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ABSTRACT

Active bodies undergo self-propulsive motion in a fluid medium and span a
broad range of length and time scales. This report focuses specifically on
the motion at high Reynolds number, where inertial forces dominate the fluid
dynamics. Many active systems spontaneously self-organize into visually strik-
ing structures: fish schooling, birds flocking, and bacterial colonies growing.
Current models of emergent behavior in the inertial regime are mainly phe-
nomenological and do not account for the fluid-mediated interactions between
bodies. We seek to advance physical models of swimmers in high inertia en-
vironments. To this end, we explicitly model the hydrodynamics to discern
what role the fluid medium plays in active group dynamics and whether it
can reproduce the observed emergent phenomenon without the imposition of
phenomenologically based interaction rules.

A minimal swimmer model consisting of three linked spheres is constructed,
and we find self-propulsion without external forces or momentum transfer via
vortex shedding. The inertial swimmer is also compared to an identical swim-
mer in the Stokes regime—where fluid inertia is neglected. The Stokes hy-
drodynamics are longer-ranged at leading order, and we demonstrate that the
stronger hydrodynamic interactions lead to a greater center of mass translation
after a period of articulation.
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C h a p t e r 1

HYDRODYNAMICS/INTRODUCTION

Active matter is a class of materials that generate their own propulsive force.
Net motion typically results from phoresis [1] or internal body deformations
[2–4]. In Fig. 1.1, we depict several common examples of active matter systems
across a broad range of length scales. Both fish and birds deform their bodies
to generate a propulsive force within their respective fluid media [5]. At the
microscopic scale, bacteria such as E. coli rotate a flagellar bundle to shear the
fluid and propel forwards [6]. Active systems can also be synthesized in a
variety of forms, with Janus spheres being one of the most commonly studied
[10]. Janus spheres catalyze a chemical decomposition on one hemisphere
and self-propel via diffusiophoresis—effectively becoming nano-motors with

(a) (b)

(c) (d)

Figure 1.1: Macroscopic examples [7] of emergent phenomena: () fish school-
ing and (a) starlings flocking. Self-propulsive bodies also aggregate in the
microscopic regime. (b) E. coli swarm [8] and align with nearest neighbors.
(c) Light-activated Janus particles [9] cluster from a homogenous distribu-
tion (inset) as light catalyzes phoretic motion (scale bar 10 µm).
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Figure 1.2: Reynolds numbers of swimming and flying animals from
Ref. [23]. Organisms from left to right: algae, bacterium, paramecium,
nematode, fairyfly, brine shrimp, larval squid, wasp, pteropod, dragonfly,
jellyfish, whale, swallow.

no moving parts [11, 12]. We are especially interested in the fluid mediated
interactions between self-propulsive bodies and how they may lead to collective
behavior. An individual body, such as a fish or bird, creates a fluid disturbance
and impacts the fluid forces on all other bodies in the system.

The essential fluid mechanics vary between the microscopic and macroscopic
regimes and are characterized by the Reynolds number, Re := ρUL /µ, which
spans many orders of magnitude in swimming and flying organisms (Fig. 1.2).
The Reynolds number quantifies the relative importance of inertial to viscous
forces in the fluid medium, [13–15] where the density ρ and viscosity µ of
the fluid are material parameters. The characteristic length L and velocity U
scales in our systems are set by a body’s length and average swim speed. For
microscopic systems, both characteristic velocity and length scales tend to be
“small” such that Re � 1, and the fluid equations of motion reduce to the
linear Stokes equations.

Self-propulsion in the Stokes regime has been extensively studied. There is
considerable knowledge about individual swimming mechanisms [2, 4, 16–19]
and the interactions between swimming bodies that give rise to emergent phe-
nomena [20–22]. However, larger bodies, such as birds and fish, self-propel
at high Reynolds numbers. With common material parameters [24, 25] and
assumed characteristic scales of L = 0.1 m and U = 0.1 m/s as a rough esti-
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mate for both birds and fish, the Reynolds number for self-propulsion in air
and water is 6× 102 and 1× 104, respectively. The fluid inertia cannot be ne-
glected at moderate and large Reynolds numbers, posing a major issue. The
inertial forces are non-linear and make solving the Navier-Stokes equations
much more computationally expensive. Of course, a finite element scheme for
the fluid with deformable solid bodies can be constructed. This method works
very well with a few swimmers, especially when paired with statistical learn-
ing techniques [26]. However, collective phenomena by definition require large
numbers of bodies, O(103), and the full fluid mechanical solution becomes
computationally intractable at this limit.

Historically, modeling emergent phenomena at high Reynolds number has side-
stepped the Navier-Stokes equations by neglecting the fluid medium entirely.
The models instead introduce phenomenological rules for body interactions
that lead to collective behavior. One of the most widespread frameworks, the
Vicsek model [27], assumes that each body will align its velocity vector with the
average of its nearest neighbors—with added noise to prevent all trajectories
from collapsing. The Vicsek model has also been generalized to account for
more complex interactions between group members by incorporating relative
orientational and rotational interactions [28–31]. While the Vicsek model can
reproduce the group dynamics seen in fish schooling and birds flocking, the
model only provides a phenomenological basis for the observed phenomena.
We would like to understand if the imposed “intelligence” is necessary for
collective effects or if we can reproduce the same phenomena using a simple,
mechanical model that explicitly accounts for fluid interactions.

If we additionally approximate the fluid flow as irrotational, we can apply
potential flow theory to create a much simpler model of the many-body hy-
drodynamic interactions [32–36]. The irrotational restriction is admittedly
severe, and we are neglecting a physical phenomenon that has often been con-
sidered essential [5, 37, 38] for self-propulsion in high Reynolds flow: vortex
shedding through the momentum boundary layer. Vorticity naturally exists
in the wake and boundary layer surrounding the bodies, which may account
for some aspect of collective motion. However, the vorticity sources have been
shown to scale inversely with the Reynolds number for spherical bodies [39] and
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so might not be critical for certain classes of swimmers. Before discussing the
feasibility of self-propulsion in potential flow, we begin with a few comments
on how a potential flow may lead to collective effects.

In potential flow at high Reynolds number, the steady flow fields reduce to the
well-known Bernoulli’s equation

p+
1

2
ρ u2 = constant , (1.1)

which states that the fluid velocity and pressure are in a constant balance.
Two particles that are translating parallel to each other (Fig. 1.3a) cause the
fluid between their line of centers to flow faster relative to the background
velocity. By Bernoulli’s equation, there exists a pressure minima at their
central point and the fluid effectively attracts the two particles along their
common axis. Potential flow then presents a physical mechanism for bodies

(a) (b)

Figure 1.3: (a) Two particles translating parallel to one another are attracted
and (b) are repelled when translating towards their mutual center.

to aggregate and may be a source of emergent phenomena. If two particles
are instead translating towards one another (Fig. 1.3b), they must push the
fluid out from their line of center. By symmetry, a stagnation point exists
at the pair’s central point, leading to a pressure maxima and fluid repulsive
forces. As the fluid can both attract and repel bodies [40], it may therefore set
a natural interaction length scale and aid in modeling collective phenomena.

Bubbly liquids, which possess the same fluid mechanics as the high Reynolds
swimmers, have been shown to spontaneously cluster when rising due to buoy-
ant forces [35]. As viscous dissipation is neglected at high Reynolds number,
the system is also conservative and therefore has a constant Lagrangian and
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Hamiltonian. The hydrodynamic interactions were derived through the La-
grangian, which is found to possess a configuration-dependent added mass.
The added mass physically captures the effective increase in inertia that a par-
ticle experiences from the fluid when translating in potential flow. Through
Hamiltonian mechanics, the added mass can be viewed as an effective poten-
tial and lead to the thermodynamic order-disorder phase transition. We want
to study whether this aggregation also occurs in high Reynolds number active
systems.

Now that the possible mechanism for collective phenomena seen in Fig. 1.1 has
been shown for potential flow, we return to the issue of self-propulsion. We
have made two crucial fluid mechanical assumptions: the fluid flow is inviscid
and irrotational. As we will show, viscous drag forces can be added by using
the Rayleigh dissipation function in the Lagrangian framework [41, 42]. How-
ever, the irrotational approximation cannot be relaxed in potential flow, and
we must ask if vorticity is an essential element for self-propulsion. Is a single
fish or bird able to self-propel in an inviscid potential flow without modeling
boundary layers? Thankfully, the answer is a resounding yes, and vorticity is
not needed for self-propulsion at high Reynolds number. Saffman first demon-
strated that net motion is possible for an inviscid swimmer in potential flow
[3]. The result is especially interesting, as the net motion occurs without en-
ergetic dissipation. Saffman argued that by breaking the natural time-reversal
symmetry inherent in an inviscid and irrotational flow, propulsion could be
generated from the configuration-dependent hydrodynamic forces. Kanso &
Marsden have continued to study self-propulsion in inviscid, irrotational flows
by modeling a swimmer as a collection of two-dimensional ellipsoids that are
connected via hinges [36, 43, 44]. Using control theory, they determined the
optimal articulation for their swimmer design.

The question of what body deformations result in self-propulsion has been long
debated in Stokes regime flows. Interestingly, both potential flow and Stokes
flow have time-reversible fluid dynamics. Purcell first hypothesized (without
mathematical proof) the general deformation requirements for a Stokes swim-
mer in what is now referred to as the Scallop Theorem [45]. The Scallop
Theorem states that in the time-reversible Stokes medium, a body must de-
form non-reciprocally to have net translation after one period of articulation.
Non-reciprocal motion is not time-invariant and is distinct when viewed for-
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wards and backward in time. It was named after the motion of an idealized
scallop, which can only open and close about a single hinge. After one cycle of
opening and closing, the scallop returns to its original position due to the time-
reversible hydrodynamics. Purcell stated that at least two degrees of freedom
must vary with some out-of-phase component to effect propulsion. More recent
work by Chambrion & Munnier [46] revealed a more general requirement of
self-propulsion that relied on geometric arguments instead of time-reversibility.
They showed that net motion is possible when a linear mapping of the shape
(deformational) variables to another linear space result in an open path and
also proved the same principle holds in the inviscid regime.

Before we investigate collective behavior, we begin by studying the motion of
a basic swimmer model. In Ch. 2, we present the physical and mathematical
details necessary to derive the equations of motion for a collection of swimmers.
We then derive a simple, internally constrained inviscid swimmer in Ch. 3 and
compare the results with the well-known Stokes flow solution [2, 4, 47].
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C h a p t e r 2

POTENTIAL FLOW THEORY

In this chapter, we present the theoretical developments required to derive
the equations of motion for bodies in a potential fluid using a Lagrangian
framework. Both potential flow and Lagrangian mechanics can model arbitrary
body geometry and deformation, but we focus on collections of rigid spheres as
this makes analytical progress easier. We begin by reviewing the differential
equations and boundary conditions for potential flow. The Lagrangian for
the fluid and particles is then calculated. We derive the particle equations of
motion and highlight the interesting aspects of the hydrodynamic interactions.
The inviscid approximation is relaxed, and bulk viscous forces are also derived
using the Rayleigh dissipation theorem.

2.1 Fluid Domain

We model the bulk fluid at an infinite Reynolds number such that viscous
forces can be neglected. The Navier-Stokes equations are then reduced to the
Euler equations where inertia and pressure forces directly balance

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p . (2.1)

Unfortunately, the Euler equations still contain the non-linear inertia convec-
tion term. By neglecting interfacial boundary layers and wakes, we approxi-
mate the flow as irrotational, which allows the use of potential flow theory [1,
2]. The fluid velocity can then be written as the gradient of a scalar potential

u = ∇φ . (2.2)

Substitution of φ into the equation of continuity (mass conservation) for an
incompressible fluid results in Laplace’s equation at all points in the fluid
domain

∇2φ = 0 . (2.3)

No flux boundary conditions are enforced on all particle surfaces ∂Ωα as

∇φ|∂Ωα · n = Uα · n , (2.4)
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where n is the unitary outward pointing normal (from the particle into the
fluid) and Uα is the translational velocity of particle α, as shown in Fig. 2.1.
We cannot enforce no-slip boundary conditions on particle surfaces, as only

Figure 2.1: Spherical particles α of radius a with
translational velocities Uα.

two scalar boundary conditions can be given for Laplace’s equation (Eq. (2.3)).
Since we are only concerned with the normal direction of the velocity, the
rotational motion of the spherical particles (and their corresponding torque) is
inconsequential due to the spherical isotropy. Particle rotation can be added
to the boundary conditions for non-isotropic shapes if desired.

Infinitely far from the particles, we assume the fluid is at rest such that the
potential decays to an arbitrary reference value, which we set to zero

φ( |x| → ∞) = 0 . (2.5)

We turn to Lagrangian mechanics to determine the particle equations of mo-
tion. The advantage of Lagrangian mechanics is only scalar total energies
must be derived, whereas the vector forces on all particles must be explicitly
derived in Newtonian mechanics. We assume no external fields are acting on
the fluid (i.e. V (f) = 0) such that the fluid Lagrangian is equal to the kinetic
energy L (f) = T (f). For constant mass density (incompressible fluid), the
fluid kinetic energy is given by the integral of the local kinetic energy density
over the fluid domain

T (f) =
1

2
ρ

∫
u2(x) dV . (2.6)
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The integrand is then recast using potential flow theory as u2 = ∇φ · ∇φ .
Further manipulation and application of the divergence theorem to relate the
potential gradient to the boundary conditions of all N particles results in

T (f) = − 1

2
ρ

N∑
α=1

(∫
∂Ωα

φn dS

)
·Uα . (2.7)

The negative sign in Eq. (2.7) is due to the convention of the normal vec-
tor pointing into the fluid domain from the solid—established by the no flux
boundary conditions in Eq. (2.4). As Laplace’s equation (Eq. (2.3)) is linear,
the solution must be linear in the particle velocity via the no flux boundary
conditions

φ (x) =
N∑
β=1

Φβ (x; {x−Rβ}) ·Uβ . (2.8)

The center position of particle β is denoted by Rβ. The parametric config-
uration dependence on the potential solution must be true given the surface
boundary conditions and their radially decaying potential disturbance. The
potential solution Φ is calculated via a multipole expansion about the spherical
centers. A translating sphere creates a dipolar potential disturbance O(r−2)

at leading order [2, 3], and higher order polar moments can be neglected, as
shown in Bonnecaze & Brady [4, 5].

Substitution of Eq. (2.8) into Eq. (2.7) simplifies the kinetic energy into a
quadratic form of the particle velocities. Using Einstein summation convention
on all repeated subscripts, the fluid kinetic energy is given by

T (f) =
1

2
ρ V Uβ ·Mβα ·Uα , (2.9)

where the “added” mass tensor is defined as

Mβα({Rγ}) := − 1

V

∫
∂Ωα

Φβ n dS . (2.10)

The volume of a spherical particle of radius a is V = (4/3)πa3. Each added
mass tensor element is dependent on the configuration of allRγ particles in the
system. The added mass tensor physically captures the effective increase in
inertia that a particle (or pair of particles) experiences due to the interactions
with all other particles. The source of the interesting phenomena we study is
the configurational dependence of the added mass tensor. Note that as defined,
the added mass tensor is dimensionless.
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The added mass tensor is calculated via a Taylor expansion of the potential
Φ about particle center positions. The constant term in the expansion is
zero by symmetry (the unit normal is an odd function over the spherical sur-
face). Therefore, the added mass is proportional to the gradient of the dipolar
potential at leading order, which is O(r−3). Further details on the explicit
calculation of added mass tensor can be found in App. A. An isolated dipolar
sphere has an added mass of

M (isolated) =
1

2
I , (2.11)

and the added mass that one sphere α of radius a experiences from dipole-
dipole interactions with one other sphere β is

M
(d−d)
αβ =

a3

2

(
1

|r|3
I− 3

|r|5
r ⊗ r

)
, (2.12)

where r = Rα −Rβ and ⊗ denotes the outer (dyadic) product.

Finally, we can also simplify the vector notation of Eq. (2.9) by using a stacked
vector of the individual particle velocity vectors (U = [U1,U2, . . . ,UN ]T) as

T (f) =
1

2
ρ V U ·M ·U . (2.13)

The Lagrangian of the fluid is therefore wholly determined by the particle
velocities and their configuration. We must now add the particles’ real mass
and potential energy to solve the Lagrangian of the entire system.

2.2 Solid Particles

In our systems, we model the bodies as collections of spheres possessing the
same radii a and density ρ(p). We can immediately define the kinetic energy
of all particles in the canonical fashion

T (p) =
1

2
ρ(p) V U ·U . (2.14)

We can add an arbitrary conservative particle potential V (p), such as harmonic
springs to connect particles or a WCA potential to prevent particle overlap.
Non-conservative potentials can also be included through the Rayleigh dissi-
pation function, as will be discussed in § 2.3. The total Lagrangian for the
system is the sum of the constituent Lagrangians from the fluid and particles.
Using Eqs. (2.13)–(2.14), the total Lagrangian is given as

L = T − V =
1

2
V U · (ρM + ρ(p) I) ·U − V (p) . (2.15)
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Lagrange’s equation of motion conserves energy via the principle of least action
and is given as

d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R
= 0 . (2.16)

The equation of motion for each particle dimension is then

ρV

(
Mkj +

ρ(p)

ρ
δkj

)
U̇j − ρ V

(
1

2
Ui
∂Mij

∂Rk

Uj −
∂Mkj

∂Ri

Ui Uj

)
= −∂V

(p)

∂Rk

.

(2.17)
Note that repeated Roman indices also imply Einstein summation convention.
In this study, we use two separate but interrelated indices. Greek indices α, β, γ
account for particle number, and each contain 3 entries (x, y, z Cartesian
coordinates). Roman indices i, j, k are the absolute index number, and each
contains one entry. This implies that Mαβ is a 3× 3 tensor, whereas Mij is a
scalar.

The configuration-dependent added mass must be a source of self-propulsion
in the potential regime. If the added mass was independent of the particle
configuration, the equations of motion immediately reduce Newton’s equations
for constant mass particles

Mkj U̇j = −∂V
(p)

∂Rk

, (2.18)

and self-propulsion would not be possible by only varying the particle config-
uration. We have defined the “total” mass tensor as

Mkj = ρ V

(
Mkj +

ρ(p)

ρ
δkj

)
, (2.19)

and denote the Kronecker delta δkj. For simplicity, we denote the ratio of
mass densities as Γ = ρ(p)/ρ and the fluid mass displaced by a single sphere
as ν = ρ V so that the mass tensor is more compactly written

Mkj = ν (Mkj + Γ δkj) . (2.20)

The importance of the configuration-dependent added mass can also be seen
from the hydrodynamic forces directly. Hinch & Nitsche [6] proved that the
hydrodynamic pressure forces (exerted by the fluid on the particles) can be
related to the fluid kinetic energy terms in Lagrange’s equation (Eq. (2.16))

FP = − d

dt

(
∂T (f)

∂Ṙ

)
+
∂T (f)

∂R
. (2.21)
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The particles then have two ways to interact hydrodynamically. They may
either accelerate their surrounding fluid (U̇k 6= 0), or vary their relative posi-
tions to take advantage of the added mass tensor (cf. Eq. (2.13)). An isolated
particle traveling at constant velocity consequently experiences no net hydro-
dynamic force, commonly referred to as D’Alembert’s paradox [7].

We finally turn to the particle linear momentum in order to determine all
canonical coordinates and define it as

P := M U . (2.22)

The total linear momentum of the particles is then given by

P(t) =
N∑
α=1

Pα , (2.23)

and can be viewed as the impulse required from the fluid to accelerate all par-
ticles from rest to their current state. If the potential energy V (p) is purely in-
ternal to the system, the Lagrangian will only depend on relative configuration
and not absolute particle positions. This implies that the Lagrangian must be
invariant to a rigid spatial translation of the entire system (i.e.

∑
α

∂L
∂Rα

= 0).
Lagrange’s equation of motion (Eq. (2.16)) then reduces to Ṗ(t) = 0. We now
have two conserved quantities in potential flow: total energy T +V and total
linear momentum P(t) [8]. The total energy is also known as the Hamiltonian
H = T + V , and its conservation allows the application of equilibrium sta-
tistical mechanics, as Yurkovetsky & Brady did in bubbly liquids [3]. With a
Hamiltonian, the collection of particles can be treated as a canonical ensemble,
a partition function can be defined, and thermodynamic phase behavior can
then be analyzed.

2.3 Viscous Dissipation

Potential flow theory only requires that the fluid velocity field is irrotational
and incompressible. We can therefore apply the Rayleigh dissipation function
[9, 10] to the Lagrangian framework and derive the effective bulk viscous dis-
sipation inherent in a finite Reynolds flow. The viscous dissipation is derived
via a balance of energy and is given by

Ėv = 2µ

∫
e : e dV , (2.24)
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where superscript v denotes viscous effects and is not an index. The symmetric
rate of strain tensor e double contraction can be rewritten in terms of the scalar
potential as

Ėv = 2µ

∫
∇∇φ : ∇∇φ dV . (2.25)

From linearity of Laplace’s equation, we can derive a quadratic form of the
dissipation in the particle velocities

Ėv = U ·R ·U , (2.26)

where we group the remaining integral and constants into the Rayleigh dissi-
pation tensor R (see App. B for further details). Analogous to the added mass
tensor, the Rayleigh dissipation tensor is purely a function of geometry and
configuration. By the Rayleigh dissipation function, the viscous dissipative
force can then be calculated via the velocity derivative as

Fv = − 1

2

∂Ėv

∂U
= −R ·U . (2.27)

An isolated sphere experiences a drag force of Fv = −12π aµU . We can then
directly add the viscous dissipation to Eq. (2.16)

Fv =
d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R
, (2.28)

as shown in Goldstein §1.5 [9].
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C h a p t e r 3

COLLINEAR SWIMMER

Saffman first demonstrated inviscid self-propulsion [1], and we wish to con-
struct a minimal body capable of self-propulsion within our framework. We
chose to follow a prototypical Stokes swimmer design [2], as we thought it
would be a good example and allow comparison between Stokes and inviscid
swimming. The swimmer consists of three identical spheres connected via two
“arms” (Fig. 3.1). The arms are thin, such that we can neglect them hydro-
dynamically. The body is referred to as a “swimmer” because after a period
of articulation, the body is prescribed to return to its original configuration.
Therefore, if there is any net translation (self-propulsion) after one complete
period, the same propulsion will occur for all future periods by symmetry.

Figure 3.1: A swimmer: Three spheres of equal radius a and density con-
nected by thin arms with prescribed deformation. The swimmer is collinear
such that it only translates along one spatial dimension.

The spheres have spatial center positions {R1, R2, R3}, which can be linearly
mapped to a set of generalized “body” coordinates {X, Y, Z}. The relative
separation between neighboring particle pairs is denoted as X and Y , which
will be the two internal degrees of freedom required for self-propulsion by the
generalized scallop theorem [3, 4]. The body center of mass is called Z and
will be tracked to determine the self-propulsion behavior of the swimmer. The



19

linear mappings for positional coordinates are given as

X = R2 −R1 ,

Y = R3 −R2 , and

Z = 1
3

(R1 +R2 +R3) .

(3.1)

Analogous mappings can be defined for the velocity and acceleration compo-
nents.

3.1 Translating Potential Swimmer

We only analyze the x-components of the mass tensors and kinematics as
the y and z-axes can be neglected by symmetry. With no external forcing
and momentum-free initial conditions, the total linear momentum of the body
center of mass must be zero for all time (Pz = 0). In body coordinates, this
conservation statement implies

Ż = −Mxz

Mzz

Ẋ −Myz

Mzz

Ẏ . (3.2)

For the swimmer to translate on net after one period of articulation, it is
required that the time average of Ż be non-zero. As the total mass tensor is
only defined in terms of the relative particle coordinates, we must determine
the body coordinate mass tensor entries by setting the total linear momentum
equal to zero (Eq. (2.23)), substituting the body coordinate velocity mappings,
and defining effective body mass from the resulting balance as

Mxz = 1
3

(−2 M11 + M22 + M33 −M12 + 2 M23 −M13) ,

Myz = 1
3

(−M11 −M22 + 2 M33 − 2 M12 + M23 + 2 M13) , and

Mzz = M11 + M22 + M33 + 2 M12 + 2 M23 + 2 M13 .

(3.3)

Interestingly, Mxz and Myz are not dependent on the real mass for our swim-
mer model. The real mass is only found on the diagonal total mass tensor
entries (M11, M22, M33), and is canceled out by the addition and subtraction
operations. If the spheres instead had distinct masses, Mxz and Myz would
have a real mass component and be weighted according to the given model.
In order to study the evolution of Ż, we prescribe the internal velocity degrees
of freedom Ẋ and Ẏ as

Ẋ = U0 cos (ω t) ,

Ẏ = U0 cos (ω t+ δ) .
(3.4)
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We are interested in the center of mass displacement after one period, which
is given by the time integral of Eq. (3.2)

∆Z (t = 2π/ω) = −
∫ 2π/ω

0

(
Mxz

Mzz

Ẋ +
Myz

Mzz

Ẏ

)
dt . (3.5)

Note that if the mass tensor elements are not a function of configuration, the
mass tensor elements can be removed from the integral, and the integral of
a cosine wave over one period is identically zero. Thus, the added mass due
to hydrodynamic interactions must be the source of self-propulsion for the
swimmer being studied.

Small Amplitude Motion

Assuming that the particle oscillations are small compared to their average
separation, ε = (U0/ω) /|X0| � 1, we can Taylor expand the mass tensor ele-
ments about the average separation (X0, Y0). Integration of the leading order
Taylor expansion reveals that only the cross-terms (having both X and Y co-
ordinates in the integrand) are non-zero due to simple trigonometric identities.
The leading order Taylor expansion of Eq. (3.2) is calculated as

∆Z̃ = π sin δ

(
U0

aω

)2
 ∂

∂X̃

(
Myz

Mzz

)∣∣∣∣∣
X̃0,Ỹ0

− ∂

∂Ỹ

(
Mxz

Mzz

)∣∣∣∣∣
X̃0,Ỹ0

 , (3.6)

where we have non-dimensionalized the length scales by the spherical radius
a and denote dimensionless quantities with a tilde. Self-propulsion (∆Z̃ 6= 0)
is therefore dependent on both the kinematics and configuration. To have a
net translation, there must be a phase shift between the oscillators (δ 6= c π

for integer c) and the effective mass tensor element variations must not cancel.
The relative center of mass translation is governed by the competition of two
length (or time) scales: one set by geometry, and another set by the system
kinematics, which is tuneable

Ldyn

Lgeo
=
U0/ω

a
,

τosc

τtrans
=

1/ω

a/U0

. (3.7)

Increasing the translational amplitude of oscillations increases the value of
the dynamic length scale and leads to higher relative motion. Derivatives
are then calculated and evaluated for the special case of equispaced particles
R0 = −X0 = −Y0. For neutrally buoyant swimmers (Γ = 1), Eq. (3.6) becomes

∆Z̃ = π sin δ

(
U0

aω

)2
36 (744R9

0 − 1564R6
0 + 1632R3

0 − 1045)

R0(144R6
0 − 204R3

0 + 209)
2 . (3.8)
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Importantly, the dimensionless displacement scales as O(R−4
0 ) to leading order,

which is expected from the derivative of the added mass tensor. Note that the
dimensionless spacing must be greater than two to be physical (no particle
overlap). For a configuration with maximized phase difference δ = π/2, we
plot the body center of mass displacement over one period of articulation in
Fig. 3.2 (blue curve). Note that in general, both the magnitude and sign of
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Figure 3.2: Relative displacement (a) and log-log relative displacement (b)
for one period of articulation with X0 = Y0, Γ = 1, δ = π/2. Blue curve
from Eq. (3.8) and black points depict numerical simulation results.

the resultant displacement will vary depending on the value of the phase angle
δ. A phase difference of π/2 corresponds to the 1–2 particle pair initially at
its equilibrium length and contracting with velocity −U0 while the 2–3 pair is
at rest in its minimum extensional length (cf. Eq. (3.4)). This phase difference
results in the movement towards the positive x-axis (particle 1). If the phase
difference is an integer multiple of π, no translation is possible at leading order,
regardless of the internal mechanics.

It is important to note that the net motion of the internally constrained
collinear swimmer—or indeed any similar swimmer in an inviscid, irrotational
fluid—is still energetically conservative over a period of articulation. The pre-
scribed kinematic constraints (Eq. (3.4)) must be upheld by a corresponding
constraint force that the connecting arms provide. The work done by the con-
straint force over a period is given as the difference between the total kinetic
energy at the beginning and end of the period, as shown in App. C. Since
Ẋ and Ẏ are periodic and the total linear momentum of the system must be
zero for all times, the kinetic energy at the beginning and end of the articula-
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tion period are the same. The work done by the constraint force on the body
over one period is therefore identically zero, and the motion does not lead to
dissipation.

Numerical Solution

In order to ascertain the validity of the leading order expansion, we numerically
integrate Ż (Eq. (3.2)). The initial positions of the particles were determined
by integration of Eqs. (3.4), setting the central sphere to be placed at the origin,
and specifying an average separation R0 = −X0 = −Y0. Initial accelerations
were set by the time derivatives of the velocity constraints and closed with a
force-free condition on the overall swimmer. The simulation results had an
approximately O(R−4

0 ) center of mass translation decay, which was expected
from the Taylor expansion (Fig. 3.2b). The full numerical solution shows
excellent agreement with the leading order approximation (Fig. 3.2a).

When ε grows, the Taylor expansion will become less accurate as depicted
in Fig. 3.3. Note that as defined ε ≤ 1

2
to prevent particle overlap. As the
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Figure 3.3: Relative displacement for one period of articulation with
X0 = Y0, Γ = 1, δ = π/2, R0 = 10. Blue curve from Eq. (3.8) and black
points depict numerical simulation results.

oscillations become larger in magnitude, the particles become significantly
closer together at minimum separation and experience larger hydrodynamic
interactions. The inverse cubic scaling of the hydrodynamic interactions causes
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the closer interactions to overcompensate for the weaker interactions when
the particles are at maximum separation and lead to a non-linear increase in
displacement after one period.

Constant Center of Total Mass Approximation

As mentioned previously, the swimmer is able to self-propel due to the con-
figuration dependence of the total mass tensor elements. If we assume that
the particles are well separated, we can approximate Mzz as constant, as it is
dependent on the real mass at leading order, and simplify Eq. (3.6)

∆Z̃ =

(
U0

aω

)2[
π sin δ

Mzz

(
∂Myz

∂X̃
− ∂Mxz

∂Ỹ

)]∣∣∣∣∣
X̃0,Ỹ0

. (3.9)

Evaluation of the simplified equation for equispaced particles results in

∆Z̃ = π sin δ

(
U0

aω

)2(
186R3

0 − 187

144R7
0

)
, (3.10)

which possesses the same asymptotic O(R−4
0 ) scaling as the leading order ex-

pansion (cf. Eq. (3.8)). We directly compare the leading order analytical so-
lution to the constant center of mass solution in Fig. 3.4. The solutions differ
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Figure 3.4: Relative displacement for one period of articulation with
X0 = Y0, Γ = 1, δ = π/2, Blue curve from Eq. (3.8) and black curve
from Eq. (3.10).

only as the particle pair average separation becomes O(3) and converge for
well-separated particles, as expected. The direct coupling of the added mass
Mxz and Myz through the internal degrees of freedom is clearly a key source
of self-propulsion for the swimmer presented.
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3.2 Translating Stokes Swimmer

The Stokes regime is defined as Re� 1 and inertial forces are negligible. The
solutions to the Stokes flow hydrodynamics are well-known and can be found in
Refs. [5, 6]. The Stokes hydrodynamic force is linear in the particle velocities
and is written as

FH = −R̂ ·U . (3.11)

The hydrodynamic resistance tensor R̂ is only a function of the particle con-
figuration, analogous to the added mass tensor in potential flow. Importantly,
the translating sphere Stokes fluid disturbance scales as a monopole at lead-
ing order [5], which is a much longer-ranged interaction than in the potential
fluid. We numerically simulate the Stokes hydrodynamics using the Stokesian
Dynamics framework [7, 8]. A brief overview of Stokesian Dynamics can be
found in App. D.

The translating Stokes swimmer is defined identically to the translating po-
tential swimmer, with the same coordinate system (Eqs. (3.1)) and imposed
velocity constraints (Eq. (3.4)). The system of equations governing motion in
the Stokes regime is closed through a force-free condition on the overall swim-
mer. These conditions result in the Stokes swimmer center of mass velocity
as

Ż = − R̂xz

R̂zz

Ẋ − R̂yz

R̂zz

Ẏ . (3.12)

Note that the Stokes equation of motion is analogous to the respective inviscid
equation (cf. Eq. (3.2)) with the resistance tensor taking the place of the
total mass tensor. As the resistance tensor is only a function of the particle
configuration, the center of mass translation derivation is the same as in the
inviscid regime, resulting in

∆Z̃ = π sin δ

(
U0

aω

)2
 ∂

∂X̃

(
R̂yz

R̂zz

)∣∣∣∣∣
X̃0,Ỹ0

− ∂

∂Ỹ

(
R̂xz

R̂zz

)∣∣∣∣∣
X̃0,Ỹ0

 (3.13)

for one period of articulation. In the Stokes regime, the partial derivatives are
evaluated numerically using Stokesian Dynamics code extended from Ref. [9].
For comparison with both the inviscid regime and earlier work on Stokes swim-
mers, we only include the far-field hydrodynamic interactions and not the
singular, short-ranged lubrication forces.
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Before numerical evaluation, however, we can already anticipate the asymp-
totic scaling of ∆Z̃ for well-separated particle pairs. An isolated translating
sphere creates a monopole hydrodynamic disturbance [7], and the derivative
of the monopole scales as O(R−2

0 ). We therefore expect an inverse quadratic
decay of the center of mass translation for large particle separation, which is
what we observe in Fig. 3.5a. Notably, the Stokes regime exhibits two separate
propulsion regimes. The higher-order reflection interactions become prominent
and cause the differing decay at moderate separations of O(3) in Fig. 3.5a.
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Figure 3.5: The log-log relative displacement (a), and increasing small pa-
rameter ε (b) for one period of articulation with X0 = Y0, and δ = π/2 ((b)
|X0| = 10). Blue curve from Eq. (3.13) and black points depict numerical
simulation results.

As the relative oscillation amplitude ε grows, the numerical results again grow
faster than the Taylor expansion (Fig. 3.5b) due to increased hydrodynamic
interactions with non-linear scaling at near separation. However, the Taylor
expansion is accurate for much larger values of ε than in the inviscid regime
(cf. Fig. 3.5b). The leading order well-separated Stokes hydrodynamic in-
teractions scale as O(R−2

0 ), a much slower varying function compared to the
leading order inviscid hydrodynamic interactions of O(R−4

0 ). The smaller hy-
drodynamic variations lead to a more accurate approximation by using the
interactions at the average separation.

Golestanian Swimmer

Najafi & Golestanian first proposed a similar three-sphere, collinear swimmer
model [10] in the Stokes regime. The prescribed kinematics dictated that only
one particle pair deformed at a time in a series of four discrete steps. The
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swimmer starts out in its extended, equispaced configuration. During the first
two steps, one arm contracts at a time to the same contracted length (i.e.
Ẋ = const, Ẏ = 0). The pairs then extend to their original length over the
last two steps in the same order they contracted. The overall articulation is
non-reciprocal and propels the swimmer on net. The swimmer model similarly
predicted a quadratic scaling of the self-propulsion ∆Z (cf. Eq. (3.6)) with the
relative oscillation amplitude ε.

A later study by Golestanian & Ajdari [2] focused on a swimmer with similar
kinematic constraints to those presented in § 3.2 in which both particle pairs
deformed sinusoidally. The continuously deforming swimmer also recovered
the sin δ translational dependence. They note that a general three-sphere
swimmer must have a phase difference between the prescribed kinematics of
the particle pairs, or self-propulsion will not occur.

In both works, Golestanian proves the magnitude of displacement is directly
proportional to the area traced over a full cycle in configuration phase space.
The integral for the translation magnitude (Eq. (3.5)) can be interpreted as
the area swept out in (∆X, ∆Y ) phase space. The original Golestanian swim-
mer [10] and the continuously deforming swimmer presented in this work trace
out different shapes in configuration phase space. The Golestanian swimmer
only moves one pair at a time, thereby tracing out a square over the articu-
lation period (assuming the pairs deform identical lengths). The continuously
deforming swimmer traces out an ellipse, and when the phase difference is
maximized at δ = π/2, the ellipse becomes a circle. Conversely, when the
phase difference reaches an integer multiple of π, the ellipse collapses to a line,
which encloses no area.

The side length of the square and the diameter of the circle are the same for
identical swimmer oscillation amplitudes. By taking the ratio of the square to
the circular area, we therefore predict the relative translation after one period
of π/4 (continuously deforming: Golestanian [10]), which is the same ratio we
recover numerically. We also recover the same ratio for identical swimmers in
the potential flow regime, which is expected as it contains the same equation of
motion (with R̂→M ). However, the predicted ratio is only achieved for small
amplitude oscillations ε. The phase space argument implicitly assumes that
the hydrodynamic interactions are equivalent between the swimmers, which
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becomes less accurate as the oscillation amplitude grows. The phase space
argument for net-translation is powerful, as it makes a comparison between
alternative swimmer designs easy for small amplitude oscillations.

3.3 Comparison Between Fluid Regimes

Now we arrive at the direct race between identical swimmers (continuous
deformation) in inviscid and Stokes flow. We show the numerical solution
for the center of mass translation after one period of oscillation in Fig. 3.6.
As expected, the Stokes swimmer translates farther during the articulation
period when the particles are well-separated. The strength of the interac-
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Figure 3.6: Comparison between identical swimmer center of mass
translation in Stokes and inviscid fluids for one period of articulation
with X0 = Y0, and δ = π/2.

tions leading to self-propulsion is then proportional to the sensitivity of the
coupling tensors with varying separation as well as their respective scaling
(cf. Eqs. (3.2), (3.13)). As the Stokes regime possesses a much larger lead-
ing order interaction strength, the self-propulsion of the Stokes swimmer is
consequently larger in magnitude for well-separated particle pairs. At nar-
row separations, the higher-order reflections in the Stokes case dominate and
dampen the net translation.
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A p p e n d i x A

FURTHER DETAILS ON MASS TENSORS

Both the total mass tensor and its gradient with respect to particle centers
are required for the full particle equations of motion given in the main text
(Eq. (2.17)). We present the remaining details to derive the required quantities
for both analysis and computation.

A.1 Added Mass Tensor

Calculation of the potential flow solution Φ requires a multipole expansion of
Laplace’s equation (Eq. (2.3)). For constant volume particles, the monopole
is identically zero, and the dipole captures the no-flux boundary condition.
The hydrodynamic disturbances (velocity field) scale as the gradient of the
potential, indicating the interactions between particles scale as O(r−3), where
r is the distance between their centers. Higher-order polar moments can be
neglected, as shown in Bonnecaze & Brady [1, 2]. A detailed calculation of
the mass tensor is found in Yurkovetsky & Brady [3].

The overall added mass tensor is symmetric and positive definite. The symme-
try physically results from the tensor being a function of the absolute value of
the distance between particles, so the added mass on particle one from particle
two is the same as the reverse. The positive definite quality can be proved
from the quadratic form of the fluid kinetic energy in the particle velocities
(kinetic energy cannot be negative). The added mass tensor is calculated as a
function of particle configuration with constituent tensors defined as

M := −
(
I−M (1)

)−1
M (2) . (A.1)

Each 3 × 3 sub-tensor in M (1) physically describes the dipole-dipole hydro-
dynamic interactions between a pair of particles, and the inversion operation
represents the scattering of all hydrodynamic interactions. The second con-
stituent mass tensor M (2) can be directly calculated from M (1) as

M (2) = −M (1) − 1

2
I , (A.2)
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and is defined for notational convenience. The distance between particles α
and β is the Euclidean norm, |Rαβ| = ||Rα−Rβ||2. Note that |Rαβ| is a scalar
describing the distance between particles, not a second-order tensor. The first
constituent added mass tensor is then defined as

M
(1)
αβ := −a

3

2
∇y∇y |Rαβ|−1 (A.3)

for particle α different from particle β, where both particles are assumed to
have constant spherical radius a. The gradients are with respect to the dis-
placement between the pair as y = Rβ − Rα. The second order gradient is
then given explicitly by

M
(1)
αβ = −a

3

2

(
3

|Rαβ|5
Rαβ ⊗Rαβ −

1

|Rαβ|3
I

)
, (A.4)

where Rαβ is a shorthand for the relative displacement and not summed over.
All 3× 3 sub-tensors on the diagonal of M (1) are the zero tensor.

A.2 Added Mass Tensor Gradient

The gradient of the mass tensor with respect to all particle centers Rα is re-
quired for the particles’ equations of motion. We denote the gradient of the
added mass tensor first constituent with respect to the k-th dimension of par-
ticle centers as M (1)

ij,k. The gradient particle introduces an anti-symmetry into
the mathematics, as the tensor element is dependent on Rα−Rβ. Exploiting
these symmetries yields the following simplifications to the calculation of the
added mass tensor.

M
(1)
αβ,α = M

(1)
βα,α = −M (1)

αβ,β = −M (1)
βα,β (A.5)

The repetition of indices in Eq. (A.5) does not imply Einstein summation
convention, merely making explicit the fact that the gradient particle position
coordinates must be one of the two particles in the mass tensor element. Each
sub-tensor (size 3×3×3) for the gradient mass tensor constituent one is given
as (

M
(1)
αβ,γ

)
ijk

=(δαγ − δβγ)

(
−3 a3

2 |Rαβ|5
(
δij (Rαβ)k + δik (Rαβ)j + δjk (Rαβ)i

)
+

15 a3

2 |Rαβ|7
(
Rαβ ⊗ Rαβ ⊗ Rαβ

)
ijk

)
.

(A.6)
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The calculation of the full mass tensor gradient is complicated since a ten-
sor, A, must be computed numerically via tensor inversion A = B−1 :=

(I−M (1))
−1. We therefore seek a closed-form equation for the gradient with-

out calculating ∇B. We can avoid this issue by using the identity tensor to
define ∇(B−1) in terms of ∇B and B−1 itself.

δij = Bik B
−1
kj

∂

∂xl

(
δij

)
= 0 =

∂Bik

∂xl
B−1
kj +Bik

∂B−1
kj

∂xl

Bik

∂B−1
kj

∂xl
= −∂Bik

∂xl
B−1
kj

B−1
mi Bik

∂B−1
kj

∂xl
= −B−1

mi

∂Bik

∂xl
B−1
kj

δmk
∂B−1

kj

∂xl
= −B−1

mi

∂Bik

∂xl
B−1
kj

∂B−1
mj

∂xl
= −B−1

mi

∂Bik

∂xl
B−1
kj

∇(B−1) = −B−1 · ∇B ·B−1

(A.7)

Given ∇(B−1), we can calculate the mass tensor gradient as

∂Mij

∂xl
= −∂Aik

∂xl
M

(2)
kj − Aik

∂M
(2)
kj

∂xl

= Aim
∂Bmn

∂xl
AnkM

(2)
kj − Aik

∂M
(2)
kj

∂xl

= −Aim
∂M

(1)
mn

∂xl
AnkM

(2)
kj − Aik

∂M
(2)
kj

∂xl

= Aim
∂M

(1)
mn

∂xl
Mnj + Aik

∂M
(1)
kj

∂xl

= Aim

(
∂M

(1)
mn

∂xl
Mnj +

∂M
(1)
mj

∂xl

)

= Aim
∂M

(1)
mn

∂xl

(
Mnj + δnj

)
.

(A.8)
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A p p e n d i x B

RAYLEIGH DISSIPATION FUNCTION

The Rayleigh dissipation theorem [1, 2] allows us to include viscous dissipation
in the Lagrangian framework. The viscous dissipation is derived via a balance
of energy and is given by

Ėv = 2µ

∫
e : e dV , (B.1)

where superscript v denotes viscous effects and is not an index. The symmetric
rate of strain tensor e double contraction can be rewritten in terms of the scalar
potential as

Ė = 2µ

∫
∇∇φ : ∇∇φ dV . (B.2)

The potential is once again expanded in a linear form of the boundary condi-
tions (Eq. (2.8)), and the divergence theorem is applied to simplify Eq. (B.2)
as

Ėv = −2µUα ·
(∫

∂Ωλ

(∇∇Φα) : (∇Φβ nλ) dS

)
·Uβ . (B.3)

The potential field is solved for the dipole disturbances via Faxén-type laws
relating the potential at a particle center to the potential existing in at that
same point in the absence of the particle [3]

Φγ (x) =
a3

2

(
∇ 1

|x−Rν |

)
·
[

2

3
M

(1)
νψ · (Mψγ + I δψγ) + I δνγ

]
. (B.4)

The dissipation rate is then written as a simple, quadratic form of the particle
velocities

Ėv = Uα ·Rαβ ·Uβ , (B.5)

where we group the integral and constants into the Rayleigh dissipation tensor
Rαβ. Constant terms are removed from the integral and denoted via tensor
N defined by

Nνγ =
2

3
M

(1)
νψ · (Mψγ + I δψγ) + I δνγ . (B.6)

Analytic solution of the Rayleigh dissipation tensor requires a Taylor expan-
sion of the potential fields for a given particle pair ν and η located inside
the integrand. The potential disturbances are both expanded about another
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particle λ center whose surface is integrated over. In general, λ can be either
ν, η, or both. The leading order expansions yield different analytical forms
for each set of {η, ν, λ} particles depending on the their relationship and is
summarized in tensor form as

Cνη;λ =



−12π I λ = η, ν = η

0 λ = η, ν 6= η

8πM
(1)
ην λ = ν, ν 6= η

8π
3
∇M (1)

λν : ∇M (1)
λη λ 6= ν, ν 6= η (λ not summed over)

. (B.7)

The semicolon denotes that the sub-tensor Cνη is parametrically dependent
on the integration surface of particle λ. In the full Rayleigh dissipation tensor,
all λ are summed over for each Cνη sub-tensor

Rαβ = a µ
N∑
λ=1

(Nαν ·Cνµ;λ ·Nµβ) . (B.8)

By the Rayleigh dissipation theorem, the viscous dissipative force can then be
calculated via the velocity derivative as

Fv = − 1

2

∂Ėv

∂U
= −R ·U . (B.9)

Note that we recover the well-known isolated sphere viscous drag of Fv =

−12 π aµU (cf. Eqs. (B.6)–(B.8)).
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A p p e n d i x C

GENERALIZED WORK-ENERGY THEOREM

In Lagrangian mechanics, a generalized external force F can be added to a
Lagrangian system as [1, 2]

d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R
= F . (C.1)

The work done by the generalized force is defined as the line integral of the
force over a set distance from arbitrary state 1 to state 2

W =

∫ x2

x1

F · dl =

∫ t2

t1

F ·U dt . (C.2)

In the special case where the particles posses no potential energy (L = T =
1
2
Uj Mjk Uk) we evaluate the required derivatives in Eq. (C.1) with Ṙ = U .

∂T

∂Ui
=

1

2
Mik Uk +

1

2
Uj Mij = Mij Uj by symmetry of M

∂T

∂Ri

=
1

2
Uj

∂Mjk

∂Ri

Uk

(C.3)

Substituting Eq. (C.1) into Eq. (C.2) and integrating for one period of a peri-
odic oscillation yields

W =

∫ t2

t1

Ui
d

dt
(Mij Uj) dt−

∫ t2

t1

Ui

(
1

2
Uj Uk

∂Mjk

∂Ri

)
dt

=

∫ t2

t1

d

dt
(Ui Mij Uj) dt−

∫ t2

t1

(
Mij Uj

dUi
dt

+
1

2
Ui Uj Uk

∂Mjk

∂Ri

)
dt

= (Ui Mij Uj)
∣∣∣t2
t1
−
∫ t2

t1

(
Mij Uj

dUi
dt

+
1

2
Ui Uj Uk

∂Mjk

∂Ri

)
dt .

(C.4)

The remaining integral can be simplified using the product rule of derivatives
as

Mij Uj
dUi
dt

=
d

dt

(
1

2
Mij Ui Uj

)
− 1

2
Ui Uj Uk

∂Mjk

∂Ri

. (C.5)

The work over a given time-interval is then

W =
1

2
Mij Ui Uj

∣∣∣t2
t1

= T (t2)−T (t1) , (C.6)



36

which is a generalization of the well known work-energy theorem in the case
where the mass is a function of configuration. The work done on the particles
by the generalized force is a state function of the kinetic energy evaluated at
both ends of the interval of interest.
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A p p e n d i x D

OVERVIEW OF STOKESIAN DYNAMICS

The Stokes regime is defined as Re � 1 and inertial forces are negligible.
The solution of the fluid velocity field reduces to Laplace’s equation for the
fluid flow field. As the Stokes regime is linear in the particle velocity vector
(no-slip boundary conditions), we can decompose the motion of a solid body
into a set of simpler motions, such as rigid translation and rotation [1, 2]. The
longest-ranged fluid disturbance is due to translation and scales as a monopole,
O(r−1), at leading order, which is a much longer-ranged interaction than in a
potential flow.

The velocity field is Taylor expanded in terms of particle surface velocity mo-
ments: linear velocity U , rotational velocity Ω, symmetric rate of strain tensor
E, and higher order moments [3–5]. The force on the particle surface is sim-
ilarly expanded in surface moments. In the numerical results presented, we
follow the convention of only expanding to the first symmetric moment. This
yields the commonly used F-T-S model (force, torque, and stresslet). The
force moments can be related to velocity moments through linear relations
(Faxén laws), and are summarized in grand tensional form by

U

Ω

E

 = −


M̂UF M̂UL M̂US

M̂ΩF M̂ΩL M̂ΩS

M̂EF M̂EL M̂ES

 ·


F

L

S

 , (D.1)

with the so-called mobility tensor elements M̂ denoted with hats to avoid con-
fusion with the added mass tensor in the potential fluid regime. It is important
to note that the mobility tensor is only a function of particle configuration,
just as the added mass tensor is in the potential regime. The mobility tensor
physically captures the coupling between force and velocity and is derived in
Ref. [5]. Without inertial forces, Newton’s second law for the particles reduces
to

FH + FP = 0 , (D.2)
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where FH is the hydrodynamic force (F in Eq. (D.1)), and FP is any non-
hydrodynamic force. Solution for the hydrodynamic force requires inversion
of the mobility tensor to yield the resistance tensor R̂. The inversion captures
the reflection of all interactions between solid particles, and allows one to solve
for the particle velocities given a known FP via Eq. (D.2)

U = R̂−1
FU ·

(
FP − R̂FΩ ·Ω − R̂FE : E

)
. (D.3)

In many-particle systems, the resistance matrices are calculated numerically,
and Eq. (D.3) provides an equation of motion in the Stokes regime.
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