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ABSTRACT

Nucleic acid secondary structure models offer a simplified but powerful lens through which
to view, analyze, and design nucleic acid chemistry. Computational approaches based
on such models are central to current research directions across molecular programming,
synthetic biology, and the life sciences more broadly. In this work, we develop a unified
framework for constructing and understanding dynamic programming algorithms for com-
plexes of interacting nucleic acid strands. Our framework combines three ingredients. First,
we develop new recursions to include contributions from coaxial and dangle stacking in an
efficient and principled way. Second, we formulate the concept of an evaluation algebra,
which defines the mathematical form of each subproblem in the dynamic program. Whereas
previous modeling efforts have relied on case-by-case handling of different thermodynamic
quantities, we use evaluation algebras to elegantly and efficiently compute a variety of
physical quantities using the same recursions. Third, we develop efficient operation orders
for a variety of physical quantities of experimental interest. Combining our advances, we
are able to achieve speedups of 20-120x and scalable calculations of complexes of up to
30,000 nucleotides. Our achievements promise to dramatically expand the scope and utility

of computational analysis and design of nucleic acid thermodynamics.

While current dynamic programming algorithms achieve efficient computation of thermody-
namic quantities for a given nucleic acid sequence, they do not provide kinetic information.
Therefore, investigations of secondary structure kinetics rely on stochastic simulations of
trajectories in secondary structure space. We improve upon these simulation methodolo-
gies to achieve lower computational complexities and large empirical speedups. We extend
our algorithms to an ensemble which fully includes coaxial and dangle stacking states,

expanding the scope of the kinetic analysis that is currently possible.

Current secondary structure models are parametrized using thermodynamic information
gleaned from decades of melt experiments of RNA and DNA in specific experimental con-
ditions. Only rough kinetic information is currently available from past experiments, and
information on solvent and material dependence is lacking. We develop a fully computa-
tional approach based on Gaussian processes and molecular dynamics in order to provide a
generic method for estimating thermodynamic and kinetic parameters, applicable concep-
tually to any nucleic acid material and experimental setting of interest. Our methodology
offers an atomistic view of nucleic acid base pairing and faithfully reproduces most experi-
mental data. It thus provides a powerful black-box approach for extensibly calculating the

kinetic and thermodynamic parameters that secondary structure models require.
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Chapter 1

INTRODUCTION

DNA and RNA are co-polymeric molecules consisting of sequences of nucleotides linked
by base pairs consisting of multiple hydrogen bonds. Biological RNA consists of adenine
(A), cytosine (C), guanine (G), and uracil (U) bases. Uracil is replaced by thymine (T) in
DNA. States of DNA and RNA species are amenable to description by three main levels of

classification (Figure 1.1):

1. Primary structure: the sequences of bases {A, C, U, G, T} defining each covalently
bonded strand in the state, occasionally extended to incorporate chemical derivatives

(e.g. by methylation).

2. Secondary structure: given a primary structure, the set of hydrogen bonding base
pairs in the state, usually either Watson-Crick base pairs (A-U, A-T, C-G) or, less
frequently, “wobble” pairs (G-U).

3. Tertiary structure: given primary and secondary structures, the geometric configura-
tion of nucleic acid strands in a state including helicity, atomic positions, and other
bonds.

5'-ACGCCCCCGAUA-3'
5'-UAAUGCAGCUUAAUUCGCGCAGGCCG-3'

5'- CCUCGGAUACCUCAUUACAGG-3'

Figure 1.1: Primary, secondary, and tertiary structures of nucleic acids. (a) Example of
primary structure denoted by 3 RNA strands (A, B, C) listed by their bases in 5’ to 3" order.
(b) A corresponding secondary structure, showing the phosphate backbone (thick lines),
unpaired bases (ticks), and base pairs (thin lines). (c) A corresponding tertiary structure,
colored by atom identity.
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Compared to other biochemical materials, including proteins, nucleic acids are somewhat
easier to describe solely at the primary or secondary structure level [3]. While protein
thermodynamics require tertiary fold information, the strong affinity and specificity of
nucleic acid base hydrogen bonding means that nucleic acid thermodynamics can often be
analyzed effectively by base pairing information alone. Genomic and informatic analyses
commonly rely solely on primary structures, i.e. raw sequence information. On the
other hand, bioengineering approaches rely more commonly on secondary structure, with
primary structure a constant on experimental timescales. Experimentalists commonly
seek to analyze the ensemble of predicted secondary structures given a primary structure
(sequence analysis) or to optimize a primary structure given a desired ensemble of secondary
structures (sequence design). The effectiveness of current algorithms enables molecular
programming, in which computer science principles and abstractions are applied to the
design of nucleic acid systems that accomplish reaction pathway engineering [19], complex

molecular structure folding [13], biological circuit design [12], and other objectives.

1.1 Nucleic acid secondary structures

After the discoveries of the molecular structure and importance of RNA and DNA, it was
soon realized that secondary structures could be defined in terms of neighboring loops
[8]. It was furthermore established that a rough but useful model of secondary structure
energetics might be derived based on a nearest-neighbor loop-based model [17]. Such a
model can encompass the most important energetics of nucleic acid base pairing, including
(most importantly) terms for hydrogen bonding between complementary bases in a base
pair and 7-7 stacking of adjacent bases. In such a model, the free energy of a secondary
structure is parametrized as the sum of loop free energies, which in turn are defined solely

by the identities and order of the bases within the loop, i.e.

AG(¢,s) = Z AG (loop) + const (1.1)

loopes
where s is a given secondary structure for sequence ¢. In Figure 1.1b, an example secondary
structure is decomposed into loops depicted as contiguous colored regions. In traditional
nearest-neighbor free energy models, a loop is grouped according to its number of bounding
base pairs and whether or not it contains a strand break. For both physical and algorithmic
reasons, different functional forms of AG (loop) are used for loops containing a strand break
(exterior loops), loops containing a single base pair (hairpin loops), loops containing two

base pairs (interior loops), and loops containing at least three base pairs (multiloops) [4, 7].



(CCev)eCev )N end)

Figure 1.2: Secondary structure notation. (a) Example (single-stranded) secondary struc-
ture. (b) Equivalent dot-parens structure notation. Proceeding along the backbone in a
clockwise direction in (a), the opening of a base pair is denoted by “(”, the closing of a

(I

base pair by “)”, and an unpaired base by “.

1.1.1 Unpseudoknotted structures

The information reduction of tertiary structure (Figure 1.1c) to secondary structure (Fig-
ure 1.1b) is vast. Yet it is still extremely difficult to calculate physical quantities of interest
over a fully general ensemble of all possible secondary structures. The number of possible
secondary structures for a system of N nucleotides grows combinatorially with respect to
N. As counting the number of secondary structures is in essence the same as counting the
number of matchings in a general graph, fully general summation over such an ensemble is

#P-hard, one of the most inapproachably difficult classes of computational complexity [18].

Further simplification comes at the cost of ignoring certain secondary structures referred to
as pseudoknotted [16]. For a given ordered sequence of nucleotides making up a primary
structure, a pseudoknotted structure results when there are two base pairs indexed (7, j) and
(k,l) such thati < k < j < [. Pseudoknots may be visualized as crossing base pairs on
a secondary structure’s polymer graph (e.g. [3]). Algorithmically, a lack of pseudoknots
implies that there are no further interactions between two regions of a secondary structure

which are separated by a single base pair.

Even excluding pseudoknots, the number of secondary structures compatible with a given
ordering of strands grows exponentially in the number of nucleotides (see Figure S37). If
one imagines, fictitiously, that any base may pair to any other base, then counting secondary
structures is isomorphic to counting Motzkin paths, a type of lattice path in which the path
may change by increments of -1, 0, or +1 and is bounded above 0 [11]. In this scenario, the
number of secondary structures of N nucleotides is precisely given by the Motzkin number
My [5], which is asymptotically proportional to 3¥ N~3/2. The isomorphism may be seen
by considering the height of the Motzkin path to be the number of open base pairs as one

progresses from 5’ to 3" in a dot-parens string (like that in Figure 1.2b).



1.2 Dynamic programming algorithms

Suppose we are interested in the free energy of a given complex of nucleic acid strands.
The complex partition function measures the stability of a given complex and may be used
to solve for equilibrium complex concentrations in a test tube [4]. By the basic statistical
mechanics of the isothermal-isobaric ensemble, the complex partition function may be
calculated as a Boltzmann summation over the ensemble I'(¢) of secondary structures

compatible with sequence ¢:

0(¢) = Z exp(-AG (¢, 5)/kpT) (1.2)
sel'(¢)

where kp is the Boltzmann constant, 7 the temperature, and AG (¢, s) the structure free
energy. Direct enumeration of all secondary structures incurs ¢?™) computational com-
plexity in the number of nucleotides V. Such an approach is infeasible for all but the smallest
complexes of interest. A superior solution is to perform this summation using a dynamic
programming algorithm, using the partition function of each subsequence of the complex
to solve for progressively larger subsequences and culminating in the partition function of
the complete complex. A dynamic programming algorithm builds from solutions of the

smallest subproblems to the complete problem.

To illustrate the concept, consider the dynamic programming algorithm for a simplified
nucleic acid free energy model in which each the free energy is simply a sum over flat
contributions from each type of base pair. This algorithm might be defined as working via

the following single recursion:

Qi = (1.3)

1 otherwise.
Here, Q; ; is the partition function of the subsequence [i:j], and AG, is the free energy
from base pairing bases i and j. The idea is that in increasing the size of the considered
subsequence by one (by including base j), the possible configurations are those of [i:j-1]
plus configurations in which j is paired to a base in [i:j-1]. Each of the contributions where
J 1s paired to kK may be decomposed into a product of partition functions on either side
of the k - j base pair. More complicated (and accurate) free energy models for secondary
structure add many more types of energetic contributions, including stacking energies and

other terms [7].



T

Substructure
compositions

l

Figure 1.3: Evaluation algebra conceptualization. The evaluation algebra captures the
generic idea of summation over alternative secondary structures to compute a single physical
quantity of interest for a given set of strands. In the nearest-neighbor model, the energetics
of different loops within a given secondary structure are assumed independent of each
other, which, for partition function calculation, leads to the distribution of multiplication
over addition in the semiring.

<— Alternative structures —»

1.2.1 Abstract evaluation algebras

Calculation of complex free partition functions is perhaps one of the most essential tools
for understanding nucleic acid thermodynamics. Knowledge of these free energies, for
instance, can be used to solve for the equilibrium complex concentrations in a test tube
[4]. However, there are many more quantities of interest for experimentalists to analyze
and design. Frequently, for example, an experimentalist is interested in the most probable
secondary structure for a set of associated strands to adopt. In this case, rather than a
summation over all secondary structures, we are looking for a minimum over all secondary

structures.

To proceed, it is useful to consider the essential logic of the counting problem for secondary
structures. At its root, our summation involves the collection of alternative secondary
structures, each of which is made up of a composition of independent loops. Analogously,
in calculation of a partition function, the Boltzmann factors for alternative structures are
added together, while Boltzmann factors of different loops are multiplied together. (The
summation over structures can be clearly seen in (1.2); the multiplication over loops may
be seen by substituting (1.1) into (1.2) and decomposing the exponential.) In algebraic
structure terminology, the sum and product operations conducted can be seen to form a
semiring, that is, a set equipped with two binary operations, both with identity element, and

with the second operation distributing over the first. The minimum free energy problem may
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thus be solved by replacing the SumProbpucT semiring with the MinSum semiring, with no
change otherwise to the recursions and algorithms. In Chapter 2, we show that this approach
works not just for minimum free energies but also for a set of other quantities including
overflow-proof partition functions, suboptimal structures, and sampling of structures from

the Boltzmann ensemble.

There is a more utilitarian reason to take up the idea of evaluation algebras, which is that
it greatly eases the implementation and modularity of software. Generic programming,
similarly motivated by abstract algebraic theory [15], plays with a similar idea to our
evaluation algebras. The idea of generic programming is to reduce a program to its most
essential mathematical structure such that it may be applied to as many uses as possible
without modification. Using this technique, we can program the set of model recursions
only once, isolated from the operation order targeting each physical quantity. In Chapter 2,
by optimizing the other elements of the dynamic programming algorithms in a modular
fashion, we are able to achieve large computational speedups for a variety of physical

quantities.

1.3 Simulation of secondary structure Kkinetics

Most analysis and design of nucleic acid secondary structures has been performed in the
equilibrium regime. That is, secondary structures are evaluated only via their limiting
thermodynamics at an infinite-time horizon. Newer design approaches optimize reaction
pathways by considering a set of hypothetical test tubes containing reactants, intermediates,
and products [19]; however, true kinetic information is still missing from such an approach.
On the other hand, other recent efforts have established preliminary models for kinetics on
secondary structures (e.g. [6, 14]). In these models, each secondary structure is treated as
an isolated and well-mixed microstate. A system of interacting nucleic acid strands may
transition from one secondary structure to another by means of formation or deletion of a
single base pair at a time. The rate function is assumed to satisfy detailed balance such
that the governing Markov process is recurrent and reversible. Thus, the evolution of p (1),
the populations of secondary structures at time #, given rate matrix R, follows the matrix
ordinary differential equation:

dp ()

=R" » 1.4
” R p(1). (1.4)



1.3.1 Stochastic simulation

Direct solution of nucleic acid kinetics over the entire ensemble of secondary structures is
infeasible due to the e?™) growth in the number of structures with respect to the number
of nucleotides N. An alternative to direct simulation of the probability density propagation
via (1.4) falls out of the well-known isomorphism between the continuous time Markov
chain and its associated discrete-time jump-and-hold chain (e.g. [1]). Simulation of the
jump-and-hold chain in biochemical contexts is generally known as the Gillespie algorithm
[9]. Using the Gillespie algorithm [9], earlier efforts ([6, 14]) developed an approach for

stochastic kinetic simulation of nucleic acid secondary structure trajectories.

The Gillespie method for trajectory simulation is highly optimizable with respect to sec-
ondary structure kinetics due to the hierarchical decomposition of interactions enforced
by the loop-based model. Exploiting these features, in Chapter 3 we detail the design
and implementation of multiple methods for computing trajectories more efficiently. Most
of these methods result in substantial improvements to the computational complexity of
trajectory simulation with respect to system size. Others result in substantial prefactor
improvements, sometimes of an order of magnitude or more. In some cases, we are able
to achieve complexity gains by imposing additional constraints on the definition of the
microstate rate function. Such cases would indicate that these rate functions should be

prioritized in parametrization if possible.

1.3.2 Kinetics including coaxial and dangle stacking contributions

An essential ingredient to performant trajectory simulation is an efficient microstate free
energy evaluation. Whereas dynamic programming algorithms efficiently calculate the free
energy summing over all possible structures in a complex ensemble, much less attention has
been paid to efficiently calculating the free energy of a single structure. This computation
becomes significantly more involved when coaxial and dangle stacking states are fully
considered. We rectify this situation for the most problematic loop types by applying a
transfer-matrix based approach to loop free energy calculation in an ensemble including
coaxial and dangle stacking states. Motivated by a similar “state vector” based approach in
the lattice path counting literature [2, 10], we use a matrix-trace calculation to incorporate
all possible stacking states within a loop, all scaling as O (npp) in the number of base pairs

in the loop .

Most nucleic acid systems of interest involve multiple complexes that may associate or

dissociate during a secondary structure trajectory. The calculation of association rates
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Figure 1.4: Example base pairing reactions simulated using molecular dynamics. Enhanced
sampling is used in order to simulate the reaction in which a single base pair is cleaved
(here, the topmost base pair). Thermodynamics and kinetics are studied along the reaction
pathway from reactant (paired, left) and product (unpaired, right).

between multiple complexes is challenging since the number of possible first contact states
grows quadratically in the number of exposed bases in the system. We thus develop a join
propensity method which exploits certain rate functions to calculate complex join rates in a
separable and linear-scaling manner. We adapt the transfer-matrix approach for free energy

calculation to the calculation of join propensities including all possible stacking states.

1.4 Computational parametrization of secondary structure models

Secondary structure models are an obvious approximation to the tertiary structures of
nucleic acids in nature. In the past, these models have been parametrized over decades of
ad hoc melt experiments for RNA and DNA in a limited set of experimental conditions.
As secondary structure analysis and design algorithms improve and grow in usage, it is
important for the parametrization methods for these models to 1) be as accurate as possible,
2) apply to as many materials as possible (e.g. RNA, DNA, 2’0OMe-RNA), 3) apply to
as many experimental settings (e.g. temperature, ion concentrations) as possible, and 4)
produce kinetic predictions (rather than just equilibrium ones), necessitating completely

new sets of parameters and functional forms.

In Chapters 4 and 5, we fulfill these objectives by developing a fully computational workflow
based on 1) Gaussian process-based choice of the most informative base pairing reactions
to simulate, 2) molecular dynamics (MD) simulations of these reactions (Figure 1.4), and
3) regression of thermodynamic and kinetic information from the yielded trajectories. This
effort brings together theoretical techniques from Gaussian process theory with dynamic

programming algorithms and molecular dynamics methods.



1.4.1 Simulation design and choice

Molecular dynamics simulations are mature and well-optimized but incur significant com-
putational cost, with research projects commonly requiring millions of CPU hours. For an
open-ended study of thermodynamic and kinetic motifs and parameters, it is thus vital to
focus on simulations of the reactions that will be most informative to the end objectives.
In Chapter 4, by assuming and fitting a Gaussian process over our projected simulation
outputs, we develop an approach which maximizes the mutual information of the simu-
lated reaction set 7. In this context, we develop an information gain criterion composed
of 1) the covariance matrix I'; conditional on the observed simulation outputs and 2) a
Fisher information matrix F measuring the sensitivities of complex free energies to each
nearest-neighbor parameter. To summarize, we first develop the covariance matrix ['; by
using the functional forms of the nearest-neighbor free energy model. Next we consider
the total decrease in the conditional variance of the complex free energy AG (¢) over an
ensemble of representative sequences ¢. By linearizing our the complex free energy around
its values given empirical parameters, we can pose the total decrease in conditional variance

or, equivalently, the mutual information gain, as the following matrix trace:

A AG(¢)T
information gain:ZTr 9 Gf¢) F;a G£¢) + const
2 | 00 06
A TOA 1.5
=Tr|I5 Za Gf¢) 9 Gf¢) + const (15)
7 00 060

=Tr [F; F ] + const.

where the second line in (1.5) follows by the rotational invariance of a matrix trace, and the

IAG(9) T AG(9)
a6 a6

Using (1.5) we can efficiently optimize the information gain by automatically tuning the set

third line follows from defining the Fisher information matrix as F := 2,

of reactions 7 to be simulated, as is detailed more in Chapter 4.

1.4.2 Molecular dynamics methodologies

Naive molecular dynamics simulations of even localized and well-chosen biomolecular
reactions can require infeasible timescales of simulation. Classical molecular dynamics
simulations typically utilize an O(1 fs) timestep, yielding common trajectory lengths in
the O(1 ns) to O(1 us) range. The timescale of base pairing reactions is only roughly
constrained by experimental literature but is known to involve rearrangements on or beyond

the slower end of this timescale.
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We show that umbrella sampling via application of restraints on collective variable values
may be used to provide enhanced sampling of a reaction pathway on a more feasible
computational timescale. Applying this approach, we are able to estimate reaction free

energies and enthalpies using only short molecular dynamics trajectories.

1.4.3 Thermodynamic and Kinetic regression

Secondary structure models should be extensible to different experimental settings, includ-
ing different temperatures and solvent conditions (including ion concentrations). We thus
extend our molecular dynamics methodology to the calculation of reaction enthalpies, al-
lowing approximate extrapolation in temperature, using a reweighted average of internal
energies in previously run trajectories. Analogously, we use a Poisson-Boltzmann equation-
based approach to accomplish extrapolation of our results to different ion concentrations.
Meanwhile, experimentally useful secondary structure models should predict not only reac-
tion free energy but also kinetic information. To meet this goal, we develop a rate constant
estimation method based on projection of the molecular dynamics Markov chain down to

one dimension, followed by exact solution of rate constants in this reduced chain.

By using the developed Gaussian process statistics, we can optimize free energy and enthalpy
parameters of existing nearest-neighbor secondary structure models. We demonstrate in
Chapter 5 that we can achieve realistic and relatively accurate thermodynamic parameters
using our approach. We also are able to yield some of the first large-scale estimates of
individual base pair reaction rate constants. Our approach also yields estimates of free

energies, enthalpies, and ion concentration effects.

1.5 Conclusions

In sum, this thesis represents an application of diverse mathematical and chemical methods
to simulating and parameterizing nucleic acid secondary structure thermodynamics and
kinetics. From the mathematical ingredients of abstract algebras, secondary structure
combinatorics, Markov chains, and Gaussian processes, we develop methodologies for
efficient dynamic programs, rate calculations, information maximization, and regression of
kinetic and thermodynamic parameters. We apply these computational methodologies to
both the analysis and parametrization of secondary structure thermodynamic and kinetic
models, demonstrating efficient and scalable computational approaches for each of our

goals.
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Chapter 2

IMPROVED ALGORITHMS FOR THE EQUILIBRIUM ANALYSIS OF
NUCLEIC ACID COMPLEXES

Mark E. Fornace, Nicholas J. Porubsky, and Niles A. Pierce. A unified dynamic pro-
gramming framework for the analysis of interacting nucleic acid strands: Enhanced
models, scalability, and speed. ACS Synthetic Biology, 9(10):2665-2678, 2020. doi:
10.1021/acssynbi0.9b00523. URL https://doi.org/10.1021/acssynbio.9b00523.
PMID: 32910644.

Dynamic programming algorithms within the NUPACK software suite enable analysis
of nucleic acid sequences over complex and test tube ensembles containing arbitrary
numbers of interacting strand species, serving the needs of researchers in molec-
ular programming, nucleic acid nanotechnology, synthetic biology, and across the
life sciences. Here, to enhance the underlying physical model, assure scalability for
large calculations, and achieve dramatic speedups when calculating diverse physical
quantities over complex and test tube ensembles, we introduce a unified dynamic pro-
gramming framework that combines three ingredients: 1) recursions that specify the
dependencies between subproblems and incorporate the details of the structural en-
semble and the free energy model, 2) evaluation algebras that define the mathematical
form of each subproblem, 3) operation orders that specify the computational trajectory
through the dependency graph of subproblems. The physical model is enhanced using
new recursions that operate over the complex ensemble including coaxial and dangle
stacking subensembles. The recursions are coded generically and then compiled with
a quantity-specific evaluation algebra and operation order to generate an executable for
each physical quantity: partition function, equilibrium base-pairing probabilities, MFE
energy and structure proxy, suboptimal structures, and Boltzmann sampled structures.
For large complexes (e.g., 30,000 nt), scalability is achieved for partition function cal-
culations using an overflow-safe evaluation algebra, and for equilibrium base-pairing
probabilities using a backtrack-free operation order. A new blockwise operation order
that treats subcomplex blocks for the complex species in a test tube ensemble enables
dramatic speedups (e.g., 20—120x) using vectorization and caching. With these per-
formance enhancements, equilibrium analysis of substantial test tube ensembles can
be performed in < 1 minute on a single computational core (e.g., partition function

and equilibrium concentration for all complex species of up to 6 strands formed from 2
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strand species of 300 nt each, or for all complex species of up to 2 strands formed from
80 strand species of 100 nt each). A new sampling algorithm simultaneously samples
multiple structures from the complex ensemble to yield speedups of an order of mag-
nitude or more as the number of structures increases above ~10°. These advances are
available within the NUPACK 4.0 code base (www .nupack . org) which can be flexibly
scripted using the all-new NUPACK Python module.

Dynamic programming algorithms enable efficient and exact equilibrium analysis of nucleic
acids with respect to approximate physical models. Algorithms are formulated in terms of
nucleic acid secondary structure (i.e., the base pairs of a set of DNA or RNA strands) and
employ empirical free energy parameters [4, 16, 17, 19, 20, 22, 24-26, 28, 29, 32, 35] to
calculate diverse physical quantities [1, 2, 5, 6, 11, 15, 18, 20, 21, 36]. We have previously
developed dynamic programming algorithms that are unique in treating complex and test
tube ensembles containing arbitrary numbers of interacting strand species [11], providing
crucial tools for capturing concentration effects essential to analyzing and designing the
intermolecular interactions that are a hallmark of molecular programming, nucleic acid
nanotechnology, and synthetic biology. These algorithms are implemented within NUPACK
(Nucleic Acid Package), a growing software suite for the analysis and design of nucleic acid

structures, devices, and systems [33].

Here, following 15 years of methods development [8—11, 30, 31, 33, 34], we reconsidered
every equilibrium analysis algorithm, arriving at a new unified dynamic programming

framework that leads to major improvements of five varieties:

* Elucidation: diverse physical quantities are calculated using dynamic programs each
combining three ingredients: model-specific recursions, a quantity-specific evaluation

algebra, and a quantity-specific operation order.

* Model: new recursions capture the structural and energetic details of coaxial and

dangle stacking subensembles in the complex ensemble.

* Scalability: over-flow safe evaluation algebras and backtrack-free operation orders

enable robust partition function and pair probability calculations for large complexes.

* Speed: new blockwise operation orders yield dramatic speedups of 1-2 orders of

magnitude for equilibrium analysis of test tube ensembles.

* Brevity: use of a generic programming paradigm and compile-time polymorphism
dramatically reduce the size of the code base.
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Figure 2.1: Complex and test tube ensembles. (a) A connected unpseudoknotted secondary
structure for complex of 3 strands with strand ordering 7 = ABC. An arrowhead denotes
the 3’ end of each strand. (b) Polymer graph representation of the same secondary structure
showing no crossing lines for strand ordering 7 = ABC. (c) Alternative strand ordering 7 =
ACB yields a polymer graph with crossing lines. (c) A pseudoknotted secondary structure
with base pairs i-j and d-e (with i < d) that fail to satisfy the nesting propertyi < d < e < J,
yielding crossing lines in the corresponding polymer graph (e) for the sole strand ordering
n = DE. (f) A test tube ensemble containing strand species ¥ = {A,B,C} interacting to
form all complex species ¥ of up to Ly,x = 3 strands.

We begin by defining the underlying physical model, including definitions of the complex
and test tube structural ensembles, and specification of the free energy model for a complex
ensemble including coaxial and dangle stacking subensembles. We then describe the unified
dynamic programming framework, describing new recursions that capture the details of the
enhanced physical model, and new evaluation algebras and operation orders that enable
calculation of diverse physical quantities for complex and test tube ensembles of interacting
DNA or RNA strands. The resulting suite of algorithms comprise the all-new NUPACK
4.0 analysis code base. Enhanced models, scalability, and speed will benefit researchers
in molecular programming, nucleic acid nanotechnology, synthetic biology, and across the

life sciences.
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2.1 Physical model

2.1.1 Complex ensemble and test tube ensembles

NUPACK algorithms operate over two fundamental ensembles:

e Complex ensemble: The ensemble of all (unpseudoknotted connected) secondary
structures for an arbitrary number of interacting DNA or RNA strands.

o Test tube ensemble: The ensemble of a dilute solution containing an arbitrary num-
ber of DNA or RNA strand species (introduced at user-specified concentrations)

interacting to form an arbitrary number of complex species.

Furthermore, to enable reaction pathway engineering of dynamic hybridization cascades
(e.g., shape and sequence transduction using small conditional RNAs [14]) or large-scale
structural engineering including pseudoknots (e.g., RNA origamis [13]), NUPACK gener-

alizes sequence analysis and design to multi-complex and multi-tube ensembles [31].

The sequence, ¢, of one or more interacting RNA strands is specified as a list of bases
¢ € {A,C,G,U} fora =1,...,|¢|. For DNA, ¢* € {A,C,G,T}. A secondary structure,
s, of one or more interacting RNA strands is defined by a set of base pairs, each a Watson—
Crick pair [A-U or C-G] or a wobble pair [G-U]. For DNA, the corresponding Watson—Crick
pairs are A-T and C-G and there are no wobble pairs. Example secondary structures are

displayed in Figures 2.1ad.

For algorithmic purposes, it is convenient to describe secondary structures using a polymer
graph representation, constructed by ordering the strands around a circle, drawing the
backbones in succession from 5’ to 3’ around the circumference with a nick between each
strand, and drawing straight lines connecting paired bases (e.g., Figure 2.1bc). A secondary
structure is unpseudoknotted if there exists a strand ordering for which the polymer graph
has no crossing lines (e.g., Figure 2.1b), or pseudoknotted if all strand orderings contain
crossing lines (e.g., the kissing loops of Figure 2.1de). A secondary structure is connected
if no subset of the strands is free of the others. Consider a complex of L distinct strands
(e.g., each with a unique identifier in {1, ..., L}) corresponding to strand ordering . The
complex ensemble T'(¢) contains all connected polymer graphs with no crossing lines for
sequence ¢ and strand ordering r (i.e., all unpseudoknotted secondary structures) [11]. (We

dispense with our prior convention [11, 33, 34] of calling this entity an ordered complex.)

As a matter of algorithmic necessity, all of the dynamic programs developed in the present
work operate on complex ensemble I'(¢) treating all strands as distinct. However, in the

laboratory, strands with the same sequence are typically indistinguishable with respect
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to experimental observables. Fortunately, for comparison to experimental data, physical
quantities calculated over ensemble I'(¢) can be post-processed to obtain the corresponding
quantities calculated over ensemble I'(¢) in which strands with the same sequence are treated
as indistinguishable (see Section S5 for details). The ensemble I'(¢) C I'(¢) is a maximal
subset of distinct secondary structures for strand ordering . Two secondary structures are
indistinguishable if their polymer graphs can be rotated so that all strands are mapped onto
indistinguishable strands, all base pairs are mapped onto base pairs, and all unpaired bases

are mapped onto unpaired bases; otherwise the structures are distinct [11].

A test tube ensemble is a dilute solution containing a set of strand species, ¥, introduced
at user-specified concentrations, that interact to form a set of complex species, ¥, each
corresponding to a different strand ordering treating strands with the same sequence as
indistinguishable. For L strands, there are (L — 1)! strand orderings if all strands are
different species (e.g., complexes m = ABC and m = ACB for L = 3 and strands A, B, C), but
fewer than (L — 1)! strand orderings if some strands are of the same species (e.g., complex
m = AAA for L = 3 with three A strands). By the Representation Theorem of Dirks et
al. [11], a secondary structure in the complex ensemble for one strand ordering does not
appear in the complex ensemble for any other strand ordering, averting redundancy. It is
often convenient to define W to contain all complex species of up to Ly,x strands (e.g.,
Figure 2.1f), although ¥ can be defined to contain arbitrary complex species formed from

the strand species in P°.

2.1.2 Loop-based free energy model

For each (unpseudoknotted connected) secondary structure s € F((;S), the free energy,
AG (¢, s), is estimated as the sum of the empirically determined free energies of the con-
stituent loops [17, 19, 24, 29, 32, 35] plus a strand association penalty[3], AG**°°, applied
L — 1 times for a complex of L strands:

AG(¢,5) = (L= 1)AG™* + > AG(loop). 2.1)
loopes
The secondary structure and polymer graph of Figure 2.2 illustrate the different loop types,
with free energies modeled as follows [17, 19, 24, 29, 32, 35]:

e A hairpin loop is closed by a single base-pair i - j. The loop free energy, AG?jirpin,
depends on sequence and loop size.

e An interior loop is closed by two base pairs (i - j and d - e withi < d < e < ).

The loop free energy, AG;“f;“J’r depends on sequence, loop size, and loop asymmetry.
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Figure 2.2: Loop-based free energy model for a complex. (a) Canonical loop types for
complex with strand ordering 7 = ABC. (b) Equivalent polymer graph representation. An
arrowhead denotes the 3’ end of each strand.
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Figure 2.3: Coaxial and dangle stacking states for multiloops and exterior loops. (a)
Stacking subensemble for the multiloop of Figure 2.2a. (b,c) Stacking subensembes for two
exterior loops from Figure 2.2a.

Bulge loops (where either d = i+ 1 or e = j — 1) and stacked pairs (where both

d=1i+1ande = j— 1) are treated as special cases of interior loops.

o A multiloop is closed by three or more base pairs. The loop free energy is modeled

as the sum of three sequence-independent penalties: (1) AG?}:}ltm for formation of

a multiloop, (2) AGE;“I“ for each closing base pair, (3) AG‘I}}“M for each unpaired
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. .. . . terminalbp
nucleotide inside the multiloop, plus a sequence-dependent penalty: (4) AG; ;

for each closing pairi - j.

e An exterior loop contains a nick between strands and any number of closing base
terminalbp
L]

pairs i - j. Hence, an unpaired strand has a free energy of zero, corresponding to the

pairs. The exterior loop free energy is the sum of AG over all closing base

reference state [11].

2.1.3 Coaxial and dangle stacking subensembles within complex ensembles

Within a multiloop or an exterior loop, there is a subensemble of coaxial stacking states
between adjacent closing base pairs and dangle stacking states between closing base pairs
and adjacent unpaired bases. The physical model for multiloops and exterior loops has
previously been enhanced for the ensemble of a single strand [20] by incorporating coaxial
stacking [19, 22, 29] and dangle stacking [4, 26, 29, 35] terms into the multiloop and exterior
loop free energies. For the complex ensemble, we have previously neglected coaxial stacking
and incorporated a heuristic dangle stacking state [11]. Here, we exactly incorporate all
coaxial and dangle stacking states in the complex ensemble. Within a multiloop or exterior
loop, a base pair can form one coaxial stack with an adjacent base pair, or can form a
dangle stack with at most two adjacent unpaired bases; unpaired bases can either form no
stack, or can form a dangle stack with at most one adjacent base pair. See Figure 2.3 for an
illustration of the valid stacking states for a multiloop (panel a) or two exterior loops (panels
b and ¢).

For a given multiloop or exterior loop, the energetic contributions of all possible coaxial

and dangle stacking states are enumerated so as to calculate the free energy:

AGSKing = _ kT 1og Z ]_[ ¢~AGx/KT (2.2)
weloop XEw

where w indexes the possible stacking states within the loop and x indexes the individual
stacks (coaxial or dangle) within a stacking state. The free energy of a multiloop or exterior
loop is augmented by the corresponding AG*?"2 bonus. Hence, a secondary structure s
continues to be defined as a set of base pairs, and the stacking states within a given multiloop
or exterior loop are treated as a structural subensemble that contributes in a Boltzmann-
weighted fashion to the free energy model for the loop. Let s" € s denote a stacking state of
the paired and unpaired bases in s. We may equivalently define the free energy of secondary

structure s in terms of the free energies for all stacking states s" € s:

AG(.5) = —kTlog ) e B0/, 2.3)

s''es
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2.1.4 Symmetry correction

Let F”(gb) denote the ensemble of stacking states corresponding to the complex ensemble
of secondary structures I'(¢). For a secondary structure s € I'(¢) with an R-fold rotational
symmetry there is in R-fold reduction in distinguishable conformational space, so the free

energy (2.1) must be adjusted[11] by a symmetry correction:
AG (¢, 5) = AG(¢, s) + AGY™(¢, 5). (2.4)
where
AG?" (¢, s) = kT log R(¢, s). (2.5)

Because the symmetry factor R(¢, s) is a global property of each secondary structure
s € I'(¢), it is not suitable for use with dynamic programs that treat multiple subproblems
simultaneously without access to global structural information. As a result, dynamic pro-
grams operate on ensemble I'(¢) using physical model (2.1) and then the Distinguishability
Correction Theorem of Dirks et al. [11] enables exact conversion of physical quantities to
ensemble I'(¢) using physical model (2.4). Interestingly, ensembles I'(¢) and I'(¢) both
have utility when examining the physical properties of a complex as they provide related

but different perspectives, akin to complementary thought experiments (see Section S5).

2.1.5 Free energy parameters

Supported temperature-dependent RNA and DNA parameter sets include:

e rna95 based on (Serra & Turner, 1995)[26] with additional parameters[35] including
coaxial stacking [19, 29] and dangle stacking [26, 29, 35] in 1M Na*.

e dna®4 based on (SantalLucia, 1998)[24] and (SantalLucia & Hicks, 2004)[25] with
additional parameters[35] including coaxial stacking [22] and dangle stacking [4, 35]
in user-specified concentrations of Na*, K*, NHZ, and Mg** (see Section S1.2 for
details on implementation of the salt corrections)[16, 22, 24, 25].

e rnal®6 based on (Mathews et al., 1999)[19], (Mathews et al., 2004)[20], and (Lu et
al., 2006)[17] with additional parameters[32, 35] including coaxial stacking [19, 29]
and dangle stacking [26, 29, 35] in 1M Na*.

e custom using user-specified parameters representing nucleic acids or synthetic nu-

cleic acid analogs in experimental conditions of choice.

See Sections S1.5-S1.7 for details about parameter sets.



21
2.2 Algorithm

2.2.1 Physical quantities

Consider a complex with sequence ¢. We provide dynamic programs to calculate:

e the partition function,

0(g)= ). e AOWINT, (2.6)
seT(9)

over ensemble ['(¢) treating all strands as distinct. The equilibrium probability of

any secondary structure s € I'(¢) is then

Pd,s) = e DO (5 (g, 2.7)

Post-processing Q (¢) yields the partition function Q(¢) over ensemble I'(¢) treating
strands with the same sequence as indistinguishable[11].

o the base-pairing probability matrix P(¢) with entries P (¢) € [0, 1] corresponding
to the probability

Pl@) =) B9 (s) 2.8)
s€T(9)

that base pair i - j forms at equilibrium within ensemble I'(¢), treating all strands as
distinct. Here, S(s) is a structure matrix with entries S/ (s) = 1 if structure s contains
base pair i - j and §/(s) = 0 otherwise. Abusing notation, the entry S (s) is 1 if
base i is unpaired in structure s and O otherwise; the entry P (¢) € [0, 1] denotes
the equilibrium probability that base i is unpaired over ensemble I'(¢). Hence S(s)
and P(¢) are symmetric matrices with row and column sums of 1.

e the free energy of the minimum free energy (MFE) stacking state sy ... (¢) € f”(qﬁ)

treating all strands as distinct:

AG(¢,s)..) = min AG(¢,s"). (2.9)
s'el (¢)
e the MFE proxy structure
SMFE’ = {S € F(¢)|SMFE€S SMFE(¢) = arg Il’llHIl E((ﬁ» S”)}- (210)
s'el” (¢)

defined as the secondary structure containing the MFE stacking state within its
subensemble. If there is more than one MFE stacking state, the algorithm returns all

corresponding MFE proxy structures.
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e the set of suboptimal secondary structures

Fsubopt(¢, AGgap) =
{s €eT(¢)|s"€s5,AG(,5") < AG (¢, s'.) + AGgap} (2.11)

MFE

with stacking states within a specified AGg,p > 0 of the MFE stacking state.

e aset of J secondary structures Boltzmann sampled from ensemble I'(¢) treating all

strands as distinct:
Csample (¢, J) € T(9). (2.12)

Post-processing then yields the set of J secondary structures Boltzmann sampled

from ensemble I'(¢) treating strands with the same sequence as indistinguishable:

I_‘sample(‘p’ J) € F(¢) (213)

a Complex ABC
A C

1,N

Operation order

1-nt subsequences
2-nt subsequences C
3-nt subsequences

final answer: Q1N QNN —

Figure 2.4: Operation order for partition function dynamic program over a complex ensem-
ble with N nucleotides.

Now consider a test tube ensemble containing an arbitrary set of strand species ¥ interacting

to form an arbitrary set of complex species ¥. We provide algorithms to calculate:

e the set of equilibrium concentrations xy = x. Vc € ¥, (specified as mole fractions)

that are the unique solution to the strictly convex optimization problem[11]:

min " x.(logx. —log Q. — 1) (2.14a)
o ce¥
subject to " Ajexe =x) Vie ¥, (2.14b)

ce¥
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expressed in terms of the previously calculated set of partition functions Q. Here,
the constraints impose conservation of mass: A is the stoichiometry matrix such that
A, . 1s the number of strands of type i in complex ¢, and xf.) is the total concentration
of strand i present in the test tube. Based on dimensional analysis [11], the convex
optimization algorithm operates on mole fractions, but for convenience, accepts
molar strand concentrations [i]° = x?szo as inputs and returns molar complex

concentrations [c] = x.pn,0 as outputs, where pp,0 is the molarity of water.

the ensemble pair fractions for the test tube ensemble, for example

fa(ia - jB) (2.15)

denotes the fraction of A strands that form base pairi, - jp (correspondingly fz(is-jp)
denotes the fraction of B strands that form base pair i4 - jp). In order to calculate
these base-pairing observables, it is first necessary to calculate the set of equilibrium

concentrations xy and the set of base-pairing probability matrices Py.
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Table 2.1: Algorithmic ingredients for calculating diverse physical quantities.
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2.2.2 Existing dynamic programs

Before describing the new unified dynamic programming framework, it is helpful to briefly
summarize existing algorithms that operate on complex ensemble I'(¢) using a simplified
free energy model that neglects coaxial stacking and approximates dangle stacking [11].
The complex ensemble size, |(¢)|, grows exponentially with the number of nucleotides
(Figure S37), N = |¢|, but the partition function can be calculated in O(N?) time and
O(N?) space using a dynamic program [11, 21]. The algorithm calculates the subsequence
partition function Q; ; for each subsequence [, j] via a forward sweep from short sub-
sequences to the full sequence (Figure 2.4), finally yielding the partition function of the
full sequence, Q1 n. The recursions used to calculate Q; ; from previously calculated sub-
sequence partition functions can be depicted as recursion diagrams (Figure 2.5 left; with
free energy contributions colored to match the loop types of Figure 2.2) or equivalently
using recursion equations (Figure 2.5 right). The Q recursion relies on additional restricted
partition functions Q% and Q™ that are also calculated recursively. Collectively, the Q, Q°,
and Q™ recursions yield Q(¢) = Q 1N, iIncorporating the partition function contributions of
every structure s € I'(¢) based on free energy model (2.1) treating all strands as distinct.
After calculating the partition function with a forward sweep from short to long sequences,
dynamic programs that backtrack through the matrix of subsequence partition functions
from long to short subsequences can be used to calculate the matrix of equilibrium base-

pairing probabilities, P(¢), [9, 11, 21] or to Boltzmann sample a structure from ensemble

T'(¢) [6, 11].

The partition function dynamic program can be converted into an MFE dynamic program
in a straightforward way by replacing every product of exponentiated free energies with
a sum of free energies and every sum of alternative partition function contributions with
a minimization over alternative free energy contributions, yielding the MFE of the full
sequence, E(({), smre) = F1ny [11, 36]. After calculating the MFE with a forward sweep
from short to long subsequences, dynamic programs that backtrack through the matrix
of subsequence MFEs from long to short subsequences can be used to determine the
MFE secondary structure(s), smre(¢) € L(¢), or the ensemble of suboptimal structures,
Fsubopt(qb, AG#&P). At the heart of the improvements in the present work is a new unified

treatment of this suite of dynamic programs for calculating diverse physical quantities.
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| Structural ensemble |

+ N | Recursions |
| Free energy model | + N
| Evaluation algebra | - | Dynamic program
| Physical quantity | +

| /

| Operation order

Figure 2.6: Unified dynamic programming framework. To calculate a physical quantity
of interest based on a physical model comprising a structural ensemble and a free energy
model, each dynamic program combines three ingredients: model-specific recursions, a
quantity-specific evaluation algebra, and a quantity-specific operation order.

2.2.3 Unified dynamic programming framework

In the new unified framework, each dynamic program combines three ingredients (Fig-
ure 2.6): a set of recursions, an evaluation algebra, and an operation order. A set of
recursions specifies the dependencies of each subproblem, capturing the structural details
of the complex ensemble and the energetic details of the loop-based free energy model. An
evaluation algebra yields the mathematical form of each subproblem, allowing recursions to
be generically extended to each physical quantity of interest. An operation order defines the
computational trajectory through the dependency graph of subproblems, yielding dramatic
speedups using appropriate data structures. In the following sections, we first introduce a
new set of recursions that treat the enhanced physical model including coaxial and dangle
stacking, and then describe evaluation algebras and operation orders that enable calculation

of diverse physical quantities for complex and test tube ensembles (Table 2.1).
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a Without coaxial and dangle stacking

d [] exterior loop
J
Terminal base pair

b Wwith coaxial and dangle stacking

Stacking state

i+K
i Q 3
d 3

Coaxial stacking state ~ Dangle stacking state

[l exterior coax

[ exterior dangle

\

Figure 2.7: Elementary recursion entities without or with coaxial and dangle stacking. (a)
Terminal base pair: a base pair that terminates a duplex (i - d) in an exterior loop or multiloop
context. (b) Stacking state: (1) Either a coaxial stacking state: two adjacent terminal base
pairs that are coaxially stacked (i - d and d + 1 - ) in an exterior loop or multiloop context,
(2) or a dangle stacking state: zero, one, or two unpaired nucleotides (neither i nor j, i
only, j only, both i and j) dangle stacking on an adjacent terminal base pair (i + k - j — )
in an exterior loop or multiloop context. Shading denotes free energies incorporated by the
recursion.

2.2.4 Recursions for the complex ensemble with coaxial and dangle stacking

To treat the enhanced physical model including coaxial and dangle stacking contributions
for all multiloops and exterior loops, we require a new set of recursions that incorporate the
subensemble of stacking states and free energies defined by equation (2.2) and illustrated
in Figure 2.3. For the recursions without coaxial and dangle stacking, the elementary
recursion entity is a terminal base pair (Figure 2.7a; a base pair that terminates a duplex
in an exterior loop or multiloop context). For example, a recursion might contain exactly
one terminal base pair, a 3’-most terminal base pair, or one or more terminal base pairs.
By contrast, for new recursions with coaxial and dangle stacking, the elementary recursion
entity becomes a stacking state (Figure 2.7b), which may be either a coaxial stacking state
(two adjacent terminal base pairs that are coaxially stacked in a multiloop or exterior loop
context), or a dangle stacking state (zero, one, or two unpaired nucleotides dangle stacking
on an adjacent terminal base pair in a multiloop or exterior loop context). For example,
a recursion might contain exactly one stacking state, a 3’-most stacking state, or one or

more stacking states. Note that a terminal base pair without coaxial and dangle stacking
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corresponds to the subset of a dangle stacking state where there are zero nucleotides dangle
stacking, so the complex ensemble without coaxial and dangle stacking is a subset of the
complex ensemble with coaxial and dangle stacking. The inclusion of coaxial and dangle
stacking subensembles adds significant complexity to the specification of recursions. The
full set of O (N?) recursions with coaxial and dangle stacking are provided in Section S2. In
the following sections, we describe how diverse physical quantities can be calculated using

these recursions in combination with different evaluation algebras and operation orders.

Algebra Algorithm Output 0 1 a®b a®b W(g)
a SumPropuct Partition function 0 1 a+b a-b e 8/KT
Count Ensemble size 0 1 a+b a-b 1
MinSum MFE o 0 min(a, b) a+b g
b SpLiTExp Partition function
Mantissa 0 1 am2%" +by-2%*Y ay-by e 8/KT
Exponent 0 vy 0 ae+be+y vy
¢ ARrGRAND Sampled structure
Value 0 1 ay + by ay - by e8/kKT
Elements o o arg rand(ay, by) a,Ub, 1]
d ArcMIN MFE structure proxy
Value oo 0 min(ay, by) ay+ by g
Elements o o arg min(ay, by) a,Ub, 1]

Table 2.2: Evaluation algebras for dynamic programming algorithms operating on a complex
ensemble. a and b are elements within a given evaluation algebra domain. SumPropuct
yields the partition function of the complex ensemble. CounT yields the number of sec-
ondary structures in the complex ensemble. MiNnSuwm yields the free energy of the MFE
stacking state in the complex ensemble. SpLITExp yields the partition function in split
mantissa/exponent form using a given exponent shift y in order to avoid overflow for the
complex ensemble. ARGRAND yields a Boltzmann sampled secondary structure with par-
tition function value x, and associated with recursion elements x;. ARGMIN yields the
secondary structure containing the MFE stacking state with free energy value x, and asso-
ciated with recursion elements x,. See Section S3 for details.

2.2.5 Evaluation algebras for partition function, minimum free energy, and ensemble

size

As previously noted for the complex ensemble without coaxial and dangle stacking, the

partition function recursion diagrams of Figure 2.5a can equivalently be expressed as the
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partition function recursion equations of Figure 2.5b, and these in turn can be systematically
transformed into recursion equations to calculate the MFE. Alternatively, we may view the
partition function and MFE recursion equations as the results of applying two different
evaluation algebras to a generic set of recursion diagrams and equations that capture the
details of a given physical model (comprising a structural ensemble and a free energy
model). Here, we formalize an evaluation algebra as an algebraic structure composed
of: 1) a semiring R equipped with commutative binary operators @ and ® and associated
identity elements O and 1, 2) a map W from free energy parameters to R with the property
W(0) = 1, and 3) a map Q from recursion indices to R. Table 2.2a defines the evaluation
algebras for the partition function and MFE algorithms, as well as the evaluation algebra for
calculating the size of the complex ensemble, |T'(¢)|. For example, using the SuMPRrOD-
ucT evaluation algebra to calculate the partition function: 1) @ is standard addition, ® is
standard multiplication, 0 is 0, 1 is 1, 2) W(g) is the Boltzmann factor exp(—g/kT) with the
property W(0) = 1, and 3) Q is the trivial matrix lookup operator Q(n, i, j) + Q;.‘J., where
n denotes the type of recursion (e.g., n = b for a Q recursion). The evaluation algebras
used to calculate the partition function, MFE, and complex ensemble size can be applied
to recursions that operate over the complex ensemble with or without coaxial and dangle

stacking subensembles.

This paradigm of applying a quantity-specific evaluation algebra to a model-specific set
of recursions extends to diverse physical quantities, as we describe in the sections that
follow. This generic programming abstraction dramatically reduces the size of the code
base and enforces implementation correctness. Instead of writing separate code to upgrade
the recursion equations to the new physical model for each physical quantity, a single set
of recursion equations is coded and compiled using C++ expression templates for each of
the evaluation algebras in Table 2.2 to produce a suite of executables for calculating the

corresponding physical quantities.

2.2.6 Overflow-safe evaluation algebra for large partition function calculations

One of the challenges with calculating the partition function is the prevention of overflow
as the size of the complex, N = |¢|, increases. Using double-precision (64-bit) arithmetic,
the maximum expressible number is ~ 10°%, enabling calculation of partition functions
for complexes of #1400 nt for random sequences and ~450 nt for designed sequences
(which typically have a free energy landscape with a deep well). Using quadruple-precision
(128-bit) arithmetic, the maximum expressible number is increased to = 104932 (platform-

dependent), which enables partition function calculations for complexes of up to 22,000 nt
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for random sequences and ~7000 nt for designed sequences (at the cost of doubled storage)
[11].

Here, to enable partition function calculations for even larger complexes, we define an
overflow safe evaluation algebra that operates separately on the mantissa and exponent
for the partition function calculation (Table 2.2b). The elements of the partition function
recursion matrix are represented as a = ap,2%, where ap, is a single-precision (32-bit) float

and a. is a 32-bit integer, so the maximum expressible number is ~ 10546437031

For exposition, we assume in Table 2.2 that any expression is to be calculated with respect to a
known reference exponent shift, y, to which the expression is aligned. For instance, consider
the expression a ® b where a = 40 (a, = 0.625, a. = 6), b = 96 (b, = 0.75, be = 7), and
v =—6,then xy, = amy - by =0.625-0.75=0.46875 and xe = ac + be +y =6+7-6="7
corresponding to a ® b = xp, - 2% - 277 = 0.46875 - 27 - 26 = 0.46875 - 2!3. The recursion
result may thus be calculated and stored as (0.46875,13) without explicitly computing its
real equivalent, 3840. See Section S3.1.4 for a full description of the evaluation algebra

including selection of an appropriate y for each expression.

With this construction, the storage cost is thus identical to using double-precision but over-
flow is no longer limiting, and the space and time complexity of the algorithm become the
limiting factors. Empirically, we observe a *2-2.5X increase in cost for the overflow-safe
evaluation algebra relative to a double-precision floating point evaluation algebra (Fig-
ure S41). In practice, we use a blended approach by switching between the single-precision
SumProbuct, double-precision SumPropuct, and the SpLiTExp evaluation algebras as

overflow occurs during the partition function calculation for a given complex.
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Figure 2.8: Blockwise operation order for dynamic programs operating on complex and
test tube ensembles. (a) Subcomplex blocks within dynamic programming matrices (cf.
Figure 2.4): triangular intrastrand blocks (A, B, C) and rectangular interstrand blocks
(AB, BC, ABC) for complexes AB and ABC. Element i, j corresponds to a conditional
ensemble for subsequence [7, j| which contains no nicks if 7, j is in an intrastrand block
and one or more nicks if 7, j is in an interstrand block. (b) Dependency graph for block
evaluation: bottom to top for forward algorithms (depicted), top to bottom for backtracking
algorithms. (c) Each recursion operation for calculation of element 7, j in an interstrand
block (e.g., Qi < 2i<d< j Q1.dQa+1,7) can be implemented as multiple vectorized dot
products between valid subvectors of row i (brown) and valid subvectors of column j
(gray) to obtain element i, j (purple), where valid positions are those that avoid introducing
disconnected structures into the complex ensemble.

—
>

Evaluation order

2.2.7 Efficient blockwise dynamic programs over subcomplexes using caching and

vectorization

To this point, we have considered dynamic programs that operate on a complex of L strands.
We now re-examine that goal in the more general context of a test tube ensemble containing
the set of strand species W interacting to form the set of complex species ¥. For example,
suppose WO contains M strand species and ¥ is defined to contain all complexes of up to Lax
strands. The simplest option is to calculate the partition function for each complex ¢ € ¥
independently [11]. With this approach, as described previously, the partition function
Q1 y for a complex with N nucleotides is calculated with a dynamic program that builds up
from short subsequences to the full-length sequence, sweeping along each diagonal of the
matrix of subsequence partition functions (Figure 2.4). This simplicity comes at the cost of
some inefficiency, for when multiple copies of the same strand species appear in a complex,
intermediate results appear in multiple locations within the matrix. Moreover, when the
same strand species appears in multiple complexes, intermediate results appear in multiple

matrices.
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Figure 2.9: Conceptual interplay between three dynamic program ingredients: recursions,
evaluation algebra, and operation order. Recursions specify the dependencies between
subproblems and incorporate the details of the structural ensemble and free energy model.
Evaluation algebras define the mathematical form of each subproblem. Operation orders
specify the computational trajectory through the dependency graph of subproblems.

Here, we reduce the cost of calculating the partition functions for the set of complexes ¥
by decomposing each matrix into two types of subcomplex blocks (Figure 2.8a): triangular
intrastrand blocks (e.g., blocks A, B, C) and rectangular interstrand blocks (e.g., blocks AB,
BC, ABC). Blocks are computed in ascending order of the number of strands per block
(blocks with the same number of strands can be calculated independently) and cached such
that blocks arising in multiple locations within a complex or test tube ensemble are not
recomputed (Figure 2.8b). Section S4.2 provides pseudocode for a blockwise operation
order that is O (N?) for a complex of N nucleotides, including exact calculation of interior
loop contributions [8, 18]. Moreover, with this blockwise operation order, recursions
(Section S2) can be coded using vectorized dot products (Figure 2.8c) such that compilation
with the appropriate evaluation algebra (Table 2.2) yields an efficient vectorized dynamic
program for calculating the corresponding physical quantity. The interplay between the three
dynamic programming ingredients (recursions, evaluation algebra, and operation order) is

illustrated conceptually in Figure 2.9.
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a Partition Function b NUPACK 4.0 vs NUPACK 3.2
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Figure 2.10: Enhanced efficiency for partition function calculations on complex ensembles
including very large complexes. Calculation of the partition function for a complex of 3
strands, each with a different random sequence of uniform length. NUPACK 4.0 (vectorized,
overflow-safe implementation, physical model with or without coaxial and dangle stacking)
vs NUPACK 3.2 (not vectorized, quadruple-precision arithmetic, physical model with no
coaxial or dangle stacking). (a) Computational cost. (b) Computational speedup (ratio
of mean wall clock times). Means wall clock time over 5 sets of random sequences per
complex size (due to overflow, results not available for largest complex size using NUPACK
3.2). Conditions: RNA, 37 °C, 1M Na™.

2.2.8 Enhanced efficiency and scalability of the partition function algorithm for

complex ensembles including very large complexes

Figure 2.10 highlights efficiency gains for partition function calculations on complex en-
sembles. Compared using the same physical model without coaxial and dangle stacking,
the vectorized NUPACK 4.0 implementation yields ~30-90x speedups over NUPACK 3.2
depending on the complex size. Operating on the enhanced physical model that includes
coaxial and dangle stacking subensembles, NUPACK 4.0 continues to achieve speedups of
~13-45x over NUPACK 3.2 operating on the simpler physical model that neglects these
terms. Figure 2.11 demonstrates that the overflow-safe evaluation algebra SpLiTEXP enables
NUPACK 4.0 to calculate partition functions exceeding the overflow thresholds for single-,
double-, and quadruple-precision floating point arithmetic. Note that the partition function
grows faster as a function of complex size for designed sequences than for random sequences

due to the presence of a deep well on designed free energy landscapes.

2.2.9 Enhanced efficiency of the partition function algorithm for sets of complexes in

test tube ensembles

Figure 2.12 highlights efficiency gains for partition function calculations for sets of com-
plexes in test tube ensembles. Blockwise caching yields an empirical speedup of ~( Lyax—1)

for a range of test tube ensembles containing M strand species interacting to form all com-
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Figure 2.11: Overflow-safe partition function calculations on complex ensembles including
very large complexes. Dashed lines denote the overflow thresholds for single-, double-, and
quadruple-precision arithmetic. Partition function calculations performed using NUPACK
4.0 (overflow-safe implementation with coaxial and dangle stacking) for two test sets:
random test set (complexes of 3 strands, each with a different random sequence of uniform
length), designed test set (duplexes with designed sequences). Mean partition function over
5 sets of random or designed sequences per complex size. Conditions: RNA, 37 °C, 1M
Na*.

plexes of up to Ly,x strands (Figure 2.12a). Comparing the performance of NUPACK 4.0
(with the benefits of vectorization and blockwise caching but the added cost of an enhanced
physical model with coaxial and dangle stacking) to NUPACK 3.2 (without these features)
reveals speedups of ~20x for test tubes containing all complexes of up to Lyax = 2 strands
and up to ~120x for test tubes containing all complexes up to Ly,x = 6 strands. With
NUPACK 4.0, Figure 2.13 illustrates the size of test tube ensembles for which equilibrium
analysis can be performed in < 1 minute on a single computational core (e.g., M = 80
strand species of 100 nt each interacting to form all complex species of up to Ly,x = 2
strands, or M = 2 strand species of 300 nt each interacting to form all complex species of
up to Lyax = 6 strands).

2.2.10 Backtrack-free base-pairing probability matrices

Historically, equilibrium base-pairing probabilities for a single strand [9, 21] or a complex
[10] are calculated using a dynamic program that backtracks through the matrix of subse-

quence partition functions. This backtracking process involves subtraction of intermediate
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Figure 2.12: Enhanced efficiency of the partition function algorithm for sets of complexes
in test tube ensembles. Calculation of the partition function for all complexes of up to
Lmax strands for a test tube ensemble containing M strand species, each with a different
random 50 nt sequence. (a) Speedup with vs without blockwise caching for NUPACK 4.0.
(b) Speedup using NUPACK 4.0 (vectorized, blockwise caching, enhanced physical model
with coaxial and dangle stacking) vs NUPACK 3.2 (no blockwise caching, not vectorized,
physical model with no coaxial or dangle stacking). Mean wall clock time over 10 sets of
random sequences per test tube ensemble size. Conditions: RNA, 37 °C, IM Na*, each
strand introduced at 10 nM.

partition function quantities, creating the risk of losing precision due to subtraction of large
numbers differing by a small amount. To eliminate this concern, here we calculate equi-
librium base-pairing probabilities without backtracking using the same blended evaluation
algebras and a modification of the blockwise operation order that are used for overflow-safe

partition function calculations.

To see how this is possible, consider a complex with strand ordering 7 = ABC and a total of N
nucleotides. As an intermediate result, the partition function algorithm calculates Qﬁ It the
conditional partition function for subsequence i, . . ., j subject to the constraint thati is paired
to j. We may similarly calculate the conditional partition function, Qf.”j.“, for the remaining
nucleotides external to subsequence i, . . ., j, namely nucleotides j +1,...,N,1,...,i—1
(Figure 2.14a). Because the structural ensemble I'(¢) excludes pseudoknots, the base pair

i - j partitions the structural ensemble into non-interacting internal and external ensembles,
bex
© i
As a result, the equilibrium probability of base pair i - j over ensemble I'(¢) is given by

so the partition function of all structures containing base pair i - j is the product Qf’jQ

Pij(9) = 07 (6)075(¢)/Q1n(9). (2.16)

Mathews employed this approach using new recursions to calculate the external conditional

partition function Qf’j.*‘ for a single strand[20]. Here, treating the general case of a complex
of L strands, we observe that Qf;“ can be calculated in a straightforward way without new
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Figure 2.13: Equilibrium test tube analysis in under 1 minute. Calculation of the partition
function and equilibrium complex concentration for a test tube ensemble containing M
strand species that form all complexes of up to Ly, strands. Symbols denote test tube
ensembles for which the wall clock time < 1 minute. After calculating the set of partition
functions Qy for a given test tube ensemble P, the set of equilibrium concentrations x is
obtained by solving the convex optimization problem (2.14). Mean wall clock time over 5
sets of random sequences per test tube ensemble size. Conditions: RNA, 37 °C, IM Na*,
each strand introduced at 10 nM.

recursions by replicating the strands to form a “doubled” complex with sequence ¢’ (e.g., &
= ABCABC) containing 2N nucleotides and calculating Qll.fj using the standard recursions
for all subsequences of up to N nucleotides (Figure 2.14b). The external subsequence
Jj+1,...,N,1,...,i — 1 for the original complex with sequence ¢ is simply the internal

subsequence j, N + i for the doubled complex with sequence ¢’. Hence, we have:

Pij(9) = 07 /($)0] 5y (¢)/Q1n(9). (2.17)

In Figure 2.14, the yellow blocks are previously cached from the partition function calcu-

lation. The orange entries correspond to calculation of Q°

N ,:(¢). The cost of evaluating

each entry is proportional to subsequence length (the horizontal or vertical distance from
the diagonal), so the average cost per entry in the orange block is higher than for the yellow
blocks. Empirically, after calculating the partition function Q(¢) at a cost Co, calculation
of the equilibrium base-pairing probability matrix P(¢) costs an additional Cp ~1.5-3C¢
(Figure S40).
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Figure 2.14: Backtrack-free calculation of the equilibrium base-pairing probability P; ;(¢)
for a complex ABC of N nucleotides with sequence ¢ using (2.17) and the conditional
partition functions Qf.”j(gb) and Q?’ v+ (@), The latter is calculated by considering the
“doubled” complex ABCABC of 2N nucleotides with sequence ¢’.

2.2.11 Evaluation algebras and backtracking operation orders for simultaneous
structure sampling, MFE structure determination, and suboptimal structure

determination

After calculating the partition function @((/)) for a strand [6] or a complex [11], a structure
Ssample €an be randomly sampled from the structural ensemble T'(¢) by backtracking through
the matrix of subsequence partition functions. Likewise, after calculating the minimum
free energy AG (¢, smrpg) for a strand [36] or a complex [11], the corresponding MFE
structure syre(¢) can be determined by backtracking through the matrix of subsequence
MFEs. These dynamic programs can be expressed in our unified dynamic programming
framework (Figure 2.6) using the same set of recursion diagrams/equations (Section S2) as
the forward algorithms, but employing new evaluation algebras (Table 2.2cd), and with the
operation order reversed so the blockwise dependency tree (Figure 2.8b) is traversed top to

bottom.

For structure sampling, backtracking starts from the recursion for O » and for MFE structure
determination, backtracking starts from the recursion for F y. In either case, backtracking
is used to “choose’” between competing recursion elements when a @ operator is encountered
and to “join” compatible recursions elements when a ® operator is encountered; the math-
ematical implementations of these operators are described by quantity-specific evaluation

algebras (Table 2.2cd). For sampling, @ corresponds to randomly choosing between com-
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Figure 2.15: Enhanced efficiency for sampling multiple structures from complex ensembles
using simultaneous rather than sequential sampling. Boltzmann sampling secondary struc-
tures for a complex of 3 strands, each with a different random sequence of uniform length.
(a) Computational cost. (b) Computational speedup (ratio of mean wall clock times). Mean
wall clock time over 10 sets of random sequences per complex size. Conditions: RNA,
37 °C, 1M Na™*. See Section S6.6 for additional data.

peting (Boltzmann-weighted) recursion elements, while for MFE structure determination,
@ corresponds to choosing the MFE of competing recursion elements. For both structure
sampling and MFE structure determination, ® corresponds to the set union U of compatible

recursion elements.

The MFE structure determination algorithm can be generalized to calculate the set of
suboptimal structures I' (¢, AG gap) Within a specified free energy gap AG gy, > 0 of the MFE
using generalized evaluation operators for @ and ® (see Section S3.2.6). In practice, we
implement this more general algorithm and then apply it with AG g5, = 0 if the MFE structure
proxy is requested. The number of suboptimal structures can grow rapidly with AGg,, and
N so we perform backtracking using a stack data structure that reduces memory usage by
generating complete structures at the earliest opportunity, enabling these structures to be

emitted in a streaming fashion while additional structures are determined (see Section S4.6).

While the pair probability matrix P(¢) provides the equilibrium probability of each base
pair over the complex ensemble, it does not reveal correlation information between different
base pairs. By sampling a set of J secondary structures and averaging or clustering over this
set, it is possible to address questions like “what is the probability that a set of adjacent bases
are simultaneously unpaired?”’[6] or “is the free energy landscape dominated by multiple
deep basins each defined by a set of related secondary structures?”’[7]. Existing algorithms

perform sequential sampling of J structures for a strand [6] (O(JN?) time complexity if
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long interior loops are excluded) or a complex [11] (O(JN 3) with exact treatment of interior
loops). Motivated by the central use case where a set of J structures is needed for averaging
or clustering, here we develop a simultaneous sampling approach that samples J structures
all at once (O (JN?) with exact treatment of interior loops). A given recursion element may
contribute to a large number of sampled structures (e.g., if there is a deep well on the free
energy landscape), so we perform backtracking using a priority queue data structure that
reduces computational effort by ensuring that all samples of any given recursion element
are performed during a single visit to that recursion element (see Section S4.4). With the
simultaneous sampling algorithm, we observe order-of-magnitude speedups over sequential
sampling for J above ~ 10° (Figure 2.15), and empirical complexity ~J*8N!-2 for J samples

from a random complex ensemble of N nucleotides (see Section S6.6).

2.3 Conclusions

The new unified dynamic programming framework combines recursions capturing the
details of the physical model with quantity-specific evaluation algebras and operation orders
to enable efficient and scalable calculation of diverse physical quantities over complex and
test tube ensembles of interacting DNA or RNA strands. The physical model was upgraded
by deriving recursions for the complex ensemble that include coaxial and dangle stacking
subensembles for multiloops and exterior loops. The recursions are coded generically and
then compiled with a quantity-specific evaluation algebra and operation order to generate
an executable for each physical quantity. As a result, future upgrades to the physical model
can be implemented by updating the generic recursions rather than by updating code for
each physical quantity. For large complexes, scalability is achieved for partition function
calculations using an overflow-safe evaluation algebra, and for equilibrium pair probabilities
by using a backtrack-free operation order, enabling calculations on complexes containing
30,000 nt. For test tube ensembles, dramatic efficiency gains of 1-2 orders of magnitude are
achieved using a new blockwise operation order that facilitates vectorization and caching.
Recognizing that Boltzmann sampling is most useful for averaging or clustering information
calculated on large set of structures, a new sampling algorithm yields order-of-magnitude
speedups by sampling all requested structures simultaneously. These enhancements to the
physical model, algorithm scalability, and algorithm speed represent substantial advances
for researchers analyzing nucleic acid structures, devices, and systems. Moreover, these
enhancements are directly applicable to sequence design algorithms operating over complex

and test tube ensembles [30, 31, 34] as sequence analysis is the most costly component of
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sequence design; work is underway to integrate these advances into the NUPACK 4.0

sequence design algorithms.

2.4 Methods summary
24.1 Implementation

NUPACK algorithms are programmed in the C++17 programming language. Dynamic
programs are implemented using a generic programming paradigm [27] employing ex-
pression templates and compile-time polymorphism; generic recursion equations capturing
the details of the structural ensemble and free energy model are translated via template
metaprogramming into a separate vectorized executable for calculating each physical quan-
tity in Table 2.2. Single-threaded single instruction multiple data (SIMD) vectorization is
implemented using the Boost.SIMD library[12]. The convex optimization problem (2.14)
is solved in the dual form using an efficient trust region method [11] using the Armadillo

linear algebra library for matrix operations [23].

2.4.2 Trials

All benchmarks were run on AWS EC2 C5 instances (3.0 GHz Intel Xeon Platinum proces-
sors) with 72 GB of memory (except 144 GB for Figure 2.10).

2.5 Resources
2.5.1 NUPACK source code

The NUPACK source code can be downloaded for non-commercial academic use subject
to the NUPACK License (nupack.org). NUPACK documentation includes a User Guide

and example jobs.

2.5.2 NUPACK Python module

The all-new NUPACK Python interface allows streamlined and flexible in-memory scripting
of NUPACK jobs, reducing file I/O and increasing the convenience of developing workflows

composing multiple NUPACK commands.
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Appendix A

ADDITIONAL DETAILS FOR IMPROVED ALGORITHMS FOR THE
EQUILIBRIUM ANALYSIS OF NUCLEIC ACID COMPLEXES

S1 Additional free energy model details
S1.1 Strand association penalty for a complex

Based on dimensional analysis, we define the complex concentrations xy for a test tube
containing the set of complexes ¥ as mole fractions rather than molarities (see (2.14)).

Therefore, we adjust the strand association penalty

AG3S0¢ — AG;?JS;C — kT log[pn,0/(1 mol/liter)] (S1)

where AG;?;?C is the published value for two strands associating [21] and pp,o is the
molarity of water (e.g., pu,0 = 55.14 mol/liter at 37 °C).[7] The strand association penalty

for a complex of L strands (see (2.1)) is then

(L — ))AG™>®. (S2)

S1.2  Salt corrections for DNA complexes

The default salt conditions for RNA [10, 14, 20, 22, 24, 26] and DNA [2, 17, 18, 26]
parameter sets are [NaCl] = 1 M. Salt corrections are available for DNA parameters [9, 17—
19] to permit calculations in user-specified sodium, potassium, ammonium, and magnesium
ion concentrations. Following SantalLucia and co-workers, the free energy of a DNA duplex

at 37°C is augmented by
N +
—0.114510g[Na ], (S3)

for user-specified 0.05M < [Na*] < 1.0M, where N is the number of phosphates in the
duplex and it is assumed that AH is independent of [Na*], which is valid for this salt
regime [18, 19]. This salt correction was derived using duplexes with 16 bp or less and
the accuracy decreases as duplex length increases further [18, 19]. The expression can
be generalized to monovalent potassium and ammonium ions [19] as well as to divalent

magnesium cations[9, 17]:

-0.114 % log ([Na+] + [K*] + [NH;] +3.3 [Mg++]‘/2) , (S4)
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for user-specified for 0.05M < [Na*] + [K*] + [NH;] < 1.0M and 0.0M < [Mg**] <
0.2M.

To apply this salt correction to a complex of L strands at temperature 7', consider a secondary
structure s containing one or more duplexes. We assume that strands are synthesized with
one phosphate per base so that N/2 = ny,(s) where N is the total number of phosphates
in duplexes and npp(s) is the total number of base pairs in s. (If strands are synthesized
without a 5" terminal phosphate, then N approximates the total number of phosphates in
duplexes.) We further assume that AH is independent of cation concentration in this regime.

The secondary structure free energy AG (¢, s) is then augmented by

Mpp () AG™™ (S5)
with
AG* = ~0.114 log ([Na+] +[K*] + [NH}] +3.3 [Mg++]1/2) % (S6)
for user-specified
0.05M < [Na*] + [K*] + [NHI] < 1.0M, (S7)
0.0M < [Mg*] <0.2M, (S8)

with 737 = 310.15 K. In order to incorporate this salt correction in dynamic programs
without explicitly calculating ny, (), note that for a complex of L strands, the total number

of loops in each secondary structure is
nloop(s) = nbp(s) + 1. (S9)

This may be seen, for example, by starting with a single strand with no base pairs (corre-
sponding to a single exterior loop). Each addition of a base pair adds one loop. Once all base
pairs in s have been added, each addition of a nick increases the number of strands by one
without changing the number of loops (all secondary structures in the complex ensemble

are connected so introduction of each nick converts a loop from another type to an exterior

other

Toop denote the total number of non-exterior loops and n"° denote the total

loop). Let n Toop

number of exterior loops, so we have
Moop (5) = Mjnaer " (5) + npeet (5). (S10)
For a complex of L strands, nf(’)‘é%rior(s) = L. Thus, the salt correction (S5) becomes

nop($)AG™! = (L = NAG™™ + nfyoe (5)AG™™". (S11)
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Hence, the salt correction can be implemented by adding
AGS! (S12)

to every AG (loop) except for exterior loops as a pre-processing step, using our suite of
dynamic programs without modification, and then treating the constant term (L — 1)AG®t

in a post-processing step (see Section S1.4).

S1.3 Temperature dependence

The loop-based free energy model (2.1) is temperature dependent. Each loop free energy

is calculated using
AG (loop) = AH (loop) — TAS(loop) (S13)

where T is in Kelvin and AH (loop) and AS (loop) are assumed to be temperature independent
[19]. Model parameters are provided for RNA [10, 14, 20, 22, 24, 26] and DNA [2, 17, 18,
26] in the form of AG37(loop) and AH (loop) which can be used to calculate

1
AS(loop) = T—[AH(loop) — AG37(loop)] (S14)
37
with 737 = 310.15 K, so (S13) becomes
T
AG (loop) = AH (loop) — T—[AH(loop) — AG37(loop)]. (S15)
37

Similarly, for the strand association penalty (S1):

AGE = AHI — TASS®. (S16)
and the provided parameters AGS7>", and AHIY¢ yield
T
AGHY* = AHJY — . [AHTYS = AGS o] (S17)

The temperature dependence is explicit in the form of the symmetry correction (2.5) and
salt correction (S5).

S1.4 Treatment of constant free energy terms for complex ensembles

Consider a complex of L strands containing a total of N nucleotides. Suppose that free

energy model terms have been pre-processed as described above for units [see (S1)], salt
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corrections [see (S12)], and temperature corrections [see (S15 and S16)] prior to calculating

any physical quantities. The secondary structure free energy (2.1) then becomes

AG(,s) = (L — 1)[AG® + AG™] + Z AG (loop). (S18)
loopes
After running the partition function dynamic program to calculate Q; y, the partition

function is then
0(¢) = exp{—(L — )[AG™*® + AG™"]/kT}Q1 v. (S19)

where this post-processing step accounts for the constant terms AG**°° and AG*¥!" that
affect all secondary structures in the complex ensemble. Likewise, after running the MFE

dynamic program to calculate F y, the free energy of the MFE stacking state is then

AG(¢, spp) = (L = D[AG™ + AG™] + Fy y. (S20)

The equilibrium base-pairing probability P; ; is calculated via (2.17) using the values of
Qf.’,j(¢), Q?,N .;(¢") and Q1 n(@) returned by the dynamic program; the constant terms
AG*%°¢ and AG*¥!t do not affect the calculation as they are omitted in both the numerator
and the denominator of (2.17). The dynamic programs for calculating the MFE proxy
structure, suboptimal structures, or sampled structures are unaffected by the constant terms

AG®%°¢ and AG*¥!t 50 no post-processing is required for those quantities.

S1.5 RNA and DNA parameter sets

NUPACK 4 algorithms perform calculations on the following complex ensembles:

» stacking: with coaxial and dangle stacking (ensemble F”(zp)).

« nostacking: without coaxial and dangle stacking (ensemble I'(¢)).

These ensembles can be used for calculations in combination with the following temperature-
dependent DNA and RNA parameter sets:

* rna95 based on Serra and Turner [20] with additional parameters [26] including
coaxial stacking [14, 22] and dangle stacking [20, 22, 26] in 1M Na*.

e dna®4 based on SantalLucia [18] and SantalLucia and Hicks [19] with additional
parameters [26] including coaxial stacking [17] and dangle stacking [2, 26] in user-
specified concentrations of Na*, K*, NHZ, and Mg** (see Section S1.2 for details on

implementation of the salt corrections) [9, 17-19].
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* rna0®6 based on Mathews et al. [14], Mathews et al. [15], and Lu et al. [10] with
additional parameters [24, 26] including coaxial stacking [14, 22] and dangle stacking
[20, 22, 26] in 1M Na*.

* custom based on user-specified parameters representing nucleic acids or synthetic

nucleic acid analogs in experimental conditions of choice.

Base pairs are either Watson-Crick pairs (G-C and A-U for RNA; G-C and A-T for DNA) or
wobble pairs (G-U for RNA). Note that for DNA, G and T form a mismatch and not a wobble
pair [19].

S1.6 Historical RNA and DNA parameter sets (for backwards compatibility with
NUPACK 3)

For backwards compatibility, the following historical complex ensembles without coaxial

stacking and with approximate dangle stacking are supported (see Section S2.5):

* none-nupack3: no dangle stacking and no coaxial stacking (dangles “none” option
for NUPACK 3)

* some-nupack3: some dangle stacking and no coaxial stacking (dangles “some”
option for NUPACK 3)

* all-nupack3: all dangle stacking and no coaxial stacking (dangles “all” option for
NUPACK 3)

For these historical ensembles, base pairs are either Watson-Crick pairs (G-C and A-U for
RNA; G-C and A-T for DNA) or wobble pairs (G-U for RNA; G-T for DNA). Note that for the
historical ensembles, G-T is classified as a DNA wobble pair and not as a mismatch. The
historical ensembles prohibit a wobble pair (G-U or G-T) as a terminal base pair in an exterior
loop or a multiloop. As a result, an attempt to evaluate a free energy for a sequence ¢ and
secondary structure s that place a wobble pair as a terminal base pair in an exterior loop or
multiloop will return AG (¢, s) = AG (¢, s) = co. These historical ensembles can be used

for calculations in combination with the following historical DNA and RNA parameter sets:

* rna95-nupacks3 is the same as rna95 except that terminal mismatch free energies in
exterior loops and multiloops are replaced by two dangle stacking free energies (see
equation (S55)).
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* dna®4-nupacks3 is the same as dna04 except that G-T was treated as a wobble pair
(analogous to a G-U RNA wobble pair) instead of classifying G and T as a mismatch.
Note that while terminal mismatch free energies in exterior loops and multiloops are
replaced by two dangle stacking free energies (see equation (S55)), this is the same

treatment as in dna®4, as terminal mismatch parameters are not public for DNA [19].

* rna99-nupack3 based on Mathews et al. [14] with additional parameters [24, 26]
including dangle stacking [20, 22, 26] in 1M Na*. Terminal mismatch free energies
in exterior loops and multiloops are replaced by two dangle stacking free energies

(see equation (S55)). Parameters are provided only for 37 °C.
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S1.7 Functional form of RNA and DNA free energy models

S1.7.1 Free energy model for hairpin loops

A hairpin loop is defined for a subsequence ¢y;. ;) by the single base pair i - j such that there
are no nicks or additional base pairs in the range [i : j]. Letn = j —i — 1 denote the number
of unpaired nucleotides in the hairpin loop. Steric effects are assumed to prevent hairpin
loops with n < 3 for both RNA [20, 22] and DNA [19]. The functional form of the hairpin

free energy is as follows:

AGhairpin( ¢[i:j]) _ Athirpin(n) + AGhairpin( ¢[i:j]) (S21)

size seq

For the size-dependent term [10, 14, 19, 20]:

0o, n<3
AGIIPR (1) = § AGRAPISIZe, 3<n<30 (S22)
AGRIINSIZE | 60 (%) AGI™T > 30

o AGMTPINSIZE. ) Jookup table up to n = 30. rna95 and rna®6 populate the lookup

table using empirical values of AGI,flirpimiZe up to n = 9 and logarithmic extrapolation

for larger n [10, 14, 20]. dna®4 populates the lookup table using empirical values
of AGM™™SZ for 4 subset of 3 < n < 30 and logarithmic interpolation for the other
values [19].

. AGEﬁirygE;r: a logarithmic extrapolation parameter based on Jacobson-Stockmayer

polymer theory for n > 30. rna95, dna®4, and rna®6 use previously published
values [19, 20].

For the sequence-dependent term:[10, 14, 19]

triloop terminalbp
AG + AG
Pl bj.bi

hairpin _ tetraloo
AGseq (¢[i:j])— AG P
¢[L]]
A hairpinmm

®j-1.0).0i,Pi+1

S
I

(S23)

S
[
w AW

S
\%

. AGZ;IAO_(I’p: sequence-dependent penalty for hairpin loop of length n = 3. 0 kcal/mol
i:j

for rna95 [20]. Empirical values for dna®4 [19] and rna06 [15].

. AGfIxnalbp : sequence-dependent penalty for non-GC terminal base pair at the end

of a duplex. Empirical values for rna95 [20], dna04 [19], and rna06 [15].
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. AG:;’:?]OOP : sequence-dependent penalty for hairpin loop of length n = 4. Empirical

values for rna95 [20], dna®4 [19], and rna®6 [15].

o hairpinmm
AG¢j—1s¢jv¢is¢i+l .

i - j. Empirical values set equal to AG;??“:“;;“;%,

J—1» s+ .

fications for rna95 [20] and rna®6 [10, 14]. Empirical values for AG;?‘I}”;‘_]‘;}%_ 1

=19 j,PiPi+

not public for DNA [19], so Angiff lgjngj 4., Set to unpublished values made avail-

able in the Mfold software [26] for dna®4. (See multiloops and exterior loops for a

L terminalmm
description of AG MR, ).

: sequence-dependent term for mismatched bases adjacent to base pair

1 plus sequence-dependent modi-

S1.7.2 Free energy model for interior loops

An interior loop may be defined via a pair of subsequences ¢[;.q) and ¢(.:;) such that
i <d < e < jwithbase pairsi - j and d - e, with no additional paired bases or nicks within

the two subsequences.
Stacked pairs. Stacked pairs are the special case whered =i+ 1 and j = e + 1.

AGSEkedPAT (s BL—12]) = AG?;?,Crzlﬁ(mﬁm,rm_l (524)

. AG?;?C(};[ PRI the stack free energy has been determined for all allowable base

pair combinations from experimental results for rna95 [20], rna®6 [10, 14, 24], and
dna0®4 [19].

Bulge loops. A bulge loop is the special case with either d =i+ 1 or j = e + 1 but not
both. Here, we will outline the functional form whend =i+ 1. Letn = j — e — 1 denote
the number of unpaired nucleotides in the bulge loop.

AGP™ (G111, Blerj1) = AT (1) + AGoes (Pisis1]s Ble:s)- (S25)

S1Z¢€

For the size-dependent term:

AGgulgemze, n < 30

AGb.lﬂge (I’l) —

o | (S26)
size AGgglgesme " log (%) AGpolymer n> 30

entropy °
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o AGY'851%%. 11395 uses empirical values for 1 < n < 5 [20]. Tna®6 uses empirical
values for 1 < n < 6[10, 14]. dna04 uses empirical values for a subsetof 1 < n < 30

[19]. Each parameter set uses a logarithmic approximation for all other values of n.

For the sequence-dependent term:

AGstaCk e+2 = ]
bulge _ ¢ bibir1 e’
AGgeq (Plisis1)> Plej) = e . (S27)
AG?Igl_nalbp + AGt;,rr:n;albp, otherwise.
] +1-%e

Other small interior loops. The free energies for interior loops with 2 < d —i < 3 and

2 < j —e < 3are kept in a lookup table.

* 1x1interior loop. Correspondstod—i =2 and j—e = 2. rna95 assigns a sequence-
independent AG [20]. rna06 uses unpublished parameters made available in the
Mfold software [26]. dna®4 models these loops using (S28) below [19]; a positive
constant free energy is assigned for mismatches where the unpaired nucleotides are
Watson-Crick complements [26].

* 1 x 2 interior loop. Correspondstod —i =2 and j —e =3, 0ord —i = 3 and
J —e = 2. rna95 and dna®4 model these loops using (S28) below [19, 20]. For
dna04, a positive constant free energy is assigned for mismatches where the unpaired
nucleotides are Watson-Crick complements [26]. rna®6 models these loops using a

combination of tabulated data and averaging [10, 14].

* 2 x 2 interior loop. Corresponds to d —i = 3 and j — e = 3. rna95 and dna0®4
model these loops using (S28) below [19, 20]. For dna®4, a positive constant free
energy is assigned for mismatches where the unpaired nucleotides are Watson-Crick
complements [26]. rna®6 models these loops using tabulated symmetric tandem
interior mismatches and averaging for asymmetric tandem interior mismatches [10,
14].

Other interior loops. Letn; = d—i—1andn, = j —e— 1 denote the number of unpaired
nucleotides for the two sides of the interior loop. For the general case of interior loops not

handled via special cases above, the following formula is used:
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AG™ T (Bi.q). fle:j) = AGGe ™ (1 + 1) + AGIETN (1, 12) + AG ™™ ((ays Blesy))-

size asymm
(S28)
For the size-dependent term:
o AGinnteriorsize n < 30
interior _ > -
AGSize (n) = AGinteriorsize | | n AGPOIYmer > 30 (529)
30 Og 30 entropy ° n

» AGMeriomsize: rnag9s5 uses empirical values for 2 < n < 6 [20]. rna®6 uses empirical
values for 4 < n < 6 [10, 14]. dna®4 uses empirical values for a subset of values in
3 < n <30 [19]. Each parameter set uses a logarithmic approximation for all other

values of n.

For the asymmetry-based term:

interior o interiorasymm interiorasymm
AG ysymm (11, 12) = min(AG , |1 — n2|AGmin(4,n2,n1) ) (S30)

o AGMENOTSYMM. 1h295 [20], rna®6 [10, 14], and dna®4 [19] use values regressed

from empirical data.

For the mismatch-based term:

interiormm’ interiormm’ : _ _
AG nterior (- N AG¢;—1,¢j,¢f3¢i+1 + AG¢d—l’¢ds¢ev¢e+l it+2=dore+2=]
mm (¢[l:d]’ ¢[e:]]) - AGinteriormm + AGinteriormm otherwise
Gj-1,07,Pi0ix1 bd-1:9d-PesPe+1
(S31)
. AG?@?‘;@? bint" rna95 [20] and rna®6 [10, 14] use independently determined values
j-1.9j,Pi,Pi+ . .
for loops without complementary unpaired bases. dna®4 equates AGg‘Fej“q’;JW(;‘_‘ bin with
. J— 1 YW+
AGEminamm - 119] \which are assigned unpublished values made available in the

Dj-1,9:0i,Pi+1
Mfold software [26].

. AG;’;frl‘?;jm;: 6., TNagd5 [20], rnad6 [10, 14], dnad®4 [19] use different parameters

for the case when one side of the interior loop has only one unpaired nucleotide [15].
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S1.7.3 Free energy model for multiloops

A multiloop contains 3 or more terminal base pairs and no nicks. It may be defined as a
series of bounding subsequences [¢]. If the number of terminal base pairs is np, and the
number of unpaired nucleotides is ny,, the free energy for a multiloop in a specified stacking

state, w, 1s modeled as follows:

AGmulti( [¢]’ CL)) — AGmulti + nprGrbI;ﬂti + nntAGg:UIti

init

+ AGallterminalbp( [¢]) + AGallcoaX( [¢] , w) + AGalldangle( [¢] , w) (S32)

where AGﬁ;‘thi denotes the penalty for formation of a multiloop, AGE;‘M denotes the
sequence-independent penalty for a terminal base pair in a multiloop, and AGnmt“lti de-
notes the penalty per unpaired nucleotide in a multiloop. Note that in contrast to interior
loops and hairpin loops, the free energy of a multiloop is assumed to scale linearly, not log-
arithmically, with the number of unpaired nucleotides; the linear simplification facilitates

the derivation of O(N?) multiloop recursions.

J AGE’J&: empirical values for rna95 [20]; newly regressed values (Table A.1) for

rna®6 [13]; unpublished values for dna®4 [26].

. AG{};“M: empirical values for rna95 [20]; newly regressed values (Table A.1) for
rna®6 [13]; unpublished values for dna®4 [26].

. AGﬁumz empirical values for rna95 [20]; newly regressed values (Table A.1) for
rna®6 [13]; unpublished values for dna®4 [26].

Note that for rna®6, previously published parameter regressions [10, 14] use a functional
form incompatible with the definition of AG™!([¢], w) above [20, 26]. Using literature
source data for multiloops [13], we regressed the values of the AGﬁ}ltm, AGE;’M, AGnmt“lti via
a least-squares fit of the regressed loop free energies, observing comparable mean absolute

error (Table A.1).

AG3erminalbp([51) §5 2 sum of the sequence-dependent free energy AG;T??nalbp for each
i»Pj

terminal base pair i - j in the multiloop (see definition above under hairpin loops).

AGYo ([#], w) is a sum over each coaxial stack present in the multiloop stacking state

w. Owing to a lack of parameters, only coaxial stacks between adjacent terminal base
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pairs (with no intervening unpaired bases) are considered. Each coaxial stack between base

pairsi-d and d + 1 - j contributes a free energy of AG;S‘?a;d barisd” For the recursions with

coaxial stacking (Section S2.6), we use AG??;D;.((ﬁ) to denote AG?,;?a(;;d Iy since only three

indices may vary freely. For the recursions without coaxial stacking (Section S2.3), the
term AGU%([¢], w) is neglected.

. coax . coax stack
AG¢i,¢d,¢d+1 o rna95 [20] and rna®6 [10, 14] set AG¢i,¢d,¢d+1 ) equal to AG¢f,¢d,¢d+1 0

dna®4 uses independently estimated values [17].

dangle
i (¢), for each

terminal base pair i - j that is not in a coaxial stack in stacking state w. For a given terminal

AG¥dangle (141 1)) is a sum of the sequence-dependent free energy, AG

base pair i - J, AG?a;lgle( ¢) takes one of four values to match the dangle stacking state for a
given w:
0 no dangles
5’dangle ,
AG, 5’ dangle
AGITES(g) = {7 drdiends (533)
>J AG3 dangle 3’ danele
Pispj-1,8) g
terminalmm . :
AG brabir b 1.6 terminal mismatch

Note that the state where both 5" and 3’ dangles stack on terminal base pair i - j is classified
as a terminal mismatch. For the recursions without dangle stacking (Section S2.3), the term
AGYdangle ([ ] ")) is neglected.

. 5’dangle |
AG¢i,¢jv¢k ’
dna®4 [19].

5’ dangle free energy parametrized for rna95 [20], rna®6 [10, 14], and

. 3’dangle |
AG¢h¢j,¢k :
dna®4 [19].

3’ dangle free energy parametrized for rna95 [20], rna®6 [10, 14], and

Quantity A[G/H]M — A[G/H|™ = A[G/H™ MAE MAEJ[13]

multi multi multi

AG +12.91 -1.28 -0.0880 1.01 1.01
AH +81.06 -6.84 +2.22 115 121

Table A.1: Regression of multiloop parameters for rna®6 (kcal/mol). MAE denotes
the mean absolute error of the least-squares regression of the loop free energies from
Reference [13] using formulation (S32) for AG™([4], w). MAE [13] refers to the mean
absolute error of the regression performed in Reference [13] using a different formulation
of AG™ i ([4], w).
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. AGzHg:fla%I_n] o) rna95 [20] and rna®6 [10, 14] use empirical parameters for

terminalmm. : terminalmm 5’dangle 3’dangle
AG ; dna®4 assigns AG¢i,¢i+1,¢j_1,¢j to be the sum OfAG¢is¢i+ls¢j and AG%%_l y

as empirical values of AG;”‘;}‘“I‘“;““’] g, A€ not publicly available [19].
LY1+1% -1

S1.7.4 Free energy model for exterior loops

An exterior loop is a loop containing one nick and zero or more terminal base pairs. An
exterior loop may be defined as a series of bounding subsequences [¢] with a given nick
location. An unpaired strand is an exterior loop with a free energy of zero, corresponding
to the reference state [7]. The free energy of an exterior loop in a specified stacking state w

is modeled as follows:

AGexterior( [¢] , w) — 0+AGallterminalbp( [¢])+AGallcoaX( [¢] , w)_I_AGalldangle( [¢] , w). (834)

The functions AGallterminalbp ([ 41y - AGallcoax ([ 4] ), and AGA92ngle ([ 4], w) are defined as
above for multiloops. For the recursions without coaxial and dangle stacking (Section S2.3),
the terms AGY°%([¢], w) and AG¥922le([p], w) are neglected.
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S2 Recursions for the complex ensemble with or without coaxial and dangle stacking

Recursions specify the dependencies between subproblems and incorporate the details of
the complex structural ensemble and the free energy model. The recursions described here
can be combined with a quantity-specific evaluation algebra (Section S3) and a quantity-
specific operation order (Section S4) to calculate diverse physical quantities. Each recursion
corresponds to an efficient iteration through a conditional ensemble of substructures within
a given subsequence that are compatible with a specified set of constraints. For a given
recursion, a conditional ensemble might include an explicit structural element, which can

be considered the base case of the recursion, or a reference to the result of another recursion.

S2.1 Separate recursions for intrastrand and interstrand blocks

Reference [7] described dynamic programming recursions for the complex ensemble that
checked for a nick next to each nucleotide. This approach enabled treatment of com-
plexes containing an arbitrary number of strands, but caused unnecessary complications
in the program flow and eliminated any possibility of vectorization due to the conditional
checks within each “for” loop. By contrast, here we employ separate sets of recursions for
triangular intrastrand blocks and rectangular interstrand blocks (Figure S1). As a result,
each intrastrand and interstrand recursion is kept as simple as possible and both types of

recursions can be efficiently vectorized.
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a A C b  Vector operation for element C Vector operation for element
E— E— in intrastrand B block in interstrand BC block

A col col
block A ABC A j | . i
block block elemen l element
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row i —
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block C
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C
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Complex ABC c I:I ® jlq

d
m - I:I®D ej I:I@ﬂ
|

Figure S1: Separate recursions for intrastrand and interstrand blocks. (a) Triangular in-
trastrand blocks (A, B, C) and rectangular interstrand blocks (AB, BC, ABC) for complex
ABC. Element i, j corresponds to a conditional ensemble for subsequence [i, j] which
contains no nicks if i, j is in an intrastrand block and one or more nicks if 7, j is in
an interstrand block. (b) Each recursion operation for calculation of element 7, j in an
intrastrand block (e.g., Qi < 2i<i<j @i.aQa+1,j) can be implemented as a vectorized
dot product between a subvector of row i (brown) and a subvector of column j (gray)
to obtain element i, j (purple). Note that calculation of an element i, j in an intrastrand
block uses elements in the same intrastrand block (calculated using intrastrand recursions).
(c) Each recursion operation for calculation of element 7, j in an interstrand block (e.g.,
Qij < Xi<d<j, strand(d)=strand(d+1) Qi.dQd+1,;) can be implemented as multiple vectorized
dot products between valid subvectors of row i (brown) and valid subvectors of column
J (gray) to obtain element i, j (purple), where valid positions are those that avoid intro-
ducing disconnected structures into the complex ensemble (see Algorithm S2). Note that
calculation of element 7, j in an interstrand block uses elements in one or more interstrand
blocks (calculated with interstrand recursions) and two intrastrand blocks (calculated with

intrastrand recursions).

S2.2 Conventions for recursion diagrams and equations

In the following sections we will describe recursions corresponding to the complex ensemble
without stacking terms (Section S2.3) and with coaxial and dangle stacking subensembles
(Section S2.6). Each recursion iterates over all conditional ensembles compatible with the
constraints defined for a given recursion type. For a complex of N nucleotides, each full

set of recursions is O(N?) in time and O(N?) in space. For interior loop recursions, we
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start by defining an O (N?) recursion and then describe an exact reduction to O(N?) time

complexity (Section S2.4).

Each recursion is represented in two ways: graphically, as a set of recursion diagrams, and
algebraically, as an equation defining the recursion as a specific combination of contribu-

tions. The recursion diagrams employ the following conventions:

* Solid circular arcs depict the nucleic acid backbone. An arrowhead denotes the 3’

end of a strand.

* Dots indicate particular nucleotide positions that define the bounds of recursive
contributions. If a dot is labeled with a nucleotide index, the same index is used in
the corresponding recursion. If a dot is adjacent to a dot labeled 7, the implied index

of the unlabeled dot is either i — 1 or i + 1 (indices increase from 5’ to 3’).

* A straight line delimits the boundary for a given contribution. A solid straight line
indicates that the connected nucleotides are base-paired. A dashed straight line
indicate that the connected nucleotides may or may not be base-paired. A half-
solid/half-dashed straight line indicates that the nucleotide connected on the solid
side is base-paired to a nucleotide within the demarcated region. A straight line that
is solid at both ends and dashed in the middle indicates that the nucleotides at either
end are both base-paired but not to each other. A dotted straight line indicates that
the connected nucleotides are involved in a stacking state (either a coaxial stacking

state or a dangle stacking state).

» Shading indicates that the shaded region in a recursion explicitly incorporates a re-
cursion energy, AG, representing all or part of a loop free energy (e.g., multiloop
recursion energies representing different terms in the multiloop model are incorpo-
rated in multiple places in multiple recursions in order to treat the full multiloop
model). The color of the shading corresponds to the loop type (and the stacking type
when applicable).

A recursion equation provides a mathematical description of the conditional ensemble
depicted graphically in a recursion diagram. Recursion equations employ the following

conventions:

* For each physical quantity, an appropriate evaluation algebra (Section S3) is used to

define the generic operators that appear in the recursion equations: 0, 1, &, ®, W,
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and Q. For example, to calculate the partition function, we have:

050, 11, @8-+ ©—x, W() —exp(-g/kT), Qf; — 0.
(S35)

where the last right-hand side indicates that foj is a lookup of the relevant stored

matrix element.

A recursion equation for subsequence [i : j] corresponding to element 7, j in a tri-

a
INTRA

a € {a,b,m,...}). A recursion equation for subsequence [i : j] corresponding to

angular intrastrand block is denoted R (i, j, ¢) for a recursion of type a (e.g.,

a
INTER

sion of type a. Here, ¢ is the sequence of the complex and i and j are nucleotide

element i, j in a rectangular interstrand block is denoted R (i, j, ¢) for a recur-
indices. Note that in the Supporting Information we use Q?j to denote Q; ; so that

each recursion has an explicit recursion type a.

If a recursion diagram contains a shaded region denoting a recursion energy, AG, the
corresponding recursion equation will incorporate the recursion energy via the term
W(AG).

After it is evaluated for the first time, R*(i, j, ¢) is used to yield foj in subsequent
recursions. In the evaluation algebras that generate scalars (SumProbpuCT, MINSUM,
Counr), the output of R* (i, j, ¢) is synonymous with the value o7 ; that is stored in the
recursion matrices. However, other evaluation algebras involve different treatment of
the output of R“(i, j, ¢). For instance, a recursion in the SpLITExP evaluation algebra
(Section S3.1.4) yields a function that must be supplied with a reference exponent
v to calculate the mantissa and exponent values that are stored. The ways in which

recursion outputs are utilized for each physical quantity are described in Section S4.

In our pseudocode, we make clear which operations are vectorized using SIMD operations

on contiguous arrays via the function pot (Algorithm S1), which represents a dot product

generalized to any number of arguments, each of which is a vector of the same length n.

The vectors argument to this subroutine is composed of row or column subvectors (each

a vector of contiguous elements) of the recursion matrices storing the result of previous

recursion evaluations (e.g., 02, 0P, 0™, ...). To denote a vector extracted from a matrix

block, we replace a scalar index (e.g., d) with a vector index (e.g., d) representing a range

of either row or column indices. For example:

d=[i:j-5]=ii+1,...,j—6,j—5. (S36)
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pot(vectors)

1 n <« LencTH(vectors;)
2 x«<0

3 forie[l:n]

4 t—1

5 for a € vectors

6 t—1t®a;

7 X<—xbt

8 return x

Algorithm S1: Generalized dot product over multiple vectors of equal length.

represents an ascending range of indices. Any scalar increment is applied to each entry in

the range:

d+1

[i+1:/—4]. (S37)

Q,Q3 then denotes a subvector of row i from matrix Q%, Q% L denotes a subvector of
i +1,j

column j from matrix Q°, and

DOT (Qigﬁ’ 0 ) (S38)

d+1,j

denotes a dot product between these two vectors. An index range can also be used to denote

a vector of free energy contributions, for example,
M AGTUI (S39)
with
Ny =[0:7—i—-4]. (S40)
When there are multiple ranges, the elements match with each other such that

a+b[l~;]~] t Cldie] = a+b,~+cd,a+b,-+1 +cd+1,...,a+bj_1 +Ce—1,a+bj+Cg- (541)

In some cases, two ranges must proceed in opposite directions (one ascending and one
descending) to match up the values in vectors correctly. A descending, or reversed, range

is written

i:j] =/, j—1,....i+1,i (S42)
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VALID(i, j. 1)

I D« {}

2  m < First(n)

3 n <« Last(n)

4 ifi+l<mandj>n

5 d=T[i:m-2]

6 D—Dud

7 ifi<mandj—-12>n

8 d=[n:j-1]

9 D—Dud

10 ifi<mandj>n

11 for b € [1 : LenGTH(77) — 1]
12 if npe1 —mp > 1

13 d=np:nps1 — 2]
14 D—Dud

15 return D

Algorithm S2: Enumerate valid positions for vectorization in an interstrand block. 7 is an
array of indices of the nicks between strands within the interstrand block being considered;
by convention, each nick is denoted in 77 by the index of the nucleotide following the nick.
The algorithm identifies at most one valid range d for each strand in the block, corresponding
to the values of the index d such that d and d + 1 are on the same strand. This requirement
ensures that all secondary structures are connected and that exterior loops only appear when
they are being explicitly considered by a recursion. The algorithm returns D, the set of valid
ranges for the block. For a given i and j, each valid range leads to a dot product between
range d of row i and range d + 1 of column J (e. g., the recursion of Figure S8 contains one
dot product for each valid range d).

For calculation of matrix elements in interstrand blocks (which by definition involve 2 or
more strands), n is an array of indices of the nicks between strands within the interstrand
block being considered; by convention, each nick is denoted in 1 by the index of the
nucleotide following the nick.” For example, consider complex ABC of Figure Sla with
strands A, B, and C containing 4, 5, and 6 nucleotides, respectively. For the AB block,
n = [5]. For the BC block, = [10]. For the ABC block, n =[5, 10].

To calculate matrix entry , j for an interstrand block with nicks 7, the function VarLip(i, j, n7)
(Algorithm S2) returns the set of valid ranges {31, 32, ... } for vectorization so as to ensure
that all secondary structures are connected and exterior loops appear only when they are

explicitly considered by a recursion. There is at most one valid vectorization range per

*Note that this definition is unrelated to the use of 7 in Reference [7] to denote the number of nicks in a
given subsequence.
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strand, and there may be none for a strand that is too short or for the first or last strand if i or
J, respectively, is too close to a nick. The ability to identify valid vectorization ranges for
calculating each matrix element is a key innovation enabled by using dedicated recursions
for intrastrand and interstrand blocks, eliminating the use “if”” statements to identify nick

locations (cf. Reference [7]), and thus enabling vectorization to achieve dramatic speedups.

Steric requirements require that there be at least three intervening bases between two base-
paired nucleotides on the same strand, placing a lower bound on the length of subsequence
[7, j] for different recursion types (e.g., a minimum subsequence length to contain a hairpin
loop, an interior loop, a multiloop, a terminal base pair, a stacking state, a coaxial stacking
state, or a dangle stacking state). Recursions below the minimum subsequence length
for a given recursion type return 0. For efficiency reasons, we often explicitly specify
lower bounds on subsequence length to avoid performing calculations for elements that will

evaluate to 0.

For exterior loop and multiloop recursions without coaxial and dangle stacking, the elemen-
tary recursion entity is a ferminal base pair (a base pair that terminates a duplex to form a
part of the exterior loop or multiloop). For exterior and multiloop recursions with coaxial
and dangle stacking, the elementary recursion entity is the stacking state, representing either
a coaxial stacking state (two adjacent terminal base pairs that are coaxially stacked) or a
dangle stacking state (zero, one, or two unpaired nucleotides dangle stacking on an adjacent

terminal base pair).

S2.3 Recursions without coaxial and dangle stacking subensembles

a
INTRA

(i, j, ¢) recursions for calculating the elements of interstrand blocks for

Here, we describe R
blocks and R4

INTER

the complex ensemble, I', without coaxial and dangle stacking subensembles. To assist

(i, j, ¢) recursions for calculating the elements of intrastrand

with examining these recursions, the intuition behind the name chosen for each recursion,
the nature of the ensemble treated by each recursion, and the dependencies between the
different recursions is summarized in Figure S2. For convenience, it may be helpful
to consider the recursions from the perspective of partition function calculations since
there is a natural correspondence between the generic evaluation algebra nomenclature
and the specific operators needed for partition function calculations (see equation (S35)),
but the recursions are generic and can be combined with a quantity-specific evaluation
algebra (Section S3) and a quantity-specific operation order (Section S4) to calculate diverse
physical quantities. The present recursions treat the same structural ensemble T and free

energy model AG (¢, s) as our previous implementation (NUPACK 3.2 with dangles option
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“none”)[7]. For backwards compatibility, we have also implemented the “some” and “all”

approximate dangle treatments supported by NUPACK 3.2 (see Section S2.5).

A recursion R%(i, j, ¢) operates on subsequence [i: j]| to calculate element 7, j for ei-
ther the unconstrained ensemble a = & or for one of several constrained ensembles
a € {s,b,x,ms,m}. Briefly, R?(i, j, ¢) treats the unconstrained ensemble in an exte-
rior loop context where i and j may or may not be paired. R*(i, j, ¢) serves as an efficiency
wrapper over the 3’-most terminal base pair in an exterior loop context to reduce the time
complexity from O (N*) to O(N?). R (i, j, ¢) treats the constrained ensemble where i and j
form base pair i - j in the context of any loop type. R*(i, j, ¢) treats extensible interior loops
to reduce the time complexity from O (N*) to O(N?). R™(i, j, ¢) serves as an efficiency
wrapper over the 3’-most terminal base pair in a multiloop context (analogous to R® in an
exterior loop context) to reduce the time complexity from O(N*) to O(N?). R™(i, j, ¢)

treats the remaining terminal base pairs in a multiloop context.

Recursion Naming intuition Constraint Context
& unconstrained none exterior loop
s summation efficiency wrapper of 3’-most terminal exterior loop
base pair
b base-paired base pair between 5-most and 3’-most any loop
bases of subsequence
x extensible extensible interior loop interior loop
ms multiloop summation efficiency wrapper of 3’-most terminal multiloop
base pair
m  multiloop one or more remaining terminal base pairs multiloop
Intrastrand block Interstrand block
Ce Ce
S S

Cho Cho
AN AN
Cme—ms x Cm«—ms x
Figure S2: Nomenclature and connectivity for recursions without coaxial and dangle stack-

ing. Top: Nomenclature. Bottom: Dependencies between different recursion types for
elements within an intrastrand block (left) or an interstrand block (right).
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S2.3.1 Intrastrand dynamic programming recursions without coaxial and dangle
stacking

Here, we consider recursions for calculating the entries in a triangular intrastrand block
without coaxial and dangle stacking. By definition, there are no nicks between strands in

intrastrand recursions since intrastrand blocks involve base-pairing within a single strand.

Rﬁ . T€cursion without coaxial and dangle stacking. We begin with the recursion
%]

Rﬁ] wea @5 J» @) with the diagram and equation shown in Figure S3. R (i, j, ¢) operates
on the unconstrained ensemble for subsequence [i, j] in an exterior loop context where i
and j may or may not be paired (depicted with a dashed line between i and j in the recursion
diagram). This recursion distinguishes two cases that are combined using & in the recursion

equation:

* No terminal base pairs: the empty case in an exterior loop context where there are no
terminal base pairs in subsequence [i, j] (depicted by the absence of a straight solid

line in the recursion diagram). The shading in the recursion diagram represents the
exterior
i,j

exterior loop with no base pairs and no coaxial or dangle stacking. The corresponding

recursion energy AG (¢) = 0 corresponding to the zero reference state for an

contribution to the recursion equation is W(0) = 1.

[[] exterior loop

s 1%} s .
i N Ql.,j ® DOT (Qi,Z’ Q3+1,_/) , J—i>4
RINTRA(Z’]’¢) =19 ij’ j—i=4

0, otherwise

whered = [i : j - 5].

Figure S3: RIQ recursion without coaxial and dangle stacking. Top: recursion diagram.
NT‘RA K
Bottom: recursion equation.
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* At least one terminal base pair: the non-empty case in an exterior loop context
where there is at least one terminal base pair (i.e., a base pair terminating a duplex)
in subsequence [7, j]. The 3’-most terminal base pair begins at d + 1 and ends in
the interval [d + 2, j]| (depicted using a half-solid/half-dashed line in the recursion
diagram). The contributions for subsequence [d + 1, j] are incorporated using a

y Y element. Contributions for the remaining subsequence [7, d] are incorporated
by a Q? , clement. The shading denotes the recursion energy 0 corresponding to
the zero reference state in an exterior loop context. Note that the recursion energy

AG©™nalbp (4 representing one component of the AGEiFerior(qﬁ) free energy is not

incorporated here because the full identity of the terminal base pair (i.e., a base

pair terminating a duplex) beginning at d + 1 is not known within the ngN ealls Js @)

N

Terea (B> J» @) Tecursion). The edge case where the index

recursion (only within the R
d+1 =i is displayed explicitly to indicate that no Q“ element is accessed in this case.
The index limits in the recursion equation reflect the fact that steric effects prevent
a hairpin loop with fewer than 3 unpaired nucleotides (hence, i - j cannot form if

j—i<a.

Note that using the pot notation (Algorithm S1) and index range notation (S36) to denote
vector operations, we have the equivalence:

Jj-5
d=i

d+1,j
whered = [i : j - 5].

We can also recognize that in terms of matrix elements, the dot product

bor (Qg, 0 ) (s43)

d+1,j

is between the element range d of row i (depicted as brown elements in Figure S1b) and the

element range d+1 of column j (gray elements), yielding element i, j (purple element).

%)
INTRA

RS

INTRA

references Q* elements that are computed using the Ry . recursion displayed in Figure S4.
RS

INTRA

loop context containing one terminal base pair starting at i and ending in the interval

recursion without coaxial and dangle stacking. The R (i, J, ¢) recursion

(i, j, ¢) operates on a conditional ensemble for subsequence [7, j] in an exterior

[ + 1, j] (depicted as a half-solid/half-dashed line between i and ;). The contribution for

the subsequence [i, d] enclosed by base pair i - d is incorporated using a Qf.’ 4 Clement.
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[] exterior loop

. pot | QP_, W(AG' ™™ ™ (¢))), j—i>4
RISNTRA(Z’ Js ¢) = id id

0, otherwise
whered = [i +4 : j].

Figure S4: R} . recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

Shading corresponds to the recursion energy, AGzirlminalbp(@, representing the sequence-
dependent penalty for a terminal base pair in an exterior loop context (dependent on the
sequence of base pair i - d). The index limits in the recursion equation reflect the fact
that steric effects prevent a hairpin loop with fewer than 3 unpaired nucleotides (hence,
i - j cannot form if j —i < 4). Note that the R® recursion serves as an efficiency wrapper
of the R recursion (here, representing the 3’-most terminal base pair in an exterior loop
context) to reduce the time complexity of the R? recursion from O(N%) to O(N?). This
time complexity reduction is achieved by defining the 3’-most base pair using R” within the
R* efficiency wrapper rather than directly using the R? recursion within the R? recursion,

so as to avoid introducing a fourth independent index into the R“ recursion.

Rb

v, FéCUrsion without coaxial and dangle stacking. The Ry (i, /,¢) recursion

INTRA
b

references Q” elements that are computed using the Ry en

recursion displayed in Figure S5.
Rf’NTRA(i, J,¢) operates on a conditional ensemble for subsequence [i,j] with i and j
base paired to each other (depicted with a solid line between i and j). The function
CoMPLEMENTARY (¢;, ¢ ;) checks if bases ¢; and ¢; are complementary (Watson—Crick or
wobble pair) without regard to whether i and j are sufficiently separated along the strand to
be able to pair sterically. The recursion distinguishes three cases that are combined using

® in the recursion equation:

* Hairpin loop: the hairpin loop closed by the single base pairi- j (depicted by a straight

solid line). The recursion incorporates the recursion energy AG?EJ‘.HP "(¢). The index
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Figure S5: R?

72

limits in the recursion equation reflect the fact that steric constraints prevent a hairpin

loop with fewer than 3 unpaired nucleotides (hence, i - j cannot form if j —i < 4).

e Interior loop: the interior loop closed by the two terminal base pairsi - j and d - e
(depicted by straight solid lines). We defer discussion of the calculation of the interior
loop contributions using the subroutine INTERIORINTRA until Section S2.4, where we
describe both O (N*) and O (N?) recursions. The index limits in the recursion equation
reflect the fact that steric effects prevent an interior loop with j —i < 6 due to the

steric requirement that there be at least 3 intervening bases between d and e.

* Multiloop: the multiloop closed by three or more terminal base pairs: 1) the terminal
base pair i - j depicted by a straight solid line, 2) a 3’-most terminal base pair starting
at d and ending in the interval [d + 1, j — 1] (depicted by a straight half-solid/half

dashed line between d and j — 1); the contribution of subsequence [d,j — 1] is

[] hairpin loop [] interior loop [] multiloop

Ci, COMPLEMENTARY(¢;, ;)

/—Aﬁ —_—N —N—

0, otherwise

W(AG! ™" (9), j-iz4

where C;| =
0, otherwise

o INTERIORINTRA(Z, j, ), j—12>6
0, otherwise

DOT o o ]) ® W(AGIU + AGIVI + AGI ™™™ (¢)), j—i> 11

withd = [i+5: ] —6].

Irra TECUISION without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

otherwise
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incorporated by element Q’Z;S]._l, 3) one or more additional terminal base pairs in the
interval [ + 1,d — 1] (the straight dashed line denotes that i + 1 and d — 1 may or
may not be paired); the contribution of subsequence [i + 1, d — 1] is incorporated by

element Q Shading corresponds to three recursion energies: 1) the penalty for

m
i+1,d-1°

formation of a multiloop AG™414

init
base pair in a multiloop AGE})“M (corresponding to the sole base pair i - j that is fully

2) the sequence-independent penalty for a terminal

defined in this recursion), 3) the sequence-dependent penalty for a terminal base pair
in a multiloop context, AG;.e;minalbp(qb) (note that the indices are ordered j then i to
reflect 5" to 3’ from the perspective of the multiloop). The index limits in the recursion
equation reflect the fact that steric effects prevent a multiloop with j —i < 11 due to
the steric requirement that there be at least 3 intervening bases between i + 1 and d

and at least 3 intervening bases between d + 1 and j — 1.

[] multiloop

b multi | - multi terminalbp ..
) DOT _,W(AG + 1y AG +AG — , —-i>4
Rien (i3], 9) = Q7 W(AGy ™ + MGy i SO
0, otherwise

whered = [i+4:j], nu=[0:j-i-4]"

Figure S6: R{"  recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

b

R . recursion without coaxial and dangle stacking. The R .

INTRA (i, j, ¢) recursion

references Q™ elements that are computed using the R{%> (i, j, ¢) recursion shown in

Figure S6. R (i, j, ¢) operates on a conditional ensemble for subsequence [i, j] in a
multiloop context containing one terminal base pair starting at i and ending in the interval
[+1, j] (depicted as a half-solid/half-dashed line between i and j). The contribution for the
subsequence [i, d] enclosed by base pair i - d is incorporated using a Ql’?’ , €lement. Shading
corresponds to three recursion energies: 1) the sequence-independent penalty for a terminal

base pair in a multiloop AG]‘;;)“M (base pair i - d), 2) the penalty per unpaired nucleotide in
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a multiloop, AGQ“lti (nucleotides d + 1, ..., j for a total of j — d unpaired nucleotides; as
a result, this term is zeroed out in the edge case where d = j), 3) the sequence-dependent
penalty for a terminal base pair in a multiloop context, AG;?;minalbp (¢) (dependent on the
sequence of base pair 7 - d). Note that in the dot product the range multiplying AGnmtulti runs
in reverse order because the number of unpaired nucleotides, j — d, decreases in size as d
increases in size. The index limits in the recursion equation reflect the steric requirement
that there be at least 3 intervening bases between i and d. Note that R serves as an
efficiency wrapper for R” in the multiloop context in a completely analogous manner to R*
serving as an efficiency wrapper for R” in an exterior loop context, with R” representing

the 3’-most terminal base pair in either context.

[] multiloop

DOT( gS,W(ﬁmAGnmtulﬁ ) j-i>4
5]

g\llTRA (i’ j’ ¢)
0, otherwise

m ms : :
DOT (Qi,E’ E+1,j) , J—12>29

0, otherwise

whered = [i:j—4], nn=[0:j—-i-4], e=[i+4:j-5].

Figure S7: Ry, recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

b
INTRA

Rm

INTRA (i, j, ¢) recursion

recursion without coaxial and dangle stacking. The R
references Q™ elements that are computed using the R} = recursion shown in Figure S7.
R{_..(i,],¢) operates on a conditional ensemble for subsequence [i, j] in a multiloop
context where i/ and j may or may not be paired (depicted with a dashed line between i and j
in the recursion diagram) and where there is at least one terminal base pair. This recursion

distinguishes two cases that are combined using & in the recursion equation:

* One terminal base pair: the case where there is exactly one terminal base pair in

subsequence [, j| in a multiloop context. This terminal base pair starts at d and ends
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in the interval [d + 1, j] (depicted by a straight half-solid/half dashed line between

d and j); the contribution of subsequence [d, j] is incorporated by element Q’Zﬁ..
Shading corresponds to the recursion energy, AGnmt“hi, representing the penalty per
unpaired nucleotide in a multiloop (nucleotides i, . . . , d — 1 for a total of d —i unpaired
nucleotides; as a result, this term is zeroed out in the edge case where d = 7). The
index limits in the recursion equation reflect the steric requirement that there be at

least 3 intervening bases between d and j.

* More than one terminal base pair: the case where there are two or more terminal
base pairs in subsequence [Z, j] in a multiloop context. The 3’-most terminal base
pair starts at e + 1 and ends in the interval [e + 2, j| (depicted by a straight half-

solid/half dashed line between e + 1 and j); the contribution of subsequence [e +1, j]

ms
e+l,j

pairs in the interval [i, e] (the straight dashed line denotes that i and e may or may

is incorporated by element Q . There are one or more additional terminal base
not be paired); the contribution of subsequence [/, e] is incorporated by element Q7' .
The shading does not represent any recursion energies as all multiloop contributions
are handled by other recursions: 1) there are no terminal base pairs in a multiloop
context explicitly defined in this case, 2) there are no unpaired bases in a multiloop
context explicitly defined in this case. The index limits in the recursion equation
reflect the steric requirement that there be at least 3 intervening bases between i and

e and at least 3 intervening bases between e + 1 and ;.

S2.3.2 Interstrand dynamic programming recursions without coaxial and dangle

stacking

Here, we consider recursions for calculating the entries in a rectangular interstrand block
without coaxial and dangle stacking. By definition, interstrand blocks involve 2 or more
strands, and hence one or more nicks between strands. For a given interstrand block, n
stores an array of nick indices between strands within the block, with each nick denoted
by the index of the nucleotide following the nick. If m = First(n) and n = Last(7), then
for subsequence [i, j| corresponding to element i, j in the interstrand block, we have by
definition i < m (nucleotide i is on the first strand in the block) and j > n (nucleotide j is
on the last strand in the block).

Rﬁ e FECUrsion without coaxial and dangle stacking. We begin with RZ_(i,j,¢)

INTER
%)

I (> J» @) Operates on the unconstrained ensemble for subsequence

shown in Figure S8. R
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[7, j] with i and j on different strands in an exterior loop context where i and j may or may
not be paired (depicted with a dashed line between i and j in the recursion diagram). Unlike
RY

Inrra (B> J»> @), there is no empty case because this would correspond to a disconnected

structure (which is not in the multistranded ensemble) due to the presence of one or more
nicks between i and j. Hence, the only case is at least one terminal base pair: the non-
empty case in an exterior loop context where there is at least one terminal base pair (i.e., a
base pair terminating a duplex) in subsequence [i, j]. The 3’-most terminal base pair begins
at d + 1 and ends in the interval [d + 2, j] (depicted using a half-solid/half-dashed line in
the recursion diagram). The contributions for subsequence [d + 1, j] are incorporated using
a 0y ny element. Contributions for the remaining subsequence [, d] are incorporated by
a Q? ; clement. The shading denotes the recursion energy O corresponding to the zero
reference state in an exterior loop context. Note that the recursion energy AGe™inalbp( )
representing one component of the AGi’;terior(@ free energy is not incorporated here because
the full identity of the terminal base pair (i.e., a base pair terminating a duplex) beginning

at d + 1 is not known within the RI@
NTER

(i, j, ¢) recursion (only within the R*(d + 1, j, ¢)
recursion). The edge case where the index d + 1 =i is displayed explicitly to indicate that

no Q9 element is accessed in this case.

Because there are nicks involved in calculating the elements of interstrand blocks, care must
be taken to ensure that no disconnected secondary structures are incorporated in the complex
ensemble. For a given interstrand block with nick indices 7, the function VALID returns the
set of valid vectorization ranges {31, 32, ... }, such that for each valid vectorization range, d

and d + 1 are on the same strand (i.e., such that d and d + 1 do not take on values that would

[] exterior loop

& .. A %] s
RINTER(I’ Js ¢) = Qi J ® @ ot (Qiﬁ’ Q3+1’j)
deVaLip(i,max (j—4,n),7) (S44)

where n = LAsT(7)

Figure S8: Rﬁ e TECUrsion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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place a nick between them). As is evident from the recursion diagram of Figure S8, if d
and d + 1 were to take on values that placed a nick between them, a disconnected structure
would result. There is at most one valid vectorization range per strand, and there may be
none for a strand or subsequence that is too short. For each valid vectorization range d, the

resulting dot product

DOT (Qfg’ Q%H’j) (S45)
is between the range d of row i (depicted as brown elements in Figure S1c) and the range d+1
of column j (gray elements), yielding element 7, j (purple element). Note that Figure Slc
depicts two valid vectorization ranges (leading to two dot products that are summed to
calculate the purple element); the gap of one element between the two vectorization ranges
corresponds to exclusion of the value d = 3 which would have placed a nick between

nucleotides d and d + 1 (note that n = 4 for this interstrand block).

Note that for calculating element 7, j in Figure S8, the subsequence submitted to VALID

ranges from i to max(j — 4, n), where n = Last(n). This yields two cases:

e If max(j — 4,n) = j — 4: there is no nick between nucleotide j — 4 and j (since
n = Last(n) < j—4), so there must be at least 3 intervening bases between d + 1 and
J because steric effects prevent a hairpin loop with fewer than 3 unpaired nucleotides.
In this case, each incorporated element Q7 Ry results from an R} (d+1,j,¢)

recursion for an intrastrand block.

e If max(j —4, n) = n: there is a nick between nucleotide j —4 and j (sincen > j —4),
so d + 1 can be as large as n — 1 and still pair to any nucleotide in subsequence [n, j].
In this case, each incorporated element Q7 il results from an R} __ (d+1,j,¢)

recursion for an interstrand block.

%)
INTRA

RS

Inree TECUrsion without coaxial and dangle stacking. The R

(i, j, @) recursion
references Q7 1j elements that are computed using either the R} recursion of Figure S4
(if d + 1 and j are on the same strand) or the R} recursion of Figure S9 (if d + 1 and j

are on different strands). Recursion R} (i, j, ¢) operates on a conditional ensemble for
subsequence [, j] with i and j on different strands in an exterior loop context containing
one terminal base pair starting at i and ending in the interval [i + 1, j] (depicted as a
half-solid/half-dashed line between i and j). The contribution for the subsequence [i, d]

enclosed by base pair i - d is incorporated using a Qf.’ ;4 clement. Shading corresponds to
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[] exterior loop

e (s J inalb
Ry (i ], @) = DOT QiZ’W(AGtermma P,

id (S46)
where d = [Last(7) : j]

Figure S9: Ry . recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

the recursion energy, AG;’eéminalbp (¢), representing the sequence-dependent penalty for a
terminal base pair in an exterior loop context. The index d must always be on the last
strand (i.e., d > Last(7)) to ensure there are no strand breaks in the subsequence [d, j],
which would correspond to a disconnected structure. Note that the R® recursion serves as
an efficiency wrapper of the R” recursion (here, representing the 3’-most terminal base pair
in an exterior loop context) to reduce the time complexity of the R recursion from O (N*)
to O(N?). This time complexity reduction is achieved by defining the 3’-most terminal base
pair using R” within the R* efficiency wrapper rather than directly using the R recursion

within the R recursion, so as to avoid introducing a fourth independent index into the R¥

recursion.
b . . . . s .. .
R; .. recursion without coaxial and dangle stacking. The Ry . (i, ], @) recursion

b

references Qf.’ ; €lements that are computed using either the R

b

INTER

, recursion of Figure S10

(if i and d are on the same strand) or the R

b
INTER

recursion of Figure S10 (if i and d are
on different strands). R (i, j, ¢) operates on a conditional ensemble for subsequence
[7, /] with i and j on different strands and base paired to each other (depicted with a
solid line between i and j). The function COMPLEMENTARY (¢;, ¢;) checks if bases ¢; and
¢, are complementary (Watson—Crick or wobble pair) without regard to whether i and
J are sufficiently separated along the strand to be able to pair sterically. The recursion

distinguishes three cases that are combined using @ in the recursion equation:

» Exterior loop: the exterior loop closed by one or more terminal base pairs including

terminal base pair i - j.
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. [ exterior loop

[] interior loop

d [[] multiloop

o Ci, COMPLEMENTARY (¢;, ¢ )
Rfuue (05 5 #) = !
trex (1 9) {(D, otherwise
inalb . .
Deey Q11 ®00,_1 ® W(AGT ™™™ (¢)), i+1#mandj#n
Q. ® W(AG;?ﬁmi“ale(@), i+l=mandj #n
C1 = ’ ’ .
07, ., ® W(AG™™™ (¢)), i+1#mandj=n
W(AGS™™ (g)), i+l=j=m=n

@® INTERIORINTER(Z, J, @)

@ @ DOT (Qm Qms 1) ® W(AGmulti + AGEI)UM + AGterminalbp(¢))

3 i+1,d’ < d+1,j- init Joi
deVaL(i+l,j-1,7)
where m = First(n)

n = Last(n)

Figure S10: RfNTER recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.



80

— Base case: The base case corresponds to the recursion diagram in the first row
of Figure S10 with a nick at c¢. For each nick ¢ € 5, the contribution of subse-
quence [i+ 1, ¢ — 1] is incorporated by element Qi®+1,c—1 and the contribution of
subsequence [c, j — 1] is incorporated by element ch, i1 Shading corresponds
to the recursion energy AGfEminalbp(@ representing the sequence-dependent
penalty for a terminal base pair in an exterior loop context, (note that the indices

are ordered j then i to reflect 5’ to 3’ from the perspective of the exterior loop).

— Edge cases: In the base case, there is a Q9 element on either side of the nick.
In the edge cases treated by the three diagrams in the second row of Figure S10,
one or both of these subsequences is absent because the nick is adjacent to i

(diagram 1), adjacent to j (diagram 2), or adjacent to both i and j (diagram 3).

e Interior loop: the interior loop closed by the two terminal base pairsi - j and d - e
(depicted by straight solid lines). We defer discussion of the calculation of the interior
loop contributions using INTERIORINTER until Section S2.4, where we describe both
O(N*) and O(N?) recursions.

* Multiloop: the multiloop closed by three or more terminal base pairs: 1) the terminal
base pair i - j depicted by a straight solid line, 2) a 3’-most terminal base pair starting
at d + 1 and ending in interval [d + 2, j — 1] (depicted by a straight half-solid/half

dashed line between d + 1 and j — 1); the contribution of subsequence [d + 1, j — 1]

ms
d+1,j-1°

the interval [i + 1, d] (the straight dashed line denotes that i + 1 and d may or may

is incorporated by element 3) one or more additional terminal base pairs in

not be paired); the contribution of subsequence [i + 1, d] is incorporated by element

m
i+1,d°
ulti

of a multiloop AG

in a multiloop AGL‘;‘M (corresponding to the sole base pair i - j that is fully defined

Shading corresponds to three recursion energies: 1) the penalty for formation

, 2) the sequence-independent penalty for a terminal base pair

in this recursion), 3) the sequence-dependent penalty for a terminal base pair in a
te!

multiloop context, AG j;minalbp(d)) (note that the indices are ordered j then i to reflect
5’ to 3’ from the perspective of the multiloop). To exclude exterior loop states that
are not treated by this multiloop recursion, the function VALID returns the set of valid
vectorization ranges for which nucleotides d and d + 1 are on the same strand (i.e.,

such that d and d + 1 do not take on values that would place a nick between them).

b
INTER

Note that unlike the R?

INTRA
as 7 and j are on different strands.

recursion of Figure S5, for R there is no hairpin loop case
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[] muttiloop

INTER(l ] ¢) = DOT Q W(AGmultl +ﬁmAGmuln +AGterm1nalbp(¢))

where d = [Last(n) : j], 7 = [0: j —Last(p)]’

Figure S11: RINTER recursion without coaxial and dangle stacking. Top: recursion diagram.
Bottom: recursion equation.

R™_ recursion without coaxial and dangle stacking. The R? (i, j, ¢) recursion

INTER
references Q7 ., elements that are computed using either the R[> recursion shown of
d+1,j INTRA

INTER

Figure S6 (if d + 1 and J — 1 are on the same strand) or the R;"®  recursion of Figure S11 (if

INTER

d + 1 and j — 1 are on different strands). R*® (i, j, ¢) operates on a conditional ensemble

IR
for subsequence |7, j] in a multiloop context containing one terminal base pair starting at i
and ending in the interval [i + 1, j] (depicted as a half-solid/half-dashed line between i and
J). The contribution for the subsequence [, d] enclosed by base pair i - d is incorporated
using a Ql’,” , clement. Shading corresponds to three recursion energies: 1) the sequence-
independent penalty for a terminal base pair in a multiloop, AGE;)“M (base pair i - d), 2)
the penalty per unpaired nucleotide in a multiloop, AGm““‘ (nucleotides d + 1,...,j for
a total of j — d unpaired nucleotides; as a result, this term is zeroed out in the edge case
where d = j), 3) the sequence-dependent penalty for a terminal base pair in a multiloop
context, AGt.erminalbp(qﬁ) (dependent on the sequence of base pair i - d). Note that in the dot
product the range multiplying AGm““‘ runs in reverse order because the number of unpaired
nucleotides, j — d, decreases in size as d increases in size. Nucleotide d must always be
on the last strand to ensure that there are no nicks in the subsequence [d, j], which would
lead to either a disconnected structure (which is not permitted in the complex ensemble)
or an exterior loop state (which is not handled by this multiloop recursion). Note that R"*
serves as an efficiency wrapper for R” in the multiloop context in a completely analogous
manner to R* serving as an efficiency wrapper for R? in an exterior loop context, with R?

representing the 3’-most terminal base pair in either context.

Rm

INTER
references Q"

recursion without coaxial and dangle stacking. The R” (i, j, ¢) recursion

INTER

elements that are computed using either the R/ recursion of Figure S7

i+1,d INTRA
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[C] muttiloop

.. _ — 1ti
bl o8) = o 03, WG| €D (10 )

eeVaLin(i,j,n)

where d = [i : First(57) — 1],  7inc = [0 : First(n7) — i — 1]

Figure S12: R} recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

(if i + 1 and d are on the same strand), or the R recursion of Figure S12 (ifi + 1 and d
are on different strands). R’ (i, j, ¢) operates on a conditional ensemble for subsequence
[7, ] in a multiloop context where i and j may or may not be paired (depicted with a dashed
line between i and j in the recursion diagram) and where there is at least one terminal base
pair. This recursion distinguishes two cases that are combined using @ in the recursion

equation:

* One terminal base pair: the case where there is exactly one terminal base pair in
subsequence [i, j] in a multiloop context. This terminal base pair starts at d and
ends in the interval [d + 1, j] (depicted by a straight half-solid/half dashed line
between d and j); the contribution of subsequence [d, j] is incorporated by element
QZ”;‘.. Shading corresponds to the recursion energy, AGﬁ“m, representing the penalty
per unpaired nucleotide in a multiloop (nucleotides i,...,d — 1 for a total of d — i
unpaired nucleotides; as a result, this term is zeroed out in the edge case where d = i).
Nucleotide d must always be on the first strand to ensure that there are no nicks in the
subsequence [i, d], which would lead to either a disconnected structure (which is not
permitted in the complex ensemble) or an exterior loop state (which is not handled

by this multiloop recursion).

* More than one terminal base pair: the case where there are two or more terminal
base pairs in subsequence [7, j| in a multiloop context. The 3’-most terminal base
pair starts at e + 1 and ends in the interval [e + 2, j]| (depicted by a straight half-
solid/half dashed line between e + 1 and j); the contribution of subsequence [e+1, j]

is incorporated by element Q7' Iz There are one or more additional terminal base
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pairs in the interval [, e] (the straight dashed line denotes that i and ¢ may or may not
be paired); the contribution of subsequence [i, ¢] is incorporated by element Q?fe. The
shading does not represent any recursion energies as all multiloop contributions are
handled by other recursions: 1) there are no terminal base pairs in a multiloop context
explicitly defined in this case, 2) there are no unpaired bases in a multiloop context
explicitly defined in this case. To exclude exterior loop states that are not treated
by this multiloop recursion, the function VaLID returns the set of valid vectorization
ranges for which nucleotides e and e + 1 are on the same strand (i.e., such that e and

e + 1 do not take on values that would place a nick between them).

S2.4 Recursions for interior loop contributions

(i,j,¢) and R®__ (i, j,¢) run naively

. . . . b
Interior loop contributions to the recursions R TTER

INTRA
in 0(N4) time, as is evident from the four indices i, d, e, j in the interior loop recursion

diagrams in Figures S5 and S10.

O(N?) intrastrand interior loop recursion. The intrastrand O (N#) interior loop contri-

bution:

j=5 J=1 b interi F_
O(N*) INTERIORINTRA (G, ], ) = Dir-in e=a+41Qq, ® W(AGif}c}i,?r(@)}’ J=i26
0

otherwise
(847)

considers interior loops through a nested iteration, first over d in a 5’ to 3’ direction and for

b

each d over e in a 5" to 3’ direction. The index limits in the recursion equation reflect the fact
that steric effects prevent an interior loop with j —i < 6 due to the steric requirement that
there be at least 3 intervening bases between d and e. The function AGE’EES’T(@ accounts
for the free energy of the loop with bounding base pairs i - j and d - e, substituting in the
correct functional form for any of the various interior loop types (stacked pair, bulge, etc;
see Section S1.7.2).
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O(N?) interstrand interior loop recursion. The interstrand O (N*) interior loop contri-
bution:

m—1 j-1

d=i+1 @e:n

O(N*) INTERIORINTER (i, J, ) = {QZ’e ® W(AG;nf;‘?(gb))}, i<m-landn<j

0, otherwise

where m = First(7)

n = Last(n)
(S48)
proceeds in the same general manner, considering interior loops in order of ascending d
then e indices. However, d is restricted to be on the first strand (d < m) and e is restricted
to be on the last strand (e > n), as reflected in the upper summation limit for d and the lower
summation limit for e. These two requirements ensure that there are no nicks between i and
d and between e and j, preventing exterior loop states (that are not treated in this interior

loop recursion) and disconnected states (that are not part of the complex ensemble).

O(N?) intrastrand interior loop recursion. To reduce the complexity of computing
interior loop contributions from O (N*) to O(N?), we must exploit the functional form of
the free energy model for large interior loops (Section S1.7.2)[11]. In References [4] and
[5], this optimization was referred to as the “fastiloops” or “fast interior loops” function,
and we take a similar approach here. The following optimizations assume the use of a
forward operation order (not a backtracking operation order). Interior loops, defined by two
bounding base pairs i - j and d - e, can be classified by the distances L1 = d —i — 1 and
Ly, = j—e—1; L and L, are the numbers of unpaired nucleotides on each side of the interior
loop. In cases where L; < 4 or L, < 4, the energy functions generally depend on terms
that are nonlinear with respect to L; and L,. Examples include the special-case energy
functions for stacked pairs and bulge loops, as well as length-dependent asymmetry and size
penalties for other interior loops. We term these interior loops inextensible because the free
energy for a larger loop cannot in general be calculated using the value from a smaller loop.
For a given subsequence [i, j|, there are only O (N) inextensible interior loops (because of
the constant upper bound on L; or L) so they do not contribute to the O (N*) complexity.

The remaining interior loops in which L; > 4 and L, > 4 are referred to as extensible
interior loops because the free energy of a larger loop can be calculated by extending the
calculation from a smaller interior loop. For a given subsequence [i, j], there are O(N?)
extensible interior loops so these are the cases we must deal with efficiently to reduce the
time complexity from O(N*) to O(N*). For extensible interior loops, (S28) gives:
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interior _ interiorsize interiorasymm interiormm interiormm
AGi e (9) =AGLL " +AG), —) +AG DT () +AG T g1 (8). (S49)

Here, the quantity AGIMosize jg 3 sequence-independent free energy contribution due to

Li+Ly
the size of the interior loop, s = L| + L, (the sum of the two side lengths). The quantity
AGEtleflzisymm is a sequence-independent free energy contribution due to the asymmetry

of the loop, |L{ — L,| (the difference of the two side lengths). Finally, the two terms
AG;n_tel“]"fIfﬂ(@ and AGglf‘?lr,i;’fg‘gl((ﬁ) are sequence-dependent free energy contributions

due to mismatch stacking on the base pairs i - j and d - e, respectively.

Two key insights from (S49) allow us to use this functional form to reduce complexity.[11]
First, for every base pair i - j, the mismatch term for that base pair is independent of the
other quantities and can be factored out. Second, for a given base pair d - e, an extensible
loop bounded by i - j can be converted to an extensible loop bounded by i — 1 - j + 1 by
updating AGIMerionize o AGIToniZe and replacing AGiJv_tf;{iﬁ;glf;(@ with AGi;j;.e;ifgnf;(¢).
Thus, we can cache the information specific to the base pair d - e for each given asymmetry
the first time it is encountered in an extensible interior loop and then modify only the size

information each time it is encountered.

Equation S50 combines the above ideas into a subroutine for computing the interior loop

. . b . .
contributions to Ry A(z, J,®).
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min(i+4,7-5) Jj-
d=i+1 @ e=max(d+4,j—4)
O(N?) INTERIORINTRA (G, ], ¢) = Qde ® W(AG;an“J)r(@), i+6<j
0, otherwise
min(i+4,7-9)
d=i+1 @e d+4
&) Qd ® W(AG:“;’;“J’I(QS)) i+10<j
0, otherwise
j-
@d i+5 @ e=max(d+4,j—4)
&) Qd’e ® W(AG:“;’;“J’I(QS)) i+10<j
0, otherwise

@J - 6ij | ® W(AG;“tﬁr‘;’f‘?f]‘(cb)), i+14<j

0, otherwise ‘
(S§50)

The first three rows handle inextensible interior loops for three cases: 1) L < 4and L, < 4,
2) Ly <4and Ly, > 4,3) L) > 4and L, < 4. In each case, the contribution of subsequence
[d, e] is incorporated using a Q° 4. clement and the interior loop free energy, AG;“:f;“]’r(g/))

is evaluated as for the O(N?) intrastrand recursion. The fourth row handles extensible
interior loops (L1 > 4 and L, > 4), by combining a previously computed Q{j, , element for
each loop size s with the terminal mismatch free energy, AGIJmi“]OfI?E(qb), corresponding to
closing base pair i - j. For all four cases, the index limits reflect there steric requirement

that there be at least 3 intervening bases between d and e.
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The R} (i, j, s, ¢) recursion fills in the three-dimensional tensor Q%

INTRA ij.s
CieCry®C3, j—i>15and10<s<j—-i—-6
G, @ (3, j—i>14ands =9
Rien (i 55, 9) =1 Gy, j—i>13ands=8
Cs, j—i=14and s =9
0, otherwise

— X interiorsize interiorsize
where C; = Qi+1,j—1,s—2 ® W(AGY -AGT,

C, = Qb ® W( AGinteriorsize + AGisn_tgriorasymm + AGinteriormm ( ¢))

i+5,j+3—s i+4,i+5,j+3—5,j+4—s
G = Qf+i—3, j-5® W (AGrome 4 AGisn—tgriomsymm + AGisTffﬁTiTa jos.j-a(®)).
(S51)
The indices i and j refer to the closing base pair i - j while the index s refers to the
size of the extensible loops collected in Qﬁj,s. The contributions can be divided into two
classes: previously encountered loops and new loops. The previously encountered loops
are incorporated by accessing the previously computed element Qi‘c+1,j—1,s—2 and replacing
AGTSTOS7E with AGYe™17¢ (see term C1). This is the key operation that reduces the
complexity of the interior loop recursion to O (N) by capturing all previous loops in O(1).
Note that the terminal mismatch contribution of the closing base pairi - j is not incorporated
in the Q* element, but is combined with Q* in (S50), so there is never a need to replace one
terminal mismatch contribution for another as the loop is extended. New extensible loops
that are first encountered for the indices i, j, s (elements that have exactly L1 =4 or L, =4
or both) are handled by C, and C3. Note that the subexpressions C; and Cs are coincident
for L1 = Ly =4 (s =8).

Note that to calculate a new value Q7 s for asubsequence of length [ = j—i+1, only elements
X
of the form Qi+1,j—1,s—2

a diagonal of the intrastrand block). Therefore, we only need to store elements of Q* for

are accessed (for O(N) values of s; each value of / corresponds to

subsequences of length [,/ — 1, and [ — 2 (corresponding to the current diagonal and the
two previous diagonals). In other words, only Q" values corresponding to 3 diagonals need
to exist in memory during the forward pass. In moving to the next diagonal [ + 1, we can
simply delete all Q;“’Ls values for diagonal / — 2 as they will not be accessed again. Hence,
only O(N?) space is necessary to store the needed elements of Q*. Naively storing all of

Q;"Ls would have needlessly increased the space complexity to O(N?).
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Interior loop contributions for elements in

interstrand blocks are computed with O (N?) time complexity using the subroutine:

O(N?) INTERIORINTER (i, J,¢) =

@min(i+4,m—l j-1
d=i+1 e=max(n,j—4)

0}, ® W(AGIT™ (4)),

0,

@min(i+4,m—l)
d=i+1

-5
D=

0}, ® W(AGIT™ (4),

0,

d l+5 ®e =max(n,j—4)

05, ® W(AGT(4)).

0,

@] —n+m—i—3

Q;C’j’s ® W(AGmterlormm (¢)),

J—1,j,0,i+1
0,

where m = FirsT(77)

n = Last(n).

i+l <mandn < j

otherwise

i+l <mandn+4<j

otherwise

i+5S5<mandn<j

otherwise

i+S<mandn+4<j

otherwise

(S52)

The approach is analogous to that of equation S50. Index limits are modified to ensure that

d is on the same strand as i and e is on the same strand as j, preventing exterior loop states

(that are not treated in this interior loop recursion) and disconnected states (that are not part

of the complex ensemble).
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The recursion RY

oree (> J» S5 @) 1s also closely related to equation S51:

Ci+Cy+C3, i+6<mandn+5<jand10<s<j—-i+m-n-3

Cr+ (3, i+6<mandn+5<jands =9
. o Cs, i+6<mandn+5=jands=9
RINTER(Z’-]’S’ ¢) =9

Cy, i+6=mandn+5<jands =9

Cy, i+6<mandn+5<jands=8

0, otherwise

where m = First(n)

n = Last(n)

— X interiorsize interiorsize

Ci =05 o150 ®W(AGY -AG, )
—_ b interiorsize interiorasymm interiormm

G = Qi+5,j+3—s ® W(AG; + AGS_g + AGi+4,i+5,j+3—s,j+4—s(¢))
—_ b interiorsize interiorasymm interiormm

G = Qs+i—3,j—5 ® W(AGy + AGs_g + AGS+i—4,s+i—3,j—5,j—4(¢))

(S53)

The recursive component that extends previously encountered extensible loops is shown in
Cy. Newly encountered extensible loops (elements that have exactly L; =4 or L, = 4 or
both) are handled by C; and C3. Note that C> and C3 are coincident for Ly = Ly =4 (s = 8).
The conditional checks using m and n prevent exterior loop states (that are not treated in this

interior loop recursion) and disconnected states (that are not part of the complex ensemble).

The above recursions enable calculation of interior loop contributions for forward algorithms
with O(N?) time complexity and O(N?) space complexity. However, this approach is
incompatible with backtracking algorithms as the optimization of throwing away Q* values
that are no longer needed during the forward sweep, implies that they are also no longer
available for backtracking after the forward sweep is complete. One option is to reconstruct
the QF values during backtracking, but this incurs O(N?) time complexity and can lead
to loss of precision for large complex ensembles [5]. Another option that we pursue here
is to use a different iteration pattern through the O(N%) interior loop recursions during
backtracking. With this option, we exploit the fact that unlike forward algorithms that
evaluate recursive elements for all i and j in a forward sweep, backtracking algorithms
evaluate only a subset of all possible recursive elements. Hence, as discussed in Section S4.4,
the worst-case time complexity can be kept at O(N?) per structure for our backtracking
algorithms.
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S2.5 Approximate dangle stacking without coaxial stacking (for backwards compat-
ibility with NUPACK 3)

Previous versions of NUPACK algorithms did not support coaxial stacking and offered
two approximate treatments of dangle stacking (some-nupack3 and all-nupack3)[7].
For backwards compatibility, NUPACK 4.0 supports these two options. A nucleotide in
a multiloop or an exterior loop is eligible to dangle stack on an adjacent base pair that is
either 5" or 3’ of the nucleotide. The NUPACK 4.0 model appropriately Boltzmann-weights
these two competing dangle stacking states. The NUPACK 3.2 model either: (1) took
the MFE of these two dangle stacking states — as if only the MFE dangle stack occurs at
equilibrium (some-nupack3 option), or (2) summed the free energies of the two dangle
stacking states — as if both dangle stacking states were occurring at once (all-nupack3
option). These approximate dangle treatments are implemented in the NUPACK 4.0 code
base using modified versions of R{' (i, j,¢) and R{__ (i, j,¢) fora € {D,s,m,ms}. In
these approximate dangle treatments (some-nupack3 or all-nupack3), if dangles stack
on an adjacent base pair from both the 5" and 3’ sides at once, both dangle free energies are

incorporated in lieu of incorporating a terminal mismatch free energy (equation (S55)).

S2.6 Recursions with coaxial and dangle stacking subensembles

Here, we describe R __ (i, ], ¢) recursions for calculating the elements of intrastrand

INTRA
blocks and R4

Toree (B> J» @) recursions for calculating the elements of interstrand blocks for

the complex ensemble, T, including coaxial and dangle stacking subensembles. For
the previously defined exterior loop and multiloop recursions without coaxial and dangle
stacking (see Section S2.3), the elementary recursion entity was a ferminal base pair (a
base pair that terminates a duplex to form a part of the exterior loop or multiloop). For
example, a recursion might contain exactly one terminal base pair, a 3’-most terminal base
pair, or one or more terminal base pairs. Here, for exterior loop and multiloop recursions

with coaxial and dangle stacking, we make use of three new elementary recursion entities:

* Coaxial stacking state: two adjacent terminal base pairs that are coaxially stacked.

Hence, a coaxial stacking state involves exactly two terminal base pairs.

* Dangle stacking state: zero, one, or two unpaired nucleotides dangle stacking on
an adjacent terminal base pair. Hence, a dangle stacking state involves exactly one

terminal base pair.

» Stacking state: a coaxial stacking state or a dangle stacking state (two adjacent

terminal base pairs that are coaxially stacked or zero, one, or two unpaired nucleotides
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dangle stacking on an adjacent terminal base pair). Hence, a stacking state involves

either two or one terminal base pairs.

For example, a recursion might contain exactly one stacking state, a 3’-most stacking state,
or one or more stacking states. Note that a terminal base pair without coaxial and dangle
stacking corresponds to the subset of a dangle stacking state where there are zero nucleotides
dangle stacking, so the complex ensemble without coaxial and dangle stacking is a subset

of the complex ensemble with coaxial and dangle stacking.

To assist with examining the recursions with coaxial and dangle stacking, the intuition behind
the name chosen for each recursion, the nature of the ensemble treated by each recursion,
and the dependencies between the different recursions is summarized in Figure S13. To
limit proliferation of new names and facilitate comparison to the non-stacking recursions of
Section S2.3 (that treat complex ensemble I" without coaxial and dangle stacking), we re-use
the names of the non-stacking recursions but with updated recursion diagrams and recursion
equations. Additionally, we introduce new recursions as needed to treat the coaxial and

dangle stacking states in ensemble r.

A recursion R(i, j, ¢) operates on subsequence [i : j| to calculate element i, j for ei-
ther the unconstrained ensemble a = & or for one of several constrained ensembles
a € {s,cd,b,n,x,ms,mcs,mc,md,m}. Briefly, R°(i, j, ¢) treats the unconstrained en-
semble in an exterior loop context where i and j may or may not be paired. R*(i, j, ¢)
serves as an efficiency wrapper over the 3’-most stacking state in an exterior loop context to
reduce the time complexity from O (N*) to O(N?). R°(i, j, ¢) treats a single stacking state
(a coaxial stacking state or a dangle stacking state) in an exterior loop context. R’ (i, j, ¢)
treats the constrained ensemble where i and j form base pair i - j in the context of any
loop type. R*(i, j, $) treats extensible interior loops to achieve O(N?) time complexity.
R™(i, j, ¢) serves as an efficiency wrapper over the 3’-most stacking state in a multiloop
context (analogous to R® in an exterior loop context) to reduce the time complexity from
O(N*) to O(N?). R™(i, j, ) serves as an efficiency wrapper over the 3’-most coaxial
stacking state in a multiloop context to reduce the time complexity from O(N*) to O(N?).
R™(i, j, ¢) treats a single coaxial stacking state in a multiloop context. R™“ (i, j, ¢) treats a
single dangle stacking state in a multiloop context. R (i, j, ¢) treats one or more remaining

stacking states in a multiloop context.

When combined, R and R™“ constitute the multiloop equivalent to R°? in an exterior
loop context; they are kept separate to allow proper treatment of a multiloop edge case. In

the exterior loop context, the efficiency wrapper R® wraps R°? to treat coaxial and dangle
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Recursion Naming intuition

Constraint

Context

<& unconstrained
s sum

cd coaxial and dangle

b base-paired

n nick
x extensible

ms multiloop sum

mcs multiloop coaxial sum
mc  multiloop coaxial
md multiloop dangle

m  multiloop

none
efficiency wrapper for 3’-most stacking
state

one stacking state (coaxial or dangle stack-
ing state)

base pair between 5’-most and 3’-most
bases of subsequence

nick between strands

extensible interior loop

efficiency wrapper for 3’-most stacking
state

efficiency wrapper for 3’-most coaxial
stacking state

one coaxial stacking state

one dangle stacking state

one or more remaining stacking states

exterior loop
exterior loop

exterior loop
any loop
exterior loop
interior loop
multiloop
multiloop
multiloop

multiloop
multiloop

Intrastrand block

Co

f

md

Cb‘_—,x

N

(o m<— ms «— mcs

mc

Interstrand block

Co

Chr=
CmZ/}st:\— mes

f [ 1

Figure S13: Nomenclature and connectivity for recursions with coaxial and dangle stacking.
Top: Nomenclature. Bottom: Dependencies between different recursion types for elements
within an intrastrand block (left) or an interstrand block (right).

stacking simultaneously. In the multiloop context, because of the edge case, the efficiency
wrapper R"“* wraps R™¢ (to treat coaxial stacking alone) and then the efficiency wrapper
R™ incorporates R”°* in addition to wrapping R" (to treat dangle stacking alone). Hence,
the efficiency wrapper R™* (treating both coaxial and dangle stacking) is the multiloop

equivalent to R’ in an exterior loop context.
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a Recursion diagram b  Recursion equation

D {Qé’m_z O W(AGT -1, (0) + MG (), it k<1

0, otherwise

Jl

[ exterior dangle

c Four possible dangle stacking states

i
k=0,1=0 b terminalbp - -
I;j no dangles Qi*j ® W(AGivj (¢))’ b<d
i k=1,1=0
1 -t b 5'd 1 t inalb - H
Q 5' dangle tr15 ® WIAGE TS (9) + AGHTG(9)), it1<j
: k= 07 =1 b A 3’dangle A terminalbp . .
] 3’ danele Qi,jfl ® W( Giﬁjfl,j (¢) + Gz},j—l (¢)), i1<j—1
> i1 ©
J
g k=1,1=1 ; minalb
x SLI=LQl s @ WAGKTTIR(6) + AGIT™ (), it1<j-1
terminal mismatch ' ’ ’

i’
Figure S14: Summation over individual dangle states. (a) Example recursion diagram taken

from the definition of Rf:fTRA(i , J»®). Note that the considered base pair is always between

bases i + k and j — [. (b) Equivalent recursion expression which specifies the specific free
energy parameter contributions. (¢) Decomposition of the sum in (b) into terms from each
of 4 specific dangle states.

S2.6.1 Summation over dangle stacking stat