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ABSTRACT

With advances in the sequencing and synthesis of DNA, automation, and com-
putation, we are increasingly able to rapidly and reliably program functions into
cells. However, because the functions we engineer cells to perform are often both
unnecessary for the cell’s survival and burdensome to cell growth, mutation and
natural selection can rapidly lead to loss of function. Though numerous strategies
have made headway, improving the evolutionary stability of engineered functions
remains a goal of the synthetic biology community. To address this problem gen-
erally, we developed a strategy relying on integrase-mediated recombination which
allows non-producing progenitor cells to differentiate at a tunable rate, thereby con-
tinuously replenishing producer cells expressing the orthogonal T7 RNAP. While
this strategy removes selective pressure for mutations inactivating the function of
interest in the progenitor cell population, a strategy of terminal differentiation –
in which the capacity of differentiated cells to grow is limited – was necessary to
prevent the expansion of such mutations in the differentiated cell population. To
experimentally implement terminal differentiation, we co-opted the R6K plasmid
system, using differentiation to simultaneously activate expression of T7 RNAP,
and inactivate expression of c protein (an essential factor for R6K plasmid repli-
cation), thereby allowing limitation of differentiated cell growth through antibiotic
selection. Critically, we demonstrated computationally that terminal differentiation
endows the circuit with robustness to mutations which disrupt T7 RNAP driven
expression, and to plasmid instability effects that result in decreased expression.
Intuitively and computationally identifying the category of mutations which disrupt
the differentiation process as the Achilles’s heel of terminal differentiation, we de-
veloped a redundant architecture using a novel split-c protein systemwhich required
2 mutations to break the circuit. We experimentally demonstrated a trade-off be-
tween rate of production and duration of function as the differentiation rate is tuned,
an increased benefit of terminal differentiation with higher-burden expression, and
that redundancy improves the evolutionary stability of the terminal differentiation
architecture. Specifically we achieve a maximum of ∼2.8x (single-cassette terminal
differentiation) and ∼4.2x (redundant terminal differentiation) the total fluorescent
protein production achieved fromcomparable high-burden naive expression inwhich
all cells inducibly express T7 RNAP. We further demonstrate differentiation can en-
able the expression of even toxic functions, and develop a terminal differentiation
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circuit architecture which will allow the degree of redundancy and therefore the
evolutionary stability of the architecture to be scaled to arbitrary degrees.
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C h a p t e r 1

INTRODUCTION

As synthetic biology aims to engineer cells with the capacity to regulate and exe-
cute increasingly complex and burdensome functions, strategies which address the
evolutionary potential of biology will only become more essential. The same force
of Darwinian evolution which has provided incredible biological diversity does not
discriminate between natural and engineered DNA, and consequently engineered
functions may be readily lost in a population. It has long been observed that cell
fitness negatively correlates with heterologous gene expression level [1], and in-
creased burden results in a shorter evolutionary half-life of engineered functions [2,
3].

Efforts to improve evolutionary stability of engineered functions have taken a variety
of forms, including the most straightforward goals of reducing mutation rate and
minimizing burden. Strategies to reduce the rate of mutations have focused both
on sequence design and host-genome engineering. At the level of sequence design,
minimizing repeated sequences and parts diminishes mutations due to homologous
recombination (HR) and improves circuit half-life [2], and researchers may evalu-
ate sequences in silico for such HR and repeat-mediated mutations with the EFM
calculator [4]. Alternatively, strains have been engineered to globally reduce muta-
tion rates by disrupting the cell’s capacity for HR with recA knockout, knocking out
error-prone polymerases to reduce point mutations, and removing selfish transposon
elements that otherwise may insert themselves and disrupt circuit function [5–7].

Though such strategies may delay the acquisition of destructive mutations, other
approaches are necessary to impact the rate at which mutations are selected in
the population. The simplest solution to delay the selection of these mutations
is to reduce the expression level of circuit components and therefore the fitness
difference between functional and non-functional cells [1, 2, 8]. Alternatively, rather
than constitutively reducing expression, gene expression level may be dynamically
regulated by co-opting transcriptional changes which occur during cell stress to
drive negative feedback [9].

Additional strategies for improving evolutionary stability, rather than directly ad-
dressing rates of mutations and burden of functions, have sought to alter the con-
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sequence of these mutations. A conceptually straightforward approach is to have
multiple redundant copies of the synthetic construct, whereby multiple independent
mutations are required to destroy function. The chemically inducible chromoso-
mal evolution (CIChE) system was used to evolve strains with ∼40 tandem copies
of a circuit before deleting recA, resulting in expression of a polyhydroxybutyrate
biosynthetic pathway for >100 generations compared to ∼10 when expressed from
a plasmid [10]. Importantly, this strategy removes random plasmid portioning as
a mechanism for accelerating mutation propagation [11]. Alternatively, selection
of destructive mutations could be limited by utilizing components whose mutation
would inactivate not only the expression of the synthetic construct, but also an es-
sential gene or selectable marker. Producing GFP with KanR on a single bicistronic
transcript or as a fusion protein marginally improved evolutionary half-life when se-
lecting with kanamycin, and using a bi-directional promoter to drive their expression
separately increased half-life 4-10 fold [2, 12].

Strategies discussed so far have been limited to cell-level functions in uniform pop-
ulations, and tactics which incorporate specialization and division of labor at a
population level have not been addressed. With inspiration from microbial com-
munities exhibiting metabolic division of labor and syntrophic interactions, there
have been numerous successful implementations of metabolic division of labor for
production of biomolecules of interest [13–15]. This design motif has numerous ad-
vantages, including reducing the number of genes and associated metabolic load in
each specialized cell type, allowing independent optimization of separate pathways,
and spatially separating potentially incompatible functions. While these benefits
may be realized by combining in co-culture independently engineered strains or
species, additional attractive properties become apparent with dynamically regu-
lated division of labor in a population of genetically related or identical organisms.
Such metabolic and reproductive division of labor is a recurring motif in microbi-
ology [16, 17], but is underutilized in synthetic biology, particularly for addressing
evolutionary constraints.

Examining specific instances of division of labor in bacteria gives insight into how
we might use this motif in synthetic biology. In the cyanobacteria Anabaena,
nitrogen deprivation induces a division of labor in which individual cells in a
large filament terminally differentiate into heterocyst cells which are specialized
for nitrogen fixation and are incapable of reproduction [18]. This reproductive and
metabolic division of labor allows the collective to realize an inclusive fitness benefit
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from a costly metabolic process; a process encoded by all cells, but expressed only in
a fraction. If we imagine instead all cells expressing this function – nitrogen fixation
– cells which mutate this function would certainly gain a fitness benefit, and would
proliferate more quickly (assuming sufficient nitrogen). By instead having cells
which have the genetic potential for nitrogen fixation, but do not express it, there
is no selective pressure for mutations which would inactivate expression of genes
necessary for this process. Though this function is indeed essential for Anabaena
survival under nitrogen deprivation conditions, we could imagine using this same
strategy in synthetic biology for the expression of burdensome functions, essential
and non-essential alike.

To adopt this reproductive and metabolic division of labor into a synthetic context,
we propose a circuit architecture much like that seen in Anabaena. The simplest
form of this architecture consists of two cell types, with the first being specialized
for the faithful replication of an encoded function in the absence of circuit burden,
and the second – generated upon differentiation of the former – for the execution of
the encoded function. Though largely orthogonal and complementary to previous
approaches for improving the evolutionary stability of engineered functions, this
strategy may be particularly suited for certain types of applications. Functions for
which a subset of cells expressing a function is sufficient are ideal, as are functions
which could be divided between cells of distinct phenotypes. Importantly, functions
which are highly burdensome, toxic, or incompatible with cell proliferation enter
the realm of possibility.

In Chapter 2, we propose differentiation combined with limiting the capacity of
differentiated cells to grow (terminal differeniation) as a strategy to address evolu-
tionary stability. We first develop a integrase-mediated differentiation architecture
which allows the rate of differentiation to be tuned, the number of divisions a
differentiated can undergo limited, and the fraction of the population in the differ-
entiated state to be tuned by a combination of both factors. We then apply this to a
circuit in which the orthogonal T7 RNAP is activated by integrase-mediated recom-
bination, and demonstrate the capacity of this circuit to improve the evolutionary
stability of burdensome functions. In Chapter 3, we address weaknesses of this
initial demonstration of differentiation and terminal differentiation, and implement
strategic redundancy in the differentiation architecture. The benefit of redundancy
in the context of naive, differentiation, and terminal differentiation architectures is
explored computationally, and the unique robustness of terminal differentiation to
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mutations or other factors disrupting engineered functions examined. We further
demonstrate that differentiation can enable the expression of toxic proteins in a
manner that could potentially enable continuous bioproduction. In Chapter 4, we
consider scaling the application of terminal differentiation to longer times and larger
population sizes by increasing the degree of redundancy, investigate this computa-
tionally, and experimentally demonstrate a proof of concept circuit design that would
enable the realization of scalable redundancy with repeated genomic integration of
identical cassettes.
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C h a p t e r 2

DEVELOPMENT OF A TUNABLE INTEGRASE MEDIATED
DIFFERENTIATION ARCHITECTURE FOR FRACTIONAL

CONTROL AND T7 RNAP-DRIVEN BURDENSOME
EXPRESSION

2.1 Rational for differentiation
In order to increase the duration of circuit life-time, either the rate of mutations
which inactivate circuit function must be drastically decreased, or alternatively the
opportunity for thesemutations to be selected in a population of cellsmust be limited.
To accomplish this, we reasoned that having a population of cells that encode the
circuit function, but do not express it, would allow the genetic circuit to be replicated
in the absence of selective pressure for inactivating mutations. By inducing these
progenitor cells to differentiate at some rate into cells expressing the function,
producer cells would be continuously replenished (Figure 2.1B). However, these
producer cells are still susceptible to mutations which inactivate circuit function,
and the opportunity for these mutants to be selected would need to be eliminated in
order to prevent circuit failure. To accomplish this, we considered an architecture that
would limit the number of divisions a cell could undergo following differentiation
(Fig. 2.1C). In this way, mutations which inactivate circuit function would have
negligible opportunity to be selected.

2.2 Experimental considerations for differentiation architectures
To experimentally implement this differentiation circuit as depicted in Figure 2.1,
we required means of maintaining the function of interest fully off in the progenitor
cell population, and an irreversible mechanism that would activate the function of
interest at a tunable rate. To accomplish this, we turn to bacteriophage serine in-
tegrases, a class of proteins capable of unidirectional DNA recombination between
specific sequences of DNA [19]. With strategic placement of integrase attachment
sites on the genome, a single integrase-mediated recombination event can simulta-
neously activate and inactivate the expression of desired genes [20–22]. In order
to tune the rate of differentiation, we then rely on the inherent stochasticity of the
recombination process at low intracellular concentrations of integrase proteins, with
higher expression increasing the probability that any given cell in the population
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Figure 2.1: Architectures for implementation of differentiation circuits. (A-D)
Schematics for a naive expression (A), differentiation-activated expression (dif-
ferentiation) (B), and differentiation-activated expression in which the number of
cell divisions following differentiation is limited (terminal differentiation) (C). (E)
Deterministic ODE modeling in exponential growth conditions of differentiation
circuits with and without selection (`# = `% = 1 h−1; _"� = _"� = _"( = 0).
(F) Modeling as in (E) for differentiation with selection varying differentiation
rate and number of divisions. (G-H) Comparison of naive circuit with differen-
tiation and terminal differentiation (G: _"� = 10−6 h−1, _"� = _"( = 0; H:
_"� = _"� = _"( = 10−6 h−1).



7

will undergo the recombination event. In order to allow differentiation to control
diverse expression programs, the genes regulated by the recombination event should
encode proteins which control the expression of numerous genes, as in the case of
transcription factors, sigma factors, or orthogonal RNA polymerases. Further, for
the case of terminal differentiation we may limit the proliferation of differentiated
cells by using this recombination to inactivate the expression of an essential, or
conditionally essential gene. The specific circuit implementation will be discussed
later, but it is sufficient here to recognize that the duration of growth or number
of cell divisions possible after terminating the expression of an essential gene will
depend on the role of the gene and its expression level, and can be viewed as a
tunable variable.

2.3 Deterministic modeling of integrase-mediated differentiation
To gain intuition regarding the behavior of these proposed differentiation architec-
tures, and specifically if and when differentiation-based circuits would be advanta-
geous for improving the duration of circuit lifetime and/or total output achieved by
an engineered function, we modeled the behavior deterministically using systems
of ordinary differential equations. For comparison, we model a naive expression
circuit in which all cells constitutively express the function (Figure 2.1A).

In the absence of any burden difference between the progenitor and differentiated
cells, the differentiation architecture with unrestricted cell division in the differenti-
ated cells results in all cells in population being differentiated if the differentiation
rate is non-zero (Figure 2.1E). However, when the number of cell divisions is lim-
ited, the population achieves a steady-state fraction of differentiated cells that can
be tuned by both the differentiation rate and the number of cell divisions allowed by
differentiated cells (Figure 2.1E-F).

Considering the case when differentiated cells are performing some burdensome
function and have a slower growth rate than the progenitor cells, we observe popula-
tions performing differentiation with and without limited cell divisions approaching
or achieving a steady state fraction of differentiated producer cells (Figure 2.1G).
However, as differentiated cells are able to incur mutations inactivating the produc-
tion and relieving the associated burden, populations are eventually dominated by
non-productive differentiated cells at a rate that increases with burden. Conversely,
when the number of divisions of differentiated cells is limited, non-productive dif-
ferentiated cells do not have the opportunity to expand in the population, and a



8

steady-state fraction of producers is achieved that will be disrupted only by the
incredibly slow accumulation of mutations in the progenitor population (Figure
2.1G).

While differentiation with selection appears to permit indefinite circuit function, we
have not yet considered additional classes of mutation that become possible when
implementing these differentiation circuit architectures. In the case of differentia-
tion alone, we posit a class of mutations in progenitor cells which would destroy
the ability of the cell to undergo differentiation (Figure 2.1B-C). Additionally, when
limiting the number of divisions a differentiated cell can undergo, a second new
class of mutations becomes apparent which would restore the ability of a differen-
tiated cell to proliferate indefinitely (Figure 2.1C). When we account for these two
additional classes of mutations, we observe circuit failure even in the case where
differentiated cells have limited capacity for cell division (Figure 2.1H). Though
all circuit architectures – naive, differentiation, and terminal differentiation – are
imperfect and ultimately fail due to mutation and natural selection, we reasoned
that the best architecture would depend on a variety of factors, including the burden
imposed by the engineered function, relative mutation rates (burden, differentiation,
and selection mutations), as well as the needs of the specific application, such as
maximizing total production or duration of circuit function.

To understand when each of these architectures would be best suited, we modeled
each across varying production burdens, and mutation rates specific to burden,
differentiation, and selection mutations. As the behavior of the two architectures
involving differentiation are also impacted by the differentiation rate, we optimized
this parameter in each case to maximize either the total production (Figure 2.2A)
or the duration of population function (Figure 2.2B). In order for modeling results
to be qualitatively comparable to our experiments, we modelled logistic growth
with repeated 50X dilutions when the population reached 95 percent of the carrying
capacity. Simulations were terminated when the production from an individual
growth cyclewas below a low threshold (Figure 2.2A), or when fewer than 10 percent
of cells were producers (Figure 2.2B). Due to the mechanism of differentiation
implemented experimentally – integrase-mediated recombination – differentiation
is not coupled to cell division, and is modeled with a first-order rate constant coupled
to time. As well, though the differentiation rate may indeed vary with the growth
state of cells (i.e. exponential vs. stationary phase), we neglected this and assumed
a constant differentiation rate regardless of growth phase.
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Figure 2.2: Differentiation architectures improve duration and output for high bur-
den circuits. Deterministic modeling of naive and differentiation architectures with
varying burden levels (10, 50, and 90 percent) and mutation rates (_"�, _"� :
1012, 10−9, 10−6, and 10−3 h−1). Simulations are of repeated 50X dilutions with
logistic carrying-capacity limited growth, with dilutions occurring when the pop-
ulation reaches 95 percent of the carrying capacity ( ). For differentiation and
differentiation with selection, the differentiation rate was optimized to maximize
total production (A) and duration (B). For all simulations,  = 109 cells, = = 4,
`% = 1.5 h−1. (A) Production rate is modeled as proportional to growth rate and
varies over time, and production rate is equal across burden levels. Heatmaps present
(A) total production and (B) number of consecutive growths in which the ending
fraction of producer cells is >10 percent of the population. (A) Heatmap (left) shows
total production normalized maximum case (_"� = 10−12 h−1 , 10 percent burden).
Heatmaps (right) show the log2 of normalized total production (normalized to naive
production with equivalent burden and _"�).
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Modeling the naive implementation of production reveals matching intuition that
both total production and circuit lifetime decrease with increased burden and burden
mutation rate, with burden being the dominant factor. The relative benefit of
differentiation for total production and circuit lifetime depends both on the burden,
as well as on the relative rates of burden and differentiation mutations. For both
total production and circuit lifetime, this benefit increases with increased burden,
but decreases as the differentiation mutation rate increases relative to the burden
mutation rate.

In the case of differentiation with selection, we see largely the same trends as with
differentiation alone, however with a few key differences. While there is an in-
creased benefit for total production relative to the other two architectures as burden
increases, this strategy is counterproductive at low burdens, and decreases pro-
duction particularly with higher differentiation mutation rates. Further, selection
allows the population to be less susceptible to the burden mutation, demonstrated
by increased production and duration relative to both differentiation and naive im-
plementations as the burden mutation rate increases. Finally, comparing the second
and third rows of Figure 2.2A and 2.2B reveals that the impact of the rate of the
selection mutation is only revealed with low rates of the differentiation mutation,
and becomes more apparent with increased burden mutation rates.

2.4 Integrase mediated differentiation allows tuning of population distribu-
tion

To experimentally investigate these qualitative predictions from our modeling, we
first implement and characterize a differentiation architecture which allows tuning
of the rate or probability of differentiation, selection against differentiated cells,
and tuning of the duration of differentiated cell proliferation (Figure 2.3A). In this
circuit, the salicylate-inducible promoter PSalTTC and its cognate transcription factor
NahRAM [23] control the expression Bxb1 integrase. To reduce Bxb1 concentration
and differentiation in the absence of salicylate induction, we used a strong SsrA
degradation tag [24] on the C-terminus (Bxb1-LAA). To allow tuning of the dura-
tion of differentiated cell proliferation, we take advantage of the reliance of R6K
plasmid replication on the c protein encoded by pir [25]. We used the 3OC12-HSL
(Las-AHL) inducible promoter PLasAM and its cognate transcription factor LasRAM

(personal communication with Adam Meyer) to control the expression of c protein,
and placed its expression cassette such that the recombination event results in its
excision (Figure 2.3A). The c protein abundance and R6K plasmid copy number at
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the time of differentiation can therefore be tuned with Las-AHL (Figure 2.3C). As
the R6K plasmid encodes the sole source of chloramphenicol resistance (CmR) and
will be lost as a result of dilution through cell division when c protein is absent, the
induction level of c protein sets the limit on number of divisions possible upon dif-
ferentiation when chloramphenicol selection is applied (Figure 2.3A). In this initial
characterization of the features of this system, Bxb1-LAA is expressed from a p15a
plasmid (∼20-30 copies per cell) with ampicillin resistance (AmpR), and catalyzes
a genomic recombination event which activates the expression of the red fluorescent
protein mScarletI, and excises the region encoding the c protein. The abundance
of differentiated cells is inferred through mScarletI fluorescence, and the relative
abundance of the R6K plasmid is inferred through the expression of its encoded
constitutively produced green fluorescent protein sfGFP.

We characterized the long-term behavior of this differentiation circuit with varying
differentiation rates and c protein expression, using flow cytometry to determine
the population fraction of progenitor and differentiated cells. Progenitor cells are
identified as the sfGFP-positive/mScarletI-negative population, while differentiated
cells are identified as sfGFP-negative/mScarletI-positive population, with the acti-
vation of mScarletI expression occurring before loss of sfGFP (Figure 2.3E). Across
all concentrations of Las-AHL, the population proceeds towards 100 percent differ-
entiated mScarletI-positive cells in the absence of chloramphenicol when integrase
is induced, with this occurring more quickly at higher induction of the integrase
(Figure 2.3F). However, when selecting with chloramphenicol, the population ap-
pears to approach a steady state population distribution containing both progenitor
and differentiated cells, with the relative abundance depending on the induction
level of both integrase and c protein (Fig 3F). With 5 `M salicylate, differentiated
cells comprise 59.2 +/- 0.03 percent (mean +/- SD of two replicates), 69.9 +/- 0.004
percent, and 70.3 +/- 0.05 percent of the population after four plate generations
with 0.3 `M, 1 `M, and 3 `M Las-AHL, respectively. With 7.5 `M salicylate
differentiated cells comprise 88.9 +/- 0.02 percent, 94.6 +/- 0.02 percent, and 96.4
+/- 0.01 percent of the population after four plate generations with 0.3 `M, 1`M,
and 3`M Las-AHL, respectively. These distributions qualitatively align with our
deterministic modeling, namely that a higher differentiation rate and a larger number
of divisions allowed by differentiated cells both increase the steady state fraction of
differentiated cells.
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Figure 2.3: Implementation of a tunable integrase-mediated differentiation circuit.
(A) Schematic of a tunable integrase differentiation circuit. Las-AHL and salicylate
(sal) induce expression of pir encoded c protein and degradation-tagged Bxb1,
respectively. (B-C) Batch culture experiments of JS006 with circuit depicted in
(A) grown in M9CA media. (B) mScarletI fluorescence with varying induction
levels of sal in M9CA + carb. (C) sfGFP fluorescence with varying induction
levels of Las-AHL in M9CA + carb/chlor. (B-C) Mean +/- standard deviation of
three replicates. (D-F) Cells are grown in 300 `L M9CA media with varying
inducer concentrations, and diluted 50X every 12 hours. Samples are taken for flow
cytometry after each growth. (E) Flow cytometry results after the third 12-hour
growth for cells grown in 0.3 `M Las-AHL with carb +/- 30 `M sal(left), and cells
grownmedia with carb/chlor, 0.3 `MLas-AHL, 5 `M sal(right). (F) Results of flow
cytometry analysis of cells grown for six consecutive 12-hour growths in varying
inducer concentrations. Average fraction mScarletI positive for two replicate wells
+/- standard deviation.
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However, at higher inductions of salicylate, we clearly see circuit failure when
selecting with chloramphenicol. This is revealed at all Las-AHL concentrations in
flow-cytometry of the fifth plate generation for 10 `M salicylate, and in the fourth
plate generation for 15 `M salicylate (Figure 2.3F). Here, instead of achieving a
steady state distribution comprised largely of differentiated cells, a population which
is sfGFP-positive/mScarletI-negative comes to dominate the population. Though
these resemble progenitor cells in gene-expression, they are no longer able to undergo
differentiation, and have likely incurred a mutation analogous to the differentiation
mutation we proposed in our model.

2.5 Differentiation-activatedT7RNAPexpression improves burdensome func-
tion performance

Both to allow any arbitrary function to be expressed and to prevent leaky expression
of the function in progenitor cells, we selected T7 RNAP, an orthogonal RNA
polymerase broadly used in synthetic biology and bioproduction [26], to be activated
by this recombination. To allow the expression level and burden to be tuned, the
evolved IPTG inducible promoter PTac and associated transcription factor LacIAM

[23] were used to control the expression of T7 RNAP. Recombination-activated T7
RNAP was integrated in a single copy on the E. coli genome, and a high copy
Cole1 AmpR plasmid with T7 RNAP-driven sfGFP was used to report T7 RNAP
expression. To assess T7 RNAP expression upon recombination, a variant of this
Cole1 plasmid additionally encoding salicylate-inducible Bxb1 was used, while
the Cole1 plasmid lacking Bxb1 was used to assess leaky T7 RNAP expression
without recombination. As the positioning of the ribosomal binding site (RBS)
with respect to the coding sequence is critical [27], we initially constructed the
circuit such that recombination between the Bxb1 attB and attP sites would excise
the intervening sequence, bringing the PTac promoter in proximity to the RBS and
T7 RNAP coding sequence (Figure 2.4A). This design, however, resulted in a level
of leaky T7 RNAP expression in the absence of any Bxb1 integrase as evidenced by
higher T7 RNAP-driven GFP expression than the control with no T7 RNAP present
(Figure 2.4D). As incorporating a terminator upstream of the T7 RNAP RBS did
not improve this (Figure 2.4B), to fully eliminate leaky expression we relied on
previous studies splitting T7 RNAP into functional domains to rationally choose
a split site [28]. With this strategy, there is no potential for leaky expression of
functional T7 RNAP prior to differentiation, and the full-length coding sequence
that is generated upon recombination contains a 17 amino acid insertion from the
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attL site and additional bases inserted to conserve the reading frame (Figure 2.4C).
In the absence of Bxb1 integrase, GFP production was equivalent to the control
without T7 RNAP presence, with induction of Bxb1 allowing high level T7 RNAP-
driven expression (Figure 2.4E) that is tunable with IPTG (Figure 2.5B). This is also
observed in the growth phenotype, with significant growth defect occurring only
with addition of both salicylate and 30 or 100 `M IPTG (Figure 2.5B).

Using this system, we can directly compare the total output and duration of produc-
tion for the two differentiation circuit architectures with naive inducible production
at varying burden levels. The differentiation circuit for these experiments has a very
similar design to the initial circuit described in Figure 2.3, with the distinctions that
T7 RNAP instead of mScarletI is activated by differentiation, and Bxb1 is expressed
from the R6K plasmid. The differentiation architectures with and without restricted
cell division differ only in the presence of chloramphenicol, while the naive archi-
tecture is identical to a differentiated cell lacking the R6K plasmid, and is grown
in the absence of chloramphenicol (Figure 2.5A-B). To read out T7 RNAP activ-
ity and to serve as the burdensome function being assessed, the high copy ColE1
AmpR plasmid with T7 RNAP-driven sfYFP was used for both differentiation and
naive circuits. As with our mScarletI/sfGFP differentiation circuit, we can tune
the differentiation rate with salicylate, and the population distribution of producers
and non-producers over consecutive dilutions can be measured by flow cytometry.
Further, we can compare the total production using end-point bulk-fluorescence
measurements monitored during growth in a plate reader. For reference, JS006
cells with the naive circuit have experimentally determined growth rates of ∼1.04
+/- 0.02 h−1 (mean/SD of two independent colonies with six total replicates), ∼1.03
+/- 0.02 h−1, ∼0.84 +/- 0.09 h−1, and ∼0.48 +/- 0.06 h−1 when grown in M9CA
+ carbenicillin with 0, 10, 30, and 100 `M IPTG, respectively (Figure 2.6). This
equates to burdens of ∼1, ∼19, and ∼54 percent with 10, 30, and 100 `M IPTG
relative to the uninduced case.

At relatively low-burden (10 `M IPTG), total production increases linearly in the
naive case for the first ∼6 plate generations before cells no longer producing sfYFP
emerge and total production flattens to 44980 +/- 958 a.u. (mean +/- SD of four
replicates; Figure 2.5E left panel). With higher burden (30 or 100 `M IPTG), nearly
all production occurs in the first growth, and non-producers dominate the population
by the end of the second growth (total production 11167 +/- 414; 5756 +/- 2061
a.u.). In the case of differentiation without selection, total production approaches
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Figure 2.4: Integrase mediated activation allows leak-free expression of T7 RNAP.
(A-D) Circuit designs for Bxb1 integrase activated expression of genomically in-
tegrated T7 RNAP. (A-B) Integrase recombination joins PTac promoter with RBS
and full length CDS with (B) or without (A) a terminator in front of the RBS. (C)
Integrase recombination joins promoter, RBS, and left half of CDS with right half
of CDS. (F) JS006 negative control and genomically integrated strains were trans-
formed with a ColE1 plasmid encoding T7 RNAP-driven GFP alone (blue shaded,
F: top) or with salicylate inducible Bxb1-LAA (green shaded, F: bottom). OD
normalized fluorescence recorded after 12 h of growth in LB + carb with (red) or
without (black) 100 `M salicylate.
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Figure 2.5: Differentiation improves duration and output from burdensome T7
driven expression circuits. (A) Schematic of differentiation-activated T7 RNAP-
driven expression. (B) Schematic of naive inducible T7 RNAP-driven expression.
Circuit is identical to a differentiated cell, but lacking the R6K plasmid. (C) Batch
culture experiments of JS006 with circuit depicted in (A). Cells are grown in M9CA
media + carb/chlor/1 `M Las-AHL, with or without 30 `M salicylate, with varying
concentrations of IPTG. Curves are means +/- standard deviation of three replicates.
(D-F) JS006 with circuit above grown in M9CA + carb/3 `MLas-AHL, +/- chlor, in
varying concentrations of sal and IPTG. Cells diluted 50X into 300 `L total volume
every ∼12 h for 8 total growths. (E) Cumulative total production plotted is the sum
of endpoint fluorescence values from 12 h plate reader growth. (F) Samples taken
immediately after growth were analyzed by flow cytometry, and fraction sfYFP
positive cells is plotted. (E-F) Means of four total replicates from two independent
experiments +/- SD.
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that achieved by naive production at 10 `M IPTG when integrase induction is
sufficiently high (>5 `M salicylate). Here the delay in achieving ∼100 percent
differentiated producer cells is counteracted by a similar delay in accumulation of
non-producers (Figure 2.5E-F).

With higher burden production, the benefit of differentiation for both circuit duration
and total production becomes apparent. With a low differentiation rate (5 `M sali-
cylate) and 30 `M IPTG, 15.9 +/- 0.02 percent are still producing sfYFP after 8 plate
generations, greatly extending the duration of expression, with total production over
the experiment being 16281 +/- 1508 a.u. (Figure 2.5E-F). A higher differentiation
rate (7.5 `M salicylate), results in a greater total production (21414 +/- 2138 a.u.;
∼1.9x naive) but decreased duration of expression. Increasing the differentiation
rate further (10 `M salicylate) pushes this rate further from an apparent optimum,
decreasing total production to 18552 +/- 381 a.u. (∼1.7x naive). This benefit for
total production is enhanced at the highest induction level of IPTG, with ∼3.4x and
∼2.4x the naive production with 7.5 and 10 `M salicylate, respectively.

The effect of selecting against differentiated cells, as in our modeling, is dependent
on both the differentiation rate and the expression burden. At low burden (10 `M
IPTG), this selection decreases total output in comparison to both naive and dif-
ferentiation, with total production of 29010 +/- 2243 and 17822 +/- 832 a.u.(∼0.6x
and ∼0.4x naive) with 7.5 and 10 `M salicylate, respectively. However, with higher
burden production, differentiation with selection facilitates a total production of
29224 +/- 4629 a.u. with 7.5 `M salicylate, ∼2.6x naive production and ∼1.3x of
differentiation without selection. As with differentiation alone, this benefit is exag-
gerated at the highest induction of IPTG, with production ∼4.3x naive production,
and ∼1.3x that of differentiation alone.

In addition to evaluating the performance of these two differentiation architectures
with respect to naive production, it is also useful to characterize the mutations
which destroy circuit function for each case. For the naive and differentiation with-
out chloramphenicol selection cases, colonies isolated after eight plate generations
contained plasmid capable of expressing sfYFP when transformed into cells ex-
pressing T7 RNAP, but these cells failed to express sfYFP when transformed with
the same expression construct encoded on a pSC101-chlor plasmid. It is apparent
in both of these cases – although specific mutations were not identified – that a
mutation on the genome has disrupted the expression of T7 RNAP, equivalent to
the burden mutation described in our modelling. For the case of differentiation
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with restricted cell division, it is apparent from the continued chloramphenicol re-
sistance, loss of sfYFP expression, and insensitivity to induction with salicylate,
that a mutation equivalent to the differentiation mutation (or alternatively both a
burden mutation and a selection mutation) we posited in our modeling has occurred.
Though mutations disrupting the expression of the integrase – either directly on
integrase expression cassette encoded on the R6K plasmid or at the level of the
transcription factor NahRAM – would accomplish this, we first examined the differ-
entiation cassette itself. Apart from a ∼1.3kb deletion which destroyed the attP site,
we also observed two independent mutations in which the integrase-recombination
event appears to have inverted rather than excised the intervening sequence, de-
stroying both integrase attachment sites (supplementary sequences). Though we
observed apparent differentiation mutations in the differentiation cassette in these
three cases, we did not so in several others, and additional sequencing is required to
determine all possible sources of mutation.

2.6 Discussion
With inspiration from bacterial reproductive and metabolic division of labor ob-
served in nature, we developed a synthetic differentiation system that allows frac-
tional tuning of progenitor and differentiated cells through inducible integrase-
mediated differentiation and conditionally restricted cell division in differentiated
cells. We applied this system to T7 RNAP-driven expression of fluorescent pro-
tein, and demonstrated that differentiation can improve total production output and
duration of production for high burden production circuits, qualitatively matching
deterministic modeling results. Further, we demonstrated that limiting the capacity
of differentiated cells to undergo cell division was counterproductive for both total
production and duration of production at low burden, but can increase both metrics
at high burden relative to naive and differentiation architectures if the differentiation
rate is appropriately tuned.

In modeling our differentiation architectures, we saw that the benefit of differentia-
tion with and without restricted cell division relative to naive expression depended
heavily on the expression burden. Specifically, the performance (both total pro-
duction and duration) of differentiation with and without restricted cell division
relative to naive production improves with increased burden. Though this trend
agrees qualitatively with experimental results, it does not match exactly. While in
our modeling differentiation and particularly differentiation with selection are inef-
fective or harmful with 10 percent burden, experimentally we see a strong benefit
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for both total production and duration of production at 30 `M IPTG, corresponding
to a ∼12.9 percent growth penalty. This incongruity may be a result of cells being
diluted from stationary phase (in all but the first plate generation) directly into media
containing inducer. It has previously been shown that the cost/burden of unneeded
protein production is elevated during the first few cell divisions following dilution
from stationary phase [29]. Given that cells will undergo 5-6 cell divisions after
a 50X dilution, an increase in effective burden for the first several cell divisions
extends through much of the growth and may largely explain this difference between
our modeling and experiments. If we instead perform experiments using higher fold
dilutions or in continuous culture, this difference may be diminished.

Apart from effects due to burden, our modeling also revealed that the performance
of our two differentiation architectures depended on the relative mutation rates. In
particular, differentiation with restricted cell division is less sensitive to an increased
rate of burdenmutation, and the benefit of restricted cell division relative to differen-
tiation alone is apparent with higher burden mutation rates and lower differentiation
rates. Though direct quantification of mutation rates is complicated by potentially
variable cost/burden of production across growth phase following cell dilution, we
can infer that the differentiation mutation rate is likely not orders of magnitude larger
than the burden mutation rate, and may indeed by on the same order or lower. We
draw this conclusion because our modeling reveals that differentiation with selection
tends to perform better than differentiation alone only when the burdenmutation rate
is of equal or greater order of magnitude than that of the differentiation mutation.
While this may not be surprising, we recognize that a differentiation mutation may
be facilitated by errors during integrase-mediated recombination, the rate of which
has not been quantified to our knowledge.

While here we have demonstrated that limiting cell divisions in differentiated cells
through selection with chloramphenicol can provide a modest improvement to total
production and duration of production with respect to differentiation alone, it may be
possible to increase this benefit with minor adjustments to our circuit architecture.
First, because we are using chloramphenicol – which acts on the ribosome to inhibit
protein synthesis – to select against differentiated cells, we may be unnecessarily
inhibiting production. By using an alternative selectable marker such as mFabI and
selecting with triclosan which inhibits lipid synthesis, we may be able to remove
this inhibition of production in differentiated cells while maintaining inhibition of
cell proliferation, thereby increasing total production [30]. Additionally, though
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both differentiation architectures may benefit from reduction in the differentiation
mutation rate, terminal differentiation is more sensitive to this mutation. Though
this rate may be reduced by optimizing the circuit sequence following more careful
analysis of mutations which occur in this case, we may alternatively reduce the
effective mutation rate by requiring two or more mutations to occur to destroy
differentiation potential. This may be accomplished by integrating two modified
copies of the differentiation cassette, or by having two redundant differentiation
mechanisms utilizing orthogonal integrases.

This first demonstration of utilizing synthetic differentiation to improve performance
of burdensome functions, though reminiscent of examples of division of labor found
in bacteria, differs in important ways which may limit the benefit gained from its
implementation. Most obvious is that the functionwe are expressing in differentiated
cells – T7 RNAP and fluorescent protein – is entirely non-essential. Replacing or
supplementing this unneeded metabolic load with a function that is beneficial or
essential for both progenitor and differentiated cells, thereby making the progenitor
cells dependent on the differentiated cells, could improve the evolutionary stability
of such differentiation architectures. Future more successful implementations of
synthetic differentiation and division of labor may be closer to natural examples
in this respect, however incorporating this feature into a differentiation architecture
would likely prove insufficient. In an investigation of somatic differentiation in a
synthetic system in yeast, Wahl and Murray demonstrate that multicellularity was
critical for the evolutionary stability of the system, with unicellular systems being
susceptible to cheaters [31]. They further speculate that this phenomenon explains
the lack of the germ-soma distinction in unicellular species. However, because it
is possible to engineer systems using biology that would never evolve naturally,
this should not dissuade us from utilizing differentiation in addressing evolutionary
stability.

While existing strategies can aid greatly in reducing the rate of mutations in en-
gineered circuits, the only general strategies to reduce the rate at which mutations
are selected are to reduce the burden of expression [1–3], or alternatively to inte-
grate numerous copies of a genetic construct on the genome [10]. Reducing the
burden of expression may not be a viable option for the production of toxic proteins
or metabolites, or for certain industrial applications in which maximizing produc-
tion is essential for economic viability. As well, though genomically integrating
many copies of a construct may be effective at limiting the generation and selection
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of non-productive mutant cells, cells expressing particularly burdensome or toxic
functions will have impaired or destroyed ability to proliferate, potentially rendering
long duration or continuous production nonviable. Further, applications in which
engineered cells are not growing in mono-culture in a laboratory environment, but
insteadmust competewith cells in a complexmicrobial community, will require con-
sideration of this competition rather than simply the competition between functional
and non-functional engineered cells.

The differentiation architectures we describe here represent a qualitatively new
strategy for addressing the constraints imposed on synthetic biology by evolutionary
forces, and may be applied generally to diverse circuits and functions. With the
implementation of division of labor through differentiation, we can remove selective
pressure for mutations relieving burden in a subset of the population, mitigate fitness
defects in these progenitor cells, and sacrifice a tunable fraction to production with
little regard for the burden or toxicity of the function. Circuit architectures utilizing
differentiation can allow longer duration production – potentially in continuous
culture – without the uniform growth defect common to all other strategies, and
show promise in improving the evolutionary stability of engineered functions.

2.7 Model implementation
Naive expression circuit
In the naive implementation of a circuit, we have a population of cells (-%) that
are producing the protein/product of interest with some rate constant V, and as a
result have some burden/growth penalty that is reflected in a growth rate `% < `# .
Here `% is the growth rate of producers, and `# is the growth rate of non-producer
cells. Producer cells can mutate with some probability _<� (mutation that removes
burden) to non-producer cells (-# ) that have a growth rate `# . Looking at this in the
deterministic case in continuous culture with a carrying capacity  , and assuming
the rate of production is limited in the same manner as the growth rate of the cells,
we have that

3-%

3C
= `%-%

 − -% − -#
 

− _"�-% − �-%, (2.1)

3-#

3C
= `#-#

 − -% − -#
 

+ _"�-% − �-# , (2.2)
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3%

3C
= V%-%

 − -% − -#
 

. (2.3)

Differentiation circuit
With differentiation architecture, there are now two possible mutation types which
could occur:

1. Productionmutation (_"�): Mutationwhich inactivates the production capability
of the cell. When a progenitor cell with this mutation differentiates, it will be a
non-producer and growth at rate `# .

2. Differentation mutation (_"�): Mutation which inactivates the progenitor cell
ability to differentiate. It will then grow at rate `# and differentiate at rate 0.

With the implementation of differentiation alone where differentiated cells continue
to divide indefinitely, differentiated cells may incur this first type of mutation (_"� )
to yield cells that grow with rate `# , and whose differentiation does not have
any effect. In writing out the system of ODEs to describe this, the subscript
%% will be used to denote progenitor cells that are capable of differentiating into
productive cells, # for non-producers, and �% for differentiated producers. As the
differentiation architecture itself requires very minimal protein expression, we make
the simplifying assumption that all non-producer cells grow at the sameWT growth
rate. This yields
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Terminal differentiation circuit
With the addition of selection against differentiated cells through selection for the
R6K plasmid, the number of cell divisions is limited. Though differentiated cells
retain limited proliferative potential, they will ultimately cease dividing and die,
and we will therefore refer to this as terminal differentiation. With this circuit
architecture, we now consider three types of mutations that may occur:

1. Productionmutation (_"� ): Mutation which inactivates the production capability
of the cell. When a stem cell with this mutation differentiates, it will be a non-
producer and growth at rate `# .

2. Differentation mutation (_"� ): Mutation which inactivates the stem cells ability
to differentiate. It will then grow at rate `# and be incapable of differentiation.

3. Selection mutation (_"( ): Mutation which occurs in differentiated cells (either
producers or non-producers) which allows cells to evade selection and proliferate
indefinitely.

In writing out the ODEs for this case, % will denote a progenitor cell capable of
differentiating, � will denote a differentiated cell, and " will denote a mutated
progenitor cell that can no longer undergo differentiation. The subscript # will
indicate that a stem cell will differentiate into a non-productive differentiated cell,
or is currently a non-productive differentiated cell, and similarly % for productive.
Finally, the differentiated cells are not all equal, but are distinct in the number of
divisions they have remaining before diluting the plasmid through cell division to the
pointwhere antibiotic resistance is insufficient to allow further proliferation. The cell
produced from the differentiation event (8 = 0) will have = divisions remaining, and
when this cell divides, there will be one fewer cell with = divisions remaining, and
2 more cells with =−1 divisions remaining (8 = 1). When 8 = =, cells will no longer
divide, and this is equivalent to cell death. Though the behavior of cells that are no
longer able to divide (whether or not they continue to produce the protein/product of
interest) would likely depend both on the type of selectable marker encoded on the
R6K plasmid and the protein/product that is being produced, using chloramphenicol
resistance as the selectable marker likely would prevent protein production in cells
that are no longer able to divide.

As with the differentiation architecture, we make the assumption that all non-
producer cells growth with the same WT growth rate. In the modeling of this
architecture, we also must decide how selection will affect the growth rate of the dif-
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ferentiated cells. Though we could imagine cell growth slowing due to insufficient
chlorR expression as the plasmid copy number is reduced through cell division, in
modeling this architecture we make the assumption that selection only affects cells
with no remaining cell divisions. Therefore the growth rate of differentiated cells
capable of further cell division is determined solely by the expression burden. With
these assumptions, we can now write out our system of ODEs. In the equations
below, the total population (-)$) ) is given by

-)$) = -%% + -%# + -"% + -"# +
=∑
0
-�% (8) +

=∑
0
-�# (8). (2.8)

Progenitor cells are described by
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Mutant progenitor cells are described by
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Differentiated producer cells are described depending on the number of cell divi-
sions.

For 8 = 0,

3-�% (0)
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For 0 < 8 < =,
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For 8 = =,
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Differentiated non-producer cells are similarly described.

For 8 = 0,

3-�# (0)
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For 0 < 8 < =,
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For 8 = =,
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Finally, we can model the production, assuming that all productive differentiated
cells are producing at the same maximum rate. While we could model the concen-
tration, we are mainly interested in the total output, and therefore will only keep
track of the total production. Production is then described by
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There may be two adjustments to this production equation, one of which will affect
the effective total population size. Particularly in the case of chloramphenicol which
acts by inhibiting translation, the differentiated cells of generation = would not be
metabolically active, would be considered dead, and therefore would not contribute
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either to the total effective population size or to the production of P. We would then
have

3%
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The total effective population size (-)$) ) would then be given by
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The second would come from relaxing the assumption that all producer cells would
produced P at the same rate. We could imagine instead that, particularly in the case
of chloramphenicol, the production rate of P would vary with the growth rate as this
to is affected by the inhibition of translation by the antibiotic. We then would have
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In the modeling done for this paper, we assume that all differentiated cells that are
capable of additional cell divisions (8 < =) grow and produce with the same rate.
We also assume differentiated cells that can no longer divide are equivalent to dead
cells, and neither produce or contribute to the total cell count.

2.8 Materials and methods
Strains and constructs
JS006 strain E. coli were used for all experiments, and constructs were assembled
using 3G assembly. Constructs were genomically integrated with clonetegration
using pOSIP-KO and pOSIP-CH [32]. pOSIP plasmids were double digested with
BamHI and SpeI, and PCR purified. For assembly, 3G was used [11], however P1
and PX adapters were used in place of UNS1 and UNSX to allow compatibility with
the pOSIP backbone. Modified adapters were used to generate the bicistronic tran-
scriptional unit for LasRAM/NahRAM (UNS3D/UNS3B), and inverted pir transcrip-
tional unit (UNS3E*/UNS3A*). Generation of modified MoClo [33] compatible
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T7 RNAP parts, as well as degradation tagged Bxb1 integrase and UNS1-UNSX
R6K-chlor plasmid backbone, is summarized in the Table 2.1. Sequences for Bxb1
integrase attachment sites attB and attP were obtained from Ghosh, et. al [34]. Se-
quences of all parts, primers, and final constructs can be found in the supplementary
information: (https://www.biorxiv.org/content/10.1101/614529v2.supplementary-
material).

Deterministic modeling of differentiation circuits
Circuits depicted in Figure 2.1A-C were modeled deterministically using systems
of coupled ordinary differential equations. In all simulations, rates for differentia-
tion and mutations are first-order with respect to cell number, and do not depend
on growth rate. Exponential growth without carrying capacity was assumed for
simulations in Figure 2.1 E-H. For Figure 2.2, circuits were simulated with logistic
growth with a carrying capacity of 109 cells, with cells being diluted 50x when
cells reached 95 percent of the carrying capacity. Production was modeled as being
proportional to the ratio of specific growth rate (actual growth rate after accounting
for effect due to carrying capacity) to maximum growth rate for the specific cell
type, and production rate was 1 a.u. per cell per hour for all simulations regardless
of burden. For differentiation with selection, a cell with = remaining cell divisions
divides to generate two cells with = − 1 remaining cell divisions. Cells with one
remaining cell division therefore divide into two cells which do not divide. This
was equated to cell death, and these cells have zero production and do not count
towards the carrying capacity. For comparing total production (Figure 2.2A) and
duration of circuit function with >10 percent of cells being producers (Figure 2.2B),
the differentiation rate was selected using optimization (three independent starting
values: 0.001, 0.1, 1 h−1) to maximize total production or duration. Jupyter note-
books describing and running all simulations are available on the Github repository
listed in supplementary information.

Differentiation experiments
For experiments with differentiation cells, cells were grown from glycerol stock in
3 mL culture of M9CA glucose (Teknova M8010) with 34 `g/mL chloramphenicol,
100 `g/mL carbenicillin, and 1 `M Las-AHL. Overnight cultures were diluted
1:100 into the same media and grown ∼2-3 hours to OD 0.2-0.4. To avoid cross-
over of antibiotics and inducers, cells were pelleted (3500g for 10 min) before
resuspending in M9CA with appropriate antibiotics (carb for differentiation, carb
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+ chlor for differentiation with selection) to OD ∼0.1. Control cells with naive
inducible expression of T7 RNAP from the genome were treated as above but
grown in M9CA glucose + carbenicillin. Cells at OD ∼0.1 were diluted 1:10
into a total volume of 300 `L containing appropriate antibiotics (carbenicillin +/-
chloramphenicol) and various inducer concentrations (IPTG, salicylate, Las-AHL).
Cells were grown in 96-well square-well plate (BrooksMGB096-1-2-LG-L) at 37°C
with maximum-speed linear shaking in a BioTek Synergy H1m. OD700, sfYFP
fluorescence (503/540 nmexcitation/emission; gain 61 and 100), sfGFPfluorescence
(485/515 nm excitation/emission; gain 61 and 100), and mScarletI fluorescence
(565/595 nm excitation/emission; gain 100) were measured at 10 minute intervals
as appropriate. For long-term experiments, cells were diluted 1:50 after ∼12 h
growth into the same media conditions into a replicate plate. All data and Jupyter
notebooks are available on the Github repository.

Flow-cytometry
Immediately after the conclusion of a 12 h growth, cells were diluted 1:50 into
100 `L 1X PBS for analysis with flow cytometry. Samples were run on a Miltenyi
BiotechMACSQuant VYB Flow Cytometer equipped with Violet 405 nm, Blue 488
nm, and Yellow 561 nm lasers. sfYFP was measured with the 488 nm laser with
525/50 nm filter, sfGFP with the 405 nm laser with 525/50 nm filter, and mScarletI
with the 561 nm laser with 661/20 nm filter. 50,000 ungated events were recorded
for each sample, and results were analyzed with custom Python code available in the
Github repository listed supplementary information. Briefly, peak locations were
determined from KDE fits of ungated flow data, gaussian mixture models used to
assign cells to peaks, and cells within peaks were designated positive or negative
for the respective fluorescent protein using a chosen threshold for peak mean. For
T7 RNAP differentiation experiments, peaks with mean log10(sfYFP) >2.5 were
designated on. For mScarletI/sfGFP differentiation experiments, peaks with mean
log10(mScarletI) >3 were designated as differentiated.

Identification of mutations in differentiation-activated T7 RNAP expression
Cells from the eighth plate generation were struck for single colonies. For the case
of differentiation with selection (+chloramphenicol), cells from two independent
wells from 7.5 `M salicylate/0 `M IPTG and 7.5 `M salicylate/30 `M IPTG were
plated on LB agar + chloramphenicol, carbenicillin, and Las-AHL. Colony PCR
using p4.186.primary.FOR and pOSIP.insert.REV was performed on four colonies
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from each, two of which were sequenced with RW.pir.int.R and RW.pir.int.F2, and
sequences were mapped to ‘differentiation cassette split T7 RNAP’. This was done
similarly for naive (0 and 30 `M IPTG) and differentiation without selection (7.5
`M salicylate/0 `M IPTG and 7.5 `M salicylate/30 `M IPTG), however PCRs
were unsuccessful. The source of mutation was determined by (1) isolating plasmid
DNA from two isolated colonies from each plate and transforming into cells with
genomically integrated inducible T7 RNAP (naive production cells lacking the
pT7-sfYFP construct) and (2) transforming a pSC101-chlor-pT7-BCD2-sfYFP-T2m
construct into competent cells prepared from these same cells.

Part Template FOR REV
U1-R6K-chlor-UX pOSIP-CH RW.U1.R6kbb.F RW.UX.R6kbb.R
T7(attL)RNAP* C95m RW.T7RNAP.split2.FOR RW.T7RNAP.split2.REV
T7(L)attB T7(attL)RNAP pseqF RW.T7split.attB.bsaID.R
attPT7(R) T7(attL)RNAP RW.T7split.attP.bsaIB.F pseqR
Bxb1LAA Bxb1 pseqF RW.bxb1.LAA.rev1

RW.bxb1.LAA.rev2

Table 2.1: Part construction. * indicates part was assembled with a 1 piece Gibson
after PCR

2.9 Supplementary Information
All data, and code for data analysis and modeling are available on the Github repos-
itory (https://github.com/rlwillia/Integrase-differentiation). Sequences of all parts,
primers, and constructs, and a tablewith descriptions ofmutations observed in exper-
iments with T7 RNAP differentiation with selection, can be found in the supplemen-
tary excel file (https://www.biorxiv.org/content/10.1101/614529v2.supplementary-
material).
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Figure 2.6: Characterization of burden level of naive T7 RNAP driven GFP. JS006
cells with naive IPTG inducible T7RNAP were transformed with a high copy ColE1
plasmid with AmpR. Cells were outgrown in LB with carbenicillin (100`g/mL) for
6 hours then diluted 1:50 into LB carb with varying concentrations of IPTG. (A)
GFP production and (B) OD600 were measured every 10 minutes for six replicates
grown at 37C in 0.3mL. (B) OD600 curves were trimmed to 30 percent of maximum
OD600 achieved and used to fit an exponential growth model with noise floor, initial
population, and growth rate parameters. Mean growth rate +/- SD of 6 replicates
fitted separately plotted. Fitted growth rates are 1.04, 1.03, 0.84, and 0.48 h−1 for 0,
10, 30, and 100 `M IPTG, respectively, corresponding to ∼1, ∼19, and ∼53 percent
burden for induced relative to uninduced cases.
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C h a p t e r 3

IMPROVING THE EVOLUTIONARY STABILITY OF
DIFFERENTIATION CIRCUIT ARCHITECTURES WITH

REDUNDANCY

3.1 Introduction
In the previous chapter, we developed a tunable integrase-mediated differentiation
system, applied it to T7 RNAP-driven expression, and demonstrated its utility in
improving the evolutionary stability of burdensome functions in E. coli. This served
as a useful initial demonstration of the viability of this strategy, but the ciruit design
and implementation was lacking in several ways. Foremost among these shortcom-
ings was the susceptibility of the differentiation circuit to be broken by a variety
of single mutations. In the case of differentiation with unlimited growth of pro-
genitor cells, a single mutation of the genomically integrated T7 RNAP expression
construct would ablate the function, and in the case of terminal differentiation, a
single mutation destroying an integrase attachment site or disrupting the expression
of the transcriptional activator NahR would yield progenitor cells with minimal or
no capacity to differentiate. Further, by placing the expression of the integrase
responsible for catalyzing the differentiation event on a plasmid, it was inherently
subjected to both more opportunities for mutation and to random plasmid partition-
ing effects which can hasten the expansion and fixation of beneficial mutations [11].
In the consideration of addressing these flaws and limitations, the exciting aspect to
note is that by improving the evolutionary stability of this architecture, we are able
to improve the evolutionary stability of any engineered function in general.

3.2 Reviewing intuition from deterministic modeling
Though we approach modeling this system in Chapter 2, we approach this again here
to develop intuition behind various strategies of expressing burdensome functions.
There are several differences in the approach to modeling these systems as will be
discussed later. In the typical case where an entire population of cells inducibly
or constitutively expresses a burdensome function, which we term naive expression
(Fig 3.1A), we can model the system very simply. A population of cells produces
an arbitrary gene product, and due to the burden of expression grows at a rate
lower than wild-type. A mutation which disrupts the expression of this function
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occurs at rate :"�, relieving the burden, and restoring a wild-type growth rate.
We model this system deterministically with carrying capacity limited growth in a
chemostat with constant dilution, and see that both total production and duration
of function decrease exponentially with the burden of expression, and similarly
increasing dilution rate at a set burden decreases both metrics (Fig 3.1 D-G). The
rate at which mutant cells growing at a wild-type growth rate will overtake slower
growing producer cells increases exponentially with the difference in growth rate,
and further if the growth rate of the producer cells is slower than the dilution rate,
washout will occur if there is not mutational escape. Exponential increase in the
burden mutation rate, however, results in only a linear decrease in duration and total
production.

With a differentiation strategy, we instead begin with a population of progenitor
cells, that because they do not express the burdensome function have a wild-type
growth rate. These cells differentiate at some rate :diff , becoming producer cells
with a reduced growth rate, and as in the naive case incur a burden mutation at
rate :"�, relieving the burden and restoring a wild-type growth rate (Figure 3.1B).
With the addition of this differentiation event, we also must consider differentiation
mutations, the class of mutation which disrupts this process at rate :"� . While
the burden mutation may occur in both progenitor cells and differentiated producer
cells, the differentiation mutation only occurs in progenitor cells. With the simplest
differentiation strategy, both mutations lead to the same sink of non-producer cells
which cannot differentiate. However, by adding an additional facet to this circuit that
limits the number of divisions differentiated cells can undergo, both producer and
non-producer differentiated cells will die. In this case of terminal differentiation,
only the differentiation mutation leads to the sink of mutated progenitor cells which
can no longer differentiate (Figure 3.1C).

Examining the behavior of these two differentiate circuit architectures with deter-
ministic modeling, we see that the burden of the function and dilution rate effect
performance much differently than in the naive case. While the total production and
duration are relatively unaffected by burden in the case of terminal differentiation,
differentiation alone approximates the naive case at low burden, and that of terminal
differentiation at high burden. (Fig 3.1D-E). This is because the effective burden
experienced by progenitor cells is not the burden of expression, but instead the rate
of differentiation which functions as a death or dilution rate. Because of this, differ-
entiation allows operation at a dilution rate higher than would be possible for naive



33

Figure 3.1: Deterministic modeling of strategies for expression of burdensome
functions. (A-C) Grey cells containing product (yellow dots) are producers and grow
at a slower rate than all other cells which are non-producers (A) Naive inducible
or constitutive expression in which producer cells incur a burden mutation at rate
:"� (h−1) which destroys expression and restores wild-type growth in non-producer
cells. (B) Differentiation architecture in which progenitor cells (blue) differentiate
at rate :diff (h−1) into differentiated cells (grey). Progenitor cells and differentiated
producers incur burden mutation occurs at rate :"� (h−1), and progenitor cells
incur differentiation mutations at rate :"� (h−1). (C) Terminal differentiation
architecture. Same as (B), but differentiated cells can divide a limited number of
times before dying (red X). (D-O) Deterministic simulations circuits in chemostat
with constant dilution and carrying capacity limited growth.  = 109 cells, `% =
1 h−1, =div = 4. (D-I) :"� = :"� = 10−7 h−1. (D-E) � = 0.3 h−1, :diff = 0.3 h−1.
(F-G) 30 percent burden, :diff = 0.3 h−1. (H-I) 50 percent burden, � = 0.3 h−1.
(J-O) 50 percent burden, � = 0.2 h−1, :diff = 0.3 h−1,
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expression given the burden level if the differentiation rate is appropriately chosen
(Figure 3.1F-G). Increasing the rate of differentiation both increases the fraction of
producer cells and therefore the effective burden experienced by the progenitor cells.
This exponentially decreases the duration of function, but minimally effects the total
production as it is compressed into a shorter period (Fig 3.1H-I). In examining the
effects of varying the rates of the burden and differentiation mutations, we see in
the case of differentiation alone that the mutation with the faster rate determines
the duration of function and total production (Fig 1L-M). However with terminal
differentiation, as we would expect from the circuit diagram, only the differentiation
mutation can be the cause of circuit failure. As there is no selective pressure for bur-
den mutations in the progenitor cell population, cells with this mutation accumulate
linearly with time, and only affect total production if this rate is exceedingly high.
Decreasing the rate of the differentiation mutation increases both metrics regardless
of burden mutation rate, and critically, if this rate is zero, we achieve indefinite
function (Fig 3.1N-O). Strikingly, terminal differentiation is a strategy which has
the differentiation mutation as its singular Achilles’ heel, and if this mutation is
addressed, any function could be made evolutionarily stable.

3.3 Differentiation circuit development
In order to experimentally implement the differentiation strategy, we required (1)
burdensome expression to be fully off in the progenitor cell population, (2) irre-
versible activation of an arbitrary function at a tunable rate, and in the case of
terminal differentiation (3) means of limiting the growth of differentiated cells.
Given the experience of the Murray lab with serine-integrases and the unidirec-
tional nature of recombination characteristic of this class of proteins, we selected
integrase mediated recombination as a means of activating our arbitrary function.
As demonstrated in Chapter 2, we achieved means of both activating an arbitrary
function of interest, and preventing leaky expression in the progenitor cells by sep-
arating the T7 RNAP coding sequence into two pieces which are brought together
through a recombination event catalyzed by the integrase Bxb1.

In the case of terminal differentiation, it was important that this single recombination
event would both activate the expression of the arbitrary function, as well as limit
the capacity of the differentiated cell to grow and divide. To accomplish this,
as discussed in Chapter 2 we co-opted the R6K plasmid system in which the c
protein encoded by the pir gene is required for replication. Placing pir between
the integrase attachment sites would then result in loss of c protein expression
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upon differentiation, and subsequent dilution of the plasmid and plasmid encoded
antibiotic resistance gene through cell growth and division, thereby allowing the
proliferation of differentiated cells to be limited through antibiotic selection (Fig
3.2A). Accordingly, we see that induction of integrase expression results both in
the expression of T7 RNAP-driven sfGFP, as well as loss of mScarletI fluorescence
produced constitutively from the R6K plasmid (Fig 3.2C).

From our initial deterministic modeling, we observed that decreasing the rate or
probability of the differentiation mutation improves the duration of function of the
terminal differentiation circuit regardless of the rate of burden mutation. How-
ever, achieving the orders of magnitude improvement in mutation rate desired is
not feasible simply by optimizing the circuit sequence to minimize mutation rate.
We instead reasoned that instead of reducing the rate of mutation, increasing the
number of independent mutations required to break the differentiation mechanism
would yield more significant improvements. To this end, we envisioned a circuit
design with two T7 RNAP differentiation cassettes in which the recombination of a
single cassette would both activate the function and enable limiting the growth of
differentiated cells. If a second identical cassette was integrated, recombination of
both cassettes would be required to cease replication of the R6K plasmid and allow
antibiotic selection mediated limitation of growth. Therefore a mutation preventing
the recombination of one cassette would be sufficient to enable indefinite growth,
giving opportunity for selection for burden mutations. However, if each differenti-
ation cassette encoded a unique half of the c protein, a single recombination event
would ablate the expression of functional pi protein and with it the replication of
the R6K plasmid. We selected two candidate sites for splitting the protein, tagged
the N- and C-terminal fragments with the N- and C terminal fragments of the Cfa
intein [35], respectively, and functionally screened for R6K plasmid replication,
yielding one functional split site (Figure 3.2B-C). Expression of the intein tagged
fragments allows R6K plasmid replication, and inactivation of either the 5’ fragment
or 3’ fragment through integrase-mediated recombination results in loss of the R6K
plasmid (Figure 3.2C).
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Figure 3.2: Integrase inactivation of c protein expression ablates R6K plasmid
replication. (A) Schematic of integrase excision of pir resulting in loss of c protein
and cessation of R6K plasmid replication. (B) Design of a split-c protein system in
which each half is tagged with an intein fragment, and generate a full-length protein
upon protein trans-splicing. (C) Strains harboring genomic integrations of circuits
in which Bxb1 recombination simultaneously activates the expression of T7 RNAP
and inactivates full-length or split c protein, and containing an R6K plasmid with
chlorR and constitutive mScarletI w/ or w/o a p15a KanR plasmid encoding one or
both halves of the c protein, were transformed with a ColE1 AmpR plasmid with
pT7 GFP and PSalAM Bxb1. OD normalized RFP (top) and RFP (bottom) were
recorded after 18 h of growth in LB w/ 100 `g/mL carb, 34 `g/mL chlor, 30 nM
Las-AHL, with (red) or without (black) 100 `M salicylate.
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3.4 Experimental evaluation of differentiation and terminal differentiation
strategies

To assess the capacity of differentiation strategies to improve the evolutionary sta-
bility of burdensome functions, we performed long-term experiments comparing
burdensome T7 RNAP driven expression of a fluorescent protein in cells with one
or two copies of inducible T7 RNAP to our single-cassette and two-cassette differ-
entiation circuits. Both the single-cassette differentiation and two-cassette differen-
tiation strains have two copies of inducible integrase, and critically all components
in the naive and differentiation circuits were genomically integrated, ensuring pre-
cise copy number control and preventing effects due to plasmid partitioning (Figure
3.3A-C, 3.27). Experimental comparison of differentiation with terminal differenti-
ation required only including chloramphenicol in the medium in the case of terminal
differentiation, as without antibiotic present differentiated cells would grow unhin-
dered after losing the R6K plasmid. Inducer and antibiotic conditions were uniform
throughout 16 consecutive batch growths, with the degree of burden tuned with
IPTG (PTac T7RNAP) and differentiation rate tuned with salicylate (PSalTTC Bxb1-
LAA). In determining the appropriate inducer concentrations for these experiments,
we noted in a pilot experiment with 3 plate generations that while the behavior of 1x
differentiation was minimally affected by the induction level of c protein expression
with Las-AHL (10-300 nM; Figure 3.8, 3.10), 2x differentiation using the split-c
proteinwas quite sensitive (Figure 3.9, 3.11). Specifically we observed R6K plasmid
copy number as inferred through a constitutively expressed mScarletI to be more
sensitive to Las-AHL induction in the range of concentrations tested, with higher
copy number than 1x differentiation observed across all concentrations. As well,
increased c protein induction negatively affected T7 RNAP-driven sfGFP in the
first plate generation, and appears to result in a higher effective differentiation rate
for a given level of integrase induction. When differentiation is induced at a high
level in media containing chloramphenicol which selects for the R6K plasmid, a
decrease in endpoint cell density is observed as cells are repeatedly diluted for batch
growths (Figure 3.9). This affected was enhanced for 2x differentiation at lower
induction levels of differentiation, particularly for higher burden expression. While
we did not follow up on the potential mechanisms underpinning these effects, these
experiments informed the choice of 10 nMLas-AHL for all subsequent experiments.
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Figure 3.3 (previous page): Assessing the evolutionary stability of burdensome T7
RNAP driven expression from a high copy ColE1 AmpR plasmid. (A-C) 8 inde-
pendent transformants were outgrown for 8 hours in LB media with appropriate
antibiotics and inducers before 50x dilution into experimental conditions. Cells
were grown in 96 well plates in 0.3 mL, diluted 50x every 8 h for 16 total growths,
and 50 `L endpoint samples taken to measure OD700, sfGFP (485/515 nm), and
mScarlet (565/595 nM) fluorescence in 384 well matriplates. Average cumulative
sfGFP production plotted for each condition. (A-B) 1x differentiation and 2x dif-
ferentiation. Each differentiation cassette additionally encodes NahRAM, LasRAM,
and LacIAM (Figure 3.27 for full circuit diagram). Cells were co-transformed with
Cole1 AmpR pT7 GFP and R6KCmR-mScarlet, and plated on LB +carb/chlor/30
nM Las-AHL. Colonies were outgrown in LB +carb/chlor/10 nM Las-AHL before
50x dilution into experimental conditions in LB carb with chlor (blue, filled circles
or without chlor (orange, open circles) with varying concentrations of salicylate (10,
15, 20, 30 `M) and IPTG (10, 50 `M). (C) Cells with one (naive 1x) or two (naive
2x) copies of genomically integrated T7 RNAPwere transformed with Cole1 AmpR
pT7 GFP, plated on LB + carb, and outgrown in LB + carb before dilution into ex-
perimental conditions. (D) Total cumulative production +/- SD after 16 growths for
all strains in all conditions.

In both 1x and 2x differentiation circuits, regardless of the presence of chloram-
phenicol, lower differentiation rates allowed longer-lasting GFP production at a
lower rate, high rates led to a more rapid cessation of production, and intermedi-
ate rates struck a balance (Fig 3.3A-B). With 1X differentiation, chloramphenicol
selection (terminal differentiation) negatively affected total production in the lower
burden case (+chlor: 178941 +/- 15858 a.u. vs. -chlor: 249601 +/- 41448 a.u., 10
`M IPTG/15 `M sal), but marginally improved it in the higher burden case (+chlor:
154290 +/- 15067 a.u. vs. -chlor: 134953 +/- 16694, 50 `M IPTG/15 `M sal).
With 2x split-pir differentiation, while the benefit of chloramphenicol selection was
somewhat apparent with lower burden (+chlor/10 `M IPTG/20 `M sal: 222140 +/-
14846 a.u. vs. -chlor/10 `M IPTG/15 `M sal: 156590 +/- 13646 a.u.), this was
much greater in the higher burden case (+chlor/50 `M IPTG/20 `M sal: 232596
+/- 18047, vs. -chlor/50 `M IPTG/10 `M sal: 92770 +/- 14940 a.u.).

Comparing the performance of the differentiation circuits to that of 1x and 2x naive
inducible T7RNAPdemonstrates that differentiation and terminal differentiation can
outperform naive expression in both the lower and higher burden case, but that this
benefit is exaggerated with higher burden. Specifically, the best performing circuit
in the lower burden case (10 `M IPTG) in terms of total production achieved was 1x
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differentiation without chlor selection, yielding ∼1.9x (15 `M sal) that of 1x naive
with the same IPTG induction. In the higher burden case (50 `M IPTG), the best
performing circuit was 2x split-pir differentiation with chloramphenicol selection,
yielding ∼4.2x (20 `M sal) the total production of 1x naive with the same IPTG
induction. Including chloramphenicol for the case of terminal differentiation has two
opposing effects on the amount of production that will be achieved over the lifetime
of circuit function. The first effect is negative, as limiting the growth of differentiated
producer cells will limit the total amount of production achieved by any individual
differentiated cell lineage. The second effect is positive, as this selection limits the
growth of differentiated cells which have mutated or otherwise decreased or ceased
expression of the function of interest, preventing the takeover of mutated cells and
extending the duration of circuit function. Because these effects are opposing, one
may dominate the other depending on the characteristic parameters. In the case of
1x differentiation with low burden, the former affect clearly dominates, and terminal
differentiation under-performs. With higher burden, the later effect becomes more
important and terminal differentiation marginally surpasses differentiation without
selection.

The case of 2x differentiation is somewhat more complicated, both because two
mutations would be required to yield mutated progenitor cells incapable of differen-
tiating, and because an individual cell could have activated one or both copies of T7
RNAP. Without chloramphenicol selection, cells have more opportunity to activate
both copies of T7 RNAP and therefore increase the amount of burden associated
with production. The combination of these factors – requiring two mutations to
yield mutated progenitors and having higher effective burden in a larger subset of
differentiated cells when selection is absent – favor the performance of terminal
differentiation, and particularly so when the burden of the function is high.

Intriguingly, when we compare the performance of 1x and 2x naive inducible ex-
pression, this redundancy did not provide any benefit. If we just consider genomic
sources of mutational inactivation of function, we would expect a benefit as two
sequential mutations would be required to inactivate the expression of T7 RNAP.
Given that we did not observed this, and that the overwhelmingly majority of the
burden associated with T7 RNAP expression will come not from its own expression,
but from the transcription and translation of GFP, we considered plasmid associ-
ated mechanisms for inactivating function. While this could certainly be caused by
mutation, we noted that plasmid loss would also accomplish this and can occur at
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a much higher rate [36, 37]. As well, though we are selecting for the presence of
the plasmid with carbenicillin, this choice of antibiotic resistance is problematic.
As the mechanism of ampicillin/carbenicillin resistance is degradation of the antibi-
otic, resistance can be shared, and indeed sensitive cells can co-exist with resistant
cells in the presence of antibiotic, with the resistant fraction scaling with antibiotic
concentration [38].

In order to test whether this mechanism of plasmid loss and shared antibiotic re-
sistance was preventing the benefit of a second cassette of T7 RNAP from being
observed, we first investigated whether it could be occurring in our system. Both
to test this mechanism and to select any alternative selectable marker to use for
the ColE1 plasmid, we constructed an identical plasmid to ColE1 AmpR pT7 GFP
which instead had kanamycin resistance (Cole1 KanR pT7 GFP), and performed
co-culture experiments of naive 1x and the parental strain JS006 transformed with
these plasmids (Figure 3.4). As only naive 1x cells produce appreciable levels of
GFP from these plasmids, we could observe that cells with only AmpR could allow
cells with only KanR to grow in LB with both kan and carb, while cells with only
KanR did not allow cells with only AmpR to grow in the same condition. Ad-
ditionally, spent media from AmpR cells could allow KanR cells to grow in LB
with kan and carb, while the opposite was not true. We therefore concluded that
the choice of AmpR on the ColE1 plasmid was likely allowing loss of expression
through plasmid loss and shared antibiotic resistance, while the same mechanism
would not hold with KanR (Figure 3.4). While in their study Yurtsev et.al. identi-
fied several experimental factors – antibiotic concentration, dilution factor between
batch growths, and the initial ratio of sensitive and resistant cells – which affect the
dynamics and steady state population distribution of antibiotic resistance plasmids,
they also noted that increased burden associated with the plasmid would increase
the fraction of antibiotic sensitive cheater cells. Because the plasmid of interest in
our system encodes a potentially very burdensome function that is inducible, we
would expect the growth of cheater cells to be favored increasingly so as the burden
is increased.

In addition to experimentally investigating this, we wished to investigate this phe-
nomenon computationally for all our differentiation and naive strains. We produced
models for each circuit, and ran stochastic simulations which approximated our
experimental design with a range of burden and differentiation rates. We then
compared the results of models when non-genomic sources of mutation or loss of
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Figure 3.4: Assessing communal antibiotic resistance for carbenicillin and
kanamycin. JS006 and naive 1x cells were transformed with HCA pT7 GFP or
HCK pT7 GFP, and colonies outgrown for 8 h in LB with kan (50`g/mL) or carb
(100`g/mL). Spent media was harvested by pelleting JS006/HCA pT7 GFP or
JS006/HCK pT7 GFP and filtering supernatant (0.2`M). Cultures were diluted 1:50
into 0.2mL experimental monocultures or co-cultures in triplicate in 96 well plates,
and OD600 and sfGFP (485/515nM) monitored over 18 h growth. (A-B) naive 1x +
HCK pT7 GFP and JS006 + HCA pT7 GFP grown in mono- and co-culture. JS006
alone (blue) grows (B) but does not produce GFP (A). naive + HCK grows and
produces GFP in LB Kan, in co-culture with JS006 HCA in LB carb/kan, and with
delay in LB carb/kan/10 percent JS006 HCA spent media, but not in LB kan/carb.
(C-D) naive 1x + HCA pT7 GFP and JS006 + HCK pT7 GFP grown in mono-
and co-culture. (E) Schematic of shared antibiotic resistance. AmpR cells degrade
carb inside the cell, in the periplasm, as well as in the medium, allowing amp sen-
sitive cells to grow. Antibiotic resistance from KanR cells however is not shared
significantly enough to allow growth of sensitive cells.
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function were neglected, to models which incorporated stochastic plasmid loss and
antibiotic resistance degradation; as well as to models which considered plasmid
mutation (see Model Implementation for detailed description). In simulating cells
with one or two copies of inducible T7 RNAP in both the naive and differentiation
cases, assumptions were required about the relative burden levels and production
rates. In the case of differentiation, the producer growth rate was the growth rate of a
cell with one activated cassette of T7 RNAP, and for consistent rule implementation
which would result in positive growth rates, the burden of the second copy produced
a proportionate decrease in growth rate. For example, if a non-producer grows at
rate 1 and a cell with one cassette active grows at rate 0.5, a cell with two cassettes
active would grow at rate 0.25 (`# (`%/`# )2). Production then was assumed to
increase linearly with the decrease in growth rate.

From these simulations, we recapitulate several observations from the initial deter-
ministic modeling of the general strategies, and from our experiments. For both
differentiation and terminal differentiation with one and two copies, we see that
lower differentiation rates allows longer duration production at a lower rate, high
differentiation rates lead to faster loss of production particularly for higher burden,
and intermediate rates strike a balance and achieve the most total production (Fig-
ure 3.17, 3.21-3.26). At low burden (higher `%), terminal differentiation performs
worse, but better as the burden increases (Figure 3.17). We also see that naive ex-
pression performs comparatively well at low burden relative to high burden. For 2x
naive expression we model both the case where one cassette alone yields the growth
rate `% and its corresponding production rate (2x*), and where the two cassettes
together yield the growth rate `% (2x). As expected, at low burden and high dif-
ferentiation rate, 1x differentiation without selection approximates the performance
of both 1x and 2x naive, and 2x differentiation without selection approximates the
performance of 2x* (Figure 3.17). While we do not address experimentally the
affect of number of divisions post-differentiation, we do so computationally, and
see that while increasing the number of divisions benefits total production achieved
with low burden, this benefit subsides with increased burden (Figure 3.18).

Further, the redundancy and mutational robustness provided with 2x differentia-
tion improves performance relative to the one cassette case for both differentiation
and terminal differentiation. However, while computationally this benefit holds in
these pairwise comparisons across all burdens for both differentiation and termi-
nal differentiation, experimentally we observe 1x differentiation outperforming 2x
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differentiation with both IPTG inductions when chloramphenicol is not included.
Though this disparity could in part be due to our assumptions regarding growth rate
and production rate in cells with 1 vs 2 activate T7 RNAP cassettes, we reasoned this
could also be due to the plasmid-based mechanisms previously discussed. Indeed,
we see that incorporating stochastic plasmid loss in conjunction with a model of
antibiotic degradation and growth inhibition can negatively effect performance of
the naive and differentiation architectures in a burden dependent manner, and that
this effect is much greater in the two cassette case (Figure 3.17). Intuitively this
makes sense, as even though the rate of plasmid loss is faster than of mutation, the
difference in amount of time required to generate (1) a cell with no plasmid and (2)
a cell with all copies of T7 RNAP mutated is much greater in the two cassette case.
Therefor we would expect incorporating plasmid loss to more significantly impact
the performance of redundant architectures.

Strikingly, this effect does not affect the performance of terminal differentiation
architectures. We see this both in the total production achieved (Figure 3.17), and
in tracking the population of cells which have lost the plasmid (Figure 3.21-3.26).
When there is no antibiotic degradation, we see no accumulation of cells lacking the
plasmid for any circuit, but with a sufficiently high rate of antibiotic degradation, we
see a transitory rise in the fraction of cells that have lost the plasmid for naive and
differentiation architectures, but not for terminal differentiation (Figure 3.19-3.26).
As these cells require cells that have retained the plasmid to degrade antibiotic, they
do not completely take over the population, but instead are eventually displaced
by mutated cells which retain the plasmid. For differentiation, this effect is only
observed if both the burden and differentiation rate is sufficiently high, and is never
seen with terminal differentiation.

Similarly, we can instead neglect antibiotic degradation, and just consider plasmid
mutations. Though this would bemore accurately modeled by explicitly considering
plasmid copy number, mutation of individual plasmids, stochastic partitioning, and
the dependency of burden and production on the fraction of mutated plasmids, this
would yield a prohibitively complex model, so we instead consider loss of function
from a plasmid mutation to occur with a single event. The results of simulations
which incorporate plasmid mutation largely align with the previously results con-
sidering antibiotic degradation and plasmid loss (Figure 3.28). Specifically, we see
that incorporation of plasmid mutation negatively affects the performance of naive
and differentiation circuits with two cassettes. As the mutation rates we consider
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are equal to or slower than the burden mutation rate, the one cassette circuits are
relatively unaffected. As well, instead of the transitory increase we observed with
plasmid loss, plasmid mutations become fixed (Figure 3.19-3.26). Critically, the
robustness of terminal differentiation circuits holds true when considering plasmid
mutations, and we observe no accumulation of cells with mutated plasmids or any
effect on production.

With knowledge that effects due to plasmid loss and shared antibiotic resistance
should be much smaller of a factor with the KanR version of the ColE1 plasmid,
we again compared the performance of our naive, differentiation, and terminal
differentiation circuits (Figure 3.5). In contrast to the AmpR case, with KanR
we now observed a benefit from including a second cassette in the naive case,
with 2x naive yielding ∼2.2x the production of 1x naive in the lower burden case,
and ∼1.6x in the higher burden case (Figure 3.5C). While 2x naive outperformed all
differentiation circuits in the lowburden case, thiswas not sowith high burden, where
2x terminal differentiation achieved ∼2.9x (20`M sal/50 `M IPTG/+chlor, Figure
3.5D). In agreement with our modeling where we observed a larger negative affect
from incorporation of plasmid loss and antibiotic degradation with the two cassette
naive and differentiation circuits, we see an improvement of 2x differentiation and 2x
naive relative to their respective single-cassette counterparts when switching from
AmpR to KanR. If the dominant factor were plasmid mutation instead of plasmid
loss, we would not have expected this change in antibiotic selection to have the
observed affect. Strikingly, terminal differentiation circuits were not benefited by
reducing plasmid based effects by switching from AmpR to KanR, highlighting
the robustness of this architecture to non-genomic factors affecting burdensome
expression.
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Figure 3.5 (previous page): Assessing the evolutionary stability of burdensome T7
RNAP driven expression from a high copy ColE1 KanR plasmid. (A-C) 8 inde-
pendent transformants were outgrown for 8 hours in LB media with appropriate
antibiotics and inducers before 50x dilution into experimental conditions. Cells
were grown in 96 well plates in 0.3 mL, diluted 50x every 8 h for 16 total growths,
and 50 `L endpoint samples taken to measure OD700, sfGFP (485/515 nm), and
mScarlet (565/595 nM) fluorescence in 384 well matriplates. Average cumulative
sfGFP production plotted for each condition. (A-B) 1x differentiation and 2x dif-
ferentiation. Each differentiation cassette additionally encodes NahRAM, LasRAM,
and LacIAM (Figure 3.27 for full circuit diagram). Cells were co-transformed with
ColE1 KanR pT7 GFP and R6KCmR-mScarlet, and plated on LB +kan/chlor/30
nM Las-AHL. Colonies were outgrown in LB +kan/chlor/10 nM Las-AHL before
50x dilution into experimental conditions in LB kan with chlor (blue, filled circles
or without chlor (orange, open circles) with varying concentrations of salicylate
(10, 15, 20, 30 `M) and IPTG (10, 50 `M). (C) Cells with one (naive 1x) or two
(naive 2x) copies of genomically integrated T7 RNAP were transformed with ColE1
KanR pT7 GFP, plated on LB + kan, and outgrown in LB + kan before dilution into
experimental conditions. (D) Total cumulative production +/- SD after 16 growths
for all strains in all conditions.

3.5 Differentiation enables expression of toxic functions
Intuitively and from modeling, the degree of burden or toxicity of the function of
interest should not matter in allowing a differentiation architecture to improve its
evolutionary stability if the function is maintained in a perfectly off state in the
progenitor cells. Indeed, even a function with 99 percent burden should be main-
tained (Figure 3.17). To test this, we aimed to demonstrate that the differentiation
circuit we developed could allow the production of a protein that will result in
cell death: dnaseI. As progenitor cells do not produce any T7 RNAP, we reasoned
that a T7 RNAP-driven dnaseI would not be expressed in the progenitor cells, al-
lowing the encoded function to be replicated without toxicity or selective pressure
for mutations. However, construction of a dnaseI expression plasmid identical to
that of sfGFP yielded only mutated plasmids. Characterization of leaky expression
from the pT7-GFP plasmid in the absence of T7 RNAP revealed fluorescence above
background, explaining this inability to isolate functional plasmids (Figure 3.15).
Incorporating two insulating terminators upstream of the T7 promoter mitigated
leaky expression in the absence of T7 RNAP (Figure 3.15), and this insulation in
conjunction with reducing the RBS strength allowed construction and isolation of a
correctly sequenced dnaseI expression construct. While leak could have also been
reduced by using the T7/lacO promoter and an additional source of LacI on the
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expression plasmid, this would not eliminate leaky expression in progenitor cells
upon induction of differentiation and T7 RNAP. Highlighting the importance of
preventing leaky expression of toxic functions, transformation of 1x differentiation
and 2x differentiation cells with insulated dnaseI plasmid yielded ∼600 cfu and
∼1000 cfu respectively, while naive 1x and naive 2x strains yielded 1 and 0 colonies
respectively, compared to > 104 cfu for both when transformed with Cole1 AmpR
pT7 GFP control (Figure 3.6A, Table 3.1).

Figure 3.6: Production of functional dnaseI using integrase mediated differentia-
tion. (A) Non-leaky T7 RNAP expression enables differentiation strains to replicate
a plasmid encoding an insulated pT7 dnaseI cassette, while cells with leaky T7
RNAP cannot. (B) For assaying dnaseI production, 2x differentiation cells were
co-transformed with R6KCmR-empty and Cole1 AmpR T13m T12m-pT7-B0032-
dnaseI-T7T, and plated on LB + carb/chlor/30 nM Las-AHL. After 8 h outgrowth
in LB + carb/chlor/10 nM Las-AHL, cultures were diluted 1:50 into 25 mL media
+/- 10 `M IPTG/20 `M sal. Pellets for experimental cultures and JS006 negative
control were harvested after 8 h, and lysate assayed for dnaseI activity (Figure 3.16).
Lysates from three independent cultures for each condition, and one JS006 culture
were assayed in triplicate.

To assess the capacity of differentiation to enable functional dnaseI expression, we
co-transformed the 2x differentiation strain with the insulated dnaseI expression
plasmid, and an empty R6KCmR plasmid. After outgrowth without induction,
cultures were diluted into 25 mL cultures with or without induction with 20 `M
salicylate and 10 `M IPTG. Afer 8h growth, un-induced cultures grew to cell
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densities equivalent to JS006 control (7.2-7.6 g wet weight per liter vs. 7.6 ctrl),
while induced cultures reached lower cell densities (2-4.4 gCW/L).Dilution 1:50 into
freshmedia yielded similar densities for the uninduced cultures after 8 h growth (7.2-
7.6 gCW/L), while induced cultures had grown minimally after 8 h (OD600 < 0.05)
and to a range of densities after 16 h total growth (2-6.8 gCW/L). The growth of the
induced and uninduced cultures indicated that the dnaseI plasmidminimally affected
growth when T7 RNAP is not expressed, and that 20 `M salicylate induction likely
resulted in more complete differentiation in a large shaking culture in comparison
to small volumes in 96 well microplates in previous experiments. Expression of
functional dnaseI was quantified with an activity-based assay on lysate extracted
from cell pellets (Fig 3.11), with activity measured equivalent to ∼1.9-4.2G104

U/gCW (∼3.7x104 − 1.9G105 U/L) in the three independent induced cultures and
∼65-250 U/gCW (∼500-1800 U/L) in the uninduced cultures, compared to ∼13
U/gCW (∼100 U/L) for the JS006 negative control (Fig 3.6B). This yield of dnaseI is
on order with yields reported using T7 RNAP to drive the expression of recombinant
dnaseI using the LacI repressible T7 promoter in Bl21(DE3)[pLysS] (1.5G104 U/L)
and Bl21(DE3)[pLysE] (7.5G104 U/L) [39].

3.6 Discussion
Here we have developed architectures for implementing differentiation and termi-
nal differentiation in E. coli for the expression of burdensome T7 RNAP-driven
functions. Importantly, in our circuit design progenitor cells do not have an intact
coding sequence for T7 RNAP, completely eliminating leaky T7 RNAP expression
in progenitor cells. We computationally demonstrated that differentiation enables
growth in a chemostat with constant dilution at a higher rate than would be possi-
ble than for naive expression of the same function with equivalent burden, which
has important implications both for continuous bioproduction and deploying en-
gineered bacteria in the gut microbiome or other environments with competition.
Importantly, we demonstrated that limiting the growth of differentiated cells with
terminal differentiation prevents mutations which inactivate the function of interest
(burden mutations) from providing a selective advantage, removing this category of
mutations as a cause of circuit failure. Finally we also demonstrated that reducing
the rate of mutations which disrupt the process of differentiation improves the evo-
lutionary stability of the terminal differentiation architecture regardless of the rate
of burden mutations, and that completely eliminating this mutation would ensure
indefinite circuit function.
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Experimentally, we developed a differentiation-activated T7 RNAP architecture in
which all circuit components that could mutate to disrupt the process of differentia-
tion or expression of T7 RNAP were integrated on the genome, both ensuring exact
copy number control and preventing plasmid partitioning effects from accelerating
circuit failure [11]. With the goal of reducing the probability of disrupting the
differentiation process through mutation and thereby increasing the longevity of the
terminal differentiation architecture, we developed a novel split-c protein system
through semi-rational splitting of the pir coding sequence and tagging the fragments
with split-inteins. In long-term experiments with repeated dilutions of independent
cultures, we compared the performance of 1x and 2x naive T7 RNAP-driven ex-
pression to 1x differentiation and 2x differentiation with or without selection against
differentiated cells with chloramphenicol. We demonstrated that the rate, duration,
and total amount of production could be tuned by varying the differentiation rate,
with low differentiation rates enabling longer duration expression at a lower rate.
Differentiation was particularly beneficial in comparison to naive expression with
higher burden as expected from modeling, and the redundancy and robustness to
differentiation mutations provide with the split-c protein terminal differentiation
proved effective.

Further, we demonstrated both computationally and experimentally that effects due
to instability of the ColE1 pT7 GFP expression plasmid and communal antibiotic
resistance can negatively effect the performance of naive expression and differen-
tiation without limited cell division, but that terminal differentiation circuits were
immune to this effect. We further demonstrated computationally that the robustness
of terminal differentiation circuits to burden mutations affecting T7 RNAP expres-
sion and to plasmid loss extend to the general case of plasmid mutations which
disrupt the function of interest. Though genomic integration of functions is more
time consuming and cumbersome than plasmid transformation, plasmid instability
and considerations of cost for use of antibiotics and inducers in large cultures have
often made genomic integration of constitutively expressed functions the preferred
method for bioproduction in industry [10, 40]. However, because a system such as
this with terminal differentiation where effects of plasmid instability can be substan-
tially or entirely mitigated, we can potentially get the stability benefits of genomic
integration with the ease of plasmid transformation.

Finally, because there should be no limit on the degree of burden or toxicity of a
function expressed with our differentiation system (so long as the toxicity is limited
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to the cells expressing the function), as a proof of concept we demonstrated that
differentiation could enable the expression of functional dnaseI. In the course of this
demonstration, we discovered that in the absence of leaky expression of T7 RNAP,
non-T7 RNAP sources of leak could prevent isolation of correctly assembled dnaseI
expression plasmids. While we mitigated this problem through the incorporation of
insulating terminators to prevent transcriptional read-through from upstream of the
T7 promoter, reducing the strength of the RBS was still required to isolate correctly
sequenced plasmid. Improving this insulation and/or reducing any leaky expression
that may be coming directly from the T7 promoter through directed evolution efforts
may prove beneficial. As an additional benefit this would allow the use of higher
strength RBS sequences without concern for leak, thereby enabling improved yields.

While the expression of toxic or highly burdensome products has long been of
interest in bioproduction and synthetic biology, and effective strategies have been
implemented to accomplish this [41], to our knowledge all existing strategies only
work for single use batch culture inductions. The critical difference with our
strategy of terminal differentiation is that progenitor cells continuously differentiate
to replenish the population of cells expressing the toxic function, thereby allowing
a toxic product to be produced continuously.

Though here we demonstrate the effectiveness of terminal differentiation and the
stability benefit from requiring two instead of one mutation to break the differenti-
ation activated delayed death architecture, this can be viewed as a proof of concept
for the power that redundancy can provide in synthetic biology. In considering the
scaling of this strategy to longer times and larger population sizes, we cannot help
but imagine what can be done with a higher degree of redundancy. Scaling this
specific architecture through further splitting of the c protein may be infeasible,
but the tool-kit of synthetic biology certainly has means of allowing this strategy
to scale further, through the inactivation of essential genes, activation of toxins, or
otherwise.

3.7 Model implementation
Cell growth
For all simulations, we implemented carrying capacity limited growth of the form

3-8

3C
= `8-8

 − -C>C
 

, (3.1)
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where `8 is the specific growth rate of cell type -8,  is the carrying capacity
(number of cells), and -C>C is the current total number of cells of all cell types. For
simulations in Fig. 3.1, we modeled carrying capacity limited growth in a chemostat
with constant dilution rate � (h−1):

3-8

3C
= `8-8

 − -C>C
 

− �-8 . (3.2)

Burden, differentiation, and integrase mutations
In order to generate the models for these simulations, we first generated all pos-
sible genotypes that could be present in the simulation. For the naive case, each
genomically integrated cassette of inducible T7 RNAP can be in two states:

1. Producer (P): Cassette will enable production and have associated burden.

2. Non-producer (N): Cassette will not produce T7 RNAP and has no associated
burden.

For 1x naive, there are only two genotypes (P, N), while for 2x naive, there are
three genotypes (PP, PN, NN). Though we could explicitly model both PN and NP,
this is unnecessary. For the naive case, there is only a single type of mutation, the
burden mutation, which occurs at rate :"� (h−1). Because mutations require DNA
replication/cell division, this rate is further dependent on the current growth rate:

-%
:"� `%

 −-C>C
 −−−−−−−−−−−→ -# (3.3)

As the rate of the mutation is also proportional to the number of loci that could be
mutated, for the general case of = cassettes we have that

- (% = 8, # = = − 8)
8:"� `%

 −-C>C
 −−−−−−−−−−−→ - (% = 8 − 1, # = = − 8 + 1), (3.4)

where 8 is the number of producer cassettes, and =− 8 is the number of non-producer
cassettes.

Differentiation brings two additional types of mutations, both of which act to disrupt
the process of differentiation.
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1. Differentiation mutation: Occurs at rate :"� , and disrupts the capacity for an
individual cassette to undergo recombination.

2. Integrase mutation: Occurs at rate :"� , and disrupts integrase expression at one
locus.

Before consideration of the integrase mutation, we can enumerate the possible
genotypes for a single cassette:

1. PP : (P)rogenitor, (P)roducer. Cassette is in the un-recombined progenitor state,
and would yield a producer cassette upon recombination.

2. PN : (P)rogenitor, (N)on-producer. Cassette is in the un-recombined progenitor
state, and would yield a non-producer cassette upon recombination.

3. DP : (D)ifferentiated, (P)roducer. Cassette is in the recombined differentiated
state, and is producing T7 RNAP.

4. DN : (D)ifferentiated, (N)on-producer. Cassette is in the recombined differenti-
ated state, and is not producing T7 RNAP due to the burden mutation.

5. M- : (M)utated. Cassette is in the un-recombined progenitor state, but has
incurred a differentiation mutation which prevents it from recombining. The
Producer/Non-producer state is therefore not relevant and is neglected.

As each integrase cassette is either functional or not-functional in our model, we
simply consider the number of functional integrase cassettes in our genotype. For
example, the starting genotype for cells with two differentiation cassettes and two
integrase cassettes would be (PPPP2). Mutation of one integrase cassette would
then yield (PPPP1).

As with the burden mutation considered in the naive case, the rates of the burden
and integrase mutations scale with the number of loci that could mutate, and depend
on the current growth rate of the cells which could incur the mutation.

Terminal differentiation
In order to address the case of terminal differentiation, we explicitly modeled the
number of cells divisions a differentiated cell could undergo. To illustrate this,
we consider the case of a cell with two differentiation cassettes and two integrase
cassettes (PPPP2). For differentiation without limited division, this would yield the
genotype DPPP2. With terminal division, we include the subscript to indicate the
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number of divisions the cell has undergone: (DPPP20). With the general case where
there is a limit of = cell divisions, for 8 < = we have

-�%%%28
`%

 −-C>C
 −−−−−−−→ 2-�%%%28+1 . (3.5)

For 8 = = we have

-�%%%28
`%

 −-C>C
 −−−−−−−→ Φ. (3.6)

Production and burden
In addition to tracking the population of producer cells, we also can track the
production of an arbitrary product. To do so, we determine the production rate
V (cell−1h−1) specific to each strain in the simulation, and assume further that
production is also dependent on the current growth rate. For simplicity, we set
V = 1. In the naive case, any genotype that has % > 0, and in the differentiation
case, any genotype that has �% > 0, will be a producer. While in the single
cassette case this is quite simple, for = > 1 cassettes we must address how to deal
with the production rate for % = 0, 1, ..., = for the naive case, and �% = 0, 1, ..., =
for the differentiation case. To do so, we will address production rate and burden
simultaneously.

In the case of differentiation, we assign `# to be the specific growth rate of non-
producer cells (DP=0), `% to be the growth rate of cells with a single cassette
producing T7 RNAP (DP=1), and V to be the production rate for this genotype.
Because growth rates must be non-negative, and cells have an inherent metabolic
capacity, we assume each additional cassette will affect the growth rate proportion-
ally according to

`8 = `#

(
`%

`#

)�%(8)
=

`
�%(8)
%

`
�%(8)−1
#

. (3.7)

We similarly assume that the production rate does not linearly increase with the
number of producer cassettes, but negatively correlates linearly with the growth rate
according to
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V8 = V
`# − `8
`# − `%

. (3.8)

For `# = 1 and `% = 0.5 and two cassettes, production and growth rates would be

�%8 `8 V8
0 1 0
1 0.5 1
2 0.25 1.5

The naive case is treated identically with the number of % cassettes considered
instead of �% with differentiation. However, because the initial genotype of cells
with = cassettes has = producer cassettes, we must decide whether `% and V describe
cells with % = 1 or % = =. We consider both cases in our stochastic simulations,
where for the two cassette case "2x" indicates that `% and V describe the genotypes
where % = 2, and "2x*" indicates these parameters describe the case of % = 1. For
the later case, growth rates and production rates are determined as above. For the
former case, the growth rate is calculated similarly by

`8 = `#

(
`%

`#

)�%(8)/=
, (3.9)

where = is the total number of cassettes. The production rates are then determined
as above.

Differentiation rates
We model the process of differentiation at a high level, and do not explicitly consid-
ering the underlying transfer functions describing the production of Bxb1 integrase
or the rate of recombination given the number of intact and recombined cassettes.
A mechanistic model would be difficult to implement in the context of these sim-
ulations, may prove prohibitively complex to implement with the relevant scales
of population size, and is not necessary to capture the important features. Instead
we set the tunable rate of differentiation :diff (h−1) that is constant throughout a
given simulation. This rate is the maximum total rate of differentiation when all
differentiation cassettes are in the progenitor state, and all integrase cassettes are
functional. Reducing the amount of integrase expression bymutation of an integrase
cassette will reduce the rate of differentiation, and we assume differentiation rate
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varies linearly with the number of functional integrase cassettes. We also assume
that the effective differentiation rate is not affected by growth rate. While this may
not be completely accurate, decreased protein production rates when cells are grow-
ing more slowly will be counteracted by decreased dilution from cell growth and
division. Therefore for the case of a single differentiation cassette we have

-8

:diff
�8
=�−−−−−→ - 9 . (3.10)

Where �8 is the number of functional integrase cassettes for genotype -8, =� is the
total number of integrase cassettes, PP8 = 1,DP8 = PN8 = DN8 = 0, I8 = 2, and
DP 9 = 1, PP8 = PN8 = DN8 = 0, I 9 = 2.

For numbers of cassettes greater than one, the total differentiation rate across all
cassettes is :diff , and therefore the differentiation rate for any individual progenitor
cassette is :diff/=. Here we implicitly assume that the state of one cassette does
not affect the rate of differentiation of any other cassette. Generally, the rate of
transitioning from one genotype to another through differentiation is given by

-8

:diff
%%8
=

�8
=�−−−−−−−−→ - 9 , (3.11)

for the differentiation of a PP cassette, where PP 9 = PP8 − 1,DP 9 = DP8 + 1, PN 9 =

PN8,DN 9 = DN8, I 9 = I8. Similarly, for the differentiation of a PN cassette, we have
that

-8

:diff
%#8
=

�8
=�−−−−−−−−→ - 9 , (3.12)

where PP 9 = PP8,DP 9 = DP8, PN 9 = PN8−1,DN 9 = DN8+1, I 9 = I8.

Plasmid loss, antibiotic degradation, and growth inhibition
With the above components of the model, we also incorporated features to de-
scribe loss of the ColE1 plasmid, degradation of the antibiotic in the medium, and
growth inhibition of sensitive cells. We gathered initial parameters from a study
investigating the role bacterial cheating in driving population dynamics of plasmids
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with cooperative antibiotic resistance [38]. For a population of cells -' which are
resistant and degrade the antibiotic, the concentration of antibiotic is described by

3�

3C
= −-'

+<0G

+

�

� +  <
+ � (�8= − �), (3.13)

where � (`g/mL) is the concentration of antibiotic in the medium; +max (`g
cell−1h−1)is the maximum rate of antibiotic degradation; + (mL) is the volume
of the culture;  < (`g/mL) is the Michaelis constant, the concentration at which the
rate of antibiotic degradation is half-maximal; �8= (`g/mL) is the concentration of
antibiotic in the feed media, and � (h−1) is the dilution rate. For all simulations,
we modeled batch dilutions (� = 0). The rate of antibiotic degradation +max as
experimentally determined [38] was 106 molecules/cell/s (∼2.5x10−6 `g/cell/h ) for
antibiotic resistance encoded on a low copy plasmid when ampicillin was used. This
rate was used as 1x antibiotic degradation in the simulations. As experimentally the
antibiotic resistance was encoded on a high copy ColE1 plasmid, we also examined
the case of 5x this rate.

To incorporate plasmid loss in the model, all genotypes and reactions associated
with the genotypes were duplicated, and designated as either ' for resistant, or (
for sensitive. Growth rates and production rates for sensitive cells are determined
as previously described for resistant cells, however for sensitive cells, growth rates
are set to that of non-producers (`# ), and the production rate (V) to 0. While the
growth rate of resistant cells is not affected by the concentration of antibiotic, the
growth rate of sensitive cells was modeled using a Heaviside function:

3-8(()
3C

= `8(()-8(()
 − -C>C

 
H("�� − �), (3.14)

where MIC is the minimum inhibitory concentration of the antibiotic, and for
� ≥ "��,H("�� − �) = 0; and for � < "��,H("�� − �) = 1.

Finally, we modeled loss of the plasmid in the same manner as mutation, occuring
at rate :%! (h−1), and again dependent on the current growth rate:

-8(')
:%!`8 (')

 −-C>C
 −−−−−−−−−−−−→ -8(() , (3.15)
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where -8(') and -8(() have identical genotypes apart from the presence or absence
of plasmid. Though copy number of the plasmid certainly varies continuously and
is not binary as we model it here, this captures the general feature and is tractable to
implement.

Plasmid mutation
After incorporation of plasmid loss and antibiotic degradation, modeling plasmid
mutation could be modeled without additional modification to the models. We
modeled this by setting the antibiotic concentration and antibiotic degradation rates
to 0. While the plasmid of interest is present at a high copy number, and the
fraction of mutated plasmid can vary and with it the associated production and
growth rates, modeling this explicitly would not be tractable in the context of our
models. Because random partitioning affects can result in a high fraction of mutated
plasmids from a single initial mutation in a time scale much faster than acquiring
additonal mutations [11], wemake the simplifying assumption that a single mutation
abolishes all expression with a single event.

Deterministic and stochastic implementations
In order to allow ourmodels to be simulated either deterministically or stochastically,
we implemented a manual ODE solver using Euler’s method with time step 0.01 h
that allowed selection of the simulation mode. For both deterministic and stochastic
simulation, cell growth, production, and differentiation were modeled according
to the previously described equations, and only mutation events were modeled
stochastically. Because of the continuous nature of cell numbers produced using
deterministic ODEs, cell numbers were rounded down for determining the number
of cells which would mutate. To calculate the number of cells that would mutate in
a given time step, we sampled randomly from a binomial distribution according to

=<DC = B(#, :3C), (3.16)

where =<DC is the number of cells that mutate in a given time step, # is the number
of cells of the genotype considered for this reaction and the number of Bernoulli
trials, : is the rate that was determined for this specific event, 3C is the time step, and
:3C is the probability of the event occuring in the time step. The number of cells is
then subtracted from the source genotype, and added to the destination genotype.



59

In the simulations shown, we model dilution of batch cultures in a manner similar to
our experiments. For deterministic modelling, at the end of each batch growth, the
cell population for each genotype is divided by the dilution factor (3) for restarting
the next batch growth. The antibiotic concentration for the start of the next batch
growth is calculated as

�∗ = �/3 + (1 − 1/3)�0, (3.17)

where �∗ is the concentration of antibiotic at the start of the next batch growth, and
�0 is the concentration of antibiotic in fresh media.

For dilution in stochastic simulations, the number of cells for each genotype in
the next batch growth was determined by drawing from a binomial distribution
according to

-∗8 = B(-8, 1/3). (3.18)

Finally, because themetric of interest for production is the total amount of production
and not the concentration of product, the amount of arbitrary product is not diluted
but tracked continuously through subsequent batch growths. Production rate was
assumed to vary with growth phase as in Chapter 2.

Deterministic modeling for Figure 3.1
Deterministic simulations in Fig 3.1 were run with models generated as described
above considering the case of a single cassette for all circuits, neglecting the integrase
mutation, and not considering plasmid mutation or antibiotic degradation. Models
used carrying capacity limited growth with constant dilution, and were terminated
after 10,000 h of simulated time.

3.8 Materials and methods
Strains and constructs
The wild-type E. coli strain JS006 was the base strain for the construction of all dif-
ferentiation and naive circuit strains. Constructs were assembled with a combination
of Golden Gate and Gibson assembly using 3G [42], and were integrated into the
E. coli genome using clonetegration [32]. Because the R6K origin used for propa-
gation of pOSIP plasmids from the clonetegration method of genomic integration is



60

the same origin in our differentiation architecture R6K plasmid, and the c protein
driving the replication of this plasmid is expressed from the differentiation cassette
being integrated, we needed to remove this origin from the pOSIP plasmids. We
accomplished this by designing primers to PCR the pOSIP plasmids in two parts
for use in Gibson assembly with circuits to be integrated, retaining the portions re-
quired for integration but removing the R6K origin. For Gibson assemblywith linear
pOSIP pieces, POS1 and POSX were used as terminal adapters instead of UNS1
and UNSX. The 1x naive strain and 1x differentiation strain was constructed by in-
tegration at the P21 (T) landing site, and the 2x naive and 2x split-pir differentiation
strains by additional integration at the HK022 (H) landing site. 1x differentiation
and 2x differentiation strains were integrated two additional times with the inducible
Bxb1-LAA expression construct at the primary and secondary phage 186 (O) land-
ing sites (Figure 3.27). Following transformation, integrations were checked via
colony PCR with the pOSIP p4 primary corresponding to the landing site [32] and a
reverse primer common to all pOSIP plasmids (5’ ATTACTCAACAGGTAAGGCG
3’). Fidelity of integrations was checked with a combination of sequencing and
functional screening prior to transformation with pE-FLP to excise the antibiotic
resistance cassette and integration module, and integration of subsequent constructs
[32]. Final strains for 1x and 2x naive, 1x differentiation 2x Bxb1, and 2x split-pir
differentiaton 2xBxb1werewhole-genome sequencedwithminIONusing the Rapid
Barcoding Kit (Nanopore SQK-RBK004) for verification. Reads were assembled
with Flye (https://github.com/fenderglass/Flye/) and mapped to reference genomes
containing intended genomic insertions in Geneious.

Modified MoClo [33] compatible parts for T7 RNAP, integrase attachment sites,
and terminators were generated with standard molecular biology techniques (PCR,
Gibson, oligo annealing and phosphorylation), and modified UNS adapters used for
construction of polycistronic or inverted transcriptional units. The R6KCmR back-
bone was constructed with Golden Gate using an R6K origin amplified from the
pOSIP plasmids. Sequences for Bxb1 integrase attachment sites attB and attP were
obtained from Ghosh et.al.[34]. NahRAM, LasRAM, LacIAM, and their correspond-
ing evolved promoters PSalTTC, PLasAM, and PTac were provided by Adam Meyer
[23]. The CIDAR MoClo Parts Kit which includes various promoter, RBS, CDS,
and terminator parts used in the constructs described were provided by Douglas
Densmore (Addgene kit 1000000059).



61

Differentiation experiments
Chemically competent cells were prepared from the naive and differentiation strains
grown in LB without selection, with differentiation strains induced with 30 nM Las-
AHL to allow pi protein expression for R6K plasmid replication. 1x and 2x naive
strains were transformed with ColE1 AmpR pT7 GFP or ColE1 KanR pT7 GFP and
plated on LBwith 100 `g/mL carbenicillin or 50 `g/mL kanamycin. Differentiation
strains were co-transformed with R6KCmR-mScarletI and ColE1 AmpR pT7 GFP
or ColE1 KanR pT7 GFP, recovered in SOC with 30 nM Las-AHL, and plated
on LB agar with 34 `g/mL chloramphenicol, 30 nM Las-AHL, and 100 `g/mL
carbenicillin or 50 `g/mL kanamycin. Eight independent colonies were picked
from each transformation, and grown at 37C in 300 `L LB in 96 square deep well
plates for 8 hours. Naive strains were grown in LB with appropriate antibiotic, and
differentiation strains grown in LB with chlor and carb or kan with 10 nM Las-
AHL. Following outgrowth, cells were diluted 1:50 into experimental conditions.
Cells were diluted every 8 hours for sixteen total growths in constant antibiotic and
induction conditions, and sfGFP (485/515 nm), mScarlet (565/595 nm), and OD700
measured by taking 50 `L aliquots of endpoint culture and measuring in 384 well
black wall clear bottom Matriplates. Average of two reads for each measurement in
each well were used.

dnaseI expression and quantification
As an initial demonstration of the toxicity of dnaseI and of the importance for
preventing leaky expression of T7 RNAP, chemically competent 1x and 2x naive
strains, and 1x and 2x differentiation strains were transformed with 10 ng of HCA
pT7 GFP or 10ng HCA with insulated pT7 dnaseI, and all or 10 percent plated on
LB carb. Plates with more than 1000 colonies on the 10 percent plate were reported
as > 104 cfu. For dnaseI expression experiments, 2x split-pir differentiation cells
were co-transformed with an empty R6KCmR plasmid and the insulated ColE1
AmpR dnaseI expression plasmid, recovered in SOC with 30 nM Las-AHL, and
plated on LB agar with carb/chlor/30 nM Las-AHL. Three independent colonies
were inoculated into 3 mL LB cultures with carb/chlor/10 nM Las-AHL, outgrown
for 8 hours at 37C, and diluted 1:50 into 25 mL media with or without 20 `M
salicylate and 10 `M IPTG to induce differentiation and T7 RNAP expression.
After 8 hours of growth, cultures were diluted 1:50 into the same conditions, and
the remaining culture harvested. Wet weight of pellets after washing with PBS was
recorded before storing at -20C. JS006 parental strain without the dnaseI expression
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plasmid was grown similarly in LB without antibiotics and inducers for negative
control. The second growth of uninduced cultures was harvested after 8 hours as
before, and induced cultures allowed to grow for an additional 8 hours as minimal
growth was observed after the initial growth.

Pellets were lysed via sonication of a 33 percent (w/v) cell suspension in 10 mM
Tris pH 7.5/2 mM CaCl2 with protease inhibitor (Roche, 11836170001), cleared
with centrifugation at 4C, and supernatant collected and kept on ice before assaying
dnaseI activity. Buffers used for assay were as described in Kunitz [43], though
to allow simultaneous measurement of many samples and to avoid problems we
observed with background absorbance in crude cell lysate when performing the
Kunitz assay, we developed a fluorescence-based assay similar to Vogel and Frantz
[44]. Briefly, dnaseI assay buffer was prepared by diluting SYBR Safe (Invitrogen,
S33102) 1:1000 into a solution of 100 mM sodium acetate/5 mMmagnesium sulfate
with 26.3 `g/mL calf thymus DNA (Sigma D1501). Assay plate was prepared
by aliquoting 190 `L dnaseI assay buffer into 96 round-well clear bottom plates
and equilibrating in the dark at 25C. Standards were prepared by adding various
amounts of dnaseI (Invitrogen AM2222) to JS006 lysate diluted 1:10 in 0.85 percent
NaCl. Samples to assay were diluted 1:10 or 1:50 in 0.85 percent NaCl, and 10`L
of sample or standard pipetted with a multi-channel pipette into triplicate wells
immediately before assay. The final amount of DNA per well was 5`g. After
shaking briefly fluorescence (487/528 nM) was measured every minute for 2 hours
at 25C. Fluorescence fold-change over the course of the two hour assay was used in
fitting a standard curve (Fig 3.16), and dnaseI activity calculated from appropriate
dilutions.
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Figure 3.7: Characterization of burden level of naive T7 RNAP driven GFP. JS006
cells with 1 and 2 copies of naive IPTG inducible T7 RNAP were transformed with
a high copy ColE1 plasmid with kanamycin resistance. Cells were outgrown in
LB with kanamycin (50 `g/mL) for ∼6 hours then diluted 1:50 into LB kan with
varying concentrations of IPTG. (A) GFP production (top) and OD600 (bottom)
were measured every 10 minutes for 1x naive (left) and 2x naive (right) grown
in triplicate at 37C in 0.3 mL. (B) OD600 curves were trimmed to 60 percent of
maximum OD600 achieved and used to fit an exponential growth model with noise
floor, initial population, and growth rate parameters. Mean growth rate +/- SD of 3
replicates fitted separately plotted for naive 1x and 2x.
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Figure 3.8: 1x differentiation with ColE1 AmpR pT7 GFP and R6KCmR-mScarlet;
Las-AHL, salicylate, and IPTG gradient fluorescence and OD data by plate gen-
eration. Three replicate colonies outgrown for 8 hours in LB carb/chlor with
varying concentrations of Las-AHL, then diluted 1:50 every 8 hours into 0.3 mL
LB carb/chlor/Las with varying concentrations of sal and IPTG. Mean +/- SD of
GFP (top), mScarlet (middle), and OD700 (bottom) plotted for three total growths.
Color indicates sal concentration; 10 `M IPTG (circles, solid lines), 50 `M IPTG
(triangles, dashed lines).

Strain pT7 GFP pT7 dnaseI
1x naive > 104 cfu 1 cfu
2x naive > 104 cfu 0 cfu
1x diff 6.6G103 cfu 590 cfu
2x diff > 104 cfu 1090 cfu

Table 3.1: 50 `L chemically competent cells were transformed with 10 ng of ColE1
AmpR pT7 GFP or 10 ng ColE1 AmpR T13m-T12m-pT7-B0032-dnsaeI-T7T, and
5 `L or 50 `L plated on LB carb. > 104 indicates more >1000 colonies of plating
5 `L.
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Figure 3.9: 2x differentiation with ColE1 AmpR pT7 GFP and R6KCmR-mScarlet;
Las-AHL, salicylate, and IPTG gradient fluorescence and OD data by plate gen-
eration. Three replicate colonies outgrown for 8 hours in LB carb/chlor with
varying concentrations of Las-AHL, then diluted 1:50 every 8 hours into 0.3 mL LB
carb/chlor/Las-AHL with varying concentrations of sal and IPTG. Mean +/- SD of
GFP (top), mScarlet (middle), and OD700 (bottom) plotted for three total growths.
Color indicates sal concentration; 10 `M IPTG (circles, solid lines), 50 `M IPTG
(triangles, dashed lines).
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Figure 3.10: 1x differentiation with ColE1 KanR pT7 GFP and R6KCmR-mScarlet;
Las-AHL, salicylate, and IPTG gradient fluorescence and OD data by plate gener-
ation. Three replicate colonies outgrown for 8 hours in LB kan/chlor with vary-
ing concentrations of Las-AHL, then diluted 1:50 every 8 hours into 0.3 mL LB
kan/chlor/Las-AHL with varying concentrations of sal and IPTG. Mean +/- SD of
GFP (top), mScarlet (middle), and OD700 (bottom) plotted for three total growths.
Color indicates sal concentration; 10 `M IPTG (circles, solid lines), 50`M IPTG
(triangles, dashed lines).
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Figure 3.11: 2x differentiation with ColE1 KanR pT7 GFP and R6KCmR-mScarlet;
Las-AHL, salicylate, and IPTG gradient fluorescence and OD data by plate gener-
ation. Three replicate colonies outgrown for 8 hours in LB kan/chlor with vary-
ing concentrations of Las-AHL, then diluted 1:50 every 8 hours into 0.3 mL LB
kan/chlor/Las with varying concentrations of sal and IPTG. Mean +/- SD of GFP
(top), mScarlet (middle), and OD700 (bottom) plotted for three total growths. Color
indicates sal concentration; 10 `MIPTG (circles, solid line), 50 `MIPTG (triangles,
dashed line).
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Figure 3.12: 1x differentiation evolution fluorescence and OD data by plate genera-
tion. (A-B) Cumulative endpoint sfGFP fluorescence (top row), endpoint mScarletI
fluorescence (middle row) and OD700 (bottom row) for individual experimental
replicates measured in 50 `L in 384 well matriplates. (A) Data from experiment
with ColE1 AmpR pT7 GFP of cells grown in LB carb/chlor/10 nM Las (solid lines)
and carb/10 nM Las (dashed lines) with varying concentrations of IPTG. (B) Data
from experiment with ColE1 KanR pT7 GFP of cells grown in LB kan/chlor/10 nM
Las (solid lines) and kan/10 nM Las (dashed lines) with varying concentrations of
IPTG.
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Figure 3.13: 2x differentiation evolution experiment fluorescence and OD data by
plate generation. (A-B) Cumulative endpoint sfGFP fluorescence (top row), end-
point mScarletI fluorescence (middle row) and OD700 (bottom row) for individual
experimental replicates measured in 50 `L in 384 well matriplates. (A) Data from
experiment with ColE1 AmpR pT7 GFP of cells grown in LB carb/chlor/10 nM
Las (solid lines) and carb/10 nM Las (dashed lines) with varying concentrations of
IPTG. (B) Data from experiment with ColE1 KanR pT7 GFP of cells grown in LB
kan/chlor/10 nM Las (solid lines) and kan/10 nM Las (dashed lines) with varying
concentrations of IPTG.
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Figure 3.14: 1x and 2x naive evolution experiment fluorescence and OD data by
plate generation. (A-B) Cumulative endpoint sfGFP fluorescence (top row) and
OD700 (bottom row) for individual experimental replicates measured in 50 `L in
384 well matriplates. (Left) Data from experiment with ColE1 AmpR pT7 GFP
of cells grown in LB carb with varying concentrations of IPTG. (B) (Right) Data
from experiment with ColE1 KanR pT7 GFP of cells grown in LB kan with varying
concentrations of IPTG.

Figure 3.15: Assessment of leaky expression in the absence of T7 RNAP. JS006
and naive 1x cells were transformed with plasmids containing pT7-B0034-sfGFP-
T7T, with 0, 1, or 2 insulating terminators. OD600 normalized sfGFP fluorescence
reported, mean (diamonds) +/- SD of three replicates (circles) after 12 h growth
compared to negative control JS006 lacking any GFP expression plasmid.
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Figure 3.16: Fluorescence-based assay of dnaseI activity in cell lysate. (A) JS006
lysate diluted 1:10 in 0.85 percent NaCl, with 0, 0.25, 0.5, 1, or 2 U of dnaseI per
10 `L volume diluted sample. 10 `L sample added to 190 `L dnaseI assay buffer
(100 mM sodium acetate/5 mM magnesium sulfate, 5 `g calf thymus DNA,1:1000
SYBR Safe). Fluorescence (487/528 nm) time-course of samples in triplicate mea-
sured every minute for 2 hours. (B) Fluorescence fold-change (endpoint/initial)
used to a fit a model, where 1 describes background loss of fluorescence through
photo-bleaching or other non-dnaseI related means of loss of fluorescence, : is
the first-order rate constant describing the degradation of DNA by dnaseI, � is the
concentration of dnaseI (U/rxn), = is a phenomenological constant which captures
the non-linear relationship between dnaseI concentration and observed loss of fluo-
rescence, and 2 is the time in hours for which the assay was ran. (C-D) Time-course
traces of dnaseI assay of lysate from three independent experiments. (C) Assay
performed on 1:10 dilutions of lysate from uninduced first growth (blue solid), and
induced first (dashed blue) and second (dashed orange) growths. (D) Re-assayed
lysate samples of induced first growth (solid) diluted 1:10 (blue) and 1:50 (orange),
and JS006 lysate (dashed) diluted 1:10 (blue) and 1:50 (orange).



72

Figure 3.17: Stochastic simulations of burdensome production in 1x and 2x naive,
differentiation, and terminal differentiation circuit architectures. Mean total pro-
duction +/- SD of 8 stochastic simulations of 20 consecutive batch growths with
50x dilutions. `% = 2 h−1; 10, 30, 50, 70, 90, 99 percent burden (increasing top to
bottom);  = 109 cells; :"� = :"� = 10−6 h−1; :diff 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8,
1 h−1; =div = 4. Production rate and burdens for 1x, 2x, 2x* as described in Model
implementation. Simulations with antibiotic degradation are with plasmid loss rate
:%! = 10−4 h−1; 100 `g/mL antibiotic; MIC=1.1 `g/mL; and antibiotic degradation
(+max) rates of 0, ∼2.52x10−6, and ∼1.26x10−5 `g/cell/h (left to right increasing
abx deg). Simulations with plasmid mutation were modeled with :%! = 10−6 h−1,
0 `g/mL antibiotic, and +max = 0.
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Figure 3.18: Stochastic simulations of burdensome production in 1x and 2x terminal
differentiation architectures with varying =div. Mean total production +/- SD of 8
stochastic simulations of 20 consecutive batch growths with 50x dilutions. `% =
2 h−1; 10, 30, 50, 70, 90, 99 percent burden (increasing top to bottom);  = 109

cells; :"� = :"� = 10−6 h−1; :diff 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1 h−1; =div of
2 (left), 4 (center) and 8 (right). Simulations with antibiotic degradation are with
plasmid loss rate :%! = 10−4 h−1; 100 `g/mL antibiotic; MIC=1.1 `g/mL; and
antibiotic degradation (+max) rates of 0, ∼2.52x10−6, and ∼1.26x10−5 `g/cell/h (left
to right increasing abx deg). Simulations with plasmid mutation were modeled with
:%! = 10−6 h−1, 0 `g/mL antibiotic, and +max = 0.
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Figure 3.19: Stochastic simulations of 1x and 2x naive burdensome expression with
10 and 30 percent burden. Endpoint cumulative production (top); producer/non-
producer fractions (middle); fraction retaining (degraders) or having lost (cheaters)
the antibiotic resistance/expression plasmid (bottom) for simulations modeling plas-
mid loss (:%! = 10−4 h−1) without antibiotic degradation (no abx deg;+max = 0) and
with high level antibiotic degradation (5x abx deg;+max=∼1.26x10−5 `g/cell/h); and
fraction of cells with WT functional plasmid and mutatated non-functional plasmid
(bottom) for simulations modeling plasmid mutation (:%! = 10−6 h−1, 0 `g/mL
antibiotic, and +max = 0) plotted for 20 consecutive batch growths. Simulations as
described in Figure 3.17.
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Figure 3.20: Stochastic simulations of 1x and 2x naive burdensome expression with
50 and 90 percent burden. Endpoint cumulative production (top); producer/non-
producer fractions (middle); fraction retaining (degraders) or having lost (cheaters)
the antibiotic resistance/expression plasmid (bottom) for simulations modeling plas-
mid loss (:%! = 10−4 h−1) without antibiotic degradation (no abx deg;+max = 0) and
with high level antibiotic degradation (5x abx deg;+max=∼1.26x10−5 `g/cell/h); and
fraction of cells with WT functional plasmid and mutatated non-functional plasmid
(bottom) for simulations modeling plasmid mutation (:%! = 10−6 h−1, 0 `g/mL
antibiotic, and +max = 0) plotted for 20 consecutive batch growths. Simulations as
described in Figure 3.17.
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Figure 3.21: Stochastic simulations of 1x differentiation and terminal differentiation
burdensome expression with 10 percent burden. Endpoint cumulative production
(top); producer/non-producer fractions (middle); fraction retaining (degraders) or
having lost (cheaters) the antibiotic resistance/expression plasmid (bottom) for sim-
ulations modeling plasmid loss (:%! = 10−4 h−1) without antibiotic degradation
(no abx deg; +max = 0) and with high level antibiotic degradation (5x abx deg;
+max=∼1.26x10−5 `g/cell/h); and fraction of cells with WT functional plasmid and
mutatated non-functional plasmid (bottom) for simulations modeling plasmid muta-
tion (:%! = 10−6 h−1, 0 `g/mL antibiotic, and +max = 0) plotted for 20 consecutive
batch growths. Simulations as described in Figure 3.17.
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Figure 3.22: Stochastic simulations of 1x differentiation and terminal differentiation
burdensome expression with 50 percent burden. Endpoint cumulative production
(top); producer/non-producer fractions (middle); fraction retaining (degraders) or
having lost (cheaters) the antibiotic resistance/expression plasmid (bottom) for sim-
ulations modeling plasmid loss (:%! = 10−4 h−1) without antibiotic degradation
(no abx deg; +max = 0) and with high level antibiotic degradation (5x abx deg;
+max=∼1.26x10−5 `g/cell/h); and fraction of cells with WT functional plasmid and
mutatated non-functional plasmid (bottom) for simulations modeling plasmid muta-
tion (:%! = 10−6 h−1, 0 `g/mL antibiotic, and +max = 0) plotted for 20 consecutive
batch growths. Simulations as described in Figure 3.17.
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Figure 3.23: Stochastic simulations of 1x differentiation and terminal differentiation
burdensome expression with 90 percent burden. Endpoint cumulative production
(top); producer/non-producer fractions (middle); fraction retaining (degraders) or
having lost (cheaters) the antibiotic resistance/expression plasmid (bottom) for sim-
ulations modeling plasmid loss (:%! = 10−4 h−1) without antibiotic degradation
(no abx deg; +max = 0) and with high level antibiotic degradation (5x abx deg;
+max=∼1.26x10−5 `g/cell/h); and fraction of cells with WT functional plasmid and
mutatated non-functional plasmid (bottom) for simulations modeling plasmid muta-
tion (:%! = 10−6 h−1, 0 `g/mL antibiotic, and +max = 0) plotted for 20 consecutive
batch growths. Simulations as described in Figure 3.17.
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Figure 3.24: Stochastic simulations of 2x differentiation and terminal differentiation
burdensome expression with 10 percent burden. Endpoint cumulative production
(top); producer/non-producer fractions (middle); fraction retaining (degraders) or
having lost (cheaters) the antibiotic resistance/expression plasmid (bottom) for sim-
ulations modeling plasmid loss (:%! = 10−4 h−1) without antibiotic degradation
(no abx deg; +max = 0) and with high level antibiotic degradation (5x abx deg;
+max=∼1.26x10−5 `g/cell/h); and fraction of cells with WT functional plasmid and
mutatated non-functional plasmid (bottom) for simulations modeling plasmid muta-
tion (:%! = 10−6 h−1, 0 `g/mL antibiotic, and +max = 0) plotted for 20 consecutive
batch growths. Simulations as described in Figure 3.17.
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Figure 3.25: Stochastic simulations of 2x differentiation and terminal differentiation
burdensome expression with 50 percent burden. Endpoint cumulative production
(top); producer/non-producer fractions (middle); fraction retaining (degraders) or
having lost (cheaters) the antibiotic resistance/expression plasmid (bottom) for sim-
ulations modeling plasmid loss (:%! = 10−4 h−1) without antibiotic degradation
(no abx deg; +max = 0) and with high level antibiotic degradation (5x abx deg;
+max=∼1.26x10−5 `g/cell/h); and fraction of cells with WT functional plasmid and
mutatated non-functional plasmid (bottom) for simulations modeling plasmid muta-
tion (:%! = 10−6 h−1, 0 `g/mL antibiotic, and +max = 0) plotted for 20 consecutive
batch growths. Simulations as described in Figure 3.17.
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Figure 3.26: Stochastic simulations of 2x differentiation and terminal differentiation
burdensome expression with 90 percent burden. Endpoint cumulative production
(top); producer/non-producer fractions (middle); fraction retaining (degraders) or
having lost (cheaters) the antibiotic resistance/expression plasmid (bottom) for sim-
ulations modeling plasmid loss (:%! = 10−4 h−1) without antibiotic degradation
(no abx deg; +max = 0) and with high level antibiotic degradation (5x abx deg;
+max=∼1.26x10−5 `g/cell/h); and fraction of cells with WT functional plasmid and
mutatated non-functional plasmid (bottom) for simulations modeling plasmid muta-
tion (:%! = 10−6 h−1, 0 `g/mL antibiotic, and +max = 0) plotted for 20 consecutive
batch growths. Simulations as described in Figure 3.17.
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Figure 3.27: Full circuit diagrams for 1x and 2x naive and differentiation circuits
as depicted in 3.3 and 3.5. (A) 1x differentiation circuit diagram. Differentiation
cassette encoding excisable pir, recombination activated T7 RNAP, and NahRAM,
LasRAM, and LacIAM, is integrated with clonetegration [32] at the P21 (T) landing
site. 2 copies of PSalTTC-B0034-Bxb1LAA-T2m were integrated at the primary and
secondary 186 (O) landing sites. (B) 2x differentiation circuit diagram. As in (A),
with the the T site integration encoding the N-terminal portion of the split-c protein,
and the second differentiation cassette integrated at the HK022 (H) site encoding the
C-terminal portion of the split-c protein. (C) 1x naive expression cassette encoding
inducible T7 RNAP and LacIAM integrated at the T site. (D) As in (C) with second
identical integration at the H site.
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C h a p t e r 4

DEVELOPMENT OF DIFFERENTIATION CIRCUIT
ARCHITECTURES FOR SCALING IN TIME AND

POPULATION SIZE

4.1 Introduction
In chapter 3, we improved the differentiation circuit architecture we developed in
chapter 2 by incorporating a novel split-c protein which allowed a single recom-
bination event in cells with two differentiation cassettes to both activate T7 RNAP
expression and enable antibiotic selection to limit growth. We demonstrated both
computationally and experimentally that this redundancy and robustness to muta-
tion improves the evolutionary stability of the terminal differentiation architecture,
and further demonstrated that this system could enable the expression of a toxic
protein. However, despite the benefit provided by this degree of redundancy, we
still observed circuit failure both experimentally and computationally with a small
population size (∼109 cells). In this chapter, we investigate how this and additional
circuit motifs can help in scaling the application of this system to longer times and
larger population sizes. We further consider means of extending this redundancy in
the terminal differentiation architecture beyond what we achieved with the split-c
protein, and demonstrate a proof of concept experimental circuit design that should
allow scaling to arbitrary =. In doing so, we are motivated by the important feature
of the terminal differentiation architecture which protects burden mutations – those
that disrupt the engineered functions of interest – from evolutionary forces. By
addressing the evolutionary stability of the terminal differentiation architecture, we
can address this for any biologically possible function.

4.2 Considerations for scaling terminal differentiation
In Chapter 3 we achieved a degree of robustness to differentiation mutations by
generating a split c-protein, however in considering scaling this to a higher degree
of redundancy, we considered several options. Importantly, the recombination of a
single cassette must both activate the function of interest by joining the two halves
of T7 RNAP as well as lead to delayed cell death or cessation of growth. While the
c protein could potentially be split into more pieces, or an additional plasmid with
a required replication factor used, this seemed both cumbersome and not scalable.
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We additionally considered integrating the differentiation cassette flanking essential
genes in the E. coli genome, with recombination activating cell death by excising
the essential gene. Though feasible, this also seemed unnecessarily difficult and
time consuming. In the ideal case, an identical construct could be integrated
in the genome repeatedly, with each integration providing an additional layer of
redundancy. To accomplish this, we reasoned that instead of inactivating an essential
gene, a toxic or lethal gene could be activated.

Whilewe initially considered considered using various toxins such as ccdb, qX174E,
and gp2which have been been harnessed in synthetic biology for population capping
and composition control because of their ability to induce death and cell lysis [45–
47], using such immediately lethal proteins is problematic in the context of our
proposed circuit. In order for this strategy to be useful, differentiated cells must
have sufficient time to express the function of interest before dying. While there
are certainly means of inserting delay into the circuit to allow time for function
before expression of the toxic protein, and we do propose one such strategy, the
ideal mechanism of growth cessation would not immediately destroy cell integrity
and metabolic activity. One such candidate which fulfills this criteria is provided
by nature. In a demonstration of the utility of chromosome-free bacterial cells,
the homing endonuclease I-ceuI was used to induce double stranded breaks in the
genome, with subsequent genome loss mediated by endogenous nucleases. They
demonstrated that these chromosome-free cells could be purified, and retain a degree
of metabolic capacity for days to months when stored at 4C [48]. Importantly, the
recognition sequence for I-CeuI is present in the E. coli genome seven times in
the essential 23S rRNA gene AA;, making resistance to this endonuclease through
mutation exceedingly unlikely or impossible. Before proceeding with developing
a terminal differentiation circuit incorporating I-CeuI, we first tested an inducible
I-CeuI integrated on the genome and verified its capacity to induce growth cessation
(Figure 4.1). Additionally, cells with this construct fail to form colonies when
induced.

4.3 ETERNAL: A terminal differentiation architecture with scalable redun-
dancy

With I-CeuI expression as the mechanism for inducing growth cessation and the
existing differentiation activated T7 RNAP architecture, we have all the necessary
components for developing a terminal differentiation circuit with scalable redun-
dancy. We therefore propose ETERNAL: Excision-activated T7RNAP Expression
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Figure 4.1: Inducible expression of I-ceuI homing endonuclease effectively stops
growth. (A) Salicylate inducible I-CeuI integrated on the genome in a single copy
with clonetegration [32]. (B) Cells outgrown in LBmedia for 8 h before dilution into
fresh media in 300 `L cultures with varying concentrations of salicylate. OD600
monitored in Biotek plate reader.

with Redundant Nuclease Actuation of Limited-growth. The function of this pro-
posed circuit is depicted in Figure 4.2. To scale the redundancy of this circuit, it is
integrated in full in the genome = times. Each cassette would encode inducible Bxb1
integrase, recombination activated T7 RNAP, T7 RNAP-driven I-CeuI, and the tran-
scription factors and accessory genes required for integrase and T7 RNAP induction
(TFs araC and LacIAM, and arabinose transporter araE). Because each component
is present in each integration, = mutations would be required to fully break any step
of the circuit. Induction with arabinose induces the expression of = copies of Bxb1
integrase, integrase can then recombine any of = cassettes to activate the expression
of T7 RNAP, and T7 RNAP activates the expression of both the function of interest,
and of all I-ceuI expression cassettes (Figure 4.2A). We further propose means of
incorporating delay in the expression of I-CeuI through an intermediate step of T7
RNAP driven qC31 integrase expression, with qC31 then activating the expression
of I-CeuI (Figure 4.2B). The amount of delay could be tuned with the expression
strength of the second integrase, as well as by incorporating additional integrases in
a cascade of expression as has recently been demonstrate [49].

As an initial demonstration of this circuit without incorporation of the integrase
delay step, we genomically integrated the ETERNAL circuit (Figure 4.2A) lack-
ing the I-CeuI expression cassette in a single copy (4.3A). We then integrated a
T7 RNAP-driven I-CeuI expression cassette at a secondary location in the genome
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Figure 4.2: Excision-activated T7-RNAP Expression with Redundant Nuclease
Actuation of Limited-growth (ETERNAL) circuit schematic. (A) Circuit schematic
integrated on to the genome = times. (B) Addendum to ETERNAL circuit with
T7 RNAP driven qC31 integrase which activates the expression of I-CeuI through
recombination of its cognate attB and attP sites
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(Figure 4.3B), and compared the growth and expression of T7 RNAP-driven GFP
upon induction with arabinose (Figure 4.3C-D). Though the half maximal induction
concentration for this promoter is reported as ∼37`M [23], most of the dynamic
range of arabinose concentration for inducing differentiation appears to be between
1 and 10 `M. To more fully use the dynamic range of the promoter for tuning differ-
entiation rate, a lower strength RBSmay desired. However, the differentiation rate is
tunable, and as the presence of glucose appears to fully repress integrase expression
and differentiation even with 100 `M arabinose, leaky integrase expression does
not seem problematic with this expression strength. We clearly see GFP production
dependent on integrase induction both with and without I-CeuI, and while there
is minimal growth impact observed without I-CeuI, when I-CeuI is expressed we
see evidence of complete or near complete differentiation in the plateau of cell
growth with arabinose concentrations ≥10`M. As well, from the sharp increase
in OD normalized GFP after the growth plateau, we see evidence that most GFP
expression occurs after I-CeuI has caused growth arrest. Strikingly, OD normal-
ized GFP expression is higher when I-CeuI is expressed at concentrations >10`M
arabinose. Finally, when these cultures were diluted into the same conditions for a
second batch growth, cells lacking I-CeuI again grow normally, while the growth of
cells expressing T7 RNAP-driven I-CeuI is delayed increasingly with higher levels
of integrase induction. This in conjunction with the diminished GFP production
observed in the second growth indicates both that higher integrase induction results
in more complete differentiation, and that with a single copy of the circuit integrated
we are already likely seeing the expansion of cells that have incurred integrase or
differentiation mutations.

In scaling this circuit to 2-4+ integrated copies, expression strength, and in particular
expression leak must be considered. In an initial design of the circuit, we used the
same promoter and transcription factor used in Chapters 2 and 3 (evolved PSalTTC
and NahRAM [23]). However, using a medium strength RBS (B0032) did not
allow sufficiently high expression of Bxb1 integrase, and using a high strength RBS
(B0034), though allowing sufficienty expression, resulted in leaky expression of
the integrase in the absence of induction. Though some amount of leak could be
tolerated, that which was observed would likely making constructing strains with
additional integrations difficult. To rectify this problem, we instead used the PBAD
promoter as shown in Figures 4.2 and 4.3. The arabinose inducible PBAD promoter
is reported to have marginally lower leak than PSalTTC [23], and additionally can
be repressed by including glucose in the media. This repression in the presence of
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Figure 4.3: T7 RNAP-driven I-CeuI in ETERNAL allows terminal differentiation.
(A) ETERNALcircuit as described in Figure 4.2 but lacking I-CeuI is integrated onto
the genome in a single copy, and cells transformedwith a ColE1AmpR plasmid with
T7 RANP-driven sfGFP. (B) As in (A) but with additional genomically integrated T7
RNAP driven I-CeuI cassette. (C) OD normalized GFP expression (top) and OD600
of cells (A) grown in 0.3mL LB carb with 10 `M IPTG and varying concentrations
of arabinose (0, 1, 2.5, 5, 7.5, 10, 30, 100 `M). Cells diluted 1:50 after 8 hours into
the same media conditions. (D) As in (C) but with circuit depicted in (B).
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glucose will likely make construction of strains with numerous integrations more
tractable than with PSalTTC.

4.4 Model exploration of redundant architectures
Though experimentally the relationship of redundancy level to evolutionary stability
has not yet been investigated for the terminal differenation ETERNAL circuit – or for
differentiation or naive expression – beyond the two cassettes explored in Chapter 3,
we can examine cases of three or more cassettes computationally. In Chapters 2 and
3 we conducted our experiments at relatively small scale (∼109 cells), and modeled
the circuits in kind. However in considering extending the level of redundancy to
3+ cassettes, we must also consider the affect which population size will have on
evolutionary stability. Though mutations are rare events, larger population sizes
will sample these rare events more frequently, and therefore we might expect the
level of redundancy to impact evolutionary stability differently at various scales of
population size. For instance, we might expect the level of redundancy required
to achieve a given level of evolutionary stability to be greater at larger population
sizes. To investigate this explicitly, we extend the modeling framework developed in
Chapter 3 to the cases of three and four cassettes, and examine the behaviour at scales
equivalent to 100 `L (108 cells), 10 mL (1010 cells), and 1 L (1012 cells) cultures.
As with modeling in Chapter 3, we also consider plasmid-basedmechanisms driving
loss of function, both plasmid mutations which disrupt the function, and plasmid
loss with communal antibiotic degradation.

We first examine the effect of population size and redundancy on circuit performance
in the absence of effects due to plasmid loss or plasmid mutation. Across all burden
levels and all population sizes, increasing redundancy increases the evolutionary sta-
bility of the circuit as determined by total production over the course of 100 growths
(800 hours, ∼1 month). We further see that increasing the population size tends to
decrease the total production achieved, though not drastically, and not equally across
redundancy levels. If we had modeled this system deterministally, there would be
no difference in carrying capacity normalized production, and differences between
different scales of population reveal effects due to the stochasticity of mutation.
While for the single cassette case, a population size of 108 cells is sufficient to wash
away stochastic effects, resulting in behaviour that appears deterministic, this is less
true as the number of cassettes increases (Figure 4.4). The larger the population
size is, the more deterministic the behavior of the system.
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Figure 4.4: Stochastic simulations of naive, differentiation and terminal differenti-
ation architectures without plasmid mutation or plasmid loss. Mean and standard
deviation of 8 stochastic simulations normalized to population carrying capacity
plotted for  = 108, 1010, 1012. Rates of burden mutation (:"�), differentiation
mutation (:"�), and integrase mutation (:"�) are 10−6 h−1, antibiotic concentration
is 100 `g/mL, antibiotic degradation rate (+<0G = 0), MIC=1.1 `g/mL, plasmid loss
rate (:%! = 10−4 h−1), non-producer growth rate (`#=2 h−1, ∼20 minute doubling
time). Simulations are of batch cultures diluted every 8 hours for 100 total growths.
Columns are naive (left), differentiation (center) and terminal differentiation (right).
Burden level increases down the row, with 30 percent (top), 50 percent (middle), and
70 percent (bottom). In all plots, color indicates copy number, and for differentiation
circuits, differentiation rate is indicated by size, with rates 0.1, 0.3, 0.5, and 0.7 h−1

smallest to largest. Data were offset on the x-axis for clarity purposes.

As previously seen in Chapter 3, terminal differentiation is counterproductive with
low burden functions, but becomes comparatively better with higher burden func-
tions (Figure 4.4). Apart from this, it is also interesting to note the effect of
differentiation rate in the case of terminal differentiation. In the case of a single
cassette with lower burden (30 percent), increasing the differentiation rate beyond
0.1 h−1 decreases the total production. For higher burden levels there is an optimum
above 0.1 h−1, after which increasing it further decreases performance. However
in the case of two or more cassettes, increasing the differentiation rate between 0.1
and 0.7 h−1 universally increases the total output. In our model we have made the
assumption that differentiation rate is linearly dependent on the copy number of
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functional integrase expression cassettes, meaning that a mutation of an integrase
cassette will decrease the differentiation rate. We further assumed that for a given
differentiation rate or integrase expression level, the differentiation rate of an indi-
vidual cassette is not dependent on the state of the other cassettes, meaning that a
differentiation mutation effecting one cassette will decrease the differentiation rate
of the cell as a whole in a linear manner dependent on the copy number of the circuit.
There therefore is additive selection for integrase and differentiation mutations, and
the population of cells that have incurred such mutations will increase in abundance
relative to cells that have not incurred such mutations due to a decrease in differen-
tiation rate. This is similar to the naive case, where expression level and burden are
also subject to additive selection. We will discuss this concept of additive selection
further later in this chapter.

As in Chapter 3, we next consider the affect of plasmid loss in the context of
shared antibiotic resistance, as well as plasmid mutation. Plasmid loss, a rare event
that is common relative to the rate of mutation, is modeled with a rate of 10−4

h−1, while plasmid mutation we model with a rate of 10−8 h−1. Here we have
made the simplifying assumption that a single mutational event makes all plasmids
non-functional. In reality, any individual plasmid could mutate, making the rate
of an initial mutation higher than would be for a single copy on the genome, and
subsequent random plasmid partitioning and copy number fluctuations could then
result in a cell with most or all plasmids mutated in relatively short order [11].
The lower rate we chose compared to the genomic mutation reflects a simplification
where two processes are lumped together.

Though we observe similarities between plasmid loss and plasmid mutation, their
different effects on both the naive and differentiation architectures are worth noting.
With naive expression including plasmid loss and antibiotic degradation, the effect of
population size and redundancy level is qualitatively similar to the case of neglecting
this feature: Increasing population size decreases total production in a manner that
depends on redundancy level (Figure 4.4-4.5). However, the benefit of increased
redundancy is collapsed when considering plasmid loss, with this happening more
severely at higher burden (Figure 4.6). As discussed byYurtsev et.al. in their analysis
of the dynamics of bacterial cheating in governing the population dynamics of V-
lactam resistance plasmids, the distribution of cheaters and antibiotic degrading cells
will tend towards that which maximizes population growth [38]. The consequence
of this, as they note in the supplementary information, is that the more burdensome
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Figure 4.5: Stochastic simulations of naive, differentiation and terminal differentia-
tion architectures with plasmid loss and antibiotic degradation. Mean and standard
deviation of 8 stochastic simulations normalized to population carrying capacity
plotted for  = 108, 1010, 1012. Rates of burden mutation (:"�), differentiation
mutation (:"�), and integrase mutation (:"�) are 10−6 h−1; antibiotic concentration
is 100 `g/mL; antibiotic degradation rate (+<0G ≈ 1.26x10−5); MIC=1.1 `g/mL;
plasmid loss rate (:%! = 10−4 h−1); non-producer growth rate (`#=2 h−1, ∼20
minute doubling time). Simulations are of batch cultures diluted every 8 hours for
100 total growths. Columns are naive (left), differentiation (center) and terminal
differentiation (right). Burden level increases down the row, with 30 percent (top),
50 percent (middle), and 70 percent (bottom). In all plots, color indicates copy
number, and for differentiation circuits, differentiation rate is indicated by size, with
rates 0.1, 0.3, 0.5, and 0.7 h−1 smallest to largest. Data were offset on the x-axis for
clarity purposes.

having the plasmid is, the larger the fraction of the population will be cheaters. In
the context of our model, this effect reveals itself in impacting the production of
higher burden expression more severely than lower burden. The case of plasmid
mutation, however, is strikingly different. Given the mutation rates we have chosen
for plasmid mutation (10−8 h−1) and genomic mutations (10−6 h−1), we naturally
see a benefit of redundancy at the small population size of 108 cells. However at
larger population sizes, redundancy beyond two copies does nothing as the plasmid
mutation will occur and take over before two or more of the slower mutations occur.

The differentiation architecture without limited division also fairs differently be-
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Figure 4.6: Stochastic simulations of naive, differentiation and terminal differ-
entiation architectures with plasmid mutation. Mean and standard deviation of
8 stochastic simulations normalized to population carrying capacity plotted for
 = 108, 1010, 1012. Rates of burden mutation (:"�), differentiation mutation
(:"�), and integrase mutation (:"�) are 10−6 h−1; antibiotic concentration is 100
`g/mL; antibiotic degradation rate (+<0G = 0), plasmid loss rate (:%! = 10−4 h−1),
non-producer growth rate (`#=2 h−1, ∼20 minute doubling time). Simulations are
of batch cultures diluted every 8 hours for 100 total growths. Columns are naive
(left), differentiation (center) and terminal differentiation (right). Burden level in-
creases down the row, with 30 percent (top), 50 percent (middle), and 70 percent
(bottom). In all plots, color indicates copy number, and for differentiation circuits,
differentiation rate is indicated by size, with rates 0.1, 0.3, 0.5, and 0.7 h−1 smallest
to largest. Data were offset on the x-axis for clarity purposes.

tween the cases of plasmid loss and plasmid mutation. In the limit of simultaneous
differentiation of all cells, differentiation would be equivalent to naive expression.
We would expect therefore that this architecture would behave more similarly to the
naive case as the differentiation rate increases. This is indeed what we see when
considering plasmid loss and antibiotic degradation (Figure 4.5-4.6). In contrast
to what we observed without considering this feature, increasing the differentiation
rate for all but the single cassette case acts to decrease the total production. As
well, similar to the naive case, incorporating plasmid mutation collapses the total
production achieved for number of cassettes greater than one (Figure 4.6).

In stark contrast to differentiation and naive designs, terminal differentiation is
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completely unaffected by plasmid loss or plasmid mutation (Figure 4.5-4.6). This
is true across all population scales and all redundancy levels. Though this naturally
follows from the robustness of the terminal differentiation architecture to burden
mutations we discussed in Chapters 2 and 3, it is important to note nonetheless. As a
direct consequence of this, antibiotic selection for plasmidmaintenance, particularly
in the case of plasmids with dedicated partitioning systems where plasmid loss is
less frequent, may not be necessary. As well, while genomic integration is now
frequently the preferred method for bioproduction to improve copy number stability
and obviate the need for antibiotic selection, terminal differentiation could provide
both of these benefits with the convenience and ease of plasmid-based expression.

Additive selection drives successive mutations
In the simulations discussed thus far, there has been additive selection present in
all circuits. In the naive case, the additive selection results from copy number
dependent expression of the function. As each individual mutation decreases the
burden of expression, cells with a single mutation will increase in abundance in the
population due to the increased growthrate, providing fodder for accumulating ad-
ditional mutations. In the case of differentiation, this additive selection can act both
on burden mutations as in the naive case, as well as on differentiation or integrase
mutations. In the latter case as discussed previously, both of these mutations result
in a decreased differentiation rate which will result in an increased abundance of
the genotype in the population. In the case of terminal differentiation however, the
additive selection only exists for integrase and differentiation mutations. We see
this intuition bear out in examining the winning genotypes that are most abundant
at the end of the simulations. Without considering plasmid mutation and shared
antibiotic resistance, in the naive case the winning genotype has universally mutated
all T7 RNAP cassettes. With differentiation, we see a mixture of genotypes con-
taining differentiated cassettes with burden mutations, cassettes with differentiation
mutations, and integrase mutations. With terminal differentiation we do not see any
burden mutations in cassettes in the progenitor or differentiated state, but only see
integrase mutations and cassettes with differentiation mutations.

When we consider plasmid loss and shared antibiotic resistance, although this
mechanism can negatively impact production, the expansion of cheaters is transitory
and the end result in terms of winning genotypes is the same. However, with plasmid
mutation for copy number two or greater, the plasmid mutation wins out universally
at all but the smallest population size (108) for naive and differentiation (but not
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terminal differentiation) architectures, where cells having mutated all cassettes can
win out even with four cassettes. Because we have made the simplifying and
inaccurate assumption combining the events of plasmid mutation and complete loss
of function through plasmid partitioning into a single event with rate 10−8 h−1,
experimentally this population size affect with 108 would likely not hold true.

Because additive selection for mutations universally results in the successive accu-
mulation of mutations in all of our circuits, it follows that regardless of the copy
number in any of the circuit designs we describe here, the function will eventu-
ally be eliminated from the population. Certainly increasing the copy number will
both increase the number of mutations needed to fully mutate the function and
decrease the marginal fitness gain from each mutation, yielding a more evolution-
arily stable function; but it will inevitably fail. Evolution will win out. However,
practically speaking redundancy in all of these architectures can make meaningful
improvements to the stability of engineered functions in regards to the application
of synthetic biology to bioproduction and the deployment of engineered bacteria in
the environment.

Though this is true, we imagine the casewhere selection is not additive, but recessive.
Instead of individual mutations providing an increase in fitness which drives its
expansion in the population, all copies of the function would be required to mutate
in order to provide any difference in fitness or decrease in production. Halleran
et.al. examined the impact of additive versus recessive selection in relation to the
impact of plasmid partitioning on evolutionary stability, and demonstrated that only
in the case of perfect partitioning as would be achieved by integrating multiple
copies on the genome does recessive selection reveal its benefit [11]. We re-
examine the impact of recessive versus additive selection here as a function of
population size and copy number with and without the plasmid effects previously
discussed (Figure 4.7). Herewe see in the absence of plasmidmutation or communal
antibiotic resistance, recessive selection universally outperforms additive selection
(no distinction between additive and recessive with copy number 1). We further
see the impact of copy number in the case of recessive selection as the size of the
population varies. At low population size, 3 or more cassettes is sufficient, and
2 nearly so, to prevent the takeover of a fully mutated genotype in the course of
100 growths. Without the expansion of an initial mutant mediated through additive
selection, cells with onemutation only gradually accumulate, making the population
size which can incur additional mutations comparatively small. However, as the
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population size increases, we see failure at higher copy numbers, with all but the
case of 4 cassettes revealing fully mutated cells with a carrying capacity of 1012

cells. We also note that the degree of burden largely does not matter in this case
because the growth rate of producer cells is sufficient to prevent washout due to
excessive dilution. As well, the dominant factor here is the time required to generate
the first fully mutated cell, at which point it will exponentially accumulate in the
population. When we consider antibiotic degradation and plasmid loss, we see that
recessive selection benefits the evolutionary stability similarly, though with burden
decreasing the production achieved through its affect on the fraction of cheaters
and degraders. Finally, when we consider plasmid mutation, as we might expect,
recessive selection ceases to provide a benefit (Figure 4.7, right column).

Figure 4.7: Comparison of naive expression with additive and recessive selection.
Mean and standard deviation of 8 stochastic simulations normalized to population
carrying capacity plotted for  = 108, 1010, 1012. Simulations are of batch cultures
diluted every 8 hours for 100 total growths. Parameters for simulations without
antibiotic degradation (left column), with antibiotic degradation (center column),
and with plasmid mutation (right column) as described in Figures 4.4-4.7. Burden
level increases down the row, with 30 percent (top), 50 percent (middle), and 70
percent (bottom). In all plots, color indicates copy number. Additive selection
(circles), and recessive selection (triangles). Data were offset on the x-axis for
clarity purposes.
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4.5 Can recessive selection be achieved in a terminal differentiation circuit?
Though we clearly see the benefit of recessive selection with naive expression, this
architecture is susceptible to plasmid-based effects that decrease production and/or
lead to complete circuit failure. Though the differentiation architecture without
limiting the division of differentiated cells is susceptible to these same effects,
terminal differentiation is not. It follows that if we could remove the dependence of
differentiation rate on the number of functional integrase cassettes and the number of
cassettes in the progenitor state, we could achieve recessive selection and drastically
improve the evolutionary stability of the architecture as demonstrated with naive
expression. In this section, we consider if achieving or approaching recessive
selection is feasible, and what would be required to do so.

The first requirement to achieving this is to remove the dependence of differentiation
rate on the copy number of functional integrase expression cassettes. How could
this be achieved? Rationally it seems that in order to accomplish this, we would
need to maintain the same expression level of integrase regardless of the number
of functional and mutated integrase copies. Segall-Shapiro et.al. demonstrated
that copy number independent expression could be achieved by expressing a TALE
repressor at the same copy number as a gene of interest, with increase in the copy
number of the gene of interest being compensated by a proportional increase in the
non-cooperative repressor [50]. When considering implementing this or something
similar in the context of the terminal differentiation circuit, however, we realize that
this copy number independent expression would not be robust to mutation. While
perhaps copy number independent expression could be achieved for varying numbers
of fully functional integrase cassettes, mutations disrupting integrase expression
would not effect the expression of the repressor and would still be susceptible to
additive selection. If a strategy enabling copy number independent selection were to
be effective, it must be robust to mutations disrupting integrase expression. Though
there may additional possible strategies we have not considered to approach this,
the only route to achieve mutational robustness we can think of is to have the
integrase directly regulate its own expression through negative autoregulation. As
integrases are necessarily DNA binding proteins, this seemed a feasible function
for these proteins to perform. Before investigating experimentally if this approach
is fertile, we consider what we can achieve with negative autoregulation. We first
write an equation describing the dynamics of an arbitrary gene - with negative auto-
regulation at copy number 2, dimensionless production rate V, and hill coefficient =.
Here the concentration of - has been non-dimensionalized by its binding constant:
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d-
dC

=
V 2

1 + -= − -. (4.1)

At steady state, we have that

-=+1 + - = V2. (4.2)

In considering the meaning of this, we note that if = is high, this first term will
dominate the left-hand side if - is large, and the steady state concentration of -
will scale with 2 1

=+1 . In the limit of infinite cooperativity, there is therefore copy
number independent expression, with higher = decreasing copy number dependence.
Because - is in units of its binding constant, this means that the concentration of -
must be in the concentration regime where it is effectively repressing itself. Though
repressors are not infinitely cooperative and there is no guarantee of copy number
independent expression, this strategy could reduce dependence on copy number in a
manner that is mutationally robust if in the necessary parameter regime, and perhaps
reduce the effect of additive selection.

The first and foremost criteria for this to work is that Bxb1 can function as a repres-
sor. Having fulfilled that, it ideally has a hill coefficient greater than 1. In order
to use Bxb1 as a repressor, we would require the site not be susceptible to recom-
bination. Bxb1, in the absence of a directionality factor, catalyzes recombination
unidirectionally, converting attB and attP sites to attL and attR sites, with the latter
pair being catalytically dead. We therefore would use an attL or attR site to mediate
repression. Fortuitously, Bxb1 binds as a dimer with stronger affinity to attL and
attR sites (Kd 15 nM) than to the attB and attP sites (Kd 70 nM) [34]. This fact
suggests that if the concentration of integrase is in the regime where recombination
is occurring, it will likely also be in the regime where it is able to mediate repression.
As well, that Bxb1 binds as a dimer further suggests that the hill coefficient will be
greater than 1.

In an initial test of the capacity for Bxb1 to function as a repressor, we characterized
the expression of a consitutive sfGFP containing the attL or attR site between the
RBS and promoter driving the fluorescent proteinwith various induction levels of the
integrase (Figure 4.8). For both the attL and attR sequence, we see GFP fluorescence
decreasing as a function of integrase expression, with the attR sequence having both
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Figure 4.8: Bxb1 can mediate repression through attL and attR sites. (A) Bxb1
repression circuit schematic. Bxb1 integrase is inducibly expressed from a low
copy ColE1 plasmid with AmpR. Constitutively expressed sfGFP cassette on on a
pSC101 plasmid with chloramphenicol resistance contains either the attL or attR
integrase attachment site between the promoter and RBS. (B) Time course GFP
fluorescence (top) and OD600 (bottom) of cells containing the constitutive sfGFP
construct with attL (left) or attR (right) attachment site with varying concetrations
of salicylate.

lower fluorescence in the uninduced case, and a larger fold change. Though this does
not guarantee this will function well with an inducible promoter or in the context
of our differentiation circuit to reduce copy number dependence, it is give hope that
this strategy could be successful.

If we assume that mutationally robust copy number independent expression of
integrase could be achieved through negative autoregulation by Bxb1, would this be
sufficient to achieve recessive selection in the context of terminal differentiation?
As we discussed previously, to achieve recessive selection, we must eliminate the
dependence of differentiation rate on both the copy number of functional integrase
expression cassettes, as well as the number of cassettes in the progenitor state. With
this strategy, we have just addressed the former. If we model the case where we have
just achieved copy number independent expression of integrase, we see no benefit in
the context of terminal differentiation. However, if we examine the genotypes which
result from the evolution of 100 generations, we see the result of our game of whack-
a-mutation. Instead of seeing a mixture of genotypes containing both differentiation
and integrase mutations across all population sizes and redundancy levels, it instead
follows the trend observed in the naive case of recessive selection. However, instead
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of resulting in prolonged function at redundancy levels and population sizes which
preclude ormake unlikely the accumulation of successivemutationswithout additive
selection, we see the selection for differentiation mutations which still have additive
selection.

The additive selection for differentiation mutations we observe here results from
the implicit assumption we made in our model that the state of each cassette does
not affect the recombination rate of any other cassette. However, in actuality
there may be some dependence, as the dynamics governing the free concentration
of integrase and the rate of recombination are complex, depending on both the
expression level of integrase and on the copy number of integrase attachment site
substrates. Though when Artavanis et.al. through modeling and in cell-free TX-TL
expression demonstrate a decrease in the delay of recombination as the concentration
of substrate increases, they do so in a regime of high integrase expression where all
recombination occurs within two hours [51]. In the differentiation system we have
implemented here, the differentiation rate is substantially lower, and dependent on
the steady state concentration of integrase protein. In this regime, sequestration of
integrase monomers or dimers by integrase attachment sites may lower the effective
concentration of integrase present in the cell, reducing the rate of differentiation of
other cassettes. Because presumably differentiation mutations disrupt one or both
integrase attachment sites, this may be a built in mechanism of compensating to
some degree for differentiationmutations by increasing the effective concentration of
integrase. Though this an intriguing potential mechanism, investigating its potential
to affect the performance of our differentiation circuit would require a detailed
mechanistic model and we will not address it in the context of this thesis. As
well, without experimentally investigating a circuit such as ETERNAL at higher
levels of redundancy, we will not know a priori if the assumption we made in our
modeling which led to this additive selection for differentiationmutations holds true.
It seems almost certain that there will be additive selection for integrase mutations,
therefore if we perform deep sequencing on populations of cells with increasing
numbers of ETERNAL cassettes after long-term evolution and see prevalence of
explicitly differentiation mutations which disrupt integrase attachment sites, we
may take this as evidence in favor of additive selection for such mutations. If on
the other hand we see exclusively integrase mutations, this means only that on the
spectrum of additive to recessive selection, integrase mutations fall closer to the
former than differentiation mutations. Mutation and natural selection will find the
lowest hanging fruit first.
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In final thoughts here to addressing this, we consider the underlying reason for this
additive selection: Each differentiation cassette relies on a common pool of inte-
grase which we assume is induced at a constant level. The integrase concentration
sets the total differentiation rate, and each differentiation cassette contributes to
this rate. Perhaps one route for circumventing or delaying failure from additive
selection is for each cassette to have its own pool of integrase. As many orthogonal
integrases exist and have been demonstrated functional in E. coli [52], using distinct
integrases for each cassette, or having = cassettes be split between some number
of distinct integrases, could aid in addressing this foreseeable limitation. While
additive selection would still remain a factor when viewing the differentiation rate
of the cell as a whole, the distinct integrases could be induced sequentially after
mutation and additive selection have destroyed the previous differentiation circuit.
As well, experimental factors, such as varying the induction of differentiation over
time [53], continuously introducing fresh ETERNAL cells, or maximally inducing
differentiation periodically and re-inoculating at a timescale which would preclude
the completion of additive selection, could further improve the performance of the
ETERNAL system in a setting of continuous bioproduction.

Model implementation
Models for naive, differentiation, and terminal differentiation architectures were
generated as described in Chapter 3, and extended to the cases of 3 and 4 cassettes.
For models which included antibiotic degradation, the 5x rate described in Chapter
3 was used (∼1.26x10−5 `g/cell/h [38]), and plasmid loss rate :%! of 10−4 h−1.
For the case of plasmid mutation, simulations were modeled without antibiotic or
antibiotic degradation, with :%! = 10−8 h−1. For all simulations the non-producer
growth rate was set to 2 h−1, corresponding to a doubling time of approximately 20
minutes. For naive expression, the burden level modeled describes the growth rate
of cells with all cassettes intact, with burden mutations proporionately decreasing
production and burden as described in Chapter 3. For simulation of naive expression
with recessive selection, the growth rate and production rate are unaffected except
when all cassettes had mutated, at which point production rate is 0 and growth rate
is that of non-producer cells. Code for Python ODE models was generated with
custom Python script which allows user specification of number of cassettes, burden,
circuit type, mutation rates etc. and will be made available. Simulations were ran
on the Caltech HPC.
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4.6 Materials and methods
Strains and plasmids
The wild-type JS006 strain was used as the base strain for all genome integrations.
For construction of the ETERNALcircuit depected in Figure 4.3, the pIT5 system, an
improved version of clonetegration, was used to genomically integrate the constructs
[54]. I-CeuI was ordered as a gGlock from IDT, and transcriptional units for the
circuit were generated with 3G assembly ([42]), and assembled with the a PCR
linearized pIT5 plasmid backbone with Gibson assembly. All circuits constructed
were assembled with 3G assembly.

Plate reader experiments
Plate reader experiments were all conducted in LB media with appropriate antibi-
otics. Cells were grown in 96-well square-well plate (Brooks MGB096-1- 2-LG-L)
at 37°Cwithmaximum-speed linear shaking in a BioTek Synergy H1m. Cell density
(OD600) and GFP fluorescence (485/515 nm) were measured every 10 minutes.
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C h a p t e r 5

CONCLUSION

In this thesis, we have developed an integrase-mediated differentiation architecture
which enables the evolutionary stability of burdensome or even toxic functions
to be improved. When differentiation is combined with limiting the capacity of
differentiated cells to grow indefinitely, the critical feature of robustness tomutations
or plasmid-based effects which inactivate the function of interest emerges. In much
of this thesis, we considered how to improve this terminal differentiation architecture
by incorporating redundancy and developed circuit architectures which would allow
this redundancy to be scaled. While we first and foremost considered the benefit
of differentiation and terminal differentiation circuits for improving evolutionary
stability, such an architecture has also been proposed for improving the efficiency
of bioproduction on its own without consideration of evolutionary forces. Posed as
a control optimization problem for maximizing bioproduction with differentiation
being controlled by light induction, they demonstrated differentiation to be superior
to induction [53]. We also naturally see the applicability of differentiation strategies
to metabolic engineering. While tools of metabolic engineering like flux balance
analysis can inform genetic modification of strains to improve the yield of valuable
chemicals [55], these strategies naturally must be concerned with the growth of
the organism to some degree. However, with a strategy of differentiation where
producer cells are continuously replenished and sacrificed, genomic and metabolic
knobs could be tuned to maximize yield without regard for the long-term viability
of the cells. CRISPR/Cas systems have been demonstrated to allow activation and
repression in .2>;8, and have been applied inmetabolic engineering efforts, and could
be co-opted in this context [56, 57]. Though these examples are not exhaustive, they
do serve to highlight the potential of terminal differentiation architectures to enable
new directions and applications of synthetic biology.

As this thesis concludes, I note a common theme that appears in many quotes, so
I will not provide any direct attribution: Evolve or die. In the course of the work
in this thesis, it seems that this axiom works the other way as well: Die or evolve.
Any error-prone replicating system that does not die will inevitably evolve, and the
only sure-fire way to stop your bacteria from evolving is surely fire (or bleach).
However, while evolution is indeed an unstoppable force, we can do a pretty good
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job at slowing it down.
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