)
Yy Yy O Yy ¥ 0y gg S Pys Yns = gé Prn ys i
B gé(zvméyn- vm6ny) Yos - ; (vanyd' an@y) s

1 (2) 1 (2) 1
*2 g YoyPmn Ty 2 g “nyPmn iy T §'§ Dy Vs Pys
1 y (2)
-y Y =) S T Y ) 7
2 $ vy& “m§ ‘mé ns Y6 “mn né ng mn YS§ né
-y s 1 =Y X .7 i
fs MmN ms T pg fmy,ndTng (11-18)



where

-249-

= -V
memy s méyn many n6 Z (zvmnya mndy)

+ Z + (2) - (2)
Ry nry “ gd 6mnpycs chS “X z 5y6 Pmn Zn6
1 (2)_1 (2)
+ -
% Sysl T~ 2 “my Pmn " 7 Cny Pin 3 Zns
i o] o(2)_ 1 (2)
ES Sl Ty =74 my Pys ~ 7 “ms Pys 1 Zng
+.
Z Smy,ns Tns * %6 Xmy.ne Yng
_ 20 1 (2
Amy,n6 Amy ns(o) * 6ycSUmn ?'(8 d €n” Zey) pmn)]

1
Tys = 2(2eq- e, " €s) P ﬁg)]

B = B2
my,ns - Biyans (@) ¥ Siyons T Xmy,ns(0)
A%Y’nd(o) = matrix element of RPA above
B%Y,nﬁ(o) = matrix element of RPA above
S = - )
my ,né gu Vinssp Couuny (@) * Ynyp Cpumy (0}
'| *
T =
mn 2 qgv {quuv Cnu,q\)(o) ¥ Vuvnq Cmu,qv(o)}

P | v =
vz I | payv Cps,pu(0) ¥ Véqucpv,qv(o)}

X -_
my,né(o) ) Vuvyﬁcmu,nv(o) ' gq anPqCPYsQS(O)
- v

2 { mupSCpY,nu(O) ¥ V"UDY Cpﬁ,mu(g)}

Pu

(I1-19)

(11-20)
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Substitution of (II.18) and (II-19) into (II-11) and dropping all terms

quadratic and higher in the correlation coefficients except terms of

2
the type wijc

results with

to yield a consistent order in perturbation theory

~

=* wx ~
<0[m|x> = = <0|¥|A> + 0.T. (11-21)
where
5 (1 > (2)
0.T. =vVZ () ) r_[(w J§ 8 p3" Y
1 My my-=*"A ns mn Y§ 'né

(2) 4] (2)
0, 26 éyﬁ P’ Yns ?'26 “my Pmn Vs éyé

1 (2) (2)
2’;6 “né Pmn 6y6Yn6 2‘26 Sin® my Yhs Pys

+

(2)
Z'ga Yns Pys- Tns Smn " gd 8vs Tmn Yns

+) 8 T Y -] S Z -1 X 4
s mn “y8 né ns my,né nd s my,ndné

+

o, Z 5 (2) 7 2) ; o

mn Pys “ns T “a §5 6y6 P Ins b yé[Tmn

_ ] (2) _1 (2) 1 (2)
2 “ms Pin T 7 “ny Pmn 1 Zng za dmn[Tys "2 %my Pys

- (2) + Y +
7 Uns Pys 1 Zns Ea Sty ,né'ns 25

X (11-22)

my,néYné]

A11 of (II-22) are second order terms and hence are likely to be small.
Now if w, Y and w}\Zn(S are replaced by their values in (1I-18)
and (II-19) and higher order terms dropped, all expressions involving

w's in (II-22) cancel, provided



ol we S (2) y (11-23)
n

>
r w8 o2 Y = T (2) Y
%Y my 55 né mnpyd ng % rmy 26 “my P

9

In addition, from calculations on N2 and CO” the X terms are small

and can be ignored. The terms remaining

*

T.R., = /2_( {2' z mY mqu\)cnu,q\) B Vu\)nquU,Q\)

)

mny
1 o = %
i " \

Z'ng “iny Yooy Cos ,av * VoupaCpy,qv

mys

>
N pé iy mspCouny + VieypCpu,ms)t (Yns = Zng)  (11-24)

né ,my

do not in general cancel. However, the relatively good agreement be-
tween theoretical predictions based on the length formulation and exper-
iment indicate that the effects are probably small. It would be inter-
esting to evaluate the magnitude of these terms.

The methodology for including double excitation theory in order
to compare forms (I-1) - (I-3) is exactly the same. It can easily be
shown that the additional effects will be proportional to Y(z) C$g

and thus very small.
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PROPOSITION TIII
Abstract

Partitioning techniques are discussed for bound state configura-
tion interaction calculations. A simple partitioning technique is
described which could provide a straightforward approach for calculat-
ing total energies. This method could also be used as a scheme to

select important configurations for a more complete treatment.
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Proposition III. Partitioning Techniques in Configuration Interaction

Calculations

Partitioning techniques were first described by Lowdin and

others in the late 1940's.'

2,3

Since then there has been considerable in-
terest in the method. The basic idea is to divide a linear set of
equations so that the subspace of interest is separate. Hence in a
large eigenvalue problem we can concentrate on the part of the space
of importance in a particular problem. Schemes have been developed
for calculating the coupling correction of one part of the space to
another without using large amounts of computer time or core.3 Since
in many cases of interest the coupling correction is small, perturba-
tive schemes seem promising both as a quick, simple method for cal-

culating eigenvalues and eigenvectors, and as a way to determine a

reliable partition where the correction is treated only approximately.

In this proposition the partitioning technique is described.
I propose developing a similar scheme for confiqguration interaction
calculations and performing a series of calculations on simple systems

such as He and H2 to test its efficacy.

It may be possible to use this partitioning technique to test
the importance of certain configurations in a calculation. A simple par-
titioned CI is initially calculated. Those configurations which con-

tribute to the energies perturbatively by more than a certain amount are
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included in the main matrix in the final calculation. A1l remaining

configurations are treated perturbatively.

In a configuration interaction calculation the following equations

are solved for the energy E and the eigenvectors {C} :

He = EC (111-1)

His = <ilH]3> (I11-2)
* ~

= J ) Hcpj dt (IT1-3)

H 1is the Hamiltonian and {&} is a complete orthonormal set which
spans the vector space of interest. The wavefunction WR is

¥, = 1 Cy 9 (111-4)

k

For many problems in atomic and molecular quantum mechanics the
vector space is extremely large so that the space must be truncated,
e.g., in a configuration interaction calculation where {®} is trun-
cated to be a Hartree-Fock SCF wavefunction and all single and double
excitations.

Suppose there are subsets {A} and {B} of {3} where {A}
is a part of the space of special interest or importance and {B} is
the remainder, e.g., in a CI ground state calculation on a system with
a closed shell SCF ground state {A} could include the SCF state and
selected double excitations, and {B} could be the remaining double

and some quadruple excitations.
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Equation (1) can be symbolically rewritten

<A[R|A> C, + <AJH[B> Cy = E C, (111-5)

<B|H|A> C, + <B|H|B> Cg = E Cp (I11-6)
Solving (6) for CB we obtain

Cg = - <B|(H-E)7'|B> <B|H|A> C, (111-7)

Using Eq. (7) in Eq. (5) results with

<A[R|A> C, - <A[H|B> <B|(H-E)T[B> <B[H[A> C, =EC,  (III-8)
or
(H +aH) Cp = Ep Cp (111-9)
where

My - _ké <i[Hk> <k| (H-Eq) ™" [2> <alfH] 3> (111-10)

|i> and |j> are members of {A} and |k> and |[&> are members of
{B} .

Equation (9) is a smaller eigenvalue problem than Eq. (1). How-
ever, AH contains the inverse of a matrix of {B} . For large con-
figuration interaction calculations this matrix inversion can involve
large amounts of computer time and core. Furthermore éﬂ contains E
so that usually an iterative scheme must be used to solve Eq. (9). An
advantage of using (9) is that only the {A} part of the space eigen-
values and eigenvectors is calculated. For many problems this subspace

is the most important so that AH - may be calculated by an approximate
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scheme.

For simplicity consider the ground state of a system that can be
well described by the Hartree-Fock SCF closed shell ground state. A
finite basis set expansion yields a set of basis states. We can con-
sider for example in {A} the Hartree-Fock single determinant state
and selected double excitations. In {B} we include remaining

double, quadruple, etc. excitations. Instead of Eq. (1),for simplicity

we solve

(H-£0)C = (a£) € | (1rr-1)
where EO is the SCF energy, and

AE = E - Eo (II1-12)

The equations for the matrices are given by the standard formu]as.5

Equation (10) becomes

. ~ A _'l A .
A(H'Eo)ij = k% <i| (H-Eg) k> <k|[(H-E - AEp) "[2> < (H-E )|3>
(I11-13)

Since, for example, the number of quadruple excitations is large, the
inverse of H -Eo- AEA is large and may involve considerable computer
time.

We write

1 (I11-14)

where F] is the on diagonal part of H - EO- AEA, and G] is the off-

diagonal matrix. Equation (14) can also be written



HEy -0y = Fp- G (111-15)

where F2 is the on diagonal matrix of orbital energies and AEA, and
+ =

G2 is everything else. Equations (14) and (15) are combined

h=Ey=8Ey = F=% (IIT-16)
where
O F2
= or
s & L WELI=12)
F-6)t=rFl+rlert+rlertals ... (I111-18)

~ ~

Since in both Eq. (14) and Eq. (15) F 1is diagonal, Flois diagonal.
In the case of Eq. (15) for quadruples

F£]=(e'+€+€+e —E]—E-E-S-AE)SKSL
2 m “n “p “q Yy v n p A

(IT1-19)
where k and % are quadruple excitations out of the Hartree-Fock

ground state,

mnpq
Yyvne

e 1is the orbital energy, m,n,p,q are particles, and y,v,n,p are
holes. For F] Eq. (19) is modified by interaction matrix elements in
the denominator. Equations (18) and (19) are similar to equations of

6

many-body perturbation theory” where the Green's function is expanded

in terms of the free particle Green's function and the two-body inter-

actions.
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If Eq. (18) is truncated after the first term, Eq. (13) becomes

for quadruple excitations

|<i | (H-E,) [k> ]2
A(H,. - E_ S

i3 Fobig) = E (et ent gt g7 By &y7 g7 o7 AEAT U

(IT1-17)

where U]Z is zero if Eq. (15) is used and is interaction matrix ele-
ments if Eq. (14) is used. Similar equations are used for double exci-

tation mixing corrections in the equations of motion method including

double excitations4’7

8

and equations of motion method for ionization
potentials.
If {A} contains N1 configurations and {B} contains N2 con-
figurations, an unpartitioned CI calculation involves the diagonaliza-
tion of an (N1+ N2) X (N]+ N2) matrix. Using this partitioning tech-
nique an N]xN] matrix is diagonalized. The total number of elements

stored in the unpartitioned case is (N,+ NZ)(N]+ N2+1)/2 and in the par-

1
N.N
titioned case N](N]+1)/2 + —%?g-+ N2 . Thus there can be considerable

savings in computer costs using this scheme.

Equation (17) is much Tess complicated than the actual inversion
of (H - E AEA) in Eq. (13). However, the assumption that (H =E - QEA)
is diagonal may not be a reasonable approximation. It would be inter-

esting to test the validity of Eq. (17) for several small molecules for
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both approximations Eq. (14) and Eq. (15) using selected doubles and

quadruples, and to compare the result with the unpartitioned CI con-
taining the same configurations., If Eq. (17) or a similar partitioning
scheme can be used there may be considerable savings in computer costs
for configuration interaction calculations. Similar methods have been
independently proposed by Sega].9 |
An additional advantage of the partitioning scheme, Eq. (17), is
that the method can be used as a test to determine which configurations
are the most important and must be included in {A} . Again, we will
use the example of the ground state of a closed shell SCF system.
Initially {B} contains selected doubles and quadruples, and {A}

contains the ground state and certain doubles.,

Equation (9) is
(H+ H-E)Cy = (8Ep) €y (III']S)

From perturbation theory

AEﬁl) - Ego) MH Cgo) (111-19)
where
- £) ) = 0g® g (111-20)

Equation (20) is an eigenvalue problem which is solved exactly. The

(1)

energy change AEA is determined from Eq. (19) using the scheme in

Eq. (16) where AEA is approximated by AEAO) . Two new sets {A'}
and {B'} are selected. The new {A'} contains {A} and all con-

figurations for which |AE£1)I for that configuration is larger than a
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certain value. {B'} contains all remaining configurations. A parti-
tioned CI is calculated using new sets {A'} and {B'} . AE, is
determined iteratively.

The partitioning technique in configuration interaction is
briefly examined and discussed. An approximation scheme is developed,
and it is proposed to use the scheme for a series of cases to test its
validity. As shown in Eq. (19), the technique can easily be used to
select the configurations to be used for an unpartitioned configuration

interaction calculation.
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PROPOSITION IV

MOLECULAR CONTRACTIONS OF GAUSSIAN BASIS SETS
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PROPOSITION IV
MOLECULAR CONTRACTIONS OF GAUSSIAN BASIS SETS

Abstract

Two-body three and four center integrals in molecules are more
easily calculated using Gaussian functions than Slater functions. How-
ever, Gaussian basis sets do not describe the electron density as well
as Slater functions. Consequently, larger basis sets of Gaussians are
required for an equivalent description. To reduce the size of suS-
sequent self-consistent field (SCF) or configuration interaction (CI)
calculations, various contraction schemes have been developed.

Usually these methods involve a contraction of the Gaussian primitives
to approximate the atomic orbitals from an SCF calculation. Several

new contraction schemes are discussed. These contractions involve a
simple molecular SCF calculation. The contraction coefficients for
atoms in a certain functional group are the coefficients which approxi-
mate the optimal orbitals for that group. It is anticipated that better
energies and properties can be calculated using these sets; or,

equivalently, smaller basis sets may be used in many calculations.
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To obtain molecular orbitals in a self-consistent field (SCF)

calculation for molecules, a finite basis set expansion is used,

6= 1C4 % (Iv-1)

n
where ¢1 is the molecular orbital, {Xn} are the basis functions,
and {C} are the expansion coefficients. The best approximation to

the Hartree-Fock molecular orbitals is obtained from1

Fo; = €595

(Iv-2)
where F 1is the Fock Operator. Equation (IV-2) is solved iteratively
since F contains integrals involving the orbitals.

A reasonable choice for the basis functions {x} are Slater

functions centered on the atoms of the form

xS = nSyn-l

i h exp(-po_.r) (1v-3)

sn

n is the principal quantum number, NS s a normalization constant,
and P is an exponent which may depend on the atom and the problem
to be solved.

Two-body three and four center integrals of the form
ko * '[ .
J G0 (@) 5 1) x3(2) drydeg (1v-4)

are evaluated in solving Eq. (IV-2). The ca]cu]atioh of these inte-
grals for large basis sets can involve large amounts of computer time.2

Boys3 proposed using Gaussian functions

exp(- p %) (Iv-5)
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These functions simplify considerably the evaluation of two-body inte-
grals. Since a Gaussian function lacks a cusp at r = 0 , the electron
density near a nucleus is not described as well as with a Slater.

Hence Gaussian basis sets several times the size of Slater basis sets
are often needed to attain the same energy.4 Thus the computational
advantages of Gaussians are diminished, although not eliminated.

A further problem is that the large basis sets result with the
diagonalization of large SCF matrices. Dunm’ng5 has shown that certain
groups of basis functions can be grouped (contracted) together with
fixed coefficients to reduce the size of the matrices. For example,
basis composed of 9s primitive Gaussian functions and 5p primitive
Gaussian functions is reduced to 4s and 3p contracted Gaussian
functions. These contraction coefficients are usually chosen to ap-
proximate an atomic SCF calculation using the primitive basis. The coef-
ficient of each contracted Gaussian is variationally determined in a SCF
calculation. Although the SCF energies of molecules using con-
tracted functions are slightly higher for molecules than using equiva-
lent sized Slater basis, a few of the primitive Gaussian functions in
the valence space are allowed to vary freely so that the bonding region
should be described fairly well.

Empirically many properties of larger molecules can be viewed as

*
6 For example, n » 7

cumulative effect of many local contributions.
transitions are observed in homologous series of molecules containing
carbonyl groups. Similar results are seen for dipole moments, reactiv-

ities, bond energies, and ionization potentials. A better primitive
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Gaussian contraction would take into account the effects of bonding
and possibly nearest neighbor interactions. Such optimal contractions
for different functional groups and atoms are calculated for a repre-
sentative small molecule, e.g., for carbonyl CO, H

€0, or {CH.),C0.

2 3)2
The resultant contraction coefficients are obtained from the invariant
atomic orbital method of Cusachs and A]drich7 or some other similar

localization scheme.8

The functional contraction coefficients are
then used in other calculations for the group or atom, e.g., transi-
tion metal carbonyls. This method will result in better energies and
charge densities. Smaller contracted basis sets may be used than when
atom optimized contracted sets are used. Functional contraction coef-
ficients may be obtained with 1ittle expense, using molecular wave
functions described in the literature.

In the remainder of this paper, we will briefly describe the
segmented contraction scheme of Dunm’ng5 and the general method of
Raffenetti.9 Then we will discuss how to obtain contraction coeffici-
ents from the invariant atomic orbital method of Cusachs and A]drich.7

In a segmented contraction,5 an SCF calculation is done for the
ground state of the atom using the completely uncontracted Gaussian
primitive basis. The exponents in Eq. (5) are obtained from an opti-
mization scheme for the uncontracted basis set, e.g., see reference 4.
The output vectors for a certain symmetry orbital are examined and a
reasonable initial division of the primitive space into a fixed number

of contracted functions is made. For example, a 9s primitive space

may be divided into a (6s, 1s, 2s) contracted space. The coefficients
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of the primitives within each contracted function are fixed. They are
usually obtained by simply selecting the coefficients from the atomic
function and renormalizing. The partitioning of the primitive space
is varied keeping the number of contracted functions fixed. No
primitive is used in more than one function. The partition with the
energy closest approaching the SCF energy of the uncontracted set is

used for later molecular calculations. Dunm‘ngs’]O

has published a
series of papers describing the method in detail and 1isting contrac-

tion coefficients.

Raffenetti's9 general contraction scheme is physically more ap-
pealing. The restriction of not using a primitive in more than one
contracted function is dropped. For first row atoms all primitives are
used in a contraction for the 1s, 2s, and 2p functions with the fixed
coefficients from an SCF atomic ground state calculation. In addition,
other functions are included which are either the virtual orbitals from
the atomic calculation or the most diffuse Gaussians of the set., Thus
there is a rather good atomic description of the SCF 1s, 2s, and 2p func-
tions. Dunning's segmented scheme required only minor modifications to
the readily available POLYATOM series of programs. However, to use
Raffenetti's method using POLYATOM is very expensive or requires a new

integrals program,

Both the segmented and general contractions are optimized

for the ground state SCF of an atom. The valence orbitals can

change considerably upon bond formation.]] Even core electron

binding energies change as much as 10 eV depending on the molecular

environment.]2
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Subtle changes in the electron charge density may be important for the
calculation of one-body properties7,and configuration interaction cal-
culations where molecular orbitals based on atomic contractions are
used may not as rapidly converge. Bearing these considerations in
mind, a simple yet effective procedure is to optimize contractions for
molecules and not atoms. It may be possible to choose an optimal set
of contraction coefficients for a given atom in a molecule or for a
given functional group. In the latter case we retain our intuitive
ideas about molecules and the chemical bond.

The coefficients are found by the method of Cusachs and A]drich7
which they used to obtain invariant atomic orbitals by radia]rhoment
analysis of accurate molecular orbitals. This scheme differs from
theirs in that we do not construct optimal atomic orbitals but instead
use the coefficients directly for an optimal molecular contraction.

For simplicity, we describe a segmented contraction scheme. Extensions
to general schemes are obvious. Finally, a simple method is proposed
which should yield good molecular contractions at minimal cost.

A simple prototype molecule or molecules is selected and a com-
pletely uncontracted LCAO SCF calculation is performed. The contrac-
tion scheme is chosen. It may be segmented, general, or some combina-
tion. The primitives of a contracted group are renormalized for each
molecular orbital. These new coefficients are averaged over all
molecular orbitals with the weighting function the old normalization
integral. Thus optimal contraction coefficients for atoms in molecules

are easily obtained.
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For general or combined contractions molecular orbitals that are
primarily inner shell are separated from the other orbitals. These
are then used to construct optimal 1s contractions. The most dif-
fuse primitive Gaussians are included in the contracted set and are
allowed to vary freely.

We can use the contraction coefficients for atoms in a certain
functional group in more complicated molecules. The molecular environ-
ment will thus be better described and we expect better theoretical
one-body properties and energies as well as better CI convergence.

A simple, straightforward procedure for obtaining contraction
coefficients is to expand the invariant atomic orbitals of Cusachs and

A]drich7 in terms of Gaussians using

] 2
pgi = (ngpg)™ oy (1vV-6)

where a; are given by Huzinaga.4 Analogously, a comparison could be
made between calculated rk moments and a Gaussian expansion to detef-
mine the ‘contraction coefficients. Again valence space primitive
Gaussians are included in the contracted space and allowed to vary
freely.

Several basis set contraction schemes are proposed which would
more optimally describe the molecular environment than currently used
methods based on atomic SCF calculations. The resulting contraction
coefficients can be used for functional groups or atoms in more com-

plicated molecules.
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SOME ASPECTS OF SHAKEUP STATES IN
PHOTOELECTRON SPECTROSCOPY
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PROPOSITION V
Abstract

A new method is proposed for predicting relative energies and
intensities of shakeup satellite structure in photoelectron spectros-
copy. Combinational states are shown to be weakly coupled to simple
ionization. Hencé, these states most 1ikely are not observable. For
closed shell ground state atoms and molecules simple shakeup states
are actually twin peaks corresponding to the two possible ways to
couple three unpaired electrons to doublet states. This satellite
structure may be observable in 0203. A calculation is proposed to

clarify the spectra of CuO and Cu20.
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In photoelectron spectroscopy a photon jonizes an atom or

mo]ecu]e.]

The intensity of the scattered electrons is measured as a
function of kinetic energy and possibly angle. In.this proposition
we will not be concerned with the latter. For valence electrons the
photon source is often the vacuum UV or He(I) resonance line at

1

21.22 eV or the He(II) resonance line at 40.8 eV.  The aluminum Ka

line at 1487 eV and the magnesium Ka 1line at 1254 eV are often used
to study both core and valence e]ectrons.2
If the phqton has sufficiently high energy the molecule may
simultaneously excite or ionize in addition to the initial ionization.
This phenomenon is observed as low intensity peaks ("satellites") in
the electron spectra at electron energies lower (or binding energies
higher) than the main peaks. The excitation process to bound states
accompanying ionization is called "shakeup", and excitation to a con-
tinuum state accompanying ionization is "shakeoff." Progress has
been made correlating shakeup and shakeoff states to molecular struc-
ture 2™t
In this proposition a few aspects of shakeup states in photo-
electron spectroscopy are examined. Most of the examples will be for
photoelectron spectroscopy of the inner shell. The ejected electron
will be assumed to be of high energy so that
ejected electron-ion interactions can be safely ignored.
Similar ideas are of course applicable to photoelectron spectroscopy
of the va]énce shell.

We propose a new method for the calculation of positions and

intensities of shakeup states and briefly discuss a similar method for
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Auger spectroscopy. We then examine the predictions of shakeup ener-

gies by both relaxed ion virtual space methods and ordinary bound state
excitation energies. The fact that closed shell phptoe]ectron spectra
should yield two doublet shakeup states at very close energies is
pointed out. The possibility of observing combinational states is dis-
cussed. Finally we note the feasibility of doing large scale calcula-
tions on transition metal compounds to resolve such questions as the

existence of shakeup states in d10

compounds 1ike Cu,0.
The theoretical method is simple and involves the diagonaliza-

tion of re]ative]& small matrices. We solve
<0| {80,, H, 07}]0> = w, <0|{80,, 01} |0> (v-1)
A s ) UJA A U\

where w, s the photoelectron binding energy and OI is the ioniza-
tion operator composed of a Tinear combination of electron removal
operators, electron removal with simple excitation and deexcitation
operators, and possibly electron removal with double excitation and
deexcitation operators. We include in OI only operators for which a
given electron, v , is removed, except for simple electron ejection
where electrons in any orbital including virtuals may be removed. This
effectively limits matrix size in diagonalization. There are many
combinational operators (electron removal with double excitation) so
that they are not included, included perturbatively, or selectively
diagonalized in the main matrix. For simplicity they will not be con-
sidered here at present.

Equation (V-1) is evaluated over a restricted Hartree-Fock

ground state and no correlation coefficients are explicitly evaluated
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" 1:2) gl1.2) .
02 ) 2 |
A2 4(2,2) ,(2)
Y
o | ¥ (V-2)
(2)

Matrix elements in Eq. (V-2) are given e]sewhere.6 Terms in Q4 cor-
responding to electron removal from a particle level and B terms are

due to electron correlation in the molecular ground state. Relaxation

effects are in @, 0!1’2), and QKZ,Z)

In actual calculations Eq. (V-2) is block diagonalized by sym-
metry and for small molecules in basis sets of double zeta quality, most
symmetry matrices will be less than 50x50.

Intensities of shakeup peaks relative to the main peak in the

dipole approximation are given by

<p(N) |7 wi.(N-]) u(r)> |2
<p(N) [l w, (N-1) u(F)>

(V-3)

where Y(N) is the ground state, wi.(N-]) is a shakeup state, wA(N-1)
is the ionic state corresponding to the main peak, and u(?) is a free
electron plane wave state. Equation (V-3) is rewritten
2

I

+
s
P, = [<HF| ¢ 03 |HF>

: (v-4)
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This is simply the probability that there is a A' shakeup peak rela-
tive to the main photoelectron peak. This equation is identical to the
probability of observing a peak in the sudden approximation.5 We do
not consider electron ionization occurring before e§citation but regard
the processes as simultaneous.,

Since this proposition is not intended to be a detailed theoret-
jcal examination of Eqs. (V-1)-(V-4) but rather applications oriented,
it is pointed out that similar methods can be used for Auger spectros-
copy. Rowe's equations of motion for Bose-like transfer operators7 are
used instead of Eq. (V-1). O; operators now contain principally linear
combinations of two electron removal operators and two electron removal
with excitation and deexcitation, Again, all ejected electrons are
assumed to have high energy.

Two methods are in general use for the calculation of shakeub
state positions and intensities. We feel that the method outlined above
is probably a better approximation. Here the other two models are
briefly described.

A much used approach is to calculate wave functions and shakeup
state energies for the relaxed ion. That is, the Hartree-Fock orbitals
are allowed to relax after electron removal. The shake-up state wave
function is then obtained from this relaxed wave function by the single
transition approximation in which an electron is promoted to a single
virtual orbita18 or by single excitation CI.9 In the former the exci-
tation energy is some average energy difference between the virtual
electron energy which moves in a potential appropriate for the N electron

system and the core electron which moves in the ionic N-1 potential. Even



-278-
the single electron CI9 ignores ground state electron correlation and
coupling between simple ionization and shakeup.
Another commonly used estimation of shakeup peak positions is to

3 This approximation as-

simply use bound state excitation energies.
sumes the sudden approximation is completely valid and no relaxation
occurs upon electron removal.

For closed shell molecules all shakeup peaks are actually twin
peaks due to the two possible doublet spin couplings of three elec-
trons in different MO's. Of course, intensities by Eq. (V-4) may differ
considerably. Preliminary calculations on N2 at equilibrium geometry
indicates that the splitting is usually on the order of 0-3 eV with
most between 1-2 eV. Thus some observed satellites in photoioniza-
tion2 and comp]exities8 in the spectra may be partially due to the twin
satellite structure. For example, in the ESCA spectrum of C302 ga52
there is a sharp satellite peak‘7.9 £0.2 eV below the main C 1s peak.
Smaller less distinct peaks are observable around 10 eV and 14 eV. The
structure around 10 eV may be the other doublet spin state associated
with the peak at 7.9 eV. More detailed theoretical investigation is

obviously required. The complex structure in (C.H.)_Cr between 5.7 eV

6 6)a
and 30 eV may be partially due to overlapping doublets associated with
the same transitions.3
Another consideration is the possibility of combinational
states,3 i.e., ionization with double excitation. Although such states
are not forbidden in photoelectron spectroscopy, an examination of the

most important coupling matrix element between single excitation and

combinational states in Eq. (V-2) shows that the coupling involves
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only two-body interactions of the type VYIPE_ where vy and y are
holes and p and p are particles. These matrix elements should
not be very large. Hence, the probability that an ion will result in
combinational state upon photoionization is small f;om Eq. (V-4). The
assignment of the shakeup band around 7 eV from the main Cr 2p peaks
in the X-ray photoelectron spectra of Cr(CO)6 as possibly a combination
band3 is probably not correct.

Finally, we discuss the applicability of this method to @ransi;
tion metal compounds and complexes. For example, the positions and
intensities of thé shakeup states related to the Cu 2p main peak in
Cu0 and Cu20 can be predicted. Experimentally off the shelf Cu0 and
Cu20 exhibit satellite structure relative to the Cu 2p peak. This is

10 metal ion since satellite structure

surprising for CuZO which has a d
is predicted as ligand-»metal 3d. That is, octahedral CuI jon has a
configuration (t29)6(eg)4 so that ignoring correlation effects, there
is no empty 3d orbital for the L-+M charge transfer. The observed

satellites disappear after heating the sample in vacuum for 20 min at

200°C 10 and are hence most likely due to adsorbed high binding energy
ox,ygen]0 or to Cu0 con’camination.]2
3,4

Pignataro et al. predict that with the removal of an electron

from a localized orbital the shakeup process is enhanced when the

jonized electron is from an atom which is an acceptor in a charge

11

transfer process. Hence, the structure observed by Schtn ' starting

around 5 eV higher binding energy than the 0 1s peaks in Cu20 is

probably ML charge transfer.
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To theoretically examine the spectra of Cu0O or CuO2 using
Eq. (V-1) - (V-4) requires large amounts of computer time and core.
However, with rapidly developing computer techno]ogy, transition metal

SCF calculations are no longer prohibitive.]3

Furthermore, pseudo-
potential techm‘ques4 have been recently developed to accurately
replace the transition metal Ar core. Of course, for the latter
photoelectron spectra of the metal inner shell could no longer be

predicted. The use of Eq. (V-1) to Eq. (V-4) for CuO and Cu0, should

2
further elucidate the spectra, particularly the presence of absence
of cuprous ion satellites and M-L transitions near ligand main
peaks.

In this proposition we have proposed a new method to theoreti-
cally predict relative energies and intensities of shakeup satellites
and Auger spectra. We emphasize that shakeup states arising from
closed shell ionization are really twin states which can be as much
as 3 eV apart. Combinational state coupling with simple electron
removal is shown to be small, and hence these states are probably in
most cases unobservable. We observe that structure around 535 eV in

CuZO may be M-L charge transfer satellites, and propose a calcula-

tion to further elucidate CuO and Cu20 spectra.
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