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Part 1. -

POLYNOMIALS ~ TD ANALYTIC ::B'UNCTIONS 

IN VECTOR ·SPA.CES 

11. Introduction to Part 1. 

Part 1 consists of three divisions. In division (12) vector 

spaces are defined and some of their immediate properties de duced. 

Division (13) discusses polynomials and deduces a number of their pro-

' ¥ ~rites. In the final division the work of the preceii ng pages is ap_plied 

to a gener al ization of the ordinary t~eory of analytic functions. 

12. Vector Spaces 

12.l General RGmarks. 

Definitions have be ~n given by Banach, Weiner, Frechet, and 

others, of abstract spaces naving properties similar to those of the space 

of ordinary vectors. In order that this paper may be self contained and 

in order that there may be no c·onfusion as to what is meant, we shall give 

our own formal statement of the postulates defining Vector Spaces. 

Our choice of t he particular system has been guided by a desire to he.ve, 

• later on; a s many analogies as possible to the ordinary theory of functions. 



12.2 Vector Spaces and the N0tation 

The spaces with which we deal are systems consisting of a set 

E of elements or points, a number system A, and three operations $, ~, II ..• jj . 

T'nese systems are as sumed to satisfy so r-ie or all of the postclates given 

below . 

The set Eis called the su~port of the space. The elements of 

E are usually denoted by the l _etters x, y, s,... . In general no ambiguity 

aries when we refer to the space and its support by the same letter. To 

emphasize the fact that a space E involves a particular number system .11 , 

it will be referred to as an E(A1 ). 

Functions, Mapuing : The usual notion of mapping is assumed. If 

to each el ement x of a set E0 there corresnonds by some law a well 

determined x1 of a second set E;, the set E
0 

is said to :,e map-ped upon tr.e 

set E~. A function f is a syrribol for such a mapping. The relation is 

denoted by x1 = f( x). Following the phrasing of E. H. !foore , we refer 

to f as a function on E0 to E~. 

Corr.1'.)osition of Classes: If Ei_,E2 , ••. ,~ are sets of el ements , 

n 
then by E1E2 •• ·En or 

1
~Ei we shall understand the nrultiplication class 

of ordered sets (s1,xz,•·•,xn), where x1 runs through the set Ei. If 
n 

E1 = E2 =•·•=En, ~Ei is denoted simply by En. The set E1 is spoken 

of as the cornposi te of tre sets E1, •••,En. 

Functions Involving Parameters: 

n 

1 If f is a function on E0 to E
0 

where E
0 

= 7TE1, it is sometimes convenient to consider the properties 
i=l 

of the sub-mapping obtained by holding fixed, certain of the el ements x1, 

A 
qua 

2, 



~unction of ~,··•,xic· In this f will be said to be a function on 

E1 - •• ~(Ek+i•··EJ to E~. The elements s 1,•••,xk of E1 , ••• ,~ will then 

be spoken of as variables; the elements xk+i,···,xn of Eir+i,·•·En as 

par am et er s. 

12.3 The Postulates for Spaces E(R) and E(C ). 

A1: ~ is a class consisting of at least two elements. 

A2: A is either R, the real number system, or C, the complex 

number system. 

B1: z = riy is a function on E2 to E. That is, to each ordered 

pair x,y of elements from E there corresponds a unique 

$ 1..4.M 
element z called their~. 

132: x-ey = yfx 

%: (xey)ez = ri(~z) 

134 : z = c:,<_ ~x is a function on AE to E. That is, to each ordered 

pair (q ,x) consisting of an element ~ of A and an element 

x of E there corresponds an unique element z of E called the 

product of o· and .x. 

%= The set Eis included in the set (~~k). That is, to each 

element z of E there corresponds at least one pair (~, x) 

of AE such that z = (j_Qx. 

Bs: C(~(xey) = C( ®x ~ d9y. 

~ -: (CX + ) 9 X = o{ f> X ~ .. G x. Where 11+ 11 denotes ordinary 

addition in the number system A. 

13s: (Cl{• ~)Gx = c< Q( i-: Gx) where"•" denotes ordinary nmltipHcation 

in A. 

3 . 



:B9: p = II x 11 is a function on E to the non-negative real numbers; 

that is, to each x of ~ corresponds a non-negative number 

P = !j x/1 · \1 x \\ is called "norm of x 11 • 

B10: There is a unique x• of E whose norm is zero. 

Bn: ii()( ~X 11 = ! ('{ , • '. 1x where/ .. ,! denotes the ordi nary mod-..:.1.us 

'!) 1~., :1 ~ ·! • , I 
Dl2: : A.~., /• - q X :· + II y I • 

Notation: \'/hen no ambiguity arises ♦ will be written simply+ and 0 

will be omitted entirely. 

x - y will be defined as x + (-l)y. 

x• which by B1o and B11 is s een t ~ be identical with O•x for 

every x will be denoted by O. 

neighborhood: rrh e t.' 0 int S X for W hi ch '. '. X - are said to lie in 

the D neighborhood of x0 • The ~ neighborhood of x
0 

is denoted by (x
0

)p . 

Region: A set of points E0 is a region in E if each x
0 

of E
0 

has a p 

neighborhood (x0 )P whose points are all in E
0 

Connected Region: A region E
0 

·is said to be connected if when x x1 are 

any two of its points there exists a cnain of neighborhoods finite in 

number, say (x)p , (x1)e
1
,••·,(Xo)p

0
) (s1 )p1, each having a point i ~ cormnon 

with the ~receding. 

Limit Point: A set of points E
0 

of E is said to have a limit point x0 

if it contains points X disti nct from x0 in every (x0 )p . An infinite 

sequence (x1,x2,···~,···) of points of f is said to have a limit if 

there is a point x of E such that to each p there corresponds an integer 

Np such that for n > Np, xn belong s to ( x )p. x is called the limit of the 

sequence. 



c1 : The necessary and sufficient condition theta sequence(~) 

have a limit is that for each p there is an l( f:> such that 

for n :>Np and p >O, ¾-p belongs to (~)p . 

S~aces which satisfy t he po stulate c1 are said to be complete. 

r-11 an:/ of the theorems wnich follow are proved without the postulate of 

completeness. When co~plet eness is employed it will be noted. 

12.4 Imrr.ediate co nsequences of the Postulates 

Tl. l·x=x 

Proof; There exi st s Q~Y such that x = ~ -y (B5 ) 

Then l • x = l · (r_i • Y) = ( l •q ) · y = Cl 9y (:Ba) 

X = 19X 

T 2. O•x = x• 

Proof: II O·x // = /o/ j/ x// = 0 

Hence O·x = x• 

T 3. X + x• = X 

Proof: x+ x* = l·x + O•x = (1 + O)x = l·x = x 

:ByLJ,~ B7 

T 4. X - X= x• 

Proof: X - X = x+ (- l)x=l·x+ (-l)x = (1-l)x = O·x = x• 

T 5. The set E forms an Me1.ian group under e. 

Proof: ? rom B1, B2 , B3, follow closure under~, 

associativity, and commutativity. From T 3 

follows the existence of a unit; from T 4 

the existence of an inverse. 



horn T 5 the next thre e standard theorems on A~elian groups 

may be ta.ken over at once. Thus 

~_§_ The equation x + z = y has the unique solution z = y - x. 

T 7 The inve r se to xis ~ique, i.e., for each x t here is a 

unique x
0 

(viz. -x) such that x + x0 = x*. 

T 8 The unit is unique; i.e., there is but one x
0 

(viz x*) 

such that x + x
0 

= x. 

T 9 I f E(A) is comple t e and C-Xn,) is a sequence such that 
n f II xn+l - xnll converges then ( xn) has a limit. 

Proo f : Let p > 0 be arbitrary. 

Then choose N so tha t for n >N 

'.l ~l - xn l! + · · • + . xn+p - xn+p-1 ') <. (J 

( al 1 p > 0). Thus 

II X X II ~ i! X x_ + n+p- n - ii n+l--n 

Hence by c1 there exists x such that lim ¾ = x. 
n+oo 

T 1 :) If a sequence (JSi) bas a limit x then thci t limit is unique. 

Proof: Let x1 be another limit 

Tr1en ii x1-x !l = p > 0 

Choose N such that for n > N : Xn - x ;; .:::.. fJ/2 

and II~ - x1
Jl ~ P/2 

then /j x1 - xi/< {l 

T 11 If a sequence (xn) has a limit x, then ll xn ll has a limit and 

(. . 



II lim Xn ll = lim II Xn il 
n -roo n-+ oo 

Proof: Let 1:-:' ->0 be arbitrary. 

Choose W such that for n :>ti II Xn - xj/ L F' 

T'nen 0 >/Ix.__ - x/'I ~ I I x ~ ·
1 

- ··x:1 

• c- , -n , l ii --n , ,1 . j 

Hence 11 lim xn j = ;: x ;, = lim !I Xn Ii 
n-,. oo n +oo 

T 12 ·111 X 11 - :,· Y
11 

I ~ ; X ± y II 
/ , ,, I 1, 

X ± y ' 
, I 

Similarly ·. Y ,l - l;x
1 
~ ! x ± y/i 

Hance x · - Y s lx!y : 
·, 1, , , ,, I - l' I 

T 13 If (~ n) is a sequence of n11r.1bers of A having ~ as its 

limit and x &s an element of E(A) then the sequence (~nx) 

has as its lblit o; x. 

?roof: Choose .~=-- o a r bitrary. 

Choose N such tha t for n >N jo<.n - '="' j < / fi x'; 
Then for h > N, ;,, <:rnx - ~ x I' = I•:) - 01 / 1' 1 x 'i' 

1, , ' n 1 : 1 

T 14 If 
I o, then · x - Y ', = X= y 
It 

Proof: X - y = x• 

X = x• + y = y + x• = y 

T 15 If qx = x• then either ex = 0 or X = x• 
Proof: I~ I Jx · = I'~ x /' = · x• :. ,1 /1 ,, = 0 

Hence either :~ ' = 0 or :i x'.1 = 0 

Hence ex = o or X = x• 

7 



T 16 If ex x = {}X and x :/ x•, then ~ = 8 

Proof: C\ X - $ X = x• 

- -3 = 0 

Consistency of the Postulates: The 9ostulates A.1, A
2

, B1, ••• ,B
12

, c1 

a re all satisfied if Eis taken to be A itself,~, and 0 i~te~reted as 

ordinary addition and rrmltiplication and // •• . If interpreted a s ordinary 

modulus. 

R and Q ~ Vector Snaces: With the abo~,e interpretations of ~, 0, II ••• II , 

the nur:1ber syst ems Rand C may themselves be regarded a s sup;JOrts of vector 

spaces. There are, of course, other def i~itions of the three o~erations 

by which B. and C may be taken a s SU3J0Orts; however, for our pur 0-: oses this 

de f i ~it i on is the si~plest . 

Function S-pa.ce ~~Vector Space: If the elerr.ents x of E are taken to be 

real continuous functions of one or fini~el~ more real variables defined 

over some fixed doma in D of the variables. If the sun of two functions 

is defined in t he ordinary manner, and similarly the product of a function 

by a constant, and if /j x /j be defined as t he msx /xl, t hen it is easily 

verified that with suitable restri~tions upon D the set of elements x 

constitutes a vector space E(R). In pa.rtic1.1lar if Dis taken to be the 

linear i Jt erval (a,b) and xis a function x(t) continuous fort i n (a,b), 

t h_ en with the defini tion I x 1'I = rpax : x( t) j the s·oace E(R) of elements x 
\a,b) 1 

... 

is the well known space of continuous func t ions. It will in genera l be 

denoted by F(a,b). 



Couroosition of Vector Soaces 

system A. 

T 17 Let E1 (A),•·•,~ (A) be vector spaces ~it r1 the number 

Let E == .ft E1 be the. composite of E1 , ··•,En their respective 
l=l 

sup _orts. Let the sum of two elements (zt,x
2

, • ••,xn)' (x1,x2, · ·•,~) 
of Ebe defined by 

Let the product of ~ of A and (x1 ,x2 ,•••,xn) of E be defined by 

Let the norm of (x1 , · · · ,~) be defined by 

(2) 

Then the sys tem consisting of E, .A., e, e, • • • I: satisfies the postulates 

·A1 , · • ·, c1 and is therefore a vector space. 

~e shf ll verify the post ~lates for t ~is system in order. 

Ai= The multi~licative class of n classes each having at 

least 2 el ements has not less than 2n el ements. 

A
2

: Tri vial. 

E1 : ( ll)l ) uniquely detemi nes t he surn. 

E2 : Clear. 

E3 : Clear. 

B4 : ( l'2t) uniquely detemi nes the :product. 

B5 : 10(x1,x
2

, ••• ,~) = (10x1 ,l~x2,•••,l~xn) == (x1,x2 ,•••,~) 

B6 : Clear . 

~: Clear. 

B8 : Clear. 



:B9 : (3) defines p = // (x1, • • • ,~) ~ on E to non-negative real 

numbers. 

E1o: !l (xt ,•·•,x;)II 3 greatest of /i xf j/ ,···, /j xri .l = 0 
I 

Moreover, if greatest of x · · • x - 0 then 1 ' ' n -

x1 = xi, x2 = x2,··•,Xn = ~-

:B11: //~ 0(x1 , • • • ,~)// = // (o: x1, • •• A xn) // = greatest of 

//~x~~ ··•,I!~ xJI = greatest of ,1 ~ / // x1 j/ , • • ·, ! CY, ; i/ Xzii i 
= I ex I II ( x1 • .. ~) I/ 

l312: ll (x1,•.••,x0 )e(x1,•••,x~) I/ = /l (x1 + x1,···,~ + x~) /1 

= greatest of f/ x1 + x1// , ···,I/ ~ + ~II 
~ greatest of // x1 /j , · • • , // X_ /

1
! + greatest of :· x 1 ; · • • • ! ' x' , ----n 1I l i1 ' ' ,: -n,· 

c1 : Let y. • (xh •·· .,!)-) 
h l' ' n 

(h = 1,2, ..• ) be a sequence. 

First as sune (yx) converges toy. Choose F and Np so 

that for rn7Np // y - ym //< P/2. Hence llYm - Ym+p l/ < P 

If for each p there corresponds Np such that if n:;::,, Np 

II Ym - Ym+pll~ r then we have II rf - xrP/1 < p . If there­

fore E1,···,~ are complete each sequence (x1f3) converges 

to a limit xi. The point y• (xi,•··,~) is then the 

limit of (yk) 

12.5 Continuity and Continuous Functio~s 

I <::J 

Continuity: Let E
0 

be a region of E. Let f(x) be a func t ion on Eo to E'. 

f(x) is said to be conti nuous at a point x0 of E
0 

if to ~ > 0 t here is 

determined p > 0 such that if x is in (x
0 
~ then f(x) is in [f(yJ1. 

If f ( x) is continuous at each point of E0 it is spoken of as continuous 

throughout E0 • 



Unifonn Continuity: If f(x) is on a region E
0 

to E' and if ~ > 0 there is 

detennined p>O such that for ~.?.l' x
0 

of E
0

, x in (x
0

)p imulies f(x) in 

[ f(x0 ~~, then f(x) is said to be u..~iformly continuous in E0 • It is clear 

f rom the very definition that if f(x) is uniforml y continuous in E0 it is 

Theorer: ,s .Q.U Continuity 

(1) 

(2) 

Theorem (12.51) If f 1(x), f 2(x) are functions on E
0 

to E' and if 

they are continuous at a point _x
0 

of E
0

~their sum i s continuous at x
0 

they are continuous t hroughout E0 their sum likewise is continuous 
) 

throughout E
0

• 

(3) they are u .ifomly continuous in E0 >their sum i s uniformly continuous 

Proof: ( 1) Let ~ > 0 be given and let f1 and p2 be so determined 

that x in {x
0

) .:> implies f 1 (x) in [f(x0 )] and x in (x
0

).o implies 
' 1 ' E /2 \ 2 

f 2 (x) in [f2 (x
0

)_, ~ 12 . T"r1 en if ?~ -::1, ~ , x in (x0 ) ,.::, i mplies f 1 (x) + f 2 (x) 

in [f1(x 0 ) + f 2(x0 0~ for if X is in (x0 )f) 

l/ f 1 ( x) - f 1 ( x o ) : i c:::. e /2 

\\f2 (x) - f2(x0 )11 < E-/2 

;ir1 (x) + f2(x) - [f1 (x
0

) + f
2

(x
0

il// L. € 

(2) Appl y the argument of (1) to each point x0 of~-

(3) Appl y t he argu~cnt of (1) observing that the choice of p1 

and r2 and hence of e does not involve the choice of the particular 

Corollary: By complete induction a similar theorem holds for the 

sum of a f i nite number of functions, f 1(x),··•,fn(x) on E0 to E'. 

,1. 



Theorem (12.52) (1) If E0 and .A.0 are regions of E(A) and A res­

pectively, f(x) is a function on E0 to E'(A')) g(~) is a function on 

A~ to A' and if at x0 of E
0 

and ~ o of A0 f(x) and g(~) are continuous, 

then g(~)f,x) is a function on A0 E0 to E1 (A' ) cor.tinuous at (~ 0 ,x
0

). 

(2) I f, moreover, f(x), g( Q' ) are u:-.iforr ly c ntinuous and //f(x) /1 , lg ( x ) / 

are bounde d then g(~ )f(x) is unifor.:ly continuous. 

Proof: (1) Let E:>0 be given. Choose f\ so that if x is in 

( ',x) is in rc~' ,xDP we shall have i 0 - ~o l.(f2 

(2) Let M be the greater of the upper bounds of jjf(x) jj , jg(~ ) j 

in B0 and ~o res~ectively. Let G >O be given and let P1e2 be so chosen 

that x in (x
0

) 0 i mnlies f(x) in f (x0 )Je- and e¥ in (~
0

)p i mplies g(~ ) 
11 a~ 2 

in {i;(~
0

)) ~ for all (<f0 ,x
0

) of A0 E0 . Let ~ = min ( f i f 2). Then for 

(Cl! , x ) in 2M [(~· 
0
,x

0
)](), 

1/ g(CX )f(x) - g(C{'
0

)f(x
0
)/I ~ ,' g (t\ ) - g( <r 0 )! l1f(x) ll + l g(~0 )! il f(x) - f(Xo) ll 



l 

Theorem (12.53) If f(x) is continuous on E1E2 to E' then it is 

continuous o~ E1 [Ea) to E'. 

llx - x 'Ii = !j (xl - xl, 0 )II = llx1 - x{I I 

:But llr( x) f( x' ) I! -+- 0 with 11 x - x'\1 and hence with II x1 - x111 . 

Functions of Functions : If E, E1 , E11 are vector spaces and E0 , E6, Eg 

are subspaces, prJper or not, and if y = f(x) is a function on E0 to E6 
and z = g(y) a func t ion on E6 to E~ then z = g [f(x)] is a f unction on 

E0 to E11 
o· 

Theoren: ( 12.54) If E E' E11 are regions and y = f(x) is cont i nuous 
O' O' 0 

on E
0 

to E~ and z = g(y) is continuous on E~ to E~, then z = g(f(x)Jis 

continuous on E
0 

to E~. :.:oreover, if y = f( x) and z = g( y) are uniformly 

continuous in their r8£-pecti ve ret ions) then z = g [f(x)] is u niformly 

continuous. 

Proof: Let € > 0 be chosen ., and consider a f,i,xed point x
0 

Let y = f(x ); z = g(y ). 
0 0 0 0 

Let f\> 0 be so selected that y in 

(y
0

\) i n~!)lies z = g(y) in (z 0 )~ . Let p 2 > Obe so selected that x in 
l 

(x0 )f
2 

i~plies y = f(x) in (y0 )p
1

. Then if xis in (x
0

) p
2

, z is in 

(z
0

)€. If f(x),g(y) are unifonnly continuous in their resp ective regious, 

the choice of p
1 

a nd in particular of ~
2 

does not involve the point x
0

• 

Corollary: By complete i nduction it follows that a similar 

theorerr. holds for any finite number of successive functional operations. 



12.6 Other Special Notions 

Successive Differences: Let f( x) be a function on E to E' . Let .1 x be 

an elerr,ent of E. Then 

~ f(x) = f(x + ~ x) - f(x) 

is a function on E2 to 1 1 and is cail.led the first difference of f(x) 

with respect to x. 

14-, 

If L1x,•••,Anx denote elements of Ethen the nth difference, 
(n) 
,1. f(x) a t. n-'--n-i···A1f(x) of f(x) with respect toD 1x,•·•,L\nx is defined 

inductively by 

!!. tJ. i· • • A1f(x) ;; D (~ • • • l::.1f(x)) =A i· •·A f(x + LJ x) n n- n n-1 n- l n 

-f\i-l • • • Al f( x) 

(n) 
'Ihe nth difference is written in the form fl f(x) in case there is no 

( n) 1 
ambigu.i ty as to what is meant. L1 f(x) is clearly a function on r+ to E 1 • 

Theorem (12.61) 
(n) 
t1. f(x) i.s syrcrn etrical i n t he increments 

Proof: For any h( x) on E to E' and any pair~ 1 x and ~x of the 

increments we have 

+ h ( x) = 6.j '1_ h ( X) 

(n) 
Hence at any s t age in the expansion of A f(x) we may exchange two adjacent 

'S· But any permutation of the .6,1 s may be produced in this manner. 



Theorem (12.62) If f1(x),·••,f8 (x) are functions on E to E', 

then~) regar~ed as an operator, operates distributively upon the sum 

f
1 

\x) + f
2

(x) + • •• + f\~(x). 

Prooff Let f(x) e f 1(x) + f 2(x) + ··· + f
8
(x), then for n = l 

6. f(x) = L_ fr(x +6x) -Lfr(x) = ~_f/x + ~x) - fr(x) 

= ~fr(x) 

Using this result and assuming the theoreD for (n-1). 

(j)f(x) =An (n_zl)f(x) =~d- (n~l)fr(x) =L (i)fr(x) 

Theorem (12.63) 
(n) 
6. regarded as an operator commutes with nunerical 

m1.1.l ti pliers . 

Proof: Let f(x) be on E to E1 (A) andO( be in A. Then 

Thus assuming the result for (n-1) 

Theorem (12.64) Ifd (A) is a function on A to A1 and a. is some 

fixed element of E(A' ) then for any increments Al~' .•• , Al re have 

Proof: Exactly similar to (12.63) except that the multiplier 

is now on the right. 

Homogeneous Linear Continuous Functions: In order to make the next 

section intelligible we must define here a special case of homogeneous 

'.5. 



CJ 

polynomials which will be discussed in 13. A function f(x) on E(A) to 

E'(A) is homogeneous linear co ~tinuous if 

(1) it is continuous. 

(2) f(C\'1~ +cx~2) = o<1f(x1 ) +C>C/(x
2

) for all x1 ,x
2 

in E and all cx1,~ in .A.. 

Differentials: Let E0 be a region of E. A f~nction f(x) on E0 to E' 

is sa id to have a differential at a point x0 of E0 if there exists a 

function fx(x
0

;.t:.x) on E[Eo.J to E' soch that 

(1) f (x ;.Ax) is conti~uous h01r.ogeneous linear on 
X 0 

E(EoJ to E'. 
(2) E (Ax) defined byE (Ax) = fx( xo;~x) -A f(x) 

l~ H 
( ~ x · :/. O; (x

0 
+ lJ x) in E0 ) 

E(0)=O 

is contin~ous atA x = 0. fx(x
0

;~x) is called the differential and will 

be denote :.. in this way or by t he spnbol df(x0 ), the argument 6 x being 
, 

understood. 

Higher Differentials: If df(x0 ) a fx(x
0

;~1x) exists at each x
0 

of E
0 

then df(x0 ) is on E~ to E'. The second dif f erential fx2(x
0
;~1x,6.2x) is 

defined as the differential of fx(x0 ;~1x) q~ function on LE]E
0 

to E'. 

The second differential will also be denoted by d1d2f(x
0

) or in case 

there is no ambiguity by d2f(x
0

). Higher differentials are defined in­

ductively in the same manner. 

Calculation of irut Differential: This is simply the generalization to 

vector spaces of the theorem due to Gateaux. 



Theorem (12.65) If f(x) on E
0 

to E' has a differential df(x0 ) 

at x0 of E0 t hen 

Proof: By definition we have that 

Replace A x by ~.1 x and divide by X 

fx(x
0

;l1 x) =- f(x9 +>-Ax~ - f(x0 ) 

I 

A8 't-- ➔ O, E- Wx) ➔ O. Hence the theorem. 

The remaining necessary theorems on differentials we shall 

postpone until the discussion of the properties of linear functions 

has been reached. 



13. Polynomials ·1n § Vector Space 

13.l Introduction 

Frechet in his 1910 pape~ discussed ptlynomials in the space 

of continuous functions. In a later paper .. (1928 ; 11e generalized many 

of the theorems of the previous _paper to a class of spaces which he calls 

11 espaces algebrophiles 11 , and of which our space is an instance. The 

essential result in both t hese ~apers is that a general polynomial is 
-;,_ 

uniquely re~resentable as a sum of horr.ogeneous polynomials. The lefiition 

taken by ~reche t in his later paper, w11ile entirely elegant and satis-

factory for spaces closed under multiplication by real numbers--which are 

the only ones he considers--runs afoul of the common definition of a 

~olynomial in a single complex variable, if taken over bodily to spaces 

closed unter multi~lication by complex numbers. In order that later 

generalizations of functions of a complex variable may be made, it is essential 

that we formulate a definition which will be equally valid for spaces 

E(R) and E(C). ~he definition we have taken is equivalent for spaces 

E(R) to the definition of Frechet. Half the equivalence is really proved 

quite incidentally in Frechet's paper. We shall give an independent 

proof whose details are quit e simple. 

In the latter section of this work in polynornia1s, we shall 

discuss modular properties of polynomials and their related forms. We 

shall point out distinct ions that exist betwe en the modular properties 

of polynomials on E(R) and of those of polynomials on E(C). 

Tnis latter part of the work, we hardly need mention, does 

not presume to be in any way exhaustive of what looks to be a rather 

large subject. 

•M. Frechet, Ann de l 1 Eco le Normal Sup. Ser 3. Vol 27, 1910. 

••M. Frechet, Joun1cd ~e Mo..-41-\ . ~2~. 



13.2 Polynomials QB. A to E(A) 

Definition: A function ~(A); 0 on A to E(A) is called a 

polynomial, if it is expressible in the forrr. 

where the summation extends over a fi ni t2 number of terms, where ~ r 

stands for the ordinary rth power of)-_, and where each ~ is a fixed 

el ement of E(A). If n is the highest index for which ar / O, n is called 

the degree of p(~). If the function p()..) = 0 for all I'- of A, then p(~) 

is ca lled a 11 null 11 polynomial, and we add the g loss that the null poly­

nomial may be. regarded as having any degree whatever. 

Theorem (13.201) If p(,\) is a polynomial on A to E(A) it is 

continuous. 

Proof: By Theorems (12.52), (12.51), p(~) is the sum of con-

tinuous functions each of wi1 ich is continuous. 

Theorem (13.202) If p(/') _is a polynOlllial of degree non A to 

E(A) and if g().) is a. polynomial of degree m on A to A, then g()J:p(f) 

is a polynomial of degree n+m on A to E(A). 

Proof: 

Let 



The first two steps f ollow from the associati~e and distributive laws. 

~Jow the coefficient bn+rn is simply Ci/man. But by definition~ J O, 

an ~ 0 and hence bn+m ~ 0. 

If either or both p(~) and g(/\) are null, their product is 

null and. the theorem is still true. 

Theorem (13.203) If p1(~), ••• ,Pm(~) are polynomials on A to E(A) 
m 

each of degree ~ n, then a linear combination p(>--.) • ~ Ci 1p1 (/\) 
i=l 

with numerical coefficients ct i of A is a polynomial of degree ~ n on J. 

to E(A). 

Proof: p1().,), even though not of degree exactly n, may be 
n 

r1ritten in the form p1(t) = Y' /\rair by taking certain of air to be 
r:0 

null. Then 

2 c) 

n 
Theorem (13.204} E&ch coefficient ar of a polynomial p(~) ~ ~/'rar 

r=O 
of degree non A to E(A) is exnres s ible as a linear .eompination 

i 
of the n+l vectors p(O),p(l),··•,p(n), where Ars are numbers 

indepe.ndent o:~ the choice of the polynomial p()v. 

Proof: Consider the determinant ( OC sr ( , where C\r = sr 
J-- ' ' ,, 

(r,s = 0,1,···,n) a00 = 1. This is an instance of Van~c.nd 1s determinant, 

and its value is ,1t ( i • j ) /: 0 . 
i>j 



Let Ars· be the typical tenn of the inverse determinant, so that 

now 
. n 

p(s) = L 
k=O 

r J k 

r = k 

n 
s~ = Y- C( ka. K k:::O s - lC 

. Theorem (10 .205) ~•v,o po lynomials p(") and (l(/\) on A to E(A) are 

equal for all values of~ if and only if their coefficients are equal. 

Proof: Let the degrees of p°') and Q"/1) be ~ n . . 

Then by (13 .203) r(A) is a polynomial of degree~ n. Moreover, if Sp, 

bp , cp are respectively the coeff i cient s of ~p in p(~), q(~ ), r( ), then 

again by (13.203) 

By hypothesis r(A) = 0 for all~. Hence by (13.204) er= 0. Therefore 

a..... ... b ~.,.. p 

13.3 Characterization of Polynomials £a g to E(R) 

We shall in this secti on give a new proof for Vector Space of 

a theorem proved by Frechet in his 1920 paper on abstract polynomials. 



Theorem (13.31) A necessary and sufficient condition that a 

function p(A) on R t ·o E( R) be a polynomi a l of degree n is that it satisfy 

the three conditions. 

(1) p()\ ) is continuous. 

'\ '\ ' ( 2 ) ~or all 6 1/\ • • • .._ · I--- , , n+l and. all \, in R we have 

(n+l ) ( \\ A p N = 0 

( 3) For some A }. • • • 1i ). and A in R we have '-l l ' ' n 
n 

L\ P(A) =Io. 
Proof: 

· A. Necessity: Ir p( \ ) is a polynomial then 

we have 

( 1) It is continuous by T:~eorem (13.201) 

(2) Using theorems (12.62) and (12.64), end writing 

n+l (\' J:.PN= 
r=O 

n+l r 
But, as is well known ( 6 A ) = 0 if r<'.. n+l; hence 

n+l 
A p( ) = o 

B. Sufficiency: We prove by induction on n that the conditions 

(1), (2), (3) above imply that p()J is a polynomial. For n = 0 the 

sufficiency is clear. As sumine the res1i lt for (n - 1) we have that if 

2..Z. 



p(AJ satisfies the conditions (1), (2), (3), then p(~+ f-L) - p(/\) 1s, 

for each value ofr-4, a polynomial of degree not greater than (n - 1) in 

I' , and is for at least one value oft"'- of degree exactly (n - 1) in'>-.. 

To see this we s ir.rply write ~ = .11 A , together with any other set of 

increments 1., 2 i.,, • • • ,.1 n+{ . 

Then p( " +1) - p(t) = 6 1p()J 

..\+1.t.n···1~o+r) - p(f.~ = 6\cA) = o 

Moreover , for some set of increments y,½'.\ •••, A n A 

we have 

Hence (1) 

where 8r()A a.re functions on R to E whose e .-act nature has not shown up 

except that for sor.:ie value of ~ an , ( ') j i O. 
r) -. 

In ex,.9res s ion (1), putting"= O, we obtain 

(2) 

n-1 
fror.1 which p() +~ .. ) - p{i,,) - p(·~ + p(O) = L "rar(w 

I ! r=l / . 
(3) 

Observing that the left hand side of (3) is symmetric in~},fwe have 

(4) 

By (l~.204) the coefficient 8r(lJ-) may be written as a linear co~bination 

with constant numerical coefficient of terms obtained by replacing Ain 



, 0. 

the right hand side of (4) successively by the values 0,1,2,···,n. Thus 

it follows that ar(~), being a linear cor~bination of polynomials in r-1 , 

is also a polynomial in p- whose degree is at most n-1. Thus 

n-1 
= 7 ---.r \..A.sa 

- r-- 1 rs r,s=l 
(5) 

where ars are fixed elements of E(R). 

Sup~ose now first that \
1 

i s a positive value of A. Let~ be 

chosen so that O <'.'.. f</'i. Let j be an integer. Put).= r in (5) and sum 

from j=l to j = "'l~/1, where \L,b l d e·Jn.otes the greatest inieger in .A.l. 
I - tA- ~ 

We obtain 

N0w since li.'11 
r~ \--1 

t"~ q~-
i ~1i 

lim z. .1 
y-> +0 j=l 

it follows from the fact that p("),) is continuous and fro r.: T 13 (12.3), 

that as r tends to zero from the positive side, the right hand side of 

( 6) and the fi n :.t t wo terms of the l eft hand side bave well defined 

limits; and that, consequently, the las t ter~ on the left side also tends 

to a limit wh ich we shall denote by K. The equation (6) then becomes 

n-1 A r+l . 
p(),_) - p(O) - K = L l ~l 

r=l r + 1 



when K ■ lim r ~l 1~o/) - p( 0)) 
p.➔ +O t,A- ..J 

~ lim ~ i A_l l . p{~ ) - p(O) 
r ➔ +o - ~ ~ ~ 

= \. lim Pf-) - n ( 0) 

r,-> +O ~ 

Hence, (7) gives forA 1> 0 

(8) 

If Al is ta£en to be negative, i-1 may also be restricted to be negative. 

The argument carri es t hrough in precisely the same ~on and we obtain 

· n-1 A r+l 
P( 'L ) = p( 0) + l · lim . P ( t") - 'P ( O) + r:;- ::1 1L ( 9) 

"'i , 1 L -r. +-1 -r1 
f➔ -0 / " r=l 

But by writing A = -rin (5) and making ~➔ +0 we have 

from whi:h lim 
p-) -0 

nq.,.) - p(O) = 

~' 

(10) 

Thus (8) and (9) coincide for ),1 ! 0 and either (8) or (9) is at once 

seen to be correct for A 1 = O. The work therefore shows that p(~) is a 



polynomial of degree at most n. If it were not exactly n, then the 
n 

coefficient of An would be zero and hence~ p(~) = 0 trhich by assumption 

is not true. The proo: is therefore Complete.• 

13.4 P0 lynomials .Q.n. ~ to E1 (A) 

Definition (13.41): A f1Jllction p(x) ~ 0 on E(A) to E'(A) is 

called a polyno□ial if 

(1) p(x) is continuous at every x. 

(2) There exists an integer n such that for each x,y , ( -~ i i"' 

PO, ;x,y) = p(x + Ay) is a polynomial on A[E2 J to E' of degree ~ n. ✓ 

The least integer n sa.atisfying condition (2) is called the 

degre e of p(/J . 

If p( ~) E O, we call it the null polynomial on E(A) to E1(A) 

and it is regarded as a membei· of the clas ~ of polynomials of degree m, 

where mis an integer. 

f \ 

Theorem (13.420) A polynomial p(x) of degree zero is a constant. 

, • ..,,_ ,_ •• '. i •'· L 

Proof: p(;\x) is a po·lynomial of degre e zero in ~ and there­

fore constant in).. Hence putting )_ successively eq11al to O and 1 we have 

p(x) = p(O) 

• It is worthwhile to mention here that the exact reason a similar theorem 
cannot be proven by a similar method for polynomials on C to E(C) is that 
t he limit in (10) is in that case not necessarily unique. If to the 
conditions (1), (2), (3), we added the conditiono~p(A) of having a 
differential at~ = 0 the theorem just proved could be proved for poly­
nomials C to E(C). To show that the theorem is not necessarily true for 
polynomials C to E(C), observe that 

p(A) ~ ~ , the complex conjugate of A , 

satisfies the conditions (1), (2), (3) for n = 1 and is not a polynomial 
in the sense of (13 .2) 



Analogous to Theorem (13.203) we have: 

Theorem (13.421) Let p1 (x),p2(x),•·•,pJx) be m polyno□ ials of 
m 

degree ~ n on E(A) to E' (A). T'nen any linear combination p(x) = ~Pr(x) 

with coefficients from A is a polynomial on E(A) to E'(A) whose degree 

is at most n. 

Proof: p(x), being the sum of continuous functions, is con­

tinuous . Condition (1) of the definition (13.41) is therefore satisfied. 

Then P1(A;x,y) is, by (13.41) and the hypotheses, for each x,y a poly­

nomial in" of degree at n:ost n. Hence by Theorem (13.203) 

m 
p(x +X y) = 2ex rP1(~;x,y ) 

r=O 

is a polyaomial of degree at most n in A. The second condition is there-

:ore satisfied. 

Tri eorem (13.422) Let p (x ) be a polynomial of degree n on E(A ;, 

to E'(A). Let c be a f i xed nurrb er from A, dHferent from zero, and x
0 

be a fixed element of E(A). Then p(x) a p(x0 + ex) is a polynomial of 

degree n in x. 

Proof: ~o + ex is clearly a continuous function on E(A) to E(A). 

p(x) = p(x0 + ex) ix: there f ore a conb.inuous function on E to E1 of a 

function continuous on E to E which, by (12.54), must be continuous. 

Again, p(x + )..y) = p(x
0 

+ex+ /\ cy) = PO,. ;x
0 

+ cx,cy), which 

is a polynomial in~. 



Theorem (13.423) Let p(X) be a polynomial of degree non E to E'. 

n 
Let P()_;x,y) =p(x+1-y) =L )...r k (x,y). Then for each r the function 

r=O r 

i;.(x,y) is u.:1i que and is a polynomial in x for each y and in y for each x•. 

Proof: Let Ars (r,s = O,l,··•,n) be the numbers defined in 

(13.204). Gsing that theorem we have 

Is-(x,y) = Ar
8
p(x + sy) 

S=O 

Now by (13 .422) p(x + sy) is a polynomial in x for fixed y and in y for 

fixe :i x. By Theorem (13.421) it follows that kx(x,y ) is a polynomial in 

x for fixed. y and a :polynomial in y for fixed x. 

Definition: A function h(x) on E(A) to E'(A) is called homo­

geneous of degree n, if there exists an integer n such that for all x of E 

and all A of A we have h(Ax) = )..~(x) 

Theorer., (13.424) I f h(x) is a polynomial on E(A) to E14A) and 

is a homo6 eneous function of degree n, then it is a polynomial of degree n. 

Proof: If h(x) ■ O, the theorem is true by definition. 

If h(x) :I 0, it must have some degree N. ·,·.-e must prove that 11 = n. By 

the definition of a polynomial of degree N we have 

N 
h(x + Ay) = ~}._r ~(x, y) 

0 

where Is-(x,y) is, ac cording to Theor em (13 .423), a uniquely deterIT ined 

polynomial in each of x and y. If in ( l) we place x-=O, then ( l) must 

reduce to the known identity 

*A more ex.act statement as to the nature of kr(x,y) is given E. little 
later; see Theorem (13 .428) 

(1) 



Hence it follows that kn(O,y) = h(y) and therefore that N ~ n. A8 surne 

N > n. 7: e have ( ~ J O) 

Eouatin6 t he coefficients of)! in (1) and (3), we obtain 

(4) 

Now if N > n, the eA'3)0nent of r on the right hand side of (4) is negative. 

Unless, therefore, ~( x,y) = O, e quation (4) is a contradiction of the 

fact that ~~(x,y) is a polynomial. 

'i'; e are, by t h i s last theorerr. , justified in speaking either of 

a "polynomial homogeneous of degree n 11 or of a "homogeneous polynomial 

of degr ee n 11 • 

Theorem ( 13 .425) If h(x) is a ho~rogen eous polynomial of degree 

n, and if kr(x,y) is def inel ~s in the ~rededing t wo theorems, then 

kr(x,y) is homogeneous of degre e r in y a.nd of degree n-r in x. 

~: Let 

n 
kz.(x,y) 

then 
A ~ , ')._ .r 

h(x +,. y) = h( x + µ µ y) = L ( - . \ ~(X.JAY) 
I \ r::O \ I"" J I 

and h(x + f. y) 

Equating coefficients of )__r in (1) ani (2) we obtain 

(1) 

(2) 

(3) 



and doing a similar thing for the coefficients of )..r in (1) and (3), 

Theorem (13.426) Let h(x) = h1(x) + ··· + ~(x) be the sum of 

m homogeneous polynomi~ls of degree n. Then h(x) is a polynomial homo-

geneous of degree n. 

Proof: h(x) is clearly homogeneous; for, 

It is also a polynomial by (13 .421). 

Theorem (1 3,427) A polynomial p(x) of degree n is uniquely re-

presentable as a sum of howof eneous polynomials of degrees~ n 

Proof: By taking x = 0 in (13.423) we obtain 

and 

therefore 

Placing -,_ = 1 in (1) we have p (y) = 2 hr(y) 
r=O 

(1) 

(2) 

(3) 

(4) 

Suppose now thnt we bad another representation of p(y) as a sum of homo­

geneous polynomials. Let it be 

3o. 



where n.r(y) is some polynomial ho~ogeneous of degree r. TGen for all 

we have 

By theorem (13 .206) we have hr(y) = br(y). The apparent abundancy of 

terms in (5) i s taken care of by observing that if N) n, p(y) cannot 

satisfy the definition for a polynomial of degree n. 

3 1. 

Theorem (13 .428) Let p(x) be a polynomial of degree. n. As before 
n r 

let p(x +).y) = Z°X ~(x,y). Then kr(x,y) is a polynomial of degree n-r 
rdJ 

in x and is homogeneous of degree r in y. 

Proof: By (13 .427) we have 

n 
p(x) = L ~(x) 

r=O 

and b y theorem (1:: .425) v:e have · 

r 
hr(x + ).y) = L )_ s krs(x,y) 

s=O 

where k:t-
8
(x,y) is of degree s in y and. r-s in x. 

n 
Hence p(x + }.y) = L 

r=O 

n 
,-. k (x,y) 

- rs 

(1) 

(2) 

(3) 

T~e coefficient of )..8 is by (13.426) homogeneous of degrees in y and by 

·(13.421) of degree= (n-r) in x. This complet es the proof. 



13.5 Characterization of Polynomials QB. E(R) to E1 (R) 

13.51 The Frechet Definition 

The definition given by FTechet of an abstract polynomial 

on an E(R) to an E•(~) is the following : 

~ function p(x) on E(R) to E1 (R) is ce.J.led a polynomial of 

(1) It is continuous at each x . 

(2) For arbitrary increments"61x,D2x,••·, t.n+lx and 

arbitrary x we have 

n+l 
t:. r,(x) - o 

( 3) For some set of ir..crerr --nt s a
1

x , •••, I:.. nx and some x we 

n 
have 6 p( x) /. o• 

We propose now to prove two things : first , that any poly­

nomial of degree non E(A) to E'(A) i~ the sense of (13 .41) sati sfies 

the con._1_i t ions ( 1), ( 2) , and ( 3) ab ,.:,ve whether or not A = R; sec : nd) 

that the above definition of polynorr: ials on E(R) to E'(R) implies the 

defi nition (12 . 41) for the special case A= R. 

For c Jnvenience we shall refer to a function satisfying (1), 

(2), and (3) as a Frechet polynomial. The word 11polynomiaP, alone, 

will refer to the definition of (13.41). 

~eorem (13.521) Let p(x) be a polynomial of degree non E(A) 

to E' (A). ThenL1p(x) is for all choices of6x a polynomial in x of 

d. egree ~ n-1, and for proper selection of Ax a non-null polynomial of 

degree exactly n-1 . 

• The notation is that explained in (12 . 6). 

.3 2. 



Proof: By application of Theorem (13 .428) wcose equations 

we shall here assume, we have 

p(x + Ax) = p(6x +Ax) / 
A= 1 

where Ir:r<Ax,x) is of degree r in x and=. n-r in~x. Since ku_(Ax,x) 

is of degree O in Ax we have from ( 13 .420) that 

Therefore 

is the sum of polynomials of degree~ n-1 i n x, which by (13 .42~ is a 

polynomiel of degree ~ n-1. 

(2) 

To show the second part of the theorem we write p(x) as a sum 

of horr.o6eneous :polynomials . Theorem (13.427) 

so that t. p(/'-X) = i hr(Ax +C. x) - hy-0.x) (3) 

If we write~ x = x, t his becomes 



so that the coefficient of ,e-l in p()-.x) when 6x =xis 

which, s i. nce 1¾i(x) ~ 0, is a non-null polynomial of degr ee n. 

Let x1 be a value for which it does not vanish. Then with 

x = Xi., the coefficient of '}..n-1;:'W\the 8X!)S..Ylsion of ~-p().x) is not null 

since it does not vanish in particular for x = x
1

• Thus for suitably 

chosen.6 x, A p(x) is a polynomial of degree exactly n-1. 

Theorem (13.522) If p(x) is a polynomial of degre e non E(A) to 

E'(A), then for all ~x,~x,·•·, ~+1x, we have 

Proof: If Theorem (13.521) is applied successively to 

L i:p(x),~2~(x),•··, then it follows that~-·· L1p(x) is of degree zero 

at rrost, and is therefore cora tant in x. Hence 

n+l 
~ p ( X) ~ 4i • • • J11 !) ( X + 'it+ l X) - ~ n • • • '1 -p ( X) = 0 . 

Theorem (13 .523) If p(x) is a polynomial of degree non $( A) to 

E' (A) then there exists a set of increments /j 1x, ~x, · • · ,Cnx such that 

Proof: We use the second ?>art of Theorem (13.521), select 

&:; 1 x so that ~l p(x) is a non-null polynon-,ial of degree exactly n-1 in x. 

Select62x so that 62'1.p(x) is a non-null polynomial of degre e exactly 

n-2, and so on. With this selection we must havelp(x) ~ 0 



Combining now the results of the last two theorems we have: 

Theorem (13 .53) If p(x) is a polynomial of degree non E(A) to 

E' (A), then it is a Frechet polynomial of degre e n. 

Proof: (1) A polynomial is cont inuous and therefore satisf ies 

the Frechet condition (1). 

( ) ( , n+l ( ) 2 By Theore:n 13.522 1 ~ p x = 0 for all sets of 

increments. 

(3) By Theorem (13.523) there exists a set of increments 

l 1 x, • • ·, D.nx for which /).n p( x) ,; O. 

We shall now prove a converse for spaces E(R). Before pro­

Geeding, let us prove the following Lemma. 

Lemma. (13 ,540) If f(A) is a continuous function on R to E(R), 

. ~1 A' 
satisfying the condition '1 f(A.) = 0 for all choices of 7.A-, A,?·,•·•, n"-

then f(; _) is a polynomial on R to E(R) of degree at most n. 

Proof: Let m be the maY.imurn integer for which there exists a 

cho ice of A1~,4:?,,···,~A such that ~mf (; ) ~ 0. Clearly m ~ n; for, -n+l * 
since f),; f( ) ) = O, all differences of order greater than n mu.st van i sh 

i de~tically. Then by the defi nition of m, for all choices of the.6 1 s 
m+l 

we must have f:... f(A-) = O. Therefore by Theorem (13 .31), f(A) is a poly-

no~ial of degree m ~ n. 

Theorem Cl;~ .54) If p(x) is a Frechet poly!10T!lial of degre e n on E(R) 

to L1 (R) then it is a polynomial of degree non E( R) to E1 (R) in the sense 

of ( 13.41). 

Proof: Let q(x) be any function on E(R) to E'(R). Let 

g()_) _ q(x +A y). Let A A be any increment of A and define 



Then 

Now let 

4 g().. ) - q < x + ). y + L1 , y) - q < x +; y) 

- ... : q( X + I y) 

f ( /' ) = p ( X + A y) . 

(1) 

Let an arbitrary set of increments Li),~\··•,-~ J,1 be chosen 

and let .... >1x = .:_?· •y (i = 1,2, ·· •,n+l). Then applying the formula 

(1) successively to 

~f(l) : L1
1
p(x +Ay) 

D 2 u
1

f( A) = LJ
2

l
1
p(x +\ y) 

n+l ("' ) n+l " ) we obtain f ) . = /. -p(x + / y • 
•-~ 

N0w f( A) is evidently a function on 

R to E'(R) and is continuous since p(x) is continuous. Hence, a~~lying 

Lemma (13 .540), we hB.ve the existence of m = n such that f( ; .) is a poly­

nomial of degree m on R to E'(R). p(x ) is therefore a polynomi cl of 

degr ee m in the sense of (13.41). But m cannot be less than n; for, by 

theorem (13 .522), we should have for all !J 1x,~x,•••, ~
1

x, 

i 1p(x) ~ 0, and hence have thatL1np(x) = O. This would contradict the 

t hird Frechet condi tion. 

This last work may be surrrned up in the theorem: 

Theorem (13.55) For spaces E(R), E'(R) the definitions (13.41) 

and (13.51) of a pol~momial of degree n are equivalent. 

13. 6 Homogeneous Pol:x-nordals and their Po:L:t rs. ./.ul ti linear f onns. 

Definition {13 .61) Let h(x) be a homogeneous polynomial of degree 

non E(A) to E'(A). Then the function h(x1 ,•••,Xn_) on En(A) to E'(A) 



n 
defined as .Q_ h( 0), where /J. ix = x1 wi 11 be called the complete polar or 

n 1 
simply the polar of h(x) with respect to x1,···,Xa· 

Theorem (13.62) If h(~,··•,xn) is the polar of h(x), then in each 

of its arguments it is a linear homogeneous polynomial . It is, further­

~ore, syrrmetric in the arguments. 

hQ_Qf: The symrretry o,fj1h(o) in the increrr.ents was noted in 

( 12 .63). It is therefore sufficient to consider one of t hem, say the 

nth. By n-1 successive applications of !heorem (13.521), it is easily 

proved as in (13.521) that ~1ri(x) is a polynomial in x of degre e or.e, 

which, for suitable ci.1 oic:es of~~···, ~-!' is non-null. Therefore 

n-1 n-1 
f,x) = l h(x) - L.1 h(O). (1) 

is a polynomial of degree one on Ett1-1J to E'. Hence we may write 

by (13.427) f()..x)= k (x) + k1 (x) 
0 

(2) 

Placing x = 0 i n (1) we obtain f(O) = 0, from which ko(x) = 0, ~(x) = f(x). 

Thus (2) yields 

But f(x) is by its definitionL11\i(o) where Ll nx = x. 

Definition: Any fonn which, like h(xi,···,~), is linear 

homogeneous and continuous in each of its arguments is called a multi­

linear form. 

The nolar b ~ars to the form a relation analogcus to that which 

holds for ordinary algeb raic forms. This is given by 

Theorem (13.63) Let h(x) be a homogeneous polynomial of degree n, 

and let h(x1, · • · ,x
0

) be its polar . Then h(x) = h(x,x, • • • ,x). 



Then t 1h(O) = h(x) - h(O) 

2 
~ h(O) = h(2x) - 2h(x) + h(O) 

This is a well lmown interpolation fonnula wr_osE- ~t~-be.i'tJv.\ is 

Using now tee homogeneity of h(x) 

n ~ n-r n 6 h(O) = '- (-) (r)(n - r)nh(x) = n ! h(x) 

or = 2,h(O) = h(x,x,···,x) 
n ! 

h(x) 

Conversely we have: 

Theorem (13 .64) Fora given nomogeneous polynomial h(x) of degree 

n, there exists no symmetric multilinear form other than the polar of 

h(x) which enjoys the property described in (13.63). 

mul t ilinear forms and let h( x) be a ho1:-1og eneous polynomial of degree n 

such that h(x) = h(x,x,•••,x) = h(x,x, ··•,x) 

We shall em~loy induction on n to prove that 

(1) 

In ( 1) put x = x + A y, and make use of ( 13 .425): and the distributivity of 

h(x,••·,x) and h(x,·••,x) with respect to their arguments. This gives. 



where ~(x,y) is a polynomial ho~ogeneous of degree r in y and n-r in x, 

and where ~(x,y) and ~(x,y) ar e the functions obtained by writing 

= X = X n-r 

respecti vely. Equatin6 the coefficients of \', we obtain 

lq(x,y) = n h(x,x,•··,x,y) = n h(x,x,•••,x,h) (3) 

A.ssumint~ the theorem true for (n-1 ) we have for any value of y that the 

two forms hand h ar0 syrr.rr'.etric multilinear forms in (n-1) arguments x 

and are equal to a homogeneous polynomial of degree n-1 in x. Therefore 

To complet ~ the induc t i on we observe that the theorem is trivial for n:::l.• 

A general r esult on multilinear for n s for complete spaces wil l 

be derived in a number of theor·ems. 

Theorem {13.65) Hypotheses : 

H1. Let x be a typical el i:;ment of a vector space E1• 

¾· Let y be a typical element of a complete vector space E2. 

¾· 1et B(x,y) be continuous on Ei_[E2Jto E' at X = 0. 

!4. Let B(x,y) be continuous linear homogeneous on [ E1] E2 to E'. 

• A proof could be given for the above theorem without assuming that 
h(x,x, .•. ,x) and h(x,x, ... ,x) were each equal to a honogeneous polynomial 
in x, but it was t hought of too late to be included. 



85· Let B(0,y) = 0. 

Conclusion: B(x,y) i s continuous on E1E2 to E' at the point (x,y ) = (0, 0) 

Proof: ·,i e wish to pro\'"e tha.t for E > 0 there exists 8f: > 0 

s1.:.ch that if (x,y) is in (0,0) 5~ , the 6~neighborhood of (O,O) >t hen 

I' E(x,y) - B(O,o) !\I == '. ' B(x,y) ii < €. I ) ' 1 1 1 

We shall denote the point (0,0) by (0). If the the c., re:r: were 

not true then we should have k > 0 such_ that in every (0) g- there exists 

at least one point (x, y ) for wni ch I\ B(x,y) H > k . \',e prove that this 

h~,pothesis leads to a contradiction. 

Select an infi ::1 te sequence of points (Xu,Yn) a s foll ows : 

~fow by F
0 

and H4 ,rn may select 8'1<. 1/2 suc :1 tnat for ( x,y ) in (o)
81 

we have 

Con~inue t nis process. In gen2r a l, hav i ng sel2cted(x:...., y) in (O)~ 
}J p Op 

cho os e &p-+-l < ~¼l:~. s1.:.cn that for (x,y) in (0)~1 

40 , 



4 I.
(i =v>≡>∙∙∙>p)

II B(x’yi)||‘;2t+V (i =½≡j∙∙∙,p) (!)
then select (x^.y^ such that

PNow let Yp Since ∣[ ⅞rι ('∣ 4 < 1 /2* we have
Since E^, is complete this is a sufficient condition for the existence of a limit Y for the sequence , Yp>∙Now, since B(x,y) is by Hλ continuou⅞ and linear in y, we have

or
(2)
(3)

But by the selection of (x-,y^) in (1) we have
k__

2j÷ z (4)
Hence the limit on the right hand side of which is less than k∕2. Remembering that

αa(e) is less than z ∣∣^χi>yι)∣l > k we have fromJ≡O

k
2 ί -‡ 2- ? (S)

II ≡(n>yp l∣<
∣( B(xi,Y)∣∣> k - k/2 > k/2



Since this holds for all i and since lim x = 0, we have a contradiction 
i➔ CD i 

of¾· This proves the theorem. 

Theorem (13 .66 ) Let E1,E2 ,···,En be~ complete vector spaces, 

distinct or not . Let x. be a represent ative point of Ei . Let 
1 

-~(x1 ,~, • · •Xn ) be a. multiline~Jr form on E1E2 • · •En to E 1 • Then },: is con-

tiri·..10us at ( x1 , x2, · · · ,Xn,) = (0,0, • • • ,0) 

Proof : -:;: e p1·ove the theorem by induction on n. For n=l the 

theorBm is true by definition . I f it is true for n-1, then .. 1( x1 , • • ·, ¾) 

is continuous on EiJL.a .. ·~-iLEu] to "~1 at (x1 ,¾, •· •,~_1 ) = (o,o, ·· · , O) 

and is linear homogeneous and con tinuous on [E1 •E2••• En-L Ezi to E' . 

4 2. 

Therefore by Theorem (13.65) Mis c ontinuous at (x1,¾,·••,x
0

) = (0,0,·••,0), 

on Ei •E2 ···Ez.i to E' which was to be proved. 

The spaces ~(a,b) are as i s well known, instances of co~plete 

vec tor s'!)8.ces. The result of (13 .66 ) and a consequence of it will be 

a~surr.ed in part 2. 

13.7 ·:~odular Prooerties of Poly!10~ials and r ultilinear Forms . 

Definition : By the n:odulus of a hor:wg eneous poly~:omi al of degree 

n we shall understand the U?per bound of the expression~ for all 
II x1F 

values of x . We denote t hi s bound by mh . 

To prove that mh exi s t s we have : 

Theorem (13 .71) If h(x) is a homogeneous polynomi a l of degree n, 

then the expression I\ h( x) I( is bounded for all x. 
\I x\\n 

Proof: By defi nition ~( x) is continupu.s at x = 0 . It follows 

that there exists o'i such that for 11 xi{<~ ll h(x) l\<. 1. Now if x is 



b . - A X ar itrary, and 1f x = ~1-/ 
- 21tx I 

we have 

\( x ri = \\ .8_1-L\\ = tl L._ 0 2f x\\ 2 1 

'.I1herefore \\ h(x) H < 1 

But 

Hence 

The upper -bound mh theref9re exists. 

Definition: By t he modulus of a multiiiinear form 

M(x1,x. ), · · • ,~) vie shall understand the up ~er bound , in case it exists, 
c.., 

of the expression // Mj x1.,J1;.~ • • • llJ over all values of the x' s. It is 
/ xlfl • IT x2( i • · • I ~ I\ 

-~ enoted by mnM . 

Theorem (13.72) I f E1 ,E2 , ···,En are com .,let e vector s paces, 

is bounde,j over all x' s. 

Proof : By theorer:: ( 13 .66) L is continuous at the :point 

(al'x
2

, • · ·, ~) = (0,0, · · · ,0). There exists, therefore, 0'
1
, suc11 tha t 

4 j 

if II xd < 8
1 

( i = 1, 2 , •. , n) t h en 11 MI\ <. l. If x1, ¾, • • • ,~ are arbitrary 

~ . • - 0 X anQ if x1 = -1~- we have as before 
2 1( xi II 

\Thenc e 



It follows that IDn.i.: exists. 

Theorem (le . 721) If h x) is a nornogeneous :polynor.-1ial of degree n, 

and if I( x \11... r then rJ h( x) \I <. rr.hrn. 

Proof : l' , ( ' · 1 h !1.x ',,1

1
n / mh rn it n x; , , m -.. 

Theorem (l~.722) I f: : is a multilinea r f orm i n ~' • · • .,xn' if 

\\ xi\k ri (i = 1,2, • •· ,n), and if mnM exists, then l\M lk rr1uM•r1 -r2 • • •rn· 

Proof: Similar to (13 .721) 

Theormri (le . 728) If h( x) is a h or:;ogeneous polynomial of degree n, 

then 

Proof : 

since the second maximum is taken over a more restricted set of x•s. 

Now let x0 be a va lue for which 

Then put x0 

Thus 

\ h(x0 ) Ii , ;r h(flY' / · max 1 ,, 

II x1;;n it xtl =r r 

so that 1) i
0

1( = r 

)' max 

11 xll =r 

I/ h(x) 11 
r1l 

Thi s contraci.iction proves t hat the inequality in (1) is i na drnis sable. 
lb \ \ 5 r r U V e cl ~ ; V"1 ,· ( C.. r { '( j (C. J ;: '-> I I c, W S t VY\ -.,..,. e .:J 1' C.. 1- (. / y f r L) VY\ ('o._ ) C.... V\. d l O / 

(1) 

(2) 

Theorem ( 12 . 724) If ~: (x1 , • • • ; Xn) is a mul tilinear form continuous at 

(O,O,•••,O) then IDn.M exists. 



Proof: An exact reproduction of (13 .72); tne only a s sumptions 

used there_ in the proof were the hypotheses of the present theorem. 

Theorem (lZ.725) I f M(x1 , •• • ,~) is a multilinear form such that 

IInM exists, then 

M 

Proof: Precisely s irdlar to (13 .723) 

We shall now prov l?. a special t heorem on the modulus of the polar 

of a ho:. o6eneous pol ynomial. 

Theorem ( 13 . 73) Let rnh be the r:1 od ul us of a horr: og eneous polynomial 

of d.e6ree n. Then the modulus IDnh of its polar exists and we have the 

relation 

~ n n 
Proof: Since 6 h(x) is of degree O Li x, we have 6. h(x) = 6 h(O). 

Let ~ x • •. '1 x be an arbitrary set of incren1ents and take 
1 , ' n 

Consider t he manner in wh i ch the succe ~. s i ve differences of n( x ) are formed 

(1) 

At each stage , eac11 of the terms on t he right nand side r ive s rise to two (2) 

new ones. Ah(x) is t herefor e the sum of 2n terms of t he type 

where e1 = ±1. 



0 () 

But (2) 

Therefore ll th(0) /1 :! 

n ! 
'' B. /' n I ) h ( x) , 1 ~ ~ mh 1.' ~ ) ( /' ). I\) n , , ,

2
• max 1~ 1x 

n. n. 1.,, 
(3) 

The existence of mnh follows at once fro n: ( 3 ) and Theorem (lc .72A), for 

( 3 ) s i10w2. t hat n (x1,x2 , • • • ,xn) is co ntinuous a t (0,0, • • · ,O). 

If in ( 3 ) v;e requi re thatlk6 1x l\ = 1 (i = 1, 2, ... ,n), then ( 3 ) 

becomes !I 2' h(O) {! ~ mh 'fln 
n ! n ! 

(4) 

By theorem (13 .725) t herefore 

ffinh = max Ii i:2 h( o) I\ ~ mh an 
I\ Aj_ x l/=l n ! n ! 

(5) 

Again we have (6) 

(lomb ining ~5) and (6) we obtain 

(7) 

wnich was t o be n rove l . 

As a corol lary to the last theorem we have. 

Theorem ( 13 . 72;1) A nece ssary and sufficient condition that a 

homogeneous polynomi al be null i s that its pola r be null. 

Proof: Ey esuat ion (?) of Theorem (13.73 ) mh and mnh mus t 

vanish t ogether. 

\ie ha ve now a special result for spaces E(C) whose possibi lity 

s e~ms to depend upon the f act that in the complex plane the functions 

2 n z,z ,··•,z , are orthogonal on t he unit circle to the set -1 -2 -n 
Z z • • • z 

) , , 

wi t h respect to the function 1/z 



n 
Theorem ( 13, 74) Let P(1') ~ L { ar be a polynomial on C · to E( C) 

0 
Then for alls (s = 1,2, •.. ,n) 

Then 

Now define 

So that 

Def ine 

firom which 

:But 

Hence 

~i n&lly 

Proof: Let h , k , s be integers s ~ n. For convenience def i ne 

11m 
h ➔ oo 

"\ ~ 2TTifn 
f\ h - e 

( r = s) 

( r / a) 

(( \ , 11 :\ ' T I' < ' ( ' I\ as I = ilim Uhs Ii = Um Ii ½is l! = max :j p /.I / 
h➔ co h➔oo I l=l 

Theorem (13.?S) Let p(x) be a polynomial of det:7ee non E(C) to 

E'(C). Let it be represented as a · sum of ho~ogeneous polynomials in t he 



form p(x) = t hr(x), where ~(x) is of degree r. Then for all r 

mhr ~ max {\ p(x) II 
11Xf1=1 

Let \} x II= 1 

-Write 

Then by Th eorer:1 ( 13 . 74) 

\l hr(x) 
11 

,; max 1\ p(M)!(~ max 1\p(x) \[ 
ll/\ \i=l I\X//=1 

Since t ni s holds for all x for which II x ll = 1 

~ = maxi(~ max 1
1 p(x) ~ 

1 x''=l px(f=l 

which was to b e proved. 

48, 

(1) 

(2) 

These last two theorems are of some use in the theory of analytic 

functions to be introduced in the next division. 

13.8 Differentials of Polynomials 

Di fferentials were def i ~ed in (12.6). I n t his section we pro­

pose to show that :-, polynomial poseeses diff erentials of all orders and that 

t he differentials are syrranetric in the i ncrements. Further~ore, it wi ll be 

shown that the differenti 2ls of a homog eneous polynomial may te conveniently 

ex-~ res sed in t erms of its polar. 

At this point it is perhaps not rur. iss to prove the res-dt we 

refrai ned. fro :,: proving in section (12. o ). 

Theorem ( 13.80) Let f 1 (x), f
2
(x), ... , fm(x) be functions on E0 

m 
to E' dif:·erentiable at a point x0 of E0 • Then f(x) = ~ fr(x) is 

m 
differentiable at Xo, and d.f(x0 ) = ~ dfr(x0 ). 

r=O 



Proof: df(x0 ) is the sum of lines r homogeneous polynomials in 

~x and 1s ther efore also linear ho~ogeneous. 

Let fr(x0 ) - dfr(x0 ) 

!I 6 X I\ 

so ~hat by t he definition of dfr( x0 ), E-r(Lh)-., 0 with 6. x . 

Therefore as /l tix II ~ O € (tix) ➔ O and 

Theorem (13.81) If p(x) is a polyno~ial of ~egr ee n on E to E', 

t hen at every x of E the diLerential dn(x) exists. 

Ern:9 loying Theorem (13.428) v;e write 

..B... r 
p (x + ,A y) = L ~ ~(x,y) (1) 

r=O 

where kr(x,y) is hoGogeneous of degree r in y and of degree~ n-r in x. 

Viriting J.. succes d vely equal to O and 1 v:e obtain. 

n 
p(x + y) = L. kr(x,y) 

r=O 

(2) 

(3) 

We proyose to s ~ow that if we take Ll x ~ y, then the differential of p (x) 

is precisely k1 ( x ,!bc ) which is c.1 linear function of fix. Combining ( 2 ) and (3) 

and rearr anging 
n 

p(x +flx) - p( x) - k1( x ,AX) = Z,., ~(x,A.x) 
r=i:::; 

(4) 



Regarding x as fixed we have 

n 
II p(x + Ll x) - p(x) - ~ ( r., h. x) /( ~ fu m ~(x) •{~ x ;f 

This is in exactl:r the form of ( 12. 6 ) As \! D. x \l, ➔ 0 the right hand member 

te:id s to zero :::nd t herefore so also does~(-Ax). 

Theorem (13 .82) If h~x) is a pol ynomial homogeneous of degree n t hen 

d.h(x) = hx(x;Ax) is given in terms of the nolar of h by nh(x,x, •·•,x,6x). 

Proof: Employ the e xpansion use ' in Theorem (13 .64) e ~uation (2) 

VTi th L x writ ten i n place of y. 

l' sins the Ga.4teaus met nod of calculating dh(x) we have 

= n h1(x,6..x) = n h( x.,x,•••,x,Ax). 

Theorer:, (13.83) The r th dif ferentia l of a homogeneous polynomi al 

h(x) of degree n (r ~ n is given b y 

n ! h ( A X • • • .1 X X X • • • X) 
' ) I LJ l.' > r > J ~, ' (_ n - r • 

Pr oof: :5'or r = 1 t h is is Theore.:, (1~ . 82). If the theorei:: is 

true for r - 1, then 



d~'( ) - d d d ( ) n! " h x = r-1 r-2··· 1h x = -(n-----'-r-'-+-1) ! h(6lx,••·, 'i--lx,x,•••,x) 

i s a horr.ogeneous polyno:T: i nl of deg ree ( n - r + 1) and the exc:, r ession on 

the right of (1), be ing a r..ultilinear form, r.iust be p r ecisely its polar. 

Therefore we may apgl y (13.82) agaL to (1) and obtai n the result for r. 

This completes an induction on r. 

An i mr.1ediate consequence of the las t theorem is. 

Theorem (lo .84) The rth differential of a polynomial is sy:-~~etric 

i n the inc rement s. 

Proof: From the symmetry of the polar of a -hor..ogeneous pol~ 

no:-:~ ial i n its increments, and from 'Theorem (1 :3 .83) follows the symmetry in 

·d i fferentials. :But since an~, polynomi &l is tne sum of homogeneous poly­

non ials a nd since the surr. of the di: : erentia ls i s the di:fferentL-1 of the 

sum, the symr::etry holi_;_s for cn~,r polynorn ial. 

13 . 9 Polvnornials of Polynomials. Polyno·~.ials Q.D.. Comoosit e Spaces. 

I -:1 this section we sha l l discuss rather briefly hiO sit1.1c:.tions 

in which we shc:. 11 b e i nterested in the next division. 

:siLst , let q(x J ce a po l yr.i.omial on E(A) to E' (A) and p(y) be a 

1:)0lynomial on E' (A) to E11 (A). Le·t us consider the nat ure of the function 

P(:x) = p(q(x)). ',','e shall sh ow t:-:a t F(x) i~ a polynomial on E(A) to E11 (.A) 

and that its degree is at most m•n, wher e mis the degree of p and. n is 

that of q. 

Second, we snr.11 exar:·: ine the state of affair~ when polynomials 

on a composite snace E1 Ez to E' are regarded a s on E{. E2 ~ to E'. 

To proceed with the first part, let us prove: 

(1) 



·,t.:' 

Theorem (13.91) Let p(x) be of degree non E(A) to E1 (A). Let 

z( ~ ) be a polynomial of degree m on A to E(A). Then P(~) = p(z) is a 

polynomial of degree at most m•n on A to E ' (A). 

Proof: :le use induction ovei~ m. If m = O, the theorerr. is trivial 

and true . Referring to (l~.423) we have 

n 
p(x + y) = z kr(x,y) 

r=O 
( 1) 

where k ( x , y ) i s of !}",gree = (n - r) i n x and homog:meous of degree r in y. r 

Let 

As sum e ths theorem for all polynomials z of degree~ m. Re:9lace yin (1) 

by { 8ni· This yields 

m-1 
I f xis now re~lace~ byL A

8 
as then, under the induction hypothesis ~ 

S=O 
kz.( x ,¾-i) becor::ies a p olynomial of de gre e a t rnost(m - l)( n - r). I f this 

:9o l yno:;; i a l is multi:Jlied by Amr., its degree will be at most 

mr + (m - l)(n - r) = mn - (n - r) ~ ~n 

The r e fore P ()- ) = p ( z) fr the S UD of p olynomials -of degrees ~ m • n. 

Theorem (l~.92) Let q(x) be of d -gree rn on E(A) to E'(A) and p(u) 

o:· degree n on E ' (A) to E 11 (A). Then P(x) = p( q ( x) ) is a polynomial of deg ree 

a t E:O ~ t m- n on E(A) to E 11 (A). 

Proof: J?(x) is a continuous function of a continuous function, 

and the yefore continuous. It remains t o prove that P(x +f y) is a polynomial 



S".3 . 

of degree ~ n•m in .l. . l~ow q(x + ). y) i s for fi xed x,y a ~Jo l ynomi a l of degree 

~ m on A to E' ( A). Hence ap 9l y i ng Theore□ ( 13 . 91) P (x +) y ) = p(q(x + ). y )) 

is of degr e e at r:i os t rn •n in ~ . The theorem is t he refor e p ro ved . 

Le t us no ¥1 consider a composi :e s·-: ace E1E2 ( .A ), of t wo spaces 

E1(A) a nd ½(A). ·,•:e s11dl d snot e e l 2rr:ent s of E1 by l e t t ers x , y ,z _, •··, 

eh ments of E2 by letters x,y,z, · · ., . The p oint ( x ,x) of the COr:l ·JOSit e 

sup-port we shall den ote by a ca 1-J i ta l letter X. 

Theorem (13.93) If P(X) is a polyno~i al of deg ree non E1E2(A) to 

E'(A), then ·9(x) = P(X) is a p olynomial i n x on E1[E21 to E'(A). 

Proof: By Th8orern ( I Z. . S-3), ?( X) is continuous on Ei [E;z] to E 1 • 

How b y the definition of a p olynomi a l, P(X +)... Y) is a :polynomial i n)_ of 

degree ~ n on ·4 E1 E;a)'2-]to E'. But if Y:: (y, O) 

P(X + )_ Y) = P[( x,x)+ >- (y,CDJ = p [(x + >. Y, X + t o)] 

= p(x + ). Y) 

Therefo r e p ( x + A y ) is a po l ynomi a l of d eg r ee ~ n in}.. By a s i milar 

argur., en t v: e could have p roved. t h at p( x) ~ P(X) is a polynor.1 i 2.l of degre e 

~ n on LE11 Ez to E' • 



.., 
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14. Analytic Functions in Vector Snace 

14.1 Introduction 

I n t his division of the wor~ we propose to make investi g tions 

of· the cons :> quences of a certdn forr:1a l generalization to vector s-paces of t h e 

notion of an anal ytic function of & real or cor:i-· lex variable. .,.:i. nu:-:-:be::.~ of 

s tudie s have been made i n t i1 is direction*, but rrios tly fro~ the stand ~oint 

o f r 8mai :·der theorems . ..e a U errip t here to 2ttack the prob lerr fro ::.1 what is 

often ca lled the "Weierst r as s viewpoint 11 • · . . e shel l de:·ine anal y tic f1.nctions 

in terr~~ of a "power serie s 11 der lo~ent in hor.-!o: eneo1Js polynomi a l s and. seek 

to deri ye the -properti es merely fror th1~ consid.eration ~ f inequalities and 

ident\~s among these polynomials. At the end, we shall ap~ly s ome of our 

results to a diff erenti a l equation theorem. 

14 .2 Convergence 

We she ll in _f:"eneral ~ot requi re that d 1 spaces with v.':-_ich we de&l 

obey the :)Os t u l a te c
1 

of corn})letene s._. \Then corr. -Jletenes s is ass u re d i n the 

p:::·esen: section it will be so specified in the theorer.1 . The defi nition of 

the l imit of a sequence of p oints of as ·.ace E was g; iven i n (12 .3). ~-

other w-y of stating the same thing is that a sequence l Xn_} has a lLLit if 

there exists in Ea point x such that I( x - Xn \( tends to zero with 1/n. 

Using the same language , the p ostu late of com~l et enes s requires that the 

ne ces -· ary and suf f icient condition for the e :-'.istence of the limit of a 

( } II 'I se quence t Xn is that ma.x ~Xn+p - xn \1 teni to zero with 1/n 
p>O 

* Se e,for exampl e : L. l! . Graves, Trans . Arn. i.:ath. Soc., V. . -- a 
,.:.,-' J 192,- , p 163 • 



(14.21) C'6Snvergent Seq·uences of Functions 

The terms Xn of a sequence may depend L1 various · ay s u ·:·on some 

general parameter t 'N hose rang e is 1:1 . In this ca~, e we say that the sequence 

x1(t) converg es over T if it conver ge s for every fixed value oft in T. 

(14.23) Uniform Convergence 

A sequence { Xn ( t) 1 depending u-;jon a par am et er t whos e rang e is T 

is said to converge u.nifonJl y int over T if there exists x(t) such t hat 

max II ¾_( t) - x( t) (I tends to zero with 1/n. 
t in T 

(14 .24) Convergence of Series 

n 
Let { ~ \ be a sequence of elements of E. Let Sn • Z Xr. 

; 1 
Then if Sn converges to a limit S we say that Z~ converges to S. If the 

co~we rgence of { Sn1r is uniform wit h respect to some paran~eter t ove r a range 
) 

T, we say that LXn converges u.n iforr.:ly int over T. 

A series which does not c _nverge is said to diverge. 

(14 .25) Absolut e Convergence of Series 

A series l_ ~ is said to ro nverge ab sol ut ely if the numerical 

series ZJ/ Xn}( is convergen t in the ordinary sense. 

Theorem ( 14.261) Let E0 be a region of E. Let [ fn.( x) J be a se­

que nc e of continuous functions on E
0 

to E1 convergi ng un iformly over E0 • 

Then f(x) is continuous over E
0

. 

~: Sel ect e) 0 and n0 so that If fn (x) - f(x) \\ ~ ef3 
0 

Select 8' so that if \( x - x0 { ( ~ S then {( fn
0 
(x0 ) - fn/x) I\ l..e/3 

Then for all x in (x0 )~ 



I/ f(x) - f( x0 )j( ~ j/ f(x) - fn
0 
(x) ~ + ~ fn

0 
(x) - f n

0 
( xJ /1+)[ fllo ( x0 ) - f(x0 ) \I 

<. E:. 

wh ich is the condition for continuity. 

Theorem (14 .262) If E is co mplet e, and if a sequence ; Xn ~ from E . ., 

i s such t hat L ~ i s absolut el y convergent, t hen Z' xn is convergent. 
n 

Proo f : Let Sn ■ ~ ~ 
1 

n+u 
Then I\ Sn+p - Sn\\ = ~ II ~ II 

but s ince t he right hand side is t he partial r emai nder of a convergent 

series of positiv~ tenns its max ir:ru.~ value for all p tends to zero 1{ith 

1 / n. Then si nce Eis complete t h is is a sufficient condition on 

Sn+p - Sn for convergence. 

T:_eorem ( 14.263) Let f ( x ) 
n be a s equ ence of functions on a r egion 

E
0 

of E to "F: 1 , where E' L ~ complete . Let Mn denote t he maxi mum of fn(x ) 

over E0 • Then i f LL~ converges, fn(x) converges u.nifonnl y i n x over E0 • 

Let 

Then 

Thus Sn( x) converges to S(x). 

lor ollary: If the series~ fn( x ) is known to be convergent 

· ave~ E0 , then whether or not E' is complete the conclusions of Theorem 

(14 .263) hold. 

(1) 



Proof: Completenes s of E' is us ed only to sho..-: convergence 

If we calcula te t he limit of ( 1) as i ➔OO, n remaini ng f ixed 

Vi e have (2) 

:rhe right h and sid ' tends to zero with 1/n and is i ndependent of x. 

Theorem (14 .264) I f ~ fn(x)~and ~~(x) r are sequences of functions 

lbn E
0 

of E to E' such that L. fn(x) and 2=. g11(x) ccmverge; then 

L t fn(x) + ~(x) ~ converges and i s e~ual to Lfn(x) + ~ ~(x). 

T'nen 

n n 
Pr oof : Let Snf = L f (x) Sng = Z gn(x) 

1 n 1 

·n 
Sn(f + g ) = L_ (f ( x) + g (x)) 

- 1 n n 

/I Sn(f + g) - / .Zfn( x) + 'f.gn(x)) = i\snf - [fn(x) II 

+ l\ Sng - [ f½(x) :; 

':rne f ac t t ha · ~ fn and [ ~ ~on~erge shows th.a '._ the right si de of ( 1) 

t en i s to zero with 1 /n 

It fo llow~- by induction that the sum of any f i.. ite number 

of converg ent seri es is also co nvergent. 

(1) 

Theorem ( 14 .265) L ~t I fn ( x) be c onvergent on E0 of E to E' (A). 

Then if~ is a point of A, ,Zctfn ( x ) co nverg e s and i s equal t o c;;,1.J~ fn ( x). 

The p roof is clear. 



14.3 Definition of Analytic Functions 2B, ! i£ ~- Some Definitions 

Definition of Regularity : A function f(x) on E, a region of 
0 

E, to E1 is said to be regular at a point x0 of E
0 

if there exists (1) a 

nositive number rand (2) a se q_ue nce of homogeneous polynomials h (x) 
n 

hn( x ) of de6ree n-on E to E', such that for lr x - Xo ll~ r, the series 
CX) 

T hn(x - x0 ) conferges to f(x). 
0 

The maximum value of r satisfying these conditions we shall 

c a l 1. the radius of regularity of f(x) a ssociated with the point Xo and 

shal l denote it by r(x
0
). 

Definition · of Analyticity: A function f(x) on E
0

, s regi on of 

E, to E' is said to be analytic at the point x0 of E if: (1) it is 
0 

regular at x0 • ( 2) t he moduli mhu of the polynomials 1\i(x) satisfy the 
1 

condition O ~ lim (Illllu) n ~ r ( x
0

), 

n➔oo 

We shall define r'( x
0

) as t he lim 
n -- >OO 

_l 
(mh ) n 

n and refer to it 

as the radius of analyticity of f ( x) associated with the ~Oint x0 • f(x) 

vlill also be s·t) oken of as 11 a nalytic r'(x
0

) at x
0

11 • 

We shal l c~l so have oc :: asion to -...:se the quanti t;y r 11 ( x ) define3. 
_l o 

as lim (IDn~) n, where IDn11n denot es the modulus of the polar of hu(x). 
n➔ oo 

Y:e shall sr: ea~: of r 11 (x0 ) as the ra ;ius of absolute analyticit :i' of f(x) 

associated with the point x
0

• 

Concerning t his las t we bave incident 2lly: 

Th,, orem (14...:.ll) If f(x) is on E
0 

to E', arialytic r' (x
0

) a t x
0

, 

then r 11 (x0 ) satisfies the i neq1:a l ity 

where e is the base of natural logarithms. 



so that 

again_ 

Proof: By Theorem (,:,, 7 3) 

l ~ ~ ~ nn 
mhn n ! 

r 11 ( X ) = lim (mn11n) 
-~ _1 

r, (xo) = lini (mh ) n = 
0 - n 

n ➔oo n-)oo 
, 

_J, 7 .I. -• (~fii ·r 11 (x ) = lim (mn½i) n = lim ( rruln) n 
· O 

n co n (X) 

co 
Dominants: Let f(x) ~ ~hu(x - x0 ) be analytic r'(x0 ) at x

0
. 

0 
For a given number f > 0, a number r satisfying the condition 

for all x and all n, will b e cc.lle ~ a p do-:-inant of f at X • 
0 

The lower 

bound of M's satisfyin s t iiis condition we s hc.11 cc:.11 the r.- in i ma l P domi r.ant -·- .. I 

To show that dominants 12 xist we h e ve 

_l 
Since r 1 (x0 ) = lim (m~) n we have fror: ordinarJ' analysis 

<D n co 
that for f < r' ( x

0
) ~ mhn f u converge s . There is therefore a great est 

term in this series w:·.ose val u.e let us call M. Thu 



:But ~ I ~ mhnPn < ~.! = mhn = 
lj X;f f n =r 

From wh ich ~~(x) (\ ~ Ml\~!ln 
pn 

One such positive numb er r.; existing , t h e lower t cu.}id. c erta inly exists. 

As a r.i.at ter of fact it i s not dif ficult to s e ·- that the ~: we have just 

14.4 Some pron erties of Analytic Functi ons .QI2_ ! to filA}_. 

Le t us apply t he defin itions o f (14 .3) to the case where E(.A.) 

is A i t sel f , and F. ' (A) i s a vec : or snace wi ich in this secti on v.e sh~: 1 1 

wr i t e with out the prime . The most l ene ral homogeneous Dolynomial of degree 

n on A to E(A) is simply l a , where )- is of A and a is a fixed el ement 

of E(A). ·;;e are t nerefore l e:. t o consider functions which, i n the neigh­

b or}-wod Vo_) p, are expres sibl e a s a power seri es i n the form. 

"\ 

To s i mp 1 if y the wor ::.: 1 et us make the as . ; ·wrpt ion t hat A = 0 0 , 

Wflich ar-:ount s simply to writing).. for A - /\
0

• 

Theorem ( 1~. 41) Let f 8n 7 b e an infinit e sequence of elements of 
1 

a co~plete ve c tor space E(A). 
I 11 --

Let r = l im ii 8n·l n be positive . Then 
n ➔ oo 

or diverges ac cording l y a s ()/ is les ~-- t h n or greater 
co ,-- n L )-. 8n converge s 
U' 

than r. 

Proof : Let { ·,. / < r. In Theorem ( 14 . 262) re:place Xn by A n 8n 
00 . 00 

then ~ )._ n an converges absolutely, since t I)._ In lj 8n l l is, by the definition 

of rand the well known Oo.uchy test, convergeJt. By the hheore~ already 

cited, the ref ore, 8n converges. 



If \ /'- \ ) r, t l1en from the definition of r and the ordinary 

t h eor/ of power series t :r_e seqi..:.ence in~1 \\ ¾.I\! has no Ul) ~er bound . Supuose 
00 

f or sor.ie v<> l ue of ). , ( / )- i) r), ~ ").. n a
0 

were convergent . Le t S be its sum . 

T~e n for arbitrary e there is r e s-:. :.ch tha t Sn I! L..._ ~ a satisfies 
0 n 

. Sn - S )'. <: e for all n _> Ne. Let n be c ~10 sen > Ne so tbat 

then 

(. /! 1/ 1) 11 = I sn+l - Sl + il Sn - s 1-<2e 

This contradiction proves the second part of the the orem. 

It follows from t c is theor em that any sequence < 8n~ of elements 
1 

of a complete space E such that r: lim l\ an \\n) 0 defines a function, 
... ...._ c,Q 

00 

f()-) = ~ 'l ~ on (O)r of A to E which is 
0 

by de f init i on regul& r r(O) at~ = 0. :.:oreover, Jranlf i s ?r ecisely rr~ 

o f t he mor e.. gener al de :Ci r. it orr so that the functi on f( )J define d by the 

s equence ~-a Z i s a l so 2nalytic r' (0 ) = r(O) at /. = 0 . 
. n . 

Conversely: 

Theorem ( 14 .411) If f(1, ) o~ (O)r of A to E(A) is regular r( 0) 
oo _l 

at \ = 0 and if f( \ ) = - ..., nan in ( 0 )r (o) ' t hen r' = lim :· 8n··· n > 0. 
~ n ~oo 

00 

Proo :f : If r' = 0 , t h en t y T {1 eo r em ( 1 ~ . 41) ~ ) ._n 8n is 

divergent for I- JO wi1ich cont r adicts thP- definition of regularity . 

Theorem ( 14. 412) I f in t h e above t heorem r( 0 ) > r' ) then f(A) is 

• 
analytic r'(0) = r' at A= 0. 



Proof: The added as sumption simply makes f ( ).) satisfy the 

condition r'(O) < r(O) of t he definition of analytic functions. 

00 

T)-,eorem (14 ,92) I f f(A) = ~/' an is :"lytic r 1 (0) at ~ = 0 

on (O)r'(o) of .A to E' and if f < r'(O), then f )~ ~ converges uni­

forml y in /'- over ( 0) t> · 

Proof: In t he corollary of Theorem (14 .263 ) take E0 to be 

(O) p and fn(x) to be )..n 8n· Then for ~ in (O) p we have 

Since L ? n \ \ ~ ) \ converg es the conditi ons of the corollary are met. 

Combining; thP- re sults of this theorem and Theorem (1.; .261) 

we have the p roof of 

Theorem (14.420 ) If f()J is ana lytic r'(O) at 1 = 0 on (O)r'(o) 

of A to E', and if f z r'( O) then f( f-) is cont i nuous OYer (O) p . 

By Theo re:-- ( 14 . 264) we have: 

CO 00 

Theorem (14,422) If f()J ·= '> ")_n an and g(:\ ) - - n b are l'J ,~ ir ,. n 

regular at 1 = 0. Then f( ~✓ + g()) is regul ar and is eoual to 
<D 

~ ).,n(Sn + 'bzi). 
1J 

co 
Theorem ( Hr .43) If f (.' ,) E , .. n ~ is on (O)r(o) of A to E(A), ·o 

regular (O)r(o) at / =0, and if for all /t in (O)r(o)' f(). ) 3 O, t hen 

9n = 0 (n = O,l, ~,···) 

Proof: A8 sume the contrary. 

which does not va nish, so that O = f( ) ~ 

we have for O -...: 1 > 1 " r( 0) 

Let~ be the first coefficient 
00 

= /- /'n 8n• Using Theorem (14 .261) 
m 



0 _ f(A) ~ , n-m soo r 
- rw-i = L- I' 8n = /', 8m+r 

). m 

00 

Therefore 1 • .._ r a is a re.RU].ar function of ,, at j = O. /\ m+r --0 
.And its value 

for )_ /; 0 is zero. By T'·ieore!:: (14 .421) itis co ntinuous; so th2 t its vc.lue 
00 

at :, = O must also be zero. :But ·
0 

, r 8m+r = 
0 

= 8tn =f O. 

This co ntradiction proves the t h eorem. 

Theorem ( H .431) If f() ,) is regular at 1 1 = 0 its expansion 

about \ = O is unique. 
00 00 

L '3. 

Proof: Let fC,, ) = ;- )-..n ~ = 7 )__n bn. Using Theorem ( 14. 264) 
0 0 

and by the last theorem 

or a = b n n 

14 .5 Theorems .Qll Series of Polynomials. 

We sha ll now de :i uce a result wdch it was not co:: ven i ent to 

obtain in Division 13 because of the lac~ of adequate prelirr. inaries on 

co nvergence. 

Theorem (14.51) Let ~(x) be a s equence 
00 

on E to ~•, each of degree k. Let the series L 
00 1 

i n some neighborhood (O)r. Then h( x) = L hn(x) 
0 

degree k. 

of homogeneous polynomials 

~(x) converge uniformly 
hoW\.-0 9e.V1 eo-J..! 

is a~polynomial of 

Proof : Lt follows from Theorem (l~ .261) that h(x) is continuous 

over (0) . r 



Let hx,p(x) = ~ ~(x). It is the sum of a finite number of 

homobeneous polynomi e.ls of degree k and is t herefore one itsel f . The 

!!~aximum of I( bn1/ x) \\ over ( O )r is IIU'lnp • z-k and over any other ( 0 )r is 

d{ 
~p•r • The condition for uniforni convergence is equiva lent to the 

condition that Tlli1up· rk tend to zero with 1 /n uniformly in p. Since con­

ve r g ence is as sumed uniforr:i over (O)r this condition is satisfiec_. But 
00 

it is also satisfied for (O)~. Hence r bn(x) converges uniformly in 

(0)-. By taking r sufficiently large h(x) is proved continuous f9T every r 

x. 

Uow b y the definition of a polynomial hxi(x + )_y) is a poly­

norrt ic-'l of degree kin f and by Theorem ( ,3. 204 the coefficients of )..8 

in this polynomial can be expres sed in the form 

,; e have therefore 

and us ing (1 4 .264) 

To s ~1 ow that h( x) 

that 
00 

:[ 
1 

we 

k 
LA h(x+ty) 
t=O st 

00 

hn(x + )-_ y) = L 
n 

rearrange tds sum 

k 
h( x + ). y) = L. r 6 

A 
s:0 

is homogeneous we have 

k k 

L 'A s ~ Ast ~(x + ty) 
S=O 

so that 

k 
~ Ast h(x + t y ) 
t~o 

The s - eming length of t h is latter portion of the argument may be ex­

n l a i ned on the grounds that ~ompletenes s of E ' was not a s sumed . 

Theorem (14.52) Let l bn(x) :> be a sequence of homogeneous uoly­

nomials ea ch of degree k on E to E' where E' is complete. Let ~ mhn 
1 



converge. 
00 

Then Z: 
1 

bn(x) converges t c a homogeneous polynomial of degre ­
oo 

k w~~ os e r:; od.ulus is at most equal to L mbn. 
1 

Proof : Theorem (1~ .263) establishes uniformity of convergence. 
00 

Therefore by (14 .51) above h(x) = 'I: hn(x) is a homogeneous ,olynomial 
1 

of degre 2 k. Again 

00 00 

mh = max ~ h(x) )! ~ L max hn(x) 
(· -•·· 

~ = ; 

·r 11 x l/ ~l 1 ! x ·. :~1 

14.6 Fjl.ndamental Prouerties of Analytic Functions 

In this section we shall deduc e theorems analogous to some of 

those in section (14.4). As regards the point x0 around which the functions 

are i ~ the first instance assumed to be analytic, we observe ths.t there 

is no re 2.l los s of generalit ,y in taking it t o be the point 0. This amou-11ts 

si - ply to writing x in place of x - x0 . 

Theorem (14.61) Let ~1\i(x)J be a sequence of homogeneous polyno~ials 

on E to ; • where E' is c om~lete. 
1 

r 1 ( 0) = lim (( IIU1nl/ -ii > O. Then 
n➔ OO 

analytic r'(0) at x = 0. 

Let the degree of hn(x) be n, and let 
00 

L r1n(x) co nverges and de i' ines a function 
0 

Proof : ·,re have for :, x .< f <... r'(0) 

00 

Since - o n Till1n converges, -Vl r-- have by Thoerern (14 .263) that [ hn(x) 
0 \ 

converges unifonnly and absolutely over (O) p. Since pis aribtrary 

within o..._ r'( O) the series converges at all points in (O)r'(o) and 

t he function it defines is regular. By the hypothesis on r'(0) the 

function is an&lytic. 



Theorem (14.611) If f(x) = L,bn(x) is analytic r'( O) on E to E1 

and · if ~<. r 1 (0) then L ~(x) conve~ges uniformly and absolutely over 

Proof: Con:~,letenes s of the sp ace was not used. in ( 14.61) 

exce·pt to establish the esixtence of the limit. Therefore , si nce by 

hypothesis L I1i/x) converges to f(x), the argument of (14 .61) may be 

used. 

00 

Theorem ( 1 •4 . 61:?) 

a.re regular at x =· 0 ·the n their sum is regular . 

Proof: Theorem (14.264) gives 

But h.n(x) + ku(x) is homogeneous of degr8 ~ n. By induction it fol l ows 

that a s ~milar t h ing is true for any fi :1 i te number of functions. 

CD 

T'neorem (14 .613 ) If f(x) = L h (x) is regula r !t"' (0) at x=0 
0 n 

and if f ' x) = 0 throTu~hout (O)tr(o)' then ~(x) = O. ( 2.11 n) 

Proof: Let x be a fly point i n (O)t" (of Then if\ >-.\ Z 1 

By Theore~ (14 .43) therefore hu(x) = 0. 

Vve shall now consider the question of diff erentiability of 

analytic functions. i1t this p oint it b ?Cor!;es nece s ary to draw distinctions 

be tween theorems which ~1old for spaces E( C) but which we do not s eem able 

to prove for spaces E(R). 



Theorem (14,62) If f(x) is analytic r 1 (0) at O on E(C) to E'(C), 

and if E'(C) is complete then the dif f erential fx(x; t x) exists at every 

point i nside (O)r'(o)· 
00 

Pr oof: Let f(x) = ~ ½i( x ). Choose a fixed noint x i nside 
- 0 

· ( O)r' ( o) and select f ,f' so that 

Equation ( 4 ) Theorem (13 .81) gives 

x0 < f t.. f I l. r 1 
( 0). Let M = D Ptf( 0). 

I 

n 
hn (x0 +LI x) - ¾ (x0 ) - db,i(Xo A x) = i ~r(x0 , A x) (1) 

If now Ax is restricted so thatf £1 x n, r-• 3 f , - \\ x0\\have by the defi nition 

of M that 

Applying to 1'1n( x
0 

+ /J. x) result of the first pa rt of inequ.ali ty (1) of 

Th.eor em ( 13. 741) we obtain 

and 

(2) 

(3) 

(4) 

Since knr(x
0

;ih) is homogeneous inAx and since the inE.ql.nlity (3) holds 

for all!!. x in ( O)p" it follows that II kfu,(xoAx) II ~ M(f' r c\~ ! II r (5) 

thence that fl ~ kn,r(x ~x){\ ~ M{f-). n 11 A xlf (S) fu O' - lf' p"2 - f" l\A Xlf 

N0 w s irn~ly sum the expression (1) fror.i Oto oo. The two series whose 

general tenns are L1n_ ( x0 +ex) and hn( x) conver ge by the hypothe sis of 

the theorem and the choice of 6.x. The series L ~(x,llx) converge~ 

uniformly by (A) and Theorem (14.263) and t herefore by (14.51) is linear 

homogeneous. Denote by IIA x \l €.(Ax) the sum of the right hand side of ( l) 



Inequality (6) above gives that 

.. 
Writing down the sum of (1) 

...Q.l 

f(x0 + Ax) - f(x
0

) - ~ dhn (x
0

;Ax) = \\ ~ x \j •e-<tix) 

. 00 i)o 

(7) and the linearity of !' ~(x0 ;&) prove that -i; ~(x
0

;Ax) is 
~ 0 6 

the differential bf f(x) at(Xo)-

· Theorem (14.621) If f(x) satisfies the conditions of Theorem 

(14.62), then the series l)1n(x)may be differentiated repeatedly term 
, 

by term. 

(7) 

Proof: Since equation (4) (14.62) holds for every x0 in (O)p 
~ '4 

and since d.1\i(x;Ax) is of degree n-1, we have,"fheorem (l~,7?-3) 

~-1- (ft ~ - pn-1 · • M r• = f ,n 

1 
Hence r ·= lim ·l m(dhn)f n=r ~p I -n-..oo 

But f' is any number less than r'(O). Thus r ~ r'(O). · \', e c onclude that 

the differential L.dl\i(x) is analytic over (O)r'{o)· It can t herefore 

be differentiated again. We assert by induction the.t all differentials 

exist. Since the dif ferential of a homogeneous polynomial is symmetric 

in the i ncrements and since the onalytic function is the sum of such 

functions it follows tha t the _kth differential of an analytic function 

is syr.xnetric in the differentials. 



I" ... 

. The analogue of Theorem (14.62) for . spaces E(R) cannot be 
4 

proven in the same manner. As a matter of fact it is still an open 

question whether in gener cl it can be proven at all. However, we £hall 

prove. 

Theorem (14.63) If f (x) is analytic r 1 (0) at O on E(R) to E~(R) 

and E1 (R) is complete, then the differential of f( x ) exists 1md. at any 

po i nt within (O)r"(or I t is given in tht:S region by Ldhu(x). 

Proof: 'Empl~y an argument s·i milar to that of (14.62). 

· Start~ng with equation (1) of that section: 

n 
~ ~(x;/lx) (1) 

we proceed by the use of f i(2l i r\ f ~of bf 13, , 4 ) to . write the inequality 

where h (x,!.x) is defined in ( l ~. C.1\-). As an upper bound for the nr 

right hand side of (1) we have 

(2) 

(?,) 



Let us now select f < r 11 (0), and a fixed :9oint x
0 

in (O)p· Let Ax be 

so restricted that I( x0 )) + /I A.x I/ <. p. With these restrictions the right 

~nd side of ( 3 ) is a convergent series whose sum is less than a certain 

constant M rnulti -:_1 lied by )\ Ii x jf. From t his point on the argument goes 

like that of ineorem (14 .62). ~rom equation (2) and Theorem (14 .263) 

the convergence of Z,. d.hn( x;,6 x) is established, and by ( 14 .51) it is 

:profed linear homogeneous in~ x. Thus 

I
I 00 

( Li f(x) - . f (4) 

w~dch proves 
00 

L dhn(x;~ x). 
1 

the existence of the derivative, for it is given by 

~ 
Furthe~nore, L dhn(x;~x) is analytic; for we have, using 

l 
the results of (13,~2). 

From t ·:is, (14 .61), and the hypothesis, we have therefore that 

L dhn(x;4 x) is an~lytic 'f'M( 0). 

Theorem (14.631) If f(x) satisfies the hypothests of Theorem 

14.63), then it is differentiable of all orders, wit hin (0\11 (o)• 

(5) 

~: It is sufficient to show that the radius of absolute 

analyticity associated with a series is not greater than that of its derived 

s eries. If t his is shown, then the theorem will follow by applying 

induction to (14.63). To prove the desired result we have from (\~.e2) 

that 

and hence 

= n h(~ x, x, ••. , x) · , ' 

max n -h({lx,x1 ,x2,•••,xn-l) 
flx1Jfd 



Now therefore we have 

n ➔ oo 

The left hand side of this equation is the radius of ab solut e analyticity 
00 

aasocia~·ed with L dbn ( x; llx) . Applying what we h2.ve just proved to the 
0 

(n-l)st derived seri es, which we assume to have a radius of analyticity 

not le ss than r 11 (0), we prove that the same thing is true for the nth 

derived series. 

Let us now turn our attention to· the question. of series wh ose 

general term i s 2.n analytic function. 

4-

T},eorem (14 .64) Let f 1(x),f2(x), ... ,fi(x), •·· be a sequence of 

functions on E(A) to E'(A), v1here E '(A) is complete. Let_fi(x) be analytic 

r ! ( 0) 
1 

at x = 0 and ltet R, t he lower bound of all r1(0) be positive. 

Let f be less than R 1and define M1 • Dr fi (x). 
Cl.) 

~ 
Then if M ~ L.. Mi 

1 
converges, f(x) = L f 1(x) is an an'. lytic function 

l 
on E(A) to E' (.A.), 

whose radius of an8iytici t y is not le ss than R. 
b:) 

Proof: Write fi(x) = ~ hin(x). Let p
1 

be selected so that 
0 

0 <. f 1 < f and x r estri c ted to be in (0) fi. Then by the definition of Mi 

we have 

So that t he modulus of hin(x) is not greater than M1(p)n· 
00 

From ( 14.52) we have immediately that bn(x) = L h1 (x) 
1=1 n 

converges to a homogeneous polynomial of degree n wheee modulus is not 

greater than 

(1) 
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From this it follows that 

00 

and, by ( 1'"1 . 61 ), that L ~ ( x) defines an analytic function w;1ose 
0 

radius of an2lyticity is not less t han f· 
It is now desired to prove that f(x) = f hn(x). 

We have , rememl:ering always that \\x\\ < e_1, 

low 

00 

. ·herefore by (14.263 L f
1 

(x) co nverges (uniformly) over (O)fl. lTow 
1 

let 6 be gi ven and select p so that 

Raving chosen p, select k so that 

7'2-

(2) 

(3) 

(4) 

whi ch may b~ done s i nce all the series i n (4) have been proved convergent. 



(5) 

But the second term on the right hand sid_e of (5) is less than or equal to 

and as for the third term of (5) i~ i~ riot greater than 

These results, when placed i n (5) show that 

/I f(x) - ~ hn(x) ~ I.. t 

Let us now apply the last theorem t o the __ proof of: 

Theorem (14.65) If f(x) on ~C) to E1 (0) E1 (C) complete is 

= analytic r'(O) at x = 0 it is analytic at every point x0 in (O)r'(o)· 
..22. 

Proof: Let f (x) = ~ ~(x). Let x
0 

be chosen in (O)r'(o)· 

We wish to show that there exists a sequence of polynomials Ka(x), de­
oo 

pending of course upon x0 , such that f(x) ■ f 1½i(x - x0 ) is analytic 



at x = Xo and equal to f(x). ·.:. o facilitate matters let us write x - x0 = y, 

and let F(y) = f(y + x0 ) = f(x), so that F(y) = f ~(y + x ) is analytic 
0 . 0 

at y = -x0 and has as its radius of analyticity r 1 (0). We shall orove 

?(y) is ana l yti c at y = 0. 

Let p ,fi be selecte,~ such that O <- x0 <. f 1 <: p <. r' (0). 

Let M = D f(O). It follows fror;: the d efinition of M tb.at 

Let 

ll 11n < x) 11 < 

i 
fi (y) = hi (xo + y) = L hin(y) 

n=O 

ce the usual re duction of a :polynomi a l in y to the sum ,: f h oi,ios eneous 

I ' 1' f • ! )I polynomials. If y be restric t'? d to satisfy d Yjj<"fz 11 1 - /l xc,~ we 

nave from 'fb.eorere ( f3,7~ that 

It follows that for all values of y 

(1) 

(2) 

(3) 

(4) 

: row ap9ly Theorem (1,:;; .6L1 ) observing that f 1 (x) is a polynomia l in y and 

therefore a particular 
, D ·,. i 

e quation (4)
1 
M(f l) 

to be M f-1) v.1e s · e 
\. f 

the theorem are met. 

instance of an anal :,rtic :tlu.:1ction, and t hat from 

is a f 2 dominarit of f 1(y). 'raking M1 in (14 . 64) 

that f Mi converges and t hat t he conditions of 

Therefore, F(y) = l~ hn( y ), where ½,(y) = ~ hi0 (y). llow 

the modul us of hn(;y ) is s ee n by ap·'.J lying (14 ,52) to (4) to be not greater 



Hence the radius ;,(o) of nalyticity of F(y) at y =. O satisfies 

_l 
r' ( 0 ) ~ lim (mhu) n ~ lirn 

Finally, go back to the original variables x. This gives 

Everything is t herefore pr eyed. We note that by def i ning f suitably close 

to r'(O) we prove that r'(x0 ) ~ r'(O) - (\x0 \~ 

Theorem (14.66) Let G(y) be a homogeneous polynomi a l of degree k 

in Eb(C) to E11 (C), and let )J = f(x) be a function anal ytic r'(O) a t x = 0 

on E0 (C) t o ~~(C). Then g(x);; G(y) is analytic r'(0) ~ ~'(0) on E(C) 

to E11 ( C). 

Select R, f to satisfy 0 ( f 1 < f < r'(0) and define M = D f f(0), 

M = M • Th us for x in ( 0) f 1 
l - ~l 

F 

n 0 w s ince G(y) is continuous and L~(x) co r.verges it foll ows, wri*ing 



lim G8 (x) = G(f(x))= g(x) 
•➔co 

(1) 

Gs(x) is, by Theorem (13,9~, a polynomia l in x of degr ~e ~ sk. Let 

W6 ( x) be the coefficient~ 8 in Gs(Ax) when it is expanded as the sum of 

homogeneous uolynomial s times powers of A • 

Let us first prove that if p) 0, G9 ("x) - Gs+p(1'x) contains 

no terms of degree ~ s in I' . Write G( y + z) in the f orrn 

where ,Jr(y,z) is of degree r in z nnd k-r in y. In t nis for r,ula write 

Y = H8 ( A >€), f -= ~ s+l, JAz = Hs+p<Ax) - H8 °'x). Since the right side 

of this last expres s ion cont ains no terms of degree~ s, z, as defined 

by it, will acti.ally be a polynomial in~- The coefficient J 0 (y,z) in 

(2) is, as has been verified, several times before, precisely G(y). 

Therefore we have G(y + rz) - G(y) 

= G(Hs+p()_x)) - G ( H8 (Ax)) 

which is what we wanted. 

(3) 

It follows from this fact that if r~ s, then the coefficient 

of )...r in G8 0-x) must be precisely Wr(x); for, if it were not, then 

G8 (~x) - Gr(r.x) would have a term of degre ~ r. Therefore, the first 

s+l terms in the expression of G
8

(~x) as the sum of homogeneous polynomials 



j 

00 

To prove that L W6 (x) converges to g(x). let 
S::O 

so that b y what we have ju.st said Wr
5
(x) = W

8
(x) when r ~ s. 

Jow r estrict x to be in (O) p
1

. Using Theorem ( l~· 74) 

from which it follows that for all x 

and the r efore that if \ xl\ < f 1 

71. 

(4) 

(5) 

( 6) 

Wr(x) converges to g(x ); for if e is a given nurr.ber 

we may take s so large that for s 1 > s , the right hand side of (6) is 

l es s than ej2 and tam select s1 so that ff G81 (x) - g(x)//<. e/2. 

Doing this we have 

{?) 

To se ~ that g(x) is analytic we have only to consider equation (5) which 

shows that the radius of analyticity must not be les s than ?i· S :nce p1 

may be as clo$:-e. as we like to r'(O) it follows that the radius of 

analyticity of g(x) cannot be less than r 1 (0) . 
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Theorem (14.67) Let f(y) be analytic r 1(0) at O on E1 (C) to 
0 

E11 (C) where E11 (C) is complete. Let g (x) be a nalytic r'(O) at O on E
0
(c) 

to E~(C). If there exist Rand G5 such that R = r1 (0) and such thd 

for all x in (O)RI\ g(x)I\ < ti!)< r' (0) then F(x) ~ f(g(x)) is analytic 

R 1 ~ R at x = 0. 

Select p1,f to satisfy O < f 1 (. f < R. Define ~ (x) E J1( g(x)). By the 

preceding theorem K1(x) is an analytic function of x. Let us write 

We wish to sh ow now that K1(x) satisfi e s the requirements of Theorem 

(14.64). 'l o do so we replace G(y) in Theorem (14.66) by J1(y). Equation 

(5) of that theorem then becorr,es II IC:1p(x)I\ < mJ1 · 0!
1 l~r (1) 

Tnis s hows that Mi e mJi•~1 is a f1 dominant of K1(x). But since 

~ ' r' ( 0), L M1 is convergent. Tnu s the series L K1 (x) of analytic 

functions Ki(x) de L nes by T-heorem (14.64) an analytic function. We have 

where Hp(x) is the homogeneous polynomial, of degree p defined by 
CX) 

Hp(x) a 2-: k1p(x) 
1=<) -



14.7 Analytic Functions fill1 Differentials in Composite Spaces. 

Although the re sult s of the present section have considerable 

interest in t hemselves, especially as a starting point for ful'the r work, 

t h ey are here directe·: almost entirely toward the differential e . ..: uation 

p robl er.i whic:1 wi ll be discus 2ed in (14 .8). The manipula tions made :possible 

by the notion of composite spaces s eem to present a very glib way for 

proving theorems. ~.::e shall., of course, make free use of the notation 
3e.~+l~k 

introduced in,._(~ 2., tt-). 

Theorem {14 .71) Let Pi (x) (i = 1, 2, · · • ,k) be k pol;m omi als, 

of degree ni on E to E1 respectively. Then p(x) = (p1(x),P2(x), ••• ,pk(x)) 

is a polynomial of degree non E tot E1, where n = ~ n1 • In particular 

if Pi (x) are all homogeneous of degree n, t 11en so is p(x). 

Proof: If x,x 1 are t wo points then \l p(x) - p(x') j\ is the 

. (I greatest of l\ Pi (x) - Pi(x') !· Hence p(x) is continuous. 
n 

Let P1(x + 1'Y) = 7 ~r k. (x,y), where, of course, if the ~of\ 1r 

degree of Pi is less than n s o~ e of the k's are zero. Then 

K 

Hence p(x + ).,.y) is a polynomial of degre i? ~ n on AlE]to f.\E1 • Let (x,y) 
l,-:.{ 

take on value s such that for s ome j kjn ~ O, then the coeff icient of 

): in the last member of ( 1) i s different from the zero. Hence p(x + NY) 

is of degree eaactly n. 
o+ ctec,r-e.e l-'\ 

If p1(x) are homogeneous~we have 



Theorem (14 .711) If p1().) in the last theorem are homogeneo us of 

degres n, then mn = max mpi. 
- i 

Proof: mp = max~ -n( x)~ 
x l x j\ 

= max I\ (I? 1 ( x). .• • nPk( x) J I I 
. x /l xlJ 

= max 
X 

ma.
1

x /l ~ // = max 
if x,\ i 

Theorer:1 (14.72) I f f
1

(x) (i = 1,2,··•,k) are analytic r1(x
0

) 

at x0 on E to E1 respectively, then f(x) s (f1(x),f2(x),' •.• ,fk(x)} ie 

analytic r 1 ■ mtn r ! ( x ) on E t o lT ~ . 
i · l O CX) 

Proof: For simplicity take x0 = 0. Let f1 (x) = ~ h1n(x), 

and ho(x) • ( h1n(x),··•,h1m(x) ) . Then by Theorem (14.71) hn(x) is homo­

geneous of degree n and by (14.711) i t s modulus is the greatest of mhin· 

Hence 
-l 

lim (mhn) n = lim 
n~ n--,.oo 

Now let f be ~elected so that 0 ~ f < r'. Let M E mp Df f 1(o). 

· Then clearly \I ho(x) 1[ · <l.!\f I[ , so that mhn ~ r Mn• From this we have 

l _1 
- M ,n 

lim (~) n = lim ·, ~ ) = f 
n ~ n-)cx:) '- J 

(2) 

S1nce P is at our dis~osal t he inequality (2) proves in conjunct i on with 

( 1) tha t 
_1 

lim (mhn) n = r' 
ll-;?00 



That L~(x) converges to f(x) is evident since the difference 

Theorem ( h:07 3 ) Let h'x) be a homogeneous polyµomial of degree· n 

on E to E'; t i en the rth differential of h(x) considered as a function · 

of the composite variable (x,61_x, • ••, ArJ) on Er+l to E' is a lso a- homo­

geneous 9olynorr;i::.l of degree n. Its modulus is not greater than 

n 1 h 
( n - r ) ! IIln--n 

Proof : Let us use the re~resentation of .{13.83 ) and write 

\ie wish first L ~=.rove that drh(x) i s continuous i n the variable (x,.d1x, 

· • • ,~rx). -iie observe that dln(x) when expressed in terms of the nolar 

is the sum of ½er.Jr,JS of the type 

h ( BX + / \. X + • -. • + j x) 
J! in-s 

(2) 

where s is an integer. :But the argunents ex + A.1 x + · · · + J 1 x are 
l n-s 

continuous in the variable (x, J 1x, · · ·, d rx) and drh(x) being the sum of 

conti nuous functions of continuous functions is continuous. 

If in drh the argument (x,~1~,•••,I.Jrx) is replaced by 

( x +/Ju• [ 1 x +r [, x' •·· 1\ x +~ 1" x' •·· 1 , x +'\ A x•) the result . ' · 1 ~ · 1 ' ' u r A ~ 1 ' ' 1-.- r /\ LJ r 

h a polynomial in)-., since t he same t h ing is true for the expression 

( 2). 

Therefore drh is a polynomial in (x,t1ix, · · •, £\rx). That it 

is h omogeneous of degree n may be proven b y replacing A ix by }_L.1 ix 

and x by ix i n ( 1) . 

Bl 



As for the modulus of drh we observe that 

.Theorem (14.74) If f(x) = f h:n(x) is analytic at x = 0 on E
0 

0 
of E t o E1

, then its r th differentfal · is analytic in (x,~x, · • • ,4x)on E
0

Er 

to i'. 

~: Let us write X a (x,~x,, •• , J rx) and ~(X) = drL1n(x). 

Then b •7 the las t theorem I\i(X) is a poly,·omial of degr.ee n on Er+l to E' 

and is therefore in particular on E
0

Er to E'. Since~ is by the 

last theorem not g reater than ( n ! ) 
1 

the r adius of analyticity is not 
_J. n - r • . . _l 

less than lim (ffinbn) n = 1!m ( n 1 
1 

~11n) n = r"(O). 
n➔oo n➔ oo (n - r). 

Partial Differentials 

o. r~91t.)"' 

If f(X) = f(x1,x2, .•• ,Xu) is a function on~(~1E1 )0 to E' 

and if on (Eic[~EJ) 0 to E1 , f is differentiable q~ ~ at X0 = 
(xi,xz, ... ,xk)o fxk<xo; ~ xk) is called the partial differential with 

respect to Xk:• ~ Aa 
The existence of fxk(X0 ; ~xk) for each k does not necessarily 

imply the existence of fx(X0 ; Ll i), the dif f erential of f with respect to 

the composite variable X. However, the converse is true; the existence 

of the differential fx(X
0

; 6 1) at a point X0 implies the existence of all 



the partial di f ferentials f at X
0

• This is shown in: 
Xk 

Theore~ (14.741) Let H(X) be a homogeneous ~olynomial of degree 
k 

n in the •1ar iable X ~ (x1 , · · · ,Xn) on space vEi to E1 • Then H(X) is a 
k 

homogeneous polynomial of degre e n on any subspace of TT Ei obtained by 
1 

equating to zero certain of the variables x. 

Proof: Let Y denote a typical el ement of the subspace of 

k Tif Ei ob t ained by replacing by zero certain of the x'a, say ~ 1, 

x_p+2,•·•,xk> so that Y: (x1,···,~) ■ (x1 ,••·,Xp,0,0,··•,0). Now 
. . k 

since Y is defined as a p oint of a subs:pace of"G}Ei, H(Y) must be con-

t i nuous , H( Y + ~ Y
0

) must be a polynomial in 1' and _we must have 

H(A Y) = >- D.g(y). These three propeities characterize H(Y) as a homo­

geneous_ poly-l1omi al of degree n. 

The s~e procedure may ~e carried out f or any other selection 

of the subset of x's~ 

T~1eorem (14.75) Let f(X) qe analytic r'(0) at I= O, where X is 

(. k \\" c o.,.,, p \ e + e 
an element (x1 ,x2 ,•••,xk) of(1;:_TE1(C\/o E 1 (C),l. then it is analytic on 

any subset of TTE1 obta ined by g iving certain of the x 1 s fixed values 

inside th~ region of analyticity of X. 

Proof: Let x~1,···,~ be fixed values of ~ 1,•·•,Xn, where 

xf<r'(O). T"hen by The oren. (14,C..0 f(X) may be expanded about the point 

( 0,0,•••,0, x~1 ,••·,x!) in the form 

If now ~ 1 ,•••,Xn take on ~he values ~ 1 ,··•,1, H(X) will by (14.741) 
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become a hom?geneous polynomial of degree n in (x1,•••,~). Furthermore, 

denoting by ~ the modulus of the pol~rnomial obtained by fixing these 

variables we have 

)'\ 

Theorem (14,76) If f(X) = f(XpX2, ••• ,Xn) on(Tf1G~}o. •1SJo 
. l'=-\ , 

to E' has a total differentialat X0 , then the partial differentials fXi 

exist and are given by 

where (AX)k= (O,O,··•,lxk,o, ... ,o). 

Proof: The condition for the ex istence of f1 (Xo;AX) is that 

€ (~x ) defined by 

(1) 

( llA X )\ I 0) 

be continuous at ll X = O, and that fx(Xo;~) be linear continuous in tJ X. 

This must be true for all /l X and hence in particular for (Ax1 ,o,o, · · · ,o). 

The cod.ntions above then give that61(~) defined by Gi_(~) 3 G (4x1,0,0,•••,0) 

is equal to 

and is equal to O for A~ = O. But since fx
1 

is linear and continuous 

in 6_x1, it must ~e the partial differential. 



Theorem (14.77) Let g(x) be a function on E of E to E1 of E1 , 
. 0 0 

differentiable ~ x
0

• Let f(y) be a function , in E~ to E11 differentiable 

at y0 = g(x0 ). Then F(x) = flg(x))is differentiable at x0 and the 

differential is given by fg[g;gx(x0 ;6x)] 

Proof: Define ' 

f 1 (ti Y) = \I l y I\ [ f( YO H Y) - f( Yo) - ty< y O; Av)] (ti yf.o) 

t:/0) = 0 

f2(Ax) = II l x I\ [ g(xo + c:l x) - g{xo) - gx(xo ; tlx) J (.dx/.0) 

E- 2< 0) = 0 

so t hat by the definition of differentials €1(~y), G-2( &) are continuous 

at iJ. Y = 0 and ~ x = 0, res3)ectively. 

l!ow 

= r(g( x0 + ll x) - g( x0 ) + y 0 ) - f( y O ) 

= f ~ 0 + gx(x
0

;ti x) + / lox ' ' G"z(llx)) - f(y
0

) 

= r~(y0 ;gx(x
0
;bx)) 

+ l 1 
1 x 1'/· { ,iA.zlj I"- ,· /I 'I 

ii ~ X I 

where 

Observing the linearity in ~ x of gx(x
0

;.1x) we see that (A
1 

Y :\!) remains 
/J,... x 

(1) 

bounded ss Sx t en1s to zero as does the bracketed e~ression in equation (1). 

Therefore the derivative of F(x) exists at x
0 

and we have 



Theorem (14.78) If f(x) a (r1(x), f2(x),··•,fn(x)) is the composite 

of n differentiable functions then 

~roof: Let Lif.(x) = f.(x + t,x) - f.(x), and let 
1 l l 

= /IA X/Jc' ~x) 

where 

14.8 ! Differential Eauation Problem in Vector Space 

In this l est secti on we shal l devote our attention to the 

solution of the differential equat ion dy = f(x,y;Ax). To state t h e 

:9roblem e ... actly; let f( x, y ,Ax) be an function of the variable triplet 

( x, y, &c) analytic at (x0 ,y
0

, 0 ) , on (EiE2E1 )
0

to E2 and linear in Ax. 

It i s Dos s ible to define a function y(x) analytic at x0 on (E~
0
to E2 such 

that y{x0 ) = y
0 

and such t hat 

is satisfied identically in x,4x inside a sui t ably small ne~ ghborhood of 
·-.:: 

the point (x0,y0,Ax). 

In the discus sio ;: v:e shall write x0 = y0 = 0 simply to save 

writing x - x0 and y - Yo• Un~il furtheF -~ent ion is made of the matter, 

we shal l consider t hat al l the spaces are spaces 1(0) .. In order to 

center t he discussion better, let us de rive a number of nece ssary con­

ditions on the solutions of such equations. 



Theorem ( 14.81) If U( x,y) is analytic on ~ E2)
0
to E', and -if y(x) 

Ot\. 

is a:-ialytic at x = o,/%\to E2, and is such that y(O) = O, then 

U(x,ytx,) is analytic on!Ei\to E'. Furthermore, its differential is 

g i ven by Ux [x, y; dX] + Uy [i, y; y~( x;eixil 

Proof: Consider the valuable composite variable X = (x,y) 

of Ei~· lly Theorem (14.72) the function X(x) = [x,y(xU is ancdytic at 

x = 0 on(E0
0
to E

1
E2 • Since y(O) = 0, it is always , os s ible to restrict 

x so that ljX{x)Q is suitably bounded and less than the radius of analyticity 

of U(X) = u(x,y). This then satisfies the conditions of Theorem (14 .67). 

The differential with respect to x of U(X) is by fheorem ( i 4-, 7 7) equal to 

But since X = (x,y{x)] 

we have from Theoren (14.78) 

Hence (1) becomes 

the proof. 

Ux [x,y;LlxJ + UY [x,y;yx(x;~x~, which completes 

(1) 

Theorem (14.82) Let f(x,y;~x) be analytic in (x,y;Ax) on Ei_E;zE1 

to~ at (0,0;0). Let it be linear in AX. Then if the r e exists a function 

y(x) anal ytic at x = 0 satisfying 

y(0) = 0 

y X ( x; AX) = f & , y ( X) ; Aaj 

identically in (x,4x) it rrro.st satisfy the condition that 

be syrn!Iletric in \ x, ~x.• 



Proof: By theorem (14.81) we have 

Since the le f t hand side is syin::.etric in 1 x, ~x the right hand side n;ust 

be also. 

As in the cas e of the classical theory it is, of course, not 

neces sary that the relation (1) above be satisfied identic2l ly in x,y,~1x,¾x 

but only in (x,.Aix,.,1zx) when y has been replaced as a function of x. 

Let us now fix once and for all a function f(x,y;Ax) which 

satis f ies the restrictions ylaced on fin (14.82) and which in addition 

satisf ies the equation (1) above i dent ical ly in x,y,~1x,1x. 

The Symbol 4 

Let U(i) denote any function differentiable with respect t o~= 

(x,y). Let Ux(x,y;tix) + uy<x, y ;tiy) b e its dif f erential. ;·,e shall define 

the symbol 1 by means of the e ·uation 

By ~1u, o~U, etc. we sh&ll naturally mean the same function with bx 
G 

r ep laced by ~1x,~
2

x, •.• If U depends up on other increments A 1x, they 

a re t o be treated a s constant. 

In terms of t i.1 is syrnbo 1 the sy .. .r!:etry '5::::ES~rt1iaam11 t condition 

in (1) of t he preced i ng theorem may be written 

Theorem (14.83) If U(x,y) is a function analytic in (x,y) ·at 
' ; . 

(2t,y) = (0,0) on (EiEz\to E', t hen ~U(x,y) is a.na.lytic in (x,y) at (0,0) 



Proof: Let X = (x,y) denote anoint of the composite space 

E1E2. Write U(x,y) a U(X). By Theorem (14.74) Ux(X,AX) is ana l ytic 

in the composite pair (X,'1.X). 1~ow accor ding to the definition of ~U, 

it is obta i ned sim"9ly b.' writing f(X;~ x) in lieu of A1y in Ux(X,AX). 

I f we make t tii s replacement in LUC we have 

Now by (14 .72) the right hand member of (1) is, in view of the fact that 

f(X;t.x) is analytic and ~x i ·-- a const0nt, ana l ytic in X. :By (14.72) 

again, the variable pair Z ~ (X,41 1/ is analytic in X, so that 
~ = flri,h:) 

Ux(X,'1X)I = ux< z) 
t1Y = f(i°'; A':t.} 

is a n a naly tic f\:nction of an ana l y tic function Z. Furthermore s ince 

}J Z Q = ma.x ( 11 X I/ , ll lJ X // ) 

we can~ suitably bound the quantity I\X1and, through the linearity of 

JX in 4x, su.:.. tably bound l\ZU so that it always lies insid. e the radius 

of analyticity, of the function Ux(Z). Therefore we may app ly Theorem 

(14.67) to Ux[z(x)J and prove Ux(Z)_ is analytic in X. 

Theorem (14.84) If U(x,y) is analytic &n(EiEz) to E' at (x,y) = O, 
0 

Using the work of the preceding theorem, we have 



Proof: Let us denote by ~•X the function obtained by replacing 

t:;y in~ by f(X,6x). Let us first calculate the differential of ~ix with 

respect to X and an increment~· We have 

Rep lacing L~y by f(X,~x), we obtain 

Now 

(Li!X)xG1;xJ = f6,fx(X,a1 x; 1xv 

· = [o,D2f(X),4ix] 

Taking t he differential of t r:. is with respect to X and an incr ement Ll2X 

we have 

~he last seep is justified on the grounds that Ux(X;AtX) is linear in 

I\ 
its second argument and qua that argument is its own differential. 

Our result t hen becomes on sturing 4 2x and using (2) 

(1) 

(2) 

(3) 

The first term is symme t ric since it is the ordinary s ec ond dif f erential 

of U and t he second is s yrrnnetric i,ecause of t h e hypotheses on f(X,41 x). 

Theorem ( l •i , 85) If ~ 32 • • • ~ repr esent operators associ a ted 

with- n i ncrements .6
1 

x, • • •, ~x then 



1 s syrrmet ric in all the increment a A 1 x, ~
2

x, · · • ,-'\_x. 

Proof: We prove this by i nduction on n. The theorem is true 

by hynothesis on f for n = 1. As sume the th eorem true for n-1. : ake 

and apply Theorem (14 .85). There results 

But sin ce the left hand side is symmetric in Snon-1' so is the right; 

_for) by the induct ion hypothesis ~-l • • • <\ were commu table. 

Theorem (14186) Let f(x,y,6x) be analytic in (x,yAx) at (O,O,O) 

on{E1EzEi}J) to a complete E2(c) and linear in x. Then if we have 

i dentically in (x, y,Ax) ~ · 

there exists a unique anal J~ic function y(x) satisfying identically in 

(x,l'.lx) the relation 

ahd reducing to zero for x = 0. 

(1) 

Proof: A repeated application of Theorem (l~.81) sh ows that 

if an analytic solution y(x ),' the eqmtions (l} exists, then its succes sive 

derivatives rrro.st satisfy the relations 

Yx(x;t,_x) = f(x,y(x);Aix) 

y;x2(x; 6. 1 x, ~x) = O 2f(x, y; ~ x) 



Conversely if a function is a.na.lytic and satisfies the condition y(O) = 0 

as well as the relation (2) then it is a solution of (1) since in par ticular 

it must satisfy the first equation (2). 

Now 

is a syrmnetric mul tilinear form in A x · • • ~ x since it is manifestly 
l ' ' n 

linea r in '1 nx, and is symmetric by '11heorem ( 14. 85). ~'ie shall prove that 

a solution of (1) i s given by 

y(x) = ~ ~(x) 

where 

The hypothesis that f(x,y;6x) is analytic in the variable 

(x,y,~) as a unit gives us ea sily that f is expansible in the form 

00 

f( x,y ,Ax) - f(X;t..x) =· Z Hn(X,Ax) 
n=l 

(3) 

(4) 

where X is the cowposi t e ( x, y) and where ~ (X,c6x) is a homogeneous poly­

nomial of ,J. eg ree n-1 in X and linear in~ x. 

To s ee this, l et h.n( x , y,Ax) b e the h omogeneous :polynomial of 

degr e e n in (x,y,Ax) in the expansion off. Then 

is a homogeneous polynomia l of degree n in(~,~- But since f and therefore 

~ is linear in Cix, the only term possible in this polynomial is that in 

whic:1. the degre e of p. is 1 and that of } is n-1. Therefore we have 

(5) 



~y (13.93) bn(x,y,Ax) is a polynomial in X = (x,y) and by (5) 

it is of degree (n-1). Hence the HQ{;Ax) of (5) is given by 

----

lTow let ~-- be a dominant for the series (4) so that 

(6) 

Let us define~ ~(X) for i> 1 as the form of degree kin the expansion 

qi.J(x) of b1f about X = O, and for the purposes of synu;:etry define Jf(x) 

a s t he' term of degre e kin the expansion (4) , so that ~(X) = Hic+1(X) 

we have 

and (7) 

where6i+lX is as defined previou~ly the composite function 

We may write A• X in the form of an analytic expansion as 
i+l 

~sing (8) we proceed to pick out the terms of degree k in (7). We obtain 

Srt must be r ememberect of course tha t the expression L(X) involves Ax 
as well as X. 



Let us make the followi ng observat ion on the differential of 

a h omog en eous :9olynomial of deg-ree r. "ti e have b~,: (1~.g2) 

(10) 

In what fo l lows we shal l asswne that t h e increments 

A1x,~x,•••,4ix,••• are fixed and thati\ 6 ix \ji s b ounded, say )( 6 ix l\ 4' w 

It will t e understood that the r:·odulus mr{ s t ands for t he modulus quA X. 

'i.' e s '.:all write~=~ for(i !c l; k > 0 ~and for (i) l; k ~ 0) and shall 

define A1 as t ne gr eater of~ and ma:: l\Lo ll OJ 
o l~\tl 

We now obtain from (9) 

( 11) 

which g ives 
k+l i l 

~+l ;;, fu e r ~ Air-r+l (12) 

·,:e now mc.ke t he f ollowing observat ion: 
1 

let~ (k = 0,1,2, ... ) 

b e :9osi ti v e numbe rs scLctec. a t r c;.ndom so t h e. t ~ g Ai. Le t ~ ( i > 1) 

b e de f i ned L c.uctively by (12 ) with it s inequality sign r e --,lace d by 

equality . The .1 ~ ~ Ai: all ( i,k). 2.1i1is is eas ily provec. b .:i: i nduction ; 

f or, i f v; e 11ave up t o so:::e i, ~ ~ ~, then 

co 
Con sider nov, a set o .:~ p ower series• 11 ( z) = T E; zr 

~ 

*Their convergence do es no t co ~cern us. 



The modified expression (12) the n g i ve s t hat li+l(z) is e ti rr:es t he 

Cauchy produc t of ¢1 ( z ) and the derived series of ~i ( z ); i.e., 

)Tow put ~ = M bk where fJ is the great er of A~ and M of equation ( .;. ) 

and where b = 1/p, 

have 

being that of e quation (4). r; itb. t h is choice we 

-1 
¢1 (z) = (1 - bz) M 

-3 
¢2 ( z ) = ( 1 - b z ) ( Mb e ) • M 

From t h is we obtain in particular 

B~ = 1· 3 •5 • •.•( 2n-1) • (Mbe )~ 

n­<. 2•4•6· • •2n · (11be) M 

- n­= n ! (2Mbe ) M 

:-row going back to tne original se t up) the expres s ions Onf( 0) = L~( 0) are 

multilinear in ~ 1x,4~,···,f+ix and withU~ix \j(W we have 

of 
Therefore the modulus,.h.n(x) of equat ion ( 3 ) s a tisfies 



and lim 
n ➔OO 

00 

w 

2Mb e 
)0 

Therefore the s eries ; ½i(x) L1 (3) defines an analytic f"W'lction y(x) 

such that y(O) = 0 and such tha t its dif f erentials satisfy the sequence 

of relations (2) at the point x = 0. 

The function g(x;.1x) = Yx(x; 6 x ) - f (x,y(x);tx) is an analytic 

function of x wnich together with 8.11 its differentials vanishes at X=O. 
00 

Since i n any anal ytic function F(x) = L Hn_(x), the differentials dnF(X) 
0 

satisf~ the rela t ion 

the function g(x;~x) must be ident i c&ll;'.l zero. Therefore y(x) = 'f_ h (x) 
0 n 

is an analytic solution. I t is furtnerr;ior~: uni q_ue since the calculation 

of r1u(x) i s uniquely indicat ed. by the sequence of relations (2), together 

wit 1.1 the condition y( O) = 0. The theorem is t herefore proved . 

. It may be noted i n concl ud.ing ti1is section that t he formal 

steps of Theo~em (14 . 86) and the inequalit ies used are independent of the 
o.te 

fact that the s-pa.ce s~E(C ) , except in so f a r as Theorem (1 4. 67 ) was used 

to justify the manner of obt aining (9). e bel ieve t hat the analogue 

of (14 .67) may be provea for s~aces E(R) at least inside a sui tab l y restricted 

region, but we have not yet succeeded in doing so. 



Part 2. 

VARIOUS THEOID:.~S ON THE REPRESEt'l""TATIOU 

OF 

FUNCTIO:JAL FORMS AND TRA:t;r8FORMAr ·IONS BY 1:EA.Ns OF 

STIELTJES INTEGRALS 

21. Introduction to Part Two. 

In this second part we shall give a proof of t he represent­

ability by means of multiple Sti eltjes integrals of the most general 

multilinear form on the space of continuous f unctions to the space of 

real numbers. We shall also g ive a proof of the generalization to Ri emann­

Stieltjes i nt egr als of Arzela 1 s t heorem on necessary and sufficient 

conQitions for t enn by te rm int egr acility of a convergent sequence of 

Riemann integrable f unctions. 

Tne proofs given ar e b J el ementary methods; i.e., without the 

-J.Se of any but the more el ementary theorems of point s et theory. We shall 

ass ume familiarit y with the definition of and the more or less standard 

properties of s i rrrple Riemann - Stieltjes integrals and of functions of 

limited variation in a single variable. Also we shal l assume the funda­

r-:·.ent al t heorem of F'r ederic Riesz on the representation of linea r con­

tinuous functions by means of simple Riemann- Stieltjes integrals. The 

majority of the assume d theorems and definitions are s tated in section 22. 



22. Preliminaries .QB. Notation and Results Assumed 

22.1. Subdivisions of!. linear interval: 

Let (a,b) denote a fixed closed interval of the real x-axis. 

By a subdivision of (a,b) we shall understand division of (a,b) into a 

finite number, n, of closed intervals (xi, x
1
+

1
), where (i = O,l,··•,n-1), 

99 

and where a= x < x1 ( •·•<x = b. o n Such a subdivision we shall designate 

by a single symbol A. In general, ~,tl' ,A",•••, etc. will denote distinct 

subdivisions of (a,b). Two subdivisions A and A' are said to be equal 

when they have identical points of division; this equality is expressed 

by A== ~'. If every point of di vision of a subdivision A is also a point 

of division of a second subdivision A', then~ is said to be included in 

. A' and the fact is expressed by the formula ~ f ~• . If .6 ~ 4' and if .4' 

•contains a point of division which is not a point of division of A, then 

.6 is said to be properly included in A' and the fact is expressed by 

/lC /:J'. If /l and ,!) 1 are subdivisions and '1 11 is a subdivision which has 

as its points of division all the points of division ofAand 4 1 , and 

those alone, A 11 is called the superposition or sum of A and 6 1 ; we denote 

the superposition by ti 11 = A+ A'. By the norm or modulus of a subdivision 

J!,.we mean the maximum of the lengths of its intervals. The syrnbolll~II 

is used to designate the norm of~. The necessary properties of these 

relationships among subdivisions of (a,b) are given in the following: 

Theorem ( 22. 1l): Subdivisions of ( a, b) being denoted by 4, A', A", 

the following relations hold: 

(I) If l& g 6 1 and 6 1 ~~ 11 then Ll~t;.'1 

(II) If ~ c A' and .A' ~ A" or if ~ ~ .1 1 and~• c A 11 

then Ac 6" 



(III) ti+ '1 1 = A I + .A 

(IV) (LI+ A') +L1 11 = '1 + (Ll' + .1 11 ) 

( V) If '1 u = l1 + A' then A ~ c1 11 and .4 1 ~ -.1 11 

(VI) If fl~ '1 1 then II.All ~ Ii i! 'If 

( VII ) If fl + ~' II ~ / I 411 ; II A + A ' II ~ t1 Ll I 'f; 
Pfoof: Properties (I),•·•,(V) are itr1Dediate consequences of the 

definitions. To show property (VI) it is sufficient to obsetve that 

every interval of~• lies inside or coincides with some interval of /j. 

Property (VII) is a consequence of properties (V) and (VI). 

22.2. Subdivisions of~ Rectangular Hyperpa.rallelopiped. 

Consider a rectangular cartesian hyperspace of n dimensions 

whose points are given by coordinates xl, ... ,xn. Let Rn be a fixed 

rectangular hyperparallelopiped whose projection on the x1-axis is the 

closed interval (ai,bi) (ai bi; i = 1,2,•·•,n). In brief, Hn is the 

. set of points whose coordinates satisfy the inequalities ai ~xi~ bi. 

Now for each value of i (i = 1,2,•·•,n) let Ai designate a subdivision 

of the linear interval (a1 ,b1) by points x~,·· ·,x!
1

, where ai = x~~xi, 

< · • • < x~ = b1 . ~ is by this process divided into closed hyper­

rectangular cells mix m2 x ··• x ~ in number, a given cell being 

made up of those points whose coordinates satisfy the inequalities 

x}
1 
~xi~ xji+l' (i = 1,2,••·p; J1 = 1,2,•·•,mi)• Su.ch a subdivision 

of Hii we shall designate either by a single symbol A or byd1 -~2 ••• dn, 

where A1, a2,··•,~n are the subdivisions of (a1,b1),·••(an,bn) which 

produce A. The equ.i valence of the symbolisms will be expressed by 

writing Ll !! LJ1 .1 2 ••• }.n. Two subdivisions ~ !! fl 1.62 ..• An and 



~ 1 •~
1 !A 2 ' •.• ~n• of Rn are said to be equal if lli = ti' (1 = 1,2,•••n). 

A subdivision A= f,1.,J2 .. •/jn is said to be included in '1' a ~1•42' • • ~• 

it J i ~ t:1 1 ' ( i = 1,2, • · • ,n). Th is fact is denoted by ti & L1 '. tJ.. is said 

i C •t 
to be properly included in~• if at least one of the inclusions~ = ~1 

is proper; in t his case we shall write Llc '1 1 • The sum or superposition Ll" 

two subdivisions Ji • ~1 . J 2 ••• A.n, A'= '1 11..12 ' •··An' if 8n is defined by 
I 21 , 

".f" !! (.1 1 + ~l )( A2 +~r )··•{L1n + An') and is written 6" = ..1+.L1'. 

Finally the modulus or norm 11~1 of A s t11tP of Rn is defined as the 

greatest 4f ti A' il , •••,JI tin!/ . We have, relative to these relationships 

Theorem (22._21): 

are subdivisions of Hn, then the following properties hold: 

{l) If L1~ A' and J ' ~ ~ u then A g L1" 

(II) If ;j c A' and Ll ' ~ Ll II or 4 i L\• and L] ' c A II then Ll c "'1 11 • 

(III) .1 + j I = LJ ' + /j 

(IV) ( fj + 4 ') + Ll " = L\ + ( 1} + ti.") 

( V) If ti 11 = L:i + Ll ' then L1 g A II and A ' § L1 • 

(VI) If A ~ A' then . lli1 II ~ II~ ' /l 

(VII) I I 4 + Li 'II ~ II D /I ; I I A + l ' ll ~ II A' fl 

Proof: Each of the properties is an i mmediate consequence of the 

definitions and of the corresponding property sbown for subdivisions 

of linear intervals in Theorem (22.11). 

22.3. Differences of Functions wi th Respect to Subdivisions. 

Let !(x) be any real function of the real variable x def i ned 

for a~ x ~b; let~ be an arbitrary subdivision of (a,b). Let 

a = x0 < x1 c:C • • • ~ Xui = b be the points of di vision of Ll. We shall define 

[j1/, the difference of , with respect to the interval (xi,xi+l) of A, by 

lbO 



• 
Let ~(x1,··•,xn) be a real function of x1,•·•,xn defined over 

a hyperparallelopiped Hn· Let h. a L11J 2 • • •/J.n be a subdivision of Rn· Using 

the notation of (22.2) we shall refer to the cell of whose projection 

on the x1-e..xis is the interval (xj
1

, xt+ 
1
) · ( i = 1, 2, • • •, n; J1 = 0, 1, · • • ,m1_ 1) 

as the ce_ll (j1,J2,•·•,jn). We shall define the difference, /\..i I 
-J1J2, • · ·Jn ' 

of </(xl, • • • ,xn) with respect to the cell (jl'j
2

, • • • ,jn) by means of the 

formula 

where the symbol ~3i is regarded as an instance of t~e operator ~j defined 

in the immediately preceding paragraph, and is interpreted as operating 

upon all that fo H ows it quA function of x1 • For example, if n = 2, we 

have 

1:, Jiji s 1it ~ ;/(xl,x2il = LlJljJ(x'.l. ,xjz+l - d(xl ,xj2;J 

= !(xJ1+l'x;z+l) - !(xJl,x~z+l) - !(x31+1•:EJ2) + J(x}l,~2). 

22.4. Sets of Linear Intervals 

Consider again the closed linear interval (a,b). Let 11, 

12,•••,Ik denote k closed intervals contained in (a,b). We shall employ 

the cocrnon usage of point-set theory in def ining J, the sum of I 1,I2, •• \Ik, 

as the set of points contained in at least one of the intervals I 1,•••,Ir 

It is shown as one of the elemenpary theorems of point-set theory that 

such a set J is made up of a finite number of closed, non-overlapping 

sub-intervals of (a,b). It is convenient to write J = I 1 + I 2 + •·• + Ik 

and the theorem cited states that there always exists a second set, 

Ii,••·,1rii of non-overlapping closed intervals such that J = I1 +·•·+I~. 



Let J be the sum of the non-overlapping closed intervals 

I1,r2,·•·,Izn, and let A be a subdivision of (a,b). If each end point of 

the intervals I is also a point of division of L) then we shall say that 

J is included byL'.) and write Jcb. It is clear that if Jc.A then J may 

be regarded as the sum of those intervals (xi, xi+l) of~ which are con­

tained in J. 

By the sum J + J 1 of two such sets of intervals we shall mean, 

as is usual, the set of points occurring in either J or J 1 • The sum of 

two J's can be shown to be a J. 

22.5. Functions of Ljmited Variation. 

We shall now recall briefly the definition of a function of 

limited total variation and for convenience state some of the standard 

theorems on such functions to which it will be necessary to refer. 

Let /(x) be defined on the interval (a,b). Let J be a set 

of non-overlapping closed intervals I1,••·,1m· Let ~be a subdivision 

of (a, b) such that Jc .Ll • Then the number VJ~ I defined by 

where the surrmation extends over all i and such that the interval (s1 ,x1+
1

) 

of~ lies in J, is called the variation of </ over ~ With respect to /1. 

If there exists a positive number M such that for alll1for 

which J 4:; ~ we have VJ-f /< M, then / is said to be of limited total 

variation over J. The lower bound of numbers M having this property is 

called the _total variation of I over J and is denoted by VJI• 

In these definitions the set J may in particular be taken to 

be the interval (a,b) itself. In t his event we denote the variation of 

Io 2.. 

. \ 



r/ over (a, b) with respect to .6 by V(a, b) ,r/1 and the total variation of , 

over (a, b), if it exists, by 'ca, bl· -

The folloWing properties of functions of limited variation are 

standard. 

Theorem (22.51) If r/(x) is of limited variation on (a,b), then 

there exist two bounded positive monotone increasing functions p(x) and 

n(x) such that 9(x) = p(x) - n(x). 

Theorem (22.52) If 1(x) and ,/Ax) are of limited variation on (a,b) 

and c is a constant, then the functions ¢(x) + tJ..x), l(x)•!(x) and c•r/(x) 

are of limited variation and we have moreover 

V (a, b) ( ~ + </JJ ~ V ( a, b) r/ + V (a, b )lf' 

V (a, b) c • f ~ ( ma,:c i) ·~a, b) Y, + ( rna}(c ?jl ) • V (a, b) ¢ 

Theorem (22.53) If ~(x) is . of limited variation over (a,b) and if 

J is a finite set of closed non-overlapping sub-intervals of (a,b), then 

r/ is of limited variation over J and V(a,b)r/ ~ vJ, 

Theorem (22.54) If J and J' are two sets of closed non-overlapping 

sub-intervals of (a,b) and are mutually exclusive except possibly for certain 

of the end points of their respective intervals and if /(x) is of limited 

variation on J and on J', then l(x) is of limited variation on J + J• and 



Theorem (22.55) If ;(x) is of limited variation on (a,b), then 

at each point x (a<:: x ~ b) ¢(x - ~) = lim r/(x - h) and at each point 
h~+o 

x (a~ x.t:::b) </(x + 0) = lim ~(x + 0) exist. 
h+-+0 

Definition. If r/,(x) is of limited variation on (a,b) and If, 

(1) ~(a) = o, and (2) r/,(x) = l(x + 0) (aL:: x~b), then ,ex) is said to 

be regular. 

1 

22.6. Simple Riemann-Stielt.jes .Integrals and Their Properties 

In tenns of our notation the definition of the integral 

f(x) d/(x) may be stated as follows: 

Let t(x) and r/,(x) be defined over (a,b). If there exists a 

number I such that to 6 >0 corresponds ~/). 0 such that for any subdivision 

LI •atisfying llb// <oe we have 

where }1 is any point in the interval (xi, si+l) of D, and where the 

sum::ation extendes over all intervals of b, then the number I is called 

the Riemann-Stieltjes integral of f(x) with re·spect to !(x) and is de­

noted by / t(x) d~(x). 
a 

The following theorems conceming Riemann-Stieltjes integrals 

are well known and we shall not indicate the proofs. 

Theorem (?2,61) If /f(s)d~(x) exists and if c is an interior 

. -point of (a, b), then afl f(x)d~(x) and t f(x)d/(x) exist and Ja C 

l 04-_ 



A9 a corollary to Theorem (22,61) it follows that if l f(x)dl(x) 

exis_ts the~ f(x)d~(x) exists when c, d, are the end points of :ny closed 
C 

interval inside (a,b). 

Theorem (22.62) If t(x) and ~ (x) are both integrable over (a,b) 

with respect to¢, and if c1 and c2 are real constants then c1f(x) + c2t (x) 

is integrable with respect to; and we have 

Theorem (22.63) If f(x) is integrable over (a,b) both with respect 

to ~(x) and with respect to X(x) and we have 

Theorem (22.64) If/f(x)d/(x) exists then /b¢(x)dfCx) exists and a · / a 

T)1e2rem (22,66) Itj_bf(x)d~(x) exists, if ''(x), the derivative of 

~(x) exists, and ifibf(x);'(x)dx exists as a Riemann integral, then 
a .. 



Theorem (22.66) If f(x) is continuous and if t(x) is of limited 

variation on (a,b) then rf(x)dl(x) exists. 
a 

By the maxirrrum oscillation ~ f of a function f(x) with respect 

to a sub-division~ we mean the greatest of the numbers (f1 - J
1

) where 1
1 

denotes the upper boi.m.d of f(x) in the interval (x1,Xi+i) andJ'i the 

lower bound in the same interval. 

Theorem (22.67) If ~(x) is of limited variation V(a,b)~ and if 

rf(x)d9(x) exists then 
a 

Theorem (22.68) If ~(x) is of limited variation V(a,b)¢ and if 

}t(x)d9(x) exists then 
a 

Theorem {22.69) If ¢(x) is a regular function of limited variation 

then the upper bound over all continuous f(x) of the expression 

b J f(x)dl(x) 
a ___ _ 

is equal to V(a,b)¢ 

Theorem (22.610) If ¢(x) is of limited variation on (a,b) and 

fn(x) is a uniformly convergent sequence of continuous functions tren 

I o C.-



22.7,. ~ Riesz Theorem .Q.!!. Linear Continuous Functionals 

In tenns of definitions and notations of part I the definition 

of a linear-homogeneous continuous functional of a function continuous 

on (a,b) is silll!)ly that of a homogeneous polynomial p(y) of degree one 

on F( a, b.) to R, where F( a, b) denotes the space of real continuous functions 

y on ( a, b), !IYII being defined as ma~ I YI . In the present discussion it 

seems convenient to employ the notation of the classical theory of functionals. 

The general linear-homogeneous continuous functional of a continuous function 

y( t) ,( a ~ t ~ b) we shall denote by L [y( t )] , where t is, so to speak, 

a dummy. The following important result is due to Frederic Riesz•. · 

Theorem (22.71) Let L[y(til be a linear homogeneous continuous 

functiona l of a cont inuou.s function y{ t) (a ~ t ~ b). Let '7 n ( t; -c) be a 

function of t depending upon two parameters n, (n = 1,2,3, . .. ;a~ T ~ b) 

and defined by 

"?n(t;'t) - 1 

rn(t;i-) - 1 

'{n(t;t) = 0 

n(t - i) 

( a = ?: + l /n = t = b) •• 

then the following conclusions hold. 

I. For ( a~ z-~ b ) lim L[rzn(t; t')] exists. 
n +OO 

II. The function~(~) defined by 

<'{' {1') = lim Lf1ln(t;t)] a.::: r ~ b 
n-+oo 

<t(a) E 0 

•F. Riesz--Ann. Scientifique de l'Ecole. Norm. Sup. Ser 3, Tome 28, p 33, 1911 
Ibid, Tome 31, p. 9, 1914. 

**It is unnecessary to define Y?n( t;~) for the case "'t'~ b "' 1:: + 1/n, since 
for fixed t and sufficiently .large n this inequality cannot hold. 



is of limited variation on (a,b). 

III. For any continuous y(t) 

r y( t)dr:f( t) = L[y( t ~ 
a 

IV. v( )'\' = max 
I 
L~jt)J 1, where 1/y// = max y(t) 

a , b Y IY a ~ t ~ b 

As a corollary we may show that the function ~(t) defined in II. 

is a regular function of limited ve~iation. We have by II. and III. for 

.. 
ct ( t) = lim L ['ln( t; r)] = lim r t?n( t; t) cl.Q'( t) 

n +co n ~ooa 

Using 'I"heorems (22.65), (2...., .61)., (22.65), we have 

where we have put h = 1/n. Now since~(t) is of limited variation it 

follows that ~( t + 0) exists and from the theory of ordinary Riemann 

integrals that the limit as h+O of the last expression in (2) is 

precisely C(( t + 0). Hence we have that for (a.lo t"<b) ct( t) = <!( t+ 0). 

and by the definition ~(a)= 0 so that ~(t) is regular. 

22.8. Functions of Limited l,~ultilinear Variation. 

(1) 

(2) 

Let ~(x1 ., .•. • ~,xn) be defined over a hyperparallelopiped Hzi, and 

let /j !! 1? • t? • • • /Jn be a subdivision of Hn. Let the number VH b ,I be n, 



defined by 

where the slIDll'D8tion extends over all cells of '1 , and where the numbers 

1 n 
~ . , • • · ,€. are taken to be 1 or -1 in su.c_h a way as to make the sum as 

Ji Jn 
large as possible. vli.a,6 ~ is called the multilinear variation of¢ over 

~ with respect to A. 

If there exists a number M ,>O such that for all subdivisions /J we 

have M>VH ~;, then I is said to be of limited multilinear variation. 
, n' 

The lower bound of numbers M having this property is c~lled the multilinear 

variation of; over~ and is denoted by V~~-

Joe 

The properties of funct i ons of limited multilinear variation which 

we shall have occasion to use will for the most part come as by products 

in the argument. 

A function! of lirr. ited multilinear variation is called regular* 

if it satisfied the conditions 

(i = 1,2, · · • ,n) 

except upon the boundaries of Rn 

(2) ;(al,x2, ..• z:ll) = ¢(xl,a2, •.. ,xn) = 

22.9. Definition of Multiple Riemapn-Stielt,jes Integrals 

Let f(x1 ,·••,xn) and ~(x1,···,xn) be 4efined over~- If there 

exists a number I such that to every E' > 0 corresponds aE> 0 such that. 

for any subdivision D. of Hn, satisfying IIAII < ~ we have 

•This definition is due to C. A. Fischer. 



J l 0 

1 ,-2 ,.n 
. where (tj ,c,j ,·••,~j ) is any point in the cell (J1,J2,••·,Jn) of.A, 

1 2 n 
and where the surnnation extends over all cells of Ll, then the number I 

is called the multiple Riemann-Stieltjes integral of f with respect to 
(°l bn 

~over~ and is denoted by)_,
1 

,··•, ( f(x1,•••,x?)d¢{x1, ••• ,xn). 
a Jan 

The limits a1,b 1 , are of course simply the end points of the projection 

of Hn upon the xi-axis. 

Since we shall be interested only in a special case of the 

multiple Riemann-Stieltjes integral there seems to be no point in stating 

its more general properties. 



23. Representation of Numerical Valued Functional Polynomials ]?z Means 

of Multiple Stieltjes Integrals. 

23.l. Outline of the Problem. 

We wish to give a. representation as a sum of certain multiple 

Stieltjes integrals on F(a,b) to R, where r(a,b) is the space of real 

functions)(x) continuous on the linear range (a,b) and where /I YII is 

defined as ~4~(x)I. The results on abstract polynomials show the 

representability of every such polynomial as the sum of homogeneous 

polynomials. Theorem (13,4'lr}. The intimate _ connection shown in (,:;.t..2-3) 

between a homogeneous polynomial of degree n and its nth polar, whi ch 

is a mu.ltilinear form, brings the problem of finding a representation for 

a polynomial down to the problem of finding a representation for a 

multilinear form. The representation for the case n = 2 was given by 
b bl 

Frechet•, who showed that a bilinear form B[y1(a), v
2
(t)] could be re­

a al 
presented by an integral in the formula 

where the function u(s,t) is of limited multilinear variation. A new 

I I 1 · 

proof of t his result and a remark as to how the proof for general n could 

be ca.1·rieu out were given by C • .A.. Fischer••. ·.:.e shall give a more or 

less independent proof starting from first principles. We do this for 

completeness and for the purpose ot deriving some relationsnips we shall 

•M. Frechet, Trans. Am. Ma. Soc., V. 16, 1915, p. 215. 

••c. A. Fischer, Proc. National Acad. of Sciences, V. III, 1917, p. 640. 



need in the characterization of the general polynomial on F(a,b) to F(a,d). 

As in the statement of Riesz' theorem it seems convenient to 

employ the notation of the more classical theory of £unctionals. 

23.2. Representation of Numerical Valued Multilinear Functional 

Forms h means of Multiple StieltJes Integrals. 

Theorem (23.21) Let y1 • y1t (a1 ~ t ~ b1J i = 1,2,•·•,n) be n contin­

uous functions on the indicated ranges. Let W ~ W(y1,•··,1n) be a multi­

linear functional fonn in the arguments y. Then there exists a function 

1 n . · ~ · i . u(t ,• , ·,t ), defined for (a1 = t 1 ~ b ), such that for all continuous y · 

the integral 

exists and is equal to W. 

Proof: Let M be the modulus of W so that 

Def ine n continuous functions~- ( t; t ) 
1,m 

(i = 1,2,•··,n) oft depending on a continuous parameter and an integer 

m. By means of the formulas 

Put 

= 1 - m(t - ?: ) (a1 ~ t<t ~ t'+ ljm ~ bi) 

E O (ai ~ TL i- + 1 /m L t ~ bi) 

W(m; -rj = W(ml' • • • ,~; -z-1, • • •-z:ll) 

;;; W [ 1?1 ,m1 ( tl :1:1)' ••• ' '; n,Inu ( tn; '/;nil 

\12 



We shall now prove by induction on n that 

lim lim ••• lim W(m,zj 
m -,..oo 

n 

exists and that u = u(,?-, ••• ~) 

. defined by u( --r:1, · • • ,,l) = lim ••• lim W(m;_i-) (aiL: -c- 1 ~ bt) 
ml--J-00 Tn.if<D 

u(al,--c--2,··•,?) = u(f,a2, ••• ,0n) = 
u(~l, .•• ,tn-1,an) • 0 

n 

..• = 

~ M L/IY1ll •·• IJ Y1-1 ll ·IIY1+1jl .. ~IJ ynll ~iYi 
i=l 

(2) 

(3) 

where ~iYi is the oscillation of y1 with respect to the simple subdivision 

Ai, and where (t~ ,···,~~ -)is a point in the cell (j
1
•••j ) of • 

Jl Jn n 

We first observe that _(2) and (3) are, for the case n = 1, 

true by virtue of Riesz 1 theorem. 

u(-cl) = lim 
ml~ oo 

u(a1) = 0 

For n = 1, equation (2) becomes 

and the existence of the limit is proven by Theorem (22.7). !~equality (3) 

•-becomes 

•which is true by (22.7) and (22.67) 



A 
Now I qua functional of Yn, is linear and continuous. From 

the Riesz theorem (22.7) we have that v = v(y1,•··,Yn-l•r) defined by 

v=O 

exists, that (4) 

and that (5) 

»nploying Theorem (22.67) and equations (4) and (5) above we obtain 

(6) 

Now, for each value of~' v § v(y1,••·,Yn-l;t°) is a multilinear form in 

y1,···,Yn-li for, if c and c' are constants, we have 

= lim 1f ~yl + c•y1• ,Y2 , • · •,yn-1; '7 1 
m -+oo n,m 

= lim {c W [yl' .. ',Yn-l•'?n,J + c 1W[!]_,···,Yn-l,'~1,m7} 
m-.co • 

(7) 

and similarly for the other arguments f• 

Also~ (8) 

Having proven by equations(?) and (8) that vis a IDlilltilinear 

fl 4 



functional in (n - 1) arguments we make use of the inducti&n hypothesis. 

Writing out the equation for v analogous to (2) for Wand assuming the 

induction correct for (n - 1), we have the existence of 

:But from the definition of v, this last expresse, tp.e iterated limit (2). 

Thus the existence of u is established. 

We now proceed to prove the inequality (3). 

Let ! = L Yn(c jn )j j v, which is simply the surr. occurring 
{an,bn) n n 

in the left hand side of (6). Now! is a linear combination of terms of 

the type v(y1, .• •,Yn;tj) and is hence a multilinear form in Y1,···,Yn-l• 

Moreover, fror!" the equation (4) we have that 

f i J ~~It~ /yn( C'j ) / ·V v 5 M//11 /1 • • •I/Y JI 
Jn n (a"b 11 ) n 

(9) 

A 4 
Hence a qua functional of y1, •• ·,Yn-l is of modulus les sthan or at most equal 

/' to M1iYn/J • Assuming now the indu~tioh hypothesis we write an inequality 

analogous to {3 ) in which we replace W by~ and ~ e d1 ••. Jl by the division 

.,., 1 •• • /Jn-1 ~ defined over the hyperparallelopiped Rxi-l whose points 

(t+, •.. ,tn-l) satisfy the inequalities a1 ~ t 1 ~bi (i = l,2,·•·,{n-1)). 

This gives 



when 

s a 0 

when for any i<- n -r;1 • a 1 . 

1 2 ·•· n-1) and , , , 

Replacing a by its original def ining expression and using the 

fact that the limit of a fi nite sum is the sum of the limits, we have 

that 

(11) 

Placing the result (11) in the inequality (1) and rearranging the multiple 

su::-. we have 

Combining the inequalities (12) and (s) we obtain the inequality (3). 

'This completes the induction. 

Now since y
1

, • • • ,Yn are Ci,Iltinuous, we have that '1U' 1-+ 0 with 

II ~1 II , and hence, that the right ~d side of (3) t ends to zero with jl .t:l II . 
Therefore, by the definition of a multiple integral we have 

This completes the proof. 

~be function u(r1,•··,tn) defined in equation (2) of the last · 

theorem we shall call the kernel of the multilinear form W. Using the 

formulas derived in the last theorem it is easy to prove: 

Theorem (23.22) The kernel u(r1,···,t'n) of a multilinear form 

Wfy1 , ·••,yrJ is of limited mu.ltilinear variation. 



Proot: We shall prove this result by induction on n. For n = 1 

the theorem is a trivial consequence of (22.7), for in that case the · 

def inition of limited multilinear variation .coincides with the ordinary 

definition of limited variation for a linea.r interval, and by (22 .7), we 

have V u = M. 
(a}b1 ) 

argunents Yi,·•·,Yn-1, the kernel u(t1,···,tn-l) satisfies 

Assume now tha t for any multilinear form Win (n - 1) 

jf 7 

where M is the modulus of the form W'. The functional v = v[y1,•••,Yn-l;?fJ 

is for each value of ~n a multil i near form in Yi,•••,Yn· Hence for any 

subdivision An of the interval (an,~) and for arbitrary choice of the 

numbers fJ. = tl the expression W'5 L ~J. L\nj v is a liliear combination 
n (an,bn) n n 

of v•s and is therefore also multilinear in y1,•··,yn-i· Moreover, using 

• equation (4) (23.21) we have 

so that the modulus of w cannot be greater than M. The kernel of w is 

given by replaci ng each argument y1 by~
1 

(t;1f) and p4ssing to the ,m . 

iter ated limit a s in (23.21), equation (2). The kernel of i s thus shown 

to be .L en Ll n u. Under t he induction hypothesis we have theref6re 
(an, bn) Jn jn 

that 

Rearranging this sum we have, writing /J e ti• tP• • •!Jn, 
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Hence the induction is complete, and we have that the kernel u(-i-1 , ••. ,tf) 

of a form W fy1 , •.•,yr} is of total multilinear var iation not greater than . 

M, the modulus of W. 

There is a certain property which .holds for functions of limited 

multilinear variation defined over an Hn, which functions, like u(z1,··•,~) 

. used in the last two theorems, satisfy the condition of vanishing whenever 

one of the arguments, say )- takes on the value ai; namely, that if we keep 

certain of the arguments fixed and consider u(-z?-,••·,7?) q~ function of 

the others, it is of limited multilinear ~ these lat t er. We shall prove 

this in: 

Theorem (23.23) If u(z--1 , • • •, -z:-P) is defined for ~: (ai ~ ,ri ~ bi) and 

is of limited multilinear variation VHnu over Hn, and if we have u = 0 

when for any 1, T i= a1, then u is of limited multilinear var i ation over 

the hyperparallelopiped described b y any subset of the variables c 1,•••,c:-n, 

t he remaining v;:, riable being held . fixed; moreover the variation over this 

subregion is always les s than or equal to VH u. 
n 

Proof: We shall prove t h is by reverse induction on n. It is clearly 

of no moment which of the v~riables we choose to hold fixed, since by 

renaming them we could put t hem in any preassigned order. 

Let us first prove that if c:1 is given, fixed value r1, then 

u(i1,l,···,1fl) is of limited multilinear variation over the H 1 of the n-

variables r 2, • • .,n. 
From the definition of VH we have for arbitrary a j

1 .j ... 6n· 
n 

I LEjl • • .(:nJ. t>,. . u I ~ VH u 
Hn 1 n J1 .•• Jn n 

(1) 



If f 1 = a1 we have u = O, and the theorem is trivial; if 1;1 = b1, we take 

jl to consist simply of the two divisions a1 and b1 • On summing out from 
1 . 

(1) the range (al, b) we get two tenns, one of which vanishes because of 

1 2 ..Jl u(a , 0 ,···,~) = O, and the other of which is 

Taking Ei = 1 we have from {l) 

For a 1<r1
<b

1 
we taketi 1 to have the point s of division a1, ,r, b1 • 

Summing out the range (a1,b1 ) from (1) we get (omitting the term which 

vanishes indenticahly) 

(3) 

On cnoosing e! = ± 1 and ci = ± 1 so that both the terms on the left hand 

side of (3) are non negative, we have 

(4) 

where e ~i = ± 1 are still at our disposal. 

The general theorem follows at once from this special case, by 

(-1 2 n) fix i ng one more of the va.riables of u -r , 1: , • • ·, 't and applying the argument 

we have ju.st given • . 



cJ, 6 

It is true in general that if u( -r1, • • • ,-11) is of li:.Tiited multi­

linear variation over Hn (a1 = i--1 = b1 ) and if y1 = y1(?!') (i = 1,2,··•,n) 

are continuous that the multiple integral 

exists and is a multilinear fonn in y1,·· ·,Yn• We shall not prove it simply 

for the case where u is restricted, as in theorem (23.23), to vanish 

when ?f = a 1 for any i. The more general case will not concern us. 

As a preliminary, let us state the following lemma which is often 

used in the proof of t he existence oj an ordi nary Riemann-Stieltjes integral 

of a. continuous function with respect .,_ o a function of limited variation: 

Lemma (23.231) If f(x) is continuous on (a, b) and if /(x) is of limited 

variation on the same interval, and if ~ and Zi are t wo subdivisL .. ns of (a, b) 

such that t:.. ~ F, then 

(i and ::\ denoting as usual any points in the 1th interval of J and J' 

respectively. 

Th e proof c omes out at once if we observe that A 11 is equal to 

the sun L. Ajl extended over those subdivisions of K lying in 
( Xi,Xi+l) 

(xi,xi+l) of b. Thus for a typical te rrn in the first sum we have 

(2) 

which gives 



Combining t he inequalities (3) for all i we have 

which is the inequality (1). 

A second leIDr.1a, which we shal l not prove explicitly is the 

following. 

(3) 

Lerrrna ( 23 .232)Let F = L aj .. •j •~ •• • a~ be a multilinear form with 
j ·••jn l n 1 n i 

numerical coefficients aJ.
1 . in the numerical components ej of n 
l·••Jn i 

. i 
ordinary vectors e1 (i = 1,2,•·•,n). Then if I/IJ1fl denotes ~ 1eJ. I, we 

J. i . k 
have 

Vie shall now prove the following: 

Theorem {23.24) If u= u0"l"1 , ••• , -c; n) is d_efined over J\i! (a1 fr,i ~b1 ) 

and h of li:nited nro.ltilinear variat"ion over ~, if u = O when for any i 

/ = ai, and if Yi= yi(~1) (i = 1,2, ••• ,n) are continuous functions, 



1 2 n - -1 T2 -:on 
Le t t:. ■ ~ · LJ ••• L1 and 6 = b • L\ • • • !J 

be two subdivisions of Hn arbitrary except that J ~ X- We wish first 

to establish the following inequality. 

n 

;i M ~ IIY1ll •• • I/Y i-111 • //y 1+111 •• • J/ yx:JI • ~1Y1 (-1) 

where o~i and i]
1 

represent points in the cells of ,1 and [i respsctively, 

and where .1 ~ z. 
We shall use induction on n. For n = 1 the inequality (1) 

is precisely the inequality proved in Lemma (23.231). Let assume (1) for 

n - 1. The subdivisions i::j and 3 and the numbers -r ~ and ~J; will be 
Ji i 

kept fixed throughout t he process; hence we shall denote y1(~~ ) by y~ 
Ji Ji 

and Yi(~ ) by y~ . Now v denotfng a function of~,··! ,rn and possibly 
Ji J1 

i:f of other arguments we define 

ands}, by a similar expression, in which bars are written. The sums in 

the .left hand side of (1) are thus respectively s] u and S,a u. 

Let us first prove thay if we regard s~-lu qu! function of 

--l, then 

(2) 

,22 



1 0 

If c ~ = ± 1 we have 
Jn 

Talcing this last expression for j Fj in Lemma (23.232) and writing 

aJ. . = Aj j u, 8J~ = y~ (i = 1,2, ••• ,n-1), el?- = ~~ we have 
l•••Jn 1•·· n i Ji Jn Jn 

I L EnJ. ll~ csi-1
u) ~ M//y~/ ···IIYn-111 

(an,b0 ) n Jn 
(3) 

Since this is true for every choice of ~nj the equation (2) is established. 
. n 

Now, observing that s;;u = I= ~j 4 nj ( s~-1u), and using the 
(an,bn) n n 

Lemma (a, .231) with f(,n) E yn(~n), ,<1°) = sf-1u we obtain 

(4) 

N0 w rearranging the sum in the first member of (4) we have 

\ -n -n ( n-1 ) \ l n-1 =1 1 ,lfn-1 -:-n L Yj 4j S4 u = L Yj • • •Yj 
1

Yj A Ji•• •4J·. _Aj u 
(a~bn) n n ~ 1 n- n n-r n 

(5) 

Similarly rearranging sf u we have 

n n-1 £ \ -n -n ~ S;:- u = S4 L- yJ. hJ· u 
~ ( a lljln) 11 n 

(6) 



i1f 

Subtracting (6) from (5) and taking the modulus 

(7) 

This last expression is in the same form a s the left hand side of equation 

(1) except that n is replaced by n-1 and u is replaced by 

" 1 n-1 I which we shall now show has a variation qua r, • • • ,1: less than M IY n 11 • 

Using Lermna ( 23 • 232) with e3 i • E' ] i ( i = 1, 2, ••• , ~l ) , 

e~n = Yjn' aj1 •.• jn = Kj1 ... Jnu we have 

(8) 

The induction hypothesis now gives from (7) and (8) that 

n-1 
i1i M IIYnll 5_ II Y1il · • · IIYi-lll ·II Y1+1! • .. ~Yn-lj (1..)41 Y1 (9) 



Combining the inequalities (4) and (9), there results (1) which was to 

be proved. 

From inequality (1) the existence of the integral follows at 

once. Let .ti 1,~
2

, • •• ,t\m, · • · be an infinite sequence of subclivisions of 

~ such that A 1 ~ Ll2 ~ • • • ~ ~ ~ • • • and such that I/Amil+ 0 with ljm. 

//Yi/I being ·fixed and yi being continuous we have that ~i y
1 

and hence 

the right hand side of (1) tends to zero with ljm. Butthe inequality 

(1) is precisely the CO,Uchy condition for the existence of a unique 

limit for the sequence sf u, S~ u,•••,S1 u,···. Call this limit S. 
1 2 m 

We now prove that given e>O we may select d>O so that if jl.'111< ~ 

then _[s~u - 8 / <.. e. _ Suppose e given. Choose d so that if UDI~ ~ 

the right hand side of (1) is less than e/3. Choose m so that 114J~ i 

and !sf u- sl<e/3. LetK:A+~. Then sinceA~Zand4rt~$_ 
m m 

we have from (1) 

and by the choice of m lsfm - s j<e/3 

or jsfu- sl< a 

This completes the proof of the theorem and shows that Sis the integral. 

Theorem (23.25) The multiple integral defined in the previous theorem 

is a multilinear form in the continuous functions yi. 

Proof: In order to show that W = W(y1,··•,Yn) 
bl bn 

= ( ... ( y1(r1 )•••yn(r) du(t',•••,-z!1) is a multilineu, it is sufficient 
)ai i'n 



to show that it is linear and continuous in each of its arguments. 

The distributive property of the sum SJ u with respect to each 

of the functions y1 is evident from the explicit form of Sfu. The limit 

as ll.611 ~ 0 of s:u is therefore also distributive. 

To show the continuity of a linear functional it is sufficient to 

show it at one point, say the origin. If we use LErmna {23.231), taking 

Snu, i i F = 9. = Yj , a = ~ u we obtain 
Ji k j1·••Jn j1···Jn 

allowing /Ill II to tend to zero we have 

which shows that Wis continuous at Yi= O. 

It 1s of interest to show that the integral defined in (23.25) 

can be calculated as an iterated integral and we shall find the result 

useful in proving unici ty of representa.t ion when the kernel u(-t1, • · • ,rn) 

is restricted to be regular. 

1 h'\ Lll+t l1>\€CI r . 

Theorem (23.26) Let u(T ,··•,-(1) be of~limited variation on Hsi: 

(ai ~ r 1 ~ bi) and let u = 0 when t' = a1 for any 1. Then for each r~n 

the iterated integral 

has a meaning and is equal to the multiple integral 

(2) 



Proof: Making full use of the notation introduced in .Theorem (23.24) 

we shall let S denote the multiple integral. The right hand side of 

equation (1) (23.24) is independent of the subdivision K. Letting 11s 11 ~o 

in that equation we have 

bl br 
It is clear that the integral U ej ... I y1 (-r

1 ) • • •yr(-cr)du exists, 
al ) ar 

for, by (23.23) u is of limited variation in ~l, ••• ,~r.. 

Let us rearrange the sum sf u 

(4) 

aDd place (4) in (3). Now b.Y the definition of a multiple integral, U 

is equal to the limit as 1141L12 • • •~ II +O of sru. If we pass to the 

limit with L\1, · · • ,t.r and leave Ll141, ··•/in untouched, the combination 

of (3) and (4) becomes 

(5) 

N0 w pass to the limit with the remainder of the~••• (5) then gives 

This completes the proof of the theorem. It may be observed incidentally 



that by a use of Lemma (23.232) we obtain 

The 1 imi t of ( 6) as!IAiAz • • •Ar !! ..,..0 shows that 

(7) 

Corollary (23.261) If u(-c-1i···~n) is of limited I:QU.ltilin~ar variation 

over 1¾i, then U:: U(~) ~_t ... ;;::\i··•Yn_1du is regular in -d1. 

, Proof: Take U to be the U of the prec~ding theorem with r = n-1. 

Then· by equation (7) (23.26) U is of limited variation. The definition 

of U tells u.s that 

(1) 

and, writing out the formula analogous to equation (3) Theorem (23.26) 

n n-1 in which we repla.ce S.6 u by S 4 u, S by U, we have 

so that the approach is uniform with respect to -r;n, since the right hand 

side of (2) does not depend on -t1. 
n Now since u is regular, we have for all~ that 

lim si-lu_(?fl+h) = s1-1u(tn) 
h ➔ +O 

Since the limit in (1) is approached unifonnly with respect to ~nit follows 



that 

which was to be proved. 

lim u.(rn + h) = U(z;n) 
h++O 

Theorem (23.28) Two distinct regular kernels carmot represent the same 

multilinear form. 

Proof: We use induction on n. For n = 1, the result is well known, 

and is in fact a consequence of Theorem (22.67). For general n, let 
1 Jl 1 J i'~+;~~t · 

u.("t' , • • •~ ) and uC--c- , • · · ,??) be two A regular kernels on iizi· We shall prove 

that tliere is at least one set of continuous functions Yi (i = 1,2, ••• ,n) 

such that 

f Y • • • y du -/ r Yi · · • y du 
~ 1 n i n 

(1) 

By Theorem (23.27) and (23.271) the integrals in (1) may be written res­

pectively as 

where U and dU are defined as in (83.27) for the regular kernels u and u 

respect.ively. Now since U and U are regular it follows that if for all Yn 

then U = U. Now using the induction hypothesis for n-1, it follows that 

since U and U are identical forms in Yi,•·•,Yn-l' we have u = u, which 

contradicts the original hypothesis. 
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24. ! Theorem 2.!!, the Limits of StieltJes Integrals 

In this division we shal l give a proof by elementary methods 

of •a generalization to Riemann-Stieltjes i ~tegrals of the well known 

Arzela theorem on sequences of Riemann integrable functions. 

Let us first prove several lemmas: 

Lemma (24.l) If, is bounded and monotone increasing on (a,b), 

f is an · function on (a, b), and if A. and~ are subdivisions such that 

4 c. jj, then 

and . in general if J CL\, 

whereW1f is the oscillation off in the interval (x1,xi+l 

Proof: Since 

we have 

(2) 

(3) 

Summing (3) over all intervals in J we obtain (2). If J = (a,b) we have (1}. 



Lemma (24.2)· If~ is bounded monotone increasing and if f is any 
b 

function on (s ,b), then in order J f d~ exist it is neces sary and 
a 

sufficient that L w if A1~ ➔ O with~A{~ 
(a, b) 

13 1 

SufficiencY: Sel -ct a sequence of subdivisions l A. nf such 

that /\ Lt [( ➔ 0 and such that tf C. 2!"1 • Denote by SA and S.4 th~ expres s ions 

occuring in the left hand side of inequality (1) of the preceding lemma. 

Thus 

and by hypothesis, the right hand side tends to zero with 1/n. The 

· s eque~ce t SAn ) therefore has a 1 i mi t. Calli t S. If e > 0 ~ cho ose S so 

that if fl A\\ <. o · L u,;1f ~i~ < ep,. · Choose n
0 

so that \ s
6

n
0 

- S \ e/3. 

Then if A is any subdivision sat isfying I\A II~ b we h.aae, since 

Zl CE +An and 6n C.~+ll 

So t hat 

\ S ti - i +An \ < e /3 

I S c,n - 8t, +An j < e /3 

\ s-s}< e 

Necessity: For a ny division let fi and fi denote respectivel y 

the upper and lower bounds of f(s1) in (xi,xi+l). Given e) O, select 

6 so that \\AI l <. 6 i mplies 

then 



j '3 2 

Lemma (24.3) Let f,g be integrable with respect to bounded mone-

t .one increasing !- Let m(f,g) de~tre the function whose value at each 

xis the greater of f(x) and g(x). Then rn(f,g) is integrable with respect 

t o ~-

Proof: Since ff di and Jg d¢ exist we have ~hat 

with \ All . 
·,,. 

Hence by the 9r eceding lemma ) m( f, g)dl exists. 

Lemm& (24.4) Let f1 ? f2 ~ > > · • • = fn = • • • = 0 be a sequence 

of function s having Oas their limit. Then if [fnd? exists for all n, 

lim ( fndi = 0. 
n-+0 ) 

Select e ) O. ·Let ~ en l be a sequence of positive terms 

such that L, en converges and is le ~:; s than e/4. 

a sequence of divisions sucn that 

Select t:.1 (. ti ( · · .tf c_ 

~ow with each point x of (a, b ) we may associate a closed interval con­

taining x, as follows: Given x, choose nx so that fn(x)~ef2V(a,b)I• 

Let Ix be the interval (or intervals in case xis an end po int) of 6nx 

which contains x. 

. .. 

(1) 



We now apply the Heine-Borel result and establish the existence 

of a finite number of points x.., • • • ,xk, such that I •••I- entirely 
l Xl Xk 

cover (a,b). 

i.rrange t he distinct integers of the set (n~
1

, • • • ,nXk) in order 

of increasing mangitude, say n1 ,··•,n8 • 

Let J1 denote the sum of all intervals Ix· for which n.. = n-. 
1 l Xi 

.fow if (x_,,xj+1 ) is one of the intervals of Anl lying in J
1

, it must, 
. . 

in order to have b r:•en i ncluded in some I, contain at l 3ast one of the 

points x1 , • • • ,Xk:· Write (1) with the points §1 lying in J 1 replaced 

by memb ers of the set xi, • • •, xk, and the others unchanged , and add the 

resulting inequalit y to ( 1). There results 

which now ~ust hold if in particular f(J1 ) are feplaced by f 1 • Hence we 

obtain 

n ow take for J2 the sum of the s e t of I's, t r1ose I- for which Dx· = n
2

, 
Xi l 

but waich are not included in J 1 . Each interval of t{12 lying in J2 

has, as before, one point of the set ij_,···,~· By a similar process 

to that used above we obtain the inequality 

continue t ::lis process s times. Jl' J2 , • • • ,J 8 completely cover (a,b) 



- and are non-overlapping except for end points . iuiding the results, we 

have 

Ti1is proves the lerrrna. 

Corol l ary: If the sequence f
1
,f2 ,•••,fn,•·• is monotone 

increasing and converges to zero, a similar theorem holds. 

We are n ·w in a position t o prove the theorem: 

Theorem (24.5) Let~ be bounded monotone increasing and let lfn~ 

be a bounded sequence converging to zero. Let ) fnd~ exist. Then 

lim ) fnd~ = 0 
n ➔oo 

Proof: Define , for k 1 n, funct i ons Ynk !! Ynk(x), Ynk = ynk(x) 

S0 that Ynk is an increasing sequence ink and ynk is decreasine ink. 

The _sequence of numbers 

are therefore respectively increasing and decreasing and are bounded. 

Let Bn be the upper bound of fb Ynk!Ji and bn t_he lower -bound of /' ynkd~. 
a a 

We have, using the fact that 9 is monotone increasing, 



Mow since Yn+p,k = Ynk we have :Sn+p ~ -:Sn and similarly bn+p ~ bn . 

If therefore we can show that: (I) :Sn~ 0 ~ bn 

(II) lim (Bn - bn) ~ 0 
n➔ oo 

the theorem will be proven. To prove (I), define 

so that 

and ; 

Znk(x) = les ser of Ynk and 0 

znk(x) • greater of Yni<and 0 

lln ~ f y l)kd~ ~ f ¼z:_d~ 

bn ~ f ynkd~ ~ h1N 
But~ is monotone increasing ink and has O for its limit. By the 

corol l ary to Lemma (24.4) we have 

and similarly by ( 24 .4) itself' 

This proves (I). 

lim r Znk_-0.1 = 0. 
k➔oo 

To prove (II), let e be given. Select a seqvence ~erJ of positive 

nu~bers such thatL.en converges and is less than e/4. Choose rn so that 

and • for all k ~ rn. 



N0w define: l east of (Y1r
1

, Y2 ,·••,Y ) 
r2 nrn 

> < Then certainly Hn = Hn+e and I1n = 1¾i+e· Let k :>r1,r2, · • • ,rn• From the 

definitions we have that 

(i = 1,2,•••,n) 

and that Ynk - ~ is less than or at most equal to at least one of them. 

Therefore 

Integrating with respect to cf and alllowing k to increase without limit 

we h .- ve 

• 
By a similar argument 

But Hn - ~ is monotone decreasing and its l imit is nowhere positive. 

Hence defining Ku= greater of (Hn - 1¾i) and 0 

we have that 

and applying Lerrana (24.3) the right hand. side tends to ef2 as n~oo. 

Thus lim (1\i - ¾) = O. 
n-=tm 



CONCLUSION AND SUMMARY 

In part 1, vector spaces with closure under multiplication by 

real and complex numbers were defined. Polynomials were then defined and 

discussed for both types of spaces, and it was shown that for spaces E(R) 

the definition given was equivalent to that of Frechet. A special result 

of some interest was given on the continuity of a multilinear form in the 

ensemble of its variables. Modular properties of polynomials were discussed. 

In division {14) application of these results was made in the 

definition of analytic functions in vector spaces. The field of this 

division 1a essentially virgin. It was pointed out that a distinction 

arises between spaces E(R) and E{C) in the methods necessary to prove 

certain theorems on analytic functions. Various theorems of a fundamental 

nature were proven for analytic functions on spaces E(C) and a fewer 

number for those on spaces E(R). It was shown that the generalization of 

the completely integrable Pfaffian System has, in spaces E(C), a unique 

analytic solution. 

In part 2 there was given a generalization of Frechet'a theorem 

on the representability by means of double Stieltjes integrals of the 

general bilinear continuous functional form on the space of continuous 

functions. It was proven that a multilinear form inn variables is repre­

sentable by means of a multiple Stieltjes integral and that the kernel ot 

the integral if regular is unique. A proof by elementary methods was also 

given of the generalization to Riemann Stieltjes integrals of Arzela's 

necessary and sufficient condition for the term by term integrability of 

a sequence of Riemann integrable functions. 

In conclusion, I wish to express my thanks to Professor A. D. 

Micha.l for his suggestion and guidance in the construction of this thesis. 




