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ABSTRACT

Active matter describes a class of materials for which constituent "particles" convert
chemical energy into mechanical motion leading to self-propulsion (swimming).
The origins of this swimming motion for both biological and synthetic constituents
is a thriving area of research. However, here we focus on the physical properties
and mechanics of the active matter systems. We model active particles using the
active Brownian particle (ABP) model that is the simplest model that captures the
essential physics, where a particle translates with a swim speed *0 in a direction q

for a characteristic reorientation time g'; the average length they move between each
reorientation is called the run, or persistence, length ℓ = *0g'. Owing to this persis-
tent swimming, the ABPs distribute non-homogenously near surfaces, accumulating
at no-flux boundaries leading to a concentration boundary layer near solid surfaces.
Active particles often have an effective size—their run length—which can be much
larger than their geometric size such that they experience confinement in geometries
whose size is on the order of the run length. Active systems are inherently far from
equilibrium, and we cannot appeal to properties of equilibrium thermodynamic such
as the chemical potential to predict the partitioning. Fortunately, active particles are
still subject to the laws of mechanics, and in this work, we present a simple macro-
scopic balance that allows one to predict behavior without detailed calculations. We
predict the attractive force between two parallel plates in a reservoir (also called the
Casimir effect) and find that the average concentration between the plates equals that
in the bulk reservoir independent of the degree of confinement (ratio of run length
to the spacing between the plates). We then examine the confinement effects in a
channel geometry, where the behavior is fundamentally different, and the average
concentration grows linearly with the degree of confinement. The understanding of
these fundamental geometries motivated us to look into more complex geometries
such as porous media. Based on dimensional analysis and our predictive model,
we explain the transient behavior and steady-state partitioning of active particles
between a fluid reservoir and a porous medium. Lastly, we discuss the hindered
diffusion in periodic porous media and how the diffusion depends not only on the
porosity of the medium but also on the degree of confinement. We believe that
utilizing the insights in effects of confinement for these fundamental geometries and
the porous media will be valuable in designing optimal structures for enhancing or
isolating active particles.
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C h a p t e r 1

INTRODUCTION

This thesis consists of independent chapters that are presented in a form suitable for
publication, with Chapter 2 already published. This introductory chapter provides
an overview of the fundamental features of active matter systems, implications
of confinement, questions which motivated this work, and relevant applications.
In Chapter 2, we lay out the groundwork for understanding the Casimir effect
and partitioning in active matter for fundamental geometries through a mechanical
balance perspective. In Chapter 3, we expand this theoretical framework to a more
complex porous media system to predict the partitioning of active particles within
this type of confinement. Lastly, in Chapter 4, we explore the effects of porous
media on the hindered diffusion of active particles.

This introductory chapter includes content from our previously published article:

[1] C. M. Kjeldbjerg and J. F. Brady, “Theory for the casimir effect and the
partitioning of active matter”, Soft Matter 17, DOI: 10.1039/d0sm01797c,
523–530 (2021),
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1.1 Active Matter
The concept of active matter can describe many natural systems: the flocking of
birds, humans walking in a crowded area, the movement of bacteria, Janus particles
in suspension, etc. [1–3]. In this thesis, we focus on active matter at the micron
or colloidal scale. Active matter systems consist of self-propulsive particles which
convert (often) chemical energy into mechanical motion; this leads to random self-
propulsion [4]. These movements generate internal stresses and can thereby drive
systems far from thermodynamic equilibrium [5]. Active matter systems can have
very interesting behaviors such as moving collectively under an external field [6, 7],
spontaneous and controlled self-assembly [8–15], spontaneous phase separation into
dilute and dense phases [16–25], accumulation at surfaces [26–28], and converting
chemical energy into mechanical work through the rotation of micro-gears [29, 30].

1.2 Dynamics of active matter
Active matter systems are inherently non-equilibrium, and one cannot rely on ther-
modynamics for a description. However, active matter still obeys the fundamental
laws of physics, and we therefore turn to the conservation of mass and momentum
to describe the systems. The motion of active particles is significantly different
from those of passive Brownian particles. Passive particle motion arises from ther-
mal energy, whereas active particle motion comes from the combination of thermal
energy and their inherent activity.

The simplest model that captures the essential physics is the active Brownian particle
(ABP) model, where each particle translates with a swim speed *0 in a direction q

for a characteristic reorientation time g'; the average length they move between each
reorientation is called the run, or persistence, length ℓ = *0g' [31]. This model is
illustrated in Fig. 1.1. Active particles will persistently swim in one direction until
they reorient and swim in the new direction. This swimming can be described as a
stochastic process with a rotational diffusivity, �' = g

−1
'
; this rotation does not need

to be thermal in nature. For example, it could originate from a bacteria bundling
and unbundling their flagella [32]. At times shorter than the reorientation time,
the motion of the particles will be ballistic in nature [33]. For times longer than
the reorientation time, the motion will form a random walk and be diffusive with
a swim diffusivity, �BF8< = *2

0g'/(3 (3 − 1)), where 3 is the number of rotational
dimensions [4, 6, 22, 26]. Similarly to the Stokes-Einstein-Sutherland relationship
for Brownian particles, we define an active energy scale such that �BF8< = Z :B)B,
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where Z is the Stokes drag. The ratio of this active energy to the thermal energy
becomes a measure of the activity of the system, :B)B/:�) [34].

Langevin equations
A system of active Brownian particles can be described by the overdamped Langevin
equations. ABPs are in the Stokes regime where the Reynolds number is low.
Therefore, viscous forces dominate in the equations of motion, and inertia can be
neglected. This leads to motion being both force-free and torque-free;

∑
L = 0 and∑

R = 0. The drag force, � = Z[, is balanced by the other forces acting on the
particle such that

0 = −L3A06 + L(F8<U + L�U + L,U , (1.1)

0 = −R3A06 + L'U , (1.2)

where L(F8<U is the swim force defined as F(F8<
U ≡ Z*0qU. F�

U is the random
Brownian force with the properties F�

U = 0 and the F�
U (0)F�

U (C) = 2:�)ZX(C)I,
where I is the identity tensor and X(C) is the delta-function. L' is the random
reorientation torque, where L' = 0 and L' (0)L' (C) = 2Z2

'
X(C)I/g'. Note that it is

Figure 1.1: Example of an ABP’s random movement with swim speed U0 in an
orientation q. The length the ABP travels between reorientations is the run length
ℓ, and the reorientation time is g' (= ℓ/*0).
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not necessary to assume that the translational and rotational diffusivities are both
thermal, i.e., �' need not be proportional to :�) . The Langevin equations provide a
per particle perspective balance, however, we can also describe the active Brownian
particles from a probability perspective.

Smoluchowski equation
For a dilute suspension of APBs, the particle distribution is governed by the Smolu-
chowski equation for the probability density %(x, q, C) for finding a particle at
position x with orientation q at time C [35–37]:

m%(x, q, C)
mC

+ ∇ · j) + ∇' · j' = 0, (1.3)

where the translational and rotational fluxes are j) = *0q% − �)∇% and j' =

−�'∇'%, respectively. Here, �) and �' are the translational and rotational dif-
fusivities; the reorientation time g' = 1/�'. The orientational gradient operator
is ∇' = q × ∇q . While the system’s behavior is fully determined from the Smolu-
chowski equation (1.3), finding its solution is a daunting task. To make progress
and capture the essential features of the distribution of ABPs, one can expand the
Smoluchowski equation in the first few orientational moments: the zeroeth moment
is the concentration =(x, C) =

∫
%(x, q, C)3q, the first moment is the polar order

m(x, C) =
∫
q%(x, q, C)3q, etc. For two dimensions, the orientational moments

satisfy a hierarchy of equations [35]:
m=

mC
+ ∇ · j= = 0, (1.4)

mm

mC
+ ∇ · j< + �'m = 0, (1.5)

where the fluxes are

j= = *0m − �)∇=, (1.6)

j< = *0W +
1
2
*0=O − �)∇<. (1.7)

Here, = is the number density, m is the polar order, and W is the nematic order,
W(x, C) =

∫
(qq − 1

2 O)%(x, q, C)3q, with O the isotropic tensor. The system is often
closed by assuming that the nematic order is isotropic W = 0, and even then finding
the solution can be daunting for systems of two or more dimensions.

1.3 Boundary accumulation of active particles
Owing to active particles’ persistent swimming, ABPs distribute non-homogenously
near surfaces and will accumulate at no-flux boundaries leading to a concentration
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Figure 1.2: Passive particles released from a line source in the center between two
parallel walls. The particles diffuse out due to thermal diffusion and distribute with
a homogeneous concentration between the two walls.

boundary layer near solid surfaces [4, 26, 27]. If the active particle run length is
large compared to its size, the effective size of a particle can be much larger than
its geometric size. Therefore, ABPs often experience confinement in geometries
on the order of their run length [24, 26, 38, 39]. This exciting phenomenon is the
motivation for this thesis. We focus on understanding how confinement influences
the distribution of active matter and how we can predict it using a mechanical
balance perspective. We only consider particles on the colloidal scale, where inertia
is negligible. Therefore, we are in the Stokes regime, and the motion of particles
is force– and torque-free [40, 41]. The mechanical balance, therefore, consists of a
momentum balance and utilization of the pressures of the system. The pressures in
the system will be the osmotic pressure from thermal motion and the swim pressure.

To illustrate the stark difference between the passive and the active Brownian par-
ticles, we consider passive particles being released from a line source between two
parallel walls. The particles will diffuse outwards from the line source, and their
concentration will be homogeneous between the two walls. Fig. 1.2 illustrates this,
where we observe that the passive Brownian particles are not accumulating at the
walls. The pressure on a single wall,Π, , will be given by the osmotic pressure such
that

Π, = =, :�) = =
0:�), (1.8)

where =F is the concentration on the wall, =0 is the center concentration, and :�) is
the thermal energy. Thus, when particles are passive, there is no wall accumulation,
and the concentration at the wall is equal to the one in the bulk, =, = =0. However,
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Figure 1.3: Active particles released from a line source in the center between two
parallel walls after 5 g'. The active particles diffuse out due to thermal diffusion
and swimming. They accumulate at the two boundaries, additionally most of the
particles at the wall are oriented into the wall as the arrow demonstrates. Here, the
activity :B)B/:�) = 50, ℓ/� = 1, and !/� = 3.

for active particles, we observe an inherently different behavior. The particles still
diffuse out, but we also notice the accumulation at boundaries. This is illustrated
for active Brownian particles diffusing from a line source between two walls in Fig.
1.3, where :B)B/:�) = 50, ℓ/� = 1, and !/� = 3. The pressure on the wall is the
osmotic pressure, Π>B< = =, :�) , but the wall concentration is no longer equal to
the bulk concentration.

Analogous to the osmotic pressure, Π>B< = =:�) , the swim pressure can be written
as ΠBF8< = =:B)B, where :B)B = Z*2

0g'/2 in two dimensions [22, 42]. The pressure
on a single wall in a bath of active particles is

Π, = =, :�) = =
∞(:�) + :B)B), (1.9)

where =, is the number density at the wall and =∞ is the number density in the bulk.
From the Smoluchowski equations, Yan and Brady showed that for ABPs close to a
wall, the concentration decays exponentially from the wall out into the bulk, [26]:

=(I) = =∞
(
1 + 1

2
(ℓ/X)2 exp

(
−I

√
1 + 1

2
(ℓ/X)2/X

))
, (1.10)

where I is the distance from the wall, and X =
√
�)/�' is the diffusive step size

with the thermal diffusivity, �) . Fig. 1.4 shows the accumulation boundary layer
near a single wall in a bath of active particles. A particle colliding with the wall will
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Figure 1.4: The accumulation boundary layer of ABPs near a single wall in an
active bath with wall concentration Π, = =∞(:B)B + :�)), where =∞ is the bulk
concentration of ABPs and the analytical form of =(I) is given in (1.10).
This illustration is adapted from [4].

keep pushing in its orientational direction until it reorients and moves away from
the boundary layer. Therefore, almost all the particles within the boundary layer are
oriented towards the wall, and this leads to a polar order near the wall. In the bulk
of the bath, there is no polar order as particles are randomly oriented.

The accumulation of particles at a single wall is one of the most fundamental and
straightforward confinement problems in active matter, and the exact solution is
known analytically. Here, we define confinement as any surface or boundary that
abrupt the particle movement, leading to its run length being cut off. Similar to
the single wall, other pseudo-one dimensional problems’ analytical solutions are
known, such as between two parallel walls, and in– and outside a sphere [26].
On the other hand, solutions to multi-dimensional problems can be challenging
to obtain due to the nature of the Smoluchowski equations; the orientation of the
particles contributes to one or two dimensions in addition to the spatial dimensions.
The focus of this thesis is to understand some of these fundamental two– and
three-dimensional problems. In the next section, we describe some interesting
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experimental observations of active particles under confinement.

1.4 Effects of confinement
Active particles will experience confinement when their run, or persistence, length is
being obstructed, and they are no longer able to move as they would in free space [4,
26]. Particle accumulation at a single surface is an interesting phenomenon on
its own and well understood from the perspective of swim pressure and persistent
motion. We focus on confinement inmultiple dimensions that give rise to fascinating
phenomena that are vastly different from the behavior of passive Brownian particles
in the same geometries [26, 43–45]. The recent interest in active matter has led to
an increasing number of experiments with active particles, such as bacteria, under
confinement [46–58].

Active particles interacting with asymmetrical objects can lead to spontaneous di-
rected motion and partitioning [59–63]. Galajda et al. [55] showed that placing E.
coli in a square container divided by Chevron-shaped barriers (shown in Fig. 1.5)
would concentrate the bacteria on one side of the container. This behavior is
profoundly different from purely passive Brownian particles, which would homo-
geneously fill a volume independent of the geometric shape. The partitioning of E.
coli is a direct result of the bacteria having a persistent motion with a run length
much larger than both their size and the size of the funnel-shaped openings. Di Gi-
acomo et al. [58] have utilized this persistent motion to sequester motile bacteria by
deploying three-dimensional micro-traps. Experimental studies of Chlamydomonas
Reinhardtii show that the diffusion of bacteria is obstructed by arrays of pillars

Figure 1.5: Chevron-shaped barriers adapted from [55] where high and low denotes
the concentration.
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and becomes lower than it would be in the free space [57]. Additionally, in highly
crowded environments, E. coli has been observed to display an interesting hopping-
trapping behavior; E. coli is trapped in pockets of space between densely packed
obstacles, and then hops through highly confined channels into other pockets of
space [64, 65].

One application of activematter in confined environments is in agricultural practices.
Probiotic treatment, such as using Rhizosphere Pseudomonas, improves crop health
by colonizing plant roots, which provides increased protection against pathogen
attacks, improved growth potential, and increased tolerance towards stress from
water, salts, and heavy metals in the soil. All of which lead to improved yield and
quality of crops [66–71]. For optimal production, the bacteria need to be efficiently
transported through a complex, confined soil environment to reach the plant roots.

1.5 Contributions
In this thesis, we aim to provide an understanding of how confinement influences
the behavior of active matter. The main focus is on how confinement affects
pressure, concentration distributions, and diffusion in fundamental two– and three-
dimensional systems. Active systems are inherently far from equilibrium, and
we cannot appeal to equilibrium thermodynamic properties such as the chemical
potential to predict the partitioning. Fortunately, active particles are still subject to
the laws of mechanics, and we formulate a simple macroscopic balance that allows
one to predict behavior without detailed calculations. We compare our predictive
model to solutions of the governing equations for active Brownian particles. The
results of our analytical prediction are in excellent agreement with simulation results
for simple systems, such as parallel plates in an active bath and a channel in a wall.
Therefore, we extend the model to predict the partitioning in a more complex system
consisting of porous media connected to a reservoir. Lastly, we discuss how porous
media leads to a hindered diffusion of active particles.

The following chapters are organized as follows:

In Chapter 2, we introduce the foundation for the macroscopic momentum balance
that allows us to predict the behavior of active particles under confinement. First,
we consider the attraction between two parallel plates (also called the Casimir
effect [72]) and show that the average concentration between the plates equals that
in the bulk reservoir independent of the degree of confinement. This leads to a
simple analytical expression for the attractive force. We then study the partitioning
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in a channel geometry and show that the behavior is fundamentally different, with the
average concentration growing linearly with the ratio of the run length to the channel
spacing. Finally, we extend our analysis to a periodic array of plates in contact with
an infinite reservoir. We show that as the thickness of the plates increases, the
partitioning transitions from the parallel plate result to those of the channel.

Chapter 3 covers the transient behavior and steady-state partitioning of active par-
ticles between a fluid reservoir and a porous medium (i.e., arrays of spherical
obstacles). Based on dimensional analysis, we determine that the partitioning is set
by the ratio of the run length to the obstacle size, the active step size relative to
the diffusive step, and the area fraction of obstacles in the porous medium. Addi-
tionally, we explain fascinating initial oscillations in the concentration in the bulk
of the porous medium in two dimensions. Then, based on the simple macroscopic
balance introduced in Chapter 2, we derive a theory for the long-time partitioning
between the porous medium and reservoir in two and three dimensions utilizing
the concentration distribution outside a single obstacle. This prediction provides a
means to understanding particle behavior for different activity levels and at different
porosity levels.

In Chapter 4, we explore the motion of active particles in a periodic porous medium.
The hindered diffusion of Passive Brownian particles in porous media only depends
on the area fraction of obstacles in the media only. However, this is not always
the case for active particles whose effective diffusivity is sensitive to the interplay
between run length, the media’s pore size and geometry. The ABPs’ effective
diffusivity exhibits a complex non-monotonic behavior with increasing obstacle
size for a fixed porosity. Through dimensional analysis, we determine that three
non-dimensional parameters govern the behavior: 1) the activity, 2) the volume (or
area) fraction of obstacles, and 3) the degree of confinement (ratio of run length to
obstacle size). Additionally, we develop an analytical theory for dilute porous media
that offers scaling predictions for dense porous media.
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C h a p t e r 2

THEORY FOR THE CASIMIR EFFECT AND THE
PARTITIONING OF ACTIVE MATTER

Active Brownian Particles (ABPs) distribute non-homogeneously near surfaces, and
understanding how this depends on system properties—size, shape, activity level,
etc.—is essential for predicting and exploiting the behavior of active matter systems.
Active particles accumulate at no-flux surfaces owing to their persistent swimming,
which depends on their intrinsic swim speed and reorientation time, and are subject
to confinement effects when their run or persistence length is comparable to the
characteristic size of the confining geometry. It has been observed in simulations
that two parallel plates experience a “Casimir effect” and attract each other when
placed in a dilute bath of ABPs. In this work, we provide a theoretical model based
on the Smoluchowski equation and a macroscopic mechanical momentum balance
to analytically predict this attractive force. We extend this method to describe
the concentration partitioning of active particles between a confining channel and
a reservoir, showing that the ratio of the concentration in the channel to that in
the bulk increases as either run length increases or channel height decreases. The
theoretical results agreewell withBrownian dynamics simulations and finite element
calculations.

This chapter includes content from our previously published article:

[1] C. M. Kjeldbjerg and J. F. Brady, “Theory for the casimir effect and the
partitioning of active matter”, Soft Matter 17, DOI: 10.1039/d0sm01797c,
523–530 (2021),
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2.1 Introduction
Many natural systems can be described as active matter: the flocking of birds,
humans walking in crowded areas, the movement of bacteria, Janus particles in
suspension, etc. [1–3]. Active matter systems consist of “particles” that convert
chemical energy into mechanical energy leading to self-propulsion [4]. These
movements generate internal stresses and can drive systems far from thermodynamic
equilibrium [5]. Active matter systems exhibit interesting phenomena such as
particle accumulation near surfaces and self-assembly due to their persistent motion.
For instance, Janus particles can accumulate at the corners of a micro-gear causing
it to rotate and generate mechanical work [6–8].

Active Brownian Particles (ABPs) are a model active matter system: ABPs move
with a swim speed*0 in a direction q for a characteristic reorientation time g'; the
average length they move between reorientations is called the run, or persistence,
length ℓ = *0g' [9]. This model is illustrated in Fig. 2.1. Some of the interesting
properties of active particles are due to the fact that they often have an effective
size—their run length—which can be much larger than their geometric size such
that they experience confinement in geometries whose size is on the order of the run
length [10–14]. Galajda et al. [15] showed that placing E. coli in a square container
divided by Chevron-shaped barriers (shown in Fig. 2.1(b)) would concentrate the
bacteria on one side of the container. This behavior is profoundly different from
purely passive Brownian particles, which would homogeneously fill a volume inde-
pendent of the geometric shape. The partitioning of E. coli is a direct result of the
bacteria having a persistent motion with a run length much larger than both their
size and the size of the funnel-shaped openings. Di Giacomo et al. [16] have uti-
lized this persistent motion to sequester motile bacteria by deploying 3-dimensional
micro-traps.

Our aim in this work is to describe how active particles partition in simple geometries
such as a channel of size� when placed in contact with an infinite reservoir of ABPs
as depicted in Fig. 2.5. What is the ratio of the average concentration in the channel
to that in the infinite reservoir? Active systems are inherently far from equilibrium,
and we cannot appeal to equilibrium thermodynamic properties such as the chemical
potential to predict the partitioning. Fortunately, active particles are still subject to
the laws of mechanics, and we show that a simple macroscopic balance allows one
to predict behavior without detailed calculations.
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Figure 2.1: Example of (a) an ABP’s random movement with swim speed *0 in a
direction q, reorientation time g', and run length ℓ = *0g'. (b) Chevron-shaped
barriers (from [15]).

To illustrate our approach, we first consider the attraction between two parallel plates
(also called the Casimir effect [17]) and show that the average concentration between
the plates equals that in the bulk reservoir independent of the degree of confinement.
This leads to a simple analytical expression for the attractive force. We then study
the partitioning in the previously mentioned channel geometry of Fig. 2.5, and show
that the behavior is fundamentally different, with the average concentration growing
linearly with the ratio of the run length to the channel spacing. The analysis is then
extended to a periodic array of plates in contact with an infinite reservoir where
we show how the parallel plate results transition to those of the channel when the
thickness of the plates exceeds 6 times the run length.

2.2 Attraction between parallel plates: The Casimir effect
One of the simplest examples of confinement is two parallel plates separated by
a gap distance � immersed in an infinite bath of particles as shown in Fig. 2.2.
For passive systems, the parallel plates will experience an attractive force towards
each other when the gap spacing is on the order of the particle diameter, � ∼ 20.
This attraction is often referred to result from the disjoining pressure [18, 19] or the
Casimir effect in quantum mechanics [20, 21], and in colloid science it is known as
depletion flocculation [22]. For active systems, Yan & Brady [13] and Ray et al.
[17] showed, in independent studies, that for infinitely long walls the pressure on
the interior walls depends on the gap spacing, and as the gap spacing decreases the
pressure decreases as well. Additionally, Ray et al.’s simulation study showed that
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Figure 2.2: Illustration of two parallel plates in an active bath. The plates are
separated by a distance �. C.V. denotes the control volume for the mechanical
balance.

there is an attraction between parallel plates immersed in a bath of active particles.

The attraction arises from the difference in the forces exerted by the active particles
on the interior and exterior plate surfaces. We quantify this force difference with
ΔΠ/ΠW

>DC , whereΔΠ = ΠW
>DC−ΠW

8=
, andΠ, is the force/unit area, or pressure, exerted

by the ABPs on the plate surfaces.

An inherent property of active matter is that the particles accumulate at walls (and
more generally at no-flux surfaces) due to their persistent motion. Yan & Brady [13]
showed that the pressure on a single isolated wall is given by

Π,>DC = =
∞(:�) + :B)B), (2.1)

where =∞ is the number density far from the wall, :�) is the thermal energy, and
:B)B = Z*0ℓ/2 is the active energy, which is a measure of the activity level of the
ABPs. Here, Z is the Stokes drag coefficient of an ABP, and we are considering
two-dimensional reorientation processes giving rise to the factor 2 in (2.1).

As shown by Yan & Brady [13], the expression for the pressure on the inner wall for
two infinitely long plates is the same as (2.1), but with the centerline concentration
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=0 replacing =∞. Thus, the net attractive force is given by the simple relation

ΔΠ

ΠW
>DC

= 1 − =0

=∞
. (2.2)

The above expression holds when the accumulation boundary layers at each wall
do not overlap, which is true for moderate to high activity (:B)B/:�) > 50) and
when the run length is comparable to the gap spacing. To complete the description,
however, we need a relation between =0 and =∞; that is, we need to know how the
APBs partition between the parallel plates and the surrounding reservoir.

For a thermodynamic system, such as charged plates in an ionic solution, the par-
titioning is determined by equating the chemical potentials inside and outside,
`8= = `>DC . The electrostatic system shares similarities with the active system: ions
accumulate (or deplete) near the charged plates and display a non-homogeneous dis-
tribution between the plates [23]. However, since the ionic system is at equilibrium,
the flux of each ion is zero at each and every point between the plates and in the
reservoir. Thus, the centerline concentration of each ion is related to the reservoir
concentration via its chemical potential: =0

8
= =∞

8
exp

(
−I84q0/:�)

)
, where =∞

8
is

the reservoir concentration of ion 8, I8 is its valency, 4 is the elementary charge, and
q0 is the potential at the centerline (relative to a zero level in the reservoir), which
depends on the surface charge density on the plates. The attraction between the
plates is then determined by a force balance and can be shown to be given by the
ion osmotic pressure difference between the inside and the outside.

Active particles systems are inherently out of equilibrium and we cannot appeal to
the chemical potential nor to a point-wise vanishing flux. For a dilute suspension
of APBs, the particle distribution is governed by the Smoluchowski equation for the
probability density %(x, q, C) for finding a particle at position x with orientation q

at time C:
m%(x, q, C)

mC
+ ∇ · j) + ∇' · j' = 0, (2.3)

where the translational and rotational fluxes are j) = *0q% − �)∇% and j' =

−�'∇'%, respectively. Here, �) and �' are the translational and rotational
diffusivities; the reorientation time g' = 1/�'. The orientational gradient operator
is ∇' = q × ∇q .

To make progress and capture the essential features of the distribution of ABPs,
we expand the Smoluchowski equation in the first few orientational moments: the
zeroeth moment is the concentration =(x, C) =

∫
%(x, q, C)3q, the first moment is
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the polar order m(x, C) =
∫
q%(x, q, C)3q, etc. For 2D, the orientational moments

satisfy a hierarchy of equations [24]:

m=

mC
+ ∇ · j= = 0, (2.4)

mm

mC
+ ∇ · j< + �'m = 0, (2.5)

where the fluxes are

j= = *0m − �)∇=, (2.6)

j< = *0W +
1
2
*0=O − �)∇<. (2.7)

Here, = is the number density, m is the polar order, and W is the nematic order,
W(x, C) =

∫
(qq − 1

2 O)%(x, q, C)3q, with O the isotropic tensor. The boundary
conditions we impose are a constant number density in the reservoir far from the
plates =∞, and no polar or nematic order, m∞ = 0, W∞ = 0, etc. The plates are hard
no-flux walls, such that n · j) = 0 on the plates, where n is the surface normal, and
the angular reorientation is unaffected by the plates.

While the system’s behavior is fully determined from the Smoluchowski eqn (2.3),
its solution, or that of the moment eqns (2.4) and (2.5), for any but the simplest
geometries is a daunting task. Dimensional analysis shows that the distribution of
particles between the plates depends on four lengths: the length of the plates !, the
plates’ separation �, the run length ℓ = *0g', and the microscopic diffusive step
length X =

√
�)g'. The ratio of the run length ℓ to the microscopic length X is also a

measure of the active energy compared to the thermal energy :B)B/:�) = (ℓ/X)2/2.

We are interested in large plates where ! � � and ! � ℓ, and high activity
ℓ/X � 1. In this limit, the force or pressure on the plates scales as the active
pressure =∞(:�) + :B)B) and depends only on the confinement ℓ/�. Furthermore,
to determine the attractive force between the plates, we only need an estimate of the
centerline concentration—the partitioning between the reservoir and the plates. To
accomplish this, we can appeal to a mechanical momentum balance.

At themicroscopic level, the particles evolve according to the over-damped Langevin
equation [24]:

0 = −Z[U + Z*0qU + L�U , (2.8)

where Z is the Stokes drag coefficient, [U is the velocity of particle U, and qU is
its orientation. Each particle is also subject to random thermal forces L�U that give
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rise to translational Brownian motion, and which are characterized by L� = 0 and
F� (0)F� (C) = 2:�)ZX(C)I, where the overline denotes averaging over the thermal
fluctuations of magnitude :�) and X(C) is the Dirac delta function. The orientation
vector qU undergoes a random reorientation process giving rise to rotary Brownian
motion as detailed in s Section 2.6. (The Smoluchowski eqn (2.3) is the Fokker-
Planck equation corresponding to the microscopic dynamics (2.8).)

From the microscopic dynamics (2.8), we can write a corresponding linear momen-
tum or force balance [24]:

0 = −Z j= + Z*0m + ∇ · 2>B<> , (2.9)

where the flux is given by j= ≡ = 1
#

∑#
U=1[U, the polar order is m ≡ = 1

#

∑#
U=1 qU,

and 2>B<> = −=:�) O is the osmotic pressure. In the force balance (2.9), −Z j=
is the average drag force from the suspending medium (which is assumed to be
stationary), Z*0m is the average propulsive or swim force, and since the average of
the Brownian force is zero, its effect appears as the divergence of a stress ∇ ·2>B<>.

The similarity between the momentum balance (2.9) and the number density flux
(2.6) is no coincidence—the flux is the mobility, 1/Z , times the driving force, and
the driving forces are the average swim force, Z*0m, and the stress gradient from
Brownian motion, ∇ ·2>B<>. (The Stokes-Einstein-Sutherland relation connects the
translational diffusivity to the drag, �) = :�)/Z .)

We now apply this momentum balance to the control volume (C.V.) illustrated in
Fig. 2.2. Integrating the G-component over the C.V. gives

〈=〉:�) − =∞:�) =
1
�

∫
�.+.

(
Z*0<G − Z 9=G

)
3G3H , (2.10)

where 〈=〉 = 1
�

∫
=3H is the average concentration between the plates as illustrated

in Fig. 2.2. Eqn (2.10) is just a statement that the net body force in the C.V. is
balanced by the osmotic pressure difference.

From (2.5) at steady state, the polar is m = −g'∇ · j<, and thus with (2.7) for the
flux (2.10) becomes

(〈=〉 − =∞) (:�) + :B)B) = −2:B)B〈&GG〉

+ 2
�

∫
)

(
:B)B&GH − �)

m<G

mH

)
3G

− 1
�

∫
�.+.

Z 9=G 3G3H , (2.11)
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where the activity :B)B = Z*2
0g'/2 and the integral in the second line is over the

‘top’ ) in Fig. 2.2. Along the plate, n · j< = 0 and the integral over � is the same
as over ) ; hence, the factor of 2. In obtaining (2.11), we have used the fact that
far from the exit of the plates, both between the plates and into the reservoir, there
is no variation with respect to G. We note that the balance is now with the active
pressure—the sum of the osmotic pressure and the swim pressure [24, 25].

The first termon theRHSof (2.11) is the average nematic order at the left boundary of
the C.V. far from the ends of the plates. BecauseW is traceless, 〈&GG〉 = −〈&II〉, and
we can estimate 〈&GG〉 from the infinite parallel plate solution of Yan & Brady [13],
which shows that this term is negligible (|〈&GG〉| < 0.005〈=〉 for ℓ/X = 45 and
ℓ/� ∈ [0, 3]).

The integrals on the RHS of (2.11) are only nonzero at the edges of the plates. In the
reservoir, 9=G is zero, as it is between the plates far from the edge. Fig. 2.10 shows
that the magnitude of m<G/mH is small and localized in a very small region right at
the exit of the plates. Thus, the mechanical balance predicts that 〈=〉 ≈ =∞. This
balance has a very simple physical interpretation: the force per unit area of the left
boundary of the C.V., which is the active pressure between the plates times the height
〈=〉(:�) + :B)B)�, is equal to the force per unit area on the right boundary of the
C.V., which is the active pressure in the reservoir times the height =∞(:�) + :B)B)�.

The value of 〈=〉/=∞ measured from Brownian dynamics simulation is shown in the
inset of Fig. 2.3 as a function of confinement ℓ/� with a plate length of !/ℓ = 10;
as expected, the connection is exact for passive particles ℓ/� → 0 and saturates
to a constant as ℓ/� increases. For large ℓ/�, the average concentration between
the plates is roughly 20% higher than the concentration in the bulk, which we
believe to be caused by the finite thickness of the plates (in simulation) that adds an
additional surface where particles accumulate and generate polar order which effects
the macroscopic mechanical momentum balance. This is confirmed in Section 2.4
on periodic plates, where partitioning is determined as a function plate thickness,
3, and reaches equal partitioning when 3/ℓ → 0.

Finally, we need to relate the centerline concentration =0 to 〈=〉. For this, we
use the exact solution for the distribution between two parallel walls (assuming
isotropic nematic order, which is a good approximation for simple systems) of Yan
& Brady [13]:

=(H)
=0 = 1 + 1

2

(
ℓ

X

)2 sinh (_H) + sinh (_(� − H))
sinh (_�) , (2.12)
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Figure 2.3: Centerline concentration, =0/=∞, as a function of the confinement, ℓ/�,
for parallel walls. The relation 1 − 1/(1 + (�/ℓ)/

√
2) is derived from a simple

mechanical balance. The inset shows the average concentration as a function of the
degree of confinement.

where _ is the inverse thickness of the accumulation boundary layer, or the inverse
screening length, _ =

√
1 + (ℓ/X)2/2/X. A straightforward integration over H relates

=0 to 〈=〉. In the limit of high activity _� � 1, which is the most interesting case,
we have

=0

〈=〉 = 1 − 1
1 + (�/ℓ)/

√
2
. (2.13)

Fig. 2.3 shows a comparison between the predicted centerline concentration, using
themechanical balance’s estimate of 〈=〉 ≈ =∞, and results fromBrownian dynamics
(BD) simulations. (See Section 2.6 for a description of the BD simulations.) The
simulations are for a highly active system with strong confinement such that the
smallest length, �, is on the order of the run length, and the degree of confinement,
ℓ/�, is varied by changing the distance between the plates. Edge effects are
minimized, since the parallel plates are made much longer than the particles’ run
length and the channel height. (The data in Fig. 2.3 and 2.4 are for !/ℓ = 10 and
:B)B/:�) = 1012.5.) There is good qualitative agreement between the predicted
center concentration from (2.13) and the one observed in the BD simulations.
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From (2.2), the predicted attractive force is

ΔΠ

ΠW
>DC

=
1

1 + (�/ℓ)/
√

2
, (2.14)

which is compared to BD simulations in Fig. 2.4. In the BD simulations, when a
particle collides with a wall, it exerts a force on the wall, and the pressure is then the
sum of individual particle contributions. In the simulations we used a potential-free
algorithm [26–28] to model a hard-particle force (see Section 2.6). The prediction
gives a good estimate for the attraction, both for that measured for the full length
and the one measured only on the central portion (1/3!) of the plates. As expected,
the edge effects decrease the attractive force.

It should be appreciated that (2.14) is an a priori prediction with no adjustable
parameters. All we needed to know was the behavior for two infinite parallel walls
and then the macroscopic momentum balance for the partitioning into the parallel
plates.
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Figure 2.5: Illustration of two reservoirs connected by a channel of height �. The
concentration of ABPs in the reservoir far from the channel is =∞.

In the next section, we provide an example of a similar geometry that nevertheless
exhibits a completely different behavior, but one that can also be predicted through
an analogous macroscopic momentum balance.

2.3 Channel confinement
We now investigate the effect of confinement on ABPs in a channel of height �
connected to a reservoir as shown in Fig. 2.5. This geometry is interesting because
for passive Brownian particles, the partitioning between parallel plates and a channel
is the same. This is also true for an ionic solution—the ion concentration in the
channel or parallel plates is the same given by the equality of chemical potentials.
As we shall see, for active particles the situation is profoundly different.

In Fig. 2.6, we show the average concentration in the channel far from the ends,
〈=2ℎ〉/=∞, as a function of confinement ℓ/�, along with the data for the parallel
plates. The parallel plate results are for BD simulations with ℓ/X = 45 and !/ℓ = 10.
For the channel geometry, we solved the full Smoluchowski eqn (2.3) numerically us-
ing a standard Galerkin P2-FEM method with adaptive mesh refinement. The finite
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element method was carried out in Freefem++ [29]. We also solved numerically the
moment eqns (2.4)-(2.7) (with the W = 0 closure) with Freefem++. (See Appendix
B for details on the finite element calculations.) The dashed line in the figure is from
BD simulations which have been fit to the linear relation: 〈=2ℎ〉/=∞ = 1+0.89(ℓ/�).
Rather than saturate to a value of approximately unity as for the parallel plates, in
the channel geometry, the average concentration grows linearly with the degree of
confinement! How can we explain this startling difference?

An explanation is provided by considering the behavior of the APBs at the channel
opening and combining this with the mechanical momentum balance over a properly
chosen control volume. In Fig. 2.7(a), ABPs slide along the solid wall resulting in a
uniform concentration along the wall of magnitude =, = =∞(1+(ℓ/X)2/2) = =∞(1+
:B)B/:�)), where =∞ is the concentration far from the wall [13]. In Fig. 2.7(b), as
particles slide along the wall from above and below the opening, they escape into the
channel rather than continuing along the wall. This results in a deficit of particles
just below and above the wall facing into the reservoir. This deficit is quantified in
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Figure 2.7: Illustration of (a) a wall with particles colliding and then sliding along
it and (b) a wall with an opening where they also slide along it, but then move into
the channel.

Fig. 2.8, and we see that it extends over a length Δ ≈ 3ℓ independent of both the
degree of confinement, ℓ/�, and the level of activity, :B)B/:�) = (ℓ/X)2/2.

As before, we integrate the G-momentum balance (2.9) over a C.V. that is the dashed
lines in Fig. 2.1 making use of (2.7) as before:

(〈=2ℎ〉 − =∞) (:�) + :B)B) = −2:B)B〈&GG〉

− 1
�

∫
�.+.

Z 9=G 3G3H

− 2
�

∫ Δ

0
(Π, − Π∞)3H , (2.15)

where 〈=2ℎ〉 = 1
�

∫
=(H)3H, Π, is the particle pressure on the wall facing the

reservoir, and Π∞ = =∞(:�) + :B)B) is the active pressure in the reservoir. The
integral is over the concentration deficit at the wall. As for the parallel plates, the
contributions from 〈&GG〉 and the integral of the flux are small. The result then has
again a very simple physical interpretation: the total pressure on the left boundary
of the C.V., 〈=2ℎ〉(:�) + :B)B)� +2

∫ Δ
0 Π,3H, is equal to that on the right boundary,

=∞(:�) + :B)B) (� + 2Δ). Thus, the final expression for the partitioning is

〈=2ℎ〉
=∞

= 1 +
(

2
�

) ∫ Δ
0 [Π

∞ − Π, (H)]3H
Π∞

, (2.16)

whereΠ, (H) = =, (H):�) is the pressure on the wall at a distance H from the open-
ing. Since the deficit is independent of confinement, ℓ/�, and activity, :B)B/:�) ,
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Figure 2.8: Number density at the wall normalized by the number density at the
wall far from the opening as a function of distance from channel opening per run
length measured from BD simulations. All the curves collapse onto one another
independently of both degree of confinement and activity.

as shown in Fig. 2.8, we can compute the integral in (2.16) for one condition and use
it to predict the partitioning for all conditions. We used the Π, determined from
BD simulations for ℓ/� = 2 and :B)B/:�) = 103. Fig. 2.9 shows excellent agree-
ment between the predicted channel concentration from themacroscopicmomentum
balance and that from BD simulations and the solution of the full Smoluchowski
equation.

Selection of the proper control volume is important in obtaining an accurate estimate
of the partitioning. For example, for the channel geometry one could use a C.V.
that is the same as for the parallel plates. If this C.V. were used, then instead of
the integral over the pressure deficit along the wall facing the reservoir, one would
have instead the integral along the ‘top’ as in (2.11): + 2

�

∫
)

(
:B)B&GH − �) m<G

mH

)
3G.

(There is no integral on the top boundary in (2.15) because far from the channel
exit, we have the behavior of a single isolated wall in contact with the reservoir.)
Fig. 2.10 shows that the m<G/mH is much larger and longer ranged for the channel
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Figure 2.9: Relative number density in channel, 〈=2ℎ〉/=∞, as a function of the
degree of confinement, ℓ/�. The inset shows the control area for the force balance.
Δ is the length of the region at the wall experiencing a decreased pressure due to
ABPs escaping into the channel.

geometry than the parallel plates, and thus, while this term’s contribution is small
for the parallel plates, it is not for the channel. The important point is that the C.V
used in each geometry led to the very simple physical balance between the pressures
on the two surfaces and thus to a reasonable estimate for the partitioning.

2.4 Periodic plates
As a last example, we consider the periodic plate geometry illustrated in the inset
of Fig. 2.11. This geometry is intermediate between the parallel plates in an active
bath and the channel connected to a reservoir. As the thickness of the plates, 3,
becomes very thin, one expects the partitioning to behave like the parallel plates
shown earlier, but without the Casimir attraction since the plates are now placed
periodically. In the other limit, when the plate thickness becomes very large, we
expect the behavior to resemble the single channel geometry. Fig. 2.11 shows the
relative number density between the periodic plates compared to that in the reservoir
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Figure 2.10: The change in polar order distribution in the H-direction, (d<G/dH)/=∞ ,
around the opening for (a) the parallel plates and (b) the channel geometry for
ℓ/� = 3 and :B)B/:�) ∼ 3 · 102. The gray regions illustrate the area for which the
change in polar order is shown.

for BD simulations with :B)B/:�) = 1012.5 and !/ℓ = 10. We recover the two
limiting behaviors: as 3/ℓ → 0, 〈=〉/=∞ → 1, and for large 3/ℓ, the partitioning
grows with ℓ/�.

The similarity of the curves in Fig. 2.11 suggest that they can be collapsed onto a
single curve. We define a scaled concentration profile by first subtracting off the
parallel plates result and then normalizing by the channel result for 3/ℓ � 1:

Δ〈=〉
=∞

=
〈=〉/=∞ − 1

lim
3/ℓ→∞

(
〈=〉
=∞ − 1

) . (2.17)

This collapse is shown in Fig. 2.12. Furthermore, the macroscopic momentum
balance that led to (2.16) can be applied here by simply replacing Δwith 3/2. Thus,
from the momentum balance, we predict the scaled partitioning

Δ〈=〉
=∞

=

∫ 3/2
0

[
1 − Π, (H)

Π∞

]
3H∫ Δ

0

[
1 − Π, (H)

Π∞

]
3H

. (2.18)
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Figure 2.11: Normalized number density in the channels as a function of plate
thickness for :B)B/:�) = 1012.5 and !/ℓ = 10. The inset shows the illustration of
periodic plates, where 3 is the plate thickness and � is the separation between the
plates.

And by assuming that the decrease in concentration (and thus pressure) near the
corners has exactly the same functional form independent of the plate thickness,
we can use the data for wall pressure obtained for the single channel. We applied
the Π, determined from BD simulations with :B)B/:�) = 128, !/� = 7.5, and
ℓ/� = 2 in (2.4), and Fig. 2.12 shows excellent agreement between the prediction
and the periodic plates simulations. This shows that the wall pressure follows the
same functional form at the corners independent of plate thickness. Further, we see
that the number density plateaus at a plate thickness of 3/ℓ ≈ 6, which corresponds
to twice the deficit distance. This is the smallest thickness needed to obtain the
full concentration deficit near the plate corners and thereby obtain the maximum
concentration between the plates. Adding additional thickness to the plates will
have no effect on the partitioning between the channels and the reservoir.
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Figure 2.12: Partitioning increase as a function of the plate thickness (see eqn (2.17))
both for Brownian Dynamics simulation and that predicted from the momentum
balance.

2.5 Conclusions
The attraction (Casimir effect) between parallel plates in a bath of active particles
increases with the increasing degree of particle confinement (run length per plate
spacing). Through a simple macroscopic mechanical momentum balance, we pre-
sented a method to predict the attraction that agrees well with BD simulations and
the solution of the full Smoluchowski equation. The prediction has no adjustable
parameters. This method was extended to the partitioning of ABPs between a chan-
nel and an infinite reservoir. In contrast to the parallel plates where the average
concentration between the plates is the same as in the reservoir for all degrees of
confinement, for the channel the average concentration in the channel grows linearly
with the degree of confinement. It was shown that this results from a deficit of ABPs
on walls of the reservoir near the channel opening. It is important to appreciate that
the different behaviors in the two geometries results from the inherent nonequilib-
rium nature of the active particle dynamics; an equilibrium system would show no
difference in the two geometries.
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We hope that this simple approach of macroscopic momentum balances can be
extended to other confinement problems and allow one to understand and predict
behavior without having to perform computationally costly finite element calcu-
lations or Brownian dynamics simulations. Additionally, utilizing the insights in
partitioning behavior for these fundamental geometries will be valuable in designing
optimal structures for enhancing or isolating active particles.

Appendix
2.6 Brownian Dynamics simulations
The equations of motion implemented are the overdamped Langevin equations [24]:

0 = −ZuU + L(F8<U + L�U + L,U , (2.19)

0 = −Z'
U + L'U , (2.20)

where [U is the translational velocity, 
U is the rotational velocity, Z' is the ro-
tational Stokes drag coefficient, and L(F8<U is the swim force defined as F(F8<

U ≡
Z*0qU. F�

U is the random Brownian force with the properties F�
U = 0 and the

F�
U (0)F�

U (C) = 2:�)ZX(C)I, where I is the identity tensor and X(C) is the delta-
function. L' is the random reorientation torque, where L' = 0 and L' (0)L' (C) =
2Z2

'
X(C)I/g'. The simulations length scale is non-dimensionalized by the micro-

scopic length X =
√
�)/�' and the time steps are non-dimensionalized by the

reorientation time g', where g' = 1/�' and �) = :�)/Z . Note that it is not
necessary to assume that the translational and rotational diffusivities are both ther-
mal, i.e. �' need not be proportional to :�) . Changes in orientation follow from
3q/3C = 
 × q, with 
 from the particle angular momentum balance (2.20).

The particles are ideal and therefore only interact with the walls (no-flux boundaries)
through the potential-free algorithm that models a hard-particle force [26–28]. This
algorithm is implemented by placing a particle that overlaps with a wall back to the
point of contact following along the boundaries normal vector until the system is
free of overlaps.

We can determine the wall pressure from measuring the force on the wall per area,
L,/�. The force exerted by an ABP on the wall is determined by measuring
displacements at the wall. The force one ABP U exerts is

L,U = Z*
>E4A;0?
U n = Z

ΔG>E4A;0?

ΔC
n, (2.21)



35

where ΔG>E4A;0? is the overlap measured normal to the wall before the collision is
resolved and ΔC is the size of the time step. From the force exerted by the individual
particles, the pressure at position I is given by

Π, (I) =
#∑
8

Z*
>E4A;0?

8

ΔI
. (2.22)
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C h a p t e r 3

PARTITIONING OF ACTIVE PARTICLES INTO POROUS
MEDIA

Passive Brownian particles partition homogeneously between a porous medium and
an adjacent fluid reservoir. In contrast, active particles accumulate near boundaries
and can therefore preferentially partition into the porous medium. Understanding
how active particles interact with and partition into such an environment is impor-
tant for optimizing particle transport. In this work, both the initial transient and
steady behavior as active swimmers partition into a porous medium from a bulk
fluid reservoir are investigated. At short times, the particle number density in the
porous medium exhibits an oscillatory behavior due to the particles’ ballistic motion
when time C < g', where g' is the reorientation time of the active particles. At
longer times, C > !2/�BF8<, the particles diffuse from the reservoir into the porous
medium, leading to a steady state concentration partitioning. Here, ! is the char-
acteristic length scale of the porous medium and �BF8< = *0ℓ/3 (3 − 1), where *0

is the intrinsic swim speed of the particles, ℓ = *0g' is the particles’ run, or per-
sistence, length, and 3 is the dimension of the reorientation process. An analytical
prediction is developed for this partitioning for spherical obstacles connected to a
fluid reservoir in both two and three dimensions based on the Smoluchowski equa-
tion and a macroscopic mechanical momentum balance. The analytical prediction
agrees well with Brownian dynamics simulations.

This chapter includes content from our previously published article:

[1] C. M. Kjeldbjerg and J. F. Brady, “Partitioning of active particles into porous
media”, Soft Matter 18, DOI: 10.1039/d1sm01752g, 2757–2766 (2022),
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Figure 3.1: Illustration of the porous medium model (i.e., an array of spheres
connected to a reservoir). The obstacles are fixed, and active particles can move
freely around them; further, the system is periodic in the H-direction.

3.1 Introduction
Active matter systems span a large range of length scales from bacteria and micro-
motors to schools of fish and humans moving in a crowded area [1–3]. The activity
arises from particles self-propulsion by converting chemical energy to persistent
mechanical motion [4]. This motion leads to interesting phenomena such as self-
assembly, accumulation at boundaries, and the conversion of chemical energy into
mechanical work through ‘micro-gears’ [5–7]. The utilization of new developments,
such as active particle microrobots for drug therapy [8] and bacterial sequestering
technologies [9], will depend on understanding not only the behavior of active par-
ticles in bulk but also in confined spaces and crowded environments such as porous
media. How active particles partition into porous media and how to predict this
behavior is the focus of this paper.
The simplest model that captures the essential physics of active particles is the
active Brownian particle (ABP) model, wherein each particle translates with a
swim speed *0 in a direction q for a characteristic reorientation time g'; the aver-
age length they move between each reorientation is called the run, or persistence,
length ℓ = *0g' [10]. Owing to this persistent swimming, the ABPs distribute
non-homogenously near surfaces, accumulating at no-flux boundaries leading to a
concentration boundary layer near solid surfaces [4, 11, 12].
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In free space, the random reorientation of ABPs result in diffusive motion with
�BF8< = *0ℓ/3 (3 − 1), where 3 is the dimension of the reorientation process. The
active swim diffusivity can be much larger than the thermal diffusivity of “passive"
Brownian particles. Solid boundaries and other obstacles change the free space
available to these particles and can dramatically shorten the mean-free path; this
cuts off their run length, reduces the diffusivity, and causes accumulation at bound-
aries [11, 13]. Alonso-Matilla et al. studied Taylor dispersion in circular arrays
and observed, even without flow, a decrease in diffusivity for low activity particles
resembling the behavior observed for passive particles [14]. Experimental studies of
Chlamydomonas Reinhardtii show that the diffusion of algae is obstructed by arrays
of pillars and becomes lower than it would be in the free space [15]. It has been
shown experimentally that bacteria in a microfluidic crystal lattice (porous media)
exhibit Taylor-Aris dispersion. [16] Additionally, in highly crowded environments,
E. coli has been observed to display an interesting hopping-trapping behavior; E.
coli is trapped in pockets of space between densely packed obstacles and then hops
through highly confined channels into other pockets of pore space [17]. Chamolly et
al. studied how activity impacts particle trajectories around a periodic lattice. [18]
Further, porous media significantly impacts the chemotactic migration of bacteria
as confinement strongly influences the directed motion and can cause active parti-
cles to move with the same orientation over great lengths. [19, 20] Reichhardt and
Reichhardt have conducted multiple studies of the effect of confinement on motility
induced phase separation in dense solutions of active particles. [21, 22]
Partitioning is a standard concept from thermodynamics, where Henry’s law governs
the concentration between two phases such that� �

�
=  ·� � �

�
. [23, 24] The partition

coefficient,  , for a thermodynamic system would be determined from equality of
chemical potential in the two regions, `�

�
= `� �

�
. In the simplest case of hard-sphere

interactions for equilibrium Brownian systems the concentration in the pore space
is equal to that in the reservoir.
Even though one cannot apply the concept of a chemical potential for active mat-
ter systems, concentration distributions (or partitioning) are well understood for
fundamental confining geometries such as in-, and outside a single sphere, around
parallel plates in a reservoir, and channels in a wall [11, 25]. However, there is a
lack of knowledge regarding the partitioning of active particles for more complex
environments.
This work explores both the transient and steady-state partitioning of active particles
between a fluid reservoir and a porous medium (i.e., arrays of spherical obstacles).
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The particles interact with the obstacles through excluded volume interactions only.
Utilizing scaling arguments relating to particle properties and geometric parame-
ters, we explain the initial oscillations in the concentration in the bulk of the porous
medium in two dimensions. We then derive a theory for the long-time partitioning
between the porous medium and the reservoir in two and three dimensions based on
a mechanical balance and the concentration distribution outside a single obstacle.
At high activity the theory predicts

〈=?>A4〉
=∞

= 1 +
√
3/(3 − 1) ℓ/'
1 + 1/

√
3 ℓ/'

q

1 − q , (3.1)

where 〈=?>A4〉 is the average concentration in the pore volume of the porous medium,
=∞ is the bulk concentration in the fluid reservoir, q is the volume (or area) frac-
tion of obstacles of size ' in the porous medium, and ℓ is the run length. The
analytical prediction agrees well with Brownian dynamics simulations. The theory
and simulations suggest that a mixture of bacteria having different run lengths can
be separated by contacting the solution with a porous medium whose geometric
structure has a length scale ' ∼ ℓ.

3.2 Transient evolution
We model a porous medium as an array of fixed disks (2D) on a lattice in contact
with a fluid reservoir as illustrated in Fig. 3.1. The active particles can move in
both the reservoir and in the free pore space of the porous medium. They cannot
penetrate the obstacles and collide with them via excluded volume interactions. In
the next section, we predict the steady-state behavior using amechanical balance, but
first we investigate the transient behavior. As previously mentioned, active particles
accumulate at boundaries, and the simplest example of boundary accumulation is
that of a single flat wall. Yan & Brady [11] determined that the number density = as
a function of distance from the wall I at steady state is given by

=(I) = =∞
(
1 + :B)B

:�)
exp (−_I)

)
, (3.2)

where :�) is the thermal energy, :B)B = Z*0ℓ/3 (3 − 1) is the analogous active
energy scale, and =∞ is the concentration far from the wall. Here Z is the drag coef-
ficient of an ABP (see Appendix 3.5). The accumulation layer decays exponentially
with distance from the wall with screening length, _−1 = X/

√
1 + (ℓ/X)2/2, where

X =
√
�)g' is the microscopic diffusive length and �) is the thermal diffusivity.

The ratio of the active energy scale to the thermal one can be expressed as the ratio
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Figure 3.2: Brownian dynamics simulation snapshots of particle density in the
system for :B)B/:�) = 800, q = 0.5, ℓ/' = 0.5, and times 0g', 1g', 10g', and
100g'. The circular obstacles are shown as black disks for clarity. The system
is periodic in that there is an equivalent reservoir region to the left of the porous
medium. Initially, the active particles are distributed homogeneously throughout
the pore space and the reservoir such that the density is the same everywhere. The
density within the pore space is based only on the free space available (see eq.
3.3). At 1g', particles in the porous region accumulate at the obstacle surfaces,
causing the concentration in the pore space to become lower than in the reservoir.
At 10g', the reservoir particles have had time to diffuse into the outer parts of the
medium. Thus, the outer obstacles have a larger surface concentration than the inner
obstacles, while the reservoir concentration decreases. At longer times, 100g', the
particles from the reservoir have had time to diffuse through the entire medium, and
the system is near steady state.

of run length to diffusive step: :B)B/:�) = (ℓ/X)2/2 in 2D [4, 11].
In the porous medium, the amount of boundary available depends on the area (or
volume) fraction of obstacles, q = #c'2/�, where # is the number of obstacles in
the total area of the porous region, �, and ' is the radius of an obstacle. (The ABPs
have no size. One can give them a size from the Stokes drag Z = 6c[0, where [ is
the fluid viscosity. In this work, the obstacle size ' includes the ABP radius ‘0’ in
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its definition.) The total average number density of ABPs in the medium is defined
as,

〈=?>A4〉 =
#��%

� 5
=

#��%

�(1 − q) , (3.3)

where #��% is the number of ABPs in the free pore space, � 5 = �(1 − q).
We also define the number density outside the accumulation boundary layer as
=0
?>A4 = #

∗
��%
/�∗

5
, where �∗

5
is the adjusted free space available excluding the area

within a distance of 10 screening lengths from obstacle surfaces and #∗
��%

is the
number of particles in �∗

5
, such that only particles in the bulk pore space are included

in this quantity. The inset of Fig. 3.8 shows the adjusted free space over which =0
?>A4

is measured. The number density of swimmers in the reservoir is =∞.

Both the initial and long time behavior will be set by the activity and the geometry.
The inset of Fig. 3.4 illustrates the characteristic length scales. From dimensional
analysis there are three dimensionless groups: ℓ/X, ℓ/', and '/!. The ratio of
ℓ/X describes the activity, ℓ/' is the ratio of particle run length to the size of an
obstacle, and '/! relates to the porosity of the medium, which is also expressed
as q = c'2/!2, where ! is the length of one lattice unit cell. Thus, the transient
evolution will be governed by these three dimensionless groups.

The evolution of the number density for the two-dimensional system is shown in
Fig. 3.2 at four times: 0 g', 1 g', 10 g', and 100 g'. These results are from dilute
Brownian dynamics (BD) simulations for :B)B/:�) = 800, q = 0.5, ℓ/' = 0.5
and 107 ABPs. The particles interact with obstacles through a hard-particle force,
which is implemented via a potential-free algorithm [26–28]. (See Appendix 3.5
for a description of the BD simulations.) Obstacles are shown as black disks, and
each active particle is color-coated with its surrounding density such that purple
is low density and yellow is high density. Initially, at 0 g', the particles are dis-
tributed homogeneously throughout the pore space of the porous medium and the
reservoir. At 1 g', the particles can move one run length, and, as expected, particles
accumulate at the obstacle surfaces leading to a lower concentration in the pore
space of the porous medium compared to that in the reservoir. In Fig. 3.2, this is
observable through the pore space of the porous medium being dark purple, while
the reservoir concentration is a lighter blue. We go into more detail surrounding
this lower concentration in the next section.
At 10 g', the particles from the reservoir have had time to diffuse into the outer
edge of the porous region, where we observe a higher concentration of ABPs at
the outer obstacles’ surfaces, while simultaneously observing a lower concentration



44

in the reservoir. Last, at 100 g', the active particles from the reservoir have had
time to diffuse through the entire porous region. There are high-density boundary
layers around all obstacles, while a significantly lower reservoir concentration than
initially. Hence, we observe a partitioning in concentration at steady state.
In summary, two phenomena dominate the transient changes in particle concen-
tration: 1) the persistent motion of the particles within the porous medium and
2) particles diffusing from the reservoir into the porous medium. The following
sections describe these phenomena in more detail.

Initial oscillations in concentration
Changes in concentration in the porousmedium and the reservoir are interdependent,
but initially, we can consider concentration changes in the porous medium without
accounting for the effects coming from the reservoir. Particles from the reservoir
require time to diffuse into the porous region, and until then the average number
density in the porous medium, 〈=?>A4〉, will be constant.
The evolution in the pore space of the porous medium, =0

?>A4 from 0 to 20 g' is
shown in Fig. 3.3. Interestingly, we initially see oscillations in the bulk number
density, then a temporary constant concentration until around 5 − 10 g'. After this,
the bulk number density increases again as the reservoir particles have had time to
diffuse into the porous medium. ABPs exhibit ballistic behavior at short times [29],
which leads to this short-time oscillatory behavior.

We can predict when the minimum in bulk number density will occur using knowl-
edge of this ballistic behavior. Initially, particles can move their run length and
leave the pore space when they collide with an obstacle. A particle will not reenter
the pore space until it reorients, which leads to a minimum in the pore space con-
centration. The time it takes to reach the first minimum depends on the run length
of the particle compared to the length available before colliding with an obstacle,
expressed through q. For a given activity, a more dense system will reach the mini-
mum faster, and this is apparent in Fig. 3.3. To obtain a scaling for the minimum, we
use the average length a particle moves before colliding with an obstacle. At close
packing or strong confinement, we expect the length to be !/2 on average, while
for low packing fraction, we would expect that particles can move the full length,
!. Thus, we estimate the minimum by the time it takes an ABP to travel the length
! = 2' + ℎ, where ℎ is the shortest distance between obstacles (as illustrated in the



45

Figure 3.3: Normalized number density in the pore space of the porous medium,
=0
?>A4 = =

0
?>A4/=0

?>A4 (C = 0) as a function of time for ℓ/' = 0.5, :B)B/:�) = 800,
and q = 0.1−0.7. The measured densities oscillate initially due to the accumulation
at boundaries, when particles leave the pore space, due to their short-time ballistic
nature, and then reach a temporary constant state until around a time of 5g', after
which the particles from the reservoir are diffusing into the medium and the density
again increases.

inset of Fig. 3.4);
Cmin
g'
∼ !
ℓ
∼

√
c

q
· '
ℓ

(3.4)

where Cmin is the time to reach the minimum, g' is the reorientation time, and ! is the
length of the lattice unit cell. As mentioned, we expect the average length a particle
will move before colliding to be between !/2 and !. Thus, we choose a scaling
fit in-between the two (3/4 !/'). We compare this scaling prediction with Cmin

measured from BD simulations. The result is shown for Cmin scaled with ℓ/' in Fig.
3.4, such that one can compare results for different degrees of confinement, '/ℓ = 1,
1/2, and 1/4. The gold shaded area marks the interval of average travel distance
between !/2 (lower bound) and ! (upper bound). We obtain good agreement
between our scaling prediction and the simulation results. As expected, near close
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Figure 3.4: Time to reach the initial local minimum in pore space concentration
scaled by ℓ/' as a function of area fraction of obstacles, q for :B)B/:�) = 800
and '/ℓ = 1, 1/2, and 1/4. The inset illustrates the four characteristic dimensions
in the porous medium; ℎ, ', �14CF44=, and !. The black line corresponds to (3.4)
with a scaling coefficient of 3/4. The gold shaded area is the interval of time
between traveling an average length of !/2 (lower bound) and ! (upper bound). At
higher area fractions, the particles experience more confinement and travel a shorter
distance before colliding with an obstacle than for lower area fractions.

packing or highly confined, the characteristic length to reach minimum is closer to
!/2, while for lower confinement, the particles on average move ! before reaching
the minimum concentration.

Now that we have obtained a prediction for the Cmin, we can explore the number
density at minimum. This will be related to the area fraction of obstacles in the
medium. The larger the area fraction, the closer packed the obstacles will be and
more particles will be at the boundary compared to the bulk. We propose a simple
linear scaling: =0

?>A4 (Cmin)/=0
?>A4 (C = 0) = 1 − U · q, where U is a constant. This

leads to the behavior shown in Fig 3.5, where the dashed lines are linear regressions
for =0

?>A4 (Cmin) computed on q between 0 and 0.6. We observe linear dependence
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Figure 3.5: The porous medium pore space number density at the initial local
minimum, =0

?>A4 (Cmin) = =0
?>A4 (Cmin)/=0

?>A4 (C = 0), as a function of area fraction
of obstacles, q, for :B)B/:�) = 800 and '/ℓ = 1, 1/2, and 1/4. The decrease in
concentration with increased obstacle fraction is linear until near close packing. The
dashed lines are linear fit to =0

?>A4 = 1 − Uq with U = 0.87, 1 and 1.11 for '/ℓ = 1,
1/2 and 1/4, respectively.

on volume fraction until near close packing.

Porous media as a sponge
The concentration in the center of the reservoir initially remains constant until 5 g',
after which it rapidly decreases before reaching a steady value. The changes in
reservoir concentration, =∞, scaled by the initial concentration, =∞(C = 0), are
shown in Fig. 3.6. The steady-state concentration in the reservoir depends on the
volume fraction of the porous medium. The higher the volume fraction, the lower
the reservoir concentration, even though there is less pore space in the denser porous
medium! The porous medium acts as a sponge and soaks up the ABPs.

This emptying of the reservoir poses exciting opportunities for application design.
Imagine a bath of active particles, such as bacteria, and wanting to remove them.
One could temporarily insert a porous medium and utilize this mechanism to rapidly
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Figure 3.6: Number density in the reservoir, =∞ = =∞/=∞(C = 0), as a function
of time for '/ℓ = 0.5, :B)B/:�) = 800, and q = 0.1 − 0.7. We observe that the
concentration decreases exponentially as particles diffuse out of the reservoir and
reaches a steady state reservoir concentration after ∼ 100g'. This time corresponds
to the characteristic time it would take a particle to explore the entire reservoir,
C2ℎ0A ∼ �A4B/*2

0g', where �A4B is the size of the reservoir.

drain out the bacteria. With the knowledge of the area fraction dependence, one
could either drain an optimal amount or achieve the maximum drainage effect by
having a high area fraction of obstacles in the porous medium. One could also
separate a mixture of bacteria if they had different run lengths. In the next section,
we predict the long-time partitioning between the porous medium and the fluid
reservoir.

3.3 Partitioning into a porous medium
Two dimensions
Fig. 3.7 shows the average number density in the porous medium, 〈=?>A4〉/=∞, as a
function of the area fraction of obstacles, q. Passive particles distribute homoge-
neously independent of the system geometry. However, when the particles are active,
there is an increased concentration in the porous medium compared to the reservoir
at steady state. The partitioning depends on the three nondimensional parameters:
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ℓ/X, ℓ/', and q. We can determine how the partitioning scales with these param-
eters, and analytically predict the partitioning from the governing Smoluchowski
equation. First, we relate the average concentration in the porous medium 〈=?>A4〉
to the one in the bulk pore space =0

?>A4. For high activities, we can assume that
the accumulation boundary layers are thin such that they do not overlap, and each
obstacle can be viewed as isolated and surrounded by a concentration of =0

?>A4. From
the analytical expression for ABP accumulation outside a single disk, we integrate
over all # obstacles within the porous medium to obtain

〈=?>A4〉
=0
?>A4

= 1 + 2c#
� 5

∫ ∞

'

(
=(A)
=0
?>A4

− 1

)
A dA, (3.5)

where =(A) is the concentration profile outside a single disk in two-dimensions. The
area fraction of obstacles is q = c'2#/�. The free space area is � 5 = �(1− q). At
high activity, the boundary layer is thin, and by subtracting the bulk concentration,
we know that =(A)/=0

?>A4 −1 will be confined to the accumulation layer, and we have∫ ∞

'

(
=(A)
=0
?>A4

− 1

)
A dA ∼ (ℓ/X)2'/_. (3.6)

Thus, the average concentration in the porous medium relative to that in the pore
space is

〈=?>A4〉
=0
?>A4

= 1 + �2�
q

1 − q , (3.7)

where �2� is a numerical factor from the 2D disk solution of Yan & Brady [11]:

�2� =
4
_'

(ℓ/X)2K1(_')
K0(_') [2 − (ℓ/X)2] + K2(_') [2 + (ℓ/X)2]

, (3.8)

where  0 and  2 are Bessel-functions. (See Appendix 3.5 for details on the Smolu-
chowski equation and statistical moments’ expansion.) The analysis leading to (3.7)
requires the accumulation layer to be thin, _' � 1, and in the high activity limit,
ℓ/X � 1, �2� is independent of the microscopic length X and takes the simple form

�2� =

√
2 ℓ/'

1 + 1√
2
ℓ/'

, (3.9)

when X/' � 1 and ℓ/X � 1. Thus, with (3.7) and (3.9), we have a relation between
〈=?>A4〉 and =0

?>A4. To determine the partitioning between the porous medium and
the reservoir, we still need to relate the uniform concentration in the pore space,
=0
?>A4, to the reservoir concentration =∞.
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As in our previous work for parallel plates [25], we apply a momentum balance to
the control volume shown in Fig. 3.1, which, as discussed in Appendix 3.6, yields

=0
?>A4 = =

∞ [1 + 2&
?>A4

GG ]−1, (3.10)

where &
?>A4

GG is the nematic order density in the pore space. Assuming the nematic
order is negligible, (3.10) reduces to

=0
?>A4 = =

∞, (3.11)

where =∞ is the bulk concentration in the reservoir and =0
?>A4 is the pore space

concentration in the porous medium. The pore space concentration in the porous
medium only accounts for ABPs outside a distance of 10 screening lengths of the
obstacle surfaces. The screening length is the characteristic thickness of accumu-
lation boundary layer, _−1, and the bulk area is shown in gray in the inset of Fig.
3.8. We validate (3.11) through BD simulations, and Fig. 3.8 shows =0

?>A4/=∞ as
a function of the area fraction of obstacles. When the area fraction is near close
packing, our thin boundary layer approximation no longer holds, and the boundary
layers overlap. However, for our range of area fractions, we observe =0

?>A4/=∞ = 1
within a 90% margin. This deviation is due to the edge effects of the porous medium
and the neglect of the nematic order term in (3.10). The nematic order is negative
at the edge of the boundary layer.

The combination (3.7), (3.9), and (3.11) form the analytical prediction for the
partitioning confirm that the partitioning in the porous medium scales linearly as
q/(1−q). Fig. 3.9 shows the excellent comparison between our analytical prediction
and the results from BD simulation. From the partitioning we can also obtain the
steady state drop in reservoir concentration from the overall conservation of particle
number.

Three dimensions
We predict the partitioning between a lattice of spheres in contact with a fluid
reservoir in three dimensions (shown in the inset of Fig. 3.10) using arguments
analogous to that for the two-dimensional geometry. Fig. 3.10 shows the value of
=0
?>A4/=∞ as a function of the volume fraction of obstacles. As before, the prediction

for the partitioning is

〈=?>A4〉
=0
?>A4

= 1 + 4c#
+ 5

∫ ∞

'

[
=(A)
=0
?>A4

− 1

]
A2 dA. (3.12)
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Figure 3.7: Average number density in the two-dimensional porous medium,
〈=?>A4〉/=∞, as a function of the area fraction of obstacles, q, for ratios of obstacle
size to run length, '/ℓ ∈ [0.1, 50], at steady state with activity :B)B ∼ 5000:�) .

In three dimensions, the volume fraction is q = 4
3c#'

3/+ and further reduced by
+ 5 = + (1 − q). Equivalent to the two-dimensional case, we have

〈=?>A4〉
=0
?>A4

= 1 + �3�
q

1 − q , (3.13)

where �3� is a numerical factor from the 3D sphere solution of Yan & Brady and is
given by

�3� =
1
2 (ℓ/X)

2(_' + 1)
1 + (1 + _') (X/')2

1
('_)2

. (3.14)

As before, in the high activity limit where ℓ/X � 1 and _' � 1, the scaling factor
becomes

�3� =

√
3

2
ℓ

'

1 + 1
√

3
ℓ

'

. (3.15)

For high activity the scale factor depends only on the degree of confinement, ℓ/'.
The combination of (3.13) and (3.14) with =0

?>A4 = =∞ gives the full analytical
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Figure 3.8: Average number density in the pore space of porous medium, =0
?>A4,

to that in the reservoir, =∞ as a function of the area fraction of obstacles, q, at
steady state and :B)B ∼ 5000:�) . Inset shows the region (gray) for which =0

?>A4 is
computed.

prediction of the partitioning between a reservoir and a porous medium in three
dimensions and is compared to results from BD simulations in Fig. 3.11. Notice
that having :B)B ∼ 250:�) or :B)B ∼ 800:�) leads to the same partitioning
independent of the two activities when the degree of confinement, ℓ/', is the same,
thus validating (3.15). The scaling coefficient has the general form given in (3.1).

3.4 Conclusions
The transient evolution of the number density in porousmedia (i.e., two-dimensional
arrays of circles) shows a fascinating initial oscillatory behavior. Through dimen-
sional analysis, we argue that the behavior only depends on the activity, the degree of
confinement (ratio of run length to obstacle size), and the area fraction of obstacles.
We predict this behavior when the length scales in the medium are on the order of
the particle run length. After the initial oscillations, the particles from the reservoir
diffuse into the porous medium, which decreases the concentration in the reservoir,
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Figure 3.9: Relative number density in the porous medium, 〈=?>A4〉, to that in the
reservoir, =∞ as a function of a combination of degree of confinement, �2� , and
obstacle volume fraction q/(1 − q) leading to linear partitioning dependence at
steady state in two dimensions and :B)B ∼ 5000:�) . The dashed line show the
analytical prediction in (3.7) combined with (3.11), where �2� is given by (3.9).

while increasing the concentration in the porous medium, leading to a partitioning
in concentration.
We presented a model for the concentration partitioning between a porous medium
and external environments at steady-state, and predicted a linear dependence be-
tween the partitioning and a combination of degree of confinement and the area
fraction of obstacles. The analytical prediction is determined by applying a me-
chanical momentum balance and utilizing the concentration profile outside a single
disk/sphere (2D/3D). Our analytical prediction agrees well with results from Brow-
nian dynamics simulation in both two and three dimensions. While the prediction
is for a regular lattice porous medium, and many environments in nature are less
structured, we expect that the general ideas and scaling should apply to disordered
media. However, disordered media will create corners between obstacles, where
active particles would get trapped leading to an increased partitioning. This work
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Figure 3.10: Average pore space number density in the porous medium, =0
?>A4, to

that in the reservoir, =∞ as a function of the volume fraction of obstacles, q, at
steady state and :B)B ∼ 250:�) . The inset illustrates the porous medium in three
dimensions (i.e., spheres on a cubic lattice in contact with a fluid reservoir).

provides a foundation for understanding partitioning in more complex and confined
environments. Additionally, our predictive model can be utilized for designing geo-
metrical configurations of porous media that can capture a desired concentration of
active particles.

3.5 Theoretical framework
This work depends on two methods for obtaining analytical predictions and results:
conservation equations and Brownian dynamics simulations. The Smoluchowski
equation governs the probability, %, for finding an active Brownian particle at a
specific position x with orientation q:

m%(x, q, C)
mC

+ ∇ · j) + ∇' · j' = 0, (3.16)

where the translational and rotational fluxes are: j) = *0q% + L,%/Z − �)∇%
and j' = −�'∇'%. Here, ∇' = q × ∇q is the orientational gradient operator,
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Figure 3.11: Relative number density in the porous medium, 〈=?>A4〉, to that in
the reservoir, =∞, as a function of a combination of degree of confinement, �3� ,
and obstacle volume fraction q/(1 − q) leading to linear partitioning dependence
at steady state in three dimensions for :B)B ∼ 250:�) and :B)B ∼ 800:�) . The
dashed lines show the analytical prediction in (3.13), where �3� is given by (3.15).

and �) and �' are the translational and rotational diffusivity, respectively. The
number density is obtained by expanding the Smoluchowski equation in statistical
moments [30], such that =(x, C) =

∫
%(x, q, C)dq, m(x, C) =

∫
q%(x, q, C)dq, which

leads to the equations in 2D [30]:

m=

mC
+ ∇ · j= = 0, (3.17)

mm

mC
+ ∇ · j< + �'m = 0, (3.18)

where the fluxes are given by

j= = *0m − �)∇=, (3.19)

j< = *0W +
1
2
*0=O − �)∇<, (3.20)

where = is the number density, m is the polar order, and W(x, C) =
∫
(qq −

O/2)%(x, q, C)dq is the nematic order. Assuming an isotropic nematic order, W = 0,
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we can close the expansion. These equations can be solved for simple geometries to
obtain analytical expressions for the concentration distribution. Yan & Brady solved
these equations outside a disk in two-dimensions and a sphere in three-dimensions
subject to no flux at A = ' [11]. Applying these analytical solutions of the Smolu-
chowki equations in combination with no net-force balances over specific control
volumes in the porous medium (Appendix 3.6), we obtain analytical predictions for
the behavior.

To verify the analytical predictions, we perform Brownian dynamic simulations.
These simulations can be viewed as numerically solving the particles’ equation of
motion: The overdamped Langevin equations [30],

0 = −ZU + F(F8< + F�, (3.21)

0 = −Z'
 + L', (3.22)

where U is the translational velocity,
 is the rotational velocity, Z' is the rotational
Stokes drag, and F(F8< is the swim force defined to be F(F8< ≡ Z*0q. F� is the
random Brownian force with the properties F� = 0 and F� (0)F� (C) = 2:�)ZX(C)I,
where I is the identity tensor and X(C) is the delta-function. L' is the random
reorientation torque where L' = 0 and L' (0)L' (C) = 2Z2

'
X(C)I/g'. Length scales

are non-dimensionalized by the microscopic length X =
√
�)g' and the time steps

are non-dimensionalized by the reorientation time, g'. The orientation of the
translational motion q is related to the angular velocity
 via: 3q/3C = 
 × q. The
particles interact with obstacles through a no flux condition, which is implemented
via a potential-free algorithm [26–28] In order to obtain steady state and minimize
the impact of fluctuations and errors, the simulations are computed with ∼ 106

particles and a minimum of 104 g'. For the transient results, the simulations are
computed with ∼ 107 particles.

3.6 Momentum balance
From the macroscopic Langevin equations we can write the momentum balance

0 = −Z j= + Z*0m + ∇ · 2>B<> , (3.23)

where the flux is given by j= ≡ = 1
#

∑#
U=1[U, the polar order is m ≡ = 1

#

∑#
U=1 qU,

and 2>B<> = −=:�) O is the osmotic pressure. In the force balance (3.23) −Z j=
is the average drag force from the suspending medium (which is assumed to be
stationary), Z*0m is the average propulsive or swim force, and since the average of
the Brownian force is zero, its effect appears as the divergence of a stress ∇ ·2>B<>.
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The polar order can be written in terms of its flux as m = −g'∇ · j<, and the
expression for polar order flux is given in (3.20). Thus, the momentum balance
becomes

0 = −Z j= + ∇ · [2>B<> − Zℓ j<] . (3.24)

At steady state ∇ · j= can be written as 9=8 =
m

mG 9
9=
9
G8; thus, the momentum balance

becomes
∇ · [2>B<> − Zℓ j< − Z j=x] = 0. (3.25)

We apply this momentum balance to the control volume (C.V.) illustrated in Fig. 3.1:

0 =
∮

n · [2>B<> − Zℓ j< − Z j=x]3(, (3.26)

where
∮
[...]3( designates the integral over all surfaces. Integrating the G-component

gives

0 = � [(−f>B<>GG + Zℓ 9<GG + Z 9=G G) |! (3.27)

+ (f>B<>GG − Zℓ 9<GG − Z 9=G G) |'] +
∑
%

∮
n · 2>B<>3( · 1G ,

where subscripts ! and ' refer to the left and right boundary of �.+., and∑
%

∮
[...]3( is the integral over all obstacles in�.+.. For the left and right boundary,

we have

(−f>B<>GG + Zℓ 9<GG + Z 9=G G) |! = (3.28)

=0
?>A4 (:�) + :B)B) + 2:B)B&?>A4

GG ,

(f>B<>GG − Zℓ 9<GG − Z 9=G G) |' = − =∞(:�) + :B)B), (3.29)

where :B)B = Zℓ*0/3 (3−1). Note that the particle flux 9G= is zero at both boundaries,
thus the momentum balance in (3.27) becomes

(:�) + :B)B) (=0
?>A4 − =∞) + 2:B)B&?>A4

GG =

1
�

∑
%

∮
=:�)n3( · 1G . (3.30)

For all particles fully inside the porous medium, we know that
∫
=:�)n3( = 0.

Even for the particles at the edge, this could be at most proportional to =0
?>A4 − =∞.

Therefore, we have that∫
=:�)n3( · 1G = U(=0

?>A4 − =∞):B)Bc', (3.31)



58

where ' is the obstacle radius and U is an unknown scaling coefficient. The
contribution from the edge will depend on the number of particles at the edge within
the control volume, which is #4364 = �/!, where � is the height of the control
volume and ! is the length of a unit cell. Thus, the momentum balance becomes

(:�) + :B)B)
[
1 + Uc'

!

]
(=0
?>A4 − =∞)

+2:B)B&?>A4
GG = 0. (3.32)

In the porous medium, the nematic order can be written as &?>A4
GG = =?>A4&

?>A4

GG ,
such that [

(:�) + :B)B)
[
1 + Uc'

!

]
+ 2:B)B&

?>A4

GG

]
=0
?>A4 =

(:�) + :B)B)
[
1 + Uc'

!

]
=∞. (3.33)

Or,

=0
?>A4 = =

∞
[
1 +

2:B)B&
?>A4

GG

(:�) + :B)B) (1 + U c'! )

]−1

(3.34)

From Yan & Brady [11] we know that &GG < 0 away from the obstacle surface.
Hence, =0

?>A4 > =∞ and becomes increasingly so the higher the area fraction q.
Assuming the edge effects are negligible U must be small, and the expression
becomes

=0
?>A4 = =

∞
[
1 +

2&
?>A4

GG

1 + :�)/:B)B

]−1

, (3.35)

which for high activity (:B)B � :�)) is the expression in (3.10).
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C h a p t e r 4

HINDERED DIFFUSION OF ACTIVE PARTICLES IN POROUS
MEDIA

Understanding the diffusion of active particles in confined environments is essential
to utilize and enhance nature’s own sustainable processes, e.g., improving bioreme-
diation and optimizing bacteria transport in soil. The hindered diffusivity of passive
Brownian particles in porous media depends only on the porosity or solids volume
fraction. Contrastingly, active particles’ effective diffusivity is also sensitive to the
interplay between their run, or persistence, length and the media’s pore size. This
work investigates the transport behavior of active Brownian particles (ABPs) in a
porous medium, where the porosity is achieved by having arrays of obstacles. We
find that ABPs’ effective diffusivity exhibits a complex non-monotonic behavior
with increasing obstacle size for a fixed volume fraction. The behavior relates to
three governing parameters; the activity, the area fraction of obstacles, and the de-
gree of confinement (ratio of run length to obstacle size). We explore three regions
of different behaviors: weak, medium, and strong confinement. Insight into this
complex diffusive behavior will be crucial for optimal deployment of active particles
in crowded environments, where it is essential to know how particles diffuse.
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4.1 Introduction
The transport of active matter, such as bacteria, in porous media is an important
problem in a variety of scientific and technological areas such as the spreading of
contaminants in soils and groundwater aquifers, bacterial filtering, biodegradation
and bioremediation processes, and the transport of motile cells inside the body [1].
Applications in medical diagnostics and biochemical analysis often hinge upon the
manipulation and control of active particle motions through complex and crowded
geometries [2, 3].

The diffusivity of active particles is larger than for passive particles, and both solid
boundaries and other obstacles change the area available for swimming. Bound-
aries dramatically obstruct particle motion and shorten the mean free path for the
particles. These obstructions lead to particles accumulating at boundaries and dif-
fusivity decreasing [4, 5]. The effective diffusivity of passive particles in crowded
environments is non-trivial, and their diffusivity decreases dependent on the area
fraction of the obstacles only [6–8]. Alonso-Matilla et al. studied Taylor disper-
sion of active particles in circular arrays [9]. Even without flow, they observed a
decrease in diffusivity for low activity particles resembling the behavior observed
for passive particles. However, the no-flow case has exciting behaviors that need
further exploration. Experimental studies of Chlamydomonas Reinhardtii show that
the diffusion of bacteria is reduced compared to free space when placed around
arrays of pillars [10]. However, there is a lack of knowledge regarding the transport
of active particles in porous media at high activity.

The simplest model that captures the physics is the active Brownian particle (ABP)
model. ABPs swim with speed *0 in a direction q for a reorientation time g'; the
average length they move between reorientations is called the run, or persistence,
length ℓ = *0g' [11]. This run length leads to active particles having an effective
size much larger than the actual size. Thus, these particles will exhibit effects of
geometric confinement on larger scales than passive particles would [4, 5, 12–14].
The persistent motion creates a randomwalk to which can be assigned a translational
diffusivity. This diffusivity is the sum of its thermal diffusivity, �) = :�)/Z and
the swim diffusivity, �BF8< = :B)B. Here :B)B is the active energy scale analogous
to the thermal energy scale :�) . Further, the particles reorient and therefore have an
associated rotational diffusivity, �' = 1/g'. The diffusive step sizes then become
X =

√
�)/�'. The ratio of the run length to this microscopic length gives a measure
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Figure 4.1: Illustration of the two-dimensional porous medium (i.e. disks on an
equally spaced lattice). The active particles move around between the obstacles,
and experience excluded volume interactions with the solid obstacle boundaries.

of the activity (the active energy compared to the thermal one): :B)B/:�) =

(ℓ/X)2/2 in two dimensions.

This work explores how the active particles diffuse in a periodic system with arrays
of circular obstacles, and the system is displayed in Fig 4.1. We show that diffusion
depends not only on the obstacle area fraction, but also on the activity and degree
of confinement (ratio of run length to size of the obstacles). We observe interesting
non-monotonic changes in diffusion as a function of the degree of confinement
(i.e., the ratio of the particle run length to obstacle radius). These behaviors fall
within three regions that depend on the size of the run length compared to the other
geometric length scales. One limit where the run length is much smaller than all
other length scales, one where it is much larger, and the intermediate where the run
length is similar to other length scales in the system. The exploration of behaviors
in these three regions provides a means to understanding diffusive transport for
different activity levels and in a range of environments.

4.2 Diffusive transport
In order to understand how active particles diffuse and distribute in complex environ-
ments, we investigate their behavior in a model system. We focus on the particles’
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behavior in the porous medium in terms of dynamic properties such as diffusivity
only. In this work, the porous medium is a two-dimensional lattice of disks, and
their separation is regulated through the area fraction of obstacles, q. Fig. 4.1 shows
this geometric system, where the orange disks are obstacles, and the dilute active
particles can freely swim around the obstacles but not pass through them.

ABPs accumulate at no-flux surfaces due to their persistent motion, and when
a particle collides with a wall, it keeps moving in the same orientation until it
reorients. This accumulation leads to an increase in concentration in a boundary
layer around the surface, which has been described and determined analytically by
Yan et al. [4]. As long as the accumulation boundary layers around the obstacles do
not overlap, we can expect the distribution in this porous media to be the same as
outside a single sphere in a reservoir. Our previous work [15] describes the particle
distribution and a model for the partitioning in this porous media connected to a
reservoir.

The accumulation arises due to the porous medium obstructing the run length
of the active particles significantly. Thus, the active particle diffusivity in the
porous media is hindered, and therefore lower than it would be in free space.
Bhattacharjee et al. [16] explored the impact on E. coli’s diffusivity in a porous
medium experimentally. Furthermore, as earlier mentioned, Alonso-Matilla et al.
did numerical studies for geometries similar to the one shown in Fig. 4.1 for active
particles with low activity [9]. However, in this work, we focus on the behavior of
active particles with high activity, such that the active energy scale is much larger
than the thermal energy, :B)B � :�) .

Passive particles in a porous medium will experience a decrease in diffusivity
compared to free space as well. This decrease will be a function of the area fraction
of obstacles only. Thus, the size of the obstacles compared to the passive particle
size will not influence the effective diffusivity if the area fraction is the same. For
active particles, the run length – or effective size – of the particles causes the particles
to experience confinement at larger length scales than the passive ones would [17].

The diffusion will be influenced not only by the area fraction of obstacles, but also
the properties of the active particles. From dimensional analysis, we find that the
behavior must be governed by three dimensionless parameters; the size of the active
step compared to the diffusive one, ℓ/X, the ratio of the run length to the obstacle
size, ℓ/', and lastly the area fraction of obstacles, q. All three parameters influence
the mean free path the particles experience. We define the degree of confinement
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as ℓ/', where ℓ is the particle run length and ' is the radius of an obstacle. We
designate the effective, or hindered, diffusivity in the porous medium �4 5 5 , and �0

is the diffusivity in free space. For passive particles, the free space diffusivity is just
the thermal diffusivity, �0 = :�)/Z , where Z is the hydrodynamic drag coefficient.
For active particles, the free space diffusivity is the sum of the thermal and swim
diffusivity, �0 = �) + �BF8< = (:�) + :B)B)/Z .
We study the diffusive transport behavior of ABPs through Brownian Dynamics
(BD) simulations. In the BD simulations, when a particle collides with an obstacle,
it will keep exerting a force in its orientation until it reorients. We use a potential-
free algorithm [18–20] to resolve the obstacle collisions. This algorithm places a
particle that overlaps with an obstacle back to the point of contact by following
along the obstacle surface normal vector until the system is free of overlaps. (See
Appendix 4.5 for a description of the BD simulations.)

Fig. 4.2 illustrates the impact of degree of confinement on the diffusivity determined
from measuring mean square displacement in the BD simulations for ABPs with
high activity, :B)B/:�) = 800. As expected, the diffusivity decreases when the
area fraction of obstacles increases due to less space for ABPs to swim their full
run length. Surprisingly, the effective diffusivity changes non-monotonically for
an increasing degree of confinement, and this trend becomes more significant for
higher area fractions of obstacles. This is different from particles with low activity,
where Saintillan et al. observed that the diffusivity decrease is similar to passive
particles [9]. At a constant area fraction of obstacles, if the average mean free path
available per run length decreases, the active particle experiences a higher confine-
ment. The mean free path is related to the diagonal distance between obstacles,
�14CF44= = (

√
2c/q − 2)', and also the length of a unit cell, !. (The inset of Fig.

4.3 shows the geometric length scales within the porous media.) Thus, one would
assume that the effective diffusivity decreases with increasing degree of confine-
ment. However, we observe that this is only true when the degree of confinements
are large. The opposite trend occurs when the run length is smaller than the obstacle
size. We anticipate that this is because particles leaving the surface of an obstacle
are less likely to collide with another obstacle in its first step. The different diffusive
behaviors shown in Fig. 4.2 can be separated into the limiting behaviors in three
regions of different effective confinement. Weak confinement where the run length
is smaller than any other system length scale. Medium confinement where the run
length is similar to other length scales in the porous media. Lastly, highly confined
particle where the run length is much larger than the geometric lengths in the porous



67

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

E
ff

ec
ti

ve
d

iff
u

si
v
it

y,
D

ef
f
/D

0

Degree of Confinement, `/R

φ = 0.1

φ = 0.2

φ = 0.3

φ = 0.4

φ = 0.5

φ = 0.6

φ = 0.7

Figure 4.2: The ratio of the effective diffusivity, �4 5 5 , to that in free space, �0,
as a function of the degree of confinement, ℓ/'. The results are from Brownian
dynamics simulation with :B)B = 800:�) and the area fraction of obstacles between
0.1 and 0.7.

media. Each of these regions is covered in detail individually in the following
sections.

4.3 Limiting behaviors
The fundamental rule of active matter
In simple active matter systems, it has been observed that when the run length is
smaller than all other geometric lengths, the system behaves similarly to a passive
system. An example of this is a single wall in a bath of active particles, where the
pressure on the wall in a thermal system is the osmotic pressure. In an active system,
the wall pressure is the sum of the contribution from thermal motion and from the
swim pressure. [4] This is a fundamental rule of active matter that one can replace
the thermal energy :�) with the sum of the thermal energy and the active energy
scale :�) + :B)B.

Here, we show that this fundamental rule also applies to the hindered diffusivity
of active particles in porous media. The inset of Fig. 4.3 shows the geometric
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Figure 4.3: Ratio of effective diffusivity, �4 5 5 to the free space diffusivity, �0,
as a function of area fraction of obstacles, q. Results are for BD simulations with
:B)B/:�) = 800, and for '/ℓ = 5 (blue) and '/ℓ = 100 (red) for 3min ∼ ℓ and
3min � ℓ, respectively. The inset shows the length scales within the porous media.

length scales within the porous media. In this limit, the run length, ℓ, must be
smaller than the smallest length, 3min. For this to occur even with high activity,
the obstacle sizes must be much larger than the run length. We obtain ;/3 � 1
when '/ℓ = 100, and the result is shown in Fig. 4.3. The behavior is exactly the
same as for passive particles, simply replacing the :�) in the diffusion term by
the summation of active and thermal energy, :�) + :B)B. Thus, we show that the
fundamental rule of length scales in active matter applies to more complex systems
such as porous media. Further, when we depart from very weak confinement into
medium confinement, where ℓ ∼ 3, the behavior changes significantly. Especially
as the obstacle area fraction gets near close packing, q<0G = c/4, and the diffusion
in this region is described in detail in the next section.
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Figure 4.4: The ratio of effective diffusivity, �4 5 5 , to that of passive particles,
� ?0BB8E4, as a function of area fraction of obstacles, q, near close packing. The
results are for fixed ratio of obstacle size to the diffusive step size, '/X = 20.

Near close packing
The diffusive behavior of active particles is radically different when the run length is
comparable to the systems’ geometric length scales. We observe in Fig 4.3 that the
effective diffusivity linearly approaches a constant value rather than going towards
zero as the area fraction of obstacles approaches close lattice packing. The behavior
is very similar to passive particles for a low area fraction of obstacles. Therefore, we
focus on the remarkable change in behavior for active compared to passive particles
near close lattice packing, q = c/4, in 2-dimensions through BD simulations. Fig.
4.4 shows the ratio of the active particle diffusivity to the passive particle diffusivity.
It is apparent that near the maximum packing fraction, the diffusivity can become
more than 3000 times higher for active particles with an activity of :B)B = 800:�) .

We have seen in previous work [17] how changing the degree of confinement can
change the behavior of the system drastically. The ratio of the active diffusivity to
the passive one can be further normalized by what the ratio would be in free space,
where �4 5 5 /� ?0BB8E4 = 1 + (ℓ/X)2/2 in two dimensions. Thus, we show in Fig. 4.5
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Figure 4.5: Ratio of effective diffusivity to thermal diffusivity as a function of area
fraction near close packing scaled by the ratio in free space, where �4 5 5 /� ?0BB8E4 =

1 + (ℓ/X)2/2 in two dimensions. Results are for fixed degree of confinement with
ℓ/' = 1, and we see that all the curves collapse perfectly onto one single curve
when ℓ/' is fixed.

that when fixing the degree of confinement to be ℓ/' = 1 and varying the activity,
:B)B/:�) , all the curves collapse perfectly for different activities. If the activity
were to decrease further than :B)B = 50, we would expect that the normalized
diffusivity will deviate from the master curve and decrease towards one instead.

Effective size as the largest length scale
The effect of confinement will be the strongest when the particle run length is the
largest length scale. In this region, the run length will often be reduced due to
collisions with obstacles. Therefore, we will also observe the largest decrease in
effective diffusivity, especially as the system approaches close packing. Our results
from BD simulations are shown in Fig. 4.6. Note that these results are for ' ∼ X,
and this could impact the effective diffusivity we observe. Later, we show the results
without thermal translational motion, �) = 0, such that the system is now governed
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Figure 4.6: Effective diffusivity as a function of area fraction of obstacles, q, in the
limit where the run length is much longer than any other length scale in the system,
ℓ � !. The results are based on BD simulations with '/X = 1 and varying run
length such that :B)B/:�) = 800, 1250, and 1800.

by the degree of confinement and area fraction of obstacles only.

We observe that all diffusivity reaches a non-zero value at close packing, qmax,
and the specific values depend on the degree of confinement, ℓ/'. However, all
the curves portray a similar decrease with an increasing area fraction of obstacles.
Therefore, we choose an appropriate scaling for the diffusivity, as shown in Figure
4.7. All the curves collapse into one with this scaling, and the scaled diffusivity
becomes one both as packing fraction goes to zero and at the maximum packing
fraction. This scaling means that for any parameter set, we only need to know that
the effective diffusivity at one area fraction within the range to predict the rest of the
effective diffusivity for all q,

� (q) − � (qmax)
� (q = 0) − � (qmax)

= � (q), (4.1)

where � (q) is the functional form of the scaling collapse. In this expression, we
know the diffusivity at zero area fraction is the free space diffusivity,� (q = 0) = �0.
Further, if we know the function form of � (q) and the non-scaled diffusivity at one
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and similarly the diffusivity will always be zero as q → q<0G . We see that all the
diffusivities collapse independent of activity with this scaling. This confirms that
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The results are based on BD simulations with '/X = 1 and varying run length such
that :B)B/:�) = 800, 1250, and 1800.

area fraction, q1, we can compute what we would expect the diffusivity at maximum
packing to be

� (qmax) =
� (q1) − � (q1)�0

1 − � (q1)
. (4.2)

With the expression for the diffusivity at close packing, we can then find the diffu-
sivity for all area fractions through,

� (q) = � (q) (�0 − � (qmax)) + � (qmax). (4.3)

From Fig. 4.6, we can fit the data to a second order polynomial. Thereby, we obtain
the expression for � (q).

� (q) = 1.06 · q2 − 2.10 · q + 1. (4.4)
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Figure 4.8: Effective diffusivity as a function of area fraction of obstacles. The
dashed lines show the prediction when combining (4.2) and (4.3) with the BD
results for a single area fraction, q = 0.4.

Thus, we can now use this expression to determine how the predictions for the
domain will look. Combining equations (4.2) and (4.3) and scaling the diffusivity
by the free space diffusivity, the expression becomes

�4 5 5

�0 = � (q) + 1 − � (q)
1 − � (q1)

·
(
�4 5 5

�0 − � (q1)
)
. (4.5)

In Fig. 4.8, we show these predictions compared to our BD simulation results,
when using the expression for � (q) in (4.4) and the values for �4 5 5 /�0 when
q = 0.4. There is great agreement between our prediction based on the linear fit
and the diffusivity at one volume fraction. This is a great computational advantage,
as simulations near close packing are more computationally costly (due to a high
number of collisions) and only needs to be done for one volume fraction. Thus, in
the limit where ℓ � !, if we know the effective diffusivity for one activity, we can
obtain the rest of them by knowing the diffusivity at a single reference point. This
reduces the amount of computationally costly simulations while still obtaining an
understanding of the behavior.



74

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E
ff

ec
ti

ve
d

iff
u

si
v
it

y,
D

ef
f
/D

0

Area fraction of obstacles, φ

Passive

`/R = 1000

`/R = 100

`/R = 10

`/R = 1

`/R = 0.1

Figure 4.9: The ratio of the effective diffusivity, �4 5 5 , to that in free space, �0 =
*2

0g'/2, as a function of the area fraction of obstacles, q. The results are from
Brownian dynamics simulation with �) = 0. The diffusivity will only depend
on q and the degree of confinement, ℓ/'. (The passive solution is included for
comparison.)

No thermal translational diffusivity
In order to understand the influence of the diffusive step size on the hindered
diffusion, we investigate the behavior when we have no thermal motion, �) = 0.
The particles still undergo reorientation. The number of governing dimensionless
groups reduces from three to two, such that the system can be described solely from
the degree of confinement, ℓ/', and the area fraction of obstacles, q.

In Fig. 4.9 we see that the behavior is very similar to what was observed with
thermal motion. The effective diffusivity has a non-monotonic dependence on the
degree of confinement. For low degrees of confinement, it will resemble the passive
hindered diffusion. Furthermore, for intermediate confinement, we see the linear
dependence similar to that observed with thermal diffusivity. Fig. 4.10 shows this
linear dependence for ℓ/' = 1, 10, and 100 near close packing. Interestingly, for very
high degrees of confinement, we observe a reduction that is less than the observed
diffusion when the diffusive step size scales as the obstacle size. When there is no
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Figure 4.10: The ratio of the effective diffusivity, �4 5 5 , to that in free space, �0,
as a function of area fraction of obstacles, q, near close packing. The results are
from Brownian dynamics simulation with �) = 0. We observe a larger reduction
in effective diffusivity compared to free space for higher degrees of confinement.

thermal diffusion, the particles can slide uninterrupted along the obstacles. Their
motion will consist of two parts: moving from one obstacle to the next and sliding
along the obstacle surface. If thermal diffusion was present, the particles could
deviate from their sliding behavior, translate between obstacles, and be perceived
as more trapped. This trapping would lead to a steeper reduction in the diffusivity
than when the particles can slide along obstacles without disturbance from thermal
noise. Thus, the free sliding explains why the strong confinement is less reduced
when �) = 0. The dependence on confinement is also portrayed in Fig. 4.11, where
it is apparent that the diffusive behavior changes significantly through the regions
of weak, medium, and strong confinement. In the limit of ℓ/' → 0, we expect to
recover the passive solution for hindered diffusion.

4.4 Conclusions
In this work, we show how diffusivity changes in complex environments such
as porous medium. Through Brownian dynamics simulation, we show that the
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Figure 4.11: The ratio of the effective diffusivity, �4 5 5 , to that in free space, �0, as
a function of degree of confinement, ℓ/'. The results are from Brownian dynamics
simulationwith�) = 0. We observe a non-monotonic change in effective diffusivity
with an increasing degree of confinement.

diffusivity of active particles depends not only on the area fraction available for
motion but also depends non-trivially on two additional governing groups: the
activity and the ratio of run length to obstacle size. We observe non-monotonic
changes in effective diffusion with increases in the ratio of particle run length
to obstacle size. Three regions of different degrees of confinement explain the
behavior; weak, medium, and strong confinement.

Under weak confinement, the active particles in porous media behave similarly
to passive particles in porous media, thereby confirming the fundamental rule of
active matter that the active energy scale replaces the thermal energy scale, and
all trends remain the same as for passive systems. For medium confinement, the
diffusion no longer goes towards zero as the area fraction of obstacles approaches
the maximum packing fraction. Lastly, for strong confinement, we observe a more
substantial reduction in diffusivity compared to passive particles, when obstacle
size is comparable to the diffusive step size. In this limit, we present a method for
predicting the effective diffusion with fewer computational simulations needed.
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Due to these non-trivial diffusion changes, it is increasingly important to know how
the active particle run length relates to system size and porosities in porous media.
The impact of obstacle size on diffusion will be paramount for designing optimal
geometries. Furthermore, it provides a method for tuning effective diffusivity by
changing the geometric scales in the system.

4.5 Brownian Dynamics simulations
The Brownian dynamics simulation are based on governing equations of motion:
the overdamped Langevin equations [21],

0 = −ZuU + L(F8<U + L�U + L,U , (4.6)

0 = −Z'
U + L'U , (4.7)

where Z is the translational Stokes drag coefficient, Z' is the rotational Stokes
drag coefficient, [U is the translational velocity, 
U is the rotational velocity, and
L(F8<U is the swim force defined as F(F8<

U ≡ Z*0qU. F�
U is the random Brownian

force with the properties F�
U = 0 and the F�

U (0)F�
U (C) = 2:�)ZX(C)I, where I is

the identity tensor and X(C) is the delta-function. L' is the random reorientation
torque, where L' = 0 and L' (0)L' (C) = 2Z2

'
X(C)I/g'. The simulations’ length

scale is non-dimensionalized by the microscopic length X =
√
�)/�', and the time

steps are non-dimensionalized by the reorientation time g', where g' = 1/�' and
�) = :�)/Z . It is not necessary to assume that the translational and rotational
diffusivity are both thermal, i.e. �' need not be proportional to :�) . Changes in
orientation follow from 3q/3C = 
×q, with
 from the particle angular momentum
balance (4.7).
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A p p e n d i x A

THE MOMENTS METHOD: REVIEW OF ISOTROPIC Q
ASSUMPTION

2D: One infinitely long wall
To understand the impact of our assumption that the nematic order is isotropic
that we investigate comparisons of the numerical solution to the full Smoluchowski
equation and analytical solutions from themoments’ expansion of the Smoluchowski
equation. The one-dimensional solution to the Smoluchowski near awall in an active
bath is independent of closure. The concentration at the wall is given by

=F0;; = 1 + 1
2

(
ℓ

X

)2
= 1 + :B)B

:�)
, (A.1)

where 4;; is the run length, X is the diffusive step size, and :B)B is a measure of the
activity analogous to the thermal energy :�) . We can compare this to our numerical
solution of the Smoluchowski equation, we obtain from expanding into the weak
form and implementing into FREEFEM++. As expected, we get the same from the
numerical solution and the analytical one as is shown in Fig. A.1.

2D: Infinitely long parallel walls
The expression for the concentration between two parallel walls in 2D assuming the
nematic order field is isotropic (W = 0) is

=(I)
=0 = 1 + 1

2

(
ℓ

X

)2 sinh(_I) + sinh(_(� − I))
sinh(_�) , (A.2)

where _ =
√

1 + 1
2

(
ℓ
X

)2
/X and H is the separation distance. In the limit of large _�,

corresponding to when X � ℓ and X � �, =0 is the center concentration between
the two parallel walls. This is also illustrated in A, where the dark blue color shows
when =0 is equal to the center concentration, such that =0 = =(�/2).

Thus, from figure A.2, we can assume that for ℓ/X > 6 and a degree of confinement
between 0 and 3, =0 is the center concentration. Thereby, we can now investigate
how the assumption of isotropic nematic order deviates from the numerical solution
to the full Smoluchowski equation when having confinement.
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Figure A.1: The wall concentration from finite element solutions of the full Smolu-
chowski equation compared to the moments’ solution assuming W = 0.

The polar order of a system is the highest close to the walls, and therefore it is
interesting to investigate how the nematic order assumption affects the wall concen-
tration. The concentration at the wall for the full Smoluchowski equation solved
using finite element methods compared to the solution of the moments’ expansion
when assuming isotropic nematic order is shown in Fig. A.3. For small degrees of
confinement, the moment solution predicts the concentration at the wall well. As the
degree of confinement increases, the wall concentration from the numerical solution
is lower and the moments’ expansion no longer captures the behavior accurately.
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Figure A.2: The value of =(�/2)/=0 as a function of run length and degree of
confinement for infinitely long parallel plates. When activity is high, =0 represents
the center concentration such that =(�/2)/=0 = 1. Further, for ℓ/X < 6 and
confinement, this is not the case.
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Figure A.3: The wall concentration from finite element solutions of the full Smolu-
chowski equation compared to the moments’ solution of the Smoluchowski equation
assuming W = 0.
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A p p e n d i x B

FINITE ELEMENT CALCULATIONS: THE WEAK FORM

Problem definition
Moments equations:

d=
dC
+ ∇ · j= = 0, where j= = *0m − �)∇=, (B.1)

dm
dC
+ ∇ · j< + (3 − 1)�'m = 0, where j< = *0W − �)∇m. (B.2)

Thereby, in two dimensions:

d=
dC
+ ∇ · [*0m − �)∇=] = 0, (B.3)

dm
dC
+ ∇ · [*0W − �)∇m] + �'m = 0. (B.4)

Q closure
Applying the Q closure in two dimensions: W = =O/2 and the equation becomes

d=
dC
+ ∇ · [*0m − �)∇=] = 0, (B.5)

dm
dC
+ ∇ · [*0=O/2 − �)∇m] + �'m = 0. (B.6)

We can rewrite these into

d=
dC
+*0∇ · m − �)∇2= = 0, (B.7)

dm
dC
+ *0

2
∇= − �)∇2m + �'m = 0. (B.8)

Applying the scaling C ≈ g' and G, H ≈ X, the n-equation becomes

1
g'

d=
dC
+ *0
X
∇ · m − �)

X2 ∇
2= = 0. (B.9)

Using that*0g' = ℓ and X =
√
�)/�', we get

d=
dC
+

(
ℓ

X

)
∇ · m − ∇2= = 0. (B.10)
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Applying the scaling C ∼ g' and G, H ∼ X, the m-equations become
1
g'

dm
dC
+ *0

2X
∇= − �)

X2 ∇
2m + �'m = 0. (B.11)

Using that*0g' = ℓ, �' = 1/g' and X =
√
�)/�', we get

dm
dC
+ 1

2

(
ℓ

X

)
∇= − ∇2m + m = 0. (B.12)

Equations (B.10) and (B.12) become the three equations for the system

d=
dC
+

(
ℓ

X

) (
d<G
dG
+ d<G

dH

)
−

(
d2=

dG2 +
d2=

dH2

)
= 0, (B.13)

d<G
dC
+ 1

2

(
ℓ

X

)
d=
dG
+ <G −

(
d2<G

dG2 +
d2<G

dH2

)
= 0. (B.14)

d<H

dC
+ 1

2

(
ℓ

X

)
d=
dH
+ <H −

(
d2<H

dG2 +
d2<H

dH2

)
= 0. (B.15)

Figure B.1: System geometry with boundary labels. Solid lines are hard walls and
dashed lines are boundaries where symmetry applies.

Boundary condition on A1-wall

At the wall, we apply the no flux in =

=G · 9= = 0 (B.16)

=G · [*0m − �)∇=] = 0 (B.17)

*0<G − �)
d=
dG
= 0. (B.18)



86

Applying scaling to boundary conditions

*0<G − �)/X
d=
dG
= 0 (B.19)

⇒ *0/�'<G − (�)/�')/X
d=
dG
= 0 (B.20)

⇒ d=
dG
=

(
ℓ

X

)
<G . (B.21)

Further, at the wall we apply the no flux in <G

=G · 9< = 0 (B.22)

=G · [*0=O/2 − �)∇m] = 0 (B.23)

1/2*0= − �)
d<G
dG

= 0 (B.24)

∼ d<G
dG

=
1
2

(
ℓ

X

)
= (B.25)

From the full equation %, we get

9)G = 0⇒ *0@G% − �)
d%
dG

(B.26)

⇒ 9<GH = −�)
d<H

dG
= 0 (B.27)

d<H

dG
= 0. (B.28)

In summary

d=
dG
=

(
ℓ

X

)
<G , (B.29)

d<G
dG

=
1
2

(
ℓ

X

)
=, (B.30)

d<H

dG
= 0. (B.31)

Boundary condition on A2

No translational flux of P in the y-direction:

�)H = *0@H% − �)
d%
dH

= 0. (B.32)
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Thereby, we can get the condition on = multiplying equation (B.32) by @H

�=H = *0@H@H% − �)
d@H%
dH

= 0, (B.33)

⇒ *0<H − �)
d=
dH

= 0. (B.34)

With the correct scaling, the condition becomes

d=
dH

=

(
ℓ

X

)
<H . (B.35)

For the condition on <H, we multiply equation (B.32) by @H@H and get

�=HH = *0@H@H@H% − �)
d@H@H%

dH
= 0, (B.36)

⇒ *0

(
1
2
= +&HH

)
− �)

d<H

dH
= 0. (B.37)

With the correct scaling and W closure, the expression becomes

d<H

dH
=

1
2

(
ℓ

X

)
=. (B.38)

For the condition on <H we multiply eq. (B.32) by @H@G and get

�=HH = *0@H@H@G% − �)
d@H@G%

dH
= 0, (B.39)

⇒ *0
(
&HG

)
− �)

d<G
dH

= 0, (B.40)

with the correct scaling and Q closure the expression becomes

d<G
dH

= 0. (B.41)

Boundary condition on A3

Symmetry in %: d%/dG=0 and thereby

d=
dG
= 0, (B.42)

d<G
dG

= 0, (B.43)

d<H

dG
= 0. (B.44)
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Boundary condition on A4

Symmetry in % across the boundary: d%/dH=0 and thereby

d=
dH

= 0, (B.45)

d<G
dH

= 0, (B.46)

d<H

dH
= 0. (B.47)

Boundary condition on A5

% is constant at this boundary, and thereby

= ∼ =∞ ∼ 1, (B.48)

<G = 0, (B.49)

<H = 0. (B.50)

Boundary condition on A6

% (and thereby =) is a function of distance from the wall, and from the force on a
boundary paper we have

= = =∞
(
1 + 1

2

(
ℓ

X

)2
exp (−_G)

)
, (B.51)

_ =

√
1 + 1

2

(
ℓ

X

)2
/X. (B.52)

The polar order screening is

<G = −
=∞

2
(_ℓ) exp (−_G), (B.53)

<H = 0. (B.54)
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In summary, the scaled equations become

= = 1 + 1
2

(
ℓ

X

)2
exp (−_G), (B.55)

<G = −
=∞

2
(_ℓ) exp (−_G), (B.56)

<H = 0, (B.57)

_ =

√
1 + 1

2

(
ℓ

X

)2
/X. (B.58)

The weak form of the equations
We define that = = D1, <G = D2, and <H = D3. Further, we define a test-function for
the n-equation, E1, multiply the equation by E1, and integrate over the domain Ω∫

Ω

E1
dD1
dC
+ E1

(
ℓ

X

)
dD2
dG
+ E1

(
ℓ

X

)
dD2
dH
− E1

d2D1

dG2 − E1
d2D1

dH2 dΩ = 0. (B.59)

The equation is simplified via integration by parts∫
Ω

E1
d2D1

dG2 dΩ =
∫
�5

dD1
dG
E1 d( −

∫
�1

dD1
dG
E1 d( −

∫
�3

dD1
dG
E1 d( −

∫
Ω

dD1
dG

dE1
dG

dΩ

(B.60)

= −
∫
�1

dD1
dG
E1 d( −

∫
Ω

dD1
dG

dE1
dG

dΩ (B.61)

= −
∫
Ω

dD1
dG

dE1
dG

dΩ −
∫
�1

(
ℓ

X

)
D2 E1 d( (B.62)∫

Ω

E1
d2D1

dH2 dΩ =
∫
�6

dD1
dH

E1 d( +
∫
�2

dD1
dH

E1 d( −
∫
�4

dD1
dH

E1 d( −
∫
Ω

dD1
dH

dE1
dH

dΩ

(B.63)

= −
∫
Ω

dD1
dH

dE1
dH

dΩ +
∫
�2

(
ℓ

X

)
D3E1 d(. (B.64)

Equation (B.59) becomes∫
Ω

E1
dD1
dC
+ E1

(
ℓ

X

)
dD2
dG
+ E1

(
ℓ

X

)
dD2
dH
+ dD1

dG
dE1
dG
+ dD1

dH
dE1
dH

dΩ (B.65)

+
∫
�1

(
ℓ

X

)
D2 E1 d( −

∫
�2

(
ℓ

X

)
D3E1 d( = 0. (B.66)

We define the test-function for the <G-equation, E2.∫
Ω

E2
dD2
dC
+ 1

2

(
ℓ

X

)
E2
dD1
dG
+ E2D2 − E2

d2D2

dG2 − E2
d2D2

dH2 dΩ = 0. (B.67)
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The equation is simplified via integration by parts∫
Ω

E2
d2D2

dG2 dΩ =
∫
�5

dD2
dG
E2 d( −

∫
�1

dD2
dG
E2 d( −

∫
�3

dD2
dG
E2 d( −

∫
Ω

dD2
dG

dE2
dG

dΩ

(B.68)

= −
∫
�1

1
2

(
ℓ

X

)
D1 E2 d( −

∫
Ω

dD2
dG

dE2
dG

dΩ (B.69)∫
Ω

E2
d2D2

dH2 dΩ =
∫
�6

dD2
dH

E2 d( +
∫
�2

dD2
dH

E2 d( −
∫
�4

dD2
dH

E2 d( −
∫
Ω

dD2
dH

dE2
dH

dΩ

(B.70)

= −
∫
Ω

dD2
dH

dE2
dH

dΩ. (B.71)

Equation (B.67) becomes∫
Ω

E2
dD2
dC
+ 1

2

(
ℓ

X

)
E2
dD1
dG
+ E2D2 +

dD2
dG

dE2
dG
+ dD2

dH
dE2
dH

dΩ +
∫
�1

1
2

(
ℓ

X

)
D1E2 d( = 0.

(B.72)

We define the test-function for the <G-equation, E3.∫
Ω

E3
dD3
dC
+ 1

2

(
ℓ

X

)
dD1
dH
+ E3D3 − E3

d2D3

dG2 − E3
d2D3

dH2 d( = 0. (B.73)

The equation is simplified via integration by parts∫
Ω

E3
d2D3

dG2 dΩ =
∫
�5

dD3
dG
E3 d( −

∫
�1

dD3
dG
E3 d( −

∫
�3

dD3
dG
E3 d( −

∫
Ω

dD3
dG

dE3
dG

dΩ

(B.74)

= −
∫
Ω

dD3
dG

dE3
dG

dΩ (B.75)∫
Ω

E3
d2D3

dH2 dΩ =
∫
�6

dD3
dH

E3 d( +
∫
�2

dD3
dH

E3 d( −
∫
�4

dD3
dH

E3 d( −
∫
Ω

dD3
dH

dE3
dH

dΩ

(B.76)

= −
∫
Ω

dD3
dH

dE3
dH

dΩ +
∫
�2

1
2

(
ℓ

X

)
D1E3 d(. (B.77)

Equation (B.73) becomes∫
Ω

E3
dD3
dC
+ 1

2

(
ℓ

X

)
dD1
dH
+ E3D3 +

dD3
dG

dE3
dG
+ E3

d2D3

dH2 dΩ −
∫
�2

1
2

(
ℓ

X

)
D1E3 d( = 0.

(B.78)



91

Steady state weak form FEM setup
For the finite element method, we look at steady state, and the coupled weak form
equations become∫

Ω

E1

(
ℓ

X

)
dD2
dG
+ E1

(
ℓ

X

)
dD2
dH
+ dD1

dG
dE1
dG
+ dD1

dH
dE1
dH

dΩ

+
∫
�1

(
ℓ

X

)
D2 E1 d( −

∫
�2

(
ℓ

X

)
D3E1 d( = 0,∫

Ω

1
2

(
ℓ

X

)
E2
dD1
dG
+ E2D2 +

dD2
dG

dE2
dG
+ dD2

dH
dE2
dH

dΩ +
∫
�1

1
2

(
ℓ

X

)
D1E2 d( = 0,∫

Ω

1
2

(
ℓ

X

)
dD1
dH
+ E3D3 +

dD3
dG

dE3
dG
+ E3

d2D3

dH2 dΩ −
∫
�2

1
2

(
ℓ

X

)
D1E3 d( = 0.

BCs on A5

D1 ∼ 1, (B.79)

D2 = 0, (B.80)

D3 = 0. (B.81)

BCs on A6

D1 = 1 + 1
2

(
ℓ

X

)2
exp (−_G), (B.82)

D2 = −
=∞

2
(_ℓ) exp (−_G), (B.83)

D3 = 0, (B.84)

_ =

√
1 + 1

2

(
ℓ

X

)2
/X. (B.85)

Note that this problem is not standard to solve with FREEFEM++ as it is solved
on a three-dimensional mesh with multiple mesh refinements. Therefore, it quickly
becomes very computationally costly, requiring a large amount of memory.


