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ABSTRACT

Why are jellyfish round? Circularity facilitates many physiological functions in jel-
lyfish like the moon jelly Aurelia aurita, including swimming and feeding. Previous
work suggests that Aurelia might maintain its circularity through its muscle con-
tractions. We use grafting experiments to investigate how these muscle contractions
regulate shape in Aurelia and find that the same mechanism Aurelia uses to quickly
recover circularity after it is injured can also produce square, oval, and triangular
jellyfish. We then turn to modeling to ask what characteristics of the jellyfish muscle
contractions and body materials give Aurelia the capability to reorganize its shape.
Our simulations suggest that Aurelia body shape is a dynamic equilibrium that is not
only reorganized by periodic muscle contractions when it is disrupted, but is also
reinforced by the same muscle contractions over the course of normal physiological
function.
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C h a p t e r 1

INTRODUCTION

1.1 Significance
Animals are built de novo during development. Cell proliferation, differentiation,
patterning, andmorphogenesis come together in concert and generate a vast diversity
of animal forms and shapes from single cells. In many animals, body shape is further
remodeled post-development during metamorphosis or regeneration. During these
periods, body structures are removed either by internal or external factors, such as
apoptosis or injury, and as during development, cell proliferation, differentiation,
patterning, and morphogenesis activate to generate new body shapes and structures
(Ishizuya–Oka, Hasebe, and Shi, 2010; Tattamanti et al., 2019; Gurtner et al., 2008).
Body shape tends to be fixed in adult animals that have completed development and
metamorphosis, and the standard alternative to regeneration is that the structure
and function are not recovered and that the injured shape is maintained rather
than repaired. How adult animal shape is regulated during the course of normal
physiological function, or if animal shape is actively regulated at all, has not been
explicitly studied.

Our current understanding of how shapes and structures are formed in animals sug-
gests that animal shape is likely dynamically regulated rather than static. Modern
models of morphogenesis posit that shape formation is regulated through self-
organization in conjunction with the more traditional paradigm of positional infor-
mation. The self-organizing mechanisms that have been identified as drivers of both
pattern formation and shape generation during morphogenesis and development can
take many forms. Interactions like local cell signaling, differential adhesion, co-
ordinated apical constriction, and differential growth-driven mechanical buckling
work in tandem with positional information to guide cell behavior during develop-
mental processes as varied as cell fate determination (Werner, Vu, and Rink, 2016),
cell sorting (Winklbauer and Parent, 2017; Amack and Manning, 2012; Lecuit and
Lenne, 2007), invagination (Lecuit and Lenne, 2007), tissue branching (Varner et al.,
2015), and the formation of villi (Shyer et al., 2013), cortical convolutions (Tallinen
et al., 2016; Garcia, Kroenke, and Bayly, 2018; Llinares–Benadero and Borrell,
2019), and gut loops (Savin et al., 2011; Schweisguth and Corson, 2019; Green



2

and Sharpe, 2015). Experiments have shown that cells and tissues have inherent
self-organizing properties, even when isolated from their native environments that
might provide external signalling or global feedback (Lefevre et al., 2017; Galliot,
2012; Werner, Vu, and Rink, 2016).

Self-organization—the formation and regulation of global structures, patterns, and
behaviors through simple local interactions—is a defining feature of complex sys-
tems like those found at every hierarchical level in biological systems. During
self-organization, simple rules govern the behavior of individual components and,
through feedback loops and iteration, allow complex and diverse phenomena to
emerge from disorder. Turing famously illustrates this in his 1952 paper, The
Chemical Basis of Morphogenesis, where he described how a simple interaction
between two molecules where one inhibits the other as they spatially diffuse can
form oscillations and standing waves bymagnifyingminute variability between cells
(Turing, 1952). This simple set of interactions—a reaction diffusion system—has
been shown to be able to produce patterns as varied as zebra stripes, cheetah spots,
and more intricate patterns like those found on seashells (Murray, 1988; Meinhardt,
1995). Sets of simple rules like this govern the organization of microtubules into
a spindle during mitosis and the formation of individual fish and birds into fluid
yet cohesive murmurations and shoals (Brugues and Needleman, 2014; Katz et al.,
2011; Attanasi et al., 2015).

One key characteristic of self-organization is that the interactions that form the global
pattern or structure do not cease after the pattern or structure is formed. Instead, the
interactions are ongoing, resulting in a continuously regulated dynamic, yet stable,
pattern or structure. This dynamicism facilitates self-repair as perturbances are
driven back toward the stable state and also allows biological systems to respond
flexibly to stimulus and changing environmental conditions, since small tweaks to
the rules that govern local interactions can result in dramatic global changes. We
see this in examples of self-organization on many other scales in biology. On a
microscopic scale, continuous assembly and disassembly of microtubules results in
asters, vortices, and spindles depending on the tubulin monomer to motor protein
ratio and the presence of chromosomes (Nédélec et al., 1997; Surrey et al., 2001;
Brugues and Needleman, 2014). On a macro scale, a school of fish becomes more
cohesive in the presence of a predator as each individual seeks to be closer to its
neighbors (Tien, Levin, and Rubenstein, 2004; Katz et al., 2011).
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Drawing parallels from these self-organized systems, we expect the patterns and
structures generated though self-organization during development and morphogen-
esis to also be dynamic and continuously regulated. While there are no obvious
examples of continuous dynamic regulation in self-organized shapes and structures
as of yet, there do exist examples of this in self-organized patterns. Studies have
shown evidence that the striped patterns of zebrafish are still regulated by self-
organization post-development. In zebrafish, the stripes are hypothesized to be
self-organized via diffusion reaction, and Yamaguchi et al. have shown that when
these stripes are disrupted by laser irradiation, the pattern is dynamically repaired
(Yamaguchi, Yoshimoto, and Kondo, 2007). Continuous regulation of animal shape
post-development has not been explicitly studied however. Investigation of shape
repair in animals has focused on processes like regeneration, which are driven by the
initiation of additional developmental processes, rather than ongoing mechanisms
that may also reinforce and maintain shape in the absence of injury. Discovery of
a new mechanism of shape repair in Aurelia that does not rely on regenerative pro-
cesses gave us an opportunity to explore how shape might be regulated throughout
the lifetime of an animal.

1.2 Aurelia aurita and symmetrization

Figure 1.1: Aurelia aurita. A. Aurelia aurita, like all members of the phylum
Cnidaria, are characterized by radial symmetry. Image © Jill Odice Photography.
B. Cnidaria are a sister phylum to bilaterians, and consist of four classes. Aurelia
aurita are members of Scyphozoa. Taken from (Galliot and Schmid, 2002)

Aurelia aurita, the moon jelly, are a member of Cnidaria, a sister phylum to Bila-
terians that includes jellies, corals, anemone, and hydra (Figure 1.1). Cnidarians
are characterized by radial symmetry, soft bodies bolstered by a layer of extracel-
lular matrix called mesoglea, and stinging cells called cnidocytes (R. Brusca and
G. Brusca, 2003). Cnidarians are known for their regenerative abilities, and many
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cnidarians, most notably the freshwater polyp Hydra, have been models for regen-
eration ever since 1744 (Trembley, 1744). It is with some surprise, therefore, that
some cnidarians, including Aurelia aurita, do not regenerate lost body parts upon
injury, but rather recovers using a novel mechanism (Abrams et al., 2015).

In 2015, Abrams et al. discovered that, rather than regrowing lost body parts
upon amputation, Aurelia aurita redistribute the body parts that remain and recover
radial symmetry (Abrams et al., 2015). In Aurelia, radial symmetry is crucial for
facilitating swimming and feeding behaviors. This process, named symmetrization,
robustly allows animals to recover radial symmetry within 48 hours. Abrams et al.
hypothesize that radial symmetry facilitates growth and maturation of ephyra into
medusa, as the animals that fail to symmetrize also fail to develop normally.

Abrams et al. found that symmetrization does not depend on cellular processes such
as cell proliferation and apoptosis. Instead, symmetrization is driven by muscle
contraction and viscoelastic response from the mesoglea. Muscle contractions
compress the mesoglea. When the muscles relax, the elastic recoil of the mesoglea
causes the body tissue to pivot into the cut site, redistributing the tissues until radial
symmetry is restored. Symmetrization was originally described in juvenile Aurelia
(ephyra). We have found that adult Aurelia (medusa) have the same capability for
symmetrization (Figure 1.2).

Figure 1.2: Aurelia medusa symmetrize and recover radial symmetry upon ampu-
tation. Medusa that were cut in half recover radial symmetry over the course of 2
days. Body tissues (tracked by white dots) pivot about the manubrium until tissues
are redistributed evenly.

1.3 Thesis overview
Discovery of a novel mechanically-driven strategy for recovering radial symmetry
raises many questions. How does the animal sense when radial symmetry is broken
and when it is recovered? Is symmetrization regulated through global feedback or



5

local interactions? In this thesis, I take advantage of this novel mechanism to ask
whether body shape is dynamic throughout the lifetime of this animal, and how it is
regulated if that is the case.

In Chapter 2, we use an experimental approach to probe the extent of shape reorga-
nization in Aurelia aurita. Using grafting, we rearranged the muscle and bulk tissue
into different configurations to explore the extent of shape self-repair and found,
surprisingly, that the normal swimming contractions that drive recovery of radial
symmetry can also reorganize Aurelia into other stable body shapes, such as oval,
triangular, and square depending on the initial geometric and muscle configuration.
We find that the underlying muscle also reconnects and reorganizes, resulting in the
emergence of novel swimming behaviors. Our results support the hypothesis that
swimming actively regulates Aurelia body shape, and that radial symmetry may be
a dynamic equilibrium in a system with many possible solutions. The presence of
these novel jellyfish shapes suggests that muscle-driven shape regulation in Aurelia
is more flexible than previously thought, andmight be a more general mechanism for
shape reorganization rather than amechanism specific to recover of radial symmetry.

There is a limit to the questions we can answer through grafting experiments,
however, due to lack of tools for manipulation of mechanical parameters in vivo.
So in Chapter 3, we turn to modeling to explore how these mechanical forces
might be interacting to drive shape reorganization. We designed a coarse-grained
finite-element model describing the local mechanical interactions between muscle
contraction and viscoelastic response. We describe an incremental approach that
can be used to model systems where the forces acting on the system depend on
the state of the system and that accomodates large deformations. By excluding
any forces that might be present due to cellular processes or global feedback, we
assessed the extent to which local interactions drive shape reorganization in Aurelia.
Modeling also allowed us to explore the effects of mechanical parameters such as
muscle force, stiffness, and viscosity on Aurelia shape change.

We discuss the results of ourmodel simulations in Chapter 4. We found that a certain
amount of fluidity in the body tissue is required to recapitulate reorganization. We
also found that local interactions are not only sufficient to recapitulate Aurelia
shape reorganization, but that the same parameter sets can explain reorganization
into different stable solutions, including oval, rectangular, and S-shapes, depending
on the initial geometry of the simulated jellyfish. We argue that the stability of
these shapes, despite the continued simulation of forces, supports our hypothesis
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that jellyfish shape are dynamic equilibria of a self-organizing system. We find
that mechanical parameters like muscle contraction rate and contraction strain not
only affect the reorganization rate of Aurelia, but can also determine which shape
solutions are accessible to the system.

Finally, in Chapter 5, we discuss future directions for this work and the potential for
our findings in Aurelia to inspire the creation of synthetic shape-changing materials.

References

Abrams, Michael et al. (2015). “Self-repairing symmetry in jellyfish through me-
chanically driven reorganization.” In: PNAS 112, E3365–E3373.

Amack, Jeffrey D. and M. Lisa Manning (2012). “Knowing the boundaries: extend-
ing the differential adhesion hypothesis in embryonic cell sorting.” In: Science
338, pp. 212–215.

Attanasi, Alessandro et al. (2015). “Emergence of collective changes in travel di-
rection of starling flocks from individual birds’ fluctuations.” In: Journal of The
Royal Society Interface 12, p. 20150319.

Brugues, Jan andDanielNeedleman (2014). “Physical basis of spindle self-organization.”
In: PNAS 111, pp. 18496–18500.

Brusca, Richard and Gary Brusca (2003). Invertebrates. 2nd ed. Sinauer Associates.

Galliot, Brigitte (2012). “Hydra, a fruitful model system for 270 years.” In: The
International Journal of Developmental Biology 56, pp. 411–423.

Galliot, Brigitte and Volker Schmid (2002). “Cnidarians as a model system for
understanding evolution and regeneration.” In: The International Journal of De-
velopmental Biology 46, pp. 39–48.

Garcia, Kara E., Christopher D. Kroenke, and Philip V. Bayly (2018). “Mechanics
of cortical folding: Stress, growth and stability.” In: Philosophical Transactions
of the Royal Society B 373, p. 20170321.

Green, Jeremy B.A. and James Sharpe (2015). “Positional information and reaction-
diffusion: two big ideas in developmental biology combine.” In:Development 142,
pp. 1203–1211.

Gurtner, Geoffrey et al. (2008). “Wound repair and regeneration.” In: Nature 453,
pp. 314–321.

Ishizuya–Oka, Atsuko, Takashi Hasebe, and Yun–Bo Shi (2010). “Apoptosis in
amphibian organs during metamorphosis.” In: Apoptosis 15, pp. 350–364.

Katz, Yael et al. (2011). “Inferring the structure and dynamics of interactions in
schooling fish.” In: PNAS 108, pp. 18720–18725.



7

Lecuit, Thomas and Pierre-François Lenne (2007). “Cell surface mechanics and the
control of cell shape, tissue patterns and morphogenesis.” In: Nature 8, pp. 633–
644.

Lefevre, James G. et al. (2017). “Self-organisation after embryonic kidney dissocia-
tion is driven via selective adhesion of ureteric epithelial cells.” In: Development
144, pp. 1087–1096.

Llinares–Benadero, Cristina and Víctor Borrell (2019). “Deconstructing cortical
folding: Genetic, cellular and mechanical determinants.” In:Nature Neuroscience
20, pp. 161–176.

Meinhardt, Hans (1995). The algorithmic beauty of sea shells. Springer, Berlin,
Heidelberg.

Murray, James D. (1988). “How the leopard gets its spots.” In: Scientific American
258, pp. 80–87.

Nédélec, François J. et al. (1997). “Self-organization of microtubules and motors.”
In: Nature 389, pp. 305–308.

Savin, Thierry et al. (2011). “On the growth and form of the gut.” In: Nature 476,
pp. 57–62.

Schweisguth, François and Francis Corson (2019). “Self-organization in pattern
formation.” In: Developmental Cell 49, pp. 659–677.

Shyer, Amy et al. (2013). “Villification: How the gut gets its villi.” In: Science 342,
pp. 212–218.

Surrey, Thomas et al. (2001). “Physical properties determining self-organization of
motors and microtubules.” In: Science 292, pp. 1167–1171.

Tallinen, Tuomas et al. (2016). “On the growth and form of cortical convolutions.”
In: Nature Physics 12, pp. 588–593.

Tattamanti, Gianluca et al. (2019). “Autophagy in development and regeneration:
role in tissue remodelling and cell survival.” In: The European Zoological Journal
86, pp. 113–131.

Tien, Joseph H., Simon A. Levin, and Daniel I. Rubenstein (2004). “Dynamics of
fish shoals: Identifying key decision rules.” In: Evolutionary Ecology Research
6, pp. 555–565.

Trembley, Abraham (1744).Mémoires pour servir à l’histoire d’un genre de polypes
d’eau douce, à bras en forme de cornes.

Turing, Alan (1952). “The chemical basis of morphogenesis.” In: Philosophical
Transactions of the Royal Society B 641, pp. 37–72.

Varner, Victor et al. (2015). “Mechanically patterning the embryonic airway epithe-
lium.” In: PNAS 112, pp. 9230–9235.



8

Werner, Steffen, Hanh Thi–Kim Vu, and Jochen C. Rink (2016). “Self-organizatino
in development, regeneration and organoids.” In:Current Opinion in Cell Biology
44, pp. 102–109.

Winklbauer, Rudolf and Serge E. Parent (2017). “Forces driving cell sorting in the
amphibian embryo.” In: Mechanisms of Development 144, pp. 81–91.

Yamaguchi, Motoomi, Eiichi Yoshimoto, and Shigeru Kondo (2007). “Pattern regu-
lation in the stripe of zebrafish suggests an underlying dynamic and autonomous
mechanism.” In: PNAS 104, pp. 4790–4793.



9

C h a p t e r 2

AURELIA REORGANIZE TO STABLE NOVEL BODY SHAPES
WHEN MUSCLE AND BULK TISSUE ARE REARRANGED

2.1 Introduction
How animal shape is created during morphogenesis is a question that has long
fascinated biologists, but how animal shape is regulated over the lifetime of an
animal is not a question that is explicitly asked. Animals might repair or regenerate
appendages or structures over the course of their lifetimes when these structures are
injured or lost, but we do not typically consider this shape regulation. This might be
because the benefit of expending so much energy to repair or regenerate structures
lies in the recovery of function, and we do not associate animal shape as important
for function.

InAurelia aurita, however, body shape plays an important role inmany physiological
functions. Radial symmetry is thought to facilitate omni-directional sensing and
interaction with the environment (R. Brusca and G. Brusca, 2003). Furthermore, the
circular bell and muscle ring in Aurelia medusa are crucial to swimming, feeding,
and reproduction. Body shape regulation and repair should therefore convey many
benefits to Aurelia aurita, and indeed, Abrams et al. discovered that Aurelia quickly
and robustly recover radial symmetry after injury, after which the animals are able to
swim, feed, and mature normally (Abrams et al., 2015). Intriguingly, this recovery
process, termed symmetrization, is drivenmechanically throughmuscle contractions
rather than through regenerative processes. These muscle contractions are used for
propulsion in the absence of injury, which made us wonder if body shape might be
continuously regulated in Aurelia as a part of normal physiological function. By
exploring the dynamics of the mechanics driving symmetrization, we hope to shed
some light on how animal shape is regulated throughout the lifetime of an animal.

The moon jelly, Aurelia aurita, is a member of Cnidaria, a phylum that includes
corals, sea anemone, and many jellyfish (Figure 2.1). Cnidarian life cycles can
have up to two adult forms—the sessile polyp and the free-swimming medusa.
Aurelia aurita has both. The polyps reproduce asexually via budding, and under
certain circumstances (seasonally in the wild, and when induced chemically or via
temperature shock in the lab), via strobilation, during which a single polyp produces
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Figure 2.1: Aurelia life cycle and anatomy. A. A simplified diagram of the Aurelia
life cycle. The sessile adult stage (polyp) undergoes strobilation to produce the
benthic juvenile stage (ephyra), which then matures into the benthic adult stage
(medusa). Medusa reproduce sexually to produce planular larvae (not shown) which
settle and develop into polyps (adapted from (R. Brusca and G. Brusca, 2003)). B.
Diagram of Aurelia medusa as seen from the subumbrella. Aurelia have a radially
symmetrical bauplan with a circular muscle band lining the subumbrellar side of the
bell (green shading). Eight sensory organs (rhopalia) are distributed around the rim
of the bell. Extending from the center of the bell are four oral arms which converge
at a mouth surrounded by four crescent-shaped gonads inside the gastric pouches.
Circulatory canals extend radially from the mouth to the periphery of the bell. C.
The muscle band of a young Aurelia medusa stained with phalloidin. D. Diagram
of a cross-section of the Aurelia medusa bell. The epidermis lines the ex- and
subumbrella of the bell. The gastrodermis lines the interior of the gastric pouches
and circulatory canals. In between these tissue layers is the mesoglea (shaded in
blue).

many juvenile jellyfish called ephyra (R. Brusca and G. Brusca, 2003; Fuchs et al.,
2014). These ephyra mature into adults called medusa. Medusa reproduce sexually
and the fertilized eggs develop into planula, small larvae that settle into the ocean
floor and develop into the polyp stage, starting the cycle again (Figure 2.1A). In this
work, we study the body shape regulation in medusa.

Aureliamedusa have a saucer-shaped bell. Members of Cnidaria have a radially sym-
metric body plan consisting of two tissue layers (epidermis and gastrodermis) that
sandwich between them a layer of viscoelastic extracellular matrix called mesoglea
(R. Brusca and G. Brusca, 2003). In Aurelia, the gastrovascular cavity takes the
form of four gastric pouches in a clover configuration that surround a mouth and
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oral arms located at the center of the underside (subumbrella) of the bell. A flat
ring of muscle lines the periphery of the bell subumbrella. Rather than having a
centralized nervous system, Aurelia have sensory centers called rhopalia are spaced
periodically along the edge of the bell (Figure 2.1 B-C). The motor nerve net trans-
mits pacemaker signals from the rhopalia to the muscle ring (Gladfelter, 1972; Arai,
1997). To swim, the muscle ring contracts like a drawstring, expelling water from
the bell and compressing the layer of viscoelastic mesoglea. When the muscles re-
lax, the mesoglea elastically rebounds, returning the bell and muscle to their initial
expanded shape (Gemmell et al., 2013). During symmetrization, the same muscle
contractions that propel Aurelia during swimming drive recovery of radial symme-
try by pushing viscoelastic tissues into the injured or cut site where there is least
resistance (Abrams et al., 2015).

In a system where shape recovery is mechanically driven, might body shape also
be mechanically encoded? Abrams et al. found that Aurelia can recover radial
symmetry from amputations as extreme as quartering, which suggests that very
little tissue is required to encode and fully recover animal shape. Are specific
tissues or tissue interactions required to encode animal shape? By exploring how
Aurelia shape responds to various interactions between themechanical elements that
drive shape recovery—the force-producingmuscle and viscoelastic tissue—we hope
to shed light on how these mechanical elements regulate body shape. Amputation
has an inherent limitation in that tissue can only be removed, which restricts the
extent to which new interactions can be tested. Luckily, Aurelia are amenable to
grafting, which allows us to test more extensive perturbations and rearrangements
of the muscle and tissue.

2.2 Recovery of radial symmetry is robust to reconfiguration of muscle and
body geometry

What happens to Aurelia shape when the mechanical machinery that drives sym-
metrization is rearranged? How might Aurelia respond to more extreme deviations
from radial symmetry? We considered three possibilities. First, perhaps Aurelia
are able to recover radial symmetry from any body geometry. We can imagine that
a system primarily driven by global minimization, such as one in which muscle
contraction increases the pressure inside the jellyfish body which then acts to evenly
redistribute the tissue, might produce circularity as the only stable shape. Second,
perhaps Aurelia are only able to recover radial symmetry when its mechanical el-
ements are rearranged into certain configurations and does not change shape when
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the requirements for shape recovery are not met. This might be the case if specific
interactions between mechanical elements are required to drive any kind of shape
change, for example if symmetrization only occurs when the muscle band pushes
the tissue around the mouth. In this regime, we would expect no shape change
to occur if the mouth were removed or if the orientation of the muscle band were
disrupted. A third possibility is that Aureliamight also be able to reorganize its body
into non-circular shapes depending on the arrangement of its mechanical machinery.
For example, if jellyfish tissue is locally rearranged by muscle contraction into the
nearest region of least resistance, we might expect non-circular jellyfish shapes to
be stable as long as forces are locally balanced. To test these hypotheses, we turned
to grafting.

Figure 2.2 illustrates how medusa pieces were grafted together. To produce precise
geometric pieces, we drew templates on graph paper, placed them underneath the
anesthetized medusa, and cut along the templates. Medusa pieces were then ar-
ranged in the desired configuration and pinned with cactus spines on an agarose bed
(Bickell–Page and Mackie, 1991). Within 24 hours, the pieces fused together, were
unpinned, and taken out of anesthetics, upon which the chimeras resumed pulsation
(Movie S1). Fusion occurred regardless of whether pieces from the same animal
or from different animals were grafted together. We were thus able to explore how
Aurelia respond to a wide range of rearrangements and configurations using tissue
from two or more animals.

Figure 2.2: Grafting protocol. Left: Anesthetized Aurelia medusa are cut in the
desired shapes and arranged into the desired graft configurations on an agarose
bed, where they are pinned in place with cactus spines overnight (muscle ring
represented in green). After the pieces fuse together, the pins are removed. The
chimera is then removed from anesthetic. Muscles resume contractions less than 24
hours post-surgery. Right: An offset graft immediately after unpinning.
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Aurelia recovered radial symmetry from a wide range of graft geometries. Chimeras
stabilized into a circular shape from semicircular pieces grafted with an offset (Fig-
ure 2.3A, n=22), semicircles grafted orthogonally, three alternating quarters, three
pieces in a row, and even three pieces in a pinwheel (Figure 2.3B). Shape reorga-
nization occurred within 1-4 days. Immediately after grafting, muscle bands on
different pieces contracted independently. However, during the course of reorgani-
zation, neighboring muscle bands gradually began to contract synchronously. The
frequency of synchronous contraction increased until the muscle bands behaved as
a single muscle ring and pulsed indistinguishably from uncut medusa. The mouths
on separate medusa pieces also tended to converge toward the center of the chimera.

These experiments showed that Aurelia display a remarkable ability to not only
recover radial symmetry from injuries that could feasibly occur in nature, but also
to recover its shape even from highly unnatural perturbations that dramatically
rearrange the relative configuration of the muscle and bell tissues. The robust
ability to recover radial symmetry might have evolved to allow for rapid recovery
of the characteristic drawstring-like contraction of the circular muscle band that
generates fluid flow of water into the the bell subumbrella, pulling food toward the
oral arms and propelling Aurelia medusa forward (Dabiri et al., 2005).

Figure 2.3: Aurelia chimerae are able to recover radial symmetry from a wide range
of graft configurations. A. Two medusa pieces grafted in an offset are imaged 6
hours, 18 hours, and 4 days after unpinning. Cartoons at the bottom right corner
show the shape of the graft at each time point with estimated muscle band position
shaded in green. B. Five graft configurations that successfully recovered radial
symmetry, with muscle bands shaded in green.
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2.3 Aurelia can reorganize their bodies into stable shapes that are not radially
symmetrical

However, the grafting experiments also provided a surprising result. Many graft
configurations resulted in chimera that reorganized into altogether different stable
shapes, such as ovals, triangles, and squares (Figure 2.4A-C). Some of these graft
configurations involved only small changes to the ones that produced round shapes.
In the offset graft, increasing the offset distance of the two semicircles resulted
in oval jellyfish (Figure 2.4D). In the butterfly graft, decreasing the relative size
of the middle piece also resulted in oval jellyfish, decreasing it further resulted
in rectangular and trapezoidal jellyfish, and removing the middle piece altogether
resulted in square jellyfish (Figure 2.4E-F). Pinwheel grafts in which the length
of the pinwheel spokes was decreased reorganized into triangular jellyfish (Figure
2.4G). In offset grafts with very high offset distances, we observed that chimerae
no longer reorganized into ovals. These animals, along with chimerae composed of
two quarter pieces grafted together in an offset, reorganized into S-shaped animals
with rotational symmetry. These grafts exhibited reorganization analogous to what
we observed in the pinwheel grafts, and could be considered two-spoke pinwheels.

Results from the offset graft were especially striking, as there was no clear delin-
eation between grafts that recovered radial symmetry and those that reorganized
into oval animals. Instead, increasing the offset distance of the two semicircular
pieces resulted in animals that ranged continuously from circular to elongated ovals
(Figure 2.4H). Achieving these novel shapes, in particular the oval and trapezoid,
required substantial changes from the initial graft geometry, which suggested active
reorganization toward these novel shapes rather than simply a failure to recover
radial symmetry.

Reorganization in offset grafts took between 1-4 days to achieve an oval or circular
shape, while pinwheel and butterfly grafts took longer, reorganizing to trapezoid,
square, and triangular shapeswithin 10 days (Supplementary Figure 2.12). However,
there was the possibility that after an initial dramatic reorganization phase, the
jellyfish chimera might continue to change shape more gradually. An oval jellyfish,
for example, may become circular given enough time. To assess whether these novel
body shapes were stable, we tracked individual rectangular (n=5) and oval (n=13)
jellyfish and found that body shape was stable for over a month (Supplementary
Figure 2.13), which is of the same order of magnitude as the lifespan of Aurelia in
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the wild. This suggests that the novel body shapes are not just intermediate states
for chimera that have yet to recover circularity, but rather are stable states.

Finally, we observed a lack of preference for circularity. Rather, the initial graft
geometry is predictive of the final shape of the animal (Figure 2.4I). For instance,
two semicircular pieces grafted back to back reorganized consistently into square
animals, and we observed a clear correlation between the initial offset distance
of the offset graft and the final aspect ratio of oval jellyfish post-reorganization.
Multiple initial graft geometries can converge to the same final shape, for instance,
oval animals emerged from offset grafts and many variations on the butterfly graft.
In conjunction with evidence that the final shape is dependent on the initial graft
geometry, this suggests that jellyfish body shape is a dynamical systemwith multiple
stable solutions. The final shapes observed also suggested that stable solutions may
all fall into a few categories with radial, bilateral, and rotational symmetries.
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Figure 2.4: Aurelia chimera reorganize to different body shapes depending on initial
graft geometry. A. Offset grafts with increased offset distance reorganized into oval
jellyfish. B. Butterfly grafts where the size of the side piece is increased reorganized
into oval jellyfish. Decreasing the size of the center piece resulted in trapezoidal
or rectangular jellyfish, and removing the center piece altogether resulted in square
jellyfish. C. Pinwheel grafts where the length of each spoke is decreased reorganized
into triangular jellyfish. D. An offset graft imaged immediately, 1 day, and 4 days
post-surgery. The cartoon next to each image represents the shape of the graft at
each time point, with muscles shaded in green. E. A fully reorganized trapezoidal,
F. square, and G. triangular jellyfish with their respective initial graft configurations
in the top left corner. H. The aspect ratio of the stable circular and oval jellyfish
shapes post-reorganization of offset graft correlates with the initial offset distance.
The offset distance was measured on day 0 post-surgery. The aspect ratio was
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Figure 2.4: measured on day 3-4 post-surgery. The data comes from 24 experiments.
I. Multiple initial graft geometries can converge to the same outcomes (grey box).
Green shading indicates muscle patterns as indicated by phalloidin staining or
deduced from observations of muscle contractions. The shapes included here are
by no means exhaustive.

2.4 Non-circular chimerae adjust behaviors and tissue organization to body
shape

As with the chimerae that recovered radial symmetry, neighboring muscle pieces
in non-circular chimerae also synchronized over the course of several days. Some
oval jellyfish recovered a drawstring-like swimming contraction (Movie S2, and
Figure 2.5). Interestingly, we also observed clamshell and flapping swimming
behaviors in oval and rectangular animals, respectively, that successfully propelled
the animals forwards, though not as effectively as the wild-type behavior in uncut
medusa (Movie S3-S4, Figure 2.6, Figure 2.7). Although mouth pieces in oval and
rectangular animals did not converge as in circular chimera, we still observed prey
capture and food in the gastric pouches of these animals over the course of a month
of tracking. The animals also grew or maintained their size during this time, in
sharp contrast to animals which were starved and shrank over time. In contrast
to observations in amputation experiments that animals that do not recover radial
symmetry fail to mature properly, chimera that did not recover radial symmetry did
still recover function to some extent and maintained body proportions comparable
to healthy uncut medusae.

Not all chimera exhibited muscle synchronization however. Muscle pieces that were
not physically adjacent, like those in triangular and S-shaped jellyfish as well as
some in rectangular jellyfish, did not synchronize and muscle pieces contracted
independently of each other throughout the course of reorganization. (Movie S5).
While muscle contractions still occurred in these animals, they did not exhibit effec-
tive swimming behavior, suggesting that muscle lengths below a certain threshold
cannot effectively be used for propulsion and that the formation of muscle connec-
tions and synchronized contraction might be necessary for recovery of swimming
function.

The alternative swimming behaviors suggest that muscles and nerves reorganized
to accommodate the new body shapes. To verify this, we used actin and antibody
stains to visualize the muscle band and motor nerve net in reorganized chimerae.
We found that over the days-long process of reorganization, neighboring muscle
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Figure 2.5: Offset graft that reorganized into an oval jellyfish with synchronized
drawstring-like contractions. Timelapse images show one full contraction cycle.
Food (brine shrimp, white arrows) can be seen in the two gastric pouches.

Figure 2.6: Three pieces grafted linearly that reorganized into an oval jellyfish with
clamshell-like swimming behavior. Timelapse images show one full contraction
cycle in which the animal propels itself slightly across the field of view.

Figure 2.7: A butterfly graft that reorganized into a trapezoidal jellyfishwith flapping
swimming behavior with two synchronized muscle bands. Time-lapse images show
one full contraction cycle. A. Fully relaxed trapezoidal jellyfish. Dashed lines
approximate the original cut sites of the graft. B. The top muscle band (arrow)
initiates contraction while the bottom muscle band is still relaxed. C. The bottom
muscle band (arrow) initiates contraction while the top muscle band begins to relax.
D. Both muscle bands in the process of relaxing.

bands and nerve nets fully reconnected across the cut site such that no break can be
seen (Figure 2.8A). The muscles reorganized to accommodate the new body shapes
according to the patterns of synchronous contraction we observed in the grafted
animals. Circular and oval chimerae had continuous muscle rings about the bell
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Figure 2.8: Molecular staining shows reformed muscle and nerve connection be-
tween grafted pieces and reorganization ofmuscle to accommodate newbody shapes.
A. A zoom-in of a graft site from a trapezoid chimera at 6 days post-surgery. The
motor nerve net, stained using anti-tyrosinated-U-tubulin antibody (blue), is con-
nected across the original graft site. Actin staining using phalloidin (green) shows
blunt cut edges of muscle with actin fibers beginning to reconnect across the origi-
nal graft site. B. Phalloidin staining of an offset graft 6 days post-surgery showing
a reconnected circular muscle ring. C. Phalloidin staining of a butterfly graft 14
days post-surgery showing a reconnected oval muscle ring. D. Phalloidin staining
of a butterfly graft 14 days post-surgery showing three linear muscle bands. E.
Phalloidin staining of a pinwheel graft 13 days post-surgery showing three muscle
bands radiating out from the center.

periphery (Figure 2.8B-C). Trapezoid and rectangular animals had a linear muscle
band along the top edge and either a second parallel muscle band along the bottom
edge or a distinct muscle piece in each bottom corner depending on whether the
muscle pieces along the bottom row connected successfully (Figure 2.8D). Pinwheel
grafts had muscle bands that radiated outward in spokes. These muscles were short
and straight in triangular chimerae and curved in circular chimerae (Figure 2.8E).
The ability of the muscle pieces to readily form connections to neighboring pieces
and reorganize their configuration, and therefore swimming behavior, are a testament
to the flexibility of Aurelia shape reorganization.

The emergence of novelmuscle configurationswith novel swimming behaviorsmade
us wonder if body shapes with symmetry—radial, bilateral, or rotational—might
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provide better swimming function, and if there might be some mechanism of global
feedback that drives reorganization toward symmetrical body shapes. We found,
however, that alongside symmetrical body shapes, Aurelia chimera readily reorga-
nized into asymmetrical shapes. We observed part-round, part-polygonal animals
that reorganized from offset, butterfly, and pinwheel grafts (Figure 2.9A-C). Each
spoke of a pinwheel graft, for example, seems to decide independently of the others
whether to reorganize into a rounded or polygonal shape. The underlying muscle of
these animals, too, reorganized asymmetrically, forming configurations where some
muscle pieces reconnected but not others (Figure 2.9D). We hypothesize that these
asymmetrical animals are a result of local asymmetries present in the initial graft
geometry. These local asymmetries might be the result of imprecise cuts that are
unavoidable when performing surgery of small, slippery animals and, in the case
of performing grafts with pieces from multiple animals, inherent size differences
between animals. These asymmetrical animals provide evidence against the pres-
ence of strong global feedback, but rather support that both shape reorganization
and muscle reconnection are regulated locally.

Figure 2.9: Grafts can result in asymmetrical jellyfish body shapes. A. Some offset
grafts reorganized into half-oval, half-S-shaped animals (n=26). B. Some butterfly
grafts reorganized into half-oval, half-trapezoids (n=5). C. Some pinwheel grafts
reorganized into triangles with both rounded and sharp corners (n=6). D. Phalloidin
stain of a pinwheel graft at 13 days after unpinning with both rounded and sharp
corners showing two muscle pieces which have reconnected and one muscle piece
which has not.
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2.5 Shape reorganization is driven by muscle contraction and viscoelastic
response

Is the mechanism of muscle contraction and viscoelastic response that drives re-
covery of radial symmetry during symmetrization also able to drive reorganization
into non-circular body shapes? Alternatively, perhaps grafting invokes a different
response than amputation, and non-circular body shapes are formed by a different
process entirely.

To determine whether reorganization is dependent on muscle contraction, we tested
whether reorganization still occurred when muscle contractions were inhibited with
0.8mM menthol in artificial seawater (ASW), which has been used as both an anes-
thetic and muscle relaxant in marine invertebrates (Gaudioso et al., 2012; Abrams
et al., 2015; Norton et al., 1996). We observed no measurable muscle contrac-
tions in offset grafts that were kept in menthol solution, and these grafts showed
no global shape reorganization over two days of tracking. (Figure 2.8A) To con-
firm these results, we tested inhibiting muscle contraction with another molecule,
2,3-Butanedione monoxime (BDM), which is a muscle-specific type II myosin in-
hibitor (Higuchi and Takemori, 1989). Offset grafts kept in 30mMBDM in artificial
seawater also displayed no global reorganization over two days. The only change
we observed in these muscle-inhibited offset grafts was some minimal local bound-
ary smoothing (Supplementary Figure 2.14), suggesting the presence of some local
tissue relaxation independent of muscle contraction.

These experiments suggest that reorganization to non-circular shapes requires mus-
cle contraction. To test this finding, we tested the effects of increasing the muscle
contraction rate of offset grafts by decreasing the magnesium concentration in
the media. Magnesium ions decrease muscle excitability and magnesium concen-
tration has been used to modulate muscle contraction previously in Aurelia aurita
ephyra, where it was found that the animals recovered radial symmetry more quickly
when muscle contraction was increased by reduction of magnesium concentration
(Fawcett, Haxby, and Male, 1999; Abrams et al., 2015). Magnesium ion concentra-
tion was reduced in the media by 25% bymixing magnesium-free ASWwith regular
ASW in a 1:3 ratio. Contraction rates of offset grafts placed in this media increased
from 25 to 28 contractions per minute on average and the animals reorganized more
quickly than offset grafts in ASW,with 74% of animals in reduced-magnesiumASW
completing reorganization by day 2 compared to 32% of animals in regular ASW
(Figure 2.8B). That reorganization does not occur in the absence of muscle con-
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traction and that reorganization rate correlates directly with muscle contraction rate
implies thatmuscle contraction is the primary driver ofAurelia shape reorganization.

Figure 2.10: Modulating frequency of muscle contraction changes the rate of re-
organization. A. Grafts incubated in 0.8mM menthol or 30 mM 2,3-butanedione
monoxime (BDM) showed little reorganization over 2 days compared to those in
control artificial seawater. Menthol is thought to inhibit pulsation by blocking
voltage-gated ion channels that mediate the excitation-contraction coupling (Gau-
dioso et al., 2012), whereas BDM is a known inhibitor of muscle-specific type
II myosin (Higuchi and Takemori, 1989). B. Conversely, increasing contraction
frequency by placing the grafts in magnesium-reduced seawater increased the rate
of reorganization. Magnesium is thought to modulate pulsation in marine inverte-
brates by acting on voltage-gated ion channels (Fawcett, Haxby, and Male, 1999).
Grafts were checked daily for further reorganization. Data was collected over nine
experiments.

2.6 Aurelia can sequentially reorganize body shape
Are these non-circular body shapes equilibrium solutions? Or are they stable
because the processes driving reorganization stop after some point in time? If



23

Aurelia body shapes are truly dynamic equilibria, animals should not lose the
ability to reorganize body shape after a stable shape has been found, and the same
animal should be able to sequentially reorganize into different shapes. To test
this, we allowed butterfly grafts to reorganize into rectangular animals, and then
introduced additional geometric perturbations in the form of small notches to the
sides of the chimera (Figure 2.11A). These animals readily reorganized into ovals.
This suggests that reorganizational ability is not lost post-reorganization. However,
as we introduced an additional injury prior to the second round of reorganization,
this did not eliminate the possibility that Aurelia might initiate reorganization as a
part of injury response.

If Aurelia shape reorganization is a dynamical system in which stable body shapes
are dynamic equilibria, these equilibria might differ with different mechanical pa-
rameters. While we do not have the tools that would allow us to change parameters
such as the material properties of the jellyfish body tissue, we were able to modulate
the rate of muscle contractions. To test whether Aureliamight reorganize their shape
in the absence of injury, we allowed offset grafts to reorganize into oval animals
and tracked them over 2 weeks to ensure that the oval shapes reached stable states.
We then placed the animals in reduced magnesium ASW to increase their rate of
muscle contraction. After 2 more weeks, we measured the aspect ratio of these oval
chimerae to check for further reorganization. We found that some of the animals
reorganized into rounder solutions compared to oval animals that remained in ASW
over 4 weeks (Figure 2.11B), which showed that injury is not required for shape
reorganization. It also demonstrated that the capacity for reorganization does not
disappear once a stable solution is achieved. This suggests that jellyfish shape is
continuously regulated—not through muscle contractions that are induced by in-
jury but rather the same contractions that propel Aurelia swimming during normal
physiological function—and points toward a model of shape regulation where stable
jellyfish shapes are dynamic equilibria of a mechanical dynamical system.

2.7 Discussion
Aurelia aurita are able to dramatically recover body shape post-development, and
here we explored the mechanisms that drive shape recovery and whether they might
regulate body shape in the absence of injury. Through grafting experiments, we
found that not only can Aurelia mechanically recover radial symmetry in the event
of injury, but that the same mechanism can also reorganize Aurelia shape in novel
directions, generating stable oval, rectangular, trapezoidal, triangular, and asym-
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Figure 2.11: GraftedAurelia can sequentially reorganize into different stable shapes.
A. A butterfly graft was allowed to reorganize into a rectangular animal. Additional
local geometric instabilities were introduced via notches cut into the short sides of
the rectangle. The chimera proceeded to reorganize into an oval. B. Offset grafts
were allowed to reorganize in ASW over 2 weeks into stable oval shapes. They were
then placed into reduced magnesium ASW to increase their average contraction
rate. Their aspect ratios were measured at 2 weeks and 4 weeks and compared to
the aspect ratio at 2 weeks and 4 weeks of animals that stayed in ASW.

metrical jellyfish. The final shape produced by reorganization depends on the initial
local geometry of the grafted jellyfish, suggesting that jellyfish shapes might be
locally, rather than globally, regulated.

Interestingly, while radial symmetry has long been considered crucial to Aurelia
swimming and feeding, many non-circular animals were still able to swim and feed
and survived for over a month post-surgery. By visualizing the muscle through actin
staining, we observed that the neighboring muscle bands reconnected, resulting in
configurations that accommodated the non-circular jellyfish. The newly connected
muscles also contracted synchronously, creating novel swimming behaviors in some
non-circular animals that, while not as effective as the drawstring contractions of
circular muscle bands, nevertheless allowed the animals to survive and grow. That
circular muscle rings were not recovered and that local muscle reconfiguration was
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sufficient for partial function recovery further support a locally-regulated model of
shape reorganization.

Lastly, we found that individual Aurelia medusa are able to sequentially reorganize
into multiple stable shapes. This additional shape change could be triggered by new
injury or through an increase in muscle contraction rate. The latter suggests that
shape reorganization is not simply an injury response. Instead, jellyfish shape might
be continuously regulated during physiological function by swimming contractions,
and that stable shapes are dynamic equilibria of a system of mechanical interactions.

While the flexibility and functional significance of body shape might be particular
to Cnidarians, it is still possible that we may find parallel mechanisms for shape
regulation throughout the animal kingdom. Even when body shape is defined skele-
tally, organs and tissues are viscoelastic and many experience regular mechanical
forces. We hope our findings in Aurelia inspire the scientific community to imagine
living shapes and structures as dynamic and to motivate more questions to be asked
about how these shapes are regulated.
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2.8 Supplementary Figures

Figure 2.12: Reorganization time for different initial graft configurations. A. Offset
graft reorganized into oval animals in 2.6 days on average (SD = 1.2 days). B.
Offset grafts that reorganized into more elongated animals took longer to reorganize
on average. C. Pinwheel grafts reorganized into round or triangular animals in 3.6
days on average (SD = 1.7 days). D. Butterfly grafts reorganized into rectangular or
trapezoidal animals in 6.0 days on average (SD = 2.1 days).
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Figure 2.13: Novel jellyfish body shapes are stable. A. A butterfly graft and B.
an offset graft completed reorganization within two weeks and maintained a stable
shape when tracked over 3 more weeks. C. The aspect ratios of offset grafts (n=13)
tracked for up to 30 days upon completion of reorganization showed negligible
change over time.
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Figure 2.14: Some local smoothing occurs when muscle contraction is inhibited
with menthol. The individual shown here is the same as in Figure 2.8A. An offset
graft with muscle contraction blocked with 0.8mM menthol showed slow “filling
in” of boundary concavities over three days (see black arrows), though no global
reorganization occurs. The blue lines serve as references to help indicate the slow
disappearance of the concavities.

2.9 Materials and Methods
Jellyfish culture. Aurelia aurita polyps were gifts from the Cabrillo Marine Aquar-
ium (San Pedro, CA). Polyps were reared in artificial seawater (32 ppt ASW; Instant
Ocean) at 72°F in recirculating box tanks with weekly water changes. Ephyrae and
medusae were reared at 65°F in conic bubblers with daily water changes. The colony
was fed daily with brine shrimp (Artremia nauplii) enriched with Dunaliella salina
algae. Ephyrae were fed L-type rotifers (Brachionus plicatilis) for the first 3 days
after strobilation, after which they were fed brine shrimp. Strobilation was induced
chemically by incubating polyps in 25 µM 5-methoxy-2-methyl-indole (Sigma-
Aldrich; M15451) overnight at 65°F, then returned to ASW, upon which strobilation
typically occurred within 1 week (Fuchs et al., 2014). Strobilated ephyrae were
grown to medusae in conic bubblers at 65°F. Conic bubblers are 5 gallon conical
hatching jars (Pentair Aquatic Eco-systems; PART #: CCH1 to M100AP) with
aeration from an air pump.

Grafting. Aurelia aurita medusae with empty gastric pouches 1-2 cm in diameter
were anesthetized in 0.8mM menthol solution in ASW. A graft diagram with an
outline for the desired shapes was placed under the dish to use as a template.
Following the template, the medusa was then cut into the desired shapes using an
Xact-O #17 chisel blade. The cut pieces were then immediately pinned in the desired
configuration with their cut surfaces aligned to an agarose plate with cactus spines
in menthol solution overnight. We found cactus spines from the Espotoa genus to
be effective (e.g., E. mirabilis and E. guentheri). The agarose plates were prepared
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with 1% SeaPlaque low melting point agarose in deionized water and wrapped with
plastic wrap to avoid agarose dissolving into the menthol solution. Within 12-24
hours, the pieces fused together and were unpinned. The grafts were transferred to a
petri dish with ASW and monitored for several weeks. Chimera were not fed during
reorganization to avoid confounding effects from growth.

Modulation of muscle contraction frequency. Magnesium-free ASW was made
using recipe 4 in table 3A in the Marine Biological Laboratory Recipe Book (Bio-
logical Bulletin Compendia 2017) and was mixed 1:3 with regular ASW to make
magnesium-reduced seawater as used in experiments in Figure 2.10 and Figure 4.5.
0.8mMmenthol (Sigma-Aldrich; M2772) solution inASWwas used as an anesthetic
as well as a muscle inhibitor (Gaudioso et al., 2012). 30mM BDM (Sigma-Aldrich;
B0753) solution in ASWwas also used as amuscle inhibitor (Higuchi and Takemori,
1989). Muscle contraction frequency was measured using 10-second time-lapses
videos of the animal on day 1 and day 4 after unpinning.

Muscle and neuron staining. Actin was stained using Alexa Fluor 488 Phalloidin
(ThermoFisher Scientific; A12379) at 1:30 concentration. Neurons were stained
with anti-tyrosinated-U-tubulin antibody (SigmaAldrich; T9028) and Alexa Fluor
594 goat anti-mouse IgG secondary antibody (ThermoFisher Scientific; A11005).
Medusae were first anesthetized in 0.8mM menthol solution. They were then fixed
in 4% formaldehyde in PBS for 1 hour, washed in PBS, permeabilized in 0.3%Triton
X-100/PBS for 1 hour, blocked with 3% (vol/vol) NGS in 0.3% Triton X-100/PBS
for 2 hours, and washed in 0.3% Triton X-100/PBS. For actin staining, medusae
were then incubated in 1:30 phalloidin (in 0.3% Triton/PBS) overnight in the dark at
68°F, washed in 0.3% Triton/PBS, and imaged. For neuron staining, medusae were
incubated in 3:2000 anti-U-tubulin antibody overnight at 4°C, repermeabilized in
0.3% Triton X-100/PBS for 2 hours, blocked in 3% (vol/vol) NGS in 0.3% Triton X-
100/PBS for 1 hour, and incubated in 1:200 Alexa Fluor 594 anti-mouse secondary
antibody in the dark overnight at 4°C. They were then washed in 0.3% Triton X-
100/PBS and immediately imaged. For muscle/neuron costaining, medusae were
incubated in 1:30 phalloidin solution overnight in the dark at room temperature after
neuronal staining, and washed in 0.3% Triton X-100/PBS before imaging.

Microscopy andmeasurements of aspect ratio. Darkfield, brightfield, and fluores-
cent Aurelia were imaged using the Zeiss AxioZoom.V16 stereo zoom microscope
and processed using the Zen software. Movies were captured using CamStudio
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or using the Zen time series module. Aspect ratio was measured using the Zen
software.

Quantification and statistical analysis. A two-tailed Welch’s t-test was used to
compare control and reduced-magnesium seawater jellyfish populations in muscle
frequency experiments in Figure 2.10 (Ruxton, 2006).
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C h a p t e r 3

DESIGNING A FINITE-ELEMENT MODEL OF AURELIA
REORGANIZATION

3.1 Introduction
Moon jellyfish, Aurelia aurita, uses a mechanism of muscle contraction and vis-
coelastic response to regulate body shape. Through grafting experiments (described
in Chapter 2 of this thesis), we observed that Aurelia medusa not only recover cir-
cular body shape from a wide variety of perturbations to body geometry, but can
also reorganize their bodies into a range of novel body shapes. Our observations
that animals achieved asymmetrical body shapes in addition to shapes with bilat-
eral, radial, and rotational symmetry, suggested that body shape reorganization is
regulated through local mechanical interactions, with little or no global feedback.
Staining revealed that muscle reorganization, too, likely only occurs on a local level.
Additionally, our findings that jellyfish can sequentially reorganize their shape in-
dicates that jellyfish shape might be dynamic and continuously regulated. These
results are in line with a model where jellyfish shape is a product of, and regulated
by, mechanical self-organization.

To explore whether local mechanical forces and muscle reconnections are sufficient
to explain jellyfish shape reorganization, we designed a finite element model to
simulate the evolution of jellyfish shape during reorganization. Finite element
models have been developed previously to simulate the large deformations involved
in morphogenetic processes to test, for example, whether apical constriction could
be responsible for movements such as Drosophila invagination and how cells might
rearrange when an epithelial sheet is stretched (Conte, Muñoz, and Miodownik,
2008; H. Chen and Brodland, 2000; Brodland, D. Chen, and Veldhuis, 2006;
Brodland and Clausi, 1994). While these studies have laid a foundation for how
to apply finite element methods to biological materials and the dramatic shape
changes they undergo, the applied stresses being tested in these models are relatively
simple compared to those experienced by Aurelia during reorganization. During
Aurelia reorganization, the primary driver of shape change, the muscle-generated
force, is heavily dependent on the jellyfish geometry. We developed a formulation
for calculating local muscle force from the jellyfish geometry such that the same
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algorithm can be used to calculate muscle contraction force over the course of
muscle reconnection without manual intervention. We also describe here a method
for tracking the local viscoelastic stresses present within the jellyfish tissue over
time. In conjunction, these form the foundation of our model of mechanical self-
organization and allow us to test whether, and under what conditions, a system of
mechanical self-organization could regulate jellyfish shape.

3.2 Modeling assumptions
Aurelia medusa have a saucer shaped bell. The bell is composed of two tis-
sue layers—the epidermis and gastrodermis—and extracellular mesoglea, with
mesoglea making up the bulk of the thickness of the bell. Mesoglea is a vis-
coelastic extracellular matrix that is 96-97% water and is comprised of collagen
fibers, fibrillin homologues, as well as other structural proteins and polysaccharides
(Gambini et al., 2012; Joshi et al., 2013; X. Wang, H. Wang, and Brown, 2011).
In ephyra, the bell is thin with very little curvature. As the animals mature, the
mesoglea layer increases in thickness more so at the center of the bell above the
mouth and gastric pouches than at the periphery, resulting in increased bell curva-
ture. Grafting was done in young Aurelia medusa with minimal bell curvature for
ease of imaging, but which were large enough for ease of surgery. As a result, the
animals were necessarily of an age where the bell thickness at the center of the bell
was measurably greater than at the bell periphery (Figure 3.1).

The stiffness of mesoglea has been investigated in several studies previously. How-
ever, the Young’s modulus of mesoglea reported varies widely between studies, from
60 Pa (equivalent to 20 Pa reported shear modulus by Gambini et al., 2012) to 30 kPa
(Gambini et al., 2012; Joshi et al., 2013). Studies in Aurelia as well as Rhopilema
esculentum and the hydromedusa Polyorchis penicillatus have found that stiffness
can vary depending on whether forces are applied in tension or compression, in the
radial direction or in the subumbrellar-exumbrellar direction, and on whole animals
or isolatedmesoglea samples (Megill, Gosline, and Blake, 2005; X.Wang, H.Wang,
and Brown, 2011; Joshi et al., 2013). Even within a single study and single loading
scheme, there was still variability in stiffness between individual animals. Due to
the variability in reported material properties, we treat the stiffness and viscosity of
jellyfish tissue as fit parameters.

There are other factors that contribute to the material properties of mesoglea, how-
ever. One is the matter of isotropy, or whether stiffness depends on directionality
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of stress. Fibrous materials like mesoglea are in general stiffer in tension parallel to
fiber orientation than perpendicular to fiber orientation and stiffer in tension than in
compression (Fung, 1993). In Aurelia, scanning electron microscopy has revealed
that both thick and fine fibers run throughout the mesoglea (Gambini et al., 2012).
Thick fibers run vertically in the subumbrellar-exumbrellar direction and parallel
to the exumbrellar surface in all directions. The fine fibers form a network that is
randomly oriented and distributed. Within the plane of shape reorganization, that
is in the radial and circumferential directions, there is no evidence in Aurelia that
elastic fibers are oriented preferentially in any direction, and no studies of mesoglea
viscoelastic properties have reported anisotropy between the radial and circumfer-
ential directions. As to whether the material behaves differently in tension versus in
compression, Joshi et al. found that Aurelia mesoglea is 1–2 orders of magnitude
stiffer in compression than in tension. However, compression tests were performed
in the subumbrellar-exumbrellar direction and tension tests were performed in the
plane of the bell, and differences in measured stiffness could also be due to these
orientation differences. For the purposes of this model, we assume that jellyfish
body tissue is isotropic and that material response to tensile and compressive stress
are identical.

Figure 3.1: Dimensions of young Aurelia medusa. Left: Subumbrellar view of a
young Aureliamedusa 10.5 mm in diameter, representative of those used in grafting
experiments. The muscle ring, immature gonads, oral arms, and rhopalia can be
seen. The estimated width of the muscle ring is 1.8 mm. Right: Lateral view of the
same medusa. Measurements of bell thickness are shown at the center of the bell,
above the mouth, and at the bell periphery above the muscle ring.

There is also the question of whether material properties are homogeneous through-
out the medusa bell. As the center region of the bell near the mouth and gastric
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pouches is thicker than the area around the periphery underlying the muscle ring, it
would be reasonable to assume that the center of the bell might be stiffer than the
periphery. Certain anatomical features might also differ in their material properties.
For example, the area around themouth, which has internal structures like the gastric
pouches, might be stiffer and provide structural integrity or resistance to local shape
reorganization, stabilizing the body shape of the jellyfish.

To test if there are structures within the jellyfish bell that provide additional stabi-
lization for novel shapes, we excised the mouth and gastric pouches from Aurelia
medusa and allowed them to heal, after which the bell was visually homogeneous.
Removing the area of the bell surrounding the mouth also resulted in the removal
of the thickest part of the bell. Once the bell healed, mouthless Aurelia were much
more uniform in thickness across the whole bell compared to uncut animals. We
performed offset grafts using the mouthless animals and found that the mouthless
animals also reorganized into oval shapes (Figure 3.2A). The relationship between
the offset distance of the initial graft geometry and the aspect ratio of the final oval
body shape was similar to what was observed in regular offset grafts (Figure 3.2B).
These results suggest that any structural support that might be provided by the mouth
and gastric pouch or additional thickness at the center of the bell are not required for
reorganization into stable oval shapes. For the purposes of this model, therefore, we
assume that the bell material is homogeneous with no differences in stiffness due to
jellyfish anatomy. We also assumed that the jellyfish bell was of uniform thickness.

Over the course of the <10 day time span of shape reorganization, grafted animals
in our experiments were not fed (with the exception of the stability experiments)
showing that feeding and increases in body mass were not necessary for reorganiza-
tion. Over this time frame, we observed no growth in the chimera and no change in
bell thickness. As Abrams et al. found that cell proliferation and apoptosis are not
required for recovery of radial symmetry, the model assumes that the overall size of
the jellyfish does not change during reorganization and that bell thickness does not
change during reorganization. We also assumed that, since mesoglea is over 95%
water, jellyfish body tissue is incompressible (Joshi et al., 2013). Additionally, we
assume that the length of the muscle band does not change during reorganization.
Although we observed some de novo muscle formation as the muscles formed con-
nections across graft cut sites (Figure 2.8A), Abrams et al. showed that symmetry
recovery proceeded even when actin polymerization is blocked, and that muscle
growth is not required for shape reorganization.
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Figure 3.2: Mouthless offset grafts reorganized into ovals. A. Mouths were excised
from young Aurelia medusa and the animals were allowed to heal. Once the cut
site had fully healed such that the bell was visually homogeneous, the mouthless
animals were grafted in an offset configuration. Images of a mouthless offset graft
are shown immediately and 3 days after unpinning. B. Plot of offset ratio versus
final aspect ratio in offset grafts without mouths (n = 29) plotted alongside data of
offset grafts with mouths (n = 39).

Lastly, we assumed that muscle contractions occurred asynchronously and at regu-
larly spaced intervals. In our experiments, we observed that muscle synchronization
did not seem to affect the final stable shape of the animal. For example, we observed
both asynchronous and synchronous contractions in the twomuscle pieces that make
up the bottom row of a stable trapezoidal chimera, depending on the animal. In
offset grafts also, the final aspect ratio of the chimera did not depend on whether the
muscle pieces had reconnected into an oval ring or had remained as two separate
pieces as observed in S-shaped animals, or even had only connected on one side as
seen in asymmetrical animals. As for the regularity of muscle contraction, although
we did observe variation in the timing of contractions during our graft experiments,
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the second-long scale of individual muscle contractions is so short compared to the
days-long scale of reorganization that we assume that regularly spaced contractions
at the average contraction rate are sufficient to capture the effect of contraction rate
on reorganization.

In summary, we modeled the jellyfish body as an incompressible homogeneous
isotropic material of uniform thickness acted on by regularly spaced periodic muscle
contractions. The assumptions allow us to represent the jellyfish body in 2D and
exclusively consider the forces acting within the 2D plane that drive shape change
within that plane. They also allow us to focus on how our parameters of interest—
contraction rate, contraction strength, stiffness, and viscosity—affect Aurelia shape
reorganization.

3.3 Modeling equations and finite element implementation
Our goal in this model is to track the shape evolution of Aurelia medusa from
the initial graft geometry as it undergoes mechanical force-driven reorganization.
Because the extent of shape change during reorganization is quite dramatic, and
because the forces acting on the jellyfish at any given point in time is dependent
on the current shape of the jellyfish, we take an incremental approach where the
net force at each time step is used to calculate local displacements and update the
jellyfish shape, and that shape information is then used to calculate the net force
acting on the jellyfish during the next time step (Figure 3.3).

The jellyfish geometry is discretized into a 2D mesh of triangular elements. The
displacement of individual nodes is used to track the evolution of jellyfish shape
over time, while edges act as viscoelastic trusses representing the tissue’s material
response. Depending on their location within the finite element mesh, nodes are
classified as muscle, boundary, or bulk tissue. There are three forces acting on the
jellyfish at any given time point: force from muscle contraction �<, elastic force �4,
and pressure force �?. The force from muscle contraction is treated as an external
force that acts on the muscle nodes based on the geometry of the muscle piece.
Elastic force acts on all nodes and is calculated based on the strain of the edges
neighboring that node. Pressure force serves to maintain the incompressibility of
the tissue and acts on boundary nodes depending on any change in volume of the
jellyfish. The net force on any given node at time C is the sum of these three forces
acting on that node:

�=4C (C) = �< (C) + �4 (C) + �? (C).
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The displacement of each node is then calculated at each time point as

3G

3C
=
�=4C (C)
[

where [ is the viscosity of the jellyfish body tissue. Due to the long timescale of
shape reorganization, it is not necessary to take inertial forces into account (Brodland
and Clausi, 1994; Odell et al., 1981).

Figure 3.3: Model overview. The geometry of the finite element representation of
jellyfish geometry is used at each time step to calculate the forces acting on each
node during that time step. The net force acting on each node is then used to
calculate the incremental displacement of each node, which is used to update the
jellyfish geometry for the next time step.
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Modeling muscle contractions
There are three components we took into consideration when modeling muscle
contraction force: the direction, magnitude, and time dependency. We did not have a
way to directly measure the force produced bymuscles in vivo in our grafted animals.
Themodel parameters we used to describemuscle contractions are therefore inferred
from strain measurements during muscle contractions in grafted animals.

We observed in uncut Aurelia medusa that muscle contraction strains the bell in
two directions: it shortens the muscle band in the circumferential direction and
simultaneously contracts the subumbrella in the radial direction, bending the bell and
increasing the bell curvature (Figure 3.4A). In conjunction, these two movements
create the drawstring-like swimming contraction that squeezes water out of the
subumbrella cavity and propels the animal forward (Gemmell et al., 2013; Arai,
1997). In uncut young Aureliamedusa such as used in the grafting experiments, the
contraction is radially symmetrical: the muscle ring shortens uniformly along its
length, resulting in a circular contracted muscle ring of decreased radius. In grafted
animals with cut muscle pieces, however, that symmetry is broken. We observed
that while the amount of circumferential shortening still seemed to be uniform along
the muscle length, the radial compression depended on the local geometry of the
graft. For example, when one end of a muscle piece is grafted into unmuscularized
bulk tissue such as in the offset graft, the bulk tissue acts as an anchor that resists
radial compression and bending of the bell. We observed in muscle pieces anchored
at one end that the free end of the muscle tended to displace asymmetrically toward
the anchored end, presumably due to increased resistance from the anchoring tissue.
Radial compression and bending of the bell also occurred to a greater degree at the
free end than at the anchored end.

To describe the direction of muscle contraction force mathematically in two dimen-
sions, we decomposed the muscle force into radial and circumferential components
(Figure 3.5A). We estimated the contracted geometry of each muscle piece by esti-
mating the relative magnitude of these two components based on the geometry of
the muscle piece and whether it was anchored at one, both, or neither end. We then
define the direction of muscle contraction force at each muscle node to be the vector
of displacement from its relaxed position to its respective contracted position.

The circumferential component of muscle contraction force was calculated using
muscle contraction strain measured in offset grafts. The arc length of the muscle
band was measured when fully relaxed and fully contracted, and the compressive
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Figure 3.4: Geometry of muscle contraction in Aurelia aurita. A. Whole uncut
Aurelia medusa in relaxed (upper) and contracted (lower) states in subumbrellar
view. The muscle—labeled by !' in the relaxed state and !� in the contracted
state, shortens circumferentially when contracted. The radius of the muscle ring
decreases by 3' as the bell curvature increases. B. One muscle piece (left) in
an offset graft in its relaxed (upper) and contracted (lower) state, as viewed from
the subumbrella. The muscle piece shortens circumferentially during contraction
similarly to the uncut medusa. The relaxed half-medusa anchors one side of the
contracting muscle, preventing it from bending out of the plane, causing 3' to
increase with distance from the anchoring piece.

strain Y< was calculated as
Y< =

;A − ;2
;A

where ;A is the relaxed muscle length and ;2 is the contracted muscle length. We
found that the strain ofmuscle contraction ranged from4% to 38%,with an average of
21% (SD = 7.6%, n=89) (Figure 3.6B). The direction of circumferential shortening
was defined as toward the midpoint of the muscle piece with distance between
relaxed nodes shortening by the same amount regardless of the position of the node
along the muscle piece. This necessarily meant that nodes further away from the
muscle midpoint experience a higher degree of circumferential displacement during
contraction relative to radial displacement. Although asymmetry was observed in
circumferential shortening of muscles in the offset graft, we encoded circumferential
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shortening as symmetrical about the muscle midpoint, as the difference in observed
displacement was likely a result of increased elastic resistance at the anchored end
and not a result of asymmetrical force production from the muscle itself.

The radial component of the muscle force, however, was not modeled uniformly
along the muscle length. Muscle that has been grafted onto unmuscularized bulk
tissue is prevented from moving out of the plane of the bell by this bulk tissue
and exerts less compressive force in the radial direction than muscle located further
from these graft site. To calculate the radial component of muscle force, we first
approximated the geometry of the muscle band as an arc. Since our experiments
showed that mouths do not necessarily provide any unique structural support, the
center point of each muscle arc was defined by the geometry of the muscle arc and
not by the position of any neighboring mouths. The radius of the muscle arc was
then defined as the average distance between the muscle band and its center point.

We estimated the radial strain using 3', the change in radius between the relaxed
muscle piece and the contractedmuscle piece, which increases linearly with distance
away from any anchored muscle ends until some maximum 3', defined as the
reduction in radius when no anchored ends are present. In muscles where neither
end is anchored, or in the case of a fully connected muscle ring in oval and circular
animals, every point on the muscle experiences the same radial compression. When
one end is anchored, such as in the offset graft, the unanchored free muscle end
experiences the greatest displacement in the radial direction during a contraction
(Figure 3.5C). When both muscle ends are anchored, as in the butterfly graft, the
midpoint is the furthest distance away from any anchored ends and experiences the
greatest radial displacement (Figure 3.5D).

The estimated radial and circumferential displacement are used to calculate the
estimated contracted geometry of each muscle piece, and the displacement vector
between respective nodes in the relaxed and contracted muscle piece determine the
direction of the muscle contraction force (Figure 3.5B, E, F). We found that varying
the relative magnitudes of circumferential strain Y< and radial strain 3' can describe
a wide range of possible muscle contraction behaviors. When Y<

3'
is low, the arc

angle of the muscle increases when contracted (Figure 3.5B), and when Y<
3'

is high,
the arc angle decreases when contracted. As there is natural variation in muscle
contraction in our graft experiments, variation in this ratio might serve to explain
how similar graft geometries could reorganize into rounded or polygonal shapes.
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Figure 3.5: Calculations of muscle contraction force depends on muscle geometry.
A. Muscle contraction force acting on each muscle node is calculated as a sum
of radial force from the bending of the bell �1 and circumferential force from the
shortening of the muscle band �B. The calculation of �1 is dependent on the local
geometry of muscle piece, while �B is calculated in the same way regardless of
geometry using a set contraction strain Y =

!�−!'
!'

. !' and !� are the relaxed and
contracted lengths of the muscle, respectively. B. Muscle force as calculated in an
unanchored muscle piece such as a half medusa. �B causes the muscles to contract
to a length of !2, and �1 causes a decrease in the radius of the muscle band by
3'. These two forces in conjunction result in a net muscle force acting on each
node (arrows) that results in the muscle’s contracted geometry. Note that for small
Y and large 3', the arc angle 3\ of the muscle band increases when contracted,
while arc angle decreases for large Y and small 3'. C-D. The bending force �1
is small at anchored muscle ends and increases with distance from the anchored
end, as unmuscularized bulk tissue is assumed to restrict neighboring muscle from
bending. E. The netmuscle force (arrows) and contracted geometry of amuscle piece
anchored on one side. F. The net muscle force (arrows) and contracted geometry of
a muscle piece anchored on both sides.
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Once the direction of muscle contraction has been defined, the magnitude of muscle
contraction forcewas calculated using themeasuredmuscle strain and the stiffness of
the mesoglea. Because muscle force was measured indirectly in grafted animals by
measuring the strain, themuscle force required to recapitulate that strain is dependent
on the viscoelastic properties of the body tissue. Mesoglea is predominantly elastic
in its behavior on the second-long timescale of individual muscle contractions, so
Hooke’s Law was used to approximate the stress produced by the muscle:

f = _Y<

where _ is the stiffness of the jellyfish tissue. Circumferential muscle strain was
used to approximate the magnitude of muscle contraction force due to ease of
measurement. Radial bending strain was not measured in the grafted animals.

Lastly, muscle force is not constantly active. Over any span of time, Aureliamedusa
spend some fraction of time in a contracted state and the remaining time in a
relaxed state. We used two parameters to mathematically describe the function of
muscle force over time: contraction rate and contraction duration. In our grafting
experiments, we found that contraction rate in young Aurelia medusa ranged from
3-66 contractions per minute and averaged 20 contractions per minute (SD = 12, n
= 45). When muscle contraction rate was modulated by decreasing the magnesium
concentration in the media, the contraction rate ranged from 9-77 contractions per
minute and averaged 33 contractions per minute (SD = 16, n = 53).

To measure the duration of individual muscle contractions, we measured the time
span between the initiation of muscle contraction and when the muscle band fully
recovered its relaxed length using time-lapse images of offset grafts. We found that
the length of a full contraction was on average 0.7 seconds, (SD = 0.1s, n=118)
and that this duration was very consistent at low contraction rates (Figure 3.6A).
However, at high contraction rates, the average duration of a contraction decreased
slightly. We observed that in very active animals, contractions would occasionally
initiate before the muscles had fully relaxed, effectively interrupting the previous
contraction and cutting it short. As contraction rate increased, these interrupted
contractions occured more often, decreasing the average duration of individual
contractions. For the purposes of the simulation, we set contraction duration C2 as
0.8s. The contraction duration, in conjunction with contraction rate, was used to
find the average length of time spent at rest between contractions. In an animal with
contraction rate of n contractions per minute, the length of the rest phase CA between



44

contractions is
CA =

60 − =C2
=

.

.

In our simulations, muscle force is only applied for the duration of C2. For the
duration of the rest phase, the muscle force is set to zero and the net force is equal
to the sum of the elastic force and pressure force.

Figure 3.6: Measurements of muscle contractions in Aurelia grafts. A. During
muscle contraction, muscle bands in offset grafts shorten on average by 21%, with a
range of strains between 4% and 38%. (SD = 7.6%, n = 89). B. While for the most
part contraction duration in offset grafts is constant regardless of contraction rate, as
contraction rate increases, the chance that contractions initiate before muscles fully
relax increases, effectively interrupting the previous contraction and reducing the
average time spent during each contraction phase. The average contraction duration
is 0.7 seconds. (SD = 0.1 s, n = 118)
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Material properties of Aurelia aurita
The mesoglea of Aurelia aurita, which makes up the bulk of the bell tissue, is a
viscoelastic extracellularmatrix and an important component ofAurelia’s propulsion
machinery. After muscle contractions, the mesoglea elastically recoils, pulling the
muscle back to its relaxed length, which suggests that mesoglea is dominated by
elastic behavior at the timescale of individual muscle contractions (Gemmell et al.,
2013). At the same time, our experimental results indicate that Aurelia body tissue
is capable of permanent deformation as the animals are able to reorganize their
shape into a new stable shape. Thus, on the time scale of shape reorganization, the
tissue displays a large degree of viscous dissipation. This mix of elastic, solid-like
behavior on short timescales and viscous, liquid-like behavior on long timescales is
characteristic of viscoelastic materials. The timescale at which a material switches
from being primarily elastic to primarily viscous is called the relaxation time. All
biological materials are viscoelastic to some degree, but can usually be modeled as
purely viscous or purely elastic depending on the timescale of the forces or processes
of interest (Fung, 1993; Brodland and Clausi, 1994; H. Chen and Brodland, 2000;
Brodland, D. Chen, and Veldhuis, 2006; Savin et al., 2011). In Aurelia, however, we
are both interested in both second-scale muscle contractions and days-long shape
reorganization, so aimed to model the jellyfish tissue in a way that can capture both
viscous and elastic behaviors.

Viscoelastic materials are modeled as combinations of elastic and viscous elements:
springs and dashpots (Vogel, 2004; Fung, 1993). The spring stores elastic stress
and recoils when that stress is removed. The dashpot dissipates elastic stress and
allows the material to irreversibly deform. By placing these elements in series and
parallel, we are able to capture a wide range of viscoelastic behaviors. The simplest
of these models are the Maxwell model—a spring and dashpot in series—and the
Kelvin-Voigt model—a spring and dashpot in parallel. Maxwell materials are quite
fluid and continuously deform under constant stress. Materials modeled this way
would likely reorganize, but perhaps not find a stable state. In contrast, Kelvin-
Voigt materials reach an equilibrium strain under constant stress, but will recoil to
their unstressed shape when that stress is removed. A material modeled this way is
unlikely to display dramatic shape change. As jellyfish tissue likely lies somewhere
between these two extremes, we chose to model it as a standard linear material,
composed of a spring in parallel with a Maxwell element (Figure 3.7). Tuning the
stiffnesses of the two springs in a Standard Linear Model allowed us to capture a
range of behaviors that includes those of the Maxwell and Kelvin-Voigt models. We
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fit these two stiffnesses, along with the viscosity, to capture the shape reorganizing
behavior of Aurelia aurita.

Figure 3.7: The Standard Linear Model of viscoelasticity consists of a spring in
parallel to a Maxwell element. _0 and _1 are the stiffnesses of the springs. [1 is the
viscosity of the dashpot.

Viscoelastic properties are implemented in our finite element model by treating
each of the edges between nodes as a standard linear material. While there exists
a constitutive equation for the Standard Linear Model that relates stress, stress rate,
strain, and strain rate, the stress present in the Aurelia tissue at any given time is
dependent on the geometry at that time. We therefore chose to track the strain of
the two springs and used these strains to calculate the elastic stress present in the
system at any given time. This meant that the elastic force �4 acting along the i-th
edge is calculated using Hooke’s Law for two springs in parallel as

�4,8 (C) = −(_0Y0(C) + _1Y1(C))

where Y0 and Y1 are the strains of the two springs.

Y0, the strain on the spring in parallel, was found with a simple calculation based on
the relaxed length of the edge and the current length of the edge:

Y0(C) =
; (C) − ;0
;0

.

The strain on the second spring, Y1, however, decreases over time as it is part of
a Maxwell element and the dashpot allows for dissipation of stress and permanent
deformation. We implemented this by treating the displacement of nodes at each
time step as a constant strain and allowing the Maxwell element to relax for the
duration of each time increment. We could then calculate the new relaxed length
of the spring at time C using the relaxation equation for a Maxwell material under
constant strain.

Y1(C) = Y1(C − 1)4(−
_1
[
3C)
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where Y1(C − 1) is the strain on the Maxwell element at the previous timepoint

Y1(C − 1) = ; (C) − ;0(C − 1)
;0(C − 1) .

The new relaxed length of the Maxwell element is therefore

;0(C) =
; (C − 1)

; (C)−;0 (C−1)
;0 (C−1) 4

−( _1
[
CA ) + 1

and is used to calculate the strain of the spring at time C, Y1(C):

Y1(C) =
; (C) − ;0(C)
;0(C)

.

The elastic force of all : edges connected to each node contribute to the net elastic
force acting on each node:

�4 (C) =
:∑
8=1

�4,8 (C).

In addition to an elastic force, we applied a pressure force to maintain the incom-
pressibility of the jellyfish tissue. To allow for flow of material between finite
elements, we did not calculate change in volume of individual elements, but rather
considered the volume of the animal as a whole and applied this pressure force only
to nodes on the boundary. As we assume that the thickness of the tissue does not
change during reorganization, the volume was estimated using the total area of the
jellyfish geometry calculated via this classic equation:

� =
1
2
((G1H2 + G2H3 + ... + G=H1) − (G2H1 + G3H2 + ... + H=G1)).

The pressure force �? at time C acting on each boundary edge was calculated as

�?,8 (C) = −
�(C) − �0

�0
:1

where :1 is the bulk modulus of jellyfish tissue. As the length of edges in the finite
element mesh are maintained at around 1, we assumed that pressure force acted on
all boundary surfaces equally. The pressure force acting on each boundary node
was then defined as the sum of the pressure forces acting on its neighboring edges.
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Finite element representation of jellyfish geometry
The jellyfish geometry was represented by a mesh of triangular elements. Each
vertex in the mesh was tracked as a finite element node. The edges are treated
as viscoelastic trusses that provide elastic resistance and viscous dissipation. All
edges in the jellyfish mesh have the same viscoelastic properties, while nodes are
designated as bulk tissue, muscle, or boundary.

In Aurelia medusae, circumferential muscle is embedded in a flat ring within the
subumbrellar epidermis extending from the bell periphery inward. The muscle ring
is narrow in ephyrae and increases in width toward the bell center as the animals
mature. In young Aurelia medusa as used in our grafting experiments, the muscle
bandwidth was around 30%of the bell radius. We therefore designated the outer two
rings of nodes as muscle nodes to approximate this geometry (Figure 3.8). Muscle
force was treated as an external force that applies exclusively to muscle nodes. We
defined outer and inner muscle separately, with inner muscle experiencing half of the
magnitude of muscle force as the outer muscle as to provide some stability during
simulations. Pressure force is applied to boundary nodes, defined as the nodes that
line the periphery of the jellyfish mesh. All nodes are also designated as bulk tissue,
and are acted on by elastic force from neighboring edges.

To create finite-element representation of our graft geometries, the mesh of the
whole Aureliamedusa was cut and rearranged in the samemanner as during grafting
experiments. The offset graft geometry was created using two semicircular meshes
“grafted” together at the desired offset distance (Figure 3.9A). The butterfly graft
geometry was created with two semicircular meshes “grafted” to and connected
by a small trapezoidal mesh (Figure 3.9B). The position of nodes at the boundary
between grafted pieces was determined by averaging the position of node in each
piece that most closely neighbored each other. Nodes at exposed cut edges were
defined as boundary nodes. Additional edges were added to define the boundary as
needed. The jellyfish mesh was updated periodically when certain conditions were
met to maintain the stability of model calculations, to simulate the continuous and
self-healing nature of the jellyfish material and to maintain the length of the muscle
band throughout shape reorganization. There were three conditions under which
the jellyfish mesh was updated in order to maintain homogeneous coverage of the
jellyfish geometry and maintain stability of calculations. First, short edge lengths
made it more likely that the connected nodes might cross each other before the next
time increment and create instabilities in the calculations. To avoid this, when the
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Figure 3.8: Finite element decomposition of uncut Aurelia medusa. Medusa were
decomposed into triangular elements. The muscle band is represented by two rings
of nodes (green) that run parallel to the edge of the mesh geometry. Unmuscularized
bulk tissue is represented by black nodes.

Figure 3.9: Finite element decomposition of jellyfish graft geometry. A. Finite
element mesh of an offset graft with offset ratio of 0.2. Muscle nodes are demarcated
in green. B. Finite element mesh of a butterfly graft. Muscle nodes are demarcated
in green.

distance between two connected “parent” nodes fell below a certain threshold, the
two parent nodes would be replaced by a single “offspring” node that connected
to all nodes previously connected to either of the parent nodes. These new edges
would also inherit the strains from the previous edges to maintain material integrity
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(Figure 3.10A). Second, if the distance between two connected nodes exceeded a
certain threshold, a new offspring node would be created at the midpoint of the edge
connecting the parent nodes. The offspring node would be connected to the parent
nodes as well as every node that is connected to both parents (Figure 3.10B). This
helped to maintain homogeneity in the jellyfish mesh and prevent the creation of
gaps that would not provide adequate viscoelastic response. Third, in the case that
a triangular element became extremely elongated such that the length of one edge
was a significant fraction of the combined lengths of the other two edges, the first
edges was replaced by a perpendicular edge when possible (Figure 3.10C). This also
served to maintain homogeneity in the jellyfish mesh by preventing two edges from
providing viscoelastic response in the same direction in a very small area.

The jellyfish mesh was also updated periodically to simulate the self-healing prop-
erties we observed in Aurelia. When the distance between boundary nodes = and
= + 2 fell below a certain threshold, a new edge was created to connect them, and
boundary node = + 1 was no longer defined as a boundary node (Figure 3.10D).
This was necessary to recapitulate what we observed in the offset grafts, that the
perimeter of the initial graft geometry was often greater than the perimeter of the
oval jellyfish post-reorganization. Specifically, the straight edges of the offset graft
geometry shifted to the interior of the animal during reorganization, resulting in the
convergence of the mouths and reorganization of the muscle piece into a connected
oval muscle ring.

Lastly, the jellyfish mesh was updated to maintain the overall length of the muscle.
Because the jellyfish body tissue is one continuous material with no compartmental-
ization, finite elements do not represent fixed points in the jellyfish tissue. Change
in length of the muscle band as defined by the jellyfish mesh might therefore not
be representative of actual shortening of the muscle band during reorganization. In
fact, we observed in our grafts that muscle bands do not shorten significantly during
the days-long reorganization process. To maintain the muscle band during simu-
lations, the total muscle length is tracked, and if it falls below a certain threshold,
additional nodes on either end of muscle pieces are assigned as muscle nodes during
remeshing until the length threshold is met.

Simulation
Aurelia medusa are under constant elastic stress. This can be observed when a cut
is made in a medusa bell and the cut immediately widens as the stress is released.
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To create this internal stress in our model, we set the relaxed area artificially high
at 0.1% greater than the calculated jellyfish mesh area, creating a positive pressure
outward. The jellyfish mesh is then allowed to come to equilibrium, with elastic
stress acting against the pressure force of the mesh. Thus, before the simulation
starts, there is already elastic stress in the jellyfish tissue.

During the simulation, the geometry of the jellyfishmesh at time C is used to calculate
the muscle force, elastic force, and pressure force at time t. Because muscle force is
only active when the jellyfish is contracted and the jellyfish only spends a fraction
of time in a contracted state, the average net force acting on each node during each
time increment is calculated as

�=4C (C) = (�< (C) + �4 (C) + �? (C))C2 + (�4 (C) + �? (C))CA

where C2 and CA are the time the jellyfish spends contracted and relaxed during each
time increment respectively. This net force is used to calculate the displacement of
the nodes at time C, and the jellyfish geometry is updated. The viscoelastic material
is also allowed to relax and relaxed lengths and strains are updated for the next time
increment. Time increments of 15-30 minutes were used during simulations as there
was no observable reorganization in our grafts within this time frame.
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Figure 3.10: The jellyfish mesh was updated periodically during reorganization if
certain conditions are met. A. When the length of an edge, !, falls below a certain
threshold, the two parent nodes connected by that edge are replaced by a single
offspring node to maintain stability of model calculations. The offspring node is
connected to all neighboring nodes of the parent nodes. B. When the length of
an edge, !, becomes greater than a certain threshold, a new node is added at the
midpoint of that edge to maintain even mesh coverage of the geometry. The new
node is connected to the parent nodes, as well as any neighboring nodes shared
by the parents. C. When a finite element becomes elongated such that ! is a
significant fraction of !1 + !2, the edge with length ! is replaced (when geometry
allows) by a perpendicular edge to maintain even mesh coverage of the geometry.
D. When the distance between two boundary nodes, = and = + 2, falls below a
certain threshold, a boundary edge is added connecting the two nodes to simulate
the self-healing properties of jellyfish tissue. The previous boundary node = + 1 is
no longer considered on the boundary.
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The jellyfish mesh was updated when the previously discussed conditions were met
to maintain the total length of the muscle pieces, allow the material to self-heal,
and maintain the homogeneity of the jellyfish mesh. Aspect ratio of the simulated
offset graft was calculated in the same was as in our experiments: the major axis
was defined as the diameter of the circle that circumscribed the jellyfish mesh and
the minor axis was defined as the width of the jellyfish mesh perpendicular to the
major axis. Reorganization into stable oval shapes in the offset graft was used to fit
the stiffness, viscosity, muscle strain, and 3' parameters.

3.4 Discussion
There were two major challenges in modeling Aurelia reorganization. The first
was that there were two vastly different timescales at play: second-scale for muscle
contractions and day-scale for reorganization. Since jellyfish tissue is viscoelastic,
the material response to forces at each time scale are dramatically different. We
addressed this issue by treating the body tissue as purely elastic when calculating
the muscle forces from the measured muscle strain while allowing the tissue to
undergo viscous relaxation over the course of each time increments for the purposes
of calculating stored elastic stress. The second challenge was that the forces acting
on the jellyfish during reorganization are dependent on the current geometric state
of the system and thus, nonlinear. While an incremental approach to finite element
modeling has been used in modeling morphogenetic processes before, the strategy
has primarily served to accommodate the large deformations rather than to calculate
active forces (H. Chen and Brodland, 2000). Modeling muscle forces in Aurelia
required us to create a set of rules by which the muscle contraction force at each time
point could be calculated consistently, without manual intervention, and that could
be generalized across grafting schemes. We designed an algorithm where muscle
force was characterized by two variables that could be calculated automatically using
the mesh geometry, and this allowed us to isolate the changes to reorganization that
were caused by different initial geometry.

We designed this model to be the simplest possible approximation of the forces
present inAurelia that could still recapitulate shape reorganization. The jellyfish bell
and forces therein are represented in two dimensions, the tissue is treated as isotropic
and homogeneous, and cellular processes are excluded altogether. The finite element
mesh used is also coarse-grained to reduce computational demand. However, we
found such a coarse-grained mesh sufficient to approximate the evolution of jellyfish
geometry during reorganization.
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This model was elaborate enough to allow us to explore the parameter space and
assess what material properties might be required for shape reorganization while
at the same time being simple enough that simulation results could be intuitively
understood. However, the lack of consistent measurements of mesoglea material
properties and our inability to directly measure muscle force limits the predictive
ability of our simulations. Future characterizations of jellyfish mesoglea and muscle
contraction force might allow us to concretely predict the material parameters that
would allow for shape reorganization and inspire the design of synthetic, shape-
changing materials.
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C h a p t e r 4

AURELIA SHAPE DYNAMICS ARE REGULATED BY
MECHANICAL SELF-ORGANIZATION

Modeling is an invaluable tool in studying the role of mechanical interactions during
morphogenesis. Unlike with genetic and chemical interactions, there is not a suite
of tools that can be used to easily activate, tune, or inhibit mechanical interactions
in vivo. Tools have been developed for measuring mechanical forces and stresses
in cells and tissues, but these tools do not identify the producer of these forces or
whether these forces are responsible for driving morphogenesis (Sugimura, Lenne,
and Graner, 2016). Modeling allows us to test hypotheses relating the forces
present in and the material properties of living cells and tissues to the evolution of
morphogenetic shape of these tissues over time (Brodland, 2015).

In this chapter, we describe the simulation results of the model of self-organization-
driven shape change developed in Chapter 3. We askwhether a system ofmechanical
self-organization can recapitulate the kind of shape change we observe in our graft-
ing experiments in the absence of global feedback and cellular processes. We
also explore whether shape stability can really be reached if the mechanical forces
that drive shape reorganization are still present post-organization. We investigate
whether the same mechanical processes can produce multiple stable non-circular
solutions. Lastly, we query the parameter space to understand how muscle force,
stiffness, and viscosity affect the rate of reorganization and final jellyfish shape.

4.1 Local mechanical forces were sufficient to recapitulate reorganization of
jellyfish into new stable body shapes

Are local interactions between muscle contraction force and viscoelastic response
sufficient for reorganization? We initially modeled the viscoelastic properties of
jellyfish body tissue as a standard linear material where the stiffnesses of the two
springs, _0 and _1, were equal. Simulations of the offset graft under this paradigm
did indeed reorganize to some extent, but they did not fully reorganize into ovals in
which the concavity at the graft site fully disappeared as they did in our offset graft
experiments (Figure 4.1B).When we decreased the ratio of _0 to _1 to 1:4, simulated
offset grafts did fully reorganize into oval shapes even though the short term stiffness
of the material, _0 + _1, remained the same (Figure 4.1A). When we increased the
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ratio of_0 to_1 even further to 4:1, we observed even less reorganization in simulated
offset grafts (Figure 4.1C). This was especially apparent in offset grafts with higher
offset distances, in which reorganization stopped even when there was considerable
concavity remaining. This result is not unexpected: when the ratio of _0 to _1 is
high, a standard linear material behaves more akin to a Kelvin-Voigt material and is
effectively more solid and less prone to irreversible deformation, which is required
for shape reorganization. On the other hand, a standard linear material with a low
_0 to _1 ratio behaves more similarly to a Maxwell material and is more fluid.We
would expect such a material to more readily change shape, but also to be less likely
to produce stable, non-circular shapes.

Surprisingly, in certain parameter paradigms, we found that simulated offset grafts
did reorganize into stable oval shapes (Figure 4.2). One parameter that affected the
model’s ability to reorganize into a stable state was relaxation time, which is defined
as

g =
[

_1

in a standard linear material. We found that offset simulations with relaxation time
between 3.5-11.6 hours reached 80% of the final aspect ratio between 200-500 hours
of simulation time and fully reorganized into stable oval shapes within 700 hours
of simulation time. In comparison, offset graft experiments visually completed
reorganization between 24-96 hours, although the aspect ratio continued to display
minor fluctuations over 840 hours of tracking (Figure 2.11B). Parameter sets where
relaxation time exceeded 11.6 hours did not fully reorganize into oval shapes within
1000 hours or did not visibly reorganize at all, and simulations with relaxation
time below 3.5 hours were unstable with time increments below 15 minutes. In
general, offset grafts with high offset distance were more likely to display instability.
Relaxation time is the threshold at which viscoelastic materials switch from being
dominated more by solid, elastic properties to being dominated by more fluid,
viscous properties. It is not surprising, therefore, that as relaxation time increases,
the time to reorganize also increases.

A second parameter that affected the model’s ability to reorganize to a stable oval
shape was muscle force, defined in the model as

�< = Y< (_0 + _1).
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Figure 4.1: Reorganization into oval shapes depends on viscoelastic properties. A.
Offset grafts after 1000 simulated hours of reorganization when the ratio of _0 to _1
is 1:4, B. when the ratio of _0 to _1 is 1:1, and C. when the ratio of _0 to _1 is 4:1.

Specifically, the ratio between the force produced by the muscle and the viscosity
of the material,

Y< (_0 + _1)
[

was between 0.4 ∗ 10−61/B and 0.3 ∗ 10−51/B in all parameter sets that reorga-
nized. When this ratio was too low, reorganization in simulated offsets was often
incomplete, and when the ratio was too high, we observed model instability at time
increments of 15 minutes, especially at higher offset distances. This supports our
hypothesis that force from muscle contraction is the primary driver of reorganiza-
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tion. While we are unable to directly measure the magnitude of muscle force in
our grafted animals, this result is in line with our experimental observations that
animals with higher contraction rates reorganize more quickly.

Figure 4.2: Simulation of an offset graft at different time points showing dra-
matic shape reorganization occurring between 0-200 hours, and gradual boundary
smoothing while global shape is stable between 200-1000 hours.

That our simulations were able to recapitulate reorganization to stable oval shape
with just local mechanical interactions between muscle contraction and viscoelastic
response further supports the model of jellyfish shape as a dynamic equilibrium, as
the way muscle and elastic forces are calculated and applied does not change after
a stable shape is reached. While we did not explicitly measure through experiments
whether muscle force and viscoelastic properties in our offset grafts change to stop
reorganization and generate stable shapes, our simulations show that such changes
are not necessary to stabilize non-circular animal shapes.

4.2 A single parameter paradigm can produce multiple stable jellyfish shapes
given multiple initial geometries

Our grafting experiments showed that Aurelia medusa are able to reorganize into
multiple possible stable shapes depending on the initial graft geometry. In the
offset grafts, we observed no distinct threshold offset distance at which animals
could no longer recover circular body shape. Instead, as offset distance gradually
increased, there was a corresponding increase in aspect ratio of the stable oval
solutions. In our simulations, we found that there were indeed certain parameter
paradigms that were able to recapitulate a relationship between initial offset ratio
and stable oval body shape in which the final aspect ratio increased with offset
ratio (Figure 4.3A-B). These simulations reached 80% of their final aspect ratio at
between 200-500 hours of simulation time and were fully stable by 700 hours of
simulation time, after which we observed minor fluctuations in aspect ratio but no
dramatic change over time. That oval shapes could be stable at various aspect ratios
indicated that a single parameter set could have multiple stable shape equilibria,
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depending on initial geometry (Figure 4.3C). Surprisingly, these parameter sets
even recapitulated our experimental observations that chimerae can reorganize into
S-shaped and asymmetrical animals at high offset distances, thoughmethodology for
calculating muscle force and viscoelastic properties did not change (Figure 4.3D).

Figure 4.3: Simulation of the offset graft at various offset distances. A. Stable
oval solutions of simulated offset grafts at different initial offset distances (t = 1000
hours) B. Relationship between offset distance and final aspect ratio in experimental
offset grafts and simulated offset grafts of different offset distances. Experimental
data is the same as in Figure 2.4H. C. Evolution of aspect ratio over time in six sim-
ulated offset grafts of different offset distances showing that simulated offset grafts
eventually reach stable oval shapes. D. A simulated offset graft that reorganized into
a stable half oval, half S-shape. E. A simulated offset graft that reorganized into an
S-shape.

Thus far we have only simulated reorganization of offset grafts. Can the same
parameters also recapitulate reorganization into stable shapes from other graft con-
figurations? We found that when the butterfly graft was set as the initial geometry,
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Figure 4.4: Simulation of a butterfly graft. A. Simulation of the reorganization of
a butterfly graft into a trapezoidal body shape. The same parameters were used as
in Figure 4.3B. B. Reorganization in butterfly grafts was tracked using the ratio of
the center width, a, to the wing width, b. Reorganization completed in simulated
butterfly grafts between 200-320 hours of simulation time.

simulated grafts in the same parameter paradigms that recapitulated reorganization
of offset grafts were also able to reorganize into stable rectangular shapes (Figure
4.4). Reorganization in the butterfly graft was measured by the change in the ratio
of the width in the middle of the graft to the width at the widest part of the graft.
The timescale of reorganization was 200-320 hours of simulation time with 80% of
reorganization completed between 100-120 hours. Even though the muscle config-
uration in the butterfly graft is very different from the offset graft, a single algorithm
for calculating muscle contraction force and viscoelastic response was sufficient to
reproduce shape reorganization from both initial geometries into different stable
shapes.
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4.3 Final stable shape depends on muscle force parameters
Our experimental results indicated that increased contraction rate increased the rate
of reorganization. We wondered whether increasing the contraction rate would have
a similar effect in our simulated offset grafts. Muscle contraction rate is incorporated
into the simulation by increasing the fraction of time muscle force is applied in each
time increment. In the simulation results described thus far, the muscle contraction
rate was set at 20 contractions per minute, which we had found to be the average
contraction rate of our offset grafts. In these simulations, we tested a range of
contraction rates between 5 and 55 contractions per minute, equivalent to animals
spending 7-73% of the time in a contracted state. 91% of the animals in our graft
experiments had contraction rates within this range.

In these simulations of the offset grafts, we found that contraction rate affected the
final aspect ratio of the stable oval shapes. Offset grafts with the same initial offset
distance reorganized into more elongated oval shapes at low contraction rates and
more circular shapes at high contraction rates (Figure 4.5A). We tested this experi-
mentally by creating offset grafts in animals across the range of naturally-occurring
contraction rates as well as in animals kept in reduced magnesium seawater, which
further widened the range of observed contraction rates. The contraction rate of
offset grafts measured at day 1 and day 4 post-surgery was used to calculate the av-
erage contraction rate during the reorganization period. Offset grafts were classified
by contraction rate into low (<20 contractions per minute) and high contraction rate
(>20 contractions per minute) groups. The initial offset ratio and final aspect ratio
of these grafts were tracked. We found that while increased offset ratio resulted
in more elongated oval animals in both groups, the slope of the offset ratio-aspect
ratio relationship was much higher in low contraction rate animals, suggesting that
an increase in muscle contraction drives reorganization into more circular animals
(Figure 4.5B-C). Indeed, at contraction rates above 35 contractions per minute, we
observed very few oval animals with aspect ratio above 1.5 regardless of initial
offset (Figure 4.5E). Simulated offset grafts also displayed this phenomenon when
contraction rate was varied and all other parameters were held constant, with only
oval shapes with low aspect ratios appearing in simulations at high contraction rates
(Figure 4.5D).

These simulation and experimental results suggest that not only do changes in
parameters such asmechanical stress and viscoelastic properties influence the ability
of anAurelia-like system to reorganize and to find stable shapes, but that they can also
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influence the speed of reorganization and available shape solutions of the dynamical
system.

However, while contraction rate is the only muscle-related parameter that we can
vary experimentally, it is not the only parameter needed to characterize muscle
contraction force. We are not able to experimentally modulate parameters such
as contraction strain, but these are parameter spaces we can explore through our
simulations. In our model, contraction strain is not only integrated into calculations
of the magnitude of muscle force, but also into the direction of muscle force.
Increased contraction strain represents more extreme shortening of the muscle band
in the circumferential direction during contractions aswell as an increasedmagnitude
of muscle force relative to elastic and pressure forces. When all other parameters
are maintained, we found that offset simulations did not fully reorganize at low
muscle strains. At higher muscle strains, offset grafts fully reorganized into stable
ovals with high aspect ratio (Figure 4.6A). Further increasing muscle strain from
this point caused offset simulations to reorganize into ovals with decreased aspect
ratio (Figure 4.6B). While this increased circularity in the final stable shape might
be the result of an increase in the magnitude of the muscle force, increasing the
circumferential muscle strain also changes the geometry of the contracted muscle
and direction ofmuscle force, decreasing the 3\ ofmuscle contraction (Figure 3.5B).
With our current implementation of howmuscle force is calculated, we are unable to
determine which of these effects on muscle contraction causes the observed change
to final stable shape.

4.4 Conclusion
Our simulation results indicate that local mechanical interactions are indeed suf-
ficient to explain jellyfish shape reorganization, as simulated offset and butterfly
grafts do display shape change in the absence of cellular processes and global feed-
back. However, reorganizational ability seems to require a specific range of muscle
contraction force and viscoelastic properties. Muscle contraction force above a
certain threshold was required for full reorganization, and muscle forces below that
threshold resulted in incomplete or no reorganization whatsoever. The viscoelastic
properties required for shape change were of particular interest. First, perhaps un-
surprisingly, we only observed full reorganization by 1000 hours of simulation time
when relaxation time was below a certain threshold. More interestingly, the fluidity
of the material was crucial for shape change. When we modeled the viscoelastic
behavior as being closer to a Kelvin-Voigt material, the ability of the simulation to
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Figure 4.5: Final aspect ratio of real and simulated offset grafts depends on con-
traction rate. A. Increasing the contraction rate of offset grafts with the same initial
offset distance results in more rounded oval solutions. B. Offset ratio vs. final aspect
ratio in offset grafts with contraction rate between 0-20 contractions per minute. C.
Offset ratio vs. final aspect ratio in offset grafts with contraction rate between 20-80
contractions per minute. D. Contraction rate vs. final aspect ratio in simulated offset
grafts. E. Average contraction rate vs. final aspect ratio in offset graft experiments.

reorganize shape was severely limited. A more Maxwell-like model was required to
recapitulate shape change to the degree we observed experimentally.

In general, the parameter sets that produced stable oval shapes all displayed a direct
relationship between initial offset ratio and final aspect ratio. We found that there
existed parameters that could reproduce the specific relationship between offset
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Figure 4.6: Increased muscle force results in rounder solutions from offset grafts. A.
A simulated offset graft with offset ratio 0.3 reorganizes to an oval shape at Y<=0.2.
B. A simulated offset graft with the same initial condition reorganizes to a more
rounded oval shape at Y<=0.25.

ratio and aspect ratio that we observed in the offset graft experiments. Some of
these parameter sets also produced stable asymmetrical and S-like shapes from high
offset initial geometries similar to what we observed at high offset ratio in our offset
experiments. The parameter sets that capture this relationship could generally also
produce stable rectangular shapes from butterfly geometries. This suggested that
rulesets describing the local mechanical interactions are not specific to producing
any one stable shape, but rather that a single set of mechanical interactions is
able to produce a range of stable jellyfish shapes. Lastly, we found that mechanical
parameters likemuscle force and contraction rate can also change or limit the possible
stable solutions available to the system. Increases to muscle strain and contraction
strain resulted inmore circular solutions from the same initial geometries. This raises
the possibility that a synthetic material could be designed with the right material
properties to also change shape flexibly based on the configuration of mechanical
forces.
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C h a p t e r 5

CONCLUSIONS

In this thesis, I explored a mechanism for shape regulation in the moon jellyfish,
Aurelia aurita, first experimentally in Chapter 2 and through simulations in Chapters
3 and 4. Through these dual avenues, we found evidence that body shape in Aurelia
is continuously reinforced through the local mechanical interactions in its body
tissues that are created as it propels itself through the water, thus finally answering
the question of why jellyfish are round.

That we eventually came up with any kind of answer to this question at all is,
frankly, an astonishment. “Why are jellyfish round?” is the kind of question a 5
year-old might come up with, and not a question a “serious scientist” might ask.
To understand just why it has not been a question for scientific study required some
extensive soul-searching. Perhaps the concept of animal shape was just too vague
and too simple to warrant investigation, and yet here was an animal for which body
shape was functional, that had a mechanism in place to robustly and efficiently repair
its shape, and in which body shape could not be taken for granted. Perhaps there
are other systems in which shape should not be taken for granted.

In the original study of symmetrization, Abrams et al. found that other species
of Scyphozoans, the class of Cnidarians to which Aurelia belongs, also recover
radial symmetry in the same way, suggesting that the ability to reorganize into novel
body shapes might not be unique to Aurelia. Homologous mechanisms for shape
regulation might also be found outside of soft-bodied animals, since the two main
components that drive reorganization inAurelia are ubiquitous in biological systems.
All biological materials, even bones, are viscoelastic to some extent (Fung, 1993;
Currey, 2002), and these materials are all regularly subject to mechanical forces.
Recent research has shown that mechanical forces and material properties play an
important role during morphogenesis (Savin et al., 2011; Grosberg et al., 2011;
Carter et al., 2004), and the results presented in this thesis suggest that this role does
not stop post-development. We have, in fact, examples of this. Gravity compresses
our intervertebral disks throughout the course of the day, resulting in the loss of
around 2 cm of height, which is then restored at night. Periodic contractions
reorganize the local collagen network and dilate the cervix during labor (Ludmir
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and Sehdev, 2000). The mechanism for shape regulation in Aurelia could give us a
framework for understanding what role mechanical forces play in shape regulation,
especially of load-bearing and contractile tissues and organs.

In Aurelia, too, there are lingering questions about the effects of this mechanism.
In this work, we focused on how the mechanical interactions change the shape of
the animal when that shape is perturbed by grafting. Furthermore, we focused here
on shape changes within the plane of the bell, as these were most dramatic and
easy to measure in the short term. However, both our experimental and simulation
results indicate that shape regulation is active even during normal physiological
function, and we have observed in our animals that bell curvature increases with
age. The muscle band, too, widens with age until in some cases it lines the entire
subumbrellar surface of the bell. Might repeated mechanical stress from swimming
also facilitate shape change and muscle reorganization in this normal physiological
context as well?

Lastly, the mechanism described in this study could spark innovation in the field of
bio-inspired design, where biological materials have been imitated for their tendency
to be softer, stronger, more extensible, andmore biocompatible than their engineered
counterparts (Joshi et al., 2013; Cheng et al., 2015; Rus and Tolley, 2015; Capadona
et al., 2008). Recent advances in materials science has led to the development
of materials with self-healing, shape memory, and shape changing properties, but
thus far these materials lack the flexibility, autonomy, and dynamism displayed by
shape reorganization in Aurelia (Cangialosi et al., 2017; South and Lyon, 2010;
Chen et al., 2012; Mynar and Aida, 2008; Phadke et al., 2011; Zhao et al., 2016;
Li and Shojaei, 2012). Our modeling results indicate that Aurelia tissue might be
an example of a material capable of changing shape on a purely mechanical basis.
Further characterization of this material and mechanism could pave the way toward
dynamically shape-changing synthetic materials.
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