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Abstract

Some of the fastest processes of relevance to chemical physicists occur on pico to fem-
tosecond timescales. In the following chapters two of such fast processes are investi-
gated with novel theoretical methods to obtain insight into experimental observations
at the molecular level.

One of the major topics of interest in chemical physics has been about energy
localization in polyatomic molecules. The “golden rule” formula states that the rate
for the intramolecular relaxation of energy (IVR) that is initially localized in one
part of the molecule is proportional to the density of states at that energy. Here, a
general mechanism of the energy redistribution out of an initially populated “light”
or “bright” state is elucidated. It is shown that, for a family of acetylenic molecules,
the relaxation is due to a sequence of weak off-resonant directly coupled states rather
than all the available states. This mechanism shows how the rates of IVR can be
significantly slower than those predicted by a naive application of the “golden rule,”
since mainly only the initial weak off-resonant couplings govern the rate of IVR.

Another topic that has attracted substantial interest in the chemical physics com-
munity is that of solvation. Various heavily applied theories of reaction rates, such
as the electron transfer theory, have viewed the solvent as a dielectric continuum.
Recent experiments and simulations have shown that the very fast solvation response
provides interesting information on the molecular nature of the solvent. Here, a new
method for doing molecular dynamics (MD) calculations for solvation is developed.
This method uses the reaction field method to obtain the long range potential for
a small cluster of molecules rather than using the usual Ewald sum technique with
periodic boundary conditions (PBC). It is shown, here, that this method may be
used successfully for solvent dynamics simulations. This method may prove superior
for such calculations as compared to the PBC approach, since it does not impose an

artificial isotropy on the problem as is the case with the PBC calculations.
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Chapter 1

Vibrational Superexchange Mechanism of
Intramolecular Vibrational Relaxation in (CH3)3CCCH Molecules
(Appeared in : J. Phys. Chem. 97, 12491 (1993))
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Vibrational Superexchange Mechanism of Intramolecular Vibrational Relaxation in (CH;);CCCH

Arthur Amos Noyes Laboratory of Chemical Physics,t 127-72, California Institute of Technology,

Quantum calculations are reported for the dynamics of intramolecular vibrational energy redistribution of the
acetylenic CH stretch in (CH;);CCCH molecules. This paper is an extension of our previous publmuon .
Chem. Phys. 1993, 98, 6044) where the line widths of the CH overtone transitions were calculated in several
molecules of a general class (CX;3);YCCH, and it was found that the relaxation is due to a sequence of many
weak off-resonance vibrational transitions between tiers of directly coupled states. The coupling of the CH
stretch to a manifold of quasi-resonant states resembles the superexchange mechanism of coupling between
donor and acceptor states in long-distance electron-transfer reactions. An analysis based on total population
in each tier is introduced. The very rapid decrease of this population in the intermediate tiers with tier index
provides evidence that the relaxation dynamics occurs via tunneling (vibrational superexchange) under 2 dynamic
barrier in the tier space of the system. Details of the time evolution of the population under the dynamic barrier
in the course of relaxation are described. “Dead end™ states, their effect on the time-evolution and on spectra,
their removal via inclusion of additional anharmonicities, and, thereby, their probable artificial nature in the

Molecules
A. A. Stuchebrukhov, A. Mehts, and R. A. Marcus®
Pasadena, California 91125
Received: June 24, 1993; In Final Form: August 17, 1993®
present case are discussed.

L. Introduction

In the previous paper! of this series, quantum calculations of
homogeneous line widths of the acetylenic CH vibrational states
in (CX;);YCCH molecules, where X = H,Dand Y = C, Si, were
reported. The line widths, which provide a measure of the rate
of intramolecular vibrational relaxation (IVR), result from the
vibrational coupling of the acetylenic CH stretch to the rest of
the molecular vibrational degrees of freedom. The study was
motivated by the recent experimental results of Scoles, Lehmana,
and collaborators.2? For these molecules extremely narrow
vibrational lines, fwhm = 10~1-10-2car!, have been observed. In
the present paper the relaxation dynamics of the acetylenic CH
stretch in (CH,);CCCH is explicitly studied in real time.

We summarize first some deductions of the previous study. In
ref 1 it was found that the unusually slow relaxation (of the order
of a hundred picoseconds), corresponding to the extremely narrow
line widths in those molecules, is due to the absence of direct
low-order Fermi resonances. Very high order resonances are
available, but the direct coupling to such states was argued to
play a negligible role: In those high-order quasi-resonant states
many vibrational quanta of low-frequency modes are excited,
and they can be qualitatively thought of as being separated a
large distance from the light state in the state space, or classical
action space, of the system. Instead of that direct coupling
mechanism, the relaxation was assumed to occur in a sequence
of many virtual transitions betweea tiers of directly coupled states,
whereby the system uses the best “resonances” available, ic.,
resonances typically with large detunings, to reach the final quasi-
resonant states. Thsed:mned.orvmul.momcesphythe
role of a bridge between the initially excited state and the quasi-
continuum of well resonant states. The number of sequential
virtual transitions required can be as large as 10 or more in this
treatment.

Such a coupling scheme resembles the superexchange mech-
anism of the coupling of electronicstates in long-distance electron
transfer in biological systems.¢ For this reason it can be called
vibrational superexchange. The very idea of superexchange as

* Contribution po. 8815.
© Abstract published in Adoance ACS Abstracts, December 1, 1993,

a mechanism of indirect quantum mechanical coupling is very
general and has been discussed in the literature for a long time.$
The difference between the usual electronic superexchange and
vibrational superexchange is that in the former case the quasi-
resonant electronic states of donor and acceptor, coupled indirectly
via many virtual transitions, are separated by barriers in coordinate
space while in the latter case the CH vibration and the quasi-
resonant states, where many vibrational quanta of low frequency
modes are excited, are separated in the action space, or in the
zeroth-order quantum number space, of the system.

A tier of states is defined by the total number of quanta that
each state in the tier differs from the light state, as described
below. (Thelightstateconstitutesthen=0tier.) Thepopulation
of the mth tier, Py(r), is a sum of the population of all states
belonging to that tier. In many cases, the relaxation dynamics
of the light state, the so-called survival probability, is studied &3
This function can be most easily calculated and experimentally
probed. In the present case such a strategy would correspond to
the calculation of population of only the CH vibration, Po(?) in
our notation. In addition to Py(f), the populations of other tiers
Py(f),n=1,2, ..., are also studied in this paper. The population
of each of the higher tiers provides, in fact, the main insight into
the relaxation process. We consider not only how the relaxation
of excitation of the CH stretch occurs but also how this excitation
spreads over the other vibrational states in the molecule. Several
authorsin the past have recognized the importance of theanalysis
of the population of the dark states.679-11

Two limiting quantum mechanical forms of intramolecular
vibrational relaxation (IVR) can be envisaged, using a zeroth-
order basis set description: In one of these there would be a
successive set of vibrational energy transfers, each governed by
a kinetic expression, to near-resonant states, and 5o the overall
transfer would be governed by a master equation. Anycoherence
would be completely lost at each step. In a second limiting
mechanism the energy transfer would proceed from the initial
zeroth-order state toa final near-contingum set of quasi-resonant
states via a series of transitions over off-resonant states. These
states are the virtual states mentioned above. This . latter
mechanism can appropriately be called vibrational su|
as noted above. In the present paper we describe results for the

0022-3654/93/2097-12491504.00/0  © 1993 American Chemical Society
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IVR of the (CH;);CCCH molecule in which the acetylenic CH
is prepared in its first excited vibrational state.

There are certain analogies to & classical, or really to a
semiclassical description,!2!3 in that the off-resonant superex-
change mechanism could correspond to 2 "dynamical tunneling™:
In the molecule, invariant tori in phase space are associated with
the zeroth-order classical action variables and correspond semi-
classically to the zeroth-order quantum states all in a many-
dimensional, nearly parabolicenergy well. If the introduction of
the perturbation resulted only in the distortion of these tori but
not their destruction, then exteasive IVR could occur by a
“dynamical tunneling” from one torus to the next, as described
by Davis and Heller.!* (“Tunneling” between tori has been
extensively investigated, in one way or another, by a aumber of
researchers since the early seventies.!'’) In an actual classical
mechanical system with many coordinates, such as the preseat
one, one can expect that the invariant tori will be at least partially
ruptured and that another mechanism involving the chaotic-like
passage through these fragments can occur classically and has
been discussed by various authors.'¢

For this reason, we believe that the simplest quantitative
description of the IVR process in these many-dimensional systems
is the quantum mechanical one, though there will be an analogy
between the vibrational superexchange mechanism and a tunneling
between the zeroth-order invariant tori.

In the present paper the concept of tier populationisintroduced,
converting the results of the many-coordinate [VR problem toa
one-dimensional visualization. The presenceof “dead-end” states,
their effect, and their possible removal when higher order
anharmonicities areintroduced, are alsodiscussed. A comparison
ismade with crude phenomenological descriptions of the successive
incoherent steps mechanism and of the vibrational superexchange
mechanism, using the long-time behavior.

The structure of the paper is as follows. In section II some
theoretical aspects of the tier model are discussed and in section
111 dynamics of the tier system of (CH;);CCCH molecule is
studied. In section IV, the results are discussed.

L. Tier Model

Statistical IVR is usually understood as the relaxation of the
state that is directly accessible from the ground state through 2
transition moment, the “light state®, into a large number of
anharmonically coupled “dark"” states which are inaccessible from
the ground state. This coupling arises from the deviation of the
potential surface, written in normal mode or normal mode/local
mode coordinates,!” from harmonic behavior. A refinement of
this model divides the dark states into various tiers.! Each state
in a given (nth) tier is coupled through third-order anharmanic
couplings to states in the n — 1 or n + 1 tiers. If fourth-order
couplings are being taken into consideration, then the states in
the nth tier are coupled tostates in the n—2 and 2 + 2 tiers. Once
the light state is specified, the tiers are then created sequentially.
The cubic (or quartic) anharmonicity operator is written in terms
of creation and annihilation operators which act on the light state
to generate the first tier, on the first tier to generate the second
tier and 50 on until some specified criterion (usually, the number
of states) is met. Care is taken to avoid duplication of states in
different tiers in this scheme, a scheme which is implemented
naturally in C language with dynamic memory managementand
the use of pointers.! The first six tiers for (CH;);CCCH,
generated in this way with a model potential anbarmonic field
developed in ref 1, are shown in Figure 1.

Once the tier structure is complete then the complete N X N
vibrational Hamiltonian is formed within this basis set and
analyzed. The Hamiltonian is diagonalized using the standard
algorithms for complete diagonslization of large, sparse symmetric
matrices. Upondiagonalization the eigenvectors are normalized.
This procedure of exact and complete diagonalization hasa built-
in limitation on the size of the matrix. For example, with access
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Figure 1. Firstsixticrsof:

sequentially coupled zero-order statesin (CHy)y-
CCCH. The first state on the left is the acetylenic CH vibrationo = |.

to 10 Mwords = 80 Mb of memory on our computer, memory
constraints limit the dimension of the matrix to ~2000. Use of
Lanczos-type ideas for diagonalization may be useful in dealing
with larger matrices. Further details on the generation of the
tier structure and the associated computational details are given
in the previous paper in this series.!

Having calculated the eigenvalues, E,, and the eigenvectors,
I¥:). it is possible to perform the dynamics calculations on all the
zeroth-order states. The transition intensities of different lines
in the absorption spectra can also be obtained. The spectrum
shows how the single line of the transition to the light state splits
into a broadened band of transitions in the presence of the
anharmonically coupled dark states. The absorption spectrum
is related to the amplitude of survival probability of the light
state (Jéo)), which is defined as

o) = KSdd ()P = (ode o0 )

where|¢(1)) is the state evolving in time from the prepared state
l¢o). The Fourier transform of (¢ol¥(r)) is given by

Iw) = (1/22) [~ (8do()e™ dt @

Here, I(w) is proportional to the actual absorption spectral
lineshape, as defined in ref 18. One factor in the proportionality
constant is the square of the dipole transition moment. Irserting
the resolution of the identity

N
1= W)l ()

=1
(the {y:} form a complete set of orthonormal eigenvectors within
this basis) and using AN;) = Ef), we have

N
Po() =3 _ledvfe =T @
=)
Iw) = Y Kodv)b(w - E) )
]

Similarly, the population of any other zeroth-order state ¢ is
given by
A1) = Keo(P = (<o) Heo) =
N
|;<¢,M.><mo>e*“l’ ©
[}

Toobtain insight into the mechanism of IVR the actual dynamics
of each of the invidual zeroth-order states has been calculated.
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Since the total number of states is so large, a global picture of
the dynamical behavior of the molecule was obtained from the
dynamical behavior of each state by calculating the total
population in a given tier as a function of time:

Na

P(0) ‘Zf’* )

where N, is the number of states in the nth tier and the {lén)}
belong to the ath tier. P, is the total population in the ath tier.
In the zeroth-tier there is only one state, the light state, making
Po(t) = Po(t). With these tools available for the analysis, the
dynamical behavior of the tier model can be examined in detail.

III. Dyoamics of the Tier System

3.1. Reduced Dypamics with 3 Quasi-continuum Tier. The
detailed analysis of the relaxation mechanism in (CH;);CCCH
ispresented next. For thismoleculea total of about 30 000 states,
sequentially coupled 1o the light state, were identified in an
artificial intelligence search procedure using 2 perturbation theory
based criterion.! Only thosestates that are expected tocontribute
significantly to the relaxation process are included in the
calculation. The first six tiers of this system are shown in Figure
1. The whole structure contains detailed information about the
relaxation pathways.

To study the dynamics of such a huge system some simplifi-
cation has been adopted, because the total system cannot be
diagonalized exactly. For this reason, only 10 tiers of the real
system which contain 624 states are included in the present
calculation. Then, to stimulate the presence of the quasi-
continuum of other states in the later (>10) tiers and yet to stay
within the limits of possible complete diagonalization, an eleventh
tier is added within a narrow resonant energy window taking the
total number of states to 2000, the energy of each state in the
eleventh tier being random within a prescribed window. This
number is themaximum number of states thatcan be diagonalized
directly in the computer being used, due to memory constraints.

This eleventh tier phenomenologically describes the prediag-
onalized states from all the actual tiers with numbers 1> 10. The
energy window for this, the eleventh, tier was chosen to be 0.5
cm-! around the major peak in the spectrum of the 10-tier system.
This major peak is slightly shifted from the energy of the light
state due to its interaction with the other states. The additional
states in the eleventh tier are coupled randomly with states in the
tenth tier. The matrix elements between states in tier 10 and tier
11 form a Gaussian distribution centered at the energy of the
main cigenstate of the 10-tier system, such that any edge effects
from the additional tier may be minimized. The density in the
cleventh tier waschosen in such a way as to make the total density
of states roughly equal to the total density of dark states for the
fundamental transition of the CH stretch in the 42-dimensional
oscillator model described in detail in ref 1. Although it is
reasonable to expect that this last tier may impose some artifacts
on the dynamics, we believe from the results below that this
simplified approach, where a light state is coupled through
intermediate tiers to 2 quasi-continuum of states, provides a
realistic model of the process of IVR in (CH,);CCCH. Before
considering the details of the mechanism, it is useful to comment
on the effect of the addition of this eleveath quasi-continuum tier
on the dynamics and spectra.

In Figure 2 the population dynamics of the light state po(t),
i.c., the survival probability, is shown with and without the quasi-
continuum (eleventh) tier. It is seen that while the initial (<200
ps) relaxation of the light state is identical for the two systems,
recurrences of population for the light state are present for the
10-tier system. This observation shows that during the decay in
the first 200ps the higher tiers of states are irrelevant and,
therefore, the initial decay is completely a local phenomenca.
The same conclusion can be reached from the sum rule for the
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Figwre 2. Top curve: survival probability of the acetylenic CH stretch

inthe 10-tier system without the addition of a tier to simulate the presence

of a quasi-continuum. Bottomcurve: survival probability of the acetylenic

CH stretch when the quasi-continuum tier is present. Dashed line is the

least-squares exponential fit to the bottom curve.

width of the absorption spectrum.! This width is the inverse
relaxation time for the short-time behavior.

The addition of the cleventh tier, however, changes the long-
time behavior of the survival probability, significantly curtailing
the long-time recurrences (Figure 2). After some initial transient
behavior, the decay of the light state is exponential, as expected
inastatistical limit. That Pe(¢) in the two curves does not appear
toapproach 1.0as ¢ —0reflectsa very rapid (almost instantaneous
on our time scale) dilution of the light state by far off resonant
interactions. Thus, we conclude that the presence of the quasi-
continuum tier is essential and that more than 10 tiers are needed
to describe the irreversible decay of the CH stretch.

Similar dramatic effects are observed in the absorption spectra
when the quasi-continuum tier is added. For the 10-tier system,
i.c., for the system without a quasi-continuum, the spectrum is
shown in Figure 3a. It essentially consists of one major peak.
The addition of the 11th tier with a high density of resonant
states produces an effect shown in Figure 3b. Itis seen thata
broad distribution of peaks is formed with about the same full
width at half maximum as predicted by the Golden Rule.! Since
the statistical decay of the population requires the presence of a
high density of well resonant states, the addition of this last tier
is absolutely essential.

While the addition of the eleveath (quasi-continuum) tier has
transformed the spectrum from a few separated cigenstates into
a well-defined band of absorption lines, the density of lines in the
spectrum is still smaller than its actual value in real molecule.
In our multidimensional oscillator model we have not taken into
account the possibility of methyl groups tunncling between
equivalent torsional positions. The tunneling events transform
the C,, point-group symmetry of our oscillator model into Gy
molecular symmetry group,!? significantly increasing the number
of possible anharmonic couplings of the light state to the dark
states. This effect was argued t0 increase the deasity of actual
spectral lines: possibly by a factor®? as large as 24.

To see what can happen with the spectrum if the density of
available dark states is increased further from its present value
in the quasi-continuum tier, model calculations were performed.
In these calculations s single light state is randomly coupled to
a tier with density of states 705 and 20000/ca~?, respectively.
The former deasity corresponds to our oscillator model while the
latter corresponds to the breaking down of the C,, symmetry.
The spectrum of such a model system is shown in Figure 4. The
absolute energy position of the light state is not critical in this
model calculation. As the deasity of states (p) is increased while
p0? is kept constant (0% is the mean square matrix clement), the
spectrum is transformed from a series of disconnected peaks into
a Lorentzian. In Figure 4, T = 2xp0% is kept constant and the
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Figure 3. Absorption spectra corresponding to the (2) 10-and (b) 1 1-tier
systems that simulate the acetyleaic CH stretch in (CH;3),CCCH.

simulated curve is compared to an idealized curve of Lorentzian
shape with this T, this idealized curve being given by

1 )
T (w-wg)’ + (T/2)

where J(w) is the spectral absorption lineshape.

Thus, we infer that the spectrum of our model, Figure 3b, will
continuously evolve into the Loreatzian eavelope, observed
experimentally, when the density of states in the quasi~continuum
tier reaches its actual value and when account is taken of the
possible experimental broadening of each individual eigenstate.
Once the statistical limit is reached, any further increase in the
density of states simply fills in the remaining spaces within the
individual cigenstates.

We focus next on the characteristics of the dynamics of
populations of tiers with tier numbers n 2 1, i.¢., on the dynamics
of the accumulating population of states other than the light
state.

32, Losg-Time Dyoamics of the Tier System. Dead-End
States. The main qualitative feature of the dynamics of the tier
system on the time-scale of decay of the light state is shown in
Figures S and 6. For each tier n we again are interested in the
evolution of the population of the whole tier, P,. The time
evolution of P, shows that the population of the intermediate
tiers is always very small (<0.1, Figure 5), never building up
significantly. At the same time, the population of the light state
decays (Figure 2) and the population of the eleventh, or quasi-
continuum tier rises, apparently as a result of this decay (Figure
6). Qualitatively, it appears as if the population flows directly
to the distant eleventh tier, largely bypassing the intermediate
tiers. This type of behavior is typical for a superexchange
mechanism. There is also an anzalogy to 2 tunneling dynamics
which we discuss in the later sections in the paper.

H(w) = 8)
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Figure 4. Spectrum of a light state directly coupled to a dense manifold
(density = p) of dark states: (a) p = 705/cor™"; (b) p = 20000/cm-".
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Figure . Population of tiers 310 as a function of time in the presence
of the eleventh tier. The top curve is tier S, the pext is tier 9, a cluster
of tiers 3, 4, and 7 are next, tier 8 is next, and a pair of tiers 6 and 10
are lowest.

The off-resonant states are virtual states, and for this reason
preciude a buildup of population within the intermediate tiers
(Figure 5). However, some buildup of the population is possible
if by accident there is a good resonant state in & distant tier and
that state is not coupled by cubic terms to further tiers in the
system. Wecallsuchstatesdead-end resonantstates. Suchstates
are of a somewhat artificial nature, because there are always
higher order anharmonic couplings. However, in calculations
with a model anharmonic field, like the present one, after selecting
states with an artifcial intelligence search procedure in the tier
system and using only third-crder anharmonicities there can be
such states as described above. Their effect is considered next.

It has been noticed that there are several such dead-end states
in our tier system. Of such states, only two states in the third
tier were found to have a significant effect on dynamics and
spectra. One of these states is more resonant with the position
of the absorption band than the other one and, therefore, basa
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Figure 7. Spectrum when the dead-end states arc added. Compare with
Figure 3b.

larger effect. We also noticed (calculations given below) that
the effect of these two states is considerably reduced when small
quarticterms coupling them to further (n+ 2) tiers areintroduced.
Because of their artificial nature, these states have been removed
from the calculations described in section 3.1. In the absence of
further couplings, the removal of the dead-end states does not
effect the overall IVR process dramatically, especially ona long-
timescale. Thecalculations havealsobeen performedinasystem
where such resonant dead-end states are present. These calcu-
lations are described next.

In Figure 7 the spectrum of the system with resonant dead-end
statesisshown. Comparison with Figure 3bshows that thedead-
ead states produce additional componeats in the spectrum. These
scparate peaks are due to the abseace of couplings of the dead-
end states to states in further tiers. The overall dynamics of the
tier system, however, does not change qualitatively when the dead-
end states are present. The dynamics of the light state and the
quasi-continuum tier are shown in Figure 8. As a result of a
single strong resonance in the third tier, in the time evolution of
the light state there is 2 tendency now for & coherent quantum
beat to occur. There also exist fast oscillations of smaller
amplitude due to the off-resonant dead-end state.

In Figure 9 the population of the third tier and the population
of the resonant dead-end stateisshown. Itisseen thatpractically
all the population of thetier isduetoa singlestate. Thepopulation
of the third tier is in this case significantly larger than the
population in other tiers of the system because of the direct
resonance.

Thenearly resonant statein the third tier is not coupled further
via cubic terms in the Hamiltonian, as we have already noted.
Its removal does not affect the overall dynamics significantly,
but it does destroy the cohereace between the light state and the
third tier as seen from the comparison of Figures 2 and 8. A

6
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Figure 8. Survival probability (of light state) and the dynamics of the
quasi-continuum tier when the twodead-end states are included. Compare

with Figures 2 and 6.
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Figure9. Dynamics of thethird tier (upper curve) and the nearly resonant
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Figure 10. Survival probability of the light state (upper curve) and the
dynamics of the third ticr (lower curve) when the dead-end states are

further coupled through quartic anharmoaicities.

similar effect to this actual removal of the dead-end states can
beachieved by adding higher anharmonic couplings (quarticand
quintic) that have not been taken into account. To gauge the
effect of additional higher order couplings, the two dead-end
states (in the third tier) were coupled to a few states in the fifth
tier with a quartic matrix element of 0.5 cmr!. The result is
shown in Figure 10. The quantum beat bebavior is significantly
reduced, the coherence being destroyed by the further coupling
of these two (one of them nearly resonant) dead-end states. It is,
therefore, reasonable to anticipate on this basis that the states
which are not coupled to further tiers by cubic terms and act in
a beatlike manner with the light state will often not show such
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TABLEL: Average Matrix Element #, Density of States p
lndWiad%vzfin for Each Tier of the Model System (Total
States = )

tie window.cm™® p O,cm! tier window,em” p b,em!
1 02 10 003 6 0.2 210 0.07
2 02 25 004 7 0.2 410 007
3 0.2 90 005 ] 0.2 740 007
4 0.2 140 0.06 9 0.2 1395 0.07
H 02 200 006 10 0.2 6775 0.07

behavior when higher-order couplings are taken into account.
This result also points out that cur calculations reflect accurately
the gross features of the IVR dynamics and that they may contain
antificial details which are sensitive to the individual positions,
couplings of the states and their matrix clements in the model.
Such is the case when an apparent dead-end state, arbitrarily
uncoupled to further tiers, is present. The Lorentzian nature of
the experimentally observed spectrum? shows the absence of such
states in the actual molecule. It should be noted that in smaller
molecules where there is no statistical decay, onset of IVR is
denoted by splittings of individual J, K peaks and presence of
quentum beats in the dynamics.

3.3. Short-Time Dysamics of Intermediate Tiers. In the tier
system of the (CH;);CCCH molecule the population of the
intermediate tiers is extremely small during the relaxation process.
However, those tiers provide the bridge for the population flow
from the light state into the quasi-continuum of states in higher
tiers. A closer examination of the dynamics of tiers reveals that
thepopulation in tiers shows an intriguing behavior at short times,
providing an interesting detail of the relaxation process.

Toexplore further some details of the dynamics of intermediate
tiers, calculations were performed on a model tier system. Inthis
system the coupling to the light state as well as the number of
states in the intermediate tiers were increased in order to make
population of the intermediate tiers somewhat larger and less
“noisy”. Otherwise this model system qualitatively resembled
the'real one whose tier structure is shown in Figure 1. The
population of each intermediate tier was still sufficiently small
to correspond to the superexchange type of coupling rather than
theoverlapped resonances case: The population of tiers 2-9 never
exceeded 0.2. Also, for each intermediate tier, the product of 0,
the average coupling matrix element between successive tiers,
and po, the effective density of directly coupled states, was smaller
than unity (=~0.5). In other words, the average detuning of two
coupled states was larger than the coupling matrix element. These
facts confirm that the relaxation mechanism corresponds to the
superexchange type of coupling behavior. The exact parameters
of the mode! system are given in Table I.

The short-time dynamics of the first four tiers of this model
system is shown in Figure 11. It is scen that at short times the
population displays an interesting threshold behavior. The same
kind of behavior is common to all intermediate tiers. For any
given tier a, the population remains near zero before suddenly
increasing. Thistime, when the front of the population distribution
reachestier nisdenoted by £7. In Figure 12 the initial population
evolution for the first eight tiers is shown in greaterdetail. Figure
12 showsthat the population distribution front moves with constant
velocity along the tier coordinate. In other words, £ increases
linearly with tier number n, Figure 13. It may be surmised that
for some initial time the bulk of the population remains localized
in the initial tiers while a small portion leaks out into the
intermediate tiers. The distribution function of the population
inthe initial stage of relaxation, when the population of the light
state has not decayed significantly, develops a very thin tail in
the regicn of the intermediate tiers. At short times this tail bas
a sharp front that moves with constant velocity and appears as
athreshold when the dynamics of each tierisanalyzed. Statistical
decay occurs once this front reaches the quasi-continuum. The
population then leaks from the light state into the quasi-contingum
through the formed “tunnel” with a near steady state population

Stuchebrukhov et al.

in each intermediate tier at some intermediate times. Of course,
once the population of the bright state has decayed the population
in the intermediate tiers will decrease also.

Addition of fourth-order anharmonicities may scramble the
constant velocity of the sharp transition, but we may still expect
a residual effect. Within the model systems it was also observed
that the initial tiers become saturated very soon and for this
reason probably have a different velocity than the intermediate
and later tiers (Figure 13).

3.4. Saperexchange or Overlapping Resonances? In principle
two different limiting mechanisms could be envisaged for the
dynamics of the energy flow through the sequence of tiers. In
one of these there would be a successive set of real vibrational
energy transfers—{rom the light state to the first tier, from first
tier to the second one, and so forth until the quasi-continuum tier
is reached. The overall transfer would be governed by 2 kinetic
master equation. Inthisscheme the coherence is lost in each step
of energy transfer. This type of IVR occurs when in a classical
description, there is a sequence of many overlapping resonances,
as described in a series of papers by Sibert et al.®

In the second type of mechanism the energy transfer would
proceed from the initial state to a final near-continuum set of
quasi-resonant states via a series of off-resonant transitions, with
noclassical overlap. This mechanism does not requirea sequence
of classical overlapping resonances between the light state and
other states in the molecule. The intermediate off-resonance
states can be only weakly coupled to a light state. This latter
mechanism corresponds to superexchange.

Rigorously speaking, from the smaliness of the population of
the intermediate tiers one cannot distinguish between the two
IVR schemesdescribed above. Thus, although the low population
in the intermediate tiers suggests that the energy transfer might
be due to superexchange, the kinetic type of equations could, in
principle, give a very low population distribution in the inter-
mediate tiers. This situation can happen, for example, duetoa
high rate of energy transfer into quasi-continuum tier from the
previous onc and a small rate of transfer from the light state into
the first tier. One can, bowever, distinguish between the two
mechanisms in a differeat way, considered next.

To distinguish between the mechanisms and then to establish
that the relaxation dynamics in the intermediate tiers indeed
corresponds toa coherent superexchange mechanism, as opposed
to a possible incoherent kinetic type of transitions between tiers,
thequasi-stationary population (at ¢ = 1000 ps) of theintermediate
tiers is compared in Figure 14 with density of states in the tiers.
(The calculation is for the “real” system rather than the model
system that was employed to determine the transient bebavior in
section 3.3.) If the dynamics in the intermediate tiers were
governed by .2 kinetic type of equation, the quasi-stationary
populationin each of thetiers would be approximately proportional
to the density of states in that tier, and so would increase with
tierindex. Instead, asisseen from Figure 14, thequasi-stationary
population decreases with tier number, as if there were 2 barrier
separating the light state from quasi-resonant statesin the distant
tiers (Appendix).

From Figure 14 it is clear that, apart from some local
fluctuations, the population decreases significantly with tier
number. Also, (not shown) the population ratio P,/Py, is
continually decreasing for cach tier with time. The marked
decrease of population with tier number reinforces our belief that
the overall mechanism of relaxation is tunnelling-like and not
kinetic. If the kinetic behavior was being followed, then the
population distribution should have paralleled that of the deasity
of states and so would have increased with tier pumber.

IV. Discussion

The tier system of the (CH;)yCCCH molecule shows an
interesting dynamical behavior. The population in the inter-
mediate tiers never builds up significantly, and the populaticn
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from the light state flows directly into a quasi-continuum tier,
targely bypassing the intermediate tiers. The mechanism of the
transfer was established to be a coherent superexchange. If the
probability of finding & real particie at some discrete points along
the coordinate axis was being calculated (those points correspond
to the tier aumbers a), this type of behavior (small and
approximately exponentially decreasing population with the
coordinate) could correspond to tunneling slong the given
coordinate axis. Hence, it can be said that the type of relaxation
in our system is tunneling (or tunneling-like) along the tier
coordinate.

It is relevant to comment on this behavior and to justify its
being termed tunneling. This tunneling is not tunneling in its
usual sense where the particle tunnels through a real potential
eaergy barrier in coordinate space. The potential energy function

A [n) (p3)
120 180 200

80
Y

Teer [n)
Figure 13. Threshold ¢ a3 s linear function of tier aumber (&).

for our system is a multidimensional anharmonically distorted
parabola, and there are no potential barriers separating different
regions of the configuration space. The light state is, however,
separated from the quasi-continuum of resonant states, in which
the population ultimately flows, by many intermediate states which
are well off-resonance. These states sequentially couple the light
state and the quasi-continuum states.

This situation is much the same as in 2 superexchange model
of the long distance electron transfer problem. The off-resonant
states are the best resonances available in a given order of
interaction (on the average, the frequency mismatch is much
larger than the coupling). Inclassical mechanics those resonances
cannot be used directly, and 5o the population caa be locked into
the initial CH state. One can say, hence, that the intermediate
off-resonant states create a dynamical barrier for decay of the
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Figure 14. Quasi-stationary populations (circles) and density of states
(crosses) in intermediate tiers. Exponential approximation (linear curves
in log scale) are shown by a solid and broken line, respectively. For the
upper curve, W, = P,/ Py, where P, is the population of the ith tier and
for the lower curve W, = p,/p)), where p; is the density of states in the
ith tier.

CH vibration, even though there is no potential energy barrier.
In the actual quantum system the population flows through this
barrier in much the same way as usual quantum mechanical
particle tunnels through the potential barrier. Thus, the tunneling
occurs in our case under a dynamical barrier along the tier
coordinate of the system. The connection of the superexchange
type of vibrational coupling todynamic tunneling has been recently
discussed in detail by two of the present authors.2! There are
several examples of low-dimensional systems where this type of
tunneling occurs. Perhaps, the two best examples of this
phenomenon are the asymmetry doublet in the rotational spectra
of the asymmetric tops2 and doublets in the vibrational spectra
of water (ref 21 and references therein). Itshould be added that
the picture of tunneling between the invariant tori referred to
earlier is only a rough approximation in these many-coordinate
systems, since, as noted earlier, the tori are expected to be largely
ruptured and other more complex modes of transfer!é would then
occur.

To understand the nature of the tier coordinate, it is useful to
compare the results of our quantum calculation with what might
be the classical or semiclassical analog of it. Action space is the
most conveaient representation for the relaxation dynamics in
classical and semiclassical analysis. Each of the zeroth-order
states of (CH,)yCCCH molecule is characterized by IN-6 =
42 vibrational quantum numbers, [0}, 03, .. 03). For example,
the light state CH witho = 1 is 1,0, .., 0). In the semiclassical
analysis these quantum numbers corvespond to zeroth-order
actions divided by Planck’s constant. Thus, each of the zeroth-
orderstates is represented by a point in the 42-dimensional action
space of the molecule (I}, Iy, ., I). In the classical anatysis
these zeroth-order actions are not constants of the motion but
rather are functions of time (only in a2 completely integrable
system!213 gre actions constants). The evolution of the system
can be described as a classical trajectory in action space. Ina
semiclassical analysis the system is described by 2 wave function
¥\ Ja—J2) inthesamespace. The population of a given zeroth-
order state correspands to A1) Ja,.l ). Initiallyall population
is concentrated at & point corresponding to the light state. A
detailed semiclassical description would involve the description
of the time evolution of the total wave function ¥{/;,J2,--J43), Of
equivalently, the population of all vibrational states involved in
the analysis. Instezd, we focused on the total population of the
tiers.

Qualitatively, the tier coordinate n is a measure of distance in
action space from the light state to an average state belonging
tothetiern. (nisexactly the order of coupling, described earlier,
of the states in the tier to the light state.) Thus, the population
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of the mth tier, Py(1), describes the total population of 2 particular
region in action space, which is some distance away from the
light state along the relaxation path. P.(f) can also be regarded
qualitatively as “radial” deasity of the total multidimensional
wave function. Thus, thediscussion of thedynamicsin the preseat
calculations is reduced to that slong a one-dimensional tier
coordinate. The qualitative picture that emerges from our
calculations is as follows. Along the tier coordinate the imitial
distribution localized at Py is separated from distant tiers by a
dynamic barrier, a barrier in action space and notin the coordinate
space in this case. The relaxation of the initia] distribution can
be regarded as due to tunneling through this barrier to regions
where the quasi-resonant states are available. The population
under the barrier is always very small, as in the usual case of
tunneling under a potential barrier in coordinate space. Details
of thistunneling relaxation dynamics have been the focus of various
sections of this paper.

In many studies of the CH stretch relaxation it was suggested
that the stretch-bend interaction plays the key role, because of
2 good 1:2 stretch-bend resonance20-3-2 in case CH is attached
to a rigid skeleton of a molecule, as, for example, in benzene™
orin CX;H .33 In the case of (CH;);CCCH molecule the bend
frequency is only of the order of 700 cm-!, because of the “soft”
bend nature of the acetylenic part in the molecule. In this case
the usual stretch-bend resonance does not play any significant
role, at least in the present model where only low-order direct
couplings are considered. Insucha situation the high-frequency
CH stretch is adiabatically separated from the rest of the low-
frequency modes of a molecule including the CH bead. Sucha
situation was discussed in the early eighties by Quack and co-
workers.? The superexchange type of vibrational couplings and
tunneling provide the mechanism of relaxation out of such an
adiabatic dynamical well.

V. Conclusions

We have demonstrated the mechanics of energy relaxation
from a localized part of the molecule to jts complete scrambling
into all the available modes in the limit of statistical [IVR when
thedecay is irreversible. This mechanism is explained within the
tier formalism of sequential third-order anharmonic couplings
that control the decay. The different roles played by the initial
tiers when the average spacing between the states is larger than
the average matrix elements and the later tiers where the density
of states is high enough such that the statistical limit is reached
bave been demonstrated. We have also demonstrated that
although the initial decay rate is s function of initial tiers only,
the limit of irreversible decay is reached only in the presence of
the quasi-continuum of states in the later tiers. Therefore, the
irreversible decay occurs from the light states into the quasi-
continuum mediated through the virtual couplings of the inter-
mediate tiers. This mechanism clearly points out the importance
of the intermediate tiers in the overall rate of relaxation and how
bottlenecks in these tiers can significantly localize the excitation
into the light state in spite of & large density of states available
intbelatertiers. Thisissueof localization versusstatistical decay
isdiscussed somewhere else!® indetail. Webaveslsoidentified
an artifact of the dead-cad state type and have indicated how to
deal with it.

In this paper we have shown that the presence of virutal
couplings in the intermediate tiers lead to superexchange between
thelight state and quasi-resonant statesin themofecule. Dynamics
of energy transfer resembles tunneling in tier space where the
intermediate tiers never see a significant buildup of population.
An intriguing bebavior of the dynamics is shown in the threshold
bebavior. At very short times, when most of the population
distribution is localized within the light state, some population
moves. along the tier coordinate such that the front of this
population flow reaches successive tiers with a constant velocity.
Once all the tiers have been reached, the irreversible decay out
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of the initial tiers into the quasi-continuum can commence. [f the
tier structure is such that all the tiers cannot be reached then the
probability of irreversible decay is substantially reduced.
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Appendix

The rapid decrease of population in the intermediate tiers with
the tier index can be understood by invoking a standard argument
from the high-order perturbation theory. The high-order cor-
rections to the light state, {&9), due to couplings to ather state in
the molecule can be written as

[6) =ldg) + Z"ﬁ,btl) + ZQJQ’&') +.. (Al
[ &y

where sums are taken over states in the first tier, second tier, etc.
From standard perturbation theory arguments one finds

| 4
€, = (m,'g_—b-hro) (A2)

| 4 |4
Sl )
v
Ck. = Z(¢kaﬂ)ckﬂ (A4)
o o—E .

where Vis the anharmonic coupling operatorand £, is the energy
of the kth zeroth-order state. If one neglects interference effects
and assumes that there arc no strong resonances, then the
population of 2 quasi-stationary state is given by

et = ;Km{;ﬁjo.ﬁ)rhj (AS)

The population of the whole tier then can be written as

P, ==};|c,,|z E(;H)k""z (A6)

Thus one can write
Po=Y ol = /P, (A7)
3
if one assumes that the factor f is roughly the same for the
intermediate tiers
Vk.k., 2
f= (A8)
Z.: Eo~Ey,
Itis thus seen that, if there are no resonant states in the sequence
of tiers, the population decays roughly exponentially. Forexample
P, . ‘r ’P 3 (A9)
The same type of mechanism explains the exponential distance
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dependence of the electronic coupling in long-distance electron-
transfer processes.

Of course, the above arguments hold only when there are no
resonant states in the tier and the states are distributed in tiers
more or less randomly. As the tier index increases, the density
of states increases also increasing the chance to have good
resonances. The above arguments, then, are not valid.
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Abstract

The intramolecular vibrational relaxation of the acetylenic CH stretch in polyatomic
molecules (CH3);YCCH, where Y = C or Si, is due to a sequence of many weak
off-resonant vibrational transitions between tiers of directly coupled (by low-order
anharmonic terms) states. The energy flow from the initially populated light state
to the high density of states in the later tiers is mediated by the off-resonant virtual
transitions to the intermediate tiers. In this tier model, the relaxation can be thought
of as occurring via tunneling (vibrational superexchange) through a dynamic barrier
which separates the light state and the quasiresonant states. Randomness of the
couplings and dynamic barriers may cause a localization of the vibrational excitation
in the action space of the system similar to the localization of electronic wavefunctions
in random solids. In the present paper these localization properties of the tier system
of (CH3)3 YCCH molecules are studied with a method originally developed for random
solids by Skinner and co-workers. The connectivity of the vibrational states along
the tier coordinate of the molecule is calculated. The observed absence of relaxation
in Si- compound in numerical simulation and the unusually slow rate that has been

observed experimentally are discussed in relation to the localization phenomenon.
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2.1 Introduction

In recent experimental studies of the acetylenic CH stretch in (CX3)3; YCCH molecules,
X =H, D; Y = C or Si, Scoles, Lehmann, and collaborators[1, 2] have observed ex-
tremely narrow, FWHM = 107! — 1073cm™!, vibrational lines. The homogenous
width of the lines is a measure of the rate of intramolecular relaxation of vibrational
excitation (IVR) of the CH stretch. In the first paper of this series[3] it was found
that the unusually slow relaxation rate (of the order of hundreds of picoseconds), cor-
responding to such narrow linewidths, is due to the absence of direct low-order Fermi
resonances such as the stretch-bend interactions that exist in CH3X molecules[4]. The
relaxation in this model is assumed to occur in a sequence of many virtual transitions
between tiers of directly coupled states, whereby the excitation in the initially popu-
lated non-stationary state uses the best resonances available, i.e. the resonances with
large detunings, to reach the quasiresonant states that may exist in higher tiers. The
number of sequential virtual transitions (number of tiers) required can be as large as
ten or more. The large detunings of available resonances (or the absence of direct
resonances) can be regarded as dynamical barriers separating the light state, from
which relaxation occurs, from the quasiresonant states. It has been shown that the re-
laxation dynamics in tier system occurs via a tunneling like mechanism (“vibrational
superexchange”) under these dynamical barriers[5].

The randomness of couplings, tunneling barriers, and the very scheme of sequential
coupling of vibrational states in IVR resembles, in many respects, the situation in
random solids. Wolynes and co-workers[6, 7, 8] have recently argued that effects
similar to localization phenomena in random solids[9, 10] can be expected in IVR.
By localization, (absence of relaxation) it is essentially meant that the initial state is
effectively mixed with only a few states, at best. In the opposite case of delocalization
(exponential relaxation) the light state is strongly mixed with almost all states of
the same energy and the density of the bath states is high enough for irreversible
relaxation to occur out of the initially populated state.

Upon localization, only a finite few of the zeroth-order states contribute signifi-
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cantly to each of the eigenstates of the diagonalized system. In this case, instead of
an exponential decay of the initially prepared state, at best quantum beats would be
expected in the dynamics of that state. The absorption spectrum would contain only
one or a few sharp lines instead of the Lorentzian-like contour that would occur when
all the isoenergetic states are mixed.

The cumulative density of states, p¢f/, increases rapidly with the number of tiers.
The average effective coupling of the light state to levels in the nth tier, V;¢/f is of
the nth order and in the case of weak coupling between tiers is an exponentially
decreasing function of n. For relaxation to occur, the density of coupled states should
be high enough to ensure the statistical limit, p*/fV*/f > 1. In the weak coupling
case it might happen that the effective interaction, V;*//, decreases faster with n than
the corresponding increase of the density of states, ptf/, decoupling the later tiers.
Then the statistical limit, p//V¢/f >> 1 will not be reached even when all states are
included in the analysis. In this situation localization of vibrational energy into a few
modes of the molecule, irrespective of the total high density of states, occurs.

In their experiments, Scoles, Lehmann, and co-workers(1, 2] observed that the
linewidth of the acetylenic CH fundamental transition for the Si- compound is an or-
der of magnitude smaller than its C- counterpart, although on the basis of total den-
sity of states the opposite result would be expected. Also, recent model calculations(3]
have indicated that the transition line for Si- molecule is not homogeneously broad-
ened at all. It was suggested that accidental bottlenecks in relaxation pathways and
dynamic barriers can cause virtual localization of the CH stretch vibration. In the
light of those results, and following up on the discussion of similarity between random
solids and vibrational couplings in polyatomic molecules, it seems reasonable to apply
some standard technique from the study of random solids to these molecules in order
to investigate the possibility of localization of the vibrational excitation in a more
quantitative way.

In the present paper the localization properties of the tier system of (CHj;); YCCH
molecules, Y = C or Si, are studied with a method originally developed for random
solids by Skinner and co-workers{11, 12]. In this method, connectivity of vibrational
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states along the tier coordinate of the molecule is calculated. The connectivity may
then be used to characterize the strength of the coupling of the dark states along
the tier coordinate with the light states. The importance of the connectivity as a
function of tiers stems from the fact that the high density of states, necessary for
the relaxation to occur, is only available in the higher tiers, or, in other words, a
large distance away from the light state in action space of the molecule. To make
use of these energetically closely spaced states, there must be appreciable coupling to
those states. The connectivity quantitatively describes the strength of this coupling.
It is found that for the C- compound this measure of coupling is much larger than
that for the Si- molecules for all the tiers. This result is in qualitative agreement with
experimental data on the relaxation rates in these compounds[1, 2|. The participation
ratio, defined below, for each eigenstate is also calculated to compare the overall
coupling between states in the two molecules.

The structure of the paper is as follows. In section 2 the concept of connectivity of
vibrational states is introduced. In section 3 the results from the various calculations

are stated followed by a short conclusion in section 4.

2.2 Tier system and connectivity of vibrational states

It was shown in previous publications(3, 5] that the CH vibrational states in (CX3);YCCH
molecules are coupled to a manifold of background states via a sequence of transitions
which result in the tier system, as shown in Fig. 1. Details and discussion about the
tier system can be found in the first paper of this series, Ref. 3.

Each level shown in Fig. 1 is described by 42 vibrational quantum numbers, its
vibrational energy, which includes anharmonic corrections, and various couplings to
previous and the next tiers.

Qualitatively, the tier coordinate n measures the distance in action space from
the light state to an average state belonging to the tier n. (Rigorously speaking, n
is the order of coupling of the states in the tier to the light state.) If the dynamics

of the tier system is studied, as we have done in the second paper of this series(5],
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then the total population of the nth tier, P,(t), describes the total population of the
region in action space, which is some distance away from the light state along the
relaxation path. P,(t) can also be regarded qualitatively as “radial” density of the
total multidimensional wave function. Thus the complicated dynamics is reduced
to an effective one-dimensional problem along the tier coordinate . The qualitative
picture that emerged from our previous calculation is the following. Along the tier
coordinate, the initial distribution localized at |0), the light state, is separated from
the distant tiers by a dynamic barrier, because of the absence of direct resonances.
The relaxation of the initial distribution is due to tunneling through this barrier to
regions where quasi-resonant states are available. Details of this tunneling relaxation
dynamics in (CH;)3CCCH were discussed in Ref. 5. The necessary condition for
relaxation is that the product of the density of quasiresonant states on the “other
side” of the barrier and effective coupling of the light state to those states be larger
then unity.

The overall coupling within the Hilbert space of zeroth-order states may be visu-
alized through the concept of the spread of each of the eigenstates within the space
defined by the zeroth-order states. This spread is quantitatively studied by calculating

N
Py=3 el (2.1)

=1

Here,
cui = {(pl), (2.2)

where, [7) belongs to the zeroth-order basis set, |u) belongs to the set of eigenstates
and N is the dimension of the Hilbert space. The coefficients, c;,, are simply the val-
ues obtained from the eigenvectors after the total diagonalization of the Hamiltonian.
For a completely delocalized eigenstate |c;,| = 1/v/N, as in Bloch functions. Thus, for
delocalized eigenstates, P, = 1/N. Also, when a zeroth-order state is also an eigen-
state, complete localization obviously makes P, = 1. Values of P, between the two
limits imply an incomplete spread of the eigenstate. This incomplete spread of each

eigenstate, |p), may be quantified by [ = 1/P,,, the participation ratio, which may be
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regarded as the number of zeroth-order states that span the eigenstate. Determina-
tion of [ provides a method for measuring the degree to which each eigenstate spreads
within the basis set of the zeroth-order states. Also, unless each eigenstate is com-
pletely (or nearly completely) spread among all the zeroth-order states, | ~ O(N),
most of the participation ratios should be independent of N. Field and coworkers
have also used this procedure in their investigation of quantum ergodicity in the SEP
spectra of highly vibrationally excited acetylene[13].

As mentioned before, the effective coordinate of interest is the tier coordinate. The
localization property along this tier coordinate is another quantitative characteristic
that describes the mixing of vibrational states with the light state. This characteristic
can be studied with the method developed originally by Skinner and co-workers for
random solids{11, 12]. The relevant question here is : How far along the tier coordinate
can the excitation spread?

Skinner and co-workers introduced a concept of quantum connectivity as a gener-
alization from percolation theory to describe couplings in random solids. It is qual-
itatively clear that two states |¢) and |j) are coupled if both ¢,; and c,; are nonzero

for some eigenstate |u). Then, the connectivity, A;;, between them is defined as

Ay = —5, (2.3)
PP
where,
Py =3 leil’lciul®. (2.4)
n

The denominator in Eq. (3) is introduced to “normalize” the quantity P;;.
The appropriate parameter of interest is the average connectivity per state be-

tween the light state and the kth tier,

N,
= 2j=180j
- ]

Pe= = (2.5)

for each tier, where Ny is the number of levels in the kth tier. This average allows the

comparison of the degree of connectivity between the light states and an “average”
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state in various tiers. Sp = Z;y:"l Qgj is also a useful quantity that helps in our
analysis as it quantifies the degree to which a tier, or equivalently a certain part of
the action space (as described in the introduction), is connected to the light state.
Finally, it is very useful to compare the P; and Sy values between different
molecules to determine the difference in the degree to which the light state is con-

nected to the other states in different species. For Bloch waves P, = 1.

2.3 Results

The localization properties defined as above are now investigated for (CH3);CCCH
and (CHj3)3SiCCH. The average quantum connectivity is calculated for each tier of
these molecules. In order to do so, 10 tiers of sequentially coupled (through third-
order anharmonic matrix elements) states were generated for these two compounds
with a computer program described in Ref. 3. The first six tiers for these molecules
are shown in Fig. 1. Imposing a perturbation theory based criterion on the selection
procedure, it turns out that tert-butylacetylene has about 600 well coupled states in
ten tiers. For the Si-compound the criterion for the selection of states was considerably
relaxed. Without this, the third tier of the Si molecule would be left without a state,
due to a bottleneck discussed in Ref. 3, completely decoupling the further tiers.
With this relaxed criterion (as compared to (CH3)3;CCCH) for the Si compound, the
total number of states in ten tiers were about 1400, although the overall anharmonic
couplings between states for the Si molecule are considerably smaller than those for
tert-butylacetylene.

We have also investigated the effect of the addition of fourth-order anharmonic
couplings between states. While it is possible to add fourth-order anharmonicities
to the model in a manner similar to that for third-order values, we have chosen a
more phenomenological approach as only the gross dependencies of Py values on the
fourth-order numbers were desired. Because of the presence of other approximations,
further refinements for the calculation of fourth-order anharmonic couplings would

not provide useful information. With this in mind, the fourth-order values were added




19
as a constant coupling between each pair of levels from the nth and the n +2nd tiers.

The differences between the relaxation mechanisms of the molecules are most ap-
parent when the survival probabilities |(0le~*#¢|0)|2 are compared. For (CH;)3SiCCH,
the population of the light state is more that 0.99 for ¢ < 2ns. The carbon case was
exhaustively studied in a previous publication[5]. It was shown that there is signif-
icant relaxation of the light state into the 10 tiers. Addition of an 11th tier with
a quasicontinuum of resonant states allowed irreversible statistical decay out of the
light state. The addition of the quasicontinuum in the silicon molecule makes no
difference since there is absolutely no relaxation into the initial tiers. The latter fact
is essential as it is the initial tiers that serve as a conduit for statistical decay of the
population into the quasicontinuum in the carbon case. It is clear that the structure
of the initial tiers is critical (as mentioned previously, the total density of states is
significantly greater in the silicon molecule) and is probably the cause of the localiza-
tion of excitation in the light state of (CH3)3SiCCH. We now report various aspects
of this phenomenon.

The plots of the average quantum connectivity, P, for the carbon and the sil-
icon compound are shown in Fig. 2 and the differences are significant. The most
important observation is that the absolute average quantum connectivity (Eq. 5) for
(CH3)3CCCH is two to four magnitudes higher than its silicon counterpart. There-
fore, the capacity of a typical “dark” state in the silicon compound to carry away
intensity from the light state is considerably less than that for the carbon compound.
This result seems to account for the almost complete lack of statistical IVR decay
in the silicon compound. The connectivity of the states in intial tiers is small to
begin with and then it falls so fast that the later tiers, where the high density of
states exists, are essentially uncoupled to the light state. While Fig. 2 shows a
steady and relatively large “quantum connectivity” values for (CH3)3;CCCH, the cor-
responding values for (CH;3)3SiCCH are small and drop precipitously. The difference
in the “quantum connectivity” values for (CH;)3;CCCH and (CH;)3SiCCH is striking
and such difference may indicate the difference between statistical relaxation and long

localization. This observation reinforces the results from the dynamics calculations,
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allowing the conclusion that the complete lack of well coupled resonant states in the
initial tiers results in the virtual localization of the initial excitation in the =C — H
stretch in the molecule (CH3)3SiCCH. As a reference, it is worth mentioning that for
perfect Bloch waves, log P, = 0 as all |c;,| = 1/V/N.

The plot of log(S;) vs. k also gives similar results. While the Sj values remain
constant at a relatively high level for tert-butylacetylene, actually increasing with
tier number for later tiers with the increase in the number of states, the same values
for the Si substituted molecule drop fast and remain 4-5 orders of magnitude smaller
(Fig. 3). The total density of states in the silicon compound is about 30 times higher
than that of the the carbon compound. Based on only this factor the number of
resonant states should be much higher for the former case. And yet, as is seen from
our results, while a large overall density of states may be necessary for IVR to occur
in the statistical limit, it is not a sufficient condition. The strength of the coupling, as
well as the exact energy difference between the light state the individual dark states,
especially for the first few tiers, is also very important. The more or less energetically
random composition of the levels may create bottlenecks, as in (CH3)3SiCCH, which
significantly decrease the overall coupling to the background states that, if available,
provide the final states for real (as opposed to virtual) transitions with conservation
of energy, and eventually can absorb a significant amount of the initial excitation.

To confirm our conjecture about the bottleneck in the third tier, we calculated
[ = 1/P, for all the eigenstates for both the molecules. The histograms are shown
in Fig. 4. The distributions, when the difference in the total number of states in
the two simulations are taken in account, are remarkably similar. [ is 8 and 17 for
(CH3)3;CCCH and (CH3)3SiCCH, respectively. In Fig. 5, the normalized histogram
is shown. In this Fig. the frequency of occurrence of some range of values of [ is
divided by N, the total number of states. Comparing the normalized curves for the
two molecules shows that the nature of overall couplings for the two molecules is quite
similar. Therefore, it can be surmised that, within the limits of the calculation (by
definition due to the artificial nature of the cutoff used for the Al search, and so, the

uncertainty in the total number of states), on average, the eigenstates in both the
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molecules are spread to a similar degree.

However, the histogram in Fig. 5 reflects the distribution of coupling of all the
eigenstates. On the other hand, only a few of these eigenstates, the ones that have a
non-zero overlap with the light state, can be probed experimentally. So, if only those
eigenstates that have (0|u)? > 0.01 are considered, then there are five such eigenstates
in (CH3)3CCCH with an average ! of about 5 while for the Si- counterpart there is
only one such state with { = 1. Thus, a distinction needs to be made between the
overall nature of the interactions and those which can be experimentally probed, i.e.
the difference between the statistical and the particular nature of the eigenstates.

The most useful method of calculating these particular interactions between the
light and dark states has already been presented in Figs. 2 and 3. We, therefore, must
interpret two results which on the surface seem contradictory: the difference between
the average connectivity between the two molecules (Fig. 2) and the similarity in
the distribution of the participation ratios (Fig. 5) This seeming contradiction is
just an indication of the above mentioned distinction between the statistical and the
particular.

These two results confirm that the cause of localization in the Si- molecule is
accidental in nature and that it is the accidental bottleneck in the third tier due
to the local (not global) lack of strong coupling that causes the unusual degree of
localization in (CHjz)3SiCCH. From this analysis the following qualitative picture can
be drawn. For the Si- compound, the light state, despite an availability of a high
density of total states, is unable to utilize them due to the structure of the tiers that
disallows good coupling between the first few, viz. three, crucial tiers and the later
tiers where the well-resonant and dense tiers of states exist, thereby blocking any
significant leakage of the light state amplitude. Such fortuitous localization is absent
in t-butylacetylene and the high density of states that is be present in the later tiers
can participate in IVR. The figures of the tier structure pictorially confirm that in
spite of the larger density of states for the Si compound, its tier structure, with a
near bottleneck in the third tier and the lack of good resonant states in the earlier

tiers, acts as a barrier to IVR.




22

We find that the P values for the carbon compound do not change significantly
upon the addition of fourth-order anharmonicities. However, the Si compound values
change if we add fourth-order anharmonicities of the same magnitude as those put
into the carbon simulation. This result is not surprising and indicates that for the
carbon case the fourth-order anharmonicities are relatively unimportant, the third-
order values being large enough to dwarf any effect that the fourth-order values may
have. However, the third-order values are not large enough in (CHj3)3SiCCH allowing
the fourth-order values to significantly change the average quantum connectivities.

In their study, Lehmann et al.[3] report a large lifetime of =~ 2ns and conclude
from their measurements that the narrow broadening of the silicon compound is a
Lorentzian with a long lifetime/small FWHM. For our ten tier simulation for the
fundamental stretch we do not see any decay for up to 2ns. Various reasons that may
cause this discrepancy are now addressed. A further reduction of the predetermined
tolerance for the AI selection of the states may be required so that more virtual
couplings are provided in the initial tiers for population relaxation. This may allow
the pinning down of the nature of the important initial relaxation. Furthermore,
the states arising from the internal rotations of the individual methyl groups around
the (CHj)3-C- bonds that are possible in this molecule have not been incorporated
in this calculation. Those rotations should add further states and matrix elements
causing further mixing of the states and, therefore, assist in the relaxation of the
initial state. Finally, fourth-order anharmonicities may also play an important role
for a correct description of this mode as the third-order couplings are so ineffective.
Since the weak third-order anharmonic couplings act to localize the excitation, extra
relaxation pathways that arise due to the higher anharmonic terms are probably very
useful for [VR. While the higher-order terms are not as efficient in promoting IVR
as third-order terms, they are capable of facilitating slow relaxation of Jonger periods
of time. This, probably, is cause for the anomalously slow (2ns =~ 10° vibrational

periods) relaxation of (CHj3)3;SiCCH.
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2.4 Conclusion

Several concepts borrowed from the physics of random solids can be usefully em-
ployed for studying vibrational couplings in polyatomic molecules. This approach
proves useful when the mechanism of IVR is vibrational superexchange. It provides
an additional insight into the IVR problem and allows quantitative comparison of
different molecules.

In the present paper we have applied such an approach to study vibrational cou-
plings in (CH3); YCCH molecules, where Y = C, Si, and where we believe that the
vibrational coupling scheme resembles the one in random solids. In particular, the
unusually large relaxation time of the acetylenic CH stretch vibration in the Si- com-
pound can be explained in terms of the length (localization length) at which vibra-
tional states are strongly coupled to a light state along the tier coordinate. This
tier coordinates qualitatively describes the distance from the light state along the
relaxation path in the Hilbert space. The calculations show that the localization,
rigorously defined as in random solids, does not occur in our molecules in the sense
it is understood for random solids (the connectivity does not decay exponentially
at large distances.) The fact that the absolute strength of the couplings is always
greater for the C- compound by orders of magnitude can be interpreted as follows.
The coupling of the light state in the C-compound extends to much longer distances
along the tier coordinate than in the Si- compound. The important point to note
is that it is at longer distances along the tier coordinate where the higher density
of states is available. Thus, for the C- compound the much higher density of states
(and, therefore, a larger number of total states) can be utilized for IVR via third-
order vibrational couplings unlike the case in the Si- compound. For Si- compound
the coupling is limited to about three tiers and so the density and the total number
of strongly coupled states are not sufficient for relaxation to occur. This result agrees
with our previous finding that for the Si- compound there is a bottleneck for energy
flow at the third tier.

The concepts employed in the present paper also allow the of study statistical
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properties of vibrational couplings. In particular we find that the bottleneck for
relaxation in the Si- compound is of an accidental nature.

From a statistical viewpoint, an average eigenstate in the (CH3)3;SiCCH molecule
is no less spread than one in its carbon counterpart; as is obvious from the distribution
of [, the participation ratio for each of the eigenstates of the two molecules. However,
when the particular eigenstates that have a non-zero overlap with the light state are
considered, their participation ratio is significantly smaller than the average for the
Si- molecule when compared to its C- counterpart. Therefore, while the average state
is well spread out, the particular light state is localized due to the local lack of well
resonant states.

We conclude that the faster rate of relaxation in the (CH;)3CCCH is due to the
fact that the strongest anharmonic couplings (third-order) are large enough for the
initially localized wavefunction to penetrate the barrier formed by the off-resonant
states in the initial tiers such that the tiers with high density of resonant states that
permit the statistical relaxation of the initial excitation can be reached. On the other
hand, the initial tier structure in (CH;)3SiCCH is such that inspite of the presence of
a higher density of states in the later tiers, the initial third-order couplings prevent
the access of the later tiers. The slow (lifetime =2ns) relaxation in (CH;3)3SiCCH
is, therefore, substantially mediated by higher-order (fourth and higher) anharmonic

couplings.
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Figure Captions

Fig. 1. First six tiers of sequentially coupled zeroth-order states in (CH3)3CCCH and
(CHj3)3SiCCH.

Fig. 2. Logio(P%) vs. k for the two molecules. See text for details.
Fig. 3. Logio(Sk) vs. k for the two molecules. See text for details.
Fig. 4. Histogram of the Participation ratio, [, for (CH3); CCCH.
Fig. 5. Histogram of the Participation ratio, {, for (CH;3)3SiCCH.

Fig. 6. Normalized histogram for the two species, plotted on the same curve. Bin

size for | is two. (CH3);CCCH (+) and (CHj3)3SiCCH (*).
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Chapter 3

Inhomogeneous Spectra for the Acetylenic Stretch of (CH3)3SiCCH
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Inhomogeneous spectra for the acetylenic stretch
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Abstract
Using an assumption of “microcanonical” distribution of energy in an ensemble of
vibrationally hot (CHj)3;SiCCH molecules, the inhomogeneous broadening of these
molecules is simulated. This inhomogeneous broadening occurs due to the different
values taken by the anharmonic constants z;;. This difference in the z;; values causes
the transition frequency for the further excitation of the vibrationally hot molecule
to depend on the composition of the vibrationally hot state. Herzberg’s formula for
the energy levels of symmetric tops is used to calculate a simple approximation of the

inhomogeneous broadening.
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3.1 Introduction

Broadening of individual lines in vibrational spectra can occur due to homogeneous
and inhomogeneous effects. The former term is used to describe the situation when
the state formed by the absorption of a short-time light pulse is not an eigenstate of
the full Hamiltonian. Anharmonic and other types of couplings can mix this state
with other zeroth-order states that are dark as far as the absorption of light from
the initial ground state is concerned. Each molecule has the same spectrum. The
resulting spectrum can range from a few individual sharp lines to a broad smooth
contour where the coupling elements between the states and the density of the coupled
states determine the nature of the obtained spectrum. Inhomogeneous effects occur
when the molecules have different spectra because of differences in the initial state
(there is a thermal distribution at any finite temperature) and due to any differences
in the immediate environment. Thus, the initial state is again not a well-defined
eigenstate, but is rather a member of an ensemble of states, where the different
molecules have their total energy distributed differently among the various modes.
In general, absorption spectrum consists of both components — homogeneous and
inhomogeneous, depending on the degree of anharmonic mixing (or IVR)[1].

In this communication, we describe the results of simulating the inhomogeneous
component of the spectrum in (CH3)3SiCCH assuming complete absence of anhar-
monic mixing that causes IVR. The only intermode interaction was due to z;; anhar-
monic constants. The experiment that we have tried to simulate is one where some
amount of energy FE is deposited in the molecule and then the spectrum of the tran-
sition of the vibrationally hot molecule is obtained by the excitation of a single mode
of the molecule. In this case the distribution of energy in the molecule is assumed to
be “microcanonical” with the width of the distribution AE <« E. Such a distribution
can be created by saturating the 2v, transition as proposed by Lehmann, Scoles and

co-workers(2].
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3.2 Calculational Details

Using a quadratic force field and some available cubic and quartic force constants in
internal coordinates(3], we used the program SPECTRO[4] to nonlinearly transform
the internal coordinate force field into one written in terms of normal modes. The
anharmonic constants in normal modes ¢z and ¢;;x were used in a perturbation
theory expression to calculate the z;; values. These values are used in Herzberg’s
formula[5] for energy levels of symmetric tops. The cubic and quartic values used
are given in Table 1. Units for the force constants are consistent with energy being

measured in aJ, stretching terms in A and bending terms in radians.

Table 3.1: Cubic and quartic terms in internal coordinates used in the generation of
z;; values, where, r; = =C-H; R = C=C;p = Si-C;r, = -C-H; 8 = CCH
Force constants are in A rad units

ijk | fur | 5kl fijkt
nnr -38.0 nnnn 196.0
RRR | -40.0 | RRRR | 536.2
ppp | -24.5 |rrRR |-1.287
Tol2lg -33.2 1‘11'11'1R -2.663
1'11'1R. 04 rlRR.R -0.675
I'IR.R -0.193 1'11'1,36 0.242
nBB |-0202 | r,RAB | -0.025
RBB |-0.802 | RRSB | 0.137
BBBB | 1.752

We assumed that molecules in the ensemble had 6050cm™! - 6100cm™! of en-
ergy distributed among the various vibrational modes. This energy is the approxi-
mate value for 2v4, the first overtone of the acetylenic C~H stretch transition from
the ground state. The inhomogeneous spectrum is then obtained by exciting these
molecules with some particular frequencies. For our simulation, the final state was
|vs + 1,v2,...,v,) where the initial state, v}, vs,...,v,), is in an energy window of

6050 to 6100cm~!. Using Herzberg’s formula for symmetric tops (with 1=0), the




38

transition frequency is

d
We =w -+ zn(2v1 +1+ dl) + Z xlk(vk + '?k): (31)
k>1

where, d; is the degeneracy of the ith mode, and v; is the number of quanta in the
ith mode in the initial state.

Our calculation strategy was as follows. Given all the w; values and the z;; matrix,
all the different permutations of the quanta in different modes were obtained, such
that the state fell within the desired energy window. Once it was established that
the state was within the energy window, the transition frequency to the state with
one additional quanta in mode v; (acetylenic stretch =C-H) was calculated using
the above formula. All transitions were given equal transition probabilities and thus
the spectrum was obtained by simply plotting the statistical weight of a particular
transition against the value of that transition. The spectrum is therefore actually
a histogram with bins of 0.1cm~!. The important z,; values are shown in Table 2.

Results of the calculations are shown in Figs. 1-5.

Table 3.2: Experimentally[6] and theoretically obtained values for the major i
constants where v, is the C-H acetylenic stretch

Vi T theor. (cm™!) | T, experimental (cm™!)
C=C-H bend 21.0 21.0
C=C stretch 8.0 n/a
Si~-C=C bend 1.68 0.75
Si-C umbrella mode | 0.20 0.42

3.3 Analysis of the Spectra

With only a few of the anharmonic constants z,; being large, Table 2, the analysis of
the spectrum is quite simple. The peaks that have the highest statistical weight are
those which have the initial state without any quanta in the high frequency modes.
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This assertion may be proved by simply counting the number of permutations possible.
Thus, the peaks with the most statistical weight start from initial states that have
v; = 0. The different peaks in the spectra (given that the number of quanta in v, in

the initial state is constant) arise from

Awpi = > 21 Avg. (3.2)

k>1

Thus, those modes k£ which have the largest z,r are responsible for the largest split-
tings of the inhomogeneous spectra as different numbers of quanta in the kth mode
in the initial state lead to different transition frequencies. Most of the z;; values are
quite small (0 - 1 cm™!) and they simply serve to broaden each of the peaks. For v,
there are only a few modes with substantial z;; values. For example, the value for the
interaction of the stretch with the CCH bend is the largest and is ~ 21cm~!. This is
the origin of the large splittings of about 21cm™! that can be seen in the spectrum.
Other major off-diagonal terms with mode v, include the C-H stretch/CC stretch
(=8cm™!), C-H stretch/SiCC bend (= 0.75 - 1.6 cm™!) and the C-H stretch/CSiC
umbrella mode (= 0.2-0.4 cm~!) and are given in Table 1. The inhomogenous spec-
tra obtained with the aforementioned calculational strategy for the experimental and
theoretical z;; values are shown in Figs. 1 and 2.

Since there is some uncertainty in the values of the z;;, we have made various
calculations with different values for the anharmonic constants. It was interesting to
analyze one with the z); for the C~H stretch/CSiC umbrella mode set equal to zero.
The spectra for this calculation are shown in Figs. 3-5. The largest splittings occur
for the anharmonic constant of 21lcm™!, as before, with the smaller splittings due the
1.6 cm™! constant. Structure due to quanta in the C=C stretch can also be seen in
Fig. 3 (z1x = 8 cm™!), but the statistical weight here is smaller as this mode is a

high frequency mode.
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3.4 Concluding Remarks

In this communication, we have described inhomogeneous spectra of absorption of
light in the CH acetylenic stretch in (CH3)3SiCCH with energy E ~ 6000cm™!.
Results are shown in Figs. 1-5. In the simulation, a complete absence of anharmonic
mixing of anharmonic modes leading to IVR was assumed. We expect that the “real”
spectrum will be different due to some effect of intramolecular vibrational energy
exchange. It was shown by Stuchbrukhov and co-workers{l| that IVR results in the
collapse of the inhomogeneous width by a mechanism similar to “motional narrowing.”
Thus, we may expect the spectrum to be narrowed by IVR.. Perhaps each of the band
corresponding to different number of quanta in the CCH bend (bands separated by
21cm™!) will be narrowed to some extent, however the complete collapse of the whole

spectrum into one band is unlikely.
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Figure Captions

Fig. 1. Spectrum based on a calculation that utilizes all the experimental values
(Table 2) including the one for the C-H stretch/C-Si-C umbrella mode. Since the
C-H/C=C value is not available experimentally, a theoretical value (8.0 cm™) is

used.

Fig. 2. Spectrum based on a calculation similar to that for Fig. 1 obtained by using
the theoretical values of z;; (Table 2). The C-H stretch/C-Si-C umbrella mode z);
value has been set to 0.42 cm™.

Fig. 3. Spectrum obtained from a calculation identical to that for Fig. 2, but the C-H
stretch/C-Si-C umbrella mode anharmonic constant has been set to zero. This allows
the individual peaks due to different number of quanta in the SiCC bend (separated by
1.6 cm™!, the theoretical value for the C-H stretch/SiCC bend anharmonic constant)

to be seen.

Fig. 4. Same as Fig. 3, but rescaled so that the difference in the statistical weights

of the peaks that arise from v; =1 and v; = 0 is more easily observed.

Fig. 5 Same as Fig. 3, but both the x and the y axes have been rescaled so that the
fine structure can be seen. In this figure, the 1.6cm™! splitting of individual peaks
can be seen. Also seen, as shoulders to peaks are the lines that arise from quanta in

the C = C stretch.
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Figure 3
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Figure 4
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Chapter 4

IVR in Overtones of the Acetylenic C-H Stretch in Propyne
(Appeared in : J. Phys. Chem. 99, 2677 (1995))
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IVR in Overtones of the Acetylenic C—H Stretch in Propyne

Aseem Mehta, A. A. Stuchebrukhov,! and R. A. Marcus*
Arthur Amos Noyes Laboratory of Chemical Physics,? 127-72, California Institute of Technology,

Pasadena, California 91125
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Quantum calculations are reported for the high-resolution spectra and dynamics of the first and second overtone
of the acetylenic C—H stretch (v,) in propyne. The calculational method used is similar to that we have used
earlier for lower energy states. Lack of low-order Fermi resonances lead to a vibrational superexchange
mechanism of decay of the initially populated bnghl state. The importance of the total density of states and
quartic couplings between zeroth-order states is investigated. Comparison with recent experimental results

is discussed.

L. Introduction

In previous papers'* we considered the vibrational spectrum
and the corresponding intramolecular vibrational relaxation
(IVR) of the fundamental and first overtone excitations of the
acerylenic C—H stretch in (CX3); YCCH molecules using a tier-
structure formalism. In one of the articles.? analysis of an
approximate molecular Hamiltonian for the acetylenic stetch
fundamental excitation in (CH;CCCH provided a Lorentzian-
like line shape, with a fwhm (full width at half-maximum) equal
to 0.03 cm™!, in agreement with experimental results. The
Fourier ransform of the calculated spectrum corresponded to 2
slow but statistical decay occurring out of the acetylenic stretch
fundamental excitation on a time scale of =200 ps. The
slowness of this decay time might have been considered
surpnsmgduetothefacnhauhedensuyofstam for this
molecule at the given energy is high.? Within the tier formalism
with cubic anharmonic couplings in normal coordinates between
states in adjacent tiers. the slowness of the relaxation (narrow-
ness of the spectrum) was found to be due to a lack of direct
low-order Fermi resonances, leading to a vibrational superex-
change (or dynamijcal unnelling) mechanism. In the latter the
bright state decays into a degenerate vibrational quasicontinuum,
mediated by off-resonant virtual transitions. As described in
refs 1 and 2, this mechanism may be understood in terms of 2
wnnelling of trajectories in phase space through a dynamical
barrier. In the spectroscopic description, the exteasively off-
resonant nature of the states directly coupled to the bright state
leads to a narrow spectral line.

In the present paper, the methods described in these articles
are applied to overtone states in a smaller molecule, propyne
(H;CCCH). prompted by recent experiments.** Excitations
involving the acetylenic C—H (v;) streiching modes were
studied. The bands analyzed are 2v; and 3v,.

Experimentally, Lehmann, Scoles, and co-workers have
investigated the latter of these two bands in a study to explore
the spectroscopic differences of nearly pure state 3v; and the
combination mode v; + 2vs that has energy already partly
distributed.* The high-resolution spectra of these bands,
incorporating the details of the splitting of a single line due
anharmonic interactions, indicated, in a temporal description,
that the rate of relaxation of the 3v; state is faster. The
difference in the density of states was not considered to be large
enough to explain the anomaly, the 3v; and v; + 2vs states

' Permanent address: Department of Chemistry, University of Califomia,
Davis, CA 95616.

t Contribution No. 8991.

® Abstract published in Advance ACS Abstracts, February 1, 1995.

0022-3654/95/2099-2677$09.00/0

being close in energy. The 3v; (J' = Q) state, in 2 narrow
spectral range of 0.1 cm™ studied experimentally, showed
several lines, while the v; + 2v; state in a similar spectral range
showed only one line.

Perry and co-workers have investigated the 2v; and the neasly
isoenergetic v; + v bands® and found that the spectra of
individual J, X states are split. For low X states the splitting is
small and the spectrum in each case consists of one major peak
surrounded by a few small peaks, each of which has an
amplitude of less than 10% of the main peak. The available
data hints at a larger number of perturbers for the pure overtone
2w, than for the v, + v band. In the present paper we present
the results for the 2v, and the 3v; bands.

For the calculated relaxation, our analysis yields a behavior
of the 2v; and 3v, states that follows a vibrational superexchange
mechanism, due to the lack of low-order Fermi resonances. The
decay is govemed, thereby, by the few directly coupled off-
resonant states that provide virtual couplings.

The calculated [VR characteristics are quite different at the
two energy scales. At the lower epergy, about 6000 cm™!, we
find the beginnings of some perturbations to the regular spectra
due to interactions with bath states. However, the energy is
still mainly localized in the bright state. On the other hand, at
about 9500 cm™!, there are available to the bright state a large
enough number of quasi-resonant states such that real statistical
IVR can occur leading to irreversible decay (modulated by some
quantum beats) of population out of the bright state.

IL Tier Model

The tier model has been described elsewhere.! The Hamil-
tonjan is written in normal mode coordinates as

1 1
H==Y ofg? +p}) + =, buaaa: +
24 1

1
—Z badamat - (D

Tbeeaergyofeachof!hemth-ordammmthcbassseus
calculated using the expression®

EOyVyv) = Ee = D, 0y %
i

XX~

i k2i

v, VAy
v,vk+——-+—— @)

where d; is the degeneracy of the ith mode. The intermode
coupling is due to nondiagonal anharmonic terms in eq 1.

© 1995 American Chemical Society
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TABLE 1: Limited Number of Cubic and Quartic Force
Constants in Internal Coordinates for Propyne Included in
the Nonlinear Transformation into Normal Coordinates*

ijk Jfa ref ijkl fu ref

S555s ~38.35 10 55555555 196.0 10
S:5:5. -109.23 10 5585 5362 10
SsSsSs 0.40 10 S$55555s -1287 10
SsSuSs -0.193 10 5sS55S5Se ~2.663 10
55510510 =0202 10 S$55.S.S ~0675 10
SaS10510 -0.802 10 SsSsSi10510 0242 10
51553 ~26.50 11 5554510510 -0.025 10
5155 -18.67 12 SaSaSi0510 0.137 10
A e v ] 12 SieSieSi0Si0 1752 10
5155 -033 12 S151515: 50.0 12
AN -0.29 12 SeSeSeSe 750 12
5:5:85 -0.18 12 51515656 520 12
51565 ~16.56 12 S515eS6S¢ 370 12

* S, are symmedic internal coordinates as defined by Duncan in ref.
9. Force constants are in A rad units.

The nondiagonal anharmonicity terms q.4g: couple different
zeroth-order states in the Hamiltonian and are written in terms
of creation and annihilation operators. Starting with the bright
state, and with the ¢,; values available. the ¢.q4: operators are
used to generate states in further tiers. The states are kept within
specified energy windows, and they are accepted or rejected
on the basis of an anificial intelligeace (AI) search method.
This search method is used to select the states that are important
in the relaxation while keeping the problem computationally
tractable. States that are highly detuned in energy from the
bright state or are coupled with a small matrix element do not
contribute to the relaxation and are discarded during the Al
search using an evaluation function that has been described in
ref 1.

The anharmonic constants ¢;: in eq 1 are obtained by the

transformation of empirical force fields in internal coordinates”’

into normal coordinates. These empirical force constants (in
intemal coordinates) are transformed nonlinearly into normal
coordinates using the software package due to Handy and co-
workers (SPECTRO).

The empirical anharmonic force field used for these calcula-
tions is the quartic force field in internal symmetry coordinates
from refs 9—~12. The quadratic part of the force field from ref
9 was fit to some approximations of the harmonic frequencies
(w,'s) rather than the energies of the fundamental transitions.
The quadratic force field and the most important (and available)
cubic and quartic force coastants (Table 1) were used as input
into the routine SPECTRO. The latter nonlinearly transforms
the internal coordinate force field into a normal coordinate force
field and calculates, by a perturbation theory expression, the
(3N-6)(3N-6) anharmonic constant matrix x;. These constants
are used to calculate the energy of each state in eq 2. The
calculated ¢z values are used to evaluate the coupling terms
between zeroth-order states in adjacent tiers. We note again
that the wave functions of the zeroth-order states were those of
a multidimensional harmonic oscillator, but their energies were
corrected using eq 2.

A Morse oscillator function for the C—H acetylenic stretch
has also been used by some investigators in their calculations.
We calculated the matrix elements between zeroth-order states
using Morse wave function selection rules and found that even
at the 3v; level (9500 cm™!; D, (wC~H) = 35 000 cm™!) the
zeroth-order wave function can be well approximated by a
harmonic oscillator without the introduction of significant emror
(=10%. typically). Therefore, all the calculations reported used
harmonic oscillator basis functions. The energies of the zeroth-
order states were however, obtained from eq 2.
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Due to the wactable size of the molecule, an ab initio
calculation of propyne was also performed with Gaussian 92.9
This calculation, with a 6-31G* basis set at the restricted
Hartree~Fock level, generated quadratic and cubic force
constants in Cartesian coordinates. These constants were
transformed linearly into the normal-coordinate-based @z values.
The latter were, in tumn, used 1o couple the harmonic oscillator
zeroth-order states. The cubic force constants obtained from
ab initio calculations are complete at the given level of theory
and can be used as an approximate test of the force field in
internal coordinates that (at cubic and higher levels) had bees
cobbled together from various sources. The latter pieced-
together force field is necessarily incomplete since all the cubic
internal coordinate force constants are not known. The ab initio
force field was used only as a qualitative check on the empirical
force field. The results presented in this paper are all from the
empirical force field.

Due to the higher energy (E(v)-Ezpe = 6000 or 9000 cm™!)
of the states analyzed. when compared with our study of the
fundamental stretch in (CH3);CCCH (E(v)-Ezpg = 3000 cm™),
we have found that some quartic couplings have to be included
if the model is to realistically model the actual physical process.
This point is elaborated upon later. There are numerous
unknown or only crudely estimatable quartic force constants
- We have included their effect in the tier structure in an
approximate way by assigning a coupling element. chosen as
indicated below, to the coupling of states {i) and |)) in tiers
differing by two (e.g., tier n and der n + 2) if the quantity 7,
defined by

;= D= vil ©)
k
is less than or equal to 4. Here, v, is the number of quanta in
the kth oscillator of the ith state.

It should be the noted that the terms coupling states in
adjacent tiers (also referred to as matrix elements since they
are the off-diagonal terms in the vibrational Hamiltonian) differ
from the matrix element term used in some of the experimental
papers. The laner arise in the Lawrance—Knight'¢ decoavo-
lutions of spectra and are approximately related to the super-
exchange matrix element (0| VIk) in the present formalism viaa
perturbation-theory-based expression such as

Vi Vi
0|VIk) ~ Vo ..o 4
OIVIE) ~ Vo, g3~ @

there being a sum over the various superexchange paths
connecting [0) and [k). There is, of course, a large difference
in the magnitude between the superexchange “matrix elements”
(O[V1k) when compared with the values of Vo, Va2, etc.

The importance of including a final tier with a high density
of states (when a high density of states exists for the given
molecule at the energy in question as in propyne at 9000 cm ™),
$0 as to approximate the real total density of states of the dark
states, was established in ref 2. We make the same addition
here in the calculations. The total number of added states that
model the quasi-continuum vary from 600 to 1000 in an energy
window of 3—5 cm™", such that the total density of states is
approximately 200/cm™!. The latter is slightly higher than the
density of states estimated for propyne (150/cm™) with the
correct symmetry at the specified energy (<9000 cm™'). The
slightly higher value is used because the interaction of the states
in the finite final tier with the previous tiers leads to the repulsion
of some of the final tier states into a larger window. The matrix
element with which these final tier states are coupled to states
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Figure 1. Spectrum corresponding to the 3v; band for CH;CCH. No
quartic couplings or final tier of dense states is added.

in the previous tier is estimated from the average cubic coupling
between states in previous tiers. Each state in the final tier is
coupled to a single state in the previous tier.

The states in the final ter are placed randomly, and the
robustness of the calculation with respect to this random
placement and to the approximate magnitudes of the quartic
coupling values is explored below, where some typical results
are given.

III. Results

3.1. 3v,. a. No Quasi-Continuum. With the above algo-
rithm for generating the sequentially coupled model with a given
bright state, the tier structure was generated with the bright state
containing three quanta of energy in the acetylenic C—H strewch.
The pure normal mode wave function of the zeroth-order bright
state is denoted by (@), With its energy having been corrected
using eq 2. Experimentally, about five peaks were observed in
an energy window of approximately 0.1 cm™* (for J* = 0). This
number corresponds to at least a minimum of 50 states/cm™!
coupled well with the bright state, since some peaks may have
been in the signal/noise background and so not observed. This
density of states of 50/cm~! is on the same order as the
calculated total density of vibrational states (150/cm™!) with
the correct symmerry.* Using the previously described AI
search method, 2 total of 1048 “well-coupled™ states in 10 tiers
were selected within a large energy window of 500 cm™! for
each ter. Diagonalization of this vibrational Hamiltonian with
only cubic couplings resuited in a spectrum,

@)= Y (¥ ulp)6w - E)
= Y K™ i) Kooy 6w — E)

N
= e Ko’ ~ E) NO)

dominated by only one peak (Figure 1). for which (golyp)? =
09, for some i. Here the [y) form a complete set of
cigenfunctions and c is a constant. In deriving eq 5. we have
assumed that there is only one zeroth-order state, [¢) (the bright
state), that has a nonzero matrix element of the type {goluip™),
where u is the dipole moment operator and |y™) is the initial
vibrational state (experimentally, it had one quantum in vy).
b. Quasi-Continuum Added. To simulate the presence of
the high density of nearly degenerate states that are well
separated in phase space from the bright state, a single, dense
ter of quasi-degenerate states was then added to the final (here,
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Figure 2. Spectrum corresponding to the 3v; band for CH,CCH
showing the transformation (from Figure 1) due to the final der of
resonant states and quartic couplings.

tenth) tier with a density of states such that the total density of
states approximates the actual value. One thousand states,
randomly placed in 2 window of size § cm™!, were coupled to
states in the tenth tier with matrix elements estimated from the
average marix elemeats in previous tiers. This addition of a
quasicontinuum yielded no observable change in the spectrum,
i.e. yielded a spectrum similar to Figure 1.

¢. Addition of Quartic Terms. Upan the inclusion of small
quartic terms that couple the states in the manner described
zbove (by the calculation of #;) and without the addition of the
final dense tier of states, the amplitude of the major peak
diminished stightly (to 0.75), with the remaining amplitude being
distributed over spectral lines in a large energy range (100
cm™!). When the final tier of states was added to this cubic-
and quartic<coupled Hamiltonian, the spectrum was transformed
from one where there is a single dominant peak to a more
fractionated type (Figure 2). The single peak of previous
calculations split into a few (three to six) “major™ peaks within
an energy range of 0.07—0.15 cm™!. Tke details of the
calculated spectrum, however, depended upon the particular
random choice of the energies and the coupling terms of the
states in the final ter.

d. Time-Dependent Behavior. 1t is useful to compare the
autocorrelation functions of the spectra (survival probability pa(t)
of the bright state) with and without the extra tier present and
with and without quartic couplings:

Pt = Keolo)?
N
= [ oly)e 1" ©)
{

where ¢(1) is the wave function at time ¢ which evolves from
o (po(0) is unity). The right-hand side of eq 6 is proportional
o [ e~ dif?, where I(@) is given by eq 5. As
indicated by the spectrum (which is dominated by a single peak
of =0.9, of which the autocorrelation function is the Fourier
transform), po(t) remains constant for 2 time of up to 1 os ata
high value (0.8—0.9) whea oaly cubic couplings are utilized.
The same type of result is obtained upon the addition of the
final dense tier of states. With the inclusion of quartic couplings
but without the extra tier, the survival probability shows instead
a rapid oscillatory decay to =0.6 on a femtosecond time scale
(Figure 3), because of the few well-coupled nonresonant states
in the initial tiers, due to direct cubic and quartic couplings. It
then remains highly oscillatory and, on average, constant.
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Upon the addition of the extra tier to simulate the actual presence
of the quasi-continuum. the high-frequency oscillatory behavior
is accompanied by smooth decay of the population into the
quasi-continuum (Figure 4). The time scale of this decay is a
few (two to six) hundreds of picoseconds.

Dynamically, therefore, the addition of the quartic couplings,
but no quasi-continuum, changes the autocorrelation function
from essentially no decay into one where there is fast femto-
second time scale decay of the autocorrelation function to about
0.6, which then, on average, remains constant but is ac-
companied by a large number of high-frequency components.
Addition of the final tier of dense states causes real decay 10
occur. This finding confirms our previous conclusion that the
fine structure and the irreversible relaxation of the first several
overtones are due to the very high-order superexchange anhar-
monic couplings.

From the spectral viewpoint, the high-frequency components
of the autocorrelation function, which dominate the subpico-
second dynamics, appear as small peaks far detuned from the
main peak. These spectral components that are detuned from
the main peak appear due to the presence of a few nonresonant
states in the initial tiers that are well coupled to the bright state,
which also cause the subpicosecond decay of the autocorrelation
function to =0.6. Experimentally, they might be very difficult
to resolve due to their large distance from the main peaks as
well as signal-to-noise limitations. There is, however, no reason
for them not to occur. The smooth but not single-exponential
decay appears spectrally as the splitting of the main peak into
a few reasonably strong peaks within a smail energy window.
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e. Robusmess of the Calculation. We have examined the
robustess of the calculation. The quartic coupling constants
were added as a random coupling between O and some
approximate maximum value. In the final dense tier of states,
the energies of the states were random within a given energy
window. The matrix elements coupling states in the final dense
tier with the previous tier were also random between 0 and
various maximum values (Ve = 5-30 em™). In Figure 5,
results are presented from simulations with different random
realizations of these values. The figure shows that while the
details of each calculation may differ, the physically relevant
picture of splitting of the main peak into a few peaks within an
energy range of about 0.1 cm™! remains unchanged. In Table
2, we preseat some statistics about each of the five spectra that
have been presented in Figures 2and 5. The numbers presented
are quite representative. The quantity I in Table 2 is defined

by
Py I

py

i

r )]

where ¥ = Y p,v/2p;, and p; = [($olw)I2. These statistics have
been calculated not over the whole spectrum (in which case
the denominator in eq 7 would have been unity) but over a small
window that includes just the main clump of peaks in the figures.
Also in Table 2, we present the number of major components
in the spectra, where a component is considered major if
Kdolwd® = 0.005, which is about 1—-2% of the major peak.
The window in Table 2 refers to the energy range in which
these major components occur.

These resuits are qualitatively similar when the statistics of
different spectra are compared but there is enough scatter in
the data that no quantitative judgements can be made. I can
be considered to be a rough estimate of the discrete counterpart
of the fwhm and the calculated values of a few hundred
megahertz are in agreement with experimental values for such
molecules.

32. 2v;. The Hamiltonian matrix of the tier structure was
generated utilizing the algorithm described above. The energy
window for each of the 10 tiers is 500 cm™, and 437 well-
coupled zeroth-order states form the basis set. Diagonalization
of this Hamiltonian matrix with oaly cubic couplings resulted
in a spectrum for which the amplitude of one of the peaks was
greater than 0.999. Upon relaxing the Al criterion for state
selection, a larger Hamiltonian matrix with 1317 basis set states
was also analyzed with no change in the spectrum. This resuit
indicates that the scheme of selecting only the most important
states has captured all the physically relevant details of the
spectrum as far as the cubic couplings are concerned. The
complete dominance of a single peak in the spectrum shows
that there is no interaction of the bright state with the bath states
in the cubic Hamiltonian. Upon the addition of small phenom-
enological quartic couplings between states separated by one
tier as described above and the addition of a final tier of states
with the appropriate density of states we find that the main peak
split slightly. However, the spectrum was still dominated by a
single peak that had an amplitude of 09. The rest of the
amplitude was distributed in weak daughter peaks around the
main peak. Also, there were some peaks detuned more than 2
tenth of a wavenumber due to the direct quartic couplings. In
Figure 6 we give a typical example of the slight spliuing that
occurs due to the quartic couplings and the final tier (note the
considerably expanded, logarithmic, scale).
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TAB?E 2: Statistical Properties of the Spectra in Figures 2
and
v (cm™) I(MHz) no.of components window (cm™")
1 969133 0013 402 S 007
2 9691.07 0.029 T4 9 0.07
3 9691.16 0.009 255 S 0.02
4 969127 0021 639 6 0.13
5 969167 0010 285 6 002
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Figure 6. Spectrum typical of the 2v; band with quartic cooplings.
Note the log scale for the ordipate.

IV. Discussion

4.1. 3v,. The first result to be considered is that the pure
cubic Hamiltonian without the final tier does not result in any
splitting of the individual spectral line. This result is not
surprising since 2 near degeneracy of two or more states is
needed, as a necessary though not sufficient condition, to

distribute the intensity of the bright state among two or more
major peaks, and the density of states for that calculation is far
lower than the real value. For this first result the deasity of
states was approximately 2/cm™!, compared with the actual
value of 150/cm™!. Similar results have been obtained for other
calculations modeling the excitation of the acetylenic stretch
in different molecules.2 However, unlike the situation in terr-
butylacetylene where the addition of an extra tier for the
fundamental C~H stretch causes the single line to have a
Lorentziap line shape.? the final tier (with a density of states
appropriate to the 3v; excitation energy in propyne) did not
affect the spectrum. ‘The total superexchange coupling of the
bright state to the dense (phenomenological) tier was therefore
so small that the states in the dense tier remained, in effect,
uncoupled to the bright state.

Indeed, it has been shown previously? that while the presence
of the total density of states in the tiers is a necessary condition
for calculations to correctly simulate statistical or near-statistical
IVR bebavior, it is not a sufficient coodition. Equally important
is the correct description of the initial tiers as they govem the
overall decay. It may be recalled that the lifetimes of various
different initial states can be inferred from the analysis of oaly
a few initial tiers.! Here, the above mentioned results regarding
the spectrum indicate that a correct description of the IVR of
this bright state (at a higher energy than the states previously
analyzed) requires the inclusion of terms higher than cubic in
the Hamiltonian. In this way the superexchange matrix element
10 the states separated by a large distance in tier space will be
larger. Thbe next higher order of coupling beyond cubic consists
of the quartic terms in the Hamiltonian. The procedure used
to include such terms was described in a previous section. We
note that the basis set initially used for the cubic couplings
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remains the same when the quartic couplings are introduced.
The states in tier n that can be coupled to states in tiers n + 2
via terms of the type g,4,q1q: are assigned an off-diagonal matrix
element.

The importance of including quartic couplings for intramo-~
lecular dynamics of overtone states was observed previously
by Zhang and Marcus.'* We next sketch how the inclusion of
the quartic terms in the Hamiltonian can significantly increase
the total coupling of overtone bright state. If the couplings are
limited to third order, then the coupling between the bright state
and the first tier is similar for vy, 2v;, and 3v; since the only
cubic coupling terms possible will annijhilate one quantum of
v (which is the highest energy oscillator) and create two others
such that v; = v; + v;. The matrix elements that couple the
bright state to the first tier for the fundamental as compared to
the different overtone bands differ by a small multiplicative
constant, due to the selection rules for harmonic oscillator wave
functions. However, the number of states in the first tier and
the approximate detuning of those states is roughly independent
of whether the bright state is the fundamental band or an
overtone. Consideration of higher order couplings modifies this
picture. For the overtone states, application of the ¢.9.494: and
94:94:q1 type of operators upon the bright state creates the
additional couplings of fourth and fifth order, respectively, since
more than one quantum in the initially excited state is available
for annihilation. These quartic and quintic couplings have no
effect on the bright state in the fundamental band. but their
presence in the overtone bands significantly increases the overall
coupling of the bright state to the bath and increases, thereby,
also the superexchange matrix elements to the dense ter of states
since. at the higher energies, states with some negative Av’s
can be coupled. These facts describe one role for quartic
couplings in the calculations anempted for states at higher
energies. Although a realistic modeling of the fundamentals
in other molecules was possible when only the cubic couplings
were included,!? the present results show that, when higher
energy states are considered, the use of only the cubic couplings
underestimates the superexchange coupling of the bright state
to the states in distant tiers. The increasing importance with
energy of such higher order couplings or, in other words, the
poarer pure cubic coupling picture of IVR is, therefore,
indicated.

We consider next the small peaks that appear detuned to0 2
relatively larger extent in energy in the spectra upon the addition
of these quartic couplings. Upon the addition of the quarnic
constants, the spectrum dominated by a single peak splits to
form some small peaks over a large energy window with most
of the amplitude still being in the main peak. This result
signifies that the coupling of the bright state to the states in the
initial tiers has increased. As megtioned earlier, it is these
couplings that control the total coupling of the bright state with
the near-degenerate states that are separated in phase space. That
the addition of the quartic couplings significantly increases this
superexchange coupling is measured directly when a final tier
of states is added along with the quartic couplings. Unlike the
piovious result, where without quartic terms the final tier made
no difference. this time the single peak splits into a few peaks
(Figures 2 and 5). The small peaks are due to the direct (and
weak) coupling of the bright state with states in the initial tiers
that are usually highly detuned. Experimentally these peaks
have not been identified, since they appear on a energy scale
greater than the scale investigated experimentally, 1-2 cm™},
and their calculated intensity is small. Such small peaks in the
wings have also been identified in calculations and discussed
by Gruebele and co-workers.!6
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Although the approximations inhereat in the present model
calculations preclude a one-to-one correspondence of the peaks
in the experimental and theoretical spectra, there is a qualitative
similarity between them, both in the number of peaks and in
the approximate energy range (0.1 cm™!) over which they
appear. The autocorrelation function shows a lifetime on the
order of 300 ps. The mechanism that governs the physical
process is again a vibrational superexchange coupling mecha-
nism. This long smooth decay in Figure 4 is typical of the
calculated relaxation of acetylenic stretches even though recur-
rences are not precluded. It may be recalled that one of the
features of the acetylenic C—H stwretch fundamentals and
overtones was the absence of any direct Jow-order resonance.!2
The states in the initial Gers were mostly all off-resonant and
provided a virtal state mechanism (superexchange) for transi-
tion into the resonant states that were well separated in the phase
(or quantum number) space of the molecule.

4.2. Other Spectral Bands. Due to the smaller density of
available states at the given energy, the calculated spectra are
mainly dominated by a single peak with some small daughter
peaks arising due to quartic couplings. The final tier of states
does not play a major role in the IVR. This IVR is not statistical
and may be considered at the beginning of the intermediate
stage. The results for the v, + 2v5 band are not adequately
treated by the present formulation, which should be regarded
as a first step. For this band, and for 3v;, a more elaborate
treatment would omit the x,; terms and use, instead, a more
elaborate force field and, perhaps, include vibration—rotation
couplings.

V. Conclusion

We have calculated the spectral features of the first and
second overtoaes of the acetylenic C—H stretch in propyne that
arise from the anharmonic coupling between harmonic zeroth-
order states. The energy and the couplings of the basis states
are calculated from an empirical potential energy function.

We find that due to a lack of direct Fermi resonances. the
C—H stretch decays into the dark vibrational states by utilizing
the low-order off-resonant states that are available. Our results
are qualitatively similar to the experimental ones. We show
that the inclusion in the potential of terms higher than cubic is
necessary for a correct representation of the spectrum. The
calculations show that the initial couplings of the two bright
states are both off-resonant in nature and provide the virtual
couplings to available near-resonant states. Upon the inclusion
of a final tier of states with the appropriate density of states,
we find that the first overtone remains spectrally pure with one
dominant component, whereas the second overtone spectrum
consists of a few major components due to the availability of a
higher density of states. In a temporal description, the presence
of 2 higher density of states in the second overtone allows for
the initially excited state to decay statistically, whereas the initial
excitation remains more localized in the first overtone.
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Abstract
In this report a periodic boundary conditions (PBC) implementation of aqueous sol-
vent dynamics is described. The dynamical behavior of TIP4P, rigid water molecules
is obtained through the molecular dynamics (MD) calculation for 256 water molecules
and a small “atomic” solute confined in a cubic box. The interaction potential con-
sists of a Lennard-Jones part and an electrostatic part that is implemented using
the Ewald sum technique. The results obtained compare favorably with previously
reported simulations. The structural properties of the solvent are checked using the
radial distribution functions and the solvation properties are obtained from the solute-

solvent interaction energy from non-equilibrium and equilibrium simulations.
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5.1 Introduction

Most chemical processes occur in the condensed phase. With the solvent being ubig-
uitous, it can and does play a major role in the rate of chemical processes. The
nature of the solvent structure and its effect on and response to chemical change is a
fundamental problem in chemical physics. The effect of solute-solvent interaction in
reactions is made complicated because the reaction coordinate as well as its coupling
to the solvent motion have to be well characterized. These complications make both
the experimental and theoretical studies of processes in the condensed phase quite
involved. From chemists’ point of view, the solvent has sometimes been characterized
by either its static dielectric constant or by parts of its dielectric response function
€(w). Such characterizations, naturally, consider the solvent as a dielectric and ignore
its molecular nature. For fast chemical processes in solution the molecular nature of
the solvent may be important at small distances from the solute.

The solvent dynamics around a solute may play an important role in the determi-
nation of reaction rates in the condensed phase. Recent experiments by Zewail and
coworkers regarding the cis-trans isomerization in stilbene surrounded by a variable
number of hexane molecules as the bath hint at interesting dynamical and kinetic
phenomena(l]. This problem has been investigated via a modified Kramers' type
of formulation to obtain reaction rates[2] when the motion along the reaction co-
ordinate is being retarded by a frictional force. Electron transfer reactions in the
condensed phase constitute another example where the nature of solvent dynamics is
sometimes critical in determining the rate of the overall reaction(3, 4, 5]. In classical
electron transfer theory, the expression for the outer-sphere reorganization energy
takes the solvent as a dielectric continuum that is defined exclusively by its dielectric
constants[6]. The accuracy of this assumption governs, to a large extent, the accu-
racy of the rate expression as a whole and, here, analysis of the solvent motion can
be useful.

Molecular motion being very fast, only very recently have experimentalists been

able to study the fast solvent response to a change in the solute’s electrical proper-
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ties with the availability of fast lasers. Such lasers have spurred the investigation of
solvent-solute systems in gas phase (in the form of clusters in molecular beam ma-
chines) and in the condensed phase. These new techniques have uncovered the faster
time-scale components in solvent dynamics that were previously hidden. Here we refer
to the work of Zewail[l], Fleming[7], Yoshihara[8], Maroncelli[9] and Barbara[10].

These experimental advances have been simultaneous with new theoretical ap-
proaches to this problem. Analytically, Wolynes has introduced[11] the MSA (mean
spherical approximation) and Bagchi and coworkers have used[12] the GLE (General-
ized Langevin Equation) approach. Also, the availability of fast desktop workstations
has led to good molecular dynamics (MD) calculations that have also shed light on the
very short timescale dynamics that is primarily governed by the molecular nature of
the solvent. Some recent computational contributions have been made by Warshel[13],
Carter and Hynes[14], Maroncelli[15], Jorgensen[16], Rossky[17], Hidalgo[18] and
Stratt[19]. These calculations have, generally, implemented molecular dynamics with
periodic boundary conditions (PBC) and the Ewald sum[20] has been utilized to
approximate the coulombic contribution out to infinity in the case of polar solvents.

Computationally, a handful of techniques have been used for simulating liquids.
Some of the initial calculations used clusters of particles with two body Lennard-
Jones type of interactions to characterize the solvent. This technique is useful for
non-polar molecules such as noble-gas atoms[21]. For polar solvents a more involved
formalism is required as the potential function that governs the interactions is long-
ranged, decaying slower that r=3. Typically, studies have utilized the Ewald sum to
account for the long-range forces by doing the calculation in Fourier or reciprocal
space within the PBC formalism[15]. Furthermore, some investigators have modeled
the liquid as a large cluster[22, 23]. It is also possible to utilize the reaction field
method to account for the long range forces[24, 25|. However, to date this has not
been the method of choice.

In the PBC formalism the molecules representing the solute and the solvent are
usually confined to a cubic cell and periodic boundary conditions are enforced. For

solvent dynamics calculations, we are usually interested in a solute surrounded by
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a large number of solvent molecules. Realistically, as the solute imposes its own
field on the solvent, the system as a whole is not isotropic. This anisotropy may
be particularly important for a charged solute with a polar solvent. However, with
periodic boundary conditions a quasi isotropy is artificially enforced. This isotropy
occurs because the unit cell is infinitely replicated, causing an unphysical change of
sign in the solvent’s polarization at the cell edge. Although this isotropy may be
correct for simulations of a bulk liquid, where there is no solute to impose its field
and so the solvent is not polarized, it could introduce significant error when solutes
with specific charge distributions and their interactions with polar solvents are being
studied, unless the cell size is sufficiently large.

We have recently implemented a method for solvent dynamics calculations that
utilizes a reaction-field (RF) formalism, where a cavity containing the solute and some
solvent molecules is surrounded by a dielectric continuum(26]. This method, by defi-
nition, does not enforce a quasi-isotropy and utilizes the fact that after some critical
distance the solvent’s molecular nature may be replaced by a dielectric continuum.
Some of the issues that we wish to address are : 1) the range to which the molec-
ular nature of the solvent is important, 2) whether using a non-periodic formalism
such as a cavity in a continuum is feasible, and 3) how the calculations using the
reaction-field formalism compare with the results from the PBC calculations. To ad-
dress these questions, we have made molecular dynamics calculations with the PBC
system and have developed a formalism for analogous calculations in a reaction field
system, where a cavity containing molecular solute and solvent particles is surrounded
by a dielectric continuum. Substantial efforts have been required for obtaining a well
characterized cavity-continuum interaction, particularly at the surface of interaction.

In this chapter, the PBC calculations on water with an “atomic” solute are de-
scribed. In the following sections the potential function used, the propagator used
for integration of the equations of motion, the structural and dynamical properties
obtained from the calculations and the data analysis and results are presented. The

results from the reaction field simulations are presented in the next chapter.
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5.2 Equations of Motion

The dynamical behavior of any particle in a system with specified initial conditions

can be written as
2(t + At) = z(t) + E() At + —21—:’é(t)(At)2 +eon (5.1)

where, Z(t) is the time time derivative of the variable z. For a classical system, the
second time derivative of the spatial variable or the acceleration can be written in
terms of the force experienced by the given coordinate which, in turn can be written
in terms of the potential

fx 10V

A three-dimensional body, such as a rigid molecule, has orientational degrees of free-
dom along with the translational degrees of freedom. The translational motion of
the center of mass of a rigid body is governed by equation 5.1, where z is one of
the translational coordinates and Z(t) is obtained from equation 5.2. The rotational
motion of a rigid body with inertia tensor I and angular velocity w is governed by an
equation similar to 5.1. The orientational coordinates used are quaternions[27] that
are functions of the more well known Euler angles. The governing equation for the

orientational coordinates is[28]
I-o—wxI-w=N, (5.3)

where, N is the torque (moment of force) defined (for atom coordinates r;, center of

mass coordinate R and force f; at atom 7) by
N = Z(T{ - R) X fi- (54)

Given the force f and the torque (moment of force) N that act upon a body, the
position and orientation of the body may be accurately determined for any time by

integrating the equations of motion such as equation 5.1 with an appropriate choice for
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At. For a rigid molecule with n atoms treated as mass points, the forces and torques
can be determined from the forces experienced by each atom at every time step.
The main technical question that remains is the selection of a physically accurate
potential for the interaction between particles and an integrator to propagate the
above mentioned equations of motion. Although equation 5.1 is formally correct for
use as the propagating equation, other algorithms give more accurate results since
appropriate linear combinations of similar equations for z(t — At), z(t — 2At), ... are
accurate to a higher order in At. This fact is important as it allows for larger values
of At to be used for the actual calculations.

The public-domain molecular dynamics package MolDy was used for the PBC
calculations. For the reaction field calculations, the MolDy package was substantially
modified for solving the equations of motion for molecules restricted to a spherical
cavity surrounded by a dielectric continuum. The propagating equations used for

both type of calculations are a variant of the well known Verlet algorithm[20].

5.3 [Experimental Background

Experimentally, solvent dynamics is usually studied through pump-probe spectro-
scopic experiments on solute-solvent systems in the condensed phase. Solute molecules
are placed in an electronically excited state by the pump pulse. The probe pulse is
used to study the fluorescence of the excited state to the ground state as a function
of a known delay between the pump and the probe pulses. The delay allows the sol-
vent molecules to reorient and become partially equilibrated with the excited state.
Experimentally, the solute is usually chosen to be a large organic dye molecule. The
physics of this process is schematically shown in Figure 5.1

The normalized quantity usually used to describe the the solvent response is a

response function,
y(t) — v(co)

8 = o = vy

(5.5)

v(t) typically refers to the peak of the fluorescence spectrum obtained after a time-
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Figure 5.1: Schematic representation of Solvent Dynamics upon electronic excitation
of the solute
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delay of t following the electronic excitation. The width of the emission at time ¢
may also provide useful information, but has rarely been used in the analysis. (The
width usually changes only a little with time.)

The shape of the response function, S(t), has been fairly well characterized. For
small “atomic” type solutes with polar solvents, the initial innermost solvation shells
are well defined and any instantaneous delta function change in an electrical property
of the solute results in a significant impulsive force acting on the solvent molecules
of the nearby solvation shells. This impulsive force leads mainly to sharp changes
of the orientations of the solvent molecules. Such fast, initial motion preserves the
solvent shell structure during a sub 50fs time scale. This type of sharp, jerky motion
of the solvent molecules near the solute has been termed the “inertial” response of the
solvent. This motion causes a sharp fall from unity of the solvent response function
over a 0 to 0.2ps timescale. This sharp decay is sometimes also accompanied by
oscillations that may be due to the symmetrical stretching or a symmetrical rotational
type of motion of the initial solvation shell. This initial decay in the response function
is usually followed by a slower exponential type decay. This slow decay is usually
attributed to “polarization diffusion,” where the solvent shells rupture and reform,
and the solvent generalized coordinate approaches a new equilibrium value around
the solute. It should be mentioned that most of the data for the solvent response for
“small solutes” comes from computational simulations, most experiments typically
using large dye molecules as solutes.

For larger solutes, the solvent response can usually be fit fairly well by a biexpo-
nential decay curve with some superimposed peaks. The solvent structure around the
larger solute is more diffuse and so the initial decay of the solvation response curve,
although still prominent, is smaller. The work of Fleming and coworkers[7] provides

an instructive example of this difference of the response for small and large solutes.
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5.4 Computational Strategies

5.4.1 Equilibration from Initial Configuration

Before going into the details of how such experiments can be simulated through MD
calculations to obtain computationally the solvent response function, a few important
technical details are described. Before an attempt may be made to obtain any physical
data from an MD trajectory, the system has to be in its equilibrium configuration.
The first part of any MD calculation, then, is its equilibration to the minimum free
energy state since any arbitrarily chosen initial configuration is not necessarily a
probable member of the equilibrium set of configurations. The choice of the initial
starting configuration is an important technical point and the initial configuration
should be such that non-physical, large and impulsive forces are avoided since the
solutions of the MD equations are liable to diverge when the forces are abnormally
large.

One technique is to use a crystalline starting configuration. Since such a config-
uration may be too ordered for liquid phase simulation, in the reported calculations
the initial configuration is obtained using a “skew start” method[28] that ensures that
there is at least a minimum separation between the molecular centers of mass without
placing them at the vertices of a crystalline structure. The initial orientations of the
individual molecules are typically chosen to be random and the initial velocities are
obtained from a Maxwell-Boltzmann distribution.

Since the initial configuration is unlikely to belong to the set of minimum free
energy configurations, propagation of the MD equations in an ensemble at a given N
(number of particles), V (volume) and E (energy) (NVE) is going to take the system
to, on the average, lower potential energy configurations and thereby increasing its
kinetic energy. To maintain a generally constant temperature during the actual simu-
lation, the approach to equilibrium is accompanied by periodic scaling of the transla-
tional and rotational velocities[20, p. 171]. The starting configuration is propagated
forward in time with the MD equations and every few time-steps the translational

and rotational velocities of the molecules are scaled to the predetermined applied
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temperature, at which the simulation is desired to occur, using

%Nlch - %m(v2) - %f(&). (5.6)
This scheme allows for the dissipation of the excess kinetic energy that would
build up when the starting configuration does not belong to the set of the minimum
energy states. This procedure, when continued for a few thousand time-steps, allows
the system to reach thermal equilibrium. This approach has proved successful in
practice. One simple measure of the system’s being in equilibrium is obtained from
monitoring the total potential and kinetic energy of the system after scaling has
been stopped. If the potential and kinetic energies remain constant, within some
fluctuations, without any systematic deviation, the system may be considered to be
at equilibrium.
Once the system has reached equilibrium, the scaling is stopped and the system

is then allowed to exclusively follow Newtonian dynamics (%(t) = —+2¥%) within the

m oz
predetermined ensemble (here, NVE). Since the positions, velocities and orientations
are available for all the molecules during the whole trajectory, any physical property

of interest may then be calculated.

5.4.2 Solvent Structure

Before any quantities particular to solvent dynamics are calculated, it must be en-
sured that the potential used and the calculational strategy employed (such as PBC
or reaction field methods) result in a good description of the solvent. By a good
description it is meant that the MD trajectories yield accurate structural and dy-
namical information for the solvent. To this end, solvent radial distribution functions
(RDFs) are usually calculated and compared to previously known computational or

experimental data. The RDF is defined as

906(r) = V(8 (Ir + r1a — ragl)) , (5.7)
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where, a and [ represent the types of atoms and r,, and rzs refer to the position of
the particle a or # on molecule 1 or 2. The average is taken over all the molecules in
the system. The RDF is calculated from the pair distances between atoms for a select
number of configurations obtained from the MD trajectory. The radial distribution
function is a quantity of central importance in liquids because they provide informa-
tion about the local short-range order around a central molecule[29]. The histogram
of pair distances is normalized to obtain the RDFs. The normalization is such that,

for a single component system, if p = number density, then
Re
47r/ pg(r)ridr = N, (5.8)
0

where, N is the number of particles in a sphere of radius R.. For water, RDFs
of particular interest are those for O-O, O-H and H-H ones. These quantities are
compared with the experimental quantities to determine the extent to which the po-
tential energy function and the calculational scheme yield a correct description of
the solvent. Other quantities usually calculated are the velocity correlation function,
density profiles at various places within the simulation volume, and the orientational
distribution functions. In some studies it has also been attempted to obtain the
dipole correlation function (M(0)M(t)) and the dielectric dispersion curve from such
calculations(13, 15]. The dipole correlation function is usually the most difficult quan-

tity to obtain accurately through simulations.

5.4.3 Solvent Dynamics from MD trajectories

Once the system of solute and solvent molecules has been equilibrated and once the
structural and dynamical quantities have been calculated to show that the system is
a good approximation to that being simulated, the solvent dynamics quantities can
be calculated with more confidence. Starting from the calculation for an equilibrated
system, two methods may be used to obtain the computational approximation to
the solvent response function S(¢) described in equation 5.5. Using the fluctuation-

dissipation theorem, it can be shown[15, 30] that, in the linear response regime, the
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correlation of the fluctuations in the electrostatic potential V'(t) created by the solvent

at the solute,
_ (6V(0)sV'(t))
~{6V(0)6V(0))’

is equal to the solvent response function S(t) that would be obtained from the result

C(t) (5.9)

of a sudden change in the charge of the solute. It is assumed here that the non-
polar interaction between the solute and the solvent is the same regardless of the
solute’s net charge. Similar relationships exist between other equilibrium correlation
functions and solvent response functions obtained from other step function changes
of the electrical properties of the solute. V(t) is simply the electrostatic potential
created by the solvent at the solute that can be calculated at every time-step in the

trajectory and
SV (t) = (V(¢)) = V(). (5.10)

It is also possible to directly obtain S(t) from MD calculations by simulating the
step function change in the electronic property of the solute that is analogous to the
experimental change in the solute that would be caused by the interaction of the laser
with the solute. This step function change can be simulated by suddenly changing, in
an equilibrated system, the electrical property whose effect is being probed. Some of
the changes usually probed include the change in the charge distribution (e. g., dipole)
in the solute that occurs when the solute is electronically excited or a change in the
total charge of the solute that would occur upon photo-ionization. Upon this change,
the solvent molecules are no longer in equilibrium with the new electrostatic state of
the solute since they were in equilibrium with the ground (or other initial) state of the
solute. The solvent molecules change their orientational and translational positions
to return to thermal equilibrium with the solute. It is this change that is monitored
and analyzed via equation 5.5 to obtain the response function. Computationally, after
changing the electrical property in question the MD calculation is continued to obtain

the time-dependent solute-solvent interaction energy. The solvent response function
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is calculated analogously to experiment,

Eint(t) - Eint(oo)
Eint(0) — Eine(00)

S(t) = (5.11)

Eini(t) includes the above defined V(t) along with Ep;(t), the Lennard-Jones (or
van der Waals) contribution to the solute-solvent interaction energy. Rigorously, the
equality between C(t) and S(t) is correct only when V(t) is used in equation 5.11
instead of Ein(t). As a practical matter, for the solute used, Er;(t) is less than 5%
of the total solute-solvent interaction energy and its inclusion in the above equation
does not change the resulting solvent response function. This calculation is performed
for several different initial configurations of the equilibrated ground state to obtain a
representative collection of initial configurations and to compare with C(t) that is, by
definition, a configurational average. Comparison of C(t) with (S(t)) also provides
a test of the linear response approximation. It is important to note that as the
perturbed system returns to thermal equilibrium, there is some increase of kinetic
energy and in the temperature of the system (this phenomenon has been referred
to as “local heating.”) The system should be large enough to absorb this increase
without any change in the observables or the lifetime of the observables should be
short enough such that the “local heating” has no effect on it.

Having obtained all the analytical machinery for the propagation of the dynamical
equations and for data analysis, we now define the potential function we use to govern
the dynamics. A good potential is, of course, essential to obtain good dynamical

information from the MD trajectories.

5.5 Intermolecular Potential

The intermolecular potential may be written, schematically, as

V=Vs+V, (5.12)
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where, Vi ; is the Lennard-Jones potential between oxygen atoms,

Vig=e [(%)12 B (g)s]

and V, is the electrostatic potential which, for PBC, is written as an Ewald sum,

(5.13)

erfc(alru +nl)

Ly,

(5.14)

71’6 N i=l j=i+l |rtJ +nl
1 1 ’
e sin(k.rs)| .
PR, kz 2e { ; cos(k. r,) sin(k.r;) }
#0

The Lennard-Jones potential, being short-ranged, is simple to calculate. In the PBC
formulation, the L-J term is calculated up-to some critical distance r.. For a system of
charges, the electrostatic potential is written as a sum of short-range and long-range
contributions, as in equation 13, where the former are written in real space and the
latter in reciprocal space, where the periodicity of the MD cell is used.

The rigid four-center, TIP4P water model[31] was used for the calculations. This
model has been used for a variety of simulations of liquid water and has been well
tested[32, 33]. The parameters that define this potential are specified in Table 1.

Since this model is rigid, the vibrational motion of the water molecules is ignored.

Table 5.1: Parameters defining the TIP4P potential
r(OH) (A) | ZHOH (deg) | €oo (kcal/mol) | oo (A)
0.9572 104.52 0.6201667 3.1536
go gx am r(OM) (A)
0.0 0.52e -1.04e 0.15

So, for a particle in a MD cell, part of its electrostatic potential is calculated
directly as interactions with other charged particles upto some 7. and the long-range
part is calculated from r = r, to oo but in the reciprocal space. The Ewald sum has
been extensively used for simulations of polar liquids. Here, only a brief description of

the potential has been provided. Allen and Tildesley[20] and Refson[28] give a detailed
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explanation of the Ewald sum and its use in MD simulations. The periodic boundary
conditions are imposed in the program MolDy through the link cell method[28].

For the PBC calculations reported in this chapter, the parameters used to define
the LJ interaction between the solute (X) and the solvent molecules were epx = 0.1
(kcal/mol), oox = 3.0 A egx =01 (kcal/mol) and ogx = 3.0 A.

This set of interactions between the “atomic” solute and the solvent molecules
is similar to the small solute designated “S0” by Maroncelli and Fleming[15]. This
choice of the solute-solvent interaction allows for a comparison between the present
results and the ones obtained earlier by them. However, it should be stressed that
there are significant differences in the two approaches to solvent dynamics. In the
earlier calculations a large spherical cluster of water molecules was used with a solute
constrained to be at the center of the cluster to model the solute-solvent system.
In the calculations described here periodic boundary conditions are used without
any constraint on the position of the solute. Here, the potential energy function
governing the dynamics is the Lennard-Jones potential and the Ewald sum for the
long ranged polar terms. In the earlier study the Lennard-Jones potential and only
Ve = ¥ qigj/7i; term for the electrostatic part were used. Also, whereas, here, we
use the TIP4P potential to model the individual water molecules, in the earlier work
the ST2 model was used. However, despite these differences, the two simulation,
without being identical, should provide similar results and trends for the dynamical

simulations.

5.6 Results and Discussion

In this section results from MD simulations of pure solvent and solute-solvent systems
are described. In both cases 256 TIP4P water molecules were confined to a cubic
box of side =~ 20 A. A single “atomic” solute, with the LJ parameters given in
section 5.5 was used in the solute-solvent system. For each simulation, the initial
configuration was brought to equilibrium using periodic kinetic energy rescaling for
10 — 30ps and then trajectories were followed for 50 — 100ps for data collection.
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Kinetic and potential energies were monitored during the data collection period to
ensure that such energies were well conserved. Radial distribution functions were
calculated from the instantaneous configurations of the molecules at different times

during each trajectory.

5.6.1 Energy Conservation

Since we are attempting to follow an MD simulation within the NVE ensemble, it is
important to confirm that the kinetic and potential energy are conserved during the
simulation. In some earlier attempts at simulations periodic rescaling of the kinetic
energy has been used even after equilibrium had been reached[15]. We avoid rescaling
the energies after equilibrium is reached to ensure that the ensemble being used is
always microcanonical. The temperature of the system was set at 300K during the
equilibration period. In Figure 5.2 the temperature of the system monitored during
a 50 ps simulation with 256 solvent molecules and one solute is shown.

We find that there is a slight upward increase in the total kinetic energy (or
temperature) as a function of time but even with a 50ps trajectory, the kinetic energy
is conserved to within 5% of the total.

The conservation of the total potential energy is even better than that for the
kinetic energy. In Figure 5.3 the total potential energy of the system, monitored
during the 50ps simulation is shown.

Since the number of water molecules in this simulation is 256, it can be calculated
from Figure 5.3 that the potential energy per molecule (V/N, the total solvational
energy per molecule) is = -41 kJ/mol = -10 kcal/mol, which compares very well
with previously determined values of -9.9 kcal/mol to -10.4 kcal/mol, as calculated
by Maroncelli and Fleming{15]. The total energy is conserved to better that 1% of
the total.
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5.6.2 Radial Distribution functions

Since a major goal for the present study is to obtain a new and useful method of
MD calculations, one that is particularly relevant to solvent dynamics calculations,
it is imperative to see if the model gives a good description of the solvent. One well
recognized prerequisite for ensuring that a liquid is well described by the simulation is
to obtain the radial distribution function from a list of pair-distances. Normalization
of a histogram of these pair distances yields the RDF. Since the TIP4P potential has
been extensively used and tested, RDFs from MD and Monte Carlo simulations of
liquid water are available in the literature[31, 34].

In Figure 5.4, the O-O RDF is shown. This figure compares very favorably with
the oxygen-oxygen radial distribution function given by Jorgensen and coworkers(31],
where they used Monte Carlo simulations, as well as the one given by Klein and
Watanabe[34] where MD simulations were utilized. The RDF's obtained by Jorgensen
and coworkers are shown in Figures 5.5 and 5.7. In these two references it is also shown
that the RDF's from the TIP4P potential are close to the experimental data obtained
from x-ray techniques[35]. The O-H and the H-H distribution functions calculated
from the simulations, shown in Figure 5.6 also compare well with same previously

published results.

5.6.3 Solvent Dynamics

As described earlier, the main quantity of interest for solvent dynamics is the solvent
response function S(¢) that may be obtained from MD trajectories in two ways.
From the equilibrium MD trajectories, the electrostatic potential at the solute may
be calculated at each time step to obtain C(t) as defined earlier, which, under linear
response, is the same as the solvent response function, S(t). It is also possible to
obtain the S(t) directly from the non-equilibrium MD trajectories by calculating the
solute-solvent interaction energy at every time step.

Both sets of calculations were performed for a solute-solvent system with one

“atomic” solute and 256 TIP4P water molecules in a cubic cell, =~ 20 A on a side,
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with periodic boundary conditions and the potential at the solute was calculated
at each time-step. The potential correlation function, C(t) was obtained from this
calculated potential. In Figure 5.8 the C(t) is shown for an uncharged solute.

In this figure some of the defining characteristics of the solvent dynamics around a
small, uncharged solute are clearly seen. The sharp initial decay followed by a slower
and oscillatory decay has been a hallmark of such solutes [7, 15]. The initial part
of decay represents the “inertial” or rotational (“librational”) motion of the solvent
molecules around the solute and the latter part represents the diffusive motion. For
small uncharged solutes, the fast initial decay is a dominant component of the total
decay. Comparing Figures 5.8 and 5.9, it is clear that the C(t) correlation function
for an uncharged solute differs appreciably from the charged solute.

In Figure 5.9 the correlation function for a small solute with a unit positive charge
is shown. When compared with the correlation function for the neutral solute, shown
in Figure 5.8, we find that this C(t) is much less oscillatory and slower. Once again
we find that this results is similar to the ones obtained earlier(15]. The less sharp
initial decay and the recurrence at ~ 150 fs are well recognized characteristics of the
solvent dynamics of water for small charged solutes.

It was argued earlier that the initial decay of C(t) is caused by the rapid “inertial”
or orientational motion of the solvent molecules, and the slower long time decay is
due to the translational motion of the solvent molecules. The charged solute is quite
effective in ordering the polar water molecules around itself. This causes the rotational
motion of the such solvent molecules to be hindered, since the polar solvent molecules
surrounding a charge have a preferred direction, unlike the case for uncharged solute.
As the rotational freedom of the initial solvational shells is curtailed, it is the slower
translational motion of the solvent molecules that plays the more important part in
the solvent relaxation. The induced polarization curtailing of the rotational motion
causes the response function to decay at a slower rate. The recurrence seen at ~ 150fs
in Figure 5.9 is postulated as being caused by the coherent “breathing” mode of the
initial solvation shell.

Compared to previous work[15], it is found that these characteristics of the time-
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correlation function C(t) in Figure 5.8 are representative of the small (“S0”) charged
solute. The adjective “small” depends upon the magnitude of the LJ parameters
o and e. Values close to the ones for the oxygen atom merit such an adjective.
Comparing the tcfs for charged solutes, it is observed that the tcfs of the two works
are similar. It is also observed that the time-correlation functions for charged solutes
are not very sensitive to the size of the solute[15].

Hsu et al.[36] have recently obtained the solvent response function through an
analytical, reaction field, “cavity in continuum” model of the solute-solvent system.
The positively charged sherical solute is embedded in a solvent described exclusively
by its dielectric dispersion curve €(w). In Figure 5.10 the results of Hsu and the
experimental results of Fleming[7] are shown together with the present results for
comparison. Since the actual experimental ¢(w) is used, Hsu et al. can associate
charateristics of the tcf with individual e(w) peaks. They share our belief that the
recurrence at 150-200fs is caused by the intermolecular “breathing” type of motion
of the solvent molecules and that the initial sharp decay is mainly due to the high-
frequency “librational” motion of the solvent. The Debye part of the e(w) contributes,
although not exclusively, to the long time decay of the tcf. In brief, it is determined
that the short time behavior of the solvent response function is dominated by the
“librational” motion of the solvent, the slower components arise due to the “diffusive”
motion of the solvent caused mainly by the translational (with contribution from
rotational) movement of solvent molecules.

In Figure 5.11 the S(t), obtained from non-equilibrium simulations, is shown. As
described earlier, this function is obtained by suddenly changing the charge (from
neutral to +1e) of the solute in an equilibrated system. Then the solute-solvent in-
teraction energy is calculated as the system returns to a new equilibrium. The solute-
solvent interaction energy, here, provides the solvent-response function directly. To
simulate the fact that in the experiment there is an ensemble of initial configurations
(all consisting of the solute ground state being in equilibrium with the solvent) that is
averaged over in a pump-probe experiment, a number of different initial equilibrium

configurations with neutral solute are used. In Figure 5.11, five such ground state
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equilibrium configurations were used and individual S(t) curves were then averaged.

Five simulations provide a rough idea of the S(t) and a larger number of such sim-
ulations should be used for a more refined result. In particular, the oscillations seen
in Figure 5.11 after ~ 400fs are an artifact of the small number of individual non-
equilibrium simulations. With more simulations added to the average, the late oscil-
lations should be averaged out. Maroncelli and coworkers, in their aqueous solvation
dynamics study[15], used forty simulations to obtain the S(t) from non-equilibrium
simulations. The main characteristics of this curve are its initial resemblence to the
neutral solute tcf followed by its resemblence to the charged solute tcf for t > 200fs.

In general, we find that we are able to reproduce the previously obtained major
results(15] of aqueous solvation dynamics with a PBC simulation of ~ 250 solute and
solvent molecules. These results are a stepping stone to our major goal of replacing

the PBC method with a reaction field method that is non-periodic.

5.7 Conclusion

In this chapter, a periodic boundary conditions implementations of solvent dynamics
is described. This research was implemented as a first step towards obtaining an un-
derstanding of solvent dynamics by developing a non-periodic reaction field method.
Results obtained using this PBC scheme within a = 20A sided cubic cell are consis-
tent with previous simulations. These results are useful as a benchmark with which
future calculations can be compared. Also, a successful conclusion of such calcula-
tions provide confidence in tackling the next part of this project, which is to do MD
calculations for solvent-solute systems in a spherical cavity surrounded by a dielectric

continuum without the use of periodic boundary conditions.
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Abstract
A reaction field (RF) formulation of the solvent dynamics problem is described. The
solvent in a solute-solvent system is described by individual molecules to some dis-
tance r. and beyond that by a dielectric continuum. Molecular dynamics calculations
have been performed for an “oxygen-like” atomic solute with the TIP4P water sol-
vent. Structural (radial and angular distribution functions) and solvational (equilib-
rium correlation and non-equilibrium response functions) results are presented that
show the applicability of this method for solvent dynamics calculations. Comparison
of results from the reaction field formalism with results from the periodic boundary
conditions (PBC) and pure cluster formalisms are made to show the applicability of

the RF formulation.
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6.1 Introduction

With the experience obtained from MD simulations of solute-solvent systems with
PBC that were presented in the previous chapter, we now present results from solvent
dynamics simulation of a spherical cluster of the solute, fixed at the center of a
spherical cavity, and solvent molecules surrounded by a dielectric continuum. This
type of simulation has been referred to in the literature as the simulation of a water
“droplet.” The radius of the individual water clusters simulated is 7 — 10A.

The advantages of this type of simulation were outlined in chapter 5. First, use
of a non-periodic system may be better for the solvation dynamics, particularly for
charged solutes, since, unlike in PBC simulations, there is no unphysical change in
the sign in the polarization of the solvent molecules at the cell edge. Also, this
method is more physically intuitive since it allows for the separation of the solvent
into the nearby molecular part and the distant dielectric part. This separation may
make the understanding of the solvent dynamics possible by simulating using a much
smaller number of molecules, and so this method may prove to be computationally less
intensive. Finally, with future advances in theory, the use of actual complete dielectric
dispersion curves, €(w), for the continuum part of the solvent in MD simulations
may be possible with this formulation. Use of the total dielectric dispersion curve
€(w) of the continuum part, together with molecular dynamics simulation of actual
molecules describing the solvent to some distance, is probably the best approach
to solvent dynamics since it would combine the most accurate formulation of the
distant continuum type of solvent response together with a molecular description of
the nearby solvent molecules.

From a technical point of view, the reaction field simulations have a number of
similarities with the usual PBC calculations, as well as a number of differences that
have to resolved before the simulations may be attempted. Some of these differences
are in the potential energy function for the cluster, the boundary conditions to be
imposed, methodology to calculate the radial distribution functions, and the position

of the solute within the cluster. An issue of particular importance here concerns how
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best to define the interface between the molecular cavity and the continuum. This
topic arises because at the surface, as anywhere else, the charged particles are not in
reality point charges but have an excluded volume associated with them. This surface
of interaction requires special consideration in adapting the reaction field potential
that is originally derived for point charges in a sphere.

These differences have necessitated a number of changes in the MolDy code that
was used for the PBC calculations. It was advantageous to use MolDy since it was
written in a modular format, thereby, helping considerably in the reprogramming.
A number of modules were not altered since they required no change, whereas a
number of modules were completely rewritten. In particular, the Ewald sum method
that was used for the calculation of the long-range coulombic potential was replaced
by the reaction field potential. Rather than periodic boundary condition, reflecting or
‘LJ confining’ boundary conditions (defined below) were used to confine the molecules
in the cavity.

For solvent dynamics calculations, the reaction field method for a cavity in a dielec-
tric continuum has not been applied as extensively as the PBC method. Wallgvist[1]
has applied this method to simulate pure water clusters and obtained good agreement
of the total solvational energy per molecule (V/N = —41.5 to —41.7kJ/mol) with pre-
vious PBC calculations (—41.1 to —41.9kJ/mol). Wang and Hermans[2] applied this
method to a solute-solvent system. They focused on calculating the hydration free en-
ergy and did not report any correlation or solvent response functions that are central
to comparison of simulations with experimental results.

The reaction field method has been utilized for some recent simulations of polar
liquids. Lee and Warshel[3] report the use of the ‘local reaction field’ method where
the reaction field potential, when written as an infinite series, is truncated after a
few terms for evaluation of electrostatic energies in biomolecules such as proteins in
water. Shang and Head-Gordon[4] have used a very simplified reaction-field treatment
to study glycine and alanine dipeptides. In this study, only the dipole moment at
the center of a spherical cavity of the solute charge distribution is used and all higher

multipole terms are neglected. Tironi et al.[5] use a generalized reaction field method
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to calculate the long-range electrostatic forces for their simulation of water-NaCl
solution with periodic boundary conditions. This implementation of the reaction-
field method is different from the one reported here because we have elected to avoid
the use of periodic boundary conditions.
In the following sections, the various attempts to properly define the potential,
the new boundary conditions, and the structural and dynamical results from these

calculations are described.

6.2 Reaction Field Potential

For a system of charges {¢;}, # = 1,...,n, in a spherical cavity surrounded by a
dielectric continuum with a static dielectric constant ¢, the electrostatic potential at

any point within the cavity may be written as|6]
V=V +Vm (6.1)

where, at any point 7, defined by r, 8, ¢, within a cavity of radius a,

Vi =3 ©2)
Vem0) = =34 ST () Ao, e

with the P;s being the Legendre Polynomials with arguments

cosy; = cos 8 cos 6; + sin @ sin §; cos(¢ — ¢;). (6.4)

This result is well known from electrostatics and is obtained from the solution of the
Poisson equation such that the total potential and its derivative behaves appropriately
as 7 — oo and at the interface of the cavity and the continuum. In brief, this result
may be obtained by proceeding, as Kirkwood did[7], to solve Laplace’s equation for

the potential at any point in space due to a set of point charges in a cavity surrounded
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by a continuum. The above solution is obtained by writing the potential in spherical
coordinates and imposing the required boundary conditions to the potential and its
gradient at 7 = 0o and at the cavity-continuum boundary r = a.

However, a potential written as an infinite series is not appropriate for molecular
dynamics, since the infinite series has to be summed continuously to obtain the poten-
tial energy and the forces that act on the individual charges. There is no closed form
solution for the above V}., and our first approach was to use a Pade approximation[8]
to the infinite series by explicitly calculating the first few (=~ 8) terms. The accuracy
of the approximation was tested and was found lacking.

It is useful to note that the above formulation of V., is simply the generating
function for the Legendre polynomials except for the multiplicative term that is a
function of € and I. To take advantage of the generating function for Legendre poly-
nomials, the multiplicative term was simplified by expansion. For large € (such is the
case with water € ~ 78), we may expand, as Friedman did[9], i';:__:(llf%)ll in a Taylor

i R T
series about w1 =z=0.

(e=1(+1) _(e=1) 1 f‘l)z(H_l) (6.5)

I+e(l+1)  (e+1) 1-& (e+1)

Retaining upto and including quadratic terms in -+ and simplifying, we have

(e=1(I+1) e-1 e—1

I+el+1) ~e+1 (e+1)2(1+1) (6.6)

In Figure 6.1 the left side of equation 6.6 and its approximation by the Taylors
expansion are shown together for comparison. This approximation is critical, since it

permits V;,, to be written in closed form because with this simplification, we have

Vizn(r,6,0) = :1 i [g (Z‘ ) Py (cos ) + j_ 1 2 ] _']: 1 (TT ) B (COS'Y:)] .
(6.7)

An analytic expression can be obtained for the two infinite sums in the previous equa-
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tion by using the definition of the generating function of the Legendre Polynomials[10]

g(t,s) =S _#P(s) = (1 - 2st + £%)77, [t| < 1. (6.8)
=0

After some straightforward mathematical manipulation we obtain

_9 TT; i\ 2 -2
(?) Cos v; + (;2-)

= (ﬁ‘l)_l In (%)_°°S7‘+<1‘2(5")””‘*(%)2)5 (6.9)

?-:10(6+1)2 1 —cosy

Vin(r,6,6) = -3 E—
i=1

It is useful to note that in Cartesian coordinates
TT;COS7Y; = IT; +yyi + 2z =T 15. (6.10)

Molecular dynamics simulations require the forces on each particle at every time step
such that Newton’s equations of motion can be integrated. The electrostatic forces

at site j with charge g; are obtained directly from the potential by using

Fy = (Fa, Fy, F)j = =9V (25,5, 7). (6.11)

6.3 Lennard-Jones Potential

The L-J part, Vi, of the potential energy function is also important for a correct
characterization of the liquid. V., is particularly important at small distances, where
it is used to incorporate the molecular nature (excluded volume) of the particles
through the repulsive part of Vz;. The structure of the liquid as determined by the
radial distribution function (RDF') defined in chapter 5 is strongly dependent upon
the parameters in Vz;. The parameters used for these calculations for the water

molecules are the same as they were for the PBC systems. The total V., experienced
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by any particle in the cavity may be written as
VLi(F:) = VETH(T) + VES(7) (6.12)

where VE,(7;), the direct L-J potential is simply

P 12 a 6
Vis(7) = ;f [(F—-ﬁ) - (m) } (6.13)

and VF$™(7;) denotes the contribution from the continuum enclosing the cavity.
To incorporate the molecular nature of the continuum, the L-J potential from the
continuum, VF5*(7;), was also included by assuming a uniform distribution of L-J

particles outside the cavity, with p being the density,

VEPHR) = Y Vii(R) (6.14)

jlrj>a

/ pdiVy (%)
Iri>a

- |75 - (7]

Using |F; — 7] = \/r2 + 12 — 2rricosy and dif = r?sin §drdfd¢, we integrate over ¢, 8

Q

and r to obtain for a L-J particle at a distance of r; from the center of the cavity

3 . 91 T o \21
e = (o) (5 b (3) 5 B
L7 (re) 4r; a 9/ \a—-7;/ 10 at 9/ \a+r;/ 10

(-3 =)+ )] 619

In Figure 6.2, Vf9*(r;) is shown as a function of r; for the values of ¢, o and p that

are appropriate for TIP4P water. Later, we explain how an appropriate value for a
is obtained for a given cluster. In Figure 6.2, a = 9.0 A was used.
The forces are obtained from the gradient of the potential.
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6.4 Boundary Conditions

Unlike the PBC system, a cavity embedded in a continuum formalism requires that
there be a transition in properties at the interface. A simple formulation of this
method would be to use a spherical cavity with reflecting boundary conditions, with
the continuum beginning immediately outside the cavity. However, the particles in-
side the cavity are not point charges and so it is unphysical for them to approach
the cavity-continuum surface. There are two reasons why this formalism represents
an unphysical situation. First, if the continuum is considered to represent a uni-
form distribution of water molecules outside the cavity, the molecular nature of the
solvent should disallow the water molecules in the cavity to come too close to the
cavity surface due to excluded volume of the continuum particles. From a technical
standpoint, if the continuum starts at the point upto which the charged particles are
allowed to come, then the reaction field potential becomes singular when the rr;/a?
term in the electrostatic potential function approaches 1. This singularity precludes
the successful propagation of the equations of motion by making the forces diverge
at the boundary.

Two different methods were tried for solving this problem. In the first method the
cavity with the water molecules was further surrounded by a shell of water molecules
that were frozen at their positions. The shell prevented the particles inside the cavity
from approaching the continuum boundary and, therefore, allowed for a successful
propagation of the equations of motion for the non-frozen particles. The frozen shell,
however, is physically quite artificial and created new problems, particularly with
respect to the conservation of kinetic energy. We describe the frozen shell method
and results in the next section.

The second method used for ensuring a correct description of the molecules near
the surface was based upon the use of V£5*(r), described earlier. This method allowed
for a natural and self-consistent determination of an appropriate value for a such that
the reaction field potential was well behaved at the surface. This approach was based

upon exploiting the excluded volume of the molecules in the continuum that prevents
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the cavity molecules from approaching the continuum too closely.

6.4.1 ‘Frozen Shell’ Scheme

cont

With the above described potential energy function, without VE*, molecular dynam-
ics simulations were executed within the spherical cavity. As shown below, space was
divided into three parts : region A : a 7—9 A radius cavity filled with solute molecule
and the solvent molecules at the appropriate density ; region B : a 2 — 3 A shell that
surrounds the above cavity with frozen solvent molecules to characterize the surface
of interaction between the cavity and region C : a dielectric continuum.

A 9 A cavity has approximately 100 molecules of water in it and a 2 A shell
that surrounds it has about 80 more. For the molecules within the inner cavity, the
potential V = Vg, + V, + V;zn is used to obtain the forces at each timestep and to
then propagate the equations of motion.

The RF term of the potential energy function in equations 6.7 and 6.9 diverges as
r — a, and the forces on the particles near the surface r; & @ may become quite large.
The reaction field, to a first approximation, acts as an image charge of the opposite
sign in the continuum. Near the surface, the interaction of a charge with its image, an
attractive term, dominates the potential and it diverges. Since a rigid model is used
for water, these large forces impose large torques on the individual molecules near the
surface, and make the propagation of the equations of motion difficult. By requiring
that there be 2 A shell of frozen molecules between the cavity and the continuum, r is
constrained to be less that a and these large impulsive forces due to the singularity of
the potential near the surface are avoided. The molecules in the shell are kept frozen
during the calculation by setting all the forces acting on them and their velocities to
Zero.

In this type of calculation, the boundary of the cavity was kept rigid. If the center
of mass of any molecule attempted to escape the cavity, then the center of mass
was reflected back into the cavity and its translational velocity vaq = v 4+ vy was

changed to ¥new = v) — v1. This method of confinement is similar to the one used
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Figure 6.3: Division of space into cavity, shell and continuum in the ‘Frozen Shell’
scheme
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by Maroncelli[11] where a large cluster was used to simulate the liquid with similar

confinement to prevent evaporation.

6.4.2 °‘LJ confinement’ scheme

As described later, the frozen shell method has unintended physical effects on the
particles inside the cavity, such as the gradual freezing of the liquid. To mitigate such
effects the repulsive wall of the continuum LJ potential (VF5*(r)) was used to confine
the particles inside the cavity. This scheme is similar to the one used by Wang and
Hermans[2] and by Wallqvist[1] in their study of water with reaction field boundary
conditions. Briefly, the implementation is as follows: A cluster of solute molecule and
the solvent molecules are governed by the potential V = V£, + VT +V,., +V,. Given
that we wish to simulate some n molecules, it is not transparent as to where this wall
should be located such that a correct description of the solution is obtained. The
position of the wall is uniquely determined by the parameter a in equation 15. We
determined the value of a is a self-consistent fashion. The simulation was started from
a PBC simulation, from which a cavity of size a’ was carved out. The simulations
were executed for a variety of values of =, where a = @’ + z. In Figure 6.3, the radius
of region A has radius of o/, and region A + B has radius of a. Unlike the frozen
shell scheme, in the ‘LJ confinement’ scheme the region B is not filled with frozen
solvent molecules. For small values of z, the VFJ* compressed the fluid too much.
The value was systematically changed until the RDF obtained was of good quality.
The availability of the RDF for the TIP4P potential from a variety of good quality
calculations allowed this comparison to be made. This self-consistent scheme may
be seen as an empirical way of obtaining the excluded volume of the cavity water
molecules that keeps the continuum some distance away. The value of = required for

a good description of the solution was ~ 2.25A.
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6.5 Results

6.5.1 Solvational and Structural Quantities Calculated

The main output of the simulation is the time dependent electrostatic potential acting
on the solute due to the solvent, V(t) = V{,(t), or the solute-solvent interaction

energy (Ein:(t) = EE,,(t) + ELJ(t)). They are used to calculate the equilibrium time

int

correlation function (tcf) and the non-equilibrium response function, respectively :

{8V (£)aV(0))

0 = v )

(6.16)

Eint(t) - Eint(oo)
Eint(0) — Eine(c0)’

S(t) = (6.17)

quantities that are related to each other by linear-response theory and may be directly
compared to experimental results. As discussed in Chapter 5, equation 6.17 is rigor-
ously correct only when E;,(t) is replaced by V(t)[11] or by E,,(t) = gsotute Vi, (t)-
However, EX(t), the other component of En(t), is only a small part of Ej,,(t) and
is relatively constant throughout the trajectory which removes it from the numerator
and denominator of equation 6.17.

Molecular positions were obtained for calculating the radial distribution functions.
The radial distribution functions are key quantities since they allow for an unambigu-
ous determination of whether the liquid being simulated has the correct structural
properties. The calculational method used was similar to the one described for the
PBC system, slightly modified[12] due to the spherical nature of the cavity. Also, the

angular distribution function,
h(cos) = <Z d (cosf — cos 6,-)> , (6.18)

where 6; is the angle between f;, the dipole vector, and 7;, the vector joining the
origin of the dipole to the center of the cavity, was calculated to determine whether

the solvent molecules had any preferential orientation.
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6.5.2 Frozen Shell Results

As previously mentioned, an unintended effect of keeping the shell molecules fixed
is that the shell acts as an infinite energy sink. As ¢ — oo the frozen shell would
completely arrest all molecular motion by forcing orientational order upon the polar
solvent molecules. For the &~ 100ps timescale calculations that we perform, the degree
to which the frozen shell decreases the total kinetic energy of the system depends solely
on the actual configuration of the shell molecules and in the calculations that have
been performed, the effect of this frozen shell has varied considerably. The magnitude
of the effect is determined by following the total kinetic energy of the system as a
function of time. A particularly egregious example of this behavior is shown in Figure
6.4 for a 75ps trajectory.

This decay of kinetic energy (or freezing of the solution) causes the RDF to show
a solid structure rather than being appropriate for a liquid. It also has an effect
on the correlation function C(¢). The effect on the correlation function can be best
understood in the limit when there is no solvent motion. In that case E;,; and V(¢)
are constant and C(t) is completely correlated at all times. Similarly, slowing of the
solvent molecules due to the frozen shell increases the extent of V/(¢) correlation and
is shown clearly in Figure 6.5, where the comparison between correlation functions
from different parts of the trajectory is made. It is clear that with the decay in total
kinetic energy of the system, C(t) becomes more and more correlated.

Such untrustworthy results, caused by the unphysical frozen shell approximation,
necessitated a more robust description of the cavity-continuum interface, which is

described in sections 6.4.2 and 6.5.3.

6.5.3 Structural Results from ‘LJ confinement’ simulations

Clearly, the frozen shell scheme is faulty. A remedy for this predicament is either to
make the frozen shell dynamic (i.e., not frozen) or to remove it. Making the frozen
shell dynamic would require a new force field for the molecules in the shell. Use of

a new force field for the shell molecules would simply cause further parameterization
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of the problem without giving any substantial benefit.

We decided to remove the shell and confine the cavity particles using VF7*. The
excluded volume of the surface particles forces the continuum to begin some distance
away from the surface particles, thereby automatically solving the problems that
arise when the particles come too close to the surface and cause V;*™(r) to become
unphysically large. It obviates the need of solutions such as the frozen shell.

In presenting the results with this LJ method for avoiding the singularities, the
various radial distribution functions (RDFs) are presented first, since they provide a
sensitive probe of the solvent structure. In Figure 6.6, the O-O RDF's are shown for
TIP4P water molecules confined in three different cavity sizes.

This result shown in Figure 6.6 has two noteworthy features. First, the results
from the three different sized simulations are quite similar. This shows that our
calculations have converged and are no longer dependent upon the size of the cavity.
Secondly, the distribution functions are close to the ones obtained through the PBC
simulations and by other researchers in previous work. Upon close comparison, shown
in Figure 6.7 of the RF RDFs with the PBC RDF, it is found that while the curves
are almost identical for r > 3A, the initial peak of the RF RDF is slightly more
pronounced and is broader, even though its position is correct. The stronger initial
peak for the RF calculation may be due to slight excessive compression from V.
Fine tuning of the parameter a (defined earlier) should remove this effect by making
the position of the L-J wall approximately 2.3-2.4 A, rather than 2.25 A that was
used here. The L-J wall that arises from V7 (see Figure 6.2) confines the water
molecules in the cavity and has to be carefully calibrated to avoid confining the water
molecules to too small a volume.

Shown in Figure 6.8, is the H-H RDF for a variety of cavity sizes that also displays
the characteristics of a converged quantity. The H-H RDF does not approach 1 for
r = 4—6A because of a technicality with the RDF calculational method[12] that arises
due to the difficulty in estimating the volume of the region in which the hydrogen
molecules are confined.

The angular distribution function h(cos ), as defined above, of the solvent molecules
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O-0 RDFs from reaction field simulations
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Figure 6.6: Convergence of the O-O RDF as a function of cavity radius
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Figure 6.7: Comparison of the O-O RDF obtained from a RF and PBC calculations
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around a neutral solute is shown in Figure 6.9.

In Figure 6.9 the convergence of the results as a function of cavity size is still
evident. The plot shows that the solvent molecules, even in the presence of a neutral
solute, show a slight orientational preference in a cavity. The individual dipoles,
approximating the solvent molecules, are more likely to line up perpendicular to the
line joining the position of the dipole to the center of the cavity (cosé = 0) than
lining up parallel to it (cos§ = +1). Maroncelli et al.[11] in their work also report
and cite this phenomenon concerning orientational preference of polar molecules near
the surface of spherical cavities in the absence of a solute. They also observe similar
orientational behavior for the nearest solvational shells in the presence of a neutral
solute. We speculate that the presence of the solute molecule at the center of the
sphere disturbs the hydrogen bonding structure for those dipoles that point directly
to and away from the center. This phenomenon would favor the solvent dipoles to lie
perpendicular to the vetor joining the dipole to the center of the cavity and together
with the preference of the dipoles near the surface to lie parallel to the surface to
also maximize the total hydrogen bonding interaction with other molecules, probably
causes this orientational behavior. For water, when the dipoles lie parallel to the
surface the hydrogen bonding with other molecules in the cavity is maximaized.

It is encouraging to see that the structural results that may be inferred from the
RDF's from relatively small cavities are quite similar to each other. Cavities of radii
7, 8 and 9 A have approximately 50, 75 and 110 water molecules respectively. This
consistency provides the hope that it would be possible to obtain reliable and re-
producible solvent dynamical results by using small cavities to provide the molecular
nature of the solvent and with the reaction field providing the long-range coulom-
bic potential. Use of the RF formalism may, in the future, significantly reduce the
computational time of solvent dynamical quantities for a variety of solvent-solute
systems.

Finally, three results that show the effects of a charged or uncharged solute on
solvent structure are presented. First, the O-O RDF (go(r)) is shown when there is

a neutral or positively charged solute at the center of the cavity.
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H-H RDFs from reaction field simulations
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Figure 6.10 shows that a charge on the solute has no effect on go,(r). The goo(r)
is a bulk quantity that depends on all the pair distances between individual oxygen
atoms in the solvent molecules and should be negligibly affected by the presence of a
single solute particle. The fact that these two curves shown above are almost identical
shows that, at least for cavities of size 9 A or more, the bulk properties of the solvent
are not influenced by the solutes.

However, the presence of a charged solute in a polar solvent does polarize the
solvent. Figures 6.11 and 6.12 show the extent to which a charged solute changes
the orientational distribution function of the solvent (h(cos®), defined above) and
the oxygen-solute (O-X) RDF when these quantities are compared with those from
arising from a neutral solute.

Figure 6.11 clearly shows the expected result that the positively charged solute
attracts the negetively charged oxygen of the solvent molecules closer to itself. The
first solvational shell is significantly more prominent and well defined for the charged
solute when compared to the uncharged one.

The orientational sturcture of the solvent molecules around the solute is made
non-symmetrical by the positively charged solute. Unlike the h(cosf) around the
neutral solute, which is almost symmetric about cosf = 0 or § = 90°, the orienta-
tional DF for the positively charged solute is non-symmetrical. The positive charge
causes the individual solvent dipoles to point away from the solute. Taking a larger
configurational average during the calculation of h(cos #) should smoothen the jagged-
ness of the curves in Figure 6.12 and more clearly show the symmetrical nature of

the h(cos@) curve for the neutral solute.

6.5.4 Solvational Results

With all the preliminary calculations providing confidence in the reaction field ap-
proach to the simulation of polar solvents, the main solvent dynamical results are
now presented. All the results presented here are from the simulations that have used

the ‘LJ confinement’ boundary conditions with a solute that has the LJ parameters
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0-O RDFs in 9 A cavities for neutral and charged solutes
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Figure 6.10: Independence of O-O RDF on the charge of the solute
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Figure 6.11: Attraction of oxygen atoms by a positively charged solute compared to
a neutral solute
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of a TIP4P oxygen atom.

The first results presented are for the time-correlation functions tcfs, C(t), that
provide the solvation response due to change in the solute’s charge when linear re-
sponse approximation is applicable. To calculate a “V(t),” the electrostatic interac-
tion energy between solute and solvent, for neutral solutes, a fictitious unit test charge
is placed on the solute and the interaction energy is calculated at every timestep while
performing the dynamics for a neutral solute.

In Figure 6.13 the tcf for a neutral solute fixed at the center of the cavity is shown.
The results for 7, 8 and 9 A cavity sizes show remarkable similarity, indicating that
the reuslts obtained are independent of cavity size and have converged for ¢ < 200fs.
Averaging the correlation function C(t) over longer trajectories should smooth out
the ¢ > 200fs oscillations. It is evident that a limited cavity size does not appear
to cause systematic errors in our simulations. The tcf shows all the characteristics
of the solvent response function of a “atomic” type solute. The fast initial decay of
C(t) to ~ 0.2 is followed by a slower and oscillatory decay of C(t) to 0 in ~ 500 —
700fs. The fast component has been ascribed to the “inertial” motion of the solvent
molecules that occurs due to the instantaneous change in the electrical property of
the solute and has been uncovered only recently through realistic MD simulations{13]
and also experimentally[14] through the availability of fast lasers. In an equilibrium
simulation, this fast response occurs in the tcf due to the rotational motion of the
solvent at ca.300K, the temperature at which the simulation is executed. This fast
response is less dominant for larger solutes such as large dye molecules usually used
in experiments because the solvent coordination shell are less well defined for them.
But even for larger solutes the fast decay component is responsible for decreasing the
C(t) to 0.5. The later, slower and oscillatory decay of C(t) to 0 in ~ 500 — 700fs
corresponds to the diffusive (or translational) motion of the solvent. This result shows
unambiguously that solvation response of ~ 50fs timescale is a dominant feature of
aqueous solvent dynamics. This fact is expected to have implications for charge
transfer[15] and other types of chemical reactions that occur in the condensed phase

and involve considerable solvent reorganization.
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Orientational polarization of solvent in 9 A cavities
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Figure 6.12: Polarization of water molecules by a positively charged solute
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Figure 6.13: C(t) for neutral solute calculated with the reaction field formalism
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The tcf for the charged solute, shown in Figure 6.14, shows slower decay than
that of the neutral solute. We have argued that the fast, initial decay of the neutral
solute tcf was due to the inertial (or rotational) motion of the solvent molecules
and the slower (> 0.1ps) decay was due to the diffusive (translational) motion of the
solvent molecules. The rotational motion occurs without substantial change in the
position of the solvent molecules’ center of mass while the translational motion causes
the solvational shells to break and reform. Comparing the charged and the neutral
solvent tcfs, it is evident that the faster decay has been curtailed in the former case.
For polar solvents, the charged solute is much more efficient at ordering the solvent
molecules by imposing an orientational preference on the solvent as already shown by
the angular distribution function. This charge-dipole attraction limits the rotational
freedom of the solvent molecules. Therefore, proportionally, the fast component of the
total decay of the C(t) is smaller and the slower translational component is larger for
the charged solute when compared with the neutral solute. Also, the slight recurrence
in the tcf of the charged solute at ~ 0.15 — 0.2ps has been noticed earlier in PBC
calcualations in Chapter 5 and by other researchers[11]. It has been argued that this
recurrence is caused by the collective breathing motion of the innermost solvational
shell of the charged solute.

In Figure 6.15 we show the solvation response function, averaged over five indi-
vidual simulations, (S(t)) using the method described earlier in chapter 5. In brief,
the solute charge in an equilibrated trajectory is suddenly changed from zero to +1.
The total solute-solvent interaction energy is calculated at every time-step as the
solvent rearranges itself to return to equilibrium with the charged solute. The time-
dependent solute-solvent interaction energy is used to calculated S(t) as in equation
6.17. The value of F;p;(c0) used in the calculation of S(t) is (Ein:(t)) obtained from
an equilibrated trajectory of a charged solute and solvent molecules.

Some noteworthy features of the above figure are the similarity between the re-
sponse and the neutral correlation functions in the sub 0.2ps time domain. The later
behavior of the response function S(t), in particular the long time decay, is more

like the behavior of the charged solute’s C(t). It appears that the linear response
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) RF tcf for charged (+1) solute for different sized cavities
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Figure 6.14: C(t) for positively charged solute calculated with the reaction field
formalism
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Figure 6.15: Solvent Response function calculated directly from a nonequilibrium
simulation
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approximation that allows for the use of C(t) to estimate S(t) is a reasonable one.

6.6 Comparison of RF Results with Other results

The results presented in the previous sections are discussed here through comparisons
with results obtained by the use of the same solute and solvent models but with
different formalisms. In particular, solvational results obtained through PBC and
pure cluster (no reaction field) formalisms are next compared with the reaction field
results.

First, in Figure 6.16 the tcfs, C(t), are shown for a 9 A cavity neutral solute
simulation confined using the L-J confining potential with and without the dielectric
continuum surrounding the cavity. All other parameters, such as the ‘LJ confinement’
potential, are same for the two curves shown in Figure 6.16.

In Figure 6.16 the importance of the molecular nature of the solvent and the
degree to which this molecular nature dominates the total relaxation of the solvent
is shown. The surrounding continuum is, therefore, only a small perturbation to
the overall solvent dynamics. This result also indicates that truncating the Taylor’s
approximation in equation 6.6 after the first term is expected to have only a miniscule
effect on the dynamics while making the computation much less expensive. It is also,
therefore, quite possible that a large cluster of molecules may well simulate the total
solvent without the use of the continuum. It is also clear that for the cluster size used
here, disregarding the reaction field slightly but systematically decreases the C(t) tcf.
It appears that with the neglect of the RF the dominant, faster, “inertial” component
of the tcf is exaggerated somewhat at the expense of the slower “diffusive” component.
In Figure 6.16 it is seen that the molecular interaction between the solvent and the
solute that governs, to an almost overwhelming degree, the solvent-solute interaction
and the resulting solvent dynamics.

Next, in Figure 6.17 the solvation results using the RF formalism are compared
and constrasted with results obtained from simulations using the PBC formalism.

tcfs from the two formalisms for neutral and charged solutes are presented.
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Figure 6.16: Impact of the Reaction Field on the neutral solute tcf
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Figure 6.17: Neutral solute tcfs calculated using the RF and the PBC formalisms
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In this figure the C(t) tcfs for a neutral solute are compared for the RF and the
PBC calculations. The oscillations for the tcfs are very well correlated and overall
the two curves are similar. The oscillations in the PBC curve appear to be damped
to a slightly greater extent than the RF curve. These oscillations are caused by the
“collective librational”[11] (rotational) motion of the closest solvation shells around
the solute. For the RF calculations, the solute is confined to stay at the center of the
spherical cavity while there is no such constraint on the PBC solute. We speculate
that this constraint may assist in the formation of the solvation shells around the RF
solute leading to a greater contribution from the rotational motion of the surrounding
solvation shells. A freely moving solute would be preferable to a fixed one because
the latter is physically artificial. However, a moving solute may spend a considerable
amount of time near the surface of the cavity at which time it would not surrounded
by molecular solvent. The solvational quantities, in that case, are no longer of a
solute surrounded by molecular solvent that in turn is surrounded by a dielectric
continuum. We have shown that the molecular nature of the solvent is critical to
a correct description of solvent dynamics and a freely moving solute is not always
surrounded by molecular solvent particles. The analysis of the solvent dynamics for
a moving solute in a limited sized cavity is not transparent.

In Figure 6.18 the C(t) tcfs for a charged solute are compared for the RF and
the PBC systems. The two curves are rather similar for ¢ > 0.2ps, but there is a
systematic difference between them for ¢ < 0.2ps. This difference is quite intriguing,
since it is with charged solutes that the PBC formalism is most suspect. It is possible
that the fixed solute at the center of the cavity in the RF formalism assists in the
formation of the solvational shells and, therefore, exaggerates the the rotational oscil-
latory decay of the tcf. On the other hand, the PBC formalism (for 256 solvent and
1 solute molecule in a ca. 20 A on a side cubic box) may treat the solvent molecules
erroneously near the cell edge due to the unphysical change in the polarization at the
cell edge. This difference in the two curves shown above is important and a closer
look at the causes of this discrepancy may yield useful clues about the limitation of

either of the two formalisms in treating solvent dynamics.
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6.7 Conclusion

In this thesis, a reaction field formulation of solvent dynamics with a cluster of solvent
molecules and a solute molecule in a cavity confined by a L-J wall is presented. The
structure of the solute-solvent system was probed as a function of the cavity size and
solute charge. We have shown that using a 9 A sized cavity that contained about
110 water molecules, the structural and solvational results are nearly independent of
cavity size. A careful placement of the LJ confining wall allows for a correct structural
description of the system. The importance of the molecular nature of the solvent
to the solvent dynamics was demonstrated in a comparison of solvent dynamics of
particles in a cavity with and without the dielectric continuum.

This formalism should make the determination of solvent-dynamical properties for
a variety of solvent-solute systems computationally easier and conceptually simpler.
Incorporation of the complete dielectric response function, e(w), for the solvent stud-
ied in the MD equations should improve the accuracy of the results. The difference
in the time-correlation functions for the charged solute between the PBC and the RF
formalisms has to be further studied to determine whether the difference is accidental
or systematic. A careful study of this difference may yield useful clues about the

limitations of the PBC simulations for charged systems with polar solvents.
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Charged Solute (+1) tcfs for RF and PBC calculations
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Figure 6.18: Charged solute tcfs calculated using the RF and the PBC formalisms
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