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ABSTRACT

Nucleic acid secondary structure models offer a simplified but powerful lens through which
to view, analyze, and design nucleic acid chemistry. Computational approaches based
on such models are central to current research directions across molecular programming,
synthetic biology, and the life sciences more broadly. In this work, we develop a unified
framework for constructing and understanding dynamic programming algorithms for com-
plexes of interacting nucleic acid strands. Our framework combines three ingredients. First,
we develop new recursions to include contributions from coaxial and dangle stacking in an
efficient and principled way. Second, we formulate the concept of an evaluation algebra,
which defines the mathematical form of each subproblem in the dynamic program. Whereas
previous modeling efforts have relied on case-by-case handling of different thermodynamic
quantities, we use evaluation algebras to elegantly and efficiently compute a variety of
physical quantities using the same recursions. Third, we develop efficient operation orders
for a variety of physical quantities of experimental interest. Combining our advances, we
are able to achieve speedups of 20–120× and scalable calculations of complexes of up to
30,000 nucleotides. Our achievements promise to dramatically expand the scope and utility
of computational analysis and design of nucleic acid thermodynamics.

While current dynamic programming algorithms achieve efficient computation of thermody-
namic quantities for a given nucleic acid sequence, they do not provide kinetic information.
Therefore, investigations of secondary structure kinetics rely on stochastic simulations of
trajectories in secondary structure space. We improve upon these simulation methodolo-
gies to achieve lower computational complexities and large empirical speedups. We extend
our algorithms to an ensemble which fully includes coaxial and dangle stacking states,
expanding the scope of the kinetic analysis that is currently possible.

Current secondary structure models are parametrized using thermodynamic information
gleaned from decades of melt experiments of RNA and DNA in specific experimental con-
ditions. Only rough kinetic information is currently available from past experiments, and
information on solvent and material dependence is lacking. We develop a fully computa-
tional approach based on Gaussian processes and molecular dynamics in order to provide a
generic method for estimating thermodynamic and kinetic parameters, applicable concep-
tually to any nucleic acid material and experimental setting of interest. Our methodology
offers an atomistic view of nucleic acid base pairing and faithfully reproduces most experi-
mental data. It thus provides a powerful black-box approach for extensibly calculating the
kinetic and thermodynamic parameters that secondary structure models require.
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1

C h a p t e r 1

INTRODUCTION

DNA and RNA are co-polymeric molecules consisting of sequences of nucleotides linked
by base pairs consisting of multiple hydrogen bonds. Biological RNA consists of adenine
(A), cytosine (C), guanine (G), and uracil (U) bases. Uracil is replaced by thymine (T) in
DNA. States of DNA and RNA species are amenable to description by three main levels of
classification (Figure 1.1):

1. Primary structure: the sequences of bases {A, C, U, G, T} defining each covalently
bonded strand in the state, occasionally extended to incorporate chemical derivatives
(e.g. by methylation).

2. Secondary structure: given a primary structure, the set of hydrogen bonding base
pairs in the state, usually either Watson-Crick base pairs (A·U, A·T, C·G) or, less
frequently, “wobble” pairs (G·U).

3. Tertiary structure: given primary and secondary structures, the geometric configura-
tion of nucleic acid strands in a state including helicity, atomic positions, and other
bonds.

a b

C
B

A

5′-ACGCCCCCGAUA-3′

5′-UAAUGCAGCUUAAUUCGCGCAGGCCG-3′

5′-CCUCGGAUACCUCAUUACAGG-3′

c

Figure 1.1: Primary, secondary, and tertiary structures of nucleic acids. (a) Example of
primary structure denoted by 3 RNA strands (A, B, C) listed by their bases in 5′ to 3′ order.
(b) A corresponding secondary structure, showing the phosphate backbone (thick lines),
unpaired bases (ticks), and base pairs (thin lines). (c) A corresponding tertiary structure,
colored by atom identity.
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Compared to other biochemical materials, including proteins, nucleic acids are somewhat
easier to describe solely at the primary or secondary structure level [3]. While protein
thermodynamics require tertiary fold information, the strong affinity and specificity of
nucleic acid base hydrogen bonding means that nucleic acid thermodynamics can often be
analyzed effectively by base pairing information alone. Genomic and informatic analyses
commonly rely solely on primary structures, i.e. raw sequence information. On the
other hand, bioengineering approaches rely more commonly on secondary structure, with
primary structure a constant on experimental timescales. Experimentalists commonly
seek to analyze the ensemble of predicted secondary structures given a primary structure
(sequence analysis) or to optimize a primary structure given a desired ensemble of secondary
structures (sequence design). The effectiveness of current algorithms enables molecular
programming, in which computer science principles and abstractions are applied to the
design of nucleic acid systems that accomplish reaction pathway engineering [19], complex
molecular structure folding [13], biological circuit design [12], and other objectives.

1.1 Nucleic acid secondary structures

After the discoveries of the molecular structure and importance of RNA and DNA, it was
soon realized that secondary structures could be defined in terms of neighboring loops
[8]. It was furthermore established that a rough but useful model of secondary structure
energetics might be derived based on a nearest-neighbor loop-based model [17]. Such a
model can encompass the most important energetics of nucleic acid base pairing, including
(most importantly) terms for hydrogen bonding between complementary bases in a base
pair and 𝜋-𝜋 stacking of adjacent bases. In such a model, the free energy of a secondary
structure is parametrized as the sum of loop free energies, which in turn are defined solely
by the identities and order of the bases within the loop, i.e.

Δ𝐺 (𝜙, 𝑠) =
∑︁

loop∈𝑠
Δ𝐺 (loop) + const (1.1)

where 𝑠 is a given secondary structure for sequence 𝜙. In Figure 1.1b, an example secondary
structure is decomposed into loops depicted as contiguous colored regions. In traditional
nearest-neighbor free energy models, a loop is grouped according to its number of bounding
base pairs and whether or not it contains a strand break. For both physical and algorithmic
reasons, different functional forms of Δ𝐺 (loop) are used for loops containing a strand break
(exterior loops), loops containing a single base pair (hairpin loops), loops containing two
base pairs (interior loops), and loops containing at least three base pairs (multiloops) [4, 7].



3

(((...).(...).))..(...)

a b

Figure 1.2: Secondary structure notation. (a) Example (single-stranded) secondary struc-
ture. (b) Equivalent dot-parens structure notation. Proceeding along the backbone in a
clockwise direction in (a), the opening of a base pair is denoted by “(”, the closing of a
base pair by “)”, and an unpaired base by “.”.

1.1.1 Unpseudoknotted structures

The information reduction of tertiary structure (Figure 1.1c) to secondary structure (Fig-
ure 1.1b) is vast. Yet it is still extremely difficult to calculate physical quantities of interest
over a fully general ensemble of all possible secondary structures. The number of possible
secondary structures for a system of 𝑁 nucleotides grows combinatorially with respect to
𝑁 . As counting the number of secondary structures is in essence the same as counting the
number of matchings in a general graph, fully general summation over such an ensemble is
#P-hard, one of the most inapproachably difficult classes of computational complexity [18].

Further simplification comes at the cost of ignoring certain secondary structures referred to
as pseudoknotted [16]. For a given ordered sequence of nucleotides making up a primary
structure, a pseudoknotted structure results when there are two base pairs indexed (𝑖, 𝑗) and
(𝑘, 𝑙) such that 𝑖 < 𝑘 < 𝑗 < 𝑙. Pseudoknots may be visualized as crossing base pairs on
a secondary structure’s polymer graph (e.g. [3]). Algorithmically, a lack of pseudoknots
implies that there are no further interactions between two regions of a secondary structure
which are separated by a single base pair.

Even excluding pseudoknots, the number of secondary structures compatible with a given
ordering of strands grows exponentially in the number of nucleotides (see Figure S37). If
one imagines, fictitiously, that any base may pair to any other base, then counting secondary
structures is isomorphic to counting Motzkin paths, a type of lattice path in which the path
may change by increments of -1, 0, or +1 and is bounded above 0 [11]. In this scenario, the
number of secondary structures of 𝑁 nucleotides is precisely given by the Motzkin number
𝑀𝑁 [5], which is asymptotically proportional to 3𝑁𝑁−3/2. The isomorphism may be seen
by considering the height of the Motzkin path to be the number of open base pairs as one
progresses from 5′ to 3′ in a dot-parens string (like that in Figure 1.2b).
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1.2 Dynamic programming algorithms

Suppose we are interested in the free energy of a given complex of nucleic acid strands.
The complex partition function measures the stability of a given complex and may be used
to solve for equilibrium complex concentrations in a test tube [4]. By the basic statistical
mechanics of the isothermal-isobaric ensemble, the complex partition function may be
calculated as a Boltzmann summation over the ensemble Γ(𝜙) of secondary structures
compatible with sequence 𝜙:

𝑄(𝜙) =
∑︁

𝑠∈Γ(𝜙)
exp(−Δ𝐺 (𝜙, 𝑠)/𝑘𝐵𝑇) (1.2)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 the temperature, and Δ𝐺 (𝜙, 𝑠) the structure free
energy. Direct enumeration of all secondary structures incurs 𝑒𝑂 (𝑁) computational com-
plexity in the number of nucleotides 𝑁 . Such an approach is infeasible for all but the smallest
complexes of interest. A superior solution is to perform this summation using a dynamic
programming algorithm, using the partition function of each subsequence of the complex
to solve for progressively larger subsequences and culminating in the partition function of
the complete complex. A dynamic programming algorithm builds from solutions of the
smallest subproblems to the complete problem.

To illustrate the concept, consider the dynamic programming algorithm for a simplified
nucleic acid free energy model in which each the free energy is simply a sum over flat
contributions from each type of base pair. This algorithm might be defined as working via
the following single recursion:

𝑄𝑖, 𝑗 =


𝑄𝑖, 𝑗−1 +

∑ 𝑗−1
𝑘=𝑖

𝑄𝑖,𝑘−1𝑄𝑘+1, 𝑗−1 exp(−Δ𝐺𝑘, 𝑗/𝑘𝐵𝑇) 𝑖 < 𝑗

1 otherwise.
(1.3)

Here, 𝑄𝑖, 𝑗 is the partition function of the subsequence [𝑖: 𝑗], and Δ𝐺𝑖, 𝑗 is the free energy
from base pairing bases 𝑖 and 𝑗 . The idea is that in increasing the size of the considered
subsequence by one (by including base 𝑗), the possible configurations are those of [𝑖: 𝑗-1]
plus configurations in which 𝑗 is paired to a base in [𝑖: 𝑗-1]. Each of the contributions where
𝑗 is paired to 𝑘 may be decomposed into a product of partition functions on either side
of the 𝑘 · 𝑗 base pair. More complicated (and accurate) free energy models for secondary
structure add many more types of energetic contributions, including stacking energies and
other terms [7].
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Alternative structures

Substructure
compositions

Figure 1.3: Evaluation algebra conceptualization. The evaluation algebra captures the
generic idea of summation over alternative secondary structures to compute a single physical
quantity of interest for a given set of strands. In the nearest-neighbor model, the energetics
of different loops within a given secondary structure are assumed independent of each
other, which, for partition function calculation, leads to the distribution of multiplication
over addition in the semiring.

1.2.1 Abstract evaluation algebras

Calculation of complex free partition functions is perhaps one of the most essential tools
for understanding nucleic acid thermodynamics. Knowledge of these free energies, for
instance, can be used to solve for the equilibrium complex concentrations in a test tube
[4]. However, there are many more quantities of interest for experimentalists to analyze
and design. Frequently, for example, an experimentalist is interested in the most probable
secondary structure for a set of associated strands to adopt. In this case, rather than a
summation over all secondary structures, we are looking for a minimum over all secondary
structures.

To proceed, it is useful to consider the essential logic of the counting problem for secondary
structures. At its root, our summation involves the collection of alternative secondary
structures, each of which is made up of a composition of independent loops. Analogously,
in calculation of a partition function, the Boltzmann factors for alternative structures are
added together, while Boltzmann factors of different loops are multiplied together. (The
summation over structures can be clearly seen in (1.2); the multiplication over loops may
be seen by substituting (1.1) into (1.2) and decomposing the exponential.) In algebraic
structure terminology, the sum and product operations conducted can be seen to form a
semiring, that is, a set equipped with two binary operations, both with identity element, and
with the second operation distributing over the first. The minimum free energy problem may
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thus be solved by replacing the SumProduct semiring with the MinSum semiring, with no
change otherwise to the recursions and algorithms. In Chapter 2, we show that this approach
works not just for minimum free energies but also for a set of other quantities including
overflow-proof partition functions, suboptimal structures, and sampling of structures from
the Boltzmann ensemble.

There is a more utilitarian reason to take up the idea of evaluation algebras, which is that
it greatly eases the implementation and modularity of software. Generic programming,
similarly motivated by abstract algebraic theory [15], plays with a similar idea to our
evaluation algebras. The idea of generic programming is to reduce a program to its most
essential mathematical structure such that it may be applied to as many uses as possible
without modification. Using this technique, we can program the set of model recursions
only once, isolated from the operation order targeting each physical quantity. In Chapter 2,
by optimizing the other elements of the dynamic programming algorithms in a modular
fashion, we are able to achieve large computational speedups for a variety of physical
quantities.

1.3 Simulation of secondary structure kinetics

Most analysis and design of nucleic acid secondary structures has been performed in the
equilibrium regime. That is, secondary structures are evaluated only via their limiting
thermodynamics at an infinite-time horizon. Newer design approaches optimize reaction
pathways by considering a set of hypothetical test tubes containing reactants, intermediates,
and products [19]; however, true kinetic information is still missing from such an approach.
On the other hand, other recent efforts have established preliminary models for kinetics on
secondary structures (e.g. [6, 14]). In these models, each secondary structure is treated as
an isolated and well-mixed microstate. A system of interacting nucleic acid strands may
transition from one secondary structure to another by means of formation or deletion of a
single base pair at a time. The rate function is assumed to satisfy detailed balance such
that the governing Markov process is recurrent and reversible. Thus, the evolution of ®𝑝(𝑡),
the populations of secondary structures at time 𝑡, given rate matrix R, follows the matrix
ordinary differential equation:

d ®𝑝(𝑡)
d𝑡

= R> ®𝑝(𝑡). (1.4)



7

1.3.1 Stochastic simulation

Direct solution of nucleic acid kinetics over the entire ensemble of secondary structures is
infeasible due to the 𝑒𝑂 (𝑁) growth in the number of structures with respect to the number
of nucleotides 𝑁 . An alternative to direct simulation of the probability density propagation
via (1.4) falls out of the well-known isomorphism between the continuous time Markov
chain and its associated discrete-time jump-and-hold chain (e.g. [1]). Simulation of the
jump-and-hold chain in biochemical contexts is generally known as the Gillespie algorithm
[9]. Using the Gillespie algorithm [9], earlier efforts ([6, 14]) developed an approach for
stochastic kinetic simulation of nucleic acid secondary structure trajectories.

The Gillespie method for trajectory simulation is highly optimizable with respect to sec-
ondary structure kinetics due to the hierarchical decomposition of interactions enforced
by the loop-based model. Exploiting these features, in Chapter 3 we detail the design
and implementation of multiple methods for computing trajectories more efficiently. Most
of these methods result in substantial improvements to the computational complexity of
trajectory simulation with respect to system size. Others result in substantial prefactor
improvements, sometimes of an order of magnitude or more. In some cases, we are able
to achieve complexity gains by imposing additional constraints on the definition of the
microstate rate function. Such cases would indicate that these rate functions should be
prioritized in parametrization if possible.

1.3.2 Kinetics including coaxial and dangle stacking contributions

An essential ingredient to performant trajectory simulation is an efficient microstate free
energy evaluation. Whereas dynamic programming algorithms efficiently calculate the free
energy summing over all possible structures in a complex ensemble, much less attention has
been paid to efficiently calculating the free energy of a single structure. This computation
becomes significantly more involved when coaxial and dangle stacking states are fully
considered. We rectify this situation for the most problematic loop types by applying a
transfer-matrix based approach to loop free energy calculation in an ensemble including
coaxial and dangle stacking states. Motivated by a similar “state vector” based approach in
the lattice path counting literature [2, 10], we use a matrix-trace calculation to incorporate
all possible stacking states within a loop, all scaling as 𝑂 (𝑛bp) in the number of base pairs
in the loop 𝑛bp.

Most nucleic acid systems of interest involve multiple complexes that may associate or
dissociate during a secondary structure trajectory. The calculation of association rates
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Figure 1.4: Example base pairing reactions simulated using molecular dynamics. Enhanced
sampling is used in order to simulate the reaction in which a single base pair is cleaved
(here, the topmost base pair). Thermodynamics and kinetics are studied along the reaction
pathway from reactant (paired, left) and product (unpaired, right).

between multiple complexes is challenging since the number of possible first contact states
grows quadratically in the number of exposed bases in the system. We thus develop a join
propensity method which exploits certain rate functions to calculate complex join rates in a
separable and linear-scaling manner. We adapt the transfer-matrix approach for free energy
calculation to the calculation of join propensities including all possible stacking states.

1.4 Computational parametrization of secondary structure models

Secondary structure models are an obvious approximation to the tertiary structures of
nucleic acids in nature. In the past, these models have been parametrized over decades of
ad hoc melt experiments for RNA and DNA in a limited set of experimental conditions.
As secondary structure analysis and design algorithms improve and grow in usage, it is
important for the parametrization methods for these models to 1) be as accurate as possible,
2) apply to as many materials as possible (e.g. RNA, DNA, 2′OMe-RNA), 3) apply to
as many experimental settings (e.g. temperature, ion concentrations) as possible, and 4)
produce kinetic predictions (rather than just equilibrium ones), necessitating completely
new sets of parameters and functional forms.

In Chapters 4 and 5, we fulfill these objectives by developing a fully computational workflow
based on 1) Gaussian process-based choice of the most informative base pairing reactions
to simulate, 2) molecular dynamics (MD) simulations of these reactions (Figure 1.4), and
3) regression of thermodynamic and kinetic information from the yielded trajectories. This
effort brings together theoretical techniques from Gaussian process theory with dynamic
programming algorithms and molecular dynamics methods.
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1.4.1 Simulation design and choice

Molecular dynamics simulations are mature and well-optimized but incur significant com-
putational cost, with research projects commonly requiring millions of CPU hours. For an
open-ended study of thermodynamic and kinetic motifs and parameters, it is thus vital to
focus on simulations of the reactions that will be most informative to the end objectives.
In Chapter 4, by assuming and fitting a Gaussian process over our projected simulation
outputs, we develop an approach which maximizes the mutual information of the simu-
lated reaction set ®𝑟. In this context, we develop an information gain criterion composed
of 1) the covariance matrix Γ®𝑟 conditional on the observed simulation outputs and 2) a
Fisher information matrix 𝐹 measuring the sensitivities of complex free energies to each
nearest-neighbor parameter. To summarize, we first develop the covariance matrix Γ®𝑟 by
using the functional forms of the nearest-neighbor free energy model. Next we consider
the total decrease in the conditional variance of the complex free energy Δ𝐺 (𝜙) over an
ensemble of representative sequences 𝜙. By linearizing our the complex free energy around
its values given empirical parameters, we can pose the total decrease in conditional variance
or, equivalently, the mutual information gain, as the following matrix trace:

information gain =
∑︁
𝜙

Tr

[
𝜕Δ𝐺 (𝜙)

𝜕 ®𝜃
Γ®𝑟

𝜕Δ𝐺 (𝜙)
𝜕 ®𝜃

>
]
+ const

= Tr
Γ®𝑟 ©­«

∑︁
𝜙

𝜕Δ𝐺 (𝜙)
𝜕 ®𝜃

> 𝜕Δ𝐺 (𝜙)
𝜕 ®𝜃

ª®¬
 + const

= Tr
[
Γ®𝑟 𝐹

]
+ const.

(1.5)

where the second line in (1.5) follows by the rotational invariance of a matrix trace, and the
third line follows from defining the Fisher information matrix as 𝐹 B

∑
𝜙

𝜕Δ𝐺 (𝜙)
𝜕 ®𝜃

> 𝜕Δ𝐺 (𝜙)
𝜕 ®𝜃

.
Using (1.5) we can efficiently optimize the information gain by automatically tuning the set
of reactions ®𝑟 to be simulated, as is detailed more in Chapter 4.

1.4.2 Molecular dynamics methodologies

Naïve molecular dynamics simulations of even localized and well-chosen biomolecular
reactions can require infeasible timescales of simulation. Classical molecular dynamics
simulations typically utilize an 𝑂 (1 fs) timestep, yielding common trajectory lengths in
the 𝑂 (1 ns) to 𝑂 (1 𝜇s) range. The timescale of base pairing reactions is only roughly
constrained by experimental literature but is known to involve rearrangements on or beyond
the slower end of this timescale.
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We show that umbrella sampling via application of restraints on collective variable values
may be used to provide enhanced sampling of a reaction pathway on a more feasible
computational timescale. Applying this approach, we are able to estimate reaction free
energies and enthalpies using only short molecular dynamics trajectories.

1.4.3 Thermodynamic and kinetic regression

Secondary structure models should be extensible to different experimental settings, includ-
ing different temperatures and solvent conditions (including ion concentrations). We thus
extend our molecular dynamics methodology to the calculation of reaction enthalpies, al-
lowing approximate extrapolation in temperature, using a reweighted average of internal
energies in previously run trajectories. Analogously, we use a Poisson-Boltzmann equation-
based approach to accomplish extrapolation of our results to different ion concentrations.
Meanwhile, experimentally useful secondary structure models should predict not only reac-
tion free energy but also kinetic information. To meet this goal, we develop a rate constant
estimation method based on projection of the molecular dynamics Markov chain down to
one dimension, followed by exact solution of rate constants in this reduced chain.

By using the developed Gaussian process statistics, we can optimize free energy and enthalpy
parameters of existing nearest-neighbor secondary structure models. We demonstrate in
Chapter 5 that we can achieve realistic and relatively accurate thermodynamic parameters
using our approach. We also are able to yield some of the first large-scale estimates of
individual base pair reaction rate constants. Our approach also yields estimates of free
energies, enthalpies, and ion concentration effects.

1.5 Conclusions

In sum, this thesis represents an application of diverse mathematical and chemical methods
to simulating and parameterizing nucleic acid secondary structure thermodynamics and
kinetics. From the mathematical ingredients of abstract algebras, secondary structure
combinatorics, Markov chains, and Gaussian processes, we develop methodologies for
efficient dynamic programs, rate calculations, information maximization, and regression of
kinetic and thermodynamic parameters. We apply these computational methodologies to
both the analysis and parametrization of secondary structure thermodynamic and kinetic
models, demonstrating efficient and scalable computational approaches for each of our
goals.
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C h a p t e r 2

IMPROVED ALGORITHMS FOR THE EQUILIBRIUM ANALYSIS OF
NUCLEIC ACID COMPLEXES

Mark E. Fornace, Nicholas J. Porubsky, and Niles A. Pierce. A unified dynamic pro-
gramming framework for the analysis of interacting nucleic acid strands: Enhanced
models, scalability, and speed. ACS Synthetic Biology, 9(10):2665–2678, 2020. doi:
10.1021/acssynbio.9b00523. URL https://doi.org/10.1021/acssynbio.9b00523.
PMID: 32910644.

Dynamic programming algorithms within the NUPACK software suite enable analysis
of nucleic acid sequences over complex and test tube ensembles containing arbitrary
numbers of interacting strand species, serving the needs of researchers in molec-
ular programming, nucleic acid nanotechnology, synthetic biology, and across the
life sciences. Here, to enhance the underlying physical model, assure scalability for
large calculations, and achieve dramatic speedups when calculating diverse physical
quantities over complex and test tube ensembles, we introduce a unified dynamic pro-
gramming framework that combines three ingredients: 1) recursions that specify the
dependencies between subproblems and incorporate the details of the structural en-
semble and the free energy model, 2) evaluation algebras that define the mathematical
form of each subproblem, 3) operation orders that specify the computational trajectory
through the dependency graph of subproblems. The physical model is enhanced using
new recursions that operate over the complex ensemble including coaxial and dangle
stacking subensembles. The recursions are coded generically and then compiled with
a quantity-specific evaluation algebra and operation order to generate an executable for
each physical quantity: partition function, equilibrium base-pairing probabilities, MFE
energy and structure proxy, suboptimal structures, and Boltzmann sampled structures.
For large complexes (e.g., 30,000 nt), scalability is achieved for partition function cal-
culations using an overflow-safe evaluation algebra, and for equilibrium base-pairing
probabilities using a backtrack-free operation order. A new blockwise operation order
that treats subcomplex blocks for the complex species in a test tube ensemble enables
dramatic speedups (e.g., 20–120×) using vectorization and caching. With these per-
formance enhancements, equilibrium analysis of substantial test tube ensembles can
be performed in ≤ 1 minute on a single computational core (e.g., partition function
and equilibrium concentration for all complex species of up to 6 strands formed from 2

https://doi.org/10.1021/acssynbio.9b00523
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strand species of 300 nt each, or for all complex species of up to 2 strands formed from
80 strand species of 100 nt each). A new sampling algorithm simultaneously samples
multiple structures from the complex ensemble to yield speedups of an order of mag-
nitude or more as the number of structures increases above ≈103. These advances are
available within the NUPACK 4.0 code base (www.nupack.org) which can be flexibly
scripted using the all-new NUPACK Python module.

Dynamic programming algorithms enable efficient and exact equilibrium analysis of nucleic
acids with respect to approximate physical models. Algorithms are formulated in terms of
nucleic acid secondary structure (i.e., the base pairs of a set of DNA or RNA strands) and
employ empirical free energy parameters [4, 16, 17, 19, 20, 22, 24–26, 28, 29, 32, 35] to
calculate diverse physical quantities [1, 2, 5, 6, 11, 15, 18, 20, 21, 36]. We have previously
developed dynamic programming algorithms that are unique in treating complex and test
tube ensembles containing arbitrary numbers of interacting strand species [11], providing
crucial tools for capturing concentration effects essential to analyzing and designing the
intermolecular interactions that are a hallmark of molecular programming, nucleic acid
nanotechnology, and synthetic biology. These algorithms are implemented within NUPACK
(Nucleic Acid Package), a growing software suite for the analysis and design of nucleic acid
structures, devices, and systems [33].

Here, following 15 years of methods development [8–11, 30, 31, 33, 34], we reconsidered
every equilibrium analysis algorithm, arriving at a new unified dynamic programming
framework that leads to major improvements of five varieties:

• Elucidation: diverse physical quantities are calculated using dynamic programs each
combining three ingredients: model-specific recursions, a quantity-specific evaluation
algebra, and a quantity-specific operation order.

• Model: new recursions capture the structural and energetic details of coaxial and
dangle stacking subensembles in the complex ensemble.

• Scalability: over-flow safe evaluation algebras and backtrack-free operation orders
enable robust partition function and pair probability calculations for large complexes.

• Speed: new blockwise operation orders yield dramatic speedups of 1–2 orders of
magnitude for equilibrium analysis of test tube ensembles.

• Brevity: use of a generic programming paradigm and compile-time polymorphism
dramatically reduce the size of the code base.

www.nupack.org
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Figure 2.1: Complex and test tube ensembles. (a) A connected unpseudoknotted secondary
structure for complex of 3 strands with strand ordering 𝜋 = ABC. An arrowhead denotes
the 3′ end of each strand. (b) Polymer graph representation of the same secondary structure
showing no crossing lines for strand ordering 𝜋 = ABC. (c) Alternative strand ordering 𝜋 =
ACB yields a polymer graph with crossing lines. (c) A pseudoknotted secondary structure
with base pairs 𝑖·𝑗 and 𝑑·𝑒 (with 𝑖 < 𝑑) that fail to satisfy the nesting property 𝑖 < 𝑑 < 𝑒 < 𝑗 ,
yielding crossing lines in the corresponding polymer graph (e) for the sole strand ordering
𝜋 = DE. (f) A test tube ensemble containing strand species Ψ0 = {A,B,C} interacting to
form all complex species Ψ of up to 𝐿max = 3 strands.

We begin by defining the underlying physical model, including definitions of the complex
and test tube structural ensembles, and specification of the free energy model for a complex
ensemble including coaxial and dangle stacking subensembles. We then describe the unified
dynamic programming framework, describing new recursions that capture the details of the
enhanced physical model, and new evaluation algebras and operation orders that enable
calculation of diverse physical quantities for complex and test tube ensembles of interacting
DNA or RNA strands. The resulting suite of algorithms comprise the all-new NUPACK
4.0 analysis code base. Enhanced models, scalability, and speed will benefit researchers
in molecular programming, nucleic acid nanotechnology, synthetic biology, and across the
life sciences.
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2.1 Physical model

2.1.1 Complex ensemble and test tube ensembles

NUPACK algorithms operate over two fundamental ensembles:

• Complex ensemble: The ensemble of all (unpseudoknotted connected) secondary
structures for an arbitrary number of interacting DNA or RNA strands.

• Test tube ensemble: The ensemble of a dilute solution containing an arbitrary num-
ber of DNA or RNA strand species (introduced at user-specified concentrations)
interacting to form an arbitrary number of complex species.

Furthermore, to enable reaction pathway engineering of dynamic hybridization cascades
(e.g., shape and sequence transduction using small conditional RNAs [14]) or large-scale
structural engineering including pseudoknots (e.g., RNA origamis [13]), NUPACK gener-
alizes sequence analysis and design to multi-complex and multi-tube ensembles [31].

The sequence, 𝜙, of one or more interacting RNA strands is specified as a list of bases
𝜙𝑎 ∈ {A,C,G,U} for 𝑎 = 1, . . . , |𝜙|. For DNA, 𝜙𝑎 ∈ {A,C,G,T}. A secondary structure,
𝑠, of one or more interacting RNA strands is defined by a set of base pairs, each a Watson–
Crick pair [A·U or C·G] or a wobble pair [G·U]. For DNA, the corresponding Watson–Crick
pairs are A·T and C·G and there are no wobble pairs. Example secondary structures are
displayed in Figures 2.1ad.

For algorithmic purposes, it is convenient to describe secondary structures using a polymer
graph representation, constructed by ordering the strands around a circle, drawing the
backbones in succession from 5′ to 3′ around the circumference with a nick between each
strand, and drawing straight lines connecting paired bases (e.g., Figure 2.1bc). A secondary
structure is unpseudoknotted if there exists a strand ordering for which the polymer graph
has no crossing lines (e.g., Figure 2.1b), or pseudoknotted if all strand orderings contain
crossing lines (e.g., the kissing loops of Figure 2.1de). A secondary structure is connected
if no subset of the strands is free of the others. Consider a complex of 𝐿 distinct strands
(e.g., each with a unique identifier in {1, . . . , 𝐿}) corresponding to strand ordering 𝜋. The
complex ensemble Γ(𝜙) contains all connected polymer graphs with no crossing lines for
sequence 𝜙 and strand ordering 𝜋 (i.e., all unpseudoknotted secondary structures) [11]. (We
dispense with our prior convention [11, 33, 34] of calling this entity an ordered complex.)

As a matter of algorithmic necessity, all of the dynamic programs developed in the present
work operate on complex ensemble Γ(𝜙) treating all strands as distinct. However, in the
laboratory, strands with the same sequence are typically indistinguishable with respect
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to experimental observables. Fortunately, for comparison to experimental data, physical
quantities calculated over ensemble Γ(𝜙) can be post-processed to obtain the corresponding
quantities calculated over ensembleΓ(𝜙) in which strands with the same sequence are treated
as indistinguishable (see Section S5 for details). The ensemble Γ(𝜙) ⊆ Γ(𝜙) is a maximal
subset of distinct secondary structures for strand ordering 𝜋. Two secondary structures are
indistinguishable if their polymer graphs can be rotated so that all strands are mapped onto
indistinguishable strands, all base pairs are mapped onto base pairs, and all unpaired bases
are mapped onto unpaired bases; otherwise the structures are distinct [11].

A test tube ensemble is a dilute solution containing a set of strand species, Ψ0, introduced
at user-specified concentrations, that interact to form a set of complex species, Ψ, each
corresponding to a different strand ordering treating strands with the same sequence as
indistinguishable. For 𝐿 strands, there are (𝐿 − 1)! strand orderings if all strands are
different species (e.g., complexes 𝜋 = ABC and 𝜋 = ACB for 𝐿 = 3 and strands A, B, C), but
fewer than (𝐿 − 1)! strand orderings if some strands are of the same species (e.g., complex
𝜋 = AAA for 𝐿 = 3 with three A strands). By the Representation Theorem of Dirks et
al. [11], a secondary structure in the complex ensemble for one strand ordering does not
appear in the complex ensemble for any other strand ordering, averting redundancy. It is
often convenient to define Ψ to contain all complex species of up to 𝐿max strands (e.g.,
Figure 2.1f), although Ψ can be defined to contain arbitrary complex species formed from
the strand species in Ψ0.

2.1.2 Loop-based free energy model

For each (unpseudoknotted connected) secondary structure 𝑠 ∈ Γ(𝜙), the free energy,
Δ𝐺 (𝜙, 𝑠), is estimated as the sum of the empirically determined free energies of the con-
stituent loops [17, 19, 24, 29, 32, 35] plus a strand association penalty[3], Δ𝐺assoc, applied
𝐿 − 1 times for a complex of 𝐿 strands:

Δ𝐺 (𝜙, 𝑠) = (𝐿 − 1) Δ𝐺assoc +
∑︁

loop∈𝑠
Δ𝐺 (loop). (2.1)

The secondary structure and polymer graph of Figure 2.2 illustrate the different loop types,
with free energies modeled as follows [17, 19, 24, 29, 32, 35]:

• A hairpin loop is closed by a single base-pair 𝑖 · 𝑗 . The loop free energy, Δ𝐺hairpin
𝑖, 𝑗

,
depends on sequence and loop size.

• An interior loop is closed by two base pairs (𝑖 · 𝑗 and 𝑑 · 𝑒 with 𝑖 < 𝑑 < 𝑒 < 𝑗).
The loop free energy, Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
depends on sequence, loop size, and loop asymmetry.
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a b

hairpin stack bulge interior multi exterior

C

C

B

BA
A

Figure 2.2: Loop-based free energy model for a complex. (a) Canonical loop types for
complex with strand ordering 𝜋 = ABC. (b) Equivalent polymer graph representation. An
arrowhead denotes the 3′ end of each strand.
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multiloop coaxial stackmultiloop dangle stackmultiloop exterior loop coaxial stack

exterior loop dangle stack

exterior loop

Multiloop stacking states Exterior loop stacking states

Exterior loop stacking states

Figure 2.3: Coaxial and dangle stacking states for multiloops and exterior loops. (a)
Stacking subensemble for the multiloop of Figure 2.2a. (b,c) Stacking subensembes for two
exterior loops from Figure 2.2a.

Bulge loops (where either 𝑑 = 𝑖 + 1 or 𝑒 = 𝑗 − 1) and stacked pairs (where both
𝑑 = 𝑖 + 1 and 𝑒 = 𝑗 − 1) are treated as special cases of interior loops.

• A multiloop is closed by three or more base pairs. The loop free energy is modeled
as the sum of three sequence-independent penalties: (1) Δ𝐺multi

init for formation of
a multiloop, (2) Δ𝐺multi

bp for each closing base pair, (3) Δ𝐺multi
nt for each unpaired
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nucleotide inside the multiloop, plus a sequence-dependent penalty: (4) Δ𝐺 terminalbp
𝑖, 𝑗

for each closing pair 𝑖 · 𝑗 .
• An exterior loop contains a nick between strands and any number of closing base

pairs. The exterior loop free energy is the sum of Δ𝐺 terminalbp
𝑖, 𝑗

over all closing base
pairs 𝑖 · 𝑗 . Hence, an unpaired strand has a free energy of zero, corresponding to the
reference state [11].

2.1.3 Coaxial and dangle stacking subensembles within complex ensembles

Within a multiloop or an exterior loop, there is a subensemble of coaxial stacking states
between adjacent closing base pairs and dangle stacking states between closing base pairs
and adjacent unpaired bases. The physical model for multiloops and exterior loops has
previously been enhanced for the ensemble of a single strand [20] by incorporating coaxial
stacking [19, 22, 29] and dangle stacking [4, 26, 29, 35] terms into the multiloop and exterior
loop free energies. For the complex ensemble, we have previously neglected coaxial stacking
and incorporated a heuristic dangle stacking state [11]. Here, we exactly incorporate all
coaxial and dangle stacking states in the complex ensemble. Within a multiloop or exterior
loop, a base pair can form one coaxial stack with an adjacent base pair, or can form a
dangle stack with at most two adjacent unpaired bases; unpaired bases can either form no
stack, or can form a dangle stack with at most one adjacent base pair. See Figure 2.3 for an
illustration of the valid stacking states for a multiloop (panel a) or two exterior loops (panels
b and c).

For a given multiloop or exterior loop, the energetic contributions of all possible coaxial
and dangle stacking states are enumerated so as to calculate the free energy:

Δ𝐺stacking = −𝑘𝑇 log
∑︁

𝜔∈loop

∏
x∈𝜔

𝑒−Δ𝐺𝑥/𝑘𝑇 (2.2)

where 𝜔 indexes the possible stacking states within the loop and 𝑥 indexes the individual
stacks (coaxial or dangle) within a stacking state. The free energy of a multiloop or exterior
loop is augmented by the corresponding Δ𝐺stacking bonus. Hence, a secondary structure 𝑠

continues to be defined as a set of base pairs, and the stacking states within a given multiloop
or exterior loop are treated as a structural subensemble that contributes in a Boltzmann-
weighted fashion to the free energy model for the loop. Let 𝑠q ∈ 𝑠 denote a stacking state of
the paired and unpaired bases in 𝑠. We may equivalently define the free energy of secondary
structure 𝑠 in terms of the free energies for all stacking states 𝑠q ∈ 𝑠:

Δ𝐺 (𝜙, 𝑠) = −𝑘𝑇 log
∑︁
𝑠q∈𝑠

𝑒−Δ𝐺 (𝜙,𝑠
q)/𝑘𝑇 . (2.3)
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2.1.4 Symmetry correction

Let Γq(𝜙) denote the ensemble of stacking states corresponding to the complex ensemble
of secondary structures Γ(𝜙). For a secondary structure 𝑠 ∈ Γ(𝜙) with an 𝑅-fold rotational
symmetry there is in 𝑅-fold reduction in distinguishable conformational space, so the free
energy (2.1) must be adjusted[11] by a symmetry correction:

Δ𝐺 (𝜙, 𝑠) = Δ𝐺 (𝜙, 𝑠) + Δ𝐺sym(𝜙, 𝑠). (2.4)

where

Δ𝐺sym(𝜙, 𝑠) = 𝑘𝑇 log 𝑅(𝜙, 𝑠). (2.5)

Because the symmetry factor 𝑅(𝜙, 𝑠) is a global property of each secondary structure
𝑠 ∈ Γ(𝜙), it is not suitable for use with dynamic programs that treat multiple subproblems
simultaneously without access to global structural information. As a result, dynamic pro-
grams operate on ensemble Γ(𝜙) using physical model (2.1) and then the Distinguishability
Correction Theorem of Dirks et al. [11] enables exact conversion of physical quantities to
ensemble Γ(𝜙) using physical model (2.4). Interestingly, ensembles Γ(𝜙) and Γ(𝜙) both
have utility when examining the physical properties of a complex as they provide related
but different perspectives, akin to complementary thought experiments (see Section S5).

2.1.5 Free energy parameters

Supported temperature-dependent RNA and DNA parameter sets include:

• rna95 based on (Serra & Turner, 1995)[26] with additional parameters[35] including
coaxial stacking [19, 29] and dangle stacking [26, 29, 35] in 1M Na+.

• dna04 based on (SantaLucia, 1998)[24] and (SantaLucia & Hicks, 2004)[25] with
additional parameters[35] including coaxial stacking [22] and dangle stacking [4, 35]
in user-specified concentrations of Na+, K+, NH+4 , and Mg++ (see Section S1.2 for
details on implementation of the salt corrections)[16, 22, 24, 25].

• rna06 based on (Mathews et al., 1999)[19], (Mathews et al., 2004)[20], and (Lu et
al., 2006)[17] with additional parameters[32, 35] including coaxial stacking [19, 29]
and dangle stacking [26, 29, 35] in 1M Na+.

• custom using user-specified parameters representing nucleic acids or synthetic nu-
cleic acid analogs in experimental conditions of choice.

See Sections S1.5–S1.7 for details about parameter sets.
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2.2 Algorithm

2.2.1 Physical quantities

Consider a complex with sequence 𝜙. We provide dynamic programs to calculate:

• the partition function,

𝑄(𝜙) =
∑︁

𝑠∈Γ(𝜙)

𝑒−Δ𝐺 (𝜙,𝑠)/𝑘𝑇 , (2.6)

over ensemble Γ(𝜙) treating all strands as distinct. The equilibrium probability of
any secondary structure 𝑠 ∈ Γ(𝜙) is then

𝑝(𝜙, 𝑠) = 𝑒−Δ𝐺 (𝜙,𝑠)/𝑘𝑇/𝑄(𝜙). (2.7)

Post-processing 𝑄(𝜙) yields the partition function 𝑄(𝜙) over ensemble Γ(𝜙) treating
strands with the same sequence as indistinguishable[11].

• the base-pairing probability matrix 𝑃(𝜙) with entries 𝑃𝑖, 𝑗 (𝜙) ∈ [0, 1] corresponding
to the probability

𝑃
𝑖, 𝑗 (𝜙) =

∑︁
𝑠∈Γ(𝜙)

𝑝(𝜙, 𝑠)𝑆𝑖, 𝑗 (𝑠) (2.8)

that base pair 𝑖 · 𝑗 forms at equilibrium within ensemble Γ(𝜙), treating all strands as
distinct. Here, 𝑆(𝑠) is a structure matrix with entries 𝑆𝑖, 𝑗 (𝑠) = 1 if structure 𝑠 contains
base pair 𝑖 · 𝑗 and 𝑆𝑖, 𝑗 (𝑠) = 0 otherwise. Abusing notation, the entry 𝑆𝑖,𝑖 (𝑠) is 1 if
base 𝑖 is unpaired in structure 𝑠 and 0 otherwise; the entry 𝑃

𝑖,𝑖 (𝜙) ∈ [0, 1] denotes
the equilibrium probability that base 𝑖 is unpaired over ensemble Γ(𝜙). Hence 𝑆(𝑠)
and 𝑃(𝜙) are symmetric matrices with row and column sums of 1.

• the free energy of the minimum free energy (MFE) stacking state 𝑠qMFE(𝜙) ∈ Γ
q(𝜙)

treating all strands as distinct:

Δ𝐺 (𝜙, 𝑠qMFE) = min
𝑠q∈Γq (𝜙)

Δ𝐺 (𝜙, 𝑠q). (2.9)

• the MFE proxy structure

𝑠MFE′ = {𝑠 ∈ Γ(𝜙) |𝑠qMFE ∈ 𝑠, 𝑠
q
MFE(𝜙) = arg min

𝑠q∈Γq (𝜙)
Δ𝐺 (𝜙, 𝑠q)}. (2.10)

defined as the secondary structure containing the MFE stacking state within its
subensemble. If there is more than one MFE stacking state, the algorithm returns all
corresponding MFE proxy structures.
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• the set of suboptimal secondary structures

Γsubopt(𝜙,Δ𝐺gap) =
{𝑠 ∈ Γ(𝜙) |𝑠q ∈ 𝑠,Δ𝐺 (𝜙, 𝑠q) ≤ Δ𝐺 (𝜙, 𝑠qMFE) + Δ𝐺gap} (2.11)

with stacking states within a specified Δ𝐺gap ≥ 0 of the MFE stacking state.

• a set of 𝐽 secondary structures Boltzmann sampled from ensemble Γ(𝜙) treating all
strands as distinct:

Γsample(𝜙, 𝐽) ∈ Γ(𝜙). (2.12)

Post-processing then yields the set of 𝐽 secondary structures Boltzmann sampled
from ensemble Γ(𝜙) treating strands with the same sequence as indistinguishable:

Γsample(𝜙, 𝐽) ∈ Γ(𝜙). (2.13)

Complex ABC

final answer: 

1-nt subsequences 
2-nt subsequences
3-nt subsequences

...

a

Operation order

A

A

B

B

C

C

Q1,N

Q1,1

QN,NQ1,N

Figure 2.4: Operation order for partition function dynamic program over a complex ensem-
ble with 𝑁 nucleotides.

Now consider a test tube ensemble containing an arbitrary set of strand speciesΨ0 interacting
to form an arbitrary set of complex species Ψ. We provide algorithms to calculate:

• the set of equilibrium concentrations 𝑥Ψ ≡ 𝑥𝑐 ∀𝑐 ∈ Ψ, (specified as mole fractions)
that are the unique solution to the strictly convex optimization problem[11]:

min
𝑥Ψ

∑︁
𝑐∈Ψ

𝑥𝑐 (log 𝑥𝑐 − log𝑄𝑐 − 1) (2.14a)

subject to
∑︁
𝑐∈Ψ

𝐴𝑖,𝑐𝑥𝑐 = 𝑥0
𝑖 ∀𝑖 ∈ Ψ0, (2.14b)
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expressed in terms of the previously calculated set of partition functions 𝑄Ψ. Here,
the constraints impose conservation of mass: 𝐴 is the stoichiometry matrix such that
𝐴𝑖,𝑐 is the number of strands of type 𝑖 in complex 𝑐, and 𝑥0

𝑖
is the total concentration

of strand 𝑖 present in the test tube. Based on dimensional analysis [11], the convex
optimization algorithm operates on mole fractions, but for convenience, accepts
molar strand concentrations [𝑖]0 = 𝑥0

𝑖
𝜌H2O as inputs and returns molar complex

concentrations [𝑐] = 𝑥𝑐𝜌H2O as outputs, where 𝜌H2O is the molarity of water.

• the ensemble pair fractions for the test tube ensemble, for example

𝑓𝐴 (𝑖𝐴 · 𝑗𝐵) (2.15)

denotes the fraction of A strands that form base pair 𝑖𝐴 · 𝑗𝐵 (correspondingly 𝑓𝐵 (𝑖𝐴 · 𝑗𝐵)
denotes the fraction of B strands that form base pair 𝑖𝐴 · 𝑗𝐵). In order to calculate
these base-pairing observables, it is first necessary to calculate the set of equilibrium
concentrations 𝑥Ψ and the set of base-pairing probability matrices 𝑃Ψ.
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Table 2.1: Algorithmic ingredients for calculating diverse physical quantities.
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2.2.2 Existing dynamic programs

Before describing the new unified dynamic programming framework, it is helpful to briefly
summarize existing algorithms that operate on complex ensemble Γ(𝜙) using a simplified
free energy model that neglects coaxial stacking and approximates dangle stacking [11].
The complex ensemble size, |Γ(𝜙) |, grows exponentially with the number of nucleotides
(Figure S37), 𝑁 ≡ |𝜙|, but the partition function can be calculated in 𝑂 (𝑁3) time and
𝑂 (𝑁2) space using a dynamic program [11, 21]. The algorithm calculates the subsequence
partition function 𝑄𝑖, 𝑗 for each subsequence [𝑖, 𝑗] via a forward sweep from short sub-
sequences to the full sequence (Figure 2.4), finally yielding the partition function of the
full sequence, 𝑄1,𝑁 . The recursions used to calculate 𝑄𝑖, 𝑗 from previously calculated sub-
sequence partition functions can be depicted as recursion diagrams (Figure 2.5 left; with
free energy contributions colored to match the loop types of Figure 2.2) or equivalently
using recursion equations (Figure 2.5 right). The 𝑄 recursion relies on additional restricted
partition functions 𝑄𝑏 and 𝑄𝑚 that are also calculated recursively. Collectively, the 𝑄, 𝑄𝑏,
and 𝑄𝑚 recursions yield 𝑄(𝜙) = 𝑄1,𝑁 , incorporating the partition function contributions of
every structure 𝑠 ∈ Γ(𝜙) based on free energy model (2.1) treating all strands as distinct.
After calculating the partition function with a forward sweep from short to long sequences,
dynamic programs that backtrack through the matrix of subsequence partition functions
from long to short subsequences can be used to calculate the matrix of equilibrium base-
pairing probabilities, 𝑃(𝜙), [9, 11, 21] or to Boltzmann sample a structure from ensemble
Γ(𝜙) [6, 11].

The partition function dynamic program can be converted into an MFE dynamic program
in a straightforward way by replacing every product of exponentiated free energies with
a sum of free energies and every sum of alternative partition function contributions with
a minimization over alternative free energy contributions, yielding the MFE of the full
sequence, Δ𝐺 (𝜙, 𝑠MFE) = 𝐹1,𝑁 [11, 36]. After calculating the MFE with a forward sweep
from short to long subsequences, dynamic programs that backtrack through the matrix
of subsequence MFEs from long to short subsequences can be used to determine the
MFE secondary structure(s), 𝑠MFE(𝜙) ∈ Γ(𝜙), or the ensemble of suboptimal structures,
Γsubopt(𝜙,Δ𝐺gap). At the heart of the improvements in the present work is a new unified
treatment of this suite of dynamic programs for calculating diverse physical quantities.
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Dynamic program
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+

Figure 2.6: Unified dynamic programming framework. To calculate a physical quantity
of interest based on a physical model comprising a structural ensemble and a free energy
model, each dynamic program combines three ingredients: model-specific recursions, a
quantity-specific evaluation algebra, and a quantity-specific operation order.

2.2.3 Unified dynamic programming framework

In the new unified framework, each dynamic program combines three ingredients (Fig-
ure 2.6): a set of recursions, an evaluation algebra, and an operation order. A set of
recursions specifies the dependencies of each subproblem, capturing the structural details
of the complex ensemble and the energetic details of the loop-based free energy model. An
evaluation algebra yields the mathematical form of each subproblem, allowing recursions to
be generically extended to each physical quantity of interest. An operation order defines the
computational trajectory through the dependency graph of subproblems, yielding dramatic
speedups using appropriate data structures. In the following sections, we first introduce a
new set of recursions that treat the enhanced physical model including coaxial and dangle
stacking, and then describe evaluation algebras and operation orders that enable calculation
of diverse physical quantities for complex and test tube ensembles (Table 2.1).
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Figure 2.7: Elementary recursion entities without or with coaxial and dangle stacking. (a)
Terminal base pair: a base pair that terminates a duplex (𝑖 ·𝑑) in an exterior loop or multiloop
context. (b) Stacking state: (1) Either a coaxial stacking state: two adjacent terminal base
pairs that are coaxially stacked (𝑖 · 𝑑 and 𝑑 + 1 · 𝑗) in an exterior loop or multiloop context,
(2) or a dangle stacking state: zero, one, or two unpaired nucleotides (neither 𝑖 nor 𝑗 , 𝑖
only, 𝑗 only, both 𝑖 and 𝑗) dangle stacking on an adjacent terminal base pair (𝑖 + 𝑘 · 𝑗 − 𝑙)
in an exterior loop or multiloop context. Shading denotes free energies incorporated by the
recursion.

2.2.4 Recursions for the complex ensemble with coaxial and dangle stacking

To treat the enhanced physical model including coaxial and dangle stacking contributions
for all multiloops and exterior loops, we require a new set of recursions that incorporate the
subensemble of stacking states and free energies defined by equation (2.2) and illustrated
in Figure 2.3. For the recursions without coaxial and dangle stacking, the elementary
recursion entity is a terminal base pair (Figure 2.7a; a base pair that terminates a duplex
in an exterior loop or multiloop context). For example, a recursion might contain exactly
one terminal base pair, a 3′-most terminal base pair, or one or more terminal base pairs.
By contrast, for new recursions with coaxial and dangle stacking, the elementary recursion
entity becomes a stacking state (Figure 2.7b), which may be either a coaxial stacking state
(two adjacent terminal base pairs that are coaxially stacked in a multiloop or exterior loop
context), or a dangle stacking state (zero, one, or two unpaired nucleotides dangle stacking
on an adjacent terminal base pair in a multiloop or exterior loop context). For example,
a recursion might contain exactly one stacking state, a 3′-most stacking state, or one or
more stacking states. Note that a terminal base pair without coaxial and dangle stacking
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corresponds to the subset of a dangle stacking state where there are zero nucleotides dangle
stacking, so the complex ensemble without coaxial and dangle stacking is a subset of the
complex ensemble with coaxial and dangle stacking. The inclusion of coaxial and dangle
stacking subensembles adds significant complexity to the specification of recursions. The
full set of𝑂 (𝑁3) recursions with coaxial and dangle stacking are provided in Section S2. In
the following sections, we describe how diverse physical quantities can be calculated using
these recursions in combination with different evaluation algebras and operation orders.

Algebra Algorithm Output 0 1 𝑎 ⊕ 𝑏 𝑎 ⊗ 𝑏 𝑊 (𝑔)

a SumProduct Partition function 0 1 𝑎 + 𝑏 𝑎 · 𝑏 𝑒−𝑔/𝑘𝑇

Count Ensemble size 0 1 𝑎 + 𝑏 𝑎 · 𝑏 1
MinSum MFE ∞ 0 min(𝑎, 𝑏) 𝑎 + 𝑏 𝑔

b SplitExp Partition function
Mantissa 0 1 𝑎m ·2𝑎e+𝛾 + 𝑏m ·2𝑏e+𝛾 𝑎m · 𝑏m 𝑒−𝑔/𝑘𝑇

Exponent 0 𝛾 0 𝑎e + 𝑏e + 𝛾 𝛾

c ArgRand Sampled structure
Value 0 1 𝑎v + 𝑏v 𝑎v · 𝑏v 𝑒−𝑔/𝑘𝑇

Elements ∅ ∅ arg rand(𝑎v, 𝑏v) 𝑎𝜆 ∪ 𝑏𝜆 ∅

d ArgMin MFE structure proxy
Value ∞ 0 min(𝑎v, 𝑏v) 𝑎v + 𝑏v 𝑔

Elements ∅ ∅ arg min(𝑎v, 𝑏v) 𝑎𝜆 ∪ 𝑏𝜆 ∅

Table 2.2: Evaluation algebras for dynamic programming algorithms operating on a complex
ensemble. 𝑎 and 𝑏 are elements within a given evaluation algebra domain. SumProduct
yields the partition function of the complex ensemble. Count yields the number of sec-
ondary structures in the complex ensemble. MinSum yields the free energy of the MFE
stacking state in the complex ensemble. SplitExp yields the partition function in split
mantissa/exponent form using a given exponent shift 𝛾 in order to avoid overflow for the
complex ensemble. ArgRand yields a Boltzmann sampled secondary structure with par-
tition function value 𝑥v and associated with recursion elements 𝑥𝜆. ArgMin yields the
secondary structure containing the MFE stacking state with free energy value 𝑥v and asso-
ciated with recursion elements 𝑥𝜆. See Section 𝑆3 for details.

2.2.5 Evaluation algebras for partition function, minimum free energy, and ensemble
size

As previously noted for the complex ensemble without coaxial and dangle stacking, the
partition function recursion diagrams of Figure 2.5a can equivalently be expressed as the
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partition function recursion equations of Figure 2.5b, and these in turn can be systematically
transformed into recursion equations to calculate the MFE. Alternatively, we may view the
partition function and MFE recursion equations as the results of applying two different
evaluation algebras to a generic set of recursion diagrams and equations that capture the
details of a given physical model (comprising a structural ensemble and a free energy
model). Here, we formalize an evaluation algebra as an algebraic structure composed
of: 1) a semiring 𝑅 equipped with commutative binary operators ⊕ and ⊗ and associated
identity elements 0 and 1, 2) a map 𝑊 from free energy parameters to 𝑅 with the property
𝑊 (0) = 1, and 3) a map 𝑄 from recursion indices to 𝑅. Table 2.2a defines the evaluation
algebras for the partition function and MFE algorithms, as well as the evaluation algebra for
calculating the size of the complex ensemble, |Γ(𝜙) |. For example, using the SumProd-
uct evaluation algebra to calculate the partition function: 1) ⊕ is standard addition, ⊗ is
standard multiplication, 0 is 0, 1 is 1, 2)𝑊 (𝑔) is the Boltzmann factor exp(−𝑔/𝑘𝑇) with the
property 𝑊 (0) = 1, and 3) 𝑄 is the trivial matrix lookup operator 𝑄(𝑛, 𝑖, 𝑗) ↦→ 𝑄𝑛

𝑖, 𝑗
, where

𝑛 denotes the type of recursion (e.g., 𝑛 = 𝑏 for a 𝑄𝑏 recursion). The evaluation algebras
used to calculate the partition function, MFE, and complex ensemble size can be applied
to recursions that operate over the complex ensemble with or without coaxial and dangle
stacking subensembles.

This paradigm of applying a quantity-specific evaluation algebra to a model-specific set
of recursions extends to diverse physical quantities, as we describe in the sections that
follow. This generic programming abstraction dramatically reduces the size of the code
base and enforces implementation correctness. Instead of writing separate code to upgrade
the recursion equations to the new physical model for each physical quantity, a single set
of recursion equations is coded and compiled using C++ expression templates for each of
the evaluation algebras in Table 2.2 to produce a suite of executables for calculating the
corresponding physical quantities.

2.2.6 Overflow-safe evaluation algebra for large partition function calculations

One of the challenges with calculating the partition function is the prevention of overflow
as the size of the complex, 𝑁 ≡ |𝜙 |, increases. Using double-precision (64-bit) arithmetic,
the maximum expressible number is ≈10308, enabling calculation of partition functions
for complexes of ≈1400 nt for random sequences and ≈450 nt for designed sequences
(which typically have a free energy landscape with a deep well). Using quadruple-precision
(128-bit) arithmetic, the maximum expressible number is increased to ≈104932 (platform-
dependent), which enables partition function calculations for complexes of up to ≈22,000 nt
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for random sequences and ≈7000 nt for designed sequences (at the cost of doubled storage)
[11].

Here, to enable partition function calculations for even larger complexes, we define an
overflow safe evaluation algebra that operates separately on the mantissa and exponent
for the partition function calculation (Table 2.2b). The elements of the partition function
recursion matrix are represented as 𝑎 = 𝑎m2𝑎e , where 𝑎m is a single-precision (32-bit) float
and 𝑎e is a 32-bit integer, so the maximum expressible number is ≈10646457031.

For exposition, we assume in Table 2.2 that any expression is to be calculated with respect to a
known reference exponent shift, 𝛾, to which the expression is aligned. For instance, consider
the expression 𝑎 ⊗ 𝑏 where 𝑎 = 40 (𝑎m = 0.625, 𝑎e = 6), 𝑏 = 96 (𝑏m = 0.75, 𝑏e = 7), and
𝛾 = −6, then 𝑥m = 𝑎m · 𝑏m = 0.625 · 0.75 = 0.46875 and 𝑥e = 𝑎e + 𝑏e + 𝛾 = 6 + 7 − 6 = 7
corresponding to 𝑎 ⊗ 𝑏 = 𝑥m · 2𝑥e · 2−𝛾 = 0.46875 · 27 · 26 = 0.46875 · 213. The recursion
result may thus be calculated and stored as (0.46875,13) without explicitly computing its
real equivalent, 3840. See Section S3.1.4 for a full description of the evaluation algebra
including selection of an appropriate 𝛾 for each expression.

With this construction, the storage cost is thus identical to using double-precision but over-
flow is no longer limiting, and the space and time complexity of the algorithm become the
limiting factors. Empirically, we observe a ≈2–2.5× increase in cost for the overflow-safe
evaluation algebra relative to a double-precision floating point evaluation algebra (Fig-
ure S41). In practice, we use a blended approach by switching between the single-precision
SumProduct, double-precision SumProduct, and the SplitExp evaluation algebras as
overflow occurs during the partition function calculation for a given complex.
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Figure 2.8: Blockwise operation order for dynamic programs operating on complex and
test tube ensembles. (a) Subcomplex blocks within dynamic programming matrices (cf.
Figure 2.4): triangular intrastrand blocks (A, B, C) and rectangular interstrand blocks
(AB, BC, ABC) for complexes AB and ABC. Element 𝑖, 𝑗 corresponds to a conditional
ensemble for subsequence [𝑖, 𝑗] which contains no nicks if 𝑖, 𝑗 is in an intrastrand block
and one or more nicks if 𝑖, 𝑗 is in an interstrand block. (b) Dependency graph for block
evaluation: bottom to top for forward algorithms (depicted), top to bottom for backtracking
algorithms. (c) Each recursion operation for calculation of element 𝑖, 𝑗 in an interstrand
block (e.g., 𝑄𝑖, 𝑗 ←

∑
𝑖≤𝑑< 𝑗 𝑄𝑖,𝑑𝑄𝑑+1, 𝑗 ) can be implemented as multiple vectorized dot

products between valid subvectors of row 𝑖 (brown) and valid subvectors of column 𝑗

(gray) to obtain element 𝑖, 𝑗 (purple), where valid positions are those that avoid introducing
disconnected structures into the complex ensemble.

2.2.7 Efficient blockwise dynamic programs over subcomplexes using caching and
vectorization

To this point, we have considered dynamic programs that operate on a complex of 𝐿 strands.
We now re-examine that goal in the more general context of a test tube ensemble containing
the set of strand species Ψ0 interacting to form the set of complex species Ψ. For example,
supposeΨ0 contains 𝑀 strand species andΨ is defined to contain all complexes of up to 𝐿max

strands. The simplest option is to calculate the partition function for each complex 𝑐 ∈ Ψ

independently [11]. With this approach, as described previously, the partition function
𝑄1,𝑁 for a complex with 𝑁 nucleotides is calculated with a dynamic program that builds up
from short subsequences to the full-length sequence, sweeping along each diagonal of the
matrix of subsequence partition functions (Figure 2.4). This simplicity comes at the cost of
some inefficiency, for when multiple copies of the same strand species appear in a complex,
intermediate results appear in multiple locations within the matrix. Moreover, when the
same strand species appears in multiple complexes, intermediate results appear in multiple
matrices.
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Figure 2.9: Conceptual interplay between three dynamic program ingredients: recursions,
evaluation algebra, and operation order. Recursions specify the dependencies between
subproblems and incorporate the details of the structural ensemble and free energy model.
Evaluation algebras define the mathematical form of each subproblem. Operation orders
specify the computational trajectory through the dependency graph of subproblems.

Here, we reduce the cost of calculating the partition functions for the set of complexes Ψ

by decomposing each matrix into two types of subcomplex blocks (Figure 2.8a): triangular
intrastrand blocks (e.g., blocks A, B, C) and rectangular interstrand blocks (e.g., blocks AB,
BC, ABC). Blocks are computed in ascending order of the number of strands per block
(blocks with the same number of strands can be calculated independently) and cached such
that blocks arising in multiple locations within a complex or test tube ensemble are not
recomputed (Figure 2.8b). Section S4.2 provides pseudocode for a blockwise operation
order that is 𝑂 (𝑁3) for a complex of 𝑁 nucleotides, including exact calculation of interior
loop contributions [8, 18]. Moreover, with this blockwise operation order, recursions
(Section S2) can be coded using vectorized dot products (Figure 2.8c) such that compilation
with the appropriate evaluation algebra (Table 2.2) yields an efficient vectorized dynamic
program for calculating the corresponding physical quantity. The interplay between the three
dynamic programming ingredients (recursions, evaluation algebra, and operation order) is
illustrated conceptually in Figure 2.9.
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overflow-safe implementation, physical model with or without coaxial and dangle stacking)
vs NUPACK 3.2 (not vectorized, quadruple-precision arithmetic, physical model with no
coaxial or dangle stacking). (a) Computational cost. (b) Computational speedup (ratio
of mean wall clock times). Means wall clock time over 5 sets of random sequences per
complex size (due to overflow, results not available for largest complex size using NUPACK
3.2). Conditions: RNA, 37 ◦C, 1M Na+.

2.2.8 Enhanced efficiency and scalability of the partition function algorithm for
complex ensembles including very large complexes

Figure 2.10 highlights efficiency gains for partition function calculations on complex en-
sembles. Compared using the same physical model without coaxial and dangle stacking,
the vectorized NUPACK 4.0 implementation yields ≈30–90× speedups over NUPACK 3.2
depending on the complex size. Operating on the enhanced physical model that includes
coaxial and dangle stacking subensembles, NUPACK 4.0 continues to achieve speedups of
≈13–45× over NUPACK 3.2 operating on the simpler physical model that neglects these
terms. Figure 2.11 demonstrates that the overflow-safe evaluation algebra SplitExp enables
NUPACK 4.0 to calculate partition functions exceeding the overflow thresholds for single-,
double-, and quadruple-precision floating point arithmetic. Note that the partition function
grows faster as a function of complex size for designed sequences than for random sequences
due to the presence of a deep well on designed free energy landscapes.

2.2.9 Enhanced efficiency of the partition function algorithm for sets of complexes in
test tube ensembles

Figure 2.12 highlights efficiency gains for partition function calculations for sets of com-
plexes in test tube ensembles. Blockwise caching yields an empirical speedup of≈(𝐿max−1)
for a range of test tube ensembles containing 𝑀 strand species interacting to form all com-
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Figure 2.11: Overflow-safe partition function calculations on complex ensembles including
very large complexes. Dashed lines denote the overflow thresholds for single-, double-, and
quadruple-precision arithmetic. Partition function calculations performed using NUPACK
4.0 (overflow-safe implementation with coaxial and dangle stacking) for two test sets:
random test set (complexes of 3 strands, each with a different random sequence of uniform
length), designed test set (duplexes with designed sequences). Mean partition function over
5 sets of random or designed sequences per complex size. Conditions: RNA, 37 ◦C, 1M
Na+.

plexes of up to 𝐿max strands (Figure 2.12a). Comparing the performance of NUPACK 4.0
(with the benefits of vectorization and blockwise caching but the added cost of an enhanced
physical model with coaxial and dangle stacking) to NUPACK 3.2 (without these features)
reveals speedups of ≈20× for test tubes containing all complexes of up to 𝐿max = 2 strands
and up to ≈120× for test tubes containing all complexes up to 𝐿max = 6 strands. With
NUPACK 4.0, Figure 2.13 illustrates the size of test tube ensembles for which equilibrium
analysis can be performed in ≤ 1 minute on a single computational core (e.g., 𝑀 = 80
strand species of 100 nt each interacting to form all complex species of up to 𝐿max = 2
strands, or 𝑀 = 2 strand species of 300 nt each interacting to form all complex species of
up to 𝐿max = 6 strands).

2.2.10 Backtrack-free base-pairing probability matrices

Historically, equilibrium base-pairing probabilities for a single strand [9, 21] or a complex
[10] are calculated using a dynamic program that backtracks through the matrix of subse-
quence partition functions. This backtracking process involves subtraction of intermediate
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Figure 2.12: Enhanced efficiency of the partition function algorithm for sets of complexes
in test tube ensembles. Calculation of the partition function for all complexes of up to
𝐿max strands for a test tube ensemble containing 𝑀 strand species, each with a different
random 50 nt sequence. (a) Speedup with vs without blockwise caching for NUPACK 4.0.
(b) Speedup using NUPACK 4.0 (vectorized, blockwise caching, enhanced physical model
with coaxial and dangle stacking) vs NUPACK 3.2 (no blockwise caching, not vectorized,
physical model with no coaxial or dangle stacking). Mean wall clock time over 10 sets of
random sequences per test tube ensemble size. Conditions: RNA, 37 ◦C, 1M Na+, each
strand introduced at 10 nM.

partition function quantities, creating the risk of losing precision due to subtraction of large
numbers differing by a small amount. To eliminate this concern, here we calculate equi-
librium base-pairing probabilities without backtracking using the same blended evaluation
algebras and a modification of the blockwise operation order that are used for overflow-safe
partition function calculations.

To see how this is possible, consider a complex with strand ordering 𝜋 = ABC and a total of 𝑁
nucleotides. As an intermediate result, the partition function algorithm calculates 𝑄𝑏

𝑖, 𝑗
, the

conditional partition function for subsequence 𝑖, . . . , 𝑗 subject to the constraint that 𝑖 is paired
to 𝑗 . We may similarly calculate the conditional partition function, 𝑄𝑏ext

𝑖, 𝑗
, for the remaining

nucleotides external to subsequence 𝑖, . . . , 𝑗 , namely nucleotides 𝑗 + 1, . . . , 𝑁, 1, . . . , 𝑖 − 1
(Figure 2.14a). Because the structural ensemble Γ(𝜙) excludes pseudoknots, the base pair
𝑖 · 𝑗 partitions the structural ensemble into non-interacting internal and external ensembles,
so the partition function of all structures containing base pair 𝑖 · 𝑗 is the product 𝑄𝑏

𝑖, 𝑗
𝑄

𝑏ext
𝑖, 𝑗

.
As a result, the equilibrium probability of base pair 𝑖 · 𝑗 over ensemble Γ(𝜙) is given by

𝑃𝑖, 𝑗 (𝜙) = 𝑄𝑏
𝑖, 𝑗 (𝜙)𝑄

𝑏ext
𝑖, 𝑗
(𝜙)/𝑄1,𝑁 (𝜙). (2.16)

Mathews employed this approach using new recursions to calculate the external conditional
partition function 𝑄

𝑏ext
𝑖, 𝑗

for a single strand[20]. Here, treating the general case of a complex
of 𝐿 strands, we observe that 𝑄𝑏ext

𝑖, 𝑗
can be calculated in a straightforward way without new
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Figure 2.13: Equilibrium test tube analysis in under 1 minute. Calculation of the partition
function and equilibrium complex concentration for a test tube ensemble containing 𝑀

strand species that form all complexes of up to 𝐿max strands. Symbols denote test tube
ensembles for which the wall clock time ≤ 1 minute. After calculating the set of partition
functions 𝑄Ψ for a given test tube ensemble Ψ, the set of equilibrium concentrations 𝑥Ψ is
obtained by solving the convex optimization problem (2.14). Mean wall clock time over 5
sets of random sequences per test tube ensemble size. Conditions: RNA, 37 ◦C, 1M Na+,
each strand introduced at 10 nM.

recursions by replicating the strands to form a “doubled” complex with sequence 𝜙′ (e.g., 𝜋
= ABCABC) containing 2𝑁 nucleotides and calculating 𝑄𝑏

𝑖, 𝑗
using the standard recursions

for all subsequences of up to 𝑁 nucleotides (Figure 2.14b). The external subsequence
𝑗 + 1, . . . , 𝑁, 1, . . . , 𝑖 − 1 for the original complex with sequence 𝜙 is simply the internal
subsequence 𝑗 , 𝑁 + 𝑖 for the doubled complex with sequence 𝜙′. Hence, we have:

𝑃𝑖, 𝑗 (𝜙) = 𝑄𝑏
𝑖, 𝑗 (𝜙)𝑄𝑏

𝑗,𝑁+𝑖 (𝜙
′)/𝑄1,𝑁 (𝜙). (2.17)

In Figure 2.14, the yellow blocks are previously cached from the partition function calcu-
lation. The orange entries correspond to calculation of 𝑄𝑏

𝑗,𝑁+𝑖 (𝜙
′). The cost of evaluating

each entry is proportional to subsequence length (the horizontal or vertical distance from
the diagonal), so the average cost per entry in the orange block is higher than for the yellow
blocks. Empirically, after calculating the partition function 𝑄(𝜙) at a cost 𝐶𝑄 , calculation
of the equilibrium base-pairing probability matrix 𝑃(𝜙) costs an additional 𝐶𝑃 ≈1.5–3𝐶𝑄

(Figure S40).
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Figure 2.14: Backtrack-free calculation of the equilibrium base-pairing probability 𝑃𝑖, 𝑗 (𝜙)
for a complex ABC of 𝑁 nucleotides with sequence 𝜙 using (2.17) and the conditional
partition functions 𝑄𝑏

𝑖, 𝑗
(𝜙) and 𝑄𝑏

𝑗,𝑁+𝑖 (𝜙
′). The latter is calculated by considering the

“doubled” complex ABCABC of 2𝑁 nucleotides with sequence 𝜙′.

2.2.11 Evaluation algebras and backtracking operation orders for simultaneous
structure sampling, MFE structure determination, and suboptimal structure
determination

After calculating the partition function 𝑄(𝜙) for a strand [6] or a complex [11], a structure
𝑠sample can be randomly sampled from the structural ensemble Γ(𝜙) by backtracking through
the matrix of subsequence partition functions. Likewise, after calculating the minimum
free energy Δ𝐺 (𝜙, 𝑠MFE) for a strand [36] or a complex [11], the corresponding MFE
structure 𝑠MFE(𝜙) can be determined by backtracking through the matrix of subsequence
MFEs. These dynamic programs can be expressed in our unified dynamic programming
framework (Figure 2.6) using the same set of recursion diagrams/equations (Section S2) as
the forward algorithms, but employing new evaluation algebras (Table 2.2cd), and with the
operation order reversed so the blockwise dependency tree (Figure 2.8b) is traversed top to
bottom.

For structure sampling, backtracking starts from the recursion for𝑄1,𝑁 and for MFE structure
determination, backtracking starts from the recursion for 𝐹1,𝑁 . In either case, backtracking
is used to “choose” between competing recursion elements when a ⊕ operator is encountered
and to “join” compatible recursions elements when a ⊗ operator is encountered; the math-
ematical implementations of these operators are described by quantity-specific evaluation
algebras (Table 2.2cd). For sampling, ⊕ corresponds to randomly choosing between com-
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tures for a complex of 3 strands, each with a different random sequence of uniform length.
(a) Computational cost. (b) Computational speedup (ratio of mean wall clock times). Mean
wall clock time over 10 sets of random sequences per complex size. Conditions: RNA,
37 ◦C, 1M Na+. See Section S6.6 for additional data.

peting (Boltzmann-weighted) recursion elements, while for MFE structure determination,
⊕ corresponds to choosing the MFE of competing recursion elements. For both structure
sampling and MFE structure determination, ⊗ corresponds to the set union ∪ of compatible
recursion elements.

The MFE structure determination algorithm can be generalized to calculate the set of
suboptimal structures Γ(𝜙,Δ𝐺gap) within a specified free energy gapΔ𝐺gap ≥ 0 of the MFE
using generalized evaluation operators for ⊕ and ⊗ (see Section S3.2.6). In practice, we
implement this more general algorithm and then apply it withΔ𝐺gap = 0 if the MFE structure
proxy is requested. The number of suboptimal structures can grow rapidly with Δ𝐺gap and
𝑁 so we perform backtracking using a stack data structure that reduces memory usage by
generating complete structures at the earliest opportunity, enabling these structures to be
emitted in a streaming fashion while additional structures are determined (see Section S4.6).

While the pair probability matrix 𝑃(𝜙) provides the equilibrium probability of each base
pair over the complex ensemble, it does not reveal correlation information between different
base pairs. By sampling a set of 𝐽 secondary structures and averaging or clustering over this
set, it is possible to address questions like “what is the probability that a set of adjacent bases
are simultaneously unpaired?”[6] or “is the free energy landscape dominated by multiple
deep basins each defined by a set of related secondary structures?”[7]. Existing algorithms
perform sequential sampling of 𝐽 structures for a strand [6] (𝑂 (𝐽𝑁2) time complexity if
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long interior loops are excluded) or a complex [11] (𝑂 (𝐽𝑁3) with exact treatment of interior
loops). Motivated by the central use case where a set of 𝐽 structures is needed for averaging
or clustering, here we develop a simultaneous sampling approach that samples 𝐽 structures
all at once (𝑂 (𝐽𝑁2) with exact treatment of interior loops). A given recursion element may
contribute to a large number of sampled structures (e.g., if there is a deep well on the free
energy landscape), so we perform backtracking using a priority queue data structure that
reduces computational effort by ensuring that all samples of any given recursion element
are performed during a single visit to that recursion element (see Section S4.4). With the
simultaneous sampling algorithm, we observe order-of-magnitude speedups over sequential
sampling for 𝐽 above ≈ 103 (Figure 2.15), and empirical complexity ∼𝐽0.8𝑁1.2 for 𝐽 samples
from a random complex ensemble of 𝑁 nucleotides (see Section S6.6).

2.3 Conclusions

The new unified dynamic programming framework combines recursions capturing the
details of the physical model with quantity-specific evaluation algebras and operation orders
to enable efficient and scalable calculation of diverse physical quantities over complex and
test tube ensembles of interacting DNA or RNA strands. The physical model was upgraded
by deriving recursions for the complex ensemble that include coaxial and dangle stacking
subensembles for multiloops and exterior loops. The recursions are coded generically and
then compiled with a quantity-specific evaluation algebra and operation order to generate
an executable for each physical quantity. As a result, future upgrades to the physical model
can be implemented by updating the generic recursions rather than by updating code for
each physical quantity. For large complexes, scalability is achieved for partition function
calculations using an overflow-safe evaluation algebra, and for equilibrium pair probabilities
by using a backtrack-free operation order, enabling calculations on complexes containing
30,000 nt. For test tube ensembles, dramatic efficiency gains of 1–2 orders of magnitude are
achieved using a new blockwise operation order that facilitates vectorization and caching.
Recognizing that Boltzmann sampling is most useful for averaging or clustering information
calculated on large set of structures, a new sampling algorithm yields order-of-magnitude
speedups by sampling all requested structures simultaneously. These enhancements to the
physical model, algorithm scalability, and algorithm speed represent substantial advances
for researchers analyzing nucleic acid structures, devices, and systems. Moreover, these
enhancements are directly applicable to sequence design algorithms operating over complex
and test tube ensembles [30, 31, 34] as sequence analysis is the most costly component of
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sequence design; work is underway to integrate these advances into the NUPACK 4.0
sequence design algorithms.

2.4 Methods summary

2.4.1 Implementation

NUPACK algorithms are programmed in the C++17 programming language. Dynamic
programs are implemented using a generic programming paradigm [27] employing ex-
pression templates and compile-time polymorphism; generic recursion equations capturing
the details of the structural ensemble and free energy model are translated via template
metaprogramming into a separate vectorized executable for calculating each physical quan-
tity in Table 2.2. Single-threaded single instruction multiple data (SIMD) vectorization is
implemented using the Boost.SIMD library[12]. The convex optimization problem (2.14)
is solved in the dual form using an efficient trust region method [11] using the Armadillo
linear algebra library for matrix operations [23].

2.4.2 Trials

All benchmarks were run on AWS EC2 C5 instances (3.0 GHz Intel Xeon Platinum proces-
sors) with 72 GB of memory (except 144 GB for Figure 2.10).

2.5 Resources

2.5.1 NUPACK source code

The NUPACK source code can be downloaded for non-commercial academic use subject
to the NUPACK License (nupack.org). NUPACK documentation includes a User Guide
and example jobs.

2.5.2 NUPACK Python module

The all-new NUPACK Python interface allows streamlined and flexible in-memory scripting
of NUPACK jobs, reducing file I/O and increasing the convenience of developing workflows
composing multiple NUPACK commands.

nupack.org
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A p p e n d i x A

ADDITIONAL DETAILS FOR IMPROVED ALGORITHMS FOR THE
EQUILIBRIUM ANALYSIS OF NUCLEIC ACID COMPLEXES

S1 Additional free energy model details

S1.1 Strand association penalty for a complex

Based on dimensional analysis, we define the complex concentrations 𝑥Ψ for a test tube
containing the set of complexes Ψ as mole fractions rather than molarities (see (2.14)).
Therefore, we adjust the strand association penalty

Δ𝐺assoc = Δ𝐺assoc
pub − 𝑘𝑇 log[𝜌H2O/(1 mol/liter)] (S1)

where Δ𝐺assoc
pub is the published value for two strands associating [21] and 𝜌H2O is the

molarity of water (e.g., 𝜌H2O = 55.14 mol/liter at 37 ◦C).[7] The strand association penalty
for a complex of 𝐿 strands (see (2.1)) is then

(𝐿 − 1)Δ𝐺assoc. (S2)

S1.2 Salt corrections for DNA complexes

The default salt conditions for RNA [10, 14, 20, 22, 24, 26] and DNA [2, 17, 18, 26]
parameter sets are [NaCl] = 1 M. Salt corrections are available for DNA parameters [9, 17–
19] to permit calculations in user-specified sodium, potassium, ammonium, and magnesium
ion concentrations. Following SantaLucia and co-workers, the free energy of a DNA duplex
at 37◦C is augmented by

−0.114
𝑁

2
log[Na+], (S3)

for user-specified 0.05 M ≤ [Na+] ≤ 1.0 M, where 𝑁 is the number of phosphates in the
duplex and it is assumed that Δ𝐻 is independent of [Na+], which is valid for this salt
regime [18, 19]. This salt correction was derived using duplexes with 16 bp or less and
the accuracy decreases as duplex length increases further [18, 19]. The expression can
be generalized to monovalent potassium and ammonium ions [19] as well as to divalent
magnesium cations[9, 17]:

−0.114
𝑁

2
log

(
[Na+] + [K+] + [NH+4] + 3.3 [Mg++]1/2

)
, (S4)
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for user-specified for 0.05 M ≤ [Na+] + [K+] + [NH+4] ≤ 1.0 M and 0.0 M ≤ [Mg++] ≤
0.2 M.

To apply this salt correction to a complex of 𝐿 strands at temperature𝑇 , consider a secondary
structure 𝑠 containing one or more duplexes. We assume that strands are synthesized with
one phosphate per base so that 𝑁/2 = 𝑛bp(𝑠) where 𝑁 is the total number of phosphates
in duplexes and 𝑛bp(𝑠) is the total number of base pairs in 𝑠. (If strands are synthesized
without a 5′ terminal phosphate, then 𝑁 approximates the total number of phosphates in
duplexes.) We further assume thatΔ𝐻 is independent of cation concentration in this regime.
The secondary structure free energy Δ𝐺 (𝜙, 𝑠) is then augmented by

𝑛bp(𝑠)Δ𝐺salt (S5)

with

Δ𝐺salt = −0.114 log
(
[Na+] + [K+] + [NH+4] + 3.3 [Mg++]1/2

) 𝑇

𝑇37
(S6)

for user-specified

0.05 M ≤ [Na+] + [K+] + [NH+4] ≤ 1.0 M, (S7)

0.0 M ≤ [Mg++] ≤ 0.2 M, (S8)

with 𝑇37 = 310.15 K. In order to incorporate this salt correction in dynamic programs
without explicitly calculating 𝑛bp(𝑠), note that for a complex of 𝐿 strands, the total number
of loops in each secondary structure is

𝑛loop(𝑠) = 𝑛bp(𝑠) + 1. (S9)

This may be seen, for example, by starting with a single strand with no base pairs (corre-
sponding to a single exterior loop). Each addition of a base pair adds one loop. Once all base
pairs in 𝑠 have been added, each addition of a nick increases the number of strands by one
without changing the number of loops (all secondary structures in the complex ensemble
are connected so introduction of each nick converts a loop from another type to an exterior
loop). Let 𝑛other

loop denote the total number of non-exterior loops and 𝑛exterior
loop denote the total

number of exterior loops, so we have

𝑛loop(𝑠) = 𝑛exterior
loop (𝑠) + 𝑛other

loop (𝑠). (S10)

For a complex of 𝐿 strands, 𝑛exterior
loop (𝑠) = 𝐿. Thus, the salt correction (S5) becomes

𝑛bp(𝑠)Δ𝐺salt = (𝐿 − 1)Δ𝐺salt + 𝑛other
loop (𝑠)Δ𝐺

salt. (S11)
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Hence, the salt correction can be implemented by adding

Δ𝐺salt (S12)

to every Δ𝐺 (loop) except for exterior loops as a pre-processing step, using our suite of
dynamic programs without modification, and then treating the constant term (𝐿 − 1)Δ𝐺salt

in a post-processing step (see Section S1.4).

S1.3 Temperature dependence

The loop-based free energy model (2.1) is temperature dependent. Each loop free energy
is calculated using

Δ𝐺 (loop) = Δ𝐻 (loop) − 𝑇Δ𝑆(loop) (S13)

where𝑇 is in Kelvin andΔ𝐻 (loop) andΔ𝑆(loop) are assumed to be temperature independent
[19]. Model parameters are provided for RNA [10, 14, 20, 22, 24, 26] and DNA [2, 17, 18,
26] in the form of Δ𝐺37(loop) and Δ𝐻 (loop) which can be used to calculate

Δ𝑆(loop) = 1
𝑇37
[Δ𝐻 (loop) − Δ𝐺37(loop)] (S14)

with 𝑇37 = 310.15 K, so (S13) becomes

Δ𝐺 (loop) = Δ𝐻 (loop) − 𝑇

𝑇37
[Δ𝐻 (loop) − Δ𝐺37(loop)] . (S15)

Similarly, for the strand association penalty (S1):

Δ𝐺assoc
pub = Δ𝐻assoc

pub − 𝑇Δ𝑆
assoc
pub . (S16)

and the provided parameters Δ𝐺assoc
37,pub and Δ𝐻assoc

pub yield

Δ𝐺assoc
pub = Δ𝐻assoc

pub −
𝑇

𝑇37
[Δ𝐻assoc

pub − Δ𝐺
assoc
37,pub] . (S17)

The temperature dependence is explicit in the form of the symmetry correction (2.5) and
salt correction (S5).

S1.4 Treatment of constant free energy terms for complex ensembles

Consider a complex of 𝐿 strands containing a total of 𝑁 nucleotides. Suppose that free
energy model terms have been pre-processed as described above for units [see (S1)], salt
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corrections [see (S12)], and temperature corrections [see (S15 and S16)] prior to calculating
any physical quantities. The secondary structure free energy (2.1) then becomes

Δ𝐺 (𝜙, 𝑠) = (𝐿 − 1) [Δ𝐺assoc + Δ𝐺salt] +
∑︁

loop∈s
Δ𝐺 (loop). (S18)

After running the partition function dynamic program to calculate 𝑄1,𝑁 , the partition
function is then

𝑄(𝜙) = exp{−(𝐿 − 1) [Δ𝐺assoc + Δ𝐺salt]/𝑘𝑇}𝑄1,𝑁 . (S19)

where this post-processing step accounts for the constant terms Δ𝐺assoc and Δ𝐺salt that
affect all secondary structures in the complex ensemble. Likewise, after running the MFE
dynamic program to calculate 𝐹1,𝑁 , the free energy of the MFE stacking state is then

Δ𝐺 (𝜙, 𝑠qMFE) = (𝐿 − 1) [Δ𝐺salt + Δ𝐺assoc] + 𝐹1,𝑁 . (S20)

The equilibrium base-pairing probability 𝑃𝑖, 𝑗 is calculated via (2.17) using the values of
𝑄𝑏

𝑖, 𝑗
(𝜙), 𝑄𝑏

𝑗,𝑁+𝑖 (𝜙
′) and 𝑄1,𝑁 (𝜙) returned by the dynamic program; the constant terms

Δ𝐺assoc and Δ𝐺salt do not affect the calculation as they are omitted in both the numerator
and the denominator of (2.17). The dynamic programs for calculating the MFE proxy
structure, suboptimal structures, or sampled structures are unaffected by the constant terms
Δ𝐺assoc and Δ𝐺salt so no post-processing is required for those quantities.

S1.5 RNA and DNA parameter sets

NUPACK 4 algorithms perform calculations on the following complex ensembles:

• stacking: with coaxial and dangle stacking (ensemble Γ
q(𝜙)).

• nostacking: without coaxial and dangle stacking (ensemble Γ(𝜙)).

These ensembles can be used for calculations in combination with the following temperature-
dependent DNA and RNA parameter sets:

• rna95 based on Serra and Turner [20] with additional parameters [26] including
coaxial stacking [14, 22] and dangle stacking [20, 22, 26] in 1M Na+.

• dna04 based on SantaLucia [18] and SantaLucia and Hicks [19] with additional
parameters [26] including coaxial stacking [17] and dangle stacking [2, 26] in user-
specified concentrations of Na+, K+, NH+4 , and Mg++ (see Section S1.2 for details on
implementation of the salt corrections) [9, 17–19].
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• rna06 based on Mathews et al. [14], Mathews et al. [15], and Lu et al. [10] with
additional parameters [24, 26] including coaxial stacking [14, 22] and dangle stacking
[20, 22, 26] in 1M Na+.

• custom based on user-specified parameters representing nucleic acids or synthetic
nucleic acid analogs in experimental conditions of choice.

Base pairs are either Watson-Crick pairs (G·C and A·U for RNA; G·C and A·T for DNA) or
wobble pairs (G·U for RNA). Note that for DNA, G and T form a mismatch and not a wobble
pair [19].

S1.6 Historical RNA and DNA parameter sets (for backwards compatibility with
NUPACK 3)

For backwards compatibility, the following historical complex ensembles without coaxial
stacking and with approximate dangle stacking are supported (see Section S2.5):

• none-nupack3: no dangle stacking and no coaxial stacking (dangles “none” option
for NUPACK 3)

• some-nupack3: some dangle stacking and no coaxial stacking (dangles “some”
option for NUPACK 3)

• all-nupack3: all dangle stacking and no coaxial stacking (dangles “all” option for
NUPACK 3)

For these historical ensembles, base pairs are either Watson-Crick pairs (G·C and A·U for
RNA; G·C and A·T for DNA) or wobble pairs (G·U for RNA; G·T for DNA). Note that for the
historical ensembles, G·T is classified as a DNA wobble pair and not as a mismatch. The
historical ensembles prohibit a wobble pair (G·U or G·T) as a terminal base pair in an exterior
loop or a multiloop. As a result, an attempt to evaluate a free energy for a sequence 𝜙 and
secondary structure 𝑠 that place a wobble pair as a terminal base pair in an exterior loop or
multiloop will return Δ𝐺 (𝜙, 𝑠) = Δ𝐺 (𝜙, 𝑠) = ∞. These historical ensembles can be used
for calculations in combination with the following historical DNA and RNA parameter sets:

• rna95-nupack3 is the same as rna95 except that terminal mismatch free energies in
exterior loops and multiloops are replaced by two dangle stacking free energies (see
equation (S55)).
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• dna04-nupack3 is the same as dna04 except that G·T was treated as a wobble pair
(analogous to a G·U RNA wobble pair) instead of classifying G and T as a mismatch.
Note that while terminal mismatch free energies in exterior loops and multiloops are
replaced by two dangle stacking free energies (see equation (S55)), this is the same
treatment as in dna04, as terminal mismatch parameters are not public for DNA [19].

• rna99-nupack3 based on Mathews et al. [14] with additional parameters [24, 26]
including dangle stacking [20, 22, 26] in 1M Na+. Terminal mismatch free energies
in exterior loops and multiloops are replaced by two dangle stacking free energies
(see equation (S55)). Parameters are provided only for 37 ◦C.
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S1.7 Functional form of RNA and DNA free energy models

S1.7.1 Free energy model for hairpin loops

A hairpin loop is defined for a subsequence 𝜙[𝑖: 𝑗] by the single base pair 𝑖 · 𝑗 such that there
are no nicks or additional base pairs in the range [𝑖 : 𝑗]. Let 𝑛 ≡ 𝑗 − 𝑖−1 denote the number
of unpaired nucleotides in the hairpin loop. Steric effects are assumed to prevent hairpin
loops with 𝑛 < 3 for both RNA [20, 22] and DNA [19]. The functional form of the hairpin
free energy is as follows:

Δ𝐺hairpin(𝜙[𝑖: 𝑗]) = Δ𝐺
hairpin
size (𝑛) + Δ𝐺hairpin

seq (𝜙[𝑖: 𝑗]) (S21)

For the size-dependent term [10, 14, 19, 20]:

Δ𝐺
hairpin
size (𝑛) =


∞, 𝑛 < 3

Δ𝐺
hairpinsize
𝑛 , 3 ≤ 𝑛 ≤ 30

Δ𝐺
hairpinsize
30 + log

(
𝑛
30

)
Δ𝐺

polymer
entropy , 𝑛 > 30

(S22)

• Δ𝐺
hairpinsize
𝑛 : a lookup table up to 𝑛 = 30. rna95 and rna06 populate the lookup

table using empirical values of Δ𝐺hairpinsize
𝑛 up to 𝑛 = 9 and logarithmic extrapolation

for larger 𝑛 [10, 14, 20]. dna04 populates the lookup table using empirical values
of Δ𝐺hairpinsize

𝑛 for a subset of 3 ≤ 𝑛 ≤ 30 and logarithmic interpolation for the other
values [19].

• Δ𝐺
polymer
entropy : a logarithmic extrapolation parameter based on Jacobson-Stockmayer

polymer theory for 𝑛 > 30. rna95, dna04, and rna06 use previously published
values [19, 20].

For the sequence-dependent term:[10, 14, 19]

Δ𝐺
hairpin
seq (𝜙[𝑖: 𝑗]) =


Δ𝐺

triloop
𝜙[𝑖: 𝑗 ]

+ Δ𝐺 terminalbp
𝜙 𝑗 ,𝜙𝑖

𝑛 = 3

Δ𝐺
tetraloop
𝜙[𝑖: 𝑗 ]

𝑛 = 4

Δ𝐺
hairpinmm
𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1

𝑛 ≥ 5

(S23)

• Δ𝐺
triloop
𝜙[𝑖: 𝑗 ]

: sequence-dependent penalty for hairpin loop of length 𝑛 = 3. 0 kcal/mol
for rna95 [20]. Empirical values for dna04 [19] and rna06 [15].

• Δ𝐺
terminalbp
𝜙𝑖 ,𝜙 𝑗

: sequence-dependent penalty for non-GC terminal base pair at the end
of a duplex. Empirical values for rna95 [20], dna04 [19], and rna06 [15].
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• Δ𝐺
tetraloop
𝜙[𝑖: 𝑗 ]

: sequence-dependent penalty for hairpin loop of length 𝑛 = 4. Empirical
values for rna95 [20], dna04 [19], and rna06 [15].

• Δ𝐺
hairpinmm
𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1

: sequence-dependent term for mismatched bases adjacent to base pair
𝑖 · 𝑗 . Empirical values set equal to Δ𝐺 terminalmm

𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1
plus sequence-dependent modi-

fications for rna95 [20] and rna06 [10, 14]. Empirical values for Δ𝐺 terminalmm
𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1

not public for DNA [19], so Δ𝐺
hairpinmm
𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1

set to unpublished values made avail-
able in the Mfold software [26] for dna04. (See multiloops and exterior loops for a
description of Δ𝐺 terminalmm

𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1
).

S1.7.2 Free energy model for interior loops

An interior loop may be defined via a pair of subsequences 𝜙[𝑖:𝑑] and 𝜙[𝑒: 𝑗] such that
𝑖 < 𝑑 < 𝑒 < 𝑗 with base pairs 𝑖 · 𝑗 and 𝑑 · 𝑒, with no additional paired bases or nicks within
the two subsequences.

Stacked pairs. Stacked pairs are the special case where 𝑑 = 𝑖 + 1 and 𝑗 = 𝑒 + 1.

Δ𝐺stackedpair(𝜙[𝑖:𝑖+1] , 𝜙[ 𝑗−1: 𝑗]) = Δ𝐺stack
𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1,𝜙 𝑗−1

(S24)

• Δ𝐺stack
𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1,𝜙 𝑗−1

: the stack free energy has been determined for all allowable base
pair combinations from experimental results for rna95 [20], rna06 [10, 14, 24], and
dna04 [19].

Bulge loops. A bulge loop is the special case with either 𝑑 = 𝑖 + 1 or 𝑗 = 𝑒 + 1 but not
both. Here, we will outline the functional form when 𝑑 = 𝑖 + 1. Let 𝑛 ≡ 𝑗 − 𝑒 − 1 denote
the number of unpaired nucleotides in the bulge loop.

Δ𝐺bulge(𝜙[𝑖:𝑖+1] , 𝜙[𝑒: 𝑗]) = Δ𝐺
bulge
size (𝑛) + Δ𝐺

bulge
seq (𝜙[𝑖:𝑖+1] , 𝜙[𝑒: 𝑗]). (S25)

For the size-dependent term:

Δ𝐺
bulge
size (𝑛) =


Δ𝐺

bulgesize
𝑛 , 𝑛 ≤ 30

Δ𝐺
bulgesize
30 + log

(
𝑛
30

)
Δ𝐺

polymer
entropy , 𝑛 > 30

(S26)
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• Δ𝐺
bulge size
𝑛 : rna95 uses empirical values for 1 ≤ 𝑛 ≤ 5 [20]. rna06 uses empirical

values for 1 ≤ 𝑛 ≤ 6 [10, 14]. dna04 uses empirical values for a subset of 1 ≤ 𝑛 ≤ 30
[19]. Each parameter set uses a logarithmic approximation for all other values of 𝑛.

For the sequence-dependent term:

Δ𝐺
bulge
seq (𝜙[𝑖:𝑖+1] , 𝜙[𝑒: 𝑗]) =


Δ𝐺stack

𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1,𝜙𝑒
, 𝑒 + 2 = 𝑗

Δ𝐺
terminalbp
𝜙 𝑗 ,𝜙𝑖

+ Δ𝐺 terminalbp
𝜙𝑖+1,𝜙𝑒

, otherwise.
(S27)

Other small interior loops. The free energies for interior loops with 2 ≤ 𝑑 − 𝑖 ≤ 3 and
2 ≤ 𝑗 − 𝑒 ≤ 3 are kept in a lookup table.

• 1×1 interior loop. Corresponds to 𝑑−𝑖 = 2 and 𝑗−𝑒 = 2. rna95 assigns a sequence-
independent Δ𝐺 [20]. rna06 uses unpublished parameters made available in the
Mfold software [26]. dna04 models these loops using (S28) below [19]; a positive
constant free energy is assigned for mismatches where the unpaired nucleotides are
Watson-Crick complements [26].

• 1 × 2 interior loop. Corresponds to 𝑑 − 𝑖 = 2 and 𝑗 − 𝑒 = 3, or 𝑑 − 𝑖 = 3 and
𝑗 − 𝑒 = 2. rna95 and dna04 model these loops using (S28) below [19, 20]. For
dna04, a positive constant free energy is assigned for mismatches where the unpaired
nucleotides are Watson-Crick complements [26]. rna06 models these loops using a
combination of tabulated data and averaging [10, 14].

• 2 × 2 interior loop. Corresponds to 𝑑 − 𝑖 = 3 and 𝑗 − 𝑒 = 3. rna95 and dna04
model these loops using (S28) below [19, 20]. For dna04, a positive constant free
energy is assigned for mismatches where the unpaired nucleotides are Watson-Crick
complements [26]. rna06 models these loops using tabulated symmetric tandem
interior mismatches and averaging for asymmetric tandem interior mismatches [10,
14].

Other interior loops. Let 𝑛1 ≡ 𝑑− 𝑖−1 and 𝑛2 ≡ 𝑗 − 𝑒−1 denote the number of unpaired
nucleotides for the two sides of the interior loop. For the general case of interior loops not
handled via special cases above, the following formula is used:
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Δ𝐺 interior(𝜙[𝑖:𝑑] , 𝜙[𝑒: 𝑗]) = Δ𝐺 interior
size (𝑛1 + 𝑛2) + Δ𝐺 interior

asymm (𝑛1, 𝑛2) + Δ𝐺 interior
mm (𝜙[𝑖:𝑑] , 𝜙[𝑒: 𝑗]).

(S28)

For the size-dependent term:

Δ𝐺 interior
size (𝑛) =


Δ𝐺 interiorsize

𝑛 , 𝑛 ≤ 30

Δ𝐺 interiorsize
30 + log

(
𝑛
30

)
Δ𝐺

polymer
entropy , 𝑛 > 30

(S29)

• Δ𝐺 interiorsize
𝑛 : rna95 uses empirical values for 2 ≤ 𝑛 ≤ 6 [20]. rna06 uses empirical

values for 4 ≤ 𝑛 ≤ 6 [10, 14]. dna04 uses empirical values for a subset of values in
3 ≤ 𝑛 ≤ 30 [19]. Each parameter set uses a logarithmic approximation for all other
values of 𝑛.

For the asymmetry-based term:

Δ𝐺 interior
asymm (𝑛1, 𝑛2) = min(Δ𝐺 interiorasymm

4 , |𝑛1 − 𝑛2 |Δ𝐺 interiorasymm
min(4,𝑛2,𝑛1) ) (S30)

• Δ𝐺
interiorasymm
𝑛 : rna95 [20], rna06 [10, 14], and dna04 [19] use values regressed

from empirical data.

For the mismatch-based term:

Δ𝐺 interior
mm (𝜙[𝑖:𝑑] , 𝜙[𝑒: 𝑗]) =


Δ𝐺 interiormm′

𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1
+ Δ𝐺 interiormm′

𝜙𝑑−1,𝜙𝑑 ,𝜙𝑒,𝜙𝑒+1
𝑖 + 2 = 𝑑 or 𝑒 + 2 = 𝑗

Δ𝐺 interiormm
𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1

+ Δ𝐺 interiormm
𝜙𝑑−1,𝜙𝑑 ,𝜙𝑒,𝜙𝑒+1

otherwise
(S31)

• Δ𝐺 interiormm
𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1

: rna95 [20] and rna06 [10, 14] use independently determined values
for loops without complementary unpaired bases. dna04 equatesΔ𝐺 interiormm

𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1
with

Δ𝐺 terminalmm
𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1

[19], which are assigned unpublished values made available in the
Mfold software [26].

• Δ𝐺 interiormm′
𝜙 𝑗−1,𝜙 𝑗 ,𝜙𝑖 ,𝜙𝑖+1

: rna95 [20], rna06 [10, 14], dna04 [19] use different parameters
for the case when one side of the interior loop has only one unpaired nucleotide [15].
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S1.7.3 Free energy model for multiloops

A multiloop contains 3 or more terminal base pairs and no nicks. It may be defined as a
series of bounding subsequences [𝜙]. If the number of terminal base pairs is 𝑛bp and the
number of unpaired nucleotides is 𝑛nt, the free energy for a multiloop in a specified stacking
state, 𝜔, is modeled as follows:

Δ𝐺multi( [𝜙], 𝜔) = Δ𝐺multi
init + 𝑛bpΔ𝐺

multi
bp + 𝑛ntΔ𝐺

multi
nt

+ Δ𝐺allterminalbp( [𝜙]) + Δ𝐺allcoax( [𝜙], 𝜔) + Δ𝐺alldangle( [𝜙], 𝜔) (S32)

where Δ𝐺multi
init denotes the penalty for formation of a multiloop, Δ𝐺multi

bp denotes the
sequence-independent penalty for a terminal base pair in a multiloop, and Δ𝐺multi

nt de-
notes the penalty per unpaired nucleotide in a multiloop. Note that in contrast to interior
loops and hairpin loops, the free energy of a multiloop is assumed to scale linearly, not log-
arithmically, with the number of unpaired nucleotides; the linear simplification facilitates
the derivation of 𝑂 (𝑁3) multiloop recursions.

• Δ𝐺multi
init : empirical values for rna95 [20]; newly regressed values (Table A.1) for

rna06 [13]; unpublished values for dna04 [26].

• Δ𝐺multi
bp : empirical values for rna95 [20]; newly regressed values (Table A.1) for

rna06 [13]; unpublished values for dna04 [26].

• Δ𝐺multi
nt : empirical values for rna95 [20]; newly regressed values (Table A.1) for

rna06 [13]; unpublished values for dna04 [26].

Note that for rna06, previously published parameter regressions [10, 14] use a functional
form incompatible with the definition of Δ𝐺multi( [𝜙], 𝜔) above [20, 26]. Using literature
source data for multiloops [13], we regressed the values of the Δ𝐺multi

init , Δ𝐺multi
bp , Δ𝐺multi

nt via
a least-squares fit of the regressed loop free energies, observing comparable mean absolute
error (Table A.1).

Δ𝐺allterminalbp( [𝜙]) is a sum of the sequence-dependent free energy Δ𝐺
terminalbp
𝜙𝑖 ,𝜙 𝑗

for each
terminal base pair 𝑖 · 𝑗 in the multiloop (see definition above under hairpin loops).

Δ𝐺allcoax( [𝜙], 𝜔) is a sum over each coaxial stack present in the multiloop stacking state
𝜔. Owing to a lack of parameters, only coaxial stacks between adjacent terminal base
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pairs (with no intervening unpaired bases) are considered. Each coaxial stack between base
pairs 𝑖 · 𝑑 and 𝑑 + 1 · 𝑗 contributes a free energy of Δ𝐺coax

𝜙𝑖 ,𝜙𝑑 ,𝜙𝑑+1,𝜙 𝑗
. For the recursions with

coaxial stacking (Section S2.6), we use Δ𝐺coax
𝑖,𝑑, 𝑗
(𝜙) to denote Δ𝐺coax

𝜙𝑖 ,𝜙𝑑 ,𝜙𝑑+1,𝜙 𝑗
since only three

indices may vary freely. For the recursions without coaxial stacking (Section S2.3), the
term Δ𝐺allcoax( [𝜙], 𝜔) is neglected.

• Δ𝐺coax
𝜙𝑖 ,𝜙𝑑 ,𝜙𝑑+1,𝜙 𝑗

: rna95 [20] andrna06 [10, 14] setΔ𝐺coax
𝜙𝑖 ,𝜙𝑑 ,𝜙𝑑+1,𝜙 𝑗

equal toΔ𝐺stack
𝜙𝑖 ,𝜙𝑑 ,𝜙𝑑+1,𝜙 𝑗

.
dna04 uses independently estimated values [17].

Δ𝐺alldangle( [𝜙], 𝜔) is a sum of the sequence-dependent free energy, Δ𝐺dangle
𝑖, 𝑗

(𝜙), for each
terminal base pair 𝑖 · 𝑗 that is not in a coaxial stack in stacking state 𝜔. For a given terminal
base pair 𝑖 · 𝑗 , Δ𝐺dangle

𝑖, 𝑗
(𝜙) takes one of four values to match the dangle stacking state for a

given 𝜔:

Δ𝐺
dangle
𝑖, 𝑗

(𝜙) =



0 no dangles

Δ𝐺
5′dangle
𝜙𝑖 ,𝜙𝑖+1,𝜙 𝑗

5′ dangle

Δ𝐺
3′dangle
𝜙𝑖 ,𝜙 𝑗−1,𝜙 𝑗

3′ dangle

Δ𝐺 terminalmm
𝜙𝑖 ,𝜙𝑖+1,𝜙 𝑗−1,𝜙 𝑗

terminal mismatch

(S33)

Note that the state where both 5′ and 3′ dangles stack on terminal base pair 𝑖 · 𝑗 is classified
as a terminal mismatch. For the recursions without dangle stacking (Section S2.3), the term
Δ𝐺alldangle( [𝜙], 𝜔) is neglected.

• Δ𝐺
5′dangle
𝜙𝑖 ,𝜙 𝑗 ,𝜙𝑘

: 5′ dangle free energy parametrized for rna95 [20], rna06 [10, 14], and
dna04 [19].

• Δ𝐺
3′dangle
𝜙𝑖 ,𝜙 𝑗 ,𝜙𝑘

: 3′ dangle free energy parametrized for rna95 [20], rna06 [10, 14], and
dna04 [19].

Quantity Δ[𝐺/𝐻]init
multi Δ[𝐺/𝐻]bp

multi Δ[𝐺/𝐻]nt
multi MAE MAE[13]

Δ𝐺 +12.91 -1.28 -0.0880 1.01 1.01
Δ𝐻 +81.06 -6.84 +2.22 11.5 12.1

Table A.1: Regression of multiloop parameters for rna06 (kcal/mol). MAE denotes
the mean absolute error of the least-squares regression of the loop free energies from
Reference [13] using formulation (S32) for Δ𝐺multi( [𝜙], 𝜔). MAE [13] refers to the mean
absolute error of the regression performed in Reference [13] using a different formulation
of Δ𝐺multi( [𝜙], 𝜔).
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• Δ𝐺 terminalmm
𝜙𝑖 ,𝜙𝑖+1,𝜙 𝑗−1,𝜙 𝑗

: rna95 [20] and rna06 [10, 14] use empirical parameters for

Δ𝐺 terminalmm; dna04 assignsΔ𝐺 terminalmm
𝜙𝑖 ,𝜙𝑖+1,𝜙 𝑗−1,𝜙 𝑗

to be the sum ofΔ𝐺5′dangle
𝜙𝑖 ,𝜙𝑖+1,𝜙 𝑗

andΔ𝐺3′dangle
𝜙𝑖 ,𝜙 𝑗−1,𝜙 𝑗

as empirical values of Δ𝐺 terminalmm
𝜙𝑖 ,𝜙𝑖+1,𝜙 𝑗−1,𝜙 𝑗

are not publicly available [19].

S1.7.4 Free energy model for exterior loops

An exterior loop is a loop containing one nick and zero or more terminal base pairs. An
exterior loop may be defined as a series of bounding subsequences [𝜙] with a given nick
location. An unpaired strand is an exterior loop with a free energy of zero, corresponding
to the reference state [7]. The free energy of an exterior loop in a specified stacking state 𝜔
is modeled as follows:

Δ𝐺exterior( [𝜙], 𝜔) = 0+Δ𝐺allterminalbp( [𝜙])+Δ𝐺allcoax( [𝜙], 𝜔)+Δ𝐺alldangle( [𝜙], 𝜔). (S34)

The functions Δ𝐺allterminalbp( [𝜙]), Δ𝐺allcoax( [𝜙], 𝜔), and Δ𝐺alldangle( [𝜙], 𝜔) are defined as
above for multiloops. For the recursions without coaxial and dangle stacking (Section S2.3),
the terms Δ𝐺allcoax( [𝜙], 𝜔) and Δ𝐺alldangle( [𝜙], 𝜔) are neglected.



61

S2 Recursions for the complex ensemble with or without coaxial and dangle stacking

Recursions specify the dependencies between subproblems and incorporate the details of
the complex structural ensemble and the free energy model. The recursions described here
can be combined with a quantity-specific evaluation algebra (Section S3) and a quantity-
specific operation order (Section S4) to calculate diverse physical quantities. Each recursion
corresponds to an efficient iteration through a conditional ensemble of substructures within
a given subsequence that are compatible with a specified set of constraints. For a given
recursion, a conditional ensemble might include an explicit structural element, which can
be considered the base case of the recursion, or a reference to the result of another recursion.

S2.1 Separate recursions for intrastrand and interstrand blocks

Reference [7] described dynamic programming recursions for the complex ensemble that
checked for a nick next to each nucleotide. This approach enabled treatment of com-
plexes containing an arbitrary number of strands, but caused unnecessary complications
in the program flow and eliminated any possibility of vectorization due to the conditional
checks within each “for” loop. By contrast, here we employ separate sets of recursions for
triangular intrastrand blocks and rectangular interstrand blocks (Figure S1). As a result,
each intrastrand and interstrand recursion is kept as simple as possible and both types of
recursions can be efficiently vectorized.
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Figure S1: Separate recursions for intrastrand and interstrand blocks. (a) Triangular in-
trastrand blocks (A, B, C) and rectangular interstrand blocks (AB, BC, ABC) for complex
ABC. Element 𝑖, 𝑗 corresponds to a conditional ensemble for subsequence [𝑖, 𝑗] which
contains no nicks if 𝑖, 𝑗 is in an intrastrand block and one or more nicks if 𝑖, 𝑗 is in
an interstrand block. (b) Each recursion operation for calculation of element 𝑖, 𝑗 in an
intrastrand block (e.g., 𝑄𝑖, 𝑗 ←

∑
𝑖≤𝑑< 𝑗 𝑄𝑖,𝑑𝑄𝑑+1, 𝑗 ) can be implemented as a vectorized

dot product between a subvector of row 𝑖 (brown) and a subvector of column 𝑗 (gray)
to obtain element 𝑖, 𝑗 (purple). Note that calculation of an element 𝑖, 𝑗 in an intrastrand
block uses elements in the same intrastrand block (calculated using intrastrand recursions).
(c) Each recursion operation for calculation of element 𝑖, 𝑗 in an interstrand block (e.g.,
𝑄𝑖, 𝑗 ←

∑
𝑖≤𝑑< 𝑗, strand(𝑑)=strand(𝑑+1) 𝑄𝑖,𝑑𝑄𝑑+1, 𝑗 ) can be implemented as multiple vectorized

dot products between valid subvectors of row 𝑖 (brown) and valid subvectors of column
𝑗 (gray) to obtain element 𝑖, 𝑗 (purple), where valid positions are those that avoid intro-
ducing disconnected structures into the complex ensemble (see Algorithm S2). Note that
calculation of element 𝑖, 𝑗 in an interstrand block uses elements in one or more interstrand
blocks (calculated with interstrand recursions) and two intrastrand blocks (calculated with
intrastrand recursions).

S2.2 Conventions for recursion diagrams and equations

In the following sections we will describe recursions corresponding to the complex ensemble
without stacking terms (Section S2.3) and with coaxial and dangle stacking subensembles
(Section S2.6). Each recursion iterates over all conditional ensembles compatible with the
constraints defined for a given recursion type. For a complex of 𝑁 nucleotides, each full
set of recursions is 𝑂 (𝑁3) in time and 𝑂 (𝑁2) in space. For interior loop recursions, we
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start by defining an 𝑂 (𝑁4) recursion and then describe an exact reduction to 𝑂 (𝑁3) time
complexity (Section S2.4).

Each recursion is represented in two ways: graphically, as a set of recursion diagrams, and
algebraically, as an equation defining the recursion as a specific combination of contribu-
tions. The recursion diagrams employ the following conventions:

• Solid circular arcs depict the nucleic acid backbone. An arrowhead denotes the 3′

end of a strand.

• Dots indicate particular nucleotide positions that define the bounds of recursive
contributions. If a dot is labeled with a nucleotide index, the same index is used in
the corresponding recursion. If a dot is adjacent to a dot labeled 𝑖, the implied index
of the unlabeled dot is either 𝑖 − 1 or 𝑖 + 1 (indices increase from 5′ to 3′).

• A straight line delimits the boundary for a given contribution. A solid straight line
indicates that the connected nucleotides are base-paired. A dashed straight line
indicate that the connected nucleotides may or may not be base-paired. A half-
solid/half-dashed straight line indicates that the nucleotide connected on the solid
side is base-paired to a nucleotide within the demarcated region. A straight line that
is solid at both ends and dashed in the middle indicates that the nucleotides at either
end are both base-paired but not to each other. A dotted straight line indicates that
the connected nucleotides are involved in a stacking state (either a coaxial stacking
state or a dangle stacking state).

• Shading indicates that the shaded region in a recursion explicitly incorporates a re-
cursion energy, Δ𝐺, representing all or part of a loop free energy (e.g., multiloop
recursion energies representing different terms in the multiloop model are incorpo-
rated in multiple places in multiple recursions in order to treat the full multiloop
model). The color of the shading corresponds to the loop type (and the stacking type
when applicable).

A recursion equation provides a mathematical description of the conditional ensemble
depicted graphically in a recursion diagram. Recursion equations employ the following
conventions:

• For each physical quantity, an appropriate evaluation algebra (Section S3) is used to
define the generic operators that appear in the recursion equations: 0, 1, ⊕, ⊗, 𝑊 ,
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and 𝑄. For example, to calculate the partition function, we have:

0→ 0, 1→ 1, ⊕ → +, ⊗ → ×, 𝑊 (𝑔) → exp(−𝑔/𝑘𝑇), 𝑄𝑎
𝑖, 𝑗 → 𝑄𝑎

𝑖, 𝑗 .

(S35)

where the last right-hand side indicates that 𝑄𝑎
𝑖, 𝑗

is a lookup of the relevant stored
matrix element.

• A recursion equation for subsequence [𝑖 : 𝑗] corresponding to element 𝑖, 𝑗 in a tri-
angular intrastrand block is denoted 𝑅𝑎

Intra(𝑖, 𝑗 , 𝜙) for a recursion of type 𝑎 (e.g.,
𝑎 ∈ {∅, 𝑏, 𝑚, . . . }). A recursion equation for subsequence [𝑖 : 𝑗] corresponding to
element 𝑖, 𝑗 in a rectangular interstrand block is denoted 𝑅𝑎

Inter(𝑖, 𝑗 , 𝜙) for a recur-
sion of type 𝑎. Here, 𝜙 is the sequence of the complex and 𝑖 and 𝑗 are nucleotide
indices. Note that in the Supporting Information we use 𝑄∅

𝑖, 𝑗
to denote 𝑄𝑖, 𝑗 so that

each recursion has an explicit recursion type 𝑎.

• If a recursion diagram contains a shaded region denoting a recursion energy, Δ𝐺, the
corresponding recursion equation will incorporate the recursion energy via the term
𝑊 (Δ𝐺).

• After it is evaluated for the first time, 𝑅𝑎 (𝑖, 𝑗 , 𝜙) is used to yield 𝑄𝑎
𝑖, 𝑗

in subsequent
recursions. In the evaluation algebras that generate scalars (SumProduct, MinSum,
Count), the output of 𝑅𝑎 (𝑖, 𝑗 , 𝜙) is synonymous with the value𝑄𝑎

𝑖, 𝑗
that is stored in the

recursion matrices. However, other evaluation algebras involve different treatment of
the output of 𝑅𝑎 (𝑖, 𝑗 , 𝜙). For instance, a recursion in the SplitExp evaluation algebra
(Section S3.1.4) yields a function that must be supplied with a reference exponent
𝛾 to calculate the mantissa and exponent values that are stored. The ways in which
recursion outputs are utilized for each physical quantity are described in Section S4.

In our pseudocode, we make clear which operations are vectorized using SIMD operations
on contiguous arrays via the function dot (Algorithm S1), which represents a dot product
generalized to any number of arguments, each of which is a vector of the same length 𝑛.
The vectors argument to this subroutine is composed of row or column subvectors (each
a vector of contiguous elements) of the recursion matrices storing the result of previous
recursion evaluations (e.g., 𝑄∅, 𝑄𝑏, 𝑄𝑚, . . . ). To denote a vector extracted from a matrix
block, we replace a scalar index (e.g., 𝑑) with a vector index (e.g., 𝑑) representing a range
of either row or column indices. For example:

𝑑 ≡ [𝑖 : 𝑗 − 5] ≡ 𝑖, 𝑖 + 1, . . . , 𝑗 − 6, 𝑗 − 5. (S36)
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dot(vectors)
1 𝑛← Length(vectors1)
2 𝑥 ← 0

3 for 𝑖 ∈ [1 : 𝑛]
4 𝑡 ← 1

5 for 𝑎 ∈ vectors
6 𝑡 ← 𝑡 ⊗ 𝑎𝑖
7 𝑥 ← 𝑥 ⊕ 𝑡

8 return 𝑥

Algorithm S1: Generalized dot product over multiple vectors of equal length.

represents an ascending range of indices. Any scalar increment is applied to each entry in
the range:

𝑑 + 1 ≡ [𝑖 + 1 : 𝑗 − 4] . (S37)

𝑄∅
𝑖,𝑑

then denotes a subvector of row 𝑖 from matrix 𝑄∅, 𝑄𝑠

𝑑+1, 𝑗
denotes a subvector of

column 𝑗 from matrix 𝑄𝑠, and

dot
(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)
(S38)

denotes a dot product between these two vectors. An index range can also be used to denote
a vector of free energy contributions, for example,

𝑛ntΔ𝐺
multi
nt (S39)

with

𝑛nt ≡ [0 : 𝑗 − 𝑖 − 4] . (S40)

When there are multiple ranges, the elements match with each other such that

𝑎 + 𝑏 [𝑖: 𝑗] + 𝑐 [𝑑:𝑒] ≡ 𝑎 + 𝑏𝑖 + 𝑐𝑑 , 𝑎 + 𝑏𝑖+1 + 𝑐𝑑+1, . . . , 𝑎 + 𝑏 𝑗−1 + 𝑐𝑒−1, 𝑎 + 𝑏 𝑗 + 𝑐𝑒 . (S41)

In some cases, two ranges must proceed in opposite directions (one ascending and one
descending) to match up the values in vectors correctly. A descending, or reversed, range
is written

[𝑖 : 𝑗]𝑟 ≡ 𝑗 , 𝑗 − 1, . . . , 𝑖 + 1, 𝑖. (S42)
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Valid(𝑖, 𝑗 , 𝜂)
1 D← {}
2 𝑚 ← First(𝜂)
3 𝑛← Last(𝜂)
4 if 𝑖 + 1 < 𝑚 and 𝑗 ≥ 𝑛

5 𝑑 = [𝑖 : 𝑚 − 2]
6 D← D ∪ 𝑑

7 if 𝑖 < 𝑚 and 𝑗 − 1 ≥ 𝑛

8 𝑑 = [𝑛 : 𝑗 − 1]
9 D← D ∪ 𝑑

10 if 𝑖 < 𝑚 and 𝑗 ≥ 𝑛

11 for 𝑏 ∈ [1 : Length(𝜂) − 1]
12 if 𝜂𝑏+1 − 𝜂𝑏 > 1
13 𝑑 = [𝜂𝑏 : 𝜂𝑏+1 − 2]
14 D← D ∪ 𝑑

15 return D

Algorithm S2: Enumerate valid positions for vectorization in an interstrand block. 𝜂 is an
array of indices of the nicks between strands within the interstrand block being considered;
by convention, each nick is denoted in 𝜂 by the index of the nucleotide following the nick.
The algorithm identifies at most one valid range 𝑑 for each strand in the block, corresponding
to the values of the index 𝑑 such that 𝑑 and 𝑑 + 1 are on the same strand. This requirement
ensures that all secondary structures are connected and that exterior loops only appear when
they are being explicitly considered by a recursion. The algorithm returns D, the set of valid
ranges for the block. For a given 𝑖 and 𝑗 , each valid range leads to a dot product between
range 𝑑 of row 𝑖 and range 𝑑 + 1 of column 𝑗 (e.g., the recursion of Figure S8 contains one
dot product for each valid range 𝑑).

For calculation of matrix elements in interstrand blocks (which by definition involve 2 or
more strands), 𝜂 is an array of indices of the nicks between strands within the interstrand
block being considered; by convention, each nick is denoted in 𝜂 by the index of the
nucleotide following the nick.∗ For example, consider complex ABC of Figure S1a with
strands A, B, and C containing 4, 5, and 6 nucleotides, respectively. For the AB block,
𝜂 = [5]. For the BC block, 𝜂 = [10]. For the ABC block, 𝜂 = [5, 10].

To calculate matrix entry 𝑖, 𝑗 for an interstrand block with nicks 𝜂, the function Valid(𝑖, 𝑗 , 𝜂)
(Algorithm S2) returns the set of valid ranges {𝑑1, 𝑑2, . . . } for vectorization so as to ensure
that all secondary structures are connected and exterior loops appear only when they are
explicitly considered by a recursion. There is at most one valid vectorization range per

∗Note that this definition is unrelated to the use of 𝜂 in Reference [7] to denote the number of nicks in a
given subsequence.
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strand, and there may be none for a strand that is too short or for the first or last strand if 𝑖 or
𝑗 , respectively, is too close to a nick. The ability to identify valid vectorization ranges for
calculating each matrix element is a key innovation enabled by using dedicated recursions
for intrastrand and interstrand blocks, eliminating the use “if” statements to identify nick
locations (cf. Reference [7]), and thus enabling vectorization to achieve dramatic speedups.

Steric requirements require that there be at least three intervening bases between two base-
paired nucleotides on the same strand, placing a lower bound on the length of subsequence
[𝑖, 𝑗] for different recursion types (e.g., a minimum subsequence length to contain a hairpin
loop, an interior loop, a multiloop, a terminal base pair, a stacking state, a coaxial stacking
state, or a dangle stacking state). Recursions below the minimum subsequence length
for a given recursion type return 0. For efficiency reasons, we often explicitly specify
lower bounds on subsequence length to avoid performing calculations for elements that will
evaluate to 0.

For exterior loop and multiloop recursions without coaxial and dangle stacking, the elemen-
tary recursion entity is a terminal base pair (a base pair that terminates a duplex to form a
part of the exterior loop or multiloop). For exterior and multiloop recursions with coaxial
and dangle stacking, the elementary recursion entity is the stacking state, representing either
a coaxial stacking state (two adjacent terminal base pairs that are coaxially stacked) or a
dangle stacking state (zero, one, or two unpaired nucleotides dangle stacking on an adjacent
terminal base pair).

S2.3 Recursions without coaxial and dangle stacking subensembles

Here, we describe 𝑅𝑎
Intra(𝑖, 𝑗 , 𝜙) recursions for calculating the elements of intrastrand

blocks and 𝑅𝑎
Inter(𝑖, 𝑗 , 𝜙) recursions for calculating the elements of interstrand blocks for

the complex ensemble, Γ, without coaxial and dangle stacking subensembles. To assist
with examining these recursions, the intuition behind the name chosen for each recursion,
the nature of the ensemble treated by each recursion, and the dependencies between the
different recursions is summarized in Figure S2. For convenience, it may be helpful
to consider the recursions from the perspective of partition function calculations since
there is a natural correspondence between the generic evaluation algebra nomenclature
and the specific operators needed for partition function calculations (see equation (S35)),
but the recursions are generic and can be combined with a quantity-specific evaluation
algebra (Section S3) and a quantity-specific operation order (Section S4) to calculate diverse
physical quantities. The present recursions treat the same structural ensemble Γ and free
energy model Δ𝐺 (𝜙, 𝑠) as our previous implementation (NUPACK 3.2 with dangles option
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“none”)[7]. For backwards compatibility, we have also implemented the “some” and “all”
approximate dangle treatments supported by NUPACK 3.2 (see Section S2.5).

A recursion 𝑅𝑎 (𝑖, 𝑗 , 𝜙) operates on subsequence [𝑖 : 𝑗] to calculate element 𝑖, 𝑗 for ei-
ther the unconstrained ensemble 𝑎 = ∅ or for one of several constrained ensembles
𝑎 ∈ {𝑠, 𝑏, 𝑥, 𝑚𝑠, 𝑚}. Briefly, 𝑅∅(𝑖, 𝑗 , 𝜙) treats the unconstrained ensemble in an exte-
rior loop context where 𝑖 and 𝑗 may or may not be paired. 𝑅𝑠 (𝑖, 𝑗 , 𝜙) serves as an efficiency
wrapper over the 3′-most terminal base pair in an exterior loop context to reduce the time
complexity from𝑂 (𝑁4) to𝑂 (𝑁3). 𝑅𝑏 (𝑖, 𝑗 , 𝜙) treats the constrained ensemble where 𝑖 and 𝑗

form base pair 𝑖 · 𝑗 in the context of any loop type. 𝑅𝑥 (𝑖, 𝑗 , 𝜙) treats extensible interior loops
to reduce the time complexity from 𝑂 (𝑁4) to 𝑂 (𝑁3). 𝑅𝑚𝑠 (𝑖, 𝑗 , 𝜙) serves as an efficiency
wrapper over the 3′-most terminal base pair in a multiloop context (analogous to 𝑅𝑠 in an
exterior loop context) to reduce the time complexity from 𝑂 (𝑁4) to 𝑂 (𝑁3). 𝑅𝑚 (𝑖, 𝑗 , 𝜙)
treats the remaining terminal base pairs in a multiloop context.

Recursion Naming intuition Constraint Context

∅ unconstrained none exterior loop
𝑠 summation efficiency wrapper of 3′-most terminal

base pair
exterior loop

𝑏 base-paired base pair between 5′-most and 3′-most
bases of subsequence

any loop

𝑥 extensible extensible interior loop interior loop
𝑚𝑠 multiloop summation efficiency wrapper of 3′-most terminal

base pair
multiloop

𝑚 multiloop one or more remaining terminal base pairs multiloop

s

ms

b

m x

∅

Intrastrand block Interstrand block

s

ms

b

m

∅

x

Figure S2: Nomenclature and connectivity for recursions without coaxial and dangle stack-
ing. Top: Nomenclature. Bottom: Dependencies between different recursion types for
elements within an intrastrand block (left) or an interstrand block (right).
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S2.3.1 Intrastrand dynamic programming recursions without coaxial and dangle
stacking

Here, we consider recursions for calculating the entries in a triangular intrastrand block
without coaxial and dangle stacking. By definition, there are no nicks between strands in
intrastrand recursions since intrastrand blocks involve base-pairing within a single strand.

R∅∅∅
Intra recursion without coaxial and dangle stacking. We begin with the recursion

𝑅∅
Intra(𝑖, 𝑗 , 𝜙) with the diagram and equation shown in Figure S3. 𝑅∅

Intra(𝑖, 𝑗 , 𝜙) operates
on the unconstrained ensemble for subsequence [𝑖, 𝑗] in an exterior loop context where 𝑖

and 𝑗 may or may not be paired (depicted with a dashed line between 𝑖 and 𝑗 in the recursion
diagram). This recursion distinguishes two cases that are combined using ⊕ in the recursion
equation:

• No terminal base pairs: the empty case in an exterior loop context where there are no
terminal base pairs in subsequence [𝑖, 𝑗] (depicted by the absence of a straight solid
line in the recursion diagram). The shading in the recursion diagram represents the
recursion energy Δ𝐺exterior

𝑖, 𝑗
(𝜙) = 0 corresponding to the zero reference state for an

exterior loop with no base pairs and no coaxial or dangle stacking. The corresponding
contribution to the recursion equation is 𝑊 (0) = 1.

s

s

i

j

i

j

ii

j

d

j

=

exterior loop

∅

∅

𝑅∅
Intra(𝑖, 𝑗 , 𝜙) ≡ 1 ⊕


𝑄𝑠

𝑖, 𝑗
⊕ dot

(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)
, 𝑗 − 𝑖 > 4

𝑄𝑠
𝑖, 𝑗
, 𝑗 − 𝑖 = 4

0, otherwise

where 𝑑 ≡ [𝑖 : 𝑗 − 5] .

Figure S3: R∅
Intra recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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• At least one terminal base pair: the non-empty case in an exterior loop context
where there is at least one terminal base pair (i.e., a base pair terminating a duplex)
in subsequence [𝑖, 𝑗]. The 3′-most terminal base pair begins at 𝑑 + 1 and ends in
the interval [𝑑 + 2, 𝑗] (depicted using a half-solid/half-dashed line in the recursion
diagram). The contributions for subsequence [𝑑 + 1, 𝑗] are incorporated using a
𝑄𝑠

𝑑+1, 𝑗 element. Contributions for the remaining subsequence [𝑖, 𝑑] are incorporated
by a 𝑄∅

𝑖,𝑑
element. The shading denotes the recursion energy 0 corresponding to

the zero reference state in an exterior loop context. Note that the recursion energy
Δ𝐺 terminalbp(𝜙) representing one component of the Δ𝐺exterior

𝑖, 𝑗
(𝜙) free energy is not

incorporated here because the full identity of the terminal base pair (i.e., a base
pair terminating a duplex) beginning at 𝑑 + 1 is not known within the 𝑅∅

Intra(𝑖, 𝑗 , 𝜙)
recursion (only within the 𝑅𝑠

Intra(𝑖, 𝑗 , 𝜙) recursion). The edge case where the index
𝑑 +1 = 𝑖 is displayed explicitly to indicate that no𝑄∅ element is accessed in this case.
The index limits in the recursion equation reflect the fact that steric effects prevent
a hairpin loop with fewer than 3 unpaired nucleotides (hence, 𝑖 · 𝑗 cannot form if
𝑗 − 𝑖 < 4).

Note that using the dot notation (Algorithm S1) and index range notation (S36) to denote
vector operations, we have the equivalence:

dot
(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)
≡

𝑗−5∑︁
𝑑=𝑖

𝑄∅
𝑖,𝑑
⊗ 𝑄𝑠

𝑑+1, 𝑗 , 𝑗 − 𝑖 > 4,

where 𝑑 ≡ [𝑖 : 𝑗 − 5] .

We can also recognize that in terms of matrix elements, the dot product

dot
(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)
(S43)

is between the element range 𝑑 of row 𝑖 (depicted as brown elements in Figure S1b) and the
element range 𝑑+1 of column 𝑗 (gray elements), yielding element 𝑖, 𝑗 (purple element).

R𝒔
Intra recursion without coaxial and dangle stacking. The 𝑅∅

Intra(𝑖, 𝑗 , 𝜙) recursion
references𝑄𝑠 elements that are computed using the 𝑅𝑠

Intra recursion displayed in Figure S4.
𝑅𝑠

Intra(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] in an exterior
loop context containing one terminal base pair starting at 𝑖 and ending in the interval
[𝑖 + 1, 𝑗] (depicted as a half-solid/half-dashed line between 𝑖 and 𝑗). The contribution for
the subsequence [𝑖, 𝑑] enclosed by base pair 𝑖 · 𝑑 is incorporated using a 𝑄𝑏

𝑖,𝑑
element.
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exterior loop

𝑅𝑠
Intra(𝑖, 𝑗 , 𝜙) ≡


dot

(
𝑄𝑏

𝑖,𝑑
,𝑊 (Δ𝐺 terminalbp

𝑖,𝑑
(𝜙))

)
, 𝑗 − 𝑖 ≥ 4

0, otherwise

where 𝑑 ≡ [𝑖 + 4 : 𝑗] .

Figure S4: R𝑠
Intra recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

Shading corresponds to the recursion energy, Δ𝐺 terminalbp
𝑖,𝑑

(𝜙), representing the sequence-
dependent penalty for a terminal base pair in an exterior loop context (dependent on the
sequence of base pair 𝑖 · 𝑑). The index limits in the recursion equation reflect the fact
that steric effects prevent a hairpin loop with fewer than 3 unpaired nucleotides (hence,
𝑖 · 𝑗 cannot form if 𝑗 − 𝑖 < 4). Note that the 𝑅𝑠 recursion serves as an efficiency wrapper
of the 𝑅𝑏 recursion (here, representing the 3′-most terminal base pair in an exterior loop
context) to reduce the time complexity of the 𝑅∅ recursion from 𝑂 (𝑁4) to 𝑂 (𝑁3). This
time complexity reduction is achieved by defining the 3′-most base pair using 𝑅𝑏 within the
𝑅𝑠 efficiency wrapper rather than directly using the 𝑅𝑏 recursion within the 𝑅∅ recursion,
so as to avoid introducing a fourth independent index into the 𝑅∅ recursion.

R𝒃
Intra recursion without coaxial and dangle stacking. The 𝑅𝑠

Intra(𝑖, 𝑗 , 𝜙) recursion
references𝑄𝑏 elements that are computed using the 𝑅𝑏

Intra recursion displayed in Figure S5.
𝑅𝑏

Intra(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] with 𝑖 and 𝑗

base paired to each other (depicted with a solid line between 𝑖 and 𝑗). The function
Complementary(𝜙𝑖, 𝜙 𝑗 ) checks if bases 𝜙𝑖 and 𝜙 𝑗 are complementary (Watson–Crick or
wobble pair) without regard to whether 𝑖 and 𝑗 are sufficiently separated along the strand to
be able to pair sterically. The recursion distinguishes three cases that are combined using
⊕ in the recursion equation:

• Hairpin loop: the hairpin loop closed by the single base pair 𝑖 · 𝑗 (depicted by a straight
solid line). The recursion incorporates the recursion energy Δ𝐺

hairpin
𝑖, 𝑗

(𝜙). The index
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limits in the recursion equation reflect the fact that steric constraints prevent a hairpin
loop with fewer than 3 unpaired nucleotides (hence, 𝑖 · 𝑗 cannot form if 𝑗 − 𝑖 < 4).

• Interior loop: the interior loop closed by the two terminal base pairs 𝑖 · 𝑗 and 𝑑 · 𝑒
(depicted by straight solid lines). We defer discussion of the calculation of the interior
loop contributions using the subroutine InteriorIntra until Section S2.4, where we
describe both𝑂 (𝑁4) and𝑂 (𝑁3) recursions. The index limits in the recursion equation
reflect the fact that steric effects prevent an interior loop with 𝑗 − 𝑖 < 6 due to the
steric requirement that there be at least 3 intervening bases between 𝑑 and 𝑒.

• Multiloop: the multiloop closed by three or more terminal base pairs: 1) the terminal
base pair 𝑖 · 𝑗 depicted by a straight solid line, 2) a 3′-most terminal base pair starting
at 𝑑 and ending in the interval [𝑑 + 1, 𝑗 − 1] (depicted by a straight half-solid/half
dashed line between 𝑑 and 𝑗 − 1); the contribution of subsequence [𝑑, 𝑗 − 1] is

=
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ms
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j
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e
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j

hairpin loop interior loop multiloop

𝑅𝑏
Intra(𝑖, 𝑗 , 𝜙) ≡

{
𝐶1, Complementary(𝜙𝑖, 𝜙 𝑗 )
0, otherwise

where 𝐶1 ≡
{
𝑊 (Δ𝐺hairpin

𝑖, 𝑗
(𝜙)), 𝑗 − 𝑖 ≥ 4

0, otherwise

⊕
{

InteriorIntra(𝑖, 𝑗 , 𝜙), 𝑗 − 1 ≥ 6
0, otherwise

⊕


dot

(
𝑄𝑚

𝑖+1,𝑑
, 𝑄𝑚𝑠

𝑑+1, 𝑗−1

)
⊗𝑊 (Δ𝐺multi

init + Δ𝐺
multi
bp + Δ𝐺 terminalbp

𝑗 ,𝑖
(𝜙)), 𝑗 − 𝑖 ≥ 11

0, otherwise

with 𝑑 ≡ [𝑖 + 5 : 𝑗 − 6] .

Figure S5: R𝑏
Intra recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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incorporated by element 𝑄𝑚𝑠
𝑑, 𝑗−1, 3) one or more additional terminal base pairs in the

interval [𝑖 + 1, 𝑑 − 1] (the straight dashed line denotes that 𝑖 + 1 and 𝑑 − 1 may or
may not be paired); the contribution of subsequence [𝑖 + 1, 𝑑 − 1] is incorporated by
element 𝑄𝑚

𝑖+1,𝑑−1. Shading corresponds to three recursion energies: 1) the penalty for
formation of a multiloop Δ𝐺multi

init , 2) the sequence-independent penalty for a terminal
base pair in a multiloop Δ𝐺multi

bp (corresponding to the sole base pair 𝑖 · 𝑗 that is fully
defined in this recursion), 3) the sequence-dependent penalty for a terminal base pair
in a multiloop context, Δ𝐺 terminalbp

𝑗 ,𝑖
(𝜙) (note that the indices are ordered 𝑗 then 𝑖 to

reflect 5′ to 3′ from the perspective of the multiloop). The index limits in the recursion
equation reflect the fact that steric effects prevent a multiloop with 𝑗 − 𝑖 < 11 due to
the steric requirement that there be at least 3 intervening bases between 𝑖 + 1 and 𝑑

and at least 3 intervening bases between 𝑑 + 1 and 𝑗 − 1.

=
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i
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d

b

ms

multiloop

𝑅𝑚𝑠
Intra(𝑖, 𝑗 , 𝜙) ≡


dot

(
𝑄𝑏

𝑖,𝑑
,𝑊 (Δ𝐺multi

bp + 𝑛ntΔ𝐺
multi
nt + Δ𝐺 terminalbp

𝑖,𝑑
(𝜙))

)
, 𝑗 − 𝑖 ≥ 4

0, otherwise

where 𝑑 ≡ [𝑖 + 4 : 𝑗], 𝑛nt ≡ [0 : 𝑗 − 𝑖 − 4]𝑟 .

Figure S6: R𝑚𝑠
Intra recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

R𝒎𝒔
Intra recursion without coaxial and dangle stacking. The 𝑅𝑏

Intra(𝑖, 𝑗 , 𝜙) recursion
references 𝑄𝑚𝑠 elements that are computed using the 𝑅𝑚𝑠

Intra(𝑖, 𝑗 , 𝜙) recursion shown in
Figure S6. 𝑅𝑚𝑠

Intra(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] in a
multiloop context containing one terminal base pair starting at 𝑖 and ending in the interval
[𝑖+1, 𝑗] (depicted as a half-solid/half-dashed line between 𝑖 and 𝑗). The contribution for the
subsequence [𝑖, 𝑑] enclosed by base pair 𝑖 · 𝑑 is incorporated using a 𝑄𝑏

𝑖,𝑑
element. Shading

corresponds to three recursion energies: 1) the sequence-independent penalty for a terminal
base pair in a multiloop Δ𝐺multi

bp (base pair 𝑖 · 𝑑), 2) the penalty per unpaired nucleotide in
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a multiloop, Δ𝐺multi
nt (nucleotides 𝑑 + 1, . . . , 𝑗 for a total of 𝑗 − 𝑑 unpaired nucleotides; as

a result, this term is zeroed out in the edge case where 𝑑 = 𝑗), 3) the sequence-dependent
penalty for a terminal base pair in a multiloop context, Δ𝐺 terminalbp

𝑖,𝑑
(𝜙) (dependent on the

sequence of base pair 𝑖 · 𝑑). Note that in the dot product the range multiplying Δ𝐺multi
nt runs

in reverse order because the number of unpaired nucleotides, 𝑗 − 𝑑, decreases in size as 𝑑
increases in size. The index limits in the recursion equation reflect the steric requirement
that there be at least 3 intervening bases between 𝑖 and 𝑑. Note that 𝑅𝑚𝑠 serves as an
efficiency wrapper for 𝑅𝑏 in the multiloop context in a completely analogous manner to 𝑅𝑠

serving as an efficiency wrapper for 𝑅𝑏 in an exterior loop context, with 𝑅𝑏 representing
the 3′-most terminal base pair in either context.
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j

i

j

e
d=

msms

m

m

multiloop

𝑅𝑚
Intra(𝑖, 𝑗 , 𝜙) ≡


dot

(
𝑄𝑚𝑠

𝑑, 𝑗
,𝑊 (𝑛ntΔ𝐺

multi
nt )

)
, 𝑗 − 𝑖 ≥ 4

0, otherwise

⊕


dot
(
𝑄𝑚

𝑖,𝑒
, 𝑄𝑚𝑠

𝑒+1, 𝑗

)
, 𝑗 − 𝑖 ≥ 9

0, otherwise

where 𝑑 ≡ [𝑖 : 𝑗 − 4], 𝑛nt ≡ [0 : 𝑗 − 𝑖 − 4], 𝑒 ≡ [𝑖 + 4 : 𝑗 − 5] .

Figure S7: R𝑚
Intra recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

R𝒎
Intra recursion without coaxial and dangle stacking. The 𝑅𝑏

Intra(𝑖, 𝑗 , 𝜙) recursion
references 𝑄𝑚 elements that are computed using the 𝑅𝑚

Intra recursion shown in Figure S7.
𝑅𝑚

Intra(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] in a multiloop
context where 𝑖 and 𝑗 may or may not be paired (depicted with a dashed line between 𝑖 and 𝑗

in the recursion diagram) and where there is at least one terminal base pair. This recursion
distinguishes two cases that are combined using ⊕ in the recursion equation:

• One terminal base pair: the case where there is exactly one terminal base pair in
subsequence [𝑖, 𝑗] in a multiloop context. This terminal base pair starts at 𝑑 and ends
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in the interval [𝑑 + 1, 𝑗] (depicted by a straight half-solid/half dashed line between
𝑑 and 𝑗); the contribution of subsequence [𝑑, 𝑗] is incorporated by element 𝑄𝑚𝑠

𝑑, 𝑗
.

Shading corresponds to the recursion energy, Δ𝐺multi
nt , representing the penalty per

unpaired nucleotide in a multiloop (nucleotides 𝑖, . . . , 𝑑−1 for a total of 𝑑−𝑖 unpaired
nucleotides; as a result, this term is zeroed out in the edge case where 𝑑 = 𝑖). The
index limits in the recursion equation reflect the steric requirement that there be at
least 3 intervening bases between 𝑑 and 𝑗 .

• More than one terminal base pair: the case where there are two or more terminal
base pairs in subsequence [𝑖, 𝑗] in a multiloop context. The 3′-most terminal base
pair starts at 𝑒 + 1 and ends in the interval [𝑒 + 2, 𝑗] (depicted by a straight half-
solid/half dashed line between 𝑒 +1 and 𝑗); the contribution of subsequence [𝑒 +1, 𝑗]
is incorporated by element 𝑄𝑚𝑠

𝑒+1, 𝑗 . There are one or more additional terminal base
pairs in the interval [𝑖, 𝑒] (the straight dashed line denotes that 𝑖 and 𝑒 may or may
not be paired); the contribution of subsequence [𝑖, 𝑒] is incorporated by element 𝑄𝑚

𝑖,𝑒
.

The shading does not represent any recursion energies as all multiloop contributions
are handled by other recursions: 1) there are no terminal base pairs in a multiloop
context explicitly defined in this case, 2) there are no unpaired bases in a multiloop
context explicitly defined in this case. The index limits in the recursion equation
reflect the steric requirement that there be at least 3 intervening bases between 𝑖 and
𝑒 and at least 3 intervening bases between 𝑒 + 1 and 𝑗 .

S2.3.2 Interstrand dynamic programming recursions without coaxial and dangle
stacking

Here, we consider recursions for calculating the entries in a rectangular interstrand block
without coaxial and dangle stacking. By definition, interstrand blocks involve 2 or more
strands, and hence one or more nicks between strands. For a given interstrand block, 𝜂
stores an array of nick indices between strands within the block, with each nick denoted
by the index of the nucleotide following the nick. If 𝑚 ≡ First(𝜂) and 𝑛 ≡ Last(𝜂), then
for subsequence [𝑖, 𝑗] corresponding to element 𝑖, 𝑗 in the interstrand block, we have by
definition 𝑖 < 𝑚 (nucleotide 𝑖 is on the first strand in the block) and 𝑗 ≥ 𝑛 (nucleotide 𝑗 is
on the last strand in the block).

R∅∅∅
Inter recursion without coaxial and dangle stacking. We begin with 𝑅∅

Inter(𝑖, 𝑗 , 𝜙)
shown in Figure S8. 𝑅∅

Inter(𝑖, 𝑗 , 𝜙) operates on the unconstrained ensemble for subsequence
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[𝑖, 𝑗] with 𝑖 and 𝑗 on different strands in an exterior loop context where 𝑖 and 𝑗 may or may
not be paired (depicted with a dashed line between 𝑖 and 𝑗 in the recursion diagram). Unlike
𝑅∅

Intra(𝑖, 𝑗 , 𝜙), there is no empty case because this would correspond to a disconnected
structure (which is not in the multistranded ensemble) due to the presence of one or more
nicks between 𝑖 and 𝑗 . Hence, the only case is at least one terminal base pair: the non-
empty case in an exterior loop context where there is at least one terminal base pair (i.e., a
base pair terminating a duplex) in subsequence [𝑖, 𝑗]. The 3′-most terminal base pair begins
at 𝑑 + 1 and ends in the interval [𝑑 + 2, 𝑗] (depicted using a half-solid/half-dashed line in
the recursion diagram). The contributions for subsequence [𝑑 +1, 𝑗] are incorporated using
a 𝑄𝑠

𝑑+1, 𝑗 element. Contributions for the remaining subsequence [𝑖, 𝑑] are incorporated by
a 𝑄∅

𝑖,𝑑
element. The shading denotes the recursion energy 0 corresponding to the zero

reference state in an exterior loop context. Note that the recursion energy Δ𝐺 terminalbp(𝜙)
representing one component of theΔ𝐺exterior

𝑖, 𝑗
(𝜙) free energy is not incorporated here because

the full identity of the terminal base pair (i.e., a base pair terminating a duplex) beginning
at 𝑑 + 1 is not known within the 𝑅∅

Inter(𝑖, 𝑗 , 𝜙) recursion (only within the 𝑅𝑠 (𝑑 + 1, 𝑗 , 𝜙)
recursion). The edge case where the index 𝑑 + 1 = 𝑖 is displayed explicitly to indicate that
no 𝑄∅ element is accessed in this case.

Because there are nicks involved in calculating the elements of interstrand blocks, care must
be taken to ensure that no disconnected secondary structures are incorporated in the complex
ensemble. For a given interstrand block with nick indices 𝜂, the function Valid returns the
set of valid vectorization ranges {𝑑1, 𝑑2, . . . }, such that for each valid vectorization range, 𝑑
and 𝑑 + 1 are on the same strand (i.e., such that 𝑑 and 𝑑 + 1 do not take on values that would
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exterior loop

∅

∅

𝑅∅
Inter(𝑖, 𝑗 , 𝜙) ≡ 𝑄𝑠

𝑖, 𝑗 ⊕
⊕

𝑑∈Valid(𝑖,max( 𝑗−4,𝑛),𝜂)

dot
(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)

where 𝑛 = Last(𝜂)

(S44)

Figure S8: R∅
Inter recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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place a nick between them). As is evident from the recursion diagram of Figure S8, if 𝑑
and 𝑑 + 1 were to take on values that placed a nick between them, a disconnected structure
would result. There is at most one valid vectorization range per strand, and there may be
none for a strand or subsequence that is too short. For each valid vectorization range 𝑑, the
resulting dot product

dot
(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)
(S45)

is between the range 𝑑 of row 𝑖 (depicted as brown elements in Figure S1c) and the range 𝑑+1
of column 𝑗 (gray elements), yielding element 𝑖, 𝑗 (purple element). Note that Figure S1c
depicts two valid vectorization ranges (leading to two dot products that are summed to
calculate the purple element); the gap of one element between the two vectorization ranges
corresponds to exclusion of the value 𝑑 = 3 which would have placed a nick between
nucleotides 𝑑 and 𝑑 + 1 (note that 𝜂 = 4 for this interstrand block).

Note that for calculating element 𝑖, 𝑗 in Figure S8, the subsequence submitted to Valid
ranges from 𝑖 to max( 𝑗 − 4, 𝑛), where 𝑛 ≡ Last(𝜂). This yields two cases:

• If max( 𝑗 − 4, 𝑛) = 𝑗 − 4: there is no nick between nucleotide 𝑗 − 4 and 𝑗 (since
𝑛 ≡ Last(𝜂) < 𝑗 − 4), so there must be at least 3 intervening bases between 𝑑 + 1 and
𝑗 because steric effects prevent a hairpin loop with fewer than 3 unpaired nucleotides.
In this case, each incorporated element 𝑄𝑠

𝑑+1, 𝑗 results from an 𝑅𝑠
Intra(𝑑 + 1, 𝑗 , 𝜙)

recursion for an intrastrand block.

• If max( 𝑗 − 4, 𝑛) = 𝑛: there is a nick between nucleotide 𝑗 − 4 and 𝑗 (since 𝑛 ≥ 𝑗 − 4),
so 𝑑 + 1 can be as large as 𝑛− 1 and still pair to any nucleotide in subsequence [𝑛, 𝑗].
In this case, each incorporated element 𝑄𝑠

𝑑+1, 𝑗 results from an 𝑅𝑠
Inter(𝑑 + 1, 𝑗 , 𝜙)

recursion for an interstrand block.

R𝒔
Inter recursion without coaxial and dangle stacking. The 𝑅∅

Intra(𝑖, 𝑗 , 𝜙) recursion
references 𝑄𝑠

𝑑+1, 𝑗 elements that are computed using either the 𝑅𝑠
Intra recursion of Figure S4

(if 𝑑 + 1 and 𝑗 are on the same strand) or the 𝑅𝑠
Inter recursion of Figure S9 (if 𝑑 + 1 and 𝑗

are on different strands). Recursion 𝑅𝑠
Inter(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for

subsequence [𝑖, 𝑗] with 𝑖 and 𝑗 on different strands in an exterior loop context containing
one terminal base pair starting at 𝑖 and ending in the interval [𝑖 + 1, 𝑗] (depicted as a
half-solid/half-dashed line between 𝑖 and 𝑗). The contribution for the subsequence [𝑖, 𝑑]
enclosed by base pair 𝑖 · 𝑑 is incorporated using a 𝑄𝑏

𝑖,𝑑
element. Shading corresponds to
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exterior loop

𝑅𝑠
Inter(𝑖, 𝑗 , 𝜙) ≡ dot

(
𝑄𝑏

𝑖,𝑑
,𝑊 (Δ𝐺 terminalbp

𝑖,𝑑
(𝜙))

)
,

where 𝑑 ≡ [Last(𝜂) : 𝑗]
(S46)

Figure S9: R𝑠
Inter recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

the recursion energy, Δ𝐺 terminalbp
𝑖,𝑑

(𝜙), representing the sequence-dependent penalty for a
terminal base pair in an exterior loop context. The index 𝑑 must always be on the last
strand (i.e., 𝑑 ≥ Last(𝜂)) to ensure there are no strand breaks in the subsequence [𝑑, 𝑗],
which would correspond to a disconnected structure. Note that the 𝑅𝑠 recursion serves as
an efficiency wrapper of the 𝑅𝑏 recursion (here, representing the 3′-most terminal base pair
in an exterior loop context) to reduce the time complexity of the 𝑅∅ recursion from 𝑂 (𝑁4)
to𝑂 (𝑁3). This time complexity reduction is achieved by defining the 3′-most terminal base
pair using 𝑅𝑏 within the 𝑅𝑠 efficiency wrapper rather than directly using the 𝑅𝑏 recursion
within the 𝑅∅ recursion, so as to avoid introducing a fourth independent index into the 𝑅∅

recursion.

R𝒃
Inter recursion without coaxial and dangle stacking. The 𝑅𝑠

Intra(𝑖, 𝑗 , 𝜙) recursion
references 𝑄𝑏

𝑖,𝑑
elements that are computed using either the 𝑅𝑏

Intra recursion of Figure S10
(if 𝑖 and 𝑑 are on the same strand) or the 𝑅𝑏

Inter recursion of Figure S10 (if 𝑖 and 𝑑 are
on different strands). 𝑅𝑏

Inter(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence
[𝑖, 𝑗] with 𝑖 and 𝑗 on different strands and base paired to each other (depicted with a
solid line between 𝑖 and 𝑗). The function Complementary(𝜙𝑖, 𝜙 𝑗 ) checks if bases 𝜙𝑖 and
𝜙 𝑗 are complementary (Watson–Crick or wobble pair) without regard to whether 𝑖 and
𝑗 are sufficiently separated along the strand to be able to pair sterically. The recursion
distinguishes three cases that are combined using ⊕ in the recursion equation:

• Exterior loop: the exterior loop closed by one or more terminal base pairs including
terminal base pair 𝑖 · 𝑗 .
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𝑅𝑏
Inter(𝑖, 𝑗 , 𝜙) ≡

{
𝐶1, Complementary(𝜙𝑖, 𝜙 𝑗 )
0, otherwise

𝐶1 ≡



⊕
𝑐∈𝜂 𝑄

∅
𝑖+1,𝑐−1 ⊗ 𝑄

∅
𝑐, 𝑗−1 ⊗𝑊 (Δ𝐺

terminalbp
𝑗 ,𝑖

(𝜙)), 𝑖 + 1 ≠ 𝑚 and 𝑗 ≠ 𝑛

𝑄∅
𝑚, 𝑗−1 ⊗𝑊 (Δ𝐺

terminalbp
𝑗 ,𝑖

(𝜙)), 𝑖 + 1 = 𝑚 and 𝑗 ≠ 𝑛

𝑄∅
𝑖+1,𝑛−1 ⊗𝑊 (Δ𝐺

terminalbp
𝑗 ,𝑖

(𝜙)), 𝑖 + 1 ≠ 𝑚 and 𝑗 = 𝑛

𝑊 (Δ𝐺 terminalbp
𝑗 ,𝑖

(𝜙)), 𝑖 + 1 = 𝑗 = 𝑚 = 𝑛

⊕ InteriorInter(𝑖, 𝑗 , 𝜙)

⊕
⊕

𝑑∈Valid(𝑖+1, 𝑗−1,𝜂)

dot
(
𝑄𝑚

𝑖+1,𝑑
, 𝑄𝑚𝑠

𝑑+1, 𝑗−1

)
⊗𝑊 (Δ𝐺multi

init + Δ𝐺
multi
bp + Δ𝐺 terminalbp

𝑗 ,𝑖
(𝜙))

where 𝑚 = First(𝜂)
𝑛 = Last(𝜂)

Figure S10: R𝑏
Inter recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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– Base case: The base case corresponds to the recursion diagram in the first row
of Figure S10 with a nick at 𝑐. For each nick 𝑐 ∈ 𝜂, the contribution of subse-
quence [𝑖 + 1, 𝑐 − 1] is incorporated by element 𝑄∅

𝑖+1,𝑐−1 and the contribution of
subsequence [𝑐, 𝑗 − 1] is incorporated by element 𝑄∅

𝑐, 𝑗−1. Shading corresponds
to the recursion energy Δ𝐺

terminalbp
𝑗 ,𝑖

(𝜙) representing the sequence-dependent
penalty for a terminal base pair in an exterior loop context, (note that the indices
are ordered 𝑗 then 𝑖 to reflect 5′ to 3′ from the perspective of the exterior loop).

– Edge cases: In the base case, there is a 𝑄∅ element on either side of the nick.
In the edge cases treated by the three diagrams in the second row of Figure S10,
one or both of these subsequences is absent because the nick is adjacent to 𝑖

(diagram 1), adjacent to 𝑗 (diagram 2), or adjacent to both 𝑖 and 𝑗 (diagram 3).

• Interior loop: the interior loop closed by the two terminal base pairs 𝑖 · 𝑗 and 𝑑 · 𝑒
(depicted by straight solid lines). We defer discussion of the calculation of the interior
loop contributions using InteriorInter until Section S2.4, where we describe both
𝑂 (𝑁4) and 𝑂 (𝑁3) recursions.

• Multiloop: the multiloop closed by three or more terminal base pairs: 1) the terminal
base pair 𝑖 · 𝑗 depicted by a straight solid line, 2) a 3′-most terminal base pair starting
at 𝑑 + 1 and ending in interval [𝑑 + 2, 𝑗 − 1] (depicted by a straight half-solid/half
dashed line between 𝑑 + 1 and 𝑗 − 1); the contribution of subsequence [𝑑 + 1, 𝑗 − 1]
is incorporated by element 𝑄𝑚𝑠

𝑑+1, 𝑗−1, 3) one or more additional terminal base pairs in
the interval [𝑖 + 1, 𝑑] (the straight dashed line denotes that 𝑖 + 1 and 𝑑 may or may
not be paired); the contribution of subsequence [𝑖 + 1, 𝑑] is incorporated by element
𝑄𝑚

𝑖+1,𝑑 . Shading corresponds to three recursion energies: 1) the penalty for formation
of a multiloop Δ𝐺multi

init , 2) the sequence-independent penalty for a terminal base pair
in a multiloop Δ𝐺multi

bp (corresponding to the sole base pair 𝑖 · 𝑗 that is fully defined
in this recursion), 3) the sequence-dependent penalty for a terminal base pair in a
multiloop context, Δ𝐺 terminalbp

𝑗 ,𝑖
(𝜙) (note that the indices are ordered 𝑗 then 𝑖 to reflect

5′ to 3′ from the perspective of the multiloop). To exclude exterior loop states that
are not treated by this multiloop recursion, the function Valid returns the set of valid
vectorization ranges for which nucleotides 𝑑 and 𝑑 + 1 are on the same strand (i.e.,
such that 𝑑 and 𝑑 + 1 do not take on values that would place a nick between them).

Note that unlike the 𝑅𝑏
Intra recursion of Figure S5, for 𝑅𝑏

Inter there is no hairpin loop case
as 𝑖 and 𝑗 are on different strands.
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𝑅𝑚𝑠
Inter(𝑖, 𝑗 , 𝜙) ≡ dot

(
𝑄𝑏

𝑖,𝑑
,𝑊 (Δ𝐺multi

bp + 𝑛ntΔ𝐺
multi
nt + Δ𝐺 terminalbp

𝑖,𝑑
(𝜙))

)
where 𝑑 ≡ [Last(𝜂) : 𝑗], 𝑛nt ≡ [0 : 𝑗 − Last(𝜂)]𝑟

Figure S11: R𝑚𝑠
Inter recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

R𝒎𝒔
Inter recursion without coaxial and dangle stacking. The 𝑅𝑏

Inter(𝑖, 𝑗 , 𝜙) recursion
references 𝑄𝑚𝑠

𝑑+1, 𝑗−1 elements that are computed using either the 𝑅𝑚𝑠
Intra recursion shown of

Figure S6 (if 𝑑 +1 and 𝑗 −1 are on the same strand) or the 𝑅𝑚𝑠
Inter recursion of Figure S11 (if

𝑑 + 1 and 𝑗 − 1 are on different strands). 𝑅𝑚𝑠
Inter(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble

for subsequence [𝑖, 𝑗] in a multiloop context containing one terminal base pair starting at 𝑖
and ending in the interval [𝑖 + 1, 𝑗] (depicted as a half-solid/half-dashed line between 𝑖 and
𝑗). The contribution for the subsequence [𝑖, 𝑑] enclosed by base pair 𝑖 · 𝑑 is incorporated
using a 𝑄𝑏

𝑖,𝑑
element. Shading corresponds to three recursion energies: 1) the sequence-

independent penalty for a terminal base pair in a multiloop, Δ𝐺multi
bp (base pair 𝑖 · 𝑑), 2)

the penalty per unpaired nucleotide in a multiloop, Δ𝐺multi
nt (nucleotides 𝑑 + 1, . . . , 𝑗 for

a total of 𝑗 − 𝑑 unpaired nucleotides; as a result, this term is zeroed out in the edge case
where 𝑑 = 𝑗), 3) the sequence-dependent penalty for a terminal base pair in a multiloop
context, Δ𝐺 terminalbp

𝑖,𝑑
(𝜙) (dependent on the sequence of base pair 𝑖 · 𝑑). Note that in the dot

product the range multiplying Δ𝐺multi
nt runs in reverse order because the number of unpaired

nucleotides, 𝑗 − 𝑑, decreases in size as 𝑑 increases in size. Nucleotide 𝑑 must always be
on the last strand to ensure that there are no nicks in the subsequence [𝑑, 𝑗], which would
lead to either a disconnected structure (which is not permitted in the complex ensemble)
or an exterior loop state (which is not handled by this multiloop recursion). Note that 𝑅𝑚𝑠

serves as an efficiency wrapper for 𝑅𝑏 in the multiloop context in a completely analogous
manner to 𝑅𝑠 serving as an efficiency wrapper for 𝑅𝑏 in an exterior loop context, with 𝑅𝑏

representing the 3′-most terminal base pair in either context.

R𝒎
Inter recursion without coaxial and dangle stacking. The 𝑅𝑏

Inter(𝑖, 𝑗 , 𝜙) recursion
references 𝑄𝑚

𝑖+1,𝑑 elements that are computed using either the 𝑅𝑚
Intra recursion of Figure S7
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multiloop

𝑅𝑚
Inter(𝑖, 𝑗 , 𝜙) ≡ dot

(
𝑄𝑚𝑠

𝑑, 𝑗
,𝑊 (𝑛ntΔ𝐺

multi
nt )

)
⊕

⊕
𝑒∈Valid(𝑖, 𝑗 ,𝜂)

dot
(
𝑄𝑚

𝑖,𝑒
, 𝑄𝑚𝑠

𝑒+1, 𝑗

)
where 𝑑 ≡ [𝑖 : First(𝜂) − 1], 𝑛nt ≡ [0 : First(𝜂) − 𝑖 − 1]

Figure S12: R𝑚
Inter recursion without coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

(if 𝑖 + 1 and 𝑑 are on the same strand), or the 𝑅𝑚
Inter recursion of Figure S12 (if 𝑖 + 1 and 𝑑

are on different strands). 𝑅𝑚
Inter(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence

[𝑖, 𝑗] in a multiloop context where 𝑖 and 𝑗 may or may not be paired (depicted with a dashed
line between 𝑖 and 𝑗 in the recursion diagram) and where there is at least one terminal base
pair. This recursion distinguishes two cases that are combined using ⊕ in the recursion
equation:

• One terminal base pair: the case where there is exactly one terminal base pair in
subsequence [𝑖, 𝑗] in a multiloop context. This terminal base pair starts at 𝑑 and
ends in the interval [𝑑 + 1, 𝑗] (depicted by a straight half-solid/half dashed line
between 𝑑 and 𝑗); the contribution of subsequence [𝑑, 𝑗] is incorporated by element
𝑄𝑚𝑠

𝑑, 𝑗
. Shading corresponds to the recursion energy, Δ𝐺multi

nt , representing the penalty
per unpaired nucleotide in a multiloop (nucleotides 𝑖, . . . , 𝑑 − 1 for a total of 𝑑 − 𝑖
unpaired nucleotides; as a result, this term is zeroed out in the edge case where 𝑑 = 𝑖).
Nucleotide 𝑑 must always be on the first strand to ensure that there are no nicks in the
subsequence [𝑖, 𝑑], which would lead to either a disconnected structure (which is not
permitted in the complex ensemble) or an exterior loop state (which is not handled
by this multiloop recursion).

• More than one terminal base pair: the case where there are two or more terminal
base pairs in subsequence [𝑖, 𝑗] in a multiloop context. The 3′-most terminal base
pair starts at 𝑒 + 1 and ends in the interval [𝑒 + 2, 𝑗] (depicted by a straight half-
solid/half dashed line between 𝑒 +1 and 𝑗); the contribution of subsequence [𝑒 +1, 𝑗]
is incorporated by element 𝑄𝑚𝑠

𝑒+1, 𝑗 . There are one or more additional terminal base
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pairs in the interval [𝑖, 𝑒] (the straight dashed line denotes that 𝑖 and 𝑒 may or may not
be paired); the contribution of subsequence [𝑖, 𝑒] is incorporated by element𝑄𝑚

𝑖,𝑒
. The

shading does not represent any recursion energies as all multiloop contributions are
handled by other recursions: 1) there are no terminal base pairs in a multiloop context
explicitly defined in this case, 2) there are no unpaired bases in a multiloop context
explicitly defined in this case. To exclude exterior loop states that are not treated
by this multiloop recursion, the function Valid returns the set of valid vectorization
ranges for which nucleotides 𝑒 and 𝑒 + 1 are on the same strand (i.e., such that 𝑒 and
𝑒 + 1 do not take on values that would place a nick between them).

S2.4 Recursions for interior loop contributions

Interior loop contributions to the recursions 𝑅𝑏
Intra(𝑖, 𝑗 , 𝜙) and 𝑅𝑏

Inter(𝑖, 𝑗 , 𝜙) run naively
in 𝑂 (𝑁4) time, as is evident from the four indices 𝑖, 𝑑, 𝑒, 𝑗 in the interior loop recursion
diagrams in Figures S5 and S10.

O(N4) intrastrand interior loop recursion. The intrastrand 𝑂 (𝑁4) interior loop contri-
bution:

𝑂 (𝑁4) InteriorIntra(𝑖, 𝑗 , 𝜙) ≡

⊕ 𝑗−5

𝑑=𝑖+1
⊕ 𝑗−1

𝑒=𝑑+4{𝑄
𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙))}, 𝑗 − 𝑖 ≥ 6

0, otherwise
(S47)

considers interior loops through a nested iteration, first over 𝑑 in a 5′ to 3′ direction and for
each 𝑑 over 𝑒 in a 5′ to 3′ direction. The index limits in the recursion equation reflect the fact
that steric effects prevent an interior loop with 𝑗 − 𝑖 < 6 due to the steric requirement that
there be at least 3 intervening bases between 𝑑 and 𝑒. The function Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙) accounts

for the free energy of the loop with bounding base pairs 𝑖 · 𝑗 and 𝑑 · 𝑒, substituting in the
correct functional form for any of the various interior loop types (stacked pair, bulge, etc;
see Section S1.7.2).
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O(N4) interstrand interior loop recursion. The interstrand 𝑂 (𝑁4) interior loop contri-
bution:

𝑂 (𝑁4) InteriorInter(𝑖, 𝑗 , 𝜙) ≡


⊕𝑚−1

𝑑=𝑖+1
⊕ 𝑗−1

𝑒=𝑛

{𝑄𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙))}, 𝑖 < 𝑚 − 1 and 𝑛 < 𝑗

0, otherwise

where 𝑚 = First(𝜂)
𝑛 = Last(𝜂)

(S48)
proceeds in the same general manner, considering interior loops in order of ascending 𝑑

then 𝑒 indices. However, 𝑑 is restricted to be on the first strand (𝑑 < 𝑚) and 𝑒 is restricted
to be on the last strand (𝑒 ≥ 𝑛), as reflected in the upper summation limit for 𝑑 and the lower
summation limit for 𝑒. These two requirements ensure that there are no nicks between 𝑖 and
𝑑 and between 𝑒 and 𝑗 , preventing exterior loop states (that are not treated in this interior
loop recursion) and disconnected states (that are not part of the complex ensemble).

O(N3) intrastrand interior loop recursion. To reduce the complexity of computing
interior loop contributions from 𝑂 (𝑁4) to 𝑂 (𝑁3), we must exploit the functional form of
the free energy model for large interior loops (Section S1.7.2)[11]. In References [4] and
[5], this optimization was referred to as the “fastiloops” or “fast interior loops” function,
and we take a similar approach here. The following optimizations assume the use of a
forward operation order (not a backtracking operation order). Interior loops, defined by two
bounding base pairs 𝑖 · 𝑗 and 𝑑 · 𝑒, can be classified by the distances 𝐿1 = 𝑑 − 𝑖 − 1 and
𝐿2 = 𝑗−𝑒−1; 𝐿1 and 𝐿2 are the numbers of unpaired nucleotides on each side of the interior
loop. In cases where 𝐿1 < 4 or 𝐿2 < 4, the energy functions generally depend on terms
that are nonlinear with respect to 𝐿1 and 𝐿2. Examples include the special-case energy
functions for stacked pairs and bulge loops, as well as length-dependent asymmetry and size
penalties for other interior loops. We term these interior loops inextensible because the free
energy for a larger loop cannot in general be calculated using the value from a smaller loop.
For a given subsequence [𝑖, 𝑗], there are only 𝑂 (𝑁) inextensible interior loops (because of
the constant upper bound on 𝐿1 or 𝐿2) so they do not contribute to the 𝑂 (𝑁4) complexity.

The remaining interior loops in which 𝐿1 ≥ 4 and 𝐿2 ≥ 4 are referred to as extensible
interior loops because the free energy of a larger loop can be calculated by extending the
calculation from a smaller interior loop. For a given subsequence [𝑖, 𝑗], there are 𝑂 (𝑁2)
extensible interior loops so these are the cases we must deal with efficiently to reduce the
time complexity from 𝑂 (𝑁4) to 𝑂 (𝑁4). For extensible interior loops, (S28) gives:
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Δ𝐺 interior
𝑖,𝑑,𝑒, 𝑗 (𝜙) = Δ𝐺 interiorsize

𝐿1+𝐿2
+ Δ𝐺 interiorasymm

|𝐿1−𝐿2 | + Δ𝐺 interiormm
𝑗−1, 𝑗 ,𝑖,𝑖+1(𝜙) + Δ𝐺

interiormm
𝑑−1,𝑑,𝑒,𝑒+1(𝜙). (S49)

Here, the quantity Δ𝐺 interiorsize
𝐿1+𝐿2

is a sequence-independent free energy contribution due to
the size of the interior loop, 𝑠 ≡ 𝐿1 + 𝐿2 (the sum of the two side lengths). The quantity
Δ𝐺

interiorasymm
|𝐿1−𝐿2 | is a sequence-independent free energy contribution due to the asymmetry

of the loop, |𝐿1 − 𝐿2 | (the difference of the two side lengths). Finally, the two terms
Δ𝐺 interiormm

𝑗−1, 𝑗 ,𝑖,𝑖+1(𝜙) and Δ𝐺 interiormm
𝑑−1,𝑑,𝑒,𝑒+1(𝜙) are sequence-dependent free energy contributions

due to mismatch stacking on the base pairs 𝑖 · 𝑗 and 𝑑 · 𝑒, respectively.

Two key insights from (S49) allow us to use this functional form to reduce complexity.[11]
First, for every base pair 𝑖 · 𝑗 , the mismatch term for that base pair is independent of the
other quantities and can be factored out. Second, for a given base pair 𝑑 · 𝑒, an extensible
loop bounded by 𝑖 · 𝑗 can be converted to an extensible loop bounded by 𝑖 − 1 · 𝑗 + 1 by
updating Δ𝐺 interiorsize

𝑠 to Δ𝐺 interiorsize
𝑠+2 and replacing Δ𝐺 interiormm

𝑗−1, 𝑗 ,𝑖,𝑖+1(𝜙) with Δ𝐺 interiormm
𝑗 , 𝑗+1,𝑖−1,𝑖 (𝜙).

Thus, we can cache the information specific to the base pair 𝑑 · 𝑒 for each given asymmetry
the first time it is encountered in an extensible interior loop and then modify only the size
information each time it is encountered.

Equation S50 combines the above ideas into a subroutine for computing the interior loop
contributions to 𝑅𝑏

Intra(𝑖, 𝑗 , 𝜙).
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𝑂 (𝑁3) InteriorIntra(𝑖, 𝑗 , 𝜙) ≡


⊕min(𝑖+4, 𝑗−5)

𝑑=𝑖+1
⊕ 𝑗−1

𝑒=max(𝑑+4, 𝑗−4)

𝑄𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙)), 𝑖 + 6 ≤ 𝑗

0, otherwise

⊕


⊕min(𝑖+4, 𝑗−9)

𝑑=𝑖+1
⊕ 𝑗−5

𝑒=𝑑+4

𝑄𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙)), 𝑖 + 10 ≤ 𝑗

0, otherwise

⊕


⊕ 𝑗−5

𝑑=𝑖+5
⊕ 𝑗−1

𝑒=max(𝑑+4, 𝑗−4)

𝑄𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙)), 𝑖 + 10 ≤ 𝑗

0, otherwise

⊕

⊕ 𝑗−𝑖−6

𝑠=8 𝑄𝑥
𝑖, 𝑗 ,𝑠
⊗𝑊 (Δ𝐺 interiormm

𝑗−1, 𝑗 ,𝑖,𝑖+1(𝜙)), 𝑖 + 14 ≤ 𝑗

0, otherwise
.

(S50)

The first three rows handle inextensible interior loops for three cases: 1) 𝐿1 < 4 and 𝐿2 < 4,
2) 𝐿1 < 4 and 𝐿2 ≥ 4, 3) 𝐿1 ≥ 4 and 𝐿2 < 4. In each case, the contribution of subsequence
[𝑑, 𝑒] is incorporated using a 𝑄𝑏

𝑑,𝑒
element and the interior loop free energy, Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙),

is evaluated as for the 𝑂 (𝑁4) intrastrand recursion. The fourth row handles extensible
interior loops (𝐿1 ≥ 4 and 𝐿2 ≥ 4), by combining a previously computed 𝑄𝑥

𝑖, 𝑗 ,𝑠
element for

each loop size 𝑠 with the terminal mismatch free energy, Δ𝐺 interiormm
𝑗−1, 𝑗 ,𝑖,𝑖+1(𝜙), corresponding to

closing base pair 𝑖 · 𝑗 . For all four cases, the index limits reflect there steric requirement
that there be at least 3 intervening bases between 𝑑 and 𝑒.
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The 𝑅𝑥
Intra(𝑖, 𝑗 , 𝑠, 𝜙) recursion fills in the three-dimensional tensor 𝑄𝑥

𝑖, 𝑗 ,𝑠
:

𝑅𝑥
Intra(𝑖, 𝑗 , 𝑠, 𝜙) ≡



𝐶1 ⊕ 𝐶2 ⊕ 𝐶3, 𝑗 − 𝑖 > 15 and 10 ≤ 𝑠 ≤ 𝑗 − 𝑖 − 6

𝐶2 ⊕ 𝐶3, 𝑗 − 𝑖 > 14 and 𝑠 = 9

𝐶2, 𝑗 − 𝑖 > 13 and 𝑠 = 8

𝐶3, 𝑗 − 𝑖 = 14 and 𝑠 = 9

0, otherwise

where 𝐶1 ≡ 𝑄𝑥
𝑖+1, 𝑗−1,𝑠−2 ⊗𝑊 (Δ𝐺

interiorsize
𝑠 − Δ𝐺 interiorsize

𝑠−2 )

𝐶2 ≡ 𝑄𝑏
𝑖+5, 𝑗+3−𝑠 ⊗𝑊 (Δ𝐺

interiorsize
𝑠 + Δ𝐺 interiorasymm

𝑠−8 + Δ𝐺 interiormm
𝑖+4,𝑖+5, 𝑗+3−𝑠, 𝑗+4−𝑠 (𝜙))

𝐶3 ≡ 𝑄𝑏
𝑠+𝑖−3, 𝑗−5 ⊗𝑊 (Δ𝐺

interiorsize
𝑠 + Δ𝐺 interiorasymm

𝑠−8 + Δ𝐺 interiormm
𝑠+𝑖−4,𝑠+𝑖−3, 𝑗−5, 𝑗−4(𝜙)).

(S51)
The indices 𝑖 and 𝑗 refer to the closing base pair 𝑖 · 𝑗 while the index 𝑠 refers to the
size of the extensible loops collected in 𝑄𝑥

𝑖, 𝑗 ,𝑠
. The contributions can be divided into two

classes: previously encountered loops and new loops. The previously encountered loops
are incorporated by accessing the previously computed element 𝑄𝑥

𝑖+1, 𝑗−1,𝑠−2 and replacing
Δ𝐺 interiorsize

𝑠−2 with Δ𝐺 interiorsize
𝑠 (see term C1). This is the key operation that reduces the

complexity of the interior loop recursion to 𝑂 (𝑁) by capturing all previous loops in 𝑂 (1).
Note that the terminal mismatch contribution of the closing base pair 𝑖 · 𝑗 is not incorporated
in the 𝑄𝑥 element, but is combined with 𝑄𝑥 in (S50), so there is never a need to replace one
terminal mismatch contribution for another as the loop is extended. New extensible loops
that are first encountered for the indices 𝑖, 𝑗 , 𝑠 (elements that have exactly 𝐿1 = 4 or 𝐿2 = 4
or both) are handled by 𝐶2 and 𝐶3. Note that the subexpressions 𝐶2 and 𝐶3 are coincident
for 𝐿1 = 𝐿2 = 4 (𝑠 = 8).

Note that to calculate a new value𝑄𝑥
𝑖, 𝑗 ,𝑠

for a subsequence of length 𝑙 = 𝑗−𝑖+1, only elements
of the form 𝑄𝑥

𝑖+1, 𝑗−1,𝑠−2 are accessed (for 𝑂 (𝑁) values of 𝑠; each value of 𝑙 corresponds to
a diagonal of the intrastrand block). Therefore, we only need to store elements of 𝑄𝑥 for
subsequences of length 𝑙, 𝑙 − 1, and 𝑙 − 2 (corresponding to the current diagonal and the
two previous diagonals). In other words, only 𝑄𝑥 values corresponding to 3 diagonals need
to exist in memory during the forward pass. In moving to the next diagonal 𝑙 + 1, we can
simply delete all 𝑄𝑥

𝑖, 𝑗 ,𝑠
values for diagonal 𝑙 − 2 as they will not be accessed again. Hence,

only 𝑂 (𝑁2) space is necessary to store the needed elements of 𝑄𝑥 . Naively storing all of
𝑄𝑥

𝑖, 𝑗 ,𝑠
would have needlessly increased the space complexity to 𝑂 (𝑁3).
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O(N3) interstrand interior loop recursion. Interior loop contributions for elements in
interstrand blocks are computed with 𝑂 (𝑁3) time complexity using the subroutine:

𝑂 (𝑁3) InteriorInter(𝑖, 𝑗 , 𝜙) ≡


⊕min(𝑖+4,𝑚−1)

𝑑=𝑖+1
⊕ 𝑗−1

𝑒=max(𝑛, 𝑗−4)

𝑄𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙)), 𝑖 + 1 < 𝑚 and 𝑛 < 𝑗

0, otherwise

⊕


⊕min(𝑖+4,𝑚−1)

𝑑=𝑖+1
⊕ 𝑗−5

𝑒=𝑛

𝑄𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙)), 𝑖 + 1 < 𝑚 and 𝑛 + 4 < 𝑗

0, otherwise

⊕


⊕𝑚−1

𝑑=𝑖+5
⊕ 𝑗−1

𝑒=max(𝑛, 𝑗−4)

𝑄𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙)), 𝑖 + 5 < 𝑚 and 𝑛 < 𝑗

0, otherwise

⊕


⊕ 𝑗−𝑛+𝑚−𝑖−3

𝑠=8

𝑄𝑥
𝑖, 𝑗 ,𝑠
⊗𝑊 (Δ𝐺 interiormm

𝑗−1, 𝑗 ,𝑖,𝑖+1(𝜙)), 𝑖 + 5 < 𝑚 and 𝑛 + 4 < 𝑗

0, otherwise

where 𝑚 = First(𝜂)
𝑛 = Last(𝜂).

(S52)
The approach is analogous to that of equation S50. Index limits are modified to ensure that
𝑑 is on the same strand as 𝑖 and 𝑒 is on the same strand as 𝑗 , preventing exterior loop states
(that are not treated in this interior loop recursion) and disconnected states (that are not part
of the complex ensemble).
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The recursion 𝑅𝑥
Inter(𝑖, 𝑗 , 𝑠, 𝜙) is also closely related to equation S51:

𝑅𝑥
Inter(𝑖, 𝑗 , 𝑠, 𝜙) ≡



𝐶1 + 𝐶2 + 𝐶3, 𝑖 + 6 < 𝑚 and 𝑛 + 5 < 𝑗 and 10 ≤ 𝑠 ≤ 𝑗 − 𝑖 + 𝑚 − 𝑛 − 3

𝐶2 + 𝐶3, 𝑖 + 6 < 𝑚 and 𝑛 + 5 < 𝑗 and 𝑠 = 9

𝐶3, 𝑖 + 6 < 𝑚 and 𝑛 + 5 = 𝑗 and 𝑠 = 9

𝐶2, 𝑖 + 6 = 𝑚 and 𝑛 + 5 ≤ 𝑗 and 𝑠 = 9

𝐶2, 𝑖 + 6 ≤ 𝑚 and 𝑛 + 5 ≤ 𝑗 and 𝑠 = 8

0, otherwise

where 𝑚 = First(𝜂)
𝑛 = Last(𝜂)

𝐶1 ≡ 𝑄𝑥
𝑖+1, 𝑗−1,𝑠−2 ⊗𝑊 (Δ𝐺

interiorsize
𝑠 − Δ𝐺 interiorsize

𝑠−2 )

𝐶2 ≡ 𝑄𝑏
𝑖+5, 𝑗+3−𝑠 ⊗𝑊 (Δ𝐺

interiorsize
𝑠 + Δ𝐺 interiorasymm

𝑠−8 + Δ𝐺 interiormm
𝑖+4,𝑖+5, 𝑗+3−𝑠, 𝑗+4−𝑠 (𝜙))

𝐶3 ≡ 𝑄𝑏
𝑠+𝑖−3, 𝑗−5 ⊗𝑊 (Δ𝐺

interiorsize
𝑠 + Δ𝐺 interiorasymm

𝑠−8 + Δ𝐺 interiormm
𝑠+𝑖−4,𝑠+𝑖−3, 𝑗−5, 𝑗−4(𝜙))

(S53)
The recursive component that extends previously encountered extensible loops is shown in
𝐶1. Newly encountered extensible loops (elements that have exactly 𝐿1 = 4 or 𝐿2 = 4 or
both) are handled by𝐶2 and𝐶3. Note that𝐶2 and𝐶3 are coincident for 𝐿1 = 𝐿2 = 4 (𝑠 = 8).
The conditional checks using 𝑚 and 𝑛 prevent exterior loop states (that are not treated in this
interior loop recursion) and disconnected states (that are not part of the complex ensemble).

The above recursions enable calculation of interior loop contributions for forward algorithms
with 𝑂 (𝑁3) time complexity and 𝑂 (𝑁2) space complexity. However, this approach is
incompatible with backtracking algorithms as the optimization of throwing away 𝑄𝑥 values
that are no longer needed during the forward sweep, implies that they are also no longer
available for backtracking after the forward sweep is complete. One option is to reconstruct
the 𝑄𝑥 values during backtracking, but this incurs 𝑂 (𝑁3) time complexity and can lead
to loss of precision for large complex ensembles [5]. Another option that we pursue here
is to use a different iteration pattern through the 𝑂 (𝑁4) interior loop recursions during
backtracking. With this option, we exploit the fact that unlike forward algorithms that
evaluate recursive elements for all 𝑖 and 𝑗 in a forward sweep, backtracking algorithms
evaluate only a subset of all possible recursive elements. Hence, as discussed in Section S4.4,
the worst-case time complexity can be kept at 𝑂 (𝑁2) per structure for our backtracking
algorithms.
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S2.5 Approximate dangle stacking without coaxial stacking (for backwards compat-
ibility with NUPACK 3)

Previous versions of NUPACK algorithms did not support coaxial stacking and offered
two approximate treatments of dangle stacking (some-nupack3 and all-nupack3)[7].
For backwards compatibility, NUPACK 4.0 supports these two options. A nucleotide in
a multiloop or an exterior loop is eligible to dangle stack on an adjacent base pair that is
either 5′ or 3′ of the nucleotide. The NUPACK 4.0 model appropriately Boltzmann-weights
these two competing dangle stacking states. The NUPACK 3.2 model either: (1) took
the MFE of these two dangle stacking states – as if only the MFE dangle stack occurs at
equilibrium (some-nupack3 option), or (2) summed the free energies of the two dangle
stacking states – as if both dangle stacking states were occurring at once (all-nupack3
option). These approximate dangle treatments are implemented in the NUPACK 4.0 code
base using modified versions of 𝑅𝑎

Intra(𝑖, 𝑗 , 𝜙) and 𝑅𝑎
Inter(𝑖, 𝑗 , 𝜙) for 𝑎 ∈ {∅, 𝑠, 𝑚, 𝑚𝑠}. In

these approximate dangle treatments (some-nupack3 or all-nupack3), if dangles stack
on an adjacent base pair from both the 5′ and 3′ sides at once, both dangle free energies are
incorporated in lieu of incorporating a terminal mismatch free energy (equation (S55)).

S2.6 Recursions with coaxial and dangle stacking subensembles

Here, we describe 𝑅𝑎
Intra(𝑖, 𝑗 , 𝜙) recursions for calculating the elements of intrastrand

blocks and 𝑅𝑎
Inter(𝑖, 𝑗 , 𝜙) recursions for calculating the elements of interstrand blocks for

the complex ensemble, Γ
q, including coaxial and dangle stacking subensembles. For

the previously defined exterior loop and multiloop recursions without coaxial and dangle
stacking (see Section S2.3), the elementary recursion entity was a terminal base pair (a
base pair that terminates a duplex to form a part of the exterior loop or multiloop). For
example, a recursion might contain exactly one terminal base pair, a 3′-most terminal base
pair, or one or more terminal base pairs. Here, for exterior loop and multiloop recursions
with coaxial and dangle stacking, we make use of three new elementary recursion entities:

• Coaxial stacking state: two adjacent terminal base pairs that are coaxially stacked.
Hence, a coaxial stacking state involves exactly two terminal base pairs.

• Dangle stacking state: zero, one, or two unpaired nucleotides dangle stacking on
an adjacent terminal base pair. Hence, a dangle stacking state involves exactly one
terminal base pair.

• Stacking state: a coaxial stacking state or a dangle stacking state (two adjacent
terminal base pairs that are coaxially stacked or zero, one, or two unpaired nucleotides
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dangle stacking on an adjacent terminal base pair). Hence, a stacking state involves
either two or one terminal base pairs.

For example, a recursion might contain exactly one stacking state, a 3′-most stacking state,
or one or more stacking states. Note that a terminal base pair without coaxial and dangle
stacking corresponds to the subset of a dangle stacking state where there are zero nucleotides
dangle stacking, so the complex ensemble without coaxial and dangle stacking is a subset
of the complex ensemble with coaxial and dangle stacking.

To assist with examining the recursions with coaxial and dangle stacking, the intuition behind
the name chosen for each recursion, the nature of the ensemble treated by each recursion,
and the dependencies between the different recursions is summarized in Figure S13. To
limit proliferation of new names and facilitate comparison to the non-stacking recursions of
Section S2.3 (that treat complex ensemble Γ without coaxial and dangle stacking), we re-use
the names of the non-stacking recursions but with updated recursion diagrams and recursion
equations. Additionally, we introduce new recursions as needed to treat the coaxial and
dangle stacking states in ensemble Γ

q.

A recursion 𝑅𝑎 (𝑖, 𝑗 , 𝜙) operates on subsequence [𝑖 : 𝑗] to calculate element 𝑖, 𝑗 for ei-
ther the unconstrained ensemble 𝑎 = ∅ or for one of several constrained ensembles
𝑎 ∈ {𝑠, 𝑐𝑑, 𝑏, 𝑛, 𝑥, 𝑚𝑠, 𝑚𝑐𝑠, 𝑚𝑐, 𝑚𝑑, 𝑚}. Briefly, 𝑅∅(𝑖, 𝑗 , 𝜙) treats the unconstrained en-
semble in an exterior loop context where 𝑖 and 𝑗 may or may not be paired. 𝑅𝑠 (𝑖, 𝑗 , 𝜙)
serves as an efficiency wrapper over the 3′-most stacking state in an exterior loop context to
reduce the time complexity from 𝑂 (𝑁4) to 𝑂 (𝑁3). 𝑅𝑐𝑑 (𝑖, 𝑗 , 𝜙) treats a single stacking state
(a coaxial stacking state or a dangle stacking state) in an exterior loop context. 𝑅𝑏 (𝑖, 𝑗 , 𝜙)
treats the constrained ensemble where 𝑖 and 𝑗 form base pair 𝑖 · 𝑗 in the context of any
loop type. 𝑅𝑥 (𝑖, 𝑗 , 𝜙) treats extensible interior loops to achieve 𝑂 (𝑁3) time complexity.
𝑅𝑚𝑠 (𝑖, 𝑗 , 𝜙) serves as an efficiency wrapper over the 3′-most stacking state in a multiloop
context (analogous to 𝑅𝑠 in an exterior loop context) to reduce the time complexity from
𝑂 (𝑁4) to 𝑂 (𝑁3). 𝑅𝑚𝑐𝑠 (𝑖, 𝑗 , 𝜙) serves as an efficiency wrapper over the 3′-most coaxial
stacking state in a multiloop context to reduce the time complexity from 𝑂 (𝑁4) to 𝑂 (𝑁3).
𝑅𝑚𝑐 (𝑖, 𝑗 , 𝜙) treats a single coaxial stacking state in a multiloop context. 𝑅𝑚𝑑 (𝑖, 𝑗 , 𝜙) treats a
single dangle stacking state in a multiloop context. 𝑅𝑚 (𝑖, 𝑗 , 𝜙) treats one or more remaining
stacking states in a multiloop context.

When combined, 𝑅𝑚𝑐 and 𝑅𝑚𝑑 constitute the multiloop equivalent to 𝑅𝑐𝑑 in an exterior
loop context; they are kept separate to allow proper treatment of a multiloop edge case. In
the exterior loop context, the efficiency wrapper 𝑅𝑠 wraps 𝑅𝑐𝑑 to treat coaxial and dangle



92

Recursion Naming intuition Constraint Context

∅ unconstrained none exterior loop
𝑠 sum efficiency wrapper for 3′-most stacking

state
exterior loop

𝑐𝑑 coaxial and dangle one stacking state (coaxial or dangle stack-
ing state)

exterior loop

𝑏 base-paired base pair between 5′-most and 3′-most
bases of subsequence

any loop

𝑛 nick nick between strands exterior loop
𝑥 extensible extensible interior loop interior loop

𝑚𝑠 multiloop sum efficiency wrapper for 3′-most stacking
state

multiloop

𝑚𝑐𝑠 multiloop coaxial sum efficiency wrapper for 3′-most coaxial
stacking state

multiloop

𝑚𝑐 multiloop coaxial one coaxial stacking state multiloop
𝑚𝑑 multiloop dangle one dangle stacking state multiloop
𝑚 multiloop one or more remaining stacking states multiloop

s

ms

md

b

m

x

∅

cd

mcs

mc

s

ms

md

b

m

∅

cd

mcs

mc

n

x

Intrastrand block Interstrand block

Figure S13: Nomenclature and connectivity for recursions with coaxial and dangle stacking.
Top: Nomenclature. Bottom: Dependencies between different recursion types for elements
within an intrastrand block (left) or an interstrand block (right).

stacking simultaneously. In the multiloop context, because of the edge case, the efficiency
wrapper 𝑅𝑚𝑐𝑠 wraps 𝑅𝑚𝑐 (to treat coaxial stacking alone) and then the efficiency wrapper
𝑅𝑚𝑠 incorporates 𝑅𝑚𝑐𝑠 in addition to wrapping 𝑅𝑚𝑑 (to treat dangle stacking alone). Hence,
the efficiency wrapper 𝑅𝑚𝑠 (treating both coaxial and dangle stacking) is the multiloop
equivalent to 𝑅𝑠 in an exterior loop context.
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Figure S14: Summation over individual dangle states. (a) Example recursion diagram taken
from the definition of 𝑅𝑐𝑑

Intra(𝑖, 𝑗 , 𝜙). Note that the considered base pair is always between
bases 𝑖 + 𝑘 and 𝑗 − 𝑙. (b) Equivalent recursion expression which specifies the specific free
energy parameter contributions. (c) Decomposition of the sum in (b) into terms from each
of 4 specific dangle states.

S2.6.1 Summation over dangle stacking states

Recursions that incorporate dangle stacking use a standardized approach to sum (using
the ⊕ operator) over the subensemble of dangle stacking states on an adjacent terminal
base pair. An example sum is depicted in the recursion diagram of Figure S14a by the
dotted line between unpaired bases adjacent to a solid line denoting paired bases. The
shading indicates explicit incorporation of a dangle free energy Δ𝐺

dangle
𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) (different

for each dangle stacking state in the subensemble) and a terminal base pair free energy
Δ𝐺

terminalbp
𝑖+𝑘, 𝑗−𝑙 (𝜙) (dependent on the sequence of base pair 𝑖 + 𝑘 · 𝑗 − 𝑙). The corresponding

recursion equation of Figure S14b uses the indices 𝑘 ∈ {0, 1} and 𝑙 ∈ {0, 1} to sum over
the four dangle stacking states, which are illustrated in Figure S14c. For 𝑘 = 𝑙 = 0, there
are no unpaired bases dangle stacking on terminal base pair 𝑖 · 𝑗 . For 𝑘 = 1, 𝑙 = 0, there is
a 5′ dangle stack on terminal base pair 𝑖 · 𝑗 . For 𝑘 = 0, 𝑙 = 1, there is a 3′ dangle stack on
terminal base pair 𝑖 · 𝑗 . For 𝑘 = 𝑙 = 1, there are both 5′ and 3′ dangle stacks on terminal
base pair 𝑖 · 𝑗 ; this stacking state is referred to as a terminal mismatch. For clarity, recursion
equations incorporate the generic dangle free energy functionΔ𝐺dangle

𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) which returns
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𝑅∅
Intra(𝑖, 𝑗 , 𝜙) ≡ 1 ⊕


𝑄𝑠

𝑖, 𝑗
⊕ dot

(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)
, 𝑗 − 𝑖 > 4

𝑄𝑠
𝑖, 𝑗
, 𝑗 − 𝑖 = 4

0, otherwise

where 𝑑 ≡ [𝑖 : 𝑗 − 5] .

(S56)

Figure S15: R∅
Intra recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

the appropriate free energy for each of the four stacking states:

Δ𝐺
dangle
𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) =



0 𝑘 = 0, 𝑙 = 0, no dangles

Δ𝐺
5′dangle
𝑖,𝑖+1, 𝑗 (𝜙) 𝑘 = 1, 𝑙 = 0, 5′ dangle

Δ𝐺
3′dangle
𝑖 𝑗−1, 𝑗 (𝜙) 𝑘 = 0, 𝑙 = 1, 3′ dangle

Δ𝐺 terminalmm
𝑖,𝑖+1, 𝑗−1, 𝑗 (𝜙) 𝑘 = 1, 𝑙 = 1, terminal mismatch.

(S54)

Terminal mismatch free energies Δ𝐺 terminalmm
𝑖,𝑖+1, 𝑗−1, 𝑗 (𝜙) have been published for RNA [14, 20]

and are included in the rna95 and rna06 parameter sets. However, terminal mismatch
parameters for DNA are not public [19]. As a result, the dna04 parameter set assigns
the terminal mismatch free energy to be the sum of the published 5′ and 3′ dangle free
energies[18, 19]:

Δ𝐺 terminalmm
𝑖,𝑖+1, 𝑗−1, 𝑗 (𝜙) ≡ Δ𝐺

5′ dangle
𝑖,𝑖+1, 𝑗 (𝜙) + Δ𝐺

3′ dangle
𝑖 𝑗−1, 𝑗 (𝜙). (S55)

S2.6.2 Intrastrand dynamic programming recursions with coaxial and dangle
stacking

Here, we consider recursions for calculating the entries in a triangular intrastrand block with
coaxial and dangle stacking. By definition, there are no nicks between strands in intrastrand
recursions since intrastrand blocks involve base-pairing within a single strand.
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R∅∅∅
Intra recursion with coaxial and dangle stacking. We begin with the recursion 𝑅∅

Intra(𝑖, 𝑗 , 𝜙)
with the diagram and equation shown in Figure S24. 𝑅∅

Intra(𝑖, 𝑗 , 𝜙) operates on the uncon-
strained ensemble for subsequence [𝑖, 𝑗] in an exterior loop context where 𝑖 and 𝑗 may or
may not be paired (depicted with a dashed line between 𝑖 and 𝑗 in the recursion diagram).
This recursion distinguishes two cases that are combined using ⊕ in the recursion equation:

• No stacking states: the empty case in an exterior loop context where there are no
stacking states in subsequence [𝑖, 𝑗] (depicted by the absence of a straight solid line in
the recursion diagram). The exterior loop shading in the recursion diagram represents
the recursion energy Δ𝐺exterior

𝑖, 𝑗
(𝜙) = 0 corresponding to the zero reference state for

an exterior loop with no coaxial stacking states or dangle stacking states (and hence,
no terminal base pairs). The corresponding contribution to the recursion equation is
𝑊 (0) = 1.

• At least one stacking state: the non-empty case in an exterior loop context where
there is at least one stacking state (i.e., two adjacent terminal base pairs coaxially
stacking, or zero, one, or two unpaired nucleotides dangle stacking on an adjacent
terminal base pair) in subsequence [𝑖, 𝑗]. The 3′-most stacking state begins at 𝑑 + 1
and ends in the interval [𝑑 + 2, 𝑗] (depicted using a dashed line in the recursion
diagram). The contributions for subsequence [𝑑 + 1, 𝑗] are incorporated using a
𝑄𝑠

𝑑+1, 𝑗 element. Contributions for the remaining subsequence [𝑖, 𝑑] are incorporated
by a 𝑄∅

𝑖,𝑑
element. The shading denotes the recursion energy 0 corresponding to

the zero reference state in an exterior loop context. The edge case where the index
𝑑 +1 = 𝑖 is displayed explicitly to indicate that no𝑄∅ element is accessed in this case.
The index limits in the recursion equation reflect the fact that steric effects prevent
a hairpin loop with fewer than 3 unpaired nucleotides (hence, 𝑖 · 𝑗 cannot form if
𝑗 − 𝑖 < 4).

Note that using the dot notation (Algorithm S1) and index range notation (S36) to denote
vector operations, we have the equivalence:

dot
(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)
≡

𝑗−5∑︁
𝑑=𝑖

𝑄∅
𝑖,𝑑
⊗ 𝑄𝑠

𝑑+1, 𝑗 , 𝑗 − 𝑖 > 4.

where 𝑑 ≡ [𝑖 : 𝑗 − 5] .

We can also recognize that in terms of matrix elements, the dot product

dot
(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)
(S57)
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is between the element range 𝑑 of row 𝑖 (depicted as brown elements in Figure S1b) and the
element range 𝑑+1 of column 𝑗 (gray elements), yielding element 𝑖, 𝑗 (purple element).

=

i

j

i

j

d

cd

s

exterior loop

𝑅𝑠
Intra(𝑖, 𝑗 , 𝜙) ≡


dot

(
𝑄𝑐𝑑

𝑖,𝑑

)
, 𝑗 − 𝑖 ≥ 4

0, otherwise

where 𝑑 ≡ [𝑖 + 4 : 𝑗] .

Figure S16: R𝑠
Intra recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

R𝒔
Intra recursion with coaxial and dangle stacking. The 𝑅∅

Intra(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑠 elements that are computed using the 𝑅𝑠

Intra recursion displayed in Figure S16.
𝑅𝑠

Intra(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] in an exterior
loop context containing one stacking state starting at 𝑖 and ending in the interval [𝑖 + 1, 𝑗]
(depicted as a dashed line between 𝑖 and 𝑗). The contribution for the stacking state in sub-
sequence [𝑖, 𝑑] is incorporated using a 𝑄𝑐𝑑

𝑖,𝑑
element. Shading denotes no recursion energy

as stacking energies and terminal base pair penalties are handled in 𝑅𝑐𝑑 . The index limits in
the recursion equation reflect the steric requirement that there be at least 3 intervening bases
between 𝑖 and 𝑑 (because the 𝑅𝑐𝑑 recursion incorporates a minimum of one terminal base
pair in subsequence [𝑖 : 𝑑]). Note that the 𝑅𝑠 recursion serves as an efficiency wrapper of
the 𝑅𝑐𝑑 recursion (here, representing the 3′-most stacking state in an exterior loop context)
to reduce the time complexity of the 𝑅∅ recursion from 𝑂 (𝑁4) to 𝑂 (𝑁3). This time com-
plexity reduction is achieved by defining the 3′-most stacking state using 𝑅𝑐𝑑 within the 𝑅𝑠

efficiency wrapper rather than directly using the 𝑅𝑐𝑑 recursion within the 𝑅∅ recursion, so
as to avoid introducing a fourth independent index into the 𝑅∅ recursion.

R𝒄𝒅
Intra recursion with coaxial and dangle stacking. The 𝑅𝑠

Intra(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑐𝑑 elements that are computed using the 𝑅𝑐𝑑

Intra recursion displayed in Figure S17.
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exterior coax exterior dangle

𝑅𝑐𝑑
Intra(𝑖, 𝑗 , 𝜙) ≡


Dot

(
𝑄𝑏

𝑖,𝑑
, 𝑄𝑏

𝑑+1, 𝑗
,

𝑊 (Δ𝐺coax
𝑖,𝑑, 𝑗
(𝜙) + Δ𝐺 terminalbp

𝑖,𝑑
(𝜙) + Δ𝐺 terminalbp

𝑑+1, 𝑗
(𝜙))

)
, 𝑗 − 𝑖 ≥ 9

0, otherwise

⊕
⊕
𝑘∈{0,1}
𝑙∈{0,1}


𝑄𝑏

𝑖+𝑘, 𝑗−𝑙⊗
𝑊 (Δ𝐺dangle

𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) + Δ𝐺
terminalbp
𝑖+𝑘, 𝑗−𝑙 (𝜙)), ( 𝑗 − 𝑙) − (𝑖 + 𝑘) ≥ 4

0, otherwise

where 𝑑 ≡ [𝑖 + 4 : 𝑗 − 5]

Figure S17: R𝑐𝑑
Intra recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

𝑅𝑐𝑑
Intra(𝑖, 𝑗 , 𝜙) treats a single stacking state in an exterior loop context, corresponding to

either of two cases that are combined using ⊕ in the recursion equation:

• Coaxial stacking state: two adjacent terminal base pairs (𝑖 · 𝑑 and 𝑑 + 1 · 𝑗) coaxially
stack on each other. The contributions of subsequences [𝑖, 𝑑] and [𝑑 + 1, 𝑗] are
incorporated using 𝑄𝑏

𝑖,𝑑
and 𝑄𝑏

𝑑+1, 𝑗 elements. Shading corresponds to two kinds of
recursion energy: 1) the sequence-dependent penalties for two terminal base pairs
in an exterior loop context, Δ𝐺 terminalbp

𝑖,𝑑
(𝜙) and Δ𝐺

terminalbp
𝑑+1, 𝑗 (𝜙) (dependent on the

sequence of base pairs 𝑖 · 𝑑 and 𝑑 + 1 · 𝑗), 2) the sequence-dependent coaxial stacking
free energy Δ𝐺coax

𝑖,𝑑, 𝑗
(𝜙) (dependent on the sequences of base pairs 𝑖 · 𝑑 and 𝑑 + 1 · 𝑗).

Note that Δ𝐺coax
𝑖,𝑑, 𝑗
(𝜙) requires only 3 indices because 𝑑 + 1 is implied by 𝑑. The index

limits in the recursion equation reflect the steric requirement that there be at least 3
intervening bases between 𝑖 and 𝑑 and at least 3 intervening bases between 𝑑 + 1 and
𝑗 .

• Dangle stacking state: zero, one, or two unpaired nucleotides dangle stack on an
adjacent terminal base pair (𝑖 + 𝑘 · 𝑗 − 𝑙). The recursion diagram summarizes four
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dangle stacking states (depicted as a dotted line between 𝑖 and 𝑗) corresponding to
no dangles, 5′ dangle, 3′ dangle, or terminal mismatch (see Figure S14 for details).
The contribution of subsequence [𝑖 + 𝑘, 𝑗 − 𝑙] is incorporated using 𝑄𝑏

𝑖+𝑘, 𝑗−𝑙 element.
Shading corresponds to two recursion energies: 1) the sequence-dependent penalty
for a terminal base pair in an exterior loop context, Δ𝐺 terminalbp

𝑖+𝑘, 𝑗−𝑙 (𝜙) (dependent on the
sequence of base pair 𝑖 + 𝑘 · 𝑗 − 𝑙), 2) the sequence-dependent dangle stacking free
energy Δ𝐺

dangle
𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) which takes on one of four values corresponding to the four

dangle stacking states (see Figure S14). The index limits in the recursion equation
reflect the steric requirement that there be at least 3 intervening bases between 𝑖 + 𝑘
and 𝑗 − 𝑙.

R𝒃
Intra recursion with coaxial and dangle stacking. The 𝑅𝑐𝑑

Intra(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑏 elements that are computed using the 𝑅𝑏

Intra recursion displayed in Figure S18.
𝑅𝑏

Intra(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] with 𝑖 and 𝑗 base
paired to each other (depicted with a solid line between 𝑖 and 𝑗). The recursion distinguishes
four cases that are combined using ⊕ in the recursion equation:

• Hairpin loop: the hairpin loop closed by the single base pair 𝑖 · 𝑗 (depicted by a
straight solid line). The recursion incorporates the recursion energy Δ𝐺

hairpin
𝑖, 𝑗

(𝜙).
This treatment of hairpin loops is the same as for the non-stacking recursions. The
index limits in the recursion equation reflect the fact that steric constraints prevent
a hairpin loop with fewer than 3 unpaired nucleotides (hence, 𝑖 · 𝑗 cannot form if
𝑗 − 𝑖 < 4).

• Interior loop: the interior loop closed by the two terminal base pairs 𝑖 · 𝑗 and 𝑑 · 𝑒
(depicted by straight solid lines). Calculation of the interior loop contributions
using an 𝑂 (𝑁4) or 𝑂 (𝑁3) version of the InteriorIntra recursion is described in
Section S2.4. This treatment of interior loops is the same as for the non-stacking
recursions. The index limits in the recursion equation reflect the fact that steric effects
prevent an interior loop with 𝑗 − 𝑖 < 6 due to the steric requirement that there be at
least 3 intervening bases between 𝑑 and 𝑒.

• Multiloop with coaxial stacking on terminal base pair 𝑗 · 𝑖: the multiloop closed by
three or more terminal base pairs with coaxial stacking on base pair 𝑗 · 𝑖. This case
corresponds to the two recursion diagrams on the second row of Figure S18 and is
treated by the subroutine MultiCoaxIntra (recursion equation S58). The recursion
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on the left treats the case where terminal base pair 𝑗 · 𝑖 forms a coaxial stack with
adjacent terminal base pair 𝑑+1 · 𝑗 −1, depicted as a dotted straight line between 𝑖 and
𝑑 + 1. The contribution of subsequence [𝑖 + 1, 𝑑] is incorporated by element 𝑄𝑏

𝑖+1,𝑑 .
The contributions of one or more remaining stacking states in subsequence [𝑖 + 1, 𝑑]
are incorporated by element 𝑄𝑚

𝑖+1,𝑑 . The pale green shading corresponds to three
multiloop recursion energies: 1) the penalty for formation of a multiloop Δ𝐺multi

init , 2)
the sequence-independent penalties for two terminal base pairs in a multiloop, Δ𝐺multi

bp

=
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hairpin loop

interior loop

multiloop

multiloop

multi coax

multi dangle

𝑅𝑏
Intra(𝑖, 𝑗 , 𝜙) ≡

{
𝐶1, Complementary(𝜙𝑖, 𝜙 𝑗 )
0, otherwise

where 𝐶1 ≡
{
𝑊 (Δ𝐺hairpin

𝑖, 𝑗
(𝜙)), 𝑗 − 𝑖 ≥ 4

0, otherwise

⊕
{

InteriorIntra(𝑖, 𝑗 , 𝜙), 𝑗 − 1 ≥ 6
0, otherwise

⊕
{

MultiCoaxIntra(𝑖, 𝑗 , 𝜙) ⊕MultiDangleIntra(𝑖, 𝑗 , 𝜙), 𝑗 − 𝑖 ≥ 11
0, otherwise

Figure S18: R𝑏
Intra recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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(corresponding to base pairs 𝑑+1 · 𝑗 −1 and 𝑗 · 𝑖), 3) the sequence-dependent penalties
for two terminal base pairs in a multiloop context, Δ𝐺 terminalbp

𝑑+1, 𝑗−1 (𝜙) and Δ𝐺
terminalbp
𝑗 ,𝑖

(𝜙)
(note that the indices are ordered 𝑗 then 𝑖 to reflect 5′ to 3′ from the perspective of the
multiloop). The dark green shading corresponds to the sequence-dependent coaxial
stacking recursion energy Δ𝐺coax

𝑑+1, 𝑗−1,𝑖 (𝜙) (dependent on the sequences of base pairs
𝑑 + 1 · 𝑗 − 1 and 𝑗 · 𝑖). Note that Δ𝐺coax

𝑑+1, 𝑗−1,𝑖 (𝜙) requires only 3 indices because 𝑗 is
implied by 𝑗 − 1. The recursion on the right treats the analogous case where terminal
base pair 𝑗 · 𝑖 forms a coaxial stack with adjacent terminal base pair 𝑖+1 ·𝑑. The index
limits in the recursion equation reflect the fact that steric effects prevent a multiloop
with 𝑗 − 𝑖 < 11 due to the steric requirement that there be at least 3 intervening bases
between 𝑖 + 1 and 𝑑 (which must contain one or more stacking states and hence one
or more terminal base pairs) and at least 3 intervening bases between 𝑑 + 1 and 𝑗 − 1.

• Multiloop with dangle stacking on terminal base pair 𝑗 · 𝑖: the multiloop closed by
three or more terminal base pairs with dangle stacking on terminal base pair 𝑗 · 𝑖.
This case corresponds to the two recursion diagrams on the third row of Figure S18
and is treated by the subroutine MultiDangleIntra (recursion equation S59).

– Base case with two or more additional stacking states. The recursion on the
left treats the case where there is a dangle stacking state involving the terminal
base pair 𝑗 · 𝑖 (depicted as a dotted straight line between 𝑖 + 𝑘 and 𝑗 − 𝑙) and a
3′-most coaxial stacking state in subsequence [𝑑 + 1, 𝑗 − 𝑙 − 1] (depicted as a
dashed line between 𝑑 + 1 and 𝑗 − 𝑙 − 1). The contributions for subsequence
[𝑑 + 1, 𝑗 − 𝑙 − 1] are incorporated using a 𝑄𝑚𝑠

𝑑+1, 𝑗−𝑙−1 element. The pale green
shading corresponds to four multiloop recursion energies: 1) the penalty for
formation of a multiloop Δ𝐺multi

init , 2) the sequence-independent penalty for one
terminal base pair in a multiloop, Δ𝐺multi

bp (corresponding to base pair 𝑗 · 𝑖),
3) the penalty per unpaired nucleotide in a multiloop Δ𝐺multi

nt (a total of 𝑘 + 𝑙
dangling nucleotides; as a result this term is zeroed out when 𝑘 = 𝑙 = 0). 4)
the sequence-dependent penalty for a terminal base pair in a multiloop context,
Δ𝐺

terminalbp
𝑗 ,𝑖

(𝜙) (note that the indices are ordered 𝑗 then 𝑖 to reflect 5′ to 3′ from
the perspective of the multiloop). The medium green shading corresponds to
the sequence-dependent dangle stacking recursion energyΔ𝐺dangle

𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙). Note
that 𝑘, 𝑙 ∈ {0, 1} determine whether unpaired nucleotides dangle stack on the
adjacent terminal base pair 𝑗 ·𝑖 in a multiloop context. The situation is analogous
to that in an exterior loop context with 𝑅𝑐𝑑

Intra(𝑖, 𝑗 , 𝜙) (as detailed in Figure S14)
with the only difference being that in the exterior loop context, 𝑖 + 𝑘 and 𝑗 − 𝑙
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index the paired bases and in the multiloop context 𝑖 + 𝑘 and 𝑗 − 𝑙 index the
unpaired bases. The index limits in the recursion equation reflect the fact that
steric effects prevent a multiloop with ( 𝑗 − 𝑙) − (𝑖 + 𝑘) < 11 due to the steric
requirement that there be at least 3 intervening bases between 𝑖 + 𝑘 + 1 and 𝑑

(which must contain one or more stacking states and hence one or more terminal
base pairs) and at least 3 intervening bases between 𝑑 + 1 and 𝑗 − 𝑙 − 1 (which
must contain a 3′-most stacking state and hence one or two terminal base pairs).

– Edge case with one additional coaxial stacking state. The recursion on the right
treats the case where there is a dangle stacking state involving the terminal base
pair 𝑗 · 𝑖 (depicted as a dotted straight line between 𝑖 + 𝑘 and 𝑗 − 𝑙) and a single
coaxial stacking state in subsequence [𝑒, 𝑗 − 𝑙 − 1] (depicted as a dashed line
between 𝑒 and 𝑗 − 𝑙 − 1). The contributions for subsequence [𝑒, 𝑗 − 𝑙 − 1] are
incorporated using a 𝑄𝑚𝑐𝑠

𝑒, 𝑗−𝑙−1 element. The pale green shading corresponds to
four multiloop recursion energies: 1) the penalty for formation of a multiloop
Δ𝐺multi

init , 2) the sequence-independent penalty for one terminal base pair in a
multiloop, Δ𝐺multi

bp (corresponding to base pair 𝑗 · 𝑖), 3) the penalty per unpaired
nucleotide in a multiloop Δ𝐺multi

nt (𝑘 + 𝑙 dangling nucleotides plus the unpaired
nucleotides 𝑘 + 𝑙 +1, . . . , 𝑒−1; as a result this term is zeroed out when 𝑘 = 𝑙 = 0
and 𝑒 = 𝑖 + 1). 4) the sequence-dependent penalty for a terminal base pair
in a multiloop context, Δ𝐺

terminalbp
𝑗 ,𝑖

(𝜙) (note that the indices are ordered 𝑗

then 𝑖 to reflect 5′ to 3′ from the perspective of the multiloop). The medium
green shading corresponds to the sequence-dependent dangle stacking recursion
energy Δ𝐺

dangle
𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙). The index limits in the recursion equation reflect the

fact that steric effects prevent a multiloop with ( 𝑗 − 𝑙) − (𝑖 + 𝑘) < 11 due to
the steric requirement that there be at least 8 intervening bases between 𝑒 and
𝑗 − 𝑙 − 1 (which must contain a coaxial stacking state and hence two adjacent
terminal base pairs). Note that this edge case covers the scenario where there
are exactly three terminal base pairs and the two terminal base pairs that are
not 𝑗 · 𝑖 are coaxially stacked. That situation is not covered by the base case
because for that recursion, a multiloop with 3 terminal base pairs would have
one terminal base pair in the 𝑄𝑚𝑠 element, and one terminal base pair in the 𝑄𝑚

element (hence, those two terminal base pairs cannot coaxially stack since they
are in different recursions).
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MultiCoaxIntra(𝑖, 𝑗 , 𝜙) ≡ 𝐶1 ⊗𝑊 (Δ𝐺multi
init + 2Δ𝐺multi

bp + Δ𝐺 terminalbp
𝑗 ,𝑖

(𝜙))

where 𝐶1 ≡ dot
(
𝑄𝑏

𝑖+1,𝑑
, 𝑄𝑚

𝑑+1, 𝑗−1
,𝑊 (Δ𝐺coax

𝑗 ,𝑖,𝑑
(𝜙) + Δ𝐺 terminalbp

𝑖+1,𝑑
(𝜙))

)
⊕ dot

(
𝑄𝑚

𝑖+1,𝑑
, 𝑄𝑏

𝑑+1, 𝑗−1
,𝑊 (Δ𝐺coax

𝑑+1, 𝑗−1,𝑖
(𝜙) + Δ𝐺 terminalbp

𝑑+1, 𝑗−1
(𝜙))

)
𝑑 ≡ [𝑖 + 5 : 𝑗 − 6]

(S58)

MultiDangleIntra(𝑖, 𝑗 , 𝜙) ≡
⊕
𝑘∈{0,1}
𝑙∈{0,1}


𝐶1 ⊕ 𝐶2, ( 𝑗 − 𝑙) − (𝑖 + 𝑘) ≥ 11

0, otherwise

where 𝐶1 ≡ dot
(
𝑄𝑚

𝑖+𝑘+1,𝑑
, 𝑄𝑚𝑠

𝑑+1, 𝑗−𝑙−1

)
⊗𝑊 (Δ𝐺dangle

𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙) + Δ𝐺
multi
init + Δ𝐺

multi
bp + (𝑘 + 𝑙)Δ𝐺multi

nt + Δ𝐺 terminalbp
𝑗 ,𝑖

(𝜙))

𝐶2 ≡ dot
(
𝑄𝑚𝑐𝑠

𝑒, 𝑗−𝑙−1

)
⊗𝑊 (Δ𝐺dangle

𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙) + Δ𝐺
multi
init + Δ𝐺

multi
bp + 𝑛ntΔ𝐺

multi
nt + Δ𝐺 terminalbp

𝑗 ,𝑖
(𝜙))

𝑑 ≡ [𝑖 + 𝑘 + 5 : 𝑗 − 𝑙 − 6], 𝑒 ≡ [𝑖 + 𝑘 + 1 : 𝑗 − 𝑙 − 10], 𝑛nt ≡ [𝑘 + 𝑙 : 𝑗 − 𝑖 − 11] .
(S59)

R𝒎𝒔
Intra recursion with coaxial and dangle stacking. The 𝑅𝑏

Intra(𝑖, 𝑗 , 𝜙) recursion ref-
erences 𝑄𝑚𝑠 elements that are computed using the 𝑅𝑚𝑠

Intra recursion shown in Figure S19.
𝑅𝑚𝑠

Intra(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] in a multiloop con-
text containing one stacking state starting at 𝑖 and ending in the interval [𝑖 + 1, 𝑗] (depicted
as a dashed line between 𝑖 and 𝑗). There are two cases that are combined using ⊕ in the
recursion equation:

• Coaxial stacking state: The contribution for the coaxial stacking state in subsequence
[𝑖, 𝑗] is calculated using a 𝑄𝑚𝑐𝑠

𝑖, 𝑗
element.

• Dangle stacking state: The contribution for the dangle stacking state in subsequence
[𝑖, 𝑑] is incorporated using a 𝑄𝑚𝑑

𝑖,𝑑
element. Shading corresponds to the recursion
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energy penalty per unpaired nucleotide in a multiloop, Δ𝐺multi
nt (nucleotides 𝑑 +

1, . . . , 𝑗 for a total of 𝑗 − 𝑑 unpaired nucleotides; as a result, this term is zeroed out
in the edge case where 𝑑 = 𝑗). Note that in the dot product the range multiplying
Δ𝐺multi

nt runs in reverse order because the number of unpaired nucleotides, 𝑗 − 𝑑,
decreases in size as 𝑑 increases in size.

Note that 𝑅𝑚𝑠 directly incorporates the 𝑅𝑚𝑐𝑠 recursion which serves as an efficiency wrapper
of the 𝑅𝑚𝑐 recursion, and hence, 𝑅𝑚𝑠 is an efficiency wrapper of 𝑅𝑚𝑐 (the 3′-most coaxial
stacking state in a multiloop context). Note also that 𝑅𝑚𝑠 is an efficiency wrapper of the
𝑅𝑚𝑑 recursion (the 3′-most dangle stacking state in a multiloop context). Taken together
𝑅𝑚𝑐 and 𝑅𝑚𝑑 represent the 3′-most stacking state in a multiloop context, analogous to 𝑅𝑐𝑑

representing the 3′-most stacking state (coaxial or dangle) in an exterior loop context. The
reason that 𝑅𝑚𝑐 (coaxial stacking states) and 𝑅𝑚𝑑 (dangle stacking states) are calculated and
stored separately in a multiloop context is that coaxial-only information (stored in element
𝑄𝑚𝑐𝑠) is needed for the previously described multiloop edge case (right recursion diagram
in the third row of Figure S18). As a result, coaxial-only information is calculated using the
efficiency wrapper 𝑅𝑚𝑐𝑠 for use in that edge case, and then coaxial-only and dangle-only
information are combined by the 𝑅𝑚𝑠 efficiency wrapper (which is fully analogous to the
𝑅𝑠 efficiency wrapper in the exterior loop context). With this approach, the operations
spent calculating coaxial stacking information for 𝑄𝑚𝑐𝑠 elements are not repeated when
calculating both coaxial and dangle stacking for 𝑄𝑚𝑠 elements.

i

j

= mcs

md

ms

i i

j

d

j

multiloop

𝑅𝑚𝑠
Intra(𝑖, 𝑗 , 𝜙) ≡ 𝑄𝑚𝑐𝑠

𝑖, 𝑗 ⊕


dot

(
𝑄𝑚𝑑

𝑖,𝑑
,𝑊 (𝑛ntΔ𝐺

multi
nt )

)
, 𝑗 − 𝑖 ≥ 4

0, otherwise

where 𝑑 ≡ [𝑖 + 4 : 𝑗], 𝑛nt ≡ [0 : 𝑗 − 𝑖 − 4]𝑟

Figure S19: R𝑚𝑠
Intra recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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mcs

mc

=

i

j

i

j

d

multiloop

𝑅𝑚𝑐𝑠
Intra(𝑖, 𝑗 , 𝜙) ≡


dot

(
𝑄𝑚𝑐

𝑖,𝑑
,𝑊 (𝑛ntΔ𝐺

multi
nt )

)
, 𝑗 − 𝑖 ≥ 9

0, otherwise

where 𝑑 ≡ [𝑖 + 9 : 𝑗], 𝑛nt ≡ [0 : 𝑗 − 𝑖 − 9]𝑟

Figure S20: R𝑚𝑐𝑠
Intra recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

R𝒎𝒄𝒔
Intra recursion with coaxial and dangle stacking. The 𝑅𝑚𝑠

Intra(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑚𝑐𝑠 elements that are computed using the 𝑅𝑚𝑐𝑠

Intra recursion displayed in Figure S20.
𝑅𝑚𝑐𝑠

Intra(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] in a multiloop
context containing one coaxial stacking state starting at 𝑖 and ending in the interval [𝑖 +1, 𝑗]
(depicted as a dashed line between 𝑖 and 𝑗). The contribution for the coaxial stacking state
in subsequence [𝑖, 𝑑] is incorporated using a 𝑄𝑚𝑐

𝑖,𝑑
element. Shading denotes the penalty per

unpaired nucleotide in a multiloop Δ𝐺multi
nt (the unpaired nucleotides 𝑑+1, . . . , 𝑗 ; as a result

this term is zeroed out when 𝑑 = 𝑗). Note that in the dot product the range multiplying
Δ𝐺multi

nt runs in reverse order because the number of unpaired nucleotides, 𝑗 − 𝑑, decreases
in size as 𝑑 increases in size. Note that the 𝑅𝑚𝑐𝑠 recursion serves as an efficiency wrapper
of the 𝑅𝑚𝑐 recursion (here, representing the 3′-most coaxial stacking state in a multiloop
context). The index limits in the recursion equation reflect the steric requirement that there
be at least 8 intervening bases between 𝑖 and 𝑑 (because the 𝑅𝑚𝑐 recursion incorporates
a coaxial stack involving two adjacent terminal base pairs such that 𝑖 and 𝑑 are paired to
intervening adjacent bases).

R𝒎𝒄
Intra recursion with coaxial and dangle stacking. The 𝑅𝑚𝑐𝑠

Intra(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑚𝑐 elements that are computed using the 𝑅𝑚𝑐

Intra recursion displayed in Figure S21.
This recursion treats a single coaxial stacking state in a multiloop context (depicted as a
straight line between 𝑖 and 𝑗 that is solid at both ends and dashed in the middle to indicate
that 𝑖 and 𝑗 are both base-paired but not to each other). Two adjacent terminal base pairs
(𝑖 ·𝑑 and 𝑑+1 · 𝑗) coaxially stack on each other. The contributions of subsequences [𝑖, 𝑑] and
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=

i

j

i
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d

b

b

mc

multi coax

𝑅𝑚𝑐
Intra(𝑖, 𝑗 , 𝜙) ≡

{
𝐶1 ⊗𝑊 (2Δ𝐺multi

bp ), 𝑗 − 𝑖 ≥ 9
0, otherwise

where 𝐶1 ≡ dot
(
𝑄𝑏

𝑖,𝑑
, 𝑄𝑏

𝑑+1, 𝑗
,𝑊 (Δ𝐺coax

𝑖,𝑑, 𝑗
(𝜙) + Δ𝐺 terminalbp

𝑖,𝑑
(𝜙) + Δ𝐺 terminalbp

𝑑+1, 𝑗
(𝜙))

)
𝑑 ≡ [𝑖 + 4 : 𝑗 − 5]

Figure S21: R𝑚𝑐
Intra recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

[𝑑 + 1, 𝑗] are incorporated using 𝑄𝑏
𝑖,𝑑

and 𝑄𝑏
𝑑+1, 𝑗 elements. Shading corresponds to three

kinds of recursion energy: 1) the sequence-independent penalties for two terminal base
pairs in a multiloop, Δ𝐺multi

bp (corresponding to base pairs 𝑖 · 𝑑 and 𝑑 +1 · 𝑗), 2) the sequence-
dependent penalties for two terminal base pairs in a multiloop context, Δ𝐺 terminalbp

𝑖,𝑑
(𝜙)

and Δ𝐺
terminalbp
𝑑+1, 𝑗 (𝜙) (dependent on the sequence of base pairs 𝑖 · 𝑑 and 𝑑 + 1 · 𝑗), 3) the

sequence-dependent coaxial stacking free energy Δ𝐺coax
𝑖,𝑑, 𝑗
(𝜙) (dependent on the sequences

of base pairs 𝑖 · 𝑑 and 𝑑 + 1 · 𝑗). Note that Δ𝐺coax
𝑖,𝑑, 𝑗
(𝜙) requires only 3 indices because 𝑑 + 1

is implied by 𝑑. The index limits in the recursion equation reflect the steric requirement
that there be at least 3 intervening bases between 𝑖 and 𝑑 and at least 3 intervening bases
between 𝑑 + 1 and 𝑗 .

R𝒎𝒅
Intra recursion with coaxial and dangle stacking. The 𝑅𝑚𝑠

Intra(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑚𝑑 elements that are computed using the 𝑅𝑚𝑑

Intra recursion displayed in Figure S22.
This recursion treats a single dangle stacking state (depicted as a dashed line between 𝑖

and 𝑗) in a multiloop context with either zero, one, or two unpaired nucleotides dangle
stacking on an adjacent terminal base pair (𝑖 + 𝑘 · 𝑗 − 𝑙). The recursion diagram represents
these four alternative dangle stacking states corresponding to no dangles, 5′ dangle, 3′

dangle, or terminal mismatch (see Figure S14 for details). The contribution of subsequence
[𝑖+ 𝑘, 𝑗 − 𝑙] is incorporated using a𝑄𝑏

𝑖+𝑘, 𝑗−𝑙 element. Shading corresponds to four recursion
energies: 1) the sequence-independent penalty for one terminal base pair in a multiloop,
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Δ𝐺multi
bp (corresponding to base pair 𝑗 − 𝑙 · 𝑖 + 𝑘), 2) the penalty per unpaired nucleotide in

a multiloop Δ𝐺multi
nt (a total of 𝑘 + 𝑙 dangling nucleotides; as a result this term is zeroed out

when 𝑘 = 𝑙 = 0). 3) the sequence-dependent penalty for a terminal base pair in a multiloop
loop context, Δ𝐺 terminalbp

𝑖+𝑘, 𝑗−𝑙 (𝜙) (dependent on the sequence of base pair 𝑖 + 𝑘 · 𝑗 − 𝑙), 4) the
sequence-dependent dangle stacking free energy Δ𝐺

dangle
𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) which takes on one of four

values corresponding to the four dangle stacking states (see Figure S14). The index limits
in the recursion equation reflect the steric requirement that there be at least 3 intervening
bases between 𝑖 + 𝑘 and 𝑗 − 𝑙.

=

i

j

i

j

i+k

j-l

bmd

multi dangle

𝑅𝑚𝑑
Intra(𝑖, 𝑗 , 𝜙) ≡

⊕
𝑘∈{0,1}
𝑙∈{0,1}

{
𝐶1 ( 𝑗 − 𝑙) − (𝑖 + 𝑘) ≥ 4
0, otherwise

where 𝐶1 ≡ 𝑄𝑏
𝑖+𝑘, 𝑗−𝑙 ⊗𝑊 (Δ𝐺

dangle
𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) + Δ𝐺

multi
bp + (𝑘 + 𝑙)Δ𝐺multi

nt + Δ𝐺 terminalbp
𝑖+𝑘, 𝑗−𝑙 (𝜙))

Figure S22: R𝑚𝑑
Intra recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

R𝒎
Intra recursion with coaxial and dangle stacking. The 𝑅𝑏

Intra(𝑖, 𝑗 , 𝜙) recursion also
references 𝑄𝑚 elements that are computed using the 𝑅𝑚

Intra recursion shown in Figure S23.
𝑅𝑚

Intra(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] in a multiloop
context where 𝑖 and 𝑗 may or may not be paired (depicted with a dashed line between 𝑖 and
𝑗 in the recursion diagram) and where there is at least one stacking state. This recursion
distinguishes two cases that are combined using ⊕ in the recursion equation:

• One stacking state: the case where there is exactly one stacking state in subsequence
[𝑖, 𝑗] in a multiloop context. This stacking state starts at 𝑑 and ends in the interval
[𝑑 + 1, 𝑗] (depicted by a straight dashed line between 𝑑 and 𝑗); the contribution
of subsequence [𝑑, 𝑗] is incorporated by element 𝑄𝑚𝑠

𝑑, 𝑗
. Shading corresponds to

the recursion energy, Δ𝐺multi
nt , representing the penalty per unpaired nucleotide in

a multiloop (nucleotides 𝑖, . . . , 𝑑 − 1 for a total of 𝑑 − 𝑖 unpaired nucleotides; as a
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multiloop

𝑅𝑚
Intra(𝑖, 𝑗 , 𝜙) ≡


dot

(
𝑄𝑚𝑠

𝑑, 𝑗
),𝑊 (𝑛ntΔ𝐺

multi
nt )

)
, 𝑗 − 𝑖 ≥ 4

0, otherwise

⊕


dot
(
𝑄𝑚

𝑖,𝑒
, 𝑄𝑚𝑠

𝑒+1, 𝑗

)
, 𝑗 − 𝑖 ≥ 9

0, otherwise

where 𝑑 ≡ [𝑖 : 𝑗 − 4], 𝑛nt ≡ [0 : 𝑗 − 𝑖 − 4], 𝑒 ≡ [𝑖 + 4 : 𝑗 − 5]

Figure S23: R𝑚
Intra recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

result, this term is zeroed out in the edge case where 𝑑 = 𝑖). The index limits in the
recursion equation reflect the steric requirement that there be at least 3 intervening
bases between 𝑑 and 𝑗 (because the 𝑅𝑚𝑠 incorporates a minimum of one terminal
base pair in subsequence [𝑑 : 𝑗]).

• More than one stacking state: the case where there are two or more stacking states in
subsequence [𝑖, 𝑗] in a multiloop context. The 3′-most stacking state starts at 𝑒+1 and
ends in the interval [𝑒 + 2, 𝑗] (depicted by a straight dashed line between 𝑒 + 1 and 𝑗);
the contribution of subsequence [𝑒 + 1, 𝑗] is incorporated by element 𝑄𝑚𝑠

𝑒+1, 𝑗 . There
are one or more additional stacking states in the interval [𝑖, 𝑒] (the straight dashed
line denotes that 𝑖 and 𝑒 may or may not be paired); the contribution of subsequence
[𝑖, 𝑒] is incorporated by element 𝑄𝑚

𝑖,𝑒
. The shading does not represent any recursion

energies as all multiloop contributions are handled by other recursions: 1) there are
no terminal base pairs in a multiloop context explicitly defined in this case, 2) there
are no unpaired bases in a multiloop context explicitly defined in this case. The index
limits in the recursion equation reflect the steric requirement that there be at least 3
intervening bases between 𝑖 and 𝑒 and at least 3 intervening bases between 𝑒 + 1 and
𝑗 .
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S2.6.3 Interstrand dynamic programming recursions with coaxial and dangle
stacking

Here, we consider recursions for calculating the entries in a rectangular interstrand block
with coaxial and dangle stacking. By definition, interstrand blocks involve 2 or more
strands, and hence one or more nicks between strands. For a given interstrand block, 𝜂
stores an array of nick indices between strands within the block, with each nick denoted
by the index of the nucleotide following the nick. If 𝑚 ≡ First(𝜂) and 𝑛 ≡ Last(𝜂), then
for subsequence [𝑖, 𝑗] corresponding to element 𝑖, 𝑗 in the interstrand block, we have by
definition 𝑖 < 𝑚 (nucleotide 𝑖 is on the first strand in the block) and 𝑗 ≥ 𝑛 (nucleotide 𝑗 is
on the last strand in the block).

R∅∅∅
Inter recursion with coaxial and dangle stacking. We begin with 𝑅∅

Inter(𝑖, 𝑗 , 𝜙) shown
in Figure S24. 𝑅∅

Inter(𝑖, 𝑗 , 𝜙) operates on the unconstrained ensemble for subsequence [𝑖, 𝑗]
with 𝑖 and 𝑗 on different strands in an exterior loop context where 𝑖 and 𝑗 may or may not
be paired (depicted with a dashed line between 𝑖 and 𝑗 in the recursion diagram). Unlike
𝑅∅

Intra(𝑖, 𝑗 , 𝜙), there is no empty case because this would correspond to a disconnected
structure (which is not in the ensemble) due to the presence of one or more nicks between
𝑖 and 𝑗 . Hence, the only case is at least one stacking state: the non-empty case in an
exterior loop context where there is at least one stacking state (i.e., two adjacent terminal
base pairs coaxially stacked or zero, one, or two unpaired nucleotides dangle stacking on
an adjacent terminal base pair) in subsequence [𝑖, 𝑗]. The 3′-most stacking state begins
at 𝑑 + 1 and ends in the interval [𝑑 + 2, 𝑗] (depicted using a dashed line in the recursion
diagram). The contributions for subsequence [𝑑 + 1, 𝑗] are incorporated using a 𝑄𝑠

𝑑+1, 𝑗
element. Contributions for the remaining subsequence [𝑖, 𝑑] are incorporated by a 𝑄∅

𝑖,𝑑

element. The shading denotes the recursion energy 0 corresponding to the zero reference
state in an exterior loop context. The edge case where the index 𝑑 + 1 = 𝑖 is displayed
explicitly to indicate that no 𝑄∅ element is accessed in this case.

Because there are nicks involved in calculating the elements of interstrand blocks, care must
be taken to ensure that no disconnected secondary structures are incorporated in the complex
ensemble. For a given interstrand block with nick indices 𝜂, the function Valid returns the
set of valid vectorization ranges {𝑑1, 𝑑2, . . . }, such that for each valid vectorization range, 𝑑
and 𝑑 + 1 are on the same strand (i.e., such that 𝑑 and 𝑑 + 1 do not take on values that would
place a nick between them). As is evident from the recursion diagram of Figure S8, if 𝑑
and 𝑑 + 1 were to take on values that placed a nick between them, a disconnected structure
would result. There is at most one valid vectorization range per strand, and there may be
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exterior loop

∅

∅

𝑅∅
Inter(𝑖, 𝑗 , 𝜙) ≡ 𝑄𝑠

𝑖, 𝑗 ⊕
⊕

𝑑∈Valid(𝑖,max( 𝑗−4,𝑛),𝜂)

dot
(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)

where 𝑛 = Last(𝜂)

Figure S24: R∅
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

none for a strand or subsequence that is too short. For each valid vectorization range 𝑑, the
resulting dot product

dot
(
𝑄∅

𝑖,𝑑
, 𝑄𝑠

𝑑+1, 𝑗

)
(S60)

is between the range 𝑑 of row 𝑖 (depicted as brown elements in Figure S1c) and the range 𝑑+1
of column 𝑗 (gray elements), yielding element 𝑖, 𝑗 (purple element). Note that Figure S1c
depicts two valid vectorization ranges (leading to two dot products that are summed to
calculate the purple element); the gap of one element between the two vectorization ranges
corresponds to exclusion of the value 𝑑 = 3 which would have placed a nick between
nucleotides 𝑑 and 𝑑 + 1 (note that 𝜂 = 4 for this interstrand block).

Note that for calculating element 𝑖, 𝑗 , the subsequence submitted to Valid ranges from 𝑖 to
max( 𝑗 − 4, 𝑛), where 𝑛 ≡ Last(𝜂). This yields two cases:

• If max( 𝑗 − 4, 𝑛) = 𝑗 − 4: there is no nick between nucleotide 𝑗 − 4 and 𝑗 (since
𝑛 ≡ Last(𝜂) < 𝑗 − 4), so there must be at least 3 intervening bases between 𝑑 + 1 and
𝑗 because steric effects prevent a hairpin loop with fewer than 3 unpaired nucleotides.
In this case, each incorporated element 𝑄𝑠

𝑑+1, 𝑗 results from an 𝑅𝑠
Intra(𝑑 + 1, 𝑗 , 𝜙)

recursion for an intrastrand block.

• If max( 𝑗 − 4, 𝑛) = 𝑛: there is a nick between nucleotide 𝑗 − 4 and 𝑗 (since 𝑛 ≥ 𝑗 − 4),
so 𝑑 + 1 can be as large as 𝑛− 1 and still pair to any nucleotide in subsequence [𝑛, 𝑗].
In this case, each incorporated element 𝑄𝑠

𝑑+1, 𝑗 results from an 𝑅𝑠
Inter(𝑑 + 1, 𝑗 , 𝜙)

recursion for an interstrand block.



110

=

i

j

i

j

d

cd

s

exterior loop

𝑅𝑠
Inter(𝑖, 𝑗 , 𝜙) ≡ dot

(
𝑄𝑐𝑑

𝑖,𝑑

)
where 𝑑 ≡ [Last(𝜂) : 𝑗]

Figure S25: R𝑠
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

R𝒔
Inter recursion with coaxial and dangle stacking. The 𝑅∅

Intra(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑠

𝑑+1, 𝑗 elements that are computed using either the 𝑅𝑠
Intra recursion of Figure S16 (if

𝑑 + 1 and 𝑗 are on the same strand) or the 𝑅𝑠
Inter recursion of Figure S25 (if 𝑑 + 1 and 𝑗

are on different strands). Recursion 𝑅𝑠
Inter(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for

subsequence [𝑖, 𝑗] with 𝑖 and 𝑗 on different strands in an exterior loop context containing
one stacking state starting at 𝑖 and ending in the interval [𝑖 + 1, 𝑗] (depicted as a dashed line
between 𝑖 and 𝑗). The contribution for the stacking state in subsequence [𝑖, 𝑑] is incorpo-
rated using a 𝑄𝑐𝑑

𝑖,𝑑
element. Shading denotes no recursion energy as stacking energies and

terminal base pair penalties are handled in 𝑅𝑐𝑑 . The index 𝑑 must always be on the last
strand (i.e., 𝑑 ≥ Last(𝜂)) to ensure there are no strand breaks in the subsequence [𝑑, 𝑗],
which would correspond to a disconnected structure. Note that the 𝑅𝑠 recursion serves as
an efficiency wrapper of the 𝑅𝑐𝑑 recursion (here, representing the 3′-most stacking state in
an exterior loop context) to reduce the time complexity of the 𝑅∅ recursion from 𝑂 (𝑁4)
to 𝑂 (𝑁3). This time complexity reduction is achieved by defining the 3′-most stacking
state using 𝑅𝑐𝑑 within the 𝑅𝑠 efficiency wrapper rather than directly using the 𝑅𝑐𝑑 recursion
within the 𝑅∅ recursion, so as to avoid introducing a fourth independent index into the 𝑅∅

recursion.

R𝒄𝒅
Inter recursion with coaxial and dangle stacking. The 𝑅𝑠

Inter(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑐𝑑 elements that are computed using either the 𝑅𝑐𝑑

Intra recursion of Figure S17 (if
𝑖 and 𝑑 are on the same strand) or the 𝑅𝑐𝑑

Inter recursion of Figure S26 (if 𝑖 and 𝑑 are on
different strands). Recursion 𝑅𝑐𝑑

Inter(𝑖, 𝑗 , 𝜙) treats a single stacking state in an exterior loop
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context, corresponding to either of two cases that are combined using ⊕ in the recursion
equation:

• Coaxial stacking state: two adjacent terminal base pairs (𝑖 · 𝑑 and 𝑑 + 1 · 𝑗) coaxially
stack on each other. The contributions of subsequences [𝑖, 𝑑] and [𝑑 + 1, 𝑗] are
incorporated using 𝑄𝑏

𝑖,𝑑
and 𝑄𝑏

𝑑+1, 𝑗 elements. Shading corresponds to two kinds of
recursion energy: 1) the sequence-dependent penalties for two terminal base pairs
in an exterior loop context, Δ𝐺 terminalbp

𝑖,𝑑
(𝜙) and Δ𝐺

terminalbp
𝑑+1, 𝑗 (𝜙) (dependent on the

sequence of base pairs 𝑖 · 𝑑 and 𝑑 + 1 · 𝑗), 2) the sequence-dependent coaxial stacking
free energy Δ𝐺coax

𝑖,𝑑, 𝑗
(𝜙) (dependent on the sequences of base pairs 𝑖 · 𝑑 and 𝑑 + 1 · 𝑗).

Note that Δ𝐺coax
𝑖,𝑑, 𝑗
(𝜙) requires only 3 indices because 𝑑 + 1 is implied by 𝑑. To ensure

that disconnected structures are excluded from the ensemble, the function Valid
returns the set of valid vectorization ranges for which nucleotides 𝑑 and 𝑑 + 1 are on
the same strand (i.e., such that 𝑑 and 𝑑 + 1 do not take on values that would place a
nick between them).

• Dangle stacking state: zero, one, or two unpaired nucleotides dangle stack on an
adjacent terminal base pair (𝑖 + 𝑘 · 𝑗 − 𝑙). The recursion diagram summarizes four
dangle stacking states (depicted as a dotted line between 𝑖 and 𝑗) corresponding to
no dangles, 5′ dangle, 3′ dangle, or terminal mismatch (see Figure S14 for details).

=

i

j

i

j

i+k

j-l

i

j

dcd b

b

b

exterior coax exterior dangle

𝑅𝑐𝑑
Inter(𝑖, 𝑗 , 𝜙) ≡

⊕
𝑑∈Valid(𝑖, 𝑗 ,𝜂)

dot
(
𝑄𝑏

𝑖,𝑑
, 𝑄𝑏

𝑑+1, 𝑗 ,𝑊 (Δ𝐺
coax
𝑖,𝑑, 𝑗
(𝜙) + Δ𝐺 terminalbp

𝑖,𝑑
(𝜙) + Δ𝐺 terminalbp

𝑑+1, 𝑗
(𝜙))

)
⊕

⊕
𝑘∈{0,1}
𝑙∈{0,1}


𝑄𝑏

𝑖+𝑘, 𝑗−𝑙 ⊗𝑊 (Δ𝐺
dangle
𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) + Δ𝐺

terminalbp
𝑖+𝑘, 𝑗−𝑙 (𝜙)), 𝑖 + 𝑘 < 𝑚 and 𝑗 − 𝑙 ≥ 𝑛

0, otherwise

where 𝑚 = First(𝜂)
𝑛 = Last(𝜂)

Figure S26: R𝑐𝑑
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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The contribution of subsequence [𝑖 + 𝑘, 𝑗 − 𝑙] is incorporated using 𝑄𝑏
𝑖+𝑘, 𝑗−𝑙 element.

Shading corresponds to two recursion energies: 1) the sequence-dependent penalty
for a terminal base pair in an exterior loop context, Δ𝐺 terminalbp

𝑖+𝑘, 𝑗−𝑙 (𝜙) (dependent on
the sequence of base pair 𝑖 + 𝑘 · 𝑗 − 𝑙), 2) the sequence-dependent dangle stacking
free energy Δ𝐺

dangle
𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) which takes on one of four values corresponding to the

four dangle stacking states (see Figure S14). To ensure that disconnected structures
are excluded from the ensemble, the index limits in the recursion equation prevent a
nick between a dangling nucleotide and the base pair on which it stacks (i.e., no nick
between 𝑖 and 𝑖 + 𝑘 , and no nick between 𝑗 and 𝑗 − 𝑙).

R𝒃
Inter recursion with coaxial and dangle stacking. The 𝑅𝑐𝑑

Inter(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑏

𝑖,𝑑
elements that are computed using either the 𝑅𝑏

Intra recursion of Figure S18 (if 𝑖
and 𝑑 are on the same strand) or the 𝑅𝑠

Inter recursion of Figure S27 (if 𝑖 and 𝑑 are on different
strands). 𝑅𝑏

Inter(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] with 𝑖 and
𝑗 on different strands and base paired to each other (depicted with a solid line between 𝑖 and
𝑗). The function Complementary(𝜙𝑖, 𝜙 𝑗 ) checks if bases 𝜙𝑖 and 𝜙 𝑗 are complementary
(Watson–Crick or wobble pair) without regard to whether 𝑖 and 𝑗 are sufficiently separated
along the strand to be able to pair sterically. The recursion distinguishes five cases that are
combined using ⊕ in the recursion equation:

• Exterior loop with coaxial stacking on terminal base pair 𝑗 · 𝑖: the exterior loop with
two or more terminal base pairs and coaxial stacking on terminal base pair 𝑗 · 𝑖.

– Base cases. The base cases correspond to the recursion diagrams on the first row
of Figure S27 and are treated using term 𝐶1 in the subroutine MultiCoaxInter
(recursion equation S58). The diagram on the left treats the case where terminal
base pair 𝑗 · 𝑖 forms a coaxial stack with adjacent terminal base pair 𝑑 + 1 · 𝑗 − 1,
depicted as a dotted straight line between 𝑖 and 𝑑 + 1. The contribution of
subsequence [𝑖 + 1, 𝑑] is incorporated by element 𝑄𝑛

𝑖+1,𝑑 . The pale pink shading
corresponds to the sequence-dependent penalties for two terminal base pairs
in an exterior loop context, Δ𝐺 terminalbp

𝑑+1, 𝑗−1 (𝜙) and Δ𝐺
terminalbp
𝑗 ,𝑖

(𝜙) (note that the
indices are ordered 𝑗 then 𝑖 to reflect 5′ to 3′ from the perspective of the exterior
loop). The dark pink shading corresponds to the sequence-dependent coaxial
stacking recursion energy Δ𝐺coax

𝑑+1, 𝑗−1,𝑖 (𝜙) (dependent on the sequences of base
pairs 𝑑 + 1 · 𝑗 − 1 and 𝑗 · 𝑖). Note that Δ𝐺coax

𝑑+1, 𝑗−1,𝑖 (𝜙) requires only 3 indices
because 𝑗 is implied by 𝑗 − 1. The recursion on the right treats the analogous
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𝑅𝑏
Inter(𝑖, 𝑗 , 𝜙) ≡

{
𝐶1, Complementary(𝜙𝑖, 𝜙 𝑗 )
0, otherwise

𝐶1 ≡ ExteriorCoaxInter(𝑖, 𝑗 , 𝜙, 𝜂) ⊕ ExteriorDangleInter(𝑖, 𝑗 , 𝜙, 𝜂)
⊕ InteriorInter(𝑖, 𝑗 , 𝜙, 𝜂)
⊕MultiCoaxInter(𝑖, 𝑗 , 𝜙, 𝜂) ⊕MultiDangleInter(𝑖, 𝑗 , 𝜙, 𝜂)

Figure S27: R𝑏
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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ExteriorCoaxInter(𝑖, 𝑗 , 𝜙, 𝜂) ≡ 𝐶1 ⊗𝑊 (Δ𝐺 terminalbp
𝑗 ,𝑖

(𝜙))

⊕


𝐶2 ⊗𝑊 (Δ𝐺 terminalbp

𝑗 ,𝑖
(𝜙)), 𝑖 + 1 < 𝑚 and 𝑗 − 1 ≥ 𝑛

(𝐶3 ⊕ 𝐶5) ⊗𝑊 (Δ𝐺 terminalbp
𝑗 ,𝑖

(𝜙)), 𝑖 + 1 = 𝑚 and 𝑗 − 1 ≥ 𝑛

(𝐶4 ⊕ 𝐶6) ⊗𝑊 (Δ𝐺 terminalbp
𝑗 ,𝑖

(𝜙)), 𝑖 + 1 < 𝑚 and 𝑗 = 𝑛

0, otherwise

where 𝑚 = First(𝜂)
𝑛 = Last(𝜂)

𝐶1 ≡
⊕

𝑑∈Valid(𝑖+1, 𝑗−1,𝜂)

[
dot

(
𝑄𝑛

𝑖+1,𝑑 , 𝑄
𝑏

𝑑+1, 𝑗−1
,𝑊 (Δ𝐺coax

𝑑+1, 𝑗−1,𝑖
(𝜙) + Δ𝐺 terminalbp

𝑑+1, 𝑗−1
(𝜙))

)
⊕ dot

(
𝑄𝑏

𝑖+1,𝑑 , 𝑄
𝑛

𝑑+1, 𝑗−1
,𝑊 (Δ𝐺coax

𝑗 ,𝑖,𝑑
(𝜙) + Δ𝐺 terminalbp

𝑖+1,𝑑
(𝜙))

)]

𝐶2 ≡
⊕
𝑐∈𝜂

[
𝑄∅

𝑖+1,𝑐−1 ⊗ 𝑄
𝑏
𝑐, 𝑗−1 ⊗𝑊 (Δ𝐺

coax
𝑐, 𝑗−1,𝑖 (𝜙) + Δ𝐺

terminalbp
𝑐, 𝑗−1 (𝜙))

⊕ 𝑄𝑏
𝑖+1,𝑐−1 ⊗ 𝑄

∅
𝑐, 𝑗−1 ⊗𝑊 (Δ𝐺

coax
𝑗 ,𝑖,𝑐−1(𝜙) + Δ𝐺

terminalbp
𝑖+1,𝑐−1 (𝜙))

]
𝐶3 ≡

⊕
𝑑∈Valid(𝑖, 𝑗−1,𝜂)

dot
(
𝑄∅

𝑖+1,𝑑
, 𝑄𝑏

𝑑+1, 𝑗−1
,𝑊 (Δ𝐺coax

𝑑+1, 𝑗−1,𝑖
(𝜙) + Δ𝐺 terminalbp

𝑑+1, 𝑗−1
(𝜙))

)

𝐶4 ≡
⊕

𝑑∈Valid(𝑖+1, 𝑗 ,𝜂)

dot
(
𝑄𝑏

𝑖+1,𝑑 , 𝑄
∅
𝑑+1, 𝑗−1

,𝑊 (Δ𝐺coax
𝑗 ,𝑖,𝑑
(𝜙) + Δ𝐺 terminalbp

𝑖+1,𝑑
(𝜙))

)
𝐶5 ≡ 𝑄𝑏

𝑖+1, 𝑗−1 ⊗𝑊 (Δ𝐺
coax
𝑖+1, 𝑗−1,𝑖 (𝜙) + Δ𝐺

terminalbp
𝑖+1, 𝑗−1 (𝜙))

𝐶6 ≡ 𝑄𝑏
𝑖+1, 𝑗−1 ⊗𝑊 (Δ𝐺

coax
𝑗 ,𝑖, 𝑗−1(𝜙) + Δ𝐺

terminalbp
𝑖+1, 𝑗−1 (𝜙)).

(S61)
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ExteriorDangleInter(𝑖, 𝑗 , 𝜙, 𝜂) ≡
⊕
𝑘∈{0,1}
𝑙∈{0,1}



𝐶1, 𝑖 + 𝑘 + 1 < 𝑚 and 𝑗 − 𝑙 − 1 ≥ 𝑛

𝐶2, 𝑖 + 𝑘 + 1 = 𝑚 and 𝑗 − 𝑙 − 1 ≥ 𝑛

𝐶2, 𝑖 + 𝑘 + 1 < 𝑚 and 𝑗 − 𝑙 = 𝑛

𝐶3, 𝑖 + 𝑘 + 1 = 𝑚 and 𝑗 − 𝑙 = 𝑛 and 𝑚 = 𝑛

0, otherwise

where 𝑚 = First(𝜂)
𝑛 = Last(𝜂)

𝐶1 ≡ 𝑄𝑛
𝑖+𝑘+1, 𝑗−𝑙−1 ⊗ 𝐶3

𝐶2 ≡ 𝑄∅
𝑖+𝑘+1, 𝑗−𝑙−1 ⊗ 𝐶3

𝐶3 ≡ 𝑊 (Δ𝐺dangle
𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙) + Δ𝐺

terminalbp
𝑗 ,𝑖

(𝜙))
(S62)

case where terminal base pair 𝑗 · 𝑖 forms a coaxial stack with adjacent terminal
base pair 𝑖 + 1 · 𝑑. To ensure that disconnected structures are excluded from the
ensemble, the function Valid returns the set of valid vectorization ranges for
which nucleotides 𝑑 and 𝑑 + 1 are on the same strand (i.e., such that 𝑑 and 𝑑 + 1
do not take on values that would place a nick between them).

– Edge cases. In the base case, the 𝑄𝑛 element incorporates a nick with a
neighboring 𝑄∅ element on either side. The edge cases diagrammed in rows
2 to 4 of Figure S27 correspond to states where either: one of the neighboring
𝑄∅ elements is omitted because the nick is adjacent to one of the two coaxially-
stacking base pairs (row 2 corresponding to term 𝐶2 and row 3 corresponding
to terms 𝐶3 and 𝐶4), or where both of the neighboring 𝑄∅ elements are omitted
because the nick is adjacent to both of the coaxially stacking base pairs (row 4
corresponding to terms 𝐶5 and 𝐶6). To ensure that disconnected structures are
excluded from the ensemble for terms 𝐶3 and 𝐶4, the function Valid returns the
set of valid vectorization ranges for which nucleotides 𝑑 and 𝑑 + 1 are on the
same strand (i.e., such that 𝑑 and 𝑑 + 1 do not take on values that would place a
nick between them).

• Exterior loop with a dangle stacking state involving terminal base pair 𝑗 · 𝑖: the
exterior loop with one or more terminal base pairs and a dangle stacking state involving
terminal base pair 𝑖 · 𝑗 .

– Base case. The base case corresponds to the leftmost recursion diagram in row
5 of Figure S27 and is treated by term 𝐶1 in the subroutine MultiDangleInter
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(recursion equation S58). The contribution of subsequence [𝑖 + 𝑘 + 1, 𝑗 − 𝑙 − 1]
is incorporated by element 𝑄𝑛

𝑖+𝑘+1, 𝑗−𝑙−1. The pale pink shading corresponds
to the sequence-dependent penalty for a terminal base pair in an exterior loop
context, Δ𝐺 terminalbp

𝑗 ,𝑖
(𝜙) (note that the indices are ordered 𝑗 then 𝑖 to reflect

5′ to 3′ from the perspective of the multiloop). The medium pink shading
corresponds to the sequence-dependent dangle stacking energy Δ𝐺

dangle
𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙).

Note that 𝑘, 𝑙 ∈ {0, 1} determine whether unpaired nucleotides dangle stack
on the adjacent base pair 𝑗 · 𝑖. The situation is analogous to that in 𝑅𝑐𝑑

Inter (as
detailed in Figure S14) with the only difference being that in 𝑅𝑐𝑑

Inter, 𝑖 + 𝑘 and
𝑗 − 𝑙 index the paired bases and here 𝑖 + 𝑘 and 𝑗 − 𝑙 index the unpaired bases.

– Edge cases. In the base case, the 𝑄𝑛 element incorporates a nick with a
neighboring 𝑄∅ element on either side. The edge cases in diagrams 2 to 4 of
row 5 of Figure S27 correspond to states where either: one of the neighboring
𝑄∅ elements is omitted because the nick is adjacent to the dangle stacking state
on one side (diagrams 2 and 3 corresponding to term 𝐶2), or where both of the
neighboring 𝑄∅ elements are omitted because the nick is adjacent to the dangle
stacking state on both sides (diagram 4 corresponding to term 𝐶3).

• Interior loop: the interior loop closed by the two terminal base pairs 𝑖 · 𝑗 and 𝑑 · 𝑒
(depicted by straight solid lines). Calculation of the interior loop contributions
using an 𝑂 (𝑁4) or 𝑂 (𝑁3) version of the InteriorInter recursion is described in
Section S2.4. This treatment of interior loops is the same as for the non-stacking
recursions.

• Multiloop with coaxial stacking on terminal base pair 𝑗 · 𝑖: the multiloop closed
by three or more terminal base pairs with coaxial stacking on base pair 𝑗 · 𝑖. This
case corresponds to the two recursion diagrams on the seventh row of Figure S27
and is treated by the subroutine MultiCoaxInter (recursion equation S63). The
recursion on the left treats the case where terminal base pair 𝑗 · 𝑖 forms a coaxial
stack with adjacent terminal base pair 𝑑 + 1 · 𝑗 − 1, depicted as a dotted straight line
between 𝑖 and 𝑑 + 1. The contribution of subsequence [𝑑 + 1, 𝑗 − 1] is incorporated
by element 𝑄𝑏

𝑑+1, 𝑗−1. The contributions of one or more remaining stacking states in
subsequence [𝑖 + 1, 𝑑] are incorporated by element 𝑄𝑚

𝑖+1,𝑑 . The pale green shading
corresponds to three multiloop recursion energies: 1) the penalty for formation of
a multiloop Δ𝐺multi

init , 2) the sequence-independent penalties for two terminal base
pairs in a multiloop, Δ𝐺multi

bp (corresponding to base pairs 𝑑 + 1 · 𝑗 − 1 and 𝑗 · 𝑖), 3)
the sequence-dependent penalties for two terminal base pairs in a multiloop context,
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Δ𝐺
terminalbp
𝑑+1, 𝑗−1 (𝜙) andΔ𝐺 terminalbp

𝑗 ,𝑖
(𝜙) (note that the indices are ordered 𝑗 then 𝑖 to reflect

5′ to 3′ from the perspective of the multiloop). The dark green shading corresponds to
the sequence-dependent coaxial stacking recursion energy Δ𝐺coax

𝑑+1, 𝑗−1,𝑖 (𝜙) (dependent
on the sequences of base pairs 𝑑 +1 · 𝑗 −1 and 𝑗 · 𝑖). Note that Δ𝐺coax

𝑑+1, 𝑗−1,𝑖 (𝜙) requires
only 3 indices because 𝑗 is implied by 𝑗 − 1. To exclude exterior loop states that are
not treated by this multiloop recursion, the function Valid returns the set of valid
vectorization ranges for which nucleotides 𝑑 and 𝑑 + 1 are on the same strand (i.e.,
such that 𝑑 and 𝑑 + 1 do not take on values that would place a nick between them).
The recursion on the right treats the analogous case where terminal base pair 𝑗 · 𝑖
forms a coaxial stack with adjacent terminal base pair 𝑖 + 1 · 𝑑.

• Multiloop with dangle stacking on terminal base pair 𝑗 · 𝑖: the multiloop closed by
three or more terminal base pairs with a dangle stacking state involving base pair 𝑗 · 𝑖.
This case corresponds to the two recursion diagrams on the eighth row of Figure S18
and is treated by the subroutine MultiDangleInter (recursion equation S64).

– Base case with two or more additional stacking states. The recursion on the left
treats the case where there is a dangle stacking state involving the terminal base
pair 𝑗 · 𝑖 (depicted as a dotted straight line between 𝑖 + 𝑘 and 𝑗 − 𝑙) and a 3′-most
stacking state in subsequence [𝑑+1, 𝑗− 𝑙−1] (depicted as a dashed line between
𝑑 + 1 and 𝑗 − 𝑙 − 1). The contributions for subsequence [𝑑 + 1, 𝑗 − 𝑙 − 1] are
incorporated using a 𝑄𝑚𝑠

𝑑+1, 𝑗−𝑙−1 element. The pale green shading corresponds
to four multiloop recursion energies: 1) the penalty for formation of a multiloop
Δ𝐺multi

init , 2) the sequence-independent penalty for one terminal base pair in a
multiloop, Δ𝐺multi

bp (corresponding to base pair 𝑗 · 𝑖), 3) the penalty per unpaired
nucleotide in a multiloopΔ𝐺multi

nt (a total of 𝑘+𝑙 dangling nucleotides; as a result
this term is zeroed out when 𝑘 = 𝑙 = 0). 4) the sequence-dependent penalty for
a terminal base pair in a multiloop context, Δ𝐺 terminalbp

𝑗 ,𝑖
(𝜙) (note that the indices

are ordered 𝑗 then 𝑖 to reflect 5′ to 3′ from the perspective of the multiloop). The
medium green shading corresponds to the sequence-dependent dangle stacking
recursion energy Δ𝐺

dangle
𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙). To exclude exterior loop states that are not

treated by this multiloop recursion, the function Valid returns the set of valid
vectorization ranges for which nucleotides 𝑑 and 𝑑 + 1 are on the same strand
(i.e., such that 𝑑 and 𝑑 +1 do not take on values that would place a nick between
them). Note that 𝑘, 𝑙 ∈ {0, 1} determine whether unpaired nucleotides dangle
stack on the adjacent base pair 𝑗 · 𝑖 in a multiloop context. The situation is
analogous to that in 𝑅𝑐𝑑

Inter (as detailed in Figure S14) with the only difference
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being that in 𝑅𝑐𝑑
Inter, 𝑖 + 𝑘 and 𝑗 − 𝑙 index the paired bases and here 𝑖 + 𝑘 and

𝑗 − 𝑙 index the unpaired bases.

– Edge case with one additional coaxial stacking state. The recursion on the right
treats the case where there is a dangle stacking state involving the terminal base
pair 𝑗 · 𝑖 (depicted as a dotted straight line between 𝑖 + 𝑘 and 𝑗 − 𝑙) and one
coaxial stacking state in subsequence [𝑒, 𝑗 − 𝑙 − 1] (depicted as a dashed line
between 𝑒 and 𝑗 − 𝑙 − 1). The contributions for subsequence [𝑒, 𝑗 − 𝑙 − 1] are
incorporated using a 𝑄𝑚𝑐𝑠

𝑒, 𝑗−𝑙−1 element. The pale green shading corresponds to
four multiloop recursion energies: 1) the penalty for formation of a multiloop
Δ𝐺multi

init , 2) the sequence-independent penalty for one terminal base pair in a
multiloop, Δ𝐺multi

bp (corresponding to base pair 𝑗 · 𝑖), 3) the penalty per unpaired
nucleotide in a multiloop Δ𝐺multi

nt (𝑘 + 𝑙 dangling nucleotides plus the unpaired
nucleotides 𝑖 + 𝑘 +1, . . . , 𝑒−1; as a result this term is zeroed out when 𝑘 = 𝑙 = 0
and 𝑒 = 𝑖 + 1). 4) the sequence-dependent penalty for a terminal base pair
in a multiloop context, Δ𝐺

terminalbp
𝑗 ,𝑖

(𝜙) (note that the indices are ordered 𝑗

then 𝑖 to reflect 5′ to 3′ from the perspective of the multiloop). The medium
green shading corresponds to the sequence-dependent dangle stacking recursion
energy Δ𝐺

dangle
𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙). Note that this edge case covers the scenario where there

are exactly three terminal base pairs and the two pairs that are not 𝑗 · 𝑖 are
coaxially stacked. That situation is not covered by the base case because for that
recursion, a multiloop with 3 terminal base pairs would have one terminal base
pair in the 𝑄𝑚𝑠 element, and one terminal base pair in the 𝑄𝑚 element (hence,
those two terminal base pairs cannot coaxially stack since they are in different
recursions).

Note that unlike the 𝑅𝑏
Intra recursion of Figure S18, for 𝑅𝑏

Inter there is no hairpin loop case
as 𝑖 and 𝑗 are on different strands.
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MultiCoaxInter(𝑖, 𝑗 , 𝜙, 𝜂) ≡ 𝐶1 ⊗𝑊 (Δ𝐺multi
init + 2Δ𝐺multi

bp + Δ𝐺 terminalbp
𝑗 ,𝑖

(𝜙))

where 𝑚 = First(𝜂)
𝑛 = Last(𝜂)

𝐶1 ≡
⊕

𝑑∈Valid(𝑖+1, 𝑗−1,𝜂)

[
dot

(
𝑄𝑏

𝑖+1,𝑑
, 𝑄𝑚

𝑑+1, 𝑗−1
,𝑊 (Δ𝐺coax

𝑗 ,𝑖,𝑑
(𝜙) + Δ𝐺 terminalbp

𝑖+1,𝑑
(𝜙))

)
⊕ dot

(
𝑄𝑚

𝑖+1,𝑑
, 𝑄𝑏

𝑑+1, 𝑗−1
,𝑊 (Δ𝐺coax

𝑑+1, 𝑗−1,𝑖
(𝜙) + Δ𝐺 terminalbp

𝑑+1, 𝑗−1
(𝜙))

)]
(S63)

MultiDangleInter(𝑖, 𝑗 , 𝜙, 𝜂) ≡
⊕

𝑘∈{0,1}
𝑙∈{0,1}


𝐶1 ⊕ 𝐶2, 𝑖 + 𝑘 + 1 < 𝑚 and 𝑗 − 𝑙 − 1 ≥ 𝑛

0, otherwise

where 𝑚 = First(𝜂)

𝑛 = Last(𝜂)

𝐶1 ≡
⊕

𝑑∈Valid(𝑖+𝑘+1, 𝑗−𝑙−1,𝜂)

[
dot

(
𝑄𝑚

𝑖+𝑘+1,𝑑 , 𝑄
𝑚𝑠

𝑑+1, 𝑗−𝑙−1

)
⊗ 𝑊 (Δ𝐺dangle

𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙) + Δ𝐺
multi
init + Δ𝐺

multi
bp + (𝑘 + 𝑙)Δ𝐺multi

nt + Δ𝐺 terminalbp
𝑗 ,𝑖

(𝜙))
]

𝐶2 ≡ dot
(
𝑄𝑚𝑐𝑠

𝑒, 𝑗−𝑙−1

)
⊗𝑊 (Δ𝐺dangle

𝑗−𝑙, 𝑗 ,𝑖,𝑖+𝑘 (𝜙) + Δ𝐺
multi
init + Δ𝐺

multi
bp + 𝑛ntΔ𝐺

multi
nt + Δ𝐺 terminalbp

𝑗 ,𝑖
(𝜙))

𝑒 ≡ [𝑖 + 𝑘 + 1 : 𝑚 − 1], 𝑛nt ≡ [𝑘 + 𝑙 : 𝑚 − 𝑖 + 𝑙 − 2] .
(S64)
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i
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i

j

n = c

exterior loop

∅

∅

𝑅𝑛
Inter(𝑖, 𝑗 , 𝜙) ≡

⊕
𝑐∈𝜂

𝑄∅
𝑖,𝑐−1 ⊗ 𝑄

∅
𝑐, 𝑗

Figure S28: R𝑛
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

R𝒏
Inter recursion with coaxial and dangle stacking. The 𝑅𝑏

Inter(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑛 elements that are computed using the 𝑅𝑛

Inter recursion displayed in Figure S28.
𝑅𝑛

Inter(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble in an exterior loop context with a nick at
𝑐. For each nick 𝑐 ∈ 𝜂, the contribution of subsequence [𝑖, 𝑐−1] is incorporated by element
𝑄∅

𝑖,𝑐−1 and the contribution of subsequence [𝑐, 𝑗] is incorporated by element 𝑄∅
𝑐, 𝑗

. Shading
denotes no recursion energies. Note that while the subsequence [𝑖, 𝑗] is disonnected within
the 𝑅𝑛

Inter(𝑖, 𝑗 , 𝜙) recursion due to the nick at 𝑐, these states are connected when used in the
context of the 𝑅𝑏

Inter recursion.

i

j

= mcs

md

ms

i i

j

d

j

multiloop

𝑅𝑚𝑠
Inter(𝑖, 𝑗 , 𝜙) ≡ 𝑄𝑚𝑐𝑠

𝑖, 𝑗 ⊕ dot
(
𝑄𝑚𝑑

𝑖,𝑑
,𝑊 (𝑛ntΔ𝐺

multi
nt )

)
where 𝑑 ≡ [Last(𝜂) : 𝑗], 𝑛nt ≡ [0 : 𝑗 − Last(𝜂)]𝑟

Figure S29: R𝑚𝑠
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

R𝒎𝒔
Inter recursion with coaxial and dangle stacking. The 𝑅𝑏

Inter(𝑖, 𝑗 , 𝜙) recursion ref-
erences 𝑄𝑚𝑠

𝑑+1, 𝑗−𝑙−1 elements that are computed using either the 𝑅𝑚𝑠
Intra recursion shown of

Figure S19 (if 𝑑+1 and 𝑗 − 𝑙−1 are on the same strand) or the 𝑅𝑚𝑠
Inter recursion of Figure S29
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(if 𝑑 + 1 and 𝑗 − 𝑙 − 1 are on different strands). 𝑅𝑚𝑠
Inter(𝑖, 𝑗 , 𝜙) operates on a conditional

ensemble for subsequence [𝑖, 𝑗] in a multiloop context containing one stacking state starting
at 𝑖 and ending in the interval [𝑖 + 1, 𝑗] (depicted as a dashed line between 𝑖 and 𝑗). There
are two cases that are combined using ⊕ in the recursion equation:

• Coaxial stacking state: The contribution for the coaxial stacking state in subsequence
[𝑖, 𝑗] is calculated using a 𝑄𝑚𝑐𝑠

𝑖, 𝑗
element.

• Dangle stacking state: The contribution for the dangle stacking state in subsequence
[𝑖, 𝑑] is incorporated using a 𝑄𝑚𝑑

𝑖,𝑑
element. Shading corresponds to the recursion

energy penalty per unpaired nucleotide in a multiloop, Δ𝐺multi
nt (nucleotides 𝑑 +

1, . . . , 𝑗 for a total of 𝑗 − 𝑑 unpaired nucleotides; as a result, this term is zeroed out
in the edge case where 𝑑 = 𝑗). Note that in the dot product the range multiplying
Δ𝐺multi

nt runs in reverse order because the number of unpaired nucleotides, 𝑗 − 𝑑,
decreases in size as 𝑑 increases in size. Nucleotide 𝑑 must always be on the last
strand (𝑑 ≥ Last(𝜂)) to ensure that there are no nicks in the subsequence [𝑑, 𝑗],
which would lead to either a disconnected structure (which is not permitted in the
complex ensemble) or an exterior loop state (which is not handled by this recursion).

Note that 𝑅𝑚𝑠 directly incorporates the 𝑅𝑚𝑐𝑠 recursion which serves as an efficiency wrapper
of the 𝑅𝑚𝑐 recursion, and hence, 𝑅𝑚𝑠 is an efficiency wrapper of 𝑅𝑚𝑐 (the 3′-most coaxial
stacking state in a multiloop context). Note also that 𝑅𝑚𝑠 is an efficiency wrapper of the
𝑅𝑚𝑑 recursion (the 3′-most dangle stacking state in a multiloop context). Taken together
𝑅𝑚𝑐 and 𝑅𝑚𝑑 represent the 3′-most stacking state in a multiloop context, analogous to 𝑅𝑐𝑑

representing the 3′-most stacking state (coaxial or dangle) in an exterior loop context. The
reason that 𝑅𝑚𝑐 (coaxial stacking states) and 𝑅𝑚𝑑 (dangle stacking states) are calculated and
stored separately in a multiloop context, is that coaxial-only information (stored in element
𝑄𝑚𝑐𝑠) is needed for the edge case previously described for the right recursion diagram in
the bottom row of Figure S27. As a result, coaxial-only information is calculated using the
efficiency wrapper 𝑅𝑚𝑐𝑠 for use in that edge case, and then coaxial-only and dangle-only
information are combined by the 𝑅𝑚𝑠 efficiency wrapper (which is fully analogous to the
𝑅𝑠 efficiency wrapper in the exterior loop context). With this approach, the operations
spent calculating coaxial stacking information for 𝑄𝑚𝑐𝑠 elements are not repeated when
calculating both coaxial and dangle stacking for 𝑄𝑚𝑠 elements.

R𝒎𝒄𝒔
Inter recursion with coaxial and dangle stacking. The 𝑅𝑚𝑠

Inter(𝑖, 𝑗 , 𝜙) recursion ref-
erences 𝑄𝑚𝑐𝑠 elements that are computed using the 𝑅𝑚𝑐𝑠

Inter(𝑖, 𝑗 , 𝜙) recursion displayed in
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mcs

mc

=

i

j

i

j

d

multiloop

𝑅𝑚𝑐𝑠
Inter(𝑖, 𝑗 , 𝜙) ≡ dot

(
𝑄𝑚𝑐

𝑖,𝑑
,𝑊 (Δ𝐺multi

nt 𝑛nt

)
where 𝑑 ≡ [Last(𝜂) : 𝑗], 𝑛nt ≡ [0 : 𝑗 − Last(𝜂)]𝑟

Figure S30: R𝑚𝑐𝑠
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

Figure S30. 𝑅𝑚𝑐𝑠
Inter(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] in

a multiloop context containing one coaxial stacking state starting at 𝑖 and ending in the
interval [𝑖 + 1, 𝑗] (depicted as a dashed line between 𝑖 and 𝑗). The contribution for the
coaxial stacking state in subsequence [𝑖, 𝑑] is incorporated using a 𝑄𝑚𝑐

𝑖,𝑑
element. Shading

denotes the penalty per unpaired nucleotide in a multiloopΔ𝐺multi
nt (the unpaired nucleotides

𝑑 + 1, . . . , 𝑗 ; as a result this term is zeroed out when 𝑑 = 𝑗). Note that in the dot product the
range multiplyingΔ𝐺multi

nt runs in reverse order because the number of unpaired nucleotides,
𝑗 − 𝑑, decreases in size as 𝑑 increases in size. Nucleotide 𝑑 must always be on the last
strand to ensure that there are no nicks in the subsequence [𝑑, 𝑗], which would lead to either
a disconnected structure (which is not permitted in the complex ensemble) or an exterior
loop state (which is not handled by this multiloop recursion). Note that the 𝑅𝑚𝑐𝑠 recursion
serves as an efficiency wrapper of the 𝑅𝑚𝑐 recursion (here, representing the 3′-most coaxial
stacking state in a multiloop context).

R𝒎𝒄
Inter recursion with coaxial and dangle stacking. The 𝑅𝑚𝑐𝑠

Inter(𝑖, 𝑗 , 𝜙) recursion ref-
erences 𝑄𝑚𝑐 elements that are computed using the 𝑅𝑚𝑐

Inter(𝑖, 𝑗 , 𝜙) recursion displayed in
Figure S31. This recursion treats a single coaxial stacking state in a multiloop context
(depicted as a straight line between 𝑖 and 𝑗 that is solid at both ends and dashed in the
middle to indicate that 𝑖 and 𝑗 are both base-paired but not to each other). Two adjacent
terminal base pairs (𝑖 · 𝑑 and 𝑑 + 1 · 𝑗) coaxially stack on each other. The contributions of
subsequences [𝑖, 𝑑] and [𝑑 + 1, 𝑗] are incorporated using 𝑄𝑏

𝑖,𝑑
and 𝑄𝑏

𝑑+1, 𝑗 elements. Shad-
ing corresponds to three kinds of recursion energy: 1) the sequence-independent penalties
for two terminal base pairs in a multiloop, Δ𝐺multi

bp (corresponding to base pairs 𝑖 · 𝑑 and
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i
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i

j

d

b

b

mc

multi coax

𝑅𝑚𝑐
Inter(𝑖, 𝑗 , 𝜙) ≡

⊕
𝑑∈Valid(𝑖, 𝑗 ,𝜂)

dot
(
𝑄𝑏

𝑖,𝑑
, 𝑄𝑏

𝑑+1, 𝑗
, 𝐶1

)
⊗𝑊 (2Δ𝐺multi

bp )

where 𝐶1 ≡ 𝑊 (Δ𝐺coax
𝑖,𝑑, 𝑗
(𝜙) + Δ𝐺 terminalbp

𝑖,𝑑
(𝜙) + Δ𝐺 terminalbp

𝑑+1, 𝑗
(𝜙))

Figure S31: R𝑚𝑐
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

𝑑 + 1 · 𝑗), 2) the sequence-dependent penalties for two terminal base pairs in a multiloop
context, Δ𝐺 terminalbp

𝑖,𝑑
(𝜙) and Δ𝐺

terminalbp
𝑑+1, 𝑗 (𝜙) (dependent on the sequence of base pairs 𝑖 · 𝑑

and 𝑑+1 · 𝑗), 3) the sequence-dependent coaxial stacking free energy Δ𝐺coax
𝑖,𝑑, 𝑗
(𝜙) (dependent

on the sequences of base pairs 𝑖 ·𝑑 and 𝑑+1 · 𝑗). Note that Δ𝐺coax
𝑖,𝑑, 𝑗
(𝜙) requires only 3 indices

because 𝑑 + 1 is implied by 𝑑. The function Valid returns the set of valid vectorization
ranges for which nucleotides 𝑑 and 𝑑 + 1 are on the same strand (i.e., such that 𝑑 and 𝑑 + 1
do not take on values that would place a nick between them) to avoid an exterior loop state
(which is not handled by this multiloop recursion).

R𝒎𝒅
Inter recursion with coaxial and dangle stacking. The 𝑅𝑚𝑠

Inter(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑚𝑑 elements that are computed using the 𝑅𝑚𝑑

Inter recursion displayed in Figure S32.
𝑅𝑚𝑑

Inter(𝑖, 𝑗 , 𝜙) treats a single dangle stacking state (depicted as a dotted line between 𝑖 and
𝑗) in a multiloop context with either zero, one, or two unpaired nucleotides dangle stack-
ing on an adjacent terminal base pair (𝑖 + 𝑘 · 𝑗 − 𝑙). The recursion diagram represents
these four alternative dangle stacking states corresponding to no dangles, 5′ dangle, 3′

dangle, or terminal mismatch (see Figure S14 for details). The contribution of subsequence
[𝑖+ 𝑘, 𝑗 − 𝑙] is incorporated using a𝑄𝑏

𝑖+𝑘, 𝑗−𝑙 element. Shading corresponds to four recursion
energies: 1) the sequence-independent penalty for one terminal base pair in a multiloop,
Δ𝐺multi

bp (corresponding to base pair 𝑖 + 𝑘 · 𝑗 − 𝑙), 2) the penalty per unpaired nucleotide in
a multiloop Δ𝐺multi

nt (a total of 𝑘 + 𝑙 dangling nucleotides; as a result this term is zeroed out
when 𝑘 = 𝑙 = 0). 3) the sequence-dependent penalty for a terminal base pair in a multiloop
loop context, Δ𝐺 terminalbp

𝑖+𝑘, 𝑗−𝑙 (𝜙) (dependent on the sequence of base pair 𝑖 + 𝑘 · 𝑗 − 𝑙), 4) the
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multi dangle

𝑅𝑚𝑑
Inter(𝑖, 𝑗 , 𝜙) ≡

⊕
𝑘∈{0,1}
𝑙∈{0,1}

{
𝐶1, 𝑖 + 𝑘 < 𝑚 and 𝑗 − 𝑙 ≥ 𝑛

0, otherwise

where 𝑚 = First(𝜂)
𝑛 = Last(𝜂)

𝐶1 ≡ 𝑄𝑏
𝑖+𝑘, 𝑗−𝑙 ⊗𝑊 (Δ𝐺

dangle
𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) + Δ𝐺

multi
bp + (𝑘 + 𝑙)Δ𝐺multi

nt + Δ𝐺 terminalbp
𝑖+𝑘, 𝑗−𝑙 (𝜙))

Figure S32: R𝑚𝑑
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.

sequence-dependent dangle stacking free energy Δ𝐺
dangle
𝑖,𝑖+𝑘, 𝑗−𝑙, 𝑗 (𝜙) which takes on one of four

values corresponding to the four dangle stacking states (see Figure S14). The index limits
in the recursion equation prevent a nick between a dangling nucleotide and the base pair on
which it stacks (i.e., no nick between 𝑖 and 𝑖 + 𝑘 , and no nick between 𝑗 and 𝑗 − 𝑙) to avoid
an exterior loop state (which is not handled by this multiloop recursion).

i

j

i

j

i

j

ed=
msms

m

m

multiloop

𝑅𝑚
Inter(𝑖, 𝑗 , 𝜙) ≡

⊕
𝑑∈Valid(𝑖, 𝑗 ,𝜂)

dot
(
𝑄𝑚

𝑖,𝑑
, 𝑄𝑚𝑠

𝑑+1, 𝑗

)
⊕ dot

(
𝑄𝑚𝑠

𝑒, 𝑗
,𝑊 (𝑛ntΔ𝐺

multi
nt )

)
where 𝑒 ≡ [𝑖 : First(𝜂)], 𝑛nt ≡ [0 : First(𝜂) − 𝑖 − 1]

(S65)

Figure S33: R𝑚
Inter recursion with coaxial and dangle stacking. Top: recursion diagram.

Bottom: recursion equation.
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R𝒎
Inter recursion with coaxial and dangle stacking. The 𝑅𝑏

Inter(𝑖, 𝑗 , 𝜙) recursion refer-
ences 𝑄𝑚 elements that are computed using either the 𝑅𝑚

Intra recursion of Figure S23 (if the
end points of the referenced subsequence are on the same strand), or the 𝑅𝑚

Inter recursion
of Figure S33 (if the end points of the referenced subsequence are on different strands).
𝑅𝑚

Inter(𝑖, 𝑗 , 𝜙) operates on a conditional ensemble for subsequence [𝑖, 𝑗] in a multiloop
context where 𝑖 and 𝑗 may or may not be paired (depicted with a dashed line between 𝑖 and
𝑗 in the recursion diagram) and where there is at least one stacking state in the subsequence.
This recursion distinguishes two cases that are combined using ⊕ in the recursion equation:

• One stacking state: the case where there is exactly one stacking state in subsequence
[𝑖, 𝑗] in a multiloop context. This stacking state starts at 𝑑 and ends in the interval
[𝑑 + 1, 𝑗] (depicted by a straight dashed line between 𝑑 and 𝑗); the contribution
of subsequence [𝑑, 𝑗] is incorporated by element 𝑄𝑚𝑠

𝑑, 𝑗
. Shading corresponds to

the recursion energy, Δ𝐺multi
nt , representing the penalty per unpaired nucleotide in a

multiloop (nucleotides 𝑖, . . . , 𝑑−1 for a total of 𝑑− 𝑖 unpaired nucleotides; as a result,
this term is zeroed out in the edge case where 𝑑 = 𝑖). Nucleotide 𝑑 must always be
on the first strand to ensure that there are no nicks in the subsequence [𝑖, 𝑑], which
would lead to either a disconnected structure (which is not permitted in the complex
ensemble) or an exterior loop state (which is not handled by this multiloop recursion).

• More than one stacking state: the case where there are two or more stacking states in
subsequence [𝑖, 𝑗] in a multiloop context. The 3′-most stacking state starts at 𝑒+1 and
ends in the interval [𝑒 + 2, 𝑗] (depicted by a straight dashed line between 𝑒 + 1 and 𝑗);
the contribution of subsequence [𝑒 + 1, 𝑗] is incorporated by element 𝑄𝑚𝑠

𝑒+1, 𝑗 . There
are one or more additional stacking states in the interval [𝑖, 𝑒] (the straight dashed
line denotes that 𝑖 and 𝑒 may or may not be paired); the contribution of subsequence
[𝑖, 𝑒] is incorporated by element 𝑄𝑚

𝑖,𝑒
. The shading does not represent any recursion

energies as all multiloop contributions are handled by other recursions: 1) there are
no terminal base pairs in a multiloop context explicitly defined in this case, 2) there
are no unpaired bases in a multiloop context explicitly defined in this case. To exclude
exterior loop states that are not treated by this multiloop recursion, the function Valid
returns the set of valid vectorization ranges for which nucleotides 𝑒 and 𝑒 + 1 are on
the same strand (i.e., such that 𝑒 and 𝑒 + 1 do not take on values that would place a
nick between them).
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S3 Evaluation algebras for each physical quantity

To calculate each physical quantity, the generic recursions of Section S2 are combined
with a quantity-specific evaluation algebra (summarized in Table 2.2). Here, we provide
additional details on the evaluation algebra abstraction, and on the definition of evaluation
algebras for different physical quantities.

An evaluation algebra defines the mathematical form of the generic operators that appear in
recursion equations. We define an evaluation algebra A to have the following properties:

1. 𝐷A is the domain of values in the evaluation algebra.

2. ⊕A is an operation yielding a combination of alternative conditional ensembles.
Thus, 𝑐 = 𝑎 ⊕A 𝑏 reflects the notion of “𝑐 contains either conditional ensemble 𝑎 or
conditional ensemble 𝑏.”

3. ⊗A is an operation that yields a composition of conditional ensembles. Thus, 𝑐 =

𝑎 ⊗A 𝑏 reflects the notion of “𝑐 contains both conditional ensemble 𝑎 and conditional
ensemble 𝑏.”

4. 0A is a value in 𝐷A that satisfies the concept of additive identity. Physically, 0A
represents an impossible substructure (i.e., a structural element that is not in the
complex ensemble).

5. 1A is a value in 𝐷A that satisfies the concept of multiplicative identity. Physically,
1A represents a structure in the free energy reference state.

6. 𝑊A is an operation that takes a free energy to a value in 𝐷A . Physically, 𝑊A
represents the weight on an individual substructure.

7. 𝑄A is an operation that yields a value in 𝐷A from an recursion element in the set of
all recursion elements Λ. 𝑄A is used to give the prior-calculated result over a given
conditional ensemble.

As such, an evaluation algebra may be classified as an algebraic semiring equipped with
two additional unary operators 𝑊 and 𝑄. We typically elide the dependence on A below
to simplify the notation. We now describe the definitions of these properties for evaluation
algebras corresponding to different physical quantities, treating the calculation of scalar
quantities in Section S3.1 and the calculation of quantities requiring structure generation in
Section S3.2.
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S3.1 Evaluation algebras for scalar outputs

S3.1.1 SumProduct: sum product evaluation algebra

Within evaluation algebraA = SumProduct, the partition function of an ensemble, 𝑄(𝜙),
is computed by taking the sum over products of Boltzmann factors.

𝐷 = R≥0

𝑎 ⊕ 𝑏 = 𝑎 + 𝑏
𝑎 ⊗ 𝑏 = 𝑎 · 𝑏

0 = 0

1 = 1

𝑊 (𝑔) = exp
(
−𝑔
𝑘𝐵𝑇

)
𝑄(𝜆) = 𝐴𝑖, 𝑗 where 𝜆 = (𝐴, 𝑖, 𝑗) and 𝐴 is the stored recursion matrix.

(S66)

Each expression in the algebra represents a Boltzmann factor, which is necessarily a non-
negative real number. An impossible structure maps to a Boltzmann factor of 0, whereas a
structure with a zero reference free energy maps to a Boltzmann factor of 1.

S3.1.2 Count: structure count evaluation algebra

Within evaluation algebra A = Count, the size of an ensemble, Γ or Γq, is computed by
taking the sum over products of subensemble sizes.

𝐷 = Z≥0

𝑎 ⊕ 𝑏 = 𝑎 + 𝑏
𝑎 ⊗ 𝑏 = 𝑎 · 𝑏

0 = 0

1 = 1

𝑊 (𝑔) = 1

𝑄(𝜆) = 𝐴𝑖, 𝑗 where 𝜆 = (𝐴, 𝑖, 𝑗) and 𝐴 is the stored recursion matrix.

(S67)

The only difference between Count and SumProduct is the definition of 𝑊 . While the
domain of Count is theoretically non-negative integers, it is still implemented using floating
point types to avoid integer overflow.
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S3.1.3 MinSum: minimum sum evaluation algebra

Within evaluation algebra A = MinSum, the free energy of the minimum free energy
(MFE) stacking state, Δ𝐺 (𝜙, 𝑠qMFE), is the minimum over sums of conditional ensemble
free energies.

𝐷 = R ∪ {∞}
𝑎 ⊕ 𝑏 = min(𝑎, 𝑏)
𝑎 ⊗ 𝑏 = 𝑎 + 𝑏

0 = ∞
1 = 0

𝑊 (𝑔) = 𝑔

𝑄(𝜆) = 𝐴𝑖, 𝑗 where 𝜆 = (𝐴, 𝑖, 𝑗) and 𝐴 is the stored recursion matrix.

(S68)

An impossible structure is assigned a free energy of∞.

S3.1.4 SplitExp: overflow-safe evaluation algebra

Here, we expand our description in Table 2.2 of the overflow-safe evaluation algebra A =

SplitExp. For exposition, that description was a simplification of the production evaluation
algebra, which must be implemented somewhat differently as we now discuss. The main
text description includes a free parameter 𝛾 representing the negative exponent of the output
variable. Each Boltzmann factor is then evaluated relative to 𝛾. Here, to factor out 𝛾, we lift
our evaluation algebra into a set of higher order functions. Thus, instead of each expression
being a pair of numbers, each expression is itself a function returning its associated mantissa
value and its offset exponent relative to the input 𝛾. We use the anonymous form of function
notation 𝑥 ↦→ 𝑦 to notate a function taking 𝑥 and returning 𝑦.
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𝐷 = Z ↦→ R≥0 × Z

𝑎 ⊕ 𝑏 = 𝛾 ↦→
(
𝑎m(𝛾) · 2𝑎e (𝛾) + 𝑏m(𝛾) · 2𝑏e (𝛾) , 0

)
𝑎 ⊗ 𝑏 = 𝛾 ↦→

(
𝑎m(𝑏e(𝛾)) · 𝑏m(𝛾), 𝑎e(𝑏e(𝛾))

)
0 = 𝛾 ↦→ (0, 0)
1 = 𝛾 ↦→

(
1, 𝛾

)
𝑊 (𝑔) = 𝛾 ↦→

(
exp

(
−𝑔
𝑘𝐵𝑇

)
, 𝛾

)
𝑄(𝜆) = 𝛾 ↦→

(
𝑀𝑖, 𝑗 , 𝐸𝑖, 𝑗 + 𝛾

)
where 𝜆 = (𝐴, 𝑖, 𝑗) and 𝑀, 𝐸 are the

stored recursion matrices for 𝐴 of mantissas and exponents, respectively.

(S69)

An element 𝑎 returns, as a function of 𝛾, the mantissa and exponent values expressed
respectively as 𝑎m(𝛾) and 𝑎e(𝛾). An element 𝑎 may be converted to the domain of
SumProduct using the transformation 𝑎m(𝛾)2𝑎e (𝛾)−𝛾. With infinite-precision arithmetic,
we can plug in any value 𝛾 ≡ 𝛾0 to perform a calculation. Using finite-precision arithmetic,
however, 𝛾 must be chosen judiciously to avoid floating point overflow. We describe our
method of choosing 𝛾0 below.

Addition works by aligning both expressions to the output exponent 𝛾 and then adding the
resultant mantissas. As the output mantissa has been aligned to 𝛾, the output shift exponent
is 0. For example, take 𝑎 = 1, 𝑏 = 𝑊 (𝑔0). Then

𝑎 ⊕ 𝑏 = (𝑎m(𝛾) · 2𝑎e (𝛾) + 𝑏m(𝛾) · 2𝑏e (𝛾) , 0),

=

(
1 · 2𝛾 + exp

(
−𝑔0
𝑘𝐵𝑇

)
· 2𝛾, 0

)
,

=
©­«2𝛾

(
1 + exp

(
−𝑔0
𝑘𝐵𝑇

))
, 0ª®¬ .

(S70)

Multiplication works by multiplying the mantissas and adding the exponents. The exponent
shift is applied to only one quantity; therefore, the shift is applied directly to 𝑏, the result of
which is propagated to 𝑎. (This choice of ordering could be inverted without changing the
output result.) For example, take 𝑎 = 𝑄𝑏

𝑝,𝑞, 𝑏 = 𝑄𝑚
𝑟,𝑠. Then

𝑎 ⊗ 𝑏 = (𝑎m(𝛾) · 𝑏m(𝛾) · 𝑀𝑚
𝑟,𝑠, 𝑎e(𝐸𝑚

𝑟,𝑠 + 𝛾)),
= (𝑀𝑏

𝑝,𝑞 · 𝑀𝑚
𝑟,𝑠, 𝐸

𝑏
𝑝,𝑞 + 𝐸𝑚

𝑟,𝑠 + 𝛾).
(S71)
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In our implementation, mantissa and exponent values of the same bit width are held in
separate arrays 𝑀 and 𝐸 for each recursion matrix. Single-precision floating point and
signed integers are used, such that the total storage cost of this method is identical to
running SumProduct in double precision. From the output expression of a given recursion
𝑅 in SplitExp, the following output numbers are calculated:

𝑚𝜆 = 𝑅m(𝜆, 𝜙) (𝛾0(𝜆))
𝑒𝜆 = 𝑅e(𝜆, 𝜙) (𝛾0(𝜆)) − 𝛾0(𝜆, 𝜙).

(S72)

Now, using the function frexp canonically defined such that frexpm(𝑥)2frexpe (𝑥) = 𝑥 and
either 1

2 ≤ frexpm(𝑥) < 1 or frexpm(𝑥) = frexpe(𝑥) = 0, the respective entry in the
recursion matrix is set via the following convention:

𝑀 (𝜆) ← frexpm(𝑚𝜆)
𝐸 (𝜆) ← frexpe(𝑚𝜆) + 𝑒𝜆.

(S73)

To prevent overflow from occurring, if an expression has a theoretical partition function of
𝑞, 𝛾0 should be relatively close to − log2 𝑞. Specifically, |𝛾0 + log2 𝑞 | should be less than the
maximum floating point exponent in the given arithmetic (128 for 32-bit precision, 1024
for 64-bit precision). For recursion element 𝜆 =

(
𝐴, 𝑖, 𝑗

)
, we choose 𝛾0 as follows from the

matrix 𝐸 containing the exponents of 𝐴:

𝛾0(𝜆) ≡ min
𝑖≤𝑑≤𝑒≤ 𝑗
(𝑑,𝑒)≠(𝑖, 𝑗)

−𝐸𝑑,𝑒

=


min

(
−𝐸𝑖+1, 𝑗 ,−𝐸𝑖, 𝑗−1

)
𝑖 < 𝑗

0 otherwise.

(S74)

In other words, 𝛾0 is based on the exponents of the two known adjacent elements in the
matrix. Although it possible to try multiple choices of 𝛾0 as a failsafe, in practice, the single
definition of 𝛾0 above is sufficient to avoid overflow from occurring for all test cases in our
validate suite (Section S7).
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S3.1.5 LogSum: log semiring evaluation algebra as alternative overflow-safe
approach

For completeness, we outline the possibility of using the log semiring LogSum to avoid
overflow in partition function computation. In this evaluation algebra, each quantity 𝑎

corresponds to quantity 2𝑎 in SumProduct. (The base-2 logarithm is used for computational
convenience.)

𝐷LogSum = R ∪ {−∞}
⊕LogSum(𝑎, 𝑏) = log2(2𝑎 + 2𝑏) = max(𝑎, 𝑏) + log2(2𝑎−max(𝑎,𝑏) + 2𝑏−max(𝑎,𝑏))
⊗LogSum(𝑎, 𝑏) = 𝑎 + 𝑏
0LogSum(𝑎, 𝑏) = −∞

1LogSum = 0

𝑊LogSum(𝑔) = −(𝑘𝑇 log 2)−1𝑔

𝑄(𝜆) = 𝐴𝑖, 𝑗 where 𝜆 = (𝐴, 𝑖, 𝑗) and 𝐴 is the stored recursion matrix.

(S75)

In practice, this evaluation algebra proved to be simpler but less efficient than SplitExp.
Within a given dot product of many contributions, first the maximum contribution must be
computed beforehand across all contributions, then the adjusted exponentiations of each
contribution must be calculated, and finally the exponentiations must be summed. Even
after optimization and vectorization, we found that LogSum was >2× more expensive than
SplitExp in partition function computations due to the need for floating point exponentiation
and two separate scans through the arrays of contributions.

S3.2 Evaluation algebras for structure generation

Structure generation conceptually yields specific secondary structures from a given weight-
ing on the ensemble Γ or Γq. In this case, because any given structure depends on only
a sparse subset of recursion matrix elements, a backtracking operation order is in general
more efficient than a forward pass iteration. Such an operation order jumps between re-
cursion elements in an opposite direction to that in the forward pass. To enable such an
approach, the recursion matrices in the forward pass must be computed beforehand (e.g.,
calculating the MFE before generating an ensemble of suboptimal structures or calculating
the partition function before Boltzmann sampling structures).

Here, we correspondingly distinguish between a forward evaluation algebra and a backtrack-
ing evaluation algebra. Whereas a forward evaluation algebra like SumProduct operates
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on a subset of R, we define a backtracking evaluation algebra to operate on a domain of
conditional ensembles which may be queried for a set of dependent recursion elements. This
ordering may be viewed as equivalent to the topological ordering of the directed acyclic
graph of computed quantities in a forward dynamic program (e.g., in Figure 2.8). In all
cases, any conditional ensemble 𝑠 containing a recursion element (𝑏, 𝑖, 𝑗) indicates that 𝑖 · 𝑗
is a base pair in 𝑠, a feature which is used to output final structures from the algorithm.
We next illustrate how a backtracking evaluation algebra may be defined with respect to the
associated forward evaluation algebra.

S3.2.1 Generic approach to structure generation

We start with a consideration of the simplest structure generation evaluation algebras. To
simplify the exposition, in Table 2.2 we defined evaluation algebras ArgRand to calculate
a single randomly sampled structure and ArgMin to determine the MFE stacking state,
𝑠qMFE, assuming it was unique. For a given element 𝑎, each evaluation algebra was defined
such that 𝑎 was a pair of scalar value 𝑎v and recursion element set 𝑎𝜆.

In Table 2.2, the operations on 𝑎v and 𝑏v in ArgRand duplicate the operations of
SumProduct, whereas the operations on 𝑎v and 𝑏v in ArgMin duplicate the operations of
MinSum. For ArgRand and ArgMin, the operations on 𝑎𝜆 and 𝑏𝜆 are the same for ⊗,
which represents the set union ∪ of recursion elements that occur in the same conditional
ensemble. However, the operations on 𝑎𝜆 and 𝑏𝜆 are different in the definition of ⊕, which
is responsible for attributing the scalar contribution 𝑎v ⊕ 𝑏v to an individual conditional
ensemble 𝑎𝜆 or 𝑏𝜆. In ArgRand, ⊕ yields a random weighted choice via

arg rand(𝑎, 𝑏) ≡
(
𝑎𝜆 if 𝒰(0, 𝑎v + 𝑏v) < 𝑎v else 𝑏𝜆

)
(S76)

where 𝒰 is the random uniform distribution function. In contrast, in ArgMin, ⊕ yields the
conditional ensemble which is lower in free energy via

arg min(𝑎, 𝑏) ≡ (𝑎𝜆 if 𝑎v < 𝑏v else 𝑏𝜆) . (S77)

Thus we can see that an intuitive approach for constructing a backtracking evaluation algebra
is to augment a corresponding forward evaluation algebra with customized operations for
structure attribution. We next describe the resulting definitions of ArgRand and ArgMin.



133

S3.2.2 ArgRand: single Boltzmann sample evaluation algebra

Within evaluation algebra A = ArgRand, each element 𝑎 is a pair of partition function
value 𝑎v and set of recursion elements 𝑎𝜆.

𝐷 = R≥0 ×𝒫 (Λ)
𝑎 ⊕ 𝑏 =

(
𝑎v + 𝑏v, arg rand(𝑎, 𝑏)

)
𝑎 ⊗ 𝑏 = (𝑎v · 𝑏v, 𝑎𝜆 ∪ 𝑏𝜆)

0 = (0,∅)
1 = (1,∅)

𝑊 (𝑔) =
(
exp

(
−𝑔
𝑘𝐵𝑇

)
,∅

)
𝑄(𝜆) =

(
𝑄SumProduct(𝜆), {𝜆}

)
.

(S78)

Operations on the first element, 𝑎v, are defined using SumProduct. The second element,
𝑎𝜆, is a set of recursion elements defining a restricted ensemble of conditional ensemble
compositions. The set of all possible sets of recursion elements 𝜆 is denoted as 𝒫 (Λ). Any
quantity that does not depend on the output of another recursion is thus assigned 𝑎𝜆 = ∅.

S3.2.3 ArgMin: unique MFE structure evaluation algebra

Within evaluation algebra A = ArgMin, each element 𝑎 is a pair of value 𝑎v and set of
recursion elements 𝑎𝜆.

𝐷 = R ∪ {∞} ×𝒫 (Λ)
𝑎 ⊕ 𝑏 =

(
min(𝑎v, 𝑏v), arg min(𝑎, 𝑏)

)
𝑎 ⊗ 𝑏 = (𝑎v + 𝑏v, 𝑎𝜆 ∪ 𝑏𝜆)

0 = (∞,∅)
1 = (0,∅)

𝑊 (𝑔) =
(
𝑔,∅

)
𝑄(𝜆) =

(
𝑄MinSum(𝜆), {𝜆}

)
.

(S79)

Operations on the first element, 𝑎v, are defined using MinSum. The second element,
𝑎𝜆, is a set of recursion elements defining a restricted ensemble of conditional ensemble
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compositions. The set of all possible sets of recursion elements 𝜆 is denoted as 𝒫 (Λ). Any
quantity that does not depend on the output of another recursion is thus assigned 𝑎𝜆 = ∅.

S3.2.4 Efficient structure generation via lazy evaluation

We derived more programmatically efficient evaluation algebras for generating and en-
semble of 𝐽 Boltzmann-sampled structures, Γsample(𝜙, 𝐽), or for generating a ensemble of
suboptimal structures, Γsubopt(𝜙,Δ𝐺gap). Note that MFE proxy structure(s) can be gener-
ated by setting Δ𝐺gap = 0. Here, we describe efficient evaluation algebras for ArgRandJ
and ArgMinGap that build upon ArgRand and ArgMin.

The simpler but less efficient algebras ArgRand and ArgMin yield full representations
of the chosen conditional ensembles, which are then enqueued by the respective operation
order algorithms. Our more efficient algorithms work by backtracking through a given
recursion element and enqueueing any combinations of recursion elements in conditional
ensembles that match a given criterion. The matching evaluation algebras incorporate the
enqueueing operation 𝜅 directly such that each piece of a conditional ensemble is enqueued
immediately as it is encountered. These evaluation algebras are similarly generic but operate
lazily on recursion elements (obviating storage of intermediate structures which might not
affect the final results).

We describe the ArgRandJ and ArgMinGap evaluations using a generic framework defined
with respect to a given forward algebra (SumProduct and MinSum, respectively). As in
Section S3.1.4, we make use of the anonymous form of function notation 𝑥 ↦→ 𝑦 to notate
a function taking 𝑥 and returning 𝑦. Formally, we define the enqueueing operation 𝜅

recursively as a function in 𝐷𝜅 ≡ (R,𝒫 (Λ)) ↦→ 𝐷𝜅; effectively, it may be viewed as an
iterator across each alternative conditional ensemble. Let B be the backtracking evaluation
algebra and A the forward algebra. Then we classify each expression in B as a closure
within 𝐷B ≡ 𝐷𝜅 ↦→ 𝐷𝜅 and denote a set of recursion elements as Λ𝑖 ∈ 𝒫 (Λ) below.

Within the evaluation algebra, addition of 𝑎 and 𝑏 intuitively represents the successive
iteration through multiple alternative structures 𝑎 and 𝑏. It may be defined formally as a
higher-order function that accomplishes functional composition:

⊕B (𝑎, 𝑏) = 𝜅 ↦→ 𝑏(𝑎(𝜅)). (S80)

Multiplication of 𝑎 and 𝑏 represents the independent combinations of conditional ensem-
bles from 𝑎 and 𝑏 being composed together–in effect, a lazily evaluated outer product of
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conditional ensembles within 𝑎 and 𝑏. It may be defined formally as the higher-order
function:

⊗B (𝑎, 𝑏) = 𝜅 ↦→ 𝑎
(
(𝑥1,Λ1) ↦→ 𝑏

(
(𝑥2,Λ2) ↦→ 𝜅

(
𝑥1 ⊗A 𝑥2,Λ1 ∪ Λ2

) ) )
. (S81)

The properties of commutativity and associativity are preserved for ⊕B and ⊗B so long
as 𝜅 is independent of the order of evaluation (i.e., 𝜅(𝑥1,Λ1) (𝑥2,Λ2) = 𝜅(𝑥2,Λ2) (𝑥1,Λ1)),
a property that is satisfied by all algorithms discussed here. The multiplicative identity
corresponds to a zero free energy structure, which is not dependent on any recursion
elements:

1B = 𝜅 ↦→ 𝜅(1A ,∅). (S82)

The additive identity is defined as the identity function, reflecting an impossible structure
by returning the enqueueing function unchanged:

0B = 𝜅 ↦→ 𝜅. (S83)

𝑊B brings a free energy parameter into the evaluation algebra domain, and is not dependent
on any recursion elements:

𝑊B (𝑔) = 𝜅 ↦→ 𝜅
(
𝑊A (𝑔),∅

)
. (S84)

Finally, the recursion matrix operator yields the forward algebra value and a singleton of its
associated recursion element:

𝑄B (𝜆) = 𝜅 ↦→ 𝜅
(
𝑄A (𝜆), {𝜆}

)
. (S85)

See Sections S4.4 and S4.6 for specifications of the enqueing function 𝜅 used in Boltzmann
sampling and suboptimal structure generation, respectively.
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S3.2.5 ArgRandJ: simultaneous Boltzmann sample evaluation algebra

The implemented evaluation algebra A = ArgRandJ that uses higher order functions
to accomplish lazy evaluation is a specialization of the generic structure generation al-
gebra (Section S3.2.4) for the associated forward evaluation algebra SumProduct. See
Section S4.4 for the definition of 𝜅.

𝐷 = 𝐷𝜅 ↦→ 𝐷𝜅

𝑎 ⊕ 𝑏 = 𝜅 ↦→ 𝑏(𝑎(𝜅))
𝑎 ⊗ 𝑏 = 𝜅 ↦→ 𝑎

(
(𝑥1,Λ1) ↦→ 𝑏

(
(𝑥2,Λ2) ↦→ 𝜅

(
𝑥1 · 𝑥2,Λ1 ∪ Λ2

) ) )
0 = 𝜅 ↦→ 𝜅

1 = 𝜅 ↦→ 𝜅(1,∅)

𝑊 (𝑔) = 𝜅 ↦→ 𝜅

(
exp

(
−𝑔
𝑘𝐵𝑇

)
,∅

)
𝑄(𝜆) = 𝜅 ↦→ 𝜅(𝑄SumProduct(𝜆), {𝜆}).

(S86)

To avoid overflow issues for large complexes, we extended the above evaluation algebra in
a similar fashion to that described in Section S3.1.4.

S3.2.6 ArgMinGap: suboptimal structure evaluation algebra

The implemented evaluation algebra A = ArgMinGap that uses higher order functions to
accomplish lazy evaluation is a specialization of the generic structure generation algebra
(Section S3.2.4) for the associated forward evaluation algebra MinSum. See Section S4.6
for the definition of 𝜅.

𝐷 = 𝐷𝜅 ↦→ 𝐷𝜅

𝑎 ⊕ 𝑏 = 𝜅 ↦→ 𝑏(𝑎(𝜅))
𝑎 ⊗ 𝑏 = 𝜅 ↦→ 𝑎

(
(𝑥1,Λ1) ↦→ 𝑏

(
(𝑥2,Λ2) ↦→ 𝜅

(
𝑥1 + 𝑥2,Λ1 ∪ Λ2

) ) )
0 = 𝜅 ↦→ 𝜅

1 = 𝜅 ↦→ 𝜅(0,∅)
𝑊 (𝑔) = 𝜅 ↦→ 𝜅(𝑔,∅)
𝑄(𝜆) = 𝜅 ↦→ 𝜅(𝑄MinSum(𝜆), {𝜆}).

(S87)
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S4 Operation orders for each physical quantity

S4.1 A partial order on recursion elements

Here, we describe novel operation orders that take advantage of the blockwise approach to
calculations in the multistranded ensemble (Figure S34). The resultant dependency graph
of recursion elements provides the main constraints in correctly handling calculations for a
given physical quantity. Let 𝜆 denote a recursion element such that it holds all of the non-
global information needed to address a recursion (e.g., 𝜆 could be represented as (𝑚, 2, 5)
for element 𝑄𝑚

2,5). We define a partial order on any two recursion elements 𝜆1, 𝜆2 such that
if (and only) if the definition of recursion 𝜆2 is dependent on that for 𝜆1, then 𝜆1 < 𝜆2.
We define this partial order as a lexicographical order on (1) the strand indices of the
recursions, (2) the subsequence indices of the recursions, and (3) the recursion types. In
other words, two recursions are to be compared based on their associated strand indices,
then their subsequence indices, then their recursion types.

Complex ABC
C

block

B 
block BC

block

ABC
block

AB
block

A 
block

B C

AB
BC

ABC

A 

a b
Caching

Caching

Caching
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Caching

Caching

Figure S34: Blockwise operation order. (a) Depiction of the blockwise approach. Strand
indices 𝑎 and 𝑏 are used in the pseudocode of Sections S4.2 and S4.3. (b) Dependency graph
for block evaluation: bottom to top for forward algorithms, top to bottom for backtracking
algorithms. Black circles denote locations in the forward algorithms where block results may
be cached to avoid recomputation. Analogous to a single stranded dynamic program, which
uses subproblems on subsequences of nucleotides, the multistranded dynamic program uses
subproblems on subsequences of strands.

Ordering on strand indices. We developed dynamic programming algorithms working
over subsequences of strands within a multistranded complex. Let 𝑎𝑥 and 𝑏𝑥 be the sorted
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strand indices of a given recursion element 𝜆𝑥 . Then we implement a partial order on two
recursion elements 𝜆1 and 𝜆2 by defining that 𝜆1 < 𝜆2 if (𝑎2 < 𝑎1 and 𝑏1 ≤ 𝑏2) or (𝑎2 = 𝑎1

and 𝑏1 < 𝑏2). For instance, if 𝑎1 = 2, 𝑏1 = 3, 𝑎2 = 1, and 𝑏2 = 3, then 𝜆1 < 𝜆2 because the
strand range [𝑎1 : 𝑏1] is nested within [𝑎2 : 𝑏2].

Ordering on subsequence indices. Next we incorporate an analogous partial order on
the subsequence indices of different recursion elements. We define the subsequence index
of a nucleotide as the index of its position within its strand. Let 𝑖𝑥 and 𝑗𝑥 be the sorted
subsequence indices of a given recursion 𝜆𝑥 . Then, if the strand indices of 𝜆1, 𝜆2 are equal,
we define that 𝜆1 < 𝜆2 if (𝑖2 < 𝑖1 and 𝑗1 ≤ 𝑗2) or (𝑖2 = 𝑖1 and 𝑗1 < 𝑗2). For instance, if (1)
the strand indices of 𝜆1 and 𝜆2 are equal, and (2) if 𝑖1 = 10, 𝑗1 = 30, 𝑖2 = 5, and 𝑗2 = 40,
then 𝜆1 < 𝜆2 because the nucleotide range [𝑖1 : 𝑗1] is nested within [𝑖2 : 𝑗2]. This ordering
mirrors the structure encountered with strand indices and is the historical order implicit in
dynamic programming algorithms working within a single-stranded ensemble.

Ordering on recursion types. Finally, we define an ordering on the recursion types of
different recursion elements. Let 𝑖 and 𝑗 be any fixed sequence indices. Then we define T
to be an ordered sequence of recursion types such that for any indices 𝑝 < 𝑞, the output
of recursion (T𝑝, 𝑖, 𝑗) is not dependent on that of (T𝑞, 𝑖, 𝑗). Next, if 𝑇1 and 𝑇2 are two
recursion types, then we define that 𝑇1 < 𝑇2 if and only if 𝑇1 appears before 𝑇2 in T. There
are multiple logically consistent sequences T which could be defined for a given set of
recursions. We implemented the following ones for the recursions of Section S2:

Tnostacking ≡ [𝑥, 𝑏, 𝑚𝑠, 𝑚, 𝑠,∅]
Tstacking ≡ [𝑥, 𝑏, 𝑚𝑑, 𝑚𝑐, 𝑚𝑐𝑠, 𝑚𝑠, 𝑐𝑑, 𝑠, 𝑚,∅, 𝑛]

(S88)

For example, consider the two recursion elements 𝜆1 ≡ (𝑏, 1, 5) (corresponding to 𝑄𝑏
1,5)

and 𝜆2 ≡ (𝑚, 1, 5) (corresponding to 𝑄𝑚
1,5). Then 𝜆1 < 𝜆2 because 𝑏 appears before 𝑚 in

T, no matter which set of recursions is used.

S4.2 Operation order for partition function, structure count, and MFE

Here, we describe the operation order for a block-based dynamic program over subcomplexes
used for partition function, structure count, and MFE. It relies on separate subroutines to
calculate triangular intrastrand blocks and rectangular interstrand blocks.
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ComplexDynamicProgram takes parameters A, the evaluation algebra, 𝜙, the sequence
of the complex for which to compute the partition function, and 𝐶, a map from sequences
to blocks in which to store and retrieve computed blocks. A may be one of SumProduct,
Count, MinSum, or SplitExp. The subroutine returns the complete block of dynamic
program results FullQ.

Algorithm S3: Blockwise operation order over subcomplexes.

ComplexDynamicProgram(A, 𝜙, 𝐶)
1 𝐿 = Number of Sequences(𝜙)
2 FullQ← EmptyBlock(Length(𝜙)) ⊲ Initialize all matrix storage
3
4 for 𝑙 ∈ [0 : 𝐿]
5 for 𝑎 ∈ [1 : 𝐿 − 𝑙]
6 𝑏 ← 𝑎 + 𝑙
7 if 𝜙𝑎,𝑏 ∈ 𝐶
8 ⊲ Take result for block from cache
9 FullQ𝑎,𝑏 ← 𝐶 [𝜙𝑎,𝑏]

10 else
11 if 𝑎 = 𝑏

12 ⊲ Calculate intrastrand block
13 FullQ𝑎,𝑎 ← IntraStrandDynamicProgram(A, 𝜙𝑎,𝑎)
14 else
15 ⊲ Calculate interstrand block
16 InterStrandDynamicProgram(A, 𝜙𝑎,𝑏, FullQ[𝑎:𝑏],[𝑎:𝑏])
17 ⊲ Put result for block into cache
18 𝐶 [𝜙𝑎,𝑏] ← FullQ𝑎,𝑏

19 return FullQ

The outermost element of FullQ corresponding to 𝑄1,𝑁 may be post-processed into the
target physical quantity as described in Section S5.
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Operation order for intrastrand blocks. We define the subsidiary operation order as
follows for a single-stranded subcomplex to return a fresh block 𝑄. No prior information
from other blocks is necessary. Iteration proceeds in a forward sweep as illustrated in
Figure 2.4.

Algorithm S4: Operation order for a triangular intrastrand block.

IntraStrandDynamicProgram(A, 𝜙)
1 𝑁 ← Length(𝜙)
2 for 𝑙 ∈ [1 : 𝑁]
3 for 𝑖 ∈ [1 : 𝑁 − 𝑙]
4 𝑗 ← 𝑖 + 𝑙 − 1
5 for 𝑇 ∈ T
6 ⊲ Calculate and store recursion output for 𝑄𝑇

𝑖, 𝑗

7 𝜆← (𝑇, 𝑖, 𝑗)
8 𝑄(𝜆) ← 𝑅Intra(𝜆, 𝜙)
9 return 𝑄

Operation order for interstrand blocks. We define the subsidiary operation order for a
multistranded subcomplex to update the parameter 𝑄 with the outermost block, given that
all subsidiary blocks are already calculated. For instance, in Figure S34a, InterStrand-
DynamicProgram would calculate the top-right block ABC using the prior calculations of
blocks A, B, C, AB, and BC.



141

Algorithm S5: Operation order for a rectangular interstrand block.

InterStrandDynamicProgram(A, 𝜙, 𝑄)
1 𝑁 ← Length(𝜙)
2 𝑏 ← Nicks(𝜙)
3 𝑚 ← First(𝑏) ⊲ index of first base on second strand
4 𝑛← Last(𝑏) ⊲ index of first base on last strand
5
6 ⊲ Iteration proceeds from lowest to highest 𝑙 ≡ 𝑗 − 𝑖 + 1
7 for 𝑙 ∈ [𝑛 − 𝑚 + 1 : 𝑁]
8 for 𝑖 ∈ [max(𝑙, 𝑛) − 𝑙 + 1 : min(𝑚, 𝑁 − 𝑙)]
9 𝑗 ← 𝑖 + 𝑙 − 1

10 for 𝑇 ∈ T
11 ⊲ Calculate and store recursion output for 𝑄𝑇

𝑖, 𝑗

12 𝜆← (𝑇, 𝑖, 𝑗)
13 𝑄(𝜆) ← 𝑅Inter(𝜆, 𝜙)
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S4.3 Operation order for equilibrium pair probability matrix

Here, we present the operation order for a block-based backtrack-free equilibrium pair prob-
ability algorithm (see Figure 2.14b). Symbols have the same meanings as in Section S4.2,
except FullQ is the block for the doubled sequence 𝜙′ instead of the input 𝜙. Similarly,
the 𝑄 and 𝑄𝑏 matrices in line 27 refer to the recursion matrices for 𝜙′. After the dynamic
programming algorithm the resultant 𝑄 and 𝑄𝑏 entries are post-processed into the pair
probabilities matrix as in equation (2.17). The output of the algorithm is the matrix 𝑃(𝜙),
such the 𝑃𝑖, 𝑗 (𝜙) is the equilibrium probability of base pair 𝑖 · 𝑗 in the distinguishable en-
semble Γ. It is interesting to note that the same operation order coupled with the MinSum
evaluation algebra can be used to calculate a matrix 𝐺 (𝜙) such that 𝐺𝑖, 𝑗 (𝜙) is the lowest
free energy of a stacking state containing base pair 𝑖 · 𝑗 .

The subroutine PartialInterStrandDynamicProgram behaves identically to InterStrand-
DynamicProgram but stops once 𝑙 in its outer recursion reaches 𝑁 ≡ Length(𝜙). This sav-
ing can take place because the backtrack-free pair probabilities methodology (Figure 2.14)
only requires results from element indices (𝑖, 𝑗) such that 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑁 .
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Algorithm S6: Operation order for backtrack-free pair probabilities.

PairProbabilities(A, 𝜙, FullQ, 𝐶)
1 𝐿 = Number of Sequences(𝜙)
2 𝜙′ = 𝜙 + 𝜙 ⊲ Concatenated sequence of 𝜙 with itself
3 FullQ← EmptyBlock(Length(𝜙′)) ⊲ Initialize all matrix storage
4
5 for 𝑙 ∈ [0 : 𝐿]
6 for 𝑎 ∈ [1 : 2𝐿 − 𝑙]
7 𝑏 ← 𝑎 + 𝑙
8 if 𝜙′𝑎,𝑏 ∈ 𝐶
9 ⊲ Take result from cache

10 FullQ𝑎,𝑏 ← 𝐶 [𝜙′𝑎,𝑏]
11 else
12 if 𝑎 = 𝑏

13 ⊲ Calculate intrastrand block
14 FullQ𝑎,𝑎 ← IntraStrandDynamicProgram(A, 𝜙′𝑎)
15 elseif 𝑙 < 𝐿

16 ⊲ Calculate interstrand block
17 InterStrandDynamicProgram(A, 𝜙′𝑎,𝑏, FullQ[𝑎:𝑏],[𝑎:𝑏])
18 else
19 ⊲ Calculate lower triangle of interstrand block
20 PartialInterStrandDynamicProgram(A, 𝜙′𝑎,𝑏, FullQ[𝑎:𝑏],[𝑎:𝑏] , 𝑁)
21 ⊲ Put results in cache
22 𝐶 [𝜙′𝑎,𝑏] ← FullQ𝑎,𝑏

23
24 Initialize 𝑁 × 𝑁 matrix 𝑃

25 for 𝑖 ∈ [1 : 𝑁]
26 for 𝑗 ∈ [1 : 𝑁] and 𝑗 ≠ 𝑖

27 𝑃𝑖, 𝑗 = 𝑄𝑏
𝑖, 𝑗
𝑄𝑏

𝑗,𝑁+𝑖𝑄
−1
1,𝑁 ⊲ same as Equation 2.17

28 𝑃𝑖,𝑖 = 1 −∑
1≤ 𝑗≤𝑁, 𝑗≠𝑖 𝑃𝑖, 𝑗

29 return 𝑃
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S4.4 Operation order for sampled structure generation

Here, we describe a new operation order for simultaneously Boltzmann sampling 𝐽 structures
with a worst-case time complexity 𝑂 (𝐽𝑁2) using the full interior loop model. Algorithm
illustrated in Figure S35 eliminates any recomputation of the same recursion element. A
priority queue is defined via the partial order on recursion element 𝜆 from Section S4.1
via the recursion type, strand indices, and sequence indices of 𝜆. The queue is initialized
with the single recursion element 𝑄1,𝑁 and the indices of the associated sampled structures
1, . . . , 𝐽 (i.e., all 𝐽 sampled structures that are to be generated). When an element is popped
from the priority queue, if 𝐽𝜆 of the sampled structures include this element, 𝐽𝜆 random
numbers are drawn and sorted. Next, each of 𝑁𝜆 conditional ensembles is traversed exactly
once, and each matching contribution is enqueued along with every index of a matched
structure. This procedure yields a subproblem complexity of 𝑂 (𝑁𝜆 + 𝐽𝜆 log 𝐽𝜆) compared
to 𝑂 (𝐽𝜆𝑁𝜆) for the same algorithm run 𝐽 times for a single sample (i.e., a sequential
approach).

...

...

...

...

c

a

d

b

Figure S35: Illustration of simultaneous sampling operation order. (a) The top recursion
element𝜆 is popped off the priority queue along with its associated structures 1,2,3. (b) If the
popped element 𝜆 is of type 𝑄𝑏

𝑑,𝑒
, a base pair between 𝑑 and 𝑒 is added to each associated

structure 1,2,3. (c) The evaluation algebra is invoked with 𝐽𝜆 = 3, randomly assigning
conditional ensembles to structures 1,2,3. (d) The recursion elements corresponding to
each conditional ensemble are added to the priority queue along with their associated
structures.

Algorithm S7 details the operation order for simultaneously generating 𝐽 secondary struc-
tures Boltzmann sampled from the ensemble of a complex of 𝑁 nucleotides with sequence
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𝜙. The ArgRandJ evaluation algebra is used to backtrack through each contribution to a
given recursion element. We achieve an 𝑂 (𝑁𝜆 + 𝐽𝜆 log 𝐽𝜆) in the subproblem of backtrack-
ing through a given recursion element 𝜆 (neglecting logarithmic factors; see the complexity
annotations in Step 4). The worst-case time complexity of the simultaneous sampling al-
gorithm is 𝑂 (𝐽𝑁2). Actual performance depends on the sequence of the complex. The
speedup from simultaneous sampling is expected to be greatest when the Boltzmann ensem-
ble is dominated by fewer conditional ensembles (e.g., when there is a deep well in the free
energy landscape, as for designed ensembles), so that a simultaneous sampling approach
avoids repeatedly sampling the same recursive elements, as would happen with a sequential
sampling approach. Empirical measurements of the complete algorithm complexity are
given in Section S6.6.3.
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Algorithm S7: Operation order for simultaneous structure sampling.

1. Initialize an array 𝐿 of 𝐽 secondary structures with no base pairs.

2. Initialize an empty priority queue P of pairs of recursion element 𝜆 and vector of
ordered structure indices ®𝑣.

3. Enqueue a pair of 𝜆 = (∅, 1, 𝑁) and ®𝑣 = [1 : 𝐽] into P.

4. While P is not empty:

a) 𝑶(1) cost: Dequeue the highest priority element 𝜆 and its respective indices ®𝑣
from P (Figure S35a).

b) Let 𝐽𝜆 be the length of ®𝑣.
c) 𝑶(𝑱𝝀) cost: If 𝜆 denotes any element 𝑄𝑏

𝑖, 𝑗
, add a base pair 𝑖 · 𝑗 in each structure

𝑠𝑙 for 𝑙 ∈ ®𝑣 (Figure S35b).
d) 𝑶(𝑱𝝀) cost: Initialize an array ®𝑤 of 𝐽𝜆 random numbers uniformly distributed

between 0 and 𝑄SumProduct(𝜆). 𝑄SumProduct(𝜆) is the matrix element value
obtained from the forward pass partition function calculation.

e) 𝑶(𝑱𝝀 log 𝑱𝝀) cost: Sort ®𝑤 and reorder ®𝑣 by the same permutation.
f) Initialize 𝑞 = 0 as the running sum of contributions and 𝑘 = 1 as the running

index.
g) Calculate the generator 𝐺 = 𝑅ArgRandJ(𝜆) (𝜅) in order to attribute conditional

ensemble contributions to the output structure indices ®𝑣 (Figure S35c). Essen-
tially, the generator achieves iteration over each possible conditional ensemble
contribution to 𝜆. For exposition, this may be achieved with the coroutine
𝜅(𝑥,Λ) which yields (𝑥,Λ) and returns 𝜅. In practice, the loop below was
programmatically implemented via a callback function.

h) For each of 𝑁𝜆 contributions (𝑥,Λ) in 𝐺 until 𝑘 > 𝐽𝜆:
i. Increment the accumulator 𝑞 ← 𝑞 + 𝑥.
ii. 𝑶(𝑱𝝀+𝑵𝝀) cost over all contributions: Find the remaining weights below

𝑞 by calculating 𝑘′ ← UpperBound( ®𝑤 [𝑘 : 𝑗], 𝑞). This may be done via
binary search.

iii. 𝑶(𝑱𝝀 log min(𝑱, 𝑵2)) cost over all contributions: For each element 𝜆
in Λ, enqueue (𝜆, ®𝑣 [𝑘 : 𝑘′ − 1]) into P (Figure S35d). If 𝜆 was already
present in P, concatenate the indices ®𝑣 of the two items.

iv. Update the running index 𝑘 ← 𝑘′.

5. Return 𝐿.
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S4.5 Operation order for interior loops in backtracking algorithms

We sample from the structural ensemble containing all interior loop states while achieving
an asymptotic upper bound of 𝑂 (𝑁2) for a single sample. The same argument may be
applied to determination of a unique MFE proxy structure, 𝑠MFE′ (see Section S4.6). As we
explain below, this complexity reduction is made possible by iterating through the interior
loop states in order from fewest to most unpaired nucleotides. The operation orders for
intrastrand recursions:

InteriorBacktrackIntra(𝑖, 𝑗 , 𝜙) ≡

⊕ 𝑗−𝑖−4

𝑧=10
⊕𝑧−5

𝑠=5 𝑄
𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙)), 𝑗 − 𝑖 ≥ 6

0, otherwise

where 𝑑 = 𝑖 + 𝑧 − 𝑠

𝑒 = 𝑗 − 𝑠

(S89)
and interstrand recursions:

InteriorBacktrackInter(𝑖, 𝑗 , 𝜙) ≡


⊕ 𝑗−𝑛+𝑚−𝑖

𝑧=10
⊕min(𝑧−5,𝑚−𝑖−1)

𝑟=max(5,𝑧− 𝑗+𝑛)

𝑄𝑏
𝑑,𝑒
⊗𝑊 (Δ𝐺 interior

𝑖,𝑑,𝑒, 𝑗
(𝜙)), 𝑖 < 𝑚 − 1, 𝑛 < 𝑗

0, otherwise

where 𝑑 = 𝑖 + 𝑟
𝑒 = 𝑗 + 𝑟 − 𝑧

𝑚 = First(𝜂)
𝑛 = Last(𝜂)

(S90)
contrast with the historical operation orders for interior loops, which consider all 5′ inner
bases 𝑑 in ascending order and then all 3′ inner bases 𝑒 compatible with each 𝑑, again in
ascending order (see equations (S47) and (S48)).

Note that like (S47) and (S48), the operation orders (S89) and (S90) result in 𝑂 (𝑁4)
forward-pass algorithms (see Section S2.4). This follows because for each closing pair 𝑖 · 𝑗 ,
we consider all 𝑂 (𝑛2) possible closing pairs 𝑑 · 𝑒, where 𝑛 = 𝑗 − 𝑖 + 1. However, the new
operation order nonetheless enables 𝑂 (𝑁2) single-sample performance, as we now show.

In the recursions for sampling the contributions to an element 𝑄𝑏
𝑖, 𝑗

, hairpin loops, exterior
loops, multiloops, and inextensible interior loops (including all bulge loops and stack loops)
are all sampled first. From the 𝑅𝑏 recursions in Figures S5, S10, S18, S27, one can see
there are either 𝑂 (1) or 𝑂 (𝑛) of these contribution types for a subsequence of length 𝑛.
There is only one hairpin loop, one stack loop, and 𝑂 (𝑛) bulge and inextensible interior



148

loops. While there are potentially more than 𝑂 (𝑛) multiloops consistent with 𝑖 · 𝑗 , they are
handled recursively and there are only 𝑂 (𝑛) contributions coming through 𝑄𝑚 elements.
Therefore, if only these states are sampled, the algorithm will only recurse into at most
𝑂 (𝑁) 𝑄𝑏 elements each costing at most 𝑂 (𝑁) for an over all complexity of 𝑂 (𝑁2) and we
would already have our bound.

So we limit ourselves to cases where at least one extensible interior loop is sampled. If
iteration proceeds through these interior loops in ascending order of number of unpaired
bases, each inner base pair 𝑑 · 𝑒 will be encountered at most once. To see this, assume
the extensible interior loop with base pair 𝑑 · 𝑒 is sampled. Then every previous base pair
𝑑′ · 𝑒′ iterated through in order to reach 𝑑 · 𝑒 will meet one of the following conditions:
𝑒′ − 𝑑′ > 𝑒 − 𝑑 or 𝑑′ < 𝑑 < 𝑒′ < 𝑒. The first case occurs for all interior loops with fewer
unpaired nucleotides than the loop bounded by base pair 𝑑 · 𝑒. The second case occurs for
all interior loops with the same number of unpaired nucleotides as the loop bounded by
base pair 𝑑 · 𝑒. In both cases, 𝜙𝑑′,𝑒′ is not a subsequence of 𝜙𝑑,𝑒 and the base pair 𝑑′ · 𝑒′

cannot appear in 𝜙𝑑,𝑒. Therefore, because (1) extensible interior loop contributions are only
considered after contributions that lead to an overall asymptotic upper bound of 𝑂 (𝑁2), (2)
base pairs bounding extensible loops are not considered more than once, and (3) there are a
total of 𝑂 (𝑁2) possible base pairs bounding extensible loops in a sequence of length 𝑁 , the
overall sampling algorithm scales as 𝑂 (𝑁2). This matches the asymptotic scaling of Ding
and Lawrence[3], while including the complete class of large interior loops, some of which
they exclude.
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S4.6 Operation order for suboptimal structure generation

In many cases, the core features of a complex ensemble may be summarized by its MFE
proxy structure(s) (2.10), 𝑠MFE′ , or the set of all stacking states below a given free energy
gap Γsubopt(𝜙,Δ𝐺gap) (2.11). The set Γsubopt(𝜙,Δ𝐺gap) can be equivalently viewed as the
set of structures corresponding to stacking states 𝑠q whose equilibrium probability 𝑝(𝜙, 𝑠q)
is at least 𝑝gap ≡ exp{−[Δ𝐺 (𝜙, 𝑠qMFE) + Δ𝐺gap]/𝑘𝑇}/𝑄(𝜙). Γsubopt(𝜙,Δ𝐺gap) is just the
MFE proxy structure(s), 𝑠MFE′ , when Δ𝐺gap = 0, and algorithmically we therefore focus on
calculation of Γsubopt(𝜙,Δ𝐺gap).

The program flow for determining suboptimal structures is controlled by a stack data
structure containing partial structures {𝑠}. Each partial structure 𝑠 represents all structures
consistent with a given set of elements that have energies below a free energy gap. It is
defined as a tuple of (1) a priority queue of recursion elements, (2) a free energy, and (3) a
list of base pairs.

Using Algorithm S8, structure generation proceeds by popping the highest priority element
𝜆 from the top partial structure 𝑠 on the stack. The appropriate recursion for the element
is used to iterate through the set of all alternate conditional ensemble contributions via
the ArgMinGap evaluation algebra. As for sampling, the InteriorBacktrackIntra
and InteriorBacktrackInter subroutines (Section S4.5) are used for the interior loop
recursions. For each alternate contribution falling below the given free energy gap, a new
partial structure 𝑠′ is generated from 𝑠. If a given contribution contained no elements and
the priority queue of 𝑠′ is empty, 𝑠′ is output as a complete structure; otherwise, 𝑠′ is pushed
on the stack. The algorithm begins by pushing a partial structure corresponding to 𝑄1,𝑁

onto the stack and proceeds until the stack is empty.

Using a stack data structure, the algorithm runs in a depth first manner to discover completed
structures as early as possible. This allows emitting completed structures in a streaming
fashion while additional structures are determined. The algorithm yields Γsubopt(𝜙,Δ𝐺gap)
from sequence 𝜙 of length 𝑁 ≡ |𝜙| with time complexity 𝑂 ( |𝐿 |𝑁2) for |𝐿 | suboptimal
structures within the specified energy gap. This bound reflects the worst-case of a set of |𝐿 |
structures that contain no common recursion elements. Each structure must then be inde-
pendently backtracked, incurring the worst-case 𝑂 (𝑁2) complexity bound of Section S4.5.
Because the number of structures returned, |𝐿 |, is sequence- and parameter-dependent and
potentially exponential in 𝑁 , we did not attempt to bound the time complexity further.
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Algorithm S8: Operation order for suboptimal structure generation.

1. Initialize empty stack S of partial structures and empty multiset 𝐿 of complete
structures.

2. Create parent partial structure 𝑠 containing just the element 𝜆 = (∅, 1, 𝑁) and push it
onto S.

3. While S is not empty:

a) Pop the first partial structure 𝑠 off of the stack S.
b) If there are no elements in 𝑠, it is complete, so add it to 𝐿 and continue the while

loop.
c) Otherwise, dequeue the first element 𝜆 from 𝑠.
d) Update the free energy of 𝑠 via 𝑠energy ← 𝑠energy − 𝑄MinSum(𝜆). 𝑄MinSum(𝜆) is

the matrix element value obtained from the forward pass MFE calculation.
e) If 𝜆 denotes any element 𝑄𝑏

𝑖, 𝑗
, add a base pair 𝑖 · 𝑗 in structure 𝑠.

f) Calculate the generator 𝐺 = 𝑅ArgMinGap(𝜆) (𝜅). Essentially, the generator
achieves iteration over each possible conditional ensemble contribution to 𝜆.
For exposition, this may be achieved with the coroutine 𝜅(𝑥,Λ) which yields
(𝑥,Λ) and returns 𝜅. In practice, the loop below was programmatically imple-
mented via a callback function.

g) For each contribution (𝑥,Λ) in 𝐺 where 𝑠energy + 𝑥 ≤ Δ𝐺gap + Δ𝐺 (𝜙, 𝑠qMFE):
i. Initialize a new partial structure 𝑠′ from 𝑠 by copying the priority queue and

list of base pairs from 𝑠 and setting its free energy to 𝑠′energy = 𝑠energy + 𝑥.
ii. For each element 𝜆′ ∈ Λ, enqueue 𝜆′ into the priority queue of partial

structure 𝑠′.
iii. Push 𝑠′ onto the stack S.

4. Return 𝐿.
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S5 Distinguishability issues

For a complex of 𝐿 strands, the ensemble Γ treats each strand as distinct while the ensemble
Γ treats strands with the same sequence as indistinguishable. Both ensembles have concep-
tual utility as they provide different perspectives when examining the physical properties
of a complex. In laboratory experiments, strands with the same sequence are typically
indistinguishable, so calculations over ensemble Γ are crucial for comparison to experi-
mental data (e.g., equilibrium secondary structure probabilities and equilibrium complex
concentrations). On the other hand, calculations over ensemble Γ can sometimes provide
information that is valuable precisely because it cannot be measured experimentally (e.g.,
equilibrium base-pairing probability matrix).

All of the dynamic programs described in the present work operate on ensemble Γ using
free energy model (2.1) where each strand is treated as distinct. This is a matter of
algorithmic necessity, as the free energy model (2.4) used for ensemble Γ contains a
symmetry correction that depends on the global rotational symmetry 𝑅 of each secondary
structure 𝑠 ∈ Γ. For efficiency reasons, the dynamic programs avoid explicitly enumerating
each structure, instead operating on local loop free energies to incorporating information
for multiple structures simultaneously while operating only on local loop free energies. As
a result, the dynamic programs cannot incorporate a different global rotational symmetry
correction for each structure because they never have access to global structural information.
However, to facilitate comparisons to experimental data, physical quantities calculated using
a dynamic program over ensemble Γ using physical model (2.1) can be post-processed to
obtain the corresponding physical quantities over ensemble Γ using physical model (2.4).
In the following sections, we outline the situation for each physical quantity treated in the
present work.

S5.1 Partition function

The partition function dynamic program calculates 𝑄(𝜙) = 𝑄1,𝑁 (for a complex with 𝑁

nucleotides) over ensemble Γ using free energy model (2.1) treating all strands as distinct.
The Distinguishability Correction Theorem of Dirks et al. [7] shows that this quantity can
be used to calculate the partition function 𝑄(𝜙) over ensemble Γ using physical model (2.4)
treating strands with the same sequence as indistinguishable. For convenience, we include
the associated definitions and proof[7] here to enable extension of this analysis to other
physical quantities.
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Consider a complex of 𝐿 strands with ordering 𝜋, where some of the strands may be
indistinguishable. Let G be the group of 𝑣(𝜋) cyclic permutations mapping each strand
to a strand of the same species. For example, 𝑣(𝜋) = 4 for 𝜋 = 𝐴𝐴𝐴𝐴, 𝑣(𝜋) = 3 for
𝜋 = 𝐴𝐵𝐴𝐵𝐴𝐵, and 𝑣(𝜋) = 2 for 𝜋 = 𝐴𝐵𝐴𝐴𝐵𝐴, 𝑣(𝜋) = 1 for 𝜋 = AAB, where the elements
of G correspond to all rotations of a polymer graph that map strands of type 𝐴→𝐴 and
strands of type 𝐵→𝐵. We term 𝑣(𝜋) the periodic strand repeat of the complex with ordering
𝜋.

For complexes in which all strands are distinct, 𝑣(𝜋) = 1. Complexes containing multiple
copies of the same strand species may have 𝑣(𝜋) > 1, in which case the calculated partition
function will be incorrect for ensemble Γ and free energy model (2.4) due to symmetry and
redundancy errors that are different for different structures in the ensemble. For example,
consider a complex with strand ordering 𝜋 = 𝐴𝐴𝐴𝐴 (Figure S36), that contains structures
with either a 1-fold (i.e., no symmetry), 2-fold, or 4-fold rotational symmetry. Each of these
cases will be treated incorrectly from the perspective of ensemble Γ and physical model
(2.4). Dirks et al. [7] show that the symmetry and redundancy errors interact in such a way
that they can be exactly and simultaneously corrected.

Consider an arbitrary secondary structure 𝑠 ∈ Γ. A permutation 𝑔 ∈ G acts on a secondary
structure 𝑠 by relabeling strand identifiers: 𝑔(𝑠) = {𝑖𝑔(𝑚) · 𝑗𝑔(𝑛) : 𝑖𝑚 · 𝑗𝑛 ∈ 𝑠}. The stabilizer
of 𝑠,G𝑠 = {𝑔 ∈ G : 𝑔(𝑠) = 𝑠}, is the set of cyclic permutations of strand identifiers (rotations
of the polymer graph) that map 𝑠 onto itself. The order of the rotational symmetry of the
physical complex with secondary structure 𝑠 is given by |G𝑠 |, requiring a correction of
+𝑘𝑇 log |G𝑠 | to the standard loop-based free energy.

The orbit of 𝑠 in G, G(𝑠) = {𝑔(𝑠) ∈ Γ : 𝑔 ∈ G}, is the subset of Γ corresponding
to the images of 𝑠 under the permutations of the group G. Note that the members of
G(𝑠) represent secondary structures within Γ that would be indistinguishable if the unique
identifiers were removed from strands of the same species. Consequently, the partition
function contribution of secondary structure 𝑠 ∈ Γ will be overcounted by a factor of |G(𝑠) |
because the dynamic program treats elements of the orbit as algorithmically distinct even
though they are physically indistinguishable.

The orbit-stabilizer theorem of group theory [8] provides the useful relationship

|G𝑠 | |G(𝑠) | = |G| = 𝑣(𝜋), ∀ 𝑠 ∈ Γ

linking the symmetry and redundancy effects. Crucially, the product |G𝑠 | |G(𝑠) | depends
only on the strand ordering 𝜋 and is independent of the specific secondary structure 𝑠 ∈ Γ.
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Figure S36: Example secondary structures and polymer graphs for a complex with strand
ordering 𝜋 =AAAA. The four strands have the same sequence and are distinct in ensemble
Γ (each with a unique identifier in {1,2,3,4}) but indistinguishable in ensemble Γ. The
partition function dynamic program operates on ensemble Γ. After completing a calcu-
lation, if the strand identifiers are conceptually removed with the goal of converting the
partition function 𝑄(𝜙) from ensemble Γ to the partition function 𝑄(𝜙) in ensemble Γ,
different structures in Γ have different rotational symmetries and different redundancies in
Γ. Structures with an 𝑅-fold rotational symmetry are missing a penalty of +𝑘𝑇 log 𝑅 to
the free energy model and hence are overweighted in the partition function by a factor of
𝑅. Structures with an 𝑆-fold redundancy are overcounted in the partition function by a
factor of 𝑆. (a) 1-fold (i.e., no) rotational symmetry; 4-fold redundancy (4 indistinguishable
structures as each stem plays the role of having 2 base pairs). (b) 2-fold rotational symmetry;
2-fold redundancy (2 indistinguishable structures as each opposing pair of stems plays the
role of having 2 base pairs). (c) 4-fold rotational symmetry; 1-fold (i.e., no) redundancy.

Theorem S5.1 (Partition Function Distinguishability Correction). For a complex with
strand ordering 𝜋, if the partition function dynamic program yields 𝑄(𝜙) for ensemble
Γ, then the partition function for ensemble Γ accounting for both symmetry and redundancy
corrections is 𝑄(𝜙) = 𝑄(𝜙)/𝑣(𝜋).

Proof . The partition function algorithm applied to ensemble Γ yields

𝑄(𝜙) =
∑︁
𝑠∈Γ

exp{−Δ𝐺 (𝜙, 𝑠)/𝑘𝑇}. (S91)
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The partition function for ensemble Γ is then

𝑄(𝜙) =
∑︁
𝑠 ∈ Γ

exp{−Δ𝐺 (𝜙, 𝑠)/𝑘𝑇}

=
∑︁
𝑠 ∈ Γ

exp{−(Δ𝐺 (𝜙, 𝑠) + 𝑘𝑇 log |G𝑠 |)/𝑘𝑇} (S92)

=
∑︁
𝑠 ∈ Γ

∑︁
𝜎∈G(𝑠)

1
|G(𝜎) | exp{−(Δ𝐺 (𝜙, 𝜎) + 𝑘𝑇 log |G𝜎 |)/𝑘𝑇} (S93)

=
∑︁
𝑠 ∈ Γ

1
|G(𝑠) | exp{−(Δ𝐺 (𝜙, 𝑠) + 𝑘𝑇 log |G𝑠 |)/𝑘𝑇} (S94)

=
1

𝑣(𝜋)
∑︁
𝑠 ∈ Γ

exp{−Δ𝐺 (𝜙, 𝑠)/𝑘𝑇} (S95)

=
𝑄(𝜙)
𝑣(𝜋) . (S96)

Thus, the symmetry and redundancy corrections combine to give a uniform factor 𝑣(𝜋)−1

that is independent of the structure 𝑠 ∈ Γ, enabling exact conversion of 𝑄(𝜙) into 𝑄(𝜙).

The partition function𝑄(𝜙) for ensemble Γ is suitable for calculating physical quantities that
will be compared to experimental measurements in which strands of the same species are
indistinguishable (e.g., equilibrium secondary structure probabilities 𝑝(𝜙, 𝑠) or equilibrium
complex concentrations 𝑥). The corresponding complex free energy is

Δ𝐺 (𝜙) = −𝑘𝑇 log𝑄(𝜙), (S97)

which should not be confused with Δ𝐺 (𝜙, 𝑠), the free energy of a single secondary structure
𝑠 ∈ Γ.

S5.2 Equilibrium secondary structure probability

In ensemble Γ treating all strands as distinct, the equilibrium probability of any secondary
structure 𝑠 ∈ Γ is:

𝑝(𝜙, 𝑠) = 1
𝑄(𝜙)

exp{−Δ𝐺 (𝜙, 𝑠)/𝑘𝑇} (S98)

where 𝑄(𝜙) is the partition function over ensemble Γ treating all strands as distinct and
Δ𝐺 (𝜙, 𝑠) is calculated using (2.1).
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In ensemble Γ treating strands with the same sequence as indistinguishable, the equilibrium
probability of any secondary structure 𝑠 ∈ Γ is:

𝑝(𝜙, 𝑠) = 1
𝑄(𝜙) exp{−Δ𝐺 (𝜙, 𝑠)/𝑘𝑇} (S99)

where 𝑄(𝜙) is calculated using (S96) and Δ𝐺 (𝜙, 𝑠) is calculated using (2.4).

The relationship between the probabilities in the two ensembles is given by:

𝑝(𝜙, 𝑠) = 1
𝑄(𝜙) exp{−Δ𝐺 (𝜙, 𝑠)/𝑘𝑇} (S100)

=
𝑣(𝜋)
𝑄(𝜙)

exp{−[Δ𝐺 (𝜙, 𝑠) + 𝑘𝑇 log |G𝑠 |]/𝑘𝑇} (S101)

=
𝑣(𝜋)
𝑄(𝜙)

∑︁
𝜎∈G(𝑠)

1
|G(𝜎) | exp{−[Δ𝐺 (𝜙, 𝜎) + 𝑘𝑇 log |G𝜎 |]/𝑘𝑇} (S102)

=
1

𝑄(𝜙)

∑︁
𝜎∈G(𝑠)

exp{−Δ𝐺 (𝜙, 𝜎)/𝑘𝑇} (S103)

=
∑︁

𝜎∈G(𝑠)
𝑝(𝜙, 𝜎) (S104)

(S105)

where the structures in the set G(𝑠) for 𝑠 ∈ Γ become redundant if the distinct identifiers
are removed from strands of the same species. Hence, 𝑝(𝜙, 𝑠) is the sum of the (identical)
probabilities 𝑝(𝜙, 𝑠) of these redundant structures.

S5.3 Equilibrium base-pairing probabilities

Using a bactrack-free dynamic program, the matrix of equilibrium base-pairing probabilities
𝑃(𝜙) is calculated over ensemble Γ using free energy model (2.1) treating all strands as
distinct. One may visualize a thought experiment in which all strands, all nucleotides, and
all base-pairs are distinct, with equilibrium base-pairing probabilities available for each of
these distinct base pairs. The probabilities in this matrix are not directly comparable to
experimental measurements in which strands of the same sequence are indistinguishable,
but nonetheless provide a valuable and detailed window into the complex ensemble.

Let

𝑝(𝑖1 · 𝑗2) (S106)
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denote the equilibrium probability for base-pair (𝑖1 · 𝑗2) with nucleotide 𝑖 of a strand with
identifier 1 pairing to nucleotide 𝑗 of a strand with identifier 2. Let

𝑝(𝑖1) (S107)

denote the equilibrium probability that base 𝑖 of a strand with identifier 1 is unpaired.

S5.4 Structure sampling

The simultaneous sampling algorithm Boltzmann samples a set of 𝐽 secondary structures

Γsample(𝜙, 𝐽) (S108)

from ensemble Γ using free energy model (2.1) treating all strands as distinct. Unlike the
equilibrium base-pairing probability matrix 𝑃(𝜙), by averaging or clustering the sampled
structures, it is possible to examine correlations between base pairs. As the number of
sampled structures increases, the average structural properties over the sampled set recover
the equilibrium base-pairing probability matrix:

𝑃(𝜙) = lim
𝐽→∞

1
𝐽

∑︁
𝑠∈Γsample

𝑆(𝑠). (S109)

A set of 𝐽 structures Γsample(𝜙, 𝐽) sampled from ensemble Γ where all strands are distinct
can be post-processed to generate a set of structures Γsample(𝜙, 𝐽) sampled from ensemble
Γ where strands with the same sequence are indistinguishable.

For ensemble Γ with free energy model (2.1), a structure 𝑠 ∈ Γ is Boltzmann sampled
with probability 𝑝(𝜙, 𝑠) by the sampling dynamic program, yielding an integer number of
samples 𝑛sample(𝜙, 𝑠) ∈ {0, . . . , 𝐽}. Conceptually, for ensemble Γ with free energy model
(2.4), a structure 𝑠 ∈ Γ would be Boltzmann sampled with probability 𝑝(𝜙, 𝑠). We have
previously derived the relationship (S104) between the equilibrium probabilities in the two
ensembles:

𝑝(𝜙, 𝑠) =
∑︁

𝜎∈G(𝑠)
𝑝(𝜙, 𝜎). (S110)

The equilibrium probability of a structure 𝑠 ∈ Γ is simply the sum of the equilibrium
probabilities of the structures 𝜎 ∈ G(𝑠) that are indistinguishable in ensemble Γ upon
removal of their unique identifiers. Hence, the sample count for Boltzmann sampling from
ensemble Γ with free energy model (2.1) is obtained by summing the sample counts for the
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structures 𝜎 ∈ G(𝑠) that are indistinguishable in ensemble Γ upon removal of their unique
identifiers:

𝑛sample(𝜙, 𝑠) =
∑︁

𝜎∈G(𝑠)
𝑛sample(𝜙, 𝜎). (S111)

S5.5 Equilibrium complex concentrations

Consider a test tube ensemble containing a set of strand speciesΨ0 interacting to form the set
of complex speciesΨ. To calculate the set of equilibrium concentrations 𝑥Ψ ≡ 𝑥𝑐 ∀𝑐 ∈ Ψ, we
first calculate the set of partition functions 𝑄Ψ using (S96). The complex concentrations 𝑥Ψ
(specified as mole fractions) are then the unique solution to the strictly convex optimization
problem [7]:

min
𝑥Ψ

∑︁
𝑐∈Ψ

𝑥𝑐 (log 𝑥𝑐 − log𝑄𝑐 − 1) (S112a)

subject to
∑︁
𝑐∈Ψ

𝐴𝑖,𝑐𝑥𝑐 = 𝑥0
𝑖 ∀𝑖 ∈ Ψ0. (S112b)

Here, 𝐴 is the stoichiometry matrix such that 𝐴𝑖,𝑐 is the number of strands of type 𝑖 in complex
𝑐 and 𝑥0

𝑖
denotes the total concentration of strand species 𝑖 in the test tube. Following Dirks

et al., [7], this problem is solved efficiently in the dual form as an unconstrained convex
optimization problem using a trust-region method with a Newton dog-leg step [16] using
Cholesky decomposition for the Newton matrix inversions.

S5.6 Ensemble pair fractions

If a complex contains some indistinguishable strands, distinguishability effects arise at the
secondary structure level in the form of rotational symmetry corrections and algorithmic
overcounting corrections (Section S5.1). New distinguishability issues arise when exam-
ining individual base pairs within these secondary structures [7]. For example, consider a
complex 𝜋 = 𝐴𝐴𝐵 involving two indistinguishable copies of strand 𝐴 (with identifiers 1
and 2) and one copy of strand 𝐵 (with identifier 3). Periodic strand repeat 𝑣(𝜋) = 1 so no
symmetry and overcounting corrections are required for any structure 𝑠 ∈ Γ. However, base
pairs (𝑖1 · 𝑗3) and (𝑖2 · 𝑗3) are indistinguishable since strands 1 and 2 are both of type 𝐴.
Likewise, without the global structural context, the inter- and intra-strand base pairs (𝑖1 · 𝑗2)
and (𝑖1 · 𝑗1) are also indistinguishable. Fortunately, the equilibrium base-pairing proba-
bilities calculated over ensemble Γ (Section S5.3) can be used to calculate base-pairing
observables that account for this indistinguishability.
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First, consider a complex in which strands with the same sequence are indistinguishable.
Let Θ be the set of strand species in the complex and {𝜃} be the set of all strand identifiers
corresponding to strands of type 𝜃 ∈ Θ (hence 𝐿 =

∑
𝜃∈Θ

��{𝜃}��). We define the expected
number of base pairs between base 𝑖 on strands of type 𝐴 ∈ Θ and base 𝑗 on strands of type
𝐵 ∈ Θ to be 𝐸 (𝑖{𝐴} · 𝑗{𝐵}) ∈ [0,min( |{𝐴}|, |{𝐵}|)]. For a given complex,

𝐸 (𝑖{𝐴} · 𝑗{𝐵}) =
∑︁

𝑙𝐴∈{𝐴}

∑︁
𝑙𝐵∈{𝐵}

𝑝(𝑖𝑙𝐴 · 𝑗𝑙𝐵)

represents a sum over the contributions of each type of distinct base pair, where each term
𝑝(𝑖𝑙𝐴 · 𝑗𝑙𝐵) is an equilibrium base-pairing probability (S106).

Now consider a test tube in which strands with the same sequence are indistinguishable. Let
Ψ0 denote the set of strand species that interact to form the set of complex species Ψ. For a
complex 𝑘 ∈ Ψ, let 𝐸𝑘 (𝑖{𝐴} · 𝑗{𝐵}) denote the expectation value that base 𝑖 of strand species
𝐴 ∈ Θ𝑘 pairs to base 𝑗 of strand species 𝐵 ∈ Θ𝑘 , where Θ𝑘 ⊆ Ψ0 denotes the set of strand
species that appear in complex 𝑘 . For a test tube ensemble at equilibrium, the expected
concentration of base pairs between base 𝑖 of strands of type 𝐴 and base 𝑗 of strands of type
𝐵 is

𝑥(𝑖𝐴 · 𝑗𝐵) =
∑︁
𝑘∈Ψ

𝑥𝑘𝐸𝑘 (𝑖{𝐴} · 𝑗{𝐵}).

For experimental studies, it is usually more convenient to measure the expected fraction of
𝐴 strands or 𝐵 strands that form this base pair:

𝑓𝐴 (𝑖𝐴 · 𝑗𝐵) = 𝑥(𝑖𝐴 · 𝑗𝐵)/𝑥0
𝐴 (S113)

𝑓𝐵 (𝑖𝐴 · 𝑗𝐵) = 𝑥(𝑖𝐴 · 𝑗𝐵)/𝑥0
𝐵, (S114)

respectively. These ensemble pair fractions are conceptually suitable for comparison to a
FRET experiment designed to measure formation of a base-pair between base 𝑖 of strands
of type 𝐴 with base 𝑗 of strands of type 𝐵.

Similarly, the concentration 𝑥(𝑖𝐴) of strand species 𝐴 ∈ Ψ0 with base 𝑖 unpaired is

𝑥(𝑖𝐴) = 𝑥0
𝐴 −

∑︁
𝐵∈Ψ0

𝑁𝐵∑︁
𝑗=1

𝑥(𝑖𝐴 · 𝑗𝐵),

and the fraction of 𝐴 strands that have base 𝑖 unpaired is

𝑓𝐴 (𝑖𝐴) = 𝑥(𝑖𝐴)/𝑥0
𝐴. (S115)

The total concentration of unpaired bases in solution is

𝑥unpaired =
∑︁
𝐴∈Ψ0

𝑥(𝑖𝐴) =
∑︁
𝑘∈Ψ

𝑥𝑘

𝑁𝑘∑︁
𝑗=1

𝑃 𝑗 , 𝑗 (𝜙𝑘 ) (S116)
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and the total fraction of unpaired bases in solution is

𝑓unpaired = 𝑥unpaired/
∑︁
𝐴∈Ψ0

𝑥0
𝐴𝑁𝐴. (S117)

The total fraction unpaired is conceptually suitable for comparison to an absorbance mea-
surement.

S5.7 MFE free energy and secondary structure

The MFE dynamic program returns the free energy of the MFE stacking state in ensemble
Γ using free energy model (2.1):

Δ𝐺 (𝜙, 𝑠qMFE). (S118)

Note that the MFE algorithm does not return the free energy of the MFE secondary structure
𝑠MFE but rather the free energy of the MFE stacking state 𝑠qMFE. This is a consequence of the
recursions operating on stacking state as the elementary state. The backtracking dynamic
program then returns the secondary structure

𝑠MFE′ = {𝑠 ∈ Γ|𝑠qMFE ∈ 𝑠, 𝑠
q
MFE(𝜙) = arg min

𝑠q∈Γq
Δ𝐺 (𝜙, 𝑠q)}. (S119)

that contains 𝑠qMFE within its subensemble. Thus, this structure is not the MFE secondary
structure, 𝑠MFE, but rather a proxy 𝑠MFE′ that contains 𝑠qMFE within its subensemble. The
free energy of this secondary structure can be cheaply evaluated in ensemble Γ using (2.1)
to yield Δ𝐺 (𝜙, 𝑠MFE′) or in ensemble Γ using (2.4) to yield Δ𝐺 (𝜙, 𝑠MFE′).

Because the recursions operate on stacking states as the elementary state, it is not clear how
to calculate the MFE free energy Δ𝐺 (𝜙, 𝑠MFE) and secondary structure 𝑠MFE for ensemble
Γ. As a result, there is also no starting point for post-processing these results to calculate
Δ𝐺 (𝜙, 𝑠MFE) or 𝑠MFE for ensemble Γ.

This situation is not entirely satisfactory. By definition, an MFE secondary structure has the
highest equilibrium probability, 𝑝(𝜙, 𝑠MFE), in structural ensemble Γ. However, 𝑝(𝜙, 𝑠MFE)
can nonetheless be arbitrarily small due to competition from other structures in Γ. For
ensembles where 𝑝(𝜙, 𝑠MFE) is non-negligible, an attractive alternative to the deterministic
approach is to use Boltzmann sampling to discover the MFE secondary structure. One
advantage of the random approach is that it determines MFE status based on secondary
structure 𝑠 rather than subensemble stacking state 𝑠q ∈ 𝑠.

Sampling is performed for ensemble Γ treating all strands as distinct. Suppose that the
identity of 𝑠MFE is unknown, as is its free energyΔ𝐺 (𝜙, 𝑠MFE) and its equilibrium probability
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𝑝(𝜙, 𝑠MFE). The probability, 𝑝fail, that a sample of 𝐽 structures does not include a structure
𝑠MFE that has probability 𝑝(𝜙, 𝑠MFE) ≥ 𝑝min is

𝑝fail ≤ (1 − 𝑝min)𝐽 . (S120)

Inverting this relationship, for a given 𝑝min, we can calculate the number of samples, 𝐽,
required to assure a failure probability no higher than 𝑝fail:

𝐽 ≥ log 𝑝fail
log(1 − 𝑝min)

≈ log 𝑝fail
−𝑝min

. (S121)

Because the dependence of 𝐽 on 𝑝fail is logarithmic, it is inexpensive to reduce 𝑝fail for fixed
𝑝min. For example, for 𝑝min = 0.01, we have 𝐽 ≥ 688 for 𝑝fail = 10−3 and 𝐽 ≥ 2750 for
𝑝fail = 10−12. However, the required number of samples is sensitive to the value of 𝑝min (the
assumed lower bound in the MFE probability). For example, holding 𝑝fail = 10−12 fixed, we
require 𝐽 ≥ 27, 618 samples for 𝑝min = 0.001 and 𝐽 ≥ 276, 297 samples for 𝑝min = 0.0001.
While that number of samples remains affordable using the new simultaneous sampling
algorithm (Figure 2.15), if the MFE probability becomes vanishingly small, the required
number of samples would grow too large to be practical. On the other hand, if the MFE
probability is vanishingly small, the MFE structure may not provide a useful summary
of the equilibrium base-pairing properties of the ensemble (in which case the equilibrium
base-pairing probability matrix 𝑃(𝜙) will continue to provide such a summary).

After sampling 𝐽 structures using the new simultaneous sampling method, let 𝑝MFE∗ denote
the highest probability of the sampled structures, and let 𝑠MFE∗ denote the MFE proxy struc-
ture determined by random sampling. The probability that there exists an (undiscovered)
MFE structure with 𝑝MFE ≥ 𝑝MFE∗ is bounded by

𝑝fail ≤ [1 − 𝑝(𝜙, 𝑠MFE∗)]𝐽 . (S122)

Hence, after sampling 𝐽 structures, it is straightforward calculate the probability that the
true MFE structure was not identified. If desired, additional samples can be performed to
increase 𝐽 (potentially identifying a higher 𝑝MFE∗) and further reduce the failure rate.

One of the other drawbacks of the deterministic approach of equations (2.9) and (2.10) is
that it does not treat ensemble Γ where strands with the same sequence are indistinguishable,
which is the circumstance for typical experimental measurements. However, the random
MFE algorithm can be applied using samples from ensemble Γ, in which case the a posteriori
failure bound (S122) is replaced by

𝑝fail ≤ [1 − 𝑝(𝜙, 𝑠MFE∗)]𝐽 . (S123)
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The MFE free energy Δ𝐺 (𝜙, 𝑠MFE∗) is then directly comparable to the complex free energy
Δ𝐺 (𝜙) (S97) for ensemble Γ with

Δ𝐺 (𝜙) ≤ Δ𝐺 (𝜙, 𝑠MFE∗). (S124)

See Section S6.7 for an empirical comparison of deterministic and random algorithms in
calculating the MFE free energy and secondary structure.
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S6 Additional studies

Except where otherwise noted, computational studies were performed for ensemblestacking
with parameters rna95 (Section S1.5) for RNA at 37 °C in 1 M Na+, subject to two historical
modifications: 1) G·U wobble pairs are prohibited as terminal base pairs in exterior loops
and multiloops, and 2) terminal mismatch free energies are replaced by two dangle stacking
free energies in exterior loops and multiloops (see equation (S55). All benchmarks were run
on AWS EC2 C5 instances using a single computational core (3.0 GHz Intel Xeon Platinum
processors with 72 GB of memory, except 144 GB for of memory for figures involving
complexes containing 30,000 nt).

S6.1 Comparison of predictions to structure databases

One approach to evaluating the quality of secondary structure models is make predictions for
databases of structures drawn from comparative sequence analysis and/or tertiary structure
measurements [1, 12]. Here, were compare the complex ensembles nostacking and
stacking for two RNA parameter sets rna95 and rna06 using the “Archive II” structure
database from Reference [12] and the “SSTRAND” structure database from Reference [1].
The free energy parameters in the models we are testing were regressed based on experiments
in 1M Na+. By contrast, the database structures reflect a range of experimental conditions.
As a result, it is unclear whether improvements in the free energy model (loop free energy
parameter sets) and/or the structural ensemble (stacking/no stacking) in modeling RNA in
1M Na+ should be expected to yield convergence to database reference structures. For
this reason, we draw no conclusions, but nonetheless document comparisons between
predictions and database structures to serve as a reference (Table A.2). We calculated three
quantities:

• the normalized complex ensemble defect [6, 25]

1 − 𝑁−1
∑︁

1 ≤ 𝑖 ≤ 𝑁

1 ≤ 𝑗 ≤ 𝑁

𝑃
𝑖, 𝑗 (𝜙) 𝑆𝑖, 𝑗 (𝑠∗) ∈ (0, 1)

representing the equilibrium fraction of nucleotides that are paired differently over
the complex ensemble relative to the database structure. Here, 𝑁 is the number of
nucleotides, 𝑃(𝜙) is the calculated base-pairing probability matrix, and 𝑆(𝑠∗) is the
structure matrix corresponding to the database structure 𝑠∗.



163

• the normalized MFE defect [25]

1 − 𝑁−1
∑︁

1 ≤ 𝑖 ≤ 𝑁

1 ≤ 𝑗 ≤ 𝑁

𝑆𝑖, 𝑗 (𝑠MFE′) 𝑆𝑖, 𝑗 (𝑠∗) ∈ [0, 1]

representing the fraction of nucleotides in the MFE proxy structure 𝑠MFE′ that are
paired differently relative to the database structure 𝑠∗.

• the F-measure [12]
2𝑞𝑟
𝑞 + 𝑟 ∈ [0, 1]

representing the harmonic mean of the precision 𝑞 (the fraction of pairs in the predicted
𝑠MFE′ that are in the database structure 𝑠∗) and the sensitivity 𝑟 (the fraction of pairs
in the database structure 𝑠∗ that are in the predicted 𝑠MFE′).

Note that at equilibrium, a sequence will adopt an ensemble of secondary structures.
However, the structure database typically records only a single structure per sequence.
The MFE defect and F-measure similarly represent the computed equilibrium structural
ensemble using a single MFE proxy structure 𝑠MFE′ . Hence, these two quantities are
comparing one representative structure to another, potentially neglecting non-negligible
contributions by other structures in the ensemble.
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a
Parameters Structural ensemble Ensemble defect MFE defect F-measure

rna06 nostacking 0.492 0.479 0.476
stacking 0.450 0.448 0.525

rna95 nostacking 0.393 0.372 0.598
stacking 0.422 0.393 0.568

b
Parameters Structural ensemble Ensemble defect MFE defect F-measure

rna06 nostacking 0.463 0.452 0.479
stacking 0.433 0.427 0.513

rna95 nostacking 0.406 0.392 0.556
stacking 0.386 0.370 0.583

Table A.2: Comparison of predictions to structure databases. (a) “Archive II” database
from Reference [12] (excluding pseudoknotted structures). (b) “SSTRAND” database from
Reference [1]. Calculations performed for RNA at 37°C in 1 M Na+ using either the rna95
or rna06 parameter sets with either the nostacking or stacking structural ensemble.
Ensemble defect and MFE defect approach 0 as predictions approach a database structure.
F-measure approaches 1 as predictions approach a database structure.

S6.2 Empirical dependence of ensemble size on complex size

We performed calculations to measure the number of secondary structures, |Γ(𝜙) |, and
stacking states, |Γq(𝜙) |, for a set of complexes with random sequences. Empirically,
|Γ(𝜙) | and |Γq(𝜙) | grow exponentially with the number of nucleotides in the complex
(Figure S37). Least-squares linear regressions on the log-linear data yielded the fits |Γ(𝜙) | =
0.00156 · 1.770𝑁 (𝑟 = 0.9999994) and |Γq(𝜙) | = 0.00650 · 2.023𝑁 (𝑟 = 0.9999996). Note
that these results are sequence-dependent (e.g., 𝜙 = AAAAA... will have an ensemble size
of |Γ(𝜙) | = 1 independent of complex size).
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Figure S37: Empirical dependence of ensemble size on complex size. Each complex
comprises 3 random RNA strands of equal length. Each data point represents the mean over
10 replicates with different sequences.
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S6.3 Empirical dependence of partition function on complex size

We use our overflow-safe partition function algorithm (with evaluation algebra SplitExp) to
calculate partition functions of both random complexes of 3 strands and designed duplexes
to determine for what complex sizes overflow is predicted to occur using a non-overflow-
safe partition function algorithm (corresponding to evaluation algebra SumProduct) with
different floating point formats (single, double, and quad precision). For the designed
duplexes, NUPACK was used to reduce the complex ensemble defect below 1% [23, 25].
Relative to random sequences, the designed sequences result in a deeper well on the free
energy landscape and a larger partition function for a given complex size (Figure S38).
Least-squares linear regression of log-linear data yielded the fits: log𝑄 = 0.5146𝑁 −7.305
(𝑟 = 0.999986) for random complexes and log𝑄 = 1.5614𝑁 − 4.266 (𝑟 = 0.999993) for
designed duplexes. Based on the maximum representable values with different floating point
formats, random complexes are predicted to overflow at 187 nt, 1,393 nt, and 22,080 nt with
single, double, and quad precision, respectively. The designed duplexes were predicted to
overflow at 58 nt, 456 nt, and 7,275 nt with single, double, and quad precision, respectively.
Without the overflow-safe evaluation algebra, edge-case sequences such as the repeating
sequence 𝜙 = GGG...CCC... have been observed to cause overflow at sequence sizes
as low as 4,500 nt using quadruple precision. Figure S39 displays example MFE proxy
structures for random and designed sequences; the designed sequence has a larger partition
function with nucleotides that adopt the depicted base-pairing state with higher probability
on average.
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Figure S38: Dependence of partition function on complex size for random and designed
sequences. (a) Partition function on a log scale vs complex size on a linear scale (log-linear
data). (b) Same data plotted as log of the partition function on a log scale vs complex size
on a log scale (loglog-log data). The thresholds for overflow using different float point
formats are plotted as dashed lines, demonstrating that the overflow-safe algebra enables
calculations for larger complexes. Solid lines of best fit in panel (a) are plotted as solid
curves in panel (b). Each random complex comprises 3 RNA strands of equal length. Each
designed duplex comprises 2 RNA strands of equal length. Each data point represents a
mean over 5 replicate sequences.
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a

b

Figure S39: Example MFE proxy structures for random and designed sequences. a)
Random sequence. Left: MFE proxy structure 𝑠MFE′ for a 3 × 300 nt trimer, partition
function 𝑄(𝜙) = 1.537 · 10187, complex free energy Δ𝐺 (𝜙) = −265.6 kcal/mol. Right:
nucleotide defect with respect to 𝑠MFE′ . b) Designed sequence: MFE proxy structure 𝑠MFE′

for a 3 × 300 nt trimer, partition function 𝑄(𝜙) = 2.092 · 10279, complex free energy
Δ𝐺 (𝜙) = −396.4 kcal/mol. Right: nucleotide defect with respect to 𝑠MFE′ . Nucleotide
defect relative to 𝑠MFE′ represents the probability that a given nucleotide does not adopt the
depicted MFE base-pairing state.
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S6.4 Relative cost of partition function, equilibrium pair probability, and MFE cal-
culations

The cost of calculating the partition function, 𝑄(𝜙), equilibrium pair probability matrix,
𝑃(𝜙), and MFE, Δ𝐺 (𝜙, 𝑠qMFE) are profiled using 𝑂 (𝑁3) dynamic programs in Figure S40.
Relative to the partition function, the MFE algorithm is comparable for small complexes
and up to ≈ 4× faster for large complexes due to the use of the overflow-safe evaluation
algebra for the partition function. The pair probabilities algorithm is roughly 2× the cost
of the partition function algorithm, except for a spike to ≈ 3× at complex sizes around the
threshold for when the overflow-safe evaluation algebra turns on for the pair probabilities
algorithm.
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Figure S40: Relative cost of partition function, equilibrium pair probability, and MFE
calculations. (a) Computational cost. (b) Relative cost of MFE and pair probability
calculations to partition function calculations. Each complex comprises 3 RNA strands
with random sequences of equal length. Each data point represents a mean over 5 replicate
sequences.
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S6.5 Speed and scalability of partition function calculations with different floating
point formats and evaluation algebras

Figure S41 demonstrates the relative cost of performing partition function calculations
with single-precision or double-precision floats using the non-overflow-safe SumProduct
evaluation algebra, the overflow-safe SplitExp evaluation algebra, and the overflow-safe
production implementation that dynamically switches from single-precision, to double-
precision, to overflow-safe as required by the calculation. The overflow-safe evaluation
algebra is roughly 2× slower than single-precision and double-precision floats, but enables
calculations for larger complexes. The production approach transitions between the different
costs as the complex size increases.
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Figure S41: Speed and scalability of partition function calculations with different floating
point formats and evaluation algebras. (a) Computational cost. (b) Cost relative to the
production algorithm. Each complex comprises 3 RNA strands with random sequences of
equal length. Each data point represents a mean over 5 replicate sequences.
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S6.6 Performance of simultaneous vs sequential structure sampling

Here, we compare the cost of sequential vs simultaneous Boltzmann-sampling a set of
𝐽 structures from a complex ensemble. The reported computation times do not include
calculation of the partition function, which must precede structure sampling. We performed
studies with complexes of either random sequences (Section S6.6.1) or designed sequences
(Section S6.6.2) and then estimated the empirical algorithm complexities (Section S6.6.3).
Speedups using simultaneous sampling are expected to increase for free energy landscapes
characterized by a deep well due to the avoidance of sequentially resampling the same
structural elements from the well. Hence, we would expect the typical speedup for designed
sequences to be greater than for random sequences. For random sequences, the speedup
using simultaneous vs sequential sampling is 7-10× for 𝐽 = 103 samples and 10-24× for
𝐽 = 104 samples. For designed sequences, the speedup using simultaneous vs sequential
sampling is 9-34× for 𝐽 = 103 samples and 11-55× for 𝐽 = 104 samples. Because these
designed complexes were generated using the MFE proxy structures of random sequences
as the target structure for sequence design, they do not have particularly deep free energy
wells compared to typical designed sequences (for example, these target structures will
contain duplexes as short as 1 bp). As a result, the relative performance for simultaneous
vs sequential sampling should increase even more for typical engineered complexes.

S6.6.1 Structure sampling for random complexes

Each random complex comprises 3 RNA strands with random sequences of equal length
(ranging from 10 to 3000 nt each). Ten sets of replicate sequences were used for each
complex size. For each complex, 𝐽 structures were sampled (ranging from 101 to 106

structures). The computational cost of sampling 𝐽 structures is plotted for each replicate in
Figure S42. The mean speedup using simultaneous vs sequential sampling is plotted across
complex sizes in Figure S43 and across number of samples in Figure S44.
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Figure S42: Cost of simultaneous and sequential structure sampling for random complexes
for different numbers of samples 𝐽 ∈ 101, . . . , 106. 𝐽 structures are sampled for each of 10
replicate sets of sequences per complex size. Each data point represents the sampling time
for one replicate. Lines represent univariate regressions (see Section S6.6.3).
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Figure S43: Sampling cost as a function of complex size (𝑁) for random complexes. (a)
Cost of simultaneous and sequential sampling. Each data point represents the mean over all
replicates for a given complex size. (b) Speedup using simultaneous vs sequential sampling.
Each data point represents the ratio of means.
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Figure S44: Sampling cost as a function of number of samples (𝐽) for random complexes.
(a) Cost of simultaneous and sequential sampling. Each data point represents the mean
over all replicates for a given complex size. (b) Speedup using simultaneous vs sequential
sampling. Each data point represents the ratio of means. Not that for sufficiently large 𝐽, the
cost of sorting becomes significant, lessening the speedup of the simultaneous approach.
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S6.6.2 Structure sampling for designed complexes

Each designed complex comprises 3 RNA strands with sequences of equal length (ranging
from 10 to 3000 nt each). The sequences for a given designed complex were obtained
by calculating the MFE proxy structure for a random complex, and then using that as the
target structure for sequence design and reducing the complex ensemble defect below 1%
[23, 25]. Ten sets of replicate sequences were used for each complex size. For each complex,
𝐽 structures were sampled (ranging from 101 to 106 structures). The computational cost
of sampling 𝐽 structures is plotted for each replicate in Figure S45. The mean speedup
using simultaneous vs sequential sampling is plotted across complex sizes in Figure S46
and across number of samples in Figure S47.
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Figure S45: Cost of simultaneous and sequential structure sampling for designed complexes
for different numbers of samples 𝐽 ∈ 101, . . . , 106. 𝐽 structures are sampled for each of 10
replicate sets of sequences per complex size. Each data point represents the sampling time
for one replicate. Lines represent univariate regressions (see Section S6.6.3)
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Figure S46: Sampling cost as a function of complex size (𝑁) for designed complexes. (a)
Cost of simultaneous and sequential sampling. Each data point represents the mean over all
replicates for a given complex size. (b) Speedup using simultaneous vs sequential sampling.
Each data point represents the ratio of means.
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Figure S47: Sampling cost as a function of number of samples (𝐽) for designed complexes.
(a) Cost of simultaneous and sequential sampling. Each data point represents the mean
over all replicates for a given complex size. (b) Speedup using simultaneous vs sequential
sampling. Each data point represents the ratio of means. Not that for sufficiently large 𝐽, the
cost of sorting becomes significant, lessening the speedup of the simultaneous approach.
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S6.6.3 Empirical complexity estimates

Here, we measure empirical complexities for the sequential and simultaneous Boltzmann
sampling algorithms using the random and designed complexes from Sections S6.6.1 and
S6.6.2. Table A.3 uses bivariate least-squares linear regression to estimate the complexities
with respect to 𝑁 and 𝐽. For sequential sampling, the empirical complexity is ∼ 𝐽1.0𝑁1.3

for both random and designed complexes (the complexity in 𝐽 is close to 1 because the
calculation is just a repetition of a single sample 𝐽 times). For simultaneous sampling,
the empirical complexity is ∼ 𝐽0.8𝑁1.2 for random complexes and ∼ 𝐽0.8𝑁1.1 for designed
complexes. Tables A.4 and A.5 use univariate least squares linear regressions to estimate
the complexity with respect to 𝐽 for fixed 𝑁 and the complexity with respect to 𝑁 for fixed
𝐽.

Sequences Method 𝛼𝑁 𝛼𝐽 𝑃 (s) 𝑟-value

Random Sequential 1.2893 0.9913 2.190e-07 0.9982
Random Simultaneous 1.1876 0.7806 3.437e-07 0.9902
Designed Sequential 1.3126 0.9946 1.934e-07 0.9979
Designed Simultaneous 1.1323 0.8094 2.799e-07 0.9848

Table A.3: Bivariate least-squares linear regression of sampling complexity. The fit is
parametrized as log𝑇 ≈ 𝛼𝑁 log 𝑁 + 𝛼𝐽 log 𝐽 + log 𝑃 such that 𝑇 ≈ 𝑃𝑁𝛼𝑁 𝐽𝛼𝐽 , with 𝑁 the
number of nucleotides in the complex, 𝐽 the number of samples, 𝑇 the computation time in
seconds, 𝛼𝑁 the complexity in 𝑁 , 𝛼𝐽 the complexity in 𝐽, and 𝑃 the prefactor. For sequential
sampling, 𝛼𝐽 is close to 1 because the calculation is simply a repetition of a single sample
𝐽 times.
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Complexes Method 𝑁 𝛼𝐽 𝑃 (s) 𝑟-value

Random Sequential 30 0.9879 2.608e-05 0.9998
Random Sequential 90 0.9974 6.706e-05 0.9999
Random Sequential 300 0.9932 2.410e-04 0.9998
Random Sequential 900 0.9977 9.204e-04 0.9993
Random Sequential 3000 0.9818 7.578e-03 0.9994
Random Sequential 9000 0.9899 3.816e-02 0.9996

Random Simultaneous 30 0.7975 2.444e-05 0.9881
Random Simultaneous 90 0.8253 4.854e-05 0.9925
Random Simultaneous 300 0.8158 1.807e-04 0.9881
Random Simultaneous 900 0.8105 6.520e-04 0.9914
Random Simultaneous 3000 0.7316 7.078e-03 0.9900
Random Simultaneous 9000 0.7031 3.734e-02 0.9916

Designed Sequential 30 0.9899 2.522e-05 0.9996
Designed Sequential 90 0.9973 6.533e-05 0.9998
Designed Sequential 300 0.9961 2.549e-04 0.9994
Designed Sequential 900 0.9969 9.643e-04 0.9996
Designed Sequential 3000 0.9922 7.679e-03 0.9979
Designed Sequential 9000 0.9949 4.098e-02 0.9988

Designed Simultaneous 30 0.8374 1.456e-05 0.9860
Designed Simultaneous 90 0.8586 3.029e-05 0.9879
Designed Simultaneous 300 0.8524 1.023e-04 0.9854
Designed Simultaneous 900 0.8306 4.288e-04 0.9858
Designed Simultaneous 3000 0.7570 3.662e-03 0.9759
Designed Simultaneous 9000 0.7207 1.914e-02 0.9737

Table A.4: Univariate least-squares linear regression of sampling complexity in 𝐽 The fit
is parametrized as log𝑇 ≈ 𝛼𝐽 log 𝐽 + log 𝑃 for fixed values of 𝑁 such that 𝑇 ≈ 𝑃𝐽𝛼𝐽 , with
𝑁 the number of nucleotides in the complex, 𝐽 the number of samples, 𝑇 the computation
time in seconds, 𝛼𝐽 the complexity in 𝐽, and 𝑃 the prefactor. For sequential sampling, 𝛼𝐽

is close to 1 because the calculation is simply a repetition of a single sample 𝐽 times.
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Complexes Method 𝐽 𝛼𝑁 𝑃 (s) 𝑟-value

Random Sequential 101 1.2878 2.104e-06 0.9921
Random Sequential 102 1.2855 2.063e-05 0.9929
Random Sequential 103 1.2856 2.047e-04 0.9930
Random Sequential 104 1.2870 2.032e-03 0.9929
Random Sequential 105 1.2872 2.029e-02 0.9930
Random Sequential 106 1.2870 2.034e-01 0.9930

Random Simultaneous 101 1.3117 9.975e-07 0.9848
Random Simultaneous 102 1.2836 5.124e-06 0.9896
Random Simultaneous 103 1.2288 3.453e-05 0.9931
Random Simultaneous 104 1.1360 3.800e-04 0.9960
Random Simultaneous 105 1.0526 5.910e-03 0.9983
Random Simultaneous 106 1.0575 7.958e-02 0.9992

Designed Sequential 101 1.3032 1.996e-06 0.9906
Designed Sequential 102 1.3111 1.853e-05 0.9914
Designed Sequential 103 1.3130 1.826e-04 0.9915
Designed Sequential 104 1.3142 1.809e-03 0.9916
Designed Sequential 105 1.3145 1.806e-02 0.9916
Designed Sequential 106 1.3145 1.805e-01 0.9916

Designed Simultaneous 101 1.2708 6.636e-07 0.9866
Designed Simultaneous 102 1.1939 4.066e-06 0.9908
Designed Simultaneous 103 1.0799 5.096e-05 0.9954
Designed Simultaneous 104 1.0315 5.403e-04 0.9981
Designed Simultaneous 105 1.0074 7.228e-03 0.9990
Designed Simultaneous 106 1.0420 8.692e-02 0.9991

Table A.5: Univariate least-squares linear regression of sampling complexity in 𝑁 . The fit
is parametrized as log𝑇 ≈ 𝛼𝑁 log 𝑁 + log 𝑃 for fixed values of 𝐽 such that 𝑇 ≈ 𝑃𝑁𝛼𝑁 , with
𝑁 the number of nucleotides in the complex, 𝐽 the number of samples, 𝑇 the computation
time in seconds, 𝛼𝑁 the complexity in 𝑁 , and 𝑃 the prefactor.
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S6.7 Comparison of deterministic vs random MFE proxy structure estimation

Here, we compare the empirical performance of the deterministic and random approaches for
estimating the MFE secondary structure over a complex ensemble with coaxial and dangle
stacking subensembles (see Section S5.7). For recursions with coaxial and dangle stacking,
the deterministic approach of using of the MinSum and ArgMin evaluation algebras yields
the deterministic MFE proxy structure, 𝑠MFE′ , that contains the MFE stacking state 𝑠qMFE
within its subensemble (this is not guaranteed to be the MFE secondary structure 𝑠MFE).
Alternatively, with the random approach, the random MFE proxy structure, 𝑠MFE∗ , is the
lowest free energy structure encountered within a random sample of 𝐽 structures from the
complex ensemble.

Comparisons are made for RNA sequences designed for the “multistranded engineered test
set” of Reference [25] comprising target structures randomly assembled from duplex and
loop sizes representative of the nucleic acid nanotechnology literature. Five independent
sequence designs with ensemble defect≤ 1% were designed for each of 30 target structure for
complex sizes 𝑁 ∈ {100, 200, 400, 800, 1600, 3200}. MFE proxy structures were calculated
using deterministic and random approaches for each of the 150 structures per complex size
(using 𝐽 = 105 samples for the random approach)

For this test set, the two methods typically yield proxy structures with similar free energies
for smaller structures but the deterministic approach yields proxy structures with lower free
energies as the complex ensemble gets larger (Figure S48ab). The equilibrium probability
of the MFE proxy structure drops as the complex size increases (Figure S48cd), reducing the
probability that the random approach discovers the true MFE for a fixed number of samples.
Nonetheless, the MFE proxy structures generated by the two methods are structurally
similar, having a median normalized base-pairing distance (defined below) that increases
with complex size up to ≈1.5% for complexes with 3200 nt (Figure S48e). Note that the free
energy of the MFE proxy structure, Δ𝐺 (𝜙, 𝑠MFE′), is typically substantially lower than the
free energy of the MFE stacking state, Δ𝐺 (𝜙, 𝑠qMFE), indicating that the MFE stacking state
does not typically dominate the other stacking states in the subensemble of the secondary
structure to which it contributes (Figure S48f).

The normalized base-pairing distance between two secondary structures, 𝑠1 and 𝑠2, contain-
ing 𝑁 nucleotides each is the fraction of nucleotides paired differently in the two structures
[25]:

𝑑 (𝑠1, 𝑠2) = 1 − 1
𝑁

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑆𝑖, 𝑗 (𝑠1)𝑆𝑖, 𝑗 (𝑠2). (S125)
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Here, 𝑆(𝑠) is the structure matrix with entries defined as follows:

𝑆𝑖, 𝑗 (𝑠) ≡


1 𝑖 ≠ 𝑗 and structure 𝑠 contains base pair 𝑖 · 𝑗

1 𝑖 = 𝑗 and base 𝑖 is unpaired in structure 𝑠

0 otherwise.

(S126)

Hence 𝑆(𝑠) is symmetric, the row sums of the augmented 𝑆(𝑠) matrix are unity, and
0 ≤ 𝑑 (𝑠1, 𝑠2) ≤ 1.

a

b

c

f

e

d

Figure S48: Comparison of deterministic vs random MFE proxy structure estimation.
Each data point represents median ± median absolute deviation for 150 sequences per
complex size. (a) Free energies of MFE proxy structures: deterministic (Δ𝐺 (𝜙, 𝑠MFE′))
and random (Δ𝐺 (𝜙, 𝑠MFE∗). (b) Residuals from panel (a). (c) Equilibrium probability of
the deterministic MFE proxy structure. (d) Equilibrium probability of the random MFE
proxy structure. (e) Normalized base-pairing distance (S125) between the deterministic and
random MFE proxy structures. (f) Comparison of structure free energy Δ𝐺 (𝜙, 𝑠MFE′) and
stacking state free energy Δ𝐺 (𝜙, 𝑠qMFE) for deterministic MFE proxy structures.
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S7 Validation

Here, we summarize the unit tests (Section S7.1) and regression tests (Section S7.2) used
to validate the unified dynamic programming framework. Tests involving comparisons to
enumerated quantities use the exhaustive enumeration algorithms described in Section S7.3.

S7.1 Unit tests

Over 100 C++ and Python unit tests were run via continuous integration on a dedicated
JetBrains TeamCity server, comprising𝑂 (107) test case assertions in total. Unless otherwise
noted, unit tests for RNA employed rna95 parameters and unit tests for DNA employed
dna04 parameters.

• Individual loop free energies. Test example loop free energies for all loop types vs
manual calculations, including contributions from dangles and coaxial stacking, for
each current parameter set (rna95, rna06, dna04).

• Secondary structure enumeration. Check structure counts, partition functions,
and MFEs using 𝑂 (𝑁3) algorithms vs enumerated calculations, with wobble pairs
on and off, for single and multiple random strands of DNA and RNA, with the
recursions corresponding to any of the complex ensembles (stacking, nostacking,
none-nupack3, some-nupack3, all-nupack3).

• Partition functions and counts with coaxial and dangle stacking. Check that
𝑂 (𝑁3) algorithms for the stacking complex ensemble match vectorized and unvec-
torized reference Python implementations of pseudocode for partition function and
count for single and multiple random strands of DNA and RNA.

• Overflow-safe evaluation algebra. Check that overflow-safe partition function
agrees with non-overflow variants for each complex ensemble (stacking, nostacking,
none-nupack3, some-nupack3, all-nupack3), for single and multiple random
strands of DNA and RNA.

• Consistency between data types. Verify that all results are equal for partition
function calculations on complexes of up to 4 random RNA strands, using both
𝑂 (𝑁4) and 𝑂 (𝑁3) algorithms, for the following algorithms that transition between
floating point formats to achieve overflow-safe performance: (1) 32 bit → 32 bit
overflow-safe, (2) 32 bit→ 64 bit overflow-safe, (3) 64 bit→ 32 bit overflow-safe,
(4) 32 bit→ 64 bit non-overflow-safe→ 32 bit overflow-safe. Perform this test for



182

each complex ensemble (stacking, nostacking, none-nupack3, some-nupack3,
all-nupack3).

• Consistency when using caching methodology for multistranded calculations.
Verify consistency of block caching used in multistranded algorithm for pair proba-
bility and partition function for random RNA strands, 𝑂 (𝑁3) and 𝑂 (𝑁4) algorithms,
caching on and off, different orders of evaluations of requested complexes, on ran-
dom sequences and edge cases we found during development. Perform this test for
each complex ensemble (stacking, nostacking, none-nupack3, some-nupack3,
all-nupack3).

• Boltzmann sampled structure generation. Estimate equilibrium structure probabil-
ities and equilibrium base-pairing probability matrix from Boltzmann-sampled struc-
tures and check convergence to exact values as the number of samples increases. Per-
form this test for each complex ensemble (stacking, nostacking, none-nupack3,
some-nupack3, all-nupack3) on single and multiple random strands of RNA.

• Comparisons of different complexity algorithms. Check that 𝑂 (𝑁3) and 𝑂 (𝑁4)
algorithms agree for structure counts and partition functions. Perform this test for
each complex ensemble (stacking, nostacking, none-nupack3, some-nupack3,
all-nupack3) on single and multiple random strands of RNA.
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S7.2 Regression tests

Regression tests were performed by comparing to results calculated using NUPACK 3.2.2
for historical complex ensembles and parameters sets supported by NUPACK 3.

• Individual secondary structure free energies. Test structure free energies vs
NUPACK 3 for single and multiple random strands, wobble pairs on and off, ran-
dom temperatures, historical complex ensembles (none-nupack3, some-nupack3,
all-nupack3), and historical parameter sets (rna95-nupack3, dna04-nupack3,
rna99-nupack3).

• Necklace generation. Test necklace generation for rotationally distinct strand order-
ings up to (|Ψ0 | = 10 strand species, 𝐿max = 4 strands per complex) vs NUPACK 3.
Check that the number of free energies returned via dynamic programs is equal to the
number of necklaces requested.

• Partition functions and counts compared to NUPACK 3. Check that structure
counts and partition functions agree with NUPACK 3, for historical complex ensem-
bles (none-nupack3, some-nupack3, all-nupack3), for historical parameter sets
(rna95-nupack3, dna04-nupack3, rna99-nupack3), for wobble pairs on and off,
for single and multiple random strands of RNA and DNA.

• Comparison with NUPACK 3 for different parameter sets. Check that structure
counts and partition functions agree with NUPACK 3 for single and multiple random
strands, for random temperatures, random concentrations of Na+ (RNA or DNA) and
Mg++ (DNA only), historical complex ensembles (none-nupack3, some-nupack3,
all-nupack3), and historical parameter sets (rna95-nupack3, dna04-nupack3,
rna99-nupack3).

• MFE structures. Check agreement with NUPACK 3 for single and multiple random
strands of RNA and DNA, for historical ensembles (none-nupack3, some-nupack3,
all-nupack3), for historical parameter sets (rna95-nupack3, dna04-nupack3,
rna99-nupack3), for wobble pairs on and off.

• Equilibrium base-pairing probability matrices. Check matrices vs NUPACK 3 for
single and multiple random strands of RNA and DNA, for historical complex ensem-
bles (none-nupack3, some-nupack3, all-nupack3), for historical parameter sets
(rna95-nupack3, dna04-nupack3, rna99-nupack3), for wobble pairs on and off.
Test additional historical edge case sequences.
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• Suboptimal and MFE structures. Check that generated structures for single
and multiple random strands of DNA and RNA are identical to NUPACK 3 for 0
and 0.4 kcal/mol energy gaps, for historical complex ensembles (none-nupack3,
some-nupack3, all-nupack3), for historical parameter sets (rna95-nupack3,
dna04-nupack3, rna99-nupack3), for wobble pairs on and off. Test additional
historical edge case sequences.

• Equilibrium concentrations. Check convergence and solution accuracy vs NU-
PACK 3 concentration solver using partition functions of random RNA complexes,
random DNA complexes, and isolated edge cases that were found not to converge
well in earlier versions of the code.
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S7.3 Exhaustive enumeration algorithms

Here, we provide pseudocode for exhaustive enumeration algorithms that are used to help
validate𝑂 (𝑁4) and𝑂 (𝑁3) dynamic programs on complexes that are small enough to permit
exhaustive enumeration. Exhaustive enumeration is performed for a complex ensemble
without coaxial and dangle stacking (Section S7.3.1), for enumeration of the coaxial and
dangle stacking subensemble for a single secondary structure (Section S7.3.2), and for a
complex ensemble with coaxial and dangle stacking (Section S7.3.3).

S7.3.1 Enumeration of complex ensemble without coaxial and dangle stacking
subensembles

This pseudocode enumerates all possible secondary structures for a given complex ensemble
(strand ordering) in a recursive manner. The implementation is chosen for its simplicity
(rather than its efficiency), and relies on imposing a total ordering on base pair indices (𝑖, 𝑗)
via the function CompareBasePair. EnumerateSecondaryStructures is a generator
function that yields all possible secondary structures by delegating to the inner generator
function EnumerateHigherStructures. EnumerateSecondaryStructures yields all
possible secondary structures including potentially disconnected structures that are not part
of the complex ensemble. Any disconnected structures are removed in post-processing.
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Algorithm S9: Enumeration of all secondary structures consistent with sequence 𝜙.

CompareBasePair(𝑝, 𝑝′)
1 𝑖, 𝑗 ← 𝑝

2 𝑖′, 𝑗 ′← 𝑝′

3 return 𝑖 < 𝑖′ or (𝑖 = 𝑖′ and 𝑗 < 𝑗 ′)

EnumerateSecondaryStructures(𝜙)
1 𝑁 ← Length(𝜙)
2 𝑠← UnpairedStructure(𝑁)
3 𝑝 ← (0, 0)
4 EnumerateHigherStructures(𝜙, 𝑠, 𝑝)

EnumerateHigherStructures(𝜙, 𝑠, 𝑝)
1 𝑁 ← Length(𝜙)
2 for 𝑖 ∈ [1 : 𝑁]
3 for 𝑗 ∈ [𝑖 + 1 : 𝑁]
4 𝑝′← (𝑖, 𝑗)
5 if CanPair(𝜙, 𝑖, 𝑗) and CompareBasePair(𝑝, 𝑝′)
6 𝑠′← AddBasePair(𝑠, 𝑝′)
7 EnumerateHigherStructures(𝜙, 𝑠′, 𝑝′)
8 Yield 𝑠
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S7.3.2 Enumeration of coaxial and dangle stacking subensemble for a single
secondary structure

Stacking states are constructed hierarchically from a given secondary structure by first
finding all coaxial stacking states (without dangles) for each loop and then finding all
dangle stacking states consistent with each coaxial stacking state. The top-level function
EnumerateStackingStatesForStructure is a generator function that yields all possible
stacking states for a given secondary structure and sequence. EnumerateStackingStates-
ForStructure does this by delegating to the function EnumerateLoopStackingStates,
that yields all stacking states for a given loop within the secondary structure. Enumer-
ateLoopStackingStates relies on the function GetValidMasks, that returns a list of
all possible coaxial stacking states within the loop (neglecting dangles) and the function
GetLoopStackingStates, that yields all stacking states for a loop consistent with a given
coaxial stacking state.

The function Product takes a list of generators (or lists), 𝐺, and returns a tuple of elements,
one from each generator (or list). This approach lazily generates all tuples from the cartesian
product of the sets generated by each generator in 𝐺. (equivalent to a nested “for” loop with
|𝐺 | levels of nesting).

The function Type returns the type of loop (“hairpin,” “stack,” “bulge,” “interior,” “multi” or
“exterior”). The function Subsequences splits the sequences of the loop into subsequences
between the base pairs and nicks. For example, in a multiloop with base pairs 𝑖 · 𝑗 , 𝑑 · 𝑒,
and 𝑓 · 𝑔 with 𝑖 < 𝑑 < 𝑒 < 𝑓 < 𝑔 < 𝑗 , the function returns the list of subsequences
[𝜙[𝑖:𝑑] , 𝜙[𝑒: 𝑓 ] , 𝜙[𝑔: 𝑗]]. In an exterior loop with 𝑎 on the 3′ side of the nick and 𝑏 on the 5′

side of the nick and base pairs 𝑖 · 𝑗 and 𝑑 ·𝑒 with 𝑎 < 𝑖 < 𝑗 < 𝑑 < 𝑒 < 𝑏, the function returns
the list of subsequences [𝜙[𝑎:𝑖] , 𝜙[ 𝑗 :𝑑] , 𝜙[𝑒:𝑏]]. For each region of the loop, its stacking state
is indicated with a number: 0 for no nucleotides stacking, 1 for a coaxial stack between the
two adjacent base pairs, 3 for the 3′-most nucleotide stacking on the 3′ base pair, 5 for the
5′-most nucleotide stacking on the 5′ base pair, and 8 for the 3′-most nucleotide stacking on
the 3′ base pair and the 5′-most nucleotide stacking on the 5′ base pair (if these are distinct
nucleotides).

For a given subsequence, the function Before returns true if: (1) a base pair 5′-adjacent
to the given subsequence is involved in a coaxial stack, or (2) there is a nick 5′-adjacent to
the given subsequence. For a given subsequence, the function After returns true if: (1) a
base pair 3′-adjacent to the given subsequence is involved in a coaxial stack, or (2) there is a
nick 3′-adjacent to the given subsequence. These properties: (1) prevent nucleotides from



188

dangle stacking on a base pair that is already in a coaxial stack, and (2) prevent nucleotides
adjacent to a nick from being included in invalid dangle states.

The function CoaxAdjacent returns true if a base pair either 5′- or 3′-adjacent to the given
subsequence is involved in a coaxial stack. The function NickAdjacent returns true if there
is a nick either 5′- or 3′-adjacent to the given subsequence.

Algorithm S10: Enumeration of all stacking states for a given sequence 𝜙 and secondary
structure 𝑠.

EnumerateStackingStatesForStructure(𝜙, 𝑠)
1 𝐺 ← [ ]
2 for 𝑙 ∈ Loops(𝑠)
3 Append(𝐺,EnumerateLoopStackingStates(𝜙, 𝑙))
4 for [𝜔] ∈ Product(𝐺) ⊲ [𝜔] is a list of stacking states within each loop in 𝑠

5 𝑠q ← StackingState(𝑠, [𝜔])
6 Yield(𝑠q)

Algorithm S11: Enumeration of all stacking states for a given sequence 𝜙 and loop 𝑙. If
the loop is not an exterior loop or multiloop, the function NoStacking returns an object
indicating that the loop does not having a subensemble of stacking states (since coaxial and
dangle stacking are defined only for exterior loops and multiloops).

EnumerateLoopStackingStates(𝜙, 𝑙)
1 𝜙𝑅 ← Subsequences(𝜙, 𝑙)
2 𝑉mask ← GetValidMasks(𝜙𝑅, 𝑙)
3 if 𝑉mask = [ ]
4 Yield NoStacking()
5 for 𝑣mask ∈ 𝑉mask

6 GetLoopStackingStates(𝜙𝑅, 𝑙, 𝑣mask)
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Algorithm S12: Enumeration of all coaxial stacking states in a given loop 𝑙 containing
sequence regions 𝜙𝑅. The function BinaryVector(number, width) produces a vector of
1s and 0s that is the binary representation of the input number with zero-padding up to the
input width.

GetValidMasks(𝜙𝑅, 𝑙)
1 if ¬(Type(𝑙) = “multi” or Type(𝑙) = “exterior”)
2 return [ ] ⊲ No stacking states have to be enumerated
3 𝑣indices ← [ ]
4 for 𝑖 ∈ [1 : |𝜙𝑅 |]
5 if |𝜙𝑅

𝑖
| = 2

6 Append(𝑣indices, 𝑖)
7
8 ⊲ Enumerate all possible combinations of coaxial stacks between base pairs in the loop.
9 𝑉mask ← [ ]

10 for 𝑖 ∈ [0 : 2|𝑣indices |]
11 ⊲ Consider each combination of a base pair being in a coaxial stack or not.
12 𝑡mask ← BinaryVector(𝑖, |𝑣indices |)
13 𝑣mask ← [ ]
14 for 𝑖 ∈ [1 : |𝜙𝑅 |]
15 if 𝑖 ∈ 𝑣indices

16 Append(𝑣mask, 𝑡mask
𝑖
)

17 else
18 Append(𝑣mask, 0)
19
20 ⊲ Filter out any mask that is invalid.
21 𝑐 ← true
22 for 𝑖 ∈ [1 : |𝜙𝑅 |]
23 if 𝑣mask

𝑖
= 1 and CoaxAdjacent(𝜙𝑅

𝑖
, 𝑣mask, 𝑙)

24 𝑐 ← false
25 if 𝑐 = true
26 Append(𝑉mask, 𝑣mask)
27 return 𝑉mask
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Algorithm S13: Enumeration of stacking states for given loop 𝑙 containing sequence regions
𝜙𝑅 consistent with a given coaxial stacking state 𝑣mask. LoopStackingState constructs a
representation of a given loop 𝑙 with a given list of stacks [𝑥].

GetLoopStackingStates(𝜙𝑅, 𝑙, 𝑣mask)
1 𝐺𝑅 ← [ ]
2 ⊲ Consider each subsequence region bounded by base pairs within the loop:
3 for 𝑖 ∈ |𝜙𝑅 |
4 if |𝜙𝑅

𝑖
| ≥ 3 or ( |𝜙𝑅

𝑖
| ≥ 2 and NickAdjacent(𝜙𝑅

𝑖
))

5 if After(𝜙𝑅
𝑖
, 𝑣mask, 𝑙) and ¬Before(𝜙𝑅

𝑖
, 𝑣mask, 𝑙)

6 Append(𝐺𝑅, [0, 5]) ⊲ No dangles, or 5′ dangle
7
8 elseif Before(𝜙𝑅

𝑖
, 𝑣mask, 𝑙) and ¬After(𝜙𝑅

𝑖
, 𝑣mask, 𝑙)

9 Append(𝐺𝑅, [0, 3]) ⊲ No dangles, or 3′ dangle
10
11 elseif ¬(Before(𝜙𝑅

𝑖
, 𝑣mask, 𝑙) or After(𝜙𝑅

𝑖
, 𝑣mask, 𝑙))

12 if |𝜙𝑅
𝑖
| = 3

13 Append(𝐺𝑅, [0, 3, 5]) ⊲ No dangles, 3′ dangle, or 5′ dangle
14 elseif |𝜙𝑅

𝑖
| > 3

15 Append(𝐺𝑅, [0, 3, 5, 8]) ⊲ No dangles, 3′ dangle, 5′ dangle,
16 ⊲ or both 3′ and 5′ dangles
17 else
18 Append(𝐺𝑅, [𝑣mask

𝑖
])

19
20 ⊲ Yield all possible combinations of dangle states.
21 for [𝑥] ∈ Product(𝐺𝑅)
22 𝜔← LoopStackingState(𝑙, [𝑥])
23 Yield(𝜔)

S7.3.3 Enumeration of complex ensemble with coaxial and dangle stacking
subensembles

To obtain all the stacking states for the complex, the above functions
EnumerateSecondaryStructures and EnumerateStackingStatesForStructure are
composed.
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Algorithm S14: Enumeration of all stacking states consistent with sequence 𝜙.

EnumerateStackingStates(𝜙)
1 for 𝑠 ∈ EnumerateSecondaryStructures(𝜙)
2 EnumerateStackingStatesForStructure(𝜙, 𝑠)
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