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A b stra c t

A recursion relation is formulated for the Green's function for calculating the effective 

electron coupling in bridge-assisted electron transfer systems, within the framework 

of the tight-binding Hamiltonian. The non-perturbative recursion expression relates 

the Green’s function of a chain bridge to that of a bridge which is one unit less. The 

method is used to calculate the electronic coupling between a gold electrode and each 

of the molecules. (77o-C5H5)Fe(77o-C5H.l)C0 2 (CH2)nSH and (770-C5H5)Fe(770-C5H.1)(CH2)nSH 

{n =  3 to  50). At larger numbers of bridge units, the effective coupling strength  shows 

an exponential decay as the number of methylene units increases. This sequential for­

malism shows numerical stability even for a very long chain bridge and. since it uses 

only small matrices, requires much less computer time for the calculation. Identi­

cal bridge units are not a requirement, and so the method can be applied to more 

complicated systems, such as proteins. Most of the calculated coupling strengths, if 

converted to rate constants according to a nonadiabatic expression, agree well with 

the experimental results.

The time-dependent dynamic Stokes shift function, which describes the solvent re­

sponse to  a sudden change in the charge distribution of a solute molecule, is expressed 

in terms of experimentally measured dielectric dispersion data  of the solvent, using 

a simple dielectric continuum model. The result is applied to photoexcited coumarin 

343 in water, and encouraging agreement with the experimental data is obtained.

A simple formula is also derived which includes the effect of a pump pulse of finite 

duration. Such an effect is negligible when the frequency of a pump pulse is close to 

the maximum in the absorption spectrum, but a  deviation from the standard formula 

can be expected for the pump pulse tuned to a  far wing of the absorption band of 

the chromophore. To calculate further the time-dependent fluorescence spectral line- 

shapes. a  method is described for incorporating the vibronic transitions of a  solute 

molecule. The intramolecular vibrational relaxation is assumed to be much faster 

than the observation delay time. Calculations are made for coumarin 153 in ace- 

tonitrile. The results are again in encouraging agreement with experimental spectra. 

Results are also given for the dynamic Stokes shift in methanol.
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1

In tro d u ctio n

Electron transfer (ET) has been one of the major subjects in physical chemistry, due 

to its role in many important chemical reactions including biochemical processes and 

fundamental reactions in electrochemistry. Those reactions have been studied exten­

sively both experimentally and theoretically. In the following chapters two aspects 

of ET processes are investigated theoretically, in order to  provide fundamental con­

nections to experimental data, available currently and in the future, with physically 

insightful models.

The first aspect studied in this dissertation is the electronic coupling strength 

between the electron donor and acceptor. This part of study is described in chapters 

1 and 2. Many studies involving long range ET suggest th a t the reaction rate has an 

exponential dependence on the distance between the electron donor and the acceptor. 

In chapter 1 , a recursion relation is formulated for the Green's function for calculating 

the effective electron coupling in bridge-assisted electronic transfer systems, within 

the framework of the tight-binding Hamiltonian. The recursion expression relates the 

Green's function of a chain bridge to that of the bridge th a t is one unit less. This 

sequential formalism shows numerical stability even for a  very long chain bridge and. 

since it uses only small matrices, requires much less computer time for the calculation.

From such a non-perturbative formalism, the physical origin and conditions for the 

exponential dependence on the distance between the donor and the acceptor become 

clear. This sequential formula is then applied to calculate the electronic coupling be­

tween a gold electrode and each of the molecules, (77a-C5H5)Fe(77°-C5H4)C0 2 (CH2)71SH 

and (77°-C5H5)Fe(770-C5H4)(CH2)nSH (n = 3 to 50). Most of the calculated coupling 

strengths, if converted to ra te  constants according to a  high-temperature nonadia- 

batic expression, agree well with the experimental rate constants. In chapter 2 there 

is a detailed discussion of the exponential distance dependence and more comparison 

with experimental results.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2

The second aspect studied in this dissertation is the dynamics of the solvent in 

a charge-redistributed process, which is the centred issue of chapters 3. 4 and 5. 

More specifically, the solvation dynamics arising from the dielectric interaction of 

a polax solvent with a solute having its charge redistributed is investigated. Such a 

process involves the rearrangement of the solvent molecules to a new set of equilibrium 

configuration with respect to the final charge distribution (electronic state) of the 

solute. In ET  systems, such an interaction is frequently the most important source of 

the activation free energy of the reaction, and the theory has successfully predicted 

the reaction rates in many cases. The dynamics of such solvation processes often 

occurs in picosecond or even femtosecond time regions, and has now been observed 

experimentally using femtosecond laser techniques.

The dynamic Stokes shifts of chromophores in polar solvents have been observed 

and reported for a number of systems. Such results describe time-dependent solvation 

correlation function (also termed the ‘‘'Stokes shift response function'), which is the 

solvent response to a sudden change in the charge distribution of a solute molecule. 

We have used a reaction field with the dielectric continuum assumption in our cal­

culation. In chapter 3, application is made to water as a  solvent for a comparison to 

experimental results. A quantum correction due to the finite pulse duration is derived 

and discussed in chapter 4. and conditions for its observation in future experiments 

are described.

A description of the time-dependent fluorescence spectrum  of a chromophore in 

a polar solvent is given in chapter 5. which incorporates the vibronic transitions of 

the solute molecule. The evolution of the emission spectral width of a single vibronic 

transition is shown to be related with the quantum averaged correlation function, 

while the overall spectral width contains little information for such quantum  effects 

due to the wide range of the vibronic transitions of coumarin 153, the experimen­

tally used solute. Comparison of such calculated time-dependent emission spectra to 

experimental results is also given.
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C hapter 1 A  S eq u en tia l Form ula for E lectron ic  

C oupling in L on g  R an ge B rid g e-A ssisted  E lectron  

Transfer. F orm u lation  o f  T h eory  an d  A p p lica tio n  

to  A lk an eth io l M on olayers

Chao-Ping Hsu and R. A. Marcus 

Arthur Amos Noyes Laboratory of Chemical Physics. 127-72 

California Institute of Technology, Pasadena, CA 91125 

(Reprinted with permission from J. Chem. Phys.. 106(2). pp. 584 - 598.

© 1997 American Institute of Physics.)

Abstract

A recursion relation is formulated for the Green's function for calculating 

the effective electron coupling in bridge-assisted electronic transfer systems, 

within the framework of the tight-binding Hamiltonian. The recursion expres­

sion relates the Green's function of a chain bridge to that of the bridge that is 

one unit less. It is applicable regardless of the number of orbitals per unit. This 

method is applied to the system of a ferrocenylcarboxy-terminated alkanethiol 

on A u(lll) surface. At larger numbers of bridge units, the effective coupling 

strength shows an exponential decay as the number of methylene(—CH2 —) 

units increases. This sequential formalism shows numerical stability even for a 

very long chain bridge and, since it uses only small matrices, requires much less 

computer time for the calculation. Identical bridge units are not a requirement, 

and so the method can be applied to more complicated systems.
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1.1 In trod u ction

Electron transfer (ET) over long distances has been studied extensively in recent 

experimental and theoretical works, both in homogeneous systems [1—5! and across 

monolayers on electrodes [6-9]. Some of the work addressed the importance of the role 

played by long range ET reactions in biological processes while others demonstrated 

the underlying fundamental properties of such reactions. Many of these studies sug­

gest th a t typically the rate has exponential dependence on the distance between donor 

D and acceptor A. Theoretical studies [2, 10] on molecular wires with one orbital 

representing each site of the wires, show exponential dependence of the conductance 

with the length of wire when the electron is at an energy outside of the wire's energy 

band, and large conductance is obtained with oscillatory dependence on wire length 

for the energy of an electron inside the wire's band. A sequential treatm ent is formu­

lated here for electron transfer through a  linear chain bridge that is allowed to have 

more than  one orbital in each site. W hen the energy of D  and A  states lies out of 

the "energy band" of a long chain bridge, the well known exponential dependence of 

the m atrix element on distance is expected.

For the coupling of the electronic and nuclear motion, a Golden rule treatment 

has given a satisfactory description of the non-adiabatic reaction rate for weak (i.e.. 

long range) coupling. In this case, the rate constant k  for electron transfer from an 

electronic state of the donor to a state of the acceptor is given by:

9 7T
k =  t \Hd a \2(FC)  (1.1)

where (F C ) is the Franck-Condon factor, and H da is the effective electronic coupling. 

Various approaches for treating the electronic coupling matrix element H da have 

provided estimates of the decay coefficient [1-5, 11, 12]. Separability of the electronic 

and nuclear factors is assumed in Eq. (1.1).

The effective coupling element can be defined as the coupling between the eigen­

state |iJjd) and the zeroth-order state \4>a ), namely, (*Pd \H\4>a )- Using the partition­
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5

ing technique [13]. it can be shown tha t this definition of effective coupling is the 

off-diagonal element after mapping the overall Hamiltonian onto an effective 2 x 2 

Hamiltonian matrix of donor and acceptor states only. In an equivalent approach, a 

transfer operator T  can be defined from scattering theory [14]

T  = V  + VGV,  ( 1 .2 )

where G is the Green's function for the Hamiltonian H. The latter is composed of 

an unperturbed H° and a perturbation V. where H° is the Hamiltonian for non­

interacting donor, bridge and acceptor states, and V  is the interaction among them . 

By making use of the Lippman-Schwinger equation, it can be shown [14] tha t the 

m atrix element (6d \T\<Pa) Is the same as the effective coupling (tPd \H\<Pa ) ■ and the 

latter is denoted H qa throughout this article.

McConnell gave an early molecular derivation of the exponential decay factor [12]. 

He showed that for a single-band problem, where there is only one orbital per bridge 

site, the tight-binding Hamiltonian is tri-diagonal and the effective coupling m atrix 

element H oa f°r a bridge with n  repeating units is

( 1 -3)

when j jE7 — ckj 2|,d|. Here. 3 is the interaction between neighboring orbitals, a  is the 

energy of an individual orbital in the bridge, and E  is the energy of the electron to  be 

transferred, namely, the energy of the donor orbital, which, in turn, equals the energy' 

of the acceptor orbital when the system is at the transition state of the reaction.

Further studies on the single-band case have appeared recently [2, 3], Their ana­

lytic expression for H qa can be w ritten as follows:

h  =  Sa3 d { ~ 3 Y - 1 .
DA ( E - a  +  0 "+l - ( E - a - 0 n+1' '

where

C =  ( ( £ - a ) 2 - 4 0 2)1/2, (1.5)
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6

where n .E .a  and 3  have the same definition as in Eq. (1.3). and 3d ( 3a ) is the 

interaction matrix element between donor(acceptor) and the bridge unit it is attached 

to. In Eq. (1.4) it has been assumed th a t the basis formed by orbitals of donor and 

acceptor and orbitals on every site of bridge is orthonormalized. Otherwise one can 

always find a new set of basis by the transformation similar to that described in 

Ref. [15].

There are two cases when the expression in Eq. (1.4) tends to be exponential. One 

is for far off-resonance. namely,

\ E - a \  »  2\0\. (1.6 )

Then. £ is very close to  |2? — a | and so one of the two terms in the denominator

vanishes under this condition. In this case McConnell’s expression (Eq. (1.3)) is

obtained. The other case is from the observation that the absolute values of the two 

terms in the denominator of Eq. (1.4) differ when £ is a non-zero real number, which 

requires that

\ E - a \ > 2 \ 0 \ .  (1.7)

This condition, together with the condition th a t n  be large, is a weaker condition 

on the energy of the electron or on the coupling strength. The inequality (1.7) also 

serves, for large n, as the off-resonance condition, since a tight-binding Hamiltonian 

of an infinite chain w ith one orbital per site has an energy band which lies between 

a - 2 0  and a  +  20. If Eq. (1.7) holds and n  is large, the denominator of Eq. (1.4) is 

dominated by one of the two terms that has larger absolute value for the case that 

n is large. Consequently, exponential behavior is obtained in the limit of long chain 

bridges, where the attenuation factor is close to, but not exactly the same as. the 

0 / { E  — a )  in Eq. (1.3).

Beratan and Hopfield [4] used another approach with which they were able to 

treat more realistic systems, i.e., several-band systems. Their method is readily un­

derstood if we note th a t surface states exist when the energy of the surface atom 

(donor/acceptor orbitals) lies outside the energy band of the infinite chain(bridge)
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[16]. The usual Bloch states have complex eigenvalues with unit moduli for the trans­

lation operator that commutes with the Hamiltonian of the infinite chain, while such 

surface states have real eigenvalues for the translation operator. Since the wave- 

functions must be square-integrable, the wave function for a surface state must be 

decaying rather than growing exponentially as it penetrates the infinitely long bridge. 

The energy and the corresponding decaying factor were solved by fitting the bound­

ary condition at each end. Thereby, the exponential behavior was built into their 

solution. As discussed above, for a single band bridge, the exponential dependence 

is found either for off-resonant, sufficiently long uniform bridge chains or for energies 

far moved from the bridge band.

In the present paper we consider a more general case, which is not limited to 

systems with a single orbital in each bridge site or to a large system. For convenience 

and simplicity, the term "‘band” will be used in a loose sense and refers to the region 

where energy levels axe concentrated or where the actual band of an infinite chain 

would be, even though we will be discussing finite systems only. In Section 1.2, a 

sequential expression for the Green’s function is obtained. The Green's function of 

n  bridge units is written in terms of that for n  — 1 units. The derivation does not 

require that the bridge units be identical, and they are also allowed to have different 

numbers of orbitals. In Section 1.3. this method is applied to  calculating the electron 

transfer rate between an electro-active group on an adsorbed alkane thiol molecule 

and the electrode to which it is attached. The effect of additional parallel chains of 

alkane thiol molecules was also treated and, together with the comparison between 

our sequential method and the direct summation over the bridge eigenstates, the 

results are discussed in Section 1.4. Concluding remarks axe given in Section 1.5. 

The Appendix consists of the graphical derivation of the sequential formula and its 

possible generalization.
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1.2 T h e  S eq u en tia l Form ula for G r e e n ’s F u n ctio n

The tight-binding Hamiltonian is considered with only the nearest-neighbor interac­

tion, namely, between neighboring bridge units, between the first unit and the donor 

orbital, and between the last unit and the acceptor. An expression for the Green's 

function for the whole space by the method provided below can always be developed, 

but the expression for the bridge Green's function is much simpler to introduce and 

for off-resonant systems it provides a satisfactory approximation. Thereby, it is as­

sumed here tha t the matrix elements of the Green's function needed in Eq. (1.2) axe 

approximately those of the G reens function for the bridge part only. The error from 

such an approximation should usually be relatively small when compared to other 

approximations made in the tight-binding calculation.

It is always possible to calculate the Green’s function for short bridge chains, given 

the explicit Hamiltonian matrix elements. Therefore, we have explored solving the 

problem for general chain lengths, assuming th a t the Green’s function is known for 

a chain with one less bridge unit and then, for longer bridge chains, obtaining the 

recursion equations and iterating them until the desired length. This iteration process 

involves mostly matrix multiplication and inversion. All the matrices involved will 

be seen to have dimensions determined by the number of molecular orbitals on each 

related bridge unit. These numbers are finite and are independent of the number 

of units of the entire bridge, and so the iteration process for longer bridge chains 

can be executed without solving a large linear problem. For notational simplicity, 

the derivation is given for systems with uniform bridge units. The generalization 

to arbitrary different bridge units can be made without difficulty and is discussed 

in Section 1.4. The derivation given below for the bridge’s Green's function is non- 

perturbative with respect to the magnitude of the intra-bridge interactions.

It is supposed here that there are n  bridge units in the problem, and th a t each 

bridge unit has m  molecular orbitals. Using the basis that diagonalizes the Hamilto-
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nian within each bridge unit [15], the Hamiltonian for a chain bridge is

H (n) =

Tv J e

0

v 0  0  ••• j  0

v 0  • • ■ | :
i .e v  • • • ! :

V 0   0 v

where e is an m  x m  diagonal m atrix

T

( 1 .8 )

(

e =

\

si 0 

0 S2

0 0

0

0

\

(1.9)

and v T is the transpose of the interaction m atrix v  that couples adjacent bridge 

units. The lines in Eq. (1.8) partition the m atrix  into four blocks. The upper left 

one, a laxge square block, corresponds to the Hamiltonian for n — 1 bridge units. The 

elements in the two off-diagonal blocks arise as a perturbation designated below as 

l-{[n\  The elements in the two diagonal blocks form the zeroth-order Hamiltonian

'H{q ) . Thereby. and 'H\n' are defined as,(n) (n)

'I/(n)rto

v

0

0

e V

e v  • - •

• • •  0  0

o '
ii :

tf(n-U 0

0 e
( 1 .10 )
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and

n [ n) =

0 0 0 • 0

0 0 0 • ■ j o

0 0 0 •• 0

• . V

\ • 0 v r 0 /

so th a t / / (n) =  -r 7i[n .̂ The T-L^ is seen in Eq. (1.10) to refer to a fully coupled 

(n — l)-un it bridge plus an uncoupled n th  bridge unit attached.

The Green’s function corresponding to the in Eq. (1.8) is then rewritten as

G (n) =  { E l - = ( E l - H {0n ) - n \ n]) - 1

= g {0n)( i  - H [ n)g {0n)) - \ ( 1 . 1 2 )

where G (n) is the Green's function for the tight-binding n-unit bridge system, and 

g {Qn) is the Green's function corresponding to

= ( E i - H {0n)r l = 

here A denotes the diagonal m  x m  m atrix

/ G(n-

A-
:i.i3 )

A =  E l  — e.

The term  (1  — H[n)go^) can be written as

1 -  H[n)g (0n)
I m ( n - l ) - m 2

- M l l m

\

/

(1.14)

(1.15)

where l m(n_i) and l m denote unit square matrices of dimensions given by subscript. 

The Mi  and M2 are given by

Mi =  ( . . .  ) ,  d  i e)
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and

Mo =
0

v A - 1

(1.17)

/

in which v. v r , A -1 and all represent m  x m  matrices. Specifically. is

the (n — 1, 1) block in the Green's function G(n_I) for n  — 1 bridge units. The inverse 

of the matrix in Eq. (1.15) can be written as

1 Im(n-l)  A/ 2 \ I-* 1 §
1 0

V M  l m  j I  0 (1 -  AAA/2 ) - 1
. (1.18)

as can be verified by multiplying both sides of Eq. (1.15) to the left or to the right 

with the m atrix in Eq. (1.18). Since there is negligible direct coupling between the 

donor and acceptor states in the long-range electron transfer, the effective coupling is 

calculated from the second term in Eq. (1.2). Also because the tight-binding model 

is used, only one block of the G reens function G (n) is needed in that expression, 

namely, the block relating transition from the first bridge unit to the n th  one. It is 

denoted by and is a block of dimensions m  x m. The Green's function G(ri)

is obtained by introducing Eqs. (1.13) and (1.18) into Eq. (1.12) and performing the 

m atrix multiplication in terms of blocks. For the desired ( l.n )  block, we obtain

M n) — r Kn~l> v A - ' / i  — v 1 ' r Kn~1' v A ' 1)-1(l.n) — (l.n —1) (■*• v  ^ ( n —l.n—I) )
-,(n-l) (1.19)

In order to iterate Eq. (1.19) further for an expression for is needed.

This m x m  block m atrix can be obtained similarly from G^n) but selecting the (n. n) 

block,

G W , =  A - ( l  -  (1.20)

Equation (1.20) is a recursion expression for However, it would be desirable

to convert the expression to one in which a dimensionless quantity represents the
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deviation from the first-order term  in the expansion of Eq. (1.12) [17]. W ith this goal 

in mind, we define an m x m  block JVn,

( 1 .2 1 )

A recursion expression for N n then follows from Eq. (1.20):

( 1 . 2 2 )

Equation (1.19) then becomes

(1.23)

The initial condition for the iteration of { N n} is taken as N 2: N2 can be obtained by 

inverting the 2m  x 2m tight-binding Hamiltonian, together with Eq. (1.21). Since 

the above derivation does not introduce any explicit assumption tha t v A ' 1 is small, 

i.e., Eqs. (1-22) and (1.23) were not derived perturbatively, Eqs. (1.22) and (1.23) are 

m athematically exact for finite n.

The factor v A -1  in Eq. (1.23) resembles McConnell's estim ate of the scalar decay 

factor 3 / { E  — a)(E q. (1.3)). If the matrix N n becomes essentially a constant m atrix 

after a number of iterations, then the overall trend for ^  is to become an expo­

nential as n  increases. The sequential formula of N n (Eq. (1.22)) is a nonlinear first 

order difference equation for matrices.

It is instructive, for understanding the general properties of Eq. (1.22), to examine 

the solution of this difference equation for m  = 1, where N n becomes a scalar. In this 

case, N n can now be solved by the transformation:

1 -  2r 2Nn

so Eq. (1.22) yields

(1.24)
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where r  is defined as the scalar v A -1 (=  (3/{E — a ))  and the negative sign is taken if 

|r | < 1 / 2  and the positive sign, otherwise. Equation (1.24) can be solved by writing 

an as ta n h bn (or t a n bn) and making use of the addition formula of the hyperbolic 

tangent (or tangent) function. The following solution is then obtained:

tanh ( tanh 1 -—.  ̂ - 4- (n — 2 )V l  — 4 r2 } . if |r| <
\  V 1 — 4r2 /  2

(tan_1 "{n~2)V4r2 -') •if m > \

1 y/l  -  4r 2 
1 n ~  2r 2 2r 2

(1-25)

N n — ——t  —- tan I ta n - 1 -̂—7 ■ — 4- (n — 2 )\/4 r2 — 1 I , if |r| > ^.
2r 2 2r 2 I J A r2 -  1 ’ ) 2

(1.26) 

w ith

* , =  1
1 — r 2

In the former case, N n approaches a constant as n increases, while in the latter 

case. N n has an oscillating behavior arising from equally spaced poles on the real n- 

axis. Basically this result is the solution of a single-band problem. When compared 

to Eq. (1.4). Eqs. (1.23) and (1.25) give the same exponential factor for the ofF- 

resonance case. It should be noted that the bridge Green’s function was used here, 

while in obtaining Eq. (1.4) the full tight-binding Hamiltonian, including donor and 

acceptor states, is used instead. The general solution of Eq. (1.23) for multi-band 

G reen’s function, was also obtained without iteration, but the solution we

obtained involves the inverse of the sum of the (n  — 3)th power of two matrices for 

n > 3. malting it numerically unstable to calculate when n is large in its present 

form. The result is given in Ref. [18]. Practically, the sequential formula. Eq. (1.22). 

is straightforward and stable to  use.

By observing the result of numerical iteration, the behavior of N n can be described 

for most cases. As in the corresponding single-band case, the m atrix  Nn tends to  a 

constant m atrix if the energy E  is outside all the bridge “bands.” In this case, all of 

the eigenvalues of v A ~l N n lie inside the unit circle of the complex plane and one or 

two of them dom inate the final decay factor as n  becomes large, namely the one with 

the  largest modulus. If there is only one dominating eigenvalue, an  exponential decay
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in the coupling strength with respect to n would be obtained. If the eigenvalues with 

the largest modulus are a pair of complex conjugate numbers, the decay is modified by 

a periodic oscillation. For the cases where E  lies inside the bridge bands. Eqs. (1.22) 

and (1.23) are still mathematically applicable with a complicated dependence of N n 

and ^  on n. but physically the assumption of approximating the overall Green's 

function with the Green's function for the bridge part is not a good one. Therefore, 

it is inappropriate to discuss the on-resonance condition using the sequential formula 

in its present form.

We have also obtained a graph-based method of deriving Eqs. (1.22) and (1.23) 

which is potentially useful for complicated bridge systems. It is outlined in the Ap­

pendix. In this graph-based method, an infinite series is obtained, but its summation 

yields the same equation as th a t obtained in the above derivation. Since the latter 

did not involve any infinite series, it is seen that analytical continuation of the series 

can be used to obtain valid results in a region where the original infinite series of 

the graph-based method diverges. This property, if it still holds in more complicated 

problems, enlarges the scope of the graph-based method beyond its infinite series 

approach, perm itting its use in other applications.

1.3 A p p lica tio n

The recent development of self-assembled monolayers of alkane thiol molecules on 

a gold surface has provided a convenient approach for studying electron transfer 

between an electroactive group and an electrode, where the electroactive group is 

held at a fixed distance from electrode surface, or, if in solution, is separated from 

the electrode by a fixed monolayer [6 ]. Chidsey measured the voltage dependent ET 

rate of the ferrocenylcarboxy-terminated alkane thiol/gold surface system including 

the rate under the exchange current condition (corresponding to the case where the 

AG°  for the electrode process is zero), and a reorganization energy A was estimated 

by fitting the data  to an equation whose functional form is similar to Eq. (1.27) below

[7]-
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A study involving electrodes coated with self-assembly monolayers of ^-hydroxy 

thiols of various lengths (the n 's of (—CH2 —) are 6 to 11) was performed by Becka 

and Miller [8 ]. The electron transfer current of anions in solution was measured and 

after corrections for diffusion and other effects were made, the authors reported the 

length dependence factor 3 =  1-08 ± 0 .20  per methylene unit [19]. Carter et al. [9] 

studied, for different lengths of thiol molecules (n = 8,12.16). the system investigated 

by Chidsey [7j. The length dependence over the above range was obtained and the 

decay factor was reported as 3 = 1.44 ±  0.12 per methylene unit.

1.3.1 T he N onadiabatic R eaction  R ate

A mathematical form for the nonadiabatic rate between an electron donor group and 

an electrode, in the high tem perature limit, is given by [20 . 21]

=  y  (4irA k BT ) ~ 1/2J  (1.27)

where \V(e)\2 is

|1 /(£ ) |2 =  j i 2k \H ok\25(s(k) -  £), (1.28)

in which Hok is used to denote the effective coupling element between states (D\ and 

| fc), with the definition similar to that of Hqa  described in Section 1.1. the wave- 

functions |k) are normalized to a Dirac delta function. (k\k') = S(k — k')- s is the 

energy of an electron in metal with respect to the Fermi energy. e(k) is the energy of 

the electronic state |k) of the metal, A is the reorganization energy (including both 

inner and outer contribution), and 77 is the overpotential (E  — E°), namely the differ­

ence between the applied potential and the standard potential of the electrode. The 

above Eq. (1.27) is an integral of the non-adiabatic electron transfer rate expression 

[22] over all the possible states |A;) and all possible energies e in a metal, using the 

Fermi-Dirac distribution as a  weighting factor. In general, a summation over energy 

bands of the metal electrode is needed in Eq. (1.28). However, since in the present 

work we only consider the contribution from the s-band of the gold electrode, the
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summation over energy bands is omitted for simplicity. “Work terms'’ [20] are also 

omitted in Eq. (1.27) for simplicity of notation. One sees tha t because of the delta 

function normalization and the above definition of Hok- the |l /(c ) |2 in Eq. (1.28) has 

units of energy.

The electron transfer rate under electrochemical exchange current conditions (i.e.. 

forward rate equal to reverse rate) can be obtained by setting tj =  0. By noting A » £  

we can drop the quadratic term of s in the exponent of Eq. (1-27). The integration 

over e is performed by approximating [20]

=  / ( 0) f g{e)d£ -  / ' ( 0) [  g{s)ed£ • • •
J —oc J —oc

ss irkBT f{0 ) ,  (1.29)

since g(£) here is a symmetric, positive definite function with its weight concentrated 

around the origin. From Eqs. (1.27) and (1.29), the following expression is obtained:

^ate = ^ { A -K \k BT ) - ll2e - xl4k°T\V\2. (1.30)

where

|V |2 = irkBT  J  d3k\H Dk\25(£(k)) = irkBT \ H ^ P f -  (1-31)

with
S<Pk\HDk\26(E(k))

!<PkS{c(k))

and

Pf = J  d3kS(£(k)).

Namely, \Hok\2 is the effective coupling strength averaged over the k's on the  Fermi

surface and has units of (energy)2(wave vector)-3 or (energy)2(volume)1 because of

the normalization of |k) described earlier, while p / is the density of states at the  Fermi 

surface, with units of (energy)-1 (wave vector)3. In the present work, the unit length 

is chosen to be the nearest-neighbor distance of the fee lattice of Au atoms, and so
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(wave vector)3 equals (number of atoms)-1.

To calculate theoretically the effective coupling matrix element Hpk between the 

ferrocenylcarboxyl group and the gold electrode and compare with the experimental 

data, two of the schemes, (a) and (b). which axe developed from Eq. (1.2). assuming 

no direct coupling, are listed:

(a) A direct summation over all bridge molecular orbitals can be made by using the 

following expression:

n » ( s  HDk) = y . <i-32)
a E - E b

where {B }  denotes the set of molecular orbitals of the bridge. It can be shown 

th a t the m atrix element Tok of the transfer operator equals the effective coupling

Hok [14!. as discussed in Section 1.1. The bridge Green’s function is used to

replace the overall Green’s function. Also, the perturbation V  is regarded as 

the interaction of any s ta te  of the entire bridge with the donor and with the 

acceptor. Namely, Vqb is the interaction matrix element between the donor 

s ta te  and the orbital B  of the entire bridge.

(b) The sequential formula derived in Section 1.2 (Eqs. (1.22) and (1-23)) can be 

used:

H Dk = VDAG^]n)VnJt (1.33)

where Vq,i and Vn^  denote interaction between donor sta te  and the molecular 

orbitals in the first bridge unit and between those in the n th  bridge unit and 

the state \k) of the metal electrode, respectively. For a bridge with more than 

one orbital on each site, Vd ,\ denotes a row vector. a matrix, and Vn<k a

column vector.

In both cases, the wave functions used for the A u ( l l l )  surface are linear combi­

nations of atomic s-orbitals obtained with the tight-binding approximation [23], and 

to evaluate Eq. (1.31), the coupling strength of 60 wave vectors (k ) random sampled

over the Fermi surface were calculated and averaged to obtain |f/ofc|2. All of the 

interaction m atrix elements were obtained using an extended Hiickel program [24].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 8

The coordinates of atoms in the alkane thiol portion of the system are those of Klein 

and coworkers, who employed a molecular dynamics calculation in conjunction with 

structural data  [25, 26]. The geometry of ferrocenvlcarboxyl group is obtained from 

the crystal structure of similar molecules [27!. In the supplemental material [28] we 

deposited the full cartesian coordinates for the molecules being used in the present 

work.

1.3.2 T he Energy Difference at Transition State

To calculate the denominator of Eq. (1.32) or the Green's function of Eq. (1.33). 

it is necessary to know the energy of the various electronic states of the bridge (B ) 

relative to the Fermi level of the metal (A/). We consider the free energy vs. the 

reaction coordinate q diagram in Fig. 1.1. which describes the reaction which involves 

transfer of an electron from D to a specific orbital |A:) at Fermi energy in the metal 

[2 1 ]:

D  -r B  +  M  —> D^(solvated) +  5  + A/(e). (1-34)

Curves I and II describe the left side and the right side of (1-34) respectively. Curve III 

corresponds to the superexchange state denoted by D + — B~  (unsolvated) -r  M .  if it is 

an electron transfer. (For a  hole transfer, a curve representing D -+- B~(unsolvated) — 

M(e) should be used instead.) The energetics for I and II for the free energy G(q) as 

a function of q are described by:

Gx{q) = G D(q) + E d (1.35)

G u (q) = G D-(<7,solv) p.m + eos (1.36)

where E d is the energy of the electronic orbital of donor D  with respect to vacuum. 

Go(q) is the solvation free energy of D, as a function of q, and Go- (q, solv) is similarly 

the solvation free energy of D + ; /2m is the electrochemical potential (Fermi level) of 

an electron in M ,  and is equal to /i^  — e<pm. The <p's denote electrostatic potentials 

(the so-called inner electric potential or the Galvani potential [29, 30]) for the metal
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eletrode (0m) and in solution (<ps).

The bridge B  can become a B + (or a B ~ ) in the virtual state which occurs in the 

superexchange mechanism, but because of the off-resonance condition this supertran­

sient B~  or B~ can be regarded as unsolvated. There may be some interaction of this 

virtual electronic state with the electrons in the surrounding medium, but we wfill 

neglect such details here. If the potential change 0m — 0S occurs across the adsorbed 

monolayer B, then a first approximation would be to treat the energy levels of B  as 

being at a mean electrostatic potential (0m — os) / 2. In that case we have, for the 

electron-transfer scheme,

g
Giii(<7, Bi) = Gd~ (q, solv) +  E Bi -f- eos -  - ( p m -r ©.,), (1-37)

where E&i is the energy of the ith orbital of the bridge in the absence of an electrostatic 

potential.

The vertical difference between I and III at the transition state is denoted by 

A E(q^) in Fig. 1.1. It is seen from Eqs. (1.35) and (1.37) to be

A E (q ')  = Gl( q ' ) - G m (q') = Gll{ q ' ) - G m (q') (1.38)

=  V m -  E Bi ~  <?s) (1.39)

=  E Bi-^(4>°m -(t>0s -rV)- (1-40)

since G\ — Gn in the transition state, q = q*. In Eq. (1.40) the over-potential q has 

been defined as 0m — os — 0 ^  -f 0° while (0^  — oas) is the standard metal-solution 

potential difference of the electrode. From Fig. 1.1 and Eq. (1.38). AE(q^) is seen to 

be independent of the reorganizational energy A since the solvational free energies of 

the intermediate state (III) and the final s ta te  (II) are the same (for D + ion) and so 

the reorganizational energy cancels in the Gi(gt) — G m ^ )  difference, q equals zero 

for the exchange current condition.

In Eq. (1.39) both and Ebi are negative quantities that describe the energy 

required to move the electron from the neutral materials to vacuum at infinity, while
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—e0 m and —e(<j>m h- 0s)/2  adjust that energy for the effect of the electric potential. 

This process of moving an electron to vacuum at infinity can also be described as 

occurring in the following two steps: the electron is first moved to just outside the 

surface of the material in vacuum, and then it is moved from that point to infinity. 

The energy needed in the first step is the definition of the work function of the material

[31], and th a t for the second step is the electronic charge times the outer potential iv 

(termed also the Volta potential) [29. 32], namely, the electric potential of the material 

due to its total charge. The inner potential o ’s and outer potential w s differ by a 

surface term  which is due to  the dipolar distribution of charge at the surface of the 

material. If the work function of the metal is denoted (a positive quantity), and 

the corresponding quantity for the bridge molecule is 'kB, the ionization potential, 

we have the following relations for metal and bridge respectively, equating the two 

ways of accounting for the energy- of the electron in the material relative to its value 

when at rest in vacuum at infinity:

fj°m -  eom = -  e-Wm. (1.41)

Efl(HOMO) -  e-{0m -r Os) = - V b -  |(W n ~ o s). (1.42)

and for other molecular states in B, the same energy difference Ae*( =  E Bi —E B(HOMO)) 

can be added to both sides of Eq. (1.42).

With Eqs. (1.41) and (1.42). Eq. (1.40) can be w ritten as follows: (For the ex­

change current condition, the over-potential rj has been set to zero.)

A E (q ')  = - t y m -  e(0Qm -  0°)  + V B -  Aet +  -  M>°a)

= ~ e E ^ s) + ~  o°s ) + ^ B ~  Ae„ (1.43)

where denotes the corresponding outer potential when the potential of the elec­

trode is at the standard potential of the redox species, and E(abs) = m/ e ~  (ipm — Os) 

is the absolute electrode potential with its reference s ta te  being an electron at rest in 

vacuum close to the surface of the solution, as discussed by Trasatti in Refs. [30] and
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[32]. The absolute potential for some of the commonly used reference electrodes are 

also listed in Ref. [32]. W ith this data, the absolute potential for the electrode de­

scribed by Chidsey [7] is estim ated to be 5.13 V, if the standard potential E° is taken 

as 0.08 V above the Ag/(1 mM AgC104, 1 M HC104) reference electrode. Together 

with the work function of A u ( l l l )  surface, 5.31 eV 133], we obtain —0.18 V for the 

potential difference, — xV°s . W ith these quantities. Eq. (1.40) becomes

A E iq ')  = -5 .2 2  eV +  ~  Aet (1.44)

for the ith  molecular orbital of the bridge. A E {q!) is the quantity that is needed 

both in the denominator of Eq. (1.32) and the Green's function of Eq. (1.33). The 

quantity g -+■ A e t representing the energy of the zth bridge state is obtained in the 

following section.

1.3.3 E nergy of B ridge States

For use in both the summation and the sequential methods in the present calculation, 

the energy eigenvalues for a long alkane chain ((CH2)n, n = 40 or more) were obtained 

from either the extended-Hiickel or the tight-binding Hamiltonian, for comparison 

with the experimental data  on the band structure of polyethylene. To obtain a better 

agreement with those data, adjustments of the Hamiltonians are given below. Such 

adjustments are then applied to each alkanethiol bridge in the calculation.

In the direct summation calculation, a  full extended-Hiickel calculation was per­

formed. As noted in Ref. [34], in describing the valence band structure of polyethylene, 

the extended-Hiickel method itself does surprisingly well. By comparing the distri­

bution of calculated energy levels (Fig. 1.2-1) with the experimental valence band 

structure [34], we concluded th a t the following adjustments were needed for the po­

sition of each bridge level (denoted by E g  in Eq. (1.32)): first, a factor of 0.7 is 

used to multiply the energies of the levels in the filled extended-Hiickel band formed 

from C 2p and H Is orbitals (denoted by (a) in Fig. 1.2-1) so that the bandwidth is 

closer to th a t given by experiment, and then the two valence bands ((a) and (b) in
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Fig. 1.2-1) axe shifted to fit the experimental band edges for each band [34]. Prior to 

any adjustment, the position of the lower edge of band (c) is calculated to be about 

—0.6 eV relative to vacuum, and the resulting band gap agrees very well with the 

experimentally measured band gap of polyethylene [35] (8 — 9 eV). Xo adjustment 

was therefore made for the energies of the states in the unfilled bands (band (c) in 

Fig. 1.2 and the higher energy band not shown there). The interaction between donor 

(acceptor) and bridge orbitals and the composition (coefficients) of molecular orbitals 

are obtained directly from the extended-Hiickel calculation without any adjustment.

For the sequential method, the tight-binding Hamiltonian is obtained from the 

same extended Hiickel program, but all the interactions beyond nearest neighbors are 

now ignored and the overlap integrals axe considered within each bridge unit only. 

The molecular orbitals of individual bridge units axe obtained by solving the secular 

equation of each unit. Fig. 1.3-1 shows the distribution of energy levels from such a 

tight-binding Hamiltonian. It is necessary to ensure th a t both the upper edge of the 

valence band (the HOMO) and the lower edge of the conduction band (the LUMO) of 

the bridge agree with the experimental values. From the observed band gap (8 — 9 eV)

[35] and the ionization potential (8.8 eV) [34] of the bridge, these values axe —8.8 eV 

and —0.8 to 0.2 eV, respectively. The calculated band gap is only 6.2 eV in Fig. 1.3-1. 

which is smaller than experimental values. To obtain a better agreement with the 

band gap measurement, some of the six molecular orbital energies of a CH2 unit was 

adjusted. The third and fourth states (the CH2 HOMO and LUMO, respectively) 

were found to have a large effect on the states close to  the band edges; those two 

energies were shifted by — 1 eV and 4-1 eV, respectively, an adjustm ent which served 

to give a larger band gap (7.4 eV). All of the six MO energies were then shifted 

upward by 2.0 eV so that the upper band edge of the highest filled band agrees 

with the ionization potential of polyethylene. (This shift has no effect on the band 

gap.) W ith these corrections the HOMO of the bridge is —8.8 eV and the LUMO 

is —1.4 eV, which are moderately close to the above experimental values. The MO 

energies after the above adjustments are now used as the diagonal matrix elements 

in Eq. (1.9). The interaction matrix elements between nearest neighbors, denoted by
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v in Section 1.2, axe obtained from the extended-Hiickel calculation using the MO's 

of each bridge unit as the basis. The distribution of energy levels from the adjusted 

Hamiltonian is plotted in Fig. 1.3-11.

The trend of coupling strength with length of chain calculated from the sequential 

method is shown in Fig. 1.4. The results of both the direct summation and sequential 

methods are given in Fig. 1.5. Various aspects of there results are discussed and 

compared next.

We have also calculated the effect of additional parallel alkane thiol chains using 

the structure from Klein [25]. For one of the possible conformations of the ferrocenyl- 

carboxyl group [28]. the effective coupling calculated from direct summation method 

for different numbers of additional chains is listed in Table 1.1.

1.4 D iscu ss io n

In the following discussion, we first consider and compare the results shown in Figs. 1.4 

and 1.5 and in Table 1.1. We then discuss the generalization to a more compli­

cated bridge system th a t has different bridge units or that has a complex geometrical 

structure instead of being a linear chain. The flexibility of the graph-based method 

described in the Appendix will be discussed in the end of th a t section.

Using Eqs. (1.30), (1.31). the sequential formula (Eqs. (1.22) and (1.23)). Eq. (1.33) 

and the experimental value of A [7]. 0.85 eV. we obtained a coupling strength {\Hok\2) 

of about 5.6 x 10-12 eV2atom for n = 16. which yields a rate constant of about 

0.11 sec-1 . In obtaining the latter, the density of states of gold electrode was esti­

mated from the tight-binding formalism by a Monte Carlo method. At the Fermi 

energy of gold, the value 0.05 ±  0.002/eV /atom  was obtained. As a comparison, if 

the density of states of Au at the Fermi level, obtained from low temperature specific 

heat, 0 .3 /eV /atom  [36] is used, instead, one would obtain a  reaction rate tha t is a 

factor of six larger. The reaction rates calculated above roughly agree, within one 

order of magnitude, with the 1.25 sec-1 measured from the electrochemical exchange 

current voltage by Chidsey [7].

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



24

The sequential method is numerically easy to calculate with good precision. In 

Fig. 1.4 the coupling strength calculated by the sequential method is shown for up to 

50 bridge units (—CH2 —) [37]. It can be seen th a t for longer bridge chains, there is 

an excellent exponential decay, while for shorter chains, the decay is modulated with 

an initial oscillation. Fitting the electronic coupling of the long chains (n =  30 — 50) 

with a  term  proportional to exp( — 3n) yields 3  =  1.05 per methylene unit. For even- 

numbered short chains (n = 6 — 20) the value calculated for 3 is 1.00 per methylene 

unit.

The direct summation method gives an electronic coupling strength for short 

chains similar to that for the sequential method. The linear fit for the result of 

the direct summation yields 3  =  1.27 per methylene unit for n = 6 — 20. These 

da ta  decay with n slightly differently from th a t of sequential method because the 

Hamiltonian for both  cases is not exactly the same. For the present form of the 

sequential method we need to use a tight-binding approximation which neglects all 

the interaction beyond nearest neighbor units. For the direct summation calculation, 

on the other hand, all Hamiltonian matrix elements generated by the extended-Hiickel 

program were included. It should be stressed, however, th a t since the sequential 

formula for the bridge Green's function (Eqs. (1-22) and (1.23)) is mathematically 

exact and numerically stable, the difference in the two sets of data  points in Fig. 1.5 

arises only from the difference in the two model Hamiltonians. The Hamiltonians 

have been adjusted independently, as described in Section 1.3.3. to agree bette r with 

the experimental band structure measurements.

We also calculated the coupling strength through hole transfer mechanism by 

doing the direct summation only over the filled states of bridge part. O ur result 

shows that the hole transfer scheme provides the major pathways of the coupling, 

and it yields more than  89% of the to tal coupling strength.

For a long chain bridge, direct summation m ethod performs summations (instead 

of merely multiplications) resulting in a  large amount of cancellation to yield a small 

value. So numerically it requires more care for the number of significant figures 

of interaction m atrix elements as well as the coefficients in describing M O ’s with
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atomic orbitals, and the m ethod can be expected to fail when the effective coupling 

strength is smaller than the significant digits of the numbers being summed. The 

direct summation calculation, even after all the bridge states were pre-diagonalized. 

also still required at legist ten  times more computer time than  that for the sequential 

method.

Our sequential calculation is based on a tight-binding Hamiltonian. M atrix ele­

ments and overlap integrals from the extended-Hiickel program axe not always the 

best choice for the tight-binding model. In our calculation we found that the band 

gap obtained in this tight-binding model is too small (it is about 6.2 eV) compared 

with th a t from experiment (8—9 eV [35]). The band structure of the tight-binding 

model also does not resemble that from full extended-Hiickel calculation. Since the 

energy of the electron being transferred lies between the conduction band and the 

valence band of polyethylene, the position of the band edges axe a most crucial factor 

in determining the effective coupling across the hydrocarbon chain. In the sequential 

(nearest-neighbor tight-binding) calculation we adjusted the position of two of the 

MO energies of CH2. as described in Section 1.3.3, so that the band gap is laxger than 

the 6.2 eV. namely 7.4 eV. which is fairly close to that of experiments. In applying 

this m ethod to other systems, the tight-binding Hamiltonian for the bridge part used 

should fit band structure measurements.

Turning now to the effect studied in Table 1.1. there is seen to be little effect 

from additional chains. This result indicates that in this system electron transfer 

occurs mainly through the chain covalently bonded to the redox active group. The 

closest atom-to-atom distance from the first added alkane thiol molecule to  the fer- 

rocenylcarboxyl group is 1.6 A[28]. Even with such close contact between molecules, 

the additional thiol chains still do not effectively provide an alternate route for the 

electron to  be transferred to  the electrode, according to the results in Table 1.1.

In Fig. 1.6 is a test of the condition discussed at the end of Section 1.2, where 

the energy of electron is deliberately shifted to a place where the matrices {vA .~lN n} 

are almost constant with respect to the iteration (Eq. (1.22)), but where two of 

the im portant eigenvalues are a pair of conjugate complex numbers. For this alkane
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bridge chain the energy needed for this effect to occur is not physically accessible, but 

it is still possible for other homogeneous chain bridges to have this kind of oscillatory 

length dependence. Moreover, there is no corresponding trend in a single-band model: 

in an off-resonance, single-band system. {vA _1Arn} is a scalar series, and therefore 

the magnitude of G (which is also a scalar now) decays monotonically as v A _I.Vn 

goes to a small constant real or complex number.

As mentioned earlier, in the derivation in Section 1.2 it is not required to have 

a bridge of identical subunits. For different bridge units with either the same or a 

different number of orbitals, v  is now a square or rectangular matrix, respectively, 

describing the interaction between specific neighboring bridge sites, n  and (n — 1) 

in Eqs. (1.22) and (1.23). and the diagonal matrix A must be then labeled with a 

subscript n. e.g., A n. Eqs. (1-22) and (1.23) now become

iv„ =  (1 -  (1.45)

=  G l^L 'u V ^-K ^A ^.V .. (1.46)

where v („_l n) denotes the interaction matrix between the (n — l)th  and the n th  bridge
/<y\

units. The initial condition G \^  is defined as the corresponding matrix between the 

first and the second bridge units. In this way, the Green's function can be obtained for 

an arbitrary tight-binding linear chain bridge, without solving a large linear system. 

There are already strategies for solving such large set of linear equations, e.g.. that 

of Stuchebrukhov [5j. and others [11 j, and it will be interesting to compare those 

methods with the present sequential method, both with respect to computation and 

physical insight.

Formally, in applying the sequential formula, the only limit on the range of energy 

of transferred electron is th a t it should not be coincident with the poles of A " 1 and 

of the final G reen’s function G However, the Green’s function for the bridge is 

not a good approximation for the overall Green’s function when the energy is close to

one of the energy levels of the bridge. Also, the physical situation of an on-resonant

system is quite different. It may not even involve an electron transfer from a state
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localized on the donor to  one localized on the acceptor.

A further generalization can be made for more complicated structures of bridges 

using the graph-based method described in the Appendix.

1.5 C on clu sion

The sequential formula (Eqs. (1.22) and (1.23)) developed in the present paper is 

numerically stable even for the case of a large number of bridge orbitals. Since 

it involves only the inversion and multiplication of small matrices whose sizes are 

independent of the chain length, it is also much less computationally time-consuming 

than the direct summation method.

This new method can be applied to various kinds of bridge molecules and. we 

believe, by extending the one-orbital per site case to  many orbitals per site, as in the 

present paper, provides added physical insight into various effects. To the best of our 

knowledge, the present work appears to be the first tha t rigorously treats a multiple 

band, tight-binding Hamiltonian and. thereby, the origin of and the condition for the 

exponential dependence for such cases. As seen in the calculation, by investigating 

conditions for constancy of N n in the case of a uniform bridge, it directly reflects the 

origin of any exponential or other regular dependence (Fig. 1.6) for multiband systems. 

This exponential dependence for an off-resonant bridge was assumed, and reasonably 

so, in earlier work [4], For a linear bridge, no further assumption need be made for the 

calculation of the coupling strength, apart from the tight-binding Hamiltonian and. 

in the present case, using the Green’s function for bridge subspace instead of that 

of the whole donor-bridge-acceptor system. The m ethod can be applied to a wide 

class of systems, including non-uniform bridges, and could be extended to non-linear 

bridge molecules, perturbatively if necessary.
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A p p en d ix  A: A  G ra p h -B a sed  A p p roach

Another approach of deriving the sequential formula, using a graph representation 

for the terms in the expansion of the Green's function, is given in this Appendix. 

This method yields the same final answer as that derived in Section 1.2 (Eqs. (1-22) 

and (1.23)), and it provides a physical picture of the coupling scheme. Thereby, 

this graph-based method may prove useful in generalizing the calculation for more 

complex structures of the bridge.

A .l  T he H am iltonian and th e  G reen’s Function

Using Eq. (1.8), instead of treating only the interaction between the last two bridge 

units as a perturbation (T-Ci). we now regard all the off-diagonal m atrix elements 

as perturbations (H ' ) and so H0 now contains only diagonal matrix elements. For 

simplicity of presentation, the case of identical bridge units will be considered. The 

new zeroth order Hamiltonian is. thereby.

f

Ho =

e 0 0 0 • • 0

0 e 0 0 • ■ • :

0 0 e 0 • . . •

0 0 0

\

0

e

(1.47)
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and the perturbation H'  is now

H'  =

\ 0

2 9

0 V 0 0 • 0

TV J 0 V 0  •

0 TV J 0 v  • •. .

0 v r  0

(1.48)

where the block matrices e.v  and 0 are the same as defined in Section 1.2. Thus, the 

Green’s function can be expressed as the following expansion:

G = ( E l - H o - H T 1

=  Go -+- GqH'Gq -t GqH'GqH'Go (1.49)

where G0, the Green's function corresponding to H0. is now the inverse of a diagonal 

matrix

Go =  ( E l - H o ) ~ l. (1.50)

or.

( G o ) n t , m t ; n J . m J —
1

E - s
(1.51)

m.

where n l is the index for the n ,th  bridge unit, so the indices n, and n3 refer to the block 

matrix at (n,,n_,) position of Go- Similarly, m* is the index for the m ,th molecular 

orbital; therefore m* and m 3 refer to a m atrix element inside the ( tv  n3) block.

A .2 Graph R epresentation

One way of calculating G in Eq. (1.49) is to draw a graph whose vertices represent 

zeroth-order states and where lines exist between two states only if they interact 

(Fig. 1.7). We then make use of a theorem which states that there is a one-to-one 

correspondence between each possible path  on such a graph and each term in each of 

the matrix element products in the complete expansion of the Green’s function [14].
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The connection is as follows: each path begins and ends with a dot. and between two 

dots the path is connected with a line. The corresponding quantity obtained from 

the path  is a product of the following factors:

for every dot it visits: l / ( E  — s mx): (1-52)

for every line: V m ,^. (1.53)

For each overall matrix element there are an infinite number of paths corresponding to 

it. but by classifying the paths in a suitable way. it is often possible to obtain the exact 

expression. One example is the RPE (renormalized perturbative expansion) which 

selects the "skeleton" (self-avoiding) paths and then adds “decoration" to make an 

arbitrary path  [14. 38].

We consider the part of G  that is needed to obtain the effective coupling strength, 

and denote it now by m n). It consists of all possible paths from any orbital

mi in the first site to any orbital m n in the last (nth) site. At the vertical column of 

points for the (n — l)th  site (Fig. 1.8) all such paths must cross this column at least 

once and all of them cross it an odd number of times. One can then cut the paths into 

pieces a t the place where they cross this dividing line. The paths are composed of 

segments that are either within the first n — 1 units or wandering between the (n — l)th  

and the n th  units. The former type of segments are related to the Green's function 

for (n — 1) bridge units. G (n~1), while the la tter type of segment is a computable 

quantity.

We define the segments as the paths without their beginning dots so that there is 

no confusion upon connecting segments into a longer piece. The corresponding terms 

with respect to such segments, i.e., matrix elements apart from the initial 1 / ( E  — s) 

factor (Eq. (1.52)), is denoted as F, with proper superscript and notation defined 

later. F  will represent this new set of matrices modified from Green's function G. 

In order to describe all possible variations of different molecular orbitals in the same 

unit, our notation is for m  x m  matrices, w ith specific indices for the starting and 

ending sites only; the m atrix elements of these m x m  matrices correspond to orbital-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



31

to-orbital transition. So described, we define by:

G '^ ,  =  (1.54)

where A has already been defined in Eq. (1.14). The inverse A -1 is the matrix 

corresponding to the dots th a t each path starts  with, and „) has the same definition 

as in Section 1.2. We have, thereby,

t f ih )  ~  Possit>le segments from unit 1 to n). (1.55)

As discussed above, all of segments corresponding to F^"^ cross the dividing line (the 

shaded bar in Fig. 1.8) an odd number of times. So the segments can be classified by 

the number of crossings, i.e..

F ((rn^  =  ^  (segments that cross the n — 1 site once)

^2  (segments that cross three times)

-r  •••-!- (segments th a t cross 2j  -t- 1 times) -(-••• (1.56)

In the following sections, expressions for terms in Eq. (1.56) are derived.

A .3 The First Term in C alculating F^n}

The first term representing segments crossing site n — 1 once is given by:

y  (segments that cross once) =  F ^ ~ [ \ )F ^ _ l n), (1-57)

which is a sum over of all possible segments from site 1 to site (n — 1) multiplied by

the sum over all possible segments that go from site (n — 1) to  site n. Since a uniform

bridge is treated in the present argument, the transition from bridge site (n — 1) to 

site n  is the same as that for any other two neighboring sites. In Eq. (1.57) such a 

transition is denoted by F ^ _ x n). This quantity can be obtained by classifying all the
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segments as follows:

•  The segments th a t go directly from site n — 1 to site n. in only 1 step: those 

segments contain only one line and one dot on site n. so the corresponding 

terms are the appropriate elements of v  times the appropriate elements of A -1 

according to  Eqs. (1.52) and (1.53). Thereby, this contribution to is 

v A -1. which accounts for all 1-step segments from any orbital in site n — 1 to 

any orbital in site n.

•  The segments th a t bounce back and forth between site n — 1 and site n: An 

example of such a segment is shown in Fig. 1.9. By an argument similar to the 

one above, we obtain v A '1v r A " 1v A _I for segments that return to site n — 1 

once and end up at site n. and (vA -1v r A -1 )2v A -1 for segments that return  

twice, etc.

( 2 )

In this way F (n_ 1 n} is obtained by a summation over the above two contributions:

Fin-i.n) = vA _I +  v A “ 1v r A " 1v A '1 -  v A _1v r A _1v A _1v :rA ~1v A _1------

=  (1 — v A _1v r A ~l )_1v A _1. (1.58)

This particular m atrix also serves as the initial matrix for for a uniform bridge. 

For non-uniform bridges, the initial condition for needs to be calculated for

the first two units, using the same expression as in Eq. (1.58). but with appropriate 

matrices v and A.

A .4 The Second  and O ther Terms in C alculating

In Section A.2, it is seen that for segments contributing the number of times

they cross the (n  — 1) dividing line (Fig. 1.8) should be an odd number (Eq. (1.56)). 

All the possible segments that cross the dividing line three times are next considered. 

These segments m ust be composed of four segments: The first segment goes from site 

1 to  site n — 1, and its corresponding matrix has already been defined as 

The second segment s ta rts  from the same final orbital at site n — 1, and it goes to

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



33

site n  and then returns to site n — 1 including bouncing between the two sites for
(2)

any number of times. We denote this part of the contribution by F(n_ l n_ ly It differs
V.2)from F^n_ l in th a t it finally returns to site n — 1. The third segment starts from

the 77 — 1 site, visits the space of the first 77 — 1 sites, where it involves an arbitrary

‘loop’ within the first 77 — 1 sites, and it then returns to the n — 1 site. We denote

the m atrix for such segments by F(n -i\- i) -  The final segment goes from any orbital

in site 77 — 1 to any orbital of site n arbitrarily, so it corresponds to a matrix element 
(2)

of F ( n n )  as shown in Section A.3. Thereby, we have

Y  (segments that cross the n -  1 site 3 times) =  ,n_ l)F ^ : ^ n_ l)F ^ )_ l n).

(1.59)

Generalizing the above expression to any odd number of crossings of the 77 — 1 sites 

gives

Y  (segments th a t cross 2j  -  1 times) =  FY - i )  [FS - i .n - i )Ftn-!!n-i 3 pr1'2'1
( n — l . n ) '

(1.60)

To evaluate Eq. (1.56), a summation of the terms in Eq. (1.60) for j  =  0 to oc 

vields

p(n) 
r ( l  .n)

  r ( n~i) [-1 pC2) zr n̂—0 / r42) zr^n— 0
— ( l , n  —1) L ( n —l , n —l) ( n —l . n —1) ' ( n - l . n - 1) ^ ( n - l . n - 1) J

  r ( n~l) |"-i   p ( n~ 0
( l . n  —1) [-1- ( n —l . n —l) ( n —l ,n  —1) ( n — l . n . for 77 =  3.4. 5.

F ( 2 )

n — l .n)  

(1.61)

Also, Eq. (1.61) can be rewritten in terms of

/'-i(n)  i)
'“' ( l . n )  -  ( l . n —1) l  -  F (2 ) ?( n - l )

(n —l . n —1) ( n —l . n  —1)

-1 r42)r (n-\,n) (1.62)

by using Eq. (1.54) for both and

So now f \ Y  is w ritten in terms of F /”^ ,  F ^ _ l n), F ((n2i l n_ 1), and Fln_un-i)-
(2)

The first one is the recursive variable, and the second one, F(n_ 1<n), has been obtained 

in Section A.3 (Eq. (1.58)). The next section is then devoted to deriving expressions

f o r  F S - l , n - 1) a n d  F ( n ~ t l n - i y

O' 
(n—1)
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A .5 T he E xpressions for F ]̂_lrl_l) and 1)
(2\

We next evaluate F(n_{ n_ l}. which is the matrix for the sum of the terms correspond­

ing to all possible segments bouncing back and forth between two rows of states that 

start and end at the (n — l) th  row. In Fig. 1.10 is shown one of such paths. It differs 

from the F ^ ]_ r n) by having a return from site n to site n — 1. contributing a matrix 

v r A -1. Thereby.

F g - =  (1 -  v A - 'v ^ A - 'J - 'v A - 'v ^ A - (1.63)

From the above definition and discussion. F ^ _ ^ n_y is related to the (n — 1. n — 1) 

block of G m atrix in the following way:

( n —l . n —I) —  ^  I 1  ( n  —l . n —1 ) / * (1.64)

in which a m  x m  unit m atrix 1 is needed because the diagonal matrix elements of 

G ^ n) include “null paths” (i.e.. paths which do nothing) arising from the first term 

(Go) in the expansion of Eq. (1.49), and A -1 represents the missing beginning dots 

for segments in calculating F (n) (Eq. (1.52)).

By a strategy similar to  that which led to F ^ ny one can derive

r ( n)  J a - I / i \
Mn.n) — v  ^  (1 ~  (n —l.n—1)) i  -  f :( 2 ) f(n— I)

( n — l . n  — 1) ( n  — l . n  —1) ( n  —l . n ) (1.65)

in which all the possible segments for F^”^  axe divided into several parts depending 

on the number of times they cross the dividing site n — 1. Those segments are classified 

as follows:

• The first segment is defined as a single step going from site n  directly back to 

site n — 1. This segment is introduced to force F^”^  to contain no null segment, 

and it corresponds to  v r A -1.

•  The second segment is either a null one (1) or any loop that begins and stops 

at (n -  l ) th  site ( F ^ l _ l}).
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•  On the other hand, the final segment is composed of any number of steps that

go from the dividing line (site n  — 1) to a final stop on site n. This part exactly
(2 )corresponds to the definition of F{n_ ln).

•  There can be any number of segments between the second one and the final one.
_  l*2\Those segments form loops in either spaces for the last two sites (F^n_ l n_ 1(). or

the first (n — 1) sites (F^ ~ /„_[))• This set of segments includes the null path

so the first term should be 1. Two consecutive loops at the same side would

contribute to the single or F^ _ t fi_ 1) matrix because of its definition.

If the final loop is in the last two sites (F{~_l n_ jj), it can also be regarded as
( 2 )a part of the segments corresponding to T'(n_ 1 n). which is the final segment as 

described above. To avoid over-counting, it is then required to have the last 

loop at the side of the first (n — 1) site (F ^ ~ i \_ ^ ) .  So the contribution of this 

part of segment is:

1 _j_ it>(2) p (n~b i p(2) _
X (n—l.n—l) (n—l.n—1) (n—l.n—l) (n — l.n—l) (n — l.n—l) (n—l.n—1)

1 -  F,(2 ) i(n —I)
(n—l.n—1) (n —l.n—1)

-1
( 1 .6 6 )

By multiplying the above four factors together. Eq. (1.65) for F ^ n) was obtained.

A .6 The Sequential Formula

Eq. (1.62) is the sequential formula derived in this appendix. To show the equivalence 

between Eq. (1.19) in the text and this Eq. (1.62), the following identity can be 

derived:

[-1   r ’(2) ip(n—!) 1 * p ( 2)
[■L (n —l.n—l) (n—l,n—1)J ^(n-l .n)

= 1 -  v A _1( l  + v r A -1v A -1 H )vr A - 1F((nn- 1)n_l) x

v A _1( l  +  v r A -1v A -1 -f v TA ~1v A -1v :rA -1v A -1 + • • •)

=  vA "1 [ l  -  (1 -  v TA - lv A - 1) - 1v TA - lFfc:"n_l)v A - l}~1 (1 -  v ^ - ' v A ' 1) ' 1

=  vA - l v r A - ( i  +  )v a - ‘

(r
-1

(1.67)
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in which Eqs. (1.58) and (1.63) were used. Therefore, w ith Eq. (1.64)

1 -  =  v A - ‘( l  -  (1.68)
-1 (2)  A - l / 1  „ r W n - l )  * _ u _ i

So Eq. (1.62) becomes Eq. (1.19) with the above identity (Eq. (1.68)) introduced.

Also, if the expression Eq. (1.67) is introduced into Eq. (1.65), the following 

identity is obtained:

1 -  rS U  = 1 -  v^A-'O. -  _ „ )v A - ‘( l  -  v rA - ‘( l  -  C - ' i 'L d I v A - ' ) -1

1 -  v r A - ‘ ( l  -  . (1.69)

Together w ith Eq. (1.64), the above expression is equivalent to Eq. (1.20). Comparison 

of Eqs. (1-21) and (1.64) shows that

W ith this identity (Eq. (1.70)). Eq. (1.69) is seen to be the same as Eq. (1.22).

A. 7 D iscussion

This approach, beginning with an infinite series expansion (Eq. (1.49)). gives the same 

recursion relation as derived in Section 1.2 by a non-perturbative method. M athemat­

ically, the infinite series expansion in Eq. (1.49) converges inside its radius of conver­

gence, namely when the modulus of every eigenvalue of the m atrix G0H' (or H 'G 0) is 

less than  unity. A similar restriction appears in Eqs. (1.61) and (1.63), which requires 

both F ^ _ l and v A _1v r A _1 to have all of their eigenvalues within the

unit circle in the complex plane. However, the resulting expressions are not limited 

by such conditions since they can also be derived from the non-perturbative method. 

This aspect demonstrates a  desired property of the graph-based method, namely, 

that analytic continuation can be applied, in the present case, so as to obtain useful 

expressions in the range of energies where the infinite series diverges.
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This graph-based method can be further generalized for a complex, nonlinear 

structure of bridge. First, we note that each column of dots in Fig. 1.7 can be 

"condensed" into a larger vertex, and the graph can be simplified to a row of large 

vertices with nearest neighbor vertices connected by a “multiple line." In this way. 

any one path drawn on this new graph represents ail the possible paths on the old 

graph passing the same bridge sites in the same order with any choices of molecular 

orbitals. It corresponds, thereby, to a matrix, and each additional step on this new 

graph involves multiplication of matrices. Now a complicated bridge is represented 

by a simpler graph: a dot is used for each bridge site (which has several molecular 

orbitals), and lines exist between sites that interact with each other. The way to 

obtain the corresponding terms of Green’s function from paths is to multiply all 

the matrices of lines and dots in the order given by the paths, as was done for the 

scalar terms for paths on the original graphs described in Section A.2. This method 

should provide a different way of calculating an electronic coupling between donor 

and acceptor in protein or other complicated systems.

W ith both properties discussed above, this graphical method is potentially useful 

for a variety of applications.
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Table 1.1: The effective coupling strengths for n =  12. with additional thiol molecules.

no. of additional effective coupling 
thiol chains \Hok\2 x 109, eV2atom

0 2.15
1 1.88
2 1.95
3 1.94

Figure 1.1: Free energy vs. reaction coordinate for the reactant (curve I) and product 
(curve II) states of the bridge-mediated electron transfer reaction at an electrode. 
Curve III is the superexchange off-resonant state for an electron transfer scheme. D 
is the donor molecule, a ferrocenylcarboxyl group in the present case. A E (q ')  is the 
energy difference of curves I and III at the transition state.

Free Energy 

G
D (solv) + B + M

D + B + M
D (solv) + B + M(e)

Reaction Coordinate q
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Figure 1.2: The statistics of the energy levels of C4oH80, from the extended Hiickel 
calculation. P art I shows the statistics of the energy levels before any adjustment. 
Part II shows these energy levels after the adjustm ent described in text. The thick bar 
indicates the position of the energy of the electron being transferred at the transition 
sta te  (—5.22 eV). Bauds (a) and (b) are valence bands. There is a band located 
between 26 eV and 72 eV th a t is not shown in this figure. It and band (c) are 
conduction bands. In the counting the energy axis was divided into cells of 0.66 eV.
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3 0

1 5
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Figure 1.3: Similar to Fig. 1.2. Part I shows the statistics of the energy levels of 
C40H80 from the tight-binding Hamiltonian, while part II shows the statistics of the 
energy levels after the adjustment described in text. From 30 eV to 35 eV. there is 
another unfilled band which is not shown. The cell size is now 0.45 eV.
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Figure 1.4: Semi-log plot for \Hok\2 as a function of number of methylene units in 
the bridge. Results axe obtained from the sequential formula.
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Figure 1.5: A plot for loge \ H Dk\2 vs. different bridge lengths, "o" denotes th a t for 
direct summation, 'V  from the sequential formula. The difference between the two 
sets of data is mainly due to their Hamiltonians. See text for the discussions.
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Number of methylene units

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4 8

Figure 1.6: Semi-log plot for the same calculation as in Fig. 1.4. except the energy of 
the electron is shifted to another region for the purpose of dem onstrating the effect of 
oscillation caused by the pair of conjugate complex eigenvalues of the m atrix v A _1.Vn.
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Figure 1.7: Graph representation for the multiple-band tight-binding Hamiltonian. 
Each vertical column represents a bridge unit. The dots in each column correspond 
to molecular orbitals in each bridge unit. Lines connecting two dots represent the 
coupling between the two orbitals, represented by the pair of dots. The lines only con­
nect dots in nearest-neighbor columns. To evaluate the Green's function, all possible 
pathways from one dot to the other are included, as described in the text.

1 2  3 4 n - 1  n
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Figure 1.8: A possible path that crosses the dividing column (shaded bar a t site n — 1) 
three times. (‘Visiting’ but then returning does not count as ‘crossing’.)

n - 1  n4
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(2)
Figure 1.9: A possible path for calculating F(n_ l n).

n-2 n-1 n
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/ox
Figure 1.10: A possible path  for calculating F(n_l n_ l

n-2 n-1 n

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5 3

S u p p lem en ta l M aterial: 

T h e G eo m etry  o f F errocen y lcarb oxy-T erm in ated  Alka- 

n eth io l M olecu les A tta ch ed  on  A u ( l l l )  Surface

In this supplement we present the geometries of molecules calculated in the above 

paper. For all the extended Hiickel calculations, the surface gold atoms are placed 

on the z = 0 plane and the origin is placed at one of the triple hollow sites and the 

S atom is placed above it. The y-axis is chosen to be the direction of the tilting of 

the alkane chains. It is also parallel to one of the lines connecting nearest neighbors 

of gold atoms on this (111) plane. The ferrocenylcarboxyl groups are all of the same 

orientation and geometry except being shifted for different lengths of alkane thiols.

All of the bond lengths and bond angles are obtained from Ref. [25-27] of present 

work. The only undetermined parameters are the dihedral angles of C 15-C 16-0(1)- 

C(101a) and C l6-O (l)-C(101a)-C(101), using n = 16 as an example. These were 

chosen to be i t  and 4 7 t / 5  (measured from C 16-0(1) bond to C(101a)-C(101) bond 

counterclockwise, viewed from the direction of 0 (1) to C(101a)). respectively. The 

angles were selected among the possible combinations that do not cause an overlap 

of neighboring alkanethiol chains and that have a reasonable closest atom-to-atom 

distance (1.6 A).

In Table l.S l the geometry is given for a ferrocenylcarboxyl alkanethiol with 

n = 16, while in Table 1.S2 it is extended to n = 20. Table 1.S3 - 1.S5 gives the 

geometries of molecules for obtaining the coupling strengths listed in Table 1.1 in 

the main text. The molecules listed in Table 1.S3 and Table 1.S4 are also plotted 

in Fig. A.7. All the above Tables are for the direct summation calculation. For 

the sequential formula, the geometry used is the same except th a t a translational 

symmetry of CH2 units is now assumed. In the coordinates in from Ref. [25] for 

Tables l .S l -  1.S5, a thermal fluctuation of the alkanethiol chain was allowed. In 

Table 1.S6 the coordinate of a ferrocenylcarboxyl alkanethiol molecule with n = 16 

is given as an example; the coordinate system has been rotated to make easier the
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manipulation of the sequential formula developed in this article.

Table l.S l: The list of Cartesian coordinate (in A) of atoms in a ferrocenylcarboxyl 

alkanethiol (cp-Fe-cp-C C ^C ^f^S) molecule attached on A u ( l l l )  surface.

X y z
s-o 0.018571755 -0 .04664499 2. 407167673
C -l -0 .39778560 1.48973453 3. 306130886
C-2 0.286785692 1.587551951 4. 670936584
C-3 -0 .37827926 2.773877144 5. 371808052
C-4 0.262169033 2.985922575 6. 745038986
C-5 -0 .40408793 4.213794708 7. 369003296
C-6 0.195327535 4.450256824 8. 756694794
C-7 -0 .39179584 5.715893745 9. 384667397
C-8 0.221053079 5.96000992 10 .76514816
C-9 -0 .42140319 7.189139843 11 .41118812
C-10 0.200888842 7.411930561 12 .79104995
C - l l -0 .31154300 8.718402863 13 .40025901
C-12 0 .382984847 8.948454857 14 .74383258
C-13 -0 .23381964 10.16055774 15 .44473075
C-14 0.37956515 10.33493804 16 .83550453
C-15 -0 .21606539 11.57585239 17 .50352859
C-16 0.321302329 11.68040657 18 .93223571
H -la  -1 .42649769  1.540677071 3.450201035
H-2a 1.306356192 1.757302761 4.555782318
H-3a -1 .39342498  2 .581081867 5.489743233
H-4a 1.283828871 3.149250031 6.640488148
H-5a -1 .42766606  4.050450802 7.453894615
H-6a 1.226217866 4.557302952 8.670635223
H-7a -1 .42125868  5 .60448885 9.481595993
H-8a 1.244048119 6.118290424 10.66502094
H-9a -1 .44500613  7.034953117 11.51150322
H-lOa 1.235515475 7.460046768 12.69706821
H - l la  -1 .33970975  8.655475616 13.54561996
H-12a 1.396063209 9.120645959 14.58372974
H-13a -1 .25995063  10.01869487 15.53708839
H-14a 1.409625769 10.44884109 16.74831962
H-15a -1 .25272822  11.49573326 17.52613449
H-16b 1.360864639 11.70174980 18.91091728
H-lb -0 .08879834  2.295088768 2.725156307
H-2b 0.140161812 0.713752687 5.215524673
H-3b -0 .25275963  3.630683763 4.795701981
H-4b 0.10412693 2.151144981 7 .344846249
H-5b -0 .23444438  5.046031475 6.768834114
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H-6b -0.01889646 3.63485384 !9.365650177
H-7b -0.18750333 6.529761791 18.770271301
H-8b 0.056262076 5.128283024 11.36738491
H-9b -0.25344795 8.024157524 10.81441688
H-lOb -0.05401825 6.619444847 13.41438388
H -l lb -0 .10024076 9.50894928 12.75849533
H-12b 0.264829516 8.106244087 15.34243106
H-13b -0 .05136734 11.01410388 14.87924766
H-14b 0.17126888 9.496114731 17.41393852
H-15b 0.054426014 12.42441558 16.96652221
H-16a 0.002677655 10.85810089 19.48349952
Fe-000 -0 .9044609 15.7255707 22.1995931
C-101 -0 .5341181 13.7289537 21.8301841
C-102 -0 .1202961 14.0781157 23.1645141
C-103 -1 .2722555 14.5736977 23.8723191
C-104 -2 .3980275 14.5308227 22.9754361
C-105 -1 .9418336 14.0087427 21.7133271
C-201 -1 .2748038 17.7221877 22.5690021
C-202 -1 .6886258 17.3730257 21.2346721
C-203 -0 .5366664 16.8774437 20.5268671
C-204 0.5891057 16.9203187 21.4237501
C-205 0.1329117 17.4423997 22.6858591
H-102 0.9008527 13.9826257 23.5731131
H-103 -1 .2893339 14.9248617 24.9188411
H-104 -3 .4297314 14.8433447 23.2136241
H-105 -2 .5623832 13.8507277 20.8140131
H-201 -1 .9229869 18.1323677 23.3629971
H-202 -2 .7097746 17.4685167 20.8260731
H-203 -0 .5195879 16.5262807 19.4803451
H-204 1.6208096 16.6077977 21.1855621
H-205 0.7534613 17.6004137 23.5851731
C-lOla 0.3289518 13.1827907 20.7729631
0-101b 1.5154164 12.9804717 20.9723841
0-1 -0 .1711625 12.8878357 19.5431311

Table 1.S2: The list of Cartesian coordinate (in A) of atoms in a ferrocenylcar­

boxyl alkanethiol (cp-Fe-cp-C02C2oH4oS) molecule attached on A u ( l l l )  sur­

face. From Table l.S l, the additional four methylene units (the 17th till the 

20th) are extended according to the bond lengths and the averaged bond angles 

in the previous 16 methylene units.
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x y z
s-o 0.018571755 ■-0.04664499 2.407167673
C -l -0 .3977856 1.48973453 3.306130886
C-2 0.286785692 1.587551951 4.670936584
C-3 -0 .37827926 2.773877144 5.371808052
C-4 0.262169033 2.985922575 6.745038986
C-5 -0 .40408793 4.213794708 7.369003296
C-6 0.195327535 4.450256824 8.756694794
C-7 -0 .39179584 5.715893745 9.384667397
C-8 0.221053079 5.96000992 10.76514816
C-9 -0 .42140319 7.189139843 11.41118812
C-10 0.200888842 7.411930561 12.79104995
C - l l -0 .311543 8.718402863 13.40025901
C-12 0.382984847 8.948454857 14.74383258
C-13 -0.23381964 10.16055774 15.44473075
C-14 0.37956515 10.33493804 16.83550453
C-15 -0.21606539 11.57585239 17.50352859
C-16 0.321302329 11.68040657 18.93223571
H -la -1 .42649769 1.540677071 3.450201035
H-2a 1.306356192 1.757302761 4.555782318
H-3a -1 .39342498 2.581081867 5.489743233
H-4a 1.283828871 3.149250031 6.640488148
H-5a -1.42766606 4.050450802 7.453894615
H-6a 1.226217866 4.557302952 8.670635223
H-7a -1 .42125868 5.60448885 9.481595993
H-8a 1.244048119 6.118290424 10.66502094
H-9a -1.44500613 7.034953117 11.51150322
H-lOa 1.235515475 7.460046768 12.69706821
H - l la -1 .33970975 8.655475616 13.54561996
H-12a 1.396063209 9.120645959 14.58372974
H-13a -1.25995063 10.01869487 15.53708839
H-14a 1.409625769 10.44884109 16.74831962
H-15a -1.25272822 11.49573326 17.52613449
H-16a 1.360864639 11.70174980 18.91091728
H-lb -0 .08879834 2.295088768 2.725156307
H-2b 0.140161812 0.713752687 5.215524673
H-3b -0.25275963 3.630683763 4.795701981
H-4b 0.10412693 2.151144981 7.344846249
H-5b -0.23444438 5.046031475 6.768834114
H-6b -0.01889646 3.63485384 9.365650177
H-7b -0.18750333 6.529761791 8.770271301
H-8b 0.056262076 5.128283024 11.36738491
H-9b -0.25344795 8.024157524 10.81441688
H-lOb -0.05401825 6.619444847 13.41438388
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H -llb -0.10024076 9.50894928 12.75849533
H-12b 0.264829516 8.106244087 15.34243106
H-13b -0 .05136734 11.01410388 14.87924766
H-14b 0.17126888 9.496114731 17.41393852
H-15b 0.054426014 12.42441558 16.96652221
H-16b 0.002677655 10.85810089 19.48349952
C-17 -0.291605671 12.92008357 19.58678971
H-17a -1.32112567 12.81280357 19.68764971
H-17b -0.08610067 13.75129257 18.99648971
C-18 0.33477233 13.11059457 20.96963271
H-18a 1.363391329 13.23007857 20.87338271
H-18b 0.136372329 12.27726457 21.55937171
C-19 -0.278135671 14.35027157 21.62418671
H-19a ■-1.307655671 14.24299157 21.72504671
H-19b -0.072630671 15.18148057 21.03388671
C-20 0.348242329 14.54078257 23.00702971
H-20a 1.376861329 14.66026657 22.91077971
H-20b 0.149842329 13.70745257 23.59676871
Fe-000 -0.8775209i 18.5859467 26.2743871
C-101 -0.5071781 16.5893297 25.9049781
C-102 -0.0933561 16.9384917 27.2393081
C-103 -1.2453155 17.4340737 27.9471131
C-104 -2.3710875 17.3911987 27.0502301
C-105 -1.9148936 16.8691187 25.7881211
C-201 -1 .2478638 20.5825637 26.6437961
C-202 -1.6616858 20.2334017 25.3094661
C-203 -0 .5097264 19.7378197 24.6016611
C-204 0.6160457 19.7806947 25.4985441
C-205 0.1598517 20.3027757 26.7606531
H-102 0.9277927 16.8430017 27.6479071
H-103 -1 .2623939 17.7852377 28.9936351
H-104 -3 .4027914 17.7037207 27.2884181
H-105 -2.5354432 16.7111037 24.8888071
H-201 -1.8960469 20.9927437 27.4377911
H-202 -2 .6828346 20.3288927 24.9008671
H-203 -0 .4926479 19.3866567 23.5551391
H-204 1.6477496 19.4681737 25.2603561
H-205 0.7804013 20.4607897 27.6599671
C-lOla 0.3558918 16.0431667 24.8477571
0-101b 1.5423564 15.8408477 25.0471781
0-1 -0.1442225 15.7482117 23.6179251

Table 1.S3: The list of Cartesian coordinate (in A) of atoms in a ferrocenylcarboxyl
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dodecanethiol (cp-Fe-cp-CC^C ^I^S) molecule attached on Au ( l l l )  surface.

x y z
S-0 0.018571755 -0.04664499 2.407167673
C-l -0 .39778560 1.48973453 3.306130886
C-2 0.286785692 1.587551951 4.670936584
C-3 -0 .37827926 2.773877144 5.371808052
C-4 0.262169033 2.985922575 6.745038986
C-5 -0 .40408793  4.213794708 7.369003296
C-6 0.195327535 4.450256824 8.756694794
C-7 -0 .39179584  5.715893745 9.384667397
C-8 0.221053079 5.96000992 10.76514816
C-9 -0 .42140319  7.189139843 11.41118812
C-10 0.200888842 7.411930561 12.79104995
C - l l  -0 .31154300 8.718402863 13.40025901
C-12 0.382984847 8.948454857 14.74383258
H-la -1 .42649769  1.540677071 3 .450201035
H-2a 1.306356192 1.757302761 4 .555782318
H-3a -1 .39342498  2.581081867 5.489743233
H-4a 1.283828871 3.149250031 6.640488148
H-5a -1 .42766606  4.050450802 7.453894615
H-6a 1.226217866 4.557302952 8 .670635223
H-7a -1 .42125868  5.60448885 9.481595993
H-8a 1.244048119 6.118290424 10.66502094
H-9a -1 .44500613  7.034953117 11.51150322
H-lOa 1.235515475 7.460046768 12.69706821
H - l la  -1 .33970975 8.655475616 13.54561996
H-12a 1.396063209 9.120645959 14.58372974
H-lb -0 .08879834  2.295088768 2.725156307
H-2b 0.140161812 0.713752687 5.215524673
H-3b -0 .25275963  3.630683763 4.795701981
H-4b 0.10412693 2.151144981 7.344846249
H-5b -0 .23444438  5.046031475 6.768834114
H-6b -0 .01889646 3.63485384 9.365650177
H-7b -0 .18750333 6.529761791 8 .770271301
H-8b 0.056262076 5.128283024 11.36738491
H-9b -0 .25344795 8.024157524 10.81441688
H-lOb -0 .05401825 6.619444847 13.41438388
H -llb  -0 .10024076 9.50894928 12.75849533
H-12b 0.264829516 8.106244087 15.34243106
Fe-000 -0 .84277843  12.993619 18.01119
C-101 -0 .47243558 10.997002 17.641781
C-102 -0 .058613558 11.346164 18.976111
C-103 -1 .210573  11.841746 19.683916
C-104 -2 .336345  11.798871 18.787033
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C-105 -1 .8801511  11.276791 17.524924
C-201 -1 .2131213  14.990236 18.380599
C-202 -1 .6269433  14.641074 17.046269
C-203 -0 .4749839  14.145492 16.338464
C-204 0.65078819 14.188367 17.235347
C-205 0 .1945942 14.710448 18.497456
H-102 0 .96253526 11.250674 19.38471
H-103 -1 .2276514  12.19291 20.730438
H-104 -3 .3680489  12.111393 19.025221
H-105 -2 .5007007  11.118776 16.62561
H-201 -1 .8613044  15.400416 19.174594
H-202 -2 .6480921  14.736565 16.63767
H-203 -0 .45790543  13.794329 15.291942
H-204 1.6824921 13.875846 16.997159
H-205 0 .8151438 14.868462 19.39677
C-lOla 0 .39063436 10.450839 16.58456  
0-101b 1.5770989 10.24852 16.783981
0-1  -0 .10947999  10.155884 15.354728

Table 1.S4: The list of Cartesian coordinate (in A) for the first additional alkanethiol 

molecule (C12H25S) attached on the same A u ( l l l )  surface, in calculating the ef­

fect of through-space coupling (Table 1.1). The long alkane chain of the previous 

molecule and this alkanethiol form a unit cell in the self-assembly monolayer. 

The second additional alkanethiol molecule is obtained by shifting —4.997 A in 

x  direction.

X y z

S-Op 2.4607259 4.351068497 2. 410563469
C -lp 2.960823059 5.817650795 3. 365255594
C-2p 2.276040554 5.940475941 4. 727931976
C-3p 2.761996508 7.225361347 5. 401591301
C-4p 2.134157181 7.369000435 6 .78942585
C-5p 2.698536634 8.646517754 7. 414185524
C-6p 2.114726305 8.841558456 8. 814908981
C-7p 2.770359755 10.06203556 9. 464123726
C-8p 2.192089081 10.25467300 10 .86747455
C-9p 2.791644335 11.51194763 11 .50047874
C-lOp 2.238713264 11.76659870 12 .90415954
C - l lp 2.894887924 12.99681377 13 .53416347
C-12p 2.278116703 13.22606468 14 .91544437
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H-lap 2.731105089
H-2ap 2.520923138
H-3ap 2.492229939
H-4ap 2.378984451
H-5ap 2.447476387
H-6ap 2.303102732
H-7ap 2.578369517
H-8ap 2.423626423
H-9ap 2.568670273
H-lOap 2.428602695
H -llap 2.72787261
H-12ap 2.448734999
H-lbp 3.988357306
H-2bp 1.244699597
H-3bp 3.797258377
H-4bp 1.099917889
H-5bp 3.733715057
H-6bp 1.088045835
H-7bp 3.797544956
H-8bp 1.159033775
H-9bp 3.823520164
H-lObp 1.212215304
H -llbp 3.91829818
H-12bp 1.25411582
H-12cp 2.796496868

6.664498329 2.80697298
5.1203866 5.318766594  

8.042136192 4.817035675  
6.546983242 7.377597809 
9.461681366 6.819140434  
7.996843815 9.391598701  
10.90729618 8.889429092  
9.427600861 11.45394039  
12.33002281 10.89828773  
10.93621063 13.50081539 
13.82918071 12.93343734  
12.39570999 15.51793956 
5.772140503 3.519209862  
5.979937077 4.599953651  
7.192948918 5.495304108  
7.440235615 6.706513405  
8.570596695 7.479311943  
8.992713928 8.746504784  
9.912489891 9.528364182  
10.35725212 10.80523395 

11.39759973 11.56175136  
11.92197036 12.84282970 
12.83780765 13.62949562 
13.38127899 14.82094287  

14.05796813 15.26303577

Table 1.S5: The list of Cartesian coordinate (in A) for the third additional alkanethiol 

molecule (C12H05S) attached on the same Au( l l l )  surface.

x y z
S-Or 5.015571755 -0 .04664499 2.407167673
C -lr 4.5992144 1.48973453 3 .306130886
C-2r 5.283785692 1.587551951 4.670936584
C-3r 4.61872074 2.773877144 5.371808052
C-4r 5.259169033 2.985922575 6.745038986
C-5r 4.59291207 4.213794708 7.369003296
C-6r 5.192327535 4.450256824 8.756694794
C-7r 4.60520416 5.715893745 9.384667397
C-8r 5.218053079 5.96000992 10.76514816
C-9r 4.57559681 7.189139843 11.41118812
C-lOr 5.197888842 7.411930561 12.79104995
C - l l r  4 .685457 8.718402863 13.40025901
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C-12r 5.379984847 8.948454857 14.74383258
H -lar 3.57050231 1.540677071 3.450201035  
H-2ar 6.303356192 1.757302761 4.555782318  
H-3ar 3 .60357502 2.581081867 5.489743233  
H-4ar 6.280828871 3.149250031 6.640488148  
H-5ar 3.56933394 4.050450802 7.453894615
H-6ar 6.223217866 4.557302952 8.670635223  
H-7ar 3 .57574132 5.60448885 9.481595993  
H-8ar 6.241048119 6.118290424 10.66502094
H-9ar 3.55199387 7.034953117 11.51150322  
H-lOar 6.232515475 7.460046768 12.69706821  
H -l la r  3.65729025 8.655475616 13.54561996  
H-12ar 6.393063209 9.120645959 14.58372974
H-lbr 4.90820166 2.295088768 2.725156307  
H-2br 5.137161812 0.713752687 5.215524673
H-3br 4 .74424037 3.630683763 4.795701981  
H-4br 5 .10112693 2.151144981 7.344846249  
H-5br 4 .76255562 5.046031475 6.768834114
H-6br 4.97810354 3.63485384 9.365650177
H-7br 4.80949667 6.529761791 8.770271301
H-8br 5.053262076 5.128283024 11.36738491
H-9br 4 .74355205 8.024157524 10.81441688  
H-lObr 4.94298175 6.619444847 13.41438388  
H -llb r  4.89675924 9.50894928 12.75849533  
H-12br 5.261829516 8.106244087 15.34243106  
H-12cr 4.958294536 9.772737128 15.2174738

Table 1.S6: The list of Cartesian coordinate (in A) of atom s in a ferrocenylcarboxyl 

alkane thiol (cp-Fe-cp-C02Ci6H32S) molecule attached on A u ( l l l )  surface. For 

a calculation using sequential formula, only interaction matrices between neigh­

boring units are needed. In the present work, the electron donor is the group of 

surface Au atoms while the acceptor is the ferrocenylcarboxyl group. The first 

bridge unit is defined as S-CH2 while all other bridge units are CH2.

x y z
S-0 0.000000 -1 .515278 -1 .0 2 2 6 8 4
C-l 0.000000 0.000000 0.000000
C-2 0.000000 1.283165 -0 .833298
C-3 0.000000 2.566332 0.000000
C-4 0.000000 3.849498 -0 .833298
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C-5 0.000000
C-6 -0 .000001
C-7 -0 .000001
C-8 0.000000
C-9 -0 .000001
C-10 -0 .000001
C - l l 0 .000000
C-12 -0 .000001
C-13 0.000000
C-14 0.000000
C-15 0.000000
C-16 -0 .000001
H-Al 0.819531
H-A2 0.819531
H-A3 0.819531
H-A4 0.819530
H-A5 0.819531
H-A6 0.819531
H-A7 0.819531
H-A8 0.819531
H-A9 0.819531
H-A10 0.819531
H-All 0.819531
H-A12 0.819531
H-A13 0.819531
H-A14 0.819531
H-A15 0.819531
H-A16 0.819531
H-Bl -0 .819532
H-B2 -0 .819531
H-B3 -0 .819531
H-B4 -0 .819531
H-B5 -0 .819531
H-B6 -0 .819532
H-B7 -0 .819531
H-B8 -0 .819531
H-B9 -0 .819531
H-B10 -0 .819531
H-Bll -0 .819532
H-B12 -0 .819531
H-B13 -0 .819532
H-B14 -0 .819532
H-B15 -0 .819532
H-B16 -0 .819532

5.132664 0.000000
6.415830 -0.833297
7.698996 0.000001
8.982162 -0.833297

10.265328 0.000001
11.548494 -0.833297
12.831660 0.000000
14.114825 -0.833297
15.397991 0.000001
16.681158 -0.833297
17.964324 0.000000
19.247489 -0.833297
0.000001 0.640288
1.283166 -1.473585
2.566332 0.640288
3.849498 -1.473585
5.132664 0.640288
6.415830 -1.473585
7.698996 0.640288
8.982162 -1.473585

10.265327 0.640288
11.548494 -1.473586
12.831660 0.640288
14.114826 -1.473585
15.397991 0.640288
16.681157 -1.473585
17.964324 0.640288
19.247489 -1.473586
0.000000 0.640288
1.283166 -1.473586
2.566332 0.640288
3.849498 -1.473586
5.132664 0.640288
6.415829 -1.473585
7.698996 0.640288
8.982162 -1.473586

10.265327 0.640288
11.548493 -1.473585
12.831660 0.640289
14.114826 -1.473586
15.397992 0.640288
16.681158 -1.473585
17.964323 0.640289
19.247489 -1.473585
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Fe-000 -0 .032405
C-101 0.674372
C-102 0.746075
C-103 1.583297
C-104 2.029025
C-105 1.467279
C-201 -0 .739181
C-202 -0 .810884
C-203 -1 .648107
C-204 -2 .093835
C-205 -1 .532089
H-102 0.246830
H-103 1.838615
H-104 2.686066
H-105 1.618034
H-201 -0 .175312
H-202 -0 .311639
H-203 -1 .903426
H-204 -2 .750876
H-205 -1 .682844
C-lOla -0 .076432
0-101b -0 .721055
0-1 -0 .073351

Au-020d 1.992320
Au-120d -1 .549773
Au-llOc 3.909555
Au-OlOd 0.367462
Au-llOd -3.174631
Au-lOOb 2.284697
Au-OOOa -1.257396
Au-lOOa -4.799488
Au-110b 0.659840
Au-OlOa -2 .882253
Au-llOa -6 .424346
Au-120b -0 .965018
Au-020a -4 .507111
Au-120a -8 .049203
Au-030a -6 .131968
Au-121c 4.575795
Au-021d 1.033702
A u - l l l c 2.950937
Au-Olld -0 .591156
Au-lOlb 1.326080
Au-OOla -2 .216013

24.114396 1.369804
22.735601 0.006175
24.065605 -0 .541135
24.857555 0.322274
24.017003 1.403198
22.705563 1.207838
25.493192 2.733433
24.163189 3.280742
23.371238 2.417334
24.211790 1.336409
25.523231 1.531769
24.416505 -1 .461156
25.922217 0.180417
24.324100 2.235548
21.830697 1.864115
26.340987 3.160180
23.812288 4.200764
22.306577 2.559191
23.904693 0.504061
26.398096 0.875492
21.606744 -0 .562049
21.734638 -1 .589914
20.388382 0.042253
-5 .993091 -1 .930926
-5 .904283 -5 .454471
-4 .386722 3.268755
-4 .297913 -0 .254790
-4 .209105 -3 .778334
-2 .691544 4.944891
-2 .602735 1.421347
-2 .513927 -2 .102198
-0 .996365 6.621028
-0 .907557 3.097483
-0 .818749 -0 .426061

0.698813 8.297165
0.787621 4.773620
0.876430 1.250076
2.482799 6.449757

-6 .885085 -1 .007222
-6 .796276 -4 .530767
-5 .189907 0.668914
-5 .101098 -2 .854630
-3 .494728 2.345051
-3 .405920 -1 .178494
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Au-lOla -5 .758106
A u - l l lb -0 .298778
Au-Olla -3 .840871
A u - l l l a -7 .382964
Au-121b -1.923635
Au-021a -5 .465728
Au-121a -9.007821
Au-131b -3 .548493
Au-031a -7 .090586

-3.317112 -4 .702038
-1.799550 4.021187
-1.710742 0.497643
-1.621934 -3 .025902
-0.104372 5.697324
-0.015564 2.173780

0.073245 -1.349765
1.590806 7.373461
1.679614 3.849916
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Figure 1.S1: A three-dimensional plot for the ferrocenylcarboxyl dodecanethiol (cp- 
Fe-cp-C02C i2H24S) molecule and the first additional dodecanethiol as described in 
Tables 1.S3 and 1.S4. The hydrogen atoms of the ferrocene part are omitted.
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C h ap ter  2 A p p lica tio n  o f  th e S eq u en tia l Form ula: 

th e  E lectron ic  C ou p lin g  an d  th e  D ista n ce  

D ep en d en ce  in  th e  E lectron  Transfer o f  

F errocen e-T erm in ated  A lk an eth io l M on olayers

Chao-Ping Hsu

Arthur Amos Noyes Laboratory of Chemical Physics. 127-72 

California Institute of Technology. Pasadena. CA 91125 

(Reprinted with permission from J. Electroanaly. Chem.. 438. pp.27 -  35.

©1997 Elsevier Science.)

Abstract

A sequential formula developed by Hsu and Marcus [J. Chem. Phys. 106.

584 (1997)] is applied to calculate the electronic coupling between a gold elec­

trode and each of the molecules. (7;°-C5H5)Fe(r/°-C5H.i)C02(CH2)nSH and 

(r/0-C5H5)Fe(77°-C,5H4)(CH2)nSH (n = 3 to 50). Most of the calculated cou­

pling strengths, if converted to rate constants according to a high-temperature 

nonadiabatic expression, agree well with the experimental rate constants. The 

exponential coefficients are obtained by a linear fit of the logarithm of the cou­

pling strengths to the chain length. The calculated exponential coefficient is 

1.05 per methylene unit for both molecules and for large n. For shorter chains 

the exponential coefficient is slightly larger with an irregularity caused by an 

oscillation of coupling strengths between even and odd number of units. The 

physical origin of such oscillation among short chains is discussed.
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2.1  In tro d u ctio n

The recent development of self-assembled monolayers of alkanethiol molecules on a 

gold surface [1 ] has provided a convenient approach for studying electron transfer re­

actions (ET) between an electroactive group and an electrode, where the electroactive 

group is held at a fixed distance from the electrode surface, or. if in solution, is sepa­

rated from the electrode by a fixed monolayer [2 |. Chidsey [3] measured the voltage 

dependent ET rate of the (770 -C 5 H5 )Fe(770 -C 5 H4 )C 0 2 (CH2 ) i 6 SH/gold surface system  

and a reorganization energy A was estimated from the dependence of reaction rates on 

the overpotential 77. Both the direct-linked (770 -C 5 H5 )Fe(77°-C 5 H4 )(CH2)8SH and the 

ester-linked (r^ -C sH ^F e^ -C sfD C C ^ C H ^ ^S H  in the monolayers were studied at 

low temperatures by Richardson et al. [4] The A's were extracted from the Arrhenius 

(activation) plots.

The distance dependence of ET reactions were also studied with the self-assembled 

monolayers. The exponential factor 3 is conventionally defined as either of the fol­

lowing:

ket oc e 3d. (2 . 1 )

or

(the pre-exponential factor) oc e~3d. (2 .2 )

The two definitions are slightly different because the reorganization energy A is de­

pendent on distance (cf. Eq. (2.9) below), d can be taken as the number of bridge 

units for a linear bridge composed of homogeneous units, or the distance between the 

donor and acceptor groups.

A study involving electrodes coated with self-assembled monolayers of u;-hydroxy 

thiols of various lengths (the number of CH2  units are 6  to 1 1 ) was performed by

Becka and Miller [5], and an exponential factor 3 — 1.08 ±  0.20 per methylene unit

was reported for a series of redox couples. Carter et al. [6 ] studied different lengths 

of the ester-linked alkanethiol molecules (CpFeCpC0 2 (CH2 )nSH with n =  8,12,16,  

Cp =  C5 H5 or C 5 H4  ) at low temperatures. The distance dependence over the above

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



68

range was obtained and the decay factor for the pre-exponential factors was reported 

as 3 =  1.44 ±  0.12 per methylene unit. The ester-linked system was also studied by 

Smalley and coworkers [7j, for n = 5 to 9. The exponential factor was reported as 

3  =  1.21 ±  0.05/CH2 for the reaction rate.

Various theoretical approaches for treating the electronic coupling matrix element 

Hd.4 , between a donor and an acceptor, have provided estimates of the decay coeffi­

cient [8-14], McConnell gave a molecular derivation of the exponential decay factor 

[81. providing an estimation from perturbation theory. Studies [9. 10] on molecular 

wires with one orbital representing each site of the wires show exponential depen­

dence of the conductance on the length of wire when the electron is at an energy 

outside of the wire's energy band. If the energy of an electron is placed inside the 

wire’s band, large conductances are obtained with oscillatory dependence on wire 

length. Beratan and Hopfield [11] used another approach with which they were able 

to treat multiple-band systems (i.e.. more than one orbital on each bridge site) by 

assuming the tunneling wavefunction of the electron is exponentially decaying as 

it penetrates an off-resonant bridge. Ab initio calculations on organic bridges :12] 

have provided detailed understanding on the schemes of coupling. Calculations using 

extended Hiickel basis [15] have been shown to be a simple and useful approach in ob­

taining the coupling strengths of electron transfer reactions in proteins and scanning 

tunneling microscopy[14. 16. 17].

A sequential formula has been formulated for multiple-band. linear chain bridges 

using a non-perturbative method [18]. In that work, a recursion expression for the 

Green’s function for calculating the effective electronic coupling in bridge-assisted 

electronic transfer systems, within the framework of the tight-binding Hamiltonian, 

was formulated. The sequential formula relates the Green’s function of a chain bridge 

to that of the bridge that is one unit less. There is also a detailed description on 

obtaining the correct position of energy levels of donor (acceptor) from electrochemical 

data. The use of experimental band structure measurements was also described, for 

obtaining a better description of energy levels of the chain bridge.

In Section 2.2 the non-adiabatic reaction rate expression is described and an in­
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troduction to the sequential formula is given. In Section 2.3 the applications of the 

sequential formula to molecules I  (ferrocenylcarboxyl alkanethio l)  and I I  (ferrocenyl 

alkanethiol), as shown in Fig. 2.1. are presented. Discussions regarding the com­

parison of the calculated coupling strength to experimental data are presented in 

Section 2.4.1. The calculated coupling strengths have slightly irregular length de­

pendence for short chains, and the physical origin of such behavior is discussed in 

Section 2.4.2. In Section 2.5 conclusions are presented.

2.2 T h eory

For long-range electron transfer, there is little direct electronic coupling between 

the donor and acceptor groups due to spatial separation. It is therefore im portant to 

include the bridge-mediated coupling strength. The overall coupling strength is there­

fore called effective coupling. Derived from scattering theory, the effective coupling 

can be written as [19]

H eff =  V' -  VGV. (2.3)

where G is the Green’s function for the Hamiltonian H ,

G = ( E 1 - H ) ~ \

with E  being the energy of the electron being transferred. The Hamiltonian H  is 

composed of an unperturbed H°  and a perturbation V. where H° is the Hamiltonian 

for non-interacting donor, bridge and acceptor states, and V  is the interaction among 

them. In Eq. (2.3), the effective coupling between donor and acceptor (denoted 

by # & )  is seen to be composed of two terms: the first term (V) describes the 

direct coupling of the donor and acceptor states while the second term  is through 

the coupling with the bridge. In the following calculations, the Green’s function G 

is approximated by the Green’s function for the bridge part which corresponds to 

the bridge’s Hamiltonian. It is a good approximation in the off-resonance condition, 

namely, when the energy of the electron being transferred is placed outside of the
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energy band formed by the infinitely extended bridge [18].

In Section 2.2.1. the ET rate constant between an electrode and a donor group is 

obtained. The Green's function for the bridge part can be solved using the sequential 

formula, and the m ethod is sketched in Section 2.2.2.

2.2.1 The R eaction  R ate

For the cases of weak coupling between the electron donor and acceptor, the Golden 

rule provides a satisfactory treatment for the electron transfer reaction rate [20]:

k  =  2̂ \ H d a \HFC).  (2.4)

where (F C ) is the Franck-Condon factor, and H*qA is the electronic coupling. In the 

high tem perature limit, (FC)  is given by [20. 21]:

(FC)  = exp ( - i A °x k ' J } )  (2.5)

where A is the reorganization energy (including both  inner and outer contributions). 

For ET reactions between an electron donor group and an electrode, the nonadiabatic 

reaction rate is then obtained by integrating over all possible sta tes in the electrode 

with the Fermi-Dirac distribution:

9tt r ,  p£lknT
k = V(47rAfcs r ) - 1/2 I dE\V(s)\2e - {X- eT' - £)' /*XkBT------(2.6)

h J 1 +

where ^ ( s ) ! 2 is

I V(£)|2 =  I d >k\Hfft \26(e(k)  -  £), (2.7)

in which H ^ k is used to  denote the coupling element between sta tes (D\ and |A:). The

wavefunctions | k) of the metal electrode are normalized to a Dirac delta function,

(k\k r) =  S(k — k1), and e is the energy of an electron in the m etal with respect to 

the Fermi energy. e(k) is the energy of the electronic sta te  \k) of the metal, and r/ is 

the overpotential (E  — E°). In general, a summation over energy bands of the metal
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electrode is needed in Eq. (2.7). However, since only the contribution from the s-band 

of the gold electrode is considered in the present work, the summation over energy 

bands is omitted for simplicity.

The electron transfer rate under electrochemical exchange current conditions (de­

noted by k ^ )  can be obtained by setting r] = 0. By noting A > f w e  can drop the 

quadratic term  of s in the exponent of Eq. (2.6). The integration over £ is performed 

by approximating [21j

j _ x  ee/2kBT l e-e/2kBT f ( S)dS ~  ^ BTf(0) .  (2.8)

From Eqs. (2.6) and (2.8), the following expression is obtained:

Ar(0) =  ^ ( 4 7 r A f c s r ) - 1/2e ' A/4fcBT| l / | 2 . ( 2 .9 )
h

where

|1/|2 =  trkBT  J  d3k \H $k\25(s(k)) =  irkBT \ H ^ P f -  (2.10)

with

(2.1D
/  d3k6(e{k))

and

p ,  s  J  dzkS(s(k)): (2 .12)

i.e., \HDk\2 is the effective coupling strength averaged over the k's on the Fermi surface 

[22 ]-

In the following section, the sequential formula is introduced and the expression 

for calculating Hepk is derived.

2.2.2 T h e Sequential Formula

For long-range electron transfer with a Unear chain bridge, a sequential formula was 

developed [18] to calculate the effective coupling through the bridge. The bridge part 

is assumed to  be a linear chain of connecting subunits, and a tight-binding Hamilto­
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nian with only the nearest-neighbor interaction was assumed. For each bridge unit, 

the energies of its molecular orbitals and the interaction matrices with its neighboring 

units are needed. Since it is always possible to invert the matrix (E l  — H )  and obtain 

the Green's function for short bridge chains, the sequential formula was derived by 

assuming that the Green's function is known for a chain with one less bridge unit. In 

application, the resulting recursive equations are iterated until the desired length of 

the bridge is obtained [18].

For simplicity of notation, the following description assumes a uniform chain 

bridge. The generalization to bridges with different units is sketched in the Ap­

pendix. It is also assumed that the bridge has n units, and each unit has m  molecular 

orbitals. For example, if the bridge is a long alkane chain, the bridge unit can be 

assigned as one CH2. so n  is the number of methylene units in the bridge and m  now 

equals 6. The Hamiltonian and the Green’s function axe 6n  x 6n matrices in this case. 

These matrices can be divided into n  x n  blocks, with each block representing a 6 x 6 

matrix. For H . such blocks describe the interaction between bridge units. We will 

focus our attention on the ( l .n)  and (n . n ) block of the Green's function, denoted by 

and respectively. The former is needed for calculating bridge-mediated

coupling strength (i.e.. for the second term of the right-hand side in Eq. (2.3)). and 

the latter is needed for iterating the sequential formula.

For a uniform chain bridge, the tight-binding Hamiltonian can be expressed by 

choosing the molecular orbitals of each unit as the basis. The quantities needed 

are the energy of the molecular orbitals of a single unit, {£i .£2? ' - ' i -m}- and the 

interaction between adjcent units, denoted by v, which i s a m x m  matrix. Define

A  = E l  — e, (2.13)

with e being a diagonal matrix w ith the energies of the molecular orbitals of the
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bridge unit as its diagonal matrix elements:

e =

- 1 0

0 S 2

0

0
(2.14)

and E  is the energy of the electron being transferred. An auxiliary quantity N n was 

defined as

(2.15)

where G ^ n) is the (n . n) block of the G reens function. The (1. n) block of the G reens 

function can now be obtained through the sequential formula [18j:

N n = (1 — v r A - l Arn_ 1v A ~ 1)-1. (2.16)

and

= G| r„ (2-17)

The initial conditions for the above recursive equations. and N 2 (=  A G ^ ) . can 

be obtained by taking the corresponding block matrices of

(2.18)

where H ^  is the Hamiltonian of two bridge units,

H <2> =
e v
Tv  e

(2.19)

For calculating of a homogeneous bridge, only the energies of the molecular 

orbitals of a single unit, e, and the interaction m atrix between adjcent units, v, are 

needed. They can be obtained by quantum  chemistry calculations. In the present 

work, both e and v  axe obtained from the extended Hiickel calculation (Section 2.3.1).
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To calculate the effective coupling m atrix  element H]jk between the ferrocene- 

containing group and the gold electrode, assuming that direct couplings exist only 

between the first bridge unit and the donor orbital, and between the last bridge unit 

and the acceptor (metal electrode) orbital. Eq. (2.3) may be rewritten as:

Hfk = Vd.i (2.20)

The direct coupling between donor and acceptor has been assumed to be negligible, 

and Vd.i and Vn k denote interaction between donor state and the molecular orbitals 

in the first bridge unit and between those in the n th  bridge unit and the state \k) of 

the metal electrode, respectively. For a bridge with more than one orbital on each 

site. VD.i denotes a row vector. G ^ n), a m atrix, and Vn<lc, a column vector.

W ith Eqs. (2.11). (2.16), (2.17) and (2.20) the averaged coupling strength \HDk\2 

can be obtained, and together with Eqs. (2.9) and (2.10), the ET reaction rate can 

be estimated.

2.3  A p p lica tio n

In this section, we present the results of the calculation for the systems of ferrocenyl- 

carboxyl alkanethiol (I) and ferrocenyl alkanethiol (II) attached on gold electrodes, 

using the equations discussed in Section 2.2.

2.3.1 T h e C alculation

The geometry of the molecules used in the present work is depicted in Fig. 2.1. The 

geometry of alkanethiol is based on that of Klien and coworkers [23] who employed a 

molecular dynamics calculation on this self-assembled monolayer system. The alka­

nethiol chain is tilted 25° w ith respect to  the normal of the meted electrode plane. 

The geometries of the ferrocenylcarboxyl group and the ferrocenyl group axe from 

the crystal structure of similar molecules [24]. The orientation of these groups are 

chosen among the possible configurations th a t do not cause an overlap of neighboring
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alkanethiol chains, and, for the case of ferrocenylcarboxyl group, the geometry used 

has a reasonable closest atom-to-atom distance (1.6 A) to the neighboring alkanethiol 

chains.

The tight-binding Hamiltonian is obtained from the extended Hiickel program

[15], except th a t all the interactions beyond nearest neighbors are ignored and the 

overlap integrals are considered within each bridge unit only. The molecular orbitals 

of individual bridge units are obtained by solving the secular equation of each unit. 

For the energy level distribution to fit better the experimental band stucture mea­

surements [25. 26], the MO energies of a CH2 unit are adjusted. The details of the 

adjustment were given in the previous work [18]. The S atom is included in the first 

CH2 unit. The detail of using the sequential formula according to this modification 

is included in the Appendix.

The wave functions used for the A u ( lll)  surface are linear combinations of atomic 

s-orbitals obtained with the tight-binding approximation [27], and to evaluate Eq. (2.10) 

the coupling strengths of 60 wave vectors (k ) randomly sampled over the Fermi surface 

were calculated and averaged to obtain \Hok\2-

The energy of the electron, E  in Eqs. (2.13) and (2.18). is determined by a method 

described in Section 1.3.2 of Chapter 1 (Ref. [18]). If the zero of the energy scale is 

defined as an electron being placed just outside the surface of the material in vacuum, 

then the energy of the electron in the Fermi surface of the metal electrode equals - ' t m. 

where denotes the work function of the metal. Similarly, the energy of the electron 

at the HOMO of an alkane chain is — if is defined as the ionization potential 

of the molecule. For the electron in the transition state with the exchange current 

condition being imposed, the analysis in Ref. [18] gives

A E(q<) =  - eEg*, ,  +  | -  t f )  +  * b -  A £j, (2.21)

for the energy difference between the transition s ta te  and the virtual state where an 

electron is placed in the ith  bridge orbited. In Eq. (2.21), E^abg~)(= /*  +  « - € ) )

is the absolute potential with its reference state being an electron at rest in vacuum
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close to the surface of the solution, as discussed by Trasatti in Ref. [28]. ivm and 

U’s are the electric outer potentials (also called Volta potential) for the metal and for 

the solution, accordingly, iv^ and are the corresponding standard potentials. It 

has been assumed, in deriving Eq. (2.21). that the electric outer potential inside the 

alkanethiol monolayer is the average of the potential in metal and that in solution. 

Aet is defined as the energy difference between the zth bridge orbital and the HOMO 

energy level, i.e.. E Bi — E B(HOMO). Therefore. —('I 's  — Aet) can be regarded as the 

shifted energy of the zth bridge orbital in which the energy of HOMO is placed at 

—'I's- If E  is defined as

E  =  ~eE?abs) -  -  *.°) (2-22)

then A E{qi) in Eq. (2.21) has the form of

E  — (energy of the zth bridge orbital).

Therefore, here E  can be regarded as the energy of the electron. So now Eq. (2.22) 

can be used to obtain the E  in Eqs. (2.13) and (2.18).

For molecule I. if the standard potential of the system is taken as 0.08 V above the 

Ag/(1 mM AgClO.,, 1 M HClO.t) reference electrode [3], then the absolute potential 

E(abs) at>out 5.13 V [28]. The formal potentials reported by Walczak et al. [29]. by 

Popenoe et al. [30] and by Collard et al. [31] for similar systems agree with the above 

value within 0.1 V (Ref. [2(a)], Table 5). Together with the work function of A u (lll)  

surface. 5.31 eV [32], we obtain —0.18 V for the potential difference. — ib°s . So the 

energy for the electron in the transition state is —5.22 eV in this case.

For molecule II, the formal potentials in 1 M HC104 solution are reported as 0.2 V 

(vs. Ag/AgCl/sat.KCl) by Chidsey et al. [33], also about 0.2 V (vs. Ag/AgCl/sat.KCl) 

by Row and Creager [34], and 0.22 V (vs. SSCE) by Uosaki et al. [35]. If an averaged 

value of 0.43 V with respect to the standard  hydrogen electrode is taken, the absolute 

potential of the system is about 4.87 V [28] and therefore the energy for the electron
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in the transition state is estimated to be —5.09 eV.

2.3 .2  R esults

The coupling strength (\Hok\2) calculated using the sequential formula for both 

molecules I  and I I  are shown in Fig. 2.2 and Table 2.1. The iteration of the se­

quential formula can be performed to an even longer chain (n =  50 or more) with 

good numerical precision. It can be seen th a t for longer bridge chains, there is an 

excellent exponential decay, while for shorter chains, the decay is modulated with 

an  initial oscillation. Fitting the electronic coupling of the long chains (n =  20 to 

50) with a term proportional to exp(—3n) yields (3 =  1.05/CH2 for both molecules 

I  and II. 3  in the units of A 1 can be estim ated by dividing the above values by 

1.28 A/CH2, which is the projection of a C-C bond length on the axis of translational 

symmetry of the alkane chain [36], or by 1.53 A/CH2 for the C-C bond length, for a 

“through bond1' decay constant.

The density of states of gold at the Fermi surface (pj) was estimated from the 

low tem perature specific heat measurement. 0 .3 /eV /atom  [37], for the comparison of 

ra te  constants in the following section.

2 .4  D iscu ss io n

2.4.1 Com parison to Experim ented M easurem ents

The calculated coupling constants {\Hok\2) can be compared to the experimental 

ra te  constant using Eqs. (2.9) and (2.10). Using 0.3/eV /atom  [37] as the p/. the rate 

constants are calculated with the A’s reported in Refs. [3, 4, 6. 7]. The results are 

fisted in Table 2.2. It is seen th a t the results of our calculation roughly agree with 

the experimental data  within one order of magnitude, except w ith th a t measured by 

Smalley et al. [7] for n  =  8 of molecule I. The A for n =  8 is measured to be slightly 

larger than others (Table 2.2) which makes the magnitude of exp(—X/AksT)  smaller 

by a factor of two or three at the room tem perature. The calculated coupling strength
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(Fig. 2.2 and Table 2.1) for n  =  8 is also smaller than that for n = 9 (see Section 2.4.2 

for a  discussion on this result).

In Ref. [7] the authors reported 3 = 1.21 ± 0 .05 /C H 2 for molecule I (ester-linked) 

for the reaction rates. The pre-exponential factor Pn also shows a linear dependence 

in a semi-log plot for n > 8. giving a slope of —1.27 ±  0.1/C H 2. A linear fit of the 

logarithm of the calculated coupling strengths for n =  5 to 9 gives 3  =  1.20/CH2. and 

th a t for n = 8 to  16 yields 3  =  1.03/CH2. On the other hand, Carter and coworkers [6] 

reported 1.44/CH2 for the pre-exponential factor for n =  8. 12.16. The exponential 

fit of calculated coupling strength on the three chain lengths gives 3 =  0.98/CH 2. 

There is seen to  be an underestimation of the length dependence in our calculation. 

In the results of our calculation for molecule I, the even-numbered short chains have 

a smaller coupling strength than  that inferred from the averaged linear fit. This fact 

can be explained by the dephasing of the coupling through a multiple-band bridge 

(Section 2.4.2).

For the directly-linked molecule (II). the bridge is the same as that for I. the 

energy of the electron is displaced by only 0.13 eV and the length dependence is 

expected to be almost the same for long chains. Exponential fit gives 3 = 1.05/CH2 

for long chains (n = 20 to 50), while for short chains (n = 5 to  15), it is as large as 

1.45/CH2. The la tter is the same as that arising from the second smallest exponential 

factor in the multi-band analysis of the bridge. The details are given below.

2.4.2  T he O scillation in Short Chains

It is seen, in Fig. 2.2, that the calculated coupling strengths have a single exponential 

dependence on chain length n  for very long chains, and a slightly faster decay with an 

oscillation for the shorter, experimentally accessible chains. Therefore, it is desirable 

to  understand the behavior of chain length dependence for the shorter chains.

The iteration of the sequential formula (Eqs. (2.16) and (2.17)) gives the chain 

length dependence in the calculation. Equation (2.16) is a first order nonlinear dif­

ference equation for matrices {A^}. For an off-resonance situation, Nn approaches a
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constant matrix for large n. For both molecules studied in the present work, there is 

little variation in iterating the matrices {Nn} numerically, starting from n = 3. So 

from Eq. (2.17), the Green's function that describes the coupling through the bridge. 

G ^ \ ) ,  now becomes

G\i l )  = Ga7n-q v A '1̂ .  for n > 3. (2.23)

where N  denotes the constant matrix N n approaches, or.

G {un) -  G ^ v A " 1 A ) " '2. for n  >  3. (2.24)

If we assume that the eigenvalues of v A ~lN  are {Ax, A2, • • •. A6}. then the effec­

tive coupling between the donor group and a state |k) in the metal. H ^ k. given by 

Eq. (2.20). is seen to be a linear combination of {A", A.”, • • •. A£}. When n is large, 

the eigenvalue that has the largest modulus dominates over all the others since those 

with smaller eigenvalues become much smaller when raised to a large power n. So 

H'pf. shows an exponential dependence on the chain length for large n. On the other 

hand, for small n ’s, those eigenvalues that are smaller in magnitude might largely 

affect the coupling.

A plot for the absolute values of eigenvalues of v A -1 N  versus E. the energy of the 

transferred electron, is shown in Fig. 2.3. for the alkanethiol bridge. The magnitude 

of the largest two eigenvalues are represented with circles and dots. The open circles 

represent positive numbers while the dots, negative eigenvalues. It is seen that for the 

energies calculated, the two eigenvalues that are the largest in magnitude always have 

the opposite sign. Therefore, the linear combination of powers of those eigenvalues 

may show an oscillation between even and odd n ’s, arising from the cancellation (or 

addition) of either even or odd powers of the two eigenvalues. The smaller calculated 

coupling strengths for the even n ’s of molecule I and for the odd n ’s of molecule 

II are because of this effect. Also, the smaller eigenvalue may dominate the decay 

trend among short chains, leading to a larger 3 in fitting the coupling strength to 

exp(—fin).

In the present work the bridge is regarded to be a sequence of linearly connected
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units and each unit has several molecular orbitals. The linear combinations of those 

orbitals that constitute the eigenvectors of matrix v A _1.V offer "decoupled paths" 

for the electron tunneling, and the interference between the paths due to the phase 

difference in the tunneling am plitude (eigenvalues of v A '1̂ )  gives an oscillatory 

dependence on chain length for the overall effective coupling (both HJjk and the 

averaged \HDk\2).

For the ester-linked ferrocenylcarboxyl alkanethiol molecule (I), at E = —5.22 eV. 

the two eigenvalues with the largest magnitudes of v A -1 Ar are 0.591 and —0.485. If 

the averaged coupling strength. {Hotel2, *s fitted to be proportional to exp(—3n).  those 

corresponding 3's  given by those eigenvalues would be 1.05/CH2 and 1.45/CH2 respec­

tively. (Because of the amplitude squared in \Hok\2, 3  equals —2 log |eigenvalues|.) 

For the directly linked ferrocenyl alkanethiol (II), the eigenvalues are 0.593 and 

—0.484, which correspond to  1.04/CH2 and 1.45/CH2 for the decay constants (J). 

There is only little difference in the eigenvalues of v A ~ l.Y. Consequently, the 3's are 

similar. Almost the same values of 3  are also obtained by linearly fitting the calcu­

lated lo g |tfDjt|2 with respect to  n  for long chains (n — 20 to 50) of both molecules I 

and II. For the short chains (n =  5 to 15) of II. the fitted 1.45/CH2 is also the same 

as the one calculated from the second largest eigenvalue.

In calculating Hfjk using Eq. (2.20), the weighting coefficients of the eigenvalues 

are determined by the coupling column or row matrices Vp.i and V^.. They depend 

on the geometry and orientation of the ferrocene-containing groups and the alka­

nethiol chains on the gold surface. This explains the different length dependence of 

coupling strengths for short chains even though the 3  and the underlying eigenvalues 

are almost the same. In the range of experimentally accessible r i s, the calculated 

coupling strengths are seen to  be strongly influenced by the smaller eigenvalues of 

v A ~lN.  Therefore, the underestimation of 3  for the ferrocenylcarboxyl alkanethiol 

system implies th a t the chosen geometry for the electroactive group is probably not 

very close to the actual one. There is possibly a  distribution of the conformation 

of the electroactive groups, so a more realistic approach should include an average 

over possible conformations. In such calculations, the amplitude of the oscillation
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in electronic coupling strength is expected to be smaller, and the 3  for experimen­

tally accessible chain lengths is expected to be between those from the two largest 

eigenvalues. 1.05 and 1.45/CH2.

2.4 .3  R em arks on the T ight-B inding A pproxim ation

The calculation using the sequential formula is based on a tight-binding Hamiltonian 

constructed from the extended-Hiickel basis set. However, m atrix elements and over­

lap integrals from the extended-Hiickel program axe not always the best choice for the 

tight-binding model. In our calculation we found th a t the band gap for a linear chain 

polyethylene obtained in this tight-binding model was too small (it is about 6.2 eV) 

compared with that from experiment (8—9 eV [26]). The band structure of a linear 

polyethylene from the tight-binding model also does not resemble that from the full 

extended-Hiickel calculation, and the latter has been shown to be surprisingly close 

to experimental valence band structure [25]. Ab initio calculations on superexchange 

coupling strengths have concluded th a t nearest neighbor coupling is not the major 

coupling scheme for the donor/acceptor orbitals investigated [12]. The disagreement 

of band structures of polyethylene calculated from the tight-binding model and the 

full extended-Hiickel[18] has also confirmed the influence of long-range coupling. As 

an empirical model, the difficulty is resolved by adjusting the MO energies of the CH2 

unit in order to  obtain a more realistic band gap. as described in detail in Ref. [181. In 

applying this m ethod to other systems, the tight-binding Hamiltonian for the bridge 

part used should fit band structure measurements.

As a single-electron molecular orbital theory, extended-Hiickel calculation has pro­

vided an efficient and quite correct description on hydrocarbon chains [25]. The tight- 

binding approximation is a further simplification, providing an alternative method 

th a t is analytically accessible and possible for making use of experimental data  on 

the positions of energy levels. The present work shows that, even with such a simpli­

fied model Hamiltonian, a careful consideration of the position of energy levels can 

still provide a fairly good description on the superexchange coupling strengths.
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In the present tight-binding model, the coupling through neighboring alkanethiol 

chains in the self-assembled monolayer and the direct coupling between the ferrocene- 

containing groups and the gold electrode are not considered. For the same geometry 

of the ferrocenylcarboxyl group as shown in Fig. 2.1. the vertical distance from the 

Fe atom to  the gold surface for molecule I with n=6. is about 12 A. Therefore, it is 

believed to be a very small direct coupling for the molecules listed in Table 2.2. The 

effect of coupling through other alkanethiol chains were studied in the previous work

[18] by a full extended Hiickel calculation. There is seen to be little effect on the 

neighboring alkanethiol chains, in which the shortest atom-to-atom distance between 

the ferrocenylcarboxyl group and the neighboring alkanethiol chains is 1.6 A. Based 

on the above studies, it is believed that for n > 5, the electronic coupling between 

the ferrocene-containing groups and the gold electrode is mostly from the coupling 

through the bridge.

2.5 C on clu sion s

The sequential formula Eqs. (2.16) and (2.17) can be used to calculate the bridge- 

mediated electronic coupling for a long range electron transfer reaction. It is shown 

that the calculation gives reasonable estim ation of coupling strengths. The length 

dependence factors. 3. are slightly smaller than those from experiments. The math­

ematical structure of the sequential formula also provides a tool for realizing the 

physical picture of electron tunneling through a  multi-band bridge. From such anal­

ysis, it is concluded th a t the length dependence for the shorter chains (n <  20) can 

be better estimated if the actual geometries, or the distribution of the geometries, of 

the ferrocene-containing groups can be used in the calculation.
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A p p en d ix  A: G en era liza tion  to B rid ges w ith  D iffer­

en t U n its

For bridges composed of different units, the energies of molecular orbitals in each 

unit is used to form the m atrix e and should be denoted by en for the n th  unit. The 

interaction matrix between n — 1 and nth units is denoted by which is a

square or a rectangular block of the tight-binding Hamiltonian. The definition of N n 

now becomes (corresponding to Eq. (2.15))

.V„ =  A .G ™ ,, (2.25)

and the sequential formula (Eqs. (2.16) and (2.17)) is now

;Vn =  (1 -  vfn_ 1-n)A ^ i V ^ v ^ ^ A - 1) - 1. (2.26)

and

(2.27)

The initial condition has the similar definition, for the Hamiltonian formed by the 

first and second bridge units,

H {2) = I '  V(1'2) I (2-28)
V V (l,2) e 2

and Eq. (2.18) is used. For the present work, the group SCH-2 is considered as the first 

bridge unit. So the above initial condition is used, but for the iteration for additional 

CH-2 units, Eqs. (2.16) and (2.17) are used.
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Figure 2.1: The geometry of the molecules calculated in the present work: Part 
I is for (775-C5H5)Fe(77°-C5H4)CC)2(CH2)16S on the gold surface, and part I I  is for 
(r75-C5H5)Fe(r75-C5H4)(CH2)16S. The surface gold atoms are placed on the z — 0 
plane and the origin is placed at one of the triple hollow sites and the S atom  is 
placed above it. The y-axis is chosen to be the direction of the tilting of the alkane 
chains. It is also parallel to one of the lines connecting nearest neighbors of gold 
atoms on this (111) plane. The units in the coordinates are A.
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Figure 2.2: A plot for loge \ Hok\2 versus number of methylene units in the bridge.
denotes that for molecule I  (Cp-Fe-Cp-C02-alkanethiol). "o” is the result for 

molecule I I  (Cp-Fe-Cp-alkanethiol).
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Figure 2.3: The absolute value of the eigenvalues of v A _1iV vs. E.  the energy of the 
electron being transferred, where N  is the large n  limit of N n for the off-resonance 
cases. For each energy calculated, the largest two eigenvalues are plotted according 
to their signs. *‘o” denotes the positive eigenvalues, and is for negative ones. 
O ther smaller eigenvalues are denoted by “-K” regardless of their signs. The range 
of E  calculated is in the band gap between the valence and conduction bands of the 
tight-binding Hamiltonian for the long chain alkane molecules [18. 26].
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Table 2 .1 : The effective coupling strengths {\Hok\2) for n =  3 to 16. 

n CpFeCpCQ2 (CH2 )nSHa CpFeCp(CH2 )„SHa
3 4.07 x 10"° 3.42 x 10~ 3

4 1.56 x 10“ 6 1.04 x 10~ 3

5 3.01 x 10“ 6 1.67 x 10“ 4

6 1 . 2 1  x 1 0 ~ 7 6.04 x 10“ 5

7 2.50 x 10' 7 8.23 x 10- 6

8 1.38 x 10~ 8 3.71 x 10“ 6

9 2.25 x 10" 8 3.89 x 10“ 7

1 0 2 . 0 0  x 1 0 ~ 9 2.41 x 10- 7

1 1 2.19 x 10" 9 1.76 x 10“ 8

1 2 2.93 x 10-'° 1.67 x 10- 8

13 2.28 x H T 10 8.06 x 1 0 - 10

14 4.12 x 10- 1 1 1.26 x 1 0 - 9

15 2.48 x 10' 11 5.05 x 10- 11

16 5.55 x 10- 1 2 1.04 x IQ- 1 0

a The units for the coupling strengths are (eV 2 atom) [22].
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Table 2.2: The experimental and the theoretically estimated ET rate constants.

CpFeCpCQ2(CH2)nSH (I)
n A.eV A;(0*(exp), s 1 Ref. Ar̂0)(calc). s
5 0.70“ 1.6 x 106.c [7] 1.6 x 106
6 0.84“ 2.4 x 10°.c f7] 1.5 x 10°
7 0.86“ 1.7 x 105.c [7] 2.5 x 10°
8 0.96“ 3.4 x 104.c m 5.0 x 102
9 0.91“ 1.1 x 10'.c [7] 1.3 x 103
8 0.95“ 0.21d [4] 0.011
16 0.85b 1.25c [31 0.62
8 0.95“ 4070e [61 230
12 0.89“ 35.5e [61 9.4
16 0.80“ 0.16e [61 0.49

CpFeCp(CH2)„SH (II)
o n c\(2a o nd \ a] O a8 0.96° [4] 2A

“ From the temperature dependence of rate constant (Arrhenius plot). 
b From the overpotential dependence of rate constant. 
c T =  25°C. 
d T = 140 K.
e Extrapolated in the Arrhenius plot to T  =  273 K.
 ̂ Rate constants calculated with the A’s listed and pf  =0.3/eV /atom  [37], the 

density of states of gold at the Fermi surface.
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C hapter 3 T im e -D e p e n d e n t S tok es Sh ift and  its  

C alcu la tion  from  S o lv en t D ie le c tr ic  D isp ersio n  

D a ta

Chao-Ping Hsu. Xueyu Song* and R. A. Marcus 

A. A. Noyes Laboratory of Chemical Physics. 127-72 

California Institute of  Technology, Pasadena, CA 91125 

(Reprinted with permission from J. Phys. Chem. B, 101(14). pp.2546 - 2551.

©1997 American Chemical Society.)

Abstract

The tim e-dependen t solvation correlation function (the  “Stokes shift re­

sponse fu n c t io n ') ,  which describes the  solvent response to a sudden  change 

in the charge d istrib u tio n  of a  so lu te  molecule, is calcu lated  here directly  from 

experim entally  m easured dielectric d ispersion d a ta . e(u>). of the  solvent. In the  

calculation a  reaction  field w ith  th e  d ielectric continuum  assum ption  is used. 

This sim ple m odel is applied to  th e  experim ental resu lts  of Jim enez et al. for 

photoexcited coum arin  and w ater as a solvent, and  encouraging agreem ent is 

obtained using the  experim ental d a ta  on e © ).

P resen t address: Department of Chemistry, University of California, Berkeley. CA 94720
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3.1 In trod u ction
9 4

The dynamics of polar solvents has been a topic of recent interest in physical chemist ry 

and has frequently been studied in charge redistribution processes in many chemical 

reactions [1 —20j. Experimentally, the time-dependent fluorescent shift (the Stokes 

shift) has been measured over different time scales and for a variety of polar solvents 

[2-8]. In typical Stokes shift experiments a chromophore solute in a  polar solvent is 

first excited by a pump pulse, and then the time-dependent fluorescence spectrum 

of the solute is recorded. For studies with coumarin or other dye molecules (e.g.. 

refs [3-8]). the excited state of the solute has a different charge distribution from 

that in the ground state. There is expected to be little intramolecular vibrational 

motion excited when, as appears to  be the case for some of these molecules, the 

geometry or vibration frequencies of the solute molecules is barely changed. In those 

cases, instead of vibrational Franck-Condon factors or of frictional effects due to a 

geometrical change of the solute (e.g., isomerization), the dynamics is dominated by 

the electrostatic interaction with the solvent, and then dielectric relaxation plays the 

major role in the relaxation process.

Recent theoretical developments [9-20] have provided physical insight into the 

solvation dynamics. Solvation correlation functions calculated from the Debye form, 

the Davidson-Cole and the Cole-Cole forms were shown to exhibit significant differ­

ences [9]. Based on similar calculations and comparisons with experiments, it was 

suggested that it would be useful to  obtain higher frequency dielectric data  for a bet­

ter description of S(t),  the solvation correlation function [8 j .  The effect of molecular 

shape has also been discussed [10]. Much attention has also been devoted to trea t­

ing the spatial dependence of dielectric response function, e(k,uj), which includes the 

molecular nature of solvent [11, 12]. The dynamical mean spherical approximation 

theory has been influential; the comparison with experimental results is at present 

qualitatively satisfactory [13, 14]. A molecular hydrodynamic theory [15, 16] has 

been applied to water solvation dynamics with a model dielectric response function 

[16, 17]. Good agreement between the experimental and calculated solvation corre­
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lation function was obtained and the role of intermolecular 0- • -0 stretching mode 

was stressed [17]. Molecular dynamics calculations have provided information on how- 

polar solvents change the reaction rate [18] and the role played by various shells of 

solvent molecules [9. 19]. Such calculations have also given results in satisfactory 

agreement with the dynamical Stokes shift experiments [7j. The short-time solvation 

dynamics has also been interpreted in terms of an instantaneous normal modes analy­

sis of molecular dynamics simulations [20]. In another study, the ultrafast relaxation 

of the Stokes shift was related to the optical Kerr effect measurement using a Brow­

nian oscillator model and assumptions on the spectral density [21], and showed an 

encouraging agreement for the description of fast dynamics of the solvent.

In the present work the time-dependent solvation correlation function is calculated 

using the entire dielectric spectral response function e(u;) [22], instead of molecular 

models for the solvent. It will be seen tha t reasonable agreement with the experimen­

tal time-dependent Stokes shift is obtained using the measured e(u/) [23. 24] without 

explicitly considering the spatial dependence of dielectric relaxation, i.e.. e(k.uj). The 

two solute-solvent models given in Section 3.2 are dielectric continuum models w-ith 

a dipole in a spherical cavity and an ellipsoid filled with dipole density [10. 25], with 

the induced charge on the boundary. The former is the usual Onsager's cavity model 

[261. Comparison of these two models with each other and with the experimental re­

sults in Ref. [7] is given and discussed in Section 3.3. followed by concluding remarks 

in Section 3.4.

3.2 C a lcu la tion  o f S o lv a tio n  C orrelation  F unction

The Stokes shift response function S( t)  is defined in the terms of the experimental 

measurements as

sa)= (3. Di/(0) — i/(oo)

where u{t) is the frequency of the fluorescence maximum at time t. If there is little 

internal vibrational excitation of the solute in the transition, then the time dependence
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of u(t) arises mainly from the time-dependent solvation energy. A E soh'(t), resulting 

from the change in the charge distribution of solute induced by the photoexcitation

at t =  0. S(t).  also termed a "solvation correlation function." can be rewritten as:

A E s°lv(t) -  A £ s°lv(oc)
( > A £ solv(0) -  A E ^ o c ) '  { ’

In the following section A E solv(t) is related to the dielectric dispersion e(^) by

assuming that the solvation energy is the electrostatic interaction energy between the

solute and the surrounding solvent.

3.2.1 D ielectric Continuum  M odels

For the case where the charge distribution of the solute is a point dipole moment, fi. 

the energy' of interaction of the dipole with the solvent, £ ’solv(t). is

where R (i) is the reaction field at time t due to the surrounding solvent acting on the 

solute dipole. The reaction field R(£) can be obtained from linear response theory:

where r ( t  — t') is a response function and. in general, a tensor. Causality requires 

th a t r(t)  =  0 for t < 0. The Fourier transform is introduced

where z can be generalized to be a complex variable. Usually there is a range for 

Im(z) where f ( z ) is analytic [27]. The inverse of Eq. (3.5) is given by the standard 

expression

£ ^ ( 0  =  - / / ( < ) - R ( 0 (3.3)

(3.4)

(3.5)

(3.6)
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where C  is a suitable contour which goes from —oc to oc if projected onto the real axis 

and stays inside the region where f ( z )  is analytic. Using the convolution theorem. 

Eq. (3.4) yields

R (z) =  r(z )£ (z ). (3.7)

We consider now a model system where it is assumed that the solute is treated 

as a spherical cavity w ith the dipole placed a t the center. To obtain the appropriate 

equation for r(z).  both for this model of the solute and for any other, it is necessary 

to solve the time-dependent electrostatic problem for the system. The dielectric 

displacement. D ,. in any phase z is related to the electric field there. E ,. and the 

dielectric polarization P t by [28]

D ;(r. t) - E j(r. t) + 47rP,(r. t). (3.8)

In linear response theory.

P t(r , t ) =  f l dt'ai(t  — £')Ej(r. t') (3.9)
J  —  OC

where it is assumed th a t the polarizability of the region a* is local in space. For a 

two-phase system, i — 1. 2, the boundary conditions at the (1.2) interface are that the 

normal components, D /-(r, t) are equal when there is no interfacial charge density, 

and the parallel components E -(r. t) are also equal [29]. Taking the Fourier transform 

of Eq. (3.9) and of these boundary conditions, we have [30]

P t( r , 2 ) =Q,-(2 )E i(r,z) (3.10)

and

D ^ ( r ,2) =  D # ( r , ; ) ,  E{(r, z) =  Ej|(r, =). (3.11)

From Eq. (3.10) we have

D i(r, z) =  e ^ z JE ^ r, z), z =  1,2 (3.12)
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where the frequency-dependent dielectric constant ei(~) is

Ci(2) =  l+47TQi(2). 1 =  1.2. (3.13)

Equations (3.11) and (3.12) are the same as the static equations and so the solution 

of static  boundary value problem applies here. Using the standard reaction field

expression !25. 31 j ,  one thus obtains for the case of a point dipole in a sphere.

=  'X14>

where a. the radius of the cavity, represents the size of the solute. Since a normal­

ization appears in calculating S(t)  in Eq. (3.2), any constant factor cancels, and so 

the final response function is independent of a. Equations (3.7) and (3.14). with c 

replaced by u), were used in Ref. [31 j and termed there a quasi-static boundary-value 

calculation. An explicit derivation of the equations is given above and the method 

can be applied to any other model for the solute.

We consider the case where the optical excitation of the solute molecule occurs, in 

effect, instantaneously and that the dipole moment of the molecule is changed from 

f ig to fj.e at time t =  0. Thus, the dipole moment of the solute ^t(f) can be written as

t * ( t )  =  t * g + 0 ( t ) ( H e -  P g ) '  ( 3 ' 1 5 )

where 6{t) is the unit step function. Therefore. Eq. (3.4) yields

R (f) = r3fxg -r f  dt'r(t — t')6(t')Afj., (3.16)
J — OC

where, using Eq. (3.14) [32],

rs = f ( 0) = f dt'r(t  -  t') =  \  £s 1 (3.17)
J —oc a 2es t  1

Here, A n  = n e ~  Pg and es is the static dielectric constant of the solvent. The
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first term in Eq. (3.16) describes the reaction field arising from f ig, and the second 

term  is the change in R(f) due to the sudden change of dipole at time t =  0. The 

former equals the static reaction field rs/j,g, since before the excitation the solvent is 

in equilibrium with the ground state dipole moment.

At time t. if the molecule suddenly fluoresces, and so reverts to the ground state, 

the dipole moment is changed back to f ig and the solvent has an immediate reac­

tion arising from the optical frequency dielectric constant. eop. If R /(t)  denotes the 

reaction field immediately after this instantaneous reaction of the solvent, then

where R(t) is the value just prior to this fluorescence, given by Eq. (3.16). and

In Eq. (3.20), only the second term is time-dependent and so the first term cancels 

in calculating S ( t ) in Eq. (3.2).

The Fourier transform of A E(t)  can be obtained using the complex Fourier trans­

form of 9(t),

R f (t) = R (t) -  ropAfj. (3.18)

2 c0p — 1 (3.19)

The resulting solvation energy difference between the excited state and the ground 

sta te  molecule, a t time t. is now

A E*°lv(t) = El°iv(t) -  El°w(t) =  - Me.R ( 0  + n g - R f (t) 

= - ^ g  • (r op ~  r s) A^X — A £(f). (3.20)

where

(3.21)

i
1

if Im(z) < 0. (3.22)
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Therefore, from the convolution theorem.

( 3 .2 3 )

where z denotes (uj — ir]) w ith u; real and 77 being a  small positive number ;33j. Taking 

the inverse transform of A E (z ) .  we have, using the results in appendix A.

The contour of integration. C.  in Eq. (3.24) denotes a path parallel to but slightly 

below the real axis in the complex z plane. The solvation correlation function S(t)  can 

be calculated using Eqs. (3.2). (3.20) and (3.25). The optical response has already 

been included in Eq. (3.18) and so the 00 in Eq. (3.25) actually denotes a high 

frequency. u>op, below the optical absorption band and the Im e(uj) is essentially zero 

at u>op. The integration over ;  in Eq. (3.24) is discussed in appendix A. and remarks 

on the relation between the optical response and the upper limit of the frequency 

range of Eq. (3.25) are made in appendix B.

The effect of molecular shape was also studied here by considering an ellipsoid 

model: if an ellipsoid filled with homogeneous dipole density is used to represent the 

solute, the solution for the reaction field R  is given in Section 20 of Ref. [25! and in 

Ref. [lOj. For any frequency u it is the same as in Eq. (3.7) except for a different 

response function r(u>):

and Aa,A b ,A c are ellipsoidal shape factor integrals [25]. Tables and the relation of

r(u ;)=  0 f b 0 (3.26)

where
3 A , ( l - A t)[e(u ;)-1 ] 

abc e(ui) +  [1 — e(u)]Ai
, i cz, b, c, (3.27)
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these shape factors to elliptic functions are given in Ref. [34]. The expression for the 

solvation energy (Ai?solv(t)) is similar to that in Eq. (3.20) except th a t now r  is a 

tensor instead of a scalar r:

A E { t )  =  Apt • T  dt 'r(t  -  t')6(t') ■ A \i. (3.28)
J — OC

The expression for A E(z )  given by Eq. (3.23) becomes

AE(z)  = ——Afj. ■ r(z)  ■ Afj,. (3.29)
iz

The inverse Fourier transform of this equation yields A E(t):

A E ( t )  =  — Apt ■ [  du>C°SUjilmr(uj) ■ Apt — A n  ■ r (0) • A pt (3.30)
tr Jo uj

which is then used to calculate S(t). If the above expressions are applied to a sphere 

filled with homogeneous dipole density (A a = Ab =  A c = 1/3). the expression for 

A E{t)  is the same as th a t given by Eq. (3.25) for the dipole in a sphere model.

3.2.2 R esu lts

The above models are now applied to the system of coumarin 343 (C343) dissolved in 

water [7]. The results of a  numerical calculation, using Eqs. (3.2). (3.20) and (3.25) 

and the e(uj) of water a t T=298 K [23, 24], are plotted in Fig. 3.1. As in Ref. 122]. 

in the low frequency region (u; < 3.0 x 1011 rad s-1 , about 1.6 cm -1) [35]. Debye's 

formula is used,

e M  =  e ,+  i £; ~ Cl , (3.31)
1 + ILJTd

with td =  8.2 ps, es = 78.3 and e* =  4.21. For the frequency range u; =  3.0 x 1011 

to 7.2 x 1014 rad s ' 1, a spline fit was used for both the real and imaginary parts of 

e(uj). The upper limit of the integration is 7.2 x 1014 rad s " 1, which is approximately 

3800 c m '1. The optical dielectric constant (eop) was assumed to be 1.8. The same 

numerical answer was obtained for the integration in Eq. (3.25) either using the
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Fast Fourier Transform (FFT) subroutines or the direct numerical integration. This 

agreement confirms the quality of the present calculation. The plot of the calculated 

S(t)  is compared in Figs. 1 and 2 with the S(t)  obtained from the experimentally 

fitted parameters of experimental data in Ref. [7j.

For an oblate ellipsoid with ajb = a/c — 0.4 and with the change of dipole A y. is 

parallel to one of the long axes. A E(t)  was calculated by the inverse Fourier transform 

of Eq. (3.29) and then S(t) is obtained from Eqs. (3.2) and (3.20). The dimensions of 

the ellipsoid were chosen to approximate the shape of the coumarin ion |4j. For this 

case the ellipsoidal shape factors are [34]: A a — 0.588. Ab = Ac = 0.206. The results 

of calculation are plotted in Fig. 3.2.

3.3 D iscu ssio n

We see from Figs. 1 and 2 that this simple continuum model of solute and solvent gives 

a time-dependent Stokes shift reasonably close to that observed in the experiment. 

There may or may not be a difference of behavior at very short times (~  50 fs) in 

Fig. 1 between the experimental and calculated curves. In the experiments [7j. the 

cross-correlation of the pump pulse and the gate pulse is reported to be 100-110 fs 

(full width at half maximum).

It is perhaps surprising that the simple model works as well as it does, and it will be 

interesting to see whether similar agreement is obtained for other solvents. Because 

the dielectric dispersion e(u;) of the solvent contains a broad range of frequencies 

in its response, it is not surprising that the calculated response function, like the 

experimental, is far from being a  single exponential. The entire dielectric dispersion 

spectrum of e{ui) includes the low frequency part, which is well-described by the Debye 

formula, and the high frequency part which contains various contributions from inter- 

and intra-molecular vibrational modes of the solvent. The former contributes to the 

long-time behavior, whose characteristic behavior is diffusional, while the latter is 

more “reversible” and determines the short-time behavior.

Many studies on solvation dynamics (e.g., Ref. [5. 8-10, 14, 17, 31, 39-41]) use an
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analytic form for e(uj) which includes various of models for the low frequency part and 

damped oscillations for higher frequency region. Horng et al. [5] has included a low 

frequency Debye model and two or three damped oscillators at higher frequencies for 

acetonitrile and methanol and has obtained a reasonably good S(t)  for acetonitrile. In 

the interesting work by Nandi et al. [17] excellent agreement between the experimental 

and calculated S(t)  was obtained, though the model provided for water did not quite 

resemble the experimental e(uj). Loring et al. [39] calculated the fluorescence and hole 

burning lineshape with a molecular theory using a  Debye model for e(u;) in obtaining 

the results. Jarzeba et al. [8] showed that simple continuum models, such as single or 

multiple component Debye models or the Cole-Davidson model, accurately predicted 

the averaged solvation time but not the shape of S(t) , and they suggested that it 

would be useful to have higher frequency dielectric data included. Their suggestion 

is indeed confirmed by our present calculation.

We used a spline fit for the discrete data of e ( a j ) .  Thereby, there were no adjustable 

parameters and a direct connection was made between e(uj )  and S ( t ) .  Any analytical 

model that provides reasonably good description of the e(uj )  spectrum  would of course 

give essentially the same S ( t ) .  However, we believe that directly using the experimen­

tal dielectric dispersion data with a simple continuum model provides a transparent 

way of introducing the solvation dynamics, especially for the possible cases where 

model dielectric theories do not provide a satisfactory description of e{ui).

The model used in Fig. 3.1 is the dipole in a spherical cavity in a solvent dielectric 

continuum, while th a t used in Fig. 3.2 is the ellipsoid with a homogeneous dipole 

density. The rate of decay of S ( t )  with t  for the  latter is slightly faster than that 

for the former. There is seen to be little effect of changing the shape of solute from 

a sphere to an ellipsoid. Results (not shown) were also obtained for the S ( t )  when 

the dipole is replaced by a single charge. In th a t case, the solvent response r(uj) in 

Eq. (3.14) is replaced by (1 — l/e(u;)). One then finds that the results in Fig. 3.2 for 

the ellipsoid filled with a uniform dipole density lie between those for the dipole in a 

sphere in Fig. 3.1 and those for a charge in a sphere. This result is not unexpected, 

since the ellipsoid filled with a homogeneous dipole density which is parallel to  the
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long axis has net charges distributed at the surface at both ends of the long axis. The 

latter would behave more or less like two not quite separated regions of charge density 

and so be the intermediate between a charge and a point dipole in its behavior.

In the results of the present calculation, the small peaks of recurrence in Figs. 3.1 

and 3.2 show a “reversibility" of the motion, with the shortest period being about 

44 fs. which corresponds to roughly 760 cm-1 in frequency. The absorption band 

in that region has been assigned to a “libration." namely, oscillation of the water 

molecule in the force field of its neighbors [25]. The other bands with higher frequen­

cies in e(u;) do not yield any significant recurrence from the rapid initial decay of 

S(t). due to their contribution to e(u>) being very small and. to a lesser extent, due 

to the 1/uJ factor in the integrand. Thereby, these resonance bands contribute only 

a small portion of the rapid initial decay (cf. Fig. 3.3). Nandi et al. 117] pointed out 

the importance of the intermolecular O- • -O stretching mode, which constitutes the 

193 cm-1 band in e(u;) and corresponds to 170 fs as its recurrence period. In Fig. 3.3 

there is a small shoulder located between 150 and 200 cm -1 arising from such motion. 

In Figs. 3.1 and 3.2. the (broader) recurrence peak at about 0.2 ps can be regarded 

as a mixed result of this lower frequency band and the librational motion, and the 

rate of decay is seen to slow down at this region, for both the experimental and the 

calculated S(t).

A molecular dynamics (MD) simulation of rigid water showed a similar pattern 

of recurrence in S(t)  [7], and supports the idea that the principal reversible mode 

is intermolecular. In th a t MD work the amount of initial decay is. out of the total 

calculated S ( t ), roughly 10% less than our result in Fig. 3.1. Part of this difference 

may arise from the effect of the rapidly dephased intramolecular modes of water, which 

occurs in our calculation: It includes all dispersive contributions, unlike the MD result, 

since a rigid model for the individual water molecules was used in the latter. Both the 

MD study and the present result show the importance of including the  moderately 

high frequency intermolecular components of dielectric response spectrum  on the 

dynamics in sub-picosecond time scale, in addition to including the Debye region.

In Figs. 3.1 and 3.2 it is seen that S(t)  for an oblate ellipsoid with its dipole
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“lying" in the plane of the molecule decays only slightly faster than  it does for a 

sphere. Recalling tha t the sphere model also applied to a homogeneous dipole density 

model, we also see in this comparison that the molecular shape affects S(t) only a 

little, within the approximation of using a dielectric continuum. For a more complete 

description of the solvation dynamics, in addition to satisfying the boundary condition 

at the solute-solvent interface, the spatial dependence of the dielectric constant [11. 36] 

would also be taken into account.

When the smooth decay of our theoretically calculated S(t)  after 0.5 ps is fitted 

by an exponential function, the results in Fig. 3.1 correspond to a lifetime of 810 fs. 

This number agrees well with the slowest exponential component in Ref. [7] obtained 

by fitting to the experimental data , namely. 880 fs. On the other hand, the Debye 

model (Eq. (3.31)) describes a single exponential relaxation process: For the sphere 

cavity model, the relaxation time for S(t)  obtained from the Debye formula is TD(2ei~ 

l ) / (2es — 1) (e.g.. Ref. [31]). which is 490 fs. The Debye model is a good description 

of e(u>) for ui = 0 to about 3.0 x 1011 rad s-1. For frequencies higher than that, the 

measured e(u;) begins to deviate from Debye's formula. Thereby, a decay occurring 

according to the Debye formula is expected to occur only after 3 ps. The current 

lifetime fit for t =  0.5 to 2 ps is not. we have just seen, the Debye 490 fs. and 

represents a mixed result from bo th  the Debye model and the spline fit of dielectric 

dispersion for higher frequencies.

3 .4  C on clu sion

The solvation correlation function can be calculated by including the entire spectrum 

of dielectric dispersion data  e(uj) up to the optical region. Using simple dielectric 

continuum models th a t neglect the molecular property of the solvent, our results 

show tha t the correlation function obtained give a reasonable description for the 

time-dependent Stokes shift measurement.
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A p p en d ix  A: A n a ly sis  for E quation  (3 .24)

Equation (3.24) can be rewritten as

A E(t) = [  d z r- ^ - e lzt (3.32)
27r Jc iz

= f  d/ ( z )  ~ r(0)e,„ _  r
2tt Jc iz 2ir Jc iz

where C  denotes the a contour that is parallel but slightly below the real axis. The

second of the integrals in Eq. (3.33) can be shown, using the residue theorem, to equal

2i:f(Q)0{t). We note that r(z) is analytic on the real axis 133], and f(~ =  0) is a real 

number [32]. The integrand in the first integral does not possess a pole at r =  0. 

since
H z ) - m  r ^ W l  ^ 0 (2 )_ (3 34)dr{z)

dz c=0

and d f ( z ) /d z  has no singularity at z =  0. We may therefore allow the contour C  for 

the first integral in Eq. (3.33) to coincide with the real axis. Denoting the real and 

imaginary part of r(ui) by f '{u)  and f " { u ), respectively, i.e., r(uj) =  f'(uj) -f if"{uj). 

and noting th a t r ( —u;) =  f*(uj), which follows because r(t) is real, we then find

r f e f M - r ( 0 ) e„. =  2 p  ^  +  2 /■« ^ r V K  sinu;f (3.35)
Jc  iz Jo lJ Jo id
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Therefore. Eq. (3.33) yields

TT Jo jJ
cos u)t

Jo

Another useful property is obtained by noting that AE(t) — 0 for t < 0 (Eq. (3.21)). 

The first integrand in Eq. (3.36) is an even function of t while the second is an odd 

function. Since the sum of them  yields zero for negative t , they must be equal for 

positive t. Thus, the calculation for A E(t)  can be performed by integrating either 

of the two terms in Eq. (3.36). In the present work, the first term was used because 

r"(uj) goes to zero as uj goes to  the optical limit in an integration region and so it is 

numerically easier to calculate. We can write.

which yields Eq. (3.25).

The second term of Eq. (3.36) can be better evaluated, if desired, as follows:

The first term now has a finite range of u! and so is numerically easier to calculate 

than the left-hand side of Eq. (3.38).
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A p p en d ix  B: R em ark  on  th e  O p tica l R esp o n se  C on­

tr ib u tio n

At time t = 0. the first term in Eq. (3.37) would formally become

Equation (3.40) follows from the Kramers-Kronig relationship [37. 381 when the upper 

limit is really -i-oc (and not tjop). Equation (3.36) then gives A£'(0) =  0. However, 

practically the integration is cut off at a frequency (u/op) in the range between the 

response arising from nuclear motions (0 < uj < ujv) and the electronic polarization 

(ô e| < uj < oc). Because of the large separation of the two frequency regions (e.g..

~  103cm-1 while uie\ ~  10°cm_1). the r"(uj) from the fast electronic polarization 

gives approximately a constant contribution rop to f ' ( u j )  over the lower frequency 

region (0 < uj < u>u) 1381. That constant can be obtained from the Kramers-Kronig 

relation:

gible absorption in the frequency interval (ct;„,u;ei), so r"(uj) is practically zero there. 

In obtaining Eq. (3.42). the large separation of the two frequency regions in the in-

(3.40)

(3.41)

(3.42)

where P  denotes principal part of and where it has been assumed that there is negli-

tegrations allows us to assume u j u  lJop o;ei, and so u i ^ p  and u j 2  dominate in the 

denominators of the first and second integrals, respectively, in Eq. (3.41).
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If the upper limit in Eq. (3.40) were replaced by u-’op, it would become

2A ji2 f^op r"(u;) 2A fi2
= An2{rs -  r0p).

(3.43)
TT J 0  uJ  7T

where we have used Eqs. (3.40) and (3.42).

Thus, in A i?(t), there is expected to be an initial drop which is faster than the 

time-resolution set by this cut-off frequency uJQp, due to the electronic polarization:

We see frcm the above equation that when the A E{t)  is calculated using ujop instead 

of oc in Eq. (3.37) as the upper limit of integration, the A E(t)  starts from a value 

AjE'(0+ ) that arises from the electronic polarization. A E(t)  eventually goes to a s ta tic  

interaction energy, A E(t  —> -foe), which equals to —A /i2r s (Eq. (3.37)). Thus, the 

changes in A E(t)  after the initial brief time interval, 0 T  describe the solvational 

energy tha t arises from the nuclear response of the solvent.

AE(t  = 0+) - —Afi2rop. (3.44)
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Figure 3.1: Calculated S(t) (solid line) for a dipole in a sphere using Eq. (3.25). The 
dashed line depicts the experimental result from Ref. [7]. The latter is a fit to their 
experimental data  with one narrow Gaussian and two exponential functions.
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Figure 3.2: Calculated S(t)  (solid line) for a model of an ellipsoid solute using 
Eqs. (3.26) and (3.29). The ellipsoid has a : b : c = 0.4 : 1 : 1 with the dipole 
moment lying on b or c axis. The dashed line is the experimental result, which is the 
same as that in Fig. 3.1.
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Figure 3.3: The imaginary part of the quantity. [(e(u;) — l)/(2e(u;) — l)]/u/, which is 
proportional to the term th a t is cosine transformed in Eq. (3.25). for the dipole in a 
sphere cavity. Circles denote the data points calculated from experimental e(u;). The 
zero frequency limit of this quantity', estim ated from the Debye formula (Eq. (3.31)). 
is —0.073 ps rad -1. It is seen that the contribution of the intramolecular vibrational 
bands is quite small compared to that of the librational mode at about 800 cm-1. 
The units of the ordinate are ps rad-1 .
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Abstract

The time-evolution of the fluorescence spectrum of a dissolved chromophore 

excited by an ultrafast pump pulse is considered. The average value of the en­

ergy difference of the solute in its excited and ground states is used to describe 

the relaxation of the maximum of the transient fluorescence spectrum to its 

equilibrium value (dynamic Stokes shift, DSS). A simple formula for the nor­

malized DSS is obtained which generalizes an earlier standard classical expres­

sion and includes the effect of a pump pulse of finite duration. As an example, 

dielectric dispersion data are used for a dipolar solute in water to estimate the 

quantum correction to the standard DSS expression. The correction is negli­

gible when the frequency of the pump pulse is close to the maximum in the 

absorption spectrum, but a deviation from the standard formula can be ex­

pected for the pump pulse tuned to a far wing of the absorption band of the 

chromophore. An expression is given for this deviation.
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4.1 In tro d u ctio n

The solvation dynamics of dipolar and ionic solutes in polar solvents has attracted 

considerable attention in recent years, e.g.. Refs. [l-7l. This interest reflects the 

importance of the solvent dynamics in many chemical and physical processes in the 

condensed phase [8-11]. Transient nonlinear spectroscopy has been one main tool for 

tracing the ultrafast dynamics of solvation [12-14]. The loss of coherence between the 

ground and excited electronic states, which is caused by the solute-solvent interaction, 

is closely related to solvation dynamics. The photon echo technique [15-22] and pump- 

probe spectroscopy [23-26] have both  been used to separate the inhomogeneous (slow) 

broadening of the spectral line associated with a particular electronic transition from 

the homogeneous (fast) electronic dephasing. Several new experimental techniques 

have been developed to trace electronic dephasing with femtosecond resolution [27- 

31]. In a different, but related approach, the optical Kerr effect has been used to 

study subpicosecond dynamics of the solvent as a whole [32-35].

Most of the experimental data on solvation dynamics in polar solvents have been 

obtained using a time-resolved fluorescence method with upconversion [36-46]. The 

energy difference in the ground and excited electronic states of the solute is manifested 

through v ( t ), the frequency of the fluorescence spectral maximum of the molecule. Its 

time-evolution (dynamic Stokes shift, DSS) reflects the solvation dynamics of the elec­

tronically excited solute. At the current level of resolution, a DSS experiment permits 

a scanning of the solvent dynamics on a time scale ranging from less than 100 fem­

toseconds for fast relaxing solvents like water [2] up to nanoseconds for 'slow' solvents 

[47]. For strongly coupled systems the  time-resolved fluorescence experiments [36-47] 

have been more extensively compared with theory and with computer simulations 

than photon echo [15-22, 27-31] or optical Kerr effect measurements [32-35].

To interpret the results of a DSS measurement, it is usually assumed tha t the pho­

toexcitation, i.e., the transition forming the molecule in the excited electronic state, 

occurs much faster than any relaxation of the solvent and so the excited molecule 

would appear initially in a solvent which is in equilibrium with the ground state of
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the molecule [48]. It is also usually assumed that the solvent dynamics th a t is related 

to the evolution of the transient fluorescence spectrum can be described classically 

and that quantum effects in the solvent dynamics can be neglected.

Recent ultrafast DSS measurements [2. 36—38] have shown that the considerable 

part of relaxation (> 50%) in many solvents composed of small molecules occurs on 

a very short time scale (<  100 fs). which becomes comparable to the pump pulse 

duration. Under these conditions the validity of the assumption that the state of the 

solvent immediately after the excitation is the same as before is no longer strictly 

valid. In the present article an estim ate is made of the effect of the finite pump 

pulse duration on this time-development of the Stokes shift and of the extent to 

which the quantum dynamics of the solvent can modify the usual classical result. 

A model is described in Section 4.2, and the dynamic Stokes shift is calculated in 

Section 4.3. initially for an instantaneous pulse (Section 4.3.1) and then for a pulse 

of finite duration (Section 4.3.2). A physical interpretation of the principal equations 

is given in Section 4.4, and a summary is given in Section 4.5.

4.2  T h e  M od el

For treating the solvent dynamics, several approaches come to mind. In one of these 

linear response theory is used, as Ovchinnikov and Ovchinnikova did 149] in their 

application of the quantum field theoretical method of Abrikosov et al. [50]. In 

a similar spirit. Mukamel and coworkers [51-53] used a cumulant expansion, based 

on second-order perturbation theory to treat systems which in molecular terms have 

nonlinear interactions. Neither treatm ent uses a molecular harmonic oscillator model. 

An approach which is, at first glance, quite different from these in validity, is the use 

of a molecular oscillator model - the well known spin-boson Hamiltonian [54]. It gives 

results which are formally the same [55] as those obtained by the other two methods, 

when the number of oscillators N  allowed to become infinite. This agreement is not 

accidental. Rather, it bears some analogy to the representation of a nonperiodic 

function by a Fourier integral, when the latter is regarded as the limit as N  tends
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to oo of a Fourier series representation of the function. We have chosen to use this 

spin-boson Hamiltonian approach, and then allowing N  to  tend to oc. because of its 

simplicity, although either of the other two methods could have been used instead to 

to obtain the key equations. Eqs. (4.47) and (4.48). We note that these equations 

do not. for the above reason, contain any properties specific to molecular harmonic 

oscillators.

In the harmonic oscillator approach (with finite N.  which at the end is allowed to 

become infinite), the solvent Hamiltonian Hg in the ground electronic s ta te  can be 

w ritten as [54. 56-68]

h 9 = E  \ { P f  -  ^  u »  (-*-1)
3 “

where ij j.  Qr  and Pj are the frequencies, coordinates, and momenta of the 'normal 

modes', respectively (mass-weighted coordinates). When the resulting change of elec­

tronic state after an electronic transition leads only to shifts of the normal modes but 

not to changes in their frequency, the solvent Hamiltonian H e in the excited electronic 

s ta te  can be w ritten as [54, 56-68]

where the coefficients c3 uniquely characterize the shifts of equilibrium positions of the 

normal modes. The difference of the minima of the potential energies AU = Ue — Ug 

in the excited and ground electronic states, respectively, coincides with the free energy 

difference for this harmonic oscillator model.

A comment is relevant here about the role of intramolecular solute modes. In 

most experiments relatively large molecules (mostly dye molecules) with many nuclear 

degrees of freedom are used as solute probes [5], molecules in which the equilibrium 

nuclear configuration in the excited electronic state is different from the one in the 

ground electronic state. Vibrational modes of such solutes, changes in the ring modes 

in aromatic systems, for example, contribute considerably to the static Stokes shift 

and must be included in any model. The harmonic approximation for intramolecular
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modes is often used for electron transfer and other nonadiabatic electronic transitions 

[57. 581. One can then assume that the sum in Eqs. (4.1) and (4.2) is not only over the 

solvent modes but also over the intramolecular solute modes, neglecting any change 

in their frequencies as a result of the electronic transition.

To describe the solvent dynamics related to the spectroscopy of the solute . it is 

now customary to treat the energy difference of the excited and ground electronic 

states as a collective coordinate [51—53j

X  = He -  Hg = Y ,  ci Qj ^  A U  +  A- (4-3)
j

where the 'solvent reorganization energy' A is given in the harmonic oscillator model 

by

A =  Z c; A 4  (4-4)
j

The coordinate X  corresponds to the optical frequency of the vertical electronic tran­

sition at any specified values of the nuclear coordinates of the solvent. It can be 

referred to as a generalized 'solvation coordinate'. A similar idea was used earlier in 

electron transfer theory [60-65]. Statistical and temporal properties of the solvation 

coordinate are primarily responsible for the spectroscopic properties of the solute. It 

is convenient to separate X  into a constant part and a fluctuation.

A" = (X)  +  AX. (4.5)

where the average is taken over a thermal equilibrium distribution in the ground 

electronic state of the solute,

( .. .)  = T r [ . . . Poj, Po = e - a^ / T x e - 3H\  0  = l / k BT. (4.6)

For the model in Eqs. (4.1) and (4.2), the average value of X  is equal to

(X) =  A t/ +  A. (4.7)
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4 .3  D yn am ic  S tokes Shift C a lcu la tion

4.3.1 Instantaneous Pum p P ulse

As noted earlier it is usually assumed that the solvent state does not change during 

the photoinduced electronic excitation of the solute molecule. A sudden change of 

the electronic state of the molecule can then be viewed as switching on the potential

X  at t = 0. The constant energy change, (X ), which does not influence the solvent 

dynamics, can be omitted. The average value [averaged as in Eq. (4.22) given belowj 

of a dynamical variable will be denoted by the bar over that variable. The average 

value of the solvation coordinate variation A X  can then be obtained as a linear 

response to the ‘applied external force', which is a unit step function —6{t) (9(t) =  0 

if t < 0. and 1 for t > 0),

The generalized susceptibility a(t)  is given in linear response theory in terms of a 

correlation function of the solvation coordinate [66j,

where the square brackets denote the commutator, the subscript g in A X g denotes a 

dynamical evolution of A X  that proceeds with the Hamiltonian Hg, i.e.. A X g(t) =  

exp(iHgt / h ) A X  exp(—iHgt/h) ,  and the thermal averaging is performed using the 

ground electronic state of the solute, as in Eq. (4.6). Introducing a correlation function 

of the solvation coordinate.

AX ( t )  = — [  a{t — t')9(t')dt' = — f  q ( t)  dr. (4.8)

Q ( ^ - i ( [ A X 3(l) .A X s(0)j), (4.9)

C(t) = ( A X g( t ) A X g(0)). (4.10)

Eq. (4.9) can be rewritten as [67]

(4.11)
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Equations (4.8)-(4.11) are valid for arb itrary  molecular Hamiltonians Hg and He 

but assuming a linear response approximation. It is difficult to formulate a rigorous, 

quantitative criterion of applicability of linear response theory, and do not presup­

pose any molecular harmonic oscillator model. However, numerical simulations il. 

4. 37. 68-73] have shown that in most cases for all but very small solutes the linear 

response theory is applicable even for values of A X  which are much larger than its 

thermal fluctuation. Equation (4.9) is also applicable in classical mechanics, in the

same approximation, when the commutator [ ]/ih is interpreted as the Poisson

bracket [66].

To characterize the time-evolution of the fluorescence spectrum the mean optical 

frequency u(t) at time t could be used [74],

hv{t) = X { t ), (4.12)

where h =  2nh is Planck’s constant. The frequency u depends on the properties of the 

solute molecule as well as on those of the solvent. Commonly, instead, a dimensionless

solvent response function S(t)  is used to characterize the solvent-related aspect of the

Stokes shift evolution [48].

s w = t l ' T l  <4 - i 3 >i/(0) — u( oc)

In classical mechanics Eq. (4.9) is substituted by [66]

a(t) = ~ 0 j C c ( t ) .  (4.14)

where Cd(t) is the classical correlation function of the solvation coordinate

Cd [t) = {AXgWAXgiO))*.  (4.15)

In the latter the averaging is over the equilibrium classical statistical ensemble ap­

propriate to the ground electronic state of the solute. Substituting Eq. (4.14) into
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Eq. (4.8) and then into Eq. (4.13). one obtains

S(t)  = Ccl( t ) /Cd (0). (4.16)

This result is widely used in numerical simulations [1. 4. 37. 68-73] to describe the 

time-evolution of the Stokes shift in terms of the classical correlation function of the 

solvation coordinate [cf. Eqs. (4.8) and (4.19)1. It does not assume that the motion 

is harmonic.

For the harmonic oscillator model in Eqs. (4.1) and (4.2). the correlation function 

of the solvation coordinate. Eq. (4.10), is given by [75]

p
c { t )  = h Y _  —̂—\coth.{3hidj/2)cosuJjt — isinu)jt\. (4.17)

j  2 j Jj '

In the classical limit, h —> 0. Eq. (4.17) is reduced to the following expression:

(p
Cd (t) = 3~l ^  cosuijt (4.18)

j  ^

From Eqs. (4.11) and (4.17) one obtains a(t) for the harmonic oscillator model:

  p
a ( t ) = ^2  — sinujjt. (4.19)

j ^

Substituting Eq. (4.19) into Eq. (4.8) and then into Eq. (4.13). one obtains

S (* )= A (0 , (4.20)

where

S  \  cosujjt. (4.21)
j

The function A(£), which coincides with the normalized classical correlation function 

Cd(t)  [cf. Eq. (4.16)], vanishes when t —» oo, and, as one can see from its definition 

and Eq. (4.4), equals unity at t = 0.
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Equations (4.16) and (4.20) allow one to relate the solvent response function. 

Eq. (4.13). to the correlation function. Eq. (4.15) of the solvation coordinate for an 

instantaneous pump pulse. Equation (4.16). which is valid for a generic nonlinear 

system, looks more general than Eqs. (4.20) and (4.21). It is worth noting, however, 

that if one defines coefficients c_, of the effective harmonic oscillator model in Eq. (4.2) 

in such a way that the correlation function Cd{t). Eq. (4.15), of the nonlinear system 

is fitted with suitable choice of c f  s to Eq. (4.18). then Eqs. (4.16) and (4.20) become 

identical (see the discussion below).

We axe not awaxe of any success in generalizing the above procedure to the case 

where the electronic transition of the molecule cannot be viewed as instantaneous. 

Accordingly, we describe next a different approach, a density m atrix method which 

can be used to treat the solvent dynamics for the case of an arbitrary  duration of the 

pump pulse. Conceptually, it is close to the method used by Mukamel and coworkers 

[51. 52. 53], but the execution is different. When the pulse is instantaneous, the 

results will be shown to reduce to those given by the previous method. Eqs. (4.8) and 

(4.19).

4.3.2 Pum p P ulse o f F in ite Duration

We introduce the density matrix of the solvent p(t). which is evolving on a potential 

energy surface involving the excited electronic state of the solute. The average value 

of the solvation coordinate X ( t )  at the time t after the excitation can then be written 

as

X ( t )= T c[X p( t ) \ ,  (4-22)

where p(t) = exp(—iHet/h)p(0)exp(iHet/h).

This expression for X(t)  can be rewritten in an equivalent form:

X (f)= T r[X e(f)p(0)], (4.23)

where the subscript e means that the evolution of X  proceeds w ith the Hamiltonian
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He, X e(t) = exp(iHet / h ) X  exp(— iHet/h).  It is shown in Appendix A that for the 

model in Eqs. (4.1) and (4.2). the following relation is satisfied:

X e(f) =  Xs(<) +  2 A [A (f)-l] , (4.24)

where A (£) is given by Eq. (4.21).

For comparison with our later results, we first consider the case that the density 

matrix p(t) of the solvent does not change during the electronic transition ( “instan­

taneous pump pulse’’). In this case p(0) ~  po, the equilibrium solvent distribution 

corresponding to the ground electronic s ta te  of the solute [cf. Eq. (4.6)]. Using 

Eqs. (4.7), (4.23) and (4.24). one immediately obtains

X ( t )  = AU + A[2A(f) -  lj. (4.25)

and. as a consequence, obtains Eq. (4.20) upon using Eqs. (4.12) and (4.13).

For a pump pulse of finite duration, the actual density m atrix of the solvent p 

immediately after electronic excitation of the solute will differ from the po defined 

in Eq. (4.6). To calculate the density m atrix p(t). the process of the excitation now 

needs to be considered explicitly. To this end we introduce the common assumptions 

that the pump pulse radiation field E(t) can be described classically and that the 

dipole approximation can be used for its interaction with the solute [51]:

H inl{t) -- — ̂  ^ p. p. = p(|e > <  g\ -+- |p > <  e|). (4.26)

where the electric field is treated as linearly polarized along the x-axis E(t) = Ex(t). 

It is also assumed that E(t) has a relatively narrow spectrum, so one can write it in 

a quasi-harmonic form,

E(t)  = E0(t) exp(—i2iri'0t), (4.27)

where E0(t) is a function changing slowly with time. The asterisk in Eq. (4.26) 

denotes the complex-conjugate.
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The transition dipole moment of the solute along the x  axis is p = ponx . where 

nx is the directional cosine of the transition dipole moment along the x  axis, and is 

treated as a constant. It may be noted th a t the last assumption is usually referred to  a 

spatially fixed solute (Condon approximation) and, strictly speaking, is not applicable 

to a moving solute. However, one dynamical effect, that of the solute reorientation, 

which is frequently modeled as rotational diffusion [48J, is rather small on a time 

scale of the processes considered in the present article, especially for large dye solute 

molecules which are commonly used in these experiments and whose orientational 

diffusion is relatively slow: A relative change of the transition dipole moment due 

to the solute diffusional reorientation can be estimated as S p /p 0 ~  \[Dt.  where D 

is the rotational diffusion coefficient and t is the relaxation time. Substituting an 

estimate from Ref. [48] D = 5 108 s_I and taking f =  1 ps. S p /p 0 is estimated to be 

of the order of 2% which is probably at least as good as the other approximations. 

Thereby, the effect of the solute reorientation can be treated statically, averaging the 

final result over all possible solute orientations at the end of the calculation.

The orientation of the solute influences only the amplitude of the corresponding 

perturbation Hamiltonian, both for the excitation pulse [cf. Eq. (4.26)] and for the 

resulting fluorescence spectrum [52]. As a result, the solute orientation does not 

influence the shape of the transient fluorescence spectrum but only its directional 

properties. The dependence of the fluorescence intensity on the direction of observa­

tion and on the fluorescence polarization direction is considered in Appendix B for 

completeness.

To find the density matrix of the solvent p(t.) with the solute in the excited elec­

tronic state, second-order time-dependent perturbation theory with Hint as a pertu r­

bation must be used. Under the rotating wave approximation, the expression for p(t) 

is given by [12]

P(t) = ^2 f+0° dt 'd t"E'{ t ')E{t")e- i(t- t")H' /he - ll"H*/hpQeit'H«/hei(t- t' )H' /h.
Ah J-oc J - oc

(4.28)

Here and below we assume that the fluorescence signal is observed when the pum p
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pulse is already over. If. instead, the pump and upconverting pulses overlap, the ob­

served signal cannot be interpreted as a pure fluorescence, but contains also a Raman 

scattering component [12]. The p(t) in Eq. (4.28) is a part of the vsolvent-rsolute" 

system total density m atrix, which is diagonal over the excited electronic state of the 

solute. Since we neglect nonradiative electronic transitions of the solute, the time- 

evolution of p(t) can be considered separately. We will normalize p(t)  for convenience. 

The normalized p(t), i.e., such that Tr[p(i)] =  1. is given by

p(t) = -  r X
Vq J — oc J—oc

(4.29)

where
/ -roc r+oc

/  dt'dt"Em(t,)E ( t”)R{t' - 1"). (4.30)
-oc J—oc

R ( t ) =  ( e - i T H r / h f T H g / h ^  (4 3 ^

where ( .. .)  denotes therm al average, Eq. (4.6). The function R (r )  coincides with 

the normalized correlation function of the operator for the transition dipole moment 

p. and its Fourier transform  gives the absorption lineshape [76]. The correlation 

function R ( t ) is expressed in terms of the (quantum) correlation function of the 

solvation coordinate. Eq. (4.10). as [76]

R (t ) = exp[— - t ( X ) -----5 [  dr f  C ( t ' — t " )  dr"}. (4.32)
n h Jo Jo

If the pulse is infinitely short, which formally corresponds to using E( t ) oc S(t), then 

p(t) —> p(0 ) =  po, at t —> -i-0 , a situation discussed above.

Equations (4.22), (4.12). (4.13), and (4.29)-(4.32) provide a basis for calculating 

the time-evolution of the Stokes shift for an arb itrary  pump pulse. Using Eq. (4.29)

the average value of the solvent coordinate X  a t tim e t can be represented in the

form:
  1 /-Hoc /-Hoc
X(t)  -  — /  /  dt'd t"f(t\ t ' , t")E*(t ')E(t"),  (4.33)

V q  J — o c  J —oc
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where the integral kernel t") is given by

t") = Tr[JKe(t -  (4.34)

A straightforward but somewhat cumbersome calculation given in Appendix C yields 

the following expression for this kernel:

t") =  R(t'  -  f"){A[A(f -  t ') A (t -  t")\ — A -  A U -
9

coth.(l3hijjj/2) sinlu^f" — t ' ) /2] cosjuJj(t — t"[2 — t'/ 2)1}.
j

(4.35)

It is easily seen tha t in the short pump pulse limit Eq. (4.35) reduces to a previous 

result. Eq. (4.25). Really, in this limit the integration times t' and t" can be set to 

zero in all terms in braces. As a result, the expression for /  takes a simple form: 

f{ t \ t ' . t")  =  R{t' — t")[2\A(t)  — A -r AU}. Upon substituting this expression into 

Eq. (4.33), Eq. (4.25) immediately follows.

In the harmonic oscillator model, the solute-solvent interaction is characterized 

by the 'normal mode shifts’ Cj in Eq. (4.2). Physically important, however, are not so 

much the c /s  themselves but their combination in the well known form, the spectral 

density function J{u)  of the solvent modes [54!,

=  \  -  “'j)- (4-36)
j

where S(u>) denotes the Dirac delta function. Using the spectral density function 

allows one most naturally go to the limit N  = oc. If the number of harmonic modes 

is finite, then J(lj) is the sum of finite number of delta functions. In the limit 

N  —y oo J{ui) is transformed to a regular continuous function. Using the definition 

of the spectral density function, the expressions for the reorganization energy A, for 

A(f), and for the correlation function C(f), Eqs. (4.4), (4.21), and (4.17), can be
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written as

A =  — r  A (t) =  [ "  d u ^ - c o s u j t .  (4.37)
7T 70 u7 7TA 70 t-t/

and

C(t) = — /  do; J(u;)lcoth(/3fru;/2) cosuJt — i sin^t]. (4.38)
7T 70

Equation (4.35) can be rewritten using the definition of J{u>) as

= R { r ) { X { A { t - T - r / 2 ) ~  A{t -  T -r t/2)] -  X + AU  ~
—i — / du; coth(/3fru;/2) sin(u;r/2) cosa>(* — T)}. (4.39)

7V Jo uJ

where we have also changed the integration variables:

T = t ' - t " .  (* "+ -0 /2 - (4-40)

Equation (4.39) has been derived using the harmonic oscillator model. Eqs. (4.1) 

and (4.2). However, as was noted in the introduction in Section 4.2. this equation and 

other equations which follow from it have a broader validity and can be applied to a 

nonlinear system too. To this end, one has to redefine the spectral density function 

J(u;), which occurs in Eq. (4.39). because Eq. (4.36), which was used as a definition 

of J(uj). is no longer valid for the nonlinear system. The easiest way of doing this, 

leading to Eq. (4.41) below, is to use the harmonic oscillator model to relate the 

spectral density function to the imaginary part of the quantum correlation function 

of the solvation coordinate, Eq. (4.38). (It is important to use a quantum correlation 

function because for a generic nonlinear system, in contrast to a harmonic one, there is 

no simple relation between the classical and quantum correlation functions.) Applying 

the inverse Fourier transform to the imaginary part of Eq. (4.38), one obtains:

J(lj) =  \  [  Im[C(*)| sinu;*dt (4.41)
n Jo

where C ( t ) is given by Eq. (4.10). Equation (4.39), with J(u>) given by Eq. (4.41), 

can also be derived more generally by following Mukamel’s type of argument [51],
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without introducing any molecular harmonic oscillator model.

To proceed further analytically with Eqs. (4.33) and (4.39). we assume for a 

moment that the correlation function C(t) which enters into R(t),  Eq. (4.32), can be 

approximated by its value at zero time.

C{t) ~  C{0). (4.42)

While this approximation is always qualitatively correct, it neglects the important 

contribution to the absorption spectrum which arises from the solute's high-frequency 

vibrational modes. These effects will be taken into account later in Eqs. (4.56) and 

(4.58).

Substituting Eq. (4.42) into Eq. (4.32). one obtains:

R{t ) = exp[-C(0)r2/2h2 -  i (X )r /h] ,  (4.43)

where (X ) is given by Eq. (4.7). Assuming that the main contribution to the corre­

lation function C(t),  Eq. (4.38), arises from low frequency modes (classical modes), 

one can use an estim ate for C(0) [cf. Eqs. (4.37) (4.38)].

C(0) ~  2X/I3. (4.44)

Equations (4.43) and (4.44) define the important time-scale rc over which the corre­

lation function R( t ), Eq. (4.31), is essentially different from zero:

rc =  hyfa jx .  (4.45)

The correlation function R(r)  limits the important time difference r  in Eq. (4.39) to 

being less than rc. W ithin such times the sine under the integral in Eq. (4.39) can be 

replaced by its argument lot j  2 and r  can also be neglected in the arguments of the
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functions A (t — T  ±  r /2 ) , giving as a  result:

t") = R{r){2XA{t  -  T) — A -r  A U  -  ih~lrRe[C(t -  T)j}. (4.46)

where we have used the expression for C(t).  Eq. (4.38). Substituting Eq. (4.46) and 

a quasi-harmonic representation for the pump pulse, Eq. (4.27), into Eqs. (4.30) and

(4.33), one arrives at the following expression for X (i):

SZ,dT\Ea( T r K ( t - T )  
X( t )  ~  ~I?x dT \E0( T ) f  '

where

_  f-oc drexp(z27ri/0r)/?(r){2A A (i) -  A 4- AU  -  i h  1rRe[C(0]} , ,  IOA
{ ) ”  /^ T d r e x p (H ttuqt) R ( t ) ‘ (4‘48)

In derivation of Eqs. (4.47) and (4.48) we again neglected the small time difference 

r  in Eq(T  ±  r /2 ) . which changes slowly with time. The last assumption implies that 

the pulse duration rp is much longer than  the correlation time rc. Eq. (4.45).

rp »  rc. (4.49)

Equation (4.49) is typically satisfied for a system at a room tem perature with strong 

solute-solvent interaction and for a pump pulse with rp > 50 fs.

From Eq. (4.47) one can see th a t the DSS resulting from a long pump pulse is 

given by convolution of the pulse shape and the function K(t)  given by Eq. (4.48). 

This function describes a DSS which corresponds to a pulse which is much longer 

than  the correlation time rc, Eq. (4.45), but still shorter than any time-scale, relevant 

to the solvent dynamics. To calculate K{t)  we first use the Gaussian approximation 

for i?(r), Eq. (4.43). Substituting Eq. (4.43) into Eq. (4.48) and integrating over r  

one obtains

K{t) = A U - X  + 2AA {t) +  hAuoAi  (t ), (4.50)

where Au0 is the central frequency shift of the pump pulse uQ relative to the maximum
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Au0 = u0 - { A U ~ X ) / h .  (4.51)

The function Ai( t )  is the quantum analog of the normalized classical correlation 

function A(f) [Eq. (4.37)],

A l( i ) -  M W  (4.52)

A^O) =  1, and C(t) is given by Eq. (4.38). It is convenient for comparison later with 

Eq. (4.73) to rewrite the DSS for a short pulse. Eq. (4.50), in a different form:

X ( t )  -  X(oo) = 2XA(t) + hAuoAi(t).  (4.53)

It can be seen from this equation tha t the variation of the transition frequency A u  = 

i/(0) — u(oc) = [X(0) — X (o c ) /h  is:

A u  = Au0 - t-  2X/h.  (4.54)

The solvent response function S(t)  is obtained by substituting Eq. (4.50) into 

Eq. (4.13):

SW = T4 ^ I A ( i )  + -cA,(J)], K = ^ -  (4-55)

Equation (4.55) gives a simple expression for the solvent response function which 

generalizes Eq. (4.20) and reduces to it when h —» 0 or when pump pulse is not 

off-resonance (A u0 =  0). The expression in Eq. (4.55) with k = 0 corresponds to 

the purely classical response of the solvent [cf. Eq. (4.20)]. The quantum correlation 

function A i(t) and k are responsible for the quantum effects entering into the solvent

response. For a choice of hAu0 ~  2^JX/3, which is the absorption linewidth, one can 

estim ate the contribution of k to the total solvent response as k ~  1 /\ fX3,  which is 

typically small. However, particularly in the far wing on the red side, a larger A uQ 

can be used. We give an interpretation of Eq. (4.55) later. We note that Eqs. (4.53) 

and (4.55) contain no properties specific to a molecular harmonic oscillator model.
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A Gaussian approximation for the correlation function R(t)  [use of Eq. (4.43) to 

represent Eq. (4.31)] may be too restrictive for a solute with a  complex spectrum. 

Using Eq. (4.48) one readily obtains the following expression for the DSS:

K{t)  =  AU  -  A — 2XA(t)  -  h~lC{0) d In^ (u;J l[  ^ ( f ) .  (4.56)
a u ?  ~1 u/= 2rrt/o

where R{uj) is the Fourier transform of R(t).

R{uj) = r  e ^ R t f d t .  (4.57)J — OC

The absorption coefficient is proportioned to ujR{uj) [76]. It follows from Eq. (4.56) 

that for a solute with a non-Gaussian absorption spectrum, even if the solvent dy­

namics can be described classically, i.e.. if Ai(£) ~  A(£), then the solvent response 

function S ( t ) is given by Eq. (4.20). but the variation of the transition frequency 

i/(0) — u(oc) will differ from that predicted from the classical theory. Au0 — 2Aj h  [cf. 

Eq. (4.54)]. A generalization of the expression for k in Eq. (4.55) for a solute with an 

arbitrary absorption spectrum is:

C(0) dln[.R(u/)]
AC —

2h\  dui
(4.58)

U/=27n/Q

One aim in the present paper is to estimate for a realistic experimental situation 

the change in the Stokes shift time-evolution due to the finite pump pulse duration. 

To estimate the Stokes shift dynamics, a realistic spectral density function J ( jj) in 

Eq. (4.41) is needed for the solute-solvent interaction. The main contribution to 

the interaction of polar solutes with small-molecule polar solvents is due to long 

range dipole-dipole and charge-dipole interactions, together with hydrogen bonding 

in the case of protic solvents [77-79]. interaction in polar solvents has been described 

in terms of continuum models using an exponential or multiexponential dielectric 

response [5, 48, 80]. It has been argued by some researchers th a t due to inherent 

molecular nature of the solvation process, the continuum models ultimately fail to
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explain some im portant features of solvation, in particular its initial, ultrafast stage. 

In more recent investigations, however, it was found th a t once one includes not only

high-frequency, inertial part, a prominent role of the inertial motion in solvation is 

recovered [36. 81. 82]. In their work on the dynamic Stokes shift of coumarin 343 anion 

(C343) in water. Hsu et al. [82] obtained encouraging agreement with the experiment

[2] upon using the experimental dielectric response function e(uj) for water and a 

continuum-based approach.

In the present paper we again use for simplicity the Onsager model for the solute, 

which treats the solute as a dipole in the center of a spherical cavity and the solvent 

as a dielectric continuum with uniform properties, surrounding the solute. The di­

electric response of the solvent is assumed to be local and to be characterized by the 

experimental bulk dielectric response function e(u;). The spectral density J ( uj) of the 

solvent's normal modes can be related to the dielectric function using the expression 

for the DSS caused by an instantaneous pump pulse. Such a DSS can readily be 

expressed in terms of the spectral density function using Eqs. (4.25) and (4.37),

where Afi = /je — /j.g is the (vector) difference of the dipole moments in the excited and

e(uj) is taken to be negative. Comparing Eqs. (4.59) and (4.60), one obtains the desired 

expression:

the low-frequency, diffusional part of the solvent's dielectric response but also the

(4.59)

On the other hand, within the framework of the reaction field approach, the DSS 

associated to an instantaneous pump pulse is given by [82].

(4.60)

ground electronic states, a is the solute cavity radius, and the minus sign in Eq. (4.60) 

appears when the convention is used that the imaginary part of the dielectric function

(4.61)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 3 6

It can be shown by other methods [52, 49] using linear response theory that Eq. (4.61) 

holds in most general conditions for the Onsager model if one assumes that the 

dielectric response of the solvent is local on atomic length-scale.

Using Eq. (4.61) the solvation dynamics of the system can be estimated once 

the dielectric function of the solvent e(u,’) is known. As an example the dielectric 

dispersion data  for water at T  = 298 K (Fig. 4.1) were used to calculate the

spectral density of the solvent modes. W ater has been used in DSS measurements 

[2. 42] and its dielectric response function is available at a high level of accuracy 

over a wide range of frequencies [83-86]. (4.55) shows th a t the effect of the finite 

pump pulse duration on the DSS depends on the difference between A (£) and A t (£). 

Eqs. (4.37) and (4.52). These functions are shown in Fig. 4.2. A relative contribution 

of the ultrafast component to the correlation function A t (£) is larger due to the 0°K 

fluctuations of the quantum  modes, and the oscillations with the period of 10-15 fs 

axe much stronger. The exponential relaxation time (appropriate in the low frequency 

regime) is the same for both A (t) and Ai (£). This result is expected since the long 

time scale orientational relaxation is associated with the slow classical solvent modes.

The instrument response time (FWHM of a cross-correlation of the pump and gate 

pulses [87]), which characterizes the time-resolution in a measurement of the transient 

fluorescence also must be taken into account. It is not better than about 100 fs [36]. 

The correlation functions A (t) and A t (£) were next convoluted with appropriate 

Gaussian shapes of both the pump pulse [cf. Eq. (4.47)] and the upconverting pulse

[88], with the results given in Fig. 4.3. These convolutions make the difference between 

the classical and quantum correlation functions even less pronounced. Taking into 

account the fact that A i(t) enters into the to tal solvent response R(t)  with the weight 

k [Eq. (4.55)], which is generally much less than unity, one can conclude that the 

deviation from the standard formula [Eq. (4.20)] due to the finite pump pulse duration 

is small and can be neglected in most DSS experiments. Some deviation can be 

expected when the central frequency of the pump pulse lies in the fax wing of the 

absorption band of the chromophore. and then the additional contribution in the 

correlation function Ai (£) to the total solvent response can be comparable with the
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standard term. A(£). For example, a red shift of the pump pulse from the fluorescence 

maximum. A u0 ~  X/h. which would give the excitation probability of the order of 

10% of the maximum for Coumarin 153 in ethanol, leads to k ~  0.5.

4 .4  P h y sica l In terp reta tion  o f  E qs. (4 .53) and  (4 .55)

To interpret Eq. (4.53) we first obtain, in Eqs. (4.62)-(4.65) below, the distribution 

of the displacements Qj of the harmonic oscillators before and immediately after the 

electronic transition. The probability distribution W3 of the coordinate Qj for a single 

oscillator in equilibrium with the ground electronic state of the solute (the statistical 

state of the system before the excitation) is given by [89]

W j ( Q j )  =  \ j Uj exp f_  ta .nh(huJi3/2)uJJQ ‘j /h ] .  (4.62)

In the high tem perature (low frequency) limit, this distribution reduces to the classical

one: ___

W j i Q j )  ~  y  ^  e x p ( -J ^ 2QJ2/2 ). hujjl3/2 «  1. (4.63)

In the low tem perature (high frequency) limit, it reduces to  the probability distribu­

tion corresponding to the ground state of the oscillator:

W j i Q j )  ~  J ^ e x p i - ^ j Q ^ / h ) ,  h u j ^ / 2  »  1. (4.64)
V TTrL

which is much broader than the classical distribution when fij jjd/2 1. The last 

property can be interpreted as the result of nuclear tunneling of the oscillator to 

nonclassical regions. The total distribution of all oscillators representing the solvent 

is given by the product of the distributions in Eq. (4.62),

w ' ( Q ) = n wj( « i ) .  (4-65>
i
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The maximum of the absorption spectrum corresponds to  Qj = 0. If the pump pulse 

frequency is tuned away from the maximum of the absorption spectrum, the mean 

displacements of the j th  harmonic oscillator excited by this off-resonance optical 

excitation immediately after the excitation deviate from their initial zero values. To 

find these displacements one must maximize the probability W (Q )  in Eq. (4.65) 

subject to the constraint that the frequency shift A v 0 is kept fixed. Equations (4.3).

(4.12), and (4.51) yield for this constrain:

hAu0 = J2cjQj- ( 4 -6 6 )
j

Using the log VU(Q) as a function to be maximized and applying to it the method of 

Lagrange multipliers, we have

tanh(3huij/2)Qj - a ^ C j Q j ]  = 0. (4.67)
oQj j j

where a  is a  Lagrange multiplier: the following expression for the most probable

values of the oscillators coordinates Q® is readily obtained:

Q° = %2-coth(0fu jj /2) .  (4.68)
2 jJj

One can see th a t the initial displacement of the j th  solvent mode Qj is larger in the 

quantum case, since tanh(/3ftujj/2) is less the corresponding classical term, 3huij/2. 

for the high frequency modes. To find the value of a  which corresponds to Au0, 

Eq. (4.68) is introduced into Eq. (4.66):

O
Au0 =  a  - J  coth(j3Tuj}j/2). (4.69)

j 2 hujj

Using the expression for C(t).  Eq. (4.17), the following estim ate for a  is readily 

obtained:

a  =  (4.70)
2ttC(0) V ’
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Thus, the expression for the initial displacement of the j t h  solvent mode in this 

off-peak excitation can be written as

3  =  ( 4 ' 7 1 )

This expression gives the displacements of the solvent modes relative to their minima 

in the ground electronic state of the solute. The time-evolution, however, proceeds in 

the excited electronic state. The initial displacement of the j t h  solvent mode relative 

to its minimum in the excited electronic state is [cf. Eqs. (4.2) and (4.75)]:

q ?  = %  + q ° = ^uJ~ uJ-3 3

hAu0 hujjf 2
C(0) tax\h(Kujjd/2 )

(4.72)

The first term in Eq. (4.72) describes the displacement of the j t h  mode when the pump 

pulse frequency is tuned to the maximum of the absorption spectrum . It is purely 

classical in the harmonic oscillator model. The second term appears when there is a 

detuning Au0. It is larger for the high frequency (and hence quantum ) modes because 

of the tunneling [see the discussion after Eq. (4.68)]. The time-evolution is similar 

both for the quantum  and classical modes and is described by the factor cos ̂ ijt for 

the j t h  mode. Therefore, the DSS can be written as

X{t)  — X(oo) = cosujjt = 2AA(f) -(- h A v 0Ai( t ) ,  (4.73)
j

where we have used Eqs. (4.17), (4.21), (4.52), and (4.72). Comparing Eqs. (4.73) 

and (4.53) one sees that they coincide. Thus, the deviation of the solvent response 

S ( t ) [cf. Eq. (4.55)] from Eq. (4.20) is caused by the fact that the  mean displacements 

Q f  of the high frequency modes immediately after the pump pulse are different in 

the quantum  and classical cases.

It was assumed in the previous discussion tha t the high frequency solvent modes 

do not have time to  change during the excitation. In particular, rp must satisfy the
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condition:

-  >  k BT. (4.74)
Tp

(A high frequency mode is defined here as one whose frequency exceeds k BT/h .)  This 

condition is loosely satisfied for the pump pulse with duration rp ~  50 fs at the room 

temperature. On the other hand, the pulse must not be too broad in the frequency 

domain, since otherwise the constraint A u 0 =const would be meaningless. Talcing 

into account that the spectral width is yjX/l3/h one arrives at the condition given by 

Eq. (4.49) and discussed above.

4.5  Sum m ary

In the present paper the effect of the pump pulse duration on the Stokes shift time- 

evolution was considered. It was shown th a t the deviation of the solvent response from 

the classical expression, Eq. (4.20). is due to the mean initial displacements of the 

high frequency solvent modes being different in the quantum  and classical cases. It 

was found, however, that usually this effect is small and th a t the standard description 

using an infinitely short excitation pulse is then applicable. However, it was shown 

that a deviation can be expected when the excitation pulse frequency is tuned to 

the far wing of the absorption band of the chromophore. The description of the 

transient fluorescence spectrum in which the only parameter, the central frequency 

of the spectrum, is used to characterize its dynamics can omit some of the dynamical 

features. The other features of the spectrum  such as its width and shape can contain 

additional information about the solvation dynamics.
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A p p en d ix  A: D erivation  o f  Eq. (4 .24)

To derive Eq. (4.24) shifted normal modes Q' can be introduced:

Q'j = Qj +  (4-75)
3

The expression for the change A X  in the solvation coordinate X  in Eqs. (4.3) and 

(4.5) can be rewritten in terms of Q' as

A X  = Y , cjQj - 2 A  (4.76)
j

using Eq. (4.4) for A. The time-evolution of a shifted normal mode in the excited 

electronic state with the Hamiltonian He [Eq. (4.2)] formally coincides with a time- 

evolution of an unshifted harmonic oscillator and is given by

p
Qj(t) = Q'j c o s uj-jt -t— -sinujjt .  (4.77)

aJj

A X e(t) can be written as

A X e(t) = J2  CjQ’jit )  -  2A =  AXg(t)  +  2A[A(0 -  l'j. (4.78)
3

where we have used Eqs. (4.75)-(4.77), (4.21) and the expression for A X g(t),

p
[Qj cosu)jt H— -  sin^ ji]. (4.79)

3 ^3

A p p en d ix  B: T he D irec tio n a l P ro p er tie s  o f  T he Tran­

sien t F lu orescen ce

If the direction of the electric field no in the pump pulse is not collinear with the 

direction of the transition dipole moment of the solute n ', a factor of n 0 • n ' appears 

in the expression for the Hamiltonian of interaction of the pump pulse with the solute
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!cf. Eq. (4.26)]. Similarly, if the direction of the electric field n  in a particular fluo­

rescence mode is not collinear with n'. a factor of n  • n ' appears in the corresponding 

interaction Hamiltonian. The transient fluorescence intensity is obtained as a result 

of the second order perturbation over the interaction with the pump pulse plus the 

second order perturbation over the interaction with the particular fluorescence mode 

152]. The contribution to the intensity I n' of the transient fluorescence to the par­

ticular fluorescence mode from solutes w ith the given orientation n ' of the transition 

dipole moment can then be w ritten as

In< =  (n0 • n ') 2(n • ri)2I0. (4.80)

where 70 depends neither on no and n  nor on n '. To obtain the orientational de­

pendence of the transient fluorescence intensity I,  one must average Eq. (4.81) over

possible orientations of a solute molecule.

I  — nQin 0jnknin ,in,]n'kn /lI0. i . j , k . l  = 1 .2 .3 . (4.81)

where the bar means averaging over the solute orientation and the summation over 

repeated indices is assumed. The tensor n 'n 'n ^ n , has to be isotropic because of the 

solvent isotropy. The most general form of such a tensor is

^{^i,j^k,l “i- &i.k ĵ,l ^i,l^j,k)- (4-82)

Summing the tensor over indices i, j  and k, I and taking into account that

n 'n ' =  1, one finds that a = 1/15. As a  result, the fluorescence intensity can be 

written as

I  =  — [1 -F 2(n • no)]/o- (4.83)
lo

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 4 3

A p p en d ix  C: D er iv a tio n  o f  Eq. (4 .35)

To derive Eq. (4.35) it is convenient to  treat the trace in this equation as a ther­

mal average in the ground electronic state. Eq. (4.6). and to use the time-ordered 

exponential notation (90],

e x p J - p  [ t d t ' X J t ' ) \ = e itH' /he - uH' /h. (4.84)
ft Jo

The correlation function R(t),  Eq. (4.31). can be w ritten in this notation as

R(t)  =  (exp + [ - ^ J Q d t 'Xg{t')J). (4.85)

Using Eq. (4.24) the response function t”) defined in Eq. (4.34) can be w ritten

as

tv) -  f x{t\t'. t") +  2A[A(f -  t') -  l jR{?  -  t"). (4.86)

where

= (X g(t -  O e x p 4 ~  f° d r X g(r)}). (4.87)

It can be shown, using a diagrammatic technique [90] for example, that for a harmonic 

system the function f \{t\ t ' . t")  is equal to

= \{X) -  ^  f  d r ( A X g(t -  t’) A X g( r ))j(exp^[—^ [  d r X g(T)j).

(4.88)

Substituting Eq. (4.17) into Eq. (4.88) and integrating over r .  the expression for 

fx(t\ t ' , t")  is obtained. After the substitution into Eq. (4.86) it yields Eq. (4.35).
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Figure 4.1: The real and imaginary parts of the dielectric function of water [83. 84. 
85. 861.
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Figure 4.2: The normalized classical and quantum correlation functions. A d(t)
[Eq. (4.21)] and A <ru(t) [Eq. (4.52)]. are given by the upper and lower curves, re­
spectively. The inset gives the results over a longer picosecond time interval. The 
spectral density of the solvent was calculated using the dielectric data of water and 
Eq. (4.61).
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Figure 4.3: The classical (upper) and quantum (lower curve) correlation functions. 
A ci(t) and Aqu(t). respectively, with finite time resolution. Convolution was per­
formed with the Gaussian exp(—t2/ t£), tp = 50 fs. which corresponds to an instru­
ment response function of FW H M =2\/ln  2rp = 83 fs [88].
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S p ectra  o f Large M olecu les in P olar S o lven ts
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A. A. Noyes Laboratory of Chemical Physics. 127-72 

California Institute of Technology. Pasadena. California 91125 
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Abstract

A method is described for incorporating the vibronic transitions of a solute 

molecule in the calculation of the time-evolution of its fluorescence spectrum 

in a polar solvent. In this initial article, systems are treated in which the 

intramolecular vibrational relaxation is much faster than the observation delay 

time. The overall fluorescence spectrum is then shown to be a convolution of the 

steady-state absorption and emission spectra of the solute in a nonpolar solvent 

and the time-dependent emission lineshape arising only from polar interactions. 

Calculations are made for coumaxin 153 in acetonitrile. using the dielectric 

dispersion data of the solvent available from experimental measurements. The 

results are in encouraging agreement with experimental spectra. Results are 

also given for the dynamic Stokes shift in methanol.
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5.1 In tro d u ctio n

The dynamics of polar solvents has been studied in charge redistribution processes in 

many chemical reactions and photo-induced processes [1—29]. Pioneering works, both 

in theories and experiments in nanosecond time scales, were performed by Bakhshiev. 

Mazurenko and their coworkers [1-4]. Experimentally, the time-dependent fluores­

cence shift (the dynamic Stokes shift) has been measured over different time scales 

and for a variety of polar solvents [6-15]. In typical Stokes shift experiments, a chro- 

mophoric solute dissolved in a polar solvent is first excited by a pump pulse, and the 

time-dependent fluorescence spectrum of the solute is then recorded. For studies with 

coumarin or other dye molecules (e.g., Refs. [7-15]). the excited state of the solute 

has a charge distribution quite different from th a t of the ground state. The change 

in charge distribution causes the polar solvent to adjust its configuration to minimize 

the interaction free energy. Such processes have been monitored by measuring the 

dynamics Stokes shift, S(t).

=  ~ ^  (5.1)
u(oo) — u{ 0)

where u(t) is either the peak or the averaged frequency of the transient emission 

spectrum.

It has been shown for coumarin 153 (C153) in polar solvents that such Stokes shift 

measurements can be described in terms of the polar solvation processes [9. 10. 14. 15. 

21, 30]. For systems with an infinitely short pump pulse, S ( t ) is expected to follow 

the normalized classical correlation function of the interaction energy' between the 

solute and solvent [29-35]. However, when the pulse has a finite duration, it has been 

shown that the S ( t ) is a linear combination of the classical and quantum correlation 

functions of the interaction [36], a combination in which the quantum correlation 

term vanishes in the limit of a  very short pump pulse.

Theoretical developments [16-29] have provided much physical insight into sol­

vation dynamics. Solvation correlation functions calculated from the Debye form,
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the Davidson-Cole and the Cole-Cole forms have been shown to exhibit significant 

differences [16]. Based on similar calculations and comparisons with experiments it 

has been noted that it would be useful to obtain higher frequency dielectric d a ta  for 

a better description of S(t).  the solvation correlation function !14j.

Much attention has been devoted to treating theoretically the spatial dependence 

of dielectric response function. e(k1ui). which includes the molecular nature of solvent 

[18. 19]. The dynamical mean spherical approximation theory' has been used, for 

example [20. 21], A systematic comparison of the S(t)  predicted by dynamical mean 

spherical approximation theory with th a t in experiments was reported in Ref. [9]. It 

was found there that a slower dynamics is usually predicted by the dynamical mean 

spherical approximation theory, when the solute is modeled as a dipolar sphere. A 

molecular hydrodynamic theory [22, 23] has been applied to a variety of systems 

with a  model dielectric response function. Agreement between the experimental and 

calculated solvation correlation function was reported for water [23. 24]. alcohols[25j 

and acetonitrile [26]. Molecular dynamics calculations have provided information on 

the influence of polar solvents on the reaction rate [27] and on the role played by 

various shells of solvent molecules [16. 29]. The short-time solvation dynamics has 

also been interpreted in terms of an instantaneous normal modes analysis of molecular 

dynamics simulations [28].

The lineshape of the time-evolving emission spectrum is considered in the present 

work. Mukamel and coworkers have developed formal expressions for various optical 

processes [37-39]. In those works the transient emission spectrum  was expressed in 

terms of a direct summation over all vibronic transitions, in which each transition 

is described by the time-evolution of a single transition between two vibronic states 

and th a t evolution was derived from the perturbation theory [40]. Maroncelli and 

coworkers [9, 41, 42] and Mazurenko [4] have provided a phenomenological description 

for estim ating the fluorescence at tim e zero. At the very short time limit, it was 

assumed that the solvent is frozen bu t th a t the internal vibrational relaxation in the 

solute molecule is already complete. We recall the results here for discussion and 

application later:
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Following Maroncelli and Mazurenko [4. 42], the zero-time fluorescence can be 

written as proportional to a  quantity Fp given by

Fp(u:. t — 0:o/'ex) — a;3̂  f  du>"gnp(ujex — u,'")fnp(ui — uj")pi(uj") ( 5 . 2 )
J —  OC

where gnp(uj) describes the absorption spectrum of the solute molecule and / np(^) is 

the emission lineshape. both in a nonpolar solvent. The pi(u;) describes the prob­

ability distribution of the polar solvent configurations which have a  given energy 

difference hui between the two states of the solute molecule, sampled from the po­

lar solvent configurations in thermal equilibrium with the ground electronic state of

the solute molecule. Such an energy difference of the two solute electronic states is

assumed to arise from the polar solute-solvent interaction. Thus. p\{ui) would have 

been the absorption lineshape in polar solution, if there had been only a difference

in the polar interactions of the ground and excited sta te  Hamiltonians. In applying

Eq. ( 5 . 2 )  the nonpolar reference absorption and emission spectra are used to obtain 

pnpM  and /n p M  [9. 4 1 .  4 2 ] :

u^ 5 n p ( a ^) J4 n p ( ^ )  ( 5 - 3 )

^ 3 / n p ( ^ )  OC ^ n p ( ^ )  ( 5 - 4 )

where j4np is the absorption spectrum and Fnp is the steady-state emission spectrum, 

for the same solute in a nonpolar reference solvent.

One might imagine that am extension of Eq. ( 5 . 2 )  for a  phenomenological descrip­

tion of the time-dependent fluorescence can be w ritten as [4]:

/oc roc
d u J  /  d u / ^ n p ^ e x  — U l " ) f n p ( u l  —  u /)p (u /, t ]  U l  ) ( 5 . 5 )

-oc J —oc

where p(u>'t; uj") is the time-evolution of a probability distribution for the energy dif­

ference of the two states of the solute th a t have an energy difference hui" a t t =  0 which 

then drifts to hu'  at time £, if only polax solute-solvent interactions were included.
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This drift in the energy difference is due to the difference in charge distributions of 

solute in the two electronic states. Thus. p(u/, t: *j") can also be regarded as the time- 

evolution of the emission spectral lineshape (with emission frequency u/) when the 

pump frequency is u j"  for the two-state solute if there were only the polar interaction 

with the solvent. The desired properties of p(uj'. t; u j" )  are:

p(aj'.t = Q',U>") - Pi(uj")5(uj' — uj") (5.6)

\ im_p(uj ' , t:uj")  =  py(uj")p2{uj') (5.7)

where the first property is needed to yield Eq. (5.2) as a special case of Eq. (5.5), and 

the second property means that at very long time, the spectral shifts u /  and uj” are 

independent. The P2(^ /) denotes the equilibrium probability distribution of energy 

difference (spectral shift), sampled from solvent configurations in thermal equilibrium 

with the excited state solute charge distribution. Thus P v { u j ' )  is also the steady-state 

emission lineshape for the two-state solute when only polar interactions with the 

solvent are considered.

In the present work it is shown that Eq. (5.5) can be obtained from perturbation 

theory using Mukamel's formalism. The result provides a  method for including the 

vibronic transitions of the dye molecule in the time-dependent fluorescence spectrum. 

The major physical approximation made is a time-separation of the motions. For

the purpose of the present article, the nonpolar interactions between the solute and 

solvent as well as the intramolecular vibrational motion, axe treated as instantaneous, 

while in the literature a Brownian oscillator model is sometimes used [37, 43]. The 

remaining motion is the electrostatic interaction between the solute and the polar 

solvent. It is assumed to provide all the measurable dynamics in the current upcon- 

version fluorescence experiments.

The outline of the paper is as follows: The general theoretical description of the 

fluorescence spectrum is presented in Section 5.2.1. The separation of contributions 

from the above time scales of motion to the interaction energy is made in Section 5.2.2. 

The results of applying expressions obtained in Section 5.2 to C153 in acetonitrile,
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using the dielectric continuum model w ith experimental e(uj) data, are given in Sec­

tion 5.3. The results are discussed in Section 5.4. It has been pointed out [44] in a 

treatm ent of the dynamic Stokes shift th a t the inclusion of some description of the 

electronic polarizability of the solute [8, 11. 45] leads to  an improved agreement, and 

that behavior is also found here. Concluding remarks axe given in Section 5.5.

5.2 T h eory

5.2.1 General Form alism  for th e  T im e-E volution  of the Flu­

orescence Spectrum

The time-evolution of the fluorescence spectrum has been treated by Mukamel and 

coworkers [37. 38]. W ith their formalism, the time-dependent emission spectrum 

F(lj, t: jJex), the spectral intensity at tim e t of the fluorescence at frequency u) when 

the frequency of excitation is can be calculated from the perturbation theory

[40]. The solute molecule is considered to  have two electronic states. |g) and |e). 

whose energies are dependent on both  the internal vibration coordinates and the 

configuration of the solvent molecules. Under the Condon approximation, an explicit 

expression for F(u;. £; can be obtained using third-order perturbation theory for 

the interaction between the m aterial and the radiation to calculate the time-evolution 

of the density matrix [37, 38, 40]:

F(u,  t, UJex  )
i F i ^ l 2 E 2fJ.

x

R e f  dt3 f  dtx f
J  — oc  J —oc J —o c

(5.8)

where Re denotes the real part of the function, E\  and E2 are the electric field 

strengths of the pump pulse and the em itting light, respectively, fi is the transition 

dipole moment, e(t) is the profile of the pum p pulse, and R  is a four-point correlation
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R{t\.  t2. t3: t) =  (exp_ ^  f  X(r i )dr i  exp^ —- f  X ( r 2)dr2). (5.9)
n Jt2-ti n Jo

Here. exp_ (exp_) is the time-ordered (reverse ordered) exponential function. (• • •) 

indicates that the quantity is averaged over a therm al equilibrium with solute molecule 

in the ground state (=  Tr[e_5//g •••]), and X  is the difference in Hamiltonians.

X  = HC-  ffg, (5.10)

where HP and HR are the Hamiltonians for the excited state and ground state solute 

molecule, respectively. They are dependent on both the intramolecular and inter- 

molecular configurations. The X {r )  in Eq. (5.9) is the time-evolution of X  under the 

ground s tate Hamiltonian.

X { T ) = e iH*T,hX e - iH*rlh. (5.11)

Using the second order cumulant expansion [46] for R  in Eq. (5.9), we have 

R { t i . t2, h \ t )  = e'(AG°"A>(t3-t+t}-L2)/h x

exp - ^ [ C ( t 2 -  t i )  -+- C ( t  ~  U)  +  C(t  -  U ) -  C(*3 ~  h )  ~  C ( t  ~  t2) -  C ( t z  ~  to)] h
(5.12)

with

C(r) =  [  drx [  dr2( X ( tx) X ( r2)) (5.13)
Jo Jo

=  [ T d u ( r - u ) ( X { u ) X ( 0)) (5.14)
Jo

and

X  = X - ( X ) .  (5.15)
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The stationaxity of the correlation function ( X ( r i ) X ( r 2)} was used in obtaining 

Eq. (5.14).

The diagram corresponding to the evolution of density matrix used in obtaining 

Eq. (5.8) is given in Fig. 5.1. In Eq. (5.12). the terms £(£2 — £i) and £*(£ — £3) are 

related to the lineshapes of the absorption and emission spectra, respectively [47]. 

The remaining four £ terms in the exponent of i2(£j, £2, £3; £) in Eq. (5.12) can be 

simplified as follows: The ranges of £1 and t2 are limited by the excitation pulse 

profile, e(£), while the observation of fluorescence a t time £ can be much later. The 

time (t — t3) is limited by the decay time of exp[—£*(£ — t3) /h2}. For example, for 

systems at room tem perature (such as in Ref. [9]) with a reorganization energy A 

of the order 1000 cm " 1 arising from the polar solvation, the decay time for both 

exp [—£(£2 — t \ ) / h 2} and exp[—£*(£ — t3) /h2\ is of the order of 10 fs (cf. Eq. (5.27) 

below). The la tter limits |£2 — £i| and \t — f3| to be of the order of 10 fs. It is then 

reasonable to assume, for a simplification of the exponent in Eq. (5.12). that

0 ^  t x ~  t2 <§C £3 ~  t. (5.16)

Equation (5.16) implies a significant time difference between the optical absorption 

(at £1, t2) during the pulse and the subsequent fluorescence (at t3. t) after the pulse. 

At the observation time £. the algebraic sum of the latter four £ terms in Eq. (5.12). 

£(£ — £1) — £(£3 — £1) — £*(£ — t2) 4- £ ’ (£3 — £2). is approximated by a Taylor expansion 

a t time £, to second order in £1, t2 and (£ — £3):

£ ( £  -  £ 1 )  -  £ ( £ 3  ~  £ 1 ) -  £ * ( £  -  £2 ) +  £ * ( £ 3  -  £2 )

~  2i(t -  £3) Im£'(£) + (£2 -  £i)(£ -  £3) Re£"(£) -  *(£2 +  £1 + £ -  t3){t -  t3) Im£"(£)

(5.17)

where the primes denote the first and second derivatives of £(£), and Re and Im denote 

the real part and imaginary part of the functions, respectively [48]. The first term  in 

the right-hand side of Eq. (5.17) is the leading term of the algebraic sum of the four
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£ functions. It results in a spectral shift in the Fourier transform to the frequency 

domain. Thereby, those four £ functions in the exponent of Eq. (5.12) generate the 

time-dependent spectral shift, among other (higher order) effects.

In the next section, we describe a way of treating the intramolecular vibrational 

modes of the solute molecule.

5.2.2 Treatm ent o f th e  Internal V ibrational R elaxation

For a polar molecular such as C153 in a polar solvent, the ground state and excited 

state energies have a different dependence on the interned vibration coordinate and on 

the solvent configuration. The solvent part can be considered to be composed of both 

nonpolar and polar interactions. The nonpolar interaction arises, in part, from any 

difference in size or shape of the wave functions of the two electronic states, and the 

polar part arises from the electrostatic interaction of the solvent polarization w ith the 

different charge distribution of the ground and excited states of the solute molecules. 

Thereby. X  can be divided into two parts:

(5.18)

where X f  arises from the intramolecular vibrations of the solute and the van der 

Waals type of nonpolar interaction between the solute and solvent, both treated here 

as fast. X s is the part of energy difference arising from the electrostatic interaction 

between the solute and polar solvent, which then provides the major contribution 

to the dynamic Stokes shift and is assumed to  respond more slowly than the X f  for 

the present study. For studies with higher time-resolution or for other solutes and 

solvents, the assumption th a t X /  response is instantaneous can be removed by using a 

model, Brownian oscillators for example [37, 43], and we may do so later for a related 

problem.

Assuming X f  and X s to be statistically independent, the correlation function in

X  = X S + X f
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(X { t x)X [ t2)) = (X f ( n ) X f (r2)) -  (Xs( n ) ^ ( r 2)) (5.19)

The corresponding C function becomes

a t )  = w ) ~ u t ) -  (5.20)

For the  fast modes, ( X f ( t ) X f ( 0)) is assumed to decay to zero before the fluorescence is 

observed in the experiment. Namely, we approximate the correlation function arising 

from such fast motions by its long tim e limit. Thereby, the fast mode contribution 

to the right-hand side of Eq. (5.17) yields 2i(t — t3)X j/h  arising from the first term , 

and zero from the other two terms, where Ay is:

( = - l j f * I m { X / (()X/ (0 ))d () . (5.21)

[The second equality in Eq. (5.21) can be seen from the definition of C(f) in Eq. (5.13). i 

W ith the above definition, Ay is the reorganization energy arising from the fast modes 

[49]. This fast mode contribution, 2i(t — t 3)Xf/h.  yields a constant spectral shift 2Af / h  

in the  emission frequency ui when introduced into Eqs. (5.12) and (5.8).

In rewriting the time-dependent fluorescence F(lj. t;ujex) in Eq. (5.8) with the sep­

aration of fast and slow modes, Eq. (5.20) is used for all six £ functions in Eq. (5.12). 

The approximation given in Eq. (5.17) is used, with the terms for fast modes be­

ing simplified as described above, and the result is used to rewrite F{ui, f; uJex) in

Eq. (5.8). Such m anipulation is followed by a rearrangement of the various terms in

the exponent. Equation (5.8) can then be rewritten as

F(u/, t ; Wex) OC Re f "  dr' [°° dr"ei^ T'e1̂ r"0 (r ')^ (r ,' ) / ( r ,)p ( r ,  t; r"). (5.22)
J  — o c  J  — OC

where Au; = uj — (A Gsolv +  A3)/h, Au>ex = u;<* — (AGsoiv +  A3) /h  and g, f  and p  are 

defined below. The equilibrium free energy difference AG°  of the two states in polar

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 6 3

solvent has been written as the sum of the free energy difference in a nonpolar solvent. 

AG°p. and the difference in the solvation free energy A G solv between the ground and 

excited states of the solute. In obtaining Eq. (5.22) from Eq. (5.8), with p defined 

below by Eq. (5.25). a change of variables has been introduced: t / = t — t3. t"  = t2—t\ 

and (for Eq. (5.25)) u = t x -+- t2. 0(r) is a step function that equals 1 if r  > 0 and 

0. otherwise. This step function is introduced so that the range of integration over 

t ' becomes —  oo  to oo instead of 0 to oc. and so the convolution theorem of Fourier 

transform can then be applied [50]. The A., is the reorganization energy arising from 

the "slow modes” , with a definition analogous to that in Eq. (5.21), but for the slow 

variable. X s(t).

The functions / ( t ' )  and g{r") in Eq. (5.22) describe the fast mode contribution, 

and p (t'. t: r") contains the slow mode contribution and the optical pulse shape. These 

functions are given by

/ ( r )  =  ex p [-C ;(r ') /fi2 +  2 iT '\ f /h\ exp[-z(A G °p 4- \ ; ) t ' / h\

= e x p [-C ;(r ') /^ 2 -  i(AG°np -  Af )r'/h}. (5.23)

g{r") =  e x p [-C /(r" )/^ 2 -  i(AG°p -  Af)r " /h \ ,  (5.24)

and

/ oc i t  — -j-11 IL -f- t "

^  du e ( — 2— — 2— ^

exp Ty[Cs(-r") +  C ( r ') +  2zr'ImC'(i) -r r 'r"R eC ''(0  -  i(u +  r')rTmC"(0i- n
(5.25)

Expressions in Eqs. (5.23) and (5.24) are, respectively, the Fourier transforms of 

the long-time emission and absorption spectra that the system would have in the

absence of the slow mode (electrostatic) interaction [51, 52], These spectra can be

approximated by the steady-state absorption and emission spectra of the same solute 

molecule in a nonpolar solvent. Application of the convolution theorem to Eq. (5.22)
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F(a;. t: ujex) oc f  dui' f  duj”g{ujex — — u/)p(u/ — oJq, t: J '  — u,’o) (5.26)
J —oc J —OC

with u;0 =  (AGsolv -t- As) /h .  The equation above is of the form given by Eq. (5.5). 

The factors u;3 and u;ex are obtained by summing over the emission photon mode and 

converting the number of absorption photons into energy units [53].

To integrate Eq. (5.25) for the purposes of the present paper, a Gaussian optical 

pulse. e(t) ~  exp(—t2/ r 3). is assumed, though this assumption is a convenience rather 

than a necessity. When the Gaussian approximation [54],

exp ~  exp(-A skBT t2/ h 2) (5.27)
h

is used to obtain the Fourier transform of p (r '. t :  t " ) .  the result of these manipulations 

yields

p(u/, t: it/') oc ,  ̂ . exp
\/ A{t)

B(t) J '
'4.4(0 C  _

(5.28)

where

m  =  ^  (5.29)

B(t)  =  J  + 2 Im C '(0 /^2 + (5-30)

and
2A sk BT  1

( 5 ' 3 1 )

where the lm ^"(0 (=  Im (X s(0 ^s(0 )))  is neglected because the imaginary part of the 

correlation function is much smaller than the real part. Moreover, in Eq. (5.25), 

lm £"(0 is multiplied by factors composed of u and t ' and they are limited by the 

pump pulse profile and the decay time of exp[—Q {r')/ti2}. respectively. The latter 

is of the same order as the rV " in Eq. (5.25), the factor multiplying Re£"(t) there. 

From Eq. (5.25) it can be inferred that the function is the time-evolution

of the emission spectrum (with emission frequency u / )  for a two-state solute that is
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excited at frequency ui". if only X„ contributed to the difference in the Hamiltonians 

of the two states. (Cf. the general expression for time-evolution emission spectrum 

in Eq. (5.8).)

Thereby, the time-dependent fluorescence spectrum can be calculated from the 

convolution of the steady-state absorption and emission spectra in a nonpolar solvent 

and the function given by Eq. (5.28). To calculate p ( u / t h e  explicit

numerical values of the integrated correlation function Q(t) are needed. They can be 

obtained from the correlation function. (X3(t)X 3(0)). using Eq. (5.14).

For treating  the correlation function, several approaches come to mind. One 

involves using, in effect, linear response theory, as Ovchinnikov and Ovchinnikova did 

[551 in their application of a quantum field theoretic m ethod [561. This treatment 

does not use a  molecular harmonic oscillator model [57]. In a work by Mukamel

[58], a spectral density function J ( uj) was introduced from a general consideration 

which involves large anharmonic vibrations of molecules. A property of such spectral 

density function was also discussed in the context of fluctuation-dissipation theorem 

there [581. From such property, the correlation function can be written in terms of 

its corresponding spectral density in the frequency domain [58. 59]

(Ars(^)Ars(0)) = — [  dL)J{uj) (co th  cosujt — i sin ajt ] (5.32)
7T JO \  2 J

where 3 = l / k ^ T .  Even though the terms inside the parentheses of the integrand 

resemble the correlation function of a harmonic oscillator [60], Eq. (5.32) is obtained 

from a general consideration of the properties of correlation functions, and is not 

limited to any harmonic oscillator model [55, 58, 59].

The spectral density J{ui) can be related to a measurable property of the solvent, 

the dielectric dispersion e(cj). W ith the simple continuum model, the linear response 

theory can be applied to obtain the response function for a time-varying dipole repre­

senting the solute. Such response function is closely related to the correlation function 

(ATs(f)X ,(0)) needed here [59, 61]. In Ref. [55] a  homogeneous boundary condition 

was implicitly assumed and a form of J{u>) in terms of e(u) was obtained. For a point
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dipole in a sphere cavity model, the spectral density J(u>) is [37, 62]

J ( uj) =  - = ^ I m
2e ( u i )  - r  1

( 5 .3 3 )

where A/i is the change in the dipole moment of the solute in the two states, and a is 

the radius of the cavity. For a  spherical cavity filled with dielectric material having 

a dielectric constant ec to account for the electronic polarizability of the solute, the 

corresponding expression is (compare related expressions in Refs. [8. 11. 45. 63-65j).

J ( uj) =  - H ^ I m
aJ

e M  ~  1
2e(ui) 4- ec

ec +  2'
(5.34)

which reduces to  Eq. (5.33) when ec is assumed to be unity.

The correlation function of X s can now be obtained using the above expressions for 

J{jj) and Eq. (5.32). The integrated correlation function £,(4) is then, from Eq. (5.14). 

given by

a t )  = -  f7r Jo
*  J{uj)

duj— — 
ui~

, 3hu> . . .
coth ——  (1 — cosuJt) — i{uit — smu;t) (5.35)

Two functions needed in Eqs. (5.29) and (5.30) to calculate the time-dependent flu­

orescence spectrum  are [66]

ImC'(£) =  — f  — 1 -t-cosu;t)
7T Jo uJ

" I7T Jo—
00 , J(u )duj cos cot

(5.36)

(5.37)

and

ReC"(i) =  Re(X,(£)X,(0)) = -  /  (LjJ ( uj) coth — — cosuit. (5.38)
ir Jo 2.

3 h u

They can be calculated using Fourier cosine transform subroutines. The second term 

of Eq. (5.37), if normalized to unity at t = 0, is the same as the function A d(t)  used 

in Ref. [36] and has been shown to  be 5(f), the dynamic Stokes shift function [30].
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Namely.
J q30 c o s  uit J(ui)/ ujdld 

S(t)  = ( 0 ' 3 9 )

The term Re£"(t). when normalized, yields in our previous work [36].

5.3 A p p lica tion

Using experimental data for e(u;) for the solvents, all the correlation functions of the 

solvent modes needed can be calculated with the aid of Eqs. (5.33) (or (5.34)). (5.37) 

and (5.38). The overall spectral lineshape can be then obtained from Eqs. (5.26) and 

(5.28).

The dielectric dispersion e(uj) of acetonitrile has been measured for a wide fre­

quency range. At low frequencies. J. Barthel et al. reported parameters for a Cole- 

Cole equation for frequencies lower than 89 GHz [67. 68], which corresponds roughly to 

3 cm-1. In the microwave and far-infrared region (frequencies up to 200 or 250 cm-1) 

the optical constants (complex refractive indices) have been reported [69-72]. The 

absorption peak at about 378 cm -1 was measured and described in Ref. [73]. For the 

infrared region, there is the early work by Goplen et al. [74] and Bertie's recent work

[75].

For the present calculation, the parameters of Cole-Cole equation in Ref. [67] are 

used for low frequency region. For frequencies higher than 3 cm -1 , we first obtain the 

imaginary part k(u) of the complex refractive index (h(z>) =  n(v) — ik(0 )) from data 

in the literature [70, 73, 75, 76]. The absorption coefficients a.(v) reported in Refs. [70] 

and [73] cam be converted to k(P) by dividing a  by A cubic spline interpolation 

[77, 78] was then used to obtain k(D) for any given frequency. The Kramers-Kronig 

transformation [79] was used to  obtain the real part of refractive index, n{0). from 

k{u)
. . 2 ^  r°° u'k(iy)diV , ,

n{u) = n x  + - P ------ — -----—  5.40
7T JO V ri — V*

where P denotes the principal value of the integral, and the upper limit “oo” denotes a 

high frequency, where n = nx . It has been shown [80] that to obtain n(i>) a t infrared
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frequencies by integrating over k(i>) in only infrared region, the above equation can 

be rewritten as

. . .  0 ,. 2_  f t in 0'k{u')d0'
n(v) (a0 ~  a2u- a4u ) -f - P  /    —  (5.41)

7r Jo i /1 — v-

where the first three terms in the parentheses are a suitable approximation to the 

contribution from the UV absorption. For the present calculation, coefficients (do. di 

and 02) axe obtained from those given in Ref. [80]. The numerical integration using 

Eq. (5.41) gives an n(0) in good agreement with the values reported in Refs. [70. 75] 

and [81]. The dielectric dispersion e(u/) for those frequencies equals the square of the 

complex refractive index, n(i>) — ik(u), and so is now known.

The values of Im£'(£) and Re£"(£) axe obtained using the dielectric dispersion data 

obtained above and Eqs. (5.33) (or (5.34)), (5.37) and (5.38). The nonpolar reference 

spectra axe those published in Ref. [9] for C l53 in 2-methyl butane. In the calculation 

we also need a number for (AG501''-1- \ s) /h  which is the change in absorption frequency 

due to a change in solvent polarity. This quantity for a polax molecule is dependent 

on solvent polarity and the dipole moments of both states of the molecule (cf. eq 20 

of Ref. [30] or eq 4.2 of Ref. [9]). In the present work 1490 cm-1 is used for this 

quantity, (AGsolv -r As)/h, for C153 in acetonitrile [82].

The overall spectral shift due to the polax interaction is 2A,, which is proportional 

to the factor A n 2/a? in Eqs. (5.33) and (5.34). Maxoncelli and Fleming have examined 

the steady-state Stokes shift measurements of C l53 in various polax solvents and have 

obtained the dipole moment change as 6.0 D if the radius of the spherical cavity 

resembling the solute molecule is assumed to be 3.9 A[8]. From fitting the emission 

spectral position calculated at t —>■ 00 to the steady-state experimental fluoresce 

spectrum, we obtained a similax value, 6.1 D, as the dipole moment change for a non- 

polarizable solute of the same size. However, if a polarizable spherical solute model 

is used (Eq. (5.34)), the size of the calculated dipole is smaller for the given solvation 

free energy: Assuming ec =  2.0 [11], the dipole moment change is estimated to be 

5.1 D from the same resulting Xs as the one calculated using nonpolarizable model
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with Afj, =  6.1 D [83]. Using this ec and A fi  for the polarizable model the result 

of the overall calculation for the time-dependent emission spectrum is compared in 

Fig. 5.2 with the experimental spectrum obtained from Ref. [10]. In the calculation 

we set rp =  50 fs. which corresponds to 118 fs FWHM in the correlation between 

pulses. (The values of 112-125 fs is reported in Ref. [10].) In Fig. 5.3 the dynamic 

Stokes shift S(t),  calculated from the second term  of Eq. (5.37), is plotted together 

with the one obtained from experiment [9].

We have also calculated a dynamic Stokes shift for methanol: Dielectric dispersion 

da ta  for methanol are available for a wide range of frequencies. The parameters ob­

tained from fitting microwave measurements to a three-term  Debye model have been 

reported for frequencies less than 295 GHz (~  10 cm -1) [84]. The complex refractive 

indices of methanol from 2 cm -1 to 8000 cm-1 have been reported in Ref. [85]. For 

frequencies from 2 cm-1 to 50 cm-1, the dielectric dispersion was also measured by 

Kindt et al. [861. A three-term Debye mode] fit was performed in the latter work and 

the dielectric dispersion results obtained from those parameters agree fairly well with 

the lower frequency results reported by Bertie [85]. For the present calculation a cubic 

spline fit of the tabulated numbers from Bertie's work was used for frequencies higher 

than  8 cm-1. For frequencies lower than 8 cm -1 the three-term Debye fit reported in 

Ref. [84] was used.

The calculated 5(f) is compared in Fig. 5.4 with the experimental results of 

Ref. [9]. In this case the plot from dipole in a spherical cavity model is seen to 

deviate from th a t from experiment. Results from a calculation using the polarizable 

solute model using Eq. (5.34) with the cavity dielectric constant ec =  2 are also given 

in Fig. 5.4, and the agreement is seen to be somewhat improved.

5 .4  D iscu ssio n

There is seen to  be reasonably good agreement in Fig. 5.2 between the position and 

spectral shapes of the calculated time-dependent spectra in acetonitrile and those from 

experiment, when the possible experimental uncertainties are considered, especially
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at early times [32]. This result supports the idea th a t the dynamics observed is mainly 

relaxation from the polar interaction between the solute and the solvent. In a recent 

article on shorter times [87] the authors reported very early transient absorption and 

gain (spontaneous emission) spectra after a pump pulse of C l53 in acetonitrile and 

methanol. At those short times (<  300 fs) the gain band is red-shifted w ith two 

isosbestic points appearing successively. It has been noted [87] th a t such results may 

imply that some intramolecular process is involved in the earlier dynamics.

The time-dependence of the emission spectrum in polar solutions has long been 

a subject of interest. In the 1960s and 1970s, experiments were performed on the 

nanosecond time scale [3, 65], and the kinetics of the spectrum was discussed in 

terms of the lifetime of the excited state and the orientational relaxation of the solvent 

molecules. The la tter was related to the dielectric dispersion, e(uj). [1, 2] and a Debye 

form was used for e(u>) to account for the orientation dipole relaxation [1-3. 65]. A 

stochastic theory was also proposed to describe the time-evolution of the spectrum 

[4] (cf. recent work by Maroncelli and coworkers. Refs. [41, 42]). As the techniques 

advanced, the dynamics in femtosecond time regime became observable and so a 

relaxation in the intermolecular vibrations (e.g., the librational mode for water [13, 

30]) has become im portant in understanding the experimental results in th a t time 

region. The low frequency intramolecular vibrations in both solute and solvents may 

also affect the early time-evolution. By including in the dielectric dispersion, the IR 

frequency region, we have taken the solvent vibrational modes into account.

In the present work we have considered the case, in deriving the expressions used in 

calculations, th a t the vibrational relaxation is complete before the time of observing 

fluorescence. A short-range nonpolar interaction and the relaxed vibrational contri­

bution was included in an approximate way, by using the absorption and emission 

spectra in a nonpolar solvent. For experiments with a higher time-resolution, or with 

techniques which are more sensitive to short-time dynamics, the solute vibrational 

relaxation should be considered explicitly. In the present case, it was found in Ref. [9] 

th a t almost no time-dependence of the spectral shift is observed in their observations 

on the fluorescence of C l53 in cyclohexane, and th a t the transient fluorescence spec­

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



171

trum  is very' close to that of the steady-state fluorescence spectrum for the same 

system (All are Stark-shifted from the absorption spectral maximum). This result 

shows that in this nonpolar solvent the relaxation (for both solute and solvent) to 

equilibrium free energy of the excited state occurs within the time resolution (120 fs 

FWHM instrumental response [9]) of the experiment, and so supports the assump­

tion of fast relaxing internal modes made in the present study. The assumption itself 

provides a m ajor simplification and permits the simple application of expressions for 

a two-level problem to a real system.

In the present calculation, there are two undetermined quantities which axe in­

ferred from experimental spectra. One is (AGsolv + As)/h .  the difference between 

averaged absorption spectra in polax and in nonpolar solvents. For the present study, 

a value of this quantity was chosen so as to yield agreement between the calculated 

and the reported (estimated) zero-time fluorescence spectrum in Ref. [10]. The other 

undetermined quantity. A fi2/a 3. is proportional to As, and so is proportional to the 

overall dynamic spectral shift. The latter is also related to  the width of p (o /. t: uj") 

(Eq. (5.29)). However, the width of this p(u/. t:u>") has only a small influence on 

the lineshape of final convoluted spectrum, F(u.t:u>ex), because of the large Franck- 

Condon vibrational contribution to the width. Thereby, the quantity A p 2/ a 3 can be 

estimated solely from the spectral shift arising from the polax interaction, namely, 

the frequency difference of the zero-time emission spectrum and the steady-state flu­

orescence spectrum  in the polax solvent. W ith the nonpolaxizable model, the change 

in dipole moment is estimated to be 6.1 D, using the peak frequency difference of the 

zero-time estim ated emission spectrum and the steady-state emission spectrum  in 

methanol reported in Refs. [32] and [9], respectively. This result agrees, as noted ear­

lier, with the 6.0 D estimated in Ref. [8] from the steady-state experimental spectrum 

using the same nonpolaxizable model.

The calculated dynamic Stokes shift result for acetonitrile. shown in Fig. 5.3, 

has an oscillation period of about 0.3 ps, which arises from a strong far-infraxed 

absorption at about 100 cm-1 . The results in Fig. 5.3 with polarizable solute axe 

quite close to those reported in a recent work [88], calculated from a theory which
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the authors developed for the longitudinal linear dielectric response of polarizable 

solvents with given shape and charge distribution. (That theory includes a fc spatial 

dependence.) No such oscillation is reported in the experimental data, but the latter 

depend on the time-resolution of the technique and the d a ta  processing used. In 

Ref. [9] it is indicated that the deconvolution of an instrumental response function 

has been performed on the raw emission intensity data. It would be interesting to see 

if such an oscillatory correlation function can be observed in experiments with finer 

time-resolution, such as that in photon echoes [89].

The dynamic Stokes shift results for methanol are shown in Fig. 5.4 and display an 

appreciable discrepancy when compared with experiment [9], It is seen there th a t the 

inclusion of ec to represent polarizability of solute improves somewhat the agreement 

of experiment and theory [11, 44]. Since we use the simple dielectric continuum in 

describing the solvent, and extend the frequency range to include IR frequencies, the 

entire response of the bulk solvent to a change in electric field is considered. Using 

other theoretical methods, namely, the dynamical MSA theory and the molecular 

hydrodynamic theory, the following results have been obtained for polar solvents:

In Ref. [9] it was shown th a t in the case of methanol, a calculated S(t) using a 

model for the dielectric dispersion with the far infrared dielectric response included 

is significantly faster than the measured dynamic Stokes shift from experiment. In 

the same work the authors compared the dynamics calculated from the dynamical 

MSA theory [18], which includes a spatial dependent dielectric response, with the 

experimental S(t). They concluded that the dynamical MSA theory gives results 

that are slower than those from simple continuum model which is used in the present 

work. For most of the cases studied in Ref. [9], the dynamical MSA theory predicts 

a dynamical behavior slower than  the experimental one for C l53 if a dipolar hard 

sphere is used to represent the solute. On the other hand, when the neutral dipolar 

solute was modeled as an ion, am improved agreement was obtained in applying the 

dynamical MSA theory. However, a  charge distribution appropriate to the actual one 

should, of course, be used in comparing with the experimental S(t).

In a recent article, Bagchi and coworkers applied their molecular hydrodynamic
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theory, which includes rotational and translational contributions of solvent polar­

ization relaxation, to monohydroxy alcohols. They reported the calculated dipolar 

solvation to be slightly slower than the experimental observation. Again, when the 

neutral dipolar C l53 solute is hypothetically modeled as an ion in their model cal­

culations. there is better agreement between the calculated and experimental S(t)

[25].

We have investigated the effect of pulse width by changing the pulse duration rp 

of Gaussian pulses from the limit of very short pulses to the limit of pulses which axe 

much longer than the dephasing time (h /y /X sk g T ) (but still shorter than the fluores­

cence observation time), by taking the limits of small and large rp in the expressions 

in Eqs. (5.29) and (5.30). Results of calculations of these two limiting cases showed 

negligible changes in the widths in the emission spectra (of the order of 10 cm-1 

for acetonitrile). The small effect of the pulse widths cam be understood as follows: 

As shown in Section 5.2.2 and Eq. (5.26), the overall time-dependent spectrum  is a 

convolution of p(u>', t ; ui") and the steady-state absorption and emission spectra in a 

nonpolar solvent. The absorption and emission spectra in the nonpolar solvent have 

a large width, largely due to the quantized in-plane arom atic ring vibrations, which 

serve as a frame for the spectra that is filled in by absorption or emission due to the 

lower frequency modes. While in a more detailed study the correct shape of pulse 

profile could be used, and it may lead to a change in p(u; '. t:u>") (Eq. (5.25)), it is not 

expected to be able to change the overall spectrum  F (uj, t; ujcx) significantly after the 

convolution with the large-width reference nonpolar absorption and emission spectra.

For the same reason, the lineshape information obtained from the function p(u/. t: u") 

is mostly buried in the convolution with the large-width reference spectra. As seen 

in Eqs. (5.28) and (5.29). the spectral evolution of a single transition has its spectral 

width controlled by the quantum  correlation function (the expression in Eq. (5.38)). 

However, after convolution with the broad reference absorption and emission spec­

tra, the effect of spectral width of single transition is quite small in the final result. 

Thus, the quantum  solvent effect cannot be easily retrieved from the final spectral 

lineshape for such systems. The time-evolution of fluorescence spectral band widths
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were measured and reported for C153 in dimethyl sulfoxide (DMSO) |9l and for 

l.l\3.3.3\3 '-hexam ethylindotricarbocyanine (HITC) in ethanol 190]. W ith the ad­

vances in techniques in obtaining d a ta  with an improved time-resolution and with 

a continuum spectral measurement, it should be possible to address more closely 

the evolution of emission band width and other details of the lineshape in terms of 

solvation dynamics and molecular properties.

5.5  C on clu sion

A theory of time-dependent fluorescence spectrum for a polar solute in polar solvents 

is formulated and applied to C153 in acetonitrile in the present study. The dynamics of 

the fast motion of intramolecular vibration and the nonpolar collision-like interaction 

is assumed to be the same in nonpolar solvents and polar solvents and such motion is 

seen to  decay rapidly. Polar solvents provide additional electrostatic interaction whose 

dynamics is slower and is observed in the experiments. Based on this assumption, we 

have developed a method for including the vibronic transitions of the dye molecule 

in the time-dependent fluorescence spectrum, and the results for C l53 in acetonitrile 

are close to experimental ones.

Since it is now possible to estim ate the overall time-dependent spectrum, a pre­

sentation of the data for the time-evolution fluorescence spectrum in numerical form, 

rather than only a fitted analytic functional form, would remove the added approxi­

m ation of the fitting.
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Figure 5.1: Double-sided Feynman diagram for the process of excitation and fluores­
cence for a two-state system. In this diagram, the density m atrix  is represented by 
the two vertical lines. The line on the left represents the ket and the line on the right 
represents the bra, with time running vertically from bottom to  top. An interaction 
with the radiation field is represented by an arrow. The direction of such an arrow 
determines the sign of the wave vector contribution to the polarization, which is not 
explicitly considered in the present study. t\ and t2 are any two times occurring dur­
ing the absorption (pump) pulse. In the integration in eq (5.8), the excitation times 
t\ and t2 can be reversed. and t are the two times when fluorescence occurs.
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Figure 5.2: The calculated time-dependent emission spectra for coumarin 153 in 
acetonitrile at different delay times (solid lines) and the experimental da ta  (dots 
inferred from the figures in Ref. [10]). The delay times are indicated in the units of 
picosecond. Baselines for different delay times are shifted vertically and are indicated 
at the left of the figure.
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Figure 5.3: Top panel: the dynamic Stokes shift S{t)  for acetonitrile calculated using 
eq (5.33) (solid line) and the results fitted to experimental data [9] (dashed line). 
Bottom panel: calculated S(t)  using eq (5.34) (solid line) with ec =  2 and the same 
experimental results (dashed line).
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Figure 5.4: Top panel: the dynamic Stokes shift S(t)  for methanol calculated using 
Eq. (5.33) (solid line) and the results fitted to experimental data [9] (dashed line). 
Bottom panel: calculated S(t)  using Eq. (5.34) (solid line) with ec = 2 and the same 
experimental results (dashed line).

m e t h a n o l

4J

1

8

6

4

2

0
5  1 0  1 5  2 0  2 5  3 00

-p

0 . 

0  .

1

4

2

0
5  1 0  1 5  2 0  2 5  3 00

t i m e  ( p s )

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.




