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ABSTRACT

Knowing how to learn, think, and act is not just a hallmark of intelligence, but a

necessity of survival for many organisms. Behavior, the complete set of actions

of species, allows us to glimpse into the minds of humans and animals, and

by extension, intelligence itself. Biological intelligence is characterized by fast

adaptation to changes and challenges, which is what allows species to survive

in natural environments from starvation and predation. To study learning in a

controlled setting, we can observe the behavior evoked through decision-making

tasks that make it possible to quantify and analyze learning. By modeling the

extracted behavioral features, we could start to understand the possible underlying

mechanisms by proposing neural theory models, and look for those signals in the

brain. Understanding the neural mechanisms of learning also strengthens the basis

for building intelligent machines that are flexible and adaptive to the nonstationary

world we live in. In this thesis, I present works in (1) automating behavioral setups

and modeling suboptimal behavior in a traditional decision-making task [5], (2)
using an ethological navigation task to characterize fast-sequence learning [6], and

(3) how neural theory can explain some core behavioral phenomena in (2), and be

used to solve a central problem in graph search [8].
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6.1 Components of Mouse Academy. (a) An automated RFID sorting

and animal training system. Mice implanted with RFID chips are

group-housed in the home cage. The RFID sorting system identifies

each mouse by its implanted chip. One animal at a time gains

access to a behavioral training box. As the animal learns a task,

its decision sequences and video recordings are acquired. (b) An

iterative generalized linear model. For each trial, the model predicts

the animal’s choice based on the relevant factors and then evaluates

the di�erence from the actual choice. This di�erence, after temporal

weighting, is fed back to the loss function, which gets minimized

by updating the weights of the input factors. The model produces a

policy matrix in which the rows indicate the weights of the relevant

factors and the columns are the trials. (c) An automated behavior

assessment program using deep convolutional neural networks to

extract the location and pose information of an animal. . . . . . . . 26

6.2 Performance of the automated training system on a sample co-
hort. (a) Fraction of time the behavior box was occupied by each of

the four animals. (b) Activity trace of each animal in the behavior

box for the entire training period of 28 days. Shadow indicates the

dark cycle from 8pm to 8am. (c) Distribution of time intervals during

which the behavior box is occupied or empty. (d) Box plot of intervals

between each animal’s sessions (median, quartiles, and range). (e)

Box plot of the time spent in a session for each animal. (f) Averaged

daily water consumption of each animal. Error bars indicate standard

errors. (g) Circadian histograms of each animal’s activity in the

behavior box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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6.3 Iterative generalized linear model and its prediction accuracy.

(a) Illustration of the GLM as applied to a visual discrimination task.

The model’s prediction is based on the output of a logistic function

whose input is the weighted sum of a visual stimulus term, a bias term,

and three history dependent terms. The stimulus can be on the left or

right and the choice can be rewarded (consistent with the stimulus,

indicated by a green dot) or unrewarded (opposite to the stimulus,

indicated by a red dot). (b) Selection of the history dependent terms

based on the model prediction accuracy. Error bars indicate standard

errors. (c) Hyperparameters for each of the animals: reward factor,

discount factor, and regularization factor. The optimal values are

marked with a star. (d) The actual performance of each animal over

time in the visual task. (e) Performance as predicted by the GLM. (f)

Fraction of choices predicted correctly by the GLM. (g) Fraction of

choices predicted correctly by a simple model based on the animal’s

average performance in the task. (h) Fraction of predictions matched

by the iterative GLM and the sliding window logistic regression model.

Error bars indicate standard errors. **, * indicate P < 0.01, 0.05.

Random prediction would give 50% match. . . . . . . . . . . . . . 29
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6.4 Interpretation of policies during learning. (a) Policy vectors re-

covered by the iterative GLM capture the ground truth policies. The

policy matrix plots in each trial (horizontal) the weights associated

with each of five factors (vertical), encoded with a color scale (see

Panel c). The factors are: A = Visual_stimulus, B = Choice ⇥ Re-

ward_back_1, C = Choice_back_1, D = Reward_back_1, E = Bias.

Two examples are shown of ground truth policies used to simulate data

and the corresponding trial-by-trial estimates from the GLM. Blanks

in the ground truth matrix indicate instances where the simulated

choice is opposite to the policy. (b) Similarity between the recovered

policy and the ground truth, measured by the cosine between the two

policy vectors. Error bars indicate standard deviation. (c) Policy ma-

trices recovered for the four animals show distinct individual learning

processes. Dashed rectangles highlight the first and last sessions of

each animal, as enlarged in d. (d) Recovered policy matrices for the

first and last sessions of each animal. (e) Fraction of trials explained

by two candidate policies (win-stay-lose-switch and following the

stimuli) in the first and last sessions. Error bars indicate standard

errors. ** indicates P < 0.01. . . . . . . . . . . . . . . . . . . . . . 32

6.5 Supervised analysis using features extracted by automated be-
havior assessment. (a) DeepLabCut extracts the centroid and the

orientation as the angle between the horizontal axis and the line

connecting the centroid and the nose. (b) Centroid distance along the

left-right axis vs time during the movement, for animal 1. The starting

position is set to zero, positive values indicate movement to the left,

negative to the right. The four trial types are indicated by di�erent

colors. (c) Average centroid trajectory for each animal. Shaded region

indicates standard error. (d-e) Orientation vs time, displayed as in

panels b-c. Positive angle points to the left, negative to the right. . . 33
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6.6 Unsupervised analysis of the behavior trajectories. (a) Principal

component projections onto PC1 and PC2 of the centroid-vs-time

trajectories from Figure 5. The four trial types are indicated by

di�erent colors. (b) The centroid trajectories corresponding to the

first four principal components (PCs). The variance explained by

each PC is shown in the plot legend. (c) Clustering trials by their

trajectories using t-SNE analysis. Distinct clusters are marked with

di�erent colors for use in subsequent panels. (d) Averaged centroid

distance vs time for each cluster, plotted as in Figure 5b. (e) Box

plot of the reaction time for each cluster. (f) The error rate on the

preceding trial for each cluster. Error bars indicate standard errors. . 34

6.7 Performance of the support vector machine to infer trial category
from mouse trajectories. (a) Prediction accuracy of the SVMs for

individual animals. (b) F1 score of the SVM fitted for the decision

categories of each animal. Shaded region denotes standard error.
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center port to make a choice. SVMs were trained using features up to
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7.6 Few-shot learning of path to water. (A) Time line of all water

rewards collected by 10 water-deprived mice (red dots, every fifth

reward has a blue tick mark). (B) The length of runs from the entrance

to the water port, measured in steps between nodes, and plotted against

the number of rewards experienced. Main panel: All individual runs
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7.7 Definition of node trajectories. A numbering scheme for all 127

nodes of the maze. Green: a direct path from the entrance to the water

port (“water run”) with the node sequence (B8) = (0, 2, 6, 13, 28, 57, 116),
involving 6 decisions. Magenta: a direct path from end node 83 to
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mouse ‘A1’ in the bouts immediately before and after maze rotation.

Time coded by color from dark to light as in Figure 7.5. (C) Left:

Cumulative number of rewards as well as visits to the water port, the

image of the water port, and the control nodes. All events are plotted

vs time before and after the maze rotation. Average over 4 animals.

Middle and right: Same data with the counts centered on zero and
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7.9 Navigation before and after maze rotation. Cumulative number of

rewards, visits to the water port, the image of the water port, and

the control nodes, plotted vs time before and after the maze rotation.

Display as in Figure 7.8C, but split for each of 4 animals. . . . . . . . 69
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7.10 Speed of the mouse vs time in the maze. Average over 4 animals.

Time is plotted relative to the maze rotation. . . . . . . . . . . . . . 69

7.11 Sudden changes in behavior. (A) An example of a long uninterrupted
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Ethogram for rewarded animals. Area of the circle reflects the fraction
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port and time spent there. Transitions from “Leave” represent what

the animal does at the start of the next bout into the maze. (B) The

fraction of time spent in each mode as a function of absolute time
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8.1 A mechanism for endotaxis. A: A constrained environment of nodes

linked by straight corridors, with special locations o�ering food, water,

and the exit. Top: A real odor emitted by the food source decreases

with distance (shading). Middle: A virtual odor tagged to the water

source. Bottom: A virtual odor tagged to the exit. B: A neural circuit

to implement endotaxis. Open circles: four populations of neurons

that represent “feature,” “point,” “map,” and “goal.” Arrows: Signal

flow. Solid circles: Synapses. Point cells have small receptive fields

localized in the environment and excite map cells. Map cells excite

each other by recurrent Hebbian synapses and excite goal cells by

another set of Hebbian synapses. A goal cell also receives sensory

input from a feature cell indicating the presence of a resource, e.g.

water or the exit. The feature cell for cheese responds to a real odor

emitted by that target. A “mode” switch selects among various goal

signals depending on the animal’s need. They may be virtual odors

(water, exit) or real odors (cheese). The resulting signal gets fed to

the chemotaxis module for gradient ascent. Mathematical symbols

used in the text: D8 is the output of a place cell at location 8, E8 is the

output of the corresponding map cell, M is the matrix of synaptic

weights among map cells, G are the synaptic weights from the map

cells onto goal cells, and A6 is the output of goal cell 6. C: The

output of map cells after the map has been learned; here the animal

is located at points G (top) or H (bottom). Black means high activity.

For illustration, each map cell is drawn at the center of its place field. 115
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following the red trajectory. Space is discretized into square tiles,

each tile represented by one point cell. Circles with crosses represent

obstacles, namely tiles that are not reachable. Right: graph of this

environment, where each tile becomes a node, and edges represent

traversable connections between tiles. (B) The response fields of three

goal neurons for home (top), water (middle), and bug (bottom) at

the 5 instants during the learning process (i-v). Red edges connect

previously visited nodes. The response (log color scale) is plotted
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subsequently and nodes  2 steps away are also recruited into the goal

cell’s response field (v). . . . . . . . . . . . . . . . . . . . . . . . . 117
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Three tasks and their corresponding graph representations: i) Grid-
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2 goals (home and water). iii) Tower of Hanoi game, with 2 goals (the

configurations of disks that solve the game). (B) The virtual odors

after extensive exploration. For each goal neuron the response at every

node is plotted against the shortest graph distance from the node to

the goal. (C) Navigation by endotaxis: For every starting node in

the environment this plots the number of steps to the goal against the

shortest distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



xxii

8.4 Endotaxis adapts quickly to changes in the environment or the target

locations. (A) A ring environment modified by sudden appearance

of a blockage: (i), a shortcut (ii), an additional goal target (iii), or a

dual-reward environment with di�erent saliency (iv). Graphs shown

before and after modification or constant. Shaded nodes are goal
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shown for timesteps just before modification (200) and at the end of
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steps of random walk exploration, showing the fraction of successful

returns to a goal from the current location at each timestep over 200
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exponentially with graph distance (the tower of Hanoi graph with 4

levels was used for these simulations). Data points indicate the goal
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C h a p t e r 1

BACKGROUND

Biological intelligence can be broadly defined as the ability of a biological organism

to respond or adapt to its surroundings in an e�cient way [23]. While learning

complex concepts quickly can be a challenge for AI, biology seems to have converged

on good ways to learn or adapt to changes in the environment both quickly and

robustly. For humans, that might be learning to ride a bike, navigating in a new

city, or adaptive procedural tasks like cleaning up a messy kitchen. The ability of

biological organisms to learn quickly could be explained by evolutionary pressure

for survival, which necessitates fast adaptation, whether it is one-shot association of

an unseen organism as threat, or remembering where food is located and reliably

returning to that location [46]. In constrained navigation, the learning can require

the integration of multiple decisions into a sequence in order to achieve one goal, or

even learning a map for reliably navigating to multiple locations [65].

From the perspective of neuroscience, behavior can be perceived as the low-

dimensional projection of an organism’s neural activities. An organism can act

directly in response to events driven by salient sensory inputs, such as those of a

predator or prey, or they could behave according to some more abstract goal, such as

navigating to a particular location that requires previously learning a sequence of

actions [46]. To study this in behavioral and systems neuroscience, researchers use

a variety of experimental setups that characterize simple decision-making. These

experiments often involve learning a few-bit decision-making task with 1 or 2 actions

[43]. Fewer tasks are used that involve the learning of complex sequences of actions,

which might be naturalistic but more di�cult to analyze or control for head fixation,

an important setup for certain neural recording tools [49]. As the behavior exhibited

under each task can di�er substantially, it is possible that the underlying neural

mechanisms are thereby also di�erent.

With increased advancements in hardware and software tools for automating the

capture of all aspects of behavior, we can begin to tease apart the underpinnings

of complex learning. Experimenters now have full control over the environment of

the organism and are able to record all of its experiences when learning to perform

novel tasks with increasing proficiency. This allows us to return to the behavior data
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later and characterize the presence and absence of key behavioral phenomena across

time, and build predictive models that capture those behaviors. Key behavioral

phenomena also allow us to build more plausible models of the neural mechanisms

of behavior, which help to inform neural recording experiments, such as what brain

regions to target or what types of cells to look for. In the following sections we

briefly cover related background from the perspective of hardware sensing, the

feature representations of behavior, and prediction and theory, which is important for

understanding the mechanisms of learning, and for use in many applied disciplines

in the real world.
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C h a p t e r 2

EXPERIMENTAL SETUP

Learning and behavior are tightly coupled as they operate in a closed-loop system,

since behavior a�ects the organism’s sensory experience, which a�ects learning. In

the early stages of learning a new task, the behavior itself will also di�er substantially

from the final learned behavior. Because the entirety of an animal’s experience can

potentially drive learning, it is useful to examine learning changes on a fine-grained

level by fully characterizing the animal’s behavior from naive to learned. Task design

and sensing is a big component of this process, since it is important to work with tasks

that allow for the possibility of fully characterizing the evoked behavior and track any

relevant stimuli without occlusion or interruption. By designing tasks and sensing

setups in a practical way, we could capture the entirety of the animal’s experience,

and subsequently use the collected behavioral data for analysis or developing theory.

2.1 Task Design
In many disciplines, in order to study a particular behavior under controlled lab

settings, the experimenter first designs a task that could allow the behavior to conform

to some trial-based structure, which makes it easier to model or analyze. Setting

aside the technology required for sensing, the task itself is critical, as the behavior

exhibited may di�er depending on the perceived di�culty of the task to the subject,

which depends on many factors.

In behavioral neuroscience, the model organism can range from insects, rodents,

macaques, to humans [15, 63]. Each organism has specific evolutionary niches

that make them more adept at certain tasks than others. In the earlier days of

psychology, complex mazes were often used to study rodent learning, despite the lack

of computational tools for tracking and quantifying behavior [57]. However, decades

of reductionist experimental designs have led much of the neuroscience community

to converge on tasks that are simple variations of the 2-AFC (two-alternative forced

choice) task, which is a single-decision problem whereby there are two choices

available for each trial, and typically the animal learns to associate the correct

decision with a stimulus or several stimuli [43]. Such tasks have many uses and

may be especially suited for understanding sensory thresholds or slow learning of

simple but abstract concepts, but it may be di�cult to answer questions related to the
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hallmarks of behavior exhibited by biological intelligence: fast, complex learning.

The task design should also be guided strongly by the research question. For instance,

to study certain innate behaviors, it may not be necessary to use a specialized task at

all, as simply the presence of a salient stimulus, such as another mate, could bring

about the behavior of interest [25]. Similarly, for perception related tasks which

can involve quantifying saccades, it may be su�cient to head-fix the individual

and record reactions to a large quantity of stimuli without considering the need for

deliberation [5]. However, for decision-making tasks in animals, a key challenge

is that the animal may not understand the purpose of the task, and thus perform

arbitrarily poorly, especially when it comes to maximizing reward, a human-defined

proficiency, typically characterized by percent correctness over many trials [11, 43].

This proficiency metric may not be the objective an animal optimizes, as animals

may derive satisfaction from non-water-based sources, such as self-perceived novelty

from exploring suboptimal policies [43]. Therefore, for tasks that require learned

behavior, it is important for a task to have some purpose in order to gain insight into

goal-oriented learning or decision-making.

2.2 Sensing Hardware
Data can be collected using hardware sensors that capture one or multiple modalities

simultaneously, depending on the task, environment, and subject. For many organisms,

the primary form of behavior is movement, and thus, most of the data could be

collected with some form of optical imaging and saved into images or videos,

from which structured data can be extracted using computer vision models, such as

keypoints ([35]).

While vision is an important sensing modality, not all organisms behave similarly, as

there may be other actions that organisms can use to interact with itself, others, or

the environment. Humans tend to place strong priors on visual sensing as it is our

primary sense, but for many animals, other modalities such as tactility, acoustics,

pheromones, and odors are also strongly used for guiding behavior, and / or are

part of the behavior itself. For instance, many insects emit pheromones as a way

to communicate, and rats can use ultrasonic vocalization, both of which would be

imperceptible to humans [10, 14, 51]. Some of these can be sensed by existing,

mature hardware sensors, especially for imaging or acoustics, and some may require

the development of novel sensing technologies and models [66]. In the case of

detecting airborne molecules such as semiochemicals, a sensing device could be
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metal oxide sensors such as the metal–oxide–semiconductor field-e�ect transistor

(MOSFET), which has been explored as one potential method for sensing odor and

pheromone compounds in the air [58]. Similar to how machine learning has enabled

key computer vision models for tracking behavior through optical imaging, we should

also think about modalities that are additionally ethologically relevant for certain

organisms and develop tasks around those modalities. For species where optical

imaging is not possible, other sensing tools can be developed to supplement existing

optical tools for imaging. This could open up explorations into new areas of brain

regions that are more relevant for behavior in the wild. Additionally, since behavior

is driven largely by the sensory stimuli received by the nervous system, capturing the

full set of environmental conditions can help explain some aspects of the behavior in

naturalistic environments.

In this thesis, we focus entirely on optical imaging, where the primary behavior is

movement and can be captured by pose estimation. In the future, with the increasing

availability of sensing tools for other modalities, we could begin to image the entirety

of an animal’s behavioral set as well as the sensory inputs received by the animal,

such as the possible generation of self-odor.
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C h a p t e r 3

HIERARCHY OF BEHAVIORAL FEATURE REPRESENTATIONS

To quantify behavioral states across time, we need to extract features from the raw

data that are relevant for analysis. The representation of the extracted features

should depend on the research question. The features themselves may also be useful

downstream when building models for predicting behavior, since those models may

be fitted directly to the behavioral features. While there is no single correct way to

do this, all behavior can be characterized at multiple levels of abstractions, where

with each increased level of abstraction the representation is further simplified to

place emphasis on the most relevant parts of the behavior for the research question.

For example, in the case of video or image data collected from optical cameras, at

the lowest level of the feature abstraction hierarchy is the raw video. This data can be

very high dimensional, and depending on the task and camera view, the animal may

not even occupy a large fraction of the captured view. Thus, it is useful to extract

features from this data. One way to do that would be to extract the pose, composed

of a series of keypoints tied to specific body-parts of the animal that are of particular

interest to us. In a mice navigation task, those keypoints could include the nose,

centroid, and tail-base. These keypoints can be extracted with o�-the-shelf pose

estimation models used in computer vision trained on just several hundred frames of

supervised annotations [35]. With these keypoints, we can stack them and create

trajectories that inform how the positions of these body landmarks evolve across

time.

Pose keypoints are able to capture a great deal of information, which sometimes

may not be directly related to the task. Many species are not simple deterministic

machines, and thus often behave with alternate intents and goals from those directly

related to solving a task, such as resting or grooming, especially when the task is

unintuitive to the animal. By modeling the variability in behavior that exists in gory

detail, it may be hard to derive a global understanding of the more task-relevant

behavior. Therefore, it can be useful to introduce a more curated set of extracted

features from the keypoints.

For example, in a complex maze task where animals would be subjected to many

junctions where a decision could be made, a continuous trajectory of x-y coordinates
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of a particularly important keypoint could be discretized into a uniform grid, from

which the actual decision at each choice point could by computed [46]. The decision

sequences can then be encoded in a vector of actions, a, where 0C is the decision at

decision step C. By analyzing behavior at this level of resolution, we can aggregate

across more important task-relevant features and focus on the critical parts of behavior.

To go up an additional level, the sequence of decisions could be aggregated across

the temporal dimension so that we could derive summary statistics of behavior with

action probabilities that are specific to each decision junction in space. A caveat of

this approach is the requirement for large quantities of decisions in the data, which

may be implausible for certain tasks that only capture one behavior, such as homing

[50]. While feature abstraction is important, it is still useful to examine data at all

levels, as some may yield insight into previously unknown behaviors. It is wise to

start with the least abstracted form of behavior and work one’s way up in the analysis.
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C h a p t e r 4

PREDICTION AND THEORY

Building predictive models is important from a theoretical perspective, but can also

be useful in the applied domain in many industries. Many forms of models could

be used, broadly categorized into agent-based and observer-based models [16]. In

agent-based modeling approaches, the model captures some underlying mechanistic

process related to the agent and simulates its behavior based on the model of the

internal dynamics. That simulated behavior can then be compared with real data to

decide which model behaves more similarly. In observer-based models, the goals are

to understand behavior from a less mechanistic perspective, by aggregating statistics

or fitting statistical models that may have no biological realism to the data, but may

still be useful from a purely statistical perspective. These models can capture the

distribution of the underlying data directly and may be useful for examining changes

in the distributions over the course of the experiment.

4.1 Neuroscience
In behavioral neuroscience, behavior is often first shaped through pretraining on a

specified task, which can then guide the search for neural changes in the brain when

recording directly from the brain using imaging or electrodes [29]. Finding these

neural correlates of behavior is a fundamental goal of behavioral neuroscience, and

understanding the neural mechanisms of behavior sometimes additionally requires

the development of computational models of neural dynamics. From a neural

theory perspective, prediction can help us understand the core tenets of task-relevant

behavior. With the multiple levels in the abstraction of behavioral features, models

and prediction can also be built and assessed at each level. On a fine-grained level

of feature representation, behavior prediction can gather low-level insights about

an organism’s motor movements, such as stereotyped sequences of actions like

mounting or attack [48]. In decision-making tasks with a denser form of features like

sequences of actions, we can understand how animals deliberate and choose actions

to achieve goals. And finally, by observing key phenomena, such as the ability of

species to learn complex structures, we can propose theory about the neural circuits

that make this behavior possible. Several candidate neural mechanistic models may

then be used to guide the search for neural signals in the brain, as these models can
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predict the types of neurons we may expect to find. By iterating on both the theory

and the experiments, we may get closer to a mechanistic understanding of how the

brain computes decisions and learns to e�ciently solve tasks [65].

4.2 Other Disciplines
Behavioral models for prediction are also commonly used in many other diverse

disciplines, such as psychiatry, ecology, and economics [18, 33, 39, 61]. In each

discipline, prediction tends to operate at a di�erent level of implementation, but is

no less critical for both theoretical understanding and uses in applied settings. In

pharmacology, behavior can be used as a proxy for inferring the e�ects of a particular

pharmaceutical, task, or stimulus’ e�ects of behavioral state changes or learning.

In those settings, fine grained behavioral changes can be used as an indication of

toxicity [26].

In other species-specific fields such as entomology, while the mechanism being

studied may focus on other behaviors such as mating or dynamics such as population

growth across generations, the models that have been developed retain the same goal

of behavioral understanding. Additionally, the use of these dynamics models can go

far beyond just theoretical understanding, as they can be applied in industries that

require understanding insect behavior in areas such as insect control, to better target

harmful insects, or protect beneficial ones [28, 34].
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C h a p t e r 5

REVIEW OF RELATED WORKS

Biological intelligence is characterized by many desirable properties shaped through

evolutionary pressure for survival. Properties relevant in scope to this thesis are the

ability to learn quickly and adapt robustly, which are critical functions for handling

the nonstationary world around us. Questions around how this is accomplished in

science are asked at various levels of implementation across multiple disciplines,

particularly in psychology, cognitive science, and systems neuroscience. There

are commonalities across disciplines on how human and animal experiments are

designed, because most studies in this space rely on observing and quantifying some

form of behavior [19, 41, 42]. One common method for studying learning is to use a

decision-making task where some learned action(s) can be quantified, sometimes

in addition to other sets of simultaneously observed variables in order to postulate

factors that directly or indirectly relate to the behavior [13, 25, 27, 29, 42, 52].

The way psychology and cognitive science approach the question of learning is to

develop theories around abstract cognitive processes underlying structural or reward

learning, with behavior as the core inspiration [27, 31, 41, 55, 57]. While there may

be some neural inspiration for these models, theorists in these disciplines are not

confined by the immediate plausibility of biological implementations. This contrasts

with systems and theoretical neuroscience, where the emphasis is on teasing apart

the neural mechanisms and dynamics that give rise to or are the results of some

behavior [2, 3, 13, 31]. Across disciplines, the goals can be similarly summarized as

understanding the general mechanisms of learning, how ever “mechanism” may be

defined in spatiotemporal scale. To start, the behavioral task enables comparisons of

decision statistics across subjects or within one subject over the course of learning

[13, 46]. The objective is to find a class of tasks where the subject could exhibit some

nontrivial behavioral phenomenon which could then allow specialized cognitive

models to be formulated based on [59]. This is followed by testing the proposed

models of behavior on additional experimental tasks and building extensions of

existing models to capture any unexplained behavior. Because of the reduced focus on

neural mechanisms, neural recordings are not required as part of the data collection,

allowing most studies in this space use human subjects. Using human subjects also

enable the use of a broader space of tasks that rely on reasoning in abstract space
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(e.g. language learning) as opposed to physical space, since the experimenter could

pre-define some abstract goals for the subject [19, 41]. In cognitive neuroscience,

the gap between cognition and neural substrates is narrowed through non-invasive

neuroimaging setups that can indirectly record some form of coarse brain activity,

usually at much lower resolutions than the imaging setups available in animals [17,

39, 40].

In systems neuroscience, the resolution of neural implementation is often addressed

at the population or circuit level [5, 13, 31]. The finer-scale of operations presents

unique challenges, as the commonly available tools for single-cell recording are

invasive and less accessible in humans [2]. Additionally, the vast amount of available

genetic tools for rodents make them a more suitable model organism for neural

circuit-level manipulations [13, 32]. As an interdisciplinary field, neuroscience

tends to adopt tasks that were originally used in psychology or cognitive science

for studying learning [20] . These tasks from human psychology and cognition are

adapted to mice through substantial simplification to make the learning problem

easier, while retaining the independent trial-based structure and related core methods

of analysis [4, 24, 42]. For example: a multi-armed bandit task designed for humans

based on picking payouts in a contextual bandit task might be simplified to a just

a binary choice task with the trial-start stimuli being an audible tone or a salient

cue [4, 9, 64]. Another important consideration in systems neuroscience is the

preference of experimenters to isolate the simplest learned behavior in order to make

the subsequent data analysis when searching for interpretable neural correlates of

that behavior in the high dimensional neural data more tractable [2, 13, 25].

In the last several decades, the combination of anthropomorphizing mice with human-

inspired tasks and the fixation on behavioral reductionism have led much of the

neuroscience community to converge on simple-learning tasks that counterintuitively

also produced poor learning proficiencies [12, 43]. Unlike the types of complex

learning often seen in nature, the types of learning in neuroscience are overwhelmingly

variations of associative learning, where arbitrary stimuli are reinforced through tiny

water rewards to associate with a simple behavior, such as nose-poking a port. Part of

the cause for poor performance in such a simple task potentially lies in the tendency

of experimenters to treat behavioral events across trials independently, which is

highly implausible ethologically. In the real world, events often are correlated across

time and space. It would not be surprising if the concept of “independent trials” is a

di�cult concept to grasp for a mouse. After all, it is more common for rewards to be
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associated with space than arbitrary stimuli in nature. This problem is addressed

through experiments and policy inference in Chapter 6.

To cite a specific example: the quintessential paradigm used in studying learning

is the two-alternative forced choice (2-AFC) task, for which the subject learns to

associate some stimuli with a decision in a binary choice task. Despite its simplicity,

2-AFC tasks can require thousands of trials over weeks for just one mouse to achieve

80% proficiency [12, 43]. With many mice, this can take up enormous experimental

space and labor before neural recordings could even take place. There is an additional

complication on the theory front due to the slowness and variability in learning. The

inability of animals to comprehend cognition-inspired tasks makes it implausible

to compare their behavior with predictions from more deliberate and sophisticated

learning models proposed in cognitive science. These models are often adapted

based on results from human experiments, where the subjects excel at understanding

the task structure and can even describe their intentions post hoc.

Thankfully, not all hope is lost. An example of a task where animals excel at is

navigation, which is embodied in many common scenarios. In mice, this could be

learning to reliably navigate away from and back to the home burrow when finding

resources. To rear their young, rodents might first determine a safe location to dig a

burrow, then reliably forage for resources located at faraway locations, and return to

the den to feed the pups—all while avoiding predation and adapting to any changes

in the environment [60]. Feats like this likely recruit alternate mechanisms from

those used in associative learning, and require the integration of various sources of

sensory information to learn a map or to make complex decisions both for localization

and trajectory planning. Questions in this space have been asked for decades in

psychology, with an emphasis on defining and proposing what a “cognitive map”

might look like [56].

While there have been many works that highlighted learned behavior in complex

environments for mice, they represent a small minority due to the technical di�culties

presented in freely-roaming neural recording and analysis, and there is often less

clarity about how neural data could actually relate to the behavior over the course

of learning [22, 49]. In studies that do use tasks that involve humans or animals

navigating in a complex environment, they often feature environments with simple

topologies, such as several connected compartments, or environments with a high

degree of regularity, such as a maze with spatially-repeating motifs [1, 6, 62].

Perhaps due to the history of simple learning in experiments, of the theory developed
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around learning and decision-making across disciplines, there remains a strong prior

on leveraging traditional modeling frameworks that were originally proposed for

modeling the cognitive processes of simple conditioning tasks [45, 54]. Such a

framework is reinforcement learning (RL). RL was originally developed to model

learning in classical and operant conditioning, and thus does not prescribe general

methods for learning to reason about spatial or abstract concepts, nor does it prescribe

clear paths for concrete neural implementations. In spite of this, over the last several

decades, many theories based on extensions of classic RL algorithms have been

developed, leveraging existing RL methods for value estimation or policy updates

and strapping on complex cognition models to enable learning that depend less

on environmental rewards [7, 8, 21, 30, 36, 38, 47]. A complication with these

increasingly sophisticated models is that their overparameterization / complexity can

be a burden for model falsification when comparing to behavioral data, which are

often obtained from simple environments. The complexity of some decision models

also makes it more challenging to imagine implementing with known biological

networks [36], and thus, di�cult to relate back to systems neuroscience.

On the other hand, circuit-level models in theoretical neuroscience for decision-

making tend to focus on simple input-output mappings or involve complex temporal

dynamics encoded via fixed-point or non-convergent recurrent dynamical networks

[37, 44, 53]. These models often exhibit such complex dynamics that they are

di�cult to reproduce patterns robustly even in simulation. Additionally, they are

frequently trained with a complex gradient-based optimizer to reproduce the some

given ground-truth dynamics [53].

What is clearly needed are methods that can tie together the types of complex but

fast learning behavior seen in nature with a new theory built from the ground-up

for explaining non-reward based, map-like sequence learning. For tasks—there is

a need to develop specialized complex tasks for animals that could evoke the type

of learning possible in natural settings, which allows the few-shot learning of long

sequences of actions. This might also mean moving away from the traditional type

of rigid trial-based learning, where the start and end of each trial is predefined by the

experimenter. Moving to a more continuous task would also require new analysis

tools that are designed to handle non-trial-based data types. This could include the

ability to track the occurrence of key learned behavioral phenomena throughout the

entirety of learning, that can also later be analyzed with simultaneously recorded

neural data. Additionally, there would need to be ways of assessing the frequency of
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the learned behavior against some control behavior. A ethological task that achieves

this with the relevant methods of analysis is explored in Chapter 7, while a general

theory for learning a map for use in sequential decisions is proposed in Chapter 8.

Finally, methods for model validation should be assessed over the entire course of

learning and across multiple tasks to characterize any sudden changes in behavior,

since they could be directly related to synaptic learning. Especially in the early stages

of learning, there may be rapid behavioral changes, and unsupervised analysis that

could spot this would be more useful than tracking a single experimenter-defined

measurement, such as choice probability computed over a large time window. While

prior works have studied neural recordings in complex spaces, there is a disconnect

between the level of behavioral understanding sought after in cognitive neuroscience

and that in neuroscience [2, 13, 59].

To conclude, if one wanted to understand some general mechanisms related to

learning, it could be more useful for the behavior to resemble the types of learning

that biology is already adept at solving in nature, which gives us the confidence that

it may recruit some general circuitry for learning across species. Perhaps then we

could start moving away from reward-based learning theory and truly understand

how goals are self-defined are then dynamically and flexibly solved in the real world.

This thesis represents an e�ort to step in that direction.
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C h a p t e r 6

MOUSE ACADEMY: HIGH-THROUGHPUT AUTOMATED
TRAINING AND TRIAL-BY-TRIAL BEHAVIORAL ANALYSIS

DURING LEARNING

[1] Mu Qiao, Tony Zhang, Cristina Segalin, Sarah Sam, Pietro Perona, and Markus
Meister. “Mouse Academy: high-throughput automated training and trial-by-
trial behavioral analysis during learning”. In: bioRxiv (2018), p. 467878. ���:
https://www.biorxiv.org/content/10.1101/467878v2.

Progress in understanding how individual animals learn will require high-throughput

standardized methods for behavioral training but also advances in the analysis of the

resulting behavioral data. In the course of training with multiple trials, an animal

may change its behavior abruptly, and capturing such events calls for a trial-by-

trial analysis of the animal’s strategy. To address this challenge, we developed

an integrated platform for automated animal training and analysis of behavioral

data. A low-cost and space-e�cient apparatus serves to train entire cohorts of

mice on a decision-making task under identical conditions. A generalized linear

model (GLM) analyzes each animal’s performance at single-trial resolution. This

model infers the momentary decision-making strategy and can predict the animal’s

choice on each trial with an accuracy of ~80%. We also assess the animal’s detailed

trajectories and body poses within the apparatus. Unsupervised analysis of these

features revealed unusual trajectories that represent hesitation in the response. This

integrated hardware/software platform promises to accelerate the understanding of

animal learning.

https://www.biorxiv.org/content/10.1101/467878v2
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6.1 Introduction
Learning—the change of neural representation and behavior that results from past

experience and the consequences of actions—is important for animals to survive and

forms a central topic in neuroscience [35]. Di�erent individuals may apply di�erent

strategies to the learning process, reflecting their individual personalities. Indeed,

substantial di�erences in sensory biases, locomotion, motivation, and cognitive

competence have been observed in populations of fruit flies [7, 18], rodents and

primates [3, 25, 36]. Thus, it is critical to investigate learning at the individual level.

Rodents, especially the mouse, have become popular experimental animals in

studying associative learning and decision-making, because of the wide availability

of transgenic resources [10, 16, 22, 23]. They can learn to perform complex decision-

making tasks that probe cognitive components such as working memory and selective

attention [1, 29, 42]. However, di�erences in learning strategies across individuals

have rarely been addressed, partly owing to the limitations of data gathering and

analysis.

Studying di�erences among individuals requires training and collecting data from

multiple animals in a standardized and high-throughput fashion. The training

procedures are often time-consuming, requiring several days to many weeks [11, 16],

depending on the task. Although there have been advances in training automation,

existing systems either require an experimenter to move animals from the home cage

to the training apparatus [9, 30, 39], or training animals within their own cages [15,

28, 33]. The former introduces additional sources of variability [12, 20], and the latter

precludes tasks that require a large training arena. Following data acquisition, the

analysis of behavior aims at understanding the learning process. Present approaches

tend to focus on the averaged performance over many trials [20]. However, changes

in behavior may happen at a single trial, and thus the modeling of behavior should

similarly o�er a time resolution of single trials to assess each animal’s individual

approach to learning.

To address these challenges, we present Mouse Academy, an integrated platform

for automated training of group-housed mice and analysis of behavioral changes

in learning a decision-making task. We designed hardware that makes use of

implanted radio frequency identification (RFID) chips to identify each mouse, and

guides the animal into a behavior training box. Synchronized video recordings

and decision-making sequences are acquired during animal learning. To analyze

the decision-making sequences, we developed an iterative generalized linear model
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(GLM). This model makes a prediction of the animal’s choice in each trial and gets

updated based on the animal’s actual choice. This iterative GLM model achieves

a prediction accuracy of ~80%, and also reveals the decision-making strategy of

the animal and how it changes over time. To analyze the animal’s behavior during

the task in greater detail, we computed the movement trajectories of each mouse.

These trajectories allowed us to perform an unsupervised analysis of each animal’s

behavior, and discover individual traits of behavioral learning that were not apparent

from the simple choice sequences.

6.2 Results
The Mouse Academy platform consists of three components (Figure 6.1): an

automated RFID sorting and animal training system, an iterative GLM to analyze

decision-making sequences, and behavior-assessment software that analyzes animal

trajectories computed from video data.

Automated RFID sorting supports individual training programs
We designed the equipment in the following manner (Figure 6.1): RFID-tagged

mice are grouped in a common home cage where food and bedding is supplied. The

home cage connects to a behavior training box through a gated tunnel. The gates are

controlled by a home-made RFID animal sorting system [43]: three RFID antennas

are placed along the tunnel, with one near the home cage, one near the training

box and one between the two; the motorized gates are placed between the RFID

sensors, separating the tunnel into three compartments. An Arduino microcontroller

integrates information from the RFID readers to open and shut the gates, allowing

only one animal at a time to pass through the tunnel (Figure 6.9 a, c, d). The behavior

box is outfitted with three ports, each of which contains a photo-transistor to detect

snout entry, a solenoid valve to deliver water reward, and a light emitting diode

(LED) to present visual cues. To maintain a controlled environment, the training box

is isolated from the outside by a light- and sound-proof chamber (Figure 6.9b).

Once a mouse enters the training box, a protocol is set up to train the mouse to

perform a certain task. In the experiments reported here, the animal must nose-poke

the center port to initialize a trial and then hold the position for a short period. Visual

or auditory stimuli are delivered, and based on these stimuli, the animal must choose

to poke one of the side ports. If the correct response is chosen, the animal gets a

water reward from a lick tube in the response port, otherwise a timeout punishment

is applied. This training process is controlled by Bpod, an Arduino microcontroller
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Figure 6.1: Components of Mouse Academy. (a) An automated RFID sorting and
animal training system. Mice implanted with RFID chips are group-housed in the
home cage. The RFID sorting system identifies each mouse by its implanted chip.
One animal at a time gains access to a behavioral training box. As the animal learns
a task, its decision sequences and video recordings are acquired. (b) An iterative
generalized linear model. For each trial, the model predicts the animal’s choice
based on the relevant factors and then evaluates the di�erence from the actual choice.
This di�erence, after temporal weighting, is fed back to the loss function, which
gets minimized by updating the weights of the input factors. The model produces
a policy matrix in which the rows indicate the weights of the relevant factors and
the columns are the trials. (c) An automated behavior assessment program using
deep convolutional neural networks to extract the location and pose information of
an animal.
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Figure 6.2: Performance of the automated training system on a sample cohort.
(a) Fraction of time the behavior box was occupied by each of the four animals. (b)
Activity trace of each animal in the behavior box for the entire training period of
28 days. Shadow indicates the dark cycle from 8pm to 8am. (c) Distribution of
time intervals during which the behavior box is occupied or empty. (d) Box plot of
intervals between each animal’s sessions (median, quartiles, and range). (e) Box plot
of the time spent in a session for each animal. (f) Averaged daily water consumption
of each animal. Error bars indicate standard errors. (g) Circadian histograms of each
animal’s activity in the behavior box.

that interfaces with the three ports. Data from the response ports as well as video

recordings from an overhead camera are acquired simultaneously as the animal is

trained.

The entire apparatus is orchestrated by a master program that coordinates the RFID

sorting device, the Bpod system, synchronized video recording, data management

and logging (Figure 6.9e). The program monitors the amount of water each animal

consumes per day and regulates the time each animal can spend in the training box

per session. In addition, the software updates the training protocol for each animal

based on its performance, for example switching to a harder task once a simpler one

has been mastered (Figure 6.10). This lets each animal learn at its own pace.
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The apparatus can be assembled at a materials cost of $1500–2500, with the cheaper

option using a Raspberry Pi computer as the controller (Figure 6.9). Compared with

designs in which each animal is automatically trained in its own home cage [28, 30],

the system saves considerable space. Because housing and training are independent

modules, the same system can be used for diverse training environments.

We tested the automated RFID sorting and animal training system by training group-

house mice to learn a variety of decision-making tasks, following similar procedures

as reported previously [22, 29] (Figure 6.10 and Online Methods). The training

period lasted 28 days, with up to five mice in the common home cage. Each animal

occupied the training box for 3-4 hours per day (13-15% of the 24 hours) throughout

the entire training period (Figure 6.2a, b, Figure 6.11). For a sample cohort of four

animals trained in sessions of 90 trials each, we found that the behavior box was

occupied most of the time, with brief empty intervals of <10 min (Figure 6.2c, d, e).

Each animal was trained for over 900 trials (10 sessions), and consumed more than

1.9 mL of water per day (Figure 6.2f). Interestingly there was no circadian pattern

to the animals’ training activity, even though the setup was illuminated on a daily

light cycle (12 h on / 12 h o�) (Figure 6.2g). As observed previously, it appears that

animals working for a goal can avoid circadian modulation of the locomotor pattern

[13, 21].

A generalized linear model accurately predicts decision-making during training
In a decision-making task, an animal is asked to associate distinct stimuli with

distinct responses. Although this is the ultimate goal, during learning, it is often

observed that the animal begins by basing its decisions on unrelated input variables

and gradually switches to using the stimulus variables that actually predict reward.

We define a policy as a mapping of these variables to the animal’s decisions. A

fundamental goal in the study of learning is to infer what policy the animal follows

at any given time and to determine how the policy evolves with experience.

We applied a generalized linear model (GLM) to map factors relevant to the animal’s

decision-making to its choices through logistic regression. A common way to build

such a GLM is by fitting data of an entire session [9, 31]. However, this loses

resolution in single trials within the session. During learning, a change of policy

can happen at each trial. Thus, we developed the model to make trial-by-trial choice

predictions based on various factors the animal might plausibly use. The model

works in an iterative two-step process (Figure 6.1b). In the prediction step, the model
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Figure 6.3: Iterative generalized linear model and its prediction accuracy. (a)
Illustration of the GLM as applied to a visual discrimination task. The model’s
prediction is based on the output of a logistic function whose input is the weighted
sum of a visual stimulus term, a bias term, and three history dependent terms. The
stimulus can be on the left or right and the choice can be rewarded (consistent with
the stimulus, indicated by a green dot) or unrewarded (opposite to the stimulus,
indicated by a red dot). (b) Selection of the history dependent terms based on the
model prediction accuracy. Error bars indicate standard errors. (c) Hyperparameters
for each of the animals: reward factor, discount factor, and regularization factor.
The optimal values are marked with a star. (d) The actual performance of each
animal over time in the visual task. (e) Performance as predicted by the GLM. (f)
Fraction of choices predicted correctly by the GLM. (g) Fraction of choices predicted
correctly by a simple model based on the animal’s average performance in the task.
(h) Fraction of predictions matched by the iterative GLM and the sliding window
logistic regression model. Error bars indicate standard errors. **, * indicate P <
0.01, 0.05. Random prediction would give 50% match.
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makes a prediction for the next decision based on the input factors. Once the outcome

of the animal’s decision is observed, an error term between the model’s prediction

and the observation is computed. This error, after weighting by a reward factor and

a temporal discount factor, is fed back to the loss function. In the update step, the

model is updated by minimizing the regularized loss function. This iteration happens

after every trial. The temporal discount factor accounts for the possibility that the

most recent trials impact the current decision more than remote trials. The reward

factor accounts for the fact that water rewards and timeout punishments may have

e�ects of di�erent magnitude on the updates of the animal’s policy.

We illustrate the utility of this model by fitting results from an easy visual task, in

which one of the two choice ports lights up to indicate the location of the reward,

and the optimal policy is to simply poke the port with the light (Figure 6.10a, a’, a”).

All the mice eventually reached a >83% performance level, comparable to what mice

achieve in similar tasks [8, 15]. The GLM makes a prediction for the outcome of

each trial based on a weighted combination of several input variables: the current

visual stimulus, a constant bias term, and three terms representing the history of

previous trials (Figure 6.3a). These inputs from a previous trial include the port

choice, whether that choice was rewarded, and a term indicating the multiplicative

interaction between the choice and reward (Choice ◊ Reward). This term supports a

strategy called win-stay-lose-switch (WSLS), which chooses the same port if it was

rewarded previously and the opposite one if not. Since a GLM cannot multiply two

inputs, we provided this interaction term explicitly. Each of the above terms has a

weight coe�cient that can be positive or negative. For instance, a positive weight for

the visual stimulus supports turning toward the light, and a negative weight away

from the light.

To determine the extent of trial history that a�ects the animal’s behavior, we fitted the

model to the response data including history dependent terms up to three previous

trials. We found that only the immediately preceding trial had an appreciable e�ect

on the prediction accuracy, and thus restricted further analysis to those inputs (Figure

6.3b). The model also has three hyperparameters (the temporal discount factor

U, the reward factor A, and the regularization factor _), and we optimized them

for each animal by grid search. We found that each animal had a di�erent set of

hyperparameters, reflecting di�erences in the learning process across individuals

(Figure 6.3c). Among the four sample mice, Animal 2 had the lowest temporal

discount factor, suggesting that it weighed recent trials more heavily and updated the
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policy more quickly. Indeed, this is the animal that learned the fastest among the

four (Figure 6.3d).

Predictions from the iterative GLM matched ~80% of the animals’ actual choices (Fig-

ure 6.3f), and the predicted accuracy of each animal captured the actual fluctuations

of its learning curve (Figure 6.3e and Figure 6.12). We compared the performance of

the GLM with two other modeling approaches (Online Methods). The first model

was fit to the animal’s average performance in the task; its trial-by-trial match of

the animal’s actual choices was only ~59% (Figure 6.3g). The second model was a

logistic regression fitted to data in a sliding window of N trials. This sliding window

model performed worse than the iterative GLM when the window size was small (N

= 20 and 30 trials, Figure 6.3h); for larger windows the performance was comparable.

Overall, the iterative model is advantageous because it makes predictions online as

every trial occurs and adapts dynamically to the growing data set.

Individual learning policies can be inferred from iterative GLM fitting
The iterative GLM serves to infer what policy the animal follows in making decisions.

The linear weight of each input term reflects its relative importance for the decision.

By following this weight vector across trials, one obtains a policy matrix that

documents how the animal’s policy changes during learning (Figure 6.1b, Figure

6.4c). To test that the model can correctly capture a time-varying policy, we simulated

decision-making data from a ground truth policy that changed at a certain frequency,

including a certain level of noise in the behavioral output (Figure 6.4a). Over a

wide range of policy change frequencies and noise levels, the GLM was able to

capture the ground truth policy (Figure 6.4a, b). In addition, di�erent values of

policy change frequency and noise levels led to di�erent sets of hyperparameters

fitted from the model, showing that the GLM can adapt to individuals with diverse

learning characteristics (Figure 6.13a–e).

We then recovered the policy matrix of each animal from the GLM fits. All four

animals started with the non-optimal policy of WSLS. Subsequently each animal

followed its own learning process (Figure 6.4c): Animal 2 had a clear bias towards

the right port at the beginning but it rapidly found the optimal policy of following

the light. The other three animals were slower learners. Animal 3 and Animal 4

followed similar processes to converge to the optimal policy. Animal 1 was distinct

from the others. At the early stages, it had a strong bias toward the left port, and it

made decisions based on whether the previous choice was rewarded.
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Figure 6.4: Interpretation of policies during learning. (a) Policy vectors recovered
by the iterative GLM capture the ground truth policies. The policy matrix plots
in each trial (horizontal) the weights associated with each of five factors (vertical),
encoded with a color scale (see Panel c). The factors are: A = Visual_stimulus, B
= Choice ⇥ Reward_back_1, C = Choice_back_1, D = Reward_back_1, E = Bias.
Two examples are shown of ground truth policies used to simulate data and the
corresponding trial-by-trial estimates from the GLM. Blanks in the ground truth
matrix indicate instances where the simulated choice is opposite to the policy. (b)
Similarity between the recovered policy and the ground truth, measured by the cosine
between the two policy vectors. Error bars indicate standard deviation. (c) Policy
matrices recovered for the four animals show distinct individual learning processes.
Dashed rectangles highlight the first and last sessions of each animal, as enlarged
in d. (d) Recovered policy matrices for the first and last sessions of each animal.
(e) Fraction of trials explained by two candidate policies (win-stay-lose-switch and
following the stimuli) in the first and last sessions. Error bars indicate standard errors.
** indicates P < 0.01.
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Figure 6.5: Supervised analysis using features extracted by automated behavior
assessment. (a) DeepLabCut extracts the centroid and the orientation as the angle
between the horizontal axis and the line connecting the centroid and the nose. (b)
Centroid distance along the left-right axis vs time during the movement, for animal
1. The starting position is set to zero, positive values indicate movement to the
left, negative to the right. The four trial types are indicated by di�erent colors. (c)
Average centroid trajectory for each animal. Shaded region indicates standard error.
(d-e) Orientation vs time, displayed as in panels b-c. Positive angle points to the left,
negative to the right.

We further validated the transition between policies during learning by analyzing

the first and last sessions of each animal and counting how many choices could be

explained by each policy (Figure 6.4d). Indeed, we found a clear switch from the

(non-optimal) WSLS policy to the (optimal) stimulus-based policy (Figure 6.4e and

Figure 6.13f). The animals might have been biased towards the WSLS strategy by a

shaping method we used during training, which o�ered the animal a repeat of the

same stimulus every time it made a mistake (Online Methods). To test whether

these correlations in the trial sequence influenced the final policy we performed

two additional analyses. First, we only included trials following a correct trial,

and performed logistic regression on these trials for each session. This analysis

showed that at least on these trials, all the animals based their decisions on the light

stimulus by the end of learning (Figure 6.14a). Second, we compared the error rate

on trials following an incorrect choice with that following a correct one. We found
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Figure 6.6: Unsupervised analysis of the behavior trajectories. (a) Principal
component projections onto PC1 and PC2 of the centroid-vs-time trajectories from
Figure 5. The four trial types are indicated by di�erent colors. (b) The centroid
trajectories corresponding to the first four principal components (PCs). The variance
explained by each PC is shown in the plot legend. (c) Clustering trials by their
trajectories using t-SNE analysis. Distinct clusters are marked with di�erent colors
for use in subsequent panels. (d) Averaged centroid distance vs time for each cluster,
plotted as in Figure 5b. (e) Box plot of the reaction time for each cluster. (f) The
error rate on the preceding trial for each cluster. Error bars indicate standard errors.
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Figure 6.7: Performance of the support vector machine to infer trial category
from mouse trajectories. (a) Prediction accuracy of the SVMs for individual
animals. (b) F1 score of the SVM fitted for the decision categories of each animal.
Shaded region denotes standard error. x-axis indicates the time starting from when
the animal leaves the center port to make a choice. SVMs were trained using features
up to a certain time point.

no significant di�erence between the two error rates during the last session (Figure

6.14b, c), suggesting that the animals treated these two types of trials identically.

Automated movement tracking reveals fine structure of behavioral responses
Thus far the report has focused on the animal’s responses only as sensed by the

nose pokes into response ports. The GLM fits of those responses already revealed

di�erences in policy across individuals. To gain further insight into these individual

preferences, it is essential to track each animal’s behavior along the way from stimuli

to responses [22]. We thus employed computer vision software to automatically,

quantitatively, and accurately assess each animal’s behavior during decision-making.

Having compared several tracking algorithms, we eventually used DeepLabCut [24],

a deep learning-based program, because it is easy to use and accurate in identifying

body landmarks (Figure 6.1c, Figure 6.5a). We identified two body landmarks: the

nose and the centroid of the animal, and further calculated the orientation as the

angle of the line connecting the centroid and the nose (Figure 6.5a).
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To illustrate use of these behavioral trajectories, we focus on the period of the visual

choice task where the animal reports its decision: from the time it leaves the center

port to when it pokes one of the side ports. The trials fall into four groups based on

location of the stimulus and the response. As expected, the trajectories of position and

orientation clearly distinguish left from right choices (Figure 6.5b, d). Interestingly,

the trajectories also reveal whether the decision was correct: On incorrect decision,

the trajectories reversed direction after ~0.5 s, because the animal quickly turned

back to the center after finding no reward in the chosen port (Figure 6.5c, e). A linear

kernel support vector machine (SVM), trained to predict the category of each trial

from a 1 s trajectory, was able to correctly distinguish correct and incorrect choices

with an accuracy of over 90% (Figure 6.15). In addition, many of the trajectories were

highly asymmetric and again revealed di�erences across individuals. For instance,

Animal 2 and Animal 4 started from a location close to the right port, Animal 1 closer

to the left port (Figure 6.5c). This asymmetry correlates with the bias revealed by

the iterative GLM: each animal prefers to select the port closer to its body location.

Unsupervised behavioral analysis reveals moments of hesitation
Whereas the supervised learning discussed above relies on prior classification of

stimuli and responses, an unsupervised analysis has the potential to discover unex-

pected structures in the animal’s behavior [17]. We thus performed an unsupervised

classification of the behavioral trajectories.

After subjecting all the trajectories of a given animal to principal component analysis

(PCA) we projected the data onto the top three components, which explained over

95% of the variance (Figure 6.6a, b). Importantly, without any labels from trial

types, these three PCs captured meaningful features that di�erentiated the animal’s

responses. The first PC separated movements to the left from those to the right. The

third PC captured the turning-back behavior after an incorrect choice. The second

PC captured di�erent baseline positions. Each animal has its own preference for a

baseline position somewhere o� the midline of the chamber (Figure 6.16a).

We also projected the trajectories into 2 dimensions using a non-linear embedding

method, t-distributed stochastic neighbor embedding [5, 38]. Unlike PCA, this graph

prioritizes the preservation of local structures within the data instead of the global

structure [38]. In the t-SNE space the trajectories formed clear clusters (Figure 6.6c).

Most of the clusters are dominated by one of the decision categories (Figure 6.6c and

Figure 6.16b). Interestingly, we found clusters in Animals 2, 3, and 4, in which the
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Figure 6.8: Additional information on the unsupervised analysis of behavior
trajectories. (a) Scatter plot of starting positions along the left-right axis against
PC2 shows correlation between the two. Starting positions are normalized to range
from 0 (the leftmost position) and 1 (the rightmost position). (b) t-SNE plots with
colors indicating di�erent decision categories.

centroid trajectories were flat, unlike the trajectories of the four decision categories

(Figure 6.6d), suggesting that animals hesitated in these trials and made decisions

only after a delay. Indeed, in trials flagged by these clusters, the animals had longer

reaction times (Figure 6.6e). Furthermore, such hesitating responses were more

common following an incorrect trial (Figure 6.6f); they may reflect a behavioral

adjustment to prevent further mistakes [6].

6.3 Discussion
Despite the fact that rodents can be trained to perform interesting decision-making

tasks [10, 16, 22, 23], the learning progress of individual animals has rarely been

addressed. Doing so requires training and observing many animals in parallel under

identical conditions, and the ability to analyze the decision policy of each animal

on a trial-by-trial basis. To meet these demands, we developed Mouse Academy,

an integrated platform for automated training and behavior analysis of individual

animals.

We demonstrate here that Mouse Academy can train group-housed mice in an

automated and highly e�cient manner while simultaneously acquiring decision-

making sequences and video recordings. Automated animal training has been of
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great interest in recent years and e�orts have focused on two directions. In one design,

multiple animals are trained in parallel within stacks of training boxes. This requires

a technician to transfer animals from their home cages to the behavior boxes [9,

30, 40]. Such animal handling has been reported to introduce additional variability

[12, 20], and even the mere presence of an experimenter can influence behavioral

outcomes [34]. Thus, eliminating the requirement for human intervention, as in

Mouse Academy, likely reduces experimental variation. In another design, a training

setup is incorporated within the animals’ home cage [15, 28, 33]. By contrast, Mouse

Academy separates the functions of housing and training, and that modular design

allows easy adaptation to a di�erent purpose. For instance, one can replace the 3-port

discrimination box with a maze to study spatial navigation learning [4, 26], or with

an apparatus for training under voluntary head-fixation [2]. In each case, a single

training apparatus can serve many mice, potentially from multiple home cages.

To understand how an animal’s decision-making policies change in the course of

learning, we developed a trial-by-trial iterative GLM. The evolution of the model is

similar to online machine learning [32] in which the data are streamed in sequentially,

rather than in batch mode. The linear nature of the model supports a straightforward

definition of the animal’s decision policy, namely as the vector of weights associated

with di�erent input variables. In addition, the simple linear structure allows rapid

execution of the algorithm, which favors its use in real-time closed-loop behavior

experiments. The model also allows several parametric adjustments. One specifies

how much the recent trials are weighted over more distant ones in shaping the

animal’s policy. Another rates the relative influence of reward versus punishments.

Fitting these parameters to each animal already revealed di�erences in learning style.

This model can have a broader use beyond mouse decision-making, for instance to

track the progress of human learners from their answers to a series of quizzes [27].

Finally we analyzed behavioral trajectories of individual animals. The behavioral

trajectories can reveal intricate aspects of the animal’s decision process that are

hidden from a mere record of the binary choices. The large data volume again calls

for automated analysis, and both supervised machine learning methods [14, 17, 19]

and unsupervised classification [5, 17, 38, 41] have been employed for this purpose.

Unsupervised analysis is not constrained by class labels, and can identify hidden

structure in the data in an unbiased manner. In the present case, we discovered a

motif wherein the animal hesitates on certain trials before taking action.

Mouse Academy can be combined with chronic wireless recording [37, 44], to allow
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synchronized data acquisition of neural responses. Researchers can seek correlations

between neural activity and the policy matrix or even the behavioral trajectories.

This will open the door to a mechanistic understanding of how neural representations

and dynamics change in the course of animal learning.

Online Methods
Animals

Subjects were C57BL/6J male mice aged 8–12 weeks. All experiments were

conducted in accordance with protocols approved by the Institutional Animal Care

and Use Committee of the California Institute of Technology.

Hardware setup

The hardware setup comprises a behavioral training box, an engineered home cage,

and a radio frequency identification (RFID) sorting system, which allows animals to

move between the home cage and the training box. These components are coordinated

by customized software.

The design file for the behavior box was modified from that of Sanworks LLC

(https://github.com/sanworks/Bpod-CAD) using Solid-Works computer-aided

design software and the customized behavioral training box was manufactured in the

lab. The behavior box is controlled by a Bpod state machine (r0.8, Sanworks LLC).

To monitor the animal’s behavior, an IR webcam (Ailipu Technology or OpenMV

Camera M7) is installed above the behavior box. The behavior box and the webcam

are placed within a light- and sound-proof chamber. The chamber is made of particle

board with walls covered by acoustic foam. A tunnel made of red plastic tubes

connects the behavior box to a home cage (Figure 6.9b).

For the RFID access control system, an Arduino Mega 2560 microcontroller is

connected with three RFID readers (ID-12LA, Sparkfun) with custom antenna coils

spaced along the access tunnel. The microcontroller controls two generic servo

motors fitted with plastic gates to grant individual access to the training box (Figure

6.9a).

The microcontroller identifies each animal by its implanted RFID chip and permits

only one animal to go through the tunnel connecting the home cage and the behavioral

training box (Figure 6.9c). It also communicates the animal’s identity to a master

program running on a PC or Raspberry Pi (Matlab or Python). The master program

https://github.com/sanworks/Bpod-CAD
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coordinates the following programs: Bpod (https://github.com/sanworks/

Bpod), synchronized video recording, data management, and logging. A repository

containing the design files, the firmware code for the microcontroller, and the software

can be found in https://github.com/muqiao0626/Mouse_Academy.

Behavior training

The training procedures of mice to perform a selective attention task are similar to

those previously reported [29, 42]. Mice were water restricted for seven days before

training, and habituated in the automated training system to collect reward freely for

several sessions. Then the mice were trained in sessions, each of which was made

of 90 trials, to collect water rewards by performing two alternative forced choice

tasks. Briefly, the animal had to nose-poke one of two choice ports based on the

presented stimuli. If the decision was correct, 10% sucrose-sweetened water (3 µL)

was delivered to the animal. For incorrect responses, the animal was punished with

a five-second timeout. Following an incorrect response, the animal was presented

with the identical trial again; this simple shaping procedure helps counter-act biases

in the behavior. Over 28 days of training the animals learned increasingly complex

tasks, from visual discrimination to a two-modality cued attention switching task

[29, 42]. The training progressed through six stages (Figure 6.10):

1. A simple visual task: In this task, the animal initiates a trial by poking the

center port and holding the position for 100 ms. Then either the left- or right-

side port light up briefly until the animal moves away from the center port.

The animal must then poke one of the two side ports within the decision period

of 10 s. Choice of the port flagged by the light leads to a water reward, and

choice of the other port leads to a timeout period during which no trials can be

initiated. Data presented in the main text are from this stage of training only.

2. A simple auditory task: As Stage 1, except that the stimulus was white noise

sound either the left or the right side to flag the reward port.

3. A cued single-modality (visual or auditory) switching task: Blocks of 15 trials

consisting of single-modality (visual or auditory) stimulus presentation. Each

block was like Stages 1 or 2, except that the trial type was indicated by a 7 kHz

(visual) or 18 kHz (auditory) pure tone.

4. A cued single- and double-modality switching task: Like Stage 3, but distracting

trials were introduced in which both visual and auditory stimuli were present,

https://github.com/sanworks/Bpod
https://github.com/sanworks/Bpod
https://github.com/muqiao0626/Mouse_Academy
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but only one of the modalities was relevant to the decision. The relevant

modality was again indicated by the pure tone cues. In repeating blocks, four

types of trials were presented: a. five visual-only trials; b. ten “attend to vision”

trials with auditory distractors; c. five auditory-only trials; d. ten “attend to

audition” trials with visual distractors. During the training, the time that the

animal had to hold in the center port was gradually increased to 0.5 s, and the

duration of the stimuli was gradually shortened to 0.2 s.

5. A cued double-modality switching task: Like Stage 4 except that the single-

modality trials were removed, and the block length was gradually shortened to

three trials.

6. A selective attention task: Like Stage 5, but the block structure was abandoned

and all eight possible trial types were randomized: (audition vs vision) ⇥
(sound left or right) ⇥ (light left or right).

Iterative generalized linear model

We modeled the animal’s choice probability by a logistic regression. At each trial

number C, the choice probability is defined as

?(HC = 1|wC�1) =
1

1 + exp�w)

C�1GC
(6.1)

?(HC = �1|wC�1) = 1 � ?(HC = 1|wC�1) (6.2)

where HC indicates the binary choice of the animal (1 = right, –1 = left), xC is the

vector of input factors on trial C, and wC�1 is the vector of weights for these factors

obtained from fitting up to the preceding trial. The prediction H
⇤
C

for the animal’s

choice is simply that with the higher model probability:

H
⇤
C
= argmax

H2{�1,+1}
?(H |xC ,wC�1) (6.3)

After observing the animal’s actual choice IC , the cross-entropy error ⇢C between the

observation and model prediction is calculated as

⇢C = � log ?(IC |xC ,wC�1) (6.4)
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We weight the error term by a reward factor , and apply exponential temporal

smoothing to get the loss function !C :

!C = 'C⇢C + U!C�1 (6.5)

where is the smoothing discount factor accounting for the e�ect that distant trials

have less impact on decision-making than immediately preceding trials, and 'C is

defined as

'C =

8>><
>>:

1, if the choice is rewarded

A , otherwise
(6.6)

The values of 'C for rewarded and unrewarded trials may be di�erent, accounting for

the fact that rewards and punishments may have di�erent e�ects on learning. For

each time point, the weights in the model are determined by minimizing the loss

function subject to L1 (lasso) regularization, namely

FC = argmin
F

(!C + _kwk1) (6.7)

Then wC is used for prediction of the next trial. For subsequent analysis, we only

used predictions starting at the 15th trial. The three hyperparameters for the temporal

discount factor U, the reward factor A, and the regularization factor _ were selected

by grid search.

To fit the decision-making sequences of the simple visual task, we included the

following terms in the input vector xC :

1. Visual_stimulus: +1 = light on right, �1 = light on left.

2. Bias: A constant value of +1. The associated weight determines whether the

animal favors the left (negative) or the right (positive) port.

3. Choice_back_n: The choice the animal made n trials ago (+1 = right, �1 =

left).

4. Reward_back_n: The reward the animal received n trials ago (+1 = reward,

�1 = punishment).
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5. Choice⇥Reward_back_n: The product of terms 4 and 5. This term corresponds

to the win-stay-lose-switch (WSLS) strategy of repeating the last choice if it

was rewarded and switching if it was punished.

To determine the extent of history-dependence of the animal’s decisions, we fitted the

model including terms 3–5 from up to three previous trials (= = 1, 2, 3), and found

that only the immediately preceding trial had an appreciable e�ect on the model’s

prediction accuracy. For the subsequent analysis, we therefore included terms 3–5

for the preceding trial (= = 1).

We compared the iterative generalized linear model (GLM) with two other models.

The first only captures the animal’s average performance over all trials. If the fraction

of the correct responses is I, then the model simply predicts a correct response with

probability I, and an error with probability 1 � I. Thus, the fraction of trials where

the prediction matches the observation is I2 + (1 � I)2.

The second model is a sliding window logistic regression. To make a prediction

for trial t, we fitted the logistic model presented above (Equations 6.1–6.2) to the

preceding n trials. The loss function is:

!C = �
C�1’
8=C�=

log ?(IC |xC ,wC�1) (6.8)

and the weights are again optimized as in Equation 6.7.

Recovering policy matrices from simulated data To test the model’s ability in

recovering policy matrices, we trained the model on data generated from pre-defined

ground truth policies. The ground truth policies changed every 10 trials, 30 trials,

or 90 trials. Binary choices were simulated with di�erent noise levels using the

algorithm “n-greedy”: with a probability of n , the simulator made a random choice,

and with a probability of 1 � n , it chose the action indicated by the ground truth

policy. The noise levels (n values) ranged from 0 to 0.6. The similarity between the

recovered policy and the ground truth policy was evaluated by the cosine between

the recovered weight vector and the ground truth weight vector.

Supervised and unsupervised analysis of behavioral trajectories We annotated two

body landmarks, the nose and the centroid, on ~100 frames of the video, and used

them to train DeepLabCut [24]. Tested on a separate set of annotated frames, more

than 85% the nose positions are inferred within an error radius of 0.25 cm, and more
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than 85% of the centroid positions are inferred within an error radius of 0.4 cm.

From the nose and the centroid, we calculated the orientation as the angle of the line

connecting the centroid and the nose. For each trial, the centroid and orientation

were extracted for n frames (n = 30 (1 s) in most cases), thus the data dimension for

each trial is 3n (the two centroid coordinates and the orientation).

To determine whether the behavioral trajectories contain information about the

decision categories, a support vector machine (SVM) with a linear kernel was trained

for each decision category. The training set was labelled with the decision category

based on information about the visual stimulus and the animal’s choice (for example,

“Stim: R, Choice: L” means that the light is on the right and the animal chooses the

left port). Performance of the trained SVM was examined by prediction accuracy on

the test set, and the F1 score, which is the harmonic mean of precision and recall:

�1 = 2 · precision · recall
precision + recall

=
2 · true positive

2 · true positive + false positive + false positive
(6.9)

The performance was computed as the average across 10 repeated analyses (Figure

6.15).

We performed a non-linear embedding method, t-distributed stochastic neighbor

embedding (t-SNE) analysis as previously described [5, 38]. Briefly, the trajectory

data of each trial were projected into a 2D t-SNE space. Point clouds on the t-SNE

map represented candidate clusters. Density clustering identified these regions. We

then plotted trajectories and reaction time distributions to confirm that the clusters

were distinct from each other. A repository of the analysis scripts can be found in

https://github.com/tonyzhang25/MouseAcademyBehavior.

https://github.com/tonyzhang25/MouseAcademyBehavior


45

Bpod Training box Engineered home cage

RFID access control

Bpod Engineered home cageLight/sound
proof box

RFID access control

 

Supplementary Figure 1

 

a b

   

c

GND
RES
ANT
ANT
CP

VCC

READ

D1
D0

FORM
TIR

GND
RES
ANT
ANT
CP

VCC

READ

D1
D0

FORM
TIR

GND
RES
ANT
ANT
CP

VCC

READ

D1
D0

FORM
TIR

+5V

To Antenna 1

To Antenna 2

To Antenna 3

To LED indicators
(optional)

To Servo Motor 1
To Servo Motor 2

To the computer
through USB

RFID Readers

RFID access
control

Master
program

Serial I/O

Log files

BpodAPI

Data base

Camera

Raspberry Pi

Training box with
camera recording

Engineered
home cage

RFID access
control

d e f

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/467878doi: bioRxiv preprint 

Figure 6.9: Technical details of the hardware design. (a-b) Side view of the setup
(a) packed into a light- and sound-proof box (b). (c) RFID sorting process. For
an animal to enter the behavior box, only when the left and the middle detectors
detect the same RFID chip, the left gate is closed and the right gate is open so that
the animal can access the behavior box. For an animal to return to the home cage,
only when the right and the middle detectors detect the same RFID chip, the right
gate is closed and the left gate is open so that the animal can go back to the home
cage. In the entry and the return processes, if the left and the middle detectors detect
di�erent RFID chips, the animals have to leave the tube and the detectors get reset
afterwards. (d) Schematic of RFID access control circuit. (e) Schematic of the
software controlling the devices. A master program receives input from the RFID
sorting device and controls four other modules including Bpod, synchronized video
recording, data management, and logging. (f) Top view of a Raspberry Pi version of
the setup.
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Figure 6.10: Illustration of training procedures. Training proceeds through six
stages (Online Methods). The design, learning curves, and animal performance
of the simple visual task (a, a’, a”), the simple auditory task (b, b’, b”), the cued
single-modality (visual or auditory) switching task (c, c’, c”), the cued single- (visual
or auditory) and double-modality (attend to vision or audition) switching task (d, d’,
d”), the cued double-modality (attend to vision or audition) switching task (e’, e”),
and the final selective attention task (f, f’, f”) are shown here. a’ displays performance
data as in Figure 3e. Brown and gray dashed lines indicate the performance thresholds
for upgrading to the next stage and downgrading to the previous stage respectively.



47

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/467878doi: bioRxiv preprint 

Figure 6.11: Automated training system allows e�cient use of the behavior box.
For a sample cohort of five animals, this shows the fraction of time each animal used
the behavior box (a) and the activity trace of each animal throughout one month.
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Figure 6.12: Additional analysis on the iterative generalized linear model’s
prediction accuracy. The actual performance and the performance predicted by the
model, for each of the four animals. Note that the predictions recapitulate the more
prominent fluctuations in the actual learning curves. Error bars indicate standard
errors.
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Figure 6.13: Iterative generalized linear model captures di�erences between
individuals and policy changes. (a-b) Hyperparameter selection for the GLMs
fitted to the simulated data generated from the ground truth policies. Di�erent values
of policy change frequency and noise level (n) lead to di�erent landscapes of the
hyperparameters. (c-e) Selected temporal discount factor (c), reward factor (d) and
regularization factor (e) for di�erent values of policy change frequency and noise
level (n). (f) Fraction of the trials explained by the two policies (win-stay-lose-switch
or WSLS, and following the stimuli) in the first and last sessions, for each of the four
animals.
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Figure 6.14: Additional analyses of policy changes during learning. (a) Policy
matrices over sessions of the four animals. Here the policy matrices are recovered
from logistic regression using only the trials following a correct response. Because
the reward of the last trial is always +1, the term Reward_back_1 is the same as Bias,
and the term RewardxChoice_back_1 is equal to Choice_back_1, so we drop them
to avoid redundancy. (b-c) Quantification of the error rate during the last session,
comparing trials following a correct response to those following a mistake. Averaged
over all four animals (b) and for each of the four animals (c). n.s. indicates not
significant.
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Figure 6.15: Performance of the support vector machine to infer trial category
from mouse trajectories. (a) Prediction accuracy of the SVMs for individual
animals. (b) F1 score of the SVM fitted for the decision categories of each animal.
Shaded region denotes standard error. x-axis indicates the time starting from when
the animal leaves the center port to make a choice. SVMs were trained using features
up to a certain time point.



52

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/467878doi: bioRxiv preprint 

Figure 6.16: Additional information on the unsupervised analysis of behavior
trajectories. (a) Scatter plot of starting positions along the left-right axis against
PC2 shows correlation between the two. Starting positions are normalized to range
from 0 (the leftmost position) and 1 (the rightmost position). (b) t-SNE plots with
colors indicating di�erent decision categories.
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C h a p t e r 7

MICE IN A LABYRINTH EXHIBIT RAPID LEARNING, SUDDEN
INSIGHT, AND EFFICIENT EXPLORATION

[1] Matthew Rosenberg*, Tony Zhang*, Pietro Perona, and Markus Meister. “Mice
in a labyrinth show rapid learning, sudden insight, and e�cient exploration”. In:
Elife 10 (2021), e66175. ���: https://elifesciences.org/articles/
66175.

[1] Matthew Rosenberg*, Tony Zhang*, Pietro Perona, and Markus Meister.
“Rapid learning and e�cient exploration by mice navigating a complex maze”.
In: NeurIPS Biological and Artificial Reinforcement Learning Workshop
(2019). ���:https://sites.google.com/view/biologicalandartificialrl/
home?authuser=0.

Animals learn certain complex tasks remarkably fast, sometimes after a single

experience. What behavioral algorithms support this e�ciency? Many contemporary

studies based on two-alternative-forced-choice (2-AFC) tasks observe only slow or

incomplete learning. As an alternative, we study the unconstrained behavior of mice

in a complex labyrinth and measure the dynamics of learning and the behaviors that

enable it. A mouse in the labyrinth makes ~2000 navigation decisions per hour. The

animal explores the maze, quickly discovers the location of a reward, and executes

correct 10-bit choices after only 10 reward experiences—a learning rate 1000-fold

higher than in 2-AFC experiments. Many mice improve discontinuously from one

minute to the next, suggesting moments of sudden insight about the structure of the

labyrinth. The underlying search algorithm does not require a global memory of

places visited and is largely explained by purely local turning rules.

https://elifesciences.org/articles/66175
https://elifesciences.org/articles/66175
https://sites.google.com/view/biologicalandartificialrl/home?authuser=0
https://sites.google.com/view/biologicalandartificialrl/home?authuser=0
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7.1 Introduction
How can animals or machines acquire the ability for complex behaviors from one or

a few experiences? Canonical examples include language learning in children, where

new words are learned after just a few instances of their use, or learning to balance

a bicycle, where humans progress from complete incompetence to near perfection

after crashing once or a few times. Clearly such rapid acquisition of new associations

or of new motor skills can confer enormous survival advantages.

In laboratory studies, one prominent instance of one-shot learning is the Bruce e�ect

[7]. Here the female mouse forms an olfactory memory of her mating partner that

allows her to terminate the pregnancy if she encounters another male that threatens

infanticide. Another form of rapid learning accessible to laboratory experiments

is fear conditioning, where a formerly innocuous stimulus gets associated with a

painful experience, leading to subsequent avoidance of the stimulus [5, 13]. These

learning systems appear designed for special purposes, they perform very specific

associations, and govern binary behavioral decisions. They are likely implemented

by specialized brain circuits, and indeed great progress has been made in localizing

these operations to the accessory olfactory bulb [6] and the cortical amygdala [20].

In the attempt to identify more generalizable mechanisms of learning and decision

making, one route has been to train laboratory animals on abstract tasks with tightly

specified sensory inputs that are linked to motor outputs via arbitrary contingency

rules. Canonical examples are a monkey reporting motion in a visual stimulus by

saccading its eyes [26], and a mouse in a box classifying stimuli by moving its

forelimbs or the tongue [9, 17]. The tasks are of low complexity, typically a 1-bit

decision based on 1 or 2 bits of input. Remarkably they are learned exceedingly

slowly: a mouse typically requires many weeks of shaping and thousands of trials to

reach asymptotic performance; a monkey may require many months [10].

What is needed therefore is a rodent behavior that involves complex decision making,

with many input variables and many possible choices. Ideally the animals would

learn to perform this task without excessive intervention by human shaping, so we

may be confident that they employ innate brain mechanisms rather than circuits

created by the training. Obviously the behavior should be easy to measure in the

laboratory. Finally, it would be satisfying if this behavior showed a glimpse of rapid

learning.

Navigation through space is a complex behavior displayed by many animals. It

typically involves integrating multiple cues to decide among many possible actions.
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It relies intimately on rapid learning. For example a pigeon or desert ant leaving

its shelter acquires the information needed for the homing path in a single episode.

Major questions remain about how the brain stores this information and converts it

to a policy for decisions during the homing path. One way to formalize the act of

decision-making in the laboratory is to introduce structure in the environment in the

form of a maze that defines straight paths and decision points. A maze of tunnels is

in fact a natural environment for a burrowing rodent. Early studies of rodent behavior

did place the animals into true labyrinths [35], but their use gradually declined in

favor of linear tracks or boxes with a single choice point.

We report here on the behavior of laboratory mice in a complex labyrinth of tunnels.

A single mouse is placed in a home cage from which it has free access to the maze

for one night. No handling, shaping, or training by the investigators is involved. By

continuous video-recording and automated tracking we observe the animal’s entire

life experience within the labyrinth. Some of the mice are water-deprived, and a

single location deep inside the maze o�ers water. We find that these animals learn

to navigate to the water port after just a few reward experiences. In many cases

one can identify unique moments of “insight” when the animal’s behavior changes

discontinuously. This all happens within ~1 hour. Underlying the rapid learning is

an e�cient mode of exploration driven by simple navigation rules. Mice that do not

lack water show the same patterns of exploration. This laboratory-based navigation

behavior may form a suitable substrate for studying the neural mechanisms that

implement few-shot learning.

7.2 Results
Adaptation to the maze
At the start of the experiment a single mouse was placed in a conventional mouse

cage with bedding and food. A short tunnel o�ered free access to a maze consisting

of a warren of corridors (Figure 7.1A-B). The bottom and walls of the maze were

constructed of black plastic that is transparent in the infrared. A video camera placed

below the maze captured the animal’s actions continuously using infrared illumination

(Figure 7.1B). The recordings were analyzed o�ine to track the movements of the

mouse, with keypoints on the nose, mid-body, tail base, and the four feet (Figure

7.1D). All observations were made in darkness during the animal’s subjective night.

The logical structure of the maze is a binary tree, with 6 levels of branches, leading

from the single entrance to 64 endpoints (Figure 7.1C). A total of 63 T-junctions are
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Figure 7.1: The maze environment. Top (A) and side (B) views of a home cage,
connected via an entry tunnel to an enclosed labyrinth. The animal’s actions in the
maze are recorded via video from below using infrared illumination. (C) The maze
is structured as a binary tree with 63 branch points (in levels numbered 0,...,5) and
64 end nodes. One end node has a water port that dispenses a drop when it gets
poked. Blue line in A and C: path from maze entry to water port. (D) A mouse
considering the options at the maze’s central intersection. Colored keypoints are
tracked by DeepLabCut: nose, mid body, tail base, 4 feet.

connected by straight corridors in a design with maximal symmetry (Figure 7.1A,

Figure 7.6–Figure 7.7), such that all the nodes at a given level of the tree have the

same local geometry. One of the 64 endpoints of the maze is outfitted with a water

port. After activation by a brief nose poke, the port delivers a small drop of water,

followed by a 90-s time-out period.

After an initial period of exploratory experiments, we settled on a frozen protocol

that was applied to 20 animals. Ten of these mice had been mildly water-deprived

for up to 24 hours; they received food in the home cage and water only from the port

hidden in the maze. Another ten mice had free access to food and water in the cage,

and received no water from the port in the maze. Each animal’s behavior in the maze

was recorded continuously for 7 h during the first night of its experience with the
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Figure 7.2: Fraction of time spent in the maze. Mice could move freely between
the home cage and the maze. For each animal (vertical), the fraction of time in the
maze (color scale) is plotted as a function of time since start of the experiment. Time
bins are 500 s. Note that mouse D6 hardly entered the maze; it never progressed
beyond the first junction. This animal was excluded from all subsequent analysis
steps.

Figure 7.3: Average fraction of time spent in the maze by group. This shows
the average fraction of time in the maze as Mean ± SD over the population of 10
rewarded and 9 unrewarded animals. Right: expanded axis for early times. The
tunnel to the maze opens at time 0. Rewarded and unrewarded animals used the
maze in remarkably similar ways. Exploration of the maze began around 250 s after
tunnel opening. Within the next 250 s the maze occupancy rose quickly to ~70%,
then declined gradually over 7 h to ~30%.
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Exit from the mazeEntry into the mazeA B

Figure 7.4: Rates of transition between cage and maze. (A) The instantaneous
probability per unit time Am (C) of entering the maze after having spent time C in the
cage. Note this rate is highest immediately upon entering the cage, then declines by
a large factor. (B) The instantaneous probability per unit time Ac (C) of exiting the
maze after having spent time C in the maze.

maze, starting the moment the connection tunnel was opened (sample videos here).

The investigator played no role during this period, and the animal was free to act as

it wished including travel between the cage and the maze.

All of the mice except one passed between the cage and the maze readily and

frequently (Figure 7.1–Figure 7.2). The single outlier animal barely entered the

maze and never progressed past the first junction; we excluded this mouse’s data

from subsequent analysis. On average over the entire period of study the animals

spent 46% of the time in the maze (Figure 7.1–Figure 7.3). This fraction was similar

whether or not the animal was motivated by water rewards (47% for rewarded vs 44%

for unrewarded animals). Over time the animals appeared increasingly comfortable in

the maze, taking breaks for grooming and the occasional nap. When the investigator

lifted the cage lid at the end of the night, some animals were seen to escape into the

safety of the maze.

We examined the rate of transitions from the cage to the maze and how it depends

on time spent in the cage (Figure 7.1–Figure 7.4A). Surprisingly the rate of entry

into the maze is highest immediately after the animal returns to the cage. Then it

declines gradually by a factor of 4 over the first minute in the cage and remains

steady thereafter. This is a large e�ect, observed for every individual animal in both

the rewarded and unrewarded groups. By contrast the opposite transition, namely

exit from the maze, occurs at an essentially constant rate throughout the visit (Figure

https://www.youtube.com/playlist?list=PLm5UsX091_2X0ph_ldO3_lC9KFxqYpqo5
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Time in maze: 0:51-9:46 min 16:15-17:40 min

48:50-49:14 min 52:34-53:57 min

Figure 7.5: Sample trajectories during adaptation to the maze. Four sample
bouts from one mouse (B3) into the maze at various times during the experiment
(time markings at bottom). The trajectory of the animal’s nose is shown; time is
encoded by the color of the trace. The entrance from the home cage and the water
port are indicated in Panel A.

7.1–Figure 7.4B).

The nature of the animal’s forays into the maze changed over time. We call each foray

from entrance to exit a “bout.” After a few hesitant entries into the main corridor,

the mouse engaged in one or more long bouts that dove deep into the binary tree

to most or all of the leaf nodes (Figure 7.5A). For a water-deprived animal, this

typically led to discovery of the reward port. After ~10 bouts, the trajectories became

more focused, involving travel to the reward port and some additional exploration

(Figure 7.5B). At a later stage still, the animal often executed perfect exploitation

bouts that led straight to the reward port and back with no wrong turns (Figure 7.5C).

Even at this late stage, however, the animal continued to explore other parts of the

maze (Figure 7.5D). Similarly the unrewarded animals explored the maze throughout

the night (Figure 7.1–Figure 7.3). While the length and structure of the animal’s

trajectories changed over time, the speed remained remarkably constant after ~50 s

of adaptation (Figure 7.5–Figure 7.10).

Whereas Figure 7.5 illustrates the trajectory of a mouse’s nose in full spatio-temporal
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detail, a convenient reduced representation is the “node sequence.” This simply

marks the events when the animal enters each of the 127 nodes of the binary tree that

describes the maze (see Methods and Figure 7.6–Figure 7.7). Among these nodes,

63 are T-junctions where the animal has 3 choices for the next node, and 64 are end

nodes where the animal’s only choice is to reverse course. We call the transition

from one node to the next a “step.” The analysis in the rest of the paper was carried

out on the animal’s node sequence.

Few-shot learning of a reward location
We now examine early changes in the animal’s behavior when it rapidly acquires and

remembers information needed for navigation. First we focus on navigation to the

water port.

The ten water-deprived animals had no indication that water would be found in the

maze. Yet, all 10 discovered the water port in less than 2000 s and fewer than 17

bouts (Figure 7.6A). The port dispensed only a drop of water followed by a 90-s

timeout before rearming. During the timeout the animals generally left the port

location to explore other parts of the maze or return home, even though they were

not obliged to do so. For each of the water-deprived animals, the frequency at which

it consumed rewards in the maze increased rapidly as it learned how to find the water

port, then settled after a few reward experiences (Figure 7.6A).

How many reward experiences are su�cient to teach the animal reliable navigation to

the water port? To establish a learning curve one wants to compare performance on

the identical task over successive trials. Recall that this experiment has no imposed

trial structure. Yet the animals naturally segmented their behavior through discrete

visits to the maze. Thus we focused on all the instances when the animal started at

the maze entrance and walked to the water port (Figure 7.6B).

On the first few occasions these paths to water can involve hundreds of steps between

nodes and their length scatters over a wide range. However, after a few rewards, the

animals began taking the perfect path without detours (6 steps, Figure 7.6–Figure

7.7), and soon that became the norm. Note the path length plotted here is directly

related to the number of “turning errors”: every time the mouse turns away from

the shortest path to the water port, that adds two steps to the path length (Equation

7.7). The rate of these errors declined over time, by a factor of 4 after ~10 rewards

consumed (Figure 7.6B). Late in the night ~75% of the paths to water were perfect.

The animals executed them with increasing speed; eventually these fast “water runs”
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Time line of all water rewardsA

B
Runs from entrance to water port

Figure 7.6: Few-shot learning of path to water. (A) Time line of all water rewards
collected by 10 water-deprived mice (red dots, every fifth reward has a blue tick
mark). (B) The length of runs from the entrance to the water port, measured in steps
between nodes, and plotted against the number of rewards experienced. Main panel:
All individual runs (cyan dots) and median over 10 mice (blue circles). Exponential
fit decays by 1/4 over 10.1 rewards. Right panel: Histogram of the run length, note
log axis. Red: perfect runs with the minimum length 6; green: longer runs. Top
panel: The fraction of perfect runs (length 6) plotted against the number of rewards
experienced, along with the median duration of those perfect runs.
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Figure 7.7: Definition of node trajectories. A numbering scheme for all 127 nodes
of the maze. Green: a direct path from the entrance to the water port (“water
run”) with the node sequence (B8) = (0, 2, 6, 13, 28, 57, 116), involving 6 decisions.
Magenta: a direct path from end node 83 to the exit (“home run”). Orange: a path
from end node 67 to the exit that includes a reversal. Here the home run starts only
from node 8, namely (8, 3, 1, 0).

took as little as 2 s (Figure 7.6B). Many of these visits went unrewarded owing to the

90-s timeout period on the water port.

In summary, after ~10 reward experiences on average the mice learn to navigate

e�ciently to the water port, which requires making 6 correct decisions, each among

3 options. Note that even at late times, long after they have perfected the “water run,”

the animals continue to take some extremely long paths: a subject for a later section

(Figure 7.15).

The role of cues attached to the maze
These observations of rapid learning raise the question, “How do the animals

navigate?” In particular, does the mouse build an internal representation that guides

its action at every junction? Or does it place marks in the external environment that

signal the route to the water port? In an extreme version of externalized cognition,

the mouse leaves behind a trail of urine marks or other secretions as it walks away
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BMaze rotation experiment Mouse A1: bouts before and after rotation

180°

4 mice: visits to various nodes before and after rotation

Figure 7.8: Navigation is robust to rotation of the maze. (A) Logic of the
experiment: The animal may have deposited an odorant in the maze (shading) that
is centered on the water port. After 180-degree rotation of the maze, that gradient
would lead to the image of the water port (blue dot). We also measure how often the
mouse goes to two control nodes (magenta dots) that are related by symmetry. (B)
Trajectory of mouse ‘A1’ in the bouts immediately before and after maze rotation.
Time coded by color from dark to light as in Figure 7.5. (C) Left: Cumulative
number of rewards as well as visits to the water port, the image of the water port, and
the control nodes. All events are plotted vs time before and after the maze rotation.
Average over 4 animals. Middle and right: Same data with the counts centered on
zero and zoomed in for better resolution.

from the water port, and on a subsequent bout simply sni�s its way up the odor

gradient (Figure 7.8A). This would require no internal representation.

The following experiment o�ers some partial insights. Owing to the design of the

labyrinth one can rotate the entire apparatus by 180 degrees, open one wall and close

another, and obtain a maze with the same structure (Figure 7.8A). Alternatively one

can also rotate only the floor. After such a modification, all the physical cues attached

to the rotated parts now point in the wrong direction, namely to the end node 180

degrees opposite the water port (the “image location”). If the animal navigated to

the goal following cues previously deposited in the maze, it should end up at that

image location.

We performed a maze rotation on four animals after several hours of exposure, when

they had acquired the perfect route to water. Immediately after rotation, 3 of the
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Figure 7.9: Navigation before and after maze rotation. Cumulative number of
rewards, visits to the water port, the image of the water port, and the control nodes,
plotted vs time before and after the maze rotation. Display as in Figure 7.8C, but
split for each of 4 animals.

Figure 7.10: Speed of the mouse vs time in the maze. Average over 4 animals.
Time is plotted relative to the maze rotation.
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4 animals went to the correct water port on their first entry into the maze, and

before ever visiting the image location (e.g. Figure 7.8B). The fourth mouse visited

the image location once and then the correct water port (Figure 7.8, Figure 7.9).

The mice continued to collect water rewards e�ciently even immediately after the

rotation.

Nonetheless, the maze rotation did introduce subtle changes in behavior that lasted

for an hour or more (Figure 7.8C). Visits to the image location were at chance levels

prior to rotation, then increased by a factor of 1.8. Visits to the water port declined

in frequency, although they still exceeded visits to the image location by a factor of 5.

The reward rate declined by a factor of 0.7. These e�ects could be verified for each

animal (Figure 7.8, Figure 7.9). The speed of the mice was not disturbed (Figure 7.8,

Figure 7.10).

In summary, for navigation to the water port the experienced animals do not strictly

depend on physical cues that are attached to the maze. This includes any material

they might have deposited, but also pre-existing construction details by which they

may have learned to identify locations in the maze. The mice clearly notice a change

in these cues, but continue to navigate e�ectively to the goal. This conclusion applies

to the time point of the rotation, a few hours into the experiment. Conceivably

the animal’s navigation policy and its use of sensory cues changes in the course of

learning. This and many other questions regarding the mechanisms of cognition will

be taken up in a separate study.

Discontinuous learning
While an average across animals shows evidence of rapid learning (Figure 7.6) one

wonders whether the knowledge is acquired gradually or discontinuously, through

moments of “sudden insight.” To explore this we scrutinized more closely the

time line of individual water-deprived animals in their experience with the maze.

The discovery of the water port and the subsequent collection of water drops at a

regular rate is one clear change in behavior that relies on new knowledge. Indeed,

the rate of water rewards can increase rather suddenly (Figure 7.6A), suggesting an

instantaneous step in knowledge.

Over time, the animals learned the path to water not only from the entrance of the

maze but from many locations scattered throughout the maze. The largest distance

between the water port and an end node in the opposite half of the maze involves 12

steps through 11 intersections (Figure 7.11A). Thus we included as another behavioral
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Figure 7.11: Sudden changes in behavior. (A) An example of a long uninterrupted
path through 11 junctions to the water port (drop icon). Blue circles mark control
nodes related by symmetry to the water port to assess the frequency of long paths
occurring by chance. (B) For one animal (named C1) the cumulative number of
rewards (green); of long paths (>6 junctions) to the water port (red); and of similar
paths to the 3 control nodes (blue, divided by 3). All are plotted against the time
spent in the maze. Arrowheads indicate the time of sudden changes, obtained from
fitting a step function to the rates. (C) Same as B for animal B1. (D) Same as B for
animal C9, an example of more continuous learning.

Figure 7.12: Sudden changes in behavior for all rewarded animals. For each of
the 10 water-deprived animals this shows the cumulative rate of rewards, of long
direct paths (>6 steps) to the water port, and of similar paths to 3 control nodes.
Display as in Figure 7.11; panels B-D of that figure are included again here. Dots are
data, lines are fits using a 4-parameter sigmoid function for the rate of occurrence of
the events.
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Animal Time of step (s) Ratio of rates after/before
B1 2580± 110 36.4
B2 2350± 220 30.3
C1 2070± 310 5.49
C3 1280± 80 1640
C7 1680± 280 16.9

1

Figure 7.13: Statistics of sudden changes in behavior. Summary of the steps in
the rate of long paths to water detected in 5 of the 10 rewarded animals. Mean and
standard deviation of the step time are derived from maximum likelihood fits of a
step model to the data.

variable the occurrence of long direct paths to the water port which reflects how

directedly the animals navigate within the maze.

Figure 7.11B shows for one animal the cumulative occurrence of water rewards and

that of long direct paths to water. The animal discovers the water port early on at 75

s, but at 1380 s the rate of water rewards jumps suddenly by a factor of 5. The long

paths to water follow a rather di�erent time line. At first they occur randomly, at the

same rate as the paths to the unrewarded control nodes. At 2070 s the long paths

suddenly increase in frequency by a factor of 5. Given the sudden change in rates of

both kinds of events, there is little ambiguity about when the two steps happen, and

they are well separated in time (Figure 7.11B).

The animal behaves as though it gains a new insight at the time of the second step

that allows it to travel to the water port directly from elsewhere in the maze. Note

that the two behavioral variables are independent: the long paths don’t change when

the reward rate steps up, and the reward rate doesn’t change when the rate of long

paths steps up. Another animal (Figure 7.11C) similarly showed an early step in the

reward rate (at 860 s) and a dramatic step in the rate of long paths (at 2580 s). In this

case the emergence of long paths coincided with a modest increase (factor of 2) in

the reward rate.

Similar discontinuities in behavior were seen in at least 5 of the 10 water-deprived

animals (Figure 7.11B, Figure 7.11–Figure7.12, Figure 7.11–Figure 7.13), and their

timing could be identified to a precision of ~200 s. More gradual performance change

was observed for the remaining animals (Figure 7.11 D). We varied the criterion

of performance by asking for even longer error-free paths, and the results were

largely unchanged and no additional discontinuity appeared. These observations

suggest that mice can acquire a complex decision-making skill rather suddenly. A

mouse may have multiple moments of sudden insight that a�ect di�erent aspects
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Figure 7.14: Homing succeeds on first attempt. (A) Locations in the maze where
the 19 animals started their first return to the exit (home run). Some locations were
used by 2 or 3 animals (darker color). (B) Left: The cumulative number of home
runs from di�erent levels in the maze, summed over all animals, and plotted against
the bout number. Level 1 = first T-junction, level 7 = end nodes. Right: Zoom
of (Left) into early bouts. (C) Overlap between the outbound and the home path.
Histogram of the overlap for all bouts of all animals. (D) Same analysis for just the
first bout of each animal. The length of the home run is color-coded as in Panel B.

of its behavior. The exact time of the insight cannot be predicted but is easily

identified post-hoc. Future neurophysiological studies of the phenomenon will face

the interesting challenge of capturing these singular events.

One-shot learning of the home path
For an animal entering an unfamiliar environment, the most important path to keep

in memory may be the escape route. In the present case that is the route to the maze

entrance, from which the tunnel leads home to the cage. We expected that the mice

would begin by penetrating into the maze gradually and return home repeatedly

so as to confirm the escape route, a pattern previously observed for rodents in an

open arena [14, 36]. This might help build a memory of the home path gradually

level-by-level into the binary tree. Nothing could be further from the truth.

At the end of any given bout into the maze, there is a “home run,” namely the direct

path without reversals that takes the animal to the exit (see Figure 7.6–Figure 7.7).

Figure 7.14 A shows the nodes where each animal started its first home run, following
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the first penetration into the maze. With few exceptions, that first home run began

from an end node, as deep into the maze as possible. Recall that this involves making

the correct choice at six successive 3-way intersections, an outcome that is unlikely

to happen by chance.

The above hypothesis regarding gradual practice of home runs would predict that

short home runs should appear before long ones in the course of the experiment. The

opposite is the case (Figure 7.14 B). In fact, the end nodes (level 7 of the maze) are

by far the favorite place from which to return to the exit, and those maximal-length

home runs systematically appear before shorter ones. This conclusion was confirmed

for each individual animal, whether rewarded or unrewarded.

Clearly the animals do not practice the home path or build it up gradually. Instead

they seem to possess an Ariadne’s thread [29] starting with their first excursion into

the maze, long before they might have acquired any general knowledge of the maze

layout. On the other hand the mouse does not follow the strategy of Theseus, namely

to precisely retrace the path that led it into the labyrinth. In that case, the animal’s

home path should be the reverse of the path into the maze that started the bout.

Instead the entry path and the home path tend to have little overlap (Figure 7.14C).

Note the minimum overlap is 1, because all paths into and out of the maze have to

pass through the central junction (node 0 in Figure 7.6–Figure 7.7). This is also the

most frequent overlap. The peak at overlaps 6-8 for rewarded animals results from

the frequent paths to the water port and back, a sequence of at least 7 nodes in each

direction. The separation of outbound and return path is seen even on the very first

home run (Figure 7.14D). Many home runs from the deepest level (7 nodes) have

only the central junction in common with the outbound path (overlap = 1).

In summary it appears that the animal acquires a homing strategy over the course of

a single bout, and in a manner that allows a direct return home even from locations

not previously encountered.

Structure of behavior in the maze
Here we focus on rules and patterns that govern the animal’s activity in the maze on

both large and small scales.

Behavioral states

Once the animal has learned to perform long uninterrupted paths to the water port,

one can categorize its behavior within the maze by three states: (1) walking to the
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Explore
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Figure 7.15: Exploration is a dominant and persistent mode of behavior. (A)
Ethogram for rewarded animals. Area of the circle reflects the fraction of time
spent in each behavioral mode averaged over animals and duration of the experiment.
Width of the arrow reflects the probability of transitioning to another mode. “Drink”
involves travel to the water port and time spent there. Transitions from “Leave”
represent what the animal does at the start of the next bout into the maze. (B) The
fraction of time spent in each mode as a function of absolute time throughout the
night. Mean ± SD across the 10 rewarded animals.
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Fraction of time in modes Transition probability between modes: rewarded animals

Figure 7.16: Three modes of behavior. (A) The fraction of time mice spent in each
of the three modes while in the maze. Mean ± SD for 10 rewarded and 9 unrewarded
animals. (B) Probability of transitioning from the mode on the left to the mode at
the top. Transitions from ‘leave’ represent what the animal does at the start of the
next bout into the maze.
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Figure 7.17: Exploration covers the maze e�ciently. (A) The number of distinct
end nodes encountered as a function of the number of end nodes visited for: mouse
C1 (red); the optimal explorer agent (black); an unbiased random walk (blue).
Arrowhead: The value #32 = 76 by which mouse C1 discovered half of the end
nodes. (B) An expanded section of the graph in A including curves from 10 rewarded
(red) and 9 unrewarded (green) animals. The e�ciency of exploration, defined
as ⇢ = 32/#32, is 0.385 ± 0.050 (SD) for rewarded and 0.384 ± 0.039 (SD) for
unrewarded mice. (C) The e�ciency of exploration for the same animals, comparing
the values in the first and second halves of the time in the maze. The decline is a
factor of 0.74 ± 0.12 (SD) for rewarded and 0.81 ± 0.13 (SD) for unrewarded mice.

water port; (2) walking to the exit; and (3) exploring the maze. Operationally we

define exploration as all periods in which the animal is in the maze but not on a direct

path to water or to the exit. For the ten sated animals this includes all times in the

maze except for the walks to the exit.

Figure 7.15 illustrates the occupancies and transition probabilities between these

states. The animals spent most of their time by far in the exploration state: 84%

for rewarded and 95% for unrewarded mice. Across animals there was very little

variation in the balance of the 3 modes (Figure 7.15–Figure 7.16). The rewarded

mice began about half their bouts into the maze with a trip to the water port and the

other half by exploring (Figure 7.15A). After a drink, the animals routinely continued

exploring, about 90% of the time.

For water-deprived animals the dominance of exploration persisted even at a late

stage of the night when they routinely executed perfect exploitation bouts to and from

the water port: Over the duration of the night the “explore” fraction dropped slightly

from 0.92 to 0.75, with the balance accrued to the “drink” and “leave” modes as

the animals executed many direct runs to the water port and back. The unrewarded

group of animals also explored the maze throughout the night even though it o�ered

no overt rewards (Figure 7.15–Figure 7.16). One suspects that the animals derive

some intrinsic reward from the act of patrolling the environment itself.
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Figure 7.18: Functional fits to measure exploration e�ciency. (A) Fitting Equa-
tion 7.12 to the data from the mouse’s exploration. Animals with best fit (top) and
worst fit (bottom). The relative uncertainty in the two fit parameters 0 and 1 was
only 0.0038 ± 0.0020 (mean ± SD across animals). (B) The fit parameter 1 for all
animals, comparing the first to the second half of the night. (C) The e�ciency ⇢

(Equation 7.1) predicted from two models of the mouse’s trajectory: The 4-bias
random walk (Figure 7.22D) and the optimal Markov chain (Figure 7.22C).

E�ciency of exploration

During the direct paths to water and to the exit the animal behaves deterministically,

whereas the exploration behavior appears stochastic. Here we delve into the rules

that govern the exploration component of behavior.

One can presume that a goal of the exploratory mode is to rapidly survey all parts of

the environment for the appearance of new resources or threats. We will measure

the e�ciency of exploration by how rapidly the animal visits all end nodes of the

binary maze, starting at any time during the experiment. The optimal agent with

perfect memory and complete knowledge of the maze—including the absence of any

loops—could visit the end nodes systematically one after another without repeats,

thus encountering all of them after just 64 visits. A less perfect agent, on the other

hand, will visit the same node repeatedly before having encountered all of them.

Figure 7.17A plots for one exploring mouse the number of distinct end nodes it
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encountered as a function of the number of end nodes visited. The number of new

nodes rises monotonically; 32 of the end nodes have been discovered after the mouse

checked 76 times; then the curve gradually asymptotes to 64. We will characterize

the e�ciency of the search by the number of visits #32 required to survey half the

end nodes, and define

⇢ =
32
#32

. (7.1)

This mouse explores with e�ciency E = 32/76 = 0.42. For comparison, Figure 7.17A

plots the performance of the optimal agent (E = 1.0) and that of a random walker

that makes random decisions at every 3-way junction (E = 0.23). Note the mouse is

about half as e�cient as the optimal agent, but twice as e�cient as a random walker.

The di�erent mice were remarkably alike in this component of their exploratory

behavior (Figure 7.17B): across animals the e�ciency varied by only 11% of the mean

(0.387 ± 0.044 SD). Furthermore there was no detectable di�erence in e�ciency

between the rewarded animals and the sated unrewarded animals. Over the course

of the night the e�ciency declined significantly for almost every animal—whether

rewarded or not—by an average of 23% (Figure 7.17C).

Rules of exploration

What allows the mice to search much more e�ciently than a random walking agent?

We inspected more closely the decisions that the animals make at each 3-way junction.

It emerged that these decisions are governed by strong biases (Figure 7.19). The

probability of choosing each arm of a T-junction depends crucially on how the animal

entered the junction. The animal can enter a T-junction from 3 places and exit it in 3

directions (Figure 7.19A). By tallying the frequency of all these occurrences across

all T-junctions in the maze, one finds clear deviations from an unbiased random walk

(Figure 7.19B, Figure 7.19–Table 7.20).

First, the animals have a strong preference for proceeding through a junction rather

than returning to the preceding node (%SF and %BF in Figure 7.19B). Second there

is a bias in favor of alternating turns left and right rather than repeating the same

direction turn (%SA). Finally, the mice have a mild preference for taking a branch

o� the straight corridor rather than proceeding straight (%BS). A comparison across

animals again revealed a remarkable degree of consistency even in these local rules

of behavior: the turning biases varied by only 3% across the population and even
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Figure 7.19: Turning biases favor exploration. (A) Definition of four turning
biases at a T-junction based on the ratios of actions taken. Top: An animal arriving
from the stem of the T (shaded) may either reverse or turn left or right. %SF is the
probability that it will move forward rather than reversing. Given that it moves
forward, %SA is the probability that it will take an alternating turn from the preceding
one (gray), i.e. left-right or right-left. Bottom: An animal arriving from the bar
of the T may either reverse or go straight, or turn into the stem of the T. %BF is
the probability that it will move forward through the junction rather than reversing.
Given that it moves forward, %BS is the probability that it turns into the stem. (B)
Scatter graph of the biases %SF and %BF (left) and %SA and %BS (right). Every dot
represents a mouse. Cross: values for an unbiased random walk. (C) Exploration
curve of new end nodes discovered vs end nodes visited, displayed as in Figure
7.17A, including results from a biased random walk with the 4 turning biases derived
from the same mouse, as well as a more elaborate Markov-chain model (see Figure
7.22C). (D) E�ciency of exploration (Equation 7.1) in 19 mice compared to the
e�ciency of the corresponding biased random walk.
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Group

rewarded: 0.77 ± 0.03 0.72 ± 0.02 0.82 ± 0.03 0.64 ± 0.02

unrewarded: 0.78 ± 0.02 0.71 ± 0.02 0.81 ± 0.03 0.63 ± 0.02

Bias rewarded unrewarded

0.77 ± 0.03 0.78 ± 0.02

0.72 ± 0.02 0.71 ± 0.02

0.82 ± 0.03 0.81 ± 0.03

0.64 ± 0.02 0.63 ± 0.02

leave drink explore

leave 0.51 ± 0.14 0.49 ± 0.14

drink 0.10 ± 0.05 0.90 ± 0.05

explore 0.40 ± 0.11 0.60 ± 0.11

from / to: leave drink explore

leave 0.51 ± 0.14 0.49 ± 0.14

drink 0.10 ± 0.05 0.90 ± 0.05

explore 0.40 ± 0.11 0.60 ± 0.11
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Group

rewarded: 0.77 ± 0.03 0.72 ± 0.02 0.82 ± 0.03 0.64 ± 0.02

unrewarded: 0.78 ± 0.02 0.71 ± 0.02 0.81 ± 0.03 0.63 ± 0.02

Bias rewarded unrewarded

0.77 ± 0.03 0.78 ± 0.02

0.72 ± 0.02 0.71 ± 0.02

0.82 ± 0.03 0.81 ± 0.03

0.64 ± 0.02 0.63 ± 0.02

Mode rewarded unrewarded

leave 0.053 ± 0.014 0.054 ± 0.013

drink 0.103 ± 0.026

explore 0.844 ± 0.032 0.946 ± 0.013

leave drink explore

leave 0.51 ± 0.14 0.49 ± 0.14

drink 0.10 ± 0.05 0.90 ± 0.05

explore 0.40 ± 0.11 0.60 ± 0.11

PSF PSA PBF PBO
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Bias rewarded unrewarded

PSF 0.77 ± 0.03 0.78 ± 0.02
PSA 0.72 ± 0.02 0.71 ± 0.02
PBF 0.82 ± 0.03 0.81 ± 0.03
PBS 0.64 ± 0.02 0.63 ± 0.02

Figure 7.20: Statistics of the four turning biases. Mean and standard deviation
of the 4 biases of Figure 7.19A-B across animals in the rewarded and unrewarded
groups.

between the rewarded and unrewarded groups (Figure 7.19B, Figure 7.19–Table

7.20).

Qualitatively, one can see that these turning biases will improve the animal’s search

strategy. The forward biases %SF and %BF keep the animal from re-entering territory

it has covered already. The bias %BS favors taking a branch that leads out of the maze.

This allows the animal to rapidly cross multiple levels during an outward path and

then enter a di�erent territory. By comparison, the unbiased random walk tends to

get stuck in the tips of the tree and revisits the same end nodes many times before

escaping. To test this intuition we simulated a biased random agent whose turning

probabilities at a T-junction followed the same biases as measured from the animal

(Figure 7.19C). These biased agents did in fact search with much higher e�ciency

than the unbiased random walk. They did not fully explain the behavior of the mice

(Figure 7.19D), accounting for ~87% of the animal’s e�ciency (compared to 60% for

the random walk). A more sophisticated model of the animal’s behavior—involving

many more parameters (Figure 7.22C)—failed to get any closer to the observed

e�ciency (Figure 7.19C, Figure 7.17–Figure 7.18C). Clearly some components of

e�cient search in these mice remain to be understood.

Systematic node preferences

A surprising aspect of the animals’ explorations is that they visit certain end nodes

of the binary tree much more frequently than others (Figure 7.21). This e�ect

is large: more than a factor of 10 di�erence between the occupancy of the most

popular and least popular end nodes (Figure 7.21A-B). This was surprising given

our e�orts to design the maze symmetrically, such that in principle all end nodes

should be equivalent. Furthermore the node preferences were very consistent across

animals and even across the rewarded and unrewarded groups. Note that the standard
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Figure 7.21: Preference for certain end nodes during exploration. (A) The
number of visits to di�erent end nodes encoded by a gray scale. Top: rewarded,
bottom: unrewarded animals. Gray scale spans a factor of 12 (top) or 13 (bottom).
(B) The fraction of visits to each end node, comparing the rewarded vs unrewarded
group of animals. Each data point is for one end node, the error bar is the SEM
across animals in the group. The outlier on the bottom right is the neighbor of the
water port, a frequently visited end node among rewarded animals. The water port is
o� scale and not shown. (C) As in Panel B but comparing the unrewarded animals to
their simulated 4-bias random walks. These biases explain 51% of the variance in
the observed preference for end nodes.

error across animals of each node’s occupancy is much smaller than the di�erences

between the nodes (Figure 7.21B).

The nodes on the periphery of the maze are systematically preferred. Comparing the

outermost ring of 26 end nodes (excluding the water port and its neighbor) to the

innermost 16 end nodes, the outer ones are favored by a large factor of 2.2. This may

relate to earlier reports of a “centrifugal tendency” among rats patrolling a maze

[41].

Interestingly, the biased random walk using four bias numbers (Figure 7.19, Figure

7.22D) replicates a good amount of the pattern of preferences. For unrewarded

animals, where the maze symmetry is not disturbed by the water port, the biased

random walk predicts 51% of the observed variance across nodes (Figure 7.21C),

and an outer/inner node preference of 1.97, almost matching the observed ratio of

2.20. The more complex Markov-chain model of behavior (Figure 7.22C) performed

slightly better, explaining 66% of the variance in port visits and matching the

outer/inner node preference of 2.20.
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Figure 7.22: Recent history constrains the mouse’s decisions. (A) The mouse’s
trajectory through the maze produces a sequence of states BC = node occupied after
step C. From each state, up to 3 possible actions lead to the next state (end nodes
allow only one action). We want to predict the animal’s next action, 0C+1, based on
the prior history of states or actions. (B-D) Three possible models to make such a
prediction. (B) A fixed-depth Markov chain where the probability of the next action
depends only on the current state BC and the preceding state BC�1. The branches of the
tree represent all 3 ⇥ 127 possible histories (BC�1, BC). (C) A variable-depth Markov
chain where only certain branches of the tree of histories contribute to the action
probability. Here one history contains only the current state, some others reach
back three steps. (D) A biased random walk model, as defined in Figure 7.19, in
which the probability of the next action depends only on the preceding action, not on
the state. (E) Performance of the models in (B,C,D) when predicting the decisions
of the animal at T-junctions. In each case we show the cross-entropy between the
predicted action probability and the real actions of the animal (lower values indicate
better prediction, perfect prediction would produce zero). Dotted line represents an
unbiased random walk with 1/3 probability of each action.

Models of maze behavior
Moving beyond the e�ciency of exploration, one may ask more broadly: How well

do we really understand what the mouse does in the maze? Can we predict its action

at the next junction? Once the predictable component is removed, how much intrinsic

randomness remains in the mouse’s behavior? Here we address these questions using

more sophisticated models that predict the probability of the mouse’s future actions

based on the history of its trajectory.

At a formal level, the mouse’s trajectory through the maze is a string of numbers

standing for the nodes the animal visited (Figure 7.22A and Figure 7.6–Figure 7.7).

We want to predict the next action of the mouse, namely the step that takes it to the

next node. The quality of the model will be assessed by the cross-entropy between

the model’s predictions and the mouse’s observed actions, measured in bits per
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Figure 7.23: Fitting Markov models of behavior. (A) Results of fitting the node
sequence of a single animal (C3) with Markov models having a fixed depth (“fix”)
or variable depth (“var”). The cross-entropy of the model’s prediction is plotted
as a function of the average depth of history. In both cases we compare the results
obtained on the training data (“train”) vs those on separate testing data (“test”). Note
that at larger depth the “test” and “train” estimates diverge, a sign of over-fitting the
limited data available. (B) As in (A) but to combat the data limitation we pooled
the counts obtained at all nodes that were equivalent under the symmetry of the
maze (see Methods). Note considerably less divergence between “train” and “test”
results, and a slightly lower cross-entropy during “test” than in (A). (C) The minimal
cross-entropy (circles in (B)) produced by variable vs fixed history models for each
of the 19 animals. Note the variable history model always produces a better fit to the
behavior.

action. This is the uncertainty that remains about the mouse’s next action given the

prediction from the model. The ultimate lower limit is the true source entropy of

the mouse, namely that component of its decisions that cannot be explained by the

history of its actions.

One family of models we considered are fixed-depth Markov chains (Figure 7.22B).

Here the probability of the next action 0C+1 is specified as a function of the history

stretching over the : preceding nodes (BC�:+1, . . . , BC). In fitting the model to the

mouse’s actual node sequence, one tallies how often each history leads to each action,

and uses those counts to estimate the conditional probabilities ?(0C+1 |BC�:+1, . . . , BC).
Given a new node sequence, the model will then use the history strings (BC�:+1, . . . , BC)
to predict the outcome of the next action. In practice we trained the model on 80% of

the animal’s trajectory and tested it by evaluating the cross-entropy on the remaining

20%.

Ideally, the depth : of these action trees would be very large, so as to take as much

of the prior history into account as possible. However, one soon runs into a problem

of over-fitting: because each T-junction in the maze has 3 neighboring junctions, the
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number of possible histories grows as 3: . As : increases, this quickly exceeds the

length of the measured node sequence, so that every history appears only zero or

one times in the data. At this point one can no longer estimate any probabilities, and

cross-validation on a di�erent segment of data fails catastrophically. In practice we

found that this limitation sets in already beyond : = 2 (Figure 7.22–Figure 7.23A).

To address this issue of data-limitation we developed a variable-depth Markov chain

(Figure 7.22C). This model retains longer histories, but only if they occur frequently

enough to allow a reliable probability estimate (see Methods, Figure 7.22–Figure

7.23B-C). In addition, we explored di�erent schemes of pooling the counts across

certain T-junctions that are related by the symmetry of the maze (see Methods).

With these methods we focused on the portions of trajectory when the mouse was

in “explore” mode, because the segments in “drink” and “leave” mode are fully

predictable. Furthermore, we evaluated the models only at nodes corresponding

to T-junctions, because the decision from an end node is again fully predictable.

Figure 7.22E compares the performance of various models of mouse behavior.

The variable-depth Markov chains routinely produced the best fits, although the

improvement over fixed-depth models was modest. Across all 19 animals in this

study, the remaining uncertainty about the animal’s action at a T-junction is 1.237

± 0.035 (SD) bits/action, compared to the prior uncertainty of log2 3 = 1.585 bits.

The rewarded animals have slightly lower entropy than the unrewarded ones (1.216

vs 1.261 bits/action). The Markov chain models that produced the best fits to the

behavior used history strings with an average length of ~4.

We also evaluated the predictions obtained from the simple biased random walk

model (Figure 7.22D). Recall that this attempts to capture the history-dependence

with just 4 bias parameters (Figure 7.19A). As expected this produced considerably

higher cross-entropies than the more sophisticated Markov chains (by about 18%,

Figure 7.22E). Finally we used several professional file compression routines to try

and compress the mouse’s node sequence. In principle, this sets an upper bound

on the true source entropy of the mouse, even if the compression algorithm has no

understanding of animal behavior. The best such algorithm (bzip2 compression [33])

far under-performed all the other models of mouse behavior, giving 43% higher

cross-entropy on average, and thus o�ered no additional useful bounds.

We conclude that during exploration of the maze, the mouse’s choice behavior is

strongly influenced by its current location and ~3 locations preceding it. There are

minor contributions from states further back. By knowing the animal’s history one
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can narrow down its action plan at a junction from the a priori 1.59 bits (one of

three possible actions) to just ~1.24 bits. This finally is a quantitative answer to the

question, “How well can one predict the animal’s behavior?” Whether the remainder

represents an irreducible uncertainty—akin to “free will” of the mouse—remains to

be seen. Readers are encouraged to improve on this number by applying their own

models of behavior to our published data set.

7.3 Discussion
Summary of contributions
We present a new approach to the study of learning and decision-making in mice.

We give the animal access to a complex labyrinth and leave it undisturbed for a

night while monitoring its movements. The result is a rich data set that reveals new

aspects of learning and the structure of exploratory behavior. With these methods

we find that mice learn a complex task that requires 6 correct 3-way decisions

after only ~10 experiences of success (Figure 7.5, Figure 7.6). Along the way the

animal gains task knowledge in discontinuous steps that can be localized to within

a few minutes of resolution (Figure 7.11). Underlying the learning process is an

exploratory behavior that occupies 90% of the animal’s time in the maze and persists

long after the task has been mastered, even in complete absence of an extrinsic reward

(Figure 7.15). The decisions the animal makes at choice points in the labyrinth are

constrained in part by the history of its actions (Figure 7.19, Figure 7.22), in a way

that favors e�cient searching of the maze (Figure 7.17). This microstructure of

behavior is surprisingly consistent across mice, with variation in parameters of only

a few percent (Figure 7.19). Our most expressive models to predict the animal’s

choices still leave a remaining uncertainty of ~1.24 bits per decision (Figure 7.22), a

quantitative benchmark by which competing models can be tested. Finally, some of

the observations constrain what algorithms the animals might use for learning and

navigation (Figure 7.8).

Historical context
Mazes have been a staple of animal psychology for well over 100 years. The early

versions were true labyrinths. For example, Small [35] built a model of the maze

in Hampton Court gardens scaled to rat size. Subsequent researchers felt less

constrained by Victorian landscapes and began to simplify the maze concept. Most

commonly the maze o�ered one standard path from a starting location to a food

reward box. A few blind alleys would branch from the standard path, and researchers
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would tally how many errors the animal committed by briefly turning into a blind

[39]. Later on, the design was further reduced to a single T-junction. After all, the

elementary act of maze navigation is whether to turn left or right at a junction [38],

so why not study that process in isolation? And reducing the concept even further,

one can ask the animal to refrain from walking altogether, and instead poke its nose

into a hole on the left or the right side of a box [40]. This led to the popular behavior

boxes now found in rodent neuroscience laboratories everywhere. Each of these

reductions of the “maze” concept enabled a new type of experiment to study learning

and decision-making, for example limiting the number of choice points allows one

to better sample neural activity at each one. However, the essence of a “confusing

network of paths” has been lost along the way, and with it the behavioral richness of

the animals navigating those decisions.

Owing in part to the dissemination of user-friendly tools for animal tracking, one sees

a renaissance of experiments that embrace complex environments, including mazes

with many choice points [1, 21, 24, 30, 32, 44, 46], 3-dimensional environments

[16], and infinite mazes [34]. The labyrinth in the present study is considerably

more complex than Hampton Court or most of the mazes employed by Tolman and

others [8, 22, 39]. In those mazes the blind alleys are all short and unbranched; when

an animal strays from the target path it receives feedback quickly and can correct.

By contrast our binary tree maze has 64 equally deep branches, only one of which

contains the reward port. If the animal makes a mistake at any level of the tree, it can

find out only after traveling all the way to the last node.

Another crucial aspect of our experimental design is the absence of any human

interference. Most studies of animal navigation and learning involve some kind of

trial structure. For example the experimenter puts the rat in the start box, watches it

make its way through the maze, coaxes it back on the path if necessary, and picks it

up once it reaches the target box. Then another trial starts. In modern experiments

with two-alternative-forced-choice (2-AFC) behavior boxes, the animal doesn’t have

to be picked up, but a trial starts with the appearance of a cue, and then proceeds

through some strict protocol through delivery of the reward. The argument in favor

of imposing a trial structure is that it creates reproducible conditions, so that one can

gather comparable data and average them suitably over many trials.

Our experiments had no imposed structure whatsoever; in fact it may be inappropriate

to call them experiments. The investigator opened the entry to the maze in the

evening and did not return until the morning. A potential advantage of leaving the
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animals to themselves is that they are more likely to engage in mouse-like behavior,

rather than constantly responding to the stress of human interference or the alienation

from being a cog in a behavior machine. The result was a rich data set, with the

typical animal delivering ~15,000 decisions in a single night, even if one only counts

the nodes of the binary tree as decision points. Since the mice made all the choices,

the scientific e�ort lay primarily in adapting methods of data analysis to the nature

of mouse trajectories. Somewhat surprisingly, the absence of experimental structure

was no obstacle to making precise and reproducible measurements of the animal’s

behavior.

How fast do animals learn?
Among the wide range of phenomena of animal learning, one can distinguish easy

and hard tasks by some measure of task complexity. In a simple picture of a

behavioral task the animal needs to recognize several di�erent contexts, and based

on that, express one of several di�erent actions. One can draw up a contingency

table between contexts and actions, and measure the complexity of the task by the

mutual information in that table. This ignores any task di�culties associated with

sensing the context at all or with producing the desired actions. However, in all the

examples discussed here the stimuli are discriminated easily and the actions come

naturally, thus the learning di�culty lies only in forming the associations, not in

sharpening the perceptual mechanisms or practicing complex motor output.

Many well-studied behaviors have a complexity of 1 bit or less, and often animals

can learn these associations after a single experience. For example, in the Bruce

e�ect [7] the female maps two di�erent contexts (smell of mate vs non-mate) onto

two kinds of pregnancy outcomes (carry to term vs abort). The mutual information

in that contingency table is at most 1 bit, and may be considerably lower, for example

if non-mate males are very rare or very frequent. Mice form the correct association

after a single instance of mating, although proper memory formation requires several

hours of exposure to the mate odor [31].

Similarly, fear learning under the common electroshock paradigm establishes a

mapping between two contexts (paired with shock vs innocuous) and two actions

(freeze vs proceed), again with an upper bound of 1 bit of complexity. Rats and mice

will form the association after a single experience lasting only seconds, and alter

their behavior over several hours [5, 13]. This is an adaptive warning system to deal

with life-threatening events, and rapid learning here has a clear survival value.
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Animals are particularly adept at learning a new association between an odor and

food. For example bees will extend their proboscis in response to a new odor after

just one pairing trial where the odor appeared together with sugar [4]. Similarly

rodents will start digging for food in a scented bowl after just a few pairings with that

odor [11]. Again, these are 1-bit tasks learned rapidly after one or a few experiences.

By comparison the tasks that a mouse performs in the labyrinth are more complex.

For example, the path from the maze entrance to the water port involves 6 junctions,

each with 3 options. At a minimum 6 di�erent contexts must be mapped correctly

into one of 3 actions each, which involves 6 · log23 = 9.5 bits of complexity. The

animals begin to execute perfect paths from the entrance to the water port well within

the first hour (Figure 7.5C, Figure 7.6B). At a later stage during the night the animal

learns to walk direct paths to water from many di�erent locations in the maze (Figure

7.11); by this time it has consumed 10-20 rewards. In the limit, if the animal could

turn correctly towards water from each of 63 junctions in the maze, it would have

learned 63 · log23 = 100 bits. Conservatively we estimate that the animals have

mastered 10-20 bits of complexity based on 10-20 reward experiences within an

hour of time spent in the maze. Note this considers only information about the water

port and ignores whatever else the animals are learning about the maze during their

incessant exploratory forays. These numbers align well with classic experiments on

rats in diverse mazes and problem boxes [22]. Although those tasks come in many

varieties, a common theme is that ~10 successful trials are su�cient to learn ~10

decisions [45].

In a di�erent corner of the speed-complexity space are the many 2-alternative-forced-

choice (2AFC) tasks in popular use today. These tend to be 1-bit tasks, for example

the monkey should flick its eyes to the left when visual motion is to the left [26], or

the mouse should turn a steering wheel to the right when a light appears on the left

[9]. Yet, the animals take a long time to learn these simple tasks. For example, the

mouse with the steering wheel requires about 10,000 experiences before performance

saturates. It never gets particularly good, with a typical hit rate only 2/3 of the way

from random to perfect. All this training takes 3-6 weeks; in the case of monkeys

several months. The rate of learning, measured in task complexity per unit time, is

surprisingly low: < 1 bit/month compared to ~10 bits/h observed in the labyrinth. The

di�erence is a factor of 6,000. Similarly when measured in complexity learned per

reward experience, the 2-AFC mouse may need 5,000 rewards to learn a contingency

table with 1 bit complexity, whereas the mouse in the maze needs ~10 rewards
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to learn 10 bits. Given these enormous di�erences in learning rate, one wonders

whether the ultra-slow mode of learning has any relevance for an animal’s natural

condition. In the month that the 2AFC mouse requires to finally report the location

of a light, its relative in the wild has developed from a baby to having its own babies.

Along the way, that wild mouse had to make many decisions, often involving high

stakes, without the benefit of 10,000 trials of practice.

Sudden insight
The dynamics of the learning process are often conceived as a continuously growing

association between stimuli and actions, with each reinforcing experience making an

infinitesimal contribution. The reality can be quite di�erent. When a child first learns

to balance on a bicycle, performance goes from abysmal to astounding within a few

seconds. The timing of such a discontinuous step in performance seems impossible

to predict but easy to recognize after the fact.

From the early days of animal learning experiments there have been warnings against

the tendency to average learning curves across subjects [12, 19]. The average of

many discontinuous curves will certainly look continuous and incremental, but that

reassuring shape may miss the essence of the learning process. A recent reanalysis

of many Pavlovian conditioning experiments suggested that discontinuous steps in

performance are the rule rather than the exception [15]. Here we found that the

same applies to navigation in a complex labyrinth. While the average learning curve

presents like a continuous function (Figure 7.6B), the individual records of water

rewards show that each animal improves rather quickly but at di�erent times (Figure

7.6A).

Owing to the unstructured nature of the experiment, the mouse may adopt di�erent

policies for getting to the water port. In at least half the animals, we observed a

discontinuous change in that policy, namely when the animal started using e�cient

direct paths within the maze (Figure 7.11, Figure 7.11–Figure 7.13). This second

switch happened considerably after the animal started collecting rewards, and did

not greatly a�ect the reward rate. Furthermore, the animals never reverted to the less

e�cient policy, just as a child rarely unlearns to balance a bicycle.

Presumably this switch in performance reflects some discontinuous change in the

animal’s internal model of the maze, what Tolman called the “cognitive map” [2,

37]. In the unrewarded animals we could not detect any discontinuous change

in the use of long paths. However, as Tolman argued, those animals may well
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acquire a sophisticated cognitive map that reveals itself only when presented with a

concrete task, like finding water. Future experiments will need to address this. The

discontinuous changes in performance pose a challenge to conventional models of

reinforcement learning, in which reward events are the primary driver of learning

and each event contributes an infinitesimal update to the action policy. It will also be

important to model the acquisition of distinct kinds of knowledge that contribute to

the same behavior, like the location of the target and e�cient routes to approach it.

Exploratory behavior
By all accounts the animals spent a large fraction of the night exploring the maze

(Figure 7.1–Figure 7.3). The water-deprived animals continued their forays into the

depths of the maze long after they had found the water port and learned to exploit

it regularly. After consuming a water reward they wandered o� into the maze 90%

of the time (Figure 7.15B) instead of lazily waiting in front of the port during the

timeout period. The sated animals experienced no overt reward from the maze, yet

they likewise spent nearly half their time exploring that environment. As has been

noted many times, animals—like humans—derive some form of intrinsic reward

from exploration [3]. Some have suggested that there exists a homeostatic drive akin

to hunger and thirst that elicits the information-seeking activity, and that the drive is

in turn sated by the act of exploration [18]. If this were the case, then the drive to

explore should be weakest just after an episode of exploration, much as the drive for

food-seeking is weaker after a big meal.

Our observations are in conflict with this notion. The animal is most likely to enter

the maze within the first minute of its return to the cage (Figure 7.1–Figure 7.4), a

strong trend that runs opposite to the prediction from satiation of curiosity. Several

possible explanations come to mind: (1) On these very brief visits to the cage,

the animal may just want to certify that the exit route to the safe environment still

exists, before continuing with exploration of the maze. (2) The temporal contrast

between the boredom of the cage and the mystery of the maze is highest right at

the moment of exit from the maze, and that may exert pressure to re-enter the maze.

Understanding this in more detail will require dedicated experiments. For example,

one could deliberately deprive the animals of access to the maze for some hours,

and test whether that results in an increased drive to explore, as observed for other

homeostatic drives around eating, drinking, and sleeping.

When left to their own devices, mice choose to spend much of their time engaged in
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exploration. One wonders how that a�ects their actions when they are strapped into

a rigid behavior machine, like a 2AFC choice box. Presumably the drive to explore

persists, perhaps more so because the forced environment is so unpleasant. And

within the confines of the two alternatives, the only act of exploration the mouse

has left is to give the wrong answer. This would manifest as an unexpectedly high

error rate on unambiguous stimuli, sometimes called the “lapse rate” [10, 28]. The

fact that the lapse rate decreases only gradually over weeks to months of training [9]

suggests that it is di�cult to crush the animal’s drive to explore.

The animals in our experiments had never been presented with a maze environment,

yet they quickly settled into a steady mode of exploration. Once a mouse progressed

beyond the first intersection it typically entered deep into the maze to one or more

end nodes (Figure 7.14). Within 50 s of the first entry, the animals adopted a steady

speed of locomotion that they would retain throughout the night (Figure 7.5–Figure

7.10). Within 250 s of first contact with the maze, the average animal already spent

50% of its time there (Figure 7.1–Figure 7.3). Contrast this with a recent study

of “free exploration” in an exposed arena: Those animals required several hours

before they even completed one walk around the perimeter [14]. Here the drive to

explore is clearly pitted against fear of the open space, which may not be conducive

to observing exploration per se.

The persistence of exploration throughout the entire duration of the experiment

suggests that the animals are continuously surveying the environment, perhaps

expecting new features to arise. These surveys are quite e�cient: the animals cover

all parts of the maze much faster than expected from a random walk (Figure 7.17).

E�ectively they avoid re-entering territory they surveyed just recently. It is often

assumed that this requires some global memory of places visited in the environment

[24, 27]. Such memory would have to persist for a long time: surveying half of the

available end nodes typically required 450 turning decisions. However, we found

that a global long-term memory is not needed to explain the e�cient search. The

animals seem to be governed by a set of local turning biases that require memory

only of the most recent decision and no knowledge of location (Figure 7.19). These

local biases alone can explain most of the character of exploration without any global

understanding or long-term memory. Incidentally, they also explain other seemingly

global aspects of the behavior, for example the systematic preference that the mice

have for the outer rather than the inner regions of the maze (Figure 7.21). Of course,

this argument does not exclude the presence of a long-term memory, which may
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reveal itself in some other feature of the behavior.

Perhaps the most remarkable aspect of these biases is how similar they are across all

19 mice studied here, regardless of whether the animal experienced water rewards or

not (Figure 7.19B, Figure 7.19–Table 7.20), and independent of the sex of the mouse.

The four decision probabilities were identical across individuals to within a standard

deviation of <0.03. We cannot think of a trivial reason why this should be so. For

example the two biases for forward motion (Figure 7.19B left) are poised halfway

between the value for a random walk (? = 2/3) and certainty (? = 1). At either of

those extremes, simple saturation might lead to a reproducible value, but not in the

middle of the range. Why do di�erent animals follow the exact same decision rules

at an intersection between tunnels? Given that tunnel systems are part of the mouse’s

natural ecology, it is possible that those rules are innate and determined genetically.

Indeed the rules by which mice build tunnels have a strong genetic component [42],

so the rules for using tunnels may be written in the genes as well. The high precision

with which one can measure those behaviors even in a single night of activity opens

the way to e�cient comparisons across genotypes, and also across animals with

di�erent developmental experience.

Finally, after mice discover the water port and learn to access it from many di�erent

points in the maze (Figure 7.11) they are presumably eager to discover other things.

In ongoing work we installed three water ports (visible in the videos accompanying

this article) and implemented a rule that activates the three ports in a cyclic sequence.

Mice discovered all three ports rapidly and learned to visit them in the correct order.

Future experiments will have to raise the bar on what the mice are expected to learn

in a night.

Mechanisms of navigation
How do the animals navigate when they perform direct paths to the water port or to

the exit? The present study cannot resolve that, but one can gain some clues based

on observations so far. Early workers already concluded that rodents in a maze will

use whatever sensory cues and tricks are available to accomplish their tasks [23].

Our maze was designed to restrict those options somewhat.

To limit the opportunity for visual navigation, the floor and walls of the maze are

visually opaque. The ceiling is transparent, but the room is kept dark except for

infrared illuminators. Even if the animal finds enough light, the goals (water port or

exit) are invisible within the maze except from the immediately adjacent corridor.
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There are no visible beacons that would identify the goal.

With regard to the sense of touch and kinesthetics, the maze was constructed for

maximal symmetry. At each level of the binary tree all the junctions have locally

identical geometry, with intersecting corridors of the same length. In practice the

animals may well detect some inadvertent cues, like an unusual drop of glue, that

could identify one node from another. The maze rotation experiment suggests that

such cues are not essential for the animal’s sense of location in the maze, at least in

the expert phase.

The role of odors deserves particular attention because the mouse may use them both

passively and actively. Does the animal first find the water port by following the

smell of water? Probably not. For one, the port only emits a single drop of water

when triggered by a nose poke. Second, we observed many instances where the

animal is in the final corridor adjacent to the water port yet fails to discover it. The

initial discovery seems to occur via touch. The reader can verify this in the videos

accompanying this article. Regarding active use of odor markings in the maze, the

maze rotation experiment suggests that such cues are not required for navigation, at

least once the animals have adopted the shortest path to the water port (Figure 7.8).

Another algorithm that is often invoked for animals moving in an open arena is

vector-based navigation [43]. Once the animal discovers a target, it keeps track of

that target’s heading and distance using a path integrator. When it needs to return

to the target it follows the heading vector and updates heading and distance until it

arrives. Such a strategy has limited appeal inside a labyrinth because the vectors are

constantly blocked by walls. Consider, for example, the “home runs” back to the

exit at the end of a bout. Here the target, namely the exit, is known from the start of

the bout, because the animal enters through the same hole. At the end of the bout,

when the mouse decides to exit from the maze, can it follow the heading vector to

the exit? Figure 7.14A shows the 13 locations from which mice returned in a direct

path to the exit on their very first foray. None of these locations is compatible with

heading-based navigation: In each case an animal following the heading to the exit

would get stuck in a di�erent end node first and would have to reverse from there,

quite unlike what really happened.

Finally, a partial clue comes from errors the animals make. We found that the rotation

image of the water port, an end node diametrically across the entire maze, is one

of the most popular destinations for rewarded animals (Figure 7.21A). These errors

would be highly unexpected if the animals navigated from the entrance to the water
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by odor markings, or if they used an absolute representation of heading and distance.

On the other hand, if the animal navigates via a remembered sequence of turns,

then it will end up at that image node if it makes a single mistake at just the first

T-junction.

Future directed experiments will serve to narrow down how mice learn to navigate

this environment, and how their policy might change over time. Since the animals

get to perfection within an hour or so, one can test a new hypothesis quite e�ciently.

Understanding what mechanisms they use will then inform thinking about the

algorithm for learning, and about the neuronal mechanisms that implement it.
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7.4 Methods and Materials
Experimental design
The goal of the study was to observe mice as they explored a complex environment

for the first time, with little or no human interference and no specific instructions.

In preliminary experiments we tested several labyrinth designs and water reward

schedules. Eventually we settled on the protocol described here, and tested 20 mice

in rapid succession. Each mouse was observed only over a 7-hour period during the

first night it encountered the labyrinth.

Maze construction
The maze measured ~24 x 24 x 2 inches; for manufacture we used materials specified

in inches, so dimensions are quoted in those non-SI units where appropriate. The

ceiling was made of 0.5-inch clear acrylic. Slots of 1/8-inch width were cut into this

plate on a 1.5-inch grid. Pegged walls made of 1/8-inch infrared-transmitting acrylic

(opaque in the visible spectrum, ePlastics) were inserted into these slots and secured

with a small amount of hot glue. The floor was a sheet of infrared-transmitting acrylic,

supported by a thicker sheet of clear acrylic. The resulting corridors (1–1/8-inches

wide) formed a 6-level binary tree with T-junctions and progressive shortening of

each branch, ranging from ~12-inch to 1.5-inch (Figure 7.1 and Figure 7.5). A single

end node contained a 1.5-cm circular opening with a water delivery port (described

below). The maze included provision for two additional water ports not used in the

present report. Once per week the maze was submerged in cage cleaning solution.

Between di�erent animals the floor and walls were cleaned with ethanol.

Reward delivery system
The water reward port was controlled by a Matlab script on the main computer

through an interface (Sanworks Bpod State Machine r1). Rewards were triggered

when the animal’s nose broke the IR beam in the water port (Sanworks Port interface

+ valve). The interface briefly opened the water valve to deliver ~30 µL of water

and flashed an infrared LED mounted outside the maze for 1 s. This served to mark

reward events on the video recording. Following each reward, the system entered a

time-out period for 90 s, during which the port did not provide further reward. In

experiments with sated mice the water port was turned o�.
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Cage and connecting passage
The entrance to the maze was connected to an otherwise normal mouse cage by red

plastic tubing (3 cm diameter, 1 m long). The cage contained food, bedding, nesting

material, and in the case of unrewarded experiments, also a normal water bottle.

Animals and treatments
All mice were C57BL/6J animals (Jackson Labs) between the ages of 45 and 98

days (mean 62 days). Both sexes were used: 4 males and 6 females in the rewarded

experiments, 5 males and 4 females in the unrewarded experiments. For water

deprivation, the animal was transferred from its home cage (generally group-housed)

to the maze cage ~22 h before the start of the experiment. Non-deprived animals were

transferred minutes before the start. All procedures were performed in accordance

with institutional guidelines and approved by the Caltech IACUC.

Video recording
All data reported here were collected over the course of 7 hours during the dark

portion of the animal’s light cycle. Video recording was initiated a few seconds prior

to connecting the tunnel to the maze. Videos were recorded by an OpenCV python

script controlling a single webcam (Logitech C920) located ~1 m below the floor

of the maze. The maze and access tube were illuminated by multiple infrared LED

arrays (center wavelength 850 nm). Three of these lights illuminated the maze from

below at a 45-degree angle, producing contrast to resolve the animal’s foot pads. The

remaining lights pointed at the ceiling of the room to produce backlight for a sharp

outline of the animal.

Animal tracking
A version of DeepLabCut [25] modified to support gray-scale processing was used

to track the animal’s trajectory, using key points at the nose, feet, tail base, and

mid-body. All subsequent analysis was based on the trajectory of the animal’s nose,

consisting of positions G(C) and H(C) in every video frame.

Rates of transition between cage and maze
This section relates to Figure 7.1–Figure 7.4. We entertained the hypothesis that the

animals become “thirsty for exploration” as they spend more time in the cage. In that

case one would predict that the probability of entering the maze in the next second

will increase with time spent in the cage. One can compute this probability from the
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distribution of residency times in the cage, as follows:

Say C = 0 when the animal enters the cage. The probability density that the animal

will next leave the cage at time C is

? (C) = 4

�
CØ

0
A (C 0)3C 0

A (C) (7.2)

where A (C) is the instantaneous rate for entering the maze. So

Cπ
0

? (C0) 3C0 = 1 � 4
�

CØ
0
A (C 0)3C 0

(7.3)

Cπ
0

A (C0) 3C0 = � ln
©≠
´
1 �

Cπ
0

? (C0) 3C0™Æ
¨

(7.4)

This relates the cumulative of the instantaneous rate function to the cumulative of

the observed transition times. In this way we computed the rates

Am (C) = rate of entry into the maze as a function of time spent in the cage (7.5)

Ac (C) = rate of entry into the cage as a function of time spent in the maze (7.6)

The rate of entering the maze is highest at short times in the cage (Figure 7.1–Figure

7.4A). It peaks after ~15 s in the cage and then declines gradually by a factor of

4 over the first minute. So the mouse is most likely to enter the maze just after it

returns from there. This runs opposite to the expectation from a homeostatic drive

for exploration, which should be sated right after the animal returns. We found no

evidence for an increase in the rate at late times. These e�ects were very similar in

rewarded and unrewarded groups and in fact the tendency to return early was seen in

every animal.

By contrast the rate of exiting the maze is almost perfectly constant over time (Figure

7.1–Figure 7.4B). In other words the exit from the maze appears like a constant rate

Poisson process. There is a slight elevation of the rate at short times among rewarded

animals (Figure 7.1–Figure 7.4B top). This may come from the occasional brief

water runs they perform. Another strange deviation is an unusual number of very
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short bouts (duration 2-12 s) among unrewarded animals (Figure 7.1–Figure 7.4B

bottom). These are brief excursions in which the animal runs to the central junction,

turns around, and runs to the exit. Several animals exhibited these, often several

bouts in a row, and at all times of the night.

Reduced trajectories
From the raw nose trajectory we computed two reduced versions. First we divided

the maze into discrete “cells,” namely the squares the width of a corridor that make

up the grid of the maze. At any given time the nose is in one of these cells and that

time series defines the cell trajectory.

At a coarser level still one can ask when the animal passes through the nodes of

the binary tree, which are the decision points in the maze. The special cells that

correspond to the nodes of the tree are those at the center of a T-junction and those

at the leaves of the tree. We marked all the times when the trajectory (G(C), H(C))
entered a new node cell. If the animal leaves a node cell and returns to it before

entering a di�erent node cell, that is not considered a new node. This procedure

defines a discrete node sequence B8 and corresponding arrival times at those nodes

C8. We call the transition between two nodes a “step.” Much of the analysis in this

paper is derived from the animal’s node sequence. The median mouse performed

16,192 steps in the 7 h period of observation (mean = 15,257; SD = 3,340).

In Figure 7.11 and Figure 7.14 we count the occurrence of direct paths leading to

the water port (a “water run”) or to the exit (a “home run”). A direct path is a node

sequence without any reversals. Figure 7.6–Figure 7.7 illustrates some examples.

If the animal makes one wrong step from the direct path, that step needs to be

backtracked, adding a total of two steps to the length of the path. If further errors

occur during backtracking they need to be corrected as well. The binary maze

contains no loops, so the number of errors is directly related to the length of the path:

Errors = (Length of path � Length of direct path)/2. (7.7)

Maze rotation
The maze rotation experiment (Figure 7.8) was performed on 4 mice, all water-

deprived. Two of the animals (“D7” and “D9”) had experienced the maze before,

and are part of the “rewarded” group in other sections of the report. Two additional

animals (“F2” and “A1”) had had no prior contact with the maze.
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The maze rotation occurred after at least 6 hours of exposure, by which time the

animals had all perfected the direct path to the water port.

For animals “D7” and “D9” we rotated only the floor of the maze, leaving the walls

and ceiling in the original configuration. For “F2” and “A1” we rotated the entire

maze, moving one wall segment at the central junction and the water port to attain the

same shape. Navigation remained intact for all animals. Note that “A1” performed

a perfect path to the water port and back immediately before and after a full maze

rotation (Figure 7.8B).

The visits to the 4 locations in the maze (Figure 7.8C, Figure 7.8–Figure 7.9) were

limited to direct paths of length at least 2 steps. This avoids counting rapid flickers

between two adjacent nodes. In other words, the animal has to move at least 2 steps

away from the target node before another visit qualifies.

Statistics of sudden insight
In Figure 7.11 one can distinguish two events: first the animal finds the water port

and begins to collect rewards at a steady rate, this is when the green curve rises up. At

a later time the long direct paths to the water port become much more frequent than

to the comparable control nodes: this is when the red and blue curves diverge. For

almost all animals these two events are well separated in time (Figure 7.11–Figure

7.12). In many cases the rate of long paths seems to change discontinuously: a

sudden change in slope of the curve.

Here we analyze the degree of “sudden change,” namely how rapidly the rate changes

in a time series of events. We modeled the rate as a sigmoid function of time during

the experiment:

A (C) = Ai +
Af � Ai

2
erf

⇣
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F

⌘
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The rate begins at a low initial level Ai, reflecting chance occurrence of the event, and

saturates at a high final level Af, limited for example by the animal’s walking speed.

The other two parameters are the time Cs of half-maximal rate change, and the width
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F over which that rate change takes place. A sudden change in the event rate would

correspond to F = 0.

The data are a set of = event times C8 in the observation interval [0,)]. We model the

event train as an inhomogeneous Poisson point process with instantaneous rate A (C).
The likelihood of the data given the rate function A (C) is
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and the log likelihood is
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For each of the 10 rewarded mice, we maximized ln ! over the 4 parameters of the

rate model, both for the reward events and the long paths to water. The resulting fits

are plotted in Figure 7.11–Figure 7.12.

Focusing on the learning of long paths to water, for 6 of the 10 animals the optimal

width parameter F was less than 300 s: B1, B2, C1, C3, C6, C7. These are the same

animals one would credit with a sudden kink in the cumulative event count based on

visual inspection (Figure 7.11–Figure 7.12).

To measure the uncertainty in the timing of this step, we refit the data for this

subgroup of mice with a model involving a sudden step in the rate,

A (C) =
(
Ai, C < Cs

A 5 , C > Cs
(7.11)

and computed the likelihood of the data as a function of the step time Cs. We report the

mean and standard deviation of the step time over its likelihood in Figure 7.11–Figure

7.13. Animal C6 was dropped from this “sudden step” group, because the uncertainty

in the step time was too large (⇠900 s).

E�ciency of exploration
The goal of this analysis is to measure how e�ectively the animal surveys all the

end nodes of the maze. The specific question is: in a string of = end nodes that the
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animal samples, how many of these are distinct? On average how does the number

of distinct nodes 3 increase with =? This was calculated as follows:

We restricted the animal’s node trajectory (B8) to clips of exploration mode, excluding

the direct paths to the water port or the exit. All subsequent steps were applied to

these clips, then averaged over clips. Within each clip we marked the sequence of

end nodes (48). We slid a window of size = across this sequence and counted the

number of distinct nodes 3 in each window. Then we averaged 3 over all windows in

all clips. Then we repeated that for a wide range of =. The resulting 3 (=) is plotted in

the figures reporting new nodes vs nodes visited (Figure 7.17A,B and Figure 7.19C).

For a summary analysis we fitted the curves of 3 (=) with a 2-parameter function:

3 (=) ⇡ 64

 
1 � 1

1 + I+1I3

1+1

!
(7.12)

where

I = = /0 . (7.13)

The parameter 0 is the number of visits = required to survey half of the end nodes,

whereas 1 reflects a relative acceleration in discovering the last few end nodes. This

function was found by trial and error and produces absurdly good fits to the data

(Figure 7.17–Figure 7.18). The values quoted in the text for e�ciency of exploration

are ⇢ = 32 /0 (Equation 7.1).

The value of 1 was generally small (~0.1) with no di�erence between rewarded and

unrewarded animals. It declined slightly over the night (Figure 7.17–Figure 7.18B),

along with the decline in 0 (Figure 7.17C).

Biased random walk
For the analysis of Figure 7.19 we considered only the parts of the trajectory during

“exploration” mode. Then we parsed every step between two nodes in terms of

the type of action it represents. Note that every link between nodes in the maze is

either a “left branch” or a “right branch”, depending on its relationship to the parent

T-junction. Therefore there are 4 kinds of action:

• 0 = 0: “in left”, take a left branch into the maze

• 0 = 1: “in right”, take a right branch into the maze
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• 0 = 2: “out left”, take a left branch out of the maze

• 0 = 3: “out right”, take a right branch out of the maze

At any given node some actions are not available, for example from an end node one

can only take one of the ‘out’ actions.

To compute the turning biases we considered every T-junction along the trajectory

and correlated the action 00 that led into that node with the subsequent action 01. By

tallying the action pairs (00, 01) we computed the conditional probabilities ?(01 |00).
Then the 4 biases are defined as

%SF =
? (0 |0 ) + ? (0 |1 ) + ? (1 |0 ) + ? (1 |1 )

? (0 |0 ) + ? (0 |1 ) + ? (1 |0 ) + ? (1 |1 ) + ? (2 |0 ) + ? (3 |1 ) (7.14)

%SA =
? (0 |1 ) + ? (1 |0 )

? (0 |0 ) + ? (0 |1 ) + ? (1 |0 ) + ? (1 |1 ) (7.15)

%BF =
? (0 |3 ) + ? (1 |2 ) + ? (2 |2 ) + ? (2 |3 ) + ? (3 |2 ) + ? (3 |3 )

? (0 |3 ) + ? (1 |2 ) + ? (2 |2 ) + ? (2 |3 ) + ? (3 |2 ) + ? (3 |3 ) + ? (0 |2 ) + ? (1 |3 )
(7.16)

%BS =
? (2 |2 ) + ? (2 |3 ) + ? (3 |2 ) + ? (3 |3 )

? (0 |3 ) + ? (1 |2 ) + ? (2 |2 ) + ? (2 |3 ) + ? (3 |2 ) + ? (3 |3 ) (7.17)

For the simulations of random agents (Figure 7.17, Figure 7.19) we used trajectories

long enough so the uncertainty in the resulting curves was smaller than the line

width.

Models of decisions during exploration
The general approach is to develop a model that assigns probabilities to the animal’s

next action, namely which node it will move to next, based on its recent history of

actions. All the analysis was restricted to the animal’s “exploration” mode and to the

63 nodes in the maze that are T-junctions. During the “drink” and “leave” modes the

animal’s next action is predictable. Similarly when it finds itself at one of the 64 end

nodes it only has one action available.

For every mouse trajectory we split the data into 5 segments, trained the model on

80% of the data, and tested it on 20%, averaging the resulting cross-entropy over the 5

possible splits. Each segment was in turn composed of parts of the trajectory sampled

evenly throughout the 7-h experiment, so as to average over the small changes in

the course of the night. The model was evaluated by the cross-entropy between the

predictions and the animal’s true actions. If one had an optimal model of behavior,

the result would reveal the animal’s true source entropy.



103

Fixed-depth Markov chain

To fit a model with fixed-history depth : to a measured node sequence (BC), we

evaluated all the substrings in that sequence of length (: + 1). At any given time C,

the :-string hC = (BC�:+1, . . . , BC) identifies the history of the animal’s : most recent

locations. The current state BC is one of 63 T-junctions. Each state is preceded by

one of 3 possible states. So the number of history strings is 63 · 3:�1. The 2-string

(BC , BC+1) identifies the next action 0C+1, which can be “in left”, “in right”, or “out”,

corresponding to the 3 branches of the T junction. Tallying the history strings with

the resulting actions leads to a contingency table of size 63 · 3:�1 ⇥ 3, containing

=(h, 0) = number of times history h leads to action 0 (7.18)

Based on these sample counts we estimated the probability of each action 0 conditional

on the history h as

? (0 |h ) = = (h, 0) + 1Õ
0
0
= (h, 00) + 3

(7.19)

This amounts to additive smoothing with a pseudocount of 1, also known as “Laplace

smoothing.” These conditional probabilities were then used in the testing phase

to predict the action at time C based on the preceding history hC . The match to the

actually observed actions 0C was measured by the cross-entropy

� =
⌦
�log2? (0C |hC )

↵
C

(7.20)

Variable-depth Markov chain

As one pushes to longer histories, i.e. larger : , the analysis quickly becomes

data-limited, because the number of possible histories grows exponentially with : .

Soon one finds that the counts for each history-action combination drop to where one

can no longer estimate probabilities correctly. In an attempt to o�set this problem

we pruned the history tree such that each surviving branch had more than some

minimal number of counts in the training data. As expected, this model is less prone

to over-fitting and degrades more gently as one extends to longer histories (Figure

7.22–Figure 7.23A). The lowest cross-entropy was obtained with an average history

length of ~4.0 but including some paths of up to length 6. Of all the algorithms we
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tested, this produced the lowest cross-entropies, although the gains relative to the

fixed-depth model were modest (Figure 7.22–Figure 7.23C).

Pooling across symmetric nodes in the maze

Another attempt to increase the counts for each history involved pooling counts over

multiple T-junctions in the maze that are closely related by symmetry. For example,

all the T-junctions at the same level of the binary tree look locally similar, in that

they all have corridors of identical length leading from the junction. If one supposes

that the animal acts the same way at each of those junctions, one would be justified

in pooling across these nodes, leading to a better estimate of the action probabilities,

and perhaps less over-fitting. This particular procedure was unsuccessful, in that it

produced higher cross-entropy than without pooling.

However, one may want to distinguish two types of junctions within a given level:

L-nodes are reached by a left branch from their parent junction one level lower in the

tree, R-nodes by a right branch. For example, in Figure 7.6–Figure 7.7, node 1 is

L-type and node 2 is R-type. When we pooled histories over all the L-nodes at a

given level and separately over all the R-nodes, the cross-entropy indeed dropped,

by about 5% on average. This pooling greatly reduced the amount of over-fitting

(Figure 7.22–Figure 7.23B), which allowed the use of longer histories, which in turn

improved the predictions on test data. The benefit of distinguishing L- and R-nodes

probably relates to the animal’s tendency to alternate left and right turns.

All the Markov model results we report are obtained using pooling over L-nodes and

R-nodes at each maze level.

Data availability
All data and code needed to reproduce the figures and quoted results are avail-

able in this public repository: https://github.com/markusmeister/Rosenberg-2021-

Repository.

https://github.com/markusmeister/Rosenberg-2021-Repository
https://github.com/markusmeister/Rosenberg-2021-Repository
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C h a p t e r 8

ENDOTAXIS: A UNIVERSAL ALGORITHM FOR MAPPING,
GOAL-LEARNING, AND NAVIGATION

[1] Tony Zhang, Matthew Rosenberg, Pietro Perona, and Markus Meister. “Endo-
taxis: A Universal Algorithm for Mapping, Goal-Learning, and Navigation”.
In: bioRxiv (2021). ���: https://www.biorxiv.org/content/10.1101/
2021.09.24.461751v1.

An animal entering a new environment typically faces three challenges: explore the

space for resources, memorize their locations, and navigate towards those targets

as needed. Experimental work on exploration, mapping, and navigation has mostly

focused on simple environments—such as an open arena, a pond [32], or a featureless

desert [36]—and much has been learned about neural signals in diverse brain areas

under these conditions [12, 42]. However, many natural environments are highly

constrained, such as a system of burrows, or of paths through the underbrush. More

generally, many cognitive tasks are equally constrained, allowing only a small set of

actions at a given time in the process. Here we propose an algorithm that learns the

structure of an arbitrary environment, discovers useful targets during exploration,

and navigates back to those targets by the shortest path. It makes use of a behavioral

module common to all motile animals, namely the ability to follow an odor to its

source [6]. We show how the brain can learn to generate internal “virtual odors”

that guide the animal to any location of interest. The endotaxis algorithm can be

implemented with a simple 3-layer neural circuit using only biologically realistic

structures and learning rules. Several neural components of this scheme are found in

brains from insects to humans. Nature may have evolved a general mechanism for

search and navigation on the ancient backbone of chemotaxis.

https://www.biorxiv.org/content/10.1101/2021.09.24.461751v1
https://www.biorxiv.org/content/10.1101/2021.09.24.461751v1
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8.1 Introduction
E�cient navigation requires knowing the structure of the environment: which

locations are connected to which others [50]. One would like to understand how the

brain acquires that knowledge, what neural representation it adopts for the resulting

map, how it tags significant locations in that map, and how that knowledge gets

read out for decision-making during navigation. Here we propose a mechanism that

solves all these problems and operates reliably in diverse and complex environments.

One algorithm for finding a valuable resource is common to all animals: chemotaxis.

Every motile species has a way to track odors through the environment, either to

find the source of the odor or to avoid it [6]. This ability is central to finding food,

connecting with a mate, and avoiding predators. It is believed that brains originally

evolved to organize the motor response in pursuit of chemical stimuli. Indeed some

of the oldest regions of the mammalian brain, including the hippocampus, seem

organized around an axis that processes smells [2, 24].

The specifics of chemotaxis, namely the methods for finding an odor and tracking it,

vary by species, but the toolkit always includes a random trial-and-error scheme: try

various actions that you have available, then settle on the one that makes the odor

stronger [6]. For example a rodent will weave its head side-to-side, sampling the

local odor gradient, then move in the direction where the smell is stronger. Worms

and maggots follow the same strategy. Dogs track a ground-borne odor trail by

casting across it side-to-side. Flying insects perform similar casting flights. Bacteria

randomly change direction every now and then, and continue straight as long as the

odor improves [8]. We propose that this universal behavioral module for chemotaxis

can be harnessed to solve general problems of search and navigation in a complex

environment.

For concreteness, consider a mouse exploring a labyrinth of tunnels (Figure 8.1A).

The maze may contain a source of food that emits an odor (Figure 8.1A top). That

odor will be strongest at the source and decline with distance along the tunnels of the

maze. The mouse can navigate to the food location by simply following the odor

gradient uphill. Suppose that the mouse discovers some other interesting locations

that do not emit a smell, like a source of water, or the exit from the labyrinth (Figure

8.1A). It would be convenient if the mouse could tag such a location with an odorous

material, so it may be found easily on future occasions. Ideally the mouse would

carry with it multiple such odor tags, so it can mark di�erent targets each with its

specific recognizable odor (Figure 8.1A mid and bottom).
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Here we show that such tagging does not need to be physical. Instead we propose a

mechanism by which the mouse’s brain may compute a “virtual odor” signal that

declines with distance from a chosen target. That neural signal can be made available

to the chemotaxis module as though it were a real odor, enabling navigation up the

gradient towards the target. Because this goal signal is computed in the brain rather

than sensed externally, we call this hypothetical process endotaxis.

8.2 A Circuit to Implement Endotaxis
In Figure 8.1B we present a neural circuit model that implements three goals:

mapping the connectivity of the environment; tagging of goal locations with a virtual

odor; and navigation towards those goals. The model includes four types of neurons:

feature cells, point cells, map cells, and goal cells.

Feature cells: These cells fire when the animal encounters an interesting feature that

may form a target for future navigation. Each feature cell is selective for a specific

kind of resource, for example water or food, by virtue of sensory pathways that

respond to those stimuli.

Point cells: This layer of cells represents the animal’s location.1 Each neuron in this

population has a small response field within the environment. The neuron fires when

the animal enters that response field. We assume that these point cells exist from the

outset as soon as the animal enters the environment. Each cell’s response field is

defined by some conjunction of external and internal sensory signals at that location.

Map cells: This layer of neurons learns the structure of the environment, namely

how the various locations are connected in space. The map cells get excitatory input

from point cells with low convergence: Each map cell should collect input from

only one or a few point cells. These input synapses are static. The map cells also

excite each other with all-to-all connections. These recurrent synapses are modifiable

according to rules of Hebbian plasticity and, after learning, represent the topology of

the environment.

Goal cells: These neurons mark the locations of special resources in the map of the

environment. A goal cell for a specific feature receives excitatory input from the

corresponding feature cell. It also receives Hebbian excitatory synapses from map

cells. Those synapses are strengthened when the presynaptic map cell is active at the
1We avoid the term “place cell” here because (1) that term has a technical meaning in the rodent

hippocampus, whereas the arguments here extend to species that don’t have a hippocampus; (2) all
the cells in this network have a place field, but it is smallest for the point cells.
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same time as the feature cell.

Each of the goal cells carries a virtual odor signal for its assigned feature. That signal

increases systematically as the animal moves closer to the target feature. A mode

switch selects one among many possible virtual odors (or real odors) to be routed to

the chemotaxis module for odor tracking. 2 The animal then pursues its chemotaxis

search strategy to maximize that odor, which leads it to the selected tagged feature.

Why does the circuit work?
The key insight is that the output of the goal cell declines systematically with

the distance of the animal from that target. This relationship holds even if the

environment is a complex graph with constrained connectivity. Here we explain how

this comes about, with mathematical details in the supplement.

As the animal explores a new environment, when it moves from one location to an

adjacent one, those two point cells briefly fire together. That leads to a Hebbian

strengthening of the excitatory synapses between the two corresponding map cells.

In this way the recurrent network of map cells learns the connectivity of the graph

that describes the environment. To a first approximation, the matrix of synaptic

connections among the map cells will converge to the correlation matrix of their

inputs [14, 19], which in turn reflects the adjacency matrix of the graph (Equation

8.22). Now the brain can use this adjacency information to find the shortest path to a

target.

After this map learning, the output of the map network is a hump of activity, centered

on the current location G of the animal and declining with distance along the various

paths in the graph (Figure 8.1C top). If the animal moves to a di�erent location H,

the map output is another hump of activity, now centered on H (Figure 8.1C bottom).

The overlap of the two hump-shaped profiles will be large if nodes G and H are close

on the graph, and small if they are distant. Fundamentally the endotaxis network

computes that overlap. How is it done?

Suppose the animal visits H and finds water there. Then the profile of map activity

E8 (H) gets stored in the synapses ⌧68 onto the goal cell 6 that responds to water

(Figure 8.1B, Equation 8.26). When the animal subsequently moves to a di�erent

location G, the goal cell 6 receives the current map output E8 (G) filtered through the

previously stored synaptic template E8 (H). This is the desired measure of overlap
2That mode switch is controlled by the murinculus: a tiny mouse inside the mouse that tells the

mouse what to do. We do not claim to know how that works.
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Figure 8.1: A mechanism for endotaxis. A: A constrained environment of nodes
linked by straight corridors, with special locations o�ering food, water, and the
exit. Top: A real odor emitted by the food source decreases with distance (shading).
Middle: A virtual odor tagged to the water source. Bottom: A virtual odor tagged to
the exit. B: A neural circuit to implement endotaxis. Open circles: four populations
of neurons that represent “feature,” “point,” “map,” and “goal.” Arrows: Signal
flow. Solid circles: Synapses. Point cells have small receptive fields localized in the
environment and excite map cells. Map cells excite each other by recurrent Hebbian
synapses and excite goal cells by another set of Hebbian synapses. A goal cell also
receives sensory input from a feature cell indicating the presence of a resource, e.g.
water or the exit. The feature cell for cheese responds to a real odor emitted by
that target. A “mode” switch selects among various goal signals depending on the
animal’s need. They may be virtual odors (water, exit) or real odors (cheese). The
resulting signal gets fed to the chemotaxis module for gradient ascent. Mathematical
symbols used in the text: D8 is the output of a place cell at location 8, E8 is the output
of the corresponding map cell, M is the matrix of synaptic weights among map cells,
G are the synaptic weights from the map cells onto goal cells, and A6 is the output
of goal cell 6. C: The output of map cells after the map has been learned; here the
animal is located at points G (top) or H (bottom). Black means high activity. For
illustration, each map cell is drawn at the center of its place field.
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(Equation 8.27), and one can show mathematically that it declines exponentially with

the shortest graph-distance between G and H (Equation 8.28).

8.3 Performance of the Endotaxis Algorithm
Some important features of endotaxis can already be appreciated at this level of

detail. First, the structure of the environment is acquired separately from the location

of resources. The graph that connects di�erent points in the environment is learned

by the synapses in the map network. By contrast the location of special goals within

that map is learned by the synapses onto the goal cells. The animal can explore and

learn the environment regardless of the presence of threats or resources. Once a

resource is found, its location can be tagged immediately within the existing map

structure. If the distribution of resources changes, the knowledge of the connectivity

map remains una�ected. Second, the endotaxis algorithm is “always on.” There is

no separation of learning and recall into di�erent phases. Both the map network and

the goal network get updated continuously based on the animal’s trajectory through

the environment, and the goal signals are always available for directed navigation via

gradient ascent.

Simultaneous acquisition of map and targets during exploration
To illustrate these functions, and to explore capabilities that are less obvious from

an analytical inspection, we simulated agents navigating by the endotaxis algorithm

(Figure 8.1B) through a range of environments (Figs 8.2-8.3). In each case we

assumed that there are point cells that fire at specific locations, owing to a match

of their sensory receptive fields with features in the environment. The locations of

these point cells define the nodes of the graph that the agent will learn. Both the map

synapses and the goal synapses start out tabula rasa with zero synaptic strengths.

This is because the animal has no notion of the topology of the environment (which

location connects with which other location), and no information on the location

of the resources. As the agent explores the environment, for example by a random

walk, map synapses get updated based on the simultaneous firing of point cells

corresponding to neighboring locations. We used a standard formulation of Hebbian

learning, called Oja’s rule, which has only two parameters. Similarly the synapses

onto goal cells get updated based on the presynaptic map cell and the postsynaptic

signal from feature cells. Map cells and goal cells were allowed to learn at di�erent

rates (see Section 8.6 for detail).

A simple Gridworld environment (Figure 8.2) serves to observe the dynamics
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Figure 8.2: The map and the targets are learned independently. (A) Left: an
agent explores a simple Gridworld with 3 salient goal locations following the red
trajectory. Space is discretized into square tiles, each tile represented by one point
cell. Circles with crosses represent obstacles, namely tiles that are not reachable.
Right: graph of this environment, where each tile becomes a node, and edges
represent traversable connections between tiles. (B) The response fields of three
goal neurons for home (top), water (middle), and bug (bottom) at the 5 instants
during the learning process (i-v). Red edges connect previously visited nodes. The
response (log color scale) is plotted at each location where the agent could be placed.
The agent starts random walking from the entrance (i) and gradually discovers the
other two goal locations (water at time iii, bug at time iv). Upon discovery of a goal
location, the corresponding goal cell’s signal is immediately useful in all previously
visited locations (iii, iv) as well as nodes that are  2 steps away. Any new locations
visited subsequently and nodes  2 steps away are also recruited into the goal cell’s
response field (v).
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of learning in detail. There are three locations of interest: the entrance to the

environment, experienced at the very start of exploration; a water source; and a food

item. When the agent first enters the novel space, a feature neuron that responds to

the entrance excites a goal cell, which leads to the potentiation of synapses onto that

neuron. E�ectively that tags the entrance, and from now on that goal cell encodes a

virtual “entrance odor” that declines with distance from the entrance. With every

step the agent takes, the map network gets updated, and the range of the entrance

odor spreads further. At all times the agent could decide to follow this virtual odor

uphill to the entrance. The water source starts out invisible from anywhere except its

special location. However, as soon as the agent reaches the water, the water goal cell

gets integrated in the circuit through the potentiation of synapses from map cells.

Because the map network is already established along the path that the agent took,

that immediately creates a virtual “water odor” that spreads through the environment

and declines with distance from the water location (Figure 8.2B-iii).

As the agent explores the environment further, the virtual odors spread accordingly

to the new locations visited (Figure 8.2B i-v). After extensive exploration, the map

and goal networks reach a steady state. Now the virtual odors are available at every

point in the environment, and they decline monotonically with the shortest-path

distance to the respective goal location (Figure 8.2B-v). As one might expect, an

agent endotaxing uphill on this virtual odor always reaches the goal location, and

does so by the shortest possible path (Figure 8.3Bi-Ci).

We performed a similar simulation for a complex labyrinth used in a recent study of

mouse navigation [40]. The topology of the maze was a binary tree with a single

entrance, 63 T-junctions, and 64 end nodes (Figure 8.3A-ii). A single source of water

was located at one of the end nodes. In these experiments mice learned a direct path

to the water source after visiting it ⇠10 times; they also performed error-free paths

back to entrance on the first attempt [40]. Again the simulated agent explored the

labyrinth with a random walk. The virtual entrance odor allowed it to navigate back

to the entrance from any point along the trajectory. The first visit to the water port

established a goal cell with virtual water odor. After exploration had covered the

entire labyrinth, both the entrance odor and the water odor were available at every

location (Figure 8.3B-ii), allowing for flawless navigation to the sources by endotaxis

(Figure 8.3C-ii).

It turns out that endotaxis is a useful strategy beyond spatial navigation. For instance,

the game “Towers of Hanoi” represents a more complex environment (Figure 8.3A-iii).
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Figure 1. The maze environment. Top (A) and side (B) views of a home cage, connected via an entry
tunnel to an enclosed labyrinth. The animal’s actions in the maze are recorded via video from below
using infrared illumination. (C) The maze is structured as a binary tree with 63 branch points (in levels
numbered 0,...,5) and 64 end nodes. One end node has a water port that dispenses a drop when it gets
poked. Blue line in A and C: path from maze entry to water port. (D) A mouse considering the options
at the maze’s central intersection. Colored keypoints are tracked by DeepLabCut: nose, mid body, tail
base, 4 feet.

Figure 1–figure supplement 1. Occupancy of the maze.
Figure 1–figure supplement 2. Fraction of time in maze by group.

Figure 1–figure supplement 3. Transitions between cage and maze.
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Fig. 3: Task Generalizations (Oja’s Rule)

Figure 8.3: Endotaxis can operate in environments with diverse topologies. (A)
Three tasks and their corresponding graph representations: i) Gridworld of Figure
8.2 with 3 goal nodes (home, water, and food). ii) A binary tree labyrinth used in
mouse navigation experiments [40], with 2 goals (home and water). iii) Tower of
Hanoi game, with 2 goals (the configurations of disks that solve the game). (B) The
virtual odors after extensive exploration. For each goal neuron the response at every
node is plotted against the shortest graph distance from the node to the goal. (C)
Navigation by endotaxis: For every starting node in the environment this plots the
number of steps to the goal against the shortest distance.

Disks of di�erent sizes are stacked on three pegs, with the constraint that no disk

can rest on top a smaller one. The game is solved by rearranging the pile of disks

from one peg to another. In any state of the game there are either 2 or 3 possible

actions, and they form an interesting graph with many loops (Figure 8.3A-iii). Again

the simulated agent explored this graph by random walking. Once it encountered

a solution, that state was tagged with a virtual odor. After enough exploration the

virtual odor signal was available from every possible game state, and the agent could

solve the game from any starting state in the shortest number of moves. This example

illustrates that endotaxis is a useful algorithm even for cognitive tasks that don’t

involve spatial movement. It merely requires the existence of neurons that recognize

any given state of the game. To start with, the agent has no internal model of the

game, so it must happen on the first solution by chance. However, when prompted to

solve the problem again, the agent can use the learned virtual odor to complete the

game in the fewest possible moves.

These simulations suggest that the endotaxis algorithm can function perfectly

in environments of reasonable complexity, learning both the connectivity of the
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environment and the location of multiple resources within that map. How robust

is that performance? First, the model did not require careful tuning of parameters.

Instead, we found that endotaxis works over several log units of the two parameters

in Oja’s rule for synaptic plasticity (Figure 8.6). It fails in a predictable fashion: for

example, if the agent takes longer to explore the environment than the time constant

for synaptic change, then the map is always partially forgotten, and navigation to

a target will fail. Second, we considered the e�ects of noise in neural signals, and

found a gradual failure when the signal-to-noise value exceeded 1 (Figure 8.8).

8.4 Adaptation to Change in the Environment
An attractive feature of the endotaxis algorithm is that it separates learning the map

from learning the target locations. In many real-world environments the topology

of the map (how are locations connected?) is probably more stable than the targets

(which locations are interesting?). Separating the two allows the agent to adjust to

changes on both fronts using di�erent rules and time-scales. We illustrate an example

of each.

Change in connectivity
Suppose that the connectivity of the environment changes. For example, a shortcut

appears between two locations that used to be separated, or a blockage separates two

previously adjacent locations (Figure 8.4A.i-ii). This alters the correlation in firing

among the point cells during the agent’s explorations, and over time that will reflect

in the synapses of the map network. How will endotaxis adapt to such changes?

To explore these adjustments, we considered navigation on a ring-shaped maze with

a single goal location (Figure 8.4A.i). Note that the ring is the simplest graph that

o�ers two routes to a target, and we will evaluate whether the algorithm finds the

shorter one. An agent explores the ring by stepping among locations in a random

walk, and builds the map cell network from that experience. After a period of ⇠100

steps, navigation by endotaxis is perfect, in that the agent chooses the shorter route to

the goal from every start node (Figure 8.4B-C.i). If the ring gets broken by removing

one link, then endotaxis fails from some start nodes because it steers the agent

towards the blocked path. Over time, the representation of the former link gets erased

from the map network because the corresponding map synapses weaken whenever

the link isn’t used. Gradually, over several hundred random steps, navigation returns

to perfect performance again (Figure 8.4B-C.i).

Conversely, when a new shortcut appears between previously separated locations
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Fig. 4: Adaptation
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Figure 8.4: Endotaxis adapts quickly to changes in the environment or the target
locations. (A) A ring environment modified by sudden appearance of a blockage:
(i), a shortcut (ii), an additional goal target (iii), or a dual-reward environment with
di�erent saliency (iv). Graphs shown before and after modification or constant.
Shaded nodes are goal locations. Labels identify positions with point cells in the
graph. (B i-iii) Response profile of the goal neuron after su�cient exploration,
shown for timesteps just before modification (200) and at the end of exploration
(400). Color of nodes indicates the goal location the agent will eventually reach
by following the virtual odor starting from that node. Note the virtual odor peaks
at either one or two target locations depending on the environment, with a higher
amplitude at the stronger target. An agent following endotaxis will navigate to the
stronger target from a wider domain of attraction. (B iv) Varying U in Oja’s Rule for
map learning adjusts the tradeo� between distance and reward. With a smaller U
there is an equal number of starting nodes that reach node 0 and node 5. (C) Ability
to navigate back to goal over 400 steps of random walk exploration, showing the
fraction of successful returns to a goal from the current location at each timestep over
200 random walk explorations. Dotted line marks the time of modification. Note
that navigation gets disrupted briefly, then it returns to perfect.
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(Figure 8.4A.ii), a similar change takes place. For a brief period endotaxis is

suboptimal, because the agent sometimes takes the long route even though a shorter

one is available. However, that perturbation gets incorporated into the map much

more quickly, after just a few tens of steps of exploration (Figure 8.4B-C.ii). One

can understand the asymmetry as follows: As the agent explores the environment, a

newly available link is confirmed with certainty the first time it gets traveled. By

contrast the loss of a link remains uncertain until the agent has not taken that route

many times.

Appearance of new targets
Suppose the agent has discovered one location with a water resource. Some time

later water also appears at a second location (Figure 8.4A.iii). When the agent

discovers that, the same water goal cell will get activated and therefore receive a

potentiation of synapses active at that second location. Now the input network to that

goal cell contains the sum of two templates, corresponding to the map outputs from

the two target locations. As before, the current map output gets filtered through these

synaptic weights to create the virtual odor. One might worry that this goal signal

steers the agent to a location half-way between the two targets. Instead, simulations

on the ring show that the virtual odor peaks at both targets, and endotaxis takes the

agent reliably to the nearest one (Figure 8.4B.iii).

Choice between multiple targets
Suppose one of the targets o�ering the same resource is more valuable than the

other, for example because it gives a larger reward (Figure 8.4A.iv). In the endotaxis

model (Figure 8.1B), the larger reward causes higher activity of the feature cell

that responds to this resource, and thus stronger potentiation of the synapses onto

the associated goal cell (Equation 8.20). Thus the input template of the goal cell

becomes a weighted sum of the map outputs from the two target locations, with

greater weight for the location with higher reward (Figure 8.4B.iv). The virtual odor

still shows two peaks, but the stronger target now has a greater region of attraction;

for some starting locations the agent chooses the longer route in favor of the larger

reward, a sensible behavior.

What determines the trade-o� between the longer distance and the greater reward?

In the endotaxis model (Figure 8.1B) this is set by UM, one of the two parameters of

the synaptic learning rule in the map network (Equation 8.19). A small UM raises

the cost of any additional step traveled and thus diminishes the importance of reward
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di�erences (Figure 8.4B.iv right panel). By contrast a large UM favors the larger

reward regardless of distance traveled. One can show that the role of UM is directly

equivalent to the discount factor in reinforcement learning theory (Equation 8.28).

In summary, endotaxis adapts readily to changes in the environment or in the

availability of rewards. Furthermore, it implements a rational choice between

multiple targets of the same kind, using a variable weighting of reward versus

distance. None of these features required any custom tuning: they all follow directly

from the basic formulation in Figure 8.1B.

8.5 Discussion
Summary of claims
We have presented a neural mechanism that can support learning, navigation, and

problem solving in complex and changing environments. It is based on chemotaxis,

namely the ability to follow an odor signal to its source, which is shared universally

by most or all motile animals. The algorithm, called endotaxis, is formulated as a

neural network that creates an internal “virtual odor” which the animal can follow

to reach any chosen target location (Figure 8.1). When the agent begins to explore

the environment, the network learns both the structure of the space, namely how

various points are connected, and the location of valuable resources (Figure 8.2).

After su�cient exploration the agent can then navigate back to those target locations

from any point in the environment (Figure 8.3). The algorithm is always on and it

adapts flexibly to changes in the structure of the environment or in the locations of

targets (Figure 8.4). Furthermore, even in its simplest form, endotaxis can arbitrate

among multiple locations with the same resource, by trading o� the promised reward

against the distance traveled (Figure 8.4). Beyond spatial navigation, endotaxis can

also learn the solution to purely cognitive tasks (Figure 8.3), or any problem defined

by search on a graph. The neural network model that implements endotaxis has a

close resemblance to known brain circuits. We propose that evolution may have built

upon the ancient behavioral module for chemotaxis to enable much more general

abilities for search and navigation, even in the absence of odor gradients. In the

following sections we consider how these findings relate to some well-established

phenomena and results on animal navigation.

Animal behavior
The millions of animal species no doubt use a wide range of mechanisms to get around

their environment, and it is worth specifying which of those problems endotaxis might
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solve. First, the learning mechanism proposed here applies to complex environments,

namely those in which discrete paths form sparse connections between points. For a

bird, this is less of a concern, because it can get from every point to any other “as

the crow flies.” For a rodent and many other terrestrial animals, on the other hand,

the paths they may follow are constrained by obstacles and by the need to remain

under cover. In those conditions the brain cannot assume that the distance between

points is given by Euclidean geometry, or that beacons for a goal will be visible in

a straight line from far away, or that a target can be reached by following a known

heading. Second, we are focusing on the early experience with a new environment.

Endotaxis can get an animal from zero knowledge to a cognitive map that allows

reliable navigation towards goals encountered on a previous foray. It explains how an

animal can return home from inside a complex environment on the first attempt [40],

or navigate to a special location after encountering it just once (Figs 8.2,8.3). But it

does not implement more advanced routines of spatial learning, such as stringing a

habitual sequence of actions together into one, or internal deliberation to plan entire

routes. Clearly, expert animals will make use of algorithms other than the beginner’s

choice proposed here.

A key characteristic of endotaxis, distinct from other forms of navigation, is the

reliance on trial-and-error. The agent does not deliberate to plan the shortest path

to the goal. Instead, it finds the shortest path by locally sampling the real-world

actions available at its current point, and choosing the one that maximizes the virtual

odor signal. In fact, there is strong evidence that animals navigate by real-world

trial-and-error, at least in the early phase of learning [39]. Rats and mice often stop

at an intersection, bend their body halfway along each direction, then choose one

corridor to proceed. Sometimes they walk a few steps down a corridor, then reverse

and try another one. These actions—called “vicarious trial and error”—look eerily

like sni�ng out an odor gradient, but they occur even in absence of any olfactory

cues. Lashley [27], in his first scientific paper on visual discrimination in the rat,

reported that rats at a decision point often hesitate “with a swaying back and forth

between the passages.” Similar behaviors occur in arthropods [48] and humans [41]

when poised at a decision point. We suggest that the animal does indeed sample a

gradient, not of an odor, but of an internally generated virtual odor that reflects the

proximity to the goal. The animal uses the same policy of spatial sampling that it

would apply to a real odor signal, consistent with the idea that endotaxis is built on

the ancient behavioral module for chemotaxis.
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Frequently a rodent stopped at a maze junction merely turns its head side-to-side,

rather than walking down a corridor to sample the gradient. Within the endotaxis

model, this could be explained if some of the point cells in the lowest layer (Figure

8.1B) are selective for head direction or for the view down a specific corridor. During

navigation, activation of that “direction cell” systematically precedes activation of

point cells further down that corridor. Therefore the direction cell gets integrated

into the map network. From then on, when the animal turns in that direction, this

action takes a step along the graph of the environment without requiring a walk in

ultimately fruitless directions. In this way the agent can sample the goal gradient

while minimizing energy expenditure.

The vicarious trial and error movements are commonplace early on during navigation

in a new environment. Later on the animal performs them more rarely and instead

moves smoothly through multiple intersections in a row [39]. This may reflect a

transition between di�erent modes of navigation, from the early endotaxis, where

every action gets evaluated on its real-world merit, to a mode where many actions are

strung together into behavioral motifs. At a late stage of learning the agent may also

develop an internal forward model for the e�ects of its own actions, which would

allow for prospective planning of an entire route. An interesting direction for future

research is to seek a neuromorphic circuit model for such action planning; perhaps it

can be built naturally on top of the endotaxis circuit.

While rodents engaged in early navigation act as though they are sni�ng out a virtual

odor, we would dearly like to know whether the experience feels like sni�ng to them.

The prospects for having that conversation in the near future are dim, but in the

meantime we can talk to humans about the topic. Human language has an intriguing

set of metaphors for decision making under uncertainty: “this doesn’t smell right,”

“sni� out a solution,” “that idea stinks,” “smells fishy to me,” “the sweet smell of

success.” All these sayings apply in situations where we don’t yet understand the

rules but are just feeling our way into a problem. Going beyond mere correlation,

there is also a causal link: fishy smells can change people’s decisions on matters

entirely unrelated to fish [28]. In the endotaxis model (Figure 8.1B) this might

happen if the mode switch is leaky, allowing real smells to interfere with virtual

odors. Perhaps this partial synesthesia between smells and decisions results from

the evolutionary repurposing of an ancient behavioral module that was intended for

olfactory search.
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Brain circuits
The proposed circuitry (Fig 8.1) relates closely to some real existing neural networks:

the so-called cerebellum-like circuits. They include the insect mushroom body, the

mammalian cerebellum, and a host of related structures in non-mammalian vertebrates

[7, 16]. The distinguishing features are: a large population of neurons with selective

responses (e.g. Kenyon cells, cerebellar granule cells), massive convergence from

that population onto a smaller set of output neurons (e.g. Mushroom body output

neurons, Purkinje cells), and synaptic plasticity at the output neurons gated by signals

from the animal’s experience (e.g. dopaminergic inputs to mushroom body, climbing

fiber input to cerebellum). It is thought that this plasticity creates an adaptive filter

by which the output neurons learn to predict the behavioral consequences of the

animal’s actions [7, 53]. This is what the goal cells do in the endotaxis model.

The analogy to the insect mushroom body invites a broader interpretation of what

purpose that structure serves. In the conventional picture the mushroom body helps

with odor discrimination and forms memories of discrete odors that are associated

with salient experience [22]. Subsequently the animal can seek or avoid those odors.

But insects can also use odors as landmarks in the environment. In this more general

form of navigation, the odor is not a goal in itself, but serves to mark a route towards

some entirely di�erent goal [26, 44]. In ants and bees, the mushroom body receives

massive visual input, and the insect uses discrete panoramic views of the landscape

as markers for its location [11, 45, 51]. Our analysis shows how the mushroom body

circuitry can tie together these discrete points into a cognitive map that supports

navigation towards arbitrary goal locations.

In this picture a Kenyon cell that fires only under a specific pattern of receptor

activation becomes selective for a specific location in the environment, and thus

would play the role of a map cell in the endotaxis circuit (Figure 8.1). After su�cient

exploration of the reward landscape the mushroom body output neurons come to

encode the animal’s proximity to a desirable goal, and that signal can guide a trial-and-

error mechanism for steering. In fact, mushroom body output neurons are known to

guide the turning decisions of the insect [5], perhaps through their projections to the

central complex [29], an area critical to the animal’s turning behavior. Conceivably

this is where the insect’s basic chemotaxis module is implemented, namely the policy

for ascending on a goal signal.

Beyond the cerebellum-like circuits, the general ingredients of the endotaxis model

– recurrent synapses, Hebbian learning, many-to-one convergence – are found
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commonly in other brain areas including the mammalian neocortex and hippocampus.

In the rodent hippocampus, an interesting candidate for map cells are the pyramidal

cells in area CA3. Many of these neurons exhibit place fields and they are recurrently

connected by synapses with Hebbian plasticity. It was suggested early on that random

exploration by the agent produces correlations between nearby place cells, and thus

the synaptic weights among those neurons might be inversely related to the distance

between their place fields [35, 38]. However, simulations showed that the synapses

are substantially strengthened only among immediately adjacent place fields [34, 38]

(see also our Equation 8.21), thus limiting the utility for global navigation across the

environment. Here we show that a useful global distance function emerges from the

output of the recurrent network (Equations 8.24, 8.27, 8.28) rather than its synaptic

structure. Further, we o�er a biologically realistic circuit (Figure 8.1B) that can read

out this distance function for subsequent navigation.

Neural signals
The endotaxis circuit proposes three types of neurons—point cells, map cells, and goal

cells—and it is instructive to compare their expected signals to existing recordings

from animal brains during navigation behavior. Much of that prior work has focused

on the rodent hippocampal formation [33], but we do not presume that endotaxis is

localized to that structure. The three cell types in the model all have place fields, in

that they fire preferentially in certain regions within the graph of the environment.

However, they di�er in important respects:

Size and location The place field is smallest for a point cell; somewhat larger for

a map cell, owing to recurrent connections in the map network; and larger still for

goal cells, owing to additional pooling in the goal network. Such a wide range of

place field sizes has indeed been observed in surveys of the rodent hippocampus,

spanning at least a factor of 10 in diameter [25, 52]. Some place cells show a graded

firing profile that fills the available environment. Furthermore one finds more place

fields near the goal location of a navigation task, even when that location has no

overt markers [23]. Both of those characteristics are expected of the goal cells in the

endotaxis model.

Dynamics The endotaxis model assumes that point cells exist from the very outset

in any environment. Indeed, many place cells in the rodent hippocampus appear

within minutes of the animal’s entry into an arena [18, 52]. Furthermore, any given
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environment activates only a small fraction of these neurons. Most of the “potential

place cells” remain silent, presumably because their sensory trigger feature doesn’t

match any of the locations in the current environment [3, 15]. In the endotaxis model,

each of these sets of point cells is tied into a di�erent map network, which would

allow the circuit to maintain multiple cognitive maps in memory [35]. Finally a

small change in the environment, such as appearance of a local barrier (Figure 8.4),

can indeed lead to disappearance and appearance of nearby place cells [4].

Goal cells, on the other hand, are expected to appear suddenly when the animal first

arrives at a memorable location. At that moment the goal cell’s input synapses from

the map network are activated and the neuron immediately develops a place field.

This prediction is reminiscent of a startling experimental observation in recordings

from hippocampal area CA1: a neuron can suddenly start firing with a fully formed

place field that may be located anywhere in the environment [9]. This event appears

to be triggered by a calcium plateau potential in the dendrites of the place cell, which

potentiates the excitatory synaptic inputs the cell receives. A surprising aspect of

this discovery was the large extent of the resulting place field, which would require

the animal several seconds to cover. This was interpreted as a signature of a new

plasticity mechanism that extends over several seconds [30]. Our endotaxis model

has a di�erent explanation for this phenomenon: the goal cell’s place field extends

far in space because it taps into the map network, which has already prepared a large

place field prior to the agent finding the goal location. In this picture all the synaptic

changes are local in time and space, and there is no need to invoke an extended time

scale for plasticity.

Learning theories
Endotaxis has similarities with reinforcement learning (RL) [47]. In both cases the

agent explores a number of locations in the environment. In RL these are called

states and every state has an associated value representing how close the agent is to

rewards. In endotaxis, this is the role of the virtual odor, represented by the activity

of a goal neuron. The value function gets modified through the experience of reward

when the agent reaches a valuable resource; in endotaxis this happens via update

of the synapses in the goal network (G in Figure 8.1B). In both RL and endotaxis,

when the animal wishes to exploit a given resource, it navigates so as to maximize

the value function. Over time that value function converges to a form that allows the

agent to find the goal directly from every starting state. The exponential decay of the

virtual odor with increasing distance from the target (Equation 8.28) is reminiscent
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of the exponential decay of the value function in RL, controlled by the discount

factor, W [47].

In endotaxis much of the learning happens independent of any reinforcement. During

exploration, the circuit learns the topology of the environment, specifically by

updating the synapses in the map network (M in Figure 8.1B). The presence of

rewards is not necessary for map learning: until a resource is found for the first

time, the value function remains zero because the G synapses have not yet been

established (Equation 8.18). Eventually, when the goal is encountered, G is updated

in one shot and the value function becomes nonzero throughout the known portion

of the environment. Thus the agent learns how to navigate to the goal location from

a single reinforcement (Figure 8.2). This is possible because the ground has been

prepared, as it were, by learning a map. In animal behavior this phenomenon is

called latent learning. Early debates in animal psychology pitched latent learning

and reinforcement learning as alternative explanations [49]. Instead, in the endotaxis

algorithm, neither can function without the other (see Equation 8.18). In model-based

reinforcement learning, the agent could learn a forward model of the environment

and use it to update a value function. A key di�erence is that endotaxis learns the

distances between all pairs of states, and can then establish a value function after a

single reinforcement, whereas RL typically requires an iterative method to establish

the value function [21, 31, 46].

The neural signals in endotaxis bear some similarity to the so-called successor

representation [13, 43]. This is a proposal for how the brain might encode the

current state of the agent, intended to simplify the mathematics of time-di�erence

reinforcement learning. Each neuron stands for a possible state of the agent. The

activity of neuron 9 is proportional to the time-discounted probability that the agent

will find itself at state 9 in the future. Thus, the output of the endotaxis map network

(Equations 8.6, 8.24) qualitatively resembles a successor representation. However

there are some important di�erences. First, the successor representation depends not

only on the structure of the environment, but on the optimal policy of the agent, which

in turn depends on the distribution of rewards. Thus the successor representation

must itself be learned through a reinforcement algorithm. There is agreement in

the literature that the successor representation would be more useful if the model of

the environment were independent of reward structure [20]; however, it is believed

that “it is more di�cult to learn” [13]. By contrast, the map matrix in the endotaxis

mechanism is built from a policy of random exploration independent of the reward
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landscape. Second, no plausible biomorphic mechanism for learning the successor

representation has been proposed yet, whereas the endotaxis circuit is made entirely

from biologically realistic components.

Outlook
In summary, we have proposed a simple model for spatial learning and navigation

in an unknown environment. It includes an algorithm, as well as a fully-specified

neural circuit implementation, that makes quantitative and testable predictions about

behavior, anatomy, and physiology, from insects to rodents (Section 8.5). Of course

the same observables may be consistent with other models, and in fact multiple

navigation mechanisms may be at work in parallel or during successive stages of

learning. Perhaps the most distinguishing features of the endotaxis algorithm are

its reliance on trial-and-error sampling, and the close relationship to chemotaxis.

To explore these specific ingredients, future research could work backwards: first

find the neural circuit that controls the random trial-and-error sampling of odors.

Then test if that module receives a convergence of goal signals from other circuits

that process non-olfactory information. If so, that could lead to the mode switch

which routes one or another goal signal to the decision-making module. Finally,

upstream of that mode switch lies the soul [37] of the animal that tells the navigation

machinery what goal to pursue. Given recent technical developments we believe that

such a program of module-tracing is almost within reach, at least for the insect brain.
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8.6 Supplement
The core function of the endotaxis network is to learn the distance between any

two points in the environment starting from purely local connectivity. As the agent

explores the graph of the environment, the point cells for two adjacent locations

briefly fire together. This is the local event that drives synaptic learning in the map

population. Eventually the map network learns the global structure of the graph. In

particular, for any chosen goal node on the graph, the network computes a virtual

odor signal that varies with the agent’s location and declines monotonically with the

distance from the goal. Using that distance function the agent can navigate to the

goal node by the shortest path. In this section we explain how this global distance

measure comes about. We start with an analytical result about computing distances

on a graph, continue with a formal analysis of how the endotaxis network functions,

and proceed to numerical experiments that supplement results in the text.

A neuromorphic function to compute the shortest distance on a graph
Finding the shortest path between all pairs of nodes on a graph is a central problem

of graph theory, known as “all pairs shortest path” (APSP) [54]. Generally an APSP

algorithm delivers a matrix containing the distances ⇡8 9 for all pairs of nodes. That

matrix can then be used to construct the actual sequence corresponding to the shortest

path iteratively. The Floyd-Warshall algorithm [17] is simple and works even for

the more general case of weighted edges between nodes. Unfortunately we know of

no plausible way to implement Floyd-Warshall’s three nested loops of comparison

statements with neurons.

There is, however, a simple function for APSP that operates directly on the adjacency

matrix and can be solved by a recurrent neural network. Specifically: if a connected,

directed graph has adjacency matrix �8 9 ,

�8 9 =

(
1, if node 8 can be reached from node 9 in one step

0, otherwise, including the 8 = 9 case
(8.1)

then with a suitably small positive value of W the shortest path distances are given by

⇡8 9 =

&
log

⇥
(1 � W A)�1⇤

8 9

log W

'
(8.2)

where 1 is the identity matrix, and the half-square brackets mean “round up to the

nearest integer.”
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Proof: The powers of the adjacency matrix represent the e�ects of taking multiple

steps on the graph, namely,

⇥
A:

⇤
8 9
= #

(:)
8 9

= number of distinct paths to get from node 9 to node 8 in : steps

where a path is an ordered sequence of edges on the graph. This can be seen by

induction as follows. By definition,

#
(1)
8 9

= �8 9

Suppose we know #
(:)
8 9

and want to compute #
(:+1)
8 9

. Every path from 9 to 8 of length

: + 1 steps has to reach a neighbor of node 8 in : steps. Therefore,

#
(:+1)
8 9

=
’
;

�8;#
(:)
; 9

(8.3)

The RHS corresponds to multiplication by A, so the solution is

#
(:)
8 9

=
⇥
A:

⇤
8 9

We are particularly interested in the shortest path from node 9 to node 8. If the

shortest distance ⇡8 9 from 9 to 8 is : steps then there must exist a path of length :

but not of any length < : . Therefore,

⇡8 9 = min
:

#
(:)
8 9

> 0 (8.4)

Now consider the Taylor series

Y = (1 � WA)�1 (8.5)

= 1 + WA + W
2A2 + . . .

Then

.8 9 =
1’
:=0

#
(:)
8 9

W
: = #

(⇡8 9 )
8 9

W
⇡8 9 + #

(⇡8 9+1)
8 9

W
⇡8 9+1 + . . . (8.6)
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We will show that if W is chosen positive but small enough then the growth of # (:)
8 9

with increasing : gets eclipsed by the decay of W: such that

W
⇡8 9

< .8 9 < W
⇡8 9�1 (8.7)

The left inequality is obvious from Equation 8.6 because #

(⇡8 9 )
8 9

� 1 by Equation 8.4.

To understand the right inequality, note first that # (:)
8 9

is bounded by a geometric

series. From Equation 8.3 it follows that

#
(:)
8 9

< @
:

where @ is the largest number of neighbors of any node on the graph. So from

Equation 8.6

.8 9 < (@W)⇡8 9 + (@W)⇡8 9+1 + · · · = (@W)⇡8 9

1 � @W (8.8)

This expression is < W
⇡8 9�1 (Equation 8.7) as long as

W <

1

@ + @
⇡8 9

(8.9)

In addition, because

⇡8 9 < = ⌘ number of nodes on the graph

this is satisfied if one chooses W such that

W <

1
@ + @

=
(8.10)

With that condition on W, the inequality 8.7 holds, and taking the logarithm on both

sides leads to the desired result:

⇡8 9 =
⇠
log.8 9
log W

⇡
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The goal signal in endotaxis
In later sections we show that .8 9 can be computed by the endotaxis network, and

how the required synaptic weights can be learned from exploration on the graph. For

reasons of practical implementation, the network does not operate on .8 9 directly but

on the scalar products of the column-vectors in Y, namely

⇢8 9 = “goal signal from node 9 to 8” =
’
:

.:8.: 9 (8.11)

To understand how that goal signal ⇢8 9 varies with distance one can follow arguments

parallel to those that led to Equation 8.6. Using the upper bound by the geometric

series (Equation 8.8) and inserting in Equation 8.11 one finds again that it is possible

to choose a W small enough to satisfy

W
⇡8 9

< ⇢8 9 < W
⇡8 9�1 (8.12)

Under those conditions the goal signal ⇢8 9 decays exponentially with the graph

distance ⇡8 9 .

Regime of validity of the goal signal
The analytical arguments above all relied on choosing a very small W. In numerical

experiments we found that the exponential dependence of the goal signal ⇢8 9 on

distance (Equation 8.12) actually holds over a wide range of W (Figure 8.5A).

As W increases, one enters a regime where the systematic relationship to graph

distance (Figure 8.5B) breaks down and the goal signal becomes non-monotonic:

comparing all node pairs throughout the graph one now finds many instances where

the pair with a larger distance produces a stronger goal signal (Figure 8.5C). This

happens because Equation 8.12 is no longer satisfied. Nonetheless, it is still possible

that an agent ascending on the goal signal gets all the correct local instructions to

find the shortest path. To test this we asked whether the goal signal recommends the

correct successor node: for every start node 9 and goal node 8 one finds the node

connected to 9 with the highest goal signal. If that neighbor is always one step closer

to 8 then navigation will be perfect.

Indeed we found an extended range of values for W where the goal signal worked

flawlessly for navigation between all pairs of nodes (Figure 8.5C). In this range the

goal signal gives the correct turning instructions on a local level, even if it is not
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A

B C D E F

Figure 8.5: The goal signal and the choice of W. A: The goal signal declines
exponentially with graph distance (the tower of Hanoi graph with 4 levels was used
for these simulations). Data points indicate the goal signal between all pairs of nodes,
computed with di�erent values of W, and plotted against the distance on the graph
between the nodes. Lines are exponential fits to the data. B-F: Detailed plot of goal
signal vs distance as W approaches the critical value Wc, which for this graph is 0.335
(Equation 8.13). The fraction of correct successors ( is listed in each panel; as (
drops below 1, the goal signal becomes less useful for navigation.
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globally monotonic with distance across the entire graph. This behavior can also be

seen in some of the simulations of random exploration (Figure 8.3B).

At higher W values navigation begins to fail (Figure 8.5D–E). For an increasing

number of start/goal pairs the agent gets trapped in a local maximum of signal before

arriving at the goal.

Finally above a certain critical value Wc, the goal signal fails catastrophically (Figure

8.5F). There is a simple mathematical reason for this: recall that the Taylor expansion

(8.5) has a convergence radius of 1. That means all the eigenvalues of WA must have

absolute value < 1, which requires

W < Wc ⌘
1

largest absolute eigenvalue of A
(8.13)

Outside of that convergence radius the expression (1 � WA)�1 can no longer be

interpreted as counting paths on the graph and therefore loses any connection to

graph distance.

Model formulation
We formalized the endotaxis mechanism of Figure 8.1B as follows:

The environment is parcelled into a set of discrete locations in space that are sparsely

connected to each other. The locations and connectors form a graph that is fully

specified by the adjacency matrix �8 9 (Equation 8.1).

We treat neural processing using a textbook linear rate model [14]. Each node on the

graph has a point cell corresponding to that location. The point cell fires at a rate of

1 when the agent’s position 9 is at that node, and at a lower level F, with 0 < F < 1,

at the neighboring nodes. Thus the firing fields of neighboring point cells overlap

somewhat; this produces correlations among point cells along the agent’s trajectory

which will drive synaptic plasticity.

D8 (G) = firing rate of point cell 8 with the agent at node G (8.14)

= X8G + F �8G (8.15)

where X8G is the Kronecker delta. The output of the map network (Figure 8.1B) is

v = u + Mv = (1 �M)�1u (8.16)
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where u is the vector of point cell outputs, v is the vector of map cell outputs, and M
is the matrix of recurrent synapses among map cells.

A goal cell 6 receives sensory input B6 from neurons that signal the goal resource

available to the agent at the current node:

B6 (H) = amount of resource 6 present when the agent is at node H (8.17)

In addition, the goal cell gets input from the map neurons via the network of goal

synapses. Thus the vector of goal cell activities with the agent at node G is

r(G) = s(G) + G v(G) = s(G) + G(1 �M)�1u(G) (8.18)

The recurrent synapses among map cells undergo Hebbian plasticity. To keep the

synaptic strengths bounded, some normalization rule is needed. We adopted the

standard Oja’s Rule [14]:

d"8 9

dC
= VM(UME8E 9 � "8 9E8

2) (8.19)

where V sets the speed of synaptic plasticity and U its strength. The map network

has no self-synapses: "88 = 0.

The synapses from map cells to goal cells also undergo Hebbian plasticity, again via

Oja’s Rule

d⌧68

dC
= VG(UGA6E8 � ⌧68A6

2) (8.20)

Because learning about targets is conceptually di�erent from learning the map of the

environment, we allowed UG, VG to di�er from UM, VM. Including the spatial overlap

F, the model has 5 parameters.

How the endotaxis network learns the goal signal
Consider the linear rate model of the map network in Figure 8.1B and Equations

8.16–8.19. It is well known that a Hebbian recurrent network of this type will
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learn the correlation structure of its inputs [14, 19]. Evaluating Equation 8.19 after

synapses have equilibrated leads to

"8 9 = U

⌦
E8E 9

↵
⌦
E 9

2
↵ (8.21)

In the limit of small "8 9 , i.e. if the inputs from point cells dominate, then E8 ⇡ D8

and one gets to lowest order

"8 9 ⇡ U

⌦
D8D 9

↵
⌦
D8

2
↵ = U F �8 9 ⌘ W �8 9 (8.22)

where

W = U F (8.23)

In this approximation, the recurrent synapses "8 9 directly reflect the connections

among point cells and thus the adjacency matrix of the graph.

The output of the map network (Equation 8.16) is

v = (1 �M)�1u = (1 � WA)�1u (8.24)

So the recurrent network of map cells e�ectively computes the all-pairs distance

function derived above (Equation 8.5). If the agent is at node G then the map output

v(G) equals the G-th column vector of the matrix Y (in the limit of small F and W):

E8 (G) ⇡ .8G (8.25)

which declines exponentially with the graph distance ⇡8G (Equation 8.7). These

distance-dependent humps of activity are schematized in Figure 8.1C.

The remaining problem is how to use the map output to encode the distance to a

specific remembered goal location. Suppose goal 6 has a rewarding resource only

at node H, specifically B6 (G) = XGH (Equation 8.17). When the agent first arrives at

location H, the synaptic plasticity rule (Equation 8.20) updates the goal synapses ⌧68

from zero to a profile proportional to the current map output:

⌧68 ⇠ E8 (H) (8.26)
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Subsequent visits will strengthen that profile. From then on, when the agent is at a

location G < H the virtual odor varies according to Equation 8.18:

A6 (G) = s(G) + G v(G) (8.27)

⇠ 0 + v(H) · v(G) ⌘ ⇢GH

This corresponds to the goal signal ⇢ analyzed above (Equations 8.11, 8.12, Figure

8.5). Thus the virtual odor computed by the endotaxis network decays exponentially

with the agent’s distance from the goal

⇢GH ⇠ W
⇡GH (8.28)

where W = U F.

The explanation here relied on multiple small-signal approximations. However,

our simulations show that navigation based on the virtual odor signal is robust in

realistic scenarios that include fully non-linear synaptic update rules and stochastic

exploration by a random walk (Figs 8.2,8.3,8.4).

In this framework, the factor W has an interesting interpretation. Its neural meaning is

the strength of recurrent synapses in the map network compared to the feed-forward

synapses from point cells (Equation 8.22). Ultimately it determines the distance-

dependence of the goal signal: for every step along the graph the goal signal declines

by a factor of W (Equation 8.28). By analogy to the value function in reinforcement

learning [47], one can identify W as a discount factor or cost that the agent assigns for

every step it has to take. This becomes relevant when the agent trades o� two goal

locations that o�er rewards of di�erent magnitude (Figure 8.4C): an additional step

to one of the goals gets compensated if the reward is larger by a factor of 1/W. If the

agent can manipulate W, for example by varying U in Oja’s plasticity rule (Equations

8.19,8.22), that allows it to assign di�erent costs on distance traveled (Figure 8.4C).

Limits and extensions of the endotaxis model
To help illuminate the remarkable phenomenon of rapid learning in a complex

environment we sought an explanation in terms of biologically realistic processes.

This informed the choice of modeling language, using concrete circuits of neurons

and synapses, rather than abstract cognitive functions. Furthermore we kept the
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model as simple as possible: the cells are single-compartment neurons without

elaborate biophysics. The synapses are of a simple Hebbian type. All the input-output

functions are linear. Free parameters are kept to the minimum: two each for the

synaptic learning rules in the two networks. This simplicity allowed us to understand

how and why the model works in analytical detail (Section 8.6).

Surprisingly this simplest possible model also learns very robustly in simulations

over a range of environments. The parameters do not require careful tuning; in fact a

single set of 4 numbers works fine for the conditions we studied. In some ways the

simulations perform better than real animals. For example in the binary maze the

agent can navigate to a reward location flawlessly after discovering it the first time

(Figure 8.3B), whereas real mice solve that problem after ⇠10 experiences [40]. This

inspires confidence that as one adds realistic “bells and whistles” to the model the

additional degrees of freedom will not break its operation. A number of extensions

seem interesting for future work.

The distance function computed by the network fundamentally relies on the decay of

neural activation over multiple synaptic links. In a large environment, and operating

with a small W, the virtual odor signal will span many orders of magnitude (Equation

8.28). Real neurons cannot function reliably over such a large dynamic range, but

some plausible additions could counteract the decay. A more realistic activation

function with a compressive nonlinearity can amplify the signal locally in each

neuron. Second, a short-term adaptive gain control might adjust the strength of

synapses. In this way map cells far from the animal’s current location could become

more sensitive and continue to respond to the local trial-and-error movements of the

agent.

Another desirable feature would be long-term memory. Animals can learn a cognitive

map within minutes, and then retain it for days. Clearly there are multiple time

scales for learning and forgetting. In complex brains one supposes that long-term

consolidation is handled by transfer of the information between brain areas, for

example hippocampus and cortex. Small insect brains don’t o�er that luxury, but

perhaps the goal can be achieved within the endotaxis circuit itself, by endowing

synapses with more complex dynamics [1].

A hierarchical extension of the model could be formulated such that an additional set

of feedforward weights could read out from the goal signals in the current model

formulation, which would allow for weighted preferences of desired goal features.

Such a system could be useful for returning to locations with multiple properties
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that are desirable to the animal, or remembering a unique set of properties that

characterize certain goal locations.

Simulations
Figures 8.2, 8.3, and 8.4 report the results of endotaxis learning while an agent

explores the environment. We gave the agent a trajectory, either chosen by design

(Figure 8.2) or as an unbiased random walk through the graph (Figs 8.3, 8.4). After

every step of the random walk, we computed the cell activities in a forward pass

from point cells to goal cells. Then we updated the synaptic weights in the two

networks M and G via a Hebbian learning rule. See Algorithm 1 for details. Matrix

operations were implemented in JAX [10], but for the task complexity explored in

this paper there was no need for GPU acceleration.

Learning and subsequent navigation worked robustly over a range of the UM and

VM parameters in Oja’s Rule (Figure 8.6). UM has an absolute upper bound of Wc/F
(Equations 8.13, 8.24) which depends on the eigenspectrum of the graph. In practice

the Tower of Hanoi graph posed the strongest challenge, presumably because of its

size and the large number of loops. For simplicity, we selected model parameters

that allow for perfect navigation on that graph and applied the same model without

modifications across all the tasks reported here. Note that this is not an exclusive set:

smaller values for UM and VM would work as well.

Change in connectivity

To analyze changes in connectivity (Figure 8.4A.i-ii) we simulated an agent per-

forming a random walk on a ring. At each time step we asked if the agent could

navigate to the goal by the shortest path. We assumed that the appearance of a block

or a shortcut between two adjacent nodes will alter the sensory cues around both

locations (2 and 3 in Figure 8.4A.i-ii). Therefore the point cells that used to encode

those locations drop silent, and the respective map cells lose their a�erent input,

while still remaining in the recurrent network. At the same time two new point cells

appear at those locations, because the new cues match their selectivity. Their map

cells now receive a�erent input from the respective locations, but their recurrent

synapses start at zero weight. The agent then continues a random walk around the

ring, subject to the new constraints, and the learning algorithm proceeds as usual.
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Gridworld Oja’s Rule Param (Alpha vs Beta Params)

Figure 8.6: Dependence of map learning on the parameters UM and VM in Oja’s rule.
Each panel is for one combination of UM and VM and shows performance on the
Gridworld task (Figs 8.2, 8.3-i). The fraction of successful navigations is plotted
vs the number of steps in the exploratory random walk, averaged over 30 di�erent
walks. The 3 curves show navigation to the 3 goals, color coded as in Figure 8.3-i.
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Algorithm 1 Online Learning via Oja’s Rule
9 : pre-synaptic neuron
8 : post-synaptic neuron
F = 0.3 (fractional activity at neighbor nodes)
B6 = 1 (except dual-target tasks)
UM = 0.05
VM = 0.02
UG = 0.5 · UM

VG = 0.03

M 0
G 0

for step t in node visit sequence do
Compute Neural Activity
u
=>34(C)  1

for each neighboring node i do
u
=>34(8)  F

end for
u
=>34(>C⌘4AB)  0

v = u + Mv = (1 �M)�1u
g = Gv + s

=>34(C)

Synaptic Learning
"8 9  "8 9 + VM(UME8E 9 � "8 9E

2
8
)

⌧8 9  ⌧8 9 + VG(UG68E 9 � ⌧8 96
2
8
)

end for

Dynamics of learning

Figure 8.7 illustrates the state of the synaptic networks over the course of online

learning, as observed during a random walk on the binary maze graph (Figure

8.3A-ii). The norm of the map matrix kMk increases continuously through steady

small updates kdMk. By comparison the goal matrix kGk increases in noticeable

steps of kdGk every time the agent visits a goal location. With su�ciently low U

and V, the network learns stably and gradually approaches a steady state. However,

as demonstrated in the text, even the first visit to a goal location already produces a

goal signal that allows a reliable return to that location.
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Figure 8.7: Dynamics of online learning. Evolution of the map matrix (kMk and
kdMk) and the goal matrix (kGk and kdGk) during exploration of the binary maze
graph of Figure 8.3A-ii. See text for details.

Robustness to noise

We tested how robust the map learning is to noise. Figure 8.8 illustrates the results

using the Gridworld task (Figure 8.3-i). At each step of the simulation we perturbed

each neuron’s signal with multiplicative noise, by adding a Gaussian noise variable to

the logarithm. Performance of learning and navigation was robust for signal-to-noise

ratios of 2 or higher.

Data and code availability
Data and code to reproduce the reported results are available at https://github.

com/tonyzhang25/Zhang-2021-Endotaxis.

https://github.com/tonyzhang25/Zhang-2021-Endotaxis
https://github.com/tonyzhang25/Zhang-2021-Endotaxis
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Oja’s Rule Param (Alpha vs Noise LogNormal)

Figure 8.8: Learning tolerates perturbation by neural noise. Each panel shows
navigation performance on the Gridworld task (Figs 8.2, 8.3-i), plotted as in Figure
8.6. Each neuron’s activity was perturbed by multiplicative noise proportional to the
unit’s activity. The panels di�er by the combination of UM (rows) and noise level
(columns). The noise level as a fraction of the unit’s firing rate is listed below each
column.
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C h a p t e r 9

SUMMARY

This thesis presented new methods and findings in studying biological intelligence in

learning and decision-making, including a new automated setup for behavioral data

collection, class of tasks for studying sequential decision-making, and a theoretical

neural circuit model that could produce key behavioral phenomena in mapping and

navigation.

In the first work, we developed and validated an automated tool for training and

collecting behavior data for groups of animals, examined problems with 2-AFC

tasks commonly used in neuroscience, and developed an explainable learned model

for decoding the policies driving suboptimal behavior. In the second work, we

proposed a new navigation-based sequence learning task that is more suitable for

understanding fast and complex learning and decision-making. We find that with

this task, animals are able to reach goals that require the integration of many actions

very quickly, including homing and reward-seeking. And finally, in the third work,

we proposed a concrete neural circuit that can solve sequence learning in navigation

via simultaneous mapping and goal learning one-shot.

The general approach used in this thesis can be used to study a wide range of intelligent,

learned behavior, as long as there exists hardware sensors and computational tools

to quantify behavioral states. Overall, this thesis highlighted two important criteria

for studying behavior: automating behavioral setups for a large quantity of data

collection, and ethologically relevant task design in order to evoke natural behavior

that may involve more relevant neural pathways for neuroscience. The results

highlighted in the behavioral work show that animals are capable of fast learning

when placed in ethological tasks, even in complex tasks that involve learning many

decisions. Finally, as shown in the theory work, even a mechanistic neural circuit

could be useful for thinking about behavior, as these models could inform the types

of learned behavior that is feasible.
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C h a p t e r 10

DISCUSSION

In Chapter 7, although the behavioral data presented were all from mice navigating

a maze, the underlying neural mechanisms of sequence learning that makes the

mapping and navigation possible may well generalize across species and possibly

even tasks. It could be argued that there exists a set of tasks of equal complexity

measured in terms of roughly the number of decisions learned, in the space of all

possible tasks, that each organism has evolved to excel at solving due to relevance

for survival. For instance, while mice may be able to reliably navigate in complex

underground burrows, a human might instead rely on more complex visual cues both

locally and in the far distance for navigation [3, 7].

In the theory work presented in Chapter 8, because point cells heavily rely on sensory

stimuli for stability, the sensory modality should be tailored to the subject based on

the primary modality of the species. For humans, visual cues in a richly rendered

three-dimensional environment may be necessary, while perhaps narrow tunnels with

tactile cues would work well for mice. Generally, there is little reason to believe that

the various types of sequence learning could not leverage the same type of neural

mechanism, even if the actual circuits responsible for each kind of sequence learning

are distributed across brain regions. It could even be argued that the mechanisms

underlying the learning of correlated structures in time can be generalized across

species for general-purpose reasoning and cognition.

Endotaxis also has no specialized properties that limit it to any particular organism.

The basic building blocks of the model are truly universal across all nervous systems:

excitatory synapses and neurons. When learning to navigate, learning the adjacency

graph is equivalent across species as long as there exist point cells that are localized

to specific regions of physical or abstract space, and are co-active within the window

for synaptic potentiation. Given the right form of ethological task, across the many

motile organisms that could learn, there may already exist a large set of sparsely

coded cells similar to point cells that respond to specific locations of an environment.

These low-level point cells may be the result of complex multisensory integration that

allows the animal to attach localized place fields to location with unique properties,

or just tiled regularly in an open environment.
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What is not addressed in this thesis is how these point cells might come about—it

is assumed that this is the process of some sensorimotor information integration

over time, and their presence is supported by experimental evidence [1, 4]. In an

actual network of neurons, there may be well be drifts in the place fields of each

point cell over time due to accumulated errors in sensing. Drifts in the place fields of

point cells could potentially a�ect the ability of the goal cells to generate signals that

are flawless for direct-route navigation, depending on the amount of error and the

complexity of the environment. Nonetheless, the ability of the model to work on

all graphs in simulation flawlessly gives us confidence that with more noisy signals

coming from the input, the system could still operate in a way that is not unlike actual

mice or humans, which we do not expect to learn maps one-shot without errors. By

modeling these errors in point cell place fields and comparing against actual neural

and behavioral data, perhaps one could establish some notion of the fault tolerance of

such a system, and thereby establish some bounds on the types of learning possible.
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FUTURE DIRECTIONS

There is a range of follow-up directions one could pursue from the works presented

in this dissertation, in terms of both behavior and theory.

On the behavioral front, a clear extension would be to expand on the interplay

between tasks and models, and use a model-based approach to iteratively optimize

and inform the development of new tasks that can tease apart the di�erent mechanisms

of behavior. With a flexible task design that allows for easy reconfiguration, one

can imagine using an adaptive approach to studying behavior, where the task can

be iteratively reconfigured to maximize a particular objective of interest, such as

increasing the distance in some behavioral feature space between two proposed

competing models of behavior.

On the theory front, the neural theory work presented in Chapter 8 could also be

extended in many other directions. The most obvious would be to look for the

proposed neural signals in the brain. However, there are also other extensions

possible on the modeling side: for instance, the framework could be extended to

allows for general relational reasoning. One can imagine the brain may use a similar

approach to learn distances between features of more abstract concepts, and learn a

relational network that allows for general cognition and deduce a causal graph of the

world that can be used for any downstream task.

Endotaxis could also be applied on the algorithmic front by implementing it in silicon.

One advantage of the framework discussed is its potential in solving graph search

problems with better time complexities than existing graph algorithms, should it

be implemented in a neural or neuromorphic circuit. One could imagine using a

neuromorphic chip that can implement the RNN described in the paper, and using it

to instantly solve APSP. Solving APSP can have implications for various applications,

such as path planning in robotics [2].
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