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ABSTRACT

The concept of the ideal transformer is presented in terms of
flux relations contrasting a non-ideal transformer, which may be
represented by an impedance matrix, to an ideal transformer which
may not. The interchangeability of the considerations of a transformer,
first, as a constraint on the currents (a "multiwinding' transformer)
and, second, as a constraint on the voltages (a "multilimb" transform-
er) is formulated. Mesh and nodal analysis is extended to include net-
works involving ideal transformers by the use of Lagrange multipliers.
These multipliers are eliminated from the equations by a procedure,
in terms of compound matrices, that is facilitated by reduction of the
transformers to a sandard form. The procedure is also interpreted
as a set of rules such that the mesh and nodal equations of a general
network can be written by inspection. The possible degeneracies in
network equations are considered, and a "scattering matrix" procedure
presented to cover these cases. The orientation of the branches in a
dual network is analyzed and the dual of an ideal transformer is given.
The duality concept in electrical networks is considered in terms of
matrices that describe the sets of branches belonging to the various
meshes (connection matrix) and belonging to the various node-pairs
{(branch, node-pair matrix). Using the extension of the duality prin-
ciple to non-planar networks, a procedure is presented for drawing
a network diagram from its connection matrix. As an application, a
general procedure is given for finding the electrical analog of a2 me-
chanical structure. Also, the role of gyrators and network duality
is mentioned. The problem of minimizing the number of transformers
in a network is approached by a circuit reduction technique. Networks
uniformly dependent on frequency are first synthesized by Cauer's
technique. The conditions are derived for then eliminating the trans-
formers from this circuit, one by one, for the particular case of a
network with three grounded terminal-pairs.



INTRODUCTION

An investigation of networks involving ideal transformers derives
its timeliness from the rise of new, general network synthesis procedures,
each of which involves the use of ideal transformers, and upon the
incréasing utilization of the electrical analog for the solution of problems
in mechanics.

For example, if a light, stiff rod were connected between two of the
variously moving parts of a mechanical system, then the possible types of
motion within it would be constrained. If the inertia added ta the system
by the rod camn be neglected, and if the change in the length of the rod due
to forces applied to it can be neglected in comparison with other deform-
ations taking place in the system, then the rod and a two-winding, ideal
transformer are exact analogs, one of the other.

The type of constraints represented by ideal transformers is much
more common in mechanical systems than is usually present in electrical
nétworks because of the difficulty in building the ideal transformer. By
careful utilization, however, of particularly adapted magnetic materials,
two-winding transformers, with taps giving various turns ratios, have
been built to represent ideal transformers for use in analog computers
such as thé Caltech Analog Computer,

There is direct application to analog computation, therefore, of re-
search into: (1) the different manners in which ideal transformers can be
connected within a system; (2) the elimination of transformers that repre-

sent superfluous constraints; and (3) the replacement, in certain situations,
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of i;dea_l transformers by less expensive circuit elements, such as resis-—-
tors.

In this thesis, the equations representing networks having a large --
or even unsPeqiﬁed -~ number of meshes and nodes have been written in
simpiiﬁed notation by the use of ""compound" or ''partitioned' matrices.
Also, as another mathematical tool, certain results from the field of
topology have been used, some of which are quite familiar to those who
- work with electrical network problems.

One such property is the fact that each planar graph has associated
with it a '"dual'' graph, the properties of the two being describable in the
same manner. The concept of duality in electrical networks follows from
the concept of duality in topology. Networks are electrical duals of each
other if the equations of one are identical in form to those of the other =--
provided the roles of current and voltage are interchanged.

To apply the concept of duality to non-planar networks, it is necessary
td utilize ideal transformers. Hence, ideal transformers broaden the appli-
cation of the principle of duality. This should be of interest not only to
electrical engineers, but also to topologists.

Mo‘st efficient application of the theorems of topology to electrical
networks can be made if these theorems are stated in the language of ma-
trices, following the lead of Gabriel Kron. To describe the interconnection
of the elements of an electrical network, that is, to describe its topologi-
cal properties, various matrices can be written. The dual relation exist-

ing between these matrices is presented in the thesis, and through intro-
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dﬁc;c\ion of -néw notation, the fundamental matrices describing the graph of
a network are reduced from three to two types.

Also, the principles of duality are broadened in another respect.
Previously, networks described by mesh equations have not had an equal
footiﬁg from the viewpoint of network topology with those described by node
equations, since networks described by node equations can (in situations
described in the text) he diagramed directly =~ while, in comparison, the
description in terms of mesh equations does not directly yield a network
diagram. But now, in the section, "Drawing a Network Given its Con-
nection Matrix, " a procedure is given for obtaining the network diagram
frum the co
application of this procedure is given in the last chapter. Here, as far as
the author knows, the step~by-step method of drawing the circuit for the
electrical analog of a mechanical structure is given for the first time,

In presenting the material in this thesis, specific examples have pre-
céded each peneral development. The circuit diagrams represen_ting the
examples have been included as well as equations written out term-by-
term. This has been done in Chapter II, on the analysis of networks in-
volving ideal transformers; in Chapter III, on the formation of a network
impedance matrix; and in Chapter VII on the electrical analogs of mechan-
ical structures.

The matrix formulas -- as in Chapter III -- have also been examined

for a physical interpretation. Thus, from formulas, a procedure for

writing the impedance matrix by inspection without the use of matrix
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rn'eth;)ds is givgn which covers the case of networks involving ideal trans-
formers, The rules owe their derivation to the matrix manipulation, and
and are in simple form because of reductions that are first made on the
circuit diagram.

Reduction of circuit diagrams is one of the most powerful tools of a
network analyst. A simplification of the circuit diagram may represent
the savings of a great deal of effort in the manipulation of equations, as
well as the possible errors that may arise from these manipulations. Re-
duction of circuit diagrams, rather than an exclusive examination of the
network equations, furnishes the key to the minimization of the number oi
ideal transformers needed in a particular network synthesis. For
example, a Cauer network, consisting of ideal transformers and imped-
ance elements all of one type (all resistors, all capacitors, or all self-
inductors) may be drawn from a given set of equations. The question
would then be the elimination of transformers from the Cauer network.

A éystematic procedure (given here, the author believes, for the first
time) for stepwise elimination of the transformers and for the necessary
requirements on the network parameters to permit such elimination, is
presented in the case of a network with three terminal-pairs, each with a
common ground. By this method, one finds the minimum number of trans-
formers necessary in the given network.

In relating this last result to the work of others, there is the need to

generalize, first, to include networks having a greater number of termi-

nals, and secondly, to include networks containing various types of
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| ifnpédancé eléinents. The synthesis procedures of Bayard, Belevitch,
Leroy, MacMillan, Oono, and Tellegen would furnish the starting point
for such a project. (See Bayard's summarization in the Proceedings of
the Symposium on Modern Network Synthesis, Polytechnic Institute of

Brooklyn (April, 1952), pages 66-83.)



TABLE OF CONTENTS

CHAPTER PAGE
I. The Two-Winding Transformer 1

The General 4-Pole

Magnetic Circuits

Induced Voltages

Transformer with No Leakage Flux
Magnetizing Current

The Transformed Equations

The Ideal Transformer

The "Windings' of the Ideal Transformer
A Circuit for Transformer with No Leakage Flux
The Multiwinding (Ideal) Transformer
Transformer with Several Magnetic Paths

II. Analysis of Networks Involving Ideal Transformers 8

The Equations

Their Solution

Some Permissible Alterations

Expansion of Determinants

Lagrange Multipliers

The Multilimb (Ideal) Transformer
Transformer with Several Magnetic Junctions

Nodal Analysis

. III. The Impedance Matrix in Mesh Analysis 16

Reducing the Equations

A Second Example of Reduction

The General Procedure

Numerical Manipulations

Transforming the Winding-Turns

Selection of Meshes in a Transformerless Network
Equivalent Voltage Sources

Branches and Transformer Windings

Selection of Meshes

Matrix Procedure for Transformerless Networks
Matrix Formulas for Networks Invblving Transformers
The Development by Kron

Suggested Matrix Procedure

The Impedance Matrix by Inspection

Self Impedance of an Ideal Winding

Mutual Impedance between Ideal Windings

A Cauer Network



CHAPTER PAGE
Ch‘apte r III, continued

Matrix Interpretation of Rules 1 and 2

Common Impedance to Two Magnetizing Meshes
Illustration Using Rule 4

Impedance Coupling between Load and Magnetizing Meshes

IV. Singular Impedance Matrices and Superfluous Transformers 46

Possible Degeneracies in Transformerless Networks

Singular Meshes Consisting Only of Transformer Windings

Superfluous Transformers

Replacing Multiwinding Transformers by Two-Winding
Transformers

Transformers Incidentally Superfluous

Voltages Applied to All-Winding Meshes

The Scattering Matrix

Networks Consisting Only of Ideal Transformers

V. Duality and Topology 60

The Electrical Dual

Planar Networks and the Topological Dual

Oriented Branches, Meshes, and Cut-Sets

Orientation of Branches in the Topological Dual

The Dual of a Dual

Polarity Notation of Electrical Duals

The Dual of an Ideal Transformer

The Dual of Cauer's Network

Duality and Mutual Inductance

Reductions in a Particular Beam Analogy Circuit

Connection Matrix and the Standard Branch, Node Matrix

The Connection Matrix Not in Standard Form

Planar Networks Electrically Equivalent to Non-Planar
Networks

Analysis of a Planar Network Containing Transformers

Drawing a Network Given its Connection Matrix

Dual Results to Those in Chapters III and IV

The Gyrator

VI. Minimizing the Number of Ideal Transformers in Network
Synthesis 91

The Nodal Admittance Matrix

The Nodal Admittance Matrix for Transformerless Networks

The Nodal Admittance Matrix for Transformerless Con-
ductance Networks

Elimination of a Transformer



' CHAPTER
B ‘Chapter VI, continued

Elimination of a Transformer in the Cauer 4-Pole
Elimination of Transformers in the Cauer 6-Pole
Suggested Synthesis Procedure for 6-Poles

VII. Electrical Analog of Mechanical Structures

Electrical Analogs

Analog for a Cantilever Beam

Cantilever Beam in Bending and Compression
Cantilever Beam with Redundant Support
Constrained Sources in an Electrical Network
The Analogous Quantities

Appendix. The Extended Cauchy Expansion of Determinants

References

PAGE

99

108

113



1.

I THE TWO-WINDING TRANSFORMER

THE GENERAL 4-POLE

The equations of a general 4-pole, written in réeference to

Figure 1, are:
V, s 2,0, + 2,10 r__o o_—l
/] - /’ / Iz 2. V + m K\ +
1 . . v,

. . 1 - ¢ 2 -
Va=ZEz¢ + 22742 (1) L’ | —o0 0————]

Figure 1
Note that the terminals are grouped in pairs; for any pair the current
flowing into one terminal equals that flowing out the other. The param-
eters of the 4-pole, zij’ can be determined experimentally by measuring
voltages and currents at the terminals. The ideal transformer will be
considered here as a particularized 4-pole (or later, 2n-pole) developed

from magnetic considerations.

MAGNETIC CIRCUITS

Since the divergence of the induction, B, is zero, B is solenoidal.
This permits the concept of circuitous tubes of flux, with the flu#, 4,
being a constant within each tube. By Ampere's Law (neglecting Max-
well's di.splacement currents), the line integral of the magnetic field
intensity is equal to the product of the current interlinking the path of the
line integral times the number of turns the current takes about, that is,
interlinks this path. With the path selected along a tube of flux,

/%uj}?éu "f;%"“‘ gy/{_j;ﬂte | (2)

where R, the reluctance, represents the above line integral. This line
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‘ vi'n’lc‘egrlgal is onljr a function of the geometry of the coils and the magnetic
properties of the medium. Thus, Ampere's Law for a magnetic circuit
is:
$R=ni (3)
(One may start from this point to derive magnetic circuit diagrams

which turn out to be topologically the dual of the flux path configuration.

See Cherry, R-1.)

INDUCED VOLTAGES

With the assumption that the magnetic permeability of the core is
independent of the flux density, the equation for the magnetic circuit is
linear. This being the case, if several electric circuits should encircle
a tube of flux, a portion of the flux may be assigned to each. For example,
the flux due to the jth current is

$; K = njij (4)
From Faraday's Law, the voltage drop due to current in the jth

circuit in the assigned direction is

s .
v; = nj df; = Tk Ly (5
7 7 r At )

The voltage in that circuit due to the current in the kth circuit

(assuming flux produced by ik and i is in the same sense) is

J
Vi = oy ST M L (6)
T e R Tt

TRANSFORMER WITH NO LEAKAGE FLUX

In the case where all the flux links all the turns of both the

windings, having turns nl and n2 respectively, the voltages are
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: L, Al n, N, od L
Vv, = 5 : : 2
o 4 A€ LA R At (7)
V,_ — fl;_nl 0(-1.1 —t nz Mo GLLz
R At ' R de

The ratio of the applied voltages is independent of the reluctance,

R, of the core. . it is

Moo= Y (8)

The expression for the total flux in the core yields

)‘l,l., +Yl‘,_2'2 = R(4 r D) (9)

MAGNETIZING CURRENT

The equations may be simplified further if they are written in
terms of new currents, linearly related to the old ones. In the parlance
of mechanical systems, this is "transforming the coordinates.' But
what new coordinates shall be selected?

The linear combination, nli1 + nzi-z, occurs naturally in the system,
as is seen in the section directly above. Let, therefore, this combination
represent a new current, Or better still, in order to keep the new term
in the same units as the old, let it be a current (1m) times a nurnl:i'er of

turns, say, n This would give

1"
Nlp = Nl + M0, (10)

where i is called the ""magnetizing current, "
m

THE TRANSFORMED EQUATIONS
~ Writing the transformer equations in terms of im and iZ {the mag-

netizing and load currents), instead of i, and iz, the terms involving i

1 2

cancel, leaving
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(11)

Vo = ﬂ,"?n' > Em
where the symbol, p, is to stand for d/dt.
o If this transformation had been carried out so as to keep the
expression for power invariant (R-2), the resulting equations (easily
obtainéd by matrix manipulations) would have been in symmetrical form,

as follows:

S
il

' {12)
+ 01,

=
1
l
X
I
Q
SN

Note that there are no off-diagonal coupling terms, indicating that

the coordinates chosen are the normal coordinates of the system.

THE IDEAL TRANSFORMER

Prompted by the fact that the reluctance of a path in iron is very
small compared to one in air, the ideal concept is taken as a core with
zero reluctance. This implies infinite values for vy and v, unless
simultaneously im is set to mero. With both R and im zero, the values

of v, and v, are indeterminate, and the equations reduce to

1
ny _
Ve — n, v, = ©
Nt o+ My i, = © (13)

THE "WINDINGS'" OF THE IDEAL TRANSFORMER

A schematic representation of an ”r gf

v /‘\ A vy
ideal transformer is shown in Figure 2. _T { iz T_
n,:n;

The coils or windings should not be mis-
Figure 2
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' taken for inductors. There is no self or mutual impedance associated
with an ideal transformer. The currents do not determine the value of

the voltages. Such impedances were present, however, before im was

set to zero.

A CIRCUIT FOR TRANSFORMER WITH NO LEAKAGE FLUX
A transformer in which all the flux links all the turns of both

windings is represented by an ideal transformer and a shunt inductor as

shown in Figure 3. The inductor has

DY i
l Z
the value, L__ = njn;/R. The current 11* n %} i % *V;
- + N -
through it equals i + nziz/ml, or i, ; 7 nin
172
the voltage drop across the inductor Figure 3

equals v;, and this voltage ''transferred"
to the other side of the ideal transformer equals v,, yielding equations
(7).

In terms of the circuit diagram, setting im and R equal to zero in
. the previous section, in effect, open-circuited the shunt inductor,, Lm.

This reduced the circuit from one with three meshes to one with two.

THE MULTIWINDING (IDEAL) TRANSFORMER ! n,
In the transformer of Figure 4, if there is no N
leakage flux, the fluxes, yzfl', 52{2, ..., of the various "
windings will be equal Lo each other. Then, assum- . e

ing k windings in all, (R-1),

¢; = d’z =0 = ¢/g (14) , Figure 4
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where the dot.above the letter indicates the time derivative. Equation

(14) restated in terms of the voltage of each winding is

jL:_‘é_z---=£3_ (15)
n, nl nk

where the turns on each winding, n., n,, etc., may be positive or nega-

1" 2

tive ﬁumbers.
If, in addition, the transformer core has zero reluctance, so that

the magnetizing current is zero,
UM F ML+ .+ T Mg = O (16)
may be substituted for n

s V

In this equation, v for n,, etc.,

1 1" 2

since the v's are proportional to the n's, as per equation (15). The
result is the expression for the total power flowing into the transformer.
LV, » Vg + ..+ Vg =0 (17)
Thus, for a multiwinding, or ''mesh-type!' transformer,
1. The volts-per-turn for each winding are equal.
2. The sum of the ampere-turns of all the windings is zero.

3. The total power input is zero.

TRANS.F ORMER WITH SEVERAL MAGNETIC PATHS

The flux in every winding of a transformer (Figure 5 (a) } with more
than one magnetic path will in general not be the same, For this type of
transfiormer independent magnetic paths are selected in the same manner
as independent meshes in an electrical circuit. For each of these mag-
netic paths the equations of the multiwinding transformer which had a

single magnetic path may be applied, and an equivalent circuit using the



s 'ty_‘é'e of multiW._inding transformer drawn,

7-

S T8 o~ |
i
- Pe. g
+A
* (2) ¥ ¢3)+ *‘é(q) 4%
_? R -
(a)
Figure 5

as in Figure 5 {b).

In reference to the example of Figure 5,

3=

-
=

LA
nl.

=ﬂq}%=-¢¢+¢b;

3

e P
vi S ”y v_'ZG
%tN s

(b)
o - -4,

(18)



8‘
‘I. ANALYSIS OF NETWORKS INVOLVING IDEAL

TRANSFORMERS

THE EQUATIONS

The equations of the circuit in Figure 6 may be written in terms of
mesh currents, i, and flux derivatives, gf The network has three inde-

pendent meshes and contains windings that are on two transformers.

] l
T A .

— +
+ a -

A

Figure 6
The equations are in the form, (R-3):.
Vis 2yl + 20, + Z3 I3 + ng 93a. + Ny, ﬂb
V= a0yt By, + Raziy + Nzg #o. t+ Ny l’3(’
Vy = Byl + Bypiy + Byyiy + Taafa v N4 (19)
0 = Mgl + Maais + Naqis + O Pa + o é,

0= nyl, + Mypia + napt + Ofq + Oﬂb

MNa =7, iy = ©
nzaz"n,"nl nzbz"’l;

Nyo = Ny + 13 N34 = Ny



The first three equations are the respective voltage sums taken along the.
three meshes, while the last two equations are the respective ampere-
turn Il'elations for the two transformers. In summing the voltages, the
voltage across a winding is taken as the number of turns in it times the
derivative of the flux through it. The equations (19) would still have been
written in terms of a ;Za and a ’Zb if instead of two transformers the wind-

ings had been on one that had two independent magnetic paths.

THEIR SOLUTION

The solution for this system of five equations in five unknowns may
be written in terms of the system determinant, D, (here, of order 5x5)

and its signed cofactors. Thus, the solution for i1 is

f=vdn 4oy du, o da (20)
2 D D

If the determinant, D, is zero, the currents are not determinate

but their ratios may be.

SOME PERMISSIBLE ALTERATIONS
Thé mesh currents will remain unchanged if equations are altered
by:
1. Multiplying the turns for each winding of a transformer by

the same constant, or

Z. Replacing, for every mesh, the turns due to a transformer

by the turns in that mesh due to two transformers. For instance, in
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'.éqﬁa};ions (19‘),:,' Ny By and n3y could be left as they are, and nla’ nZa,
and na replaced by, respectively, n3, + 0y, Nz, +npp, and n3, + n3p.
3. Performing a combination of the above two procedures.

The justification for these alterations is thét they might simplify
the aﬁalysis. They are permissible because they affect the signed
cofactors appearing in the expressions for the mesh currents by the same
factor that they affect the system determinant, thus leaving the mesh

currents unchanged. A method for obtaining the circuit diagram for the

altered equations will be given in the next chapter.

EXPANSION OF DETERMINANTS

Formula (20), the explicit solution for the mesh current, owes its
derivation to the expansion of the system determinant, "D, " by Crameér's
Rule. This rule involves the selection of a column (or row) of the
determinant, multiplication of the elements in that column by their
cofactors, and then summation of these products. This is a special case
of the development formulated by Laplace in which all the minors-'are
formed f;-om a selected set of rows or columns and the products of these
minors times their algebraic complements summed. Instead of selecting
a set of rows or columns with which to expand the determinant, there is a
development, due to Cauchy, in which a set of rows along with the corre-
sponding set of columns is selected for the expansion. An example,
applying the Cauchy development to a determinant of the form of the net-

work equations is given in the appendix. (R-4), (R-5)
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LAGRANGE MULTIPLIERS

Recall the preceding analysis. In the network, which had three
meshes and two transformers, therewere used, in addition to the three
mesh currents, two other variables, ’Za and ab' Physically, %a and ,Zb
repreéent the derivative of fluxes in the transformer cores; mathemati-
cally, they take the role of Lagrange multipliers. (R-6).

. Two changes were made in the network analysis to allow for the
study of networks involving ideal transformers: terms other than the
impedance drops or source voltages were added, and equations, namely
the ampere-turn or ''constraint' equations, were written supplementing
the mesh equations. The voltage terms added to the mesh equations
represent the voltages across transformer windings and involve the
Lagrange multipliers, yf These terms are subject to the following
restriction. Namely, the power they repres'ent must be zero, since the
ideal transformers are constraints that consume and store no energy. In

the example, this power is:
4 (. ?l‘a"’"lbdﬂ + e Ba + nap ) + I3 (e fa + 13y, g )
= (n. § : oy - . : C (21)
SN dy +Maiy + Nyain) @y +(npiy + Nzp 1y N3, 15) gy
This power is zero if the currents do not violate the constraints
represented by the ampere-turn equations.
The next sections are prerequisite to the application of the tech-

nique of Lagrange multipliers to the nodal analysis of networks involving

ideal transformers.
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THE MULTILIMB (IDEAL) TRANSFORMER

The development of the multilimb transformer is stepwise similar

to that of the multiwinding trans-

ts To, ©ltec LTy,

former, but with the magnetic cir-

‘cuit considered from a nodal view~-
Figure 7

point.
The limbs of a multilimb transformer, carrying fluxes, 9‘1, ;z{z,

;th, all meet at a magnetic '"node" or "junction,'' and hence =--

assuming no leakage -~ the fluxes sum to zero. From this, differentiat~

ing, we have,(R-1),

;3,+¢'SZ+---+;3,1=0 (22)

Writing this in terms of the voltages across the respective windings,

M o+ Ve -+ Vn =o0O (23)
n, ny Ny
If uy is the reciprocal of n,, u, the reciprocal of n,, etc.,

VU, *VoUy + -+ VUn U = O (24)
If,\ in addition, the core has zero reluctance, the magnomotive fo:g'ce, M,
measured in ampere-turns and summed about any magnetic mesh in the
transformer c.ore, has the value zero. This requires that the value of M

for each of the parallel limbs be equal. Thus, in the notation of recipro-

cal-turns,

Y (25)
ul u-z, Un

Combining (24) and (25),
l',lf,-l'l'zl/,_'f—...-i-l'nl/n:o (26)

In summary, for a multilimb or ''junction-type' transformer:



13.
1.. -The magnomotive force, expressed in amperes per
reciprocal-turn, is the same for each winding.
2. The (volts)x(reciprocal-turns) summed for all windings is

Z€ero.

3. The total power input is zero.

TRANSFORMER WITH SEVERAL MAGNETIC JUNCTIONS
"As an example, \consider the transformer of Figure 5. Independent
node-pairs for the magnetic circuit, such as (A,R) and (B,R), are
selected in the same manner that one selects node~pairs for an electric
circuit. The number of "branches' of the magnetic circuit is taken equal
to the number of windings on the transformer core. The magnetic circuit
of the transformer core is without separate parts, and hence the number
of magnetic node-pairs is equal to one plus the number of windings, minus
the number of independent magnetic meshes in the core. For each mag-
netic node-pair, the equations of the multilimb transformer which had a
single node-pair may be appl-ied. |
The equations for the circuit of Figure 5 (a) in terms of Vo
associated With.magnetic node-pair (A,R) and VB associated with mag-
netic node-pair (B,R), are:
0=V (u, +u;) -—Vau,
| (27)
0= -Vau, + Vg (u, +us + uy) '

But Vl = VA - VB; VZ = VA; V3 = V4 = VB. In terms of these voltages,



14.

0= “Viu + Vau,

(28)
0= v; u, + \,_5 us + w Uy
From these equations the equivalent circuit in terms of multilimb
transformers is drawn, in Figure 8.
+ l * 1t "’l * + + + +
) (3) (4)
- T U, -Uu; T u, - Uy - Uy

Figure 8

NODAL ANALYSIS

The equations for an eiectrical network may be written by summing
the currents into each independent node-pair, The current through a
branch is. written in termé of the node voltages and the admittance of the
branch. The current flowing from a node into the winding of an ideal
transformer, is taken as the magnomotance for that multilimﬁ trans-
former times the reciprocal-turns of the winding.

Consider, as an example, the circuit of Figure 9. This is a net-
work with three independent node-pairs and two multilimb transformers
having three node equations and one (volt)x(reciprocal-turn) equation for
each of the two transformers.

I, = tu: + 9,V t jljvzﬁ + u/a.Ma Uy, M,
L = YV, + oy Vy YasVs + UgaMy + Uy M,
Iszﬁ'z/V: + jszvl + jz‘(vg +  Uza Ma Uy, !‘15 (29)
0 = upVi + uUnVy + uga.vs + 0 Mo + om,

0 = u’bv’ -+ qu\/i -+ u35V5 + o Ma' + 0 fqb
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" In nodal analysis, the constraints due to ideal transformers are

also represented by Lagrange multipliers. (R-7). Here, the multipliers

are physically interpreted as the magnomotance of the various multilimb

transformers.'
' 4% % B AAA
1ol e 2 s b
Q/ /b
l ] | 1 ay |
. ) -
Figure 9

In Figure 9, the reciprocal-turns taken for the various nodes are:

Ujp = U, Upp =0
uz‘l = "u, —M.l u-zb = -L(..;
Usg = Uy + U, Uz = Uy

The same alterations are permissible on the reciprocal-turns of a multi-

limb transformer as are on the winding-turns of a multiwinding trans-

former.
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.. THE IMPEDANCE MATRIX IN MESH ANALYSIS

REDUCING THE EQUATIONS

The purpose of this section is to show how ;zfa and ;sz can be
eliminated as variables in the example given by equations (19). Whatever
the number of windings on the transformers might be, this may be done.

Consider the last two equations in thé set,

0 = Mja ty + Naa 2; + Nzg L5
. (30)
o = n’bi, + nzbiz_ + Nyyly
From these equations, form the determinants by omitting one column of
coefficients at a time,
Naza Nza "Mya (TN | e nza |
nab N N3y "y RNy ab
The columns of the second determinant have been inierchanged to main-
tain a cyclic symmetry among the determinants.

One of these determinants at least must have a nonzero value if the
equations in (30) are independent. If the equations were dependent, one
equation would be a linear combination of the other; it could be scratched
off and the transformer represented by it removed from the network with-

out any resultant change in the system performance. In removal of the

transformer, the windings are replaced by short-circuits. Figure 10

: . T g = T
illustrates this point. -l ; ] +:w n, ”z:+ | ' l+
I

[ lz'
Here, the ampere-turn +T \)

H J
cn,  cnydd .
equations. are £

Figure 10

Y

LW
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O=mt, + m,i,

O=Cnmi, +om,i,
The dashed lines in Figure 10 may be replaced by short-circuits.

Assuming that the network has already been reduced so that the

equations (30) are independent, they may be solved for i, and i3 in terms
of il if the first of the above determinants is not zero. If the first de-
_terminant was zero, but the second was not, the equations could be solved
for il and iz in terms_of iy, etc. Because of the freedom to rearrange the
order in writing the equations, no generality is lost, if the first of the
above determinants is taken as not being zero and the expressions for '12
and ig determined. If this is done, and if '12 and i3 are substituted in the
first three equations of (19) the result is:

v, = 2/l + N fa + Ny ﬁ{b

Vi = 2,0 + Mg pa + Tap ﬁ'ﬁb (31)
Va= 2,1 + Naa Pa + Ny 4,
where
s, Nz
Z) = Zy ty B *t g Ep
NZJ 4 ”23 /
Zz = Zy 1‘&211 + Mo Zz3 (32)
”13 23
N.
By oz, +L B 4 Moz
"/2-3 !Y;_j

for which the three determinants written below equations (30) have been
abbreviated,; respectively, by NZ3’ N31, N1~2'

The second two of the three equations in (31) can now be solved for
%a and for ;Zb in terms of i;, v,, and v3. This solution exists because the

determinant, N23, has been taken as not being zero. The values found
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" for p’a and ;Z.b are substituted into the first equation of (31), giving

N3y Nz 1 .
V, + 7V YR = Z L >
! 'N23 v+ MZJV V:5 l ( )
where
WY Nz
Z = 2, +T—Z + = Z
| "oy, 2 Nes 2
N z
+ 22 Z5, + Vs Z,, 1“_”’7- Na___/ Z23 (34)
N2y z Ny,
y 23 13
+Nn. Z'al + M2y, T3y + NIZ_" Z33
23 > N
it 23

In the process of. eliminating ;.da and 5Zb from equations (19), the set
was reduced to one equation (33) written in terms of one impedence, Z,
in (34). This is a system with three variables (i.e., three meshes) and
two constraints (i.e., two transformers) and it has, therefore, only one
degree‘of freedom. If there had been instead three meshes with only one
transformer, the set would have reduced to two equations written in terms
of two mesh currents. The coefficients of the currents would have the
dimensions of impedance, and when placed in a 2x2 array, they would

become the impedance matrix for that system.

~ A SECOND EXAMPLE OF REDUCTION
It will be instructive to consider a second example, the equations
of which are the same as those of the preceding section except that par-

ticular values are chosen for the turns on some of the windings. Take,

therefore,
v, = 2, z', + 2, Z.z_ + Z‘,;l.;, + g 7"(a_ +n, ﬁb
Vo = Ealy v Eggly +Z33503 — g,
Vy = 23,1.1 + Z32 {y + &3 i‘J B ;Jb (35)
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; S.ol.vir;gv for i, and i3 from the last two equations and substituting
into the first three,
Vi, = (2 + My + N 23)0 + Ny B, + 1 &,
Vo = (29 + MaZgz + Ny E2s)iy — By (36)
v, = (2:,;, + Na B3z + ny 233){! - Szb
Then solving the last two equations of this set respectively for %a
and Bb, and substituting into the first equation, there results
Vo + vy + MV = 21,
where
Z = E, T Nazg TN 23
+N, 2 ,L‘)q:L Eyg + NaNy 223 (37)
+NyZy + Nang 2y, + NG Z 33
To show that the result is consistent with that of the previous section,
form from the last two equations of (35) the determinants
-1/ 0 o 47 Nz ~—1
(@) -1 -~ ny ng o
The values of these determinants are N23 =1, N31 =n_, le = ny, which

substituted into (33) and (34) yield equation (37).

THE GENERAL PROCEDURE

Concerning the two examples given, the second was important be-
cause it had a .simpler solﬁtion and yet was as general as the first. The
equatidns of the first example can be reduced to those of the second by
use of the ""permissible alterations' described in the preceding chapter,

This technique will be incorporated as part of the general procedure.
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" The r;sults so far are:

1. An impedance matrix can be found for any network in-
volving ideal transformers. so long as these transformers form inde-
pendent constraints.

2. If a network contains transformers forming dependent
constraints, some of these transformers can be removed, leaving the
performance of the network unaltered and the remaining transformers
independent.

3. The number of turns on the windings of the transformers
may be altered into a standard form which facilitates the computations
involved in finding the impedance matrix. The technique for carrying out

this alteration is contained in the following sections.

NUMERICAL MANIPULATIONS

Consider again the network of Figure 6, and let the transformer
windings have the following values:
n=2; Myg=-35; Ny =/ ﬂ¢=3; Ng =R

The winding-turns, per transformer core, for the three meshes

are then: -
nm_ =2 ??,,, = 0
Nza = 2 Nyp = ~&
N3a = -4 Nzp = 3

These are the values that would be substituted in equation (30) and that
would lead to the expression for the impedance in (34). To instead start
with the equation (35) and to achieve the expression for the impedance

more simply by means of equation (37), one must change the winding-
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" turns for an equivalent set. To do this, Figure 6 is first redrawn as in

Figure 11.

277

I

()

™

? V!;_H’IJ nlf
+ 1 -

The procedure for separating the transformers from the rest of the net-

Figure 11

work, as has been done in Figure 11, is discussed in the sections
immediately following this.

The next series of steps is to change the winding-turns into the
desired form. This procedure is shown in four steps in Figure 12. In

this figure only the transformer cores of Figure 11 have been represented..

4 4
20 2l 7 i 3| 6| A
3 -2 3 0 3 0 ~1 0
- ! 4
1{ ) -4 3’ o} 3 o ~/
The given set. 12 times Multiply The
2/3rds turns "a" turns ''b" "a' by -1/3 Standard

added to "b'. added to "a''. "b" by -3. Form

Figure 12
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\ Thié réd,uction may also be done in terms of matrix multiplication.
A transformnation matrix is formed by noutling that multiplication of a
matrix by the negative of ité inverse results in a matrix with -1's along
the main diagopél and zeros elsewhere. Postmultiplication of a matrix

corresponds to operations upon the columns, rather than the rows, of

that matrix. Noting that

-1
3 2 3 2

= (38)
-4 3 4 3
the above reduction is achieved by
2 0] [—¢ 4]
-3 -2
2 = |- ) (39)

-4 -3

TRANSFORMING THE WINDING-TURNS

The reduction in the preceding section depended on the existence of
an inverse matrix, and this in turn depended lun the independence.'of the
rows in that matrix. A first step, then, in transforming the winding-turns
to a standard forfn is to select a set of independent rows. This is the set
of rows that, by means of the transformation, are replaced by rows
having minus one as the diagonal element and zero elsewhere. The net-
work meshes corresponding to these rows will be called the "magnetizing
meshes' of the network. For the given matrix of numbers in the preced-

ing example, any two meshes of the three meshes of this network could
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‘.'Ib'e_ téiuoseﬁ as‘ the magnetizing meshes since it happens that any two rows
of this matrix are independent. In every case it is possible to choose
magnetizing meshes equal to the number of independent transformers as
shown by the following reasoning.

.If superfluous transformers are removed, the columns of winding-
turn matrix will be independent. Furthermore, removal of the super-
fluous transformers requires that the number of transformers remaining
be less than or equai to the number of meshes in the network, so that in
the winding-turns matrix the number of columns is less than or equal to
the number of rows. The columns being independent then requires that an
equal number of the rows be independent, proving the point.

The matrix of the ampere-turn equations is the transpose of the
matrix of the winding-turns appearing in the mesh equations. When re-
placing the winding~turns matrix in the mesch equations by a transformed
matrix, the same substitution is made in the ampere-turn equations keep-

ing the total set of network equations in symmetric form.

SELECTION OF THE MESHES IN A TRANSFORMERLESS NETWORK

A set of independent meshes is guaranteed to result if they are
selected by assignipg in a network a particular branch for each mesh
which is a member of only that mesh, A branch of this type is called a
"link.' The remaining branches form, in each separate part of the net~
work, what is called a "tree," The tree connects all the nodes of the
separate part of the .network to which it belongs, but, in ifself, it contains

no meshes. For any network a tree or trees can be drawn and a set of
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links determined. (R-8).

EQUIVALENT VOLTAGE SOURCES

If the ‘equivalent of all the voltage sources encountered in a mesh is
placed in the link belonging to that mesh, the equations describing the net-

work will remain unchanged. (R-2).

BRANCHES AND TRANSFORMER WINDINGS

The number of mesh equations written for a given network depends

on the degree to which detailed information

is desired concerning the network perform- A 1

ance. For instance, in the network of Figure L j’
Figure 13

13, at most three independent mesh equations
may be written. However\, if the network is only to be considered as a
transfer function between the two pairs of terminals, two equations will
suffice. Another familiar instance involving the use of a reduced number
of mesh equations occurs if two impedances in parallel are taken as' a
single branch.

In seleéting the meshes for a network involving ideal transformers,
the following will be assumed:

1. A definite, definable mesh current (or several such cur-
rents) flows through each transformer winding., Thus for example two
windings in parallel or a winding in parallel with an impedance elemént
will not be considered as one equivalent current path,

2. The branches of the network will be separated from the
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trénsfo,rmer windings. The network will therefore be considered as made

of branches and windings, the branches including impedance elements and

voltage sources.

SELECTION OF MESHES

In the selection of meshes for the analysis of a network involving
ideal transformers, all the windings may be incorporated as part of the
tree (or trees, if the lnetwork has separate parts), leaving only the
branches as links. This can be done directly, unless there is a.mesh
consisting entirely of windings in the network. In such a situation, an
impedanceless branch may be added in series with one of the windings in
this mesh. The impedanceless branch may serve as the link for the
mesh, all the windings being incorporated into the tree.

Now, in similar fashion to the method of equivalent voltage sources,
an equivalent of all the windings encountered in a mesh may be placed in
series with the link belonging to that mesh and the windings in the tree
replaced by short-circuits, leaving the equations describing the network
unchanged, In general, this equivalent will contain windings from varioﬁs
transformer cores.. It will be convenient to assume that it contains
windings from all of the cores, some perhaps with zero turns. Also, it
is possible to schematically place the windings in a rectangular array
corresponding to the arrangement of the terms in the winding-turn matrix.

Making use, therefore, of equivalent voltage sources and equivalent
windings, the diagram for any network involving i-deal transformers may be

drawn as in Figure 14. As the diagram indicates, the network with "m"
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...'.niésllles and “'k”' multiwinding transformers has been separated into a
passive 2m-pole and an array of winding-turns. As shown in the sample
numerical manipulations, the array of winding-turns may be reduced to
one in standard form. The equations of the equivalent, unconstrained
2(m - k)-pole may then be readily determined by elimination, as variables
of the equations, the currents in the magnetizing meshes. One may
choose to do this through substitution of equétions as was illustrated in
the second example given above, or by the techniques of matrix algebra,
or, in simple cases, by inspection. The following sections are devoted

to these techniques.

/ 2 '

— oV -

PASSIVE %, 2 4
—Qvle e

2m -PoLE N

- I i
| | | !

L

Figure 14

MATRIX PROCEDURE FOR TRANSFORMERLESS NETWORKS

Mesh equations were viewed by Gabriel Kron,(R~2),as the more
s.implé branch equations that had been transformed, that is, undergone a
""change of coordinates.' Using the assumption that the pbwer input is

the same value in both systems of coordinates, he derived forrhulas
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‘given here in the following notation.

iB, branch current matrix; i, mesh current matrix
lg = C 1 (40)
VB, branch yoltage source matrix; v, mesh voltage source matrix
| v =Cc vg (41)
ZB, branch impedance matrix; Z, mesh impedance matrix
2 =CZ g C (42)

v = £ 1 o (43)
The procedure in solving for the network performance is to number
and assign a refereﬁce direction to each branch; select, number, and
assign a reference direction to the meshes;and then write the matrices,
C, Vg iB’ ZB’ by inspection. The elements, Cjk’ of C, the "connection'
or "transformation' matrix (also called, in more general analysis, the
ntransformation tensor") afe equal to
1, if branch "j" is in mesh "k", directions aiding
Cik = -1, if branch "j" is in mesh "k, directions 0pposing'. (44)
0, if branch "j" is not in mesh "k"
The traﬁ5posé of C, written C,, is obtained from C by interchanging the
rows with the columns. Formulas (41) and (42) are then applied to yield

the mesh equations represented by matrix equation (43). The mesh

‘equations may be solved by the usual algehraic means, but the matrix

procedure is to multiply (43) by the inverse of Z, Z-l, giving

[ =27V | (45)
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MATRIX FORMULAS FOR NETWORKS INVOLVING TRANSFORMERS

The three procedures that have been given above for analyzing net-
works involving ideal transformers are: 1) solving instead a system with
ordinary transformers, and then evaluating the expressions in the limit
as the transformers become idealized; 2) using the ampere-turn and volt-
per-turn, or the ampere-turn and the power equations descriptive of an
ideal transformer; and 3) using Lagrange multipliers. The second and
Ithird of these procedures will be restated here in terms of matrix nota-
tion, and by the use of compound matrices formulas will result stated
explicitly in terms of the winding-turns matrix. (R-9).%*

First, the given network is separated as in Figure 14 and the 2m-
pole (which may be found simply by replacing the windings by short-cir-
cuits, with the precaution that all-winding meshes are represented by
impedanceless branches) analyzed as in the previous section. The mesh
equations, represented by (43), may be separated in terms of the mag-
netizing meshes and the remaining or '"load" meshes. In the notation of

compound matrices, this separation is written:

VL IR i Zim i

(46)

v .
M ZNL : ZMM im
Reintroducing the ideal transformers imposes two conditions, the

first being the ampere-turn equations. If the winding~turns have been

reduced to the standard form, these equations matrixwise are

* The winding-turns matrix in (R-9) is the transpose of the one defined
here, provided the sign of each of its elements is reversed,
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(47)
In the analysis, the currents in the magnetizing meshes, iM’ are
to be eliminated as variables from the equations. This elimination may
be considered as a transformation from the old currents, i, which contain
i ana iy to the new currents, i', which are simply iL. The transform-

ation, found by means of (47), is:

. | 1t |
= ==l =V-i =1--17" = C,i’ (48)
l I m N, L N, l 2

The second condition imposed on equation (46) by the ideal trans-
formers is that the power input to the impedance elements of the network
before and after the transformers are attached is the same. This condi-
tion must hold because no power is stored or consumed by the ideal
transformers. But now, a transformation leaving the power invariant is

described by formulas in the form (41), (42), and (43). Applying these,

' V

v =C?.1:V=[:{§N] A = v, + Nvy (49)
M

7
Z =Cre 2 Cp
N] ZLL:ZLM |

ZML:ZMM Nt ,(50)
=2 rNEm +Z mNe + NZyu Nt

v = 2’ '

v, + N VM = (ZLI. + NZML "'zLM Nt"' NmeNt)iL

I
r—

(51)

Writing C, for the C of equation (40) and combining the transforma-

_ 1
tions (42) and (50),
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Z = Cae Cie 25 C, Cy

(52)
= Ct Za C

where the transformation matrix, C, for a network involving ideal
tr;ansformers i; defined to be

C = C, Cz_ (53)
Partitioning C1 according to the load and magnetization meshes,

C: = ECL E CM] (54)

and
- =

|
= C ————
¢ _CL : M— Nt

(55)
= CL + CM Ny

The formula is a basic result. It describes the connection between
the impedances of the individual branches and the impedance matrix for a
network involving ideal transformers. The network with no ideal trans-
formers is a special case, corresponding to N = 0 in this formula.

If the impedance matrix is to be written in terms of the mesh im-
pedances (of the network with the transformers removed), equation (51)
is used. Thus, the equation may be derived without defining a connection
matrix but instead by Lagrange multipliers.

To use the technique of Lagrange multipliers to analyze the network,
the winding-turns are reduced to standard form and the network equations
written:

Vo = 2,0, +2min +Ng

Vi = ZMl..i[, + Lm L “,'t , (56)
o

i

Ng iy — im
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The second two equations of this set are substituted into the first

to yield equation (51).

THE DEVELOPMENT BY KRON

If the first procedurc mentioned in the preceding section had been
used instead of the second and the third, a shunt or "magnetizing' branch
would, in effect, be added to each transformer, converting it (as shown in
the first chapter of this thesis) into an impedance element, that is, a non-
ideal transformer, The mesh equations for this system could then be
written. From this viewpoint, the transformation of equation (50) is
equivalent to the idealization of the transformers. Kron,(R-2), shows that
the rectangular matrix, C,, can be derived from a square, nonsingular
matrix by omitting some of the columns in the square matrix, a process
which corresponds to opening the ""magnetizing branches' in the non-ideal
system.

Kron does not separate the transformer windings from the network
impedance branches. This enables him to write the ampere-turn’
equations in terms of branch currents, The equations may then be trans-
formed, by Cy, to be in terms of mesh currents, The mesh currents are
divided into the two categories of magnetizing and load currents, and the
transformation matrix, C,, is obtained by solving the ampere-turn
equations for the magnetizing currents in terms of the load currents. -

rI.'his last step involves the equivalent effort of reducing the winding-
turns to the "standard form, " but it does not bring C, to so simple a

form. The difference in com plexity is the same as the difference of that
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~involved in solving the examples of the first two sections of this chapter.
In the Kron process, the branch impedance matrix will contain a row and

column of zeros for each winding that does not have an impedance

associated in series with it.

SUGGESTED MATRIX PROCEDURE

To determine the impedance matrix for a network involving ideal
transformers, reducé the winding-turns to the standard form and proceed
in the following steps:

1. Number, from 1 to b, and assign reference directions to the branches
in the network, excluding the windings.

2. Number, from 1 to k, and assign reference directions to the mag-
netizing meshes, These meshes are numbered in the same order that the
cores corresponding to them are numbered, and the current in their
reference direction defines the reference direction for the flux in the
associated transformer core; positive current creating negative flux
since n = -1,

3. Number, from 1 to e, and assign reference directions to the load
meshes, Since the load meshes are all those not chosen as magnetizing
meshes,

¢ +k=m (57)
Also, from network topology,
m = b+m-~-5 (58)
where 'n' is the number of nodes in the network after the transformer

windings have been replaced by short-circuits, and ''s" is the number of
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i s-e‘p.._a].;‘ate parts of the network,

4, Write the connection matrix, CL’ relating the branches and the load
meshes by using the procedure of (44). This matrix has "'b'" rows and
"e!' columns,

5. Likewise, write C,, the connection matrix relating the branches to
the magnetizing meshes aud having "b" rows and "k'" columus.

6. The winding~turns matrix, N, may be copied directly from the cir-
cuit diagram if the windings are arrayed as those in Figure 8. The
matrix, N, has "e" rows and "k' columns. The element, njk’ in the
matrix is cqual to the number of turns of the jth load mesh occurring on
the kth transformer core. The sign of n'jk is posifive if current in the
reference direction of fhe mesh wou.ld create flux in the reference
direction of the core, negative if the flux would be in the opposite
direction.

7. Form the connection matrix, C = CL + CM N¢, having "b" rows and
"e“‘ columns.

8. Form the resulting mesh impedance matrix, Z' = C; Zg C. This
matrix hés e’ rows and columns, while the branch impedance matrix,

ZB’ has "b" rows and columns. If there are no windings, Z' becomes

equal to Z of (42).

THE IMPEDANCE MATRIX BY INSPECTION
For networks not containing ideal transformers, the mesh imped-
ance matrix may be written, one row at a time, by superimposing the

individual effects of each mesh current., The self impedance term of a
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- 'r.n'es}‘l\ may be .dgfined’ equal to the total voltage drop in the mesh due to a
unit current in that mesh w.hile all the other currents are zero. The
mutual impedance term between one mesh and another may be defined as
thé voltage drop in the first mesh when the current in the second mesh is
unity énd all other currents are zero. These definitions apply to net-
works involving mutual inductance, but care must be taken to include the
voltage drop, along with its proper polarity, in a coil if current is
assumed to flow in another coil to which it is coupled. In networks con-
taining several mutual inductances or an arrangement of impedance ele~
ments complicated by many wires crossing over each other, the analysis
by means of matrices rather than direct use of these definitions becomes
more convenient.

The definitions described cannot be immediately applied to networks
involving ideal transformers. Due to the ampere-turn equations of the
ideal transformers, it is not permissible to assume that each current may
séparately take the value of unity and all others be zero. If, however,
only the load meshes are considered, the procedure m'ay be applied,
since it has been shown above that the mesh impedance equations for a net-
wark invc;lving ideal transformers are a linear function of and only of the
load currents. The self and mutual impedances due to transformer
windings in the load meshes can be found by a set of rules to be given.
The cases considered in the next few sections are those for which the

matrices Z, ; and Z;,, of equation (51) would be zero.
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| SELF IMPEDANGE OF AN IDEAL WINDING

Consider the case of a two-winding transformer with a turns ratio,
N, equal to the ratio of the turns on the primary winding to those on the
secondary and with an impedance, z, shunting, that is, in parallel with
the secondary. The magnetizing mesh will be taken as the mesh formed
by the secondary and z. The remaining mesh, called the load mesh, is
that of the primary winding. (Figure 15).

To determine the ''self impedance"

of the primary winding, consider a unit ) 7
: +0 I tm
current flowing through it. The mag- \/ J
N
nitude of thc current in the secondary
equals, by the ampere-turns equation,
the magnitude of the turns ratio. The Figure 15

secondary or ''magnetizing'" current flows through z, producing a

voltage drop equal, in magnitude, to Nz. This voltage, multiplied by N,
g;1ves the magnitude of the voltage of the primary winding as equgl to

sz, which thus is numerically the self impedance associated with the
primary" winding. This is the same value that one obtains by removing =z
from the secondary (leaving an open-circuit in its place) and put£ing an
impedance equal to N%z across the primary. If this were done, the
secondary would become open-circuited; no current would flow in either
winding and the transformer could be removed. Thus, the self impedance
of a winding could be found by "transferring" the impedance of the mag-

netizing mesh to that winding.
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;'\If the windings had been reduced to standard form, N would have a
magnitude equal to the number of turns of the primary winding. Assum-
ing this, the above results may be stated in a rule which also applies to
thé load meshes of a multiwinding transformer.

Rulé 1: The self impedance of a winding of "n'' turns is the impedance,

izt of the transformer magnetizing mesh multiplied by uz.

One should note that this rule applies only to cases when the windings
have been reduced to standard form, when the load current does not flow
through the impedance of the magnetizing mesh, and, furthermore, when

the load and magnetizing meshes are not coupled by mutual inductance.

The rule for the more general situation will be deferred to a later section.

MUTUAL IMPEDANCE BETWEEN IDEAL WINDINGS

For the mutual impedance between windings 'a"

and '"b" with turns n and ny of a multiwinding trans-

former (Figure 16), a current of unit value will be b

A3

assumed flowing in the reference direction of a load
mesh conj:aining winding '"a'', and the voltage drop
along the reference direction in winding "'b'" will be
calculated. All load currents other than this one will

be assumed zero. As before, from the ampere-turn

equations, the current in the magnetizing mesh is n_,
measured in units of current and producing a voltage Figure 16
drop in ""z" equal to n_7. Since the sum of the voltage drops in the mag-

a

netizing mesh must be zero, the voltage drop across the winding in this
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mesh is - naz,-, or if there is also in this mesh a voltage source, v the

M’
voltage drop is - nyz + vpq. Transferring this voltage to winding "'b",
that is, transferring the voltage from a winding of - 1 turns to one of ny
turns, the voltage becomes n nyz, or if the source, VM is present, itis
nanbz. =D Vs This last expression contains, combined with the mutual
impedance term, a transferred voltage term whose sign is changed to
plus when it is considered as a voltage source term in the load mesh due
to the winding and is placed on the left side of the equation. If the unit
current had been applied to the load mesh containing "b" and the voltage
drop measured in "a', its value would be, nnz- nbVM' From this we
have:
Rule 2: The mutual impedance between a winding of n turns and one of
ny turns is the impedance of the transformer magnetizing mesh
multipligd by n_n,.
Rule 3: The voltage source term due to a winding of “n'' turns is the
voltage source in the transformer magnetizing mesh multi-

plied by n.

A CAUER NETWORK
In order to give an example applying the above rulés, the mesh

impedance matrix for a network due to W. Cauer, (R~10), will be written.

lo

Figure 17
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Usmg the nbt.ation of Cauer, the cores are numbered 2 and 3, 2 having
two windings and 3 having three. As shown in Figure 17, the windings
have been reduced to the standard form. Since the windings are incor-
porated in the ''tree' of the network, or rather into three trees since
there are three separate parts in this network, the meshes are as
follows. The magnetizing mesh for transformer 2 consists of R, and the
- adjacent winding, and that for transformer 3 consists of R; and the wind-
ing adjacent to it. The three load meshes start, respectively, from the
three sets of terminals, but R, and R3 are not included since these
resisiors are the links of the magnelizing ineshes,

The conditions of the preceding sections are fulfilled, and their
rules may be applied. The self impedance of the first load mesh has the
value Ry plus the self impedance of the two windings contained in the mesh.
By Rule 1, the total is then, R + H%ZRZ + n%3R3. The self impedance of
the second mesh is that due to the two windings in it, giving the total to be
(-.1_)ZRZ + n§3R3. That of lthe third load mesh is (-1)2R3. Filling in the

mutual impedance terms by Rule 2, the completed impedance matrix is:

_Rl + hlzi Ry + nfy R, N Ry g Ry g, ’?‘:
T Nya, /?z + N3 Ny R3 7?;_ + h:3 R, ~Nya K3 (59)
B "Ny Ry "Nz Ry R, |
This matrix may be written in the general form:
Ay A /"la-
/'? - gy fa N 22 (60)
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~

"Solv"mg_ for the circuit paramegters in terms of rjk’ there results:

= . = IJL‘Z Al’l ? R = l/u” Haz /b33|
o7 red T o R
(61)
A Ml3 _ i""i}_ LT B ks . Ny _ ‘ﬁ'lz /‘Lrs|
=/ P K 33 Y |22 455

where, in the above notation, determinants taken from R have been rep-
resented by their diagonal elements. Now, the condition that a matrix of
numbers in the form of (60) represent a physically realizable network is
that the determinant of the matrix and of each of its principal minors be
greater or equal to zero. (R-5). (The matrix is assumed to be symmet-
rical, that is, Tijk = Tkj and each of the elements a real number.) If,
however, this condition holds, then by (61) the resistors in Cauer‘,s net-
work are either positive numbers or zero. Thus, any matrix in the form
of (60) that satisfies the conditions that it be physically realizable can be
represented by the Cauer network. The Cauer network for a matrix with
r;rxore rows and columns is formed by adding additional multiwinding
transformers to the network of Figure 17, as shown in Figure 18. Also,
if each e'leme.nt in the matrix, R, is multiplied by the frequency variable,
p> the resistors in the Cauer network are replacéd by inductors; the
resistors are replaced by capacitors if each element in the matrix is

divided by p.

O— AN ——

{

R S
2

—L20
R 3 ' Rn
' T 2 lon

- | 3
Figure 18
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| T.he. irﬁpédance matrix, (59), which was written by inspection, can
be obtained by matrix methods by the use of equation (51). The matrices,
Z,ML and Z; ,,, are zero in this case since there is no impedance coup-
ling, either due to mutual inductance or to common impedance branches,

between the load and magnetizing meshes., The matrix, Ve is also zero,

so that equation (51) may be written

or,
- ( - - - ) m ]
Vi R, 0 0 YWyo My !
R, o |in, -1 o
V',_ = < (o] ¢ (0} “" -1 717_3 2 12 ? Zl
O R ns N3 -1 :
| v3 o o0 o o -l 3 : 13
giving the same result as in equation (59).
MATRIX INTERPRETATION OF RULES 1 AND 2
The conditions of validity of the above rules were:
1. ZML =0, ZLM .: 0; i.e., no impedance couplmg.
between magnetizing and load meshes.
2. ZMM be a diagonal matrix; i.e., no impedance coupling
between the individual magnetizing meshes.
Under these conditions, as was shown in equation (62), NZMMNt
represents the “impedances due to the windings." This expression for the

impedance may be expanded as

N (Z + Z;_«f- e %R)Nt = NZ, Ni + NZZ Ne+ .-+ NZp N¢ (63)
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where
2,,. » . o .3 B
(64)
Zl: - a - 22= » e
: 3
. e e . 3 L Zkk

The rows of zeros in, say, Zi’ nullify the eitect of the correspond-
ing rows of the following matrix, namely, Ny, and the columns of zeros in
Z; nullify the effect of the corresponding columns of the preceding matrix,
namely, N. Therefore, for each diagonal element of Zyrve 52Y for zij;,
only one row of N and one row of N contribule nonzero terms. The role

that z;; plays in the impedance matrix is found by

- | — i -
n,; na' Mg Myy ... Ay Mg
Rzi Wifi  n;; e MM

Zi| : ["li i - ”“’] =2il i (65)
Nei Nein; Neifai ... Wei

which is the statement, in matrix form, of Rules 1 and 2.

COMMON IMPEDANCE TO TWO MAGNETIZING MESHES

The above reasoning may be extended to the case where ZMM is not
a diagonal matrix, Here, the magnetizing meshes share impedances in
common. Again, as in (63), the product, NZMMNt’ is broken into a sum
of products. Now if there is an impedance, zjj, common to the magnet-
izing meshes,i and j, it will appear in the ith and jth diagonal terms of

ZpMM 2S well as in the off-diagonal positions, ij and ji (assuming the

coupling is not due to mutual inductance), and the terms of the impedance
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. fnétrix containing z;; will be either in the form, below, of (66) or of
(67). The first expression applies provided currents in the reference

directions of the two magnetizing meshes aid each other as they pass

through 2
— — — —
n,l n']' nu‘d'n,J
: ) I ’ Ny «» - ﬂei N ) .
le X : I ”' ’ . . juand ZU . [nu' "'"lj y s Nei t+ ne;] (66)
'!,J . nCJ .
Nei Nej Nyt Ney

If the currentsoppose, the expression that must be used is:

S e | 2] | |
Z.lj . . l;‘ ':I ['l:;'”-’lej:l - Zl] . [n”"'i,j,...,flc{-nq] (67)

Ne; —Nej

Nei nej

The following rule summarizes these results:
Rule 4. If an impedance, z, is common to the magnetizing meshes of
two transformers, form the sum or difference of the winding-
turns in each mesh, respectively, and apply these by Rules 1
and 2.
If the two meshes pass through z in the same direction, the winding-turns
are summed, if they pass in opposite directions, the winding-turns of one
(it is irr;material which one) are subtracted from the other.
If two magnetizing meshes are coupled by mutual inductance or if

more than two magnetizing meshes are coupled together by passing



43,
o thi'oﬁgh a common impedance, the formation of the impedance matrix by

rules, rather than by matrix multiplication, becomes increasingly com-

plex.

ILLUSTRATION USING RULE 4

A network, illustrating the use of Rule 4. is given in Figure 19.
Because z; appears in the first two magnetizing meshes, directions
opposing, the differenée of the winding~turns of the first and second trans-
former is taken as shown by the numbers encircled in the figure. The im-
pedance, zj, is in common to the second and third magnetizing meshes
with their directions aiding. .Winding—turn sums are formed, shown in

the triangles.

—0 O— O O—
+

Figure 19
The contribution of Zgs Zy; and zg to the impedance matrix is found

by Rules 1 and 2, while Rule 4 is applied for z; and z,. The result, for
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.ex.émple, for Zl" is:
z
(-1)" 2, (-1)(3) 2,

68
(-1X2) 2, ($)* z, (68)

In the cases covered by the first four rules, the winding-turns
enter as products taken two at a time. If the signs of all the winding-
turns were changed, the result would be the same. If this were done in
the example of the Cauer network, all the coefficients in the impedance

matrix would become positive.

IMPEDANCE COUPLING BETWEEN LOAD AND MAGNETIZING MESHES
Assume impedance ''z" is commén to the ith load mesh and the jth
magnetizing mesh, not due to mutual inductance but due to the two meshes
passing through the same branch. To find the terms in the mesh imped-
ance matrix containing z, all impedances except z may be replaced by
zeros in the matrix Z of equation (50). This will make each element in
all the rows except two of them equal to zero. Hence, in the matrix
postmultiplying Z, each element in all rows except for two may be set to
Zero. Similarly, due to the columns of zeros in Z, each element in all
columns, except two, in the matrix premultiplying Z are set to zero,

Equations (50) thus become

- & pe—— K ———
: LU e e
i p
!

|
|
:
Mej +1 1
|
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“~

where the zeros have not been written in. An equivalent matrix is

T [ mi |

€ ‘Tl,]..'tl E’lij,..., nij ... ngj:] (70)
: ol
1

JL . I+ e
. Ney

where the upper sign is taken if the two meshes aid as they are traced

through z, and the lower sign if they oppose. In summary, there is
Rule 5: To find the terms in the mesh impedance matrix containing an
impedance "z'"" common to a given load mesh and to a trans-
former magnetizing mesh, consider the winding of that trans-
former in the given load mesh to be algebraically increased or
decreased (according to whether the meshes aid or buck) by
one turn, and, with the other windings unchanged, apply Rules
1 and 2.
Using the five rules given, the selection of the magnetizing meshes
from those meshes having an independent set of winding-turns may be

judged according to the relative complexity of the resulting impedanée

matrix,
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IV. SINGULAR IMPEDANCE MATRICES AND

SUPERFLUOUS TRANSFORMERS

POSSIBLE DEGENERACIES IN TRANSFORMERLESS NE TWORKS

_Given a network, the mesh equations can be found by one of the
methods in the previous chapter. Quite likely, the equations will turn out
to be nonsingular permitting one to solve for the mesh currents in terms
of the applied voltage;. Singular cases, however, are possible, and
several will be discussed in this chapter starting with those networks not
necessarily involving ideal transformers. It will be assumed that the
equations are not singular because of improper selection of the meshes in
the analysis, as this situation (for example, choosing the same path in the
network as two independent meshes) may be avoided by use of the "tree
technique. "

CASE 1: The voltage sources are not independent, and therefore the
sum of the corresponding rows in the impedance matrix would be zero.
An example occurs if the voltage sources form a mesh so that the sum of
their voltages must be zero, as would be the case if four voltage sources
are applied to a four terminal network,

CASE 2: The voltage sources are dependent, but only at a particular
frequency or set of frequencies. An interesting example of this type of
circuit has been given by E, Achard (R-11). Although the circuit contains
no transformers, it behaves as an ideal transformer for one frequency.

The circuit is shown in Figure 20.



Figure 20
Achard's "Perfect Transformer"
The four elements comprising the network are pure reactances, two of
them capacitors and the other two inductors. Their values are chosen so
that at the frequency of operation the sum of the impedances of 1, 2, and

, and 4 ig zero. The pri-
mary to secondary turns ratio equals the negative of the ratio of the im-
pedances of elements 1 to 2. This turns ratio may be chosen either posi-
tive or negative.

CASE 3: The network is in resonance. If a voltage source is applied
‘to‘ the network, an infinite current will result. An example of a network

containing a dissipative element but resonant at zero frequency is given

in Figure 21.

[

CASE 4: All the impedance terms for a mesh which contains no voltage

Figure 21

source become zeroa a particular frequency.
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"\Th.e ﬁeﬁvo&-ks under Case 1 are said to have '""reducible! impedance
matrices. That is, by means of a transformation necessitating ideal
transformers, the impedance matrix may be replaced by one that is non-
singular but of a lesser order, that is, with a amaller number of rows and
columﬁs. Cauer, (R-10),has treated the general case.

The usual analysis in Cases2 and 3, in which the currents are
indeterminant at discrete frequencies, is to solve for the relative
amplitude of the currents. In Case 4, a non-singular impedance matrix
may be found by eliminating as variables the currents of the meshes that
contain no voltage sources, and thus also reducing the number of mesh
equations, It may be possible to interpret these new equations as those
of a network with fewer meshes than in the original., Figures 22 and 23

illustrate two examples of this.

AN NV
l L=1 L=2 l L=2.
, 3
Cc- %
LN
C’ I3 ’l‘ 1=2 C_:: -?"o‘ L=_/_a_
’]‘ 3
Non-acéessible mesh Equivalent network
degenerate at W= 1/2. without this mesh.
. Figure 22
R‘ C‘—"i L:Z [ez Rf C;Z L_-_—é'- L:% C:z_ RZ«
VT — VWY A I TR
C:1 C=i L C <4
o 3 o
iR .
QL= L=t T ° L% o
Non-accessible mesh - The wye equivalent.

degenecrate at w = 1.

Figure 23



49.
o ‘SI.NG{JLAR MESHES CONSISTING ONLY OF TRANSFORMER WINDINGS

Meshes which contain no impedance elements may be characterized
in three ways. (R-3).

i. Of the Windj.ngs in the mesh, the sum of the winding-turns due to each
transformer is zero, and there are no voltage sources in the mesh.

2. Of the windings in the mesh, the sum of the winding-turns due to one
transformer, at least,.is not zero, and there are no voltage sources in
the mesh.

3. The mesh consists of both windings and voltage sources.

Of these situations, the first will cause the impedance matrix to be
singular, ‘the second will not (but, instead, indicates the presence of
superfluous transformers), and the third might possibly.

In the first situétion,the network equations in terms of currents and
flux derivatives will contain a row with nothing but zeros to describe the
particular mesh. The current of this mesh is indeterminant. It may be
set- to zero by open-circuiting arbitrarily a branch in it. This is illus-

| trated in Figure 24.

R,
a"'+ — A~ 1
n, ) o 4 $
(2 ’?’
L4+ +4.] | b 4 'A% l
‘/, -~ ‘N: n :4’
n, :/ / N N R o T
= /L, \ (N’ ' o
{ 3 L
| p L
¢ o N !
M2 1N n, e R,
‘: /b (~)+
(a) . (b)

Figure 24
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'I'he'.\circu.it i-n-,.part (b) of the figure results when the mesh (indicated by a
dashed line) is open-circuited either at point x, vy, or z. In this type of
circuit reduction, at least one winding can be removed, and the circuit
equations written in terms of fewer variables. The removal of one
winding may justify the removal of several, and, as in Figure 24, even

the removal of a transformer,

SUPERFLUOUS TRAﬁSFORMERS
For a mesh consisting only of windings, that is, containing no

branches with impedance or voltage sources, there is a mesh equation in
the form:

O:Oi,-o----+0im+na_;3q+...+nk9¥k (71)
Now, as required in thé second situation listed above, if the winding-turn
sum for one of the transformers, say, n,, is not zera, then the following
"permissible alteration' can be made. The windings of transformer ''a"
may be first multiplied by --nb/nLEl and then these turns added to those on
"b", then by —nc/na and the turns added to those on "c¢", etc., finally
reducing equation (71) to

0= ng é‘a_ (72)

Thus, ;‘a will be zero, and all the windings of transformer "a' may be
replaced by short-circuits, By this reduction, the number of meshes and
the number of multiwinding transformers have both been reduced by vue,
leaving "e'", the number of effective degrees of freedom, of the circuit

unchanged,
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"'REP;LA,CING‘ MULTIWINDING TRANSFORMERS BY TWO-WINDING

TRANSFORMERS

A situation involving superfluous transformers occurs if it is de-

sired to replaceeach multiwinding transformer by a set of two-winding

transformers. In Figure 25, parts (b) and (c), two of the possible

equivalent circuits for the multiwinding transformer of part (a) are given.

a

?v

n$
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@) ny ?

(a)

—0 O— —0 . 0—

If the equivalent circuit is built up one transformer at a time, first

two of the terminal pairs are magnetically linked; next, a third terminal
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pair is linked to these, and so on, each transformer (except the first )

joining to the group one additional pair of terminals. The total number of

transformers needed is one less than the number of terminal pairs, that

is, windings on the multiwinding transformer. The two-winding trans-

formers may be connected in any manner as long as they link all the

terminal pairs together.

The number of turns for the two-winding transformers are chosen

(R-3).

by the rule that each winding (and there may be several) across a given

terminal pair has the same number of turns that were on the winding

originally across that terminal pair.

The ampere-turn and volt-per-turn
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..e'qu;tions.méy,'be written to prove that this technique furnishes a valid
equivalent circuit,
As an additional example, a five mesh Cauer network of the type

previously given is drawn in Figure 26 so that it contains only two-winding

transformers.
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TRANSFORMERS INCIDENTALLY SUPERFLUOUS

The transformers that were described as superfluous in the previ- .
ous two sections were so because of the particular way in which they were
interconnected. It was shown that the flux deriviative for such a trans-
former was zero, allowing its windings to be replaced by short-circuits.
An example, shown in Figure 27 (a), is now given in which the flux
derivative of a transformer is zero due to the particular values assigned

to the impedances and turns in the circuit,

.
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To chéck that ;z‘ is zero, as claimed, one might write the network
equations in terms of the three mesh currents and ;Z, and solve for .

The value of ¢ will be found to be zero for any frequency of operation, and
the equivalent circuit of Figure 27 (b) will be justified. Other examples
could‘ be given in which the ¢ of a transformer would be zero but for only
one frequency of operation,

In the analysis of networks involving ideal transformers previously
given,. the flux derivatives were used to supplement the mesh currents as
variables in order to facilitate the writing of the equations. In resolving
these equations it was not necessary to solve for the flux derivatives.
This, in fact, is one of the principal advantages in the representation of
constraints by the use of Lagrange multipliers. However, to check if a
transformer might be incidentally superfluous, it would be necessary to
compute numerically whether or not the individual flux derivatives were
zero. This effort would be warranted, it would seem, only in exceptional

cases.

VOLTAGES APPLIED TO ALL-WINDING MESHES

A mesh consisting of a voltage source and transformer windings but
no impedances (shown, for example, in mesh 2 in the circuit of Figure
28 (a) ) may be taken as either a load mesh or a magnetizing mesh, unless,
of the windings in this mesh, the sum of the winding-turns due to each
transformer is zero. (If this latter situation were the case and the
applied voltages not zero, then infinite currents would result.) Choosing

the mesh with only windings and a voltage source as the magnetizing mesh
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- for ; transfdrmer implies by Rules 1 and 2 in the chapter on analysis
that the other windings of the transformer in the load meshes of the net-
work would have no self or mutual impedance associated with them.
Instead, these windings would appear only as voltage sources, the mag-
nitudé of which is found by Rule 3. One may physically represent on the
cifcuit diagram the process of the elimination of the mesh currents as
wvariahles in the equation by replacing these windings by voltage sources
of the proper value. This is done in Figure 28 (b) for the circuit in part
(a) of that figure, and it may always be done in the case of impedanceless

magnetizing meshes.

R R
'l'é) N ‘$+
vl l| Y+rnv, l,

Figure 28

If the mesh, with only a voltage source and transformer windings,
is selected as a load mesh, the equation of that mesh is just written
according to the rules, that is, by associating self and mutual impedances
with the windings. For example, if mesh 2 in the circuit of Figure 28 (a)
is chosen as the load mesh, rather than the magnetizing mesh, and the
turns reduced to standard form, then the equation for this mesh would be

V, + Nv; = N*R (73)
where N = —l/n. Now if the resistance, R, is zero, no matter which of

the two ways that the load and magnetizing meshes are selected, the
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N :

'.".re'sult is a singular; in fact, null matrix.

Now, in general, through the process of choosing a set of mag-
netizing currents and then eliminating these as variables, it is pos sible
t;) write an impedance matrix for any network involving ideal transformers.
I—Iowe.ver, as in the case of networks without transformers, this matrix
may be singular. Two limitations are thus implicd on the formulation of
network problems in terms of impedance matrices: first, the ne;essify of
eliminating some of the mesh currents as variables, and, second, the
possibility of the equations being singular. There are similar limitations
as regards analysis on the nodal admittance basis. These limitations,
however, may be overcome by formulation of the network problem in
terms of its "scattering’ matrix. This method will now be presented and

applied to a particular system.

THE SCATTERING MATRIX

Consider the algebraic function

_E2-7 Y-/ |
S_-Zf'/ - Vil (74)

where y is the reciprocal of z. In mathematical analysis, this function is
called a '"bilinear transformation.' Note that if z is zero, s has the value
minus one, and that if z becomes infinite, s remains finite and approaches
the value plus one. In terms of complex variables, the function of
equation (74) maps the right half z-plane into the area bounded by the unit
circle in the s-plane.

The properties of this function suggest that if the impedance or
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- édmigtancé mﬁtﬁx of a network (or both) contain terms that are either
infinite or undefinable, then a combination of these matrices might form
a new function to which a value could he assigned., The ""scattering' or
"efficiency" matrix, '"S", assumes this role. This matrix is usually de-
fined in terms of the power transfer between the various terminal pairs of
the network as in (R-12), An alternative definition, used when it is prac-
‘tical to form the impedance matrix of a network, is
-/ ~/

S=(%-/)g+y) = (ar/) (5-1) (75)

By means of a limiting process, of the type shown in the next section, the

definition (75) can be extended to describe all passive networks.

NETWORKS CONSISTING ONLY OF IDEAL TRANSFORMERS

To take an example that cannot be analyzed by the use of impedance
or admittance matrices, the networks that consist only of ideal trans-
formers will be considered and the expression for their scattering ma -
trices determined. First, the transiormers constituting such a network
are considered non-ideal so that an impedance matrix can be written for
the system. From this impedance matrix a scattering matrix is com-
puted using the definition in equation (75), and the limit of the expression
is taken as the transformers become idealized,

The model for the non-ideal transformer will be that of equation (9)
in the first chapter. That is, the transformerswill be considered as
multiwinding transformers that have no leakage flux, but for which the
sum of the ampere-turns is not zero but equal to the reluctance, R, of

the core times the core flux. The core flux may be written as g divided
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by the operator, ''p'.
The equations for a three mesh network consisting of two non-ideal

multiwinding transformers are in the form, (R-3),

/§= 0}/' -/-O{z + Oc}v‘- ﬂ/a_?"a, + 7, gfbl

4 =04, + 0, * oc, # "zaF(a A 'z,eb?’é;

Vg = O+ 0ly + Oy # 2,0 B + 734 P (76)
O = at,+ 750 + 230 % _% ¢a 7 0¢5

O = 74¢ +7‘Z‘zét:2 £ 7231_,(‘3 + O,dc;. —%:@'b

Again, in equations of this form, the windings of the various cores may be
multiplied and added to each other the same as for ideal transformers,
since these alterations change only the value of the flux derivatives and
not that of the voltages or the currents. Carrying out these alterations,

the equations in (76) may be brought to the form:

l

b= 04 t+ O * Oy + Zudy + Ay ﬁg
b= 05 + 0 » 05— Fu + Ogf
Vg = O4f + 05 7 O * 0/4', - ﬁz (77)
O = 7aly = G+ Ois 4 fuds ¢ fobd
'_0 - 72&(', + di — iz * 7‘.&4¢¢; < T4 ﬂ‘;

where f__ and f,;, are proportional to Ra/p, and fba and f};, are pro-
portional to Rb/p.

Equations (77) may be written in matrix form, in which, by use of
compound matrices, the equations are divided as were the equations des-

cribing magnetizing and load meshes. The result is:
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Vf’ = Oc'f, # Ot'Q + /V/Qf
VQ = OC'P + O('Q - % (78)

O /\/f(‘/) - l'Q + Fﬁl

This matrix equation has the same form for a network consisting of

I

these non-ideal transformers, regardless of the number of meshes. The
subscripts, "P!" and '"Q", are used to distinguish this from the case in
-which magnetizing and load meshes were selected, since, here, the trans-
formers are non-ideal, and the flux derivatives may be eliminated from
the equations without simultaneous elimination of the so-called ""mag-
netizing" currents. The equations without 95 are:

v, NE N, i wF
= - tip + NF
r P Q (79)

- , _ /.
//q; :"fFA/ztp F(q

giving the impedance matrix for a system of non-ideal transformers to be:

i “WE Ny wE
Shal iviini it Sy (80)

The scattering matrix may also be partitioned, and written in terms of Z.

By equation (75) it is:

|
S = §’f"i _:_ffi? (81)
] I
or 1 See iy
—-WE Ny + WET /-NF N, we!
S S G PR B [ o —— —
- _ oy i _
N \FT o
|

Exﬁanding (81), the four sub-matrices of S are explicitly determined, each
in a form that permits the limit to be taken as F approaches zero, that is,

permitting the transformers to become idealized. Thus, for example,
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ﬂ Spp = (7- NCEr )W) (1enCFr)) e )" (82)

and as F approaches zero,

S,o,o“'-(/' /V/l/t)(/T/V/Vt)_/ (83)
= /-2 (/f/v/vé)‘/

The other portions of the scattering matrix for a system compos ed only of

ideal transformers are, (R-9),

-7
Spg = R (1# NN ) N

S -2 (/f/vt/v)_/f/t (84)

@Fr

Belevitch has applied this scattering matrix formula to the design of
ideal telephone conference networks, (R-9). He has also given the neces-
sary and sufficient conditions on a matrix that it be the scattering matrix
of an electrical network with physically realizable, passive elements
(including ideal transformers), and has given a synthesis procedure based
on the scattering matrix. {(R-13). Belevitch's procedure, which applies
ev-en to networks for which both the impedance and admittance matrices

are singular, has been summarized in English by Bayard, (R-14).
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V. DUALITY AND TOPOLOGY

THE ELECTRICAL DUAL

Consider the circuits of Figure 29 (a) and (b).
ya £ S '

(__1 - =
r\
Y Cx ’
Wk’ b7 G§ g Vix)
('é-j
| (a) Figure 29 (b)
The equations for these circuits are, respectively,
(7
=L LE 1 o v sl dt (85)
%) = ¢ X ‘M“’ * G + /'"/tl/(z‘)c/t (86)

These two equations are numerically equivalent, if, by multiplying the
second one through by a constant, '"r'", (which is in the units of resistance),

they could be equated term by term. This requires
Vet 1, i =+

(87)

L=+3(, R=r% 0, S=*M
Two networks that are related in similar fashion as (a) is to (b), namely
such that the equations of one are equivalent to the equations of the other,
provided the roles of current and voltage are interchanged, are called the
electrical dual of each other. In one (here network '"a'), the equation is
the sum of the voltage drops of a mesh, while for the other (here, '"b"),
the equation is.the sum of currents at a node. This dual role of a mesh
and a node (or more generally, a mesh and a node-pair) makes the subject

of the geometry of the network prominent in the discussion of electrical

duality.



61.
PLANAR .NE‘T-,WORKS AND THE TOPOLOGICAL DUAL

A planar network is one that can be diagramed on a plane without
wires (i.e., branches) crossing over each other. A property of a planar
network is that it also can be drawn on the surface of a sphere without
having wires crossing over each other. (R-15). If this were done, the
surface of the sphere would be divided into a group of simply connected
areas, each bounded by a mesh of the network made up of the branches of
the network. Now, in each of these areas a dot may be placed, and for
each branch of the network a line may be drawn crossing it and joining the
dots of the adjacent areas. The dots represent the nodes and the lines
represent the branches of a new network. This network is called the
topolagical dual of the first. It is a property of all networks that can be
drawn on a sphere without wires crossing over each other (in other words,
for a planar network) that each has a dual. (R-16).

In transferring a network diagram from being drawn on a sphere to
-being drawn on a plane, one of the deliniated areas on the sphere (any onec
could be chosen) becomes identified with the area of the plane that
surrounds the network. Thus, in finding the dual of a network drawn on a
plane, a dot must also be placed in the area of the plane that surrounds
the network. This process is illustrated in Figure 30. In part (a) of
that figure, a network is given, and by means of dashed lines the method
of forming the dual is shown. The dual network is drawn separately in

part (b).
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Figure 30 s (b)
In the formation of duals, one separate part of a network is treated
_at a time. Two parts connected only at one point are separated and treat-

ed individually.

ORIENTED BRAN‘CHES, MESHES, AND CUT-SETS

A branch is "oriented" by assigning a reference direction to it,
while a mesh is oriented by assigning to it a reference direction in which
it may be traced. For planar networks, a convention may be applied that
the positive direction for each mesh bounding one of the simply connected
areas is the direction a traveler takes to keep the bounded area on his
left. For a network drawn on a plane (rather than on a sphere), this
reference direction is counter-clockwise for all interior meshes ﬁnd
clockwisg for the one exterior mesh, (It is assumed that there is one,
non-separable part to the network,)

The group of branches comprising a mesh form a '"'set,” It is useful
to define as another type of set the group of branches that are the dual to-
those in a mesh. The property of this group of branches, as can be noted
from th‘e procedure in finding the dual, is that they, and only they, are all
joined to a particular» node. If the branches in this set were cut, they

would separate the node from the rest of the network. More generally, a
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"cug—s et" is defined as that set of branches which if cut would increase

the number of separate parts of the network, provided that all the branches
in the set must be cut in order to do this. (R-17). In analogy to the
reference direction assigned to a mesh, a reference direction may be
assigned to a cut~set. For the cut~set consisting of all the branches
assigned to a particular node, the reference direction will be taken as the

direction along the branches a traveler takes to go into the node.

ORIENTATION OF BRANCHES IN THE TOPOLOGICAL DUAL

The branches of a network may be arbitrarily oriented to establish
the electrical reference directions for the sources, for the currents and
voltages in transformer windings, etc. The question is to orient the
corresponding set of branches in the dual in an equivalent manner.

In a planar network, each branch can be assigned as a member of
two meshes, which -- according to the convention in the preceding sec-
tion -- are traced through the branch in opposing directions. That is, the
reference direclion for each branch will be along the positive direction for
one mesh to which it belongs and along the negative direction for the other.
Each branch serves as a dividing line between two adjacent areas. The
"corresponding branch in the dual network (i.e., the '"crossing'" branch, if
the dual is superimposed as in Figure 30 (a)) joins the node associated
with one of these areas to that of the other. If the branch in the dual net-
work is give.n a reference direction, the direction will point in toward one
of these nodes and out from the other. That is, each branch in the dual

network belongs to two cut-sets, and, according to the convention of the
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- pr’e..t:é\din_g. secﬁon, the two cut-sets have opposing directions with respect
to the branch,

In summary, one can say that each branch in a planar network has a
"positive' and a ''negative’ mesh, and that with each of these meshes there
is associ.ated a node in the dual network which, for the purposes of a rule,
may be taken, respectively, as the "positive" and 'negative' node for the
branch connecting these nodes. To illustrate, this rule may be applied to
the network of Figure 31 (a). The branches of this network have been
arbitrarily oriented. The dual of this network has been drawn in Figure
31 (b), and the orientation of its branches determined by the given rule.
As a second illustration, the dual of the network in Figure 31 (b) has been
drawn in Figure 31 (c). and the orientation of its branches determined by

the same rule.

R ¢ - 4 a’ o b,
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Figure 31
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THE DUAL OF A DUAL
Comparing the networks in Figure 31 (a) and (b), one may note that
the dual of the dual of a network with oriented branches is the same net-
work with the orientation of the branches reversed. The proof that this is
an inherent property of planar networks (and

not an accident due to a peculiarity of the rule

—
‘e

7
chosen for orientation of the branches in the /

/

dual) may be stated in terms of the diagram . Figure 32
in Figure 32, This figure represents the oriented branch of a network
upoxl1 which is superimposed the crossing branch of the dual network
(shown as a dashed line).

| A rule for orienting the dashed line with respect to the one it
crosses, involves, at least implicitly, the rotatipn of a branch to be in
line w.ith its dual so that the orientation of the two branches may be com-
pared. The rotation is analogous to the 900 rotation associated with the
0p.erator, "j" (the square root of minus one). In fact, each planar net-
work may be said to belong to a group of four networks that is isomorphic
to the numbers 1, j, -1, and -j which form a group under multiplication
by the operator, j. Thus, for instance, if the dual of the dual of the net~

work of Figure 31 (c) were taken, the network of Figure 31 (a) would

result.

POLARITY NOTATION OF ELECTRICAL DUALS
Because of the property pointed out in the preceding section, it is

necessary, in orienting with respect to each other the branches of dual
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.néfw;rks, to ‘di.stinguish one network as the dual e.\nd the other as the
iﬁverse dual. For electrical networks, the distinction can be achieved by
calling those networks for which the mesh equations are to be written,the
nvoltage networks, ' and those for which the node equations are to be
writte.n, the "current networks." The reference direction for a branch in

a voltage network will be indicated by

placing a ''-" and a ""+" sign along the P
branch, with the reference direction //

/__
taken from =~ to +. The reference Figure 33

direction for a branch in a current network will be marked by an arrow-
head. For instance, a branch consisting of a voltage source has its

reference polarity indicated by + and - marks if it is in a voltage network,

1 i mon macas mzerle 2 H H H
Dy an arrowhead if it is in

an

fal

The rule for orienting the branches of the dual or the inverse dual
of an electrical network may be given in terms of the diagram in Figure
33. The rule is, that taking the two networks, one superimposed on the
other, the branch with an arrowhead is directed across the branch with
the polajrity marks in such a way as to keeia the + polarity mark on its
right. (R-1). With this convention, the dual of the network in Figure
34 (a) is given in Figure 34 (b), and the dual of the network in (b} is
given in Figure 34 (c). Note that the networks in (a) and (c) are

identical.
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THE DUAL OF AN IDEAL TRANSFORMER

.The equations (15) and (16) given in the first chapter for the multi-
'\x}inding transformer are identical to the ones, (24) and (25), Agiven for the
multilimb transformer, provided:

1. The roles of current and voltage are interchanged.

2. The roles of winding-turn and reciprocal-turn are inter-
changed.

3. There is a one-to-one correspondence between the windings
on one transformer and the Windings‘on the dher,

Thus, one transformer is the dual of another. Assigning reference
polarities by considering the multiwinding transformer as a voltage net-
work and the multilimb transformer as a current network, the dual con-
figurations for three-winding transformers are shown in Figure 35, and

for two-winding transformers in Figure 36.
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Physically, the dual of a two-winding transformer is the same trans-
former with the primary and secondary terminals exchanged and the sign
of the turns ratio reversed. Figures (6) and (9) are an example of two net-
works involving ideal transformers that are the dual of each other. Fur-

ther examples are given in the following sections.

THE DUAL OF CAUER'S NETWORK

The dual of Cauer's network of Figure 18 is given in Figure 37, and
the dual of Figure 26, which is the Cauer network made up only of two-

winding transformers is given in Figure 38,

BT T - T

Figure 37
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DUALITY AND MUTUAL INDUCTANCE

To find the dual of a pair of branches coupled by mutual inductance,
Gardner and Bgrnes (R-18) essentially replace the coupled inductors by an
equivalent " T" shaped circuit made up of three self inductances and then

take the dual of the altered circuit. This is shown in Figure 39 (a), (b),

and (c). - Ly-L,, Lay-L C
( ) L1 g 22 | {2
I's
Vf[f"‘\ h T
’ 7
—T Ly
(a)

Figure 39



70,

"Héw'eVe_r, if the mutual inductance, L.,, is greater than either of the self

12
inductances, an element in the circuit of (b), and its dual in (c), will have
a negative parameter so that it will not be realizable.

Another approach would be to replace the 4-pole in (a) by its

equivalent Cauer network. First, the equations of the 4-pole are written:

v, =1L, P"/ *» L2 /-";e

| (88)
o =L py +Laz piy
and then the formulas (61) applied
Lz :Lzzl A/‘.':‘_ “ / J i = A (89)
22 72 L2z,

giving the parameters of the Cauer network and its dual, shown,

respectively, in Figure 40, parts (a) and (b).

riﬁfbﬂ + ‘ L(-_
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Figure 40

REDUCTIONS IN A PARTICULAR BEAM ANALOGY CIRCUIT

In the solution of aeroelastic problems by means of electrical
analogies, circuits involving ideal transformers are used. (R-19). As
an example, the circuit fo? a beam, in vertical bending coupled with tor-
sion, has been used to represent an airplané wing in a vibration analysis
as conducted on the Caltech Analog Computer. In such a circuit, particu-
lar groupings of elements occur repeatedly. A portion of the circuit,

(R-19), is given, showing two of the groupings or ''cells' along with the

\
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"tr'an":\sformer yci_rcuit used as a ''coordinate transformation"” to connect the
wing circuit to the fuselage circuit. (In the diagram here, the fuselage
has been represented by a current generator,) As an application of the
results given in the preceding

section, one such group, con-

taining the three capacitors

and one transformer of ter-

minals 2, 3, and 4, may be

v
singled out. This grouping _[

is the same as the circuit r

(Figure 39 (c)) given by

Gardner and Barnes for the

dual of mutually coupled coils,

except that a transformer has
been added to eliminate the
pdssibility of negative ele- Figure 41
ments.

Now, provided that the voltage at terminal 3 is not one of the
variables being measured. the grouping singled out may be replaced by
_the circuit of Figure 40 (b), which contains only two capacitors rather
than three. In using this circuit one winding of the ideal transformer will
be placed between terminal 2 and ground. However, there is another
transformer (placed between terminals 1 and 2) also having a winding be-

tween terminal 2 and ground. The two transformers combined are equiv-



2.

alent to a single mu'ltiwinding transformer, which has three windings.

However, if one of the windings L — ¢ 7
is reversed and’its groundz ter- ° : g —

minal combine;i"with that of the =
adjacént winding, the multi- % -

winding transformer is reduced = o2

to a tapped, two-winding trans- Figure 42

former. The resulting circuit is shown in Figure 42, Termihallé 1, 2,
and 4 are identical to those in 1;.he given circuit, only terminal 3 has been
changed to 3', Because this grouping of elements occurs repeatedly, the
reduction described reduces in the over-all c'ircuit the total number of

transformers and the total number of capacitors each by about 10%.

CONNECTION MATRIX AND THE STANDARD BRANCH, NODE MATRIX
So far, the dual circuits presented have relied upon finding the
'topologiéal dual of the network configuration, a process applicable only to

planar networks. The exteqnt of this limitation will be discussed in this

¢

and the sections immediateiy féllowing through the analysis of additional
properties of planar networks. First, the connection matrix will Be con~-
sidered. .

If the meshes in a non~separable, planar network are selected as
suggested previously with each interior mesh traced counter-clockwise
and the one exterior mesh traced clockwise, each branch will belong to
two meshes, passing through the branch in opposing directions, and the

number of meshes will be one greater than the number of independent
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- Iﬁ'e.shit\as for thé network. This last point can be verified by comparing
Euler's Polyhedron Formula (R-16) with the standard formula for the
number of independent meshes as given in equation (58). If the connection
matrix is written as described in equation (44), with one row for each
branch and one column for each mesh (the exterior mesh being included),
each row will contain two non-zero entries, one of them +1 and the other
-1, This will be considered the standard form for the connection matrix.
Another matrix that is used in describing the topology of a network
is the "'standard branch, node matrix.'" Each row in this matrix corres-

ponds to a branch in the network, and each column to a node. The ele-
ment, aij’ in this matrix is +1 if branch i is directed into node j, -1 if it
is directed away from node j» and 0 if it is not connected to node j. Two
examples are presented: the matrix and network of Figure 44, and the ma-
trix and network of Figure 45, In regard to notation, it could be mentioned
that Foster (R~17) calls the tr.ar;spose of the standard branch, node ma-
'tri# the ''"vertex-element incidence matrix' and says that it was first pre-

sented by Kirchhoff, although not in matrix notation, in 1847. Also, Fos-

ter uses the label, "element-cut-set incidence matrix" for what is called

here, the branch, node-pair matrix. /4 - P
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The standard branch, node matrix is a special case of the more

general "branch, node-pair matrix, ! just as the standard connection ma-

trix described for planar networks is a special form of the more general

connection matrix. The characteristic of the standard branch, node ma-
trix is that every row contains just two non-zero entries, one a +1 and the

other a -1, and that, compared to the general branch node-pair matrix, it

"has one additional or "bordered" column, the elements of which are a

linear combination of the elements of the other columns. The standard
connection matrix is related to the more general connection matrix in
exactly the same fashion, having just two non-zero entries for each row,
a +1 and a -1, and having an additional, non-independent column. How-
ever, the standard branch, node matrix is not limited to planar networks,
as is the case with the standard connection matrix. For every network,
planar or not, a standard branch, node matrix can be formed. Also, for

every such matrix, a network configuration can be found by simply draw-
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1ng an a'rray‘ ;xf;.' dots, one for each node, and then connecting these nodes
by branches, one for each row of the matrix, starting from the node
having the -1 entry and ending on the node having the +1 entry. Now,
si;lce any standard connection matrix has the same form required for the
standérd branch, node matrix, it could take the place of a standard branch,
node matrix, and, by the procedure just given, a network drawn. The ma-
trix taken as a standard connection matrix describes one network, and the
matrix taken as a standard branch, node matrix describes another; these
two networks are related, one being the dual of the other. In summary,
if a network is described by a connection matrix in the standard form, it
must be a planar network, and its dual may be drawn by considering t
connection matrix as a standard branch, node matrix.

This correspondence between a connection matrix in the standard
form and a standard branch, node matrix permits the following test. If a
matrix is given, but no corresponding network diagram is available, then,
: as‘suming the matrix is one with two non~zero entries in each row, a +1 and
a ~1 (i.e., the matrix is in the ''standard" form), then it can be determined
whether or not this matrix is the connection matrix for a planar network.
Simply call it a standard branch, node matrix, and draw the corresponding
network, Then, if this network can be drawn without wires crossing over
each other, the ofiginal network was planar\and it is equal to the dual of
the network that has been drawn.

A test to see if a given network can be drawn without‘ its wires

crossing over each other (i.e., to see if the network is planar) without
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a;é_tl.;‘ally drawi;hg all the possible circuit configurations may be devised
from a theorem presented by Kura}towski and by Whitney, (R-20). The.
theorem states that if a network is non~planar, it can be reduced by re-
moving, possibly, some of the branches from the circuit, to one of the
two b‘asic non-planar circuits. These two circuits are those chosen in
the example of Figure 44 and of Figure 45. In the reduction process,
branches in series are replaced by a single branch, which means that
each node in the reduced network is connected to at least three nodes. By
example, one may consider the network in Figure 46. By removing one
branch (marked "'x'"), there result two branches in series. These are

replaced by a single branch by removing a node {(marked "y'"); the result-

ing network is identical with that of Figure 44,

The Kuratowski-Whitney theorem may be
restated to the effect that if a network is non-

planar, its standard branch, node matrix

X

must reduce to one equivalent to the standard v
)

branch, node matrix describing a basic, non~- Figure 46
planar circuit. The standard branch, node matrices of the two basic, non-
planar circuits are written out in Figures 44 and 45. The permissible
steps in the reduction of a standard branch, node matrix are:
1. Striking out any row (removing a branch).
2. In case a column contains only two entries, the rows cor-
responding to these entries are combined into one (reducing

two branches in series to one branch), either by adding or
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-Subtracting them term by term, so that the two entries in
question will cancel, leaving no entries in their column.
3.‘Mu1tiplication of any column or row by -1.
The order in applying thgse steps is immaterial, and they may be

applied repeatedly.

THE CONNECTION MATRIX NOT IN STANDARD FORM

If a network con}cains more than one separate part, the columns of
its connection matrix may be divided into sets corresponding to each sep~-
arate part. The property of these sets of columns is that no row, that is,
no branch, contains entries in more than one set. Now, if a matrix not in
the standard form but known to be the connection matrix for a network is
given, it will first be examined for separate parts. If separate parts are
found, it will be divided into these parts, each to be considrred as an in-
dividual connection matrix,

Now, given the matrix containing only one separate part, it is tested
to see that each column is linearly ndependent from the others. The con-
dition for this independence is that the number of rows be at least as great
as the number of columns and that there be a non~zero determinant that
can be formed from all the columns and an equal number of rows. If some
linearly dependent columns are discovered, they are eliminated from the
matrix, To the matrix with independent columns, one column is added.
This coiumn corresponds to the "exterior" or "non-independent' mesh
used as part of a connection matrix in the standard form. The condition

on the elements of this column is that termwise they are linearly dependent
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" on th‘e\ elenﬁen’:'s of the other columns.
After these operations, the given connection matrix xhay perhaps
still not be in the standard form, The possibilities are:

1. The network described by the connection matrix is planar,
but the meshes were not selected according to the suggested
procedure.

2. The network is non-planar.

3. The network contains ideal transformers.

For cases 1 and 2, the matrix consists only of elements that are +1, -1,
or 0. For case 3, the re'striction is lifted.

If the matrix was not in standard form due to the first cause listed,
an alteration, as follows, can bring it into the standard form. Consider a
particular row (any one) and the columns in which it has entries. The con-
figuration described by the connection matrix will remain invariant if any
of these columns is replaced by the termwise combination, that is, sum or
difference, of it and one of the other columns, provided in doing so the
resulting combination contains a zero entry in the row originally consider~
ed. In répeatedly forming such combinations, it is possible that some
entries in the matrix will be given a value other than +1, -1, or 0. How-
ever, a necessary condition that a connection matrix represent a planar
network is that it is possible to reduce it to the standard form by the
operation just described, combined, pbssibly, with the operation of mul-
tiélying various rows and columns through by -1. Having reduced a matrix

to the standard form, a sufficient condition that it be the connection matrix
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of a I;\)Ianar nétWOrk is the condition given in the preceding section based
on the Kuratowski-Whitney theorem, or the condition that the network
found by considering the connection matrix as a standard branch, node
matrix is drawq without wires (i, e., branches) crossing over each other.
This Seing the case, the dual network may be drawn, yielding the network
associated with the given connection matrix.

The remaining two of the three possibilities listed above will be
treated in the section entitled, "Drawing a Network Given its Connection
Matrix,'" In the next section, a relationship between non-—plaﬁar networks

and networks containing ideal transformers will be presented.

PLANAR NETWORKS ELECTRICALLY EQUIVALENT TO NON-PLANAR
NETWORKS

In the diagram of a non-planar network, some wires must be drawn
crossing over each other, If a pair of such wires is considered, as in
Figure 47 (a), one of its vn/rires may be separated from a terminal and re-
joined passing through a terminal of the wire it crossed, provided a one-

to-one ideal transformer is used, as shown in Figure 47 (b). This change

0

(a) (b)
Figure 47

does not alter the electrical characteristics of the network because the

voltage at B' (in the example given) equals that at B, and the current in
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| '.gfagch_AB'D. équals the current in branch DB. By repeating addition of
one-to-one transformers any non-planar network can be reduced to a
planar nétw_ork. The dual for this equivalent network can then be obtained
b‘y the method given for finding the dual of a planar network containing
ideal.transformers. (R-21). As an example, the planar equivalent of the
network of Figure 45 is drawn in Figure 48 (a) and its dual in part (b) of

that figure.

(a) (%)
Figure 48

One may note that the windings of the one-te-one ideal transformer
joining node-pairs (a,b) and (c,d) can be replaced by a onc-to-one ideal
transformer joining node-pairs (a,c) and (b, d). Also, because of the
unity turns ratio, impedances across node-pair (a,b)gmay be transferred
to node-pair {c,d), and impedances across (b, d) to (a, c) without any change
in the impedance magnitude, Conversely to the process shown in Figure
47, one may replace a one-to-one ideal transformer by wires that cross
each ofher if the transformer windings are joined to a common node with

the polarity mark at the node being the same for each.
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i Anothef interesting feature in this reduction of a non-planar network
to a planar network is that introduction of the one-to-one ideal transformers
leaves the connection matrix unaltered. Referring to Figure 47, one may
note that any m.esh', that had contained branch (A, B) in the non-planar net-
work,. must contain branch (A, B') along with the windings from B' to D and
D to B. Since the algebraic sum of these windings is zero, no winding—turns

-due to the one~to-one transformer appear in any of the equations.

ANALYSIS OF A PLANAR NETWORK CONTAINING TRANSFORMERS
In part (a) of Figure 49 the connection matrix for the network shown
in part (b) is given. This network is a planar network containing an ideal

transformer. A '"bordering mesh' is included for the analysis,
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Figure 49
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As can .b,é seen from this example, networks of this type have the

properties:

1. Every branch belongs to two meshes; therefore, the sum of
the entries, (1, -1, and 0), in a row of Cy, plus the sum of
the entries, (1, -1, and 0), for that row in Cyp is zero.

2. Every winding belongs to two meshes; therefore, the sum
of the winding-turns in any row of C is zero, and the sum
of winding~-turns per mesh for each transformer is 7zero.

The dual network, shown in part (c) of the figure, illustrates the
properties:

1. In drawing the dual, the location of each branch may be
determined by treating the combination of Cy, and Cpmas @
standard branch, node matrix having a number of columns
equal to the sum of the number of magnetizing and load
meshes.

Z. The location of each winding may be determined by treating
the winding-turns matrix as a reciprocal-turns matrix. It
should be recalled that each magnetizing node (the dual of a
magnetizing mesh) is attached to a winding of value, -1,
not appearing in the reciprocal-turns matrix. Therefore,
for each transformer, the sum of the terms that do appear

is +1.
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" DRAWING A NETWORK GIVEN ITS CONNECTION MATRIX

Given a matrix which may have entries other than 1, -1, or 0, but
which has been reduced, by the procedure previously explained, to repre-
sent a network with one separate part and with independent meshes, the
following procedure will yield the network configuration.

1, Border the matrix with an additional column so that the sum of the
elements of the bordered matrix is now zero.

‘2. If possible, alter the matrix using the following steps so that each
row contains two non-zero entries, a +1 and a -1.
a) Multiply any column by -1.
b) Replace a column by the sum or difference of two columns such
that at least one original, non-zero entry now becomes zero.

3. If repeated application of (a) and (b) fail, separate the matrix into
two parts, corresponding to Cy and CyNge In the CL matrix, leave un-
altered any row that contains two entries, a +1 and a -1, but for rows not
in fhat form, remove all the elements except one, of value +1 or -1,
placing the elements that were removed into the matrix Cy,N,.

4. Forrir'l the ‘matrix, CM’ with a single entry in each column such that
the sum of the elements in every row for CL and CM combined is zero.

5, Form fhe matrix, Ny, so that when premulti_plied by C,,, the product
is CMNt. Now, add a bordering sct of columns to Ni, one column for gach
magnetizing mesh (i.e., for each column of CM), placing in each column a
sihgle entry such that the sum of the elements in any row of the matrix,

N;, together with this border, is zero.
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6. Draw a rllel.t\'rvork by considering the combined (not added) matrices,
Ci,and Cpy, as 2 standard branch, node matrix in order to determine the
pqsition of the branches, and by considering _the matrix, N;, combined
with its border, as a reciprocal-turns matrix to determine the position of
the windings.

7. Obtain the desired result, namely the network described by the given
connection matrix, by taking the dual of the network found in step 6. If the
network of sep 6 is not planar, to find the dual it will be necessary, as
explained, to use additional transformers.

An application and example of this procedure is given in the chapter

DUAL RESULTS TO THOSE IN CHAPTERS III AND IV

For each of the situations described on the mesh impedance basis in
the previous chapters, there exists a dual of the Circuit, concept, or pro-
gedure in terms of nodal equations written on the admittance basis.

First, for redrawing a circuit involving multilimb transformers (in
order to physically interpret the permissible alterations of the reciprocal-
turns) each winding is replaced by an open-circuit, and then across the
various independent node-pairs selected for the analysis a winding from
each of the transformers is placed, some, perhaps with zero reciprocal-
turns. (Physically, a winding with zero reciprocal-turns is an open-cir-
cuit.) As an example, the circuit of Figure 9 is redrawn in Figure 50.

This is the dual of the circuit given in Figure 11,
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Figure 50

To insure independent reciprocal-turn equations, superfluous
multilimb transformers are removed and their windings replaced by open-
circuits. As an example, one might take the dual of the circuit in Figure
10. Reduction of the reciprocal-turns is identical to that of the winding-
turns, with the nomenclature of "magnetizing node-pairs' and ''load node-
pairs'' replacing that of the magnetizing and load meshes. Similarly, the
selection of independent node-pairs is guaranteed, if, for each separate
part of the network, they form a tree. The simplest form for a tree is
féund by selecting one of the nodes as reference (i.e., as the second mem-
ber of each node-pair, so that a node-pair may then be designatea by a
single node),

The matrix procedure for the a.nalysis on the nodal basis is given in

the following notation:

Vg branch voltage matrix; V, node-pair voltage matrix
VB =AYV (90)
IB’ branch current source matrix; I, node-pair current source matrix

s
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'YB, branch admittance matrix; Y, node-pair admittance matrix
Y= AYgA (92)
I=YV (93)

where, A, the branch, node-pair matrix, may be defined in terms of
equati.on (90).

The relétionship between analysis of a given network on the nodal
basis and analysis of the same network on the mesh basis is that

¥p = zg"! - (99)
and, if the tree, consisting of the independent node~pairs in the analysis,
is the same tree that is used in determination of the links in the mesh
analysis,

A=c (95)
provided that the connection matrix is non-singular. Because of relation
(95) the two matrices are called "orthogonal.'" Kron, (R-2), presents an
analysis combining or ''mixing" together the features of mesh and nodal
aﬁalysis, based on this orthogonal property. He also shows that any
singular (rectangular) connection matrix (or, branch, node-pair matrix)
represenf;s oniy a part of a non-singular (square) matrix that can be
established by supplying missing meshes, which are inactive because they
contain open-circuits, or for the branch, node-pair matrix, supplying
missing node-pairs, which are inactive because they contain short-circuits.
An interesting exercise is to write the orthogonal equations for two branches,
each with both a current and a voltage source, and then by alternately

setting sources to zero, to generalize the interchange of current and
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.vo.lt'a\.ge, sour;:e,'s to the case of mutual inductance in the generator branch.

For networks containing ideal, multilimb transformers, the branch,
node-pair matrix becomes

A= Ap + AU (96)
and the node -pair admittance matrix in terms of the reciprocal-turns is:
Y'=Yypq + 0¥t YLMUt + UY MUy (97)

The same rules apply for writing the node-pair admittance matrix
by inspection as those that govern the mesh impedance matrix, except
that the dual terminology must be used in the appropriate places. In
writing a node-pair admittance matrix by inspection, the special selection
of the node-pairs, by which one node in each separate part of the network
is selected as the reference node, considerably simplifies matters.

The case of superfluous multilimb transformers hinges on the
presence of a cut-set occurring in the network made up entirely of trans-
former windings. As an example of such a cut-set, one may consider each
néde of the circuit in Figure 38 to which only transformer windings are
attached, there being six such nodes. The superfluous transformers may
be eliminated by replacing the ten two-winding transf.ormers with four
multiwinaing transformers as shown in Figure 37 for the case where ''n"
equals 5. Thus, for the six "all-winding" nodes, there were six super-
fluous transformers.

Campbell and Foster., (R-3), show that if there is a cut-set ma&e up
of windings belonging to a single multiwinding transformer, then an

arbitrary number of turns, n, may be added or subtracted from the wind~
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| 'i'ﬁ'gs"\in the -cﬁt%set, allowing, by proper choice of n, for one of the wind-
ings to be set to zero turns, that is, replacedl by a short-circuit. The
dual situation occurs if there is a mesh consisting of windings from the
same multilimb transformer, Here, by proper choice of an additive num-
ber of reciprocal-turns, u, one of the windings may be replaced by an
open-circuit.

The duality principle with regard o the scattering matrix is that, if
two networks are duals of each other, the scattering matrix for one equals
the negative of the scattering matrix for the other. Thus, dual networks
give the same transmission losses. (R-12).

A dual situation also occurs in the analysis of the connection matrix
compared to the analysis of the branch, node-pair matrix. Given a con-
nection matrix, the branches in the various cut-sets of the network repre-
sented by the connection matrix may be picked out from the matrix as
follows: a cut=set consists of those branches whose entries in the con-
nection matrix sum, columnwise, to zero, and which, removed flfom the
matrix, would increase the number of its separate parts. In analogy, a
mesh consists of those branches whose entries in the branch, node-pair
matrix sum columnwise to zero, and which removed would not increase
the number of the separate parts in the branch, node-pair matrix. Note,
that a connection matrix with one separate part corresponds to a
oyelically connected graph, ' that is, a network which 