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PREFACE 

As the annual production of waste by-products such as heat and 

chemical species has increased, so too has the rate of discharge of 

these pollutants into the atmosphere and bodies of water. To under­

stand fully the consequences of such dumping, it is necessary to 

predict accurately the rate of dispersion and decay of these pollutants 

in the environment. For this purpose, one must have available an 

accurate description of the dynamical behavior of the atmosphere or 

body of water of interest. Of particular significance in establishing 

the complex flow patterns which dominate these systems is the inter­

action of ambient density stratification and buoyancy induced convec­

tion caused by spatial inhomogeneities in density (temperature). 

Although such spatial inhomogeneities can arise from a number of 

sources, perhaps the most common is differential surface heating. For 

, 
example, the temperature discontinuity at the shoreline between a large 

body of cold water and land significantly influences and, indeed, often 

dominates the local circulation pattern to produce the land-sea 

breeze phenomenon. On a somewhat larger scale, significant differences 

in surface temperature and roughness in an urban area produce a local 

wind and temperature structure which is consider ably disturbed 

relative to the prevailing conditions far upstream or downstream of 

the city. This has been called the urban heat island phenomenon. 

Similar, fairly localized phenomena also result in bodies of water 

where spatial inhomogeneities in density can arise from power plant or 
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sewage discharges, or from evaporation and fresh water inflow in the 

case of salt water estuaries. 

A second factor which further complicates the accurate prediction 

of such geophysical flows is their turbulent nature. Since many 

factors, such as the density structure, surface boundary conditions and 

past history, affect the turbulence characteristics, the successful 

solution of the turbulence problem requires the development of a model 

which is able to represent accurately not only the production, redis­

tribution and dissipation of turbulent stresses, but also the fluxes 

of all dynamically active scalar quantities such as heat. 

In an ~ffort to better understand both of the above aspects of 

geophysical flows, this thesis deals with two apparently independent 

problems. The first (Part I) deals with laminar, natural convection 

in a shallow cavity with differentially heated end walls, and is an 

attempt to understand the physics governing the slow gravitational 

circulation which is characteristic of shallow bodies of fluid, such 

as coastal estuaries, cooling ponds, or atmospheres which are verti­

cally constrained by an elevated inversion layer. This laminar 

problem is treated exactly (subject only to the Boussinesq approxima­

tion.) 

In Part II, the development of a suitable turbulence model is 

undertaken. The evaluation of existing turbulence 0 models by direct 

comparison with available experimental data indicates that many of the 

models in current use are completely inadequate. As a partial remedy, 

a new model for isothermal flows is proposed. 
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ABSTRACT 

Part I 

The problem of natural convection in a cavity of small aspect 

ratio with differentially heated end walls is considered. It is 

shown by use of matched asymptotic expansions that the flow consists 

of two distinct regimes: a parallel flow in the core region and a 

second, non-parallel flow near the ends of the cavity. An analytical 

solution valw at all orders in the aspect ratio, A, is found for the 

core region, wh.ile the first several terms of the appropriate 

asymptotic expansion are ~btained for the end regions. Parametric 

limits of validity for the parallel flow structure are discussed. 

Asymptotic expressions for the Nusselt number and the single free 

parameter of the parallel flow solution, valid in the limit as A+ O, 

are derived. 

Also presented are numerical solutions of the full Navier-Stok.es 

equations, which cover the parameter range Pr= 6.983, 10 .::_Gr< 2 X 

4 10 and 0.05 < A < 1. A comparison with the asymptotic theory shows 

ex~ellent agreement between the analytical and numerical solutions 

provided that A~ 0.1 and Gr2Pr2A3 ~ 105 • In addition, the numerical 

solutions demonstrate the transition between the shallow-cavity limit 

and the boundary-layer limit, A fixed Gr+ 00 • 

Finally, the effect of upper surface boundary conditions on the 

flow structure within differentially heated shallow cavities is 

examined. Matched asymptotic solutions, valid for small cavity aspect 

ratios are presented for the cases of uniform shear stress with zero 

heat flux, uniform heat flux with zero · shear stress, and a heat flux 
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linearly dependent on surface temperature with zero shear stress. It 

is shown that these changes in surface boundary conditions have an 

important influence on temperature and flow structure within the cavity. 

Part II 

The rational closu~e technique proposed•by Lumley and Khajeh­

Nouri (1974), in which each unknown correlation is represented as an 

expansion about the homogeneous, isotropic state, is applied to the 

approximate closure of the mean Reynolds stress tensor, and rate of 

dissipation equations for turbulent flows. The high Reynolds number 

t urbulence model which results is similar in many respects to that 

presented by Lumley et al. However, a more detailed effort is made to 

evaluate systematically the numerous parameters. Particular emphasis 

is placed on the suitability and quality of the experimental data 

which is used for the estimation of model parameters and on the 

uniqueness and universality of the resulting parameters. 

A quantitative comparison of the present turbulence model to 

those proposed by Daly and Harlow (1970), Hanjalic and Launder (1972b), 

Shir (1973) and Wyngaard, Cote and Rao (1973), indicates that the 

present model gives the best overall prediction of the dynamic 

response for the homogeneous flows of Uberoi (1956, 1957), Champagne, 

Harris and Corrsin (1970) and Tucker and Reynolds (1968). A further 

comparison, which evaluates the ability of these turbulence models to 

predict profiles of the triple-velocity correlation, the rate of inter­

component transfer and the rate of turbulence energy dissipation for 

inhomogeneous flows indicates that, of the previous turbuZenae modeZa, 
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that of Hanjalic and Launder is most consistent with the data examined, 

However, the present model shows promise to yield an even better 

approximation to the experimental data, 
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Part I: NATURAL CONVECTION IN SHALLOW CAVITIES 



2 

J. Fluid Mech. (1974), ool. 65, part 2, pp. 209-229 

Printed in Great Bruain 

A. Natural convection in a shallow 
cavity with differentially heated end walls. 

Part 1. Asymptotic theory 

By D. E. CORMACK, L. G. LEAL 
Chemical Engineering, California. Institute of Technology, Pasadena 

AND J. IMBERG ER 
Department of Ma.theme.tics and Mechanical Engineering, University of 

Western Australia, Nedlands 

(Received 23 March 1973 and in revised form 15 February 1974) 

The problem of natural convection in a cavity of small aspect ratio with dif­
ferentially heated end walls is considered. It is shown by use of matched asymp­
totic expansions that the flow consists of two distinct regimes: a parallel flow in 
the core region and a second, non-parallel flow near the ends of the cavity. A 
solution valid at all orders in the aspect ratio A is found for the core region, while 
the first several terms of the appropriate asymptotic expansion are obtained 
for the end regions. Parametric limits of validity for the parallel flow structure 
are discussed. Asymptotic expressions for the Nusselt number and the single 
free parameter of the parallel flow solution, valid in the limit as A ➔ 0, are 
derived. 

1. Introduction 
Convection due to buoyancy forces is an important and often dominant 

mode of heat and mass transport. Of particular significance to the dispersion of 
pollutants and heat waste in estuaries are the buoyancy-driven convective 
motions induced by gradients in salt concentration or temperature. 

Unfortunately the direct modelling of these natural systems is very complex, 
mainly because the flow is turbulent. However, the idealized problem of laminar 
flow in an enclosed rectangular cavity with differentially heated ends does 
provide some insight into these more difficult problems, and has been studied 
extensively in other contexts by prior investigators. The majority of these studies 
have used finite-difference numerical solutions of the full equations of motion, 
subject to the Boussinesq approximation, to consider cavities which were either 
square or had height h larger than their length l (cf.Quon 1972; Wilkes & Churchill 
1966; Newell & Schmidt 1970; Szekely & Todd (1971); De Vahl Davis 1968). 
However, Batchelor (1954), Elder (1965) and Gill (1966) have showri that ana­
lytical progress is possible when the cavity aspect ratio h/l is large. 

Batchelor (1954) considered both large and small Grashof numbers Gr. In 
the latter case, he obtained an asymptotic solution about the pure conduction 
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FIGURE 1 . Schematic diagram of system. 

mode of heat trnnsfer. For large Gr, Ba.tchelor envisaged a flow with thin boun­
dary layers on all solid surfaces and a closed-strE>amline isot,hermal core of con­
stant vorticity. Mot,ivated Ly the experinwnt,d 111en,su1Tments of RldN ( I 91i5), 
Gill (1966) propoc;ed an alternative strueture for the case hf! ~ I ,UJd Ur~ l. 
In Gill's rnoclel the How is decomposed into bo11ndary layer:-; adjacent to the end 
walls in which the hmizolltal tempemture gradients are la,rgt'. and a eorc rcigion 
in which the temperature ii-; ,tssumNI to be a, fonction only of the vertical co­
ordinate. In spite of the approximn,tions Heccs:-;ary to solve the resulting equations 
Gill reported moderate agreement with the experimental measurement,s of 
Elder (19fi5). A k<>y feature oftlie case h/l ~ 1, which is implil'it in Uill's model, 
is that the corn dynamics play only a secondary role in establishing the overall 
ft.ow structure, which is dominated by the buoyancy-driven boundary l,iyers. A 
natural question is whether this qualitative feature persists as the aspect rat,io 
h/l is varied. In particular, in the limit as h/l -+ 0, which is most relevant for the 
naturally occuning ftows of interest in the present investigation, one might 
,mticipate th,1t viscous effc·ets in the core" uuld play an incrMsingly irnportant 
role in establishing the flow strucLme for ,di fixed (though large) values of Or . 

In the present paper, we u::;e the standard methods of nrntchecl r1,syrnptotic 
expansions to consilkr the cavity flow problem in this lirniting case h/l /4; I, 

G'r fixed. We shall show that the f-1.o\\' structure consists of two parts: a parallel ­
flow core l'flgion i II which pssentia lly nl I of l he horizontal tern pernt11rc drop oecurs 
a,nd which is dorninated by viseo11s cdfocts ; aml end regions which servl• p1·i111arily • 
to turn the core flow througli I H11 v ;u; requirl'd Ly the solid ,,nd walls . The nurneri ­
cal and experi 111ent.n.l n ·su I Ls rP11urkd i 11 tJarts :! and :3 of the presPnt. study show 
excellent agr<•<·nwnt \\'ith thi:s as_\·nq,totic theory fur large, though tinitP v,tluesof 
of (h/l) - 1 • 

2. Mathematical formulation of the problem 
We consider a closed reetn,ngular two -(limensional ca,vity of ll'ngth land height 

h which contains a Newtonian fluid, and is shown schema.t.ically in figure I. The 
end walls are held at different but uniform temperattues 1~ and 1',., with 'I'., < T11 • 
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The top and bottom are insulated, and all surfaces are rigicl no-slip boundaries. 
Actually, the upper boundary of the environmental systems mentioned in the 
introduction is more closely approximated as a zero-shear surface. However, it 
was found that the experimental measurements, to be presented in part 3, could 
be obtained only in a cavity with a no-slip lid. Hence, the present analysis was 
undertaken to provide a solution that could be compared directly with the ex­
perimental results. A systematic investigation of th<' influence of the upper 
surface conditions on flow structure may be found in Cormack, Stone & Leal 
(1974). 

The appropriate governing equations, subject to the us11al Boussinesq ap­
proximations, are 

ou' I ou' I ou' - 1 oP y'2 I 

~t' + U c,, + V c,, - - - oi""", + v( U ) , 
u ux uy Poux 

ov' , ov' , ov' _ 1 oP "'2 , /J T T, ~+u oi""", +v oi""", - --oi""",+v(v v )+g ( - cl, 
ut ux uy p0 uy 

0'U1 /ox'+ ov' joy' = 0, 

oT , oT , oT k v2T) 
ot' +u ox' +v oy' = 0Pp

0 
( ' 

with corresponding boundary conditions 

u' = v' = 0 on all solid boundaries, 

oT/oy'=0 on y'=0,h, 

( 1) 

(2) 

(3) 

(4) 

T = Tc, T,, on x' = 0, l. (5) 

Here, u' and v' are the horizontal and vertical velocity components; v, p0 , Op, k 
and /J are the kinematic viscosity, density, heat capacity, thermal conductivity 
and coefficient of thermal expansion, all referred to some mean temperature of 
the fluid. 

Non-dimensionalizing, using the definitions 

x' 
X=­

h' 
y' u' v' 

y = h' il = g/Jh8(T,, -T,J/vl' v = g/Jh3 ('11, - Tc)/vl' 

0 = (T-T,J/('I'i, -~), t = t'g/Jh2(T,, -T,,)/vl, 

and introducing a stream function ifr such that 

u = oifr/oy, v = - oifr/ox, 
one can reduce (1)-(4) to 

Gr A2 (ow+ o(w, ifr)) = AV2w+ oO, 
ot o(x,y) ox 

v2ifr = -w. 

G P ·A (oo o(0, ifr)) = '['720 
r r ol + o(x, y) V ' 

with boundary conditions 

and 

ifr = oifr/ox = 0, 0 = Ax at X = 0, A- 1 

ifr = oyr/oy = o0/oy = o at y = o, 1. 

(6) 

(7) 

(8) 

(9a) 

(9b) 
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Although the characteristic velocity scaling 1nay at first appear an ,trbitmry 
choice, it is consistent with the physical picture of a buoyancy- driven parnlll'I 
flow which is moderated by viscous effects over a lengt h l , and m,iy i11 fact he 
justified a posteriori by the theory which is presented in thi,- pa p<'r. ' l'ht• di111e·11 -
sionless parameters are 

and 

Gr= g(J(T,, -T,J h3/v2 (Grashof nurnLrr), 

Pr= CPµ/k (Prandtl number) 

A= h/l (aspect ratio). 

In what follows, we consider the asymptotic problem 111 which .~ 0 \\-ith 
Pr and Gr held fixed. 

3. The core fl.ow 
The key to a proper asymptotic solution, in the present case, is ,t J)l'0per 

resolution of the central or core region of the c:wity. Fortt1nn,tely, tll(' tlow Htrnl'­
ture in this region is surprisingly simple and amenable to dirPct anulytical :-;0111-

tion of the governing equations. Both the numerie:d and experiment.id evid('nC<• 
which we shall present in parts 2 and 3 in fact indicate Omt tlie streamline:,; in the 
core region become more nearly parallel as the a:-;pcrt ratio is decn·,tHCd, with 
substantial deviations from this structure only ot·eurring in the i111111<'dia1e 
vicinity of the end walls. Acceptance of a parallel flow :-;trncture UH a tin;t. ap­
proximation in the core would imply that the approprictlc chctra eter i:,;tic scalp 
length in the x direction must be O(A - 1 ). 

With introduction of the characteristic horizontal :-wait• .r = 0(.1 1) , cqt1a­
tions (6)-(8) become 

Or A 2 o(w, 1/J') = A 2 a2,,1 + a2w + c'O 
o(x, y) ox2 ay2 o:i·' 

A 202ijf /8x2 + 02~1; /oy2 = _ ru, 

P ·G' A 2 o(O,ifr) _ ,2 ?-20 cNJ 
1 r <)(,:> ) - ,°'.l r A2 + <) 0) 

u ;i;,y rx uy-
where x = Ax. 

( 10) 

( I l} 

( Ii) 

Using (10)-(12), one may now obtain the full 11,syrnptoticsolution fot· the COi'<' 
temperature and velocity fields, as u rt'gnlllr exp,tnsion int lw srnall pantnwter rt. 
Although the precise form:-; of the ga1 1gc function :-; in this cxparn:iion are s trir.tly 
obtainable only from the requircmc11tf; for a proper asymptotic match with th<· 
corresponding solutions in the <'nd region,;, we anticipat(' the simple form (whi1·h 
will be verified a posteriori) 

0 = 00 +A01 +A 202 + ... , } 

1/f = Vo + A 1f 1 + A 21/f 2 + .. • , 
w = w0 + Aw1 + A 2£u2 + .. .. 

( 13) 

The systematic solution, valid for A ~ 1, which results on substituting these 
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expansions into ( 10)-( 12) and equating terms of like order in A has the sa,me form 
at all orders in A, i.e. 

1/f = K 1 (-{"i:Y4 
- r\JJ3 + z1-{Y 2

), (14) 

0 = K1x+KiGrPrA 2(-?ioY5 -laY4 +../~!l)+K2, (15) 

where K 1 = c1 +c2 A +c3 A 2 + ... , 
K2 = cf +ct A +cf A 2 

.. . 

and Ci, c2 , ... , ct', cf, ... , c! are constants which depend on Gr and />r. 
The velocity field corresponding to ( 14) is strictly parallel to the top and 

bottom walls of the cavity, and cannot, therefore, sa,tisfy the boundary con­
ditions (9a) at the end walls. These conditions must be satisfied by solutions valid 
in the end regions, and in general, the two parameters /{1 and /(2 arc evaluated 
by matching the core solution with these two end-region solutions . In the present 
case, however, the problem simplifies somewhat owing to the ccntro-symmetry 
property of the equations and boundary conditions (discussed by Gill l 9UH). 

This property imposes the requirement on the solutions that 

and 

ifr(x,y) = ifr(l-x, 1-y), w(x, y) = w(l -.c, 1-y) 

O(x,y) = 1-0(1-x,1-y). 

Hence, one half of the cavity is an inverted mirror image of the other. Moreover, 
it is apparent that 

so that, according to (15), 

½K1 + 14,\0 KiGrPrA 2 +K2 = 4. 
This relationship allows the constants cf (and hence /(2) to be entirely eliminated 
in favour of the single set {ci}, i = 1, 2, ... , oo, e.g. 

(16a, b, c) 

With the constant K 2 thus eliminated, it is possible to evaluate K 1 completely 
(and hence the ci,i = 1,2, ... ,oo, which depend on Gr and Pr) by matching 
the core solution with a proper solution that is valid in either of the two end 
regions. This matching process is, of course, considerably simplified by the fact 
that the basic form of the core solution is preserved ,1t nil orders i11 the small 
parameter A. 

Before proceeding to a resolution of the flow in the end regions, it is useful 
to note the key structural features of the basic core solution for Gr fixed, A ➔ 0 
[equations (14) and (15)] and to contrast these with the structure in the prc-­
viously noted conduction and boundary-layer limits A fixe<l, Gr ➔ 0 and ,·I 
fixed, Gr ➔ oo of Batchelor and Gill. The solution ( 14) and ( 1.3) exhibits two key 
features. First, the velocity field in the core is parallel to all orders in the small 
parameter A. Second, to a first approxima,tion, 0 is independent of vertieal 
position, and varies linearly between the encl wa,lls. The pri mn.ry driving force for 
motion is the horizontal temperature gradient in the corr•. ln fact, we shall show 
in the next section that c1 = 1, so that effectively all of the tempernture drop 
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occurs across the core. The end regions are thus dynamically passive, in the sense 
that they serve simply to turn the flow through 180° as required by the condition 
of zero volume flux through the end walls. In contrast, fort.he boundn.ry-layer 
limit A fixed, Gr ➔ oo considered by Gill, nearly all of the temperature drop occurs 
in thin liiyers at the two ends, and these provide the driving force for flow. 
ln this case, it is the core region which is passive. Flow exists there only as a result 
of entrainment-detrainment from the end-wall boundary layers. Clearly, t,he 
flow structure for A fixed (perhaps small), Gr ➔ oo is fundamentally different 
from that for Gr fixed (perhaps large), A ➔ 0. 

It is obvious from the first-order temperature distribution that the heat 
transfer process is dominated by conduction. Thus, it is important to note that 
the present theory is definitely distinct from the pure conduction limit A fixed, 
Gr ➔ 0 considered by Batchelor. Physically, the dominance of conduction for 
asymptotically small values of A (with Gr large) is a result of the cumulative 
effect of locally small viscous effects acting over a sufficiently long distance. This 
reasoning is tdso consistent with the velocity scaling, which indicates that the 
length of the cavity plays a role that is identical with that played by viscosity. 
That is, by either doubling the length or doubling the viscosity, while keeping 
all other variables constant, one achieves the same effect, to cut the core velocity 
in half. Hence, when .d is small enough, the core velocity is actually 'throttled' 
to small rnagniLu<le by viscosity for any arbitrarily large value of Gr. 

4. The flow in the end regions 
We t,urn now to a considera,tion of the end regions of the cavity where the 

core How described in the previous section is not valid. Although we are primarily 
interest-0d in determining the coefficients c, of the parameter K1 , and hence the 
quantitative details of the core region, it is nevertheless of some interest to de­
velop the full asymptotic solution in this region of the flow. In view of the centro­
sym metry of the problem, we explicitly consider only the end x = 0. As we shall 
see, it is necessary to proceed to third order in the end flow solution in order to 
obtain the first non-trivial correction for the core region. 

In the ell(L regions, the characteristic length scales in each of the co-ordinate 
<lirections are O(h). In this sense, the structure for A ➔ 0, Gr fixed (and large) 
is funcl:unentally different from the expected structure for Gr ➔ oo, with A fixed 
(;md small), since there exist no boundary-layer-like regions in the present case. 
Furthermore, :-;ince the parnllel structure of the core requires that all streamlines 
eventually enter the end region, it is clear that the scaling used for the horizontal 
velocity in the core must be maintained in the analysis of the end regions. Hence, 
(6)- (8) must be Rolve<l subject to the boundary conditions 

i/f=oijt/oy=o0/oy=0 on y=0,1, · 

ijf = oijf / OX = 0 = 0 on x = 0 

and the matching condition 

limfend(x,y)<>limfcore(x,y) as A ➔ 0. 
i--+0 

(17 a) 

(17 b) 

( 18) 
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As in the core region, the solution can be obtained as a regular perturbation 
expansion in the small parameter A of the form 

0 = 00 +A01 +A202 + ... , 

if = if o + A if 1 + A 2if 2 + · · · , 
w = w0 +Aw1 +A2w2 + .... 

Substituting these expansions into (6)-(8) and equating terms of like order in A, 
we obtain an infinite sequence of coupled linear differential equations for the 
unknown functions 0;, ifi and wi. In order to clarify the discussion to follow, we 
list these together with the explicit matching conditions which must be satisfied 
for large x, up to 0(A 3). 

(i) At 0( l) 800/ox = 0, 

(ii) At 0(A) 

(iii) At 0(A 2) 

X->-<O 

v'2wo = - o01/ ox, y'2if o = - Wo, 
V201 = PrGro(00 ,if0 )/o(x,y), 

lim if o = C1(i-4y4 - -h_y3 +/tY2), 
X->00 

X->00 :l)--+00 

v' 2wl +802/ox = Gro(Wo, ifo)/o(x,y), 

y'2if 1 = - W1, 

v20 = Pr Gr (8(01, ifo) + 8(00, if1))' 
2 o(x, y) o(x, y) 

lim if 1 = c2(-/4y4- 1\Y3 + /4y2), 
X->00 

x~oo X--+CO 

(iv) ·At 0(1!3) v2 803 G (8(Wo, if 1) 8(wi, if o)) 
Wz+ OX = r o(x,y) + o(x,y) ' 

"iJZif 2 = - Wz, 

v20 _ Pr Gr (0(01, if1) + 0(02, ifo) + 8(00, if2)) 
3 

- o(x, y) o(x , y) o(x, y) ' 

lim if2 = ca(-h;y4- 11zys+/tY2), 
T-+cO 

X->00 .c-+oo 

The boundary conditions ( 17 a, b) at each order become simply 

!fi = oifi/oy = oOi/oy = o on y = o, t, 

if i = oif iJox = 0i = 0 On X = 0. 

The temperature and velocity fields 00 , 01, if O and w0 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26a) 

(26b) 

We begin by considering the 0(1) and 0(A) fields using (19)-(21). The solution 
at 0(1) for 00 is trivial, since the only solution of 800/ox = 0 which satisfies the 
boundary conditions (26) is 00 = 0. It follows from the matching condition 
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and ( 16a) that Cj = 0 and c1 = 1. Moreover, substitution uf this ;;olu t.ion into(:! 1) 

gives 'v201 = 0. \,\'ith the appropriate bo,mdary and m.ttching eonditiowi, this 
leads to the solution 0 1 = .r, from which 1t follows that ,·: = c2 = 0. Ilene(• tu 
first order, the temperature distribution everywhere in tit(• c,wity is strictly 
linear in x and the dominant mode of heat'transfer i;; pure conductio11. 111 t,his 
limited sense the present solution resembles the C'arlicr work of Bakhelor for 
Gr~ 1 and A fixed, though it should be re-emphasized that the pn•sent analysis 
is valid for any Gr provided only that A is sufficiently i;mall.i" 

In the light of the above results, ( 20) may be rewritten us 

(:2'i) 

In view of the previously stated ma.tching conditions for ~'t 0 , it is conv1·11ie11t to 
introduce the transforma,tion 

i/ro = ¢ + (./ifY4 
- "f2Y3 + l4Y2

) 

into (27), which may then be combined to give 

v4¢ = o, 
with the boundary conditions 

¢ = 8¢/oy = 0 on y = 0, I, 

¢ = - (--,h;,1/- ht/3 + 2~y2
), 8¢/8:r = 0 on .r = 0. 

The required matching with the core solution yields the fi11al boundn ry eon cl it ion 

on¢, Jim¢ = Jim 8¢/ox = 0. 
:r---+a:::i X-+00 

The distribution of ¢ is identical with the displacement of an eliistic semi­
infinite strip clamped at the edges and subjected to tL small <lisph1ecmcnt at .r = o. 
The difficulties inherent in obtaining an analytic solution to prublerns of this 
general nature are well known. On the other hand, numerical solution c,Ln be 
rather straightforward and.would be sufficient in the present case for generating 
an accw·ate approximation to the stream-function field in the encl n·gion . 
Nevertheless, we feel that it is worthwhile to pursue the a,nalytical representatio1, 
since the method of solution is interestin!i> in its own right . Furt.hermon>, it 
provides a useful check on the numerical solution for ij; 0 that is to be used in sub­
sequent stages of the asymptotic theory. 

To obtain an analytical expression for ¢>, we extend a method devPlopccl by 
Ben them ( 1963) that largely follows the well-known I ines of Lt place t rnnsfonn 
theory. If new independent variables arc define<l as 

y' = 2y- I , x' = 2.i:, 

so that¢ is even in y', then the boundary function r/>(O, y') may be <'xpa.nded ,1;; a 
cosine series 

</J(U, y') = ~ d,, cos (n
2
1T y'), (:!!I) 

11 = 1 

with . (nTT) ( 1 J ) clll,=28111-;-- (1-(-1)") --3-3 - -5, · 
2 l2n TT n -,,a 

t A more explicit condition for validity of the present theur·y will nppc•ar· in § /"i . 
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2Bk 

4·2124 + i 2·2507 
10·7125+i 3·1032 
17·0734+i 3·5511 
23·3984+i 3·8588 

TABLE 1. First four roots of sin 2s; + 2s; = 0 in first qua<lrti.nt 

The key to obtaining an analytical solution is the assumption that the second­
and third-order derivatives of¢ on the boundary may also be expressed as cosine 
series of the similar form 

c)2<jJ I CX) (n1T ') ~ = ~ an cos -2 y 
uX x'=O n=l 

(31) 

and c)3<jJ I CX) (n1T ') 
ox'3 x'=O = n;, bn cos 2 y ' (32) 

where an and bn are unknown coefficients to be determined. Following the familiar 
procedures of Laplace transform theory and after considerable manipulation, the 
solution may ultimately be expressed as an expansion in Papkowich- Fadle 
eigenfunctions ( cf. Fadle 1941) 

<p(x'·,y') = L ~ [dn ( -sf +tn11 sk)-t;-sk +b,. _ dn] n11sinln11 
k = ln=l (sk-(½n11)) sk 4cossk 

x (sin sk cos sky' -y' cos sk sin s,.-y') e-'k.c· , (33) 

where sk, k = 1, 2, ... , oo, are the complex roots (with positive reu,I part) of the 
transcendental equation 

sin 2sk + 2sk = 0 

and an and bn satisfy the set of algebraic equations 

~ {dn(sf-½mrsk)+a,. s1;+bn_ dn) · . 1 _ 0 I, 2 ..., ( 2 (L ) 2) 2 , li?TSlll 2fl7T - , C = I,', ... ,00. 
n=l 8k - 71:n1T /jk 

( 3-!) 

(35) 

In theory, the determination of an and b,. requires the inversion of a matrix of 
infinite dimension. Hence, iu practice one must trunc,ite the series after a finite 
number of terms (assume that the rest are zero) and ol.itain an approxirnat.e 80l u­
tion. 

The first four roots of the transcendental equation (34) that occur in the .first 
quadrant of the imaginary plane h,ive been tabulated by Mittleman & H illnrnn 
(1946) and are listed in table 1. Furthermore, if q +iris an eigenvalue, tlicu so iR 
q-ir since the roots of (34) are symmetrically place<l about buth the real and 
imaginary axes. 'l'his symmetry ensures that the imagi1mry part of p:{J is 
identically zero. 

We were wiable to prove analytically that the truncated approximation of 
(33) converges to the correct solution of (28) . However, a tjlmlitativc indication 
of such convergence is provided by a comparison of tnmcated versiont:> uf (:33) 
with a full numerical solution of the governing equat.ions plus associated 
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FIGURE 3. Comparison of numerical and analytical solutions for i/f0 • 
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boundary conditions. A numerical solution of (27) was therefore obtained for 
1/fo and w0 by means of an explicit Gauss-Seidel iteration scheme. The equations 
were approximated by a central difference representation on a, geometrically 
expanding grid of 21 points in the x direction and a sinP-tra,nsformed (,!;rid of :?J 
points in they <lit'cction (a sirnilar sine-transformed grid will be described in 
part 2). The l>ound,iry conditions at .r = oo were applied at the fin it<> clistance 
:i: = 3. All of those unmerical parameters were systematically varied to demon­
strate their adequacy for the present purposes. The numerically dolermincd 
streamlines aml equi-vortieity lines arc plotted in figures 2 (a) iind (b) . Although 
we shall subseq11<'11tly disc11s:-1 some riua.litative fe,itures of thP.H<' plots, wi> til'st 
return to the con1parii;o11 of Lli<· nurnerirnd aml analytical solutions. 
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4 roots 8 roots 

n d,. a,. bn a,. b,. 

1 - 2·307 X J0- 3 5·267 X 10-2 4·482 X J0-l 5·620 X 10- 8 1·039 X 10-2 

3 - 3·440 X 10- 4 - 5·295 X JO - l 1 ·934 X 10- l 5·842 X 10- 2 - I ·886 X 10-l 
5 8· 173 X 10- 6 9·8GG X 10- 1 3·642 - 7·322 X 10- 2 2·565 X 10-l 
7 - 3·053 X l 0-6 5·258 - 3·309 X 101 3·017 X 10- l -2·451 
9 1·451 X 10- 6 - 1 ·279 X JO- I -2·254 

11 - 7·98G X 10-6 - Hi71 X 10- 1 - 6·813 
13 4·852 X 10-6 2·429 7·409 
15 -3·164x 10- 6 7· 152 1·581 X 101 

TABLE 2. Values of d,., a 11 and b11 

The required comparison is provided by figure 3, where we have plotted the 
centre-line values of !fro as a function of x, from the numerical solution and from 
(33), using both the first four and the first eight available eigenvalues. 'l'he solu­
tion obtained by using only the first two eigenvalues from each of the first and 
fourth: quadrants represents a rather poor approximation to the 'exact' 
(numerical) solution. On the other hand, when all eight of the available eigen­
values are used (i.e. eight terms of the infinite series are retainecl), t.he correspon­
dence between the numerical and analytical solutions is gre,ttly improved. In 
fact, appreciable deviations from the numerical solution persist only for x < 0·3. 
The coefficients dn, a,. and b

11 
corresponding to the four- and eight-term approxi­

mations to (33) are listed in table 2. Presumably, inclusion of more terms in the 
series would improve the comparison of the a,nalytical and numerical solutions. 
We shall not, however, carry tlw ,t11alysiR further in this paper. 

The chief feature of interest in the flow field, evident from figure 2, is that 
both the streamlines and e4ui-vort.icity lines arc nearly parallel for .r ;:: I. This 
observation is consistent with the initial a.ssumption tha,t the horiwntal length 
scale characterizing the end regions is 0(/i). In addition, it i~ ofsorne int,ercst 
to note that the linear gra<lient uf' 01 acts as a sourct• of prn,itive vorticity in the 
region away from the wall:;; (figure 2b), while the motion of tl1e fluid paRL the 
walls produces vorticity of opposite (11egative) 8ign . 

The temperat·ure and VPlucity JiPlds al higher order8 of appro.1·imation 

To obtain the cocfticients c3, ('4 , etc. corresponding tu higlwr-order approxima­
tions in the core rlow, it is necess,try to continue to higher orders in the end regions 
as well. The remainder of this section iR concerned with the solution of (22)- (25) 
for the functions f 1, <u1 and 02 and !/r2, ro 2 and 03 , which. when conibine<l with the 
results of the previous section, yield the coefticients c3 and c4 , respectively. 

Although, in tlwory , it is relatively :;trnightforward to obtain ,Lil analytical 
solution for 02, it is irnpractic,d in view of the <-ornplexity of the solution for ,/; 0 

to use this or higl1er-order solutions to evaluate the strealll function, vorticity 
or temperature at any given point. Hence>, to determine 02 , y 1 ,wd <,1 1 , we pro­
ceed numerically, using the numerical solutions for f O and w0 iu conjunction with 
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(22) and (23). The explicit dependence on Pr and Gr is eliminated by applying 
the transformations 

02 = Gr Pr 0;, ijf 1 = Pr Gr ifri + Gr ifr~, w1 = Pr Gr w~ + Gr /JJ~ 

to (22) and (23), which become 

v'4ifri = 802/ox, 
v'4ifr~ = - 8(wo, 1/l'o)/o(x, y), 

(36a) 

(36b) 

(37) 

These equations are to be solved together with the homogeneous boundary con­
ditions (26) and the matching conditions 

lim ifri = lim oifri/ ox = 0, 
X-+CO X-+<X> 

lim ifr'{ = lim oifr~/ ox = o 
X-+CO X-+00 

and limo; =f(y)-½c~, 
x-,.ao 

where c; = c3/PrGr andf(y) = 1 ~ 0 y5 -l8 y4 +,hy3 - 1 l40 • 

(38a) 

(38b) 

(39) 

The coefficient c~ is easily evaluated by noting that (37), integrated over the 
depth of the cavity, may be combined with the boundary condition8 ,1t y = 0, 
1 to yield 

::2 [J: 0;dy] = 0. (40) 

The only solution of ( 40) satisfying the relevant boundary condition 

s: o;dy = 0 at x = 0 

and· the matching condition lim J 1 

0; dy = -1 
~00 0 

is the trivial solution J: 0;dy = 0, 

with the important implication that 

(41) 

A numerical solution for 0; was obtained using the same grid and iterative pro­
cedure that were previously used for the deterrninat,ion uf !fro- The re1mlt is 
shown in figure 4, where lines of constant o; are plotted. The 1YHli11 frature is Urn 
strong y dependence of o;, which clearly represents a slmrp <lepartlU'c frorn the 
pure conduction temperature profile obtained for 01 . Whilr oO;/o:r is rwgative for 
y < 0·5, it is positive for y > 0·5. In addition, this solution is consistent with the 
asymptotic boundary condition since o0;/ox ➔ 0 as x ➔ ctJ. 

Using the numerical solutions for o; and ifr0, we proceed to the solution for 
ifr1 and w1. Since ijr1 is subject only to homogeneous boundary conditions, it 
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FIGURE 4. O(A 2) temperatu1'0 correction 0;: isotherms. 

follows that the associated flow is confined to the end region and hence interacts 
only indirectly with the.core flow. Equations (36a, b) were again solved numeric­
ally using the previously described numerical solutions to generate the in­
homogeneous terms. The resultant solutions for ifri and ,j/{ arc prc:,;entecl in figures 
5 (a) and (b), respectively. As expected, both correction,; are characterized by 
closed streamlines. In the upper half of the end region the contours of positive 
ifri indicate that the positive gradient of e; induces a counterclockwise flow, where­
as in the lower half the converse is true. The streamlines of 1/J~ are similar to 
those of ifri, but are of opposite sign, and smaller magnitude. The vorticity func­
tions wi and w~ which we have not plotted are similar, with closed contours of 
positive (negative) vorticity in the upper half and ofnegative (p0sitive) vorticity 
in the lower half. 

We shall return, after first describing the solution for the velocity and tempcrn­
ture fields ifr2, w2 and 03, to consider the qualitative influence of i/f 1 on the flow 
characteristics in the end region. 

The O(A 3) problem for i/f 2, w2 and 03 is simplified considex;ably by the previous 
results. Turning first to the temperature equation (25), we note that 8(00, i/f 2)/ 
o(x, y) is identically zero, while o(Oi, i/f 1)/8(.:c, y) reduces to oijf 1/oy. Moreover, one 
can eliminate the Pr, Gr dependence of the equation by introducing the change of 
variables 
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FJC:TTRE 5. (a) O(Or I'r A) streo.m function ,fr; and (b) O(Gr A) streu.m function 
ifr:: streamlines . 

to yield 1 he independent equations 

PO~ = i \'t~/8y + o(O; , if! 0)/?(.r, y) 

and v20; = oif,;/oy, 
which must be solved subject to the boundary conditions 

0~ = e; = 0 on .t = 0, 

ao;/oy = ao;/oy = 0 on y = 0, 1 

and the nrntching conditions 

lim0~ = -½c~, lime;= -½c;, 
x-,..oo ,r--..oo 

where c4 = Pr2 Gr2 c~ + Pr Gr2c;. 

(42a) 

(42b) 

(43a,b) 

The integral of ( 42 b) over the depth of the cavity indicates that, like c;, c; 
is i<lcntiP,dly zero . However, the same is not true for c~. Hence, this constant must 
be determined during the course of the numerical solution fore;. This is accom­
plishetl by not inµ- that (43a) also implies 

lim 80~/ox = 0. (44) 
.r-+oo 

fSince tiiP sol11tiu11 of (42a) subject to either of the conditions (43a) or (44) 
is uniqu<'. t:1P nuniericaJ solution of the latter problem not only yields o;, but 
also c~. ,\ su rp. isi11g feature· ofthi:; solution is that V; appc,irs to depend only on 
.r to within tlw iwaihible numerical accuracy. Hence , in figure G we have plotted 
only t.!1 {' 1•011tn~ -line val 1w for(/~ a:rn function of.i:. It jg evid(.'11t that 0~ does asymp­
totically ,tppruar· h a Const.mt value of approximately l ·74 x 10- 6 , so that 

C~ = - 3·48 X lQ- 6 . 
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In contrast too;, the numerical solution for u;;, as shown by the contours in.figure 
7, is a strong function of y. However, since o; is approximately two orders of 
magnitude smaller than 0~, the O(A 3) correction t,o the temperature field will 
always be dominated by o; unless Pr ~ 1. The fact that c~ i8 non-zero i1; :-;ignificant 
because it provides the first correction to K 1 and hence. lo the temperature and 
velocity profiles in the core due to the interaction ,,·it h 1 he encl region. Correct 
to O(Gr2 Pr2 ,·l.3), the constant K 1 is 

(45) 

Although this correction for K 1 is largely sufficient for providing a comparison 
between the asymptotic theory presented here and the numerical and experi­
mental results of parts 2 and 3, it is beneficial to obtain one more term oft he end­
region stream-function expansion, !/f 2, since it provides a detailed flow correct.ion 
which is very evident in the numerical solutions to bP present.eel in part:!. 

Likeit1 andw1, !/f 2 and w2 are subject only to homogeneons boundary conditions. 
To eliminate the Pr, Gr dependence in (U), it is convenient to bn,ak thi:- prob­
lem into three partR by means of the transformations 

such that 

and 

it 2 = Pr2 Gr2 ijf; + Pr Gr2 ijf; + Gr2 ,fr;' , 
w2 = Pr2 Gr2ctJ; + Pr Gr2<tJ; + Gr2 <tJ;·, 

'v4it; = ao:.i/ox, 

'Q4 t; = ao; _ o(wo, it~)_ o(w~, 1/lo) 
ox o(x, y) 8(.r, y) 

v•itm = _ 0(Wo, it~)_ o(w~, ito) 
2 o(x, y) o(x, y) ' 

with homogeneous boundary conditions for iJt;, 1/f; and i/Jr 

(4Ga) 

(41.ib) 

( 46t) 

As in the previous cases, (46) were solved numerically and the streandirws 
it;, it; an<l it~' so determined are plotted in figures 8(a), (h) and (c), respectively. 
It is apparent that each mode haR n, dominant set of closed streamlines, ,fi; and 
it; corresponding to counterclockwise flow and yr;' to clock\\ i,;e circulatio11. In 
addition it; exhibits a weak clockwise circulation for .1· > I. It, is significant that 
it; and it~' are two orders of magnitude smaller than it;, sincc. unless Pr~ 1, ,jf2 

(and therefore w2) will always be dominated by y; (and w;). 
In principle, it is possible to continue generating higher-order corrections to 

the stream-function and temperature profiles in the end region. However, with 
each higher-order term, tlie number of numerical solutions that must, be calcu­
lated increases subRtantially. In fact, for the O(A ") problem, one must obtain 
2n- 1 numerical solutions. Because of the symmetry properties of the previously 
obtained numerical solutions, the O(A 4) problem ( which has not been specifically 
outlined) dot's not contriLHtc to K 1 (i.e. c5 = 0). Hence, ir~ orde1· t.o obtain tlw 
next non-trivial correction tot.he temperature gradient in the con' (O(Ur·1 J>r·1,-J.5) ), 
one must proceed to the O(A 5 ) problem in the end region. Hince 13 ,,dditiona.1 
solutions would be required fully to determine ct;, we have elrcted to terminate 
the asymptotic expansion at O(A 3). The implications of the results to thi,, order 
are discussed in the next section. 
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FIGURE 8. (a) O(Pr1 Gr2 A 2) stream function aorrection 1/J";, (b) O(Pr Gr~ A 2) stream function 
correction i;-; and (c) O(Gr2 A 2) stream function correction ip-~'. 

The composite expansion for the end region 

To obtain a qualitative appreciation of the influence of the higher-order cor­
rections ifr1 and ifr2 on the flow characteristics in the end region, we have plotted 
ifro as well as the composite functions 

'Y1 = ijr0 +PrGr Aifr'i +Gr Aifr~, 

'Y 2 = 'Y 1 + Pr2 Gr2 A 2ijr; + Pr Gr2 A 3ijr; + Gr2 A 3ijr;' 

(47a) 

( 4 7 b) 

in figure 9 for the representative parameter values Gr= 8 x 103, Pr= 6·983 
and A= 0·01. For these values, the correction terms in (47) are approximately 
one order of magnitude smaller than ifr0• Hence, a good qualitative idea of the 
influence of each correction can be deduced, although higher-order terms 
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FIGURE 9. Comparison of streamlines of composite funetionH '1'1 and '1"2 

with ,jf0 • --, ijJ0 ; - - - -, 'f"i; ---, \f'\. 

may still have an appreciable influence on any quantitative comparison between 
the asymptotic and exact (numerical) solution for this parameter range. 

With the above limitation in mind, we note that the domirnmt qualitative 
effect of the first correctioll is to skew the streamlines in the cold end of the box 
upward relative to the symmetric function ifr0 . That is, the streamlines entering 
the cold end region advance further into the upper comer and are then deflected 
outwards to a more gently rounded corner at the bottom by the action of the end 
wall. 

This shift in the streamlines represents the first effects of the stable stratifica­
tion on the flow in the end region. A possible physical explanation is that the 
stratification retards vertical motion so that the fluid startR its downwanl flow 
nearer the end wall where the stratification is weakest owing to the end-w,tll 
cooling. 

For particular values of the parameters considered, the second correction l/f 2 

has an even more pronounced influence on the contour lines than does the first 
correction. (In the asymptotic limit as A -+_ 0, of course, the first corrections 
will be larger than the second corrections.) The influence of l/f 2 on the flow is to 
increase the net local mass flux. Figure 9 indicates that this increased mass flux 
may result in closed streamlines in the end region . The parallel streamlines that 
leave the core are diverted towards the upper wall and away from the lower wall 
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as they traverse the end region. The characteristic 'bump' in the streamlines 
which results is a prominent feature of the numerical results of part 2. 

The value which we have used for Pr in the composite expansion of figure 9 
is approximately that for water. As we have noted previously, the corrections 
ijf~, ijf; and ,fr;' become appreciable only as Pr becomes very small. Clearly, in 
view of the form of ,fr~ and ijf;' , the detailed nature of the end-region flow will be 
considerably modified in the limit as Pr ➔ 0. In particular, instead of the up­
ward shift of the streamlines which we observed for Pr= 0(1), the streamlines 
in the cold end of the cavity will be shifted downwards for Pr ~ 1. In addition, 
the end-region flow will be characterized by the absence of any closed streamlines. 

5. Further discussion of results 
One of the main goals of theory and experiment for cavity flows is the predic­

tion or correlation of the N usselt number, the dimensionless heat transfer rate 

Nu= J: !!I~ dy, (48) 

as a function of Gr, Pr and A. Such correlations have generally been deduced 
either from the results of many numerical solutions of the full Navier-Stokes 
equations (cf. Newell & Schmidt 1970) or from the results of numerous experi­
ments. 

It is possible to obtain an expression for the Nusselt number from the present 
asymptotic approach for the limit A ➔ 0 with Pr and Gr fixed. To obtain the 
relationship, we must evaluate ( 48) using the temperature profile in the cold end 
of the cavity, correct to 0(Gr2 Pr2A 3), e.g. 

(49) 

Owing to the antisymmetry of 0; about y = 0·5 evident in figure 4, 0; does not 
contribute to the integral (48). Similarly, o; does not contribute to the integral. 
The contribution of 0;, on the other hand, must be determined by numerical 
integration of the previously calculated distribution of 0~. Correct to 0( Gr2 Pr2 A 3) 

the result is 
(50) 

The Nusselt number, as defined by (48), is equivalent to the longitudinal dis­
persion rate which is frequently used to characterize real estuaries . It is, therefore, 
significant that the first convective contribution to Nu is precisely the Taylor 
dispersion coefficient, calculated using the first-order core velocity profile ( cf. 
equation (12) of the recent review paper of Fischer (1973)). 

At the present time, there exist no experimentally or numerically deter­
mined correlations for Nu, that are valid for A ~ 1, with ' which (50) may be 
compared. However, it will be shown in part 2 that values of Nu calculated from 
numerical solutions of the full Navier-Stokes equations for 0· 1 < A < 0·05 

t The next correction to Nu a1ises from the O(A') problem and can be shown to be 
c~Gr1 Pr2 A 4 • · 
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agree with (50) provided only that Gr2 Pr2 A 3 is suitably restricted in magni­
tude. A point of some interest with regard to (50) is the graphic illustration it 
provides of the fundamental difference between t.he limiting proces,-e8 A -+ 0, 
Gr ~ 1 (fixed) and A ~ 1 (fixed), Gr-+ oo. In the latter circumstance we have 
previously suggested (and our numerical and experimental res1tlts of parts 2 
and 3 provide further evidence in corroboration) that the flow strncturc will be 
dominated by natural-convection boundary layers at the side walls, with all of 
the horizontal temperature drop occurring in these regions and the interior core 
flow driven primarily by the entrainment-detrninment process associated with 
these layers. In this case, the Nusseltnumber (48) must cle11rly be proportional to 
Grm, with m > 0. In contrast, however, the expression (50) shows that, if Gr is 
held fixed and A is decreased without limit, the Nusselt number must ultimately 
become independent of Gr to first order, no matter how large Gr may be! 

Finally, although the asymptotic analysis which we have considered is 
strictly valid only in the limit A-+ 0 with Gr and Pr fixed, it is useful to consider 
the range of values of these parameters where the results may be of practical u8e. 
Such an undertaking is, perhaps, particularly desirable in the present circum­
stance since (14) and (15) indicate the existence of a parallel flow structure to all 
orders of magnitude in A. Certainly the asymptotic treatment does not explicitly 
indicate an upper limit of A. However, the numerical solution for <u0 , figure 2 ( b), 
indicates that the equi-vorticity lines are graphically parallel only for x > 2. 
Thus, before parallel flow can exist, the cavity must be at least four times as long 
as it is deep, or A ~ 0·25. The form found for Ki, e.g. 

K1 = 1+c~Gr2 Pr2 A 3 +O(Gr4 Pr4 A 5 ), 

indicates that the actual value of A necessary for the core solution ( L4) and ( 15) 
to be valid must depend explicitly upon the fixed values of Ur and Pr. Alt,hough 
a rigorous convergence criterion is not possible with the limited re;;ults presented 
here, an approximate criterion can be obtained by requiring only that the second 
term in the expansion for K 1 be small relative to the first. If we take 0· 1 to be 
small, then it is found that 

(51) 

Even if the 'small' correction were allowed to be 0( 1 ), the rnnge of values of 
Gr, Pr and A encompassed by (51) would not be changed substantially. It is, of 
course, necessary to examine experimental resuJts and/or numerical solutions ef 
the full Navier-Stokes equations in order to substantiate the estimate embodied 
in (51). This we do in parts 2 and 3 of the present work. 

This work was done, in part, while J. Im berger was a, visitor to the Keck 
Laboratory of Environmental Engineering at the California -lnst,itute of Tech­
nology, with the support of a National Science Foundation Grant GK-35774X. 
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B. .Natural convection in a shallow 
cavity with differentially heated end walls. 

Part 2. Numerical solutions 

By D. E. CORMACK, L. G. LEAL AND J. H. SEINFELD 
Clwmienl Engin('l'l'i11g, C,difumi11 Institute of Technology, Paimdena 

(Rccei\'f:'d 23 March U.l73 all<! in revised form 15 February 1974) 

Numerical solutions of the full Navier- Stokes equations are obtained for the 
problem of natural convection in closed cavities of small aspect ratio with dif­
ferentially hea tl'<l end walls. These solutions cover the parameter range 
Pr= (H)83, 10 ~ Gr~ 2 x I 04 and 0·05 ~ .A ~ I. A comparison with the asymp­
totic theory of part 1 shows excellent agreement between the analytical and 
numerical solutions provided that A .:S 0·1 and Gr2,--1.3Pr2 .:S 106• In addition, 
the numerical solutions demonstrate the transition between the shallow-cavity 
limit of parL I auJ the boundary-layer limit; A fixed, Gr ➔ oo. 

1. Introduction 
This paper reports numerical solutions of the full Navier-Stokes equations, 

subject to the Boussinesq approximation, for buoyancy-driven convection in 
a shallow rectangular cavity of height hand length l (h ~ l) with insulated top 
and bottom, and differentially heated end walls. In part 1, hereafter denoted as 
It, Cormack, Leal & Im berger ( 1974-) presented an asymptotic solution to the 
problem, valid in the limit as the cavity aspect ratio A = h/l - 0, for fixed, 
though aruitrary, values of the Grashof an<l Prandtl numbers Gr and Pr. It 
was shown that the flow structure in this limit consists of two distinct regimes: 
a parallel flow in the central core and a non-parallel flow which is confined to 
within an O(h) distance of the end walls. The present investigation considers 
the domain of 1:mrnll but finite A with Gr ranging from 10 to 2 x 104 • Strong evi­
dence is found to irnpport the asymptotic theory of I. More important, however, 
the numerical solutions also illustrate the role of Grin establishing the flow struc­
ture when A is s111all, but not vanishingly so. In particular, the transition from 
the parnllel fiow regime of I to the boundary-layer limit of Gill (1966) is clearly 
demonstrated. 

N umorical investigations of buoyancy-induced convection in rectangular 
ravitios ·with differenti11lly heated side walls have been numerous. The first 
pxtensive invc•otigation wa,s contributed by Wilkes & Churchill (1966), who 
studied the stea<ly-state and transient fluid behaviolll' for Gr < 105 and aspect 
ratios of 1, 2 and 3. However, a more thorough numerical study was reported 

t Eq1111tious and tigurc·R from I will be denoted as IX, where X refors to thu original 
equation or figure number. 
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almost simultaneously by Elder (1966), \\'hieh encompassed the conduction­
dominated regime of Batchelor·s ( HJf>4) theoretical anuly:,;is, as well as Ra,ylPigh 
numbers (Ra= GrPr) up to J05, for aspect rntios varying from 1 to 4. More 
recent investigations have been reported by De Vtthl Davis ( 1 !->ti8) arnl Ntiwell 
& Schmidt ( 1970). All of these studies have dealt primarily with the d<:'pencknct · 
of the flow stn1cture nnd overall NusHelt 11umber on Jfayleigh number for A ;,, I 

and large Ra. The chief qualitative feature evident from these studies, arnl of 
interest in the present context, is the existence of end-wall boundary layerH, and 
the corresponding lack of any appreciablt> horizo11tal temperature grrulients i11 
the core for large values of Ra (or Ur). 

Most recently Quon ( 1972) studied the effect of changing the <lynamica,I bound­
ary conditions for large Rayleigh numbers, Ra > 1 uj, and A = 1. Ulrnnges in 
the horizontal boundary conditions from free shear to no slip were found t,o havf' 
little influence on the main flow. Furthermore, for one of the cases, the basic 
assumptions of Gill's ( I 966) boundary-layer a11tdysi!-l were app11rently satisfiPd. 

However, Quon's solutions show only modest qmintitative agreement with G-ilr:,; 
approximate analysis of the boundary-layer model. On the other hand, his 
results a.re in good agreement with the experiments of Elder ( 19(i.3). 

It is surprising that the previous numerical work ha,s l>een concerned 
exclusively with aspect ratios _-I ~ J, in spite of the frequent relevrrnce of small 
aspect ratios to proLlems of environmental fluid mechanics (see I). In this respect, 
the present study not only represents a substantial departure from t,he previous 
work, but provides a base from which more detailed investigatio11K of thP ;;mall 
aspect ratio problem may be 1111dertn,ke11. 

2. Formulation of the numerical problem 
We consider here an enclosed cavity of aspect ratio A :( J, which is filled with 

a Newtonian fluid. The top and bottom of the cavity are rigid no-slip boundaries 
which are perfectly insulating, while the si<le wa.lb, are similuly rigid ,md 110-

slip,but are m11intained at different uniform tl'm pcratures 1;, and T, .. A schematic 
diagram of the system was presented in figure 11. 'l'he governing equ11tio11s, 
non-dimensionalized and subject to tlte 13011:-:;inesq approximation , wen· shown 
in I to be 

and 

Pi/f = -1.u 

Or Pr A ( 80 + o(O, i/f)) = ,20. 
ot o(x, y) 

( I) 

(2) 

(3) 

Here, i/f is the stream function defined in terms of the horizontal and vertic,tl 

velocity components by ·u = oif;/oy, v = - o,jt/8.r, 

l,J is the vorticity and 0 is the dimensionless temperature. ThP relevant hound,try 
conditions are 0 = :rA 011 

fiO/oy = o 
.l' = 0, 1/--1,} 

Oil !I = U, I. 
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In the remainder of this paper we consider the solution of (J)- (3) subject to 
the conditions ( 4) using a finite-difference numerical scheme. It is well known 
that such a treatment introduces errors that depend explicitly on the grid 
spacing. 'l'o minimize this truncation error, it is desirable to use the sma,llest 
grid spacing possible throughout the domain of integrn.tion. However, since the 
computation time increases markedly a,s the number of grid points is increased, 
one must reach a compromise between the accuracy of the solution and the 
c-.>mputation time necessary to reach that solution. 

8quarecavitieshavereceived thorough consideration in this regard. El<ler ( 1966) 

found that solutions obtained with an 11 x 1 l grid were qualitatively acceptable, 
that a marked improvement occtUred when the mesh size was halved to 21 x 2 l, 
but that little further change resulted when a finer mesh was used. The idea 
of using a scaled grid to reduce the number of mesh points was introduced by 
Newell & Schmidt (1970). In this scheme, the smallest grid spacing is maintained 
in the wall regions of the cavity, where gradients of the field variables are largest, 
whereas a coarser grid is used to yield comparable accuracy in the central region 
of the Cd.vity, where gradients are small. Newell & Schmidt varied the grid 
spacing in their calculations by applying a nonlinear (polynomial) co-ordinate 
transformation to (1)-(3), which were then finite differenced using a uniform 
square mesh . An alternative is to impose the graded mesh directly on the original 
equations ( 1 )-( 3). 

'l'he scaled-grid approach of Newell & ~chmidt was adopted for the present 
work. Several different transformations including the Newell- :Schmidt poly­
nomials were tried, as well .1.s various mesh sizes in the transformed planes. 
For square cavities the most satisfactory choices appeared to be the sine trans­
formations 

x = _J_ [ 1 + sin X ] 
2A sin 0·4577 

with - 0·457T ~ X ~ ll·4/i77, (,>) 

y = ! [i +-s_in_Y_] 
2 sin 0·4577 

with - 0·457T ~ Y ~ 0·4!fo , 

with 21 equally spaced grid points in each co-ordinate direction (X and Y) in 
the transformed plane. For A ~ 0·2, the transformation (5) required fartoo nmny 
grid points in the X direction to provide the necessary resolution in the end 
regions. Hence, while the transformation (6) was retained for the vertical 
co-ordinate, we resorted to what we shall refer to as an arbitrarily discretized 
grid for the horizontal direction in these cases. With this approach, the discrete 
step size ~xi was chosen to be a function of the co-ordinate position i . Alt.hough 
the spacing of the arbitrary grid was cliffereut for each case studied, the choice 
was made in a consistent manner, based primarily on the obsP1·v.:1tion from I 
that the overall flow is composed of a core region in which tiie horizont,1I deriva­
tives scale as 1/A and two end regions whose extent is independent of .·1 (for 
A /4; 1 ). 'l'he same resolution of the fluid motion in each of these three regious 
was obtained by splitting the grid points up evenly with oue third of the poiuts 
in each region. With the final requirement that the grid spacing vary smoothly 
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from a minimum near the end walls to a maximum in the core, an adequate grid 
was obtained using a 21 x 45mC'sh system. 

Once converged solutions had been obtained on the 21 x 45 grid, they were 
recomputed using a 21 x 55 grid, the extra ten points being split evenly between 
the two encl regions. In al I cases, the new values of the stream function differed 
from the results using the coarser gri<l only in the fourth significant figure. 
Furthermore, the integral properties, such as the overall N usselt number, differed 
by 1 % or less. The addition of grid points in the core had no effect on the final 
solution. This degree of consistency was deemed acceptable in view of the very 
large increase in computer costs required to obtain the minor benefits of any 
further increase in accuracy. As we shall see, a quantitative indication of the error 
introduced by this finite-difference scheme is provided by comparison of the 
numerical results with the asymptotic theory of I. 

The difference equations which result from either the transformation (5) and 
(6) or the transformation (6) with the arbitrarily discretized horizontal grid 
may be expressed in a similar form and were derived in the present work by re­
placing time derivatives in ( 1) and (2) with forward differences, by representing 
the Jacobian (or convective) terms in the conservative form suggested by 
Arakawa {1966) and by replacing all other spatial derivatives with two-point 
central differences. The general form of the difference equations which result is 
well known and hence, in the interest of brevity, we shall not repeat them heret. 

To incorporate the boundary conditions into the difference scheme, we have 
transformed the two boundary conditions on i/1 to an explicit representation 
for both i/1 and won the cavity wa,lls. An appropriate relationship for w, accurate 
to O(~x) 2 or O(~y) 2 , may be obtained from Taylor series expansions of i/1 at 
the internal rows or columns nearest the wall, combined with the boundary 
conditions (4) and equation (2) evaluated at the boundary. 

3. The numerical algorithm 
Although we were interested only in the steady-state solution, we chose to 

integrate the transient difference equa,tions from u,n initial guess at the steady 
flow configuration to the final steady state by means of the two-step, alternating 
direction, implicit method (A.D.I.) developed by Peaceman & Rachford (1955) . 
The systems of tridiagonal linear equations that resulted at each step of the 
integration were solved by means of the Thomas algorithm (Von Rosenberg 
1969, p. 113). The A.D.I. technique has the advantage over explicit methods that 
it is numerically more stable and hence allows the use of a larger time step tit . 
It has the disadvantage, however, th.1t each iteration requires more computation 
than does an iteration with the explicit techniques. 

We found also that a larger discrete time step could he used for the intcgrntion 
of the temperature equation th,111 could be used for the vorticity equation. Hence, 
to reduce the computation time required to reach the final solution, a different 
time step was used in each equation. For the eases which we invest.igated, the 

t A copy of these may bo obtained from the o.utho1·s, or the editor, upon request. 
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Case Gr A Pr Gr2AS Nu K, f/r,mu: 

I 2 X 104 l ·O 0·733 2·64 3·\l2 X JO- ' 
II 2 X 104 1·0 6·083 4 X 108 5·55 8·91 X 10- 6 

III 2 X 104 0·2 6·983 3·2 X 108 4·07 0·106 5· 10 X 10- 4 

IV 2 X 104 0·1 6·983 4 X 105 3·10 0·336 1·01 X lQ-S 

V 2 X 104 0·05 6·983 5 X 104 1·68 0·603 1 ·65 X l0-3 

VI 2 X 103 0·1 6·983 4 X 103 0·417 0·840 2·33 X 10-3 

VII 500 0·1 6·983 2·5 X 102 0·130 0·!:168 2·70 X 1()- 3 

VIII JO O·l 6·983 0·1 0·1006 0·996 2·75 X 10- 3 

TABLE 1. Parameter values considered 

temperature time step was chosen as much as 1000 times larger than the vorticity 
time step. 

Computation time was further minimized by making use of the centro-sym­
metry property of the combined equations and boundary conditions. In particular, 
if there are nx grid points in the x direction and nu grid points in they direction, 
then symmetry requires 

ifr(i,j) = ifr(nx-i, n 11 -j), } 
w(i,j) = w(nx-i,n11 -j), 

O(i,j) = 1-0(nx-i,n11 -j). 

(7) 

Hence, only half of the grid points need be scanned at each iteration, leading to 
at least a 50 % cut in computation time. 

Excellent indications of the progress of the integration were provided by 
an integral of the vorticity over one end of the cavity (essentially, a drag coeffi­
cient) and by the Nusselt number as defined in equation (148). Once the varia­
tions in both of these integral parameters between iterations were of the same 
magnitude as the computer truncation error, the integration was stopped. For 
the IBM 370-155 which was used, this occurred when changes were taking place 
in the fifth or sixth significant figure .. Typical computation times using the ap­
proach outlined above were 20- 30 min with the variations due primarily to 
changes in the Grashof number and to variations in the accuracy of the starting 
values assumed for 8, ifr and w. 

4. Numerical results 
Square boJ.: 

As a preliminary test to establish the ovendl consistency of the numerical 
results produced by our algorithm, we considered a square cavity wit.h 

Gr= 2 x 104 and Pr= 0·733, 

listed as case I in table 1. Wilkes & Churchill (1966) had previously considered 
the same system. With a 21 x 21 grid in the Cartesian co-ordinate system, they 
obtained a Nusselt number of 2·52, whereas using (5) and (6), with 21 points 
in each oo-ordinate direction, we obtained Nu= 2·G4. We consider the difference 
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x-- x--

(a) (b) (c) 

FIGURE 1. Case I; Gr= 2x 10', A= I, Pr= 0-73:!. (a) 8trmmli1ws; .4 = 3·92x 10- \ 
B = 2·62x 10-4 , C = 1·31 x 10- 4 • (b) Isotherms; A= ll · lli7, II = 0•:!3:l, C = 0·5, 
D = 0·667, E = 0·833. (c) Vorticity eo ntourr-;; A = - J ·,1 1 x rn -e, B = - 5·77 x 10- 3, 
C = 2·55 x 10-3 _ 

£ 

C 

B 

x-- x-- x--

(a) (b) (c) 

FIGURE 2. Case II; Gr= 2 x 104, A = 1, Pr= G·98:3. (a) 8Lreamlinl's; A = B·!ll x 10- 4, 

B = 5·90 x 10-4, C = 2·96 x 10- 4 • (Ii) Isotherms; A. = 11-1(\7 , lJ = 0·33:1. <' = O·G , 
D = 0·661, E = 0·833. (c) Vorticity co11tour$; A= -4·24 x JO 3 , 1J = 7·1.i x Ill 1• 

between these values to be largely insignificant, particularly in view of the large 
scatter of the numerically determined values for Nu ns a functio11 of Ra that 
have been collected by Quon (1972) from various authors (cf. his figure !I). 

In figure 1 the flow configuration is presented for this car-;e. The structure of 
the isotherms indicates that the only substantial horizuut,d temperature gradi­
ents occur in the lower right and upper left ends of the cavity. Since the buoyancy 
forces are proportional to the temperature gradients [cf.equation ( 1 )], the overall 
flow must be driven by these essentially boundary-layor-like regions, with the 
flow in the core maintained by the requirements of continuity as suggested by 
the model of Gill (1966). · 

A change in the Pra.ndtl number from 0·733 to G·D83 (the Prandtl number 
of water at 20 QC) with all other para.meters held conr-;tant produced a consi<ler­
able ohangein flow structure, as iudicated by compari11g figures 1 and~- The chief 
change is a thinning of the the,·mal boundary layer, which is tu ue cxpcotud 
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on the basis of standard boundary-layer arguments (Gill J !HHi). Furthermore, 
since it is the buoyancy-induced forces in the thermal houncl,tr_v-hiycr region 
which drive the flow, the region of largest vertical velo(•it,y is also (·onfine<l more 
closely to the walls, as is evident in figure 2(a). 

A secondary effect of increasing Pr is a substantial dc·('rensP in the maximum 
value of the stream function within the cavity.t Fmthermor(', a. secondary Aow 
develops which may be recognized in figure 2 by the t\,·o ;;trrnrn-fonction maxi­
ma. This induced secondary flow not only causes inflexions in the isotherms, but 
also convects the negative vorticity that is generated in the vicinity of the wall,; 
further into the bulk of the fluid. These secondary flow phenomena arc consistent 
both with the numerical results of De Yahl Davis ( 1968). Rubel & Landis ( 1960) 
and Quon (1972) and with the experimenttd results of Elder (1965), who found 
that such a flow results for Ra > 105 . For the present case Ra = 1 · 4 x 1 05 . Th is 
strong dependence of the flow characteristics on Pr for A = 1 is in contrast 1o 
the conclusion in I that the stream-function and vort.ieity fields should he 
independent of Pr to first order for A ~ 1. 

Cavities with A < 1 

It was pointed out in I [equation (151)], that, for constant Pr, a significant para­
meter in determining whether the flow in the core complies with the parallel flow 
structure derived in I is Gr2 A 3 . 'l'o illustnite the trnnsiLion from the boundary­
layer regime of large Gr2A 3 to the parallel tiow structure of 'small' Or2A3, w0 

have carried out computations at several values of this pirrnmctcr. The cases 
considered are shown in table 1, in or<ler of decreasing Gr2,l3. Also listed are the 
numerically calculated Nusselt numbers and nrnxirnurn stream fu11ction t/Jm!\x 

for each case. 
All of the results for A < 1 deal only with Pr= 6·fl83, primarily so that the 

results can be directly compared with experimental observations in water (sec 
part 3), but also to take advantage of the observation of De \'a.hi Davi:,; ( 19H8) 
that the stability of the numerical algorithm increases wit.h increasing Pr. 

In figures 3-·8, we have plotted the streamlines, isotherms and contours of 
constant vorticity for each case, also arranged in order of decreasing Or2 A 3 so 
that the trends of the numerical solution can easily be identified. It should he 
noted that all of the results are plotted as square figmos; hence, for cavities 
with small aspect ratios the horizontal length scale is substantin,lly compressed. 

An examination of the results for the cavities with Or = 2 x J 04, Pr = 6·983 
and various aspect ratios (figures 2- 5) reveals tlrnt the stream lines and vorticity 
lines become more nearly parallel as A decreases, as was anticipttkd in the 
analysis of I. It is perhaps worth emphasizing that this transition to parallel 
flow is not simply a consequence of decreasing the overall temperature grauient 
(Th - I'c)/l, as the aspect ratio is made smn,ller. ln fact, , one can change A in such 
a manner that the overall temperature difference must u.ctually be increased in 

t The apparent difference betweeu this res1ilt. and that, of J)c, Vtthl Davis ( I HGS) i:; dlll' 
both to different scaling and to the fact that wo held Ur fix<'d whilo Di, Vuhl D,wi,; u,;ocl 
Ra ( = Gr Pr) as the fixed parameter. 
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FweuE 3. ( ',tH(' Ill; (;',,- = 2 x I 04, A = 0·2, Pr = 6-~l83. (a) 8trPamli1tt•s; A = /\· Iii x t0- 4• 
B=3·4:"ixto - 4 , C=l·73xLO- •. (b) Isotherms; A=O·lfi7, H=0·3:13, 0=0·5, 
IJ = O·(Hi7. /!,' = O•S:l:3. (,·) Vorticity contour·s; ..I = - l ·88 x 10 2, H = 3·48 x IO a. 
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FIGURE 4. Case· lV; Or= 2 x 104, A.= O·l, Pr= H-983. (a) Streamlim's; A= 1·01 x 10- s, 
B = G·72x 10-4. 0 = :3•3Hx 10-•. (b) Isotlwrm,;; A= O· l(i?, /J = 0-333, C = 0·5, 
/J = (Hi(i7, h' = 0-8:1:l. (1·) Vort,icity eonto11r,;; A = - :l-18 x to 2, B = U·28 x Ill 3. 
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order to hold Gr fixed. For example, A may ht> decreased by simply dP<'f(•asing Ji 
while holding l constant. Then, to maintain a specified constant 

it is obviously necessary to increase (T,, -T,.)/1. 
In addition to the increasingly parallel charnctPr of the flow, the grad ua I 

disappearance of the thermal boundary layers as A is dt'creased is also a prom i­
nent feature of the transit.ion . In case II, the core flow is driven primarily by tlw 
entrainment and detrainment of fluid from the lrnoyancy-drivcn boundary 
layers. On the other hand, by case V these boundary layers have essentially 
disappeared. The major portion of the temperatmc drop occurs across the co,(', 
so that the overall flow is necessarily driven by the buoyancy forces in the corl'. 
This transition to a core-driven flow, with decreasing A, was snggestC'd in J and 
is completely consistent with the asymptotic theory. 

The above tendencies are not restricted to the situation with Gr fixed and 
A decreasing. A consideration of the figures in order of decreasing Gr with A 
fixed (figures 4, G, i a,nd 8) reveals a similar trend of increasingly parallt'l flow 
and a transition from a thermal boundary-layer structure to a linear tem peratun· 
profile. This behaviour provides support for the qualita,tivt> conclusion from I 
that the condition (151) is sufficient for the existence of the para! lel core fiow. 

Figures 3-8, when observed in order of decreasing Gr~ A 3, yield some additional 
tendencies, most of which fall within the scope of the asymptotic analysis. Of 
particular prominence is the decreasing magnitude of the stren,m-function de­
flexions that occur as the fluid enters and leaves the end regions. A prediction 
from the asymptotic theory was that these cleflexions, for constant Pr, should be 
O(Gr2A 2), provided that A is sufficiently small. ffoice the arrang£•nH.'tlt in order 
of decreasing Gr2A 3 also produces an arrnngement in order of decreasing (;r.d, 
this phenomenon is again compatible with the asymptotic t.Jwory. 

One characteristic of the stream-fu net-ion deflcxions at the larg('r values of Ur A 
which is not predicted by the first fom terms of the asymptotic expansion is the 
'necking down· of the streamlines IJefort' they again divergc.t Closely associat<>d 
with the necking phenomenon is the occurrence of the stream-function maxi­
mum in the core rather than in the end rl'gions as predicted in the asymptotic 
theory. Only in cases VI-VIII, for which necking is a,bsent., docs the absolute 
maximum of ij;· occur in the end regions. However, a closer examination of the 
numerical results does indicate that there always exists at least a local maximum 
of ifr in each end region. 

Some additional interesting trends are also displayed by the plots of the iso­
therms and equi-vorticity lines. For the larger values of Gr2A 3 , the vorticity 
gradients are extremely large in the vicinity of the end walls, and, in relative 
terms, are al most non-existent in the bulk of the fluid. Hence,-in this limited sens<', 
Batchelor·s ( 1954) conjecture of a uniform-vorticity core at large Ur (A fixed, 
Gr ➔ oo) is basically confirmed. It is important to note, however, that the basic 

t There is, howuY<•1·, a >1Lro11g iwlieatio11 that this pltP1101neno11 \\"L>llld bt· l'l'ttliz<·d with n, 

subsequent (higher-order) co1-r(•ction t•> the solution in t,11<· end rngion. 
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flow structure in this limit is otherwise completely unlike that suggested by 
Batchelor and in qualitative accord with that proposed by Gill. In particular, 
because of the strong horizontal advection due to entrainment-detrainment, from 
the boundary layers, the tern perntu re distri bu ti on in the core at large Gr2 A 3 shows 
only a weak dependence on horizontal position, while still retaining reasonably 
strong vertical gradients. The vorticity generated at the end walls does not effec­
tively diffuse to the core, because the buoyancy forces in the region adjacent to the 
walls provide an effective sink for this vorticity (they appear as source terms for 
vorticity of opposite sign) which greatly decreases its magnitude before it can 
reach the core. A lucid explanation of the transient development of this (large 
Gr2A 3 ) physical structure has recently been provided by Quon (1972). As either 
A or Gr is decreased, the magnitude of the vorticity gradients in the end regions 
is decreased, and the temperature distribution shows a gradual transition from 
the strong vertical dependence of the boundary-layer regime towards the totally 
horizontal dependence corresponding to the linear profile of I. Ultimately, in 
cases VI-VIII, the vorticity gradients are of comparable magnitude throughout 
the cavity. In addition, as expected from the asymptotic analysis, the vorticity 
distribution becomes increasingly symmetric with decreasing A or Gr. 

A more quantitative comparison of the numerical solutions with the asymp­
totic theory is possible particularly for the flow in the core. Equation (I 14) 

indicates that, if the flow is parallel, then 

where 

u/K1 = a2J(y)/oy2, 

f(y) = &oY5 - lsY4 + /2Y3 

(8) 

and K 1 is the parallel-flow parameter. Any deviation of numerically determinet! 
values of u/K1 from the relationship in (8) will give a good indication of devia­
tions of the numerical solutions from the parallel flow structure. Hence, the proL­
lem of quantitatively comparing the numerical and analytical velocity profiles 
reduces to one of finding a value for K 1 from each numerical solution. This is 
easily done since, according to equation (I J 5), the core temperature can be sepa­
rated into two parts when A is sufficiently small. One part is a linear function of :l: 
and the other is the fifth-order polynomial f(y) . Hence, a value for K 1 can be 
determined from each numerical solution (whet,her or not the flow is identically 
parallel in the core) by fitting the numerically determined temperatmc Oii• in a 
least-squares manner, to the equation 

at the five central grid points, on the line y = 0·5. The resulting values of K1 are 
presented in table 1. As expected in view of the transition from the boundary­
layer regime to the' conduction' regime of the I, the coefficient K 1 increases as 
Gr2 A 3 decreases. .-

Figure 9 is a plot of the theoretically and numerically determined velocity 
profiles u/K1 on the centre-line x = 1/2A as a function of y. It is apparent that 
as Gr2A 3 decreases the velocity profile approaches more closely the parallel 
structure . However, for values of Gr2A 3 < 104, cases Vi- VIII, the numerical 
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(u/K 1 ) x 103 

FIGURE 9. Comp,wiRon of normalized horizo11t,d velocity Ht .v = 1/:!.A with theoretical 
parallel-flow profilp (solid lin<' ). O, Ur= 2x LO', A= 0·2: t:,, Gr= 2x 10\ A= 0·1; 
O,Gr = 2xl0',A = 0·05 ; 0 ,C:r = 2x 10 3, .-1 = 0-1; -- ,Ur= 5xl0",A. = O·l. 

data fall on a single cmve (the brCJken line) that is somewhat different from the 
theoretical profile . Because of its consistency, we attribute this discrepancy to 
the numerical error introduced by the finite-difference scheme and grid network 
used. Since this error constitutes only a very small fraction of ·u/K1 , the corre­
spondence between the analytical theory and the limiting form of the numerical 
velocity profiles would appear to be quite satisfactory. 

It- is 1:,igniiicant that cases III- V, in which Gr2A 3 is brgcsL, have horizontal 
velocities larger than those predictrcl by the parallel-flow thi>ory with K 1 evalu­
ated from the numerical solutions. As the transition from the asymptotic limit 
of I to the boundary-layer regime of Gill is encountered, the driving force for 
fluid motion must gradually change over from one totally dominated by the 
horizontal temperature gradient in the core to one rnntrolied by entrainment­
detrainment from the boundary layers at the end walls. Hence, as Gr2A 3 is 
increased, the the:>oretical prediction from I must increasingly underestimate 
the actual horizontal velocities, since it is based entirely on the core-gradient 
mechanism. This is evident in the results of figure 9. 
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FIGURE 10. Comparison of nmnerically tletennined Oat x = 1/2A with U1eoretieal 
core temperature (solid line). Notation as in figLU-c 9. 

It is also possible to obtain a quantitative estimate for the value of Ur2Pr2A 3 

at which the core flow changes from parallel to non-parallel from the results 
presented in figure 9, and hence to verify condition (151). The velocity profile 
of case V deviates only slightly from the limiting profile of then umerical solutions,· 
whereas that for case VI falls directly on the limiting curve. Hence, the appro­
priate limit for validity of the parnllel flow structure (for A ~ O· J) must occur at 
a Gr2Pr2A 3 between 2·5 x 106 (case V) and 2 x 105 (case Vl). This observation 
lends strong support to the speculation of I that the parallel flow structure will 
apply for Gr2Pr2A 3 $ 105, provided that A is sufficiently small. 

Further consideration of the core solution of I indicates that a plot of 

as a function of y should also yield the fifth-order polynomia.l f(y), provided 
that A and Gr2Pr2A 3 are such that the parallel-flow theory is relevant. Figure 10 
is a plot of this function cvn,luated at the centre-line .r = J /"2A. For cases III­
VI, with decreasing Gr2A 3 , the numerical profiles approach the theoretical curve 
as woul<l be expected. On the other hand, for c;~sc VII t.hc difference between the 
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numerical and theoretical curves incrC'asN; slightly :.nd for cas(' VII[, which is not 
shown on the figure, the differences between the tlic•orctic,tl and 11un1ericnl 
data points are large and rnndom . Although this latter trend would, at first 
glance, appear to be inconsistent with the theory of f , it is in fad a JJ u merical 
artifact which is a consequence of the structure of the ternJkrut ure field a:-:: 
Pr GrA2 ➔ 0. An order-of-magnitude n11aly::;is of C'qt1atio11 (LI :3) r CY(•als that both 
K 1 Ax and 0 are 0(1) whereas 

JqGrPrA 2f(y) = O(GrPrA 2 x 10- 3). 

If we assume, for some hypothetical values of the parnmeters Ur, Pr and A, 
that the core flow is identically parallel and, furtltermor(', tlrnt the 11umcrically 
determined temperature field contains a consistent error f,1 , tl1C'n a. simple calcula­
tion shows that the error in the numerical data co1Te:-::ponding to figure IO will 
be amplified to 

To be specific, for case VII, 
GrPrA 2 x J0- 3 = 0·035, 

so that, if the numerically determined temperature profile contains an error 
of 0·5 %, then it is not unreasonable to have an error of I ii% in the l'('duced 
numerical data. Similarly, for case VIII , 

GrPrA 2 x 10- 3 = 7 x 10- 1, 

so that even a small numerical error would be amplified to irn bstantia,l propor­
tions. We must conclude that, owing to the increasing prorninc>ncc of c>ven tlw 
smallest numerical errors lLS OrPr.·-l.2 decreases , flgun· 10 iR of limited value in 
establishing the region of Gr, Pr, A space in which tit(• core-fiow solution iR va.lid. 

In the previous discussion, it haf:I been emplrnsi,-,('(I that. the numerit,tl 1·<>s1iltf:I 
effectively display the transition from tho parnllc>l Jlow rngime of small Gr~,.-13 
to the boundary-layer regime of large Or2,.:J.3. Perhaps the most graphic· demon ­
stration of this transition is provided by figure l J , a plot of log ( I - /( 1 ) as a. 
function of log (Gr2,.-13). The asymptotic expn•ssion for X 1 , eq11ation (145), 
indicates that for constant Pr such a plot should yield a curve that is asymptotic 
to the straight line 

( !)) 

in the limit as A ➔ 0. On the other hand, the boundary-layt>r theory suggests 
that for large Gr2A 3 the horizontal gradient, of ternpPraLure in the> core 8hould lie 
zero. Hence for large Gr2 A 3 the curve should be a,sympt.otie to t.ltc line 

l -K1 = 1. 

The numerically determined values of /{1 display the expected trends in both 
limits. 

A further demonstration of the transition from the parallel to the boundary­
layer regime is provided by figure 12, a plot of log (Nu - A ) as ,1 function of 
log (Gr2A 3 ). We emphasize that it is the dc1.•fotion of the actual Nu from t.lie 
asymptotic value A that is ploU,e<l here. For small value:; of Or~A 3, the 
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numPrically determined values of the Nusselt number are asymptotic to the 
tlteoreticn,I Rtraight lirw which was derived in I. On the other hand,itisalsoevidcnt 
that , as Gr2A 3 increases, the numerically determined Nusselt nnmbern devia,te 
considcrablyfrom the asymptotic value. In fact,forthelargest valuesofUr2A 3 con-
1;idcred, the scaling of figure 12 apparently has little bearing on the actual N usst•lt 
number. This is to be expected, however, since at lu.rgc values ofGr2A 3 the flow 
resembles n1ore closely the boundary-layer structure thuu it does the parallel 
flo,v strnctmo. Since Gill's boundary-layer analysis showed that Nit should 
be independent of A, and vary directly as (GrPr)i, the sharp increase in the 
slope of the numerica,I curve at large values of Gr2_,t3 can he attributed to the 
trnn:;iLion to the boundary-layer structure. 

This work was supported, in part, by National Science Foundation Grant 
GK-35476. 
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C. THE EFFECT OF UPPER SURFACE BOUNDARY CONDITIONS ON CONVECTION IN A 

SHALLOW CAVITY WITH DIFFERENTIALLY HEATED END-WALLSt 

By D. E. Cormack, G. P. Stone and L. G. Leal 

The effect of upper surface boundary conditions on the flow 

structure in shallow cavities with differentially heated end-walls 

is examined. Matched asymptotic solutions, valid for small cavity 

aspect ratios are presented for the following cases: uniform 

shear stress with zero heat flux, uniform heat flux with zero shear 

stress, and heat flux linearly dependent on surf ace temperature with 

zero shear stress. It is shown that these changes in surface 

boundary conditions have an important influence on the temperature 

and flow structure within the cavity. 

tThis manuscript has been accepted for publication in the 
International Journal of Heat and Mass Transfer. 
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NOMENCLATURE 

A, 

B, 

C 
p 

F(y) 

f(T) 

Gr 

H 

h 

K 

Nu 

Pr 

Q 

q 

T 
e 

u* 

x,y 

x 

a 

aspect ratio= h/i; 

2 dimensionless shear parameter= l, /h (Th - T )Sg; 
0 C 

coefficients which are functions of Gr and Pr; 

heat capacity; 

surface heat flux; 

3 2 Grashof number= Sg(T - T )h /v · n C ' 

scaled thermal exchange coefficient 

cavity depth; 

effective thermal exchange coefficient; 

core solution parameters; 

thermal conductivity; 

cavity length; 

characteristic length for surface heat transfer; 
I 

Nusselt number J :! I dy; 
o x=O 

Prandtl number c µ/k; 
p 

scaled surface heat flux = qh/kA 2 (T - T ) • 
h c ' 

surface heat flux; 

cold- and hot-end wall temperatures; 

equilibrium temperature for surface heat transfer; 

slip velocity; 

cartesian coordinates nondimensionalized by h; 

Ax; 

coefficient of thermal expansion; 



e: 

n 

El 

e 

µ 

\) 

T 
0 

w 

'f' 

IKh/k; 

(1 - y); 

(1 - 6); 

(T 

viscosity; 

kinematic viscosity; 
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-1 
horizontal distance from hot end of cavity= A - x; 

core variable for semi-infinite cavity= e:~; 

surface kinematic shear stress; 

hot end vorticity; 

vorticity; 

hot end stream function; 

stream function; 
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1. INTRODUCTION 

It has become a common practice to use estuaries and other bodies of 

water for the disposal of the waste heat that arises as a by-product of 

fossil and atomic fuel electric power generation. Similarly, sewage treat­

ment plants often discharge high concentrations of organic pollutants 

directly into estuaries and coastal waters. Although such dumping may be 

safely carried out, it is important to take proper considera tion of its 

impact on the biochemical processes that depend critically on the water 

temperature and purity. As a first step toward understanding the biological 

impact, laboratory and field experiments have established practical temperature 

and toxicity limits, beyond which the biological processes are impaired. 

However, before outfall systems can be designed so that these limits are not 

exceeded, it is necessary to understand more fully the mechanisms by which 

these wastes are dispersed within the body of water. 

Estuaries which are shallow (depth much smaller than length) and have 

strong enough vertical mixing to prevent the formation of density wedges, 

often exhibit a density distribution which is vertically uniform but which 

varies approximately linearly ln the horizontal direction. An excellent 

naturally occurring example is Shark Bay on the West Australian coast (Logan 

and Cebulski [1}). More commonly, perhaps, the horizontal gradient may be 

established as a r esult of man-related heat input near the end of the estuary. 

In either case, the slow gravitational circulation, induced by the horizontal 

density gradient, can contribute significantly to the longitudinal dispersion 

of pollutants, mainly by the mechanism of Taylor diffusion (Fis cher [2]). 

A complete dynamic model of an estuary such as Shark Bay would, of course, 

be very complex. The geometry of the estuary is complicated, and the flow 
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is turbulent and generally coupled with the tidal cycle. Furthermore, 

various regions of the flow field are controlled by processes occurring on 

very different length scales. In the immediate vicinity of the source (for 

example, near the discharge of heated fluid from a power plant) the problem 

is dominated by the details of the source geometry, and the local mixing 

processes (cf. Harleman and Stolzenbach [3]). Covering a much wider area 

beyond this so-called "near-field" region, is the region of interest in the 

present work, namely the "far-field," where the primary transport mechanisms 

are bulk diffusion and convection. In this region, the detailed velocity 

and density fields are relatively insensitive to the source configuration. 

In addition, since the time scale of the gravitational circulation in the 

far-field is large, the influence of the tidal cycle and other unsteady 

variations of velocity on the mean circulation in the estuary may be taken 

into account by the use of effective eddy exchange coefficients (Imberger [4]). 

Thus, considerable insight into the basic far-field flow structure can be 

obtained from the idealized problem of laminar flow in a shallow two­

dimensional cavity with differentially heated end walls. 

Investigations into the problem of natural convection in two-dimensional 

cavities have been extensive. Most theoretical studies have focused on 

numerical solutions of the full equations of motion, subject to the 

Boussinesq approximation, for cavities which are either square or have a 

depth, h, larger than their length, 1 (cf. Quon [5], Wilkes and Churchill 

[6], Newell and Schmidt (7], and DeVahl Davis [8]). Notably, these studies 

have not dealt specifically with the case of small aspect ratio (A ~ h/1 << 1) 

which is relevant to the estuary circulation problem. In a recent paper, 

Cormack, Leal and Imberger [9] V1enceforth denoted as 11 111
} provided an 
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analytical description of the convective motion of a Newtonian fluid in a 

two-dimensional enclosed cavity with a rigid, no-slip, insulating lid for 

the limiting case A+ O, with fixed values of the Grashof number, Gr. The 

basic features of shallow cavity flow, as predicted by this theory, were 

subsequently verified both by numerical solutions of the full equations of 

motion (Cormack, Leal and Seinfeld (10)), and by experimental measurements 

(Imberger[4]). 

As explained by Imberger [4], the no-slip insulating boundary was the 

only surface condition for which reliable laboratory data could be obtained, 

and this motivated its use in our previous analytical investigation. Clearly, 

this condition is quite 'different from that relevant to an open surface 

estuary, and the effect of this difference upon the circulation dynamics is 

not obvious. It is the purpose of the present study to investigate this 

question for the more realistic conditions of an imposed surface shear stress 

(due, for example, to a surface wind stress) and surface heat transfer. The 

analysis will show that these modifications of the boundary conditions can 

have a very significant effect on the Nusselt number (and hence on the 

longitudinal dispersive capacity of the cavity) as well as on the form of 

the velocity and temperature profiles for A+ 0, with other parameters held 

t fixed. 

t In contrast, for Gr+ oo, A fixed, the recent numerical solutions of 
Quon [SJ indicate tha t the upper surface condition for the velocity 
plays a less impor tant role, at least in determining Nu. 
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2. MATI-IEMATICAL FORMULATION OF THE PROBLEM 

The system that we consider is shown schematically in Figure 1. It 

consists of a cavity of length, .Q,, and height, h, that contains a Newtonian 

fluid. The end walls are held at different, but uniform temperatures, T 
C 

and Th, with Tc< Th. The bottom of the box is insulated and the end walls 

and bottom are rigid, no-slip boundaries. At the upper surface, the kinematic 

:::~:::.::.~:::tress:!..; assumed to have 1>u111t:: uu.i.i:ucm value, T, and the heat tlux 1s 
0 

given as a function of the surface temperature, f(T). 

Subject to the usual Boussinesq approximation, the steady-state equations 

governing this system may be expressed (see I) as 

(1) 

2 'v 1jJ = - w (2) 

PrGrA ,3(S,lj!) 
a(x,y) (3) 

with boundary conditions 

1jJ = 0, ~= 0, 
ax 0 = Ax on x 

(4) 

1jJ O, ~= 0, ay on y 

and 
2 .h 

~ = il = o ,30 hf(T) 
ax O, 2 h2(T _ ' ay = k(T - T ) 

ay h Tc)(3g h c 
on y 1 (5) 

To nondimensionalize these equations, we have used has the characteristic 

length scale, and $g(Th - Tc)1i3/v.Q, as the characteristic velocity. Although 

perhaps not obvious, this velocity scaling is the most convenient choice for 

the present problem, where the basic flow structure is found to consi.st of a 

buoyancy driven parallel flow which is moderated by viscous effects over a 

length i. At any rate, it may be justified a posteriori by the theory which 
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is presented in this paper. The dimensionless parameters which appear in 

the equations (1) - (3) are the Grashof number Gr, the Prandtl number Pr, 

and the cavity aspect ratio. The additional dimensionless parameters intro­

duced as a result of the surface conditions (5), will be discussed in the 

body of the paper. 

3. THE NO-SLIP, INSULATED CAVITY 

Before the general case represented by (5) is considered, it is useful 

to summarize the basic analytical techniques and results obtained in I, for 

the no-slip insulated cavity. The key simplifying feature in this case is 

the assumption, supported by experimental observation, that the length scale 

-1 
for horizontal change in the central region of the cavity is O(A) , while 

the scale for horizontal change near the end walls is only 0(1). Because 

this disparity in length scales increases as A+ 0, an analytic solution to 

(1) - (5) may be obtained using the standard methods of matched asymptotic 

expansions, in the limit A+ 0 with the other parameters held fixed. Analytically, 

··l the cavity is decomposed into three parts, a core region of extent O(A ) in 

the center of the cavity, and two end regions within an 0(1) distance of the 

end walls. The solutions in the three regions are coupled by the matching re­

quirements in the regions of overlap. 

The core solution is easily obtained by introducing the scaling 

x = Ax (6) 

into the govern1ng equations and boundary con<litions (1) - (5), and expancling 

the streamfunction and temperature as regular series in the small parameter A 

} (7) 
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The resulting solution is 

1/J K1 (y
4/24 - y 3/12 + y

2/24) (8) 

e 2 2 5 [. 3 
K1x + JS:GrPrA (y /120 - y /48 + y /72) + K2 (9) 

where 

Kl c1 + Ac2 
2 

f 
= + A c 3 + ... 

=c'+Ac' + A2 , 
K2 1 2 c3 + J 

(10) 

The coefficients c1 ,c2 , ••. , ci,ci, .•• are determined by matching the 

core solution with solutions valid in the end regions. Because of the sym­

metry of equations (1) - (4) and the no-slip, insulated boundary conditions, 

the coefficients c~ can be eliminated in favor of the single set ci, so that 

the matching operation reduces to a consideration of so1utions valid in the 

cold end of the cavity. Upon calculating the end region solutions and carrying 

out the matching, the coefficient K1 , governing the magnitude of the horizontal 

temperature gradient in the core, was found to be 

while the Nusselt number, 

Nu - fl~ I dy 
0 ax x=0 

was shown to be of the form 

(12) 

The corresponding stream function representing the first order flow field in 

the (cold) end region is shown in Figure 2a. 

Solutions (8) and (9) indicate that the core flow for a no-slip ins ulated 

surface is parallel to all orders of raagnitudeJn A, while, to first order in 
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A, the temperature is linear in x and independent of y. Thus, to a first 

approximation, the end regions are isothermal and the driving force for con­

vection is associated with the horizontal gradient of 0 in the core. The end 

regions serve mainly to turn the core flow through 180° as required by the 

condition of zero volume flux through the end walls. In these features the 

flow associated with the limit A+ 0 with Gr fixed (though perhaps large) is 

fundamentally different from that appropriate to the limit A fixed (though 

perhnps smal 1) and Gr + 00 which "!"c -=t•.!die-:! by Gill [11]. In the l:;tt::= :::;:;c, 

nearly all of the temperature drop occurs in thin end wall boundary layers 

and the corresponding gradients constitute the primary driving force for 

fluid motion. In particular, the core flow exists only as a consequence of 

the entrainment-detrainment process associated with the end wall boundary 

layers. 

It is also significant that the longitudinal heat transfer process in 

the present case is dominated by conduction (cf. equations (9) and (12)), and 

that this occurs for any arbitrary Grashof number provided only that A is 

made sufficiently small. Clearly, the problem considered here differs in a 

fundamental way from the usual conduction limit A fixed, Gr+ 0. In the 

present case, as A is decreased the horizontal scale of the cavity increases 

relative to its depth so that even the small viscous contributions associated 

with a large value of Gr can eventually become important and effectively 

"throttle" the flow, thus enhancing conduction compared with convection in 

the core region. 

Finally, it may be noted that the higher order convective contributions 

to (9) and (12) are a result of the Taylor diffusion mech.:inism which has been 

recently reviewed in the context of cavity and estuary flows, by Fischer (12].t 

tThe convective terms in these equations can, in fact, be reproduced using 
the general equations (10) and (12) of Fischer's paper. 
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In the following sections we consider the changes in flow structure 

which occur as the no-slip, insulated upper surface conditions are replaced 

by the conditions (5). 

4. ASYMPTOTIC VELOCITY AND TEMPERATURE FIELDS wrrn AN IMPOSED SURFACE 

SHEAR STRESS AND ZERO HEAT FLUX 

111~ lu~ical ex~ension of the no-slip upper surface, which was discussed 

in I and summarized in the previous section, is the case of an imposed, 

uniform shear stress, T. The problem differs from the previous one only 
0 

in the condition 

Bony 1 (13) 

which replaces the no-slip condition, 31jl/'ay = O. In natural estuaries, T
0 

could be interpreted as the time- and space-averaged value of the surface 

wind shear stress. In that case, a typical range for T
0 

would be O - 10cm2/sec2 

(cf. Lumley and Panofsky [13]), which leads to the estimate O ~ !Bl~ 2 in 

Shark Bay. The dimensionless parameter B provides a measure of the relative 

magnitudes of the surface shear force and the characteristic buoyancy force 

in the cavity. When B << 1, the buoyancy forces are dominant and the problem 

is equivalent to the case T = O. On the other hand, for B >> 1, the shear 
0 

forces are dominant and the problem is a forced convection flow to first 

approximation. It is the intermediate case, B "-' 0(1), which we will pursue 

here. The analysis follows that in I fairly closely. TI1us, in the interest 

of brevity, we omit the details of the end region solutions and of the 

matching. The relevant techniques are demonstrated in the Appendix for the 

somewhat simpler but representative case of B = 0. Here, we shall concentrate 
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on the solutions themselves rather than on the methods used to obtain them. 

In the core region, 

(,1_~i_) B 3 2 
Kl 24 - 48 + 16 + 4 (y - y ) (14) 

O • K1 X + PrGr +i [lo -~ + fa-] (15) 

where K1 and K2 are polynomials in A. The coefficients of K1 and K
2 

depend 

on Gr, Pr, A and B, and are determined by matching (14) and (15) with the 

solutions in the two end regions. The p~incipal feature of interest in the 

latter (end region solutions) is the fact that the surface shear stress 

yields only a simple additive contribution at first order in A. 

1jl 1jl + Bljl + O(A) 
0 0 

The first term, 1jl, is simply the T 
0 0 

0 solution outlined in the Appendix. 

J\ 
The second term, 1jl, which is directly attributable to the imposed surface 

0 

shear stress, was obtained numerically. The governing equation and boundary 

conditions are 

'v4~ 0 
0 

(16) 

" 
ljio = 0 on x 0 on y = 0,1 

" " aiJJ aw 
0 0 O; 0 0 on x - O,oo ay= on y = --= ax (17) 

a2; 
0 

1 l --= on y = . 
ay 2 

The numer lea l scheme closely resembled that described in the Appendix for 1jl • 
0 

Typical »trenmlincs for 1jl are presented in Figure 2b. 
0 
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3 To determine 1S_ and Nu to O(A ), in addition to the five end region 

temperature corrections obtained in the Appendix for T
0 

0, three addi-

2 3 tional corrections had to be calculated; one at O(A) and two at O(A). The 

3 resulting expression for IS_, correct to O(A ), is 

2 2 3 -6 -4 -4 2 Kl= 1 - Pr Gr A (19.16 x 10 - 2.536 x 10 B + 8.550 x 10 B) 

+ O(A4) (18) 

Similarly, tne Nusselt number (12) is modified to 

A+ Pr2Gr 2A3(13.10 x 10-6 - 1.736 x l0-4B + 5.952 x 10-4B2) 

+ O(A4) (19) 

Our primary interest in the results of the preceding analysis is with 

the qualitative variations in flow structure which are induced by changes 

in boundary conditions at the upper surface. Most relevant to the far-field 

aspects of estuary flows are the structure of the core flow and the magnitude 

of the first correction (O(A3)) to the Nusselt number, since the latter is a 

measure of the rate of longitudinal convective transport in the cavity. In 

this regard, the most important conclusion from the solutions (14) - (19) 

is the absence of any fundamental change in the flow structure for nonzero B. 

The parallel flow in the core region is preserved for any fixed value of 

B in the limit as A ·► O. In addition, the temperature field, which is 

dominated at first order by the basic conduction mechanism, remains linear 

in the horizontal coordinate in all cases with the y-depend cnce of the 

temperature field (and therefore the vertical density stratification) 

2 entering only as a higher order, O(A ), term. Finally, the fundan1ental 

Taylor diffusion mechanism which dominates the convective heat transfer process 

in the core is again reflected in the basic forms of the temperature gradient, 

K1 , and the Nusselt number. In spite of these basic similariti.es, however, 
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the detailed temperature and velocity distributions vary substantially with 

changes in B, and these changes are accompanied by important variations in 

the capacity for longitudinal convective transport of heat. 

The most obvious variations in the core flow are those associated with 

the velocity profile. In Figure 3 we compare the normalized velocity profiles for 

the no-slip boundary condition, (y3/6 - y2/4 + y/12) and the free shear 

condition, (y3/6 - Sy2/16 + y/8). Also plotted is the linearly additive 

shear induced velocity component 2 (Jy /4 - y/2). Most significant 

are the variations in magnitude. Clearly, the free shear condition allows 

uniformly larger values of the horizontal velocity than does the no-slip 

condition. The normalized shear-induced velocity component is larger by an 

order of magnitude than even the corresponding free-shear component. Thus 

even for relatively small values of B, an imposed shear stress may have a 

significant influence on the circulation rate within the cavity. A compari­

son of equations (11) and (12) with equations (18) and (19) (with B = 0) 

reveals that the increased magnitude of the core velocity in the free surface 

problem, as compared to the no-slip problem, results in a smaller core 

temperature gradient (K1), and an enhanced capacity for longitudinal trans­

port of heat (Nu). In addition, the flow associated with a finite shear 

stress at the surface produces an additional correction to both K
1 

and Nu 

whose sign depends on the magnitude and sign of B. It is especially signi­

ficant that the convective contribution to Nu for the free surface case is 

approximately five times larger than the corresponding contribution for the 

no-slip problem, while the coefficients at O(B) and O(B2) are both larger 

than the 0(1) coefficient by approx:1.mately an order of · magnitude! Hence, 

even for small values of B, the convective transport of heat by Taylor 
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diffusion may be dominated by the shear induced component of the flow. 

The dependence of Nu on the shear parameter, B, is illustrated in Figure 

4, where the asymptotic solution for (Nu - A) is plotted as a function of 

Gr2Pr2A3 for various values of B. For comparison, the small A asymptote 

and the corresponding experimental data of Imberger [4] for the no-slip upper 

surface are also included. Three points are of special interest with regard 

to this figure. First, the asymptotic solution for (Nu - A) shows an 

2 2 3 absolute minimum for fixed Gr Pr A ,at B = 0.1458. Second, comparison of 

the numerical solutions, experimental data and the asymptotic solution for 

the no-slip case seems to indicate that the asymptotic solutions will provide 

. 3 5 2 2 a reasonable approximation of the exact behavior for A < 10 /Gr Pr . Thus, 

the degree of shallowness required for validity of the present theory (i.. e. 

the required value of A) decreases with decreasing Gr. Third, in the alter­

nate limit, Gr-+ 00 with A held fixed (though small) the experimental data 

for various values of A approach one of a set of straight lines with slope 

of 1/8. This large Gr behavior is consistent with the botmdary-layer 

analysis of Gill [11] which predicts (in terms of the ordinate of Figure 4) 

where c is a constant, independent of Gr, Pr and A. The numerical data of 

Quon [5] provide substantial evidence that the Nusselt number (and thus the 

constant, c) in this boundary layer limit is the same for either a no-slip or 

free shear upper surface, in distinct contrast to the behavior in the present 

shallow cavity limit. Presumably, this difference reflects the fundamentally 

different physical processes governing the two limiting cases. 
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S. ASYMPTOTIC VELOCITY AND TEMPERATURE FIELDS WITII ZERO SURFACE SHEAR 

STRESS AND SPECIFIED HEAT FLUX 

The discussion of section 4 is intended to strongly emphasize the 

similarity in flow structure for the three kinematic surface conditions. 

In particular, the parallel nature of the core flow, the linearity of the 

temperature profiles and the similar form of the functions K
1 

and Nu have 

been demonstrated. In contrast, the introduction of a heat flux at the top 

of the cavity can produce a fundamental change in the flow s tructure. For 

example, in the case of strong surface cooling, one would expect the 

slightly stable stratification that is produced in the insulated surface 

cases, to be destroyed. Ultimately, if the su~face cooling is much greater 

than the total rate at which heat would be transferred through the end walls 

in the absence of surface cooling, a strongly unstable stratification must 

result, necessitating a major change in flow structure. For example, under 

appropriate circumstances, such cooling may lead to a modified "Benard" 

convection. In the alternate instance of strong surface heating, the slightly 

stable stratification of the insulated case would be intensified, thus tending 

to restrict free (vertical) movement of the fluid and cause a form of block­

ing as the stably stratified fluid encounters the end walls. 

In considering these changes, it is convenient to associate the nonzero 

surface heat flux with a n2w length scale i', which is the distance required 

to transfer an amount of heat per unit time equal in magnitude to that 

exchanged at the end walls in the absence of surface heating. In general, 

it may be anticipated that, as an upper limit, the p3rallel flow structure 

discussed previously cannot be preserved over distances greater than i'. 

A comparison of i' with the physical length scale x, of the cavity thus 
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yields three limiting regimes, R.' << t, JI,' "' R, and i• >> JI, corresponding to 

the cases of large, moderate and small surface heat transfer. The case 

i' >> J/, is of only modest interest since it reduces, at first order, to 

the case of an insulated surface which we have previously considered. On 

the other hand, the case R,' << R, leads to velocity and temperature distribu­

tions quite unlike those observed in the usual estuary flows. Hence, in 

the present discussion, we limit our considerations to the case R,' "'R, 

where the contributions of surface and end wall heat transfer are comparable. 

a. Uniform Surface Heat Flux 

In this section we consider the special case of constant, uniform 

surface heat transfer and zero surface shear stress. Thus, in (5), we 

put T = 0 and f(T) c q (constant), where q is the magnitude of the out-
o 

wardly directed heat flux. In order that R,"' R.', as assumed, we require 

that the total heat flux per unit time through the upper surface of the 

cavity be of the same order of magnitude as the rate of heat exchange which 

would occur at the end walls in the absence of surface heating. Since the 

dimensionless heat flux through the end walls in the latter case is O(A) 

(see equation (12)), it thus follows that the dimensionless heat flux at 

the upper surface must be restricted to be of O(A2), i.e. 

(21) 

where 

Q qh 
- kA2 (T - T) 

U C 

is an arbitrary constant which is independent of A. 

With the heat flux through the surface constrained, the scaling argu­

ments that werl! outlined in section 3 are still r e levant and the c:ore 
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:emperature and velocity fields are 

1/J 
{ 

,.. 2 [ Q(l-2*) Qx + c1 + A PrGrQ 1920 

r y9 5 S 29Y7 6 5 5 3 
172576 - mu+ 161280 - ~+½a - 5.977 X 10- y 
L 

-5 2 y y _J__ -4 3 
( 

9 8 7 
+ 3,049 X 10 y + Pr 181440 - 32256 + 20160 - 1.740 x 10 y 

-4 2)~ + 1.498 x 10 y lj (22a) 

e 

(22b) 

As before, the coefficients of K1 and K2 were determined by matching 

with the relevant solutions in the end regions in a manner which proceeds as 

outlined in the Appendix. One important result is that the first order stream 

function in the end region is identical to the free-surface solution, t)., • 
0 

3 However, in order to obtain K1 and Nu correct to O(A ), it was necessary to 

obtain two new end region t emperature solutions in addition to thos e outlined 

in the Appendix; one at O(A2) which can be expressed analytically, and one 

at O(A3) which must be de t e rmined numerically. The result for K1t is 

t Note , c1 = 1 - Q/2. 
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g_ 2 [ Q2 _?_9_ ( i_ Q2 g_ ) -s] Ki 1 - 2 + PrGrA 1920 - 720 + PrGr 24 - 6 + 
2 

3.927 x 10 

As expected, equation (23) reduces to the insulated surface form, (equation 

(18) with B = 0), in the limit as Q + 0. However, for nonzero Q, K1 is 

changed substantially even at 0(1). In addition, there is a correction 

2 
to Ki at 0(A ), where previously there was no correction, as well as addi-

tional changes at 0(A3). Unfortunately, the complex dependence of K1 on Q 

prevents a more detailed comparison with previous results. 

In all of the cases considered previously, the Nusselt number, as de­

fined in section 3 has provided a direct measure of the flux of heat between 

the end walls of the cavity. In contrast, however, the introduction of a 

flux of heat through the top of the cavity leads to a horizontal flux of 

heat that is a function of horizontal position. Nevertheless, either the 

hot or cold end Nusselt number does provide a measure of the overall dis­

persive capacity of the cavity for heat (the choice depends on whether the 

"source" is located at the hot or cold end of the cavity) . The result in 

the cold end is 

and 

Nucold +QA. 
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Upon comparing Nucold and N¾ot with the Nusselt number for an insulated 

surface (equation (18) with B 0), it may be observed that the heat enters 

through the hot end at a rate (Q/2)A slower than it does for the insulated 

boundary case and leaves through the cold end at a rate (Q/2)A faster than 

previously. Hence the heat added through the upper surface is "discharged" 

equally by the two ends of the cavity . 

With the undetermined constants specified, it is possible to examine in 

detail the core streamfunction and temperature distributions. Notably the 

parallel flow structure that was so evident in the previous cases is no longer 

present. Even at first order in A, the streamlines are not parallel in the 

core 

More surprising, however, for JQJ > 2, the a :;ymptotic theory predicts that 

the first order stream function vanishes at 

When Q > 2, 1/J* is negative (clockwise circulation) for x < x and positive 
0 

(counterclockwise circulation) for x > x . On the other hand, when Q < -2, 
0 

the opposite situation exists with counterclockwise circulation for x < x o' 

and clockwise for x > x . This behavior of the first order velocity field, 
0 

is int imately coupled with the first order teiuper'lture distribution 

g ,.,.2 2 
S* = (1 - 2)x + Q; + O(A) 

A graphical comparison of the present temperature distribution and the previous 

insulated surface profile is shown in Figure 5 where the first ord er tempera­

ture profiles are plotted for :;elected values of the surface heat flux. 'The 
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positive values of Q represent surface cooling, hence the curves for Q > 0 

are shifted downward relative to the insulated surface curve (Q = 0), while 

the curves for Q < 0 are shifted upward. With sufficient cooling (or heating), 

temperatures smaller (larger) than the cold end (hot end) temperatures are 

encountered within the cavity (cf. the curve for Q = 4). In particular, 

for Q > 2, 0* has a negative gradient for x < x and a positive gradient 
0 

for x > x. The doubly circulating core flow encountered for !QI > 2 is a 
0 

result of this change in sign of the temperature gradient. Although this 

characteristic of the core flow is very interesting, it is clearly of 

limited relevance in the context of the estuary flows since such extreme 

surface cooling is unlikely to occur in the natural situation. Thus, it 

should be noted that if 

then, as indicated in Figure 5, the first order temperature and stream func­

tion profiles in the core are very similar to the insulated surface profiles, 

with the streamlines nearly parallel, and die horizontal temperature gradient 

practically constant. 

b. Heat Flux a Function of Surface Temperature 

The previous section dealt with a uniformly distributed surface heat 

flux. For an estuary this distribution of the heat flux is unrealistic since 

the net rate of heat exchange at any point on the surface is actually the 

sum of the rates at which heat is transferred by radiation, by evaporation, 

and by conduction between the water and the overlying air. Hence, the rate 

of heat transfer at each point on the surface must be specified as a function 

of the surface temperature as well as ambient variables such as wind speed, 

humidity and air temperature. Edinger, Dutt1,1eilcr and Geyer (14] demon­

strated that the net rate of heat transfer can be expressed most conveniently 
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in terms of an effective thermal exchange coefficient Kand an equilibrium 

temperature, T~ both of which depend on observable meteorological variables 

and change continuously in response to varying meteorological conditions. 

The interested reader is referred to Edinger et al. [14) for details con-

cerning the evaluation of Kand T 
e 

The net heat transfer rate becomes 

where T is the surface temperature. For our present purposes we take T 
s e 

equal to the cold end temperature so that the surface heat flux is a maximum 

at x = 1 and is a minimum (zero) at x = 0, and assume that the surface shear 

stress is zero. As in the previous example, we consider only the case in 

which the total surface heat transfer is constrained to be of the same 

magnitude (with respect to A) as that which would occur at the end walls 

with K = O. Hence, we consider the boundary condition 

where 

H - Kh 
==-2 

kA 

on y = 1 

is an arbitrary constant which is independent of A. 

(25) 

To obtain an asymptotic solution for the core region, which is valid in 

the limit A+ 0 with Gr, Pr and H held fixed, we utilized the scaling argu­

ments and formal expansion in A outlined previously. The core solution, 

after matching, is 

[
/iTCosh(v'Bx) + A2C'(x))F'(y) + 

sinh(v'B) 3 

9 
J_ 
72576 
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8 7 6 5 
- .2L_ 29y __ y_ __:t___ _ -5 3 -5 2 

64512 + 161280 4608 + 7680 5 • 98 X lO y + 3.05 X 10 Y 

( y
9 

y
8 -2__ -5 3 -4 2)} + Pr 181440 - 32256 + 20160 - 1 • 74 X l0 y + l. 50 X l0 y 

_ H3/2 cosh(liix) r L _ }C + /:_ _ _£_ + Lf~ + O(A3) (26a) 
ci h( ,..\ j 240 96 96 120 240 
- n rn, l JJ 

S = sinh vHx) + A2 I_ Hsinh(v'Ux) l__ + PrGrHcosh
2

(v'Ux) F(y) 

sinh ( vli) L sinh ( YR) 2 sinh 
2 

( Y1i) 

+ c,cx)] + O(A
3

) 

where 

= PrGrllcosh(2/Hx) _ 3.93xl0-
5
Pr

2
G/ {Hsinh(3vHx) 

sinh
2

(vH)5760 sinh3 (vif) 
32 

+ H " h( r.") · PrGrH 3/2 } 
-- XCOS lltiX -

8 640sinh
2

(1if) 

H
312

xcosh ( YHx) 

6sinh(,tU) 

(26b) 

+ sinh(vlix 

sinh( IH) 
H 5 Pr2Gr

2 
[nsinh(3vH) + H

312
cosh(vH)] -

6 
+ 3.93 X 10-

3 r.- 32 8 sinh ( 11t1) 

_ PrGrH + H cosh ( 1111) 3/2 r: } 
5.7 6 6sinh(.11) 

As a result of the matching, it was also shown that the streamfunction for 

the cold end region is 

(27) 
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while the hot end streamfunction is 

(28) 

where w
0 

is the same solution that was calculated for the zero shear case 

(Figure 2c). 

The behavior of the core solution in the limit as H-+ 0 is, of course, 

identical to the insulated surface case. An excellent indication of the 

influence of finite values of His provided by the first order core solu­

tion. To facilitate discussion, we r.ave plotted the first order temperature 

profile 

sinh(M2) 

sinh(M) 

in Figure 6 for selected values of H. In Figure 7 we show 

liicosh(Mx) 

sinh(M) 

(as an indication of the core streamfunction magnitude), for the same values 

of H. Because the surface heat flux is proportional to the difference between 

surface temperature and T, a larger portion of the temperature drop occurs 
C 

near the hot end of the cavity as H increases, thus causing increased 

temperature gradients in the hot end and decreased gradients in the cold 

end. These changes in the temperature profile are also reflected by the 

distribution of streamfunction in Figure 7. The increased temperature 

gradient in the hot end increases the driving force for the core flow so 

that the streamfunction increases as H increases. The converse is true for 

the cold end. For the extreme case plotted, H = 100, w is essentially zero 

for x < . 5 . This tendency for w to approach zero at some distance far from 

the hot end wall hints of a limiting form of the solution as H-+ 00 , in which A 
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is no longer a relevant parameter. Since the flow field does not occupy the 

entire cavity, it must be unaware of the cold end wall and hence inde-

-1 
pendent of the dimensionless cavity length, A • In this sense, the flow 

behaves, for H-+ 00 , as if the cavity were "semi-infinite". Figures 6 and 7 

imply that the transition from "finite" to "semi-infinite" cavity occurs at 

H "' 1:0. 

Upon applying the limit H ➔ 00 to the core solution (26), we obtain a 

limiting form which is independent of A as previously anticipated, 

~!:;, ;jf[{•-t + c2[ 2p;;~;-2
t - J.68 x 10-6Pr2Gr 2,-Jt + t •~~ 

+ .-~(1.23 x 1D-
6Pr2Gr2 

- p;:~il}•·c,> + c2{,-2tGr[,!:,. 

5y 8 29/ 6 S 4 3 5 2 
- 64512 + 161280 - 4~08 + ½a - 5.98 X 10- y + 3.05 X 10- y 

y y y 
( 

9 8 7 

+ Pr 181440 :-- 32256 + 20160 - 1. 74 

+ O(E)~ (29a) 

(29b) 
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in which 

For convenience, we have used the independent variable~ which measures the 

horizontal distance into the cavity from the hot end, scaled with respect 

to h. 

In view of the expressions (27) - (29), it is apparent that the appro­

priate velocity and length scales in the limit H + 00 are 

0 (T T )h 3 

u = o(~ µg h V c ) 

and (JO) 

The latter is the length scale characterizing the rat::? of heat transfer 

through the cavity surface. This spontaneous appP.;ir;mce of a new length 

scale provides an excellent opportunity to enlarge on the previous discus­

sion relating the horizontal length scale of the corQ flow to the rate of 

surface cooling. To this end, Figure 8 shows the fully matched first order 

streamfunction profiles for the semi-infinite cavity (H + 00 ) at two values 

of c. It is clear from these figures that as the heat tra nsfer ra,e (£
2

) 

increases, the horizontal extent of the core flow is decreased proportionntcly. 

An examination of the semi-infinite cavity solution (equati,,ns 29) 

indicates that to ensure convergence, we must have c << 1. This in turn 

suggests that a necessary condition for the validity of the analy s is leading 

to the general solutions (26) is 

A « 1 

and 
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To determine if the second inequality will be satisfied under realistic 

Kh 
conditions, it is useful to estimate the magnitude of k- Field measure-

ments indicate that, for an ambient wind speed of from l to 5 m/sec, K 

-4 -3 2 -1 
varies between about 2.5 x 10 and 5.0 x 10 cal(c 0 cm sec) . Furthermore, 

since estuary flows are invariably turbulent, we estir".ate the effective 

t thermal diffusivity to be of the order u*h (~ f l"i scr 0 !" (12]), l•)here u* is 

the "slip velocity" and is about 1 cm/sec for horizontal'flui<l velocities of 

about 10 cm/sec. (The precise magnitude of the horizontal velocity will 

depend on Gr, Pr, A and H.) Hence, 

for typical estuary flows. 

The heat transfer characteristics for the present surface boundary 

condition are quite different from the insulated surface case. Once again, 

because heat is removed through the surface of the cavity, the horizontal 

heat flux is a function of horizontal position. The Nusselt numbl!r is 

therefore a m.:1ximum at the hot end 

Av1lcoth(v1!) + A3 IPrGrH3/2 [cot~if) + _sJ_ .. n_h~(_2_vH~)_) -L 2880sinh(/t!) 

8
3/2 

-
6
- coth(M) 

-5 Pr
2
c,

2 
( H

2 
{ ! - 3.927 x 10 ---

3 8 sinh(,tH) - hcoth(/ll) 3~ sinh(3YH) 
sinh ( i/H) 

H3/2 } 3ll3 /2 
+ -

8
- cosh(M) + -~ cosh(3,1!) 

t 
Here we have assumed that the turbulent PrundtJ. number is 'v 1. 
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+ PrGrHJ/Z{l.309 x l0-5PrGrcoth3(;ft) - 1.74 x l0-3coth(;fi) }] 

+ 0(A
4

) (31) 

and is a minimum at the cold end 

Pr Gr (l.309xl0 ) - 1.227 x 10-6 ---- sinh(3/H) 2 2 -5 Pr2Gr2 ) 

sinh
2

(/H) sinh3 (/H) 

+ 4.91 x 10- ---1
- cosh(..fI) + H cot vil + 0(A) 6 Pr

2
Gr

2
1•

2 2 h( ,(';) ] 4 

sinh
4

(/H) 6sinh(iH) 
(32) 

In the limit as H + 0, these expressions for Nu reduce to that found for 

the insulateJ free-shear surface. unfortunately , the complexity o[ e..<pres­

sions (31) and (32) precludes a detailed comparison with Nusselt numbers 

for the previous cases. 
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Appendix A: Detailed Matching of End and Core Solutions 

for the Free Surface Problem 

To demonstrate the matching procedure used in the paper, we consider 

the simplest case, that of an insulating, free surface (T = 0) at the top 
0 

of the cavity. Subject to the assumption that the surface is flat, boundary 

conditions (5) become 

a2 1)1 ae 
lj,• = ~ =- - • 0 on y = 1 ay ay (A-1) 

The problem is otherwise the same as that outlined in Section 3, and the 

horizontal scaling arguments renain valid. Thus, the core solution consis­

tent with the conditions (A-1) may easily be shown to be 

(A-2) 

(A-3) 

Both~ and K
2 

are polynomials in A, with coefficients which must be deter­

mined by matching (A-2) and (A-3) with solutions which are valid in the ends 

of the cavity. For the no-slip surface, the centro-symmetry property of the 

equations and boundary conditions allowed K
2 

to be eliminated in favor of K
1

, 

so that the matching had to be carried out explicitly only in the cold end 

of the cavity. In the present example, and, indeed, in all of the problems 

considered in the present work, this simplification is not possible so that 

it is necessary, in principle, to carry out the detailed matching explicitly 

in both ends of the cavity. As we shall see, however, certain symmetry re­

lationships are still useful in simplifying the problem. 

In the cold end, the original equations (1), (2) and (3) must be 

solved, subject to the boundary conditions (4) and (A-1) for y = 0, 1 and 

x =- 0, so that they match with the core solution according to 

(A-4) 
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lim 
8 

x-+<'0 
(c

1 
+ Ac

2 
+ ... )x + (c

1 
+ Ac

2 
+ ... ) 2 CrPrA 2 F(y) 

+ (ci + Ac2 + ... ) 

- L Sy" x..: 
F(y) - 120 - 192 + 48 

and the prime in F'(y) denotes differentiation with res pec t toy. 

(A-5) 

In the hot end of the cavity, it is convenient to express th e equations 

and matching conditions in terms of the transformed variables 

E; (A- 1 - x) 

T) = (1 - y) 

$ = 1 - e 

so that the form of the equations remains unchanged 

GrA2 3(11,':!'.2.. = AV2Q + at 
a(E;,n) aE; 

v2'!' = -n 

P GA 3($,'l') _,..,2"' 
r r d(E;,n) V"' 

but the boundary conditions become 

'I'=~~=~= 0 on E; = 0 

a'!' a~ '!'=an =an= 0 on n = 1 

a2 '!' ao-
'I' = anZ" = ar, = 0 on 17 = 0 

{A-6) 

(A-7) 

(A-8) 

(A-9) 

Here, 'I' and n denote the stream function and vorticity in the hot end. The 

transformed matching conditions are 

+ (C ' + •c' + ) 1 " 2 • • • • 
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A solution jn each of the hot and cold ends can be obtained as a 

regular expansion in A, i.e. 

0 (cold) 

(hot) 

We have listed the appropriate equations and matching conditions at each 

order in A in table 1. 

To initiate the solution of these equations, we note that the tempera­

ture functions 0 and & are both identically zero, so that to satisfy the 
0 0 

matching constraints (C - 1) and (H - 1) it follows that 

c' 0 
l 

Because 0 is zero, equation (C - 3) reduces to V2 0 
o l 0 and can be solved 

independently from (C - 2) to yield 

with the corresponding result from the matching condition (C - 5) 

c' = O. 
2 

Similarly, in the hot end, 

and the condition (H - 5) yields 

C = 0 
2 

In light of these results, equations (C - 2) and (TI - 2) may now be solved to 

yield the 0(1) contributions to the flow field in the hot and cold end. Sub­

stituting the solutions for 0
1 

and «)l into these equations, we obtaln for 

the cold end 

1 (A- 1O) 
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with matching condition 

lim ,,, -+- FI ( ) 
x~ "'o Y ' 

and for the hot end 

with 

From these equations, it is clear that the hot end stream function, 'I', can 
0 

be expressed in terms of the cold end distribution by 

1j, (a,y) = 'I' (a,1 - y). 
0 0 

It is therefore necessary to obtain only one of the hot or cold end solutions 

at this level of approxim~tion. We consider the function ~o in the cold end. 

We have shown in I that it is possible to obt~in an analytical solu­

tion for 1j,. However, the resulting solution is extremely cumbersome and 
0 

becomes completely unwieldy for evaluating higher order solutions. On the 

other hand, numerical solution of equation (A-10) with appropriate boundary 

conditions is relatively straightforward and for the presen t purposes is 

sufficient. In order to obtain this solution, the equat ion (A-10) was ap proxi­

mated by a central difference representation on a geometrically expan<ling grid 

of 21 points in the x-direction and a uniform grid of 21 points in they­

direction and solved using an explicit Gauss-Seidel iterative scheme. Details 

of the calculation may be obtained from I. 

are presented in Figure (2c). 

The rE>sulting streamlines of 1/J 
0 

We turn now to consider the solution at O(A2
) for 0. Taking the pre­

ceding results into account, the governing equation (C - S) in the cold end 

becomes 



with the matching condition 

lim 6 = GrPrF(y) + c
3
•. 

x-- 2 
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(A-11) 

The matching at this order in A can be accomplished most effectively by con­

sidering the integral of equation (A-11) over the depth of the cavity. Carry-

ing out this integration, we obtain the ordinary differential equation for 

H(x) = fe 2 dy 
w 

with the integrated boundary conditions 

H = 0 on x"' 0 

lim fl H = GrPr F(y)dy + c' 
x-+oo 0 3 

(A-12) 

(A-13a) 

(A-13b) 

The only solution of equation (A-12) consistent with the conditions (A-13) is 

the trivial solution 

H = 0 

for all x. Hence, it follows that 

J
l GrPr 

c3 = - GrPr
0 

F(y)dy = - 720 

A similar integral analysis of equation (H - 5) indicates that 

C = Q 
3 

In order to carry the asymptotic solution to higher orders in A, it 

is necessary to determine the detailed distribution of e2 in the end region. 

This was done using the same numerical procedure and grid spacing as de­

scribed previously for~ • It may also appear that an independent numerical 
0 

solution must be obtained for &2: however, this is not the case. Rather, 

by considering the relationship between ljJ_ and 'l' and the relationship be-
o 0 

tween the bou1~ury conditions on 02 and t 2 , lt is possible to show thnt 
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Finally, it would now be possible to obtain a numerical solution for 

ij,
1

• However, our main interest in continuing the expansion to higher order 

in A is to obtain the first nontrivial corrections to K
1 

and Nu. For this 

purpose, it is sufficient to note that w1 must satisfy the condition 

The first nonzero correction to K1 comes from the coefficient c4 (note 

0). To obtain c 4, we must consider the problem (C - 7) and (C - 9) 

for 0
3

. This equation, plus matching condition, is simplified by our pre­

ceding results to 

V2 8 "' PrGr I clij,1 t a (Sz,lj,a) ) 
3 \ cly cl(x,y) (A-14) 

with 

lim 8 = c' 
x--- 3 4• 

Utilizing the linearity of this problem, we can conveniently consider 8
3 

and 

c4 as consisting of two parts 

and 

where 

with 

and 

63 = 83 + 03 

c, = c' + c' 4 4 4 

v2e 
3 

PrGr ~ 
cly 

lim -
= c' 8 

x-+o:> 3 4 

V20 a (O tjJ > PrCr ~.!...:!'..O.L. 
3 a (x,y) 

(A-15) 

(A-16) 



with 

lime ,. c' 
x-+<>o 3 4 
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A consideration of the integral of equation (A-15) across the depth of the 

cavity yields the result 

for all x, so that 

c' = o 4 

On the other hand, such an integral analysis of equation (A-16) yields no 

information concerning c4. Instead, c4 must be determined by numerically 

solving equation (A-16) subject to the boundary condition (see I) 

lim a~3 = 0 
x:-+oo ax 

This procedure yields both the unique solution for 8
3

, and the numerical 

value 

In the same manner that the relationship between 8
2 

and G
2 

was deduced 

previously, it is also possible to show that 

In particular, therefore, the matching condition for @
3 

requires 

C = - 2c' 
4 4 

This completes the soluti.on to the desired level of approximation. 



0(1) ~o 
ax = 0 

17290 = 0 

Table 1: End Region Equations and Matching Conditions for, = 0 
0 

Cold End 

lim 
x._6 0 = c,> . (C-1) 

0(1) .£!o ,H; "' 0 

172&0 = 0 

Hot End ----

lim 
f.;._&o 1 -C1 - C1> (H-1) 

O(A) 174'.jio = ~ (C-2) O(A) V4'.jio = :;l (H-2) 

v2e = PrGr a(eo,1/i o) (C-3) v2e "'PrGra(eo,'l'o) (H-3) 
l a(x,y) l cl(f.;,n) 

lirai/Jo = c 1F' (y) (C-4) I ;i~o = C1F' (1-n) (H-4) 
x-- .. --

limel = C1x + C2> (C-5) I ;im~l = C1f.; - C2 - C2> (H-5) 
x-- .. --

O(A2 ) <;> 4 1 = ~ - Gr a ( wo , 1.'; o) 
~l ax cl(x,y) 

(C-6) O(A2 ) 174y = 2-!2 - G cl(Ja,'l'n ) 
1 elf.; r a(f.;,n) (H-6) 

17 2e = PrGr ( a (e1 , 1/ia) + a~ea ,1/i1)) 
2 a(x ,y) o (x,y) 

(C-7) 17 2e = PrGr ( a(e1 ,'l'o) + a(ta,'!'1)) 
2 a(c;.n) il(Cn) 

(H-7) 

(X) 
CJ\ 



Table 1: (continued) 

lim 1 x-+<x>Vil = C2F (y) (C-8) 

lim 2 x--62 = C2x + C1GrPrF(y) + c3' (C-9) 

O(A3) 'v41iJ = ~3 - Gr ( a(wp,1/lj) + a(w1 ,l/lo))(C-10) 2 ax \ 3(x,y) a(x,y) 

17 29 3 = ?rGr ( cl(61 , t!1 1) + 3( 62,i!io) + 
a(x,y) a(x,y) 

3~)) 
a(x,y) (C-11) 

l:;_;;i I - C F" ) I 
x-+<x> ',J 2 - 3 'S (C-12) j 

lime3 = c 3x + 2C 1C2GrPrF(y) + C4' -- (C-13) I 

O(A3) 

1~1 a c2F1 (l-n) 
1;--

(H-8) 

;!:~2 = C21; - CtGrPrF(l-n) - C3' - C3 (H-9) 
~ 

v'+'I' = aG3 - Gr ( a(no,'1'1) + a(n1 ,'l'a)) (H-10) 2 a1; a(1;,n) a(1;,n) 

v2$ • PrGr ( a(G1 ,'i'1) + a(i&,,'i'o) + 
3 a(1;,n) a(i;,n) 

+l~) 3 (I;, n) (H-11) 

~~2 = C3F 1 (l-n) (H-12) 

lb , 
/;-+<x>$3 = C3/; - C4 - 2C1C2GrPrF(l-n) - C4 (H-13) 

00 
--.J 
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Appendix B: Details of the Numerical Methods; Supplementary 

Notes for Editor's File 

FINITE DIFFERENCE EQUATIONS 

After the spatial derivatives have been replaced with two-point central 

differences and the time derivatives replaced by forward differences, the 

finite difference equations become 

{
en+l - en l 

GrprA- i,j i,j + X'Y'J (Sn ,,,n) CB en C en + D e0 

M i j i,j •'+' _ i i+l,j - i i,j i i-1. 1 

The coefficients B1, Ci, Di, Ej, Fj and Gj and the Jacobian, Ji,j(w,ljJ) depend 

on the particular scheme used to introduce the graded mesh. If we represent 

a general nonlinear transformation by the functional form 

X = X(x) and Y = Y(y) 

with first and second derivatives denoted by single and double primes res­

pectively, the coefficients B through G may be expressed in the form 

(S-1) 

(S-2) 

(S-3) 
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(Y' )2 Y'.' 
Gj = J - -1. t:,.y t:,.y 

The corresponding expression for the Jacobian is 

Y'.X'. 
J l. 

12!:,.XfiY Hi,j 

where 

Alternatively, when the arbitrarily discretized mesh is used in the 

horizontal direction (A :5_ 0.2), the coefficients Bi' Ci and Di become 

2 B = ...,.---:-.,.------:-----:--
i l:,.xi(!:,.xi + l:,.xi-1) 

C = 2 (-1- + _1_) / (!:,.xi + !:,.xi-1) 
1 !:,.xi l:,.xi-1 
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and the Jacobian is 
Y' 

The appropriate boundary condition to be imposed on w at the lower 

boundary of the cavity is 

wi,l =- !J (Bwi,2 - Wi,3) + 0(6Y)2 (S-4) 

Similar expressions may be derived for the vorticity on the other solid 

boundaries and for the temperature on the insulated surfaces by the method 

outlined in the paper. 

II. NUMERICAL ALGORITHM 

A typical iteration (n+l) was carried out as follows: 

1. With known values of Wn, wn and en at time step n, equation (S-1) 

2. 

3. 

4. 

was integrated ahead in time by one complete time step (two half 

n+l time steps) to give e • 

n+l 8 was calculated on the upper and lower boundaries from the 

finite difference approximation of the insulating boundary 

condition. 

Equation (S-2) was integrated for 1/2 time step using 8n+l, 

and wn to give n+l/2 w . 

wn+l/2 was determined by means of an A.D. I. iteration using 

wn 

an 

"over relaxation" factor of 1. 5. This iteration was continued 

until equation (S-3) was satisfied at all grid points to within 

a prespecified error. 

5. wn+l/Z was used to evaluat~ wn+l/ 2 on the boundaries using equa­

tion (S-4) and its counterpart on the remaining boundaries. 

6. Equation (S-2) was integrated for another 1/2 time st ep using en+l, 

,,p+l/2 d n+l/2 i n+l 
o/ an w tog ve w . 
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7. ~n+l was determined as in 4. 

8. wn+l was evaluated on the boundaries from ~n+l. 

~- Steps 1) to 8) were repeated until further iteration no longer 
changed the solution. 
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Appendix C: Finite-Difference Grids Used in the Numerical Calculations 

The grid spacings used in the numerical solution of the full 

Navier-Stokes equations are given in table C-1, for the cold half of 

the cavity. The grid in the hot end is simply a mirror reflection 

(about the center of the cavity) of that in the cold end. 

was 

where 

and 

The horizontal _grid spacing used for the asymptotic solutions 

/J.x. = C for j -J 

/J.x. = C a, 
j-3 

for 
J 

20 
c = 3.0/(3 + l 

j=4 

a,= 1.2 

1, 2, 3 

j > 3 

j-3 
a. ) 
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Cable C-1: Horizontal Grid Spacing for Full Numerical Solutions 

6.x. x295. OxA 
1. 

Case III IV, VI, VII, VIII, V 

j = 1 0,933 0.470 I 0.2764 

2 0,933 0.470 0. 2764 

3 0.933 0.470 0.2764 

4 2.800 1.290 0,3582 

5 2,800 1. 290 0.3966 

6 2,800 1.290 0 .4000 

7 2.800 1.290 0.5000 

8 2.800 1.290 0.6000 

9 2.800 1.290 0.7000 

10 2.800 1. 290 0.8000 

11 2.800 1.290 0.9000 

12 2.800 1.290 l.00U 

13 3.100 2.970 1.168 

14 8.400 9.830 1. 757 

15 13.50 15.21 3.000 

16 13.50 15.21 4. 771 

17 13.50 15.21 5.000 

18 13.50 15.21 5,000 

19 13.50 15.21 8.000 

20 13.50 15.21 14.04 

21 13.50 15.21 14.04 

22 13.50 15.21 14.04 

j=23 ... 27 14.04 
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Part II: STUDIES OF A PHENOMENOLOGICAL TURBULENCE MODEL 
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1. INTRODUCTION 

Although useful qualitative information can be deduced about flows 

of geophysical significance by examination of an analogous laminar 

flow, quantitative information can result only if their turbulent 

character is properly taken into account. In this respect, the devel­

opment of a realistic model to describe the turbulent transport of 

momentum, heat and mass is basic to the study of geophysical fluid 

mechanics. Such a model must be sufficiently complex that it can yield 

a realistic representation of the time averaged flow, but at the same 

time, simple enough so that computation times are realistic. This 

latter consideration is particularly important for numerical simulation 

of meso-scale, three-dimensional atmospheric and estuarine flows. 

A. Models for Com£utation of Turbulent Flows 

i. Direct Solution of the Navier-Stokes Equations 

The primary concern in computing turbulent flow fields is to model 

the mechanism of turbulent transport in a manner that is sufficiently 

complex to yield realistic representations of the time-averaged flow, 

while at the same time to maintain computational feasibility. Although 

the full equations of motion, continuity and energy do provide a com­

plete representation of the system for both laminar and turbulent flows, 

direct numerical (finite-difference) solution of these equations in the 

turbulent case is not practical at the present time (or for the fore­

seeable future). The difficulty is that the large scale disturbance 

flow contains most of the turbulent kinetic energy and is primarily 
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responsible for the enhanced diffusivity for momentum, heat, and 

molecular species, while the small scale structure provides essentially 

all of the energy dissipation. Hence, in order to achieve a satisfac­

tory representation of the flow, it is necessary to resolve fluctua­

tions in the dependent variables over length scales ranging from the 

macroscopic scale of the overall geometry, to the Kolmogoroff scale, 

(v3 /E) 114 , characteristic of the dissipative eddies. The ratio of 

these scales varie8 as Re-314 , where Re is the Reynolds number based 

on the macroscopic length scale. Emmons (1970) has suggested that 

computation times of the order of one hundred (100) years would be 

required for a problem of even modest complexity using present day 

computers. 

Using a slightly different numerical approach (which still amounts 

to solving the unaveraged Navier-Stokes equations directly), Orszag 

(1969, 1971a h, 1972) has demonstrated the computational feasibility 

of obtaining exact individual realizations of simple homogeneous 

turbulent flows by numerically solving the Navier-Stokes equations in 

a truncated wave number space. Such solutions are made possible by the 

fast Fourier transform but even with this innovation computation times 

are still substantial. Orszag himself points out that there are two 

basic motivations to pursue approximate turbulence models (which seek 

to quantify the turbulent transport properties without resolving the 

dissipative scales of the flow). 

i. A satisfactory turbulence model implies a much deeper 

understanding of the physical processes involved than brute-force 
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computation could ever provide. 

ii. The quantities of turbulence models are calculated as 

st atisticall y averaged variables, whereas, the individual realizations 

of a direct calculation contain a random component and hence can 

provide useful information concerning the average flow characteristics 

only after many realizations (which constitute an ensemble) have been 

averaged, 

Even in light of these significant advantages of approximate 

turbulence models, exact spectral solutions of the Navier-Stokes 

equations can yield important insight into the mechanisms of turbulence 

transport. In particular, full numerical solutions of this type can 

provide detailed quantitative information, which is difficult or even 

impossible to obtain experimentally using current techniques, but 

which is invaluable for the development and assessment of phenomenolog­

ical, turbulent transport models. 

ii. Approximate Turbulence Models which Employ the Mean 

Equations of Motion 

As an alternative to solving the Navier-Stokes equations 

in a 'brute-force' manner, and subsequently averaging an ensemble of 

such solutions to obtain the mean flow characteristics, one can deal di-

rectlywith the equations which describe the aver age velocity and tempera­

ture field, U. and 0 . If turbulent fluctuations from the mean profiles 
1 

are denoted by lower case symbols then, subject to the Boussinesq 

approximation, the averaged equations of motion in index notation are 
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3t j ax. Cpp ax. 3xj ax. 

J J J 
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1. 

ax. 
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J 

J 

u.u. ) + 
1. J 

(1) 

(2) 

0 is an arbitrary reference temperature and P, u, 8, g, Cp and 
0 

Kare, respectively, the pressure, kinematic viscosity, coefficient of 

thermal expansion, heat capacity and thennal conductivity. The 

overbar is used to denote ensemble averages of the indicated random 

quantity. 

As they stand, equations (1) and (2) are not closed since u.u. 
l. J 

and u.0 are additional unknowns. Renee, in addition to the usual 
J 

numerical difficulties associated with the nonlinearity of these 

equations, the primary modeling problem is to develop adequate closure 

approximations for the turbulent momentum and energy flux terms and 

thereby render the equations solvable. 

Although no rigorous method of closure has yet been developed, a 

number of semiempirical approximations have been proposed, the simplest 

of which can yield only qualitative results for restricted classes of 

flows, and the most sophisticated of which show promise of being 

universally applicable. Arranged in the order of increasing complexity, 

these techniques fall into three general categories: 



99 

i) mean velocity field techniques (MVF) which attempt to 

express the turbulent fluxes in terms of the mean velocity and local 

geometric quantities, 

ii) mean turbulent energy closure methods (MTE) which 

employ one or two additional transport equations (usually based on the 

conservation of turbulence energy) to aid in modeling the turbulent 

fluxes, and 

iii) mean Reynolds stress closure techniques (MRS) which 

include an additional differential equation for each component of 

u.u. and u.8. 
J. J J 

a. Mean Velocity Field Techniques. 

The simplest closure approximation dating to 

Boussinesq (1903), relates the Reynolds stresses and turbulent heat 

fluxes to the gradients of the mean velocity and temperature in the 

manner 

u.u. 
J. J 

u.e = 
J 

(3) 

(4) 

The quantities¾ and~ are "eddy diffusion" coefficients for heat 

and momentum., which are assumed to be functions only of local flow and 

geometric variables. Although appealing because of . their simplicity, 

the applicability of such gradient transport or eddy diffusion models is 

extrem.ely limited. One fundamental deficiency lies in the implicit 
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assumption that the momentum and heat fluxes depend linearly on the 

average, instantaneous gradient of mean velocity and temperature with 

the principal axes of the Reynolds stress tensor and the bulk rate of 

strain tensor aligned. Experimental data indicate that such alignment 

is not the case in general. In addition, the formulae (3) and (4) 

suffer from the limitation that they are local theories, and as such, 

cannot account for the flow's memory of its past history or for the 

awareness of the local turbulence structure to nearby turbulence 

conditions. To account for memory and awareness a successful model must 

provide for the convection and diffusion of turbulence properties. 

The effects of convection and diffusion are unimportant only for 

equilibrium or near equilibrium flows (i.e. for flows in which the local 

rate of turbulence energy production balances the local rate of turbulence 

energy dissipation). For example when variations in either space or 

time of the bulk flow are slow or nonexistent, advection and diffusion 

are negligible, and the eddy diffusion models are effective. In contrast 

however, many features of non-equilibrium flows cannot even be quali­

tatively predicted by simple gradient transport models. In many flows, 

the point of zero turbulent momentum flux does not correspond to the 

point of zero bulk velocity gradient as equation (3) would predict 

(c.f. the experimental results of Hanjalic and Launder (1972a) for flow 

in an asymmetric channel as well as the more recent works of Irwin (1973) 

and Wilson (1974) on wall-jets). Similarly, under certain circumstances, 

the phenomenon of counter-gradient heat transfer has been observed in 

the atmosphere (Deardorff (1966), Deissler (1968)) which would imply a 
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negative eddy diffusivity for heat. 

Thermal stratification, present in most atmospheric flows, consid­

erably complicates the dynamics of the turbulence since the associated 

gradients of potential energy can produce or dissipate turbulent 

kinetic energy, and will similarly suppress or enhance the transport of 

momentum and heat. To accommodate the possibility of thermal stratifi­

cation in a boundary- or surface-layer, equations (3) and (4) are often 

formulated in the form of a dimensionless wind shear, ¢M' and heat flux, 

¢H (c.f. Blom and Wartena (1969), Taylor (1969, 1970, 1971), Onishi and 

Estoque (1968) and Nickerson (1968)) 

and 

pCp 
--1 

(8v ) ~ 

au 
ay 

ae ky­ay 

(5) 

(6) 

where k is van Karman's constant and y is the coordinate normal to the 

surface. Monin and Obukhov (1954) showed that, in theory, when the flow 

is in a state of equilibrium, ¢Mand ¢Hare universal functions of y/L 

where Lis the Monin-Obukhov length scale. Experimental measurements 

in the laboratory and in the atmosphere verify this universality (c.f. 

Businger, Wyngaard, Izumi and Bradley (1971) or Manin and Yaglom (1971)). 

It must be emphasized, however, that equations (5) and (6) are. valid 

only for equilibriwn flows. There is no justification to assume (as 

Taylor (1969, 1970, 1971) and Onishi and Estoque (1968) have done.) that 
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these expressions are valid under non-equilibrium conditions. In fact 

as Peterson (1969a) points out, there is substantial evidence to the 

contrary. 

The primary features of interest for the calculation of micro­

mesoscale dispersion in the atmosphere involve continuous changes in 

boundary conditions (for instance, changes in surface roughness and 

surface heat flux as an air flow passes through an urban environment) 

to which the turbulent flow field must adjust by means of the very 

transport processes which the simple gradient transport theories overlook. 

Renee, the local theories and similarity arguments which have been 

commonly used for essentially unchanging flows are unacceptable for the 

class of problems which characterize mesoscale atmospheric dynamics. 

b. Sub-grid Scale Gradient Diffusion Models 

Lilly (1967), Deardorff (1970a, b, 1972) and others 

have developed a numerically based model which is essentially a 

compromise between the purely local theories of turbulence transport and 

the brute-force computation method discussed in section l.A.i. This 

approach is based on the application of a grid-scale averaging operator 

to the governing Navier-Stokes equations (with the averaging performed 

over the grid volume of the calculations, rather than over an ensemble of 

flows) to filter out the sub-grid scale (SGS) motions. The filtered 

variables may be computed explicitly after assumptions .are made for the 

SGS Reynolds stresses and energy fluxes, which arise from the averaging 

process. The larger scale eddies are included directly, without 

approximation, in the computation and the empirical assumptions are thus 

limited to the smaller scale motions of the flow. Smagorinsky et al. 
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(1965), Lilly (1967) and Deardorff (1970a, b) have proposed forms 

for the SGS Reynolds stresses which suffer from the disadvantage that 

they too are local in nature. However, the approximation so introduced 

appears to be less severe than that introduced by the pure gradient­

diffusion models since it involves only the smallest scales of the 

turbulent flow. An advantage of this approach is that certain proba­

bility functions which are useful for turbulent mixing calculations, 

can be determined directly from the numerical solutions (Lamb, 1971, 

1974). On the other hand, the local nature of the turbulent transport 

mechanism at the small scale of the energy spectrum, the necessity to 

calculate the time averaged flow field from an ensemble of solutions, 

the inability to simulate stably stratified flows, and the necess~ty to 

use a very fine computation mesh lying within the inertial subrange, 

are major disadvantages of this approach. 

c. Mean Turbulent Energy Transport Models 

To take into consideration the effects of past 

· history and the surrounding field on the local turbulence characteris­

tics, numerous models, based on transport equations, have been 

constructed to describe the spatial and temporal variations of 

turbulence properties. The first widely used turbulent boundary layer 

prediction method of this type was developed by Bradshaw, Ferris and 

Atwell (1967). In this model a differential equation, relating the 

transport, production and dissipation of turbulence energy was used to 

determine the turbulent momentum flux. The basic hypothesis :Ls that 

the ability of a turbulent flow to transport momentum and heat is 
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strongly correlated with the general level of activity of the turbulence 

and hence is also correlated with the magnitude of the fluctuating 

portion of the turbulent velocity field. The actual relationship 

2 between the turbulence energy (per unit mass), ½q =½~,and the 
J. J. 

Reynolds stress, uiuj, used by Bradshaw et al. was the structure 

assumption, 

where the C .. are experimentally determined constants that depend on 
1..J 

the type of strain encountered by the flow. 

Nee and Kovasznay(1968) also proposed a turbulence model which 

entails the solution of one differential equation (in addition to the 

Navier-Stokes equations) with the effective eddy viscosity,~' as 

dependent variable. Whereas the model of Bradshaw et al. (1967) is 

based on the approximate closure of the exact turbulence energy 

equation, that of Nee and Kovasznay is constructed on simple heuristic 

grounds. Reynolds (1970) presented arguments in favor of,and against 

each of the above approaches; on balance, neither is to be preferred 

above the other. Both of these one-equation models have in common the 

major disadvantage that they employ a turbulence length scale, t, 

cl~aracteristic of the energy containing eddies, that must be specified 

as a ZoaaZ algebraic function of position. Once again, the effects of 

advection and diffusion of the length scale will certainly be important 

in highly non-equilibrium flows. In many instances, in fact, as 

Hanjalic and Launder (1972b) have pointed out, if one neglects the 
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advection and diffusion of the length scale, one might as well use 

Prandtl's mixing length hypothesis. 

In an attempt to overcome the length scale limitation, and thereby 

develop a model of more universal applicability, Harlow and Nakayama 

(1967), Rodi and Spalding (1970) and Jones and Launder (1972) have 

introduced a second transport equation from which the length scale may 

be determined. Closure is accomplished by specifying the effective eddy 

viscosity in equation (3) through the Prandtl-Kolmogoroff relationship 

Rodi and Spalding retain the turbulent energy-length scale product as 

their second dependent variable, while Harlow and Nakayama, and Jones 

and Launder employ the energy dissipation rate, which at high turbulence 

Reynolds numbers (Re
0

>> l, where Re = .2.) is generally acknowledged 
~ R, V 

to be related to q and tin the manner 

The constant of proportionality must be determined by experiment. 

For a number of flows, the two-equation models have proven 

acceptable where one-equation and mixing length models have previously 

failed. For example, Rodi and Spalding predicted the rate of spread 

of a plane mixing-layer, a plane jet and a radial jet reasonably well. 

Unfortunately different values of one adjustable parameter had to be used 

for each jet. With similar accuracy, Jones and Launder predicted one 

class of wall boundary-layer flows, in which streamwise accelerations 

cause a partial reversion of the flow toward the laminar condition. 
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However, even with these apparent successes, the non-universal nature 

of the models, and the implicit assumption of alignment of the 

principal axes of the bulk rate of strain tensor and the Reynolds stress 

tensor limits the applicability of the two equation models. For highly 

non-equilibrium flows, a higher order closure approximation is required. 

d. Mean Reynolds Stress Transport Models 

Models which have the potential to achieve a 

sufficient degree of approximation for the geophysical applications 

alluded to previously are those which provide a transport equation for 

each Reynolds stress component, in the manner originally proposed by 

Chou (1945). Such models are based on the approximate closure of the 

exact equation for the Reynolds stress tensor, which can easily be 

derived directly from the Navier-Stokes equations (c.f. Tennekes and 

Lumley, 1972). In index notation, the relevant equation is 

Du.u. au. au. . 
l. ] = -u u. _J_ - -u u __ 1. - - 0- u u u. 

Dt i Ka~ j k axk axk i j K 
( ap + 
u. " ] oX. 

l. 

u.6 o3 .) .8.T 
l. J 0 

(7) 

----au. au. 
where D . . = v ~ ~ 

l.J oX£ oX£ 

Equation (7) now expresses the second order moments of equation (1) 

in terms of third order moments which are themselves unknown. Although 
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exact equations can also be derived for each of these new unknowns, it 

is pointless to pursue this approach since each new equation contains 

more unknown moments. Instead, Daly and Harlow (1970), Donaldson 

(1972), Donaldson, Sullivan and Rosenbaum (1972), Hanjalic and Launder 

(1972b) and Shir (1973) have chosen to consider only the first equation 

in this infinite sequence, equation (7), and to close this equation 

with algebraia models for the unknown third order correlations, in 

t erms of the known second order moments and mean flow variables. 

In addition to the six independent transport equations for the 

Reynolds stress components, Donaldson et al. employ an algebraic 

expression for the integral length scale of the flow (t), while Shir 

employs a differential equation for this length scale. The models 

of Daly and Harlow, and Hanjalic and Launder incorporate an additional 

t ransport equation for the rate of turbulence energy dissipation, E , 

where 

E = Dii 

An exact equation for E can also be derived from the Navier-Stokes 

equation as 

DE 
-= -
Dt 

2 
- 2v (8) 
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As in equation (7), the higher order moments that appear in equation 

(8) must be expressed in terms of the known lower order moments. With 

this closure strategy, it is hoped that reasonably simple assumptions 

for the third order moments will yield adequate predictions of the 

second order correlations, u.u. and E. 
1 J 

The basic philosophy of making closure assumptions at third order, 

rather than at second order as the MVF and }ITE models do, is conunon to 

the three models mentioned above, and although substantial variations 

between the three models do arise since the details of the closure 

approximations differ in each case, all three models suffer from a 

fundamental shortcoming. As Lumley and Khajeh-Nouri (1973) point out, 

none of these models is based on a systematic procedure for generating 

the closure expressions. In the absence of a systematic approach, 

these models are constructed on the basis of ad hoc approximations 

which, in general, satisfy only the most elementary requirements of 

tensor invariance and dimensional consistency. The result is that 

these models overlook tenns that may be significant and retain other 

terms that are unimportant. This point will be enlarged upon at a 

later point, during the more detailed discussion of these models. 

To remedy the above inadequacy, Lumley and Khajeh-Nouri (1973) 

proposed a rational closure scheme which is an extension of Lumley's 

(1967, 1970) quest for a turbulent constitutive relation. In addition, 

for the thermally coupled problem, a similar .closure scheme for the 

turbulent heat flux terms of equation (2) was proposed. It consists of 

three transport equations for the heat flux components, a transport 
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equation for the temperature variance, e"Z", and a fifth transport 

equation for the dissipation of temperature variance, E
6

• 

As the first step in this modeling scheme, the relevant second 

order moment equations are reduced to their high Reynolds number forms 

according to the scaling laws set forth by Tennekes and Lumley (1972). 

This process eliminates a number of terms from each equation. Finally, 

the mathematical formalism of invariant modeling (Robertson (1940), 

Lumley (1970)) is used to model each unknown third order moment as a 

functional expansion about the isotropic, homogeneous state. The 

resulting high Reynolds number turbulence model is complete in the 

sense that it incorporates a transport equation for all of the second 

order moments. In addition, it is apparent how one could proceed to 

generate higher order corrections (i.e. higher order in Re
2

) in an 

asymptotic representation that might be used to predict finite Reynolds 

number flows better, This lat~er point is particularly appealing since 

it is often observed in fluid mechanics that the first term of such 

an asymptotic representation provides an accurate prediction of flows 

over a considerably larger parameter range than one would expect on a 

theoretical basis (c.f. Prandtl's boundary-layer theory). 

The systematic closure approach of Lumley and Khajeh-Nouri shows 

great promise of yielding a turbulence model which will accurately pre­

dict a wide variety of flows, including the non-equilibrium flows which 

are of ultimate interest. Unfortunately, this model contains many' more 

universal'constants than do the previous models, which must be estab­

lished by comparison with simple laboratory and atmospheric flows. For 
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this parameter determination, it would be desirable to have an inde­

pendent set of data for each constant to be evaluated. Unfortunately, 

there are only a limited number of fully documented experimental flows. 

Hence, in practice, coefficients must be evaluated from a more 

restricted data base. However, every effort should be made to include 

a reasonably diverse selection of flows in the parameter estimation. 

In contrast, Lumley and Khajeh-Nouri have attempted to evaluate alZ of 

the parameters on the basis of one experimental flow; a turbulent wake. 

Aware of the difficulty associated with the determination of the 

many constants, Wyngaard, Cote and Rao (1973) presented a considerably 

simplified version of Lumley and Khajeh-Nouri's mocel. Unfortunately, 

in many instances, the Wyngaard version of the model departs in a 

fundamental way from the strict rules of the closure theory. In 

particular, Wyngaard's model violates the principle of tensor invari­

anc'e in the important "tendency-toward-isotropy" term and resorts to an 

ad, hoc eddy diffusion hypothesis for the triple correlations. (These 

points will be enlarged upon in sections 2.D and 4.B.) Using this 

model, Wynga8rd, Cote and Rao (1973) examined the horizontally homo­

geneous atmospheric boundary layer under conditions of neutral and 

unstable stratification, and compared their results with Deardorff's 

(1972) three-dimensional calculation. Wyngaard and Cote (1974) also 

simulated the evolution of the one-dimensional atmospheric boundary 

layer for day 33 of the Wangara experiment in Australia, and compared 

their predicted profiles of wind, temperature, humidity and Reynolds 

stresses with th.ose calculated by Deardorff (1974). In both cases, the 
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distributions of mean vel.ocity, temperature and humidity were in 

qualitative agreement with Deardorff's results. H.owever, the distri­

butions of Reynolds stress and other second order correlations showed 

substantial deviations from the 3-D calculation. Indeed, it will be 

shown. in section 4.C that Wyngaard's version of Lumley's model 

cannot predict in an adequate fashion the turbulent dynamics of one of 

the simplest of laboratory flows; the homogeneous shear flow. 

The inability of the Wyngaard mo4el to predict accurately second 

order correlations is particularly significant for two reasons. First, 

even though the profiles of mean velocity and temperature are in 

reasonable agreement with those of the 3-D calculations in this case, 

one might expect that for accelerating flows, such as those that occur 

in the vicinity of the urban heat island (c. f. Townsend (1972)), much 

poorer agreement would be found since errors in the directional distri-
. 

but.ion of turbulence energy will be amplified by the mechanism of 

turbulence energy production by vortex stretching. Second, the 

distributions of second order correlations are also significant when 

one is interested in the dispersion of chemically reactive species. 

Donaldson and Hilst (1972) have shown that, for fast chemical reactions 

of second and higher-order, such as the free-radical reactions of 

photochemical smog, the rate of reaction may be controlled by the 

second order correlations of concentration, which in turn depend 

strongly on the second order correlations of velocity and temperature, 

In view- of one of the potential applications of the turbulence 

modeling efforts (i.e. to predict the. dispersion of chemically reacting 

species in the urban atmosphere boundary layer), it is essential that 
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the model predict the second order correlations more accurately than 

is possible using Wyngaard's simplified version of Lumley 1 s model.. 

To conclude the discussion of existing turbulence models, it 

should be reemphasized that the basic philosophy behind Lumley and 

Khajeh-Nouri's closure scheme seems to be a very sound one. Unfor­

tunately, in their application of the model and also in Wyngaard 1 s 

application of his version of the model, insufficient attention has 

been directed to the systematic determination of model parameters. 

It is essential that the unicity of parameter values which adequately 

model one particular flow and the universality of these parameters 

for a broad range of flows, be established on the basis of laboratory 

studies for which full profiles of the second order correlations have 

been documented. Of course, numerical experiments of the type done 

by Wyngaard et al. are useful first steps which have helped to 

establish the potential of Reyno\ds stress transport models for 

predicting atmospheric flows. In addition, certain qualitat✓ive 

questions, such as the influence of the Coriolis force on the turbu­

lent energy budget (Wyngaard, Arya and Cote, 1974), may be usefully 

investigated. However, confident quantitative predictions of flows 

over the strongly inhomogeneous surface boundary conditions that 

characterize the urban atmospheric boundary layer can be made only 

after comprehensive model validation studies have been completed. 

In what follows, the rational closure technique proposed by 

Luml.ey and Khajeh-Nouri (1973) is applied to equations (7) and (8). 

The resulting turbulence model is similar in many respects to that 
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presented by Lumley et al. H.owever, more effort is made to evaluate 

the parame.ters in a systematic manner. Particular emphasis is placed 

on the suitability and quality of experimental data used for the 

evaluation of model parameters and on the unicity and universality of 

the resulting parameters. 
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2. THE RATIONAL CLOSURE. TECHNIQUE 

A. High Reynolds Number Form of the Equations 

Basic to the closure technique is the assumption that the 

Reynolds stress tensor and the dissipation rate can be expanded as 

asymptotic series in Rei of the form 

and 

u.u. 
i J 

= (u.u.) 
l J 

0 

(9) 

(10) 

If (ak> O, Sk > O; k = 1, 2, ••• ) then uiuj and E exhibit an asymptotic 

form in the limit Re1 + 00 • To obtain systematically the equations 

which govern each term in equations (9) and (10), it is necessary to 

substitute these series into proper~y scaled versions of equations (7)­

(8), and then to equate coefficients of equal order in Rei. 

To deduce the proper scaling, Tennekes and Lumley (1972) propose 

two fundamental scaling concepts. 

i. Quantities which appear in correlations can be 

associated with either the energy containing eddies, which have 

characteristic velocity u, and characteristic length i, or with the 

dissipative range of eddies which also have characteristic velocity u, 

but which have a much smaller length scale, the Taylor micro-scale, 

-½ A~ 4i Rei. Derivatives which are outside of correlations correspond 

to the energy containing range, whereas derivatives within the corre-
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lations are associated with the dissipative range. 

ii. The correlation coefficient between quantities, ea.ch 

taken from different ranges, is of order 

-~ 11./ Q, '\, 4 Re 2 

.Q, 

The second scaling law arises since any correlation between the 

energy containing and dissipative structures results from the inter­

action of motions at the two scales. The 'effectiveness' of this 

interaction (i.e. the correlation coefficient) varies as the ratio 

of the frequencies of the ranges involved, (u/9.,)/(u/A.) = A/2. Since 

the dissipative structure has a very high frequency at large Rei, the 

effectiveness of the interaction is low. 

An examination of equation (7) indicates that only one term is 

of higher order in Re, 
Q, 

I 2-i a u.u. 
V 1. J /£ = 

a¾.2 

On the other hand, an examination of equation (8) indicates that 

and 

The previous scaling arguments cannot be blindly applied to the last 
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tenn in equation (8), which may be interpreted as the dissipation of 

dissipation rate. Although the first derivative scales as before 

(auj/axi ~ u/A), the second derivative scales with respect to the 

smallest length scale in the turbulent flow, the Kolmogorov length 

scale, f\ = iRe-3 / 4 
i • (A more detailed discussion of the origin of this 

scaling is presented in Appendix A.) Hence the correct order of 

magnitude for this tennis 

De 
-= 
Dt 

Finally, the first and second terms on the right side of equation 

(8) require additional consideration. At high Rei, it is generally 

accepted that the small scale dissipative structure tends to be 

isotropic. Hence, the dissipation tensor 

is itself isotropic for large Rei• Any anisotropy in the dissipative 

structure must result from interaction between the dissipative structure 

and the anisotropic energy containing structure. However, the 

correlation coefficient for interactions between e~ergy containing and 

-k 
dissipative eddies is O(Ret 2). Hence, the anisotropy of the dissipa-

-½ tion tensor will be O(Ret ), i.e. 
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The application of equation (11) and the continuity equation to the 

second tenn in equation (8) yields 

1. E: au. l D 
v axk Dik / Dt = O 

au. au. 
Similarly, the tensor __J___J_ is governed by the dissipative structure 

axi a~ 
-½ and so, has an anisotropic component of order (Re,Q, ). Hence 

DE 
-= 
Dt 

All other terms in equation (8) which have not been specifically 

mentioned are 0(1) with respect to Dc/Dt. 

Now, if only the high Re
0 

asymptotic solutions, (u.u.) and E
0

, 
JI., J 1. 0 

are sought, equations (7)-(8) can be simplified to the forms 

(12) 
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and 

DE 
- - = 
Dt 

(13) 

The order of magnitude analysis of the first two terms on the right 
1.,.. 

side of equation (13) indicated that each is O(Rei) with respect to the 

other terms. The first term represents 'production of dissipation' 

through the stretching of vorticity by the energy containing eddies, 

and the second term represents the 'destruction of dissipation' by 

the action of viscosity. These processes must nearly balance each 

other so that the sum of these terms is only 0(1) with respect to 

D£/Dt. It is interesting to note that Townsend's (1951) analysis of 

the fine structure of turbulence, which was based on a balance 

between the opposing effects of vorticity dissipation by molecular 

viscosity, and vorticity production by turbulent shear, is consistent 

with (or a consequence of) the above scaling of the dissipation 

equation, as Ret ➔ 00 • Although Townsend derived a universal law for 

the three-dimensional energy spectrum (which is in excellent agreement 

with experimental measurements) at the smallest scales of turbulent 

motion (i.e. at scales smaller than those which contribute most to the 

dissipation), this universal law is of no- use in establishing models 

for the higher order Rei terms which appear in equation (13). 

Of course, equations (12) and (13) are only valid in flows (or 
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regions of flows) where Rei>> 1. To understand the limitations that 

this may place on the applicability of the turbulence model, it is 

useful to examine an equilibrium turbulent boundary-layer. In such 

a flow, near the wall the relevant characteristic velocity is the 

slip- ·or friction-velocity, u* = r-;jp' , where T is the wall shear 

stress, and the characteristic length scale is ky where k is von 

Karman's constant and y is the coordinate normal to the wall. Thus, 

for this fl.:Jw, 

For equations (12)-(13) to be valid, 

V 
y >> u~'<k (14) 

This inequality suggests that the high Reynolds number equations are 

valid only at points far from the solid surface. However, this 

restriction is not too severe since inequality (14) is identical with 

that which defines the inner (lower) boundary of the region where the 

law of the wall is valid. Experimentally, it is observed that the 

logarithmic velocity profile is valid for yu*/v as small as 100. 

Furthermore, since the law of the wall is essentially an infinite 

Reynolds number theory, as verified by the lack of Ret dependen_ce of 

the relevant coefficients, this suggests th.at the h~gh Reynolds number 

equations (12)-(13) are themselves valid for Rel~ l?O· 
To describe the turbulence for y less than the lower boundary 

of the logarithmic region, some of the terms in equations (7)-(8) whlch 
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a.re higher order in Rei at points far from the boundary, must be 

retained by ·'stretching' the y~coordinate with respect to Rei, in 

analogy to Prandtl's theory for laminar boundary-layers. 

B. Independent Variables 

With the high Reynolds number form of the governing equations 

deduced, the unknown correlations in equations (12) and (13) must be 

modeled as functions of the known lower order quantities, U., u.u. and 
1.. 1. J 

£. The most general functional form for one of these higher order 

correlations, Q.. k(~, t), which is consistent with this requirement 
l..J ••• 

is thus 

Q.. k(i,t) 
l.J ••• Jt dTJ

00 

f.
00 

J
00 

d~ F., k(u.ci + s,T), 
-00 -oo - 00 -oo l.J • • • ]. 

(15) 

Here, F.. k denotes some generalized functional of its arguments. 
l.J • •• 

The limits of integration are intended to signify integration over 

all points in the fluid, including boundaries, and over all time, from 

the present backward to some initial instant. Thus, it is presumed 

in (15), that the- turbulence properties at a point exhibit both a 

perfect memory for previous states and an infinite 'awareness' of 

(or dependence on) the state of the turbulence at all other po_ints 

in the fluid .. 

Due to its extremely general statement of functionality, the 
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functional relationship (15) is of limited use in its present form. 

In particular, the presumed dependence on all surrounding points in 

space and on all preceding instants in time, implies an implicit 

dependence of the closure model on the specific initial and boundary 

conditions for each problem. Thus, in its most general form, the 

expression (15) leads to the hopeless situation of a unique closure 

mode.l for each turbulent flow to be considered. Fortunately, one can 

reduce the c.omplexity of the general form by noting the implicit 

dependence of U. on~, and by introducing the plausible hypothesis 
1 1. J 

of a turbulence with a 'fading memory' for past history, and a 'limited 

awareness' of the turbulence characteristics at surrounding points in 

space (c.f. Lumley, 1970). In particular, it is assumed 

i) 

ii} 

For a known distribution of Reynolds stress, ~(i,t), 
i J 

one can determine the mean velocity field, U.(i°,t), by 
i 

solving the Navier-Stokes equations, subject to appro-

priate initial and boundary conditions. Thus, it is 

assumed that any dependence of Q.. k on the mean 
1J ••• 

velocity field can be included implicitly through direct 

dependence on u.u., so that U. can be eliminated frdm the 
1. J . 1 

arguments of F.. kin equation (15). 
1J ••• 

It is also assumed that the function Q. . k is dominated 
1-J ••• 

by spatially and temporally local values. of the I in.de­

pendent' variables (the hypothesis of fading memory and 

limited awareness which was originally suggested by 

Lumley (1970)). Thus, the general functional form for 
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Q.. k can be expressed as an ordina:ry function of the 
l.J ••• 

local values of u.u., sand their first few derivatives 
1 J 

in space and time. (This is analogous to expanding the 

spatial and temporal dependence of the functional as a 

Taylor series about the local point.) If it is further 

assumed that the characteristic time for change of 

Q.. k is sufficiently short relative to the charac-
1.J • •• 

teristic time scales of u.uj ands, then Q.. k may be 
1. 1J ••• 

approximated, to zero order in the ratio of these time 

scales, as a function only of the instantaneous (present) 

values of u1uj, sand their spatial derivatives. 

Finally, if xis not too near a solid boundary, it is 

assumed that the detailed character of the boundary 

conditions will not be important to the general form of 

Q.. k• Instead, it ·is anticipated that initial and 
l.J • •• 

boundary conditions will serve only to set length and 

time scales which govern the statistics of the turbu-

lence. 

Rather than simply accept these simplifying assumptions, and 

attempt to establish their validity a posteriori by comparison of 

model calculations which incorporate them with experimental data, it 

would be desirable to justify them directly. Unfortunately, this is 

only partially i-c:>ssible for ii) and remains as an unresolved problem 

for i) •. Before we proceed with the development of the model equations, 

we briefly sunnnarize the extent to which we have been able to justify 
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assumptions i) and ii). 

i) Uniqueness of the Mean Velocity Distribution 

Consider first assumption i). The key question posed here is: 

for a specified distribution of ~(x,t), 
1 J 

equations be solved to yield a unique mean The most 

extensive study of existence and uniqueness of solutions to the 

Navier-Stokes equations (of which we are aware), is the monograph of 

Ladyzhenskaya (1969). However, this work is concerned solely with 

laminar flow conditions. Recently, Warsi (1974) extended the work 

of Ladyzhenskaya ~o examine the uniqueness of mean turbulent flows in 

a bounded domain. He concluded that a sufficient condition for the 

existence of unique solutions is that the Reynolds stress be bounded 

from below by the eddy viscosity relationship in equation (3). How­

ever, the que.stion of uniqueness of the mean velocity field .for a 

specified Reynolds stress distribution is not answered by Warsi's 

analysis. Of more relevance to this question is the laminar analysis 

of flows acted upon by a distributed body force, since a~/ax. can 
1 J J 

be treated as such a force. With this interpretation, the laminar 

analysis of flows with vanishingly small viscosity and acted upon by 

a distributed body force, can be applied directly to the current 

problem. For inviscid two-dimensional flows, past impermeable bound­

aries, the existence of unique solutions has been demonstrated (c.f. 

pp. 185 of Ladyzhenskaya, 1969). Unfortunately, in the more relevant 

circumstance of small but non-zero viscosity, the situation is still 
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far from clear (for example, see Nickel, 1973). We have not been able 

to proceed further. Thus, at the present time, the existence of a 

unique mean velocity distribution is simply accepted as a physically 

plausible assumption, which remains to be verified either directly or 

by a posteriori comparison of model calculations which incorporate 

assumption i) with suitable experimental data. 

ii) The Local Nature of the Pressure Gradient-Velocity Correlation 

The assumptions in ii) of 'fading memory' and 'limited awareness' 

are better understood after an examination of the exact equations 

which govern the various unknown correlations of equations (12) and 

(13), which to this point have been represented symbolically bY, 

Q.. k• We begin with the pressure-velocity correlation, which was 
lJ .. • • 

shown by Chou (1945) to satisfy a Poisson's equation. The appropriate 

form of the solution for the present purposes is 

¼ ui ~~ = 2! Iff d~k [ :::(X + f;) k ui Mun (x" + 1)] 
a3

u Cx + Du (x + "Ou. (x) m n 1 

¼i~ld~2d~3 + 4;p n[~-: :~ [ 
ap(i° + °f)ui(zj 

a~k 

a 
an 

1l (:;J :· ds 

'' . ' 

(17) 



125 

where 'a/an denotes the normal derivative to the surface at~ and 

r is The first two integrals are volume integrals taken 

over all space and the third integral is taken over all solid 

boundaries. 

Although the limited awareness principle had not been hypothesized 

at the time, Chou (1945) attempted to establish the spatially local 

nature of the pressure-velocity correlation. He argued that the 

-1 factor r which appears in each of the integrals of (17) implies that 

the effects of velocity and pressure fluctuations at points distant 

from i contribute only insignificantly to the single point pressure­

velocity correlation. However, since the first two integrals are 

'taken over the total fluid volume, Chou's argument is cle.arly valid 

orily if the two-point double- and triple-velocity correlations 

themselves go to zero sufficiently rapidly (as t + 00) that the 

integrand is O(r-()+o)) for larger, where o > O. The rate of 

decrease of · these two-point correlations was not considered in detail 

by Chou. 

To examine the first integral (1
1
), it is useful to follow the 

example of Chou (1945), Rotta (1951) and Hanjalic and Launder (1Y72b) 

and to expand the mean velocity gradient as a Taylor series in ~, 

about the point x, i.e. 

· au 
m 

ax 
n 

(18) 

· Now~ if only points within a radius r 
O 

of i' contribute to 11 , an.d if 
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the characteristic length scale for change of the mean velocity 

gradient is much larger than r
0

, then the velocity gradient in I
1 

can be approximated by its value at x (i.e. by the first term in 

(18)). In general, this is probably not a bad approximation except 

perhaps in the innnediate vicinity of a solid boundary where 

2 
a ui 1 -- '\, -,.._ 2 2 

oy Y 

(It should be noted that Hanjalic and Launder have invoked this 

assumption even in the near-wall region.) Thus, at least for points 

not too near solid surfaces, the expression for 1
1 

may be approximated 

as 

I 'v 
1-

1 aum ---2rr ax 
n 

(19) 

The convergence of I is now seen to depend solely on the. character-
1 

istics of a2 (u.(~)u (=;, + ;))/cl;jcl;. Furthermore, since the second 
1 n m 

derivatives of ui(i)un(x +;)will approach zero at least as rapidly 

as the correlation itself, to establish the convergence of 1
1

, it is 

sufficient to consider the behavior of the two-point velocity corre­

lation itself. 

Many experimental studies (see for example, Champagne, Ha~ris 

and Corrsin (1970), and Wygnanski and Fiedler (1970)) suggest that the 

two-point velocity correlation does diminish extremely rapidly with 

increasing r, as is required for the convergence of (19). In fact, 
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for isotropic turbulence, the rate of decay of the two-point velocity 

correlation is exponential (c.f. Batchelor (1953) or Hinze (1959)), 

and for low Reynolds number isotropic turbulence the longitudinal 

component of the correlation varies as 

Indeed, all experimental evidence (of which we are aware) is consis­

tent with bounded values for 1
1

• On the other hand, the two-point 

correlation is non-zero over a finite radius. Therefore, it must be 

expected that r
1 

may depend on turbulence characteristics within 

about one integral length scale of x. The integral length scale, t, 

is chosen here as the radius of influence since this is the size of 

a typical eddy, within which the two-point correlation is non-zero. 

The behavior of the two-point triple-velocity correlation which 

appears in the second integral (1
2

) is very poorly documented for 

inhomogeneous flows. In general, only measurements of single-point 

triple- and two-point double-velocity correlations are reported. 

Nevertheless, it is plausible that this correlation diminishes at 

least as rapidly as the two-point double-velocity correlation with 

trf the Taylor microscale, A, persisted as the length scale 
for spatial decay of the two-point velocity correlation in inhomo­
geneous flows and for high Reynolds number turbulence, as Re + 00 , the 
two-point ·correlation would approach a delta-function distriSution. 
Hence, the assumption of spatially local dependence in tµis instance 
would be exact. However, the experimental evidence tends to indicate 
rather that, for inhomogeneous, high Reynolds number flows, the 
integral length scale is the appropriate length scale. 
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increasing r (except possibly for small r where it may increase, c.f. 

Stewart (1951)). Thus, it appears likely that 1
2 

is bounded and, 

furthermore, dependent on turbulence properties within a radius of, 

at most, one integral length scale of i. 

The third integral (I
3

) in equation (17) represents the 

contributions to the single-point pressure-velocity correlation due 

to interactions between velocity fluctuations at x and pressure 

fluctuations at the boundaries (f). Although a number of experimental 

studies have, in principle, had the capability to measure the 

~-dependence of the two-point surface-pressure velocity correlation 

(c.f. Gorshkov (1968), Blake (1970) and Elliott (1972)), such data 

have not appeared in the literature. Thus, once again, one can only 

proceed with a plausible assumption. Hence, it is supposed that the 

correlation diminishes with increasing~ in an exponential manner, 

similar to the two-point velocity correlation discussed above. An 

implication of this supposition is that. the' correlation p(i' + t)ui (i") 

is small for points not too close to the boundary. Thus, 13 and the 

~ corresponding boundary dependence of u.~ may be neglected for points, 
lo~ 

x, which are not too close to solid boundaries. 

In conclusion, then, it is clear that u.fE-. is not strictly a 
l.o~ 

spatially local function of U:-U:- ands. However, it does appear that 
1 J 

the dependence on turbulence properties is restricted to a region 

within one integral length scale of the point of interest •. Further­

more, due to the rapid decay of the two-point correlations as r 

increases, it appears likely that this spatial dependence is dominated 
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by the turbulence characteristics in the immediate vicinity of x 

(i.e. over a length scale considerably smaller than i). Hence, 

while we expect u.~ to depend on spatial derivatives of u.u. and 
1o~ 1 J 

£ at x in addition to the local values of these quantities, it 

may suffice to include only derivatives of first and second order in 

this functionality. Finally, for points not too near solid surfaces, 

the boundary dependence of the pressure-velocity correlation may 

apparently be neglected. 

iii) The Triple-Velocity Correlation 

The second term in the stress tensor equations, which must be 

modeled in terms of lower order correlations, is the triple-velocity 

term, uiukuQ,. The exact differential equation governing this third 

order tensor is 

(20) 
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An analysis of this equation indicates that the only term of higher 

order in Reynolds number (and, hence, the only term which is negligi­

ble on this basis) is the last term (the 'viscous diffusion' term). 

In the discussion of the pressure-velocity correlation term, 

attention was focused on its spatially local character. In the case 

of the triple-velocity correlation, the spatial character can be 

examined, only indirectly, after an examination of the characteristic 

time scales for the correlation, which are accessible through equation 

(20). Hence, we will return to a discussion of the spatial character 

of u.u.uk after the discussion of time scales. 
1 J 

To establish that the triple-velocity correlation depends only 

on p~esent values of lower order correlations, it is necessary to 

examine characteristic times which arise out of equation (20). The 

three which appear to be most important are: 

1) the convective time scale 

"[ 
C 

2) the time scale which characterizes the 'production' by 

mean flow-turbulence interaction 

3) the time scale which characterizes the tprodtiction' by 
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turbulent-turbulent interaction 

I uiujuk I 
T 
p. t. =--------

auiu2 

axi 

In these expressions IQ.. k I denotes a suitable norm of the tensor 
1J ••• 

Q.. k• Certainly, additional characteristic times can be constructed 
1J ••• 

from other terms in equation (20). For instance, from the last term 

on the left side of equation (20) one could construct a 'turbulent 

diffusion' time, or from the next to the last term on the right side, 

a 'dissipation' time scale. However, it is not anticipated that these 

terms could dominate the dynamics of u.u.uk in the manner of the 
1 J 

'production' terms. A similar situation is actually found for the 

dynamics of the Reynolds stress tensor in shear flows: although 

many time scales can be constructed, it is the production time scale 

that dominates the evolution of Reynolds stress. 

Two of the three characteristic times cited are formed from 

'production' terms. To determine which production term dominates, and 

thereby to establish which time scale dominates the evolution of the 

triple-velocity correlation, it is useful to examine their ratio, 

(21) 
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As an estimate of the magnitude and functionality of u.u.uk, we 
1 J 

adopt the model, which is the final result of the work in section 

4.B,t 

where 

a •• 
1.J 

2 
=-uu _.s._ :. 
- i j 3 uij 

and the parameters, a. are given in table 6. 
1 

(22) 

For turbulent wakes and shear-layers, it is observed that the 

double-veloci.ty correlations take the form (c.f. Tennekes and Lumley, 

(1972)) 

and (23a) 

twe will show that the assumption of the temporally local char­
acter of u.u.l½r is consistent with this model. This self-consistency 
provides a1piswriori verification that the initial assumption is 
probably a good one. 
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On. the other hand, for boundary-layers (c.f. Klebanoff, (1955) the 

Reynolds stress tensor is somewhat more anisotropic and can be 

approximated by 

0.24 -0.16 o.o 
a .. 

~J 'v -0.16 -0.18 o.o 
q 

o.o a.a -0.06 

and 

(23b) 

With the estimates (22) and (23a) or (23b), the characteristic times 

and P. may be evaluated. Certainly, there are many flows (or regions 

of flows) for which (23) is not satisfied. For instance, in channel 

flows ju
1
u

2
1 is maximum at the walls and goes to zero somewhere in the 

core of the flow. However, the two cases (23a) and (23b) do represent 

a nearly-isotropic and a highly anisotropic flow, respectively, and in 

this sense are likely to yield representative results for a reasonably 

broad cross-section of flows. 

For the x2-component of turbulence energy flux (i.e. u1u1u2 + 

P"' a.28 

and (23b) gives 

p '\, 0 .22 

Thus, the rate of production of u1ujl\. by turbulence-turbulence inter-
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a.ction is about four times greater than the rate of mean flow­

turbulence production. This conclusion is consistent with Ha.njalic 

and Launder's (1972b) assumption that the mean flow-turbulence 

production terms in equation (20) may be neglected as a first 

approximation. Since the turbulence-turbulence production term 

dominates equation (20), T will be adopted as the time scale 
p. t. 

which characterizes u.u.uk. 
1 J 

To justify the assumption that u.u.uk depends only on instan-
1 J 

taneous values of u.u. and£, it is now necessary to compare its 
1 J 

dominant time scale, T , with similar time scales which character-
p.t. 

ize the evolution of u.u. and£. If the latter are long compared 
1 J 

with T , the expansion in the ratio of time scales is justified 
p •· t. 

for the triple correlation. Changes in u.u. for a shear flow can 
l J 

occur no faster t han its'rate of production. Hence, 

T 
u.u. 

l J 

'\, 

The dissipation rate, on the other hand, is governed by the turbu­

lence-turbulence interaction. Hence, 

where B
11 

will be shown later to be approximately equal to 4. With 

the previous estimate for£, T becomes 
£ 

T '\, 
£ 
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Thus, u.u. and£ have approximately the same characteristic evolution 
1 J 

times. T and T t may also be evaluated on the basis of the 
C p • • 

estimates (22) and (23). For the x2-component of turbulent energy 

flux, (23a) gives 

au -1 
T I'\., 0.52 ( L p.t. ~) 

2 

while (23b) gives, for the boundary-layer, 

au -1 
T 'v 0.15 (--1) p.t. ax 

2 

For both (23a) and (23b) 

With these estimates, the ratio of characteristic times for the 

evolution of u.u.uk and~ (or£) may be compared. For (23a), the 
1 J 1 J 

result is 

T 
2· t. 

I'\., 0.15 
T u-:u:-

(24a) 

1 J 

while, for (23b) we find 

T 
E • t. 

I'\., 0.04 
T--

(24b) 
u.u. 

1 J 

These estimates indicate that, for the class of flows characterized 

by (23a) (i.e. mixing-layers, wakes, etc.), the triple-velocity 

correlation adjusts to changes in the turbulence field between five 
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and ten times faster than u.u. (or E) can change; for the boundary-
1. J 

layer class of flows u.u.u.. adjusts about 20 times faster than the 
1. J K. 

turbulence characteristics can change. Hence, an approximation 

for u.u.uk based on expansion about instantaneous values for~ 
1 J 1 J 

and Eis clearly justified. Indeed, at least for flows of the 

boundary-type, we may expect to be able to truncate the expansion 

without inclusion of any dependence on time derivatives of u.u. or E. 
1. J 

A comparison of the characteristic production time for u.u.uk 
1 J 

with the convection scale, T ' C 
gives 

4 2 
0.01 u. a cL 1s-) 

T J OX. E ax
2 

p.t. ~ ------------
Tc 2 d. 

q ax 
2 

for (23a), and 

T p. t. 
T 

C 

a 
0.02 u. 

J ax. 
~----------

2 d. 
q ax 

2 

(24c) 

(24d) 

for (23b). · Thus, the convective time scale will be much larger than 

the characteristic time for u.u.uk, even for substantial streamwise 
l. _J 

gradients. In particular, if as in (2·4a), 0 .15 i~ assumed to be 

small, then the condition T >> T requires that streamwise 
C p.t. · 

variations in the turbulence occur on a length _scaie, L, such that 

(25) 
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For boundary-layer-like flows, an even smaller value of L can be 

accommodated. Thus, if the length scale for stream.wise changes in the 

turbulence exceeds the transverse length scale of the mean velocity 

field by a factor of 3.5, convective terms in the evolution equation 

(20) for uiujl\ . may be neglected as a first approximation, compared 

to the production terms . Clearly, subject to the approximations in 

(23), the Reynolds stress has a length scale for streamwise change 

which is bounded from below by 

Thus, in a Lagrangian framework, the examination of characteristic 

time scale·s also provides some evidence to support the assumption 

that u.u.u. may be expressed as a function of spatiaUy foaal 
1 J lC. 

variables. A more thorough analysis of the spatial dependence would 

entail a comparison of the turbulent diffusion _term, 

and the pressure velocity correlation ·term,. 

l.L.. u. u ax. 1:C R, , 
]. 

J --; 

t o the production terms ·. However, since estimates of these quantities 

are not available, such a comparison cannot be made. 

It would be desirable to examine the validity of the instanta~ 

neous and local assumption for the unknown correlation• in the 
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dissipation equation also. However, due to the complexity of the 

equations which_ govern these terms, such an analysis is extremely 

complex and has not been undertaken at this time. 

c. The Concept of Invariant Modeling 

In the previous section, we have discussed the hypotheses 

of instantaneity and limited awareness, which allow the unknown 

third-order moments at a space-time point, (x, b), to be expressed 

as functions only of u.u., £ and their lowest order spatial deriva-
1 J 

tives at the same point. To implement this approximation, it is 

n.ecessary to adopt a systematic scheme for generating the most 

general form for these functions at each level of approximation. 

To achieve this, each unknown moment is expressed as a power series 

expansion about the homogeneous, isotropic state, with the expansion 

ordered in terms of increasing degrees of inhomogeneity and aniso-

tropy, as proposed by Lumley and Khajeh-Nouri (1973). 

To obtain the power series representation, it is essential that 

orders of magnitude be systematically assigned to terms so that each 

may be included at the appropriate order. To this end, u.u. is 
l J 

decomposed into its isotropic and anisotropic components, a .. and 
lJ 

2 q /3 o .. , respectively where 
l.J 

a .. = u.u. 
lJ l J 

is the deviatoric component of the Reynolds stress tensor. This 

decomposition is useful since, now, for isotropic turbulence, a .. - O, 
l.J 
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2 
£ f O and q IO. Thus one can assign an 'order of anisotropy' to 

each term, i.e. 

zero order terms: etc. 

first order terms: etc. 

second order terms: 

n a a. 
KJ 

Higher degrees of inhomogeneity are characterized by higher order 

spatial derivatives of q2 , £ and a .. • 
1J 

For example, the term 

2 a a •. 
--

1
~J is first order in anisotropy and second order in inhomogeneity. 

ax/ 

To simplify the following discussion, the notation 'O(n,m)' will be 

used to designate a term of order n in anisotropy and order min 

inhomogeneity. 

Finally, to establish the most general way in which each. term 
z ,la .. 

(for example q, £,a .. , 
1 J, etc.) can enter the expansion in 

lJ axk2 
inhomogeneity and anisotropy, the method of invariant modeling is 

employed. This approach has been used extensively to develop th.e 

theory of homogeneous, isotropic turbulence (c.f. Robertson (1940), 

Batchelor (1953) and Hinze (1959)) and in the derivation of constitu­

tive relations for non-Newtonian fluids (Coleman and Noll (1961)). 

Lumley (1970), Donaldson (1972), Daly and Harlow (1970) and Hanjalic 

and Launder (1972b) have also used this technique to some extent in 

the development of their turbulence transport models. However, none 
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of the above authors has pursued this technique to the extent proposed 

by Lumley et al. (1973). It is the latter work which forms the basis 

o-f our own analysis. 

The basic requirement for a satisfactory invariant model is that 

the tensor rank, symmetry properties and dimensionality of the model 

be identical with those of the higher order moments that the model 

represents. In the present case for which the model takes the form. 

of an infinite series, each term in the series must satisfy these 

requirements. In addition, the scalar coefficients which enter the 

series must be invariant under general transformations of the 

coordinate system. Lumley (1970) presented a straightforward 

method of generating terms which satisfy these requirements. For 

convenience, a short discussion of invariant modeling and the relevant 

symbols to be used in what follows, has been included in Appendix B. 

D.. Closure of Reynolds Stress Tensor Equation 

Since the method of invariant modeling considers only the 

tensor order, symmetry properties and dimensionality of a term, it 

is convenient (with no loss of generality) t9 lump together moments 

which have the same tensor character, and to model them as a single 

moment& Hence, it is convenient to rewrite equation (12) in the form 

a --- 21-
~ (u.u.uk + -3 - ukpo .. ) 
0~ 1. J p 1J 

Term (1) 
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--- · a P · 12.... l2.,_2~. 
(u. "I + u. '\ · - -

3 
-"I- o •. )/p 

J oXi l.. oXj a~ l.J 

2 
3 e: 0ij 

Term (2) 

With. this regrouping, each term is amenable to direct physical 

interpretation. Term (1) represents the turbulent diffusion of 

u.u. due to both velocity and pressure fluctuations. Term (2) 
l. J 

(26) 

(henceforth to be denoted Aij) expresses the rate of intercomponent 

transfer of turbulence energy. Champagne, Harris and Corrsin (1970) 

interpret the off-diagonal ~lements of Term (2) as diffusion and 

production (or dissipation) of turbulent shear stress, by the 

interaction of pressure and velocity fluctuations. It has often 

been noted (c.f. Tennekes and Lumley (1972)) that this term alway~ 

tends to drive the turbulence toward the isotropic state. Hence, it 

is generally refe·rred to as either the 'tendency-toward-isotropy 1 

tenn or the 'intercomponent energy transfer term.' 

The tendency-toward-isotropy term is a second order, symmetric 

tensor, with vanishing trace. To second order in anisotropy, its 

homogeneous representation may be deduced from the discussion in 

Appendix B to be 

(27) 

where the coefficient functions, gi, must be chosen to achi.eve 

dimensional consistency and to ensure Aij =- O. 

satisfied by the choice 

These conditions are 
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Aij = E. 2 [ £2 (I~, II~} 
cq q q 

T°ij)/q2 l 
where II and III are respectiv-ely the second and third invariants of 

a .. and T = cq
2/c is the time scale which characterizes the return to 

1.J 

isotropy of mildly anisotropic turbulence. In general, the function-

ality of f 2 and f
3 

may be very complex. However, even for strongly 

anisotropic turbulence, such as that which characterizes turbulent 

boundary-layers, II/ q 4 and III/ q 6 are very small. For example, in a 

turbuLent boundary-layer (c. f. Klebanoff, (1955)) approximation (23b) 

is appropriate so that, by direct calculation, we find II/q4 ~ 0.15 

6 and III/q ~ 0.01. Hence, it should be possible to expand the 

functions f
2 

and f
3 

as Taylor series about the isotropic state, 

II/q4 = III/q6 = 0 and thereby achieve a reasonable approximation 

to the true functionality, even for significant anisotropy. 

Once the functions £
2 

and £
3 

have been expanded, it follows 

directly from the discussion in Appendix B (c. f. equation B-8) that 

equation (27) is, in fact, correct to 0(3, O) 

- _E._ 
[ II 

B2 
(aik.akj II J (28) A .. = (LO + B1q4) a .. +- - 3°ij) 1.J 2 l.J 2 

cq q 

where, in the context of the Taylor series expansion, 
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af
2 

Bl = 
3(II/q4} 

o,o 

and 

£3(0,0) = B2 

Rotta (1951) originally suggested the 0(1,0) form of equation 

(2~) with c ~ 1/5. Lumley et al. (1973) propose c ~ 1/8. Virtually 

all models which include equations for each of the Reynolds stress 

components have included the 0(1,0) term. 

Equation (28) provides only the homogeneous form of the 

intercomponent transfer model. For inhomogeneous flows, the 

expansion strategy requires that derivatives of q2 , a .. and Ebe 
1J 

in.c.1.uded in the functionality. It can easily be shown that, in the 

absence of buoyancy, one cannot construct terms of first order in. 

inhomogeneity which are tensorially appropriate for the intercomponent 

transfer. However, at second order in inhomogeneity, and correct to 

first order in anisotropy there are 24 possible contributions. The 

terms which must be added to equation (28) to make it correct to 

0(1,2) t are: 
·' 

t 
Although only 0(0,2) and 0(1,2) inhomogeneous terms will be 

examined, all of the terms, to 0(3,0), in equation (28) will be 
included in the comparisons which follow in sections 3 and 4.C. 
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C 1. J J 1.. k k 1. J 

4 
V .9,_ 
ll] £ 
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(29) 

In addition to the terms given in (29) there are 53 possible 

terms at 0(2,2). Combined with the terms already given in (29), this 

leads to a completely unmanageable number of unknown parameters. 

However, we found it unnecessary to include these 0(2,2) terms, since, 

as will be demonstrated in section 3.C, the terms in (29) seem to 

account adequately for the inhomogeneous contributions. 

To facilitate the quantitative comparisons to be presented at 

various stag~s of the present work, it is useful to examine the 

models of intercomponent transfer which have been proposed by other 

authors.. Wyngaard, Cote and Rao (1973) use the model 

(30) 

*Throughout the thesis, repeated Greek symbols are not sunnn.ed. 



146 

where c11 = c22 = c 33 = 6.7 and c
12 

= c 21 = 13.2. This form for the 

intercomponent transfer model was motivated by the idea that the rate 

of intercomponent transfer should be proportional to the deviation 

from anisotropy, coupled with the requirement that the model should 

correctly predict the Reynolds stress distribution in the hypothetical, 

constant stress layer. To achieve this, Wyngaard et al. found it 

necessary to use coefficients of proportionality which were different 

for diagonal and off-diagonal elements. Clearly, this model is not 

invariant under a rotation of the coordinate system. Hence, this 

model cannot be universal. 

Daly (1974) presented a more recent version of the model proposed 

by Daly and Harlow (1970). The high Reynolds number form is 

A .. 
lJ 

au. au. 4 
1 - · - __J_ -- 1 ..9.... --

u. uk " - u. uk -"' - ) + 0. 035 ( -3 uku R n c .. 
l o~ J oxk E m k m 1J 

(31) 

where n is a unit vector, normal to the solid surface. The final 

term is . referred to as the 1wall-effect-tensor 1 by the authors. It 

is meant to account for intercomponent transfer induced by wall­

turbulence interactions of the type described by the surface integral 

in equation (17} • In this term, iµ (r} is a scalar function which 

depends on a position and wall geometry. It is hypothesized to be a 
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surface integral of the. form 

,per) =¼I 1 
4 

ds 

Ir - r'I 

where r is a position vector, r' is the wall vector and ds is the 

unit area of wall surface. at r'. For a horizontal flat surface 

1 2 
--) n . r 

Our discussion concerning equation (17) suggested that the inclusion 

of such dependence on the boundary conditions is not required in the 

region away from the walls. However, in the context of our high 

Reynolds number expansion, with its associated 'inner' and 1 outer' 

solutions, such effects may appear in the 'inner' (or wall) region. 

For the flows that will be discussed in section 4.C, the wall-effect 

term contributes only a negligible correction to equation (31) in 

the outer region. 

where 

Hanjalic and Launder (1972b) propose the model 

A .. 
l.J 

cf> •• 
1J 

£. 
5.6-2 a .. +¢ .. + <j> •• 

q 1.J . l.J J 1. 
(32) 

at· + $ -- --= (a. u u. (_umui cS .. + u u. aH + uiu.Q, cS ) + 
m 1 · J 1..J m J mj 

+ 11{cSmt ci •• () 
2 ----

(y 8 otj + mj ou_))q + 'V( u u. u.u.Q, + 
mi l.J m J 1 

-- -- 2 ----- 2 au£. 
u u 0 u.u.)/q + c 2 u u. u 0 u./q) "Ix , 

m.x.. l.J mi .x..J om 

0 07 = -1. _27 X 10-3 
c

2 
= -v = 0.90, a.= 0.0582, $ = - • , y 
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-3 and~= - 1.91 X 10 . The form of this model resulted from an 

approximate closure of the first integral in equation (17). The two 

free coefficients which resulted were chosen to match the downstream 

Reynolds stress distribution in Champagne, Harris and Corrsin's 

(1970) homogeneous shear flow (c.f. section 3.A). The remaining 

model coefficients are related to these two by the tensor character 

of equation (17). 

Finally, Shir (1973) adopted various components of his turbulence 

model from Donaldson (1972), Reynolds (1970), and Daly and Harlow 

(1970). The final form proposed for the intercomponent transfer term 

is 

A .. 
l.J 

(33) 

The wall effect term is identical to that proposed by Daly and Harlow. 

It should be noted here that Daly and Harlow, and Shir include in 

their models an a:nisotropic ,dissipation rate, with the anisotropy 

being of 0(1) with respect to Reynolds number, of the form 

a .. 
E:. J: _.2;J_ 

D ·' = 3 u. ' + c3 £ 2 
1J 1J 'l 

Such_ a term is" clearly not compatible with the high Reynolds number 
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form of the dissipation tensor discussed in section 2.A. t However, 

since the. anisotropic component of D . can easily be retained in the 
iJ 

return to isotropy term (as a return to isotropy contribution), it 

has been included in e.quations (31} and (33) as a contribution to 

intercomponent transfer. 

The most obvious difference between the above models and that 

of e.quations (28) and (29) is that all of the former models include 

explicit dependence on the mean velocity field. Such dependence was 

not included in the present model, and we have argued that it is not 

required providing a given Reynolds stress distribution defines a 

unique mean. velocity field. In that case, any dependence on the. 

mean velocity field is included implicitly through dependence on 

u.u. and£. All of the. models have used basically the same 'first 
1 J 

order in anisotropy' term, which is formed as the product of the 

reciprocal characteristic time for re.turn to isotropy and the tensor 

aij' which describes the deviation from anisotropy. Whereas Wyngaard 

et al., Shir, and Hanjalic and .Launder proposed a reciprocal time 

which is proportional to £/q
2

, Daly and Harlow adopted a slightly 

different reciprocal time which is meant to account; to some extent, 
au. · 

-- l for the effect of non-equilibrium (i.e. uiuk a~ f -£) on the rate of 

return to isotropy. They use 

tThis incompatability was previously noted by Corrsin (1973}. 
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This can be compared with equation (28) which. includes the same effect 

in the term 

A more quantitative comparison of models (30) - (33) with the present 

model (28) and (29) will be presented in sections 3.C and 4.C. • 

The other term which must be modeled in equation (26) is the 

diffusion term 

Lumley et al. (1973) have proposed that the closure model be applied 

directly for F .. k' which is symmetric in i and j but not ink. 
l.J 

However, a closer examination of this term indicates that the two 

parts exhibit different synnnetry properties. The first term 

(uiuj\\_) is symmetric in all three subscripts, while the second, 

21 - . (-
3 

- 8 •• pu..) is symmetric only in i and j. Hence, we suggest that 
p l.J K 

each part of the diffusion term should be modeled separately. This 

is particularly desirable since u.u.u.. can be measured directly to 
1 J K 

allow the determination of its model parameters· by direct comparison 

with experimental data. 

For the triple-velocity correlation, there are no homogeneous 

contributions. To zero order in anisotropy, it can be a function 

2 2 only of aq /axi, 3£/3xi, q and£. Hence, at 0(0,1) it takes the form 

4 a 2 6 ae: 
uiujuk = ·al T Mijld ~ + a3 ;z Mijld axll. 
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where M •• 1.n is the most general fourth order tensor that can be 
1Jtu, 

constructed from oij and that is symmetric in i, j and k, 

The next corrections enter at O (1,1) and must be constructed from 
aa.. a 2 a 

aij' a~J, fit and aX::• The most general form, correct to O (2,1) is 
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a 2 a 
0~. akma-0 + o.k a. a_o}C 16 ~ + 127 n2 "\ ae:) + (a a 

1-J 11.J.)v J 1m LWv £ oX,Q, E: -i. oX,Q, im mk. 

Tenns in equation (34) have only been included to 0(2,1). However, 

since the next contributions enter at third order in inhomogeneity 

(in the absence of buoyancy), this expression is, in fact, correct to 

0(2,2). Furthermore, since only the divergence of u.u.uk enters the 
1 J 

Reynolds stress equations, the representation is actually accurate 

to third order in inhomogeneity (i.e. to 0(2,3)) once substituted 

into equation (26) • . 

Once again, for the pressure velocity correlation, puj, there 

are no homogeneous contributions in the absence of buoyancy. To 

0(2,2) the model is 

pu. 
' J ' 

4 a 2 II 6 ae: 4 
(S S II) L ~ + ($ S ) _g___ + S .L 
1+24£~ 3+447~ SE 

q J q J 

(35) 
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It is true that this pressure-velocity correlation contributes to 

the spatial transport of Reynolds stress. However, the available 

experimental data shows that the magnitude of the contribution is 

t often small. In particular, of the four inhomogeneous flows that 

will be examined in section 4, only the data of Wygnanski and Fiedler 

(1970) exhibit a non-negligible contribution from this term. 

Certainly, the many coefficients in equation (35) cannot be 

evaluated on the basis of a single flow. Hence, it will be assumed 

that these coefficients are zero until further data, which exhibit 

a substantial pressure-diffusion contribution, are available for a 

more reliable parameter estimate. 

At this point, it is interesting to compare the formulations for 

the diffusion term used in other models, with that of equation (34). 

Shir (1973) modeled this term by 

u.u.uk 
1 J 

Wyngaard, Cote and Rao (1973) used the model 

21 -
( u . u . Uk + -3 - t5 • • PU. ) 

1 J p 1J l<. 

Daly and Harlow (1970) adopted the form 

au.u. 
1 J 

ax.Q, 

(36) 

(37) 

tAs was noted previously, pressure-velocity correlations are 
extremely difficult to measure experimentally. Hence, profiles of 
p1i7 are not generally established by direct measurement. Instead, for 
flJws in which all other correlations and mean quantities in equation -

. (26) have been measured, 8puj/axj may be estimated as the closing term 
of this equation. 
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and, finally, Hanjalic and Launder (1972b) used the model 

u.u.uk 
1 J 

(38) 

(39) 

Shir's formulation was motivated by the notion that, since the 

triple-velocity correlation can be interpreted as a turbulent flux 

of Reynolds stress, it should be possible to express it as the product 

of an eddy viscosity (q4/s) and the gradient of the Reynolds stress. 

The models of Wyngaard, Cote and Rao and Daly and Harlow can be 

viewed as a slight generalization of Shir's closure assumption, since 

they have simply replaced the scalar eddy viscosity by the tensor eddy 

- 2 viscosity (ukui q /s) so that the flux in the k-direction depends 

on Reynolds stress gradients in all three directions. These three 

models have the connnon difficulty that they do not predict the 

correct symmetry for u1ujuk. (In the case of Wyngaard et al. this, 

of course, is subject to the observation that ukp is often negligible.) 

Our previous discussion emphasized that u.u.\L is symmetric in all 
1 J K 

three indices, whereas models (36) - (38) are symmetric only in i and 

j. Hanjalic and Launder obviously recognized this symmetry and derived 

model (39) by the approximate closure of equation (20). In this 

derivation they neglected the mean velocity-turbulence production term, 
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which seems to be a good first approximation on the basis of the 

analysis presented in section 2.B. However, the final form of their 

model rests squarely upon the validity of an ad hoc assumption which 

was made for the quadruple correlation term in equation (20). 

Clearly, the model proposed in equation (34) is a generalization 

of the above models, since it can be reduced to the triply symmetric 

form of any of these models, by a suitable selection of coefficients. 

Also included in this formulation are other terms which have not 

been considered by the other authors. In section 4.B, it will be 

shown. that only four coefficients in equation (34) appear to be 

important (i.e. non-zero) and that the resulting four parameter model 

better predicts the experimental distributions of uiuj'-\. than do the 

existing models, (36) - (39). 

E. Closure of the Energy Dissi~ation Equation 

It is convenient to model the terms in equation (13) as two groups: 

i) production and dissipation of E: by vortex stretching and viscosity 

and ii) turbulent flux of E: due to velocity and pressure fluctuations 
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Subject to the series of assumptions outlined in section 2.B, 

the most general form for the scalar function P, correct to 0(3,1), 

is PH 

€2 
PH = - (Bll + B II + B III) 

2 12 4 13 6 (40a) 
q q q 

Although the general strategy is to retain terms only to ~(2,2) we 

found it necessary to include terms in PH to third order in anisotropy 

since, for homogeneous flows, the 0(3,0) term was found to be signif-

icant. 

Once again, in the absence of buoyancy, there can be no terms of 

first order in inhomogeneity. However, at second order in inhomogene­

ity and correct to second order in anisotropy, there are 34 possible 

scalar invariants that can enter the functionality. Expanded in their 

Taylor series form, the inhomogeneous contribution to P, PI, correct 

to 0(2,2) is 
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aaip aa2 2 aa. a 2 aa. b ~ + b .9,_ _2£. __ E + b q __ J_P_ + b 
10 ax . ax. 11 E ax ax. 12 ax.ax 13 

p 1 p 1 J p 

2 
1 ~l9.._+b 
-;? aij ax. ax. 17 

1 J 

a.kak. ':I 2 "' 2 
i J~~+b 

4 ax. ax. 18 
q 1 J 

a.kak. 
1 J 

2 
q 

"12 2 
0 q 

ax. ax. 
l. J 

(40b) 

In the absence of buoyancy, the diffusion term, Dk' contains no 

homogeneous terms. To 0(2,2), the most general representation is: 

(41) 

The analysis to establish the coefficients of the homogeneous term, 
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equation (40a), will be presented in section 3.C, and the analysis of 

the inhomogeneous contributions will be presented in section 4.D. 

Other models which have been proposed to describe the dynamics 

of the dissipation are: 

the model of Daly and Harlow (1970) 

the model of Hanjalic and Launder (1972b) 

DE= 
Dt 

the model of Wyngaard, et al. (1973) 
I 

DE 
-= 
Dt 

and the model of Shir (1973) 

(42) 

(43) 

(44) 

2 ui l\_ auk 4 £ 

E (4 - 2 - -) + .0193 q tµ (~) + 0.0186 -
2 2 £ ax. 

q 1 q 

a 4 a 2 2 a 4 aq3/s _.s_~ - 0 011 !:__.9.,_ __ ____ 
a s a • 3 a s ax. ~ ~ q ~ k 

(45) 

Shir's model contains terms which differ considerably from those 

suggested by the other authors, since it was actually derived to model 
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3 the integral length scale, i ~ q /s. The awkward formulation results 

upon transformation to an explicit equation for s. In this model, 

the coefficient of 

is not an adjustable parameter, since it is fixed -by the choice of 

coefficients in the Reynolds stress tensor equation. 

All of the above models contain a term which is the weighted 

difference between the rates of production and dissipation of 

turbulence energy. However, there is coasiderable variability in 

the numerical values of the coefficients used. Lumley (1970) 

suggested that such a term might be appropriate to model the 

difference between the first and second terms in equation (13) which, 

as argued previously, must be 0(1) even though each term separately 
' ~ 

is O(Re{). Lumley reasoned that such a term would provide a positive 

contribution to Ds/Dt in regions where - uiuk auk/axi >> e: and a 

negative contribution if - uiuk auk/axi << s. However, the turbulence 

energy production term was included in models (42) - (45) in an 

attempt to model the first and second terms in equation (8) (production 

of s by mean flow stretching of turbulence vorticity), which were shown 

-!.: 
to be higher order in Rei (i.e. 0 (Rel 2)). Hence, these models 

apparently retain a suitable term for the wrong reason. 

Shir's dissipation equation also contains a 'wall-effect' term 

4 -(q ~(r)) which was included in his original model of i to account for 

the influence of a solid wall on the distribution of i. However, the 
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physical explanation for the appearance of such a term in the 

dissipation equation is not clear, since the discussion in section 

2.A indicated that at high Reynolds numbers the production-dissipation 

term is dominated by the local effects of vortex stretching by 

turbulent fluctuations. Hence, such a term seems to be inconsistent 

in the high Re1 limit. 

The motivation for the inhomogeneous terms which enter these 

models is similar to the motivation for the triple-velocity correla­

tion models discussed previously. The argument is that the turbulent 

flux of£ should be proportional to the product of the gradient of£ 

and an eddy diffusivity (a tensor in the models of Hanjalic and 

Launder, and Daly and Harlow, and a scalar in the model of Shir). 

However, the functional expansion approach suggests that this term 

may take a much more general form. In particular, this flux may be 

proportional to gradients of all turbulence quantities. From this 

point of view, Daly and Harlow's inclusion of an additional term (the 

divergence of the gradient of q2
) represents a step in the right 

direction, for the wrong reason. The invariant modeling approach 

suggests that such a term might be appropriate for either P1 or Dk. 

However, Daly et al. included this term to approximate the first 

term in equation (13) which (by itself) ½ is O(Re1). 

Finally, with regard to the inhomogeneous terms, it should be 

noted that, even when comparable terms are included in different models, 

there is significant disagreement on the values of the coefficients 

used. In particular, the parameters used by Daly and Harlow are 
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an order of magnitude larger than those used by Hanjalic and Launder, 

Wyngaard et al. and Shir. 

F. Homogeneous Form of Turbulence Model 

In the strictest sense, homogeneous flows have uniform properties 

throughout (i.e. derivatives of aii mean variables and correlations 

are zero). However, the turbulence properties of many wind tunnel 

flows are nearly homogeneous in the sense that gradients are confined 

to the streamwise direction with uniform properties on any cross-

· section of the flow. Homogeneous turbulence of this type can also 

exist in the presence of mean velocity shear (c.f. the experiment of 

Champagne, Harris and Corrsin (1970)). Hence, for wind tunnel flows, 

in which the streamwise gradients of all variables are small enough 

to allow the inhomogeneous terms of the invariant model to be 

neglected, the equations for the Reynolds stress tensor and turbulence 

energy d~ssipation rate may be simplified to the form 

(46) 

and 

(47) 
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On the basis of homogeneous data, for which equations (46) -

(47) apply, one can establish the constants required for the leading 

(homogeneous) approximation to the turbulence model. Since these 

terms are dominant in their respective asymptotic expansions, their 

accurate specification is essential to the proper modeling of 

turbulence phenomena. 
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3. EVALUATION OF HOMOGENEOUS MODEL PARAMETERS 

A. Homogeneous Flow Experimental Data 

i) Decay of Isotropic Turbulence 

It is found experimentally (c.f. Gad-el-Hak and Corrsin 

(1972)) that, for precisely isotropic wind tunnel turbulence, decay 

of turbulence energy is very well approximated by a power-law relation 

of the form 

(48) 

where x 1 is the streamwise distance measured from some virtual origin 

of the turbulence, and a is an experimentally determined, positive 

number. 

If equation (48) is substituted into the isotropic form of 

equation (46) to yield a corresponding power-law expression for E, it 

may be shown that ' the result is consistent with equation (47) only if 

= _ 2 ( 1 + a ) 
a 

Hence, a knowledge of · a defines the first of the unknown model 

parameters. 

The precise value of the exponent, a, has been a question of 

considerable interest. In a series of papers, Batchelor and Townsend 

(1947, 1948) found experimentally that, for large Rei, 

a~ 1.0 
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Although several similarity arguments (c.f. Batchelor (1948)) lead to 

decay laws that are not inconsistent with the experimental observations, 

a rigorous proof has not been derived. 

Comte-Bellot and Corrsin (1966) studied the decay behind three 

different grids in an attempt to establish the value of a more pre­

cisely. Their experiments on one of the grids encompassed a significant 

4 4 range of Reynolds numbers (1.7 X 10 < ReM,::. 13.S X 10) and in this 

study, a ranged from a value of 1.29 at the smallest ReM to 1.15 at 

the largest ReM. 

The data of Comte-Bellot and Corrsin also indicate that, for fixed 

Reynolds number, the value of a depends on grid type. This suggests 

that a may depend as much on the distribution of energy in wave number 

space as it does on ReM. This is substantiated to some degree by the 

most recent data of Gad-el-Hak and Corrsin (1974) for the decay of 

nearly isotropic turbulence behind a uniform grid of jets, for which 

changes in the energy spectrum accompanied changes in je't flow rate. 

These data suggest that the broader the inertial subrange, the smaller 

is a, with a minimum for Gad-el-Hak's experiments of 1.0. This is 

best demonstrated by figure 12 of Gad-el-Hak and Corrsin (1974) and 

figures 63 to 65 of Gad-el-Hak (1972). 

Large ReM also implies a broad inertial subrange. Hence, the 

observations of Comte-Bellot et al. on the passive grid are apparently 

consistent with the jet grid results, However, Gad-el-Hak~s 

experiments on a passive grid, over the somewhat smaller Reynolds 

4 4 number range of 4.83 X 10 .::_ ReM.::_ 7.34 X 10 show almost no 
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R~ dependence. A value of a. 'v 1.3 was reported. That no ReM 

dependence was observed in this case, may be due to the small range 

of ReM examined. 

Finally, we cite the results of Kistler and Vrebalovich (see 

Gad-el-Rak and Corrsin (1974) for these data) who reported, for a 

passive grid, a.= 1.0 at ReM = 2.42 X 106• This value of grid 

Reynolds number is larger than that for any of the other data 

reported, by a factor of about twenty. 

In conclusion, the value of the decay exponent is not clearly 

defined. However, the evidence seems to indicate that a.= 1.0 is 

appropriate at large Reynolds numbers. Thus, in keeping with the 

high Reynolds number nature of the model B
11 

= -4.0 is adopted. 

This choice for B
11 

is the same as the parameterization of the other 

turbulence models, in sectlon 2,E, and is also the same as the value 

suggested by Lumley (1970), ·and Lumley and Khajeh-Nouri (1973). 
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ii) Decay of Anisotropic Wind Tunnel Turbulence 

The turbulence produced by a grid in a wind tunnel is, 

in general, nearly isotropic. That is, the turbulence energy is nearly 

equipartitioned between the three energy components. Hence, a 

different technique must be used to produce significant anisotropy. 

Uberoi (1956, 1957) produced homogeneous, highly anisotropic turbulence 

by passing grid turbulence through a sudden 4:1 contraction in wind 

tunnel cross-section. The anisotropi.c decay data were recorded in a 

section, with uniform mean velocity, downstream of the contraction. 

The data reported include the three energy components for grid 

Reynolds numbers of 3,710, 6,150, 10,000 and 12,300. 

The relevant model equations for the energy components and 

dissipation rate, normalized with respect to the mean velocity, u
1

, 

are: 

and 

2 
3 

E: 0 .. 
1J 

II 
3 

6 .. }] /T -
1] 

(49) 

(50) 

iii) Distortion of Turbulence by Irrotational Plane Strain 

Tucker and Reynolds (1968) considered the irrotational 

plane strain of a laterally homogeneous turbulent flow as it passed 
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through a laterally distorting wind tunnel of constant cross-

sectional area. The resulting non-zero rates of strain were 

where u2 is the constant streamwise velocity. The magnitudes · of the 

three energy conponents were recorded as a function of downstream 

position. 

If the dependent variables are scaled with respect to the mean 

streamwise velocity as in ii), the governing ordinary differential 

equations are: 

= -2u1u1 S 

2£ 
3 

1 
T 

(51a) 

_ II }l _ 2E 
3 j 3 

(Slb) 

(Slc) 
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(52) 

where 

S = 0.2225 ft-l for 0.0 ~ x2 ..:;,. .97.0 

s = o.o for 

iv) Homogeneous Turbulent Shear 

The final simple flow, for which fully documented 

experimental data exist, is the homogeneous shear flow of Champagne, 

Harris and Corrsin (1970). The flow was unidirectional and became 

homogeneous in the cross-stream direction within a few feet of the 

turbulence generating grid. A uniform mean velocity gradient 

where u1 is the streamwise mean velocity, was achieved by careful 

adjustment of internal flow resistances (screens) at the upstream end 

of the channel. 

In addition to measurements which verify the homogeneity of the 

flow to within a few percent, the three energy components and the 

turbulent shear stress were recorded ,as the flow evolvec:Wrom its 

initial, almost isotropic condition, toward a final steady state at 

the downstream end of the channel, where the rate of turbulence 

energy production was approximately balanced by the rate of turbulence 

energy dissipation. 
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The governing equations, with dependent variables scaled with 

respect to the center-line velocity, U, as in ii) are 
0 

2 
- - · e:. 3 

Cl= 2,3 

where S = 0.318 ft-1 • 

B •. Tendency-Toward-Isotropy: Constants 

(53a) 

2 
3 E:' 

(53b) 

(53c) 

~ 

(54) 

Of the four types of well documertted flows, only that of Cham-

pagne et al. can potentially attain a steady-state, non-isotropic, 

Reynolds stress distribution. However,' Lumley (1970) argued, on the 

basis of a more or less ad hoa assumption, that such a steady state 

cannot exist in a homogeneous flow. The experimental evidence of 

Champagne et al. does not clearly refute or verify this speculation. 
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The uncertainty arises because the Reynolds stress components appear 

to approach a steady state distribution at the downstream end of the 

test section (characterized by zero streamwise derivatives), but 

the integral length scale (as measured experimentally) continues to 

grow, indicating a non-steady condition. This question of an equi­

librium stress distribution will be examined further in section 3.C. 

Regardless of whether the conditions at the downstream of the 

test section are steady, or slowly varying (pseudo-steady), the 

experimental data indicate that the rate of turbulence energy 

production almost identically balances the rate of dissipation. 

Furthermore, the rate of change of the Reynolds stress components 

is much smaller than the characteristic rate of interchange of 

2 
turbulence energy between the three components (E/q ). Hence, the 

downstream distribution of u1uj can be used to evaluate the homo­

geneous constants ,in the tendency-toward-isotropy term. 

With the assumptions 

Du.u. 
1 J 

Dt - 0 

the differential equations (53) can be reduced to the algebraic 

relationships: 

a B 
( 1 + B II) ~ + _?_ ( _ 11-) = 1 4 2 4 a .a. 3 

q cq cq aJ Ja 
(55) 
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Clearly, for specified values of c, B
1 

and B
2

, the equations (55) 

can be solved only for the varlables aij/q4 • They cannot yield 

any information concerning the magnitude of q2 since, being homo­

geneous, the flow lacks a relevant characteristic velocity scale. 

Further examination of equations (55) indicates that the three 

universal parameters enter only as two independent parameters. 

4 (1 + B
1 

II/q )/c and B
2
/c. These parameters should be chosen so that 

the Reynolds stress components, as calculated from equation (55) best 

match the experimental values. Unfortunately, since equations (55) 

are nonlinear, they cannot be solved for a .. /q
2 

as an explicit 
1J 

function of the unspecified parameters. This eliminates the possibil-

ity of determining the optimal parameters analytically. Instead, a 

Rosenbrock hillclimbing procedure (Rosenbrock (1960)) was used to 

determine numerically the parameter values which minimize the root 

mean square deviation of a
1
j/q2 from the experimental values. At each 

step in the search, the equations (55) were solved by Newton iteration. 

With numerous initial guesses of the two independent parameters, the 

search procedure always converged to the same optimal values. 

Rearranged to give explicit expressions for B
1 

and B
2 

in terms of c, 

the optimal parameters are 

Bl= 82.7 c - 10.9 

and B2 = 11.22 c 
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Table 1: Numerical and Experimental Reynolds Stress Components 

for Homogeneous Shear Flow 

all/q 
2 . 2 

a22/q a3/q 
2 

al2/q 
2 

Numerical 0.146 -0.101 -0.0461 -0.170 

Experimental 0.146 -0.101 -0.0455 -0.173 
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A comparison between the values of a .. /q2 , calculated with these 
1.J 

parameters, and the experimental values is given in table 1. Clearly, 

the agreement is excellent. 

Finally, it should be noted from equation (54), that if the 

level of turbulence intensity is to reach the controversial 'steady 

state', 

This, in turn, requires the model constants B
12 

and B
13

, which are yet 

to be determined, to satisfy the constraint 

(56) 

(c. f . equation (54)). Here, (II/q4) and (III/q6) are the 'steady-
s s 

state' values which correspond to the numerically determined a .. /q
2 

1.J 

in table 1. It will be shown in section 3.C that the values of B12 

and B
13 

which give the best model fit to the dynamic data from the 

studies of Uberoi (1956, 1957) and Champagne et al. (1970), are not 

consistent with the constraint (56), and the estimate B
11 

= -4 from 

section 3.A.i. Thus, we provide some evidence that the 'steady-state' 

turbulence energy level cannot be achieved in a homogeneous shear 

flow. 

C. Determination of Best Values for c~ B
12 

and B
13 

There remain three constants, c, B
12 

and B
13

, whose specification 

completes the turbulence model. Since the pred{cted 'steady-state' 
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configuration of the homogeneous shear flow does not depend upon 

the values of these constants, they must be evaluated on the basis 

of the available dynamia data. To obtain the dynamic response of the 

model, equations (46) - (47) were numerically integrated in the 

streamwise direction with a fourth order Runga-Kutta procedure. The 

initial streamwise point was chosen to ensure satisfactory cross­

stream homogeneity. The values of the Reynolds stress components 

(presented in table 2) were taken directly from the experimental 

data, and the initial values ,of £ were determined from the slope of 

the experimental turbulence energy curve. (Any local energy produc­

tion was also included.) This gives the most reliable estimate of 

the dissipation rate in any homogeneous, decaying flow. 

For the initial calculations of the homogeneous flows, B
13 

was 

fixed at various values, and the values of B
12 

and c, that gave the 

optimal (least-squares) fit to the dynamic experimental data, were 

determined by means of the numerical hillclimbing procedure. These 

calculations showed that for each flow and any (fixed) B
13

, values of 

c and B
12 

could be obtained, which gave a uniform best-fit to the 

experimental data, in the sense that the error between the experimental 

data and the numerical model was independent of B
13

• Furthermore, 

the value of c which gave this minimum was independent of B12 and 

B
13

• For the data of Champagne et al. and Uberoi, c = 0.162. This 

value is somewhat larger than the value 0.125 suggested by Lumley 

et al. (1973), but smaller than the value of 0.2 originally suggested 

by Rotta '(1951). 



Table 2: Initial Conditions and Integration Step-Size for the Homogeneous Flows 

--Flow .. · 2 2 2 
ul u2 u3 ulu2 E 

Champagne, Harris .33Xl0-J .26Xl0-3 .244Xl0-3 -.108Xl0-3 .75Xl0-4ft-l 
and Corrsin (1970) 

Tucker and 
.185Xl0-3 .37Xl0-3 ~ • 361Xl0-J .104X10-4in-l Reynolds (1968) 0 

Uberoi 
.23Xl0-J .178Xl0-z .178Xl0-z .236Xl0-4in-l ~ :s 12,300 0 

R~ = 10,000 .SXl0-4 1. 74Xl0-4 1.74Xl0-4 0 .275Xl0-S 

ReM = 6,150 .1066Xl0-3 .692Xl0-3 - .692Xl0 -3 0 .912Xl0-5in-l 

ReM = 3,170 .174Xl0-3 .1245Xl0-z .1245Xl0-z 0 .131Xl0-4in -1 

~x 

o •. lft 

1.0in 

O.lin 

1.0in 

.lin 

.lin 

X 
0 

5.0ft 

40.0in 

55.0in 

4.0in 

57.0in 

66. Sin 

1--' 
'-J 
V, 
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A somewhat smaller value of c resulted from the data of Tucker 

and Reynolds. However, there are a number of uncertainties associated 

with Tucker and Reynolds' experiments. The apparatus was designed to 

deliver a constant rate of strain. However, a check to verify the 

cross-stream uniformity of the mean velocity field was not reported. 

Thus, the actual strain rate could have been significantly different 

from the design value which was reported, and could also have varied 

with horizontal position in the straining section. Another source of 

experimental uncertainty results from the close proximity of the walls 

to the point where the turbulence measurements were taken. Whereas 

Uberoi and Champagne et al. used a 12 in. X 12 in. cross-section test 

channel, Tucker and Reynolds used a test section with walls only 7 in. 

apart. Townsend (1954) performed a similar strain experiment, at 

approximately the same Re1 , in a 6 in. duct. His careful measurements 

indicated that the walls produced significant turbulence energy. In 

fact, at the downstream end of the channel, Townsend found that wall 

generation could account for as much as 25% of the turbulence intensity. 

Even in the absence of these experimental uncertainties, a straining 

flow of this type is extremely difficult to model, since even small 

errors in the predicted dissipation rate and rate of energy redistri­

bution are amplified, by the mechanism of turbulence-meanflo~ inter­

action, as the flow is strained. Hence, due to the large experimental 

uncertainties and to the inherent difficulties associated with the 

numerical simulation of rapidly straining flows, the data of Tucker 

and Reynolds were not included in choosing the values for c, B
12 

and 
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The above calculations indicate that the values of B
12 

and B
13 

which provide a best fit to the dynamic data, for any one laboratory 

flow, are not unique. Instead, for each flow there exists a locus 

of such points in B
12

-B
13 

space. These loci are shown in figure 1 

to be straight lines, which divide the parameter domain into two 

segments. Parameter values which lie above the division produce a 

model response which is more dissipative than the experimental data 

for that flow, and parameters which lie below the division produce 

responses which are less dissipative than the data. 

If the numerical model were exact, and if the experimental data 

contained no error, the parameter curves would have one point in 

comm.on. In fact, the loci of Uberoi and Champagne et al. do cross. in ·. 

the vicinity of the point 

(B
12

, B13) = ' (23., 200.) (parameter values A) 

An obvious exception to this point of intersection (in addition to 

Tucker and Reynolds' flow) is the Uberoi flow for ReM = 6,150. 

However, we believe that this is of minor consequence since the data 

record for this flow is very short. Consequently, the 'minimum' 

represented by the line on figure 1 is extremely shallow (i.e. the 

relative changein model fit with a change in the parameters B13 , B12 

is small). Thus, this flow carries considerably less significance 

than do the other data. 

It is unfortunate that the data for most of Uberoi's experiments 

fall on essentially the same line of positive slope in figure 1 since, 
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otherwise, with four sets of independent, anisotropic decay data, one 

could specify B12 and B
13 

with more confidence. Ideally, a future 

experiment should be designed to yield a second curve with negative 

slope since this would intersect sharply with the other anisotropic 

decay data. In the design of such an experiment it is useful to note 

that the slopes of the parameter lines are proportional to the initial 

value of -III/II. The quantity II is positive semi-definite whereas 

III can have either sign. For Uberoi's experiments, III< O. The 

desired curves with negative slope would result for data with III> O. 

To produce an initial turbulence energy distribution with 

III> O, the almost isotropic turbulence, which is generated by an 

upstream grid, could be passed through a sudden expansion in wind 

tunnel cross-section. Although this is conceptually the easiest way 

to generate the required III> O, the method may not be effective for 

two reasons. First, the straining associated with a sudden 

expansion is accompanied by a significant decrease in turbulence 

energy: Hence, a partial rever~ion to laminar flow may result. 

Second, all large Reynolds number flows tend to resist sudden expan­

sions and instead behave as jets. This in turn leads to cross­

stream inhomogeneities and other associated difficulties. 

In order to avoid the experimental difficulties associated with 

such a wind tunnel study, it may be more effici_ent . to generate the 

desired data by means of a direct solution technique such as that of 

Orszag (1969, 1971, 1972). In this case one may simply initialize 

the computation with turbulence having the desired properties. 



180 

rn figures 2 - 4, the model response for parameters A is compared 

to the experimental data. Although the overall agreement is quite 

good, a close examination indicates that the model gives a return 

to isotropy for Uberoi's flows which is slightly too rapid in the 

early stages. This is best demonstrated by the experiments that are 

taken entirely from the early transition period (ReM = 12,300, 6,150, 

and 3,710). The data record for Uberoi's fourth experiment (ReM 

10,000) is considerably longer and includes the final stages of 

transition. From this flow it is apparent that although the initial 

return to isotropy is a little too rapid, the overall agreement of the 

model and experiment is within the bounds of the experimental uncer-

tainties. 

The reason for the minor discrepancy between the experimental 

and mode-1 responses in the early transition period is not known at 
, 

this time. Originally, it had been thought that the neglect of higher 

order terms in Re
1

, such as the anisotropic contribution to the 

dissipation tensor, might be responsible. However, an error of this 

origin must show a Reynolds number dependence. Table 3 provides a 

classification of flows according to Rei• Of particular relevance 

are Uberoi's flows which vary in Rei over the range 

2,240 > Re
1 

> 1,000 

For all of these flows the model error is reasonably consistent and 

clearly independent of the Reynolds number. 

The values of B
12 

and B
13

, chosen from the intersection of the 
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Table 3., Classification of Homogeneous Flows According to Re 

Flow R~ Re9., 

Champagne et al. 20,000 2,370 

Uberoi 12,300 12,300 . 2,240 

10,000 10,000 1,400 

6,150 6,150 1,630 

3,710 3,710 1,000 

Tucker and Reynolds 7,000 837 
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loci of best-fit pairs for Uberoi's flow at ReM = 12,300, 10,000 

and 3.710, and for Champagne et al. 's (1970) homogeneous shear flow, 

appear to support Lumley's (1970) hypothesis that a homogeneous shear 

flow cannot attain a steady-state turbulence energy level. To 

demonstrate this more clearly, equation (56) has been plotted in 

figure 1. Clearly, the optimal choice for B
12 

and B
13 

does not 

satisfy equation (56). Hence, with parameters A, the dissipation rate 

can never reach a finite equilibrium value. In particular, when B
12 

and B
13 

are chosen to lie below equation (56), E continues to 

2 decrease, even though aij/q may approach an equilibrium configuration. 

On the other hand, the rate of turbulence energy production does not 

decrease, with the result that the turbulence energy level must stead­

ily increase. This general increase in energy level can be detected 

2 --in figure 20 as a gradual tailing up of the curves for u
1 

and u1u2 for 

X ~ 10, This behavior is consistent with the experimental observation 

3 
that the integral length scale continues to increase, since i ~ q /E. 

By choosing B
12 

and B
13 

to satisfy equation (56), one can force 

the model to approach a steady-state energy level. For example, the 

model response with 

(B
12

, B
13

) = (27., 246.) . (parameter values B) 

is represented by the broken lines in figure 2a. Since this point in 

the B
12 

- B
13 

plane still lies on the ·'best fit' parameter curve for 

Uberoi's data, the model response for these flows is the same as that 

discussed previously. On the other hand, for parameters B, the model 
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response for the homogeneous shear flow is changed considerably. In 

particular, the model response is too dissipative and is not a satis­

factory representation of the experimentally observed Reynolds stress 

response. 

Thus, the numerical model which best matches the experimental 

data for the homogeneous shear flow, appears to support the physical 

picture of a continuously increasing turbulence energy level as a 

function of streamwise position. Even when combined with the experi­

mental observation of an increasing length scale, however, this is not 

definitive proof that an equilibrium turbulence level cannot exist. 

The Reynolds stresses measured experimentally by Champagne et al. 

did level off suspiciously near the downstream end of the test section, 

and it is possible that the integral length scale simply approaches 

its equilibrium value more slowly, with respect to streamwise position, 

than the Reynolds stress tensor. A clear resolution of this question 

requires data for homogeneous shear flow, either taken in a longer 

test section, or alternatively at a higher shear Reynolds number (i.e. 

t larger rate of shear). 

To allow a quantitative evaluation of the. relative performance of 

the turbulence models which were discussed briefly in sections 2.D and 

2.E, figures 2 and 3 compare the model responses for the homogeneous 

shear flow, and for the homogeneous straining flow of Tucker and 

tDuring the final stages of preparation of this thesis, we have 
learned by private communication withs. Corrsin that such data will 
be reported shortly, which supports the conclusion that no equilibrium 
state is possible. 



193 

Reynolds (1968). It is significant that none of the models proposed 

by other investigators can adequately describe the homogeneous shear 

flow. In particular, the models of Wyngaard, Hanjalic and Launder, 

and Shir predict a sharp decrease in the shear stress component at 

the initial time (the experimental profile increases) while Daly 

and Harlow's model predicts an increase in lu
1

u
2

1 that is far too 

rapid. This inability to accurately predict the dynamics of the 

shear stress results in a model response which is much too dissipa­

tive in the first three cases, and too productive in the other case. 

Figures 2b, c also demonstrate the inability of the models of Wyngaard 

-- --and Shir to predict the inequality of u
2

u
2 

and u
3

u
3

• 

The sharp contrast between the excellent performance of the 

present model and the poor performance of all other models for this 

flow is not simply a consequence of choosing model parameters to 

match the downstream Reynolds stress configuration in the present 

model but not in the other models. In fact, Hanjalic and Launder also 

chose their tendency-toward-isotropy parameters to match the downstream 

configuration of this flow. Clearly, their model provides, at best, 

a poor approximation to the actual dynamic response. 

Figures 3a, b provide the necessary comparison bf model responses 

for the straining flow. None of the models provides an exact represen­

tation of the data. However, this is not surprising in view of the 

uncertainties already discussed. The best approximation is obtained 

from the present model, while the poorest approximation results from 

Daly and Harlow's formulation. It is significant that the data of 
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Tucker and Reynolds (1968) were not used in the determination of the 

parameters for the present model. 

Finally, it is of interest to note that B12 and s13 are identi­

cally zero in all of the existing turbulence models other than the 

present one. However, all of these models give a comparable 

approximation to Uberoi's anisotropic decay flows. The reason for 

the perhaps surprising consistency of all models is evident in figure 

1. By chance, the origin of the B
12 

- B
13 

plane lies reasonably close 

to all loci representing Uberoi's experiments. Hence, in the absence 

of Champagne, Harris and Corrsin's data, B
12 

= B
13 

= 0 would appear 

to be an adequate choice. Anisotropic decay data with III> 0 should 

provide yet another example of a simple turbulent flow for which the 

existing models are inadequate, since the present investigation 

indicates that the loci for these flows will not pass through the 

origin but instead, will bisect the Uberoi experiments in the vicinity 

of point A. 
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4. ESTI~..ATION OF INHOMOGENEOUS MODEL PARAMETERS 

A. Inhomogeneous Flows for Model Development 

i) Description of the Flows 

In order to evaluate constants which enter through 

inhomogeneous terms and higher order inhomogeneous corrections, it is 

necessary to examine inhomogeneous flows. Ideally, these flows 

should exhibit significant inhomogeneities and be well documented, 

but at the same time the governing equations should be simple, 

preferably ordinary differential equations. Four experimental flows 

which satisfy these requirements are the asynunetric channel flow of 

Hanjalic and Launder (1972a), the pipe flow of Lawn (1971), the 

two-dimensional mixing-layer of Wygnanski and Fiedler (1970) and 

the self-preserving wall-jet of Irwin (1973). Another potential 

source of data for parameter evaluation and model validation is the 

direct numerical simulation technique of Orszag, as indicated in 

section l.A and 3.C. In this regard, it should be noted that 

Wyngaard and Cote (1974) and Wyngaard, Cote and Rao (1973) have 

also made extensive use of numerical results from Deardorff's three­

dimensional simulat i on technique in evaluating the performance of 

their model. However, as the previous discussion has indicated, this 

method employs the eddy-viscosity type of closure assumption at the 

smallest scales of motion. This assumption has not .been adequately 

validated. In fact, in the only direct comparison that has been 

published (Deardorff, 1970a), the numerical results from Deardorff's 

model deviate substantially from the experimental measurements of 

Laufer's channel flow. Thus, unlike the direct numerical simulation 
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technique of Orszag, which is limited only by the range of wave 

numbers that can be economically handled by the computer, the 

computational model of Deardorff does not appear appropriate, without 

further validation, for the generation of turbulence data which is to 

be used for parameter evaluation in phenomenolog~cal models of the 

type considered here. 

The flow examined by Hanjalic and Launder was a close approx­

imation, at the channel centerline, to unidirectional, isothermal 

flow between two infinite horizontal plane boundaries. Asymmetry 

was introduced by roughening one wall, while the opposite was left 

smooth. The flow near each wall was essentially an equilibrium layer, 

with the velocity profile in each case obeying the law of the wall. 

However, in the center of the channel there was a strong interaction 

between the two wall layers with the result that the plane of zero 

shear stress did not coincide with the plane of maximum velocity. The 

data reported include profiles of~, u.u.u
2 

and E. In our analysis 
1 J l J 

of the data, all lengths are nondimensionalized by the width of the 

channel, and all velocities are nondimensionalized by the slip 

velocity, u*, at the rough wall. The variable x
2 

will denote the 

dimensionless distance from the smooth wall. 

Lawn (1971) considered the classical problem of turbulent flow in 

a circular pipe. Profiles of all Reynolds stresses were reported and, 

with the exception of u
3

u
3

u
2

, all relevant triple-velocity correlations 

may be calculated from the data. In our analysis of the data, the 

length and velocity scales are taken as the radius of the pipe and the 
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slip velocity, respectively, and the radial variable is denoted by 

Irwin reported measurements of a plane wall-jet as it advanced 

into an adverse pressure gradient, which was suitably adjusted to 

yield a self-preserving velocity field. Among the measurements are 

mean velocity profiles, all Reynolds stresses, dissipation rate and 

all non-zero single-point triple-velocity correlations. Like Hanjalic 

and Launder's flow, this wall jet exhibits a non-correspondence of 

the points of zero shear stress and velocity maximum. Streamwise 

mean velocity gradients are about 4% of cross stream derivatives. 

Wygnanski and Fiedler' s two-d.imensional mixing-layer was also 

self-preserving. Their data include all of the measurements reported 

by Irwin, as well as measurements of the intermittency factor, and 

turbulent-zone-averages of turbulence quantities. Streamwise velocity 

gradients in this case are about 15% of the cross stream derivatives. 

The flows of Hanjalic and Launder, and Lawn are simplified by 

the parallel character of the mean flow. Hence, all variables are 

functions only of the coordinate normal to the solid wall, x2 , and 

so may be completely described by ordinary differential equations. 

On the other hand, the wall jet and mixing-layer are not parallel but 

are simplified by their self-preserving nature. In particular, if 

the similarity variable is 

Xz 
1l = b~ ' 

1 

where x
1 

and x
2 

are the streamwise- and cross-stream coordinates, 
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then the mean flow and turbulence structure can be completely described 

in terms of the functions 

and 

u.u. 
1 J 

C = 

The function Ue(x
1

) is the velocity of the irrotational flow for the 

wall - jet and zero for the mixing-layer, and U
0

(x
1

) is a velocity 

scale. For Irwin's flow b = 0.0436, U = x
1

- 0 •448 and U /U = 1.65, 
e o e 

while for Wygnanski and Fiedler's flow b = 1.0, U = 0.0 and U = U 
e o m 

where U is the free-Btremn velocity on the high velocity side 
m 

(1 = -oo) of the mixing-layer. Thus, all four flows can be described 

i n terms of ordinary differential equations. However, the numerical 

solution of these equations is complicated by the fact that the bound­

ary conditions are specified at two points in space, to yield a 'two­

point- boundary-value' problem. 

The four flows which we have selected provide a particularly 

diverse base for parameter estimation and .model validation since they 

include both parallel and non-paralle,l flows; three flows which are 

dominated by shear, and one which has a significant straining 

component; and finally, two flows which experience intermittency (the 
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wall jet exhibits intermittency in the outer region, while the mixing­

layer is intermittently laminar on both boundaries). 

ii) Treatment of the Data 

The data were taken directly from the figures reported 

in the literature. For those flows in which a number of realizations 

were available (for instance, in the wall-jet and mixing-layer) data 

were recorded from a smooth curve, fared through a representative 

realization. For the other cases in .which only a single realization 

was reported, a smooth curve was fared through that realization. 

In the analysis of the data (and estimation of parameters) that 

is to follow, it will be necessary to take first and second deriva­

tives of turbulence quantities. Since the data is available in 

discrete form, the most straightforward approach is to approximate 

derivatives by ~heir finite-difference representations. However, our 

preliminary attempts at parameter estimation indicated that, although 

this leads to adequate estimates of first order derivatives, second 

order derivatives estimated in this manner. display an unacceptable 

random error. Hence, an alternative approach is necessary. The 

approach which led to more reasonable estimates of second order 

derivatives was to differentiate analytically a polynomial representa­

tion of the data. The coefficients of the polynomials were calculated 

to minimize the standard deviation between the polynomial representa­

tion and the discrete data. For profiles which could not be 

adequately represented by a single polynomial, a composite representa-
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tion of two or more polynomials, constructed to give continuous first 

and second derivatives over the complete domain, was used. With 

only one exception, polynomial representations were found, which 
I 

approximate all of the data to within 2% and most to within less than 

1%. This is certainly within the accuracy of the data, which have an 

uncertainty between any series of flow realizations of the order of 

5% (c.f. Irwin (1973) or Wygnanski and Fiedler (1972)), The actual 

order of each polynomial was chosen_ somewhat qualitatively, by 

taking into consideration the improvement in standard deviation upon 

inc~uding an extra term in the polynomial, a graphical comparison of 

the analytical and discrete representations, and finally a comparison 

of the central difference first derivatives with the analytical 

derivatives as calculated from the polynomial. The coefficients of 

the polynomials whi~h were used in the analysis are presented in table 
, 

4. (Note that, for the mixing-layer of Wygnanski and Fiedler, the 

inverse of the turbulence quantities were approximated by the poly­

nomials since this led to better agreement at large j~j). 

Only for the dissipation profile of Hanjalic and Launder, near 

the rough wall, were we unable to achieve what we deemed an acceptable 

polynomial representation of the data. The primary difficulty in 

this case is that the second derivative of€ in this region is very 

large and increases very rapidly as the rough wall is -approached, 

However, there are only a limited number of data points in this region 

with which to fit the polynomial, , The result is that the second 

derivative of£ can only be poorly approximated by a polynomial 

representation. However, we found that in this region of the flow, 



Variable 
y4 

u1 u1 (y~, 855) 47.24985XlOO 

u1 u1 (y2_. 855) -
u2 u2 (y~. 835) 2.751780Xl02 

u2u2 (y~.835) -
u3u3 (Y:5_• 218) -
u

3
u

3
(,218_sy -7.527607Xl02 

~681) 

u3u3 (y2:,.68l) -
--
ulu2 -
s (. 42:;y:_, 68) -
e: (y_?:. 68) 2.842340Xl04 

Table 4a. (continued) 

Coefficients of Polynomial 

" 
5 6 y y 

-7.016290X10 3.430899Xl0 

- -
-3.785176X102 2.622422Xl02 

- -
- -

9.921560X102 -6.429897X102 

- -
- -
- -

-L 798602Xl04 4.692059Xl03 

y7 

-

-
-7,198895Xl0 

-
-

1. 642636Xl02 

-
-

-
-

N 
0 
N 



Table 4b. Coefficients of Polynomial Representation of Pipe Flow 

Coefficients of Polynomial 
Flow Variable 0 1 2 y y y 

u1 u1
(y<0.3) 9.172973X10-l -4. 788776X10-z 2. 047739XlOO 

u
1

u
1 

(y>O .. 3) l.960000Xl0-l 3.920000XlOO -

Pipe Flow -- S.958771X10-l -l.019163Xl0-l 5.049376XlOO u2u2 

-- -4.341995X102 5.577307Xl02 -3.611550Xl02 
y = X2 u3u3 

~l u2 (y<0. 6) -4.036000X10-z l.043600XlOO -

~for £ ~ - l.504105XlOO -7.872304XlOO u1 u2 (y~.6) 1. 8 96 77 9 Xl 0 

_=c1-\2l s(x2~0.8) l.633072Xl0 -4.135510X10 4.268309Xl0 

s(x22,0.8) o.oooooox10° 2,216000XlOO -

3 y 

2.241393Xl0 

-
-3.766003Xl0 

9.422472Xl0 

-
-1. 735764Xl0 

-2. 096654Xl0 

-

N 
0 
(.,..) 



Variable 4 y 

u1 u1 
(y.:5...,3) -3.643854Xl0 

u1 u1 (y~.,3) -
- l.,785351Xl02 
u2u4 

-
u3u3 l.955026Xl0 

u1u2 (y.::_0.6) -
u 1u2(y~0.6: 5.602625XlOO 

s(xz.s_0.8) s.s40066x10° 

s(x2~0.8) -

Table 4b. (continued) 

Coefficients of Polynomial 

5 6 7 y y y 

- - -
- - -

-4.,341995Xl02 5, 577307Xl02 -3.631550Xl02 

-7.526068Xl0 8.160780Xl0 -2.806229Xl0 

- - -

- - -

9.643660X10-l 9.,345978X10-z -4.907984Xl0-3 

- - -

8 
y 

-
-

9.422472Xl0 

-

-

-
1.077000Xl0-4 

-

N 
0 
.i::-. 



Table 4c. Coefficients for Polynomial Representation of Wall-Jet and Mixing-Layer 

Coefficients of .Polynomial 
Flow Variable , . 0 1 2 y y y 

-- 3.006048Xl0-z - 1. 2434 71Xl0-l 7.145900Xl0-l ulul 

-- 4.115254Xl0 .. 3 2.080989Xl0-z 1. 53863 7Xl0-l Wall-Jet u2u2 

- l.862066Xl0-z -5.665062Xl0-~ 3.203651X10-l y = T) u3u3 . 

-- -5.626347Xl0-3 3.381567Xl0-z 6.589824Xl0-z ulu2 

s 2.605955Xl0-z -2.579015Xl0-l l,261837XlOO 

---1 
(ulul) 3,237447Xl0 2.911230Xl0 1. 955159Xl03 

Mixing-Layer ---1 
(u2u2) 5.819788Xl0 3.156479Xl02 5.408629Xl03 

y = 11 ---1 
(u3u3) S.309465Xl0 5.435002Xl0

2 7.538680Xl03 

-- -1 
(u2u2) 1. 207018Xl02 7.635479Xl0

2 l.414827Xl04 

-1 3. 971577Xl0 3.912431Xl0 4. 246117Xl03 
£ 

N 
0 
U1 



Flow Variable 

-
ulu.1 

--
u2u2 

Wall-Jet --
u3u3 

--
ulu2 

£ 

---1 
(ul ul) 

---1 
(u2u2) 

Mixing-Layer --1 
(u3u3) 
---1 

(ul u2) 

-1 
s 

Table 4c. (continued) 

Coefficients of Polynomial 

' 3 4 5 y y y 

-l.531575XlOO 1. 960143XlOO -1. 655154XlOO 

-5.549608Xl0-l 9. 259413Xl0-'l -9.009809Xl0-l 

-5.985862Xl0-l 6.923956Xl0-l -5.830740Xl0-l 

-2.950666Xl0-l 5.134641Xl0-l -5.167986Xl0-l 

-3.094563XlOO 4.517398XlOO -4. l 72103XlOO 

-1.520552Xl0-3 1.169577Xl05 -6.515994Xl05 

2.690483Xl04 8.652963X104 -4.163123Xl06 

-1.279335X103 S.662701Xl05 1.102409Xl07 

-4.206273Xl04 -3. 898138Xl05 
1. 445556X107 

5.845586Xl03 -1. 38{3601Xl05 -3.992147Xl05 

N 
0 

°' 



Flow Variable 
-

-
ulul 

-
u2u2 

Wall-Jet -u3u3 

-
ulu2 

E 

---1 
(ulul) 

---1 
(u2u2) 

Mixing-Layer u:u:1-1 
( 3 3 

- ---1 
(ulu2) 

-1 
E 

Table 4c. (continued) 

Coefficientis of Polynomial 

6 7 8 y y y 

8.917483Xl0-l -2.886607Xl0-l 5 .077965Xl0-z 

5.,188602Xl0-l -1. 728408Xl0-l 3.,074390Xl0-z 

3.294072Xl0-l -L123124Xl0-l 2.060141Xl0-z 

3.053305Xl0-l -1.033107X10-l L849789Xl0-z 

2.,448252XlOO -8.819973Xl0-l 1. 776053Xl0-l 

1. 989171X107 5.178550Xl0
6 -

1. 039410Xl08 4.315397Xl08 
1. 812468Xl09 

7.560341Xl07 - -
2.047481Xl08 - -
2.625477Xl07 - -

9 y 

-3.721695Xl0-3 

-2.260182Xl0-3 

-l.556864Xl0-) 

-1. 358466Xl0-3 

-1. 529590Xl0-2 

-

-
-
-
-

N 
0 
-....J 
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the rate of turbulence energy production balances the rate of 

dissipation, to within the accuracy of the data. Hence, for the 

analysis of the data that is to follow, the rate of dissipation for 

(1 - x2) < 0.42 was calculated analytically on the basis of the 

polynomial representation for u
1

u
2 

and the logarithmic velocity 

distribution 

1 - x2 + 0.022) 
0.056 + 3.2 

measured by Hanjalic and Launder. The resultant formula for£ is 

B. Triple-Velocity Correlation Parameters 

The most general model for u.u.uk' which is consistent with the 
1 J 

sequence of assumptions in section 2.B, was presented as equation (34). 

Since not all of these terms will be important, a detailed examination 

of experimental data is required to establish which terms are 

significant and to evaluate the actual numerical values and unicity of 

the relevant parameters. In the absence of direct experimental 

measurements of the triple-velocity correlation, the determination of 

parameters would involve the repeated solution of .the two-point-bound­

ary value problems (described in section 4.A) at each step of a 

numerical search for optimal parameters. However, due not only to 

the large number · of possible unknowns such a search would involve, 
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but also to the certain existence of many stationary points in the 

multidimensional parameter space, this approach to parameter 

estimation is computati.onally unrealistic. Instead, since the 

profiles of all independent variables which enter equation (34) 

2 (i.e, q, a .. and£) are known for the four flows discussed in 
1.J 

section 4.A, and since the profiles of certain components of u.u.uk 
l. J 

are also known, the model parameters may be evaluated as the 

least-squares solution of a system of over-defined, linear algebraic 

equations. 

To accomplish the least squares parameter estimate, the cross­

stream coordinate in each flow was discretized into p grid intervals. 

2 
At each node of the grid, the experimental data for q, a .. and £ were 

l.J 

substituted into equation (34) to yield, for each 'experimental profile 

of u.u.uk, a set of algebraic equations of the form 
1. J 

ijk . ·k 
C · Ct = f l.J 

im m t i = 1, 2, ••• , p (57) 

ijk Here, ft is the experimental value of u1ujuk at node i, am are the 

unknown parameters to be estimated and c!~k is the coefficient of 

parameter m (in equation (34)) at node i. Each group of algebraic 

equations so obtained was normalized by multiplying each side of 

equation (57) by the inverse of the standard deviation (from zero) 

.. k 
of ftJ for that experiment to ensure that the data for different 

experiments had comparable weighting in the least squares solution. 

(These weighting factors are presented in table 5.) Once normalized, 
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Table 5. Weighting Factors Used in Least-Squares Analyses 

Weighting Factors Used in Section: 

Flow 4.B 4.C 4.D 

Channel Flow 7.131 0.5381 0.1271 

Pipe Flow 2.926 0.2720 0.0210 

Wall-Jet 1230. 384.5 888.6 

Mixing-Layer 715.7 41.50 79.40 
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the .n sets of equations, corresponding to then experimental profiles 

of uiujuk, were combined to yield the single system of (n X p) 

equations 

C a = f' rs s r r = 1, 2, ••• , (n X p) 

where C .. and f! are a composite tensor and vector respectively. 
1J J 

The parameters, which are optimal in a least-squares sense, were 

calculated as 

where the superscript (-1) denotes the inverse of a tensor. 

The least squares analysis outlined above can also provide a 

confidence interval for the estimated value of each parameter. For 

each set of p equations used to calculate them parameters ai, a 

somewhat different estimate of a. will result. Hence, the estimated 
1 

value of ai, say &i, will behave as a random variable. It can be 

shown (c.f. Arley and Buch (1950), pp. 192) that the new random 

variable 

with 

s = 
- C a )(f' - Cr 0 a. 0 ) rq q r ,., ,., 

(p - m) 



212 

obeys the t~distribution with F = (p - m) degrees of freedom. Here, 

-~ -~ (C )$$ denotes the (S,e) component of C • If €(P,F} denotes the 

value oft for which 

wi.th ft?lobability P, then the tr 1 f ti fi th r• ue va ue O as sa S es e 

inequality 

(58) 

with probability (1 - P). The values oft (P, f) are tabulated in 

most standard probability texts (c.f. Arley and Buch (1950)). It is 

connn.on to take P = 0.05 so that inequality (58) gives the upper and 

lower bounds within which the true value of a
6 

falls within a 

confidence level of 95%. 

Although it is not necessary that the number of model parameters 

be minimized, it is useful to eliminate systematically terms that 

have only a negligible effect on the calculated profiles, since this 

will ultimately facilitate the efficient application of the model to 

complex problems. In this work, the important terms were isolated 

in two phases. In the first phase, at the end of a parameter estima­

tion, the standard error of the model prediction was calculated. This 

'optimal' standard deviation was then compared with those which 

resulted when each parameter in succession was set to zero (with all 

others fixed at their optimal values). The parameter which, when set 

to zero, gave the smallest increase in standard deviation was excluded 
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from the model, and the parameter estimation was repeated. This 

process was continued until all parameters had been eliminated. The 

progress of the parameter elimination is shown in figure 5, where the 

standard deviation (denoted by the symbol '+') is plotted as a 

function of the number of parameters retained. The elimination 

sequence starts at the right in this figure and proceeds, as parameters 

are eliminated, toward the left. The parameter discarded at each 

iteration is also indicated in this figure by the number adjacent 

to each step. From this figure it is evident that significant 

increases in the standard deviation only begin with seven parameters 

remaining. 

According to the above method of eliminating parameters, it 

would appear that the seven parameter formulation is the 'optimal' 

model. However, this proves not to be so. In fact, the above method 

.of parameter elimination is only useful for the elimination of 

parameters which have a negligible effect on the standard deviation. 

I t is not a suitable criterion for the rejection of terms which have 

a non-negligible effect on the standard deviation. Hence, a second 

phase, which adopted a somewhat more sensitive method for the elimina­

tion of parameters, was undertaken. At a typical step in this 

elimination process, for which m parameters remained, each parameter 

in succession was tentatively omitted from the model, and the fuii 

ieast-squares soiution for the remaining (m - 1) parameters was 

repeated. This process led tom values of the standard deviation, 

one corresponding to each parameter. That parameter, which when 
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omitted from the model, led to the smallest increase in standard 

deviation, was discarded from the model, a.nd the process was repeated. 

As in the first phase, this process was continued until all of the 

parameters had been eliminated. The secondary elimination process 

is also shown in figure 5 (denoted by the symbol'e'). This phase of 

the parameter elimination was initiated with the eight parameter 

model of the first phase since at this model began the steady increase 

in standard deviation with each parameter eliminated. We also 

included in this secondary phase,parameter 10, since its elimination 

in the first phase resulted in a noticeable (though not large) 

increase in standard deviation. Clearly, the second phase of the 

parameter elimination leads to a better model, in a least-squares 

sense. 

To this point the analysis has been as quantitative as possible. 

However, the decision as to the number of terms to be retained in the 

·final model is necessarily a qualitative one. Clearly, the standard 

deviation increases significantly between the four-and three-parameter 

models. However, whether the increase between the seven-and four­

parameter formulations is significant, is not as apparent. A com­

parison of the four-parameter model, consisting ' of the terms (1, 5, 7, 

12), and the seven-parameter model (1, 5, 7, 10, 11, 12, 16) is 

presented in figures 6 - 9, where the four-parameter model is shown 

as the solid line, the seven parameter model is represente<l; by the 

long-short broken line, and the experimental data are given by the 

discrete points. In general, changes of less than 5% occur in the 

wall-jet and mixing-layer, and altho_ugh somewhat larger changes do 
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FIGURE 6: TRIPLE-VELOCITY CORRELATION FOR ASYMMETRIC CHANNEL; 

COMPARISON OF FOUR- AND SEVEN-PARAMETER MODELS: 

• experimental data of Hanjalic and Launder (1972a), 

four-parameter model, 

, - - ~ seven-parameter model. 
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FIGURE 7: TRIPLE-VELOCITY CORRELATION FOR PIPE FLOW; COMPARISON 

OF FOUR- AND SEVEN-PARAMETER MODELS: 

• experimental data of Lawn (1971), 

four-parameter model, 

- - - seven-parameter model. 
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FIGURE 8: TRIPLE-VELOCITY CORRELATION FOR WALL-JET; COMPARISON OF 

FOUR- AND SEVEN-PARAMETER MODELS: 

• experimental data of Irwin (1973), 

four-parameter model, 

-- - ~ seven-parameter model. 
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FIGURE 9: TRIPLE-VELOCITY CORRELATION FOR MIXING-LAYE~; COMPARISON 

OF FOUR- AND SEVEN-PARAMETER MODELS: 

• experimental data of Wygnanski and Fiedler 

(1970), 

four-parameter model, 

---- seven-parameter model. 
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occur in the channel flow, it is qualitatively impossible to identify 

any significant improvement in model performance. For the case in 

which the largest change in the predicted profile occurs (u
3

u
3

u
2 

of 

the channel flow), the seven-parameter model gives a profile which 

has a smaller standard deviation but which is, in fact, a poorer 

repre.sentation of the data since for small (1 - x 2), u
3

u
3

u2 must 

increase. In conclusion, there is little to be gained by including 

the three extra parameters. Hence, we propose that a four-parameter 

formulation be adopted. The optimal values of the coefficients 

are given in table 6. 

The comparison between the four-constant model and the experi-

mental data is apparently good for all available components of u.u.uk 
1 J 

for the pipe flow of Lawn and the wall-jet of Irwin. Reasonable 

comparison, in an absolute sense is also obtained for all but the 

(1, 1, 1) component of the mixing-layer, and for u
1

u
1

u
2 

and u
3

u
3

u2 in 

the asymmetric channel flow. In the case of the u
3

u
3

u
2 

component of 

the channel flow (figure 6c), the pre<licted profile displays an 

oscillatory behavior that is quite unlike the experimental profile. 

We attribute this difficulty (which is evident in all of the models to 

be examined) to subtle variations in the gradient of a
33 

across the 

flow. However, we do not feel that this apparently 'unphysical' 

behavior is of serious concern since we expect that in a numerical 

solution of the full two-point-boundary-value problem, such oscilla-

tions in u
3

u
3

u
2 

would act to smooth these small variations in a 33 , 

without significantly altering the profile of u
3

u
3

, and to bring the 



Table 6. Triple-Velocity Correlation Parameters 

Flows Included in Parameter Estimate 
Parameter Assymetric Pipe Wall- Mixing-All Flows Channel Flow Jet Layer N 

w 
...... 

c\XlOJ -8.14±0.31 -5.55±0.43 -10.07±0.71 -7.27±0.42 -5.10±1. 2 

----i 
a

5
Xl0 -1. 72±0.12 -1. 13±0.09 -3.14±0.28 -1.09±0.26 -2.58±0.85 

a, Xl02 

z -4.80±0.22 -2.41±0.36 -4.92±0.39 -5.45±0.26 -4.19±0,82 

a
12

x10 -1.02±0.06 -0.431±0.075 -1.28±0.08 -0.553±0.14 -3,52±0.55 
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predicted profile into better agreement with the data. 

Also relevant to the present discussion, is the comparison between 

the results obtained with the present four-parameter model and those 

obtained with the previous triple-velocity correlation models, which 

were discussed in section 2,D, To provide the most objective compar­

ison of these models, we re-calculated the constants for each, using 

the same data and the same least-squares algorithm that were used in 

the development of the present model. The standard deviations that 

resulted for each are given in figure 5. The single constant in the 

model of Hanjalic and Launder (equation 39) which best fits the data, 

was -0.053 ± 0.003. This compares favorably with the value of -0.04 

suggested by the authors. The constant obtained for Shir's model was 

-0,0092 ± 0,0001 which is only about 10% smaller than the value of 

-0,01 adopted by Shir. Finally, the optimal value for the coefficient 

in the model of Wyngaard et al., and Daly and Harlow was calculated 

to be -0.065 ± 0,006. In contrast the value used by Wyngaard et al. 

is larger in magnitude by a factor of about two, while Daly and 

Harlow's suggested value is nearly Z5 times greater tha:n the optimal 

value, A graphical comparison between the profiles predicted by 

each of the triple-velocity correlation models, with the calculated 

'optimal' parameters, is shown in figures 10 - 13. 

The most important point to note with regard to these figures is 

the adequacy with which each model reproduces the data. Of the one 

parameter models, all are quite poor for u
1

u
1

u
2 

in the asymmetric 

channel flow, u
1

u
1

u
1 

for the pipe flow, u
1

u
1

u
1 

for the wall-jet, and, 
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FIGURE 10: TRIPLE-VELOCITY CORRELATION FOR ASYMMETRIC CHANNEL; 

COMPARISON OF MODELS: 

• experimental data of Hanjalic and Launder 

(1972a), 

present four-parameter model, 

- - -' - model of Hanjalic and Launder (1972b), 

--- - -model of Shir (1973), 

- - -model of Daly and Harlow (1970). 
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FIGURE 11: TRIPLE VELOCITY CORRELATION FOR PIPE FLOW; C011PARISON 

OF MODELS: 

• experimental data of Lawn (1971), 

---- present four-parameter model, 

- - - -model of Hanjalic and Launder (1972b), 

- '-- -model of Shir (1973), 

---model of Daly and Harlow (1970). 
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FIGURE 12: TRIPLE-VELOCITY CORRELATION FOR WALL-JET; COMPARISON 

OF MODELS: 

• experimental data of Irwin (1973), 

present four-parameter model, 

- -; --model of Hanjalic and Launder (1972b), 

- - - -model of Shir (197 3), 

---model of Daly and Harlow (1970). 
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FIGURE 13: TRIPLE-VELOCITY CORRELATION FOR MIXING-LAYER; COMPARISON 

OF MODELS: 

• experimental data of Wygnanski and Fiedler 

(1970), 

-----present four parameter model, 

- - - -model of Hanjalic and Launder (1972b), 

----model of Shir (1973), 

---model of Daly and Harlow (1970). 
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again, u1u
1

u
1 

in the mixing-layer. However, in general the model of 

Hanjalic and Launder provides the most consistent approximation to 

the experimental data. As expected, the four-parameter model of the 

present work provides an even better prediction of the distributions. 

Particularly noticeable are the improvements in those triple-velocity 

components for which the one-parameter models give the poorest 

approximations; namely, u
1

u
1

u
2 

for asymmetric channel flow and u
1

u
1

u
1 

for the other three flows. 

The flow which presents the greatest difficulty to the present 

model (and the other models as well) is the mixing-layer (figure 13). 

The disagreement here is particularly puzzling since the models con­

sistently predict values which are too large in absolute value on the 

high velocity side of the mixing layer(~< O) and too small on the 

low velocity side. In addition, the model error is most apparent in 

the x
1

-components of the triple-correlation (i.e. h
111

, h121 , h221 , 

and h
331

) where the magnitude is apparently correlated with the power 

of u
1 

which enters the correlation. This suggests the possibility of 

a consistent, biased experimental error in the measurement of u1 , 

which could result in the under-prediction of u
1 

at large free stream 

velocities, and in its over-prediction at low velocities. Alternately, 

the difficulty with modeling the triple correlation for this flow may 

relate to its intermittent nature, which could conceivably result in 

transport processes that are different on each side of the mixing­

layer. However, if intermittency is responsible, some explanation is 

required to explain the lack of a similar model error in the inter-
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mittent region of the wall-jet. To evaluate more thoroughly the role 

of intermittency, it would be interesting to repeat the experiment of 

Wygnanski and Fiedler with a non-zero velocity on the low-velocity 

side., in the presence of an upstream grid to generate substantial 

fre·e-stream turbulence. This would reduce the apparent intermittency 

of the flow, at least at the small scale. 

Finally, one must ultimately consider the important question as 

to whether the parameters determined in the above manner are 'univer­

sal' or simply suitable for the interpretation of a limited range of 

data. Some support for universality arises from the fact that the 

parameters are not drastically changed if they are re-evaluated on 

the basis of the experimental data from each flow separately. To 

illustrate this point, we have listed in table 6, the best-fit param­

eters for each flow separately. ~· certainly, since each set of data was 

compiled and reduced on different experimental equipment and instru­

mentation, it is not unreasonable to expect each set of data to contain 

a small biased error. Furthermore, we fully expect that a parameter 

which is important for one flow may not ·be important in another flow. 

In the latter case, not being important, the parameter cannot be 

estimated accurately. Hence, the variations in parameter values, 

evident in table 6, can be expected. Of fundamental importance is 

the obvious fact that the coefficients do not change sign and exhibit 

only reasonably small variations in magnitude from flow to flow. 
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C. Inhomo~eneous Tendency-Toward-Isotropy Constants 

It was pointed out previously that direct measurements of the 

pressure-velocity correlations would facilitate model development. 

Unfortunately, these correlations are extremely difficult to measure 

directly. Although several studies have reported measurements of 

pressure fluctuations at solid surfaces, Elliot (1972) reported the 

only measurements of pressure-velocity correlations away from the 

surface. However, even these measurements are of limited use in 

model development since only sparse information concerning other 

turbulence quantities was reported. Fortunately, even when direct 

measurements are not available, it is possible to estimate the 

tendency-toward-isotropy term from fully documented experimental 

data. For flows in ,which the profiles of all Reynolds stresses, 

mean velocity, dissipation rate and triple-velocity correlation are 

known, 

may be estimated by difference from equation (12), as the closing 

term. This term may then be decomposed into its 'intercomponent 

transfer' and 'pressure-diffusion' components as in equation (26). 

Each of the non-homogeneous flows described in ~ection 4.A was 

analyzed in this fashion. 

With the experimental tendency-toward-isotropy term so 

estimated, we evaluated the ability of the existing closure models, 

equations (30) - (33) to describe intercomponent transfer in 

non-homogeneous flows, by directly substituting the experimental 
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distributions of U., IT:'u. and£ into the models, to predict Aij at 
1. 1. J 

t the node.s of the grid described in section 4.B. In addition, the 

present homogeneous model was evaluated in the same manner. The 

resulting profiles of A .. are presented in figures 14 - 17. 
1.J 

Although none of the models predicts all of the profiles exactly, 

some are significantly more successful than others. In particular, 

Daly and Harlow's model consistently gives the poorest approximation 

to the experimental data, with the largest error invariably occurring 

in the A
12 

component for all of the flows. (Note that Wyngaard's 

model was not included in this comparison because of its non-invariant 

nature.) For the asymmetric channel and pipe flows, the model of 

Hanjalic and Launder provides the best approximation, while the 

present, homogeneous formulation also produces reasonable results. 

For the wall-jet, Hanjalic and Launder's model once again provides the 

best approximation for~~ 0.4. In this range, Shir's model tends to 

over-predict the intercomponent transfer (this would lead to a 

turbulence which is too isotropic), while the present homogeneous 

formulation tends to underpredict this transport slightly. On the 

other hand, the present model provides the best prediction of this 

flow for~~ 0.4. Hence, for Irwin's wall-jet, the profiles of Aij 

predicted by the present homogeneous model are comparable to those 

of Hanjalic and Launder's non-homogeneous model. The mixing-layer 

t The procedure used to calculate the wall effect 'contribution 
which appears in the models of Daly and Harlow, and Shir, is described 
in Appendix C. 
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FIGURE 14: INTERCOMPONENT TRANSFER FOR ASYMMETRIC CHANNEL; COMPARISON 

OF MODELS: 

• experimental profile, obtained by difference 

from Hanjalic and Launder's (1972a) data, 

----present homogeneous model, 

____ model of Hanjalic and Launder (1972b), 

-- ---model of Shir (1973), 

--- -model of Daly and Harlow (1970). 
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FIGURE 15: INTERCOMPONENT TRANSFER FOR PIPE FLOW; COMPARISON OF 

MODELS: 

• experimental profile, obtained by difference 

from Lawn's (1971) data, 

-----present homogeneous model, 

--- - model of Hanjalic and Launder (1972b), 

----model of Shir (1973), 

--- --model of Daly and Harlow (1970). 
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FIGURE 16: INTERCOMPONENT TRANSFER FOR WALL-JET; COMPARISON OF 

MODELS: 

• experimental profile, obtained by difference 

from Irwin's (1973) data, 

present homo~eneou~ model, 

- - ~ -model of Hanjalic and Launder (1972b), 

- - - --model of Shir (1973), 

----model of Daly and Harlow (1970). 
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FIGURE 17: INTERCOMPONENT TRANSFER FOR WYGNANSKI AND FIEDLER'S 

WALL-JET; COMPARISON OF MODELS: 

• experimental profile, obtained by difference 

from Wygnanski and Fiedler's data, 

-----present homogeneous model, 

- - - - model of Hanjalic and Launder (1972b), 
I 

- -- -model of Shir (1973), 

-----model of Daly and Harlow (1970). 
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appears to provide the most severe test of the intercomponent transfer 

models. Shir's model best predicts this flow, while Hanjalic and 

Launder's model also provides a reasonable estimate of the data. 

In contrast, the profile predicted by the present homogeneous model 

is qualitatively unacceptable. 

The homogeneous form of the intercomponent transfer model, which 

was developed on the basis of homogeneous wind tunnel data in section 

3.B, thus produces fair agreement with the experimental data, of the 

first four flows examined. Although these flows display strong 

inhomogeneities, the rate of intercomponent transfer is apparently 

dominated (in the context of the expansion in anisotropy and inhomo­

geneity) by the effects of anisotropy. On the other hand, poor 

agreement is observed in the case of the mixing-layer, where inhomo­

geneities in the Reynolds stress and dissipation rate are apparently 

most significant. In the following several pages, we consider the 

possibility that the inhomog·eneous terms suggested in section 2.D 

could account for the differences between the experimental data and 

the predictions of the homogeneous model. 

To establish which of the inhomogeneous constants in equation (29) 

are important a least-squares analysis, similar to that presented in 

section 4.B, was undertaken. The sequence of the two-stage parameter 

elimination is presented in figure 18. Once again the numbers adjacent 

to each step correspond to the number of the term in equation (29) 

which was eliminated at that step, and the vertical position of the 

symbol represents the standard deviation at that step. In the first 

phase (represented by the symbol '+' in figure 18), eleven parameters 
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were eliminated before a non-negligible increase in standard deviation 

occurred. The secondary elimination, which was initiated with the 

remaining thirteen-parameter model, began to show significant 

increases in standard deviation with about six parameters remaining. 

The four- and six-parameter models are compared in figures 19 - 22. 

An examination of these figures indicates that, in the case of the 

mixing-layer, the improvement that results upon including the two 

extra parameters is significant. The coefficients which correspond 

to the four- and six-parameter models are presented in tables 7a 

and 7b, respectively. 

Clearly, the inclusion of the inhomogeneous terms gives a 

significant improvement in model-data correspondence over the 

homogeneous model discussed previously. In the case of the channel 

flow, the inclusion of the inhomogeneous terms improves the perform­

ance of the model for each profile. However, it should be noted 

that, as the rough wall, (1 - x
2

) = O, is approached, the rate of 

intercomponent transfer calculated from the model still increases 

more rapidly than the experimental data. This will result in a 

somewhat more isotropic wall turbulence than was observed experimen­

tally. This over-estimation is also common to the other intercomponent 

transfer models (c,f. figure 14). 

In the case of the pipe flow, the inhomogeneous formulation again 

gives the best overall agreement with the experimental data. However, 

as in the case of the channel flow, the rate of intercomponent energy 

transfer is over-predicted in the wall region_, and the transfer is 
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FIGURE 19: INTERCOMPONENT TRANSFER FOR ASYMMETRIC CHANNEL; 

COMPARISON OF FOUR- AND SIX-PARAMETER MODELS: 

----four-parameter model, 

- --1- -six-parameter model. 
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FIGURE 20: INTERCOMPONENT TRANSFER FOR PIPE FLOW; COMPARISON OF 

FOUR- AND SIX-PARAMETER MODELS: 

-----four-parameter model, 

- - - - six-Parameter model. 
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FIGURE 21: INTERCOMPONENT TRANSFER FOR WALL-JET; COMPARISON OF 

FOUR- AND SIX-PARAMETER MODELS: 
' 

-----four-parameter model, 

- - - - six-parameter model. 
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FIGURE 22: INTERCOMPONENT TRANSFER FOR MIXING-LAYER; COMPARISON 

OF FOUR- AND SIX-PARAMETER MODELS: 

-----four-parameter model, 

----six-parameter model, 

----four-parameter model with coefficients 

evaluated excluding Wygnanski and Fiedler's 

data. 
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Table 7a. Intercomponent Transfer Parameters for Four-Parameter Model 

Flows Included in Parameter Estimation 

Parameter 

All Flows Channel Pipe Wall- Mixing- Mixing-Layer 
Flow Flow Jet Layer excluded 

2 2.39±0.23 2.68±0.15 -1.92±5.50 l. 70±0.59 9.70±2.25 2.38±0.21 Y7XlO N 
-.....J 
co 

yl3Xl0 -9.04±1. 72 -0.920±0.091 -1.06±0. 70 -1. 79±3.43 -11.32±1.48 -1.80±3.14 
--2 

y 17Xl0 5.48±0.63 5.16±0.61 14.6±3.50 4 .56±1. 31 4.27±1.50 5.03±0.62 

Y24X10 8. 21±1. 72 - - 1. 10±3. 43 10.6±1.5 1.20±3.14 

(Yl3+y24)Xl02 -8.30 -9.20 -10.6 -6.9 -7.6 -6.0 



Table 7b. Intercornponent Transfer Parameters for Six-Parameter Model 

Flows Included in Parameter Estimate 
Parameter All Flows Channel Pipe Wall- Mixing- Mixing-Layer 

Flow Flow Jet Laier excluded 

3 -3.44±1.5 -9.56±2.15 -28.0±7.6 -7.36±2.50 -19.0±6.30 -4. 68±1.46 y
5

Xl0 N 
-...J 

Y Xl0
2 \0 

5 .. 76±1. 65 7.02±2.55 -14.1±10.6 82.6±46.9 8.45±2.27 2.64±2.86 6 

Y no2 
7 

2.04±0.24 2.22±0.22 -2.55±1.24 1.44±0.52 4.54±2.47 2.21±0.26 

y13Xl0 -8.36±1.66 -1.07±0.09 1.66±1.06 2.02±3,55 -12.5±1. 38 1.81±3.25 

yl7Xl0 
2 

4.10±0.71 0.869±1.07 20,3±2.88 4.91±1.10 0. 863±1. 47 3.94±0.69 

Y XlO 7.45±1. 66 · - - -2.82±3.63 11.6±1.4 -2.76±3.26 
2-4 

(y 13+y 24)Xl0 
2 -9.1 -10.7 16.6 -8.0 -9.0 -9.5 
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slightly under-estimated in the core of the pipe. The A
12 

profile, 

on the other hand, is under-predicted through the flow. 

The profiles calculated for the mixing-layer with the inhomogen­

eous model show the most significant improvement over the homogeneous 

model. Even with this significant overall improvement, however, 

the predicted intercomponent energy transfer is still over-estimated 

for 1 > 0 (see also figure 17). The source of this difficulty is not 

clear. However, very slight errors in the profiles of u.u. would lead 
i J 

to rather large errors in a .. due to the very steep gradients in the 
iJ 

profiles in this region. It is possible that such errors are 

responsible for the apparent discrepancy in the model. This inconsis­

tency between model and data could also arise from a profile of E 

which is too small for~> O, since · the dissipation rate enters the 

2 
intercomponent transfer expression in proportion to q /s. However, 

the latter possibility is unlikely since over-prediction is not 

evident in the A
12 

profile. 

Only in the near-wall region of the wall-jet (figure 21) does 

the inclusion of the inhomogeneous terms result in a significant 

reduction in model performance. In particular, IA11 1 and IA33 1 given 

by the model at~~ 0.2 are smaller than the experimental values 

(and also smaller than the value predicted by the homogeneous model). 

This will result in an energy distribution which is more anisotropic 

than the data. Note, however, that the six-parameter model better 

predicts this region of the wall-jet than does the four-parameter 

model. 
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In an effort to investigate the degree of universality of the 

model parameters for the inhomogeneous terms in A .. , the parameters 
lJ 

were re-evaluated on the basis of only a limited portion of the data. 

The first test was to estimate the coefficients (as in section 4.B) 

on the basis of each flow individually. Before this analysis can be 

carried out, however, it is necessary to realize that for the pipe 

and channel flows, terms 13 and 24 are identical. These terms give 

different contributions to the intercomponent transfer, only for 

non-parallel flows. Thus, for the parallel flows, the columns in 

C (section 4.B) which correspond to terms 13 and 24 are linearly 

dependent. Hence, [cikcjJ cannot be inverted. To remedy this 

singularity, when the coefficients were evaluated on the basis of 

only the parallel flows, y
24 

was assumed to be zero. Although the 

wall-jet is not a parallel flow, as was noted previously, its 

streamwise derivatives have a magnitude of only 4% of the cross­

stream derivatives. Hence, in this flow also, it is primarily the 

sum (y
13 

+ y
24

) that is of relevance. The only flow in which the 

values of y
13 

and y
24 

have much significance individually, is the 

mixing-layer, since its streamwise derivatives are about 10% of the 

cross-stream values. The parameter values that resulted from the 

above analysis are presented in tables 7a, b. With the parallel­

flow singularity in mind, an additional row has been included in 

these tables, which gives the sum (y
13 

+ y 24 ) for comparison. 

An examination of table 7a indicates that, for the four parameter 

model, the parameters chosen on the basis of each flow independently, 
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are remarkably consistent with the parameters chosen on the basis of 

all flows taken together. In fact, with the exception of y
7 

in the 

mixing-layer and y
17 

in the pipe flow, the regions of uncertainty of 

all estimated parameters overlap. The values chosen for Y
13 

and Y
24 

on the basis of the mixing-layer differ considerably from those 

chosen on the basis of the wall-jet. However (as noted above), it 

is the sum (Y
13 

+ Y24) that is of relevance for this comparison. 

The agreement in this quantity is excellent. 

The coefficients presented in table 7b for the six-parameter 

model do not show the same consistency as was observed in table 7a. 

In fact, there is considerable variability in both the new coefficients 

(Y5 and Y6) and the old coefficients (Y
7

, Y
13

, Y
17 

and Y
24

). In 

the case of the new parameters, this is to be expected, since an 

examination of figures 19 to 22 shows that the two new terms are of 

primary significance only in the mixing-layer. Hence, these 

coefficients cannot be properly evaluated on the basis of the other 

three flows where they are of marginal significance. With all of the 

flow considered simultaneously, the parameter estimate is improved 

considerably, as substantiated by the fact that the six-parameter 

values fall within the uncertainty limits of the four-parameter model 

coefficients presented in table 7a. 

A second test, which was carried out to assess the universality 

of the coefficients, involved the re-estimation of model parameters 

on the basis of only the first three flows. (i.e. The mixing-layer 

was excluded from the parameter estimation.) These parameters were 
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then used to predict the mixing-layer profiles. As one would expect, 

for the flows included in the parameter estimation, the correspondence 

between model and data was improved slightly, while for the mixing­

layer the correspondence decreased. However, as indicated in figure 

22, the profiles predicted by the four-parameter model for the mixing­

layer (the long-short broken line) are not inconsistent with the 

experimental data, and, with the exception of the A
22 

component, gi ve 

a significant improvement over the homogeneous model profiles. 

Particularly good is the profile predicted for A
12

• The fact that 

parameters determined on the basis of the first three flows (for 

which inhomogeneities apparently account for only a small part of the 

total intercomponent transfer) can provide a reasonable approximation 

to the fourth flow, for which the inhomogeneous contribution is of 

primary significance, provides some additional evidence of parameter 

univer$ality. The actual values of the coefficients calculated on 

this basis are presented in tables 7a, b • . With the exception of the 

coefficients y
13 

and y
24

, all of the predicted parameters fall within 

the uncertainties of the original parameter estimates. Once again we 

conclude that the values of y
13 

and y
24

, which are very critical to 

the profiles of the mixing-layer, cannot be adequately estimated 

without a consideration of this flow. 

It should be remembered that only inhomogeneo~s terms to first 

order in anisotropy (i.e. to 0(1,2)) have been considered in the 

intercom.ponent transfer model to this point. Terms which are second 

order in anisotropy may also prove to be important, particularly in 
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the near-wall region of the wall-bounded flows, where anisotropy 

is the greatest and where the previous discussion has indicated that 

some systematic inconsistencies still persist. However, it is 

unlikely that terms which are higher order in anisotropy could 

significantly improve the prediction of the nearly isotropic mixing­

layer . Before an effort is made to isolate possible higher order 

t contributions in anisotropy, the full numerical solution of the 

two-point-boundary-value problems which govern these four flows 

should be undertaken, to assess further whether such terms are 

indeed necessary. 

D. Inhomogeneous Constants in the Dissipation Equation 

For the elimination of parameters from the Reynolds stress 

equation (sections 4.B and 4.C), direct measurements of the turbu­

len t diffusion term were available so that the profile of each term 

t o be modeled could be obtained explicitly, either directly from the 

experimental measurements or indirectly by difference from the 

governing equations. Similar measurements for the turbulent 

diffusion of dissipation rate are not available. Hence, the 

contributions of the production-dissipation term and the turbulent 

diffusion term cannot be independently identified. Thus, it is 

necessary to estimate the inhomogeneous constants in both tenn.s 

simultaneously. Furthermore, since the divergence of each term 

t This is an extremely difficult task due to the high. order. of 
the algebraic system that must be repeatedly inverted during the 
parameter el i mina tion. 
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suggested for Dk is simply a linear combination of the invariants 

proposed for P1 , only the 34 terms presented as equation (40b) must 

be considered in the process of parameter elimination and estimation. 

To accomplish the parameter elimination and estimation for the 

dissipation equation, with a reasonable computational effort, a 

least-squares formulation was once again sought. Since the inhomo­

geneous constants must be consistent with the homogeneous parameters 

which were determined in section 3.C, they must satisfy the equation 

De 
Dt (59) 

Here, Pa represents the homogeneous production-dissipation terms of 

equation (40a) (with parameters A) and P1 represents the inhomogeneous 

contributions to this term (equation (40b)), for which the parameters 

are as yet unknown. The parameters were estimated as the least­

squares solution of equation (59) in the manner outlined in section 

4.B. The weighting factors used in this analysis are given in table 

5. 

The elimination of dissipation parameters was carried out some­

what differently than in the previous analyses. Special consideration 

was required since, with all 34 terms included, C was very ill­

conditioned. Although C could be adequately inverted to achieve a 

set of parameters with small standard deviation, to within the 

acau:t.1acy of the data it contained terms which could be constructed 

from one or more combinations of other terms. The consequence of 
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this was that, for the first 10 to 14 parameters eliminated, any one 

of a number of terms could be eliminated to give a comparable increase 

in standard deviation. It was felt that if there was an alternative 

as to whether a zero, first or second order (in anisotropy) term 

should be excluded at a particular step in the elimination (to give a 

comparable increase in standard deviation), the second order term 

should be rejected. To accomplish this, the first phase of the 

parameter elimination was carried out as in sections 4.B and 4.C, 

with the modif ic.ation that in this phase only second order terms 

were discarded. 

The sequence of the preliminary parameter elimination is shown 

in figure 23, for the final 11 second order parameters eliminated. 

(The parameters eliminated, but not shown in figure 23, in the order 

of their elimination are: 21, 32, 22, 24, 29, 30, 19, 18, 14, 23.) 

The standard deviation showed its first significant increase with 21 

terin.s remaining. The second phase of the parameter elimination began 

with 22 parameters remaining. For this we adopted the same rejection 

criterion that was used in the first phase. However, no preference 

was given to zero and first order terms. As shown in figure 23, a 

significant increase in standard deviation occurred with 15 parameters 

remaining. The final phase of parameter elimination, which involved 

the inversion of the coefficient matrix C for each .parameter, at 

each elimination step, was initiated with 16 parameters remaining. 

On the basis of this final sequence of parameter eliminations, three 

models were selected for closer examination: the four-, seven- and 
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fourteen-parameter models. The coefficients calculated for these 

models are presented in tables 8a, b, c. 

Before the comparison of the four-, seven- and fourteen-parameter 

models is presented, it is interesting to examine the performance of 

the homogeneous dissipation model in predicting the inhomogeneous 

experimental data. This comparison is given in figures 24 to 27 

where, for the pipe and channel flows, the discrete data represent the 

homogeneous decay term, as calculated from the experimental profiles 

2 of£ and q, 

2 
-4.f_ 

2 
q 

(60a) 

and for the wall-jet and mixing-layer, the data correspond to the 

experimental profile of the similarity function 

( 
4e

2 
+ De ] 

2 Dt 
q 

(60b) 

The solid lines in these figures represent the homogeneous term, 

which was discussed in section 3.C, 

2 
£ (B II + B III) 

2 12 4 13 6 
(61) 

q q q 

For a homogeneous flow (and subject to the assumpt~on that the 

homogeneous mod.el is correct) the functions (60) and (61) must be equal 

t.o satisfy equation (42). Hence, in the inhomogeneous flows which we 

are examining, one can attribute differences between these fnnctions 



Table 8a, Coefficients~ of the Four-Parameter Dissipation Model 

Flows Included in Parameter Estimate 

Parameter All Flows Channel Pipe Wall- Mixing- Mixing-Layer 
Flow Flow Jet Layer excluded 

N 
00 

b2Xl0
2 

\.0 

3,05±0,87 3.63±0.47 2. 77±1.64 -0.521±2,06 7 .45±1.25 3.43±0.69 

b20x10 3,22±1.64 6.11±1.20 7.29±0.91 9.05±1.92 -8. 03±1. 97 5,71±1.28 

b26x10 -12.2±0.92 -9.42±0.70 -12. 70±1. 73 -4.81±3.97 - 13 • 9 ±.0 • 5 7 -9.82±0.89 

b27 2.37±0.34 1. 37±0 .18 2.50±0.17 1.56±0.65 2.47±0.59 1.55±0.33 



Table Sb. Coefficients of Seven-Parameter Dissipation Model 

Flows Included in Parameter Estimation 

All Flows Channel Pipe Wall- Mixing- Mixing-Layer 
Flow Flow Jet Layer excluded 

b1Xl02 -5.65±0.85 -7.29±0.57 -8. 34±1. 77 -15.8±1.9 -2.48±0.67 -5.10±1.72 

-
b2Xl02 5.79±0.74 6,69±0.80 1.48±1.99 4.36±1.53 8.40±0.66 5.43±0.90 N 

"' 0 

b
4
x103 -4.75±1.14 -7.97±2.36 -1.86±0. 71 -11. 7±1.06 -7.41±0.64 -3. 99±1.32 

b
7
Xl0 2.73±0.50 4.26±4.53 -9.93±3.67 6.05±0.87 1.99±0.32 2,50±0.99 

b20 1. 26±0.18 2.08±0.12 1.10±0. 09 2.99±0.22 -0.104±0.231 1.22±0.22 

b26XlO -9. 57 ±0. 77 -8. 96 ±0. 77 -10.1±2.0 -0.354±7.82 -11. 0±0.52 -9.57±0.87 

b27 2.09±0.30 2.19±1. 29 -1. 71±1.48 1. 74±1.49 1.61±0.30 2.06±0.43 
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Table 8c. Coefficients of the Fourteen-parameter Model 

Flows Included in Parameter 

Parameter Estimate 

All Flows Mixing-Layer 
Excluded 

b1 X 10 -1.18±0.15 -1.69±0.28 

b2 X 102 
8.21±0.57 9.10±0.84 

b
4 

X 103 -7. 72±0. 71 -7.23±1.05 

b6 X 102 
71.5±14.6 -2.87±0.68 

b
7 

X 10 9.58±1.31 12.0±2.12 

b13 -1.26±0.20 -1.29±0.26 

bl6 4.10±0.82 4.56±1.56 

bl7 12.50±1.85 14.00±4.73 

b20 2.22±0.15 1.98±0.37 

b25 -2.37±0.53 -3.05±2.05 

b26 -1. 78±0.20 -1.82±0.24 

b27 7.40±0.82 8.17±1.14 

b29 -17.30±2.73 -19.9±4.66 

b33 -2.02±0.367 -1. 26±0. 678 
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to inhomogeneous effects, that must be accounted for by P
1 

and Dk. 

The profiles in figures 24 to 26, predicted by the homogen.eous 

model, are surprisingly good approximations to the experimental 

profiles. On the other hand for the mixing-layer the homogeneous 

profile is a very poor approximation to the data. Once again, the 

comparison in these figures leads us to conclude that the inhomogeneous 

effects are most significant in the mixing-layer. Also, the fact 

that the homogeneous model so closely approximates three significantly 

inhomogeneous flows is some evidence in support of the parameters, 

chosen in section 3.C, as universal values. 

The comparison of the four-, seven- and fourteen-parameter 

model.s is presented in figures 28 to 31. Once again in these figures, 

the discrete points represent either the homogeneous decay term (60a) 

or the similarity function (60b) as indicated. The lines represent 

the closing term to the dissipation equation, as predicted by the 

model equation, 

- (PH. + P
1 

- _a_. D ) 
a¾_ k 

(62) 

In order that the experimental dissipation profile satisfy its 

governing model equation, terms (60) and (62) must be equal. Hence, 

the adequacy with which the lines in figures 28 to ·31 approximate the 

discrete points is -a quantitative indication of the adequacy with 

which the model can predict the dissipation profile. 

An examination of figures 28 to 31 indicates that the largest 

deviations between the model and the experimental data occur for the 
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wall-jet in the range 0.3 ~ D ~ 1.1, and for the mixing-layer over 

the entire range of£. Similar difficulty with these flows is also 

encountered by the models of the previous authors (as will be seen in 

conjunction with the discussion of figures 33 to 36). Clearly, of 

the three alternative models examined, the fourte·en- parameter model 

gives the best correspondence to the data. However, it is uncertain 

that fourteen parameters can be estimated adequately on the basis of 

only four experimental profiles, 

Once again, in an effort to generate some evidence of the 

universal nature of the model parameters, and to perhaps provide 

additional insight to aid in the selection of the appropriate model, 

an estimation of parameters on the basis of limited portions of the 

data was undertaken, Table 8a gives a comparison of the coefficients 

cal.culated on the basis of each flow individually, for the four-

I 

parameter model. Between the flows, the parameter values are reason-

ably consistent. In general, the values do not fall within the 

confidence bounds of the initial parameter estimate. However, the 

only significant deviations from this confidence interval occur in 

b
20

, which, in the original estimate, is heavily influenced by the 

mixi ng- layer value. In other instances (b2 and b26 in the wall-jet), 

the confidence interval of the second estimate is very broad. 

Hence, the deviations in these cases have less significance. 

A similar comparison in table 8b, for the seven-parameter model, 

indicates a somewhat greater variability in the values of the 

coefficients. However, even in this case the coefficients generally 
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maintain at least the same sign and magnitude for all flows. Excep­

tions to this behavior are b
7 

for the pipe flow and b
20 

for the wall­

jet. This variability in parameter values is not surprising in view 

of the relatively large number of parameters estimated from the very 

restricted amount of data which is used for each estimate. It is 

for this very reason that the necessity to include diverse data for 

parameter estimation was emphasized previously. 

An attempt to provide a similar comparison for the fourteen­

parameter model encountered considerable difficulty due to the 

singularity of the coefficient matrix, C, when each flow was considered 

individually. Hence, the comparison of parameters for the fourteen­

parameter model has not been presented. 

As a final comparison of the four-, seven- and fourteen-parameter 

models, the coefficients were re-evaluated on the basis of only the 

first three flows. The coefficients calculated from these flows were 

then used to predict the mixing-layer profile as shown in figure 32. 

This figure gives perhaps the best demonstration of the manner in 

whtch the uncertainty of the parameter estimate (as a universal 

representation) increases as the number of parameters, ~hich are 

retained, increases. In this comparison, the four-parameter model 

gives the. best correspondence to the data, although it does under­

predict the values for~~ 0.0. As additional parameters are included 1 

the correspondenc.e decreases. However, it is significant that the 

predicted profile moves in the correct direction upon advancing from 

the four- to the seven-parameter model (even though it moves too far). 
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In conjunction with the results in tables 8a, b, this suggests that 

the seven-parameter system may provide a generally applicable 

dissipation model when the coefficients are determined subject to the 

additional constraint of the mixing-layer flow. 

To provide a fair comparison between the present and previous 

models, the least-squares analysis was repeated to determine the 

optimal coefficients for the other models described in section 2.E 

(equations (42) - (45)) • . The analysis indicated that the coefficient 

of the production-dissipation ratio in Hanjalic and Launder's model, 

u. u. ax. 
1 l<. 1 

E 

should be 3.29, in very good agreement withtre value suggested by 

Hanjalic and Launder. Similarly, the turbulent diffusion coefficient 

used by Hanjalic and Launder is only 20% larger than the optimal 

value of 0.041 which we obtain for the present data. The same values 

of these coefficients also apply for Wyngaard's model. 

Our least-squares analysis of Daly and Harlow's model indicated 

that the coefficient of the production-dissipation ratio should be 

3.51, while the coefficients of the energy gradient and dissipation 

gradient terms should be 0.05 and 0.063, respectively. Thus, 

according to the present data, Daly and Harlow's choice for the 

coefficient of the production-dissipation ratio is in error by a 

factor of two, while their tacit assumption that the other coefficients 

are unity, is in error by almost two orders of magnitude. 
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Shir's model contains only three parameters which may be 

adjusted since the fourth parameter, which corresponds to 

is fixed by the choice of the coefficient for the turbulent diffusion 

of turbulence energy term (section 4.B). The present data suggest 

that Shir's choice of the production-dissipation ratio is nearly the 

optimal value of 2.95. However, the coefficient of the length-scale­

dif fusion term is larger than the value of -0.0043, which we obtain 

with the present data. Finally, for the coefficient of the wall­

effect term., our analysis suggests a value. of 0. 014, which is only 20% 

smaller than the value used by Shir. 

The necessary comparison of the dissipation models of Hanj ali.c 

and Launder, Daly and Harlow and Shir is given in figures 33 to 36. 

All of. the models exhibit the greatest difficulty in predicting th.e 

mixing-layer profile. Although each displays the double minimum in 

the profile which is observed experimentally, these minima are to·o 

sharp and, in contrast to the data, are almost synnn.etric. Very 

significant deviations from the experimental data are also evident 

in the near-wall region of the wall-jet for the models of Hanjalic and 

Launder, and Daly and Harlow. Less severe deviations in this flow, 

for~~ 0.3, are observed with Shir's model. Most important, however, 

is the fact that a comparison of figures 28 to 31 wi.th figures 33 to 

36 indicates that both the four-and seven-parameter models of the 
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present work give appreciably better overall agreement with the 

avaiiable experimental data. 
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5., CONCLUSIONS 

The present work provides a much needed, unifying compa~ison of 

the second-order phenomenological turbulence models which have recently 

received the greatest attention in the literature. Although hampered 

by the extremely small body of experimental data (which has also been 

noted by previous authors, c.f. Daly (1974), and Lumley and Khajeh­

Nouri (1973)), this comparison graphically demonstrates that at 

least one supposedly validated turbulence model is, in fact, not even 

aonsistent uJith the experimental data that are available. In 

particular, the values of certain model constants suggested by Daly 

and Harlow (1970), and used by Daly (1974), were shown to be in error 

by orders of magnitude when compared with the optimal values, 

calculated for the data examined in the present analysis. Of greater 

significance, however, is that even in the simple homogeneous flows 

(for which these ·incorrectly estimated coefficients do not enter), 

the Daly-Harlow model produces qualitatively unacceptable results. 

In contrast to the Daly-Harlow model, the forms proposed by 

Hanjalic and Launder (1972b) and Shir (1973) were shown to be reason­

ably consistent with all of the inhomogeneous flow data which were 

examined. In particular, both Hanjalic and Launder's model and Shir's 

model of the tendency-toward-isotropy term were found to yield 

reasonable approximations for the four flows which we studied. 

H.owe.ver, even these models performed very poorly when applied to the 

simplest of turbulent flows, the homogeneous shear flow. 

In addition to providing a comparison of turbulence models, the 



312 

present work also undertook the development of an improved turbulence 

model for isothermal flows. To this end, the rational closure 

technique proposed by Lumley and Khajeh-Nouri (1973) was adopted, 

and the systematic evaluation of the potentially numerous model 

constants was undertaken. Once again, the most significant handicap 

in carrying out this estimation was the dearth of totally documented 

experimental data, suitable for parameter estimation. This shortage 

ranges from the simplest of homogeneous decay flows which were 

considered in section 3.C, to the more complex inhomogeneous flows of 

the type examined in section 4. Notwithstanding this deficiency of 

data, however, our efforts to date have led to a preliminary estimate 

of the parameters for an isothermal turbulence model which shows 

promise as a widely applicable formulation. Although the parameters 

were estimated on the basis of a least-squares analysis of the 

experimental data, it is important that the estimates be viewed as 

preliminary, particularly for the non-homogeneous parameters. The 

'fine-tuning' and ultimate verification of the universality of the 

model parameters must be established on the basis of full solutions 

of the equations of motion, and subsequent comparison with a broader 

cross-section of experimental flows. 
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Appendix A: Correct Scaling of the 'Dissipation of£' Term 

It is well known (c.f. Hinze (1959), pp. 153) that the rate of 

turbulence energy dissipation is related to the two-point velocity 

correlation in the manner 

where r ' is a position vector. Similarly, the dissipation of£ term 

is related to the two-point velocity correlation in the manner 

lim 
~o 
y-+O 

At large Rei, the small scale (dissipative structure) is isotropic. 

Thus, at this scale the two-point velocity correlation can be described 

in terms of the single independent variable,~= x - y (the separation 

of the · two points). Hence, 

u. (r + x) u. 
l. l. 

£ = 

and 

R .• 
l.l. 
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if the three-dimensional energy spectrum is denoted by E(k), where 

00 00 00 

(the integral over 'A' represents an integration over all shells of 

radius k) and k is the wave number, then 

2 £(k) = vk E(k) (A-1) 

and 

D(k) 2 vk E:(k) (A-2) 

Equation (A-1) indicates that the peak of the dissipation 

spectrum is shifted away from the peak of the energy spectrum, toward 

higher wave numbers, and smaller eddies. Similarly, (A-2) indicates 

that D(k) is shifted to even smaller eddies. However, E(k) has been 

found experimentally to peak at k 'v 1/211• · Since 1/f\ is the character­

istic scale of the smallest eddies, D(k) must also peak at a value 

of k near 1/~. Since these spectra reach their maxima at approx­

imately the same wave number, we can make the estimate 

D I\., v f 00 £ ~~) dk = v £ 
2 

o 1 Tl 



323 

Appendix B: Discussion of Invariant Modeling 

i) Invariant Basis for a Symmetric Second Order Tensor and 

Two Vectors 

Consider the symmetric tensor and two vectors A, cp and lJJ 

where A has zero trace. The number of independent 'invariants' 

(i.e. invariant under a general transformation of the coordinate 

system) needed to fully describe cp, 1.jJ and A are: 

and 

A 5 

tjJ 3 

<f> 3 

11 

As the principal invariants of A, the independent functions 

II = A .. A .. 
l.J l.J 

III = A.kA. .A .. 
l. --kJ J l. 

(B-1) 

are chosen. It is perhaps useful to note that these invariants are 

related to those (T.) which appear in the characteristic equation of 
l. 

A, 

(B-2) 

where the three roots, ;>..,, of equation (B-2) are the eigenvalues of 
l. 

A. It can be shown that since A has zero trace and is symmetric, 

Tl= trace of A= O, 

II 
t 2 = sum of minors of diagonal elements= 2 , 
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- III 
T 3 = determinant of A= - 3-

The three additional invariants required to fully describe A 

may be constructed with the aid of the vectors~ and W• They are 

(B-3) 

- -Finallyt to specify wand~ to within a reflection requires six new 

invariants 

(B-4) 

To resolve the sign ambiguity requires the additional invariant 

(which changes sign under a reflection of wk) 

where £ •• k is the alternating tensor. 
l.J 

(B-5) 

The scalars (B-1), (B-3), (B-4) and (B-5) constitute an invariant 

- -basis for the vectors and tensor~, i.µ and A. 

ii) Use of the Invariant Basis to Establish the Structure of a 

Second Order Tensor Function 

It is de.sired to establish the most general form of the 

se.cond order symmetric tensor function, Tij, of the tensor Aij. The 

invariant of Tij' formed with respect to two arbitrary vectors 
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~and~ (i.e. T. -~-~.) must be a function only of the invariants of 
l.J l. J 

A,-;;;- and~, listed in the previous section. However, since T.j~-~- is 
l. l. J 

bilinear in ~i and ~j' certain of these invariants may be eliminated 

since the functionality must be valid for arbitrary ~i and ~j. Thus, 

T .. ~.w. can be a function only of 
1J . l. J 

II, III (B-6) 

(B-7) 

The invariants (B-6) do not contain ~i or ~j' while the invariants 

(B-7) are bilinear in these variables. Thus T .. ~.~. must be a 
l.J l. J 

linear function of (B-7) with coefficients that are functions of 

(B-6). Hence, the most general form for Tij is 

(B-8) 

2 If there are additional scalar variables, such as q and E, which 

are invariant under general coordinate transformations, these will 

also enter the functionality of (B-8) through the coefficients. 

To emphasize that tensor products of A, of higher than second 

order, need not be included in (B-8), it is useful to examine the 

Cayley-Hamilton Theorem (c.f. Tou (1964), pp. 43) which states that 

ever-y ma,trix satisfies its own characteristic equation. Hence, 

= II A + l!.!. ~ - 2 ij 3 uij (B-9) 

Furthermore, multiplication of (B-9) by Api gives 
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(B-10) 

If this process is continued, it can be shown that all tensor 

products of third and larger order can be expressed as a linear 

combination of A . . , A.kA.. and o .. , with coefficients which are 
1.J 1 --kJ 1J 

polynomials in the invariants of Aij• Due to this linearity, 

tensor products of third and higher order need not be included 

in (B-8). 
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Appendix C: Calculation of the Wall Effect Function for the Pipe 

Geometry 

The scalar function in the wall-effect tensor used by Shir and 

Daly and Harlow, in cylindrical coordinates, takes the form 

(C-1) 

where x = (r, e, z) is a vector in the cylindrical coordinate system, 

with z the axial coordinate. In (C-1) all lengths have been normalized 

by the pipe radius. This integral may be rewritten as an explicit 

function of r, 8, and z 

= ; r -(z_2_+_( l_l_+_r2_)_)_2 

2a ) - - 2 dz 
1-a 

where 

2r 
a 

-1 
- 2 sin (a) 

2 3/2 
(1 - a ) 

(C-2) 

We were unable to integrate (C-2) analytically. Hence, for each r 
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of interest, the integral was evaluated numerically using Simpson's 

rule. The integral converged to its asymptotic limit for z % 10. 




