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ABSTRACT 

The advent of massively parallel sequencing and synthesis technologies have ushered in a new 

paradigm of biology, where high throughput screening of billions of nucleid acid molecules and 

production of libraries of millions of genetic mutants are now routine in labs and clinics. During my 

Ph.D., I worked to develop data analysis and experimental methods that take advantage of the scale 

of this data, while making the minimal assumptions necessary for deriving value from their 

application. My Ph.D. work began with the development of software and principles for analyzing 

deep mutational scanning data of libraries of engineered AAV capsids. By looking at not only the 

top variant in a round of directed evolution, but instead a broad distribution of the variants and their 

phenotypes, we were able to identify AAV variants with enhanced ability to transduce specific cells 

in the brain after intravenous injection. I then shifted to better understand the phenotypic profile of 

these engineered variants. To that end, I turned to single-cell RNA sequencing to seek to identify, 

with high resolution, the delivery profile of these variants in all cell types present in the cortex of a 

mouse brain. I began by developing infrastructure and tools for dealing with the data analysis 

demands of these experiments. Then, by delivering an engineered variant to the animal, I was able 

to use the single-cell RNA sequencing profile, coupled with a sequencing readout of the delivered 

genetic cargo present in each cell type, to define the variant’s tropism across the full spectrum of cell 

types in a single step. To increase the throughput of this experimental paradigm, I then worked to 

develop a multiplexing strategy for delivering up to 7 engineered variants in a single animal, and 

obtain the same high resolution readout for each variant in a single experiment. Finally, to take a 

step towards translation to human diagnostics, I leveraged the tools I built for scaling single-cell 

RNA sequencing studies and worked to develop a protocol for obtaining single-cell immune profiles 

of low volumes of self-collected blood. This study enabled repeat sampling in a short period of time, 

and revealed an incredible richness in individual variability and time-of-day dependence of human 

immune gene expression. Together, my Ph.D. work provides strategies for employing massively 

parallel sequencing and synthesis for new biological applications, and builds towards a future 

paradigm where personalized, high-resolution sequencing might be coupled with modular, 

customized gene therapy delivery.  
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C h a p t e r  1  

INTRODUCTION 

1.1 Introduction  

Massively parallel nucleic acid sequencing and synthesis technologies have enabled researchers to 

analyze the state of an entire complex system, such as the brain or immune system, via thousands to 

billions of simultaneous DNA or RNA measurements, and with relatively straightforward protocols, 

also design and explore the effect of DNA or RNA modifications to those systems. This paradigm 

is poised to dramatically transform human medicine. On the diagnostic side, it enables researchers 

and clinicians to perform assays that do not require selecting a specific metric, but instead give an 

entire suite of metrics in a single experiment. On the therapeutic side, instead of having to develop 

and isolate a new small molecule or protein for each therapy, the building blocks of DNA or RNA 

therapies packaged by engineered delivery vehicles can be designed once, and then be customized 

for new applications. Such highly multiplexed DNA and RNA assays are already being employed 

for a wide variety of research applications and have seen success in areas as diverse as protein 

binding prediction, antibody complementarity determination, and cell-type-specific enhancer 

screening (Aharon et al., 2020; Forsyth et al., 2013; Li and Samulski, 2020). 

One common thread between all these applications is their reliance on massively parallel sequencing 

(frequently called next-generation sequencing, or NGS) data. Using NGS data as an assay for these 

contexts presents many challenges that are distinct from their imaging or other traditional assay 

analogs. By nature of the NGS assay, wherein a library of DNA or RNA molecules is first recovered, 

then amplified, and then sequenced, NGS data is at least three steps removed from the underlying 

biological phenomena. The first step, molecule recovery, is highly dependent on the specific assay, 

but in all applications introduces some degree of signal loss, recovery bias, and biological noise. The 

second step, PCR amplification, while highly accurate, introduces artifacts and amplification bias 
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for some molecules over others. The third step, the sequencing itself, is almost always a subsampling 

of the library, and is limited by the cost and scale of parallel sequencing equipment; although modern 

sequencers can process billions of sequences in a single experiment, this still pales in comparison to 

the quantity of molecules present in the source tissue of most assays. An additional challenge of 

NGS data is that it almost always crosses into the realm of “big data,” i.e. data that is large enough 

that researchers are unable to analyze it by traditional, manual data analysis methods on their local 

machine. This is both a challenge and an opportunity, as it necessitates automation and cloud or 

cluster computing, and the data is at a scale that is ripe for applications of machine learning. 

In transitioning traditional non-NGS methods to their higher-throughput, parallel NGS counterparts, 

these challenges motivate the development of methods that specifically consider the nuances of NGS 

data. In my Ph.D., I aimed to establish general principles and develop software and analysis methods 

for operating with NGS data for bioengineering applications. With these principles in hand, I then 

applied them to experimental workflows in viral vector screening. Next, as a main proof of concept 

of the accuracy and effectiveness of these NGS data strategies, I worked with members of Viviana 

Gradinaru’s lab to develop a new paradigm for characterizing the delivery profile of viral vectors in 

parallel via single-cell RNA sequencing. Finally, I worked with members of Matt Thomson’s lab to 

translate some of these principles to direct applications for human health by co-developing a method 

to process and analyze immune gene expression profiles from self-collected, low-volume human 

blood samples. Collectively, these principles and methods contribute to the new and growing 

paradigm of obtaining high-dimensional data on complex biological systems and engineering 

modular therapeutic solutions to change the state of these systems. 

1.2 Massively parallel sequencing for engineering adeno-associated viruses 

Adeno-associated viruses (AAVs) are widely used as gene delivery vehicles for basic research, and 

are being evaluated in a growing number of gene therapy clinical trials due to their broad transduction 

and lack of pathogenicity (Kuzmin et al., 2021). However, naturally-occurring AAVs have delivery 

profiles that miss important therapeutic targets, particularly less accessible tissues such as the brain 
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(Zincarelli et al., 2008). To meet this need, AAV engineers have developed a variety of strategies to 

design, screen, and select for engineered AAV variants that have higher transduction efficiency, and 

even specificity for organs or cell types of interest. One of these methods, CREATE, pioneered by 

Ben Deverman and other researchers in Viviana Gradinaru’s lab, takes advantage of the availability 

of engineered mouse lines expressing Cre recombinase in specific cell types and applies selective 

pressure to libraries of AAV variants (Deverman et al., 2016). This directed evolution approach has 

already yielded several highly transducing and cell-type-specific viral variants that are capable of 

crossing the blood-brain barrier and delivering genetic cargo to regions and cell types of interest 

(Chan et al., 2017; Deverman et al., 2016). 

However, one of the remaining limitations of current directed evolution approaches is their inability 

to apply negative or combinatorial selective pressure to variant libraries. While methods like 

CREATE can find variants that are highly effective at transducing a certain cell type, it does not 

guarantee that the variant is exclusive to those cell types. To address this, researchers in Viviana 

Gradinaru’s lab, led by Sripriya Ravindra Kumar, turned to NGS to gain insight into the virus 

mutants that are present in or absent from different recovered tissues. In Chapter 2, I discuss my 

work on processing and analyzing the data that emerges from these experiments. In Sections 2.3-

2.4, I discuss some challenges that arise from analyzing data from such an NGS-based screen. In 

Section 2.5, I describe a computationally efficient method implemented in Python for correcting 

errors that arise during PCR amplification and sequencing. In Section 2.6, I document a Python 

package I developed that provides these and other convenience and visualization functions that are 

broadly useful for NGS and deep mutational scanning datasets. Finally, in Section 2.7, I show some 

of the results from the use of this software and analysis in discovering several AAV variants with 

enhanced tropism for vascular cells in the mouse brain (Ravindra Kumar et al., 2020). 

One of the other major challenges facing both directed evolution and rational design approaches for 

engineering novel proteins for in vivo applications, such as AAV capsids for tropism specificity, is 

the combinatorial explosion of possible sequences to explore in a screen. Unlike protein engineering 

in bacterial or in vitro contexts where systems can be designed for continuous evolution, to date, in 
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vivo selective pressure experiments start with a library of fixed size, and perform selection in discrete 

experimental steps, often involving weeks to months of labwork. This constraint means that there is 

high value in knowing what sequences to include in a round of evolution. 

These AAV NGS experiments have yielded rich datasets of hundreds of thousands of viral variants 

per experiment with quantitative measures of their tropism, and have revealed new variants with 

enhanced tropism for specific cell types. This field, and, more generally, NGS-based in vivo protein 

selection strategies, will likely produce an increasing data stream of mutant proteins and their 

measured effectiveness at a variety of therapeutically-relevant functions, as soon as such functions 

can be reduced to a sequencing readout. I hope that the analysis and principles presented here will 

have relevance to this exciting new paradigm of directed evolution. 

1.3 Single-cell RNA sequencing for characterizing engineered adeno-associated viruses 

As custom AAV and other gene therapy delivery vehicles are being developed, it is critical to 

understand their delivery and expression profile. Off-target delivery of gene therapies can lead to 

diminished therapeutic efficacy, immune response, and toxicity. Gene therapy trials, while already 

showing great promise in a variety of disease areas (Papanikolaou and Bosio, 2021), have also had 

several high-profile clinical failures that have resulted from unnecessary levels of off-target delivery 

or expression (Lehrman, 1999; Paulk, 2020; Servick, 2021). 

One of the bottlenecks in gene therapy development and characterization is the full profiling of on- 

and off-target delivery and expression. While selection and screening methods as described above 

have become highly parallelizable in terms of the number of variants, they have not become highly 

parallelizable in terms of the number of cell types or tissues screened; each new cell type or tissue 

of interest requires additional animals or lab work to characterize. Thus, when selecting or 

characterizing new variants, vector developers are forced to choose a limited set of cell types and 

tissues. On the side of gene therapy users, researchers looking to deliver gene therapies for diseases 

or to answer research questions often have specific on and off-target needs for their application. 

However, the probability that a particular vector has been characterized by the vector developer in 
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exactly the cell types or tissues of interest to the gene therapy researcher becomes smaller as the 

number of cell types and tissues that are considered increases. 

Parallel single-cell RNA sequencing (scRNA-seq) is a recently developed class of methods that 

allows researchers to interrogate the expression of thousands of genes in thousands to millions of 

cells in a single experiment (Klein et al., 2015; Macosko et al., 2015; Rosenberg et al., 2018; Zheng 

et al., 2017). These methods have given unprecedented insight into the diversity of cell types and 

states, and are proving an invaluable tool in defining cell type hierarchies and in understanding the 

role of cell subpopulations in the context of systematic function, disease, and response to 

perturbations. However, this increased level of understanding has a concomitant increase in 

expectations and needs; if a cell type implicated in a particular disease is revealed to contain several 

cell subtypes, it is only a matter of time before researchers will explore which roles each subtype 

plays within the greater disease context. 

Thus, characterizing newly developed gene therapy vectors in all relevant cell types becomes 

untenable unless it can scale with the discovery of new cell types. Ideally, gene therapy vector 

developers could perform a scRNA-seq experiment with their newly designed vectors to characterize 

their performance in all cell types in a single experiment. Unfortunately, there are many obstacles 

precluding the rapid adoption of scRNA-seq as a characterization method. scRNA-seq datasets are 

impressively large; samples from a single, small region yield at least as much data as full 30X 

coverage whole genome sequencing (90 gigabases). Extending this to multiple regions, or multiple 

samples, can quickly outpace the data storage, processing and bioinformatics capabilities of manual 

workflows and non-cluster computing. In Section 3.2, I lay out some software abstractions that I 

believe are appropriate for thinking about and developing software for scRNA-seq workflows. Using 

these abstractions, in Sections 3.3-3.4, I describe software I developed to enable rapid access to 

scRNA-seq data across many samples, and a web-hosted software infrastructure for automating the 

most common pipeline elements of scRNA-seq samples. 
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Since scRNA-seq is still a relatively new paradigm, and has a constantly evolving technology 

landscape, an additional class of problems arises in translating scRNA-seq to new applications: 

identifying the cell types and states among the heterogeneity of cells and noise within a sample. 

While a multitude of methods exist for attempting to address these issues, they often involve setting 

somewhat arbitrary thresholds, make assumptions of homogeneity in the sample, and do not consider 

the biological knowledge a researcher has about their tissue of interest. In Section 5.7.14, I elaborate 

on a guided machine-learning-based approach to distinguish cell types from confounding noise, and 

identify cell subtypes confidently based on both known gene markers and automated discovery of 

cell type markers. 

One final nuance in translating scRNA-seq for characterizing vector delivery is that, unlike most 

scRNA-seq applications which seek to discover cell types or states that can be measured by multiple 

genes or gene pathways, vector characterization requires a high fidelity recovery and readout of the 

presence or absence of the specific delivered gene. In Chapter 4, I discuss strategies for increasing 

the fidelity of identifying individual gene transcripts. In Section 4.2, I show why these strategies are 

critical to avoid misinterpretation due to PCR artifacts. 

With all of these pieces in place, in Chapter 5, I discuss a new method for characterizing the unbiased 

cell type tropism of AAVs via scRNA-seq that I developed with members of Viviana Gradinaru and 

Matt Thomson’s labs. In Section 5.3.1-5.3.2, I detail the pipeline we developed and show that it 

produces results in accordance with existing immunohistochemistry-based characterization. In 

Sections 5.3.3 and 5.3.5, I discuss cell-subtype-specific biases we uncovered from our unbiased 

approach. And, in Sections 5.3.4 and 5.3.7, I show how this method can scale not only to multiple 

cell types, but also to multiple AAV variants in parallel via a barcoding strategy. By providing 

principles, software, and a workflow that enables confident readouts of viral tropism, I hope that 

future vector development efforts can benefit from the parallelizability of NGS-based assays and 

report comprehensive on- and off-target delivery efficiency of their tools. 
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1.4 Translating single-cell RNA sequencing to human immune studies 

The technology development of scRNA-seq has seen an impressive rate of improvement since its 

inception in 2009, and the number of cells interrogated per study has been growing exponentially 

(Svensson et al., 2018). This increase is primarily driven by technological developments that increase 

the usability of scRNA-seq protocols, and cost reductions on a per-cell basis. Unsurprisingly, these 

technology improvements have yielded steady growth in the number of scRNA-seq studies, with 

412 studies published and curated in 2020, compared to only 54 in 2015 (Svensson et al., 2020). 

However, there is a curious additional trend: despite this explosive growth in technology adoption 

and scale, there is not a concomitant growth in the number of subjects included per study in human 

blood (Figure 1). This suggests that while the technology is scaling, the ability to acquire samples 

may present an additional bottleneck. 

  

Figure 1. Growth of single-cell RNA sequencing studies. Growth of single-cell RNA sequencing in terms of number of cells per 

study (left) vs. number of subjects (right). 

In collaboration with Tatyana Dobreva and Jong Hwee Park in Matt Thomson’s lab, we explored 
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and found that the default method of sample collection is via venous blood draws, administered by 

a licensed phlebotomist. However, typical scRNA-seq experiments process on the order of 103-104 

cells per sample, while whole blood contains approximately 4.5x103 – 1.1x104 white blood cells per 

µL (Dean, 2005). Thus, in a typical venous blood draw of 10-15mL, less than 1% of the collected 

cells are used for eventual scRNA-seq workflows. This suggests the possibility of performing 

scRNA-seq not on phlebotomist-administered venous blood draws, but instead on less invasive and 

cumbersome procedures, such as capillary blood extraction which can be performed by researchers 

directly, or even the subjects themselves. In Chapter 6, we describe a protocol for extracting and 

isolating PBMCs from such small volumes of self-collected capillary blood. In Sections 6.3.1-6.3.2, 

we show how capillary blood can be used to obtain the same cell types as in traditional venous blood 

draws. With easy access to subjects and the low burden of capillary blood collection, we were able 

to perform a time-course study with two samples per day. In Sections 6.3.3-6.3.5, I discuss our 

findings on cell-type-specific gene expression that is dependent on the time of day, and showcase 

the incredible level of immune-relevant individuality in gene expression profiles between subjects. 

Our hope is that using protocols that can operate on self-collected, low-volume capillary blood will 

allow single-cell studies to scale in number of subjects in tandem with the technology, and help 

society gain a more robust understanding of the individuality present in the human immune system: 

a critical component to developing increasingly personalized molecular, cellular, and genetic 

therapies. 
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C h a p t e r  2  

PRINCIPLES FOR ANALYZING DEEP MUTATIONAL SCANNING 

DATASETS 

2.1 Summary 

Applying directed evolution to AAV engineering has resulted in substantial improvements in 

efficacy of gene therapy delivery to a variety of cell types and tissues. Of particular relevance to 

neuroscience and brain disorders, the Cre-dependent system developed by Deverman et al. (2016) 

has yielded AAV-PHP.B, AAV-PHP.eB, and AAV-PHP.S, three variants with enhanced 

transduction of different subpopulations of cells in the central nervous system via systemic injection. 

This system works by inverting a segment of the delivered viral cargo sequence and flanking it with 

Lox sites and then injecting into Cre-expressing animals, whereafter amplification protocols 

selectively extract only viruses that have successfully transduced the cell types expressing Cre. 

While incredibly powerful, this molecular selection strategy is limited to applying positive selective 

pressure for transduction of specific cell types, and cannot apply selective pressure to detarget other 

cell types. Furthermore, directed evolution that operates in such discrete experimental steps as 

opposed to continuous mutagenesis under selective pressure is limited by the scale of the input 

library and the throughput of the final readout, and is dependent on the effectiveness of the selective 

pressure. 

The use of next-generation sequencing data for screening and analyzing libraries of engineered 

mutants, a paradigm referred to as deep mutational scanning, can provide a high-throughput readout 

of the results of a directed evolution selection round (Forsyth et al., 2013; Fowler and Fields, 2014; 

Starita and Fields, 2015; Wrenbeck et al., 2017). In many cases, deep mutational scanning can 

provide a significant boost to the expected efficiency of the output of a screen. However, given that 
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deep mutational screens cost additional labwork and sequencing reagents, it is important to 

understand in what contexts and applications the increased efficiency outweighs the costs. In this 

work, I present a framework for assessing the probability that incorporating deep mutational scans 

into a directed evolution paradigm will lead to improved variants. 

From the perspective of this framework, there are several properties of Cre-dependent directed 

evolution of capsids that suggest that deep mutational scanning is beneficial and even necessary for 

evolving certain properties of capsids. In this vein, I worked with Sripriya Ravindra Kumar and 

colleagues to incorporate an NGS readout on the pre- and post-selection Cre-dependent AAV 

libraries with the goal of engineering capsids with enhanced specificity for particular cell types. In 

this work, I describe the metrics that we determined to screen for capsids with specific properties, 

and elaborate on the unique data analysis elements of deep mutational scanning experiments, in 

particular with regards to the subsampled nature of NGS data. In addition, there are some 

considerations for the particular paradigm of performing saturation mutagenesis on small regions, 

such as the 7-mer amino acid insertion at the 588-589 loop region of the AAV capsid we explored. 

Finally, I developed a suite of software tools to incorporate this analysis framework and make the 

analysis of deep mutation scanning experiments more user-friendly, while helping to manage the 

large number of samples and variants considered in such multiplexed screens. As proof of the utility 

of deep mutational scanning and these analysis methods for screening AAVs, we show that several 

novel engineered capsids arose from this screen with useful cell-type-specific tropisms that 

otherwise would likely not have been detected using a traditional directed evolution approach alone. 

2.2 Directed evolution vs. deep mutational scanning 

As evidenced by the Nobel Prize in Chemistry in 2018, directed evolution—i.e., the use of selective 

pressure combined with mutagenesis to evolve proteins or cells for desired function—has had a 

profound impact on science, ranging from evolution of enzymes for increased catalytic function, to 

optimization of binding affinity for antibodies via phage display, to evolution of AAVs for enhanced 

delivery of gene therapy to the brain (Arnold, 1998; Chen and Arnold, 1993; Deverman et al., 2016; 
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Smith, 1985). When successful, the products of directed evolution can have orders of magnitude of 

increased effectiveness above their parent. Thus, when faced with a protein engineering challenge, 

directed evolution is often an appealing first candidate strategy. 

However, while directed evolution relieves the engineer of the burden of having to rationally design 

the optimal protein or cell, it burdens the engineer with a new task: rationally designing the selective 

pressure applied to the library. This task is so important, its implications have been dubbed the first 

law of directed evolution: “you get what you screen for” (Arnold, 1998). 

A directed evolution selection strategy can be thought of in terms of several metrics that collectively 

determine the expected increase in fitness obtained in a round of selection. Determining, or at least 

estimating, these metrics can be useful in deciding between possible selection strategies, including 

whether or not to add a deep mutational scanning step to each round of selection. These metrics are: 

 The number of mutants in the input library, N; 

 The number of molecules in the output library, M; 

 The number of mutants that can be isolated in a round of evolution, n. 

If we model the effectiveness of the selective pressure by the distribution of the mutant counts post-

selection, F(X), we can use this distribution and the above metrics to predict the probability of 

picking a mutant that is among the top mutants in an output library. 

As a simple example, let us assume uniform selective pressure, meaning each mutant is equally likely 

to be selected at each opportunity. In this case, the distribution of the number of times we see a 

particular mutant in our output library, M, can be modeled by the Poisson distribution, where the rate 

parameter, λ =
𝑀

𝑁
. In the case of directed evolution, typically M >> N, therefore λ >> 1, since there 

are many copies of each mutant due to some amplification as part of the selection process. 
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For example, in a simple case of N=1000 mutants with an output library size of M=100000, we 

expect the familiar Poisson distribution centered near λ (Figure 2. Example mutant distribution 

under uniform selection pressure. Poisson distribution conditioned on X>0 for an estimated 

mutant library size 100-fold smaller than the output library.Figure 2). 

 

Figure 2. Example mutant distribution under uniform selection pressure. Poisson distribution conditioned on X>0 for an 

estimated mutant library size 100-fold smaller than the output library. 

We can then think of a non-uniform selective pressure function, F, as the same process, but with 

increased selective pressure strength that leads to overdispersion of the Poisson. Thus, we can make 

a simple 2-parameter model of selective pressure via the negative binomial distribution, where the 

mean, µ, represents the same value, λ, as it did in the case of the Poisson distribution; that is, the ratio 

between our sample size post-selection and our initial mutant library size, but with a new dispersion 

parameter, α, that represents the strength of the selective pressure. This is a common 

parameterization of the negative binomial, and can be converted to the traditional number of 

successes, n, and probability of success, p, with the following transformations: 
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𝜎2 = 𝜇 + 𝛼𝜇2 

𝑝 =  
𝜇

𝜎2
 

𝑛 =
𝜇2

𝜎2 − 𝜇
 

It can then be seen that as the selective pressure strength, α converges to 0, the variance approaches 

the mean, representing the Poisson: 

lim
𝛼→0

𝜎2 = lim
𝛼→0

𝜇 + 𝛼𝜇2 

lim
𝛼→0

𝜎2 = 𝜇 

Now that we can represent the strength of the selective pressure, it would be helpful to know if there 

are different regimes of selective pressure strength that lend themselves to different selection 

strategies. In particular, under what regimes is there an advantage in performing deep mutational 

scanning. For this, we can turn to simulations of these negative binomials. For a given negative 

binomial with μ =
𝑀

𝑁
 and selection strength α, we can generate a theoretical output library that 

represents the counts of each mutant before sampling. If we assume that the mutants have multiplied 

many times over such that the count of each variant, mi >> n (our sampling depth) for all mutants i, 

we can then sample from these variants, with replacement, weighted by their relative count. To know 

whether we sampled one of the top k variants within the pool, if we let K = the set of top k variants, 

we can calculate: 

𝑃(𝐾|𝑛) = 1 −  (1 −
∑ 𝑚𝑖𝑖∈𝐾

∑ 𝑚𝑖𝑖
)

𝑛

 

The question we ultimately want to know for screens of different scales, is what is the probability 

that we will uncover our mutant of interest if we pursue the larger screen. We can calculate this 
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probability of getting at least one of the top K variants in a larger sample size, n1¸ but not in a smaller 

sample size, n2, as: 

𝑃(𝐾|𝑛1) ∗ (1 − 𝑃(𝐾|𝑛2)) 

When modeled like this, we can explore the different regimes in which deep mutational scanning, 

which samples on the order of 106 variants per experiment, will yield one of the desired variants, 

whereas a smaller screen, like picking clones, which is on the order of 10 variants per experiment, 

will not. 

For a fixed estimated library size of N=10000 mutants, I explored the probability of finding a top k 

variant across a variety of dispersion parameters and different values for k (Figure 3).  

Unsurprisingly, two trends are revealed: as selective pressure increases and as k increases, the value 

of a deep mutational scan decreases. Next, I explored the effect of library size on this phenomenon. 

Again, unsurprisingly, as library size increases, the value of a deep mutational scan increases; 

however, this effect goes away as the library size becomes unmanageable for either strategy. 

Together, these simulations suggest a particular regime of directed evolution that benefits from the 

extremely large number of samples obtained from deep mutational scanning; however, there are 

scenarios, such as in regimes of very high selective pressure or small library sizes, where deep 

mutational scanning will have very little benefit. For Cre-dependent AAV engineering applications, 

where library sizes are estimated to be on the order of 1e6 variants, and we are interested in capturing 

the select top few variants that maximize transduction, deep mutational scanning is likely to confer 

a large benefit across all but the strongest selective pressures. 

Finally, it is worth noting that there is another case where deep mutational scanning is critical: 

namely, when the desired property of the protein to engineer does not have a selective pressure 

strategy available. For this, engineers can use the data that comes from a deep mutational screen to 

explore additional, analytical phenotypes of their mutants. 
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Figure 3. Estimated boost in probability of detecting a top k variant in a deep mutational screen vs. traditional colony 

picking. (top) For a fixed library size of 10000 variants, the probability of improvement for a variety of selection strengths (y) 

and values of top k (x). (bottom) For a fixed k=10, the probability of improvement for a variety of selection strengths (y) and 

library sizes (x). 
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2.3 Calculating enrichment and specificity 

Deep mutational scanning data has several unique components in the data analysis workflow that 

need to be considered when analyzing the fitness of variants. Arguably the most critical of these is 

determining the metric that will be used to score and rank the variants. A first approach for ranking 

variants for tropism in a recovered tissue or cell type might be to count the number of times a variant 

is detected in the deep mutational scanning data. These counts are a direct measure of the selective 

pressure applied to the library, and thus can act as a proxy for the selective pressure. Choosing 

variants from a library based solely on the abundance of their recovered counts is equivalent to 

picking colonies from a dish of variants that have survived a selective pressure round. For some 

applications, this may be enough, and, as shown in Section 2.2, already provides value in many 

experimental regimes. However, one of the advantages of deep mutational scanning is that 

researchers can create in silico selective pressure analogs through analysis. The choice and 

implementation of these metrics are critically important, as they will provide the selective pressure 

for downstream rounds. Analogous to the first law of directed evolution, a first law of deep 

mutational scanning might be “you get what you analyze for.” 

In the case of AAV tropism evolution, AAV variants recovered from tissue have already undergone 

three distinct rounds of selection by the time they are recovered. The first round of selection happens 

during DNA synthesis and cloning, where there might be a bias from PCR amplification or bacterial 

production. The second round of selection happens during virus production, where AAV variants 

that fail to form capsids, or form capsids that do not survive the purification procedure, are filtered. 

The final round of selection is from the effectiveness of the variant at navigating to the cell type and 

tissue of interest. Unlike some other deep mutational scanning contexts, the selective pressure that 

we are primarily interested in is only the final step—transduction. If a variant has high effectiveness 

at transducing a cell type of interest, but only moderate ability to produce functional variants, variant 

manufacturing can usually scale up to meet the demand. Therefore, we are interested in the change 

in distribution of variants not from our starting DNA pool, but rather our post-production virus pool. 
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This suggests our first metric of interest for AAV transduction: tissue enrichment. Tissue enrichment 

can be calculated as the relative change in abundance of a variant between the post-production virus 

pool and the variant pool in the sample of interest. Given ci,j as the count of variant i in sample j, we 

can then define abundance, p, as: 

𝑝𝑖,𝑗 =
𝑐𝑖,𝑗

∑ 𝑐𝑘,𝑗𝑘
 

And from here define enrichment, e, over the post-production sample, v, as: 

𝑒𝑖,𝑗 = log
𝑝𝑖,𝑗

𝑝𝑖,𝑣
 

Note that ei,j is undefined if the variant has 0 abundance in the virus production pool. I discuss 

workarounds for this below (see Section 2.4 The zero count problem). 

In addition to having high efficiency at targeting a tissue or cell type of interest, one of the properties 

of interest for AAV capsids is to have specificity; that is, low transduction of off-target tissue types. 

More generally, for a set of on-target tissues, J, and off-target tissues, K, we can calculate the 

specificity, s, of variant i, as: 

𝑠𝑖,𝐽,𝐾 = log
∑ 𝑝𝑖,𝑗𝑗∈𝐽

(
∑ 𝑝𝑖,𝑗𝑗∈𝐽 +  ∑ 𝑝𝑖,𝑘𝑘∈𝐾

|𝐽| + |𝐾| )

 

An example of these metrics is given in Figure 4. With these two metrics in hand, researchers 

implementing a multiplexed AAV directed evolution paradigm can now choose any combination of 

on- and off-target tissues to fine-tune their desired AAV tropism. 
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Figure 4. An example of enrichment (left) and tissue specificity (right) 

2.4 The zero count problem 

Variant read counts derived from NGS data in most deep mutational scanning contexts are a 

substantial subsampling of the total pool of recovered molecules. Thus, it cannot be assumed that 

the absence of a mutant in the NGS data means the variant was not present in the pool; 

mathematically, it means the absence of a variant in a pool cannot be treated as a 0. This is 

additionally important for calculating fitness metrics (see Section 2.3 Calculating enrichment and 

specificity) where the denominator of the metric contains a read count; if the read count is 0, the 

fitness metric is undefined. 

One common strategy for dealing with zero counts in count data is an additive method; that is, for 

calculations that require the use of counts that may be 0, such as the log transform, every count c is 

replaced with a count c' = c+ k, where k is some manually defined constant, often 1 (Lindstone, 

1920). The problem with this approach is that count data is not normally distributed, so adding a 

constant to each value skews the distribution. Also, there are many factors involved that change the 

meaning of a 0 in different datasets, such as sequencing depth, and the variance of the count 

distribution. As an extreme example, seeing a variant 0 times in a dataset of only 1 sample does not 

carry the same weight as seeing a variant 0 times in a dataset of millions of samples; the latter gives 
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more confidence that the variant might not be present in the library. Despite these many 

shortcomings, the simple additive transform continues to be used in many applications, risking 

misinterpretation of substantial scientific findings (Booeshaghi and Pachter, 2021). 

Instead of using an additive method, to estimate the probability of an unseen variant, I perform a 

two-step procedure. The first step is to estimate the probability that, if we were to sequence 1 more 

read, the read would originate from a previously unseen variant. This calculation is inspired by the 

first step of estimation in the Good-Turing frequency estimation procedure (Good, 1953), and is: 

𝑝0 =  
𝑁1

𝑁
 , 

where N is the number of variants in the dataset, and N1 is the number of variants detected with a 

count of 1. Since the single read counts in sequencing data can often be attributed to mutations of 

existing variants, I perform an additional correction step to this estimate. I first calculate the expected 

number of erroneous sequencing reads, E, based on a cumulative sum of the per-base read errors as 

reported in the FASTQ file. Then, I simulate a large number of point mutations from the data and 

calculate the frequency with which these mutations result in a sequence that is already present in the 

data; the complement of this is an estimate of the probability, pe that any given sequencing read error 

results in a sequence that does not otherwise exist in the dataset. I then use this to estimate how many 

single count reads can be accounted for by mutation and sequencing errors by multiplying the 

number of expected error reads by the probability, N1’ = E*pe. Finally, I subtract this from the 

expected number of unseen, and obtain: 

𝑝0
′ =  

𝑁1

𝑁
−  

𝑁1′

𝑁
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Figure 5. Distribution of enrichments under different transforms. Using log plus 1 transform (left) vs empirical zero estimate 

(right). 

This number now replaces zeros when encountered in enrichment and specificity calculations. 

Typical values for this estimate in our AAV variant libraries range from 1e-6 to 1e-1, and can be 

shown to reduce artifacts that otherwise show up in traditional log plus 1 transforms. For example, 

performing the log plus one transform on missing variants in enrichment of tissue recovery counts 

over virus production counts creates an artifact where every variant has a positive log fold 

enrichment, despite clear examples where the variant is present in the virus production library at 

moderate counts, but depleted in the recovered tissue, representing negative enrichment ( Figure 5, 

left). The zero count transformation reduces this artifact and produces negative enrichment values 

for variants in this regime ( Figure 5, right). 

Looking at different values of p0’ in relation to the histograms of counts shows some expected trends. 

Large sequencing depth libraries with read counts of mostly 1 or 2 have a very high p0’ estimate 

(0.7), whereas similarly high sequencing depth libraries with a stretched out distribution have much 

lower estimates (Figure 6A, B). Libraries with low sequencing depth but moderate skew have p0’ 

estimates in the middle, whereas a low sequencing depth library dominated by a single sequence has 

an extremely low p0’ (Figure 6C, D). 
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Figure 6. Estimated non-zero probabilities in different empirical data regimes. (A) An undersampled library, with read counts 

of only 1 or 2. (B) A diverse, high variance mutant library. (C) A moderately undersampled library with some diversity. (D) An 

oversampled library with only 1or 2 dominant sequences. 

While these zero count estimates do provide a seemingly better transform than the traditional 

additive transformations, there are likely more principled estimates possible, especially given the 

scale of the data. For example, one could fit a distribution based on the known read counts, and then 

use this distribution, coupled with an estimate of the library size, to better estimate the probability of 

a variant being present in the library, but just not sequenced. Additionally, one could incorporate 

mechanistically-inspired models of PCR, sequencing errors, or other library amplification steps to 

better understand the distribution of low counts, and whether they constitute undersampled library 

as opposed to technical artifacts. However, the method described herein provide a better estimate 
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than transforms that do not depend on the distribution of the sequencing input data, is straightforward 

to implement, and is available as part of the pepars Python package (see Section 2.7.2 protfarm). 

2.5 Correcting PCR and sequencing errors 

Errors during early rounds of PCR amplification that occur during preparation of deep mutational 

scanning libraries can introduce high-count artifacts in the data that are mutants of their higher-count 

parents. In a selective pressure context, where the top-performing variants may have orders of 

magnitude higher performance than lower performers, these artifacts can have counts as high as or 

even higher than low performing, non-artifact variants. In directed evolution library protocols such 

as site-saturation mutagenesis or error-prone PCR on large fragments, these artifacts can be easier to 

identify by their deviation from the expected types of mutants present in the data. For example, in 

site-saturation mutagenesis, a variant that contains two or more mutations at low count is likely to 

be an artifact, since only point mutations are expected. Similarly, in error-prone PCR on large 

fragments, the probability that an error on a parent sequence yields a mutant that could have come 

from another parent is extremely unlikely, and becomes increasingly unlikely the larger the fragment 

that undergoes error-prone PCR. 

In the directed evolution paradigm of using degenerate primers to produce large libraries with 

multiple mutations in a small region, however, it is likely that several steps of errors from a parent 

variant could yield a sequence that is identical to the sequence of an erroneous mutation from another 

variant in the pool. 

To address these artifacts, we developed a strategy to correct for such PCR and sequencing errors. 

The underlying assumption of our strategy is that counts of child mutants will have less than half the 

counts than their associated parent, and this assumption holds as long as each variant has more than 

one copy in the pre-amplified library, and the PCR error rate is less than 50% (much greater than 

typical PCR error rates). 
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The procedure is as follows: 

1. Sort the sequences in ascending order, by count. 

2. Pick the next candidate child sequence from the sorted list. Find if there are any sequences 

that are hamming distance one away with at least twice the count of the candidate child 

sequence. 

a. If so, distribute the counts of the candidate child sequence into the parent sequences, 

proportionally to the parent read counts. 

3. Repeat step 2 for all sequences. 

A visualization of an example of this procedure is presented in Figure 7. 
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Figure 7. Variant collapse schematic. The procedure in the sequential case (A), and the multiple parent case (B). 

Performing this procedure naively by searching for all possible hamming distance 1 parent strings 

in a list is an extremely computationally expensive procedure with run time O(mn2), where m is the 

number of nucleotides in the sequence, and n is the number of sequences in the dataset. For even 

small datasets, such as the 105 21-nucleotide sequences we encounter in our AAV selections, this 

can take hours to days to run on a modern computer. 
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Figure 8. Schematic of a Sequence Trie and the nodes traversed for a 3-nucleotide lookup. 

Fortunately, there is a computer science data structure that is optimally suited for this problem: tries. 

Tries are data structures that represent data as a tree, with each node in the trie containing a pointer 

to all existing subsequent characters. Structured for nucleotide data, an example trie would look like 

Figure 8. The benefit of a trie for collapsing similar sequences is that rather than looking for a 

possible parent sequence with hamming distance 1, it generates all possible hamming distance 1 

sequences from the candidate child sequence, and queries the trie to see if it exists. A similar 

procedure could be accomplished by storing sequence counts in a hash table; however, sequence 

tries enable the additional optimization of short-circuiting all subsequent lookups if a parent node in 

the trie does not exist.  
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For example, imagine we are looking for all possible parent sequences of AAA. The exhaustive list 

of hamming distance one possible parents is: AAG, AAC, AAT, AGA, ACA, ATA, GAA, CAA, 

TAA. In a hash table implementation of the lookup, each lookup requires a search through the hash 

table from scratch; however, with a trie, the algorithm can start at the current node (AAA), traverse 

to its parent (AA), and immediately access the exhaustive list of possible hamming distance one 

parents at this node (AAG, AAC, AAT). Although modern hash table implementations are 

impressively fast and boast worst case lookup times of O(k) and average lookup times of O(1),  the 

pruning of large numbers of nodes can make up for the theoretical O(k) average lookup times. 

This collapse procedure using a Sequence Trie is implemented in the pepars Python package (see 

Section 2.6 pepars: A Python package for manipulating NGS data). There has been a more optimized 

Java implementation of a similar collapsing procedures released and described in a recent article 

(Liu, 2019), but for quick usage in Python notebooks, this implementation may be of use, and can 

collapse variant count datasets of 105-107 variants in seconds-minutes. 

2.6 pepars: A Python package for manipulating NGS data 

While several tools now exist for analyzing deep mutational scanning experiments for different 

contexts (Bloom, 2015; Rubin et al., 2017), they were either not yet developed or lacked critical 

features at the time of the first AAV deep mutational scanning datasets originating from Viviana 

Gradinaru’s lab. Thus, Tatyana Dobreva, Pétur Helgi Einarsson, and I developed a suite of software 

for managing the large number of samples generated by multiplexed deep mutational scans of AAV 

variants. There are 3 main software components: 

 pepars is a suite of helper, visualization, and analysis functions needed for many deep 

mutational scanning contexts. 

 protfarm is a package for storing, organizing, and querying the raw and aligned data coming 

from deep mutational scanning experiments, particularly useful in the case when there are 

10s to 100s of different experiments and FASTQ files. 
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 protfarm-gui is a user interface built in tkinter that interfaces with the protfarm package to 

provide user-friendly access to its functions. This was built primarily by Pétur Helgi 

Einarsson, and documentation can be found at https://github.com/GradinaruLab/protfarm-

gui/blob/master/doc/manual.tex. 

2.7.1 pepars: Protein Engineering via Parallel Sequencing 

pepars (Protein Engineering via Parallel Sequencing) is a Python package containing various 

utilities for dealing with parallel sequencing data (e.g. NGS FASTQ files) for protein engineering 

contexts. 

2.7.1.1. Installation 

You can install pepars via pip: 

pip install git+https://github.com/GradinaruLab/pepars.git 

2.7.1.2 Functionality 

pepars is broken up into packages roughly based on functionality. The main packages are: 

 alignment 

 analysis 

 fileio 

 plotting 

 utils 

 simulation 

Details about the functionality of each package are below. 
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2.7.1.3 Alignment 

The alignment package contains functions for taking FASTQ files and extracting variant regions. 

The main element of the alignment package is the Aligner class, which is an abstract class that 

defines how alignment should function. 

To perform alignment on a set of FASTQ files, instantiate one of the subclasses of Aligner (e.g. 

Perfect_Match_Aligner or Bowtie_Aligner), and then call the align function. 

See examples/alignment.ipynb for a typical use case. 

The alignment parameters vary by aligner, as below: 

2.7.1.3.1 Perfect_Match_Aligner Parameters 

variant_sequence_quality_threshold=0 

mismatch_quality_threshold=0 

2.7.1.3.2 Bowtie_Aligner Parameters 

working_directory=os.getcwd() 

is_local=False 

output_frequency=1e5 

approach=None 

allow_insertions_deletions=False 

quality_threshold=0.0 

working_directory=os.getcwd() 

is_local=False 

output_frequency=1e5 

approach=None 

allow_insertions_deletions=False 

quality_threshold=0.0 

2.1.1.3.2 Subclassing Aligner 

To subclass the Aligner class, your class needs to implement the internal _align method. 
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2.7.1.4 Analysis 

The analysis package has a variety of analyses relevant to parallel sequencing-based protein 

engineering experiments. Some examples are: 

 amino_acids.get_amino_acid_codon_biases: Get the expected bias of amino acids for a 

degenerate nucleotide sequence. 

 sequencing_reads.get_nucleotide_distribution: Get the distribution of nucleotides in a 

FASTQ file. 

 confidence.get_sequence_confidences: Get the normalized confidences of a list of sequences 

and their counts, based on a few different confidence metrics. 

2.7.1.5 Fileio 

Some simple file wrappers, designed to make reading/writing CSV and sequence count files easier. 

2.7.1.6 Plotting 

A set of wrappers around Plotly, designed to generate plots useful for massively parallel sequencing 

with only one or a few lines of code, either interactively or exported. Most of the plotting functions 

in here internally call plotting.generate_plotly_plot, which is a catch-all Plotly wrapper that prints to 

screen, or writes to a file, or both. To have plots generate interactively, make sure to start your 

notebook with plotting.init_notebook_mode(). 

Some useful plots: 

 plotting.plot_histogram: A simple Plotly histogram wrapper 

 plotting.plot_scatter: A simple Plotly scatter plot wrapper 

 plotting.plot_count_distribution: Plot the count distribution of variant sequences over 

multiple samples 
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 DNA.plot_amino_acid_bias: Plot a heatmap of amino acid bias, given sequence counts and 

a template 

2.7.1.7 Utils 

A variety of potentially useful utility functions. Some highlights: 

 DNA: All the typical bioinformatics stuff: IUPAC grammar, the genetic code, 

translation/complement functions. 

 FASTQ_File: An easy-to-use FASTQ file iterator. Operates seemlessly on both gzipped and 

raw FASTQ files, and lets you iterate by sequences, quality scores, or both. 

 FASTQ_File_Set: A convenient way to iterate line-by-line along multiple FASTQ files in 

parallel - e.g. for paired end reads. 

 Sequence_Trie: A fast storage and query data structure for sequence information. Takes 

advantage of a trie structure to rapidly search for/iterate over one-off or two-off mutants. 

 AminoAcid: A class for each Amino acid—useful for extracting physical properties. 

2.7.1.8 Simulation 

Currently, this is just some functions for generating random mutants and their counts based on a 

template. Useful for testing. 

2.7.2 protfarm 

Protfarm is a Python package designed for managing large amounts of parallel sequencing protein 

engineering datasets. It relies heavily on the functionality of the pepars package, and mostly just 

provides a database and API for storing, querying, and analyzing multiple protein engineering 

experiments, with multiple samples per experiment. 
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2.7.2.1 Prerequisites 

Protfarm relies on the pepars package, so this must be installed before installing protfarm. Refer to 

the pepars repo for installation instructions. 

2.7.2.2 Installation 

You can then install protfarm via pip: 

pip install git+https://github.com/GradinaruLab/protfarm.git 

Note: use pip or pip3, whichever is associated with your Python3 

2.7.2.3 GUI 

If you prefer to work with a GUI instead of in Jupyter notebooks, Protfarm also has a graphical user 

interface, which is available as a separate package here: https://github.com/GradinaruLab/protfarm-

gui. 

2.7.2.4 Terminology 

Before diving into the functionality, it is important to establish some terminology that will be used 

throughout the instructions and the package. 

 Data Path: Protfarm expects all the data for all experiments to be contained within a single 

folder. This folder will largely be managed by Protfarm, so requires little user interaction 

(other than dropping raw FASTQ files in, or getting exported data out). It is recommended 

to create a folder just for this purpose, and not manually put any data/analysis here. There 

are no guarantees that Protfarm will not delete/manipulate data in this folder! 

 Experiment: Protfarm organizes data into “Experiments.” An experiment can consist of any 

number of samples and rounds of data, but every sample in an experiment is expected to have 
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the same mutation strategy. For example, if you mutate two separate regions of a protein as 

part of two different libraries, all the data associated with these two regions should be bundled 

together into two separate experiments. 

 Sample/Library: The terms sample and library are used interchangeably, and refer to a set 

of FASTQ files that should be bundled together for determining variant counts. Typically, a 

sample/library has a one-to-one correlation with a particular index in a sequencing run. 

2.7.2.5 Functionality 

The easiest way to see the functionality of Protfarm is to follow the examples in the following order: 

1. workspace/workspace_initialization.ipynb: Set up a new workspace from scratch. 

2. alignment/alignment.ipynb: Do an alignment of some FASTQ files against a template. 

3. alignment/export_alignment.ipnyb: Export the variant counts to a CSV file. 

4. analysis/sequence_counts.ipynb: Investigate the sequence counts to see library diversity. 

5. analysis/export_enrichment.ipynb: Calculate the enrichment of one sample over another, and 

export it. 

6. analysis/amino_acid_heatmap.ipynb: Look at the distribution of amino acids, normalized by 

their intrinsic bias. 

7. analysis/collapsing_sequences.ipynb: Collapse sequences that are likely to be PCR errors, 

and compare the library diversity. 

2.7 Multiplexed Cre-dependent Selection (M-CREATE) yields systemic AAVs for targeting 

distinct brain cell types 

Adapted from: 

Ravindra Kumar, S., Miles, T. F., Chen, X., Brown, D., Dobreva, T., Huang, Q., Ding, X., Luo, Y., 

Einarsson, P. H., Greenbaum, A., Jang, M. J., Deverman, B. E., & Gradinaru, V. (2020). Multiplexed 



33 

 

Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nature 

Methods, 17(5), 541–550. https://doi.org/10.1038/s41592-020-0799-7 

2.7.1 Summary 

Recombinant adeno-associated viruses (rAAVs) are efficient gene delivery vectors via intravenous 

delivery; however, natural serotypes display a finite set of tropisms. To expand their utility, we 

evolved AAV capsids to efficiently transduce specific cell types in adult mouse brains. Building 

upon our Cre-recombination-based AAV targeted evolution (CREATE) platform, we developed 

Multiplexed-CREATE (M-CREATE) to identify variants of interest in a given selection landscape 

through multiple positive and negative selection criteria. M-CREATE incorporates next-generation 

sequencing, synthetic library generation, and a dedicated analysis pipeline. We have identified capsid 

variants that can transduce the central nervous system broadly, exhibit bias toward vascular cells and 

astrocytes, target neurons with greater specificity, or cross the blood–brain barrier across diverse 

murine strains. Collectively, the M-CREATE methodology accelerates the discovery of capsids for 

use in neuroscience and gene-therapy applications. 

2.7.2 Introduction 

Recombinant adeno-associated viruses (rAAVs) are widely used as gene delivery vectors in 

scientific research and therapeutic applications due to their ability to transduce both dividing and 

non-dividing cells, their long-term persistence as episomal DNA in infected cells, and their low 

immunogenicity (Daya and Berns, 2008; Deverman et al., 2018; Gaj et al., 2016; Naso et al., 2017; 

Wu et al., 2006). However, gene delivery by natural AAV serotypes is limited by dose-limiting 

safety constraints and largely overlapping tropisms. AAV capsids engineered by rational design 

(Bartlett et al., 1999; Davidsson et al., 2019; Lee et al., 2018; Sen, 2014) or directed evolution 

(Bedbrook et al., 2018; Dalkara et al., 2013; Excoffon et al., 2009; Grimm et al., 2008; Kotterman 

and Schaffer, 2014; Maheshri et al., 2006; Müller et al., 2003; Ogden et al., 2019; Pekrun et al., 

2019; Pulicherla et al., 2011; Ying et al., 2010)have yielded vectors with improved efficiencies for 

select cell populations (Chan et al., 2017; Davis et al., 2015; Deverman et al., 2016; Körbelin et al., 
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2016a; Ojala et al., 2018a; Tervo et al., 2016; Tordo et al., 2018), yet much work remains to identify 

a complete toolbox of efficient and specific vectors. Previously, we evolved the AAV-PHP.B and 

AAV-PHP.eB variants from AAV9 using a selection method called CREATE (Deverman et al., 

2016). This method applies positive selective pressure for capsids capable of infecting a target cell 

population by pairing a viral genome containing lox sites with in vivo selection in transgenic mice 

expressing Cre in the cell type of interest. This combination allows a Cre–Lox recombination-

dependent PCR amplification of only those capsids which successfully deliver their genomes to the 

nuclei of the target cell type. 

To more efficiently expand the AAV toolbox, we developed Multiplexed-CREATE (M-CREATE) 

(Figure 9), which compares the enrichment profiles of thousands of capsid variants across multiple 

cell types and organs within a single experiment. This method improves upon its predecessor by 

capturing the breadth of capsid variants at every stage of the selection process. M-CREATE 

supports: (1) the calculation of an enrichment score for each variant by using next-generation 

sequencing (NGS) to correct for biases in viral production prior to selection, (2) reduced propagation 

of bias in successive rounds of selection through the creation of a post-round one synthetic pool 

library with equal variant representation, and (3) the reduction of false positives by including codon 

replicates of each selected variant in the pool. These improvements allow interpretation of variants' 

relative infection efficiencies across a broad range of enrichments in multiple positive selections and 

enable post-hoc negative screening by comparing capsid libraries recovered from multiple target cell 

types or organs. Collectively, these features allow prioritization of capsid variants for validation and 

characterization. 

To demonstrate the ability of M-CREATE to reveal useful variants missed by its predecessor 

(CREATE), we used the capsid library design that yielded AAV-PHP.B, and identified several 

AAV9 variants with distinct tropisms including variants that have biased transduction of brain 

vascular cells or that can cross the blood–brain barrier (BBB) without mouse-strain specificity. 
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Figure 9 Workflow of M-CREATE and analysis of 7-mer-i selection in round-1. (a), A multiplexed selection approach to 

identify capsids with specific and broad tropisms. Steps 1–6 describe the workflow in round-1 (R1) selection, steps 7–9 describe 

round-2 (R2) selection using the synthetic-pool method, steps 1a, 2a and 6a,b show the incorporation of deep sequencing to recover 

capsids after R1 and R2 selection, and steps 10–11 describe positive and/or negative selection criteria followed by variant 

characterization. The genes rep2 and cap9 in step 11 refers to rep from AAV2 and cap from AAV9, respectively, and the colored 
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bar within cap9 represents the targeted mutation. (b), Structural model of the AAV9 capsid (PDB 3UX1) with the insertion site for 

the 7-mer-i library highlighted in red in the 60-meric (left), trimeric (middle) and monomeric (right) forms. (c), Empirical 

cumulative distribution frequency (ECDF) of R1 DNA and virus libraries that were recovered by deep sequencing post Gibson 

assembly and virus production, respectively. (d), Distributions of variants recovered from three R1 libraries from Tek-Cre, 

SNAP25-Cre and GFAP-Cre brain tissue (n = 2 per Cre line) are shown with capsid libraries, sorted by decreasing order of the 

enrichment score. The enrichment scores of the AAV-PHP.V2 variant are mapped as well. 

2.7.3 Results 

2.7.3.1 Analysis of capsid libraries during round-1 selection 

M-CREATE was developed to enable the analysis of capsid variants’ behavior within and across in 

vivo selections. By doing so, we aimed to identify capsids with diverse tropisms, as well as reveal 

the capsid sequence diversity within a given tropism. M-CREATE achieves these aims by 

incorporating NGS and a synthetic capsid library for round-2 in vivo selection along with a dedicated 

analysis pipeline to assign capsid enrichment values. 

During DNA- and virus-library generation there is potential for biased accumulation and over-

representation of certain capsid variants, obscuring their true enrichment during in vivo selection. 

These deviations may result from PCR amplification bias in the DNA library or sequence bias in the 

efficiency of virus production across various steps such as capsid assembly, genome packaging and 

purification. We investigated this with a 7-mer-i (i for insertion) library, in which a randomized 7-

amino acids (AA) library is inserted between AA 588 and 589 of AAV9 (Figure 9a,b) in the rAAV-

ΔCap9-in-cis-Lox2 plasmid (theoretical library size, 3.4 × 1010 unique nucleotide sequences, and an 

estimated ~1 × 108 nucleotide sequences upon transfection). We sequenced the libraries after DNA 

assembly and after virus purification to a depth of 10–20 million (M) reads, which was adequate to 

capture the bias among variants during virus production (Figure 9c). The DNA library had a uniform 

distribution of 9.6 M unique variants within ~10 M total reads (read count (RC) mean = 1.0, s.d. 

= 0.074), indicating minimal bias. In contrast, the virus library had 3.6 M unique variants within 

~20 M depth (RC mean = 4.59, s.d. = 11.15) indicating enrichment of a subset of variants during viral 
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production. Thus, even permissive sites like 588–589 will impose biological constraints on sampled 

sequence space. 

For in vivo selection, we intravenously administered the 7-mer-i viral library in transgenic mice 

expressing Cre in astrocytes (GFAP-Cre), neurons (SNAP25-Cre) or endothelial cells (Tek-Cre) at 

a dose of 2 × 1011 vector genomes (vg) per adult mouse (n = 2 mice per Cre transgenic line). Two 

weeks after intravenous (i.v.) injection, we collected brain, spinal-cord and liver tissues. We 

extracted the rAAV genomes from tissues and selectively amplified the capsids that transduced Cre-

expressing cells. Upon deep sequencing, we observed ~8 × 104 unique nucleotide variants in brain 

tissue samples (~48% of which were identified in the sequenced portion of the virus library) and <50 

variants in spinal-cord samples across the transgenic lines, and each variant was represented with an 

enrichment score that reflects the change in relative abundance between the brain and the starting 

virus library (2.7.5 Methods and Figure 9d). 

Two features of this dataset stand out. First, the variants recovered from brain tissue were 

disproportionately represented in the sequenced fraction of the viral library, demonstrating how 

production biases can skew selection results. Second, the distribution of capsid read counts reveals 

that more than half of the unique variants recovered after selection appear at low read counts. These 

variants may either have arisen spontaneously from errors during experimental manipulation 

or retain AAV9's basal levels of central nervous system (CNS) transduction. 
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Figure 10 Round-2 capsid selections by synthetic pool and PCR pool methods. (a), Schematic of R2 synthetic pool (left) and PCR 

pool (right) library design. (b), Overlapping bar chart showing the percentage of library overlap between the mentioned libraries 

and their theoretical composition. (c), Histograms of DNA and virus libraries from the two methods, where the variants in a library 

are binned by their read counts (in log10 scale) and the height of the histogram is proportional to their frequency. (d), Distributions 

of R2 brain libraries from all Cre transgenic lines (n = 2 mice per Cre Line, mean is plotted) and both methods, in which the libraries 

are sorted in decreasing order of enrichment score (log10 scale). The total number of positively enriched variants from these libraries 
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are highlighted by dotted straight lines and AAV9’s relative enrichment is mapped on the synthetic pool plot. (e), Comparison of 

the enrichment scores (log10 scale) of two alternate codon replicates for 8,462 variants from the Tek-Cre brain library (n = 2 mice, 

mean is plotted). The broken line separates the high-confidence signal (>0.3) from noise. For the high-confidence signal (below), 

a linear least-squares regression is determined between the two codons and the regression line (best fit). The coefficient of 

determination r2 is shown. (f), Heat maps representing the magnitude (log2(fold change)) of a given amino acid’s relative 

enrichment or depletion at each position given statistical significance is reached (boxed if P ≤ 0.0001, two-sided, two-proportion z-

test, P values corrected for multiple comparisons using Bonferroni correction). R2 DNA normalized to oligopool (top, ~9,000 

sequences), R2 virus normalized to R2 DNA (middle, n = ~9,000 sequences), R2 Tek brain library with enrichment over 0.3 (high-

confidence signal) from synthetic pool method normalized to R2 virus (bottom, 154 sequences) are shown (n = 2 for brain library, 

one per mouse; all other libraries, n = 1). (g), Heat map of Cre-independent relative enrichment across organs (n = 2 mice per Cre 

line, mean across 6 samples from 3 Cre lines is plotted) for variants enriched in the brain tissue of at least one Cre-dependent 

synthetic pool selection (red text, n = 2 mice per cell-type, mean is plotted) (left). Zoom-in of the most CNS-enriched variants 

(middle), and of the variants that are characterized in the current study along with spike-in library controls (right) are shown. 

2.7.3.2 Analysis of capsid libraries after round-2 selection 

Whereas the amino acid distribution of the DNA library closely matched the Oligopool design, virus 

production selected for a motif within the hepta AA diversified insertion (between AA 588 and AA 

589), with Asn at position 2, β-branched amino acids (I, T, V) at position 4 and positively charged 

amino acids (K, R) at position 5 (Figure 10f . Fitness for BBB crossing resulted in a different 

pattern. For instance, variants highly enriched after recovery from brain tissue (across all Cre lines) 

shared preferences for Pro in position 5, and Phe in position 6. 

By assessing enrichment score reproducibility within the synthetic pool design, we next determined 

the brain enriched variants' distribution across peripheral organs (Figure 10g, left). About 60 

variants that are highly enriched in brain are comparatively depleted across other organs (Figure 10g, 

middle). Encouraged by the expected behavior of spike-in control variants (AAV9, PHP.B, PHP.eB), 

we chose eleven additional variants for further validation (Figure 10g, right), including several that 

would have been overlooked if the choice had been based on PCR pool or CREATE (Table 1). 

AAV 

Variants 

Synthetic pool 

enrichment rank 

PCR pool 

enrichment 

rank 

PCR pool read 

count rank 

PHP.V1 1 4 3 
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PHP.V2 2 1 1 

PHP.B4 4 10 56 

PHP.B7 6 13 36 

PHP.B8 3 7 23 

PHP.C1 13 34 74 

PHP.C2 12 20 293 

PHP.C3 16 Not recovered Not recovered 

Table 1. Ranking of AAV-PHP capsids across methods. Ranks of selected variants among all capsids recovered from R2 Tek-

Cre selection by synthetic pool enrichment score (representing M-CREATE), PCR pool enrichment score (representing closer to 

M-CREATE), or PCR pool read counts (representing CREATE), the highest ranks of which starts from 1, and “Not recovered” 

represent absence of the variant from R2 sequencing data. 

We chose these variants due to their enrichments and where they fall in sequence space. We noticed 

that the enriched variants cluster into distinct families based on sequence similarity. The most 

enriched variants form a distinct family across selections with a common motif: T in position 1, L in 

position 2, P in positive 5, F in position 6 and K or L in position 7 (Figure 11a). This amino acid 

pattern closely resembles the TLAVPFK motif in the previously identified variant AAV-PHP.B 

(Deverman et al., 2016). Given the sequence similarity among members of this family, we next tested 

whether selected variants can cross the BBB and target the CNS with similar efficiency and tropism. 

2.7.3.3 The dominance of PHP.B-like motif 

The ability to twice recover the AAV-PHP.B sequence family from completely independently 

constructed and selected libraries confirms that the viral library’s sequence space coverage was broad 

enough to recover a family of variants sharing a common motif. Unlike CREATE which identified 

only one variant, AAV-PHP.B, M-CREATE yielded a diverse PHP.B-like family that hints toward 

important chemical features of this motif. The sequence diversity within this family suggests that 

isolating AAV-PHP.B was not simply good fortune in our prior study (considering a theoretical 

starting library size of ~1.3 billion), and that this is a dominant family for this particular experiment. 
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Figure 11. Selected AAV capsids form sequence families and include variants for brain-wide transduction of vasculature. 

(a), Clustering analysis of variants from synthetic pool brain libraries after enrichment in Tek-Cre (left), GFAP-Cre (middle) and 

combined SNAP-Cre and Syn-Cre (right) selections. The size of the nodes represents relative enrichment in the brain. Thickness 

of the edges (connecting lines) represents the degree of relatedness. Distinct families (yellow) with the corresponding AA frequency 

logos (AA size represents prevalence and color encodes AA properties) are shown. (b), The hepta AA insertion peptide sequences 

of AAV-PHP variants between AA positions 588–589 of AAV9 capsid are shown. AAs are colored by shared identity to AAV-

PHP.B and eB (green) or among new variants (unique color per position). (c), AAV9 (left) and AAV-PHP.V1 (right) mediated 

expression using ssAAV:CAG-mNeongreen genome (green, n = 3, 3 weeks of expression in C57BL/6J adult mice with 3 × 1011 

vg i.v. dose per mouse, imaged under the same settings) in sagittal sections of brain (top) with higher-magnification image from 

cortex (bottom). Magenta, αGLUT1 antibody staining for vasculature. (d), Percentage of vasculature stained with αGLUT1 that 
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overlaps with mNeongreen (XFP) expression in cortex. One-way analysis of variance (ANOVA) non-parametric Kruskal–Wallis 

test (P = 0.0036), and follow-up multiple comparisons using uncorrected Dunn’s test (P = 0.0070 for AAV9 versus PHP.V1) are 

reported. **P ≤ 0.01 is shown, P > 0.05 is not shown; data are mean ± s.e.m., n = 3 mice per AAV variant, cells quantified from 2–

4 images per mouse per cell type. (e), Percentage of cells stained with each cell-type specific marker (αGLUT1, αS100 for 

astrocytes, αNeuN for neurons, and αOlig2 for oligodendrocyte lineage cells) that overlaps with mNeongreen (XFP) expression in 

cortex. Kruskal–Wallis test (P = 0.0078), and uncorrected Dunn’s test (P = 0.0235 for neuron versus vascular cells, and 0.0174 for 

neuron versus astrocyte) are reported. *P ≤ 0.05 is shown, and P > 0.05 is not shown; data are mean ± s.e.m., n = 3 mice, cells 

quantified from 2–4 images per mouse per cell type. (f), Vascular transduction by ssAAV-PHP.V1:CAG-DIO-EYFP in Tek-Cre 

adult mice (left) (n = 2, 4 weeks of expression, 1 × 1012 vg i.v. dose per mouse), and by ssAAV-PHP.V1:Ple261-iCre in Ai14 

reporter mice (right) (n = 2, 3 weeks of expression, 3 × 1011 vg i.v. dose per mouse). Tissues are stained with αGLUT1 (magenta 

(left) and cyan (right)). (g), Efficiency of vascular transduction (as described in (d)) in Tek-Cre mice (n = 2, mean from 3 images 

per mouse per brain region). (h), Efficiency of vascular transduction in Ai14 mice (n = 2, a mean from 4 images per mouse per 

brain region). 

2.7.3.4 AAV9 variants with enhanced BBB entry and CNS transduction 

Given the dominance of the PHP.B family in the R2 selection, we characterized its most enriched 

member, harboring a TALKPFL motif and henceforth referred to as AAV-PHP.V1 (Figure 11a,b). 

Despite its sequence similarity to AAV.PHP.B, the tropism of AAV-PHP.V1 is biased toward 

transducing brain vascular cells (Figure 11c). When delivered intravenously, AAV-PHP.V1 carrying 

a fluorescent reporter under the control of the ubiquitous CAG promoter transduces ~60% of 

GLUT1+ cortical brain vasculature, compared with ~20% with AAV-PHP.eB and almost no 

transduction with AAV9 (Figure 11c,d). In addition to the vasculature, AAV-PHP.V1 also 

transduced ~60% of cortical S100+ astrocytes (Figure 11e). 

We next investigated a series of variants selected to verify M-CREATE’s predictive power outside this family. A highly enriched 

variant with an unrelated sequence, AAV-PHP.C1 harboring RYQGDSV (Figure 11a,b and  

 

Figure 12a,b), transduced astrocytes at a similar efficiency and neurons at lower efficiency compared to other tested variants from 

the B family ( 
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Figure 12b). 
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Figure 12. Characterization of round-2 brain libraries and identification of capsids with broad CNS tropism. (a), 

Transduction by AAV-PHP.B4-B6 and C1 variants, as well as B, eB and AAV9 controls in sagittal brain and liver sections (each 

column was imaged under the same settings). White box, thalamus (this is not the precise region of the figures to the right). Vectors 

are packaged with ssAAV:CAG-2xNLS-EGFP genome (n = 3 per group, 1 × 1011 vg i.v. dose per adult C57BL/6J mouse, 3 weeks 

of expression). Tissues are stained with cell-type specific markers (magenta): αNeuN for neurons, αS100 for astrocytes and αOlig2 

for oligodendrocyte lineage cells. Liver tissues are stained with DAPI (blue). (b), The percentage of αNeuN+, αS100+ and 

αOlig2+ cells with detectable nuclear-localized EGFP in the indicated brain regions are shown (n = 3 per group, 1 × 1011 vg dose). 

A two-way ANOVA with correction for multiple comparisons using Tukey’s test is reported with adjusted P values (****P ≤ 

0.0001, ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05, is shown, and P > 0.05 is not shown on the plot; 95% confidence interval (CI), data 

are mean ± s.e.m. The dataset comprises a mean of two images per region per cell-type marker per mouse). 

Collectively, our characterization of these AAV variants suggests several key points. First, within a 

diverse sequence family, there is room for both functional redundancy and the emergence of 

alternative tropisms. Second, highly enriched sequences outside the dominant family are also likely 

to possess enhanced function. Third, buoyed by codon replicate agreement in the synthetic pool, a 

variant’s enrichment across tissues may be predictive. Fourth, while the synthetic pool R2 library 

contains a subset of the sequences that are in the PCR pool R2 and may thereby lack some enhanced 

variants, those variants found exclusively within the PCR pool library are more likely to be false 

positives. 

The ability to confidently predict in vivo transduction from a pool of 18,000 nucleotide variants in 

R2 across multiple mice and Cre-lines is a substantial advance in the selection process and 

demonstrates the power of M-CREATE for the evolution of individual vectors. 

2.7.3.4 An AAV9 variant that specifically transduces neurons 

Using NGS, we re-investigated a 3-mer-s (s for substitution) PHP.B library generated by the prior 

CREATE methodology and that yielded AAV-PHP.eB (Chan et al., 2017) (Figure 13a). Briefly, the 

re-investigated 3-mer-s PHP.B library diversified positions 587-597 of the AAV-PHP.B capsid 

(equivalent of 587-590 AA on AAV9) in portions of three consecutive AAs, (~40,000 total variants) 

(Figure 13a). Selections were performed in three Cre-transgenic lines: Vglut2-IRES-Cre for 

glutamatergic neurons, Vgat-IRES-Cre for GABAergic neurons, and GFAP-Cre for astrocytes. 
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We deep sequenced the libraries recovered from brain (using Cre-dependent PCR) and a R2 library 

from the livers of wild-type mice (processed via PCR for all capsid sequences regardless of Cre-

mediated inversion) and identified 150–200 capsids enriched in brain tissue (Figure 13b). 

 

Figure 13. Recovery of AAV-PHP.B variants including one with high specificity for neurons. 
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(a), Design of the 3-mer-s PHP.B library with combinations of three AA diversification between AA 587–597 of AAV-PHP.B 

(corresponding to AA 587–590 of AAV9). Shared amion acid identity with the parent AAV-PHP.B (green) is shown along with 

unique motifs for AAV-PHP.N (pink) and AAV-PHP.eB (blue). (b), Distributions of R2 brain and liver libraries (at the amino acid 

level) by enrichment score (normalized to R2 virus library, with variants sorted in decreasing order of enrichment score). The 

enrichment of AAV-PHP.eB and AAV-PHP.N across all libraries is mapped on the plot. (c), Heat map represents the magnitude 

(log2(fold change)) of a given amino acid’s relative enrichment or depletion at each position across the diversified region, only if 

statistical significance is reached on fold change (boxed if P ≤ 0.0001, two-sided, two-proportion z-test, P corrected for multiple 

comparisons using Bonferroni correction). Plot includes variants that were highly enriched in brain (>0.5 mean enrichment score, 

where mean is drawn across Vglut2, Vgat and GFAP, n = 1 library per mouse line (sample pooled from 2 mice per line)) and 

underrepresented in liver (<0.0) (32 amino acid sequences). (d), Clustering analysis of enriched variants from Vgat brain library is 

shown. Node size represents the degree of depletion in liver. Thickness of edges (connecting lines) represents degree of relatedness 

between nodes. Two distinct families are highlighted in yellow and their corresponding amino acid frequency logos are shown 

below (amino acid size represents prevalence, and color encodes amino acid properties). (e), The percentage of neurons, astrocytes 

and oligodendrocyte lineage cells with ssAAV-PHP.N:CAG-2xNLS-EGFP in the indicated brain regions is shown (n = 3, 

1 × 1011 vg i.v. dose per adult C57BL/6J mouse, 3 weeks of expression, data is mean ± s.e.m., 6–8 images for cortex, thalamus and 

striatum, and 2 images for ventral midbrain, per mouse per cell-type marker using ×20 objective covering the entire regions). A 

two-way ANOVA with correction for multiple comparisons using Tukey’s test gave adjusted P values reported as ****P ≤ 0.0001, 

n.s. for P > 0.05, 95% CI. (f), Transduction by ssAAV-PHP.N:CAG-NLS-EGFP (n = 2, 2 × 1011 vg i.v. dose per adult C57BL/6J 

mouse, 3 weeks of expression) is shown with NeuN staining (magenta) across three brain areas (cortex, SNc (substantia nigra pars 

compacta) and thalamus). 

Variants that were enriched in brain and underrepresented in liver show a significant bias towards certain amino acids such as G, 

D and E at position 1; G and S at position 2 (which includes the AAV-PHP.eB motif, DG); and S, N and P at position 9, 10 and 11 

(Figure 13c and  

 

Supplementary Figure 1c; P ≤ 0.0001, two-sided, two-proportion z-test, P values were corrected for multiple comparisons using 

Bonferroni correction). We clustered variants that were enriched in the brain according to their sequence similarities and ranked 

them by their underrepresentation in liver (represented by node size in clusters). A distinct family referred to as N emerged with 

the common motif SNP at positions 9–11 in the PHP.B backbone (Figure 13d and  

 

Supplementary Figure 1d). 

The core variant of the N-family cluster, with the AQTLAVPFSNP motif, was highly abundant in R1 and R2 selections, had higher 

enrichment score in Vglut2 and Vgat brain tissues compared to GFAP, and was underrepresented in liver tissue (Figure 13b and  
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Supplementary Figure 1a–d). Unlike AAV-PHP.eB, this variant (AAV-PHP.N) specifically transduced NeuN+ neurons even 

when packaged with a ubiquitous CAG promoter, although the transduction efficiency varied across brain regions (from ~10–70% 

in NeuN+ neurons, including both VGLUT1+ excitatory and GAD1+ inhibitory neurons; Figure 13e,f and  

 

Supplementary Figure 1e,f). 

Thus, by re-examining the 3-mer-s library we identified several useful variants, including one with 

notable cell-type-specific tropism. While Vglut2-Cre and Vgat-Cre mice were used for in vivo 

selection, we didn’t find variants that stood out for neuronal subtype-specific transduction of 

excitatory and inhibitory populations from our initial investigations on the NGS dataset. It is possible 

that a biological solution to this (stringent) selection was not present in this library. 
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Figure 14. Tropism of variants from distinct families across mouse strains. (a), Clustering analysis showing the brain-enriched 

sequence families of variants identified in prior studies (PHP.B-B3, PHP.eB) or in the current study (PHP.B4-B8, PHP.V1-2, 

PHP.C1-3). Thickness of edges (connecting lines) represents degree of relatedness between nodes. The amino acid sequences 

inserted between 588–589 (of AAV9 capsid) for all the variants discussed are shown below. (b), Transduction of AAV9, AAV-

PHP.V1 and AAV-PHP.N across the mouse strains C57BL/6J, BALB/cJ and FVB/NJ are shown in sagittal brain sections (right), 

along with a higher-magnification image of the thalamus brain region (left). (c), Transduction by AAV-PHP.B, AAV-PHP.C1-C3 

in C57BL/6J and BALB/cJ mice are shown in sagittal brain sections (right), along with a higher-magnification image of the 

thalamus brain region (left). (b,c), White box, thalamus (this is not the precise area that is zoomed-in on the figure to the left). All 

sagittal sections and thalamus regions were acquired under same image settings. The insets in AAV-PHP.V1 are zoom-ins with 

enhanced brightness. The indicated capsids were used to package ssAAV:CAG-mNeongreen (n = 2–3 per group, 1 × 1011 vg i.v. 

dose per 6- to 8-week-old adult mouse, 3 weeks of expression. The data reported in (b) and (c) are from one experiment where all 

viruses were freshly prepared and titered in the same assay for dosage consistency. AAV-PHP.C2 and AAV-PHP.C3 were further 

validated in an independent experiment for BALB/cJ, n = 2 per group). 
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2.7.3.5 Investigation of capsid families beyond the C57BL/6J mouse strain 

The enhanced CNS tropism of AAV-PHP.eB and AAV-PHP.B relative to AAV9 is absent in a 

subset of mouse strains. Their CNS transduction is highly efficient in C57BL/6J, FVB/NCrl, DBA/2 

and SJL/J, with intermediate enhancement in 129S1/SvimJ, and no apparent enhancement over 

AAV9 in BALB/cJ and several additional strains (Batista et al., 2020; Challis et al., 2019; Hordeaux 

et al., 2018, 2019; Huang et al., 2019; Matsuzaki et al., 2019). This pattern holds for the two variants 

from the PHP.B family that we characterized further, AAV-PHP.V1 and AAV-PHP.N (Figure 14a). 

These variants did not transduce the CNS in BALB/cJ, yet transduced the FVB/NJ strain (Figure 

14b). 

Notably, M-CREATE revealed many non-PHP.B-like sequence families that enriched through 

selection for transduction of cells in the CNS. We tested the previously mentioned AAV-PHP.C1 

(RYQGDSV), as well as AAV-PHP.C2 (WSTNAGY), and AAV-PHP.C3 (ERVGFAQ) (Figure 

14a). These showed enhanced BBB crossing irrespective of mouse strain, with roughly equal CNS 

transduction in BALB/cJ and C57BL/6J (Figure 14c). Collectively, these studies suggest that M-

CREATE is capable of finding capsid variants with diverse mechanisms of BBB entry that do not 

exhibit strain specificity. 

2.7.4 Discussion 

This work outlines the development and validation of the M-CREATE platform for multiplexed viral 

capsid selection. M-CREATE incorporates multiple internal controls to monitor sequence 

progression, minimize bias and accelerate the discovery of capsid variants with useful tropisms. 

Utilizing M-CREATE, we have identified both individual capsids and distinct families of capsids 

that are biased toward different cell-types of the adult brain when delivered intravenously. The 

outcome from 7-mer-i selection demonstrates the possibility of finding AAV capsids with improved 

efficiency and specificity towards one or more cell types. Patterns of CNS infectivity across mouse 

strains suggest that M-CREATE may also identify capsids with distinct mechanisms of BBB 

crossing. With additional rounds of evolution as shown in the 3-mer-s selection, the specificity or 
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efficiency of 7-mer-i library variants may be improved, as was observed with AAV-PHP.N or AAV-

PHP.eB (Chan et al., 2017). 

We believe that the variants tested in vivo and their families will find broad application in 

neuroscience, including studies involving the BBB (Sweeney et al., 2019), neural circuits (Betley 

and Sternson, 2011), neuropathologies (Sweeney et al., 2018), and therapeutics (Lykken et al., 

2018). AAV-PHP.V1 or AAV-PHP.N are well-suited for studies requiring gene delivery for 

optogenetic or chemogenetic manipulations (Vlasov et al., 2018), or in rare monogenic disorders 

(targeting brain endothelial cells, for example GLUT1-deficiency syndrome, NLS1-microcephaly 

(Sweeney et al., 2018), or targeting neurons, for example mucopolysaccharidosis type IIIC (Tordo 

et al., 2018)). 

The outcomes from our experiments employing M-CREATE opens several promising lines of 

inquiry, such as the assessment of identified capsid families across species, the investigation of the 

mechanistic properties that underlie the ability to cross specific barriers (such as the BBB) or target 

specific cell populations and further evolution of the identified variants for improved efficiency and 

specificity. In addition, the datasets generated by M-CREATE could be used as training sets for in 

silico selection by machine-learning models. M-CREATE is presently limited by the low throughput 

of vector characterization in vivo; however, RNA-sequencing technologies (Hwang et al., 2018) 

offer hope in this regard. In summary, M-CREATE will serve as a next-generation capsid-selection 

platform that can open directions in vector engineering and potentially broaden the AAV toolbox for 

various applications in science and in therapeutics. 

2.7.5 Methods 

2.7.5.1 NGS data alignment and processing 

The raw fastq files from NGS runs were processed with custom-built scripts that align the data to 

AAV9 template DNA fragment containing the diversified region 7xNNK (for R1) or 11xNNN (for 

R2 since it was synthesized as 11xNNN). 
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The pipeline to process these datasets involved filtering the dataset to remove the low-quality reads 

by using the deep sequencing quality score for each sequence. The variant sequences were then 

recovered from the sequencing reads by searching for the flanking template sequences, and 

extracting the nucleotides of the diversified region (perfect string match algorithm). The quality of 

the aligned data was further investigated to remove any erroneous sequences (such as ones with stop 

codons). The raw data was plotted to study the quality of recovery across every library. Based on the 

RC distribution, we adapted a thresholding method to remove plausible erroneous mutants that may 

have resulted from PCR or NGS based errors. The assumption is that if there is a PCR mutation or 

NGS error on the recovered parent sequence, the parent must have existed at least one round earlier 

than the erroneous sequence, and thus a difference in RCs should exist.  

For R1 tissue libraries, we observed a steep drop in the slope of the distribution curve following a 

long tail of low count sequences, and were found to be rich in sequences that are variations of the 

parents in the higher counts range. We manually setup a threshold for RCs to remove such erroneous 

mutants. The thresholded data were then processed differently based on the experimental needs as 

described elsewhere using custom Python based scripts. 

For R2 tissue libraries from PCR pool and synthetic pool, given the smaller library size compared to 

R1, we thresholded the data in two steps. We only considered the tissue recovered sequences that 

were present in the respective input DNA and virus library (after removing lower count variants from 

input libraries following the same principle as R1 tissue libraries). This step partially removed the 

long tail of low count reads. As a second step, we applied the thresholding that was described for R1 

tissue libraries. 

While it is plausible that true variants may be lost during thresholding, this method minimized false 

positives as the low count mutants in tissue and virus libraries often seemed to have very high 

enrichment score (as RCs are normalized to input library). In other words, thresholding allowed 

selective investigation on enriched variants that had a higher-confidence in their NGS RCs.  
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As an alternative to our manual thresholding method, an optional error correction method called 

“Collapsing” was built to further validate the outcome from filtered datasets (see Section 2.5 

Correcting PCR and sequencing errors). This method starts at the lowest count variants (variants of 

count 1) and searches for potential parent variants that are off by one nucleotide but have at least 2-

fold higher counts (fold change = (2ΔCT) where CT is PCR cycle threshold). This error correction 

method then transfers the counts of these potential erroneous sequences to their originating 

sequences and repeats recursively until all sequences have been considered. On applying this error 

correction to our thresholded data, an additional ~0.002-0.03% of sequences were captured 

(compared to >19% captured by thresholding), confirming that our thresholding strategy was largely 

successful. 

2.7.5.2 NGS data analysis 

The aligned data were then further processed via a custom data-processing pipeline, with scripts 

written in Python. 

The enrichment scores of variants (total, N) across different libraries were calculated from the read 

counts (RCs) according to the following formula: 

Enrichment score = log10((variant 1 RC in tissue library1 / sum of variants N RC in library1) / 

(variant 1 RC in virus library / sum of variants N RC in virus library)). 

To consistently represent library recovery between R1 and R2 selected variants, we estimated the 

enrichment score of the variants in R1 selection.  

Since the DNA and virus libraries were not completely sampled unlike the tissue libraries, we 

assigned an estimated RC for variants that were not present in the input library but were present in 

the output library. For instance, R1 virus library is the input library to the R1 tissue libraries. The 

estimated RC is defined as a number that is lower than the lowest RC in the library with the 

assumption that these variants were found at a relatively lower abundance than the variants recovered 
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from the deep sequencing. In virus libraries, since RC of 1.0 was the lowest, we assigned all missing 

variants an estimated RC of 0.9. We use this method to calculate the enrichment score of the R1 

tissue libraries which is normalized to R1 virus library (Figure 9d). This was done to represent 

libraries across two selection rounds consistently. Although, the individual enrichment score among 

R1 variants didn’t add a significant value to the variants selected for R2 selection as described in the 

criteria to separate signal vs noise in R1 using the RCs. 

The standard score of variants in a specific library was calculated using this formula: 

Standard score = (read count_i – mean) / s.d. 

Read count_i is raw copy number of a variant i. Mean is the mean of read counts of all variants 

across a specific library. The s.d. is the s.d. of read counts of all variants across a specific library. 

The plots generated in this article were using the following software: Plotly, GraphPad PRISM 7.05, 

Matplotlib, Seaborn and Microsoft Excel 2016. The AAV9 capsid structure (PDB 3UX1)(DiMattia 

et al., 2012) was modeled in PyMOL. 

2.7.5.3 Heat map generation 

The relative amino acid distributions of the diversified regions are plotted as heat maps. The plots 

were generated using the Python Plotly plotting library. The heat map values were generated from 

custom scripts written in Python, using functions in the custom “pepars” Python package (see 2.6 

pepars: A Python package for manipulating NGS data). 

Each heatmap uses both an expected (input) distribution of amino acid sequences and an output 

distribution. The output distribution must be a list of sequences and their count, and the input 

distribution can be either a list of sequences and their count, or an expected amino acid frequency 

from a template, such as NNK. For both input and output, the total count of amino acids in each 

position is tallied in accordance to each sequence's count and then divided by the total sum of counts, 

giving a frequency of each amino acid at each position. Then, the log2 fold change is calculated 
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between the output and the input. For amino acids with a count of 0 in either the input or output, no 

calculation is performed. In order to distinguish between statistically significant amino acid biases, 

a statistical test was performed using the statsmodels Python library. For the case where there are 

two amino acid counts, a two-sided, two-proportion z-test was performed; for comparing the output 

amino acid count to an expected input frequency from a template, a one-proportion z-test was 

performed. All p-values were then corrected for multiple comparisons using Bonferroni correction. 

Only bias differences below a significance threshold of 1e-4 are then outlined on the heatmap; all 

other (insignificant) squares are left empty. 
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2.7.6 Supplemental Figures 
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Supplementary Figure 1. Evolution Of The AAV-PHP.B Capsid By Diversifying Amino Acid Positions 587-597. (a), 

Distributions of R1 and (b), R2 brain libraries (at AA level, SS of RCs sorted in decreasing order of scores) is shown. The SS for 

AAV-PHP.N and AAV-PHP.eB across libraries are mapped on the zoomed-in view of this plot (dotted line box). (c), Heatmap of 

AA distributions across the diversified region of the enriched variants from R2 liver library (top 100 sequences) normalized to the 

R2 virus (input library). (d), Clustering analysis of enriched variants from GFAP and Vglut2 brain libraries are shown with size of 

nodes representing their relative depletion in liver, and the thickness of edges (connecting lines) representing their relative identity 

between nodes. (e), Expression of AAV-PHP.B (above) and AAV-PHP.N (below) packaged with ssAAV:CAG-mNeonGreen 

across all organs is shown (n = 3, 3x1011 vg i.v. dose per adult C57BL/6J mouse, 3 weeks of expression). The background auto 

fluorescence is in magenta. (f), Transduction of mouse brain by the AAV-PHP.N variant, carrying the CAG promoter that drives 

the expression of mNeonGreen (n = 3, 1x1011 vg i.v. dose per C57BL/6J adult mouse, 3 weeks of expression) is shown. 

Fluorescence in situ hybridization chain reaction (FITC-HCR) was used to label excitatory neurons with Vglut1 and inhibitory 

neurons with Gad1. Few cells where EGFP expression co-localized with specific cell markers are highlighted by asterisks symbol. 

2.8 Estimating M-CREATE selection pressure 

Given the success of M-CREATE in discovering several novel AAV variants with enhanced 

transduction of specific cell types, we can return to the question of directed evolution vs. deep 

mutational scanning from the context of this data. Specifically, given that we have deep mutational 

scanning data, we can treat the read counts as proxies of what we would see in a traditional cloning 

experiment and ask, what is the probability that we would see a top k variant from within the deep 

mutational scanning data after picking a number of clones. Note that this is a slightly different 

formulation than in section 2.2, since we only have access to the deep mutational scanning data, not 

the ground truth. Therefore, instead of measuring the probability of improvement with a deep 

mutational scan, we are measuring the probability of missing out on a top variant from within the 

deep mutational scan data. 

For example, in the case of PHP.V1 and PHP.V2, which were ranked 3 and 1, respectively, in terms 

of raw read counts in round 2 of selection, we can consider sampling from the read counts and 

simulating picking colonies and seeing the probability that we find PHP.V1, PHP.V2, or either 

(Figure 15). Despite a full 2nd round of evolution, it is surprising to see that the probability of 

recovering these valuable variants from a lower throughput, read-count-based screen is quite low. 
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Figure 15. Exploration of selection pressure strength. (A) The probability PHP.V1 or PHP.V2 would have been found under a 

traditional low-throughput selection. (B) The parameters of fitted negative binomial models to variant read count data, and their 

correlation with probability of improvement of a 1e6 deep mutational scan over an n=10 low throughput screen. 

Another thing that we can explore is the overdispersion of negative binomials in the raw read counts 

in different recovered libraries to see if overdispersion and library size are reasonable interpretations 

of a negative binomial of post-selection mutant counts. To do this, I fit a negative binomial using the 

package diffxpy (https://github.com/theislab/diffxpy) to the variant counts in all of our recovered 

libraries, and converted the learned parameters to the λ=M/N and estimated selective pressure 

strength, α, in accordance with the formulas in Section 2.2. Additionally, for each of these libraries, 

we can calculate an empirical estimate of the probability of improvement from a deep mutational 

scan by taking random samples from the data proportional to the read counts, with replacement, for 

both the n1=10 colonies and n2=1e6 sequencing depth case. We can then see what is the probability 

that each of these respective screens recovered one of the top k=3 variants. Similarly to the earlier 

simulations, lower estimated selection strength is correlated with a probability of improvement, as 

long as it is in a high library count (low M/N) regime (Figure 15B). The learned overdispersion 

parameters for all libraries ranged between 1 and 10. If we assume deep mutational scanning data is 

an adequate representation of the underlying distribution of variants, then we can use this range of 

overdispersion to make a lookup table of when deep mutational scanning will yield better results for 

a given library size, N and top k (Figure 16). 
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Figure 16. Relevant library sizes for deep mutational scanning based on AAV 588-589 mutation data. Lookup table of high 

(top) and low (bottom) selective pressure regimes to determine for what library sizes a deep mutational scan (i.e. 1e6 readout) will 

be more likely to yield a top k variant than a low throughput (1e1) screen. 
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C h a p t e r  3  

Tools for Single-cell Analysis 

3.1 Summary 

Single-cell RNA sequencing, although growing rapidly, is still a relatively new field, with many 

open questions, unsolved challenges, and opportunities for technological development. One area of 

active development are the data analysis methods, pipelines, and infrastructure for managing data 

across single-cell experiments. While many principles of scRNA-seq began as transformations of 

bulk RNA-seq workflows to a single-cell context, it quickly became evident that performing data 

analysis across scRNA-seq experiments is sufficiently distinct from the task of combining bulk 

RNA-seq experiments such that it necessitates new data structures, analysis workflows, and 

statistical modeling methods. 

In my work towards applying scRNA-seq analysis to studies of the profile of gene delivery vehicles 

and the variability in immune signatures, several needs arose that were not met by current solutions. 

In this chapter, I discuss a framework for thinking about scRNA-seq data that can meet the growing 

complexity of experimental scRNA-seq paradigms. I then discuss the unique data structure needs of 

large, sparse scRNA-seq datasets, and propose a simple, extensible data format that exceeds the 

performance of current gold standard scRNA-seq formats. Finally, I discuss software developed in 

Matt Thomson’s lab to handle the growing scale of single-cell studies. Together, these tools afforded 

us the ability to rapidly iterate our hypotheses and explore our data across large numbers of samples, 

and they may, in part or in whole, be of use to future researchers seeking to perform large-scale 

single-cell studies. 

3.2 Abstractions for single-cell analysis 

Different software packages, experimental protocols, and data analysis methods among the scRNA-

seq community use a variety of terminology to refer to the different elements of the scRNA-seq field. 
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However, subsets of these terms (such as “library,” “barcode,” “index,” “read,” “transcript,” “UMI,” 

“sample,” “batch”) are sometimes used interchangeably, or to refer to different concepts in different 

contexts, which can make it difficult to understand what is meant in a specific workflow, paper, or 

protocol. Furthermore, the variety of protocols that involve multiplexing and demultiplexing 

different components at different stages makes it difficult to decide what the right abstraction is. For 

example, if 3 tissue samples are pooled together prior to loading into a single lane of 10X, is this 1 

sample or 3? Does this change if the sample is able to be demultiplexed computationally later? What 

if the samples are tagged with lipid-anchored oligos prior to loading them into the 10X lane? What 

if, after merging the samples together, all 3 samples are split among 8 10X lanes? Is this one sample, 

or 3, or 8, or 24, or somewhere in between? 

Before discussing some tools and methods I have developed for scRNA-seq analysis, I will describe 

the nomenclature and abstractions that I think are a good way to represent the different elements of 

scRNA-seq experiments, and that capture the possible complexity of scRNA-seq workflows. At its 

core, these abstractions, and all single-cell sequencing workflows, revolve around the idea of taking 

nucleic acid molecules, and grouping them into sets. The most common set grouping is a “Cell,” but 

from a data perspective, there is nothing different about a cell vs. an exosome, or a debris-filled 

droplet. The abstractions that arise from this fundamental molecular ground truth are: 

 Nucleic Acid Molecule: A single molecule of DNA or RNA. 

 Nucleic Acid Set (a “Cell”): An (unordered) grouping of multiple Nucleic Acid Molecules. 

While I will refer to this as a Cell, it is important to note that non-cell groupings of Nucleic 

Acid Molecules form a large part of many single-cell datasets, such as exosomes or debris. 

 Cell Set: An (unordered) grouping of multiple Nucleic Acid Sets. This can be within a single 

sample, or across any number of samples. This is the fundamental grouping in scRNA-seq 

data, and applies to many concepts: cells that are part of a single Tissue Sample, cells that 

are part of the same Batch, or computationally-derived groupings made post facto. 



62 

 

 Read: A contiguous sequence of a digital readout of a Nucleic Acid. 

 Read Set: An (unordered) set of Reads. Commonly implemented as a FASTQ file. A Read 

Set originates from a Sequencing Run. 

 Barcode: A generic term referring to any number of possible DNA sequences that identifies 

something about a Nucleic Acid. This could be a cell barcode (as in the 10X cell barcode), 

an Illumina sample index, a cell hashing tag, a variant sequence, a feature barcode, and many 

more. 

With this abstraction, many common scRNA-seq experimental terms can be thought of in this 

context: 

 Sequencing Library: A Nucleic Acid Set, with sequencing adapters and one or more sample 

indices attached to the end of the molecules. 

 Sequencing Run: A single processing of one or more Sequencing Libraries to obtain 

associated Read Sets. 

 Tissue Source: A Cell Set consisting of cells from single organism, well, or person, extracted 

at a particular time. 

 Tissue Sample: A Cell Set consisting of a single physical sample, from a single Tissue 

Source. Multiple Tissue Samples can originate from a single Tissue Source, e.g. in the case 

of extracting multiple regions from a sample, or sorting cells via FACS prior to single-cell 

isolation. 

 Batch: A Cell Set consisting of all cells processed as a single scRNA-seq reaction. This is a 

lane of 10X, or a full split-pool kit. 
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Using this abstraction, most scRNA-seq experimental and computational protocols can be 

thought of in terms of assignment operations of these core elements. The core operations, then, 

are: 

1. Associating Reads with Nucleic Acids 

a) Alignment: Determining the origin Nucleic Acid Molecule associated with a 

Read. 

b) UMI Collapsing: Assign multiple Reads to the same Nucleic Acid. 

2. Assigning Nucleic Acid Molecules to Nucleic Acid Sets. For example: 

a) Gene Counting: Assigning UMIs to Cells based on cell barcodes. 

b) Cell Demultiplexing: Demultiplexing reads from Cell multiplets into separate 

Cells. 

3. Assigning Nucleic Acid Sets to Cell Sets. For example: 

a) Cell Calling: The process of determining whether a Nucleic Acid Set is a true 

“Cell,” debris, or something else. 

b) Cell Typing: The process of assigning multiple Cells to named Sets (the “types”). 

c) Sample Demultiplexing: The process of assigning multiple Cells to named Sets 

associated with a particular Tissue Sample. 

In most cases, application-specific terminology of each of these concepts will be used; for example: 

 Referring to a Nucleic Acid Molecule as a “Transcript” in RNA applications or a “UMI,” 

generally. 
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 Referring to a Nucleic Acid Set as a “Cell Barcode” 

 Referring to a Cell Set as a “Cell Type” or “Cell State” 

 Referring to a Barcode identifying a Nucleic Acid Molecule’s originating Sequencing 

Library as a “Sample Index.” 

With these abstractions, it becomes clear that many steps in single-cell sequencing workflows are, 

in fact, the same fundamental information transformation operations, just performed with different 

protocols, parameters, or algorithms. With such abstractions in place, it is my hope that data 

structures, software packages, and analysis workflows can be cross-applied to more applications than 

their original source application, decreasing the redundancies of reinventing the same algorithms and 

software procedures for new applications. 

3.3 sparsedat: An on-disk data format for sparse data 

3.3.1. Summary 

There are two typical workflows of scRNA-seq file management: 

1. Aggregated file for all samples: In this workflow, sample gene count matrices are combined 

into a single file, typically by adding an additional field or modifying the cell identifier to 

indicate the originating sample. 

2. Per-sample matrices: In this workflow, each sample has its own data matrix containing 

gene counts. This is the default output of single-cell RNA sequencing processing software, 

such as Cell Ranger, kallisto, and salmon. 

There are benefits and drawbacks to each workflow. Having an aggregated file for all samples makes 

it easy to keep data associated with a single experiment together, and if all data can fit into memory, 

makes it easy to work with data interactively. The major drawbacks are that as new samples arrive, 

this file must be updated with the new data, and even if a researcher wants to access only one sample, 
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they have to open the file for the entire experiment. Alternatively, having a separate matrix per 

sample has the advantage of easily loading only the necessary samples, and adding samples as 

additional files to workflows. 

Given the growth in the scale of single-cell RNA sequencing studies, the model of having an 

aggregated file with all data from an experiment will become increasingly cumbersome and reach 

beyond the memory limits of data scientist workstations, and even cloud cluster nodes. However, 

data analysis across hundreds or more samples is an exciting prospect, and data structures will need 

to accommodate these demands. 

Fortunately, one of the most common use cases of single-cell RNA sequencing data analysis is to 

consider only subsets of cells or genes within the matrix for downstream processing. For example, 

although a 10X Chromium v3 data matrix has 6.7M entries for all possible cell barcodes, typically a 

researcher will only be interested in the cell barcodes that are likely to contain single intact cells (on 

the order of 104
 per sample), or even specific subpopulations of cells corresponding to a single cell 

type (on order 102-103 per sample). As another example, researchers are often only interested in a 

subset of the genes (columns) present in a sample, focusing on genes that are relevant to their area 

of research, or that they have particular hypotheses on. 

Thus, for the overwhelming number of use cases, data scientists do not need the entire gene count 

matrix for any particular analysis workflow, and are instead interested in slicing the matrix along 

subsets of rows (cells) and genes (columns). 

This presents an opportunity for a data structure that would solve the above use cases and provide a 

workflow that could scale to hundreds or more samples with smaller memory footprints. To this end, 

I developed the sparsedat (Sparse Data Table, file extension .sdt) file format specification and 

accompanying Python interface. By giving the ability to access rows and columns of a sparse matrix 

directly from disk without having to load the full matrix, sparesedat dramatically improves 

performance for the use case of users wanting random access to rows and/or columns of a sparsely 

encoded matrix. sparsedat can also be used like a traditional sparse matrix format that is loaded fully 
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into memory by toggling a switch during initialization. Thus, sparsedat offers the speed of access to 

specific entries in a sparse matrix, without sacrificing the performance boosts associated with 

working in memory. As single-cell RNA sequencing studies continue to grow in scale in terms of 

number of samples, I hope that this format, or the principles that make it possible, will enable new, 

interactive workflows that speed up the scientific discovery process of these large datasets. 

3.3.2 File format specification 

Adapted from: https://github.com/thomsonlab/sparsedat 

3.3.2.1 Overview 

A semi-minimalist sparse data format that attempts to strike a balance between generalizability, 

functionality, and efficiency. The main focus is to allow both row- and column-indexed slicing of 

sparse matrices on demand (i.e. without having to load the full sparse matrix from disk). 

3.3.2.2 Key features 

 Simultaneous row and column sparse matrices stored in the same file; 

 Binary encoding to minimize data storage and allow byte access to row or column elements; 

 Built-in row and column names, as well as an expandable metadata specification. 

3.3.2.3 File sections 

The SDT file is broken down into 4 primary sections: 

1. Header information 

2. Metadata 

3. Row and column indices 
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4. Data 

3.3.2.4 Header information 

The header information is a fixed number of bytes and should contain all the information needed to 

know: 

 How to calculate the bytes to skip directly to the other 3 sections (metadata, row and column 

indices, and data) 

 Which parser(s) are needed to process the data (version and data type) 

Num 

bytes 

Description Format Example Notes 

8 Version tag SDTv[VERSION] SDTv0001 [VERSION] is a 4-byte left 

padded ASCII representation of 

the version of the format 

1 Data type id [DATA_TYPE_ID] 1 [DATA_TYPE_ID] is an 

unsigned integer representing the 

data type of data contained in this 

table (See Data Types) 

1 Data size [NUM_BYTES] 8 [NUM_BYTES] is a long 

unsigned integer representing the 

number of bytes per data element 

4 Number of 

rows 

[NUM_ROWS] 500 [NUM_ROWS] is an unsigned 

integer representing the number of 

rows in the table 

https://github.com/thomsonlab/sparsedat#data-types
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Note that by knowing the metadata size, one can skip directly to the indexes, and knowing the 

number of rows and columns, one can skip over the indexes to get to the data. 

3.3.2.5 Metadata 

The metadata section starts with a metadata index so that parsing what metadata is available is quick 

and does not require loading the entirety of the metadata into memory 

Now, for each metadata entry, we have: 

 

 

4 Number of 

columns 

[NUM_COLUMNS] 500 [NUM_COLUMNS] is an 

unsigned integer representing the 

number of columns in the table 

8 Metadata 

size 

[METADATA_SIZE] 4096 [METADATA_SIZE] is an 

unsigned integer stating how 

many bytes makes up the 

metadata section 

Num 

bytes 

Description Format Example Notes 

4 Number of metadata 

entries 

[NUM_METAD

ATA_ENTRIES] 

2 [NUM_METADATA_ENTR

IES] is an unsigned int 

representing how many 

metadata entries there are 
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Then, for each metadata entry, the bytes associated with that metadata are stored sequentially. 

3.3.2.6 Row and Column Indices 

This section contains a full sorted list for each row and column. Each entry is the start byte (relative 

to the first data entry) of where this row’s data is contained. This can be used to jump directly on 

disk to the data contained in a particular row or column. 

3.3.2.7 Data 

The data section contains the default value, row-index data, and column-indexed data subsequently. 

Num 

bytes 

Description Format Example Notes 

4 Metadata 

type id 

[METADAT

A_TYPE_ID] 

0 [METADATA_TYPE_ID] is an 

unsigned integer representing the 

metadata type of this entry 

(See 3.3.2.9 Metadata Types) 

4 Metadata 

start byte 

[METADAT

A_START_B

YTE] 

240 [METADATA_START_BYTE] is a 

byte offset relative to the end of the 

metadata index of where the data for 

this metadata entry begins 

Num bytes Description Format Example Notes 

DATA_SIZE Default 

value 

[DEFAULT_VALUE] 0 [DEFAULT_VALUE] is of 

the same type and size as 

specified by 

DATA_TYPE_ID and 
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3.3.2.7.1 Row Data 

3.3.2.7.2 Column Data 

3.3.2.8 Data Types 

DATA_SIZE and specifies 

the default value of a table if 

the index is not specified in 

the sparse table. 

Num bytes Description Format Example Notes 

4 Column 

index 

[ROW_COLUM

N_INDEX] 

0 [ROW_COLUMN_INDE

X] specifies the column 

index of this data entry in 

the current row 

DATA_SIZE Value [DATA_VALUE] 15 [DATA_VALUE] is the 

value of the entry at the 

current row-column index 

Num bytes Description Format Example Notes 

4 Row index [COLUMN_RO

W_INDEX] 

0 [COLUMN_ROW_INDE

X] specifies the row index 

of this data entry in the 

current column 

DATA_SIZE Value [DATA_VALUE

] 

15 [DATA_VALUE] is the 

value of the entry at the 

current row-column index 

Data type id Data type Notes 
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3.3.2.9 Metadata Types 

3.3.3 Usage 

Adapted from: 

https://github.com/thomsonlab/sparsedat-py 

3.3.3.1 Importing 

To use the Sparse_Data_Table object, import via: 

from sparsedat import Sparse_Data_Table 

3.3.3.2 Workflow 

In general, the workflow of sparsedat proceeds like this: 

1. Create an SDT file from existing data/file 

0 Unsigned Int Can be 2, 4, or 8 bytes 

1 Int Can be 2, 4, or 8 bytes 

2 Float Always stored as double precision (8 bytes) 

Metadata type 

id 

Data type Notes 

0 Row Names A list of UTF-8 encoded strings (max length 256), separated 

by a single length byte 

1 Column 

Names 

A list of UTF-8 encoded strings (max length 256), separated 

by a single length byte 
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2. Initialize a Sparse_Data_Table object from an SDT file path (optionally without loading the 

whole file from disk) 

3. View and manipulate the object 

4. If changes want to be saved, save the object. 

3.3.3.3 Key Considerations 

 sparsedat will not save any changes to files without you explicitly calling the save function! 

 sparsedat will by default save back to the same file path as created, so be careful to change 

file paths if you do not want to overwrite! 

 Indexing a sparsedat object returns a new sparsedat object, without a file path specified. You 

must specify a file path to save subsampled data 

 There are no operations built in—you must convert a sparsedat object to numpy or pandas in 

order to do calculations. 

3.3.3.4 Creating an SDT file 

There are currently 3 ways to create an SDT file. The first two, from row-column values and sparse 

representation, do not consider row and column names. If you want to add row and column names, 

you can do that separately. 

3.3.3.4.1 From row-column values 

If you have a list of row and column indices and their values, you can 

use Sparse_Data_Table.from_row_column_values(). Example usage: 

from sparsedat import Sparse_Data_Table 
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row_column_values = [ 

    (0, 1, 5), 

    (1, 2, 15), 

    (5, 4, 2) 

] 

 

sdt = Sparse_Data_Table() 

sdt.from_row_column_values( 

    row_column_values, 

    num_rows=8, 

    num_columns=8, 

    default_value=0 

) 

 

sdt.save(file_path="test.sdt") 

3.3.3.4.2 From sparse row or sparse column representation 

This operates the same as scipy's csr and csc initialization functions, as in scipy.sparse.csr_matrix 

from sparsedat import Sparse_Data_Table 

 

# Specify the starting index of each row you have data for 

row_start_indices = [0, 2, 3] 

 

# Specify the column index of each row entry 

row_column_indices = [1, 5, 1, 1, 2, 4] 

 

# The data values 

values = [10, 10, 2, 1, 1, 8] 

 

sdt = Sparse_Data_Table() 

 

sdt.from_sparse_row_entries( 

    ( 

        values, 

        row_column_indices, 

        row_start_indices 

    ), 

    num_rows=len(row_start_indices), 

    num_columns=8, 

    default_value=0 

) 

 

sdt.save(file_path="test.sdt") 

The same can be done in sparse column format 

with Sparse_Data_Table.from_sparse_column_entries 
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3.3.3.4.3 Adding row/column names 

To add row and/or column names to a loaded file, before saving: 

... 

 

sdt.row_names = ["Row 1", "Row 2", "Row 3"] 

sdt.column_names = ["Col %i" % (i + 1) for i in range(8)] 

 

sdt.save(file_path="test.sdt") 

3.3.3.4.4 From mtx 

Finally, there is a wrapper function for creating an SDT file from MTX format. 

Example: 

import os 

test_data_directory = os.path.join("test", "data") 

 

from sparsedat import wrappers as sparsedat_wrappers 

 

sdt = sparsedat_wrappers.load_mtx( 

    os.path.join(test_data_directory, "features.tsv"), 

    os.path.join(test_data_directory, "barcodes.tsv"), 

    os.path.join(test_data_directory, "matrix.mtx") 

) 

 

sdt.save("test_mtx.sdt") 

3.3.3.5 Using an SDT file 

3.3.3.5.1 Loading 

To load an SDT file: 

from sparsedat import Sparse_Data_Table 

 

sdt = Sparse_Data_Table("test_mtx.sdt") 

Optionally, you can load an SDT file without loading it all to memory. This will 

reduce the memory footprint, but will require reading from disk each time you 

access it. 

from sparsedat import Sparse_Data_Table 
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sdt = Sparse_Data_Table("test.sdt", load_on_demand=True) 

3.3.3.5.2 Indexing 

Sparsedat-py supports several types of indexing: location, boolean, or name-based. Values can be 

either slices, lists, or individual values. Using the test_mtx.sdt from above, here are some examples: 

from sparsedat import Sparse_Data_Table 

 

sdt = Sparse_Data_Table("test_mtx.sdt") 

 

# Get value by direct location 

sdt[0, 0] 

 

# Get an entire row 

sdt[42, :] 

 

# Boolean indexing 

sdt[:, [True, True, True, False, False, False, False, True, True, False]] 

 

# Named indexing 

sdt["ENSG00000187608\tISG15\tGene Expression", :] 

3.3.3.5.3 Conversion 

By default, indexing a Sparse_Data_Table returns another Sparse_Data_Table. However, you may 

want to do arithmetic or other actions using numpy or pandas objects. A Sparse_Data_Table object 

can be converted as follows: 

from sparsedat import Sparse_Data_Table 

 

sdt = Sparse_Data_Table("test_mtx.sdt") 

 

# To a numpy array 

sdt.to_array() 

 

# To a pandas object 

sdt.to_pandas() 
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3.3.3.5.4 Adding rows and columns 

Currently, directly updating values is not supported. However, adding rows and columns is supported 

by providing all non-default values for the new row/column, either by name or index. Using the 

test.sdt, with column and row names added from above: 

from sparsedat import Sparse_Data_Table 

 

sdt = Sparse_Data_Table("test.sdt") 

 

new_values = [ 

    (0, 5), 

    (3, 5), 

    (5, 2) 

] 

 

sdt.add_row(new_values, row_name="New Row") 

 

# Or by name 

 

new_values = { 

    "Col 1": 2, 

    "Col 2": 3, 

    "Col 6": 1 

} 

 

sdt.add_row(new_values.items(), row_name="New Row by Name") 

 

# Let's see what we added 

sdt[["New Row", "New Row by Name"], :] 

3.3.4 Performance 

I compared the performance of sparsedat to 5 other dominant scRNA-seq data formats: Anndata, 

Loom, mtx, Cell Ranger H5, and CSV on a typically-sized scRNA-seq dataset of 8,891 cells by 

32,738 genes. However, the mtx, Cell Ranger H5, and CSV formats were so slow for this large of a 

matrix (loading times of 2-30s), that the read access simulations would have taken weeks to run, so 

I did not continue looking at mtx, Cell Ranger H5, or CSV (Figure 17A). First, I ran a test of random 

read access to individual elements in the matrix in batches of lookups. Unsurprisingly, since the 

Anndata format is stored in a comparable row-oriented sparse matrix, it closely follows the 

performance of the preloaded version of sparsedat. However, for small numbers of lookups (<100 
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per file open), sparsedat’s on-demand version and Loom outperform Anndata and sparsedat’s 

preloaded version (Figure 17C). This is as intended—for small numbers of lookups, sparsedat does 

not need to read in the entire sparse matrix, significantly reducing the overhead. Interestingly, Loom 

outperforms sparsedat’s on-demand version after about 10 lookups. However, if a user knows they 

will be performing large numbers of lookups (1000 or more), preloading the sparsedat matrix will 

yield a boost in performance over Loom. 

Next, I looked at the more common use case than a single entry: extracting entire rows or columns. 

Again, in the row case, sparsedat’s preloaded performance matches Anndata; however, sparsedat far 

exceeds Anndata when extracting full columns (Figure 17D, E). This is likely due to the fact that the 

data was stored in row-oriented sparse format for the Anndata. This could easily be worked around 

by storing two separate Anndata files; one in row-oriented format and one in column-oriented 

format; however, this is not a native feature of Anndata. 
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Figure 17. Sparsedat performance metrics. (A) Average file open times (n=3) for an 8,891x32,738 sparse matrix. (B) File sizes 

for each format for the same data. (C) Single element access performance. (D) Per-row access performance. (E) Full column access 

performance. 

The performance of sparsedat is particularly striking in the regime of 1–100 row or column lookups 

using sparsedat’s on-demand version. Compared to all other methods, even Loom, which was quite 

competitive in the single element lookup case, sparsedat can extract rows and columns 10–100x 

faster. 

The performance boost of sparsedat primarily comes from two principles: 1) simultaneous storage 

of row and column-oriented data, with automatic detection of the access pattern to determine which 

orientation to use, and 2) optional direct on-disk access to full rows and columns. Currently, a user 

must know what regime they will be operating in, and set it with a flag, but future versions of 

sparsedat could incorporate automatic detection of user behavior and swap to fully loaded matrices 
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when user access patterns suggest a benefit. While these principles are currently implemented in the 

sparsedat Python package, future, more well-tested and scalable implementations in a lower-level 

language such as C would likely confer additional performance increases. Finally, this performance 

boost does come at a cost; sparsedat has a larger footprint on disk—comparable to Anndata, but 4 

times greater than Loom (Figure 17B)—and has some regimes where it can be outperformed by 

Loom or Anndata; nonetheless, the performance boost for accessing rows and columns across many 

samples make it a compelling alternative to existing scRNA-seq standards. 

3.4 Cloud-based infrastructure for managing single-cell RNA sequencing data 

3.4.1 Summary 

Single-cell RNA sequencing data has been growing in scale dramatically since the first single-cell 

RNA isolation in 2009, with studies in 2021 often reporting hundreds of thousands to millions of 

cells across 10s to 100s of samples. With data storage requirements on the order of 100 GB per 

sample and per-sample compute times for some operations, such as alignment, on the order of 256-

core hours, largescale studies quickly become unmanageable for local computing, and require 

constant attention to organize data, optimize speed, and minimize cost. 

To meet the needs for labs or single-cell sequencing cores that aim to host repositories of large 

numbers of samples, we have developed SCRAP, a modular, cloud-based architecture that takes 

advantage of a variety of data storage options, caching, virtual computing, and modern interactive 

visualization tools, and gives access to single-cell sequencing data to users via web-based interfaces 

and APIs. Such an architecture will be critical for having consistent, easy-to-use data analysis tools 

for a broad audience. 
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4.4.2 SCRAP: Single-cell RNA Analysis Platform 

 

Figure 18. SCRAP architecture overview. An always-on data management server interfaces with a Mongo database, manages 

spinning up instances for on-demand compute needs, and serves up a web API for accessing data for visualization and analysis. 

3.4.2.1 Architecture Overview 

SCRAP (Single-cell RNA analysis platform) is a modular, Node.js-based web infrastructure that 

compartmentalizes its functions into several distinct components: 

Data Management Server (scrap-dm): An always-on web server responding to data access and 

computation requests. This is a Node.js server serving up both an API and a web interface. This 

server handles shuttling data into the EFS cache, and starting up instances for compute jobs that are 

too demanding for the server to handle. 
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Metadata Server: An always-on web server hosting a Mongo database that contains metadata about 

what samples and transformations of data are available. 

Datastores: Location of raw single-cell sequencing data, stored in S3. This data is not conducive for 

a database due to its large-scale, sparse nature. 

EFS Cache: Recently-accessed data, or data needed for active compute operations, stored on EFS. 

Used for seamless access to data by on-demand instances. 

Compute Nodes: Resource-heavy (either memory or CPU, depending on computation) instances that 

can either be started by power users manually, or will be automatically started by the Data 

Management Server. They will listen for API requests to perform compute operations using Julia. 

3.4.2.2 User features 

FASTQ file import: Ingest scRNA-seq data starting at its original source: the FASTQ files. Users 

can either upload local BCL files directly from a MiSeq, or can import data via FTP by supplying 

their user credentials, and choosing which samples to import. 

Merging Read Sets: Merge read sets in the event that reads from a sample are split across multiple 

sequencing runs. 

Alignment: Align read sets to a reference genome. Supports alignment via both Cell Ranger or 

kallisto. When an alignment is requested, the scrap instance monitor queues up a new instance that 

processes the alignment request, then shuttles data to the common data store when complete, and 

shuts down. 

3.4.2.3 Back-end features 

On-demand transfers from S3: Since in the typical scRNA-seq workflow, the raw FASTQ files are 

typically only processed once, SCRAP stores these files on an S3 infrequent access bucket. Users 
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can request files at any time via the web interface, and SCRAP will automatically shuttle data from 

S3 to a local EFS cache for temporary storage and serving it up to the user. 

Automated queuing system: The only processes running at all times are the SCRAP management 

web serers; all other computationally expensive tasks such as transformations and alignments are 

queued up on user demand, and executed on ephemeral instances that are destroyed after their task 

is completed. This is accomplished by the SCRAP instance monitor, which is constantly checks the 

database for any unprocessed tasks, creates instances and assigns them to tasks, and then destroys 

instances when their assigned tasks are completed. 

Self-managed compute nodes: Compute nodes, when launched, communicate with the database 

server to query whether they have any tasks assigned to them. This eliminates having to configure 

compute nodes to receive push connections from a central server, and makes task allocations more 

robust, since each compute node can operate independently. 

3.4.2.4 Data structures 

SCRAP implements many of the abstractions outlined in Section 3.2 Abstractions for single-cell 

analysis. 
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C h a p t e r  4  

METHODS FOR SINGLE-CELL SEQUENCING OF DELIVERED 

MUTANT TRANSCRIPTS 

4.1 Summary 

One promising area in the field of single-cell RNA sequencing (scRNA-seq) is the prospect of using 

individual cells in a sample as testbeds for perturbations. Unlike traditional perturbation experiments, 

which operate at the scale of individual animals or in vitro cultures, an experimental paradigm where 

each cell receives and responds to a perturbation independently could yield orders of magnitude 

improvements in scale. The key to making such a paradigm functional is that the phenotype and the 

perturbation must be captured via sequencing, and the two must be reliably linked. RNA and DNA 

therapies delivered to cells are excellent candidates for such a paradigm, due to the ease with which 

libraries of DNA or RNA mutants can be produced and delivered. However, current single-cell RNA 

sequencing assays are typically unable to confidently call the presence of specific, individual RNA 

transcripts in a sample due to a variety of noise sources, such as subsampling, amplification, and 

template switching. 

One of the key distinguishing features of modern single-cell RNA sequencing workflows is that they 

are broad, high-dimensional assays. Rather than capturing particular targeted metrics, they capture a 

wide class of metrics in a single experiment. The most common single-cell RNA sequencing 

workflows use a poly(dT) oligo capture probe such that they are able to broadly capture all 

polyadenylated RNAs, but other workflows exist with a similar breadth-first perspective, such as 

chromatin accessibility profiling (Lareau et al., 2019), methylation status (Li et al., 2019), T- and B-

cell receptor sequencing (Singh et al., 2019), and total RNA capture (Hayashi et al., 2018). In all 

cases, however, the experimental goal is to capture large subsets of DNA, rather than specific 

transcripts. 
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Unfortunately, such breadth-first experimental protocols have a drawback: since the eventual readout 

of any scRNA-seq protocol is a next-generation sequencing run, and the scale of sequencing depth 

currently available to researchers is significantly below the biological scale of the numbers of RNA 

molecules in a sample, the data will necessarily be a subsampling. For many applications, such as 

determining cell type or state, or for differential gene expression between samples or subpopulations 

of cells, this subsampling can be sufficient, since cells can be combined in the data for determining 

statistically significant differences. However, in other applications, such as analyzing rare 

transcripts, identifying the allele status of individual cells, or determining delivery of mutants to 

individual cells, this subsampling means that the transcript or region of interest may not be reliably 

captured by standard workflows. To this end, a variety of protocols have been developed to add to 

the standard scRNA-seq workflow, such as capturing targeted panels of genes of interest (Saikia et 

al., 2019), amplifying specific cells within a sample (Riemondy et al., 2019), or identifying mutant 

alleles (Rodriguez-Meira et al., 2019, 2020). 

Ideally, in order to use each cell in a scRNA-seq experiment as an independent test of mutants in a 

library of delivered therapies, researchers need a highly accurate and specific readout of which 

therapy was delivered to each cell. Described herein is a series of molecular biology and 

computational techniques that enable more robust quantification of the presence of specific 

transcripts in the presence of technical noise. 

4.2 Amplification of transcripts 

One straightforward strategy to counteract the undersampling of transcripts of interest relative to 

other captured molecules in an scRNA-seq nucleic acid library is to selectively amplify the 

transcripts of interest in an additional, parallel PCR amplification step on an aliquot of the library. 

In the droplet-based 10X Chromium scRNA-seq protocol, for example, each mRNA molecule is 

captured with a poly(dT) oligo that contains a common sequence on its 5’ end. After mRNA capture 

and reverse transcription, this yields a cDNA library that contains full-length mRNA transcripts with 

a common sequence after the polyadenylation region. By using a primer pair that binds to this 
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common region and to a region unique to the transcript of interest, this transcript can be selectively 

amplified above the level of the rest of the cDNA library. Additionally, by choosing a primer on the 

transcript of interest that is upstream of any target regions of interest, these regions can be sequenced 

with high accuracy short-read sequencing platforms, such as Illumina’s next-generation sequencers. 

To test this targeted amplification strategy, we performed such an amplification on a cDNA library 

of single-cell suspensions of brain cells from a mouse that received an intravenous injection of AAV-

PHP.eB carrying mNeonGreen (see Section 5.3.2 Single-cell RNA sequencing recapitulates AAV 

capsid cell-type-specific tropisms). For the amplification, we used primers specific to the delivered 

(see Section 5.7.6 Viral library construction). 
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Figure 19. Comparison of sequencing depth of selectively amplified transcripts. (A, C) The read count distribution of UMIs 

in a low (A) and high (C) sequencing depth amplification library. (B, D) A comparison between UMI counts per cell in the original 

transcriptome data (y) as compared to the amplified library (x). 

For our first sequencing attempt, we sequenced the reads at a sequencing depth of 326,236 reads. 

Given our expected cell count of 10,000 cells and a manufacturer-recommended 30,000 reads/cell 

for a full transcriptome library, this read depth would give about 0.1% of the recommended total, 

which, we estimated, was a reasonable estimate for the abundance for our gene of interest. However, 

when we inspected the distribution of read counts for each unique cell barcode/UMI combo, we saw 

read counts that were much higher (up to 793 reads) than the typical 10 or so reads per UMI in full 

transcriptome data (Figure 19A). We suspect that this originates from additional rounds of PCR 
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amplification, increasing the variance of the distribution due to the compounding exponential 

amplification. 

We then inspected the UMI counts of these amplified reads as compared to the UMI counts of the 

delivered transgene in the transcriptome data, which had one less round of PCR amplification (Figure 

19B). The overwhelming majority of the barcodes had very low UMI counts (1 or 2), and there were 

UMI counts in both the amplified data and the transcriptome data that were not present in the other 

data. Additionally, at higher UMI counts, the amplified data underrepresented the UMI counts in the 

transcriptome data. Together, this suggests that the sequencing depth was too low to recover all the 

transcripts of interest, and that there is substantial disagreement between the two data sources, either 

due to noise or both methods undersampling the transcripts of interest. 

To explore this further, we sequenced the amplified DNA library again to a much greater sequencing 

depth (18M reads, or 1,800 reads per cell). This time, while the distribution was still skewed (up to 

45k reads for the largest UMI), inspection of the lower counts of the histogram revealed a potential 

multimodal distribution (Figure 19C). We again investigated the agreement between the UMI counts 

in cell barcodes in this amplified data compared to the transcriptome data, and discovered a different 

effect from before; the amplified UMI counts were now consistently higher than the UMI counts in 

the transcriptome data, with some rare exceptions (Figure 19D). Additionally, there were almost no 

UMIs in the transcriptome data that did not exist in the amplified data, and there were large numbers 

of cell barcodes that had UMI counts in the amplified data but not the transcriptome. Together with 

the low sequencing depth experiment, this suggests two possibilities: either the high sequencing 

depth amplified data recovers large numbers of transcripts that were not present in the original 

transcriptome library, or the amplification introduces significant artifacts. 

To determine whether these transcripts are likely to be artifacts, we investigated to see how many 

cell barcodes had at least one delivered transcript across different cell types and found that all cell 

types had transcripts detected in 97.8% or more of their cells. This is in direct contradiction to the 

repeated finding that both wild-type and engineered AAV variants have low transduction of 
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microglia (Bartlett et al., 1998; Deverman et al., 2016; Foust et al., 2009). This suggests that the UMI 

count increase in the amplified data originates at least partially from an amplification artifact. 

4.3 Maximum likelihood estimation for reducing PCR amplification noise 

Given the likelihood of an artifact in the amplified data and the presence of a multimodal distribution 

in the read counts of amplified transcripts, I hypothesized that the different modes of the distribution 

represented a combined distribution of signal and noise. Unfortunately, even with the high 

sequencing depth of 1,800 reads per cell, the distribution did not have a clear location where a binary 

threshold could cleanly separate the signal from the noise. Therefore, I decided to fit a mixture model 

to the read count data using Maximum Likelihood Estimation. Based on the shape of the distribution 

and the commune usage of the negative binomial for read count data, I started with a mixture of two 

negative binomials. However, initial attempts to fit two negative binomials resulted in models that 

failed to capture the region of counts between the low counts and the first peak. Despite the 

expressiveness of the negative binomial distribution, there was no parameter regime that could 

account for the early steep decrease in the distribution, but still have a tail that overlaps a second 

negative binomial. Upon further inspection of the count distribution, there appeared to be nearly 

exponential drop in UMI counts in the low regime—i.e. from 1 to 2, 2 to 3, etc. Given that there are 

at least two unique biological sources of errors—i.e. point mutation errors during sequencing, where 

the probability of errors can be modeled exponentially, and more complicated PCR-based errors, 

which might propagate over rounds of PCR—I then moved to modeling the distribution as a mixture 

model of three distributions—one binomial and two negative binomials (Figure 20A). Given the 

long tail of the signal distribution and the possibility of mode collapse for the two negative binomials, 

there were some additional considerations when performing the MLE procedure. The complete 

procedure is outlined below: 

1. Find the first trough (inverse peak) in the data using signal.find_peaks, and choosing the 

most prominent trough. Set this to be the threshold, t. 
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2. Perform MLE to fit parameters n and p of a negative binomial distribution, conditioned on a 

count greater than the threshold, that minimizes the negative log likelihood of all counts 

above the threshold. 

𝑃(𝑛, 𝑝|𝑋: 𝑋 > 𝑡, 𝑋 > 0) 

3. Perform MLE to fit the parameters n1, p1 of a binomial distribution and n2, p2 of a negative 

binomial distribution, and the weight, w, between them, both conditioned on counts between 

1 and the threshold. Additionally, we constrain the noise negative binomial to have a larger 

p than the signal negative binomial to prevent mode collapse. 

𝑃(𝑛1, 𝑛𝑝, 𝑛2, 𝑝2, 𝑤|𝑋: 𝑋 < 𝑡, 𝑋 > 0, 𝑝2 > 𝑝) 

4. Finally, we relax the constraints of the threshold counts, and perform a final MLE to fit the 

weights of the three distributions 

𝑃(𝑤1, 𝑤2, 𝑤3|𝑋: 𝑋 > 0, 𝑛, 𝑝, 𝑛1, 𝑛𝑝, 𝑛2, 𝑝2). 

After fitting the mixture model, we can then use Bayes’ rule to calculate the probability whether a 

given read count originated from the signal distribution or one of the noise distributions (Figure 

20B): 

𝑃(𝑅𝑒𝑎𝑙|𝑋) =  
𝑃(𝑋|𝑅𝑒𝑎𝑙)𝑃(𝑅𝑒𝑎𝑙)

𝑃(𝑋)
 

After fitting the overamplified read counts using this procedure, we investigated its effect on the 

UMI counts per cell, and discovered that, remarkably, the procedure recovered the original counts 

strongly in accordance with the original transcriptome counts, suggesting that this fitting procedure 

performs well at recovering true molecular counts in the presence of strong amplification noise 

(Figure 20C). 
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Figure 20. Maximum likelihood estimation for correcting PCR amplification noise. (A) The multimodal read count 

distribution is fitted with a signal (real) distribution and 2 noise (noise) distributions. (B) Bayes’ rule is used to calculate the 

probability of a read count originating from the signal or noise. (C) A comparison between UMI counts per cell in the original 

transcriptome data (y) as compared to the amplified post-correction library (x). 
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4.4 Template switching artifacts 

After correcting for PCR errors across all our datasets, we then performed downstream analysis on 

the distribution of transcripts present in different cell types in our data. Similarly to the unexpectedly 

high level of microglial transduction in the amplified, uncorrected counts, we uncovered an 

additional potential artifact: high estimated number of transcripts in oligodendrocytes in a few 

samples. In order to determine whether this was an artifact or a real signal, we explored the 

distribution of read counts of the amplified transcripts in cell barcodes belonging to 

oligodendrocytes. Interestingly, we found that the distribution of read counts was, in fact, different 

between oligodendrocytes and other cell types, such as neurons. Similarly, when we performed the 

MLE error correction procedure on UMIs that were restricted to oligodendrocytes and neurons 

separately, we found that the procedure learned a significantly different probability mapping, with 

higher read counts needed in oligodendrocytes to reach the same probability of being a real transcript 

as neurons (Figure 21A,B). 

Template switching has been previously identified as a source of noise in NGS datasets (Kebschull 

and Zador, 2015). Thus, we hypothesized that there might be a cell-type-dependent template 

switching happening between our delivered and amplified cargo transcript, CAG-mNeonGreen-

WPRE, and some transcript within the cell. This could happen if there is a region of significant 

homology between CAG-mNeonGreen-WPRE and a transcript that is expressed in higher levels in 

oligodendrocytes (Figure 21C). To investigate whether this was the case, we looked at the native 

reads in the transcriptome, and calculated what percent of Cell Barcode/UMIs that were associated 

with a delivered transcript also appeared in another transcript (Table 2). There was a surprising 

amount of Cell Barcode/UMIs, with at least 22.4% of viral transcripts having a corresponding 

transcript in the transcriptome with the same Cell Barcode/UMI across all cell types. However, the 

overlap was significantly higher (up to 51%) for both subtypes of oligodendrocytes, as well as 

microglia, suggesting a strong cell-type dependence of this artifact. 
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Figure 21. Fitted read count probabilities vary by cell type. (A, B) A given read count in neurons (A) has a much higher 

predicted probability of being a real transcript than in oligodendrocytes (B). (C) A schematic of a possible template switching that 

may associate transcripts with the wrong barcode. 

4.5 Conclusion 

In general, the MLE method for PCR amplification error correction is an effective strategy for 

recovering accurate transcript counts, and worked across a variety of samples, amplicons, and 

sequencing depths we tested, as long as the sequencing depth is sufficient to reveal a detectable 
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trough separating the distributions. However, it is important to note that in our explorations, we 

uncovered an alarmingly high degree of template switching that we were able to detect due to the 

high sequencing depth of our targeted amplification libraries, and that this template switching can 

happen on a cell-type-dependent basis. Thus, it is important to keep in mind that error correction 

would ideally be performed on a per-cell-type basis for any cell types under study. 

For use cases where the purpose of the targeted amplification is not to amplify a signal, but instead 

identify a region of interest on the 5’ end, an alternative strategy for identifying the source transcripts 

of targeted amplifications would be to only keep amplified transcripts that have a corresponding Cell 

Barcode/UMI in the transcriptome data. This is the strategy we employed for our targeted 

amplification of multiplexed viral transcripts (see Section 5.7.10 Constructing the variant lookup 

table). 

Although these artifacts were uncovered during our exploration of targeted amplification of 

transcripts of interest, it is possible that similar levels of template switching happen between native 

transcripts with some homology in standard scRNA-seq workflows. With a similar methodology and 

thought process as presented here, future work could uncover new, important artifacts, and develop 

computational methods to improve the confidence of single-cell transcriptome data. 
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Table 2. Comparison of UMI overlaps between CAG-mNeonGreen transcripts and native transcriptome transcripts 

across different cell types. 

 

 

 

 

Cell Type Percent UMI Overlap 

Microglia 44.70% 

Astrocytes 33.25% 

Vascular Cells 26.39% 

OPCs 48.87% 

Mature Oligodendrocytes 51.06% 

Pericytes 27.37% 

Inhibitory Neurons 22.35% 

Excitatory Neurons 25.23% 
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C h a p t e r  5  

DEEP PARALLEL CHARACTERIZATION OF AAV TROPISM AND AAV-

MEDIATED TRANSCRIPTIONAL CHANGES VIA SINGLE-CELL RNA 

SEQUENCING 

Adapted from: 

Brown, D.*, Altermatt, M.*, Dobreva, T., Chen, S., Wang, A., Thomson, M., & Gradinaru, V. 

(2021). Deep parallel characterization of AAV tropism and AAV-mediated transcriptional changes 

via single-cell RNA sequencing. Cold Spring Harbor Laboratory. 

https://doi.org/10.1101/2021.06.25.449955 

Updated version published at: 

Brown, D.*, Altermatt, M.*, Dobreva, T., Chen, S., Wang, A., Thomson, M., & Gradinaru, V. 

(2021). Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional 

Changes via Single-Cell RNA Sequencing. In Frontiers in Immunology (Vol. 12). Frontiers Media 

SA. https://doi.org/10.3389/fimmu.2021.730825 

5.1 Summary 

Engineered variants of recombinant adeno-associated viruses (rAAVs) are being developed rapidly 

to meet the need for gene-therapy delivery vehicles with particular cell-type and tissue tropisms. 

While high-throughput AAV engineering and selection methods have generated numerous variants, 

subsequent tropism and response characterization have remained low throughput and lack resolution 

across the many relevant cell and tissue types. To fully leverage the output of these large screening 

paradigms across multiple targets, we have developed an experimental and computational single-

cell RNA sequencing (scRNA-seq) pipeline for in vivo characterization of barcoded rAAV pools at 
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unprecedented resolution. Using our platform, we have corroborated previously reported viral 

tropisms and discovered unidentified AAV capsid targeting biases. As expected, we observed that 

the tropism profile of AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes 

when compared with AAV-PHP.eB. Our transcriptomic analysis revealed that this neuronal bias is 

mainly due to increased targeting efficiency for glutamatergic neurons, which we confirmed by RNA 

fluorescence in situ hybridization. We further uncovered cell subtype tropisms of AAV variants in 

vascular and glial cells, such as low transduction of pericytes and Myoc+ astrocytes. Additionally, 

we have observed cell-type-specific responses to systemic AAV-PHP.eB administration, such as 

upregulation of genes involved in p53 signaling in endothelial cells three days post-injection, which 

return to control levels by day twenty-five. Such ability to parallelize the characterization of AAV 

tropism and simultaneously measure the transcriptional response of transduction will facilitate the 

advancement of safe and precise gene delivery vehicles. 

5.2 Introduction 

Recombinant AAVs (rAAVs) have become the preferred gene delivery vehicles for many clinical 

and research applications (Bedbrook et al., 2018; Samulski and Muzyczka, 2014) owing to their 

broad viral tropism, ability to transduce dividing and non-dividing cells, low immunogenicity, and 

stable persistence as episomal DNA ensuring long-term transgene expression (Daya and Berns, 

2008; Deverman et al., 2018; Gaj et al., 2016; Hirsch and Samulski, 2014; Naso et al., 2017; Wu et 

al., 2006). However, current systemic gene therapies using AAVs have a relatively low therapeutic 

index (Mével et al., 2020). High doses are necessary to achieve sufficient transgene expression in 

target cell populations, which can lead to severe adverse effects from off-target expression (Hinderer 

et al., 2018; Srivastava, 2020; Wilson and Flotte, 2020). Increased target specificity of rAAVs would 

reduce both the necessary viral dose and off-target effects: thus, there is an urgent need for AAV 

gene delivery vectors that are optimized for cell-type-specific delivery (Paulk, 2020). Lower viral 

doses would also alleviate demands on vector manufacturing and minimize the chances of 

undesirable immunological responses (Calcedo et al., 2018; Gao et al., 2009; Mingozzi and High, 

2013). Capsid-specific T-cell activation was reported to be dose-dependent in vitro (Finn et al., 2010; 
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Pien et al., 2009) and in humans (Mingozzi et al., 2009; Nathwani et al., 2011). Shaping the tropism 

of existing AAVs to the needs of a specific disease has the potential to reduce activation of the 

immune system by detargeting cell types, such as dendritic cells, that have an increased ability to 

activate T-cells (Herzog et al., 2019; Rogers et al., 2017; Rossi et al., 2019; Somanathan et al., 2010; 

Vandenberghe et al., 2006; Zhu et al., 2009). 

Several studies have demonstrated that the transduction efficiency and specificity of natural AAVs 

can be improved by engineering their capsids using rational design (Bartlett et al., 1999; Davidsson 

et al., 2019; Davis et al., 2015; Lee et al., 2018; Sen, 2014) or directed evolution (Chan et al., 2017; 

Dalkara et al., 2013; Deverman et al., 2016; Excoffon et al., 2009; Grimm et al., 2008; Körbelin et 

al., 2016b; Kotterman and Schaffer, 2014; Maheshri et al., 2006; Müller et al., 2003; Ogden et al., 

2019; Ojala et al., 2018b; Pekrun et al., 2019; Pulicherla et al., 2011; Ravindra Kumar et al., 2020; 

Tervo et al., 2016; Ying et al., 2010). These engineering methods yield diverse candidates that 

require thorough, preferably high-throughput, in vivo vector characterization to identify optimal 

candidates for a particular clinical or research application. Toward this end, conventional 

immunohistochemistry (IHC) and various in situ hybridization (ISH) techniques are commonly 

employed to profile viral tropism by labeling proteins expressed by the viral transgene or viral 

nucleic acids, respectively (Arruda et al., 2001; Chan et al., 2017; Deleage et al., 2016, 2018; 

Deverman et al., 2016; Grabinski et al., 2015; Hinderer et al., 2018; Hunter et al., 2019; Miao et al., 

2000; Polinski et al., 2015, 2016; Puray-Chavez et al., 2017; Ravindra Kumar et al., 2020; Wang et 

al., 2020; Zhang et al., 2016; Zhao et al., 2020). 

Although these histological approaches preserve spatial information, current technical challenges 

limit their application to profiling the viral tropism of just one or two AAV variants across a few 

gene markers, thus falling short of efficiently characterizing multiple AAVs across many complex 

cell types characteristic of tissues in the central nervous system (CNS). The reliance on known 

marker genes also prevents the unbiased discovery of tropisms since such marker genes need to be 

chosen a priori. Choosing marker genes is particularly challenging for supporting cell types, such as 

pericytes in the CNS microvasculature and oligodendrocytes, which often have less established cell 
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type identification strategies (Liu et al., 2020; Marques et al., 2016). The advent of single-cell RNA 

sequencing (scRNA-seq) has enabled comprehensive transcriptomic analysis of entire cell-type 

hierarchies, and brought new appreciation to the role of cell subtypes in disease (Berto et al., 2020; 

Gokce et al., 2016; Tasic et al., 2016, 2018; Zeisel et al., 2018). However, experimental and 

computational challenges, such as the sparsity of RNA capture and detection, strong batch effects 

between samples, and the presence of ambient RNA in droplets, reduce the statistical confidence of 

claims about individual gene expression (Lähnemann et al., 2020; Yang et al., 2020; Zheng et al., 

2017). Computational methods have been developed to address some of these challenges, such as 

identifying contaminating RNA (Yang et al., 2020), accounting for or removing batch effects 

(Korsunsky et al., 2019; Lin et al., 2019; Lopez et al., 2018), and distinguishing intact cells from 

empty droplets (Lun et al., 2019; Macosko et al., 2015; Zheng et al., 2017). However, strategies for 

simultaneously processing transcripts from multiple delivery vehicles and overcoming the 

computational challenges of confidently detecting individual transcripts have not yet been developed 

for probing the tropism of AAVs in complex, heterogeneous cell populations. 

Collecting the entire transcriptome of injected and non-injected animals offers an opportunity to 

study the effects of AAV transduction on the host cell transcriptome. A similar investigation has 

been conducted with G-deleted rabies virus (Huang and Sabatini, 2020). This study demonstrated 

that virus infection led to the downregulation of genes involved in metabolic processes and 

neurotransmission in host cells, whereas genes related to cytokine signaling and the adaptive immune 

system were upregulated. At present, no such detailed examination of transcriptome changes upon 

systemic AAV injection has been conducted. High-throughput single-cell transcriptomic analysis 

could provide further insight into the ramifications of AAV capsid and transgene modifications with 

regard to innate (Duan, 2018; Hösel et al., 2012; Martino et al., 2011; Shao et al., 2018; Zaiss et al., 

2008) and adaptive immune recognition (George et al., 2017; Manno et al., 2006; Mingozzi et al., 

2007; Nathwani et al., 2011, 2014). Innate and adaptive immune responses to AAV gene delivery 

vectors and transgene products constitute substantial hurdles to their clinical development(Colella et 

al., 2018; Shirley et al., 2020). The study of brain immune response to viral gene therapy has been 

limited to antibody staining and observation of brain tissue slices post direct injection. In particular, 
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prior studies have shown that intracerebral injection of rAAV vectors in rat brains does not induce 

leukocytic infiltration or gliosis (Chamberlin et al., 1998; McCown et al., 1996); however, innate 

inflammatory responses were observed (Lowenstein et al., 2007). Results reported by these methods 

are rooted in single-marker staining and thus prevent the discovery of unexpected cell-type-specific 

responses. A comprehensive understanding of the processes underlying viral vector or transgene-

mediated responses is critical for further optimizing AAV gene delivery vectors and treatment 

modalities that mitigate such immune responses. 

Here, we introduce an experimental and bioinformatics workflow capable of profiling the viral 

tropism and response of multiple barcoded AAV variants in a single animal across numerous 

complex cell types by taking advantage of the transcriptomic resolution of scRNA-seq techniques 

(Figure 22A). For this proof-of-concept study, we profile the tropism of previously-characterized 

AAV variants that emerged from directed evolution with the CREATE (AAV-PHP.B, AAV-

PHP.eB) (Chan et al., 2017; Deverman et al., 2016) or M-CREATE (AAV-PHP.C1, AAV-PHP.C2, 

AAV-PHP.V1, AAV.CAP-B10) (Flytzanis et al., 2020; Ravindra Kumar et al., 2020) platforms. We 

selected the AAV variants based on their unique CNS tropism following intravenous injection. 

AAV-PHP.B and AAV-PHP.eB are known to exhibit overall increased targeting of the CNS 

compared with AAV9 and preferential targeting of neurons and astrocytes. Despite its sequence 

similarity to AAV-PHP.B, the tropism of AAV-PHP.V1 is known to be biased toward transducing 

brain vascular cells. AAV-PHP.C1 and AAV-PHP.C2 have both demonstrated enhanced blood–

brain barrier (BBB) crossing relative to AAV9 across two mouse strains (C57BL/6J and BALB/cJ). 

Finally, AAV.CAP-B10 is a recently-developed variant with a bias toward neurons compared to 

AAV-PHP.eB (Flytzanis et al., 2020). 

In our initial validation experiment, we quantify the transduction biases of AAV-PHP.eB and AAV-

CAP-B10 across major cell types using scRNA-seq, and our results correlate well with both 

published results and our own conventional IHC-based quantification. We then demonstrate the 

power of our transcriptomic approach by going beyond the major cell types to reveal significant 

differences in sub-cell-type transduction specificity. Compared with AAV-CAP-B10, AAV-PHP.eB 
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displays biased targeting of inhibitory neurons, and both variants transduce Sst+ or Pvalb+ inhibitory 

neurons more efficiently than Vip+ inhibitory neurons. We validate these results with fluorescent in 

situ hybridization – hybridization chain reaction (FISH-HCR). We then develop and validate a 

barcoding strategy to investigate the tropism of AAV-PHP.V1 relative to AAV-PHP.eB in non-

neuronal cells and reveal that pericytes, a subclass of vascular cells, evade transduction by this and 

other variants. We further use scRNA-seq to profile cell-type-specific responses to AAV.PHP-eB at 

3 and 25 days post-injection (DPI), finding, for example, numerous genes implicated in the p53 

pathway in endothelial cells to be upregulated at 3 DPI. While most upregulated genes across cell 

types return to control levels by day twenty-five, excitatory neurons show a persistent upregulation 

of genes involved in MAPK signaling extending to 25 days. Finally, we showcase the capabilities 

of parallel characterization by verifying the preceding findings in a single animal with seven co-

injected AAV variants and reveal the unique non-neuronal tropism bias of AAV-PHP.C2. 

5.3 Results 

5.3.1 Multiplexed single-cell RNA sequencing-based AAV profiling pipeline 

To address the current bottleneck in AAV tropism profiling, we devised an experimental and 

computational workflow (Figure 22A) that exploits the transcriptomic resolution of scRNA-seq to 

profile the tropism of multiple AAV variants across complex cell-type hierarchies. In this workflow, 

single or multiple barcoded rAAVs are injected into the retro-orbital sinus of mice followed by tissue 

dissociation, single-cell library construction using the 10X Genomics Chromium system, and 

sequencing with multiplexed Illumina next-generation sequencing (NGS) (Zheng et al., 2017). The 

standard mRNA library construction procedure includes an enzymatic fragmentation step that 

truncates the cDNA amplicon such that its final size falls within the bounds of NGS platforms 

(Figure 22B). These cDNA fragments are only approximately 450 bp in length and, due to the 

stochastic nature of the fragmentation, sequencing from their 5’ end does not consistently capture 

any particular region. The fragment length limit and heterogeneity pose a problem for parallelizing 

AAV tropism profiling, which requires reliable recovery of regions of the transgene that identify the 
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originating AAV capsid. For example, posttranscriptional regulatory elements, such as the 600 bp 

Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), are commonly placed at 

the 3’ end of viral transgenes to modulate transgene expression. The insertion of such elements 

pushes any uniquely identifying cargo outside the 450 bp capture range, making them 

indistinguishable based on the cDNA library alone (Supplementary Figure 2A). An alternative 

strategy of adding barcodes in the 3’ polyadenylation site also places the barcode too distant for a 5’ 

sequencing read, and reading from the 3’ end would require sequencing through the homopolymeric 

polyA tail, which is believed to be unreliable in NGS platforms (Chang et al., 2014; Shin and Park, 

2016). 

We circumvented these limitations in viral cargo identification by taking an aliquot of the intact 

cDNA library and adding standard Illumina sequencing primer recognition sites to the viral 

transcripts using PCR amplification such that the identifying region is within the two Illumina primer 

target sequences (e.g. Figure 23B). The cell transcriptome aliquots undergoing the standard library 

construction protocol and the amplified viral transcripts are then sequenced as separate NGS 

libraries. We sequence shorter viral transcripts in the same flow cell as the cell transcriptomes and 

longer viral transcripts on the Illumina MiSeq, which we found to be successful at sequencing 

cDNAs up to 890 bp long. The sequencing data undergoes a comprehensive data processing pipeline 

(see Methods). Using a custom genome reference, reads from the cell transcriptome that align to the 

viral cargo plasmid sequences are counted as part of the standard 10X Cell Ranger count pipeline 

(see Methods and Supplementary Figure 2C). In parallel, reads from the amplified viral transcripts 

are used to count the abundance of each viral barcode associated with each cell barcode and unique 

molecular identifier (UMI). The most abundant viral barcode for each cell barcode and UMI is 

assumed to be the correct viral barcode, and is used to construct a variant lookup table. This lookup 

table approach identifies an originating capsid in 67.6 ± 2.0% of viral transcripts detected in the cell 

transcriptome aliquots (Table S 4). 
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Figure 22. Workflow of AAV tropism characterization by scRNA-seq. (A) (I) Injection of a single AAV variant or multiple 

barcoded AAV variants into the retro-orbital sinus. (II) After 3–4 weeks post-injection, the brain region of interest is extracted and 

the tissue is dissociated into a single-cell suspension. (III) The droplet-based 10x Genomics Chromium system is used to isolate 

cells and build transcriptomic libraries (see B). (IV) Cells are assigned a cell-type annotation and a viral transcript count. (V) AAV 

tropism profiling across numerous cell types. (B) The full length cDNA library is fragmented for sequencing as part of the single-

cell sequencing protocol (top). To enable viral tropism characterization of multiple rAAVs in parallel, an aliquot of the intact cDNA 

library undergoes further PCR amplification of viral transcripts (bottom). During cDNA amplification, Illumina sequencing primer 

targets are added to the viral transcripts such that the sequence in between the Illumina primer targets contains the AAV capsid 

barcode sequence. Viral cargo in the cell transcriptome is converted to variant barcodes by matching the corresponding cell barcode 

+ UMI in the amplified viral transcript library (right). 

For determining viral cell-type tropism, we developed a method to estimate the fraction of cells 

within a cell type that express viral transcripts. Viral RNA expression levels depend on both the 

multiplicity of infection and the transcription rate of the delivered cargo. Thus, directly using viral 

RNA counts to determine tropism is confounded by differences in transcription rate between cell 

types, limiting comparison with imaging-based tropism quantification methods. As evidence of this, 

we detected that viral RNA expression levels can vary by cell type but are not perfectly rank 
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correlated with the percent of cells detected as expressing that transcript (Supplemental Figure 2 B). 

An additional confound arises from the ambient RNA from cellular debris co-encapsulated with cell-

containing droplets, which can lead to false positives, i.e., detecting viral RNA in droplets containing 

a cell that was not expressing viral RNA. For example, we detected low levels of viral transcripts in 

large percentages of cells, even in cell types suspected to evade transduction, such as immune cells 

(Supplementary Figure 3A). To reduce the effect of both variability in expression and ambient RNA, 

we developed an empirical method to estimate the percentage of cells expressing transcripts above 

the noise, wherein the distribution of viral transcript counts in a set of cells of interest is compared 

to a background distribution of cell-free (empty) droplets (see Methods, Supplemental Figure 2 C). 

In simulation, this method accurately recovers the estimated number of cells expressing transcripts 

above background across a wide range of parameterizations of negative binomial distributions (see 

Methods, Supplementary Figure 3D). 

To address several additional technical problems in default single-cell pipelines, we developed a 

simultaneous quality control (QC) and droplet identification pipeline. Our viral transduction rate 

estimation method described above relies on having an empirical background distribution of viral 

transcript counts in empty droplets to compare against the cell type of interest. However, the default 

cell vs. empty droplet identification method provided by the 10X Cell Ranger software, which is 

based on the EmptyDrops method (Lun et al., 2019), yielded unexpectedly high numbers of cells 

and clusters with no recognizable marker genes, suggesting they may consist of empty droplets of 

ambient RNA or cellular debris (Supplementary Figure 4A, B). Additionally, we sought to remove 

droplets containing multiple cells (multiplets) from our data due to the risk of falsely attributing viral 

tropism of one cell type to another. However, using Scrublet (Wolock et al., 2019), an established 

method for identifying droplets containing multiplets, failed to identify multiplets in some of our 

samples and only identified small proportions of clusters positive for known non-overlapping marker 

genes, such as Cldn5 and Cx3cr1 (Supplementary Figure 4C). To address both the empty droplet 

and multiplet detection issues, we built a droplet classification pipeline based on scANVI, a 

framework for classifying single-cell data via neural-network-based generative models (Xu et al., 

2021). Using clusters with a high percentage of predicted multiplets from Scrublet as training 
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examples of multiplets, and clusters positive for known neuronal and non-neuronal marker genes as 

training examples of neurons and non-neuronal cells, we trained a predictive model to classify each 

droplet as a neuron, non-neuron, multiplet, or empty droplet (see Methods, Supplementary Figure 

5A). This model performed with 97.6% accuracy on 10% of cells held out for testing, and yielded a 

database of 270,982 cortical cells (Supplementary Figure 5B). Inspection of the cells classified as 

empty droplets reveals that these droplets have lower transcript counts and higher mitochondrial 

gene ratios, consistent with other single-cell quality control pipelines (Supplementary Figure 5D). 

Critically, we discovered that non-neuronal clusters contained significantly more cells that had been 

previously removed by the Cell Ranger filtering method as compared to neuronal clusters (P = 0.02, 

2-sided student t-test). In some clusters, such as Gpr17+ C1ql1+ oligodendrocytes and Gper+ Myl9+ 

vascular cells, we identified up to 85% more cells than what were recovered via Cell Ranger in some 

samples. 

Using our combined experimental and computational pipeline for viral transcript recovery and 

droplet identification, we can recover a lower bound on the expected number of cells expressing each 

unique viral cargo within groups of cells in heterogeneous samples. 

5.3.2 Single-cell RNA sequencing recapitulates AAV capsid cell-type-specific tropisms 

As a first step, we validated our method by comparing the quantification of AAV transduction of 

major cell types via scRNA-seq to conventional IHC. For this purpose, we characterized the tropism 

of two previously reported AAV variants, AAV-PHP.eB (Chan et al., 2017) and AAV-CAP-B10 

(Flytzanis et al., 2020) (Figure 23A). In total, four animals received single or dual retro-orbital 

injections of AAV-PHP.eB and/or AAV-CAP-B10 with 1.5 × 1011 viral genomes (vg) per variant. 

Co-injection of both variants served to test the ability of our approach to parallelize tropism profiling. 

By having each variant package a distinct fluorophore, tropism could be simultaneously assessed via 

multi-channel fluorescence and mRNA expression of the distinct transgene. After 3–4 weeks of 

expression, we harvested the brains and used one hemisphere for IHC and one hemisphere for 

scRNA-seq. To recover viral transcripts, we chose primers such that enough of the XFP sequence 
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was contained within the Illumina primer target sequences to differentiate the two variants (Table S 

1). For this comparison, we focused on the transduction rate for neurons (Rbfox3), astrocytes 

(S100b), and oligodendrocytes (Olig2). For IHC, a cell was classified as positive for the marker gene 

on the basis of antibody staining, and was classified as transduced on the basis of expression of the 

delivered fluorophore. For scRNA-seq, all cells that passed our QC pipeline were projected into a 

joint scVI latent space and clustered. To most closely match our imaging quantification, we 

considered all clusters that were determined to be positive for the respective marker gene as 

belonging to the corresponding cell type (see Methods). All clusters of the same marker gene were 

grouped together, and the transduction rate of the combined group of cells was determined using our 

viral transduction rate estimation method.  

Our analysis of the scRNA-seq data demonstrates that the viral tropism biases across the three 

canonical marker genes are consistent with previous reports (Figure 23C) (Chan et al., 2017; 

Flytzanis et al., 2020). In contrast to AAV-PHP.eB, AAV-CAP-B10 preferentially targets neurons 

over astrocytes and oligodendrocytes. No marked discrepancies in viral tropism characterization 

were observed with single versus dual injections. 
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Figure 23. Comparison of viral tropism profiling with traditional IHC and scRNA-seq. (A) Overview of the experiment. Four 

animals were injected with 1.5 × 1011 viral genomes (vg) packaged in AAV-PHP.eB and/or AAV-CAP-B10. The bottom panels 

show a representative dataset collected from an animal that was co-injected with AAV-PHP.eB and AAV-CAP-B10. The left side 

displays the scRNA-seq data set in the lower dimensional t-SNE space, with cells colored according to transduction status. The 

shaded areas indicate clusters with high expression of the corresponding gene marker. The right side shows representative confocal 

images of cortical tissue labeled with IHC. Scale bar, 50 µm. (B) Viral transcript recovery strategy. The shaded areas highlight 

sequences added during library construction. (C) The fraction of the total number of transduced cells labeled as expressing the 

corresponding marker gene. For each AAV variant, the results of a two-way ANOVA with correction for multiple comparisons 

using Sidak’s test are reported with adjusted P-values (****P ≤ 0.0001, ***P ≤ 0.001, and **P ≤ 0.01 are shown; P > 0.05 is not 

shown). (D) Comparison of transduction rates based on quantification via scRNA-seq or IHC. Transduction rate was calculated as 

(number of transduced cells in the group)/(total number of cells in the group). Each dot represents the transduction rate of 

neurons/Rbfox3+, astrocytes/S100b+, or oligodendrocytes/Olig2+ by AAV-PHP.eB or AAV-CAP-B10 in one animal. Histology 

data are averages across three brain slices per gene marker and animal. r indicates the Pearson correlation coefficient. 

To quantify the similarity of the AAV tropism characterizations obtained with IHC and scRNA-seq, 

we directly compared the transduction rate of each AAV variant for every cell type and its 

corresponding marker gene (i.e., Rbfox3, S100b, or Olig2) as determined by each technique and 

noticed a good correlation (Figure 23D). Despite the different underlying biological readouts–protein 
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expression in IHC and RNA molecules in labeled cell types for scRNA-seq–the two techniques 

reveal similar viral tropisms. 

5.3.3 Tropism profiling at transcriptomic resolution reveals AAV variant biases for neuronal 

subtypes 

After validating our approach against the current standard of AAV tropism characterization (IHC 

imaging), we scrutinized the tropism of AAV-PHP.eB and AAV-CAP-B10 beyond the major cell 

types (Figure 24). Since AAV-CAP-B10 has increased neuronal bias relative to AAV-PHP.eB, we 

first sought to understand if there were neuronal subtypes that were differentially responsible for this 

bias. However, in-depth cell typing of transcriptomes collected from tissues with numerous and 

complex cell types, such as neurons in the brain, requires expert knowledge of the tissue 

composition, time to manually curate the data, and the availability of large datasets (Zeisel et al., 

2018). To minimize the burden of manual annotation, computational tools have been developed that 

use previously-annotated single-cell databases to predict the cell type of cells in new, unannotated 

single-cell experiments, even across single-cell platforms (Cao et al., 2020; Tan and Cahan, 2019; 

Xu et al., 2021). We decided to leverage these tools and expanded our marker gene-based cell typing 

approach by having more complicated or well-established cell types be assigned based on 

annotations in a reference dataset (Supplementary Figure 5A). To this end, we again employed 

scANVI to construct a joint model of cells from our samples and cells from an annotated reference 

database. For this model, we used the Mouse Whole Cortex and Hippocampus 10x v2 dataset 

available from the Allen Brain Institute (Yao et al., 2021). Since this is a neuron-enriched dataset, 

we constructed the model using only the 109,992 cells in our dataset classified as neurons from our 

marker-based QC pipeline combined with the 561,543 neuronal cells from cortical regions from the 

reference database. We trained this model to predict to which of 14 neuron subtype groupings each 

cell belonged. We held out 10% of the data for testing: the model performed with 97.9% 

classification accuracy on the held-out data. We then applied the model to predict the neuron 

subtypes of our cells. 
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Figure 24. In-depth AAV tropism characterization of neuronal subtypes at transcriptomic resolution. (A) Viral tropism 

profiling across neuronal sub types. Neuronal subtype annotations are predicted by a model learned from the Allen Institute 

reference dataset using scANVI (Xu et al., 2021; Yao et al., 2021). Each dot represents data from one animal injected with AAV-

PHP.eB and/or AAV-CAP-B10. Bar width indicates the total number of cells of a particular cell type present in our dataset. (B) 

Representative confocal images of cortical tissue from an animal injected with 1.5 × 1011 vg of AAV-PHP.eB. Tissue was labeled 

with FISH-HCR for gene markers of glutamatergic neurons (Slc17a7) and GABAergic neurons (Gad1, Pvalb, Sst, Vip). AAV-

PHP.eB shows the endogenous fluorescence of mNeonGreen. Scale bar, 50 µm. (C) Confirmation of viral tropism biases across 

neuronal subtypes using FISH-HCR (3 mice per AAV variant, 1.5 × 1011 vg dose). Dots represent the average values across three 

brain slices from one animal. Results from a two-way ANOVA with correction for multiple comparisons using Tukey’s test is 

reported with adjusted P-values (****P ≤ 0.0001; and P > 0.05 is not shown on the plot). 

During our in-depth characterization, we discovered several previously unnoticed sub-cell-type 

biases for AAV-PHP.eB and AAV-CAP-B10 (Figure 24A). Starting at the top of our neuronal 

hierarchy, the fraction of transduced cells that were glutamatergic neurons was markedly reduced 

for AAV-PHP.eB compared with AAV-CAP-B10 (P = 0.03, 2-sided student t-test, corrected for 2 

neuron subtype comparisons).  Furthermore, Pvalb+ and Sst+ inhibitory neurons both represented a 

larger fraction of transduced cells than Vip+ inhibitory neurons with both variants (adjusted P < 

0.0001, P = 0.10, respectively, two-way ANOVA with multiple comparison correction for inhibitory 

neuron subtypes using Tukey’s method). 

To confirm these tropism biases in neuronal subtypes with a traditional technique, we performed 

FISH-HCR for glutamatergic and GABAergic gene markers (Figure 24B) (Choi et al., 2014; 

Patriarchi et al., 2018). As indicated by our scRNA-seq data, AAV-CAP-B10, when compared with 

AAV-PHP.eB, has increased transduction efficiency of glutamatergic neurons (SLC17A7). 

Furthermore, FISH-HCR verified the downward trend in transduction efficiency from Pvalb+, to 

Sst+, to Vip+ neurons in both AAV variants (Figure 24C). 

5.3.4 Pooled AAVs packaging barcoded cargo recapitulate the non-neuronal tropism bias of 

PHP.V1 

To enable profiling viral variants in parallel without needing distinct transgenes per variant, we 

established a barcoding strategy whereby we package AAV variants with the same transgene and 
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regulatory elements but with short, distinguishing nucleotide sequences within the 3’ UTR (Figure 

25A). To verify that this barcoding strategy can recover tropisms consistent with our previous 

transgene-based capsid-identification strategy, we performed a set of experiments to re-characterize 

the tropism of AAV-PHP.eB in parallel with that of the recently developed AAV-PHP.V1, which 

has increased specificity for vascular cells over AAV-PHP.eB (Ravindra Kumar et al., 2020). 

 

Figure 25. Barcoded co-injected rAAVs reveal the non-neuronal tropism bias of AAV-PHP.V1. (A) Experimental design for 

comparing barcode vs cargo-based tropism profiling. Animals received dual injections of AAV-PHP.eB and AAV-PHP.V1, 

carrying either distinct fluorophores (cargo) or the same fluorophore with distinct barcodes. (B) t-SNE projection of the single-cell 

Variational Inference (scVI) latent space of cells and their cell type classification of the 169,265 non-neuronal cells across all our 

samples. Each number corresponds to the cell type labeled in C. (C) Marker genes used to identify non-neuronal cell types. Darker 

colors indicate higher mean expression, and dot size correlates with the abundance of the gene in that cell type. (D) The distribution 

of non-neuronal cells expressing transcripts from AAV-PHP.eB across 4 barcodes within one animal (blue) and across 5 animals 

(red). All animals received dual injections, with one of the vectors being 1.5 x 1011 vg of PHP.eB carrying CAG-mNeonGreen. 

The y-axis represents the fraction of transduced non-neuronal cells that are of the specified cell type. Only the non-significant 
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comparisons between cell types in a two-way ANOVA with correction for multiple comparisons using Tukey’s test are reported. 

All other cell-type comparisons within a paradigm were significant at P ≤ 0.0001. (E) The distribution of non-neuronal cells 

expressing transcripts from AAV-PHP.eB (black) and AAV-PHP.V1 (gray). Results from the different experimental paradigms are 

combined. Results shown are from a two-way ANOVA with correction for multiple comparisons using Sidak’s test comparing 

transduction by AAV-PHP.eB to AAV-PHP.V1 for each cell type, with adjusted P-values (****P ≤ 0.0001 is shown; P > 0.05 is 

not shown). (F) Within-animal difference in the fraction of cells transduced with AAV-PHP.V1 relative to AAV-PHP.eB across 

four animals, two from each experimental paradigm. For each cell type in each sample, the combined 2-proportion z score for the 

proportion of that cell type transduced by AAV-PHP.V1 vs AAV-PHP.eB is reported. Cell types with fewer than 2 cells transduced 

by both variants were discarded. Z scores were combined across multiple animals using Stouffer’s method and corrected for 

multiple comparisons. Cell-type differences with an adjusted P-value below 0.05 are indicated with *. 

We produced AAV-PHP.eB carrying CAG-mNeonGreen and AAV-PHP.V1 carrying either CAG-

mRuby2 or CAG-tdTomato. Additionally, we produced AAV-PHP.eB and AAV-PHP.V1 both 

carrying CAG-mNeonGreen with 7-nucleotide barcodes 89 bp upstream of the polyadenylation start 

site such that they did not interfere with the WPRE. We ensured each barcode had equal G/C content, 

and that all barcodes were Hamming distance 3 from each other (Table S 5). Each of the barcoded 

variants was packaged with multiple barcodes that were pooled together during virus production. 

Four animals received a retro-orbital co-injection of 1.5 x 1011 vg/each of AAV-PHP.V1 and AAV-

PHP.eB. Two animals received viruses carrying separate fluorophores (cargo-based), and two 

animals received viruses carrying the barcoded cargo (barcode-based). For amplification of the viral 

cDNA in the animals receiving the barcoded cargo, we used primers closer to the polyA region such 

that the sequencing read covered the barcoded region (Table S 1). During the single-cell sequencing 

dissociation and recovery, one of our dissociations resulted in low recovery of neurons 

(Supplementary Figure 5C); thus, we investigated only non-neuronal cells for this experiment. 

Despite variability in the total transgene RNA content between barcodes of the same variant 

(Supplementary Figure 6A), the estimated percent of cells expressing the transgene within each cell 

type was consistent between barcodes within a single animal, with standard deviations ranging from 

0.003 to 0.058 (Supplementary Figure 7A). Our analysis of both the barcode-based animals and 

cargo-based animals shows the same bias in non-neuronal tropism, with AAV-PHP.eB significantly 

preferring astrocytes over oligodendrocytes, vascular cells, and immune cells (Figure 25D). 

Interestingly, our analysis also revealed that the variance between barcodes within an animal was 
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less than the variance between animals, even when controlling for cargo and dosage (P = 0.021, 

Bartlett’s test, P-values combined across all variants and cell types using Stouffer’s method, 

weighted by transduced cell type distribution). 

Next, we investigated the distribution of cells transduced by AAV-PHP.eB vs AAV-PHP.V1 in the 

major non-neuronal cell types across both barcode-based and cargo-based paradigms (Figure 25E). 

The single-cell tropism data confirms the previously-established finding that AAV-PHP.V1 has a 

bias toward vascular cells relative to AAV-PHP.eB. Additionally, we uncovered that this is coupled 

with a bias away from astrocytes relative to AAV-PHP.eB, but that transduction of oligodendrocytes 

and immune cells did not differ between the variants. To investigate for a specific effect of the 

barcoding strategy, we performed a three-way ANOVA across the variant, cell type, and 

experimental paradigm factors. We found that the cell type factor accounted for 89.25% of the total 

variation, the combined cell type + variant factor accounted for 7.7% of the total variation, and the 

combined cell type + experimental paradigm factor accounted for only 2.0% of the total variation, 

confirming our hypothesis that barcoded pools can recover tropism with minimal effect. 

5.3.5 Relative tropism biases reveal non-neuronal subtypes with reduced AAV transduction 

To further characterize the tropism biases of AAV-PHP.V1 and expand our method to less well-

established cell hierarchies, we explored the non-neuronal cell types in our dataset. Since the Allen 

Brain Institute reference database that we used to investigate neuronal tropism was enriched for 

neurons, it does not contain enough non-neuronal cells to form a robust non-neuronal cell atlas. Our 

combined dataset consists of 169,265 non-neuronal cells, making it large enough to establish our 

own non-neuronal cell clustering. Thus, we performed an additional round of automatic clustering 

on the cells classified as non-neuronal in our combined dataset, and identified 12 non-neuronal cell 

subtypes based on previously established marker genes (Figure 25B, C, Table S 2). 

Most cell subtypes had multiple clusters assigned to them, which suggested there may be additional 

subtypes of cells for which we did not find established marker genes. To determine whether any of 

these clusters delineated cell types with distinct transcriptional profiles, we investigated the 
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probability of gene expression in each cluster compared to the other clusters of the same cell subtype 

(see Methods). Our approach determined two subclusters of pericytes, astrocytes, and 

oligodendrocyte precursor cells (OPCs). Both clusters of pericytes had strong expression of 

canonical pericytes marker genes Rgs5, Abcc9, and Higd1b. However, one of the clusters had no 

marker genes that made it distinct from the other pericyte cluster, nor from endothelial cells. 

Consistent with previous reports, this suggests that this cluster could be pericytes contaminated with 

endothelial cell fragments, and thus was not considered for further analysis (He et al., 2016; 

Vanlandewijck et al., 2018; Yang et al., 2021). Two distinct groups of astrocytes were detected, one 

of which had unique expression of Myoc and Fxyd6. Finally, one of the clusters of OPCs were 

uniquely expressing Top2a, Pbk, Spc24, Smc2, and Lmnb1. Using these new marker genes, we 

expanded our non-neuronal cell taxonomy to 14 cell types, now including Myoc+ and Myoc- 

astrocytes, and Top2a+ and Top2a- OPCs. 

Given our finding that inter-sample variability exceeds intra-sample variability, we established a 

normalization method for comparing transduction biases between variants co-injected into the same 

animal. This normalization–calculating the difference in the fraction of transduced cells between 

variants–captures the relative bias between variants, instead of the absolute tropism of a single 

variant (see Methods). By considering the relative bias between variants, we are able to interrogate 

tropism in a way that is more robust to inter-sample variability that arises from different distributions 

of recovered cells, expression rate of delivered cargo, and success of the injection. Using this 

normalization method, we evaluated the non-neuronal cell type bias of AAV-PHP.V1 relative to 

AAV-PHP.eB in both the cargo-based animals and the barcode-based animals across our non-

neuronal cell-type taxonomy (Figure 25F). We discovered that the bias of AAV-PHP.V1 for vascular 

cells is driven by an increase in transduction of endothelial cells, but not pericytes. Similarly, AAV-

PHP.V1’s bias away from astrocytes is driven by a decrease in transduction of Myoc- astrocytes, but 

not Myoc+ astrocytes. Further inspection of the transduction of pericytes and Myoc+ astrocytes 

revealed that pericytes are not highly transduced by any of the AAVs tested in this work, and that 

Myoc+ astrocytes have both lower viral transcript expression and lower abundance than Myoc- 
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astrocytes, and thus do not contribute significantly to tropism (Supplementary Figure 5B, 

Supplementary Figure 8B). 

5.3.6 Single-cell RNA sequencing reveals early cell-type-specific responses to IV 

administration of AAV-PHP.eB that return to baseline by 3.5 weeks 

To investigate the temporal cell-type-specific transcriptional effects of systemic AAV delivery and 

cargo expression, we performed a single-cell profiling experiment comparing animals injected with 

AAV to saline controls. We injected four male mice with AAV-PHP.eB (1.5 x 1011 vg) carrying 

mNeonGreen, and performed single-cell sequencing on two mice three days post-injection (3 DPI) 

and two mice twenty-five days post-injection (25 DPI). These time points were chosen based on 

previous work showing MHC presentation response peaking around day seven and transgene 

response peaking around day 30 (Lowenstein et al., 2007). The two saline control mice were 

processed 3 DPI. We then analyzed differential gene expression for each cell type between injected 

animals and controls using DESeq2 (Table S 7). Of note, we excluded cell types with less than 50 

cells in each sample, and excluded leukocytes and red blood cells given the risk of their presence 

due to dissociation rather than chemokine mediated infiltration. Additionally, we collapsed subtypes 

of excitatory neurons, inhibitory neurons, and OPCs to have greater than 50 cells for differential 

analysis. We estimated viral transduction rate of AAV-PHP.eB using its delivered cargo, 

mNeonGreen, across cell types and time points. We identified that Myoc- Astrocytes have 

significantly higher estimated transduction rate at 25 DPI compared to 3DPI (adjusted P-value = 

0.0003, two-way ANOVA with multiple comparison correction using Sidak’s method). It is also 

worth noting that endothelial cells have a similar transduction rate between the time points in both 

animals, while one of the animals at 25 DPI exhibited higher transduction in neurons (Figure 26A). 

The number of statistically relevant genes between the injected and control group (adjusted P-value 

< 0.05, DESeq2) were highest in pericytes (26 genes), endothelial cells (76 genes), and excitatory 

neurons (45 genes) at 3 DPI (Figure 26B). At day twenty-five, only excitatory neurons had greater 

than 10 genes (14 genes total) differentially expressed (adjusted P-value < 0.05, DESeq2). 
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Figure 26. Single-cell gene expression profiling finds cell-type-specific responses to AAV transduction in vascular cells and 

excitatory neurons. (A) Estimated transduction rate (%) of mNeonGreen cargo at three and twenty-five days post-injection (DPI). 

Results from a two-way ANOVA with correction for multiple comparisons using Sidak’s method is reported with adjusted P-values 

(***P ≤ 0.001; and P > 0.05 is not shown on the plot). (B) Number of differentially expressed genes (adjusted P-value < 0.05, 

DESeq2) at 3 DPI and 25 DPI across 2 animals. (C) Differentially expressed genes across the two time points in endothelial cells, 

pericytes, microglia, perivascular macrophages, and excitatory neurons. Color indicates DESeq2 test statistic with red representing 

downregulation and blue representing upregulation. Genes outlined by a black rectangle are determined to have statistically 

significant differential expression compared to controls (adjusted P-value < 0.05, DESeq2). Colored circles adjacent to each gene 

indicate the corresponding pathway presented in D. (D) A summary of corresponding pathways in which the differentially regulated 

genes in (C) are involved across the time points. (E) Distribution of p53 signaling transcripts in endothelial cells (animals are 

combined) and an example of a gene upregulated in both 3 and 25 DPI in excitatory neurons. 

We found that endothelial cells had the most acute response at 3 DPI with pathways such as p53, 

MAPK, and TNF signaling notably impacted. A significant upregulation of Phlda3 and its effectors 

Bax, Aen, Mdm2, and Cdkn1a, all involved in the p53/Akt signaling pathway, was present (Figure 

26C,E) (Ferreira and Nagai, 2019; Ghouzzi et al., 2016). Of relevance, we also detected 

Trp53cor1/LincRNA-p21, responsible for negative regulation of gene expression (Amirinejad et al., 

2020), upregulated in endothelial cells at 3 DPI. Other examples of upregulated genes relevant to 

inflammation and stress response in vascular cells include the suppressor of cytokine signaling 

protein Socs3 (Baker et al., 2009), and Mmrn2, responsible for regulating angiogenesis in endothelial 

cells (Lorenzon et al., 2012). Expression of Socs3 and Icam1, which are upregulated in endothelial 

cells at 3 DPI, and Cepbp, which is upregulated in pericytes at 3 DPI, have all been linked to TNF 

signaling (Burger et al., 1997; Cao et al., 2018; Li et al., 2020). We have also observed genes linked 

to MAPK signaling upregulated in endothelial cells, such as Gas6, Epha2, and Mapkapk3, and Klf4 

in both endothelial cells and pericytes (Chen et al., 1997; Macrae et al., 2005; Riverso et al., 2017). 

In brain immune cells, we observe a few substantial changes in genes pertaining to immune 

regulation at 3DPI which vanish at 25 DPI. For example, we observe an upregulation of MHC-I gene 

H2-D1 at 3 DPI in microglia, which then stabilizes back to control levels at 25 DPI (Figure 26C). 

Marcksl1, previously reported as a gene marker for neuroinflammation induced by alpha-synuclein 

(Sarkar et al., 2020), also shows upregulation at 3 DPI. We did not observe significant differences 

in pro-inflammatory chemokines, Ccl2 and Ccl5, which are related to breakdown of the blood-brain 
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barrier via regulation of tight-junction proteins and recruitment of peripheral leukocytes (Gralinski 

et al., 2009). Ccl3, responsible for infiltration of leukocytes and CNS inflammation (Chui and 

Dorovini-Zis, 2010), was upregulated in perivascular macrophages in 3 DPI and diminished back to 

control levels at 25 DPI (Figure 26C). In contrast, Cd209a, a gene previously identified as critical 

for attracting and activating naïve T Cells (Franchini et al., 2019), was downregulated at 3 DPI. 

Interestingly, we found that excitatory neurons had changes in genes across both 3 DPI and 25 DPI. 

MHC-Ib H2-T23, which is involved in the suppression of CD4+ T cell responses (Ohtsuka et al., 

2008), is downregulated at 3 DPI. Meanwhile, the growth arrest genes, Gadd45g and Gadd45b 

(Vairapandi et al., 2002), are upregulated. Genes involved in synaptic vesicle cycling, such as 

Unc13c (Palfreyman and Jorgensen, 2017) and Slc32a1 (Taoufiq et al., 2020), are also 

downregulated at 3 DPI. Some genes remain upregulated throughout the study, such as Npas4, 

responsible for regulating excitatory-inhibitory balance (Spiegel et al., 2014). Genes implicated in 

MAPK signaling were upregulated – such as Gadd45b/g, Dusp6, and Trib1 at 3 DPI, and Dusp1 and 

Nr4a1 at 25 DPI (Muhammad et al., 2018; Ollila et al., 2012; Pérez-Sen et al., 2019; Salvador et al., 

2013; Zhang and Yu, 2018). Gadd45b, Dusp1, Nr4a1 were also upregulated in pericytes and 

Gadd45b/g in endothelial cells (Figure 26C). 

Immediate early genes such as Ier2 (Kodali et al., 2020) were upregulated across pericytes, 

endothelial cells, inhibitory neurons, and OPCs at 3 DPI, while Fos, Ier2, Junb, and Arc were 

prominent in excitatory neurons at 25 DPI. 

By investigating the gene expression differences in subpopulations of cells post-injection, we found 

that vascular cells such as endothelial cells and pericytes upregulate genes linked to p53, MAPK, 

and TNF signaling pathways at 3 DPI (Figure 26D). Immune cells such as microglia and perivascular 

macrophages upregulate genes involved in chemokine signaling, MHCI/II antigen processing, and 

Fc Gamma R-Mediated Phagocytosis (Zhang et al., 2021) at 3 DPI (Figure 26D). Excitatory neurons 

are the only cell type with genes implicated in the same pathway (MAPK signaling) upregulated 

across both of the time points (3 DPI, 25 DPI). 
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Figure 27. Single animal injections of multiple barcoded rAAVs enables deep, parallel characterization. (A, B) Relative cell 

type tropism of 7 co-injected rAAVs for neuronal (A) and non-neuronal (B) cell types. The color scale indicates the difference in 

transduction bias of a variant relative to all other variants in the pool. The area of each circle scales linearly with the fraction of 

cells of that type with viral transcripts above background. For each variant and cell type, a 2-proportion z score was calculated to 

compare the number of cells of that type transduced by that variant relative to all other variants combined. Z scores were combined 

across two single-cell sequencing aliquots using Stouffer’s method, and corrected for multiple comparisons. Cell types with fewer 

than 10 transduced cells in either the variant or variants compared against were discarded. Only cell-type biases at an adjusted P-

value < 0.05 are colored; otherwise they are grayed out. 

5.3.7 Larger pools of barcoded AAVs recapitulate complex tropism within a single animal 

To showcase the capabilities of parallel characterization, we next designed a 7-variant barcoded pool 

that included the three previously characterized variants (AAV-PHP.eB, AAV-CAP-B10, and AAV-

PHP.V1), AAV9 and AAV-PHP.B controls, and two additional variants, AAV-PHP.C1 and AAV-

PHP.C2. For simplification of cloning and virus production, we designed a plasmid, UBC-mCherry-
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AAV-cap-in-cis, that contained both the barcoded cargo, UBC-mCherry, and the AAV9 capsid DNA 

(Supplementary Figure 2B). We assigned three distinct 24 bp barcodes to each variant (Table S 5). 

Each virus was produced separately to control the dosage, and 1.5 x 1011 vg of each variant was 

pooled and injected into a single animal. 

After 3 weeks of expression, we performed single-cell sequencing on extracted cortical tissue. To 

increase the number of cells available for profiling, we processed two aliquots of cells, for a total of 

36,413 recovered cells. To amplify the viral transcripts, we used primers that bind near the 3’ end of 

mCherry such that the barcode was captured in sequencing (Table S 1). 

Using our cell typing and viral transcript counting methods, we investigated the transcript counts 

and transduction bias of the variants in the pool. Compared with our previous profiling experiments, 

the number of UBC-mCherry viral transcripts detected per cell was significantly lower than CAG-

mNeonGreen-WPRE and CAG-tdTomato (adjusted P < 0.0001, P=0.0445, respectively, two-way 

ANOVA with multiple comparison correction using Tukey’s method) and shifted towards vascular 

cells (adjusted P < 0.0001, P=0.0008, respectively, two-way ANOVA with multiple comparison 

correction using Tukey’s method) (Supplementary Figure 6B, C). Next, we looked at the 

transduction rate difference for each variant compared with the rest of the variants in the pool for 

each cell type in our taxonomy (Figure 27A, B). Despite the lower expression rate and bias shift, the 

transduction rate difference metric captured the same tropism biases for AAV-CAP-B10 and AAV-

PHP.V1 as determined from our previous experiments. AAV-CAP-B10 showed enhanced neuronal 

targeting relative to other variants in the pool, with this bias coming specifically from an increase in 

the transduction of glutamatergic neurons. All five variants with transcripts detected in neurons 

showed a decreased transduction rate in Vip+ neurons relative to other GABAergic neuronal 

subtypes (Supplementary Figure 8C). AAV-PHP.eB showed enhanced targeting of astrocytes 

(+6.2%, P = 1.4 x 10-8, 2-proportion z-test, multiple comparison corrected with Benjamini/Hochberg 

correction), and AAV-PHP.V1 showed strong bias for vascular cells (+51.6%, p = 1.7 x 10-43). In 

addition to confirming all our existing hypotheses, we were able to identify biases for the previously 

reported AAV-PHP.C2, which has not been characterized in depth. This variant, which was reported 
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as having a non-neuronal bias similar to AAV-PHP.V1, showed significant transduction bias not 

only toward vascular cells (+13.6%, P = 8.3 x 10-6), but also toward astrocytes (+24.0%, P = 1.6-30), 

and a bias away from neurons (−38%, p = 4.1 x 10-32). 

5.4 Discussion 

The advent of NGS has enabled screening of large libraries of AAV capsids in vivo by extracting 

viral DNA from relevant tissue followed by sequencing of capsid gene inserts or DNA barcodes 

corresponding to defined capsids. To date, NGS-based screening has been successfully applied to 

libraries created by peptide insertions (Davidsson et al., 2019; Körbelin et al., 2016a), DNA shuffling 

of capsids (De Alencastro et al., 2020; Herrmann et al., 2019; Paulk et al., 2018), and site-directed 

mutagenesis (Adachi et al., 2014). Although these NGS-based strategies allow the evolution of new 

AAV variants with diverse tissue tropisms, it has been difficult to obtain a comprehensive profiling 

for multiple variants across cell types, which is of utmost importance in organs with complex cell-

type compositions, such as the brain (Deverman et al., 2016; Ravindra Kumar et al., 2020; Tasic et 

al., 2016, 2018; Zeisel et al., 2018). Towards this end, techniques such as IHC, fluorescent in situ 

RNA hybridization (Chen et al., 2015; Choi et al., 2014; Femino et al., 1998; Lubeck et al., 2014; 

Shah et al., 2016a, 2016b) or in situ RNA sequencing (Ke et al., 2013; Lee et al., 2014; Wang et al., 

2018) can be employed. Several limitations make it challenging to apply these techniques as high-

throughput, post-selection AAV tropism profiling methods. First, the limits of optical resolution and 

the density of transcripts in single cells pose challenges for full in situ transcriptome analysis and, 

until recently, have restricted the total number of simultaneously measured genes in single cells 

within tissue to several hundred (Ke et al., 2013; Lee et al., 2014; Liao et al., 2020; Shah et al., 2016a; 

Wang et al., 2018). By contrast, scRNA-seq with the 10x Genomics Chromium system enables 

detection of over 4000 genes per cell (Yao et al., 2021), fast transcriptomic analysis, and 

multiplexing across different tissue types (McGinnis et al., 2019; Stoeckius et al., 2018). 

Furthermore, the method is already widely used by the research community which can help with 

adoption of our proposed pipelines. Although droplet-based scRNA-seq methods lose spatial 

information during the dissociation procedure, analysis packages have been developed that can infer 
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single-cell localization by combining scRNA-seq data with pre-existing information from ISH-based 

labeling for specific marker genes (Achim et al., 2015; Durruthy-Durruthy et al., 2015; Halpern et 

al., 2017; Nitzan et al., 2019; Satija et al., 2015; Stuart et al., 2019). Therefore, scRNA-seq 

techniques have great potential to rapidly profile the tropism of multiple AAV variants in parallel 

across several thousand cells defined by their entire transcriptome. 

Here, we established an experimental and data-analysis pipeline that leverages the capabilities of 

scRNA-seq to achieve simultaneous characterization of several AAV variants across multiplexed 

tissue cell types within a single animal. To differentiate multiple AAV capsid variants in the 

sequencing data, we packaged variants with unique transgenes or the same transgene with unique 

barcodes incorporated at the 3’ end. We added standard Illumina sequencing primer recognition sites 

(Read 2) to the viral transcripts using PCR amplification such that the barcoded region could be 

consistently read out from the Illumina sequencing data. Our computational pipeline demultiplexes 

viral reads found in the transcriptome according to which matching sequence is most abundant in a 

separate amplified viral transgene library. Comparing the distribution of viral transcripts by cell type 

to a null model of empty droplets, we could then determine the cell-type biases. 

Our platform has corroborated the tropism of several previously characterized AAV variants and has 

provided more detailed tropism information beyond the major cell types. The fraction of transduced 

cells that are glutamatergic neurons was found to be markedly reduced for AAV-PHP.eB when 

compared with AAV-CAP-B10. Furthermore, within all the variants we tested, both Pvalb+ and Sst+ 

inhibitory neurons have greater transduction rates than Vip+ neurons. This bodes well for delivery 

to Pvalb+ neurons, which have been implicated in a wide range of neuro-psychiatric disorders 

(Ruden et al., 2021), and suggests Vip+ interneurons, which have recently been identified as being 

a sufficient delivery target for induction of Rett syndrome-like symptoms, as a target for optimization 

(Mossner et al., 2020). Awareness of neuronal subtype biases in delivery vectors is critical both for 

neuroscience researchers and for clinical applications. Dissection of neural circuit function requires 

understanding the roles of neuronal subtypes in behavior and disease and relies on successful and 

sometimes specific delivery of transgenes to the neuronal types under study (Bedbrook et al., 2018). 
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We further discovered that the vascular bias of AAV-PHP.V1 originates from its transduction bias 

towards endothelial cells. Interestingly, this is the only cell type we detected expressing Ly6a 

(Supplementary Figure 9), a known surface receptor for AAV variants in the PHP.B family (Batista 

et al., 2020; Hordeaux et al., 2019; Huang et al., 2019). Given AAV-PHP.V1’s sequence similarity 

to AAV-PHP.B and its tropism across mouse strains, this pattern suggests that AAV-PHP.V1 

transduction may also be Ly6a-mediated. Finding such associations between viral tropism and cell-

surface membrane proteins also suggests that full transcriptome sequencing data may hold a treasure 

trove of information on possible mechanisms of transduction of viral vectors. 

We also revealed that AAV-PHP.C2 has a strong, broad non-neuronal bias toward both vascular 

cells and astrocytes. AAV-PHP.C2 also transduces BALB/cJ mice, which do not contain the Ly6a 

variant that mediates transduction by PHP.B family variants (Hordeaux et al., 2019). This suggests 

that PHP.C2 may be the most promising candidate from this pool for researchers interested in 

delivery to non-neuronal cells with minimal neuronal transduction both in C57BL/6J mice and in 

strains and organisms that do not have the Ly6a variant. 

All our tested variants with non-neuronal transduction have lower expression in Myoc+ astrocytes 

and pericytes. Astrocytes expressing Myoc and Gfap, which intersect in our data (Supplementary 

Figure 9), have been previously identified as having reactive behavior in disease contexts, making 

them a target of interest for research on neurological diseases (Perez-Nievas and Serrano-Pozo, 2018; 

Wu et al., 2017). Similarly, pericytes, whose dysfunction has been shown to contribute to multiple 

neurological diseases, may be an important therapeutic target (Blanchard et al., 2020; Liu et al., 

2020; Montagne et al., 2020). Both of these cell types may be good candidates for further AAV 

optimization, but may have been missed with marker gene-based approaches. In both AAV 

characterization and neuroscience research efforts, different marker genes are often used for 

astrocyte classification – sometimes more restrictive genes such as Gfap, and other times more 

broadly expressing genes such as S100b or Aldh1l1 (Yang et al., 2011; Zhang et al., 2019). Similarly, 

defining marker genes for pericytes is still an active field (He et al., 2016; Yang et al., 2021). Given 

the constraints of having to choose specific marker genes, it is difficult for staining-based 
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characterizations to provide tropism profiles that are relevant for diverse and changing research 

needs. This highlights the importance of using unbiased, full transcriptome profiling for vector 

characterization. 

We have shown that our combined experimental and computational platform is able to recover 

transduction biases and profile multiple variants in a single animal, even amidst the noise of ambient 

RNA. We have further shown that our method is robust to the variability inherent in delivery and 

extraction from different animals, with different transgenes, and with different regulatory elements. 

For example, we discovered lower overall expression from vectors carrying UBC-mCherry 

compared with CAG-mNeonGreen-WPRE. Such differences are not surprising since the WPRE is 

known to increase RNA stability and therefore transcript abundance (Johansen et al., 2003). 

Furthermore, the shift in cell-type bias may come from the UBC promoter, as even ubiquitous 

promoters such as CAG and UBC have been shown to have variable levels of expression in different 

cell types (Qin et al., 2010). Despite these biases, looking at the differences in transduction between 

variants delivering the same construct within an individual animal reveals the strongest candidate 

vectors for on-target and off-target cell types of interest. While we show that our method can profile 

AAVs carrying standard fluorescent cargo, caution is needed when linking differences in absolute 

viral tropism to changes in capsid composition alone without considering the contribution of the 

transgene and regulatory elements. Therefore, for more robust and relative tropism between variants, 

we found it beneficial to use small barcodes and co-injections of pools of vectors. Our scRNA-seq-

based approach is not restricted to profiling capsid variants, but can be expanded in the future to 

screen promoters (Chuah et al., 2014; Jüttner et al., 2019; Rincon et al., 2015), enhancers (Hrvatin 

et al., 2019; Mich et al., 2020), or transgenes (Gustafsson et al., 2004; Shirley et al., 2020), all of 

which are essential elements requiring optimization to improve gene therapy. 

Finally, we have used scRNA-seq to understand how intra-orbital administration of AAV-PHP.eB 

affects the host cell transcriptome across distinct time points. Results from our study show genes 

pertaining to the p53 pathway in endothelial cells are differentially expressed 3 days after injection. 

The highest number of differentially expressed genes being in endothelial cells suggests that vascular 
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cells could be the initial responders to viral transduction and expression of the transgene. This is 

supported by Kodali et al., who have shown that endothelial cells are the first to elicit a response to 

peripheral inflammatory stimulation by transcribing genes for proinflammatory mediators and 

cytokines (Kodali et al., 2020). With regards to p53 differentially expressed genes, Ghouzzi, et al. 

have also shown that the genes Phdla3, Aen, and Cdkn1a were upregulated in cells infected with 

ZIKA virus, signifying genotoxic stress and apoptosis induction (Ghouzzi et al., 2016). Upregulation 

of genes such as Bax and Cdkn1a in our data hint at an initiation of apoptosis and cell cycle arrest, 

respectively, in response to cellular stress induced by viral transduction (Ferreira and Nagai, 2019; 

Zamagni et al., 2020). The reduction in the number of differential expressed genes across all cells 

(Figure 26B) at day twenty-five imparts that the initial inflammatory responses did not escalate. 

Downregulation of Cd209a gene in perivascular macrophages in our data further implies that the 

AAV-PHP.eB infection did not necessitate a primary adaptive immune response. Additionally, 

antigen presenting genes, such as H2-D1, returning back to control expression levels and a lack of 

proinflammatory cytokines being upregulated supports that the event of infiltration of peripheral 

leukocytes is unlikely, in agreement with prior studies (Chamberlin et al., 1998; McCown et al., 

1996). Upregulation of genes such as Gadd45g, Gadd45b, and Ppp1r15a suggest that neurons are 

turning on stress-related programs as an early response to encountering the virus. Genes such as 

Nr4a1 and Dusp1, which play a role in the MAPK pathway, indicate sustained stress response even 

at day 25. Based on prior studies, we speculate that the genes that are differentially expressed at day 

25 in the excitatory neurons are due to transgene expression and not due to the virion (Lowenstein 

et al., 2007). It is important to note that the findings discussed here are specific to the rAAV, 

transgene, and dosage. Our results highlight the power of single-cell profiling in being able to 

ascertain cell-type-specific responses at an early time point post-injection.  

In summary, our platform could aid the gene therapy field by allowing more thorough 

characterization of existing and emerging recombinant AAVs by helping uncover cellular responses 

to rAAV-mediated gene therapy, and by guiding the engineering of novel AAV variants. 
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5.7 Methods 

5.7.1 Animals 

Animal husbandry and all experimental procedures involving animals were performed in accordance 

with the California Institute of Technology Institutional Animal Care and Use Committee (IACUC) 

guidelines and approved by the Office of Laboratory Animal Resources at the California Institute of 

Technology (animal protocol no. 1650). Male C57BL/6J mice (Stock No: 000664) used in this study 
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were purchased from the Jackson Laboratory (JAX). AAV variants were injected i.v. into the retro-

orbital sinus of 6–7 week old mice. 

5.7.2 Plasmids 

In vivo vector characterization of AAV variant capsids was conducted using single-stranded (ss) 

rAAV genomes. pAAV:CAG-NLS-mNeonGreen, pAAV:CAG-NLS-mRuby2, pAAV:CAG-

tdTomato, and pAAV:CAG-NLS-tdTomato constructs were adapted from previous publications 

(Chan et al., 2017; Ravindra Kumar et al., 2020). To introduce barcodes into the polyA region of 

CAG-NLS-mNeonGreen, we digested the plasmid with BglII and EcoRI, and performed Gibson 

assembly (E2611, NEB) to insert synthesized fragments with 7bp degenerate nucleotide sequences 

89 bp upstream of the polyadenylation site. We then seeded bacterial colonies and selected and 

performed Sanger sequencing on the resulting plasmids to determine the corresponding barcode. 

The UBC-mCherry-AAV-cap-in-cis plasmid was adapted from the rAAV-Cap-in-cis-lox plasmid 

from a previous publication (Deverman et al., 2016). We performed a restriction digest on the 

plasmid with BsmbI and SpeI to remove UBC-mCherry and retain the AAV9 cap gene and 

remaining backbone. We then circularized the digested plasmid using a gblock joint fragment to get 

a plasmid containing AAV2-Rep, AAV9-Cap, and the remaining backbone via T4 ligation. In order 

to insert UBC-mCherry with the desired orientation and location, we amplified its linear segment 

from the original rAAV-Cap-in-cis-lox plasmid. The linear UBC-mCherry-polyA segment and 

circularized AAV2-Rep,AAV9-cap plasmid were then both digested with HindIII and ligated using 

T4 ligation. In order to get the SV40 PolyA element in the proper orientation with respect to the 

inserted UBC-mCherry, we removed the original segment from the plasmid using AvrII and AccI 

enzymes and inserted AvrII, AccI treated SV40 gblock using T4 ligation to get the final plasmid. 

To insert barcodes into UBC-mCherry-AAV-cap-in-cis, we obtained 300 bp DNA fragments 

containing the two desired capsid mutation regions for each variant and the variant barcode, flanked 

by BsrGI and XbaI cut sites. The three segments of the fragment were separated by BsaI Type I 

restriction sites. We digested the UBC-mCherry-AAV-cap-in-cis plasmid with BsrGI and XbaI, and 
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ligated each variant insert to this backbone. Then, to reinsert the missing regions, we performed 

Golden Gate assembly with two inserts and BsaI-HF. 

5.7.3 Viral production 

To produce viruses carrying in trans constructs, we followed established protocols for the production 

of rAAVs (Challis et al., 2019). In short, HEK293T cells were triple transfected using 

polyethylenimine (PEI) with three plasmids: pAAV (see Plasmids), pUCmini-iCAP-PHP.eB (Chan 

et al., 2017), pUCmini-iCAP-CAP-B10 (Flytzanis et al., 2020), or pUCmini-iCAP-PHP.V1 

(Ravindra Kumar et al., 2020), and pHelper. After 120 h, virus was harvested and purified using an 

iodixanol gradient (Optiprep, Sigma). For our 7-variant pool, we modified the protocol to be a double 

transfection using PEI with two plasmids: UBC-mCherry-AAV-cap-in-cis and pHelper. 

5.7.4 Tissue processing for single-cell suspension 

Three to four weeks after the injection, mice (9-10 weeks old) were briefly anesthetized with 

isoflurane (5%) in an isolated plexiglass chamber followed by i.p. injection of euthasol (100 mg/kg). 

The following dissociation procedure of cortical tissue into a single-cell suspension was adapted 

with modifications from a previous report (Pool et al., 2020). Animals were transcardially perfused 

with ice-cold carbogenated (95% O2 and 5% CO2) NMDG-HEPES-ACSF (93 mM NMDG, 2.5 mM 

KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM Na L-ascorbate, 

2 mM thiourea, 3 mM Na-pyruvate, 10 mM MgSO4, 1 mM CaCl2, 1 mM kynurenic acid Na salt, pH 

adjusted to 7.35 with 10N HCl, osmolarity range 300–310 mOsm). Brains were rapidly extracted 

and cut in half along the anterior-posterior axis with a razor blade. Half of the brain was used for 

IHC histology while the second half of the brain was used for scRNA-seq. Tissue used for scRNA-

seq was immersed in ice-cold NMDG-HEPES-ACSF saturated with carbogen. The brain was 

sectioned into 300-μm slices using a vibratome (VT-1200, Leica Biosystems, IL, USA). Coronal 

sections from Bregma −0.94 mm to −2.80 mm were collected in a dissection dish on ice containing 

NMDG-HEPES-ACSF. Cortical tissue from the dorsal surface of the brain to ~3.5 mm ventral was 

cut out and further sliced into small tissue pieces. NMDG-HEPES-ACSF was replaced by trehalose-
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HEPES-ACSF (92 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 

25 mM glucose, 2 mM MgSO4, 2 mM CaCl2, 1 mM kynurenic acid Na salt, 0.025 mM D-(+)-

trehalose dihydrate*2H2O, pH adjusted to 7.35, osmolarity ranging 320–330 mOsm) containing 

papain (60 U/ml; P3125, Sigma Aldrich, pre-activated with 2.5 mM cysteine and a 0.5–1 h 

incubation at 34°C, supplemented with 0.5 mM EDTA) for the enzymatic digestion. Under gentle 

carbogenation, cortical tissue was incubated at 34°C for 50 min with soft agitation by pipetting every 

10 min. 5 μl 2500 U/ml DNase I (04716728001 Roche, Sigma Aldrich) was added to the single-cell 

suspension 10 min before the end of the digestion. The solution was replaced with 200 μl trehalose-

HEPES-ACSF containing 3 mg/ml ovomucoid inhibitor (OI-BSA, Worthington) and 1 μl DNase I. 

At room temperature, the digested cortical tissue was gently triturated with fire-polished glass 

Pasteur pipettes for three consecutive rounds with decreasing pipette diameters of 600, 300, and 150 

μm. 800 μl of trehalose-HEPES-ACSF with 3 mg/ml ovomucoid inhibitor was added. The uniform 

single-cell suspension was pipetted through a 40 μm cell strainer (352340, Falcon) into a new 

microcentrifuge tube followed by centrifugation at 300 g for 5 min at 4°C. The supernatant was 

discarded and cell pellet was resuspended in 1 ml of trehalose-HEPES-ACSF. After mixing using a 

Pasteur pipette with a 150 μm tip diameter, the single-cell suspension was centrifuged again. 

Supernatant was replaced with fresh trehalose-HEPES-ACSF and the resuspended cell pellet was 

strained with a 20 μm nylon net filter (NY2004700, Millipore). After resuspension in trehalose-

HEPES-ACSF, cells were pelleted again and resuspended in 100 μl of ice-cold resuspension-ACSF 

(117 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 

1 mM MgSO4, 2 mM CaCl2, 1 mM kynurenic acid Na salt and 0.05% BSA, pH adjusted to 7.35 with 

Tris base, osmolarity range 320–330 mOsm). Cells were counted with a hemocytometer and the final 

cell densities were verified to be in the range of 400–2,500 cells/μl. The density of single-cell 

suspension was adjusted with resuspension-ACSF if necessary. 

5.7.5 Transcriptomic library construction 

Cell suspension volumes containing 16,000 cells–expected to retrieve an estimated 10,000 single-

cell transcriptomes–were added to the 10x Genomics RT reaction mix and loaded to the 10x Single 
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Cell Chip A (230027, 10x Genomics) for 10x v2 chemistry or B (2000168, 10x Genomics) for 10x 

v3 chemistry per the manufacturer’s protocol (Document CG00052, Revision F, Document 

CG000183, Revision C, respectively). We used the Chromium Single Cell 3’ GEM and Library Kit 

v2 (120237, 10x genomics) or v3 (1000075, 10x Genomics) to recover and amplify cDNA, applying 

11 rounds of amplification. We took 70 ng to prepare Illumina sequencing libraries downstream of 

reverse transcription following the manufacturer’s protocol, applying 13 rounds of sequencing 

library amplification. 

5.7.6 Viral library construction 

We selectively amplified viral transcripts from 15 ng of cDNA using a cargo-specific primer binding 

to the target of interest and a primer binding the partial Illumina Read 1 sequence present on the 10x 

capture oligos (Table S 1). For animals injected with a single cargo, amplification was performed 

only once using the primer for the delivered cargo; for animals with distinct cargo sequences per 

variant, amplification was performed in parallel reactions from the same cDNA library using 

different cargo-specific primers for each reaction. We performed the amplification using 2x KAPA 

HiFi HotStart ReadyMix (KK2600) for 28 cycles at an annealing temperature of 53°C. Afterwards, 

we performed a left-sided SPRI cleanup with a concentration dependent on the target amplicon 

length, in accordance with the manufacturer’s protocol (SPRISelect, Beckman Coulter B23318). We 

then performed an overhang PCR on 100 ng of product with 15 cycles using primers that bind the 

cargo and the partial Illumina Read 1 sequence and appending the P5/P7 sequences and Illumina 

sample indices. We performed another SPRI cleanup, and analyzed the results via an Agilent High 

Sensitivity DNA Chip (Agilent 5067-4626). 

5.7.7 Sequencing 

Transcriptome libraries were pooled together in equal molar ratios according to their DNA mass 

concentration and their mean transcript size as determined via bioanalyzer. Sequencing libraries were 

processed on Novaseq 6000 S4 300-cycle lanes. The run was configured to read 150 bp from each 
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end. Sequencing was outsourced to Fulgent Genetics and the UCSF Center for Advanced 

Technology. 

All viral transcript libraries except barcoded UBC-mCherry were pooled together in equal molar 

ratios into a 4 nM sequencing library, then diluted and denatured into a 12 pM library as per the 

manufacturer’s protocol (Illumina Document #15039740v10). The resulting library was sequenced 

using a MiSeq v3 150-cycle reagent kit (MS-102-3001), configured to read 91 base pairs for Read 2 

and 28 base pairs for Read 1. To characterize the effect of sequencing depth, one viral transcript 

library was additionally processed independently on a separate MiSeq run. 

The UBC-mCherry viral transcript library, which was recovered with primers near the 

polyadenylation site, consisted of fragments ~307 bp long. Since this length is within the common 

range for an Illumina NovaSeq run, this viral transcript library was pooled and included with the 

corresponding transcriptome library. 

5.7.8 Transcriptome read alignment 

For transcriptome read alignment and gene expression quantification, we used 10x Cell Ranger 

v5.0.1 with default options to process the FASTQ files from the transcriptome sequencing library. 

The reads were aligned against the mus musculus reference provided by Cell Ranger (mm10 v2020-

A, based on Ensembl release 98). 

To detect viral transcripts in the transcriptome, we ran an additional alignment using 10x Cell Ranger 

v5.0. 1 with a custom reference genome based on mm10 v2020-A. We followed the protocol for 

constructing a custom Cell Ranger reference as provided by 10x Genomics. This custom reference 

adds a single gene containing all the unique sequences from our delivered plasmids in the study, 

delineated as separate exons. Sequences that are common between different cargo are provided only 

once, and annotated as alternative splicings. 
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5.7.9 Viral transcript read alignment 

For viral read alignment, we aligned each Read 2 to a template derived from the plasmid, excluding 

barcodes. The template sequence was determined by starting at the ATG start site of the XFP cargo 

and ending at the AATAAA polyadenylation stop site. We used a Python implementation of the 

Striped Smith-Waterman algorithm from scikit-bio to calculate an alignment score for each read, 

and normalized the score by dividing by the maximum possible alignment score for a sequence of 

that length, minus the length of the barcode region. For each Read 2 that had a normalized alignment 

score of greater than 0.7, we extracted the corresponding cell barcode and UMI from Read 1, and 

any insertions into the template from Read 2. 

5.7.10 Constructing the variant lookup table 

For co-injections with multiple templates and injections of barcoded templates, we constructed a 

lookup table to identify which variant belongs to each cell barcode/UMI. For each template, we 

counted the number of reads for each cell barcode/UMI. For reads of barcoded cargo, we only 

counted reads where the detected insertion in the barcode region unambiguously aligned to one of 

the pre-defined variant barcodes. Due to sequencing and PCR amplification errors, most cell 

barcode/UMI combinations had reads associated with multiple variants. Thus, we identified the 

variant with the largest count for each cell barcode/UMI. We discarded any cell barcode/UMIs that 

had more than one variant tied for the largest count. Finally, each cell barcode/UMI that was 

classified as a viral transcript in the transcriptome (see Transcriptome read alignment) was converted 

into the virus detected in the variant lookup table, or was discarded if it did not exist in the variant 

lookup table. 

5.7.11 Estimating transduction rate 

To determine an estimate of the percent of cells within a group expressing viral cargo above 

background, we compared the viral transcript counts in that group of cells to a background 

distribution of viral transcript counts in debris (see Droplet type classification). First, we obtained 
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the empirical distribution of viral transcript counts by extracting the viral counts for that variant in 

cell barcodes classified as the target cell type as well as cell barcodes classified as debris. Next, we 

assumed a percentage of cells containing debris. For each viral transcript count, starting at 0, we 

calculated the number of cells that would contain this transcript count, if the assumed debris 

percentage was correct. We then calculated an error between this estimate and the number of cells 

with this transcript count in the cell type of interest. We tallied this error over all the integer bins in 

the histogram, allowing the error in a previous bin to roll over to the next bin. We repeated this for 

all possible values of percentage of debris from 0 to 100 in increments of 0.25, and the value that 

minimized the error was the estimated percentage of cells whose viral transcript count could be 

accounted for by debris. The inverse of this was our estimate of the number of cells expressing viral 

transcripts above background. 

To validate that this method reliably recovers an estimate of transduction rate, we performed a series 

of simulations using models of debris viral transcript counts added to proposed cell type transcript 

count distributions across a range of parameterizations. To get estimates of the background 

distribution of debris, we used diffxpy (https://github.com/theislab/diffxpy) to fit the parameters of 

a negative binomial distribution to the viral transcript counts in debris droplets within a sample. We 

then postulated 1,000 different parameterizations of the negative binomial representing transcript 

counts in groups of cells, with 40 values of r ranging from 0.1 to 10, spaced evenly apart, and 25 

values of p ranging from 0.001 to 0.99, spaced evenly apart. For each proposed negative binomial 

model, we drew 1,000 random samples of viral counts from the learned background distribution, and 

1,000 random samples from the proposed cell distribution, and summed the two vectors. This 

summed vector was then used in our transduction rate estimation function, along with a separate 

1,000 random samples of background viral transcripts for the function to use as an estimate of the 

background signal. We calculated the true probability of non-zero expression in our proposed cell 

negative binomial model (1 – P(X = 0)), and compared this value with the estimated value from the 

transduction rate estimation method. 

https://github.com/theislab/diffxpy
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5.7.12 Calculating viral tropism 

For each variant vn and cell type of interest ci, we estimated the percentage of cells expressing viral 

cargo. To calculate tropism bias, we used this estimated expression rate, 𝑡𝑐𝑖,𝑣𝑛
, to estimate the 

number of cells expressing viral transcripts in that cell type, 𝑇𝑐𝑖,𝑣𝑛
 out of the total number of cells of 

that type, 𝑁𝑐𝑖
.  𝑇𝑐𝑖,𝑣𝑛

=  𝑡𝑐𝑖,𝑣𝑛
𝑁𝑐𝑖

. Cell type bias, 𝑏𝑐𝑖,𝑣𝑛, within a sample was then calculated as the 

ratio of the number of cells of interest divided by the total number of transduced cells, 𝑏𝑐𝑖,𝑣𝑛
=

 
𝑇𝑐𝑖,𝑣𝑛

∑ 𝑇𝑐𝑗𝑣𝑛𝑗
. Finally, to calculate the difference in transduction bias for a particular variant relative to 

other variants in the sample, 𝛿𝑐𝑖,𝑣𝑛
, we subtracted the bias of the variant from the mean bias across 

all other variants, 𝛿𝑐𝑖,𝑣𝑛
=  

𝑇𝑐𝑖,𝑣𝑛

∑ 𝑇𝑐𝑗𝑣𝑛𝑗
−  

∑ 𝑇𝑐𝑖,𝑣𝑚𝑚≠𝑛

∑ ∑ 𝑇𝑐𝑗,𝑣𝑚𝑗𝑚≠𝑛
. 

5.7.13 Histology 

5.7.13.1 Immunohistochemistry 

The immunohistochemistry procedure was adapted from a previous publication (Oikonomou et al., 

2019). Brain tissue was fixed in 4% paraformaldehyde (PFA) at 4°C overnight on a shaker. Samples 

were immersed in 30% sucrose in 1x phosphate buffered saline (PBS) solution for >2 days and then 

embedded in Tissue-Tek O.C.T. Compound (102094-104, VWR) before freezing in dry ice for 1 h. 

Samples were sectioned into 50 μm coronal slices on a cryostat (Leica Biosystems). Brain slices 

were washed once with 1x phosphate buffered saline (PBS) to remove O.C.T. Compound. Samples 

were then incubated overnight at 4°C on a shaker in a 1x PBS solution containing 0.1% Triton X-

100, 10% normal goat serum (NGS; Jackson ImmunoResearch, PA, USA), and primary antibodies. 

Sections were washed three times for 15 min each in 1x PBS. Next, brain slices were incubated at 

4°C overnight on a shaker in a 1x PBS solution containing 0.1% Triton X-100, 10% NGS, and 

secondary antibodies. Sections were washed again three times for 15 min each in 1x PBS. Finally, 

slices were mounted on glass microscope slides (Adhesion Superfrost Plus Glass Slides, #5075-Plus, 

Brain Research Laboratories, MA, USA). After the brain slices dried, DAPI-containing mounting 
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media (Fluoromount G with DAPI, 00-4959-52, eBioscience, CA, USA) was added before 

protecting the slices with a cover glass (Cover glass, #4860-1, Brain Research Laboratories, MA, 

USA). Confocal images were acquired on a Zeiss LSM 880 confocal microscope (Zeiss, 

Oberkochen, Germany). The following primary antibodies were used: rabbit monoclonal to NeuN 

(Rbfox3) (1:500; ab177487; Abcam, MA, USA), rabbit monoclonal to S100 beta (1:500; ab52642; 

Abcam, MA, USA), and rabbit monoclonal to Olig2 (1:500; ab109186; Abcam, MA, USA). The 

following secondary antibody was used: goat anti-rabbit IgG H&L Alexa Fluor 647 (1:500; 

ab150079; Abcam, MA, USA). 

5.7.13.2 Fluorescent in situ hybridization chain reaction 

FISH-HCR  was  conducted  as  previously  reported (Patriarchi et al., 2018). Probes targeting 

neuronal markers were designed using custom-written software 

(https://github.com/GradinaruLab/HCRprobe). Probes contained a target sequence of 20 

nucleotides, a spacer of 2 nucleotides, and an initiator sequence of 18 nucleotides. Criteria for the 

target sequences were: (1) a GC content between 45%–60%, (2) no nucleotide repeats more than 

three times, (3) no more than 20 hits when blasted, and (4) the ∆G had to be above –9 kcal/mol to 

avoid self-dimers. Last, the full probe sequence was blasted and the Smith-Waterman alignment 

score was calculated between all possible pairs to prevent the formation of cross-dimers. In total, we 

designed 26 probes for Gad1, 20 probes for Vip, 22 probes for Pvalb, 18 probes for Sst, and 28 

probes for Slc17a7. Probes were synthesized by Integrated DNA Technologies. 

5.7.14 Droplet type identification 

scRNA-seq datasets were analyzed with custom-written scripts in Python 3.7.4 using a custom fork 

off of scVI v0.8.1, and scanpy v1.6.0. To generate a training dataset for classifying a droplet as 

debris, multiplets, neuronal, or non-neuronal cells, we randomly sampled cells from all 27 cortical 

tissue samples. We sampled a total of 200,000 cells, taking cells from each tissue sample 

proportional to the expected number of cells loaded into the single-cell sequencing reaction. Within 

each sample, cells were drawn randomly, without replacement, weighted proportionally by their total 

https://github.com/GradinaruLab/HCRprobe)
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number of detected UMIs. For each sample, we determined a lower bound on the cutoff between 

cells and empty droplets by constructing a histogram of UMI counts per cell from the raw, unfiltered 

gene count matrix. We then found the most prominent trough preceding the first prominent peak, as 

implemented by the scipy peak_prominences function. We only sampled from cells above this lower 

bound. Using these sampled cells, we trained a generative neural network model via scVI with the 

following parameters: 20 latent features, 2 layers, and 256 hidden units. These parameters were 

chosen from a coarse hyperparameter optimization centered around the scVI default values (Table S 

3). We included the sample identifier as the batch key so that the model learned a latent 

representation with batch correction. 

After training, Leiden clustering was performed on the learned latent space as implemented by 

scanpy. We used default parameters except for the resolution, which we increased to 2 to ensure 

isolation of small clusters of cell multiplets. Using the learned generative model, we draw 5000 cells 

from the posterior distribution based on random seed cells in each cluster. We draw an equal number 

conditioned on each batch. From these samples, we then calculated a batch-corrected probability of 

each cluster expressing a given marker gene (see Cluster marker gene determination). For this coarse 

cell typing, we chose a single marker gene for major cell types expected in the cortex (Table S 2). If 

a cluster was expressing the neuron marker gene Rbfox3, it was labeled as “Neurons”. If a cluster 

was expressing any of the other non-neuronal marker genes, it was labelled as “Non-neurons”. Next, 

we ran Scrublet on the training cells to identify potential multiplets. Scrublet was run on each sample 

independently, since it is not designed to operate on combined datasets with potential batch-specific 

confounds. We then calculated the percentage of droplets in each cluster of the combined data that 

were identified as multiplets by Scrublet. We found a percentage threshold for identifying a cluster 

as containing predominantly multiplets by using Otsu’s threshold, as implemented by scikit-image. 

All droplets in any cluster above the multiplet percentage threshold were labelled as “Multiplets”. 

All other clusters were labelled as “Debris”. 

Next, we trained a cell-type classifier using scANVI on the droplets labeled as training data. We 

used the weights from the previously trained scVI model as the starting weights for scANVI. Rather 
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than using all cells for every epoch of the trainer, we implemented an alternative sampling scheme 

that presented each cell type to the classifier in equal proportions. Once the model was trained, all 

cells above the UMI lower noise bound were run through the classifier to obtain their cell-type 

classification. Droplets classified as “Neurons” or “Non-neurons” were additionally filtered by their 

scANVI-assigned probability. We retained only cells above an FDR threshold of 0.05, corrected for 

multiple comparisons using the Benjamini-Hochberg procedure. Finally, since the original run of 

Scrublet for multiplet detection was performed on only the training data, and thus did not take 

advantage of all the cells available, we ran Scrublet on all droplets classified as cells, and removed 

any identified multiplets. 

5.7.15 Cluster marker gene determination 

To identify which clusters are expressing marker genes, we determined an estimated probability of 

a marker gene being expressed by a random cell in that cluster. For each cluster, we randomly 

sampled 5,000 cells, with replacement. We used scVI to project each cell into its learned latent space, 

and then used scVI’s posterior predictive sampling function to generate an example cell from this 

latent representation, and tallied how many times the gene is expressed. We repeated this for each 

batch, conditioning the posterior sample on that batch, to account for technical artifacts such as 

sequencing depth. Once we obtained a probability of expression of a marker gene for each cluster, 

we find a threshold for expression using Otsu’s method, as implemented by scikit-image. Clusters 

that have a probability of expression above the threshold are considered positive for that marker 

gene. 

5.7.16 Neuronal subtype classification 

Cells classified as neurons were further subtyped using annotations from a well-curated reference 

dataset. We used the Mouse Whole Cortex and Hippocampus 10x dataset from the Allen Institute 

for Brain Science as our reference dataset (Yao et al., 2021). First, we filtered the reference dataset 

to contain only cell types that are found within the brain regions collected for our experiments. To 

ensure that, overall, enough cells per cell type were present in our datasets, we merged cell types 
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with common characteristics, such as expression of key marker genes. We re-aligned our cell 

transcriptome reads to the same pre-mRNA reference used to construct the reference dataset, so that 

the gene count matrices had a 1:1 mapping. We then trained a joint scANVI model with all cells 

identified as neurons from our samples and the reference database to learn a common latent space 

between them. The model was trained to classify cells based on the labels provided in the reference 

dataset. Cells were sampled from each class in equal proportions during training. After the model 

was trained, all neurons from our sample were run through the model to obtain their cell type 

classification. 

5.7.17 Non-neuronal subtype classification 

Cells classified as non-neuronal were further subtyped using automatic clustering and marker gene 

identification. We trained an scVI model using only the non-neuronal cells and performed Leiden 

clustering as implemented by scanpy on the latent space. We determined which clusters were 

expressing each of 31 marker genes across 13 cell subtypes. Marker genes were identified from a 

review of existing scRNA-seq, bulk RNA-seq, or IHC studies of mouse brain non-neuronal subtypes 

(Table S 2). Each cluster was assigned to a cell subtype if it was determined positive for all the 

marker genes for that cell subtype (see Cluster marker gene determination). If a cluster contained all 

the marker genes for multiple cell subtypes, the cluster was assigned to the cell subtype with the 

greatest number of marker genes. Clusters that did not express all the marker genes for any cell 

subtype were labeled as “Unknown”. Clusters that expressed all the marker genes for multiple cell 

subtypes with the same total number of marker genes were labeled as “Multiplets”. For cell types 

that contained multiple clusters, we then calculated the probability of every gene being zero in each 

cluster (see Cluster marker gene determination). We then compared gene presence between clusters 

of the same cell type to see if there were any subclusters that had a dominant marker gene (present 

in > 50% of samples), that was not present in any of the other clusters (< 10% of samples). For the 

three cell types that had unique marker genes, we named the cluster after the gene with the highest 

2-proportion z-score between the sampled gene counts in that cluster vs the rest. 
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5.7.18 Quantification of images 

Quantitative data analysis of confocal images was performed blind with regard to AAV capsid 

variant. Manual quantification was performed using the Cell Counter plugin, present in the Fiji 

distribution of ImageJ (National Institutes of Health, Bethesda, MD) (Schindelin et al., 2012). 

Transduction rate was calculated as the total number of double positive cells (i.e. viral transgene and 

cell type marker) divided by the total number of cell type marker labeled cells. For each brain slice, 

at least 100 cells positive for the gene markers of interest were counted in the cortex. 

5.7.19 Differential expression 

To calculate differential expression within cell types between groups of animals, we used the 

DESeq2 R package (Love et al., 2014). For each cell type, the gene counts are summed across all 

cells of that type and treated as a pseudo-bulk sample. The summed gene counts from each animal 

are then included as individual columns for a DESeq2 differential expression analysis. We performed 

3 DPI DE and 25 DPI separately, testing each sample against saline-injected controls. For each cell 

type, only genes that were present in all samples of at least one condition are included. 

5.7.20 Marker gene dot plots 

To generate dot plots for marker genes, we used scanpy’s dotplot function (Wolf et al., 2018). Gene 

counts were normalized to the sum of the total transcript counts per cell using scanpy’s 

normalize_total function. Normalized gene expression values are log-transformed as part of the 

plotting function. 

5.7.21 Statistics 

Statistical analyses comparing the fraction of transduced cells in different cell types for Figures 2, 3, 

and 4 C were conducted using GraphPad Prism 9. Statistical analyses comparing proportions of 

transduced cells within an animal in Figure 25E Figure Figure 27 were performed using the Python 

statsmodels library v0.12.1. No statistical methods were used to predetermine sample sizes. The 
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statistical test applied, sample sizes, and statistical significant effects are reported in each figure 

legend. The significance threshold was defined as a = 0.05. 

6.8 Supplemental Figures 

 

Supplementary Figure 2. Plasmid details. (A) Size of typical transcriptome cDNA library post-fragmentation. Both 

distinguishing XFPs and variant barcodes fall outside the typical capture region of single-cell RNA sequencing workflows. (B) 

UBC-mCherry-AAV-cap-in-cis plasmid used for 7-variant barcoded pool. (C) Visualization of the construction procedure for the 

custom genome reference. Variant cargos are segmented into common and uncommon regions, and each unique segment is 

concatenated together as a contiguous gene. Variants are defined as different splicings of the custom AAV gene. 
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Supplementary Figure 3. Expression rate estimation. (A) Percent of cells expressing AAV-PHP.eB cargo transcripts above a 

fixed threshold in a single sample. (B) An example of the distribution of viral transcript counts in a single animal from AAV-

PHP.eB carrying CAG-mNeonGreen-WPRE in neurons and astrocytes. (C) Visualization of our expression-rate estimation 

algorithm. The distribution of the cell type of interest and background debris is obtained. An error is calculated for different 

estimates of the percent of the cells that express background levels of transcripts. This error is minimized to find the best fit. (D) 

Performance of the expression rate estimation algorithm on simulated data consisting of negative binomial distributions with 

parameters r between 0.1 and 10 and p between 0.001 and 0. 99, spaced evenly apart. (E) Comparison between mean transcripts/cell 

(x) and the estimated transduction rate (y) in major cell types for AAV-PHP.eB across 9 samples. 
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Supplementary Figure 4. Noise from debris and doublets. (A) An example of a Cell Ranger filtered dataset. This is a t-SNE 

projection of the log-normalized gene expression space. Suspected debris clusters are outlined. (B) Marker gene expression for the 

major cell types in the brain—Oligodendrocytes/Olig2, Astrocytes/Aldh1l1, Neurons/Rbfox3, Vascular Cells/Cldn5, Immune 

Cells/Tmem119—for each cluster. Darker colors indicate higher mean expression, and dot size correlates with the abundance of 

the gene in that cluster. (C) An example of a multiplet cluster from the joint scVI space of all training samples, projected via t-

SNE. Cluster 51 is annotated, and raw gene expression of Cldn5 and Cx3cr1 are shown. The percentage of cells in cluster 51 

expressing each marker gene is displayed. (right) Predicted doublets from Scrublet are overlaid in red. 



142 

 

 

Supplementary Figure 5. Cell typing. (A) Cell typing workflow. A subset of cells are used for training. For each marker gene, 

clusters expressing that marker gene are identified. Clusters that have no marker genes (debris) or are determined to be multiplets 

via Scrublet are marked for removal. Training data used to train a scANVI model to predict the remaining cells. A reference 

database can be used instead of manually labeled cells, as we did for neuronal subtypes. (B) Cell-type distribution of all identified 

cells from our combined cell-type taxonomy. This includes samples described in the study as well as additional controls and animals 

used for troubleshooting and prototyping. (C) Cell-type percentages across the major cell types in the ten samples used for AAV 

tropism characterization. One of the samples, BC1, had dramatically fewer neurons than any other sample and correspondingly 

higher percentages of non-neurons. (D) Mitochondrial gene ratio and total transcript counts of the major cell type clusters in the 

ten samples used for tropism characterization. 
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Supplementary Figure 6. Transcript expression. (A) Viral transcript expression of different barcodes across two samples (S1, 

S2). Each point is a distinct barcode. (B) Viral transcript abundance in entire samples (viral transcripts / total transcripts) across 

different variants carrying different cargo. (C) Fraction of transcripts detected in vascular cells vs all other cell types. 
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Supplementary Figure 7. Inter-sample variability. (A) The standard deviations between measurements of the fraction of 

transduced cells in all major non-neuronal cell types in AAV-PHP.V1 and AAV-PHP.eB. Inter-sample variance (left) refers to the 

standard deviation between animals, and intra-sample variance (right) refers to the standard deviation between barcodes within the 

same animal. (B) The distribution of recovered cell types compared to the distribution of transduced cells across nine samples 

injected with AAV-PHP.eB. 
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Supplementary Figure 8. Cell subtype inspection. (A) Estimated transduction rate of endothelial cells vs pericytes across all 

samples and variants. (B) Pairwise transduction rate of Myoc+ and Myoc- astrocytes across all variants and samples. Each point is 

a single variant in a different sample. (C) Pairwise transduction rate of Vip+ neurons vs all other inhibitory neurons across all 

variants and samples. 
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Supplementary Figure 9. Cell subtype markers. Gene expression of additional marker genes for astrocyte and OPC subtypes. 

Table S 1. Primers. Primers used for round 1 and round 2 amplification of viral transcripts. Primers with TC1 and TC2 in 

the amplicon name indicate they were used only for those samples. 

Amplicon Read Roun

d 

Sequence (Ns indicate Illumina sample index) 

All Viruses 1 1 CTACACGACGCTCTTCCGATCT 

All Viruses 1 2 AATGATACGGCGACCACCGAGATCTACACTCTTTC

CCTACACGACGCTCTTCCGAT 
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mNeonGreen 

TC1 

2 1 TTCAAGGAGTGGCAAAAGGCCTTTACCGATGTGAT 

mRuby2 2 1 CAACGGGAACATGCAGTTGCCAAGTTTGCTGG 

mNeonGreen 2 1 TAACTATCTGAAGAACCAGCCGATGTAC 

tdTomato TC2 2 1 AGGACTACACAATTGTCGAACAGTATGAG 

tdTomato 2 1 ACAACGAGGACTACACCATCGTGG 

mCherry 2 1 CATCGTGGAACAGTACGAACG 

WPRE 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGT

GACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGA

CGAGTCGGATCTCCCT 

mNeonGreen 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGT

GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTC

AAGGAGTGGCAAAAGGC 

mRuby2 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGT

GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAA

CGGGAACATGCAGTTGC 

tdTomato TC2 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGT

GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCA

TGGACGAGCTGTACAAG 
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tdTomato 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGT

GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCT

CTTTCTCTATGGGATGGATGA 

mCherry 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGT

GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGG

CATGGACGAGCTGT 

 

Table S 2. Marker Genes. 

Cell Type Marker Gene(s) 

Astrocytes Aldh1l1 (Cahoy et al., 2008), Sox9 (Sun et al., 2017) 

Neurons Rbfox3 (Lin et al., 2016) 

Vascular Cells Cldn5 (Song et al., 2020)  

Endothelial Cells Slc2a1 (Veys et al., 2020) 

Pericytes Pdgfrb (Winkler et al., 2010), Rgs5, Abcc9 (He et al., 2016) 

Red Blood Cells Hba-a1, Hba-a2 (Capellera-Garcia et al., 2016) 

Vascular SMCs Acta2, Myh11, Tagln (Chasseigneaux et al., 2018) 

Vascular LMCs Fam180a, Slc6a13, Dcn, Ptgds (Marques et al., 2016) 

Microglia Cx3cr1, Tmem119  (Jordão et al., 2019) 
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Leukocytes Itgal, Gzma (Huang and Sabatini, 2020) 

Perivascular Macropages Mrc1 (Jordão et al., 2019) 

Oligodendrocytes Olig2 (Dai et al., 2015) 

OPCs Pdgfra, Cspg4 (Suzuki et al., 2017) 

Mature Oligos Mog, Mbp (Miron et al., 2011) 

Committed Oligos Ptprz1, Bmp4, Nkx2-2, Vcan (Marques et al., 2016) 

 

Table S 3. scVI Hyperparameter Tuning 

Dispersion Latent Lib Size # Latent # Layers # Hidden Test KL Divergence 

Gene False 10 1 128 5366.4 

Gene-batch True 10 1 128 5406.1 

Gene True 10 1 128 5391.0 

Gene-batch True 50 2 512 5362.6 

Gene-batch False 10 1 128 5378.7 

Gene False 25 1 128 5354.6 

Gene False 25 2 256 5337.8 
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Gene False 20 2 256 5336.7 

Gene False 40 4 1024 5338.0 

 

Table S 4. Sample Metadata. Supplemental file contains the following fields. 

Field Name Description 

10X Version Whether the sample was processed using 10X V2 or V3 

chemistry 

Animal ID A unique animal identifier. Some animals provided 

multiple samples 

Target # Cells The target number of cells for extraction. 1.6X this 

number is loaded into the 10X Chromium instrument 

# Recovered Cells The number of cells recovered, after debris and multiplet 

filtering 

Cell Ranger # Cells The number of cells as predicted by Cell Ranger 

Predicted Multiplets The number of predicted multiplets 

Transcriptome Sequencing Depth The number of reads 

Transcriptome Reads/Cell The number of reads divided by the number of recovered 

cells 

Median UMIs/Cell Of the recovered cells, the median total UMI count 
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Median Genes/Cell Of the recovered cells, the median number of genes 

detected with at least one transcript 

Variants Recovered Which variants were recovered from this sample. 

Samples labeled “Cell Typing Only” were not used for 

tropism analysis, but were included in the cell type 

classifier 

Virus Sequencing Depth The number of reads of the amplified viral transcripts 

across all templates 

Virus Reads/Cell The read depth of the amplified viral transcripts 

Age at Extraction (Days) The age of the animal at extraction time 

Virus Incubation Time (Days) How many days prior to extraction the animal was 

injected 

Percent of Virus UMIs Determined What percent of transcriptome reads that aligned to the 

virus gene were disambiguated from the amplified lookup 

table 

 

Table S 5. Variant Barcodes 

Variant Cargo Barcodes 

AAV-PHP.eB pAAV:CAG-NLS-mNeonGreen  

AAV-PHP.V1 pAAV:CAG-NLS-mRuby2  
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AAV-PHP.eB pAAV:CAG-NLS-mNeonGreen CCTGACA, GGACAGA, 

GCACAGA, CGAGAGA 

AAV-PHP.V1 pAAV:CAG-tdTomato  

AAV-PHP.V1 pAAV:CAG-NLS-mNeonGreen CAGTGTC, GAGAGTG, GTGTGAG 

AAV-CAP-B10 pAAV:CAG-NLS-mNeonGreen  

AAV-PHP.eB pAAV:CAG-NLS-tdTomato  

AAV-CAP-B10 pAAV:CAG-NLS-tdTomato  

AAV9 UBC-mCherry-AAV-cap-in-cis CGTCTCAGCTATAACTTCCAA 

CGAGGTCGTAAGGTCGGCATT 

TGATTATCATGCCTGCTCAGG 

AAV-PHP.B UBC-mCherry-AAV-cap-in-cis TATACCCAACCACTCAGTCCC 

CGGTTTTAGCACGGCCATAGA 

AAGCGATGTCTCTACACGATA 

AAV-PHP.eB UBC-mCherry-AAV-cap-in-cis TACAGCTTTTTGACTGGAGGT 

CTGGCATTAATACGCGGGTCA 

TACAGGTCCTAGACAGGTGAT 

AAV-CAP-B10 UBC-mCherry-AAV-cap-in-cis GCTGGGCGTTAAAGTACTCGC 
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GCAACTGGGATAATCGTAGTC 

AACGGAGTGAACGGACCCTAG 

AAV-PHP.V1 UBC-mCherry-AAV-cap-in-cis GTGGCGGGTTTCCGAAAAAGT 

TCGTCGGCACTCTCTTAGAGC 

CATGTGATAGTGAAGCACGCC 

AAV-PHP.C1 UBC-mCherry-AAV-cap-in-cis TCTGTGCTGCTCTTCTAACAA 

TCTGACGGCGGGTAAACACTG 

TGGCCACCCGCAGAGTATACT 

AAV-PHP.C2 UBC-mCherry-AAV-cap-in-cis GACTAGGGTAAGTGAGCTATG 

CGAATTTCTTCCATACCTCCT 

TAGTGCCAACAACGGAGAAGA 

 

Table S 6. Differentially Expressed Genes. Supplemental file contains one tab for astrocytes, pericytes, and OPCs, with the 

following fields. 

Field Name Description 

Gene ID The Ensembl Gene ID 

Gene name The canonical gene name 
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P Non Zero The probability of a cell expressing this gene in this cluster 

P Non Zero Rest The probability of a cell expressing this gene in the other cell 

subtype clusters 

 

Table S 7. Differentially Expressed Genes Across Time Points. Supplemental file contains one tab per cell type, with the 

following fields. 

Field Name Description 

Gene ID The Ensembl Gene ID 

Gene name The canonical gene name 

Mean expression The mean expression of this gene in this group 

L2FC The log fold change of this gene 

L2FC SE The standard error of the L2FC 

Stat The stat, as reported by DESeq2 

P-value The unadjusted P-value 

Adjusted P-value The adjusted P-value 
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C h a p t e r  6  

SINGLE CELL PROFILING OF CAPILLARY BLOOD ENABLES OUT OF 

CLINIC HUMAN IMMUNITY STUDIES 

Adapted from: 

Dobreva, T.*, Brown, D.*, Park, J. H., & Thomson, M. (2020). Single cell profiling of capillary 

blood enables out of clinic human immunity studies. Scientific Reports, 10(1). 

https://doi.org/10.1038/s41598-020-77073-3 

6.1 Summary 

An individual’s immune system is driven by both genetic and environmental factors that vary over 

time. To better understand the temporal and inter-individual variability of gene expression within 

distinct immune cell types, we developed a platform that leverages multiplexed single-cell 

sequencing and out-of-clinic capillary blood extraction to enable simplified, cost-effective profiling 

of the human immune system across people and time at single-cell resolution. Using the platform, 

we detect widespread differences in cell type-specific gene expression between subjects that are 

stable over multiple days. 

6.2 Introduction 

Increasing evidence implicates the immune system in an overwhelming number of diseases, and 

distinct cell types play specific roles in their pathogenesis (Farh et al., 2015; Gate et al., 2020). 

Studies of peripheral blood have uncovered a wealth of associations between gene expression, 

environmental factors, disease risk, and therapeutic efficacy (De Jager et al., 2015; Fairfax and 

Knight, 2014; Sumitomo et al., 2018). For example, in rheumatoid arthritis, multiple mechanistic 

paths have been found that lead to disease, and gene expression of specific immune cell types can 
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be used as a predictor of therapeutic non-response (Sumitomo et al., 2018). Furthermore, vaccines, 

drugs, and chemotherapy have been shown to yield different efficacy based on time of 

administration, and such findings have been linked to the time-dependence of gene expression in 

downstream pathways (Kobayashi et al., 2002; Lévi et al., 2007; Long et al., 2016). However, human 

immune studies of gene expression between individuals and across time remain limited to a few cell 

types or time points per subject, constraining our understanding of how networks of heterogeneous 

cells making up each individual’s immune system respond to adverse events and change over time. 

The advent of single-cell RNA sequencing (scRNA-seq) has enabled the interrogation of 

heterogeneous cell populations in blood without cell type isolation and has already been employed 

in the study of myriad immune-related diseases (Gate et al., 2020; Kazer et al., 2020; the Accelerating 

Medicines Partnership Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) 

Consortium et al., 2019; Uniken Venema et al., 2019). Recent studies employing scRNA-seq to study 

the role of immune cell subpopulations between healthy and ill patients, such as those for Crohn’s 

disease (Martin et al., 2019), Tuberculosis (Cai et al., 2020), and COVID-19 (Lee et al., 2020), have 

identified cell type-specific disease relevant signatures in peripheral blood immune cells; however, 

these types of studies have been limited to large volume venous blood draws which can tax already 

ill patients, reduce the scope of studies to populations amenable to blood draws, and often require 

larger research teams to handle the patient logistics and sample processing costs and labor. In 

particular, getting repeated venous blood draws within a single day and/or multiple days at the 

subject’s home has been a challenge for older people with frail skin and those on low dosage 

Acetylsalicylic acid(Bennett, 2020). This dependence on venous blood dramatically impacts our 

ability to understand the high temporal dynamics of health and disease. 

Capillary blood sampling is being increasingly used in point-of-care testing and has been advised for 

obese, elderly, and other patients with fragile or inaccessible veins (Blicharz et al., 2018; Lenicek 

Krleza et al., 2015; Robison et al., 2009; Tang et al., 2017). The reduction of patient burden via 

capillary blood sampling could enable researchers to perform studies on otherwise difficult or 

inaccessible populations, and at greater temporal resolution. Additionally, capillary blood is being 

shown to be comparable to traditional venous blood draws for a variety of applications. For example, 
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Catala et al. have shown that 39 out of 45 clinically relevant metabolites had overlapping ranges 

between capillary blood vs traditional venous blood draws (Catala et al., 2018), and Toma et al. have 

shown strong correlation (Spearman correlation coefficient ≥ 0.95) between bulk RNA sequencing 

data between capillary and venous blood from the same donor (Toma et al., 2020). However, to date, 

scRNA-seq of human capillary blood has not yet been validated nor applied to study the immune 

system. In order to make small volumes of capillary blood (100 ul) amenable to scRNA-seq we have 

developed a platform which consists of a painless vacuum-based blood collection device, sample de-

multiplexing leveraging commercial genotype data, and an analysis pipeline used to identify time-

of-day and subject specific genes. The potential of our platform is rooted in enabling large scale 

studies of immune state variation in health and disease across people. The high-dimensional temporal 

transcriptome data could be paired with computational approaches to predict and understand 

emergence of pathological immune states. Most importantly, our platform makes collection and 

profiling of human immune cells less invasive, less expensive and as such more scalable than 

traditional methods rooted in large venous blood draws. 

6.3 Results 

6.3.1 Platform for low-cost interrogation of single-cell immune gene expression profiles 

Our platform is comprised of a protocol for isolating capillary peripheral blood mononuclear cells 

(CPBMCs) using a touch activated phlebotomy device (TAP) (Blicharz et al., 2018), pooling 

samples to reduce per-sample cost using genome-based demultiplexing (Kang et al., 2018), and a 

computational package that leverages repeated sampling to identify genes that are differentially 

expressed in individuals or between time points, within subpopulations of cells (Figure 28a). Using 

a painless vacuum-based blood collection device such as the commercial FDA-approved TAP to 

collect capillary blood makes it convenient to perform at-home self-collected sampling and removes 

the need for a trained phlebotomist, increasing the ease of acquiring more samples. The isolation of 

CPBMCs is done using gradient centrifugation and red blood cells are further removed via a red 

blood cell lysis buffer. The cells from the different subjects are pooled, sequenced via scRNA-seq 
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using a single reagent kit, and demultiplexed (Kang et al., 2018) via each subject’s single-nucleotide 

polymorphisms (SNPs), reducing the per-sample processing cost. By pooling the data across all 6 

time points, and using a genotype-free demultiplexing software (popscle), we were able to identify 

which cells belonged to which subject across time points, removing the need for a separate 

genotyping assay to link subjects together across batches. 

 

Figure 28. Experimental workflow and consistency of capillary blood sampling. (a) Experimental workflow for capillary blood 

immune profiling. 1. Blood is collected using the TAP device from the deltoid. 2. Capillary peripheral blood mononuclear cells 

(CPBMCs) are separated via centrifugation. 3. Red blood cells are lysed and removed, and samples from different subjects are 

pooled together. 4. Cell transcriptomes are sequenced using single-cell sequencing. (b) Time-course study design. CPBMCs are 

collected and profiled from 4 subjects (2 male, 2 female) each morning (AM) and afternoon (PM) for 3 consecutive days. (c) 2-

dimensional t-SNE projection of the transcriptomes of all cells in all samples. Cells appear to cluster by major cell type (Fig. S6) 

(d) Immune cell type percentages across all samples shows stable cell type abundances (includes cells without subject labels). (e) 

Cell type ratios between capillary blood from this study, and venous blood from 3 other studies were the same, with the exception 

of CD14+ Monocytes, which are more abundant in venous blood (FDR < 0.05, 2-sided student t-test, multiple comparison 

corrected) The q-values are displayed for each cell type comparison. 
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6.3.2 Single-cell RNA sequencing (scRNA-seq) of low volume capillary blood recovers distinct 

immune cell populations stably across time 

As a proof-of-concept, we leveraged our scRNA-seq of capillary blood platform to identify genes 

that exhibit diurnal behavior in subpopulations of cells and find subject-specific immune relevant 

gene signatures. We performed a three-day study in which we processed capillary blood from four 

subjects in the morning and afternoon, totaling 24,087 cells across 22 samples (Figure 28b). Major 

immune cell types such as T cells (CD4+, CD8+), Natural Killer cells, Monocytes (CD14+, CD16+), 

and B cells are present in all subjects and time points with stable expression of key marker genes 

(Figure 28d, Supplementary Figure 10), demonstrating that these signals are robust to technical and 

biological variability of CPBMC sampling (Figure 28c). In order to compare cell type distributions 

derived from our method with venous blood draws, we used data from 11 healthy subjects provided 

by three independent studies7,16,17 (Table S 11). CD14+ Monocytes make up a higher percentage 

of PBMCs in venous blood (n = 11) versus capillary blood (n = 22) (FDR < 0.05, 2-sided student t-

test, multiple comparison corrected), while other cell types do not have a significant difference in 

distributions (Figure 28e). 

6.3.3 High frequency scRNA-seq unveils new diurnal cell type-specific genes 

Genes driven by time-of-day expression, such as those involved in leukocyte recruitment (He et al., 

2018) and regulation of oxidative stress (Zhao et al., 2017), have been determined to play an 

important role in both innate and adaptive immune cells (Keller et al., 2009). Medical conditions 

such as atherosclerosis, parasite infection, sepsis, and allergies display distinct time-of-day immune 

responses in leukocytes (Pick et al., 2019), suggesting the presence of diurnally expressing genes 

that could be candidates for optimizing therapeutic efficacy via time-of-day dependent 

administration. However, studies examining diurnal gene expression in human blood have been 

limited to whole blood gene panels via qPCR, or bulk RNA-seq (Braun et al., 2018; Kusanagi et al., 

2008; Lech et al., 2016). 
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Figure 29. Diurnal variability in subpopulations of capillary blood. (a) Magnitude (Z-score) of the difference in AM vs PM 

gene expression across the whole population of cells (x) vs the cell type with the largest magnitude Z-score (y). Points above or 

below the significance lines (FDR < 0.05, multiple comparison correction) display different degrees of diurnality. The size of each 

marker indicates the abundance of the gene (the largest percent of cells in a subpopulation that express this gene). (b) Distribution 

of expression of DDIT4, a previously identified circadian rhythm gene(Braun et al., 2018), shows diurnal signal across all cells, as 

well as individual cell types, such as natural killer (NK) cells. u indicates the mean fraction of transcripts per cell (gene abundance). 

(c) Example of newly identified diurnal genes, LSP1 and IFI16 that could be missed if analyzed at the population level (d) Example 

of a gene, EAF2, that could be falsely classified as diurnal (i) without considering cell type subpopulations due to a diurnal B cell 

abundance shift (ii). 

Leveraging our platform, which enables single-cell studies of temporal human immune gene 

expression, we detected 395 genes (FDR < 0.05, multiple comparison corrected) exhibiting diurnal 

activity within at least one cell subpopulation (Figure 29a). Among the 20 top diurnally classified 

genes, we found that 35% of those genes were previously correlated with circadian behavior (Table 

S 8), such as DDIT4 (Braun et al., 2018) (Figure 29b), SMAP225, and PCPB126. However, only 

119/395 (30.1%) of these genes are detected as diurnal at the whole population level (FDR < 0.05, 

multiple comparison corrected), suggesting there may be many more diurnally-varying genes than 

previously discovered. For example, IFI16 and LSP1 (Figure 29c) have diurnal expression only in 
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NK cells and B cells, respectively, and display previously unreported transcriptional diurnal patterns. 

In particular, LSP1 has been implicated in numerous leukemias and lymphomas of B cell origin 

(Pulford et al., 1999). Given previous evidence of increased efficacy of time-dependent 

chemotherapy administration (Hermida et al., 2009; Lévi et al., 2007) and tumor cells exhibiting out-

of-sync behavior compared to normal cells (Ramsey and Ellisen, 2011), understanding LSP1’s 

diurnal expression pattern can potentially guide timely administration of candidate therapeutics. Out 

of the identified 395 diurnally-varying genes, 114 (29%) are considered druggable under the drug 

gene interaction database (https://www.dgidb.org/). 

6.3.4 scRNA-seq profiling distinguishes diurnal gene expression from cell type abundance 

changes 

We also detected 406 genes (FDR < 0.05, multiple comparison corrected) exhibiting diurnal 

behavior when analyzed at the population level, such as EAF2, that do not display diurnal variation 

in any of our major cell types (Figure 29d.i). Such false positives may come from diurnal shifts in 

cell type abundance rather than up- or down-regulation of genes. In the case of EAF2, which is most 

abundant in B cells, we hypothesized that the diurnality detected at the population level was a result 

of an increase of B cell abundance in the afternoon, and verified this in our data (p = 7.5 × 10–3, one-

sided student-t test) (Figure 29d.ii). This finding highlights the importance of looking at expression 

within multiple cell types to avoid potentially misleading mechanistic hypotheses. 

6.3.5 Individuals exhibit robust cell type-specific differences in genes and pathways relevant to 

immune function 

Gene expression studies of isolated cell subpopulations across large cohorts of people have revealed 

a high degree of variability between individuals that cannot be accounted for by genetics alone, with 

environmental effects that vary over time likely playing a critical role (Thomas, 2010; Ye et al., 

2014). Furthermore, these transcriptomic differences have been linked to a wide range of therapeutic 

responses, such as drug-induced cardiotoxicity (Matsa et al., 2016). However, while immune system 

composition and expression has been shown to be stable over long time periods within an individual, 
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acute immune responses generate dramatic immune system changes, meaning that large single time 

point population studies are unable to establish whether variability between individuals is stable or 

the result of dynamic response to stimuli (Brodin and Davis, 2017). 

To probe the stability of individual gene expression signatures at the single-cell level, we used our 

pipeline to identify genes whose variation in gene expression is most likely caused by intrinsic 

intersubject differences rather than high frequency immune system variability. We compared the 

mean gene expressions of all time points between subjects in all cell types and identified 1284 genes 

(FDR < 0.05, multiple comparison corrected) that are differentially expressed in at least one 

subpopulation of cells. Like Whitney et al., we found MHC class II genes, such as HLA-DRB1 and 

HLA-DRA (Figure 30a) to be among the largest sources of variation between subjects (Whitney et 

al., 2003). Additionally, we found that DDX17, which was classified by Whitney et al. as a gene 

with high intersubject variability, but low intrasubject variability via repeat sampling over longer 

time scales, may be a new class of temporally varying gene that varies by day of week, having 

consistently increasing expression each subsequent sampling day. This stresses the importance of 

high frequency sampling for identifying genes with the most intrinsic interindividual variability. 

6.3.6 Numerous subject-specific genes are revealed in specific immune cell types 

Within the 1284 genes with intrinsic interindividual variability, we found myriad disease-relevant 

genes for all subjects and cell types, which can be explored at our interactive online portal 

(https://capblood-seq.caltech.edu). As just one example, subject S1’s monocytes have a consistent 

downregulation (p = 9.1 × 10–7, two-sided student t-test) of LIPA, a gene that is implicated in 

Lysosomal Acid Lipase Deficiency (Figure 30c). Given the low abundance of monocytes in blood 

samples, such findings would typically only be discovered from a targeted blood test or RNA 

sequencing of isolated monocytes, either of which would only be performed if the disease was 

already suspected; this showcases how automated discovery in heterogeneous cell populations can 

be leveraged for personalized, preventative care. 
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Figure 30. Subject variability in immune and disease-relevant genes and pathways. (a) Magnitude (log2 F statistic) of the 

variability in expression of genes between different cell types (x) and between subjects (y). 1284/7034 (18.3%) of genes are above 

the subject specificity significance line (FDR < 0.05, multiple comparison correction) and are classified as subject-specific. Several 

MHC class II genes (HLA-X) are strongly subject-specific, consistent with previous findings(Whitney et al., 2003). (b) KEGG 

pathways grouped into categories and their enrichment (Z-score from 2-proportion Z-test) among the top 250 diurnally and subject-

varying genes vs all genes. Immune system and disease pathways are significantly enriched (p = 0.029), supportive of the 

conclusion that immune and disease-related genes are highly subject dependent. The large circles indicate the enrichment of the 

category overall, and the sizes of the smaller pathway points indicate the number of genes associated with the pathway. (c) Subject 
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and cell type specific gene examples for each subject and cell type with the upper row displaying the trace of mean gene expression 

across time-points and the bottom row showing gene abundance shifts for the subjects of interest. 

6.3.7 Immune function and disease pathways are enriched in subject-specific genes 

Given that genes do not act alone, we also found cell type-specific pathway differences among 

subjects. In particular, Subject 2’s S100A8, S100A9, and S100A12 genes, calcium-binding proteins 

that play an important role in macrophage inflammation, are significantly downregulated in 

monocytes (pS100A8 = 1.3 × 10–5, pS100A9 = 9.0 × 10–5, pS100A12 = 3.0 × 10–4, two-sided student t-test) 

compared to other subjects (Supplementary Figure 11). We further explored our findings by 

inspecting the pathways that are most enriched in individual and time-varying genes, and found that 

genes that are implicated in immune system function (p = 0.085) and immune diseases (p = 0.029) 

are more present in subject-specific genes (Figure 30b). This stands in contrast to pathways of core 

cellular functions such as genetic information processing (p = 0.029) and metabolism (p = 0.095), 

which are less present in subject-specific genes. 

6.4 Discussion 

Genome and transcriptome sequencing projects have unveiled millions of genetic variants and 

associated gene expression traits in humans (Farh et al., 2015; Lappalainen et al., 2013). However, 

large-scale studies of their functional effects performed through venous blood draws require 

tremendous effort to undertake, and this is exacerbated by the cost and complexity of single-cell 

transcriptome sequencing. Efforts such as the Immune Cell Census (The Immune Cell Census) are 

already underway to perform single-cell profiling of large cohorts, but reliance on venous blood 

draws of PBMCs will likely limit the diversity and temporal resolution of their sample pool. Our 

platform gives researchers direct, scalable access to high resolution immune system transcriptome 

information of human subjects, lowering the barrier of entry for myriad new research avenues. 

Examples of such studies include: 1. tracking vulnerable populations over time, such as monitoring 

clonal expansion of CD8+ T cells in Alzheimer’s disease progression (Gate et al., 2020), 2. profiling 

of individuals who are under home care to track disease progression and therapeutic response, such 
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as transplant patients and people under quarantine, and 3. tracking how stress, diet, and 

environmental conditions impact the immune system at short and long time scales, particularly in 

underrepresented populations who do not have easy access to hospitals or research institutions, such 

as people in rural or underdeveloped areas. Larger, more diverse subject pools coupled with time 

course studies of cell type gene expression in health and disease will have a dramatic impact on our 

ability to understand the baseline and variability of immune function. 

6.5 Online content 

Online web portal is available to explore data presented in the main figures for study summary, 

diurnal and subject specific genes via https://capblood-seq.caltech.edu. 

6.6 Methods 

6.6.1 Human study cohort 

This study was conducted at Caltech. Four healthy adults (2 male, 2 female) were recruited 

(Supplementary Figure 12). All participants provided written informed consent. The study was 

approved by the Institutional Review Board (IRB) at Caltech and all methods were performed in 

compliance with relevant guidelines and regulations. The blood collection took place in a non-BSL 

room to make sure the subjects were not exposed to pathogens. Subject blood was collected roughly 

8 h apart over three consecutive days. 

6.6.2 CPBMC isolation 

100 µl of capillary blood was collected via push-button collection device (TAP from Seventh Sense 

Biosystems). For each blood draw, the site of collection was disinfected with an alcohol wipe and 

the TAP device was placed on the deltoid of the subject per device usage instructions. The button 

was pushed, and then blood was collected for 2–7 min until the indicator turned red. Blood was 

extracted from the TAP device by gently breaking the seal foil, and mixed with PBS + 2% FBS to 1 

ml. The mixture was slowly added to the side of a SepMate tube (SepMate-15 IVD, Stem Cell 
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Technologies) containing 4.5 ml of Lymphoprep (#07811, Stem Cell Technologies) and centrifuged 

for 20 min at 800 RPM. Approximately 900 µl of CPBMC layer was extracted below the plasma 

layer. To further remove red blood cells, 100 µl of red blood cell lysis buffer (eBioscience 10× RBC 

Lysis Buffer, #00-4300-54) was added to the CPBMCs and incubated at RT for 15 min. The CPBMC 

pellet was washed twice with PBS and centrifuged at 400 rpm for 5 min. Cells were counted using 

trypan blue via an automated detector (Countess II Automated Cell Counter) and subjects’ cells were 

pooled together for subsequent single-cell RNA sequencing. 

6.6.3 Single-cell RNA sequencing 

Subject pooled single-cell suspensions were loaded onto a Chromium Single Cell Chip 

(10X Genomics) based on manufacturer’s instructions (targeted 10,000 cells per sample, 2500 cells 

per person per time point). Captured mRNA was barcoded during cDNA synthesis and pooled for 

Illumina sequencing (Chromium Single Cell 3′ solution—10X Genomics). Each time point was 

barcoded with a unique Illumina sample index, and then pooled together for sequencing in a single 

Illumina flow cell. The libraries were sequenced with an 8-base index read, 26-base read 1 containing 

cell-identifying barcodes and unique molecular identifiers (UMIs), and a 91-base read 2 containing 

transcript sequences on a NovaSeq 6000. 

6.6.4 Single-cell dataset generation 

FASTQ files from Illumina were demultiplexed and aligned using Cell Ranger v3.0 

(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-

cell-ranger) and the hg19 reference genome with all options set to their defaults. 

6.6.5 Sample demultiplexing 

FASTQ files from the single-cell sequencing Illumina libraries were aligned against the hg19 

(human) reference genome using Cellranger v3.0 count function. SNPs were detected in the aligned 

data using freebayes (https://github.com/ekg/freebayes), which creates a combined variant call 
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format (VCF) file, one per sample. SNPs were then grouped by cell barcode using popscle dsc-pileup 

(https://github.com/statgen/popscle). The SNP files for all samples were then merged into a single 

dsc-pileup file, and cell barcodes were disambiguated by providing a unique identifier per sample. 

Freemuxlet (popscle freemuxlet) was then run with default parameters to group cells into 4 subjects. 

This generates a probability of whether each cell barcode belongs to each subject, given the detection 

of single nucleotide polymorphism (SNPs) in reads associated with that cell barcode. Each cell was 

then assigned to the subject with the highest probability. Cells with low confidence (ambiguous cells) 

and high confidence in more than one subject (multiplets) were discarded, using popscle’s default 

confidence thresholds. See the README at https://github.com/thomsonlab/capblood-seq for 

detailed instructions. 

6.6.6 Debris removal 

The raw cell gene matrix provided by Cell Ranger contains gene counts for all barcodes present in 

the data. To remove barcodes representing empty or debris-containing droplets, a debris removal 

step was performed. First, a UMI count threshold was determined that yielded more than the 

expected number of cells based on original cell counts (15,000). All barcodes below this threshold 

were discarded. For the remaining barcodes, principal component analysis (PCA) was performed on 

the log-transformed cell gene matrix, and agglomerative clustering was used to cluster the cells. The 

number of clusters was automatically determined by minimizing the silhouette score among a range 

of numbers of clusters (6 to 15). For each cluster, a barcode dropoff trace was calculated by 

determining the number of barcodes remaining in the cluster for all thresholds in increments of 50. 

These cluster traces were then clustered into two clusters using agglomerative clustering—the two 

clusters representing “debris” with high barcode dropoff rates and “cells” with low barcode drop-off 

rates. All clusters categorized as “debris” were then removed from the data. 

6.6.7 Gene filtering 

Before cell typing, genes that have a maximum count less than 3 are discarded. Furthermore, after 

cell typing, any genes that are not present in at least 10% of one or more cell types are discarded. 
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6.6.8 Data normalization 

Gene counts were normalized by dividing the number of times a particular gene appears in a cell 

(gene cell count) by the total gene counts in that cell. Furthermore, for visualization only, the gene 

counts were multiplied by a constant factor (5000), and a constant value of 1 was added to avoid 

zeros and then log transformed. 

6.6.9 Cell typing 

We used single cell Variational Inference (scVI) to transform the raw cell gene expression data into 

a 10-dimensional variational autoencoder latent space (Lopez et al., 2018). The variational 

autoencoder is conditioned on sample batch, creating a latent space which is independent of any 

batch-specific effects. The variational auto-encoder parameters: learning rate = 1e−3, number of 

epochs = 50. 

Agglomerative clustering (sci-kit learn) was used to generate clusters from the latent cell gene 

expression data. These clusters were then annotated based on known cell type marker genes 

(Supplementary Figure 10). 

In order to resolve specific cell subtypes, such as those of T cells and Monocytes, we specified 13–

15 clusters as an input for agglomerative clustering. For each study, we started at 13 clusters and 

incremented until all 4 major cell types and 2 subtypes were separable. In cases where agglomerative 

clustering yielded multiple clusters of the same cell type, these clusters were merged into a single 

cell type for analysis. 

6.6.10 Venous and capillary blood comparison 

In order to compare venous blood cell type distributions to capillary blood, raw gene count data was 

downloaded from each of the respective studies, and we performed the same cell typing pipeline as 

for our capillary data, first projecting the data into a latent space via scVI, followed by agglomerative 

clustering and manual annotation based on known cell type marker genes. 
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6.6.11 Diurnal gene detection 

To identify genes that exhibit diurnal variation in distinct cell types, we developed a statistical 

procedure that detects robust gene expression differences between morning (AM) and evening (PM) 

samples. Given that gene expression is different between subjects, we first normalize the mean gene 

expression within each subject for each cell type. 

𝜇′𝑔𝑖,𝑠𝑗,𝑐𝑛,𝑘 =  𝜇𝑔𝑖,𝑠𝑗,𝑐𝑛,𝑘 − (
∑ 1𝑘∈𝐴𝑀𝜇𝑔𝑖,𝑠𝑗,𝑐𝑛,𝑘

𝑁𝑠𝑗
𝑘=1

2 ∑ 1𝑘∈𝐴𝑀

𝑁𝑠𝑗
𝑘=1

+
∑ 1𝑘∈𝑃𝑀𝜇𝑔𝑖,𝑠𝑗,𝑐𝑛,𝑘

𝑁𝑠𝑗
𝑘=1

2 ∑ 1𝑘∈𝑃𝑀

𝑁𝑠𝑗
𝑘=1

)   (1) 

We take the mean gene expression μ for each gene gi in all samples k for cell type cn and subject sj 

and renormalize it into μ’ by subtracting the equally weighted mean of AM and PM samples (Eq. 

(1)). We then split the mean gene values into an AM group and a PM group and perform a statistical 

test (two-tailed student-t test) to determine whether to reject the null hypothesis that gene expression 

in AM and PM samples come from the same distribution. We then perform Benjamini–Hochberg 

multiple comparison correction at an FDR of 0.05 on all gene and cell type p-values to determine 

where to plot the significance threshold. For plotting the genes, we choose the Z-statistic 

corresponding to the minimum p-value among cell types for that gene. To determine diurnality at 

the population level, we repeated the procedure above with all cells pooled into a single cell type. 

6.6.12 Subject and cell type specific gene detection 

To classify genes as subject specific, we detect genes with mean gene expression levels that are 

robustly different between subjects in at least one cell type. For each cell type cn and gene gi, we 

create subject groups containing the mean gene expression values from each sample. To determine 

whether the gene expression means from the different subjects do not originate from the same 

distribution, we perform an ANOVA one-way test to get an F-statistic and p-value for each gene. 

We then perform Benjamini–Hochberg multiple comparison correction at an FDR of 0.05 on all 

gene and cell type p-values. For plotting the genes, we chose the F-statistic corresponding to the 

minimum p-value among cell types for that gene. 
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For determining gene cell type specificity, we performed a similar procedure. In particular, for each 

gene gi, we create cell type groups containing the mean gene expression values for that cell type 

from each sample. We then perform a one-way ANOVA, and Benjamini–Hochberg multiple 

comparison correction at an FDR of 0.05. 

6.6.13 Pathway enrichment analysis 

Pathways from the KEGG database (Python bioservices package) were used to calculate pathway 

enrichment for genes that were among the top 250 most diurnal and individual specific. All 

remaining genes present in the data were considered background. In order to normalize for gene 

presence across pathways, each gene was weighted by dividing the number of pathways in which 

that gene appears. For each KEGG pathway (Kanehisa, 2000, 2019; Kanehisa et al., 2019), the test 

statistic for a two-proportion z-test (Python statsmodel v0.11.1) is used to determine pathway 

enrichment. From the top level pathway classes, we broke out “Diseases” into “Other”, “Immune 

Diseases”, and “Infectious Diseases” and separated “Immune System” from “Organismal System” 

to understand diurnal and subject-specific genes in an immune relevant context. 

6.6.14 Figure art 

All drawings (Figure 28a,b, Supplementary Figure 11) are generated using BioRender.com. Figure 

28e was generated using GraphPad Prism 8.3.1. 

6.7 Data availability 

Gene expression matrix and relevant metadata are available on https://data.caltech.edu/records/1407. 

FASTQ files are not being released to protect the identity of the subjects. 

6.8 Code availability 

Custom code made for diurnal and subject specific gene detection is available on 

https://github.com/thomsonlab/capblood-seq. 
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6.9 Supplemental Figures 

 

Supplementary Figure 10. Cell type marker gene expression in cell clusters. Violin plots of log-normalized gene expression 

(y-axis, right hand side) for cell type markers (y-axis, left hand side) used to annotate cell clusters (x-axis) for known cell types. 

The colors correlate to clusters from Figure 28.d. 
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Supplementary Figure 11. S100 pathway exhibits individual-specific regulation. (a) Simple schematic illustrating the role of 

S100A8, S100A9, and S100A12 genes in immune regulation. (b) Normalized mean gene expression of S100A8, S100A9, and 

S100A12 genes for S2 showing significant downregulation in monocytes as compared to all cells. 
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Supplementary Figure 12. Characterization of debris removal pipeline across each time sample. Scatter plots of the total 

number of transcripts (UMIs) detected for each barcode (x-axis), and the ratio of transcripts that are mitochondrial (y-axis). These 

barcodes are the union of barcodes called by 10X Cellranger and our debris filtering pipeline. Barcodes colored red were flagged 

as debris and removed. The debris filtering pipeline appears to detect barcodes that have both a low transcript count, and a high 

mitochondrial gene ratio, or a rare number of cells that appear to have 0 mitochondrial genes. The counts of barcodes removed for 

each sample are in Table S6. 
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Supplementary Figure 13. Comparison of individual specificity by cell type vs in simulated bulk data. Magnitude (log2 F 

statistic) of the variability in expression of genes between subjects, accounting for each cell type separately (y) and in simulated 

bulk (x). 1284/7034 (18.3%) of genes are above the subject specificity significance line (FDR < 0.05, multiple comparison 

corrected) and are classified as subject-specific. Of these, only 637/1284 (49.6%) are also detected as subject-specific when 

simulating bulk RNA reads, despite the significantly lower multiple comparison correction burden (7034 tests as compared to 

28,136 tests in the cell type case). 
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Supplementary Figure 14. Merged projection of capillary and venous blood cells. Capillary blood cells from this study (n=22) 

and venous blood cells from 3 other studies (n=11) were projected into a joint latent space using scVI. (a) Agglomerative clustering 

with n=13 clusters was performed to identify cell types, and annotated using known cell type markers (b) Capillary blood cells 

cluster together with venous blood cells, with the exception of one cluster of B cells unique to capillary cells, as well as 3 cell types 

unique to the venous blood sample: red blood cells, dendritic cells, and neutrophils, which are likely filtered out via laboratory 

procedures and the computational debris filtering pipeline. 
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Supplementary Figure 15. Immune cell type clusters detected in capillary blood. 2-dimensional t-SNE projection of the 

transcriptomes of all cells in all samples obtained from agglomerative clustering of latent gene expression. Cell clusters were 

annotated and grouped based on the markers presented in Table S2. Small unidentifiable clusters were not included in the figure. 
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Table S 8. Genes that ranked in top 20 that had pre-existing literature tying to circadian/diurnal expression 

Gene DOI Reference 

DDIT4 10.7554/eLife.20214.001, 

10.1073/pnas.1800314115 

SMAP2 10.1038/s41398-019-0671-7 

RPL19 10.1128/MCB.00701-15 

RPS9 10.1073/pnas.1515308112 

PCPB1 10.1038/s41556-019-0441-z 

RPS2 10.1073/pnas.1601895113 

RBM3 10.1038/srep02054 

COX5B 10.1152/physiolgenomics.00066.2007 

 

Table S 9. Marker genes used to annotate clusters with specified cell population identity.  

Cells Marker Genes 

CD14 Monocytes CD14, LYZ 

CD16 Monocytes FCGR3A, MS4A7 

CD4 T Cells IL7R,CCR7 

CD8 T Cells KLRG1, CD8A, CD8B 

Natural Killer (NK) Cells GNLY, KLRF1, KLRD1 

B Cells BANK1, CD79A, CD79B, CD19 

 

Table S 10. Subject age and demographics. All subjects indicated to be healthy during the study. 

Subject Age Gender 

S1 32 M 

S2 41 M 

S3 34 F 

S4 26 F 
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Table S 11. Details of studies used to get healthy venous blood single-cell RNA sequencing dataset for comparison with 

capillary blood. 

Subject Age Gender Corresponding DOI Corresponding Study 

Identification 

S1 21 M https://doi.org/10.1038/s41598-

020-59827-1 

Pre-THC-S1 

S2 21 M https://doi.org/10.1038/s41598-

020-59827-1 

Pre-THC-S2 

S3 63 F https://doi.org/10.1126/sciimm

unol.abd1554 

Sample 5_Normal 1 

scRNA-seq [SW107] 

S4 54 F https://doi.org/10.1126/sciimm

unol.abd1554 

Sample 13_Normal 2 

scRNA-seq [SW115] 

S5 67 F https://doi.org/10.1126/sciimm

unol.abd1554 

Sample 14_Normal 3 

scRNA-seq [SW116] 

S6 63 M https://doi.org/10.1126/sciimm

unol.abd1554 

Sample 19_Normal 4 

scRNA-seq [SW121] 

S7 50 M https://doi.org/10.1073/pnas.19

07883116 

CT1 

S8 70 F https://doi.org/10.1073/pnas.19

07883116 

CT2 

S9 60 F https://doi.org/10.1073/pnas.19

07883116 

CT3 

S10 70 F https://doi.org/10.1073/pnas.19

07883116 

CT4 

S11 80 M https://doi.org/10.1073/pnas.19

07883116 

CT5 

 

Table S 12. Number of genes in different cell types that is specific to each subject. 

 B Cells Monocytes NK Cells T Cells Any 

S1 55 67 58 269 400 

S2 24 94 49 58 190 

S3 55 149 70 150 353 

S4 49 36 34 44 131 

 

https://doi.org/10.1038/s41598-020-59827-1
https://doi.org/10.1038/s41598-020-59827-1
https://doi.org/10.1038/s41598-020-59827-1
https://doi.org/10.1038/s41598-020-59827-1
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116
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Table S 13. Statistics for debris removal pipeline. 

 Cellranger 

Called 

Removed Added Final # Cells % Removed 

AM1 5808 2662 21 3167 45.83 

PM1 3144 1302 12 1854 41.41 

AM2 8772 2037 20 6755 23.22 

PM2 6172 3587 0 2585 58.12 

AM3 6684 1408 10 5286 21.07 

PM3 7974 2370 4 5608 29.72 

 

 Description File Name 

Table 

S7 

Differential expression analysis 

for each cluster and cell type of 

the combined capillary blood 

(n=22) dataset 

cluster_differential_expression.xlsx 

Table 

S8 

Differential expression analysis 

for all clusters between capillary 

blood (n=22, this study), and 

venous blood (n=11, external 

studies) 

capillary_vs_venous_differential_expression.xlsx 
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