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ABSTRACT

The finite volumemethod (FVM) has been one of the primary tools of computational
fluid dynamics (CFD) for many decades. This method allows for the approximate
solution of a partial differential equation (PDE) to be determined by breaking up
a problem with no analytical solution into smaller pieces that can be solved to-
gether to get a physically realistic simulation. These algorithms can even be used
for PDEs with discontinuous solutions, though they must be carefully designed for
those situations because they cannot assume any level of smoothness in the solution.
An FVM that has been designed for PDEs with discontinuous solutions is referred
to as a shock-capturing method. For most of their history, FVM algorithms have
been developed using rigorous mathematical arguments to formally maximize the
order of convergence of the solution as the grid is refined. However, these argu-
ments depend on the solution to the PDE being smooth, and therefore do not apply
to shock-capturing methods. Instead, shock-capturing methods have traditionally
been designed using human intuition to create algorithms that then perform well
empirically. In this thesis, we instead follow a data-driven approach to train neural
networks to use for enhanced FVM methods.

By including a neural network in our FVM, we can use empirical data to optimize
the algorithm. We can also utilize ideas from traditional FVM algorithms to create
hybrid methods that have tunable parameters and maintain convergence guarantees
present in FVMs that have been designed by hand. We explore these hybrid methods
in a variety of settings. First, we create a general-purpose shock-capturing method
WENO-NN by hybridizing the popular shock-capturing method WENO-JS with a
neural network. Additionally, we develop a network architecture, called FiniteNet,
that can be used to learn a coarse-graining model associated with a specific PDE
and embed it into an FVM scheme. Finally, we also explore the idea of using
transfer learning to further improve the WENO-NN for specific problems and name
the resulting algorithm WENO-TL. We demonstrate experimentally that this hybrid
approach results in methods that can offer similar error levels as traditional FVMs at
less computational cost. Although the neural network increases the computational
cost of one evaluation of our hybrid FVM, these methods also allow the simulation
to be carried out on a coarser grid, leading to a net reduction in both simulation time
and memory usage.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Partial differential equations (PDE) are fundamental to many areas of physics, such
as fluidmechanics, electromagnetism, and quantummechanics (Sommerfeld, 1949).
However, it is very rare that analytical solutions exist for practical problems involving
PDE. Hence, they are often solved numerically to get an approximate solution. Some
popular algorithms for numerically solving PDE are the finite difference method
(FDM), the finite volume method (FVM), and the finite element method (FEM).
Each of these algorithms work by discretizing the continuous domain that the PDE
is to be solved on into a finite amount of smaller pieces. This allows the spatial
derivative terms of the PDE to be replaced with differences. For a time-invariant
PDE, this converts the PDE into a system of algebraic equations that can then be
solved with standard techniques such as matrix inversion or Newton’s method. For
time-dependent PDE, which this thesis focuses on, spatial discretization converts
the PDE into a system of ODE’s. This process is referred to as the method of lines.
The system of ODEs can then be solved with numerical integration techniques such
as Runge Kutta schemes. For some problems, the domain must be discretized into a
very large number of nodes, cells, or elements, which can lead to a supercomputer
being required to obtain an accurate approximation.

All classical physics models are approximations obtained by coarse-graining the true
quantum mechanical behavior of matter. For example, the Navier-Stokes equations
are obtained by treating a fluid as a continuum; despite this, the equations are
still too computationally expensive to solve for most practical problems (Ishihara,
Gotoh, and Kaneda, 2009), and so they are further coarse-grained by methods such
as Large-Eddy Simulation (LES) (Halpern, 1993) or Reynolds Averaged Navier
Stokes (RANS) (Chen, Patel, and Ju, 1990) to infer sub-grid behavior. Each of these
coarse-grained models save multiple orders of magnitude of computational expense
(Drikakis and Geurts, 2006; Wilcox, 1998). However, these approaches do not
lead to models that are generally applicable (Spalart, 2010), and sometimes produce
results that are untrustworthy when solving hard problems, such as transition from
laminar to turbulent flow (Zhiyin, 2015). One instance of coarse graining that we
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will focus on in detail in this thesis is the modeling decision to ignore viscosity
entirely in low viscosity flows that contain shockwaves. Physically, shock waves do
have a finite-width associated with them (Puckett and Stewart, 1950), but because
this occurs over such a small length scale fully resolving the shock requires a very
fine grid. By ignoring viscosity, the exact solutions to the PDE instead become
discontinuous, and the approximate solution instead smears the shockwave over
several grid points via numerical error rather than to accurately capture the physical
width of the shock. This approach saves computational expense without necessarily
invalidating the rest of the solution (LeVeque et al., 2002).

Shock capturing is one specific instance of coarse-graining, but many other exam-
ples exist. PDEs give rise to vastly different solution structures in different problems
(Sommerfeld, 1949). Hence, a solution approach that works well for one equation
will not be generally applicable, as different difficulties can cause different methods
to fail. As alluded to before, one major difficulty we examine in this thesis is PDEs
with discontinuous solutions. We also briefly investigate PDEs with chaotic dynam-
ics. PDEs with chaotic dynamics are challenging because small errors will grow
quickly in time, causing the numerical solution to diverge from the true solution if
the solver is not accurate enough (Strogatz, 2001). Typically, high-order numerical
methods are used to solve these problems as they offer the best asymptotic error
bounds (Deville et al., 2002). PDEswith discontinuous solutions are difficult to solve
because high-order methods lead to Gibbs phenomena near discontinuities (Gottlieb
and Shu, 1997), which can lead to numerical instabilities. High-order methods are
derived with the assumption that the solution is smooth (LeVeque, 2007), but no
method can achieve better than first-order accuracy in the presence of a disconti-
nuity (LeVeque et al., 2002). Hence, we can see methods used to solve turbulence
and discontinuities are at odds with each other, which makes it especially challeng-
ing to simulate problems that involve both of these issues. Other difficulties can
arise in these problems such as multiphysics behavior like magnetohydrodynamics
(Davidson, 2002; DeVore, 1991; Gammie, McKinney, and Tóth, 2003), combus-
tion (Peters, 2001; Linan and Williams, 1993; Veynante and Vervisch, 2002), and
fluid-structure interaction (Bungartz and Schäfer, 2006; Bazilevs et al., 2008; Tal-
lec and Mouro, 2001; Dowell and Hall, 2001). Other problems involve complex
geometries (Kim, Kim, and Choi, 2001; Mahesh, Constantinescu, and Moin, 2004;
Mohd-Yusof, 1997), and many other challenges (Borggaard, Burns, and Zietsman,
2004; Gustafsson and Holmgren, 2010; Funaki, 1995; Ricardez-Sandoval, 2011;
Givoli, 1991).
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Numerical methods such as FDM and FVM are often developed without knowl-
edge of the specific equation that they will be used to solve, and instead opt to
maximize the rate of convergence (LeVeque, 2007). However, the dynamics of
PDEs greatly influence the structure of their solutions. This information should be
used to maximize the performance of the numerical methods used to simulate these
equations. Machine learning is the natural tool to hybridize this information with
traditional numerical methods, as detailed experimental/simulation data that con-
tains this behavior is available and can be used to improve these numerical methods.
Furthermore, machine learning techniques for capturing temporal behavior such as
long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997a;
Hochreiter and Schmidhuber, 1997b; Gers, Schmidhuber, and Cummins, 1999), and
spatially local behavior such as convolutional neural networks (CNN) (Fukushima,
1980; LeCun, Boser, et al., 1989; LeCun, Bottou, et al., 1998), have undergone sig-
nificant development. This makes machine learning highly effective for modeling
problems with these structures, both of which occur in time-dependent PDEs.

By solving PDEs more efficiently, we can gain an improved understanding of the
physics that underlies many important phenomena. This thesis will focus on applica-
tions to fluid mechanics. Understanding fluid mechanics has practical consequences
in a wide variety of settings. Some examples that have been investigated by the Com-
putational Flow Physics group include shockwave lithotripsy used in the breakup
of kidney stones (Maeda et al., 2018; Johnsen and Colonius, 2008; Pishchalnikov
et al., 2003), external aerodynamics of aircraft (Liska and Colonius, 2017; Men-
galdo et al., 2017; Yu, Dorschner, and Colonius, 2020), turblent jets for reducing
aircraft engine noise (Reba et al., 2003; Jang et al., 2012; Jordan and Colonius,
2013; Pickering et al., 2020), and even feeding patterns of whales (Bryngelson and
Colonius, 2020; Bryngelson and Colonius, 2019).

1.2 Historical Context and Literature Review
1.2.1 Shock Capturing Methods
Shock-capturing methods are designed with the goal of sharply resolving a shock
without inducing spurious oscillations, while also giving accurate solutions in
smooth regions of the flow. One major breakthrough in this effort was the de-
velopment of high-resolution methods (Harten, 1983), as these methods were ca-
pable of achieving second-order accuracy without introducing spurious oscillations
around shocks. These methods gave rise to a class of high-resolution methods called
essentially non-oscillatory (ENO) schemes (Harten et al., 1987) that measure the
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smoothness of the solution on several stencils, and then compute the flux based
on the smoothest stencil to avoid interpolating through the discontinuity. These
schemes are nonlinear (even when the PDE are linear) since the interpolation coeffi-
cients depend on the solution. These ideas were then modified to create WENO-JS
(weighted ENO-Jiang Shu) methods (Jiang and Shu, 1996), which again compute
the smoothness on several stencils. However, instead of taking only the smoothest
stencil, these methods take a weighted average of the fluxes predicted on each stencil
to emphasize the smoother ones. When each stencil is equally smooth, the weights
are designed to cause the method to converge to the constant coefficient scheme
that maximizes the order of accuracy over the union of the sub-stencils, which gives
these methods a high order of accuracy for smooth solutions.

Many efforts have built on the originalWENO-JS schemes bymodifying the smooth-
ness indicators (Ha et al., 2013; Kim, Ha, and Yoon, 2016; Rathan and Raju, 2018a),
modifying the nonlinear weights (Borges et al., 2008; Castro, Costa, and Don, 2011;
Rathan and Raju, 2018b), and using WENO-JS as part of a hybrid scheme (Li and
Qiu, 2010; Peer, Dauhoo, and Bhuruth, 2009).

One commonality that has persisted since the original ENO scheme is a reliance
on human intuition in shock-capturing method design, particularly in the nonlinear
aspects of the schemes, i.e. smoothness indicators and weighting functions. While
they have beenwell studied, there is no reason to believe that they are optimal. Efforts
have been made to develop optimal spatial discretization methods by minimizing
wave propagation errors (Kim and Lee, 1996; Lele, 1992; Liu, 2013; Tam and
Webb, 1993) and minimizing error over certain frequency ranges (Zhang and Yao,
2013), and some of these techniques have even been combined with shock-capturing
schemes (Fang, Li, and Lu, 2013; Wang and Chen, 2001). However, designing
the optimization problem still requires human intuition with regards to balancing
competing goals, rather than attempting to learn an optimal scheme from data in an
unbiased way.

1.2.2 Overview of ML for PDEs and Fluid Mechanics
Over the past decades, machine learning has become ubiquitous in data analysis
and is increasingly seen as having potential to improve (or reformulate) numerical
methods for PDEs. Research intersecting PDEs with machine learning (ML) can
be divided into two main goals: discovering PDEs from data, and using ML to
better solve PDEs (Raissi, Perdikaris, and Karniadakis, 2019). Although this thesis
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focuses on solving PDEs, we will briefly discuss efforts to discover them from
data. Brunton et al. (Brunton, Proctor, and Kutz, 2016) learned dynamical systems
by applying lasso regression to a library of functions. Many papers used LSTMs
or other sequence models to learn dynamical systems (Hagge et al., 2017; Yu,
Zheng, et al., 2017; Vlachas, Byeon, et al., 2018; Wan et al., 2018; Li, Yu, et al.,
2017; Vlachas, Pathak, et al., 2020). Other papers learned coarse-graining models
by following a system identification approach (Ling, Kurzawski, and Templeton,
2016). An important quality of PDEs is the presence of spatiotemporal dynamics.
Many ML approaches have been developed to make inferences about systems with
this characteristic. Xingjian et al. (Xingjian et al., 2015) used a convolutional
LSTM to predict short term rainfall based on radar maps. Mohan et al. (Mohan
et al., 2019) developed a deep learning framework called compressed convolutional
LSTM to reduce the dimensionality of turbulence.

Another interesting approach to turbulence modeling involves the use of multi-agent
reinforcement learning (Novati, Laroussilhe, andKoumoutsakos, 2021)with the goal
of achieving better generalization than is possible with supervised learning, which
is by far the most popular machine learning approach to turbulence modeling. They
demonstrate their approach on LES, and use statistical properties of corresponding
direct numerical simulations (DNS) as a reward for their reinforcement learning
agents. Another interesting paper focuses on the more practical side of CFD by
focusing on computer-aided engineering (CAE) commonly used in industry (Moli-
naro et al., 2021). They use machine learning to increase the size of CFD databases
used in CAE by following a hybrid physics and data-driven model, allowing their
data to cover a wider range of parameters that may be encountered in practice. Their
work resulted in what they call a Simulation Digital Twin (SDT). For a more general
overview of machine learning in fluid mechanics, there is a useful review article
(Brunton, Noack, and Koumoutsakos, 2020). This article gives an overview of the
potential for useful interdisciplinary research merging these two fields, presents an
overview of some popular techniques and models used in machine learning, reviews
techniques that have been developed for flowmodeling with machine learning, tech-
niques for flow optimization and control using machine learning, and a discussion
of where this research area is most likely headed and what progress can be expected.
Another interesting review focuses on physics informed machine learning in general
(Karniadakis et al., 2021). This review discusses several prominent approaches to
developing data-driven models for physics problems that utilize domain knowledge
to improve model performance, such as physics informed neural networks, kernel
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approaches, data-driven numerical methods, and other hybrid approaches.

Solving PDEs with machine learning can be further broken up into two main areas:
using data to develop better solvers, and parameterizing solutions to PDEs as a
neural network and learning weights to minimize the pointwise error of the PDE
(Lagaris, Likas, and Fotiadis, 1998), although we will also discuss papers that do not
fall into either of these two categories. This second idea has been further developed
(Rudd, 2013) to solve problems such as high-dimensional PDEs (Sirignano and
Spiliopoulos, 2018). Dissanayake et al. (Dissanayake and Phan-Thien, 1994)
exploit the fact that neural networks are universal approximators to transform the
problem of solving a PDE into an unconstrained minimization problem. Yu et
al. (Yu, Hesthaven, and Yan, 2018) trained a neural network to classify the local
smoothness and apply artificial viscosity based on this classification. Hsieh et al.
(Hsieh et al., 2019) attempted to learn domain specific fast PDE solvers by learning
how to iteratively improve the solution using a deep neural network, resulting in
a 2-3 times speedup compared to state-of-the-art solvers. Pfau et al. (Pfau et al.,
2018) parameterized the eigenfunctions of eigenvalue problems as a neural network
and cast the training as a bilevel optimization problem to reduce bias, resulting in
significantly decreased memory requirements.

One impactful framework for using neural networks to solve PDEs is Physics In-
formed Neural Networks (PINN) (Raissi, 2018). These neural networks can be used
both for the discovery and solving of PDEs. Their paper proposes several frame-
works for solving PDEs. The first is a continuous time approach, which does involve
approximating the solution of a PDE as a neural network and penalizing violations
to the PDE, and the initial and boundary conditions. They also propose a discrete
time framework involving Runge-Kutta methods, where they place a multi-output
network prior on the discrete time solution, and again penalize violations to the
PDE and initial and boundary conditions. They later extended this idea to fractional
PINNs, or fPINNs (Pang, Lu, and Karniadakis, 2019), which are capable of solv-
ing PDEs with fractional order derivatives. Another development to PINNs is the
hp-VPINN (Kharazmi, Zhang, and Karniadakis, 2021), or hp-variational PINN that
synthesizes ideas from hp-FEM. This approach uses hp-refinement via domain de-
composition to learn the solution locally, where again the solution is paramaterized
as a neural network. There have also been many papers studying the performance
of PINNs (Yang and Perdikaris, 2019; Shin, Darbon, and Karniadakis, 2020; Wang,
Teng, and Perdikaris, 2020; Zhang, Lu, et al., 2019), as well as many others applying
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them in a variety of settings (Mao, Jagtap, and Karniadakis, 2020; Sahli et al., 2020;
Yang, Zafar, et al., 2019).

One successful application of machine learning to PDEs is the neural operator,
introduced through the Graph Kernel Network (Li, Kovachki, et al., 2020c), which
is used to learn an operator that can be used to solve PDEs. This paper models
the Green’s function corresponding to a PDE as a graph neural network (GNN),
which leads to a resolution-independent solution to the PDE that can be obtained
via integration. This technique was then extended to the multipole graph neural
operator (Li, Kovachki, et al., 2020b), which allows the GNN to pass information
over long distances and capture long range interactions with only linear complexity.
Another relatedmodel is the Fourier Neural Operator (Li, Kovachki, et al., 2020a), in
which the integral kernel is parameterized directly in Fourier space, which provides a
family of functions that is very efficient for many physical problems. This approach
leads to up to a three order of magnitude speedup compared to traditional PDE
solvers. Another paper that uses kernel learning for solving PDEs uses the random
feature model (Nelsen and Stuart, 2020) to parameterize an operator mapping the
initial data associated with a PDE to its solution.

1.2.3 ML for finite difference and similar methods
In our work, we focus on time-dependent problems that are solved via time-stepping.
There have been numerous efforts to develop discretization methods tailored to
specific types of dynamics. There have also been machine learning strategies that
develop equation-specific spatial discretization schemes. The idea of embedding
machine learning models into spatial discretization methods for the purpose of
coarse-graining was introduced by Bar-Sinai et al. (Bar-Sinai et al., 2019). In their
paper, they trained a neural network to interpolate over the solution of a PDE to
more accurately predict the solution at the next timestep. They then extended their
method to include physical constraints, examined much larger cases (Kochkov et al.,
2021), and found that they could achieve a comparable error by using a 10x coarser
grid, which resulted in a roughly 80x speedup. In this paper, they also investigated
learning corrections, which is similar to LESmodeling, where they model a residual
correction to the governing equations as a neural network. They also demonstrated
strong potential for their learned schemes to generalize to unseen problems, as
they train their model on forced turbulance and then show that it can accurately
solve other problems such as decaying turbulence and turbulence with a previously
unseen Reynold’s number. PDE-Net followed a similar approach (Long, Lu, Ma,
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et al., 2017; Long, Lu, and Dong, 2019) in learning derivatives while also learning
the PDE from data. Ranade et al. introduced DiscretizationNet (Ranade, Hill, and
Pathak, 2021), which similar to other methods uses CNN-based encoder-decoder
model that takes in PDE variables as its inputs and outputs new PDE variable values.
Their model includes their discretization scheme into their computational graph to
more quickly compute PDE residuals in order to solve the steady, incompressible
Navier-Stokes equations. Recently, Bezgin et al. introduced a new technique for
simulating PDEs with nonclassical undercompressive shocks (Bezgin, Schmidt, and
Adams, 2021) in which they use a CNN for adaptive nonlinear flux reconstruction
based on the local flow field. They utilize the idea of matching the truncation error
of a discretization scheme using nonlinear terms. More specifically, they predict
the time evolution of exact solutions of Riemann problems, and apply their method
to hyperbolic conservation laws with non-convex fluxes. Another paper proposes
MeshGraphNets (Pfaff et al., 2020), which trains a graph neural network to pass
messages on a mesh and to adapt the discretization while the simulation is being
stepped forward in time. They demonstrate their algorithm on several different
physical systems such as aerodynamics, structural mechanics, and cloth, and show
that their models can generalize to more complex systems than they were trained on
and speed up the simulation by 1-2 orders of magnitude.

1.3 Summary of contributions and outline
This thesis presents several data-driven algorithms for solving partial differential
equations numerically. We show that these algorithms offer several advantages over
current state of the art methods in terms of simulation accuracy.

1.3.1 WENO-NN
In chapter 3 of this thesis, we present WENO-NN, a data-driven shock capturing
method. This hybrid method enhances the popular WENO5-JS algorithm with a
small neural network. We introduce the strategy of learning a perturbation to an al-
ready sophisticated finite-volumemethod to improve performance on certain classes
of problems. Of note is that WENO-NN is problem-agnostic and can be applied to
any PDE with discontinuous solutions, while most machine learned methods in this
field are problem specific. We experimentally observe that WENO-NN is able to
give faster runtime, lower error, and lower memory usage than WENO5-JS on prob-
lems where WENO5-JS is overly diffusive. Interestingly, WENO-NN is capable of
maintaining a steady-state error profile at interfaces rather than continuing to smear
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the solution as time goes on.

1.3.2 FiniteNet
Chapter 4 of this thesis focuses on another algorithm that we have named FiniteNet,
a data-driven coarse graining method. FiniteNet develops the idea of learning
the temporal structure of PDEs simultaneously with the spatial structure, which is
accomplished by utilizing a fully convolutional LSTM network. It also builds
upon ideas developed in WENO-NN by casting the neural network outputs as
perturbations to a well-known finite volumemethod, and trains neural networks over
long time horizons in the effort of minimizing error accumulation. We demonstrate
the benefits of including a temporal structure in our network by comparing how
different temporal modeling techniques affect network performance, and show that
including temporal modeling improves accuracy on a variety of PDEs. We also
demonstrate that training over long time horizons improves the numerical stability
of the learned scheme.

1.3.3 WENO-TL
Chapter 5 describes WENO-TL, in which we apply transfer learning to WENO-NN
to tune it for specific problems. We see that by combining ideas from the previous
two chapters, we canmore reliably train an equation specific shock capturingmethod
with powerful generalization potential. Most notably, we see that we can train the
algorithm on data from 1D simulations, and then use the resulting numerical scheme
to get a 10× speedup on 2D simulations of the analogous system of PDEs, as was
demonstrated on our density bump test case for the Euler equations.
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C h a p t e r 2

BACKGROUND

This chapter will provide a brief description of information that is helpful for
understanding the work presented in this thesis. It will first provide an overview of
PDEs by discussing some basic PDE theory and the physical context of each PDE
that will be considered in this thesis. This section is followed by a description of the
numerical methods that are used to solve hyperbolic PDEs. It will then describe the
basics of machine learning, neural networks, and the architectures that this thesis
will utilize.

2.1 PDE background
In this thesis, we will solve a variety of PDEs. This section provides some general
background about classifications of PDEs as relevant to this thesis, as well as context
and information about each PDE that we will examine.

2.1.1 Hyperbolic vs. Elliptic PDEs
Two major classifications of PDEs are elliptic and hyperbolic PDEs. Canonical
examples of each include Laplace’s equation

m2D

mC2
+ m

2D

mG2 = 0, (2.1)

which is elliptic, and the wave equation

m2D

mC2
− m

2D

mG2 = 0, (2.2)

which is hyperbolic. While these PDEs do appear to be similar, and are indeed
identical up to a sign difference on the spatial derivative term, the solutions and
strategies for solving them are very different. For a general second order, 2D linear
PDE

! (D) = 0 m
2D

mC2
+ 1 m

2D

mGmC
+ 2 m

2D

mG2 + 3
mD

mC
+ 4 mD

mG
= 0, (2.3)
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the characteristics are real if 12 − 402 > 0, which would make the PDE hyperbolic.
If 12 − 402 < 0, the characteristics are complex and the PDE is elliptic, and
if 12 − 402 = 0 the PDE is parabolic. For a PDE in =-dimensions (including
temporal), characteristics are surfaces in = − 1 dimensions along which information
propagates. As such, the classification of a PDE will affect its solution structure.
This fact can be seen by applying a Fourier transformation to the 2nd order linear
PDE operator to get

!̂ = 0:2
C + 1:C:G + 2:2

G + 3:C + 4:G , (2.4)

which is a quadratic in :C and :G . The solutions of this equation are defined by !̂ = 0,
which illustrates the geometric differences underlying the structures of the solutions
of the PDEs, as these solutions will correspond to ellipses, hyperbolas, or parabolas
depending on the classification of the PDE. This relates back to the characteristics
in an intuitive way, as information will propagate along the characteristics of a
hyperbolic PDE out towards infinity in the same way that a hyperbola will approach
infinity, while this behavior is not present in elliptic differential operators which
tend to smooth out solutions.

2.1.2 Advection Equation
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Figure 2.1: Example solution of (A) linear advection, (B) inviscid Burgers’, and (C)
KS equations for random initial conditions

The linear advection equation is written as

mD

mC
+ 0 mD

mG
= 0. (2.5)

It possesses solutions that are translations of the initial conditions at wavespeed 0,
i.e. for an initial condition of D(G, 0) = 5 (G), the exact solution is D(G, C) = 5 (G−0C).
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In terms of coarse-graining, the sub-grid behavior has no influence on the solution at
subsequent times. Once discretization occurs, no inference can be made about what
happens between grid points, as this is fully determined by the initial condition rather
than the dynamics of the equation. When this equation is solvedwith a discontinuous
initial condition, it serves as a toy problem for advecting different materials in
a multicomponent/multiphase flow. Numerical error causes the discontinuity to
become smeared out during the simulation.

2.1.3 Inviscid Burgers’ Equation
The inviscid Burgers’ equation is written in non-conservative form as

mD

mC
+ D mD

mG
= 0, (2.6)

and is used to model wave-breaking. The nonlinear term causes shockwaves to form
in finite time from smooth initial conditions. A shockwave is a special case of a
discontinuity that is forced by the dynamics: unlike the linear advection equation,
the discontinuity can propogate without progressive diffusion.

2.1.4 Kuramoto-Sivashinsky Equation
The Kuramoto-Sivashinsky (KS) equation is written as

mD

mC
+ a m

4D

mG4 +
m2D

mG2 +
1
2
mD2

mG
= 0, (2.7)

and is used as a toy problem for turbulent flame fronts. Its dynamics lead to
chaotic spatiotemporal behavior (Hyman and Nicolaenko, 1986). Chaos for PDEs is
analagous to dynamical systems, defined by a small perturbation in initial conditions
drastically affecting the time-evolution of the system (Strogatz, 2001).

2.1.5 Euler Equations
The Euler equations describe inviscid fluid flow. Each equation accounts for a
different conserved fluid property. In one dimension, they are written as

md

mC
+ m (dD)

mG
= 0, (2.8)

mdD

mC
+ m (% + dD

2)
mG

= 0, (2.9)

m�

mC
+ m ((� + %)D)

mG
= 0, (2.10)

% = (W − 1) (� − 1
2
dD2), (2.11)
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Figure 2.2: Example solution of the 1DEuler equations for random initial conditions,
showing (A) density, (B) velocity, and (C) pressure

and describe conservation of mass, momentum, and total energy respectively. The
last equation is the equation of state for an ideal gas. In two dimensions they are
written as

md

mC
+ m (dD)

mG
+ m (dE)

mH
= 0, (2.12)

mdD

mC
+ m (% + dD

2)
mG

+ m (dDE)
mH

= 0, (2.13)

mdE

mC
+ m (% + dE

2)
mH

+ m (dDE)
mG

= 0, (2.14)

m�

mC
+ m ((� + %)D)

mG
+ m ((� + %)E)

mH
= 0, (2.15)

% = (W − 1) (� − 1
2
d(D2 + E2)), (2.16)

and once again describe conservation of mass, G and H momentum, and total energy,
as well as the equation of state for an ideal gas. They possess a more complex
solution structure than the other PDEs discussed, as discontinuous initial conditions
can split into shockwaves, rarefactions, and contact discontinuities.

2.2 Numerical methods background
2.2.1 The finite-difference method
One spatial discretizationmethodwe combinewithmachine learning is FDM. In this
method, derivatives of the solution are approximated as a weighted combination of
local values of the solution. For example, one could approximate the first derivative
of a function at a point as
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mD

mG
≈ 1
ΔG

1∑
8=−1

28D8 =
D1 − D−1

2ΔG
(2.17)

by using coefficients 2−1 = −1
2 , 20 = 0, and 21 =

1
2 . We use the facts that the

bounds on 8 can be expanded and the values of 28 are not fully constrained to allow
a neural network to chose these coefficient values based on the local solution as
20:1 = 5 (D0:1).

2.2.2 The finite-volume method
We also consider equations that are more natually solved using FVM, a spatial dis-
cretization method similar to FDM. FVM offers the advantage of improved stability
(Bar-Sinai et al., 2019), and is easier to extend to unstructured meshes (Chen, Liu,
and Beardsley, 2003). Rather than splitting the domain up into a grid of nodes and
solving the original PDE as is done in FDM, FVM splits the domain up into cells,
and the integral form of the PDE is solved for each cell. The average value of the
solution over the cell is modeled, and interpolated to determine fluxes between cells.
This concept is illustrated by the example below.

2.2.2.1 Example

Consider the scalar conservation law

mD

mC
+ m 5 (D)

mG
= 0 (2.18)

One can split the G-domain into cells of width ΔG and average over them as

1
ΔG

∫ G8+ΔG

G8

mD

mC
+ m 5 (D)

mG
3G = 0 (2.19)

to get
mD̄8

mC
+ 5 (D(G8 + ΔG)) − 5 (D(G8))

ΔG
= 0. (2.20)

Note that this equation is still exact. The cell average values D̄ are tracked and
interpolated to find D locally as

D(G8) ≈
1∑
9=0

2 9 D̄ 9 . (2.21)

Once again, the coefficients 2 9 are not fully constrained and can be determined using
machine learning.
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2.2.3 Time stepping methods
Runge-Kutta methods are a family of numerical integrationmethods used to advance
a differential equation mD

mC
= ! (D) forward in time. In this thesis, we use SSPRK3

(Gottlieb and Shu, 1998)

D(1) = D(=) + ΔC! (D(=)),

D(2) =
3
4
D(=) + 1

4
D(1) + 1

4
ΔC! (D(1)),

D(=+1) =
1
3
D(=) + 2

3
D(2) + 2

3
ΔC! (D(2)),

(2.22)

a three-step, third-order accurate method that preserves the total variation diminish-
ing (TVD) property)+ (D(C8+1)) ≤ )+ (D(C8)) of explicit Euler, where total variation
is defined as

)+ (D) =
#∑
8=1
|D(G8) − D(G8−1) |. (2.23)

ATVDmethod prevents the time-steppingmethod from adding spurious oscillations
to the solution, which is a major concern for PDEs with discontinuous solutions, as
they can lead to instabilities that crash the simulation in nonlinear PDEs such as the
inviscid Burgers’ equation.

2.2.4 Lax Equivalence Theorem
An important characteristic of any approximation method is whether or not it con-
verges to the true solution. When solving a PDE numerically, one can use the Lax
Equivalence theorem to determine whether or not a given simulation will converge.
The theorem states that if the method is consistent and stable, then convergence is
guaranteed (LeVeque, 1992).

Consistency is achieved if the FDM or FVM algorithm used for the simulation
correctly approximates the spatial derivative terms. Consistency can be verified
by examining the local truncation error associated with the spatial discretization
method. For example, for the centered difference scheme

mD

mG
≈ D1 − D−1

2ΔG
(2.24)

we can perform a Taylor expansion of each term to get
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D1 = D0 + ΔG
mD

mG
+ ΔG

2

2
m2D

mG2 +
ΔG3

6
m3D

mG3 + ...

D−1 = D0 − ΔG
mD

mG
+ ΔG

2

2
mD

mG2 −
ΔG3

6
m3D

mG3 + ...
(2.25)

Substituting these expressions into the difference scheme gives

mD

mG
≈ mD
mG
+ ΔG

2

3
m3D

mG3 + ... (2.26)

so one can see that asΔG approaches 0, the difference will converge to the derivative,
making the method consistent. Because the leading order error term is proportional
to ΔG2, this method is said to be second order accurate.

In the context of solving PDEs, stability refers to the accumulation of errors being
bounded as the equation is stepped through time. In a linear PDE, this is achieved if
the total variation of the numerical solution is bounded as ΔC approaches 0. Stability
can be analyzed for linear PDEs by Von Neumann stability analysis, but is nontrivial
to analyze for nonlinear PDEs, and instead must be verified empirically for specific
problems (LeVeque, 1992).

2.2.5 Modern shock capturing methods
Shock capturing methods aim to accomplish the difficult task of simulating PDEs
with discontinuous solutions with no special treatment of the discontinuities. What
this means is that the same algorithm can be applied everywhere, and one does
not need to explicitly track the location of the discontinuity. This approach has
the advantage of being simple and reliable, with the disadvantage of smearing the
discontinuity over several cells.

One difference between classical and modern shock capturing methods is that mod-
ern methods tend to use upwind-biased stencils, while classical methods tend to use
a symmetric stencil. By using a stencil that is biased in the direction of the flow,
the algorithm uses information that is more physically relevant to determining the
solution at the next time step, which can lead to improved accuracy and stability
(Yee, 1987).

In order for a shock capturing method to be stable, some form of numerical dissipa-
tionmust be added to damp out spurious oscillations. This detail gives rise to another
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important difference between classical and modern shock capturing methods: clas-
sical shock capturing methods apply a constant amount of artificially viscosity to
the entire domain, while modern shock capturing methods can adapt this quantity
based on local flow properties such as smoothness. This adaptivity allows modern
shock capturing methods to maintain a high order of accuracy in smooth regions
of the flow, which is why they are also sometimes referred to as high-resolution
schemes.

An important example of a modern shock capturing method is ENO. The ENO
algorithm works by computing the flux on several different sub-stencils, measuring
the smoothness on each sub-stencil, and then selecting the flux on the sub-stencil
where the solution is smoothest. An example of this for a five point stencil broken
up into three three point sub stencils can be seen below (Harten, 1983).

First, the fluxes are computed on each stencil as

5̂
(1)
9+1/2 =

1
3
5 (D 9−2) −

7
6
5 (D 9−1) +

11
6
5 (D 9 )

5̂
(2)
9+1/2 = −

1
6
5 (D 9−1) +

5
6
5 (D 9 ) +

1
3
5 (D 9+1)

5̂
(3)
9+1/2 =

1
3
5 (D 9 ) +

5
6
5 (D 9+1) −

1
6
5 (D 9+2)

(2.27)

and the corresponding smoothness indicators are computed as

V̂(1) =
13
12
( 5 (D 9−2) − 2 5 (D 9−1) + 5 (D 9 ))2 +

1
4
( 5 (D 9−2) − 4 5 (D 9−1) + 3 5 (D 9 ))2

V̂(2) =
13
12
( 5 (D 9−1) − 2 5 (D 9 ) + 5 (D 9+1))2 +

1
4
( 5 (D 9−1) − 5 (D 9+1))2

V̂(3) =
13
12
( 5 (D 9 ) − 2 5 (D 9+1) + 5 (D 9+2))2 +

1
4
(3 5 (D 9 ) − 4 5 (D 9+1) + 5 (D 9+2))2

(2.28)

The flux is then reported as 5̂ (:)
9+1/2, where

: = arg min
8∈{1,2,3}

V̂(8) (2.29)

The ENO algorithm was then used as inspiration for creating the weighted ENO, or
WENO-JS, algorithm (Jiang and Shu, 1996). Rather than simply selecting the flux
with the smoothest local solution values, a weighted average of these fluxes is taken
based on the smoothness indicators.
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The smoothness indicators are used to compute nonlinear weights as

F̂: =
W:

(n + V(:))2

W1 =
1
10

W2 =
3
5

W3 =
3
10

(2.30)

where n is taken to be a small value, typically 1� − 6. The nonlinear weights are
then scaled such that they add to one as

F: =
F̂:∑3
8=1 F̂8

(2.31)

and the flux is finally computed as

5̂ 9+1/2 = F
(1) 5̂ (1)

9+1/2 + F
(2) 5̂ (2)

9+1/2 + F
(3) 5̂ (3)

9+1/2 (2.32)

2.2.6 Lax-Friedrichs Flux Splitting
As mentioned above, modern shock capturing algorithms tend to use an upwind
biased stencil. For example, in the ENO and WENO scheme presented previously
information is used from three cells to the left of the location where the flux is to
be computed, while only two cells are used from the right. Hence, depending on
the direction of the characteristic waves the simulation may become unstable. One
method that addresses this problem is Lax-Friedrichs flux splitting (LeVeque, 1992).

For a system of hyperbolic conservation laws with vector valued D

mD

mC
+ m 5 (D)

mG
= 0, (2.33)

the Jacobian of 5 (D) w.r.t. D must be positive semidefinite for an upwind scheme
to remain stable. If that property is not satisfied automatically by the original
hyperbolic conservation law, one can split the flux as

5 (D) = 5 +(D) + 5 −(D) (2.34)
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where 5 +(D) has a positive semidefinite Jacobian and 5 −(D) has a negative semidef-
inite Jacobian. One simple method for computing 5 +(D) and 5 −(D) is to check the
eigenvalues of the Jacobian of 5 (D), which represent wave speeds of the character-
istics, and then adding them to the flux as

5 +(D) = 1
2
( 5 (D) + _<0GD)

5 −(D) = 1
2
( 5 (D) − _<0GD)

(2.35)

where _<0G is the highest magnitude eigenvalue of the Jacobian of 5 (D). For many
physical systems, these wavespeeds have simple closed form solutions. For example,
for the 2D euler equations these wavespeeds are simply E − 2, E, E and E + 2, where
E =

√
D2
G + D2

H.

One can then compute 5 +(D) exactly as described in the previous section with
WENO-JS, and 5 −(D) by simply mirroring the algorithm about G 9+1/2, so that there
are now 2 cells on the left and 3 on the right.

2.3 Machine Learning background
2.3.1 Regression and Neural Networks
In general, regression refers to the process of optimizing a model to estimate the
relationships between dependent variables and independent variables to match a
dataset. Given a dataset that has independent variables G8 and dependent variables
H 9 , we assume that these inputs can be mapped to the outputs via some parametric
function H = 5 (G; \) with parameters \. To determine these parameters, we choose a
loss function, which is often taken to be the square error (H− 5 (G; \))2 and minimize
its expectation E[(H − 5 (G; \))2]. In practice, this can be achieved using the given
data and minimizing the sum square error as

\ = arg min
\̂∈R:

∑#
8=1(H8 − 5 (G8; \̂))2 . (2.36)

One of the simplest examples of the regression function is linear regression. In this
case, we simply take the inner product of the parameters and the inputs, and add a
bias term

5 (G; \) =< G, \ > +\0. (2.37)
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Another popular regression model is logistic regression, which is defined as

5 (G; \) = 1
1 + exp(< G, \ > +\0)

. (2.38)

This idea of a regression function can then be extended to create neural networks, a
popular and highly flexible class of regression functions. This is done by composing
affine transformations with nonlinear ’activation functions’, such as the sigmoid
function seen above in logistic regression, as the series of operations

H1 = 51(G;Θ(1)) = 6(Θ(1)G + Θ(1)0 )
H2 = 52(H1;Θ(2)) = 6(Θ(2)H1 + Θ(2)0 )
H3 = 53(H2;Θ(3)) = 6(Θ(3)H2 + Θ(3)0 )

...

H = 5= (H=−1;Θ(=)) = 6(Θ(=)H=−1 + Θ(=)0 )

(2.39)

where Θ8 represents a matrix of neural network weights, Θ80 represents a vector of
neural network biases, and as mentioned above 6(.) is an activation function that is
applied to each entry of vector Θ(8)H8−1 + Θ(8)0 . Two of the most popular activation
functions are the sigmoid function

6(G) = 1
1 + exp(G) (2.40)

and the ReLU function

6(G) = max (G, 0). (2.41)

Plots of these functions can be seen in Figure 2.4. The simulations in this thesis use
the ReLU function as the activation function.

2.3.2 Other network architectures
The section above describes a feed-forward, fully connected neural network. How-
ever, this idea can be extended to other architectures that are better suited to problems
that contain certain structures. Two architectures that will be used in this thesis are
the fully convolutional neural network, and the LSTM network.

A convolutional neural network can be used to take advantage of problems that have
spatially local structure. One of the canonical examples of this is image recognition,
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Figure 2.3: Examples of popular activation functions (A) sigmoid, and (B) ReLU

as intuitively, pixels form structures with other nearby pixels. PDEs also have a
spatially local structure, which is already taken of advantage of by many standard
numerical methods such as FVM. In fact, these methods are structurally identical to
the fully convolutional network that is used in every model presented in this thesis.
Conceptually, the fully convolutional network is very simple. Rather than taking the
entire computational domain as an input to the neural network, the network only takes
in several adjacent values, analogous to the computational stencil of a FVMor FDM.
The network is then applied to each location in the domain independently. Expressed
mathematically, the difference can be shown by considering a fully connected neural
network to have the following input-output structure

mD1:#
mG

= 5 (D1:# ) (2.42)

where every input is used to compute every output, while a fully convolutional
neural network would evaluate the inputs as

mD8

mG
= 5 (D8−0:8+1) (2.43)

where only the local values are used to compute the output. This approach drastically
reduces the number of parameters in the neural network, and allows the learned
method to generalize to grids with an arbitrary number of nodes, cells or elements.

An LSTM network can be used to take advantage of problems that have temporal
structure, which is present in time dependent PDEs. This architecture will be used
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in chapter 4 of this thesis for the FiniteNet algorithm. It is a type of recurrent neural
network (RNN). An RNN is a neural network that propogates information forward in
time, and accepts some type of time-dependent input. Compared to a standard neural
network, in addition to the prediction, the network also outputs hidden information
that is used as an input to the network at the next timestep. Mathematically, a simple
example of this can be expressed as

ℎC = 5 (GC , ℎC−1)
HC = 6(GC , ℎC−1)

(2.44)

where ℎC represents the hidden information at time C, GC represents the input at time
C and HC represents the output at time C.

Figure 2.4: Diagram of LSTM cell (from Su and Kuo, 2019)

Unfortunately, classical RNNs such as the one shown in equation 2.44 run into
practical problems with vanishing gradients when information must be propagated
over long time horizons. LSTMs address this problem by allowing gradient infor-
mation to be unchanged as it passes through the network. This property is achieved
by including a ’cell’ which can remember information for an arbitrarily long time,
as well as an input gate, output gate, and forget gate which regulate the flow of
information in and out of the cell. Mathematically, an LSTM with a forget gate can
be expressed as
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5C = f6 (,CGC +* 5 ℎC−1 + 1 5 )
8C = f6 (,8GC +*8ℎC−1 + 18)

>C = f6 (,>GC +*>ℎC−1 + 1>)
2̃C = f2 (,2GC +*2ℎC−1 + 12)
2C =< 5C , 2C−1 > + < 8C , 2̃C >

ℎC =< >C , fℎ (2C) >

(2.45)

where 5 represents the forget gate, 8 represents the input gate, > represents the output
gate, 2 represents the cell,, and* represent the network weights, 1 represents the
network biases, f represents the activation functions, and ℎ represents the hidden
information. This model can also be generalized to deep LSTMs, which have
multiple layers.

2.3.3 Transfer Learning
Transfer learning does not refer to any specific neural network architecture or model,
but rather the reuse of what has been learned in one task for another task (Torrey and
Shavlik, 2010). For example, say one were to train a neural network to determine
whether or not an image has a cat in it. This task would require a significant
amount of data. Then, suppose that they wanted to train another neural network
to determine whether or not an image has a dog in it. This task is very similar to
determining if an image has a cat in it, so one could actually use the neural network
as a starting point, and only retrain the last few layers on the dog dataset. This
situation describes an example of transfer learning, as we are transferring what we
learned about recognizing cat pictures to the slightly different task of recognizing
dog pictures. This example can be seen visually in Figure 2.5.
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Figure 2.5: Example of transfer learning
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C h a p t e r 3

ENHANCEMENT OF SHOCK CAPTURING METHODS VIA
MACHINE LEARNING

3.1 Introduction
For some initial-boundary value problems (IBVP) in fluid mechanics, the solution
of the PDEs include discontinuous initial data or a discontinuity that forms in finite
time, i.e. shockwaves. Numerical methods for solving these PDE must be specially
tailored to properly resolve these discontinuities (LeVeque et al., 2002).

In this chapter, we attempt to train a neural network to improveWENO5-JS. Our goal
is to get closer to the optimal nonlinear finite-volume coefficients while introducing
a minimal amount of bias. Unlike other references, we do not directly change the
smoothness indicators or nonlinear weights of the method. Instead, we use a neural
network to perturb the finite-volume coefficients determined using the original
smoothness indicators and nonlinear weights of WENO5-JS. We attempt to learn an
optimal function for this perturbation using data generated from waveforms that are
representative of solutions of PDEs. These modifications result in a finite-volume
scheme that diffuses fine-scale flow features and discontinuities less severely than
WENO5-JS. We start in the next section by giving a more detailed description of
the proposed algorithm.

While many examples from WENO literature build off of each other rather than
starting from WENO-JS, we will base our method on WENO-JS because our strat-
egy for developing the method does not resemble other methods. However, our
methodology could easily adopt various improvements that have been made to
WENO-JS.

3.2 Numerical Methods
3.2.1 Description of WENO-NN
Although we focus on WENO5-JS in this chapter, our approach could generally be
used to enhance any shock capturing method (or perhaps any numerical method).
The proposed algorithm involves pre-processing the flow variables on a stencil
using a conventional shock capturing method and feeding those results into a neural
network. The neural network then perturbs the results of the shock capturing
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method. Post-processing is then applied to the output of the neural network to
guarantee consistency (Bar-Sinai et al., 2019) (or, more generally, could be used to
enforce other desirable properties). Hence, the augmented numerical scheme takes
on many properties of the original. For example, applying the method to WENO5-
JS results in an upwind-biased finite volume method with coefficients that depend
on the local solution. The steps of the algorithm for enhancing WENO5-JS can be
seen in algorithm 1.

Figure 3.1: Diagram of WENO-NN algorithm

Algorithm 1WENO-NN Algorithm
1: procedure WENONN
2: Begin with cell averages D̄ 9−2: 9+2
3: Scale the cell averages
4: Compute coefficients 2̃ 9−2: 9+2 with WENO5-JS
5: Compute change in coefficients Δ2̃ 9−2: 9+2 with neural network
6: Compute new coefficients 2̂ 9−2: 9+2 = 2̃ 9−2: 9+2 − Δ2̃ 9−2: 9+2
7: Compute final coefficients 2 9−2: 9+2 by transforming 2̂ 9−2: 9+2
8: Compute cell edge value D 9+1/2 = 2 9−2: 9+2 · D̄ 9−2: 9+2
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We use WENO5-JS to pre-process the input data, so that the input to the neural
network is the set of finite-volume coefficients found by WENO5-JS. We found that
including this pre-processing step significantly improved performance. Once the
nonlinear weights F8 are determined according to the WENO5-JS algorithm, the
coefficients for each cell average are computed as

2̃−2 =
1
3
F1,

2̃−1 = −
7
6
F1 −

1
6
F2,

2̃0 =
11
6
F1 +

5
6
F2 +

1
3
F3,

2̃1 =
1
3
F2 +

5
6
F3,

2̃2 = −
1
6
F3.

(3.1)

These five coefficients are the inputs to the neural network, which outputs a change in
each coefficient, Δ2̃8. Our neural network uses 3 hidden layers, each with 3 neurons.
We deliberately make the network as small as possible to reduce the computational
cost of evaluating it. We are able to use such a small network because assuming that
theWENO5-JS coefficients are a useful model input is a strong prior, soWENO5-JS
performs a significant amount of the required processing. Additionally, we noticed
that empirically, increasing the network size did not lead to a meaningful accuracy
improvement. !2 regularization is applied to the output of the neural network to
penalize deviations fromWENO5-JS, which encourages the network to only change
the answer supplied by WENO5-JS when an improved result is expected. The new
coefficients are computed by subtracting the change in coefficients from the old
coefficients.

Additionally, the size of the input space is reduced by scaling cell averages within
the stencil as

ūB =
ū −min ū

max ū −min ū . (3.2)

If all the cell averages have the same value, the scaling equation fails so the value at
the cell edge is simply set to the cell average value.

To guarantee that WENO-NN is consistent, we apply an affine transformation to
these coefficients that guarantees that they sum to one (Bar-Sinai et al., 2019). We
derive this transformation by solving the optimization problem
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min
c∈R5

∑2
==−2(2= − 2̂=)2

s.t.
∑2
==−2(2=) = 1,

(3.3)

which can be reformulated with the substitution Δc = c − ĉ to pose the problem as
finding the minimum norm solution to an under-constrained linear system

min
Δc∈R5

∑2
==−2(Δ2=)2

s.t.
∑2
==−2(2̂= + Δ2=) = 1,

(3.4)

which has the analytical solution

Δ28 =
1 −∑2

==−2 2̂=

5
. (3.5)

One can use the same approach to enforce arbitrarily high orders of accuracy since
the optimization problem has an analytical solution for any constraint matrix of
sufficiently high rank

min
Δc∈R5

∑2
==−2(Δ2=)2

s.t. �(ĉ + Δc) = b.
(3.6)

This optimization problem has analytical solution Δc = �) (��) )−1(b − �ĉ) when
��) is invertible.

We verify that our constraint is satisfied by looking at the convergence rate of
WENO-NN for a smooth solution. For this test case, we will simply use WENO-
NN,WENO5-JS, andWENO1 to take the derivative of D(G) = sin(4cG) +cos(4cG),
and compare the results to the analytical solution mD

mG

∗
= −4c sin(4cG) +4c cos(4cG)

using the error metric

� =

√
| | mD
mG
− mD

mG

∗ | |2
#

. (3.7)

In Figure 3.2, we can see that WENO-NN achieves first order accuracy, which
confirms that the constraint is satisfied. We also see that, as expected, WENO5-JS
converges at fifth order and WENO1 converges at first order as ΔG → 0. However,
when discontinuities are present it is not possible to achieve better than first order
accuracy with any finite volume method (LeVeque et al., 2002). Despite this fact, it
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Figure 3.2: Convergence of WENO-NN, WENO5-JS, and WENO1 for smooth
solutions

is advantageous to use WENO5-JS over WENO3-JS in such situations, as WENO5-
JS still tends to give lower error in discontinuous problems (Shu, 1998), which is
why we chose to use WENO5-JS for processing the cell average values despite the
fact that WENO-NN ends up being first-order accurate. Similarly, we see that for
some discontinuous problems, WENO-NN gives lower error than WENO5-JS. If a
higher order of accuracy is desired in smooth regions of the flow, one could develop
a hybrid method using WENO-NN and any high-order method.

3.2.2 Other Numerical Methods Used
For all simulations shown, we use a third-order TVD Runge-Kutta scheme (Gottlieb
and Shu, 1998) as our time-stepping method

D(1) = D(=) + ΔC! (D(=)),

D(2) =
3
4
D(=) + 1

4
D(1) + 1

4
ΔC! (D(1)),

D(=+1) =
1
3
D(=) + 2

3
D(2) + 2

3
ΔC! (D(2)).

(3.8)

For flux-splitting, we use a Lax-Friedrichs flux splitting procedure (Shu, 2003)
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5 ±(D) = 1
2 ( 5 (D) ± UD),

U = max
D
| 5 ′(D) |.

(3.9)

In this expression, 5 (D) is defined as the flux of a 1-D hyperbolic conservation law
mD
mC
+ m 5 (D)

mG
= 0. When solving the 1-D Euler equations, we apply the flux splitting to

the characteristic decomposition of the system. For our numerical Riemann solver,
we use the Lax-Friedrichs method (Chu, 1979).

3.3 Machine Learning Methodology
We construct our training data directly from known functions that we expect to
represent the waveforms that WENO-NN will encounter in practice. Note that the
same dataset is used for every PDE, as we train only one network and use it for every
WENO-NN result shown in this paper. However, one could develop a problem-
specific dataset if desired. For each datapoint, we start with some function D(G) and
a discretized domain of = cells. The cell average is evaluated on each cell as

D̄(G8) =
1
ΔG

∫ G8+ΔG2

G8−ΔG2
D(G)3G, (3.10)

and because we chose the form of D(G) we can evaluate the cell average analytically.
We also evaluate the function value on the cell boundary as D(G8+ΔG/2) analytically.
We then move along the domain and form the dataset based on the stencil size. So
for WENO-NN, one datapoint involves 5 cell averages as the input with the function
value on the cell boundary as the output. The functions we use when creating the
dataset are step functions, sawtooth waves, hyperbolic-tangent functions, sinusoids,
polynomials, and sums of the above. Sinusoids and polynomials broadly cover
most smooth solutions that would be encountered in practice, and we specifically
chose hyperbolic-tangent functions because they mimic smeared out discontinuities.
Similarly, step functions and sawtooth waves mimic contact discontinuities and
shocks. We included sums of these functions to mimic complex flow fields that may
contain shocks within a turbulent flow. We found that including more data made the
resulting scheme less diffusive and less oscillatory.

When adding a new entry to the dataset, we first check to see if it is close to other
points already present in the !2 sense. Sufficiently close points are not added to
the dataset to prevent redundant data that will slow down the training process. The
resulting dataset has 75241 entries.
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When training the network, we use the Adam optimizer (Kingma and Ba, 2014),
split the data into batches of 80 points to estimate the gradient, and optimize for
10 epochs using the Keras package in python (Chollet et al., 2015). We trained
the network from many different randomly chosen initial guesses of the parameters,
and chose the best one based on performance in simulating the linear advection of
a step function. We apply !2 regularization with a constant of _ = 0.1 to the neural
network output, and find that when splitting the data into a training set of 80% of the
data and a validation set of the other 20% of the data our in-sample error is 0.569
and the out-of-sample error is 0.571, averaged from 100 trials of training on the
dataset, so overfitting within the generated dataset is not a concern. This difference
is so small because the model we are training is of relatively low complexity, and
is essentially underfitting the generated dataset. We use mean squared loss as our
objective function to minimize.

Despite the fact that we do not see overfitting within the generated dataset, we still
observe overfitting when we apply the method to an actual simulation. Figure 3.3
shows the average training error, average validation error, and average error when
using the method to simulate a PDE for different regularization values _ of the
neural network output. The training and validation error are computed using the
mean square error,

�30C0 =

∑#
8=1(H8 − H∗8 )2

#
, (3.11)

while the simulation error is computed by using the learned numerical method
to linearly advect a step function and computing the !2 error at the end of the
simulation,

�B8<D;0C8>= =

√∫ !

0
(D̄(G, )) − D̄∗(G, )))23G. (3.12)

One can see that adding regularization causes error to increase in both the training
and validation datasets but decreases the error in the simulation results. Hence, we
can see that we are overfitting to the training data, but because the validation data
does not show this, we can conclude that the dataset does not exactly match the
distribution we are trying to approximate.

The following paragraph describes our model development process, and can be
skippedwithout loss of continuity. Initially, our model involved constant coefficients
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Figure 3.3: Comparing error trends between (A) exact generated data and (B)
simulation results

rather than a neural network. We eventually found that the added flexibility of a
neural network improved the performance of the numerical method. Initially, the
neural network simply took the local solution values as the input and returned
FVM coefficients as the output. Adding the affine transformation that guarantees
consistency was found to significantly improve the performance of our numerical
method. We initially enforced consistency by setting the neural network to output
only four of the five coefficients, and choosing the last coefficient such that the
method is consistent. We ultimately changed this constraint to the optimization
framework seen in this paper, as it seemed more elegant. However, this change had
very little effect on performance. Using the neural network to perturb the WENO5-
JS coefficients was found to significantly improve performance over having the
neural network directly output the coefficients. When the neural network directly
outputs the coefficients, the trained numerical method is empirically unstable. To fix
this issue, we applied !2 regularization to the coefficients to add damping by biasing
the coefficients to take on similar values. We then realized that we could instead bias
these coefficients towards a scheme that we already know is stable, and modified
the network architecture to perturb the 5th-order, constant coefficient method that
WENO5-JS converges to in the presence of smooth solutions. We then decided to
have the neural network perturb theWENO5-JS coefficients, which we found greatly
improved the performance of themethod. We also found that using these coefficients
as the input to the neural network instead of the local solution values offered further
improvement. Finally, we also experimented with the network size. We found that
past a certain point, increasing the depth of the network and the number of nodes per
layer did not improve performance, even with optimized regularization parameters.
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In order to minimize computational cost, we chose the smallest network that offered
maximum performance, as this network is small and further decreasing its size was
found to rapidly harm performance while offering very little speedup.

3.4 Results
3.4.1 Advection Equation
These results will focus on comparing WENO5-JS to WENO-NN. Every WENO-
NN result we show in this paper was generated using the same neural network with
the same weights. As such, our numerical method is broadly applicable to problems
not discussed in this paper, in contrast with many machine learning solutions that
are problem-specific. No additional training is necessary to use this method for
other PDEs. The first test case we look at is the linear advection of a step function
on a periodic domain. Mathematically, this IBVP is posed as

mD

mC
+ 2 mD

mG
= 0,

D(0, G) =


1, if G ≥ !/2,

0, otherwise,

D(C, 0) = D(C, !).

(3.13)

For this simulation, we set 2 = 1 and ! = 2. We split the domain into 100 cells,
use a CFL number of 2/3, and run the simulation for 50 periods for a total time of
) = 100. Figure 3.4 shows the solution of this PDE for WENO5-JS andWENO-NN
at C = 0, 20, 50 and 100. The solution at C = 0 is also the exact solution at all the
other times plotted.

One can see that the solution usingWENO-NNprovides a closer visual fit to the exact
solution, as WENO5-JS diffuses the discontinuity more significantly than WENO-
NN. WENO5-JS also introduces noticeable overshoot behind the discontinuity. The
neural network has the interesting property that the waveform is nearly invariant to
its propagation, while WENO5-JS continues to diffuse the solution. This behavior
can be explained by examining the artificial fluid properties associated with the
modified equation obtained by Taylor series expansion (assuming linearity of the
scheme). The modified PDE is

mD

mC
+ 2 mD

mG
= a

m2D

mG2 + X
m3D

mG3 − f
m4D

mG4 + . . . (3.14)
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Figure 3.4: Numerical solutions of the advection equation at C = 0, 20, 50 and 100
using (A) WENO-NN and (B) WENO5-JS. Note that the curves in (A) for C > 0 are
indistinguishable.

The expansions give expressions for the artificial viscosity, dispersion, and hy-
perviscosity, mD̄

mC
+ D(G+ΔG2 )−D(G−

ΔG)
2

ΔG
= 0 after making the substitutions D(G + ΔG

2 ) =∑2
==−2 2=D̄(G + =ΔG) and D(G − ΔG

2 ) =
∑2
==−2 2=D̄(G + (= − 1)ΔG), and are computed

as

a = ΔG
∑2
==−2 2=

(=−1)2−=2

2 , (3.15)

X = ΔG2 ∑2
==−2 2=

(=−1)3−=3

6 , (3.16)

f = −ΔG3 ∑2
==−2 2=

(=−1)4−=4

24 . (3.17)

Figure 3.5 shows these quantities for WENO5-JS. In order to estimate the contri-
bution of each term, we approximated the higher-order spatial derivatives using
standard finite-volume methods, and scale each by the magnitude of that derivative.
For example, the influence of artificial viscosity is computed as

�a (G) =
a(G + ΔG/2) + a(G − ΔG/2)

2
|D
′(G + ΔG/2) − D′(G − ΔG/2)

ΔG
|. (3.18)

Hence, we ignore regions of the flow where the coefficient may signify that artificial
viscosity (or other properties) are being added when they would have a negligible
effect because the derivative is small.

One can see that for WENO-JS there is no viscosity or dispersion, as the method is
designed such that on each substencil

∑2
==−2 2=

(=−1)2−=2

2 = 0 and
∑2
==−2 2=

(=−1)3−=3

6 =
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Figure 3.5: Influence of (A) artificial viscosity, (B) dispersion, and (C) hypervis-
cosity of WENO5-JS

0, soWENO5-JS applies only hyperviscosity. Themethod applies a small amount of
negative hyperviscosity near the discontinuity. As time goes on and the discontinuity
continues to diffuse, the influence of hyperviscosity decreases.

Figure 3.6: Influence of (A) artificial viscosity, (B) dispersion, and (C) hypervis-
cosity of WENO-NN

Figure 3.6 shows that unlike WENO5-JS, WENO-NN adds both artificial viscosity
and dispersion to the solution. We see that near the discontinuity, negative viscosity
is being added, which apparently provides the anti-diffusion that causes the disconti-
nuity to retain its steepness, while hyperviscosity is applied to stabilize the solution.
By analyzing physically how WENO-NN works, one could potentially learn how
to develop an improved scheme that does not rely on a neural network, though this
task is beyond the scope of this thesis.

We obtain a quantitative picture of the error in figure 3.7. We plot the !2 error
over time (measured to the exact solution), as well as the total variation, )+ =∑#
8=1 |D(ΔG8) − D(ΔG(8 − 1)) |, to indicate when oscillations have been induced in

the solution. We also measured the width over which the discontinuity is spread by
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counting the cells that have an error above a certain threshold (in this case chosen
to be 0.01) and multiplying this number by ΔG/2 since there are two discontinuities
in the simulation.
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Figure 3.7: Comparing (A) !2 error, (B) total variation, and (C) discontinuity width
over time for WENO-NN and WENO-JS

The figure shows that WENO-NN decreases the error by almost a factor of 2 1.
Although the total variation spikes at the start of the WENO-NN simulation, it
is damped out and returns back to approximately the true value of 2, while the
WENO5-JS total variation steadily climbs to above 2.04. We see a similar behavior
in the discontinuity width, where WENO-NN reaches its steady value relatively
quickly, while WENO5-JS continues to spread.

In order to determine howWENO-NN performs in different settings, the spatial and
temporal discretizations were varied, and the !2 error at the end of the simulation
was measured. We again use a domain of length 2 and simulate for 50 periods.
These results can be seen in figure 3.8.

We can see that WENO-NN tends to outperform WENO5-JS in regions where the
spatial discretization is fine, but results in a larger !2 error for coarse discretizations.
To further compare the methods, figure 3.9 shows the error against the runtime for
the two methods within a range of CFL values. We will only look at moderate
CFL numbers, between 0.25 and 0.75, as stability becomes a concern for both
methods above this range, and it becomes inefficient to run the simulation with CFL
numbers below this range. We will also restrict the cell width to be below 0.025, as
coarser meshes cause the final waveform to be unrecognizable compared to the exact

1Note that the error oscillates between two different values because in the exact solution the
discontinuity switches between being on the edge of a cell and 1/3 of a cell width away from either
the left or right of a cell edge since the CFL number is 2/3. To get a smooth curve, we apply a filter
to the error and plot � (8) = 4 (8)+4 (8−1)+4 (8−2)

3
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Figure 3.8: !2 error at the end of the simulation for (A) WENO-NN and (B)
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solution for both methods, so the error comparison becomes meaningless. We see
that when the CFL number is of a moderate value and the grid is sufficiently refined,
WENO-NN typically achieves lower errors with smaller run time than WENO5-JS.
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Figure 3.9: Comparing the !2
2 error and runtime of WENO-NN, WENO5-JS and

WENO1 for 0.25 < CFL < 0.75 and ΔG < 0.025

We also examine the convergence of each method for this problem in figure 3.10.
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Here we fix CFL = 0.5 and measure the !1 error of each numerical solution. We
find that WENO1 achieves a slope of 0.5, WENO5-JS achieves a slope of 0.82, and
WENO-NN achieves a slope of 1. Despite having a lower order of accuracy for
smooth problems, WENO-NN is able to achieve a faster convergence rate for this
discontinuous problem.
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Figure 3.10: Comparing the convergence rates of WENO-NN, WENO5-JS, and
WENO1 for advection of a step function

3.4.2 Inviscid Burgers’ Equation
We next consider the inviscid Burgers’ equation. Unlike the linear advection equa-
tion that included only contact (initial) discontinuities, the inviscid Burgers’ equation
results in shocks from smooth initial data. The distinction here is important: for
a shock, the dynamics of the PDE will drive the solution towards a discontinu-
ity, countering any diffusive effects associated with the numerics. We will again
consider periodic boundary conditions, though we will start the simulation with a
Gaussian as the initial condition. Hence, the IBVP is posed as
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mD

mC
+ 1

2
mD2

mG
= 0, (3.19)

D(0, G) = exp(−: (G − !
2
)2), (3.20)

D(C, 0) = D(C, !). (3.21)

We simulate the problem for a time of ) = 4 on a domain of length ! = 2, and a
value of : = 20. We first approximate the exact solution by solving this simulation
with ΔG = 3.125 · 10−4 and ΔC = 1.5625 · 10−4 for a total of 6400 cells and 25601
timesteps. What we see is that the !2 error is roughly the same for WENO5-JS
and WENO-NN, as shown by Figure 3.11. Hence, we should expect the method to
perform similarly to WENO5 in the presence of a shock.

10-3 10-2 10-1

∆x

10-3

10-2

10-1

E

WENO-NN
WENO5-JS

Figure 3.11: Comparing error vs. grid spacing of WENO-NN and WENO5-JS for
the inviscid Burgers’ equation

3.4.3 1-D Euler Equations
The last test case we will look at is the Shu-Osher problem, a test case involving
the 1-D Euler equations. Note that the method was also tested on the Sod problem,
but because this test case did not lead to any conclusions not drawn from either
the advection equation or the inviscid Burgers’ equation, these results have been
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omitted. The Shu-Osher problem is a model problem for turbulence-shockwave
interactions. It involves the following equations and initial conditions

md

mC
+ m (dD)

mG
= 0, (3.22)

mdD

mC
+ m (% + dD

2)
mG

= 0, (3.23)

m�

mC
+ m ((� + %)D)

mG
= 0, (3.24)

% = (W − 1) (� − 1
2
dD2), (3.25)

d(0, G) =


3.857143, if G ≤ 1

1 + n sin(5G), otherwise
, (3.26)

D(0, G) =


2.629369, if G ≤ 1

0, otherwise
, (3.27)

%(0, G) =


10.33333, if G ≤ 1

1, otherwise
. (3.28)

The simulation takes place on a domain of length ! = 10 and is run until a final
time of ) = 2. n is set to 0.2. We first obtain an approximately exact solution by
discretizing the solution into 12800 cells and 10240 time-steps and use WENO5-JS
for the simulation. This grid is fine enough to consider the solution exact. We then
solve the problem using 300 cells and 240 time-steps using both WENO5-JS and
WENO-NN, and compare the numerical results to the exact solution. Figure 3.12
shows the density, pressure, and velocity at the end of the simulation.

The most interesting aspect of the solution is the highly oscillatory section of the
density profile, which is considered to behave similarly to turbulence. Figure 3.13
shows a zoomed in view of this section at different grid resolutions.

One can see that the neural network diffuses the oscillations significantly less than
WENO5 for coarse grids, which is an encouraging result in terms of simulating
actual turbulence. As the mesh is further refined, the WENO-NN appears to add too
much anti-diffusion, which inflates fine features of the solution. On the very fine
grid, both WENO5-JS and WENO-NN are similar (provided WENO-NN is stable,
then it is constrained to converge as at least first-order).
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Figure 3.12: Comparing (A) density, (B) pressure, and (C) velocity of WENO-NN
and WENO5-JS to the exact solution for the Shu-Osher problem
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Figure 3.13: Zoomed in view of the turbulent section for different grid resolutions
of (A) 250, (B) 300, (C) 800, and (D) 3200 cells for the Shu-Osher problem

3.5 Discussion and Conclusions
By training a neural network to process the outputs of theWENO5-JS algorithm, we
were able to improve its accuracy, particularly in problems where the artificial diffu-
sion introduced in WENO5-JS was excessive. While WENO-NN is more expensive
per evaluation than WENO5-JS, it achieved lower errors on coarser grids, which
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indicates some potential to be useful more generally. We trace these performance
improvements to increased flexibility in the neural network compared to WENO5-
JS, as it can add artificial viscosity and dispersion while WENO5-JS coefficients
are constrained to make these quantities zero. By analyzing the advection of a step
function, we found that WENO-NN applies negative artificial viscosity near the dis-
continuity, which allows it to maintain its sharp profile (this takes place sometime
into the simulation after the initial profile has been slightly smoothed due to artificial
viscosity that prevents spurious oscillations). We then observe similar behavior in
the Shu-Osher problem, where we see that WENO5-JS diffuses the fine features of
the solution more than WENO-NN. However, we also found that at certain reso-
lutions WENO-NN applies too much negative artificial viscosity, resulting in too
much amplification of these fine scale features, though this amplification does not
develop into an instability. For true shocks, as opposed to contact discontinuities,
we found that our method performs very similarly to WENO5-JS.

One drawback of WENO-NN is that it does not inherit the high-order convergence
of WENO5-JS. It would be an improvement to the method to be able to structure
the network such that its coefficients more quickly converge to those of either
WENO5-JS or the constant coefficient scheme that maximizes order of accuracy in
the presence of smooth solutions. However, this must be done in a way that does
not interfere with predictions in non-smooth regimes that benefit from low-order
behavior, which is a non-trivial task. Until such a method is developed, one would
need to use WENO-NN as part of a hybrid scheme if higher order convergence
is desired in smooth regions (Li and Qiu, 2010). Another outstanding issue with
machine-learned schemes is stability. The WENO-NN scheme used here seemed
to inherit the stability of the underlying WENO5-JS scheme that it was based on,
but this needn’t have been the case, and we cannot offer proof or an estimate for the
maximal CFL.

In future work, we aim to test themethod on large-scale, multidimensional problems.
We would expect the benefits seen in 1-D problems to be more significant when
multiple spatial dimensions are present, as WENO-NN allows for a coarser mesh,
so the improvement scales exponentially with the number of dimensions.
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C h a p t e r 4

FINITENET: A FULLY CONVOLUTIONAL LSTM NETWORK
ARCHITECTURE FOR TIME-DEPENDENT PARTIAL

DIFFERENTIAL EQUATIONS

4.1 Introduction
We try to simultaneously exploit the spatial and temporal structure of PDEs through
the convolutional LSTM architecture of our neural network, while maintaining the
computational structures used in FVM/FDM. While some papers use convolutional
LSTMs or related architectures to predict future values of time-series that also
possess the property of spatial locality (Mohan et al., 2019; Xingjian et al., 2015),
none exploit the FVM/FDM structure that naturally discretizate PDEs. Other papers
have developed coarse-graining models by learning from data and have embedded
these into CNNs (Bar-Sinai et al., 2019), but none simultaneously used an LSTM
structure to also exploit the temporal structure of PDEs. We also present a novel
training approach of directly minimizing simulation error over long time-horizons
by building upon ideas developed for PDE-Net (Long, Lu, Ma, et al., 2017). Our
approach aims to push the field of data-driven scientific computing forward by
combining these ideas in a sufficiently generic and efficient framework to permit
extensions to many problems.

4.2 Methodologies
4.2.1 Network Architecture
We structure our network to utilize well-known methods from numerical PDEs
described earlier (SSPRK, FDM, and FVM). The network architecture mimics the
structure of a grid used to numerically solve a PDE, where the size of the filter of
the convolutional layer corresponds to the stencil that selects which information is
used to compute the derivative, and each output of the network corresponds to the
solution of the PDE at time C 9 and location G8. This can be seen in Figure 4.1.

When looking at a specific realization of the stencil in the G-domain, we arrive at
an LSTM network. The purpose of the LSTM is to transfer information about the
solution over long time-horizons, which adds a feature to our method that is not
present in traditional methods. The hidden information is transferred from substep
to substep (C 9−1 to C 9−2/3 to C 9−1/3, and then to the next step at the end of the current
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step C 9−1/3 to C 9 ).
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Figure 4.1: Network Architecture at (A) the top level, (B) LSTM at a specific G
location, (C) each evaluation of the LSTM

Within each evaluation of the LSTM, the information is used to compute the solution
at the next substep in a way that mimics traditional FDM or FVM. The solution val-
ues at the previous timestep D8−2:8+2, 9−1 and the hidden information with dimension
32 from the previous timestep are input to a neural network with 3 layers and 32
neurons per layer. Note that including the hidden information increases memory
requirements, so the trade off between a more expressive model and using more
gridpoint must be considered for larger problems. This network outputs the hidden
information to the next substep, as well as a prediction of the FVM or FDM coef-
ficients. The neural network does not directly predict these coefficients. Instead,
it first computes a perturbation Δc to the coefficients c>?C , with ;2 regularization
applied to Δc, similarly to a ResNet (He et al., 2016). 2>?C is chosen based on the
problem, and should be a baseline method such as a constant coefficient scheme that
maximizes orders of accuracy or a shock capturing method such as WENO5-JS.
We find that adding this step speeds up training and improves the performance of
the model, as we are effectively biasing our estimate of the coefficients towards the
coefficients that are optimal in the absence of prior knowledge about the solution.
If the model is not confident about how perturbing c>?C will affect the accuracy of
the derivative it can output values close to zero to default back to c>?C . Once c>?C
has been perturbed by Δc to obtain ĉ, an affine transformation is performed on ĉ
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to guarantee that the coefficients are the desired order of accuracy (Bar-Sinai et al.,
2019). This is one of the main benefits of using an FDM structure for our model, as
we can prove that our model gives a solution that converges to the true solution at a
known rate as the grid is refined. The details of this transformation can be seen in
section 4.3.

After the affine transformation, the final coefficients c are known. The spatial
derivatives are computed by taking the inner product of the coefficients 28−2:8+2

with D8−2:8+2, 9−1. For equations with multiple spatial derivatives, a different set
of coefficients is computed for each. These spatial derivatives are then used to
compute the time derivative, which can finally be used to compute the solution at
the next substep. This process is then repeated for the desired number of timesteps.
Our network architecture allows us to train on exact solutions or data of the PDE
end-to-end.

4.2.2 Training Algorithm
We train our network in a way that exactly mimics how it would be used to solve
a PDE. More specifically, we start with some random initial condition and use the
network to step the solution forward in time, and compare the result to the exact
solution. For the linear advection equation, the analytical solution is known for
arbitrary initial conditions. For the inviscid Burgers’ equation and KS equation, the
same simulation is also carried out on a fine grid using a baseline numerical method,
which results in a solution that can be considered approximately exact. The inviscid
Burgers’ equation is solved using WENO5 FVM (Jiang and Shu, 1996), and the KS
equation is solved using fourth-order FDM. The loss is computed by downsampling
the exact solution onto the grid of the neural network, averaging over the square error
at every point in time and space. We found this training strategy to be far superior
to training on only 1 time-step at a time, as our approach is capable of minimizing
long-term error accumulation and training the network to be numerically stable.
In terms of computational complexity, our method is identical to backpropogation
through time (BPTT) (Werbos, 1990).

Although this idea is not demonstrated in this thesis, one could also potentially train
FiniteNet to minimize loss functions other than the !2 error. In coarse graining
simulations, getting the exact solution value at a specific point is typically not the
main goal. For example, when using an LES model for turbulence, one would not
be interested in what the pressure is at a specific point in time and space. Instead,
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Algorithm 2 Train FiniteNet
Select number of epochs =4
Select minibatch size =<
Select time-horizon )
for 8 = 1 to =4 do

Set total MSE to 0
for 9 = 1 to =< do

Select initial condition D 9 (G, 0)
Determine exact solution D∗

9

Initialize hidden information � (0) to 0
for : = 1 to ) do

Compute D 9 (G, C: ) and � (C: ) with FiniteNet
Add MSE between D 9 and D∗9 to total MSE

Compute gradient of simulation error w.r.t. FiniteNet parameters
Update FiniteNet parameters with ADAM optimizer

one would be trying to accurately capture large scale properties of the flow. If one
were to use FiniteNet to design airfoils, then the quantities of interest may be lift
and drag. So perhaps one would want to design their loss function to be !2 + �2,
where ! represents lift and � represents drag.

FiniteNet has many similarities with theWENO-NN algorithm presented in Chapter
3. However, many of the details relating to the model and training process have
been altered. A list summarizing these differences can be seen in Figure 4.2. In
order to make the architecture more general, we now perturb coefficients from a
high-order, constant scheme rather than a shock capturing method, though it would
still be possible to do so. Because we are not necessarily using a scheme with
varying coefficients, FVM coefficients are no longer a suitable input to the neural
network, so we instead use the local solution values.

4.2.3 Accuracy Constraints
FiniteNet is structured such that the numerical method is guaranteed to satisfy a
minimum order of accuracy =, 4 = >(ΔG=) (Bar-Sinai et al., 2019). One can
perform a Taylor series expansion on the approximations of the form of 2.26 to
obtain linear constraint equations that the coefficients must satisfy for the method to
achieve a desired order of accuracy. We take the coefficients that the neural network
outputs, ĉ, and find the minimal perturbation Δc that causes them to satisfy the
constraint equations, which leads to the optimization problem
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Figure 4.2: List of the differences between WENO-NN and FiniteNet. Key differ-
ences have been bolded.

min
Δc∈'5

∑2
==−2(Δ2=)2

s.t. �(ĉ + Δc) = b,
(4.1)

which has analytical solution Δc = �) (��) )−1(b− �ĉ), which can be expressed as
an affine transformation on ĉ, and can therefore be added to the network as a layer
with no activation function and untrainable weights.

4.3 Simulation Results
4.3.1 Summary
We find that our method is capable of reducing the error relative to the baseline
method for all three equations tested. These results show promise for generalization
to other equations, as each PDE we examined has qualitatively different behavior.
A table summarizing our results can be seen in Table 4.2. The variation is due to
averaging results from randomly generated initial conditions. The error ratio 4A is
computed as 4A = 4�

4�
where 4� is the FiniteNet MSE and 4� is the MSE of the

baseline method. We analyze log10 4A because lim4�→0 4A → 0 and lim4�→0 4A →
∞. Hence, one case of the baseline method outperforming FiniteNet could skew
the average and standard deviation of 4A significantly while the opposite would have
very little effect, resulting in a bias. Additionally, the data empirically follows a
log-normal distribution more closely than a normal distribution.
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Table 4.1: Mean and standard deviation of log10 4A for each PDE

Equation log10 4A Better?

Linear Advection -0.27± 0.08
√

Inviscid Burgers’ -0.53± 0.08
√

Kuramoto-Sivashinsky -0.62± 0.41
√

Hyperparameters were tuned to optimize performance on the linear advection equa-
tion. These same hyperparameters were then used as starting points for the other
equations and tuned as necessary. For example, the time-horizon used in training
was changed from 100 to 200 for the KS equation, as this helped FiniteNet track
chaotic solutions over longer time-horizons. Additionally, it was found that in-
creasing the ;2 regularization constant from _ = 0.001 to 0.1 for the KS equations
improved performance. The inviscid Burgers’ equation was trained for 500 epochs
instead of 400 because the error was still decreasing,

All data generation, training, and testing was carried out on a desktop computer
with 32 GB of RAM and a single CPU with 3 GHz processing speed. Hence, by
scaling the computing resources one could scale our method to more challenging
problems. Our code and trained models can be found here: https://github.
com/FiniteNetICML2020Code/FiniteNet, which includes links to our data.

We also find that FiniteNet trains methods that are stable, which tends to be a
challenge in the field of learned FDM. Although we cannot formally prove stability,
we observe in Figure 4.3 that if the randomly initialized network weights lead to
an unstable scheme, the method will quickly learn to become stable by minimizing
accumulated error.

4.3.2 Linear Advection Equation
For the linear advection equation, we generate random discontinuous initial con-
ditions, and compare the errors obtained using FiniteNet to errors obtained using
WENO5. Each epoch involved generating 5 new initial conditions, computing the
error against the exact solution, and updating the weights with the Adam optimizer
(Kingma and Ba, 2014). We trained for 400 epochs.

After training was complete, we tested the model on 1000 more random initial
conditions and computed the error ratio. We saw that FiniteNet outperformed
WENO5 in 999 of the 1000 simulations. A probability mass function (PMF) of the

https://github.com/FiniteNetICML2020Code/FiniteNet
https://github.com/FiniteNetICML2020Code/FiniteNet
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Figure 4.3: Training FiniteNet from unstable initial condition

error ratio can be seen in Figure 4.4.
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Figure 4.4: PMF of linear advection testing

We also plot a WENO5 solution and FiniteNet solution in Figure 4.5 to gain insight
into how FiniteNet improves the solution. We see that FiniteNet more sharply
resolves discontinuities at the cost of adding oscillations, which leads to a net
reduction in error.

We can use this result to hypothesize that FiniteNet will further improve the solution
when the discontinuity is larger. We verify our hypothesis by plotting error ratio
against discontinuity width in Figure 4.6, and verifying that larger discontinuities
lead to lower error ratios.
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Figure 4.5: Solutions of linear advection equation
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Figure 4.6: Discontinuity size vs error ratio for advection equation

4.3.3 Inviscid Burgers’ Equation
We train the neural network to interpolate flux values for the inviscid Burgers’
equation. Once again, each epoch involves generating five random initial conditions.
In lieu of an exact solution, we use WENO5 on a 4x refined mesh to approximate
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the exact solution. We then ran 1000 simulations with the trained network and
compared the results to WENO5. FiniteNet achieved a lower error on 998 of the
1000 test cases. A PMF showing the error ratio for these 1000 test cases can be seen
in Figure 4.7.
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Figure 4.7: PMF of inviscid Burgers’ testing

By examining the error induced when numerically solving this equation with
WENO5 and the FiniteNet in Figure 4.8, we see that WENO5 accumulates higher
error around shocks. This tells us that FiniteNet achieves it’s error reduction by
more sharply resolving the shocks.
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Figure 4.8: Solution of inviscid Burgers’ equation

We can get a prediction of roughly how many and how large of shocks will develop
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in the solution by looking at the total variation of the initial condition. We plot the
total variation of the initial condition and compare it to the error ratio in Figure 4.9.
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Figure 4.9: Trends between total variation and error ratio

This data shows that FiniteNet tends to do better relative to WENO5 when the
total variation of the initial condition is higher, which helps confirm our result that
FiniteNet offers the most improvement when many large shocks form.

4.3.4 Kuramoto-Sivashinsky Equation
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Figure 4.10: (A) Best case, (B) typical case, and (C) worst-case error ratio between
FiniteNet and FDM for KS

The network is trained for the KS equation in the same way as was done for the
inviscid Burgers’ equation: by solving the equation on a 4x refined mesh to closely
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approximate the exact solution. We generate our random initial conditions for
training by setting a random initial condition for the exact solution and simulating
until the trajectory has reached the chaotic attractor, and start training from random
sequences of the solution on the attractor so that we are learning a more consistent
set of dynamics, as the initial transient tends to be less predictable.

After training, we use both FiniteNet and fourth-order FDM to solve theKS equations
from 1000 new initial conditions. We find the FiniteNet achieves a lower error in
961 of the 1000 tests. Interestingly, we see that in some cases standard FDM is
unable to track the chaotic evolution and results in a solution with no visual fit,
while FiniteNet succeeds at tracking the chaotic trajectory over the time horizon
tested. In the cases where FiniteNet leads to a larger error than FDM, we see that
neither method could track the chaotic trajectory, so there is some small probability
that FiniteNet may follow a worse trajectory than FDM. In order to determine the
reliability of FiniteNet compared to FDM, we compute the statistics of the errors
individually. FiniteNet has mean error 1.20 and standard deviation 1.89, while FDM
has mean error 2.94 and standard deviation 3.01. So we see that FDM error has
higher mean and variance, and can conclude that FiniteNet is more reliable.
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Figure 4.11: PMF of KS testing

4.3.5 Comparison with other temporal modeling techniques
We also compare FiniteNet to models that use techniques other than an LSTM
to model temporal behavior. We look at two other simple temporal modeling
approaches, including a basic RNN, and convolutions in time. The basic RNN
is structurally similar to an LSTM, but simpler as it does not attempt to maintain
long-term memory as the LSTM does. By convolutions in time, we simply refer to
using information from multiple previous timesteps as inputs to the neural network.
For this experiment, we use two additional previous timesteps. We also test a model
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Table 4.2: Mean and standard deviation of log10 4A for each model

Equation log10 4A

LSTM -0.27± 0.08
RNN -0.18± 0.12
Convolutions in time -0.22± 0.10
None -0.17± 0.09

with no temporal modeling component as a baseline. We perform this experiment
on the linear advection equation, with randomly generated initial conditions that
were not seen during training. Additionally, we follow the same methodology for
training the other temporal models as was used to train the LSTM model.

We see that the LSTM model achieves the largest error reduction out of the ap-
proaches tested, and that all models that included some sort of temporal model-
ing component outperformed the model that did not have any temporal modeling.
Hence, we can conclude that attempting to model the temporal behavior of a PDE
does improve the performance of the model.

4.4 Discussion
In this chapter, we have presented FiniteNet, a machine learning approach that can
reduce the error when numerically solving a PDE. By combining the LSTM with
well-understood and tested discretization schemes, we can significantly reduce the
error for PDEs displaying a variety of behavior including chaotic and discontinuous
solutions. The FiniteNet architecture mimics the structure of a numerical PDE
solver, and builds the timestepping method, spatial discretization, and PDE into the
network. We train FiniteNet by using it to simulate the PDE, and minimizing sim-
ulation error against a trusted solution. This training approach causes the resulting
numerical scheme to be empirically stable, which has been a challenge for other
approaches.

We compared numerical solutions obtained by FiniteNet to those of baseline meth-
ods. We saw that for the inviscid Burgers’ equation and the linear advection equation,
FiniteNet is more sharply resolving discontinuities at the cost of sometimes adding
small oscillations. This result makes intuitive sense, as the global error is dom-
inated by regions near discontinuities so FiniteNet reduces the error the most by
improving performance in these areas. When examining the KS equations, we see
that FiniteNet reduces the error by more accurately tracking the chaotic trajectory of
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the exact solution. The main challenge of chaotic systems is that small errors grow
quickly over time, which can lead to solutions that have completely diverged from
the exact solution. FiniteNet is able to significantly reduce error by preventing this
from happening in many realizations of this PDE.

Further work could involve comparing the runtime vs. error of FiniteNet to baseline
approaches to more directly characterize how much of an improvement FiniteNet
can offer. Additionally, we have till now only examined problems in one spatial
dimension with periodic boundary conditions. It will be interesting to test the
method on a large-scale problem, such as a turbulent flow.
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C h a p t e r 5

APPLICATION OF TRANSFER LEARNING TO WENO
SCHEMES

5.1 Introduction
In the third chapter of this thesis we presented the WENO-NN algorithm, which we
showed is capable of giving more accurate results at the same level of computational
cost asWENO5-JS by utilizing a small neural network trained on genericwaveforms.
We then showed in the fourth chapter that by training a larger neural network
on simulation data, we can create equation specific methods that lead to a very
significant error reduction. In this chapter we explore the intersection of these two
ideas by applying transfer learning to WENO-NN integrated into a larger neural
network, along with equation specific data.

5.2 WENO-TL Algorithm
The WENO-TL algorithm is similar to WENO-NN described in Chapter 3 of this
thesis. Once trained, WENO-TL is essentially identical in structure to WENO-
NN. The inputs to the algorithm are the cell averages D̄−2:2 selected by the FVM
stencil, to which the WENO5-JS algorithm is then applied to get the WENO5-JS
coefficients, 2̃−2:2. These coefficients are then inputs to a neural network with
identical architecture as was used for WENO-NN, with the last two layers having
been retrained for the problem of interest. This network again outputs perturbations
to 2̃−2:2, as was done for WENO-NN. The main difference between WENO-TL and
WENO-NN is that for some WENO-TL architectures tested, D̄−2:2 is also the input
to an additional network added to make the model more flexible, whose output
is an additional perturbation to 2̃−2:2. After these perturbations are applied and
the perturbed coefficients 2̂−2:2 are obtained, an affine transformation is applied to
ensure that the method is consistent to obtain the final coefficients 2−1:2, and the
interpolated value D1/2 is finally obtained by taking the inner product of 2−2:2 and
D̄−2:2 as < D̄−2:2, 2−2:2 >. The algorithm is shown graphically in Figure 5.1.

The premise behind WENO-TL is that we use WENO-NN, whose training was
fairly expensive, as a starting point for learning an equation specific numerical
method via transfer learning. We then retrain a portion of the neural network used
in WENO-NN, such as the last layer, on an equation specific dataset. We also
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Figure 5.1: Diagram of WENO-TL algorithm

experiment with adding additional components, such as linear regression models
and additional layers to the network in order to make the model more flexible, which
seems to be necessary to capture equation-specific patterns in away that significantly
reduces simulation error. We generate training data for WENO-TL by simulating
the equation of interest with WENO5-JS on a fine grid.

5.2.1 Model
As mentioned above, we are building this model by applying transfer learning to
WENO-NN. Hence, we use WENO-NN as a starting point for our model, and then
canmodify the network by retrainingweights and/or addingmore layers. We explore
several different network architectures that use WENO-NN as a starting point.

First, we make no modifications to the WENO-NN architecture, and simply retrain
the last layer of the neural network (WENO-TL4). We then add other network
components that act in parallel with the WENO-NN network. This additional
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section of the network takes the cell average values directly as its inputs with no
preprocessing, as was done for FiniteNet, and outputs an additional perturbation to
the WENO5-JS coefficients. We construct several different models that follow this
general architecture. The first simply applies linear regression from the cell averages
to the perturbation (WENO-TL5). We also try adding one hidden layer with 32
neurons (WENO-TL6), and two hidden layers with 32 neurons each (WENO-TL7).
Once again, the details of the model architecture can be seen in figure 5.1.

5.2.2 Training
We train WENO-TL using data specific to the equation of interest. This dataset can
involve analytical solutions, high-fidelity simulation data, and experimental data.
The training process is designed to be as similar to how the model will be used in
practice as possible to maximize howwell the model can generalize to new problems
that it may be used for. Similar to FiniteNet described in Chapter 4, we generate a
random initial condition, and solve the PDE on a very fine grid to get a solution with
negligible error, or use an analytical solution if one exists. We then use WENO-
TL to perform that same simulation on a coarse grid, compute the !2 error of the
WENO-TL solution, compute the gradient of that error with respect to the neural
network parameters that are being retrained, update the parameters with the ADAM
optimizer (Kingma and Ba, 2014), and repeat until training is complete. A flowchart
showing the steps of the simulation that are carried out during the training process
can be seen in the figure 5.2, which details the steps that take the initial data to the
computation of the loss. Note that we once again apply regularization to the model
by penalizing perturbations to WENO5-JS.

Figure 5.2: Diagram of simulation used in WENO-TL training procedure
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The entire simulation is implemented in PyTorch so that the computational graph
follows each step of the computation rather than only tracking steps that explicitly
involve the neural network. By making the simulation end-to-end, we are able
to build up the computational graph over multiple timesteps, which enhances the
stability of the learned method because it account for how the numerical error
evolves over longer time horizons. Hence, if an instability occurs, a very large error
will be generated and the neural network will quickly learn to simulate the physical
system in a stable way, resulting in a more robust training process.

5.3 Results
We perform several sets of experiments to assess the effectiveness of the WENO-TL
algorithm in a variety of settings. We test the algorithm on the Euler equations
in one and two dimensions. We examine the error reduction that each architecture
is able to achieve on each equation, the convergence rates of each instance of the
network, and the runtime required to achieve desired accuracy levels. We also study
the ability of the network to generalize to higher dimensional versions of the same
equation. For example, we train WENO-TL on solutions of the 1D Euler equations
and demonstrate that it can then achieve performance improvements when solving
the 2D Euler equations. Note that we do not train any of our models with 2D
simulation data; all results shown for 2D problems were trained on data from 1D
simulations.

5.3.1 Cases Examined
For the Euler equations, we consider two different families of initial conditions.
The first will be referred to as the ’density bump’ case. For this case, we have a
randomly generated discontinuous initial density profile, zero initial velocity, and
constant pressure. This is expressed mathematically as

d(0, G) =

50(G), if G ≤ 1

2 + 50(G), otherwise
,

D(0, G) = 0

%(0, G) = 1,

(5.1)

where 50(G) is a sum of sinusoids with random amplitude and phase, plus a constant
to guarantee that 50(G) > 0 ∀G ∈ R as is physically required. Additionally, 2
is a continuous random variable uniformly distributed between 1 and 6 to make
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the initial condition discontinuous. We choose to study this case because it has
a known analytical solution for any random initial condition, where the solution
should remain unchanged from the initial condition as the system is stepped forward
in time, expressed mathematically as

d(C, G) = d(0, G),
D(C, G) = 0,

%(C, G) = 1.

(5.2)

However, simulating this problem with FVM introduces numerical errors. Hence,
this case makes it easy to assess the accuracy of the method. The limitation of
this case is that it only involves contact discontinuities rather than shockwaves or
rarefactions that can be seen in other instances of the Euler equations. Because of
the narrower scope of this problem, it is easier to tailor more accurate numerical
methods to it.

We will also consider a case where both the density and pressure are randomly
generated

d(0, G) =

50(G), if G ≤ 1

2d + 50(G), otherwise
,

D(0, G) = 0

%(0, G) =

60(G), if G ≤ 1

2% + 60(G), otherwise
.

(5.3)

In this case, both 50(G) and 60(G) are sums of sinusoids with random amplitudes and
phases, plus a constant to guarantee that 50(G), 60(G) > 0 ∀G ∈ R. Also, both 2d and
2% are continuous random variables uniformly distributed between 1 and 6. This
case generates much richer behaviors from the equations than the density bump test
case, as not only are the solutions dynamic, but they are also capable of producing
shockwaves and rarefactions in addition to contact discontinuities. Additionally,
due to how general these initial conditions can be, the resulting numerical method
should be applicable to essentially any initial conditions one may experience when
solving the Euler equations.
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5.3.2 Error reduction achieved by WENO-TL
We first attempt to quantify the accuracy improvements achieved by using WENO-
TL. We do this by generating random initial conditions corresponding to the case
that is being tested, and using eachWENO-TL to step the IBVP forward in time. We
generate these initial conditions from the same distributions used in training, but
with parameters that were not seen during training such that we can see how well
the new method generalizes to new problems.

5.3.2.1 Density bump for Euler equations

We first examine the density bump case for the 1D Euler equations. A summary of
the statistics of the ratio of the error to WENO-JS, 4A for each network can be seen
in table 5.1. The error ratio is computed by taking the !2 error of each approximate
solution compared to the exact solution and taking the ratio

4A =
| |D)! − D∗ | |2
| |D�( − D∗ | |2

. (5.4)

Table 5.1: 4A for each model for 1D density bump problems

Method 4A Better?

WENO-NN 0.98± 0.01
√

WENO-TL4 0.85± 0.03
√

WENO-TL5 0.94± 0.04
√

WENO-TL6 0.56± 0.07
√

WENO-TL7 0.49± 0.15
√

We see in this table that our starting point for the transfer learning, WENO-NN,
barely manages to outperform WENO-JS. Then each model that transfer learning
is applied to is able to get an even more accurate solution. We see a general trend
that as model complexity increases, the error reduction and variance both increase
as is expected in the bias-variance tradeoff. There is a notable exception in that
WENO-TL4 actually reduces the error more significantly than WENO-TL5.

We also present PMFs for each model to get a more precise understanding of the
distribution of these error ratios. This data can be seen in the plots below, and are
generated by looking at 1000 newly generated initial conditions.

By analyzing these empirical PMFs, we can gain a deeper understanding of the
ability of the learned numerical scheme to generalize to new problems. Each of
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Figure 5.3: Probability mass function showing out of sample performance on 1D
density bump problems for each model

these PMFs is constructed by using the model to simulate 1000 previously unseen
initial conditions. We see that for WENO-TL4, WENO-TL6, and WENO-TL7, the
hybrid model involving transfer learning always outperforms WENO5-JS, which
indicates a promising ability to generalize to unseen problems as it seems to lead
to an improvement in every case tested. However, we do not see this property for
WENO-TL5, although it does tend to lead to an accuracy improvement for most
initial conditions. We also see that each PMF is positively skewed, which indicates
that relative to the most probable value of 4A , we expect to see a more modest
accuracy improvement.

We also look at the performance of each model on the 2D Euler equations for a
2D analog of our density bump test case. This case extends the corresponding 1D
case in an intuitive manner by applying the same process used to generate 50(G) to
generate another function, ℎ0(H) that instead varies in the H-direction, and another
random discontinuity in the H-direction. These initial conditions are written as
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d(0, G, H) =



50(G) + ℎ0(H), if G ≤ 1, H ≤ 1

2G + 50(G) + ℎ0(H), if G > 1, H ≤ 1

2H + 50(G) + ℎ0(H), if G ≤ 1, H > 1

2G + 2H + 50(G) + ℎ0(H), otherwise

,

DG (0, G, H) = 0

DH (0, G, H) = 0

%(0, G, H) = 1,

(5.5)

This test case also has the property that the exact solution is the same as the initial
condition for all subsequent points in time, but numerical error occurs when stepping
the solution forward in time with FVM and RK methods.

We again generate 1000 random initial conditions from this distribution, and use
WENO-JS, WENO-NN, WENO-TL4, WENO-TL5, WENO-TL6, and WENO-TL7
to step the system of PDEs forward in time. The resulting statistics of 4A for each
model can be seen in 5.2

Table 5.2: 4A for each model for 2D density bump problem

Method 4A Better?

WENO-NN 0.987 ± 0.003
√

WENO-TL4 0.85 ± 0.01
√

WENO-TL5 0.97 ± 0.02
√

WENO-TL6 0.60 ± 0.04
√

WENO-TL7 0.47 ± 0.09
√

These results are very similar to the error ratios seen in the 1D density bump case,
and we even see better performance fromWENO-TL7, in terms of both lower mean
and variance. This is very promising for generalization, and a good indication that
perhaps one could generate high fidelity training data at low computational cost
using 1D simulations, and then deploy the trained model on larger 3D problems to
get a large overall speedup and reduction in memory. We can once again look at the
PMFs of the error ratios generated with each model, which are shown in Figure 5.4.

Overall these histograms look fairly similar to those generated from testing each
model on the 1D density bump test case. WENO-TL5 occasionally does not outper-
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Figure 5.4: Probability mass function showing out of sample performance on 2D
density bump problems for each model

form WENO-JS, but each of the other models do for each random initial condition
tested.

5.3.2.2 Random initial conditions for Euler equations

We will now look at the case when the initial pressure and density are random and
independently generated. Once again, we first show the statistics of 4A for each
model architecture tested.

Table 5.3: 4A for each model for random initial conditions

Method 4A Better?

WENO-NN 0.93± 0.04
√

WENO-TL4 0.89± 0.07
√

WENO-TL5 0.86± 0.10
√

WENO-TL6 0.73± 0.13
√

WENO-TL7 0.68± 0.12
√

We once again see that each model tested is able to outperformWENO5-JS in terms
of simulation accuracy measured in the !2 norm, with WENO-NN giving a more
significant error reduction than was seen in the density bump case, and a subsequent
improvement on WENO-NN performance for each transfer learning model tested.
We see that as model complexity increases, performance monotonically increases
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for this case. Variance also tends to increase, though WENO-TL6 has a slightly
higher variance than WENO-TL7.

We also look at the PMFs of the error ratios for each model, once again by construct-
ing 1000 previously unseen initial conditions to get a more detailed understanding
of the out of sample performance of each model.
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Figure 5.5: Probability mass function showing out of sample performance on 1D
random initial condition problems for each model

Interestingly, we see that for the case where both the initial density and pressure
are randomly generated, none of the hybrid models are always able to get a more
accurate solution, though we do see that they are more accurate in the vast majority
of cases.

5.3.3 Convergence Results
In this section, we look at the convergence rates of each model. This analysis helps
us assess not just the rate at which the approximate solution approaches the exact
solution as the grid is refined, but also the ability of each model to generalize beyond
the resolution that the neural networks were trained for.

We first look at the 1D density bump case in Figure 5.6. We run the simulation on
six different grid resolutions, logarithmically spaced between 0.002 and 0.05 with
a constant ��! number of 0.1. We keep the initial condition the same for each
resolution, and choose the initial density to be a square wave.

We see that WENO-JS and WENO-NN converge at a fairly constant rate, consistent
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Figure 5.6: Convergence of each model on 1D density bump problem

with the convergence results from chapter 3. WENO-TL4 also shares this property,
and maintains the faster convergence rate that WENO-NN is able to achieve. How-
ever, we see that WENO-TL7 does not continue to converge at resolutions much
finer than the training resolution. This may seem unexpected because the scheme
includes post-processing of the neural network outputs to make the scheme consis-
tent. Hence, by using the Lax-Equivalence theorem, we conclude that there must be
some loss of stability on finer grids, and that the more complicated model may have
overfit to the training resolution.

We next look at the convergence properties for the 2D density bump case in Figure
5.7. For the 2D case, we keep ΔG = ΔH, and use six logarithmically spaced values
between 0.005 and 0.05. For the initial density profile, we use the sum of two step
functions in the G-direction and H-direction, or
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d(0, G, H) =



1, if G ≤ 1, H ≤ 1

2, if G > 1, H ≤ 1

2, if G ≤ 1, H > 1

3, otherwise

, (5.6)
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Figure 5.7: Convergence of each model on 2D density bump problem

In this study, the results are more in line with what one may expect, as we see the
error � increases monotonically with discretization width ΔG for each algorithm,
though they do not quite appear to converge at a constant rate. We see much
slower convergence rates forWENO-TL5 andWENO-TL6, with the other algorithms
converging at similar speeds.

We also look at how quickly the simulation converges for each model for the 1D
case with random initial conditions in Figure 5.8. For this case, we use an initial
condition that is representative of what we saw in terms of accuracy for a typical
case, solve the PDE on a very fine grid with WENO5-JS to get an ’exact’ solution,
and downsample by six different factors to see how error varies with discretization
width.
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Figure 5.8: Convergence on 1D random initial conditions problems

We see that the curves are much more tightly bunched together for this case than
they were for the density bump case. This result makes sense based on the accuracy
results, as WENO-TL was not able to reduce the error as much for this case as
we saw in the previous section. The results do appear to converge monotonically,
though there is some jaggedness that is unexpected near the middle of the curve
for WENO-TL6 and WENO-TL7. Overall we see fairly similar convergence rates
between the different models, though the transfer learned models tend to perform
poorly at finer resolutions.

Lastly, we also look at the convergence rates for each model for the 2D Euler equa-
tions with random initial conditions in Figure 5.9. Due to the large computational
cost associated with performing this simulation on a fine grid, and wanting the
’exact’ solution to be solved on a 10× finer mesh than we analyze results for, we
look only at fairly coarse grids. For the exact solution, we split up a 2 × 2 domain
into an 800×800 grid and simulate for 2000 timesteps, which corresponds to a final
time of 0.5B for a ��! number of 0.1. For the convergence study, we used the same
domain and ��! number, and used grids with 80× 80, 40× 40, 20× 20 and 10× 10
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Figure 5.9: Convergence on 2D random initial conditions problems

We again see that the convergence curves are all fairly close to each other, especially
on the coarsest grids. In fact, all of the algorithms produce a nearly identical error on
a 10 × 10 grid, which may indicate that the grid is too fine for any of the algorithms
tested and the simulation is dominated by numerical error.

5.3.4 Runtime Results
In this section, we examine the runtime of simulations using each model and the
resulting error for a variety of different grids. We keep the initial condition the same
throughout simulations, and instead vary the grid. We sweep over a range of values
of ΔG not seen in training to get a direct comparison between algorithms. We do
not vary ��! number, as it was found that it has very little effect on the error ratio
as long as each simulation is stable. We examine the runtime to gain a more direct
understanding of the practicality of each method; a FVM scheme will not be useful
if it can reduce error for one evaluation, but still ends up being more computationally
expensive over the entire simulation. While this statement is true on some level for
just about any computational problem, it is especially true for FVM schemes, as a
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lower error can easily be achieved with an FVM algorithm simply by refining the
grid (with the caveat that one may run into memory issues for large problems, so it
is not always possible to do this). Hence, it is especially important that a learned
scheme is able to obtain competitive results in this type of study.

We can empirically measure the computational cost of one evaluation of each
algorithm relative to WENO5-JS by simply taking ratio of the runtime required
for the WENO5-JS simulation and the hybrid model being evaluated, though it will
not be completely accurate because each simulation also requires other steps, such
as the Lax-Friedrichs flux splitting. We call this quantity the time ratio and refer to
it as )A .

However, because this simulation is performed in PyTorch, there is a significant
amount of overhead that would not be present in a version of the code that deployed
the neural network in an optimal way. Hence, it is possible that these runtime values
are not actually representative of the true potential of the enhanced methods. Rather
than attempting to rewrite the codebase in a framework like NumPy, we will instead
borrow code from the WENO-NN software which is already in NumPy because the
modelwas not trained end-to-end. Isolating and comparing the runtimes ofWENO5-
JS and WENO-NN in this more comparable way gives a )A value of 1.95, which
is significantly smaller than the value of 2.8 that was obtained using the PyTorch
software. In order to obtain similar corrected values for the transfer learned models,
we hardcode the transfer learned models into theWENO-NN software using NumPy
arrays and measure how long it takes to run each algorithm on 100,000 randomly
generated datapoints to get a more direct comparison between the runtime of each
algorithm programmed in a way that better reflects practical usecases and is not
confounded by overhead associated with the rest of the simulation.

We see fairly dramatic differences in the values of the time ratios between the
original PyTorch code and the optimized NumPy code. The most dramatic result
can be seen in the time ratios associated with WENO-TL7, as we see a drop from
14 to 3.06, greater than a 4.5× reduction, which makes the algorithm seem very
promising when deployed in an optimized program. When showing the results in
this section, we will consider both the runtimes measured directly from running the
PyTorch code, as well as an estimated NumPy runtime obtained by multiplying the
WENO-JS runtime by the values of )A obtained for each model using the NumPy
code.

We first look at the runtime for the 1D density bump case in Figure 5.10. This data
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is generated from the same experiment as was used to generate Figure 5.6, with each
simulation being timed in addition to looking at the numerical error.
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Figure 5.10: Runtime vs. error for each network at different grid resolutions for
the 1D density bump problem. Shows (A) runtimes measured in PyTorch and (B)
estimated NumPy runtimes

We see that WENO-JS and WENO-TL7 are very similar in terms of runtime and
error for this density bump test case for the PyTorch code. Their curves actually
intersect between the coarser WENO-TL7 and finer WENO-JS simulations, and due
to the fast convergence of the learned algorithm we can see that we may actually be
able to get amore accurate simulation at the same runtime on certain grid resolutions.
Additionally, with the regions where this overlap occurs the memory requirements
for the WENO-TL7 are much lower because of the coarser grid. For the points
closest to overlapping, WENO-TL7 is using a 5× coarser grid, which of course
corresponds to a 5× reduction in memory required. We see weaker performance
from the other models tested. WENO-TL4 offers a small improvement overWENO-
NN, withWENO-TL5 andWENO-TL6 performing relatively poorly. When looking
at the estimated NumPy runtimes, the results become more promising. WENO-TL7
offers significant speedup potential overWENO-JS, and we see other algorithm such
as WENO-TL6 and WENO-TL4 become competitive with WENO-JS.

We now measure runtime for the 2D density bump case. These results can be seen
in Figure 5.11. Once again, these results were obtained from the same experiments
used to generate the data in 5.7. Hence, it uses the same initial condition, domain,
and discretizations.
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Figure 5.11: Runtime vs. error for each network at different grid resolutions for
the 2D density bump problem. Shows (A) runtimes measured in PyTorch and (B)
estimated NumPy runtimes

We see that WENO-TL7 performs very well relative to all other models tested
in terms of runtime. In fact, one can compare certain specific datapoints to get
an estimate of the speedup that WENO-TL7 is capable of delivering. The point
(44.72B, 0.0015) lies on the WENO-TL7 curve, and the point (448.6B, 0.0017),
which shows that in this case WENO-TL7 is capable of a more than 10× speedup
and delivers a lower error thanWENO5-JS. Note that this simulation was performed
in PyTorch, and an optimized code would most likely see a bigger speedup from
WENO-TL7. To quantify memory reduction offered by WENO-TL7 for this prob-
lem, we can again look at how many cells each simulation used. The previously
mentioned WENO-JS simulation used a 200 × 200 grid, while the WENO-TL7
simulation with comparable error used a 32× 32 grid, which translates to a 97.44%
reduction in memory required. WENO-TL6 also manages to outperformWENO-JS,
but the other algorithms do not. Once again, we see that WENO-TL4 slightly out-
performsWENO-NN, with WENO-TL5 performing worse than the other numerical
schemes.

We also measure the runtime when solving the 1D Euler equations with random
initial conditions. The results of this study can be seen in Figure 5.12. As for the
previous two runtime studies, we again use the same simulation as the convergence
study to obtain the data.

We see that the transfer learned schemes struggle to compete with WENO-JS for the
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Figure 5.12: Runtime vs. error for each network at different grid resolutions for the
1D random initial condition problem. Shows (A) runtimes measured in PyTorch
and (B) estimated NumPy runtimes

random initial condition case, even when using the NumPy estimates of runtime. It
may be that this problem is too general for our framework to learn in an efficient
way, or perhaps more training data would be required to learn numerical method that
offers a faster runtime thanWENO-JS. Interestingly, we see very different trends for
this case than we saw for the density bump case. As model complexity increases,
the efficiency of the scheme tends to decrease, with WENO-TL6 and WENO-
TL7 performing the worst. This trend, along with the results of our previous
experiments, seems to indicate that more training data and training the model
for longer would be required to get a scheme that can perform better. We draw
this conclusion because we saw in the density bump experiments increased model
complexity leads to improved performance, and because this experiment involves a
more complex/general problem, we should expect model complexity to again lead
to improved model performance. However, because we do not see this, it would
make sense that we simply did not train the network long enough for it to efficiently
learn how to solve this class of problems. Lastly, one point that is worth mentioning
is that these results were obtained with the PyTorch code, so perhaps we would see
more competitive results from a more optimized software package.

Lastly, we perform the same experiment on the 2D Euler equations with random
initial conditions, with the results of this study shown in Figure 5.13.

These results are similar to what we see from the 1D case, where the more complex
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Figure 5.13: Runtime vs. error for each network at different grid resolutions for the
2D random initial condition problem. Shows (A) runtimes measured in PyTorch
and (B) estimated NumPy runtimes

models tend to underperform the simpler models. WENO-JS runs the fastest, while
WENO-TL7 is the slowest for most of the data. As this experiment involves the
samemodels that were used for the previous experiments, the conclusions remain the
same, where perhaps one would see better performance is the models were trained
for longer or over more initial conditions. It may also be the case that because
this case involves shocks rather than just contact discontinuities as was seen in the
density bump case, WENO-TL is unable to offer much performance improvement,
as was seen when testing WENO-NN on the inviscid Burgers’ equations in Chapter
3.
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C h a p t e r 6

CONCLUSION AND FUTURE WORK

6.1 Conclusions
Throughout this thesis we have discussed the application of neural networks to finite
volumemethods. By combining machine learning with traditional ideas from FVM,
we created several new frameworks for developing numerical schemes that can be
tailored to specific families of problems, while also maintaining properties that are
important for numerical schemes to have, such as consistency. After developing
several new algorithms in this area, using them for simulations, and analyzing
their performance, we now understand that these types of hybrid models present a
promising avenue for reducing the computational cost of CFD simulations.

In Chapter 3, we developed a hybrid method called WENO-NN. By using a state of
the art shock capturing method, WENO5-JS, to preprocess the local solution values
and create inputs to a neural network that then perturbed the FVM coefficients of
WENO5-JS, and then projecting those perturbed coefficients onto the space of con-
sistent FVM schemes, we were able to use generic waveforms to train an improved
shock capturing method. We showed that WENO-NN achieves faster convergence
for discontinuous problems thanWENO5-JS, at a rate of ΔG1, while WENO5-JS ap-
pears to only converge at a rate ofΔG0.82. In fact, it is impossible for an FVM scheme
to converge faster than ΔG1, so our network is performing at the theoretical optimum
in terms of convergence for these types of problems. We also show that WENO-NN
is able to outperform WENO5-JS in terms of runtime for certain problems, such
as when WENO5-JS applies too much numerical diffusion to the solution. More
specifically, for a given error tolerance, a simulation usingWENO-NNwill take less
time to run than a simulation usingWENO5-JS. Also, becauseWENO-NN achieves
this runtime improvement by running a more expensive algorithm per iteration on a
coarser grid, WENO-NN also results in less memory required to run the simulation.

In Chapter 4, we developed a framework for learning and embedding coarse graining
models into an FDM or FVM scheme called FiniteNet. While it has been popular in
the FVM literature to utilize a fully convolutional model due to the spatial locality
of the differential operators involved in PDEs, FiniteNet introduces the idea of also
including an LSTM component to learn and track temporal patterns in PDEs and
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error accumulation present when solving them numerically. We demonstrated this
framework on three PDEs that each feature different behavior, namely the advection
equation which propagates contact discontinuities, the inviscid Burgers’ equation
which develops shockwaves, the Kuramoto-Sivashinsky equation which has chaotic
solutions. We showed that for each equation, FiniteNet was able to significantly
reduce the numerical error. We also show that using an LSTM leads to an error
reduction over other temporal modeling techniques, which all outperform a model
that does not contain any temporal component.

In Chapter 5, we apply transfer learning to WENO-NN to develop equation specific
shock capturing methods, and name the resulting algorithm WENO-TL. By using
the parameters of WENO-NN as the initial weights for the network in WENO-TL,
the training results aremore consistent, which alleviates the need for aggressive early
stopping that was required when training WENO-NN. We then see that by training
the network on equation specific data, we can get a larger error reduction than is
achieved by WENO-NN. We observe that the resulting accuracy improvements are
large enough to whereWENO-TL7, which is more than 3× as expensive asWENO5-
JS per evaluation, is able to obtain the same accuracy levels in less runtime by using
a coarser grid on the density bump test case. Using a coarser grid has the added
benefit of reducing thememory requirements of the simulation, which can by amajor
bottleneck in simulating large-scale turbulent flows. We also see very promising
generalization behaviors from WENO-TL, in that we can train the network on
solutions of the 1D Euler equations and see extremely similar results in terms of
error relative to WENO5-JS performance when testing those same networks on the
2D Euler equations. However, we also see that if the space of initial conditions that
we try to train the model on is too broad, the learned scheme does not perform as
well.

6.2 Future Work
There remain many promising directions to investigate in the field of data-driven
finite-volume methods. At this point, many different architectures and techniques
have been developed for data-driven approaches to FVM and FDM. However, this
problem setting has several interesting properties that perhaps warrant more detailed
studies of how much of a performance improvement can be achieved in practical
settings.

In the field of numerical PDEs, there is rigorous mathematical theory that can be
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used to derive coefficients with optimal convergence properties for smooth solutions,
and human intuition is indeed still useful for developing what could be considered
rule-based AI in shock-capturing methods such as WENO5-JS. This point leads to
a key difference between FVMs and applications domains where such an approach
is ineffective such as in image processing: the ML algorithm must outperform
simple algorithms that are already highly effective. The simulation error can even
be reduced to arbitrarily small levels by simply refining the grid. Hence, there
exists an additional challenge in that it is not beneficial to simply make the model
larger for marginal accuracy improvements, as increased evaluation costs must be
carefully balanced with accuracy improvements. More specifically, traditional FVM
and FDM algorithms themselves are not expensive. High order methods are simply
an inner product between a constant vector of coefficients and the local solution, and
even sophisticated algorithms such as WENO5-JS are not particularly expensive per
iteration. Instead, the cost lies in needing to repeat these calculations many different
times for a simulation that is being carried out on a fine grid for many timesteps. So
the data driven method is replacing an algorithm that is fairly inexpensive, which
leads to the constraint that the neural network size cannot be too large because the
evaluation cost quickly becomes large compared to approaches that are not data-
driven. So speed must be balanced carefully with accuracy. More detailed studies
of the tradeoffs between model complexity and simulation runtime would be useful
for accelerating the development of practical data-driven FVM schemes.

Additionally, there is much room for research studying the robustness of these
schemes. Robustness is a very important feature for industrial CFD codes such as
those developed by ANSYS, Inc. The algorithms used in these software packages
must give accurate solutions on irregular meshes when analyzing flows involving
complex geometries, which can be common in engineering applications. These
meshes are typically generated algorithmically, which may produce poorly shaped
cells that have high aspect ratios. While we looked at a large space of initial
conditions in this thesis when assessing our algorithms, we looked at only a fixed
cell width on a square domain. Robustness to practical concerns such as high
aspect ratio elements remains unknown for the approaches developed in this thesis.
Poorly shaped cells can cause the problem to be poorly conditioned, which can
crash the simulation. Training an FVM scheme to be robust to poorly shaped cells
could potentially avoid this issue, which would be extremely beneficial to engineers
working in industry.
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It would also be interesting to investigate the effectiveness of these algorithms on
simulations with more complicated physics, such as multiphase or turbulent flows.
Based on what we have observed in the experiments we have performed, these
algorithms are very promising for simulating PDEs that have complicated solution
structures, as we saw larger performance gains on the KS equation than on the
inviscid Burgers’ or advection equations when testing FiniteNet. Hence, WENO-TL
seems very promising for large-scale turbulent flow problems, as one could attempt
to train the network on 1D forcedNavier-Stokes equation and then deploy the learned
numerical scheme on a 3D turbulent flow to potentially obtain a significant speedup.

One other contribution that could accelerate development of data-driven PDE solvers
would be the development of a standardized dataset and selection of model problems
that could be used to more directly compare the performance of these types of
algorithms. As it stands now, each paper that proposes a new framework for
developing hybrid FVMs uses a unique dataset generally generated for that paper,
and then tests their algorithm on problems based on the dataset they use. This
approach makes it hard to get a direct comparison between different methods. If
standardized experiments were developed for this field and it was expected that
new algorithms would showcase their performance on them, it would highlight the
usefulness and potential of specific algorithms in a more comparable way.

Lastly, there are a number of investigations specific to the work in this thesis that
could be useful to explore. It would be interesting to perform further studies on
WENO-TL. It seems likely that more training data would lead to better results on
more general problems, such as the case of random initial conditions. It would also
be interesting to see how specific one could make the training data relative to the
problem of interest. For example, one of the main test cases we looked at when
analyzing the performance of WENO-TL was the density bump case, and although
we looked at a large space of initial conditions, the dynamics of the physical system
are quite simple. The other case we examined had a very large space of initial
conditions and complicated dynamics, but we do not have a test case that looks at a
more restricted set of initial conditions with complicated dynamics, and this may be
a promising class of problems to explore. It could also be useful to try training these
algorithms on loss functions that are designed based on the problem of interest.
For example, one may want to directly penalize oscillations when learning a shock
capturing method, or minimize the error of a quantity of interest other than the !2

error such as lift and drag error when designing a scheme to simulate airfoils.
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Overall, using machine learning to solve PDEs appears to be a promising research
direction. Many interesting approaches have been proposed, several of which are
extremely different from one another. This variety of approaches reflects the diverse
set of challenges faced in the field of PDEs. For example, the techniques presented
in this thesis are fundamentally very different from the neural operators approach
followed by other researchers (Li, Kovachki, et al., 2020c). I would expect to see
the FVM/FDM approach shown in this thesis to deliver improvements in the area of
large-scale computational physics, where the simulation is being carried out for the
purpose of then investigating a physical phenomena. This approach has the potential
to increase the space of solvable problems to allow researchers to investigate systems
that were previously too expensive to simulate. The neural operators approach seems
especially promising in the application domain of real-time flow control. The neural
operators model learns how to solve the PDE directly, which could give a very large
speedup when solving many perturbations of the same problem, such as slightly
different configurations of an actively controlled airfoil.
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