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ABSTRACT

The study of exoplanet atmospheres is a blossoming field. Over the past two decades,
dozens of hot gas giant atmospheres have been observed using a variety of techniques
with both space and ground telescopes, revealing the presence of water, the ubiquity
of clouds, the presence of equatorial jets, the existence of photoevaporation, and
much more. For the far more abundant planets smaller than∼ 3𝑅⊕, which potentially
have a wide variety of exotic atmospheric compositions, observations are more
challenging. We are just beginning to characterize their atmospheres.

This thesis consists of 6 papers on the topic of exoplanet atmospheres. In paper 1,
we use Spitzer observations to make rudimentary 1D maps of two hot giant planets,
allowing us to infer atmospheric circulation properties and compare them to models
and to similar observations of other giant planets. In paper 2, we present PLATON, a
fast, open source, easy to use, and easy to understand Python package that calculates
transmission spectra for exoplanets and retrieves atmospheric characteristics based
on observed spectra. PLATON supports the most common atmospheric parameters,
in addition to less commonly included features such as a Mie scattering cloud model
and unocculted starspot corrections. In paper 3, we add significant improvements to
PLATON, including updated molecular opacities and emission spectra capability.
In addition, we perform the most comprehensive retrieval on published HST and
Spitzer transmission and emission spectra of the archetypal hot Jupiter HD 189733b,
finding that they are well-matched by a moderately metal-enhanced atmosphere with
a solar C/O ratio where the terminator is dominated by extended nm-sized hazes.

Papers 4-6 cover mass loss from sub-Neptunes. In paper 4, we present a tight upper
limit on the amount of escaping helium from the the archetypal super Earth 55 Cnc
e, suggesting that it has no primordial (H/He) atmosphere. In paper 5, we obtain the
first detection of an escaping atmosphere from a young mini Neptune by measuring
Ly𝛼 absorption from HD 63433c. We do not detect absorption from the inner planet,
suggesting that the inner planet may have lost its primordial atmosphere while the
outer one has not. In paper 6, we detect escaping helium from a young mini Neptune
for the first time. The inferred mass loss rate is high enough to strip a significant
portion of the atmosphere within the planet’s lifetime; combined with the previous
paper, these observations support the canonical explanation of mini Neptunes as
rocky planets with a substantial primordial H/He atmosphere and validate models
predicting that mini Neptunes can transform into super Earths.
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1

C h a p t e r 1

INTRODUCTION

In 1995, astronomers discovered the first planet around another main sequence star:
51 Peg b (Mayor & Queloz, 1995). This planet is an exotic world unlike any in the
solar system. It is a tidally locked, Jupiter-sized gas giant with an orbital period
of 4.2 days and equilibrium temperature of 1300 K, virtually guaranteeing that its
atmospheric composition, clouds, circulation patterns, and formation history are
very different from that of the solar system gas giants. Subsequent discoveries
showed that 51 Peg b was the first example of a previously unknown class of planets,
called hot Jupiters.

Due to their size, high thermal emission, and puffy atmospheres, hot Jupiters are
the most observationally favorable exoplanets. The Hubble Space Telescope and
ground-based telescopes routinely measure their compositions, cloud properties, and
circulation patterns. We now know (Madhusudhan, 2019) that clouds are extremely
common on these planets, as is water vapor and eastward winds carrying substantial
heat fluxes. Several other molecules have also been detected. In addition, an
extensive menagerie of atoms and ions have been detected in the upper atmospheres
of some ultra-hot Jupiters (e.g. Hoeijmakers et al. 2019).

The advent of ground and space-based transit surveys like WASP, HATnet, and
Kepler has made it possible to discover exoplanets smaller than hot Jupiters en
masse. Thousands of exoplanets are now known, ranging from planets smaller
than Mars to giants almost heavy enough to fuse deuterium in their cores (Batalha,
2014). The field of exoplanets has seen an explosion in interest, data, and progress.
Exoplanets have continued to surprise astronomers. For example, the most common
type of planet among those discovered is one that does not exist in the solar system:
the sub-Neptunes, with radii between 1 and 4 𝑅⊕. These planets are fundamentally
mysterious. What are they like? How did they form? Do they have atmospheres,
and if so, what are they made out of?

Adding to the mystery, the sub-Neptune population is divided into two sub-populations
(Figure 1.1): the smaller but denser super Earths, and the bigger but less dense mini
Neptunes (Fulton et al., 2017; Fulton & Petigura, 2018). These sub-populations are
divided by a radius gap around 1.9 𝑅⊕, where few planets reside. The prevailing
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Figure 1.1: Distribution of known transiting exoplanets and planet candidates dis-
covered by the Kepler survey, by radius and period (Fig. 6 of Fulton & Petigura
2018, reproduced with permission). Notice the two distinct populations: the bigger
mini Neptunes and the smaller super Earths.

theory is that the mini Neptunes have a primordial hydrogen/helium atmosphere
that make up a few percent of their mass, while the super Earths do not because
high-energy radiation from the star has evaporated it away. However, the validity
of this theory, and the precise nature of the two sub-populations, are subjects of
ongoing research. In particular, it is the subject of the last three papers of this thesis.

1.1 How exoplanet atmospheres are studied
There are three main methods to study exoplanet atmospheres: transmission spectra,
emission spectra, and phase curves. Typically, astronomers study the atmospheres
of transiting exoplanets, which periodically pass in front of their stars, because trans-
mission spectra and low-resolution emission spectra are only possible for transiting
planets.

Transmission spectroscopy
In transmission spectroscopy, the star is monitored spectroscopically before, during,
and after the planetary transit, with the change in the spectrum during the transit
being attributed to absorption from the planet (Figure 1.2). If the planet has an
atmosphere, the amount of starlight absorbed will be wavelength dependent because
the cross sections of absorbers in the atmosphere are wavelength dependent, and
this wavelength dependence can be used to detect molecules. For example, there
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Figure 1.2: A planet transiting its host star. Source: NASA, Goddard Space Flight
Center (https://svs.gsfc.nasa.gov/11428).

is a strong water absorption feature at 1.4 µm, in the middle of the HST/WFC3
G141 bandpass. This combination of telescope, instrument, and grism is a favorite
of exoplanet atmosphere observers, and has detected water features on more than a
dozen planets (Madhusudhan, 2019). Transmission spectroscopy is easiest for large,
hot planets with low surface gravity and low mean molecular weight, because these
planets have large and puffy atmospheres.

The ubiquity of clouds is one of the earliest and most robust discoveries of transmis-
sion spectroscopy, but also the most frustrating. Clouds block the line of sight to
the lower atmosphere, dramatically weakening spectral features, often to the point
of undetectability. In the tens of transmission spectra observed to date, every single
one has a water absorption feature smaller than 2 scale heights, whereas 5-10 scale
heights is expected for a clear atmosphere (Madhusudhan, 2019). Cloud particles
typically have no spectral features of their own which can be detected with current
technology. Among the many mini Neptunes observed in transmission, only K2-18b
shows a definitive absorption feature (Tsiaras et al., 2019; Benneke et al., 2019),
while the others are either flat or ambiguous. One particularly nearby mini Neptune
orbiting a small star (an a priori favorable target) was observed with HST/WFC3
across 15 transits—more than enough to detect even a clear H2O or CO2 atmo-
sphere, which have signals several times lower than a clear H2/He atmosphere—yet
the transit spectrum was completely flat (Kreidberg et al., 2014).

For cloudy atmospheres, all hope is not lost. One can observe the transit at spectral
resolutions high enough to resolve the individual molecular lines (e.g. Snellen
et al. 2010), of which there are hundreds to billions, depending on the molecule
and the wavelength range. While the observations are much too noisy to detect

https://svs.gsfc.nasa.gov/11428
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individual lines, cross correlating with a template could yield a strong detection.
This is expected to mitigate the problem of clouds because molecules absorb many
orders of magnitude more strongly in the cores of molecular lines than at typical
wavelengths, potentially raising their photospheres far above the cloud deck (Gandhi
et al., 2020). This technique has detected many atoms, molecules, and ions in several
planets. For example, 5 molecules were detected in the hot Jupiter HD 209458b
(Giacobbe et al., 2021).

Transmission spectroscopy can also be used to measure mass loss from escaping
atmospheres, even when clouds exist (see Owen & Campos Estrada 2020 for a
review). Gaseous planets around young and active stars experience intense stellar
X-ray and extreme ultraviolet irradiation, which heats their upper atmospheres to
thousands of Kelvin and drives a supersonic outflow. For mini Neptunes, whose
atmospheres comprise only a few percent of their mass, this photoevaporation can
strip the entire atmosphere over the course of the planet’s life, shrinking its radius
by tens of percent while barely affecting its mass. The planet turns into a super
Earth. Mass loss is thus expected to play a key role in the formation and evolution
of super Earths and mini Neptunes. It is the leading explanation for why these two
populations exist in the first place, separated by a radius gap where few planets exist
(Fulton et al., 2017).

We can directly observe mass loss by looking for absorption in either the Ly𝛼 line
(1216 Å) from ground state hydrogen, or the line (10,833 Å) from triplet state
helium. The two methods are complementary: aside from detecting different atoms,
the former probes high-velocity gas in the tenuous outer regions of the outflow
(because interstellar absorption wipes out the line core), while the latter probes
lower-velocity gas closer to the planet. Escaping hydrogen and helium have been
detected in Jupiter-sized and Neptune-sized planets (starting with Vidal-Madjar et al.
2003 for hydrogen and Spake et al. 2018 for helium), but until recently, attempts
to detect photoevaporation in the regime where it dramatically affects exoplanet
demographics—namely young mini Neptunes—have not succeeded. In the last two
papers of this thesis, we present a detection of escaping hydrogen from one planet in
this regime, and escaping helium from another. Aside from shedding light on planet
evolution, these mass loss measurements provide additional evidence that most mini
Neptunes have thick hydrogen/helium atmospheres—which has been theorized, but
not proven, as there are other potential explanations for their low density.
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Emission spectroscopy
In emission spectroscopy, a spectrograph monitors the star as the planet passes
behind it, and the spectrum of the planet is deduced from the difference between
the in-eclipse and out-of-eclipse spectra. At infrared wavelengths, this spectrum
captures thermal emission from the planet. An isothermal atmosphere would have a
blackbody spectrum. An atmosphere where temperature increases with depth shows
molecular absorption features, i.e. less emission at wavelengths of high opacity,
because the photosphere is higher and colder where opacity is higher. Conversely,
an “inverted” atmosphere whose temperature decreases with depth shows molecular
emission features. Inverted atmospheres are possible in a limited altitude range in the
presence of molecules which absorb strongly in the optical, but not in the infrared.
Just like with transmission spectra, clouds could wipe out molecular features, but
the larger range of temperatures on the dayside compared to the terminator and the
more favorable geometry make clouds less of a problem. Just like with transmission
spectra, high-resolution spectroscopy can be used to mitigate the problem of clouds
and measure relative molecular abundances.

Emission spectra are easiest to obtain for large, hot planets orbiting small stars. Un-
like transmission spectra, emission spectral features are not much smaller for high
mean molecular weight atmospheres than for hydrogen/helium atmospheres. Emis-
sion spectra also depend strongly on the temperature-pressure profile, which itself
is governed by a complex combination of stellar radiation, interior heat, convection,
radiative transfer, clouds, and horizontal circulation. This is a mixed blessing, for it
means that emission spectra can constrain the temperature-pressure profile, but that
attempts to measure atmospheric composition or other properties are complicated
by the unknown profile.

Favorite instruments for measuring emission spectra include HST/WFC3 (the G141
grism, 1.1–1.7 µm, covers the water band), and Spitzer/IRAC (3.6 and 4.5 µm)
before it was decommissioned. From the ground, high resolution emission spectra
have been taken by CARMENES, VLT/CRIRES, Keck/NIRSPEC, and many others
(see Birkby 2018 for a review). Emission spectroscopy has detected molecular
absorption from a handful of planets in addition to constraining their temperature-
pressure profile (Madhusudhan, 2019). The large number of planets that Spitzer has
observed makes statistical studies possible (e.g. Wallack et al. 2021), shedding light
on heat recirculation and composition trends.



6

Figure 1.3: The phase curve of a transiting planet. Credit: NASA/JPL-Caltech/Univ.
of Cambridge.

Phase curves
A phase curve (Figure 1.3) is a record of the brightness of the star + planet system
over an entire orbit. A phase curve contains a transit, an eclipse, and flux variations
in between the transit and eclipse. The flux varies because the planet presents
different phases as it orbits; for tidally locked planets, a phase always corresponds
to the same hemisphere. A phase curve in the infrared measures thermal emission,
enabling the reconstruction of a crude one-dimensional thermal map of the planet.

Many useful properties can be measured from a phase curve. The dayside and
nightside temperatures can be deduced from the dayside and nightside emission.
These temperatures can be used to compute the albedo and heat recirculation ef-
ficiency, as parameterized by a toy model (Cowan & Agol, 2011). Additionally,
the phase at which emission peaks is usually slightly before the secondary eclipse,
corresponding to a hot spot eastward of the substellar position. Since the hot spot is
displaced eastward due to eastward equatorial jets which advect significant amounts
of heat, the phase offset sheds light on the nature of atmospheric circulation. Lastly,
a spectroscopic phase curve can measure how atmospheric composition changes as
a function of longitude.

Spitzer has observed the phase curves of ∼20 planets in the 3.6 and/or 4.5 µm bands
(see Bell et al. 2021 for a comprehensive reanalysis of 4.5 µm phase curves), and a few
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at higher wavelengths (e.g. the first phase curve, Knutson et al. 2007). The results
broadly confirm some predictions from 3D general circulation models, such as the
higher day-night temperature contrast for hotter planets. However, many predicted
trends are surprisingly absent. No correlation has been observed between phase
offset and temperature, nor between temperature and heat recirculation efficiency
(Bell et al., 2021). On an individual planet level, the match is even worse. For
example, the cloud-free general circulation models that we use tend to drastically
overpredict the phase offset (Zhang et al., 2018), although active modelling of clouds
is expected to reduce the discrepancy (Roman & Rauscher, 2019). Much remains
to be understood about heat recirculation on exoplanets.

Finding favorable planets
The study of exoplanet atmospheres would not be possible without the discovery
of nearby transiting exoplanets to study. While many nearby hot Jupiters were
discovered by ground-based transit surveys such as HATnet and WASP, discovering
sub-Neptunes from the ground has been much more challenging because of the
exacting photometric precision required. The spacecraft Kepler has discovered
thousands of smaller transiting planets by staring at a 10◦ x 10◦ patch of sky for
more than 3 years. However, there are only so many nearby stars in this small patch
of sky. For this reason, the vast majority of Kepler discoveries are too faint for a
mass measurement, and for atmospheric characterization with current telescopes.

In contrast to Kepler, TESS is a spacecraft which hunts for transiting exoplanets by
scanning the entire sky, with each sector observed continuously for 30 days. TESS
can detect almost every short-period planet that would be favorable for atmospheric
followup. For this reason, TESS has dramatically increased the number of sub-
Neptunes favorable for atmospheric characterization. It is no coincidence that the
last two papers of my thesis, in addition to my ongoing work, are entirely dedicated
to studying planets discovered by TESS.

1.2 Theoretical understanding
To extract useful information from a transmission spectrum, emission spectrum, or
phase curve, one needs a model. The extracted information should ideally shed light
not only on the properties of the planet in question, but on broader questions like
planet demographics and formation history.

Models come in various levels of complexity. The most complex are 3D general
circulation models which include chemistry, clouds, radiative transfer, and advection
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in a self-consistent way (e.g. Lines et al. 2018). As mentioned in the previous
section, these models do not generally match observations, and it is usually not
obvious why, and time consuming to find out how changes in the parameters translate
to changes in the result. At the other extreme are parameterized 1D models which
do not strive for self-consistency, but are instead very fast. The parameters are
inferred from the data via a Bayesian method, such as MCMC or nested sampling.
This process is called a “retrieval.” Until recently, there were very few open source
retrieval codes available (TauREx being an exception, Waldmann et al. 2015) and
none that were easy to use, inspiring us to write Planetary Atmospheric Tool for
Observer Noobs (PLATON) (Zhang et al., 2018, 2019).

Retrievals come with their own set of problems. It is easily possible to both fit the
data very well and infer completely incorrect parameters, due to a combination of
missing physics, the lack of consistency constraints, difficult-to-model instrumental
systematics, and theoretical uncertainties in molecular opacities. The last has been
significantly mitigated in recent years due to a concerted effort to improve molecular
line lists and make them publicly available, especially on the part of the ExoMol
collaboration (Tennyson & Yurchenko, 2012).

Retrievals can be used to infer either individual molecular abundances, or the overall
metallicity and C/O ratio of the atmosphere, depending on the chosen parametriza-
tion. The metallicity and C/O ratio parameterization requires an assumption of
chemical equilibrium, potentially with parameterized perturbations. The parameter-
ization is common partially because researchers have long sought to use exoplanet
atmospheric compositions to understand planet formation (Madhusudhan, 2019).
Generally speaking, grains form early in the history of a protoplanetary disk, and
are then aggregated into pebbles, planetesimals, and planets. The solids are metal-
rich, while the remaining gas has reduced metallicity because the heavy elements
had been preferentially taken out of it by the solids. Thus, the metallicity of the
exoplanet’s atmosphere could potentially reveal the amount of solids that it accreted
relative to the amount of gas. In addition, the protoplanetary disk is expected to
have a series of “ice lines” where H2O, CO2, and then CO condense as one moves
farther from the star. The C/O ratio of the gas and of the solids both change as these
species condense (Öberg et al., 2011), so the C/O ratio of the atmosphere should
shed light on the planet’s formation location. However, a wide variety of processes
complicate this simple story. As a small sample of the problems, planets migrate
during the formation process; there are vertical temperature gradients; many thermal
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and photochemical processes change the disk composition, not just condensation;
in mature planets, condensates can rain out of the atmosphere, removing them from
view; measuring metallicity and C/O ratio requires assumptions about equilibrium
chemistry which may be inaccurate (e.g. Moses et al. 2013); and as we showed in
Zhang et al. (2019), even the most exquisite data for the best measured exoplanet
in existence (HD 189733b) do not constrain the C/O ratio very well. There is still
much work to do before atmospheric composition can be used to make definitive
statements about planet formation.

1.3 Structure of this thesis
This thesis comprises 8 chapters. Chapter 1 is this introduction. Chapters 2–7 con-
tain the six papers listed in Published Content and Contributions, in chronological
order. Chapter 8 is a conclusion which explores potential future directions for the
field of exoplanet atmospheric science.
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C h a p t e r 2

PHASE CURVES OF WASP-33B AND HD 149026B AND A NEW
CORRELATION BETWEEN PHASE CURVE OFFSET AND

IRRADIATION TEMPERATURE

Michael Zhang, Heather A. Knutson, Tiffany Kataria, Joel C. Schwartz, Nicolas B.
Cowan, Adam P. Showman, Adam Burrows, Jonathan J. Fortney, Kamen Todorov,
Jean-Michel Desert, Eric Agol, and Drake Deming. Phase Curves of WASP-
33b and HD 149026b and a New Correlation between Phase Curve Offset and
Irradiation Temperature. AJ, 155(2):83, February 2018. doi: 10.3847/1538-
3881/aaa458. M.Z. analyzed the Spitzer data, interpreted the global circulation
model results, found the statistical trends, and wrote the paper.

2.1 Abstract
We present new 3.6 and 4.5 µm Spitzer phase curves for the highly irradiated hot
Jupiter WASP-33b and the unusually dense Saturn-mass planet HD 149026b. As
part of this analysis, we develop a new variant of pixel level decorrelation that is
effective at removing intrapixel sensitivity variations for long observations (>10
hours) where the position of the star can vary by a significant fraction of a pixel.
Using this algorithm, we measure eclipse depths, phase amplitudes, and phase
offsets for both planets at 3.6 µm and 4.5 µm. We use a simple toy model to show
that WASP-33b’s phase offset, albedo, and heat recirculation efficiency are largely
similar to those of other hot Jupiters despite its very high irradiation. On the other
hand, our fits for HD 149026b prefer a very high albedo and an unusually high
recirculation efficiency. We also compare our results to predictions from general
circulation models, and find that while neither planet matches the models well, the
discrepancies for HD 149026b are especially large. We speculate that this may
be related to its high bulk metallicity, which could lead to enhanced atmospheric
opacities and the formation of reflective cloud layers in localized regions of the
atmosphere. We then place these two planets in a broader context by exploring
relationships between the temperatures, albedos, heat transport efficiencies, and
phase offsets of all planets with published thermal phase curves. We find a striking
relationship between phase offset and irradiation temperature—the former drops
with increasing temperature until around 3400 K, and rises thereafter. Although
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some aspects of this trend are mirrored in the circulation models, there are notable
differences that provide important clues for future modeling efforts.

2.2 Introduction
The Spitzer Space Telescope was designed and constructed prior to the discovery
of the first transiting exoplanet, but it has nevertheless become an important tool in
the study of exoplanet atmospheres. In particular, the development of techniques
to correct instrumental systematics and derive precise timeseries photometry from
Spitzer data has enabled the first measurements of thermal emission from a diverse
array of exoplanets (Seager & Deming, 2010). These measurements, in the form
of secondary eclipses and phase curves, allow us to characterize the temperatures,
albedos, heat transport efficiencies, and phase offsets of these planets (e.g., Cowan
& Agol, 2011). For planets with observations at multiple wavelengths we can
also constrain their atmospheric compositions, investigate their vertical pressure-
temperature profiles, and probe the presence of clouds (Burrows et al., 2010).
These Spitzer phase curves provide invaluable information about the fundamental
physical processes that drive the atmospheric circulation patterns of these tidally-
locked planets, and can be compared to predictions from general circulation models
(GCMs; e.g., Heng & Showman, 2015). Although both models and observations
are generally in good agreement on the dayside emission spectra of hot Jupiters,
there are significant discrepancies in the measured night-side spectra (e.g. Zellem
et al., 2014) and models that provide a good match to the measured phase curve
amplitude and phase offset in a single bandpass often have difficulties matching
phase curve data for the same planet at additional wavelengths (i.e. Knutson et al.,
2012). This suggests that there are aspects of the atmospheric circulation, cloud
properties, magnetic fields, and chemistry of these planets that are not adequately
captured in current GCMs. The GCMs we use in this paper, for example, neglect
clouds, magnetohydrodynamics, and disequilibrium chemistry, although some of
these topics have been investigated in more focused modeling studies (e.g., Cooper
& Showman 2005; Parmentier et al. 2016; Rogers 2017).

In this paper, we examine multi-wavelength phase curve observations for two planets
with unusual characteristics as compared to the broader sample of transiting hot
Jupiters. WASP-33b is a 2.2 MJ planet with a radius of 1.5 RJ orbiting a 1.5
Msun 𝛿 Scuti star with a period of 1.22 days (Lehmann et al., 2015). With an
irradiation temperature (𝑇0 = 𝑇e 𝑓 𝑓 /

√
𝑎∗) of 3890 K, this planet is one of the most

highly irradiated hot Jupiters currently known. The star itself has pulsations at a
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variety of frequencies, with the dominant mode at 21 d-1. These pulsations have an
amplitude of roughly 1 mmag, about 1/4 that of the secondary eclipse depth (von
Essen et al., 2014). Previous authors have measured broadband thermal emission
from WASP-33b’s dayside at a variety of wavelengths, including 0.91 µm (Smith
et al., 2011), 1.05 µm (von Essen et al., 2015), 2.14 µm (Deming et al., 2012; de
Mooij et al., 2013), and Spitzer’s 3.6 and 4.5 µm bands (Deming et al., 2012). von
Essen et al. (2015) summarize these results and combine them to obtain an average
dayside brightness temperature of 3358±165 K. More recently, Haynes et al. (2015)
reported evidence for a temperature inversion in the 1.1–1.6 µm dayside spectrum
of this planet, and Nugroho et al. (2017) used a cross-correlation technique to detect
TiO in the 0.62–0.88 µm dayside spectrum with the High-Dispersion Spectrograph
on Subaru. It has long been suggested (Hubeny et al., 2003; Fortney et al., 2008;
Burrows et al., 2008) that additional opacity from molecules such as gas-phase TiO
and VO could lead to the formation of temperature inversions in the most highly
irradiated atmospheres, and this indeed appears to be the case for WASP-33b.

Atmospheric circulation models generally predict that more highly irradiated plan-
ets should have larger day-night temperature contrasts. According to Showman &
Guillot (2002), the day-night temperature difference can be thought of as resulting
from a competition between the radiative cooling timescale 𝜏𝑟𝑎𝑑 and the timescale of
advection by wind, 𝜏𝑎𝑑𝑣. Because the radiative timescale decreases much faster with
increasing temperature than the advective timescale, more highly irradiated planets
should have steeper day-night temperature gradients. Perez-Becker & Showman
(2013) and Komacek & Showman (2016) show that the full picture is more com-
plicated, but the general idea is still that radiation outcompetes other heat transport
mechanisms for the most highly irradiated planets, causing a larger day-night tem-
perature difference. The typical pressure at whic incident starlight is absorbed is also
important for atmospheric circulation, and the presence of a dayside temperature
inversion will therefore also affect the redistribution of energy to the planet’s night
side (Showman et al., 2009; Lewis et al., 2014).

HD 149026b is a 0.36 MJ planet with a radius of 0.65 RJ, and orbits a subgiant
G0 IV star of metallicity [Fe/H] = 0.36 with a period of 2.9 days (Sato et al.,
2005). Its small radius and correspondingly large density suggest the presence of a
large heavy-element core. Dodson-Robinson & Bodenheimer (2009) summarize the
many attempts to estimate the mass of this core, concluding that plausible estimates
range from 45-110 𝑀⊕, corresponding to 39-96% of total mass. Given the high
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metallicity of the star and the planet’s large core-mass fraction, this planet seems
likely to have a high atmopsheric metallicity. Although Carter et al. (2009) analyzed
four spectroscopic transit observations with Hubble’s NICMOS instrument (1.1–2.0
µm), the uncertainties from these data were too high to provide useful constraints on
the planet’s transmission spectrum. Stevenson et al. (2012) subsequently obtained
Spitzer secondary eclipse observations at 3.6, 4.5, 5.8, 8.0, and 16 µm and found
a brightness temperature of 2000 ± 60 K at 3.6 µm and 1600 − 1800 K at longer
wavelengths. When they fit these data with chemical equilibrium models, they found
that they preferred models with large amounts of CO and CO2, 30× solar metallicity,
no temperature inversion, and moderate heat redistribution.

Lewis et al. (2010) studied the effect of metallicity on the warm Neptune GJ436b
and found that high metallicity models had equatorial jets and strong day-night
temperature variations, while lower metallicity models had weak temperature vari-
ations and high latitude jets. By contributing opacity, metals raise the photosphere
to a higher altitude, where atmospheric dynamics are less important and radiative
cooling is more efficient. For planets with condensate cloud layers, increasing the
atmospheric metallicity also increases the amount of cloud-forming material and the
corresponding cloud opacity. Although most circulation models do not currently
include clouds, the presence of spatially inhomogeneous cloud layers can signifi-
cantly alter the shape of both optical and infrared phase curves (Parmentier et al.,
2016; Heng & Demory, 2013; Shporer & Hu, 2015).

We describe our new 3.6 and 4.5 µm phase curve observations for WASP-33b and HD
149026b in Section 2.3 and our analysis of this data in Section 2.4. In Section 2.5,
we combine a simple toy model and more sophisticated GCM simulations for each
planet to interpret these observations and search for patterns in the full sample of
published thermal phase curve observations. Finally, we make concluding remarks
in Section 2.6.

2.3 Observations
All observations were taken with the 3.6 and 4.5 µm arrays of the IRAC instrument
on Spitzer (Fazio et al., 2004) during the post-cryogenic (warm) mission. Start dates,
total durations (including downlink time), AORs, and other information about the
observations used in this paper are presented in Table 2.1. Observations were
timed to begin before a secondary eclipse and end after the following secondary
eclipse, and all frames were taken in subarray mode without the now-standard
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Table 2.1: Spitzer Observation Details

Planet 𝜆(𝜇𝑚) Date (UTC) Dur. (h) Frames Exp (s) Order Ap. (pix)
W 3.6 2012/06/04 37.2 311,552 0.36 2 2.5
W 4.5 2012/04/11 37.2 311,680 0.36 1 2.8
HD 3.6 2011/04/08 81.2∗ 663,104 0.36 2 2.8
HD 4.5 2011/04/08 81.6∗ 663,104 0.36 3 2.6

∗Including 2.3 h of downlink time

peak-up pointing optimization (Ingalls et al., 2012), which was implemented after
these observations were executed. Due to data volume constraints the HD 149026b
observations required a single downlink break near the middle of each phase curve,
resulting in a 2-3 hour gap in coverage. The WASP-33b observations were executed
without any breaks for downlinks.

2.4 Analysis
Overview
We extract a photometric timeseries for each phase curve observation using aperture
photometry, then fit the data with a combined astrophysical and noise model as
described in the sections below.

Photometry
Subarray images are 32x32 pixels. We estimate and subtract the sky background
from each image by excluding all pixels within a radius of 12 pixels from the star,
rejecting outliers using sigma clipping, and then calculating the biweight location
of the remaining pixels. The biweight location is robust and efficient statistic
implemented in astropy (Astropy Collaboration et al., 2013), and we find that it
gives results comparable to methods used in previous studies (Ingalls et al., 2016).
For both planets, the sky background contributes less than 1% of the total flux at
3.6 µm and less than 0.5% of the total flux at 4.5 µm for our preferred apertures.

We estimate the position of the star in each image using an iterative flux-weighted
centroiding method with a circular aperture of radius 3 pixels, and perform aperture
photometry using the photutilsmodule (Bradley et al., 2016) from astropy. We
consider apertures with fixed radii ranging from 1.5 to 5.0 pixels in steps of either
0.1 pixels (1.5 − 3.0 pixels) or 0.5 pixels (3.0 − 5.0 pixels).

We omit the first 0.1 days of data for each data set, which is normal procedure
for Spitzer analyses (Deming et al., 2015a) and removes an obvious ramp at the
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beginning of the observations. The HD 149026b 3.6 observations have a downlink
gap in the middle, so in addition to removing 0.1 days of data from the very
beginning, we also remove 0.1 days from the post-downlink segment.

Instrumental noise model
The largest flux variations in our raw Spitzer light curves are not astrophysical,
but instead result from well-known intrapixel sensitivity variations combined with
telscope pointing jitter (e.g., Charbonneau et al. 2005; Grillmair et al. 2012). Al-
though there are several different approaches to correcting for these effects, pixel
level decorrelation (PLD; Deming et al. 2015a) has been among the most successful
to date in fits to shorter (< 10 h) observations (Ingalls et al., 2016). Following the
updated definition of PLD in Benneke et al. (2017), we model the light curve as:

𝐿 (𝑡) = 𝑓 (𝑡) (1 + 𝑚(𝑡 − 𝑡0))
( 9∑︁
𝑖=1

𝑐𝑖𝑃𝑖 (𝑡)
)
, (2.1)

where m is the slope, 𝑓 (𝑡) is the true brightness, 𝑃𝑖 (𝑡) are the normalized fluxes in a
3×3 pixel box centered on the position of the star, 𝑐𝑖 are nine coefficients giving the
relative weight of each pixel, and the final two terms are meant to model temporal
variations in sensitivity. In each image, we remove astrophysical flux variations by
dividing the individual pixel values by the sum of the flux across all nine pixels.

We do not necessarily expect a linear relationship between individual pixel values
and the total flux across the aperture. PLD was originally formulated as the first
term of a Taylor series expansion and therefore works best when applied to data
where the star moves over a relatively small range (typically on the order of 1/10𝑡ℎ

of a pixel) of pixel positions (Wong et al., 2015a). In our observations the star
drifted by as much as half a pixel (see Figure 2.1), and we found that the standard
linear PLD produced correspondingly poor fits. We account for this increased drift
by developing a new variant of PLD:

𝐿 (𝑡) = 𝑓 (𝑡) (1 + 𝑚(𝑡 − 𝑡0)) ©­«
𝑛∑︁
𝑖=1

9∑︁
𝑗=1
𝑐𝑖 𝑗𝑃 𝑗 (𝑡)𝑖ª®¬ , (2.2)

where the linear slope 𝑚 is a free parameter and 𝑛 is the highest order used in the
model. This is similar to Luger et al. (2016), except that we neglect cross terms.
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(a) 3.6 µm

(b) 4.5 µm

Figure 2.1: Raw photometry and 𝑥 and 𝑦 position as a function of orbital phase for
HD 149026b. The top panel shows the 3.6 µm data, and the bottom panel shows the
4.5 µm data. Fluxes have been divided by the median value, and all measurements
are shown binned into sets of 128 points, corresponding to a time step of 51 seconds.

We experimented with cross terms but found that they did not improve the quality
of the fits. This, combined with the combinatorial explosion in the number of cross
terms as the order is increased, convinced us to drop the cross terms.

Following Benneke et al. (2017), we have opted to include the linear term in all our
fits. The inclusion of a linear term is standard in many analyses (e.g., Stevenson
et al. 2012; Deming et al. 2015b) and can account for a variety of instrumental
and astrophysical noise sources that are not adequately corrected by the basic in-
strumental noise model. We find that adding the slope decreases the value of the
BIC substantially for WASP-33b’s 3.6 µm phase curve (Δ𝐵𝐼𝐶 = −34.5) and HD-
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(a) 3.6 µm

(b) 4.5 µm

Figure 2.2: Raw photometry and 𝑥 and 𝑦 position as a function of orbital phase for
WASP-33b. See Fig. 2.1 caption for additional information.

149026b’s 3.6 µm phase curve (Δ𝐵𝐼𝐶 = −15.3), while having little effect on the
value for HD 149026b 4.5 µm (Δ𝐵𝐼𝐶 = 0.46) and increasing it for WASP-33b 4.5
µm (Δ𝐵𝐼𝐶 = 7.7). Nevertheless, we include the linear term for all light curves for
uniformity. We also considered a quadratic term but found that it resulted in an
increased BIC for all four visits.

We tried fits in which 𝑛 ranged as high as sixth order, but found that going beyond
third order terms never led to lower BIC. Although we include the 𝑚(𝑡 − 𝑡0) term
in our instrumental noise model, following Deming et al. (2015a), it could also
represent an astrophysical drift in the stellar brightness.
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Since we use Monte Carlo Markov Chain (MCMC) to fit all parameters, one chal-
lenge is the signficant degree of degeneracy between individual pixel light curves,
which can result in long convergence times for MCMC fits. We reduce these de-
generacies and improve convergence times by carrying out a principle component
analysis (PCA) on the 𝑁 × 9𝑛 matrix of central pixel data where N is the total
number of images in each phase curve observation, resulting in a 𝑁 × 9𝑛 matrix of
reprojected central pixel data.

Astrophysical model
Our astrophysical model consists of a transit, a secondary eclipse, and a phase curve.
To model the transit and eclipse, we developed a GPU-accelerated version of batman
(Kreidberg, 2015), which is roughly 10 times faster than the CPU version. This code
has since been merged with the main repository1. When calculating the transit and
eclipse shapes we take the period from Smith et al. (2011) (WASP-33b) and Carter
et al. (2009) (HD 149026b), and allow the transit timing, inclination, transit depth,
eclipse depth, eclipse phase (common to both eclipses), and 𝑎/𝑅∗ to vary as free
parameters in our fits. We model the transit using a four-parameter nonlinear limb-
darkening law, with coefficients derived via linear interpolation from Sing (2010).
For WASP-33b, we assumed 𝑇e 𝑓 𝑓 = 7400𝐾 , log g = 4.3, and [M/H] = 0.1 (Collier
Cameron et al., 2010). For HD 149026b, we assumed 𝑇e 𝑓 𝑓 = 6160𝐾 , log(g)=4.278,
and [M/H]=0.36 (Torres et al., 2008). batman calculates the eclipse shape from
geometry alone, thus neglecting limb darkening and all other sources of planetary
brightness variation. Published radial velocity measurements and secondary eclipse
times for both WASP-33b and HD 149026b indicate that the orbital eccentricities
for both of these planets are consistent with zero (Kovács et al., 2013; von Essen
et al., 2015), and we therefore fix the eccentricities of both planets to zero in our fits.

Following Cowan & Agol (2008), we model the planet’s phase variation as a series
expansion in sine and cosine, where we only consider first-order sinusoidal terms:

𝐿𝑝 = 𝐶 + 𝑐1 cos(2𝜋𝑡/𝑃) + 𝑐2 sin(2𝜋𝑡/𝑃), (2.3)

where P is the orbital period. Although we also explored fits with second order
harmonic terms, we found that these did not improve the quality of the fit for either
planet.

1https://github.com/lkreidberg/batman

https://github.com/lkreidberg/batman
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Noise model
For HD 149206, which has a relatively quiet host star, we assume the noise is Gaus-
sian and uncorrelated (i.e., white) and allow the value of the per-point uncertainty
in each bandpass to vary as a free parameter in our fits. However, as discussed in
§2.2, WASP-33 has quasi-periodic stellar oscillations on the order of 0.1% that need
to be accounted for in order to achieve a good fit.

It is possible to model these oscillations using sinusoidal functions or wavelets, as
done by other authors (i.e., Kovács et al. 2013; Deming et al. 2012; von Essen et al.
2014). However, we decided to use the Gaussian process code celerite (Foreman-
Mackey et al., 2017) to fit these pulsations non-parametrically. Gaussian Processes
treats the pulsations as a form of correlated noise whose properties are described
by a parameterized covariance matrix fitted to our data. This avoids the need to
impose a functional form on the oscillations, and allows the oscillation modes to
depart from perfect periodicity over the course of the observation. We also tried
using a combination of three sinusoids to fit the stellar pulsations, but found that
for the WASP-33b 3.6 µm light curve, this decreased the standard deviation of the
residuals by only 10%, compared to 54% for the GP code. Three sinusoids require
six free parameters, as compared to the five parameters of our GP model.

celerite models the covariance matrix with a function that depends only on
𝜏 = |𝑡𝑖 − 𝑡 𝑗 |, the time difference between two observations. We define the covari-
ance function as the sum of two radial kernels patterned after a simple harmonic
oscillator along with a diagonal kernel to represent the white noise (the latter term
is functionally the same as the white noise parameter in our HD 149026 fits). The
kernel 𝑘 (𝜏) representing the correlated noise component is then:

𝑘 (𝜏) = 𝑆0𝜔0𝑄𝑒
− 𝜔0𝜏

2𝑄 (cos(𝜂𝜔0𝜏) +
1

2𝜂𝑄
sin(𝜂𝜔0𝜏)), (2.4)

where 𝜂 = |1 − (4𝑄2)−1 |1/2. Following the recommendation of Foreman-Mackey
et al. (2017), we combine two of these kernels to model the stellar variations. In the
first element of our combined kernel, 𝑄 is fixed to 1√

2
while 𝑆0 and 𝜔0 are allowed

to vary in our fits; this represents a non-oscillatory component that decays rapidly
with 𝜏. In the second component, all three parameters are allowed to vary in order
to model the oscillatory component of the stellar noise, which shows a dominant
frequency of approximately 21 d-1 in a Lomb-Scargle periodogram. We give the
second 𝜔0 an appropriate name: 𝜔𝑠𝑡𝑒𝑙𝑙𝑎𝑟 . This is the parameter presented in Table
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2.2. Our noise model thus consists of 6 parameters: 𝑆0, 𝜔0 for the first kernel;
𝑆0, 𝑄, 𝜔0 for the second kernel; and a white noise term.

Markov Chain Monte Carlo Fits
We explore the parameter space for our model and determine best-fit parameters
using a Markov chain Monte Carlo (MCMC) analysis. We carry out our fits using the
emcee package (Foreman-Mackey et al., 2013), which is a Python implementation
of an affine-invariant ensemble sampler. This approach allows for more efficient
exploration of highly correlated parameters spaces, as proposed steps are generated
using an ensemble of walkers whose positions are distributed along the regions of
highest probability. Our models have 24–48 free parameters, depending on planet
and wavelength, so we carry out our fits using 250 walkers in order to ensure
sufficient sampling of the parameter space.

We obtain a starting point for our fits by using the published transit and eclipse
parameters to get a model light curve, dividing the data by the model, and obtaining
PLD parameters by fitting the residuals using linear regression. For WASP-33,
the Gaussian process parameters were estimated by plotting the autocorrelation
and manually tweaking the parameters until we achieved a good match. We then
generated initial positions for each of the 250 walkers by taking the reference values
calculated above and randomly perturbing each dimension. Each dimension is
first perturbed by a number drawn from a normal distribution with a mean of 0 and
standard deviation of 1% of the nominal value. We then do an absolute perturbation,
with each dimension being perturbed by a number drawn from a normal distribution
with a mean of 0 and standard deviation of 0.01. This two-step perturbation ensures
that dimensions whose initial values are 0, as well as dimensions whose initial
values are far from 0, are both sufficiently spread out. Although this is a very broad
distribution relative to the final uncertainties in these parameters, it ensures that our
fits are able to reliably identify the global maximum in the likelihood function.

We first run emcee for 100,000 steps, resulting in a total of 25 million steps in the
combined chain. We then take the single step with the highest likelihood from this
chain, which should be very close to the global maximum, and initialize a new set of
250 walkers to a Gaussian ball centered around that point. The standard deviation of
this ball for a given dimension is 10−4 of the initial value. We then burn in this new
set of walkers and run emcee for an additional 100,000 steps. We determine our
final posterior probability distributions using the last half of this chain, and confirm
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that the acceptance rate for this section of the chain is between 20 and 50 percent.
We visually inspect the progress of randomly chosen walkers to check that there is
no overall trend, and that the number of steps is appreciably larger than the period of
quasiperiodic oscillations, if any. Finally, we check for convergence by calculating
the average autocorrelation length for all walkers and ensure that the number of steps
for each walker is at least ten times the length for each model parameter.

Model Selection and Optimization of Photometry
For each planet and each wavelength, we need to choose the optimal order (𝑛 in
Equation 2.2) for our PLD model, the photometric aperture used to generate our
light curve, and the size of the bins used in the fits. As discussed in Deming et al.
(2015a) and Kammer et al. (2015), the PLD method performs better when it is fit
using binned light curves.

We first determine the optimal PLD order by fitting light curves generated using
an aperture of 2.5 and a bin size of 128, which are representative of the optimal
values in previous fits to Spitzer data sets (e.g., Wong et al. 2015b). We run MCMC
fits for models with PLD orders ranging between 1 and 5. In each fit, we calculate
the Bayesian Information Criterion (BIC) value (Kass & Raftery, 1995) for every
position in the chain, and then calculate the median BIC over the entire chain. We
then select the order with the lowest median BIC for our final version of the model.
A spot check reveals that using maximum BIC instead of median BIC does not
change the result.

We next choose the optimal photometric aperture by repeating our MCMC fits to
photometry generated using all 20 apertures, where we fix the order of our PLD
model to the optimized value and keep the same bin size as in our previous fits.
In this case all of our models have the same number of free parameters, and we
therefore select the aperture that produces the highest median likelihood over our
MCMC chain. We also consider an alternative aperture selection metric where
we compare the median (best-fit) white noise parameters for each aperture on the
assumption that the best aperture should have the smallest white noise value. We
find that this gives very similar results to our previously adopted likelihood metric.
We list our final choice of aperture for each observation in Table 2.1.

The bin size is more complicated to optimize, as it represents a trade-off between
minimizing the noise on short versus long timescales. If it is too big, we average over
pointing variations and this can degrade the quality of the PLD model and increase
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the uncertainties in our model parameters. If it is too small, the PLD parameters
adjust themselves in such a way as to minimize residuals on the shortest timescales
(∼seconds) at the expense of large timescale residuals—even though the latter is
closer to the timescale of the astrophysical variations and can bias our estimates for
the astrophysical model parameters. We consider bin sizes ranging from 1 to 4096
and find that a bin size of 128, corresponding to a time interval of 51 seconds, is
a good compromise. 51 seconds is much longer than the shortest pointing jitter
variations, which have a timescale of seconds, but much shorter than the timescale
of any astrophysical signal. We therefore use 128 as the bin size for our final fits to
all four phase curves.

The optimal results are presented in Table 2.1.

2.5 Discussion
Figures 2.3 and 2.4 each show the phase curve model, the systematics-corrected
observations, and the fit residuals for the highest likelihood iteration of the MCMC
chain. Figure 2.5 shows the posterior probability distributions for our HD 149026b
4.5 µm model. The triangle plot for our HD 149026b 3.6 µm model has similar
correlations, while the model parameters for WASP-33b are much more Gaussian
and less correlated.

In Table 2.2, we present the results of our fits, including the secondary eclipse
depth, phase amplitude, and phase offset at 3.6 and 4.5 µm for each planet. Here, the
secondary eclipse depth (𝐹𝑝) is defined as the planetary flux at the center of eclipse
divided by the stellar flux. Unlike the most commonly used secondary eclipse model,
which assumes that the brightness from the planet is constant over the duration of
the eclipse, this model allows for variations in the planet’s brightness during this
interval (see Lewis et al. 2013 for a discussion of the importance of this approach
when fitting planets on highly eccentric orbits). The phase amplitude is defined as
the amplitude of the sinusoidal phase curve, 𝐴 =

√︃
𝑐2

1 + 𝑐
2
2. The phase offset is

the difference in degrees between the secondary eclipse center and the phase curve
maximum, with a negative offset meaning the maximum occurs before the center of
the eclipse.

In Table 2.2, we also present noise properties for each light curve. These include the
measured white noise (𝜎wℎ𝑖𝑡𝑒), the theoretical photon noise (𝜎pℎ𝑜𝑡𝑜𝑛), the standard
deviation of the residuals of the best fit model (𝜎t𝑜𝑡), and the lag-1 autocorrelation
of said residuals—the last being a measure of correlated noise.
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Overall quality of fits and problems with the HD 149026b 3.6 µm phase curve
For every observation except HD 149026b at 3.6 µm, our higher order PLD model
appears to provide a satisfactory fit to the data; as shown in Table 2.2, these ob-
servations have a measured white noise only 10-20% higher than the photon noise
limit. As shown in Figure 2.3, the HD 149026b 4.5 µm observations have reason-
able residuals, with no prominent unremoved systematics. WASP-33b residuals are
harder to evaluate visually, but the small measured white noise indicates that most
sources of error other than photon noise have been accounted for.

In contrast to the good general quality of the other light curves, the HD 149026b 3.6
µm observation should be treated with skepticism. We find that the data strongly
prefer a large positive phase offset, which is inconsistent with the negative offset
at 4.5 µm and is difficult to reproduce with thermal emission from standard GCMs
assuming synchronous rotation (Heng & Showman, 2015).

The data themselves are of unusually low quality. This observation is divided into
two segments with a 2.4 hour gap, corresponding to a telescope downlink break.
In each segment the star’s position varies over an approximately oval region with a
dimension of 0.5 pixels in the 𝑥 direction and 0.2 pixels in the 𝑦 direction, and the
two oval regions are themselves separated by 0.5 pixels. During the first segment
the star is relatively close to the center of the central pixel, but after the repointing
required for the data downlink the star’s position in the second segment falls on an
adjacent pixel. It is very close to the edge, with that pixel receiving 40% of the light
and the second brightest pixel receiving 20%.

All of this bodes poorly for PLD correction, or for any other correction algorithm.
Not surprisingly, we find that the RMS of the fit residuals for the second segment is
17% higher than in the first segment, providing tangible evidence for the persistence
of these edge effects. It should be noted that none of these problems appear in the
other three data sets. Both WASP-33 observations are continuous, and the star’s
position shifts over an area no bigger than 0.2 by 0.2 pixels. Although the 4.5
µm observations for HD 149026 also include a downlink break in the middle, the
telescope was able to return the star to approximately the same position at the end
of the downlink and as a result the data from both segments span a single 0.7 x 0.2
pixel oval centered near the middle of the pixel.

We experimented with many different models for the data. We initially tried fitting
the 3.6 µm HD 149026 data with a single systematics model utilizing the same 3×3
pixel postage stamp centered on the middle of the array that we used for our other
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Figure 2.3: Normalized light curve for our 3.6 µm (top) and 4.5 µm (bottom)
observations of HD 149026b with our instrumental noise model divided out (blue
filled circles) and a representative model fit overplotted for comparison (red line).
The upper two panels show the same light curve and model with a different 𝑦 axis
range. We show the residuals from this solution in the lower panel. All three panels
use a bin size of 1024 points (6.8 minutes).

data sets. However, because the star is offset relative to this postage stamp during
the second segment of data, this fit resulted in prominent systematics in the residuals
for the second segment and a best-fit phase offset of approximately 60°. We then
considered a separate Gaussian Process noise model for the two segments, where
the second segment was represented by a simple harmonic oscillator kernel. The
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Figure 2.4: Normalized light curve for our 3.6 µm (left) and 4.5 µm (right) obser-
vations of WASP-33b with the instrumental noise model divided out (blue filled
circles) and a representative model, including the Gaussian Process stellar pulsation
model, overplotted for comparison (red line). All three panels use a bin size of 128
points (51 seconds). See Figure 2.3 caption for more details.

results did not change. Other models we tried including fitting only the first segment
and introducing a separate linear slope for both segments.

In the end, we settled upon a separate noise and systematics model for each segment.
Each segment therefore has its own PLD parameters, error parameter, and linear
slope. This drastically reduced the residual systematics in the second segment.
Compared to the model where both segments had the same noise and systematics
model, this segmented model has 9 additional free parameters and Δ𝐵𝐼𝐶 = −926.
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Figure 2.5: Posterior probability distributions for our fit to HD 149026b’s 4.5 µm
phase curve; also known as a triangle plot. The triangle plot for HD 149026b 3.6
µm is similar, while those for WASP-33b are more Gaussian and less correlated.

We found a best-fit phase offset of approximately 30°, compared to 60° with the
simpler model.

We stress that the phase offset and amplitude are likely unreliable even in this
improved version of the fits. We adjusted the bin size to see what effect it has on the
phase offset, and found that it monotonically decreases from 80 degrees west to 80
degrees east as the bin size increases from 1 to 4096. Similarly, the phase amplitude
ranges from 190 ppm to 950 ppm, although it does not change monotonically with
bin size. Although we remain concerned about the reliability of the phase curve fit in
this bandpass, we conclude that the measured transit should be relatively unaffected
by these structures due to its short timescale and large amplitudes. The secondary
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eclipse depth is somewhat more problematic. As can be seen in Figure 2.3, the light
curve has visible systematics after the downlink break, with an upward fluctuation
before the eclipse and a downward fluctuation during the eclipse. These likely bias
the estimated eclipse depth. Despite this bias, we find that our 3.6 µm secondary
eclipse depth is in agreement with the published value in this band from Stevenson
et al. (2012).

Transit parameters and updated ephemerides
We recovered the transit time, 𝑎/𝑅∗, 𝑖, and 𝑅𝑝/𝑅𝑠 from the chain. The results are
shown in Table 2.2. Notably, we do not see any of the transit anomalies seen by
Kovács et al. (2013) in the WASP-33b light curves. These anomalies included a 8
mmag rise in brightness across the transit (Figure 8 of Kovács et al. 2013) and a
1.5 mmag mid-transit bump (their Figure 10), both of which were seen by multiple
observers.

Table 2.3: Updated Ephemerides for both planets

Parameter HD 149026b WASP-33b
Period (d) 2.87588874 1.21987089
𝑇0(BJDUTC) 2454456.78760 2454163.22367

Error in period (d) 5.9 × 10−7 1.5 × 10−7

Error in 𝑇0 (d) 0.00016 0.00022

We combined our best-fit transit times for both planets with previously published
transit times to calculate updated ephemerides. For HD 149026b, we used Charbon-
neau et al. (2006), Winn et al. (2008), Nutzman et al. (2009), Knutson et al. (2009),
Carter et al. (2009) and Stevenson et al. (2012).

For WASP-33b, we used Collier Cameron et al. (2010), Smith et al. (2011), Kovács
et al. (2013), von Essen et al. (2014), Johnson et al. (2015), and Turner et al. (2016).
The updated ephemerides are shown in Table 2.3, and O-C plots for all transits are
shown in Figure 2.6 and 2.7. We tested the goodness of fit with 𝜒2, finding that both
planets are consistent with a linear ephemeris—WASP-33b to well within 1𝜎, and
HD-149026b to within 2𝜎 (p=0.07). For HD 149026b, both the period and transit
timing are fully consistent with Carter et al. (2009). For WASP-33b, both the period
and transit timing are fully consistent with Kovács et al. (2013).

It is notable that for both planets, the radius ratio is inconsistent between the two
channels, differing by 3% for HD 149026b and 5% for WASP-33b. This could
be due to imperfect modeling of stellar oscillations for WASP-33b, or to uncor-
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rected systematics for both planets. The difference corresponds to roughly five
atmospheric scale heights for HD 149026b and twelve scale heights for WASP-33b.
Similarly large discrepancies have been reported in ground-based transit observa-
tions of other planets (e.g., Mancini et al., 2016), but these appear to be inconsistent
with most model predictions as well as space-based transmission spectroscopy of
similar planets (e.g., Sing et al. 2016).

Kovács et al. (2013) carried out a comprehensive analysis of ground-based WASP-
33b light curves, consisting of amateur and professional data in the optical and near
infrared bands. They found 𝑅𝑝/𝑅𝑠 = 0.1143±0.0002, which is a remarkable 6-10𝜎
higher than our Spitzer values. However, the authors note anomalies in many of their
data sets, including a mid-transit hump, a skewed transit shape, and discrepancies
in transit depth measurements that are much larger than the formal errors.

HD 149026b has more consistent transit depths in the literature. Winn et al. (2008)
found 𝑅𝑝/𝑅𝑠 = 0.0491+0.0018

−0.0005 in Stromgren (b+y)/2 photometry, Nutzman et al.
(2009) found 𝑅𝑝/𝑅𝑠 = 0.05158 ± 0.00077 at 8 µm, and Carter et al. (2009) found
𝑅𝑝/𝑅𝑠 = 0.05416+0.00091

−0.00070 with NICMOS (1.1-2.0 µm). The last measurement is
2− 3𝜎 higher than our Spitzer values, but our results are consistent with Winn et al.
(2008) and Nutzman et al. (2009).

For HD 149026b, our measured secondary eclipse depths are fully consistent with
those measured by Stevenson et al. (2012) in the same Spitzer bands using BLISS
mapping. For WASP-33b, the eclipse depth is in good agreement with Deming et al.
(2012) at 4.5 µm, although it is 1.7𝜎 higher at 3.6 µm. This might be because of
imperfect modeling of stellar pulsations, leading to underestimated error bars in both
papers. Since we have a longer observational baseline over which to characterize
stellar pulsations and measured two eclipses instead of one, our measurement of the
eclipse depth should be less sensitive to the effects of stellar pulsations than Deming
et al. (2012).

Constraints on atmospheric circulation
General circulation models

We present cloud-free GCMs for HD 149026b and WASP-33b calculated using the
Substellar and Planetary Atmospheric Radiation and Circulation (SPARC) model
(Showman et al., 2009), which couples the MITgcm (Adcroft et al., 2004) to a
two-stream implementation of the multi-stream, plane-parallel radiative transfer
code of Marley & McKay (1999). The MITgcm is an atmospheric and oceanic
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Figure 2.6: Observed minus calculated transit times for WASP-33b calculated using
our updated ephemeris. Previously published results are shown as blue filled circles,
and our results are shown as red open circles. The black line indicates the predicted
transit times at each epoch assuming a constant ephemeris, and the gray region
indicates the 1𝜎 confidence interval.

Figure 2.7: Observed minus calculated transit times for HD 149026b calculated
using our updated ephemeris; see Fig. 7 caption for more details.

circulation model that solves the primitive equations, which are relevant for stably
stratified atmospheres with large horizontal/vertical aspect ratios (generally true for
hot Jupiters). The equations are solved using a finite-volume discretization on a
cubed-sphere grid, which allows longer time steps and increases the accuracy near
the poles as compared to a traditional longitude-latitude grid. The radiative transfer
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Table 2.4: Phase curve parameters from GCMs

Planet TiO? Metallicity Band (µm) 𝐹𝑝(ppm) A (ppm) 𝜙(°)
WASP-33b No 1× 3.6 4086 1664 −9.9
WASP-33b No 1× 4.5 4597 1903 −9.6
WASP-33b Yes 1× 3.6 4151 1688 −8.8
WASP-33b Yes 1× 4.5 4779 1981 −7.6

HD 149026b No 30× 3.6 430 167 −11
HD 149026b No 30× 4.5 616 252 −7
HD 149026b No 1× 3.6 219 31.9 −55
HD 149026b No 1× 4.5 260 49.6 −45

code employs the correlated-k method with 11 bands optimized for accuracy and
computational efficiency. The opacities are calculated assuming local thermody-
namic and chemical equilibrium. This code has been used extensively to model
the atmospheric circulation of exoplanets over a wide range of planetary properties
(e.g., Lewis et al. 2010; Kataria et al. 2015, 2016; Wakeford et al. 2017). After
running the GCM, we extract light curves following the method of Fortney et al.
(2006).

We list the predicted eclipse depths, amplitudes, and phase offsets at 3.6 and 4.5 µm
for each model in Table 2.4; these can be compared directly to the measured values
in Table 2.2.

For HD 149026b, we consider models with solar and 30× metallicity and compare
the resulting phase curves to our best-fit phase curve model in Figure 2.8. We only
consider models without TiO, as Stevenson et al. (2012) found that this planet’s
dayside emission spectrum was best described by a model without a temperature
inversion. We find that the solar metallicity GCM predicts a relatively small phase
curve amplitude in both bandpasses, in sharp disagreement with our data. The 30×
solar metallicity model has a higher opacity in both Spitzer bandpasses and therefore
probes lower pressures (higher altitudes) than the solar metallicity model, leading
to larger predicted phase curve amplitudes. This model comes closer to matching
the data, although it underestimates the amplitude at 3.6 µm and overestimates it at
4.5 µm. We note that neither the 1D models shown in Stevenson et al. (2012) nor
the 3D GCMs are able to match the measured secondary eclipse depths at 3.6 and
4.5 µm, and speculate that these discrepancies in both secondary eclipse depths and
phase curve amplitudes might be resolved by increasing the amount of CO and/or
CO2 in the atmosphere. Both CO and CO2 have absorption bands in the 4.5 µm
Spitzer bandpass, increasing their abundance will accordingly decrease the planet’s
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(a) Solar metallicity

(b) 30× solar metallicity

Figure 2.8: Comparison of the GCM-generated phase curves (thick lines) for HD
149026b with our measured phase curves (thin lines). The 24 thin lines each
represent one randomly selected MCMC step, and the dispersion in these lines is
therefore representative of the uncertainties in the measured phase curve shape. No
TiO is included. 3.6 µm results are plotted as blue curves while 4.5 µm results are
in red.

brightness in this band relative to the 3.6 µm band. Previous models for GJ 436b
(Moses et al., 2013; Morley et al., 2017) serve as a useful demonstration of the
effect of very high atmospheric metallicities (> 200 − 300× solar) on the strength
of the CO absorption in the 4.5 µm band. On the planet’s night side, which is cool
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enough to fall near the transition from CO to methane-dominated carbon chemistry,
disequilibrium chemistry due to quenching and horizontal transport could increase
the relative amount of CO and CO2 (Cooper & Showman, 2006).

(a) Without TiO

(b) With TiO

Figure 2.9: Comparison of GCM-generated phase curves (thick lines) for WASP-
33b with our measured phase curves (thin lines). The 24 thin lines each represent
a randomly selected MCMC step, and the dispersion in these lines is therefore
representative of the uncertainties in the measured phase curve shape. Both models
assume solar metallicity. 3.6 µm results are plotted as blue curves and 4.5 µm results
are in red.
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For WASP-33b, which has a much lower bulk density than HD 149026b, we consider
only the solar metallicity case for our GCMs. As discussed in Section 2.2, this
planet is one of the most highly irradiated hot Jupiters discovered to date; its dayside
emission spectrum is best matched by models with a temperature inversion and
appears to hint at the presence of gas-phase TiO. We show predictions for two
models in Figure 2.9, including one with and the other without TiO, in order to
evaluate the effect of this molecule on its dayside emission spectrum and day-night
circulation. We find that the differences in the phase curves for these two models
are fairly subtle, and although the data are somewhat better matched by the model
without TiO, both models disagree with the observations at the 2𝜎 level. In this
case the models predict a larger phase curve amplitude and secondary eclipse depth
in both bands.

Figure 2.10: Model emission spectrum for WASP-33b, compared with observations
(black filled circles for our values, black open circles for literature values from Smith
et al. 2011; von Essen et al. 2015; Deming et al. 2012; de Mooij et al. 2013). Each
blue or green point represents the band-averaged flux ratio corresponding to the
observation at the same wavelength.

In Figure 2.10 and 2.11, we show the GCM-derived emission spectra for the two
planets. Our WASP-33b observations are consistent with both GCMs, which have
very similar emission spectra at Spitzer wavelengths. HD 149026b, on the other
hand, is highly inconsistent with both GCMs in the Spitzer 3.6 and 4.5 µm bands.
Interestingly, eclipse observations in the 5.8, 8, and 16 µm Spitzer bands seem to
favor the solar metallicity model over the 30× solar metallicity model. We speculate
that this could be because the GCMs assume gas-only opacity with no hazes or
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Figure 2.11: Model emission spectrum for HD 149026b, compared with observa-
tions (black filled circles for our values, black open circles for literature values from
Stevenson et al. (2012)). Each blue or green point represents the band-averaged flux
ratio corresponding to the observation at the same wavelength.

clouds, resulting in a very low albedo; in contrast, our phase curve data appear
to favor a high albedo (see discussion in Subsection 2.5). A high albedo would
cool the planet’s dayside, bringing the 30x model into bet- ter agreement with
the data. However, even with a reduced amplitude the 30x solar model is a poor
match for the observed spectral slope across the 3.6-4.5 um bands; this could be
explored with additional models in the future. We note that our preference for the
high metallicity model is primarily driven by the need to match the large observed
phase curve amplitudes in both bands rather than the shape of the planet’s dayside
emission spectrum. As an alternative to changing the planet’s dayside albedo, the
addition of localized clouds on the planet’s night side could increase the phase curve
amplitude for the solar metallicity model (e.g., Stevenson 2016), bringing it into
better agreement with our observations.

A simple toy model for albedo and recirculation efficiency

In this section, we use a simple toy model first presented in Cowan & Agol
(2011) to calculate average brightness temperatures, albedos, and circulation ef-
ficiencies for the two planets under the assumption that their thermal emission is
well-approximated by a blackbody and that these observations probe a similar range
in pressures across all wavelengths and longitudes. In this model, a planet’s thermal
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phase curve is described by two parameters: a Bond albedo (𝐴𝐵) and a heat redis-
tribution efficiency (𝜀). Planets absorb a fraction 1 − 𝐴𝐵 of the stellar flux on their
daysides, redistribute this energy to the nightside with the stated efficiency, and then
emit as a blackbody. In the 𝜀 = 1 case, the entire planet has the same temperature,
and energy balance gives 𝑇𝑝 = 𝑇0√

2
(1 − 𝐴𝐵)1/4 where 𝑇0 =

𝑇𝑠√
𝑎∗

and 𝑎∗ = 𝑎
𝑅𝑠

. For the
𝜀 = 0 case (i.e., no heat redistribution to the night side), the corresponding dayside
temperature is given by 𝑇𝑑 = (2/3)1/4(1 − 𝐴𝐵)1/4𝑇0 and the nightside temperature
is zero. If we define 𝜀 so that it linearly interpolates between these two extremes we
arrive at an analytic description for 𝜀 and 𝐴𝐵 as a function of the effective blackbody
temperatures for the planet’s dayside (𝑇𝑑) and nightside (𝑇𝑛):

𝜀 =
8

5 + 3(𝑇𝑑/𝑇𝑛)4 (2.5)

𝐴𝐵 = 1 −
5𝑇4

𝑛 + 3𝑇4
𝑑

2𝑇4
0

. (2.6)

Here, and throughout the paper, we define the nightside and dayside to mean an
orbital phase of 0 and 0.5, respectively. Previous studies have alternated between
this definition and one in which day and night correspond to the hottest and coldest
hemispheres on the planet.

The hemisphere-averaged planet brightness temperature is given by Equation 6 in
Cowan & Agol (2011), and depends on two things: the brightness temperature of the
star at the observed wavelength, and the ratio 𝜓(𝜆) between normalized planetary
flux and transit depth at the observed wavelength. We first calculate the stellar
brightness temperature in each band using the closest model in the BT-NextGen
(AGSS2009) spectral grid, as provided by the Spanish Virtual Observatory2. The
spectral grid spacing is fine enough that choosing the adjacent model changes the
brightness temperature by less than 1%. As a check on BT-NextGen, we also
calculated brightness temperatures using Phoenix models (Husser et al., 2013), and
found that the results differed on average by only 0.4%. We next calculate the
planet-star brightness ratio 𝜓(𝜆) for the day side by dividing the eclipse depth 𝐹𝑝
by the transit depth, and for the night side by dividing 𝐹𝑝 − 2𝐴 cos 𝜙 by the transit
depth, where 𝐴 is the phase amplitude and 𝜙 is the phase offset. We then convert this
to a brightness temperature for the planet using the stellar brightness temperature
calculated earlier.

2http://svo2.cab.inta-csic.es/theory/newov2/index.php

http://svo2.cab.inta-csic.es/theory/newov2/index.php
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Table 2.5: Dayside and nightside brightness temperatures, Bond albedo, and recir-
culation efficiency for each channel

Planet 𝜆(𝜇𝑚) 𝑇𝑏,𝑑𝑎𝑦 (𝐾) 𝑇𝑏,𝑛𝑖𝑔ℎ𝑡 (𝐾) 𝐴𝐵 𝜀

WASP-33b 3.6 3082 ± 92 1952+125
−134 0.25+0.09

−0.10 0.34 ± 0.06
WASP-33b 4.5 3209+89

−87 1498+114
−118 0.25+0.08

−0.09 0.12 ± 0.03
HD 149026b 3.6 1941 ± 46 1133+290

−270 0.36+0.10
−0.16 0.26+0.26

−0.16?
HD 149026b 4.5 1649 ± 49 1018+115

−116 0.66+0.05
−0.06 0.31+0.11

−0.10

Table 2.6: Averaged brightness temperatures, Bond albedo, and recirculation effi-
ciencies

Parameter WASP-33b HD 149026b
𝑇d𝑎𝑦 3144 ± 114 1804 ± 98
𝑇n𝑖𝑔ℎ𝑡 1757 ± 88 1032 ± 120
𝐴𝐵 0.25+0.09

−0.10 0.53+0.09
−0.11

𝜀 0.22+0.05
−0.04 0.24+0.11

−0.09
𝑇𝜀=0 3514 ± 30 2276 ± 37
𝑇𝑑/𝑇0 0.81 ± 0.04 0.72 ± 0.04

We obtain uncertainties on these brightness temperature estimates using the posterior
probability distributions from our MCMC fit. For each step in our MCMC chain,
we calculate 𝜓(𝜆) for the day and night sides from the chain itself. With these
parameters, we then calculated Td and Tn in each bandpass, using the error-weighted
average of both bandpasses to calculate the planet’s corresponding albedo and
recirculation efficiency. Finally, we compare to Figure 7 in Cowan & Agol (2011)
by calculating the quantities 𝑇𝜀=0 = (2/3)1/4𝑇0 and 𝑇𝑑/𝑇0 = (1 − 𝐴𝑏)1/4( 2

3 − 5
12𝜀)

for each planet. Although WASP-33b has a higher 𝑇𝜀=0 than all of the planets
in Figure 7 of Cowan & Agol (2011), we find that its temperature ratio is fully
consistent with that of other highly irradiated (𝑇𝜀=0 > 2500𝐾) planets. Similarly,
𝑇𝑑/𝑇0 for HD 149026b is in good agreement with the values for other planets with
similar irradiation levels despite lingering questions about the reliability of the 3.6
µm results. We list the relevant values for each planet in Tables 2.5 and 2.6.

Comparison with other planets
WASP-33b is very unusual among the more than two hundred hot Jupiters discovered
to date, being the second most irradiated hot Jupiter currently known (KELT-9b
being the first). Despite this peculiarity, its albedo and recirculation efficiency
appear largely similar to those of other hot Jupiters observed to date. In order to
compare our planets to other hot Jupiters, we produce an updated version of Figure
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3 from Schwartz et al. (2017), which plots contours corresponding to the albedo and
efficiency values estimated in 2.5. Our version of the plot is shown in Figure 2.12a.
Although we largely follow the method described in this paper, our approach differs
in several aspects:

1. Uncertainties are propagated using a Monte Carlo method, instead of dividing
up the albedo-efficiency parameter space into cells and computing 𝜒2 for each
cell.

2. If the dayside or nightside flux in an iteration is negative, we exclude the entire
iteration, while Schwartz et al. (2017) set the corresponding temperature to
zero. This tends to slightly lower the recirculation efficiency.

3. Schwartz et al. (2017) assume a geometric albedo of 7% and subtract the
reflected light eclipse depth from the measured eclipse depth. The actual geo-
metric albedos of these planets are poorly constrained by current observations
and an assumed albedo of 7% has a negligible effect on our results, so we
instead assume an albedo of zero.

Another complication is in the treatment of WASP-12b. The WASP-12b phase curve
paper (Cowan et al., 2012) included results from two analysis methods: polynomial
fitting and point-by-point decorrelation. We used the latter set of phase curve and
eclipse depth parameters in our paper as it results in a more consistent phase curve
offset between the two bands. Although the two methods produced similar phase
curve parameters for WASP-12b at 4.5 µm, they were very different for 3.6 µm,
and our results differ substantially depending on which version we choose. We
downloaded the data in each bandpass ourselves, as well as an additional pair of
phase curve observations taken in 2013. All four data sets were analyzed with the
same higher-order PLD approach used for WASP-33b and HD 149026b. For 4.5
µm, our two results were consistent with each other and with both methods in Cowan
et al. (2012). For 3.6 µm, our two results were consistent neither with each other nor
with either method in Cowan et al. (2012). We therefore conclude that the properties
of WASP-12b are not well-constrained by the current observations, although we still
show it in our plots.

We show two versions of the albedo-efficiency plot in Figure 2.12 , including one
with all published thermal secondary eclipse and phase curve data and another
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(a) All wavelengths included

(b) Only Spitzer 3.6 and 4.5 µm data included

Figure 2.12: Albedo and recirculation efficiency for all exoplanets with published
infrared phase curves, calculated following Schwartz et al. (2017), assuming the
planet radiates as a blackbody.

which only considers 3.6 and 4.5 µm Spitzer data in order to ensure a more uniform
analysis. The only planet that moved significantly was WASP-12b.

This figure shows that WASP-33b has a Bond albedo and recirculation efficiency that
appear largely similar to those of other hot Jupiters despite its high irradiation level.
HD 149026b, however, appears to have an unusually high albedo in our toy model. Its
best-fit albedo is higher than that of all other planets with thermal phase curves, and it
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Figure 2.13: Logarithm of mass vs. albedo for exoplanets with phase curves. Albedo
is calculated using the simple toy model described in Schwartz et al. (2017), in which
the planet is assumed to radiate as a blackbody. We also overplot the best-fit linear
function as a black line, with the 1𝜎 confidence interval shown in gray.

is also higher than any of the optical geometric albedos measured by Kepler as shown
by Figure 7 of Schwartz & Cowan (2015). This might reasonably be explained by the
presence of a reflective cloud layer in this planet’s upper atmosphere; the presence
of such a cloud layer could be confirmed with future transmission spectroscopy.

Parmentier et al. (2016) calculated the effective cloud coverage for a range of equilib-
rium temperatures, three cloud top pressures, and a number of cloud compositions.
Although they focused on investigating the role of clouds at optical wavelengths
rather than in the Spitzer bands, we can nonetheless utilize their results to explore
the potential cloud species that might be present in HD 149026b’s atmosphere. They
report evidence for the presence of silicate clouds for 𝑇𝑒𝑞 > 1600𝐾 , presence of
MnS clouds for 𝑇𝑒𝑞 < 1600𝐾 , and absence of silicate clouds for 𝑇𝑒𝑞 < 1600𝐾 . HD
149026b has a zero-albedo equilibrium temperature of 1700 K, very close to the
1600 K dividing line. If there are silicate clouds, their Figure 13 shows that the
dayside effective cloud coverage is expected to be 30-80%, depending on the cloud
top pressure, while the nightside coverage is 50-100%. If there are MnS clouds but
no silicate clouds, the dayside cloud coverage would be 0-20%, while the nightside
cloud coverage would be 20-100%.

Mahapatra et al. (2017) used a kinetic, non-equilibrium cloud formation model to
study cloud structures and compositions. For HD 149026b, they found that clouds
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are likely composed of many different species, with TiO2 dominant at the cloud top
(102.5 bar) while species such as Fe, SiO, and MgSiO3 are common deeper down.

One of the most interesting aspects of Figure 2.12 is that it shows no obvious
correlations between irradiation temperature, albedo, and efficiency. In fact, it
appears that planets with very different irradiation temperatures can have similar
albedos and recirculation efficiencies. We plotted mass versus efficiency, irradiation
temperature versus albedo, and irradiation temperature versus efficiency, finding
that the two least massive planets in our sample—HD 149026b and HD 209458b—
are outliers in both albedo and efficiency. In Wong et al. (2015b) we previously
suggested a possible correlation between mass and albedo, but after additional
data was collected, we concluded in Wong et al. (2016) that a simple mass-albedo
correlation was no longer tenable. However, we see a strong correlation when we
plot these two parameters in Figure 2.13. The linear model has a lower BIC than the
constant-albedo model (Δ𝐵𝐼𝐶 = −12.5), indicating a strong preference for the linear
model. In addition, the error bars on the albedo seem overestimated, possibly due
to the large systematic error we deliberately introduce (in accordance with Cowan
& Agol 2011) in converting from brightness temperature to physical temperature.
After subtracting the best fit linear model, we find 𝜒2 = 1.86 for the residuals; with
8 degrees of freedom, there is only a 1.5% probability of obtaining a 𝜒2 this low. If
the errors were correctly estimated, Δ𝐵𝐼𝐶 would be even more negative, preferring
the linear model even more strongly. Our best fit line has slope 𝑚 = −0.326± 0.047
and intercept 𝑏 = 0.366 ± 0.016. Coincidentally, 0.366 is very close to the Bond
albedo of Jupiter itself.

The physical explanation for the decrease in albedo with mass is unclear. One
possibility is that increased surface gravity makes it harder for cloud particles to
be kept aloft, as shown in Equation 10 of Heng & Demory (2013). The increased
cloudiness at low surface gravity has been observed on brown dwarfs (Faherty
et al., 2016). The main difficulty with this explanation is that we have also plotted
the relation between surface gravity and albedo, and although an anticorrelation
is seen, it is much less statistically significant than the mass-albedo correlation
(Δ𝐵𝐼𝐶 = −2.4, compared to Δ𝐵𝐼𝐶 = −12.5).

Phase curve offsets

The toy model discussed above derives recirculation efficiency from the observed
nightside flux. However, the nightside flux can only be measured by reference to



43

the secondary eclipse, which is hours or days away. This makes the measurement
particularly sensitive to instrumental noise sources on long timescales, including the
long-term pointing drift present in many phase curve observations. As an example,
the Spitzer phase curves for WASP-43b imply a negative nightside flux, which is
unphysical (Keating & Cowan, 2017).

In this section we explore correlations between phase offset and other planetary
parameters. In GCMs, both the size of the phase offset and the relative temperature
gradient between the day and night sides increase with increasing depth (pressure)
in the atmosphere (e.g., Showman et al. 2009). We therefore consider whether or not
the measured phase offset might be useful as a proxy for recirculation efficiency. We
plotted recirculation efficiency against phase offset and found that although planets
with very large phase offsets have somewhat high efficiencies and planets with very
small phase offsets have somewhat low efficiencies, the correlation is by no means
exact. We conclude that either phase offset is an imperfect proxy for recirculation
efficiency in practice, or the recirculation efficiency calculated using our simple toy
model is simply not accurate enough for the correlation to be obvious.

Figure 2.14: Phase offset vs. irradiation temperature for all hot Jupiters on circular
orbits with thermal phase curves. Blue represents 3.6 µm while red represents 4.5
µm. The light blue point is the 3.6 µm observation for HD 149026b, which we
discuss in §2.5. The black lines represent the best-fit bilinear model, while the gray
region indicates the 1𝜎 confidence interval.

Figure 2.14 shows a strong correlation between a planet’s irradiation temperature
𝑇0 = 𝑇e 𝑓 𝑓 /

√
𝑎∗ and its phase offset. There is a clear downward trend until 3400𝐾 ,
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Figure 2.15: Phase offset vs. irradiation temperature for GCM-modeled planets.
The green line is the best fit linear model to the GCM data, while the black lines
represent the best fit bilinear model to the observations. The black lines are identical
to the ones in Figure 2.14.

after which the trend reverses direction. We tested the significance of the trend by
fitting the data with five models: a constant phase model, a linear model, a bilinear
model, a bilinear model with the slope of the second line segment fixed to 0, and a
bilinear model with both the slope and intercept of the second line segment fixed to
0. We obtain a BIC of 185, 168, 136, 145, and 186, respectively. Thus, the reversal
at 3400𝐾 , despite being based on only three data points, is significant from a purely
statistical perspective. The fit results for the first line segment are 𝑏1 = 47.7°±4.7°,
𝑚1 = −0.014 ± 0.002 deg/K; for the crossover point, 𝑇𝑐 = 3410 ± 110; and for the
second line segment, 𝑚2 = 0.039+0.017

−0.011 deg/K.

Despite the statistical significance, the rise is still based only three planets, and may
not be real. The test assumes Gaussian errors, while the actual errors are in reality
both asymetric and non-Gaussian. Even more importantly, Spitzer light curves
are notorious for having bizarre and unexplained instrumental systematics which
can affect the fitted parameters in ways that are subtle and difficult to diagnose.
In this paper alone, we have seen this for HD 149026b in the 3.6 µm band, and
WASP-12b for two different observations in the 3.6 µm band. Other examples of
problematic behavior include Stevenson et al. (2017), where two separate visits in
the same band resulted in very different nightside fluxes. A sprinkling of unmodelled
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systematics, plus a smattering of bad luck, could be sufficient to destroy the final
rise in temperature.

On the other hand, there are physical reasons to be less skeptical. First, although
the reversal at 3400𝐾 has never been predicted or previously noted, the initial drop
is unsurprising—phase offsets are expected to decrease with increasing tempera-
ture because the radiative timescale drops steeply with temperature (Perez-Becker
& Showman, 2013; Komacek & Showman, 2016). Second, it is also clear that
some kind of break must occur at 3400𝐾—if the downward trend continued, the
phase offset would become westward at higher temperatures, which is physically
implausible.

The only significant outlier in this trend is the 3.6 µm observation for HD 149026b,
which we discuss in §2.5. Additionally, as discussed in §2.5, Cowan et al. (2012)
presented two contradictory sets of results for WASP-12b’s phase curve, based on
two distinct analysis methods. Had we used the other version, the 4.5 µm phase
curve offset would have been nearly identical, but the 3.6 µm phase curve offset
would be at a physically implausible 53◦—another clear outlier. The fact that both
potential outliers in this plot are based on problematic data sets gives confidence to
the reality of the trend. The trend is even more striking when one considers that it
is between two relatively reliably measured quantities. The irradiation temperature
is dependent only on the stellar effective temperature and 𝑎/𝑅∗, both of which are
easily measured. The phase offset is harder to measure (e.g., §2.5), but unlike
albedos and efficiencies, it is a purely empirical quantity.

To understand this trend, we took previously published SPARC GCM simulations
(Kataria et al., 2016) and plotted phase offset against irradiation temperature in
Figure 2.15. The sample of planets in these GCMs is different from those presented
in the observations. All models are at solar metallicity and have no TiO, in order to
ensure a more uniform comparison. As expected, the predicted phase offsets from
these models decrease with increasing irradiation temperature until approximately
3000 K. The offsets decrease at a rate of −0.017 deg/K. However, instead of rising
towards the highest temperatures they instead plateau around a minimum phase
offset of approximately 10◦. It is also worth noting that in these models the 3.6
µm bandpass has a larger phase shift (by an average of 4.1◦) for all but the coolest
planet, indicating that this wavelength probes deeper into the atmosphere. In our
observations, the 4.5 µm phase curves have larger phase shifts (and thus deeper
photospheres) than the 3.6 µm phase curves for every planet except the coldest,
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the average difference being 6.2 degrees. The universality of this trend among our
relatively diverse sample of hot Jupiters is suggestive, and should help guide future
modeling efforts in this area.

There are a combination of factors that may or may not explain the discrepancy
between observations and GCMs. For example, the addition of high altitude clouds
to the GCMs could help by decreasing the dayside photospheric pressure, which
would systematically reduce the size of the predicted phase offsets and provide
a better match to the observational data. Such clouds appear to provide a good
match to the optical phase curve offsets measured for the hot Jupiters located in the
Kepler field (Parmentier et al., 2016; Demory et al., 2013; Shporer & Hu, 2015;
Angerhausen et al., 2015) and have also been postulated to explain other infrared
phase-curve observations (e.g. Kataria et al., 2015; Stevenson et al., 2017). However,
Roman & Rauscher (2017) complicate this explanation by showing that clouds do
not always lead to lower phase offsets. They find that in the case of Kepler-7b,
inhomogenous clouds distributed along the western terminator result in a higher
phase offset, while global clouds result in a marginally lower offset, compared to
the clear atmosphere case. A super-solar metallicity atmosphere could also provide
a similar effect; enhanced metallicity results in enhanced opacities, such that the
photosphere is higher in the atmosphere where the day-night contrast is larger and the
phase offset is smaller (e.g., Kataria et al. 2015). At high temperatures, the presence
of dayside temperature inversions produced by gas-phase TiO/VO might also affect
the predicted phase offsets, as this will change the opacity of the atmosphere and
hence what altitudes are probed (e.g., Showman et al. 2009).

MHD effects such as Lorentz drag and Ohmic dissipation are also likely to be impor-
tant (e.g., Perna et al. 2010; Batygin & Stevenson 2010; Menou 2012; Rauscher &
Menou 2012; Ginzburg & Sari 2016). Because Lorentz drag and Ohmic dissipation
are two facets of the same underlying processes, we can turn to the literature on
Ohmic dissipation and radius inflation in hot Jupiters to determine the regime in
which these effects become important. For hot Jupiters with an appreciable magnetic
field, the effect of this magnetic field on the atmospheric circulation will depend
on the ionization fraction of the planet’s upper atmosphere. Previous models have
concluded that alkali metals such as Na and K will provide the dominant source
of ions in these atmospheres (e.g., Batygin & Stevenson 2010). As the ionization
fraction increases the strength of the Lorentz drag and also the amount of radius in-
flation due to Ohmic dissipation increase as well, resulting in a peak radius inflation
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at equilibrium temperatures of around 1500 K. At higher temperatures, the atmo-
spheric circulation is effectively suppressed by the magnetic drag and less energy
is deposited in the planet’s interior. Thorngren & Fortney (2017) find compelling
evidence for a peak in the radius inflation of hot Jupiters around 1500 K and a
decline thereafter, in good agreement with these models. With this picture in mind,
the addition of Lorentz drag around 1500 K is likely the explanation for why the
observed phase offsets at higher temperatures decrease to values consistent with
zero, while the GCMs predict a minimum phase offset around 10◦. However, this
simple picture appears to conflict with the observed increase in phase offset for the
most highly irradiated planets, as the amount of Lorentz drag should remain constant
over this highly irradiated regime. Although there has been some recent work on
atmospheric circulation in the MHD-dominated regime (e.g., Rogers 2017), it is not
yet clear whether more careful modeling can reproduce the observed trend in phase
offsets at these temperatures.

As a last point, we consider possible explanations for the relative offsets observed
between the two Spitzer bands. As noted earlier, the measured 4.5 µm offset is
consistent larger than the measured 3.6 µm offset for every planet except for HD
189733b, but the opposite is consistently true in the model predictions for these
planets. Atmospheric chemistry would seem to be the obvious explanation: CH4

is a major absorber within the 3.6 µm bandpass, while CO is a strong absorber
within the 4.5 µm bandpass, so the relative abundances of these two molecules
could easily shift the relative photospheric pressures in these two bands. Increasing
the amount of CH4 via vertical mixing or other disequilibrium chemistry processes
would increase the opacity and decrease the photospheric pressure in the 3.6 µm
band, resulting in a larger day-night contrast and smaller phase offset. Similarly,
decreasing the amount of CO in the atmosphere would decrease the opacity in the
4.5 µm band, shifting the photosphere to higher pressures with a smaller day-night
temperature contrast and a larger phase offset. Still, an enhanced methane abundance
would require a drastic departure from equilibrium chemistry, as CO is expected
to be the major carbon-bearing molecule at temperatures relevant to hot Jupiters.
Madhusudhan et al. (2014), for example, show that the delineation between CO and
CH4 dominance at 1500 K is at 10 bars, rising to 100 bars at 2000 K. For hot planets
the abundance of CH4 at photospheric pressures (approx. 100 mbar) should be tiny.
Even for HD 189733b, the coldest planet in Figure 14, the CH4 abundance is nearly
3 orders of magnitude below the CO abundance for any reasonable photospheric
pressure, as shown in Figure 3 of Madhusudhan et al. (2014).
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2.6 Conclusions
In this paper, we present new phase curve observations for WASP-33b and HD
149026b at 3.6 µm and 4.5 µm. Our measured parameters are in good agreement
with previously published transit and secondary eclipse observations of these two
planets, and we use our new phase curve observations to investigate the atmospheric
circulation patterns of these two planets. We use a simple toy model to estimate the
brightness temperatures, albedo, and recirculation efficiency of both planets under
the assumption that they emit as blackbodies and find that WASP-33b appears gen-
erally similar to other hot Jupiters despite its unusually high irradiation level. On the
other hand, HD 149026b has a typical recirculation efficiency but an albedo of 0.6—
the highest ever measured. This albedo strongly suggests the presence of clouds,
which could easily be confirmed with HST transmission spectroscopy. Intriguingly,
we find strong evidence for a correlation between the masses of planets with pub-
lished thermal phase curves and their inferred albedos; this may be indicative of the
role that surface gravity plays in the settling of cloud particles.

We also compared our measured phase curves for these two planets to predictions
from GCMs. For HD 149026b, we considered models with 1× and 30× solar
metallicity, both of which provided an unusually poor match to the observed phase
curve shapes. Based on this planet’s high inferred albedo and enhanced bulk
metallicity, it seems likely that even higher metallicity GCMs incorporating clouds
could provide a better match to these data. For WASP-33b, we considered models
with and without TiO; although there were still some discrepancies, these models
were overall a much better fit than in the case of HD 149026b. We note that MHD
effects likely dominate the atmospheric circulation for highly irradiated planets like
WASP-33b, and present an obvious avenue for future investigations.

Lastly, we placed these two planets in context by comparing their observed phase
offsets in each band to those of other planets. We find a strong correlation between
measured phase offset and irradiation temperature, where the observed offset de-
creases with increasing irradiation temperature to a minimum around 3400 K, and
then rises again for the most highly irradiated planets. Although this decreasing
trend with increasing irradiation is predicted by GCM simulations of these planets,
in practice the size of the observed phase offsets for the coolest planets appear to
be lower than predicted by the GCMs. We propose that this can be explained by
the presence of high altitude cloud layers in these atmospheres, which decrease the
photospheric pressure probed in these two bands. At higher temperatures, we find
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that the observed phase offsets decrease to zero for irradiation temperatures near
3400 K, while the GCMs predict a minimum phase offset of 10◦ for planets in
this temperature regime. We propose that this discrepancy can be resolved by the
inclusion of MHD effects such as Lorentz drag, which would serve to further reduce
the speed of atmospheric winds and decrease the size of the observed phase offset.
We note that the trend of increasing phase offset with increasing temperature for the
most highly irradiated planets is not well-matched by this simple picture, but per-
haps could be explained with more sophisticated circulation models incorporating
the full range of MHD effects. Finally, we propose that the relative phase offsets at
3.6 and 4.5 µm, which are consistently the opposite of those predicted in the GCMs,
might be explained by a change in the assumed atmospheric compositions and/or
chemistries of these planets.
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C h a p t e r 3

FORWARD MODELING AND RETRIEVALS WITH PLATON, A
FAST OPEN-SOURCE TOOL

Michael Zhang, Yayaati Chachan, Eliza M. R. Kempton, and Heather A. Knutson.
Forward Modeling and Retrievals with PLATON, a Fast Open-source Tool. PASP,
131(997):034501, March 2019. doi: 10.1088/1538-3873/aaf5ad. M.Z. conceived
the project, designed the package, wrote the vast majority of the code, and wrote
the paper.

3.1 Abstract
We introduce PLanetary Atmospheric Transmission for Observer Noobs (PLATON),
a Python package that calculates transmission spectra for exoplanets and retrieves
atmospheric characteristics based on observed spectra. PLATON is easy to install
and use, with common use cases taking no more than a few lines of code. It is
also fast, with the forward model taking much less than one second and a typical
retrieval finishing in minutes on an ordinary desktop. PLATON supports the most
common atmospheric parameters, such as temperature, metallicity, C/O ratio, cloud-
top pressure, and scattering slope. It also has less commonly included features, such
as a Mie scattering cloud model and unocculted starspot corrections. The code is
available online at https://github.com/ideasrule/platon under the open source GPL-
3.0 license.

3.2 Introduction
Transmission spectroscopy is an essential tool for understanding exoplanet atmo-
spheres. By measuring the transit depth at different wavelengths, astronomers have
detected a variety of molecules, including many detections of water and a few of
carbon monoxide (Madhusudhan et al., 2014; Deming & Seager, 2017). With suffi-
ciently wide wavelength coverage, it is possible to constrain not only compositions,
but temperatures and cloud properties as well. The inverse problem of retrieving
atmospheric parameters given observed transit depths is crucial to the interpretation
of observations. The HST and Spitzer archives alone already hold observations of
dozens of transiting exoplanets, and the volume of data will only increase as TESS
discovers more planets around bright stars and ground-based transit spectroscopy
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matures. A fast, easy to use, and open source retrieval code is needed in order to help
the community quickly extract atmospheric parameters from these observations.

The exoplanet community has developed many retrieval codes over the years, as
reviewed in Madhusudhan (2018). The first retrieval code was published in Mad-
husudhan & Seager (2009), but many more have been developed since then, includ-
ing Benneke & Seager (2012), Line et al. (2013), and Waldmann et al. (2015). These
codes use a wide variety of techniques. Most use either MCMC or nested sampling
to map the posterior distribution, but some use self-consistent temperature-pressure
profiles while others use parametric profiles; some enforce chemical equilibrium
while others allow individual molecular abundances to vary freely; some compute
eclipse depths while others only compute transit depths; some use opacity sampling
while others use the correlated-k method. Despite the large number of codes, we
were only able to find one documented, publicly available retrieval code with a
dedicated paper (Tau-REX; Waldmann et al., 2015). The Bayesian Atmospheric
Radiative Transfer (BART) code is partially described in one subsection of a disser-
tation (Blecic, 2016) and one subsection of a paper (Blecic et al., 2017). CHIMERA
(Line et al., 2013) appears to be publicly available1, but has no documentation or
examples.

Although the papers describing these codes rarely have benchmarks, it appears that
a typical retrieval takes days to weeks on a typical desktop computer with 4 cores
(Zingales & Waldmann, 2018). We aimed to create a publicly available fast retrieval
code that can be run on a typical desktop, and takes minutes to hours instead of days
to weeks.

Recently, Kempton et al. (2017) introduced Exo-Transmit. Exo-Transmit calculates
transmission spectra for exoplanets of arbitrary size and composition, with pre-
packaged data files that make it easy to specify common compositions and pressure-
temperature profiles. However, with a run time on the order of tens of seconds,
Exo-Transmit is too slow to incorporate into a retrieval code. Exo-Transmit also
relies on pre-packaged data files to specify the composition of the atmosphere, and
does not allow the user to specify arbitrary metallicities, C/O ratios, or abundances.
In addition, Exo-Transmit is written in C and therefore requires additional steps to
interface with Python-based codes.

Inspired by Exo-Transmit, we developed PLATON to address these issues. PLA-
TON was written from scratch in pure Python, and supports both Python 2.7 and

1https://github.com/ExoCTK/chimera

https://github.com/ExoCTK/chimera
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3.5 on both Linux and Mac machines. It uses the same opacity data and a few
of the same algorithms as Exo-Transmit. Its forward model contains all the func-
tionality of Exo-Transmit, but is 100-1000x faster—fast enough to incorporate into
a Markov chain Monte Carlo (MCMC) or nested sampling retrieval. These speed
improvements come from three main sources. First, it loads all data files once and
holds them in memory afterwards. Second, it performs transit depth calculations
only for the wavelength ranges requested by the user, and only for atmospheric
layers above the cloud pressure. Third, the radiative transfer is formulated as a
matrix-vector multiplication, which numpy can compute very efficiently by calling
a highly optimized Basic Linear Algebra Subsystems (BLAS) routine. This de-
creases the computation time from 1-2 seconds to 30 milliseconds. Aside from
these optimizations, PLATON also incorporates several new features, including the
ability to model Mie scattering, account for unocculted starspots, compute equi-
librium abundances at user-specified metallicities and C/O ratios, and account for
varying gravitational acceleration as a function of height for extended atmospheres.
This forward modelling code was then incorporated into a retrieval module within
PLATON.

PLATON is in many ways complementary to Tau-REX. Whereas Tau-REX con-
siders a small number of molecules (which could be automatically chosen by a
machine learning algorithm), PLATON considers a large number of pre-determined
molecules. Whereas Tau-REX performs free retrievals, allowing for the abundances
of individual molecules to be retrieved, PLATON assumes equilibrium chemistry
throughout the atmosphere. In ease of installation and use, however, PLATON
has a clear advantage. Installing Tau-REX is a complex multi-step process which
involves signing up for an account, installing CMake, OpenMPI, and MultiNest
manually, soft linking libraries (on Macs), installing some Python packages, com-
piling Tau-REX’s C++ and Fortran libraries, and downloading a separate set of
input data. After installation, the first author ran into numerous problems running
the tests, mostly related to problems with the dependencies. In contrast, PLATON’s
installation process is a single line, which also installs all dependencies:

pip install platon

Or alternatively, after cloning the Git repository:

python setup.py install

We describe PLATON’s underlying model structure and validation in Section 2, and
its incorporation into a retrieval framework in Section 3.
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3.3 Forward model
Transmission spectroscopy has the benefit of being relatively simple to model. By
its nature, it probes higher altitudes (P < 1 bar), where the atmosphere can be ap-
proximated as isothermal (Burrows et al., 2008). In addition, although nightside
pollution of transit depths will be significant for JWST (Kipping & Tinetti, 2010),
planetary emission is negligible compared to transmission of starlight. This dras-
tically simplifies the radiative transfer calculation and limits the amount of model
uncertainty. Our forward model uses the opacity files from Exo-Transmit, in addi-
tion to some of its algorithms. This section will discuss the algorithms and opacities
briefly, but more detail can be found in Kempton et al. (2017).

Overview
To calculate a transmission spectrum, we assume an isothermal atmosphere with
equilibrium chemistry.2 We first divide the atmosphere into 500 layers, equally
spaced in log P from 10−4 to 108 Pa. The composition of each layer is calculated
assuming equilibrium chemistry, from which follows the mean molecular weight.
The physical depth of each layer is then obtained by solving the hydrostatic equation:

𝑑𝑃

𝑑𝑟
= −𝐺𝑀

𝑟2
𝜇𝑚𝑎𝑚𝑢𝑃

𝑘𝑇
. (3.1)

The integration constant is set by P(R) = 1 bar: that is, the radius which the user
specifies for the planet is taken to be the radius at a reference pressure of 1 bar. The
reference pressure is arbitrary, but we picked 1 bar because it is easy to remember
and close to standard atmospheric pressure on Earth. After solving the hydrostatic
equation, the opacity of each layer is then calculated from its composition. We
include gas absorption, collisional absorption, and Rayleigh scattering, the last of
which can be modified with a user-specified slope and amplitude.

Finally, we carry out the radiative transfer calculation. Consider a ray passing
through the atmosphere with impact parameter 𝑟 , where 𝑟 is the distance from planet
center to one of the layers. This ray passes through all layers of the atmosphere
above 𝑟, but lingers in each layer for different distances. By calculating the distance
it takes to traverse each layer and multiplying by that layer’s absorption coefficient,
we calculate the optical depth experienced by this ray:

2Arbitrary P-T profiles and compositions are also supported, but this is not the recommended
use case. We refer the user to the documentation for information on these features.
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𝜏𝜆 (𝑟𝑖) =
𝑁∑︁
𝑗=𝑖

𝛼𝜆 ( 𝑗)Δ𝑙 (𝑖, 𝑗). (3.2)

The transit depth can then be calculated by adding up the cross sectional areas of
each layer, weighted by the amount of light let through:

𝐷𝜆 = (𝑅𝑏𝑜𝑡/𝑅𝑠)2 + 2
𝑁∑︁
𝑖=1

𝑟𝑑𝑟

𝑅2
𝑠

(1 − 𝑒−𝜏𝜆) (3.3)

where 𝑅𝑏𝑜𝑡 is the radius at the bottom-most layer.

As a final step, we correct the transit depth for unocculted star spots. This step is
necessary for active stars because the hot unspotted regions have a different spectrum
from the colder star spots, and a planet that blocks only the former will appear bigger
than it actually is. Worse, this radius inflation depends on wavelength, giving rise to
a spurious transit spectrum shape (McCullough et al., 2014; Rackham et al., 2018).
To correct for this effect, we use:

𝐷𝜆,𝑐 = 𝐷𝜆
𝑆(𝜆, 𝑇𝑐𝑙𝑒𝑎𝑟)

𝑓 𝑆(𝜆, 𝑇𝑠𝑝𝑜𝑡) + (1 − 𝑓 )𝑆(𝜆, 𝑇𝑐𝑙𝑒𝑎𝑟)
(3.4)

where 𝑓 is the spot fraction, 𝑇𝑠𝑝𝑜𝑡 is the spot temperature, 𝑇𝑐𝑙𝑒𝑎𝑟 is the temperature
of unspotted regions, and 𝑆 is the spectrum of the stellar surface. We obtain both
𝑆(𝜆, 𝑇𝑐𝑙𝑒𝑎𝑟) and 𝑆(𝜆, 𝑇𝑠𝑝𝑜𝑡) by interpolating the BT-NextGen (AGSS2009) stellar
spectral grid (Allard et al., 2012), as provided by the Spanish Virtual Observa-
tory3. We neglect any contributions to the spot spectrum that are not purely due to
temperature.

Absorption coefficients
We use the same data files as Exo-Transmit for gas absorption and collisional
absorption coefficients, although these will be updated in version 3. Per-species
gas absorption coefficients were computed on a wavelength-temperature-pressure
grid using line lists, with a resolution of 𝜆/Δ𝜆 = 1000 over the range 0.3-30 𝜇𝑚.
The sources of these line lists are shown in Table 2 of Lupu et al. (2014). For
most molecules, the line list comes from HITRAN, but they use miscellaneous
other sources, such as Freedman et al. (2008, 2014). All collisional absorption
coefficients are from HITRAN. We refer the reader to Kempton et al. (2017) for
more information.

3http://svo2.cab.inta-csic.es/theory/newov2/index.php

http://svo2.cab.inta-csic.es/theory/newov2/index.php
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For Rayleigh scattering, we compute the absorption coefficient using the equation:

𝛼𝜆 =
128
3𝜋5

𝑃

𝑘𝑇
𝑝2𝜆−4 (3.5)

where 𝑝 is the polarizability of a species. For both Exo-Transmit and PLATON,
polarizabilities are obtained from the CRC Handbook of Chemistry and Physics.
We use an updated list of polarizability values, including several species assumed
to have zero polarizability in Exo-Transmit: H, O, C, N, C2H4, H2CO, OCS, OH,
SO2, Na, and K. The polarizability of OH is not in the CRC handbook, and was
instead taken from Pluta et al. (1988). A few species have no published polarizability
values that we can find: MgH, SH, SiH, SiO, TiO, and VO. We adopt 0 for their
polarizability.

We compute total absorption coefficients at temperature and pressure grid points
bordering the atmospheric temperature-pressure profile. 2D bilinear interpolation
is then used to get the coefficients at each point along the temperature profile. This
is the same algorithm used by Kempton et al. (2017).

Atmospheric composition
In the sphere of atmospheric composition, we depart from Exo-Transmit by providing
an equilibrium chemistry model computed with GGchem (Woitke et al., 2018). The
user can provide two parameters: metallicity and C/O ratio. If the user does not
specify these parameters, we assume solar metallicity and solar C/O ratio (0.53).
From these parameters, we compute the abundances of 34 atomic and molecular
species in every layer of the atmosphere. These 34 species are the same as those
included in Kempton et al. (2017), except that we leave out C2H6 and SH because
these species are not included in the default GGchem databases.

While many public codes exist for equilibrium chemistry (Blecic et al., 2016; Woitke
et al., 2018; Stock et al., 2018), they are currently too slow for use in retrievals. This
is why we opted to use GGchem to generate a grid of abundances. GGchem computes
equilibrium species abundances from atomic abundances by minimizing the total
Gibbs free energy of the mixture. We generate separate grids, one with and the
other without condensation.

The abundance grids have 5 dimensions: species name, temperature, pressure,
metallicity, and C/O ratio. The temperature and pressure grid points are chosen
to match the opacity grid, with temperature ranging from 300 to 3000 K in 100
K intervals and pressure from 10−4 to 108 Pa in decade intervals. The pressure
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range is determined by our opacity data, which are only available for this range.
The temperature range is set mostly by our opacity data, which span 100-3000 K at
100 K intervals. We did not generate abundances down to 100 K because GGchem
becomes unstable at very low temperatures. Metallicity ranges from log10(𝑍) = −1
to log10(𝑍) = 3 in steps of 0.05, while C/O ratio ranges from 0.2 to 2.0 in steps of 0.2.
We then perform 4D linear interpolation over the grid, obtaining log(Abundance)
as a function of T, log(P), log(Z), and log(C/O). The relative error introduced by
interpolation in metallicity is on the order of 10−4. This is significantly smaller than
the error introduced by interpolation in C/O, which is on the order of a few percent.
Some molecules (such as water and HCN) have a sharp abundance transition at
C/O ∼ 1, giving rise to interpolation errors of tens of percent in this regime.
However, the abundances change so rapidly around C/O ∼ 1 that our assumption of
uniform equilibrium abundances across the whole planet also becomes invalid, as
it is unlikely that the entire planet has exactly the same C/O ratio. This makes the
interpolation errors less significant. Nevertheless, our development branch contains
an abundance grid with twice the resolution in C/O, increasing to 4x the resolution
around C/O ∼ 1. Interpolation errors are less than 1% in almost all cases with this
new grid. The new grid will be incorporated in our next release.

For retrievals, the current data is almost never good enough to constrain any pa-
rameter to better than one grid spacing. For forward models, we recommend using
parameters that correspond exactly to a grid point in temperature, metallicity, and
C/O to avoid interpolation errors.

Clouds and hazes: parametric
By default, PLATON accounts for clouds and hazes by allowing the cloud-top
pressure, scattering amplitude, and scattering slope to vary as free parameters in
the fit. The cloud-top pressure defines the height in the atmosphere below which
no light can penetrate. The user specifies this parameter, or can set it to infinity
for a clear atmosphere. The scattering amplitude and slope are a simple way to
parameterize scattering properties without invoking a microphysical model. The
default value—an amplitude (𝐴) of 1 and a slope of 4—corresponds to pure Rayleigh
scattering. If 𝐴 is changed while the slope is fixed at 4, the absorption coefficient for
scattering is simply multiplied by 𝐴 at all wavelengths. If the slope 𝑠 is not 4, we set
the scattering absorption coefficient such that it is 𝐴 times the Rayleigh absorption
at the reference wavelength of 1 𝜇𝑚, and is proportional to 𝜆−𝑠 at all wavelengths.
This parameterization makes no assumptions about the underlying physics while
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allowing users to see at a glance how strong the scattering is compared to Rayleigh
at the reference wavelength (by comparing 𝐴 to 1), and how the scattering strength
behaves with wavelength (by looking at the slope). Since the reference wavelength
is only a matter of definition and does not change the underlying model, the user
can set it to any value.

Clouds and hazes: Mie scattering
In addition to the parametric approach, PLATON supports Mie scattering (Benneke
et al., subm.). Clouds and hazes often have particles in the micron range, comparable
to the wavelengths of most transit spectra observations. This makes Mie scattering
an important component of atmospheric physics (Marley et al., 2013). For example,
Benneke et al., subm. use Mie scattering to explain the anomalously low 3.6 and
4.5 µm Spitzer transit depths for GJ 3470b as compared to its WFC3 (1.1–1.6 µm)
transit depths.

In the Mie scattering mode, the user specifies a cloud-top pressure (𝑃𝑐𝑙𝑜𝑢𝑑), a
complex refractive index (𝑚 = 𝑛 − 𝑖𝑘), a mean particle size (𝑟𝑚), a geometric
standard deviation for particle size (𝜎𝑔), a maximum number density (𝑛0), and a
fractional scale height ( 𝑓 ). The atmosphere is assumed to contain particles of
the same refractive index at all altitudes above the “cloud top pressure.” Below
this pressure, the atmosphere is assumed to be perfectly opaque, corresponding to
perfectly opaque clouds. The number density is given by:

𝑛 = 𝑛0𝑒
− ℎ

𝑓 𝐻𝑔𝑎𝑠 , (3.6)

where h is the height above the cloud top, f is specified by the user, and 𝐻𝑔𝑎𝑠 is the
gas scale height.

The extinction cross section of a single particle of radius r is given by:

𝜎 = 𝜋𝑟2𝑄𝑒𝑥𝑡 (𝑚, 2𝜋𝑟/𝜆). (3.7)

To calculate𝑄𝑒𝑥𝑡 , we use the same algorithm as LX-MIE (Kitzmann & Heng, 2018),
except implemented in Python instead of C++. This algorithm is fast, simple, stable,
and does not lead to overflows. Since the calculation of𝑄𝑒𝑥𝑡 is time intensive (often
taking hundreds of milliseconds), we cache the results of every calculation for the
lifetime of the transit depth calculator object. Every time the value of 𝑄𝑒𝑥𝑡 (𝑚, 𝑥) is
required, the cache is first consulted. If at least one value in the cache has the same
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𝑚 and an 𝑥 within 5% of the requested 𝑥, we perform linear interpolation on all
cache values with the same 𝑚 and return the interpolated value. If no cache value
satisfies these criteria, we consider this a cache miss. 𝑄𝑒𝑥𝑡 is then calculated for all
cache misses and added to the cache.

We assume that the particles follow a log-normal radius distribution:

𝑃(𝑟) = 1
𝜎𝑟

√
2𝜋

exp
(
− (ln 𝑟 − ln 𝑟𝑚)2

2𝜎2
𝑔

)
, (3.8)

in which case the effective cross section of one particle becomes:

𝜎̄(𝜆) =
∫ ∞

0
𝜋𝑟2𝑄𝑒𝑥𝑡 (𝑚,

2𝜋𝑟
𝜆

) 1
𝜎
√

2𝜋𝑟
𝑒
− (ln 𝑟−ln 𝑟𝑚)2

2𝜎2
𝑔 𝑑𝑟. (3.9)

After a change of variables to 𝑧 = ln 𝑟−ln 𝑟𝑚
𝜎

, we have:

𝜎̄(𝜆) =
∫ ∞

−∞
𝑒−𝑧

2/2
√
𝜋

2
𝑟2
𝑚𝑒

2𝜎𝑧𝑄𝑒𝑥𝑡 (𝑚,
2𝜋𝑟𝑚𝑒𝜎𝑧

𝜆
)𝑑𝑧. (3.10)

We integrate this equation by computing the integrand at 100 different values of z
ranging from -5 to 5, then using the trapezoid rule. These values were chosen to
be densely spaced near 0 and less densely spaced at high or low z. The number of
points, the range of z values, and the spacing of z values were chosen so that the
integral is as accurate as possible over a wide range of refractive indicies and mean
particle sizes without being too computationally expensive.

Wavelength binning
The user can request the transit depth in specific wavelength bins. In these situations,
PLATON uses the stellar spectrum to compute a properly binned transit depth.
This is important for broad-band instruments like Spitzer/IRAC, where the stellar
spectrum changes significantly from one side of the bandpass to the other.

Using the user specified stellar temperature, PLATON interpolates the BT-NextGen
(AGSS2009) stellar spectral grid to get a stellar spectrum, assuming log(g) = 4.5
(typical for main sequence stars) and solar metallicity. If the user also specifies a
spot coverage fraction and spot temperature, PLATON computes the spot spectrum
by interpolation, then computes the weighted average of the unspotted and spotted
spectrum. The spectrum, which is in units of erg/cm2/s/A, is converted to a photon
flux and multiplied by the spacing between adjacent wavelengths in our wavelength
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grid. The multiplication is necessary because our wavelength grid is uniform in log
space, but not in linear space, as each grid spacing is 0.1% larger than the previous.
Finally, the unbinned transit depths are converted to a binned transit depth by a
weighted average, the weight at each wavelength being the photon flux multiplied
by the grid spacing.

Validation
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Figure 3.1: Transit depths with all opacity except Rayleigh scattering turned off.
The transit depth obeys a power law to within 0.5% blueward of 3 𝜇𝑚, as derived
by Shabram et al. (2011). Redward of 3 𝜇𝑚, transit depths flatten out because the
atmosphere becomes so transparent that the photospheric pressure becomes greater
than 108 Pa, the maximum pressure we consider.

We validate our code with unit tests covering every component of the package.
In cases where the expected answer can be computed analytically with simplified
inputs, such as the interpolation routines or the radiative transfer, we check against
these analytic results. An example is shown in Figure 3.1, where we reproduce the
theoretical transit depths for a hydrogen atmosphere with only Rayleigh scattering.
We make use of Equation 27 of Bétrémieux & Swain (2017) to derive:

𝜅 =
128𝜋5

3
𝑝2

𝜆4𝜇𝑚𝐻

(3.11)

𝜏𝑠 =
𝑃𝑠𝜅

𝑔

√︂
2𝜋𝑅𝑠
𝐻

(3.12)

𝑅 = 𝑅𝑠 + 𝐻 (𝛾 + ln(𝜏𝑠) + 𝐸1(𝜏𝑠)), (3.13)
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where H is the scale height, 𝛾 = 0.57721 is a constant, p=0.8059×10−24 cm3 is the
polarizability of the hydrogen molecule, 𝑅𝑠 is the radius at the surface, and 𝜏𝑠 is the
slant optical depth at the surface, and 𝐸1 is the exponential integral. PLATON does
not model a real surface, but we do not model radiative transfer at pressures greater
than 108 Pa, creating an effective surface at that pressure.

In cases where it is possible to compare against published results, such as the
𝑄𝑒𝑥𝑡 (𝑚, 𝑥) calculations for selected 𝑚 and 𝑥, we verify that we reproduce the
published results in Kitzmann & Heng (2018). For methods where such a check
would be impractical or take too long, such as the retrieval, we simply ensure the
method runs without error and returns a result in the expected format. We use Travis
CI to ensure that all unit tests are run after every commit. Travis CI creates pristine
virtual machines after every commit, installs PLATON on each machine, and runs
the unit tests to make sure they pass. We use four virtual machines to test PLATON
in four configurations: Ubuntu with Python 2.7, Ubuntu with Python 3, OS X with
Python 2.7, and OS X with Python 3. This way, we ensure that PLATON can be
installed and successfully run on the most common configurations.

We also compare our transmission spectrum to the output of Exo-Transmit. In an
old version of the code, which was intended to match Exo-Transmit output exactly,
the transmission spectrum matched to within machine precision for all wavelengths.
In the current version, we have made many design decisions that increase accuracy
or usability at the cost of breaking the exact match between the two codes. Figure
3.2 shows a comparison between PLATON and Exo-Transmit spectra for a typical
hot Jupiter. The main difference between the two is a uniform shift, with PLATON
reporting 115 ppm deeper transit depths. Figure 3.3 shows that if this shift is
removed, the two spectra agree almost perfectly.

There are two reasons why PLATON reports higher transit depths. First, PLATON
correctly takes into account the decline of gravity with height, while Exo-Transmit
assumes constant gravity. This makes PLATON’s atmospheres larger—an effect that
is most pronounced for super-Earths, but discernible even for Jupiters. Second, Exo-
Transmit truncates the atmosphere, taking into account only the region between 0.1
Pa and 105 Pa. We consider the entire pressure range for which we have absorption
data, spanning 10−4 Pa to 108 Pa. In practice, we have found that increasing the
upper pressure limit has no effect because the photosphere is well above 105 Pa,
but decreasing the lower pressure limit does increase the transit depth substantially.
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(a) Full wavelength coverage

(b) Zoomed into WFC3 band

Figure 3.2: Transmission spectrum of a 1200 K Jupiter mass, Jupiter radius planet
orbiting a Sun-like star, as computed by PLATON and Exo-Transmit. The difference
is mainly due to PLATON truncating the atmosphere at a much lower pressure.

This is especially the case at high metallicities, where strong lines saturate and the
transit depths of strong lines correspond to the 0.1 Pa height limit in Exo-Transmit.

As a final validation step, we compare our forward model for HAT-P-26b against
that of another atmospheric code, ATMO (Goyal et al., 2018a). The result is shown
in Figure 3.4. Due to our opacity sampling algorithm, our transit depths are much
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(a) Full wavelength coverage

(b) Zoomed to show individual lines

Figure 3.3: Same as Figure 3.2, but with PLATON transit depths shifted downwards
by 115 ppm.

spikier than ATMO’s, but the transit depths match decently once they are binned to
the resolution of HST .
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3.4 Retrieval
We support retrievals of atmospheric parameters with either MCMC or multimodal
nested sampling. MCMC is implemented by emcee (Foreman-Mackey et al., 2013),
which uses an affine invariant ensemble sampler. Multimodal nested sampling was
first described by Shaw et al. (2007), but we use the pure Python implementation
nestle, available on Github at https://github.com/kbarbary/nestle. With the excep-
tion of the complex refractive index, any parameter that can be passed to the forward
model can be included in the retrieval. These parameters are shown in Table 3.1.
The last parameter in Table 3.1, error multiple, multiplies every observational error.
It accounts for over- or under- estimation of error bars by the user, assuming all error
bars are off by the same factor.

The user can choose to fit or freeze any parameter. However, if the user chooses to
use the parametric method to account for clouds and hazes, the last 4 parameters
in Table 3.1 are irrelevant. PLATON requires that the log particle number density
be set to −∞ to avoid confusion. If the user chooses to use Mie scattering, the
complex refractive index must be specified, along with the last four parameters in
the table. PLATON requires that the log scattering amplitude be set to the default
value of 0 and the slope be set to the default value of 4, again to avoid confusion. If
a parameter is included in the fit, the user can choose a uniform prior or a Gaussian
prior. Gaussian priors are most appropriate for parameters like the planet mass,
where a published value exists, but with error bars substantial enough to broaden
the distribution of the atmospheric parameters.

Benchmarks
We benchmark PLATON on a typical desktop computer to illustrate its performance.
The computer runs Ubuntu 16.04 LTS with a Core i7 7700k CPU and 16 GB of
RAM. PLATON never uses more than 500 MB of memory, since that is the total
size of its data files, and should perform just as well on computers with less than 16
GB of RAM.

When the forward model is first initialized, PLATON loads all relevant data files
into memory. This takes 390 ms, but is only done once. Table 3.2 shows the amount
of time taken to compute transit depths within the most commonly used bands once
PLATON is initialized. The time taken most directly depends on the number of
wavelength grid points within the band. Since grid points are spaced uniformly
in logarithmic space with R=1000, the number of grid points is proportional to



68

Parameter name Supported range Log space? Default
Stellar radius Any No None

Stellar temperature Any No None
Stellar spot fraction Any No 0

Stellar spot temperature Any No None
Planet mass Any No None

Planet radius (at 1 bar) Any No None
Temperature 300-3000 K No None
Metallicity 0.1-1000x solar Yes Solar
C/O ratio 0.2-2.0 No 0.53

Cloud-top pressure ∞, or 10−4 - 108 Pa Yes ∞
Scattering amplitude Any Yes 1

Scattering slope Any No 4
Error multiple Any No 1

Particle number density Any Yes 1 𝑚−3

Particle radius Any Yes 1 𝜇𝑚
Particle radius standard deviation Any No 0.5

Particle fractional scale height Any No 1

Table 3.1: Parameters that can be retrieved. PLATON supports a limited range
for some parameters, as shown in the second column. The third column indicates
whether PLATON takes the base-10 log of the parameter during retrieval.

Table 3.2: Benchmarks for desktop computation of forward model

Band Wavelength range (𝜇𝑚) Time (ms)
All wavelengths 0.3-30 393

STIS 0.293-1.019 57
WFC3 1.119-1.628 29

Spitzer 3.6 𝜇𝑚 3.2-4.0 16
Spitzer 4.5 𝜇𝑚 4.0-5.0 16

the ratio between the maximum and minimum wavelengths. In the future, if we
increase the resolution we support, run times will increase proportionally. It should
be noted that all values in the table are computed for HD 209458b, assuming a
clear atmosphere and no Mie scattering. If there are clouds, PLATON neglects
the part of the atmosphere below the cloud-top pressure, substantially improving its
performance. If Mie scattering is turned on, the calculation of 𝑄𝑒𝑥𝑡 can consume
hundreds of milliseconds on the first run of the forward model. However, every run
populates the 𝑄𝑒𝑥𝑡 cache, and a future run with similar parameters will have a high
cache hit rate. Mie calculations will then consume negligible time.
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Table 3.3: Benchmarks for retrieval using real HD 209458b data

Band(s) Algorithm Time (min) Likelihood evaluations
WFC3 nested sampling 6.3 20,999

STIS + WFC3 + Spitzer nested sampling 29 17,205
WFC3 MCMC 13 50,051

STIS + WFC3 + Spitzer MCMC 57 50,051

Table 3.3 shows the typical performance of retrievals. Users can run the second and
fourth benchmarks themselves by running examples/retrieve_multinest.py
and examples/retrieve_emcee.py, respectively. These benchmarks use pub-
lished HD 209458b data from Knutson et al. (2007), Deming et al. (2013), and
Evans et al. (2015). The nested sampling runs were performed with 100 live points,
and the MCMC runs had 50 walkers and 1000 steps. These correspond to 17,000 and
50,000 likelihood evaluations, respectively. The number of likelihood evaluations,
and hence the run time, is proportional to the number of live points or steps.

For MCMC, we verified convergence in two ways. First, we ran another retrieval
with 10,000 steps and checked that it gave similar posteriors. Second, we estimated
the autocorrelation length using a variant of the “new” method recommended by
the author of emcee, Dan Foreman-Mackey, on his webpage4. Namely, for each
dimension corresponding to a parameter, we compute the autocorrelation length of
the chain, flattened along the walker dimension. The estimates are averaged together
to obtain an average autocorrelation length. If the chain is less than 50 times longer
than this average, we consider the estimate unreliable and run more iterations. If
the chain is more than 50 times longer, we consider the estimate reliable, and the
chain to have converged. The factor of 50 comes from the recommendation of the
same webpage. For our benchmark retrieval, we find an autocorrelation length of
7 steps—corresponding to 350 samples, as we have 50 walkers. For the chain with
10,000 steps, we compute an autocorrelation length of 24 steps. Both numbers are
far smaller than the total number of steps, but the fact that the estimates are discrepant
shows the disturbing fact that the autocorrelation length estimate increases with the
number of samples. This is a property of the algorithm, not of our chains. It is
one of the reasons why monitoring convergence is not trivial, and is why we have
decided to refer the user to the extensive online and published literature on this topic.

4https://emcee.readthedocs.io/en/latest/tutorials/autocorr

https://emcee.readthedocs.io/en/latest/tutorials/autocorr
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Comparison with retrieval results in literature
To evaluate the performance of our retrieval tool, we focus on planets with large
datasets and published retrieved results in the literature. WASP-39b and HAT-P-
26b are excellent candidates for such an exercise as their transmission spectra extend
all the way from the optical (STIS) to near-infrared (Spitzer). Their atmospheric
properties have been inferred from ATMO Retrieval Code (ARC), which couples
the ATMO models to a L-M least-squares minimizer and a Differential Evolution
Chain Monte Carlo analysis (Tremblin et al., 2015; Wakeford et al., 2017). ATMO
is used to compute 1-D T-P profiles for atmospheres in hydrostatic and radiative-
convective equilibrium and calculate the transmission and emission spectra for a
given atmospheric profile. We choose to compare with ARC because ATMO has
been benchmarked against the Met Office SOCRATES code (used for the Earth)
and because ATMO has a public scalable grid of transmission spectra (Goyal et al.,
2018a) that can be used for retrievals. More importantly, the data for these planets
provide relatively tight constraints on their atmospheric water abundance (WASP-
39b) and heavy element abundance (HAT-P-26b) in the ATMO retrieval (Wakeford
et al., 2017, 2018). These features provide useful tests for PLATON’s retrieval ca-
pabilities and allow direct comparison of well constrained quantities using different
retrieval models.

We run retrievals on these two planets with both PLATON and the ATMO grid.
We use the ATMO grid which accounts for rainout, which has 5 dimensions: tem-
perature, gravity, metallicity, C/O ratio, scattering factor, and cloud parameter (rep-
resenting a constant additional opacity across the atmosphere at all wavelengths).
Since there is no parameter in PLATON that corresponds exactly to the cloud pa-
rameter, we set the cloud parameter to zero in the ATMO models and the cloudtop
pressure to infinity in the PLATON models. This restricts our retrievals to cases
without an optically thick cloud layer while still allowing for enhanced scattering
due to optically thin hazes. We use uniform priors for temperature, log(Z), C/O ra-
tio, and log(scattering factor), with the minimum and maximum set to the minimum
and maximum of the ATMO grid. 5D linear interpolation is used to compute the
transmission spectrum for a certain set of parameters from the transmission spectra
at the grid points, then scaled to the planetary and stellar radii. For consistency, we
use the same priors for PLATON, even though PLATON supports a wider parameter
space. Figures 3.6 and 3.7 show the resulting posterior probability distributions for
HAT-P-26b and WASP-39b, respectively, while the best fits are shown in Figure 3.5.
HAT-P-26b shows strikingly good agreement between PLATON and ATMO, with
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Table 3.4: Best Fit Parameters for HAT-P-26b

Property PLATON ATMO grid Wakeford et al 2017
Temperature (K) 903 ± 96 878+101

−87
C/O ratio 0.46+0.12

−0.08 0.45+0.09
−0.07

log10(Z / Z⊙) 1.96+0.23
−0.39 1.87+0.27

−0.45 1.566 ± 1.7034
log10(Scattering Factor) 2.37+0.38

−0.71 2.21+0.46
−0.62

error multiple 1.68+0.29
−0.22 1.60+0.28

−0.21

Table 3.5: Best Fit Parameters for WASP-39b

Property PLATON ATMO grid Wakeford et al 2018
Temperature (K) 1031+58

−69 1129+73
−38 1030+30

−20
C/O ratio 0.60+0.08

−0.12 0.59+0.1
−0.15 0.31+0.08

−0.05
log10(Z / Z⊙) 2.23+0.05

−0.11 2.23+0.05
−0.08 2.18+0.12

−0.16
log10(Scattering Factor) 1.17+0.33

−0.34 1.30+0.49
−0.65

all posteriors being nearly identical. For WASP-39b, on the other hand, there are
slight discrepancies. PLATON favors a temperature ∼100 K lower, a discrepancy of
roughly 1𝜎. In addition, ATMO exhibits an odd multimodal distribution in scatter-
ing factor and C/O ratio that is not seen in PLATON. This multimodal distribution
is not seen in the retrieval from Wakeford et al. (2018), which uses the ATMO code
directly instead of using a generic grid. The temperature retrieved by PLATON
is also more consistent with Wakeford et al. (2018) than with the temperature we
retrieved using the generic ATMO grid. Additionally, we do not see a multimodal
distribution if we use the ATMO grid which does not include rainout, nor do we
see it if the observations of the two Na and K spectral features are excluded. We
therefore conclude that the odd behavior of our ATMO retrievals using the generic
grid is likely due to a rare coincidence of factors.

Tables 3.4 and 3.5 show the median and error of each retrieved parameter for HAT-
P-26b and WASP-39b, respectively. The error bars are derived by comparing the
84th and 16th percentiles to the median. We have also included published retrieval
results, when available. For HAT-P-26b, all values are consistent. For WASP-
39b, PLATON favors lower temperature, but similar C/O ratio, metallicity, and
scattering factor compared to the ATMO generic grid. The published metallicity
and temperature are both very similar to PLATON’s results, while the published
C/O ratio is lower than that of PLATON. It is unclear why the published C/O ratio,
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Figure 3.4: Transmission spectrum for HAT-P-26b generated from ATMO (obtained
from Goyal et al., 2018b) and PLATON for an isothermal atmosphere with tem-
perature 851 K, 10x solar metallicity, C/O ratio of 0.35, and haze factor/scattering
factor of 1. In the right panel, we show the transmission spectrum smoothed by a
Gaussian filter of 𝜎 = 15 to roughly match the resolution of HST .

which was retrieved by directly using the ATMO code, is lower than that retrieved
by both PLATON and the ATMO grid.
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Figure 3.5: The best fit transmission spectrum for HAT-P-26b and WASP-39b (red)
and the ±1𝜎 as well as the ±2𝜎 uncertainties shown in blue.
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Figure 3.6: Posterior probability distribution of planetary and atmospheric proper-
ties for HAT-P-26b. Red: retrieved with PLATON; black: retrieved with ATMO
generic grid.
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Figure 3.7: Posterior probability distribution of planetary and atmospheric proper-
ties for WASP-39b. Red: retrieved with PLATON; black: retrieved with ATMO
generic grid.
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3.5 Precautions, limitations, and best practices
PLATON is a powerful tool, but we were required to make some compromises in
order to achieve our goal of a fast, easy to use package written in pure Python. In this
section, we address some of the limitations of PLATON that users should be aware
of. The biggest source of error in PLATON comes from its relatively low R=1000
spectral resolution, which does not allow us to resolve individual lines at typical
atmospheric pressures (P < 1 bar). When we sample these unresolved lines using
our relatively coarse wavelength grid (this method is known as “opacity sampling”)
it leads to spikiness in the cross sections and corresponding transmission/emission
spectra, resulting in the errors visible in Figure 3.8. The idea behind opacity
sampling is that even though the sampling resolution is much lower than that needed
to resolve individual lines, it is still much higher than the instrumental resolution,
and the spikiness in transit/eclipse depths can be smoothed out to an acceptable level
by binning to instrumental resolution.
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Figure 3.8: Transit depths across the WFC3 band for a 1200 K Jupiter orbiting
a Sun-like star, computed assuming water-dominated opacity at two resolutions:
R=1000 (native PLATON), and R=50,000 (assumed to be the truth). The depths are
binned with a bin size of 19 nm. PLATON deviates from the true value by up to 50
ppm, although the deviation is much smaller at most wavelengths.

In practice this means that users will obtain the best results when they utilize
wavelength bins that are large relative to the intrinsic model resolution. The number
of wavelength grid points in a bin must be large enough to effectively average out
the spikiness in transit depths caused by opacity sampling within that bin. For
example, a hot Jupiter at T=1200 K with solar metallicity has transit depths that
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Figure 3.9: Comparison of retrievals on WASP-39b transit depths above 500 nm, us-
ing two opacity data resolutions: R=1000 (red) and R=10,000 (black). As expected,
the R=1000 retrieval has a higher error_multiple and wider posteriors, reflecting the
errors introduced by opacity sampling. The low-resolution retrieval favors slightly
lower temperatures (by 60 K), but the posteriors are otherwise very similar.

fluctuate roughly 100 ppm from grid point to grid point at 1.4 𝜇m, the middle of
the HST WFC3 band. At this wavelength, the wavelength grid points are separated
by 1.4 nm, so a 30 nm wide wavelength bin would include 21 points. The error
generated by opacity sampling is then ∼100/sqrt(21) = 22 ppm, which is appreciably
smaller than the typical published uncertainties on WFC3 data sets (i.e. Wakeford
et al. 2017, 2018). This sampling error is effectively “white” in wavelength space—
i.e., it does not systematically bias the transit depth in one direction, but instead
introduces random scatter around the true value. If the observational data have errors
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comparable to or smaller than 22 ppm, retrievals with R=1000 will likely give only
slightly wider posteriors than if we used line-by-line radiative transfer. However,
it is worth remembering that our model also makes other simplifying assumptions,
such as an isothermal atmosphere, cloud opacity parameterization, and equilibrium
chemistry, that may cause deviations from the measured transmission spectrum that
are much greater than either the observational errors or the sampling errors.

If the default R=1000 opacities are too low resolution for a given retrieval, we
also provide optional opacity files at R=2000 and R=10,000, available at http:
//www.astro.caltech.edu/~mz/absorption.html. These only span 0.5-12
µm, not 0.3-30 µm, but the full wavelength coverage will be added in version 3.
Users can replace the existing opacity files in PLATON’s data directory with a
higher resolution version and then run PLATON as usual. No code changes are
necessary, but run time and memory usage will grow linearly with resolution.

Our tests indicate that these high-resolution data are not usually necessary for STIS,
WFC3, or Spitzer data. Figure 3.9 compares a retrieval performed at R=10,000 to
one performed at R=1000. The higher error_multiple and wider posteriors caused by
opacity sampling can clearly be seen, but the posteriors are otherwise very similar.
The high-resolution retrieval was 15 times slower, taking 215 minutes with 100 live
points compared to 14 minutes at R=1000. Fisher & Heng (2018) performed a
similar test—they tested resolutions of 1, 2, 5, and 10 cm-1 for WFC3 retrievals and
found that “for all of these values, the posterior distributions of T, 𝑋𝐻2𝑂 , and 𝑘c𝑙𝑜𝑢𝑑

are somewhat similar.” The difference between the best and worst resolutions tested
amounted to 0.5 sigma in temperature and water mixing ratio. In addition, the 2D
posterior distributions in their Figure 6 are very similar. Our resolution of R=1000
corresponds to a wavenumber resolution of 6-9 cm-1, so we are between their 5 and
10 cm-1 results in terms of the error introduced by opacity sampling.

We next provide advice on how to ensure an accurate posterior when using nested
sampling or MCMC. For nested sampling, we have found that 100 live points is
usually sufficient to obtain accurate 1D posteriors unless the posterior space is
highly multimodal. However, it is difficult to produce a publication-quality plot
of the 2D posteriors with only 100 live points, as the low density of points in
parameter space makes the contours look ragged and broken up. We therefore
recommend 100 live points for exploratory data analysis, and 1000 live points to
generate publication-quality corner plots. For MCMC, we find that 1000 steps with
50 walkers (resulting in 50,000 samples) is typically enough to sample more than

http://www.astro.caltech.edu/~mz/absorption.html
http://www.astro.caltech.edu/~mz/absorption.html
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50 times the autocorrelation length. We recommend 1000 steps for exploratory data
analysis, and 10,000 steps to produce publication-quality posteriors. For cases with
widely separated multimodal distributions, we note that the MCMC method will
perform poorly as walkers will have a hard time moving between peaks. This is a
well known limitation of MCMC, and we therefore recommend that users switch to
nested sampling in these cases.

Other best practices
As its name implies, PLATON is designed to be accessible to users with minimal
experience in modelling atmospheres. To that end, we offer several suggestions to
help newcomers do retrievals with minimal pain. The first step in a retrieval is to
decide which parameters to fix and which to retrieve, and following that, whether
to use uniform or Gaussian priors. The optimal choice varies on a case by case
basis according to the quality of the user’s data in comparison to the published
data. Nevertheless, there are a few guidelines that nearly always apply. The stellar
temperature, for example, has almost no impact on the transmission spectrum, and
published values are always much more accurate than what one can derive from
a retrieval on an exoplanet atmosphere. The stellar temperature should be fixed.
Similarly, the spot fraction should be fixed to 0 for inactive stars, and restricted to
an appropriately small range for active stars. On the other hand, the metallicity
and cloud-top pressure are typically not known in advance and should therefore be
included as free parameters in the fit with log-uniform priors. The stellar radius
and planet mass usually have published values with an intermediate accuracy—not
low enough that they should be ignored, but not high enough that they can be safely
fixed to a single value. This is a good use case for Gaussian priors, which take into
account the published value’s mean and standard deviation, while still allowing the
parameter to vary within the published uncertainties as part of the fit.

We recommend that users begin with the parametric cloud and haze model and only
switch to Mie scattering if the parametric model does not result in a good fit. The
parametric model is less physically motivated, but it has fewer free parameters and
is less time consuming. If the user does decide to try Mie scattering, we recommend
leaving the particle size geometric standard deviation at the default value of 0.5.
This parameter has been measured for Earth aerosols (e.g. Shen et al. 2015; Pinnick
et al. 1978; Elias et al. 2009) and ranges from 0.25 to 0.7, with a typical value of
0.5. It is worth noting that the aerosol literature usually quotes 𝑒𝜎𝑔 instead of 𝜎𝑔.
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When we refer to standard deviation, we always mean the 𝜎𝑔 parameter in Equation
3.8.

After choosing which parameters to fit, the user must pick default values and corre-
sponding ranges for all model parameters used in the fit. There is no point including
a region of parameter space that is clearly unphysical, such as a temperature of 300
K for the most irradiated planet ever discovered, nor is there a point in restricting a
parameter to a narrower range than justified by the current state of knowledge.

Next, the user might wonder whether to use MCMC or nested sampling. In our
experience it is best to start with nested sampling, because it is faster (usually
finishing within minutes) and has a natural stopping point automatically determined
by nestle. We have, however, found pathological cases where nestle samples
the parameter space extremely inefficiently; in these case, MCMC is necessary to
have a reasonably fast retrieval. With MCMC, it is necessary to set the number
of walkers and the number of steps by hand, and checking for convergence is not
trivial. However, one advantage of MCMC is that it gives an unbiased sample
from the posterior distribution, making it easy to plot the posterior probability
distributions (also known as “corner plots”). We refer to Foreman-Mackey et al.
(2013) for tips on choosing emcee parameters. With nestle, the best one can do
is get biased samples along with their weights, which can then be resampled into
equal-weight samples. Overall, the results from MCMC and nestled sampling are
very similar, and we encourage users to try both to see which one they prefer.

3.6 Conclusion
We have developed a transmission spectrum calculator and retrieval tool in pure
Python. We release it on GitHub, and encourage the community to use it, contribute
to it, and incorporate it in whole or part into other software. This paper describes
version 2.0 of the package, but we intend to keep it under continuous development—
adding features, writing more unit tests, increasing user friendliness, and fixing bugs.
There is already a beta version of an eclipse depth calculator and retriever, and we
intend to allow users to specify wavelength-dependent refractive indicies for Mie
scattering in the near future.

PLATON is not designed to model every physical phenomenon on exoplanets, or
even to keep up with the cutting edge in theory. Its niche is to be a fast, simple, and
easily modifiable tool: a PLanetary Atmospheric Transmission tool for Observer
Noobs.
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C h a p t e r 4

PLATON II: ECLIPSE DEPTHS AND UPDATED OPACITIES

Michael Zhang, Yayaati Chachan, Eliza M. R. Kempton, Heather A. Knutson, and
Wenjun (Happy) Chang. PLATON II: New Capabilities and a Comprehensive
Retrieval on HD 189733b Transit and Eclipse Data. ApJ, 899(1):27, August
2020. doi: 10.3847/1538-4357/aba1e6. M.Z. conceived the project, wrote the
vast majority of the code, and wrote the paper.

4.1 Abstract
Recently, we introduced PLanetary Atmospheric Tool for Observer Noobs (PLATON),
a Python package that calculates model transmission spectra for exoplanets and
retrieves atmospheric characteristics based on observed spectra. We now expand
its capabilities to include the ability to compute secondary eclipse depths. We
have also added the option to calculate models using the correlated-𝑘 method for
radiative transfer, which improves accuracy without sacrificing speed. Additionally,
we update the opacities in PLATON—many of which were generated using old or
proprietary line lists—using the most recent and complete public line lists. These
opacities are made available at R=1000 and R=10,000 over the 0.3 − 30 µm range,
and at R=375,000 in select near IR bands, making it possible to utilize PLATON for
ground-based high resolution cross correlation studies. To demonstrate PLATON’s
new capabilities, we perform a retrieval on published HST and Spitzer transmission
and emission spectra of the archetypal hot Jupiter HD 189733b. This is the first joint
transit and secondary eclipse retrieval for this planet in the literature, as well as the
most comprehensive set of both transit and eclipse data assembled for a retrieval to
date. We find that these high signal-to-noise data are well-matched by atmosphere
models with a C/O ratio of 0.66+0.05

−0.09 and a metallicity of 12+8
−5 times solar where

the terminator is dominated by extended nanometer-sized haze particles at optical
wavelengths. These are among the smallest uncertainties reported to date for an
exoplanet, demonstrating both the power and the limitations of HST and Spitzer
exoplanet observations.

4.2 Introduction
The emission spectra of exoplanets provide unique insights into their atmospheric
properties (e.g., Madhusudhan, 2018). By measuring the difference between the in-
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eclipse and out-of-eclipse flux when the planet passes behind the star (‘secondary
eclipse’), one can measure the flux emitted by the planet as a function of wavelength.
Secondary eclipse observations probe the compositions and temperature-pressure
profiles of their dayside atmospheres. This technique was used to derive the first
atmospheric composition measurement for a Neptune-mass planet (GJ 436b; Steven-
son et al. 2010), the first definitive detection of a thermal inversion in the atmosphere
of an ultra-hot Jupiter (Haynes et al., 2015), and dayside water abundance measure-
ments for several hot Jupiters (e.g. Kreidberg et al. 2014; Line et al. 2016; Pinhas
et al. 2019). Emission spectroscopy at high spectral resolution (𝑅 > 20, 000) has
led to the detection of CO, H2O, and HCN in exoplanet atmospheres (i.e. Snellen
et al. 2010; Birkby 2018), including in non-transiting planets like 51 Pegasi b (Brogi
et al., 2013). By measuring the atmospheric compositions of these planets, we can
obtain new insights into present-day atmospheric processes such as disequilibrium
chemistry (e.g., Moses et al. 2013), as well as their past formation and migration
histories (e.g., Öberg et al. 2011; Madhusudhan et al. 2014; Ali-Dib 2017; Cridland
et al. 2019; Booth & Ilee 2019).

Ideally, we would extract atmospheric parameters from observed emission spectra
using a Bayesian retrieval code. However, there is an overall lack of open source
retrieval codes that can handle emission spectra. A similar lack of retrieval codes for
transit spectra motivated us to write PLATON (Zhang et al., 2019), a fast, open source,
easy to use, and easy to understand forward modeling and retrieval code that traces
its lineage back to Exo-Transmit (Kempton et al., 2017). PLATON has since been used
in several papers: a few exploring the atmospheric properties of observed planets
(Chachan et al., 2019; Kirk et al., 2019; Guo et al., 2020), and one demonstrating
the possibility of using K-means clustering to speed up retrievals by 40% (Hayes
et al., 2020). In the latter study, the speed of PLATON was especially useful due
to the necessity of running many retrievals. We now expand PLATON’s capabilities
to include thermal emission and compare the resulting models and atmospheric
retrievals to that of another retrieval code in order to validate this new functionality.

We utilize the open source TauREx code (Waldmann et al., 2015; Al-Refaie et al.,
2019), which has been used in multiple published studies (i.e. Komacek et al.
2019; Shulyak et al. 2019), for this comparison. Specially, we compare to TauREx
3, the latest release. PLATON and TauREx were developed independently of each
other, and there are several key differences between their functionalities. TauREx
is a sophisticated code which supports free retrieval of chemical abundances in
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addition to equilibrium chemistry retrievals. PLATON only allows for retrievals
using equilibrium chemistry, with atmospheric metallicity and C/O ratio as free
parameters. When calculating this equilibrium chemistry, PLATON uses GGchem,
which can account for losses due to condensation (Woitke et al., 2018), whereas
TauREx assumes that everything stays in the gas phase. PLATON also uses opacities
generated from the latest line lists for water (Polyansky et al., 2018), methane
(Rey et al., 2017), and ammonia (Coles et al., 2019), which are significantly more
complete and accurate than the line lists that were available at the time TauREx was
released.

The two codes also differ in their treatment of aerosols. Both support Rayleigh
scattering, although PLATON also supports Rayleigh-like scattering by allowing for
a variable scattering strength and slope (𝜎(𝜆) = 𝐴𝜎R𝑎𝑦𝑙𝑒𝑖𝑔ℎ (𝜆) (1𝜇𝑚/𝜆)𝑠). Both
also support Mie scattering, but with different parameterizations. TauREx has three
ways of approximating Mie opacity: a gray opacity, the parameterization of Lee
et al. (2013) (𝑄𝑒𝑥𝑡 =

5
𝑄0𝑥−4+𝑥0.2 ), and an analytical calculation of the Mie opacity

of spherical particles with a size distribution given by Equation 36 or Equation 37
of Sharp & Burrows (2007). PLATON analytically calculates the Mie opacity of
spherical particles with a lognormal size distribution, as explained in Zhang et al.
(2019). In this study, we explore the impact of these differences on our models using
the benchmark hot Jupiter HD 189733b (Bouchy et al., 2005) as our test case.

Aside from TauREx, other open source retrieval codes include the recently released
Helios-r2 (Kitzmann et al., 2020) and the Bayesian Atmospheric Radiative Transfer
(BART) code (Blecic, 2016; Blecic et al., 2017). Helios-r2 is primarily intended for
brown dwarfs and supports both free retrievals and gas-only equilibrium retrievals
without clouds. It does not use a parameterized T/P profile, but retrieves the
temperatures of individual layers in the atmosphere, with constraints on how much
the temperature can vary from layer to layer. This approach is suitable for the high
signal-to-noise regime of brown dwarfs, but not ideal for exoplanets.

BART is partially described in one subsection of a dissertation (Blecic, 2016) and
one subsection of a paper (Blecic et al., 2017), but has not been described in detail
in a peer reviewed paper. BART uses a custom MCMC code, MC3, to perform
retrievals using either free abundances or gas-only equilibrium chemistry, the latter
of which is computed by TEA (Blecic et al., 2016). It supports two T/P profile
parameterizations: Madhusudhan & Seager (2009) and Guillot (2010). However,
BART does not provide opacity data, and the opacity calculator it provides does not
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support ExoMol line lists. In addition, TEA is slow, taking 2-3 s of CPU time per
temperature/pressure point, and has convergence problems below 400 K (Woitke
et al., 2018).

Last in our roundup of retrieval codes is petitRADTRANS, a forward modelling
code that does not support retrievals, but is fast enough to be wrapped in a Bayesian
retrieval framework (Mollière et al., 2019). Mollière et al. (2019) benchmark against
PLATON and find that although PLATON is much faster overall, the two codes are
comparable in speed for the same number of wavelength points. petitRADTRANS
only supports free abundances, and uses either correlated-k (R=1000) or line-by-line
(R=106) radiative transfer, with a T/P profile parameterization that is a variant of
Guillot (2010). To our knowledge, PLATON is unique among open source retrieval
codes in supporting equilibrium condensation in a Bayesian retrieval framework,
and our opacities are based on the most up-to-date line lists.

We utilize PLATON to carry out the first joint retrieval on published emission and
transmission spectroscopy for HD 189733b, resulting in improved constraints on its
atmospheric composition. PLATON is also capable of calculating transit and eclipse
spectra at R=375,000, and we compare our model to published high-resolution (𝑅 ∼
100, 000) CRIRES emission spectroscopy for this planet to search for previously
reported signatures of H2O and HCN (de Kok et al., 2013; Birkby et al., 2013; Brogi
et al., 2016; Cabot et al., 2019) in addition to an unreported molecule: CH4.

In Section 4.3, we describe the emission spectrum and secondary eclipse depth
calculator. Section 4.4 describes the opacity update, while Section 4.5 describes
other new features and improvements in PLATON, including the new correlated-𝑘
capability and optional model parameters, including a chemical quench pressure
and a HST/WFC3 offset. In Section 4.6, we perform a joint retrieval of the transit
and eclipse spectra of HD 189733b to infer its atmospheric properties and confirm
published high-resolution detections of H2O while calling into question the reported
high-resolution detection of HCN. We summarize our conclusions in Section 4.7.

4.3 Emission Spectrum and Secondary Eclipse depth calculator
Algorithm
Our emission spectrum and secondary eclipse depth calculator utilizes much of the
same code as the transit depth calculator presented in our first paper (Zhang et al.,
2019). Given a planetary mass, radius, metallicity, C/O ratio, and temperature-
pressure profile, we compute equilibrium molecular abundances for 250 pressures
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uniformly distributed in log(P). We then solve the hydrostatic equation to determine
the height corresponding to each pressure. With molecular abundances, tempera-
tures, and pressures as a function of height, the emergent flux is given by:

𝐹𝑝𝜆 = 2𝜋
∫ ∞

0

∫ 1

0
𝐵𝜆 (𝜏𝜆)𝑒−𝜏𝜆/𝜇𝑑𝜇𝑑𝜏𝜆 (4.1)

where 𝐵𝜆 (𝜏𝜆) is the Planck function at an optical depth of 𝜏𝜆, and 𝜇 is the cosine of
the viewing angle with respect to the vertical. Here, we are making the assumption
that the source function is the Planck function, which in turn requires that scattering
contributes negligibly to the emission. Adding scattering as an emission source
would make the problem much more complex because it would be non-local: the
source function at a certain location would depend on scattered photons from other
locations.

Directly integrating Equation 4.1 would require evaluating the integrand hundreds
of millions of times—once for every combination of wavelength, 𝜏𝜆, and 𝜇. We
instead rewrite the double integral as a single integral with a special function:

𝐹𝑝𝜆 = 2𝜋
∫ ∞

0
𝐵𝜆 (𝜏𝜆)𝐸2(𝜏𝜆)𝑑𝜏𝜆 (4.2)

where 𝐸2 is the exponential integral, defined as:

𝐸2(𝑥) =
∫ ∞

1

𝑒−𝑥𝑡

𝑡2
𝑑𝑡. (4.3)

We discretize and reformulate the equation as follows:

𝐹𝑝𝜆 ≈ 2𝜋
𝑁∑︁
0
𝐵(𝜏𝜆,𝑖)𝐸2(𝜏𝜆,𝑖)Δ𝜏𝜆,𝑖 (4.4)

≈ 2𝜋
𝑁−1∑︁

0
−𝐵(𝜏𝜆,𝑖) (𝐸3(𝜏𝜆,𝑖+1) − 𝐸3(𝜏𝜆,𝑖)), (4.5)

(4.6)

where the second equation follows from the first because the integral of 𝐸2(𝑥) is
−𝐸3(𝑥) + 𝐶. Reformulating the equation in this way has the virtue of guaranteeing



89

that the result is exactly correct for an isothermal atmosphere. For an isothermal
atmosphere, B is constant; therefore, for every layer i except the two boundaries, the
𝐸3(𝜏𝑖+1) term is cancelled by the −𝐸3(𝜏𝑖) term in layer i+1. The numerical integra-
tion therefore gives 2𝜋𝐵(𝐸3(𝜏𝜆,0) −𝐸3(𝜏𝜆,𝑁 )). Assuming the top of the atmosphere
has an optical depth of 0 and the bottom has an optical depth of infinity, we obtain
𝐹 = 𝜋𝐵—exactly the correct result for an isothermal atmosphere. In practice, we
find that this trick reduces the error for non-isothermal atmospheres as well, espe-
cially when the temperature gradient is small. This method of replacing 𝑔(𝑥)Δ𝑥
with 𝐺 (𝑥2) − 𝐺 (𝑥1) (where g(x) is the derivative of G(x)) before integrating was
inspired by the TauREx source code, which uses the same technique in combination
with Gaussian quadrature.

The 𝐸3 exponential integral is a special function defined by scipy, eliminating the
need to perform integrals to evaluate it. It is also continuous, infinitely differentiable,
and approaches 0.5 as 𝑥 → 0 and 0 as 𝑥 → ∞. These properties mean that 𝐸3 poses
no problems for numerical integration. To further speed up the code, we evaluate
𝐸3(𝑥) on a logarithmic grid spanning 𝑥 = 10−6 to 𝑥 = 102 during initialization of the
eclipse depth calculator, and interpolate from this grid thereafter. The interpolation
is accurate to 1.2 × 10−5, and is therefore a negligible source of error. The more
common approach to integrating Equation 4.1, adopted by TauREx and HELIOS-r2,
is to use Gaussian quadrature. Compared to our approach, Gaussian quadrature is
4 times slower and introduces errors of ∼0.2% for the test planet in Subsection 4.3
when 4 points are used (Figure 4.1). This error is utterly negligible compared to the
other sources of error we explore in Subsection 4.3.

To derive a monochromatic eclipse depth from the emergent flux, we multiply by
the square of the planet-to-star radius ratio and divide by the stellar emergent flux:

𝐷𝜆 =

(
𝑅𝑝𝜆

𝑅𝑠

)2𝐹𝑝𝜆

𝐹𝑠𝜆
. (4.7)

The stellar spectrum is calculated by interpolating the BT-Settl (AGSS2009) stellar
spectral grid (Allard et al., 2012), as provided by the Spanish Virtual Observa-
tory1. Here, the wavelength-dependent planet radius 𝑅𝑝𝜆 is defined as the radius
at which the radial optical depth reaches one, assuming that the limb has the same
temperature-pressure profile as the dayside. (This is not to be confused with the

1http://svo2.cab.inta-csic.es/theory/newov2/index.php

http://svo2.cab.inta-csic.es/theory/newov2/index.php
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Figure 4.1: Fractional error introduced by using Gaussian quadrature with 4 points
instead of 𝐸3, for the test planet in Subsection 4.3.

white light planet radius the users pass into PLATON, which is the radius at a pres-
sure of 1 bar.) This approach differs from those of previous studies (i.e. Waldmann
et al. 2015), which typically fix the radius to the value measured from the optical or
near-infrared transit depth. This is larger than the effective planet size for emission
spectroscopy, as starlight transmitted through the planet’s limb should reach an opti-
cal depth of one at lower pressures than for direct emission. Our approach, although
an improvement, is still only an approximation. The planetary limb is usually colder
than the day side, and even if it were not, Equation 4.7 is only strictly true if the
atmospheric scale height is a negligible fraction of the planetary radius. These
inaccuracies are expected to cause errors on the order of 1% for hot Jupiters, since
the scale height of a hot Jupiter is of order 1% of the radius. For further discussion
of the difficulty in choosing a photospheric radius and the error this introduces, we
refer the reader to Fortney et al. (2019).

When fitting observational data, we typically want band-integrated fluxes and sec-
ondary eclipse depths. The band-integrated flux is equal to the number of photons
emitted from the planet within the band, and the secondary eclipse depth is that
value divided by the number of photons emitted from the star within the band. The
eclipse depth for the band 𝜆1–𝜆2 is then:
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𝐷 =

∫ 𝜆2
𝜆1
𝑅2
𝑝𝜆
𝐹𝑝𝜆𝜆𝑑𝜆∫ 𝜆2

𝜆1
𝑅2
𝑠𝐹𝑠𝜆𝜆𝑑𝜆

. (4.8)

We utilize Equation 4.8 when the user defines custom wavelength bins. Otherwise,
we compute monochromatic fluxes and secondary eclipse depths at full spectral
resolution (R=1000) using Equation 4.7.

Temperature-pressure profile
The temperature-pressure profile is a crucial component of any atmospheric emis-
sion model. This profile determines whether molecular features will be seen in
absorption or emission and their relative strengths. Although it is possible to predict
the T/P profile theoretically using energy balance arguments, such a self-consistent
calculation is computationally expensive. This is because the radiative intensity,
opacity, chemical abundance, and temperature at each pressure level all depend on
one another, requiring an iterative procedure to solve for all components simultane-
ously. These iterative procedures are too slow for our purposes here. We instead
forgo self-consistency and retrieve a parameterized T/P profile along with the atmo-
spheric composition. We support three parametric forms for the T/P profile, listed
in order of increasing complexity: isothermal, Line et al. (2013), and Madhusudhan
& Seager (2009).

Isothermal

An isothermal profile always gives a blackbody planetary spectrum. This can be
derived theoretically from Equation 4.1.

Line et al. (2013)

This physically motivated parameterization was invented by Guillot (2010) to shed
light on exoplanet atmospheres, and then subsequently extended by Line et al.
(2013). Guillot (2010) used the two-stream approximation with radiation partitioned
into two distinct wavelength channels: thermal and visible. Starlight is considered
purely visible, while planetary emission is considered purely thermal. The planetary
atmosphere is assumed to have a single opacity 𝜅𝑡ℎ that applies to thermal radiation
everywhere, and a single opacity 𝜅𝑣 that applies to visible radiation everywhere.
Under these simplifying assumptions, the averaged dayside T/P profile can be derived
analytically:
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𝜏 =
𝜅𝑡ℎ𝑃

𝑔
(4.9)

𝑚(𝛾) ≡ 1 + 1
𝛾
[1 + (𝛾𝜏

2
− 1)𝑒−𝛾𝜏] + 𝛾(1 − 𝜏2

2
)𝐸2(𝛾𝜏)] (4.10)

𝑇4 =
3
4
𝑇4
𝑖𝑛𝑡 (

2
3
+ 𝜏) + 1

2
𝑇4
𝑒𝑞𝑚(𝛾) (4.11)

where T is the temperature at a certain height in the atmosphere, 𝜏 is the optical
depth of thermal radiation from the top of the atmosphere corresponding to that
height, 𝛾 ≡ 𝜅𝑣/𝜅𝑡ℎ, 𝑇𝑒𝑞 ≡ 𝑇∗

√︃
𝑅∗
2𝑎 is the equilibrium temperature assuming zero

albedo, 𝐸2 is the exponential integral with n=2, and 𝑇𝑖𝑛𝑡 is a temperature reflecting
the amount of internal heat.

Line et al. (2013) introduce an albedo into this formulation, so that the equilibrium
temperature is now 𝑇𝑒𝑞 ≡ 𝛽𝑇∗

√︃
𝑅∗
2𝑎 . They also introduce a second visible channel

with its own opacity to allow for temperature inversions, so that the temperature is
now:

𝑇4 =
3
4
𝑇4
𝑖𝑛𝑡 (

2
3
+ 𝜏) + (1 − 𝛼)𝜂(𝛾1) + 𝛼𝜂(𝛾2) (4.12)

where 𝛾1 ≡ 𝜅𝑣1/𝜅𝑡ℎ, 𝛾2 ≡ 𝜅𝑣2/𝜅𝑡ℎ, and 𝛼 partitions the visible radiation between the
two channels. Unlike Line et al. (2013), we impose the constraint that 𝛼 <= 0.5: that
is, the second visible stream is by definition the minor one. Without this constraint,
the two streams are interchangeable.

In total, this parameterization has six free parameters: 𝜅𝑡ℎ, 𝛾1, 𝛾2, 𝛼, 𝛽, and 𝑇𝑖𝑛𝑡 .
Following Line et al. (2013), we recommend fixing 𝑇𝑖𝑛𝑡 to 100 K in most cases
because internal heat usually contributes negligibly to the short-period transiting
planets that are most amenable to atmospheric characterization using the secondary
eclipse technique. Exceptions to this rule may include eccentric planets, planets
whose cooling is delayed, or planets whose radii are inflated.

Madhusudhan & Seager (2009)

Madhusudhan & Seager (2009) introduced a purely empirical T/P profile for exo-
planet atmosphere modeling, which was designed to be flexible enough to approxi-
mate most published theoretical T/P profiles from forward models without having an
excessive number of free parameters. This model divides the atmosphere into three
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layers: a deep isothermal layer (caused by the limited interior flux compared to the
stellar flux, as 𝑑𝑇/𝑑𝑟 ∝ 𝐿 (𝑟) in a radiative zone where the diffusion approximation
holds), an intermediate layer that can support a thermal inversion, and an outer layer,
intended to represent the optically thin region. The parametric profile is agnostic
about physical assumptions (e.g. convection, optical depths) that set the temperature
and pressure structure of the atmosphere. The temperatures of the three layers are
then:

𝑇𝑜𝑢𝑡𝑒𝑟 = 𝑇0 +
𝑙𝑛(𝑃/𝑃0)2

𝛼2
1

𝑇𝑚𝑖𝑑 = 𝑇2 +
𝑙𝑛(𝑃/𝑃2)2

𝛼2
2

𝑇𝑖𝑛𝑛𝑒𝑟 = 𝑇3.

There are six free parameters in this model: 𝑇0, 𝑃1, 𝛼1, 𝛼2, 𝑃3, 𝑇3. Following
Madhusudhan & Seager (2009), we set𝑃0 to the pressure at the top of the atmosphere,
which for us is 10−4 Pa. 𝑇2 and 𝑃2 are set by the requirement that temperature must
be continuous across region boundaries:

𝑙𝑛(𝑃2) =
𝛼2

2 (𝑇0 + 𝑙𝑛(𝑃1/𝑃0)2/𝛼2 − 𝑇3) − 𝑙𝑛(𝑃1)2 + 𝑙𝑛(𝑃3)2

2𝑙𝑛(𝑃3/𝑃1)

𝑇2 = 𝑇3 −
𝑙𝑛(𝑃3/𝑃2)2

𝛼2
2

.

Benchmarking, speed advice
One of the goals of PLATON is to be fast. To illustrate typical speeds, we benchmark
PLATON on a typical desktop computer to illustrate its performance. The computer
runs Ubuntu 16.04 LTS with a Core i7 7700k CPU and 16 GB of RAM.

Table 4.1: Benchmarks for desktop computation of emission forward model

Band 𝜆 (𝜇𝑚) Time (ktables/R=1k/R=10k)
All wavelengths 0.3–30 0.26/0.24/4.8 s

WFC3 1.119–1.628 0.029/0.029/0.26 s
Spitzer 3.6 𝜇𝑚 3.2–4.0 0.021/0.021/0.11 s
Spitzer 4.5 𝜇𝑚 4.0–5.0 0.020/0.021/0.11 s
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When the forward model is first initialized, PLATON loads all relevant data files into
memory. This takes 0.34 s (1.6 s for R=10,000), but is only done once. Table
4.1 shows the amount of time taken to compute eclipse depths within the most
commonly used bands once PLATON is initialized. The time taken depends linearly
on the number of wavelength grid points within the band. Since grid points are
spaced uniformly in logarithmic space, the number of grid points is proportional to
the ratio between the maximum and minimum wavelengths. The time taken also
depends approximately linearly on the resolution, for the same reason. Because
our correlated k algorithm runs at R=100 with 10 Gaussian quadrature points, it
performs the same number of radiative transfer computations as the R=1000 opacity
sampling method, explaining the very similar running times.

It is difficult to give a representative running time for nested sampling retrievals,
because this is highly dependent on the problem at hand. The running time is
proportional to the total logarithmic wavelength range, the number of live points
used, and the log of the ratio between the prior parameter hypervolume and the
posterior hypervolume. The hypervolume ratio depends on the width of the priors,
and on the quality of the data: an exquisite dataset takes longer to retrieve on.

Despite these variations, some rough numbers are possible. With 1000 live points,
generously wide priors, and the exquisite HD 189733b dataset, dynesty required
400,000 likelihood evaluations for the eclipse-only retrieval. A typical retrieval with
a lower signal-to-noise data set and a less conservative prior range would require
fewer likelihood evaluations; using 200 live points instead of 1000 would cut the
number of evaluations by a factor of 5. Taking 200,000 evaluations as a typical
value for 1000 live points, we see that retrieving on a dataset of WFC3, Spitzer 3.6
𝜇𝑚, and Spitzer 4.5 𝜇𝑚 observations will take 0.8 hours with 200 live points and
R=1000 opacities (or correlated k coefficients); 4 hours with 1000 live points and
R=1000 opacities; 5.3 hours with 200 live points and R=10,000 opacities; and 27
hours with 1000 live points and R=10,000 opacities.

We recommend a staged approach to retrievals. Exploratory data analysis can be
done with R=1000 opacities and 200 live points. In the process, intermittent spot
checks should be performed with R=10,000 opacities and 200 live points to check
the effect of resolution, and with R=1000 opacities and 1000 live points to check the
effect of sparse sampling. When one is satisfied with the exploratory data analysis
and is ready to finalize the results, one should run a final retrieval with R=10,000
opacities and 1000 live points. This is the approach we followed for HD 189733b,
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although had we stuck with the low-resolution, sparsely sampled retrieval, none of
our conclusions would have changed.

If these running times are still too slow, there is one trivial way to speed up the code
by a factor of a few: by going to PLATON_DIR/data/Absorption and removing the
absorption files of all molecules that have a negligible effect on the spectrum, which
prevents PLATON from taking their opacities into account. For a hot Jupiter, for
example, the vast majority of the molecules in PLATON (see Table 4.4 for a list) are
unimportant. One might reasonably include CO, CO2, CH4, H2O, NH3, H2S, and
HCN in an emission retrieval, but neglect the other 23. This decreases the R=10k
running time for the entire 0.3–30 µm range from 4.8 s to 2.1 s. In the near future,
we will implement an opacity zeroer in PLATON that implements this functionality
without having to touch the data files.

Validation
To validate PLATON’s new emission spectroscopy mode, we test two cases: an
isothermal atmosphere and a non-isothermal atmosphere modelled on that of HD
189733b. In the case of an isothermal atmosphere, the planetary flux should be
equal to that of a blackbody:

𝐹𝜆 = 𝜋𝐵𝜆 (𝑇). (4.13)

We find that this is indeed the case. The numerically evaluated flux differs from the
theoretical expectation by an amount consistent with machine precision (∼ 2−52 ≈
2 × 10−16). This is not a surprise, as our numerical integration algorithm (Equation
4.6) gives exactly the correct answer for the special case of an isothermal atmosphere.

To validate the non-isothermal atmosphere case, we compared the output of PLATON
to that of TauREx 3 (Al-Refaie et al., 2019). Using both codes, we simulated a planet
meant to represent HD 189733b. This test planet has the parameters given in Table
4.2. These parameters are, respectively, the stellar temperature 𝑇𝑠, stellar radius
𝑅𝑠, planetary mass 𝑀𝑝, planetary radius 𝑅𝑝, planetary atmospheric metallicity 𝑍
relative to the Sun, planetary C/O ratio, planetary equilibrium temperature 𝑇𝑒𝑞, and
the five parameters (𝛽, 𝜅𝑡ℎ, 𝜅𝑣1, 𝜅𝑣2, and 𝛼) specifying the T/P profile following
the formulation of Line et al. (2013). Because the chemical equilibrium model
of TauREx does not include condensation, we passed include_condensation=False
to PLATON, causing PLATON to also use a gas-only chemical equilibrium model.



96

TauREx is distributed with opacities for CO2, NH3, CH4, CO, and H2O; we therefore
zero out the abundances of all other active gases in PLATON for the purposes of this
test. In addition, we used a blackbody as the stellar spectrum in both codes, as
the PHOENIX spectra that TauREx supports do not extend redward of 5 µm. We
generated an emission spectrum from both codes, both binned to R=100 from the
native resolution of 1000 for PLATON and 15,000 for TauREx, and compared the
resulting wavelength-dependent eclipse depths. As shown in Figure 4.2, the median
absolute difference between the two is 2.1%, with a 95th percentile of 17% and a
maximum of 39%.

Table 4.2: Parameters of test planet

Parameter Value
𝑇𝑠 5052 K
𝑅𝑠 0.751 𝑅⊙
𝑀𝑝 1.129 𝑀𝐽

𝑅𝑝 1.144 𝑅𝐽
𝑍𝑝/𝑍⊙ 20
C/O 0.7
𝑇𝑒𝑞 1189 K
𝛽 1
𝜅𝑡ℎ 3.8×10−3 m2 kg−1

𝜅𝑣1 1.9×10−3 m2 kg−1

𝜅𝑣2 5.2×10−4 m2 kg−1

𝛼 0.331
This test planet is chosen to have properties broadly similar to those of HD

189733b. 𝑇𝑠, 𝑅𝑠, and 𝑀𝑝 are taken from Stassun et al. 2017, and we selected
values for the other parameters that approximately reproduce HD 189733b’s transit

and eclipse spectra.

There are a number of differences between PLATON and Tau-REx that could explain
the discrepancy in the predicted eclipse depths. First, PLATON performs radiative
transfer at a spectral resolution of R=1000, while we ran Tau-REx with R=15,000
opacity files. Second, the two codes also handle equilibrium chemistry differently.
Tau-REx uses ACE (Agúndez et al., 2012) and only considers the elements H, He,
C, O, and N and 106 molecules composed of those elements, while PLATON also
includes F, Na, Mg, Si, P, S, Cl, K, Ti, and V, along with 300 molecules composed of
those elements. This results in abundance differences in the tens of percent, as seen
in Figure 4.4. Third, PLATON also uses a wavelength-dependent radius to convert
emergent flux to luminosity (Equation 4.7), but Tau-REx does not. Fourth, PLATON’s
opacities are generated from newer line lists than the opacities currently available
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Figure 4.2: PLATON vs. Tau-REx comparison. Top: Comparison of eclipse depths
computed by PLATON and Tau-REx for a planet meant to approximate HD 189733b.
Bottom: fractional differences between the two models.

from Tau-REx’s website. Finally, there are slight differences in the algorithm used
to calculate the planet-star flux ratio. For example, in calculating the emergent flux
(Equation 4.1), Tau-REx evaluates the integral over viewing angles by sampling
four viewing angles and using Gaussian quadrature, whereas PLATON evaluates the
integral analytically, which is equivalent to using an infinite number of viewing
angles.

To disentangle which factors cause most of the differences, we modified PLATON
step by step to more closely approximate Tau-REx’s algorithm, re-measuring the
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Figure 4.3: Comparison of eclipse depths computed by PLATON and Tau-REx (top)
and corresponding residuals (bottom), where both codes are fed the same mixing
ratios and the same opacities at the same resolution of R=10,000.

discrepancies at each step. The results are summarized in Table 4.3, and described
in detail below. First, we replaced the default R=1000 opacities with R=10,000
opacities, which are also publicly available. This reduced the median absolute dif-
ference between Tau-REx and PLATON from 2.1% to 1.6%, with the 95th percentile
at 7.4% and some wavelengths having a discrepancy of up to 17%. We conclude
that a higher resolution leads to significant improvement in the agreement between
PLATON and Tau-REx at some, but not most, wavelengths. Next, we disabled equi-
librium chemistry and set constant abundances with altitude for CH4, CO2, CO,
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Table 4.3: Effect of removing differences between PLATON and TauREx

Removed differences Median diff.
(%)

95th percentile diff.
(%)

Max diff.
(%)

None 2.2 19 37
Resolution 1.2 7.6 22
Resolution, Chemistry 1.2 4.6 11
Resolution, Chemistry, Opaci-
ties

0.6 1.7 2.7

Chemistry, Opacities 1.9 17 30
Chemistry, Opacities with kta-
bles

2.1 8.1 20

This table shows the discrepancies between eclipse depths calculated by PLATON
and TauREx after binning to R=100, for a wavelength range of 0.4–15 µm. As
differences between the two codes are eliminated, their eclipse depths become

more and more similar, as expected.

H2O, NH3, H2, and He. This results in a median difference of 1.1% with a 95th
percentile of 5.1% and maximum discrepancies of up to 10%. Following this, we
replaced the line absorption cross sections in Tau-REx with those used in PLATON.
This decreased the median difference to 0.8%, the 95th percentile to 2.1%, and the
maximum difference from 10% to 2.7%. The spectra produced by the two codes
are compared in Figure 4.3. The remaining discrepancies are likely due to slight
differences in the radiative transfer code, especially the number of viewing angles
(4 in Tau-REx vs. infinite in PLATON) and the precise interpolation method for
absorption cross sections. As a final step, we replaced the R=10,000 opacities with
the default R=1000 opacities and redid the comparison. This time, we obtained a
median difference of 1.9%, a 95th percentile of 15%, and a maximum of 31%. If
we do the test with correlated k radiative transfer instead of opacity sampling, these
numbers are 2.2%, 7.4%, and 19%.

Based on these tests, we concluded that differences in resolution, chemistry, and
opacities are all significant contributors to the discrepancies between the two codes.
As shown in Table 4.3, the median error caused by these differences are on the order
of 2%, with the 95th percentile being 10-20%, and the maximum difference being
a few tens of percent.

Retrieval comparison
To test the validity of PLATON retrievals, we performed an equilibrium chemistry
retrieval comparison between PLATON and TauREx using a synthetic spectrum. We
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Figure 4.4: Differences in molecular abundances under equilibrium chemistry con-
ditions between GGchem (used by PLATON) and ACE (used by Tau-REx) for the
test planet, with the T/P profile shown in the upper panel. These differences are
typically tens of percent.

used TauREx to generate the 0.4–6 𝜇𝑚 emission spectrum using the stellar and
planetary parameters in Table 4.2. The spectrum is binned down to a resolution of
R=100, and 100 ppm of white noise is added to every binned eclipse depth. We
then ran a retrieval on the synthetic spectrum using both TauREx and PLATON, with
6 free parameters (corresponding uniform priors, all generously wide, in brackets):
log 𝑍 (-1–3), C/O (0.2–2.0), log 𝜅𝑡ℎ (-3.4 – -1.4), log 𝛾𝑣1 (-1 – 1), log 𝛾𝑣2 (-1 – 1),
and 𝛼 (0–0.5). The PLATON retrieval used gas-only equilibrium abundances rather
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than the default condensation equilibrium abundances, while the stellar spectrum
was set to a blackbody in both codes in order to ensure that any differences in the
results were due to differences in the planet model and not the stellar model. We
utilized nested sampling with 1000 live points for all retrievals. For PLATON, the
package we used was dynesty (Speagle, 2020); for TauREx 3, it was nestle.

We ran two comparisons. In the first comparison, we generated the emission
spectrum using PLATON R=10,000 opacities, and included the same set of molecular
opacities in both the PLATON and TauREx retrievals: NH3, CH4, CO, CO2, and
H2O. In PLATON, the opacities of all other molecules were set to 0. Figure 4.5 shows
the results of this first retrieval comparison. In general, the two codes give very
similar posteriors. The 1D posteriors of log𝛾𝑣1

, log𝛾𝑣2
, and 𝛼 are indistinguishable.

The log(Z) and C/O posteriors show discrepancies at the 0.7𝜎 level because the
equilibrium abundances of active gases differ by a few tens of percent between
PLATON and TauREx, which in turn is because the former includes many times more
atoms and molecules in its calculations than the latter (see Subsection 4.3). As a
result of these differences, PLATON prefers slightly higher temperatures at a given
pressure (Δ𝑇 ∼30 K at 100 mbar), which is reflected in the slightly higher 𝜅𝑡ℎ.

In the second comparison, we generated the emission spectrum using TauREx
R=15,000 opacities and used those same opacities in the TauREx retrieval. For the
PLATON retrieval, we used the the full list of molecules with the same R=10,000
opacities as in the previous comparison. The differences between the two retrievals
therefore reflect both the effect of including different numbers of molecules, and
differences in the line lists used for those molecules. Figure 4.6 shows the results
of this second retrieval comparison. Even though the PLATON 1D posteriors are
still consistent with the input planet parameters at the 1.7𝜎 level, they are more
discrepant than in Figure 4.6, with PLATON obtaining a metallicity 4× lower and a
C/O ratio 0.18 lower than the TauREx retrieval.

Having obtained this result, the natural question to ask is what causes the discrep-
ancy: PLATON’s newer line lists, or its inclusion of more molecules? The answer is
the latter. We examined PLATON’s best fit model and found that it underestimated
the planetary emission around 3.8 µm, where an opacity window caused a spike
in planetary emission. Removing molecules one by one from the atmosphere, we
find that H2S is the cause of the discrepancy: removing it alone from the atmo-
sphere makes the best fit spectrum line up perfectly with TauREx’s simulated data.
Indeed, when we repeat the PLATON retrieval while including only the molecules
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Figure 4.5: Posterior distributions retrieved by PLATON (orange) and TauREx (blue)
when both codes use the same opacities and include the same list of molecules.
The contours contain 68% and 95% of posterior mass. The numbers on top of each
column show the values inferred by PLATON. The teal horizontal and vertical lines
show the truth values.

that TauREx includes, the resulting posteriors are almost identical to those of Fig-
ure 4.5. This underscores the importance of erring on the side of caution when
choosing which active gases to include in a model. Emission spectroscopy has the
inconvenient property that it is the lack of absorption that causes the most easily
detectable emission—and so even a trace gas with a relatively low opacity can have
a significant impact on the spectrum at wavelengths where other gases also have less
absorption.
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Figure 4.6: Same as Figure 4.5, but for the second comparision. Here, TauREx
opacities are used to generate the spectrum and for TauREx’s retrieval. The PLATON
retrieval uses its own opacities, with all molecules included. The discrepancy is due
to the inclusion of H2S in PLATON, but not in TauREx.

4.4 Opacity update
One fundamental building block of any atmospheric code is the calculation of
opacities. There are three types of opacities we consider: scattering, line, and
collisional. As discussed in Zhang et al. (2019), scattering opacities are calculated
by PLATON itself, and collisional opacities are calculated using the limited data
available from HITRAN (Richard et al., 2012; Karman et al., 2019). Line opacities
are calculated from lists of transitions from one quantum state to another, giving the
position, intensity, and broadening parameters of the transitions. For this update to
PLATON, we focused on line opacities.
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In the original PLATON release, our opacity data were taken directly from Exo-
Transmit (Kempton et al., 2017). Exo-Transmit, in turn, calculated its opacities
from line lists generated from a large number of sources, listed in Table 2 of Lupu
et al. (2014). These include HITRAN, HITEMP, private communications, Freedman
et al. (2008), and Freedman et al. (2014), among many others. Many of these line
lists are outdated, proprietary, or both. In addition, the program used to generate
opacity data from the line lists is not public, making it difficult to reproduce our
opacity calculations.

Table 4.4: Sources of line lists

Source Molecules
ExoMol C2H4, CO, H2CO, H2S, H2O,

HCl, HCN, MgH, NH3, NO, OH,
PH3, SH, SiH, SiO, SO2, TiO,
VO

HITRAN 2016 C2H2, C2H6, HF, N2, NO2, O2,
O3, OCS

CDSD-4000 CO2
Rey et al 2017 CH4
NIST Na, K

We address these shortcomings by regenerating PLATON’s opacity data using the
public line lists in Table 4.4. For each molecule, we generate absorption cross sec-
tions from line lists using the method outlined in ExoCross (Yurchenko et al., 2018).
The cross sections are generated for 30 temperatures (100− 3000 K in 100 K incre-
ments), 13 pressures (10−4 − 108 Pa in decade increments), and 4616 wavelengths
(0.3 − 30 µm, with uniform spacing in logarithmic space). The resolution of our
wavelength grid is not high enough to resolve individual lines at typical atmospheric
pressures (P < 1 bar), leading to spikiness in the wavelength-dependent cross sec-
tions, and therefore in the final transit and secondary eclipse depths. This approach
to radiative transfer is called “opacity sampling.” The idea behind opacity sampling
is that even though the sampling resolution is much lower than that needed to re-
solve individual lines, it is still much higher than the instrumental resolution, and
the spikiness in the resulting models can be smoothed out by binning to instrumental
resolution.

We generate cross sections by assuming a Voigt profile for every line, with the
Gaussian standard deviation set by the temperature of the gas, and the Lorentzian
portion set by the pressure broadening coefficients 𝛾r𝑒 𝑓 and 𝑛:
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𝛾(𝑃,𝑇) = 𝛾r𝑒 𝑓
𝑃

𝑃𝑟𝑒 𝑓

(
𝑇r𝑒 𝑓

𝑇

)𝑛
(4.14)

where 𝛾r𝑒 𝑓 and 𝑛 are expected to vary depending on the line considered and the
species responsible for the broadening.

ExoMol
ExoMol (Tennyson & Yurchenko, 2018) is a database of molecular line lists intended
for modeling the atmospheres of exoplanets and cool stars. The lists are generated
using a combination of ab initio calculations and empirical data. Many of the line
lists represent significant improvements in completeness over the previous state of
the art. For example, POKAZATEL, the water line list, has 6 billion transitions.
This is an order of magnitude more than previous lists, and covers every possible
transition between states below the dissociation energy of water (Polyansky et al.,
2018). Compared to the Freedman et al. (2008) line lists used by previous versions
of PLATON, the ExoMol line list has many times the number of transitions for water
(6 billion vs. 200 million), NH3 (10 billion vs. 34,000), H2S (115 million vs.
188,000), PH3 (50 billion vs. 20,000) and VO (377 million vs. 3.1 million).

The specific line lists we used are listed in Table 4.11, together with the number
of transitions they contain, their maximum temperature of validity, and citations to
the associated papers. For some molecules, ExoMol provides line lists for multiple
isotopologues; in those cases we only include the most common isotopologue. The
exception to this rule is TiO, an important molecule where multiple isotopologues
have comparable abundances. For this molecule, we compute the absorption due to
each isotopologue and add them in proportion to each isotopologue’s abundance.

Although these ExoMol line lists are an improvement over what was available
before, many are still incomplete. The calculations only include states below a
certain 𝐽 quantum number, and hence miss transitions between higher-energy states
that become important at higher temperatures. Thus, many line lists are not valid for
the full range of temperatures supported by PLATON, which ranges up to 3000 K. For
example, the C2H4 line list, despite having 50 billion lines, is only valid below 700
K. For these molecules, we still generated cross sections for all temperatures. The
cross sections are likely to be under-estimated at high temperatures due to missing
lines, but as of this writing, there is no better alternative.
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ExoMol reports line broadening coefficients for hydrogen and helium whenever
available. In practice, however, there are no calculations or experimental data
available for any broadening agent for the vast majority of lines. For example,
ExoMol reports no broadening coefficients at all for H2S, CO, MgH, NO, OH, SiH,
SiO, or VO. For NO, it only reports air broadening coefficients, which we adopt for
lack of a better alternative. For the other molecules, ExoMol reports broadening
coefficients for H2 and He in a consistent format (Barton et al., 2017), relying on
the handful of studies that have reported coefficients for a small number of lines
while resorting to default values for the rest. We used ExoMol broadening data
when available and assumed that the broadening agent is a mixture of 85% H2 and
15% He. For all molecules where ExoMol broadening data is not available, we
assumed that 𝛾𝑟𝑒 𝑓 = 0.07 and 𝑛=0.5 at a 𝑇r𝑒 𝑓 = 296𝐾 and 𝑃𝑟𝑒 𝑓 = 1 bar. 𝑛=0.5 is
the theoretically expected value from classical calculations, while 𝛾𝑟𝑒 𝑓 = 0.07 is a
typical value adopted by ExoMol as the default. The only exception is C2H4, where
we used broadening parameters measured by Bouanich et al. (2003) (H2) and Reuter
& Sirota (1993) (He) for 34 and 3 lines respectively by generating ExoMol-formatted
broadening files from the measurements.

HITRAN 2016
HITRAN (Gordon et al., 2017) is a database of line lists sourced from a combination
of observations, theory, and semi-empirical calculations. It is intended for use at
terrestrial temperatures, and has a line intensity cutoff that makes it inaccurate for
higher temperatures. Nevertheless, HITRAN is a valuable resource because it is the
only source of line lists for many molecules. HITRAN specifies line broadening
parameters by including 𝛾 and 𝑛 in the description of every line. Although 𝛾𝐻2

and 𝑛𝐻2 are included in HITRAN, very few lines have hydrogen broadening data.
Therefore, we chose 𝛾𝑎𝑖𝑟 and 𝑛𝑎𝑖𝑟 as the broadening parameters for every line.

For most molecules not included in ExoMol, Exo-Transmit used (and PLATON inher-
ited) absorption data from HITRAN 2008. We regenerate the absorption data using
HITRAN 2016 (Gordon et al., 2017), which has expanded wavelength coverage and
improved accuracy. This update also fixed some errors in the old data that resulted
from incorrect generation of absorption data from line lists. The HAPI API makes it
easy to retrieve line lists for all isotopologues at once, with intensities appropriately
scaled to the isotopologue abundance. Therefore, we considered all isotopologues
for the molecules we took from HITRAN.
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CDSD-4000
The Carbon Dioxide Spectroscopic Databank 4000 (CDSD-4000) is a line list meant
for high temperatures, provided in a format similar to HITRAN. It has significantly
more lines than HITRAN or HITEMP, and to our knowledge it is the most complete
publicly available line list for carbon dioxide. CDSD-4000 has pressure broadening
coefficients for air, which we adopt due to the absence of broadening coefficients for
hydrogen or helium.

Rey et al 2017
The line list presented by Rey et al. (2017), which we name Rey for convenience,
is the first theoretical methane line list suitable for high temperature applications.
It is complete in the infrared range (0–13,400 cm−1) up to a temperature of 3000
K, whereas the ExoMol line list “10to10” is only accurate to 1500 K (Yurchenko &
Tennyson, 2014). Rey also claims to be the first theoretical methane line list with
line positions accurate enough for high resolution cross-correlation studies. We
have confirmed this claim by cross correlating brown dwarf models generated using
both methane line lists to observational high-resolution spectra of a T brown dwarf,
with all other opacity sources excluded. The cross correlation peak is 4.5𝜎 with
“10to10,” but 15.3𝜎 with Rey, indicating far superior line positions. In addition,
with 150 billion lines, this line list is far more complete than either ExoMol’s
“10to10” line list (10 billion transitions) or the Freedman et al. (2008) line list that
we used previously (200 million transitions).

Voigt cutoff
When generating absorption cross sections from line lists, the cutoff—namely, how
far away from the line center the line is considered to end— is an important source of
error. One could in principle omit the cutoff, but computational speed would suffer
greatly. In addition, omitting the cutoff does not necessarily lead to better results, as
the Voigt profile is only an approximation to the true line profile (Ngo et al., 2012)
and is not accurate more than several Voigt widths away from the center. However,
truncating the lines too soon would result in an underestimate of the true opacity
due to the omission of millions of line wings.

We adopted a cutoff of 25 cm-1 for all molecules for pressures less than or equal to 1
bar. For pressures of 10 and 100 bar, we adopted a cutoff of 100 cm-1. For a pressure
of 1000 bar, we adopted a cutoff of 1000 cm-1. This prescription was inspired by
Sharp & Burrows (2007), who adopt a cutoff of min(25𝑃, 100) cm-1 where P is
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in bars. Hedges & Madhusudhan (2016) studied the effect of different cutoffs
and concluded that the Sharp & Burrows prescription significantly underestimates
absorption at low pressures (P < 0.01 bar), but is accurate from 0.01 to 100 bar. We
therefore modified the prescription to use 25 cm-1 for all pressures below or equal
to 1 bar. Pressure broadening coefficients are almost never measured or calculated
at very high pressures (100 − 1000 bar), so our opacity data in this regime should
be regarded as highly speculative.

4.5 Other improvements
Aside from the opacity update and the eclipse depth calculator, many improve-
ments have been made to PLATON since the publication of the last paper. These
improvements introduce features, fix bugs, increase speed, and improve usability. A
comprehensive list can be found in our release notes, but we list a few of the most
noteworthy updates below.

• We now include H- opacity, calculated using the algorithm in John (1988).
Because H- opacity is insignificant for most planets, we disable it by default.

• Nested sampling is now done by dynesty (Speagle, 2020) rather than nestle.
Among other improvements, dynesty prints out the number of likelihood
evaluations, log evidence (logz), and remaining evidence (dlogz) after each
iteration. dlogz is an indicator of how far the algorithm is from comple-
tion. nestle did not have this indicator, which made waiting a frustrating
experience.

• The eclipse depth calculator now evaluates the single integral in Equation 4.2
instead of the double integral in Equation 4.1, making it much faster, many
times more memory efficient, and more accurate.

• Data arrays are transposed so that the wavelength index increases the fastest,
followed by the pressure index, followed by the temperature index. This
improves cache locality, which speeds up the code by a factor of 1/3.

• The number of atmospheric layers is decreased from 500 to 250, improving
speed by 40% while increasing numerical error by only ∼1%. In addition, we
now use improved interpolation methods to further decrease numerical errors.
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High resolution opacities
PLATON has a clean separation between data and code. As a result, all that is
needed to operate PLATON at an arbitrary wavelength range and resolution is the
appropriate opacity data files. No code changes are required. Since we published
Zhang et al. (2019), we have generated high-resolution opacity data files for a variety
of applications. This includes studying the atmospheres of cold brown dwarfs, of
the ultra-hot super Earth 55 Cnc e, and of HD 189733b (see Subsection 4.6).

We now make these opacities public to enable anyone to perform line-by-line cal-
culations with PLATON2. All opacities have a resolution of R=375,000, and are
calculated at the wavelengths indicated by wavelengths.npy. These opacities can be
used by deleting all files from the “Absorption” folder in PLATON’s data directory,
putting the downloaded absorb_coeffs files into the directory, and replacing the
wavelengths.npy file in the data directory with the one in the downloaded zip file.
The user must use a blackbody stellar spectrum (by passing stellar_blackbody=True
to compute_depths) when using high resolution opacities. The user can also gen-
erate their own high-resolution opacity files using publicly available codes such as
ExoCross (Yurchenko et al., 2018) or HELIOS-K (Grimm & Heng, 2015). As long
as they are in the same format as the PLATON data files, PLATON will accept them
with no code changes.

Table 4.5: High resolution absorption data

Filename Wavelengths
(µm)

Molecules

hispec 0.94 − 2.43 CH4, CO, H2O, H2S, HCl,
HCN, MgH, NH3, NO2, NO,
O2, O3, OH, SH, SiH, SiO,
SO2, TiO, VO

𝑌_band 1.020−1.086 CH4, H2O, NH3
𝐾_band 1.89 − 2.40 C2H2, CH4, CO, H2O, HCN,

Na, NH3, SiO
𝐿_band 2.86 − 3.70 C2H2, CH4, CO, H2O, H2S,

HCN, Na, SiO
𝐿_band2 3.51 − 4.08 CH4, CO2, H2O, HCN

We note that in principle other codes, such as TauREx, can also be used to calculate
high resolution spectra if they are provided with custom user-generated high resolu-

2https://www.astro.caltech.edu/platon

https://www.astro.caltech.edu/platon
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tion opacity files. To the best of our knowledge, however, PLATON is the only code
to make such opacity files publicly available.

Correlated-𝑘
The gold standard of radiative transfer is the line-by-line method (Marley & Robin-
son, 2015): calculating the transit or eclipse depth on a wavelength grid fine enough
to resolve individual molecular lines, which typically requires 𝑅 >> 𝑐/

√︃
𝑘𝑇
𝜇𝑚𝐻

≈
200, 000. The results are then binned to instrumental resolution. For many appli-
cations, including PLATON, this is computationally prohibitive. Opacity sampling
sacrifices accuracy for speed by performing radiative transfer at a much lower
resolution—R=1000, in the case of PLATON—and binning the depths thus obtained
to instrumental resolution. In order for the survey to approximate the results of the
census, a large sample size is required, meaning opacity sampling at R=1000 is only
accurate if the user is binning to resolutions much below 1000. To take a concrete
example, suppose PLATON is used to calculate the eclipse depth of HD 189733b over
the 1.40–1.42 µm band using the R=10,000 opacities. PLATON would sample 140
wavelengths within this band and calculate the eclipse depth at each wavelength.
These 140 eclipse depths would have a mean of 53 ppm and a standard deviation of
25 ppm. Therefore, the error caused by opacity sampling is 25/

√
140=2 ppm. If the

R=1000 opacities were used instead, this error would be 25/
√

14 = 7 ppm. Fortu-
nately, 7 ppm is several times lower than the error of the WFC3 observations, but
this will not be the case for every combination of planet, instrument, and wavelength
band.

The correlated-𝑘 method (Lacis & Oinas, 1991) improves upon opacity sampling by
taking into account the distribution of opacities within the passband. For example,
it calculates the 10th percentile eclipse depth by using the pre-calculated 10th
percentile of all molecular opacities, and likewise for the 20th percentile, 30th
percentile, etc. Since the eclipse depth varies smoothly with percentile, we can use
numerical integration to find the average eclipse depth. In effect, the correlated-𝑘
method converts an integration over wavelength into an integration over percentile;
it replaces the integration of a highly non-smooth function

∫ 𝜆2
𝜆1

𝑓 (𝜆)𝑑𝜆 with the

integration of a smooth function
∫ 1

0 𝑓 ′(𝑔)𝑑𝑔, which is in turn evaluated by Gaussian
quadrature (

∑𝑁
𝑖=1 𝑤𝑖 𝑓

′(𝑔𝑖)), where g is the percentile divided by 100. 𝑓 (𝜆) can be
𝑅𝑝 (𝜆), the emergent flux 𝐹𝑝 (𝜆), or any other radiative quantity, so long as its only
dependence on wavelength is through the opacity, and so long as it varies smoothly
with opacity.
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Earlier versions of PLATON performed radiative transfer via opacity sampling at
a default resolution of 1000 with an optional R=10,000 mode. We now give the
user the option to choose between correlated-𝑘 (R=100) and opacity sampling. The
correlated-𝑘 method provides the accuracy of R=50,000 opacity sampling for typical
exoplanet applications, but runs at the same speed as the old default R=1000 PLATON
mode. Our implementation of correlated-𝑘 rests on two approximations:

1. At any given wavelength 𝜆 within the band, 𝑔(𝜆) is the same for every layer.
That is, if a layer is more opaque at a certain wavelength than at x% of other
wavelengths within the band, all other layers must also be more opaque at that
wavelength than at x% of other wavelengths.

2. For each layer, if the individual gases were to be separated out, 𝑔(𝜆) would be
equal for all gases with significant opacity. That is, if one molecule absorbs
more strongly at a certain wavelength than at x% of other wavelengths within
the band, the same must be true for all other molecules.

The first assumption is the defining assumption of the correlated-𝑘 method, and
explains its name: the opacity 𝜅 is assumed to be correlated throughout the atmo-
sphere under consideration. For an atmosphere with one species with exactly one
absorption or emission line within the band, it is exactly true. For an atmosphere
with two layers, each of which is exclusively composed of a different gas, it is very
inaccurate. A real atmosphere is in between these two extremes: the region domi-
nating the features in a transmission or emission spectrum typically spans ∼200 K
in temperature (Figure 4.10) and 1-2 orders of magnitude in pressure (see Figures
4.10 and 4.11), which generally means that there is no change in the dominant gas
absorber.

The second assumption, however, is only true when one molecule dominates the
opacity. If two molecules contribute equally to the opacity, the assumption is
no longer valid, as the absorption lines of different molecules will not in general
overlap. In fact, the opposite assumption is more accurate: namely, that the opacities
are completely uncorrelated between different gases. Lacis & Oinas (1991) take this
approach, but adopting this assumption naively for PLATON would require O(𝑛𝑁 )
radiative transfer calculations, where 𝑛 is the number of discrete 𝑔 values adopted
(for us, 10) and 𝑁 is the number of gases (for us, 30), making these computations
intractable. There are methods of merging the opacity distributions of multiple gases
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that do not scale exponentially—including the ‘random overlap with resorting and
rebinning’ method introduced by Lacis & Oinas (1991) and named by Amundsen
et al. (2017). These are more complicated to implement, and we may incorporate
them into a future release of PLATON. The partially correlated approach attempts
to take into account the correlations between gases (Zhang et al., 2003), but these
sophisticated schemes are beyond the scope of PLATON.

We note that the simplicity of our approach comes at a cost: it systematically
overestimates transmittance in most cases (Zhang et al., 2003). This overestimation
is easy to understand with a toy scenario. Consider a gas with binary absorption
properties: at 50% of wavelengths it has infinite absorption, while at the other
wavelengths it has zero absorption. This gas would have a transmittance of 50%.
Now consider adding a second gas, also with binary absorption properties. If the
two gases have perfectly correlated absorption (which is our assumption), their
absorption peaks fall on top of each other, and transmittance is still 50%. If their
absorption is not perfectly correlated, the absorption peaks of the second gas block
some of the light that would have went through the first gas, and total transmittance is
less than 50%. If their absorption is perfectly anti-correlated, the total transmittance
would be 0%.

In practice, PLATON uses the following correlated-𝑘 algorithm:

1. (Pre-computed) Compute the absorption coefficients of each atom/molecule
at each temperature, pressure, and wavelength grid point, with a spectral
resolution of R=50,000. Correlated-𝑘 coefficients are generated from the
absorption coefficients with a resolution of R=100.

2. Divide the wavelength range under consideration into bands, with each band
having a width of 𝜆/100.

3. For each band, compute the transit/eclipse depth at 10 different opacity per-
centiles, and combine them via Gaussian quadrature. The transit depth at
the 16th opacity percentile (for example) is calculated by assuming every
gas, at every temperature and pressure, has an absorption coefficient equal
to the pre-calculated 16th percentile absorption coefficient for that band at
that temperature and pressure. We use 10 Gaussian quadrature points, which
is sufficient to keep the integration error below 1% in most cases (Lacis &
Oinas, 1991; Goody et al., 1989).
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4. The R=100 transit or eclipse depths are then binned to the user-specified
wavelength bins using the methods described in our first paper (Zhang et al.,
2019).

We performed an experiment to deduce the accuracy of the correlated-𝑘 algorithm
compared to a line-by-line calculation. The transit spectrum of a hot Jupiter (mod-
elled after HD 209458b) was computed from 0.95 − 2.4 µm using two methods: a
line-by-line calculation at R=375,000 binned to R=100, and a correlated-𝑘 calcu-
lation using R=100 opacities with 10 Gaussian quadrature points. For the nominal
model, which is dominated by water opacity, correlated-𝑘 performs extremely well
and has a maximum error of only 8 ppm. For a model engineered to include
three molecules with comparably significant absorption correlated-𝑘 still performs
well, with a maximum error of 300 ppm. The emission spectrum tells a similar
story. Correlated-𝑘 is accurate to 0.1% for the nominal model, and to 3.5% for the
pessimistic model.

These tests also demonstrate that although correlated-𝑘 is very accurate, its errors
are not random. Correlated-𝑘 almost always underestimates the transit depths and
overestimates the eclipse depths. This is a consequence of overestimating the
transmittance, which in turn is because (contrary to the second assumption above)
the absorption properties of two molecules are in general not strongly correlated.

Beta features
Since we do not currently plan to write a third PLATON paper, we include a list
of beta features that will likely become part of the official PLATON. This list also
serves to illustrate what is possible with minimal hacking. All of these features were
created as a result of requests from PLATON users other than the authors. Users are
highly encouraged to contact the authors to suggest new features or improvements
to existing features.

PLATON does not calculate disequilibrium chemistry from first principles, nor does
it compute self-consistent temperature-pressure profiles. It is often useful to take
abundance and temperature profiles from elsewhere and plug them into PLATON,
using it as a radiative transfer engine to predict transit and eclipse depths. This
is currently easy to do for vertically-constant abundances, but not for vertically-
variable abundances. To make the latter possible, we created the branch cus-
tom_abundances on the GitHub repository. Examples of how to use it are found in
examples/plot_transit_custom_abunds.py and examples/plot_eclipse_custom_abunds.py.
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Some metallic species are not included in PLATON by default, but may become impor-
tant in the optical for ultra-hot Jupiters. These include Ca, Fe, Ni, and Ti. We make
these opacities available at https://www.astro.caltech.edu/platon/metal_
opacities/. These can be used by placing them in PLATON_DIR/data/Absorption
and adding the atoms to PLATON_DIR/data/species_info. These atoms are not in-
corporated into the equilibrium chemistry calculation, but the user can easily specify
vertically constant abundances for them. We describe the procedure in PLATON’s
online documentation.

Lastly, Na and K each have two very strong lines in the optical, where the atmo-
sphere is transparent enough that their far wings may become significant. Un-
fortunately, while the lines cores are accurately described by a Voigt profile, the
Voigt profile can underestimate far wing absorption by orders of magnitude (Al-
lard, N. F. et al., 2016; Allard et al., 2019). More accurate line profiles for
these atoms were recently published by Allard, N. F. et al. (2016) (K) and Al-
lard et al. (2019) (Na) using a semi-classical theory and assuming broadening
by molecular hydrogen only. We use these line profiles to generate PLATON-
friendly absorption coefficients at R=1000 and R=10,000, found at https://
www.astro.caltech.edu/platon/metal_opacities/. By overwriting PLA-
TON_DIR/ data/ Absorption/ absorb_coeffs_Na.npy and PLATON_DIR/ data/ Ab-
sorption/ absorb_coeffs_K.npy with these coefficients, the user can generate much
more accurate hydrogen-broadened alkali line profiles with PLATON.

4.6 Retrieval on HD189733b
Published data sets
HD 189733b is one of the most favorable exoplanets for atmospheric characteriza-
tion. It is a transiting hot Jupiter orbiting an exceptionally close (20 pc) K star with
a 𝐻 band magnitude of 5.6, and was one of the earliest transiting planets discovered
(Bouchy et al., 2005). To demonstrate PLATON’s new abilities, we perform a joint
retrieval on the best available optical and near infrared transit and secondary eclipse
data for HD 189733b from HST and Spitzer. To our knowledge, this is the first joint
transit and secondary eclipse retrieval for this planet in the literature, as well as the
most comprehensive set of both transit and secondary eclipse data assembled for a
retrieval to date. The fixed stellar and planetary parameters are listed in Table 4.7.
The transit depths we adopt are listed in Table 4.8, while the eclipse depths are listed
in Table 4.10.

https://www.astro.caltech.edu/platon/metal_opacities/
https://www.astro.caltech.edu/platon/metal_opacities/
https://www.astro.caltech.edu/platon/metal_opacities/
https://www.astro.caltech.edu/platon/metal_opacities/
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HD 189733b has been observed in transmission with HST/STIS (Sing et al., 2011)
and WFC3 (Gibson et al., 2012; McCullough et al., 2014), Spitzer in all five IRAC
bands (Tinetti et al., 2007; Beaulieu et al., 2008; Agol et al., 2010; Désert et al.,
2011; Morello et al., 2014), and Spitzer/MIPS at 24 µm (Knutson et al., 2009).
Pont et al. (2013) carried out a uniform re-analysis of all transit data obtained to
date including corrections for stellar activity; we utilize their transmission spectral
data in our analysis. This planet was also observed in transit by HST/NICMOS in
spectroscopic (Swain et al., 2008) and photometric (Sing et al., 2009) modes, but
this instrument was less stable than WFC3, and the reliability of the spectroscopic
NICMOS observations was questioned in a subsequent study (Gibson et al., 2011;
Deming & Seager, 2017). We therefore exclude these older NICMOS observa-
tions from our analysis. We also exclude the higher resolution observations of the
sodium line published in (Huitson et al., 2012), as PLATON is not designed to model
absorption at the very low pressures probed by the core of this line.

In emission, HD 189733b has been observed with HST/STIS (Evans et al., 2013),
HST/NICMOS (Swain et al., 2009), HST/WFC3 (Crouzet et al., 2014), Spitzer/IRAC
in all four bands (Knutson et al., 2007; Charbonneau et al., 2008; Agol et al., 2010;
Knutson et al., 2012), Spitzer/IRS at 5 − 14 µm (Deming et al., 2006; Grillmair
et al., 2008; Todorov et al., 2014), and Spitzer/MIPS at 24 µm (Knutson et al.,
2009). Because PLATON does not model reflected light, we limit our retrieval to the
infrared data only, which are expected to be dominated by thermal emission. As
with the transmission spectrum, we exclude the NICMOS observations from our
retrieval. We also exclude the Spitzer/IRS emission spectrum, as over the years
different groups have obtained contradictory results. Most recently, Todorov et al.
(2014) found that the overall amplitude of the IRS eclipse depth can shift up and
down depending on the method used to correct for systematics. Indeed, a compar-
ison to our best fit model spectrum reveals that these data are consistent with the
broadband observations if they are shifted upwards by 30%. In addition to tran-
sit and secondary eclipse observations, HD 189733b’s phase curve has also been
measured in the 3.6, 4.5, 8.0, and 24 µm Spitzer bands (Knutson et al., 2007, 2009,
2012).

Based on the observations listed above, HD 189733b is one of the most exten-
sively observed transiting planets to date. Previous studies of HD 189733b’s optical
transmission spectrum found that it appears to have a strong scattering slope and at-
tenuated absorption features due to the presence of high-altitude scattering particles
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(Pont et al., 2008; Sing et al., 2011; Pont et al., 2013). These scattering particles
are possibly some form of silicate condensate (Lecavelier Des Etangs et al., 2008;
Lee et al., 2015; Helling et al., 2016). Because this planet is expected to be tidally
locked, it should develop a super-rotating equatorial band of wind that transports
heat from the day side to the night side (e.g., Showman & Polvani 2011). It is
observed to have a relatively modest day-night temperature gradient (Knutson et al.,
2007, 2009, 2012) and models predict that it may also have spatially inhomogeneous
cloud coverage (Lee et al., 2015; Lines et al., 2018).

In the infrared, the effect of the scattering particles on HD 189733b’s transmission
spectrum is reduced. McCullough et al. (2014) report the detection of a spectro-
scopically resolved water feature at 1.4 µm that is consistent with the model of
scattering aerosol reported by Pont et al. (2013), although they also argue that the
optical slope can be explained by stellar activity alone (see Section 4.6). In emission,
previous studies have detected spectroscopically resolved water absorption at 1.4
µm (Crouzet et al., 2014) and (debatably) in the mid-infrared (Grillmair et al., 2008;
Todorov et al., 2014), and have placed additional constraints on the abundances of
carbon monoxide, carbon dioxide, and methane based on the relative depths of the
broadband Spitzer secondary eclipse data (e.g., Line et al. 2010; Lee et al. 2012).
We discuss the results of these retrievals in more detail in Section 4.6.

PLATON retrieval
When modeling HD 189733b’s transmission spectrum, our retrieval uses a complex
refractive index with a real component of 1.7, a value in between that of MgSiO3 and
SiO2 (which have 𝑛 ∼ 1.5 at optical wavelengths) and TiO2 (which has 𝑛 ∼ 2.4).
Since the true composition of condensates in the atmosphere is unknown, and
multiple condensates may well be important, we allow the imaginary component of
the refractive index to vary as a free parameter in our fit. We do not include clouds
in our dayside models; even if the clouds observed on the terminator extended over
the entire dayside, we would expect them to have lower optical depths when viewed
in emission at infrared wavelengths (e.g., Fortney 2005). Indeed, previous retrieval
studies of HD 189733b’s dayside atmosphere have found that cloud-free models
provide a good fit to the available data (e.g. Barstow et al. 2014).

We carry out our retrievals using the dynesty nested sampling package with static
sampling and R=10,000 opacities. We used 1000 live points, a convergence criteria
of Δlog(z) = 1, multi-ellipsoidal bounds, and a random-walk sampling method. The
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Figure 4.7: Best fit and residuals. Top: Best fit transit spectra from retrieval on HD
189733b. The best-fit PLATON model and corresponding 1𝜎 uncertainty window
are shown as a red line and red shaded region, respectively. The activity-corrected
observations drawn from Pont et al. (2013) and listed in Table 4.8 are shown as
black filled circles. Bottom: difference between observed and computed transit
depths, in units of measurement error 𝜎. Adopting the nightside emission pollution
correction of Kipping & Tinetti (2010) would reduce the errors on the 8µm and
24µm points by 0.6𝜎 and 0.4𝜎, respectively, bringing the observations into nearly
perfect agreement with the model.

fixed parameters, listed in Table 4.7, are the stellar radius, stellar temperature, and
planetary mass. The free parameters, listed in Table 4.6, are the planetary radius 𝑅𝑝
at 1 bar, the metallicity 𝑍 relative to solar, the C/O ratio, the limb temperature 𝑇𝑙𝑖𝑚𝑏,
the Line et al. (2013) T/P profile parameters (thermal opacity 𝜅𝑡ℎ, visible-to-thermal
opacity ratio of first visible stream 𝛾, visible-to-thermal opacity ratio of second
visible stream 𝛾2, percentage apportioned to the second visible stream 𝛼, effective
albedo 𝛽), mean haze particle radius 𝑟𝑚, haze particle number density 𝑛, ratio of
haze scale height to gas scale height ℎ 𝑓 𝑟𝑎𝑐, WFC3 instrumental offsets (Δ𝑤 𝑓 𝑐3,𝑡 for
transit and Δ𝑤 𝑓 𝑐3,𝑒 for eclipse), and the imaginary portion of the haze refractive
index 𝑘 . In Figure 4.7 and 4.8, we show the best fit transit and eclipse spectra from
our retrieval. Our best fit model is a good fit overall to the data, with a 𝜒2 of 30.7
for the transit spectrum and 38.3 for the eclipse spectrum for a total 𝜒2 = 69. With
52 transit depths, 34 eclipse depths, and 15 free parameters, the p value is 0.55. The
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Figure 4.8: Top: Best fit eclipse spectra from retrieval on HD 189733b. The best-fit
PLATON model and corresonding 1𝜎 uncertainty window are shown as a red line
and red shaded region, respectively. Data used in the fit (see list in Table 4.10) are
shown as black filled circles. The IRS eclipse depths from Todorov et al. (2014) are
shown in grey and were not included in the retrieval. These eclipse depths have been
shifted up by 30% to match the model—a plausible shift, since Todorov et al. (2014)
mentions that its results are 20% below those of Grillmair et al. (2008). Bottom:
difference between observed and computed secondary eclipse depths, in units of
measurement error 𝜎.

single largest point of disagreement (3.1𝜎) between model and data occurs at the
very red end of the WFC3 emission spectrum, where edge effects may impact the
reliability of data.

In Table 4.6, we tabulate the 1D posterior distributions from the retrieval. In Figure
4.9, we show the 2D posterior distributions. We find that the data prefer supersolar
metallicities (𝑍 = 7 − 20) and a C/O ratio between 0.47 − 0.69. This C/O ratio is
consistent with the solar value, but is somewhat low compared to the stellar C/O
ratio of 0.90±0.15 (Teske et al., 2014). However, Teske et al. (2014) also report that
their estimate for the stellar C/O ratio depends on what data they include and how the
non-LTE correction is performed. They report C/O ratios ranging from 0.69 to 1.2
for different data analysis choices, and conclude that although the C/O ratio could be
below 0.75, it is very likely above 0.80. If so, the planetary atmospheric C/O ratio
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Figure 4.9: Posterior distribution of the fiducial retrieval on HD 189733b.

would be slightly suppressed relative to the stellar value, in good agreement with
theoretical predictions for gas giant planets with atmospheric metallicities enhanced
by the accretion of solids (Espinoza et al., 2017).

Our observations also constrain HD 189733b’s dayside pressure-temperature profile.
We find no evidence for a dayside temperature inversion, as shown in Figure 4.10.
The parameter 𝛼, which partitions the visible radiation into two separate channels
and corresponds to the flux in the channel with opacity 𝛾2, is consistent with 0. This
means that there is no need for a second visible wavelength channel and that the
simpler double-gray parameterization of Guillot (2010) is sufficient. We also find
that the overall shape of the pressure-temperature profile is consistent with a low
albedo and efficient day-night redistribution of heat, as 𝛽 is consistent with 1.
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Table 4.6: Retrieved parameters

Parameter Posterior Best Prior
𝑅𝑝 (RJ) 1.117 ± 0.002 1.114 [1.11, 1.13]
log10 𝑍 1.08+0.23

−0.20 0.956 [−1, 3]
𝐶/𝑂 0.66+0.05

−0.09 0.69 [0.2, 2]
𝑇𝑙𝑖𝑚𝑏 (K) 1089+110

−120 1203 [500, 1300]
log10 𝜅𝑡ℎ (m2 kg−1) −1.40+0.40

−0.32 -1.44 [−5, 0]
log10 𝛾 −0.51+0.36

−0.21 -0.66 [−4, 1]
log10 𝛾2 −0.58+0.62

−0.50 -0.47 [−4, 1]
𝛼∗ < 0.47 0.441 [0, 0.5]
𝛽 0.95 ± 0.05 0.938 [0.5, 2]

log10 𝑟𝑚(m)∗ < −7.8 -8.59 [−9,−5]
log10 𝑛(𝑚−3) 16.0+1.5

−2.7 14.4 [8, 21]
ℎ 𝑓 𝑟𝑎𝑐 3.2+0.6

−0.5 3.19 [0.5, 5]
Δ𝑤 𝑓 𝑐3,𝑡(ppm) −63 ± 28 -72 0 ± 100
Δ𝑤 𝑓 𝑐3,𝑒(ppm) 29 ± 9 33 0 ± 39

log10 𝑘
∗ ∗ < −1.7 -3.86 [−6, 0]

For these parameters, the 95th percentile upper bound is reported.
The ‘best’ column reports the parameters of the best fit model.
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Figure 4.10: Inferences from the retrieval. Left: emission contribution function
of HD 189733b, as indicated by the best fit solution. Right: the T/P profile as
indicated by the best fit solution (red), along with the 2𝜎 uncertainties on the T/P
profile (blue). The median limb temperature is indicated in black, while the 1𝜎
uncertainty in limb temperature is indicated in gray.

We place constraints on the sizes and locations of the scattering particles near HD
189733b’s terminator. The mean particle size is constrained to be less than 14
nm, and is consistent with arbitrarily small values. However, this size constraint
is dependent on the assumed value of the imaginary refractive index, with more
absorbent particles requiring a larger mean particle size (see Subsection 4.6 for



121

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
log10 ( m)

2

1

0

1

2

3

4

5

lo
g 1

0P
(P

a)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.11: Contribution function of the transmission spectrum. The absolute
scale is in arbitrary units.
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Figure 4.12: Number abundances of the most common molecules in the limb
(dashed) and on the day side (solid), according to the best fit model. Hydrogen and
helium, the dominant components of the atmosphere, are not shown.

more details). We find that the fractional scale height of the haze is a factor of a
few larger than that of the gas. In effect, this means that haze particles are more
abundant relative to gas in the upper atmosphere than in the lower atmosphere. This
could possibly indicate that the haze is photochemical in nature, a possibility first
suggested by Zahnle et al. (2009) and Pont et al. (2013). The fact that photochemical
hazes can generate super-Rayleigh scattering slopes in the 𝑇𝑒𝑞 = 1000 − 1500 K
regime was recently demonstrated by Ohno & Kawashima (2020), who showed that
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strong eddy diffusion gives rise to a 𝜌h𝑎𝑧𝑒/𝜌g𝑎𝑠 ratio that increases with height,
which in turn leads to a steep spectral slope.

Comparison with previous retrievals
Many authors have attempted to use retrievals to constrain the atmospheric properties
of HD 189733b, starting with Madhusudhan & Seager (2009). Here, we review
the most recent retrievals, including Lee et al. (2014) and Pinhas et al. (2019) in
transmission and Lee et al. (2012) in emission, and compare their results to ours.
Although Benneke (2015) separately performed a retrieval on HD 189733b’s WFC3
transit spectrum, the limited wavelength range of these data prevented them from
obtaining meaningful constraints on the atmospheric metallicity.

Lee et al. (2014) performed a retrieval on the 0.3 − 10 µm transmission spectrum
data reported in Pont et al. (2013). Because this study was performed prior to the
publication of the WFC3 data, it used NICMOS spectroscopy to constrain the shape
of HD 189733b’s near-infrared transmission spectrum. As part of this retrieval they
explored several different potential aerosol species, including MgSiO3, Mg2SiO4,
astronomical silicate (a mixture of siliciate grains commonly seen in interstellar
space), MgSiO3, NaS, and tholins, all of which they argued might plausibly form
in the upper regions of HD 189733b’s atmosphere. They found that a vertically
uniform aerosol layer stretching from 0.1 mbar to 10 bar filled with monodispersed
particles smaller than 0.1 µm provides a good fit to the spectrum for all aerosol
compositions. This matches well with our updated fits, which indicate that the data
are consistent with a large range of imaginary refractive indices and favor particles
with a mean radius smaller than 14 nm, distributed with a scale height much larger
than that of the gas. Lee et al. (2014) also reported a constraint of 0.02−20×10−4 on
the abundance of water after accounting for the uncertainties introduced by different
aerosol assumptions. Our best fit model is on the upper end of this range with a
photospheric water abundance of 10−3, but it is consistent with the water abundances
from this study for both Mg2SiO4 and tholin aerosols.

Pinhas et al. (2019) use AURA to perform a retrieval on the transit spectrum from
STIS, ACS, WFC3, and IRAC 3.6/4.5 (0.35–4.5 µm). They obtain a water abundance
of log(𝑋𝐻2𝑂) = −5.04+0.46

−0.30, which is 1.8% the equilibrium value at solar elemental
abundances, and claim a strong detection of water depletion. We computed the
water abundance at 10 mbar in our models, taking this to be representative of
the photospheric pressure, and obtained log(𝑋𝐻2𝑂) = −2.5 ± 0.3. Our result is
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substantially discrepant with Pinhas et al. (2019): it is marginally super-solar (see
their Figure 2) and comparable to the measured atmospheric C/H ratio for Jupiter
(e.g., Lodders 2003, their Figure 6).

The cause of this discrepancy is not clear. In terms of data, Pinhas et al. (2019)
include only the 3.6 and 4.5 µm Spitzer transit depths, while we also include
transit depths at 5.8 µm, 8.0 µm, and 24 µm. The most significant difference in
the methodology is that Pinhas et al. (2019) allows much more freedom than our
retrieval. We use equilibrium abundances, while they fit for the abundances of 6
individual atoms and molecules. We adopt an isothermal limb, while they adopt
the Madhusudhan (2019) parameterization of the limb T/P profile and fit for all 6
parameters. In total, they have 19 free parameters, while our transit-only retrieval
has only 9. The high number of free parameters in Pinhas et al. (2019) may allow
them to find a better fit to the data, one with sub-solar water abundance. On the
other hand, the flexibility also puts them in more danger of over-fitting and of finding
physically unrealistic compositions or T/P profiles.

We next consider previously published fits to HD 189733b’s dayside emission
spectrum. Lee et al. (2012) used optimal estimation to perform a retrieval on all
published eclipse observations, with wavelengths ranging from 1.45− 24 µm. They
did not include the WFC3 eclipse observations (Crouzet et al., 2014), which were
published after that study, and instead included NICMOS observations spanning
a similar wavelength range (Swain et al., 2008). Using these data, they found a
mixing ratio of 0.9 − 50 × 10−4 for water, 3 − 150 × 10−4 for carbon dioxide, and
< 0.4 × 10−4 for methane, implying a C/O ratio of 0.45–1. The error ranges they
derived for CO were so broad that they could not provide meaningful estimates
of its abundance. Comparing to Figure 4.12, we see that our water abundance
of 10−3 is fully consistent with these results, as is our low methane abundance of
∼ 10−7 at 𝑃 ∼ 0.1 bar. However, our model has several times less CO2. Lee et al.
(2012) observed that previous studies preferred much smaller CO2 abundances,
including Line et al. (2010) (10−7 to 10−5), Swain et al. (2009) (10−7 to 10−6), and
Madhusudhan & Seager (2009) (7 − 700 × 10−7). They concluded that it is their
HST/NICMOS data that caused the fits to prefer a high CO2 abundance. As discussed
above, some studies have questioned the reliability of the NICMOS results (Gibson
et al., 2012; Deming & Seager, 2017), which also sometimes appear to contradict
subsequent WFC3 observations (Deming et al., 2013). A lower CO2 abundance
would also be more physically plausible, as equilibruim chemistry predicts that
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it should be relatively rare at the low atmospheric metallicities preferred by our
model, and disequilibrium models including both photochemistry and quenching
do not appreciably increase the predicted CO2 abundance (e.g., Moses et al. 2013;
Steinrueck et al. 2019.
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Figure 4.13: Comparison of our retrieved T/P profile (black) and that of Lee et al.
(2012) (green).

In addition to abundances, Lee et al. (2012) also retrieved a T/P profile (their Figure
1), which we compare to our T/P profile in Figure 4.13. Although the two profiles are
very discrepant at higher pressures (>∼1 bar), it is important to note that constraints
on the T/P profile at pressures higher than 1 bar are imposed by the finite range
of shapes allowed by the T/P profile parameterization, not by observational data.
This is because emission spectroscopy cannot probe those depths, as shown by the
contribution function (Figure 4.10). At low pressures the two profiles are consistent,
despite the different shapes.

Importance of individual molecules
PLATON calculates the abundances and line opacities of 28 molecules. To ascertain
which molecules are important, we re-calculate the best fit transit and eclipse spectra
with the opacities of individual molecules zeroed out to see how 𝜒2 changes. We find
that the transit spectrum is dominated by opacity from H2O, CO2, H2S, and CH4.
Removing all other molecular opacities only increases 𝜒2 by 0.7. Starting from a
reference point consisting of these four molecules, we remove each molecule in turn
and calculate the resulting Δ𝜒2, obtaining 1.4 for H2S, 2.9 for CO2, 3.6 for CH4,
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and 92.9 for H2O. Zeroing the aerosol opacity yields Δ𝜒2 = 3780. We conclude
that water is by far the dominant molecule shaping the transit spectrum, with aerosol
scattering as the most important opacity source overall. This is no surprise, as both
the strong scattering slope at short wavelengths and the water feature in the WFC3
bandpass are obvious by eye (Figure 4.7).

The eclipse spectrum worsens by only Δ𝜒2 = 0.6 when the opacity is zeroed for all
molecules except H2O, CO2, H2S, CH4, and CO. Starting from a reference point
consisting of these five molecules, we remove each molecule in turn and calculate
the resultingΔ𝜒2, obtaining 0.2 for CH4, 8.5 for H2S, 56.6 for CO, 81.4 for CO2, and
551 for H2O. Thus, we conclude that the emission spectrum contains information on
more molecules than the transit spectrum, with H2S, CO, CO2, and H2O all acting
as important opacity sources, although water is still dominant.

The tests above reveal the contribution of different molecules to the best-fit transit and
eclipse spectra. They do not reveal the significance with which individual molecules
are detected in the fits, because many of the features induced by a molecule—a little
more absorption here, a little less absorption there—can be mimicked by changes
in the free parameters. To quantify the detection significance, we ran a series of
retrievals on the transit and eclipse data where we zeroed out the opacity of one
molecule at a time and calculated the resulting Bayesian evidence 𝑧. The log of the
Bayes ratio (indicating the relative preference for the full model versus one without
that molecule) is then given by the difference in ln(𝑧) when compared to the retrieval
where all molecular opacities were included. In transit, Δ ln(𝑧) was -0.9 for H2S, 0.5
for CH4, -0.8 for CO2, and -9.9 for H2O, with a margin of error on ln(𝑧) equal to∼0.2
for all retrievals. We conclude that the transit spectra only provide strong evidence
for H2O, with a Bayes factor of 20,000; all other molecules have a Bayes factor less
than 3. In eclipse, Δ ln(𝑧) was 0.3 for H2S, -0.7 for CO, -1.2 for H2O, and -1.6 for
CO2, with a similar margin of error. We conclude that the eclipse spectrum does not
strongly favor the existence of any one molecule. These results are consistent with
intuition: there is a visually obvious water feature in the WFC3 transit spectrum, but
no molecular features can be seen in the eclipse spectrum (which is predominately
composed of broadband photometric points) at any wavelength.

Aerosol properties
Many authors have proposed a Rayleigh scattering haze to explain the optical trans-
mission spectrum of HD 189733b (e.g. Lecavelier Des Etangs et al. 2008; Gibson
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et al. 2012; Pont et al. 2013), and this is born out by our retrievals. Our posteriors
indicate that a clear atmosphere with a zero number density of haze particles is
ruled out to much greater than 3𝜎 significance, and the posterior distribution of
particle sizes puts the particles firmly in the Rayleigh regime (𝑟 ≲ 𝜆/10) for optical
wavelengths. In fact, our posterior on the mean particle sizes pushes up against 1
nm, the lower end of the prior—indicating that arbitrarily small particles are allowed
by the data. This means that no constraint on the haze composition is possible, as
the scattering slope is always 𝑑𝑅𝑝

𝑑 log𝜆 = −4𝐻 regardless of composition. The lack of
a lower limit on the mean particle size also implies that there is no upper limit on
the particle density, as there is a perfect degeneracy between the two variables in the
Rayleigh regime.

Our findings are consistent with the conclusions of previous studies (i.e. Gibson
et al. 2012; Pont et al. 2013), which required the inclusion of a Rayleigh scattering
haze in order to reproduce HD 189733b’s infrared transmission spectrum.
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Figure 4.14: Extinction cross section of the haze particles in our best fit model (solid
red), along with the 1𝜎 range of extinction cross sections from our retrieval. The
dashed solid line falls off as 𝜆−4, and is plotted for reference.

In Figure 4.14, we show that the aerosol extinction cross section falls as 𝜆−4 at
very short wavelengths, but shifts to 𝜆−1 at longer wavelengths. This slow dropoff
of extinction cross section at high wavelengths is due to aerosol absorption. To
understand this, we can write down simple analytic expressions for scattering and
absorption cross sections as a function of wavelength in the Rayleigh regime. These
are (Mishchenko et al., 2002):
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Writing the complex refractive index 𝑚 as 𝑛 + i𝑘 , and assuming 𝑘 << 𝑛:
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One can see from these equations that aerosol scattering falls off with wavelength
much faster than aerosol absorption, causing extinction to be dominated by scattering
at short wavelengths and absorption at long wavelengths. Since the absorption cross
section is proportional to the imaginary component of the refractive index, even
a small imaginary component increases long wavelength extinction by orders of
magnitude compared to a real refractive index.

The importance of 𝑘 , the imaginary component of the refractive index, poses a
challenge for our model. Many different cloud species have been proposed for this
planet. Lee et al. (2016) used a GCM simulation to model condensate clouds and
found that the clouds are dominated by silicate materials such as MgSiO3 at mid-high
latitudes, but TiO2 and SiO2 dominate in equatorial regions. Lavvas & Koskinen
(2017) considered photochemical hazes and found that soot-composition aerosols
provided a good match to HD 189733b’s transmission spectrum. This study reported
𝑘 ∼ 0.5 at 500 nm for soot, while Kitzmann & Heng (2018) reported 3.7×10−5 for
glassy MgSiO3 at the same wavelength, 5.1×10−4 for TiO2, and 1.7×10−5 for SiO2.
In addition to these species-dependent variations in 𝑘 , the 𝑘 for each species also
varies drastically (and uniquely) with wavelength. For example, 𝑘 rises from 1×10−4

to nearly 1 over the wavelength range 2 − 9 µm for MgSiO3, and SiO2 exhibits a
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similar behavior before dropping 2 orders of magnitude within 2 µm. In light of
these uncertainties, we chose to fit for a wavelength-independent 𝑘 value rather than
fixing it to the theoretical prediction for a given cloud species.

We argued earlier that the presence of aerosol has a negligible effect on HD
189733b’s dayside emission spectrum. We check the validity of this assumption
using our best-fit model. We find that when we include the best-fit aerosol model
from the transmission spectrum in our calculation of HD 189733b’s dayside emis-
sion spectrum the resulting eclipse depth values change less than ∼0.1 ppb, with
a corresponding change in 𝜒2 of only 2×10−5. This is unsurprising, as the photo-
spheric pressure is lower for transmission spectrum than it is for eclipse spectrum
by a factor of

√︁
2𝜋𝑅/𝐻 ∼ 50 (Fortney, 2005); this is apparent when we compare the

transmission spectrum contribution function in Figure 4.11 to the emission spec-
trum contribution function in Figure 4.10. At higher pressures, the mixing ratio of
aerosol is lower because our retrievals prefer an aerosol scale height that is greater
than the gas scale height. This causes aerosol absorption to be an important source
of opacity at low pressures only. We note that the dayside is also expected to be
hotter than the terminator, making it less likely that the condensate clouds detected
at the terminator would persist in this region. Even if the dayside is in reality partly
cloudy, the dayside emission would be dominated by clear regions because they
have deeper and hotter photospheres, which emit more radiation.

Validity of equilibrium chemistry
PLATON assumes equilibrium chemistry. Since chemical reaction timescales decline
rapidly with temperature, the colder a planet, the more disequilibrium chemistry
matters. HD 189733b lies in a regime where disequilibrium chemistry may be
important. Multiple studies have explored disequilibrium chemistry on this planet
(Line et al., 2010; Venot et al., 2012; Moses et al., 2013; Agúndez et al., 2014;
Blumenthal et al., 2018; Steinrueck et al., 2019). Venot et al. (2012) considered
1D models with both UV photochemistry and vertical mixing, and found negligible
differences in the resulting transmission and emission spectra as compared to equi-
librium models. Their Figure 10 shows that the disequilibrium-induced brightness
temperature discrepancy is at most several Kelvin (less than 1%), while the transit
radius discrepancy is at most ∼30 ppm. Blumenthal et al. (2018) also model the
emission spectrum under equilibrium and non-equilibrium conditions, finding no
detectable difference even with JWST (their Figure 3). Other studies report changes
in abundance as a result of disequilibrium chemistry, but do not compare the result-
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ing spectra to the equilibrium model predictions. For example, Moses et al. (2013)
find that the water abundance only becomes discrepant for P < 1 microbar, while the
HCN abundance is enhanced by orders of magnitude for P <0.5 bar. In contrast to
these 1D models, which predict relatively small changes in HD 189733b’s observed
transmission and emission spectrum, Steinrueck et al. (2019) calculated emission
spectra for HD 189733b using general circulation models where they fixed the ratio
of CH4 to CO across the planet to mimic the effect of transport-induced quenching.
They find that disequilibrium chemistry due to horizontal transport changes the
emission spectrum by up to 20% for a heavily CO-dominated atmosphere (CH4/CO
= 0.001): there is a systematic offset of 10% in addition to wavelength-dependent
discrepancies of order several percent.

To test whether disequilibrium chemistry may be important for our data, we per-
formed retrievals on the transit and eclipse spectra with the vertical quench pressure
as a free parameter. We quenched all molecules in our first trial, but only CH4 and
CO in our second trial (in accordance with Morley et al. 2017), with no change in
the following conclusions. Quenching did not result in a better fit (Δ𝜒2 ∼ 0) for
either our transmission or emission spectra. In both cases, the posterior distribution
of the quench pressure pushes up against the lower bound of the prior—0.1 mbar for
the transit spectrum and 1 mbar for the eclipse spectrum. Additionally, the posterior
distributions of the other parameters did not appreciably change in these retrievals.
For example, the metallicity posterior shifted by 0.1𝜎 for the transit retrieval and
0.5𝜎 for the eclipse retrieval; the C/O ratio posterior shifted by 0.06𝜎 for both transit
and eclipse retrievals. We conclude that the effects of disequilibrium chemistry are
below our detection threshold, in good agreement with the predictions of the 1D
models from Venot et al. (2012) and Blumenthal et al. (2018).

The effect of starspots
HD 189733 is an active K dwarf with spots that cover a few percent of its surface.
When the planet crosses a prominent spot it creates a readily identifiable deviation
in the transit light curve shape; this makes it straightforward to identify and mask
such events in high signal-to-noise HST observations (e.g. Sing et al., 2011; Pont
et al., 2013). However, the presence of unocculted spots during a transit also
biases the retrieved transit depth in a way that can mimic the effect of scattering
as discussed in McCullough et al. (2014). If the fractional spot coverage varies
from one transit epoch to another, the relative effect on the transit depth will vary
as well. An additional complication is faculae, bright regions ∼100 K hotter than
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their surroundings. For a K1.5 star like HD 189733, faculae can cover 17-40% of
the surface, partially cancelling the effect due to spots (Rackham et al., 2019). The
large faculae fraction is a mixed blessing. On one hand, it becomes hard to correct
for the effects of faculae because we cannot assume faculae are unocculted. On the
other hand, the faculae covering fraction is so large that the planet is likely to cross
at least one faculae and one non-faculae region during every transit, thus mitigating
the spectral bias from unocculted faculae. We therefore neglect the effects of faculae
and only consider spots.

Pont et al. (2013) attempted to correct for the effects of time-varying spot coverage
by using photometric data from the Automated Patrol Telescopes (Henry, 1999) to
estimate the apparent brightness at the epoch of each transit observation. Although
these data made it possible to estimate the magnitude of the variations in spot
coverage, they do not provide an estimate of the overall spot coverage fraction
because the star is not necessarily spotless at maximum brightness. The authors
resolve this problem by assuming an average spot coverage fraction of 1%, based on
three pieces of evidence: the frequency of spot-crossing events during HST transits
(Sing et al., 2011), stochastic starspot simulations by Aigrain et al. (2012), and
the lack of features in the transmission spectrum (i.e. Mg H line, stellar sodium
line) caused by abundant starspots. They argue that these lines of evidence make it
unlikely that the spot coverage fraction is much above 2%.

McCullough et al. (2014) use the same data to argue for a higher starspot fraction
of 4%. First, they emphasize that the starspot fraction derived from spot crossing
events would be an underestimate if most starspots are in the polar regions, where
the planet does not transit. Second, they use Equation 14 of Aigrain et al. (2012) to
derive a lower bound on the starspot fraction:

𝛿 >≈ Ψ𝑚𝑎𝑥 − Ψ𝑚𝑖𝑛 + 𝜎
Ψ𝑚𝑎𝑥 + 𝜎

.

Since the measured difference between the maximum flux (Ψ𝑚𝑎𝑥) and minimum
flux (Ψ𝑚𝑖𝑛) is around 4% and the rotational modulation (𝜎) is of order one percent,
𝛿 >≈ 0.04. However, this derivation really computes a lower bound on the maximum
starspot fraction over a period of time, whereas the 1-2% figure quoted by Pont et al.
(2013) is the average starspot fraction. McCullough et al. (2014) go on to argue
that if the starspot fraction were 4.3%, the majority of the increased apparent transit
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depth in the UV compared to IR could be explained by unocculted starspots, and
there would be no need to invoke scattering from aerosol.

To shed light on this issue, we ran another retrieval with PLATON where the spot
coverage fraction is allowed to vary as a free parameter. We fix the spot temperature
to 4250 K, the temperature derived by Sing et al. (2011) from observations of spot
occultations. Since we used the transit depths from Pont et al. (2013), which already
corrected for the effects of starspots using APT photometry and an assumed 1%
baseline starspot fraction, our fitted spot coverage fraction is in reality an excess
spot fraction above this 1% baseline. We find an excess spot coverage fraction of
1.8+0.7

−1 %, which in turn implies a total average starspot fraction of 2.8+0.7
−1 %. This

figure is intermediate between the 1-2% argued for by Pont et al. (2013) and the
4% argued by McCullough et al. (2014). However, the inclusion of spot coverage
fraction as a free parameter does little to modify the posteriors for the other model
parameters. The median values of all parameters are consistent with the values
from the fiducial retrieval (Table 4.6) to better than 1𝜎. We therefore conclude
that our derived haze properties, including the mean particle size, particle number
density, and fractional scale height, are insensitive to our assumptions about the spot
coverage fraction.
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Figure 4.15: PLATON model of a hazy atmosphere on HD 189733b, compared to
a clear atmosphere with a starspot-induced slope corresponding to a spot coverage
fraction of 6%. Note the strong atomic and molecular features in the clear atmo-
sphere, especially the far wings of the sodium and potassium absorption lines.
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If unocculted starspots and haze can both introduce a slope in HD 189733b’s op-
tical transmission spectrum, why is there not a degeneracy between the two? To
answer this question, we plotted a transmission spectrum with no aerosol but with
a high spot coverage fraction of 6%, as shown in Figure 4.15. We found that the
transmission spectrum has strong atomic and molecular absorption features even at
short wavelengths (𝜆 < 1 µm), the most prominent of which are the far wings of the
Na doublet at 589 nm and of the K doublet at 770 nm. These features are not seen
in the observational data, which are nearly featureless at optical wavelengths.

A consistency check for composition
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Figure 4.16: Posterior distributions for the transit-only retrieval (blue), eclipse-only
retrieval (red), and combined retrieval (black).

Although we fit HD 189733b’s transmission and emission spectra jointly, in reality
the models used to fit these two spectra are largely independent of each other.
The transmission spectrum determines the isothermal limb temperature and aerosol
properties, while the emission spectrum sets the dayside T/P profile. The planetary
radius is technically constrained by both transmission and emission spectra, but
most of the statistical power comes from the transmission spectrum. The only two
parameters that are comparably constrained by both spectra are the atmospheric
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metallicity and C/O ratio, which determine the chemistry for both the limb and the
day side.

To illustrate the relative contributions of transmission and emission spectra to HD
189733b’s inferred atmospheric composition, we ran a transit-only and an eclipse-
only retrieval. In the transit-only retrieval, the planetary radius, metallicity, C/O
ratio, isothermal limb temperature, aerosol properties, and WFC3 offset were free
parameters. In the eclipse-only retrieval, the metallicity, C/O ratio, dayside T/P
profile parameters, and WFC3 offset were free parameters. Figure 4.16 shows the
resulting posterior distributions for metallicity and C/O from these two retrievals,
with the distributions from the combined retrieval overplotted. The three retrievals
give fully consistent constraints on both parameters. The emission spectrum puts
a slightly tighter constraint on metallicity, but both spectra place comparable con-
straints on the C/O ratio.

High resolution studies
HD 189733b has been a favorite target for high resolution spectroscopy. VLT/CRIRES
detected water on its dayside (Birkby et al., 2013), as well as both water and CO on
its terminator (Brogi et al., 2016). TNG/GIANO and CARMENES also detected
water in the transit spectrum (Brogi et al., 2018; Alonso-Floriano et al., 2019).
Carbon monoxide has been detected on its dayside by both Keck/NIRSPEC (Rodler
et al., 2013) and VLT/CRIRES (de Kok et al., 2013). The dayside detections with
CRIRES were confirmed by Cabot et al. (2019), who additionally report a high
confidence (5.0𝜎) detection of HCN, with a HCN mixing ratio of 10−6 yielding
peak detection significance.

We test the robustness of the water and HCN detections with PLATON. We replicate
the methodology in Cabot et al. (2019) to reduce the CRIRES L band (3.18–3.27 µm)
data. We then generate a high-resolution PLATON model of HD 189733b assuming
the best fit parameters to the low resolution data, with only the line opacity of the
molecule in question included. The model eclipse spectrum is cross correlated with
the data to look for a signal with the expected radial velocity drift of the planet. We
detect H2O and HCN at a significance of 4.3𝜎 and 4.8𝜎, respectively, in line with
the results of Cabot et al. (2019). These results are shown in Figure 4.17.

While both molecular detections seem robust, they may not be. Standard high
resolution analysis methods involve optimizing many parameters to maximize the
detection significance. For Cabot et al. (2019), these are the number of SYSREM
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(principal component analysis to remove telluric features) iterations for each of the 4
detectors, the planetary orbital velocity, the systemic velocity offset, the percentage
of wavelengths to mask due to low atmospheric transmission, and the percentage of
wavelengths to mask due to high variability. They report from injection-recovery
tests that this optimization procedure yields false positives as high as 4.0𝜎 30% of
the time.

To reduce the bias introduced by the optimization procedure, we fix the orbital
velocity to 152.5 km/s (Brogi et al., 2016) and restrict the systemic velocity offset
to ±1 km/s. We then estimate the bias introduced by the optimization process by
a bootstrap-inspired procedure. We randomly select, with replacement, 48 spectra
from the original list of 48 spectra to form a new list of 48 spectra in random order.
We then apply the same analysis used for the original set of spectra to the new set.
This random selection and ordering, combined with the radial acceleration of the
planet (amounting to 2 pixels/spectrum), means that the lines in the template will
rarely match up with the planetary absorption lines. We expect that the detection
significance of all molecules in this scenario should be 0𝜎, and the magnitude of
the recovered signals therefore allows us to estimate the bias introduced by the
optimization steps.

We run this bootstrap procedure 1000 times, gathering the “detection significance”
from each run. We find that our optimization procedure, despite exploring fewer
free parameters than Cabot et al. (2019), returns an average bias of 1.1𝜎 for water
and 2.9𝜎 for HCN. Returning to the original analysis, our bias-corrected detection
significance is then 3.2𝜎 for water, and 1.9𝜎 for HCN. We conclude that the water
detection is statistically significant, but the HCN detection is not.

In order to reduce the magnitude of this bias, we modified our analysis to minimize
the size of the parameter space we optimize over. Instead of optimizing the two
masking parameters, we fix them to reasonable values: we mask wavelengths where
the atmospheric transmission is under 30%, and where the standard deviation of
the wavelength across all spectra is in the top 10% of all standard deviations for
that detector. Instead of optimizing over the four-dimensional space consisting
of the number of SYSREM iterations for each detector, we optimize the number of
iterations for each detector in turn before summing their weighted CCFs. In addition,
we include data from all detectors, instead of excluding the second detector due to
the strong telluric absorption at those wavelengths.
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These changes turn a 6 dimensional optimization problem into four 1-dimensional
optimization problems, each of which can have one of 10 discrete values, drastically
decreasing the potential for bias. We also apply a fourth order Butter high-pass filter
to both the template and the data with a cutoff frequency of 0.01 pixel−1, further
reducing the potential for low-frequency systematics to create false signals. These
simplifications have the additional benefit of making our optimization code much
faster. In this new analysis, we find that water is detected at 3.8𝜎with an optimization
bias of 0.7𝜎 from bootstrapping, resulting in a corrected significance of 3.1𝜎. HCN
is detected at 2.8𝜎 with an optimization bias of 1.3𝜎, with a corrected significance
of 1.5𝜎. These results are in good agreement with our previous conclusions: the
water detection is secure, but the HCN detection is statistically insignificant.

Why does our HCN measurement consistently exhibit higher levels of bias than
water? Although a detailed investigation of this question is outside the scope of this
paper, we offer some speculations based on the differing statistical properties of the
water and HCN line lists. Water has a large number of weak lines irregularly spaced
across the band, while HCN has a smaller number of very strong lines with a regular
periodic spacing. Thus, for HCN, the cross correlation function is dominated by
strong lines spanning a smaller number of pixels, making overfitting more likely.
The cross correlation function for water depends on contributions from many pixels,
making it more difficult to overfit.

The periodic nature of the HCN lines means that the same problem occurs in Fourier
space as in wavelength space. Cross correlation is mathematically equivalent to tak-
ing the Fourier transform of the template, multiplying it by the conjugate of the
Fourier transform of the data, and inverse Fourier transforming the product. For
templates with more periodic features, the Fourier transform of the template is dom-
inated by a few high peaks. These peaks may by chance coincide with unsubtracted
periodic systematics, resulting in a spurious signal. The Fourier transform for the
water template is more evenly distributed, and is therefore less prone to this problem.

There are also physical reasons to doubt the HCN detection. The detections of
H2O and CO are fully consistent with our best fit model to the low resolution data,
which predicts that these molecules should be the most abundant active gases in
the atmosphere at pressures lower than 1 bar. These same models predict that the
spectral signature of HCN should be significantly weaker than the signals from
the more abundant H2O and CH4. CH4 has a slightly higher absorption cross
section between 3.18− 3.27 µm, the wavelength range CRIRES covers. While H2O
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has a lower cross section over these wavelengths, it is many orders of magnitude
more abundant. Therefore, we would not expect HCN to be observable unless its
abundance exceeds that of methane and is at least ∼10% that of water; this would
be many orders of magnitudes higher than predictions from equilibrium chemistry
models for this planet.

One way around this difficulty is to invoke disequilibrium chemistry, as HCN abun-
dances are enhanced both by transport-induced quenching and by photochemistry.
Moses et al. (2011) simulated HD 189733b and found that its HCN abundance is
enhanced by disequilibrium processes. Encouragingly, they found HCN abundances
close to 10−5, similar to the 10−6 inferred observationally by Cabot et al. (2019).
However, they find that CH4 abundances are enhanced by the same processes, leav-
ing the CH4 abundance greater than or similar to the HCN abundance at typical
photospheric pressures of 100 mbar. They also find that the water abundance is not
changed except at very high altitudes.

The dominance of CH4 in the models raises the question of whether the high-
resolution CRIRES data shows any evidence of CH4. We searched for methane
using the same CRIRES data by utilizing the methane line list by Rey et al. (2017),
which is complete at these high temperatures and has accurate line positions suitable
for high resolution studies. We find only a 1.2𝜎 signal, which is not significant.
This result is shown in Figure 4.17.
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Figure 4.17: Detection significance of H2O, HCN, and CH4 in the high resolution
emission spectrum of HD 189733b. H2O and HCN are seemingly clearly detected,
while CH4 is not. The model used to cross correlate with data was generated by
PLATON using the parameters of the best fit model from the low resolution retrieval.
Despite the seeming robustness of the HCN detection, bootstrap analysis reveals
that its actual significance is 1.5–1.9𝜎.

4.7 Conclusion
A new and improved PLATON is available for download.3 It now comes with an
eclipse depth calculator, updated opacities, joint transit-eclipse retrieval capabil-
ity, and correlated-𝑘 capability. In addition, we provide high resolution opacity
data, making line-by-line calculations possible for the first time. We demonstrate
PLATON’s new capabilities by using it to simultaneously analyze the best available
HST and Spitzer transit and eclipse depths for the archetypal hot Jupiter HD 189733b.
To our knowledge, this is the first published retrieval on this comprehensive data
set, as well as the first published joint retrieval that includes both transmission and
emission spectroscopy.

Our resulting inferences for the properties of HD 189733b’s atmosphere are qualita-
tively similar to—but more constraining than—those of previous authors. We find
that the data favors a haze with a mean particle radius less than 14 nm. Our fiducial
T/P profile indicates that the planet is consistent with a zero-albedo object with
perfect heat redistribution. We find that the atmosphere is of moderately super-solar
(7 − 21× solar) metallicity and constrain the C/O ratio to lie between 0.47 − 0.69,

3Latest version: https://github.com/ideasrule/platon; version corresponding to this
paper: https://doi.org/10.5281/zenodo.3923090.

https://github.com/ideasrule/platon
https://doi.org/10.5281/zenodo.3923090
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consistent with the solar value, but possibly lower than the stellar value. This planet
has one of the tightest metallicity constraints ever measured, with only WASP-127b
and WASP-39b being comparable (see Figure 22 of Spake et al. 2019). In our best-
fit model, CO and H2O are the most abundant absorbing species at photospheric
pressures, consistent with the detection of H2O in HST/WFC3 spectroscopy, and
the detection of both molecules in high resolution spectroscopy.

We explore the effects of stellar activity using a retrieval in which the starspot
coverage fraction is allowed to vary as a free parameter, and find a best-fit starspot
coverage fraction of 1.8+0.7

−1 %. Even when this coverage is allowed to vary, our fit
still requires the presence of a haze with much the same properties as the fiducial
retrieval in order to create a featureless optical transit spectrum.

HD 189733b has exceptional observational data unmatched by any other exoplanet
in quality, quantity, or wavelength range. Much of this data was collected by Spitzer
or by now-defunct instruments on HST , and can never be replicated. Our retrieval
demonstrates what kinds of properties can be inferred, and to what precision, for
the most observationally favorable hot Jupiters in the pre-JWST era. We have come
close to testing the prediction by Espinoza et al. (2017) that enhanced atmospheric
metallicity is inevitably associated with sub-stellar C/O ratio—in fact, the main
obstacle was the uncertain stellar C/O ratio. In addition, although the data for HD
189733b are already far more accurate than our models—the 3.6, 4.5, and 8.0 eclipse
depths have errors of 1-2%, whereas we have demonstrated that small changes in
PLATON’s (and TauREx’s) algorithm change the eclipse depth by several percent—
we cannot fully take advantage of this accuracy in a retrieval. This is because a
retrieval has enough free parameters to fit the 3.6, 4.5, and 8.0 eclipse depths to
arbitrary accuracy, and the lack of any molecular features in emission contributes
to wide posteriors on atmospheric parameters despite the exceptional data. JWST
will be able to accurately measure multiple emission bands from multiple molecules
across a large wavelength range, spurring spur the development of more sophisticated
and more accurate models than the current state of the art.
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dynesty (Speagle, 2020), corner (Foreman-Mackey, 2016), nose, Travis-CI

4.9 Appendix
The following HD 189733b parameters in Table 4.7 were fixed during the retrieval:

Table 4.7: Fixed planetary parameters in HD 189733b retrieval

Parameter Value
𝑇𝑠 5052 K
𝑅𝑠 0.751 𝑅⊙
𝑀𝑝 1.129 𝑀𝐽

a 0.03142 AU
All parameters are taken from Stassun et al. 2017 except the last, which is from

Southworth 2010

Tables 4.8 and 4.10 list the transit and eclipse depths we used in the retrieval, along
with the papers they were taken from.
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Table 4.8: Adopted transit depths. Sources: (1) Pont et al. 2013; (2) McCullough
et al. 2014

𝜆𝑚𝑖𝑛(µm) 𝜆𝑚𝑎𝑥(µm) Depth (ppm) Error (ppm) Source
0.32 0.37 24999 101 1
0.37 0.42 24809 50 1
0.42 0.47 24706 44 1
0.47 0.52 24633 41 1
0.52 0.56 24542 41 1
0.56 0.58 24473 44 1
0.58 0.592 24455 84 1

0.592 0.604 24433 69 1
0.604 0.615 24389 112 1
0.615 0.626 24336 84 1
0.626 0.638 24367 37 1
0.65 0.7 24289 34 1
0.7 0.75 24249 34 1

0.75 0.8 24292 37 1
0.8 0.85 24186 37 1

0.85 0.9 24190 40 1
0.9 0.95 24168 40 1

0.95 1.0 24186 50 1
1.0 1.17 24062 68 1

1.1184 1.1374 23962 73 2
1.1372 1.1562 24047 67 2
1.156 1.175 24078 105 2

1.1748 1.1938 24035 87 2
1.1936 1.2126 23961 80 2
1.2123 1.2313 23955 70 2
1.2311 1.2501 23884 56 2
1.2499 1.2689 24000 62 2
1.2687 1.2877 23863 61 2
1.2875 1.3065 23987 69 2
1.3062 1.3252 23961 60 2
1.325 1.344 23982 66 2

1.3438 1.3628 24134 55 2
1.3626 1.3816 24149 61 2
1.3814 1.4004 24091 63 2
1.4001 1.4191 24215 77 2
1.4189 1.4379 24199 64 2
1.4377 1.4567 24108 71 2
1.4565 1.4755 24018 67 2
1.4752 1.4942 24188 75 2
1.494 1.513 23941 62 2

1.5128 1.5318 24097 61 2
1.5316 1.5506 24002 62 2
1.5504 1.5694 24010 72 2
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Table 4.9: Adopted transit depths, cont.

𝜆𝑚𝑖𝑛(µm) 𝜆𝑚𝑎𝑥(µm) Depth (ppm) Error (ppm) Source
1.5691 1.5881 24100 87 2
1.5879 1.6069 23963 75 2
1.6067 1.6257 23916 98 2
1.6255 1.6445 24062 84 2

3.2 3.9 24047 84 1
4.0 5.0 24155 109 1
5.0 6.4 23951 207 1
6.4 9.3 24056 105 1

23.5 24.5 23898 291 1
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Table 4.10: Adopted eclipse depths. Sources: (1) Crouzet et al. 2014; (2) Kilpatrick
et al. 2020; (3) Charbonneau et al. 2008; (4) Agol et al. 2010

𝜆𝑚𝑖𝑛(µm) 𝜆𝑚𝑎𝑥(µm) Depth (ppm) Error (ppm) Source
1.1184 1.1374 0 47 1
1.1372 1.1562 78 50 1
1.156 1.175 124 45 1

1.1748 1.1938 93 44 1
1.1936 1.2126 89 43 1
1.2123 1.2313 51 50 1
1.2311 1.2501 64 42 1
1.2499 1.2689 99 42 1
1.2687 1.2877 80 42 1
1.2874 1.3064 149 41 1
1.3062 1.3252 127 41 1
1.325 1.344 108 41 1

1.3438 1.3628 75 41 1
1.3626 1.3816 69 41 1
1.3813 1.4003 56 42 1
1.4001 1.4191 104 42 1
1.4189 1.4379 94 42 1
1.4377 1.4567 67 42 1
1.4565 1.4755 32 43 1
1.4753 1.4943 105 43 1
1.494 1.513 228 43 1

1.5128 1.5318 211 43 1
1.5316 1.5506 143 44 1
1.5504 1.5694 99 45 1
1.5691 1.5881 135 45 1
1.5879 1.6069 80 46 1
1.6067 1.6257 32 46 1
1.6255 1.6445 110 74 1

3.2 4.0 1481 34 2
4.0 5.0 1827 22 2
5.1 6.3 3100 340 3
6.6 9.0 3440 36 4

13.5 18.5 5190 220 3
20.8 26.1 5980 380 3
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Table 4.11: ExoMol line lists used in PLATON v5

Molecule List name Nlines Tmax(K) Reference
C2H4 MaYTY 49,673,223,799* 700 Mant et al. (2018)
CO Li2015 125,496* 9000 Li et al. (2015)
H2CO AYTY 12,648,694,479* 1500* Al-Refaie et al. (2015)
H2S AYT2 115,623,180* 2000* Azzam et al. (2016)
H2O POKAZATEL 5,550,587,708* ∞𝑏* Polyansky et al. (2018)
HCl Yueqi 2588 ? Li et al. (2013)
HCN Harris 34,418,408* ? Barber et al. (2013)
MgH MoLLIST 14,179* ? GharibNezhad et al. (2013)
NH3 CoYuTe 1,135,240,003* 1500* Coles et al. (2019)
NO NOname 2,280,366* ? Wong et al. (2017)
OH MoLLIST 54,276 ? Brooke et al. (2016)
PH3 SAlTY 16,931,647,841* 1500* Sousa-Silva et al. (2014)
SH SNaSH 81,348* 5000 Yurchenko et al. (2018)
SiH SiGHTLY 1,724,841* 5000 Yurchenko et al. (2017)
SiO EBJT 254,675* 9000 Barton et al. (2013)
SO2 ExoAmes 1,402,257,689* 2000 Underwood et al. (2016)
TiO ToTo 295,086,011𝑎 5000 McKemmish et al. (2019)
VO VOMYT 277,131,624 5000 McKemmish et al. (2016)
(𝑎)All 5 isotopologues combined. Each isotopologue has 58-60 million lines.

(𝑏)This line list is complete
∗These numbers disagree with those in the ExoMol database’s def files
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C h a p t e r 5

NO ESCAPING HELIUM FROM 55 CNC E

Michael Zhang, Heather A. Knutson, Lile Wang, Fei Dai, Antonija Oklopcic, and
Renyu Hu. No Escaping Helium from 55 Cnc e. AJ, 161(4):181, April 2021. doi:
10.3847/1538-3881/abe382. M.Z. conceived the project, wrote the observing
proposal, obtained the data, carried out the data analysis and the 1D simulations,
and wrote the paper.

5.1 Abstract
We search for escaping helium from the hot super Earth 55 Cnc e by taking high-
resolution spectra of the 1083 nm line during two transits using Keck/NIRSPEC.
We detect no helium absorption down to a 90% upper limit of 250 ppm in excess
absorption or 0.27 mÅ in equivalent width. This corresponds to a mass loss rate
of less than ∼ 109 g/s assuming a Parker wind model with a plausible exosphere
temperature of 5000-6000 K, although the precise constraint is heavily dependent
on model assumptions. We consider both hydrogen- and helium-dominated at-
mospheric compositions, and find similar bounds on the mass loss rate in both
scenarios. Our hydrodynamical models indicate that if a lightweight atmosphere
exists on 55 Cnc e, our observations would have easily detected it. Together with
the non-detection of Lyman 𝛼 absorption by Ehrenreich et al. (2012), our helium
non-detection indicates that 55 Cnc e either never accreted a primordial atmosphere
in the first place, or lost its primordial atmosphere shortly after the dissipation of
the gas disk.

5.2 Introduction
The observed radius distribution of sub-Neptune-sized planets is bimodal, with
peaks at < 1.5 R⊕ and 2-3 R⊕ (Fulton et al., 2017). This bimodality can be explained
if the observed population of sub-Neptune-sized planets formed with several M⊕

rocky cores and hydrogen-rich atmospheres, which were then stripped away from
the most highly irradiated planets (i.e. Lopez & Fortney 2013; Ginzburg et al.
2018; see Owen 2019 for a literature review). The high inferred core densities in
these models argue strongly for formation inside the ice line, and the semi-major
axis distribution of this population of planets is well-matched by in situ formation
models (Lee & Chiang, 2017). While the prevailing evidence at the moment appears
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to favor in situ (or at least nearby) formation, the arguments proposed to date are
by no means definitive as they rely on indirect model-based inferences. If the mass
loss models used to simulated the observed radius distribution are incomplete or
rely on incorrect assumptions, our conclusions about these planets may be incorrect
as well. It is therefore important to have observational data to nail down theoretical
models.

In this study, we focus on one of the most observationally favorable transiting super-
Earths currently known: 55 Cnc e. 55 Cnc is a binary system with a K0 main
sequence star and a M dwarf companion, separated by 1000 AU. The primary is a
bright (V=5.95) star whose activity and rotation rate indicate it is very old, probably
around 10 Gyr. It has at least 5 planets of various sizes and orbital distances,
including e, a superheated 𝑅 = 1.88 ± 0.03𝑅⊕ (Bourrier et al., 2018) super-Earth
with a period of 0.74 days and the only planet known to transit. The mean density of
e as derived from radial velocities and transit depths is 6.7 g/cm3, suggesting a rocky
interior with an atmosphere contributing up to a few percent of the planet radius
(Bourrier et al., 2018), although it is also consistent with a small iron core with a
silicate mantle and no water or gas layer. At first glance 55 Cnc e seems unlikely to
host a primordial hydrogen and helium rich atmosphere as it has a relatively high
equilibrium temperature and correspondingly high predicted escape rate (Valencia
et al., 2010). However, there are large theoretical uncertainties in mass loss models,
driven in part by the uncertain X-ray and extreme ultraviolet spectrum of the star
(Owen, 2019). It has also been suggested that this planet might have a lava ocean
on its dayside that could outgas enough trapped hydrogen to form a thick secondary
atmosphere (Chachan & Stevenson, 2018).

Current observational constraints on 55 Cnc e’s atmosphere are also conflicting.
Some observations, such as the non-detection of hydrogen Lyman 𝛼 absorption by
Ehrenreich et al. (2012) or the variations in infrared emission reported by Demory
et al. (2016a), seem to indicate that it is unlikely to host a substantial hydrogen-
rich atmosphere. Other observations suggest the opposite, including the planet’s
small measured day-night temperature gradient (Demory et al., 2016b), the tentative
evidence for sodium and calcium absorption (Ridden-Harper et al., 2016), and the
detection of a strong absorption feature in the planet’s 1.1–1.7 𝜇𝑚 transmission
spectrum from Hubble Space Telescope (HST) WFC3, which has been attributed
to HCN (Tsiaras et al., 2016). Regardless of its source, the large amplitude of the
WFC3 absorption feature can only be matched by a hydrogen- or helium-dominated
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atmosphere, because an atmosphere dominated by heavier elements would have a
much smaller scale height and correspondingly weaker absorption features during
transit. If 55 Cnc e does have a significant low mean molecular weight atmosphere,
its ability to retain this atmosphere in the face of ongoing mass loss would place strict
constraints on the magnitude of relevant mass loss processes, with correspondingly
wide-reaching implications for our understanding of the overall population of short-
period super-Earths and sub-Neptunes.

In this paper, we use the helium 1083 nm metastable triplet (Oklopčić & Hirata, 2018)
to search for evidence of helium outflow from 55 Cnc e. Unlike previous Lyman 𝛼
observations, this helium triplet is easily accessible using ground-based telescopes,
and has been used to detect the extended atmospheres of multiple exoplanets. Most
detections have been around Jupiter radius planets such as WASP-107b (i.e. Spake
et al. 2018), with the 4 R⊕ GJ 3470b being the smallest planet with a detection to
date (Ninan et al., 2020; Palle, E. et al., 2020). For 55 Cnc e, our observations
of the 1083 nm helium line supplements the Ehrenreich et al. (2012) Lyman alpha
observations in shaping our understanding of the exosphere. The Ehrenreich et al.
(2012) observations took place at a stellar activity minimum, when the star’s X-
ray flux was 2–3 times lower than during our observations (see Section 5.7); this
decreased X-ray flux might have suppressed the mass loss rate during these obser-
vations. In addition, some studies have proposed that mass loss over many Gyr can
preferentially remove hydrogen from the atmosphere of a small planet while leaving
helium behind (Hu et al., 2015; Malsky & Rogers, 2020). A helium dominated
atmosphere would be consistent with the molecular weight inferred from the HST
transit spectrum (Tsiaras et al., 2016). Such an atmosphere might be undetectable
in Lyman 𝛼, but easy to detect using metastable helium. Finally, because Lyman 𝛼
is such a strong line, the observed signal is dependent on the behavior of the diffuse
exosphere far from the planet. The atmospheric absorption signal in the helium
1083 nm triplet is typically much weaker than the absorption signal in the Lyman-𝛼
line, but IR measurements are significantly more precise than UV measurements
due to the much higher photon flux and (unlike Lyman 𝛼) we are able to observe
the cores of the lines. This means that helium observations are sensitive to gas at
smaller radii and with lower outflow velocities than Lyman 𝛼 observations, making
it easier to compare to mass loss models. It is for these three reasons—the differing
stellar XUV irradiation, the possibility of a helium-dominated atmosphere, and the
complementary sensitivities—that observations of the helium line are meaningful
even for small planets with existing Lyman alpha non-detections.
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We describe our observations in Section 2, data reduction pipeline in Section 3,
analysis in Section 4, outflow models in Section 5, and scientific implications in
Section 6.

5.3 Observations
We observed two transits of 55 Cnc e in Y band using the upgraded NIRSPEC
instrument on Keck (Martin et al., 2018): one on December 4, 2019 at 13:56
UTC (barycentric), and one on December 18, 2019 at 13:48 UTC (barycentric).
These observations used the 0.288 x 12 arcsec slit, giving NIRSPEC a resolution
of 37,500, with a FWHM sampling of 3 pixels. All observations were performed
with 60 second exposure times in an ABBA nod pattern to facilitate background
subtraction. Details of the observations are given in Table 5.1.

Table 5.1: Keck/NIRSPEC observations

Parameter 12/04/19 (UTC) 12/18/19 (UTC)
Obs. duration 3.2 h 3.7 h
Number of obs 107 136

Obs before transit 23 40
Obs during transit 51 56
Obs after transit 33 40

Airmass before transit 1.1 1.04
Airmass during transit 1.02 1.01
Airmass after transit 1.03 1.11

Obs efficiency 56% 61%
Avg. SNR∗ 660 640

Average SNR is calculated per spectral pixel per exposure, based on the estimated
error from optimal extraction.

Observation conditions were stable with good seeing during the first night. The
seeing was worse and more variable during the second night, decreasing the per-
pixel count rate on the detector and making it possible to use a more efficient
observing strategy of 20 second subexposures with 3 co-adds instead of 15 second
subexposures with 4 co-adds. The marginally increased observing efficiency could
not fully compensate for the higher seeing, leading the second night to have a
marginally worse SNR per spectrum.

For unknown reasons and at unpredictable times, the telescope would fail to nod.
We encountered this issue on each of our four half-nights with NIRSPEC—two in
April 2019, and two in December 2019. Sometimes it would not move at all; at
other times, it would jump out of the slit, either by nodding too far, or by adding
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a perpendicular component to the nod. When this happened, we would wait for
the exposure to finish (NIRSPEC does not allow us to stop during the middle of
an exposure), re-center the star, and re-start the nod sequence. We then discard
the exposure, together with the previous exposure if it is necessary for background
subtraction. On 12/04, nodding failed once during the transit and we lost 4 exposures
(because we did not notice the failure immediately), corresponding to 7 minutes of
observation time. On 12/18, nodding failed twice during the transit and once after
the transit, resulting in a loss of 6 exposures. Other than these nodding failures, our
observing sequence is continuous on both nights.

5.4 Data reduction
We calibrated the raw images and extracted 1D spectra for each order using a custom
Python pipeline designed for the upgraded NIRSPEC. We describe each step of this
process below.

Crosstalk removal
In its current configuration, NIRSPEC is divided into 32 readout channels, with 64
rows per channel. The rows of adjacent channels are read simultaneously, but in
reverse order: row 0 of channel 0 should be read at the same time as row 63 of
channel 1. The simultaneous readout causes crosstalk signals between each pair of
channels. We follow the approach described in George et al. (2020) and initially
assume that the crosstalk signal 𝑋𝑘, 𝑗 ,𝑖 in NIRSPEC is proportional to the derivative
of the signal in the source channel:

𝑋𝑘, 𝑗 ,𝑖 = 𝑎𝑘, 𝑗 (𝑆𝑘,𝑖 − 𝑆𝑘,𝑖−1), (5.1)

where channel 𝑘 is the source of the crosstalk, channel 𝑗 is the destination, 𝑖 is
the row number, and 𝑎 is a 32×32 matrix of scaling factors whose elements are
of the order 400 ppm. The crosstalk introduced is therefore on the order a few
hundred electrons for signals on the order of 1,000,000 electrons, but varies widely
for different 𝑘, 𝑗 pairs.

Unfortunately, there are no calibration data for NIRSPEC that can help to char-
acterize the crosstalk, as we require a high flux derivative along the spatial axis.
We therefore use archival NIRSPEC observations of 55 Cnc in L band from April
2 and 16, 2019, to measure the crosstalk matrix 𝑎. On each night, we took ∼50
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minute-long exposures, each with very high flux (∼300,000 electrons per spectral
pixel). To measure the crosstalk matrix 𝑎, we masked out pixels with a count greater
than 70 ADU (200 electrons) and used a linear least squares fit to estimate 𝑎 and the
uncertainty on 𝑎. The uncertainty is high where the source channel is un-illuminated
and/or the target channel has few un-illuminated pixels, and low where the source
channel is illuminated but the target channel is not. We perform a weighted average
over the estimates of 𝑎 from each exposure on each night to obtain our best estimate
for the matrix.

Relying on science data to measure the crosstalk matrix is less than ideal because
channels that have no trace do not produce a measurable crosstalk signal in other
channels; the trace dominates the crosstalk from other channels in channels where the
trace is nearly horizontal and close to the middle. Nevertheless, a visual inspection
indicates that this imperfect approach to crosstalk subtraction is sufficient to remove
the crosstalk signal from our data (Figure 5.1).

Figure 5.1: A portion of a raw A-B frame, showing the order containing the helium
line. Top: no calibration corrections. Bottom: crosstalk subtracted. Notice that the
subtle horizontal ripple pattern is gone, as are the two sharp horizontal lines.

We find that for NIRSPEC, Equation 5.1 is less accurate when j and i are of different
parity. By carefully examining the crosstalk patterns, we found that the crosstalk
signal is proportional not to 𝑆𝑘,𝑖 − 𝑆𝑘,𝑖−1, but to 𝑆𝑘,𝑖+2 − 𝑆𝑘,𝑖+1. In physical terms,
this means that the 2nd rows of odd channels (not the 0th rows) are read at the same
time as the 63rd rows of even channels. Similarly, the 1st row corresponds to the
62nd, the 2nd to the 61st, and so on, until the 63rd row of odd channels are read
simultaneously with the 2nd rows of even channels. Therefore, rows 0 and 1 of
every channel are being read out when their sister channels of opposite parity are
not being read out.
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We believe that this mismatch in the readout pattern causes another detector artifact:
the anomalous rows, seen in Figure 5.1 as horizontal lines. Anomalous rows occur
when the row number modulo 128 is equal to 0, 1, or 64. The first two correspond
to rows 0 and 1 of even channels; the last corresponds to row 0 of odd channels. We
speculate that the anomalous rows could be caused by crosstalk: when row 0 or 1 is
being read out, the corresponding readout line in opposite parity channels could be
carrying signals of much higher amplitude than image data, causing much higher
crosstalk than normal.

In the absence of photons, the anomalous rows are mostly, but not entirely, consistent
across the entire image. Thus, all 32 rows divisible by 128 are similar; all rows
whose remainder is 1 when divided by 128 are similar; and all rows whose remainder
is 64 when divided by 128 are similar. We create a template of these 3 different
categories of anomalous rows by identifying regions of the detector which received
few photons, either because they are in between orders, or because they are within
an order but far from the trace. At each column, the template is equal to the median
of the rows fitting this criterion. The template is subtracted from all relevant rows.
This method works very well, but not perfectly—a faint hint of under-subtraction
can be seen in Figure 5.1 (bottom) for row 128.

Image calibration
On the first (second) night, we took 80 (63) flat fields, each with an exposure time
of 4.4 s per co-add and 20 co-adds. In total, we collected 750 million (590 million)
electrons per pixel, ensuring that the photon error in the flat fields is far below the
photon noise in the observational data. To calibrate the flats, we took 19 (3) darks,
each with an exposure time of 4.4 s per co-add and 20 co-adds. We create a master
dark by median stacking the individual dark frames. In each individual dark, pixels
that deviate from the image-wide mean by more than 5𝜎 are marked as bad pixels.
Pixels marked as bad in more than half of the individual darks are marked as bad in
the master dark.

We create a master flat by taking the median of the individual flats. Prior to com-
bining, we subtract the crosstalk from each flat frame using the algorithm described
in the previous subsection, subtract the master dark, and divide by the median flux.
We identify the order containing the helium line and mask out everything else. as
there is no need to extract spectra from other orders. The relevant order is fitted
with a polynomial that is 5th order with in x and 3rd order in y, then divided by the
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polynomial, in order to bring the values of all good pixels close to 1. We then create
a mask of bad pixels, including both the bad pixels identified in the master dark, and
the pixels with a flat value lower than 0.5 or higher than 1.5. The final master flat,
together with the bad pixel mask, are saved in a FITS file.

Finally, we correct the raw science frames using the master flat. For each 𝐴1𝐵1𝐵2𝐴2

nod, we create four difference images: 𝐴1 − 𝐵1, 𝐵1 − 𝐴1, 𝐵2 − 𝐴2, and 𝐴2 − 𝐵2.
Each difference image is crosstalk subtracted, multiplied by the gain of g=2.85
e/ADU, and divided by the master flat F. We next construct a variance image for
each differenced frame, which indicates the uncertainty in the measured flux at each
individual pixel location. This variance image includes the photon noise from the
star, the sky background, and the detector read noise. The background 𝑏, read noise
𝑁𝑅, and total variance 𝑉 are computed as follows:

𝑏 = 𝑔
𝐴 + 𝐵 − |𝐴 − 𝐵 |

𝐹
(5.2)

𝑁𝑅 =
√

2
√︂
𝑁c𝑜𝑎𝑑𝑑𝑠
𝑁r𝑒𝑎𝑑𝑠

𝑁𝑅,0 (5.3)

𝑉 = 𝑔
|𝐴| + |𝐵 |
𝐹2 + 𝑁2

𝑅, (5.4)

where 𝑁𝑅,0 = 44𝑒−, 𝑁r𝑒𝑎𝑑𝑠 = 4 for all of our observations, 𝑔 = 2.85 𝑒−/ADU is the
gain, and 𝑁c𝑜𝑎𝑑𝑑𝑠 = 4 on our first night and 𝑁c𝑜𝑎𝑑𝑑𝑠 = 3 on most of our second night.
The iterative bad pixel algorithm in REDSPEC 3.01 (Kim et al., 2015), which we
ported to Python, is used to identify and repair bad pixels. This algorithm identifies
bad pixels with a variant of local sigma clipping. In total, it typically identifies and
repairs 1000 hot pixels and 1000 cold pixels in a given image. Since the identification
is limited to the ∼100 pixel tall order containing the helium line, 2000 bad pixels
represents 1% of all pixels. The bad pixels identified by the algorithm are combined
with the bad pixels identified in the master dark and master flat to create a master
bad pixel mask. The difference image, variance image, background image, and bad
pixel mask are all saved in a FITS file.

Optimal extraction
After calibrating the images, we extract the 1D spectrum from each 2D spectral
trace. We first determine the position of the trace in each image. For every column

1https://www2.keck.hawaii.edu/inst/nirspec/redspec.html

https://www2.keck.hawaii.edu/inst/nirspec/redspec.html
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(corresponding to one wavelength), we fit a Gaussian to the pixel values to estimate
the trace position We then fit a 5th order polynomial to the trace locations as a
function of column number. The residuals in this final fit are typically smaller than
0.01 pixels. Accuracy is not paramount because we only use the trace to identify
regions of the image very far from the trace, in order to mask them out.

After determining the position of the trace, we perform optimal extraction using
a variant of the method described in Horne (1986). The original Horne (1986)
algorithm assumes that the wavelength axis is aligned with the columns, and the
spatial axis is aligned with the rows. Unfortunately, on NIRSPEC neither the
wavelength nor spatial axes are aligned with either the rows or the columns. The
axes are also not perpendicular to each other, and neither axis is straight, as can
be seen in Figure 5.1. The typical way around this problem is to rectify the order
spatially and spectrally by interpolation onto a rectilinear grid. This works well
enough for low SNR data, but for our exceptionally high SNR data it introduces
aliasing artifacts at the 0.1–1% level.

We instead use a rolling window approach where we assume that each column
corresponds to one wavelength—a reasonable assumption, given that most of the
flux is concentrated within 5 pixels of the center of the trace. Regions more than
15 pixels from the center of the trace are masked out to avoid interference from
neighboring orders or cosmic rays. For each column, we take a window 81 pixels
wide and 72 pixels tall, and fit the profile for every row. We chose 81 pixels as
the width because we want the window to be small enough for the trace to deviate
vertically by less than one pixel, but big enough to fit the profile accurately. We
chose a 72 pixel window in the 𝑦 (cross-dispersion) direction because the trace is
50 pixels lower on the left end of the detector than on the right, and we needed
a window large enough to encompass not just the center of the trace, but also the
wings across the full width of the image.

In Horne (1986), the spatial profile is estimated by dividing each column by its sum.
This runs into problems in regions of high telluric absorption, where the spectral
flux approaches zero. We therefore fit the product of the spectrum and a Chebyshev
polynomial model of the profile directly to the observed data. Mathematically, if 𝑖
represents the order of the Chebyshev polynomial 𝑇𝑖 and 𝑗 is the column number,
we look for the 𝑥 that minimizes 𝐴𝑥 = 𝑏 where 𝐴 and 𝑏 are:
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𝐴𝑖, 𝑗 = 𝑆 𝑗𝑇𝑖 (
𝑗 − 𝑁/2
𝑁

)/𝜎𝑗 (5.5)

𝑏 𝑗 = 𝐼 𝑗/𝜎𝑗 , (5.6)

𝑁 = 72 is the size of the window and 𝑗−𝑁/2
𝑁

normalizes the column numbers to
range from -1 to +1. After obtaining the least squares solution to 𝑥, the profile can
be computed as:

𝑃 𝑗 =

5∑︁
𝑖=0

𝑥𝑖𝑇𝑖 (
𝑗 − 𝑁/2
𝑁

), (5.7)

where 5 is the the maximum order of Chebyshev polynomials we fit.

We note that this is mathematically equivalent to fitting monomials. If we had
replaced 𝑇𝑖 (𝑦) with 𝑦𝑖 in all the equations above, we would arrive at an identical 𝑃 𝑗 .
The advantage of Chebshev polynomials comes from the numerical stability and
robustness of the linear algebra solver. 𝑦𝑖 becomes extremely small when 𝑖 is large
for all but the boundary values -1 and 1, causing numerical problems, whereas the
Chebshev polynomials are well behaved for every order. The Chebshev polynomials
are also mutually orthogonal; the monomials are not. In practice, it appears that
neither of these matter for our low order profile fit, but since Chebysheb fitting
is theoretically superior, we adopt it as our preferred form of polynomial fitting
throughout our code.

We make several additional modifications to the Horne (1986) algorithm. The
background cannot be estimated from the difference image alone, so we instead use
the estimate from Equation 5.2. Instead of identifying bad pixels solely from the
image using sigma clipping, we start with the bad pixel mask from the calibration
stage (Subsection 5.4) and identify additional bad pixels using the image. Finally,
we use an extremely high threshold𝜎𝑐𝑙𝑖𝑝 = 12 to reject bad pixels during the optimal
extraction iterations. We require this high threshold because of a phenomenon that
we observe with our high signal-to-noise data: the four-leaf clover pattern in the
residuals image, shown in Figure 5.2. This pattern occurs wherever the spectrum
is changing rapidly—namely, in the vicinity of deep stellar or telluric lines. The
pattern traces the cross derivative 𝑑𝐹

𝑑𝑥𝑑𝑦
, and is more pronounced where the trace is

highly tilted with respect to the horizontal. This clover pattern indicates that optimal
extraction does not give optimal results in the vicinity of deep lines. Regions without
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deep lines—including the vicinity of the 1.08333 µm helium line—are minimally
affected.

Figure 5.2: Optimal extraction results. Top: the residuals of optimal extraction,
scaled to the standard deviation of each pixel and clipped from -5 to 5𝜎. If optimal
extraction worked perfectly, this image would consist of Gaussian-distributed noise
with a mean of 0 and a standard deviation of 1. The four-leaf clover pattern in
the middle of the residuals image corresponds to a deep stellar line at 1.0830 um.
The position of the helium 1.08333 um line is marked in red. Although a stellar
helium line is present it is much shallower than the 1.0830 um line, and there does
not appear to be any strong residual structure in this region. Bottom: optimally
extracted spectrum with accompanying variance. The spikes in variance are due to
masks on bad pixels.

We initially thought that the clover pattern was due to the misalignment between
the image axes and the wavelength/spatial axes, or due to the non-orthogonality
between the wavelength and spatial axes. We tried many different optimal estimation
schemes that do not make the rectilinear assumptions of Horne (1986), including
Marsh (1989) and an unpublished algorithm2, in an attempt to get rid of the clovers.
However, we eventually realized that the clover pattern is caused by the inseparability
of the 2D PSF. The optimal extraction algorithm assumes that 𝑃𝑆𝐹𝜆,𝑥 = 𝑆(𝜆)𝑃(𝑥)
for some spectrum 𝑆(𝜆) and profile 𝑃(𝑥). A 2D Gaussian with its axes aligned
with the wavelength and spatial axes is separable, but a tilted 2D Gaussian is
not. Bolton & Schlegel (2010) simulate spectra under the assumption of PSF non-
separability, apply optimal extraction to the simulated spectra, and obtain clover
patterns strikingly similar to ours (see their Figure 1, right). The non-separability of
the PSF means that only algorithms like spectro-perfectionism (Bolton & Schlegel,
2010) that adopt a 2D PSF can avoid the clovers. Spectro-perfectionism is not
necessary for our work here because the helium line is not in a region where the
spectrum varies rapidly.

2https://code.obs.carnegiescience.edu/Algorithms/ghlb/at_download/file

https://code.obs.carnegiescience.edu/Algorithms/ghlb/at_download/file
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Wavelength solution
After extracting the 1D spectra, we determine the wavelength solution for each
spectrum. We first create a template containing stellar and telluric lines at known
wavelengths, with the stellar lines shifted to account for Earth’s velocity relative to
the star on that night. We adopted a 𝑇𝑒 𝑓 𝑓 = 5200𝐾 , 𝑙𝑜𝑔(𝑔) = 4.5, and [M/H]=0.0
PHOENIX model spectrum (Husser et al., 2013) for the star. We used a telluric
transmission spectrum from the Gemini website3, which assumes a precipitable
water vapor of 1.6 mm and an airmass of 1.5. This spectrum was calculated using
ATRAN (Lord, 1992). We multiply the stellar spectrum by the telluric transmission
and downsample to instrumental resolution (R=37,500) to get our final template.

We parameterize the wavelength solution as a third-order polynomial function of
the normalized column number, 𝑗 ′ = 𝑗−𝑁/2

𝑁
:

𝜆( 𝑗 ′) =
3∑︁
𝑖=0

𝑐𝑖𝑇𝑖 ( 𝑗 ′), (5.8)

where 𝑇𝑖 are the Chebyshev polynomials. Similarly, we parameterize the continuum
as a fifth-order polynomial of 𝑗 ′, and multiply it by the template. We then use
scipy’s differential evolution minimizer to minimize 𝜒2, which we calculate as the
difference between the observations and the continuum-adjusted template interpo-
lated using the proposed wavelength solution coefficients. A visual inspection of
the resulting fit indicates that the line positions match to better than a pixel.

5.5 Analysis
After extracting the 1D spectra, we place the data from each night on a uniform
wavelength grid and remove signals not related to the planet. This includes instru-
mental effects like detector fringing, telluric absorption lines, and absorption lines
from the star itself. We then shift each spectrum into the planetary rest frame and
quantify the amount of excess absorption in the helium triplet during transit. We
describe each step of this process in detail below.

Better ephemeris
Due to the high radial acceleration of the planet during transit, an accurate ephemeris
is necessary to shift spectra into the planet frame. We calculate an updated ephemeris
by combining the epoch derived by Demory et al. (2016a) using 4 Spitzer 4.5 µm

3https://www.gemini.edu/observing/telescopes-and-sites/sites
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transits, the epoch derived by Sulis et al. (2019) using 143 MOST transits, and 35
individual transit timings from TESS. We obtain the TESS transit timings using a
procedure similar to that described in Dai et al. (2019). In short, we downloaded
the TESS photometry from the Mikulski Archive for Space Telescopes (MAST).
Using the archival ephemeris, we isolated data within a wide window of three times
the archival transit duration. We fitted each individual transit with the BATMAN
(Kreidberg, 2015) package and a quadratic function of time to account for local
stellar variability. We adopted quadratic limb darkening and imposed Gaussian
priors with widths of 0.3 centered around the theoretical values from EXOFAST4
(Eastman et al., 2013). We then fitted all TESS transits globally after removing the
stellar variability component. With this global model as a template, we revisit each
individual transits allowing only the mid-transit time and local quadratic function to
vary. This process is iterated a few times until convergence. Finally, the individual
TESS transit epochs are fitted together with the archival transit times. The updated
ephemeris is 𝑃 = 0.73654604 ± 1.6 × 10−7d and 𝑇0 = 2458723.38328 ± 0.00014
(BJDTDB) with negligible covariance C=-10−14d. The covariance C is defined such
that the prediction error at epoch E from this ephemeris is:

𝜎2
𝑇 = 𝜎2

𝑇0
+ 𝐸2𝜎2

𝑃 + 2𝐶𝐸. (5.9)

We chose the initial epoch 𝑇0 to make C as close to 0 as possible, allowing the last
term to be ignored. The prediction error evaluates to 13 seconds at the time of our
December 2019 observations.

Making a spectral grid
The first step is to linearly interpolate all spectra on a given night onto a common
wavelength grid. We choose a wavelength grid spanning 1.0826 to 1.0840 µm,
which encompasses the locations of the three lines in the helium triplet. We se-
lect a resolution of 110,000 for our grid, approximately matching the native pixel
resolution. The process of interpolation introduces covariances between adjacent
wavelength bins, artificially smoothing out the interpolated spectrum. We keep
track of the covariance matrix during our analysis, and eventually use it to calculate
likelihoods.

4astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml.

astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml
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We do an initial check for helium absorption during the transit by dividing all spectra
from both nights into two categories, in-transit and out-of-transit. We take the mean
of the in-transit spectra to create a master in-transit spectrum, and the mean of the
out-of-transit spectra to create a master out-of-transit spectrum. We then calculate
the excess absorption in the stellar frame as 𝐹𝑖𝑛/𝐹𝑜𝑢𝑡 − 1. The two master spectra
and the excess absorption are plotted in Figure 5.3. There does not appear to be any
detectable increase in absorption during the transit at the position of the helium line.

Residuals image
Since we are interested in fractional changes in the spectrum, we take the natural
log of the spectral grid and subtract the mean of every row and column, producing
what we call the residuals image. Every pixel in the residuals image approximately
represents the fractional flux change at that epoch and wavelength from the mean
spectrum. Taking the natural log also has the advantage of linearizing the effect of
changing airmass. The observed flux is roughly 𝐹 (𝜆) = 𝐹𝑣𝑎𝑐 (𝜆)𝑒−𝛼𝑧 where z is the
airmass, so ln 𝐹 (𝜆) = ln 𝐹𝑣𝑎𝑐 (𝜆) − 𝛼𝑧.

We show the residuals image through various steps of the pipeline in Figure 5.4
(top). The most striking feature in the median subtracted image are the vertical
bars caused by fringing, which are spaced 20 pixels apart. A fast Fourier transform
(FFT) of each spectrum reveals a prominent peak at a frequency of 0.052 pixel−1.
To remove the fringing, we use scipy to apply a second order Infinite Impulse
Response (IIR) notch digital filter with a frequency of 0.052 pixel−1 and a quality
factor of 15. We apply the filter twice, which is sufficient to suppress the peak in
the FFT without bringing the spectral power substantially below that of neighboring
frequencies. The subsequent panel in Figure 5.4 shows the residuals image after
fringing correction, demonstrating that the notch filter has effectively removed the
fringing.

The most prominent features in the fringing-corrected residuals image (Figure 5.4)
are the strongly variable columns. These are deep telluric and stellar lines that vary
for a variety of reasons, including the suboptimal performance of optimal extraction
in deep lines (discussed in Figure 5.4), the inaccuracy of interpolation across deep
lines, and the time-variable telluric absorption. The line immediately to the right
of center in the residuals image, for example, is a water absorption line at 1.08351
µm. Its dependence on airmass is clear: as the night progresses, 55 Cnc first rises,
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Figure 5.3: Excess absorption. Top: in-transit vs. out-of-transit spectra in the
stellar rest frame, calculated using data from both nights. Bottom: excess absorp-
tion (𝐹𝑖𝑛/𝐹𝑜𝑢𝑡 − 1), plotted in the stellar frame; fringing has been removed with
a bandstop filter, but additional corrections for telluric and instrumental effects de-
scribed in Subsection 5.5 have not been applied. The red vertical lines mark the
locations of the three helium lines. The dashed vertical black lines represent strong
stellar lines, while the dash-dotted vertical line is a telluric water line. The most
prominent features in the excess absorption plot are the continuum variation, and the
sudden spikes/dips at the position of the strong lines. The latter is due to the poor
performance of optimal extraction in the vicinity of strong lines. Helium absorption
would manifest as a spike in the vicinity of the red vertical lines, which is not seen.

then sets. The line is dark at the beginning, brightens until the airmass reaches its
minimum, and dims again. The other strong line is a Si I line at 1.0830057 µm.
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We correct for variability in telluric absorption using SYSREM (Mazeh et al., 2007).
SYSREM is a generalization of Principal Component Analysis that takes into account
the errors on the data. Like PCA, it identifies eigenvectors and eigenvalues which,
when linearly combined, best explain the residuals image. When we apply SYSREM
to our residuals image, the first component has eigenvalues that closely track the
airmass, showing that the algorithm is successfully identifying telluric variability.

After subtracting the first principal component identified by SYSREM, we compute
the standard deviation of each column and mask the most variable columns. This
removes the prominent telluric line and all 4 of the most prominent stellar lines. One
iteration of SYSREM is not sufficient to remove the continuum variation seen in
Figure 5.4. We therefore remove it by fitting a third order polynomial with respect to
column number for each row and subtracting the polynomial. The residuals image,
averaged across both nights, is shown in the bottom-most panel of Figure 5.4. In
Figure 5.5, we additionally show a plot of excess absorption in the stellar frame.
There is no sign of helium absorption in either plot.

Shifting into the planetary rest frame
55 Cnc has an extremely high orbital speed of 230 km/s, causing it to accelerate by
130 km/s over the duration of the transit. At every epoch, we use the barycentric
Julian date to compute the radial velocity of the planet relative to the star, shift
the residual spectrum accordingly, and resample onto the common wavelength grid
using linear interpolation. The covariances introduced by linear interpolation are
properly computed and propagated. We then take the mean of all the shifted in-
transit residual spectra to arrive at the final excess absorption spectrum. The average
spectrum across both nights is taken to be the fiducial excess absorption spectrum.

The excess absorption from both nights, as well as the averaged excess absorption,
is shown in Figure 5.6. The combined spectrum has a standard deviation of 146
ppm, smaller than the planet’s white light transit depth of 350 ppm, although some
amount of correlated noise is present. No sign of helium absorption can be seen.

The bottom panel of Figure 5.6 shows what the excess absorption spectrum would
look like with a 1300 ppm helium absorption signature. The absorption profile was
taken from the 2.5D hydrodynamic model with the weakest absorption (solid green
curve in Figure 5.15). This figure shows that the reduction process subtracts out
at most 20% of the signal, and that even the 2.5D hydrodynamic model with the
weakest absorption is ruled out by our data.
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Constraints on absorption
To quantify the constraint on excess absorption that our data provide, we used the
nested sampling code dynesty (Speagle, 2020). We modelled the data as a scaled
and vertically shifted version of the 2.5D hydrodynamic model with the weakest
absorption (solid green curve in Figure 5.15, corresponding to a H-dominated
atmosphere with 10−10 envelope fraction and 1 year dispersal timescale). The
observed excess absorption spectrum (Fig. 5.6) is truncated to 10,831–10,835 Å
to avoid the need to model any unsubtracted low-frequency variations in the data.
Instead, the low-frequency variations are accounted for by vertically shifting the
model to match the data.

We compute a covariance matrix for the excess absorption spectrum using the errors
from the optimal extraction algorithm propagated forward through the pipeline. This
matrix accounts for the covariances caused by the two linear interpolations—first
onto a common wavelength grid, and second into the planetary rest frame. To
account for unmodelled systematics, we multiply the covariance matrix by a free
parameter 𝑒2, where 𝑒 > 1. The log likelihood is given by:

ln 𝐿 = −1
2
𝑟𝑇𝐾−1𝑟 − 1

2
|𝐾 | − 𝑁

2
ln 2𝜋, (5.10)

where 𝐾 is the covariance matrix and 𝑟 is the residuals.

Figure 5.7 shows the results of our nested sampling run. The free parameters are
the vertical offset of the model, the maximum excess absorption (𝐴), and the error
multiple 𝑒 whose square multiplies the covariance matrix. Our data is consistent
with zero excess absorption, and the best-fit error inflation parameter 𝑒 indicates that
our errors are likely underestimated by approximately 25%. The preferred vertical
offset is consistent with zero, as expected from visual inspection. Our fit places a
90% upper limit on 𝐴 of 250 ppm, corresponding to an equivalent width of 0.27
mÅ. To see whether 𝐴 is significantly non-zero, we performed a nested sampling
run with the amplitude removed as a free parameter. The resulting log Bayesian
evidence log(Z) was 1.3 higher in this run, indicating that the data prefers a model
with no absorption.

The constraint on 𝐴 can also be expressed in scale heights, where the scale height
𝐻𝑒𝑞 =

𝑘𝐵𝑇𝑒𝑞
𝜇𝑔

is computed assuming an equilibrium temperature of 2000 K and a
hydrogen-dominated atmosphere. This metric was first proposed by Nortmann et al.



168

(2018). We obtain an upper limit on the increase in apparent planet radius at 1083
nm: 𝛿𝑅𝑝/𝐻𝑒𝑞 < 11 with 𝐻𝑒𝑞 = 350 km, which we put into context in Figure 5.8
by plotting the EUV flux and 𝛿𝑅𝑝/𝐻𝑒𝑞 of all planets with helium detections or
non-detections. The EUV flux experienced by 55 Cnc e is obtained from Salz et al.
(2016), who calculate 𝐹𝐸𝑈𝑉 = 7.4 W/m2 by applying the scaling relation of Linsky
et al. (2014) to the Lyman alpha luminosity. Following Kasper et al. (2020), we
conservatively adopt 3x error bars on the EUV flux on either end, as different EUV
reconstruction techniques give results that are discrepant by an order of magnitude in
some cases (i.e. Salz et al. 2015b; Drake et al. 2020). Figure 5.8 shows that, relative
to other planets with helium measurements, 55 Cnc e is a highly EUV-irradiated
planet with a tight upper limit that is far below the 𝛿𝑅𝑝/𝐻𝑒𝑞 of successful detections
for other planets.
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Figure 5.4: Pipeline steps: the original spectra; after removing fringing; after
removing one SYSREM component; after masking variable lines and subtracting
off continuum variations; after subtracting off continuum variations by fitting a
polynomial to each spectrum. In the last panel, the vertical white lines mark a stellar
Si line at 1.0830057 µm (left) and a strong water line at 1.08351 µm (right).
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Figure 5.5: Excess absorption. Top: Combined residuals image for both nights,
showing excess absorption (ppm) in the stellar rest frame after all pipeline steps
except shifting into the planetary rest frame. The top and bottom horizontal black
lines mark the beginning and end of transit, respectively. The vertical red lines
mark the helium triplet positions. No helium absorption is evident. Bottom: excess
absorption during transit (1− 𝐹𝑖𝑛/𝐹𝑜𝑢𝑡) computed from the final residuals image for
both nights.
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Figure 5.6: Excess absorption and injection test. Top: excess absorption during the
transit in the planet frame as a function of wavelength, averaged over both nights.
Helium absorption from the planet would result in a positive signal at the position of
the red vertical lines. Due to the nature of ground-based high resolution spectra, the
white light transit cannot be detected. Bottom: same as above, except an absorption
signal was injected into the spectra before any reduction was undertaken. The
injected signal has a maximum excess absorption of 1300 ppm, corresponding to
the 2.5D hydrodynamic model with the weakest absorption (dashed blue curve in
Figure 5.15).
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Figure 5.8: 55 Cnc e in context, with the size of each point inversely proportional
to the planetary radius. The y-axis shows 𝛿𝑅𝑝/𝐻𝑒𝑞, the ratio of the increase in
apparent radius at 1083 nm to the scale height at equilibrium temperature. The
only super Earth with a helium measurement or non-detection, 55 Cnc e is highly
irradiated and has a very tight observational constraint compared to its peers. Data
for other planets was taken from Kasper et al. 2020. We did not include the helium
non-detections of AU Mic b (Hirano et al., 2020), WASP-52b (Vissapragada et al.,
2020), K2-100b (Gaidos et al., 2020) or K2-25b (Gaidos et al., 2020), which are
less sensitive (the upper limits on 𝛿𝑅𝑝/𝐻𝑒𝑞 are all greater than 100).
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5.6 Modeling
We next turn to helium outflow models to explore what our non-detection of helium
absorption might mean for 55 Cne e’s atmospheric composition and corresponding
mass loss rate. We start by performing order-of-magnitude estimates of the mass
loss rate from analytical formulae. Next, we use three independent models to
interpret the observational result. First, an isothermal Parker wind model (Oklopčić
& Hirata, 2018) puts constraints on the 2D parameter space of temperature and mass
loss rate, but does not constrain either parameter independently. Our second model,
The PLUTO-CLOUDY Interface (TPCI), can model the outflow in a 1D fashion given
the stellar XUV spectrum and predict the mass loss rate, temperature profile, and
absorption spectrum. Our third and most sophisticated model is a 2.5D model
(Wang & Dai, 2018) which combines ray-tracing radiative transfer, real-time non-
equilibrium thermochemistry, and hydrodynamics to model the outflow, assuming
it is symmetric about the star-planet axis. This model can also predict the mass loss
rate, temperature profile, and absorption spectrum, given an assumed atmospheric
composition and envelope fraction.

We compare the TPCI and 2.5D predictions directly to observations. Since the
Parker wind model requires both the mass loss rate and the exosphere temperature
as input parameters, we take a typical exosphere temperature from the TPCI model
as a reasonable estimate, and use it within the framework of the Parker wind model
to constrain the mass loss rate.

For convenience, we compile the take-away results of the models we considered in
Table 5.2. In many of these models, we consider a range of possible parameters
and atmospheric compositions. The range of values we give in the table reflect the
range of parameters and compositions.

Table 5.2: Summary of Model Predictions

Model Dimensions ¤𝑀 (g/s) Peak Absorption (ppm)
Energy-limited 0 >2×109 N/A
Semi-empirical 0 8×109–1×1011 N/A

Parker wind 1 N/A 900-1800∗
TPCI 1 0.75–1.1×1010 800–1000
2.5D 2.5 0.70–1.5×1010 1400–2400

∗Assumes the mass loss rate and exosphere temperature predicted by TPCI



175

Analytic estimates of escape rate
Before running complex hydrodynamic simulations, it is useful to perform rough
analytical estimates of the escape rate to illustrate the typical magnitudes involved
and their dependence on stellar and planetary quantities. The simplest way to
estimate the escape rate is to assume that it is limited by the X-ray and extreme
UV stellar radiation hitting the planet. The energy per unit mass required to escape
the planet’s gravity well is 𝑑𝐸/𝑑𝑚 = −𝐺𝑀𝑝/𝑅𝑋𝑈𝑉 , while the rate at which XUV
radiation impinges upon the planet is 𝑑𝐸/𝑑𝑡 = 𝐿𝑋𝑈𝑉

4𝜋𝑎2 𝜋𝑅
2
𝑝. Assuming a fraction 𝜂 of

the energy goes toward driving mass loss, we obtain:

𝑑𝑚

𝑑𝑡
=
𝜂

4
𝑅3
𝑝𝐿𝑋𝑈𝑉

𝐺𝑀𝑝𝑎
2 . (5.11)

𝑅𝑝 is the radius of the XUV photosphere, but we take it to be the optical transit radius
in order to obtain a conservatively low mass loss rate. We obtain 𝐿𝑋𝑈𝑉 = 1027.70

erg/s from Salz et al. (2016), who in turn obtain it by applying the scaling law in
Linsky et al. (2014) to the star’s Lyman alpha luminosity. We assume a low efficiency
𝜂 = 0.15, in line with Monte Carlo heating models (Shematovich et al., 2014; Ionov
& Shematovich, 2015), and obtain 2×109 g/s. Because the value of 𝜂 and 𝐿𝑋𝑈𝑉 are
both highly uncertain, this should be regarded as an order-of-magnitude estimate
only.

A slightly more sophisticated approach to estimating the mass loss rate is to adopt
the semi-empirical expressions of Wang & Dai (2018), who derived their expression
from 2.5D numerical simulations of mass loss. Their equation is:

¤𝑀 = 4.5 × 10−10𝑀⊕/𝑦𝑟 · (
𝑅𝐸𝑈𝑉

5𝑅⊕
)2

max(𝐹′, 𝐹′0.6)min(1, 𝑀′−0.5)
(5.12)

𝑀′ =
𝑀𝑐

10𝑀⊕
(5.13)

𝐹′ =
𝐹𝐸𝑈𝑉

5 × 1014𝑒𝑟𝑔/𝑠/Å
. (5.14)

For 55 Cnc, the X-ray luminosity is only 10% of the total XUV luminosity, so the
terms EUV and XUV are more or less interchangeable. We use three methods to
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determine 𝑅𝐸𝑈𝑉 , the apparent radius of the planet in the EUV. First, we use the
radius implied by the optical transit depth: 1.9𝑅⊕. This radius leads to a mass loss
rate of 8×109 g/s. Second, we use the Hill radius, 𝑅𝐻𝑖𝑙𝑙 = 𝑎(

𝑀𝑝

3𝑀𝑠
)1/3 = 7.5𝑅⊕. This

leads to a mass loss rate of 1×1011 g/s. These two mass loss rates are the lower and
upper limits of what is reasonable under the semi-empirical framework of Wang &
Dai (2018).

The third method for estimating 𝑅𝐸𝑈𝑉 is to follow Wang & Dai (2018) in assuming
that the EUV photosphere is at 𝜌 = 10−13 g cm-3. To find the radius that corresponds
to this density, we assume the atmosphere is isothermal, and need to find one point
with known r and 𝜌. Wang & Dai (2018) (following Owen & Jackson 2012) pick the
radiative-convective boundary (RCB), and use a parameterized opacity to calculate
the position of the RCB. Unfortunately, this calculation involves many unknown
quantities, such as the Kelvin-Helmhotz timescale and the envelope fraction. It may
also be particularly ill-suited to thin atmospheres, where the radiative-convective
boundary may be very close to the surface and at a much higher temperature than
𝑇𝑒𝑞. We therefore assume that P=100 mbar corresponds to the radius inferred from
the optical transit depth, 1.9 𝑅⊕. 100 mbar is the approximate photosphere of transit
observations in the optical for solar metallicity planets with thick atmospheres,
making this guess more accurate than trying to estimate the RCB radius and pressure.

Assuming r(P=100 mbar) = 1.9 𝑅⊕, we obtain 𝜌𝑝ℎ𝑜𝑡 = 𝑃𝜇

𝑘𝐵𝑇𝑒𝑞
= 1.4 × 10−6 g/cm3

and 𝛽 ≡ 𝐺𝑀𝑐𝜇

𝑅𝑝𝑘𝐵𝑇𝑒𝑞
= 37, and can calculate 𝑅𝐸𝑈𝑉 :

𝑅𝐸𝑈𝑉 =
𝑅𝑝ℎ𝑜𝑡

1 + 𝛽−1 ln (𝜌𝐸𝑈𝑉/𝜌𝑝ℎ𝑜𝑡)
(5.15)

= 3.4𝑅⊕ . (5.16)

This implies ¤𝑀 = 3×1010 g/s.

1D Parker wind model
Now that we have a rough sense for the expected mass loss rate for a hydrogen-
and helium-rich atmosphere, we can ask whether mass loss rates in this range are
definitively ruled out by our helium non-detection. We use the Parker wind model of
Oklopčić & Hirata (2018) to translate our helium non-detection into a joint constrain
on the mass loss rate and the exosphere temperature. This study treats the outflow
as an isothermal, radially symmetric Parker wind from a hydrogen-dominated at-
mosphere. The model calculates the population levels of singlet and triplet states by
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Figure 5.9: The confidence with which each combination of mass loss rate and
exosphere temperature is ruled out, according to the 1D Parker wind model of
Oklopčić & Hirata (2018). The red x indicates the mass loss rate and approximate
exosphere temperature predicted by the non-isothermal Salz et al. (2016) model.

balancing recombination, photoionization, collisional (de)-excitation, and radiative
decay as a function of altitude. Using the helium number density and the population
level of the triplet state as a function of altitude, it then calculates the transit depth
as a function of wavelength.

We simulate absorption spectra for a 2D grid of mass loss rates ranging from 107

to 1011 g/s, and exospheric temperatures ranging from 2500 to 9000 K, in order to
better quantify the limits our data place on the planet’s present-day mass loss rate.
For each combination of mass loss rate and exosphere temperature, we compute
an excess absorption spectrum and calculate the corresponding log likelihood of
the observational data given the model. We then compute Δln(L): the difference
between the ln(L) of model versus that of a zero absorption model.

We show the resulting Δ𝑙𝑛(𝐿) ( ¤𝑀,𝑇0) in Figure 5.9. In these models, higher
temperature exospheres have faster outflow velocities and correspondingly weaker
helium absorption for a given mass loss rate. At the planetary surface, for example,
a 5000 K exosphere with a mass loss rate of 1.4 × 1010 g/s requires a 0.16 km/s
wind; a 10,000 K exosphere with the same mass loss rate requires a 3 km/s wind.
A faster wind implies lower density at the same mass loss rate, decreasing helium
absorption. This is both because there are fewer helium atoms per cubic volume,
and because the fraction of helium atoms in the triplet state is lower. The latter, in



178

1 2 3 4
Radius (Rp)

2

0

2

4

v 
df

3/d
r (

s
1 )

1e 5
Recombination
Decay
Ionization
Col Excite
Col Deexcite a
Col Deexcite b
Col Deexcite H0
Total

Figure 5.10: Production and destruction rates of triplet helium due to various
processes. From a Parker wind model of 55 Cnc e with a mass loss rate of 1.38×1010

g/s and exosphere temperature of 5000 K.

turn, is because the triplet state is primarily populated by recombination (see Figure
5.10), and a lower density means a lower recombination rate. For these reasons, the
mass loss constraint is less stringent at higher temperatures.

The Parker wind model does not provide a way to estimate the exosphere temperature,
which makes it impossible to constrain the mass loss rate without the help of another
model. The TPCI model predicts a peak exosphere temperature of 5000-6000 K
(Salz et al. 2016; see next subsection for details). At 𝑇0 = 5000 K, the mass loss
rate is constrained to ¤𝑀 < 109.1 g/s (Δ𝑙𝑛(𝐿) < 7), or ¤𝑀 < 108.8 g/s (Δ𝑙𝑛(𝐿) < 3).
At 𝑇0 = 6000 K, the mass loss rate is constrained to ¤𝑀 < 109.5 g/s (Δ𝑙𝑛(𝐿) < 7), or
to ¤𝑀 < 109.2 g/s (Δ𝑙𝑛(𝐿) < 3), where Δ𝑙𝑛(𝐿) thresholds of 7 and 3 correspond to
likelihood ratios of 1100 and 20, respectively. In summary, the Parker wind model
gives an upper limit on the mass loss rate of ∼ 109 g/s for exospheric temperatures
predicted by TPCI.

Lastly, we use this model to gain intuition on the physical processes that determine
the triplet helium fraction, and therefore the helium absorption strength. Figure
5.10 plots, as a function of radius, the production and destruction rates of triplet
helium due to the processes considered by Oklopčić & Hirata (2018): recombina-
tion, radiative decay, ionization, collisional excitation/deexcitation with electrons,
and collisional deexcitation with neutral hydrogen atoms. Recombination is the
most important production mechanism, while destruction is due to a combination of
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Figure 5.11: Profiles of various physical quantities for the hydrogen- and helium-
dominated TPCI models in addition to the 2.5D model. The low-amplitude os-
cillations in the helium-dominated profiles are numerical artifacts resulting from
the non-zero advection length. In green are the results from Salz et al. 2016, who
compute all quantities plotted here except for the helium triplet density.

collisional deexcitation with electrons and ionization: the former is dominant close
to the planet while the latter is dominant far from the planet, as one would expect.
Collisional excitation and radiative decay are negligible. The production and de-
struction rates very nearly cancel out, indicating that the triplet helium fraction is
mostly in equilibrium and that advection is not significant.

1D PLUTO-CLOUDY hydrodynamic model
In this section we use a 1D, spherically symmetric radiative-hydrodynamical simu-
lation to predict the exospheric temperature structure, mass loss rate, and metastable
helium absorption signal for 55 Cnc e under several different scenarios. Salz et al.
(2016) previously used this model to simulate hydrogen-rich exospheres for several
planets, including 55 Cnc e, but did not calculate the predicted absorption signal
from metastable helium. The Salz et al. (2016) model predicts an exospheric tem-
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Figure 5.12: TPCI model results. Top: TPCI hydrogen-rich (90% H, 10% He) and
helium-rich (1% H, 99% He) models are both ruled out by our observational data.
Bottom: increasing or decreasing the stellar XUV flux by a factor of 2 does not
significantly change the absorption signal in the TPCI hydrogen-rich model.

perature of 3000-6000 K and an outflow velocity at large distances of 10-15 km/s.
It predicts a mass loss rate of 1.4×1010 g/s, corresponding to 0.9% of the planetary
mass per Gyr. As the paper shows, the predicted Lyman-𝛼 signal is consistent with
the non-detection by Ehrenreich et al. (2012). This mass loss rate would imply that
55 Cnc e started life as a sub Neptune with a hydrogen/helium envelope of ∼10%
by mass.
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We use TPCI to reconstruct the Salz et al. 2016 model and calculate the correspond-
ing helium absorption signal. This also allows us to explore other compositions,
including a helium-dominated atmosphere.

This model couples PLUTO, a hydrodynamics code that can work in 1, 2, or 3
dimensions (Mignone et al., 2007), and CLOUDY (Ferland et al., 2013), a 1D plasma
simulation and spectral synthesis code. PLUTO and CLOUDY are linked in The
PLUTO-CLOUDY Interface (TPCI; Salz et al., 2015a). In TPCI, CLOUDY calculates
the equilibrium chemistry and ionization state of the medium given a radiation field,
computes the heating and cooling rates of the new state, and feeds this information
to PLUTO. PLUTO heats or cools the medium appropriately, evolves the medium
hydrodynamically, and provides the new state to CLOUDY, after which the cycle
restarts. Both PLUTO and CLOUDY are sophisticated, publicly available, and general-
purpose codes that have been applied to a variety of astrophysical problems, ranging
from exoplanet mass loss to the magnetic fields of neutron stars (PLUTO; e.g. Sur
et al. 2020) to high-redshift gamma ray bursts (CLOUDY; e.g. Shaw & Ferland 2020).
Salz et al. (2016) adopt a 1D spherically symmetric model, and do not include the
planetary magnetic field. CLOUDY includes the 30 lightest elements, from hydrogen
to zinc, and accounts for many physical processes, including radiative and collisional
ionization/recombination, inner shell ionization, and charge exchange. However,
Salz et al. (2016) assume a purely atomic hydrogen and helium atmosphere.

As input to the PLUTO-CLOUDY model, the authors use the X-ray luminosity mea-
sured by XMM-Newton in April 2009, namely 4.6×1026 erg/s between 5–100 Å
(Sanz-Forcada et al., 2011). This is 2.4 times lower than the flux measured by Chan-
dra, which was obtained simultaneously with the HST Lyman alpha observations in
March/April 2012 (Ehrenreich et al., 2012). This is likely because March/April 2012
was right at the minimum of the 10.5±0.5 year stellar activity cycle (Bourrier et al.,
2018), while April 2009 was 3 years from minimum and 2.3 years from maximum.
Because our December 2019 observations were almost exactly one stellar cycle after
April 2009, we expect the star’s X-ray properties to be similar to those observed by
Sanz-Forcada et al. (2011) and adopted by Salz et al. (2018), and more favorable
for mass loss measurements than the conditions encountered by Ehrenreich et al.
(2012).

Because we do not know exactly what settings or what version of TPCI they used we
are unable to replicate their results exactly, but we match their temperature profile to
better than 500 K and their mass loss rate to within 25% accuracy (see Figure 5.11).
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This is far smaller than the factor of several uncertainty they report as the inherent
model error (their Table 2), resulting from factors such as the neglected 3D structure
(4x uncertainty), uncertain irradiation strength (3x), and neglect of magnetic fields
(2x). Following Salz et al. (2016), we neglect molecules and elements other than
hydrogen and helium in our simulation.

We find that the advection length—roughly speaking, the resolution of CLOUDY’s
advection calculations— is a crucial parameter for these models. Smaller values lead
to more accurate results, but take longer to converge. Large values lead to spurious
spatial oscillations in the temperature and ionization state. We adopt an advection
length of 0.15 planetary radii, which we find is small enough that the oscillations
in temperature are of order 0.2% for the helium-dominated run and 0.06% for
the hydrogen-dominated run. We run the simulations for 150 days of model time
(roughly 1000 sound crossing times) while neglecting advection. We then turn on
advection, which slows down the run by a factor of ∼80, and let the simulation run
for another 150 days of model time. We monitor the evolution of the temperature,
density, velocity, and mass loss rate (calculated as 4𝜋𝑟2𝜌(𝑟)𝑣(𝑟)) profiles to verify
that the simulation has in fact converged, with temperatures fluctuating by less than
50 K and the mass loss rate by less than 0.1%.

After reproducing the hydrogen-dominated model from Salz et al. (2016), we run a
second TPCI simulation for a helium-dominated atmosphere with 99% He and 1%
H by number to explore a scenario where slow mass loss over many Gyr fractionated
the atmosphere.

Since CLOUDY computes the level populations of every species, we configure it
to report the number density of helium atoms in the triplet state at every radial
coordinate. We use this number density profile, in addition to the temperature and
velocity profiles, to compute the excess absorption spectrum.

Figure 5.11 compares the profiles for temperature, velocity, hydrogen density, helium
triplet density, and neutral fraction for the hydrogen- and helium-dominated TPCI
models. Using these profiles, we computed the mass loss rate as ¤𝑀 = 4𝜋𝑟2𝜌𝑣/4.
The division by 4 follows Salz et al. (2016) and is meant to account for the 3D
nature of the outflow, as we simulate only the sub-stellar point. We obtain a mass
loss rate of 1.1×1010 g/s for the hydrogen-dominated scenario and 7.5×109 g/s for
the helium-dominated scenario.
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In Figure 5.12, we compare the predicted excess absorption from our TPCI models
to the observed excess absorption spectrum. Taking into account the interpolation-
induced covariance between the data points, we find that a zero absorption model is
preferred over the TPCI hydrogen-dominated model by Δln(L) = 126, and preferred
over the helium-dominated model by Δln(L) = 100. Although these estimates do not
account for the error due to systematics or variable tellurics, it can be seen visually
that the predicted absorption for both models is ruled out.

Figure 5.13: Profiles of various physical quantities for hydrogen-dominated TPCI
models of different stellar XUV flux: nominal, 2x nominal (high), and half nominal
(low).

Critical to all photoevaporation models is the stellar EUV luminosity, which cannot
be directly observed and must be reconstructed from X-ray and/or Lyman-𝛼 flux.
However, different EUV reconstruction techniques give results that are discrepant by
an order of magnitude in the worst-case scenario (i.e. Salz et al. 2015b; Drake et al.
2020), although inactive main sequence stars like 55 Cnc e can be modelled more
accurately. To determine the effect that uncertainties in the EUV luminosity have on
the helium absorption signal, we ran TPCI simulations for the hydrogen-dominated
scenario at twice and half the nominal stellar flux. The profiles of various physical
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Figure 5.14: Density, temperature, and triplet helium density from the fiducial 2.5D
model. The star is toward the left, and the simulation volume is represented by
revolving the semicircles about their straight edge. The white lines are streamlines,
while the dashed black lines represent the sonic surface.

quantities with respect to radius is shown in Figure 5.13 for the low-flux, nominal,
and high-flux scenarios, while the helium absorption signals are compared in Figure
5.12.

The high flux scenario has a mass loss rate 3 times higher than the low flux scenario,
implying a slightly sub-linear scaling of mass loss rate with respect to flux. Doubling
the stellar flux substantially increases the exosphere temperature and outflow velocity
while substantially decreasing the neutral fraction of both hydrogen and helium. The
hydrogen number density is moderately higher at higher flux, but the triplet helium
number density is remarkably insensitive to flux. This insensitivity means that the
excess absorption is barely affected by uncertainties in the stellar flux—it is only
20% lower in the high-flux scenario than in the low-flux scenario.

2.5D hydrodynamic simulations
Our final and most sophisticated model utilizes the approach outlined in Wang &
Dai (2018), which combines ray-tracing radiative transfer, real-time non-equilibrium
thermochemistry, and hydrodynamics based on the higher-order Godunov method
code Athena++ (Stone et al., 2020). Photoevaporation is inherently not a spherically
symmetric phenomenon, since it is driven by stellar XUV flux and the star is
only in one direction. Compared to 1D LTE models, this axisymmetric (2.5D)
model better captures the anisotropy of the outflow pattern, while the non-LTE
thermochemistry self-consistently predicts the mass loss rate and the line profiles.
Like Oklopčić & Hirata (2018) and Wang & Dai (2020), metastable helium is
added as a chemical species and key reactions that form and destroy this species
are included in the thermochemical network. The model incorporates a total of 26
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species and 135 reactions, including various relevant heating and cooling processes
(e.g. photoionization, photodissociation of atomic hydrogen and Lyman-𝛼 cooling).

Our simulations are done in a spherical coordinate system centered on the planet,
with the polar axis pointing from the center of the planet to the host star. The
simulation domain are in the radial and polar directions [r,𝜃], while symmetry is
assumed in the 𝜙 direction. Photons for the ray-tracing calculation are divided into
five energy bins: (1) ℎ𝜈 = 2 eV for infrared, optical and near ultraviolet (NUV)
photons, (2) ℎ𝜈 = 7 eV for “soft” far ultraviolet (FUV) photons, (3) ℎ𝜈 = 12 eV for
the Lyman-Werner band FUV photons that can photodissociate molecular hydrogen
but cannot ionize them, (4) ℎ𝜈 = 20 eV for “soft” extreme ultraviolet (soft EUV)
photons that can ionize hydrogen but not helium, (5) ℎ𝜈 = 40 eV for hard EUV (and
soft X-ray; denoted by “hard EUV” hereafter for simplicity) photons that ionize
hydrogen and helium. Photon fluxes in each energy bin are determined according to
the planet’s orbital separation and the corresponding luminosities for a typical K star,
according to the reviews in Oklopčić (2019). The EUV flux for this model star is
10,926 erg s−1 Å−1, 30% higher than what we adopted in the 1D TPCI simulations—
a negligible difference given the inherent uncertainty in EUV flux. In addition to
the opacities caused by photochemical reactions, we also added an effective opacity
term to all bands, particularly in the optical band ℎ𝜈 = 2 eV where our opacity
calculation did not include the Thomson cross-section 𝜎/H ≃ 6.7 × 10−25 cm2.

We note that the models we present here do not account for the effect of the stellar
wind on the predicted mass loss rate. In previously published 1D models (i.e.
Murray-Clay et al. 2009), the stellar wind acts as a simple scalar suppression force.
In Wang & Dai (2020), they discuss the effect of the stellar wind on planetary
outflows using the same hydrodynamic model presented here. They find that in
higher dimensions, the stellar wind only suppresses the day side mass loss; the
outflow is simply redirected towards the night side of the planet, forming a comet-
like tail. In these models, adding a solar-like stellar wind (we note that 55 Cnc
e is an old, sun-like star) only changes the 3D mass loss rate by a few percent,
corresponding to a change in the equivalent width of He absorption of less than 10%
(see Table 2 in Wang & Dai, 2020). In short, stellar wind may alter the line profile
of He absorption, but it is unable to quench the outflow in three dimensions and is
therefore unlikely to be the reason behind the non-detection of He absorption for 55
Cnc e.
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Item Value
Simulation domain

Radial range 1.89 ≤ (𝑟/𝑅⊕) ≤ 20
Latitudinal range 0 ≤ 𝜃 ≤ 𝜋

Resolution (𝑁log 𝑟 × 𝑁𝜃) 144 × 96

Atmospheric properties∗
𝜌(𝑅p) 10−7 g cm−3

𝑇 (𝑅p) ≃ 𝑇e𝑞 1990 K

Radiation flux [photon cm −2 s−1]
2 eV (IR/optical) 1.1 × 1021

7 eV (Soft FUV) 4.3 × 1016

12 eV (Lyman-Werner FUV) 1.5 × 1013

20 eV (Soft EUV) 1.2 × 1013

40 eV (Hard EUV) 1.6 × 1014

Initial abundances [𝑛X/𝑛a𝑡𝑜𝑚] †

H2 0.455
He 0.091

H2O 1.8 × 10−4

CO 1.4 × 10−4

S 2.8 × 10−5

Si 1.7 × 10−6

∗: 𝑅p ≃ 1.89 𝑅⊕ is the size of the rocky planet core.
†: Dust grains are not included, since 𝑇e𝑞 ≃ 1990 K is well above the dust

sublimation temperature.

Table 5.3: Setups of the fiducial 2.5D numerical models of the evaporating atmo-
sphere

A typical planetary atmosphere consists of a convective interior and a quasi-
isothermal exterior (e.g. Rafikov, 2006), but our numerical tests found that even
a thin convective isentropic layer will cause the whole atmosphere to become over-
dense and unbounded for such a close-in low-mass planet (the boil-off regime, see
discussions in Owen & Wu 2016 and Wang & Dai 2018). We therefore set up the
model atmospheres with a quasi-isothermal layer directly above the rocky core. In
contrast, the TPCI model did not set a solid surface or impose a truncation of the
gas reservoir; instead, it sets pressure and density boundary conditions at the inner
radius. We summarize the key quantities that define the 2.5D fiducial model in Ta-
ble 5.3. In addition to the fiducial model, which has a density of 𝜌(𝑅p) = 10−7 g cm−3

at the rocky surface, we also considered models with 𝜌(𝑅p) = 10−5 g cm−3 and
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10−9 g cm−3, respectively. As with the TPCI models, we also considered a scenarios
with a He-dominated atmosphere (1% hydrogen and 99% helium by atom number)
spanning the same three surface pressures.

Figure 5.14 shows the 2D profiles of density, temperature, and triplet helium density,
along with streamlines and the sonic surface. As can be seen, the anti-stellar side
of the planet has drastically different physical conditions from the star-facing side.
However, due to its compactness, much of colder, less dense material on the anti-
stellar side would not block any more light during transit than the planet itself. Except
for this region, the rest of the simulation domain is largely spherically symmetric,
especially in the number density of triplet helium, which directly determines the
helium absorption signature.

Figure 5.11 shows the radial profiles of temperature, velocity, hydrogen number
density, triplet helium number density, neutral H fraction, and neutral He fraction
for the fiducial model (hydrogen dominated, 𝜌(𝑅𝑝) = 10−7 g cm−3), showing a
fairly typical supersonic photoevaporative outflow that carries metastable helium
atoms. The assumed EUV flux of 55 Cnc e produces a relative abundance of
metastable helium in 55 Cnc e’s atmosphere of ∼ 10−7, nearly identical to the
abundance predicted by TPCI. Despite this low abundance, the transmission spectra
in Figure 5.15 still have clearly recognizable excess absorption with amplitudes
of a few thousand ppm. The absorption is still greater than 1000 ppm even for
the thinnest atmosphere (𝜌(𝑅p) = 10−9 g cm−3). The mass-loss timescales of
these models, summarized in Table 5.4, range between years and thousands of
years. The mass loss rates are within 50% of those predicted by TPCI for both
hydrogen and helium dominated atmospheres. These mass-loss rates are time-
averaged after the simulation reaches a quasi-steady state after dozens of dynamical
timescales elapsed since the start of the simulations. The non-detection of helium
absorption is therefore in good agreement with the short dispersal timescales for
these atmospheres, implying that 55 Cnc e would not have been able to retain a
primordial atmosphere for very long after the dispersal of the gas disk.
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Model 𝜌(𝑅p) 𝑀𝑒𝑛𝑣/𝑀𝑝 𝑃(𝑅𝑝) ¤𝑀 𝜏𝑎d𝑖𝑠𝑝 ⟨𝑊𝜆⟩𝑏 Δ ln(𝐿)𝑐
No. (g cm−3) ×10−9 (mbar) 1010 𝑔 𝑠−1 (yr) (10−3 )

H/He
1 10−5 98 500 1.5 5000 2.4 748
2∗ 10−7 0.98 5 0.84 86 1.4 243
3 10−9 0.0098 0.05 0.85 0.9 1.4 252

He-Dom.
4 10−5 98 400 1.1 4000 3.3 712
5 10−7 0.80 4 0.94 65 2.0 538
6 10−9 0.008 0.04 0.70 0.9 1.6 342
𝑎: Dispersal timescale, defined by the current atmospheric mass divided by the

steady-state mass loss rate.
𝑏: Dimensional equivalent width of excess absorption, time-averaged from the end of

ingress through the start of egress.
𝑐: Difference in log likelihood between this model and a model with zero absorption. A

bigger number means a worse fit.
∗: Fiducial model. (§5.6).

Table 5.4: 2.5D simulations: Parameters and results
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Figure 5.15: Metastable helium transmission spectra of model atmospheres for the
simulations described in §5.6 and Tables 5.3, 5.4, presenting the time-averaged
(from the end of ingress through the start of egress) excess absorption. The horizon-
tal dashed line indicates zero excess absorption for reference. Different reference
densities (measured at the planet surface 𝑅p) are marked by different line styles, with
𝑙𝑜𝑔(𝜌0) = −5,−7,−9 corresponding to roughly 500, 5, and 0.05 millibar, respec-
tively. Orange lines represent helium-dominated models, while blue lines represent
hydrogen-dominated models.
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5.7 Discussion
Now that we have explored the limits that can be placed on 55 Cnc e’s atmosphere
from our helium observations alone, we next consider how these results relate to
other published observations of 55 Cnc e’s atmosphere. We first focus on Ehrenreich
et al. (2012), which presents a Lyman 𝛼 transit of 55 Cnc e from HST/STIS. Lyman
𝛼 and the helium 1083 nm line are both good probes of the outflowing atmosphere,
but the former is sensitive only to the high speed portions of the outflow while the
latter can only probe the low-speed portions of the outflow where metastable helium
exists. Ehrenreich et al. (2012) measures the transit depth between 1215.36 Å and
1215.67 Å, obtaining a value of 0.3 ± 2.4%. From this, they constrain the mass
loss rate to be below 3×108 g/s (3𝜎). They interpret their data using the Bourrier
& Lecavelier des Etangs (2013) model, which is a 3D particle-based simulation
that takes into account radiation pressure, photoionization, the stellar wind, and
the effects of self-shielding for both stellar photons and protons. The inclusion of
outward forces from radiation pressure and stellar wind gives the outflow a trailing
cometary tail: a consequence of the Coriolis acceleration −2𝛀 × v. This model has
5 tunable parameters: the mass loss rate, the stellar EUV flux, and three stellar wind
parameters: bulk velocity, temperature, and density. (By contrast, our 2.5D model
is a hydrodynamics code which predicts the mass loss rate given the EUV flux,
but does not take the stellar wind into account and cannot model a tail.) As with
all Lyman alpha observations of even the nearest stars, the line core is completely
absorbed by the interstellar medium, and only the far wings are visible. This means
that the detectability of an absorption signal depends as much on the highly uncertain
kinematic structure of the outflow as on the quantity of outflowing gas.

Even though we quote a slightly higher upper limit on the mass loss rate (∼ 109 g/s
from the isothermal Parker wind model) than Ehrenreich et al. (2012) (3×108 g/s),
our models are in fact consistent with their Lyman alpha non-detection even at mass
loss rates that are definitively ruled out by our helium non-detection. Figure 12 of
Salz et al. (2016) compares the Lyman alpha data to their TPCI simulation of 55 Cnc
e under the assumption of a hydrogen-dominated atmosphere, finding that the two
are consistent. As we have seen, however, the helium absorption signal predicted
by TPCI for the hydrogen-dominated atmosphere case is highly inconsistent with
our non-detection. In addition, a 1D model is not ideal for modelling Lyman-𝛼
because the strength of the line absorption, combined with interstellar absorption
that eliminates the line core, make the kinematic structure of the outflow crucially
important in predicting the observable signal. For this reason, we used the same
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code we used to run our 2.5D models to run a helium-dominated 3D hydrodynamic
model (resembling model 5 in Table 5.4, corresponding to an intermediate mass
helium atmosphere). We found that just 1% hydrogen in the outflow is enough to
give a 12% excess absorption depth in the Lyman 𝛼 line core, but the line core is
not observable due to interstellar absorption.

To determine what is observable, we start with the stellar intrinsic Lyman alpha
profile, corrected for interstellar absorption, that Ehrenreich et al. (2012) provide
in Figure 6. We model the observed out-of-transit spectrum by convolving the
absorbed profile with the line spread function of STIS, as provided by STScI5.
We model the observed in-transit spectrum by multiplying the post-ISM-absorption
profile by the predicted Lyman alpha absorption profile from the exosphere and
convolving the product with the line spread profile. The resulting excess absorption
spectrum for our helium-dominated 2.5D model is shown in Figure 5.16. We did not
show the hydrogen-dominated case as the high-opacity region extends well beyond
the domain of our simulation. It is clear that the predicted Lyman alpha absorption is
fully consistent with the observations. As a caveat, we note that absorption is often
seen in the high-velocity wings of Lyman-𝛼 observations, which could be due to
charge exchange with the stellar wind (Holmström et al., 2008; Tremblin & Chiang,
2013). Since our model does not include stellar wind, it may severely underestimate
the absorption at observable wavelengths. Were the stellar wind to be included, it
is possible that the Lyman alpha non-detection would become a stronger constraint
on mass loss than the helium non-detection.

As noted in the previous section, the observations by Ehrenreich et al. (2012)
coincided with the stellar activity minimum. As far as we know, nobody observed
55 Cnc e in either Lyman alpha or He I 1083 nm during the stellar maximum in mid
2017. Our observations took place in between said maximum and the next minimum
in late 2022. The star’s X-ray luminosity is 2.4 times higher in this phase than it
was in 2012, making it conceivable that any potential outflow from the planet would
have increased in strength relative to the epoch of the Lyman 𝛼 observations during
the stellar minimum. Both the TPCI models and the 2.5D simulations assume the
higher X-ray flux relevant for the epoch of our helium observations, and as a result
they may over-predict the magnitude of the Lyman-𝛼 absorption at the epoch of
the HST observations. Since the predicted Lyman-𝛼 absorption from these higher

5https://www.stsci.edu/hst/instrumentation/stis/performance/spectral-resolution

https://www.stsci.edu/hst/instrumentation/stis/performance/spectral-resolution
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Figure 5.16: Lyman alpha observations of Ehrenreich et al. (2012), compared to
predictions of our helium-dominated 2.5D model (model 5 in Table 5.4). Within
the gray shaded region, the intrinsic stellar flux is fully absorbed by the ISM, but
the observed flux is non-zero because of the broad instrumental line spread profile.

X-ray flux models is already undetectable, there is no need to recalculate the models
with a lower X-ray flux level.

Prior to our observations, it was also conceivable that 55 Cnc e might have had
a helium-dominated atmosphere. However, our observations show no evidence of
helium absorption, and our 2.5D simulations show that the mass loss rates are much
too fast for the planet to keep either a hydrogen- or helium-dominated atmosphere.
Fast mass loss also makes it difficult to create a helium-dominated atmosphere in
the first place, because escape rates much faster than the diffusion-limited rate do
not significantly fractionate the elements (Hu et al., 2015).

Our observations appear to contradict those of Tsiaras et al. (2016), who analyzed
two transits of 55 Cnc e observed with HST/WFC3, and found an upward-sloping
spectral feature consistent with HCN absorption in a lightweight atmosphere. They
perform a free retrieval on the transmission spectrum with TauREx and find a mean
molecular weight 𝜇 of 2–6 (their Figure 9). The atmospheric scale height is inversely
proportional to 𝜇; thus, the amplitude of features in a transmission spectrum is also
inversely proportional to 𝜇. 𝜇 = 2 − 6 is consistent with a hydrogen dominated
atmosphere (𝜇 = 2.3) or a helium dominated atmosphere (𝜇 ≈ 4), but excludes
atmospheres dominated by heavier molecules (i.e. water with 𝜇 = 18, N2 with
𝜇 = 14, O2 with 𝜇 = 16). If the atmosphere is not hydrogen or helium dominated,
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absorption features from any molecule, including HCN, would be undetectable.
If 𝜇 = 16, for example, the scale height would be 47 km (assuming equilibrium
temperature) and the change in transit depth corresponding to one scale height
would be 3 ppm. This lies far below the detection threshold of the observations
reported in Tsiaras et al. (2016). We conclude that our non-detection of escaping
helium, together with the non-detection of escaping hydrogen by Ehrenreich et al.
(2012) and the strong irradiation of the planet over its long life, make it unlikely
that the features detected by Tsiaras et al. (2016) in the HST/WFC3 spectrum are
planetary in nature.

Two more pieces of evidence complicate the picture: the significant phase offset in
the Spitzer 4.5 𝜇𝑚 phase curve (Demory et al., 2016b), and the year-to-year vari-
ability in the secondary eclipse depth in this same band (Demory et al., 2016a). To
explain the eclipse variability, one could invoke a magma world with no atmosphere,
or an extremely tenuous mineral atmosphere in equilibrium with the molten surface
(Ito et al., 2015), in which case ejecta from volcanic eruptions could periodically
shroud the surface. The mass and radius of 55 Cnc e are consistent with a world
without an atmosphere (Bourrier et al., 2018). However, the phase offset suggests a
thick, high molecular weight atmosphere. This point was discussed in Angelo & Hu
(2017), who suggested that an N2-dominated atmosphere would be consistent with
the Spitzer data. The possible composition of a nitrogen-dominated atmosphere and
the observability of spectral features are explored in Miguel (2019) and Zilinskas
et al. (2020). However, such a thick atmosphere would be unlikely to change sub-
stantially on year-long timescales. Our non-detection of helium is agnostic to all
potential high mean molecular weight atmospheres, as helium is not expected to be
a significant component of secondary (e.g., non-primordial) atmospheres. While
photodissociation at the top of a water-rich atmosphere might create a detectable
Lyman-𝛼 signal, high resolution spectral observations rule out water-rich atmo-
spheres (volume mixing ratio > 0.1%) with a mean molecular weight of <= 15
g/mol at a 3𝜎 confidence level (Jindal et al., 2020).

5.8 Conclusion
We observed two transits of 55 Cnc e using Keck/NIRSPEC to look for metastable
helium absorption in the 1083 nm line. We found no absorption greater than
250 ppm (90% upper limit), and used three independent models to interpret this
result. First, an isothermal Parker wind model (Oklopčić & Hirata, 2018) puts
constraints on the temperature and mass loss rate (Figure 5.9), with the mass loss rate
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constrained to less than ∼ 109 g/s for exosphere temperatures of 5000-6000 K. This
exosphere temperature is obtained from our second model, The PLUTO-CLOUDY
Interface (TPCI), which can model the outflow in a 1D fashion given the stellar XUV
spectrum. TPCI predicts a mass loss rate of 1.1×1010 g/s for a hydrogen-dominated
atmosphere and 7.5×109 g/s for a helium-dominated atmosphere, both of which
result in absorption several times stronger than what is (not) observed (Figure 5.12).
Our third and most sophisticated model is a 2.5D model (Wang & Dai, 2018) which
combines ray-tracing radiative transfer, real-time non-equilibrium thermochemistry,
and hydrodynamics to model the outflow, assuming it is symmetric about the star-
planet axis. Even for extremely thin atmospheres with dispersal timescales of
millenia or less, the model still predicts high mass loss rates of ∼ 1010 g/s for both
hydrogen and helium dominated atmospheres (see Table 5.4), which result in 1500–
2500 ppm excess absorption—many times higher than what is observed (Figure
5.15). Although the significant model uncertainties must be kept in mind, our
observations provide strong evidence against the existence of a low mean molecular
weight primordial atmosphere on 55 Cnc e.

If 55 Cnc e instead possesses a high mean molecular weight secondary atmosphere,
detection via transit spectroscopy will be extremely challenging. Ultimately, we
believe that emission spectroscopy with next-generation telescopes—JWST , TMT,
ELT, and GMT—represents the best path forward. This planet’s high dayside temper-
ature (∼2700 K) makes it a particularly favorable target for emission spectroscopy,
and the magnitude of spectral features seen in emission is independent of the mean
molecular weight of the atmosphere. While the brightness of 55 Cnc makes it
feasible to search for relatively small signals, systematics that are negligible for low
SNR targets become important when the photon noise is small. In this paper, we
saw that crosstalk, fringing, and the inseparability of the 2D PSF each required
special handling; observations with both JWST and next-generation ground-based
telescopes will likely encounter similar technical challenges. Despite these chal-
lenges, atmosphere modeling studies suggest that it is indeed possible to detect high
mean molecular weight atmospheres for 55 Cnc e using next-generation telescopes
(e.g., Zilinskas et al. 2020). To date, atmospheric absorption features have only been
detected for planets with relatively massive, hydrogen-rich atmospheres. Detecting
a high mean molecular weight atmosphere around a high density planet like 55
Cnc e would provide invaluable insights into the nature and origin of the broader
population of short-period super-Earths.
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Software: numpy (van der Walt et al., 2011), scipy (Virtanen et al.,
2020), matplotlib (Hunter, 2007), dynesty (Speagle, 2020), corner

(Foreman-Mackey, 2016)

5.9 Acknowledgements
M.Z. would like to acknowledge Joe Ninan, who was indispensable in deciphering
the mysteries of NIRSPEC systematics. He also acknowledges Jacob Bean for
sending most of the data plotted in Figure 5.8.

References

Angelo, I., & Hu, R. 2017, AJ, 154, 232

Bolton, A. S., & Schlegel, D. J. 2010, PASP, 122, 248

Bourrier, V., & Lecavelier des Etangs, A. 2013, A&A, 557, A124

Bourrier, V., Dumusque, X., Dorn, C., et al. 2018, A&A, 619, A1

Chachan, Y., & Stevenson, D. J. 2018, ApJ, 854, 21

Dai, F., Masuda, K., Winn, J. N., & Zeng, L. 2019, ApJ, 883, 79

Demory, B.-O., Gillon, M., Madhusudhan, N., & Queloz, D. 2016a, MNRAS, 455,
2018

Demory, B.-O., Gillon, M., de Wit, J., et al. 2016b, Nature, 532, 207

Drake, J. J., Kashyap, V. L., Wargelin, B. J., & Wolk, S. J. 2020, ApJ, 893, 137

Eastman, J., Gaudi, B. S., & Agol, E. 2013, PASP, 125, 83

Ehrenreich, D., Bourrier, V., Bonfils, X., et al. 2012, A&A, 547, A18

Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, Rev. Mexicana Astron.
Astrofis., 49, 137

Foreman-Mackey, D. 2016, The Journal of Open Source Software, 1, 24

Fulton, B. J., Petigura, E. A., Howard, A. W., et al. 2017, AJ, 154, 109

Gaidos, E., Hirano, T., Wilson, D. J., et al. 2020, MNRAS, 498, L119

Gaidos, E., Hirano, T., Mann, A. W., et al. 2020, MNRAS, 495, 650

George, E. M., Tulloch, S. M., Ives, D. J., & ESO Detector Group. 2020, Journal of
Astronomical Telescopes, Instruments, and Systems, 6, 011003

Ginzburg, S., Schlichting, H. E., & Sari, R. 2018, MNRAS, 476, 759



195

Hirano, T., Krishnamurthy, V., Gaidos, E., et al. 2020, ApJ, 899, L13

Holmström, M., Ekenbäck, A., Selsis, F., et al. 2008, Nature, 451, 970

Horne, K. 1986, PASP, 98, 609

Hu, R., Seager, S., & Yung, Y. L. 2015, ApJ, 807, 8

Hunter, J. D. 2007, Computing in Science and Engineering, 9, 90

Husser, T.-O., Wende-von Berg, S., Dreizler, S., et al. 2013, A&A, 553, A6

Ionov, D. E., & Shematovich, V. I. 2015, Solar System Research, 49, 339

Ito, Y., Ikoma, M., Kawahara, H., et al. 2015, ApJ, 801, 144

Jindal, A., de Mooij, E. J. W., Jayawardhana, R., et al. 2020, AJ, 160, 101

Kasper, D., Bean, J. L., Oklopčić, A., et al. 2020, AJ, 160, 258

Kim, S., Prato, L., & McLean, I. 2015, REDSPEC: NIRSPEC data reduction

Kreidberg, L. 2015, PASP, 127, 1161

Lee, E. J., & Chiang, E. 2017, ApJ, 842, 40

Linsky, J. L., Fontenla, J., & France, K. 2014, ApJ, 780, 61

Lopez, E. D., & Fortney, J. J. 2013, ApJ, 776, 2

Lord, S. D. 1992, A new software tool for computing Earth’s atmospheric transmis-
sion of near- and far-infrared radiation, NASA Technical Memorandum 103957

Malsky, I., & Rogers, L. A. 2020, ApJ, 896, 48

Marsh, T. R. 1989, PASP, 101, 1032

Martin, E. C., Fitzgerald, M. P., McLean, I. S., et al. 2018, in Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10702,
Proc. SPIE, 107020A

Mazeh, T., Tamuz, O., & Zucker, S. 2007, Astronomical Society of the Pacific Con-
ference Series, Vol. 366, The Sys-Rem Detrending Algorithm: Implementation
and Testing, ed. C. Afonso, D. Weldrake, & T. Henning, 119

Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228

Miguel, Y. 2019, MNRAS, 482, 2893

Murray-Clay, R. A., Chiang, E. I., & Murray, N. 2009, ApJ, 693, 23

Ninan, J. P., Stefansson, G., Mahadevan, S., et al. 2020, ApJ, 894, 97



196

Nortmann, L., Pallé, E., Salz, M., et al. 2018, Science, 362, 1388

Oklopčić, A. 2019, arXiv e-prints, arXiv:1903.02576

Oklopčić, A., & Hirata, C. M. 2018, ApJ, 855, L11

Owen, J. E. 2019, Annual Review of Earth and Planetary Sciences, 47, 67

Owen, J. E., & Jackson, A. P. 2012, MNRAS, 425, 2931

Owen, J. E., & Wu, Y. 2016, ApJ, 817, 107

Palle, E., Nortmann, L., Casasayas-Barris, N., et al. 2020, A&A, 638, A61

Rafikov, R. R. 2006, ApJ, 648, 666

Ridden-Harper, A. R., Snellen, I. A. G., Keller, C. U., et al. 2016, A&A, 593, A129

Salz, M., Banerjee, R., Mignone, A., et al. 2015a, A&A, 576, A21

Salz, M., Czesla, S., Schneider, P. C., & Schmitt, J. H. M. M. 2016, A&A, 586, A75

Salz, M., Schneider, P. C., Czesla, S., & Schmitt, J. H. M. M. 2015b, A&A, 576,
A42

Salz, M., Czesla, S., Schneider, P. C., et al. 2018, A&A, 620, A97

Sanz-Forcada, J., Micela, G., Ribas, I., et al. 2011, A&A, 532, A6

Shaw, G., & Ferland, G. J. 2020, MNRAS, 493, 5153

Shematovich, V. I., Ionov, D. E., & Lammer, H. 2014, A&A, 571, A94

Spake, J. J., Sing, D. K., Evans, T. M., et al. 2018, Nature, 557, 68

Speagle, J. S. 2020, MNRAS, 493, 3132

Stone, J. M., Tomida, K., White, C. J., & Felker, K. G. 2020, ApJS, 249, 4

Sulis, S., Dragomir, D., Lendl, M., et al. 2019, A&A, 631, A129

Sur, A., Haskell, B., & Kuhn, E. 2020, MNRAS, 495, 1360

Tremblin, P., & Chiang, E. 2013, MNRAS, 428, 2565

Tsiaras, A., Rocchetto, M., Waldmann, I. P., et al. 2016, ApJ, 820, 99

Valencia, D., Ikoma, M., Guillot, T., & Nettelmann, N. 2010, A&A, 516, A20

van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science and
Engineering, 13, 22

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261



197

Vissapragada, S., Knutson, H. A., Jovanovic, N., et al. 2020, AJ, 159, 278

Wang, L., & Dai, F. 2018, ApJ, 860, 175

Wang, L., & Dai, F. 2020, arXiv e-prints, arXiv:2101.00045

Zilinskas, M., Miguel, Y., Mollière, P., & Tsai, S.-M. 2020, MNRAS, 494, 1490



198

C h a p t e r 6

MASS LOSS FROM TWO MINI NEPTUNES

Michael Zhang, Heather A. Knutson, Lile Wang, Fei Dai, Leonardo A. dos Santos,
Luca Fossati, Gregory W. Henry, David Ehrenreich, Yann Alibert, Sergio Hoyer,
Thomas G. Wilson, and Andrea Bonfanti. Detection of Ongoing Mass Loss
from HD 63433c, a Young Mini-Neptune. AJ, 163(2):68, February 2022. doi:
10.3847/1538-3881/ac3f3b. M.Z. conceived the project, wrote the observing
proposals, obtained the data, carried out the fiducial data analysis, and wrote the
paper.

6.1 Abstract
We detect Lyman 𝛼 absorption from the escaping atmosphere of HD 63433c, a
𝑅 = 2.67𝑅⊕, 𝑃 = 20.5 d mini Neptune orbiting a young (440 Myr) solar analogue
in the Ursa Major Moving Group. Using HST/STIS, we measure a transit depth of
11.1 ± 1.5% in the blue wing and 8 ± 3% in the red. This signal is unlikely to be
due to stellar variability, but should be confirmed by an upcoming second transit
observation with HST . We do not detect Lyman 𝛼 absorption from the inner planet,
a smaller 𝑅 = 2.15𝑅⊕ mini Neptune on a 7.1 d orbit. We use Keck/NIRSPEC to
place an upper limit of 0.5% on helium absorption for both planets. We measure
the host star’s X-ray spectrum and MUV flux with XMM-Newton, and model the
outflow from both planets using a 3D hydrodynamic code. This model provides a
reasonable match to the light curve in the blue wing of the Lyman 𝛼 line and the
helium non-detection for planet c, although it does not explain the tentative red wing
absorption or reproduce the excess absorption spectrum in detail. Its predictions of
strong Lyman 𝛼 and helium absorption from b are ruled out by the observations.
This model predicts a much shorter mass loss timescale for planet b, suggesting that
b and c are fundamentally different: while the latter still retains its hydrogen/helium
envelope, the former has likely lost its primordial atmosphere.

6.2 Introduction
Mass loss shapes exoplanet demographics and atmospheric properties. The observed
radius distribution of close-in sub-Neptune-sized planets is bimodal, with peaks at
< 1.5 R⊕ and 2-3 R⊕ (Fulton et al., 2017; Fulton & Petigura, 2018). This bimodality
can be explained by scenarios in which the observed population of sub-Neptune-
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sized planets formed with a few MEarth rocky cores and hydrogen-rich atmospheres,
which were then stripped away from the most highly irradiated planets (e.g., Lopez
& Fortney 2013; Owen & Wu 2017; Lehmer & Catling 2017; Mills & Mazeh 2017).
However, it is possible that the gap is caused by mass loss driven by the forming
protoplanet’s own cooling luminosity (Ginzburg et al., 2018; Gupta & Schlichting,
2019). It has also been proposed that the radius valley is primordial (Lee & Connors,
2021).

An escaping atmosphere can be detected in absorption when the planet transits in
front of its host star. Because of the abundance of hydrogen and the strength of the
Ly𝛼 line, Ly𝛼 exospheres can absorb a very large fraction of starlight during transit.
The Neptune-sized GJ 436b, for example, has a transit depth of 56% in the Ly𝛼
blue wing and 47% in the red wing (Lavie et al., 2017). The second most abundant
element of escaping primordial atmospheres is helium. In 2018, Spake et al. (2018)
detected helium absorption from a transiting exoplanet for the first time. The He
I 1083 nm line is observable from the ground and has a much higher photon flux
compared to Ly𝛼. It also has its own challenges: the signal size is much smaller, and
only active early M to late G stars have the right high-energy spectrum to maintain a
suitably high triplet ground state population (Oklopčić & Hirata, 2018). These two
probes provide complementary information. Because ISM absorption wipes out the
Ly𝛼 core, Ly𝛼 probes high-velocity hydrogen in the tenuous outer reaches of the
escaping atmosphere. The metastable helium line is not absorbed by the ISM and
probes low-velocity helium in the denser part of the exosphere, closer to the planet
surface (∼3 planetary radii vs. ∼12 planetary radii).

The young mini Neptune regime is the most critical for understanding the processes
behind the radius gap, yet mass loss has never been securely detected from planets
of this size in either Ly𝛼 or helium. The smallest planet with a secure detection in
either wavelength is the Neptune-mass GJ 3470b, with a radius of 3.9 𝑅⊕ and a mass
of 13 𝑀⊕(Bourrier et al., 2018). However, it is not young, with a rotation period of
20 days and an age of 1–4 Gyr (Biddle et al., 2014). The other planets with definite
Ly𝛼 detecions—GJ 436b (Lavie et al., 2017), HD 189733b(Bourrier et al., 2013),
HD 209458b (Vidal-Madjar et al., 2008)—are even bigger and older. Of the planets
detected in helium, none are mini Neptunes or smaller, and none are indisputably
younger than 1 Gyr. WASP-107b (Močnik et al., 2017) has a gyrochronological age
of 0.6± 0.2 Gyr but an evolutionary track age estimate of 8.3± 4.3 Gyr, illustrating
the difficulty of measuring ages for isolated stars.
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The scarcity of successful measurements is due to the many conditions necessary
for Ly𝛼 absorption or helium absorption to be detectable. For both wavelengths,
we need a transiting exoplanet with a hydrogen-rich atmosphere on a tight orbit
around a star of at least moderate activity. Interstellar Ly𝛼 absorption saturates for
even the closest stars, making it hard to observe planetary absorption beyond 50 pc
and almost impossible beyond 100 pc. Triplet helium absorption requires a high
population of triplet helium, which in turn requires a star that has a high extreme UV
to mid UV ratio, which is optimally achieved for K type stars, but not impossible
around active G stars. Very few currently known transiting planets fit these criteria,
and few of those are young mini Neptunes.

The G5 star HD 63433 (TOI 1726) is a young (414 ± 23 Myr) and nearby (22 pc)
solar analogue (M=1 𝑀⊙), a member of the Ursa Major moving group (Mann et al.,
2020). In keeping with its young age and 6.4 d rotation period, it has an exceptionally
high X-ray luminosity. The Second ROSAT All-sky Survey measured its 0.1–2.4
KeV X-ray flux to be 𝐹X = 1.4 − 1.8 × 10−12 erg s−1 cm−2. The XMM-Newton
slew survey (Saxton et al., 2008) measured its 0.2–12 KeV flux as 4.4 ± 1.4 and
1.6±0.8 erg s−1 cm−2 on two separate visits. Taking 1.5×10−12 to be representative,
the corresponding stellar X-ray luminosity is 1029 erg s−1, 40 times higher than the
average solar X-ray luminosity (Judge et al., 2003). In addition, the star’s negative
radial velocity (−16 km/s), together with the positive radial velocity of the local
interstellar cloud in that direction (22 km/s), gives an unusually clear view of the
blue Ly𝛼 wing and a glimpse of the core. Luckily, the core and blue wing are where
we expect the most planetary absorption: planetary outflows have a typical speed
of ∼2 times the sound speed (or ∼20 km/s), and the stellar wind pushes the outflow
toward the observer.

Inside this intense X-ray environment reside two mini Neptunes, both discovered
by TESS (Mann et al., 2020): a 2.15 𝑅⊕ planet on a 7.1 day orbit, and a 2.67 𝑅⊕

planet on a 20.5 day orbit. Although they do not have measured masses, previous
radial velocity and transit timing studies have found that even mature planets in this
size range typically have low densities consistent with the presence of volatile-rich
envelopes (e.g., Rogers 2015; Wolfgang & Lopez 2015; Hadden & Lithwick 2017).
If these planets do have hydrogen/helium envelopes, their young age and the high
X-ray luminosity of their host star point to the likelihood of ongoing mass loss.
HD 63443b, in particular, is at an orbital period where there are more super Earths
(1-1.5 𝑅⊕) than mini Neptunes (2-3 𝑅⊕), as shown in Figure 6 of Fulton & Petigura
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(2018). Although it may currently have a gaseous envelope, this envelope is likely
to be stripped away, moving it into the super Earth population.

HD 63433 is a uniquely favorable target for mass loss studies. Its young age,
high activity, negative radial velocity, and close-in mini Neptunes provide ideal
conditions for probing mass loss in the most critical regime. The existence of
two mini Neptunes in the same system allows us to test hydrodynamical models
by comparing their predictions for the two planets to observations: a comparative
approach that has hitherto been impossible. No closer transiting mini Neptune host
younger than 1 Gyr is known, let alone one with the other desirable properties to
boot.

To study this system, we marshalled a variety of space and ground telescopes
to characterize the star’s high-energy spectrum and look for absorption from the
escaping upper atmospheres in the Ly𝛼 line and the helium line. We describe our
observations and data reduction in Section 6.3, our analysis in Section 6.4, our
modelling of the star in Section 6.5, and our modelling of the planetary exospheres
in Section 6.6. After comparing models to observations and discussing the broader
context of our work in Section 6.7, we conclude in Section 6.8.

6.3 Observations and data reduction
We characterize the extended atmospheres and corresponding present-day mass loss
rates for both planets by measuring the wavelength-dependent transit depth when the
planet passes in front of its host star. We observe transits of both planets in the Ly𝛼
line with the Space Telescope Imaging Spectrograph on Hubble Space Telescope
(HST/STIS) (Woodgate et al., 1998), and in the 1083 nm helium triplet with the
updated NIRSPEC on Keck (Martin et al., 2018). We then compare the measured
absorption during transit to predictions from mass loss models for each planet. In
order to create these models, we must have a good knowledge of the high energy
spectrum of the host star, which drives the outflows in our models. We use XMM-
Newton to characterize the X-ray spectrum of the star, and estimate its extreme UV
spectrum using scaling relations based on the reconstructed stellar Ly𝛼 emission
flux. We also use archival data from ROSAT, which observed the star in 1990 as
part of the ROSAT All-Sky Survey, and optical monitoring data from the T3 0.40m
Automatic Photoelectric Telescope (APT) at Fairborn Observatory, to characterize
the star’s long-term variability and activity cycle.
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HST/STIS
With HST/STIS, we obtained two 9-orbit transit observations of the Ly𝛼 line with
the MAMA detector (program 16319, PI: Michael Zhang). Because the South
Atlantic Anomaly (SAA) prevents more than 5-6 consecutive orbits of observation,
we observe as many orbits as we can in the vicinity of the transit, take no data for the
7-9 South Atlantic Anomaly-affected orbits, and observe the remaining 3-4 orbits
after the gap. All orbits except the first contain 2523 s of science exposure time in
TIME-TAG mode using the G140M grism with a central wavelength of 1222 Å and a
slit width of 52 x 0.1′′. The first orbit in the pre-gap and post-gap segments contain
only 1515 s of science exposure time because target acquisition and acquisition
peak-up occur during these orbits. In all orbits, wavelength calibration occurs after
the science exposure, during occultation.

On Oct 29/30, 2020 UTC, HST observed a transit of planet c, with 5 orbits near
transit and 4 orbits after the gap. On Jan 28/29, 2021 UTC, it observed a transit
of planet b with the same configuration. On Mar 19, 2021, it attempted to observe
six consecutive orbits bracketing a second transit of b, but STIS entered safe mode
before the observations were to begin and all data were lost. On the following day,
it successfully observed a 3-orbit baseline.

For our analysis of these data, we rely on stistools 1.3.0, a Python package pro-
vided by Space Telescope Science Institute that contains several relevant functions
for data reduction. We start with the tag files, lists of photons that encode the time
of arrival and position on the detector. First, we use inttag to turn the photon lists
into raw images by accumulating the photons into 315 second subexposures (303
s for the first orbit). The first orbit of every visit contains 5 subexposures, while
subsequent visits contain 8. The photon wavelengths are Doppler corrected prior to
accumulation to account for HST’s orbit around the Earth.

Second, we use calstis to perform standard data reduction tasks, including sub-
tracting the dark image, flat fielding, rejecting cosmic rays, and wavelength cal-
ibration. Wavelength calibration is performed using the wavelength calibration
files taken during occultation, which contain lamp lines but no astrophysical signal.
These files allow wavecal, a component of calstis, to assign a wavelength to
every pixel.

The last step is spectral extraction. x1d attempts to locate the spectrum in the spatial
direction but often fails because it excludes the region around the Ly𝛼 line to remove
geocoronal emission—a process which also removes almost all stellar flux. Instead,
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we locate the spectrum ourselves by summing the columns in each row, subtracting
a smoothed version of the sums to remove skyglow variations, and fitting a Gaussian
to the 30 pixels closest to the peak. After receiving the spectrum location, x1d sums
up the pixel values in extraction windows 1 pixel wide and 11 pixels high, centered
on the computed trace location. To compute the background, it uses two 5 pixel
high windows, 40 pixels from the trace on either side. Unlike the spectral extraction
window, the background extraction windows are tilted to account for the tilt of the
iso-wavelength contours. Finally, x1d subtracts the background from the gross flux
to get the net flux.

After x1d extracts the spectrum for every subexposure, we interpolate the spectrum
onto a common wavelength grid for all subexposures. The grid has a linear spacing
of 0.053 Å, matching the pixel scale of the detector.

Keck/NIRSPEC
Our NIRSPEC/Keck data (program C261) were taken on Dec 30, 2020 (transit of
planet c) and Jan 7, 2021 (transit of planet b). All observations were in𝑌 band in the
high resolution mode. On Dec 30, the transit was in progress when our observations
started. We collected 3.4 h of in-transit observations and 5 hours of post-transit
baseline. On Jan 7, the transit started toward the end of our observations. We
collected 5.4 h of pre-transit and 2.6 h of in-transit observations. On both nights,
we used the 12 x 0.432′′ slit, giving the spectrograph a resolution of 25,000. The
sky was clear, and the seeing (1–1.5′′) was poor but typical of this time of year. In
addition, the telescope suffered from wind shake on Dec 30, further broadening the
line profile in the spatial direction. We achieved a typical SNR of 400 per spectral
pixel in 60-second exposures, all taken in the ABBA nod pattern to eliminate
background. Because we only used one coadd per exposure, we achieved a high
observation efficiency of 77%.

We calibrated the raw images and extracted 1D spectra for each order using a custom
Python pipeline designed for the upgraded NIRSPEC. The pipeline is described in
detail in Zhang et al. (2021), but we summarize it here. First, we subtract crosstalk
from each raw frame. Then, we create a master flat, identifying bad pixels in the
process. We use this master flat to compute a calibrated A-B difference image for
each A/B pair. After identifying the spectral trace containing the 1083 nm lines,
we use optimal spectral extraction to obtain 1D spectra along with their errors. We
create a template from model telluric lines and a model stellar spectrum, shifted
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in wavelength to account for the star’s average Earth-relative radial velocity during
that night. We then use this template to derive the wavelength solution for each
individual spectrum.

After extracting the 1D spectra, we place the data from each night on a uniform
wavelength grid and remove signals not related to the planet. We do this using
SYSREM, which can be thought of as Principal Component Analysis with error
bars (Mazeh et al., 2007). After removing the first principal component, we shift to
the planetary frame, divide the data up into in-transit and out-of-transit portions and
compare the portions to search for planetary absorption. Removing more principal
components worsens the self-subtraction problem, already severe with a single
component (see Section 6.4).

XMM-Newton
On March 26 2021, XMM-Newton observed the star for 6 ks (XMM prop. ID
088287, PI: Michael Zhang). XMM-Newton has 3 European Photon Imaging
Camera (EPIC) detectors with different technologies (2 MOS, 1 pn), 2 Reflection
Grating Spectrometers, and an Optical Monitor, all of which observe the target
simultaneously. We configured the EPIC cameras to observe with the medium filter
and small window, giving us 97% observing efficiency on the two MOS CCDs and
71% efficiency on the one pn CCD. These observations measure the star’s X-ray
spectrum, which plays an important role in driving photoevaporative mass loss. We
configured the Optical Monitor to observe the star in the UVM2 filter (𝜆 = 231± 48
nm) for 2.7 ks and the UVW2 filter (𝜆 = 212±50 nm) for 2.9 ks. These observations
measure the star’s mid ultraviolet flux, which can photoionize metastable helium
but not create it, and therefore tend to decrease helium absorption in the metastable
1083 nm line. Although these observations are not simultaneous with the Ly𝛼 and
helium mass loss observations, they are within 6 months, while the 𝑃c𝑦𝑐/𝑃r𝑜𝑡 vs.
𝑃r𝑜𝑡 relationship derived by Suárez Mascareño et al. (2016) implies a stellar cycle
period of 5.5 years (with ∼ 40% uncertainty).

To analyze XMM-Newton data, we download the raw Observation Data File (ODF)
and use the Science Analysis System (SAS)1 provided by the XMM-Newton team to
reduce it. We run xmmextractor, thereby going from ODF to spectra with default
settings and no human intervention. For the Optical Monitor, SAS produces the
light curve of the star in the UVW2 and UVM2 filters, the two mid ultraviolet filters

1https://www.cosmos.esa.int/web/xmm-newton/sas

https://www.cosmos.esa.int/web/xmm-newton/sas
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we selected. For each of the two Reflection Grating Spectrometers (RGSs), SAS
produces two spectra (first and second order) and other data products, which we do
not use because RGS has only a tenth of the throughput of the EPIC detectors in
addition to substantial background; no stellar signal is visible in the data. For each of
the three EPIC detectors, SAS generates the light curve, the background-subtracted
spectrum, the Redistribution Matrix File (RMF), and the Ancillary Response File
(ARF). The ARF gives the effective area of the detector as a function of photon
energy, while the RMF gives the probability of a photon being detected in each
channel as a function of photon energy. In optical astronomy terminology, the
ARF gives the throughput multiplied by aperture area, while the RMF gives the
wavelength-dependent line spread profile.

With XMM, as with ROSAT, the RMF is nearly diagonal for high energies, but is far
from diagonal at low energies, where most of the stellar flux resides. In addition, the
ARF is highly energy dependent for the two EPIC MOS detectors, although not for
the pn-detector. These factors mean it is impossible to simply plot the measurements
and see what the X-ray spectrum looks like. Rather, it is necessary to have a forward
model and fit the parameters to find the best match to the data, taking into account
the RMF and ARF. To do this fitting, we use the interactive tool xspec 12.11.1
(Arnaud, 1996).

ROSAT
To analyze the ROSAT All-Sky Survey (RASS) data for HD 63433, we download the
data for the relevant sector2 and reduce it using HEAsoft 6.283 by following the guide
“ROSAT data analysis using xselect and FTOOls.”4 We define the source region
to be a circle centered on the source with a radius of 200 arcseconds. Following the
advice of Belloni et al. (1994), we define two circular background regions on either
side of the source along the scan direction, both 800 arcseconds away and with a
radius of 200 arcseconds. Using xselect, we extract the source spectrum and the
background spectrum from the events list. We download the RMF for the PSPC-C
detector5 and use pcarf (part of the ROSAT subpackage of FTOOLS) to generate
the ARF. The image file has negative EXPOSURE, DETC (deadtime correction),

2https://heasarc.gsfc.nasa.gov/FTP/rosat/data/pspc/processed_data/
900000/rs931219n00/

3https://heasarc.gsfc.nasa.gov/docs/software/lheasoft/
4https://heasarc.gsfc.nasa.gov/docs/rosat/ros_xselect_guide/xselect_

ftools.html
5https://heasarc.gsfc.nasa.gov/docs/rosat/pspc_matrices.html

https://heasarc.gsfc.nasa.gov/FTP/rosat/data/pspc/processed_data/900000/rs931219n00/
https://heasarc.gsfc.nasa.gov/FTP/rosat/data/pspc/processed_data/900000/rs931219n00/
https://heasarc.gsfc.nasa.gov/docs/software/lheasoft/
https://heasarc.gsfc.nasa.gov/docs/rosat/ros_xselect_guide/xselect_ftools.html
https://heasarc.gsfc.nasa.gov/docs/rosat/ros_xselect_guide/xselect_ftools.html
https://heasarc.gsfc.nasa.gov/docs/rosat/pspc_matrices.html
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and ONTIME header values to indicate that there is no unique value: the image
is pieced together from scanning observations, and the effective exposure time is
different at each pixel. We use the exposure map to determine the correct exposure
time (437 s), and set the correct EXPOSURE, DETC, and ONTIME on the source
and background files. Finally, we use xspec to load the source, background, RMF,
and ARF, and analyze the data in the same way as the XMM observations.

6.4 Analysis of transit data
New ephemerides
As part of a CHEOPS Guaranteed Time Observation (GTO) program CH_PR100031,
one transit of each planet was observed on UT Dec 9/10, 2020 (c) and UT Nov 25/26,
2020 (b). We combine these data with sector 20 TESS observations taken from De-
cember 24, 2019, to January 20, 2020 to refine the ephemeris so that we can predict
the transit midpoint to ∼1 minute accuracy at the time of our HST and Keck obser-
vations. The new ephemeris is significantly more precise than the old TESS-only
estimate, which had an accuracy of ∼30 min during the epochs of our HST and
Keck observations. For c, we obtain 𝑇0 = 2458844.05824 ± 0.00048 BJD and
𝑃 = 20.543888+0.000046

−0.000045 d. For b, we obtain 𝑇0 = 2458916.45142+0.00030
−0.00032 BJD and

𝑃 = 7.107789 ± 0.000010 d.

Ly𝛼 absorption during transit
We first examine the UV data to search for signs of Ly𝛼 absorption during the
transits of planets b and c. In Figure 6.1, we show the spectral sequence from each
HST visit. For planet c, a clear decrease in the blue wing flux can be seen during
the planetary transit. For planet b, the blue wing does not appear markedly different
during transit. The red wing is more than four times dimmer than the blue wing,
making it harder to see any planetary absorption in these 2D plots.

Previous studies have established that HST Ly𝛼 observations exhibit modulations in
flux within each orbit, which has been attributed to telescope breathing (e.g. Kimble
et al. 1998; Ehrenreich et al. 2015). According to Kimble et al. (1998), thermal
variations over the course of each spacecraft orbit move the secondary mirror, which
changes the focus, which leads to 10-20% variations in slit loss for the smallest slits.
However, 10-20% variations in flux are observed for Ly 𝛼 data taken in the 0.05′′

slit (e.g. Ehrenreich et al. 2015), the 0.1′′ slit (e.g. most observations in Lavie et al.
2017), and the 0.2′′ slit (e.g. Garcia Muñoz et al. 2020). This insensitivity to slit
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Figure 6.1: HST/STIS spectra for planet c (left) and planet b (center and right
for the earlier and later observations). Flux increases from dark blue to yellow.
The white horizontal gap represents the 7–9 orbit hiatus due to the South Atlantic
Anomaly (SAA) crossing. Gaps due to Earth occultation are not shown to avoid
visual distraction; the y axis is therefore not strictly accurate because it assumes time
increases uniformly from spectrum to spectrum. The horizontal dashed black lines
indicate the beginning and end of the white light transit. The region between the
blue (red) vertical lines is what we define as the blue (red) wing. They correspond
to [−140,−10] km/s and [100,200] km/s.
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Figure 6.2: Ly𝛼 light curves for planet c (left) and b (right), in the red and blue
wings, compared to the predictions from our 3D hydrodynamic model. For b, the
solid circles represent the first visit, and the open circles represent the failed second
visit. The error bar for each orbit is its photon noise. The grey region represents the
white light transit.
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Figure 6.3: Per-orbit excess absorption spectrum for planet c, in the observations
(top) and the fiducial model (bottom). The first orbit is used to compute the out-
of-transit spectrum. The white regions are the blue and red wings, the light grey
regions are the far wings, and the dark grey region has low flux because of interstellar
absorption. The second and third orbits, in addition to the second half of the second
orbit, are within the white light transit.

size indicates that intra-orbit flux variations are probably not the primary cause of
the breathing effect.

We attempt to correct for the instrumental flux variations by decorrelating against a
variety of different variables, including time since beginning of orbit, the centroid
position of the blue wing, the latitude and longitude of the telescope, and the focus of
the telescope as estimated from temperature sensors6. However, we find that none of
these instrumental noise models can reduce the scatter in our light curves. Although
there is clearly a correlation between flux and orbital phase in our observations, the
shape of this trend varies from orbit to orbit. The measured flux increases steeply
with time for the first orbit in a visit, but the increase becomes less pronounced in
future orbits, until it becomes flat in the fourth or fifth orbits. As a result, we cannot
remove this effect by detrending with a simple function of orbital phase as other
papers do (e.g. Bourrier et al. 2013).

Since we are unable to effectively remove these intra-orbit flux variations, we instead
bin our light curves into a single point for each spacecraft orbit. Figure 6.2 shows
the resulting light curves for the integrated red and blue wings for all three transit
observations. We calculate a photon noise of 1.4% for the blue wing during the first
orbit and 1.0% for subsequent orbits; for the red wing, it is 2.8% for the first orbit
and 2.0% for subsequent orbits. We conservatively adopt the first-orbit error for

6https://www.stsci.edu/hst/instrumentation/focus-and-pointing/focus/hst-
focus-model

https://www.stsci.edu/hst/instrumentation/focus-and-pointing/focus/hst-focus-model
https://www.stsci.edu/hst/instrumentation/focus-and-pointing/focus/hst-focus-model
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all orbits, since instrumental systematics and stellar variability undoubtedly inflate
the noise beyond the photon limit. Using these error bars, we find that the excess
absorption during the transit of planet c is 11.1± 1.5% in the blue wing and 8± 3%
in the red wing. For planet b, we place a 2𝜎 upper limit on the in-transit absorption
of 3% in the blue wing and 4% in the red wing. Incidentally, the standard deviation
of the blue fluxes for all orbits other than the 5 bracketing the transit of c is 1.8%;
the standard deviation of the red fluxes for these same orbits is 3.1%. This indicates
our inflated error bars of 1.4% and 2.8% are not far from the mark.

We illustrate the wavelength dependence of the absorption from planet c by plotting
the excess absorption spectrum, 1−𝐹/𝐹out, for each orbit in Figure 6.3. Initially, we
tried using the post-SAA segment of the observations for the out-of-transit spectrum.
However, we noticed that this introduced significant correlated noise into the excess
absorption spectrum, which we attributed to changes in the intrinsic stellar spectrum
in the 18 hours between the two segments. This variability can also be seen in the
red wing light curve in Figure 6.2, which shows that the red wing is notably dimmer
in the post-SAA segment than in the out-of-transit orbits of the pre-SAA segment.
Unfortunately, this variability makes the post-SAA orbits much less useful as a
baseline than we had originally hoped. We considered using the average of the first
and fifth orbits for the out of transit spectrum, but the blue wing light curve shows
that the fifth orbit might contain planetary absorption. We therefore opted to use
the first orbit for the out of transit spectrum, but note that this first orbit often has
an anomalous flux level when compared to later orbits, although it is still a better
baseline than the average of the post-SAA spectra. The resulting plot provides a
useful illustration of the progression of the excess absorption spectrum from orbit
to orbit, but we should not place too much weight on the absolute value of each
spectrum.

Examining Figure 6.3, we see that the excess absorption is highest in the region of
the blue wing near −10 km/s (i.e., closest to the line center). The absorption in
this region increases steadily from each orbit to the next until orbit 3, after which
it decreases in orbit 4, and decreases again in orbit 5, but does not decrease to 0.
The excess absorption in orbit 3 is 26 ± 6%, more than double the wing-integrated
excess absorption of 11%. Reassuringly, the excess absorption spectrum decreases
blueward of −10 km/s until it is indistinguishable from 0 at −100 km/s. It is
concerning that the excess absorption in the red wing is highest around 150 km/s,
not at the low-velocity edge of 100 km/s where we might expect to see it. However,
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the magnitude of the measured absorption in the red line is lower (8% vs. 11%)
and the noise is much higher, making the data statistically consistent with a flat or
slightly declining absorption spectrum in the red wing.

Stellar variability in Ly𝛼

Since HD 63433 is a young star, it is important to determine whether stellar vari-
ability could explain the absorption signal. Only the visit containing the transit of
planet c shows significant blue wing variability, which we are ascribing to planetary
absorption. Among the other 4 visits, which contain a total of 16 orbits, the blue
wing is remarkably stable, with a standard deviation of 1.8%. The only outlier is the
first orbit of the second visit of the successful b observation. However, the first orbit
in a visit is expected to be more variable than the others. The science exposure is
shorter, giving rise to 30% higher photon noise. It also starts at a later HST orbital
phase, violating our logic for looking at orbit-aggregated data points—namely that
repeatable systematics that depend on orbital phase will be averaged out. Finally, it
takes HST approximately one orbit to thermally relax after pointing to a new target,
and the first orbit of STIS exoplanet observations at optical wavelengths is routinely
discarded because of the higher systematics (e.g. Huitson et al. 2013; von Essen
et al. 2020).

We can place this level of stellar variability in context by comparing to observations
in the literature. Llama & Shkolnik (2016) used disk-resolved Ly𝛼 images of the
Sun to estimate that for stars with solar activity levels we would expect to see the
measured transit depth vary by 0.8% due to activity-induced measurement error,
and are unlikely to see more than 1.5% variability. However, HD 63433 is more
active than the Sun. Following Kulow et al. (2014), we examine observations of the
CII line by Loyd & France (2014). The CII line has a formation temperature similar
to that of Ly𝛼, making it a good tracer of variability in this line. We compare to
observations of Pi UMa, a G1.5 star with a fast rotation period (P=4.89 d) which,
like HD 63433, is a member of the Ursa Major Moving Group. Loyd & France
(2014) found that the mean-normalized excess noise on 60 s timescales for this star
was 3.2%. For the 28 Myr G1.5 star EK Dra, the excess noise was less than 1%;
for the 13 Myr G1.5 star HII1314, it was less than 5.6%. If we assume that the
stellar variability has a comparable magnitude on several hour timescales (i.e., the
duration of a transit) we might expect HD 63433 to vary by a few percent. This
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would suggest that it is unlikely that stellar variability caused the 11% decrease in
brightness in the blue wing during the transit of planet c.

Ly𝛼 observations of exoplanet hosts are somewhat less encouraging. Bourrier et al.
(2017b) saw a 20% dip in Ly𝛼 during the transits of sub-Earths Kepler-444e and f,
as well as a 40% dip when no known planet was transiting. Although Kepler-444 is
an old (11 Gyr) K star, the authors couldn’t exclude the possibility that the observed
variability was due to stellar activity. Bourrier et al. (2017a) observed HD 97658,
an old K star, with STIS over three visits (15 orbits in total) and found that, during
the second visit, the Ly𝛼 flux declined by 20% over a period of several hours. This
decline did not coincide with the white light transit and did not have a clear transit-
like shape. It is unclear whether these variations are due to stellar variability or
instrumental artifacts.

After considering the totality of the evidence, we conclude that the blue wing
absorption from planet c is very likely to be planetary. It occurs at the expected
time and becomes stronger as one approaches the core of the line, in accordance
with physical expectations. In every other visit, the blue wing flux is remarkably
stable. Our HST program will observe a second transit of planet c to see if the signal
re-appears, which would provide a definitive confirmation of its planetary origin.
Unfortunately, due to an alignment between c’s orbital period and the visibility
period imposed by the South Atlantic Anomaly, the next observing window is
unlikely to occur before 2023.

The red wing absorption detection is more tentative. The red wing is much fainter
than the blue wing, and has a correspondingly high level of photon noise. The
out-of-transit variability in this wing appears to be higher, and the post-SAA visit
for planet c is almost as low as the lowest in-transit data point. The excess absorption
spectrum also appears to rise toward higher velocities, in contravention of theoretical
expectations, although the rise is not statistically significant. On the other hand, the
timing and shape of the transit light curve is strikingly similar to that of the blue
wing. We consider it more likely than not that the red wing absorption is real, but
without a second transit observation, the detection remains tentative at best.

A search for absorption in other UV lines

We can use these same spectra to search for planetary absorption in the Si III line at
1206.5Å and the two N V lines at 1238.8Å and 1242.8Å. For c, we see a marginal
transit-like signal of 6±3% in Si III but no transit-like signal in N V (1.5±4%). The
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Si III line is known to be highly variable (dos Santos et al., 2019), and we measure
a relative flux of 0.89 ± 0.02 for this line in the last orbit, 11% lower than in the
preceding orbits. For planet b, the Si III line is even more variable, and we see no
transit-like feature. We calculate an excess absorption of 1.5 ± 2.5% in Si III and
−1.5 ± 4% in N V.

Independent analyses of the Ly𝛼 data

The fiducial analysis reported above was performed by the first author (Michael
Zhang, MZ). Two separate analyses were performed by co-authors Luca Fossati
(LF) and Leonardo dos Santos (LDS) using independent pipelines. There was no
communication between the co-authors during these independent analyses other than
to agree on a common velocity range in which to look for absorption: [−140,−10]
km/s in the blue wing and [100,200] km/s in the red wing. The results of these
independent analyses are plotted in the Appendix (Section 6.11). All three analyses
show a clear blue wing absorption signal from c, and no red or blue wing absorption
from b. The alternative analyses show no red wing absorption from c. This is
likely due to their 3x higher scatter (see Appendix), but the non-detection of red
wing absorption in these alternative analyses nevertheless underscores the tentative
nature of the detection in the fiducial analysis.

Helium absorption during transit
We next examine the Keck data to search for signs of helium absorption during the
transits of planets b and c. After the processing steps described in Subsection 6.3,
we are left with a residuals image of size Nepochs by Nwavelengths. Each pixel in the
residuals image approximately represents the fractional flux change at that epoch and
wavelength from the mean spectrum. We shift these spectra to the planetary frame,
combine all out-of-transit spectra into a master out-of-transit spectrum, combine all
in-transit spectra to a master in-transit spectrum, and subtract the master in-transit
spectrum from the master out-of-transit spectrum. Figure 6.5 shows the resulting
excess absorption spectrum for each planet.

We see clear evidence of stellar activity in Figure 6.4, and in the line-integrated line
fluxes (Figure 6.6). The stellar 10833 Å helium lines, which trace chromospheric
activity, are variable on both nights. During the transit of planet c on the first night,
the lines experience a bump in brightness starting around 3 hours after mid-transit
and then fall to even lower values after the bump. During the second night, the
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Figure 6.4: Residuals images after SYSREM, for planet c (top) and b (bottom).
Colors indicate relative brightness change in percent. The dashed red lines indicate
the wavelengths of the helium triplet in the planetary frame. The dashed horizontal
black line indicates the beginning of transit, while the solid horizontal black line
indicates the end of transit. Note the darkening during the transit of b, which we
ascribe to stellar variability (see text).

helium lines exhibit a more complicated behavior: they start high, then decline for 2
hours, rise again, decline again, rise a third time, and finally decline to their lowest
level over the night. The peak-to-peak amplitude of this variability is around 1% on
the first night and 2% on the second night.

We conclude that the 0.2% excess absorption signal in the helium lines for planet
c (Figure 6.5) is most likely due to stellar variability, not planetary absorption.
It is apparent in Figure 6.4 that the excess absorption signal is caused by the
darkening of the stellar spectrum around the 10833Å helium lines in the final hour
of the observations. A close examination of the darkened portion of the spectrum
shows that the darkening started, not at the beginning of the transit, but an hour
afterwards. In addition, the darkened portion of the spectrum does not follow the
radial velocity of the planet. On the contrary, it moves toward shorter wavelengths as
time progresses. This is the opposite of what we would expect a planetary absorption
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Figure 6.5: In black is the excess absorption spectrum in the planetary frame for
c (top) and b (bottom). The vertical red lines indicate the positions of the helium
triplet. The absorption from planet b is probably stellar variability (see text, and
Figure 6.4). The injected models (teal) are from the 3D hydrodynamic simulations
described in Section 6.6, and the observed excess absorption spectrum after injection
is shown in blue. The grey regions are locations of strong stellar and telluric lines.
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Figure 6.6: Light curves of the HeI 10833 Å and HI 10941 Å lines, integrated in
a 3.2 Å bandpass, for planet c (top) and b (bottom). To normalize out non-stellar
variations, the line fluxes are divided by the continuum at 10825 Å (HeI) or 10937
Å (HI), also integrated in a 3.2 Å bandpass. In orange we plot the predictions of the
3D hydrodynamic model.
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signal to do. Finally, 0.2% is smaller than the observed amplitude of the variability
in the stellar helium lines on both nights. Although we cannot rule out a planetary
or hybrid planetary-and-stellar explanation for the observed absorption signal, the
data are entirely consistent with a purely stellar explanation.

We next explore whether or not we might be able to model out some of this stellar
variability using other chromospheric lines in our spectrum. The most promising
candidates are two lines in the hydrogen Paschen series: 𝛾 (n=6 → 3, 10941 Å)
and 𝛿 (n=7 → 3, 10052 Å). We use the data from the second night, which had
more complex stellar behavior than the first, as our test case. We find that the 𝛾
line has a time-varying behavior similar to that of the helium lines (Figure 6.6),
but with a lower overall amplitude. The 𝛿 line is also variable, but this variability
does not appear to be correlated with the variability in the helium lines. Ultimately,
neither line displayed a strong enough correlation with the helium lines to enable
an effective correction for stellar activity. However, the similar behaviors of the
Paschen 𝛾 and helium lines provide additional support for our conclusion that the
variability in Figure 6.4 is likely stellar and not planetary in origin.

We next consider what limits we can place on the magnitude of helium absorption
during the transits of planets b and c. Planet c barely accelerates during its transit,
making it hard to disentangle planetary signals from the stellar and telluric variability
that SYSREM is meant to subtract. As a result, we expect significant self-subtraction
from our analysis pipeline. Planet b accelerates more and should experience less
self-subtraction. Figure 6.5 illustrates this phenomenon: after injecting an artificial
helium absorption signal, our measured excess absorption spectrum is only 35% the
size of the injected signal (i.e., 65% self-subtraction). For planet b, the injection-
recovery test indicates a self-subtraction of 40%.

Due to stellar variability, we cannot assume statistical independence between epochs
and use the standard statistical methods to compute an upper limit on the helium
excess absorption. We can, however, arrive at a reasonable guess by examining
the observed stellar variability during each of the two nights and its corresponding
effect on the excess absorption spectrum. The helium lines never deviate by more
than 1% from the median on either night, and even if they did, it is unlikely that
the stellar variability would line up with the planetary transit. For planet b, the
acceleration of the planet is significant enough to place the planetary absorption
lines outside of the stellar lines at the beginning of the transit, further decreasing
the impact of stellar variability. A 1% planetary absorption would be reduced to
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0.5% due to self-subtraction, but this would still be readily detectable in the excess
absorption spectrum in Figure 6.5. We test this by injecting a planetary signal with
an amplitude of 1% into the data, running it through the pipeline, and examining the
intermediate outputs. Even in the pre-SYSREM stage (before any self-subtraction
happens), the planetary signal is clearly visible above the amplitude of the stellar
variability. The planetary signal remains obvious when we reduce the peak excess
absorption of the injected signal to 0.5%, but its final amplitude in that case would
be comparable to the amplitude of the stellar variability during the transit of planet
c. We therefore conclude that the peak excess absorption must be less than 1% for
both planets with high confidence, and less than 0.5% with medium confidence.

6.5 Understanding the star
In order to model mass loss, we need to know the star’s intrinsic spectrum at high
energies. Heating from the X-ray and extreme UV (EUV) flux drives the outflow in
our models, while the stellar Ly𝛼 line profile, in combination with the instrumental
line spread profile, is necessary to predict the observed absorption using the models.
For the star’s X-ray spectrum, we use the XMM-Newton data described in §6.3,
and combine these data with older observations at X-ray and optical wavelengths
to characterize the star’s long-term variability and activity cycle. For the star’s
UV spectrum, we use a combination of scaling relations and, when appropriate,
observations of the Sun’s UV spectrum.

X-ray spectrum and stellar variability
XMM-Newton spectrum

We analyze the XMM-Newton EPIC observations using the xspec package. To get
the underlying X-ray spectrum, we fit a model equal to the sum of two APEC emission
models. These models (Smith et al., 2001) assume an optically thin, collisionally
ionized plasma with the temperature, metallicity, redshift, and normalization as free
parameters. We fix the redshift to 0 (EPIC’s velocity resolution is >6000 km/s),
require the two model components to have the same metallicity, and let the two
temperatures, two normalization factors, and the global metallicity vary freely. We
fit the data by minimizing the W statistic, the analogue of 𝜒2 for a distribution
corresponding to the difference of two Poisson distributions (namely source and
background).

Figure 6.7 shows the EPIC data, the best fit to the data obtained by xspec, and the
intrinsic spectrum implied by the best fit parameters. We ran a Markov Chain Monte



217

101

Wavelength (Å)

10 15

10 14

10 13

10 12

Fl
ux

 (e
rg

 s
1  c

m
2  Å

1 )
APEC 1
APEC 2
Total

101

Wavelength (Å)

100

101

102

Co
un

ts
 p

er
 Å

MOS1
MOS2
pn

Figure 6.7: X-ray observations. Top: Best-fit intrinsic stellar X-ray spectrum. The
total spectrum as observed from Earth (black) is the sum of a low-temperature
component (APEC 1) and a high-temperature component (APEC 2). Bottom: the
XMM EPIC spectra measured by the three detectors (MOS1, MOS2, pn) and the
folded models, which take into account the instrumental RMF and ARF (the X-ray
equivalents of LSF and throughput). For clarity, the data are binned so that each
bin, except those on the edges, contains at least a 3𝜎 detection.
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Table 6.1: Model parameters for XMM-Newton data

Parameter Value
Metallicity 0.44 ± 0.07
kT1 (keV) 0.38 ± 0.02

EM1 (cm−3) 3.8 ± 0.5 × 1051

kT2 (keV) 0.83 ± 0.04
EM2 (cm−3) 2.1+0.3

−0.4 × 1051

Flux∗ (erg/s/cm2) 1.25+0.03
−0.02 × 10−12

∗Derived, not a fit parameter. For the range 5-100 Å (0.124-2.48 keV).

Carlo (MCMC) fit using the Metropolis-Hastings algorithm and a chain length of
10,000 to estimate the range of parameters consistent with the data. We plotted the
chain to ensure convergence, which occurred within the first 1000 samples. Table 6.1
shows the resulting 1D MCMC posteriors. The metallicity is reported with respect
to the solar abundances of Asplund et al. (2009). We find a dominant component
with a temperature of 0.38 keV (4.4 MK), with a slightly sub-dominant component
at 0.83 keV (9.6 MK). The emission measures are on the high end compared to other
moderately active G8-K5 dwarfs (Wood & Linsky, 2010), but of the same order
of magnitude. The best-fit metallicity is subsolar, and because the photospheric
metallicity of the star is roughly solar ([M/H] = −0.09 ± 0.08; Mann et al. 2020),
it is substellar as well. This is reminiscent of the findings of Poppenhaeger et al.
(2013), who observed the moderately active K dwarf HD 189733 A with Chandra.
In that study they fit the O, Ne, and Fe abundances separately, obtaining values of
0.31±0.02, 0.25±0.13, and 0.64±0.05 (relative to solar), respectively. We carried
out an analogous fit where we allowed the O, Ne, and Fe abundances to vary freely
and obtained 0.67 ± 0.1, 0.22+0.40

−0.05, and 0.97+0.05
−0.18, respectively. These results are

due to an effect called the first ionization potential (FIP) bias: for many inactive and
moderately active stars, elements with high FIP (e.g. C, O, N, Ne) are depleted in
the corona compared to low FIP elements (e.g. Mg, Si, Fe). FIP bias was seen by
Wood & Linsky (2010) in 5 out of 7 moderately active G8-K5 dwarfs. In these stars,
the coronal abundances of C, O, N, and Ne were all lower than the photospheric
abundances. FIP bias is also seen in the solar corona, although there, low FIP
elements are enhanced by a factor of ∼ 3 and high FIP elements generally have
photospheric abundances (Feldman & Widing, 2002). It has been suggested that
the FIP bias may arise from wave ponderomotive forces on the upper chromosphere
(Laming, 2004, 2017). For our purposes here, it is sufficient to reconstruct the
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Figure 6.8: Background-subtracted X-ray light curves of HD 63433 recorded by the
three EPIC cameras (MOS1, MOS2, pn). The pn light curve is divided by 2 for
clarity.

intrinsic X-ray spectrum of the host star and we therefore leave further analysis of
the FIP bias to interested stellar astronomers.

Our fit to the EPIC data constrains the time-averaged 5–100 Å (0.124-2.48 keV)
flux to 1.25+0.03

−0.02 × 10−12 erg/s/cm2. Restricting the range to the observable range
of both XMM and ROSAT, we find a 0.2–2.4 keV flux of 1.12 ± 0.02 × 10−12

erg/s/cm2. These error bars are deceptively small, as the X-ray spectra of active
stars can vary significantly in time. Figure 6.8 shows the X-ray light curve captured
by the three EPIC cameras. HD 63433 is brighter in the first 2 ks of observation than
in the remaining 4 ks, with the pn-flux declining by 25% and the two MOS fluxes
declining by 50%. The difference in observed amplitude is likely due to the different
characteristics of the two types of detectors. The MOS detectors’ sensitivities drop
off more sharply toward low energies (<1 keV), where most of the star’s X-ray flux
resides, than the pn-detector. The observed variability in the X-ray light curve means
that, absent simultaneous observations, we cannot know the X-ray flux during the
epoch of our hydrogen or helium observations to better than ∼25%.

Long-term X-ray variability from ROSAT data

We evaluate the magnitude of the stellar X-ray variability over longer timescales
using archival ROSAT data from 1990. These data have a much lower SNR than
the XMM-Newton data, as a result of the lower effective area of the detector and
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the shorter exposure time. Whereas XMM’s EPIC cameras captured 3600 X-ray
photons, ROSAT’s PSPC-C captured only 86. As with XMM, we fit the data with
two summed APEC emission models. In order to prevent the fit from wandering off
to unphysical parts of parameter space, we fix the metallicity to the value derived
from XMM and constrain 𝑘𝑇1 to lie between 0 and 0.5 keV and 𝑘𝑇2 to lie between
0.5 and 1.0 keV.

We find that the shape of the unfolded ROSAT spectrum is consistent with the
shape of the unfolded XMM spectrum. We derive a 0.124–2.48 keV flux of 1.5–1.9
×10−12 erg/s/cm2 and a 0.2–2.4 keV flux of 1.25–1.71 ×10−12 erg/s/cm2. This is
in line with the flux reported by the Second ROSAT all-sky survey (2RXS) source
catalog (Boller et al., 2016) for both a power-law fit (1.39 ×10−12 erg/s/cm2) and
a blackbody fit (1.77 ×10−12 erg/s/cm2). We conclude that the star’s X-ray flux
appears to have been 33% higher during the ROSAT observation than during the
XMM observation, but the two measurements are consistent at the 2𝜎 level.

Long-term optical variability from the APT data

We use ground-based optical photometric monitoring data to evaluate where HD
63433 was in its activity cycle during the epochs of our HST and Keck observations.
HD 63433 has been monitored since 1998 in the Johnson V and B photometric
pass bands with the Tennessee State University T3 0.40 m Automatic Photoelectric
Telescope (APT) at Fairborn Observatory in southern Arizona. Our observations
cover 23 observing seasons from 1998-99 to 2020-21, although there are relatively
few observations in the last three seasons due to APT scheduling changes and
instrument problems. While the typical season runs from early October to late
April, the 2019-2020 data only span March 15, 2020 to April 19, 2020, and the
2020-2021 data only span October 12, 2020 to November 25, 2020.

Our measurements of HD 63433 were made differentially with respect to the com-
parison star HD 64465 (HIP 38677; F5). A second star, HD 63432 (HIP 38231;
A2), was used to check the stability of the relative photometry using HD 64465.
Details of the robotic telescopes and photometers, observing procedures, and data
reduction can be found in Henry (1999) and Fekel & Henry (2005). Figure 6.9
shows the Variable minus Comparison and Check minus Comparison APT light
curves. The lower two panels show small variability in the Chk-Cmp light curves.
Their seasonal means vary over a range of 0.006 and 0.008 mag in the V and B,
respectively. However, the Var-Cmp seasonal means in the upper two panels vary
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Variable - Comparison
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Figure 6.9: Light curve for HD 63433 (‘Variable’) in the Johnson V (green; top
panel) and B (blue; upper middle) pass bands normalized using a comparison star.
Nightly observations are plotted as small grey points, while the annual means are
shown as larger colored circles. An equivalent light curve for a less active star, HD
63432 (‘Check’), is shown in the lower middle and bottom panels to demonstrate
the photometric stability of these data.

over a much larger range of 0.025 and 0.022 mag, demonstrating that most of the
variability seen in the Var-Cmp light curves is intrinsic to HD 63433.

Keeping the data limitations in mind, the APT light curve does appear to show that
HD 63433 was anomalously bright in 2020 and 2021 in both filters, with a flux
1-2% above the 20 year average in V. In fact, it appears to be brighter than at any
point since observations began. For active stars (log 𝑅′

HK > −4.7), the V and B
brightness varies inversely with stellar activity: the more active the star, the more
spots it has, and the dimmer it appears (Lockwood et al., 2007). Therefore, the
APT data suggest that HD 63433 was unusually quiescent during the time of our
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mass-loss observations, consistent with the marginally lower X-ray flux observed by
XMM-Newton in March 2021 compared to ROSAT in 1990.

We computed a Lomb-Scargle Periodogram of the data and found a clear, narrow
peak corresponding to the rotation period of the star. Both the V and B data indicate
𝑃r𝑜𝑡 = 6.413 ± 0.002 d, slightly lower than the 6.46 ± 0.01 d reported by Gaidos
et al. (2000) using the APT data available then. The APT-inferred rotation period
is far more precise than the one inferred from TESS and K2 data (Mann et al.,
2020) because of the much longer baseline (1200 rotation periods vs. 3-4). The
periodogram also shows a broad double peak around 800–1100 d, perhaps indicative
of a short stellar cycle. However, while there is clear non-random behavior in the
light curve on a timescale of years, no periodic stellar cycle is obvious by inspection.
HD 63433’s photometric variability is typical of stars younger than 2–3 Gyr, which
have complex interannual variations that are often composed of multiple cycles,
compared to the simple cycles of older stars (Oláh et al., 2016).

UV spectrum
Ly𝛼 profile

In order to translate our mass loss models into a prediction for the Ly𝛼 light curve
during transit, we need a measurement of the star’s intrinsic Ly𝛼 profile. The
STIS observations do not directly tell us the intrinsic Ly𝛼 profile because the the
line core is absorbed by the ISM, and the instrumental line-spread profile smears
out the remaining flux. We reconstruct the intrinsic profile from our data using a
hierarchical Bayesian model implemented in stan (Stan Development Team, 2018).

In principle there are an infinite number of intrinsic profiles that can fit the data,
because the flux at the core of the line is unconstrained. Therefore, we need to
utilize a prior on the line shape in order to reconstruct the height of the line core
using the flux in the wings. In a previous survey of stellar Ly𝛼 emission, Wood
et al. (2005b) used the profile of the observed Mg II h and k lines (2796 and 2804
Å) as their template for the Ly𝛼 line shape. Unfortunately, we have no such data for
HD 63433. Instead, we start with the reconstructed Ly𝛼 profile of HD 165185 from
Wood et al. (2005b), a star with the same spectral type as HD 63433 and a similar
rotation period. We then allow stan to modify the profile as follows:
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𝐹 (𝜆) = 𝐹i𝑛𝑖𝑡 (𝜆) + Δ1(𝜆) (6.1)

Δ1(𝜆) = cumsum(Δ2(𝜆)) (6.2)

Δ2(𝜆) ∼ 𝑁 (0, 5 × 10−14), (6.3)

where 𝐹i𝑛𝑖𝑡 is the HD 165185 profile, cumsum is the cumulative sum, and N(0,
5 × 10−14) is a normal distribution with a mean of 0 and standard deviation of
5×10−14. The intrinsic spectrum of HD 63433 is that of HD 165185 plus differences,
the differences are in turn the cumulative sum of second differences, and we impose
a Gaussian prior on the second differences with a standard deviation of 5 × 10−14

erg s−1 cm−2 Å−1. These equations allow stan to modify the HD 165185 profile to
fit the HD 63433 data, but not arbitrarily: it enforces continuity in the modifications
made to the profile, and penalizes large changes to avoid overfitting. This process
is mathematically equivalent to L2 regularization.

We can obtain an independent constraint on the magnitude of the interstellar ab-
sorption by using the parameters derived by Dring et al. (1997) for two stars. 𝛽

Gem and 𝜎 Gem are 1.3 and 2.2 degrees, respectively, from HD 63433. Despite
having very different distances (10.3 pc and 37.5 pc), the two have indistinguishable
N(HI) of 1018.26 and 1018.20 cm−2. This is because the region within 10 pc has an
abnormally high neutral hydrogen fraction compared to the rest of the 100 pc Local
Bubble (Wood et al., 2005b). Dring et al. (1997) found that the sightline to these
stars can be modelled by assuming two clouds: one at 21.7 km/s with a column
density of 1018.027 cm−2 and a HI Doppler parameter of 12.35 km/s, and another
at 32.5 km/s with a column density of 1017.801 cm−2 and a Doppler parameter of
11.0 km/s. (In practice, Dring et al. (1997) fit the two sightlines separately, but we
averaged the results here because they are remarkably similar.) The more strongly
absorbing cloud has a velocity consistent with theoretical expectations. The local
interstellar cloud (LIC) is moving at 25.7 km/s in the direction of l=186°, b=-16°,
according to high-resolution observations of local stars (Lallement et al., 1995), in
good agreement with the flow of ISM particles through the solar system ([l=183°,
b=-16°] at 26.3 km/s) (Witte, 2004). Projecting this velocity along the line of sight,
we compute a radial velocity of 19.9 km/s. Combined with the -16 km/s radial
velocity of the star, the 36 km/s difference is what strongly suppresses the red wing
while keeping the blue wing unusually intact.
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Figure 6.10: Stellar Ly𝛼. Top: the reconstructed stellar Ly𝛼 profile (blue), with
uncertainty indicated by the gray shading. Bottom: the model Ly𝛼 profile after
interstellar absorption and convolution with the instrumental line spread profile
(blue), compared to the data (orange). The data has error bars, but they are too small
to see.

To summarize, our free parameters are the 282 second differences Δ2(𝜆), while
the interstellar absorption is fixed to that found by Dring et al. (1997). We run
10,000 iterations of 4 chains each, and check all five of the diagnostics provided
by stan to ensure convergence: effective sample size, potential scale reduction
factors, divergent transitions, percentage of transitions ending prematurely due to
maximum tree depth, and E-BFMI (energy). We take the sample with the highest
posterior probability to generate the fiducial Ly𝛼 profile. Figure 6.10 shows the
resulting best-fit intrinsic Ly𝛼 profile. The model provides a close match to the data
everywhere except at the center of ISM absorption, where the data are higher than
the model. We speculate that this may be because the LSF provided by STScI does
not have sufficiently strong wings. This was previously noted by Bourrier et al.
(2017a), who fit their own LSF for the 52 x 0.05 arcsec slit.

We evaluate how sensitive the Ly𝛼 flux is to our choice of reconstruction method
by repeating our analysis using a completely independent method similar to the
one in Bourrier et al. (2017a). In this version, we model the stellar Ly𝛼 line as a
Voigt profile, the instrumental line spread profile as a sum of two Gaussians, and
the interstellar medium as a cloud with a single Gaussian velocity dispersion and
velocity. We then use differential evolution to optimize the free parameters: the
𝜇∗, 𝜎∗, 𝛾∗, and amplitude of the stellar line profile, the two standard deviations and
one relative amplitude which characterize the LSF, and the velocity offset of the
intervening cloud. The column density of the cloud is set to the sum of the column
densities of the two clouds found by Dring et al. (1997), and the Doppler broadening
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parameter is set to 12 km/s, very close to the values derived by Dring et al. (1997)
for both clouds. With this method, we obtain a Ly𝛼 flux of 46 erg cm−2 s−1 at 1
AU, 18% lower than the fiducial value. Based on the fit error and Linsky et al.
(2014), the Ly𝛼 flux we derive is probably not accurate to better than ∼30%. The
fit parameters are given in Table 6.2.

Table 6.2: Parameters derived from alternate fit to Ly𝛼 data

Parameter Value
𝜇∗ 1215.595Å
𝜎∗ 0.198Å
𝛾∗ 0.072Å
𝐴∗ 3.40 × 10−12 erg cm−2 s−1 Å−1

𝜎l𝑠 𝑓 ,1 0.18Å
𝜎l𝑠 𝑓 ,2 0.10Å

𝐴l𝑠 𝑓 ,2/𝐴l𝑠 𝑓 ,1 0.26
𝑣c𝑙𝑜𝑢𝑑 16.8 km/s

Broader UV spectrum

We first estimate the shape of the stellar spectrum in the extreme ultraviolet: wave-
lengths shortward of the Ly𝛼 line but longward of 100Å. These photons ionize
hydrogen, which deposits heat into the atmosphere and drives the outflow. There
are currently no EUV telescopes, so we rely on the scaling relations obtained by Lin-
sky et al. (2014) to estimate the EUV flux in 100 Å bins between 100–1170 Åbased
on the star’s measured Ly𝛼 flux. For the wavelength range 100–400 Å, these scal-
ing relations were based on stellar observations with Extreme Ultraviolet Explorer
(Bowyer et al., 1994) and Far Ultraviolet Spectroscopic Explorer (Sembach, 1999).
For the wavelength range 400–1170 Å, they are based on the semi-empirical solar
model of Fontenla et al. (2014).

Moving to longer wavelengths, the stellar flux between the Ly𝛼 line at 1216 Å and
the triplet helium ionization limit of 2588 Å has special importance for helium
observations. These photons are not energetic enough to ionize hydrogen or ground
state helium, and therefore do not create the ions or electrons which, through
recombination, create triplet state helium. However, they are energetic enough
to destroy triplet ground state helium via ionization. This means that the level
population of triplet helium, and the magnitude of the corresponding triplet helium
absorption signal during transit, is sensitive to the value of the stellar flux in this
wavelength range.
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Figure 6.11: Fiducial stellar spectrum. We binned the X-ray data for better visibility.

HD 63433 is a solar analogue, so we adopt the solar MUV spectrum as measured
by the Solar Radiation and Climate Experiment (SORCE) satellite.7 We verify the
applicability of this spectrum by comparing to data from XMM-Newton’s Optical
Monitor, which observed the star’s MUV flux through two filters: UVM2 (𝜆 =

231 ± 48 nm) and UVW2 (𝜆 = 212 ± 50 nm). The OM measured 90.2 ± 0.3𝑠−1 in
UWM2 and 35.02±0.15𝑠−1 in UVW2. After correction for coincidence losses due to
multiple photons hitting the detector in the same frame, we obtain 128.6±0.6𝑠−1 and
40.2 ± 0.2𝑠−1, respectively. We used the solar spectrum and the filter transmission
profiles to predict what OM would have seen if HD 63433 were an exact solar clone
and obtained a count rate within 2% of the observed rate for UVM2 and within
7% for UVW2. We therefore conclude that the Sun’s MUV spectrum accurately
matches that of HD 63433, and adopt the Sun’s spectrum between 1216 Å and 2588
Å.

Final reconstructed stellar spectrum
To recap, we obtain the X-ray spectrum by fitting a model to XMM EPIC data; the
EUV spectrum using the scaling relations of Linsky et al. (2014); the Ly𝛼 spectrum
by adopting ISM absorption parameters inferred from nearby stars and modifying a
similar star’s spectrum to fit the STIS data; the 1216–2588 Å spectrum by assuming
it is identical to solar; and the NUV, optical, and IR spectrum from PHOENIX. The
reconstructed spectrum is plotted in Figure 6.11.

7https://lasp.colorado.edu/home/sorce/data/
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Table 6.3: Band-integrated fluxes

Band Wavelengths (Å) Flux at 1 AU (cgs)
X-ray 5 − 100 27 ± 14
EUV 100 − 912 91 ± 27
f Ly𝛼 1214 − 1217 56 ± 17
MUV 1230 − 2588 2600 ± 150
Total 5 − 50, 000 1.02 ± 0.04 × 106

In Table 6.3, we list the band-integrated fluxes of physical interest. In addition to
the nominal values, we make an attempt to estimate the error bars. For the X-ray
flux, we adopt 50% errors because of the significant variability we see in even our
6 ks XMM observation. The Ly𝛼 error is estimated based on Linsky et al. (2014),
who state that the Ly𝛼 reconstruction process gives rise to 10–30% errors (we adopt
30%). The EUV error is also estimated based on Linsky et al. (2014), who find
that the scaling relations we relied on to obtain our EUV spectrum are accurate
to 30–60% (RMS) in 10 nm bins. We assume that the errors bin down when the
total EUV flux is calculated, and adopt 30% as the final uncertainty. The MUV
error is calculated from the 7% mismatch between the solar spectrum and the XMM
OM photometry. The nominal value and the error for the bolometric flux are both
calculated using the luminosity from Mann et al. (2020).

6.6 Mass loss modeling
Planet parameters

Parameter Value
𝑇∗ 5640𝐾
𝑅∗ 0.912 ± 0.07𝑅⊙
𝑀𝑝,𝑐 7.3𝑀⊕
𝑀𝑝,𝑏 5.5𝑀⊕
𝑅𝑝,𝑐 2.67𝑅⊕
𝑅𝑝,𝑏 2.15𝑅⊕
𝑎𝑐 0.1458𝐴𝑈
𝑎𝑏 0.0719𝐴𝑈
𝑃𝑐 20.5𝑑
𝑃𝑏 7.1𝑑

Table 6.4: Stellar and planetary properties. All values are from the discovery paper,
Mann et al. (2020).

In order to set up our simulations of the outflow from each planet, we need to know the
planets’ radii, semimajor axes, masses and rotation periods. These are summarized
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in Table 6.4. We obtain the first two from the discovery paper. Unfortunately, the
youth and high activity of HD 63433 make it difficult to measure planet masses
using the radial velocity technique. This is especially true for b, which has an orbital
period close to the rotation period of the star. The planets are also not particularly
close to any orbital resonances, making it unlikely that we could obtain dynamical
mass constraints using transit timing variations. The assumed planet mass is a key
ingredient for our models, as the predicted mass loss rate is exponentially sensitive
to the assumed mass (e.g., Eq. 64 of Adams 2011: ¤𝑚 ∝ exp(−𝐺𝑀𝑝/𝑅𝑝𝑐2

𝑠)).

In the absence of any empirical mass constraints, we instead utilize a mass-radius re-
lation derived from population-level studies of planets orbiting older (approximately
greater than a Gyr) stars. In the discovery paper for this system, Mann et al. (2020)
used the Chen & Kipping (2017) probabilistic forecasting relation to calculate an
estimated mass of 5.5 ± 2𝑀⊕ for b and 7.3 ± 2𝑀⊕ for c. If we instead utilize the
polynomial mass-radius relation from Wolfgang et al. (2016), we would predict a
mass of 7.3 ± 2𝑀⊕ for b and 9.7 ± 2𝑀⊕ for c. If we use the mass-radius relation
from Bashi et al. (2017), we would predict a mass of 5.6 𝑀⊕ for b and 8.2 𝑀⊕ for
c. However, these mass-radius relations are all derived from observations of planets
that are significantly older than HD 63433, whereas the planets in this system might
still be inflated because they have lost a smaller fraction of their primordial atmo-
spheres. We therefore adopt the lowest mass estimates, those of Chen & Kipping
(2017), as the fiducial case for our models. Using the scaling relation from the
previous paragraph, we estimate that an uncertainty of 2 𝑀⊕ in the estimated planet
masses translates to an uncertainty of ∼ 50% in mass loss rate for c and ∼ 80% for
b, assuming a sound speed of 10 km/s.

We next consider whether or not HD 63433 b/c are likely to be tidally synchronized.
The tidal synchronization timescale is (Guillot et al., 1996):

𝜏𝑠 =
𝑄𝜔𝑝𝑀𝑝𝑎

6

𝐺𝑀2
∗ 𝑅

3
𝑝

. (6.4)

Adopting a tidal quality factor of Q=100 and an initial rotation rate of one Earth
day, this evaluates to 0.02 Myr for b and 0.7 Myr for c (i.e., much less than the
present-day age of the star). While Q is highly uncertain and the stronger gravity of
a mini Neptune could reduce tidal dissipation by a factor of 2-3 (Efroimsky, 2012),
it is difficult to get Q much above 1000 for a rocky planet (Clausen & Tilgner, 2015).
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We therefore conclude that it is very likely that both planets have rotation periods
equal to their orbital periods, and use this assumption in our models.

Important physical processes
Thermal mass loss is driven largely by stellar X-ray and EUV flux. These high
energy photons are absorbed far above the optical photosphere, heating the thermo-
sphere. The main cooling mechanism is emission of Ly𝛼 radiation by collision-
ally excited atoms (Murray-Clay et al., 2009), which scales with temperature as
Λ ∝ exp(−118, 348𝐾/𝑇). The strong exponential dependence of the cooling rate
keeps the temperature around a few thousand K, but below ∼ 104 K. In the region
of the outflow closest to the planet, the temperature rises with increasing radius.
This is driven by the increased XUV heating and the decreased radiative cooling
at larger separations. Eventually, the importance of these effects diminishes as the
optical depth of the atmosphere above becomes effectively transparent to XUV, and
adiabatic cooling causes the temperature to slowly drop.

Hydrodynamic outflows can be divided into three regimes, depending on the domi-
nant mechanism for creating neutral hydrogen (Lampón et al., 2021). In the outflow,
stellar flux blueward of the Lyman limit destroys neutral hydrogen by ionizing it,
while recombination creates it. The neutral hydrogen population is also augmented
by advection from lower in the atmosphere. There are three possible regimes (Lam-
pón et al., 2021), depending on whether recombination or advection is the dominant
neutral hydrogen creation mechanism. If recombination is dominant, the planet is
in the recombination-limited regime, characterized by a narrow partially ionized
zone and by low (∼ 5%) efficiency in converting flux to kinetic energy (because the
energy is radiated away by recombination). If advection is dominant, the planet is in
the photon-limited regime, characterized by a very wide partially ionized zone and
high flux-to-kinetic-energy conversion efficiency (∼ 15%). If neither mechanism
is clearly dominant, the planet is in the energy limited regime. As we will discuss
below, our simulations show that both HD 63433 planets are in the photon limited
regime (Figure 6.14). In this regime, the mass loss rate is high and neutral hydrogen
is abundant in the outer regions, boosting the Ly𝛼 signal.

Helium absorption is from helium atoms in the metastable triplet ground state. He-
lium must stay in this triplet ground state, 19.8 eV above the singlet ground state,
in order to absorb at 1083 nm. This level is populated, in most situations, by ion-
ization followed by recombination, which ends with the recombining electron in
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the triplet state ∼ 3/4 of the time. Triplet helium can be destroyed by collisional
de-excitation with electrons and neutral hydrogen in the lower atmosphere and by
photoionization (ℎ𝜈 > 4.8 eV) in the upper atmosphere. Other ways of producing
and destroying triplet helium exist, such as collisional excitation and spontaneous
radiative decay, but they are usually negligible. Close to the planet, no ionizing
radiation penetrates, so nothing is ionized and there is no recombination to populate
the triplet state. Going outwards, the electron density at first increases, causing the
triplet state number density to increase to some maximum. Past this maximum,
where the atmosphere is already largely ionized, 𝑛(𝑒) and 𝑛(H𝑒𝐼 𝐼) both decrease
with 𝑟 because of expansion. In this region, collisional de-excitation falls with 𝑟,
but not enough to overcome the decreased production and the mostly constant pho-
toionization of triplet helium, causing the triplet number density to fall. For a more
detailed, quantitative overview of the physics of helium absorption in exoplanets,
see Oklopčić & Hirata (2018).

Although we have discussed these processes as if they are radially symmetric, in
reality outflows will have a non-spherical geometry that is shaped by the planet’s
immediate environment. The stellar wind and radiation pressure both work to push
escaping gas away from the star. The Coriolis force then imparts a sideways force
to the gas, creating a comet-like tail trailing the planet (Schneiter et al., 2007). If
the planet has a magnetic field it can suppress the mass loss rate and confine the
outflow (e.g. Adams 2011; Owen & Adams 2014; Khodachenko et al. 2015), but
exoplanetary magnetic fields are poorly understood because they have never been
observed. We simulate the outflow from both planets without including magnetic
fields, and discuss the ways that magnetic fields might alter our predictions in §6.7.

3D hydrodynamic models
Our 3D models utilize the approach outlined in Wang & Dai (2018); Wang & Dai
(2021), which combines ray-tracing radiative transfer, real-time non-equilibrium
thermochemistry, and hydrodynamics based on the higher-order Godunov method
code Athena++ (Stone et al., 2020). We include a stellar wind with a mass-loss rate
of ∼ 8× solar, as calculated in §6.7, and a roughly solar velocity of 400 k𝑚 𝑠−1. Our
models account for the hydrodynamic and thermochemical interactions between the
stellar wind and the planetary outflow. These 3D models capture the anisotropy of the
outflow pattern better than the 1D LTE models, while the non-LTE thermochemistry
self-consistently predicts the mass loss rate and the line profiles. The model incorpo-
rates a total of 26 species and 135 reactions, including various relevant heating and
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cooling processes (e.g. photoionization, photodissociation of molecular hydrogen,
Lyman-𝛼 cooling, etc.). Metastable helium is a chemical species like the others, and
key reactions that form and destroy this species are included in the thermochemical
network. We refer the reader to Wang & Dai (2018) and Wang & Goodman (2017)
for details of these reactions. The most important cooling processes in the models
presented here are recombination, PdV work, and ro-vibrational cooling by H2O/OH
and CO, while the most important heating mechanism is photoionization of H and
He (see Figure 3 in Wang & Dai 2018).

Starting from the stellar spectrum computed in Section 6.5, we group photons into
seven energy bins for the ray-tracing calculation:

• ℎ𝜈 = 1.4 eV for infrared, optical, and near ultraviolet (NUV) photons, ℎ𝜈 =

7 eV for “soft” far ultraviolet (FUV) photons

• ℎ𝜈 = 12 eV for the Lyman-Werner band FUV photons, which can photodis-
sociate molecular hydrogen but cannot ionize them (this is not to be confused
with the Ly𝛼 line, which the band does not include)

• ℎ𝜈 = 16 eV for “soft” extreme ultraviolet (soft EUV) photons, which can
ionize hydrogen but not helium

• ℎ𝜈 = 47 eV for hard EUV photons that ionize hydrogen and helium

• ℎ𝜈 = 300 eV for soft X-rays, which are abundant for an active star like HD
63433

• ℎ𝜈 = 3000 eV for hard X-rays

We note that this discretization of radiation artificially shrinks the vertical extent
of the region where significant stellar XUV is deposited. If the radiation were not
discretized, the photoionization cross section would drop with photon energy beyond
the ionization energy, so that higher energies take over as the outflow becomes
optically thick to lower energies. Unfortunately, this discretization is required in
order to make our 3D model computationally tractable.

In addition to the opacities caused by photochemical reactions, we also include an
effective opacity term in all bands, using dust/PAH as a proxy (see also Wang &
Dai, 2018). This is particularly important in the optical band due to its heating
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effects, as our opacity calculation did not include the Thomson cross-section 𝜎/H ≃
6.7 × 10−25 cm2.

A typical planetary atmosphere consists of a convective interior and a quasi-
isothermal exterior (e.g. Rafikov, 2006). With the use of an interior model, we
adjusted the envelope fraction to match the observed radius and assumed mass of
the planets. We find an envelope mass fraction of ∼ 0.6% for b and 2% for c, typical
values for mini Neptunes. However, we note that without a precise mass measure-
ment, the mass fraction of the H/He envelope cannot be precisely constrained. The
precise envelope fraction is not important to modelling the outflow because it is the
gravity and density at the optical transit radius that set the inner radial boundary
condition, above which all photospheres of relevant bands of radiation are located.
We summarize the key quantities that define the fiducial model in Table 6.5. Note
that, to reduce the cost of simulation while keeping all necessary physical fea-
tures, we only simulate the half-space above the orbital plane, and assume reflection
symmetry over that plane.

Model results
Our models predict a mass loss rate of 0.11 𝑀⊕/Gyr (2.1×1010 g/s) for c and 0.35
𝑀⊕/Gyr (6.6×1010 g/s) for b. We can use our initial envelope fractions (2% for c
and 0.6% for b) to calculate corresponding atmospheric mass loss timescales of 0.9
Gyr for planet c and 0.08 Gyr for planet b.

Figure 6.12 shows the orbital plane of our simulations. The outflow is initially
somewhat spherically symmetric and still maintains this symmetry at ∼ 10𝑅⊕, the
approximate photospheric radius for metastable helium absorption. Around 50 𝑅⊕

it loses this symmetry as gas emanating from the day side is pushed toward the
night side by the stellar wind and radiation pressure. As we move radially outward
from the planet in a direction perpendicular to the planet-star axis, the temperature
is initially equal to the planetary equilibrium temperature, rises to a peak of a few
thousand Kelvin, declines slightly, and then jumps to a few million Kelvin as the
outflow encounters the 1 MK stellar wind in a shock.

Figure 6.13 (top) shows the number densities of various species radially outward
from the planet along the direction of orbital motion. The bottom pane shows the
temperature, radial velocity, sound speed, and hydrogen ionization fraction. We
find that the triplet helium density, which controls helium absorption, peaks around
200 cm−3 at 1.6 𝑅𝑝 (c) or 120 c𝑚−3 at 2.1 𝑅𝑝 (b) before slowly declining farther
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Figure 6.12: Neutral hydrogen number density, temperature, and triplet helium
density from the time-averaged (over the last ∼ 10 kinematic timescales) fiducial
3D models, for c (top) and b (bottom). The star is toward the left, the velocity vector
of orbital motion lies in the paper plane and points upwards. These plots show the
profiles in the orbital plane. The white lines are the streamlines, while the dashed
black lines represent the inner sonic surface. Note that the middle column showing
metastable helium distribution zooms into the innermost 40 𝑅⊕ region for clearer
presentation.
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Figure 6.13: Radial profiles of key quantities along the radial lines pointing to
the direction of orbital motion. Profiles are calculated for the time-averaged data
(over the last 10 kinematic timescales of the simulations) for the fiducial models
of planets c and b. Top: number densities of electrons (𝑛𝑒), neutral helium (𝑛H𝑒),
metatstable helium (𝑛H𝑒∗), neutral hydrogen (𝑛H), and ionized hydrogen (𝑛𝐻𝐼).
Bottom: temperature 𝑇 , radial velocity 𝑣𝑟 , sound speed 𝑐𝑠, and hydrogen ionization
fraction 𝑓i𝑜𝑛. Solid lines are for planet c; dashed lines for b.
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Figure 6.14: Similar to Figure 6.13, but for important reaction rates. Top: rates of
important processes that create or destroy neutral hydrogen, namely photoionization,
radiative recombination, and advection. Bottom: rates of processes that create or
destroy metastable helium, namely collisional de-excitation, recombination, and
photoionization [H𝑒∗ + ℎ𝜈(> 4.8 e𝑉) → H𝑒 + 𝑒−]. Rates for planet c are shown in
solid lines, and those for planet b are in dashed lines. The rates are computed along
the radial line pointing to the direction of the planets’ orbital motion.
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out. The neutral hydrogen density declines smoothly with increasing distance. The
temperature rises to a maximum of 4000 K at 3 𝑅𝑝 (c) or 7000 K at 4 𝑅𝑝 (b) before
slowly declining. The sound speed hovers around the 7-10 km/s typical of ionized
hydrogen at several thousand Kelvin. At larger radii (> 5𝑅𝑝), the outflow velocity
asymptotes to ∼2 times the sound speed and the density falls roughly as 𝑟−2, in
accordance with the analytic Parker wind prediction. The neutral hydrogen fraction
is nearly 1 at the surface, but declines to 50% around 3 𝑅𝑝, falling to <3% at 15 𝑅𝑝.

The rates we plot in Figure 6.14 show that triplet helium is created by recombi-
nation and destroyed predominantly by collisional de-excitation (smaller radii) or
photoionization (larger radii), as discussed in §6.6. This is the same qualitative be-
havior seen for 55 Cnc e with a 1D PLUTO-CLOUDY model (Zhang et al., 2021),
for some generic planets with a Parker wind model (Oklopčić, 2019), and for the gas
giant WASP-107b with the same 3D model (Wang & Dai, 2021). Our models do
include collisional excitation and radiative decay, but they are not plotted because
they are negligible. Collisional excitation is negligible because the collisional exci-
tation coefficient is 12 orders of magnitude smaller than the collisional deexcitation
coefficient (Oklopčić & Hirata, 2018). Although singlet helium is typically ∼ 106

times more abundant than triplet helium, a gap of 106 remains. Radiative decay is
negligible because transitions between the triplet and singlet states are forbidden.
This means that the Einstein 𝐴 coefficient for the transition to the singlet ground state
is very small (1.272×10−4 s−1) and the decay timescale is very long (∼ 2.2 h𝑟). We
can compare this decay timescale to the triplet helium production timescale, which
is the triplet number density divided by the recombination rate. This timescale is
on the order of 0.5 s. This short production timescale means that the triplet helium
density is in local equilibrium, and is not significantly affected by advection ex-
cept indirectly (advection carries neutral gas outward, reducing the electron number
density).

Figure 6.14 shows the rates of various processes that create and destroy neutral
hydrogen: photoionization, recombination, and advection. It can be seen that for
both planets, advection dominates over recombination until the outermost regions of
the outflow (11 𝑅𝑝 for c, 7 𝑅𝑝 for b). We conclude that both planets are in the energy
limited regime for photoevaporative mass loss, where photoevaporation is relatively
efficient because recombination does not radiate away all the incoming stellar high-
energy radiation (Lampón et al., 2021). The rate for photoionization plateaus around
2.5 (3.5) 𝑅𝑝 for planet c (b) because the outflow becomes optically thin to ionizing
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radiation. This is the same general region where the flow becomes supersonic and
where the hydrogen becomes predominantly ionized, making recombination and
collisional de-excitation with electrons increasingly important. The triplet helium
fraction, however, peaks well before this critical point (1.6 𝑅𝑝 for c and 2.1 𝑅𝑝 for
b) before beginning a decline of 𝑛𝐻𝑒∗ ∝ 𝑟−3.5 for c and 𝑛𝐻𝑒∗ ∝ 𝑟−3 for b.

Our models predict a relatively symmetric transit light curve in both Ly𝛼 (Figure
6.2) and helium (Figure 6.6). This stands in contrast to Ly𝛼 observations of GJ 436b
(Lavie et al., 2017) and helium observations of WASP-107b (Allart et al., 2019; Kirk
et al., 2020), which show a much more delayed and extended egress. This happens
because the stellar wind and radiation pressure both push the outflow away from
the star, where the Coriolis acceleration −2𝛀 × v slows its velocity relative to the
planet’s orbital motion. Naively, one would expect a stronger stellar wind to cause
a longer tail and more asymmetric transit shape, but this is not the case in our
models. We initially performed 3D simulations with a solar-strength wind and saw
an asymmetrical helium transit, with peak absorption occurring 1.5 hours after the
white light transit mid-point for planet c. When we switched to a more realistic
8× solar wind, we obtained the fiducial model presented here. In this version of
the model the confining effect of the stellar wind overpowers the Coriolis force,
accelerating the outflow and increasing the importance of inertial forces relative to
Coriolis forces (parameterized by the Rossby number, Ro=vr/(2Ω)). This results in
a more symmetric transit shape for the 8× solar wind case.
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Parameter Value
Mass loss

¤𝑀b 0.35 𝑀⊕ G𝑦𝑟−1

¤𝑀b,10 𝑀⊕ 0.17 𝑀⊕ G𝑦𝑟−1

¤𝑀c 0.11 𝑀⊕ G𝑦𝑟−1

Simulation Domain
Radial range (c) 0.98 ≤ (𝑟/𝑅𝑝) ≤ 94
Radial range (b) 0.91 ≤ (𝑟/𝑅𝑝) ≤ 116
Latitudinal range 0 ≤ 𝜃 ≤ 𝜋

Azimuthal range 0 ≤ 𝜙 ≤ 𝜋

Resolution (𝑁log 𝑟 × 𝑁𝜃 × 𝑁𝜙) 192 × 128 × 64

Photon Flux at 1 AU∗ [cm −2 s−1]
1.4 eV (IR/optical) 4.5 × 1017

7 eV (Soft FUV) 1.8 × 1016

12 eV (LW) 3.0 × 1011

16 eV (Soft EUV) 1.2 × 1012

47 eV (Hard EUV) 3.2 × 1011

0.3 keV (Soft X-ray) 4.7 × 1010

3 keV (Hard X-ray) 1.5 × 109

Initial Abundances [𝑛X/𝑛H]
H2 0.5
He 0.1

H2O 1.8 × 10−4

CO 1.4 × 10−4

S 2.8 × 10−5

Si 1.7 × 10−6

Dust grains 1.0 × 10−9

Dust/PAH Properties
𝜎dust/H 8 × 10−22 cm2

𝑚d𝑢𝑠𝑡/𝑚g𝑎𝑠 7 × 10−7

Stellar Wind
¤𝑀 2 × 1013𝑔/𝑠
𝑣w 400𝑘𝑚/𝑠

Temperature 106𝐾
∗Divide by 0.14582 for c and 0.07192 for b

Table 6.5: Properties of the fiducial model
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6.7 Discussion
Comparing model and data
Before comparing our model predictions to the observed magnitude of absorption
during transit, it is useful to consider the implications of the atmospheric mass loss
timescales in these models. Although these quantities are sensitive to the assumed
mass, we can nonetheless draw some general conclusions. Planet c has a mass
loss timescale of 0.9 Gyr in our models, while b has a mass loss timescale of 0.08
Gyr. The star has an estimated age of 0.4 Gyr, suggesting that b is unlikely to have
retained a primordial atmosphere while it is at least plausible for c to have done so.
At earlier times, the planets’ puffier radii leads to lower gravity and a higher Roche
radius, both leading to increased mass loss. This prediction is consistent with our
non-detection of excess absorption in either Ly𝛼 or metastable helium absorption
during transits of planet b. We explore the effect that the assumed mass of planet b
has on its predicted atmospheric lifetime in more detail in §6.7.

If we set these arguments aside for the moment and assume that both planets
host hydrogen-rich atmospheres, we can use our 3D models to predict the time-
dependent absorption signal during transit. Figure 6.2 shows our model predictions
for the observed Ly𝛼 absorption. We find that the model slightly underpredicts
the amount of blue wing absorption for planet c. The model also predicts that the
point of maximum absorption will occur slightly after mid-transit, whereas our data
prefers a peak before mid-transit. The model predicts that there should be negligible
absorption in the red wing bandpass; although we see weak evidence for red wing
absorption in our data, the detection is not conclusive (see §6.4 for more details).
For planet b, the model predicts an absorption depth in the blue wing of the Ly𝛼 line
that is comparable in magnitude to that of planet c, with a shorter but symmetric
transit shape. This absorption signal is conclusively ruled out by our data. As with
c, the model predicts negligible absorption in the red wing; this is consistent with
our non-detection.

For planet c, where we detect absorption in the blue wing of Ly𝛼, we can compare
the predicted wavelength-dependent shape of the absorption signal as a function of
time to the observed line shape (Fig. 6.3). The magnitude of absorption in the
observed spectrum rises from <5% to 25% as we move from -100 km/s to -10 km/s,
while the model spectrum rises from <5% to 60% as we move from -50 km/s to
-10 km/s. We conclude that the observed absorption signal is significantly more
widely dispersed in velocity space than the modeled absorption. This phenomenon
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of Ly𝛼 absorption being present far above the sound speed was first noted by Vidal-
Madjar et al. (2003) for HD 209458b, and has also been observed in all four planets
with definitive Ly𝛼 detections (HD 209458b, HD 189733b, GJ 436b, GJ 3470b).
Holmström et al. (2008) proposed that the -140 km/s absorption signal seen for HD
209458b is caused by charge exchange between neutral hydrogen in the planetary
outflow and solar wind protons, creating a population of neutral hydrogen atoms with
a high velocity dispersion heading away from the star. We note that kinetic processes
in the interaction region between the stellar wind and the planetary outflow might be
difficult to model correctly due to the long mean free paths, which exceed 1 𝑅𝑝 when
𝑛𝐻 <∼ 104 cm−3. If future models deal with this process with more consistency, the
observed signal might be properly explained by invoking stellar wind hydrogen ions
neutralized and thermalized near the stellar wind-planetary outflow contact surface.

While the simulation explains the blue wing absorption of c somewhat well, it
does not explain the red wing absorption at all. The simplest explanation for the
discrepancy is that the observed red wing absorption is actually stellar variability.
The absorption detection is marginal even from a pure SNR perspective, and there
are other reasons to doubt the detection (Subsection 6.4), including the non-detection
in the alternative analyses (see Appendix). If we assume the detection is real, the red
wing absorption is difficult to explain purely hydrodynamically because it occurs
at 100–200 km/s, far above the sound speed of ∼10 km/s. Since some extreme red
wing absorption can be obtained from energetic neutral atoms at the intersection
of the planetary outflow and the stellar wind, one might think the problem can be
solved by making the stellar wind faster (resulting in more kinetic energy being
thermalized in the shock) and denser. However, this would also tend to confine the
outflow and push more of the absorption to the blue wing, potentially worsening the
discrepancy between model and data. Using an order-of-magnitude calculation, we
also considered the possibility that the red wing absorption could be explained by
the far wings of Lyman alpha. We considered a r=25 𝑅⊕ uniform sphere with n(HI)
= 106 cm−3 with T=7000 K and a mean atomic weight of 0.7 AMU, very roughly
matching the simulated conditions in Figure 6.12. We found that the optical depth
across the center of the sphere is 0.03 at 50 km/s, 0.006 at 100 km/s, and 0.003 at
150 km/s. Even an optical depth of 0.03 across the entire 25 𝑅⊕ disk would increase
the transit depth by only 0.2%. We conclude that if the absorption signal at 100-200
km/s is real, it is unlikely to be caused by gas moving at less than 50 km/s.
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We next consider whether or not the predicted metastable helium absorption spec-
trum from these models is consistent with the upper limits from our NIRSPEC
observations (see Fig. 6.5). For c, the model predicts 0.4% absorption, which
would be reduced to 0.15% due to the self-subtraction when we remove the time-
varying telluric signal. This absorption should be marginally detectable, but may
plausibly be hidden by stellar activity. For b, the model predicts 0.5% absorption,
which would be reduced to 0.3% by self-subtraction. This is slightly stronger than
the 0.2% absorption in Figure 6.5, which we attribute to stellar variability. Our
injection/recovery tests show that the predicted signal would have been detectable in
both the residuals images and the excess absorption spectrum. In addition to transit-
averaged excess absorption spectra, we also compare the line-integrated light curves
to model predictions (Figure 6.6). Here, the model predicts a level of absorption
considerably above the noise for both planets, but not considerably above the stellar
variability we observe on both nights.

A higher mass cannot explain the non-detections for planet b

We next consider whether or not a higher assumed mass for planet b can explain
the Ly𝛼 and helium non-detections. We run another 3D model with a core mass of
10 𝑀⊕; this is 2.7 𝑀⊕ higher than the predictions of all mass-radius relations we
consider in §6.6, and high enough for runaway accretion during planet formation to
occur. Aside from the increased core mass and correspondingly increased envelope
fraction, all other aspects of the model were unchanged.

As expected, we find that increasing the assumed core mass does modestly reduce
the magnitude of the predicted absorption signal during transit. The high mass
model predicts a Ly𝛼 absorption depth in the blue wing of 7%, compared to 10%
in our fiducial model. However, this signal is still too strong to accord with our
observations. In the helium lines, the high mass model predicts a peak absorption
of 0.35%, compared to 0.6% in the fiducial model. If we interpret the darkening
of the helium line during the transit of planet b as planetary absorption instead of
stellar variability, the observed signal would be comparable in magnitude to this
prediction. If the helium signal is planetary, it should be detectable with follow-up
observations from telescopes even smaller than Keck, as we were limited by stellar
variability and not by photon noise.
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Possible envelope compositions for planet b

As previously noted, planet b’s short predicted mass-loss timescale and our non-
detection of absorption from either hydrogen or helium suggests that this planet may
have already lost its primordial hydrogen/helium envelope. Assuming an Earth-like
composition, a bare core with the radius of b would have a mass of 𝑀/𝑀⊕ =

(𝑅/𝑅⊕)4 = 21𝑀⊕ (Lopez & Fortney, 2014). This core would be comparable
in mass to the inferred cores of gas giant planets, and would have been highly
susceptible to runaway accretion even at its present-day location in the inner disk
(e.g., Lee, 2019). Rocky cores with radii between 2-3 𝑅⊕ planets are quite rare
among the sample of planets with measured densities, although not unheard of
(Mocquet et al., 2014). This suggests that a small fraction of 10-40 𝑀⊕ cores may
avoid runaway gas accretion, presumably because they did not form until the disk
was already dispersing (Lee, 2019).

If we are willing to consider high mean molecular weight envelopes, it is also possible
to match planet b’s observed radius with lower core masses. Mass-radius relations
for water-rich planets suggest that they can have bulk densities similar to those
of mini Neptunes with rocky cores and hydrogen envelopes with mass fractions of
1−2% (e.g. Turbet et al. 2020; Aguichine et al. 2021; Nixon & Madhusudhan 2021).
Outflows from planets with water-rich envelopes will contain hydrogen created by
the photodissociation of water, and hence will still absorb in Ly𝛼. Johnstone
(2020) found that the energy efficiency of photoevaporation for water atmospheres
(∼10%) is similar to that of hydrogen/helium atmospheres. However, up to 7/8 of
the outflowing mass would be oxygen atoms, which would reduce the hydrogen
number density and the corresponding magnitude of the absorption signal in Ly𝛼.
Water worlds would not have significant amounts of helium in their atmospheres,
consistent with our upper limit on helium absorption. More modelling is required to
determine if our Ly𝛼 non-detection for b (or our detection for c) is consistent with
a water world. We might also consider high mean molecular weight envelopes with
other compositions, such as CO2 or N2, although these atmospheres would be more
compact and would require correspondingly larger core masses. Kite & Barnett
(2020) found that highly irradiated planets are likely to lose heavy gases alongside
hydrogen and helium, but that a volcanically revived atmosphere is plausible for
𝑇𝑒𝑞 <∼ 1000 K planets around solar-mass stars. These compact atmospheres might
cool efficiently, which would suppress the outflow and reduce the observational
signature of Ly𝛼, and there should be no helium because helium is insoluble in
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lava. Such a metal-rich outflow might still be detectable in other FUV lines (Garcia
Muñoz et al., 2021).

Other potentially important physical effects
Our models of hydrogen-rich outflows are ultimately unable to provide a satisfactory
match to the observational data for either planet. While we can argue that planet b
likely lost its primordial atmosphere, that is not the case for planet c. We therefore
consider whether or not other physical effects, such as stellar or planetary magnetic
fields, that we neglect in our models might have a significant effect on the magnitude
or shape of the predicted outflows.

Magnetic fields

In order to evaluate the potential importance of magnetic fields, we first need to
estimate the stellar magnetic field strength. Vidotto et al. (2014) measure the
magnetic field strength of 73 stars ranging from 1 Myr to 10 Gyr and found that it
is proportional to 𝑡−0.655±0.045. We use this scaling relation to estimate the magnetic
field of the 440 Myr HD 63433. We find that this star is predicted to have a magnetic
field strength of approximately 5 times solar, or∼13 G. This is consistent with Rosén
et al. (2016), who used polarization data to measure the mean magnetic fields of
five young Sun-like stars between 300 and 700 Myr and found 𝐵∗ ≈ 20G (with a
range of 10-25 G), with no evidence for any age dependence. We adopt 20 G as the
fiducial field strength and assume that, in the absence of a stellar wind, its strength
falls off as 𝑟−3 (consistent with a dipole). It should be noted that the mean field of
the Sun varies from 0.2 to 2 G across a solar cycle (Plachinda et al., 2011), and it is
likely that HD 63433 also has a variable field strength.

If we assume the Elasser number Λ = 𝜎𝐵2

𝜌Ω
is 1, where 𝜌 is the density of the interior,

Ω is the rotation rate, and 𝜎 is the conductivity, we can estimate the planetary
magnetic fields. Assuming that the interiors of the HD 63433 planets have Earth-
like densities and conductivities, the magnetic field should scale as the square root of
the rotation rate. Rescaling Earth’s magnetic field strength (0.25-0.65 G) to account
for the slower rotation rates of the HD 63433 planets, we find that the planetary
magnetic field is around 0.15 G for b and 0.08 G for c. We further assume that
the planetary magnetic field is a dipole and falls off with distance as 𝑟−3. We note,
however, that the predicted magnetic field strengths of mini Neptunes are highly
uncertain. For example, Christensen & Aubert (2006) numerically analyze dynamo
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models and conclude that the Elasser number can range from 0.06 to 100 while the
magnetic field is independent of rotation rate. Christensen et al. (2009) find using
observations that B scales with 𝑞2/3

0 , where 𝑞0 is the heat flux. If so, the magnetic
field of the HD 63433 planets could be greater than that of Earth.

Having estimated the relevant magnetic field strengths, we explore their importance
for the outflow. Following Owen & Adams (2014), we calculate the ratio of ram
pressure to magnetic pressure:

Λ =
2 ¤𝑀𝑣
𝐵2𝑟2 (6.5)

for both the stellar wind and the planetary outflow, where ¤𝑀 , 𝑣, and 𝐵 are defined
at radial distance 𝑟. For the stellar wind, we assume the speed is the same as it
is for the Sun (400 km/s). The speed does drop as one approaches the Sun, but
not dramatically; Venzmer & Bothmer (2018) predicted that the Parker Solar Probe
would see a speed of 340 km/s at 0.16 AU and 290 km/s at 0.046 AU. What Parker
actually measured near perihelion on January 17, 2021, when it was 0.10 AU from
the Sun, was 250–320 km/s. To calculate the mass loss rate, we use the astrospheric
observations of Wood et al. (2005a). This study found that the mass-loss rate scales
with the X-ray flux as ¤𝑀 ∝ 𝐹1.34±0.18

𝑋
until 𝐹𝑋 = 7 × 105 erg cm−2 s−1, at which

point it abruptly falls from ∼80× solar to ∼8× solar. This may be due to a large-scale
change in magnetic topology, as extremely active stars tend to have a polar starspot
while less active stars have more starspots at low latitudes. HD 63433 has an X-ray
flux of 𝐹𝑋 = 1.4×106 (cgs), which is just past the transition point between these two
regimes. We therefore adopt a value of 1.2×1013 g/s, corresponding to the lower
value of 8 times solar mass loss rate. This value is similar to the 16× predicted by
simulations in Cranmer (2017), but it is possible that the star’s actual mass loss rate
is closer to 80x solar.

Using this stellar mass loss rate, we can obtain an initial estimate for the ratio of
ram to magnetic pressure if we assume that the stellar magnetic field is a dipole
unaffected by the wind. We find that Λ∗ = 43 for b and Λ∗ = 690 for c. However,
the very high Λ∗ means that the stellar magnetic field is carried with the wind and
should be nearly radial at the positions of the two planets. The stellar magnetic field
at the location of the planet will therefore be much higher, and the corresponding
Λ∗ will be much lower, than this simple dipole model predicts.
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We next calculate the corresponding Λ for the planets. Planet c loses mass at a
rate of 3×1010 g/s in our fiducial model. At 2 𝑅𝑝, the outflow has a low ionization
fraction and has not passed the sonic point. At this point, 𝑣 ∼ 2 km/s, giving
Λ𝑐 = 10. Planet b loses mass at a rate of 8×1010 g/s in our fiducial model. At
2 𝑅𝑝, the modeled outflow still has a low ionization fraction and has not passed
the sonic point. The outflow has a velocity of 𝑣 ∼ 0.8 km/s, which translates to
Λ𝑏 = 5. Our choice of scaling law for the planetary magnetic field means that
Λ ∝ 𝑟4 at constant 𝑣, but since 𝑣 accelerates, Λ rises even more steeply with 𝑟.
For comparison, a 0.4% transit depth corresponds to a photospheric radius of 2.9
𝑅𝑝 for b and 2.3 𝑅𝑝 for c, while a 10% transit depth corresponds to 15 and 12
𝑅𝑝. This means the outflow becomes ram pressure dominated inside of the triplet
helium photospheric radius, and well inside of the sonic radius. We conclude that
the planetary magnetic field is probably insignificant in shaping the outflow for the
fiducial magnetic field strengths. However, if the magnetic fields are several times
larger than fiducial—which is easily possible, given the poor theoretical knowledge
of planetary dynamos—theseΛ values would decrease by a factor of 25-100, making
the magnetic field highly significant in shaping the outflow. Most simulations show
that magnetic fields should decrease the outflow rate and the signal strength (Owen &
Adams, 2014; Khodachenko et al., 2015; Arakcheev et al., 2017), although Carolan
et al. (2021) predicts an increase in the outflow rate.

We can use this same approach to estimate the radial distance from the planet where
the stellar wind begins to overwhelm the planetary outflow. To compute this, we
take the ratio of the ram pressures:

Π𝑊𝑊 =
¤𝑀∗
¤𝑀𝑝

𝑣∗
𝑣𝑝

𝑟2

𝑎2 . (6.6)

At 4 𝑅𝑝, we obtain Π𝑊𝑊 = 1.3 for c and 3.2 for b. These numbers are 3.0 and
1.6 at 15 𝑅𝑝, indicating that the stellar wind plays a significant role in shaping the
observed Ly𝛼 outflow. This is fully consistent with our simulations (Subsection
6.6).

Lastly, we compute the effect of the interplanetary magnetic field on the outflow.
In the Parker model, the field is dragged along by the stellar wind, giving rise
to a radial component that scales as 𝑟−2 and an azimuthal component that scales
as 𝑟−1, pointing opposite to the direction of stellar rotation (Parker, 1958). We
use the measured radius dependence of the interplanetary field in the solar system
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(Hanneson et al., 2020) to estimate the value of the stellar field at the positions of
HD 63433b/c, assuming that the interplanetary field has the same proportionality
with the stellar surface field in both systems. For b, we find a field strength of 0.02
G and an angle 𝜃 = arctan(𝜔∗𝑎/𝑣∗) = 16◦. For c, we find a field strength of 0.005 G
and an angle of 31◦. HD 63433 has a magnetic field 5 times stronger than the Sun’s,
and the predicted field strength at the location of planet c is approximately a factor
of five larger than the magnetic field strength recorded by the Parker Solar Probe’s
FIELDS instrument during its June 2020 perihelion, when it was 0.13 AU from the
Sun (similar to c’s 0.14 AU semimajor axis). We therefore conclude that the distance
scaling is in reasonable agreement with solar system observations. However, the
angles predicted by the Parker model are somewhat less reliable; in this model the
solar interplanetary field at Earth’s distance should have a value of 𝜃 = −40◦, yet it is
rarely within 10 degrees of that value. There are also frequent deviations below -60◦

and above 50◦ at both solar maximum and minimum (Tasnim & Cairns, 2016). If we
use these nominal values to compute the ratio of the planetary ram pressure to the
stellar magnetic pressure, we find values of 42 for c and 4.3 for b at 2 𝑅𝑝. At 15 𝑅𝑝,
the ratios are 4.4 for c and 2.2 for b. We conclude that the interplanetary magnetic
field likely has some influence on the very outermost portions of the outflow, but it
is probably less significant than the ram pressure from the stellar wind.

It is important to remember that these calculations are order-of-magnitude estimates
and nearly all of the quantities involved have significant uncertainties. The Sun’s
magnetic field is complex and variable; at Earth’s distance, it has been shown to
vary by a factor of a few over the course of the solar cycle. The 𝐵2 dependence
of magnetic pressure means that a factor of a few uncertainty in the magnetic field
strength translates to an order of magnitude uncertainty in the magnetic pressure.
Our estimated stellar wind mass-loss rate is based on a small number of indirect
measurements in Wood et al. (2005a). It also falls close to a breakpoint in the
scaling relation; it is possible that the mass-loss rate is closer to 80× solar than to
8× solar. The wind velocity of stars other than the Sun is unknown. There are
no direct measurements of magnetic field strengths for extrasolar planets, and the
field strengths of super-Earth cores may not scale simply as Ω1/2. We utilize model
predictions for the mass loss rates of the two planets, which may vary by a factor
of a few depending on our starting assumptions. Nevertheless, our fiducial values
indicate that the stellar magnetic field is expected to be predominantly radial at the
positions of both planets, with a significant tangential component pointing opposite
the orbital direction. They also suggest that the stellar wind will have a significant
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effect on the shape of the outflow, in good agreement with our 3D models. Lastly,
they indicate that the interplanetary magnetic field may influence the the outflow
at the relatively large separations probed by our Ly𝛼 observations, and that the
planetary magnetic field likely has a negligible effect.

Radiation pressure

Our outflow models also neglect to consider the effect of radiation pressure. This
effect has been invoked to explain detections of highly blueshifted Ly𝛼 absorption
for multiple planets (e.g. Vidal-Madjar et al. 2003; Ehrenreich et al. 2012; Bourrier
et al. 2014). However, we do not expect radiation pressure to be important in the HD
63433 system. Since the radiation pressure comes predominantly from Ly𝛼, which is
strongly absorbed by neutral hydrogen, we can calculate the radiation pressure using
the Ly𝛼 flux inferred from observations. Assuming that all species are coupled, we
find that 𝑃r𝑎𝑑 = 𝐹𝐿𝑦𝛼/𝑐 = 9 × 10−8 dynes/cm2 at the semimajor axis of planet c.
We compare this to the stellar wind ram pressure, 𝑃w𝑖𝑛𝑑 = ¤𝑀𝑣/(8𝜋𝑎2) = 4 × 10−6

dynes/cm2. The ratio between the two is 𝑃w𝑖𝑛𝑑/𝑃r𝑎𝑑 = 45. Since both pressures
scale as 𝑎−2, this ratio is the same for planet b. The stellar wind ram pressure is
the lowest pressure that exists in our simulation. The total pressure is higher in
the interaction region between the wind and the planetary outflow, and continues to
increase as we move closer to the planet. As a result, radiation pressure is even less
important in altering the hydrodynamics.

One might wonder if the ion-neutral collision cross section is high enough for
the hydrodynamic assumption to be valid. For collisions between H and H+,
⟨𝜎𝑣⟩ = 3 × 10−9 cm3 s−1 (Draine 2011, their Table 2.1). Assuming a v that
corresponds to 104 K and a characteristic length scale of 𝑅𝑝, the hydrodynamic
assumption corresponds to 𝜌 >∼ 10−18 g cm−3. This density condition holds true
for almost the entirely of the planetary outflow from both planets, although it begins
to break down for c in the region outside the stream lines and the low-density interior
of the extended tail. The proton-proton collision cross section is substantially larger,
and imposes a less limiting condition of 𝜌 >∼ 10−20 g cm−3. Our conclusions—
that the hydrodynamic condition is mostly satisfied, and that radiation pressure
is unlikely to significantly affect the photoevaporative winds—agree with those
of Debrecht et al. (2020), who used a 3D hydrodynamic simulation to study the
outflow from the hot Jupiter HD 209458b. However, we note that the hydrodynamic
condition is not satisfied in the stellar wind in either our simulation or Debrecht et al.



248

(2020), and that more sophisticated modelling would be useful for the interaction
region between the stellar wind and the planetary outflow.

6.8 Conclusion
In this study we use HST and Keck to look for escaping hydrogen and helium from
two mini Neptunes orbiting a young solar analogue. We detect 11.5 ± 1.5 % Ly𝛼
absorption in the blue wing during a transit of planet c, but not during a transit of
planet b. We do not detect excess helium absorption during transits of either planet,
to a stellar-variability-limited upper limit of ∼0.5%. We use near-contemporaneous
XMM-Newton data to characterize the stellar high-energy environment during our
Ly𝛼 and helium observations, and combine these observations with ground-based
optical monitoring data and archival ROSAT data to constrain the long-term stellar
activity cycle. We use the measured stellar X-ray spectrum and an extrapolated
extreme UV spectrum as inputs to 3D hydrodynamic models of hydrogen- and
helium-rich planetary outflows, which we compare to the observational data.

For c, our hydrogen-rich models provide a reasonable match to the measured shape
and depth of the transit light curve in the blue wing of the Ly𝛼 line. Similarly,
their predictions for the magnitude of absorption in the metastable helium line are
consistent with our upper limit for this planet. However, the observed blue wing
absorption is less compact in velocity space than the simulated absorption. We
speculate that this might be due to charge exchange with the stellar wind, which
is difficult to model accurately with our hydrodynamic model, but which Tremblin
& Chiang (2013) concludes can cause 10% Ly alpha absorption at 100 km/s. In
addition, our models do not account for the effects of magnetic fields. While
the effect of the planetary magnetic field on the outflow is likely negligible, the
interplanetary field could play a subdominant role in confining and guiding the
outflow beyond ∼ 10𝑅𝑝.

Our observations and models both suggest that planet b is fundamentally different
from planet c. Our models predict that if planet b hosts a hydrogen-rich atmosphere
it should also exhibit strong Ly𝛼 absorption during transit, but this is definitively
ruled out by our observations. Our models also predict a detectable metastable
helium absorption signal from planet b, which is inconsistent with our observational
upper limit. The predicted mass loss timescale for planet c is longer than the age of
the system, but the corresponding mass loss timescale for planet b is significantly
shorter. This implies that c could have retained a primordial H/He atmosphere, while
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b probably does not. If b is a rocky core, it would have to be unusually massive,
but a water-rich composition with a high mean molecular weight atmosphere could
explain both the radius and the Ly𝛼 non-detection. Fortunately, HD 63433 is a bright
nearby star, and its planets are favorable targets for atmospheric characterization by
HST and JWST . If planet b does host a hydrogen-dominated atmosphere, it may have
detectable absorption from water and other molecules in its infrared transmission
spectrum. If b hosts a high molecular weight atmosphere, detecting it in outflow
may still be possible by looking at metal FUV lines (Garcia Muñoz et al., 2021).

Software: numpy (van der Walt et al., 2011), scipy (Virtanen et al., 2020), matplotlib
(Hunter, 2007), stan (Stan Development Team, 2018), stistools, SAS, HEAsoft
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6.10 Appendix
In the published paper, we will make publicly available the reconstructed stellar
spectrum, the reduced observations in both Ly𝛼 and helium, and the 1D profiles
from our hydrodynamic model.
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6.11 Alternate analyses of Ly alpha data
The fiducial analysis reported in the previous subsection was performed by the first
author (Michael Zhang, MZ). Two other analyses were performed by two co-authors
(Luca Fossati, LF and Leonardo dos Santos, LDS) using independent pipelines, and
with no communication other than agreeing on a common velocity range in which
to look for absorption: [−140,−10] km/s in the blue wing, [100,200] km/s in the
red.

In LDS’s analysis, he leveraged the time tag stream of events in the raw datasets to
break down each HST orbit into ten subexposures to improve the temporal resolution
of the time series. The subexposures are then reduced using calstis with its
default settings. In order to correct for telescope breathing, he calculated the total
flux between 1200-1248 Å (excluding the geocoronal contamination range) for each
subexposure, and subsequently phase-folded the flux time-series to the orbital period
of the space telescope (𝑃HST = 95.42 min). He tried to correct for the breathing
effect by fitting this time series to a Fourier decomposition model for the systematic
modulation with varying degrees and period equal to that of HST . This is the same
approach used by Bourrier et al. (2017a) and references therein. For both visits of
planet b, and the first visit of c, a first degree systematics model is favored over
higher degree models and no systematics models by a ΔBIC > 10. A model with
no systematics is favored for the second visit of c, since higher degrees do not
significantly improve the BIC statistic. The uncertainties are calculated assuming
that the observations are in the Poisson counting regime (see dos Santos et al.
(2021)). LDS did not correct for potential modulation due to stellar activity, which
is expected for young stars, in this analysis. This is very difficult to do without
simultaneous observations at other wavelengths.

In LF’s analysis, he first considered the calibrated 2-dimensional spectra providing
information on the photon arrival time (“_tag.fits” files) and split each HST ob-
servation into 5 sub-exposures of equal exposure time. From each sub-exposure
image, he extracted the stellar spectra using a slanted rectangular extraction box
with an aperture of 40 pixels and the background employing an identical extraction
box, but shifted upwards by 130 pixels. He then removed the relative background
from the stellar spectra, phased each sub-exposure with HST’s orbit, and tried to
correct for the breathing effect. To do this, he excluded the observations obtained
during the first HST orbit of each visit, because the first HST orbit is notoriously
affected by additional systematics. He modelled the breathing effect separately for
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each HST visit as a polynomial of varying order, selecting the one that minimizes
the Bayesian Information Criterion: BIC = 𝜒2 + 𝑘 log 𝑁 , where 𝑘 is the number of
free parameters and 𝑁 is the number of data points. For the first and second visit
covering the transit of planet b, he described the breathing effect with a second and
third order polynomial, respectively, while for the first and second visit covering the
transit of planet c, he described the breathing effect with a second and first order
polynomial, respectively. For each HST visit, which was characterised by a distinct
shape for the breathing effect, he applied the same correction to the Ly𝛼 fluxes for
the blue and red wings.

All three authors found that breathing corrections do not significantly or consistently
reduce the scatter of the orbit-averaged fluxes. MZ considered these corrections in
his preliminary analyses but did not feel that they were justified. LF found that his
corrections have virtually no effect on the blue wings, but reduce the scatter in the
red wing of planet b and increase the scatter in the red wing of planet c. LDS finds
that his corrections marginally increase the scatter for both wings of planet c, but
marginally decrease the scatter for both wings of planet b. Given these results, we
decided to exclude breathing corrections from the fiducial analysis presented in this
study.

Figure 6.15 compares the light curves from the three analyses, all of which are
shown with no breathing correction. The results are largely consistent, although we
find that the fiducial analysis has a lower average scatter than the others. All three
analyses show clear blue wing absorption during the transit of planet c. All three
analyses find no evidence for absorption in either wing during the transit of b. The
fiducial analysis shows tentative red wing absorption from c while the other two do
not. This difference may be due to the significantly higher standard deviation in the
light curves from the two alternative analyses (2.8% vs. 7.9% for LDS and 8.0% for
LF). The conclusions above do not change when the fiducial analysis is compared
to the breathing-corrected versions of LF’s and LDS’ analyses (Figure 6.16).
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Figure 6.15: Comparison of independent analyses by MZ, LDS, and LF. The blue
wing light curves are shown on the left, and the red wing light curves are shown
on the right. Planet c is shown in the top panel, and planet b is shown in the
bottom panel. The duration of the white-light transit is indicated by the grey shaded
region. We exclude the data from the failed second observation of planet b in this
comparison.
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Figure 6.16: Same as Figure 6.15, but breathing corrections are included in the LF
and LDS analyses. The fiducial analysis remains the same.
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C h a p t e r 7

ESCAPING HELIUM FROM TOI 560.01, A YOUNG MINI
NEPTUNE

Michael Zhang, Heather A. Knutson, Lile Wang, Fei Dai, and Oscar Barragán.
Escaping Helium from TOI 560.01, a Young Mini-Neptune. AJ, 163(2):67,
February 2022. doi: 10.3847/1538-3881/ac3fa7. M.Z. conceived the project,
wrote the observing proposals, obtained the data, carried out the data analysis
and the 1D simulations, and wrote the paper.

7.1 Abstract
We report helium absorption from the escaping atmosphere of TOI 560.01 (HD
73583b), a 𝑅 = 2.8𝑅⊕, 𝑃 = 6.4 d mini Neptune orbiting a young (∼600 Myr)
K dwarf. Using Keck/NIRSPEC, we detect a signal with an average depth of
0.68 ± 0.08% in the line core. The absorption signal repeats during a partial transit
obtained a month later, but is marginally stronger and bluer, perhaps reflecting
changes in the stellar wind environment. Ingress occurs on time, and egress occurs
within 12 minutes of the white light egress, although absorption rises more gradually
than it declines. This suggests that the outflow is slightly asymmetric and confined
to regions close to the planet. The absorption signal also exhibits a slight 4 km/s
redshift rather than the expected blueshift; this might be explained if the planet
has a modest orbital eccentricity, although the radial velocity data disfavors such
an explanation. We use XMM-Newton observations to reconstruct the high energy
stellar spectrum and model the planet’s outflow with 1D and 3D hydrodynamic
simulations. We find that our models generally overpredict the measured magnitude
of the absorption during transit, the size of the blueshift, or both. Increasing the
metallicity to 100× solar suppresses the signal, but the dependence of the predicted
signal strength on metallicity is non-monotonic. Decreasing the assumed stellar
EUV flux by a factor of 3 likewise suppresses the signal substantially.

7.2 Introduction
There is a growing body of evidence suggesting that atmospheric mass loss dramat-
ically shapes the population of close-in exoplanets detected by transit surveys. This
population is dominated by planets with radii between 1 − 4 R⊕ (‘sub-Neptunes’),
which have no solar system analogue. Smaller sub-Neptunes (1 − 1.7 Earth radii)
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appear to have Earth-like bulk compositions and are commonly referred to as ‘super
Earths,’ while larger sub-Neptunes (2 − 3 Earth radii) are called ‘mini Neptunes’
and have low bulk densities indicating the presence of volatile-rich envelopes that
typically constitute a few percent of their total mass. The two populations are sep-
arated by a gap in the radius distribution where few planets reside (Fulton et al.,
2017; Fulton & Petigura, 2018). Sub-Neptunes are challenging to characterize, but
new telescopes, observing techniques, and numerical models are opening up this
frontier to exploration.

It has been suggested that all sub-Neptunes were formed with hydrogen-rich en-
velopes, which were then stripped away from the most highly irradiated and least
massive planets. For young, low-density planets on close-in orbits, photoevapora-
tion can drive strong hydrodynamic outflows that rapidly remove hydrogen-rich gas
(e.g., Owen & Wu 2017; Mills & Mazeh 2017). However, this mass loss may also be
driven by the newly formed planet’s own internal luminosity (Ginzburg et al., 2018;
Gupta & Schlichting, 2019). An alternate explanation for the radius gap is that it
has nothing to do with mass loss, but is instead because cores have a broad mass
distribution, with the smaller cores having never accreted gas in the first place (Lee
& Connors, 2021). It is also possible that some mini Neptunes have no hydrogen-
rich envelopes at all, but instead formed with substantial water-rich envelopes (e.g.
Mousis et al. 2020). This could dramatically change the mass loss rate, especially
that of helium, which would have been already lost to space alongside the primordial
hydrogen.

Empirical measurements of mass loss from young sub-Neptunes provide a critical
test of these competing hypotheses. We expect that mass loss rates will be highest
at relatively early times, when the star’s high-energy flux is enhanced and the planet
is still inflated (Owen, 2019). By searching for evidence of outflows during this
critical early period, we can determine whether or not a young sub-Neptune planet
possesses a hydrogen and helium-rich envelope. When an outflow is detected, it can
be used to test and refine mass loss models, with the eventual goal of developing an
accurate understanding of atmospheric evolution through the planet’s life.

We can search for outflows by measuring the amount of absorption from hydrogen
and/or helium during the transit, but the small size of mini Neptunes makes them
challenging targets for this technique. In a recent study, we obtained the first
measurement of Ly𝛼 absorption from a young mini Neptune, HD 63433c (Zhang
et al., 2021b). This planet is one of two transiting mini Neptunes orbiting a 400
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Myr solar analogue. Our non-detection of similar absorption from HD 63433b
suggests that the inner planet may not possess a hydrogen and helium-rich envelope
at all, in agreement with its shorter predicted atmospheric lifetime. HD 63433 is a
particularly favorable target for Ly𝛼 observations, as it is an active nearby star that
is moving towards us. This results in an unusually high flux in the near blue wing
of the Ly𝛼 line, which is expected to contain most of the absorption signal from the
planet’s escaping atmosphere. To date, Ly𝛼 absorption has only been conclusively
detected for four planets aside from HD 63433c (Vidal-Madjar et al., 2008; Bourrier
et al., 2013; Lavie et al., 2017; Bourrier, V. et al., 2018), all of which are larger than
Neptune.

The metastable helium triplet at 1083 nm can also be used to probe atmospheric
mass loss (Oklopčić & Hirata, 2018; Spake et al., 2018), and has the advantage
of being readily accessible to ground-based observatories. The strength of the
absorption in this line is less than that in Ly𝛼, at most several percent, but this
precision is achievable with many infrared spectrographs. However, observations
in this triplet are largely restricted to planets orbiting active K stars, which have the
optimal UV spectral shape to produce a significant population of metastable helium
(Oklopčić, 2019). To date there have been multiple detections of outflows from
close-in gas giant planets using this line, including the hot Jupiter HD 189733b
(Salz et al., 2018), the inflated Saturn WASP-107b (Spake et al., 2018; Allart et al.,
2019), and the warm Neptune GJ 3470b (Palle et al., 2020). However, helium mass
loss has never been securely detected for planets smaller than 4 𝑅⊕ despite many
attempts (i.e. Kasper et al. 2020; Gaidos et al. 2020; Gaidos et al. 2020; Zhang et al.
2021a,b). Most of these published non-detections are of planets around old and
inactive stars (HD 97658b, 55 Cnc e, GJ 1214, GJ 9857d), and the few observations
of young planets were not very sensitive (K2-100b, K2-25b). We also did not
detect helium absorption from HD 63433c, despite the Ly𝛼 detection. We suspect
that the unfavorable host star type (G5) and underestimated outflow confinement
mechanisms combined to suppress the size of the expected absorption signal in this
line, while the unexpectedly high stellar variability in the 1083 nm line decreased
the sensitivity of our observations.

The Transiting Exoplanet Survey Satellite (TESS) has vastly increased the sample of
small transiting planets that are amenable to atmospheric characterization, including
the aforementioned HD 63433 system. TESS recently identified TOI 560.01 (HD
73583b), a 2.83 ± 0.10 𝑅⊕, 10.1+3.2

−3.0𝑀⊕ planet orbiting a K4V star with a 6.4
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d period (Barragán et al., 2021). This star is young: the SuperWASP project’s
photometry reveals a robustly detected rotation period of 12 days, corresponding
to a gyrochronological age of ∼600 Myr. It is also close by, with a distance of
31.6 pc and a J band magnitude of 7.6. The age and spectral type of the star, the
size of the planet, and the closeness of the system combine to make TOI 560.01
an exceptionally favorable mini Neptune for probing helium mass loss. In addition,
the planet has an outer companion at P=18.9 d with a very similar radius, making
comparative mass loss studies possible.

In this paper, we use Keck/NIRSPEC to measure the helium absorption signal from
TOI 560.01 and XMM to measure the star’s high energy spectrum. We then compare
our helium measurement to predictions from 1D and 3D photoevaporative mass loss
models. We describe the observations in §7.3, our analysis of the data in §7.4, our
reconstruction of stellar properties in §7.5, and our modelling of the outflow in §7.6.
We discuss in §7.7 and summarize our conclusions in §7.8.

7.3 Observations and data reduction
Keck/NIRSPEC
We used Keck/NIRSPEC to observe a full transit of TOI 560.01 on March 18, 2021
UTC and a partial transit on April 19, 2021 UTC (40% of 𝑇14). All observations
were obtained in Y band using the high resolution mode with the 12 x 0.432′′ slit,
resulting in a spectral resolution of 25,000. We used 60 second exposure times, and
adopted an ABBA nod pattern to help subtract background. Because we only used
one coadd per exposure, we achieved a high efficiency of 77% for these observations.
On March 17, the sky was clear and the seeing was 0.6–0.7". We observed 0.7 h of
pre-transit baseline, the 2.1 h transit, and 0.6 h of post-transit baseline. We achieved
a typical SNR of 170 per spectral pixel in one 60 second exposure. On April 18,
the seeing was better (0.5” at both beginning and end of night), but there were
sporadic cirrus clouds which caused large fluctuations in the water column density.
We observed 1.9 h of pre-transit baseline and 0.8 h of transit before the target sank
too low to observe. On this second night, we achieved a higher average SNR of 200
per spectral pixel, but with more weather-induced variability.

We calibrated the raw images and extracted 1D spectra for each order using a custom
Python pipeline designed for the upgraded NIRSPEC. The pipeline is described in
detail in Zhang et al. (2021a), but we summarize it here, along with the target-specific
differences in our reduction for TOI 560. First, the pipeline subtracts crosstalk from
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each raw frame. Then, it calibrates the raw frames by computing a master flat,
identifying bad pixels in the process. It uses the master flat to compute a calibrated
A-B difference image for each A/B pair. The spectral trace containing the 1083
nm line (spanning 10,803–11,008 Å) is identified, and we perform optimal spectral
extraction to obtain spectra along with their errors. A template is computed from
a model stellar spectrum and model tellurics, with the stellar spectrum shifted in
wavelength to account for the star’s average Earth-relative radial velocity during that
night. We use the template to derive the wavelength solution for each individual
spectrum.

After extracting the 1D spectra, we remove tellurics. In Zhang et al. (2021a), we did
this by running SYSREM, which can be thought of as Principal Component Analysis
with error bars (Mazeh et al., 2007). However, we have subsequently found that
while SYSREM performs excellently in removing tellurics, it also removes half
the planetary signal unless the planet, like 55 Cnc e, undergoes extreme radial
acceleration during the observation (Zhang et al., 2021b). Furthermore, due to
an unfortunate coincidence, a strong telluric water line falls right on top of the
helium line during both nights of our observations. We therefore opted for a more
conservative and physically motivated telluric removal method. We used molecfit
(Smette et al., 2015), which models tellurics using a meteorological model for
Earth’s temperature-pressure profile at the time and place of observation, but allows
the user to fit for the rapidly varying water column density. We fit for the water
column density using narrow wavelength ranges containing strong telluric lines
while avoiding any stellar lines. We also fit for the continuum with a line. The line
spread profile is fixed to a Gaussian with a FWHM of 3.5 pixels, a value we settled
upon after several fits to different spectra (with the FWHM as a free parameter)
converged upon similar values. 3.5 pixels is close to the theoretical value of 3 pixels
for the slit we used. After fitting the water lines, molecfit produces a telluric
corrected spectrum across the full wavelength range of the order containing the
helium line, which we adopt for the rest of the analysis.

Having obtained wavelength calibrated and telluric corrected spectra, we interpolate
all spectra onto a common wavelength grid with a uniformly logarithmic spacing of
𝜆/110, 000 and a range of 10,810–10,850 Å. We remove fringing by applying a notch
filter twice, using exactly the same parameters described in Zhang et al. (2021a).
We divide each spectrum by the continuum, take the logarithm of the entire spectral
grid, and subtract the mean of every row and column from that row and column.
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This results in a residuals grid: a 𝑁𝑜𝑏𝑠 × 𝑁𝑤𝑎𝑣 grid of numbers representing the
relative deviation of a pixel from the mean for that row and column. For every
column (wavelength), we subtract the mean of the out-of-transit part of the residuals
image for that column; we then invert the residuals image. The residuals image now
gives excess absorption relative to the out-of-transit baseline. However, there are
continuum variations that cause structure in this image. We mask out the helium
line, mask out the strong lines because optimal extraction performs poorly with them
Zhang et al. (2021a), fit a 3rd order polynomial to each row (epoch) with respect to
wavelength, and subtract off the polynomial.

XMM-Newton
On April 21, XMM-Newton measured the star’s X-ray and MUV spectrum, which
are crucial for modeling photoevaporative mass loss and predicting the metastable
helium population. We observed the system for a total of 13 ks as part of XMM
prop. ID 088287 (PI: Michael Zhang). We configured the EPIC cameras to observe
with the medium filter and small window, giving us 97% observing efficiency on
the two MOS CCDs and 71% efficiency on the one pn CCD. We configured the
Optical Monitor to observe the star in the UVM2 filter (231 ± 48 nm) for 7.2 ks
and the UVW2 filter (212 ± 50 nm) for 4.4 ks. Although these observations are not
simultaneous with the helium mass loss observations, they were taken a month after
the first helium observation, a short time compared to typical stellar activity cycles.

To analyze XMM-Newton data, we download the raw Observation Data File (ODF)
and use the Science Analysis System (SAS) provided by the XMM-Newton team
to reduce it. We run xmmextractor, to obtain spectra from the ODF with default
settings. For the Optical Monitor, SAS reports the count rate in the UVW2 and
UVM2 filters, the two mid ultraviolet filters we selected. For each of the three EPIC
detectors, SAS generates the light curve and the background-subtracted spectrum.

For the pn detector, we find that the automatic reduction by xmmextractor leads to
significantly negative fluxes at 0.23–0.28 keV, which is unphysical. Therefore, we
use SAS to manually reduce the pn data by defining the source region as a circle
17.5′′in radius, and the background region as an annulus centered on the source with
an inner radius of 20′′and an outer radius of 35′′. Defined in this way, the spectrum
no longer has significantly negative fluxes around 0.25 keV.
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Figure 7.1: Percent excess absorption from TOI 560.01 as a function of time and
wavelength, for the first (left panel) and second (right panel) nights of observation.
The dashed white line indicates the beginning of the white light transit, while the
solid white line indicates the end. The red lines show the wavelengths of planetary
helium absorption. At 10,830 Å is a deep stellar Si I line, which, like other strong
lines, we mask as part of our analysis because optimal extraction deals poorly with
very strong lines (Zhang et al., 2021a).

7.4 Analysis of helium transit observations
Figure 7.1 shows the excess absorption in the 1083 nm metstable helium triplet as a
function of time and wavelength, for both nights of observation with Keck/NIRSPEC.
To compute the excess absorption, we adopt a baseline that includes all pre-ingress
spectra and (for the first night) all spectra taken more than 12 minutes after egress.
Ingress and egress are computed purely based on the white light ephemeris. Figure
7.2 shows the band-integrated light curve for each night in the helium line. We
detect strong absorption starting from the white light ingress, reaching a maximum
of 1.7% half an hour after the midpoint of the white light transit, and declining
quickly after white light egress. The excess helium absorption begins on time on
both nights, but ends ∼10 min late on the first night, the only night we captured
the egress. The band-integrated excess absorption is ∼0.7%, and the equivalent
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Figure 7.2: Light curve of the helium line (top) in a 1.5Å bandpass centered on
10833.27Å. The dashed black line marks the beginning of the white light ingress,
while the solid black line marks the end of white light egress. We overplot the
predicted light curves from the fiducial and best fit Microthena models as solid
black and grey lines, respectively. We rescale the amplitude of the fiducial model
light curve by a factor of 0.4 to match the amplitude of the observed signal.

Figure 7.3: Excess absorption spectrum from the full transit observation on night 1,
plotted in the planetary frame.
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Figure 7.4: Excess absorption spectrum for each third of the transit on night 1.
Wavelengths are in the planetary frame.

Figure 7.5: Comparison of the excess absorption spectrum on both nights, averaged
over only the in-transit phases observed on night 2 (first 40% of transit).

width of the planetary absorption is 7± 0.4 mÅ. The absorption spans at least 1.5Å,
corresponding to a velocity spread of 40 km/s—far higher than the escape velocity
from the planetary surface of 15 km/s, or the escape velocity from the approximate
helium absorption radius (∼ 4𝑅𝑝) of 7.5 km/s. This shows that the atmosphere is
escaping, because velocity dispersion is the only significant broadening mechanism:
natural broadening is of order 0.01 km/s, the equatorial rotational velocity of the
planet is 0.2 km/s, and pressure broadening is ∼10−11 km/s at picobar pressures
because it is ∼10 km/s at atmospheric pressure (Niermann et al., 2010). For un-
known reasons, the helium flux rises by 0.2% right before ingress on the first night.
Since we do not see the same brightening on the second night, and since there is no
plausible way the planetary outflow can cause the star to brighten before the transit,
we attribute this brightening to stellar activity. The helium line is well known to
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be a tracer of chromospheric activity, which is more intense in younger stars. In
previous observations we monitored the young G5 star HD 63433 for two nights,
and saw >∼ 0.2% variability on both nights (Zhang et al., 2021b).

In Figure 7.3, we examine the wavelength-dependence of the transit-averaged excess
absorption signal from the first night. We find that it is redshifted by∼ 0.14 Å relative
to the radial velocity of the planet, corresponding to a velocity of ∼4 km/s. The 1D
absorption spectrum peaks at 0.68 ± 0.08% and declines quickly in the red wing
but slowly in the blue wing, consistent with gas being pushed towards the observer
by radiation pressure or stellar wind. This extended tail of blue-shifted absorption
is similar to that observed for WASP-107b (Allart et al., 2019), a planet with a
far more extended egress in the integrated helium light curve. In Figure 7.4, we
divide the transit into thirds and show the excess absorption spectrum for each third.
Consistent with the other plots, there is slightly redshifted absorption in each part,
with the final third having much stronger absorption than the first third.

In Figure 7.5, we compare the excess absorption spectrum for the two nights averaged
over the in-transit phases observed on the second night. We find that the absorption
observed on the second night appears slightly stronger and more blueshifted than
it did during the equivalent time window on the first night. The two nights are
otherwise consistent. To quantify the significance of the differences between the
two nights, we used nested sampling as implemented by dynesty (Speagle, 2020)
to fit a Gaussian to the excess absorption spectra plotted in Figure 7.5, with 3 free
parameters: amplitude, standard deviation, and mean. We find a mean position of
10833.06 ± 0.15 Å on night 1 and 10, 832.70 ± 0.06 Å on night 2, a difference of
0.36± 0.16 Å (10± 4 km/s in velocity space). The amplitude was 0.22± 0.04% for
night 1 and 0.40±0.04% on night 2, for a difference of 0.18±0.06%. These statistical
tests confirm what visual inspection shows: on night 2, the helium absorption was
marginally stronger and marginally bluer. Further observations are necessary to
determine whether this variability is due to underestimated error bars, a consequence
of poorly understood stellar variability, or a change in the properties of TOI 560.01’s
outflow.

On the second night of observation, the stellar helium line was slightly narrower
(by 8%) than on the first night, but of indistinguishable depth (to within 1.5%) and
position (to within 0.5 km/s). Minor differences in the stellar line do not affect
our results for the planetary excess absorption, which is computed by comparing
in-transit and out-of-transit spectra on the same night.
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Possible causes of the observed redshift
The redshifted absorption peak seen during the first night (Figure 7.1 and 7.3) is
unusual. Aside from HAT-P-32b (Czesla et al., 2021), none of the gas giant planets
with spectrally resolved helium observations have exhibited a similar redshift (e.g.,
Salz et al., 2018; Allart et al., 2019; Palle et al., 2020), and material flowing away
from the star should appear blueshifted during transit. If the observed redshift is
due to the geometry of TOI 560.01’s atmospheric outflow, it would suggest that
TOI 560.01 has unusual outflow properties, perhaps implying an unexpected weak
stellar wind. However, we must first ascertain whether the apparent redshift is real.

The apparent redshift is unlikely to be due to wavelength calibration uncertainties.
NIRSPEC does experience wavelength drift over the course of a night (Kasper
et al., 2020), but our wavelength calibration is performed independently on every
spectrum, so drift does not affect us. In addition, we computed the wavelength
solutions with an alternate method that uses the median observed spectrum instead
of the theoretical spectrum as a template. Comparing the results, we conclude that
the wavelength solution for each spectrum is accurate to at least 1 km/s.

The apparent redshift is also not due to ephemeris uncertainties. The ephemeris
predicts the transit mid-point on the first night with a 1𝜎 uncertainty of 1 minute,
during which time the planet accelerates by 0.07 km/s. This is much smaller than
the observed redshift of ∼4 km/s. Similarly, uncertainties on the stellar mass and
semimajor axis can only change the acceleration of the planet by ∼ 7%. Since the
planet accelerates from −4.5 km/s to +4.5 km/s during the transit, a 7% change is
insufficient to account for the observed redshift.

The final source of uncertainty is the eccentricity. To obtain the radial velocity of the
planet, we assumed a perfectly circular orbit. However, Mills et al. (2019) used the
transit durations of 1000 Kepler planets, combined with accurate stellar radii from
the California-Kepler Survey and Gaia, to statistically infer typical eccentricities.
They obtained a mean eccentricity of 0.05 for systems with multiple transiting
planets. The star-planet distance changes at a maximum rate of 𝐾𝑝𝑒 where 𝐾𝑝 is
the orbital speed; since 𝐾𝑝 = 102 km/s for TOI 560.01, an eccentricity of 0.05 can
cause an apparent helium signal redshift of up to 5.1 km/s. Barragán et al. (2021)
constrained the eccentricity to 0.10+0.08

−0.07 using a joint fit to the radial velocity and
light curve, which is consistent with both 0 and 0.05. However, their radial velocity
fit results in a planetary radial velocity of −7.4+9.3

−7.0 km/s at mid-transit, which is
in the wrong direction, albeit consistent with a 4 km/s redshift to within 2𝜎. We
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Figure 7.6: Median telluric correction factors inferred by molecfit, for the in-transit
and out-of-transit spectra. The wavelengths of the helium triplet are indicated with
vertical red lines.

are therefore unable to differentiate between a redshift caused by a non-zero orbital
eccentricity and one caused by the geometry of the outflow.

Telluric absorption
As we mention in Subsection 7.3, a telluric water absorption line overlaps with the
red end of the stellar helium line, and we use molecfit to correct for this telluric
absorption. One might wonder whether imperfect telluric correction impacts our
analysis, and in particular, whether it might be the cause of the apparent redshift in
the absorption signal.

Figure 7.6 shows the median correction that molecfit applied to the in-transit and
out-of-transit spectra. Although the total correction was, at maximum, 2%—which
is comparable to the highest excess absorption from the planet—the correction is
nearly identical for the in-transit and out-of-transit spectra, with a difference of only
0.12%. However, the out-of-transit spectra span a larger range of airmass than the
in-transit spectra, so comparing only the median correction factors does not tell the
whole story.

To get a better idea of the effects of telluric correction, we looked at two other
telluric lines redward of the helium line: one with a slightly lower absorption depth
(1.5%), and one with a significantly higher absorption depth (4%). Figure 7.7 shows
the excess absorption spectrum (both 2D and 1D) in the region of wavelength space
around these lines. For both lines, there are no statistically significant features in
either plot. In the 1D spectrum, there does appear to be small (0.1%) dips redward
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Figure 7.7: To explore the effect of telluric correction on the helium signal, which
overlaps with a telluric line, we choose two other telluric lines: one slightly weaker,
and one significantly stronger. We show the 2D excess absorption spectrum in the
stellar frame (top) and the 1D excess absorption spectrum in the planetary frame
(bottom), with the wavelengths of the telluric lines marked in red; the bluer line is
the weaker. These plots are analogous to Figure 7.1 and Figure 7.3.

of both telluric lines. These dips are probably coincidental, but if not, they would
only strengthen our conclusion that the helium absorption is redshifted.

RM and CLV
The Rossiter-Mclaughlin (RM) effect and center-to-limb variations (CLV) plague
high-resolution transit spectroscopy of giant exoplanets. They introduce pseudo-
signals which can be a substantial portion of the helium absorption signal for planets
like HD 189733b (Salz et al., 2018).

The RM effect occurs when the planet or its escaping atmosphere blocks out a
portion of the rotating stellar disk. Because the portion it blocks out has a non-zero
rotational velocity, the star appears to experience a radial velocity change during
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the course of the transit. Combining the radius and rotational period of TOI 560,
we calculate a rotational speed of 2.8 km/s. If escaping atmosphere blocks 0.7% of
the limb, an apparent radial velocity shift of (0.7%)(2.8) = 0.02 km/s is created. To
estimate the effect this has on the excess absorption, we multiply by the maximum
derivative of the relative flux in the vicinity of the helium line, 𝑑𝑙𝑛(𝐹)

𝑑𝑣
= 0.02 km−1

s. We obtain 0.04%, well below the average excess absorption of 0.7%, and below
our noise.

The CLV effect occurs because line centers experience different limb darkening
from the continuum. Standard stellar spectra libraries such as PHOENIX (Husser
et al., 2013) and MARCS (Van Eck et al., 2017) do not model the chromosphere,
and therefore do not include the helium line. Without knowing how the helium line
depth varies across the stellar surface, it is impossible to precisely model the CLV,
but we can do an approximate calculation. de Jager et al. (1966) reported that for
the Sun, the center (𝜃 = 0◦) has a 10833Å line depth of 6% while the edge (𝜃 = 70◦)
has a line depth of 10%. TOI 560 has a much deeper 10833Å line, at 30%. If the
center of the star has a line depth of 20% and the edge has a depth of 40%, when
the escaping atmosphere blocks 1.7% of the center of the stellar disk, the stellar
pseudo-signal would increase the apparent helium signal by (10%)(1.7%) = 0.17%.
This is not negligible, but it is a small fraction of the total signal. It is not possible
under any circumstances for the entire helium signal to be due to CLV because the
white light transit depth is only 0.16%, far smaller than the measured helium signal.

7.5 The star
Age
We estimate the star’s age with gyrochronology. The star has a rotation period of
12.2 ± 0.3 d and a mass of 0.71 ± 0.02𝑀⊙ (Barragán et al., 2021). It has a B-V
color of 1.112±0.001, from the Hipparcos input catalog (Turon et al., 1993). Using
Schlaufman (2010), which relates age to stellar mass and rotation period, we obtain
an age of 635 ± 40 Myr. Using Mamajek & Hillenbrand (2008), which relates age
to B-V color and rotation period, we obtain 540 ± 80 Myr. The error bars for the
first estimate are purely statistical, with no model uncertainty, while the error bars
for the second estimate include the statistical uncertainties of the model parameters.

X-ray observations
We analyzed the XMM data using the approach described in Zhang et al. (2021b),
which we summarize here. We used xspec to fit a model consisting of two com-
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Figure 7.8: X-ray observations. Top: Best fit model spectrum from our XMM EPIC
observations of TOI 560. The total spectrum as observed from Earth (black) is the
sum of a low-temperature component (APEC 1) and a high-temperature component
(APEC 2). Bottom: the data and the folded models, which take into account the
instrumental throughput and line spread function.

ponents of optically thin, collisional plasma in equilibrium. We also tried one and
three components, but found that two components minimizes the Bayesian Infor-
mation Criterion. We show the data and fitted model in Figure 7.8, and list the
corresponding model parameters in Table 7.1. The model is a good fit to the data
for all three EPIC detectors, and the fit parameters are consistent with expectations
for a moderately active star. As discussed in Wood & Linsky (2010) and Zhang
et al. (2021b), coronal metallicities are often lower than the equivalent photospheric
metallicities.
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Table 7.1: Model parameters for XMM-Newton data

Parameter Value
Metallicity 0.60 ± 0.26
kT1 (keV) 0.25 ± 0.03

EM1 (cm−3) 7.3 ± 2.5 × 1050

kT2 (keV) 0.94 ± 0.13
EM2 (cm−3) 2.2 ± 0.7 × 1050

Flux∗ (erg/s/cm2) 1.05 ± 0.06 × 10−13

∗Derived, not a fit parameter. For the range 5–100 Å (0.124–2.48 keV).
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Figure 7.9: Background-subtracted X-ray light curves of TOI 560, recorded by the
three EPIC cameras.

From the model fits, we derive a 5–100 Å flux of 1.05 ± 0.06 × 10−13 erg/s/cm2.
However, the star’s intrinsic variability is likely to be much higher than the reported
precision for this flux measurement. Figure 7.9 shows the light curve measured by
the EPIC detectors during the 12 ks observation. As is typical for X-ray observations
of active stars, the light curve is variable at the 20% level on kilosecond time scales.

Ly𝛼 and EUV
The star’s extreme UV flux (roughly 100–912 Å) is the predominant driver of
photoevaporative mass loss. Unfortunately, no EUV telescopes currently exist, and
strong interstellar absorption makes it difficult to accurately measure EUV flux from
even the closest stars. To obtain the EUV spectrum, we use the scaling relations
of Linsky et al. (2014), which give the EUV flux in 100 Å bins with respect to the
Ly𝛼 flux. Unfortunately, there are also no measurements of the star’s Ly𝛼 flux. To
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compute the flux, we use Linsky et al. (2013), which provides a scaling relation with
respect to the rotation period and another with respect to the X-ray flux, with mean
dispersions of 32% and 22%, respectively. For TOI 560, both scaling relations give
the same Ly𝛼 flux: 18 erg s−1 cm−2 at 1 AU.

MUV
The 1230–2588 Å stellar flux (which we will call “MUV”) ionizes triplet state
helium, but does not contribute to producing it because it cannot ionize hydrogen
or helium. It therefore plays a crucial role in determining the size of the metastable
helium population. To quantify the MUV luminosity, we observed the star in two
MUV filters using XMM-Newton’s Optical Monitor. The Optical Monitor recorded
a count rate of 0.654 ± 0.011 s−1 in the UVM2 filter and 0.565 ± 0.015 s−1 in the
UVW2 filter. Correcting for the minor coincidence losses, we obtain count rates of
0.679 ± 0.011 s−1 and 0.585 ± 0.015 s−1, respectively.

As a starting point for the UV spectrum, we used a PHOENIX model (Husser et al.,
2013) for a star with 𝑇e 𝑓 𝑓 = 4600 K, log(g)=4.5, and [M/H]=0. We then rescaled
this model to reflect the radius of the star, its distance, and the effective areas of
the filters as a function of wavelength, and used it to predict the count rate in each
filter. We obtain 0.41𝑠−1 for UVM2 and 0.45𝑠−1 for UVW2, substantially below the
measured values. To rectify the mismatch, we multiplied the PHOENIX UV flux
(1230–3500 Å) by a factor of 1.67, bringing the predicted count rates (0.677 and
0.586 s−1) into exact alignment with our measurements.

Reconstructed stellar spectrum

Table 7.2: Band-integrated fluxes

Band Wavelengths (Å) Flux at 1 AU (cgs)
X-ray 5 − 100 4.4 ± 2.2
EUV 100 − 912 14 ± 4
Ly𝛼 1214 − 1217 18 ± 4

MUV 1230 − 2588 11 ± 2
Total 5 − 50, 000 2.47 ± 0.13 × 105

Figure 7.10 shows the reconstructed stellar spectrum, while Table 7.2 lists the
corresponding band-integrated fluxes. The error bars on the band-integrated fluxes,
which are very approximate, are computed using the methodology of Zhang et al.
(2021b). We find that the ratio of MUV to XUV (X-ray + EUV) flux for this star
is 0.6, which is relatively low. For the young solar analogue HD 63433, this ratio
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Figure 7.10: Fiducial stellar spectrum used in our mass loss modeling. We bin the
X-ray data for better visibility in this figure. The errors associated with the spectrum
are listed in Table 7.2, and were computed using the methodology of Zhang et al.
(2021b).

is 63 (Zhang et al., 2021b). As expected, K-type stars like TOI 560 have lower
MUV-to-XUV ratios than G stars (Oklopčić, 2019). Low MUV-to-XUV ratios
are more favorable for helium observations because the MUV flux destroys triplet
helium while the XUV flux, although capable of destroying triplet helium, also
ionizes hydrogen and helium. This creates the electrons and ionized helium which
then recombine to produce triplet state helium.

Stellar wind
The stellar wind shapes the planetary outflow by confining it and pushing it away
from the star, creating a Coriolis force that can lead to the formation of a comet-like
tail. However, the density and speed of the solar wind are highly variable with time,
and there are few observational constraints on winds from other stars. To infer the
stellar wind conditions, we rely on Wood et al. (2005), which used astrospheric
absorption to characterize the mass loss rates of a handful of nearby stars. This
absorption occurs where the stellar wind collides with the interstellar medium and
charge exchange creates a population of hot neutral hydrogen, which then absorbs
the stellar Ly𝛼 emission line. In order to translate a measured Ly𝛼 profile into a
mass loss rate, one must accurately model the intrinsic stellar Ly𝛼 emission, the
population of energetic neutral atoms, and the neutral hydrogen of the interstellar
medium along the line of sight, none of which are trivial problems. Despite these
challenges, Wood et al. (2005) were able to use their measured mass loss rates to
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derive a scaling relation with the star’s X-ray flux. We use this relation to obtain an
estimated mass loss rate of 11 times solar for TOI 560. We further assume that the
wind speed is comparable to that of the Sun (400 km/s), and use these values for our
fiducial 3D models described in §7.6.

The mass loss rate we derived is consistent with the new data presented by Wood
et al. (2021) (their Figure 10). However, the new data also shows that among the 7
GK dwarfs with an X-ray flux similar to TOI 560, the range in inferred mass loss
rate per unit surface area is over 200x. This means it is unfortunately impossible to
predict the stellar mass loss rate to even an order of magnitude with any confidence.

7.6 Modeling
We model the outflow using two different hydrodynamic codes: The PLUTO-
CLOUDY Interface (TPCI), a 1D code developed by Salz et al. (2015a); and Mi-
crothena, a 3D code developed by Wang & Dai (2018). Both codes have been
extensively used to study photoevaporation (e.g. Salz et al. 2015b, 2016; Kasper
et al. 2020; Zhang et al. 2021a for TPCI; Wang & Dai 2020, 2021; Zhang et al.
2021b for Microthena). As we discuss below, we view the 3D simulations as a more
accurate predictor of the observed helium signal during transit, because photoevapo-
ration is fundamentally a 3D problem. Different areas of the planet receive different
stellar irradiation levels, and the stellar wind cannot be ignored for young and active
stars. Nevertheless, we find it useful to run both models for two reasons. First, 1D
models much simpler than TPCI are widely used to interpret helium observations,
most commonly variants of the Parker wind model proposed by Oklopčić & Hirata
(2018) (e.g. Kasper et al. 2020). By running both 1D and 3D models for TOI
560.01 and comparing their predictions, we can evaluate the magnitude of the error
introduced by assumptions of radial symmetry for this planet. Second, there are
aspects of the problem that TPCI handles better than our 3D models, which must
use a simplified physics framework in order to remain computationally tractable. In
particular, Microthena divides radiation into just seven energy bins and only com-
putes atomic line cooling from a small number of species, while TPCI propagates
the entire continuum and computes line cooling from all neutral and ionized species.
We therefore take advantage of TPCI’s sophisticated radiative transfer to explore
the qualitative effects of increasing metallicity (up to 100× solar) on the absorption
signature. This is a topic that has been relatively unexplored in the literature to date,
but TOI 560.01’s small size and high bulk density mean that it could easily host a
metal-rich atmosphere.
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1D TPCI models
TPCI is a combination of two sophisticated and widely used codes: the hydrody-
namic solver PLUTO (Mignone et al., 2007), and the plasma simulation and spectral
synthesis code CLOUDY (Ferland et al., 2013). CLOUDY computes the equation
of state and heating and cooling rates and provides these to PLUTO; PLUTO evolves
the fluid using the Euler equations and provides the new conditions to CLOUDY,
restarting the cycle.

We set up the simulations following the methodology of Zhang et al. (2021a), which
in turn is based on the methodology of Salz et al. (2015b). Briefly, we set the lower
boundary condition at a radius of 2.9 𝑅⊕, a particle number density of 1014 cm−3, and
a pressure computed from the number density and a pressure of 𝑃 = 𝑛𝑘𝐵𝑇𝑒𝑞 = 10.2
dynes/cm2 (assuming 𝑇𝑒𝑞 = 740 K). The planetary mass is fixed at 9 𝑀⊕, derived
from the mass-radius relation of Chen & Kipping (2017) and consistent with the
RV-measured mass of 10.06+3.24

−2.98𝑀⊕. The stellar spectrum is derived in Section
7.5. In Zhang et al. (2021a), we did not include any metals or molecules; here, we
continue to neglect molecules, but include metals with a solar abundance greater
than 10−5: C, N, O, Ne, Mg, Si, S, Fe. For our four simulations, the abundances
of these metals are scaled from solar by a factor of 1, 10, 30, and 100, and the
mean molecular weight is adjusted accordingly. At Z=1, hydrogen makes up 92%
of the atoms, helium 8%, and the metals less than 0.1%. By weight, the ratios are
74%, 25%, and 1.3%. At Z=100, even though the metals comprise only 9% of the
atoms, they comprise 57% of the mass; hydrogen and helium are only 32% and
11%, respectively. At this metallicity, hydrogen and helium become minor species
by mass.

We evolve each simulation for at least 100 time units without advection, where 1
unit is approximately the sound crossing time of 𝑅𝑝/(10 km/s). We then evolve the
simulation for at least 10 time units with advection turned on (100 units for Z=1,
10, and 30), at which point we perform a visual inspection to ensure convergence
has been reached. We use the conditions at the last timestep to compute the helium
absorption depth. Since the outflow is 3D and we only simulate the substellar
point, we must rescale the model predictions to approximate the 3D geometry.
Stone & Proga (2009) showed that the mass loss rate is higher by a factor of 4 in
the spherically symmetric simulation, and we therefore adopt this as our rescaling
factor, as was done by Salz et al. (2016). We implement the rescaling by dividing
both the velocities and the densities by two, because this gives a helium line width
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comparable to the observed width. Given that photoevaporation is inherently a 3D
process, there is no “right” way to obtain a transit spectrum from a 1D simulation.

Figure 7.11 shows how the the resulting excess absorption spectrum varies as a
function of metallicity, while Table 7.3 list the mass loss rate, peak absorption,
and equivalent width of the absorption. Despite our rescaling to account for 3D
effects, we find that our 1D models systematically overpredict the measured helium
absorption signal, which peaks at 1.7%. The model with a metallicity of 100×
solar has the weakest predicted helium absorption signal. However, Figure 7.11
shows that the predicted helium absorption signal does not decrease monotonically
with increasing metallicity. In fact, the helium signals for the 10× and 30× solar
metallicity models are stronger than for the solar metallicity model. The mass loss
rate follows a similar pattern: we obtain 0.32, 0.42, 0.37, and 0.13 𝑀⊕/Gyr for the
1×, 10×, 30×, and 100× metallicities, respectively. The velocity at the edge of
our simulation (15 𝑅𝑝) decreases with increasing metallicity, from 29 km/s to 20
km/s, while the location of the sonic point increases slightly with metallicity, with
a minimum value of 2.5 𝑅𝑝 at Z=1 and a maximum value of 3.1 𝑅𝑝 at Z=100. The
density is fairly similar: 50% higher for Z=10 and 30 than for Z=1, 40% lower for
Z=100 than for Z=1.

While the density in the far regions is similar between the 1× and 100× solar
metallicity models, 𝑛𝑒 is 2.5× lower in the 100× solar model, while 𝑛H𝑒𝐼 𝐼 is 6×
lower. Since triplet helium is primarily produced by recombination at a rate of
𝑛𝑒𝑛H𝑒𝐼 𝐼𝛼 and destroyed by photoionization, and the recombination coefficient 𝛼 is
a factor of two lower in the higher metallicity case due to the higher temperature
(Pequignot et al., 1991), one would expect the triplet helium density in the outer
regions to be 30× lower—in approximate agreement with the TPCI models. We
ascribe the low 𝑛𝑒 at high metallicity to the lower mass density, and to the lower
number of easily ionizable electrons per unit mass. For example, if we define easily
ionizable as having an ionization energy smaller than 54 eV (the second ionization
energy of helium), hydrogen and helium have 1 easily ionizable electron per amu,
carbon has 0.25, neon has 0.1, and iron has 0.07. The lower 𝑛H𝑒𝐼 𝐼 at high metallicity
is due to a combination of helium being less abundant (11% by mass vs. 25%)
and the second-ionized fraction being higher (77% vs 56%), leaving fewer helium
atoms in the singly ionized state. The latter, in turn, is due to a combination of 𝑛𝑒
being 2.5× lower, and the temperature-dependent helium recombination coefficient
being a factor of two lower. In short, helium absorption drops dramatically at high
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Figure 7.11: Excess absorption spectrum (top), triplet helium number density (mid-
dle), and temperatures (bottom) predicted by TPCI as a function of metallicity.
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Figure 7.12: Cooling and heating. Top row: radiative cooling (left panel) and
radiative heating (right panel) contributions for our 1D solar metallicity TPCI model.
Bottom row: cooling (left panel) and heating (right panel) contributions for our 100×
solar metallicity TPCI model. The labels are as provided by TPCI. For cooling, a
label like O 3 5007.0 means the OIII line at 5007Å. For heating, a label like O 3
means photoionization of OIII, while “line” refers to line heating. While hydrogen
and helium are dominant in both heating and cooling at Z=1, a variety of metals in
a variety of ionization states dominate heating and cooling at Z=100.

metallicities largely because metals begin dominating hydrogen and helium by mass,
but also due to changes in heating and cooling rates.

The temperature profile is governed by the equation of energy conservation (Murray-
Clay et al., 2009):

𝜌𝑣
𝜕

𝜕𝑟

[ 𝑘𝑇

(𝛾 − 1)𝜇

]
=
𝑘𝐵𝑇𝑣

𝜇

𝜕𝜌

𝜕𝑟
+ Γ + Λ, (7.1)

where the left-hand term represents advection and the three right-hand terms rep-
resent adiabatic cooling, radiative heating, and radiative cooling. We plot all four
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Figure 7.13: Comparison of the four terms of the energy conservation equation
(Equation 7.1). The advection term switches sign, so we plot the absolute value.
The oscillations in the Z=100 plot are numerical artifacts. The radiative heating and
cooling terms are further dissected in Figure 7.12.
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terms in Figure 7.13 for the Z=1 and Z=100 simulations. At Z=1, adiabatic cooling
is more important than radiative cooling at nearly all radii; at Z=100, radiative
cooling is more important than adiabatic below 4 𝑅𝑝.

We plot the radiative heating and cooling rates in Figure 7.12, which reveals a
complex interplay between different processes. In the solar metallicity model,
cooling is dominated by free-free emission below 1.6 𝑅𝑝, hydrogen line emission
between 2 and 2.9 𝑅𝑝, and recombination after 3.5 𝑅𝑝. Metal cooling still matters
in this model—Fe II compromises 30% of cooling from 1.6–2.0 𝑅𝑝 and 2.9–3.4 𝑅𝑝,
for example—but hydrogen is clearly the most important coolant. As the metallicity
increases, metals become more and more prominent coolants. The cooling in
the 100× solar metallicity model is dominated by a diverse array of metal lines,
including Na I, Ca II, Mg II, O III, and Fe VI, among many others. In the solar
metallicity model, the heating at radii beyond 1.3 𝑅𝑝 is dominated by a combination
of photoionization of HI, HeI, and (beyond 9 𝑅𝑝) HeII; below 1.3 𝑅𝑝, it is dominated
by a combination of line heating and photoionization of metals like Si I. The same
pattern holds for the 10× solar metallicity model. At a metallicity of 30× solar, HI
photoionization is only the most significant heating contribution from 1.9 to 4.5 𝑅𝑝.
At a metallicity of 100× solar, it is only the most significant contributor from 1.7 to
2.4 𝑅𝑝, with a diverse array of metals in various ionization states (like O II and Si
I) dominating at larger radii.

These changes in heating and cooling cause changes in the temperature profile
shown in Figure 7.11. In the solar metallicity model, the temperature profile peaks
at 2.49𝑅𝑝 and 10,000 K, declining to 2800 K at 15𝑅𝑝. As the metallicity increases,
the peak moves to lower temperatures and larger radii, while the temperature in
the outer regions increases. By the time the metallicity reaches 100× solar, the
temperature peak has become more of an asymptote, as the temperature rises to
8000 K at 6 𝑅𝑝 and then stays nearly constant beyond that point. Consistent with
this behavior, the total non-adiabatic cooling is significantly lower than the total
heating in the solar metallicity model, but the two become comparable in the outer
regions (> 6𝑅𝑝) in the highest metallicity model.

3D Microthena hydrodynamic models
Our 3D models utilize the approach outlined in Wang & Dai (2018), Wang & Dai
(2020), and Zhang et al. (2021b), which combines ray-tracing radiative transfer, real-
time non-equilibrium thermochemistry, and hydrodynamics based on the higher-
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order Godunov method code Athena++ (Stone et al., 2020). As in Zhang et al.
(2021b), we perform radiative transfer by dividing photons into seven energy bins for
the ray-tracing calculation: 1.4, 7, 12, 16, 47, 300, and 3000 eV, meant to represent
IR/optical/NUV, FUV, Lyman-Werner photons (which photodissociate molecular
hydrogen), soft EUV, hard EUV, soft X-rays, and hard X-rays, respectively.

We first run the model for the fiducial parameters: a planet mass of 9 𝑀⊕ (consistent
with the RV mass and mass-radius relation) and radius 2.9 𝑅⊕, the stellar spectrum
derived in Section 7.5, a solar metallicity atmosphere, and a stellar wind with a
solar velocity (400 km/s) and an 11× solar mass loss rate (see Section 7.5). We
then selectively vary every parameter except the planet mass in an attempt to find a
best fit model. Microthena takes about one day to run a model on a GPU cluster, so
running more than a handful of models is infeasible.

The top panel of Figure 7.14 shows the predicted absorption from the fiducial model
with respect to time and wavelength, while the bottom panel compares the predicted
average in-transit excess absorption spectrum to the observations. This fiducial
model significantly over-predicts the observed signal, with a predicted peak three
times higher than the measured value. The model absorption peak is also blueshifted
by 15 km/s, while the measured peak is redshifted by ∼4 km/s. Lastly, the fiducial
model outflow contains two components, while the observed signal appears to be
unimodal. It is particularly difficult to explain the large discrepancy between the
predicted and measured peak locations, as velocity blueshifts are a near-universal
feature of all 3D outflow models (Wang & Dai, 2018; Wang & Dai, 2020). If this 15
km/s discrepancy between model and data is due to a non-zero orbital eccentricity,
it would be in severe tension with the radial velocity data, which indicates the planet
is moving toward us at 7.4+9.3

−7.0 km/s at mid-transit—that is, in the wrong direction.
Interestingly, while the amplitude of the simulated signal is much too big, the band-
integrated light curve has a similar shape to the observed light curve (see Figure
7.2). Both model and data exhibit a slow increase in absorption from ingress to 0.5
h past the white light mid-transit, followed by a fast decrease.

The poor match between the fiducial model and the data prompted us to try different
combinations of metallicity, stellar wind speed, and stellar wind density. Figure 7.14
shows the excess absorption spectrum of the different models we tried, compared
to each other and to the data, while Table 7.3 reports their mass loss rates, peak
absorption, and equivalent width of the absorption. The qualitative behavior of the
model when the metallicity is increased is very similar to the behavior of TPCI: the
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Figure 7.14: Excess absorption as a function of wavelength and time, as predicted
by the fiducial model (top) and the best-fit model (middle). The fiducial model uses
our best guess for all parameters, while the best-fit model has a higher stellar wind
speed of 500 km/s (versus the fiducial 400 km/s), a higher metallicity (10× solar
versus the fiducial 1× solar), and 1/3 the fiducial stellar EUV flux. Bottom: average
in-transit excess absorption predicted by all Microthena models we tried, compared
to data.
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Figure 7.15: Neutral hydrogen number density (left), triplet helium density (mid-
dle), and temperature (right) from the time-averaged (over the last ∼ 10 kinematic
timescales) fiducial (top) and best-fit (bottom) 3D models. The star is toward the
left, and orbital motion is upwards. These plots show the profiles in the orbital
plane. The white lines are the streamlines, while the dashed black lines represent
the inner sonic surface.
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strength of helium absorption is similar at Z=1, 10, and 30, but substantially lower
at Z=100. In both models, absorption changes non-monotonically with metallicity,
reaching its peak at Z=10. The 3D models reveal that metallicity only marginally
affects the blueshift. In addition to increasing the metallicity, we tried halving
the stellar wind density, which resulted in broader but slightly less blueshifted
absorption with a slightly lower (by ∼30%) peak. We also tried halving the stellar
wind speed, which marginally decreased the absorption peak and equivalent width,
but decreased the blueshift by 10 km/s. For all of these models, the mass loss
rate remains remarkably similar: it decreases slightly with metallicity, from 0.12
𝑀⊕/Gyr at Z=1 to 0.086 𝑀⊕/Gyr at Z=100, but the fiducial, 0.5𝜌∗, and 0.5𝑣∗ models
have mass loss rates within several percent of each other.

Because all of the models that assume the fiducial stellar spectrum substantially
overpredict the observed absorption, we also tried rescaling the input EUV flux.
Since the outflow is driven largely by EUV heating, and triplet helium is mostly
produced by EUV-driven photoionization followed by recombination of electrons
with helium, lowering the EUV flux should lower the corresponding absorption
signal. In the end, the model we found that best matches the observations (labelled
“Best” in all the plots) has 1/3 the nominal EUV, a stellar wind with a speed of 500
km/s, and a metallicity of 10x. As a result of the low EUV flux, the mass loss rate
is 1/3 fiducial (Table 7.3); as a result of the low mass loss rate and the higher stellar
wind speed, the outflow is more confined. In the middle and lower panels of Figure
7.14, we show results for this best fitting model. This model is a much better match
to the amplitude of the observed absorption signal and the corresponding transit
light curve, although the predicted absorption signal is still bluer than the observed,
and stronger in both the peak and the equivalent width.

Figure 7.15 shows the neutral hydrogen number density, triplet helium number
density, and temperature in the orbital plane for the fiducial and the best-fit models.
Both models exhibit a cometary tail, which is caused by the dense and fast stellar
wind pushing the outflow away from the star. The tail is angled partly because of the
planetary orbital velocity, and partly because of the Coriolis force. In both models,
the stellar wind is strong enough to prevent the planetary outflow from becoming
supersonic at many locations, making it possible for interplanetary conditions to
affect the launching of the wind. As expected, the “best” model has a substantially
more confined outflow.
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Table 7.3: Summary of Model Predictions

Dim Model ¤𝑀 (𝑀⊕/Gyr) Peak (%) EW (mÅ)
1 Z=1 0.32 4.3 39.6
1 Z=10 0.42 6.1 47.0
1 Z=30 0.37 5.1 35.0
1 Z=100 0.13 1.7 9.6
3 Fiducial 0.12 2.5 23.3
3 Z=10 0.11 2.6 23.0
3 Z=30 0.10 2.3 19.7
3 Z=100 0.086 1.7 12.5
3 0.5𝜌∗ 0.12 1.9 22.3
3 0.5𝑣∗ 0.12 2.3 20.5
3 Best 0.041 0.9 11.4
3 Data ? 0.68 ± 0.08 7.0 ± 0.4

Order-of-magnitude empirical estimate of mass loss rate
By making a few assumptions, we can use the equivalent width of the helium signal
to obtain a decent estimate for the mass of metastable helium in the outflow and an
order-of-magnitude calculation of the mass loss rate. The first assumption we make
is that helium absorption from most of the planetary outflow is optically thin. This
is supported by the fact that we do not see the secondary peak at 10832 Å, which
is 1/8 the height of the primary peak in the optically thin regime, but higher when
the primary peak becomes optically thick. The optical thinness assumption tends to
cause us to underestimate the mass loss rate.

The optical depth from the star to the observer is:

𝜏(𝜆) = 𝑁𝜎𝜆𝑃(𝜆), (7.2)

where N is the column density, 𝜎𝜆 ≡ (𝜋𝑒2𝑔𝑙 𝑓𝑙)/(𝑚𝑒𝑐2), and 𝑃(𝜆) is the line profile
(
∫ +∞
−∞ 𝑃(𝜆)𝑑𝜆 = 1). Integrating 1− 𝑒−𝜏 over 𝜆, and assuming the optically thin limit

(where 1 − 𝑒−𝜏 ≈ 𝜏), we obtain the standard equation for the equivalent width:

𝑊𝜆 = 𝑁𝜎𝜆. (7.3)

We can perform another integration over the cross-sectional area of the star, which
turns the column density N into the total number of metastable helium atoms, N’.
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We then divide each side by the cross-sectional area, so that the left hand side
becomes the average equivalent width across the star—the number measured by our
observations:

∬
𝑊𝜆𝑑𝑆 =

∬
𝑁𝜎𝜆𝑑𝑆 (7.4)∬

𝑊𝜆𝑑𝑆∬
𝑑𝑆

= 𝑁′𝜎𝜆 (7.5)

𝑊𝑎𝑣𝑔 =
𝑁′𝜎𝜆

𝜋𝑅2
∗

(7.6)

𝑁′ =
𝑅2
∗𝑚𝑒𝑐

2

𝑒2𝑔𝑙 𝑓𝑙𝜆
2
0
𝑊𝑎𝑣𝑔 (7.7)

= 8 × 1031 (7.8)

𝑚𝐻𝑒∗ = 5 × 108𝑔, (7.9)

where we combined 𝑔𝑙 𝑓𝑙 for the two lines at 10833 Å. 5 × 108 g is 500 tons—a
remarkably small amount of material to be detectable at interstellar distances. This
is the most secure part of our estimate.

Next, we convert the mass of metastable helium to total mass, by assuming that
metastable helium comprises 10−6 of helium nuclei, and that helium is 25% of total
mass. 10−6 is roughly the ratio we find in our 3D simulations from 2–5 𝑅𝑝, as well
as the ratio we find from 2–10 𝑅𝑝 for HD 63433 b/c (Zhang et al., 2021b). We
obtain 𝑚t𝑜𝑡 = 2 × 1015 g.

Finally, we estimate the replenishment lifetime of the metastable helium atoms: how
long do they take to cross the stellar disk and stop being observable? We calculate
𝜏 = 𝑅∗/𝑐𝑠 = 50, 000 s, adopting 10 km/s for the sound speed 𝑐𝑠. The mass loss rate
is then 𝑚t𝑜𝑡/𝜏 = 4 × 1010𝑔/𝑠 = 0.22𝑀⊕/𝐺𝑦𝑟.

This estimate should not be considered accurate to more than an order of magnitude,
but it is reassuring that our empirical estimate is of the same order of magnitude as
that of the simulations (Table 7.3).

7.7 Discussion
The fiducial versions of both our TPCI (1D) and Microthena (3D) models predict he-
lium absorption many times stronger than observed. For the same input parameters,
the helium absorption predicted by TPCI is much higher than that predicted by Mi-
crothena (4.3% vs. 2.5%). The 3D structure, which TPCI cannot model, determines
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the shape of the helium absorption signal in both wavelength and time. Though the
predicted helium signal is too large, the predicted mass loss rates in Table 5.2 are all
reasonable. We assume a 2% hydrogen/helium envelope, which is consistent with
the planet’s radius, mass, and equilibrium temperature assuming a rocky core (Zeng
& Seager, 2008). The mass loss timescales predicted by Microthena would then
range from 1.6–2.4 Gyr, and those predicted by TPCI would range from 0.4–1.6
Gyr. All of these timescales are comparable to the planet age, which is high enough
that the planet has likely lost a substantial portion of its primordial envelope, but
low enough that it is not surprising the planet still has an envelope.

We next consider whether there might be additional modifications to the 3D Mi-
crothena models that could better match the amplitude of the observed signal while
also reducing the size of the predicted blueshift. We could increase the stellar wind
speed by a larger amount, which would eventually succeed in suppressing the mass
loss rate (Murray-Clay et al., 2009), but this would also increase the magnitude of
the predicted blueshift. If we instead decreased the EUV flux by a larger factor than
3x, it would also decrease the helium signal strength, but our X-ray observations
strongly disfavor this scenario. The scaling relations from Linsky et al. (2014) that
we used to estimate the EUV spectrum have a dispersion about the fit line of 20–37%
for F5–K5 stars, which seems to make a 3x error implausible, but the relations are
based on the Ly𝛼 flux, which we have not measured for TOI 560 and must infer
from the X-ray flux and the stellar rotation rate. In addition, the dispersion might
be smaller for young stars only than for all stars. The X-ray and MUV (1230–2588
Å) fluxes are even better known because they were directly measured by XMM-
Newton within weeks of both Keck observations. A substantially larger planetary
mass (e.g. 16 𝑀⊕) could also suppress the signal, but would be in tension with
both the RV measurements and the mass-radius relation of Chen & Kipping (2017).
This mass-radius relation is derived primarily from observations of mature planets;
since young planets are expected to be more inflated, it provides a conservative
upper limit on the likely mass of this planet. Finally, the redshift would be more
consistent with the models if we assumed a much weaker wind, in which case there
would be a significant up-orbit stream launched from the dayside, as seen in the 3D
hydrodynamic simulations by McCann et al. (2019). This is scenario favored by
Czesla et al. (2021) for the redshift they observe from HAT-P-32b; however, their
helium signal also shows pre-ingress absorption, which ours does not.
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Our 1D TPCI models demonstrate that increasing the metallicity beyond 10× so-
lar gives rise to a rich tapestry of radiative phenomena, which in turn results in
significant changes to the structure of the outflow and a reduction in the predicted
helium absorption strength. Our 3D models show a qualitatively similar pattern. It
is clear, however, that further work is required in order to better address some of the
limitations of our models for describing metal-rich atmospheres. For example, both
codes are potentially inaccurate at high metallicities because they use the escape
probability formalism for radiative transfer, instead of performing radiative transfer
completely correctly. The 3D Microthena model only accounts for line cooling from
O, S, Si, O+, S+, and Si+, whereas our TPCI models predict that there is a much
broader array of elements and ionization states that are important for both heating
and cooling at high metallicities (Figure 7.12). In addition, while the 3D model
divides all radiation into 7 bins, TPCI uses the incident spectrum at the resolution
provided (Figure 6.11); this likely has a significant impact on the predicted thermal
structure of the outflow.

In addition to ensuring correct behavior of the model at high metallicities, future
studies of metal-rich outflows should also vary the assumed elemental ratios (e.g.,
C/O) to reflect the diverse array of possible atmospheric compositions for sub-
Neptune-sized exoplanets. Condensation of species like NaCl, MgSiO4, and TiO in
the deep atmosphere could also further alter the composition of the outflow in ways
that may be detectable in future observations.

The parameter space exploration we undertook assumes that the observed outflow
is in a steady state. However, there is some tentative evidence for variability in our
data: on the second night, the absorption during the portion of transit we could
observe was slightly stronger and slightly bluer than on the first night. This effect
is only marginally significant (2-3𝜎), and could be explained by a combination
of statistical fluctuations, underestimated errors, stellar variability, and unknown
instrumental systematics. However, our 3D simulations show that stellar wind
conditions have a significant impact on the absorption signal, so it is by no means
implausible that variations in the stellar wind could lead to variations in the outflow
properties. During the 2008 solar minimum, for example, the solar wind number
density regularly fluctuated by a factor of two over a timescale of days, with dozens
of upward spikes corresponding to increases of more than a factor of five (Lei et al.,
2011). The solar wind velocity during this period regularly fluctuated between 400
and 600 km/s, again on a timescale of days. TOI 560 is younger, less massive, and
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more active than the Sun, and we do not know where it was in its activity cycle
during our observations. It is therefore possible that TOI 560’s stellar wind may be
more variable than that of the Sun, and that the stellar wind conditions during the
two transits were appreciably different. Our 3D simulations show that decreasing
the stellar wind density by a factor of two decreases the absorption peak by ∼30%,
while decreasing the wind speed by a factor of two decreases the blueshift by ∼ 10
km/s. This level of variation is similar to the magnitude of the observed variability
between the two nights.

Another effect that neither TPCI nor Microthena accounts for is magnetic fields.
Using the same methodology as Zhang et al. (2021a), which is itself based on Owen
& Adams (2014), we can estimate the significance of magnetic fields by comparing
the magnetic pressure 𝑃𝐵 = 𝐵2/(8𝜋) to the ram pressure 𝑃r𝑎𝑚 = ¤𝑀𝑣/(8𝜋𝑟2). At
3.6 𝑅𝑝, roughly the position of the helium line photosphere, our Microthena models
predict a typical wind speed of 7 km/s. As discussed in Zhang et al. (2021a), the
slow rotation of a tidally locked planet (the tidal circulation timescale is 1200 yr,
assuming Q=100) gives rise to a weak magnetic field, which does not significantly
affect the outflow (𝑃r𝑎𝑚/𝑃𝐵 = 64 at 3.6 𝑅𝑝). However, the interplanetary magnetic
field can plausibly have a significant effect on the outflow. Based on the scaling
relation between surface magnetic field and stellar age in Vidotto et al. (2014), we
calculate an interplanetary magnetic field of 0.025 G at the position of TOI 560.01,
which leads to 𝑃r𝑎𝑚/𝑃𝐵 = 1.1 at 3.6 𝑅𝑝. Finally, we emphasize that these are
order-of-magnitude calculations with uncertainties of at least a factor of a few in
all quantities: interplanetary magnetic fields, stellar activity cycles, and planetary
magnetic fields are all very poorly understood for extrasolar systems.

7.8 Conclusion
We observed two transits of TOI 560.01 using Keck/NIRSPEC and detected a strong
helium absorption signal during each transit. The observed signal shows a number of
intriguing features, including a slow rise in absorption accompanied by a fast decline,
a slight redshift, and tentative evidence of variability between the two transits, with
the signal being stronger and bluer on the second night at 2-3𝜎 significance. TOI
560.01 is the first mini Neptune with a helium detection. Its size and youth place it
in the critical regime where mini Neptunes transition into super Earths, giving rise
to the radius gap and dramatically shaping exoplanet demographics.
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We applied the 1D code TPCI and the 3D code Microthena to model the outflow.
We found it difficult to match the low magnitude of the observed absorption level
and the moderate redshift with a solar metallicity planetary atmosphere. Increasing
the metallicity to Z=100 suppresses the helium absorption signal in both TPCI and
Microthena, but in both models, intermediate metallicities do not. However, neither
code is very well suited to modeling high metallicity atmospheres. This problem
is more acute for Microthena, which uses a simplified radiative transfer model and
includes a limited number of atomic coolants. Further work will be necessary to
confirm whether a high metallicity atmosphere is a good explanation for the data,
and if so, whether it is the only plausible explanation.

As a low mass mini Neptune around a nearby K star, TOI 560.01 is a favorable
target for atmospheric characterization. In this paper, we measure the planet’s
helium absorption, but its Ly𝛼 absorption may also be observable with HST/STIS.
If so, it will provide complementary insight into the escaping atmosphere: due to
the strength of the Ly𝛼 line and the strong interstellar absorption, which wipes out
the core, Ly𝛼 traces energetic hydrogen atoms in the tenuous outer regions of the
outflow. JWST could also reveal important insights into the outflow by measuring
the composition and thermal structure of the deeper atmosphere, which, aside from
being scientifically valuable in its own right, will drastically shrink the parameter
space of inputs that models can assume.

Finally, TOI 560 is a two-planet system, and TOI 560.02 is also a transiting mini
Neptune. This makes the system an excellent test for mass loss models. The
two planets share the same contemporary X-ray/EUV environment, and the same
irradiation history. In addition, planets of similar size located in adjacent orbits
might be expected to have largely similar formation and/or migration histories, and
therefore it is reasonable to expect that their primordial atmospheric compositions
would be quite similar. This is supported by observational studies of the masses
and radii of multi-planet systems in the Kepler sample, which suggest that planets
in the same system tend to have similar masses and radii (the ‘peas in a pod’ theory;
Weiss et al. 2018).

Software: numpy (van der Walt et al., 2011), scipy (Virtanen et al., 2020), matplotlib
(Hunter, 2007), dynesty (Speagle, 2020), SAS
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C h a p t e r 8

CONCLUSION

Predictions are hard, especially about the future. The history of exoplanet at-
mospheric science has been full of surprises, and undoubtedly more are in store.
Nevertheless, there are some obvious next steps. In this chapter, I will review
potential next steps for the field, with a focus on the research programs that I am
personally interested in, have some involvement with, or relate to my thesis.

8.1 James Webb Space Telescope
First, there is the elephant in the room: the James Webb Space Telescope, which
recently finished deployment. JWST will revolutionize the study of exoplanet atmo-
spheres. By far the largest space telescope ever launched, JWST has a collecting area
5.6 times that of Hubble, and can observe at much longer infrared wavelengths over
a much greater wavelength range. As an example, HST/WFC3 can observe between
1.1–1.7 µm with the G141 grism (a commonly used configuration); JWST/MIRI
LRS, to take just one of many spectrographs, can observe from 5–12 µm simul-
taneously, and other instruments collectively span 0.6–30 µm. Since exoplanets
emit largely in the infrared and molecular absorption features are generally found in
the infrared, JWST will allow the spectroscopic study of exoplanet atmospheres in
unprecedented detail. By my rough count, there are 42 JWST General Observer pro-
grams in cycle 1 that focus on exoplanet atmospheres, in addition to many more in the
Guaranteed Time Observer program and the Early Release Science program. These
programs study a wide variety of planets: hot sub-Earths, “super-puffs” with the
density of cotton candy, 17 Myr hot Jupiters, highly eccentric planets experiencing
intense episodic heating from their stars, white dwarf planets, potentially habit-
able planets, and much more. They use all techniques (transmission spectroscopy,
emission spectroscopy, and phase curves) and a wide variety of instrument/setting
combinations.

For the hot Jupiters, such as the poster child HD 189733b, JWST will capture
exquisite spectra in both transmission and emission. JWST GO 1633, for example,
will observe five transits of this planet, spanning 2.4–20 µm, covering absorption
bands of every major molecule (water, methane, carbon monoxide, and carbon diox-
ide) as well as strong bands of important minor molecules (HCN, NH3, H2S). These
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Figure 8.1: The power of JWST . Black: observed transit depths; red: a PLATON
model of a water-dominated atmosphere; blue, purple, green: simulated JWST
observations, with error bars, assuming cloudy atmospheres with three different
cloud species. Note that all the existing observations redward of 2 µm are no longer
obtainable because they are from Spitzer, which has been deactivated. Credit:
Figure 2 of JWST GO 1633 proposal, reproduced with permission.

measurements will give unprecedented insight into the atmospheric composition,
potentially enabling the metallicity and C/O ratio to be measured to the percent
level. As Figure 8.1 shows, JWST has such a broad wavelength coverage that it will
be able to detect the broad absorption features from common cloud species. Clouds
are ubiquitous in exoplanet atmospheres, and ascertaining their composition will, in
itself, be a major advance for the field.

For the sub-Neptunes, not counting the mass loss detections in this thesis, we cur-
rently have only a single definitive observation of an atmospheric feature around a
single planet—the detection of water in K2-18b. So little is known about their atmo-
spheres that virtually any result would be exciting. Many cycle 1 JWST programs
are dedicated to observing the atmospheres of these planets. This includes GO
2347, which will obtain a MIRI/LRS phase curve of the lava planet K2-141b; GO
1952, which will use emission spectra to measure the atmospheric composition of
the poster child super Earth 55 Cnc e; GO 2372, which will go after the transmission
spectrum of the aforementioned K2-18b; and GO 1935, which will take a 0.83–5
µm transmission spectrum of the temperate mini Neptune TOI 421b to robustly



299

constrain composition and test theories of aerosol formation. These programs will
give us the first firm data-driven understanding of the composition, structure, and
circulation patterns of sub-Neptune atmospheres.

The ground-breaking nature of JWST will hopefully be even more evident for sub-
Earths, which, from the planet occurrence rates, appear to be a distinct population
from the super Earths (Qian & Wu, 2021). There are currently no observations
of their atmospheres. In cycle 1, I will use JWST to obtain a spectroscopic (5–12
um) phase curve of GJ 367b, a dense 0.72 𝑅⊕, 0.53 𝑀⊕ sub-Earth. Because TESS
has already surveyed the whole sky, GJ 367b is likely to forever remain by far the
most observationally favorable sub-Earth outside the solar system, and the only one
accessible to study by JWST . The phase curve will constrain the planet’s dayside and
nightside temperatures, phase offset, Bond albedo, and heat recirculation efficiency.
A significant atmosphere would manifest as a diminished day-night temperature
contrast, non-zero phase offset, and if there are clouds, high albedo. If there is no
atmosphere, observations may be capable of distinguishing between different surface
compositions. Our observations will shed light on the properties and origins of a
new population of exoplanets, and serve as a pathfinder to future studies of the
planet.

The search for life
The holy grail of exoplanet atmospheric science is to find life elsewhere in the uni-
verse by detecting biosignatures in an exoplanet. Unfortunately, scientific progress
in the field has only made this goal seem further out of reach, not closer. Every
year brings more featureless or ambiguous transmission spectra of small planets,
more discoveries of non-biological synthesis pathways of candidate biosignatures,
and more appreciation of the complexities of interpreting exoplanet atmosphere
observations. For example, Sousa-Silva et al. (2020) proposed phosphine (PH3) as
a biosignature gas because its only known sources under terrestrial conditions are
biological and industrial. Less than a year later, Greaves et al. (2021b) reported
discovering phosphine on Venus with two different telescopes. There followed a
debate (e.g. Villanueva et al. 2020; Greaves et al. 2021a) about whether the data
was reduced correctly, what order of polynomial is appropriate to fit the systemat-
ics, whether the observed line is from phosphine or sulfur dioxide, and whether any
natural processes could account for the phosphine. The debate remains unresolved,
although the original authors have substantially weakened their claim (Greaves et al.,
2020). Notably, even though Greaves et al. (2021b) were confident in their phosphine
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detection, and even though phosphine was considered one of the most promising
biosignature gases, they did not claim that their detection was evidence of life on
Venus.

A similar story played out on Mars. Given the difficulty of finding a single magic
molecule that absolutely cannot be produced non-biologically, many have suggested
(e.g. Krissansen-Totton et al. 2016) that a severely out-of-equilibrium atmospheric
composition would be evidence of life, even if there are many geological sources
of all individual molecules. For example, in the heavily oxidizing environment
of Mars, methane might be a biosignature. For decades, multiple groups using
multiple instruments have detected methane on Mars (e.g. Krasnopolsky et al.
2004). Webster et al. (2015) detected methane in situ with the Curiosity rover,
and showed that it was seasonal. The presence of methane has been suggested as
evidence for life (Krasnopolsky et al., 2004). To this day, the mystery has not been
resolved, even though a wide variety of methane production mechanisms have been
proposed.

Venus and Mars are the closest planets to Earth, and Mars has been monitored in-situ
by multiple spacecraft for decades. If discovering candidate biosignatures on these
planets does not prove the existence of life, discovering them on exoplanets—even to
very high confidence—would mean much less. Absent a truly spectacular discovery,
such as the detection of an unambiguous radio transmission, it is unlikely that even
detecting an atmosphere identical to Earth’s would constitute proof of alien life in
the forseeable future.

This pessimism does not mean, however, that no progress is being made toward
detecting life on other planets. In fact, JWST will be able to probe the atmospheres
of several terrestrial exoplanets in the habitable zone. The most promising targets are
in the truly astounding TRAPPIST-1 system: a system of 7 transiting planets, all of
them with Earth-like radii and masses, and 3–4 of which are in the habitable zone, all
orbiting an M dwarf that is one of the smallest stars in existence. It is highly unlikely
that a similarly favorable system will ever be found. There are eight cycle 1 JWST
programs targeting the TRAPPIST-1 system, probing the planets’ atmospheres in
both transmission and emission. Depending on the precise nature of the atmosphere,
JWST may be able to detect biosignatures in the atmospheres of these planets. For
example, a CO2/CH4 atmosphere (which would be in chemical disequilibrium) on
TRAPPIST-1e could be robustly detectable in 14 transits (Meadows et al., 2021).
Such a find would be thrilling, but would not constitute strong evidence of life,



301

as this is precisely the combination of gases that has been detected on Mars. On
the other hand, it is possible that dozens of transits and eclipses will yield nothing
but a flat transit spectrum and a featureless eclipse spectrum, indicating that the
planets may have already lost their atmospheres. Such a result would be severely
disappointing, as planets around M dwarfs are by far the easiest to study, and such a
result would suggest that M dwarfs’ high activity tends to strip the atmospheres of
terrestrial planets.

The need for better models
Along with much better data from JWST comes the need for better models. It
would be shocking if any existing model could perfectly explain JWST observations,
considering that they cannot perfectly explain existing observations. JWST will give
modellers new information about what their models are missing, motivating them to
add new physics, improve their parameterizations of existing physics, or even pursue
entirely new research directions. For example, existing observations reveal that
clouds are ubiquitous, but are silent on the composition of the clouds. JWST’s broad
infrared wavelength coverage should enable it to distinguish between candidate cloud
species (Figure 8.1), providing guidance on a crucial part of any atmosphere model.
As another example, the assumption of chemical equilibrium allows for simple
parameterizations of atmospheric composition (e.g. metallicity and C/O ratio),
but it is unclear under what conditions chemical equilibrium holds, as the vertical
mixing strength (𝐾𝑧𝑧) is uncertain to many orders of magnitude. If JWST detects
molecular features that should not exist based on chemical equilibrium assumptions,
we would be able to refine our photochemistry and/or vertical circulation models to
account for the observations.

Existing Bayesian retrieval models, including PLATON, adopt many simplifications
that might be of dubious validity with JWST-quality data. Aside from the assumption
of chemical equilibrium (or in some other codes, vertically constant abundances) and
the simple treatment of clouds, these codes usually assume a homogenous terminator
(Powell et al., 2019), no nightside emission (Kipping & Tinetti, 2010), no refraction
(Misra et al., 2014), parameterized temperature-pressure profiles, and Voigt molec-
ular line profiles with broadening parameters that are a mixture of guesswork and
extremely spotty empirical data. Improving these models will require physically
motivated parameterizations of the underlying physics and better understanding of
said physics, which in turn will require a combination of self-consistent simulations,
cloud formation models, better molecular line list computations, and laboratory ex-
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periments of molecular absorption and of cloud particle characteristics. It will of
course also require additions to the retrieval codes themselves, some of which are
simple (e.g. a two-terminator approximation), and some of which will be challeng-
ing (e.g. a physically realistic cloud parameterization). A 3D retrieval may end up
being necessary (e.g. Nixon & Madhusudhan 2022).

The wealth of data from JWST will advance our understanding of exoplanet at-
mospheres by an extraordinary amount, but deeper understanding will come hand
in hand with new mysteries. The atmospheres of brown dwarfs and solar system
planets are still active areas of research, even though brown dwarfs are routinely ob-
served in much greater detail than exoplanets, and solar system planets are observed
with infinitely higher SNR than brown dwarfs. In particular, brown dwarfs exhibit
a dramatic L-T transition around 1400 K (Vos et al., 2019), where cooler brown
dwarfs become dramatically bluer. At the transition point itself, brown dwarfs ex-
hibit high variability, which is commonly attributed to patchy clouds. The physical
mechanism behind the transition is still unclear. Will clear transition points also
be found for exoplanets, and will variability also be an important tool for studying
exoplanet atmospheres? No variability has been definitively detected for any exo-
planet, although 55 Cnc e exhibits signs of variability in its Spitzer eclipse depths
(Demory et al., 2016). Variability may turn out to be a whole new subfield domain
of exoplanet atmospheres that JWST will enable.

8.2 Mass loss
In the last two papers of this thesis, I reported an escaping hydrogen or helium
atmosphere from two out of the three young mini Neptunes I observed. The logical
next step is to expand the sample to multiple planets spanning a range of radii, ages,
and densities. I am in the process of doing this, and have so far detected escaping
atmospheres from 4 out of the 5 young mini Neptunes I have observed. It appears
that, consistent with the canonical picture, primordial atmospheres are common
around these planets, and they evaporate quickly enough to lose a significant fraction
of their envelopes within their lifetimes.

However, much work remains to be done, because the 3D hydrodynamic models
we ran to predict the outflows do not match the data. Worse, my work and those
of other similar studies have shown that it might be unrealistic for any model
to match the data in detail. The enormous uncertainties surrounding the stellar
wind velocity and density (which can vary by a factor of a few on timescales of
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days), the interplanetary and planetary magnetic fields, the planetary mass, and the
atmospheric composition may make it unrealistic for any forward model to match
the data to better than a factor of a few. Some of these uncertainties can be reduced in
the near future. For example, favorable targets for mass loss observations are usually
also favorable targets for JWST atmospheric characterization, which could measure
the atmospheric composition. However, the stellar wind conditions and magnetic
fields are not observable, making it very hard to see how these uncertainties can be
addressed in the near future. If this is the case, the importance of a large sample size
is all the more important, as it would average out uncertainties and allow statistical
comparisons between model and data. In addition, a large sample size could reveal
patterns that shed light on the underlying physics. By my rough estimate, there
are optimistically ∼20 mini Neptunes (mostly TESS discoveries) where a helium
detection could be possible with 10 m class telescopes in one transit; there are
certainly not hundreds.

Yet another source of uncertainty, and of potential future work, is variability. Since
the absorption signal depends on the high-energy flux of the star and the stellar
wind conditions, it should change when they change—which should be all the time,
especially for young and active stars. Spurious variability is also expected when
the stellar surface is inhomogenous, with different regions having dramatically
different depths for the stellar He I 1083 nm line. Inhomogenous stellar surfaces
are not exactly unexpected for young stars. Guilluy et al. (2020) observed 5 transits
of HD 189733b in the He I line and found variability at the 50% level; using
simultaneous H𝛼 data, they were able to determine that two transits were affected by
stellar inhomogeneities, and that the remaining 3 had consistent He I depths. Similar
studies ought to be performed for young mini Neptunes with detected helium signals
to see whether they exhibit any variability, and if so, whether the variability is likely
planetary or stellar.

On the model side, there is also much work to be done. In particular, magnetic fields
need to be studied in much greater detail. For example, most simulations show that
magnetic fields should decrease the outflow rate and the signal strength (Owen &
Adams, 2014; Khodachenko et al., 2015; Arakcheev et al., 2017), but Carolan et al.
(2021) predicts an increase in the outflow rate. Also, there has been little work on
3D modelling photoevaporation from high metallicity atmospheres, or H2O/CO2

atmospheres. These atmospheres are plausible around mini Neptunes, and it is
worthwhile to study how their observational signatures differ from hydrogen/helium
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atmospheres. Finally, despite 20 years of Ly𝛼 mass loss observations, there is
still no solid answer to this simple question: what does a Ly𝛼 observation tell
us, other than that hydrogen is escaping? The inability to observe the core of
the line, corresponding to the inner regions of the outflow, makes the problem
of interpretation daunting. Recently, Owen et al. (2021) used an analytic model
to explore Ly𝛼 transits and found that they are linearly sensitive to the velocity
of the outflow, but only logarithmically sensitive to the mass loss rate. Detailed
comparisons with 3D simulations will be needed to see if the analytic model is
accurate, and more Ly𝛼 data will need to be taken to test its predictions.

To a lesser extent, the problem of interpretation extends to helium observations as
well. It would be useful to have a model that is intermediate in complexity between
3D hydrodynamic codes which take days to run, and the 1D Parker wind model
of Oklopčić & Hirata (2018), which assumes a spherically symmetric isothermal
outflow with simplified physics. Such a parameterized model could be used in a
Bayesian retrieval code akin to those for static atmospheres, and could be used to
infer the mass loss rate, the stellar wind conditions, and other parameters. The
problem is that mass loss is fundamentally not a spherically symmetric process,
and it is an open question whether modelling it as spherically symmetric plus a
perturbation while abandoning physical consistency for the temperature profile will
yield any valid results.

Lastly, hydrogen and helium absorption lines are exceptional for studying mass loss
from planets with H/He atmospheres, but it is possible that mini Neptunes have high
metallicity, and probable that even smaller planets have no H/He atmosphere at all.
It is my hope that mass loss studies will detect the panoply of other elements that
surely make up the exotic atmospheres of smaller planets. Far UV detections of OI,
CII, MgII, and FeII have been claimed (Vidal-Madjar et al., 2004; Sing et al., 2019),
but these detections are all for hot Jupiters and have a relatively low signal-to-noise
ratio. The discovery of a metastable line similar to He I 1083 nm, but for a metal,
would allow ground telescopes to study the escape of metals, opening an entire
new subfield in exoplanet atmospheres. This subfield could provide new insights
into the atmospheric evolution of smaller, rocky planets with high mean molecular
weight atmospheres. This question, of which small planets keep their atmospheres
and which lose them, will be crucial for understanding the potential habitability of
exoplanets.
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