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Abstract

Some of the fastest processes of relevance to chemical physicists occur on pico to fem­

tosecond timescales. In the following chapters two of such fast processes axe investi­

gated with novel theoretical methods to obtain insight into experimental observations 

at the molecular level.

One of the major topics of interest in chemical physics has been about energy 

localization in polyatomic molecules. The “golden rule” formula states that the rate 

for the intramolecular relaxation of energy (IVR) that is initially localized in one 

part of the molecule is proportional to the density of states at that energy. Here, a 

general mechanism of the energy redistribution out of an initially populated “light” 

or “bright” state is elucidated. It is shown that, for a family of acetylenic molecules, 

the relaxation is due to a sequence of weak off-resonant directly coupled states rather 

than all the available states. This mechanism shows how the rates of IVR can be 

significantly slower than those predicted by a naive application of the “golden rule,” 

since mainly only the initial weak off-resonant couplings govern the rate of IVR.

Another topic that has attracted substantial interest in the chemical physics com­

munity is that of solvation. Various heavily applied theories of reaction rates, such 

as the electron transfer theory, have viewed the solvent as a dielectric continuum. 

Recent experiments and simulations have shown that the very fast solvation response 

provides interesting information on the molecular nature of the solvent. Here, a new 

method for doing molecular dynamics (MD) calculations for solvation is developed. 

This method uses the reaction field method to obtain the long range potential for 

a small cluster of molecules rather than using the usual Ewald sum technique with 

periodic boundary conditions (PBC). It is shown, here, that this method may be 

used successfully for solvent dynamics simulations. This method may prove superior 

for such calculations as compared to the PBC approach, since it does not impose an 

artificial isotropy on the problem as is the case with the PBC calculations.
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Chapter 1

Vibrational Superexchange Mechanism of 
Intramolecular Vibrational Relaxation in (CHs^CCCH Molecules 

(Appeared in : J. Phys. Chem. 97, 12491 (1993))
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Vibrational Superexchange Mechanism of Intramolecular Vibrational Relaxation in (CHjJjCCCH 
Molecules

A. A. Stuchebrukhov, A. M ehta, and R. A. Marcus*
Arthur Amos Noyes Laboratory o f  Chemical Physics/  127-72. California Institute o f  Technology,
Pasadena. California 91125

Received: June 24.1993: In Final Form: August 17.1993*

Quantum calculations are reported for the dynamics of intramolecular vibrational energy redistribution of the 
acetylenic C H  stretch in (CHj)jCCCH molecules. This paper is an extension of our previous publication ( / .  
Chem. Phys. 1993,9 8 ,6044) where the line widths of the CH overtone transitions were calculated in several 
molecules o f a  general class (CXj)jYCCH, and it was found that the relaxation is due to a sequence of many 
weak off-resonance vibrational transitions between tiers of directly coupled states. The coupling of the CH 
stretch to a  manifold of quasi-resonant states resembles the superexchange mechanism of coupling between 
donor and acceptor states in long-distance electron-transfer reactions. An analysis based on total population 
in each tier is introduced. The very rapid decrease of this population in the intermediate U'ers with tier index 
provides evidence that the relaxation dynamics occurs via tunneling (vibrational superexchange) under a dynamic 
barrier in the tier space of the system. Details of the time evolution of the population under the dynamic barrier 
in the course of relaxation are described. ‘Dead end* states, their effect on the time-evolution and on spectra, 
their removal via inclusion of additional anharmonidties, and, thereby, their probable artificial nature in the 
present case are discussed.

L Introduction

In the previous paper1 of this series, quantum calculations of 
homogeneous line widths of the acetylenic CH vibrational states 
in (CX])]YCCH molecules, where X = H, D and Y = C, Si, were 
reported. The line widths, which provide a measure of the rate 
of intramolecular vibrational relaxation (IVR), result from the 
vibrational coupling of the acetylenic CH stretch to the rest of 
the molecular vibrational degrees of freedom. The study was 
motivated by the recent experimental results of Scoles, t-chmann, 
and collaborators.2̂  For these molecules extremely narrow 
vibrational lines, fwhm* l(H—ICHcnr1, have been observed. In 
the present paper the relaxation dynamics of the acetylenic CH 
stretch in (CHj)]CCCH is expliritly studied in real time.

We summarize first some deductions of the previous study. In 
ref 1 it was found that the unusually slow relaxation (of the order 
of a hundred picoseconds), corresponding to the extremely narrow 
line widths in those molecules, is due to the absence of direct 
low-order Fermi resonances. Very high order resonances are 
available, but the direct coupling to such states was argued to 
play a negligible role: In those bigh-order quasi-resonant states 
many vibrational quanta of low-frequency modes are excited, 
and they can be qualitatively thought of as being separated a 
large distance from the light state in the slate space, or classical 
action space, of the system. Instead of that direct coupling 
mechanism, the relaxation was assumed to occur in a sequence 
of many virtual transitions between tiers of directly coupled states, 
whereby the system uses the best "resonances* available, Le, 
resonances typically with large detunings, to reach the final quasi- 
rtsonant states. These detuned, or virtual, resonances play the 
role of a bridge between the initially excited state and the quasi­
continuum of well resonant states. The number of 
virtual transitions required can be as large as 10 or more in this 
treatment

Such a coupling scheme resembles the superexchange mech­
anism of the coupling of electronic states in long-distance electron 
transfer in biological systems.4 For this reason it can be called 
vibrational superexchange. The very idea of superexchange as

v Contribution d o . IglS.
•  Abstract published m A dana ACS Abstracts. December 1,1991.

0022-3654/93/2097-12491S04.00/0

a mechanism of indirect quantum mechanical coupling is very 
general and has been discussed in the literature for a long time.2 
The difference between the usual electronic superexchange and 
vibrational superexchange is that in the former case the quasi­
resonant electronic states of donor and acceptor, coupled indirectly 
via many virtual transitions, are separated by barriers incoordinate 
space while in the latter case the CH vibration and the quasi­
resonant states, where many vibrational quanta of low frequency 
modes are excited, are separated in the action space, or in the 
zeroth-order quantum number space, of the system.

A tier of states is defined by the total number of quanta that 
each state in the tier differs from the light state, as described 
below. (The light state constitutes the n = 0  tier.) The population 
of the nth tier, P,(t). is a sum of the population of ail states 
belonging to that tier. In many cases, the relaxation dynamics 
of the light stale, the so-called survival probability, is studied.4-* 
This function can be most easily calculated and experimentally 
probed. In the present case such a  strategy would correspond to 
the calculation of population of only the CH vibration, Po(t) in 
our notation. In addition to Pift), the populations of other tiers 
F .(t) ,n *  1,2,—, are also studied in this paper. The population 
of each of the higher tiers provides, in fact, the main insight into 
the relaxation process. We consider not only how the relaxation 
of excitation of the CH stretch occurs but also how this excitation 
spreads over the other vibrational states in the molecule. Several 
authors in the past have recognized the importance of the analysis 
of the population of the dark states.*-™1

Two limiting quantum mechanical forms of intramolecular 
vibrational relaxation (IVR) can be envisaged, using a zeroth- 
order basis set description: In one of these there would be a 
successive set of vibrational energy transfers, each governed by 
a kinetic expression, to near-resonant states, and so the overall 
transfer would be governed by a master equation. Any coherence 
would be completely lost at each step. In a second limiting 
mechanism the energy transfer would proceed from the initial 
zeroth-order state to a final near-continuum set of quasi-resonant 
states via a series of transitions over ofT-resonant states. These 
states are the virtual states mentioned above. This latter 
mechanism can appropriately be called vibrational superexchange, 
as noted above. In the present paper we describe results for the

O 1993 American Chemical Society
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IVR of the (CHi)jCCCH molecule in which the acetylenic CH 
is prepared in its first excited vibrational state.

There are certain analogies to a classical, or really to a 
semiclassica] description,12-11 in that the off-resonant superex­
change mechanism could correspond to a 'dynamical tunneling’:
In the molecule, invariant tori in phase space are associated with 
the zeroth-order classical action variables and correspond semi- 
dassically to the zeroth-order quantum states all in a many­
dimensional, nearly parabolic energy well. If the introduction of 
the perturbation resulted only in the distortion o f  these tori but 
not their destruction, then extensive IVR could occur by a 
’dynamical tunneling* from one torus to the next, as described 
by Davis and Heller.14 (“Tunneling* between tori has been 
extensively investigated, in one way or another, by a number of 
researchers since the early seventies.11) In an actual classical 
mechanical system with many coordinates, such as the present 
one, one can expect that the invariant tori will be a t  least partially 
ruptured and that another mechanism involving the chaotic-like 
passage through these fragments can occur classically and has 
been discussed by various authors.14

For this reason, we believe that the simplest quantitative 
description of the IVR process in these many-dimensional systems 
is the quantum mechanical one, though there will be an analogy 
between the vibrational superexchange mechanism and a tunneling 
between the zeroth-order invariant tori.

In the present paper the concept of tier population is introduced, 
converting the results of the many-coordinate IVR problem to a 
onedimensional visualization. The presence of’dead-end'states, 
their effect, and their possible removal when higher order 
anharmonirities are introduced, are also discussed. A comparison 
is made with crude phenomenological descriptions of the successive 
incoherent steps mechanism and of the vibrational superexchange 
mechanism, using the long-time behavior.

The structure of the paper is as follows. In section II some 
theoretical aspects of the tier model are discussed and in section 
III dynamics of the tier system of (CHj))CCCH molecule is 
studied. In section IV, the results are discussed.

IL Tier Model

Statistical IVR is usually understood as the relaxation of the 
stale that is directly accessible from the ground state through a 
transition moment, the ’light state*, into a large number of 
anharmonically coupled ’dark’ stateswhichare inaccessible from 
the ground state. This coupling arises from the deviation of the 
potential surface, written in normal mode or normal mode/local 
mode coordinates,17 from harmonic behavior. A  refinement of 
this model divides the dark states into various tiers.1 Each state 
in a given (nth) tier is coupled through third-order enharmonic 
couplings to states in the n -  1 or n +  1 tiers. I f  fourth-order 
couplings are being taken into consideration, then the states in 
the nth tier are coupled to states in the n -  2 and is+ 2  tiers. Once 
the light state is specified, the tiers are then created sequentially.
The cubic (or quartic) anharmonidty operator is written in terms 
of creation and annihilation opera ton which act on the light state 
to generate the first tier, on the first tier to generate the second 
tier and so on until some specified criterion (usually, the number 
of states) is met Care is taken to avoid duplication of states in 
different tiers in this scheme, a scheme which is implemented 
naturally in C language with dynamic memory management and 
the use of pointers.1 The first six tiers for (CHj)jCCCH, 
generated in this way with a model potential enharmonic field 
developed in ref 1, are shown in Figure 1.

Once the tier structure is complete then the complete N X  N  
vibrational Hamiltonian is formed within this set and 
analyzed. The Hamiltonian is diagonalized using the standard 
algorithms for complete diagonalization of large, sparse symmetric 
matrices. Upon diagonalization the eigenvectors are normalized.
This procedure of exact and complete diagonalization has a built- 
in limitation on the size of the matrix. For example, with access

Stuchebrukhov et al.

Figarel. Fust six tiers of sequcntiallycoo pled zcro-order n i ta  in (CHi)r  
CCCH. The first state on the left is the scetylcaicCH vibration o »  1.

to 10 Mwords = go Mb of memory on our computer, memory 
constraints limit the dimension of the matrix to ■«2000. Use of 
Lanczos-type ideas for diagonalization may be useful in dealing 
with larger matrices. Further details on the generation of the 
tier structure and the associated computational details are given 
in the previous paper in this series.1

Having calculated the eigenvalues, Et. and the eigenvectors, 
|^i), it is possible to perform the dynamics calculations on all the 
zeroth-order states. The transition intensities of different lines 
in the absorption spectra can also be obtained. The spectrum 
shows how the single line of the transition to the light state splits 
into a broadened band of transitions in the presence of the 
anharmonically coupled dark states. The absorption spectrum 
is related to the amplitude of survival probability of the light 
state Qdo)), which is defined as

PoO) -  K ^ ( 0 > P  = (1)
where |d(r)) is the state evolving in time from the prepared state 
|4o). The Fourier transform of (&|$(r)> is given by

/ ( « )  =  ( l/2 r )J _ 2 < d 0K<r))e'i-  dr (2)

Here, /(«) is proportional to the actual absorption spectral 
Lineshape, as defined in ref 18. One factor in the proportionality 
constant is the square of the dipole transition moment. Inserting 
the resolution of the identity

(3)

(the (fti form a complete set of orthonormal eigenvectors within 
this basis) and using Htf/t) m £M ), we have

P o ( O * = 0 ( ^ , ) P e ^ f
I-1

(4)

(S)

Similarly, the population of any other zeroth-order state is 
given by

P / 0  ■= |< * > (0 )P  «  4

To obtain insight into the mechanism of IVR the actual dynamics 
of each of the invidual zeroth-order states has been calculated.
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Since the total number of states is so large, a global picture of 
the dynamical behavior of the molecule was obtained from the 
dynamical behavior of each state by calculating the total 
population in a given tier as a function of time:

' j M - g f t  C7)

where N .  is the number of states in the nth tier and the 04t)l 
belong to the nth tier. P. is the total population in the nth tier. 
In the zeroth-tier there is only one state, the light state, making 
PoO) = f*o(0- With these tools available for the analysis, the 
dynamical behavior of the tier model can be examined in detail.

QL Dynamics of the Tier System

3.1. Reduced Dynamics with a Quasi-continaam Tier. The
detailed analysis of the relaxation mechanism in (CHj)]CCCH 
is presented next For this molecules total of about30 000 states, 
sequentially coupled to the light state, were identified in an 
artificial intelligence search procedure using a perturbation theory 
based criterion.1 Only thosestatesthatare expected to contribute 
significantly to the relaxation process are included in the 
calculation. The first six tiers of this system are shown in Figure 
1. The whole structure contains detailed information about the 
relaxation pathways.

To study the dynamics of such a huge system some simplifi­
cation has been adopted, because the total system cannot be 
diagonalized exactly. For this reason, only 10 tiers of the real 
system which contain 624 states are included in the present 
calculation. Then, to stimulate the presence of the quasi­
continuum of other states in the later (> 10) tiers and yet to stay 
within the limits of possible complete diagonalization, an eleventh 
tier is added within a narrow resonant energy window taking the 
total number of states to 2000, the energy of each state in the 
eleventh tier being random within a prescribed window. This 
number is the maximum number ofstatestbatcanbe diagonalized 
directly in the computer being used, due to memory constraints.

This eleventh tier phenomenologically describes the prediag- 
onalized states from all the actual tiers with numbers n >  10. The 
energy window for this, the eleventh, tier was chosen to be 0.5 
cm-1 around the major peak in the spectrum of the 10-tier system. 
This major peak is slightly shifted from the energy of the light 
state due to its interaction with the other states. The additional 
states in the eleventh tier are coupled randomly with states in the 
tenth tier. The matrix elements between states in tier 10 and tier 
11 form a Gaussian distribution centered at the energy of the 
main eigenstate of the 10-tier system, such that any edge effects 
from the additional tier may be minimized. The density in the 
eleventh tier was chosen in such a way as to make the total density 
of states roughly equal to the total density of dark states for the 
fundamental transition of the CH stretch in the 42-dimensional 
oscillator model described in detail in ref 1. Although it is 
reasonable to expea that this last tier may impose some artifacts 
on the dynamics, we believe from the results below that this 
simplified approach, where a light state is coupled through 
intermediate tiers to a quasi-continuum of states, provides a 
realistic model of the process of IVR in (CHj)jCCCH. Before 
considering the details of the mechanism, it is useful to comment 
on the effect of the addition of this eleventh quasi-continuum tier 
on the dynamics and spectra.

In Figure 2 the population dynamics of the light state p#(»), 
i.e^ the survival probability, is shown with and without the quasi­
continuum (eleventh) tier. It is seen that while the initial (£200 
ps) relaxation of the light state is identical for the two systems, 
recurrences of population for the light state are present for the 
10-tier system. This observation shows that during the decay in 
the first 200ps the higher tiers of states are irrelevant and, 
therefore, the initial decay is completely a local phenomenon. 
The same conclusion can be reached from the sum rule for the

The Journal o f Physical Chemistry. Vol. 97, No. 48.1993 12493

«O

J  ° 

1 *
o

o

o O lOO 200 300 400 500 SCO 700 000 9 00  1000

Timt (ps)

Figac2. Top curve survival probability of the aeetyteaic CH stretch 
in the 10-tier system without the addition oft tier to simulate the presence 
ofiquui-continuam. Bottom curve: survival probability of the acetylenic 
CH stretch when the quasi-continuum tier is present. Dashed line is the 
least-squares exponential lit to the bottom curve.

width of the absorption spectrum.1 This width is the inverse 
relaxation time for the short-time behavior.

The addition of the eleventh tier, however, changes the long­
time behavior of the survival probability, significantly curtailing 
theIong-timerecurrences(Figure2). After some initial transient 
behavior, the decay of the light state is exponential, as expected 
in a statistical limit That Pdf) in the two curves does not appear 
to approach 1.0 as r—0 reflects a very rapid (almost instantaneous 
on our time scale) dilution of the light state by far ofT resonant 
interactions. Thus, we conclude that the presence of the quasi­
continuum tier is essential and that more than 10 tiers are needed 
to describe the irreversible decay of the CH stretch.

Similar dramatic effects are observed in the absorption spectra 
when the quasi-continuum tier is added. For the 10-tier system, 
i.e^ for the system without a quasi-continuum, the spectrum is 
shown in Figure 3a. It essentially consists of one major peak. 
The addition of the 11th tier with a high density of resonant 
states produces an effect shown in Figure 3b. It is seen that a 
broad distribution of peaks is formed with about the same full 
width at half maximum as predicted by the Golden Rule.1 Since 
the statistical decay of the population requires the presence of a 
high density of well resonant states, the addition of this last tier 
is absolutely essential

While the addition of the eleventh (quasi-continuum) tier has 
transformed the spectrum from a few separated eigenstates into 
a  well-defined band of absorption lines, the density of lines in the 
spectrum is still smaller than its aaual value in real molecule. 
In our multidimensional oscillator model we have not taken into 
account the possibility of methyl groups tunneling between 
equivalent torsional positions. The tunneling events transform 
the Cj, point-group symmetry of our oscillator model into 
molecular symmetry group,1* significantly increasing the number 
of possible anharmonic couplings of the light state to the dark 
states. This effea was argued to increase the density of actual 
spectral lines: possibly by a factor1* as large as 24.

To see what can happen with the spectrum if the density of 
available dark states is increased further from its present value 
in the quasi-continuum tier, model calculations were performed. 
In these calculations a single light state is randomly coupled to 
a  tier with density of states 70S and 20000/cnr1, respectively. 
The former density corresponds to our oscillator model while the 
latter corresponds to the breaking down of the Cj. symmetry. 
The spectrum of such a model system is shown in Figure 4. The 
absolute energy position of the light state is not critical in this 
model calculation. As the density of states (p) is increased while 
p fi is kept constant (e* is the mean square matrix element), the 
ajŵ truvw h  trvnvfftrmed from a series of disconnected peaks into 
a  In Figure 4, T K 2rph* is kept constant and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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iZ2S J22B-2 S22&.4 3328.6

Cmto (em*1)

132(2 U » <  332(6 3 3 2 ( (  3329

Cmto (em*1)

Figure}. Absorption spectra corresponding to the (*) 10-tnd(b) 11-tier 
systems that simulate the acetylenic CH stretch in (CHj)iCCCH.

simulated curve is compared to an idealized curve of Lorentzian 
shape with this T, this idealized curve being given by

T/2
*■(«—<»0)I+(r/2)2 (8)

where 1(a) is the spectral absorption lineshape.
Thus, we infer that the spectrum of our model. Figure 3b, will 

continuously evolve into the Lorentrian envelope, observed 
experimentally, when the density of states in the quasi-continuum 
tier reaches its actual value and when account is taken of the 
possible experimental broadening of each individual eigenstate. 
Once the statistical limit is reached, any further increase in the 
density o f states simply fills in the remaining spaces within the 
individual eigenstates.

We focus next on the characteristics of the dynamics of 
populations of tiers with tier numbers n £  l , l e ^  on the dynamics 
of the accumulating population of states other than the light 
sa te .

1 3 . Loeg-Tlme Dynamics o f the Tier System. Dead-End 
Sates. The main qualiutive feature of the dynamics of the tier 
system on the time-scale of decay of the light s a te  is shown in 
Figures 3 and 6. For each tier n we again are interested in the 
evolution of the population of the whole tier, fV  The time 
evolution of P. shows that the population of the intermediate 
tiers is always very small (<0.1, Figure 5), never building up 
significantly. At the same time, the population of the light sa te  
decays (Figure 2) and the population of the eleventh, or quasi­
continuum tier rises, apparently as a  result of this decay (Figure 
6). Qualitatively, it appears as if the population flows directly 
to the distant eleventh tier, largely bypassing the intermediate 
tiers. This type of behavior is typical for a  superexchange 
mechanism. There is also an analogy to a tunneling dynamics 
which we discuss in the later sections in the paper.

to

o 30

20

10

3 2 2 0 .7

20

1C

3330.73
Er.crfy

Figure 4. Spectrum of a light state diivcriy coupled to a dense manifold 
(density =  p) of dark states: (a) p « 705/cnr1; (b) p * 20000/ettr1.

e

o

I e

oo

o
100 200 300 400 300 (0 0  700 100 900 1000

r«m (pa)
Figure 5- Population of ties J-10 u  a function of time in the presence 
of the eleventh tier. The top curve is tier 5, the next is tier 9, a cluster 
of tiers 3 ,4 , and 7 are next, tier 8 is next, and a pair of tiers 6 and 10 
are lowest.

The off-resonant sa tes  are virtual sutes, and for this reason 
preclude a  buildup of population within the intermediate tiers 
(F igures). However, some buildup of the population is possible 
if by accident there is a  good resonant sa te  in a  distant tier and 
that s u te  is not coupled by cubic terms to further tiers in the 
system. W e call such sutes dead-end resonant sates. Such sutes 
are of a  somewhat artificial nature, because there are always 
higher order enharmonic couplings. However, in calculations 
with a model enharmonic field, like the present one, after selecting 
sutes with an  artifdal intelligence search procedure in the tier 
system and using only third-order anhaimonidties there can be 
such s a te s  as described above. Their effect is considered next.

It has been noticed that there are several such dead-end sates 
in our tie r system. O f such sates, only two sa tes  in the third 
tier were found to have a significant effect on dynamics and 
spectra. One of these su tes is more resonant with the position 
of the absorption band than the other one and, therefore, has a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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«
e

oi °

o

o

o 0
Tim* (pi)

Fipirt 6. Time-evolution o f the quasi-continutun tier in (CHj)jCCCH.

O
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9i
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Figure 7. Spectrum when the dead-end sutes are added. Compare with 
Figure 3 b.

larger effect. We also noticed (calculations given below) that 
the effect of these two states is considerably reduced when small 
quartic terms coupling them to further (a+2) tiers are introduced. 
Because of their artificial nature, these states have been removed 
from the calculations described in section 3.1. In the absence of 
further couplings, the removal of the dead-end states does not 
effect the overall IVR process dramatically, especially on a long­
time scale. The calculations have also been performed in a system 
where such resonant dead-end states are present. These calcu­
lations are described next.

In Figure 7 the spectrum of the system with resonant dead-end 
sutes is shown. Comparison with Figure 3b shows that the dead­
end states produce additional components in the spectrum. These 
separate peaks are due to the absence of couplings of the dead­
end sutes to states in further tiers. The overall dynamics of the 
tier system, however, does not change qualiutively when the dead­
end sutes are present. The dynamics of the light sute and the 
quasi-continuum tier are shown in Figure 8. As a result of a 
single strong resonance in the third tier, in the time evolution of 
the light su te  there is a tendency now for a coherent quantum 
beat to occur. There also exist fast oscillations of smaller 
amplitude due to the off-resonant dead-end state.

In Figure 9 the population of the third tier and the population 
of the resonant dead-end sute is shown. It is seen that practically 
all the population ofthetierisduetoa single sUle. The population 
of the third tier is in this case significantly larger than the 
population in other tiers of the system because of the direct 
resonance.

The nearly resonant su te  in the third tier is not coupled further 
via cubic terms in the Hamiltonian, as we have already noted. 
Its removal does not affect the overall dynamics significantly, 
but it does destroy the coherence between the light sute and the 
third tier as seen from the comparison of Figures 2 and 8. A

«O

i  5
I,

b

ft*
o

o

Tim* (p*)

FtfKre ft. Survival probability (of light state) and the dynamics of the 
quasi-continuum tier when the two dead-end states are included. Compare 
with Figures 2 and 6.
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o
tOO 2CC 300 4 0 0 9 0 0 6 0 0 7 0 0 8 0 0 9 0 0  10000
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Figare9. Dynamics of the third tier (upper curve) and the nearly raonant 
dead-end su te  (lower curve).
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o
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T m  (p i)

Figare 10. Survival probability of the light su te  (upper curve) u d  the 
dynamics of the third tier (lower curve) when the dead-end states are 
forther coupled through quartic anharmou jetties

similar effect to this actual removal of the dead-end sutes can 
be achieved by adding higher enharmonic couplings (quartic and 
quintic) that have not been taken into account. To gauge the 
effect of additional higher order couplings, the two dead-end 
sutes (in the third tier) were coupled to a few sutes in the fifth 
tier with a quartic matrix element of 0.5 cn r1. The result is 
shown in Figure 10. The quantum beat behavior is significantly 
reduced, the coherence bring destroyed by the further coupling 
of these two (one of them nearly resonant) dead-end sutes. It is, 
therefore, reasonable to anticipate on this basis that the stttes 
which are not coupled to  further tiers by cubic terms and act in 
a lwatUSw manner with the light su te  will often not show such
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TABLE I: Avenge Matrix Element f. Density of States p 
and Window Size for Each Tier of the Model System (Total 
States = 2024) ______  _________
tier window, enr1 P e.cnr* t i a window, e n r1 P 0, cm"1

1 02 10 0.03 6 0.2 270 0.07
2 02 23 0.04 7 0.2 470 0.07
3 02 90 0.03 S 0.2 740 0.07
4 02 140 0.06 9 0.2 1393 0.07
5 02 200 0.06 10 0 2 6775 0.07

behavior when higher-order couplings are taken into account. 
This result also points out that our calculations reflea accurately 
the gross features of the IVR dynamics and that they may contain 
artificial details which are sensitive to the individual positions, 
couplings of the states and their matrix elements in the modeL 
Such is the case when an apparent dead-end state, arbitrarily 
uncoupled to further tiers, is present. The Lorentzian nature of 
the experimentally observed spectrum2 shows the absence of such 
states in the aaual molecule. It should be noted that in smaller 
molecules where there is no statistical decay, onset of IVR is 
denoted by splittings of individual J, K peaks and presence of 
quentum beats in the dynamics.

3.3. Short-Time Dynamics of Intermediate Tiers. In the tier 
system of the (CHj)jCCCH molecule the population of the 
intermediate tiers is extremely small during the relaxation process. 
However, those tiers provide the bridge for the population flow 
from the light state into the quasi-continuum of states in higher 
tiers. A closer examination of the dynamics of tiers reveals that 
the population in tiers shows an intriguing behavior at short times, 
providing an interesting detail of the relaxation process.

To explore further some details of the dynamics of intermediate 
tiers, calculations were performed on a model tier system. In this 
system the coupling to the light sute as well as the number of 
sutes in the intermediate tiers were increased in order to make 
population of the intermediate tiers somewhat larger and less 
'noisy*. Otherwise this model system qualiutively resembled 
the'real one whose tier structure is shown in Figure 1. The 
population of each intermediate tier was still suffia'ently small 
to correspond to the superexchange type of coupling rather than 
the overlapped resonances case: The population of tiers 2-9 never 
exceeded OX Also, for each intermediate tier, the product of 0, 
the average coupling matrix element between successive tiers, 
and the effective density of directly coupled sutes, was smaller
than unity («0.5). In other words, the average detuning of two 
coupled sutes was larger than the coupling matrix element These 
facts confirm that the relaxation mechanism corresponds to the 
superexchange type of coupling behavior. The exaa parameters 
of the model system are given in Table I.

The short-time dynamics of the fust four tiers of this model 
system is shown in Figure II . It is seen that at short times the 
population displays an interesting threshold behavior. The same 
kind of behavior is common to all intermediate tiers. For any 
given tier it, the population remains near zero before suddenly 
increasing. This time, when the front of the population distribution 
reaches tier it is denoted by i£. In Figure 12 the initial population 
evolution for the first eight tiers is shown in greater detafl. Figure 
12 shows that the population distribution front moves with constant 
velocity along the tier coordinate. In other words, rj increases 
linearly with tier number n. Figure 13. It may be surmised that 
for some initial time the bulk of the population remains localized 
in the initial tiers while a small portion leaks out into the 
intermediate tiers. The distribution function of the population 
in the initial suge of relaxation, when the population of the light 
state has not decayed significantly, develops a very thin tail in 
the region of the intermediate tiers. At short times this tail has 
a sharp front that moves with constant velocity and appears as 
a threshold when the dynamics of each tier is analyzed. Statistical 
decay occurs once this front reaches the quasi-continuum. The 
population then leaks from the light state into the quasi-continuum 
through the formed *tunnel* with a near steady state population

Stuchebrukhov a  al.

in each intermediate tier at some intermediate times. Of course, 
once the population of the bright state has decayed the population 
in the intermediate tiers will decrease also.

Addition of fourth-order anharmonicities may scramble the 
constant velocity of the sharp transition, but we may still expea 
a residual effect. Within the model systems it was also observed 
that the initial tiers become saturated very soon and for this 
reason probably have a different velocity than the intermediate 
and la ta  tiers (Figure 13).

3.4. Superexchange or Overlapping Resoaances? In principle 
two different limiting mechanisms could be envisaged for the 
dynamic of the energy flow through the sequence of tiers. In 
one of these there would be a successive set of real vibrational 
energy transfers—from the light state to the first tier, from first 
tier to the second one, and so forth until the quasi-continuum tier 
is reached. The overall transfer would be governed by a kinetic 
masta equation. In this scheme the coherence is lost in each step 
of energy transfer. This type of IVR occurs when in a classical 
description, there is a sequence of many ovalapping resonances, 
as described in a series of papers by Sibert et al.20

In the second type of mechanism the energy transfer would 
proceed from the initial state to a final near-continuum set of 
quasi-resonant states via a series of off-resonant transitions, with 
no classical overlap. This mechanism does not require a sequence 
of classical ovalapping resonances between the light state and 
o tha stales in the molecule. The intermediate off-resonance 
states can be only weakly coupled to a light state. This la tta  
mechanism corresponds to superexchange.

Rigorously speaking, from the smallness of the population of 
the intermediate tiers one cannot distinguish between the two 
IVR schema described above. Thus, although the low population 
in the intermediate tiers suggests that the enagy transfer might 
be due to superexchange, the kinetic type of equations could, in 
principle, give a very low population distribution in the inta- 
mediate tiers. This situation can happen, for example, due to a 
high rate of energy transfer into quasi-continuum t ia  from the 
previous one and a small rate of transfer from the light state into 
the first tia . One can, boweva, distinguish between the two 
mechanisms in a different way, considered next.

To distinguish between the mechanisms and then to establish 
that the relaxation dynamics in the intermediate tiers indeed 
corresponds to a coherent superexchange mechanism, as opposed 
to a possible incoherent kinetic type of transitions between tiers, 
the quasi-stationary population (at r = 1000ps) of the intermediate 
tiers is compared in Figure 14 with density of states in the tiers. 
(The calculation is for the ‘ real* system rather than the model 
system that was employed to determine the transient behavior in 
section 3.3.) If the dynamics in the intermediate tiers were 
governed by .a kinetic type of equation, the quasi-stationary 
population in each of the tiers would be approximately proportional 
to the density of states in that tia , and so would increase with
t ia  index. Instead, as is seenfrom Figure 14, thequisi-stitionzry 
population decreases with t i a  numba, as if there were a barrier 
separating the light state from quasi-resonant states in the distant 
tiers (Appendix).

From Figure 14 it is clear that, apart from some local 
fluctuations, the population decreases significantly with t ia  
numba. Also, (not shown) the population ratio PJPu is 
continually decreasing f a  each t i a  with time. The marked 
decrease of population with t i a  numba reinforces our belief that 
the overall mechanism of relaxation is tunnelling-like and not 
kinetic. If the kinetic behavior was being followed, then the 
population distribution should have paralleled that of the density 
of states and so would have increased with t i a  numba.

IV. Discssskn

The t ia  system of the (CHj)jCCCH molecule shows an 
interesting dynamical behavior. The population in the inta- 
mediate tiers never builds up significantly, and the population
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Figire 12. Short-time threshold behavior of first eight tiers of model 
system.

from the light sute flows directly into a quasi-continuum tier, 
largely bypassing the intermediate tiers. The mechanism of the 
transfer was esublished to be a  coherent superexchange. If the 
probability of finding a real particle at some discrete points along 
the coordinate axis was being calculated (those points correspond 
to the tier numbers n), this type of behavior (small and 
approximately exponentially decreasing population with the 
coordinate) could correspond to tunneling along the given 
coordinate axis. Hence, it can be said that the type of relaxation 
in our system is tunneling (or tunneling-like) along the tier 
coordinate.

It is relevant to comment on this behavior and to justify its 
being termed tunneling. This tunneling is not tunneling in its 
usual sense where the particle tunnels through a real potential 
energy barrier in coordinate space. The potential energy function

Figme 13. Threshold rj as a linear function of tier number (a).

for our system is a  multidimensional anharmonically distorted 
parabola, and there are no potential barriers separating different 
regions of the configuration space. The light state is, however, 
separated from the quasi-continuum of resonant states, in which 
the population ultimately flows, by many intermediate states which 
are well off-resonance, These sutes sequentially couple the light 
su te  and the quasi-continuum sutes.

This situation is much the same as in a superexchange model 
of the long distance electron transfer problem. The off-resonant 
sutes are the best resonances available in a given order of 
interaction (on the avenge, the frequency mismatch is much 
larger than the coupling). Indassicalmechanicsthoseresonances 
cannot be used directly, and so the population can be locked into 
the initial CH sute. One can uy , hence, that the intermediate 
off-resonant states create a dynamical barrier for decay of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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i

Figure 14. Quasi-sutioniry populations (circles) and density of states 
(crosses) in intermediate tiers. Exponential approximation (linear curves 
in log so le) are shown by a solid and broken line, respectively. For the 
upper curve. W , «  Pi/P ti where P, is the population of the rth tier and 
for the lower curve W , m p,/pu. where pi is the density of states in the 
rth tier.

CH vibration, even though there is no potential energy barrier. 
In the actual quantum system the population flows through this 
barrier in much the same way as usual quantum mechanical 
particle tunnels through the potential barrier. Thus, the tunneling 
occurs in our case under a dynamical barrier along the tier 
coordinate of the system. The connection of the superexchange 
type of vibrational coupling to dynamic tunneling has been recently 
discussed in detail by two of the present authors.21 There are 
several examples of low-dimensional systems where this type of 
tunneling occurs. Perhaps, the two best examples of this 
phenomenon are the asymmetry doublet in the rotational spectra 
of the asymmetric tops22 and doublets in the vibrational spectra 
of water (ref 21 and references therein). It should be added that 
the picture of tunneling between the invariant tori referred to 
earlier is only a rough approximation in these many-coordinate 
systems, since, as noted earlier, the tori are expected to be largely 
ruptured and other more complex modes of transfer1* would then 
occur.

To understand the nature of the tier coordinate, it is useful to 
compare the results of our quantum calculation with what might 
be the classical or semiclassical analog of it. Action space is the 
most convenient representation for the relaxation dynamics in 
classical and semiclassical analysis. Each of the zeroth-order 
states of (CHj)jCCCH molecule is characterized by 3IV- 6 *  
42 vibrational quantum numbers, |clt oj, _  c«j). For example, 
the light state CH with ( * 1  is |l,0 , _ 0 ) .  In the semiclassical 
analysis these quantum numbers correspond to zeroth-order 
actions divided by Planck’s constant. Thus, each of the zeroth- 
order states is represented by a point in the 42-dimensional action 
space of the molecule (7|, /j, _., led- In ike classical analysis 
these zeroth-order actions are not constants of the motion but 
rather are functions of time (only in a completely integrable 
system12-15 are actions constants). The evolution of the system 
can be described as a classical trajectory in action space. In a 
semiclassical analysis the system is described by a wave function 

J o )  in the same space. The population o ft given zeroth- 
order sute corresponds to |W i,/:—Aj)P- Initially all populatioo 
is concentrated at a point corresponding to the light state. A 
detailed semiclassical description would involve the description 
of the time evolution of the total wave function or
equivalently, the population of all vibrational states involved in 
the analysis. Instead, we focused on the total population of the 
den.

Qualitatively, the tier coordinated is a measure of distance in 
action space from the light su te  to an average sute belonging 
tothetiern. (n is exactly the order of coupling, described earlier, 
of the sutes in the tier to the light sute.) Thus, the population

Stuchebrukhov et aL

of the nth tier,/>,(l), describes the total population of a particular 
region in action space, which is some distance away from the 
light sute along the relaxation path. f*«(r) can also be regarded 
qualiutively as “radial* density of the toul multidimensional 
wave function. Thus, the discussion ofthe dynamics in the present 
calculations is reduced to that along a one-dimensional tier 
coordinate. The qualiutive picture that emerges from our 
calculations is as follows. Along the tier coordinate the initial 
distribution localized at Po is separated from distant tiers by a 
dynamic barrier, a  barrier in action space and not in the coordinate 
space in this case. The relaxation of the initial distribution can 
be regarded as due to tunneling through this barrier to regions 
where the quasi-resonant sutes are available. The population 
under the barrier is always very small, is  in the usual case of 
tunneling under a potential barrier in coordinate space. Details 
of this tunneling relaxation dynamics have been the focus ofvarious 
sections of this paper.

In many studies of the CH stretch relaxation it was suggested 
that the stretch-bend interaction plays the key role, because of 
a good 1:2 stretch-bend resonance5125' 25 in case CH is attached 
to a rigid skeleton of a molecule, as, for example, in benzene20 
or in CXjH.25-25 In the case of (CHj)]CCCH molecule the bend 
frequency is only of the order of 700 en r1, because of the “soft* 
bend nature of the acetylenic part in the molecule. In this case 
the usual stretch-bend resonance does not play any significant 
role, at least in the present model where only low-order direct 
couplings are considered. In such a situation the high-frequency 
CH stretch is adiabatically separated from the rest of the low- 
frequency modes of a molecule including the CH bend. Such a 
situation was discussed in the early eighties by Quack and co­
workers.2* The superexchange type of vibrational couplings and 
tunneling provide the mechanism of relaxation out of such an 
adiabatic dynamical well.

V. Cbodusiows

We have demonstrated the mechanics of energy relaxation 
from a localized pan of the molecule to its complete scrambling 
into all the available modes in the limit of statistical IVR when 
the decay is irreversible. This mechanism is explained within the 
tier formalism of sequential third-order enharmonic couplings 
that control the decay. The different roles played by the initial 
tiers when the average spacing between the states is larger than 
the average matrix elements and the later tiers where the density 
of states is high enough such that the statistical limit is reached 
have been demonstrated. We have also demonstrated that 
although the initial decay rate is a  function of initial tiers only, 
the limit of irreversible decay is reached only in the presence of 
the quasi-continuum of sutes in the later tiers. Therefore, the 
irreversible decay occurs from the light sutes into the quasi­
continuum mediated through the virtual couplings of the inter­
mediate tiers. This mechanism clearly points out the importance 
of the intermediate tiers in the overall rate of relaxation and how 
bottlenecks in these tiers can significantly localize the exdution 
into the light sute in spite of a Urge density of states available 
in theUter tiers. This issue of localization versus statist ical decay 
is discussed somewhere else"227 in detail. We have also identified 
an artifact of the dead-end su te  type and have indicated bow to 
deal with it.

In this paper we have shown that the presence o f virutal 
couplings in the intermediate tiers lead to superexchange between 
the light sute andquasi-rescoantstates in the molecule. Dynamics 
of energy transfer resembles tunneling in tier space where the 
intermediate tiers never see a significant buildup of population. 
An intriguing behavior of the dynamics is shown in the threshold 
behavior. At very short times, when most of the population 
distribution is localized within the light sute, some population 
moves-along the tier coordinate such that the front of this
population flow reaches successive tiers with a constant velocity. 
Once all the tiers have been reached, the irreversible decay out
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of the initial tiers into the quasi-continuum can commence. If the 
tier structure is such that all the tiers cannot be reached then the 
probability of irreversible decay is substantially reduced.
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Appendix

The rapid decrease of population in the intermediate tiers with 
the tier index can be understood by invoking a standard argument 
from the high-order perturbation theory. The high-order cor­
rections to the light state, |do)> due to couplings to other state in 
the molecule can be written as

|«> = > +  2Z c*^t,> +  -  (A l)
*i *r

where sums are taken over states in the first O'er, second tier, etc. 
From standard perturbation theory arguments one finds

(Aa

<U)

ca4)
where Vis the anharmonic coupling operator and £ t  is the energy 
of the fcth zeroth-order state. If one neglects interference effects 
and assumes that there are no strong resonances, then the 
population of a quasi-stationary state is given by

The population of the whole tier then can be written as

Thus one can write

(A7)

if one assumes that the factor /  is roughly the same for the 
intermediate tiers

/ ' (A8)

It is thus seen that, if there are no resonant states in the sequence 
of tiers, the population decays roughly exponentially. For example

(A9)
The same type of mechanism explains the exponential distance

dependence of the electronic coupling in long-distance electron- 
transfer processes.

Of course, the above arguments hold only when there are no 
resonant sutes in the tier and the states are distributed in tiers 
more or less randomly. As the tier index increases, the density 
of states increases also increasing the chance to have good 
resonances. The above arguments, then, are not valid.
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one substitutes y •  mUfe) (cl+Psdr) (4el> where jg) is the ground vibrational 
1 £, « (gjfi|g) is set equal to zero and n(r) ■ t ,fcnc <•>.
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Aseem Mehta and Alexei A. Stuchebrukhov
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Pasadena, CA, 91125

Abstract

The intramolecular vibrational relaxation of the acetylenic CH stretch in polyatomic 

molecules (CHa^YCCH, where Y =  C or Si, is due to a sequence of many weak 

off-resonant vibrational transitions between tiers of directly coupled (by low-order 

anharmonic terms) states. The energy flow from the initially populated light state 

to the high density of states in the later tiers is mediated by the off-resonant virtual 

transitions to the intermediate tiers. In this tier model, the relaxation can be thought 

of as occurring via tunneling (vibrational superexchange) through a dynamic barrier 

which separates the light state and the quasiresonant states. Randomness of the 

couplings and dynamic barriers may cause a localization of the vibrational excitation 

in the action space of the system similar to the localization of electronic wavefunctions 

in random solids. In the present paper these localization properties of the tier system 

of (CH3 )3 YCCH molecules are studied with a method originally developed for random 

solids by Skinner and co-workers. The connectivity of the vibrational states along 

the tier coordinate of the molecule is calculated. The observed absence of relaxation 

in Si- compound in numerical simulation and the unusually slow rate that has been 

observed experimentally are discussed in relation to the localization phenomenon.
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2.1 Introduction

In recent experimental studies of the acetylenic CH stretch in (CX3)3YCCH molecules, 

X =  H, D; Y =  C or Si, Scoles, Lehmann, and collaborators^, 2] have observed ex­

tremely narrow, FWHM =  10-1 — 10-3cm-1, vibrational lines. The homogenous 

width of the lines is a measure of the rate of intramolecular relaxation of vibrational 

excitation (IVR) of the CH stretch. In the first paper of this series[3] it was found 

that the unusually slow relaxation rate (of the order of hundreds of picoseconds), cor­

responding to such narrow linewidths, is due to the absence of direct low-order Fermi 

resonances such as the stretch-bend interactions that exist in CH3X molecules [4]. The 

relaxation in this model is assumed to occur in a sequence of many virtual transitions 

between tiers of directly coupled states, whereby the excitation in the initially popu­

lated non-stationary state uses the best resonances available, i. e. the resonances with 

large detunings, to reach the quasiresonant states that may exist in higher tiers. The 

number of sequential virtual transitions (number of tiers) required can be as large as 

ten or more. The large detunings of available resonances (or the absence of direct 

resonances) can be regarded as dynamical barriers separating the light state, from 

which relaxation occurs, from the quasiresonant states. It has been shown that the re­

laxation dynamics in tier system occurs via a tunneling like mechanism ( “vibrational 

superexchange”) under these dynamical barriers[5].

The randomness of couplings, tunneling barriers, and the very scheme of sequential 

coupling of vibrational states in IVR resembles, in many respects, the situation in 

random solids. Wolynes and co-workers[6, 7, 8] have recently argued that effects 

similar to localization phenomena in random solids[9, 10] can be expected in IVR. 

By localization, (absence of relaxation) it is essentially meant that the initial state is 

effectively mixed with only a few states, at best. In the opposite case of delocalization 

(exponential relaxation) the light state is strongly mixed with almost all states of 

the same energy and the density of the bath states is high enough for irreversible 

relaxation to occur out of the initially populated state.

Upon localization, only a finite few of the zeroth-order states contribute signifi­
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cantly to each of the eigenstates of the diagonalized system. In this case, instead of 

an exponential decay of the initially prepared state, at best quantum beats would be 

expected in the dynamics of that state. The absorption spectrum would contain only 

one or a few sharp lines instead of the Lorentzian-like contour that would occur when 

all the isoenergetic states are mixed.

The cumulative density of states, p„f f , increases rapidly with the number of tiers. 

The average effective coupling of the light state to levels in the nth tier, is of 

the nth order and in the case of weak coupling between tiers is an exponentially 

decreasing function of n. For relaxation to occur, the density of coupled states should 

be high enough to ensure the statistical limit, pe/ / y e/ /  1. In the weak coupling 

case it might happen that the effective interaction, , decreases faster with n than 

the corresponding increase of the density of states, decoupling the later tiers. 

Then the statistical limit, p^*V*H 1 will not be reached even when all states are 

included in the analysis. In this situation localization of vibrational energy into a few 

modes of the molecule, irrespective of the total high density of states, occurs.

In their experiments, Scoles, Lehmann, and co-workers[l, 2] observed that the 

linewidth of the acetylenic CH fundamental transition for the Si- compound is an or­

der of magnitude smaller than its C- counterpart, although on the basis of total den­

sity of states the opposite result would be expected. Also, recent model calculations[3] 

have indicated that the transition line for Si- molecule is not homogeneously broad­

ened at all. It was suggested that accidental bottlenecks in relaxation pathways and 

dynamic barriers can cause virtual localization of the CH stretch vibration. In the 

light of those results, and following up on the discussion of similarity between random 

solids and vibrational couplings in polyatomic molecules, it seems reasonable to apply 

some standard technique from the study of random solids to these molecules in order 

to investigate the possibility of localization of the vibrational excitation in a more 

quantitative way.

In the present paper the localization properties of the tier system of (CHs^YCCH 

molecules, Y =  C or Si, are studied with a method originally developed for random 

solids by Skinner and co-workers[ll, 12]. In this method, connectivity of vibrational

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

states along the tier coordinate of the molecule is calculated. The connectivity may 

then be used to characterize the strength of the coupling of the dark states along 

the tier coordinate with the light states. The importance of the connectivity as a 

function of tiers stems from the fact that the high density of states, necessary for 

the relaxation to occur, is only available in the higher tiers, or, in other words, a 

large distance away from the light state in action space of the molecule. To make 

use of these energetically closely spaced states, there must be appreciable coupling to 

those states. The connectivity quantitatively describes the strength of this coupling.

It is found that for the C- compound this measure of coupling is much larger than 

that for the Si- molecules for all the tiers. This result is in qualitative agreement with 

experimental data on the relaxation rates in these compounds[l, 2]. The participation 

ratio, defined below, for each eigenstate is also calculated to compare the overall 

coupling between states in the two molecules.

The structure of the paper is as follows. In section 2 the concept of connectivity of 

vibrational states is introduced. In section 3 the results from the various calculations 

are stated followed by a short conclusion in section 4.

2.2 Tier system  and connectivity of vibrational states

It was shown in previous publications[3,5] that the CH vibrational states in (CXs^YCCH 

molecules are coupled to a manifold of background states via a sequence of transitions 

which result in the tier system, as shown in Fig. 1. Details and discussion about the 

tier system can be found in the first paper of this series, Ref. 3.

Each level shown in Fig. 1 is described by 42 vibrational quantum numbers, its 

vibrational energy, which includes anharmonic corrections, and various couplings to 

previous and the next tiers.

Qualitatively, the tier coordinate n measures the distance in action space from 

the light state to an average state belonging to the tier n. (Rigorously speaking, n 

is the order of coupling of the states in the tier to the light state.) If the dynamics 

of the tier system is studied, as we have done in the second paper of this series[5],
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then the total population of the nth tier, Pn{t), describes the total population of the 

region in action space, which is some distance away from the light state along the 

relaxation path. Pn{t) can also be regarded qualitatively as “radial” density of the 

total multidimensional wave function. Thus the complicated dynamics is reduced 

to an effective one-dimensional problem along the tier coordinate . The qualitative 

picture that emerged from our previous calculation is the following. Along the tier 

coordinate, the initial distribution localized at |0), the light state, is separated from 

the distant tiers by a dynamic barrier, because of the absence of direct resonances. 

The relaxation of the initial distribution is due to tunneling through this barrier to 

regions where quasi-resonant states are available. Details of this tunneling relaxation 

dynamics in (CH3)3CCCH were discussed in Ref. 5. The necessary condition for 

relaxation is that the product of the density of quasiresonant states on the “other 

side” of the barrier and effective coupling of the light state to those states be larger 

then unity.

The overall coupling within the Hilbert space of zeroth-order states may be visu­

alized through the concept of the spread of each of the eigenstates within the space 

defined by the zeroth-order states. This spread is quantitatively studied by calculating

pf  =  Z  M 4- (2-Di=1

Here,

cfii =  (̂ K)> (2-2)

where, |z) belongs to the zeroth-order basis set, |/x) belongs to the set of eigenstates 

and N  is the dimension of the Hilbert space. The coefficients, c^, are simply the val­

ues obtained from the eigenvectors after the total diagonalization of the Hamiltonian. 

For a completely delocalized eigenstate |CjM[ =  I/n/A , as in Bloch functions. Thus, for 

delocalized eigenstates, PM =  l / N.  Also, when a zeroth-order state is also am eigen­

state, complete localization obviously makes PM =  1. Values of P  ̂ between the two 

limits imply am incomplete spread of the eigenstate. This incomplete spread of each 

eigenstate, \fj), may be quantified by I =  1/PM, the participation ratio, which may be
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regarded as the number of zeroth-order states that span the eigenstate. Determina­

tion of I provides a method for measuring the degree to which each eigenstate spreads 

within the basis set of the zeroth-order states. Also, unless each eigenstate is com­

pletely (or nearly completely) spread among all the zeroth-order states, I ~  O(N),  

most of the participation ratios should be independent of N.  Field and coworkers 

have also used this procedure in their investigation of quantum ergodicity in the SEP 

spectra of highly vibrationally excited acetylene[13].

As mentioned before, the effective coordinate of interest is the tier coordinate. The 

localization property along this tier coordinate is another quantitative characteristic 

that describes the mixing of vibrational states with the light state. This characteristic 

can be studied with the method developed originally by Skinner and co-workers for 

random solids[ll, 12]. The relevant question here is : How far along the tier coordinate 

can the excitation spread?

Skinner and co-workers introduced a concept of quantum connectivity as a gener­

alization from percolation theory to describe couplings in random solids. It is qual­

itatively clear that two states |z) and |j) are coupled if both cM, and cw are nonzero 

for some eigenstate \n). Then, the connectivity, A fj, between them is defined as

( 2 ' 3 )

where,

(2-4)

The denominator in Eq. (3) is introduced to “normalize” the quantity Py.

The appropriate parameter of interest is the average connectivity per state be­

tween the light state and the fcth tier,

for each tier, where AT* is the number of levels in the fcth tier. This average allows the 

comparison of the degree of connectivity between the light states and an “average”
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state in various tiers. Sk =  A0j is also a useful quantity that helps in our 

analysis as it quantifies the degree to which a tier, or equivalently a certain part of 

the action space (as described in the introduction), is connected to the fight state.

Finally, it is very useful to compare the Pk and Sk values between different 

molecules to determine the difference in the degree to which the fight state is con­

nected to the other states in different species. For Bloch waves P* =  1.

2.3 Results

The localization properties defined as above are now investigated for (CH3)3CCCH 

and (CH3)3 SiCCH. The average quantum connectivity is calculated for each tier of 

these molecules. In order to do so, 10 tiers of sequentially coupled (through third- 

order anharmonic matrix elements) states were generated for these two compounds 

with a computer program described in Ref. 3. The first six tiers for these molecules 

are shown in Fig. 1. Imposing a perturbation theory based criterion on the selection 

procedure, it turns out that tert-butylacetylene has about 600 well coupled states in 

ten tiers. For the Si-compound the criterion for the selection of states was considerably 

relaxed. Without this, the third tier of the Si molecule would be left without a state, 

due to a bottleneck discussed in Ref. 3, completely decoupling the further tiers. 

With this relaxed criterion (as compared to (CH3 )3CCCH) for the Si compound, the 

total number of states in ten tiers were about 1400, although the overall anharmonic 

couplings between states for the Si molecule are considerably smaller than those for 

tert-butylacetylene.

We have also investigated the effect of the addition of fourth-order anharmonic 

couplings between states. While it is possible to add fourth-order anharmonicities 

to the model in a manner similar to that for third-order values, we have chosen a 

more phenomenological approach as only the gross dependencies of Pk values on the 

fourth-order numbers were desired. Because of the presence of other approximations, 

further refinements for the calculation of fourth-order anharmonic couplings would 

not provide useful information. With this in mind, the fourth-order values were added
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as a constant coupling between each pair of levels from the nth and the n 4- 2nd tiers.

The differences between the relaxation mechanisms of the molecules are most ap­

parent when the survival probabilities |(0|e-,/ft |0)|2 are compared. For (CH3)3SiCCH, 

the population of the light state is more that 0.99 for t <  2ns. The carbon case was 

exhaustively studied in a previous publication [5]. It was shown that there is signif­

icant relaxation of the light state into the 10 tiers. Addition of an 11th tier with 

a quasicontinuum of resonant states allowed irreversible statistical decay out of the 

light state. The addition of the quasicontinuum in the silicon molecule makes no 

difference since there is absolutely no relaxation into the initial tiers. The latter fact 

is essential as it is the initial tiers that serve as a conduit for statistical decay of the 

population into the quasicontinuum in the carbon case. It is clear that the structure 

of the initial tiers is critical (as mentioned previously, the total density of states is 

significantly greater in the silicon molecule) and is probably the cause of the localiza­

tion of excitation in the light state of (CH3)3SiCCH. We now report various aspects 

of this phenomenon.

The plots of the average quantum connectivity, Pk, for the carbon and the sil­

icon compound are shown in Fig. 2 and the differences are significant. The most 

important observation is that the absolute average quantum connectivity (Eq. 5) for 

(CH3)3CCCH is two to four magnitudes higher than its silicon counterpart. There­

fore, the capacity of a typical “dark” state in the silicon compound to carry away 

intensity from the light state is considerably less than that for the carbon compound. 

This result seems to account for the almost complete lack of statistical IVR decay 

in the silicon compound. The connectivity of the states in intial tiers is small to 

begin with and then it falls so fast that the later tiers, where the high density of 

states exists, are essentially uncoupled to the light state. While Fig. 2 shows a 

steady and relatively large “quantum connectivity” values for (CH3)3CCCH, the cor­

responding values for (CH3)3SiCCH are small and drop precipitously. The difference 

in the “quantum connectivity” values for (CH3)3CCCH and (CH3)3SiCCH is striking 

and such difference may indicate the difference between statistical relaxation and long 

localization. This observation reinforces the results from the dynamics calculations,
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allowing the conclusion that the complete lack of well coupled resonant states in the 

initial tiers results in the virtual localization of the initial excitation in the = C  — H  

stretch in the molecule (CH3 )3SiCCH. As a reference, it is worth mentioning that for 

perfect Bloch waves, log P* =  0 as all |cjM| =  1/y/N .

The plot of log(Sfc) vs. k also gives similar results. While the Sk values remain 

constant at a relatively high level for tert-butylacetylene, actually increasing with 

tier number for later tiers with the increase in the number of states, the same values 

for the Si substituted molecule drop fast and remain 4-5 orders of magnitude smaller 

(Fig. 3). The total density of states in the silicon compound is about 30 times higher 

than that of the the carbon compound. Based on only this factor the number of 

resonant states should be much higher for the former case. And yet, as is seen from 

our results, while a large overall density of states may be necessary for IVR to occur 

in the statistical limit, it is not a sufficient condition. The strength of the coupling, as 

well as the exact energy difference between the light state the individual dark states, 

especially for the first few tiers, is also very important. The more or less energetically 

random composition of the levels may create bottlenecks, as in (CH3)3SiCCH, which 

significantly decrease the overall coupling to the background states that, if available, 

provide the final states for real (as opposed to virtual) transitions with conservation 

of energy, and eventually can absorb a significant amount of the initial excitation.

To confirm our conjecture about the bottleneck in the third tier, we calculated 

I =  l/Pft for all the eigenstates for both the molecules. The histograms are shown 

in Fig. 4. The distributions, when the difference in the total number of states in 

the two simulations are taken in account, are remarkably similar. I is 8 and 17 for 

(CH3)3CCCH and (CH3)3 SiCCH, respectively. In Fig. 5, the normalized histogram 

is shown. In this Fig. the frequency of occurrence of some range of values of I is 

divided by N , the total number of states. Comparing the normalized curves for the 

two molecules shows that the nature of overall couplings for the two molecules is quite 

similar. Therefore, it can be surmised that, within the limits of the calculation (by 

definition due to the artificial nature of the cutoff used for the AI search, and so, the 

uncertainty in the total number of states), on average, the eigenstates in both the
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molecules axe spread to a similar degree.

However, the histogram in Fig. 5 reflects the distribution of coupling of all the 

eigenstates. On the other hand, only a few of these eigenstates, the ones that have a 

non-zero overlap with the light state, can be probed experimentally. So, if only those 

eigenstates that have (0|/x)2 >0.01 are considered, then there are five such eigenstates 

in (CHaJaCCCH with an average I of about 5 while for the Si- counterpart there is 

only one such state with 1 =  1. Thus, a distinction needs to be made between the 

overall nature of the interactions and those which can be experimentally probed, i.e. 

the difference between the statistical and the particular nature of the eigenstates.

The most useful method of calculating these particular interactions between the 

light and dark states has already been presented in Figs. 2 and 3. We, therefore, must 

interpret two results which on the surface seem contradictory: the difference between 

the average connectivity between the two molecules (Fig. 2) and the similarity in 

the distribution of the participation ratios (Fig. 5) This seeming contradiction is 

just an indication of the above mentioned distinction between the statistical and the 

particular.

These two results confirm that the cause of localization in the Si- molecule is 

accidental in nature and that it is the accidental bottleneck in the third tier due 

to the local (not global) lack of strong coupling that causes the unusual degree of 

localization in (CHs^SiCCH. From this analysis the following qualitative picture can 

be drawn. For the Si- compound, the light state, despite an availability of a high 

density of total states, is unable to utilize them due to the structure of the tiers that 

disallows good coupling between the first few, viz. three, crucial tiers and the later 

tiers where the well-resonant and dense tiers of states exist, thereby blocking any 

significant leakage of the light state amplitude. Such fortuitous localization is absent 

in t-butylacetylene and the high density of states that is be present in the later tiers 

can participate in IVR. The figures of the tier structure pictorially confirm that in 

spite of the larger density of states for the Si compound, its tier structure, with a 

near bottleneck in the third tier and the lack of good resonant states in the earlier 

tiers, acts as a barrier to IVR.
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We find that the Pk values for the carbon compound do not change significantly 

upon the addition of fourth-order anharmonicities. However, the Si compound values 

change if we add fourth-order anharmonicities of the same magnitude as those put 

into the carbon simulation. This result is not surprising and indicates that for the 

carbon case the fourth-order anharmonicities are relatively unimportant, the third- 

order values being large enough to dwarf any effect that the fourth-order values may 

have. However, the third-order values are not large enough in (CH3 )3SiCCH allowing 

the fourth-order values to significantly change the average quantum connectivities.

In their study, Lehmann et al. [3] report a large lifetime of «  2ns and conclude 

from their measurements that the narrow broadening of the silicon compound is a 

Lorentzian with a long lifetime/small FWHM. For our ten tier simulation for the 

fundamental stretch we do not see any decay for up to 2ns. Various reasons that may 

cause this discrepancy axe now addressed. A further reduction of the predetermined 

tolerance for the AI selection of the states may be required so that more virtual 

couplings are provided in the initial tiers for population relaxation. This may allow 

the pinning down of the nature of the important initial relaxation. Furthermore, 

the states arising from the internal rotations of the individual methyl groups around 

the (CH3 )3 -C- bonds that axe possible in this molecule have not been incorporated 

in this calculation. Those rotations should add further states and matrix elements 

causing further mixing of the states and, therefore, assist in the relaxation of the 

initial state. Finally, fourth-order anharmonicities may also play an important role 

for a correct description of this mode as the third-order couplings are so ineffective. 

Since the weak third-order anharmonic couplings act to localize the excitation, extra 

relaxation pathways that arise due to the higher anharmonic terms are probably very 

useful for IVR. While the higher-order terms are not as efficient in promoting IVR 

as third-order terms, they axe capable of facilitating slow relaxation of longer periods 

of time. This, probably, is cause for the anomalously slow (2ns ~  106 vibrational 

periods) relaxation of (CHs^SiCCH.
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Several concepts borrowed from the physics of random solids can be usefully em­

ployed for studying vibrational couplings in polyatomic molecules. This approach 

proves useful when the mechanism of IVR is vibrational superexchange. It provides 

an additional insight into the IVR problem and allows quantitative comparison of 

different molecules.

In the present paper we have applied such an approach to study vibrational cou­

plings in (CH3)3 YCCH molecules, where Y =  C, Si, and where we believe that the 

vibrational coupling scheme resembles the one in random solids. In particular, the 

unusually large relaxation time of the acetylenic CH stretch vibration in the Si- com­

pound can be explained in terms of the length (localization length) at which vibra­

tional states are strongly coupled to a light state along the tier coordinate. This 

tier coordinates qualitatively describes the distance from the light state along the 

relaxation path in the Hilbert space. The calculations show that the localization, 

rigorously defined as in random solids, does not occur in our molecules in the sense 

it is understood for random solids (the connectivity does not decay exponentially 

at large distances.) The fact that the absolute strength of the couplings is always 

greater for the C- compound by orders of magnitude can be interpreted as follows. 

The coupling of the light state in the C-compound extends to much longer distances 

along the tier coordinate than in the Si- compound. The important point to note 

is that it is at longer distances along the tier coordinate where the higher density 

of states is available. Thus, for the C- compound the much higher density of states 

(and, therefore, a larger number of total states) can be utilized for IVR via third- 

order vibrational couplings unlike the case in the Si- compound. For Si- compound 

the coupling is limited to about three tiers and so the density and the total number 

of strongly coupled states are not sufficient for relaxation to occur. This result agrees 

with our previous finding that for the Si- compound there is a bottleneck for energy 

flow at the third tier.

The concepts employed in the present paper also allow the of study statistical
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properties of vibrational couplings. In particular we find that the bottleneck for 

relaxation in the Si- compound is of an accidental nature.

From a statistical viewpoint, an average eigenstate in the (CH3 )3SiCCH molecule 

is no less spread than one in its carbon counterpart; as is obvious from the distribution 

of I, the participation ratio for each of the eigenstates of the two molecules. However, 

when the particular eigenstates that have a non-zero overlap with the light state are 

considered, their participation ratio is significantly smaller than the average for the 

Si- molecule when compared to its C- counterpart. Therefore, while the average state 

is well spread out, the particular light state is localized due to the local lack of well 

resonant states.

We conclude that the faster rate of relaxation in the (CH3)3CCCH is due to the 

fact that the strongest anharmonic couplings (third-order) are large enough for the 

initially localized wavefunction to penetrate the barrier formed by the off-resonant 

states in the initial tiers such that the tiers with high density of resonant states that 

permit the statistical relaxation of the initial excitation can be reached. On the other 

hand, the initial tier structure in (CH3)3SiCCH is such that inspite of the presence of 

a higher density of states in the later tiers, the initial third-order couplings prevent 

the access of the later tiers. The slow (lifetime «2ns) relaxation in (CH3)3SiCCH 

is, therefore, substantially mediated by higher-order (fourth and higher) anharmonic 

couplings.
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Figure Captions

Fig. 1. First six tiers of sequentially coupled zeroth-order states in (CH3)3CCCH and 

(CH3)3SiCCH.

Fig. 2. Logio(Pjt) vs. k for the two molecules. See text for details.

Fig. 3. Logio(Sfc) vs. k for the two molecules. See text for details.

Fig. 4. Histogram of the Participation ratio, Z, for (CH3)3CCCH.

Fig. 5. Histogram of the Participation ratio, Z, for (CH3)3SiCCH.

Fig. 6. Normalized histogram for the two species, plotted on the same curve. Bin 

size for Z is two. (CH3)3CCCH (+) and (CH3)3SiCCH (*).
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Chapter 3

Inhomogeneous Spectra for the Acetylenic Stretch of (CH3)3SiCCH
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Inhomogeneous spectra for the acetylenic stretch  
of (CH3)3SiCCH

Aseem Mehta

Arthur Amos Noyes Laboratory of Chemical Physics,

California Institute of Technology,

Pasadena, CA, 91125

Abstract

Using an assumption of “microcanonical” distribution of energy in an ensemble of 

vibrationally hot (CH3)3SiCCH molecules, the inhomogeneous broadening of these 

molecules is simulated. This inhomogeneous broadening occurs due to the different 

values taken by the anharmonic constants x^. This difference in the x̂ - values causes 

the transition frequency for the further excitation of the vibrationally hot molecule 

to depend on the composition of the vibrationally hot state. Herzberg’s formula for 

the energy levels of symmetric tops is used to calculate a simple approximation of the 

inhomogeneous broadening.
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3.1 Introduction

Broadening of individual lines in vibrational spectra can occur due to homogeneous 

and inhomogeneous effects. The former term is used to describe the situation when 

the state formed by the absorption of a short-time light pulse is not an eigenstate of 

the full Hamiltonian. Anharmonic and other types of couplings can mix this state 

with other zeroth-order states that are dark as far as the absorption of light from 

the initial ground state is concerned. Each molecule has the same spectrum. The 

resulting spectrum can range from a few individual sharp lines to a broad smooth 

contour where the coupling elements between the states and the density of the coupled 

states determine the nature of the obtained spectrum. Inhomogeneous effects occur 

when the molecules have different spectra because of differences in the initial state 

(there is a thermal distribution at any finite temperature) and due to any differences 

in the immediate environment. Thus, the initial state is again not a well-defined 

eigenstate, but is rather a member of an ensemble of states, where the different 

molecules have their total energy distributed differently among the various modes. 

In general, absorption spectrum consists of both components -  homogeneous and 

inhomogeneous, depending on the degree of anharmonic mixing (or IVR)[1].

In this communication, we describe the results of simulating the inhomogeneous 

component of the spectrum in (CH3 )3SiCCH assuming complete absence of anhar­

monic mixing that causes IVR. The only intermode interaction was due to anhar­

monic constants. The experiment that we have tried to simulate is one where some 

amount of energy E  is deposited in the molecule and then the spectrum of the tran­

sition of the vibrationally hot molecule is obtained by the excitation of a single mode 

of the molecule. In this case the distribution of energy in the molecule is assumed to 

be “microcanonical” with the width of the distribution A E E. Such a distribution 

can be created by saturating the 2v\ transition as proposed by Lehmann, Scoles and 

co-workers [2].
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3.2 Calculational Details

Using a quadratic force field and some available cubic and quartic force constants in 

internal coordinates[3], we used the program SPECTRO[4] to nonlinearly transform 

the internal coordinate force field into one written in terms of normal modes. The 

anharmonic constants in normal modes and <t>ijki were used in a perturbation 

theory expression to calculate the Xy values. These values axe used in Herzberg’s 

formula[5] for energy levels of symmetric tops. The cubic and quartic values used 

are given in Table 1. Units for the force constants axe consistent with energy being 

measured in aJ, stretching terms in A and bending terms in radians.

Table 3.1: Cubic and quartic terms in internal coordinates used in the generation of 
Xij values, where, ri =  =C-H; R = C=C; p =  Si-C; X2 =  -C-H; 0  =  CCH 
Force constants axe in A rad units

ijk fijk ijk l fijkl
*1*1*1 -38.0 fiU ^ri 196.0
RRR -40.0 RRRR 536.2
PPP -24.5 rirxRR -1.287
*2*2*2 -33.2 ririrxR -2.663
*l*lR 0.4 riRRR -0.675
riRR -0.193 *i*i00 0.242
*100 -0.202 *iR00 -0.025
R 00 -0.802 RR00 0.137

0 0 0 0 1.752

We assumed that molecules in the ensemble had 6050cm-1 - 6100cm-1 of en­

ergy distributed among the various vibrational modes. This energy is the approxi­

mate value for 2v\, the first overtone of the acetylenic C-H stretch transition from 

the ground state. The inhomogeneous spectrum is then obtained by exciting these 

molecules with some particular frequencies. For our simulation, the final state was 

K  +  1 , 1/2 , . . . ,  Un) where the initial state, |t/i, V2 , • . . ,  vn), is in an energy window of 

6050 to 6100cm-1 . Using Herzberg’s formula for symmetric tops (with 1=0), the
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transition frequency is

u/i =  uji +  Xn{2vx +  1 +  di) +  5 3  x ik(vk +  -£), (3.1)
fc>x 1

where, d* is the degeneracy of the zth mode, and Vi is the number of quanta in the 

zth mode in the initial state.

Our calculation strategy was as follows. Given all the u values and the x„ matrix, 

all the different permutations of the quanta in different modes were obtained, such 

that the state fell within the desired energy window. Once it was established that 

the state was within the energy window, the transition frequency to the state with 

one additional quanta in mode Vi (acetylenic stretch =C-H) was calculated using 

the above formula. All transitions were given equal transition probabilities and thus 

the spectrum was obtained by simply plotting the statistical weight of a particular 

transition against the value of that transition. The spectrum is therefore actually 

a histogram with bins of 0.1cm-1. The important values axe shown in Table 2. 

Results of the calculations are shown in Figs. 1-5.

Table 3.2: Experimentally[6] and theoretically obtained values for the major x ^  
constants where i/i is the C-H acetylenic stretch

i'Jfc Xifc theor. (cm x) x ik experimental (cm L)
C=C-H bend 21.0 21.0
C=C stretch 8.0 n/a
Si-C=C bend 1.68 0.75
Si-C umbrella mode 0.20 0.42

3.3 Analysis of the Spectra

With only a few of the anharmonic constants X\j being large, Table 2, the analysis of 

the spectrum is quite simple. The peaks that have the highest statistical weight are 

those which have the initial state without any quanta in the high frequency modes.
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This assertion may be proved by simply counting the number of permutations possible. 

Thus, the peaks with the most statistical weight start from initial states that have 

Vi =  0. The different peaks in the spectra (given that the number of quanta in v\ in 

the initial state is constant) arise from

Aa;/i =  x ifcA vk. (3.2)
fc>i

Thus, those modes k which have the largest xut are responsible for the largest split­

tings of the inhomogeneous spectra as different numbers of quanta in the A:th mode 

in the initial state lead to different transition frequencies. Most of the Xik values are 

quite small ( 0 - 1  cm-1) and they simply serve to broaden each of the peaks. For u\ 

there are only a few modes with substantial x ^  values. For example, the value for the 

interaction of the stretch with the CCH bend is the largest and is «  21cm-1 . This is 

the origin of the large splittings of about 21cm-1 that can be seen in the spectrum. 

Other major off-diagonal terms with mode v\ include the C-H stretch/CC stretch 

(~8cm -1), C-H stretch/SiCC bend («  0.75 - 1.6 cm-1) and the C-H stretch/CSiC 

umbrella mode («  0.2-0.4 cm-1) and are given in Table 1. The inhomogenous spec­

tra obtained with the aforementioned calculations! strategy for the experimental and 

theoretical xy values are shown in Figs. 1 and 2.

Since there is some uncertainty in the values of the Xi*, we have made various 

calculations with different values for the anharmonic constants. It was interesting to 

analyze one with the Xi* for the C-H stretch/CSiC umbrella mode set equal to zero. 

The spectra for this calculation are shown in Figs. 3-5. The largest splittings occur 

for the anharmonic constant of 21cm-1 , as before, with the smaller splittings due the

1.6 cm-1 constant. Structure due to quanta in the C=C stretch can also be seen in 

Fig. 3 (xufc =  8 cm-1), but the statistical weight here is smaller as this mode is a 

high frequency mode.
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3.4 Concluding Remarks

In this communication, we have described inhomogeneous spectra of absorption of 

light in the CH acetylenic stretch in (CH3)3 SiCCH with energy E  «  6000cm-1. 

Results are shown in Figs. 1-5. In the simulation, a complete absence of anharmonic 

mixing of anharmonic modes leading to IVR was assumed. We expect that the “real” 

spectrum will be different due to some effect of intramolecular vibrational energy 

exchange. It was shown by Stuchbrukhov and co-workers[l] that IVR results in the 

collapse of the inhomogeneous width by a mechanism similar to “motional narrowing.” 

Thus, we may expect the spectrum to be narrowed by IVR. Perhaps each of the band 

corresponding to different number of quanta in the CCH bend (bands separated by 

21cm-1) will be narrowed to some extent, however the complete collapse of the whole 

spectrum into one band is unlikely.
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Figure C aptions

Fig. 1. Spectrum based on a calculation that utilizes all the experimental values 

(Table 2) including the one for the C-H stretch/C-Si-C umbrella mode. Since the 

C-H/C=C value is not available experimentally, a theoretical value (8.0 cm-1) is 

used.

Fig. 2. Spectrum based on a calculation similar to that for Fig. 1 obtained by using 

the theoretical values of x,-j (Table 2). The C-H stretch/C-Si-C umbrella mode spt 

value has been set to 0.42 cm-1.

Fig. 3. Spectrum obtained from a calculation identical to that for Fig. 2, but the C-H 

stretch/C-Si-C umbrella mode anharmonic constant has been set to zero. This allows 

the individual peaks due to different number of quanta in the SiCC bend (separated by

1.6 cm-1 , the theoretical value for the C-H stretch/SiCC bend anharmonic constant) 

to be seen.

Fig. 4. Same as Fig. 3, but rescaled so that the difference in the statistical weights 

of the peaks that arise from v\ =  1 and v\ =  0 is more easily observed.

Fig. 5 Same as Fig. 3, but both the x and the y axes have been rescaled so that the 

fine structure can be seen. In this figure, the 1.6cm-1 splitting of individual peaks 

can be seen. Also seen, as shoulders to peaks axe the lines that arise from quanta in 

the C =  C  stretch.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

Figure 1

CN
II
«
u  
u>

X
a  
u

> °

a
o
u>

cm
rOa

uu

o

aou>

. 0 1

eo

; l)6j3m  |D3i; s !*dis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

En
er

gy
 

(



44

Figure 2
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Figure 3
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Figure 4
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Figure 5
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C hapter 4

IVR in Overtones of the Acetylenic C-H Stretch in Propyne 
(Appeared in : J. Phys. Chem. 99, 2677 (1995))
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Reprinted from The Journal of Physical Chemistiy, 1995,99.
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IVR in Overtones of the Acetylenic C—H Stretch in Propyne 
Aseem M ehta, A. A. S tuchebrukhov , 3 and R- A . M arcns*
Arthur Amos Noyes Laboratory o f Chemical Physics.* 127-72. California Institute o f Technology,
Pasadena. California 91125

ReceivedOctober 4.1994; In Final Form; November 29. 1994*

Quantum calculations are reported for the high-resoludon spectra and dynamics of the Gist and second overtone 
of the acetylenic C—H stretch (vt) in propyne. The calculadonal method used is similar to that we have used 
earlier for lower energy states. Lack of low-order Fermi resonances lead to a  vibrational superexchange 
mechanism of decay of the initially populated bright state. The importance of the total density of states and 
quartic couplings between zeroth-order states is investigated. Comparison with recent experimental results 
is discussed.

L Introduction

In previous papers1-2 we considered the vibrational spectrum 
and the corresponding intramolecular vibrational relaxation 
(IVR) of the fundamental and first overtone excitations of the 
acetylenic C—H stretch in (CXabYCCH molecules using a tier* 
structure formalism. In one of the articles.1 analysis of an 
approximate molecular Hamiltonian for the acetylenic stretch 
fundamental excitation in (CHihCCCH provided a Lorentzian- 
Iike line shape, with a fwhm (full width at half-maximum) equal 
to 0.03 cm-1, in agreement with experimental results. The 
Fourier transform of the calculated spectrum corresponded to a 
slow but statistical decay occurring out of the acetylenic stretch 
fundamental excitation on a time scale of =200 ps. The 
slowness of this decay time might have been considered 
surprising due to the fact that the density of states for this 
molecule at the given energy is high.3 Within the tier formalism 
with cubic anharmonic couplings in normal coordinates between 
states in adjacent tiers, the slowness of the relaxation (narrow­
ness of the spectrum) was found to be due to a lack of direct 
low-order Fermi resonances, leading to a vibrational superex­
change (or dynamical tunnelling) mechanism. In the latter the 
bright state decays into a degenerate vibrational quasicontinuum, 
mediated by off-resonant virtual transitions. As described in 
refs 1 and 2 . this mechanism may be understood in terms of a 
tunnelling of trajectories in phase space through a dynamical 
barrier. In the spectroscopic description, the extensively off- 
resonant nature of the states directly coupled to the bright state 
leads to a narrow spectral line.

In the present paper, the methods described in these articles 
are applied to overtone states in a smaller molecule, propyne 
(HjCCCH). prompted by recent experiments.0  Excitations 
involving the acetylenic C—H (vi) stretching modes were 
studied. The bands analyzed are 2v, and 3vj.

Experimentally. I^ehmann, Scoles, and co-workers have 
investigated the latter of these two bands in a study to explore 
the spectroscopic differences of nearly pure state 3vj and the 
combination mode vi +  2 vs that has energy already partly 
distributed.4 The high-resolution spectra of these bands, 
incorporating the details of the splitting of a single line due to 
anharmonic interactions, indicated, in a temporal description, 
that the rate of relaxation of the 3vr state is faster. The 
difference in the density of states was not considered to be large 
enough to explain the anomaly, the 3vi and vi +  2 v« states

'Permanent address: Depjnmmt of Chemistry, University o f Catilorma, 
Davis, CA 95616.

1 Contribution No. 8991.
* Abstract published in Advance ACS Abstracts, February 1.1995.

0022-3654/95/2099-2677$09.00/0

being close in energy. The 3 v( ( f  =  0) stare, in a narrow 
spectral range of 0 .1 cm-1  studied experimentally, showed 
several lines, while the vi +  2 v6 state in a similar spectral range 
showed only one line.

Perry and co-workers have investigated the 2v\ and the nearly 
isoenergetic vt +  v6 bands3 and found that the spectra of 
individual J, K  states are split. For low K  states the splitting is 
small and the spectrum in each case consists of one major peak 
surrounded by a few small peaks, each of which has an 
amplitude o f less than 10% of the main peak. The available 
data hints at a larger number of perturbers for the pure overtone 
2 vt than for the vi +  vs band. In the present paper we present 
the results for the 2vt and the 3vt bands.

For the calculated relaxation, our analysis yields a behavior 
of die 2 vt and 3vt states that follows a vibrational superexchange 
mechanism, due to the lack of low-order Fermi resonances. The 
decay is governed, thereby, by the few directly coupled off- 
resonant states that provide virtual couplings.

The calculated IVR  characteristics are quite different at the 
two energy scales. At the lower energy, about 6000 cm-1, we 
find the beginnings of some perturbations to the regular spectra 
due to interactions with bath states. However, the energy is 
still mainly localized in the bright state. On the other band, at 
about 9500 cm-1, there are available to the bright state a large 
enough number of quasi-resonant states such that real statistical 
IVR can occur leading to irreversible decay (modulated by some 
quantum beats) of population out of the bright state.

IL Tier Model
The tier model has been described elsewhere. 1 The Hamil­

tonian is written in normal mode coordinates as

H ~  iZ  W«t*+ P f r  + TtS +
2  i 3 lyjfc

+ ~ (1)
4  lijx t

The energy of each of the zeroth-order states in the basis set is 
calculated using the expression6

E (v ,, v .„ v „ )  -  Ezpg =  Yv <u(v( +

( VA  *A\
0>

where di is die degeneracy of the fth mode. The intermode 
coopting is due to nondiigonal inharmonic terms in eq 1.

O 1995 American Chemical Society
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TABLE 1: Limited Number of Cubic and Quartic Force 
Constants in Internal Coordinates for Propyne Included in 
the Nonlinear Transformation into Normal Coordinates*

ijt u ref ijtl ref

S A S , —38.35 10 S A S A 196.0 10
SjStSt -10923 10 S A S A 5362 10
S fSA 0.40 10 S iS iS A -1 2 8 7 10
SiSiS, -0.193 10 S A sS A -2.663 10
SiSwSio -0 2 0 2 10 S A S A -0.675 10
S^tioS\o -0.802 10 StSA cSut 0242 10
SASi -2 6 2 0 11 S A S tA a -0.025 10
SiSiSi -18.67 12 S d d iftln 0.137 10
S& St . -12.70 12 SioSioS\oSio 1.752 10
SiSiSi -0-33 12 2 i2 i2 |5 i 50.0 12
S A S , - 0 2 9 12 S A S A 75.0 12
StS iSi -0.18 12 S A S A 52.0 12
S ,S A -1 6 2 6 12 S ,S A S i. 37.0 12

•5, are symmetric internal coordinates as defined by Duncan in ref. 
9. Force constants are in A rad units.

The nondiagonal anharmonicity terms q/q/lt couple different 
zeroth-order states in the Hamiltonian and are written in terms 
of creation and annihilation operators. Starting with the bright 
state, and with the <p,,i values available, the qfyq* operators are 
used to generate states in further tiers. The states ate kept within 
specified energy windows, and they are accepted or rejected 
on the basis of an artificial intelligence (AI) search method. 
This search method is used to select the states that are important 
in the relaxation while keeping the problem computationally 
tractable. States that are highly detuned in energy from the 
bright state or are coupled with a small matrix element do not 
contribute to the relaxation and are discarded during the AI 
search using an evaluation function that has been described in 
ref 1.

The anharmonic constants in eq 1 are obtained by the 
transformation of empirical force fields in internal coordinates7 
into normal coordinates. These empirical force constants (in 
internal coordinates) are transformed nonlinearly into normal 
coordinates using the software package due to Handy and co­
workers (SPECTRO).*

The empirical anharmonic fotce field used for these calcula­
tions is the quartic fotce field in internal symmetry coordinates 
from refs 9—12. The quadratic part of the force field from ref 
9 was fit to some approximations of the harmonic frequencies 
(cu.'s) rather than the energies of the fundamental transitions. 
The quadratic force field and the most important (and available) 
cubic and quartic force constants (Table 1) were used as input 
into the routine SPECTRO. The latter nonlinearly transforms 
the internal coordinate fotce field into a normal coordinate force 
field and calculates, by a perturbation theory expression, the 
(3A/-6)(3A/-6) anharmonic constant matrix x^. These constants 
are used to calculate the energy of each state in eq 2. The 
calculated 4>ijt values are used to evaluate the coupling terms 
between zeroth-order stales in adjacent tiers. We note again 
that the wave functions of the zeroth-order states were those of 
a multidimensional harmonic oscillator, but their energies were 
corrected using eq 2 .

A Morse oscillator function for the C—H acetylenic stretch 
has also been used by some investigators in their calculations. 
We calculated the matrix elements between zeroth-order states 
using Morse wave function selection rules and found that even 
at the 3v, level (9500 c m '1; D ,(»C -H ) as 35 000 cm '1) the 
zeroth-order wave function can be well approximated by a 
harmonic oscillator without the introduction of significant error 
(£  10%. typically). Therefore, all the calculations reported used 
harmonic oscillator basis functions. The energies of the zeroth- 
order states were however, obtained from eq 2.

Due to the tractable size of the molecule, an ab initio 
calculation of propyne was also performed with Gaussian 92-u 
This calculation, with a 6-31G* basis set at the restricted 
Hartree—Fock level, generated quadratic and cubic force 
constants in Cartesian coordinates. These constants were 
transformed linearly into the normal-coordinate-based <(>& values. 
The latter were, in urn. used to couple the harmonic oscillator 
zeroth-order states. The cubic force constants obtained from 
ab initio calculations are complete at the given level of theory 
and can be used as an approximate test o f the force field in 
internal coordinates that (at cubic and higher levels) had been 
cobbled together from various sources. The latter pieced- 
together fotce field is necessarily incomplete since all the cubic 
internal coordinate force constants are not known. The ab initio 
force field was used only as a qualitative check on the empirical 
force field. The results presented in this paper are all from the 
empirical force field.

Due to the higher energy (ffvj-Ezpe 85 6000 or 9000 cm"1) 
of the states analyzed, when compared with our study of the 
fundamental stretch in (CHjhCCCH (E(v)-Ezpe ~  3000 cm-1), 
we have found that some quartic couplings have to be included 
if the model is to realistically model the actual physical process. 
This point is elaborated upon later. There are numerous 
unknown or only crudely estimatable quartic force constants 
biju- We have included their effect in the tier structure in an 
approximate way by assigning a coupling element, chosen as 
indicated below, to the coupling of states |i) and [/) in tiers 
differing by two (e.g., tier n and tier n +  2 ) if  the quantity 17,. 
defined by

(3)

is less than or equal to 4. Here, vj is the number of quanta in 
the h h  oscillator of the rth state.

It should be the noted that the terms coupling states in 
adjacent tiers (also referred to as matrix elements since they 
are the off-diagonal terms in the vibrational Hamiltonian) differ 
from the matrix element term used in some o f the experimental 
papers. The latter arise in the Lawrance—Knight1* deconvo­
lutions of spectra and are approximately related to the super­
exchange matrix element (0| V|i) in the present formalism via a 
penurbauon-theory-based expression such as

<0|VW ~V0I (4)

there being a sum over the various superexchange paths 
connecting |0) and |fc). There is, of course, a  large difference 
in the magnitude between the superexchange “matrix elements" 
(0|V|fc) when compared with the values of V0i. etc.

The importance of including a final tier with a high density 
of states (when a high density of states exists for the given 
molecule at the energy in question as in propyne at 9000 cm-1), 
so as to approximate the real total density of states of the dark 
states, was established in ref 2. We make the same addition 
here in the calculations. The total number o f added states that 
model the quasi-continuum vary from 600 to 1 0 0 0  in an energy 
window of 3—5 cm-1, such that the total density of states is 
approximately 200/cm-1. The latter is slightly higher than the 
density of states estimated for propyne (150/cm-1) with the 
correct symmetry at the specified energy (a^OOO cm-1). The 
slightly higher value is used because the interaction of the states 
in the finite final tier with the previous tiers leads to the repulsion 
of sotne of the final tier states into a larger window. The matrix 
element with which these final tier states are coupled to states
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>691 9692

>y {cm"')
Figure 1. Spectrum corresponding to the 3vi band for CHjCCH- No 
quartic couplings or final tier of dense states is added.

in the previous tier is estimated from the average cubic coupling 
between states in previous tiers. Each state in the final tier is 
coupled to a single state in the previous tier.

The states in the final tier are placed randomly, and the 
robustness of the calculation with respect to this random 
placement and to the approximate magnitudes of the quartic 
coupling values is explored below, where some typical results 
are given.

HL Results

3.1. 3vi. a. No Quasi-Continuum. With the above algo­
rithm for generating the sequentially coupled model with a given 
bright state, the tier structure was generated with the bright state 
containing three quanta of energy in the acetylenic C—H stretch. 
The pure normal mode wave function of the zeroth-order bright 
state is denoted by |0 o). with its energy having been corrected 
using eq 2. Experimentally, about five peaks were observed in 
an energy window of approximately 0.1 cm-1  (for T  =  0). This 
number corresponds to at least a minimum of 30 states/cm-1  
coupled well with the bright state, since some peaks may have 
been in the signal/noise background and so not observed. This 
density of states of 50/cm-1 is on the same order as the 
calculated total density of vibrational states (150/cm-1) with 
the correct symmetry.4 Using the previously described AT 
search method, a total of 1048 “well-coupled” states in 10 tiers 
were selected within a large energy window of 300 cm- 1  for 
each tier. Diagonalizadon of this vibrational Hamiltonian with 
only cubic couplings resulted in a spectrum.

m  = Xl<V'i°VlV\>l2<5(w -  E)
= Xl<V'“ lAl4>o)lJK-l>olV'i)l2<5(<y “  E) 

s
=  c£l<0olV'i>l2<5(tu-£1) (5)

dominated by only one peak (Figure 1). for which failV'i)2 **
0.9. for some i. Here the |0 i) form a complete set of 
eigenfunctions and c is a constant In deriving eq S. we have 
assumed that there is only one zeroth-order state. |0 o) (the bright 
state), that has a nonzero matrix element of the type (0 oUf|0 *“ >, 
where ft is the dipole moment operator and | yF*) is the initial 
vibrational state (experimentally, it had one quantum in V|).

b. Quasi-Continuum Added. To simulate the presence of 
the high density of nearly degenerate states that are well 
separated in phase space from the bright state, a single, dense 
tier of quasi-degenerate states was then added to the fiml (here.

0O

0
5°
1 .

6

9692
&*rgy {cm*’)

Figure 2. Spectrum corresponding to the 3vi band for CHjCCH 
showing the transformation (from Figure 1) due to the final tier of 
resonant states and quartic couplings.

tenth) tier with a density of states such that the total density of 
stales approximates the actual value. One thousand states, 
randomly placed in a window of size 3 cm-1, were coupled to 
states in the tenth tier with matrix elements estimated from the 
average matrix elements in previous tiers. This addition of a 
quasicontinuum yielded no observable change in the spectrum.
i.e. yielded a spectrum similar to Figure 1.

c. Addition o f Quartic Terms. Upon the inclusion of small 
quartic terms that couple the states in the manner described 
above (by the calculation of r]v) and without the addition of the 
final dense tier of states, the amplitude of the major peak 
diminished slightly (to 0.73), with the remaining amplitude being 
distributed over spectral lines in a large energy range (= 1 0 0  
cm-1). When the final tier of states was added to this cubic- 
and quartic-coupled Hamiltonian, the spectrum was transformed 
from one where there is a single dominant peak to a more 
fractionated type (Figure 2). The single peak of previous 
calculations split into a few (three to six) “major” peaks within 
an energy range of 0.07—0.13 cm-1. The details of the 
calculated spectrum, however, depended upon the particular 
random choice of the energies and the coupling terms of the 
states in the final tier.

d. Time-Dependent Behavior. It is useful to compare the 
autocorrelation functions of the spectra (survival probability pdf) 
of the bright state) with and without the extra tier present and 
with and without quartic couplings:

P „ «  =  l<0ol0tt>l2

=  iS i ^ o iv o i V ^ i 2 (6)

where 0 (f) is the wave function at time t which evolves from 
do (po(0) is unity). The right-hand side of eq 6  is proportional 
to |/I_f(a»)e*‘Mdr|J, where l(ai) is given by eq 5. As 
indicated by the spectrum (which is dominated by a single peak 
of =0.9. of which the autocorrelation function is the Fourier 
transform), pdf)  remains constant for a time of up to 1 ns at a 
high value (0.8—05) when only cubic couplings are utilized. 
The same type of result is obtained upon the addition of the 
final dense tier of stares. With the inclusion of quartic couplings 
but without the extra tier, the survival probability shows instead
a rapid oscillatory decay to = 0 .6  on a femtosecond time scale 
(Figure 3), because of the few well-coupled nomesonant states 
in the initial tiers, due to direct cubic and quartic couplings. It 
thnw remains highly oscillatory and, on average, constant.
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to*}

Figure 3. Survival probability (of the bright state) when quartic 
couplings are utilized without the final tier.

roc «cc s:c sco ’ooo :233 '*;c «oo -sao 200C
(p i )

Figure 4. Survival probability corresponding to spectrum in Figure 
2.

Upon the addition of the extra tier to simulate the actual presence 
of the quasi-continuum, the high-frequency oscillatory behavior 
is accompanied by smooth decay of the population into the 
quasi-continuum (Figure 4). The time scale of this decay is a 
few (two to six) hundreds of picoseconds.

Dynamically, therefore, the addition of the quartic couplings, 
but no quasi-continuum, changes the autocorrelation function 
from essentially no decay into one where there is fast femto­
second time scale decay of the autocorrelation function to about 
=0 .6 , which then, on average, remains constant but is ac­
companied by a large number of high-frequency components. 
Addition of the final her of dense states causes real decay to 
occur. This finding confirms our previous conclusion that the 
fine structure and the irreversible relaxation of the first several 
overtones are due to the very high-order superexchange anhar­
monic couplings.

From the spectral viewpoint, the high-frequency components 
of the autocorrelation function, which dominate the subpico­
second dynamics, appear as small peaks far from the
main peak. These spectral components that are detuned from 
the main peak appear due to the presence of a few nonresonant 
states in the initial tiers that are well coupled to the bright «an», 
which also cause the subpicosecond decay of the autocorrelation 
function to =0.6. Experimentally, they might be very difficult 
to resolve due to their large distance from the main peaks as 
well as signal-to-noise limitations. There is, however, no reason 
for them not to occur. The smooth but not single-exponential 
decay appears spectrally as the splitting of the main peak into 
a few reasonably strong peaks within a small energy window.

e. Robustness o f the Calculation. We have examined the 
robustness of the calculation. The quartic coupling constants 
were added as a random coupling between 0  and some 
approximate maximum value. In the final dense tier of states, 
the energies o f the states were random within a given energy 
window. The matrix elements coupling states in the final dense 
tier with the previous tier were also random between 0  and 
various maximum values IV ~ . =  5—30 cm-1)- In Figure 5, 
results are presented from simulations with different random 
realizations of these values. The figure shows that while the 
details of each calculation may differ, the physically relevant 
picture of splitting of the main peak into a few peaks within an 
energy range o f  abont 0.1 cm-1  remains unchanged. In Table 
2, we present some statistics about each of the five spectra that 
have been presented in Figures 2 and 5. The numbers presented 
are quite representative. The quantity T in Table 2 is defined 
by

-  v)2

r * = - -------------  (7)

2>.i

where v =  and />, =  [<̂ olW«)l2- These statistics have
been calculated not over the whole spectrum (in which case 
the denominator in eq 7 would have beat unity) but ova a small 
window that includes just the main clump of peaks in the figures. 
Also in Table 2. we present the number of major components 
in the spectra, where a component is considered major if 
l(fol¥'<)l2 -  0.005. which is about 1—2% of the major peak. 
The window in Table 2 refers to the energy range in which 
these major components occur.

These results are qualitatively similar when the statistics of 
different spectra are compared but there is enough scatter in 
the data that no quantitative judgements can be made. T can 
be considered to be a rough estimate of the discrete counterpart 
of the fwbm and the calculated values of a few hundred 
megahertz are in agreement with experimental values for such 
molecules. 1

3.2. 2vt. The Hamiltonian matrix of the tier structure was 
generated utilizing the algorithm described above. The energy 
window for each of the 10 tiers is S00 cm-1, and 437 well- 
coupled zeroth-order stales form the basis set. Diagonalization 
of this Hamiltonian matrix with only cubic couplings resulted 
in a spectrum for which the amplitude of one of the peaks was 
greater than 0.999. Upon relaxing the AI criterion for state 
selection, a larger Hamiltonian matrix with 1317 basis set states 
was also analyzed with no change in the spectrum. This result 
indicates that the scheme of selecting only the most important 
states has captured all the physically relevant details of the 
spectrum as far as the cubic couplings are concerned. The 
complete dominance of a single peak in the spectrum shows 
that there is no interaction of the bright state with the bath states 
in the cubic Hamiltonian. Upon the addition of small phenom­
enological quartic couplings between states separated by one 
tier as described above and the addition of a final tier of states 
with the appropriate density of stales we find that the main peak 
split slightly. However, the spectrum was still dominated by a 
single peak that bad an amplitude of 05 . The rest of the 
amplitude was distributed in weak daughter  peaks around the 
main peak. Also, there were some peaks detuned more than a 
tenth of a wavenumber due to the direct quartic couplings. In 
Figure 6  we give a typical example of the slight splitting that 
occurs due to the quartic couplings and the final d a  (note the 
considerably expanded, logarithmic, scale).
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Figure 5. Spectra corresponding to the 3vi band for CHjCCH with different random realizations of the final her of resonant states and quartic 
couplings.

TABLE 2: 
and 5

Statistical Properties of the Spectra in Figures 2

T (cm '1) T  (MHz) no. of components window (cm- *)

I 9691.33 0.013 402 5 0417
2 9691.07 0.029 774 9 0.07
3 9691.16 0.009 255 S 0.02
4 9691.27 0.021 639 6 0.13
5 9691.67 0.010 285 6 04)2

iS70
tw t r  (O""')

Figure 6. Spectrum typical of the 2vt band with quartic couplings. 
Note the log scale for the ordinate.

IV. Discnssiou

4.1. 3vi. The first result to be considered is that the pore 
cubic Hamiltonian without the final tier does not result in any 
splitting of the individual spectral line. This result is not 
surprising since a near degeneracy of two or more states is 
needed, as a necessary though not sufficient condition, to

distribute the intensity of the bright state among two or more 
major peaks, and the density of states for that calculation is far 
lower than the real value. For this first result the density of 
states was approximately 2/cm-1, compared with the actual 
value of 150/cm-1. Similar results have been obtained for other 
calculations modeling the excitation of the acetylenic stretch 
in different molecules.2 However, unlike the situation in ten- 
butylacetylene where the addition of an extra tier for the 
fundamental C—H stretch causes the single line to have a 
Lotentzian line shape,2 the final tier (with a density of states 
appropriate to the 3vi excitation energy in propyne) did not 
affect the spectrum. The total superexchange coupling of the 
bright state to the dense (phenomenological) tier was therefore 
so small that the states in the dense tier remained, in effect, 
uncoupled to the bright state.

Indeed, it has been shown previously2 that while the presence 
of the total density of states in the tiers is a necessary condition 
for calculations to correctly simulate statistical or near-statistical 
IVR behavior, it is not a sufficient condition. Equally important 
is the correct description of the initial tiers as they govern the 
overall decay. It may be recalled that the lifetimes of various 
different initial states can be inferred from the analysis o f only 
a few initial tiers. 1 Here, the above mentioned results regarding 
the spectrum indicate that a correct description of the IVR of 
this bright state (at a higher energy than the states previously 
analyzed) requires the inclusion of terms higher than cubic in 
the Hamfitooian. In this way the superexchange matrix element 
to the states separated by a  large distance in tier space will be 
larger. The next higher order of coupling beyond cubic consists 
of the quartic terms in the Hamiltonian. The procedure used 
to include such rm w  was described in a previous section. We 
note that the basis set initially used for the cubic couplings
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remains the same when the quartic couplings are introduced. 
The states in tier n that can be coupled to states in tiers n +  2 
via terms of the type qftqtqt are assigned an off-diagonal matrix 
element.

The importance of including quartic couplings for intramo­
lecular dynamics of overtone states was observed previously 
by Zhang and Marcus. 13 We next sketch bow the inclusion of 
the quartic terms in the Hamiltonian can significantly increase 
the total coupling of overtone bright state. If the couplings are 
limited to third order, then the coupling between the bright state 
and the first tier is similar for vi, 2vt, and 3v( since the only 
cubic coupling terms possible will annihilate one quantum of 
v, (which is the highest energy oscillator) and create two others 
such that v; == v/ +  vr  The matrix elements that couple the 
bright state to the first tier for the fundamental as compared to 
the different overtone bands differ by a small multiplicative 
constant, due to the selection rules for harmonic oscillator wave 
functions. However, the number of states in the first tier and 
the approximate detuning of those stales is roughly independent 
of whether the bright state is the fundamental band or an 
overtone. Consideration of higher order couplings modifies this 
picture. For the overtone states, application of the q/qiqfii and 
9A<VhAi type of operators upon the bright state creates the 
additional couplings of fourth and fifth order, respectively, since 
more than one quantum in the initially excited state is available 
for annihilation. These quartic and quintic couplings have no 
effect on the bright state in the fundamental band, but their 
presence in the overtone bands significantly increases the overall 
coupling of the bright state to the bath and increases, thereby, 
also the superexchange matrix elements to the dense tier of states 
since, at the higher energies, states with some negative Av’r 
can be coupled. These facts describe one role for quartic 
couplings in the calculations attempted for states at higher 
energies. Although a realistic modeling of the fundamentals 
in other molecules was possible when only the cubic couplings 
were included, 1-2 the present results show that, when higher 
energy states are considered, the use of only the cubic couplings 
underestimates the superexchange coupling of the bright state 
to the states in distant tiers. The increasing importance with 
energy of such higher order couplings or, in other words, the 
poorer pure cubic coupling picture of IVR is, therefore, 
indicated.

We consider next the small peaks that appear detuned to a 
relatively larger extent in energy in the spectra upon the addition 
of these quartic couplings. Upon the addition of the quartic 
constants, the spectrum dominated by a single peak splits to 
form some small peaks over a large energy window with most 
of the amplitude still being in the main peak. This result 
signifies that the coupling of the bright state to the states in the 
initial tiers has increased. As mentioned earlier, it is these 
couplings that control the total coupling of the bright state with 
the near-degenerate states that are separated in phase space. That 
the addition of the quartic couplings significantly increases this 
superexchange coupling is measured directly when a final tier 
of states is added along with the quartic couplings. Unlike the 
pi.~vious result, where without quartic terms the final tier made 
no difference, this time the single peak splits into a few peaks 
(Figures 2 and S). The small peaks are due to the direct (and 
weak) coupling of the bright state with states in the initial tiers 
that are usually highly detuned. Experimentally these peaks 
have not been identified, since they appear on a energy scale 
greater than the scale investigated experimentally, 1—2  cm-1, 
and their calculated intensity is small. Such small peaks in the 
wings have also been identified in calculations and riitru«wl 
by Gruebele and co-workers. 16

Mehta et al.

Although the approximations inherent in the present model 
calculations preclude a one-to-one correspondence o f the peaks 
in the experimental and theoretical spectra, there is a qualitative 
similarity between them, both in the number of peaks and in 
the approximate energy range (0 .1  cm-1) over which they 
appear. The autocorrelation function shows a lifetime on the 
order of 300 ps. The mechanism that governs the physical 
process is again a vibrational superexchange coupling mecha­
nism. This long smooth decay in Figure 4 is typical of the 
calculated relaxation of acetylenic stretches even though recur­
rences are not precluded. It may be recalled that one of the 
features of the acetylenic C—H stretch fundamentals and 
overtones was the absence of any direct low-order resonance. 1-2 
The states in the initial tiers were mostly all off-resonant and 
provided a virtual state mechanism (superexchange) for transi­
tion into the resonant states that were well separated in the phase 
(or quantum number) space of the molecule.

4.2. Other Spectral Bands. Due to the smaller density of 
available states at the given energy, the calculated spectra are 
mainly dominated by a single peak with some small daughter 
peaks arising due to quartic couplings. The final tier of states 
does not play a major role in the IVR. This IVR is not statistical 
and may be considered at the beginning of the intermediate 
stage. The results for the vi +  2vs band are not adequately 
treaied by the present formulation, which should be regarded 
as a first step. For this band, and for 3vt, a more elaborate 
treatment would omit the x,j terms and use. instead, a more 
elaborate force field and, perhaps, include vibration—rotation 
couplings.
V. Conclusion

We have calculated the spectral features of the first and 
second overtones of the acetylenic C -H  stretch in propyne that 
arise from the anhannonic coupling between harmonic zeroth- 
order states. The energy and the couplings of the basis states 
are calculated from an empirical potential energy function.

We find that due to a lack of direct Fermi resonances, the 
C—H stretch decays into the dark vibrational states by utilizing 
the low-order off-resonant states that are available. Our results 
are qualitatively similar to the experimental ones. We show 
that the inclusion in the potential of terms higher than cubic is 
necessary for a conect representation of the spectrum. The 
calculations show that the initial couplings of the two bright 
states are both off-resonant in nature and provide the virtual 
couplings to available near-resonant states. Upon the inclusion 
of a final tier of states with the appropriate density of states, 
we find that the first overtone remains spectrally pure with one 
dominant component, whereas the second overtone spectrum 
consists of a few major components due to the availability of a 
higher density of states. In a temporal description, the presence 
of a higher density of states in the second overtone allows for 
the initially excited state to decay statistically, whereas the initial 
excitation remains more localized in the first overtone.
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Abstract

In this report a periodic boundary conditions (PBC) implementation of aqueous sol­

vent dynamics is described. The dynamical behavior of TIP4P, rigid water molecules 

is obtained through the molecular dynamics (MD) calculation for 256 water molecules 

and a small “atomic” solute confined in a cubic box. The interaction potential con­

sists of a Lennard-Jones part and an electrostatic part that is implemented using 

the Ewald sum technique. The results obtained compare favorably with previously 

reported simulations. The structural properties of the solvent are checked using the 

radial distribution functions and the solvation properties are obtained from the solute- 

solvent interaction energy from non-equilibrium and equilibrium simulations.
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5.1 Introduction

Most chemical processes occur in the condensed phase. With the solvent being ubiq­

uitous, it can and does play a major role in the rate of chemical processes. The 

nature of the solvent structure and its effect on and response to chemical change is a 

fundamental problem in chemical physics. The effect of solute-solvent interaction in 

reactions is made complicated because the reaction coordinate as well as its coupling 

to the solvent motion have to be well characterized. These complications make both 

the experimental and theoretical studies of processes in the condensed phase quite 

involved. From chemists’ point of view, the solvent has sometimes been characterized 

by either its static dielectric constant or by parts of its dielectric response function 

e(uj). Such characterizations, naturally, consider the solvent as a dielectric and ignore 

its molecular nature. For fast chemical processes in solution the molecular nature of 

the solvent may be important at small distances from the solute.

The solvent dynamics around a solute may play an important role in the determi­

nation of reaction rates in the condensed phase. Recent experiments by Zewail and 

coworkers regarding the cis-trans isomerization in stilbene surrounded by a variable 

number of hexane molecules as the bath hint at interesting dynamical and kinetic 

phenomena[l]. This problem has been investigated via a modified Kramers’ type 

of formulation to obtain reaction rates[2] when the motion along the reaction co­

ordinate is being retarded by a frictional force. Electron transfer reactions in the 

condensed phase constitute another example where the nature of solvent dynamics is 

sometimes critical in determining the rate of the overall reaction[3, 4, 5]. In classical 

electron transfer theory, the expression for the outer-sphere reorganization energy 

takes the solvent as a dielectric continuum that is defined exclusively by its dielectric 

constants[6]. The accuracy of this assumption governs, to a large extent, the accu­

racy of the rate expression as a whole and, here, analysis of the solvent motion can 

be useful.

Molecular motion being very fast, only very recently have experimentalists been 

able to study the fast solvent response to a change in the solute’s electrical proper­
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ties with the availability of fast lasers. Such lasers have spurred the investigation of 

solvent-solute systems in gas phase (in the form of clusters in molecular beam ma­

chines) and in the condensed phase. These new techniques have uncovered the faster 

time-scale components in solvent dynamics that were previously hidden. Here we refer 

to the work of Zewail[l], Fleming[7], Yoshihara[8], Maroncelli[9] and Barbara[10].

These experimental advances have been simultaneous with new theoretical ap­

proaches to this problem. Analytically, Wolynes has introduced[ll] the MSA (mean 

spherical approximation) and Bagchi and coworkers have used[l2] the GLE (General­

ized Langevin Equation) approach. Also, the availability of fast desktop workstations 

has led to good molecular dynamics (MD) calculations that have also shed light on the 

very short timescale dynamics that is primarily governed by the molecular nature of 

the solvent. Some recent computational contributions have been made by Warshel[13], 

Carter and Hynes[14], Maroncelli[15], Jorgensen[16], Rossky[17], Hidalgo[l8] and 

Stratt[19]. These calculations have, generally, implemented molecular dynamics with 

periodic boundary conditions (PBC) and the Ewald sum[20] has been utilized to 

approximate the coulombic contribution out to infinity in the case of polar solvents.

Computationally, a handful of techniques have been used for simulating liquids. 

Some of the initial calculations used clusters of particles with two body Lennard- 

Jones type of interactions to characterize the solvent. This technique is useful for 

non-polar molecules such as noble-gas atoms[21]. For polar solvents a more involved 

formalism is required as the potential function that governs the interactions is long- 

ranged, decaying slower that r-3. Typically, studies have utilized the Ewald sum to 

account for the long-range forces by doing the calculation in Fourier or reciprocal 

space within the PBC formalism[15]. Furthermore, some investigators have modeled 

the liquid as a large cluster[22, 23]. It is also possible to utilize the reaction field 

method to account for the long range forces[24, 25]. However, to date this has not 

been the method of choice.

In the PBC formalism the molecules representing the solute and the solvent are 

usually confined to a cubic cell and periodic boundary conditions are enforced. For 

solvent dynamics calculations, we are usually interested in a solute surrounded by
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a large number of solvent molecules. Realistically, as the solute imposes its own 

field on the solvent, the system as a whole is not isotropic. This anisotropy may 

be particularly important for a charged solute with a polar solvent. However, with 

periodic boundary conditions a quasi isotropy is artificially enforced. This isotropy 

occurs because the unit cell is infinitely replicated, causing an unphysical change of 

sign in the solvent’s polarization at the cell edge. Although this isotropy may be 

correct for simulations of a bulk liquid, where there is no solute to impose its field 

and so the solvent is not polarized, it could introduce significant error when solutes 

with specific charge distributions and their interactions with polar solvents are being 

studied, unless the cell size is sufficiently large.

We have recently implemented a method for solvent dynamics calculations that 

utilizes a reaction-field (RF) formalism, where a cavity containing the solute and some 

solvent molecules is surrounded by a dielectric continuum[26]. This method, by defi­

nition, does not enforce a quasi-isotropy and utilizes the fact that after some critical 

distance the solvent’s molecular nature may be replaced by a dielectric continuum. 

Some of the issues that we wish to address are : 1) the range to which the molec­

ular nature of the solvent is important, 2) whether using a non-periodic formalism 

such as a cavity in a continuum is feasible, and 3) how the calculations using the 

reaction-field formalism compare with the results from the PBC calculations. To ad­

dress these questions, we have made molecular dynamics calculations with the PBC 

system and have developed a formalism for analogous calculations in a reaction field 

system, where a cavity containing molecular solute and solvent particles is surrounded 

by a dielectric continuum. Substantial efforts have been required for obtaining a well 

characterized cavity-continuum interaction, particularly at the surface of interaction.

In this chapter, the PBC calculations on water with an “atomic” solute are de­

scribed. In the following sections the potential function used, the propagator used 

for integration of the equations of motion, the structural and dynamical properties 

obtained from the calculations and the data analysis and results are presented. The 

results from the reaction field simulations are presented in the next chapter.
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5.2 Equations of M otion

The dynamical behavior of any particle in a system with specified initial conditions 

can be written as

x(t  +  At) =  x(t) +  x(t)At  -+- ^x( t) (At )2 H , (5.1)

where, x(t) is the time time derivative of the variable x. For a classical system, the 

second time derivative of the spatial variable or the acceleration can be written in 

terms of the force experienced by the given coordinate which, in turn can be written 

in terms of the potential

*W =  ^  =  (5-2)
771 771 O X

A three-dimensional body, such as a rigid molecule, has orientational degrees of free­

dom along with the translational degrees of freedom. The translational motion of 

the center of mass of a rigid body is governed by equation 5.1, where x is one of 

the translational coordinates and x(£) is obtained from equation 5.2. The rotational 

motion of a rigid body with inertia tensor I  and angular velocity u  is governed by an 

equation similar to 5.1. The orientational coordinates used are quatemions[27] that 

are functions of the more well known Euler angles. The governing equation for the 

orientational coordinates is[28]

I  • uj — uj x I  ■ ui =  N, (5-3)

where, N  is the torque (moment of force) defined (for atom coordinates r,, center of 

mass coordinate R  and force /,• at atom i) by

N  =  £ ( r< -  R) X /<■ (5.4)
i

Given the force /  and the torque (moment of force) N  that act upon a body, the 

position and orientation of the body may be accurately determined for any time by 

integrating the equations of motion such as equation 5.1 with an appropriate choice for
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At.  For a rigid molecule with n atoms treated as mass points, the forces and torques 

can be determined from the forces experienced by each atom at every time step. 

The main technical question that remains is the selection of a physically accurate 

potential for the interaction between particles and an integrator to propagate the 

above mentioned equations of motion. Although equation 5.1 is formally correct for 

use as the propagating equation, other algorithms give more accurate results since 

appropriate linear combinations of similar equations for x(t  — A t ) ,x( t  — 2At ) , . . .  are 

accurate to a higher order in At. This fact is important as it allows for larger values 

of At to be used for the actual calculations.

The public-domain molecular dynamics package MolDy was used for the PBC 

calculations. For the reaction field calculations, the MolDy package was substantially 

modified for solving the equations of motion for molecules restricted to a spherical 

cavity surrounded by a dielectric continuum. The propagating equations used for 

both type of calculations are a variant of the well known Verlet algorithm[20].

5.3 Experim ental Background

Experimentally, solvent dynamics is usually studied through pump-probe spectro­

scopic experiments on solute-solvent systems in the condensed phase. Solute molecules 

are placed in an electronically excited state by the pump pulse. The probe pulse is 

used to study the fluorescence of the excited state to the ground state as a function 

of a known delay between the pump and the probe pulses. The delay allows the sol­

vent molecules to reorient and become partially equilibrated with the excited state. 

Experimentally, the solute is usually chosen to be a large organic dye molecule. The 

physics of this process is schematically shown in Figure 5.1

The normalized quantity usually used to describe the the solvent response is a 

response function,

S(t) =  (5.5)
v '  1/ ( 0 ) -  i / ( o o )  v '

z/(f) typically refers to the peak of the fluorescence spectrum obtained after a time-
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Figure 5.1: Schematic representation of Solvent Dynamics upon electronic excitation 
of the solute
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delay of t following the electronic excitation. The width of the emission at time t 

may also provide useful information, but has rarely been used in the analysis. (The 

width usually changes only a little with time.)

The shape of the response function, S(t), has been fairly well characterized. For 

small “atomic” type solutes with polar solvents, the initial innermost solvation shells 

are well defined and any instantaneous delta function change in an electrical property 

of the solute results in a significant impulsive force acting on the solvent molecules 

of the nearby solvation shells. This impulsive force leads mainly to shaxp changes 

of the orientations of the solvent molecules. Such fast, initial motion preserves the 

solvent shell structure during a sub 50fs time scale. This type of sharp, jerky motion 

of the solvent molecules near the solute has been termed the “inertial” response of the 

solvent. This motion causes a sharp fail from unity of the solvent response function 

over a 0 to 0.2ps timescale. This sharp decay is sometimes also accompanied by 

oscillations that may be due to the symmetrical stretching or a symmetrical rotational 

type of motion of the initial solvation shell. This initial decay in the response function 

is usually followed by a slower exponential type decay. This slow decay is usually 

attributed to “polarization diffusion,” where the solvent shells rupture and reform, 

and the solvent generalized coordinate approaches a new equilibrium value around 

the solute. It should be mentioned that most of the data for the solvent response for 

“small solutes” comes from computational simulations, most experiments typically 

using large dye molecules as solutes.

For larger solutes, the solvent response can usually be fit fairly well by a biexpo­

nential decay curve with some superimposed peaks. The solvent structure around the 

larger solute is more diffuse and so the initial decay of the solvation response curve, 

although still prominent, is smaller. The work of Fleming and coworkers[7] provides 

an instructive example of this difference of the response for small and large solutes.
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5.4 Com putational Strategies

5.4.1 Equilibration from Initial Configuration

Before going into the details of how such experiments can be simulated through MD 

calculations to obtain computationally the solvent response function, a few important 

technical details are described. Before an attempt may be made to obtain any physical 

data from an MD trajectory, the system has to be in its equilibrium configuration. 

The first part of any MD calculation, then, is its equilibration to the minimum free 

energy state since any arbitrarily chosen initial configuration is not necessarily a 

probable member of the equilibrium set of configurations. The choice of the initial 

starting configuration is an important technical point and the initial configuration 

should be such that non-physical, large and impulsive forces are avoided since the 

solutions of the MD equations are liable to diverge when the forces are abnormally 

large.

One technique is to use a crystalline starting configuration. Since such a config­

uration may be too ordered for liquid phase simulation, in the reported calculations 

the initial configuration is obtained using a “skew start” method[28] that ensures that 

there is at least a minimum separation between the molecular centers of mass without 

placing them at the vertices of a crystalline structure. The initial orientations of the 

individual molecules are typically chosen to be random and the initial velocities are 

obtained from a Maxwell-Boltzmann distribution.

Since the initial configuration is unlikely to belong to the set of minimum free 

energy configurations, propagation of the MD equations in an ensemble at a given N 

(number of particles), V (volume) and E (energy) (NVE) is going to take the system 

to, on the average, lower potential energy configurations and thereby increasing its 

kinetic energy. To maintain a generally constant temperature during the actual simu­

lation, the approach to equilibrium is accompanied by periodic scaling of the transla­

tional and rotational velocities[20, p. 171]. The starting configuration is propagated 

forward in time with the MD equations and every few time-steps the translational 

and rotational velocities of the molecules are scaled to the predetermined applied
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temperature, at which the simulation is desired to occur, using

| i V i 6T = im { v ! ) =  i / ( w2>. (5.6)

This scheme allows for the dissipation of the excess kinetic energy that would 

build up when the starting configuration does not belong to the set of the minimum  

energy states. This procedure, when continued for a few thousand time-steps, allows 

the system to reach thermal equilibrium. This approach has proved successful in 

practice. One simple measure of the system’s being in equilibrium is obtained from 

monitoring the total potential and kinetic energy of the system after scaling has 

been stopped. If the potential and kinetic energies remain constant, within some 

fluctuations, without any systematic deviation, the system may be considered to be 

at equilibrium.

Once the system has reached equilibrium, the scaling is stopped and the system 

is then allowed to exclusively follow Newtonian dynamics (x{t ) =  — ̂ §j£) within the 

predetermined ensemble (here, NVE). Since the positions, velocities and orientations 

are available for all the molecules during the whole trajectory, any physical property 

of interest may then be calculated.

5.4.2 Solvent Structure

Before any quantities particular to solvent dynamics are calculated, it must be en­

sured that the potential used and the calculational strategy employed (such as PBC 

or reaction field methods) result in a good description of the solvent. By a good 

description it is meant that the MD trajectories yield accurate structural and dy­

namical information for the solvent. To this end, solvent radial distribution functions 

(RDFs) are usually calculated and compared to previously known computational or 

experimental data. The RDF is defined as

ga/3 (r) =  Vr(5(|r-t-rl a - r 2̂ |)), (5.7)
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where, a  and 0  represent the types of atoms and r iQ and r 2p refer to the position of 

the particle a  or 0  on molecule 1 or 2. The average is taken over all the molecules in 

the system. The RDF is calculated from the pair distances between atoms for a select 

number of configurations obtained from the MD trajectory. The radial distribution 

function is a quantity of central importance in liquids because they provide informa­

tion about the local short-range order around a centred molecule[29]. The histogram 

of pair distances is normalized to obtain the RDFs. The normalization is such that, 

for a single component system, if p =  number density, then

r **/  pg(r)r dr =  N,  (5.8)
Jo

where, N is the number of particles in a sphere of radius Rc. For water, RDFs 

of particular interest are those for O-O, 0-H  and H-H ones. These quantities axe 

compared with the experimental quantities to determine the extent to which the po­

tential energy function and the calculational scheme yield a correct description of 

the solvent. Other quantities usually calculated are the velocity correlation function, 

density profiles at various places within the simulation volume, and the orientational 

distribution functions. In some studies it has also been attempted to obtain the 

dipole correlation function (M(0)M(t))  and the dielectric dispersion curve from such 

calculations [13,15]. The dipole correlation function is usually the most difficult quan­

tity to obtain accurately through simulations.

5.4.3 Solvent D ynam ics from M D trajectories

Once the system of solute and solvent molecules has been equilibrated and once the 

structural and dynamical quantities have been calculated to show that the system is 

a good approximation to that being simulated, the solvent dynamics quantities can 

be calculated with more confidence. Starting from the calculation for an equilibrated 

system, two methods may be used to obtain the computational approximation to 

the solvent response function S(t)  described in equation 5.5. Using the fluctuation- 

dissipation theorem, it can be shown[15, 30] that, in the linear response regime, the
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correlation of the fluctuations in the electrostatic potential V  (f) created by the solvent 

at the solute,
m o w ® )
(JK(O)^(O))’  ̂ '

is equal to the solvent response function S(t) that would be obtained from the result 

of a sudden change in the charge of the solute. It is assumed here that the non­

polar interaction between the solute and the solvent is the same regardless of the 

solute’s net charge. Similar relationships exist between other equilibrium correlation 

functions and solvent response functions obtained from other step function changes 

of the electrical properties of the solute. V(t) is simply the electrostatic potential 

created by the solvent at the solute that can be calculated at every time-step in the 

trajectory and

SV(t) =  (V(t)) -  V(t). (5.10)

It is also possible to directly obtain S{t) from MD calculations by simulating the 

step function change in the electronic property of the solute that is analogous to the 

experimental change in the solute that would be caused by the interaction of the laser 

with the solute. This step function change can be simulated by suddenly changing, in 

an equilibrated system, the electrical property whose effect is being probed. Some of 

the changes usually probed include the change in the charge distribution (e. g., dipole) 

in the solute that occurs when the solute is electronically excited or a change in the 

total charge of the solute that would occur upon photo-ionization. Upon this change, 

the solvent molecules are no longer in equilibrium with the new electrostatic state of 

the solute since they were in equilibrium with the ground (or other initial) state of the 

solute. The solvent molecules change their orientational and translational positions 

to return to thermal equilibrium with the solute. It is this change that is monitored 

and analyzed via equation 5.5 to obtain the response function. Computationally, after 

changing the electrical property in question the MD calculation is continued to obtain 

the time-dependent solute-solvent interaction energy. The solvent response function
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is calculated analogously to experiment,

Ejntit) -  Eint{oo) 
Eint{0) -  Eint{oo)'

(5.11)

Eint(t) includes the above defined V{t) along with E u{t) ,  the Lennard-Jones (or 

van der Waals) contribution to the solute-solvent interaction energy. Rigorously, the 

equality between C(t) and S(t) is correct only when V(t) is used in equation 5.11 

instead of Eint(t). As a practical matter, for the solute used, E u { t )  is less than 5% 

of the total solute-solvent interaction energy and its inclusion in the above equation 

does not change the resulting solvent response function. This calculation is performed 

for several different initial configurations of the equilibrated ground state to obtain a 

representative collection of initial configurations and to compare with C(t) that is, by 

definition, a configurational average. Comparison of C(t) with (S(t)) also provides 

a test of the linear response approximation. It is important to note that as the 

perturbed system returns to thermal equilibrium, there is some increase of kinetic 

energy and in the temperature of the system (this phenomenon has been referred 

to as “local heating.”) The system should be large enough to absorb this increase 

without any change in the observables or the lifetime of the observables should be 

short enough such that the “local heating” has no effect on it.

Having obtained all the analytical machinery for the propagation of the dynamical 

equations and for data analysis, we now define the potential function we use to govern 

the dynamics. A good potential is, of course, essential to obtain good dynamical 

information from the MD trajectories.

5.5 Intermolecular Potential

The intermolecular potential may be written, schematically, as

V  = VLJ + Ve, (5.12)
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where, Vu  is the Lennard-Jones potential between oxygen atoms,

(5.13)

and Ve is the electrostatic potential which, for PBC, is written as an Ewald sum,

1 __ erfc(a|rtJ+ n |)  ,
2^1^ I ,  M i  :----- :----:------+47Te0 n t=ij=i+i \Tij +  n|

(5.14)

 ^-5------  > —e 4a2
2e0V k2h? o

N

2̂qi cos(fc.rj)
t=i

+
N

ft sin(fc.rj)
t=i

The Lennard-Jones potential, being short-ranged, is simple to calculate. In the PBC 

formulation, the L-J term is calculated up-to some critical distance rc. For a system of 

charges, the electrostatic potential is written as a sum of short-range and long-range 

contributions, as in equation 13, where the former are written in real space and the 

latter in reciprocal space, where the periodicity of the MD cell is used.

The rigid four-center, TIP4P water model[31] was used for the calculations. This 

model has been used for a variety of simulations of liquid water and has been well 

tested [32, 33]. The parameters that define this potential are specified in Table 1. 

Since this model is rigid, the vibrational motion of the water molecules is ignored.

Table 5.1: Parameters defining the TIP4P potential

’•(OH) (A) ZHOH (deg) too  (kcal/mol) <*oo (A)
0.9572 104.52 0.6201667 3.1536
Qo qH 9m r(OM) (A)
0 . 0 0.52e -1.04e 0.15

So, for a particle in a MD cell, part of its electrostatic potential is calculated 

directly as interactions with other charged particles upto some rc and the long-range 

part is calculated from r =  rc to oo but in the reciprocal space. The Ewald sum has 

been extensively used for simulations of polar liquids. Here, only a brief description of 

the potential has been provided. Allen and Tildesley[20] and Refeon[28] give a detailed
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explanation of the Ewald sum and its use in MD simulations. The periodic boundary 

conditions are imposed in the program MolDy through the link cell method[28].

For the PBC calculations reported in this chapter, the parameters used to define 

the LJ interaction between the solute (X ) and the solvent molecules were €qx =  0.1 

(kcal/mol), a o x  =  3.0 A, e^x =  0 . 1  (kcal/mol) and cfhx =  3.0 A.
This set of interactions between the “atomic” solute and the solvent molecules 

is similar to the small solute designated “SO” by Maroncelli and Fleming[15]. This 

choice of the solute-solvent interaction allows for a comparison between the present 

results and the ones obtained earlier by them. However, it should be stressed that 

there are significant differences in the two approaches to solvent dynamics. In the 

earlier calculations a large spherical cluster of water molecules was used with a solute 

constrained to be at the center of the cluster to model the solute-solvent system. 

In the calculations described here periodic boundary conditions are used without 

any constraint on the position of the solute. Here, the potential energy function 

governing the dynamics is the Lennard-Jones potential and the Ewald sum for the 

long ranged polar terms. In the earlier study the Lennard-Jones potential and only 

Ve =  term for the electrostatic part were used. Also, whereas, here, we

use the TIP4P potential to model the individual water molecules, in the earlier work 

the ST2 model was used. However, despite these differences, the two simulation, 

without being identical, should provide similar results and trends for the dynamical 

simulations.

5.6 R esults and Discussion

In this section results from MD simulations of pure solvent and solute-solvent systems 

are described. In both cases 256 TIP4P water molecules were confined to a cubic 

box of side «  2 0  A. A single “atomic” solute, with the LJ parameters given in 

section 5.5 was used in the solute-solvent system. For each simulation, the initial 

configuration was brought to equilibrium using periodic kinetic energy rescaling for 

10 — 30ps and then trajectories were followed for 50 — lOOps for data collection.
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Kinetic and potential energies were monitored during the data collection period to 

ensure that such energies were well conserved. Radial distribution functions were 

calculated from the instantaneous configurations of the molecules at different times 

during each trajectory.

5.6.1 Energy Conservation

Since we are attempting to follow an MD simulation within the NVE ensemble, it is 

important to confirm that the kinetic and potential energy are conserved during the 

simulation. In some earlier attempts at simulations periodic rescaling of the kinetic 

energy has been used even after equilibrium had been reached[15]. We avoid rescaling 

the energies after equilibrium is reached to ensure that the ensemble being used is 

always microcanonical. The temperature of the system was set at 300K" during the 

equilibration period. In Figure 5.2 the temperature of the system monitored during 

a 50 ps simulation with 256 solvent molecules and one solute is shown.

We find that there is a slight upward increase in the total kinetic energy (or 

temperature) as a function of time but even with a 50ps trajectory, the kinetic energy 

is conserved to within 5% of the total.

The conservation of the total potential energy is even better than that for the 

kinetic energy. In Figure 5.3 the total potential energy of the system, monitored 

during the 50ps simulation is shown.

Since the number of water molecules in this simulation is 256, it can be calculated 

from Figure 5.3 that the potential energy per molecule (V /N , the total solvational 

energy per molecule) is ~  -41 kJ/mol ~  -10 kcal/mol, which compares very well 

with previously determined values of -9.9 kcal/mol to -10.4 kcal/mol, as calculated 

by Maroncelli and Fleming[15j. The total energy is conserved to better that 1 % of 

the total.
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Figure 5.2: Conservation of Kinetic Energy during an Equilibrated Simulation
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Figure 5.3: Conservation of Potential Energy during an Equilibrated Simulation
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5.6.2 Radial D istribution functions

Since a major goal for the present study is to obtain a new and useful method of 

MD calculations, one that is particularly relevant to solvent dynamics calculations, 

it is imperative to see if the model gives a good description of the solvent. One well 

recognized prerequisite for ensuring that a liquid is well described by the simulation is 

to obtain the radial distribution function from a list of pair-distances. Normalization 

of a histogram of these pair distances yields the RDF. Since the TIP4P potential has 

been extensively used and tested, RDFs from MD and Monte Carlo simulations of 

liquid water are available in the literature[31, 34].

In Figure 5.4, the 0 - 0  RDF is shown. This figure compares very favorably with 

the oxygen-oxygen radial distribution function given by Jorgensen and coworkers[31], 

where they used Monte Carlo simulations, as well as the one given by Klein and 

Watanabe[34] where MD simulations were utilized. The RDFs obtained by Jorgensen 

and coworkers axe shown in Figures 5.5 and 5.7. In these two references it is also shown 

that the RDFs from the TIP4P potential are close to the experimental data obtained 

from x-ray techniques[35]. The 0-H  and the H-H distribution functions calculated 

from the simulations, shown in Figure 5.6 also compare well with same previously 

published results.

5.6.3 Solvent Dynamics

As described earlier, the main quantity of interest for solvent dynamics is the solvent 

response function S(t) that may be obtained from MD trajectories in two ways. 

From the equilibrium MD trajectories, the electrostatic potential at the solute may 

be calculated at each time step to obtain C(t) as defined earlier, which, under linear 

response, is the same as the solvent response function, S(t). It is also possible to 

obtain the S(t) directly from the non-equilibrium MD trajectories by calculating the 

solute-solvent interaction energy at every time step.

Both sets of calculations were performed for a solute-solvent system with one 

“atomic” solute and 256 TIP4P water molecules in a cubic cell, w 2 0  A on a side,
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with periodic boundary conditions and the potential at the solute was calculated 

at each time-step. The potential correlation function, C(t) was obtained from this 

calculated potential. In Figure 5.8 the C (t) is shown for an uncharged solute.

In this figure some of the defining characteristics of the solvent dynamics around a 

small, uncharged solute are clearly seen. The sharp initial decay followed by a slower 

and oscillatory decay has been a hallmark of such solutes [7, 15]. The initial part 

of decay represents the “inertial” or rotational ( “librational”) motion of the solvent 

molecules around the solute and the latter part represents the diffusive motion. For 

small uncharged solutes, the fast initial decay is a dominant component of the total 

decay. Comparing Figures 5.8 and 5.9, it is clear that the C(t) correlation function 

for an uncharged solute differs appreciably from the charged solute.

In Figure 5.9 the correlation function for a small solute with a unit positive charge 

is shown. When compared with the correlation function for the neutral solute, shown 

in Figure 5.8, we find that this C{t) is much less oscillatory and slower. Once again 

we find that this results is similar to the ones obtained earlier[l5]. The less sharp 

initial decay and the recurrence at ~  150/s are .well recognized characteristics of the 

solvent dynamics of water for small charged solutes.

It was argued earlier that the initial decay of C(t)  is caused by the rapid “inertial” 

or orientational motion of the solvent molecules, and the slower long time decay is 

due to the translational motion of the solvent molecules. The charged solute is quite 

effective in ordering the polar water molecules around itself. This causes the rotational 

motion of the such solvent molecules to be hindered, since the polar solvent molecules 

surrounding a charge have a preferred direction, unlike the case for uncharged solute. 

As the rotational freedom of the initial solvational shells is curtailed, it is the slower 

translational motion of the solvent molecules that plays the more important part in 

the solvent relaxation. The induced polarization curtailing of the rotational motion 

causes the response function to decay at a slower rate. The recurrence seen at ~  150/s 

in Figure 5.9 is postulated as being caused by the coherent “breathing” mode of the 

initial solvation shell.

Compared to previous work[15], it is found that these characteristics of the time-
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correlation function C(t)  in Figure 5.8 are representative of the small ( “SO”) charged 

solute. The adjective “small” depends upon the magnitude of the LJ parameters 

a  and e. Values close to the ones for the oxygen atom merit such an adjective. 

Comparing the tcfs  for charged solutes, it is observed that the tcfs  of the two works 

are similar. It is also observed that the time-correlation functions for charged solutes 

are not very sensitive to the size of the solute[15].

Hsu et al. [36] have recently obtained the solvent response function through an 

analytical, reaction field, “cavity in continuum” model of the solute-solvent system. 

The positively charged sherical solute is embedded in a solvent described exclusively 

by its dielectric dispersion curve e(u>). In Figure 5.10 the results of Hsu and the 

experimental results of Fleming[7] are shown together with the present results for 

comparison. Since the actual experimental e(u;) is used, Hsu et al. can associate 

charateristics of the t c f  with individual e(u>) peaks. They share our belief that the 

recurrence at 150-200/s is caused by the intermolecular “breathing” type of motion 

of the solvent molecules and that the initial sharp decay is mainly due to the high- 

frequency “librational” motion of the solvent. The Debye part of the e(ui) contributes, 

although not exclusively, to the long time decay of the tc f .  In brief, it is determined 

that the short time behavior of the solvent response function is dominated by the 

“librational” motion of the solvent, the slower components arise due to the “diffusive” 

motion of the solvent caused mainly by the translational (with contribution from 

rotational) movement of solvent molecules.

In Figure 5.11 the S(t), obtained from non-equilibrium simulations, is shown. As 

described earlier, this function is obtained by suddenly changing the charge (from 

neutral to + le ) of the solute in an equilibrated system. Then the solute-solvent in­

teraction energy is calculated as the system returns to a new equilibrium. The solute- 

solvent interaction energy, here, provides the solvent-response function directly. To 

simulate the fact that in the experiment there is an ensemble of initial configurations 

(all consisting of the solute ground state being in equilibrium with the solvent) that is 

averaged over in a pump-probe experiment, a number of different initial equilibrium 

configurations with neutral solute are used. In Figure 5.11, five such ground state
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equilibrium configurations were used and individual S(t) curves were then averaged.

Five simulations provide a rough idea of the S(t) and a larger number of such sim­

ulations should be used for a more refined result. In particular, the oscillations seen 

in Figure 5.11 after ~  400/s are an artifact of the small number of individual non­

equilibrium simulations. With more simulations added to the average, the late oscil­

lations should be averaged out. Maroncelli and coworkers, in their aqueous solvation 

dynamics study[15], used forty simulations to obtain the S(t) from non-equilibrium 

simulations. The main characteristics of this curve are its initial resemblence to the 

neutral solute tc f  followed by its resemblence to the charged solute tc f  for t  >  2 0 0 / s .

In general, we find that we are able to reproduce the previously obtained major 

results[15] of aqueous solvation dynamics with a PBC simulation of ~  250 solute and 

solvent molecules. These results are a stepping stone to our major goal of replacing 

the PBC method with a reaction field method that is non-periodic.

5.7 Conclusion

In this chapter, a periodic boundary conditions implementations of solvent dynamics 

is described. This research was implemented as a first step towaxds obtaining an un­

derstanding of solvent dynamics by developing a non-periodic reaction field method. 

Results obtained using this PBC scheme within a «  2 0 A sided cubic cell are consis­

tent with previous simulations. These results are useful as a benchmark with which 

future calculations can be compared. Also, a successful conclusion of such calcula­

tions provide confidence in tackling the next part of this project, which is to do MD 

calculations for solvent-solute systems in a spherical cavity surrounded by a dielectric 

continuum without the use of periodic boundary conditions.
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Abstract

A reaction field (RF) formulation of the solvent dynamics problem is described. The 

solvent in a solute-solvent system is described by individual molecules to some dis­

tance rc and beyond that by a dielectric continuum. Molecular dynamics calculations 

have been performed for an “oxygen-like” atomic solute with the TIP4P water sol­

vent. Structural (radial and angular distribution functions) and solvational (equilib­

rium correlation and non-equilibrium response functions) results are presented that 

show the applicability of this method for solvent dynamics calculations. Comparison 

of results from the reaction field formalism with results from the periodic boundary 

conditions (PBC) and pure cluster formalisms are made to show the applicability of 

the RF formulation.
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6.1 Introduction

With the experience obtained from MD simulations of solute-solvent systems with 

PBC that were presented in the previous chapter, we now present results from solvent 

dynamics simulation of a spherical cluster of the solute, fixed at the center of a 

spherical cavity, and solvent molecules surrounded by a dielectric continuum. This 

type of simulation has been referred to in the literature as the simulation of a water 

“droplet.” The radius of the individual water clusters simulated is 7 — 1 0 A.

The advantages of this type of simulation were outlined in chapter 5. First, use 

of a non-periodic system may be better for the solvation dynamics, particularly for 

charged solutes, since, unlike in PBC simulations, there is no unphysical change in 

the sign in the polarization of the solvent molecules at the cell edge. Also, this 

method is more physically intuitive since it allows for the separation of the solvent 

into the neaxby molecular part and the distant dielectric paxt. This separation may 

make the understanding of the solvent dynamics possible by simulating using a much 

smaller number of molecules, and so this method may prove to be computationally less 

intensive. Finally, with future advances in theory, the use of actual complete dielectric 

dispersion curves, e(w), for the continuum part of the solvent in MD simulations 

may be possible with this formulation. Use of the total dielectric dispersion curve 

e(uj) of the continuum part, together with molecular dynamics simulation of actual 

molecules describing the solvent to some distance, is probably the best approach 

to solvent dynamics since it would combine the most accurate formulation of the 

distant continuum type of solvent response together with a molecular description of 

the nearby solvent molecules.

From a technical point of view, the reaction field simulations have a number of 

similarities with the usual PBC calculations, as well as a number of differences that 

have to resolved before the simulations may be attempted. Some of these differences 

are in the potential energy function for the cluster, the boundary conditions to be 

imposed, methodology to calculate the radial distribution functions, and the position 

of the solute within the cluster. An issue of particular importance here concerns how
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best to define the interface between the molecular cavity and the continuum. This 

topic arises because at the surface, as anywhere else, the charged particles are not in 

reality point charges but have an excluded volume associated with them. This surface 

of interaction requires special consideration in adapting the reaction field potential 

that is originally derived for point charges in a sphere.

These differences have necessitated a number of changes in the MolDy code that 

was used for the PBC calculations. It was advantageous to use MolDy since it was 

written in a modular format, thereby, helping considerably in the reprogramming. 

A number of modules were not altered since they required no change, whereas a 

number of modules were completely rewritten. In particular, the Ewald sum method 

that was used for the calculation of the long-range coulombic potential was replaced 

by the reaction field potential. Rather than periodic boundary condition, reflecting or 

‘LJ confining’ boundary conditions (defined below) were used to confine the molecules 

in the cavity.

For solvent dynamics calculations, the reaction field method for a cavity in a dielec­

tric continuum has not been applied as extensively as the PBC method. Wallqvist[l] 

has applied this method to simulate pure water clusters and obtained good agreement 

of the total solvational energy per molecule { V/ N  =  —41.5 to —41.7fc J/moZ) with pre­

vious PBC calculations (—41.1 to —41.9kJ/mol). Wang and Hermans[2] applied this 

method to a solute-solvent system. They focused on calculating the hydration free en­

ergy and did not report any correlation or solvent response functions that are central 

to comparison of simulations with experimental results.

The reaction field method has been utilized for some recent simulations of polar 

liquids. Lee and Warshel[3] report the use of the ‘local reaction field’ method where 

the reaction field potential, when written as an infinite series, is truncated after a 

few terms for evaluation of electrostatic energies in biomolecules such as proteins in 

water. Shang and Head-Gordon[4] have used a very simplified reaction-field treatment 

to study glycine and alanine dipeptides. In this study, only the dipole moment at 

the center of a spherical cavity of the solute charge distribution is used and all higher 

multipole terms are neglected. Tironi et a/. [5] use a generalized reaction field method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

to calculate the long-range electrostatic forces for their simulation of water-NaCl 

solution with periodic boundary conditions. This implementation of the reaction- 

field method is different from the one reported here because we have elected to avoid 

the use of periodic boundary conditions.

In the following sections, the various attempts to properly define the potential, 

the new boundary conditions, and the structural and dynamical results from these 

calculations are described.

6.2 Reaction Field Potential

For a system of charges {ft}, i =  1, . . . ,n ,  in a spherical cavity surrounded by a 

dielectric continuum with a static dielectric constant e, the electrostatic potential at 

any point within the cavity may be written as[6 ]

V =  Vq + Vrxn (6 . 1 )

where, at any point r, defined by r, 6, (f>, within a cavity of radius a ,

■ (62)
, = i  r  -  r « l

with the P/s being the Legendre Polynomials with arguments

cos t i =  cos 9 cos 6{ 4- sin 9 sin 0/ cos{4> — 0t) . (6.4)

This result is well known from electrostatics and is obtained from the solution of the 

Poisson equation such that the total potential and its derivative behaves appropriately 

as r —> oo and at the interface of the cavity and the continuum. In brief, this result 

may be obtained by proceeding, as Kirkwood did[7], to solve Laplace’s equation for 

the potential at any point in space due to a set of point charges in a cavity surrounded
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by a continuum. The above solution is obtained by writing the potential in spherical 

coordinates and imposing the required boundary conditions to the potential and its 

gradient at r =  oo and at the cavity-continuum boundary r =  a.

However, a potential written as an infinite series is not appropriate for molecular 

dynamics, since the infinite series has to be summed continuously to obtain the poten­

tial energy and the forces that act on the individual charges. There is no closed form 

solution for the above Vrxn and our first approach was to use a Pade approximation [8 ] 

to the infinite series by explicitly calculating the first few («  8 ) terms. The accuracy 

of the approximation was tested and was found lacking.

It is useful to note that the above formulation of Vrxn is simply the generating 

function for the Legendre polynomials except for the multiplicative term that is a 

function of e and I. To take advantage of the generating function for Legendre poly­

nomials, the multiplicative term was simplified by expansion. For large e (such is the 

case with water e «  78), we may expand, as Friedman did[9], in a Taylor

series about ^  =  i « 0 .

( e - l ) ( l  +  l) (e — 1 ) 1  (e — 1 ) yk /  x y
l +  e{l +  l) (e +  l ) ’ l (€ +  l ) & \ l  +  l J  ^

Retaining upto and including quadratic terms in ^  and simplifying, we have

( » - 1 )(* + ! ) _ < —! , < - 1  f 6 6 > 
( +  £(( +  1 ) £ +  1  (£ +  l )2(i +  l) '  ( ’

In Figure 6.1 the left side of equation 6 . 6  and its approximation by the Taylors 

expansion axe shown together for comparison. This approximation is critical, since it 

permits Vrxn to be written in closed form because with this simplification, we have

t  ( £ ) '  P, (COS'Ti) +  t  ( 5 ) '  f l  (cO S 7 i)

(6.7)

Vrm(r , 0 , # ) -  E ‘ t + 1

An analytic expression can be obtained for the two infinite sums in the previous equa­
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tion by using the definition of the generating function of the Legendre Polynomials[1 0 ]

9(t, s) =  t lPi(s) =  ( 1  -  2 s£ + 12) 3 , |t| <  l. (6 .8)
1=0

After some straightforward mathematical manipulation we obtain

- \  2 \  ~ 2

q{ e -  1 ( T T i

0 )
\  “I ( ^ )  -  cos7 i +  ( l  -  2  ( ^ )  cos 7f +  ( ^ ) 2)

1  — cos 7 ^
.(6.9)

It is useful to note that in Cartesian coordinates

rri cos'yi =  xXi +yy i + z z i  = r - 7 \ .  (6.10)

Molecular dynamics simulations require the forces on each particle at every time step 

such that Newton’s equations of motion can be integrated. The electrostatic forces 

at site j  with charge qj are obtained directly from the potential by using

Fj =  (P1!, Fy, Fz)j =  —q j W  (xj , yj ,Zj). (6.11)

6.3 Lennard-Jones Potential

The L-J part, V L J , of the potential energy function is also important for a correct 

characterization of the liquid. V u  is particularly important at small distances, where 

it is used to incorporate the molecular nature (excluded volume) of the particles 

through the repulsive part of V l j . The structure of the liquid as determined by the 

radial distribution function (RDF) defined in chapter 5 is strongly dependent upon 

the parameters in V l j . The parameters used for these calculations for the water 

molecules are the same as they were for the PBC systems. The total Vl j  experienced
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by any particle in the cavity may be written as

V iA fi)  =  V E T tfi)  +  V g ,( r3 ( 6 .12)

where V^j(fi), the direct L-J potential is simply

VLj(ri) = E e
12

\n -  r.
(6.13)

and V ff ii f i )  denotes the contribution from the continuum enclosing the cavity.

To incorporate the molecular nature of the continuum, the L-J potential from the 

continuum, V ^ ^ ri), was also included by assuming a uniform distribution of L-J 

particles outside the cavity, with p being the density,

v iT 'K ) = E  vS (n )
j|rj>a

[  pdrVLJ(r)
J |r |> a

(6.14)

=  e p f
J\r  I

ep I d f
|r |> a

12

Jn - r \ t

Using |fi — f| =  \Jr2 +  rf  — 2 rr,cos7  and dr =  r2 sm 9drdQd<f>, we integrate over <j>, 9 

and r to obtain for a L-J particle at a distance of rt- from the center of the cavity

7T e p c r  

Ari l  9 /  \ a ~ T i )  10 V 9 /  \a  +  r,-/ 10

(6.15)

In Figure 6.2, is shown as a function of r,- for the values of e, a  and p that

axe appropriate for TIP4P water. Later, we explain how an appropriate value for a 

is obtained for a given cluster. In Figure 6 .2 , a =  9.0 A was used.

The forces are obtained from the gradient of the potential.
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6.4 Boundary Conditions

Unlike the PBC system, a cavity embedded in a continuum formalism requires that 

there be a transition in properties at the interface. A simple formulation of this 

method would be to use a spherical cavity with reflecting boundary conditions, with 

the continuum beginning immediately outside the cavity. However, the particles in­

side the cavity are not point charges and so it is unphysical for them to approach 

the cavity-continuum surface. There are two reasons why this formalism represents 

an unphysical situation. First, if the continuum is considered to represent a uni­

form distribution of water molecules outside the cavity, the molecular nature of the 

solvent should disallow the water molecules in the cavity to come too close to the 

cavity surface due to excluded volume of the continuum particles. From a technical 

standpoint, if the continuum starts at the point upto which the charged particles are 

allowed to come, then the reaction field potential becomes singular when the rr,/a 2  

term in the electrostatic potential function approaches 1 . This singularity precludes 

the successful propagation of the equations of motion by making the forces diverge 

at the boundary.

Two different methods were tried for solving this problem. In the first method the 

cavity with the water molecules was further surrounded by a shell of water molecules 

that were frozen at their positions. The shell prevented the particles inside the cavity 

from approaching the continuum boundary and, therefore, allowed for a successful 

propagation of the equations of motion for the non-ffozen particles. The frozen shell, 

however, is physically quite artificial and created new problems, particularly with 

respect to the conservation of kinetic energy. We describe the frozen shell method 

and results in the next section.

The second method used for ensuring a correct description of the molecules near 

the surface was based upon the use of V^nt(r), described earlier. This method allowed 

for a natural and self-consistent determination of an appropriate value for a such that 

the reaction field potential was well behaved at the surface. This approach was based 

upon exploiting the excluded volume of the molecules in the continuum that prevents
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the cavity molecules from approaching the continuum too closely.

6.4.1 ‘Frozen Shell’ Scheme

With the above described potential energy function, without V f j11, molecular dynam­

ics simulations were executed within the spherical cavity. As shown below, space was 

divided into three parts : region A : a 7 — 9 A radius cavity filled with solute molecule 

and the solvent molecules at the appropriate density ; region B : a 2  — 3 A shell that 

surrounds the above cavity with frozen solvent molecules to characterize the surface 

of interaction between the cavity and region C : a dielectric continuum.

A 9 A cavity has approximately 1 0 0  molecules of water in it and a 2  A shell 

that surrounds it has about 80 more. For the molecules within the inner cavity, the 

potential V  =  V*j 4 - Vq +  Vrxn is used to obtain the forces at each timestep and to 

then propagate the equations of motion.

The RF term of the potential energy function in equations 6.7 and 6.9 diverges as 

r -> a, and the forces on the particles near the surface rt- «  a may become quite large. 

The reaction field, to a first approximation, acts as an image charge of the opposite 

sign in the continuum. Near the surface, the interaction of a charge with its image, an 

attractive term, dominates the potential and it diverges. Since a rigid model is used 

for water, these large forces impose large torques on the individual molecules near the 

surface, and make the propagation of the equations of motion difficult. By requiring 

that there be 2  A shell of frozen molecules between the cavity and the continuum, r is 

constrained to be less that a and these large impulsive forces due to the singularity of 

the potential near the surface are avoided. The molecules in the shell are kept frozen 

during the calculation by setting all the forces acting on them and their velocities to 

zero.

In this type of calculation, the boundary of the cavity was kept rigid. If the center 

of mass of any molecule attempted to escape the cavity, then the center of mass 

was reflected back into the cavity and its translational velocity v m  =  uy +  v± was 

changed to vnew =  uy — u_l- This method of confinement is similar to the one used
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solute

Figure 6.3: Division of space into cavity, shell and continuum in the ‘Frozen Shell’ 
scheme
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by Maroncelli[ll] where a large cluster was used to simulate the liquid with similar 

confinement to prevent evaporation.

6.4.2 ‘LJ confinem ent’ scheme

As described later, the frozen shell method has unintended physical effects on the 

particles inside the cavity, such as the gradual freezing of the liquid. To mitigate such 

effects the repulsive wail of the continuum LJ potential (VjfJ^r)) was used to confine 

the particles inside the cavity. This scheme is similar to the one used by Wang and 

Hermans[2 ] and by Wallqvistfl] in their study of water with reaction field boundary 

conditions. Briefly, the implementation is as follows: A cluster of solute molecule and 

the solvent molecules are governed by the potential V  =  +Vrxn+ V q. Given

that we wish to simulate some n molecules, it is not transparent as to where this wail 

should be located such that a correct description of the solution is obtained. The 

position of the wall is uniquely determined by the parameter a in equation 15. We 

determined the value of a is a self-consistent fashion. The simulation was started from 

a PBC simulation, from which a cavity of size a' was carved out. The simulations 

were executed for a variety of values of x, where a =  af +  x. In Figure 6.3, the radius 

of region A has radius of a', and region A +  B has radius of a. Unlike the frozen 

shell scheme, in the ‘LJ confinement’ scheme the region B is not filled with frozen 

solvent molecules. For small values of x, the V fj11 compressed the fluid too much. 

The value was systematically changed until the RDF obtained was of good quality. 

The availability of the RDF for the TIP4P potential from a variety of good quality 

calculations allowed this comparison to be made. This self-consistent scheme may 

be seen as an empirical way of obtaining the excluded volume of the cavity water 

molecules that keeps the continuum some distance away. The value of x  required for 

a good description of the solution was ~  2.25A.
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6.5.1 Solvational and Structural Quantities Calculated

The main output of the simulation is the time dependent electrostatic potential acting 

on the solute due to the solvent, V(t) =  V£t(t), or the solute-solvent interaction

energy (Eint{t) =  Efnt(t) +  Ej^t (t)). They are used to calculate the equilibrium time

correlation function (t c f ) and the non-equilibrium response function, respectively :

(5V (t)5V (  0))
® (jy(o)JV’(o)) ( ^

_  Eint(t) — Eint(oo)
S(i) -  E~~t( 0 ) -  EM (coj’ <6 17>

quantities that are related to each other by linear-response theory and may be directly 

compared to experimental results. As discussed in Chapter 5, equation 6.17 is rigor­

ously correct only when E int( t ) is replaced by V(t) [11] or by Efnt (t) — QsoluteVihtit) ■ 

However, Ef^t (t), the other component of Eint{t), is only a small part of E int( t) and 

is relatively constant throughout the trajectory which removes it from the numerator 

and denominator of equation 6.17.

Molecular positions were obtained for calculating the radial distribution functions. 

The radial distribution functions are key quantities since they allow for an unambigu­

ous determination of whether the liquid being simulated has the correct structural 

properties. The calculational method used was similar to the one described for the 

PBC system, slightly modified[1 2 ] due to the spherical nature of the cavity. Also, the 

angular distribution function,

h(cosd) =  $ (cos 6 — cos 8i) \  , (6.18)

where 0, is the angle between /X,-, the dipole vector, and fj, the vector joining the 

origin of the dipole to the center of the cavity, was calculated to determine whether 

the solvent molecules had any preferential orientation.
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6.5.2 Frozen Shell R esu lts

As previously mentioned, an unintended effect of keeping the shell molecules fixed 

is that the shell acts as an infinite energy sink. As t -> oo the frozen shell would 

completely arrest ail molecular motion by forcing orientational order upon the polar 

solvent molecules. For the «  lOOps timescale calculations that we perform, the degree 

to which the frozen shell decreases the total kinetic energy of the system depends solely 

on the actual configuration of the shell molecules and in the calculations that have 

been performed, the effect of this frozen shell has varied considerably. The magnitude 

of the effect is determined by following the total kinetic energy of the system as a 

function of time. A particularly egregious example of this behavior is shown in Figure 

6.4 for a 75ps trajectory.

This decay of kinetic energy (or freezing of the solution) causes the RDF to show 

a solid structure rather than being appropriate for a liquid. It also has an effect 

on the correlation function C(t).  The effect on the correlation function can be best 

understood in the limit when there is no solvent motion. In that case Eint and V(t) 

are constant and C(t) is completely correlated at all times. Similarly, slowing of the 

solvent molecules due to the frozen shell increases the extent of 8V (f) correlation and 

is shown clearly in Figure 6.5, where the comparison between correlation functions 

from different parts of the trajectory is made. It is clear that with the decay in total 

kinetic energy of the system, C(t)  becomes more and more correlated.

Such untrustworthy results, caused by the unphysical frozen shell approximation, 

necessitated a more robust description of the cavity-continuum interface, which is 

described in sections 6.4.2 and 6.5.3.

6.5.3 Structural R esults from ‘LJ confinem ent’ sim ulations

Clearly, the frozen shell scheme is faulty. A remedy for this predicament is either to 

make the frozen shell dynamic (i.e., not frozen) or to remove it. Making the frozen 

shell dynamic would require a new force field for the molecules in the shell. Use of 

a new force field for the shell molecules would simply cause further parameterization
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of the problem without giving any substantial benefit.

We decided to remove the shell and confine the cavity particles using V f j11. The 

excluded volume of the surface particles forces the continuum to begin some distance 

away from the surface particles, thereby automatically solving the problems that 

arise when the particles come too close to the surface and cause V^ont(r) to become 

unphysically large. It obviates the need of solutions such as the frozen shell.

In presenting the results with this LJ method for avoiding the singularities, the 

various radial distribution functions (RDFs) are presented first, since they provide a 

sensitive probe of the solvent structure. In Figure 6 .6 , the 0 - 0  RDFs are shown for 

TIP4P water molecules confined in three different cavity sizes.

This result shown in Figure 6 . 6  has two noteworthy features. First, the results 

from the three different sized simulations are quite similar. This shows that our 

calculations have converged and are no longer dependent upon the size of the cavity. 

Secondly, the distribution functions are close to the ones obtained through the PBC 

simulations and by other researchers in previous work. Upon close comparison, shown 

in Figure 6.7 of the RF RDFs with the PBC RDF, it is found that while the curves 

are almost identical for r > 3A, the initial peak of the RF RDF is slightly more 

pronounced and is broader, even though its position is correct. The stronger initial 

peak for the RF calculation may be due to slight excessive compression from Vgj11. 

Fine tuning of the parameter a (defined earlier) should remove this effect by making 

the position of the L-J wall approximately 2 .3-2.4 A, rather than 2.25 A that was 

used here. The L-J wall that arises from V ff11 (see Figure 6.2) confines the water 

molecules in the cavity and has to be carefully calibrated to avoid confining the water 

molecules to too small a volume.

Shown in Figure 6 .8 , is the H-H RDF for a variety of cavity sizes that also displays 

the characteristics of a converged quantity. The H-H RDF does not approach 1  for 

r =  4—6 A because of a technicality with the RDF calculations! method[1 2 ] that arises 

due to the difficulty in estimating the volume of the region in which the hydrogen 

molecules are confined.

The angular distribution function h(cos 6), as defined above, of the solvent molecules
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0 - 0  RDFs from reaction field simulations
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Figure 6 .6 : Convergence of the 0 -0  RDF as a function of cavity radius
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Figure 6.7: Comparison of the 0 - 0  RDF obtained from a RF and PBC calculations
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around a neutral solute is shown in Figure 6.9.

In Figure 6.9 the convergence of the results as a function of cavity size is still 

evident. The plot shows that the solvent molecules, even in the presence of a neutral 

solute, show a slight orientational preference in a cavity. The individual dipoles, 

approximating the solvent molecules, are more likely to line up perpendicular to the 

line joining the position of the dipole to the center of the cavity (cos# =  0 ) than 

lining up parallel to it (cos# =  ± 1 ). MaronceUi et al.[ll] in their work also report 

and cite this phenomenon concerning orientational preference of polar molecules near 

the surface of spherical cavities in the absence of a solute. They also observe similar 

orientational behavior for the nearest solvational shells in the presence of a neutral 

solute. We speculate that the presence of the solute molecule at the center of the 

sphere disturbs the hydrogen bonding structure for those dipoles that point directly 

to and away from the center. This phenomenon would favor the solvent dipoles to lie 

perpendicular to the vetor joining the dipole to the center of the cavity and together 

with the preference of the dipoles near the surface to lie parallel to the surface to 

also maximize the total hydrogen bonding interaction with other molecules, probably 

causes this orientational behavior. For water, when the dipoles lie parallel to the 

surface the hydrogen bonding with other molecules in the cavity is maximaized.

It is encouraging to see that the structural results that may be inferred from the 

RDFs from relatively small cavities are quite similar to each other. Cavities of radii 

7, 8  and 9 A have approximately 50, 75 and 1 1 0  water molecules respectively. This 

consistency provides the hope that it would be possible to obtain reliable and re­

producible solvent dynamical results by using small cavities to provide the molecular 

nature of the solvent and with the reaction field providing the long-range coulom- 

bic potential. Use of the RF formalism may, in the future, significantly reduce the 

computational time of solvent dynamical quantities for a variety of solvent-solute 

systems.

Finally, three results that show the effects of a charged or uncharged solute on 

solvent structure are presented. First, the 0 - 0  RDF (<7oo(r)) is shown when there is 

a neutral or positively charged solute at the center of the cavity.
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H-H RDFs from reaction field simulations
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Figure 6 .8 : Convergence of the H-H RDF as a function of cavity radius
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Figure 6.9: Convergence of h(cos0) as a function of cavity size
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Figure 6.10 shows that a charge on the solute has no effect on <7oo(r). The ^ ( r )  

is a bulk quantity that depends on all the pair distances between individual oxygen 

atoms in the solvent molecules and should be negligibly affected by the presence of a 

single solute particle. The fact that these two curves shown above are almost identical 

shows that, at least for cavities of size 9 A or more, the bulk properties of the solvent 

are not influenced by the solutes.

However, the presence of a charged solute in a polar solvent does polarize the 

solvent. Figures 6 . 1 1  and 6 . 1 2  show the extent to which a charged solute changes 

the orientational distribution function of the solvent (h(cos9), defined above) and 

the oxygen-solute (O-X) RDF when these quantities are compared with those from 

arising from a neutral solute.

Figure 6.11 clearly shows the expected result that the positively charged solute 

attracts the negetively charged oxygen of the solvent molecules closer to itself. The 

first solvational shell is significantly more prominent and well defined for the charged 

solute when compared to the uncharged one.

The orientational sturcture of the solvent molecules around the solute is made 

non-symmetrical by the positively charged solute. Unlike the h(cos9) around the 

neutral solute, which is almost symmetric about cos 9 =  0 or 9 =  90°, the orienta­

tional DF for the positively charged solute is non-symmetrical. The positive charge 

causes the individual solvent dipoles to point away from the solute. Taking a larger 

configurational average during the calculation of /i(cos 9) should smoothen the jagged­

ness of the curves in Figure 6.12 and more clearly show the symmetrical nature of 

the /i(cos 9) curve for the neutral solute.

6.5.4 Solvational Results

With all the preliminary calculations providing confidence in the reaction field ap­

proach to the simulation of polar solvents, the main solvent dynamical results are 

now presented. All the results presented here are from the simulations that have used 

the ‘LJ confinement’ boundary conditions with a solute that has the LJ parameters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9o
x{

 r) 
go

o{
 r)

106

0 - 0  RDFs in 9 A cavities for neutral and charged solutes
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Figure 6.10: Independence of 0 - 0  RDF on the charge of the solute
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of a TIP4P oxygen atom.

The first results presented are for the time-correlation functions £c/s, C{t), that 

provide the solvation response due to change in the solute’s charge when linear re­

sponse approximation is applicable. To calculate a uV ( t ) ” the electrostatic interac­

tion energy between solute and solvent, for neutral solutes, a fictitious unit test charge 

is placed on the solute and the interaction energy is calculated at every timestep while 

performing the dynamics for a neutral solute.

In Figure 6.13 the t c f  for a neutral solute fixed at the center of the cavity is shown. 

The results for 7, 8  and 9 A cavity sizes show remarkable similarity, indicating that 

the reuslts obtained are independent of cavity size and have converged for t <  2 0 0 /s .  

Averaging the correlation function C(t) over longer trajectories should smooth out 

the t >  200/s oscillations. It is evident that a limited cavity size does not appear 

to cause systematic errors in our simulations. The tcf  shows all the characteristics 

of the solvent response function of a “atomic” type solute. The fast initial decay of 

C(t) to ~  0.2 is followed by a slower and oscillatory decay of C(t) to 0 in ~  500 — 

700f  s. The fast component has been ascribed to the “inertial” motion of the solvent 

molecules that occurs due to the instantaneous change in the electrical property of 

the solute and has been uncovered only recently through realistic MD simulations[13] 

and also experimentally[14] through the availability of fast lasers. In an equilibrium 

simulation, this fast response occurs in the tc f  due to the rotational motion of the 

solvent at ca.ZOOK, the temperature at which the simulation is executed. This fast 

response is less dominant for larger solutes such as large dye molecules usually used 

in experiments because the solvent coordination shell are less well defined for them. 

But even for larger solutes the fast decay component is responsible for decreasing the 

C(t) to 0.5. The later, slower and oscillatory decay of C(t) to 0 in ~  500 — 700/s 

corresponds to the diffusive (or translational) motion of the solvent. This result shows 

unambiguously that solvation response of ~  50fs timescale is a dominant feature of 

aqueous solvent dynamics. This fact is expected to have implications for charge 

transfer[X5] and other types of chemical reactions that occur in the condensed phase 

and involve considerable solvent reorganization.
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Orientational polarization of solvent in 9 A cavities
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Figure 6 .1 2 : Polarization of water molecules by a positively charged solute
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Figure 6.13: C(t) for neutral solute calculated with the reaction field formalism
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The tc f  for the charged solute, shown in Figure 6.14, shows slower decay than 

that of the neutral solute. We have argued that the fast, initial decay of the neutral 

solute tc f  was due to the inertial (or rotational) motion of the solvent molecules 

and the slower (>  O.lps) decay was due to the diffusive (translational) motion of the 

solvent molecules. The rotational motion occurs without substantial change in the 

position of the solvent molecules’ center of mass while the translational motion causes 

the solvational shells to break and reform. Comparing the charged and the neutral 

solvent tcfs, it is evident that the faster decay has been curtailed in the former case. 

For polar solvents, the charged solute is much more efficient at ordering the solvent 

molecules by imposing an orientational preference on the solvent as already shown by 

the angular distribution function. This charge-dipole attraction limits the rotational 

freedom of the solvent molecules. Therefore, proportionally, the fast component of the 

total decay of the C(t) is smaller and the slower translational component is larger for 

the charged solute when compared with the neutral solute. Also, the slight recurrence 

in the tc f  of the charged solute at ~  0.15 — 0.2ps has been noticed earlier in PBC 

calcualations in Chapter 5 and by other researchers[ll]. It has been argued that this 

recurrence is caused by the collective breathing motion of the innermost solvational 

shell of the charged solute.

In Figure 6.15 we show the solvation response function, averaged over five indi­

vidual simulations, (S (t)) using the method described earlier in chapter 5. In brief, 

the solute change in an equilibrated trajectory is suddenly changed from zero to + 1 . 

The total solute-solvent interaction energy is calculated at every time-step as the 

solvent rearranges itself to return to equilibrium with the charged solute. The time- 

dependent solute-solvent interaction energy is used to calculated S(t) as in equation 

6.17. The value of Eint(oo) used in the calculation of S(t) is (Eint(t)) obtained from 

an equilibrated trajectory of a charged solute and solvent molecules.

borne noteworthy features of the above figure are the similarity between the re­

sponse and the neutral correlation functions in the sub 0.2ps time domain. The later 

behavior of the response function S(t), in particular the long time decay, is more 

like the behavior of the charged solute’s C(t). It appears that the linear response
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RF tcf for charged (+ 1 ) solute for different sized cavities
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Figure 6.14: C(t) for positively charged solute calculated with the reaction field 
formalism
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Figure 6.15: Solvent Response function calculated directly from a nonequilibrium 
simulation
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approximation that allows for the use of C(t) to estimate S(t) is a reasonable one.

6.6 Comparison of RF R esults w ith Other results

The results presented in the previous sections are discussed here through comparisons 

with results obtained by the use of the same solute and solvent models but with 

different formalisms. In particular, solvational results obtained through PBC and 

pure cluster (no reaction field) formalisms are next compared with the reaction field 

results.

First, in Figure 6.16 the tcfs, C(t), are shown for a 9 A cavity neutral solute 

simulation confined using the L-J confining potential with and without the dielectric 

continuum surrounding the cavity. All other parameters, such as the ‘LJ confinement’ 

potential, axe same for the two curves shown in Figure 6.16.

In Figure 6.16 the importance of the molecular nature of the solvent and the 

degree to which this molecular nature dominates the total relaxation of the solvent 

is shown. The surrounding continuum is, therefore, only a small perturbation to 

the overall solvent dynamics. This result also indicates that truncating the Taylor’s 

approximation in equation 6 . 6  after the first term is expected to have only a miniscule 

effect on the dynamics while making the computation much less expensive. It is also, 

therefore, quite possible that a large cluster of molecules may well simulate the total 

solvent without the use of the continuum. It is also clear that for the cluster size used 

here, disregarding the reaction field slightly but systematically decreases the C{t) tcf. 

It appears that with the neglect of the RF the dominant, faster, “inertial” component 

of the t c f  is exaggerated somewhat at the expense of the slower “diffusive” component. 

In Figure 6.16 it is seen that the molecular interaction between the solvent and the 

solute that governs, to an almost overwhelming degree, the solvent-solute interaction 

and the resulting solvent dynamics.

Next, in Figure 6.17 the solvation results using the RF formalism are compared 

and constrasted with results obtained from simulations using the PBC formalism. 

tcfs  from the two formalisms for neutral and charged solutes are presented.
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Figure 6.16: Impact of the Reaction Field on the neutral solute tc f
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Figure 6.17: Neutral solute tcfs  calculated using the RF and the PBC formalisms
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In this figure the C (t) tcfs for a neutral solute are compared for the RF and the 

PBC calculations. The oscillations for the tcfs are very well correlated and overall 

the two curves are similar. The oscillations in the PBC curve appear to be damped 

to a slightly greater extent than the RF curve. These oscillations are caused by the 

“collective librational”[ll] (rotational) motion of the closest solvation shells around 

the solute. For the RF calculations, the solute is confined to stay at the center of the 

spherical cavity while there is no such constraint on the PBC solute. We speculate 

that this constraint may assist in the formation of the solvation shells around the RF 

solute leading to a greater contribution from the rotational motion of the surrounding 

solvation shells. A freely moving solute would be preferable to a fixed one because 

the latter is physically artificial. However, a moving solute may spend a considerable 

amount of time near the surface of the cavity at which time it would not surrounded 

by molecular solvent. The solvational quantities, in that case, are no longer of a 

solute surrounded by molecular solvent that in turn is surrounded by a dielectric 

continuum. We have shown that the molecular nature of the solvent is critical to 

a correct description of solvent dynamics and a freely moving solute is not always 

surrounded by molecular solvent particles. The analysis of the solvent dynamics for 

a moving solute in a limited sized cavity is not transparent.

In Figure 6.18 the C(t) tcfs  for a charged solute are compared for the RF and 

the PBC systems. The two curves are rather similar for t > 0.2ps, but there is a 

systematic difference between them for t <  0.2ps. This difference is quite intriguing, 

since it is with charged solutes that the PBC formalism is most suspect. It is possible 

that the fixed solute at the center of the cavity in the RF formalism assists in the 

formation of the solvational shells and, therefore, exaggerates the the rotational oscil­

latory decay of the tc f .  On the other hand, the PBC formalism (for 256 solvent and 

1  solute molecule in a ca. 2 0  A on a side cubic box) may treat the solvent molecules 

erroneously near the cell edge due to the unphysical change in the polarization at the 

cell edge. This difference in the two curves shown above is important and a closer 

look at the causes of this discrepancy may yield useful clues about the limitation of 

either of the two formalisms in treating solvent dynamics.
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In this thesis, a reaction field formulation of solvent dynamics with a cluster of solvent 

molecules and a solute molecule in a cavity confined by a L-J wall is presented. The 

structure of the solute-solvent system was probed as a function of the cavity size and 

solute charge. We have shown that using a 9 A sized cavity that contained about 

1 1 0  water molecules, the structural and solvational results are nearly independent of 

cavity size. A careful placement of the LJ confining wall allows for a correct structural 

description of the system. The importance of the molecular nature of the solvent 

to the solvent dynamics was demonstrated in a comparison of solvent dynamics of 

particles in a cavity with and without the dielectric continuum.

This formalism should make the determination of solvent-dynamical properties for 

a variety of solvent-solute systems computationally easier and conceptually simpler. 

Incorporation of the complete dielectric response function, e(u>), for the solvent stud­

ied in the MD equations should improve the accuracy of the results. The difference 

in the time-correlation functions for the charged solute between the PBC and the RF 

formalisms has to be further studied to determine whether the difference is accidental 

or systematic. A careful study of this difference may yield useful clues about the 

limitations of the PBC simulations for charged systems with polar solvents.
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Charged Solute (+ 1 ) tcfs  for RF and PBC calculations
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Figure 6.18: Charged solute tcfs  calculated using the RF and the PBC formalisms
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