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Pert 1.°

POLYNOMIALS AND ANALYTIC FUNCTIONS

IN VECTOR SPACES

11. Iptroduction to Fart 1.

Part 1 consists of three divisions. In division (12) vector
spaces are defined and some of their immediate properties deduced.
Division (13) discusses polynomials and deduces a number of their pro-
perites. In the finel division the work of the vpreceiing paces is apvlied

to a generalization of the ordinary theory of analytic functions.

12. Vector Spaces

12.1 General Romarks.

Definitions have be=n given by Banach, Weiner, Frechet, and
others, of abstract spaces naving properties similar to those of the space
of ordinary vectors. In order that this paper may be self contained and
in order that th;re may be no confusion as to what is meant, we shall give
our own formal statement of the postulates defining Vector Spaces.

Our choice of the particular system has been guided by a desire to have,

_ '
later on, &s many analogies as rossible to the ordinary theory of functions.



12.2 Vector Spaces and the Nptation

The spaces with wiich we deal are systems consisting of a set

.

B of elements or points, a nunber system A, and three operations @, ©, H...i
These systems are ascsumed to satisfy some or all of the postulates given
below. |

The set E is called the suoport of the space. The elements of
E are usually denoted by the letters x,y,g,... . In general no ambiguity
aries wnen we refer to the space and its support by the same letter. To
emphasize the fact that a space E involves a particular number system 4y,

it will be referred to as an E(Al).

Functions, Mapving: The usual notion of mapping is assumed. If

to ~ach element x of a set E, there corresnonds by some law a well

1 of a second set Ei, the set EO is said to ‘e mapved upon tre

determined x
set E%. A function f 1is a symbol for such a mapping. The relation is
denoted by xt = f(x). Tollowing the phrasing of E. H. Moore, we refer

to f as a function on EO to Eg.

Commosition of Classes: If El,Eg,...,En are sets of elcments,
then by E;Eo---Ej or {ﬁiEi we shall understand the multiplication class
of ordered sets (Xj,X5,+++,Xy), where x; runs through the set E;j. If
E} =By = ... =E, 'ﬁ'E. is denoted simply by EP. The set Ei'is spoken

i=1 *
of as the composite of the sets El""’En’

Functions Involving Parameters: If f is a function on Ejy to Ei

n
where E; = JTEj, it 1s sometimes convenient to consider the properties
i=
of the sub-mapping obtained by holding fixed, certain of the elements xy,

S8y Xy.1,°**>Xp; of the ordered sets (xl,xz,--.,xn), and regarding f quﬁ



function of S ERRRTE In this f will be said to be a function on

Ey-ooB (B .. By to Bl. The clements xy,++-,x_ of Ey,+.,E will then

Le spoken of as variables; the elements x),.4,...,%X, of Ek+1:"'En as

varameters.

12.3 The Postulates for Spaces E(R) and E(C).

% is a clase consisting of at least two elementes.

A is either R, the real number system, or C, the complex
nunber system.

z = xBy is a function on E to E. That is, to each ordered
pair x,y of elements from E there corresponds a unigue
element z called their %553.

xby = ybx

(xby)oz = x6(yéz)

z ={®x is a function on AE to E. That is, to each ordered
pair (Q,x) consisting of an element o of A and an element

x of E there corresponds an unique element z of E called the
product of O amd x.

The set E is included in the set (4©k). That is, to eacn
element z of E there corresponds at least one pair (¥,x)

of AE such that z =q@x.

¥O(x®y) = qex ® Joy.

(x4+68) ©x= 0 x® £6 x. Where "+" denotes ordinary
addition in the number system A.

(d+€)ox =x0(20x) where "." denotes ordinary multiplication

in A.



B,: p= “x" is a function on E to the non-negative real numbers;
that is, to each x of “ corresponds & non-regative number
P = Hxﬂ. !xl is called "norm of x".

Byo: There is a unique x* of E whose norm is zero.

Byt [¥@x = o * x where|[. | denotes the ordinary modulus

Bt Ixby, 2 x + R4

Notation: Vhen no ambiguity arises € will be written simply 4+ and ©
will be omitted entirely.

x - y will be defined as x + (-1)y.

x* which by Bjp and Byjj is scen tc be identical with O.x for

every x will be denoted by O.

Neizhborhood: The noints x for which x - x0: <o are said to lie in

the ¢ neighborhood of x,. The o neighborhood of X, ie denoted by (xo)P'

Region: A set of points Ey is a region in ¥ if each x, of E, has a @

neignborhood (x,). wnose points are all in EO.

1

Connected Region: A region Eo-is said to be connected if when x x— are

any two of its points there exists a cnain of neighborhoods finite in
. 1 . ek B
number, say (x)o, (xl)Ql, ,(xn)pn>(x )ol, each having a point in common

with the oreceding.

Limit Point: A set of points E; of £ is said to have a limit point x4
if it contains points X distinct from x, in every (xo)ﬁ. An infinite
sequ ence (x),Xp,*+*X,,...) of points of ¥ is said to have a limit if
there is a point x of E such that to each © there corresponds an integer
No such that for n>Ng, x, belongs to (X)P' X is called the limit of the

sequence.



Cy: The necessary and sufficient condition thzt a sequence (xn)
have a limit is that for each p there is an N, such that

for n >N, and Pp>0, Xntp belongs to (xn)p'

Svaces which satisfy tne postulate C; are said to be complete.
lan; of the theorems which follow are proved without the postulate of

completeness. hen completeness is employed it will be noted.

12.4 Imrecdiate consequences of the Postulates

71. lx=x
Proofiy There exists o,y such that x = d-y (Bg)
Then 1:'x = 1:(y-y) = (1°a)'y =a oy (BB)
x = 16x
T2. 0O:x = x*
Proof: HO°xH = ;o;“xﬁ =0 (By)
Hence O0°x = x* (310)
T3. x+x*=x
Proof: x+ x*=1x+ 0x=(1+0)x=1x=x
By 11,72, B,
T4, X - X = X¥

Froof: x-x=x+4+(-1)x=1"x+ (-1)x = (1-1)x = O*x = x*

T 5. The set E forms an Abelian group under .
Proof: Zrom By, Bz, Bg, follow closure under 9,
associativity, and commutativity. From T 3
follows the existence of a unit; from T 4

the existence of an inverse.



From T 5 the next three standard theorems on Abefian groups

may be taken over at once. Thus

T 6 The equation x 4+ 2z = y has the unique solution z =y - x.

T 7 The inverse to x is unique, i.e., for each x there is a
unique x, (viz. -x) such that x + x, = x*.

T 8 The unit is unique; i.e., there is but one x, (viz x*)
such that x + X, = X

T 9 If E(A) is complete and (x;) is a sequence such that

n
2; l!xn+1— x| converges then (:%) has a limit.

Proof: Let o> O be arbitrary.

Then choose N so that for n>N

H

" ’ 1%
i Xpgpl T Xpit Uttt X - Xpgp1'S R
(a1l p>0). Thus

I - =l - som - g
Foip” ol T Fpp1*n * Fobp” Fobo-u < ©

Hence by Cy there exists x such that lim x, = x.
n+00

T 10 If a sequence (x,) has & limit x then thst limit is unique.
Proof: Let x! be another limit
Tnen [,‘xl—x!,‘ = p>0
Choose N such that for n> N Xy - X <~ 9/2
and fx, - x| < of2

then }jxl - xl/l< @

T 11 If a sequence (xp) has a limit x, then | x,| has a limit and



-3
(-
LW

I1im xy| = 1im |x, |
n -»00 n-+oc

Proof: Let 0>0 be arbitrary.

Choose I such that for n>N |x; - x| & ©

> |

mm, ra) | i i $ it
inen ('>Jl'xn - xl’; = l wanl - z‘x i
Hence [1im xn| = x = lim |x,|
: n--00 ‘ . n=>o0
fx) - jol % xt gl
Proof: x[1=‘xiy_’—_yl'4—‘ xty,+l-__;y‘i.-£]xiy3[+“y]:
So that x - 'y £ xty
Similarly y - [x =[xty
' ’ + y
Hence x, - y = x-y,

If (Np) is a sequence of nurbers of A having o as its
limit and x &s an element of E(A) then the sequence (Xpx)
has as its limit dx.

Proof: Choose <>0Q arbitrary.

Choose N such that for n>N (X, - v | < S/fx‘_l
Then for n>W, [¥ x - x| = ,! op = Y f x|

If x-y,=0, thenx=y

Proof: x - y = x*
femtyeyiaiey (3, 18)

If Qx = x* then either & = C or x = x*
Proof: |ofjx| =lox[= x* =0
Hence either & = O or x| =0

Hence O =0 or x = x*
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T 16 Ifqgx =4x and x # x*, then @ =§

Proof: ox - 8x = x* (T 4)
(2 - x = x* (37)
Ne 3=0 (T_15)

Consistency of the Postulates: The vostulates 44, Az, Bl, alels ’Blz’ Cl
are all satisfied if ¥ is taken to be A itself, ®, and O intervreted as
ordinary addition and multiplication and [...] interpreted as ordinary

modulus.

'3 and C as Vector Svaces: With the ebove interpretations of &, O, ”...”,

the number systems R and C may themselves be regarded as supports of vector
spaces, There are, of course, other definitions of the three operations
by which R and C may be taken as supports; however, for our pur~oses this

definition is the sitplest.

Function Space as a Vector Space: If the elements x of E are taken to be

real continuous functions of one or finitely mére real variables defined
over some fixed domain D of the variables. If the sun of two functions
is defined in the ordinary manner, and similarly the oroduct of a function
by a constant, and if ﬁxd be defined as the m%x;xi, then it is easily
verified that with suitable restrictions wpon D the set of elements x
constitutes a vector svace E(R). In particular if D is taken to te the
linear interval (a,b) and x is a function x(t) continuous for t in (a,d),
then with the definition | x|| = ?2xb>, x(t)f the soace E(R) of elements x

s
is the well known space of continuous functions. It will in generzl be

denoted by F(a,b).



Comnosition of Vector Svaces

T 17 Let El(A),~--,En(A) be vector soaces witn the number
system A, Let E = f%iEi be the. composite of E;,--+,E, their respective
sup orts. Let the sum of two elements (xl,xz,--‘,xn), (xi,xé,---,xﬁ)

of E be defined by
(xl’xg’...’xn)e(xi’xé’...’xx'z) = (x]_@x—i,xzexé:”':xnox;)) (1)

Let the product of o of A and (x --,xn) of £ be defined by

1°%g
q@(xl,xz,--‘,xn) = (X0x; 4 0xp, ***,30x,) (2)

Let the norm of.(xl,---,xn) be defined by
h(xl,xz,---,xn)” = greatest of gxi X g""’;xn§ (3)

Then the system consisting of £, 4, &, 6, ... satisfies the postulates

A),--+,C, and is therefore a vector space.

1
e shell verify the postilates for tais system in order.
4.t The multiplicative class of n classes each having at

least 2 elements nas not less than 22 elements.

A,: Trivial.

By: (11)1) uniguely deterrines the sum.

32: Clear.
33: Clear.

Byt ({2}) uniquely determines the product.

Bg: 1@(x1,x2,---,xn) = (10xy,10x%,, +-+,10xy) = (xl’x2"'°’xn)
36: Clear.

B,: Clear.

BB: Clear.



Bg: (3) defines p = ”(xl,---,xn)” on E to non-negative real

numbers.

Biot %i(x{,--o,x;)gl = greatest of | xin,,‘lx; =D
Moreover, if greatest of Xp 5ttty Xy = O then
B =R X = m =R

B1y! “"(o(xl""”‘n)" =” (qxl,n--,q‘xn);; = greatest of

]F{xﬂL-~-jk{xnﬂ = greatest of fQi“xlﬂ,---,E&f ;xnj
= [a] J(xpeeexy)]]
Byp: {i(xl"""ng(xi’""xrlx)” = ]{'(x1 + X],c 0, Xy + xr'x)“

greatest of [[x; + x{[,-++,|/xy + x}

A

greatest of || x|, ++,[ x|/ + greatest of IR LY
C;t Let y, = (x}ll,-n,xﬁ) (h = 1,2,...) be a sequence.
First assume (yi) converzes to y. Choose e and Neo so
that for m>Nely - y_ [« €/2. Hence |y, - Yikp <@
It for each O there corresponds Np such that if n>N,
v - ym+p]f<p then we have ,’jx‘i‘ - x{*P|<p. If there-
fore E,,-+-,E, are complete each sequence (x]) converges

to a 1imit X;. The point y = (xi,...,xn) is then the

limit of (y)

12.5 Continuity and Continuous Functiops

Continuity: Let E, be & region of E. Let f(x) be a function on E, to E'.
f(x) is saild to be continuous at a point x, of E, if to € > 0 there is
determined ©> O such thatif x is in (x ) then £(x) is in [F(x)k.

If £(x) is continuous at each point of E, it is spoken of as continuous

throughout E,.



jos

Uniform Continuity:s If f(x) is on a region E, to E' and if ¢ >0 there is
detémined P>0 such that for any x of E, x in (xo)P imvlies f(x) in

ff(xo)]e , then f(x) is said to be uniformly continuous in E,. It is clear
from the very definition that if f(x) is uniformly continuous in E, it is

continuous throuashout Eo.

Theorens on Continuity

Theorem (12.51) If f;(x), fz(x) are functions on E; to E' and if

(1) they are continuous at a point X, of Eo _their sum is continuous at X,

(2) they are continuous throughout E, Jtheir sum likewise is continuous
througnout Ej.

(3) they are u.iformly continuwous in E, their sum is uniformly continuous
in Eo’

Proof: (1) Let ¢>0 be given and let (,Ol and ©, be so determined

that x in (xo)‘ol implies fy(x) in [f,(xo and x in (xo)pz impliex

)]6/2

fo(x) in ﬁz(xo)jé/z. Tnen if ¢©= 5%, x in (xo).;, implies fl(x) + fz(x)

in E:fl(xo) + fz(xo):C for if x is in (xo)@

[£,0x) - £,(x )< s/R
[£5(x) - £5(x )< €/2

1£(5) w £2(x) - [Ey(x) + £,(x ] < €

(2) Aoply the argument of (1) to each point x, of &,

(3) Apply the arzument of (1) observing that the choice of 2
and ~, and nence of p does not involve the choice of the particular
voint Xy-
Corollary: By complete induction & similar theorem hclds for the

sun of a finite number of functions, fl(x),---,fn(x) on E; to E'.
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Theorem (12.52) (1) If E; and A, are regions of E(A) and A res-
pectively, f(x) is a function on E, to E'(A'), g(3) is a function on
A to A' and if at x, of E, and o, of A, f(x) and g(¥) are continuous,
then g(x)f(x) is a function on A E, to E'(A') continuous at (O(O,xo).
(2) If, moreover, f(x), g(¥) are u-iforrly c ntinuous and Hf(x)“‘, ()]

are bounded then g(x)f(x) is uniformly continuous.

Proof: (1) Let £>0 be given. Choose ©, so that if x is in

<

(xoda  1E48) = x| < gy

- Choose ¢, so that if X is in (J’o)_)z

i / . | & A <
g(w) - g(@,) < , . Let o =min (0,6,). If then
8 - &)< T+ ey | 1e

~ (e ¥ ) ~ |, If |
(0 ,x) is in L(Q,x_/\o we shall have < - o [<@p Ix - X, €, So

|e(a)f(x) - elag)elx )] = [al) - elgo) I£(x)| + [elay)] [£(x) - £(x,)i

— foQ)lf" BT 7Y L
2If(x,)] + </]&(%y)] 2lg(15)) 2

Win

(2) Let M be the greater of the upper bounds of Hf(x)f;, Eg(q)g
in B, and A  respectively. Let € >0 be given and let ¢, be so chosen
that x in (x ), imvlies f(x) in f(x,)e and« in (¥,), implies g(¥)

.‘1 U zﬁ Pz

in E(ao))g_ for all (Qo,xo) of AJE,. Let?= min ('°1I‘°2)- Then for

(¥,x) in & [(&‘O,xo)}e)

el E(x) - el )E(x ME [e¥) - e@ ) ()] + ()] j£(x) - £(x;)]

N

<GHE@|+ Fe¥) £



Theorem (12.53) If f(x) is continuous on EjE; to E' then it is

continuous on Ey Eé]to E'.
Proof:; Let x = (x),x3) x'= (xi,x2

Ix - x| Ei“xl - xi,O)H = |x; - xﬂl

But l£(x) = £(z*)l = 0 with |x - x'| and nence with |x; - xi“.

Functions of Functions: If E, E', E' are vector spaces and E,, B}, EY
are subspaces, proper or not, and if y = f(x) is a function on E; to E!
and z = g(y) a function on E} to E) then z = g[}(xﬂ is a function on

E, to Eg.

Theorern (12.54) If E Eé, Eg are regions and y = f(x) is continuous

o,

on B, to E! and z = g(y) is continuous on E} to Eg, then z = g(f(x)]is
continuous on Ej to Eg. Voreover, if y = f(x) and z = g(y) are uniformly
continuous in their recpective recions, then z = g[}(x)]is uniformly

continuous.

Proof: Let € >0 be ciaosen, and consider a fixed point x
in E,. Let Vg = f(xO); z = g(yo). Let £1>0 be so selected that y in
(yo)Plimplies z = gly) in (3,)c . Let 0,> 0 Ve so selected that x in
(xo)Pz implies y = f(x) in (yo)Pl' Then if x is in (xo)Fb’ z is in
(zo%.. If f(x%g(y) are uniformly continuous in their respective regious,

the choice of €1 and in particular of{;z does not involve the point x

o

Corollary: By complete induction it follows that a similar

theorem holds for any finite number of successive functional operations.
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12.6 Other Specisl Notions

Successive Differencegs: Let f(x) be a2 function on E to E'. Let Ax be

an element of ¥. Then
Af(x) = f(x + ox) - f(x)

is a function on E° to B' end is called the first difference of f(x)

with respect to =x.
If 29x,+++,4 x denote elements of E then the nth difference,

(;z)

A f(x) = °A1f(x) of f(x) with resvect to byx,++,4,x 1s defined

R
inductively by

Aglpopeee Alf(x) = An(An_l... Alf(x)) =A_n_1...Alf(x + Anx)
-An-lcuu Alf(x)

n
The n%P difference is written in the fom Af(x) in case there is no

(n
ambiguity as to what is meant. A)f(x) is clearly a function on En+l to E'.

(n)
Theorem (12.61) A f(x) is symmetrical in the increments

4

A1X, 00,8, X,

Proof: For any h(x) on E to E' and any pair Ayx end 2yx of the
increments we have
- Pal A - - s
AiAdh(x) h(x + X + jx) h(x + Aix) h(x + AJX)

+ h(x) = Ainh(x)

n
Hence at any stage in the expansion of A f(x) we may exchange two adjacent

A'g. But any permutation of the A's may be produced in this manner.



Theorem (12.62) If £3(x),...,f,(x) are functions on E to E!,
( n)

then regarced as an operator, operates distributively upon the sum

flkx) + fz(x) + e+ fs(x).

Prooff Let f(x) = fl(x) + f2( X) 4+ cer 4 fs(x), then for n = 1

A f(x) = Zfr(x +AX) -Zfr(x) =Zfr(x + Ax) - fr(x)

= Efr(X)

Using this result and assuring the theorer for (n-1).

e =820 =8y B () =F Be_(0)

n
Theorem (12.63) (AR regarded as an operator commutes with numerical

multipliers.

Proof: Let f(x) be on E to E'(A) and ™ be in A. Then
Lo f(x) =f(x +80x) -K £(x) =4 f(x)
Thus assuming the result for (n-1)

) (n)

Ghe(x) =4 B ns(x) = 3 oP5¥e(x) ot o).

Theorem (12.64) Ifct(X) is a function on A to A' and & is some

»

fixed element of E(A') then for any increments All,"',ziék Ye have

() . (n),,.
alo(ne) =( 4 A(0)

Proof: Exactly similar to (12.63) except that the multiplier

is now on the right.

Homogeneous Linear Continuous Functions: In order to make the next

section intelligible we must define here a special case of homogeneous

15



polynomials which will be discussed in 13. A function f(x) on E(4) to
E'(A) is homogeneous linear continuous if

(1) it is continuous.

(2) f(C\-'lxl +O<2x2) = oflf(xl) +o(2f(x2) for all X)X,

in E and alldl,orz in A.

Differentials: Let E, be a region of E. A function f(x) on E, to E!

is szid to have a differential at a point x, of E, if there exists a

function fy(x ;Ax) on E[EQ] to E' such that

(1) £_(x ;Ax) is contiruous homogeneous linear on
X (o]
E[ES] to E'.

(2) €(4x) defined bye (Ax) = MXQ:A{X {;—A £(x)

[ x #0; (x, +4x) in ;)
€(0)=Q

is continuous at4 x = O. fx(xo;Ax) is called the differential and will
be denotei in this way or by the sypmbol df(x,), the argumentld x being

v
understoocd.

Higher Differentials: Ir df(x,) = fx(xo;Alx) exists at each x_ of Eo
then df(x,) is on EE, to E'. The second differential fxz(xo;Alx,Azx) is
defined as the differential of fx(xo;/ilx) quA function on EE]‘EO to E'.
The second differential will also be denoted by dldzf(xo) or in case
there is no ambiguity by @°f(x,). Higher differentials are defined in-

ductively in the same manner.

Celculation of the Differential: This is simply the generalization to

vector spaces of the theorem due to Gateaux.



Theorem (12.65) If f(x) on E, to E' has a differential af(x,)

at x, of Eg then

af(x,) = nmo f(x, + 2ox) - £(x )/
G,
x

Proof: ZEy definition we have that
af(x,) = fx(xo;Ax) = f(x, #4x) - f(x,) +€,(Ax)§dxu
Replace A x by M x and divide by )\

£ (xgi0%) = £lZo + M\x). = 2(x) e QunllAx] l—;‘\!
/

Ag ~= 0, £ (\Ax) — O. Hence the theorem.
The remaining necessary theorems on differentiale we shall
postpone until the discussion of the properties of linear functions

has been reached.

-1



13. Polynomials in a Vector Space

13.1 Introduction

Frechet in his 1910 paper* discussed pdlynomials in the space
of continuous functions. In a later paper**(1929, Le generalized many
of the theorems of the previous paper to a class of spaces which he calls
"espaces algebrophiles", and of which our space is an instance. The
essential result in both these papers is that a general polynomial is
uniquely representable as a sum of horogeneous polynomials. The Cef;ition
taken by ¥reche: in his later paper, wnile entirely elegant and satis-
factory for spaces closed under multiplicetion by real numbers--wnich are
the only ones he considers--runs afoul of the common definition of a
volynomial in a single complex variable, if taken over bodily to spaces
clesed under multinlication by complex nurbers. In order that later
generzlizations of functions of a complex variable may be made, it is essential
that we formulate a definition which will be equally valid for spaces
E(R) and E(C). ~he definition we have taken is equivalent for spaces
E(R) to the definition of Frechep. Half the equivalence is really proved
guite incidentally in Frechet's paper. Ve shall give an independent
proof whose details are quite simple.

In the latter section of this work in polynomials, we shall
discuss modular properties of polynomials and their related forms. We
shall point out distinctions that exist between the modular properties
of polynomials on E(R) and of those of polynomials on E(C).

Tais latter part of the work, we hardly need mention, does
not presume to be in any way exhaustive of what looks to be a rather
large subject.

*iM., Frechet, Ann de 1l'Ecole Normal Sup. Ser 3. Vol 27, 1S510.

*a}, Frechet, Journal de Matn, 1922,



13.2 Polynomials on A to E(A)

Definition: A function n(A) # O on A to E(A) is called a

polynomial, if it is expressitle in the form
S a1
pr) = ) Afa

where the summation extends over a finite number of terms, where )T
stands for the ordinary rth power of)\, and where each &, is a fixed
element of E(A). If n is the highest iddex for which a, # 0, n is called
the degree of p(A). If the function p()\) = C for all N of A, then p(\)
is cailed a "null" polynomial, and we add the gloss that the null poly-

nomial may be. regarded as having any degree whatever.

Theorem (12.201) If p(A) is & polynomial on A to E(A) it is

continuous.

Proof: By Theorems (12.52), (12.51), p()) is the sum of con-

tinuwous functions each of waich is continuous.

Theorem (13.202) If o(}X) is a polynomial of degree n on A to
E(A) and if g(X) is & polynomial of decree m on A to A, then g()})n())
is a polynomial of degree n+m on A to E(A).

Proof:

Let p()\) = Ta. (e #0)

g(pr) = i;)\so(s 4 # 0)

m n mon r
Then g(o(A) = %% o, T%'%ar =Z Z RN
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mom
=> 2 oy,
0O O -
m-n p sén,nk m+n Dy
- q _ - ~
= by © o7

The first two steps follow from the associative and distributive laws.
Now the coefficient b .. is simply & . But by definition & # O,
an # O and hence Prtm £ 0.

If either or both p()) and g()\) are null, their product is

null and the theorem is still true.

Theorem (13.203) If pi(N\)s...,pn(N) are polynomials on A to E(A)

each of degree = n, then a linear combination p(\) = ch(ipi(}\)
wi'gh numerical coefficien'csc-!i of A is a polynomial o;zc]iegree Snona
to E(A).

Froof: pi(}\), even though not of degree exactly n, may be
written in the form Pi(M = Zn }\ra.n. by tai:ing certain of aj, to bte
null. Then =

Srg‘ n_ - m no
p(A) = 2 Xy 2 ATayp = of Zwya =0 N,
1=1 r=0 i=1 r=0

1M

Theorem (12.204) Each coefficient a. of a polynomial p(N) = in}rar
of degree n on A to B(A) is expressible as a linear combination =
f A o(s) of the m#l vectors p(O),p(l),---,p(n)”; vhere A,  are nurbers
:zgependent 0 the choice of the polynomial p(XN).

, Where A = sT
sr

Proof: Consider the determinant{O(Srl

F N

(r,s = 0,1,°**,n) 8,, = 1. This is an instance of Vandirmond's determinant,

and its value is ;Yﬁ:j(i - j) £ 0.
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Let A, be the typical term of the inverse determinant, so that

n (0 rx
5:. Arsqsk = (
=0 1l r=%
(8) =2 3
now p(s) = Z sthk B Eioo\skak
n B (, n
sz=o trep(®) = o ‘\Zo fre” Sk> =

Theorem (15.205) Two polynomials p(A) and q(h) on A to E(A) are
equal for all values of M if and only if their coefficients are equal.

Proof: Let the degrees of p(X) and Q(}) be £ n.

Let (M) = p(M) - a(»)

Then by (13.203) r(A) is a polynomial of degree £ n, Moreover, if ap,

b,, ¢, are respectively the coefficients of P in n()\), q(»), r(?), then

again by (13.203)

By nypothesis r()\) = O for all A. Hence by (13.204) ¢, = 0. Therefore

-

&y = by

13.3 Characterization of Polynomials on R to E(R)

Wie shall in this section give a new proof for Vector Space of

a theorem proved by Frechet in his 1920 paper on abstract polynomials.
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Theorem (13.31) A necessary and sufficient condition that a

function p(A) on R to E(R) be a polynomizl of degree n is that it satisfy

the three conditions.

(1) p(*) is continuous.

(2) TFor anz‘;l?\,---,f-;/;l and all X in R we have
nt+l)
(A »()) =0

(3) For some A]},--',An% and 2 in R we have
ADOV) £ 0.
Proof:
A. Yecessity: If p(") is a polynomial then
(1) It is continuous by Tneorem (13.201)

(2) Using theorems (12.62) and (12.64), end writing

n
() =5 ‘/\rar
r=0
n+l n+l n
we have A (N = % A (“,fa ) =5 (M1 "/r)a .
=0 R

n+1 ‘
But, as is well known () A *) = O if r< n+l; hence
JAN

1
X p(A) =0

: n
(3) Again L\r‘p(}-) =7___:0 ( E e, =n! a # 0, Since
. r-.

B. Sufficiency: We prove by induction on n that the conditions
(1), (2), (3) above imply that p()) is a polynomial. For n = O the

sufficiency is clear. Assuming the result for (n - 1) we have that if



- p(N) satisfies the conditions (1), (2), (3), then p(}\+}4) - p()\) is,
for each value of 4, a polynomial of degree not greater than (n - 1) in
), and is for at least one value of p« of degree exactly (n - 1) in P

To see this we simply write 4 = 4".\11 , together with any other set of

-

> A
increments L4y e e, 4 L,

Then PO +r—) - p(A) =4,0(X)

n+l

An+1An"'%<p()+p) = p(/\)) =42 =0

”, (‘ N
Moreover, for some set of increments \.«L,l\z-"; Sissi o nA
|

N

we have Anp(}J = ;"_“\nf:. ne1te 2\2 (p()‘ + ) = p() )> #£0
=1 '
Hence p(% + ) - p(») = i?:o )-rar(!“) (1)

where a.r(}/k) are functions on R to E whose e-act nature has not shown up
except that for some value of W, an_l(-'.,'-) £0.

In expression (1), putting A = O, we obtain
o9 - p(0) = a () (2)
n-1 5
from which o(? +tu') - p(7) - o(w) + p(0) = Z A ar(!;) (2)
" r=1

Observing that the left hand side of (3) is symmetric 1n/\){uwe have

n-1 g n-1 -
Z_lear(w =;;J 2, (W) (4)

By (13.204) the coefficient a.(jx) may be written as a linear combination

with constant numerical coefficient of terms obtained by replacing Ain

-2,



the right hand side of (4) successively by the values 0,1,2,°**,n. Thus
it follows that ar(rJ, being a linear corbination of polynomials in p,

is also a volynomial in P.whose degree is at most n-1. Thus

Nn=—
p(r+1) - 20 - () + 2(0) = 2T 5 e (5)
‘ r,8=1

where a_ . are fixed elements of E(R).
Supvose now first that X is 2 positive value of . Lettx be

chosen so that O'<¥L<>~ Let j be an integer. Put A = [AJ in (5) and sum

from j=1 to j = 17 whereL%i}} deonotes the greatest intdeger in éLl.
1 = \
: p ’
We obtain P(F$§L£J? +1}) - n(p) - Qil"pp(ro - lall
;’I LP. -J o | },L al “)
l
Tglj
n-1 - ! 5
( %? - r. ., s=1
= .{‘ P (j ! a &)
I",ZS=1 . 3;-1 w PJ M e
S T
©Y - = C
Now since 1im 2~ - )1
\A%O L{J-‘ -
'%17
= 5o+l
1im (Gfu = /urdu AL
Va9+o J=1 i - r+ '

it follows from the fact that p(?.) is continuous and from T 13 (12.3),
that as V\tends to zero from the positive side, the right hand side of
(6) and the firct two terms of the l=ft nand side have well defined
limits; and that, consequently, the last term on the left side also tends
to a limit which we shall denote by K. The equation (6) then becomes

n-1 r+l1

p(g) - p(0) ~K=F Al 8n

r=1 r+1 . 1)

24,
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whene K= ﬁimlﬂ@W - p(o))
= 1im H ! / l . }A\ — O
pr 40 © 1 P
. v.) - p(0)
= 1im
)«1 r-~>+0 H

Hence, (7) gives for ).1>0

- (@
p(X;) = p(0) + Xy t}}‘?m+0 =

gl A+l
+ i (8)
= r+l1 "1
If 7\1 is taken to be nezative, P may also be restricted to be negative.
The argument carries through in precisely the same fashion and we obtain
for }\.1< 0

n-1 1I‘+1

p()y) = p(o)+/1 1lim PL?.;P-(Q+Z' ;l 1 8 (9)

by -0 ' r=1

But by writing A\ = -I.ain (5) and making Vﬁ-ﬂ—o we have

1im 13(0) - P(-‘f) - 1im E(~') - p(0) = O 3
V-H-O M by +0 M

from which 1lim R(.,‘L-)_:_P_(_O_l = 1lim ES.,*.’;)._'_ELQ) (10)

M>-0 i‘~‘~ ’.a\ 740 i A

Thus (8) and (9) coincide for )‘\lz 0 and either (8) or (9) is at once

seen to be correct for)\ 1 = 0. The work therefore shows that p(\) is a
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polynomial of degree at most n. If it were not exactly n, then the
' n
coefficient of \® would be zero and nence A p()) = O Which by assumption

is not true. The proof is thereforé complete.*
13.4 Pplynomials on E(A) to E'(A)

Definition (13.41): A finction p(x) # O on E(A) to E'(A) is

called a polynomial if
(1) p(x) is continuous at every x.
(2) There exists an integer n such that for each x,y , (’_3
P(L;x,y) = p{x +Ay) is a polynomial on A[EZ] to E' of degree = n. -
The least integer n saatisfying condition (2) is called the
degree of p(/)).
If p(X) = 0, we call it the null polynomial on E(A) to E'(A)

and it is regarded as a member of the clasc of polynomials of degree m,

where m is an integer.

Theorem (13.420) A polynomial p(x) of degree zero is & constant.
Proof: p(Ax) is a polynomial of degree zero in A and there-

fore constant in ). Hence putting X successively equal to O and 1 we have

p(x) = p(0)

* It is worthwhile to mention here that the exact reason a similar theorem
cannot be proven by a similar method for polynomials on C to E(C) is that
the 1imit in (10) is in that case not necessarily unique. If to the
conditions (1), (2), (3), we added the conditionosp(h) &f having a
differential at N = O the theorem just proved could be proved for poly-
nomials C to E(C). To show that the theorem is not necessarily true for
polynomials C to E(C), observe that

p(A) = X, the complex conjugate of A ,

satisfies the conditions (1), (2), (2) for n = 1 and is not a polynomial
in the sense of (13.2)



Analogous to Theorem (13.203) we have:

Theorem (13.421) Let py(x),py(x),***,p (x) be m polynomials of

=

degree = n on E(A) to E'(A). Then any linear combination p(x) E.éigpr(x)
with coefficients from A is a polynomial on E(A) to E'(A) whose de;ree

is at most n.

Proof: pv(x), being the sum of continuous functions, is con-

tinuous. Condition (1) of the definition (13.41) is therefore satisfied.
Let P;(Asx,5) = pi(x +Ay)

Then P; (A;x,y) is, by (13.41) and the hypotheses, for each x,y & poly-

nomial in N of degree at most n. Hence by Theorem (13.203)
, m
p(x +A y) = Z-Q'rpi(k;x’y)
r=0

is a polyaomrial of degree at most n inA. The second condition is there-

Tore satisfied.

Trheorem (13.422) Let p(x) be a polynomial of degree n on E(A.

to E'(A). Let c be a fixed nurber from A, different from zero, and X,
be a fixed element of E(A). Then p(x) = p(x, + ¢x) is a polynomial of

degree n in x.

Z217.

Proof: X, + cx is clearly a continuous function on E(4) to E(A).

o(x) = p(x, + ¢x) ix therefore a conbinuous function on E to E' of a
function continuous on E to E which, by (12.54), must be continuous.
Acain, P(x +2y) = p(x, + cx +Acy) = PO ;x, + cx,cy), which

is a polynomial inA.
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Theorsm (13.423) Let p(X) be a polynomial of degree n on E to E'.
n

Let P(l;x,y) = p(x+2y) = EZ }? k}(x,y). Then for each r the function
r=l '

kf(x,y) is unique and is a polynomial in x for each y and in y for each x*.
Proof: Let Ang (r,s = 0,1,+++,n) be the numbers defined in

(13.204). Using that theorem we have
kp(x,y) = 225 A.op(x + 8y)

Now by (13.422) o(x + sy) is a polynomial in x for fixed y and in y for
fixed x. By Theorem (13.421) it follows that k.(x,y) is a polynomial in

x for fixed y and a polynomial in y for fixed x.

Definition: A function h(x) on E(A) to E'(A) is called homo-
geneous of degree n, if there exists an integer n such that for 21l x of E

and all A of A we have h(Ax) = \Ph(x)

Theorem (13.424) If h(x) is a polynomial on E(A) to E'$A) and

is a homogeneous function of degree n, then it is & polynomial of desree n.
Proof: If n(x) m O, the theorem is true by definition.
If h(x) £ O, it must have some degree N. e must prove thet X = n. By

the definition of a polynomial of degree N we have
X
n(x +Ay) = > W k(x,y) y(x,y) # 0 (1)
0

where kr(x,y) is, according to Theorem (13.423), = uniquely determined
polynomial in each of x and y. If in (1) we place x=0, then (1) must

reduce to the known identity

h(\y) = ¥a(y) (2)

*A more exact statement as to the nature of k.(x,y) is given - little
later; see Theorem (13.428)
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 Hence it follows that kuy(O,y) = h(y) and therefore that N Z q. Agsume
N>n. ©e have (r,t;! 0) |
n(x +1y) = hq;x + A y) = ‘$_)f ' nﬁr(rX,Y) (2)
=0

Bouatine the coefficients of AN in (1) and (&), we obtain

() = O () (4)

Now if N> n, the exponent of P-on the right hand side of (4) is negative.
Unless, therefore, lg( x,y) = 0, equation (4) is a contradiction of the
fact that ky(x,y) is a polynomial.

Yie are, by this last theorem, Jjustified in speaking either of
a "polynomial homogeneous of degree n" or of a "homogeneous polynomial

of dezrese n',

Theorem (13.425) If h(x) is a homozeneous polynomial of degree
n, and if kr(x,y) is defipned &3 in the orededing two theorems, then
kp(x,y) is homogeneous of degree r in y and of degree n-r in x.

Proof: Let

n
h(x +2y) = 7 7 kp(x,y) (1)
r=0
then h(x+>y) =hn{ x+ —x-txy) = % ’l‘xrkr(xif-w) (2)
I o VR
- -(1'1“'—
and n(x +Ay) = X n(x ) = 2 A ;‘f'nkr(f%x,y) (3)
s Ir= !

Equating coefficients of ¥ in (1) ani (2) we obtain
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kp(x,puy) = Pieg(x,y)

and doing a similar thing for the coefficients of A¥ in (1) and (3),

kr(‘/*x:}') = \.il_rkr(x: Y) .

Theorem (13.426) Let h(x) = hy(x) + -+ + hm(x) be the sum of
m homogen=ous polynomizls of degree n. Then h(x) is a polynomial homo-
geneous of degree n.,

Proof: h(x) is clearly homogeneous; for,
h =pR h (x) + eoe 4P x) = & n(x).
It is also a polynomial by (13.421).

Theorem (1:,427) A polynomial p(x) of degree n is uniguely re-

presentable as a sun of homogeneous polynomials of degrees £n

Proof: 3By taking x = 0 in (13.423) we obtain

n n
pOy) = > X ke (0,5) 22 X h(y) (1)
=0 r=0
Ay =S AT
and o( . Yey) Zo T bz(uy) (2)
therefore hrWJy) = tf b (y) (3)
Placing A= 1 in (1) we have 1p(y) = fg' hr(y) | (4)

r=0

Suppose now that we had another representation of n(y) as a sun of homo-

geneous polynomials. Let it be
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p(y) =2 E.(y) (5)
r=0

where D.(y) is some polynomial homogeneous of degres r. Tren for all

n N
we have pO.y) = > X n(y) =D 3T h(y)
r=0 r=0

By theorem (13.206) we have h (y) = hu(y). The apparent abundency of
terms in (£) is taken cdre of by observing that if N> n, p(y) cannot

satisfy the definition for a polynomial of degree n.

Theorem (13.428) Let p(x) be a polynomial of dezree n. As before

n
N r
let p{x +Ay) = > W kr(x,y). Then kr(x,y) is a polynomial of degree n-r
=0

in x and is homogeneous of degree r in y.

Proof: By (13.427) we have

' n
: p(x) = 7 h(x) (1)
r=0
and by theorem (1Z3.425) we have
o r
n(x +0y) = > %% kglxy) (2)
5=0

where kfs(x,y) is of degree s in y and r-s in x.

pe

. r
Hence ix +)y) = :?- ZE%}? X, ¥
8=

r=0 '
(3)
_Q'.E‘ 8 ‘1?_ k (x )
TN & T

Tae coefficient of W is by (13.426) homogeneous of degree s in y and by

(13.421) of degree = (n-r) in x. This completes the proof.
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13.5 Characterization of Polynomials on E(R) to E'(R)

13.51 The Frechet Definition

The definition given by Frechet of an abstract vpolynomial
on an E(R) to an E'(R) is the following:
# function p(x) on E(R) to E'(R) is called a polynomisl of
degree n if (1) It is continuous at each x.
(2) Tor arbitrary incrementsAlx,sz,o--,An+1x and
arbitrary x we have

n+l
A r(x)=0

(3) FPor some set of ircremntsA.x,¢++, x and some x we
=2 2=

have 3 o(x) £ O*

Wie propose now to prove two things: first, that any poly-
nomial of degree n on E(A) to E'(A) irn the sense of (13.41) satisfies
the conlitions (1), (2), and (3) abuve whetﬁer or not A = R; second,
that the above definition of polynorials on E(R) to E'(R) implies the
definition (12.41) for the smecial case A = R.

For c.nvenience we shall refer to a function satisfying (1),
(2), and (3) as a Frechet polynomiel. The word "polynomial", alcne,

will refer to the definition of (12.41).

Theorem (13.521) Let p(x) be a polynomial of degree n on E(A)
to E'(A). Then Ap(x) is for all choices of Ax a polynomial in x of
degree = n-1, and for ovroper selection of Ax & non-null polynomial of

degree exactly n-1.

* The notation is that explained in (12.6).

32,



Proof: 3By application of Theorem (13.428) wrose equations

we shall here assume, we have

p(x +&x) = p(ax +)\x)’
A= 1

. k (4%, x) (1)

-
=4
=
where k.(Ax,x) is of degree r in x and = n-r inlx. Since ky(Ax,x)

is of degree O inAx we have from (12.420) that

J(n(Ax,x) = k.(0,x).
n-1
Therefore A p(x) = p(x +4x) - p(x) = > (K (ex,x) - 1 (0,x)) (2)
=0

is the sum of polynomials of degree £ n-1 in x, which by (13.42)) is a
polynomiel of degree £ n-1.
To show the second part of the theorem we write p(x) as a sum

of nhorogeneous polynomials. Theorem (12.427)

n
p(x) = EO h_(x) hy(x) 0
=
n
so that A p(px) =Z hp(Ax +4x) - h.r(}‘x) (3)
=C ’

If we write & x = x, this becomes

n
6o0x) =y n(TH X x) = b 0)

r=

_ i @ r - xr} hp(x)

\
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so that the coefficient of »-1 in p()x) when 4x = x is
nh (x) + 0 ,(x)

which, since hn(x) # 0, is a non-null polynomial of degres n.

Let x; be a value for which it does not vanish. Then with
x =X, the coefficient of '),n'linthe exvansion of Av(Ax) is not null
gince it does not vanish in particular for x = xl. Thus for suitably

chosend x, 4 p(x) is a polynomizl of degree exactly n-1.

" Theorem (13.522) If p(x) is a polynomial of degree n on E(A) to

E'(4), then for all Alx, Aex, cee, An+lx’ we have

- 4l
Apx)= & -+ Ajp(x) =0

Proof: If Theorem (13.521) is applied successively to
fi'\lp(x),ABAm(x),---, then it follows that Ah [.lp(x) is of degree zero

at most, and is therefore cors tant in x. Hence

5 .
nZ plx) = 41--~A1p(x - ér}+1x) - An-..(io(x) = 0.

Theorem (13.523) If n(x) is a polynomisl of degrec n on B(4A) to

E'(A) then there exists a set of incrementsAlx,Azx,-“,ﬁnx such that

£o(x) B4 -+ A n(x) 40

Proof: We use the second Pert of Theorem (13.521), select

Alx so that Alp(x) is a non-null volynomial of degree exactly n-1 in x.

Selectazx so that Agﬁlp(x) is a non-null polyromial of degres exactly

n-2, and so on. With this selection we must havefp(x) #0



Combining now the results of the last two theorems we have:

Theorem (13.53) If p(x) is a polynomial of degree n on E(A) to

E'(A), then it is a Frechet polynomial of degre= n.
Proof: (1) A polynomial is continuous and therefore satisfies
the Frechet conditthnn (1).
(2) By Theorem (13.522) n+]'p(x) 0 for &1l sets of
increments.
(3) By Theorem (13.523) there exists a set of increments

n
Alx,---, Anx for which /4 p(x) # 0.

We shall now prove a converse for spaces E(R). Before wro-

ceeding, let us prove the follewing Lemma.

Lemma (10;540) If f(l) is a continuous function on R to E(R),

satisfying the condition A f(l) O for all choices of Al)‘ 2327\ "nx
then f(}.) is a polynomial on E to E(R) of degrec at most n.

Proof: Let m be the maximum integer for which there exists a
choice of Alx,ézz,-;;,égl such that /' f(») # 0. Cleerly m % n; for,
since rR'lf(}) = 0, all differenées of order greater than n must venish
identically. Tnen by the definition of m, for all choices of thel's
we must have A_ f(“/\.) 0. Therefore by Theorem (13.31), f(A) is a vpoly-

nomial of degree m =3

Theorem (13%.54) If p(x) is a Trechet polynomial of degres n on E(R)
to ©'(R) then it is a polynomial of degree n on E(R) to E'(R) in the sensce
of (13.41).

Proof: Let q(x) be any function on E(R) to E'(R). Let

g()) = q(x +Ay). Let AAbe any increment of A and define

31,



Ax=4d)y
Then Ler) Ealx+ay+40y) - alx +) )
= lalx+2y) (1)
Now let f()) = p(x +0y).

Let an arbitrary set of increments éi;’éé,’...’;;nil be chosen

-
3

end let. ) x = ;i/, .y (i =1,2,**+,0#1). Then apolying the formula
(1) successively to
ﬁjf(l) =ﬁlp(x +Ay)

n+1l . "
2 o(x +,4y)e Now £(A) is evidently a function on

we obtain nf;lf(_?) = /)
R tc E'(R) and is continuous since p(x) is continuous. Hence, avnlying
Lenma (13.540),4we have the existence of m = n such that f() is a poly-
nomial of degree m on R to E‘(B). p(x) is therefore & polynomizl of

degree m in the sense of (13.41). But m cannot be less than n; for, by

theorem (13.522), we should have for alléllx,ﬁzx,---,£; %

m+1
41 — . 5 n - - -

"p(x) = 0, and hence have that 4 v(x) = O. This would contradict the
third Frechet condition.

This last work may be sumed uwp in the theorem:

Theorem (13.55) For spaces E(R), E'(R) the definitions (13.41)

and (13.51) of a polvnomial of degree n are equivelent.

13.6 Hgmogeneous Polynomials and their Polars. Nultilinezr forms.

Definition (13.61) Let h(x) be a homogeneous polynomial of degree

n on E(A) to E'(A). Then the function h(xy,-++,x;) on E?(2) to E'(A)
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n
 gefined as Q. h(0), where Aix = x; will be called the complete polar or
simply the pZ;ar of h(x) with respect to x;,***,x,.

Theorem (13.62) If h(xl,-~-,xn) is the poler of h(x), then in each
of its arguments it is a linear homogeneous polynomial. It is, further-
rore, symmetric in the arguments.

Proof: The symretry ofth(O) in the increments was noted in
(12.63). It is therefore sufficient to consider one of them, say the
nth. By n-1 successive applications of Theorem (13.521), it is easily
proved as in (13.521) that ?ilh(x) is a polynomial in x of degrec ore,
which, for suitabie cnoices ofili,'°',Z%;{3 is non-null. Therefore

£ix) = ln(x) - 7 n(0). (1)

is a polynomial of degree one on E:En'lj to E'. Hence we may write

by (12.427) £0-x)= k _(x) + Ak (x) (2)

Placing x = O in (1) we obtain £(0) = O, from which k,(x) = O, ki(x) = f(x).

Thus (2) yields f(rx) = Af(x)

But f(x/ is by its definitionth(o) where lfnx = X.
Definition: Any form which, like h(xl,---,xn), is linear
homogeneous and continucus in each of its arguments is called 2 multi-

linear form.

The poler brars to the form a relation analogcus to that which

nolds for ordinary algebraic forms. This is given by

Theorem (13.68) Let h(x) be a homogeneous polynomial of degcree n,

end let h(xl,"-,xn) be its polar. Then h(x) = h(x,x,---,x).

31.
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Proof: Take A x =L x= .o =L x=x
——— 1 P2 n

Then / 1h(o) = h(x) - n(Q)

;2 h(0) = h(2x) - 2h(x) + h(0)

This is a well known interpolation formula w:ose ath term is

£ 80) =5 (97 () n(EF %)

Using now the homogeneity of h(x)

£ 1(0) = 5 (-)"T(3)(n - r)%(x) = nt u(x)
or n(x) = —ar;}%(g) = h(x,x, **,x)

Conversely we have:

Theorem (13.64) TFora given nomogeneous polynomial h(x) of degree
n, there exists no symmetric multilinear form other then the polar of
n(x) which enjoys the oroverty described in (13.63).
Proof: Let h(xl,"",xn) and K(X]_’xz:"'xn) be any two symmetric

multilinear forms and let h(x) be a horogeneous polynomial of degree n
such that n(x) = h(x,x,+++,x) = h(x,x,"**,x) (1)
We shall employ induction on n to prove that

h(xl’XZ’ ...’xn) = K(xl”‘z" . .,xn)

In (1) put x = x +Ay, and make use of (13.425): and the distributivity of

h(x,++-,x) and h(x,+++,x) with respect to their arguments. This gives.
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n n n
n(x+2y) = W k(xy) =5 35 @) n(xy) =5 W () b(x,y) (2)
r=0 r=0 r=0

where k.(x,y) is a polynomial homogeneous of degree r in y and n-r in x,
and where hr(x,y) and E;(x,y) are tne functions obtained by writing
xl = Xz = cee = xn-r = X xn-r+l = ecee = x[l =y in h(xl,‘z’-..’xn)

respectively. Equating the coefficients of A, we obtain
kl(X:Y) =nn h(x)x>"':XJY) =n E(X,X,"',X,h) (3)

Assuning the theorem true for (n-1) we have for any value of y that the
two forms h and h arc symmetric multilinear forms in (n-1) arguments x
and are equal to a homogeneous polynomial of degree n-1 in x. Therefore

we have for =zll X1,X2, 05X 157
h(xl:xz:"':xn-lxy) = E(xl:xa:"’:xn-l)y)
To complets the induction we observe that the theorem is trivial for n=1.*

A general result on multilinear forns for complete spaces will

be derived in a number of theorems.

Theorem (13.65) Hypotheses:

H;. Let x be a typical element of a vector space E,.

5. Let y be @ typical element of a complete vector space E.

Hs. Let B(x,y) be continuous on Eleg]to E' at x = O,
Hy. Let B(x,y) be continuous linear homogeneous on(:Ei]Ez to E'.
* A proof could be given for the above theorem without assuning that

h(x,x,...,x) and h(x,x,...,x) were each equal to a honogeneous polynomial
in x, but it was thought of too late to be included.



HS' Let BkO,y) = 0.

Conclusiont B(x,y) is continuous on E;E; to E' at the point (x,y) = (0,0)
Proof: ‘ie wish to prove that for £> 0 there exists Sé> 0

such that if (x,y) is in (0,0) £, » the §_neighborhood of (0,0),then
| B5(x,3) - 30,00 = | B(x¥) ] < €

We shall denote the point (0,0) by (0). If the thecrem were
not true then we should have k>0 such that in every (0)s there exists
at least one point (x,y) for waich || B(x,y) ”)k. e prove that this
hypothesis leads to a contradiction.

Select an infinte sequence of points (x,,y,) as follows:

Let (xo,yo) be in (0) ani such that

8o =1
| B(x,,v5,)||> &
Tow by H; and H, we may selact 814 1/2 such that for (x,y) in (O)g1 we have
| B(xo,y)}{< X /4; i’{ZB(x,yo)i'i< /4.
YJow choese (xl,yl) in (O>§1 such that

\\ B(xl,yl){b X

Continue tnis process. In genzral, having sel-:cted.(xp,yp) in (0)=
E S o
(5p< I/EP) such that

H B(xp,yp) ”) k

hoo i “on + i
chocse 8”3'*'1<—P‘FT‘:.' sten thet for {(x,y) in (O)5p+l

40.



(i =v>=>--->p)

M
I B’yD|[';2t+V ( =%2=j---,p)
then select (X y"™ such that
P
Now let Yp Since [ ( 4 <1/2* we have

Since E* is complete this is a sufficient condition for the existence
of a limit Y for the sequence , Yp>

Now, since B(x,y) is by HA continuou? and linear in y, we have

2
or (3)
But by the selection of (x-y”) in (1) we have
— Kk
I =(n>yp 1< 2557 )
oa
Hence the limit on the right hand side of (e) is less than z z,k“?
L -2

. J=0
which is less than k/2. Remembering that 7“Xi=y1) I> k we have from (q)

(B(x1,Y) > k - k/2 = k/2

4 1.
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Since this holds for all i and sinceilim xi = 0, we have a contradiction
- ®

of 33. This proves the theorem.

Theorem (13.66) Let E,,E;,*",E be & complete vector spaces,

distinct or not. Let x, be a representative point of E;. Let
H(xl,xz,---xn) be & maltilinesr form on EjE,--*E, to £'. Then M is con-
tinuous at (xy,x2,* *,%,) = (0,0,+-+,0)

Proof: Ve prove the theorem by induction on n, For n=1 the
theorem is true by definition. If it is true for n-1, then H(xl,'-o,xn)
is continuous on Elnz...En_l[En] to T at (xl’xz""’xn-l) = (0,0,"**,0)
and 1is linear homogeneous and continuous on [El-Eg---En_£ E, to E'.
Therefore by Theorem (13.65) M is continuous at (xl’x2""’xn) = (0,0,+++,0),

on Ey+Ep+++E, to E' which was to te proved.

The spaces T(a,b) are as is well known, instances of complete
vector spaces. The result of (13.65) and a consequence of it will be

assumed in part 2.

13.7 lodular Properties of Polynomials and lultilinear Forms.

Definition: By the modulus of a homogeneous polynomial of degree
1./
n we shall understand the upper bound of the expression (ﬁlxlﬂ for all
X
values of x. We denote this bound by mh.

To prove that mh exists we have:

Theorem (12.71) If n(x) is a nomogeneous polynomizl of dezree n,

then the expression 'ﬂ’ﬂ(—"% is bounded for all x.
x|\

Proof: By definition h(x) is continupus at x = 0. It follows

that there exists §; such that for ”x(((&l l[a(x)||<1. Now if x is
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arbitrary, and if X = -C\L __x__ we have

Therefore \\ n(x) || <1

ool - (B 0] - (35 bt

Hence JLD T (-f_g

The upper bound mh therefore exists,

Definition: 3By the modulus of a multitinear form
M(xl,xg,'”,%) we shall understand the upner bound, in case it exists,
; on | M caeeeax )l .
of the ex‘pressmn/ Tx X)X a_._alp)—, over all values of the x's. It is

i ’Ixzt ."'lxna.\
‘enoted by mnM.

Theorem (1%.72) If El,Ez,-",En are comlete vector spaces,
then the expressicn' L—Ll+— 4—3—75111!-‘ is boundeu over all x's
I‘ 1 \ .|l ‘2 ﬁl
Proof: By theorer (12.66) ! is continuous at the voint
(xl,xz,”-,xn) = (0,0,+-+,0). There exists, therefore, 81, such that

if || x3 ¢ 81 (i =1,2,.. ,n) then]l Mﬁ<l. If X)sXp, et Xy &re arbitrary

&

and if ' i'i = ~21-%X_  we have as before
2= |
N S TR
M(Xy, %0, e == . 2 1
1,429 :x'a 4 T ™ v
2" Hxl.‘ [zl (]
. L M(x By J_tn) 2"
Vhence -——T-,l < sn
i 1\‘ ilxzﬂ. l\xﬂ! a
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It follows that mpl! exists.

Theorem (1Z.721) If hix) is a homogeneous volynomizl of degree n,
and if [ x| < r thenilh(x)u ¢ mhr®,

Proof: P n(x) ¢mhb|x{®¢omh r?

Theorem (1Z.722) If !/ is a multilinear form in Xpst Xy, if

| x;\l<r; (4 =1,2,:++,n), and if m} exists, then\\M]k:mnuorl-r2~--rn.

Proof: Similar to (12.721)

Theorsrm (12.728) If h(x) is & homogeneous polynomial of degree n,

— X) mh = lh max | n(x) || &) mh= %hmaYiVAxﬂﬁ
o x|=r I o fLxti< v
Lo £ ) X dn{xv)!
SR AL
RSP I

since the second meximum is taken over a more restricted set of x's.

Tow let x, be a value for which

\ n I ') H
\ (xo}‘ ¥ max ihlx);, (2)
!fxu'n fxl=r ¥
he - w XX 9 =
Then put X, = ﬁ;;?\ SO tnatl\on =T

!

TP 1 , |
Thus Wh(x )i = ”l%zb%L % fthigzh
I %ol (= =r

This contradiction proves that the inequality in (1) is inadmissable.

YIRS Proved Stw\{(ar/y} i follows {mmedtla+ely from (a) and (b

Theorem (13,724) If H(xl,--';xn) is a multilinear form continuous at

(0,0,+#¢,0) then m M exists.
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Proof: An exact reproduction of (13.72); the only assumptions

used there in the proof were the hypotheses of the present theorem.

Theorem (1Z.,725) 1If M(xl,“',%) is a multilinear form such that

m M exists, then

mnl.! = S S max M

rlcrzo .»-rn ”xi‘( =ri

Proof: Precisely sirilar to (12.723)

Ve shall now provz a special theorem on the modulus of the polar

of a horozeneous vpolynomial.

Theorem (1%.73) Let mh be the modulus of & horogensous polynomial

of degree n. Then the modulus mpyh of its polar exists and we have the

n

n
=]
=

i
=]

relation 1

B
5

n n
Proof: Since 2 h(x) is of degree 0 ia x, we have A h(x) = 2 h(0).

Let dlx,- -+, & X be an arbitrary set of increrents and take

Consider the manner in which the successive differences of n(x) are formed
1 1
A 0(x) = hlix - 524,%) - n(- 5 2Lix) (1)

At eacnh stage, each of the terms on the right hand side ¢ives rise to two (2)

new ones. Zh(x) is therefore the sum of 2P terms of the type
n( £5€,4;x)
2 i =1

where 51 =11,



But I4Zeiax||$1 Zigx 4B . naxlldyx || (2)

a h O ”‘ - :\.‘ h X ’ f 'n\‘n i [}
Therefore | i—n_(!—l = Hﬁ—n(!—) - g: mh HE (max |4 4x | (38)
The existence of m h follows at once from (3) and Theorem (1:.724), for

(3) shows that h(xl,xg,-~~,xn) is continuous at (0,0,°++,0).

If in (3) ve require thet/l x|l = 1 (1 =1,2,...,n), then (3)
I n
becomes U—.M_(Q)_Ll :_<__' mh n (4)
nt n!
By theorem (13.725) therefore o
mh = max llé_ﬁﬁ'_@‘lémh.!lr: (5)
Aczain we have myh = max h&—l*il—ignl'l Z mex I n(x, x*""xl,l (6)
“xl‘ .,xz ooo\P;n “x]
Gombining €5) and (6) we obtain
< Mph < o7
13 —==1 (7)

weich was to be vrovel.

As a corollary to the last theorem we have.

Theorem (12.731) A necessary and sufficient condition that a

nomogeneous polynomial be null is that its nolar be null.
Froof: By ecuation (7) of Theorem (13.7%2) mh and m h must

venish together.

Wie have now a special result for spaces E(C) whose possibility
sems to depend upon the fact that in the complex plane the functions
z,2°%,+++,20, are orthogonal on the unit circle to the set 2-1,2-2,,,,,Z-n

with resvect to the function 1/z

4G



Theorem (1;,74)
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n
Let () ;; )far be & polynomial on C to E(C)

Then for all s (s = 1,2,...,n)

Now define

So that

Define

from which

But

Hence

Theorem ( 15.7,5)

E*(C).

H (W ||

| ag |l £ max
| All=1

"
o
o
)
1~

Let h, &, s be integers s = n. TFor convenience define

}b = ezﬂi/h

L

N gk | e &0
, kh]_lz sin§{<ﬁr

h
: h-1 (r-s-1)k
Wz 1
2 2 OB D,
\ d —_—— /1 (I‘ - S)
lim W —fla,i_[k F=g= A) =
h-00 ilk[?—‘l 0 (r :é g)
2 or
UnS = Z wq aT
=0
lim U,__=a
ns s
h-300
h: - x[.
Uh“ = '(‘}T‘LS &y =/ )\h) P(
S0 %0 2711 ) 1)
h
21 <k k
I vnglé 5% L Z |/\ Ah\lip(kh)lf< i I o5 #
\ | . : it PVUA)
=0 | ) g(a+l) | Al =1
la.l =l1im Upgii= lim | = max p(}){§
* o 2 s e = N=1

Let p(x) be a polynomial of decree n on E(C) to

Let it be represented as a sum of horogeneous polynomials in the
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n
form p(x) = ;i; hr(x), where hr(x) is of degree r. Then for all r
mhy & max || p(x) ||
Il X} =
Proof: Letl|x|=1
e T
¥rite p(Ax) = * h.(x)
Then by Theorem (13.74)
(B.(x)] £ max | p(AX)(E max lp(x) |l (1)
IAl=L Nx/l=1
Since tnis holds for 211 x for whichll xl{ =1
= maxl % max [ p(x)| (2)

ixl'=1 (xf=1
which was to be proved.
These last two theorems are of some use in the theory of analytic

functions to be introduced in the next division.

12.8 Differentials of Folynomials

Differentials were defized in (12.6). In tais section we pro-
pose to show that - vpolynomial posesses differentials of zll orders and that
the differentials are symmetric in the increments. Furthermore, it will be
shown that the differentizls of a homoseneous polynomial may te conveniently
exsressed in terms of its polar.

At this point it is verhaps not amiss to prove the result we

refrained from proving in section (12.8).

Theorem (13.80) Let fy(x), fz(x),..., fm(x) be functions on Eg

m
to ©' dif-erentiable at a point x, of E,. Then f(x) = ;E' fo(x) is
m =0
differentiabl= at xp, and df(xo) = EE- dfr(xo).
r=C



Proof: df(x,) is the sum of linesr homogeneous polynomials in

[ix and is therefore also linear homozeneous.

Let ¢ (ax) = fr(xa? - afp(x,)
HAx||

so that by the definition of dfy(xy), €p(Ax)~ 0 with Ax .

, m
Yow Y & fr(x,) - X afp(x )‘
li’é(z\x)!sl 1 C"Hx“ 0 {
AT
< n;&-;fr(xo) -dfr(xﬂ)j’ = Sl (9
Z; [ Ax il el

Therefore as [l&x!//20 €(4x) = 0 and dfr(xo) is the differential.

Theorem (13.81) If p(x) is a polynomial of degree n on E to E!,
then at every x of £ the dif erential do(x) exists.
Troloying Theorem (13.428) we write
= . r
p(x+)y) = 2 X k(xy) (1)
r=0
where kr(x,y) is hormogeneous of degree r in y and of degree £ n-r in x.

Uriting A succescively equal to O and 1 we obtain.
p(X) = ko(X,y) (2)

n
p(x+y) =2 k(xy) (2)
r=0

We pronose to snow that if we take 4 x = y, then the differential of n(x)
is precisely kj(x,Ax) which is & linear function of Ax. Combining (2) and (2)

and rearranging
n

p(x +4x) - o(x) - K (x,8%) = 5 k. (xAx) (4)
=2

T
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Regarding x as fixed we have

| B(x+4%) - p(x) - k(=) 25w (x)fhx]f

\

Ms

Tividing by \Ax'l‘l we have

| oe+82) - ot8) = 0 GLRT 2 (e 5w i ()2 21
i Ax =2 l

This is in exactly the form of (12.8) 4Agll x//— O the richt hand member

tends to zero -nd therefore so alsc doesé (4x).

Theorem (12.82) If hix) is a polynomial homogeneous of degree n then

dn(x) = hx(x;Ax) is given in terms of the nolar of h by nh(x,x,+++,x,0x).
Proof: Tmploy the expension use® in Theorem (13.64) e-uvation (2)

with4 x written in place of y.

n
n(x + X4 x) = ZO N (B) np(x,4x)

Using the cafeaux metiod of calculating dh(x) we have

dh(x) = 1lim in(x + XA X) - h(X)‘) t-n- . r=-1
A ‘ r=1

n
(=7 A h (xAx
i \ > AN B (xpx)
= n h(x,Ax) = n h(x,x,.-.,x,4x).

Theorer (12,83) The r'® differential of a homogeneous polynomial
n(x) of degree n (r £ n is given by

n!

(—5—:—1‘_)1 x,x,x,~--,x)

(A seiw A
h\—alx, ,"‘r

Proof:s Tor r = 1 this is Theorem (12.82). If the theoren is

true for r - 1, then

So.
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=i - _ n!
aB(x) =4y 4 _,...d)h(x) = Ty By Eee e B ex)
is a homogeneous polynozial of degree (n - r + 1) and the exuression on

the right of (1), being a nultilinear form, must be precisely its polar.
Therefore we may zpoly (13.82) agai.. to (1) and obtain the result for r.

This completes an induction on f.

An immediate consequence of the last theorem is.

Theorem (12.84) The r'? differential of a polynomial is symmetric

in the increments.

Proof: TFrom the symmetry of the polar of a . horogeneous polye
nomial in its increments, and from Tneorem (1:.83) follows the symmetry in
differentials. But sincé any polynomiecl is the sum of homogeneous poly-
nomials end since the sum ¢f the differentials is the diiferenti:=1 of the

sum, the symmetry holds for zny polynomial.

13.9 Polynomials of Polynomials. Folynorials on Composite Spaces.

In this section we shull discuss rather briefly two situstions
in which we sh:ll be interested in the next divisicn.

Tiost, let q(x/ be a polynomial on E(A) to E'(A) and p(y) be a
volynomial on E'(A) to E"(A). Let us consider the nature of the function
P(x) = p(q(x)). We shall show tnat P{x) is a polynomial on E(A) to E"(4)
and that its degree is at most men, wher= m is the degree of p and n is
that of q.

Second, we shall examine the state of afrairs when polynomials
on a composite snace TjEs to E' are regarded as on Eﬁ[Ebt to E'.

To proceed with the first part, let us proves



Tneorem (13.91) Let p(x) be of degree n on E(A) to E'(4). Let

z()) be a polynomial of degree m on A to E(A). Then P(A) = p(z) is a
nolynomial of degree at most men on A to E'(A).
Proof: Ve use induction over m. If m = O, the theorem is trivial

and true. Referring to {1:.423) we have

n

7 k(x,y) (1)

o(x + y)

where kr(x,y) is of degree = (n - r) in x and homogeneous of degree r in y.

~ 8
A 8g

l\m/(s

Let z(\)
0

w
|

Assume the theorem for =11 polynomials z of degree < m. Revlace y in (1)

by {Q a,. This yields

n
mr
o(x + )% ap) = 57 X ku(x,qy)
r=0
m-1 &
If x is now renlaced by':f PN ag then, under the induction hyvpothesis.
s=0
kp(x,8,) becomes a polynomizl of degree at most(m - 1)(n - r). If this

volynomizl is mltinlied by‘)mr, its degree will te at most
mr + (m-1)n-r)=mn -(n-r)Sm
Therefore P(A) = p(z) i the sum of polynomials of degrees £ men.

Theorem (13.92) Let a(x) be of 4 gree m on E(A) to E'(A) and p(u)

of degree n on E'(A) to E"(A). Then P(x) = p(a(x)) is a polynomial of degree
at most m.n on E(A) to E"{4).
Proof: P(x) is a continuous function of a continuous function,

and therefore continuous. It remains to prove that P(x + A y) is a polynomial
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of degree £ n.m inA. Now q(x + )y) is for fixed x,y a nolynomial of degree

2m on A to £'(A). Hence avplyinz Theorem (13.91) B(x +)y) = p<q(x + X y))
is of degree at most men in ).

The theorem is therefore proved.

Let us now consider a composite s ace ElEg(A), of two spaces

e sh.ll denote clements of E; by letters x,y,z,:--,
elcwents of E; by letters X,y,z,---,.

The point (x,X) of the comoosite
supzort we shall denote by a canital letter X.

Theorem (132.93)

Ir P(X) is a polynomial of degree n on EjE5(A) to
E'(A), then o(x) = P(X) is a polynomial in x on E1[ES] to E'(4).

Proof: By Theorem (12.93),

?(X) is coatinuous on E; (B5] to E!
Tow by the defingion of a polynomial,

P(X 4+ )\Y) is a polynomial in \ of
degree £ n on BB ) Jto E'. Put if Y = (y,0)

P(X +2Y) = P[(x, %)+ (7,0)) = P{(x + }y, T +10)]

=p(x+) y)

Therefore p(x +Ay) is & polynomizl of degree =

$ninA. By a similar
argusent ve could have proved that p(x) = P(X) is a polynomizl of degree
S n on UEJJE; to E'.
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14. Analytic Functions in Vector Svnace

14.1 Introduction

In this division of the worx we propose to make investiz tions
of- the cons~quences of a certain formal generalization to vector svaces of the
notion of an analytic function of & real or com lex variable. 4 nutber of
studies have been made)in tgis direction*, but mostly from the stand voint
of remairder theorems. e attempt here to =zttaclz the problem fron what is
often called the "Weierstrass viewpoint®. 'e shcll deline analytic functions
in terms of a "power series" dev-lopment in homozeneous polynomials and seek
to derive the vproperties merely fror the consideration &f inequalities and
ident#es among these polynomials. At the end, we shall apcly some of our

results to =z differential egquation theorem.

14.2 Convergence

Vie shell in :seneral not reguire that =11 svaces with waich we deal

obey the nostulate C, of completeness. \hen com-leteness is assumed in the

1
present section it will be so specified in the theorem. The definition of
the limit of & sequence of points of a2 s¢:ace E was given in (12.3). An-
other wy of stating the same thing is that a sequence }xn} has a limit if
there exists in E a point x such that [ x - xnk tends to zero-with 1/h.
Using the same language, the postulate of comvleteness requires that the

neces-ary and sufiicient condition for the existence of the limit of a

sequence ?xnl is that mag ?xn+p - xpll tena to zero with 1/
g o>

* See, for example: L. . Graves, Trans. Am. ilath. Soc., V. 28, 1827, p 163.
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(14.21) (C¥nvergent Seguences of Functions

The terms x, of a sequence may depend i: various ‘ays u-on some
general parameter t whose range is 7. Ip this case we say that the sequence

xi(t) converzes over T if it converzes for every fixed value of t in T.

(14.23) Uniform Convergence

A sequence {xn(t)§ depending uvon a parameter t whoses range is T
is said to converge uniforrly in t over T if there exists x(t) such that

max [}xn(t) = x(t)“ tends to zero with 1/n.
t in T

(14.24) Conversence of Series

n
S 1 5
Let 1xn; be a sequence of elements of E, Let §; = :%j Xy o
Then if S, converges to a limit $ w: say that Efxn converges to S. If the
convergence of %Sn7 is uniform with respect to some parameter t over a range
J

T, we say that Erxn converges wiformly in t over T.

A series which does not c.nverge is said to diverge.

(14.25) Absolute Converzence of Series

A series E:xn is said to converge absolutely if the numerical

series}Zﬂ{an is convergent in the ordinary sense.

Theorem (14.261) Let E, be a region of E. Let {fn(x)g be a se-

quence of continuous functions on Eo to E' converging uniformly over E,.

Then f(x) is continuous over E,.
‘
Proof: Select e> 0 and nj so thatf[fno(x) - f(x)‘ﬁ.e/z

Select O so that if || x - xo || <3 then ( £1,(%) - fno(x)n <e /3

Then for all x in (xo)&



| £(x) - f(xo)H = ”f(x) - fno(x)V.+ Ufno(x) - fno(xoxg+}%fno(xo) - f(xo)}i
< &

wnich is the condition for continuity.

Theorem (14.262) If E is complete, and if a sequence | X' from E

is such thatjzrxn is absolutely convergent, then Z:xn is convergent.

n
Proof: Let Sn = E; b

n+n

Then %\Sn+p - Sn“ = Z;; =y 1]

but since the right hand side is the partial remeinder of a convergent
series of positive terms its maximu value for all p tends to zero with
1/n. Then since E is complete this is a sufficient condition on

Sn+p - Sn for convergence.,

T-eorem (14.263) Let fn(x) be a sequence of functions on & region

Eo of E to E', where E' is complete. Let M, denote the maximum of fn(x)

r

over E Then if 7, li, converges, £,(x) converges uniformly in x over E,.

.-
Proof’:
2
Let Sy(x) = fr(x)
' y P, y 2
Then | Sn+n(x) - Sn(x)ﬂ = H fr(x)% = ffp M (1)

Thus Sp(x) converges to S(x).

Borollary: If the seriesfiifh(x) is known to be converzent

r

over &y, then whether or not E' is complete the conclusions of Theorem

(14.263) nold.



Proof: Completenesc of E' is used only to show convergence

of an(x) .

Ir we calculate the limit of (1) as R0, n remaining fixed

ve have I\ s(x) - Sp(x)| = 2 M (2)
n+l

The right hand sid- tends to zerc with 1/n and is independent of x.

Theorem (14.264) I+ fr\,fn(x)‘: and,k:gn(x); are sequences of functions
én E, of E to E' such that 2 f (x) anngn(x) converge; then

2 gfn(x) + gn(x)g converges and is eoual to an(x) + Zgn(x).

n n
Froor: Let §,f = Zl- fn(x) Se = % gn(x)

‘n

sf+e) =2 (£(x)+ gn(X)>
. l n

men [l Sy(0 4 &) - | TER) + Yen(m) = lI5,f - TE,(x) |
& R & n / n '

tlls e - Teto) &

The fact that an and Zgn converge shows tha' the right side of (1)
tenis to gero with 1/n

It follows by induction that the sum of any fi.ite number

of convergent seriss is also convergent.

Theorem (14.265) L-t Z f (x) be convergent on E, of E to E'(A).

Then if X is a point of 4, Zotfn(x) converges and is equal to okZ £, (x}.

The proof is clear.
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14,3 Definition of Analytic Functions on E to E'. Some Definitions

Definition of Regularity: A function f(x) on Eo’ a region of

> to E' is said to Ve regular at a point X, of E, if there exists (1) a

=

positive number r and (2) a secuence of homogeneous polynomials hh(x) —

h_(x) of degree n—on E to L', such that for||x - X, l|<r, the series

oMgw

hy(x - x,) converges to f(x).
The maximum value of r satisfying these conditions we shall
call the radius of regularity of f(x) associated with the point x, and

shall denote it by r(x,).

Definition of Analvticity: A function f(x) on Eo, = region of

E, to E' is said to be analytic at the point x, of Eo if: (1) it is
regular at x . (2) the modgli mh,, of the polynomials hn(x) satisfy the

condition 0 ¢ lim (mh) 2% r(x,),

n—»0 i
We shall define r'(xo) as the lim (mhn) % 2nd refer to it
n-»00

as the radius of analyticity of f(x) associeted with the noint x,. f(x)
will also be sooken of as "analytic r'(xo) at xo“.
We shall =1so have occasion to use the quantity r"(xo) defined

-
as lim (mnhn) D where mph, denotes the modulus of the polar of hy(x).

n=-» 00
e shall speax of r'(xy) as the raiius of absolute analyticity of f(x)

associated with the point x,.

Congerning this last we have incidentzlly:

14,21) If f(x) is on E, to T', analytic r'(xo) Bt X,

then r"(x,) satisfies the inequality

15 Eﬁiﬁﬁl.i e
r'{x,)

where e is the btase of natural logarithms.



Proof: By Tnheorem (I3, 73)

1% mhp & n°
mh.n n!
-1
so that r”(xo} = lim (mnlin) 1= lim (mh ) n = piix.)
n«300 n—3oo
> -1
again r(x,) = Um (mghy) . 1m (Tin*—’n B () B
n
1 1
> nB\n "Ili i '%
2 1in (;) (m2g) % = 1m () " um (giy)
n.»00 g n->® n->0
= e“r'(xo)

© .
Dominants: Let f(x) = 'io_hn(x - x,) be analytic r'(x,) at X, -

For a given number f>‘/ 0, a number M satisfying the condition
\ i\l U x«’!n
\ hp(x) | < M on

for all x and all n, will be czlle® a P dovinant of f at x . The lower
bound of M's satisfyinz tnis condition we shell czll the rminimal ;9 domirant
’ 1

of ©(x) at x5. It will be denoted by fo(xo)'

To snow that dominants exist we h:.ve

Theorem (14.32) If f(x) is analytic r'(x,) at x, a.nd€< r'(x,)

then qu(xo) exists. .
Proo:: Since r'(xgy)= lim (mhh) D we have fror ordinary analysis
® n o
that for g’°< r'(xo) Z' mhn()n converges. There is therefore a greatest

term in this series w.ose walue let us call M. This

mhnﬁn = M(all n)
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From waich f\n (x)]) & u‘\gﬁn

One such positive number [ existing, the lower bcusd certzinly exists.

As a matter of fact it is not difficult to s=- that the .. we have just

caosen is actuslly nPf(xo).

14.4 Some pronerties of Analytic Functions on A to E(4).

Let‘us apply the definitions of (14.2) to the case where E(A)
is A itself, and E'(A) is a vector space waich in this section we sh=1ll
write without the prime. The most zeneral homogeneous molynomial of degree
n on A to E(A) is simply )® a, where A is of A and a is a fixed element
of E(A). Ve are therefore lel to consider functions which, in the neignh-

borhnood ()\O)f,, are expressible as a power series in the form.

=2 -
£(A) = . (O -2)%a (e inE T in (ko))

-

To simplify the worx let us make the as unption that /‘o =0,

waich armounts simply to writing A for A - 7\0.

Theorem (14.41) Let j_a.rﬁ be an infinite sequence of elements of

a corplete vector space E(A). Let r = lim | a,| n be positive. Then
n-roo
7 n a, converges or diverges accordingly asf2fis les: ta n or greater

than r.
Proof: Let | 7l< r. In Theorem (14.262) revlace x; by AR a
@ @
then ~_ ,\n all converges absolutely, since > [‘)\‘n Ilanuis, by the definition
0 [on

of r and the well kmown Cauchy test, convergept. By the theorem already

cited, therefore, ﬁ \n a, converges.
0



b

Ie })\:‘7 r, then from the definition of r and the ordinary
theory of power series tre sequence ii)ﬁ\\anﬂz has no uncer bound. Supvose
o \

-

U n ~ .
for some value of A, (|} |>r), %; 7. a_were convergent. Let S be its sum.

n
-y
Then for arbitrary e thers is Ng such that §, = 7 'f a satisfies
o "
S, - 8. < e for all nyN,. Let n be chosen » Ne so that
+ .
1y F e |1 > 3e
s 1noon+l . Dl |
then o < 17 ™ any = |7 lener = 15541 - Sa

& N, 1
S hsn+1 -S| + S, - §|[<e
This contradiction proves the second part of the theorem.

It follows from tiis theorem that any sequence ¢ ant of elerents

of a comnlete space E such that r lim\\an\rn > 0 defines a function,

- o
& a
f(*) = > ) e, on (0), of & to E which is
0

by definition rezulsr r(0) at A = O. Loreover,lfanﬂ is orecisely mh,
of the mor= generzl definiton so that the function f()) defined by the
sequende 'anf is also znalytic r'(0) = r(0) at, = O.
Conversely:
Theorem (14.411) Is £(n) o= (O)r of A to E(A) is regular r(0)
00 -4
at } =0 and if £f(\) = ~ 7 a  in (O)r(o)’ then r' = lim 'a, 2> O.
n->00
= .n
Proof: If r' = O, then ty Tueorem (14.41) 5 ) a, is
0

divergent for A £ O wiich contradicts the derinition of rezularity.

Theorem (14.412) If in the above theorem r(0)» r', then f(A) is

s
analytic r'(0) = r' at A = O.
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Proof: The added assumption simply makes f( ) satisfy the

condition r'(0) < r(0) of the definition of analytic functions.

=]
Theorem (14,92) If £f(A) = é% P a, is snalytic r*(0) at » =0
0
" ! T .n . s _
on (O)r,(o) of A to ¥' and if <3\ﬂr (0), then éﬁ‘ ). @ converges uni

fornly in ;. over (0)9-
Proof: In the corollary of Theorem (14.263) take Ey to be

(O)F and £, (x) to ve ) a;. Then for ) in (O)P we have

} 11 n
Wenlicp oy

Since :Z:gﬁng\anéﬁconverges the conditions of the gorollary are met.
Combinins the results of this theorem and Theorer (1<£.261)

we have the proof of

Theorem (14.420) If £(°)) is analytic r'(0) at /\ = 0 or (0) r*(0)

of A tc E', and ifQ & r'(0) then f(A) is continuous over (O)p.

By Theore- (14.264) we have:

@ 00

Theorem (14.422) If £(:) = JP epand g(l) = - P b are
T T

regular at , = O. Then (') + g(’\) is regular and is ecual to
®

~ 2 %(ay + By).
0

N
Theorem (14.43) If f(3) = an is on (0) $(0) of A to E(A),
O

regular (0) at/ =0, and if for all / in (o)r(o), £f(1) = 0, then

r(o)
en =0 (n=0,1,5,°+)

¥ Proof: Agsume the contrary. Let a, be the first coefficient
’ o
which does not vanish, so that 0 = £(7) = 7 an Using Theorem (14.268)
m

we have for 0 ~ '. < r(0)



L3,

00 00
_L_) 5 - n-m ST AT
lm 2_ an":% ?~ ‘m+r
_\.? A -
Therefore “;_'Ar B is a regular function of /- at » = 0. And its value
O i
for - # 0 is zero. By Theorem (14.421) itis continuous; so thzt its velue
: 00
N _ - n LS '.'"" ¢ r _
at » = 0 must also be zero. 3ut - B s a, # 0.

This contradiction proves the theorem.

Theorem (14.431) If f(/) is regular at /' = O its expansion

about A = O is unique.

00 ®
Proof: Let f(L) = }P a = j?_')P b,. Using Theorem (14.264)
0 0

‘Fg) Q'Q ~"°~° n
O=~é5 .\)\an-%)bn-—-‘;é » (an—'bn>

or a =0b

14,5 Tneorems on Series of Polynomials.

We shzll now deduce a result wiich it was not convenient to
obtain in Division 13 because of the lacK of adequate prelirinaries on

convergence.

Theorem (14.51) Let hn(x) be a sequence of homogeneous polynomials

00
on E to &', each of degree k. Let the series 2; hn(x) converge uniformly
1]

00 howioage neous
in some neighborhood (0),.. Then h(x) = EZ' h (x) is a,polyromial of
0
degree k.

Prooi: It follows from Theorem (1<£.261) that h(x) is continuous

over (O)r



L4,

o o
Let h.m)(x =9 h,(x). It is the sum of a finite number of
o+l
homogeneous polynomials of degree k and is therefore one itself. The
raximm of “ hnp(x)u over (0). is mhnp.rk and over any other (O);. is
mhnp-Fk. The condition for uniform convergence is equivalent to the
condition that mhn,)-rk tend to zero with 1/n uniformly in p. Since con-
2y
vergence is assumed uniform over (O)r this condition is satisfied. But
00
it is also satisfied for (O)r.. Hence %_ hy(x) converges wniformly in
(O);. By teking r sufficiently large h(x) is vroved continuous for every
x.
Now by the definition of a polynomial h,(x +)\y) is a poly-
nomi-1l of degree k in A and by Theorem (.3.20) the coefficients of 2\°
in this polynomial can be exprescsed in the form
3" A h(x + ty)
t=0

.e have therefore that
k

oo 00 k
2. By(x+\y) = 2 ’2_“* Z; Agy ho(x + ty)
1 n 8=0 =0

and using (14.264) we rearrangs tcis sum so that

e k '
6 g
hix +Ay) = 2 s 7 Ag h(x + ty)
s=0 t=0 ®

To suow that h(x) is homogeneous we have
00
h(rx) = é}g b, (Ax) = : 2k hn(x) = “,k h(x)
T 1

The s eming length of this latter portion of the argument may be ex-

plained on the grounds that -ompleteness of E' was not assumed.

Theorem (14,.52) Let <; hn(x)z be a sequence of homogen=ous noly-
nomials each of degree k on E to E' where E' is complete. Let i__ mhy,



®
converge. Then 2{: h,(x) converges tc a homogeneous polynomial of degrz-
1 00
k wrose modulus is at most equal to ZZ_ mhy .
1

Proof: Theorem (1%.263) establishes uniformity of convergence.
o)
Therefore by (14.51) above h(x) = 7. hp(x) is a homogeneous nwolynomial

(]

of degre- k. Again

0
mh =max (n(x)||E 7 mex hp(x) = mh
N x|j=1 1l I'xli=1l 1

(o]
8

14.6 Hindamentsl Proverties of Analytic Functions

In this section we shall deduce theorems analogous to some of
those in section (14.4). Ais regards the point x, around which the functions
are in the first instance assumed to be analytic, we observe thst there
is no re=z1 loss of generality in taking it to be the point O. This amounts

si. ply to writing x in place of x - xg,.
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