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ABSTRACT

This thesis discusses several topics in extending the capability of conventional quan-
tum many-body methods. The first project focuses on extending quantum chemical
methods, namely coupled cluster theory, to the correlated systems in the condensed
phase. We consider bulk nickel oxide and manganese oxide, which are two paradig-
matic correlated electron materials that pose challenges to traditional density func-
tional theory-based simulation framework. We adapted molecular coupled cluster
singles and doubles theory using Gaussian basis sets with translational symmetry
and norm-conserving pseudopotential. This allowed us to carry a detailed study on
the ground and excited states of the two materials.

The second project investigates numerical optimization techniques forAbelien group
symmetric tensor contractions. In many-body quantum simulations, group symme-
tries in states and operators often lead to block sparse structure in the representing
tensors. Exploiting this opportunity can significantly reduce the computation cost
and memory footprint in tensor contractions. We consider cyclic group symmetry
and introduce an efficient remapping scheme to express the sparse tensor contrac-
tions almost fully in terms of dense tensor operations.

The third project is devising a wavefunction-based method for coupled electrons and
phonons. We are interested in simulating the interacting electrons and phonons at
the same footing using coupled cluster methods. The ground state and excited state
of two types of systems are investigated in this work: the Hubbard Holstein model
and diamond crystal in ab initio setting.

Finally, the fourth project is to develop a generic framework for tensor network sim-
ulation on fermionic systems. Tensor network methods are powerful tools to study
strongly correlated physical systems. However, traditionally these methods have
been developed with commutative algebraic rules, which are commensurate with
bosons but not compatible with anti-symmetric fermions. Our approach encodes the
fermion statistics directly in the block sparse tensor backend so the tensors behave
just like anti-commuting fermion operators.
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C h a p t e r 1

INTRODUCTION

Computer programs are powerful tools to help physicists to obtain a deep under-
standing of how matters interact. However, despite the ever-growing computational
power, exact solution of quantum many-body problems is in principle classically
intractable. Therefore, to achieve an accurate description of the system at a rea-
sonable computational cost, one must carefully balance efforts in many aspects:
approximation within theory, numerical optimization, extrapolation towards contin-
uum limit, to name a few. In this thesis, we consider four topics related to extending
the capability of conventional quantum simulation methods. In this chapter we first
describe our motivation followed by an overview for each topic that will be discussed
in subsequent chapters. The detailed background for each topic will be elaborated
in the corresponding chapter.

1.1 Quantum Many-Body Problem
Material and chemical properties are governed by the many-body Schrödinger equa-
tion which describes the quantummechanical interaction of the constituent electrons
under the the electric potential field from the nuclei. At the heart of what we do is
to solve the time-independent Schrödinger equation for a given Hamiltonian �:

� |Ψ〉 = � |Ψ〉. (1.1)

In the context of non-relativistic electronic structure theory, the Hamiltonian can be
expressed as:

� = −
∑
8

ℏ2

2<8
∇2
8 −

∑
�

/�4
2

| ®A8 − ®A� |
+

∑
8≠ 9

42

2| ®A8 − ®A 9 |

−
∑
�

ℏ2

2"�

∇2
� +

∑
�≠�

/�/�4
2

2| ®A� − ®A� |
,

(1.2)

where <8 and "� denote the mass of electron 8 and nucleus � respectively. ®A
represents the spatial coordinate while ℏ and 4 are the reduced Planck constant and
the charge of electron.
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To make the problem a bit tractable, one typically adopts the Bohr-Oppenheimer
approximation to treat the electrons and nuclei separately. Due to the large dif-
ference between the mass of the electron and the nucleus, we assume that the full
wavefunction |Ψ({A}, {'})〉 can be approximated by a product of the nucleus wave-
function |Ψ({'})〉 and the electron wavefunction |Ψ({A})〉{'} at the fixed nucleus
coordinate. This so called “clamped-nuclei" approximation leads to the simplified
electronic Schrödinger equation �4 |Ψ({A})〉{'} = �4 |Ψ({A})〉{'}, where

�4 = −
∑
8

ℏ2

2<8
∇2
8 −

∑
�

/�4
2

| ®A8 − ®A� |
+

∑
8≠ 9

42

2| ®A8 − ®A 9 |
. (1.3)

The Bohr-Oppenheimer approximation hugely reduces computational complexity
and is widely applicable to a broad spectrum of molecules and materials. Detailed
discussion of its validity can be widely found in literature. We here note that the
approaximation can break down when the lowest lying electronic states change very
rapidly with nuclear position and approach each other in energy.

Nevertheless, solving the many-body Schrödinger equation on just the electronic
part is by no means a simple task. The problem is further complicated by the Pauli
exclusion principle, and numerical solution is a “non-polynomial hard" problem.
Although the exact solution comes with exponential cost in system size, we can
numerically solve these equations in an approximate manner if we are smart about
it. In this regard, approximation must be treated with care at each stage of our
simulation. Here we discussion some of the main considerations.

First, what kind of approximate theory should be adopted in our calculation? There
is a vast array of numerical methods developed to approximately solve the quantum
many-body problem, each with different traits in terms of representability, level of
empiricism, computational cost, numerical stability, and so on. As of yet, there
is no obvious winner that can consistently fit into any physical system of interest.
Some of the key for deciding on the theory include: Are we looking for quantitative
or qualitative answer? How much correlation effect is expected in the system of
interest? Is the computational cost manageable with the available resource?

Once the approximate theory is decided, we need to further map the Schrödinger
equation onto a discretized basis. The Hamiltonian can then be written in the second
quantized form as
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� =
∑
?@

C?@0
†
?0@ +

∑
?@AB

E?@AB0
†
?0
†
@0B0A , (1.4)

where C?@ and E?@AB are the one-body and two-body Hamiltonian tensors, respec-
tively. Our goal is to compute the wavefunction, or more often, the properties of
interest in this setting. Computational solution typically amounts to linear algebra
operations on the wavefunction tensor and the Hamiltonian tensors, which reflected
on the computational cost. To this end, the development of computer hardware
and high-performance linear algebra libraries has greatly aided modern electronic
structure theory, making it possible to run simulations that were once deemed out
of reach on just consumer laptops.

Going back to basis discretization, two different philosophies have been adopted for
computational quantum many-body problem:

1. Basis size are systematically increased in an effort to obtain quantitative results
in the complete basis set limit. This is typically adopted in ab initio quantum
chemistry and computational materials community.

2. Only the minimal Hamiltonian terms that capture the essential physics are
preserved. This is more often adopted in the quantum physics community
where high-level numerical theory is used to obtain insight into the underlying
mechanism.

The two philosophies are essentially two different strategies to leverage computa-
tional cost against problem complexity. As our computational power keeps growing,
there is an increasing trend in the research community to blur the boundary between
them.

As we have described above, developing many-body simulation tools is an intri-
cate task that requires careful leverage over theory formulation, numerical setting,
algorithm optimization, implementation, and so on. With the ever-growing compu-
tational power and electronic structure infrastructure, modern quantum many-body
simulation is rapidly evolving as well. In the remaining part of this chapter, we will
briefly introduce the opportunities we identified in this dynamics.

1.2 Precision Simulation for the Condensed Phase
In computationalmaterials science, density functional theory has been theworkhorse
over the fast few decades. This framework maps the many-body problem into an
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auxiliary system of non-interacting electrons where each electron feels an average
potential generated by exchange correlation functionals acting on the 3-dimensional
electron density. The mean field approximation yields a set of single particle Kohn-
Sham equation that can be solved self-consistently:

� (q8 (A) = n8q8 (A), (1.5)

� ( = − ℏ
2

2<
∇2 + EB (A), (1.6)

EB (A) = E4GC (A) +
∫

=(A′)
|A − A′| + EG2 (A), (1.7)

where EB, E4GC , and EG2 represent the total effective potential, the external potential,
and the exchange correlation potential. The electron denisty =(A) can be computed
by

=(A) =
∑
8

q∗8 (A)q8 (A). (1.8)

By reducing the many-body problem to non-interacting problem, a significant cost
reduction is achieved. However, although the theory is exact in nature, the exchange
correlation functional that contains all the many-body effects can only be approxi-
mated, and there exists no systematic route to improve it. In fact, development of
the exchange correlation functionals is very slow, and rarely without ambiguity. As
a result, materials simulations can only provide a more qualitative and rough guide
rather than definitive and quantitative solution.

So how do we move beyond this approach to achieve precision simulation for
materials? Within the density functional framework, much effort has been devoted to
develop methods based on low-order time-dependent perturbation theory including
GWapproximations andBethe-Salpeter equations. Thesemethods generally achieve
better results in the weak to intermediate correlated region, but the success is not
consistent, especially in the strongly correlated region, and it is unclear how to
further improve these methods in a systematic manner.

Alternatively, we can consider a paradigm shift to the wavefunction-based ap-
proaches widely adopted in the quantum chemistry community. Rather thanworking
on the electron density, a reduced quantity, quantum chemical methods generally
aim to approximate the full wavefunction through expansion in themany-body bases,
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which are constructed as Slater determinants from a set of single-particle orbitals
q8 (G8):

|Φ�〉 = |q0(G0)q1(G1) . . . q= (G=)〉. (1.9)

Here for simplicity, we use G to represent both the spatial coordinate and the spin
part f(l) ∈ {U, V}.

At the Hartree-Fock (lowest) level, the ground state wavefunction is assumed to be
a single Slater determinant (|Ψ0〉 ≈ |Φ0〉). Based on the variational principle, we
can arrive at the Hartree-Fock equations much similar to the Kohn-Sham equations:

ℎ(G1)q8 (G1) +
∑
9≠8

∫
3G2 |q 9 (G2) |2A−1

12 q8 (G1)

−
∑
9≠8

∫
3G2q

∗
9 (G2)q8 (G2)A−1

12 q 9 (G1) = n8q8 (G1).
(1.10)

One can immediately see that only Coulomb and exchange interactions are included
in this mean field approximation. Nevertheless, solution of these equations yields a
set of q8 (G8) (2" in total where " is the size of spatial atomic basis we choose) that
can be a good starting point to move towards higher level theories. In this context,
the most straightforward way to improve is the so-called Configuration Interaction
(CI) ansatz where the wavefunction is expanded with all the single determinants that
can be generated from all q8 (G8),

|Ψ〉 = |Φ0〉 +
∑
80

�08 |Φ08 〉 +
∑

8< 9 ,0<1

�018 9 |Φ018 9 〉 + . . . (1.11)

Here |Φ0
8
> refers to the singly excited determinant formed by replacing the orbital

q8 with orbital q0 in the Hartree-Fock wavefunction Φ0. Assuming a closed-shell
system, the entire set of q8 amounts to

("
#
2

)
configurations where # is the number

of electrons, which is prohibitively demanding for computational cost. Fortunately,
not all Slater determinants are equally important to represent the low-lying states
we are most interested in. In fact, we can often aggressively truncate the CI
series and yet achieve an accurate approximation of the true ground state. In this
regard, numerous methods have been developed with different strategies on how to
truncate theHilbert space and how to compute the reducedwavefunction coefficients.
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These quantum chemical methods generally form a well-established hierarchical
framework to compute properties and spectral functionswith high accuracies. While
these methods obviously hold great potential in accurate materials simulation, they
mostly come with a higher-order polynomial scaling with respect to system size and
have thus not been fully explored in the condensed phase.

When one thinks about porting the wavefunction-based quantum chemical methods
to the condensed phase, multiple factors must be carefully examined. For instance,
what type of correlation can be propertly handled by the theory? How much
reference dependence is expected, and how does computational cost scale? We here
highlight another important factor—size extensivity of the theory, which describes
whether the energy grows linearly with respect to the number of particles. This is
particularly important in the condensed phase, as a size-inextensive method predicts
the correlation energy per unit cell would be zero in the limit of an infinite number
of unit cells.

Upon balancing all the factors above, coupled cluster theory is arguably the most
promising candidate for application in the solid state. The theory is size-extensive
with manageable polynomial cost, andmore importantly, the ansatz inherently offers
a systematically improvable framework by tuning the level of excitation operators to
include. In fact, in recent years, pioneeringwork in the field has suggested promising
results from applying low-level coupled cluster theory to weakly correlated crys-
talline materials. More excitingly, the so-called equation of motion formalism can
be further applied on top of the ground state coupled cluster wavefunction to extract
information on excited states. We are interested in investigating the performance
of coupled cluster in the correlated solid-state region. Our target is the first-row
transition metal oxide, a class of materials that posed a significant challenge for
conventional density functional framework.

1.3 Tensor Contraction with Symmetry Groups
As mentioned in Chapter 1.1, in numerical quantum many-body simulations, the
Schrödinger equation ismapped onto a discretized basis, and tensors are ubiquitously
used to represent states or operators under this basis. Formulation of quantummany-
body theory generally consists of two parts, one on how to obtain the wavefunction
coefficient and the other on how to compute expectation values of interest. In
both cases, algebraic equations are formed between the wavefunction tensors and
the Hamiltonian tensors, mostly in the form of tensor contractions between these
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quantities, thus making it one of the most important computational primitives in
quantum many-body simulations.

Simply getting the computer program to perform these tensor contractions can be
straightforward. An example for a naive implementation of matrix-matrix multipli-
cation kernel is shown in Algorithm 1, and the algorithm can be easily extended to
arbitrary tensor contraction.

Algorithm 1 Loop nest to perform matrix multiplication �<= =
∑
: �<:�:=

for < = 1, . . . , " do
for = = 1, . . . , # do

for : = 1, . . . ,  do
� [<, =]+ = �[<, :]�[:, =]

end for
end for

end for

However, such implementation is extremely inefficient in practice. Fortunately,
computer hardware vendors and the open-source research community have spent
decades developing highly optimized math libraries. For instance, level 3 BLAS
routines offer efficient kernels for various matrix-matrix operations including gen-
eral matrix mulitplication (GEMM). These libraries are implemented with sophis-
ticated optimization in cache usage, memory access pattern, vectorized instruction,
parallelization, and so on.

Although there currently exists no unified application programming interface (API)
among vendors and the open-source community for tensor-level operations, tensor
contraction can be viewed as a high-dimensional generalization of matrix-matrix
or matrix-vector multiplication. Therefore, a widely adopted approach to perform
tensor contraction is to transpose the inputs into proper matrix form followed by a
GEMM call and transposition on the output.

Besides taking advantage of highly optimized math libraries, in the context of quan-
tum many-body simulation, there exist more opportunities to boost the performance
of our implementation. Here we highlight the effect of the symmetry group in-
herent to the system, which means that the states or operators are often invariant
under certain symmetry transformations. Such a symmetry group translates into the
representing tensors, implying a block-sparse structure where a significant portion
of the tensors is zero and makes no contribution to the final outcome. Therefore,
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this block-sparse structure can be exploited to reduce the computational cost and
memory footprint.

Taking matrix multiplication in Algorithm 1 as an example, in the presence of
block sparsity, only a small subset of {<}, {=}, and {:} needs to be stored and
iterated over explicitly in the multiplication operation. A widely adopted approach
in a variety of state-of-the-art tensor contraction software libraries to exploit this
opportunity is to either iterate over blocks or adopt general block-sparse tensor
format. In principle, these strategies can reduce the computation scaling andmemory
footprint of nontrivial contractions (any contraction with a cost that is superlinear in
input/output size) by a factor of$ (�2) and$ (�) respectively, where G is the size of
the symmetry group. However in practice, such a claim comes with caveats: unlike
dense tensor operations where coalesced memory access pattern and better cache
usage can often be exploited, the handling of block sparsity introduces additional
code complexity and overhead for managing and scheduling (potentially small)
blocks. Meanwhile, these blocks may not be contiguous in memory, thus leading
to a performance drop which is often highly sensitive to the size of the blocks and
the number of blocks to contract. Therefore, the treatment of block sparsity must be
taken with care in order to actually speed up our simulation.

We are interested in a special scenario where the contraction is constrained by a
cyclic group and the block sizes are equal for all symmetry sectors. This structure
is commonly identified in systems with cyclic point group symmetry, solid-state
crystals with translation invariance for example. As a concrete example, efficient
handling of this symmetry can lead to a computational saving of #2

:
for our coupled

cluster calculation in materials where #: is the number of sampling in the Bril-
louin Zone. We here propose a technique, irreducible representation alignment, to
efficiently handle this block-sparse contraction by using contraction-specific com-
pressed forms. As a result, our algorithm amounts to only dense tensor operations
and shows high efficiency and parallel scalability.

1.4 Beyond Bohr-Oppenheimer Approximation
We mentioned in Chapter 1.1 that the full Schödinger equation is often decoupled
into the pure electronic part and nucleus part using the Bohr-Oppenheimer approx-
imation. The electronic Schödinger equation assumes the nuclei to be located at
fixed locations, which is in principle not true, even at 0 . Therefore, the approxi-
mation can break down when the electron nucleus coupling becomes large and no
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longer negligible. In fact, even away from the strong coupling region, the coupling
can give rise to a wide range of phenomena in the condensed phase, for instance,
“unexpected" phase transition, the temperature dependence of electronic transport,
and optical properties. In the strong coupling region, they are the key interaction
underpinning the Bardeen-Cooper-Schrieffer type of superconductivity, which has
attracted significant research interest.

Therefore it is crucial to address the coupling between the electronic and nuclear
degree of freedom. In the solid state, crystal vibrations are typically characterized
by phonons which represent the collective excitations of the underlying lattice.
Traditionally the computational study of electron-phonon interaction can be mostly
divided into two categories:

1. Simplified lattice models with semi-empirical Hamiltonians are constructed
and then solved nearly exactly using high-level theory to capture the essential
physics.

2. Ab initio Hamiltonians that model realistic materials are first extracted, typi-
cally with the use of density functional theory framework on a fine grid, and
then treated with more simplified theory due to the complexity with large
system size.

Again, this is another manifestation of circumstances where we have to leverage the
level of many-body theory against the problem size. In this context, method (1)
generally treats the electronic and nuclear degree of freedom at the same footing in
an effort to obtain qualitative answers. The results provide insightful interpretation
of the underlying mechanism but lack predictive power for realistic materials. On
the other side of the spectrum, method (2) often treats the coupling as a perturba-
tive term to the electronic problem as a computational compromise. Consequently,
the simulation can be performed at a large basis setting, yielding good quantita-
tive results, especially for systems with lower level of correlation. However, the
success does not translate to systems with a complex interplay of electron-electron
correlation and electron-phonon coupling.

Our goal is to bridge the gap between the two different paradigms by devising a cost-
efficient theory that treats the interacting problem at a correlated level. Our starting
point is the coupled cluster theory which has long been one of the most reliable
computational methods in electronic structure theory. We demonstrate that given
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a Hamiltonian with electron phonon coupling, we can develop a systematically-
improvable framework to describe the coupled system by combining the electronic
and vibrational coupled cluster theory.

1.5 Tensor Network Methods for Fermion Simulation
In previous sections of the chapter, our attention has been focused on quantum
chemical wavefunctionmethods where the Hilbert space is explicitly truncated at the
ansatz level. Commensurate to the development of these numerical tools is a set of
diagrammatic tools to describe different types of interactions, for example, Feymann
diagrams and Goldstone diagrams. Although these diagrams are constructed in
a systematic manner with an exact mathematical form, they are not intuitive in
providing information on the entanglement structure of the system. Looking beyond,
a few questions naturally arise:

1. What are the other ways to efficiently represent the low-lying states?

2. Nature is always local and entanglement is often structured. Can we use that
information to refine the wavefunction ansatz for better representability?

To address these problems, tensor network theory has recently emerged as a novel
mathematical language to describe quantum many-body systems. The theory
amounts to breaking up the huge wavefunction coefficients into smaller tensors
that are connected to each other based on certain geometry. The geometry can
be chosen to reflect the entanglement structure of the system. We provide here a
concrete example based on a four-site system in a 1-dimension (1D) geometry. The
tensor network states can be expressed as Equation 1.12 while the diagrammatic
representation is provided in Figure 1.1:

|Ψ〉 =
∑
80818283

�80818283 |80〉|81〉|82〉|83〉

≈
∑
80818283

∑
9 :;

�0
980
�1
9 :81
�2
:;82
�3
;83
|80〉|81〉|82〉|83〉,

(1.12)

where we use vertices and lines to represent tensors and indices respectively. The
size of the shared index 9 , : , and ; is termed as the bond dimension and can be
viewed as a single parameter to control the level of approximation in the theory. We
can immediately see that tensor network theory is systematically improvable in that
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Figure 1.1: 1D tensor network states representation for a four-site quantum system.

.

we can tune both the geometry and the bond dimension to control the truncation on
the entire Hilbert space. Meanwhile, we can clearly identify a simplified graphical
framework to understand and classify the state of matter for complex systems.

The field of tensor network kicked off with SteveWhite’s invention of density matrix
renormalization group (DMRG) in 1992, and has been undergoing extremely rapid
developments in the last two decades.

At the core of DMRG’s success is the underlying matrix product states, which is just
the simplest variant of tensor network states as shown in Figure 1.1. Despite such
simplicity, the density matrix renormalizaton group has dominated computational
study of one dimensional (1D) lattice models including a 1D Hubbard model and
Heisenberg model, yielding extremely accurate ground-state properties.

However, the remarkable success of DMRG is not universal: matrix product states
are only best suited for ground states of gapped 1DHamiltonians due to the 1D entan-
glement entropy area law. Unfortunately, the essential physics of many interesting
quantum many-body problems is often beyond one dimension, the superconductiv-
ity manifested in 2D Hubbard model for example. It is thus crucial to move beyond
the 1D matrix product states and explore the capabilities of tensor network states
with more sophisticated geometries.

However, porting the success of DMRG to higher dimensional fermionic systems is
by no means a straightforward translation. The increase in dimension and geometric
complexity entails numerous challenges that have seeded a plethora of extensive
research. Following is a list of challenges that we will discuss here:

1. How to compute the individual tensors to optimize the wavefunction?

2. How to efficiently contract tensor network graphs in arbitrary geometry?

3. How to efficiently represent the anti-symmetric wavefunction with minimal
bond dimension?
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For question (1), there are generally two types of methods to compute the tensors,
one by variational optimization such as DMRG and the other through time-evolution
block-decimation (TEBD), an approximate version of imaginary time evolution. In
both cases, onemay inevitably need to contract the entire graph, which is complicated
by itself in two regards. On the one hand, exact contraction on an arbitrary graph
generally requires exponential resource. On the other hand, the exponential resource
can potentially be lowered by a huge prefactor with an optimal contraction path, but
searching the optimal contraction path itself is a “non-polynomial hard" problem.
Therefore, such computational cost constraint means that onemay have to use certain
approximation in optimizing tensors and contracting the network.

Finally, the central topic that will be discussed later in the thesis is related to question
(3) on how to efficiently account for fermion statistics in tensor network theory. For
1D MPS, the anti-commuting fermion statistics is mostly avoided by mapping the
fermion operators to hard-core boson operators with Pauli strings. Beyond 1D,
such transformation can no longer preserve the locality of the Hamiltonian and a
“fictitious" long-range interaction could be introduced into the system, resulting in
an unnecessarily higher requirement on the bond dimension. At high dimension,
the computational cost of contracting the graph scales much higher than the matrix
product states and such an increase could easily make the cost unmanageable.

We are interested in achieving the most efficient representation of fermion wave-
function on tensor network with arbitrary geometry. Our strategy is to render the
numerical tensor library so that the fermionic statistics are explicitly accounted for
in the backend. This approach allows us to directly inherit much of the pre-existing
tensor network infrastructure. Using all the machinery we have built, we perform
a benchmark study on various types of Hubbard models to evaluate the strength of
our method and the accuracy of our approximate contraction schemes.
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C h a p t e r 2

ELECTRONIC STRUCTURE OF CRYSTALLINE MATERIALS
FROM COUPLED CLUSTER THEORY

2.1 Abstract
We present the ground- and excited-state electronic structure of two prototypical
transitionmetal oxides,MnOandNiOusing coupled cluster in its sinlges and doubles
approximation (CCSD and EOM-CCSD). Since the ground states are magnetically
ordered, we use the spin unrestricted CC formalism. Fundamental gaps of MnO
and NiO are determined to be 3.46eV and 4.83eV respectively based on a 16-unit
supercell simulation. Amid finite-size error from coarse Brillouin zone sampling,
our results show clear improvement compared with standard mean field methods.
Additionally, our wavefunction representation allows for a detailed analysis of the
charge-transfer/Mott-insulating character and atomic nature of the electronic bands
of the two materials.

The work in this chapter is presented in the paper [1].

2.2 Introduction
Solids with correlated electrons pose a long-standing challenge in modern con-
densed matter physics. One of the prominent examples is the first-row transition
metal oxides such as MnO and NiO. While the partially filled 3 band suggest metal-
licity in these materials, experimentally they turned out to be insulators with large
gaps [2–4]. Two important explanations shown in Figure 2.1 have been developed to
account for this discrepancy: the first one was proposed by Mott arguing that large
electron repulsion could prohibit conduction, forming a so-calledMott insulator [5];
the second one gained insights from correlating model cluster calculations and ex-
perimental spectra [2, 6] to highlight the effect of the ligand-to-metal charge transfer
process. Since then, the electronic characters of these transition metal oxides have
been a fertile topic of study.

In principle, these questions could be unambiguously resolved through accurate
first-principles calculation on the bulk material. However, achieving quantitative
accuracy in computing properties for transition metal oxides has been difficult. For
example, local and gradient density functional theories (DFT) typically underesti-
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Figure 2.1: Schematic diagrams of the insulating mechanism for (a) Mott-Hubbard
type where the charge transfer energy Δ is larger than the on-site Coulomb repulsion
U and (b) charge-transfer type with Δ < *. Here ` denotes the chemical potential.

mate both the insulating gap and order parameters, such as the magnetic moment [7].
While hybrid functionals can give better gaps, this success does not always translate
to better properties and the performance is not consistent across materials [8–10].
QuantumMonte Carlo methods can provide higher accuracy at greater cost [11, 12],
but do not allow access to the full spectrum. Low-order diagrammatic approaches
such as the GW approximation [13–16] have also been applied to these systems, with
mixed success. Finally, while DFT with a Hubbard U (DFT+U) [17–19] and dy-
namical mean-field theory (DMFT) calculations [20–28] have provided a practical
approach to obtain important insights, these methods contain a degree of empiricism
that introduces uncertainty into the interpretations.

Coupled cluster (CC) theory is a theoretical framework originating in quantum
chemistry and nuclear physics [29, 30], which has recently emerged as a new way
to treat electronic structure in solids at the many-body level [31, 32]. The method is
systematically improvable in terms of particle-hole excitation levels, giving rise to
the coupled cluster with singles, doubles, triples and higher approximations. While
the earliest formulation was for ground states, excited states can be computed via the
equation of motion (EOM) formalism [29, 33–35]. Recent single-particle spectra
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computed for the electron gas [36], and simple covalent solids [31] demonstrate
that high accuracies can be achieved at the level of coupled cluster singles and
doubles (CCSD). Note that at the ground-state CCSD level, the coupled cluster
energy includes all ladders and ring diagrams, some of the couplings between the
two, as well as partially self-consistently renormalized propagators. Thus compared
to approximate GW methods, the CCSD equations are less sensitive to the single-
particle starting point, while the inclusion of ladders (which are entirely omitted in
GW) provides for some ability to treat stronger correlations. A detailed comparison
of the diagrammatic content of GW and excited-state EOM-CCSD can be found in
[37].

The rest of the chapter is organized as follows. In Section 2.3 we formulate the
ground-state coupled cluster theory and equation ofmotion (EOM) ansatz for excited
states in periodic systems. In Section 2.4 we present the CCSD results on NiO
and MnO where a detailed analysis on the numerical convergence, ground-state
properties, as well as the nature of the insulating states is provided. We conclude
with Section 2.5.

2.3 Theory
Coupled Cluster Theory for Fermions
In this chapter we will use 0† and 0 to represent fermion creation and annihilation
operators respectively.

The coupled cluster wavefunction is parameterized in an exponential fashion

|Ψ��〉 = 4) |Φ0〉, (2.1)

where |Φ0〉 is a single determinant reference. The )-operator here is defined in
some space of excited configurations such that

) =
∑
80

C08 0
†
008 +

1
4

∑
8 901

C018 9 0
†
00
†
1
0 908 + . . . (2.2)

where 8 and 0 index occupied (hole) and virtual (particle) spin orbitals respectively.

Generally, the )-operator is truncated at some finite excitation level. For example,
letting ) = )1 + )2 yields the coupled cluster singles and doubles (CCSD) approx-
imation. The coupled cluster energy and amplitudes are then determined from a
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projected Schrödinger equation:

〈Φ0 |4−)�4) |Φ0〉 = �HF + �CC (2.3)

〈Φ` |4−)�4) |Φ0〉 = 0. (2.4)

HereΦ` denotes a single determinant with particle-hole excitations, and 4−)�4) is
commonly referred to as the similarity transformed Hamiltonian �̄.

The most computationally expensive step in CCSD formally scales as $ (#2
>22#

4
E8A
)

where #>22 and #E8A are the size of occupied orbitals and virtual orbitals respectively.

Equation of Motion Coupled Cluster
Excited states can be computed within the EOM formalism which parameterizes a
neutral or charged excitation by applying an excitation operator to the CC ground-
state:

|Ψ4G〉 = ' |ΨCC〉 = '4) |Φ0〉. (2.5)

Because the excitation operator, ', commutes with the excitation operators in ) ,
solving this eigenvalue problem is equivalent to finding the right eigenvector of the
similarity transformed Hamiltonian:

〈` |�̄'= |Φ0, 0〉 = �='=` . (2.6)

Here, �= is the energy of the =th excited state, and ` indexes an element of the
excitation operator '.

The excitation operator, ', can be constructed to access charged or neutral excita-
tions:

'IP =
∑
8

A808 +
1
2

∑
8 90

A08 90
†
0080 9 + . . . (2.7)

'EA =
∑
0

A00†0 +
1
2

∑
801

A018 0
†
00
†
1
08 + . . . (2.8)

'EE =
∑
80

A08 0
†
008 +

1
4

∑
8 901

A018 9 0
†
00
†
1
0 908 + . . . (2.9)

For the excited state calculations in this chapter, we will use '�% and '�� in
conjunction with CCSD wavefunction to compute the ionized states (IP-EOM-
CCSD) and electron attached states (EA-EOM-CCSD). The excitation space for
the ionized states is restricted to the space of 1-hole (1h) and 2-hole, 1-particle
(2h1p) states while the electron attached states lie in the space of 1-particle (1p)
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and 2-particle, 1-hole (2p1h) states. Note that although the ground-state CCSD
theory exhibits a computational scaling of #6, the subsequent IP-EOM-CCSD and
EA-EOM-CCSD calculations come with a reduced scaling of #5.

Extension to Periodic Systems
For periodic systems, we choose an underlying single-particle basis of crystalline
Gaussian-based atomic orbitals (AOs) for compact representation of the Hilbert
space. These are translational-symmetry-adapted linear combinations of Gaussian
AOs of the form

q`,: (A) =
∑
)

48: ·) q̃` (A − )), (2.10)

where : is a crystal momentum vector in the first Brillouin zone and ) is a lattice
translation vector. In presence of translational symmetry, each AO and molecular
orbital (MO) carries an addition label for the crystal momentum, and all quantities
must conserve crystal momentum. For instance, the two electron integrals, which
are defined (per unit cell Ω) as

(?: ?@:@ |A:A B:B) =
∫
Ω

3A1

∫
3A2q

∗
?: ?
(A1)q@:@ (A1)E12q

∗
A:A
(A2)qB:B (A2), (2.11)

are only non-zero if : ? + :A − :@ − :B = � where � is a reciprocal lattice vector.
Since particle and holes states now all carry a net crystal momentum, adaptations
are also required at CCSD and EOM-CCSD level:

C1 =

′∑
:8

∑
80

C
0:0
8:8
0
†
0:0
08:8 , (2.12)

C2 =
1
4

′∑
:8: 9 :0:1

∑
8 901

C
0:01:1
8:8 9 : 9

0
†
0:0
0
†
1:1
0 9 : 908:8 , (2.13)
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:0:8: 9

∑
08 9
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':�� =
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0

A0:0
†
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+ 1

2

′∑
:0:1:8

∑
018

A
0:01:1
8:8

0
†
0:0
0
†
1:1
08:8 . (2.15)

Here the primed sum indicates crystal momentum conservation. For C2, this amounts
to :0 + :1 − :8 − : 9 = �, while for '̂:

�%
and '̂:

��
, the primed sum suggests a net
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change of momentum : , ie., :8 + : 9 − :0 = : +� for IP and :0 + :1 − :8 = : +� for
EA. With the introduction of crystal momentum, the formal computational scaling
of periodic CCSD and EOM-CCSD are increased by a prefactor of #4

:
and #3

:

respectively where #: is the number of k-point sampling in the first Brillouin zone.
For detailed equations of our periodic unrestricted equation-of-motion CC, readers
are encouraged to refer to [1].

2.4 Results
Computational Details
NiO and MnO both crystallize in a rocksalt structure with alternating ferromagnetic
(111) planes stacked along the [111] direction. To host this antiferromagnetic (AFM)
order, our calculations used a rhombohedral supercell with two units of XO (X=Mn
or Ni). The lattice constants are taken to be the experimental values at 300 K , i.e.
0 = 4.43 Å and 0 = 4.17 Å for MnO and NiO respectively [38].

All of our methods are implemented within, and calculations performed using the
PySCF package [39, 40]. In our calculations, GTH pseudopotential and corre-
sponding single-particle basis [41] from the CP2K package [42] are used. In order
to assess basis set convergence, we first performed a set of calcuations using GTH-
SZV/DZVP/TZVP-MOLOPT(-SR) (SZV/DZVP/TZVP for short) for the metal and
oxygen respectively [41]. For all other calculations, we used DZVP basis, which
amounts to 78 orbitals per rhombohedral unit cell. Electron repulsion integrals
were generated by periodic Gaussian density fitting with an even-tempered Gaus-
sian auxiliary basis [43] and our initial mean field reference for CC calculations
were generated from unrestricted Hartree-Fock calculations. The CC reduced den-
sity matrices are approximately computed using the right eigenvector of �̄ [44] for
subsequent observable calculations. Population analysis in the crystalline intrinsic
atomic orbital basis [45, 46] is performed for atomic character analysis and local
magnetic moments calculation.

Convergence
In order for calculations to carry predictive power, one must try to converge the
simulations towards complete basis set limit (CBS) and the thermodynamic limit
(TDL). However, due to the steep scaling of CC calculations, it is not possible to
compute properties at a fully converged setting. We thus first assess the convergence
of the theory.

We first focus on the basis set effect by computing the CC total energies, local



19

magnetic moments on the metal and single-particle gaps as a function of increasing
basis size for a 1x1x1 rhombohedral cell. The results are summarized in Table 2.1.
Note the single-particle gaps here include both the direct gap at Γ and a gap for
an indirect transition from Λ 1

2
(/) (mid-point of the Λ symmetry direction of the

primitive cell, equivalent to the Z high-symmetry point of the rhombohedral cell, see
Figure 2.5 ) to Γ [47]. This transition is presumed to be where the fundamental gap
is from and we will refer the fundamental gap to this specific transition throughout
the rest of the chapter.

System Basis ��� /eV `� Δ22
Γ
/eV Δ22

8=3
/eV

MnO SZV -2.66 4.29 0.36 1.04
DZVP -12.16 4.61 2.49 1.48
TZVP -14.23 4.61 2.40 1.42

NiO SZV -3.36 0.46 2.49 2.13
DZVP -13.40 1.18 3.22 2.62
TZVP -15.68 1.19 3.21 2.49

Table 2.1: Basis set convergence of CCSD total energy, local magnetic moment on
metal, direct Γ gap ΔΓ and indirect fundamental gap Δ8=3 for a 1x1x1 cell.

From Table 2.1, we found that as basis size increases from SZV to DZVP to TZVP,
themagneticmoment is alreadywell converged atDZVP level, while theCCenergies
still changes drastically, as expected. We also find the single-particle direct gaps
ΔΓ to be well converged while the indirect fundamental gaps Δ8=3 are slightly less
converged with a change by more than 0.1 eV in NiO moving from DZVP to TZVP.

While the remaining basis error is estimated to be of several tenths of an eV, we will
use DZVP basis for all the remaining calculations due to the computational cost.

We then turn our focus onto finite size error. The same quantities presented in
Table 2.1 are shown in Table 2.2 for a 2x2x2 supercell. Note here that for the
magnetic moments calculations, we used twist average [48, 49] technique with
another 2x2x2 grid to achieve an effective 4x4x4 sampling of the Brillouin zone.

Compared with the 1x1x1 cell, we found significant change in both the magnetic
moments and gaps. Notably, although from Table 2.1 we found the basis error
converging the gap from above, the (larger) finite size error here converges the
gap from below. To account for the finite-size scaling of the fundamental gap, we
performed a rough extrapolation of the CC and UHF gaps assuming a #−

1
3

:
scaling.

The results are shown in Figure 2.2. When extrapolated to TDL, the CC gaps are
increased by ∼ 2 eV. Again, if we further take the basis error into account, the
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converged EOM-CCSD gaps at TDL are estimated to be 1-2 eV larger than the
2x2x2 results reported here.

System Property UHF PBE CCSD exp
MnO `� 4.86 4.56 4.76 4.58, 4.79

Δ8=3/eV 8.05(12.09) 1.09(1.21) 3.46(5.44) 3.6-3.9
ΔΓ/eV 8.72(13.05) 1.77(1.84) 4.26(5.91) -

NiO `� 1.85 1.34 1.72 1.77, 1.90
Δ8=3/eV 9.51(13.95) 1.19(1.38) 4.83(7.04) 4.3
ΔΓ/eV 9.89(14.80) 2.45(2.62) 5.56(7.90) -

Table 2.2: Local magnetic moment, fundamental gap, and direct Γ gap from UHF,
PBE, and CCSD with a 2x2x2 k-point mesh (DZVP basis). Extrapolated TDL gap
is listed in parentheses. Experimental gaps and moments are also reported (see main
text for a discussion of the comparison). The experimental magnetic moments are
taken from Refs. [50] and [38]. The measured experimental gaps are taken from
Refs. [3] and [2] for MnO and NiO respectively.
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Figure 2.2: Band gap extrapolation for MnO and NiO. The purple and brown
triangles denote the UHF indirect gap for MnO and NiO respectively. The purple
and brown diamonds denote the CC indirect gap. The dashed lines and dotted lines
give the linear extrapolation to the TDL for HF and CC respectively.
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Ground-State Properties
We now present a more detailed analysis of the ground-state CCSD wavefunctions
for NiO and MnO.

The CC ground-state moments reported in Table 2.2 are significantly reduced from
those of the UHF reference. This is consistent with the well-known observation that
Hartree-Fock tends to overestimate spin polarization. Conversely, PBE severely
underpolarizes in NiO. Note that theoretical results for the magnetic moment have
some variation depending on the definition of the atomic decomposition, while the
experimental error bars are themselves relatively large, approximately 0.2 `� [51].
Therefore the direct comparison between theory and experiment for this quantity
should be taken with a degree of caution.

Figure 2.3 shows the spin density distribution of the two materials in the (100)
surface. For MnO, an isotropic spin density is observed around the metal site,
reflecting all 33 orbitals partially occupied. However, for NiO we find a clear 46
symmetry pattern around the Ni atom. Meanwhile, a weakly induced spin density
is also observed around the ligand oxygen site. Note that the O 2? spin density is
aligned in the [110] instead of [100] direction, thus allowingmaximal superexchange
between the nearest Ni sites.
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Figure 2.3: Normalized spin density on the (100) surface for (a) MnO and (b) NiO.
The transition metal atom is located at (0, 0) in the xy-plane.

To further analyze the ground-state correlation, we computed the )1, |C1 |<0G and
|C2 |<0G diagnostics for the CCSDwavefunction. The results are shown in Figure 2.4.
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The )1 metric is the Frobenius norm (normalized by the number of correlated
electrons) of the C1 amplitudes. Previous studies have suggested that values of
these diagnostics larger than ∼ 0.1 can be considered “large” [52, 53]. The )1 and
|C1 |<0G metrics measure the importance of orbital relaxation from the mean-field
reference while |C2 |<0G measures the true many-particle correlations. As seen from
Figure 2.4, the effect of orbital relaxation is greater in NiO than in MnO, consistent
with the greater degree of overpolarization of the Ni moment in the starting HF
reference, than is seen for Mn. The small |C2 |<0G values (0.009 for MnO and 0.013
for NiO) however, indicate that both materials are reasonably described by the
broken-symmetry mean-field reference.

T1 |t1|max |t2|max0.00

0.05

0.10

0.15

A
b

s

MnO

NiO

Figure 2.4: CCSD amplitude diagnostics for MnO and NiO. Purple columns are
for MnO and brown are for NiO. )1 is the Frobenius norm of the C1 amplitudes
normalized by the number of correlated electrons. |C1 |<0G and |C2 |<0G are the
maximum absolute value for C1 and C2, respectively.

Charged Excitations
We next turn to discussion on the excited states from EOM-CCSD.

From Table 2.2 we see that the fundamental gaps obtained by PBE and UHF for
MnO are 1.09 eV and 8.05 eV, respectively, both far from the experimental estimate
of 3.6–3.9 eV [3]. In contrast, EOM-CCSDwith a 2x2x2 supercell finds the indirect
gap to be 3.46 eV. This is similar to the 3.5 eV gap found in prior quasiparticle
self-consistent GW (QPscGW) calculations by Faleev and co-workers [13]. In NiO
we observe an indirect gap of 9.51 eV, 1.19 eV, and 4.83 eV with HF, PBE, and
EOM-CCSD (2x2x2 supercell) respectively. The EOM-CCSD gap is much larger
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than the 2.9 eV gap found by GGA-based GW [14] and close to the 4.8 eV gap found
by QPscGW [13] as well as the experimental estimate of 4.3 eV [2]. However, as
discussed in Chapter 2.4, the estimated finite size and basis effects in the EOM-
CC calculations are quite large (TDL extrapolations are shown in parentheses in
Table 2.2) thus the final basis set limit and TDL EOM-CCSD gaps are overestimated
by 1–2 eV. The sizable )1 diagnostics in the ground state suggest that this error may
arise from differential orbital relaxation between the ground and excited states.

The nature of the insulating gap inMnO andNiO is of some interest. Figure 2.5 plots
the correlated band structure at discrete points in reciprocal space from EOM-CC,
with the atomic characters labeled by the colors and symbols. Quasiparticle weights
are indicated for selected excitations as the normalized weight of the entire 1h (IP)
or 1p (EA) sector, i.e.

∑
8 |A8: |2 and

∑
0 |A0: |2. We appproximated the :-resolved

density of states (DOS) by summing over all the computed EOM-CCSD roots at
each momentum and the DOS at selected points in the Brillouin zone is shown in
Figure 2.6.
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Figure 2.5: Electronic structure and quasiparticle weight analysis of (a) MnO and
(b) NiO. The labels for the high-symmetry points are those defined by the primitive
FCC cell; symmetry labels for the AFM rhombohedral cell are provided in brackets
when the special points coincide. The upper panel is for the conduction band and the
lower one for the valence band. Valence band maxima (VBM) are shifted to 0 eV.
Atomic character with weight larger than 30% is shown by the indicated symbols.
Quasiparticle weights are shown for the highest and lowest root computed at Γ and
Λ 1

2
(/).

Figure 2.5 shows that the top of the valence band in MnO is hybridized between
the Mn 46 states and the O 2? states, while the conduction band minimum (CBM)
consists mainly of non-dispersive C26 character, except near the Γ point (CBM)
where we found significant contributions from B character. In NiO, the valence band
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Figure 2.6: Approximate density of states of (a) MnO and (b) NiO computed by
summing over the EOM-CC roots. The first panel is the local DOS, and the two
panels below are the DOS at high-symmetry points Γ and X. The spectral functions
are computed with a Lorentzian broadening factor [ = 0.4 eV.

near the VBM is dominated by O 2? states (81% at VBM), while the picture for
the conduction band is similar to that in MnO, including the B character near the
CBM. The above picture is complemented by the DOS in Figure 2.6 where in MnO,
near the Fermi level, the O 2? states contribute slightly more weight to the valence
bands than the Mn 46 states, and the two appear at nearly identical peak positions at
around -0.7 eV (relative to the VBM). The relative positions of the valence 46 and
C26 bands (-0.7 eV, -2.3 eV) are similar to what is seen in QPscGW (-0.5 eV and -2.2
eV respectively).

Similarly, in NiO, there is little 46 weight (peak around -0.4 eV) near the VBM,
and the first peak for C26 is found to be around -1.0 eV. Compared with QPscGW,
our calculation suggests less weight for 46 around VBM and the location of C26 is
similar to their finding (∼-1.0 eV). Note that additional valence 46 peaks in NiO are
expected to lie deeper in the spectrum [13] and thus do not appear in Figure 2.5.
Quasiparticle weights at the CBM and VBM in both materials are large (∼ 0.9).

The observed B character of the CBM in MnO and NiO is also found in some earlier
GGA-based GW calculations [14], but not others [15, 16]. This feature was missed
in early DMFT impurity model calculations where the Ni impurity was defined
using only the 33 shell [20–22] although it has been seen in more careful treatments
in very recent DMFT calculations [25, 27, 28]. The orbital character of the CBM
and VBM, including the B character, can be visualized explicitly in real space by
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defining quasiparticle orbitals for the CBM/VBM excitation,

|k−: 〉 =
∑
8

A8: |q8:〉, (2.16)

|k+: 〉 =
∑
0

A0: |q0:〉. (2.17)

where q8: , q0: are occupied and virtual mean-field orbitals with crystal momentum
: . Real-space density plots of the quasiparticle orbitals at the VBM and CBM are
shown in Figure 2.7.

Figure 2.7: Spatial density distribution of quasiparticle orbitals on the (100) surface
for (a) MnO VBM, (b) CBM, (c) NiO VBM, and (d) CBM. For MnO, we show the
GH plane where the projected ionization charge shows 46 symmetry and for NiO, the
quasiparticle orbitals are projected onto the GI plane.

From the analysis above, both MnO and NiO appear as insulators of mixed charge-
transfer/Mott character. However, this picture is not uniform across the Brillouin
zone. In particular, when only the fundamental gap is examined, NiO is clearly a
charge-transfer insulator while MnO remains of mixed character. Thus the nature of
the insulating state in these systems should be regarded as momentum-dependent.
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2.5 Conclusion
In conclusion, we have carried out a detailed study of the ground and excited
states of MnO and NiO using coupled cluster theory. While the description of
the spectrum is significantly improved over mean-field methods, and quantitatively
accurate at the level of 2x2x2 supercells, the gaps in the thermodynamic limit
remain somewhat overestimated, likely due to orbital relaxation effects and lack of
higher-order excitations. Unfortunately, we are not yet able to provide a quantitative
estimate of the effect of triples due to the prohibitive cost. Nonetheless, coupled
cluster offers interesting new insights into the qualitative nature of the insulating
state in these materials, allowing for a detailed analysis of the charge-transfer/Mott-
insulating character, atomic character of the bands (which indicates the important
participation of B character states in the conduction band minima), and quasiparticle
weights. Most intriguingly, our results show that the charge-transfer Mott nature
of the insulating state should be considered to be a momentum-dependent quantity.
Our work marks a significant first step towards the application of periodic coupled
cluster methods to understand correlated electronic materials.
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C h a p t e r 3

EFFICIENT CONTRACTION SCHEME FOR TENSORS WITH
CYCLIC GROUP SYMMETRY

3.1 Abstract
Tensor contractions are ubiquitous in numerical simulation of quantum many-body
problems. In this work, we describe how to accelerate tensor contractions involving
block sparse tensors whose structure is induced by a cyclic group symmetry or
a product of cyclic group symmetries. Tensors of this kind naturally arise in
quantum systems with intrinsic symmetry groups. With intuition aided by tensor
diagrams, we present our irreducible representation alignment technique, which
enables efficient handling of such block sparsity structure via only dense tensors
operations. Our proposed algorithm is generally applicable to arbitrary order group
symmetric contractions. The algorithm is implemented in Python, and we perform
benchmark calculations on a variety of representative contractions from quantum
chemistry and tensor network methods. As a consequence of relying on only dense
tensor contractions, we can easilymake use of efficient batchedmatrixmultiplication
via Intel’s MKL and distributed tensor contraction via the Cyclops library, achieving
good efficiency and parallel scalability on up to 4096 Knights Landing cores of a
supercomputer.

3.2 Introduction
Tensors and Tensor Contraction
A tensor T is defined by a set of real or complex numbers indexed by tuples of
integers (indices) 8, 9 , :, ;, . . ., where the indices take integer values 8 ∈ 1 . . . �8, 9 ∈
1 . . . � 9 , . . . etc., and a single tensor element is denoted C8 9 :;.... We will refer to
the number of indices of the tensor as its rank and the sizes of their ranges as its
dimensions (�8 × � 9 × · · · ). We call the set of indices modes of the tensor. In this
context, tensors can been viewed as a generalization of vectors and matrices as we
can clearly see that scalars, vectors, and matrices are just rank 0, 1, and 2 tensors
respectively.

We now introduce the graphical notation for tensors. As shown in Figure 3.1, a
tensor is represented by a vertex with edges sticking out of it, each corresponding
to one of its mode.
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(a) (b) (c) (d)

Figure 3.1: Graphical notation of tensors: (a) scalar, (b) vector, (c) matrix, (d)
rank-4 tensor.

In theoretical quantum chemistry and physics, tensors generally represent states or
operators and contractions express the algebra of these quantities. Tensor contrac-
tions are represented by a sum over indices of two tensors. In the case of matrices
and vectors, the only possible contractions correspond tomatrix and vector products.
For higher rank tensors, there are more possibilities, and an example of a contraction
of two rank-4 tensors is

F018 9 =
∑
:,;

D01:;E:;8 9 . (3.1)

The structure of such a contraction can be also be illustrated by extending the
diagrammatic notation introduced above. Here lines that represent the contracted
mode are joined between vertices, and an example for Equation 3.1 is displayed in
Figure 3.2.
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Figure 3.2: Graphical notation for tensor contraction between two rank-4 tensors.
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In general, tensor contractions can be reduced to matrix multiplication (or a simpler
matrix/vector operation) after appropriate transposition of the data to interchange
the order of modes.

Tensors in Quantum Chemistry and Physics
As we have seen in Chapter 2, in many-body theories, tensors represent everything
from wavefunction coefficients to one- and two-electron integrals. The main chal-
lenges of handling tensors in this context include large data storage, data sparsity
from symmetry, and many different types of contractions required in a typical cal-
culation. In order to achieve best performance, practical implementation must make
use of all available properties of tensors that can reduce the computational cost and
memory footprint.

One of such opportunities comes from the underlying symmetry group of the sys-
tem. The presence of such symmetry groups enforces constraints on the relevant
computations. Specifically, under the operations of the group, the computational
objects (e.g. the tensors) are transformed by a matrix representation of the group,
which can be decomposed into irreducible representations (irreps) of the group.
Computationally, the elements of the tensors are thus constrained, and each tensor
can be stored in a compressed form, referred to as its reduced form.

A special structure that often appears is one that is associated with a cyclic group. If
each index transforms as an irrep of such a group and the overall tensor transforms as
the symmetric representation, this constraint can be expressed by a sparsity structure
defined on the indices, e.g.

Cijk... = 0 if bi/�1c + bj/�2c + bk/�3c + · · · ≠ 0 (mod �), (3.2)

where the offset �8 denotes the size of the symmetry group for the 8th index.

For tensors, such sparsity would lead to blocked structure where each block is
the same size. Figure 3.3 shows such sparsity pattern for a square matrix with
�1 = �2 = 3. We refer to such tensors as tensors with cyclic group symmetry, or
cyclic group tensors for short.

In some applications, the block sizes are non-uniform, but this can be accommo-
dated in a cyclic group tensor by padding blocks with zeros to a fixed size during
initialization. With this assumption, the original tensor indices can then be unfolded
into symmetry modes and the symmetry blocks, where the symmetry modes fully
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Figure 3.3: Block sparsity structure for cyclic group matrix with � = 3. The
non-zero blocks are marked with green color.

express the block sparse structure,

C8�, 9 �,: ... = 0 if � + � +  · · · ≠ 0 (mod �). (3.3)

Here we use the convention that the uppercase indices are the symmetry modes and
the lowercase letters index into the symmetry blocks. The relationship between the
symmetry modes is referred to as a symmetry conservation rule.

Given a number of symmetry sectors �, cyclic group symmetry can reduce tensor
contraction cost by a factor of � for some simple contractions and �2 for most
contractions of interest (any contraction with a cost that is superlinear in input/output
size).

State-of-the-art sequential and parallel libraries for handling cyclic group symmetry,
both in specific physical applications and in domain-agnostic settings, typically
iterate over non-zero blocks stored in a block-sparse tensor format [1–12]. There
are mainly two drawbacks with this approach: (1) The use of explicit looping (over
possibly small blocks) makes it difficult to reach theoretical peak performance. (2)
Parallelization in distributed-memory setting is challenging due to the potentially
sophisticated communication and redistribution needed for scheduling block-wise
multiplication.

We introduce a general transformation of cyclic group symmetric tensors, irreducible
representation alignment, which allows all contractions between such tensors to be
transformed into a series of dense tensor contractions with optimal cost and memory
footprint. In our construction, the two input reduced forms as well as the output are
indexed by a new auxiliary index. This transformation provides three advantages:
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1. It avoids the need for data structures to handle block sparsity or scheduling
over blocks,

2. It makes possible an efficient software abstraction to contract tensors with
cyclic group symmetry,

3. It enables effective use of parallel libraries for dense tensor contraction and
batched matrix multiplication.

Our approach is closely related to the previouswork on direct product decomposition
(DPD) [13, 14], which similarly seeks an aligned representation of the two tensor
operands. However, the unfolded structure of cyclic group tensors in Equation (3.3)
allows for a much simpler conversion to an aligned representation, both conceptually
and in terms of implementation complexity. In particular, our approach can be
implemented efficiently with existing dense tensor contraction primitives.

We develop a software library, Symtensor, that implements the irrep alignment
algorithm and contraction. We study the efficacy of this new method for cyclic
group tensor contractions arising in periodic coupled cluster theory and tensor
network methods. We demonstrate that across a variety of tensor contractions,
the library achieves orders of magnitude improvements in parallel performance
and a matching sequential performance relative to the manual loop-over-blocks
approach. The resulting algorithmmay also be easily and automatically parallelized
for distributed-memory architectures. Using the Cyclops Tensor Framework (CTF)
library [15] as the contraction backend to Symtensor, we demonstrate good strong
andweak scalabilitywith up to at least 4096Knights Landing cores of the Stampede2
supercomputer.

The rest of the chapter is organized as follows. In Section 3.3 we describe our
irreducible representation alignment algorithm with an intuitive example. The
implementation of our algorithm is described in Section 3.4. Then we provide
benchmark results on a variety of representative contractions from coupled cluster
and tensor network methods in Section 3.5. We conclude with Section 3.6.

3.3 Theory
We now describe our proposed approach. We first describe the algorithm on an
example contraction and provide intuition for correctness based on conservation of
flow in a tensor diagram graph. These arguments are analogous to the conservation
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arguments used in computations with Feynman diagrams (e.g. momentum and en-
ergy conservation) [16] or with quantum numbers in tensor networks [17], although
the notation we use is slightly different.

We consider a contraction of rank-4 tensorsU andV into a new rank-4 tensorW,
where all tensors have cyclic group symmetry. We can express this cyclic group
symmetric contraction as a contraction of tensors of rank 8, by separating indices
into symmetry-block (lower-case) indices and symmetry-mode (upper-case) indices,
so

F0�,1�,8�, 9 � =
∑
:, ,;,!

D0�,1�,: ,;!E: ,;!,8�, 9 � . (3.4)

Here and later we use commas to separate index groups for readability.

The input and output tensors are assumed to transform as symmetric irreps of a cyclic
group, which implies the following relationships between the symmetry modes and
associated block structures,

F0�,1�,8�, 9 � ≠ 0 if � + � − � − � ≡ 0 (mod �), (3.5)

D0�,1�,: ,;! ≠ 0 if � + � −  − ! ≡ 0 (mod �), (3.6)

E: ,;!,8�, 9 � ≠ 0 if  + ! − � − � ≡ 0 (mod �). (3.7)

Ignoring the symmetry, this tensor contraction would have cost $ (#4�4) for mem-
ory footprint and $ (#6�6) for computation, where # is the dimension of each
symmetry sector.

With the use of symmetry, the cost for memory and computation can be reduced
to $ (#4�3) and $ (#6�4) respectively. This can be achieved by first representing
the original tensor in a reduced dense form indexed by just 3 symmetry modes.
In particular, we refer to the reduced form indexed by 3 symmetry modes that are
a subset of the symmetry modes of the original tensors, as the standard reduced
form. The equations below show the mapping from the original tensor to one of its
standard reduced forms:

F̄0�,1,8�, 9 � = F0�,1,�+�−� mod �,8�, 9 � , (3.8)

D̄0�,1,: ,;! = D0�,1, +!−� mod �,: ,;! , (3.9)

Ē: ,;,8�, 9 � = E: ,;,�+�− mod �,8�, 9 � . (3.10)

As an example, the associated graphical notation for F0�,1�,8�, 9 � is shown in Fig-
ure 3.4. Note here the graphical notation is slightly different from that in Figure 3.2:
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arrows are now used to indicate the sign associated with the symmetry mode in
the symmetry conservation rule for the tensor, and the legs for the lower letters are
omitted in the graph for simplicity (they are always stored).
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Figure 3.4: Tensor diagrams of the standard reduced form. Arrows on each leg
represent the corresponding symmetry indices that are explicitly stored. Symmetry
indices on legs without arrows are not stored but are implicitly represented with the
symmetry conservation law (� + � = � + � (mod �)).

The standard reduced form provides an implicit representation of the unstored
symmetry mode due to symmetry conservation and can be easily used to implement
the block-wise contraction approach prevalent in many libraries. This is achieved
via manual loop nest over the appropriate symmetry modes of the input tensors, as
shown in Algorithm 2. All elements of W, U, and V in the standard reduced
form can be accessed with 4 independent nested-loops to perform the multiplication
and accumulation operation in Algorithm 2. The other two implicit symmetry
modes can be obtained inside these loops using symmetry conservation, reducing
the computation cost to $ (�4).

However, the indirection needed to compute ! and � within the innermost loops
prevents expression of the contraction in terms of standard library operations for a
single contraction of dense tensors. Furthermore, the need to parallelize general
block-wise tensor contraction operations in the nested loop approach above, creates
a significant software-engineering challenge and computational overhead for tensor
contraction libraries.

The main idea in the irreducible representation alignment algorithm is to first
transform (reindex) the tensors using an auxiliary symmetry mode which subse-
quently allows a dense tensor contraction to be performed without the need for
any indirection. In the above contraction, we define the auxiliary mode index as
& ≡ � + � ≡ � + � ≡  + ! (mod �) and thus obtain a new reduced form for each
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Algorithm 2 Loop nest to perform group symmetric contraction F0�,1�,8�, 9 � =∑
:, ,;,! D0�,1�,: ,;!E: ,;!,8�, 9 � using standard reduced forms F̄0�,1�,8�, 9 , D̄0�,1�,: ,; ,

and Ē: ,;!,8�, 9 .
for � = 1, . . . , � do

for � = 1, . . . , � do
for � = 1, . . . , � do

� = � + � − � mod �
for  = 1, . . . , � do

! = � + � −  mod �
∀0, 1, 8, 9 , F̄0�,1�,8�, 9 = F̄0�,1�,8�, 9 +

∑
:,; D̄0�,1�,: ,; Ē: ,;!,8�, 9

end for
end for

end for
end for

tensor. The relations of this reduced form with the sparse form are as follows:

F̂0�,1,8, 9 �,& = F0�,1,&−� mod �,8,&−� mod �, 9� , (3.11)

D̂0�,1,:,;!,& = D0�,1,&−� mod �,:,&−! mod �,;! , (3.12)

Ê:,;!,8, 9 �,& = E:,&−! mod �,;!,8,&−� mod �, 9� . (3.13)

This reduced form is displayed in Figure 3.5. Note here that though the & arrow
does not stick out of the vertex, it is stored explicitly. This is slightly different from
the general graphical notation for tensors.
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Figure 3.5: The symmetry aligned reduced form is defined by introducing the &
symmetry mode. Each of the two vertices defines a symmetry conservation relation:
� + � = & (mod �) and & = � + � (mod �), allowing two of the arrows to be
removed in the 3rd diagram (implicitly stored).

The & symmetry mode is chosen so that it can serve as part of the reduced forms
of each of U, V, and W. An intuition for why this alignment is possible is given
via tensor diagrams in Figure 3.6. The new auxiliary indices (% and &) of the two
contracted tensors satisfy a conservation law % = &, and so can be reduced to a
single index.

As shown in Figure 3.7, given the aligned reduced forms of the two operands, we
can contract them directly to obtain a reduced form for the output that also has the



39
A

B

P

J

Q

I A

B

Q

J

Q

I

=
K

L

K

L

Figure 3.6: By defining conservation laws on the vertices, we see that % =  + !
(mod �) and  + ! = & (mod �). Consequently, the only non-zero contributions
to the contraction must have % = &.
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Figure 3.7: The reduced forms allows an efficient contraction operation
to compute the output reduced forms, namely through einsum operation
W=einsum("AQL,LQJ->AQJ",U,V) (intra-block indices ignored).

additional symmetry mode &. Specifically, it suffices to perform the dense tensor
contraction below:

F̂0�,1,8, 9 �,& =
∑
!,:,;

D̂0�,1,:,;!,& Ê:,;!,8, 9 �,& . (3.14)

This contraction can be expressed as a single einsum operation (available via
NumPy, CTF, etc.) and can be done via a batched matrix multiplication (available
in Intel’s MKL). Once Ŵ is obtained in this reduced form, it can be remapped to
any other desired reduced form.

The remaining step is to define how to carry out the transformations between the
aligned reduced forms and the standard reduced form. These can be performed
via contraction with a Kronecker delta tensor defined on the symmetry modes,
constructed from symmetry conservation, e.g, D̂0�,1,:,;!,& =

∑
� D̄0�,1�,�!, 9X�,�,& ,

where
X�,�,& = 0 if � + � −& ≠ 0 (mod �). (3.15)

Using this approach, all steps in our algorithm can be expressed fully in terms
of single dense, or batched dense, tensor contractions. Extending this algorithm to
arbitrary rank tensor contractions is straightforward, and the details for the derivation
are provided in Appendix A.
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3.4 Implementation
We implement the irrep alignment algorithm as a Python library, Symtensor1. The
library automatically selects the appropriate reduced form to align the irreps for the
contraction, constructs the generalized Kronecker deltas to convert input and output
tensors to the target forms, and performs the batched dense tensor contractions that
implement the numerical computation. The dense tensor contraction is interfaced to
different contraction backends. Besides the default NumPyeinsum backend, we also
provide a backend that leverages MKL’s batched matrix-multiplication routines [18]
to obtain good threaded performance, and employ an interface to Cyclops [15] for
distributed-memory execution.

impo r t numpy as np
from symtenso r impo r t a r r a y , einsum

# Def ine Z3 Symmetry
i r r e p s = [ 0 , 1 , 2 ]
G = 3
t o t a l _ i r r e p = 0
z3sym = [ "++−−" , [ i r r e p s ] ∗ 4 , t o t a l _ i r r e p , G]

# I n i t i a l i z e two s p a r s e t e n s o r s a s i n p u t
N = 10
Aar ray = np . random . random ( [G,G,G,N,N,N,N] )
Ba r r ay = np . random . random ( [G,G,G,N,N,N,N] )

# I n i t i a l i z e symtenso r wi th raw d a t a and symmetry
u = a r r a y ( Aarray , z3sym )
v = a r r a y ( Barray , z3sym )

# Compute o u t p u t symtenso r
w = einsum ( ’ abkl , k l i j −> a b i j ’ , u , v )

Figure 3.8: Symtensor library example for contraction of two group symmetric
tensors.

In Figure 3.8, we provide an example on how to perform the contraction of two cyclic
group tensors with /3 (cyclic group with � = 3) symmetry for each index using
Symtensor library. In the code, the Symtensor library initializes the rank-4 cyclic
group symmetric tensor using an underlying rank-7 dense reduced representation.
Once the tensors are initialized, the subsequent einsum operation implements the

1https://github.com/yangcal/symtensor
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contraction shown in Figure 3.6 without referring to any symmetry information in
its interface. While the example is based on a simple cyclic group for a rank-4
tensor, the library supports arbitrary orders, as well as products of cyclic groups and
infinite cyclic groups (e.g. * (1) symmetries).

As introduced in Section 3.3, the main operations in our irrep alignment algorithm
consist of transformation of the reduced form and the contraction of reduced forms.
Symtensor chooses the least costly version of the irrep alignment algorithm from a
space of variants defined by different choices of the implicitly represented modes
of the three tensors in symmetry aligned reduced form. This choice is made by
enumerating all valid variants.

After choosing the best reduced forms, the required generalized Kronecker deltas are
generated as dense tensors. This permits both the transformations and the reduced
form contraction to be done as einsum operations of dense tensors with the desired
backend.

3.5 Benchmarks
Computational Details
As a testbed for this approach, we survey a few group symmetric tensor contractions
that arise in quantum chemistry and quantum many-body physics methods.

The first set of contractions come from the periodic coupled cluster introduced in
Chapter 2. In crystalline (periodic) materials, translational symmetry amounts to
a product of cyclic symmetry groups along each lattice dimension. For a three-
dimensional crystal, the size of the resulting symmetry group takes the form � =

�1 × �2 × �3, where �1, �2, and �3 are the number of : points sampling along
each dimension. In periodic CCSD, three common expensive tensor contractions
can be written as

F8�, 9 �,0�,1� =
∑
2�,3� D8�, 9 �,2�,3�E0�,1�,2�,3� , (3.16)

F8�, 9 �,0�,: =
∑
1�,2� D1�,2�,8�, 9 �E1�,2�,: ,0�, (3.17)

F8�, 9 �,<",=# =
∑
0�,1� D0�,1�,<",=#E0�,1�,8�, 9 � , (3.18)

where each symmetry mode of the tensors is associated with the translational sym-
metry group. Although all contractions above have an asymptotic scaling of �4#6,
the size of virtual orbital (0, 1, 2, 3) and occupied orbital (8, 9 , <, =, :) can differ
significantly in practice. This makes the perfect test case to evaluate our algorithm
in a realistic setting.
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The second set of contractions come from tensor network algorithms. In this context,
the emergence of cyclic group symmetric tensors can be traced to conservation of
particle and spin quantum numbers. We consider the two contractions below:

F8�, 9 �,;!,<" =
∑
: 

D8�, 9 �,: E: ,;!,<" , (3.19)

F8�, 9 �,<",=# =
∑
: ,;!

D8�, 9 �,: ,;!E: ,;!,<",=# , (3.20)

where the first contraction is encountered when optimizing a single matrix prod-
uct states (MPS) tensor and the second one arises during the computation of the
normalization of the projected entangled pair states (PEPS).

Table 3.1 summarizes the details for all the contractions above.

Table 3.1: Summary of coupled cluster and tensor network contractions used in our
benchmark test and their costs. We include matrix multiplication (MM) as a point
of reference. The three CC contractions described in Equation 3.16 are labeled
CC1,CC2, and CC3 respectively.

Label Contraction Symmetric Cost
MM F8�,: =

∑
9 � D8�, 9 �E 9 �,: O(�#3)

CC1 F8�, 9 �,0�,1� =
∑
2�,3� D8�, 9 �,2�,3�E0�,1�,2�,3� O(�4#6)

CC2 F8�, 9 �,0�,: =
∑
1�,2� D1�,2�,8�, 9 �E1�,2�,: ,0� O(�4#6)

CC3 F8�, 9 �,0�,1� =
∑
: ,;! D8�, 9 �,: ,;!E<",=#,: ,;! O(�4#6)

MPS F8�, 9 �,;!,<" =
∑
: D8�, 9 �,: E: ,;!,<" O(�3#5)

PEPS F8�, 9 �,<",=# =
∑
: ,;! D8�, 9 �,: ,;!E: ,;!,<",=# O(�4#6)

Performance experiments were carried out on the Stampede2 supercomputer. Each
Stampede2 node is a Intel Knight’s Landing (KNL) processor, on which we use up
to 64 of 68 cores by employing up to 64 threads with single-node NumPy/MKL
and 64 MPI processes per node with 1 thread per process with Cyclops. We use
the Symtensor library together with one of three external contraction backends: Cy-
clops, default NumPy, or a batched BLAS backend for NumPy arrays (this backend
leverages HPTT [19] for fast tensor transposition and dispatches to Intel’s MKL
BLAS for batched matrix multiplication). We also compare against the loop-over
blocks algorithm as illustrated in Algorithm 2. This implementation performs each
block-wise contraction using MKL, matching state of the art libraries for tensor
contractions with cyclic group symmetry [20, 21].
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Sensitivity to Size of Symmetry Group
We first examine the performance of the irrep alignment algorithm for three con-
tractions as a function of increasing �. The results are displayed in Figure 3.9 with
the left, center, and right plots showing the scaling for the contractions labeled MM,
CC1, and PEPS in Table 3.1.
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Figure 3.9: Comparison of the execution times for contractions on a single thread
using three different algorithms: a dense, non-symmetric contraction, loops over
symmetry blocks, and our Symtensor library. From left to right, the plots show the
scaling for matrix multiplication (MM), a coupled cluster contraction (CC1), and a
tensor network contraction (PEPS). The dense and loop-over blocks calculations use
NumPy as a contraction backend, while the Symtensor library here uses Cyclops as
the contraction backend.

Here we compare scaling relative to two conventional approaches: a dense con-
traction without utilizing symmetry and loops over symmetry blocks, both us-
ing NumPy’s einsum function. The dimensions of the tensors considered are,
for matrix multiplication, # = 500 and � ∈ [4, 12], for the CC contraction,
#8 = # 9 = #: = #; = 8, #0 = #1 = #2 = #3 = 16, with � ∈ [4, 12], and
for the PEPS contraction, #mps = 16, #peps = 4, with � ∈ [2, 10]. We found
that our symtensor approach consistently improves the performance for all but the
smallest contractions. Additionally, a comparison of the slopes of the lines in each
of the three plots indicates that the dense tensor contraction scheme results in a
higher order asymptotic scaling in � than either of the symmetric approaches.

Then we perform a comprehensive study on the absolute performance of our algo-
rithm on all contractions in Table 3.1. The resulting performance with 1 thread and
64 threads is shown in Figure 3.10. For each contraction, we consider one with a
large number of symmetry sectors (�) with small block size (#) (labeled with a
subscript 0) and another with fewer symmetry sectors and larger block size (labeled
with a subscript 1). The specific dimensions of all tensors studied are provided in
Table 3.2. For each of these cases, we compare the execution time, in seconds, using
loops over blocks dispatching to NumPy contractions, the Symtensor library with
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NumPy arrays and batched BLAS as the contraction backend, and the Symtensor
library using Cyclops as the array and contraction backend.
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Figure 3.10: Comparison of contraction times using the Symtensor library (using
Cyclops for the array storage and contraction backend, or NumPy as the array storage
with batched BLAS contraction backend) and loops over blocks using NumPy as
the contraction backend. The different bars indicate both the algorithm and backend
used and the number of threads used on a single node.

A clear advantage in parallelizability of Symtensor is evident in Figure 3.10. With
64 threads, Symtensor outperforms manual looping by a factor of at least 1.4X for
all contraction benchmarks, and the largest speed-up, 69X, is obtained for the CC30

contraction.

Table 3.2: Dimensions of the tensors used for contractions in Figure 3.10 and
Figure 3.11.

Label Specifications
CC10 � = 8, #0 = #1 = #2 = #3 = 32, #8 = # 9 = 16
CC20 � = 8, #0 = #1 = #2 = 32, #8 = # 9 = #: = 16
CC30 � = 8, #0 = #1 = 32, #8 = # 9 = #: = #; = 16
CC11 � = 16, #0 = #1 = #2 = #3 = 16, #8 = # 9 = 8
CC21 � = 16, #0 = #1 = #2 = 16, #8 = # 9 = #: = 8
CC31 � = 16, #0 = #1 = 16, #8 = # 9 = #: = #; = 8
MM0 � = 2, # = 10000
MM1 � = 100, # = 2000
MPS0 � = 2, #8 = #: = #< = 3000, # 9 = 10, #; = 1
MPS1 � = 5, #8 = #: = #< = 700, # 9 = 10, #; = 1
PEPS0 � = 2, #8 = # 9 = 400, #: = #; = #< = #= = 20
PEPS1 � = 10, #8 = # 9 = 64, #: = #; = #< = #= = 8

We also observed a significant difference between the contractions labeled to be
of type 0 (large � and small #) and type 1 (large # and small �), with the
geometric mean speedup for these two being 11X and 2.8X respectively on 64
threads. This discrepancy is also observed on a single thread, though less drastically,
with respective geometric mean speedups of 1.9X and 1.2X. This can be traced to
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Figure 3.11: Strong scaling behavior for the CC contractions (left) labeled CC10
(blue circles) and CC11 (green triangles) and the PEPS contractions (right) labeled
PEPS0 (blue circles) and PEPS1 (green triangles). The dashed lines correspond
to calculations done using a loop over blocks algorithm with a NumPy backend
while the solid lines correspond to Symtensor calculations using the irrep alignment
algorithm, with a Cyclops backend.

the larger number of symmetry blocks in type 1 cases, which amplifies the overhead
of manual looping.

Multi-Node Performance
We now illustrate the parallelizability of the irrep alignment algorithm by studying
scalability across multiple nodes with distributed memory. All parallelization in
Symtensor is handled via the Cyclops library in this case.

The solid lines in Figure 3.11 show the strong scaling (fixed problem size) behavior
of the Symtensor implementation on up to eight nodes. As a reference, we provide
comparison to strong scaling on a single node for the loop over blocks method using
NumPy as the backend.

We again observe that the Symtensor irrep alignment implementation provides a
significant speedup over the loop over blocks strategy, which is especially evident
when there are many symmetry sectors in each tensor. For example, using 64
threads on a single node, the speedup achieved by Symtensor over the loop over
blocks implementation is 41X for CC10, 5.7X for CC11, 4.1X for PEPS0, and 27X
for PEPS1. We additionally see that the contraction times continue to scale with
good efficiency when the contraction is spread across multiple nodes.

Finally, in Figure 3.12 we display weak scaling performance, where the dimensions
of each tensor are scaled with the number of nodes (starting with the problem size
reported in Table 3.2 on 1 node) used so as to fix the tensor size per node. Thus, in
this experiment, we utilize all available memory and seek to maximize performance
rate.
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Figure 3.12: Weak scaling behavior for CC (left) and TN (right) contractions. The
dashed lines correspond to contractions with a small symmetry group (small �),
previously labeled (a), while solid lines correspond to contractions with a large
symmetry group (large�), labeled (b). The blue squares correspond to the CC1 and
matrix multiplication performance, the dark green circles correspond to the CC2 and
MPS performance, and the light green triangles correspond to the CC3 and PEPS
performance.

Figure 3.12 displays the performance rate per node, which varies somewhat across
contractions and node counts, but generally does not fall off with increasing node
count, demonstrating good weak scalability. When using 4096 cores, the overall
performance rate approaches 4 Teraflops/s for some contractions, but can be lower
in other contractions with less arithmetic intensity.

3.6 Conclusion
The irrep alignment algorithm leverages symmetry conservation rules implicit in
cyclic group symmetry to provide a contractionmethod that is efficient across a wide
range of tensor contractions. This technique is applicable to many numerical meth-
ods for quantum-level modeling of physical systems that involve tensor contractions.
The automatic handling of group symmetry with dense tensor contractions provided
via the Symtensor library provides benefits in productivity, portability, and parallel
scalability for such applications.
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C h a p t e r 4

COUPLED CLUSTER ANSATZ FOR ELECTRONS AND
PHONONS

4.1 Abstract
We describe a coupled cluster framework for coupled systems of electrons and
harmonic phonons. Charged excitations are computed via the equation of motion
version of the theory. Benchmarks on the Hubbard-Holstein model allow us to
assess the strengths and weaknesses of different coupled cluster approximations
which generally perform well for weak to moderate coupling. Finally, we report
progress towards an implementation for ab initio calculations on solids, and present
some preliminary results on finite-size models of diamond with a linear electron-
phonon coupling. We also report the implementation of electron-phonon coupling
matrix elements from crystalline Gaussian type orbitals (cGTO) within the PySCF
program package.

4.2 Introduction
Electron-phonon interactions (EPIs) are ubiquitous in materials science and con-
densed matter physics. For instance, they underpin the temperature dependence of
electronic transport and optical absorption in semiconductors. Additionally, obser-
vation of characteristic kinds and Hohn anomalies in photoemission and Rama and
neutron spectra can be largely traced to these interactions. They are also the critical
interaction that give rise to theBardeen-Cooper-Schrieffer type of superconductivity.

The phenomenology surrounding EPIs has been extensively studied in the con-
text of various lattice models and semi-empirical Hamiltonians. For example, the
Hamiltonians of Frölich[1] and Holstein[2] type capture the limits of non-local and
local electron-phonon interactions respectively. The Su, Schreiffer, and Heeger
(SSH) model was introduced as a simplified model of 1-dimensional polyacety-
lene that contains EPIs[3], and is now commonly used as a simple example of a
1-dimensional system with topological character[4]. In addition to the EPIs, these
models tend to also feature an electron-interaction term (usually in the form of a
Hubbard interaction) to allow study on the regime where both EPI and electronic
correlation are important. The Hubbard-Holstein (HH) model is one such simple
model that has been extensively studied and its well-studied phase diagram clearly
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displays the rich structure that can result from the interplay of electron-phonon and
electron-electron interactions[5–8].

Complementary to the study of model Hamiltonians is the development of ab initio
theory of EPIs. Within this framework, density functional theory is generally used as
the base electronic structure theory and the EPIs are computed either through finite
difference differentiation (the “supercell approach") [9–11] or density functional
perturbation theory (DFPT)[12–14]. While the expense of these calculations often
necessitates the use of DFT, there have been some attempts to move beyond the DFT
framework[15–21]. These results suggest that going beyond DFT quasiparticle
energies can change the effects of the EPI significantly. Going further, converging
these ab initio calculations towards TDL requires the development of specialized
interpolation schemes so that the EPI matrix elements may be represented on a very
dense grid in the Brillouin zone[22]. Due to the large size of the EPImatrix, property
calculations have been limited to relatively simplified theories as a computational
compromise. This is in stark contrast to the situation for model systems where the
coupled problem with small system size can be mostly solved nearly exactly. For
more in-depth review on the topic, readers are encouraged to refer to Refs. [23, 24].

We are interested in eventually bridging the gap between the sophisticated treatment
of simplified EPIs typical in model problems and simple treatments using ab initio
EPIs. Our tool will be coupled cluster theory which, as introduced in Chapter 2, is
a reliable ansatz to treat electronic structure of both molecules and periodic solids.
CC theory has also been extended to study the vibrational structure of molecules in-
cluding anharmonicity[25–34]. Our work in this chapter is inspired by Monkhorst’s
early proposal on a “molecular coupled cluster" method[35] which seeks to use CC
theory for coupled electrons and nuclei in molecules when the Born-Oppenheimer
approximation breaks down. In this work we describe a coupled cluster theory and
corresponding equation of motion extension for interacting electrons and phonons.
This theory is similar to some coupled cluster theories for cavity polaritons that have
been independently developed around the same time[36, 37].

The rest of the chapter is organized as follows. In Section 4.3, we describe ground
state electron-phonon coupled cluster theory and EOM formalism for excited states
for coupled electron-phonon systems. In Section 4.4 we provide benchmark results
on Hubbard-Holstein models. In Section 4.5 we discuss the theory for ab initio
electron phonon Hamiltonian, provide the details in our implementations and show
our results for diamond calculation. We finish the chapter with a conclusion in



51

Section 4.6.

4.3 Theory
In Section 2.3 we introduced coupled cluster and equation of motion coupled cluster
methods for fermion systems. In this section we will first review CC theory for
bosons and then formulate the theory for coupled electrons (fermions) and phonons
(bosons). In addition to the fermionic operators denoted by 0† and 0, we will use
1† (1) to represent bosonic creation (annihilation) operators.

Coupled Cluster for Bosons
Bosonic coupled cluster theory adopts the same exponential form as fermions.
However, two different flavors of bosonic CC theory have been proposed with
different treatment on the vibrational excitations:

1. Excitations in each mode are treated as bosons such that the =th excited state
is an occupation of = bosons[25, 38].

2. Each excited state in each mode is treated as a separate bosonic degree of
freedomwith the constraint that exactly one state in eachmode is occupied[32].

When formulating coupled cluster theory, (1) has the advantage that no truncation of
the excitation space beyond the truncation of the) operator is necessary. This means
that 4) acting on the vacuum creates up to infinite order excitations with just a finite
set of excitation operators. On the other hand, (2) has the advantage to host more
general “modal", or, to put in another way, the reference need not be harmonic.
Both formulations have been used in vibrational coupled cluster theories[25, 32,
38], and both pictures have been used recently in independent works on coupled
cluster methods for molecules interacting with cavity photons[36, 37]. Since wewill
assume harmonic phonons in this work anyway, we will use second quantization of
type (1):

|ΨCC〉 = 4) |0〉 (4.1)

) =
∑
G

CG1
†
G +

1
2

∑
GH

CGH1
†
G1
†
H + . . . (4.2)

where we have used G, H, . . . to index the bosonic modes and |0〉 represents the
bosonic vacuum.
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To construct a coupled cluster formalism for electron-phonon systems, we use an
exponential ansatz on top of a product reference:

|ΨCC〉 = 4) |Φ0〉|0〉. (4.3)

We will refer to theories of this type as electron-phonon coupled cluster (ep-CC).

Coupled Cluster Models for Electron-phonon Systems
For coupled electron phonon systems, the ) operator in CC theory consists of a
purely electronic part, purely phononic part, and a coupled part:

) = )el + )ph + )ep. (4.4)

For each of these pieces, we can independently truncate the level of excitations to
create different approximate models of the theory. We will follow the convention in
electronic CC to use SDT. . . to specify the electronic amplitudes. Numbers, 123. . .,
are used to indicate the purely phononic amplitudes that we include. A combination
of letters and numbers are used to denote the coupled amplitudes. The theories
considered in this work are summarized in Table 4.1.

model )ph )ep
ep-CCSD-1-S1 CG1

†
G C0

8,G
1
†
G0
†
008

ep-CCSD-12-S1 CG1
†
G + 1

2 CGH1
†
G1
†
H C0

8,G
1
†
G0
†
008

ep-CCSD-12-S12 CG1
†
G + 1

2 CGH1
†
G1
†
H C0

8,G
1
†
G0
†
008 + 1

2 C
0
8,GH
1
†
G1
†
H0
†
008

Table 4.1: The names, phonon, and electron-phonon excitation operators for the
theories considered in this chapter. All the theories include singles and doubles for
the pure electronic part of the )4; operator (not shown), and we have omitted the

∑
here for simplicity.

Assuming that the number of occupied orbitals, virtual orbitals, and phonon modes
all scale linearly with system size # , aall variants of the theory in Table 4.1 have
a computational scaling of #6. Furthermore, only the ep-CCSD-12-S12 method
carries additional #6 steps compared with CCSD. This means that, in theory, the ep-
CCSD-1-S1 and ep-CCSD-12-S1 methods have effectively the same cost as CCSD.
However in practice, as more amplitudes are included, there are significantly more
terms in the amplitude equations, and this creates a practical barrier for efficient
implementation. Effectively leveraging spin symmetry, point-group symmetry, k-
point symmetry, and reuse of intermediates becomes increasingly difficult. Here
we employed the irreducible alignment algorithm developed in Chapter 3 to achieve
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an implicit spin-unrestricted implementation with our computer-derived equation in
general spin orbital basis. Note that our ep-CCSD-1-S1 method is the same as the
QED-CCSD-1 method presented in Ref. [37].

Equation of Motion Coupled Cluster
For the coupled system, EOM formalism for electronic excitation follows the same
construction as in Section 2.3 with small modification required to account for the
coupled excitation with phonons:

'IP =
∑
8 A808 + 1

2
∑
8 90 A

0
8 9
0
†
0080 9 +

∑
8G A8G1

†
G08, (4.5)

'EA =
∑
0 A

00
†
0 + 1

2
∑
801 A

01
8
0
†
1
0
†
008 +

∑
0G A

0
G 1
†
G0
†
0 . (4.6)

In practice, the eigenvalue problem is solved by iterative diagonalization.

4.4 Benchmark on Hubbard-Holstein Model
In order to understand the strengths of our method, we first perform a benchmark
study on the Hubbard-Holstein (HH) model, a simple lattice model of correlated
electrons and phonons. The Hubbard-Holstein Hamiltonian is

� = −C
∑
9f

(
0
†
( 9+1)f0 9f + h.c.

)
+*

∑
9

= 9↑= 9↓+l
∑
�

1
†
�
1�+6

∑
9

= 9 (1�+1†�). (4.7)

where the lowercase and capital indices run over the fermionic and bosonic degrees
of freedom at each lattice site and f represents the spin degrees of freedom of the
fermions. The fermionic part of the Hamiltonian is a Hubbard model with hopping
C and on-site repulsion *. We use =8 to represent the fermionic density at site 8.
The bosonic part of the Hamiltonian is an independent oscillator at each site with
frequency l, and the final term couples the fermionic density at a given site with a
linear displacement in the oscillator at that site. This coupling is controlled by 6.

The HHmodel is an important model in condensedmatter physics as it captures both
antiferromagnetic order due to electron correlation and pairing from the electron-
phonon interaction[5–8, 39–53]. As a minimal model of electron correlation and
electron-phonon coupling, it is an ideal benchmark testbed with which we can eval-
uate the performance of our coupled cluster models in different parameter regimes.



54

The electron-phonon coupling strength,

_ ≡ 6
2

l
, (4.8)

provides a measure of the effective strength of the electron-phonon interaction.
Using a path-integral method, the phonon degrees of freedom can be integrated out
to yield an effective electron-electron interaction, the static limit of which becomes
attractive when

_ =
*

2
. (4.9)

Note that our definition of _ may differ by a factor of 2 from some other common
definitions. For the large coupling regime, the effective electron-electron interaction
is attractive, and we would not expect our coupled cluster methods to perform well
for such an attractive interaction. The extension to this regime should be possible
by breaking particle number symmetry[54, 55], but this is beyond the scope of our
work in this chapter.

Benchmark of Ground-state Methods
The four-site (linear) HH model at half-filling is numerically solvable by exact
diagonalization. We thus first computed the correlation energy from three CC
methods and compare them with exact correlation energy. In all cases, we use
an unrestricted Hartree-Fock (UHF) reference and a generalized coherent state
reference for the phonons,

1̃� = 1� + 6
〈Φ0 |=8 |Φ0〉

l
, (4.10)

where Φ0 is the electronic UHF reference. In terms of these transformed boson
operators, theHamiltonian has the same form except that the interaction term appears
as

6
∑
9

(= 9 − 〈= 9 〉)(1̃� + 1̃†�), (4.11)

and there is an energy shift of

−62
∑
8

〈=8〉2
l

. (4.12)

This transformation diagonalizes the effective phononic Hamiltonian obtained by
normal ordering the electronic part of the EPI term.

In addition to the coupled cluster methods, we also show the energy computed by
adding a second-order perturbation theory (PT2) correction to the fermionic CCSD
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Figure 4.1: Correlation energy of the four-site HH model for * = 1, 2, 4 and
l = 0.5, 5.0. In all cases we found a qualitative change at _ = 0.5* which is
not captured by the approximate methods presented here. Both the energy and the
coupling strength _ are plotted in units of the hopping, C.

energy. This correlation energy is given, in the UHF orbital basis, as

�pt2 = −
∑
80,�

|60
8,�
|2

Y0 − Y8 + l
, (4.13)

where 8 (0) are occupied (virtual) orbitals and � runs over the oscillators. Note that
the interaction, 6, becomes a generally non-diagonal tensor in the UHF orbital basis.
We label the elements of this tensor as 60

8,�
where � labels an oscillator and 8, 0 label

occupied and virtual UHF orbitals respectively.

The correlation energy computed from these methods is compared to the exact
results in Figure 4.1 for* = 1, 2, 4 and l = 0.5, 5.0. The values of* are chosen to
be low enough that CCSD should provide qualitatively correct results in the limit of
zero EPI, while the two values of l are chosen to show approximately the limits of
low frequency (adiabatic) and high frequency (anti-adiabatic). The transition to an
attractive effective potential at _ = */2 is evident in all cases, and the approximate
methods described here fail qualitatively above this transition as expected.

For _ < */2, all the methods shown here provide qualitatively correct results in the
adiabatic and anti-adiabatic limits. The coupled cluster methods are systematic in
that ep-CCSD-12-S12 outperforms ep-CCSD-12-S1 which outperforms ep-CCSD-
1-S1 in all cases. This is one of the primary advantages of coupled cluster theory.
The CCSD-PT2 method performs surprisingly well on this problem, possibly due
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to error cancellation as Equation 4.13 tends to overestimate the electron-phonon
correlation energy while CCSD generally underestimates the electronic correlation
energy.

EOM-ep-CCSD-1-S1 for Charge Gap
We then turn our focus to the accuracy of excited states properties from EOMvariant
of the theory.

In the thermodynamic limit, the 1-dimensional HH model at half-filling has a well-
studied phase diagram: a Mott phase at small _/*, a Peierls phase at large _/*, and
a metallic phase in between[7, 47–51, 56].
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Figure 4.2: Charge gap of the HH model in the thermodynamic limit for * = 1.6
and l = 0.5. At _ = 0.8 ep-CCSD-1-S1 will break down, and we would not expect
correct results for _ > 0.8. The density matrix embedding theory (DMET) results
are from Ref. [57].

In Figures 4.2 and 4.3 we show the charge gap computed by IP/EA-EOM-ep-CCSD-
1-S1 in the adiabatic case and the anti-adiabatic case respectively. In Figure 4.2 we
present the extrapolated EOM-ep-CCSD-1-S1 band gap for l = 0.5 and * = 1.6.
We used calculations results on the ! = 64 and ! = 128 systems with periodic
boundary conditions for extrapolation assuming an asymptotica scaling of 1/!. At
_ = 0 (the * = 1.6 Hubbard model, our results agrees poorly with the DMET
reference [57]. This is consistent with the general observation that EOM coupled
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Figure 4.3: Charge gap of the HH model in the thermodynamic limit for* = 4 and
l = 5.0. At _ = 2.0 ep-CCSD-1-S1 will break down, and we would not expect
correct results for _ > 2.0. The density matrix embedding theory (DMET) and
density matrix renormalization group (DMRG) calculations are from Ref. [57].

cluster tends to perform poorly on nearly metallic systems. As _ increases, we find
the results to be qualitatively correct though the closing of the gap at _ = 0.6 and
the Peierls insulating state at _ > 0.6 are not captured by this approximation. In
particular, note that EOM-ep-CCSD-1-S1 for the HHmodel does not perform worse
than EOM-CCSD for the Hubbard model. We find a similar performance in the
anti-adiabatic case (as shown in Figure 4.3: l = 5.0 and * = 4). In this case,
finite-size effects are less pronounced, and an extrapolation from calculations on
! = 32 and ! = 64 lattices is sufficient to estimate the TDL. Because of the larger
*, the Hamiltonian has a larger gap at _ = 0 and it is less severely overestimated by
EOM. Again, similar to the adabatic case, we qualitatively correct results for small
_, but EOM breaks down as the system becomes metallic.

4.5 Application to Periodic Solids
To extend our theory to ab initio problems, a Hamiltonian of the following form is
required:

� = �el + �ph + �ep, (4.14)

where�ep is both detailed enough to capture the physics of electron-phonon coupling
from first principles and yet simple enough so that the matrix elements can be easily
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computed in the relevant basis. As we will describe later this chapter, this is already
quite a challenge. This is further complicated by the cost of controlling finite-size
errors. In this section we will first discuss our frozen-phonon implementation of
phonon frequencies and EPI matrix elements using cGTO of the PySCF package.
Then we will show our preliminary results for the zero-point renormalization of
diamond. We will conclude this section with a summary of the challenges and
future plans for addressing them.

Ab Initio Electron Phonon Coupling
Nearly all ab initio calculations includes only the linear coupling of the EPI term:∑

kq<=G
6

qG
(k+q)=,k<2

†
(k+q)=2k<

(
1qG + 1†−qG

)
. (4.15)

Here, < and = label the electronic bands and G labels the phonon modes. The EPI
matrix elements are, in practice, computed as

6G?@ =
∑
U,B

√
ℏ

2<BlG
nGBU

〈
?

���3+ (
3'BU

���@〉 (4.16)

where we have suppressed the momentum indices in this expression. Here, + (
is the Kohn-Sham (or Hartree-Fock) potential, B labels a particular atom, U labels
a Cartesian direction, <B is the mass of the Bth atom, lG is the frequency of the
Gth phonon mode, and the n tensor transforms between Cartesian displacements
and displacements in the phonon basis. One thing to note here is that when using
a Hamiltonian of this form, two approximations are made implicitly: (1) Higher
order coupling, like the term quadratic in displacements are ignored. In principle,
this approximation can be relaxed by including the higher order terms. (2) The
phonon modes come from a calculation that already includes, to some extent, the
response of the ground state electronic energy to changes in the nuclear positions.
Relaxing this approximation is difficult. One option would be to work within the
self-consistent field-theoretic framework of theHedin-Baymequations[58, 59]. This
issue is discussed in more detail in Ref. [60]. Overall, the construction of second-
quantized model Hamiltonians for coupled electron-nuclear dynamics in molecules,
including investigations of the validity of a linear coupling, has been an area of
recent interest,[61–63] though we are not aware of similar work on solids. As a
starting point, we will use the standard linear coupling.
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Implementation
In order to test the performance of this coupled cluster method in ab initio setting, we
have implemented the first-order electron phononmatrix for molecules and extended
systems in the PySCF program package[64]. The molecular implementation com-
putes the analytical EPI matrix through the coupled-perturbed self-consistent field
(CPSCF) formalism, similar to the implementation in FHI-AIMS[65]. The periodic
system implementation is based on a finite difference approach and currently sup-
ports only a single k-point. Specifically, finite differentiation is first performed on
analytical nuclear gradients to yield the mass weighted hessian (dynamical matrix).
Phonon modes are then obtained by diagonalizing this matrix.

Throughout this work, we have used GTH-Pade pseudopotentials[66, 67] and the
corresponding GTH Gaussian bases[68]. All integrals are generated by Fast Fourier
transform-based density fitting (FFTDF)[69]. In Table 4.2 we compare the optical
phonon frequency computed at the Γ point using different basis sets. Note that for
our TZVP calculations, basis Gaussians with exponents less than 0.1 are discarded
due to the diffuse nature of the functions. Amid the discrepancies in basis sets, pseu-
dopotentials, and other numerical cutoffs, our results show overall good agreement
with the implementations in CP2K[70] and the plane-wave (PW) code Quantum
Espresso (QE)[71].

l$%
Γ

PySCF CP2K QE
GTH-SZV(LDA) 2385.56 2393.30 -
GTH-DZVP(LDA) 2207.67 2214.58 -
GTH-TZVP(LDA) 2290.95 2221.85 2262.67(PW)
GTH-SZV(PBE) 2379.07 2384.69 -
GTH-DZVP(PBE) 2202.70 2209.07 -
GTH-TZVP(PBE) 2288.15 2212.95 2255.60(PW)

Table 4.2: A comparison of the Γ point optical phonon mode (2<−1) from our
implementation in PySCF against those computed from CP2K and QE. Note that
PySCF andCP2Kuse the sameGTHpseudopotentials, whileHartwigsen-Goedeker-
Hutter (HGH) pseudopotentials[67] were used for QE. The QE calculations use a
kinetic energy cutoff of 60 Rydberg. To ensure that the QE and PySCF numbers
can be directly compared, the electron density used for the QE DFPT computation
is from a Γ point DFT calculation (unconverged with respect to Brillouin zone
sampling).

Experimentally, the optical phonons of diamond appear around 1300 cm−1 and this
is consistent with calculations using large supercells (see for example Refs. [72,
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73]). While this does not affect the comparison between different implementations,
it clearly suggest a significant finite size error associated with the 1x1x1 cell.

The evaluation of the Kohn-Sham response matrix is broken into three terms:
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The first term is evaluated by finite difference. The second and third terms are
obtained analytically as part of normal nuclear gradient routine. In our implemen-
tation, the response matrix is first evaluated in the AO basis and then transformed
to the MO basis when needed. This is to avoid problems arising from different MO
gauges that can occur in finite-difference calculations. Our implementation differs
from standard PW codes in that the electron density and MO basis are converged in
the same SCF procedure.

To allow for easier comparison of our implementation against PW-based codes, we
take the occupied block of the potential response matrix as

/ BU8 9 =

〈
8
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��� 9〉 (4.18)

and define a gauge- and basis-independent I metric for comparisons:

I = Tr /†/. (4.19)

In Table 4.3 we compare our results for the Imetric with those from a PW implemen-
tation. For the PW reference, DFT/DFPT results from QE are used by Perturbo[74]
to extract the potential response matrix. For our Gaussian basis implementation,
a slow basis convergence behavior is observed moving from DZVP to TZVP, but
again, given the differences in many numerical choices, our results in the TZVP
basis are qualitatively similar to those from the PW reference.

I GTH-SZV GTH-DZVP GTH-TZVP PW
LDA 0.0864 0.1639 0.1768 0.2278
PBE 0.0841 0.1631 0.1739 0.2260

Table 4.3: I metric (�h) of diamond computed in a cGTO basis (PySCF) compared
to results from QE/Perturbo computed in a PW basis.

In order to enable large simulations using ab initio Hamiltonians, the following
strategies are adopted to optimize our ep-CC Python implementation:
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1. We take advantage of the irreducible alignment algorithm we developed in
Chapter 3 to obtain an implicitly unrestricted implementation starting from
generalized spin-orbital equations from our code generator.

2. We used the Cyclops Tensor Framework[75] as our numerical backend, and
this allows efficient tensor contractions in distributed parallel setting.

Results on Diamond
Diamond has emerged as a paradigmatic example in the field of ab initio electron-
phonon computation, and the accurate computation of relatively simple quantities,
like the zero-point renormalization (ZPR) (the shift of the bandgap due to phonon
effects) remains a challenge. Experimental values based on isotopic shifts suggest
a ZPR of the indirect gap of -364 meV[76]. Calculations of the ZPR of the direct
gap suggest that it is higher, closer to -600 meV[18, 77, 78]. Importantly, it has
been shown that many-body electronic effects are important to the ZPR of the direct
gap[18] and that dynamical effects are important to capture some qualitative features
of the EPI[79]. We here provide a summary of previous theoretical and experimental
results in Table 4.4.

ZPR EPI electronic structure ZPR gap reference
-700 - tight-binding PIMC direct [77]
-615 LDA LDA AHC direct [78]
-628 LDA GW AHC direct [18]
-334 - LDA Ref. [80] indirect [80]
-345 - LDA WL indirect [81]
-337 - GW MC indirect [82]
-364 - Experiment - indirect [76]

Table 4.4: Selected literature results for the ZPR of diamond. Monte Carlo is
abbreviated as MC. Path integral molecular dynamics is abbreviated as PIMD,
Allen-Heine-Cordona[83, 84] theory is abbreviated as AHC, and the theory of
Williams[85] and Lax[86] is abbreviated as WL. The method used to get the ZPR in
Ref. [80] does not have a commonly used name, but it is clearly described in given
reference.

In Table 4.5 we present the ZPR of diamond computed by IP/EA-EOM-ep-CCSD-1-
S1 and IP/EA-EOM-CCSD-PT2. The EPI matrix elements and phonon frequencies
are computed from Hartree-Fock calculations. It was necessary to remove the most
diffuse s orbital from the GTH-DZVP basis and themost diffuse s and p orbitals from
the GTH-TZVP basis in order to eliminate numerical instabilities in the calculation
of the EPI matrix elements.
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The experimental lattice constant of diamond, 3.566Å, is used throughout. For
EOM-CCSD-PT2, the electronic CCSD amplitudes are used along with a PT2
estimate of the electron-phonon amplitudes:

C08,G = −
60
8,G

Y0 − Y8 + lG
. (4.20)

The quantities in Table 4.5 are directly comparable to the ZPR of the direct gap
which has recently been reported to be in the range of -600 to -700 meV[18,
77, 78]. However, the very small size of our simulation cell means that these
numbers require some estimate of the finite-size error for a meaningful comparison
with experiments. In diamond, the finite size effects are significant. However, the
strength of coupled cluster methods is that they explicitly treat many-body electronic
effects as well as dynamical electron-phonon correlation in a consistent framework.
Thus recomputation using the approximate literature treatments within the same
smaller cells would allow for the magnitude of higher-order many-body effects to
be estimated from these CC calculations.

Basis CCSD-1-S1 CCSD-PT2
full no-VV full no-VV

GTH-SZV -671 -366 -671 -366
GTH-DZVP∗ -831 -617 -826 -512
GTH-TZVP∗ -1343 -767 -1115 -645

Table 4.5: Band gap renormalization (meV) at the Γ point (direct gap) for a 1x1x1
unit cell in different basis sets. Note that the most diffuse s orbital was removed
from the GTH-DZVP basis and the most diffuse s and p orbitals were removed from
the GTH-TZVP basis. In the “no-VV" columns, the unoccupied-unoccupied EPI
matrix elements were discarded, which forms a more direct comparison with typical
treatments of band-gap renormalization.

We can draw two conclusions from these finite-size ep-CC calculations. First,
using the PT2 estimate of the coupled amplitudes provides EOM results that are
comparable to the converged CC results, though the results from converged CC
amplitudes are consistently lower. This suggests that the converged CC ground state
is probably not necessary to obtain reasonable excited-state properties of typical
large-gap insulators. Second, we find that the band-gap renormalization becomes
unexpectedly large as the size of the basis set is increased. This affect can be
mostly traced to the unoccupied-unoccupied (virtual-virtual, or VV) block of the
electron-phonon matrix elements which do not appear in the widely used Allen-
Heine-Cordona (AHC) treatment[83, 84]. This could indicate that the Hamiltonian
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of Equation 4.15 does not properly describe the electron-phonon coupling between
unoccupied bands which does not enter into typical calculations in the material
community. Alternatively, it could be due to the small finite size of the simulation.

Results for a larger supercell are shown in Table 4.6.

supercell CCSD-1-S1 CCSD-PT2
1x1x1 -671 -671
2x2x2 -134 -142
3x3x3 - -42

Table 4.6: ZPR (meV) of diamond supercells in the GTH-SZV basis set. The 2x2x2
and 3x3x3 supercells provide estimates of the indirect band gap renormalization. In
the 3x3x3 supercell, we were unable to obtain converged CCSD-1-S1 amplitudes.

These results are not constrained to compute the direct gap, so the results for 2x2x2
and 3x3x3 supercells should be viewed as finite-size approximations to the ZPR
of the indirect bandgap. These results affirm that using CCSD-PT2 amplitudes in
the EOM calculation is a reasonable approximation. The ZPR is smaller for larger
supercells which is consistent with the smaller ZPR for the indirect gap. Though
the simulation cell is still too small for a reliable extrapolation, the numbers are
consistent in magnitude with results that have been reported in the literature. The
slow and oscillatory convergence of the ZPR of diamond with supercell size is a
well-known problem[80, 81, 87].

Future Directions for Ab Initio Calculations
In the previous section, we identified two significant sources of error in our CC
calculations which explicitly include EPI: (1) The finite-size error which is difficult
to control since the CC equations must be solved simultaneously for all electronic
and phononic degrees of freedom. (2) The form of the EPI term, which may be
insufficient, especially for the unoccupied bands.

We intend to address the finite-size error by using a perturbative correction to EOM-
CCSD eigenvalues which can be interpolated to denser k-point grids as is usually
done in traditional calculations of EPI. The coupled cluster framework presented
here will be useful in evaluating the validity of these perturbative approximations.

The validity of the linear EPI term also needs to be investigated further as does
the omission of anharmonic effects. This requires very accurate calculations on
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small systems or model systems, and we expect this coupled cluster framework to
be useful in that it can provide more systematic results for such problems.

4.6 Conclusion
Wehave presented a coupled cluster framework for a systematic, correlated treatment
of interacting electrons and phonons. The theory is a straightforward combination
of fermionic (electronic) and bosonic (phononic) coupled cluster ansatz. Despite
the formal simplicity of the ansatz, sophisticated diagrammatic techniques and
automated operator algebra were necessary to efficiently implement the equations.
These techniques are described in the appendices. In order to benchmark these
methods, we have applied them to the Hubbard-Holstein model. Calculations on the
four-site HH model, which can be exactly solved numerically, reveal that all the CC
methods discussed here perform well for small to moderate coupling. Calculations
of the excited-state properties of the model suggest that the EOM-ep-CC methods
can provide excited-state energies with an accuracy comparable to EOM-CC for
electronic excitations.

Finally we have discussed the details of an ab initio implementation in the context
of crystalline Gaussian-type orbitals. Preliminary calculations on the ZPR of dia-
mond are consistent with values reported in the literature, but a better treatment of
finite-size error is necessary for truly quantitative calculations. This motivates the
future development of more approximate theories that can utilize EPI matrix ele-
ments interpolated onto a very fine momentum-space grid. We found unexpectedly
large values for the ZPR when coupling between virtual bands was included in the
calculations which suggests that the approximate, linear form of the EPI may not
be sufficient in the more sophisticated many-body treatments of electron-phonon
effects where these states must enter.
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C h a p t e r 5

FERMIONIC TENSOR NETWORK SIMULATION WITH
ARBITRARY GEOMETRY

5.1 Introduction
Tensor network (TN), a recently developed mathematical tool, has been undergoing
rapid developments over the past few decades, enablingmajor advances in condensed
matter physics, atomic physics, quantum information science, and so on. In the con-
text of quantum many-body physics, the first major success of tensor network can be
traced to Steve White’s invention of density matrix renormalization group (DMRG)
algorithm for matrix product states (MPS)[1, 2]. Since then, DMRG has gained
wide popularity in studying model Hamiltonians to describe high-temperature su-
perconductivity, quantum spin liquids, and other strongly correlated systems[3–7].
However, due to the one-dimensional (1D) entanglement entropy area law, MPS are
only best suited for computing the ground states of gapped, 1D Hamiltonians[8].
Despite such limitation, DMRG is still mostly viewed as the method of reference for
some higher dimensional problems due to its robustness.

On the other hand, it was recently realized that MPS is just a special class of a
broad family of tensor networks, each with different traits in terms of geometry,
representability, computational cost, and so on. For instance, projected entangled
pair states (PEPS), the 2D generalization of MPS, is capable of capturing correla-
tion functions with polynomial decay[9, 10], making it a promising candidate to
describe both gapped systems and critical states of matter. In addition to better
representability, higher dimensional tensor networks are also deeply connected to
quantum information science and machine learning, thus attracting great interests
in the research community.

In the context of quantum many-body problems, one of the grand challenges for
tensor network is how to adapt tensor network methods (potentially with arbitrary
geometry) to study fermion systems, where the anti-symmetry from Pauli’s ex-
clusion principle prohibits a direction translation. In this chapter, we describe a
numerical framework for fermionic tensor network with arbitrary geometry using
special unitary groups. Our scheme is a direct extension of Pižorn’s work[11] by
encoding fermion statistics in the block sparse tensor backend, thus allowing direct
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inheritance of most of the pre-established tensor network infrastructures. This strat-
egy is inherently equivalent to the other swap gates-based approaches[12–14]. In
addition to the specially tailed backend, we introduce additional rules in fermionic
tensor network to account for fermion statistics yet maintain a clear graphical rep-
resentation. We benchmark our framework by investigating the Hubbard model on
both a 2D square lattice and a 3D diamond-like lattice. Thanks to the symmetry
support in our backend and the various types of approximate contraction methods,
we were able to perform simulations on large systems (up to 250 sites) and evaluate
the eneriges of these graphs. Our results exhibits competitive accuracy with cou-
pled cluster methods, indicating that the fermionic tensor network is a promising
candidate for correlated fermion systems.

The rest of the chapter is organized as follows. In Section 5.2, we describe the
formulation for tensor network and its extension to fermion systems. We then
describe the algebraic rules for fermionic tensors and the special rules for tensor
operations in Section 5.3 and Section 5.4 respectively. In Section 5.5 we introduce
approximate contraction methods and present numerical results on Hubbard model
on a 2D square lattice and a 3D diamond-like lattice. We conclude with Section 5.6.

5.2 Tensor Network Theory
We begin by considering a quantum many-body system on certain lattice L made
of N sites. These lattices are labeled by 8 ∈ {1, 2, ..., #} and each site 8 resides in
a complex vector space with basis states |si〉si=1,2,...,< where m is the size for each
vector space. The wavefunction can then be expressed as:

|Ψ〉 =
∑

s1,s2,...,sN

�s1,s2,...,sN |s1〉 ⊗ |s2〉... ⊗ |sN〉, (5.1)

where the expansion coefficients �s1,s2,...,sN scale as <# .

A main goal of quantum many-body theory is to be able to simulate the low-
lying energies states of certain Hamiltonian �̂ and compute expectation value of
interest with 〈Ψ|$̂ |Ψ〉. Due to the steep scaling of �s1,s2,...,sN , it is computationally
prohibitive to perform exact diagonalization (ED) on systems beyond a few tens of
sites.

Tensor networkmethods were introduced as an efficient ansatz to approximately rep-
resent the wavefunction. The theory amounts to breaking down the huge coefficient
tensor into a collection of N smaller tensors {�8} where each tensor carries both
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the so-called physical index for si and a set of virtual bonds vi that are connected to
other tensors following the geometry of the lattice L:

|Ψ〉 ≈
v1,v2,...,vn∑
s1,s2,...,sN

�1
s1,v1�

2
s2,v2 ...�

#
sN,vn |s1〉 ⊗ |s2〉... ⊗ |sN〉. (5.2)

Depending on the geometry of L, multiple ansatzs including MPS, PEPS, and
multi-scale entanglement renormalization ansatz (MERA) have been developed to
simulate different systems based on entanglement area law. The geometries of MPS,
PEPS, and MERA are displayed in Figure 5.1.

(a) (b) (c)

Figure 5.1: Geometries of selected class of tensor network: (a) MPS, (b) PEPS, (c)
MERA.

Extension to Fermion Systems
Traditionally tensor networkmethods have beenmostly developedwith commutative
tensor algebra rules, which can be directly transferable to bosonic systems where
such tensor algebras are commensurate with the commuting bosonic operators.
Fermionic operators on the other hand, follow the anti-commutation rules due to
the anti-symmetry nature. This is manifested as |s1〉 ⊗ |s2〉 = (−1)%s1%s2 |s2〉 ⊗ |s1〉
where %si denotes the parity of the basis si. This prohibits a direct translation of
numerical algorithms developed with commutative algebraic rules.

Several methods have been proposed to extend TN methods to fermion systems,
which can mostly be divided into three categories:

1. Fermion operators are transformed to hard-core boson operators, typically
through encoding schemes such as Jordon-Wigner mapping[15] or Bravyi-
Kitaev transformation[16].
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2. Swap gates are explicitly introduced into the graph to account for potential
phases from anti-symmetry[12–14].

3. Special algebraic rules are enforced in tensor operations while the diagram-
matic notation remains unchanged[11].

When formulating fermionic tensor network, (1) can only preserve locality of the
Hamiltonian in 1D and introduces “fictitious" long-range interactions into higher
dimension systems. (2) is generally applicable to arbitrary graph, but the addition
of geometry- and operation-dependent swap gates clutters the intuitive graphical
representation. (3) encodes fermion statistics directly in the tensor backend which
requires each parity sector to be handled differently. Our approach falls into the
category of type (3). This strategy maintains the clean graphical representation with
minimal modifications required to reuse pre-established tensor network algorithms.
Specifically, we enforce anti-commuting tensor algebras at the backend level so
that they behave just like fermionic operators. Intuitively, our “tensor" object now
represents a collection of fermionic operators:

�̂8 = �8si,vi$̂si$̂vi , (5.3)

where �8si,vi is the pure tensor object that obeys commutative algebraic rules and $̂si

and $̂vi are the fermionic operators that act on the physical space and the virtual
space respectively. We can then express the wavefunction using these operators as:

|Ψ〉 ≈
∏

�̂1 �̂2... �̂# |0〉. (5.4)

Our work is initially inspired by Pižorn’s work with additional features as below:

1. Tensors are implemented in a block sparse format with symmetry group
beyond parity symmetry (/2) supported, e.g*1, /2 ⊗ /2 and*1 ⊗ *1.

2. All tensors are constrained with a symmetry conservation rule, allowing effi-
cient representation for quantum states under different symmetry irreducible
representation.
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5.3 Linear Algebras for Fermionic Tensors
Wehere introduce the implementation details of our fermion tensor library in Python.
For our block sparse implementation, each index q (physical or virtual) is unfolded
into symmetry modes (%@) and symmetry blocks (@). For instance, Equation 5.3 is
now transformed into:

�̂8 = �8B8%B8 ,E8%E8
$̂
%B8
B8 $̂

%E8
E8 . (5.5)

Here the symmetry group of %@ can be extended beyond the parity symmetry group
(/2), e.g *1, /2 ⊗ /2 and *1 ⊗ *1. The size of symmetry sectors can in principle
differ from each other (this is different from Chapter 3), and we enforce symmetry
conservation here such that the total symmetry for for each block amounts to a fixed
quantity %8, e.g %B8 + %E8 = %8 for all blocks of the tensor.

Data Structure
Since our fermion tensors are designed to mimic fermionic operators, the tensor
object must store both the pure tensor part and the operator part of Equation 5.5. The
pure tensor data are stored in block sparse format similar to the compressed sparse
row format for sparse matrix: (1) The data for each block (subtensor) is flattened
and then concatenated into a full 1D array (order of the blocks are unsorted). (2)
We keep three sets of markers (stored as Numpy array) to preserve the symmetry
structure of the original tensor: one storing the shapes for each block, one storing
the irreps of each block (implemented as hash values), and the last as the pointer
for data locations in the full array. In addition to the irreps marker, we label each
index with plus or minus signs depending on the symmetry conservation relation.
Figure 5.2 is a schematic diagram showing data structure for a fermion matrix with
block size �*1 (0) = 1, �*1 (1) = 3, �*1 (2) = 2 for both dimensions and a symmetry
conservation rule of %8 + % 9 = *1(2) where �%8 represents the block size for the
symmetry sector of %8 and 8, 9 are the indices for row and column respectively. In
Figure 5.2 (a) we introduced arrows on the indices to denote the algebraic sign in
symmetry conservation. This will be suppressed in subsequent figures for simplicity
unless noted.

Tensor Transposition
For regular tensors, transposition refers to the permutation of original indices
i1, i2, . . . , in into a different order ℱ(i1, i2, . . . , in). For fermion tensors, transposi-
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(a)
U1(0)

U1(1)

U1(2)

U1(0) U1(1) U1(2)(b)

data
(2,1) (3,3) (1,2)

shapes

irreps
0 2 1113

data pointer

(c)

Figure 5.2: Schematic diagram of fermion tensor data structure: (a) graphical nota-
tion where arrows on the indices denote algebraic sign in symmetry conservation,
(b) sparsity structure in dense matrix format where each non-zero block is marked
with different colors, (c) explicitly stored data sets.

tion translates to permuting the indices for both the pure tensor part and the operator
part while keeping the underlying operator unchanged. As shown in Equation 5.6,
this requires performing block-wise transposition and computing the corresponding
phase that arises from permuting the order of operators:

�̂ = �i1,...,in$̂i1 . . . $̂in = �ℱ(i1,...,in) × (−1) 5 (ℱ,%81 ,...,%8= )ℱ($̂i1 . . . $̂in). (5.6)

Here we use (−1) 5 (ℱ,%81 ,...,%8= ) to represent the permutation- and parity-dependent
phase for each block. This phase is in practice absorbed onto the permuted tensor
data to form a new fermion tensor object.

Tensor Contraction
One common strategy for performing regular tensor contraction is to first permute
and reshape the tensors into matrices so that the contraction can be mapped to a
matrix multiplication. Modern BLAS libraries such as Intel MKL can efficiently
perform such matrix multiplication and the overhead from preprocessing is mostly
worthwhile. We here adopt the same philosophy for our block sparse tensor contrac-
tion with the key difference that the permuting step needs to account for the potential
phase. After that, contraction on the block sparse tensors reduces to doing a set
of smaller dense matrix multiplications on various pairs of blocks from the input
tensors. Our contraction backend leverages HPTT [17] for fast tensor transposition
and dispatches to BLAS libraries for each individual matrix multiplication.
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The graphical notation of fermion tensor contraction is also slightly modified to
account for the order of the two operators. For instance, the contraction .̂ijkl =

�̂ija�̂akl is displayed in Figure 5.3

A B=Y

Figure 5.3: Diagramatic representation of fermion tensor contraction. The dashed
brown arrow denotes the ordering of operator �̂ and �̂ (arrows denoting the sym-
metry conservation rules are suppressed).

wherewehave introduced the brown arrow to represent the order of the twooperators.
One of the most basic principles of fermionic tensor network is that only tensors are
that adjacently ordered (connected by the brown arrow) can be directly contracted.

Tensor Decomposition
Tensor decomposition routines are heavily used in tensor network algorithms to can-
onize or compress tensors. The operation is typically done through QR factorization
or singular value decomposition (SVD) as shown in Figure 5.4.

Since all fermionic tensors must carry a fixed total symmetry, there is a degree
of freedom on how to partition the input total symmetry in the output, i.e %. =
%& + %' = %* + %( + %+ . Noticeably, in tensor network theories, decomposition
routines are mostly called for canonicalization or compression between two tensors,
so it is natural to adopt the convention that the two output tensors each take the same
total symmetry as the two input tensors.

In our implementation, once the symmetry partition is determined on the output, we
can compute all the potential irreps for the shared index of the outputs tensors. For
each different irrep, we gather all relevant blocks and reshape them into a matrix
before performing block-wise decomposition. The decomposed outputs are then
re-assembled based on their irreps into the output fermionic tensors.

In SVD, one typically truncates the singular values up to some fixed dimension j
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Q R

U S V

=Y

Figure 5.4: Diagramatic representation of fermion tensor decomposition through
QR (upper right) and SVD (lower right). The dashed brown arrow denotes the
ordering of output operators.

as an approximation. In this case, we gather all singular values from all blocks of (̂,
sort them, and keep the largest j values.

5.4 Rules for Fermionic Tensor Network
In Section 5.3 we have introduced how to account for fermionic statistics when
performing pair-wise operations, but this is only well definedwhen the two operators
are adjacent. In principle, fermionic operators are placed in some order with respect
to the vaccum (as shown in Equation 5.4) and operators with shared indices are not
necessarily adjacent. Therefore, we describe here how to perform operations on
non-adjacent tensors.

Contraction
It has been shown that the order of fermion tensors can be reversed by introducing a
phase into each block of the tensor inputs[11]. For instance, for pair-wise contraction
between adjacent fermion operator �̂ = �̂ℱ0 ({i},{m}) and �̂ = �̂ℱ1 ({j},{m}) where
ℱ denotes the permutation of the set of indices {8}, { 9} (uncontracted) and {<}
(contracted), the swap rule is manifested as
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�̂�̂ =
∑
{<}

�ℱ0 ({i},{m})ℱ
0 ($̂{i}$̂0

{m})�ℱ1 ({j},{m})ℱ
1 ($̂{j}$̂1

{m}) (5.7)

=
∑
{<}

6{<} × �ℱ1 ({j},{m})ℱ
1 ($̂{j}$̂1∗

{m})�ℱ0 ({i},{m})ℱ
0 ($̂{i}$̂0∗

{m}),(5.8)

where 6{<} = (−1)%�%�+%{<} depends on both the total parity of �̂, �̂ (%� and %�)
and the parity of each contracted index < (%<). This block-wise phase can be fully
absorbed onto the tensor part of either A or B, and the original contraction can
be transformed to �̂�̂ = ˆ̃� ˆ̃� where either �̃ or �̃ contains the phase and the other
remains unchanged. Graphically this can be be represented as Figure 5.5.

A B = =
A B

Figure 5.5: When applying the fermionic swap operation, the phase can be fully
factorized onto either B (middle plot) or A (right plot). The hatch pattern on the
vertices shows where the phase gets factorized onto. The reverse of contraction
order is shown via the brown dashed arrow. The flip of the arrow direction on the
shared index indicates the hermitian conjugate operation on the operator for the
shared index.

The swap rule allows all pair-wise operations to be well defined as we can reverse
tensor orders so that the tensor pairs are adjacently ordered. For tensor contractions,
this means we can take advantage of the optimized contraction path by swapping
tensor orders on the fly so that the operands (potentially with a phase) are always
adjacently ordered.

Compression and Canonicalization
Although pair-wise operations are only well defined when operators are adjacently
ordered, in practice, not all operations would require an explicit swap operation.
As we shall prove here, compression and canonicalization in our construction can
be performed in place without the need for a swap. We here provide an intuitive
example based on three tensors with initial order ���, and we wish to compress the
index : between non-adjacent � and �. This schematic diagram for a well-defined
compression operation is shown in Figure 5.6.
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(a) (b) (c) (d)

Figure 5.6: Operations required to perform compression between non-adjacent
tensors � and �. The four stages are labeled with (a), (b), (c), and (d). Dashed
brown arrows are used to represent the relative order of operators. The details for
these steps are provided in the main text.

The entire compression operation can be divided into three steps: (1) Swap operation
is performed between � and � so that the new state becomes ���̃. As shown in (b)
of Figure 5.6, we can factorize the phase 60 = (−1)%�%�+% 9 onto � so that the new
state becomes ���̃. (2) Compression is performed on adjacent ��, leading to the
new state �̄�̄ �̃. This is manifested as the transition from (b) to (c) in Figure 5.6.
As mentioned in Chapter 5.3, we do not alter the total symmetry partition during
this step, i.e %�̄ = %� and %�̄ = %� . (3) Another swap operation is called between
�̄ and �̃ to get to the same order as the initial state, during which another phase
61 = (−1)%�̄%�̃+% 9 arises. It is straightforward to see that 61 = 60, and we can thus
revert �̃ back to � by again absorbing 61 onto �̃. By a comparison between (a) and
(d), we can clearly see that the whole routine is effectively equivalent to performing
compression between � and � in place as if they are adjacent. This is only true
as our implementation enforces symmetry conservation and no re-partition of total
symmetry during compression or canonicalization. We can easily generalize to
cases with an arbitrary number of operators between � and � as all the operators in
between can be viewed as a large, contracted �.

In principle, the removal of explicit swap in compression and canonicalization
reduces a huge amount of overhead from reordering the tensors.

5.5 Results
In this sectionwewill provide our benchmark results on half-filledHubbardmodel on
two types of finite lattices: a 2D square lattice and a 3D diamond lattice constructed
by extending the primitive cell of diamond crystal in 3D with a tetrahedral fashion.
An example for a 3x3x3 diamond graph is shown in Figure 5.7
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Figure 5.7: Geometry of a 3x3x3 diamond-like lattice. The central sites in blue are
extended in 3D with tetrahedral bonding.

The Hamiltonian of Hubbard model can be expressed as:

� = −C
∑
<8, 9>f

(
0
†
8f
0 9f + h.c.

)
+*

∑
8

=8↑=8↓, (5.9)

where < 8, 9 > denotes nearest neighbors within the structure and * characterizes
the on-site Coulomb repulsion. Despite the simplicity of its mathematical form, the
Hubbard model is one of the most important models of correlation physics.

Computational Details
Our fermionic tensor backend is interfaced to the Quimb package[18] to take ad-
vantage of the tensor network infrastructures. The ground-state wavefunctions
are optimized by simple update style time-evolution block-decimation (TEBD)[19]
implemented in Quimb, and we used * (1) symmetry for fixed the total particle
number. For comparison, we benchmark our results against other methods includ-
ing DMRG, UCCSD, UCCSD(T), and ED when computationally feasible. DMRG
calculations are performed using Block2 package[20]. We used a maximum bond
dimension of 6000 and extrapolated the sweep energy linearly as a function of the
maximum discarded weight. All coupled cluster calculations are performed using
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PySCF package[21] with an unrestricted reference.

For expectation (energy) value computations, exact contractions on any of the two
types of lattices is prohibitively expensive. Approximate contractions are thus
performed as a compromise.

For our approximate PEPS contraction, we used a bilayer MPS-MPO style boundary
contraction method in Quimb to form the environment for each pair of neighboring
tensors. The level of approximation is tuned by the maximal truncation bond j.
Typically j ≈ =�2 should reach good accuracy, here we use j = 128 for all our
calculations. The expectation value computation for the diamond graph is even
harder than the PEPS. This is due to the fact that tensors in diamond graph are more
“dispersed" and it is not clear how to perform approximate contractions efficiently.
Therefore, we introduce two types of approximate contraction methods for our
diamond graph calculations.

The first type is the so-called compressed contraction implemented in Quimb, which
is shown in Figure 5.8. For each term in the energy evaluation, we first use the
cotengra package[22] to search for the approximate contraction path with the lowest
peak memory footprint. Before each pair-wise contraction, the involved tensors are
compressed with neighboring tensors just in time if the size of any shared bonds
exceeds the threshold j. This process is carried out throughout each step in the
contraction path. However, despite our aggressive compression, the diamond graph
is computationally more expensive than 2d square lattice, and we will use a lower j
in our calculation.

A B

compress

compress

(a) (b) (c)

Figure 5.8: Schematic diagrams for compressed contraction: (a) compression be-
fore contraction, (b) pairwise contraction on reduced tensors, (c) proceed to next
contraction. See main text for details.

The second type is referred to as cluster approximation as shown in Figure 5.9,
which is inspired by the cluster update method in TEBD[23]. For each term in the
energy evaluation, we construct a cluster by only including the tensors around the
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central sites (where the Hamiltonian term acts on) up to some radius A . In order to
account for the effect from the environment, the gauges on the boundary are first
absorbed onto the cluster and then traced out so no dangling bonds remain after
the cut. The cluster approximation can further take advantage of the compressed
contraction scheme above to further reduce the cost.

Figure 5.9: Schematic diagrams for cluster approximation with a radius of 2. The
cluster encapsulated by the red dashed line serves as the approximate network (with
a trace operation on the dangling bonds). This includes the dark pink sites, the blue
sites, and the red squares, which represent the central sites, the neighboring sites
with a Manhattan distance no larger than 2, and the gauges on the dangling bonds
respectively. The remaining light purple sites are thus neglected.

2D Square Lattice
For our 2D Hubbard model calculation, we surveyed different parameter sets (!,*)
where L is the width of the lattice and U is the on-site Coulomb repulsion.

We first examine small system size with ! = 4 to check the convergence behavior
of our method. The results together with other reference data are presented in
Figure 5.10. As � increases, we found the PEPS energies quickly surpass coupled
cluster energies with a slow convergence towards the exact ground state energies.
Notably, the minimal � required to bypass coupled cluster energies decreases as
U increases. This is consistent with the general observation that tensor network
methods are more suited for systems with local interactions.

Figure 5.11 shows the accuracy of our largest PEPS calculations (D=18) at L=4, 6,
and 8 compared to other methods. For L=4, we use ED energies as the reference and
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Figure 5.10: Ground-state energies for 2D Hubbard model at ! = 4 with* = 4, 6, 8.
The PEPS results are represented by the blue solid lines and the references from
UCCSD,UCCSD(T),DMRG, andEDare displayedwith dashed lines using different
colors.

for the two larger lattices, extrapolated DMRG energies are used as the reference.
We can clearly observe that at D=18, PEPS energies can consistently achieve an
error rate below 1%, which is much lower than UCCSD and UCCSD(T) in all
cases. Previous work has shown that much of the remaining errors can be ascribed
to the over-simplification of environment effect during simple update[12, 19, 24].
Another interesting observation is that the relative error is decreasing as system size
increases. This not necessarily indicates an improvement from the PEPS side, but
rather more like DMRG struggling with larger systems.
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Figure 5.11: Relative error of 2D Hubbard model energies computed from different
methods compared to the reference: (a) L=4 with ED as the reference, (b) L=6 with
DMRG as the reference, (c) L=8 with DMRG as the reference.

Our largest calculation at L=10 is shown in Figure 5.12. We found a similar
convergence behavior system L=4 in Figure 5.10. Notably, even as the lattice
expands from L=4 to L=10, the minimal bond dimension for PEPS to outperform
UCCSDandUCCSD(T) remains almost the same for eachU (D=12 forU=4, D=6 for
U=6 and 8). The results for all our 2D Hubbard model calculations are summarized
in Table 5.1:
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Figure 5.12: Ground-state energies for 2DHubbardmodel at ! = 10with* = 4, 6, 8.
The blue solids lines represents the PEPS results. The references from UCCSD and
UCCSD(T) are displayed with dashed lines using different colors.

L U PEPS UCCSD UCCSD(T) DMRG ED

4 -0.698 -0.691 -0.692 -0.703 -0.703
4 6 -0.531 -0.520 -0.521 -0.534 -0.534

8 -0.423 -0.413 -0.413 -0.426 -0.426
4 -0.752 -0.747 -0.749 -0.756 NA

6 6 -0.572 -0.564 -0.565 -0.574 NA
8 -0.456 -0.448 -0.449 -0.458 NA
4 -0.779 -0.774 -0.776 -0.783 NA

8 6 -0.593 -0.586 -0.587 -0.595 NA
8 -0.473 -0.466 -0.467 -0.474 NA
4 -0.795 -0.791 -0.792 NA NA

10 6 -0.605 -0.599 -0.600 NA NA
8 -0.483 -0.477 -0.477 NA NA

Table 5.1: Ground-state energies of 2D Hubbard model computed from PEPS (with
D=18 and SU), UCCSD, UCCSD(T), DMRG, and ED.

3D Diamond Lattice
For our 3D diamond graph calculations, we first benchmark our method in 3x3x3
and 4x4x4 diamond graph. The expectation value computation is performed using
the compressed contraction scheme with j = 32 and j = 16 for the two graph
respectively. The comparison with UCCSD, UCCSD(T), and DMRG is provided
in Figure 5.13. Due to the steep scaling of diamond simulation with respect to D,
the largest bond dimension is set to 6 for all these calculations. Nevertheless, for all
these cases, we found the SU energies to reach competitive accuracy as the coupled
cluster at our best simulation. The results are expected to further improve at larger
D though the computational cost is already beyond what our platform can handle.
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Figure 5.13: Ground-state energies for Hubbard model on 3x3x3 (top panel) and
4x4x4 (bottompanel) diamond latticewith* = 4, 6, 8. The blue solid lines represent
the PEPS results and the references from UCCSD, UCCSD(T), and DMRG are
displayed with dashed lines using different colors.

As a first attempt towards larger systems, we would like to get a rough estimate
on how our methods perform in a 5x5x5 diamond graph (250 sites). This is
computationally too demanding for our compressed contraction method. Therefore
we will be computing the energies through the cluster approximation method shown
in Figure 5.9 . We first assess the accuracy of cluster approximation method by
computing the energies as a function of increasing radius A and make a comparison
to results from the compressed contraction (j = 32 for 3x3x3 lattice and j = 16
for 4x4x4 lattice). The results are shown in Figure 5.14. Note here the comparison
must be taken with caution as it was not possible to gauge the true accuracy of each
method due to the huge cost of exact contraction. Still, we can find that for the
3x3x3 graph, a relative difference less than 1% can be consistently achieved with
A >= 2. For the 4x4x4 structure however, the smallest relative difference all occurs
at A = 2. As mentioned earlier, this does not necessary mean that A = 2 gives the
best approximated results, but rather the references from compressed contraction
may not be accurate themselves (j = 16 being too low).

Nevertheless, from our assessment above, we can still compute the energies of 5x5x5
graph with cluster approximation and expect the approximation error to be around
a few percent or lower. We thus used a radius of 3 to compute the approximate
energies and the results are shown in Figure 5.15. Similar to what we have observed
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Figure 5.14: Relative difference between energies of different systems computed
from cluster approximation and compressed contraction. The different colors rep-
resent cluster approximations with different radii r.

in small systems, the SU energies gradually decreases and becomes competitive
with coupled cluster at D=6. Again, the performance of tensor network improves
as locality (U) increases. The results for all our calculations are summarized in
Table 5.2.
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Figure 5.15: Ground-state energies of Hubbard model on 5x5x5 diamond lattice
with* = 4, 6, 8.

5.6 Conclusion
We have presented a numerical framework for tensor network simulation on fermion
systems with arbitrary geometry. The method is based on a tailored block sparse
tensor library with support on block symmetries to account for fermion statistics.
We introduced several rules when performing operations in fermionic tensor net-
works. In order to benchmark our methods, we have applied them to the Hubbard
model on two types of geometries and introduced approximate methods to contract
these networks. Despite the simplicity of our wavefunction optimization method
(simple update), our results at all parameter regions exhibit competitive accuracy
with coupled cluster, indicting the huge potential of fermionic tensor network in
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Size U SU (D=6) UCCSD UCCSD(T) DMRG

4 -0.745, -0.745 -0.748 -0.751 -0.753
3x3x3 6 -0.549, -0.549 -0.546 -0.547 -0.554

8 -0.427, -0.427 -0.424 -0.425 -0.432
4 -0.806, -0.799 -0.801 -0.804 NA

4x4x4 6 -0.594, -0.589 -0.584 -0.586 NA
8 -0.461, -0.457 -0.454 -0.455 NA
4 NA, -0.806 -0.832 -0.835 NA

5x5x5 6 NA, -0.606 -0.608 -0.609 NA
8 NA, -0.474 -0.472 -0.473 NA

Table 5.2: Ground-state energies of Hubbard model on diamond lattices. The first
entry in the SU column is computed from compressed contraction and the second
from cluster approximation.

correlation physics.
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C h a p t e r 6

SUMMARY AND FUTURE OUTLOOK

When one looks back on the development of quantum many-body methods, we
easily realize that it is more often a recursive rather than straight-forward trajectory.
We devise numerical theories matching the state-of-art computation power. These
theories help us gain a better understanding of the systems of interest, which are used
to further refine the theories. From time to time, this recursive path is accompanied
with paradigm shift that brings the entire field a big step forward. However, a
paradigm shift almost never means that everything from the past is abandoned. In
fact, more than often we find the “old" tools revitalized in another fashion. We are
lucky enough to live in an age where all these intellectual developments are assisted
with fast-growing computing power.

As I reflect back on my own research work over the years, the unified central focus
has been on developing and investigating numerical tools that can potentially lead
to a paradigm shift in quantum many-body simulations.

The first topicwe are trying to address in Chapter 2 andChapter 4 is what is the “next-
generation" of simulation tools for electronic structure calculations of materials.
Although the equations underpinning the properties of materials and molecules are
the same, the majority of materials science and quantum chemistry communities
have taken drastically different approaches to improve their theoretic framework.
This can be partly traced to the slightly different focus of two communities and
also the different computation cost. As we identify more and more exotic physics
in the condensed phase, we come to realize that the wavefunction-based quantum
chemical methods can potentially be the right candidate in this region.

In this context, we have considered two scenarios, one with correlated electron
and the other with coupled electron and phonons in different regions. For the first
case, we report the first unrestricted coupled cluster implementation for ground-
and excited-state calculations on crystalline materials. Despite our coarse Brillouin
zone sampling, we found much improved results compared with prevalent mean
field methods. Our results clearly validate the huge potential of the coupled cluster
framework in the correlated region of solid state. In the future, we expect more
quantum chemical methods to be ported to the solid-state which can potentially yield
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more accurate properties and spectra. In this process, more electronic structure
infrastructure is needed, and extrapolation toward thermodynamic limit must be
properly addressed in order for the final outcome to carry predictive power. For
the second case, we report the first attempt to use the coupled cluster method to
study coupled electrons and phonons at the same footing. We developed this new
machinery by combining electronic and vibrational coupled cluster. By comparison
with other state-of-art numerical theories, we found satisfactory performance of our
method in the weak to intermediate coupling region. Meanwhile, our first test case
in the ab initio region suggests that the widely adopted first-order electron-phonon
Hamiltonian may not be adequate to capture the effect of electron-phonon coupling.
This is a delicate topic that requires more numerical study, and we expect our tools
to be valuable benchmark tools.

The second topic described in Chapter 3 is related to how to achieve the best
performance for our methods in the presence of symmetry groups. This topic is first
motivated by our observation that cyclic group tensor contraction is the performance
bottleneck in our coupled cluster implementation for the solid state. In fact, such
kinds of contractions are ubiquitous in a vast array of many-body methods. We
introduced irreducible representation alignment, an efficient scheme to store and
contract these block sparse tensors. While our strategy does not work on the lowest
level tensor contraction kernels, our algorithm transforms the problem into a set of
batched matrix multiplication that can be efficiently handled by various math kernel
libraries. This approach has allowed us to perform large-scale calculations using
state-of-art tensor libraries under distributed parallel setting. In the future, we expect
thatmore sophisticated numerical backend is needed to handle the numerous types of
symmetry patterns in the ansatz. In the context of quantum many-body simulation,
explicit use of such symmetry not only improves the numerical performance, but
also helps constrain the solution in a subspace of interest.

In Chapter 5 we consider our last topic on how to represent fermion wavefunction
efficiently using tensor network methods. Despite being a rather young research
field, tensor network theory has demonstrated unlimited potential in correlated
physics with the remarkable success of DMRG. As the research community delves
into exploring the full capability of tensor network methods at higher dimension,
piles of challenges arise, an important one being how to efficiently account for the
fermion statistics in the ansatz. Our strategy to tackle this problem is to encode the
anti-commutation rule directly in the tensor backend. In addition to preserving the
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intuitive diagrammatic representation, this scheme allows us to efficiently encode the
states and operators under certain symmetry groups. Using this approach, we were
able to able to directly inherit much of the pre-existing tensor network infrastructure
towards fermion simulation with arbitrary graphs. As a result, we were able to lever-
age various approximate contraction methods to perform benchmark calculations on
Hubbard models with different geometries. Our results indicate that in the strongly
correlated region, tensor network methods can at least be as competitive as coupled
cluster methods. Moving ahead, multiple questions remain to be addressed. For
instance, what is the representability of each class of tensor network? How can we
efficiently optimize the wavefunction tensors and perform approximate contraction
with controlled accuracy? We believe our proposed approach will be an invaluable
benchmark tool in addressing these questions.
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A p p e n d i x A

APPENDIX FOR CHAPTER 3

Generalization to Higher-Rank Tensors
Wenow describe how to generalize the algorithm to tensors of arbitrary rank, includ-
ing the more general symmetry conservation rules. We represent a rank # complex
tensor with cyclic group symmetry as an rank 2# tensor, T ∈ C=1×�1×···×=#×�# sat-
isfying, modulus remainder / ∈ {1 . . . �} for coefficients 21 . . . 2# with 28 = �/�8
or 28 = −�/�8,

C81�1...8# �# =


A
())
81�1...8# �#

: 21�1 + · · · + 2# �# ≡ / (mod �)

0 : otherwise,
(A.1)

where the rank 2# − 1 tensor R ()) is the reduced form of the cyclic group tensor T.

For example, the symmetry conservation rules in the previous section follow Equa-
tion A.1 with coefficients that are either 1 or −1 (� = �8).

Any cyclic group symmetry may be more generally expressed using a generalized
Kronecker delta tensor with binary values, %()) ∈ {0, 1}�1×···×�# as

C81�1...8# �# = A
())
81�1...8# �#

X
())
�1...�#

. (A.2)

Specifically, the elements of the generalized Kronecker delta tensor are defined by

X
())
�1...�#

=


1 : 21�1 + · · · + 2# �# ≡ / (mod �)

0 : otherwise.
(A.3)

Using these generalized Kronecker delta tensors, we provide a specification of
our approach for arbitrary tensor contractions (Figure A.1) in Algorithm 3. This
algorithm performs any contraction of two tensors with cyclic group symmetry,
written for some B, C, E ∈ {0, 1, . . .}, as

F81�1...8B �B 91�1... 9C �C =
∑

:1 1...:E E

D81�1...8B �B:1 1...:E E E:1 1...:E E 91�1... 9C �C . (A.4)
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Algorithm 3 The irrep alignment algorithm for contraction of cyclic group sym-
metric tensors, for contraction defined as in Equation A.4.
1: Input two tensorsU of rank B+E andV of rank E+C with symmetry conservation

rules described using coefficient vectors c(*) and c(+) and remainders / (*) and
/ (+) as in Equation A.1.

2: Assume that these vectors share coefficients for contracted modes of the tensors,

so that if c(*) =

[
c(*)1
c(*)2

]
, then c(+) =

[
c(*)2
c(+)2

]
.

3: Define new coefficient vectors, c(�) =
[
c(*)1

1

]
, c(�) =

[
c(*)2
−1

]
, and c(�) =

[
c(+)2

1

]
.

4: Define generalized Kronecker deltas %(1) , %(2) , and %(3) respectively based on
the coefficient vectors c(�) , c(�) , c(�) and remainders / (*) , 0, / (+) .

5: Let R̄ (*) and R̄
(+) be the given reduced forms for U and V (based on the

generalized Kronecker deltas %(*) and %(+)). Assume the reduced forms R̄ (*)

and R̄
(+) for U and V do not store the last symmetry mode (other cases

are similar). Compute the following new reduced forms R (*) and R
(+) , via

contractions:

A
(* )
81�1...8B−1�B−18B:1 1...:E−1 E−1:E&

=
∑
�B E

Ā
(* )
81�1...8B �B:1 1...:E−1 E−1:E

X
(1)
�1...�B&

X
(2)
 1... E&

,

A
(+ )
:1 1...:E−1 E−1:E 91�1... 9C−1�C−1 9C&

=
∑
 E �C

Ā
(+ )
:1 1...:E E 91�1... 9C−1�C−1 9C

X
(2)
 1... E&

X
(3)
�1...�C&

.

6: Compute

A
(, )
81�1...8B−1�B−18B �1�1... 9C−1�C−1 9C&

=∑
:1 1...:E−1 E−1:E

A
(* )
81�1...8B−1�B−18B:1 1...:E−1 E−1:E&

A
(+ )
:1 1...:C−1 E−1:E 91�1... 9C−1�C−1 9C&

7: If a standard output reduced form is desired, for example with the last mode of
W stored implicitly, then compute

Ā
(, )
81�1...8B �B 91�1... 9C−1�C 9C

=
∑
&

A
(, )
81�1...8B−1�B−18B�1�1... 9C−1�C−1 9C&

X
(1)
�1...�B&

.

If we instead desire a reduced form with another implicit mode, it would not be
implicit in R

(,) , so we would need to also contract with X(3)
�1...�C&

and sum over
the desired implicit mode.
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Figure A.1: A contraction of a tensor of rank B + E with a tensor of rank E + C
into a tensor of rank B + C, where all tensors have cyclic group symmetry and are
represented with tensors of twice the order. Note that unlike in the previous section,
the lines are not labeled by arrows (denoting coefficients 1 or −1), but are associated
with more general integer coefficients 28 = ±�/�8, to give symmetry conservation
rules of the form Equation A.1.

The algorithm assumes the coefficients defining the symmetry of U and V match
for the indices  1 . . .  E (it is also easy to allow for the coefficients to differ by a
sign, as is the case in the contraction considered in Chapter 3.3).



INDEX

B
bibliography, 12

F
figures, 11, 14, 20–25, 32, 34, 37–40, 43–46, 55–57, 75, 78–89, 98

T
tables, 19, 20, 42, 44, 52, 59–63, 87, 90

99


