TOPICS IN GEOPHYSICAL FLUID DYNAMICS:
I. NATURAL CONVECTION IN SHALLOW CAVITIES

IT, STUDIES OF A PHENOMENOLOGICAL TURBULENCE MODEL

Thesis by

Donald Edward Cormack

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1975

(Submitted December 13, 1974)



: I A

To Nancy and Kristeen



iid

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my research
advisors, Professors L. G. Leal and J. H. Seinfeld for their guidance
and encouragement throughout the course of this work, and for their
personal interest in my future career.

During these studies, I have received financial support from the
California Institute of Technology in the form of a Graduate Teaching
Assistantship and a Graduate Research Assistantship, and from Union 0il
in the form of a fellowship.

The numerical computations, reported in this thesis, were made
possible, in part, through National Science Foundation Grant No.
GK-35476, and, in part, through free computing time made available by

the Institute.



iv
PREFACE

As ;he annual production of waste by-products such as heat and
chemical species has increased, so too has the rate of discharge of
these pollutants into the atmosphere ahd bodies of water. To under-—
stand fully the consequences of such dumping, it is necessary to
predict accurately the rate of dispersion and decay of these pollutants
in the environment, For this purpose, one must have available an
accurate description of the dynamical behavior of the atmosphere or
body of water of interest. Of particular significance in establishing
the complex flow patterns which dominate these systems is the inter—
action of ambient density stratification and buoyancy induced convec-
tion caused by spatial inhomogeneities in density (temperature).
Although such spatial inhomogeneities can arise from a number of
sources, perhaps the most common is differential surface heating. For
example, the temperature discontinuiti at the shoreline betwéen a large
body of cold water and land significantly influences and, indeed, often
dominates the local circulation pattern to produce the land-sea
breeze phenomenon. On a somewhat larger scalé, significant differences
in surface temperature and roughness in an urban area produce a local
wind and temperature structure which is considerably disturbed
relative to the prevailing conditions far upstream or downstream of
the city. This has been called the urban heat isl;nd phenomenon.
Similar, fairly localized phenomena also result in bodies of water

where spatial inhomogeneities in density can arise from power plant or
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sewage discharges, or from evaporation and fresh water inflow in the
case of salt water estuaries.

A second factor which further complicates the accurate prediction
of such geophysical flows is their turbulent nature. Since many
factors, such as the density structure, surface boundary conditions and
past history, affect the turbulence characteristics, the successful
solution of the turbulence problem requires the development of a model
which is able to represent accurately not only the production, redis-
tribution and dissipation of turbulent stresses, but also the fluxes
of all dynamically active scalar quantities such as heat.

In an effort to better understand both of the above aspects of
geophysical flows, this thesis deals with two apparently independent
problems, The first (Part I) deals with Ilaminar, natural convection
in a shallow cavity with differentially heated end walls, and is an
attempt to understand the physics governing the slow gravitational
circulation which is characteristic of shallow bodies of fluid, such
as coastal estuaries, cooling ponds, or atmospheres which are verti-
cally constrained by an elevated inversion layer. This laminar
problem is treated exactly (subject only to the Boussinesq approxima-
tion.)

In Part II, the development of a suitable turbulence model is
undertaken, The evaluation of existing turbulence -models by direct
comparison with available experimental data indicates that many of the
models in current use are completely inadequate. As a partial remedy,

a new model for isothermal flows is proposed.
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ABSTRACT

Part I

The problem of natural convection in a cavity of small aspect
ratio with differentially heated end walls is considered. It is
shown by use of matched asymptotic expansions that the flow consists
of two distinct regimes: a parallel flow in the core region and a
second, non-parallel flow near the ends of the cavity. An analytical
solution valid at all orders in the aspect ratio, 4, is found for the
core region,vwhile the first several terms of the appropriate
asymptotic expansion are obtained for the end regions. Parametric
limits of validity for the parallel flow structure are discussed,
Asymptotic expressions for the Nusselt number and the single free
parameter of the parallel flow solution, valid in the limit as 4 - O,
are derived.

Also presented are numerical solutions of the full Navier-Stokes
equations, which cover the parameter range Pr = 6.983, 10 < Gr < 2 X

10%

and 0.05 < 4 < 1. A comparison with the asymptotic theory shows
excellent agreement between the analytical and numerical solutions
provided that A X 0.1 and Geopeods £ 107, Ia addition, the numerical
solutions demonstrate the transition between the shallow-cavity limit
and the boundary-layer limit, 4 fixed Gr - =,

Finally, the effect of upper surface boundarx conditions on the
flow structure within differentially heated shallow cavities is
examined., Matched asymptqtic solutions, validlfor small cavity aspect

ratios are presented for the cases of uniform shear stress with zero

heat flux, uniform heat flux with zero shear stress, and a heat flux
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linearly dependent on surface temperature with zero shear stress., It
is shown that these changes in surface boundary conditions have an

important influence on temperature and flow structure within the cavity.

Part II

The rational closure technique proposed ‘by Lumley and Khajeh-
Nouri (1974), in which.each unknown correlation is represented as an
expansion about the homogeneous, isotropic state, is applied to the
approximate closure of the mean Reynolds stress tensor, and rate of
dissipation equations for turbulent flows. The high Reynolds number
turbulence model which results is similar in many respects to that
presented by Lumley et al. However, a more detailed effort is made to
evaluate systematically the numerous parameters. Particular emphasis
is placed on the suitability and quality of the experimental data
which is used for the estimation of model parameters and on the
uniqueness and universality of the resulting parameters.

A quantitative comparison of the present turbulence model to
those proposed by Daly and Harlow (1970), Hanjalic and Lauhder (1972b),
Shir (1973) and Wyngaard, Coté and Rao (1973), indicates that the
present model gives the best overall prediction of the dynamic
response for the‘homogeneous flows of Uberoi (1956, 1957), Champagne,
Harris and Corrsin (1970) and Tucker and Reynolds (1968). A further
comparison, which evaluates the ability of these tﬁrbulence models to
predict profiles of the triple-velocity correlation, the rate of inter-
componen; transfer and the rate of tﬁrbulence energy dissipation for

inhomogeneous flows indicates that, of the previous turbulence models,
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that of Hanjalic and Launder is most consistent with the data examined.
However, the present model shows promise to yield an even better

approximation to the experimental data.



ix

TABLE OF CONTENTS

ACKNOW.LEDGMENTS e o . . o o " o . @ . L] . . ] . . ° ® . .

PREFACE,

ABSTRACT .

L]

Ll L] L) L) Ll . L L] . L L] L] ° L . . e L] L Ll . .

& e s @ 0 ° . ® e e ° 0 e . . e o ° . . » °

TABLE OF CONTENTS. s e e . . e @ . . e e o . L] . e e .

Part I:

NATURAL CONVECTION IN SHALLOW CAVITIES. . . . .

A.

B.

Natural Convection in a Shallow Cavity with
Differentially Heated End Walls

Part I, Asymptotic Theory. « « « ¢ « « « &
1, IntroductiofNs « o« o« «  « 2 « © & ¢ &
2, Mathematical Formulation of the Problem
3. The Core Flow « « « o ¢ « o s o« s o o
4, The Flow in the End Regions . . « « + &
5. Further Discussion of Results . . . . .

References..........-......

Natural Convection in a Shallow Cavity with
Differentially Heated End Walls

Part 2. Numerical Solutions. « « « &+ & & &
1s Introductiqni Y T E R R
2. Formulation of the Numerical Problem. .
3. The Numerical Algorithm . . . « + + « &

4, Numerical ResultS « ¢ « « & o« o & o o o

Page

iii

iv

vi

ix

20

22

23
Z3
24
26

27



ReferfBceBy s e e W %. & #i% & &' & % & & W's & » -9

The Effect of Upper Surface Boundary Conditions on

Convection in a Shallow Cavity with Differentially

Heated Erid Wallsys v o ¢ o« o & & o % @ % & 5 &

NomenC lature. € &€ & ¢ 6 ¢ e € €« o & @ @« € ¢ e w »
1. Introdoctlofe ¢ o o & & & & 9 % % & & #.% 4
2. Mathematical Formulation of the Problem . . .

3.

4,

The NO"Slip, Insulated Cavity ¢ s & & & ¢+ e &

Asymptotic Velocity and Temperature Fields

/

with an Imposed Surface Shear Stress and
Zero Heat FluX.: v « ¢ o s ¢ » o s o & & s o &
Asymptotic Velocity and Temperature Fields
with Zero Surface Shear Stress and Specified
Heat FluxX o « ¢ o s o o s o o o o o s o o o &
a, Uniform Surface Heat Flux . « +» « « « + &
b. Heét Flux a Function of Surface

Temperature « ¢ s v « a o o s« s ¢ o o.0 &

Ref eremnces, ¢ 8 e @ ¢« @ .« o . « . . . . . . . . .

Appendix A: Detailed Matching of End and Core

Solutions far the Free Surface Problem. . . .

Appendix B: Details of the Numerical Methods:

Supplementary Notes for Editor's File . . . .
1. Finite Difference Equations . « « « + « &

2. Numerical Algorithm . . « « o« ¢ ¢ ¢ ¢ o &

38

39

40

42

45

47

53

60

61

66

79

79

88

88

90



xi

Part II: STUDIES OF A PHENOMENOLOGICAL TURBULENCE MODEL. . . 94
l: Introductions « & 5 & & & s = 4 » » & & & & & W 95
A. Models for Computation of Turbulence Flows. 95

i) Direct Solution of the Navier-Stokes
Equations o s ¢ ¢ o ¢ o a o« o o ¢ ¢ o 95
ii) Approximate Turbulence Models which
Employ the Mean Equations of Motion . . 97
a) Mean Velocity Field Techniques. . . 99
b) Sub-Grid Scale Gradient Diffusion
ModelSe: o« s« « s o s o » s o o o s » 102
¢c) Mean Turbulent Energy Transport
ModelBe: o s o » 50 a6 & & & & & 3 103
d) Mean Reynolds Stress Transport

ModelB e & 8 & e+ e s e ® e o e & s = 106

2. The Rational Closure Technique. « « « « « o« « & 114
A. High Reynolds Number Form of the Equations. 114
B. Independent Variables . « s ¢« « ¢ « ¢« « & & 120
C, Concept of Invariant Modeling « « o« « « « 138

D. Closure of Reynolds Stress Tensor
Equations . L . . . . . . . . . . . L] . . . 140
E. Closure of the Energy Dissipation

Equation. . e ¢ . = . . . . . o . L L 155/

F. Homogeneous Form of Turbulence Model. . . . 161



xii

3. Evaluation of Homogeneous Model Parameters. . .

A.

B'

G

i

p . &

i

Homogeneous Flow Experimental Data. . . .
i) Decay of Isotropic Turbulence . . . . .
i) Decay of Anisotropic Wind Tunnel
Turbulences « o » v » o ¢ o o ¢ « s & &
i) Distortion of Turbulence by
Irrotational Plane Strain « « « « + « &
v) Homogeneous Turbulent Shear . . . . . .
Tendency-Toward-Isotropy Constants. . . . .
Determination of Best Values for ¢, B

and B13 A T T R

4, Estimation of Inhomogeneous Model Parameters.

A.

Bl

i

Inhomogeneous Flows for Model Development .
i) Description of the FlowS. + & « + + + .
i) Treatment of the Data . . « +« « « « 4+ o
Triple-Velocity Correlation Parameters. . .
Inhomogeneous Tendency-Toward-Isotropy

ConstantsS s« « o o« o s ¢ o ¢ s o & o o & s
Inhomogeneous Constants in the Dissipation

Bquatlione « » o =« @« o % ¢« & & « 4 & & & » @

5.Conclusions»....-.....-......

RELBrences, o o s a0 & w.% & & & & & & & &  » & % &

Appendix A: Correct Scaling of the 'Dissipation

of

E

Vot 5 3 o © o @ & © 5 5 & & W % @ B & @

163

163

163

166

166

168

169

173

195

195

195

199

208

249

284

i )

313

321



p s 8 1

Appendix B: Discussion of Invariant Modeling . . . 323
Appendix C: Calculation of the Wall Effect

Function for the Pipe Geometry. « « « o o « « 327



Part I: NATURAL CONVECTION IN SHALLOW CAVITIES
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J. Fluid Mech. (1974), vol. 85, part 2, pp. 209-229
Printed in Great Britain

A. Natural convection in a shallow
cavity with differentially heated end walls.
Part 1. Asymptotic theory

By D. E. CORMACK, L.G.LEAL
Chemical Engineering, California Institute of Technology, Pasadena

AND J.IMBERGER

Department of Mathematics and Mechanical Engineering, University of
Western Australia, Nedlands

(Received 23 March 1973 and in revised form 15 February 1974)

The problem of natural convection in a cavity of small aspect ratio with dif-
ferentially heated end walls is considered. It is shown by use of matched asymp-
totic expansions that the flow consists of two distinct regimes: a parallel flow in
the core region and a second, non-parallel flow near the ends of the cavity. A
solution valid at all orders in the aspect ratio A4 is found for the core region, while
the first several terms of the appropriate asymptotic expansion are obtained
for the end regions. Parametric limits of validity for the parallel flow structure
are discussed. Asymptotic expressions for the Nusselt number and the single
free parameter of the parallel flow solution, valid in the limit as 4 -> 0, are
derived. ’

1. Introduction

Convection due to buoyancy forces is an important and often dominant
mode of heat and mass transport. Of particular significance to the dispersion of
pollutants and heat waste in estuaries are the buoyancy-driven convective
motions induced by gradients in salt concentration or temperature.

Unfortunately the direct modelling of these natural systems is very complex,
mainly because the flow is turbulent. However, the idealized problem of laminar
flow in an enclosed rectangular cavity with differentially heated ends does
provide some insight into these more difficult problems, and has been studied
extensively in other contexts by prior investigators. The majority of these studies
have used finite-difference numerical solutions of the full equations of motion,
subject to the Boussinesq approximation, to consider cavities which were either
square or had height k larger than their length [ (cf. Quon 1972; Wilkes & Churchill
1966; Newell & Schmidt 1970; Szekely & Todd (1971); De Vahl Davis 1968).
However, Batchelor (1954), Elder (1965) and Gill (1966) have shown that ana-
lytical progress is possible when the cavity aspect ratio A/l is large.

Batchelor (1954) considered both large and small Grashof numbers Gr. In
the latter case, he obtained an asymptotic solution about the pure conduction
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Ficure 1. Schematic diagram of system.

mode of heat transfer. For large (/r, Batchelor envisaged a flow with thin boun-
dary layers on all solid surfaces and a closed-streamline isothermal core of con-
stant vorticity. Motivated by the experimental measurements of Elder (1965),
Gill (1966) proposed an alternative structure for the case h/l > 1 and Gr > 1.
In Gill's model the flow is decomposed into boundary layers adjacent to the end
walls in which the horizontal temperature gradients are large, and a core region
in which the temperature is assumed to be a function only of the vertical co-
~ordinate. In spite of the approximations necessary to solve the resulting equations
Gill reported moderate agreement with the experimental measurements of
Elder (1965). A key feature of the case hfl > 1, which is implicit in Gill's model,
is that the core dynamies play only a secondary role in establishing the overall
flow structure, which is dominated by the buoyancy-driven boundary layers. A
natural question is whether this qualitative feature persists as the aspect ratio
Rl is varied. In particular, in the limit as A/l — 0, which is most relevant for the
naturally occurring flows of interest in the present investigation, one might
anticipate that viscous effects in the core would play an increasingly important
role in establishing the flow structure for all fixed (though large) values of (/7.
In the present paper, we use the standard methods of matched asymptotic
expansions to consider the cavity flow problem in this limiting case h/l < 1,
Gr fixed. We shall show that the flow structure consists of two parts: a parallel-
flow core region in which essentially all of the horizontal temperature drop occurs
and which is dominated by viscous effects; and end regions which serve primarily -
to turn the core flow through 1807 as required by the solid end walls. The numeri-
cal and experimental results reported in parts 2 and 3 of the present study show
excellent agreement with this asymptotic theory for large, though finite values of

of (h/1)~1.

2. Mathematical formulation of the problem

We consider a closed rectangular two-dimensional cavity of length l'and height
I which contains o Newtonian fluid, and is shown schematically in figure 1. The
end walls are held at different but uniform temperatures 7, and 7, with 7, < T,.



The top and bottom are insulated, and all surfaces are rigid no-slip boundaries.
Actually, the upper boundary of the environmental systems mentioned in the
introduction is more closely approximated as a zero-shear surface. However, it
was found that the experimental measurements, to be presented in part 3, could
be obtained only in a cavity with a no-slip lid. Hence, the present analysis was
undertaken to provide a solution that could be compared directly with the ex-
perimental results. A systematic investigation of the influence of the upper
surface conditions on flow structure may be found in Cormack, Stone & Leal
(1974).

The appropriate governing equations, subject to the usual Boussinesq ap-

proximations, are
ouw'  ,ou ,ou 1P

e il e B e 1 o 2,/
o' o’ o' 1 0P
LT { Joid 8 e I , ’ - 2
T g Y g =gy YAV N gfT =1, (2)
ou'ox' +ov' oy’ = 0, (3)

or o T k

g =t ! ¥ PLEE, s 2

7 et ey = o T )

with corresponding boundary conditions

’

u' = v = 0 on all solid boundaries,

oy =0 on y =0,h,

P=T 43, on w'=01L (5)
Here, »’ and v’ are the horizontal and vertical velocity components; v, p,, C,, k
and # are the kinematic viscosity, density, heat capacity, thermal conductivity
and coefficient of thermal expansion, all referred to some mean temperature of
the fluid.

Non-dimensionalizing, using the definitions

P L A S A

VTR T g =Ty T g T, Tl
0 =T -T)(T,—T), t=~tgBh¥T,—T)V,

and introducing a stream function ¢ such that

u = ayloy, v=—aoy|ox,

o =

one can reduce (1)—-(4) to

do  Aw,P) .

A/ - §f pelbeit i 2 i
GrA (8t + 8(1',y)) AV m+3x’ (6)
Vi = —ow. (7)
opra (L4 200) g, .

with boundary conditions
Y=oylox=0, 0=Ax at 2=0,4" (9a)
and Y =0oyloy=0d0loy=0 at y=0,1. (95)



Although the characteristic velocity scaling may at first appear an arbitrary
choice, it is consistent with the physical picture of a buoyanecy- driven parallel
flow which is moderated by viscous effects over a length [, and may in fact be
justified a posteriori by the theory which is presented in this paper. The dimen-
sionless parameters are

Gr = g1, —T) k3[v* (Grashof number),
Pr=C,pulk (Prandtl number)
and A4 = k|l (aspect ratio).

In what follows, we consider the asymptotic problem in which 4 >0 with
Pr and Gr held fixed.

3. The core flow

The key to a proper asymptotic solution, in the present case, is a proper
resolution of the central or core region of the cavity. Fortunately, the tlow struc-
ture in this region is surprisingly simple and amenable to direct analytical solu-
tion of the governing equations. Both the numerical and experimental evidence
which we shall present in parts 2 and 3 in fact indicate that the streamlines in the
core region become more nearly parallel as the aspect ratio is decrcased, with
~ substantial deviations from this structure only occurring in the immediate
vicinity of the end walls. Acceptance of a parallel flow structure as a first ap-
proximation in the core would imply that the appropriate characteristic scale
length in the x direction must be O(4-1).

With introduction of the characteristic horizontal scale v = O(A 1), equa-
tions (6)—(8) become

o(w, lﬁ) 20 Pw b

ird2——— = A* Lo
o ey VT H (10)
APy [0a* + Py oyt = — o, (11)

a(0,r) a2 20
G A2 = A? s
PrGr A 3G, 1) A 2?}2+3y2’

(12)
where 2 = Az.

Using (10)-(12), one may now obtain the full asymptotic solution for the core
temperature and velocity fields, as a regular expansion in the small parameter 4.
Although the precise forms of the gange funetions in this expansion are strictly
obtainable only from the requirements for a proper asymptotic mateh with the
corresponding solutions in the end regions, we anticipate the simple form (which
will be verified a posteriori)

0=0,+A40,+A4%0,+...,
Y=ot A+ AW+, (13)
© = wy+Aw, + A%wy+....

The systematic solution, valid for 4 < 1, which results on substituting these



expansionsinto (10)—(12) and equating terms of like orderin A has the same form
atall ordersin 4, i.e.

¥ = K\(5y* — 159* +249%) (14)
0 = K,2+ K3Gr Pr A%ty — &59* + 4% + Ko, (15)
where Ki=c¢+e,Ad+egd?+ ...,

Ky=cf+cyA+ecf A2...

and ¢y, €y, ..., C1, €3, ..., c are constants which depend on Gr and Pr.

The velocity field corresponding to (14) is strictly parallel to the top and
bottom walls of the cavity, and cannot, therefore, satisfy the boundary con-
ditions (9a) at the end walls. These conditions must be satisfied by solutions valid
in the end regions, and in general, the two parameters A, and K, are evaluated
by matching the core solution with these two end-region solutions. In the present
case, however, the problem simplifies somewhat owing to the centro-symmetry
property of the equations and boundary conditions (discussed by Gill 1966).
This property imposes the requirement on the solutions that

v@,y) =y(1-2,1-y), 0@y =0l1-31-y)
and 0@,y)=1-0(1-2,1—y).

Hence, one half of the cavity is an inverted mirror image of the other. Moreover,
it is apparent that

. 0,4 =14,
so that, according to (15),

K + 1o KiGr PrA®+ K,y = 4.

This relationship allows the constants cf‘ (and hence K,) to be entirely eliminated
in favour of the single set {¢;},7 = 1,2, ...,:0,e.g.

f=3-1c;, of =—3%c, cF = 46— 1iiGrPr. (16a,b,c)

With the constant K, thus eliminated, it is possible to evaluate K, completely
(and hence the ¢;,i = 1,2,...,00, which depend on Gr and Pr) by matching
the core solution with a proper solution that is valid in either of the two end
regions. This matching process is, of course, considerably simplified by the fact
that the basic form of the core solution is preserved at all orders in the small
parameter 4.

Before proceeding to a resolution of the flow in the end regions, it is useful
to note the key structural features of the basic core solution for Gr fixed, 4 — 0
[equations (14) and (15)] and to contrast these with the structure in the pre-
viously noted conduction and boundary-layer limits 4 fixed, G'r - 0 and A
fixed, Gr — oo of Batchelor and Gill. The solution (14) and (15) exhibits two key
features. First, the velocity field in the core is parallel to all orders in the small
parameter 4. Second, to a first approximation, 6 is independent of vertical
position, and varies linearly between the end walls. The primary driving force for
motion is the horizontal temperature gradient in the core. In fact, we shall show
in the next section that ¢, = 1, so that effectively all of the temperature drop



oceurs across the core. The end regions are thus dynamically passive, in the sense
that they serve simply to turn the flow through 180° as required by the condition
of zero volume flux through the end walls. In contrast, for the boundary-layer
limit 4 fixed, Gr — co considered by Gill, nearly all of the temperature drop occurs
in thin layers at the two ends, and these provide the driving force for flow.
In this case, it is the core region which is passive. Flow exists there only as a result
of entrainment-detrainment from the end-wall boundary layers. Clearly, the
flow structure for 4 fixed (perhaps small), Gr - oo is fundamentally different
from that for Gr fixed (perhaps large), 4 — 0.

It is obvious from the first-order temperature distribution that the heat
transfer process is dominated by conduction. Thus, it is important to note that
the present theory is definitely distinet from the pure conduction limit 4 fixed,
(r - 0 considered by Batchelor. Physically, the dominance of conduction for
asymptotically small values of 4 (with Gr large) is a result of the cumulative
effect of locally small viscous effects acting over a sufficiently long distance. This
reasoning is also consistent with the velocity scaling, which indicates that the
length of the cavity plays a role that is identical with that played by viscosity.
That is, by either doubling the length or doubling the viscosity, while keeping
all other variables constant, one achieves the same effect, to cut the core velocity
in half. Hence, when A is small enough, the core velocity is actually ‘throttled’
to small magnitude by viscosity for any arbitrarily large value of Gr.

4. The flow in the end regions

We turn now to a consideration of the end regions of the cavity where the
core flow described in the previous section is not valid. Although we are primarily
interested in determining the coefficients ¢; of the parameter K, and hence the
quantitative details of the core region, it is nevertheless of some interest to de-
velop the full asymptotic solution in this region of the flow. In view of the centro-
symmetry of the problem, we explicitly consider only the end x = 0. As we shall
see, it is necessary to proceed to third order in the end flow solution in order to
obtain the first non-trivial correction for the core region.

In the end regions, the characteristic length scales in each of the co-ordinate
directions are O(h). In this sense, the structure for 4 — 0, Gr fixed (and large)
is fundamentally different from the expected structure for Gr - co, with 4 fixed
(and small), since there exist no boundary-layer-like regions in the present case.
Furthermore, since the parallel structure of the core requires that all streamlines
eventually enter the end region, it is clear that the scaling used for the horizontal
velocity in the core must be maintained in the analysis of the end regions. Hence,
(6)—(8) must be solved subject to the boundary conditions

Y =0oyloy=00[oy=0 on y=0,1,- (17a)
y=lox=60=0 on z=0 (17d)

and the matching condition
lim ffgpa(@, y) < lim g e(2,y) as 4 ->0. (18)

L0 -0



As in the core region, the solution can be obtained as a regular perturbation
expansion in the small parameter 4 of the form

0 =0,+A40,+A%0,+...,

V= Yo+ Ay + A%+ ..,

0 = wy+Aw; + A0, + ...
Substituting these expansions into (6)—(8) and equating terms of like order in 4,
we obtain an infinite sequence of coupled linear differential equations for the
unknown functions #;, §; and w;. In order to clarify the discussion to follow, we
list these together with the explicit matching conditions which must be satisfied
for large x, up to O(43).

(i) At O(1) 80,/0x = 0,
V20, = 0, lim6, = cf. (19)
r—>w
(ii) At O(4) V3w, = — 00,0, Vi), = —w,, (20)
V2‘91 = PTG’I'@(@O, '/’o)/a(x: Y), (21)
lim ¢y = (54" — 759 +25¥°),
xr—>o
lim dyfrgfox = 0, lim6; — ¢,z +c}.
T—> 00 r—>00
(i) At O(A?) V2w, + 80,/0x = Gr d(wy, Yo)lo(x, y), (22)
Vi =—wy,
90y, o) | 900, Y1)
V26 =PrGr( L 428 ), 23
: oay) | oY) W
lim ¢, = ea5lgy* — 79%° + 259",
r—>w
lim dyr oz = 0, lim O, = cox+3Gr Pr(v35y° — 25y + 759 + 5.
&£—r0 r—>w
! o0 Nwg, Yry) . O(wy, Yry)
1 3 2 . 01 170
(iv) ‘At O(A4?®) Viw, + o Gr( e, ) 4+ ;) ), (24)
Vi, = —w,,
A0y, Y1) | (0a, Yr) | (0o, ¥ ))
V2()=P-rGr( Ll 270 Lre), 25
: owy) T Awy) T 0wy) =
lim ¢, = ¢3(y* — 159° +59%),
r—>m
lim &ry/ox = 0, lim 0y = cya+ 2¢,0y Gr Pr(1559° — 2y +-59°) +cf .
T—>® £r—>00
The boundary conditions (17a,b) at each order become simply
Y= 0yoy = 80;/oy =0 on y=0,1, (26a)
Yi=0Ylox=60,=0 on z=0. (26b)

The temperature and velocity fields 0, 6, Y, and o,
We begin by considering the O(1) and O(4) fields using (19)—(21). The solution
at O(1) for 0, is trivial, since the only solution of 96,/0x = 0 which satisfies the
boundary conditions (26) is 6, = 0. It follows from the matching condition



and (16a) that ¢f = 0Oand ¢, = 1. Moreover, substitution of this solution into (21)
gives V20, = 0. With the appropriate boundary and matching conditions, this
leads to the solution #, = x, from which 1t follows that ¢ = ¢, = 0. Hence to
first order, the temperature distribution everywhere in the cavity is strictly
linear in « and the dominant mode of heat-transfer is pure conduction. In this
limited sense the present solution resembles the earlier work of Batchelor for
Gr € 1 and 4 fixed, though it should be re-emphasized that the present analysis
is valid for any G'r provided only that A is sufficiently small.}
In the light of the above results, (20) may be rewritten as

Vi, = —1, V2, = —w,. (27)

In view of the previously stated matching conditions for 7, it is convenient to

introduce the transformation o

Vo= ¢+ Gy — 19 +:50°)
into (27), which may then be combined to give

Vig = 0, (28)

with the boundary conditions

¢=0p/cy=0 on y=0,1,

¢ =—G - S +4y%, 0plor=0 on a=0.
The required matching with the core solution yields the final boundary condition
ong, lim ¢ = lim d¢}éx = 0.
x

r—w —>00
The distribution of ¢ is identical with the displacement of an elastic semi-
infinite strip clamped at the edges and subjected to a small displacement at ' = 0.
The difficulties inherent in obtaining an analytic solution to problems of this
general nature are well known. On the other hand, numerical solution can be
rather straightforward and would be sufficient in the present case for generating
an accurate approximation to the stream-function field in the end region.
Nevertheless, we feel that it is worthwhile to pursue the analytical representation
since the method of solution is interesting in its own right. Furthermore, it
provides a useful check on the numerical solution for i, that is to be used in sub-
sequent stages of the asymptotic theory.
To obtain an analytical expression for ¢, we extend a method developed by
Benthem (1963) that largely follows the well-known lines of Laplace transform
theory. If new independent variables are defined as

Yy =%—1, z'=2x,

so that ¢ is even in v’, then the boundary function (0, ') may be expanded as a
Y Y Y i p

cosine series .
F ’ = nmw ; 3
$(0,y") = X d,cos (T,y ) (29)
: . (nm 1 1 -
o dn = 5. (Tz) (1=(= I)") (1271,3713— n57r5) ' L (#0)

1t A more explicit econdition for validity of the present theory will appear in §5.
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28
4-2124 4-¢ 2-2507
10-7125 44 3-1032
17-0734 44 3-5511
23-3984 47 3-8588

oG S

TaBLE 1. First four roots of sin 2s,+ 28, = 0 in first quadrant

The key to obtaining an analytical solution is the assumption that the second-
and third-order derivatives of ¢ on the boundary may also be expressed as cosine
series of the similar form

9% = nw

0= 2 (3) Y

3¢ = nm o
and pre] e nf;]l b, cos (7 y ) , (32)

where a,, and b,, are unknown coefficients to be determined. Following the familiar
procedures of Laplace transform theory and after considerable manipulation, the
solution may ultimately be expressed as an expansion in Papkowich-Fadle
eigenfunctions (cf. Fadle 1941)

¢(£€", ?/') = k§ g:

do (=8k +inms,) —a,s;+b, d,]nmsingnm
(st — (3nm)?)? 8 | 4cos?s,

x (sin s, cos s,y —y coss,sins,y’)e e, (33)
where s,k = 1,2, ...,00, are the complex roots (with positive real part) of the
transeendental equation
sin 28, + 28, = 0 (34)

and a,, and b, satisfy the set of algebraic equations

°2°: {dn (st —dnms,) +a,s,.+b,

n=1

&= (hum)h)? —%:’ nmsinjnmr =0, k=12 ...,00. (35)

In theory, the determination of @, and b, requires the inversion of a matrix of
infinite dimension. Hence, in practice one must truncate the series after a finite
number of terms (assume that the rest are zero) and obtain an approximate solu-
tion.

The first four roots of the transcendental equation (34) that occur in the first
quadrant of the imaginary plane have been tabulated by Mittleman & Hillman
(1946) and are listed in table 1. Furthermore, if ¢+ ir is an eigenvalue, then so is
g —1r since the roots of (34) are symmetrically placed about both the real and
imaginary axes. This symmetry ensures that the imaginary part of (33) is
identically zero. :

We were unable to prove analytically that the truncated approximation of
(33) converges to the correct solution of (28). However, a qualitative indication
of such convergence is provided by a comparison of truncated versions of (33)
with a full numerical solution of the governing equations plus associated
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Fieure 3. Comparison of numerical and analytical solutions for .

boundary conditions. A numerical solution of (27) was therefore obtained for
o and w, by means of an explicit Gauss—Seidel iteration scheme. The equations
were approximated by a central difference representation on a geometrically
expanding grid of 21 points in the « direction and a sine-transformed grid of 21
points in the y direetion (a similar sine-transformed grid will be deseribed in
part 2). The boundary conditions at » = o0 were applied at the finite distance
« = 3. All of these numerical paramcters were systematically varied to demon-
strate their adequacy for the present purposes. The numerically determined
streamlines and equi-vorticity lines are plotted in figures 2 (a) and (b). Although
we shall subsequently discuss some qualitative features of these plots, we first
return to the comparison of the numerical and analytical solutions.
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4 roots 8 roots
r A —— r A w
n dy ' Gy b, a, b,
1 —2:307x 103 5-267 x 102 4-482 x 10! 5620 x 10-2 1-:039 x 102
3 —3440x 10* —5295x 10! 1-934 x 101 5842 x 10-2 —1-886x 10!
b 8173 x 10° 9-866 x 101 3642 —7-322 x 102 2-565 x 10!
7 —3:053 x 105 5-258 —3-309 x 10! 3017 x 10-1  —2:451
9 1-451 x 10-5 — S —1-279x 10t  —2-254
11 — 7986 x 10-¢ —_ — —1:671x 107! —6-813
13 4-852 x 10 — — 2-429 7:409
156 —3:164 x 108 — — 7152 1:581 x 10!

TasLE 2. Values of d,, a, and b,

The required comparison is provided by figure 3, where we have plotted the
centre-line values of {, as a function of x, from the numerical solution and from
(33), using both the first four and the first eight available eigenvalues. The solu-
tion obtained by using only the first two eigenvalues from each of the first and
fourth! quadrants represents a rather poor approximation to the ‘exact’
(numerical) solution. On the other hand, when all eight of the available eigen-
values are used (i.e. eight terms of the infinite series are retained), the correspon-
dence between the numerical and analytical solutions is greatly improved. In
fact, appreciable deviations from the numerical solution persist only for x < 0-3.
The coefficients d,,, a,, and b, corresponding to the four- and eight-term approxi-
mations to (33) are listed in table 2. Presumably, inclusion of more terms in the
series would improve the comparison of the analytical and numerical solutions.
We shall not, however, carry the analysis further in this paper.

The chief feature of interest in the flow field, evident from figure 2, is that
both the streamlines and equi-vorticity lines are nearly parallel for a > 1. This
observation is consistent with the initial assumption that the horizontal length
scale characterizing the end regions is O(h). In addition, it is of some interest
to note that the linear gradient of 6, acts as a source of positive vorticity in the
region away from the walls (figure 20), while the motion of the fluid past the
walls produces vorticity of opposite (negative) sign.

" 1

The temperature and velocily fields at higher orders of approximation

To obtain the coefticients ¢,, ¢4, ete. corresponding to higher-order approxima-
tionsin the core How, it is necessary to continue to higher orders in the end regions
as well. The remainder of this section is concerned with the solution of (22)-(25)
for the functions yr,, , and 6, and ¢, v, and 0,, which, when combined with the
results of the previous section, yield the coeflicients ¢g and ¢,, respectively.

Although, in theory, it is relatively straightforward to obtain an analytical
solution for #,, it is impractical in view of the complexity of the solution for ¥,
to use this or higher-order solutions to evaluate the stream function, vortieity
or temperature at any given point. Hence, to determine #,, i, and w,, we pro-
ceed numerically, using the numerical solutions for ¢y and w, in conjunction with
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(22) and (23). The explicit dependence on Pr and Gr is eliminated by applying
the transformations

0, = GrPrb;, oy =PrGryi+Gryl, w,= PrGroj+Gruo)
to (22) and (23), which become

Vi = d0,/ox, (36a)
Vi = — d(wy, Yro)[0(, ), (36b)
V20, = oyro[0y. (37)

These equations are to be solved together with the homogeneous boundary con-
ditions (26) and the matching conditions

lim ] = lim oy} /o = 0, (38a)
T >
lim ¢ = lim &yf/ow = 0 (38b)
T—>0 T—>0

and lim 0 = f(y) - }ea, (39)

where ¢ = ¢y/Pr Gr and f(y) = 135¥° — &y + 598 — 1i46-

The coefficient c; is easily evaluated by noting that (37), integrated over the
depth of the cavity, may be combined with the boundary conditions at y = 0,

1 to yield
—2 ' Gidy|l =0 40

The only solution of (40) satisfying the relevant boundary condition

1
jﬂ;dy=0 at =0
0

’

1
and the matching condition lim | O,dy = — %
>0 0 2
. . l
is the trivial solution j O,dy = 0,
0
with the important implication that
cy= 0. (41)

A numerical solution for #; was obtained using the same grid and iterative pro-
cedure that were previously used for the determination of . The result is
shown in figure 4, where lines of constant 0; are plotted. The main feature is the
strong y dependence of 0, which clearly represents a sharp departure from the
pure conduction temperature profile obtained for 6,. While ¢0;/éx is negative for
y < 0-5, it is positive for y > 0-5. In addition, this solution is consistent with the
agymptotic boundary condition since 26,/dx — 0 as x — 0.

Using the numerical solutions for 0; and i, we proceed to the solution for
¥, and w,. Since ¥, is subject only to homogeneous boundary conditions, it
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F1oure 4. O(4?) temperature correction @ : isotherms.

follows that the associated flow is confined to the end region and hence interacts
only indirectly with the core flow. Equations (36, b) were again solved numeric-
ally using the previously described numerical solutions to generate the in-
homogeneous terms. The resultant solutions for /] and ] are presented in figures
5(a) and (b), respectively. As expected, both corrections are characterized by
closed streamlines. In the upper half of the end region the contours of positive
Y1 indicate that the positive gradient of #; induces a counterclockwise flow, where-
as in the lower half the converse is true. The streamlines of /] are similar to
those of ¢, but are of opposite sign, and smaller magnitude. The vorticity funec-
tions w; and ] which we have not plotted are similar, with closed contours of
positive (negative) vorticity in the upper half and of negative (pesitive) vorticity
in the lower half.

We shall return, after first describing the solution for the velocity and tempera-
ture fields y,, w, and 6, to consider the qualitative influence of i, on the flow
characteristics in the end region.

The O(43) problem for i,, w, and 0, is simplified considerably by the previous
results. Turning first to the temperature equation (25), we note that d(0,,,)/
o(w, y) is identically zero, while é(0,, yr,)/é(x, y) reduces to dyr,/dy. Moreover, one
can eliminate the Pr, 'r dependence of the equation by introducing the change of

variables 0, = Pr2Gr20;+ PrGri0,



15

10 10
(a) ()
L 1-08x10°7 . —385%x10"®
720 % 10-® 1 -
B //}60:10‘“ i 1-93x10-®
& i —578x10-*
0
05 y 05 2
1 " P ) 1 [ 9
0 10 20 30 0 1-0 20 30
x x

F1Gure 5. (a) O(Gr Pr A) stream function ¥ and (b) O(Gr A) stream function
Y] : streamlines.

to yield the independent equations

V205 = eyryfoy + (0%, ) e, y) (42a)
and V305 = oyry/oy, (42b)

which must be solved subject to the boundary conditions
i=05=0 on a=0,
o0yjdy = dbzloy =0 on y=0,1

and the matching conditions

limfy = —}e;, lim6; = —}¢j, (43a,b)
I—r 0 L—>00
where c; = PraGricy + PrGric;.

The integral of (42b) over the depth of the cavity indicates that, like c3, ¢}
isidentically zero. However, the same is not true for ¢;. Hence, this constant must
be determined during the course of the numerical solution for 6;. This is accom-
plished by noting that (43a) also implies

lim 004/0x = 0. (44)

T—>00
Since the solution of (42«) subject to either of the conditions (43a) or (44)
is unique, tiic numerical solution of the latter problem not only yields 65, but
also ¢p. A surp.ising feature of this solution is that #; appears to depend only on
a to within the available numerical accuracy. Hence, in figure 6 we have plotted
only the centre-line value for 7] as a function of x. It is evident that 0] does asymp-
totically approach a econstant value of approximately 1-74 x 1079, so that

¢y = — 348 x 1078,
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In contrast to 0, the numerical solution for ¢/, as shown by the contours in figure
7, is a strong function of y. However, since #] is approximately two orders of
magnitude smaller than @, the O(A43) correction to the temperature field will
always be dominated by @; unless P’r < 1. The fact that ¢; is non-zero is significant
because it provides the first correction to K, and hence, to the temperature and
velocity profiles in the core due to the interaction with the end region. Correct
to O(Gr? Pr? 43), the constant A is

K; =1-348x10-8Gr2 Pr? 43, (45)

Although this correction for K| is largely sufficient for providing a comparison
between the asymptotic theory presented here and the numerical and experi-
mental results of parts 2 and 3, it is beneficial to obtain one more term of the end-
region stream-function expansion, i,, since it provides a detailed flow correction
which is very evident in the numerical solutions to be presented in part 2.

Likeyr; and wy, ¥, and w, are subject only to homogeneous boundary conditions.
To eliminate the Pr, Gr dependence in (24), it is convenient to break this prob-
lem into three parts by means of the transformations

Yy = Pr2Greyy + Prariyy+ Gréyy,
wy = PriGriwy,+ PrGriw,+ Griw;,
such that Vi, = 00;/ox, (46a)

iy = %03 0wy, Y1) Awi, Yro)
2T 0 dx,y) o(x,y)

(46 b)

" o__ a((‘)0’ 'ﬁ’{) a((‘)’l" l/rﬂ) 2
wad V9 = e ) el

with homogeneous boundary conditions for iy}, ¥ and ;.

As in the previous cases, (46) were solved numerically and the streamlines
Vs, ¥y and ¢y so determined are plotted in figures 8(a), (b) and (¢), respectively.
It is apparent that each mode has a dominant set of closed streamlines, ¢} and
Yy corresponding to counterclockwise flow and i to clockwise cireulation. In
addition r; exhibits a weak clockwise circulation for a > 1. It is significant that
Y3 and ¥y are two orders of magnitude smaller than i, since, unless Pr < 1, i,
(and therefore w,) will always be dominated by /; (and w;).

In principle, it is possible to continue generating higher-order corrections to
the stream-function and temperature profiles in the end region. However, with
each higher-order term, the number of numerical solutions that must be calcu-
lated increases substantially. In fact, for the O(4") problem, one must obtain
2n — 1 numerical solutions. Because of the symmetry properties of the previously
obtained numerical solutions, the O(A4%) problem (which has not been specifically
outlined) does not contribute to K, (i.e. ¢; = 0). Hence, in order to obtain the
next non-trivial correction to the temperature gradient in the core (O((/r* Prid?)),
one must proceed to the O(A%) problem in the end region. Since 13 additional
solutions would be required fully to determine ¢, we have elected to terminate
the asymptotic expansion at O(43). The implications of the results to this order
are discussed in the next section.



18

—2:05%x10~1
7-55x 10712
JTae JOFR
2:67x107"
459 x10°1
0 1 1 i L 1 J
10 20 30 8(). 1-0 20 30
x @&
—4:85% 10~
—4:39x 10~
—829x10°12
—1-22x10~"
—1-61x10~1
—-200x 10~
Yy
| |
20 30

Zz

F1aure 8. (a) O(Pr? Gr? A?) stream function eorrection ¥, (b) O(Pr Gr* A?) stream function
correction ¥ and (c) O(Gr® A% stream function correction yry’

4,
The composite expansion for the end region

To obtain a qualitative appreciation of the influence of the higher-order cor-
rections ¥/, and ¥, on the flow characteristics in the end region, we have plotted
¥, as well as the composite functions

Y, = Yo+ PrGr Ay +Gr Ay}, (47a)
Y, =¥, + Pr2Gr2 A%y, + PrGr2 A%y, + Gr2 A%y, (47b)

in figure 9 for the representative parameter values Gr = 8 x 103, Pr = 6-983
and 4 = 0-01. For these values, the correction terms in (47) are approximately
one order of magnitude smaller than r,. Hence, a good qualitative idea of the
influence of each correction can be deduced, although higher-order terms
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may still have an appreciable influence on any quantitative comparison between
the asymptotic and exact (numerical) solution for this parameter range.

With the above limitation in mind, we note that the dominant qualitative
effect of the first correction is to skew the streamlines in the cold end of the box
upward relative to the symmetric function . That is, the streamlines entering
the cold end region advance further into the upper corner and are then deflected
outwards to a more gently rounded corner at the bottom by the action of the end
wall.

This shift in the streamlines represents the first effects of the stable stratifica-
tion on the flow in the end region. A possible physical explanation is that the
stratification retards vertical motion so that the fluid starts its downward flow
nearer the end wall where the stratification is weakest owing to the end-wall
cooling.

For particular values of the parameters considered, the second correction i,
has an even more pronounced influence on the contour lines than does the first
correction. (In the asymptotic limit as 4 — 0, of course, the first corrections
will be larger than the second corrections.) The influence of , on the flow is to
increase the net local mass flux. Figure 9 indicates that this increased mass flux
may result in closed streamlines in the end region. The parallel streamlines that
leave the core are diverted towards the upper wall and away from the lower wall
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as they traverse the end region. The characteristic ‘bump’ in the streamlines
which results is a prominent feature of the numerical results of part 2.

The value which we have used for Pr in the composite expansion of figure 9
is approximately that for water. As we have noted previously, the corrections
Y1, s and ;' become appreciable only as Pr becomes very small. Clearly, in
view of the form of ] and i/, , the detailed nature of the end-region flow will be
considerably modified in the limit as Pr — 0. In particular, instead of the up-
ward shift of the streamlines which we observed for Pr = O(1), the streamlines
in the cold end of the cavity will be shifted downwards for Pr < 1. In addition,
the end-region flow will be characterized by the absence of any closed streamlines.

5. Further discussion of results

One of the main goals of theory and experiment for cavity flows is the predic-
tion or correlation of the Nusselt number, the dimensionless heat transfer rate

1260
N“=foa-x

dy, (48)
=0

as a function of Gr, Pr and A. Such correlations have generally been deduced
either from the results of many numerical solutions of the full Navier-Stokes
equations (cf. Newell & Schmidt 1970) or from the results of numerous experi-
ments.

It is possible to obtain an expression for the Nusselt number from the present
asymptotic approach for the limit 4 — 0 with Pr and Gr fixed. To obtain the
relationship, we must evaluate (48) using the temperature profile in the cold end
of the cavity, correct to O(Gr? Pr243), e.g.

0 = Ax+ Qr Pr A%, + Gr® Pr? 430, + Gr® Pr A%0;. (49)

\

Owing to the antisymmetry of @5 about y = 0-5 evident in figure 4, 6, does not

contribute to the integral (48). Similarly, 63 does not contribute to the integral.

The contribution of 3, on the other hand, must be determined by numerical

integration of the previously calculated distribution of 5. Correct to O(Gr? Pr2 43)
the result is

Nu = A(1+2:86 x 10-8Gr2 Pr2 42).1 (50)

The Nusselt number, as defined by (48), is equivalent to the longitudinal dis-
persion rate which is frequently used to characterize real estuaries. It is, therefore,
significant that the first convective contribution to Nu is precisely the Taylor
dispersion coefficient, calculated using the first-order core velocity profile (cf.
equation (12) of the recent review paper of Fischer (1973)).

At the present time, there exist no experimentally or numerically deter-
mined correlations for Nu, that are valid for 4 < 1, with"which (50) may be
compared. However, it will be shown in part 2 that values of Nu calculated from
numerical solutions of the full Navier—Stokes equations for 0-1 < 4 < 0-056

t The next correction to Nu arises from the O(A4*) problem and can be shown to be
c Gr2 Pre A¢, )
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agree with (50) provided only that G2 Pr? 4% is suitably restricted in magni-
tude. A point of some interest with regard to (50) is the graphic illustration it
provides of the fundamental difference between the limiting processes 4 — 0,
Gr > 1 (fixed) and 4 <€ 1 (fixed), Gr — o0. In the latter circumstance we have
previously suggested (and our numerical and experimental results of parts 2
and 3 provide further evidence in corroboration) that the flow structure will be
dominated by natural-convection boundary layers at the side walls, with all of
the horizontal temperature drop occurring in these regions and the interior core
flow driven primarily by the entrainment—detrainment process associated with
these layers. In this case, the Nusselt number (48) must clearly be proportional to
Grm, with m > 0. In contrast, however, the expression (50) shows that, if Gr is
held fixed and 4 is decreased without limit, the Nusselt number must ultimately
become independent of G to first order, no matter how large G/r may be!

Finally, although the asymptotic analysis which we have considered is
strictly valid only in the limit 4 - 0 with (/7 and Pr fixed, it is useful to consider
the range of values of these parameters where the results may be of practical use.
Such an undertaking is, perhaps, particularly desirable in the present circum-
stance since (14) and (15) indicate the existence of a parallel flow structure to all
orders of magnitude in 4. Certainly the asymptotic treatment does not explicitly
indicate an upper limit of 4. However, the numerical solution for w,, figure 2 (),
indicates that the equi-vorticity lines are graphically parallel only for a > 2.
Thus, before parallel flow can exist, the cavity must be at least four times as long
as it is deep, or A < 0-25. The form found for K, e.g.

K, = 14¢,Gr2 Pr2 43+ O(Grt Prt 45),

indicates that the actual value of 4 necessary for the core solution (14) and (15)
to be valid must depend explicitly upon the fixed values of ¢/ and Pr. Although
a rigorous convergence criterion is not possible with the limited results presented
here, an approximate criterion can be obtained by requiring only that the second
term in the expansion for K, be small relative to the first. If we take 0-1 to be
small, then it is found that

Gr2 Prt 43 5 106, : (51)

Even if the ‘small’ correction were allowed to be O(1), the range of values of
Gr, Pr and A encompassed by (51) would not be changed substantially. It is, of
course, necessary to examine experimental resu]ts and/or numerical solutions ef
the full Navier-Stokes equations in order to substantiate the estimate embodied
in (51). This we do in parts 2 and 3 of the present work.

This work was done, in part, while J.Imberger was a visitor to the Keck
Laboratory of Environmental Engineering at the California Institute of Tech-
nology, with the support of a National Science Foundation Grant GK-35774X.
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B.  Natural convection in a shallow
cavity with differentially heated end walls.
Part 2. Numerical solutions

By D. E. CORMACK, L. G. LEAL aND J. H. SEINFELD

Chemical Engineering, California Institute of Technology, Pasadena
(Reeeived 23 March 1973 and in revised form 15 February 1974)

Numerical solutions of the full Navier-Stokes equations are obtained for the
problem of natural convection in closed cavities of small aspect ratio with dif-
ferentially heated end walls. These solutions cover the parameter range
Pr=6-983, 10 < G(ir < 2x 10%and 0:05 < 4 < 1. A comparison with the asymp-
totic theory of part 1 shows excellent agreement between the analytical and
numerical solutions provided that 4 < 0-1 and Gr2d3Pr? £ 105, In addition,
the numerical solutions demonstrate the transition between the shallow-cavity
limit of part 1 and the boundary-layer limit; 4 fixed, Gr — co.

1. Introduction

This paper reports numerical solutions of the full Navier—Stokes equations,
subject to the Boussinesq approximation, for buoyancy-driven convection in
a shallow rectangular cavity of height & and length ! (2 < l) with insulated top
and bottom, and differentially heated end walls. In part 1, hereafter denoted as
IF, Cormack, Leal & Imberger (1974) presented an asymptotic solution to the
problem, valid in the limit as the cavity aspect ratio 4 = k[l - 0, for fixed,
though arbitrary, values of the Grashof and Prandtl numbers Gr and Pr. It
was shown that the flow structure in this limit consists of two distinet regimes:
a parallel flow in the central core and a non-parallel flow which is confined to
within an O(k) distance of the end walls. The present investigation considers
the domain of small but finite 4 with Gr ranging from 10 to 2 x 10%. Strong evi-
dence is found to support the asymptotic theory of I. More important, however,
the numerical solutions also illustrate the role of Grin establishing the flow strue-
ture when A is small, but not vanishingly so. In particular, the transition from
the parallel flow regime of 1 to the boundary-layer limit of Gill (1966) is clearly
demonstrated.

Numerical investigations of buoyancy-induced convection in rectangular
cavities with differentially heated side walls have been numerous. The first
extensive investigation was contributed by Wilkes & Churchill (1966), who
studied the steady-state and transient fluid behaviour for Gr < 10° and aspect
ratios of 1, 2 and 3. However, a more thorough numerical study was reported

+ Equations and figures from I will be denoted as IX, where X refers to the original
equation or figure number.
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almost simultaneously by Elder (1966), which encompassed the conduction-
dominated regime of Batchelor's (1954) theoretical analysis, as well as Rayleigh
numbers (Ra = GrPr) up to 103, for aspect ratios varying from 1 to 4. More
recent investigations have been reported by De Vahl Davis (1968) and Newell
& Schmidt (1970). All of these studies have dealt primarily with the dependence
of the flow structure and overall Nusselt number on Rayleigh number for 4 > |
and large Ra. The chief qualitative feature evident from these studies, and of
interest in the present context, is the existence of end-wall boundary layers, and
the corresponding lack of any appreciable horizontal temperature gradients in
the core for large values of Ra (or Gr).

Most recently Quon (1972) studied the effect of changing the dynamical bound-
ary conditions for large Rayleigh numbers, Ra > 10°, and 4 = 1. Changes in
the horizontal boundary conditions from free shear to no slip were found to have
little influence on the main flow. Furthermore, for one of the cases, the basic
assumptions of Gill's (1966) boundary-layer analysis were apparently satistied.
However, Quon’s solutions show only modest quantitative agreement with Gill's
approximate analysis of the boundary-layer model. On the other hand, his
results are in good agreement with the experiments of Elder (1965).

It is surprising that the previous numerical work has been concerned
exclusively with aspect ratios 4 > 1, in spite of the frequent relevance of small
aspect ratios to problems of environmental fluid mechanies (see 1). In this respect,
the present study not only represents a substantial departure from the previous
work, but provides a base from which more detailed investigations of the small
aspect ratio problem may be undertaken.

2. Formulation of the numerical problem

We consider here an enclosed cavity of aspect ratio 4 < 1, whieh is filled with
a Newtonian fluid. The top and bottom of the cavity are rigid no-slip boundaries
which are perfectly insulating, while the side walls are similarly rigid and no-
slip,but are maintained at different uniform temperatures 7, and 7). A schematic
diagram of the system was presented in figure 1. The governing equations,
non-dimensionalized and subject to the Boussinesq approximation, were shown
in I to be

do  O(w, ) ot
UL [k — AT
Grd (aﬁ c')(z,y)) AV + o, (1)
Vi =—w (2)
. a0 A0, Y)\ o, :
and Gr PrA (W‘}" a(x,y)) = V2. (3)

Here, 3 is the stream function defined in terms of the horizontal and vertical
velocity components by, _ oyrloy, v =—apjor, |

w is the vorticity and 0 is the dimensionless temperature. The relevant boundary
conditions are Yp=0oyloxr=0 O=ad on a=0, I/A,}

4
Y=aoploy =0, doy=0 on y=0,lL. “
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In the remainder of this paper we consider the solution of (1)—(3) subject to
the conditions (4) using a finite-difference numerical scheme. It is well known
that such a treatment introduces errors that depend explicitly on the grid
spacing. To minimize this truncation error, it is desirable to use the smallest
grid spacing possible throughout the domain of integration. However, since the
computation time increases markedly as the number of grid points is increased,
one must reach a compromise between the accuracy of the solution and the
computation time necessary to reach that solution.

Square cavitieshavereceived thorough considerationin thisregard. Elder (1966)
found that solutions obtained with an 11 x 11 grid were qualitatively acceptable,
that & marked improvement occurred when the mesh size was halved to 21 x 21,
but that little further change resulted when a finer mesh was used. The idea
of using a scaled grid to reduce the number of mesh points was introduced by
Newell & Schmidt (1970). In this scheme, the smallest grid spacing is maintained
in the wall regions of the cavity, where gradients of the field variables are largest,
whereas a coarser grid is used to yield comparable accuracy in the central region
of the cavity, where gradients are small. Newell & Schmidt varied the grid
spacing in their caleulations by applying a nonlinear (polynomial) co-ordinate
transformation to (1)—(3), which were then finite differenced using a uniform
square mesh. An alternative is to impose the graded mesh directly on the original
equations (1)—(3).

The scaled-grid approach of Newell & Schmidt was adopted for the present
work. Several different transformations including the Newell-Schmidt poly-
nomials were tried, as well as various mesh sizes in the transformed planes.
For square cavities the most satisfactory choices appeared to be the sine trans-
formations

1 sin X . £ - -

&= o [1 +Wr] with  — 0457 < X < 045, ()
1 sin Y .

=—|14+——— ith  —0-45m < Y < 0-45m, 5

y 2[ sin 0-4571] b e 7 (6)

with 21 equally spaced grid points in each co-ordinate direction (X and V) in
the transformed plane. For A < 0-2, the transformation (5) required far too many
grid points in the X direction to provide the necessary resolution in the end
regions. Hence, while the transformation (6) was retained for the vertical
co-ordinate, we resorted to what we shall refer to as an arbitrarily discretized
grid for the horizontal direction in these cases. With this approach, the discrete
step size Az, was chosen to be a function of the co-ordinate position 7. Although
the spacing of the arbitrary grid was different for each case studied, the choice
was made in a consistent manner, based primarily on the observation from [
that the overall flow is composed of a core region in which the horizontal deriva-
tives scale as 1/4 and two end regions whose extent is independent of . (for
A < 1). The same resolution of the fluid motion in each of these three regions
was obtained by splitting the grid points up evenly with one third of the points
in each region. With the final requirement that the grid spacing vary smoothly
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from a minimum near the end walls to a maximum in the core, an adequate grid
was obtained using a 21 x 45 mesh system.

Once converged solutions had been obtained on the 21 x 45 grid, they were
recomputed using a 21 x 55 grid, the extra ten points being split evenly between
the two end regions. In all cases, the new values of the stream function differed
from the results using the coarser grid only in the fourth significant figure.
Furthermore, the integral properties, such as the overall Nusselt number, differed
by 19, or less. The addition of grid points in the core had no effect on the final
solution. This degree of consistency was deemed acceptable in view of the very
large increase in computer costs required to obtain the minor benefits of any
furtherincreasein accuracy. As we shall see, a quantitative indication of the error
introduced by this finite-difference scheme is provided by comparison of the
numerical results with the asymptotic theory of 1.

The difference equations which result from either the transformation (5) and
(6) or the transformation (6) with the arbitrarily discretized horizontal grid
may be expressed in a similar form and were derived in the present work by re-
placing time derivatives in (1) and (2) with forward differences, by representing
the Jacobian (or convective) terms in the conservative form suggested by
Arakawa (1966) and by replacing all other spatial derivatives with two-point
central differences. The general form of the difference equations which result is
well known and hence, in the interest of brevity, we shall not repeat them heret.

To incorporate the boundary conditions into the difference scheme, we have
transformed the two boundary conditions on ¥ to an explicit representation
for both 1 and w on the cavity walls. An appropriate relationship for , accurate
to O(Az)? or O(Ay)%, may be obtained from Taylor series expansions of ¥ at
the internal rows or columns nearest the wall, combined with the boundary
conditions (4) and equation (2) evaluated at the boundary.

3. The numerical algorithm

Although we were interested only in the steady-state solution, we chose to
integrate the transient difference equations from an initial guess at the steady
flow configuration to the final steady state by means of the two-step, alternating
direction, implicit method (A.D.I.) developed by Peaceman & Rachford (1955).
The systems of tridiagonal linear equations that resulted at each step of the
integration were solved by means of the Thomas algorithm (Von Rosenberg
1969, p. 113). The A.D.I. technique has the advantage over explicit methods that
it is numerically more stable and hence allows the use of a larger time step At.
It has the disadvantage, however, that each iteration requires more computation
than does an iteration with the explicit techniques.

We found also that a larger discrete time step could be used for the integration
of the temperature equation than could be used for the vorticity equation. Hence,
to reduce the computation time required to reach the final solution, a different
time step was used in each equation. For the cases which we investigated, the

1 A copy of these may be obtained from the authors, or the editor, upon request.
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Case Gr A P GriA43 Nu K, Vinns

I 2x 104 1-0 0-733 — 2-64 - 3:92x 104
1I 2x 10t 1-0 6-983 4x 108 5:56 e 891 x 10-%
111 2 x 10* 0-2 6-983 3:2x 108 4-07 0-166 516 x 104
v 2x 10t 0-1 6-983 4x 108 310 0-336 1-01 x 10-3
v 2x 104 0-06  6-983 5x 104 1-68 0-603 165 x 10—2
VI 2 x 102 0-1 6-983 4x 107 0-417 0-840 2-33 x 10-3
VII 500 0-1 6-983 2:5 x 10® 0:130 0-968 2:70 x 10-3
VIII 10 0-1 6-983 0-1 0-1006  0-996 275% 103

TaBLE 1. Parameter values considered

temperature time step was chosen as much as 1000 times larger than the vorticity
time step.

Computation time was further minimized by making use of the centro-sym-
metry property of the combined equations and boundary conditions. In particular,
if there are n, grid points in the  direction and n,, grid pointsin the y direction,
then symmetry requires ,

'/’(7”.7) — w(nz_i’ny—j)’
w(t,j) = w(ng—1,n,—j), (7)
0(1,j) = 1 —0(n,—1i,n,—)).

Hence, only half of the grid points need be scanned at each iteration, leading to
at least a 50 9, cut in computation time.

Excellent indications of the progress of the integration were provided by
an integral of the vorticity over one end of the cavity (essentially, a drag coeffi-
cient) and by the Nusselt number as defined in equation (148). Once the varia-
tions in both of these integral parameters between iterations were of the same
magnitude as the computer truncation error, the integration was stopped. For
the IBM 370-155 which was used, this occurred when changes were taking place
in the fifth or sixth significant figure. Typical computation times using the ap-
proach outlined above were 20-30 min with the variations due primarily to
changes in the Grashof number and to variations in the accuracy of the starting
values assumed for 6, Yy and .

4. Numerical results

Square box
As a preliminary test to establish the overall consistency of the numerical
results produced by our algorithm, we considered a square cavity with

Gr =2x10 and Pr= 0733,

listed as case I in table 1. Wilkes & Churchill (1966) had previously considered
the same system. With a 21 x 21 grid in the Cartesian co-ordinate system, they
obtained a Nusselt number of 2:52, whereas using (5) and (6), with 21 points
in each eo-ordinate direction, we obtained Nu = 2-64, We consider the difference



28

E
D

ks ¢

- B AB

C - Pl

\ .
X X e 1 o
(@) (b (©)

Fieure 1. Case I; Gr = 2x 104, A4 = 1, Pr = 0-733. (a) Streamlines; 4 = 3-92x 107,
B = 262x10-4, C = 1-31x10-4%. (b) Isotherms; A4 = 0:167, B = 0-333, C = 06,
D = 0:667, E = 0-833. (¢) Vorticity contours; 4 = — 141 x107%, B = —577x1073,
C = 2:65x 10-3.
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Ficure 2. Case I1; Gr = 2x10%, 4 = 1, Pr = 6-983. (a) Strecamlines; A = 891 x 104,
B =590x10"% C = 296x10-% (b) Isotherms; A = 0167, B = 0-333, = 0-5,
D = 0667, E = 0-833. (¢) Vorticity contours; 4 = —4-24 x 10, 8 = T-6 x 10~ 1.

between these values to be largely insignificant, particularly in view of the large
scatter of the numerically determined values for Nu as a function of Ra that
have been collected by Quon (1972) from various authors (ef. his figure 9).

In figure 1 the flow configuration is presented for this case. The structure of
the isotherms indicates that the only substantial horizontal temperature gradi-
ents occur in the lower right and upper left ends of the cavity. Since the buoyancy
forces are proportional to the temperature gradients [cf. equation (1)], the overall
flow must be driven by these essentially boundary-layer-like regions, with the
flow in the core maintained by the requirements of continuity as suggested by
the model of Gill (1966), '

A change in the Prandtl number from 0-733 to 6-983 (the Prandtl number
of water at 20 °C) with all other parameters held constant produced a consider-
able change in flow structure, as indicated by comparing figures 1 and 2. The chief
change is a thinning of the thermal boundary layer, which is to be expected
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on the basis of standard boundary-layer arguments (Gill 1966). Furthermore,
since it is the buoyancy-induced forces in the thermal boundary-layer region
which drive the flow, the region of largest vertical velocity is also confined more
closely to the walls, as is evident in figure 2 (a).

A secondary effect of increasing Pr is a substantial decrease in the maximum
value of the stream function within the cavity.t Furthermore, a secondary flow
develops which may be recognized in figure 2 by the two stream-funetion maxi-
ma. This induced secondary flow not only causes inflexions in the isotherms, but
also convects the negative vorticity that is generated in the vieinity of the walls
further into the bulk of the fluid. These secondary flow phenomena are consistent
both with the numerical results of De Vahl Davis (1968), Rubel & Landis (1969)
and Quon (1972) and with the experimental results of Elder (1965), who found
that such a flow results for Ra > 10%. For the present case Ra = 1:4 x 10°. This
strong dependence of the flow characteristics on Pr for 4 = 1 is in contrast to
the conclusion in I that the stream-function and vorticity fields should be
independent of Pr to first order for 4 < 1.

Cavities with A < 1

It was pointed out in I [equation (I151)], that, for constant Pr, a significant para-
meter in determining whether the flow in the core complies with the parallel flow
structure derived in I is Gr2 43. To illustrate the transition from the boundary-
layer regime of large Gr243 to the parallel flow structure of ‘small” Gr243, we
have carried out computations at several values of this parameter. The cases
considered are shown in table 1, in order of decreasing (/»243. Also listed are the
numerically caleulated Nusselt numbers and maximum stream funection .
for each case.

All of the results for 4 < 1 deal only with Pr = 6:983, primarily so that the
results can be directly compared with experimental observations in water (see
part 3), but also to take advantage of the observation of De Vahl Davis (1968)
that the stability of the numerical algorithm increases with inereasing Pr.

In figures 3-8, we have plotted the streamlines, isotherms and contours of
constant vorticity for each case, also arranged in order of decreasing (/7243 so
that the trends of the numerical solution can easily be identified. It should be
noted that all of the results are plotted as square figures; hence, for cavities
with small aspect ratios the horizontal length scale is substantially compressed.

An examination of the results for the cavities with G = 2 x 102, Pr = 6-983
and various aspect ratios (figures 2-5) reveals that the streamlines and vorticity
lines become more nearly parallel as 4 decreases, as was anticipated in the
analysis of L. It is perhaps worth emphasizing that this transition to parallel
flow is not simply a consequence of decreasing the overall temperature gradient
(T, —T,)/l, as the aspect ratio is made smaller. In fact, one can change 4 in such
a manner that the overall temperature difference must actually be increased in

t The apparent difference between this result and that of De Vahl Davis (1968) is due
both to different scaling and to the fact that we held Gr fixed while De Vahl Davis used
Ra (= Gr Pr) as the fixed parameter.
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Fraure 3. Case IT1; Gr = 2x 104, A = 0-2, Pr = 6-983. (a) Streamlines; 4 = 516 x 1074,
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FI1GURE 4. Case IV; Gr = 2x10%, 4 = 0-1, Pr = 6-983. (a) Streamlines; 4 = 1-01 x 10-3,
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Freure 5. Case Vi Gr = 2x 104, A = 0:05, Pr = 6-983. (a) Streamlines; A = 1:66 x 103,
B =1 ll x 103, (' = 5:53%x10-4. (b) Isotherms; 4 = 0-167, B = 0333, C =
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Freure 6. Case VI; Gr = 2x 103, A = 01, Pr = 6-983. (a) Streamlines; 4 = 2:33 x 1073,
B = 155x10"3%, C = 7-74x10-%. (b) Isotherms; A = 0-167, B = (-333, C = 05,
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Fiaure 7. Case VII; Gr = 500, 4 = 0-1, Pr = 6:983. (a) Streamlines; 4 = 2:70x 10-3,
B = 1-80x10-8%, C = 899x10-4 (b) Isotherms; A = 0-167, B = 0-333, C = 05,
D = 0:667, E = 0-833. (¢) Vorticity contours; 4 = —631x1072, B = —1-96x 10-2,
O =240 x 10-2.
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order to hold G fixed. For example, 4 may be decreased by simply decreasing A
while holding [ constant. Then, to maintain a specified constant

Gr (= (T, —T.) k3[v*),

it is obviously necessary to increase (7, —7,)/L.

In addition to the increasingly parallel character of the flow, the gradual
disappearance of the thermal boundary layers as A is decreased is also a promi-
nent feature of the transition. In case II, the core flow is driven primarily by the
entrainment and detrainment of fluid from the buoyancy-driven boundary
layers. On the other hand, by case V these boundary layers have essentially
disappeared. The major portion of the temperature drop occurs across the core.
so that the overall flow is necessarily driven by the buoyancy forces in the core.
This transition to a core-driven flow, with decreasing 4, was suggested in I and
is completely consistent with the asymptotic theory.

The above tendencies are not restricted to the situation with Gr fixed and
A decreasing. A consideration of the figures in order of decreasing Gr with A4
fixed (figures 4, 6, 7 and 8) reveals a similar trend of increasingly parallel flow
and a transition from a thermal boundary-layer structure to a linear temperature
profile. This behaviour provides support for the qualitative conclusion from I
that the condition (I51) is sufficient for the existence of the parallel core flow.

Figures 3-8, when observed in order of decreasing Gi7* 43, yield some additional
tendencies, most of which fall within the scope of the asymptotic analysis. Of
particular prominence is the decreasing magnitude of the stream-function de-
flexions that occur as the fluid enters and leaves the end regions. A prediction
from the asymptotic theory was that these deflexions, for constant Pr, should be
0(Gr24?%), provided that A is sufficiently small. Since the arrangement in order
of decreasing (/724® also produces an arrangement in order of decreasing Grd,
this phenomenon is again compatible with the asymptotic theory.

One characteristic of the stream-function deflexions at the larger values of GirA
which is not predicted by the first four terms of the asymptotic expansion is the
‘necking down’ of the streamlines before they again diverge.t Closely associated
with the necking phenomenon is the occurrence of the stream-function maxi-
mum in the core rather than in the end regions as predicted in the asymptotic
theory. Only in cases VI-VIII, for which necking is absent, does the absolute
maximum of i occur in the end regions. However, a closer examination of the
numerical results does indicate that there always exists at least a local maximum
of ¢ in each end region.

Some additional interesting trends are also displayed by the plots of the iso-
therms and equi-vorticity lines. For the larger values of (77243, the vorticity
gradients are extremely large in the vicinity of the end walls, and, in relative
terms, are almost non-existent in the bulk of the fluid. Hence, in this limited sense,
Batchelor’s (1954) conjecture of a uniform-vorticity core at large G'r (4 fixed,
Gr - o0) is basically confirmed. It is important to note, however, that the basic

t There is, however, a strong indication that this phenomenon would be realized with a
subsequent (higher-order) correction to the solution in the end region.
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flow structure in this limit is otherwise completely unlike that suggested by
Batchelor and in qualitative accord with that proposed by Gill. In particular,
because of the strong horizontal advection due to entrainment—detrainment from
the boundary layers, the temperature distribution in the core at large G72.43shows
only a weak dependence on horizontal position, while still retaining reasonably
strong vertical gradients. The vorticity generated at the end walls does not effec-
tively diffuse to the core, because the buoyancy forces in the region adjacent to the
walls provide an effective sink for this vorticity (they appear as source terms for
vorticity of opposite sign) which greatly decreases its magnitude before it can
reach the core. A lucid explanation of the transient development of this (large
Gr?A43) physical structure has recently been provided by Quon (1972). As either
4 or Gr is decreased, the magnitude of the vorticity gradients in the end regions
is decreased, and the temperature distribution shows a gradual transition from
the strong vertical dependence of the boundary-layer regime towards the totally
horizontal dependence corresponding to the linear profile of 1. Ultimately, in
cases VI-VIII, the vorticity gradients are of comparable magnitude throughout
the cavity. In addition, as expected from the asymptotic analysis, the vorticity
distribution becomes increasingly symmetric with decreasing 4 or Gr,

A more quantitative comparison of the numerical solutions with the asymp-
totic theory is possible particularly for the flow in the core. Equation (I14)
indicates that, if the flow is parallel, then

ulK, = &*f(y)/oy*, (8)
where fy) = 1Ly’ — &4+ A50°

and K, is the parallel-flow parameter. Any deviation of numerically determined
values of u/K, from the relationship in (8) will give a good indication of devia-
tions of the numerical solutions from the parallel flow structure. Hence, the prob-
lem of quantitatively comparing the numerical and analytical velocity profiles
reduces to one of finding a value for K, from each numerical solution. This is
easily done since, according to equation (115), the core temperature can be sepa-
rated into two parts when 4 is sufficiently small. One part is a linear function of a
and the other is the fifth-order polynomial f(y). Hence, a value for K, can be
determined from each numerical solution (whether or not the flow is identically
parallel in the core) by fitting the numerically determined temperature 0;;, in a
least-squares manner, to the equation

0=K, Az + K,

at the five central grid points, on the line y = 0-5. The resulting values of K, are
presented in table 1. As expected in view of the transition from the boundary-
layer regime to the ‘conduction’ regime of the 1, the coefficient K, increases as
GriA3 decreases. -

Figure 9 is a plot of the theoretically and numerically determined velocity
profiles u/K, on the centre-line x = 1/24 as a function of y. It is apparent that
a8 Gr243 decreases the velocity profile approaches more closely the parallel
structure. However, for values of G248 < 104, cases VI-VIII, the numerical
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O,6r = 2x10%, A = 0:05; [, Gr = 2%103, A = 0-1;———, Gr = 5x10%, 4 = 0-1.

data fall on a single curve (the broken line) that is somewhat different from the
theoretical profile. Because of its consistency, we attribute this diserepancy to
the numerical error introduced by the finite-difference scheme and grid network
used. Since this error constitutes only a very small fraction of /K, the corre-
spondence between the analytical theory and the limiting form of the numerical
velocity profiles would appear to be quite satisfactory.

It ig significant that cases I11I-V, in which (7?43 is largest, have horizontal
velocities larger than those predicted by the parallel-flow theory with K, evalu-
ated from the numerical solutions. As the transition from the asymptotic limit
of I to the boundary-layer regime of Gill is encountered, the driving force for
fluid motion must gradually change over from one totally dominated by the
horizontal temperature gradient in the core to one controlled by entrainment-
detrainment from the boundary layers at the end walls. Hence, as (7243 is
increased, the theoretical prediction from I must increasingly underestimate
the actual horizontal velocities, since it is based entirely on the core-gradient
mechanism. This is evident in the results of figure 9.
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Fiaure 10. Comparison of numerically determined 0 at x = 1/24 with theoretical
core temperature (solid line). Notation as in figure 9.

It is also possible to obtain a quantitative estimate for the value of Gr2Pr*43
at which the core flow changes from parallel to non-parallel from the results
presented in figure 9, and hence to verify condition (I51). The velocity profile
of case V deviates only slightly from the limiting profile of the numerical solutions,’
whereas that for case VI falls directly on the limiting curve. Hence, the appro-
priate limit for validity of the parallel flow structure (for 4 ~ 0-1) must occur at
a Gr2Pr243 between 2-5 x 108 (case V) and 2 x 10% (case VI). This observation
lends strong support to the speculation of I that the parallel flow structure will
apply for Gr?Pr243% < 10%, provided that 4 is sufficiently small.

Further consideration of the core solution of I indicates that a plot of

(0— K, Aw)| K3 GrPrA?

as a function of y should also yield the fifth-order polynomial f(y), provided
that 4 and G2Pr?A43 are such that the parallel-flow theory is relevant. Figure 10
is a plot of this function evaluated at the centre-line x = 1/24. For cases 111~
VI, with decreasing Gr243, the numerical profiles approach the theoretical curve
as would be expected. On the other hand, for case VII the difference between the
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numerical and theoretical curves increases slightly and for case VIII, whichis not
shown on the figure, the differences between the theoretical and numerical
data points are large and random. Although this latter trend would, at first
glance, appear to be inconsistent with the theory of I, it is in fact a numerical
artifact which is a consequence of the structure of the temperature field as
Pr GrA? — 0. An order-of-magnitude analysis of equation (L15) reveals that both
K, Az and 0 are O(1) whereas

K2Gr PrA%*(y) = O(GrPrAd?x 1073).

If we assume, for some hypothetical values of the parameters G'r, Pr and 4,
that the core flow is identically parallel and, furthermore, that the numerically
determined temperature field contains a consistent error &, then a simple caleula-
tion shows that the error in the numerical data corresponding to figure 10 will

be amplified to

£, = &)|GrPrA®% % 1078,
To be specific, for case VII,

GrPrAd2x 103 = 0:035,

so that, if the numerically determined temperature profile contains an error
of 0-59,, then it is not unreasonable to have an error of 159 in the reduced
numerical data. Similarly, for case VIII,

GrPrA2x 103 = Tx 1074,

80 that even a small numerical error would be amplified to substantial propor-
tions. We must conclude that, owing to the increasing prominence of even the
smallest numerical errors as GrPrd? decreases, figure 10 is of limited value in
establishing the region of G'r, Pr, A space in which the core-flow solution is valid.

In the previous discussion, it has been emphasized that the numerical results
effectively display the transition from the parallel flow regime of small Gr243
to the boundary-layer regime of large (7243, Perhaps the most graphic demon-
stration of this transition is provided by figure 11, a plot of log (1 — K;) as a
function of log (Gr243). The asymptotic expression for KA,, equation (145),
indicates that for constant Pr such a plot should yield a curve that is asymptotic
to the straight line

log (1— K,) = log (3:48 x 10-Pr2) +log (('r2A43) (9)

in the limit as 4 — 0. On the other hand, the boundary-layer theory suggests
that for large G243 the horizontal gradient of temperature in the core should be
zero. Hence for large G243 the curve should be asymptotic to the line

1—-K, =1.

The numerically determined values of K, display the expected trends in both
limits. ’

A further demonstration of the transition from the parallel to the boundary-
layer regime is provided by figure 12, a plot of log (Nu—A) as a function of
log (G7243). We emphasize that it is the deviation of the actual Nu from the
agymptotic value 4 that is plotted here. For small values of (#243, the



37

I | S R L I 1 ) T LN B O |

107

o

L3

10°

I NN

10°

SRR

10¢

Gr243
L1 LN

1 it

10?

J it

1 L L L1014 | s O
0-01 01

1-K,

Ficure 11. Variation of K, with (243, (), munecrical data;
, asymptotic theory.

(=4

7
10 T T T TTTTI T T TTTTIT T T TTTT

Gr243

10 & 1 L1 3 1111 1 L L L1 1ity 1 N |

001 01 1 10

Nu—-A
F1aurs 12, Variation of Nu—4 with Gr?4%. O, numerical data; ——, asymptotic theory.



38

numerically determined values of the Nusselt number are asymptotic to the
theoretical straight line which was derived in I. On the otherhand,itisalsoevident
that, as Gr24? increases, the numerically determined Nusselt numbers deviate
considerably from the asymptotic value. Infact, for the largest values of (7243 con-
sidered, the scaling of figure 12 apparently has little bearing on the actual Nusselt
number. This is to be expected, however, since at large values of (7243 the flow
resembles more closely the boundary-layer structure than it does the parallel
flow structure. Since Gill’'s boundary-layer analysis showed that Nu should
be independent of A4, and vary directly as (GrPr)i, the sharp increase in the
slope of the numerical curve at large values of (7243 can be attributed to the
transition to the boundary-layer structure.

This work was supported, in part, by National Science Foundation Grant
GK-35476.
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C. THE EFFECT OF UPPER SURFACE BOUNDARY CONDITIONS ON CONVECTION IN A

SHALLOW CAVITY WITH DIFFERENTIALLY HEATED END—WALLSf

By D. E. Cormack, G. P, Stone and L. G. Leal

The effect of upper surface boundary conditions on the flow
structure in shallow cavities with differentially heated end-walls
is examined. Matched asymptotic solutions, valid for small cavity
aspect ratios are presented for the following cases: uniform
shear stress with zero heat flux, uniform heat flux with zero shear
stress, and heat flﬁx linearly dependent on surface temperature with
zero shear stress. It is shown that these changes in surface
boundary conditions have an important influence on the temperature

and flow structure within the cavity.

TThis manuscript has been accepted for publication in the
International Journal of Heat and Mass Transfer.
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NOMENCLATURE
A, aspect ratio = h/%;
B, dimensionless shear parameter = Rro/hZ(Th - TC)Bg;
ci,c;, coefficients which are functions of Gr and Pr;
Cp heat capacity;
F(y) y2/120 - 5y°/192 + y/48
£(T) surface heat flux;
Gr Grashof number = Bg(Th - Tc)h3/v2;
H scaled thermal exchange coefficient = Kh/kAZ;
h cavity depth;
K effective thermal exchange coefficient;
Kl’KZ core solution parameters;
k. thermal conductivity;
2 cavity length;
2 characteristic len%th for surface heat transfer;
Nu Nusselt number = j %9- dy;
o ¥ lx=0
Pr Prandtl number = cpu/k; ’
Q scaled surface heat flux = qh/kAz(Th - Tc);
q surface heat flux;
Tc’ h cold- and hot-end wall temperatures;
Te equilibrium temperature for surface heat transfer;
u* slip velocity;
X,y cartesian coordinates nondimensionalized by h;
X Ax;

B coefficient of thermal expansion;
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VRh/k;

1 -y;

(1-86);

(T = T/ (T, - T);

viscosity;

kinematic viscosity;

horizontal distance from hot end of cavity = A“l - X3
core variable for semi-infinite cavity = €§;
surface kinematic shear stress;

hot end vorticity;

vorticity;

hot end stream function;

stream function;
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1.  INTRODUCTION

It has become a common practice to use estuaries and other bodies of
water for the disposal of the waste heat that arises as a by-product of
fossil and atomic fuel electric power generation. Similarly, sewage treat-—
ment plants often discharge high concentrations of organic pollutants
directly into estuaries and coastal waters. Although such dumping may be
safely carried out, it is important to take proper consideration of its
impact on the bilochemical processes that depend critically on the water
temperature and purity. As a first step toward understanding the biological
impact, laboratory and field experiments have established practical temperature
and toxicity limits, beyond which the biological processes are impaired.
However, before outfall systems can be designed so that these limits are not
exceeded, it is necessary to understand more fully the mechanisms by which
these wastes are dispersed within the body of water.

Estuaries which are shallow (depth much smaller than length) and have
strong enough vertical mixing to prevent the formation of density wedges,
often exhibit a density distribution which is vertically uniform but which
varies approximately linearly in the horizontal direction. An excellent
naturally occurring example is Shark Bay on the West Australian coast (Logan
and Cebulski [1]). More commonly, perhaps, the horizontal gradient may be
established as a result of man-related heat input near the end of the estuary.
In either case, the slow gravitational circulation, induced by the horizontal
density gradient, can contribute significantly to the longitudinal dispersion
of pollutants, mainly by the mechanism of Taylor diffusion (Fischer [2]).

A complete dynamic model of an estuary such as Shark Bay would, of course,

be very complex. The geometry of the estuary is complicated, and the flow
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is turbulent and generally coupled with the tidal cycle. Furthermore,
various regions of the flow field are controlled by processes occurring on
very different length scales. In the immediate vicinity of the source (for
example, near the discharge of heated fluid from a power plant) the problem
is dominated by the details of the source geometry, and the local mixing
processes (cf. Harleman and Stolzenbach [3]). Covering a much wider area
beyond this so-called '"mear—-field" region, is the region of interest in the
present work, nameiy the "far-field," where the primary transport mechanisms
are bulk diffusion and convection. In this region, the detailed velocity
and density fields are relatively insensitive to the source configuration.
In addition, since the time scale of the gravitational circulation in the
far-field 1is large, the influence of the tidal cycle and other unsteady
variations of velocity on the mean circulation in the estuary may be taken
into account by the use of effective eddy exchange coefficients (Imberger [4]).
Thus, considerable insight into the basic far-field flow structure can be
obtained from the idealized problem of laminar flow in a shallow two-
dimensional cavity with differentially heated end walls.

Investigations into the problem of natural convection in two-dimensional
cavities have been extensive. Most theoretical studies have focused on
numerical solutions of the full equations of motion, subject to the
Boussinesq approximation, for cavities which are either square or have a
depth, h, larger than .their length, % (cf. Quon [5], Wilkes and Churchill
[6], Newell and Schmidt [7], and DeVahl Davis [8]). Notably, these studies
have not dealt specifically with the case of small aspect ratio (A = h/% << 1)
which is relevant to the estuary circulation problem. In.a recent paper,

Cormack, Leal and Imberger [9](penceforth denoted as "I") provided an



b4

analytical description of the convective motion of a Newtonian fluid in a
two—~dimensional enclosed cavity with a rigid, no-slip, insulating 1id for
the 1imiting case A + 0, with fixed values of the Grashof number, Gr. The
basic features of shallow cavity flow, as predicted by this theory, were
subsequently verified both by numerical solutions of the full equations of
motion (Cormack, Leal and Seinfeld [10]), and by experimental measurements
(Imberger[4]).

As explained by Imberger [4], the no-slip insulating boundary was the
only surface condition for which reliable laboratory data could be obtained,
and this motivated its use in our previous analytical investigation. Clearly,
this condition is quite different from that relevant to an open surface
estﬁary, and the effect of this difference upon the circulation dynamics is
not obvious. It is the purpose of the present study to investigate this
question for the more realistic conditions of an imposed surface shear stress
(due, for example, to a surface wind stress) and surface heat transfer. The
analysis will show that these modifications of the boundary conditions can
have a very significant effect on the Nusselt number (and hence on the
longitudinal dispersive capacity of the cavity) as well as on the form of
the velocity and temperature profiles for A » 0, with other parameters held

fixed.+

In contrast, for Gr + «, A fixed, the recent uumerical solutions of
Quon [5] indicate that the upper surface condition for the velocity
plays a less important role, at least in determining Nu.
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2. MATHEMATICAL FORMULATION OF THE PROBLEM

The system that we consider is shown schematically in Figure 1. It
consists of a cavity of length, £, and height, h, that contains a Newtonian
fluid. The end walls are held at different, but uniform temperatures, Tc
and Th’ with Tc < Th. The bottom of the box is insulated and the end walls
and bottom are rigid, no-slip boundaries. At the upper surface, the kinematic
chzar stress is assumed to have suvuwe uuilocm valiue, To’ and the heat riux is
given as a function of the surface temperature, f£(T).

Subject to the usual Boussinesq approximation, the steady-state equations

governing this system may be expressed (see I) as

2 3(w,¥) _ o2 30
GrA T AV w + i (1)
vy = - w (2)
PrGrA 20,4 . v2o )

(x,y)

with boundary conditions

Y =0, %% =0, 0=A onx-= O,A-l
. 5 (4)
v =0, 5%-= 0, 5% =0 ony=0
2 LT
and g‘k:o M:..___o_.__ ae—._b_g.'r_)—._ 0ny=l (5)

S TG T TR A S NS

To nondimensionalize these equations, we have used h as the characteristic
length scale, and Bg(Th - Tc)hB/vl as the characteristic velocity. Although
perhaps not obvious, this velocity scaling is the most convenient choice for
the present problem, where the basic flow structure is fognd to consist of a
buoyancy driven parallel flow which is moderated by viscous effects over a

length 2. At any rate, it may be justified a posteriori by the theory which
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is presented in this paper. The dimensionless parameters which appear in
the equations (1) - (3) are the Grashof number Gr, the Prandtl number Pr,
and the cavity aspect ratio. The additional dimensionless parameters intro-
duced as a result of the surface conditions (5), will be discussed in the

body of the paper.

3. THE NO-SLIP, INSULATED CAVITY

Before the general case represented by (5) is considered, it is useful
to summarize the basic analytical techniques and results obtained in I, for
the no-slip insulated cavity. The key simplifying feature in this case is
the assumption, supported by experimental observation, that the length scale
for horizontal change in the central region of the cavity is O(A)—l, while
the scale for horizontal change near the end walls is only 0(l). Because
this disparity in 1ength scales increases as A + 0, an analytic solution to
(1) - (5) may be obtained using the standard methods of matched asymptotic
expansions, in the limit A - O with the other parameters held fixed. Analytically,
the cavity is decomposed into three parts, a core region cof extent O(Aﬁl) in
the center of the cavity, and two end regions within an O(l) distance of the
end walls. The solutions in the three regions are coupled by the matching re-
quirements in the regions of overlap.

The core solution is easily obtained by introducing the scaling

% = Ax (6)
into the governing equations and boundary conditions (1) - (5), and expanding

the streamfunction and temperature as regular series in the small parameter A

Vo= g, + AYy +A2q»2 + ..

)]

<D
]

2
90 + AOl + A 82 . ol
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The resulting solution is
V=K G126 - Y2 4 yP 20 (®)
0 = K& + KorPra’(y°/120 - y*/48 + y?/72) +k, 9)
where

2
Kl =< + Ac2 + A c3 * i

(10)

K, = ¢! + Ac! + A2

2 1 2 cs + oane J

The coefficients C19Cps tov s ci,ci, ... are determined by matching the
core solution with solutions valid in the end regions. Because of the sym-
metry of equations (1) - (4) and the no-slip, insulated boundary conditions,

the coefficients c; can be eliminated in favor of the single set c,, so that

i
the matching operation reduces to a consideration of solutions valid in the
cold end of the cavity. Upon calculating the end region solutions and carrying

out the matching, the coefficient Kl’ governing the magnitude of the horizontal

temperature gradient in the core, was found to be

R, = 1 - 3.48 x 10 %ce?pe?a® + 0(cr4§r4A5) (11)
while the Nusselt number,
Nu = Jl %% dy
0 x=0
was shown to be of the form
Nu = A + 2.86 x 10 Ccr?pr?a’ + o(crlpr?a%). (12)

The corresponding stream function representing the first order flow field in
the (cold) end region is shown in Figure 2a.
Solutions (8) and (9) indicate that the core flow for a no-slip insulated

surface is parallel to all orders of magnitudegin A, while, to first order in
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A, the temperature is linear in X and independent of y. Thus, to a first
approximation, the end regions are isothermal and the driving force for con-
vection is associated with the horizontal gradient of 6 in the core. The end
regions serve mainly to turn the core flow through 180° as required by the
condition of zero volume flux through the end walls. In these features the
flow associated with the limit A + 0 with Gr fixed (though perhaps large) is
fundamentally different from that appropriate to the limit A fixed (though
perhaps small) and Gr + « which wae etudiad by 2ill [11]. In the lattcr cace,
nearly all of the temperature drop cccurs in thin end wall boundary layers
and the corresponding gradients constitute the primary driving force for
fluid motion. 1In particular, the core flow exists only as a consequence of
the entrainment-detrainment process associated with the end wall boundary
layers.

It is also significant that the longitudinal heat transfer process in
the present case is dominated by conduction (cf. equations (9) and (12)), and
that this occurs for any arbitrary Grashof number provided only that A is
made sufficiently small. Clearly, the problem considered here differs in a
fundamental way from the usual conduction limit A fixed, Gr - 0. 1In the
present case, as A is decreased the horizontal scale of the cavity increases
relative to its depth so that even the small viscous contributions associated
with a large value of Gr can eventually become important and effectively
"throttle" the flow, thus enhancing conduction compared with convection in
the core region.

Finally, it may be noted that the higher order convective contributions
to (9) and (12) are a result of the Taylor diffusion mechanism which has been

recently reviewed in the context of cavity and estuary flows, by Fischer [12].*

+The convective terms in these equations can, in fact, be reproduced using
the general equations (10) and (12) of Fischer's paper.
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In the following sections we consider the changes in flow structure
which occur as the no-slip, insulated upper surface conditions are replaced

by the conditions (5).

4, ASYMPTOTIC VELOCITY AND TEMPERATURE FIELDS WITH AN IMPOSED SURFACE

SHEAR STRESS AND ZERO HEAT FLUX

The lugical excension of the no-slip upper surface, which was discussed
in I and summarized in the previoué section, is the case of an imposed,
uniform shear stress, T The problem differs from the previous one only
in the condition

2 zro

3—-‘g-ﬂ-?—————-ﬂBonyw1 (13)
dy h°(T, - T )Bg

which replaces the no-slip condition, 3y/3y = 0. In natural estuaries, T
could be interpreted as the time— and space-averaged value of the surface
wind shear stress. In that case, a typical range for T would be 0 - lOcmZ/sec2
(cf. Lumley and Panofsky [13]), which leads to the estimate 0 < |B] <2in
Shark Bay. The dimensionless parameter B provides a measure of the relative
magnitudes of the surface shear force and the characteristic buoyancy force
in the cavity. When B << 1, the buoyancy forces are dominant and the problem
is equivalent to the case T ™ 0. On the other hand, for B >> 1, the shear
forces are dominant and the problem is a forced convection flow to first
approximation. It is the intermediate case, B Vv 0(1), which we will pursue
here. Tﬁe énalysis follows that in I fairly closely. Thus, in the interest
of brevity, we omit the details of the end region solutions and of the
matching. The relevant techniques are demonstrated in tﬁe Appendix for the

somewhat simpler but representative case of B = 0. Here, we shall concentrate



54

on the solutions themselves rather than on the methods used to obtain them.

In the core region,

‘\D =K Y.l.‘._éﬁ.i.ﬁ +§.(3_ 2) (14)
CfMf2e T 48 T1e) T VY T Y

. 2] 2(y> syt Ly PAD o
9 = K% + Pr6r A Kl[i'z"()"195'+48'] +KlB[16-12] +K, (15)

where K, and K2 are polynomials in A. The coefficients of Kl and K2 depend

1
on Gr, Pr, A and B, and are determined by matching (14) and (15) with the
solutions in the two end regions. The principal feature of interest in the
latter (end region solutions) is the fact that the surface shear stress
yields only a simple additive contribution at first order in A.

=y + By, + 0(A)
The first term, wo’ is simply the To = 0 solution outlined in the Appendix.
The second term, $o’ which is directly attributable to the imposed surface

shear stress, was obtained numerically. The governing equation and boundary

conditions are
Vv =0 (16)

g =0 onx=0 ony=0,1 )

I
s
I
o
1
»
| §
(=]
8

,‘,

on y 17)

]
H

5 = 1 on y

The numerical scheme closely resembled that described in the Appendix for wo.

Typical streamlines for wo are presented in Figure 2b.
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To determine Kl and Nu to 0(A3), in addition to the five end region
temperature corrections obtained in the Appendix for LMy 0, three addi-
tional corrections had to be calculated; one at O(Az) and two at 0(A3). The
resulting expression for Kl' correct to O(A3), is

K = 1- price?a3(19.16 x 107 - 2.536 x 10~

%8 + 8.550 x 107%8%)

+ 0@ah (18)
Similariy, the Nusselt number (12) is modified to

Na_ = A+ Prce?a3(13.10 x 10”

(o]

6 4

- 1.736 x 107%B + 5.952 x 107%8%)
+ 0(at (19)

Our primary interest in the results of the preceding analysis is with
the qualitative variations in flow structure which are induced by changes
in boundary conditions at the upper surface. Most relevant to tﬁe far-field
aspects of estuary flows are the structure of the core flow and the magnitude
of the first correction (O(Aa)) to the Nusselt number, since the latter is a
measure of the rate of longitudinal convective transport in the cavity. 1In
this regard, the most important conclusion from the solutions (14) - (19)
is the absence of any fundamental change in the flow structure for nonzero B.
The parallel flow in the core region is preserved for any fixed value of
B in the limit as A » 0. In addition, the temperature field, which is
dominated at first order by the basic conduction mechanism, remains linear
in the horizontal coordinate in all cases with the y-dependcnce of the
temperature field (and therefore the vertical density stratification)
entering only as a higher order, O(Az), term. Finally, the fundamental
Taylor diffusion mechanism which dominates the convective heat transfer process
in the core is again reflected in the basic forms of the ;emperuture gradient,

Kl’ and the Nusselt number. In spite of these basic similarities, however,
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the detailed temperature and velocity distributions vary substantially with
changes in B, and these changes are accompanied by important variations in
the capacity for longitudinal convective transport of heat.

The most obvious variations in the core flow are those associated with
the velocity profile. In Figure 3 we compare the normalized velocity profiles for
the no-slip boundary condition, (y3/6 - y2/4 + y/12) and the free shear
condition, (y3/6 - 5y2/16 + y/8). Also plotted is the linearly additive
shear  induced velocity  component (3y2/4 - y/2). Most significant
are the variations in magnitude. Clearly, the free shear condition allows
uniformly larger values of the horizontal velocity than does the no-slip
condition. The normalized shear-induced velocity component is larger by an
order of magnitude than even the corresponding free-shear component. Thus
even for relatively small values of B, an imposed shear stress may have a
significant influence on the circulation rate within the cavity. A compari-
son of equations (11) and (12) with equations (18) and (19) (with B = 0)
reveals that the increased magnitude of the core velocity in the free surface
problem, as compared to the no-slip problem, results in a smaller core
temperature gradient (Kl)’ and an enhanced capacity for longitudinal trans-
port of heat (Nu). In addition, the flow associated with a finite shear
stress at the surface produces an additional correction to both Kl and Nu
whose sign depends on the magnitude and sign of B. It is especially signi-
ficant that the convective contribution to Nu for the free surface case is
approximately five times larger than the corresponding contribution for the
no-slip problem, while the coefficients at 0(B) and O(BZ) are both larger
than the 0(1) coefficient by approximately an order of maénitude! Hence,

even for small values of B, the convective transport of heat by Taylor
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diffusion may be dominated by the shear induced component of the flow.

The dependence of Nu on the shear parameter, B, is illustrated in Figure
4, where the asymptotic solution for (Nu — A ) is plotted as a function of
GrzPrzA3 for various values of B. For comparison, the small A asymptote
and the corresponding experimental data of Imberger [4] for the no-slip upper
surface are also included. Three points are of special interest with regard
to this figure. First, the asymptotic solution for (Nu - A) shows an
absolute minimum for fixed GrzPr2A3,at B = 0.1458. Second, comparison of
the numerical solutions, experimental data and the asymptotic solution for
the no-slip case seems to indicate that the asymptotic solutions will provide

* IOS/GrZPrZ. Thus,

a reasonable approximation of the exact behavior for A
the degree of shallowness required for validity of the present theory (i.e.
the required value of A) decreases with decreasing Gr. Third, in the alter-
nate limit, Gr - o with A held fixed (though small) the experimental data
for various values of A approach one of a set of straight lines with slope
of 1/8. This large Gr behavior is consistent with the boundary-layer

analysis of Gill [11] which predicts (in terms of the ordinate of Figure 4)

Na = (a8 (PrzGr2A3)1/8 (20)
where ¢ is a constant, independent of Gr, Pr and A. The numerical data of
Quon [5] provide substantial evidence that the Nusselt number (and thus the
constant, c) in this boundary layer limit is the same for either a no-slip or
free shear upper surface, in distinct contrast to the behavior in the present

shallow cavity limit. Presumably, this difference reflects the fundamentally

different physical processes governing the two limiting cases.
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5. ASYMPTOTIC VELOCITY AND TEMPERATURE FIELDS WITH ZERO SURFACE SHEAR

STRESS AND SPECIFIED HEAT FLUX

The discussion of section 4 is intended to strongly emphasize the
similarity in flow structure for the three kinematic surface conditions.

In particular, the parallel nature of the core flow, the linearity of the
temperature profiles and the similar form of the functions Kl and Nu have
been demonstrated. In contrast, the introduction of a heat flux at the top

of the cavity can produce a fundamental change in the flow structure. For
examplé, in the case of strong surface cooling, one would expect the

slightly stable stratification that is produced in the insulated surface
cases, to be destroyed. Ultimately, if the surface cooling is much greater
than the total rate at which heat would be transferred through the end walls
in the absence of surface ccoling, a strongly unstable stratification must
result, necessitating a major change in flow structure. For example, under
appropriate circumstances, such cboling may lead to a modified "Benard"
convection. In the alternate instance of strong surface heating, the slightly
stable stratification of the insulated case would be intensified, thus tending
to restrict free (vertical) movement of the fluid and cause a form of block-
ing as the stably stratified fluid encounters the end walls.

In considering these changes, it is convenient to associate the nonzero
surface heat flux with a new length scale %', which is the distance required
to transfer an amount of heat per unit time equal in magnitude to that
exchanged at the end walls in the absence of surface heating. 1In general,
it may be anticipated that, as an upper limit, the parallgl flow structure
discussed previously cannot be preserved over distances greater than 2'.

A comparison of &' with the physical length scale % of the cavity thus
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_ yields three limiting regimes, &' << 2, &' v % and &' >> 4 corresponding to
the cases of large, moderate and small surface heat transfer. The case

2' >> £ is of only modest interest since it reduces, at first order, to

the case of an insulated surface which we have previously considered. On
the other hand, the case &' << % leads to velocity and temperature distribu-
tions quite unlike those observed in the usual estuary flows. Hence, in

the present discussion, we limit our considerations to the case &' v %

where the contributions of surface and end wall heat transfer are comparable.

a Uniform Surface Heat Flux

In this section we consider the special case of constant, uniform
surface heat transfer and zero surface shear stress. Thus, in (5), we
put T = 0 and £(T) = q (constant), where q is the magnitude of the out-
wardly directed heat flux. 1In order that 2 v &', as assumed, we require
that the total heat flux per unit time through the upper surface of the
cavity be of the same order of magnitude as the rate of heat exchange which
would occur at the end walls in the absence of surface heating. Since the
dimensionless heat flux through the end walls in the latter case is 0(A)
(see equation (12)), it thus follows that the dimensionless heat flux at
the upper surface must be restricted to be of O(Az), i.e.

36

= - &2
5;-y=l ATQ (21)

where
= qh
45 2
kA (Tn - Tc)
is an arbitrary constant which is independent of A.

With the heat flux through the surface constrained, the scaling argu-

ments that were outlined in section 3 are still relevant and the core



62

:emperature and velocity fields are
2
o i 2 (1-22) 1 Q _aq.1 -5
1] Qx + ¢ + A PrGrQ[ 1920 360 + Pr(‘r{[z4 6 + 3 1.309 x 10

2.3 %
- {97?— + clqﬁz + cf‘]3 927 x 10 S}J F'(y) + Azch(Qi +¢)

7 6 5
29y y v 5 3
{ - BOTT * TTow ~ T08 * Tes S x 1077y
E
9 8 7
-5 2 y - y _ -4 3
+3.049 x 107%y% + Pr[ s - Tarse t Takgs - 1740 x 107y
+ 1.498 x 10—4y21] + 0(a%) (22a)
8 = K & + GreraA’K{F(y) + K, gg_ %; + Proea? (%% + 2qc,R) F(y)
3 2.2
2272 2.4 Oxc CoX
PrGrQAx .. 2,22 | 0% 1 I =h
———1556———- Pr 'Gr AQ 12 + B + 3 3.927 x 10
4
+ 0(a% (22b)

As before, the coefficients of K, and K2 were determined by matching

1
with the relevant solutions in the end regions in a manner which proceeds as
outlined in the Appendix. One important result is that the first order stream
function in the end region is identical to the free-surface solution, wo.
However, in order to obtain Kl and Nu correct to O(AB), it was necessary to
obtain two new end region temperature solutions in addition to those outlined
in the Appendix; one at O(AZ) which can be expressed analytically, and one

at 0(A3) which must be determined numerically. The result for K t is

1
+

Note, ¢

g ¥R Q/2.
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2 3 2
7 -9 20 Q29 Qe _Q .9 -5
Kl 1 2 + PrGrA 1920 720 + PrGr 2% 6 + 2 3.927 x 10

3

3
+ PreGrA Q[l - % ]2.00 x 1072 ~ PrGr[l - %] 1.916 x 107>

+ oty (23
As expected, equation (23) reduces to the insulated surface form, (equation
(18) with B = 0), in the limit as Q - 0. However, for nonzero Q, Kl is
changed substantially even at 0(1). In addition, there is a correction

to Kl at O(Az), where previously there was no correction, as well as addi-
tional changes at O(AB). Unfortunately, the complex dependence of Kl on Q
prevents a more detailed comparison with previous results.

In all of the cases considered previously, the Nusselt number, as de-
fined in section 3 has provided a direct measure of the flux of heat between
the end walls of the cavity. 1In contrast, however, the introduction of a
flux of heat through the top of the cavity leads to a horizontal flux of
heat that is a function of horizontal position. Nevertheless, either the
hot or cold end Nusselt number does provide a measure of the overall dis-
persive capacity of the cavity for heat (tﬁe chéice depends on whether the

"source" is located at the hot or cold end of the cavity). The result in

the cold end is

3 74 —4 =D
Nu g = (- %)A * & PfGr{ - Q“8.68 x 10 " + Q1 - 3)1.75 x 10

3 2
+ PrGr[QZ— " ig— +3Q - 1)1.31 % 10“5} + oAt (24)

and

Nuhot: - Nucold 08 .
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Upon comparing Nucold and Nuhot with the Nusselt number for an insulated
surface (equation (18) with B = 0), it may be observed that the heat enters
through the hot end at a rate (Q/2)A slower than it does for the insulated
boundary case and leaves through the cold end at a rate (Q/2)A faster than
4previously. Hence the heat added through the upper surface is "discharged"
equally by the two ends of the cavity.

With the undetermined constants specified, it is possible to examine in
detail the core streamfunction and temperature distributions. Notably the
parallel flow structure that was so evident in the previous cases 1is no longer
present. Even at first order in A, the streamlines are not parallel in the

core
P* = (Qg +1 - g)F’(y) + O(Az) -

More surprising, however, for [Ql > 2, the asymptotic theory predicts that

the first order stream function vanishes at

N =

A
x =
o]

1
Q
When Q > 2, Y* is negative (clockwise circulation) for % < 20 and positive
(counterclockwise circulation) for % > io. On the other hand, when Q < -2,
the opposite situation exists with counterclockwise circulation for % < ﬁo,
and clockwise for % > ﬁo. This behavior of the first order velocity field,

is intimately coupled with the first order temperature distribution

o3
ox = (1 -z +a % +owd) .

A graphical comparison of the present temperature distribution and the previous
insulated surface profile is shown in Figure 5 where the first order tempera-

ture profiles are plotted for selected values of the surface heat flux. The
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FIGURE 5: FIRST ORDER TEMPERATURE PROFILE FOR UNIFORM SURFACE HEAT FLUX.
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positive values of Q represent surface cooling, hence the curves for Q > 0
are shifted downward relative to the insulated surface curve (Q = 0), while
the curves for Q < 0 are shifted upward. With sufficient cooling (or heating),
temperatures smaller (larger) than the cold end (hot end) temperatures are
encountered within the cavity (cf. the curve for Q = 4). In particular,
for Q > 2, 6% has a negative gradient for X < ﬁo and a positive gradient
for & > ﬁo. The doubly circulating core flow encountered for |Q| > 2 is a
result of this change in sign of the temperature gradient. Although this
characteristic of the core flow is very interesting, it is clearly of
limited relevance in the context of the estuary flows since such extreme
surface cooling is unlikely to occur in the natural situation. Thus, it
should be noted that if

Qg1
then, as indicated in Figure 5, the first order temperature and stream func-
tion profiles in the core are very similar to the insulated surface profiles,
with the streamlines nearly parallel; and the horizontal temperature gradient

practically constant.

b. Heat Flux a Function of Surface Temperature

The previous section dealt with a uniformly distributed surface heat
flux. For an estuary this distribution of the heat flux is unrealistic since
the net rate of heat exchange at any point on the surface is actually the
sum of the rates at which heat is transferred by radiation, by evaporation,
and by conduction between the water and the overl;ing air. Hence, the rate
of heat transfer at each point on the surface must be specified as a function
of the surface temperature as well as ambient variables such as wind speed,
humidity and air temperature. Edinger, Duttweiler and Ceyer [14] demon-—

strated that the net rate of heat transfer can be expressed most conveniently
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in terms of an effective thermal exchange coefficient K and an equilibrium
temperature, Te both of which depend on observable meteorological variables
and change continuously in response to varying meteorological conditioms.
The interested reader is referred to Edinger et al. [14] for details con-
cerning the evaluation of K and Te' The net heat transfer rate becomes

qnet - K(TS - TE)

where Ts is the surface temperature. For our present purposes we take Te
equal to the cold end temperature so that the surface heat flux is a maximum
at ¥ = 1 and is a minimum (zero) at X = 0, and assume that the surface shear
stresé is zero. As in the previous example, we consider only the case in
which the total surface heat transfer is constrained to be of the same
magnitude (with respect to A) as that which would occur at the end walls
with K = 0. Hence, we consider the boundary condition

90 _ _ .2 _ ’
3y = HA™O on y 1 (25)

where

H

Xn
kA2
is an arbitrary constant which is independent of A.

To obtain an asymptotic solution for the core region, which is valid in
the limit A + 0 with Gr, Pr and H held fixed, we utilized the scaling argu-—
ments and formal expansion in A outlined previously. The core solution,

after matching, is

"~ 1 ~ A 9
P = /ﬁCoshg/ﬁk)_+ Azcg(ﬁ) ¥ (y) + A2 sinh (/%) cosh (VAR) H3/2Cr y

sinh (Vi) sinhz(/ﬁ) 12378
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8 7 6 5

) 4 29 _ ¥ Yy -5_3 -5.2
G451Z | 161200 ~ %608 T jean - -8 x 107y +3.05x 10 7y
9 8 7
b4 e > SN =5_3 -y, '
' Pr[ 181440 ~ 32256 T 20160 ~ 1-74 =107y +1.50 x 10 'y
3/2 cosh(VER) | ¥y §° 3 e B "
e - ge e = Jou 4 geat] + B(E%) (26a)

g = sinh ﬁi_x! + A2 {:_ Hsinh (V%) b PrGrHcosh (\/ﬁxl F(y)

sinh (V) sinh(VA) 2 sinh? (/H)
+ c3(5‘():l + 0(ad) (26b)
where
o (8 = PrGricosh(@/HR) _ 3.93x107°pr’er? JHsinh (3/0R)
3 sinh? (/i) 5760 sinh> (/) 32
3/2 3/2, Y
+ B - feoshi(ARY Y = PrGrI;I _H Rcosh (VH%)
640sinh” (V) 6sinh (Vi)
H -5 prlor?  [nsinn(aviD | 1Y Zcosh (/D)
+ E + 3.93 x 10 3 32 + 3
sinh (/H) sinh” (VH)

_ PrGrH H3lzcosh(/¥[-)

+
376 6sinh (Vi)

As a result of the matching, it was also shown that the streamfunction for

the cold end region is

VGxy) = b, (k) + 08D, (27)

sinh
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while the hot end streamfunction is
-1
bt - xy) = Vcoth ()Y, (x,y) + 0(a%) (28)

where wo is the same solution that was calculated for the zero shear case
(Figure 2c).

The behavior of the core solution in the 1limit as H + 0 is, of course,
identical to the insulated surface case. An excellent indication of the
influence of finite values of H is provided by the first order core solu-
tion. To facilitate discussion, we hLave plotted the first order temperature

profile

6 = sinh (/HR)
= sinh (/H)

in Figure 6 for selected values of H. In Figure 7 we show
VHcosh (/iR
sinh (/i)

(as an indication of the core streamfunction magnitude), for the same values
of H. Because the surface heat flux is proportional to the difference between
surface temperature and Tc’ a larger portion of the temperature drop occurs
near the hot end of the cavity as H increases, thus causing increased
temperature gradients in the hot end and decreased gradients in the cold
end. These changes in the temperature profile are also reflected by the
distribution of streamfunction in Figure 7. The increased temperature
gradient in the hot end increases the driving force for the core flow so
that the streamfunction increases as H increases. The converse is true for
the cold end. TFor the extreme case plotted, H = 100, is essentially zero
for § < .5 . This tendency for Y to approach zero at some distance far from

the hot end wall hints of a limiting form of the solution as H + «, in which A
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is no longer a relevant parameter. Since the flow field does not occupy the
entire cavity, it muét be unaware of the cold end wall and hence inde-
pendent of the dimensionless cavity length, A_l. In this sense, the flow
behaves, for H + ©, as if the cavity were "semi-infinite'". Figures 6 and 7
imply that the transition from "finite" to "semi-infinite'" cavity occurs at
H v 49,

Upon applying the limit H + « to the core solution (26), we obtain a

limiting form which is independent of A as previously anticipated,

. 5% i 2
lim = —E 2\ 2PrGre _ B 3 9 _35 o
H*mw Hl{e ” + ¢ { 5760 3.68 x 10 PrGre + § =
+ e 5(1.23 x 107%r26e? - 220y | 4pr () + e2{e 2Eor ¢
) 576 y 72576
8 7 6
- 5y 29y _ .y 'y ~ -4 3 53
54577 ¥ 16l ~ %608 THeEs ~ MM Y 3B x 1 7y
9 8
b e - -5.3 -4 2
’ Pr(mltmo ~ 32356 * 29160 L+74 x 10 Ty + 1.50 x 10 7y
3
i (29a)

= - -2F B E
lime = e—g + 62[-e—g %r + PrGre ZgF(y) +-g£%§%6~< - 1:23 % 10 6P52Gr2e 3€4— %

'

¥ e-g{ % #1.9% 5 10 % petee” - P—S"%—} + 0(e) (29b)
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in which

i

€ =¢f and € /{§? ;
For convenience, we have used the independent variable & which measures the
horizontal distance into the cavity from the hot end, scaled with respect
to h.

In view of the expressions (27) - (29), it is apparent that the appro-
priate velocity and length scales in the limit H + « are

3
u:(,{@w]

k Y

and (30)
- o[t = o /X0
o = o[e] o[/ - ] .

The latter is the length scale characterizing the rate of heat transfer
through the cavity surface. This spontaneous appearance of a new length
: scale provides an excellent opportunity to enlarge on the previous discus-
sion relating the horizontal length scale of the corz flow to the rate of
surface cooling. To this end, Figure 8 shows the fully matched first order
streamfunction profiles for the semi-infinite cavity (H = «) at two values
of €. It is clear from these figures that as the heat transfer rate (ez)
increases, the horizontal extent of the core flow is decreased proportionately.

An examination of the sewmi-infinite cavity solution (equations 29)
indicates that to ensure convergence, we must have £ << 1. This in turn
suggests that a necessary condition for the validity of the analysis leading
to the general solutions (26) is

A <<1

and
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2 _Kh
= — <L &
HA K << 1

To determine if the second inequality will be satisfied under realistic
conditions, it is useful to estimate the magnitude of %?-. Field measure-
ments indicate that, for an ambient wind speed of from 1 to 5 m/sec, K
varies between about 2.5 x 10_4 and 5.0 x 10—3 cal(c°cm23ec)_1. Furthermore,
since estuary flows are invariably turbulent, we estimate the effective
thermal diffusivity to be of the order u*hf (cf  Figcher [12]), where u* is
the "slip velocity" and is about 1 cm/sec for horizontal fluid velocities of
about 10 cm/sec. (The precise magnitude of the horizontal velocity will

depend on Gr, Pr, A and H.) Hence,

%?-m 10

4

for typical estuary flows.

The heat transfer characteristics for the present surface boundary
condition are quite different from the insulated surface case. Once again,
because heat is removed through the surface of the cavity, the horizontal
heat flux is a function of horizontal position. The Nusselt number is

therefore a maximum at the hot end

. = 3/2
Nuh i ™ AVﬁEoth(/ﬁ) + A3 PrGrH3/2 cotgggﬁ) + sxnh(ZVﬁ)— ) - & coth (/1)
4 v 2880s inh (/i)
-5 Pr?'(}r2 Hz H
~ 3027 x 10~ —=¢ - sinh (VH) - /ﬁcoth(.’ﬁ){ 55 Sinh (3/)
sinh” (/) ?
3/2 3/2 3/2
+ i 5 cosh(vﬁ)} +-ygz cosh(3/1) + E—8——-—-cosh(vﬁ) - % (l - cothz(vﬁ)]

Here we have assumed that the turbulent Prandtl number is v 1.
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+ PrGrH3/2{1.309 % 10 pecreoth (W) ~ 1.74 % lO_3coth(¢ﬁ)}

+ oAt (31)

and is a minimum at the cold end

A, 3| _H

b -6 Pr Gr2 + PrGr
sinh (VH) sinh (/1)

-6-+8-59 x 10 576

3/2 [ 2
Nu =
cold sinhZ(/ﬁ)

2 2 -5 Lo 2
_PEBETEL. 309330 ) 1.227 x 10—6 Pr Gr

5 3 sinh(Bv’ﬁ)]
sinh® (VH) sinh” (VH)

2.2 9
-6 Pr (,Z H cosh(/iy + H2 coth (V)

sinh (/) 6sinh (/H)

-

4.91 x 10 + 0(a™ (32)
In the limit as H + 0, these expressions for Nu reduce to that found for
the insulated free-shear surface. Unfortunately, the complexity of expres—
sions (31) and (32) precludes a detailed comparison with Nusselt numbers

for the previous cases.
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