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ABSTRACT

Understanding the implications of heterogeneity on frictional interfaces for the
resulting slip patterns is a challenging, highly nonlinear, and dynamic problem with
special relevance to earthquake source processes. Natural fault surfaces are rarely
homogeneous and host a spectrum of slip behaviors in response to slow tectonic
loading where slow steady slip and earthquake ruptures are just the end members.
Understanding how heterogeneous frictional properties translate into different slip
patterns would enable us to constrain the heterogeneity of natural faults and get an
insight into processes that are difficult to observe in the field such as earthquake

nucleation, with important implications for the assessment of seismic hazard.

In this thesis, we advance our understanding of fault heterogeneity and its effects
by conducting numerical simulations of long-term slip histories on heterogeneous
frictional interfaces. We first focus on how irregular fault geometry affects the
variability in repeating sequences by investigating a specific example of the SF-LA
repeaters in the Parkfield segment of the San Andreas Fault (SAF) in California.
We then investigate the effect of increasing heterogeneity in the effective normal
stress on earthquake nucleation processes, complexity of earthquake sequences, and
features of larger-scale ruptures. In both cases, we incorporate the heterogeneity
in physical properties into 2D planar faults governed by rate-and-state friction and
embedded into 3D homogeneous elastic bulk. Fully dynamic simulations are used to
numerically solve the resulting elastodynamic problems with friction as a nonlinear

boundary condition.

Our models reproduce many observations about SF-LA repeating sequences, in-
cluding their mean moment, mean recurrence times, stress drops, the observed non-
trivial scaling between the seismic moment and recurrence times of the repeaters,
the ranges of variability in moment and recurrence time, and the ranges of triggering
times between the two sequences. Multiple models produce slip behaviors com-
parable to observations, indicating that the models cannot be uniquely constrained
based on available observations. We also study how small-scale features of hetero-
geneity affect model response. We find that smoothing the distribution over scales
smaller than governing length scales in the problem, such as the nucleation size in
our case, changes the specific evolution of slip, but preserves its key characteristics,
such as the range of event variability and triggering times between events. However,

smoothing the distribution on larger scales modifies the response qualitatively.
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Our study of the earthquake initiation processes on interfaces with normal stress
heterogeneity reveals that systematic increase in heterogeneity induces a continuum
of behaviors, ranging from purely fault-spanning events to persistent foreshock-like
events interspersed between fault-spanning mainshocks. In models with strong
heterogeneity, most smaller-scale and larger-scale events initiate from scales much
smaller than the nucleation size estimates calculated for uniform interfaces with
equivalent average properties. While the variations in normal stress induce inversely
proportional variations in the instability length scale often called nucleation size,
we find that the nucleation-size variations by themselves are insufficient to cause
such behavior, and that the associated strong heterogeneity in frictional strength is
also required. In models with uniform friction strength but the same nucleation-size
variation, the nucleation processes of larger-scale events are similar to those on
uniform interfaces, with an addition of multiple triggered small-scale earthquakes.
Our simulations show that several hypothesized scenarios of earthquake nucleation
and foreshocks on natural faults may be viable and reflect different types and levels
of heterogeneity on different faults the effects of which, in addition, vary as fault
conditions evolve. For example, even with strong fault heterogeneity, some large-

scale events have foreshocks and some do not, in the same simulation.

The increasing fault heterogeneity generally leads to increasing complexity of the
resulting earthquake sequences and moment-rate release (also called source-time
function) of large-scale, fault-spanning events, as intuitively expected, although with
some saturation at the higher heterogeneity levels. We find that, in the presence of
significant normal-stress heterogeneity, source-time functions of many larger-scale
events exhibit prolonged seismic initiation phases, similar to some observations,
as the events nucleate from the heterogeneity scale and re-rupture the areas pres-
lipped quasi-statically and in foreshocks. The source-time functions also reveal
that larger-scale events in our models—that are arrested by velocity-strengthening
barriers—have a more abrupt arrest phase than natural earthquakes, which places
constraints on rupture-arresting mechanisms that should be used in modeling. The
initial moment rates are similar for events of different eventual sizes on interfaces
with strong heterogeneity, implying that, in those cases, large events are just small

events that ran away.
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Repeating sequences from several tectonic regions are neither time-
nor slip-predictable (adapted from Rubinstein et al., 2012). (Left)
The recurrence time interval between events vs. the seismic moment
of the preceding event, normalized by the mean recurrence interval
and mean seismic moment, respectively. If the recurrence interval
increases predictably with the moment of the preceding event, then it
would fall onto the pink strip. (Right) The seismic moment of events
vs. the recurrence interval preceding the event, normalized by the
mean seismic moment and recurrence interval, respectively. If the
seismic moment (and hence slip) increases predictably with the time
since the previous event, then it would fall onto the pink strip.

a. Time progression of moment magnitudes of SF-LA repeater se-
quences, before the 2004 M6 Parkfield earthquake. The LA events
(blue bars) consistently happen soon after the SF events (red bars),
indicating a strong interaction between the two sequences, with inter-
event times spanning from seconds to months. (Data from Wald-
hauser and Schaff (2008)) b. Triggering times for the 7 SF-LA event
pairs before 2004, plotted on a log-scale normalized with respect to
the mean recurrence time of SF sequence. The triggering times range
from seconds to months. c. Testing time predictability and slip pre-
dictability for 6 recurrence periods of SF and LA sequences before
the 2004 M6 earthquake. The axes are normalized with respect to the
mean quantities. The red and blue rectangles bound the variability
of SF and LA events, respectively. . . . . . ... ... ... .....
(Left) Schematic of a typical boxplot, indicating the median, inter-
quartile range, the first (Q1) and second (Q3) quartiles bounding the
middle 25% of data, with the maximum and minimum non-outlier
values in the data set indicated by the whiskers. (Right) Box plots
constructed for normalized seismic moment and recurrence times of
SF and LA repeaters show the variability to be higher in the LA

repeaters. . . ... ..o e e e e
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Schematics of slip evolution on the lab fault (from McLaskey and Kil-
gore, 2013). Slow earthquake nucleation (blue) that eventually grows
into dynamic rupture (shaded blue) triggers microseismicity (circles).
Presumably, similar processes occur during foreshock sequences on
real faults, just on a differentscale. . . . . ... .. ... ... ...
A representative set of velocity seismograms used in the analysis of
Ellsworth and Beroza (1995) where the reluctant initial phase, dubbed
“seismic nucleation” is observed (Reproduced with permission from
Ellsworth and Beroza (1995)). . . . . . . .. .. ... ... .....
a. Median STFs of events in physical scale. b. Median STFs of events
in normalized scales (Reproduced with permission from Meier et al.
2017)). .« o e
A model of a planar fault interface embedded between two isotropic,
linear elastic half-spaces, which are pre-stressed and being sheared.
The loading with the applied slip velocity V), outside of the fric-
tional region simulates a case where long-term relative plate velocity
of V,; is driving the fault motion, resulting in slip with such slip
rate everywhere on the fault except in the frictional region. The
spectral approach used in the numerical simulations of the problem
periodically repeat the fault domain of the frictional region and the
surrounding loading region, with the repeat intervals of A, and A_,

respectively. . . . .. L L
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a. Representative model domain used in the simulations, normalized
by the estimate of the nucleation size for the VW region (yellow), i*.
The domain of interest containing the heterogeneous property distri-
bution is surrounded by load-transmitting VS region (blue), around
which steady slip at Vj,.q is applied (green) to simulate the steady
creep of the larger surrounding region. b. (Left) A realization of the
random field with two dominant areas that can serve as the source
patches for the SF and LA sequences. The random field is character-
ized by the Hurst constant, H, that determines the spectral decay at
high frequencies and a,,,,, which modulates the largest feature sizes;
we choose H = 1 (self-similar). a,,,r = 64 is chosen to obtain the
feature sizes comparable to h*, given the computational restriction
on the overall size of the heterogeneous domain (set to 44). (Right)
Power spectral density of the fractal field. The dashed blue line indi-
cates the corner wave number, k., beyond which the spectrum shows
power law decay. . . . . . .. ...
(a) Heterogeneous distribution of VW (yellow) and VS (blue) fric-
tional properties obtained from the random field in Figure 4. (b) The
distribution with only two main irregular patches and all other per-
turbing features removed. (c-d) Constructing analogous fault model
with circular patches by fixing centroids of the two main patches
and conserving their areas. (e) Fault model with circular patches of
smaller radii that has similar moment magnitudes to the model with
irregular patches from (a-b). (f) Fault model with circular patches
and smaller perturbing patches from(a). . . . . . . .. ... .. ...
Slip velocity snapshots from the representative model F1p-D. The top
row illustrates a typical triggering sequence where the post-seismic
slip from the left-patch event triggers an event in the right patch. The
middle row shows the subsequent interseismic period, marked by
aseismic transients. The third row indicates the following triggering
sequence in which the left patch event triggers the right patch yet
again, albeit with a shorter triggering time and at a different location.
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a. Single-patch models with different patch sizes: (top row, left
to right) CIn-S Scaled down 20 %, Cln-S, Cln-S Scaled up 20%,
(bottom row, left to right) FIn-S Scaled down 20%, F1n-S, FIn-S
Scaled up 20% b. Comparison of moment and recurrence time of a
single circular patch model (C1n-S) with a single fractal patch model
(FIn-S). ClIn-S has a lower mean recurrence time but higher mean

seismic moment, implying that a complete analogy in properties

between the two patch shapes might be difficult to produce. . . . . .

Box plots of the single-patch models comparing their seismic moment
and recurrence time. The variability of moment and recurrence time
generally increases with the coupled effect of a complex patch shape
and increased patch size. Models with less strengthening region

around the patches have larger variability (C3n-S and F3n-S vs. Cln-

SandFIn-S). . . . . . . . ..

Slip velocity snapshots from the model F1n-S (with patch size larger
by 25% ) for two different dynamic events (top and bottom rows)
illustrating the effect that the patch shape has on the nucleation and
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shape, patch can be ruptured differently—and with different area

covered—in subsequentevents. . . . . . .. ... ... ..

a. Scaling between the recurrence time of events in each repeating
sequence Ty vs. their seismic moment M, for single-patch circu-
lar models (circular markers), single patch fractal models (diamond
markers), and left and right patch events from the base model (F1p-D)
(star markers). b. The scaling with the line fit for the mean recurrence
times of each model. Results match the scaling observed for repeaters
of the creeping section next to Parkfield (black line), approximated
by the expression Tree & 7 X 10*M,%!7 (Chen and Lapusta, 2009).
The theoretical scaling relation for the constant stress drops of 20

MPa is shown by the red line for comparison. . . . . .. ... ...
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Slip velocity history at the centers of left (red) and right (blue) patches
in model C3n-D. The history shows the behavior alternating between
periods in which event in one patch triggers an event in the other
patch nearly instantaneously compared to the average recurrence time
of each sequence (e.g. during 15-20 time units) and periods in which
the left and right patch events occur more spaced out in time, with

their interevent time being a large fraction of the average recurrence

time (e.g. during 10-15 time units). . . . . . .. .. ... ... ...

Two types of interaction between patches observed in C3n-D model.
Time ¢ is the simulated time since an event in the left patch as shown
in the left-most panel. Time ¢’ refers to the simulated time normalized
with respect to mean recurrence time of left patch events (7...r.). (Top
row) The postseismic front from a left-patch event triggers an aseismic
transient in the right patch, with the nucleation of the next seismic
event there occurring in 1.1 years or 0.4 of the recurrence interval. b.
The postseismic front from a left-patch event triggers a dynamic event
in the right patch within seconds or nearly instantaneously compared

to the recurrence period, owing to the favorable state of stress in the

rightpatch. . . . . . ... . o

a. Removing small-scale heterogeneity by thresholding the power
spectral density of the underlying fractal distribution. b. The property

distributions for ap;, = 1 and ap,;, = 4 appear visually identical to the
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observer, whereas the resulting slip behavior exhibits visible differences. 46

Models obtained by smoothing of the patch shapes by eliminating
high-frequency contributions. The fractal features gradually disap-
pear, and the separate patches coalesce to form a single area for some
models. At api, = 63, the patches present as relatively simple shapes,
with the power-law decay completely removed from the spectra (Fig-
ure 2.18). Note that ap,;, = 32 still preserves heterogeneous features

at the scale of the nucleation size, with larger values of ay,;, resulting

in significant modifications of the shape at that scale. . . . . . . . ..
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Slip predictability in models with increasingly smoother distribu-
tions. The variability exhibited is similar in models with small enough
features removed, for api,=1 to 32. Beyond that, as the fractal fea-
tures get wiped off, the data points in the predictability plots become
increasingly clustered. See also Figure 2.22 for more quantitative
MEASUIE. .« . .« « o v v e e e e e e e e e e e e e e e e e
Triggering times are compared across models subjected to smoothing
of fractal features. The range of triggering times is similar in models
with small enough features removed, for ap,;, = 1 to 32. The shorter
triggering times vanish, diverging from the field observations, as the
distribution is smoothed further. . . . . . ... ... ...
Box plots comparing variability in gradually smoothed distributions.
The variability is most similar in the models with small enough
features removed, for api, = 1 to 32, have most similar. Beyond that,
the variability first increases and then decreases. . . . . . ... . ..
a. Comparison between the circular patch model (C1n-D) and the
most smoothed fractal patch model (F1n-D, api,=63). b. The slip
predictability plots show more variability for FIn-D (apj,=63) com-
pared to Cln-D. c. The left-patch box plots of models Cln-D and
F1n-D (apnin=63). The variability is again larger for the fractal patch
model. d. The slight complexity in shape produces more variable
triggering times, though not broad enough compared to the natural
SEQUENCES.  « & v v v v e e e e e e e e e e e e e e e
2D and 3D views of several normal stress distributions studied in
this work. a. Uniform normal stress (0uqx/0uni=1). b. Fractal
normal stress (Oyax/0uni = 1.6). ¢. Modified fractal normal stress
(Omax/ouni = 5). d. Modified fractal normal stress (0qx/Tuni = 10).
A realization of the random field with multiple source patches. The
fractal field is characterized by the Hurst constant H that determines
the spectral decay at high frequencies and parameter k. that modulates
the sizes of the largest features. We choose H = 1 (self-similar
distribution) and k. = 0.14 such that there are multiple similarly-
sized high-normal-stress patches within the field. . . ... ... ..

Representative model domain used in the simulations, normalized
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3.5

Slip velocity snapshots for a typical dynamic rupture event from
models with 0,4, /0uni = 1 (left) and oy /0uni = 1.6 (right). The
events are similar in that they span the entire VW region and nucleate
from a similar scale comparable to the nucleation size estimate for
the model with uniform normal stress. The fractal distribution results

in slightly smaller nucleation size and more complex slip pattern for

eachevent. . . . . . . . . . e

(Top) Evolution of the maximum slip velocity over the fault for the
models with the uniform (blue line), fractal (red line), and modified
fractal normal stress with 04 /0yni = 10 (yellow line). The maxi-
mum slip velocity is normalized with respect to the dynamic velocity
threshold (V). The time is normalized with respect to the mean
recurrence time of events in the model with uniform normal stress.
Each vertical line signifies dynamic rupture, as slip rates become
much larger than the dynamic threshold (upper dashed line). Flat
sections correspond to the loading plate rate. The uniform and fractal
cases result in comparable sequences of events, with quasi-periodic
model-spanning events in both cases, although the recurrence interval
is slightly shorter in the fractal case. The modified fractal case with
stronger normal stress heterogeneity exhibits more complex events,
with smaller events appearing in between larger events. (Bottom
plot) Slip velocity history at the middle of the VW fault region in the
uniform normal stress model. Dynamic events are separated by inter-
event periods of essentially locked interface, with slip rates several

orders of magnitude lower than the loading plate rate (lower dashed

line). . . . . . . e
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3.7
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Slip velocity snapshots of a typical event nucleation on (a) an in-
terface with uniform normal stress, (b) interface with fractal normal
stress, and (c) interface with stronger normal stress heterogeneity of

Omax/0uni = 5. To facilitate the comparison, the size of each panel is

*

the same, 2h;:m. by 1.5hl’;ni. The actual simulated nucleation size, hsim,

is similar to A . in the homogenous case, as expected. h; is mea-
sured by the approximate size of the (bright-orange-to-red) area that
slips with velocities higher than 0.1V;y, when the maximum slip ve-
locity at any point on the fault matches the dynamic velocity threshold
Vayn. In the fractal stress case, the event nucleates similarly, from a
slightly more irregular patch. The A, is slightly smaller but compa-
rable to 7, .. In the model with stronger normal stress heterogeneity,
model-spanning earthquakes initiate from scales much smaller than
the nucleation size estimates calculated based on average properties.
The nucleation behavior is governed by the smaller-scale nucleation
size based on the local normal stress peaks, i.e. by the length scale
of the heterogeneity, rather than /#*

uni’

Slip velocity snapshots from two consecutive model-spanning events

from the model with 0,4x/0un = 5. There are no smaller-scale
events in between. The larger-scale events are nucleating from the
asperity scale much smaller than the mean nucleation size estimate.
Slip velocity snapshots from the model with ¢4y /0 = 10. Small-
scale events (panels S1-S2, S5-S6, S8-S9) precede the larger-scale
event (S12-S14) and the larger-scale event also nucleates from scales
much smaller than &

mean:

S7 and S8 is 6644 normalized time units and the time difference

The time difference between snapshots

between snapshots S11 and S12 is 47 normalized time units, where 1
unit corresponds to the time for the shear wave to propagate through
the length of the fault and hence 1 unit is comparable to the duration of
a large-scale event. Hence these events are separated by long enough
times to be considered separate events, but short enough times in
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Chapter 1

INTRODUCTION

1.1 Motivation

Predicting the strength and stability of heterogeneous frictional interfaces is an
outstanding problem, relevant to a broad range of fields—from biology and nano-
mechanics to geophysics. Frictional interfaces, broadly, can have either stable slip
or unstable slip (i.e., relative shear motion). On loading a frictional interface with a
loading velocity Vjoad, the interface slips stably if it has the same or similar velocity.
When the slip is unstable, it self-accelerates to slip velocities much larger than Vjg,q.
Even after stopping the loading, the slip keeps accelerating. The unstable slip is
often inertially-controlled and dynamic. Frictional instability is observed in many
mechanical systems and is considered desirable or undesirable, depending on the

application.

In the field of earthquake mechanics, gaining a better understanding of frictional
instabilities has implications on earthquake prediction and seismic hazard manage-
ment. Tectonic earthquakes seldom occur by the sudden appearance and propagation
of a new fault (shear crack). Instead, they mostly occur by sudden slippage along
pre-existing faults or plate interfaces. They are therefore a frictional, rather than
fracture, phenomenon. In other words, it is the frictional resistance on the fault that

governs the occurrence of earthquakes and other slip behaviors on the fault.

Fault processes involve complex patterns of both dynamic events—seismic slip
perceived as earthquakes—and quasi-static (aseismic) slip. Some fault segments
remain locked (accumulating stress), some steadily creep (slow slippage). Scien-
tists link this behavior to velocity strengthening and weakening properties of fault
segments. For an interface to be unstable (have spontaneous stick-slip), a necessary
condition for instability is that friction needs to weaken once slipping starts. Seis-
mic slip and aseismic faulting, however, are just the end members of a continuous

spectrum of behaviors.

Field and experimental observations have shown that slip behavior on natural faults
exhibits spatio-temporal complexity over a wide range of scales, ranging from
stable slip, aseismic transients, small repeating events, foreshock sequences to large
earthquakes (McGuire et al., 2005; Bouchon et al., 2011; Kato et al., 2012; Bouchon
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et al., 2013; McLaskey and Kilgore, 2013; McLaskey and Lockner, 2014; Brodsky
and Lay, 2014; Avouac, 2015; Biirgmann, 2018; Michel et al., 2019). The same
area of the fault can sometimes behave stably and sometimes unstably (Chen et al.,
2010). Studies in the past have noted that heterogeneity in frictional properties
on the fault zone has a sizable contribution in producing this rich diversity of slip
behaviors (Hillers et al., 2006; Hillers et al., 2007; Kaneko and Lapusta, 2008; Chen
and Lapusta, 2009; Dublanchet et al., 2013; Avouac, 2015; Lui and Lapusta, 2016;
Jiang and Lapusta, 2016; Lui and Lapusta, 2018; Schaal and Lapusta, 2019). The
variations in frictional properties can also correlate to heterogeneity in other fault
zone properties like effective normal stress and critical slip weakening distance in a
coupled fashion. Understanding this link between fault zone properties and resulting
slip behavior, feeding into the eventual goal of developing a self-contained, physics-

based model of the faults is crucial to the field of earthquake physics.

In this thesis, our focus is on understanding the mechanics of friction on fault
interfaces with heterogeneous frictional properties and how that translates into the
different slip patterns observed on natural faults. In particular, we investigate the
effect of heterogeneity in fault properties on variability in repeating sequences, the

earthquake initiation process and complexity of sequences and larger-scale ruptures.

1.2 Modeling variability and interaction of repeating earthquake sequences
on heterogeneous faults
Repeating earthquake sequences are groups of events that have similar waveforms,
locations, and magnitudes. They “repeat” with nearly identical locations but have
aperiodic or quasi-periodic recurrence intervals (Vidale et al., 1994; Nadeau et al.,
1994; Nadeau and Johnson, 1998; Ellsworth and Beroza, 1995; Chen et al., 2010).
Due to their known locations and average recurrence times, repeating earthquakes
present a great opportunity to learn more about earthquake source and its physics
(Ellsworth and Dietz, 1990; Vidale et al., 1994; Marone et al., 1995; Nadeau
and Johnson, 1998; Schaff et al., 1998; Nadeau and McEvilly, 1999; Nadeau and
McEvilly, 2004; Biirgmann et al., 2000; Beeler et al., 2001; Sammis and Rice,
2001; Igarashi et al., 2003; Imanishi et al., 2004; Nadeau et al., 2004; Schaft and
Beroza, 2004; Matsubara et al., 2005; Allmann and Shearer, 2007; Chen et al.,
2007; Rubinstein et al., 2012). Since these events occur at depth, it is not possible
to directly observe the physical conditions on the fault segment hosting them. A
widely accepted interpretation is that they occur at separated instability-promoting

patches or asperities, surrounded by a creeping segment that keeps loading them,
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resulting in persistent localized instabilities at nearly identical locations (Chen and
Lapusta, 2009; Lui and Lapusta, 2016; Lui and Lapusta, 2018).

Observations of the repeater sequences indicate that they display significant vari-
ability, both in their moment and recurrence time (Nadeau and Johnson, 1998;
Rubinstein et al., 2012). The variability can be studied by comparing the behavior
to time- and slip-predictable models (Bufe et al., 1977; Shimazaki and Nakata,
1980), which provide simplified physics-based interpretations of earthquake behav-
ior. The slip-predictable model postulates that the final slip—and hence the size—of
an earthquake grows proportionally with the time since the previous earthquake (and
hence the slip can be predicted based on the recurrence time). The time-predictable
model postulates that the time to the next earthquake scales proportionally with the
size of the previous earthquake (and hence the time to next earthquake can be pre-
dicted based on the size of the previous event). An idealized repeater sequence with
a constant event size and constant recurrence time would be both time- and slip-
predictable. However, repeating earthquake sequences are found to substantially

deviate from such simple models (Figure 1.1, Rubinstein et al., 2012).

In this study, we mainly focus on modeling the behavior of the San Francisco
(SF) and Los Angeles (LA) repeating earthquake sequences (Figure 1.2) in the
Parkfield creeping fault segment, which were the targets of the San Andreas Fault
Observatory at Depth (SAFOD) (Hickman et al., 2004) project. Before the 2004
Parkfield earthquake, the SF and LA repeating sequences had occurred with a
recurrence interval of ~ 3 years and the mean moment magnitude of M,, = 2.04
and M,, = 1.84 for the SF and LA repeaters, respectively. The hypocenters of the
repeaters are separated by 60 — 70 m along strike, at similar depths of approximately
3 km (Nadeau and Johnson, 1998; Zoback et al., 2011). The recurrence times of SF
repeaters was 2.89 + 0.35 years (Lui and Lapusta, 2018). The time progression of
moment magnitudes of the LA-SF repeater sequence indicates significant variability
within the sequences (Figure 1.2a). The LA events occurred shortly after the SF
events, pointing to strong interaction between the two sequences, with inter-event
times spanning from few seconds to months. It is important to understand how
much this interaction between the two repeater sources affects their variability of
occurrence. The triggering times of the LA events by the SF events (Figure 1.2b)
span a wide range, from a significant (0.25) to a tiny (10~°) fraction of the recurrence
interval. The time- and slip-predictability plots for the LA-SF repeating sequences

(Figure 1.2c) further visualize their variability.
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Figure 1.1: Repeating sequences from several tectonic regions are neither time- nor
slip-predictable (adapted from Rubinstein et al., 2012). (Left) The recurrence time
interval between events vs. the seismic moment of the preceding event, normalized
by the mean recurrence interval and mean seismic moment, respectively. If the
recurrence interval increases predictably with the moment of the preceding event,
then it would fall onto the pink strip. (Right) The seismic moment of events
vs. the recurrence interval preceding the event, normalized by the mean seismic
moment and recurrence interval, respectively. If the seismic moment (and hence
slip) increases predictably with the time since the previous event, then it would fall
onto the pink strip.

On comparing the predictability plots for the seven LA-SF repeating event pairs
(Figure 1.2¢) to the corresponding plots for a number of repeating sequences taken
together (Figure 1.1), we observe that the overall sense of variability is different.
The predictability plots of the LA and SF events show more variation in seismic
moment then in recurrence time, whereas the variability in recurrence time is seen
to be more substantial than that in the seismic moment for several other sequences
taken together. Since our models simulate the LA and SF repeaters, we aim to
reproduce the variability exhibited by the (limited) data of the SF and LA events.

In order to quantify the variability of a sequence, we use the median and inter-
quartile range (IQR), which are appropriate measures to characterize non-normal
data. We use box plots (Figure 1.3) to provide illustrative insights regarding the
distribution of source parameters. The box plots divide the sorted data into four
sections or quartiles, which approximately contain 25% of the data each. The
median is indicated by the red line that divides the box into two sections. The upper

and lower quartiles, Q; and Qs, enclose the middle 50% of the data and provides
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Figure 1.2: a. Time progression of moment magnitudes of SF-LA repeater se-
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tion between the two sequences, with inter-event times spanning from seconds to
months. (Data from Waldhauser and Schaff (2008)) b. Triggering times for the 7
SF-LA event pairs before 2004, plotted on a log-scale normalized with respect to
the mean recurrence time of SF sequence. The triggering times range from seconds
to months. c. Testing time predictability and slip predictability for 6 recurrence
periods of SF and LA sequences before the 2004 M6 earthquake. The axes are
normalized with respect to the mean quantities. The red and blue rectangles bound
the variability of SF and LA events, respectively.

the IQR measure, IQR = Q3 — Q;. The upper and lower whiskers of the box plot

indicate the range of the non-outlier data.

The box plots of the moment and recurrence times of SF-LA repeaters in Figure

1.3 are normalized with respect to their respective median quantities and illustrate
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Figure 1.3: (Left) Schematic of a typical boxplot, indicating the median, inter-
quartile range, the first (Q1) and second (Q3) quartiles bounding the middle 25% of
data, with the maximum and minimum non-outlier values in the data set indicated
by the whiskers. (Right) Box plots constructed for normalized seismic moment and
recurrence times of SF and LA repeaters show the variability to be higher in the LA
repeaters.

the larger variability in the LA events, especially in moment but also in recurrence
time, when compared to the SF events. This is inferred from the larger box widths,

and hence IQR measures, of the LA box plots, relative to SF events.

Some of the variability can be reproduced by the inherent complexity of slip, even in
models of uniform circular seismogenic patches embedded within uniform creeping
matrix, as the existing models show (Lui and Lapusta, 2016; Lui and Lapusta, 2018).
However, the variability may be pointing to more heterogeneous fault properties.
In natural faults, seismogenic sources are unlikely to be circular and homogeneous.
Indeed, inversions of some of the repeating earthquakes based on the recordings
from the SAFOD array show complex shapes of the resulting final slip (Dreger
et al., 2007). For example, natural fault surfaces have roughness, shown to follow
fractal trends (Candela et al., 2012; Sagy et al., 2007). Mature faults may be

smoother, especially on short length scales relevant to recent fault slip (Sagy et al.,
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2007; Brodsky et al., 2011). However, non-planarity may translate into significant
variations of fault properties, giving rise to complex dynamics (Fang and Dunham,
2013; Tal et al., 2018). Faults can also contain regions with different friction
properties (Igarashi et al., 2003; Kaneko et al., 2010; Fagereng and Sibson, 2010;
Avouac, 2015). Such fault heterogeneity can have significant effects on spatio-
temporal patterns of slip events (Hillers et al., 2006; Hillers et al., 2007; Kaneko
et al., 2010; Skarbek et al., 2012; Dublanchet et al., 2013; Yabe and Ide, 2017; Luo
and Ampuero, 2018).

In this study, we move one step beyond the current models of repeating earthquakes in
the direction of realistic fault heterogeneity by considering more complex shapes of
the source patches and the effect of nearby perturbing sub-critical patches. Our study
is motivated by the ideas in Lui and Lapusta (2016), Lui and Lapusta (2018) that
the observations, specifically the range of triggering times of the LA-SF sequences,
can be used to constrain the properties of the velocity-strengthening region between
the interacting patches, since most of the interaction in those studies was linked
to the stress changes due to postseismic fronts that propagate through the velocity-
strengthening region. However, one can also change the timing of the postseismic
slip arriving at the other patch by changing the distributions of friction properties
between the two patches to be more irregular, which can be accomplished through

more complex shapes of the patches.

We find that realistic degree of variability in repeating sequences and the required
range in the repeater triggering times are both reproduced by models with realistically
complex patch geometries. Similar results are also reproduced by models with
simple source patch geometries embedded in a more compliant creeping region.
Hence the observed variability in moment magnitudes and recurrence times, and the
observed range of triggering times, are not sufficient to constrain the fault properties

even of the relatively geometrically simple models considered in this work.

1.3 Nucleation processes on interfaces with heterogeneous normal stress

Theoretical modeling and laboratory experiments have shown that a period of accel-
erating quasi-static slip precedes dynamic rupture growth (Dieterich, 1992; Ohnaka,
1992; Mikumo, 1992; Rice, 1993; Rubin and Ampuero, 2005; Kaneko et al., 2016).
This process marking the transition from the locked interface to unstable, dynamic
slip is termed earthquake nucleation, and the minimum size of the quasi-statically

slipping zone before the inertially driven rupture is termed the nucleation size (h*).
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The nucleation process on a rate-and-state friction interface with uniform properties
has a relatively well-understood progression of events (Dieterich, 1992; Rice, 1993;
Lapusta et al., 2000). The slip begins at some location on the interface, spreads as
it accelerates, reaches the nucleation length scale, and transitions to a dynamic slip

event.

But fault interfaces are rarely homogeneous. Anderson (1951) recognized that
natural fault surfaces are not planar, but irregular at all scales. Early measurements
by Brown and Scholz (1985), Power et al. (1988), and Lee and Bruhn (1996)
concluded that natural fault surfaces are self-similar fractals. Many recent studies
have provided high resolution measurements of fault roughness, using a variety of
techniques including analysis of surface traces at the largest scales, over orders of
magnitude in length (Renard et al., 2006; Candela et al., 2009). Mature faults may
be much smoother, especially on short length scales relevant to recent fault slip
(Sagy et al., 2007; Brodsky et al., 2011). At larger scales however, non-planarity
may translate into significant variations of compressive stress across the fault, giving

rise to complex dynamics (Fang and Dunham, 2013; Tal et al., 2018).

Another source of evidence for heterogeneity in fault properties is the abundant
field and laboratory observations showing significant spatio-temporal complexity in
slip behavior on fault interfaces, ranging from stable slip, aseismic transients, small
repeating events, foreshock sequences to large earthquakes (McGuire et al., 2005;
Bouchonetal., 2011; Katoetal.,2012; Bouchon etal., 2013; McLaskey and Kilgore,
2013; McLaskey and Kilgore, 2013; McLaskey and Lockner, 2014; Brodsky and
Lay, 2014; Avouac, 2015; Biirgmann, 2018; Michel et al., 2019). While part of
that could be due to inherent complexity of slip even in simple geometries, due to a
range of coupled and highly nonlinear fault processes, as the existing models show
(Lui and Lapusta, 2016; Segall et al., 2010), such behavior may also be pointing to
heterogeneity in fault properties (Hillers et al., 2006; Hillers et al., 2007; Kaneko
and Lapusta, 2008; Chen and Lapusta, 2009; Avouac, 2015; Lui and Lapusta,
2016; Jiang and Lapusta, 2016; Lui and Lapusta, 2018; Schaal and Lapusta, 2019).
Understanding the implications of heterogeneity in fault properties on initiation of
earthquake slip is an important open problem which can be important in seismic

hazard assessment.

On an interface with heterogeneous distribution of fault properties, the earthquake
nucleation process is not as straightforward as the one on a uniform interface. For

example, in the study of Schaal and Lapusta (2019), the interface contained several
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strong round patches of high normal stress. As the quasi-static slip of the nucleation
process surrounds such a patch, it can break into a dynamic event, resulting in the
rupture starting from these local patches. These events either arrest quickly and
remain small-scale events or, in the presence of favorable fault conditions, grow
into larger-scale events that nucleate from scales much lower than that the mean
nucleation size estimate corresponding to the background fault properties. There
are multiple open questions in earthquake science regarding the nucleation processes
and slip behavior on faults hosting such small-scale events. Do smaller earthquakes
and larger earthquakes nucleate similarly? Are larger earthquakes just smaller events
that ran away? Can the smaller events be recognized as foreshocks of the subsequent

larger events?

On natural faults, many large earthquakes are preceded by foreshocks (e.g., Jones
and Molnar, 1976; Jones and Molnar, 1979; Abercrombie and Mori, 1996; Dodge
et al., 1995; Dodge et al., 1996; Zanzerkia et al., 2003; McGuire et al., 2005;
Bouchon et al., 2011; Bouchon et al., 2013; Kato et al., 2012; Brodsky and Lay,
2014), which are defined as smaller seismic events that occur within a certain dis-
tance in time and space to the main event. The physical mechanisms for foreshocks
as well as their potential role in the nucleation of larger events are currently open
questions. One point of view is that foreshocks are due to clustering of microseis-
micity, which occasionally results in a much larger event, as manifested by Epidemic
Type Aftershock Sequence (ETAS) models (e.g., Helmstetter et al., 2003). In this
interpretation, the largest event is simply an aftershock of foreshocks, and there is
no special relationship between foreshocks and the nucleation process of a larger
event. An alternative explanation is that foreshocks occur on fault patches loaded
by the surrounding quasi-static (slow) slip, potentially signifying the nucleation of
an upcoming large event (e.g., Kanamori and Stewart (1976) and Jones and Molnar
(1979)). Detailed studies in several areas have indeed shown that foreshocks require
additional factors beyond typical aftershock interactions. For example, Dodge et al.
(1995) investigated the foreshock sequence before the 1992 M 7.3 Landers earth-
quake and established that the foreshocks were too far to trigger each other by static
stress changes, the typical explanation for aftershock interactions; they hypothesized
that the foreshocks were driven by aseismic slip interacting with heterogeneities.
McGuire et al. (2005) investigated foreshock and aftershock sequences on the East
Pacific Rise transform faults, determined that the foreshocks are too numerous in
comparison with aftershocks to be explained by the same ETAS model, and con-

cluded that an additional factor is needed to trigger the foreshocks, such as slow
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slip. Bouchon et al. (2013) analyzed foreshocks before large (M > 6.5) events from

well-instrumented areas and found that there is significantly more seismicity before
interplate events than before intraplate ones. They speculate that the reason for this
difference is a slow nucleation process in the case of interplate events that triggers
the foreshocks. Furthermore, observations from the 2011 M 9.0 Tohoku-OKki event
(Kato et al., 2012) and 2014 M 8.1 earthquake in north Chile (Brodsky and Lay,
2014) reveal foreshock sequences that propagate along the fault, consistent with
being triggered by slow slip; in the Tohoku-Oki case, the slow-slip explanation is
further supported by the presence of repeating earthquakes among the foreshocks.
The possibility of large-scale slow slip in areas where large earthquakes nucleate
is further supported by the observations of slow slip transients (e.g., Segall et al.

(2010) and references therein).
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Figure 1.4: Schematics of slip evolution on the lab fault (from McLaskey and
Kilgore, 2013). Slow earthquake nucleation (blue) that eventually grows into dy-
namic rupture (shaded blue) triggers microseismicity (circles). Presumably, similar
processes occur during foreshock sequences on real faults, just on a different scale.

The nature of fault patches that could produce foreshocks can be glimpsed from
unique laboratory experiments of earthquake nucleation in a meter-scale slab of
granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014). The experiments
produce quasi-static accelerating slip (nucleation process) that grows into dynamic
rupture. Significantly, smaller seismically detectable events—foreshocks—occur in
the nucleation region, highlighting the potential role of heterogeneity in earthquake
nucleation (Figure 1.4). The foreshocks observed in the experiment occur in loca-
tions that are consistent from one sample-spanning event to another, suggesting that

they occur on persistent fault patches with properties that are different from the rest



11

of the sample. The study of Schaal and Lapusta (2019) suggested that patches of

elevated normal stress can explain many aspects of the experimental observations.

Here, we explore the evolution of complex nucleation processes on fault interfaces
with systematically increasing heterogeneity in normal stress. We choose to study
the heterogeneity in normal stress for two reasons. First, significant variations in
normal stress are a natural outcome of even slight local fault nonplanarity, so they
are clearly present on natural faults. Second, this ubiquitous heterogeneity results
in two competing effects on fault slip. On the one hand, the more compressed
fault spots have higher shear resistance, for the same friction properties, so they
are “stronger,” while the less compressed spots are “weaker” and should promote
slip. On the other hand, the nucleation sizes of unstable frictional slip that leads to
dynamic rupture are inversely proportional to the normal stress (e.g., Equation 2.3),
and hence the more compressed spots are more prone to instability and dynamic
events. Together, these properties result in fascinating slip dynamics that we explore
here. We study the transition in the style of nucleation of large-scale events and
occurrence of small-scale events as we go from a uniform interface to an interface

with strong normal-stress heterogeneities.

1.4 Effect of heterogeneous fault property distributions on complexity of se-
quences and evolution of dynamic ruptures

An important step in the path to constrain properties of natural faults is to quantify

their heterogeneity by calibrating model outcomes with observations. To that end,

we study how the heterogeneity in fault properties affects several characteristics

of fault behavior that are observable, such as distribution of dynamic event sizes,

stress drops, and moment-rate evolution (also called source-time functions) of the

resulting dynamic events.

The distribution of dynamic event sizes on natural faults is typically described by
the frequency-magnitude distribution of seismicity, with earthquake ruptures binned
into magnitude ranges, with each bin characterized by the number of earthquakes of
that size or larger. Field observations of the frequency-magnitude distribution are
typically analyzed in the framework of the Gutenberg-Richter scaling law. The law

is empirically expressed as

log(N,) = -bM,, + a, (1.1)
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where N, is the cumulative number of earthquakes with moment magnitude above
M,, and b and a being fit parameters (Gutenberg and Richter, 1944; Gutenberg,
2013). Using the relationship between moment magnitude M,, and seismic moment
MO’

2
M, = 3[log o(M,) = 9.1], (1.2)

we can rewrite the GR scaling law in terms of seismic moment:

-2b ,
log(N,) = Tloglo(M(,) +d. (1.3)

The b-value relates the number of large events to small events and generally takes the
value of about one for large enough regions, such as Northern or Southern California
(Field et al., 2014). Whether the scaling applies to individual fault segments and/or
their immediate surroundings is still being investigated (Wesnousky, 1994; Ishibe
and Shimazaki, 2012; Kagan etal., 2012; Page and Felzer, 2015; Page and Elst, 2018;
Field et al., 2017). At the very least, the b-value can have substantial variability for
smaller regions, ranging from 0.5 to 1.5 for faults in California (Schorlemmer and
Wiemer, 2005; Tormann et al., 2014). Furthermore, some mature plate-boundary
faults that host large destructive earthquakes, such as the Cholame and Carrizo
segments of the San Andreas Fault, may have qualitatively different distributions
of seismic events, with pronounced paucity of small and intermediate-sized events
(Sieh, 1978; Wesnousky, 1994; Bouchon and Karabulut, 2008; Hauksson et al.,
2012; Jiang and Lapusta, 2016; Michailos et al., 2019).

Complexity of dynamic earthquake rupture is often quantified in terms of the time
history of their moment rate, often called source-time functions (STFs). The moment

rate over a region is calculated according to the expression:

M:y/vm (1.4)
A

where u is the shear modulus, A is the rupture area and V is the slip velocity over
incremental area dA.

Two works analyzing source-time functions from natural earthquakes motivate our

study of source-time functions in this work. The first one is the work by Ellsworth
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and Beroza (1995) which identifies a non-linear, non-monotonic initial phase pre-
ceding the self-accelerating rupture in velocity seismograms (Figure 1.5). This
controversial finding is explained by reluctant dynamic rupture propagation over the
region that previously slipped quasi-statically and/or in foreshock events, as occurs
for some events in our models. The second work is by Meier et al. (2017) where
the authors analyze the STF catalogs of large subduction earthquakes, primarily
from Ye et al. (2016), to find overarching patterns in STFs across event magnitude
ranges (Figure 1.6). The individual STFs in that study are time-normalized by rup-
ture duration and the moment rate prefactored such that the area under the curve
is normalized to one. The STFs are binned into magnitude ranges and a median
STF is calculated for each magnitude range. The median STFs when plotted in this
normalized scale exhibits a near-triangular shape across magnitude ranges pointing
to a typical temporal pattern (Figure 1.6). The peak moment rate in these median

normalized STFs is reached at 35% — 55% of the rupture duration.

Motivated by these observations, we compute the frequency-magnitude distributions
of our events and the source-time functions of the resulting dynamic events, focusing

on how they are affected by increasing fault heterogeneity.
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Figure 1.5: A representative set of velocity seismograms used in the analysis of
Ellsworth and Beroza (1995) where the reluctant initial phase, dubbed “seismic

nucleation” is observed (Reproduced with permission from Ellsworth and Beroza
(1995)).
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Chapter 2

MODELING VARIABILITY AND INTERACTION OF
REPEATING EARTHQUAKE SEQUENCES ON
RATE-AND-STATE FAULTS: REALISTIC SHAPES OF SOURCE
PATCHES VS. PROPERTIES OF THE CREEPING REGION

Observations indicate that even repeating earthquake sequences display significant
variability in their moment and recurrence time. In this chapter, we focus on
how heterogeneity in fault properties affects this variability in repeating sequences
by considering a specific example of the SF-LA repeaters in Parkfield segment.
This chapter begins with a description the rate-and-state friction law governing the
fault slip which governs the fault interfaces in all the simulations described in this
thesis. The chapter continues on to present the general methodology we use for
generating heterogeneous fractal-like fields in all the simulations in the thesis. The
rest of the chapter describes various model configurations considered in the study
of repeaters, our simulations of the slip behavior of single source patch models and
double source patch models, their comparison with observations, and the effect of

small-scale heterogeneity on the slip behavior.

2.1 Methodology

Fault friction

Developed to match laboratory observations from friction experiments, rate-and-
state friction laws have been successful in capturing the main features of the fault
slip, including slow slip during interseismic periods, earthquake rupture events, and
post-seismic slip (Dieterich, 2007; Chen and Lapusta, 2009; Jiang and Lapusta,
2016; Kaneko and Lapusta, 2008; Lui and Lapusta, 2016; Lui and Lapusta, 2018).
In these laws, the coefficient of friction is logarithmically dependent on the slip rate

and its history, represented by the state variable 8. The form used in this study is
Dieterich (1979) and Ruina (1983):

V.0
Drgs

Tr=0f=0 f*+aln(¥)+bln( ), (2.1)

where 7 is the frictional resistance, ¢ is the effective normal stress, f is a reference

friction coefficient, V; is the reference velocity corresponding to f;, Dggs is the rate-
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and-state characteristic slip distance, and a and b are rate-and-state parameters of

the order 0.01. The state 8 of the interface evolves according to the aging law:

o V.6
dr Bl DRS.

(2.2)

At steady state, 6 = 0, O = % and the friction coefficient f reduces to its steady-
state value fgs = (fi + (a — b) * lnv%). The sign of (a — b) determines if the friction
is instability-promoting or instability-suppressing. When (a — b) > 0, the steady-
state friction coefficient increases with increasing sliding velocity, and the system
is unconditionally stable. When (a — b) < 0, the steady-state friction coefficient
decreases with increasing sliding velocity and the fault can host a spontaneously
accelerating instability if it is large enough. These two cases are termed velocity-

strengthening (VS) and velocity-weakening (VW) behavior, respectively.

A region being velocity-weakening (VW) is a necessary condition for instability to
initiate; it is, however, not sufficient. The size of the VW region has to be larger
than the nucleation size h*. There are several theoretical estimates of the nucleation
size that are derived from stability analyses. In our simulations, we make use of the
3-D estimate (Rubin and Ampuero, 2005; Chen and Lapusta, 2009):

_mpuDgs b

h* = .
2 7 (a-b)?

(2.3)

Fault model

We study a planar fault interface at y = 0 governed by the rate-and-state friction
law and embedded between two isotropic, linear elastic half-spaces, which are
pre-stressed and being sheared (Figure 2.1). The term "slip" (6) indicates the
magnitude of the discontinuity in the interface-parallel displacement vector between
the two half spaces and slip velocity (also called “slip rate”) is the magnitude
of the time derivative of the fault-parallel displacement vector. The interface is
under compression at all times and there is no discontinuity in the interface-normal

displacement.

Tectonic loading is simulated by steady sliding at long-term slip velocity V,,; in the
direction x assumed around the fault region of interest where friction is applied
(Figure 2.1). Hence most of the slip over the frictional portion of the fault occurs
in the direction x although transient small component of slip can be in the direction

of z, e.g., near the corners of the fault region.



18

A fully dynamic approach (Noda and Lapusta, 2010) is used to solve the resulting
elastodynamic problem at every time step, with friction as a nonlinear boundary
condition. The numerical simulations produce the evolution of slip and slip velocity

over the fault, which can be then compared with experimental and/or natural fault

ey 0/

6(x,2),V(x,z)

observations.

Figure 2.1: A model of a planar fault interface embedded between two isotropic,
linear elastic half-spaces, which are pre-stressed and being sheared. The loading
with the applied slip velocity V,; outside of the frictional region simulates a case
where long-term relative plate velocity of V), is driving the fault motion, resulting
in slip with such slip rate everywhere on the fault except in the frictional region.
The spectral approach used in the numerical simulations of the problem periodically
repeat the fault domain of the frictional region and the surrounding loading region,
with the repeat intervals of A, and A, respectively.

The repeater sources are modeled as VW patches in the surrounding VS medium.
In previous studies (Lui and Lapusta, 2016; Lui and Lapusta, 2018), the sources
were modeled as circular VW patches. In this work, we aim to study the effect of
more realistic patterns of VW and VS properties. In our models, we consider an
infinite interface created by a periodically repeated domain. In each of these repeated
domains, there is a non-frictional boundary region where the plate loading is applied.
It surrounds a VS region that transmits this plate loading to the inner domain of
interest, where we incorporate heterogeneities in the form of interlaced VW and
VS patches (Figure 2.2a). In all figures, the spatial dimensions are normalized by
the nucleation size, h*, of the VW properties, which corresponds to 32 m for the
parameter values used in this study. As can be observed in Figure 2.2a, the size
of the domain of interest with interlaced VW and VS patches is designed to be
4h* x4h*, the size of VS area surrounding it is 84" X 8™ and the total model domain
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Figure 2.2: a. Representative model domain used in the simulations, normalized by
the estimate of the nucleation size for the VW region (yellow), A*. The domain of
interest containing the heterogeneous property distribution is surrounded by load-
transmitting VS region (blue), around which steady slip at V;,,4 is applied (green)
to simulate the steady creep of the larger surrounding region. b. (Left) A realization
of the random field with two dominant areas that can serve as the source patches for
the SF and LA sequences. The random field is characterized by the Hurst constant,
H, that determines the spectral decay at high frequencies and a,,,,, which modulates
the largest feature sizes; we choose H = 1 (self-similar). a,,,, = 64 is chosen to
obtain the feature sizes comparable to h*, given the computational restriction on
the overall size of the heterogeneous domain (set to 44*). (Right) Power spectral
density of the fractal field. The dashed blue line indicates the corner wave number,
k., beyond which the spectrum shows power law decay.
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is approximately 124" X 12h™.

Parameter Symbol | Value
Rate-and-state parameters in VW regions ayw, byw | 0.01, 0.014
Rate-and-state parameters in VS regions ays, bys | 0.016, 0.006
Effective normal stress in VS and VW regions ovs, oyw | 120 MPa, 300 MPa
Characteristic slip distance in VW and VS regions | Dgg 238 um, 238 um
Loading velocity Vi 12.75 mm yr~!
Reference slip velocity V* 107 ms~!
Reference friction coefficient in VW and VS region | fiq, fyyy, | 0.15, 0.6

Shear wave speed Cy 3 km s7!

Shear modulus u 30 GPa
Poisson’s ratio v 0.25

Table 2.1: Model parameters used in our simulations

Fault parameters used in all models are motivated by laboratory observations, field
measurements, or previous studies, and they are listed in Table 2.1. The loading
velocity is 12.75 mm yr~!, which is less than 23 mm yr~! used in Lui and Lapusta
(2016; 2018), higher than the 4.5 mm yr‘1 used in Chen and Lapusta (2009) and
within the range 4-35 mm yr~! suggested for the repeater-hosting portion of the San
Andreas Fault by Harris and Segall (1987). The effective normal stress of 120 MPa
has been inferred by SAFOD measurements (Hickman et al., 2004; Imanishi and
Ellsworth, 2006; Zoback et al., 2010; Zoback et al., 2011), and we use it for the
VS area. For the VW patches, which we envision as flattened asperities, we use
the higher value of 300 MPa, following the work of Lui and Lapusta (2018); the
study demonstrated that either such higher values of the effective normal stress or
enhanced dynamic weakening is needed on the seismogenic patches to produce the
observed high stress drops (Dreger et al., 2007; Abercrombie, 2014). The reference
friction on the VS areas in our models are prescribed a low value of 0.15, following
experimental observations (Lockner et al., 2011; Carpenter et al., 2011) and field
studies (Hickman et al., 2004; Chang et al., 2013). For the VW areas, a higher
reference friction coefficient value of 0.6 is used. The other resolution criterion of
importance, is the cohesive (breakdown) length R,, which is the distance behind
the rupture tip where slip weakening occurs. The chosen cell size resolves R, by at
least 3 cells, a borderline but adequate resolution for dynamic rupture as suggested
by the study of Day et al. (2005).

We use a velocity threshold to identify the beginning and end of earthquake rupture

events. If the maximum velocity at any point on the fault exceeds the velocity
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threshold, the beginning of an earthquake event is recorded. And if all points
reach slip rates below the threshold, the event is considered to end. An analytical
expression for slip rates at which a critical wavelength increases by a factor of \/ZZ)

in a frictional stability problem with inertial effects (Rice et al., 2001) is given by:

2+\Jayw(byw — ayw)ovw
Vin = ¢ \/ r 5 (24)

where ayw, byw are the rate-and-state parameters in the velocity-weakening region,
oyw is the normal stress in the velocity-weakening region, u is the shear modulus
and c; is the shear wave speed. For the model parameters used in this study, V;, is
0.378 m/s, indicating that inertial effects are clearly important at such slip rates. The
inertial effects, however, can be important at velocities lower than this threshold.
We choose the velocity threshold of Vz,, = 0.06 m/s, which is six times smaller
than Vj,. This threshold is similar to the typically used value of 0.1 m/s in other

numerical studies (Lin and Lapusta, 2018).

Generation of heterogeneous property distributions

Finite-fault source inversions have revealed the complexity in earthquake slip distri-
butions which can be characterized stochastically, using a technique called spatial
random field modeling (Mai and Beroza, 2002). In this work, we use the same
technique to generate fractal random fields for describing heterogeneity in fault fric-
tion. Using fractal fields is motivated by the fact that physical properties on faults,
including roughness, are observed to follow fractal trends (Candela et al., 2012;
Sagy et al., 2007).

A 2D fractal random field is described by the power spectral density (PSD) in the
frequency domain (Voss, 1988):

C

P(k) = K2(+H)’

(2.5)

where k is a dimensionless wave number, C is a constant, and H is the Hurst
exponent. H controls the decay of the PSD at high frequencies, and it is taken
to be unity (self-similar distribution) in this study. The PSD decays with a power
law beyond a corner wave number, k., which is related to the characteristic source
dimension (Figure 2.2b). k. and H are the two parameters that characterize the
field. For a given set of parameters, we can generate infinitely many realizations of

the random distributions, by convolving with differently seeded random matrices.
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Amongst these, we choose the particular realization shown in Figure 2.2b as a
starting point, due to the serendipitous existence of two dominant high-intensity
patches, which could translate into the two repeater sources, when converted into
frictional property distribution.

We translate the random field values into a pattern of friction properties. The spatial
random field is normalized between -1 and 1. We select a threshold between -1
and 1, above/below which a cell acquires the VW/VS properties from Table 2.1,
respectively. By varying this threshold, one generates heterogeneous frictional
property distributions of varying area fractions of VW patches in a VS domain. For
example, a distribution with the VW area fraction of 50% can be generated using

the threshold value of 0.0212 for the particular distribution we use (Figure 2.3a).

e

8

2 -1 0 1 2 -2 -1 1 2

0

x/h* x/h*
Figure 2.3: (a) Heterogeneous distribution of VW (yellow) and VS (blue) frictional
properties obtained from the random field in Figure 4. (b) The distribution with
only two main irregular patches and all other perturbing features removed. (c-d)
Constructing analogous fault model with circular patches by fixing centroids of the
two main patches and conserving their areas. (e) Fault model with circular patches
of smaller radii that has similar moment magnitudes to the model with irregular
patches from (a-b). (f) Fault model with circular patches and smaller perturbing
patches from (a).

Note that the sizes of the two main patches in Figure 2.3a are of the order of 4*. This

constraint ensures that there is significant aseismic slip at the repeater locations,
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which is essential for obtaining reasonable source properties (Lui and Lapusta,
2018).

2.2 Models studied

We consider several factors that can potentially influence the variability of the slip
patterns. First, the shape of the source patch can add complexity of slip. The size
of the source patch with respect to the nucleation size determines the transition
between stable slip and dynamic events. Moreover, keeping the size of source
patches close to 2" produces substantial variability of slip (Lui and Lapusta, 2018).
Interaction between two repeating sequences may play a major part in the variability.
The properties of the surrounding velocity-strengthening region affect the extent to
which the seismic slip spreads out and determines the speed of the post-seismic slip
front, thereby affecting the interaction between nearby patches (Lui and Lapusta,
2016). In addition, the existence of sub-critical patches in the vicinity perturbs the
slip by creating aseismic transients of their own. The effects of one factor can be
coupled with another factor, e.g. changing the size of the patches can bring them

closer to each other, thereby affecting the interaction between them.

We start with the pattern of VW and VS friction properties constructed from a fractal
field as described in Section 2.3 (Figure 2.2b). Two dominating patches exist in this
distribution and act as sources for the simulated SF and LA sequences (Figure 2.3a).

This is our base model.

The construction and naming of the other models is as follows (Table 2.2). The
source patches can be circular (C) or fractal (F). The VS properties are chosen from
(a — b)ys = 0.01,0.004,0.002 and labeled 1,2,3. The surrounding creeping region
can contain the rest of the fractal field (and hence perturbing patches) or not (labeled
p and n). Finally, the models can contain a single source patch (S) or two patches
patches (D). Our base model is then labeled as Flp-D (Figure 2.3a). To obtain
model F1n-D, we take the F1p-D model, use image processing tools to identify the
two largest patches, which can act as sources with complex shapes, and remove the
rest of the VW features (Figure 2.3b).

In order to develop a model with circular patches, we find the areas and centroids
of the main two patches identified in FIn-D. By conserving areas, we construct
equivalent circular patches at the centroid locations (Figure 2.3c, d), with radii

calculated as follows:
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A A
rp1 = A| ok rpy = A 2, (2.6)
T T

where Apj, Apy are the areas of left and right circular patches and rp;, rpy are the

corresponding calculated radii.

However, the moment magnitude of events that occur on such circular patches are
larger than for the base fractal model. This is likely because the effective rupture-
able area of the fractal patches in Fln-D is smaller than the total numerical area
of all the cells in the patches, due to their complex geometry. The area utilized
in rupture nucleation and propagation may not include the narrow extremities of
the complex patches. Therefore, in order to conserve moment magnitude, we use
circular patches of smaller area, in model Cln-D (Figure 2.3e). Patch diameters of
dr = 1.78h" and dg = 1.42h* allow the double circular source model (Figure 2.3e)
to host events with mean moment magnitudes approximately matching the events in

our complex patch source models.

The perturbing patches from the model of Figure 2.3a are used to add a perturbing
effect on the circular source patches (Figure 2.3f).

2.3 Response of a representative two-patch model

In order to visualize the resulting slip behavior, let us consider slip velocity snapshots
from slip simulations in a representative model (Figure 2.3a). A typical interaction
between the two patches, obtained as a part of a long-term simulation of slip,
proceeds as follows. A fast-slipping event nucleates in the bigger, left patch (Figure
2.4a-b); we assign time of zero to this snapshot for convenience. The post-seismic
slip front triggers the right patch and an event is nucleated there about an hour later
(Figure 2.4c-d). The perturbing patches and the smaller, right patch host aseismic
transients (Figure 2.4e-h) in the ensuing interseismic period, and transfer stress onto
the left patch, which subsequently nucleates again, almost 3 years after the previous
event on this patch (Figure 2.4i-j). The post-seismic slip front triggers the right patch
again, this time in 7 minutes (Figure 2.4k-1) and so on. The sequence of triggering
of the right patch by the left patch in the top and bottom rows of Figure 2.4 is similar,
yet the process is variable in terms of the location of nucleation and the triggering
times. The slip behavior possesses the qualitative—and quantitative—features of

repeating sequences that we aim to study in this work.

Now that we have established the features we seek to reproduce, the effect of different
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Model name

Description

Cln-S Single circular patch, perturbing patches absent, (a — b)ys = 0.01
Cln-S,7T20% Single circular patch, perturbing patches absent, (a — b)ys = 0.01
C3n-3S Single circular patch, perturbing patches absent, (a — b)ys = 0.002
Fln-S Single fractal patch, perturbing patches absent, (a — b)ys = 0.01
Fln-S, 7T 20% Single fractal patch, perturbing patches absent , (a — b)ys = 0.01
F3n-S Single fractal patch, perturbing patches absent , (a — b)ys = 0.002
Cln-D Double circular patches, perturbing patches absent , (a — b)ys = 0.01
Clp-D Double circular patches, perturbing patches present , (a — b)ys = 0.01
Fin-D Double fractal patches, perturbing patches absent , (a — b)ys = 0.01
Fl1p — D (Base) Double fractal patches, perturbing patches present , (a — b)ys = 0.01
C2n-D Double circular patches, perturbing patches absent , (a — b)ys = 0.004
C3n-D Double circular patches, perturbing patches absent , (a — b)ys = 0.002

Flp — D, (amin = 4)

Double fractal patches, perturbing patches present , (a — b)ys = 0.01

Double fractal patches, perturbing patches present , (a — b)ys = 0.01

Double fractal patches, perturbing patches present , (a — b)ys = 0.01

Flp — D, (ain = 32)

Double fractal patches, perturbing patches present , (a — b)ys = 0.01

Flp — D, (apin = 48)

Double fractal patches, perturbing patches present , (a — b)ys = 0.01

Flp — D, (amin = 55)

Double fractal patches, perturbing patches present , (a — b)ys = 0.01

Flp — D, (amin = 60)

Double fractal patches, perturbing patches present , (a — b)ys = 0.01

Flp — D, (amin = 63)

Double fractal patches, perturbing patches present , (a — b)ys = 0.01

Double fractal patches, perturbing patches absent , (a — b)ys = 0.01

Table 2.2: Fault models studied

factors on the variability of repeating event sequences can be systematically studied,

from single-patch models to double-patch models.

All the source property values from the simulations are compiled in Tables 2.3, 2.4

and can be used for comparing model behaviors quantitatively.
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Figure 2.4: Slip velocity snapshots from the representative model Flp-D. The
top row illustrates a typical triggering sequence where the post-seismic slip from
the left-patch event triggers an event in the right patch. The middle row shows
the subsequent interseismic period, marked by aseismic transients. The third row
indicates the following triggering sequence in which the left patch event triggers the
right patch yet again, albeit with a shorter triggering time and at a different location.

2.4 Single-Patch Studies

We start with simulations of a single VW patch to understand the variability of
an isolated repeater sequence. By observing the behavior of the single patch, we
can study the effect of shape and size of the patch on the slip behavior, without

incorporating effects of interaction between the patches.

Effect of shape and size of the source
Adding complexity to shape of the source patch brings in complexity in slip patterns.
Using single patch models with circular and fractal sources (Figure 2.5a), we can

observe the changes in slip patterns produced. The fractal and circular patch sizes
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are chosen to have similar source properties. It is interesting to note that the fractal
patch models have higher mean moment, but a smaller recurrence interval when
compared to the circular patch models (Figure 2.5b), which indicates that a true
analogy in source properties is hard to achieve, once the shapes of the sources are
different.

Models F1n-S and Cln-S exhibit similar variability in slip behavior (Table 2.4,
Figure 2.6). As the patch sizes are increased, the effect of the complex patch shape
on variability in slip behavior is, in general, amplified, especially for the recurrence
time. When the patch shape is complex, we are introducing different possible
nucleation sites and pathways for the rupture to extend into during propagation,
owing to the asymmetry and irregular aspect ratio. Based on the stress distribution,
the rupture can meander into the many different asymmetric pathways, resulting in
more variable event sizes and recurrence times. For a smaller seismogenic patch,
even if the event nucleates somewhere else in the patch due to the asymmetry of
the complex shape, the entire patch still is ruptured. But for a bigger patch, the
portions of the patch that get ruptured for different nucleation sites could potentially
be different (Figure 2.7), leading to more variability in recurrence times and moment

magnitude.

Let us use the results for patches of different sizes to consider the scaling between 7.
and M, in the single-patch models (Figure 2.8). The observed recurrence times in
Parkfield repeating sequences have been well approximated by Ty ~ 7 x 10*M9-17,
with 7., measured in secs and M, measured in dyne-cm (Nadeau angi Johnson,
1998; Chen and Lapusta, 2009). The scaling is different from 7,.. «< M, , obtained
from a theoretical model of a circular source exclusively undergoing seismic slip.
This difference in scaling exponent can be due to the presence of significant aseismic
slip at the source locations (Chen and Lapusta, 2009; Lui and Lapusta, 2016), the
fraction of which increases with reducing patch size, a factor not accounted for in
the theoretical expression. In the work of Chen and Lapusta (2009), models of
repeaters with At ~ 3 MPa and V),; ~ 4.5 mm/yr are seen to reproduce the scaling
relationship, as well as the absolute magnitudes of recurrence times. In Lui and
Lapusta (2016; 2018), higher stress drops At ~ 25 — 30 MPa are seen to recover the
scaling and the absolute recurrence time magnitudes even with the higher loading
rate of V,; ® 23 mm/yr. In this work, we are considering models in between, with
At =~ 20 MPa and V,,; 13 mm/yr, and are able to reproduce the scaling behavior
quantitatively and qualitatively (Figure 2.8).
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Figure 2.5: a. Single-patch models with different patch sizes: (top row, left to right)
Cln-S Scaled down 20 %, C1n-S, Cln-S Scaled up 20%, (bottom row, left to right)
F1n-S Scaled down 20%, F1n-S, F1n-S Scaled up 20% b. Comparison of moment
and recurrence time of a single circular patch model (C1n-S) with a single fractal
patch model (FIn-S). Cln-S has a lower mean recurrence time but higher mean
seismic moment, implying that a complete analogy in properties between the two
patch shapes might be difficult to produce.
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Figure 2.6: Box plots of the single-patch models comparing their seismic moment
and recurrence time. The variability of moment and recurrence time generally
increases with the coupled effect of a complex patch shape and increased patch size.
Models with less strengthening region around the patches have larger variability
(C3n-S and F3n-S vs. ClIn-S and F1n-S).
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Figure 2.7: Slip velocity snapshots from the model FIn-S (with patch size larger by
25% ) for two different dynamic events (top and bottom rows) illustrating the effect
that the patch shape has on the nucleation and propagation of dynamic rupture.
For a large patch with complex shape, patch can be ruptured differently—and with
different area covered—in subsequent events.
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Figure 2.8: a. Scaling between the recurrence time of events in each repeating
sequence Tyec vs. their seismic moment M, for single-patch circular models (circular
markers), single patch fractal models (diamond markers), and left and right patch
events from the base model (Flp-D) (star markers). b. The scaling with the line fit
for the mean recurrence times of each model. Results match the scaling observed
for repeaters of the creeping section next to Parkfield (black line), approximated
by the expression Tiec = 7 X 10*°M,'7 (Chen and Lapusta, 2009). The theoretical
scaling relation for the constant stress drops of 20 MPa is shown by the red line for
comparison.
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Effect of properties in the VS region

The properties of the VS region affect the speed of the post-seismic front and thereby
affect patch interactions (Lui and Lapusta, 2016). Let us compare Model C1n-S
with (a — b)ys = 0.01 to Model C3n-S with (a — b)ys = 0.002. The variation in
recurrence time and moment is higher in C3n-S compared to Cln-S (Figure 2.6).
Less velocity strengthening in the surrounding VS region results can be interpreted
as an increase in the effective size of the patch, since the seismic slip can penetrate
more into the VS region, which increases the net effective rupture area. As discussed
in Section 2.4, an increase in the effective size of the patch loosens the size constraint
on the events and results in a larger variability of event sizes. The same study is also
conducted for a single fractal patch, more specifically, for the left patch in the base
fractal distribution. A slight increase in the variation in moment and recurrence
time are observed (Table 2.4).

2.5 Double-Patch Studies

Simulations with two patches allow us to study how they interact with each other
and the effect of the interaction on variability. The presence of an interacting patch

visibly increases the variability of slip behavior (Figure 2.9).

5 Time Predictability, FIn-S Time Predictability, Fin-D
 Left Patch . .Left Patch

1.5 4 1.5 . /

Tafter/Tafter
Tafter/Tafter
—

]
N
R,

0.5 g 0.5 g

MO/MO MO/MO

Figure 2.9: Comparing the time-predictability plots of models with single and
double fractal patches (F1n-S and F1n-D) shows the increase in variability of slip
behavior due to interaction between the patches.
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Effect of shape of the source patches

In models with two source patches (Figure 2.10), interaction effects are coupled
with the source shape effects. In particular, the smaller right fractal patch does not
host as many events, as it did as a circular patch with events of similar moments.
This could be because of the different aspect ratio, owing to the complex shape. The
pinched section in the middle is of the order of the nucleation size (k™) estimate,

thereby constraining the events.

The time- and slip-predictability plots (Figure 2.11) show the increase in variability
produced by incorporating more complexity in patch shape. The spread of data
points in the predictability plots for the model with fractal patch shapes, F1n-D, is
more substantial and more closely represents the data. The data points of model
F1n-D exceed the confines of the bounding data rectangles, which could be attributed
to the longer repeater sequence (~ 50 events) when compared to the SF-LA repeater
sequence (14 events). This increase in variability is quantitatively described by
the IQR measures given in Table 2.4. The variability in moment of the left patch
increases by about 60% with the change from circular to fractal shape. The increase
in recurrence time variability of the left patch by nearly 6 times is even more drastic
(Figure 2.12).
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Figure 2.10: Fault models Cln-D, Clp-D, Fln-D, Flp-D for the double-patch
simulations.
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Figure 2.11: Slip-time predictability plots for the double-patch models. The data
points in the case of the circular-patch model (Cln-D) are clustered, whereas the
addition of sub-critical perturbing patches increases the spread of data points (C1p-
D). The fractal source shape (F1n-D) significantly increases the scatter, which is
further enhanced by addition of perturbing patches (Fl1p-D). The red and blue
rectangles bounding the time- and slip-predictability data points of the SF-LA event
pairs are superposed for comparison to models.
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Figure 2.12: Comparison of moment and recurrence time box plots from the left-
patch events in double-patch simulations. A substantial increase in variability is
introduced by the fractal patch shape (F1n-D), with further, more subtle increase in
variability with addition of perturbing patches (Clp-D, Flp-D).

In the double-patch simulations, a dynamic event in one patch often triggers events
in the other patch, as discussed in Section 2.3 (Figure 2.4). Let us consider the
time difference between an event in the right patch and the event in the left patch,
normalized by the mean recurrence interval of the left-patch events (Figure 2.13).

The red markers indicate the bigger, left patch ruptures first and triggers an event
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in the smaller, right patch, which is similar to observations (Figure 1.2b). The blue

To match the data, we need

markers indicate that the right patch ruptures first.

continuous sequences of at least 7 red data points. We observe that the triggering

times of the fractal case (F1n-D) are more comparable to observations, both in
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Figure 2.13: Triggering times in double-patch models. In the case of the circular-

patch model (Cln-D), the lower triggering times are absent, with the addition of

sub-critical perturbing patches increasing the range of triggering times, though still

not to the extent of realistic behavior (Clp-D). The fractal source shapes (F1n-D)
give rise to a wide range of triggering times comparable to the observations, which

persist with addition of perturbing patches (Flp-D).
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Effect of perturbing sub-critical patches

We further consider the effect of perturbing sub-critical patches which emerge
naturally as we threshold the fractal distribution (Figure 2.2b, 2.3a). As expected,
the additional patches perturb the system and add further variability (Figure 2.11).
This can be quantitatively seen in Table 2.4, where the IQR measures of both seismic
moment and recurrence time are seen to increase marginally from Fln-D to Fl1p-D,
also pictorially represented by the box plots in Figure 2.12. A similar study can be
performed by superposing these sub-critical perturbing patches on to the circular
patch model, C1n-D, to get Clp-D (Figure 2.3f). On observing the slip and time
predictability plots (Figure 2.11), we can observe the larger spread in recurrence
time when compared to the spread in moment magnitude, as is the case with the
observed data (Rubinstein et al., 2012). From Table 2.4, we can see that variability
in moment increases marginally, whereas the variability in recurrence time increases
almost 4-folds. This is pictorially represented by the box-plots, seen in Figure 2.12.
The addition of perturbing patches is observed to not be sufficient to give rise to
short triggering times in Clp-D (Figure 2.13). In the case of fractal patch models,

the range of triggering times remain comparable between F1n-D and F1p-D.

Effect of VS properties

The study of Lui and Lapusta (2016) hypothesized that the properties of the repeating
sequences, such as the triggering times, can be used to constrain the VS properties
of the fault in between the patches. Let us compare the slip behavior of models
Cln-D, C2n-D, and C3n-D, with (a—b)ys = 0.01,0.004, 0.002, respectively. As the
VS region becomes less strengthening, the effective rupture areas of both patches
increase, which results in higher average moments (Table 2.4). From the slip
predictability—time predictability plots (Figure 2.14), we observe that as the VS
region becomes less strengthening, the spread in recurrence time remains similar,

while the spread in moment, particularly that of right patch events, increases.

A possible explanation for this is that as the VS region becomes weaker, the rupture
areas and thereby, the moments of the events are impacted. On the other hand, since
the source patch shapes remain simple, the nucleation process remains somewhat
the same, which results in recurrence times staying within the same narrow range of
variation. The IQR values (Table 2.4) indicate increased variation in moment and
recurrence time in both C2n-D and C3n-D, relative to C1n-D, visualized by the box

plots in Figure 2.15a.
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Figure 2.14: Time-predictability and slip-predictability plots for double-patch mod-
els with decreasing velocity strengthening in the region surrounding the patches
(ClIn-D, C2n-D, and C3n-D). The variability of seismic moments and recurrence
times is similar, slightly increasing with the reduction in the strengthening.



40

o] —

‘o8l
1 pazi[ewioN

Figure 2.15: a. Box plots visualizing the variation in moment and recurrence time
with varying VS properties. b. Triggering times of left and right patches for models
with circular patches, Cln-D, C2n-D, C3n-D. The red points indicate inter-event
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times in which the bigger, left patch is triggering the smaller, right patch. The model
with the reduced strengthening of the surrounding medium has response comparable

to observations, with a range of triggering times.
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As we reduce the strengthening of the VS region, there is more triggering of events
on the right patch by the left patch (Figure 2.15b). Of particular interest is the case
of circular patches with the smallest value of the strengthening, (a — b)ys = 0.002
(Model C3n-D). For two differently sized VW patches comparable to the nucleation
size, with all other properties remaining the same, one would expect the smaller
patch to nucleate first and more often, and trigger the bigger patch. This is because,
since the patch is smaller but comparable to the nucleation size, slow slip that can
lead to nucleation has less distance to travel from the boundaries to the center of the
patch, making the whole patch creep and potentially destabilize sooner. But from
our simulations, this is not necessarily the case. If the bigger patch has a stress
state more conducive to hosting an event, the occurrence of that event can establish

a chain of event sequences where the bigger patch triggers the smaller one (Figure
2.15b).
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Figure 2.16: Slip velocity history at the centers of left (red) and right (blue) patches
in model C3n-D. The history shows the behavior alternating between periods in
which event in one patch triggers an event in the other patch nearly instantaneously
compared to the average recurrence time of each sequence (e.g. during 15-20 time
units) and periods in which the left and right patch events occur more spaced out in
time, with their interevent time being a large fraction of the average recurrence time
(e.g. during 10-15 time units).

As an example, in the simulation with circular patches and (a — b)ys = 0.002,
during the period between 15-20 time units normalized with respect to the mean
recurrence interval of the left patch, there are ~ 7 event pairs in which the larger left
patch keeps triggering the right patch(2.15b). This triggering behavior varies with
time. When we look at the slip velocity history at the two patches (Figure 2.16),
between 10-15 time units, the events in each patch are a significant fraction of the
recurrence time apart. During such periods, each time an event occurs on one patch,
the postseismic front from the event triggers an aseismic transient on the other patch
(Figure 2.17a), relieving stress and delaying the nucleation of subsequent event in
that patch. However, at some point, the left-patch event occurs when the right patch
is more ready to host a seismic event, starting a sequence of event pairs between

15-20 time units where an event in the left patch triggers an event in the right patch
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nearly instantaneously compared to the average recurrence time of each sequence.
In these event sequences, the right patch is in a state favorable for rupture, and
so the postseismic front from the left patch event triggers a seismic event (Figure
2.17b) on the right patch each time, until it does not, after 7 triggering cycles. This
complex dynamics arises from the fact that both patches are of similar size, just
above nucleation size, and are similarly able to nucleate. Depending on the state
of the neighboring patch when the post-seismic slip front from an event reaches
it, either an aseismic transient or a dynamic event can occur. This results in two
types of behaviors in which the left and right patch events appear to occur almost
independently with respect to each other vs. periods where event in one patch clearly

triggers an event in the other patch.

Triggering aseismic transient
t=0s,t'= t=54s,t'=54e-8 t=15.1h,t'=5.4e-4 t=939h,t'=3.4e-3 t=1.1yrs,t'=23.6e-1

s @ _ <

Triggering dynamic event

t=0s,t'=0 t=5.0s,t'=5.0e-8 t=16.7s,t'=1.7e-7 t=175s,t'=1.7e-7 t=17.6s,t'=1.8e-7
N ‘ ‘ \
12 10 -8 -6 -4 -2 1 2

Slip velocity [m/s] (Iog10 Scale)

Figure 2.17: Two types of interaction between patches observed in C3n-D model.
Time ¢ is the simulated time since an event in the left patch as shown in the left-
most panel. Time ¢’ refers to the simulated time normalized with respect to mean
recurrence time of left patch events (7. 1). (Top row) The postseismic front from a
left-patch event triggers an aseismic transient in the right patch, with the nucleation
of the next seismic event there occurring in 1.1 years or 0.4 of the recurrence interval.
b. The postseismic front from a left-patch event triggers a dynamic event in the right
patch within seconds or nearly instantaneously compared to the recurrence period,
owing to the favorable state of stress in the right patch.

In this study, we do not ensure that the bigger, left patch always triggers the smaller,
right patch. Instead, the presented simulated slip patterns contain subsets of the

event sequences that behave that way. To ensure that the right patch is always
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triggered by the left patch, we can make the nucleation size of the right patch larger
than its diameter, for example, by increasing the characteristic slip distance (Dgy),
as done in a previous study Lui and Lapusta (2018). The resulting subcritical nature
of the right patch would ensure that the events hosted by the right patch are always
triggered by the left patch.

It is interesting to note that when the same study of varying VS properties is con-
ducted in models with double fractal patches, the values of (a — b)ys = 0.004, 0.002
result in both patches rupturing together in models F2n-D and F3n-D. This is be-
cause the irregular shapes of the patches are such that they narrow the distance

between the two patches in places, promoting rupture propagation.

Matching the observed variability

As discussed in Section 1.2 (Figure 1.2, 1.3), the variability of the LA-SF repeating
sequences is characterized by a certain spread of data points in the predictability
plots as well as by the presence of both relatively long and short triggering times.
The models with similar behaviors are F1n-D, F1p-D, and C3n-D (Figures 2.10c, d
2.14c).

The model with two circular VW patches and the least-strengthening region around
them (C3n-D) exhibits the right range of triggering times as well as produces
variability in seismic moment comparable to that of to the SF-LA repeater data
(Figure 1.2). The other models with circular patches either do not have enough

variability, or do not have the right range of triggering times, or both.

The models with complex patch shapes, F1n-D and F1p-D, exhibit the co-existence
of short and long triggering times, as well as significant variability in both moment
and recurrence time (Figure 2.11, 2.13). The data points in the predictability plots
exceed the bounds of the rectangles indicating the variability of the 7 SF-LA event
pairs, which can potentially be explained by the longer model event sequences. The
predictability plots from the complex patch models also replicate the variability in
recurrence time being larger than the variability in seismic moment seen in Figure
1.1. So, from the perspective of matching the variability of larger sets of repeater

observations, the models with complex patches fare better.

2.6 Effect of small-scale heterogeneity on slip behavior
For complex property distributions, a naturally stemming area of interest is the effect

of small-scale heterogeneity on the system response. The working hypothesis is that
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heterogeneity on the scales comparable to or larger than the important length scales
in the problem, such as the nucleation size &* or cohesive zone size R,, influences

slip behavior, while features much smaller than them would be averaged out.
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a. Removing small-scale heterogeneity by thresholding the power

spectral density of the underlying fractal distribution. b. The property distributions
for amin = 1 and anyi, = 4 appear visually identical to the observer, whereas the
resulting slip behavior exhibits visible differences.
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To examine the effect of small-scale heterogeneity, we cut the power spectral density
of the underlying fractal distribution above a wave number threshold (Figure 2.18).
This results in the removal of frequencies higher than the threshold from the dis-
tribution, which results in the distribution being smoother at smaller scales (Figure
2.19). As we smooth the distribution (Figure 2.19), the fractal features disappear and
the two dominating patches come into contact with each other at around a,,;,, = 16,
thereupon coalesce into a single connected area, and eventually getting separated
at a,i, = 60. The maximum smoothing that can be applied to the distribution,

amin = 63, renders the patches relatively simple in shape.

As the small-scale features are removed, the variability exhibited by the models and
the interaction between the two patches stays similar for a while, within the range
of apmin = 1 to 32 (Figures 2.20 and 2.21). The exact slip behavior changes, but
the bounds of variability and triggering times are comparable between the models
in this range. As can be observed from the box plots in Figure 2.22, the IQRs
across models are comparable within that range of smoothing. For a,,;, = 48 and
larger, however, with most of the features smoothed on scales comparable to 4", the
variability changes and the short triggering times (1-100 secs) vanish, diverging from
observations. The absolute values of moment magnitudes are observed to reduce
with noticeable smoothing, since the removal of small-scale features eventually

chips away at the size of the patches.

Let us compare the smoothest case (a,,;, = 63), stripped of its surrounding perturb-
ing patches, to the double circular-patch model (C1n-D) (Figure 2.23). The smooth
but irregular shapes of the patches still result in the higher degree of variability than
the circular patches. This increase in variability, particularly in recurrence time,
is also reflected in the box plots comparing the two models (Figure 2.23c¢), and is
quantitatively observed in Table 2.4. On comparing the triggering times between
the two models (Figure 2.23d), we see that the slightly complex shape results in
more realistic, variable triggering behavior, with the bigger, left patch triggering
events in the smaller, right patch more frequently than in the circular patch model.
The short triggering times, however, are absent in both the models. This could be

partly resolved by reducing the strengthening properties of the VS region.
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Figure 2.19: Models obtained by smoothing of the patch shapes by eliminating high-
frequency contributions. The fractal features gradually disappear, and the separate
patches coalesce to form a single area for some models. At api, = 63, the patches
present as relatively simple shapes, with the power-law decay completely removed
from the spectra (Figure 2.18). Note that any, = 32 still preserves heterogeneous
features at the scale of the nucleation size, with larger values of ap,;, resulting in
significant modifications of the shape at that scale.
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Figure 2.20: Slip predictability in models with increasingly smoother distributions.
The variability exhibited is similar in models with small enough features removed,
for apin=1 to 32. Beyond that, as the fractal features get wiped off, the data points
in the predictability plots become increasingly clustered. See also Figure 2.22 for
more quantitative measure.
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Figure 2.21: Triggering times are compared across models subjected to smoothing
enough features removed, for api,

diverging from the field observations, as the distribution is smoothed further.
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Figure 2.22: Box plots comparing variability in gradually smoothed distributions.
The variability is most similar in the models with small enough features removed,
for apmin, = 1 to 32, have most similar. Beyond that, the variability first increases and
then decreases.
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Figure 2.23: a. Comparison between the circular patch model (C1n-D) and the most
smoothed fractal patch model (F1n-D, api,=63). b. The slip predictability plots
show more variability for FIn-D (apjy=63) compared to Cln-D. c. The left-patch
box plots of models CIn-D and FIn-D (ap,j,=63). The variability is again larger for
the fractal patch model. d. The slight complexity in shape produces more variable

triggering times, though not broad enough compared to the natural sequences.
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Model Mo L(x10M) | Mor(X10™) | Treer (y15) | Trecr (yrs) | A7 (MPa) | A7g (MPa)
Repeaters (Data) | 16.29 10.18 2.89 2.89 25-65 1-20
Fin-S 19.03 2.73 19.55

Cln-S 14.51 2.76 22.07

FIn-S 7 20% 44.16 3.54 21.57

Cln-S 7 20% 29.99 3.44 24.81

F3n-S 37.75 3.26 16.4

C3n-S 22.89 3.01 18.17

Fin-D 20.91 8.73 3.04 4.05 20.67 21.12
Flp-D 19.7 9.66 3.19 5.48 20.31 20.66
Cln-D 16.75 8.85 2.96 2.69 25.28 23.11
C2n-D 21.74 10.87 3.14 2.66 22.39 20.04
C3n-D 26.61 14.92 3.15 2.64 19.65 18.35
Clp-D 15.57 8.41 2.93 2.74 24.22 22.09
Flp-D (apmin =4) | 20.81 9.57 3.33 4.24 20.81 21.42
FIp-D (apmin =8) | 18.31 8.46 2.94 6.09 20.87 22.33
F1p-D (apmin = 16) | 21.06 10.72 3.01 4.29 20.75 20.89
Fl1p-D (apmin = 32) | 19.79 10.82 3.05 3.61 20.89 21.02
F1p-D (apmin = 48) | 14.57 8.55 3.05 3.03 20.78 20.49
Flp-D (apmin = 55) | 12.21 7.67 2.89 3.15 20.7 20.11
Flp-D (apin = 60) | 12.75 5.51 2.73 3.29 21.71 20.43
Flp-D (apmin = 63) | 11.19 5.88 2.61 3.11 21.79 19.02
FIn-D (amin = 63) | 10.74 5.91 2.78 2.96 21.07 19.28

Table 2.3: Mean source properties for all models with two patches, from left to
right: Mean seismic moment on the left patch, mean seismic moment on the right
patch, mean recurrence time on the left patch, mean recurrence time on the right
patch, mean stress drop on the left patch, and mean stress drop on the right patch.
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Model 1\M/Io,L(XlOI ]) IQR/MO,L MO,R(XIOI ]) IQR/MO,R Trec,L (yrs) IQR/Trec,L Tree,R (yrs) IQR/Trec,R
Repeaters (Data) 17.78 0.374 8.91 1.2236 2.88 0.2 2.65 0.23
Fln-S 19.1 0.05 2.65 0.02

Cln-S 14.29 0.06 2.74 0.02

F1n-S T 20% 44.9 0.07 3.37 0.07

Cln-S T 20% 29.9 0.05 3.41 0.01

F3n-S 37.25 0.11 3.2 0.04

C3n-S 23.14 0.06 3.03 0.03

Fin-D 20.91 0.2 7.84 0.57 2.72 0.27 3.62 0.75
Flp-D 20.46 0.23 8.62 0.66 2.89 0.3 4.86 0.96
Cin-D 16.95 0.12 9.43 0.13 2.9 0.04 2.86 0.05
C2n-D 21.77 0.09 11.24 0.22 3.09 0.15 2.66 0.22
C3n-D 26.53 0.14 13.85 0.19 3.05 0.1 2.5 0.18
Clp-D 16.35 0.15 8.45 0.3 2.87 0.18 2.83 0.19
Flp-D (amin = 4) 20.91 0.14 9.58 0.61 3.25 0.3 3.6 0.6
Flp-D (amin = 8) 19.2 0.25 8.24 0.72 2.8 0.25 5.6 0.86
Flp-D (amin = 16) | 21.5 0.23 10.5 0.6 2.8 0.23 3.1 1.01
Fl1p-D (amin = 32) | 19.9 0.2 9.43 0.54 2.8 0.25 3.08 0.59
Flp-D (amin = 48) | 15.9 0.38 9.26 0.24 2.6 0.44 2.76 0.48
Fl1p-D (amin = 55) | 13.5 0.4 7.84 0.35 2.59 0.46 2.86 0.52
Flp-D (ain = 60) | 13.9 0.21 5.83 0.21 2.4 0.15 2.74 0.46
Flp-D (amin = 63) | 11.2 0.2 5.68 0.33 2.38 0.2 2.78 0.31
F1n-D (anin = 63) | 10.7 0.22 5.94 0.24 2.38 0.3 2.68 0.32

Table 2.4: Simulated source properties for all models with two patches, median
values and inter-quartile ranges (IQR).

2.7 Conclusions

We have explored several potential sources of the observed variability in the SF-LA
repeating sequences and their interaction using rate-and-state models with various
shapes of the VW patches and properties of the VS regions. Our models reproduce
many observations about the repeating sequences, including their mean seismic
moment, recurrence times, stress drops, and the observed non-trivial scaling between
the seismic moment and the recurrence times for repeating sequences more broadly.
We find that multiple models produce slip behaviors similar to the observations.
Models with fractal shapes of VW patches introduce substantial variability into
the system, comparable to the variability in the SF-LA sequences, and result in
the right range of triggering times. Another model that reproduces variability
comparable to the SF-LA sequences and includes shorter triggering times is the
one with simple, circular patches as in prior studies but within a VS region with
smaller values of velocity strengthening. One can further increase the variability of
the slip patterns in all models by adding perturbing sub-critical patches which arise
naturally from the underlying fractal distribution. In the models with fractal patches,
this introduces variability stronger than what is observed in the SF-LA event pairs
and more comparable to the observations from a larger data set of repeating events
(Figure 1.1).
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Hence there is a trade-off between the shape of the repeating patches and the level
of velocity strengthening of the surrounding region, and there could be infinitely
many parameter combinations that reproduce similar variability in slip behavior and
interaction matching observations. Triggering processes between the two patches
are observed to be strongly affected by the nature of the region between the two
source patches. The region can be modified both by changing its strengthening
properties (Lui and Lapusta, 2016) and by incorporating complexity in the patch
shapes, thereby affecting the separation between the patches. Less strengthening
friction between the two patches promotes larger dynamic rupture sizes and faster
postseismic slip, allowing for shorter triggering times. Fractal shapes of the patches
result in the narrowing of the region between the two patches in places, again

allowing for shorter triggering times.

We have studied how the small-scale features of heterogeneity affect the model
response. Removing even the high frequencies in the underlying distribution of
VW/VS properties changes the behavior of the fractal-patch model in terms of spe-
cific sequences of events, highlighting the highly non-linear nature of the problem.
However, the overall variability and the range of triggering times remain similar,
until smoothing of the distribution eliminates fractal features of the order of relevant
length scales such as the nucleation size. For the largest possible smoothing, the
patches, while of irregular shape, resemble circular ones, and the behavior becomes
similar to the model with circular patches, although still more variable. We note
here that even very small features cannot be ignored or averaged over if they change
the relevant local length scales, such as the nucleation size; for example, small-scale
patches of high normal stress that reduce the nucleation size locally can lead to

qualitatively different behavior (Schaal and Lapusta, 2019).

Our results shows that the combination of variability in moment magnitudes and
recurrence times with the range of triggering times cannot be used to individually
constrain VS properties or the shape of the VW patches. Other aspects of the
fault properties can be heterogeneous, such as the distributions of normal stress
and friction properties within both VW patches and VS region around the patches;
such additional heterogeneity can bring additional trade-offs. Furthermore, other
mechanisms can be important, such as various fluid effects (Rice, 1992; Liu and Rice,
2007). One could consider constraining the problem further by matching the specific
behavior of the repeaters, i.e., the exact sequence of magnitudes, recurrence times,

and triggering times rather than their variability/range. However, such study may be
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intractable, given that specific sequence behaviors change in response to variations

in properties even on small scales compared to the patch size and nucleation size.
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Chapter 3

NUCLEATION PROCESSES ON INTERFACES WITH
HETEROGENEOUS NORMAL STRESS

In this chapter, we explore the evolution of complex nucleation processes on fault
interfaces with systematically increasing heterogeneity in normal stress. The earth-
quake nucleation process, particularly in heterogeneous conditions, is still not fully
understood. Better understanding of how natural earthquakes initiate on complex
fault geometries can hold the key to answering fundamental questions regarding the

entire earthquake process.

3.1 Model description and methodology
The focus of this work is to study the nucleation of slip events on heterogeneous

frictional interfaces.

Heterogeneity in normal stress

We consider models with increasing heterogeneity in normal stress distributions
(Figure 3.1) and compare them to the homogenous fault. First we consider the pure
fractal-like distribution which has a 60% variation in normal stress (0yux/0uni =
1.6). To obtain a rectangular fault domain that enables study of nucleation and
propagation of events, the same fractal field (Figure 3.2) is repeated twice along
length. For numerical convenience and a larger aspect ratio of the domain, the
width of the rectangular domain is reduced by 25% to create the final fault interface
(Figure 3.1b).

To study the nucleation process in interfaces with systematically stronger hetero-
geneity, up to 0,4y /0uni = 10, while avoiding tensile stresses, we need to further
modify the fractal distribution. In a purely fractal-like distribution with compressive
stresses, the mean normal stress of the distribution cannot be mathematically less
than half the maximum normal stress. To obtain higher strength contrast relative to
the background, we modify the underlying fractal distribution as follows. A thresh-
old level o7, is chosen as discussed below. The minimum compressive normal stress
of the modified distribution is chosen, 0,;, = 0.1 X gy. The distribution is divided
into two sections, one where the stress values are below o;j, and the other section

has stress values above o;;. We separately interpolate the two sections, section 1
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between 0,4 and oy, and section 2 between o7, and 0,,;,. This results in a modified
fractal distribution, where the peaks are stretched up, and the remaining distribution
is compressed, resulting in separated peaks. The threshold level, oy, is chosen such
that the mean of the modified distribution is equal to the mean of the original fractal
distribution. As for the fractal case, to create the final fault interface, the modified
fractal normal stress distribution is repeated twice and then the domain width is
reduced by 25% (Figure 3.1 c, d).

The most heterogeneous model interface we consider in the study has a maximum
normal stress to uniform normal stress ratio (07,4 /0uni) of 10. While this factor
may appear too large to be realistic, it can actually be quite reasonable. We are
motivated by stress distributions here where o, is low, about 5 MPa, motivated
by lab experiments and reports of low normal stress on many natural fault zones
(Lockner et al., 2011; Carpenter et al., 2011). This implies that 0,,, in the most
heterogeneous distribution we study is about 50 MPa. Considering characteristic
elastic Young’s moduli of 40-100 GPa, a difference between maximum and uniform
normal stress of about 45 MPa due to fault roughness would correspond to additional
normal strains of the order of 1073, which are within the elastic regime. Note that
studies of non-planar surfaces (Fang and Dunham, 2013) indicate that rough faults
can have additional resistance in the form of roughness drag. Additional peak
normal strains of 10~ would be obtained from similar amplitude-to-wavelength (@)
ratios of roughness. For such « values and large-scale nature of the locations of
peaked stresses compared to fault slips, the roughness drag would be small relative
to frictional resistance, as calculated by equation 6 from Fang and Dunham (2013).
Alternatively, if the fault is permeated with fluids, the difference in the effective
normal stress distribution can come from the heterogeneous distribution of pore
pressure due to different permeabilities on the fault, as assumed in some prior
studies (Luo and Ampuero, 2018). The two effects can also combine, with some
effective normal stress increase coming from large compressive stresses due to local
non-planarity and some increase coming from lower pore fluid pressure due to lower

permeability of such spots.
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Figure 3.1: 2D and 3D views of several normal stress distributions studied in
this work. a. Uniform normal stress (0y,qx/0uni=1). b. Fractal normal stress
(Omax/ouni = 1.6). c. Modified fractal normal stress (0,4 /0uni = 5). d. Modified
fractal normal stress (0y4x/0uni = 10).
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Figure 3.2: A realization of the random field with multiple source patches. The
fractal field is characterized by the Hurst constant H that determines the spectral
decay at high frequencies and parameter k. that modulates the sizes of the largest
features. We choose H = 1 (self-similar distribution) and k. = 0.14 such that there
are multiple similarly-sized high-normal-stress patches within the field.
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Fault Model

The planar fault domain of interest with the heterogeneous normal stress distribution
has velocity-weakening (VW) rate-and-state friction properties (Figure 3.3). It is
surrounded by a velocity-strengthening (VS) region that creeps in response to plate
loading and hence loads the VW region. The VS region also serves as a barrier to

arrest the resulting dynamic ruptures.

This planar fault is embedded into an elastic bulk and slow, tectonic loading is
applied by steady sliding outside of the VS region. We use a 3D, fully dynamic
simulation code (Noda and Lapusta, 2010) to solve the resulting elastodynamic
problem with friction as a nonlinear boundary condition. The simulations produce
quantities of interest such as time evolution of slip, slip rate, and stresses on the
fault, which we can then compare with experimental and real-world data. The main
differences in the model used in this chapter when compared to the modeling of
repeaters in Chapter 2 are the specific realization of fractal field used for generating
the heterogeneity and the fact that the heterogeneity is introduced in normal stress
and, in some models, in the characteristic slip Dgg; all other frictional properties

remain uniform.

- o 1.6
__________________ SteadyslipatVies .. 14
-1 i Velocity Strengthening i 5
- i i .‘.'I\-.{V .k‘-'\ i i o
§ 1 a¥NTRN |
1 i _________________________ i 0.6
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Figure 3.3: Representative model domain used in the simulations, normalized with
respect to i, ., the nucleation size estimate corresponding to oy

Fault parameters used in all models are the same as those used in Schaal and Lapusta
(2019), which reproduce the experimental conditions used by McLaskey and Kilgore
(2013), and they are listed in Table 3.1. Fluid effects are not considered in this study,
and the effective normal stress ¢ = o — p = o, where p is the pore pressure. The

normal stress corresponding to the uniform normal stress model, o,;, is 5 MPa,
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and the nucleation size estimate, i ., corresponding to oy,,; and other properties in
Table 3.1 is 1 m. The mean normal stresses in all the models are similar to o,
the nominal differences among the two arising due to trimming of the width of the

original rectangular distribution to facilitate rupture propagation. (Table 3.2).

Parameter Symbol | Value

Rate and state parameters in VW region | a,, by, | 0.01, 0.0255
Rate and state parameters in VS region | a,s, b,y | 0.0255, 0.01
Normal stress in the uniform model Oyuni 5 MPa

Peak normal stress Tmax 5-50 MPa
Characteristic slip distance Dgs 1 ym
Loading velocity Vil 4 %1078 m/s
Reference slip velocity V* 107 m/s
Reference friction coefficient fr 0.6

Shear wave speed Cs 3 km/s
Shear modulus U 30 GPa
Poisson’s ratio v 0.25

Table 3.1: Fault parameters used in simulations

Model Omean | Tuni h;_mwn /h;:m h:;wan/h;ni
Omax | Tuni = 1 1 1 1
Omax/Ouni = 1.6 | 0.992 1.009 1.06
Omax/Ouni =3 0.996 1.004 1.17
Omax|Ouni = 4 1.000 0.999 1.22
Omax|Ouni =5 1.006 0.995 1.26
Omax/Ouni = 6 1.011 0.990 1.29
Omax/|Ouni =7 1.016 0.983 1.31
Omax|Ouni = 8 1.021 0.980 1.33
Omax|Ouni =9 1.022 0.977 1.35
Omax/Ouni = 10 | 0.950 1.053 1.42

Table 3.2: Comparison between oyuis Cmeans h,,;» ey, . and hy,,.,. The differences

between the mean parameter values and the parameter values corresponding to the
uniform model result from removing part of the domain.

In all the figures, the spatial dimensions are normalized by &, ., which is the
nucleation size estimate calculated by equation 2.3 for the uniform normal stress
model. The domain of interest with heterogeneous normal stress distribution and
VW properties is 1.5k . x 4h’ . (Figure 3.3). The surrounding VS area is 3/, . X
Shum’

with respect to the dynamic slip velocity threshold (Vyy,), calculated using equation

and the total model domain is 44, . X 10h; .. Slip velocity is normalized
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2.4. For the model parameters used in this study, the corresponding V,, for which
inertia becomes important comes out to be 0.0124 m/s, which we chose to be the
representative velocity threshold, V,,, for all the simulations in this work. We use
Vayn to identify the beginning and end of earthquake rupture events. If the maximum
velocity at any point on the fault exceeds V;y,, the beginning of an event is recorded.

And if all points reach slip rates below V,,, the event is considered to end.

Quantities like normal stress, stress drops, seismic moments and moment rates are

normalized with respect to their corresponding mean values in the model.

Time is normalized by the ratio of the fault length to the shear wave speed, o, =
L/cg, which is the approximate time required by a shear wave to fully traverse the
fault length (L). Each instance when a dynamic event begins, t,,,,, is re-initialized
to 0 in Figures, and timestamps of the subsequent snapshots of the dynamic event
and its aftermath are calculated from that point (Figures 3.7, 3.8, 3.10, 3.12, 3.13,
3.14). When the analysis focuses on the timing of the event sequences, as in Figure
3.5, time is normalized with respect to the event recurrence time in the uniform

normal stress model (Trec, o)

3.2 Qualitative similarity between models with uniform and fractal normal
stress
We start by considering the behavior of the model with the uniform normal stress
distribution; all the other properties are also uniform over the velocity-weakening
region. The simulation produces a sequence of repeating similar events (Figure
3.5). In each event, there is an accelerating nucleation process (Figure 3.4, left,
snapshots U1-U2) followed by dynamic rupture propagation (snapshots U3-US).
The nucleation size, i.e. the size of the actively slipping region when the dynamic

slip rate threshold is reached, is comparable to the theoretical estimate (Figure 3.6).

In the model with a fractal distribution of normal stress on the interface, with the
mean normal stress equal to the uniform case, the normal stress variation from
Omean 18 £60% (Figure 3.1b), making for a reasonably strong heterogeneity. The
fault slip in this model is indeed different, although somewhat marginally. After
a relatively short initial period, the simulation again produces repeating similar
dynamic ruptures, although their recurrence time is slightly shorter and their peak
slip rates are slightly larger (Figure 3.5). The nucleation and propagation of dynamic
events are affected by the presence of heterogeneity in terms of spatial irregularity of

slip (Figure 3.4, right) although the dynamic events overall are similar to the uniform
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normal stress case. All the dynamic events are through-going, and nucleate at length
scales close to i ., although from a scale slightly smaller than the homogeneous
case (Figure 3.6), resulting in rupture nucleation closer to the edge of the VW region.
The irregular shapes of the locked region, nucleation zone, and the dynamic slip
front indicate that the fractal normal stress distribution makes the slip pattern of

each event more complex.

The reduction in the recurrence time of the fractal case relative to the recurrence
time of the uniform normal stress model is related to its reduction in the nucleation
size. The events in the fractal case are able to nucleate sooner on locations of
elevated normal stress—often called “asperities”—due to a lower nucleation size
there. Note that 0y4x/0uni = 1.6 corresponds to . /h' . = 1.6, although the
1.6-time reduction in nucleation size is achieved only over a point, and the reduction
over an asperity region would be lower. The higher frictional resistance on such
asperities is reached due to quasi-static slip in the surrounding weaker—and more
stable—regions. Hence the recurrence time in these two cases is determined by
the nucleation time. The events in the fractal normal stress model are also seen to
achieve marginally higher slip velocities, likely due to longer rupture propagation

region remaining outside the nucleation zone.
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Omax/Ouni = 1.6

logio ( Vlfyn )

Figure 3.4: Slip velocity snapshots for a typical dynamic rupture event from models
with oypax/ouni = 1 (left) and oppax/0uni = 1.6 (right). The events are similar in
that they span the entire VW region and nucleate from a similar scale comparable to
the nucleation size estimate for the model with uniform normal stress. The fractal
distribution results in slightly smaller nucleation size and more complex slip pattern
for each event.



66

_0'77),(1.1/0'11,77,2' =1
4 —Omazx / Ouni = 1.6
Ueraz/Uuni =10

3, -

JALALALA LA A_UJLJM_%
0 1‘ 2 é 4 /T 5 6 7
t/ Liee, oumitorm

‘—Slip velocity history at center - Uniform Case‘

O AR IR IPU N U AN DU U A

2 4 6 8 10
t/ TI"CC, Ouniform

Figure 3.5: (Top) Evolution of the maximum slip velocity over the fault for the
models with the uniform (blue line), fractal (red line), and modified fractal normal
stress with 0qx/0uni = 10 (yellow line). The maximum slip velocity is normalized
with respect to the dynamic velocity threshold (Vzy,). The time is normalized with
respect to the mean recurrence time of events in the model with uniform normal
stress. Each vertical line signifies dynamic rupture, as slip rates become much
larger than the dynamic threshold (upper dashed line). Flat sections correspond to
the loading plate rate. The uniform and fractal cases result in comparable sequences
of events, with quasi-periodic model-spanning events in both cases, although the
recurrence interval is slightly shorter in the fractal case. The modified fractal case
with stronger normal stress heterogeneity exhibits more complex events, with smaller
events appearing in between larger events. (Bottom plot) Slip velocity history at the
middle of the VW fault region in the uniform normal stress model. Dynamic events
are separated by inter-event periods of essentially locked interface, with slip rates
several orders of magnitude lower than the loading plate rate (lower dashed line).
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Figure 3.6: Slip velocity snapshots of a typical event nucleation on (a) an interface
with uniform normal stress, (b) interface with fractal normal stress, and (c¢) interface
with stronger normal stress heterogeneity of 0y,4x/0uni = 5. To facilitate the
comparison, the size of each panel is the same, 2/ by 1.5/ .. The actual simulated
nucleation size, &7, , is similar to /;, . in the homogenous case as expected. h,
is measured by the approximate size of the (bright-orange-to-red) area that slips
with velocities higher than 0.1V, when the maximum slip velocity at any point
on the fault matches the dynamic velocity threshold Vjy,. In the fractal stress case,
the event nucleates similarly, from a slightly more irregular patch. The A, is
slightly smaller but comparable to 4, .. In the model with stronger normal stress
heterogeneity, model-spanning earthquakes initiate from scales much smaller than
the nucleation size estimates calculated based on average properties. The nucleation
behavior is governed by the smaller-scale nucleation size based on the local normal

stress peaks, i.e. by the length scale of the heterogeneity, rather than 7 ..
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3.3 Qualitatively different outcomes in models with stronger heterogeneity:
smaller-scale events and asperity-driven nucleation
It is clear from the results that smaller-scale events cannot be achieved from such
a fractal property distribution. Hence these results do not capture the observations
recorded in lab experiments by McLaskey and Kilgore (2013), where small-scale
events are observed in the nucleation region of the larger-scale event. Such smaller-
scale events are often called “foreshocks,” and the subsequent larger event is often
called “mainshock.” The persistent locations of these small-scale events in the
experiments imply fixed asperities on the fault interface hosting them. Schaal
and Lapusta (2019) reproduced these laboratory observations of small-scale events
occurring in between the mainshock cycles in rate-and-state fault models using
circular patches of higher compression and referred to these small-scale events as

‘intershocks.’

In order to obtain such intershocks in our models, we create modified fractal distri-
butions with more separated patches that have a higher strength contrast relative to
the background, as described in Section 3.1. To systematically study the evolution
of complexity in the nucleation process, we incrementally sharpen the heterogeneity
by increasing the maximum normal stress of the modified fractal distribution, from
Omax|Ouni = 3 10 Tmax/0uni = 10. The simulated time is conserved for all models,

for ease of comparison.

As the maximum normal stress is increased in the modified fractal distributions,
resulting in well-defined isolated asperities (Figure 3.1), smaller-scale events appear,
i.e., events that rupture a small portion of the potentially seismogenic velocity-
weakening interface. Events also become more irregular, as will be discussed in
the following. In this study, we define events that ruptures at least 90% of the VW
region to be larger-scale events that we will also call “mainshocks.” The rest of the

events are considered intershocks or smaller-scale events.

At Tyax/ouni = 5, the fault response includes a few smaller-scale events within
some of the mainshock cycles. But many of the mainshocks occur without smaller-
scale seismicity in between them. Figure 3.7 shows a sequence of two consecutive

model-spanning events with no small-scale events in between.

However, the stronger heterogeneity results in another key difference: the larger-

scale events now often nucleate from the (small) scale of the asperities, which
[ =

is much smaller than the mean nucleation size estimate. Note that A* i

min

Omax | Ouni» 1-€., the nucleation size is reduced by the same factor as the normal stress
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is increased. Once the normal stress on the asperities becomes high enough so that
the corresponding small-scale nucleation size fits within the asperities, they can
initiate unstable slip. There is still quasi-static slip corresponding to the nucleation
process on the scale of the mean nucleation size (e.g., blue region in snapshot S2
of Figure 3.7); this quasi-static (slow) slip loads the stronger but more prone to
instability small-scale asperities, which accelerate to dynamic slip rates and grow
into model-spanning events. Hence the actual nucleation size &, is governed by
the scale of the local normal stress peaks, or the length scale of the heterogeneity,

rather than averaging out to the mean nucleation size estimate (Figure 3.6).

As normal-stress heterogeneity increases, the small-scale events appear in more
mainshock cycles, as quantified in Section 4.1. At 0y,4x/0uni = 10 (Figure 3.1d),
we have even more pronounced scale separation in terms of the difference in the
mean and minimum nucleation sizes and can observe a regular pattern of 3 or 4
small-scale events in each mainshock cycle (Figure 3.8). In Figure 3.8, three small-
scale events (in snapshots S1-S2, S5-S6, S8-S9) occur before the larger-scale event
(snapshot S12). Both the small-scale events and the larger-scale event nucleates
from small, asperity scale in this sequence (Figure 3.9). The peak normal stress

(Omax) is 10 times the mean normal stress (0yeqn), Which means the minimum

*

nucleation size (A, . ) corresponding to the asperity peak is one-tenth that of 7 .,

or about one-twentieth the size of the panel length in Figure 3.9. The measured
nucleation length scale 4, = is much smaller than A} ., yet larger than /) . , since the
nucleation size would be averaged over the asperity where the event is nucleated.
Note that these events are separated by long enough times in comparison to the

typical dynamic event duration to be considered separate events seismologically.

At the same time, the last two small-scale events occur soon enough before the larger-
scale event to be considered foreshock-like. The typical recurrence time of the larger-
scale events (“mainshocks™) in this model is ~ 10° normalized time units, where 1
unit corresponds to the time for the shear wave to propagate through the length of the
fault and hence 1 unit is comparable to the duration of a large-scale event. The third
small-scale event in Figure 3.8 is separated from the following larger-scale event by
only 106 units, and the second small-scale event is separated from the third small-
scale event by 6644 units, a much shorter time than the “mainshock™ recurrence
time. For example, if the typical mainshock duration were 100 s, these separation
times would be about 2 hours and 8 days, respectively, which is short enough for

such events to be clearly labeled “foreshocks,” given their spatial proximity to the
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initiation location of the subsequent larger-scale event. The first small-scale event
is separated from the others by about 23,000 units, or, in the example above, 26
days, and it occurs away from the nucleation location of the “mainshock,” so it

classification would depend on the exact definitions employed.

%

Note that some larger-scale events still nucleate from scales comparable to 4},

even for the case of 0,4y /0y = 10 (Figure 3.10, S12), illustrating the complexity
of nucleation in these models. This larger-scale event is again preceded by several
foreshock-like small-scale events (snapshots S2-S3, S6-S7, S10) that nucleate from
small scales. The last such small-scale event is separated from the larger-scale event
by only about 4 normalized time units, Hence the last small-scale event immediately

precedes and triggers the larger-scale event.
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Figure 3.7: Slip velocity snapshots from two consecutive model-spanning events
from the model with 7,4, /0yni = 5. There are no smaller-scale events in between.
The larger-scale events are nucleating from the asperity scale much smaller than the
mean nucleation size estimate.
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Figure 3.8: Slip velocity snapshots from the model with 07,4y /0 = 10. Small-
scale events (panels S1-S2, S5-S6, S8-S9) precede the larger-scale event (S12-S14)
and the larger-scale event also nucleates from scales much smaller than #;,,,,. The
time difference between snapshots S7 and S8 is 6644 normalized time units and the
time difference between snapshots S11 and S12 is 47 normalized time units, where
1 unit corresponds to the time for the shear wave to propagate through the length
of the fault and hence 1 unit is comparable to the duration of a large-scale event.
Hence these events are separated by long enough times to be considered separate
events, but short enough times in comparison to the average recurrence time of the
large-scale events for the smaller events to be considered a foreshock.
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Figure 3.9: Slip velocity snapshots of typical dynamic event nucleation zones on
an interface with modified fractal normal stress and o4y /0yni = 10 (Figure 3.1d),
for small-scale events (top row) and a larger-scale event (bottom row). Both small
and large events tend nucleate from scales much smaller than the mean nucleation
size and close to the asperity—or heterogeneity—scale, although some large events
nucleate differently (Figure 3.10).
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Figure 3.10: Slip velocity snapshots from the model with 07,4y /0 = 10 showing a
case of a larger-scale event nucleating from a slipping zone comparable in size to &, .
(S12). The larger-scale event is still preceded by three small-scale foreshock-like
events, separated from the larger-scale event by 4, 4+490 = 494, and 494+197 = 691
time units (snapshots S9-S10, S6-S7, and S2-S3, respectively).
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3.4 Cases with ten-fold variations in nucleation sizes achieved through com-
bined variations in normal stress and rate-and-state characteristic slip
Here, we explore whether the same distribution of the nucleation size estimate over
the fault, but achieved by varying other fault properties, would result in significantly
different slip behavior. So far, the heterogeneous nucleation size distribution has
resulted from heterogeneity in the normal stress, which also caused a heterogeneous
distribution of shear strength, effectively creating stronger (but more instability-
prone) asperities. However, theoretical nucleation size estimates (Equation 2.3)
indicate that different nucleation sizes can be achieved by varying other fault prop-

erties.

Here, we explore heterogeneity in the characteristic slip Dgg of the rate-and-state
friction that governs the evolution of the state variable. Smaller Dgg results in
velocity-weakening occurring more readily, over smaller slips, promoting frictional

instability.

We choose the case of the most extreme variation in the nucleation size estimates
considered, with 07,4y /0uni = 10 (Figure 3.11a) which corresponds to n,. / . =
10 (Figure 3.11b), and consider two additional cases with the same distribution of
the nucleation size estimate: (M1) a case with 09,4y /0uni = 1.6 (fractal normal
stress) and variations in Dgg to achieve the same nucleation size distribution (Figure
3.11¢) and (M2) a case with 07,4 /0uni = 1 (uniform normal stress) and variations

in Dgg to achieve the same nucleation size distribution (Figure 3.11d).

The nucleation of large-scale events in the fault models M1 and M2 with the much
more modest or no variation in normal stress and modified Dgs proceeds much
differently than in the modified fractal case with 07,4 /0yuni = 10, despite the same
distribution of the local estimate of the nucleation size (Figures 3.12-3.13, Figure
3.14). In the modified fractal case with 04y /0uni = 10, the nucleation of larger-
scale events mostly occurs from the scale of local asperities, which is much smaller
than the mean nucleation size (Figures 3.9). In contrast, the nucleation process of
larger-scale events in models M1 and M2 is similar to that on the homogeneous fault,
in that it occurs as an acceleration of slip in a slowly expanding zone that approaches
the nucleation size estimate for the homogeneous fault (the brightening green to
orange colors in snapshots S12-S22 of Figures 3.12-3.13; and snapshots S10-S12
of Figure 3.14). In fact, the simulated nucleation size is even larger in model M2
with the uniform normal stress and modified Dgg than on the completely uniform

fault, as in model M2 the entire fault starts slipping slowly before the large-scale
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event nucleates (snapshots S6-S13 of Figure 3.14), whereas in the uniform-fault
case, a portion of the interface is still locked when the event nucleates, indicating
smaller needed extent of quasi-static slip for instability nucleation (Figure 3.4). This
is consistent with the mean nucleation size estimate over the entire VS region being

1.4 times larger than the nucleation size estimate for the uniform fault.

This mean-nucleation-scale style of larger-scale event nucleation occurs despite
models M1 and M2 exhibiting an increase in small-scale events between larger-scale,
model-spanning events, compared with the modified fractal case with 07,4 /0yni =
10. Atleast 8 small-scale events precede a representative larger-scale event in model
M1, as shown in Figures 3.12-3.13. Many of the small-scale events occur on the
same patches of reduced nucleation size and hence represent repeating earthquakes
(Set 1: events in snapshots S2, S4, S8; Set 2: events in snapshots S6, S14; Set 3:
events in snapshots S10, S16 etc). The small-scale earthquakes do not repeat for the

modified fractal normal stress distribution with 07,4+ /0ni = 10.

The differences between the slip patterns in the models can be explained by the
fact that, in models M1 and M2, the patches of the reduced nucleation size have
only up to 1.6 times higher frictional strength as the rest of the fault, whereas in
the modified fractal case, they are significantly stronger than the surrounding fault,
about 10 times. Hence it is much easier to load these patches by the nearby quasi-
static slip in models M1 and M2, resulting in repeating small-scale earthquakes.
Furthermore, dynamic stress drops during smaller-scale events are lower on patches
in M1 and M2, resulting in smaller dynamic stress transfer onto the surrounding
fault and much smaller to negligible effect of the failure of the patches on the
larger-scale nucleation processes. Indeed, ruptures initiated on stronger asperities
considered in the previous section extend further away from the asperities, create
substantial postseismic slip, and trigger each other, with some of them growing into
the fault-spanning events. In contrast, ruptures on the small-nucleation patches of
M1 and M2 are largely driven by the large-scale nucleation process, with relatively

minor effect on it (Figures 3.12-3.13, Figure 3.14).
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Figure 3.11: Models with ten-fold variations in nucleation sizes achieved through
combined variations in normal stress and rate-and-state characteristic slip Dgg, il-
lustrated by property distributions along the mid-depth of the fault. (a) Distributions
of the normal stress and Dgg for the case of modified fractal normal stress distribu-
tion with 07,4, /0uni = 10 considered in the previous section; Dgg is uniform in this
case. (b) The corresponding distribution of the nucleation size estimate. (c) The
case of a fractal normal stress with 07,4 /0w = 1.6 and modified Dgg that result
in the same distribution of the nucleation size estimate as in (b). (d) The case of
uniform normal stress with 07,4, /0uni = 1 and modified Dgg that result in the same
distribution of the nucleation size estimate as in (b).
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Figure 3.12: Slip velocity snapshots from the model M1 with the same distribution of
the nucleation size estimate as for the modified fractal normal stress 07,4/ Tyni = 10
(and hence with A7, ./h .= 10 but achieved through a fractal distribution of normal
stress with 07,4 /0uni = 1.6 and variations in Dgg); the snapshots continue in Figure
3.13. The patches of the low nucleation size produce multiple small-scale foreshock-
like events, some of which repeat in the same locations. These foreshocks appear to
be triggered by the quasi-static nucleation of the subsequent larger-scale event that
nucleates from the larger scale comparable to the mean nucleation size.
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Figure 3.13: Slip velocity snapshots from the model M1 with the same distribution of
the nucleation size estimate as for the modified fractal normal stress 0,4 /0uni = 10
(and hence with i), ./h> . = 10 but achieved through a fractal distribution of normal
stress with 0,4 /0w = 1.6 and variations in Dgg); continued from Figure 3.12.
The patches of the low nucleation size produce multiple small-scale foreshock-like
events, some of which repeat in the same locations. These foreshocks appear to
be triggered by the quasi-static nucleation of the subsequent larger-scale event that

nucleates from the larger scale comparable to the mean nucleation size.
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Figure 3.14: Slip velocity snapshots from the model M2 with the same distribution of
the nucleation size estimate as for the modified fractal normal stress 07,4/ Tyni = 10
(and hence with i ./h; . = 10 but achieved through uniform normal stress with
Omax/0uni = 1 and variations in Dgg). As for model M1, the patches of the low
nucleation size produce multiple small-scale foreshock-like events, some of which
repeat in the same locations. These foreshocks appear to be triggered by the quasi-
static nucleation of the subsequent larger-scale event that nucleates from the larger

scale comparable to the mean nucleation size.
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3.5 Conclusions

With systematic increase in normal-stress heterogeneity, we observe a continuum
of behaviors ranging from purely fault-spanning events to persistent foreshock-like
events interspersed between larger-scale “mainshock” events. Differences in normal
stress induce two types of heterogeneity in the model relevant to slip patterns: a
heterogeneity in the instability length scale, aka nucleation size, which is inversely
proportional to the normal stress, and a heterogeneity in friction strength which
is directly proportional to the normal stress. Hence more compressed spots are

frictionally stronger (that is, asperity-like) but more prone to instability.

A relatively strong heterogeneity in normal stress is required to create smaller-
scale dynamic events, with 0y, /0un = 5 or more. For a significant but much
more modest normal stress variation of 07,4y /0uni = 1.6 in a fractal normal stress
distribution, the behavior is qualitatively similar to that of a uniform fault, with
quasi-periodic, if somewhat perturbed, fault-spanning ruptures nucleating from the
nucleation scale similar to that of the uniform fault. The nucleation process in
both the uniform and fractal cases takes the form of the gradually accelerating
and expanding quasi-static slip within the VW—seismogenic—fault region, which
abruptly accelerates into a dynamic event upon reaching the spatial dimensions

similar to the mean nucleation size.

We use modified versions of fractal fields to create increasingly heterogeneous
interfaces with more compressed spots while keeping the normal stress compressive
everywhere, as expected on natural faults. As we enhance the most compressed
peaks of the fractal normal stress distribution, some larger-scale dynamic events
start to nucleate from this smaller heterogeneity scale. The large-scale quasi-static
nucleation process still exists, and it serves to load the asperity spots and allow
them to accelerate to fast slip rates. The resulting unstable slip typically spreads
to the entire fault for the intermediate levels of normal stress heterogeneity, such
as Omax/0ouni = 5, although occasionally these ruptures arrest shortly upon exiting
the nucleating asperity, creating small-scale events. The behavior depends on the
complex evolving fault shear stress which is the result of all prior slip, quasi-static

and dynamic.

Hence even for 0,4 /0uni = 5, small-scale events do not occur reliably between two
larger-scale events. This behavior implies that, in natural faults, foreshocks need not
reliably occur in between larger-scale events, and the fact that there were foreshocks

at a fault region at an instance in the past need not guarantee that the region would
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have them at a future time.

On interfaces with even stronger normal-stress heterogeneities, with 0,4y /0ni of 6
to 10, a majority of the larger-scale events initiate from the heterogeneity scale of the
compressed peaks, which is increasingly smaller than the mean nucleation size that
would govern their nucleation on a uniform fault. Furthermore, most larger-scale
events are preceded by multiple smaller-scale events, most of which occur close
enough in time and space to the larger-scale events to be classified as foreshocks.
These foreshock-like events often appear as a cascade, triggering each other before

one of them runs away to rupture the entire simulated fault.

While the variations in normal stress induce inversely proportional variations in the
instability length scale or nucleation size, we find that the nucleation-size variations
by themselves are insufficient to cause nucleation of larger-scale events from the
smallest heterogeneity scales, and that the associated strong heterogeneity in fric-
tional strength is also required. To distinguish between the effects of heterogeneity
in the nucleation size alone vs. the heterogeneity in both the nucleation size and
the friction strength, we examine slip behavior in fault models that achieve all or
most of their nucleation-size heterogeneity by variations in the characteristic slip
Dpgg of the rate-and-state friction, with uniform or mild variations in normal stress.
(Smaller values of the characteristic slip Dgg lead to friction weakening over smaller
slips, thus promoting instability and reducing the nucleation size.) In such models,
patches with small nucleation sizes, driven by the larger-scale quasi-static nucle-
ation processes, do generate small-scale events. But these events arrest soon after
exiting these patches and entering the nearby fault regions with increasing values
of Drs—and hence decreasing rates of weakening—and they do not appear to have
much effect on the larger-scale quasi-static nucleation process, which eventually
grows into a fault-spanning, large-scale dynamic event just like on a uniform fault.
So the whole nucleation process appears quite similar to that on a uniform fault, but
slightly more irregular and accompanied by multiple small-scale events which also

tend to be repeating.

Note that an obvious difference between the small-scale events nucleating on highly
compressed spots vs. on spots with average compression is that the former events
would experience a much higher dynamic stress drop, for the same change in
friction, then the latter events. This dynamic stress drop gets redistributed around
the expanding event through dynamic waves, both promoting the event propagation

and increasing its impact on the surrounding fault regions. Consistently with this
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consideration, the small-scale events are much larger—by orders of magnitude in
terms of seismic moment released—for models with highly heterogeneous normal
stresses than for models with most heterogeneity achieved through Dgg, as shown
in Chapter 4. At the same time, all dynamic events in our models have similar static
stress drops—within a factor of 2 or less from the static stress drops on a uniform

fault—as also discussed in Chapter 4.

Collectively, our modeling with different amounts and types of heterogeneity reveals
a broad range of potential nucleation processes of larger-scale events, without and
with foreshock-like events of different type. While all of our nucleation processes are
driven by the underlying quasi-static accelerating slip, the observational appearance
of the outcomes could be quite different. In our simulations, on the one hand,
faults with strong heterogeneity in normal stress produce energetic foreshocks that
occur next to each other and significantly contribute to triggering each other and
the eventual mainshock. Such foreshocks may dominate observations, since small
amounts of quasi-static slip at depth may be difficult to capture geodetically, making
the nucleation process appear as merely a cascade of dynamic events, as hypothesized
by some studies (e.g., Helmstetter et al., 2003). In the same model, one can have
several foreshocks before one larger-scale event and none before another, as the very
first potential foreshock just grows into the larger-scale event due to a particular
state of stress on the fault. On the other hand, faults with strong heterogeneity in
the characteristic slip distance have much smaller foreshock-like events in relation
to the size of the quasi-statically slipping region; such events, in addition, tend
to occur repeatedly and do not interact much with each other, appearing more
disconnected at different parts of the larger quasi-static nucleation, consistent with
some observations (e.g., Brodsky and Lay, 2014). On such faults, foreshock-like
events would tend to more reliably occur. Of course, one should get intermediate
or mixed behaviors in models between these two end-members or with two types of

heterogeneity mixed together.
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Chapter 4

EFFECT OF HETEROGENEOUS FAULT PROPERTY
DISTRIBUTIONS ON COMPLEXITY OF SEQUENCES AND
EVOLUTION OF DYNAMIC RUPTURES

Chapter 3 focuses on how heterogeneity in physical properties affects the nucleation
process of both smaller-scale and larger-scale events. While those findings are
informative in terms of the range of possibilities, it may not be easy to use them
alone to constrain fault properties. The quasi-static nucleation processes at depth
are generally difficult to capture geodetically, unless the nucleation size is in tens
to hundreds of kilometers; indeed, many models treat the large-scale slow slip
transients relatively recently discovered on faults as ongoing nucleation attempts
(Segall et al., 2010; Liu and Rice, 2005; Liu and Rice, 2007; Dal Zilio et al.,
2020). Furthermore, foreshocks are not universally observed before large events. If
there are no foreshocks, does this mean that the fault is relatively homogeneous or,
alternatively, so strongly heterogeneous that the very first foreshock-to-be grows into
a large event? Clearly, it is important to investigate the effect of fault heterogeneity

on other observables.

In this chapter, we focus on how heterogeneity in fault properties influences sev-
eral potentially observable earthquake source properties, such as the complexity of
earthquake sequences, event size distributions, and evolution of moment release in

dynamic ruptures. The fault models are the same as discussed in Section 3.1.

4.1 Complexity in earthquake sequences with increasing heterogeneity

Size distributions of dynamic events

To study complexity of earthquake sequences in our models, we quantify the size
distribution of dynamic events in each simulation, as done for natural faults. We
determine the fraction of the dynamic events in a given moment range and plot
them both on linear and logarithmic scales (Figures 4.1-4.2). In the case of the
uniform normal stress model, all the events appear identical to each other in size.
This is maintained, with slight irregularities, in the fractal normal stress case. As
the heterogeneity in the normal stress increases, smaller events appear, and the
larger events themselves have more variation in their sizes. Increasing the normal-

stress heterogeneity generally increases the relative fraction of smaller-scale events
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when compared to the larger-scale events. The event size distribution also becomes
richer, with more sizes represented, as we make the interface more heterogeneous,

as evident from the log-scale plots (Figure 4.2).

As discussed in Section 3.4, the most heterogeneous normal-stress distribution we
consider, with 07,4y /0uni = 10, corresponds to more than an order of magnitude vari-
ation in the nucleation length scale. Section 3.4 discusses two additional models with
the same nucleation scale distribution, but with the normal stress distribution being
uniform and fractal, and with the characteristic slip distance (Dgs) modified to pre-

serve the (highly heterogeneous) local nucleation size distribution (Figure 3.11). The

DRS,min — O 1

event size distributions in these two ‘modified Dgs” models (722 = 1, Do
uni , uni

and % = 1.6, D])%ﬁl = 0.16) are significantly different. They indicate the presence
of numerous small-scale events and only a marginal variation in the sizes of larger-
scale events in comparison to the case with strong variations in normal stress (Figure
4.3-4.4). This confirms our conclusions in Chapter 3 that the heterogeneity in Dgg
has much more mild effect on larger-scale events, for example, during nucleation,
mostly just producing small events triggered by larger-scale processes. The size
range of the small-scale events in the modified Dgs models are orders of magnitude
smaller than the small-scale events in models with uniform Dgg and significant
normal stress heterogeneity, as discussed in Chapter 3, as the events nucleating on
asperities of high normal stress get a strong initial push due to much larger dynamic
shear stress drop, for the same frictional properties, then the events nucleating on

patches of much smaller Dgg but similar normal stress to the surrounding fault.
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Figure 4.1: Distribution of event sizes across the models with heterogeneous normal
stress. The seismic moments on the horizontal axis are normalized with respect to
the mean moment of events from the uniform normal stress model. The fraction
of the events in a given moment range is plotted on the vertical axis. Increasing

heterogeneity generally leads to increasing complexity in the sizes of larger events
and appearance of significantly smaller events.
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Figure 4.2: Distribution of event sizes across the models with heterogeneous normal
stress. The seismic moments on the horizontal axis is normalized with respect to
the mean moment of events from the uniform normal stress model and plotted in the
logarithmic scale. The fraction of events in a given log-normalized moment range
is plotted on the vertical axis. The moments plotted in log scale elucidate the richer
size distribution, with more sizes represented, with increasing heterogeneity.
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Figure 4.3: Distribution of event sizes across models with the same distribution of
the nucleation size estimate as for the modified fractal normal stress 0,4 /0uni = 10
(and hence with h ./h>. = 10). The seismic moments on the horizontal axis
are normalized with respect to the mean moment of events from the model with
uniform normal stress and Dgg. The fraction of the events in a given moment range
is plotted on the vertical axis. (Top) Results for the modified fractal distribution
with 0y4x/0uni = 10 and uniform Dgg. (Bottom left) Results for uniform normal
stress and modified Dgg. (Bottom right) Results for a fractal distribution of normal
stress with 0 /0uni = 1.6 and modified Dgg. Strong heterogeneity in normal
stress results in more significant variation in sizes of the larger events while the

heterogeneity in Dgg generates a large fraction of small-scale events.
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Figure 4.4: Distribution of event sizes across models with the same distribution of
the nucleation size estimate as for the modified fractal normal stress 0,4 /0uni = 10
(and hence with i ./h’ . = 10). The seismic moments on the horizontal axis are
normalized with respect to the mean moment of events from the uniform normal
stress model and plotted in the logarithmic scale. The fraction of the events in a given
log-normalized moment range is plotted on the vertical axis. (Top) Results for the
modified fractal distribution with 07,4 /0w = 10 and uniform Dgg. (Bottom left)
Results for uniform normal stress and modified Dgg. (Bottom right) Results for a
fractal distribution of normal stress with 07,4, /0 = 1.6 and modified Dgg. Strong
normal stress heterogeneity results in a more significant variation of larger-scale
events and some intermediate events. Cases with the modifying Dgg distribution
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Figure 4.5: Cumulative distributions of event sizes representing all events occur-
ring above each log normalized moment range plotted in log scale for models with
normal-stress heterogeneity. b-values of the Gutenberg-Richter scaling law are cal-
culated for each model for the moment range logio(M, /Mo,uniform) € [-2.5,0)).
The b-values first systematically increase with increasing heterogeneity until
Omax/0uni = 8 and then stay in the range of 0.35 — 0.55 after.
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Figure 4.6: Cumulative distribution of event sizes representing all events occur-

ring above each log normalized moment range, plotted in log scale, for models

with the same distribution of the nucleation size estimate as for the modified frac-

tal normal stress with the largest heterogeneity ouqy/0uni = 10 (and hence with

r: . [h* . =0.1). b-values are close to O for the models with modified Dgg distribu-

min uni

tion in the event size range 1og19(Mo/Mouniform) € [—2.5, 0], reflecting the absence
of intermediate-scale events and lack of variation in the larger-scale event sizes. For
the models with modified Dgg distribution, b-values are also calculated in the range
log10(Mo/Mo uniform) € [—6, —3], denoted by b*.

The distribution of event sizes on natural faults is also commonly characterized by
plotting the cumulative number of earthquakes that occur above a certain moment
(Figure 4.5, 4.6). This distribution of events can be analyzed in the framework of
Gutenberg-Richter (GR) scaling law discussed in Section 1.4. To recall, the scaling
is empirically expressed as log(N;) = —bM,, + a, where N, is the cumulative num-
ber of earthquakes above moment magnitude M,,. Using the relationship between
moment magnitude and seismic moment, M,, = %[loglo(Mo) —9.1], we can rewrite

the GR scaling law in terms of seismic moment, log(N,) = _T%loglo(Mo) +d.
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The b-value relates the number of large events to small events and takes on values
ranging from 0.5 — 2.5 when natural earthquake catalogs are considered, with the
average value for b over large regions—and globally—typically being taken as 1.
The b-values are calculated by fitting a linear trend to the cumulative frequency-
magnitude distributions of each simulation (Figure 4.5) within the same size range
log1o(M, /Mo,uniform) € [-2.5,0]. Note that b-values can be estimated alternatively
using the maximum-likelihood estimate as discussed in Aki (1965). The b-value sys-
tematically increases with increasing normal stress heterogeneity till 0,45/ 0yni = 8,
where it has value of 0.64. For larger heterogeneity, the b-value fluctuates, while
staying in the range 0.35—-0.6. The fluctuation could be due to insufficient number of
events to establish the stable statistics and/or the result of the particular relation be-
tween the compressed asperities and the geometry of the VW region; the results need
to be verified with longer simulations and larger simulation domains. In the modified
Dpgs models, the b-values are ~ 0 within the range logo(M,/ Mo’uniform) € [-2.5,0],
reflecting the absence of intermediate-scale events and lack of variation in larger-
scale event sizes (Figure 4.6). A separate GR fit for the events in the size range
log1o(M,/ Mo’uniform) € [-6, —3] gives higher b-values, indicating some complexity

of event sizes in this range.

Nearly heterogeneity- and magnitude-invariant static stress drops in our models
One of the fascinating properties of dynamic earthquake source events on natural
faults are their magnitude-invariant static stress drops, averaging 1-10 MPa for an
extremely broad range of event sizes from microseismicity to the greatest plate-
boundary earthquakes in all tectonic environments (Abercrombie and Leary, 1993;
Allmann and Shearer, 2009; Baltay et al., 2011). At the same time, the stress drop
estimates exhibit significant scatter, from 0.01 to 100+ MPa. The static stress drops
are interpreted as the difference between average shear stress on the fault before
and after the dynamic event, although the exact nature of the averaging and biases
implicit in different stress-drop estimation methods are the topic of active current
research (Kaneko and Shearer, 2014; Kaneko and Shearer, 2015; Noda et al., 2013;
Lin and Lapusta, 2018).

Given the observed magnitude-invariance of static stress drops on natural faults,
it is important to examine the stress drops of the events in our models, which
collectively cover about 6 orders of magnitude in seismic moment, especially given
all the different heterogeneous conditions under which the events nucleate. The

average stress drop calculated in this study is the energy-related o measure from
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Noda et al. (2013), where the distribution of the static stress change over the fault is

averaged with the pointwise final slip as the weighting function.

Remarkably, most static stress drops for the events in our models vary by about
a factor of 0.5 to 2 from the static stress drops of model-spanning events in the
uniform fault model (Figures 4.7-4.9). In all cases, the stress drops for the larger-
scale events stress remain nearly equal to the stress drops on the uniform fault,
as would be expected given similar average fault properties and recurrence times.
For the models with increasing normal stress heterogeneity (Figure 4.7), the stress
drops of the smaller-scale events marginally increase, with the median stress drop
normalized by that of the uniform case increasing from 1 to 1.2 as the peak normal
stress heterogeneity over the mean normal stress varies from 1 to 10. For the models
with the modified Dgg, the median stress drops are lower than At,,;, by a factor of

2 in one model (Figure 4.8).

Such potentially counter-intuitive behavior can be explained by the dynamics of the
earthquake rupture events (e.g., Schaal and Lapusta, 2019). The events nucleating
on highly compressed spots indeed experience much higher dynamic stress drop, for
the same change in friction, then events nucleating on a uniform fault or on a patch
of modified Dgg. This dynamic stress drop gets redistributed around the expanding
event through dynamic waves, promoting the event propagation and resulting in
events of larger sizes. Yet, for the event to arrest, it needs to start experiencing
negative stress drops, with rupture increasing the shear stress ahead of itself through
dynamic shear stress concentration. The average static stress drops average between
the (positive) stress drop where events initiate and zero to negative stress drops
where the rupture slows down and arrests. Our simulations show that this highly
dynamic and nonlinear process results in similar average static stress drops for a

wide range of fault heterogeneity.
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Figure 4.7: Static (shear) stress drops across different models with increasing het-
erogeneity in normal stress. The stress drops of larger-scale events are indicated
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The median stress drops at each heterogeneity level are indicated by blue diamonds,
and have a nominally increasing trend.
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Figure 4.9: Variation of stress drops with event sizes for several models.

4.2 Effect of heterogeneity on progression of dynamic ruptures

Recurrence time of larger-scale events

The recurrence times of larger-scale events (defined as events that rupture more than
90% of the seismogenic, VW fault area) across different models is similar, generally
within £20% of the recurrence time on the homogeneous fault (Figure 4.10—4.11),
which is perhaps not surprising, given that all models have the same mean fault

properties.

However, there is no systematic variation of the deviations from the uniform fault
model with the increasing normal stress heterogeneity. Perhaps this is also not
surprising, given the following considerations. The recurrence time is affected
by both nucleation processes as well as the conditions on the fault (shear stress,
state variable) at the time of each nucleation attempt; the fault has to be loaded
enough on average for the dynamic rupture to propagate. The presence of the strong
asperities result in two potential effects on recurrence time which trade off with

each other. On the one hand, when the fault is not yet loaded enough, nucleation
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of dynamic rupture on nucleation-prone asperities would generate a smaller-scale
event that would reduce the shear stress, potentially delaying the next larger-scale
event and hence the recurrence time. On the other hand, at some point a smaller-
scale nucleation attempt may occur when the fault is ready and initiate a larger-scale
event, perhaps sooner than would be possible with a longer, larger-scale nucleation
process. The nucleation attempts in our models are discrete events that depend on
the distribution of the nucleation-prone features and their location within the fault
domain. Hence the effects would combine differently in different models, as our

simulation results indicate.

The larger-scale-event recurrence times in models with modified Dgg distributions
have less variation and remain comparable to the uniform normal stress model
(Figure 4.11). This is likely due to the fact that the smaller-scale events in those
models are much smaller than in the models with strong normal stress variations

and have a minor effect on the nucleation processes as discussed in Chapter 3.
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Figure 4.10: Variation of larger-scale-event recurrence time with increasing normal
stress heterogeneity levels, visualized by box plots. The median recurrence time
at each heterogeneity level is indicated by the red line. The recurrence times are
normalized with respect to the recurrence time of events in the uniform normal stress
model. The larger-scale-event recurrence times remain more or less comparable with
increasing normal-stress heterogeneity.
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Figure 4.11: Variation of larger-scale-event recurrence time, visualized by box
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preserving the local nucleation size distribution with &) . /h* . = 0.1, in different
ways. The median larger-scale-event recurrence time for each model is indicated
by the red line. The recurrence times are normalized with respect to the recurrence
time of events in the uniform normal stress model. The larger-scale-event recurrence

times in the models with modified Dgg distributions have less variation.
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Source-time functions

Source-time functions (STFs) describe the rate of seismic moment release by the
earthquake rupture as a function of time and are proportional to integrated dynamic
slip rates over the rupture area. Let us consider STFs for 5 selected larger-scale
dynamic events from each model discussed in the previous chapter (10 models
focusing on normal stress heterogeneity and the two *modified’ Dgs models) (Figures
4.12,4.13,4.16 - 4.25). In the panel (a) of every figure, a velocity threshold (Vg ~
0.01 m/s) is used to identify the event beginning and end. This procedure sometimes
results in counting as one dynamic event two or more events that would be considered
separate seismologically, and other artifacts, as discussed later. To circumvent these
issues, we also use a moment-rate threshold to identify the beginning and end of
the events, with the value chosen to be ~ 10 Nm/s or ~ 1% the max moment rate
achieved across models, which is ~ 10! Nm/s, and these STFs are plotted as panels
(b) in each Figure. The STFs in panels (a-b) are normalized by the peak moment
rate of in the uniform normal-stress mode. Time is normalized by the time taken
by the shear wave to traverse the seismogenic, VS region, since natural earthquakes
propagate with rupture tip speeds that are a significant fraction of the shear wave
speed, and this form of time normalization enables us to make conclusions about
approximate rupture speed of events. Panels (c¢) in each Figure normalize the STFs
in the way done for natural earthquake ruptures in the work of Meier et al. (2017):
the time for each rupture is normalized by its own rupture duration and the moment
rate of individual STFs is multiplied by a constant such that the area under the STF
is reduced to 1. The median STF (indicated by a dashed black line) is plotted for
these normalized STFs; this median STF can be compared to the conclusions for

natural earthquakes (Figure 1.6).

The STFs corresponding to events in the uniform normal stress model (Figure 4.12)
are all nearly the same, indicating that all events nucleate and rupture in similar
fashion. This is also the case in the fractal normal stress model (0745 /0uni = 1.6)
(Figure 4.13). An interesting comparison can be made by comparing the source
time functions corresponding to the uniform and fractal normal stress model (Figure
4.14). The area under the source time functions in both cases is similar, with
the area for the uniform case being slightly higher, consistent with the event size
distribution plots, indicating higher seismic moment. The moment rate accumulates
in significantly different ways, however. In the uniform case, the rupture nucleates
closer to the middle of the fault and reaches a higher moment-rate peak more rapidly

due to initial bi-lateral propagation along the fault. In the model with the fractal
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normal stress, the rupture nucleates closer to the edge of the fault and has longer
uni-driectional propagation distance to the other end and hence longer duration;
the rupture speed is actually nearly identical between the two cases. The lower
and sustained moment rate in the fractal normal-stress model is due to more pulse-
like rupture propagation, either because of the higher aspect ratio of the rupture
propagation length to the fault width, or perhaps because of local healing behind
the rupture front, resulting in lower dynamically slipping area at any time instant
(Figure 4.14, bottom slip-rate snapshots). The moment-rate irregularity is due to

fault heterogeneity.

To distinguish between the effect of the aspect ratio vs. local healing, we simulate
earthquake sequences in another homogenous model but with 20% smaller charac-
teristic slip distance (Dgs), enabling the events in the uniform normal-stress model
to nucleate closer to the edge, as in the fractal normal stress model (Figure 4.15).
Events in both models now have to propagate uni-directionally for a longer distance
along the fault, although the events in the uniform fault case still nucleate a bit
close to the center and have a slightly smaller nucleation size, resulting in the initial
bilateral propagation and hence higher initial moment rates. Otherwise, the STFs
of both models now look more similar, with a region of similar sustained moment
rate release, reflecting the importance of the event nucleation location, the shape of

rupture area, and rupture directivity on the shape of the STF.
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Figure 4.12: STFs from the uniform fault model, oax /0uni = 1. a. STF using slip-
velocity threshold for event identification. Time is normalized by the time for the
shear wave to traverse the length of the VW fault region. Moment rate is normalized
by the peak moment rate of the uniform fault model. b. STF using moment-rate
threshold for event identification c. STF using moment rate threshold for event
identification with a different normalization: time is normalized by each rupture
duration and moment rate is normalized such that the area integrates to unity.
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For models with modified fractal normal stress with 07,4, /0n = 3 and larger, the
source time functions of the individual events generally have different shapes and
durations, with higher-frequency features (Figures 4.16-4.23). Upon plotting the
STFs so that the seismic moment is normalized to unity (bottom right plot in each
Figure), the variations between the events in each model, in terms of varying rupture
durations and the reluctant initiation phases, are mostly obscured. The median STF
plotted by dashed black line does not seem to capture the characteristic features of

the events in each model.

The STFs of events identified by the velocity threshold and moment-rate threshold
can be significantly different when precursory slips are involved. For the models
with Oy /ouni = 5,6,7 (Figures 4.18, 4.19, 4.20), many events have an initial
acceleration followed by near-zero moment rates (given the plotting scale) and then
another acceleration, after a time period different for different events, reflecting the
complexity of rupture initiation processes. Given the relatively long duration of the
low moment rate between the two accelerations, they may be identified as separate
events seismologically. Indeed, identifying events by the moment rate threshold
removes most of these features. This is most apparent in the 0,4, /0y = 7 model
(Figure 4.20). The event represented by red STF in the top plot clearly represents
a rapid sequence of foreshock-like events preceding the large peak. The diversity
in the events in this model warrants further discussion and is examined in 4.2.
Interestingly, at oy,4x/0uni = 8 normal-stress heterogeneity level, the source time
functions of the chosen events are more similar to each other. Whether this is a
inherent feature of this model or a result of relatively short simulation times would

require further research.

Across models, multiple events have initially more muted moment-rate release,
presumably due to rupture propagation over areas with reduced shear stress due to
foreshock-like events and quasi-static preslip. Parallels can be drawn to the seismic
nucleation phases identified by Ellsworth and Beroza (1995) (Figure 1.5). A few
select STFs that exhibit these nucleation phases are plotted in Figure 4.26. The work
of Ellsworth and Beroza (1995) linked the duration of these seismic nucleation
phases to the ultimate size of the event. Our events arrest not because of the
fault heterogeneity but because of the VS region surrounding the VW, seismogenic
portion of the fault. So while we cannot meaningfully examine the relation between
this reluctant phase and the ultimate size of the earthquake in our current models,

this can be done in suitably designed future modeling efforts.
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The STFs in models with the modified Dgs (Figures 4.24, 4.25) are generally

similar for different events in the same model and also similar to their uniform Dgg
analogues with the same normal stress distributions (Figures 4.12, 4.13), with some
notable differences. The modified Drg model with the uniform normal stress has
larger nucleation size than the purely uniform model, as discussed in Chapter 3, and
the events accelerate more gradually from the middle of the fault, modifying the
STFs. The modified Dgs model with the fractal normal stress has more variability

in the STFs that the corresponding model with the uniform Dgg.
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Figure 4.18: STFs from oy /0uni = 5 model. Same plotting conventions as Figure

4.12.
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Figure 4.27: Comparison of the median STFs (with the seismic moments normalized
to unity) for events in different models. (Top) Models with modified fractal normal-
stress distributions and o4y /0w = 3,4,5,6,7,8,9,10. The median STFs are all
similar, despite the differences between individual events and different models.
(Bottom) Median STFs for the uniform model (0,4, /0uni = 1) and the model with
the fractal stress (07y,qx/0uni = 1.6) have different shapes.
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In Figure 4.27, we superimpose the median STFs from different models. For the
models with significant normal stress heterogeneity, y,qx/0uni = 3,4,5,6,7,8,9, 10,
we observe that, even with all the variation in the shape and duration of the individual
STFs, the median source time functions collapse within the same band in this
normalized scale. This supports the conclusions from the study of Meier et al. (2017)
that STFs are remarkably similar when considered in this median and normalized
fashion. The median normalized STF of the models with the uniform normal
stress and with fractal normal stress have different shapes. Curiously, the median
normalized STF of the model with the uniform normal stress and modified Dgg
almost exactly follows the trend of the STFs from models with significant normal-
stress heterogeneity, highlighting the fact that similar median normalized STF shapes

can result from completely different fault models and rupture dynamics.

The universal STF shape in Meier et al. (2017) reaches its peak at about 45% of
the rupture duration, whereas the median STFs for our models with normal-stress
heterogeneity levels reach their peak between 0.6 — 0.8 of the rupture duration
(Figure 4.27). One reason for the discrepancy could be unrealistic rupture arrest
in our models. Most of the large-scale events in the models arrest rather abruptly
in the VS barrier region, and not because they encounter unfavorable stressing
conditions and lose steam gradually. As a trivial thought exercise (Figure 4.28),
the simplified median STF from our simulations, with peak moment rate reached
at 70% of rupture duration (red lines) is modified to have its peak at the 45% of
the new rupture duration, assuming more gradual arrest (black dashed line). This
modified STF, when re-normalized to the duration and area of 1 (blue line), assumes
the shape of median STF for natural events from Meier et al. (2017). This exercise
suggests that the arrest of the events in our models is unrealistically abrupt compared
to natural events, or at least to their median normalized representation. The more
gradual arrest in our models can be achieved by using either less strengthening VS
barriers or a larger fault which can accommodate natural arrest of events by running

out of prestress.
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Figure 4.28: Moditying the typical median STF shape from Figure 4.27 (red line)
by assuming more gradual rupture arrest (black dashed line) and renormalizing the
area to 1 (blue line) results in an STF shape (left plot) comparable to that of natural
events (right plot, Meier et al., 2017).

To confirm our hypothesis that the discrepancy in the median normalized STFs
between some of our models and natural earthquakes is caused by unrealistically
abrupt arrest, we examine the STFs of smaller-scale events. Such events arrest dif-
ferently, depending on their size. The smaller the events, the less their arrest has to
do with the VS barriers. We examine the smaller-scale events for the 07,4 /0 uni = 8
model which has almost a uniform distribution of event sizes (Figure 4.5). In
addition to the larger-scale event size range of log;o(M, /Mo,uniform) € [-0.2,0] al-
ready plotted in Figure 4.21, we select five events from three more size ranges of
log10(Mo/Mo,uniform) € [-0.7, =0.5],[~1.5, —1.4], [-2.3, =2.1] (Figures 4.29-4.31).
The median STFs from each event-size range are plotted in Figure 4.32. Plotting slip
velocity snapshots of a typical event in each size range illustrates the rupture area of

these events and the constraints of the model geometry on them (Figure 4.33).

We observe different shapes of the STFs for the different event sizes, with more
gradual arrest of events of the smaller size, as expected (top plot, Figure 4.32.
The events in the bottom two size ranges are least affected by the geometry
of the fault model and arrest gradually. The events in the top two size ranges
(log10(Mo/Mo,uniform) € [-0.7, =0.5],[=0.2, 0]) hit the width of the fault and com-
plexities emerge. The events in the intermediate size range log;o(M, /Mo’uniform) e [-0.7,-0.5],

indicated by the purple STF, arrest soon after the complex phase, whereas the com-
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plexity resembles a hesitant initiation phase for the larger-scale events characterized
by the blue STF. The median STFs for the smallest-scale events (bottom plot, Figure
4.32, which arrest mostly because of insufficient prestress, have remarkably similar
overall shape to Figure 4.28. As the events grow larger in size, their propagation and
arrest are more and more affected by the finite width and length of the VW fault and
the properties of the surrounding VS barrier. This supports our hypothesis that, to
reproduce the median STF shape based on observations, we need to facilitate more

gradual arrest of our larger-scale events.

Remarkably, the median STFs of events across different size ranges initially grow at
similar rates and are quite similar (top plot, Figure 4.32). The takeaway from this plot
is that one cannot tell the eventual size of the earthquake just by observing the initial
phase. The STFs indicate that large events are small events that ran away, which was
also the conclusion by observing the nucleation processes of larger-scale and small-
scale events in the previous chapter. Interestingly, the results are different in the case
of models where small and large events nucleate from substantially different scales,
such as our models with minimal variation in normal stress and Dgzs modified
to preserve a large variation in nucleation size distribution. The initial rates of
events from size ranges log]O(MO/MQuniform) € [-5.6,-4.8],[-4.2,-3.6],[-0.2,0]

D .
1 RS, min

s Do = 0-1 are seen to be starkly different (Figure

from the model with % =
4.34).
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Figure 4.32: Median STFs across different event size ranges from the o4y /Tuni = 8
model. (Top) Event duration is normalized by the time for the shear wave to
propagate through the fault length while the moment rate is normalized by the peak
moment rate from the uniform model. The STFs indicate that large events are small
events that ran away. (Bottom) Event duration and moment are both normalized to
1. The smallest-scale event (shown in red) is least affected by the model dimensions
and has the shape comparable to the typical behavior of natural earthquakes (Figure

1.6).
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Figure 4.33: Slip velocity snapshots from the model with 0,4,/ = 8 illustrat-
ing the beginning and end of a typical event from the different event-size ranges
considered. The snapshots help visualize the rupture area of the events in each size
range and how their dynamic propagation is affected by the finite geometry of the
seismogenic region.
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Figure 4.34: (Top) Median STFs across different event size ranges from the
% =1, % = 0.1 model. Event duration is normalized by the time for the
shear wave to propagate through the fault length while the moment rate is normal-
ized by the peak moment rate from the uniform model. Note that the small-scale
events are so small that their median STFs are barely visible relative to the large-
scale event. (Bottom) The initial rates of the median STFs across the size ranges are
observed in a zoomed-in version. The median STF of the large event grows much
faster initially than the much smaller events from the same model.
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Identifying dynamic events: slip-velocity threshold and variability of events
within the same model

To quantify simulated patterns of fault slip, one needs to use thresholding criteria
which delineate aseismic versus seismic slip. In the numerical simulations in this
thesis, a slip-velocity threshold is chosen, as typically done in numerical modeling.

The value of the threshold depends on the frictional properties of the fault interface.

However, the analysis of the STFs of multiple events from the same model (Figure
4.16—4.25) highlights the problematic nature of using a slip-velocity threshold in
simulations on heterogeneous interfaces. On relatively homogeneous interfaces,
reaching a certain, relatively high, slip rate, signifies that slip acceleration to insta-
bility is ongoing and the dynamic rupture propagation is imminent, and the exact
value of the slip-rate threshold may not matter much. On heterogeneous interfaces
like the ones considered in this work, a small foreshock-like event may elevate slip
rates over a part of the larger-scale nucleation zone when the main nucleation process
is not yet in its final accelerating phase. That would result in a significant time delay
between the slip-velocity threshold being reached and dynamic rupture propagation
occurring, resulting in various artificial outcomes, such as excessively long event
durations. For this reason, the STFs generated using slip-velocity threshold can

temporally translate otherwise similar-looking events within the same models.

An interesting example of this phenomenon is an event STF from oy,4y/0uni = 7
model (Figure 4.20, plotted in red). Observing this event in isolation, we see clearly
separated small-scale events preceding the eventual larger-scale event (Figure 4.35).
Using slip-velocity threshold, the entire sequence is classified as a single larger-scale
dynamic event. These small-scale precursors are separated by dynamic time scales,
yet their rupture durations are smaller than the separation time scale, hence it is
apparent that this is not one dynamic event. The precursors are close in space and
time and building up towards the nucleation of the dynamic event, making them
a classic cascading sequence of foreshock-like events preceding the mainshock.
Sequences like this can be used to draw comparisons to and study properties of
the hesitant initiation phase, termed as seismic nucleation phase from Ellsworth
and Beroza (1995), seen in Figure 1.5. The slip velocity snapshots corresponding
to the event are plotted in Figure 4.36, 4.37. The same snapshots are plotted in a
different color scale, which emphasizes the triggering process by only considering
the velocities two orders below and above dynamic velocity threshold (~ 107 — 1
m/s) in Figure 4.38, 4.39.
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There is a wide variation in the type of larger-scale events occurring at this level of
heterogeneity. The time history of the maximum slip velocity between these five
mainshocks considered for construction of STFs from the 0,4 /0uni = 7 model
shows the location of intershocks with respect to the 5 mainshocks (Figure 4.40).
Out of the 8 small-scale events in this time interval, 3 occur as intershocks. The
rest of the small-scale events occur as foreshock-like or aftershock-like events to
the 5 mainshocks. An interesting example is the last mainshock (MS5), the STF
of which is indicated in blue in Figure 4.41. There is one foreshock-like event
right before the moment rate ramps up rapidly, a pattern quite different from the
event shown in red (note that the foreshock-like bump becomes a separate event
based on the moment-rate threshold. The history of maximum slip velocity for
~ 80 dynamic time scale units preceding the blue event demonstrates the absence of
other foreshock-like events (Figure 4.42). The slip velocity snapshots for this event

indicate the absence of any evident precursory behavior for this event (Figure 4.43).

This contrast between the two events demonstrates that, even on a fault with the
same persisting heterogeneity, entirely different initiation of larger-scale events can
occur, depending on how the interface is stressed, where the event starts, and how

powerful the initial slip acceleration is.
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Figure 4.35: Source time function of a larger-scale event from oy /0uni = 7

model which shows a cascade-like sequence of small-scale ruptures preceding the
larger-scale rupture. Plotted using a velocity-based threshold, the entire sequence is
considered the same large-scale dynamic event.
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Figure 4.36: Slip velocity snapshots visualizing the large-scale event from Figure
4.35 indicate the small-scale ruptures in S1, S6, and S10 which precede the large-
scale event (Continued in next figure).
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Figure 4.37: Slip velocity snapshots visualizing the large-scale event from Figure
4.35 indicate the complex rupturing and re-rupturing of asperities which build up
to the large-scale event which eventually ruptures the entire interface.
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Figure 4.38: Slip velocity snapshots from Figure 4.36 plotted in a color scale that
emphasizes the triggering processes of the cascade sequence preceding the large-
scale event. (Continued in next figure)



133

§12At,0rm = +4.52

-1
loglo(vzyn )

Figure 4.39: Slip velocity snapshots from Figure 4.37 plotted in a color scale that
emphasizes the high frequency ruptures that accompany the large-scale event.
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Figure 4.40: Maximum slip velocity history for the 5 mainshock cycles from
Omax/0uni = 7 model indicates the mainshocks and the location of intershocks
relative to them. The rest of the small-scale events identified in this interval by
the velocity threshold (8 small-scale events in total) occur as foreshock-like or

aftershock-like events to the 5 mainshocks.
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Figure 4.41: STFs of two larger-scale events from 0v,4,/0uni = 7 model plotted
using a velocity-based threshold which shows one event (red) with a cascade-like
sequence of small-scale ruptures preceding it. The second event (blue) has only a
single, immediately preceding foreshock-like bump.
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Figure 4.42: Maximum slip velocity history for the 5" mainshock, indicated by
the blue STF in Figure 4.41 from 04y /0un = 7 model during ~ 80 dynamic time

scale units before the beginning of the event. There are no other foreshock-like
small-scale events preceding it.
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Figure 4.43: Slip velocity snapshots visualizing the larger-scale event indicated by
the blue STF from Figure 4.41. The small foreshock-like bump is indicated by
snapshots S4-S7, right before the moment rate builds up rapidly from S8.
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4.3 Conclusions

With systematic increase in heterogeneity, we observe growing complexity in slip
behavior, revealed by variation in large-scale event sizes, appearance of small-
scale events, changing b-values, and complexity in shapes of source-time functions.
Increasing normal stress heterogeneity by enhancing the asperity peaks leads to
increasing complexity of large events and appearance of small events. Modifying
Dgs whilst preserving heterogeneity in nucleation sizes results in a larger fraction
of smallest-scale events, yet this does not have significant effect on large-event sizes.
The static stress drops are remarkably similar across all our models, with median
stress drops in models with significantly different normal stress heterogeneity levels
increasing only marginally, by ~ 20%. The larger-scale event recurrence time
is another quantity that remains more or less comparable across normal stress
heterogeneity levels as well as with modified Dgg. The b-values systematically
increase with increasing normal stress heterogeneity until about 07,4 /07n = 8 and

then fluctuate within a range.

Quantifying larger-scale ruptures using STFs shows increasing complexity in the
STF shape and rupture duration with increasing normal stress heterogeneity. We
can observe more reluctant initial moment release in many events across models
as observed for natural events in Ellsworth and Beroza (1995), although our study
does not produce events of sufficiently different sizes to study whether there is
any relation between the duration of this reluctant release and the eventual event
size. The construction of STFs using both slip-velocity and moment-rate threshold
reveals that using a moment-rate threshold makes more sense seismologically. The
shape of the STFs produced in our models are found to depend on multiple factors:
where the event is nucleated with respect to the fault dimensions, how powerful
the initial slip acceleration is, and the event size. Comparing the STFs of events
from our models to natural observations, it is clear that natural events arrest more
gradually, without clear geometric boundaries. The events from our models which
exhibit the best match with the typical STF shape from natural observations are
the smallest-scale events which are least affected by the finite width and length of
the VW, seismogenic fault region. Therefore, to match natural observations, the
arresting mechanisms employed in our models should facilitate the gradual arrest of
the larger-scale events. This could be achieved by simulating large enough faults, or
by having smooth transitions between VW and VS with velocity-neutral (VN) areas

etc.
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The comparison of two larger-scale events from a model with the same heterogeneity
shows that, at different times on the same fault, larger-scale events can occur either
with clear sequence of cascade-like foreshocks or with hardly any obvious foreshock-
like events preceding them. So foreshocks may or may not reliably occur even on
the faults where they have been previously observed. Furthermore, the absence of
clear foreshocks for a given event may indicate that the fault is not heterogeneous
enough or may be specific to the dynamics of the system at that instant of time even
on a highly heterogeneous fault. The situation would be even more complex in the

presence of evolving fault heterogeneity, i.e., due to fluid flow.

In our models with significant normal-stress heterogeneity, plotting source-time
functions across different event-size ranges in the same fault model shows remark-
ably similar initial growth rate of differently-sized events, which suggests that one
cannot tell the eventual size of the earthquake just by observing the initial phase. In
both the study of nucleation processes in Chapter 3 and the source time functions
in this chapter, our models with significant normal-stress heterogeneity indicate
that large events are small events that ran away. The results are different for the
models where small events and large events nucleate from substantially different
scales, such as in our model with uniform normal stress but significant variability
in the nucleation size achieved through the modified characteristic slip distance. In
such models, the initial growth rates of the events of different sizes are significantly
different. These qualitatively different behaviors of models with the same hetero-
geneity in nucleation size achieved differently, via heterogeneity in normal stress vs.
heterogeneity in characteristic slip distance, opens the possibility of distinguishing

the nature of heterogeneity on natural faults.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

This work investigates the link between heterogeneity in fault properties and different
aspects of slip behavior on fault interfaces by conducting numerical simulations of

long-term slip histories on heterogeneous frictional interfaces.

We begin by exploring how irregular fault geometry affects the variability in repeat-
ing sequences, by investigating a specific example of SF- LA repeating earthquakes
in the Parkfield segment of San Andreas Fault. Our models reproduce many obser-
vations about the SF-LA repeating sequences, including their mean moment, mean
recurrence times, stress drops, the observed non-trivial scaling between the seismic
moment and recurrence times of the repeaters, the ranges of variability in moment
and recurrence time, and the ranges of triggering times between the two sequences.
We find that multiple models fit the data within reasonable ranges. The first is a
model with complex source patch shapes and the other with simple circular source
patch shapes within a velocity strengthening area that is more compliant. This
implies the existence of infinitely many models generated by changing the shapes of
repeating patches and varying the velocity strengthening nature of the surrounding
area which can potentially match the observed variability and interactions of the
repeaters. We also explore the impact of small-scale heterogeneity on the system
response, and found that smoothing the distribution over scales smaller than length
scales relevant to the system preserves key characteristics of the system. The slip
behavior however changes qualitatively when features on the scale of relevant length

scales are eliminated.

A conceptual understanding gained from this work is the infeasibility of incorporat-
ing individual variations in different type of heterogeneities in numerical models to
match observations. There are many ways to add heterogeneity in fault properties
and when calibrating with observations, distinguishing between the different kinds
of heterogeneities can be challenging since different features in the model trade off,
even to create long-term response. This highlights the importance of laboratory ex-
periments and theoretical studies to better the understanding of connections between
different fault properties. For example, regions with high normal stress may have

more localized shear zones and be more susceptible to velocity-weakening behavior.
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These compressed areas may also have a tendency to become smoother with time,
represented by lower Dgg. Such coupled heterogeneity distributions informed by
lab experiments can make constraining fault properties using observations more

tractable.

In the second study, we investigate the effect of increasing heterogeneity in normal
stress on the earthquake nucleation process. We modify fractal-like distributions to
systematically increase the normal stress heterogeneity on the interface and observe
a continuum of behaviors ranging from purely fault-spanning events to persistent
foreshock-like events between larger-scale events. In cases with stronger normal
stress heterogeneity, a majority of the large-scale events nucleate from the hetero-
geneity scale of the compressed peaks, which is increasingly smaller than the mean
nucleation size that would govern their nucleation on a uniform fault. In these
cases, large-scale events are small-scale events that run away. Modifying Dgg to
achieve low nucleation sizes in models with uniform or mild normal stress variation
results in a large fraction of small-scale events driven by the larger-scale quasi-static
nucleation processes. These small-scale events do not appear to have much impact

on the nucleation sizes of the large-scale events.

The final work presented in this thesis investigates the effect of increasing het-
erogeneity in normal stress on complexity in sequences and features of dynamic
ruptures using the same models from Chapter 3. The complexity in slip behavior
with systematic increase in heterogeneity is manifested as variation in large-scale
event sizes, appearance of small-scale events, changing b-values and complexity in
source-time functions. Quantifying the complexity of larger-scale ruptures using
source-time functions shows increasing complexity in the shape and rupture dura-
tion with increasing normal stress heterogeneity. We observe prolonged initiation
phases in models, similar to some observations, once realistic heterogeneity in nor-
mal stress is incorporated. The shape of the source time functions produced in our
models are found to depend on multiple factors; the location of event initiation, how
powerful the initial rupturing of an asperity is, how the interface is stressed at that
time instant and the model geometry. The construction of source time functions
using both velocity and moment rate thresholds for event identification reveals that
using a moment rate threshold might make more sense seismologically. Source-
time functions plotted across different event size ranges from a model with strong
normal stress heterogeneity show similar initial growth rates. This re-emphasizes

the conclusion from the study of nucleation processes from Chapter 3 that in models



141

with strong normal stress heterogeneity, larger-scale events are small-scale events

that ran away.

A lot can be learnt from source time functions regarding how well the numerical
fault model represents real faults. Any kind of geometric constraint on event arrest
makes the source time functions from our models deviate from the average STFs of
natural earthquakes. This suggests that generally earthquakes on real faults arrest
gradually, and not by running into abrupt barriers. To match natural observations,
the arresting mechanisms employed in our models should facilitate the gradual arrest

of the largest-scale events.

An important point to highlight is that all the complex slip behaviors generated in
our fault models are consistent with the idea that the system is driven by larger-scale
quasi-static (slow) slip. The observed complexity in slip behavior in our heteroge-
neous fault models, such as small-scale events, larger-scale events nucleating from
asperity scales, cascade-like sequences of foreshocks triggering each other prior to
a mainshock etc., are ultimately manifestations of the background quasi-static slip
loading the asperity spots and allowing them to accelerate to fast slip rates. In some
cases, the aseismic slip is negligible compared to the resulting seismic signatures,
which may lead to the observational conclusion that the seismic events are triggering

each other without any aseismic slip.

There are many interesting possibilities to continue the analysis conducted in the last
two chapters. In this study, we have considered models with mild or uniform nor-
mal stress distribution and modified Dgg to achieve nucleation sizes corresponding
to the strongest normal stress heterogeneity. Comparing the responses from these
modified Dgg models to the strongest normal heterogeneity model has revealed quite
a difference in behaviors, opening the possibility of quantifying the nature of fault
heterogeneity by matching its behavior. It would be worthwhile to systematically
study the effect of modifying different aspects of friction properties to map out the
resulting behaviors and compare them to observations. In this work, we have con-
sidered the effect of increasing normal stress heterogeneity on properties of source
time functions and frequency moment distributions. The effect of the systematic
change in heterogeneity on other observables like radiated energy and its frequency
content would be of particular interest to seismologists. Additionally, the models
considered in the analyses in Chapter 3 and 4 do not consider fluid or thermal effects.
On natural faults, highly-localized shear deformation in the presence of fluids can

lead to additional dynamic weakening of friction due to mechanisms like thermal
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pressurization of pore fluids and flash heating being activated (Rice, 2006). An
interesting future study would be to incorporate this additional effect of enhanced

dynamic weakening on heterogeneous faults, to study its effects.
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