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ABSTRACT

Raw behavioral data is becoming increasingly more abundant and more easily
obtainable in spatiotemporal domains such as sports, video games, navigation &
driving, motion capture, and animal science. How can we best use this data to ad-
vance their respective domains forward? For instance, researchers for self-driving
vehicles would like to identify the key features of the environment state that impact
decision-making the most; game developers would like to populate their games
with characters that have unique and diverse behaviors to create a more immersive
gaming experience; and behavioral neuroscientists would like to uncover the un-
derlying mechanisms that drive learning in animals. Machine learning, the science
of developing models and algorithms to identify and leverage patterns in data, is
well-equipped to aid in these endeavors. But how do we integrate machine learning
with these spatiotemporal domains in a principled way? In this thesis, we develop
and introduce new algorithms in programmatic deep learning that tackle some of
the new challenges encountered in behavior modeling.

Our work in programmatic deep learning comprises two main themes: in the first,
we show how to use expert-written programs as sources of weak labels in domains
where manually-annotated expert labels are scarce; in the second, we explore pro-
grams as a flexible function class with human-interpretable structure and show how
to learn them via neurosymbolic program learning. Augmenting deep learning
with programmatic structure allows domain experts to easily incorporate domain
knowledge into machine learning models; we show that this results in significant
improvements in many behavior modeling applications like imitation learning, con-
trollable generation, counterfactual analysis, and unsupervised clustering.
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C h a p t e r 1

INTRODUCTION

Raw behavioral data is becoming increasingly more abundant and more easily
obtainable in spatiotemporal domains such as sports, video games, navigation &
driving, motion capture, and animal science. How can we best use this data to ad-
vance their respective domains forward? For instance, researchers for self-driving
vehicles would like to identify the key features of the environment state that impacts
decision-making the most; game developers would like to populate their games
with characters that have unique and diverse behaviors to create a more immersive
gaming experience; and behavioral neuroscientists would like to uncover the un-
derlying mechanisms that drive learning in animals. Machine learning, the science
of developing models and algorithms to identify and leverage patterns in data, is
well-equipped to aid in these endeavors. But how do we integrate machine learning
with these spatiotemporal domains in a principled way? In this thesis, we develop
and introduce new algorithms in programmatic deep learning that tackle some of
the new challenges encountered in behavior modeling.

1.1 Motivation for Programmatic Deep Learning
Machine learning is the science of developing models and algorithms to identify and
leverage patterns in data. The widespread availability of large-scale datasets and the
steady increase in compute power has enabled machine learning research to flourish
in recent years, yielding many successful applications in domains like computer
vision, natural language processing, and autonomous systems. Many successful
applications leverage deep learning, a subfield of machine learning that uses deep
neural networks as the primary model choice. Neural networks are advantageous
because they are universal function approximators that can theoretically model any
complex function, but in turn also require a lot of data to generalize beyond the
training set. As a result, deep learning models are often coupled with some form of
inductive bias to leverage structure in data that can potentially make the task easier
to learn. For example, convolutional neural networks work well for image domains
because they leverage translation invariance, whereas graph neural networks are
designed to leverage permutation invariance for relational data.

This thesis focuses on developing machine learning algorithms for spatiotemporal
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domains, particularly behavior modeling settings where agents interact in an envi-
ronment and possibly with each other. Figure 1.1 depicts two such domains, namely
the tracking of laboratory mice in an enclosure, and the tracking of professional
basketball players from real NBA games.

Figure 1.1: Two examples of tracking domains for behavior modeling. Left: two
mice interacting in a rectangular enclosure. Dots represent key body parts of each
mouse (e.g. nose, ears, tail). Right: the trajectories of five professional basketball
players over 8 seconds, starting from the black dots. The ball is not shown.

Deep learning in sequential domains typically use recurrent neural networks (RNN)
to leverage the temporal structure of the data bymaintaining an internal state/memory
for capturing long-term dependencies (Hochreiter and Schmidhuber, 1997; Cho
et al., 2014). While RNNs generally work well for sequential tasks like time
series forecasting and speech recognition, behavior modeling settings have several
properties that introduce additional challenges:

• Agent behavior can be highly coordinated. For example in team basketball
in Figure 1.1 Right, players are moving together to execute a specific strategy
rather than moving independently. The difficulty of behavior modeling scales
exponentially with respect to the number of agents in multi-agent settings.

• Agent behavior can be non-deterministic and multimodal. For example in
animal tracking, upon reaching a wall a mouse might turn left or right with
nonzero probability. Another example is in competitive sports, where it can be
beneficial to be unpredictable in order to fool the opposing team. A challenge
in behavior modeling is capturing the entire distribution of possible behaviors.

• Behavioral data is often collected fromobserving different agents that can each
exhibit distinct behavior styles and differing intrinsic goals, e.g., aggressive
vs. risk-averse drivers, male vs. female mice, etc. This can be be challenging
for some behavior modeling applications, like controllable generation and
counterfactual reasoning.
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• The amount of raw behavioral data is very large, but expert annotations can
be very expensive to acquire. Learning algorithms most likely have to be
entirely unsupervised or semi-supervised, or take label-efficiency into careful
consideration.

• Model interpretability is important for many domain experts working on
downstream tasks in behavior modeling. For example, interpretability is key
in behavioral neuroscience for understanding what leads to lifelong learning
in animals. Additionally, understanding why a model made a prediction can
assist in debugging and lead to future improvements, e.g., "Why did the model
predict that the vehicle should slow down?". Deep learning is a powerful tool,
but it is also notorious for being very difficult to interpret.

In light of these challenges, we develop new algorithms for behavior modeling
that integrate programmatic structure with deep learning. We refer to this as pro-
grammatic deep learning, which encompasses two main themes in this thesis: 1)
using expert-written programs as weak label sources, and 2) neurosymbolic program
learning. Programs offer an easy way for domain experts to incorporate domain
knowledge and specify structure that introduces a strong yet flexible inductive bias.
We show that programmatic structure can lead to many improvements in behavior
modeling applications like imitation learning, controllable generation, counterfac-
tual analysis, and unsupervised clustering

Theme 1: programs as weak label sources
Conventionally, inspecting data examples and providing annotations is how a domain
expert supplements data with domain knowledge. However, the amount of raw
behavioral data is often very large, which means it can be very expensive to acquire
expert labels for an entire dataset. Fortunately, although expert labels can be quite
scarce, expert programs written by domain experts to compute heuristics can be very
plentiful. For example, behavioral neuroscientists have programs to characterize the
social behavior of mice (Segalin et al., 2020), and sport analysts have programs
to automatically recognize specific maneuvers like on-ball screens in basketball
(McQueen, Wiens, and Guttag, 2014). Compared to manually labeling each data
example, expert programs offer a computationally inexpensive solution for domain
experts to incorporate domain knowledge and is a much more efficient use of a
domain expert’s time. The trade-off, however, is that the resulting labels are often
noisy. Using expert programs as weak label sources in place of ground-truth labels
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was first explored in the data programming framework for binary classification
(Ratner et al., 2016). In this thesis, we show how to use expert programs to address
some of the challenges encountered in behavior modeling, like coordinated multi-
agent behavior and controllable generation of behaviors.

Theme 2: neurosymbolic program learning
Inductive program synthesis refers to the task of generating a program in some
domain-specific language (DSL) that matches pairs of input/output examples. Tra-
ditional approaches formulate this problem as search over the combinatorial space
of possible programs, which often does not scale as well as deep learning to high-
dimensional domains that can require more complex program structures. However,
program learning does boast several advantages:

• Programs are much more interpretable. For example, one interpretation of
the program in Figure 1.2 is that it computes the Euclidean distance between
the players and the ball to identify the ballhandler (player with possession of
the ball).

• The DSL serves as an inductive bias for the learning algorithm. Domain
experts can encode domain knowledge via the DSL library functions, which
greatly impacts the final result (e.g. program in Figure 1.2). In addition, this
programmatic inductive bias can sometimes lead to better generalization to
new inputs (Verma, Murali, et al., 2018; Verma, Le, et al., 2019).

• Programs are highly compositional, which is ideal for downstream tasks like
transferable lifelong learning (Valkov et al., 2018) and library learning (K. M.
Ellis et al., 2018; K. Ellis et al., 2020).

Neurosymbolic program learning studies how we can combine the best of both
worlds: the symbolic structure of programs with the scalability of neural networks.
Neurosymbolic programs are often defined to have both symbolic and neural com-
ponents (Valkov et al., 2018). The challenge lies in how to efficiently solve for both
the discrete optimization problem of finding the optimal program structure with the
continuous optimization problem of learning optimal neural network parameters. In
this thesis, we develop an efficient algorithm for learning differentiable neurosym-
bolic programs and demonstrate their effectiveness for behavior classification and
unsupervised clustering in behavior modeling.
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map(
multiply(

add(OffenseAffine(sC), BallAffine(sC)),
add(OffenseAffine(sC), BallAffine(sC))
),

g)

Figure 1.2: Example program for identifying the ballhander in basketball. map
applies the function in the first argument to every state sC in trajectory g.
OffenseAffine and BallAffine are DSL library functions that extract the GH-
coordinates of the offensive players and the ball from state sC , before applying a
parameterized affine transformation. The interpretation is that the program looks to
be computing the Euclidean distance between players and the ball.

In the following section, we first introduce behavior modeling more formally, and
then give brief overviews of machine learning problems in behavior modeling for
which programmatic deep learning can be practical.

1.2 Machine Learning for Behavior Modeling
Behavior Modeling as a Markov Decision Process
Behavior modeling settings are commonly modeled as a Markov decision process
(MDP), which is formally described as a tuple (S,A, %, '). At every timestep C,
an agent observes the state of the environment sC ∈ S and uses its policy c to select
and perform an action aC ∈ A. The environment then transitions to the next state
via the dynamics %(sC+1 |sC , aC) and the agent receives a scalar reward AC according
to reward function '(sC , aC , sC+1).

For behavior modeling settings covered in this thesis, we additionally assume that
states are fully-observable and that state and action spaces S and A are finite-
dimensional. Furthermore, we assume that agents are behaving optimally to maxi-
mize their expected cumulative reward. In many behavior modeling settings, how-
ever, the exact reward function that agents are optimizing for is not well-defined and
also cannot be easily evaluated (e.g., what is the reward function that guides the
behavior of mice?). Therefore, explicit rewards AC are usually not provided as part
of behavioral datasets.

Behavioral data is commonly represented as trajectories g = (s1, a1, s2, a2, . . . ),
which can also be interpreted as sequences of state-action pairs. In settings where
the dynamics are known and deterministic, trajectories can sometimes be reduced to
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simply sequences of states g = (s1, s2, . . . ). For example, in tracking domains where
states and actions are agent positions and velocities respectively, the dynamics are
linear, sC+1 = sC + aC , which also means that actions can be recovered by computing
the difference in states.

Imitation Learning
The goal of imitation learning is to recover the optimal policy using the collected
demonstration data. The simplest approach is behavioral cloning, which treats
state-action pairs as i.i.d. examples and learns a policy via supervised learning
(Pomerleau, 1989). While behavioral cloning can work for simple applications with
sufficient data coverage, it can fail to generalize in test scenarios because actions
taken by an agent in anMDPwill induce future states via the environment dynamics,
which breaks the aforementioned i.i.d. assumption. Consequently, errors made by
the agent can compound and lead the agent to drift towards states unseen during
training, potentially resulting in catastrophic failures. To address this shortcoming,
interactive imitation learning algorithms introduce multiple rounds of supervised
learning, policy rollout, and oracle feedback for new data to iteratively improve
the policy (Ross, Gordon, and D. Bagnell, 2011). Inverse reinforcement learning
is another class of algorithms that aims to reverse-engineer the unknown reward
function from data and feed it into reinforcement learning algorithms to learn the
policy (Abbeel and Ng, 2004; Ziebart et al., 2008).

In particular in behavior modeling settings, agent behavior can be inherently non-
deterministic and multimodal. For example, a basketball player can dribble around
the left or right of a defender; both possibilities are realistic, but the mean action,
i.e. dribbling into the defender, would be unnatural in this scenario. Thus, there has
been recent interest in learning stochastic policies that capture entire distributions
of possible actions (Hrolenok, Boots, and Balch, 2017). Initial approaches model
an explicit distribution over actions in the final layer of a deep model (Zheng, Yue,
and Lucey, 2016; Eyjolfsdottir, K. Branson, et al., 2017). More recent approaches
leverage deep generative modeling to learn transformations from simple to more
complex distributions over actions using either latent variable modeling (Johnson
et al., 2016; Chung et al., 2015) and/or adversarial training (Ho and Ermon, 2016;
Wang et al., 2017).

Imitation learning of behaviors continues to be challenging in terms of multimodal-
ity, scale, and long-term consistency. In Chapter 2, we tackle imitation learning of
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coordinated multi-agent behavior over long time horizons.

Controllable Generation of Behavior Styles
A common feature of behavioral datasets is that trajectories are often collected from
different individual agents, each potentially exhibiting distinct behavior styles, e.g.,
new/experienced drivers, aggressive/passive basketball players, etc. All styles are
representative of realistic behavior; there isn’t necessarily one style that is most
"optimal" compared to the rest. Given a diverse range of behavior styles, can we
learn policies that can be controlled to imitate different behavior styles? Since
behavior styles are rarely labeled, imitation learning of diverse behaviors has relied
on unsupervised methods to infer latent codes that capture behavior styles while
jointly learning a policy conditioned on these codes to generate the corresponding
behavior style (Wang et al., 2017).

A crucial component of learning controllable style-conditioned policies is ensuring
that behavior styles are consistently generated when desired. Typical strategies
aim to induce a tight correlation between latent codes and policy rollouts, such
as by maximizing the mutual information between the two (Yunzhu Li, Song, and
Ermon, 2017; Hausman et al., 2017; Sharma et al., 2020), which is inspired by
the recent success of conditional generation in image domains (X. Chen, Duan,
et al., 2016; Creswell et al., 2017). Our approach in Chapter 3 formally introduces
style-consistency as a learning objective that can be integrated into existing imitation
learning algorithms.

Controllable style-consistent policies are pivotal for empowering many downstream
tasks like realistic simulation, virtual agent design, long-term planning, and coun-
terfactual behavior reasoning.

Representation Learning
Many successful machine learning algorithms for behavior modeling tasks rely on
a good set of input features. For example, it is common in behavior classification to
compute spatiotemporal trajectory features at varying temporal resolutions (Burgos-
Artizzu et al., 2012; Eyjolfsdottir, S. Branson, et al., 2014; Hong et al., 2015). This
can be very time-consuming for the domain experts, potentially requiring many
iterations between feature engineering and model training.

Instead, representation learning aims to automatically extract features that are ef-
fective for downstream tasks. Typical approaches use encoder-decoder frameworks
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to map raw trajectory data to low-dimensional vector representations (Luxem et al.,
2020). Ultimately, the features that are encoded and the information retained in the
representation depend on the decoding task used to train the model. For example,
autoencoding (reconstructing the input from the representation) has worked well for
learning representations for visual data (Vincent et al., 2010) and languagemodeling
(Radford et al., 2018). Self-supervision and contrastive learning introduce decoding
tasks that use data augmentations as learning signals for learning representations
when ground-truth labels are unavailable (Schroff, Kalenichenko, and Philbin, 2015;
Oord, Yazhe Li, and Vinyals, 2018; T. Chen et al., 2020).

Relatively speaking, decoding tasks for learning representations in behavior model-
ing are underexplored, e.g., what are the natural data augmentations for trajectories
that one should use for self-supervision? Ideally, a method for learning good rep-
resentations would greatly reduce the total amount of domain expert effort required
for behavior modeling.

Interpretable Clustering of Behaviors
A popular research direction in behavior modeling is discovering and identifying
behavior motifs, i.e., semantically meaningful clusters of behaviors (Berman et al.,
2014; Luxem et al., 2020). In general, there are two main strategies.

The first approach builds upon representation learning by applying a clustering algo-
rithm (e.g., k-means clustering) on learned representations. Many such approaches
often include additional supervision in the representation learning step to encourage
similar trajectories to be mapped closer together in the representation space. The
exact notion of similarity is usually implicitly embedded in the learning objective
for representation learning, such as with triplet loss (Schroff, Kalenichenko, and
Philbin, 2015).

The second approach aims to learn the clusters directly bymapping trajectories down
to one of several classes. This is usually donewith a latent variablemodel, eitherwith
discrete latent variables (Oord, Vinyals, and Kavukcuoglu, 2017; Dupont, 2018) or
with a mixture model prior (Dilokthanakul et al., 2016). However, these models
can be tricky to train, as posterior and index collapse are common occurrences (X.
Chen, Kingma, et al., 2017; Kaiser et al., 2018).

For both approaches, the interpretability of clusters remains a major challenge.
Currently, the only solution is to have domain experts manually inspect the clusters
to identify distinguishing characteristics, which can be very difficult and time-
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consuming. Our work in neurosymoblic program learning offers another solution
by learning programmatic representations of data that can be explained with the
DSL defined by the domain experts themselves.

1.3 Thesis Structure and Contributions
We introduce new programmatic deep learning algorithms for behavior modeling
under our two main themes: Chapters 2 and 3 show how to leverage expert-written
programs as weak label sources; Chapters 4 and 5 introduce new algorithms for
neurosymbolic program learning. We primarily focus our experiments on tracking
domains like sports analytics and animal behavioral science that have known and
linear dynamics, and include synthetic experiments where applicable to build in-
tuition for our algorithms. Each chapter also contains a section that details more
related work.

In Chapter 2, we study imitation learning in a very challenging multi-agent setting
where behaviors are stochastic and highly coordinated. The main difficulty lies
in ensuring that agent behavior remains consistent between each other and across
long time horizons. Our approach introduces a hierarchicalmacro-intent variable to
capture the coordination between agents and encode long-term intentions. Instead
of learning macro-intents via unsupervised learning, we use a program written by
a domain expert to obtain weak macro-intent labels. We show that this approach is
significantly more effective for generating realistic multi-agent behavior, which we
verify with a user study and counterfactual analysis experiments.

In Chapter 3, we take a closer look at learning controllable policies. We observe that
while our macro-intent variables in Chapter 2 give us better control of our learned
policies than previous baselines do, the resulting behavior is only sometimes con-
sistent with the conditioned macro-intent. This motivates our work in formalizing
style-consistency as a learning objective for learning controllable policies, which we
define as the notion that behaviors exhibited from a style-conditioned policy should
always match that behavior style. The missing ingredient is how we define behavior
styles and measure style-consistency. Our framework uses expert-written programs
to produce style labels, which allows us to efficiently check if a style is correctly
exhibited. Our solution also allows domain experts specify a behavior style that they
would like to control for, as along as the style can be captured with a program.

In Chapter 4, we introduce a new algorithm for learning differentiable neurosym-
bolic programs. As mentioned previously, neurosymbolic program learning often
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boils down to efficiently solving both the discrete optimization problem of finding
the optimal program structure and the continuous optimization problem of learning
optimal neural network parameters. Our key contribution is framing this optimiza-
tion problem as search over a weighted graphwhose paths encode top-down program
derivations. We then use neural networks as continuous relaxations to complete any
partial programs in the graph, and show that the resulting training loss of these
relaxed partial programs is an approximately admissible heuristic that can guide
the graph search. We instantiate our approach, called Near for Neural Admissible
Relaxation, with heuristic-guided search algorithms like A∗ search to efficiently find
programs for behavior classification that yield natural interpretations and achieve
competitive accuracy.

In Chapter 5, we present a framework for learning neurosymbolic encoders for un-
supervised representation learning of behavioral data. Our framework partitions the
latent representation into neural and programmatic components and leverages Near
from Chapter 4 to learn a programmatic encoder for the latter. The final result is a
data representation with a clean programmatic interpretation that also significantly
outperforms purely neural approaches in extracting semanticallymeaningful clusters
of behaviors. We further showcase the practicality of our framework by integrating
our programmatic encoder with task programming, a state-of-the-art self-supervised
approach for learning label-efficient representations for behavioral data.

Lastly, we conclude in Chapter 6 with some closing remarks and highlight some
exciting directions for future work.
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C h a p t e r 2

MULTI-AGENT IMITATION LEARNING WITH
PROGRAMMATIC MACRO-INTENTS

The work in this chapter was published in (Zhan et al., 2019). E.Z. participated in
the conception of the project, formulated and implemented the method, conducted
experiments and analyzed results, and participated in the writing of the manuscript.

Summary

We study the problem of training sequential generative models for capturing coordi-
nated multi-agent trajectory behavior, such as offensive basketball gameplay. When
modeling such settings, it is often beneficial to design hierarchical models that can
capture long-term coordination using intermediate variables. Furthermore, these
intermediate variables should capture interesting high-level behavioral semantics in
an interpretable and manipulatable way. We present a hierarchical framework that
can effectively learn such sequential generative models. Our approach is inspired
by recent work on leveraging programmatically produced weak labels, which we
extend to the spatiotemporal regime. In addition to synthetic settings, we show how
to instantiate our framework to effectively model complex interactions between bas-
ketball players and generate realistic multi-agent trajectories of basketball gameplay
over long time periods. We validate our approach using both quantitative and qual-
itative evaluations, including a user study comparison conducted with professional
sports analysts.

2.1 Introduction
The ongoing explosion of recorded tracking data is enabling the study of fine-
grained behavior in many domains: sports (Miller et al., 2014; Yue et al., 2014;
Zheng, Yue, and Lucey, 2016; Le et al., 2017), video games (Ross, Gordon, and
J. Andrew Bagnell, 2011), video & motion capture (Suwajanakorn, Seitz, and
Kemelmacher-Shlizerman, 2017; Taylor et al., 2017; Xue et al., 2016), navigation
& driving (Ziebart et al., 2009; Zhang and Cho, 2017; Li, Song, and Ermon, 2017),
laboratory animal behaviors (Johnson et al., 2016; Eyjolfsdottir et al., 2017), and
tele-operated robotics (Abbeel and Ng, 2004; Lin et al., 2006). However, it is an
open challenge to develop sequential generative models leveraging such data, for
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instance, to capture the complex behavior of multiple cooperating agents. Figure
2.1a shows an example of offensive players in basketball moving unpredictably
and with multimodal distributions over possible trajectories. Figure 2.1b depicts
a simplified Boids model from (Reynolds, 1987) for modeling animal schooling
behavior in which the agents can be friendly or unfriendly. In both cases, agent
behavior is highly coordinated and non-deterministic, and the space of all multi-
agent trajectories is naively exponentially large.

Conventional approaches to learning interpretable intermediate variables typically
focus on learning disentangled latent representations in an unsupervised way (e.g.,
(Li, Song, and Ermon, 2017; Wang et al., 2017)), but it is challenging for such
approaches to handle complex sequential settings (X. Chen et al., 2017).

To address this challenge, we present a hierarchical framework that can effectively
learn such sequential generative models, while using programmatic weak supervi-
sion. Our approach uses a expert-written program to programmatically produce
useful weak labels for supervised learning of interpretable intermediate represen-
tations. This approach is inspired by recent work on data programming (Ratner,
Sa, et al., 2016), which uses cheap and noisy programs, which they call labeling
functions, to significantly speed up learning. In this work, we extend this approach
to the spatiotemporal regime.

Our contributions can be summarized as follows:

• We propose a hierarchical framework for sequential generative modeling. Our
approach is compatible with many existing deep generative models.

• We show how to programmatically produce weak labels of macro-intents to
train the intermediate representation in a supervised fashion. Our approach
is easy to implement and results in highly interpretable intermediate vari-
ables, which allows for conditional inference by grounding macro-intents to
manipulate behaviors.

• Focusing on multi-agent tracking data, we show that our approach can gen-
erate high-quality trajectories and effectively encode long-term coordination
between multiple agents.

In addition to synthetic settings, we showcase our approach in an application onmod-
eling team offense in basketball. We validate our approach both quantitatively and
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(a) Offensive basketball players have multi-
modal behavior (ball not shown). For in-
stance, the green player (H) moves to either
the top-left or bottom-left.

(b) Two types of generated behaviors for 8
agents in Boids model. Left: Friendly blue
agents group together. Right: Unfriendly red
agents stay apart.

Figure 2.1: Examples of coordinated multimodal multi-agent behavior in: a) pro-
fessional basketball, and b) schooling behavior via the Boids model.

qualitatively, including a user study comparison with professional sports analysts,
and show significant improvements over standard baselines.

2.2 Sequential Generative Modeling for Imitation Learning
In this work, we focus in motion tracking domains that have linear dynamics and
trajectories as sequences of states. Let sC ∈ R3 denote the state at time C and
g = {s1, . . . , s) } denote a trajectory of length ) . Suppose we have a collection of
# demonstrations: D = {g8}#8=1. In our experiments, all trajectories have the same
length ) , but in general this does not need to be the case.

The goal of sequential generative modeling for imitation learning is to learn a policy
c\ , with learnable parameters \, that captures the distribution of trajectories in D.
A common approach is to factorize the joint distribution and then maximize the
log-likelihood:

\∗ = arg max
\

∑
g∈D

log ?(g) = arg max
\

∑
g∈D

)∑
C=1

log c\ (sC |s<C). (2.1)

Here, s<C refers to the subsequence of states in g up to time C: s<C = {s1, . . . , sC−1}.
A common model choice for c\ is a recurrent neural network.

Recurrent neural networks (RNN). An RNN models the conditional probabili-
ties in Eq. (2.1) with a hidden state hC that summarizes the information in the first
C − 1 timesteps:

c\ (sC |s<C) = i(hC−1), hC = 5 (sC , hC−1), (2.2)
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where i maps the hidden state to a probability distribution over states and 5 is
a deterministic function such as LSTMs (Hochreiter and Schmidhuber, 1997) or
GRUs (Cho et al., 2014).

Stochastic latent variable models. However, RNNs with simple output distribu-
tions that optimize Eq. (2.1) often struggle to capture highly variable and struc-
tured sequential data. For example, an RNN with Gaussian output distribution has
difficulty learning the multimodal behavior of the green player moving to the top-
left/bottom-left in Figure 2.1a. Recent work in sequential generative models address
this issue by injecting stochastic latent variables into the model and optimizing using
amortized variational inference to learn the latent variables (Fraccaro et al., 2016;
Goyal et al., 2017; Chung et al., 2015). These models all stem from variational
autoencoders (Kingma and Welling, 2014).

Variational autoencoders (VAE). A VAE (Kingma and Welling, 2014) is a gen-
erative model for data x that injects latent variables z into the joint distribution
?\ (x, z) and introduces an inference network parametrized by q to approximate the
posterior @q (z | x). The learning objective is to maximize the evidence lower-bound
(ELBO) of the log-likelihood with respect to the model parameters \ and q:

E@q (z|x) [log ?\ (x|z)] − � ! (@q (z | x) | |?(z)). (2.3)

The first term is known as the reconstruction term and can be approximated with
Monte Carlo sampling. The second term is the Kullback-Leibler divergence between
the approximate posterior and the prior, and can be evaluated analytically (i.e. if both
distributions are Gaussian with diagonal covariance). The inference and generative
models, @q (z | x) and ?\ (x | z) respectively, are often implemented with neural
networks. In our imitation learning setting, input data x would be a trajectory and
the generative model would be our policy.

Variational RNNs (VRNN). We use a VRNN (Chung et al., 2015) as our base
model, but we emphasize that our approach is compatible with other sequential
generative models as well. A VRNN is essentially a VAE conditioned on the hidden
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state of an RNN (see Figure 2.3a):

?k (zC |s<C , z<C) = iprior(hC−1) (prior) (2.4)

@q (zC |g, z<C) = ienc(sC , hC−1) (inference) (2.5)

c\ (sC |z≤C , s<C) = idec(zC , hC−1) (generation/policy) (2.6)

hC = 5 (sC , zC , hC−1). (recurrence) (2.7)

VRNNs are also trained by maximizing the (sequential) ELBO, which in this case
can be interpreted as the VAE ELBO summed over each timestep C:

E@q (z≤) |g)

[
)∑
C=1

log c\ (sC | z≤) , s<C) − � !

(
@q (zC | g, z<C) | |?k (zC | s<C , z<C)

)]
.

(2.8)

Note that the prior distribution of latent variable zC depends on the history of states
and latent variables (Eq. (2.4)). This temporal dependency of the prior allows
VRNNs to model complex sequential data like speech and handwriting (Chung et
al., 2015).

2.3 Hierarchical Framework using Macro-intents
In our multi-agent setting, we additionally assume that each trajectory g consists
of the trajectories of  coordinating agents. For example, the trajectory in Figure
2.1a can be decomposed into the trajectories of  = 5 basketball players. We
denote g = {g1, . . . , g }, g: = {s:1 , . . . , s

:
)
}, and also sC = {s1

C , . . . , s:C }. Assuming
conditional independence between the agent states s:C given state history s<C , we can
factorize the maximum log-likelihood objective in Eq. (2.1) even further:

\∗ = arg max
\

∑
g∈D

)∑
C=1

 ∑
:=1

log c\: (s:C |s<C). (2.9)

Naturally, there are two baseline approaches in this setting:

1. Treat g as a single-agent trajectory and train a singlemodel: \ = \1 = · · · = \ .

2. Train independent models for each agent: \ = {\1, . . . , \ }.

As we empirically verify in Section 2.4, VRNN models using these two approaches
have difficulty learning representations of the data that generalize well over long time
horizons, and capturing the coordination inherent in multi-agent trajectories. Our



16

solution introduces a hierarchical structure of macro-intents obtained via expert-
written programs to effectively learn low-dimensional (distributional) representa-
tions of the data that extend in both time and space for multiple coordinating agents.

Defining macro-intents. We assume there exists shared latent variables called
macro-intents that: 1) provide a tractable way to capture coordination between
agents, 2) encode long-term intents of agents and enable long-term planning at a
higher-level timescale, and 3) compactly represent some low-dimensional structure
in an exponentially large multi-agent state space.

Figure 2.2: Macro-intents (boxes) for two basketball players. These macro-intents
represent areas on the court that players move towards and can change over time.

For example, Figure 2.2 illustrates macro-intents for two basketball players as spe-
cific areas on the court (boxes). Upon reaching its macro-intent in the top-right,
the blue player moves towards its next macro-intent in the bottom-left. Similarly,
the green player moves towards its macro-intents from bottom-right to middle-left.
These macro-intents are visible to both players and capture the coordination as they
describe how the players plan to position themselves on the court. Macro-intents
provide a compact summary of the players’ trajectories over a long time.

Macro-intents do not need to have a geometric interpretation. For example, macro-
intents in the Boids model in Figure 2.1b can be a binary label indicating friendly
vs. unfriendly behavior. The goal is for macro-intents to encode long-term intent
and ensure that agents behave more cohesively. Our modeling assumptions for
macro-intents are:

• agent states {s:C } in an episode [C1, C2] are conditioned on some shared macro-
intent gC ,

• the start and end times [C1, C2] of episodes can vary between trajectories,
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• macro-intents change slowly over time relative to the agent states: 3gC/3C � 1,

• and due to their reduced dimensionality, we can model (near-)arbitrary depen-
dencies between macro-intents (e.g., coordination) via black box learning.

Programs for macro-intent labels. Obtaining macro-intent labels from experts
for training is ideal, but often too expensive. Instead, our work is inspired by
recent advances in weak supervision settings known as data programming, in which
multiple programs written by domain experts can be leveraged as weak and noisy
label sources to learn the underlying structure of large unlabeled datasets (Ratner,
Bach, et al., 2018; Bach et al., 2017). These programs often compute heuristics
that allow users to incorporate domain knowledge into the model. For instance,
the programs we use to obtain macro-intents for basketball trajectories compute the
regions on the court in which players remain stationary; this integrates the idea that
players aim to set up specific formations on the court. In general, programs can
parse and label data very quickly, hence the name programmatic weak supervision
in (Zhan et al., 2019).

Other approaches that try to learn macro-intents in a fully unsupervised learning
setting can encounter difficulties that have been previously noted, such as the im-
portance of choosing the correct prior and approximate posterior (Rezende and
Mohamed, 2015) and the interpretability of learned latent variables (X. Chen et al.,
2017). We find our approach using programs to be much more attractive, as it
outperforms other baselines by generating samples of higher quality, while also
avoiding the engineering required to address the aforementioned difficulties.

Hierarchical model with macro-intents Our hierarchical model uses an interme-
diate layer to model macro-intents, so our agent VRNN policies become:

c\: (s:C |s<C) = i: (z:C , h:C−1, gC), (2.10)

where i: maps to a distribution over states, z:C is the VRNN latent variable, h:C
is the hidden state of an RNN that summarizes the trajectory up to time C, and gC
is the shared macro-intent at time C. Figure 2.3b shows our hierarchical model,
which samples macro-intents during generation rather than using only ground-truth
macro-intents. Here, we train an RNN-model to sample macro-intents:

?(gC |g<C) = i6 (h6,C−1, sC−1), (2.11)
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where i6maps to a distribution overmacro-intents andh6,C−1 summarizes the history
of macro-intents up to time C. We condition the macro-intent model on previous
states sC−1 in Eq. (2.11) and generate next states by first sampling a macro-intent
gC , and then sampling s:C conditioned on gC (see Figure 2.3b). Note that all agent-
models for generating s:C share the same macro-intent variable gC . This is core to our
approach as it induces coordination between agent trajectories (see Section 2.4).

We learn our agent-models by maximizing the VRNN objective from Eq (2.8)
conditioned on the shared gC variables while independently learning the macro-
intent model via supervised learning by maximizing the log-likelihood of macro-
intent labels obtained programmatically.

(a) VRNN

VRNN

agents

(b) Our model with macro-intents gC

Figure 2.3: DepictingVRNNand ourmodel. Circles are stochastic and diamonds are
deterministic. Macro-intent gC is shared across agents. In principle, any generative
model can be used in our framework.

2.4 Experiments
We first apply our approach on generating offensive team basketball gameplay
(team with possession of the ball), and then on a synthetic Boids model dataset.
We present both quantitative and qualitative experimental results. Our quantitative
results include a user study comparison with professional sports analysts, who
significantly preferred basketball rollouts generated from our approach to standard
baselines. Our qualitative results demonstrate the ability of our approach to generate
high-quality rollouts under various conditions.
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Experimental Setup for Basketball
Training data. Each demonstration in our data contains trajectories of  = 5
players on the left half-court, recorded for ) = 50 timesteps at 6 Hz. The offensive
team has possession of the ball for the entire sequence. s:C are the coordinates of
player : at time C on the court (50 × 94 feet). We normalize and mean-shift the data.
Players are ordered based on their relative positions, similar to the role assignment
in (Lucey et al., 2013). There are 107,146 training and 13,845 test examples. We
ignore the defensive players and the ball to focus on capturing the coordination
and multimodality of the offensive team. In principle, we can provide the defensive
positions as conditional input for our model and update the defensive positions using
methods such as (Le et al., 2017). We leave the task of modeling the ball and defense
for future work.

Macro-intent program. We extract weak macro-intent labels ĝ:C for each player :
as done in (Zheng, Yue, and Lucey, 2016). We segment the left half-court into a 10
× 9 grid of 5ft × 5ft boxes. The weak macro-intent ĝ:C at time C is a one-hot encoding
of dimension 90 of the next box in which player : is stationary (speed

s:
C+1 − s

:
C


2

below a set threshold). The shared global macro-intent gC is the concatenation of
individual macro-intents. Figure 2.4 shows the distribution of macro-intents for
each player. We refer to this macro-intent program as Stationary (pseudocode in
Appendix A.3).

Figure 2.4: Distribution of weak macro-intent labels extracted for each player from
the training data. Color intensity corresponds to frequency of macro-intent label.
Players are ordered by their relative positions on the court, which can be seen from
the macro-intent distributions.

Model details. We model each latent variable z:C as a multivariate Gaussian with
diagonal covariance of dimension 16. All output models are implemented with
memory-less 2-layer fully-connected neural networkswith a hidden layer of size 200.
Our agent-models sample from a multivariate Gaussian with diagonal covariance
while our macro-intent models sample from a multinomial distribution over the
macro-intents. All hidden states (h6,C , h1

C , . . . h C ) are modeled with 200 2-layer
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GRU memory cells each. We maximize the log-likelihood/ELBO with stochastic
gradient descent using the Adam optimizer (Kingma and Ba, 2015) and a learning
rate of 0.0001.

Baselines. We compare with 5 baselines that do not use macro-intents from pro-
grams:

1. RNN-gauss: RNN without latent variables using 900 2-layer GRU cells as
the hidden state.

2. VRNN-single: VRNN in which we concatenate all player positions together
( = 1) with 900 2-layer GRU cells for the hidden state and a 80-dim latent
variable.

3. VRNN-indep: VRNN for each agent with 250 2-layer GRUs and 16-dim
latent variables.

4. VRNN-mixed: Combination of VRNN-single and VRNN-indep. The shared
hidden state of 600 2-layer GRU cells is fed into decoders with 16-dim latent
variables for each agent.

5. VRAE-mi: VRAE-style architecture (Fabius and Amersfoort, 2014) that
maximizes the mutual information between g and a single global macro-
intent. We refer to Appendix A.2 for details.

Quantitative Evaluation for Basketball
Log-likelihood. Table 2.1 reports the average log-likelihoods on the test data. Our
approach outperforms RNN-gauss and is comparable with other baselines. How-
ever, higher log-likelihoods do not necessarily indicate higher quality of generated
samples (Theis, van den Oord, and Bethge, 2015). As such, we also evaluate using
other means, such as human preference studies and auxiliary statistics.

Human preference study. We recruited 14 professional sports analysts as judges
to compare the quality of policy rollouts. Each comparison animates two rollouts,
one from our model and another from a baseline. Both rollouts are burned-in for
10 timesteps with the same ground-truth states from the test set, and then generated
for the next 40 timesteps. Judges decide which of the two rollouts looks more
realistic. Table 2.2 shows the results from the preference study. We tested our
model against two baselines, VRNN-single and VRNN-indep, with 25 comparisons
for each. All judges preferred our model over the baselines with 98% statistical
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Model Basketball Boids
RNN-gauss 1931 2414
VRNN-single ≥ 2302 ≥ 2417
VRNN-indep ≥ 2360 ≥ 2385
VRNN-mixed ≥ 2323 ≥ 2204
VRAE-mi ≥ 2349 ≥ 2331
Ours ≥ 2362 ≥ 2428

Table 2.1: Average log-likelihoods per test sequence. ”≥” indicates ELBO of log-
likelihood. Our hierarchical model achieves higher log-likelihoods than baselines
for both datasets.

significance. These results suggest that our model generates rollouts of significantly
higher quality than the baselines.

vs. Model Win/Tie/Loss Avg Gain
vs. VRNN-single 25/0/0 0.57
vs. VRNN-indep 15/4/6 0.23

Table 2.2: Basketball preference study results. Win/Tie/Loss indicates howoften our
model is preferred over baselines (25 comparisons per baseline). Gain is computed
by scoring +1 when our model is preferred and -1 otherwise. Results are 98%
significant using a one-sample t-test.

Domain statistics. Finally, we compute several basketball statistics (average speed,
average total distance traveled, % of frames with players out-of-bounds) and sum-
marize them in Table 2.3. Our model generates trajectories that are most similar to
ground-truth trajectories with respect to these statistics, indicating that our model
generates significantly more realistic behavior than all baselines.

Choice of program for macro-intents. In addition to Stationary, we also assess
the quality of our approach using macro-intents obtained from different programs.
Window25 and Window50 labels macro-intents as the last region a player resides in
every window of 25 and 50 timesteps respectively (pseudocode in Appendix A.3).
Table 2.3 shows that domain statistics from ourmodels using programmatic weak su-
pervision match closer to the ground-truth with more informative labeling functions
(Stationary > Window25 > Window50). This is expected, since Stationary
provides the most information about the structure of the data.

Qualitative Evaluation of Generated Policy Rollouts for Basketball
We next conduct a qualitative visual inspection of policy rollouts. Figures 2.5 and
2.6 show rollouts generated from VRNN-single, VRNN-indep, and our model by
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Model Speed (ft) Distance (ft) Out-of-bounds (%)
RNN-gauss 3.05 149.57 46.93
VRNN-single 1.28 62.67 45.67
VRNN-indep 0.89 43.78 33.78
VRNN-mixed 0.91 44.80 27.19
VRAE-mi 0.98 48.25 20.09
Ours (Window50) 0.99 48.53 28.84
Ours (Window25) 0.87 42.99 14.53
Ours (Stationary) 0.79 38.92 15.52
Ground-truth 0.77 37.78 2.21

Table 2.3: Domain statistics of 1000 basketball trajectories generated from each
model: average speed, average distance traveled, and % of frames with players
out-of-bounds. Trajectories from our models using programmatic weak supervision
match the closest with the ground-truth.

sampling states for 40 timesteps after an initial burn-in period of 10 timesteps with
ground-truth states from the test set.

Common problems in baseline rollouts include players moving out of bounds or
in the wrong direction (Figure 2.5). These issues tend to occur at later timesteps,
suggesting that the baselines do not perform well over long horizons. One possible
explanation is due to compounding errors (Ross, Gordon, and J. Andrew Bagnell,
2011): if the model makes a mistake and deviates from the states seen during
training, it is likely to make more mistakes in the future and generalize poorly. On
the other hand, generated rollouts from our model are more robust to the types of
errors made by the baselines (Figure 2.6).

Macro-intents induce multimodal and interpretable rollouts. Generated macro-
intents allow us to interpret the intent of each individual player as well as a global
team strategy (e.g. setting up a specific formation on the court). We highlight that
our model learns a multimodal generating distribution, as repeated rollouts with the
same burn-in result in a dynamic range of generated trajectories, as seen in Figure
2.7 Left. Furthermore, Figure 2.7 Right demonstrates that grounding macro-intents
during generation instead of sampling them allows us to control agent behavior.

Macro-intents induce coordination. Figure 2.8 illustrates how the macro-intents
encode coordination between players that results in realistic rollouts of players
moving cohesively. As we change the trajectory and macro-intent of the red player,
the distribution of macro-intents generated from our model for the green player
changes such that the two players occupy different areas of the court.
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Figure 2.5: Baseline rollouts of representative quality starting from black dots,
generated for 40 timesteps after an initial burn-in period of 10 timesteps (marked
by dark shading). Left: VRNN-single. Right: VRNN-indep. Common problems
in baseline rollouts include players moving out of bounds or in the wrong direction.
Players do not appear to behave cohesively as a team.

Figure 2.6: Left: Rollout from our model starting from black dots, generated for 40
timesteps after an initial burn-in period of 10 timesteps (marked by dark shading).
All players remain in bounds. Right: Corresponding macro-intents for left rollout.
Macro-intent generation is stable and suggests that the team is creating more space
for the blue player (perhaps setting up an isolation play).

Synthetic Experiments: Boids Model of Schooling Behavior
To illustrate the generality of our approach, we apply our model to a simplified
version of the Boids model (Reynolds, 1987) that produces realistic trajectories of
schooling behavior. We generate trajectories for 8 agents for 50 frames. The agents
start in fixed positions around the origin with initial velocities sampled from a unit
Gaussian. Each agent’s velocity is then updated at each timestep:

vC+1 = VvC + V(21vcoh + 22vsep + 23vali + 24vori). (2.12)

Full details of the model can be found in Appendix A.1. We randomly sample
the sign of 21 for each trajectory, which produces two distinct types of behaviors:
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Figure 2.7: 10 rollouts of the green player (H) with a burn-in period of 20 timesteps.
Blue trajectories are fixed and (•) indicates initial positions. Left: The model
generates macro-intents. Right: We ground the macro-intents at the bottom-left. In
both, we observe a multimodal distribution of trajectories.

Figure 2.8: The distribution of macro-intents sampled from 20 rollouts of the green
player changes in response to the change in red trajectories and macro-intents.
This suggests that macro-intents encode and induce coordination between multiple
players. Blue trajectories are fixed and (•) indicates initial positions.

friendly agents (21 > 0) that like to group together, and unfriendly agents (21 < 0)
that like to stay apart (see Figure 2.1b). We also introduce more stochasticity into
the model by periodically updating V randomly.

Our macro-intent program thresholds the average distance to an agent’s closest
neighbor (see last plot in Figure 2.9). This is equivalent to using the sign of 21

as our macro-intents, which indicates the type of behavior. Note that unlike our
macro-intents for the basketball dataset, these macro-intents are simpler and have
no geometric interpretation. All models have similar average log-likelihoods on
the test set in Table 2.1, but our hierarchical model can capture the true generating
distribution much better than the baselines. For example, Figure 2.9 depicts the his-
tograms of average distances to an agent’s closest neighbor in trajectories generated
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from all models and the ground-truth. Our model more closely captures the two dis-
tinct modes in the ground-truth (friendly, small distances, left peak vs. unfriendly,
large distances, right peak) whereas the baselines fail to distinguish them.

Figure 2.9: Synthetic Boids experiments. Showing histograms (horizontal axis:
distance; vertical: counts) of average distance to an agent’s closest neighbor in 5000
rollouts. Our hierarchical model more closely captures the two distinct modes for
friendly (small distances, left peak) vs. unfriendly (large distances, right peak)
behavior compared to baselines, which do not learn to distinguish them.

Inspecting the Hierarchical Model Class
Output distribution for states. The outputs of all models (including baselines)
sample from a multivariate Gaussian with diagonal covariance. We also experi-
mented with sampling from a mixture of 2, 3, 4, and 8 Gaussian components, but
discovered that the models would always learn to assign all the weight on a single
component and ignore the others. The variance of the active component is also very
small. This is intuitive because sampling with a large variance at every timestep
would result in noisy trajectories and not the smooth ones that we see in Figures 2.6,
2.7.

Choice ofmacro-intentmodel. In principle, we can usemore expressive generative
models, like a VRNN, to model macro-intents over richer macro-intent spaces in Eq.
(2.11). In our case, we found that an RNNwas sufficient in capturing the distribution
of macro-intents shown in Figure 2.4. The RNN learns multinomial distributions
over macro-intents that are peaked at a single macro-intent and relatively static
through time, which is consistent with the macro-intent labels that we extracted
from data. Latent variables in a VRNN had minimal effect on the multinomial
distribution.

Maximizing mutual information isn’t effective. The learned macro-intents in
our fully unsupervised VRAE-mi model do not encode anything useful and are
essentially ignored by the model. In particular, the model learns to match the
approximate posterior of macro-intents from the encoder with the discriminator
from the mutual information lower-bound. This results in a lack of diversity in
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rollouts as we vary the macro-intents during generation. We refer to Appendix A.2
for examples.

2.5 Related Work
Deep generative models. The study of deep generative models is an increasingly
popular research area, due to their ability to inherit both the flexibility of deep
learning and the probabilistic semantics of generative models. In general, there
are two ways that one can incorporate stochastics into deep models. The first
approach models an explicit distribution over actions in the output layer, e.g., via
logistic regression (L.-C. Chen et al., 2015; Oord, Dieleman, et al., 2016; Oord,
Kalchbrenner, and Kavukcuoglu, 2016; Zheng, Yue, and Lucey, 2016; Eyjolfsdottir
et al., 2017). The second approach uses deep neural nets to define a transformation
from a simple distribution to one of interest (Goodfellow et al., 2014; Kingma and
Welling, 2014; Rezende, Mohamed, and Wierstra, 2014) and can more readily be
extended to incorporate additional structure, such as a hierarchy of random variables
(Ranganath, Tran, and Blei, 2016) or dynamics (Johnson et al., 2016; Chung et al.,
2015; Krishnan, Shalit, and Sontag, 2017; Fraccaro et al., 2016). Our framework
can incorporate both variants.

Structured probabilistic models. Recently, there has been increasing interest in
probabilistic modeling with additional structure or side information. Existing work
includes approaches that enforce logic constraints (Akkaya et al., 2016), specify
generative models as programs (Tran et al., 2016), or automatically produce weak
supervision via data programming (Ratner, Sa, et al., 2016). Our framework is
inspired by the latter, which we extend to the spatiotemporal regime. Additionally,
probabilisticmodelswithmultiresolution hierarchical structure has also been studied
in the context of missing value imputation for spatiotemporal domains (Liu et al.,
2019).

Imitation learning. Our work is also related to imitation learning, which aims to
learn a policy that can mimic demonstrated behavior (Syed and Schapire, 2008;
Abbeel and Ng, 2004; Ziebart et al., 2008; Ho and Ermon, 2016). There has been
some prior work in multi-agent imitation learning (Le et al., 2017; Song et al.,
2018) and learning stochastic policies (Ho and Ermon, 2016; Li, Song, and Ermon,
2017), but no previous work has focused on learning generative polices while simul-
taneously addressing generative and multi-agent imitation learning. For instance,
experiments in (Ho and Ermon, 2016) all lead to highly peaked distributions, while
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(Li, Song, and Ermon, 2017) captures multimodal distributions by learning uni-
modal policies for a fixed number of experts. (Hrolenok, Boots, and Balch, 2017)
raise the issue of learning stochastic multi-agent behavior, but their solution involves
significant feature engineering.

2.6 Discussion
The programs for labeling macro-intents used in our experiments are relatively
simple. For instance, rather than simply using location-based macro-intents, we
can also incorporate complex interactions such as “pick and roll”. Another future
direction is to explore how to adapt our method to different domains, e.g., defining a
macro-intent representing “argument” for a dialogue between two agents, or amacro-
intent representing “refrain” for music generation for “coordinating instruments”
(Thickstun, Harchaoui, and Kakade, 2017). We have shown that weak macro-
intent labels extracted using simple domain-specific heuristics can be effectively
used to generate high-quality coordinated multi-agent trajectories. An interesting
direction is to incorporate multiple programs simultaneously, each viewed as noisy
realizations of true macro-intents, similar to (Ratner, Sa, et al., 2016; Ratner, Bach,
et al., 2018; Bach et al., 2017).
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C h a p t e r 3

LEARNING CONTROLLABLE STYLE-CONSISTENT POLICIES

The work in this chapter was published in (Zhan, Tseng, et al., 2020). E.Z. partic-
ipated in the conception of the project, formulated and implemented the method,
conducted experiments and analyzed results, and participated in the writing of the
manuscript.

Summary

We study the problem of controllable generation of long-term sequential behaviors,
where the goal is to calibrate to multiple behavior styles simultaneously. In contrast
to the well-studied areas of controllable generation of images, text, and speech,
there are two questions that pose significant challenges when generating long-term
behaviors: how should we specify the factors of variation to control, and how
can we ensure that the generated behavior faithfully demonstrates combinatorially
many styles? We leverage expert-written programs to specify controllable styles,
and derive a formal notion of style-consistency as a learning objective, which can
then be solved using conventional policy learning approaches. We evaluate our
framework using demonstrations from professional basketball players and agents in
the MuJoCo physics environment, and show that existing approaches that do not
explicitly enforce style-consistency fail to generate diverse behaviors whereas our
learned policies can be calibrated for up to 45(1024) distinct style combinations.

3.1 Introduction
The widespread availability of recorded tracking data is enabling the study of com-
plex behaviors in many domains, including sports (J. Chen et al., 2016; Le, Yue,
et al., 2017; Zhan, Zheng, et al., 2019; Yeh et al., 2019), video games (Kurin et
al., 2017; Broll et al., 2019; Hofmann, 2019), laboratory animals (Eyjolfsdottir, S.
Branson, et al., 2014; Eyjolfsdottir, K. Branson, et al., 2017; K. Branson et al., 2009;
Johnson et al., 2016), facial expressions (Suwajanakorn, Seitz, and Kemelmacher-
Shlizerman, 2017; Taylor et al., 2017), commonplace activities such as cooking
(Nishimura et al., 2019), and transportation (Bojarski et al., 2016; W. Luo, Yang,
and Urtasun, 2018; Yaguang Li et al., 2018; Chang et al., 2019). A key aspect of
modern behavioral datasets is that the behaviors can exhibit very diverse styles (e.g.,
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from multiple demonstrators). For example, Figure 3.1a depicts demonstrations
from basketball players with variations in speed, desired destinations, and curvature
of movement.

The goal of this chapter is to study controllable generation of diverse behaviors
by learning to imitate raw demonstrations; or more technically, to develop style-
calibratable imitation learning methods. A controllable, or calibratable, policy
would enable the generation of behaviors consistent with various styles, such as
low movement speed (Figure 3.1b), or approaching the basket (Figure 3.1c), or both
styles simultaneously (Figure 3.1d). Style-calibrated imitation learningmethods that
can yield such policies can be broadly useful to: (a) perform more robust imitation
learning from diverse demonstrations (Z. Wang et al., 2017; Broll et al., 2019), (b)
enable diverse exploration in reinforcement learning agents (Co-Reyes et al., 2018),
or (c) visualize and extrapolate counterfactual behaviors beyond those seen in the
dataset (Le, Carr, et al., 2017), amongst many other tasks.

Performing style-calibrated imitation is a challenging task. First, what constitutes
a “style”? Second, when can we be certain that a policy is successfully calibrated
for imitating a style? Third, how can we scale policy learning to faithfully generate
combinatorially many styles? In related tasks like controllable image generation,
common approaches for calibration use adversarial information factorization or
mutual information between generated images and user-specified styles (e.g. gender,
hair length, etc.) (Creswell, Bharath, and Sengupta, 2017; Lample et al., 2017; X.
Chen et al., 2016). However, we find that these indirect approaches fall well short
of generating controllable sequential behaviors. Intuitively, the aforementioned
objectives provide only indirect proxies for style-calibration. For example, Figure 3.2
illustrates that an indirect baseline approach struggles to reliably generate trajectories
to reach a certain displacement, even though the dataset contains many examples of
such behavior.

Research questions. We seek to answer three research questions while tackling this
challenge. The first is strategic: since high-level stylistic attributes like movement
speed are typically not provided with the raw demonstration data, what systematic
form of domain knowledge can we leverage to quickly and cleanly extract highly
varied style information from rawbehavioral data? The second is formulaic: howcan
we formalize the learning objective to encourage learning style-calibratable policies
that can be controlled to realize many diverse styles? The third is algorithmic:
how do we design practical learning approaches that reliably optimize the learning
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(a) Expert demonstrations (b) Style: Speed

(c) Style: Destination (d) Both styles

Figure 3.1: Basketball trajectories from policies that are (a) from the expert, (b)
calibrated to move at low speeds, (c) calibrated to end near the basket (within green
boundary), and (d) calibrated for both (b,c) simultaneously. Diamonds (�) and dots
(•) are initial and final positions.

objective?

Our contributions. To address these questions, we present a novel framework
inspired by data programming (Ratner et al., 2016), a paradigm in weak supervision
that utilizes automated labeling procedures, called labeling functions or programs,
to learn without ground-truth labels. In our setting, programs enable domain experts
to quickly translate domain knowledge of diverse styles into programmatically gen-
erated style annotations. For instance, it is trivial to write a program for the styles
depicted in Figures 3.1 & 3.2 (speed and destination). Programs also motivate
a new learning objective, which we call programmatic style-consistency: rollouts
generated by a policy calibrated for a particular style should return the same style
label when fed back into the program. This notion of style-consistency provides a
direct approach to measuring how calibrated a policy is, and does not suffer from
the weaknesses of indirect approaches such as mutual information estimation. In
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(a) Baseline, low displacement (b) Ours, low displacement

(c) Baseline, high displacement (d) Ours, high displacement

Figure 3.2: Basketball trajectories sampled from baseline policies and our models
calibrated to the style of Displacement with 6 classes corresponding to regions
separated by blue lines. Diamonds (�) and dots (•) indicate initial and final positions
respectively. Each policy is conditioned on a label class for Displacement (low in
(a,b), high in (c,d)). Green dots indicate trajectories that are consistent with the style
label, while red dots indicate those that are not. Our policy (b,d) is better calibrated
for this style than the baselines (a,c).

the basketball example of scoring when near the basket, trajectories that perform
correlated events (like turning towards the basket) will not return the desired style
label when fed to the program that checks for scoring events. We elaborate on this
in Section 3.3.

We demonstrate style-calibrated policy learning in Basketball andMuJoCo domains.
Our experiments highlight the modularity of our approach—we can plug in any
policy class and any imitation learning algorithm and reliably optimize for style-
consistency using the approach of Section 3.4. The resulting learned policies can
achieve very fine-grained and diverse style-calibrationwith negligible degradation in
imitation quality—for example, our learned policy is calibrated to 45(1024) distinct
style combinations in Basketball.
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3.2 Imitation Learning for Behavior Modeling
Since our focus is on learning style-calibratable generative policies, for simplicity
we develop our approach with the basic imitation learning paradigm of behavioral
cloning. Interesting future directions include composing our approach with more
advanced imitation learning approaches like DAgger (Ross, Gordon, and Bagnell,
2011) and GAIL (Ho and Ermon, 2016), as well as with reinforcement learning.

Notation. Let S and A denote the environment state and action spaces. At each
timestep C, an agent observes state sC ∈ S and executes action aC ∈ A using a policy
c : S → A. The environment then transitions to the next state sC+1 according to
a (typically unknown) dynamics function % : S × A → S. For the rest of this
paper, we assume % is deterministic; a modification of our approach for stochastic
% is included in Appendix B.2. We represent a trajectory g as a sequence of )
state-action pairs and the last state: g = {(sC , aC)})C=1 ∪ {s)+1}. Let D denote the set
of # trajectories collected from expert demonstrations. In our experiments, each
trajectory in D has the same length ) , but in general this does not need to be the
case.

Learning objective. We begin with the basic imitation learning paradigm of
behavioral cloning (Syed and Schapire, 2008). The goal is to learn a policy that
behaves like the pre-collected demonstrations:

c∗ = arg min
c

Eg∼D
[
Limitation(g, c)

]
, (3.1)

where Limitation is a loss function that quantifies the mismatch between actions
chosen by c and those in the demonstrations. Since we are primarily interested
in probabilistic or generative policies, we typically use (variants of) negative log-
density:

Limitation(g, c) =
)∑
C=1
− log c(aC |sC), (3.2)

where c(aC |sC) is the probability of c picking action aC in state sC .

Policy class of c. Common model choices for instantiating c include sequential
generative models like recurrent neural networks (RNN) and trajectory variational
autoencoders (TVAE). TVAEs introduce a latent variable z (also called a trajectory
embedding), an encoder network @q, a policy decoder c\ , and a prior distribution ?
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on z. They have been shown to work well in a range of generative policy learning
settings (Z. Wang et al., 2017; Ha and Eck, 2018; Co-Reyes et al., 2018), and have
the following imitation learning objective:

Ltvae(g, c\; @q) = E@q (z|g)

[
)∑
C=1
− log c\ (aC |sC , z)

]
+ � !

(
@q (z|g) | |?(z)

)
. (3.3)

The first term in (3.3) is the standard negative log-density that the policy assigns to
trajectories in the dataset, while the second term is the KL-divergence between the
prior and approximate posterior of trajectory embeddings z. The main shortcoming
of TVAEs and related approaches, which we address in Sections 3.3 & 3.4, is that
the resulting policies cannot be easily calibrated to generate specific styles. For
instance, the goal of the trajectory embedding z is to capture all the styles that exist
in the expert demonstrations, but there is no guarantee that the embeddings cleanly
encode the desired styles in a calibrated way. Previous work has largely relied on
unsupervised learning techniques that either require significant domain knowledge
(Le, Yue, et al., 2017), or have trouble scaling to complex styles commonly found in
real-world applications (Z. Wang et al., 2017; Yunzhu Li, Song, and Ermon, 2017).

3.3 Programmatic Style-consistency
Building upon the basic setup in Section 3.2, we focus on the setting where the
demonstrationsD contain diverse behavior styles. To start, let y ∈ . denote a single
style label (e.g., speed or destination, as shown in Figure 3.1). Our goal is to learn
a policy c that can be explicitly calibrated to y, i.e., trajectories generated by c(·|y)
should match the demonstrations in D that exhibit style y.

Obtaining style labels can be expensive using conventional annotation methods,
and unreliable using unsupervised approaches. We instead utilize expert-written
programs that can automatically produce style labels. We then formalize a notion
of style-consistency as a learning objective, and in Section 3.4 describe a practical
learning approach.

Expert-written programs for styles. Inspired by the data programming paradigm
(Ratner et al., 2016), expert-written programs programmatically produce weak and
noisy labels to learn models on otherwise unlabeled datasets. A significant benefit
is that programs are often simple scripts that can be quickly applied to the dataset,
which is much cheaper thanmanual annotations andmore reliable than unsupervised
methods. In our framework, we study behavior styles that can be represented as
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programs _ that map trajectories g to style labels y. For example:

_(g) = 1{‖s)+1 − s1‖2 > 2} (3.4)

distinguishes between trajectories with large (greater than a threshold 2) versus
small total displacement. We experiment with a range of programs, as described
in Section 3.5. Many behavior styles used in previous work can be represented
as programs, e.g., agent speed (Z. Wang et al., 2017). Multiple programs can be
provided at once resulting in a combinatorial space of joint style labels. We use
trajectory-level labels _(g) in our experiments, but in general, programs can be
applied on subsequences _(gC:C+ℎ) to obtain per-timestep labels, e.g., agent goals
(Broll et al., 2019). We can efficiently annotate datasets using programs, which we
denote as _(D) = {(g8, _(g8))}#8=1. Our goal can now be phrased as: given _(D),
train a policy c : S × . ↦→ A such that c(·|y) is calibrated to styles y found in
_(D).

Style-consistency. A key insight in our work is that programs for style labels
naturally induce a metric for calibration. If a policy c(·|y) is calibrated to _, we
would expect the generated behaviors to be consistent with the label. So, we expect
the following loss to be small:

Ey∼?(y),g∼c(·|y)
[
Lstyle (_(g), y) ] , (3.5)

where ?(y) is a prior over the style labels, and g is obtained by executing the
style-conditioned policy in the environment. Lstyle is thus a disagreement loss
over labels that is minimized at _(g) = y, e.g., Lstyle (_(g), y) = 1{_(g) ≠ y} for
categorical labels. We refer to (3.5) as the style-consistency loss, and say that c(·|y)
is maximally calibrated to _ when (3.5) is minimized. Our learning objective adds
(3.1) with (3.5):

c∗ = arg min
c

E(
g,_(g)

)
∼_(D)

[
Limitation

(
g, c

(
· | _(g)

) )]
+ Ey∼?(y),g∼c(·|y)

[
Lstyle (_(g), y) ] . (3.6)

The simplest choice for the prior distribution ?(y) is the marginal distribution of
styles in _(D). The first term in (3.6) is a standard imitation learning objective and
can be tractably estimated using _(D). To enforce style-consistency with the second
term, conceptually we need to sample several y ∼ ?(y), then several policy rollouts
g ∼ c(· | y) from the current policy, and query the program for each trajectory.
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Furthermore, if _ is a non-differentiable function defined over the entire trajectory,
as is the case in (3.4), then we cannot simply backpropagate the style-consistency
loss. In Section 3.4, we introduce differentiable approximations to more easily
optimize the objective in (3.6).

Combinatorial joint style space. Our notion of style-consistency can be easily
extended to optimize for combinatorially-many joint styles when multiple programs
are provided. Suppose we have " programs {_8}"8=1 and corresponding label spaces
{.8}"8=1. Let _ denote (_1, . . . , _") and y denote (y1, . . . , y"). Style-consistency
loss becomes:

Ey∼?(y),g∼c(·|y)

[
"∑
8=1
Lstyle
8

(
_8 (g), y8

) ]
. (3.7)

Note that style-consistency is optimal when the generated trajectory agrees with all
styles. Although challenging to achieve, this outcome is most desirable, i.e. c(·|y)
is calibrated to all styles simultaneously. Indeed, a key metric that we evaluate is
how well various learned policies can be calibrated to all styles simultaneously (i.e.,
loss of 0 only if all styles are calibrated, and loss of 1 otherwise).

3.4 Learning Approach
Optimizing (3.6) is challenging due to the long-time horizon and non-differentiability
of the labeling functions _.1 Given unlimited queries to the environment, one
could naively employ model-free reinforcement learning, e.g., estimating (3.5) us-
ing policy rollouts and optimizing using policy gradient approaches. We instead
take a model-based approach, described generically in Algorithm 1, that is more
computationally-efficient and decomposable (i.e., transparent). The model-based
approach is compatible with batch or offline learning, and we found it particularly
useful for diagnosing deficiencies in our algorithmic framework. We first introduce a
label approximator for _, and then show how to optimize through the environmental
dynamics using a differentiable model-based learning approach.

Approximating programs. To deal with non-differentiability of _, we approxi-
mate it with a differentiable function �_

k
parameterized by k:

k∗ = arg min
k

E(
g,_(g)

)
∼_(D)

[
Llabel (�_k (g), _(g)) ] . (3.8)

1This issue is not encountered in previous work on style-dependent imitation learning (Yunzhu
Li, Song, and Ermon, 2017; Hausman et al., 2017), since they use purely unsupervised methods such
as maximizing mutual information, which is differentiable.
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Algorithm 1 Generic recipe for optimizing (3.6)
1: Input: demonstrations D, programs _
2: construct _(D) by applying _ on trajectories in D
3: optimize (3.8) to convergence to learn �_

k∗

4: optimize (3.9) to convergence to learn c∗

Here, Llabel is a differentiable loss that approximates Lstyle, such as cross-entropy
loss when Lstyle is the 0/1 loss. In our experiments we use an RNN to represent �_

k
.

We then modify the style-consistency term in (3.6) with �_
k∗ and optimize:

c∗ = arg min
c

E(
g,_(g)

)
∼_(D)

[
Limitation

(
g, c

(
· | _(g)

) )]
+ Ey∼?(y),g∼c(·|y)

[
Llabel (�_k∗ (g), y) ] . (3.9)

Optimizing Lstyle over trajectories. The next challenge is to optimize style-
consistency over multiple time steps. Consider the program in (3.4) that computes
the difference between the first and last states. Our label approximator �_

k∗ may
converge to a solution that ignores all inputs except for s1 and s)+1. In this case, �_k∗
provides no learning signal about intermediate steps. As such, effective optimization
of style-consistency in (3.9) requires informative learning signals on all actions at
every step, which can be viewed as a type of credit assignment problem.

In general, model-free and model-based approaches address this challenge in dra-
matically different ways and for different problem settings. A model-free solution
views this credit assignment challenge as analogous to that faced by reinforcement
learning (RL), and repurposes generic reinforcement learning algorithms. Crucially,
they assume access to the environment to collect more rollouts under any new policy.
A model-based solution does not assume such access and can operate only with the
batch of behavior data D; however they can have an additional failure mode since
the learned models may provide an inaccurate signal for proper credit assignment.
We choose a model-based approach, while exploiting access to the environment
when available to refine the learned models, for two reasons: (a) we found it to be
compositionally simpler and easier to debug; and (b) we can use the learned model
to obtain hallucinated rollouts of any policy efficiently during training.

Modeling dynamics for credit assignment. Our model-based approach utilizes
a dynamics model %i to approximate the environment’s dynamics by predicting the
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change in state given the current state and action:

i∗ = arg min
i

Eg∼D

)∑
C=1
Ldynamics (%i (sC , aC), (sC+1 − sC)) , (3.10)

whereLdynamics is often !2 or squared-!2 loss (Nagabandi et al., 2018; Y. Luo et al.,
2019). This allows us to generate trajectories by rolling out: sC+1 = sC +%i

(
sC , c(sC)

)
.

Then optimizing for style-consistency in (3.9) would backpropagate through our
dynamics model %i and provide informative learning signals to the policy at every
timestep.

We outline our model-based approach in Algorithm 2. Lines 10-12 describe an
optional step to fine-tune the dynamics model by querying the environment using
the current policy (similar to Y. Luo et al. (2019)); we found that this can improve
style-consistency in some experiments. In Appendix B.2 we elaborate on how
the dynamics model and objective of Eqn (3.10) is changed if the environment is
stochastic.

Algorithm 2Model-based approach for Algorithm 1
1: Input: demonstrations D, programs _, label approximators �_

k
, dynamics %i

2: _(D) ← {
(
g8, _(g8)

)
}#
8=1

3: for =dynamics iterations do
4: optimize (3.10) with batch from D
5: for =label iterations do
6: optimize (3.8) with batch from _(D)
7: for =policy iterations do
8: B ← { =collect trajectories using %i and c }
9: optimize (3.9) with batch from _(D) and B
10: for =env iterations do ⊲ Fine-tune %i
11: genv ← { 1 trajectory using environment and c }
12: optimize (3.10) with genv

Discussion. To summarize, we claim that style-consistency is an objective metric
to measure the quality of style-calibration. Our learning approach uses off-the-
shelf methods to enforce style-consistency during training. We anticipate several
variants of style-consistent policy learning of Algorithm 1, e.g., using model-free
RL, using environment/model rollouts to fine-tune the program approximator, using
style-conditioned policy classes, or using other loss functions to encourage imita-
tion quality. Our experiments in Section 3.5 establish that our style-consistency
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loss provides a clear learning signal, that no prior approach directly enforces this
consistency, and that our approach accomplishes calibration for a combinatorial
joint style space.

3.5 Experiments
We first briefly describe our experimental setup and baseline choices, and then
discuss our main experimental results. A full description of experiments is available
in Appendix B.3.

Data. We validate our framework on two datasets: 1) a collection of professional
basketball player trajectories with the goal of learning a policy that generates re-
alistic player-movement, and 2) a Cheetah agent running horizontally in MuJoCo
(Todorov, Erez, and Tassa, 2012) with the goal of learning a policy with cali-
brated gaits. The former has a known dynamics function: %(sC , aC) = sC + aC ,
where sC and aC are the player’s position and velocity on the court respectively;
we expect the dynamics model %i to easily recover this function. The latter has
an unknown dynamics function (which we learn a model of when approximating
style-consistency). We obtain Cheetah demonstrations from a collection of policies
trained using pytorch-a2c-ppo-acktr (Kostrikov, 2018) to interface with the
DeepMind Control Suite’s Cheetah domain (Tassa et al., 2018) – see Appendix B.3
for details.

Programs for style labels. Programs for Basketball include: 1) average Speed
of the player, 2) Displacement from initial to final position, 3) distance from final
position to a fixed Destination on the court (e.g. the basket), 4) mean Direction
of travel, and 5) Curvature of the trajectory, whichmeasures the player’s propensity
to change directions. For Cheetah, we have programs for the agent’s 1) Speed, 2)
Torso-height, 3) Back-foot-height, and 4) Front-foot-height that can be
trivially computed from trajectories extracted from the environment.

We threshold the aforementioned programs into categorical labels (leaving real-
valued labels for future work) and use (3.5) for style-consistency with Lstyle as the
0/1 loss. We use cross-entropy for Llabel and list all other hyperparameters in
Appendix B.3.

Metrics. We will primarily study two properties of the learned models in our
experiments: imitation quality and style-calibration quality. Formeasuring imitation
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quality of generative models, we report the negative log-density term in (3.3), also
known as the reconstruction loss term in VAE literature (Kingma and Welling,
2014; Ha and Eck, 2018), which corresponds to how well the policy can reconstruct
trajectories from the dataset.

To measure style-calibration, we report style-consistency results as 1−Lstyle in (3.5)
so that all results are easily interpreted as accuracies. In Experiment 5, we find that
style-consistency indeed captures a reasonable notion of calibration – when the pro-
gram is inherently noisy and style-calibration is hard, style-consistency correspond-
ingly decreases. In Experiment 3, we find that the goals of imitation (as measured
by negative log-density) and calibration (as measured by style-consistency) may not
always be aligned—investigating this trade-off is an avenue for future work.

Baselines. Our main experiments use TVAEs as the underlying policy class. We
compare our approach, CTVAE-style, with 3 baselines:

1. CTVAE: conditional TVAEs (Z. Wang et al., 2017).

2. CTVAE-info: CTVAE with information factorization (Creswell, Bharath,
and Sengupta, 2017), indirectly maximizes style-consistency by removing
correlation of y with z.

3. CTVAE-mi: CTVAE with mutual information maximization between style
labels and trajectories. This is a supervised variant of unsupervised models
(X. Chen et al., 2016; Yunzhu Li, Song, and Ermon, 2017), and also requires
learning a dynamics model for sampling policy rollouts.

Detailed descriptions of baselines are in Appendix B.1. All baseline models build
upon TVAEs, which are also conditioned on a latent variable (see Section 3.2)
and only fundamentally differ in how they encourage the calibration of policies to
different style labels. We highlight that the underlying model choice is orthogonal
to our contributions; our framework is compatible with other policy models (see
Experiment 4 with an RNN policy class).

Model details. Wemodel all trajectory embeddings z as a diagonal Gaussian with
a standard normal prior. Encoder @q and label approximators �_

k
are bi-directional

GRUs (Cho et al., 2014) followed by linear layers. Policy c\ is recurrent for
basketball, but non-recurrent for Cheetah. The Gaussian log sigma returned by c\
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is state-dependent for basketball, but state-independent for Cheetah. For Cheetah,
we made these choices based on prior work in MuJoCo for training gait policies
(Z. Wang et al., 2017). For Basketball, we observed a lot more variation in the 500k
demonstrations so we experimented with a more flexible model. See Appendix B.3
for hyperparameters.

Experiment 1: How well can we calibrate policies for single styles?
We first threshold programs into 3 classes for Basketball and 2 classes for Chee-
tah; the marginal distribution ?(y) of styles in _(D) is roughly uniform over these
classes. Then we learn a policy c∗ calibrated to each of these styles. Finally, we gen-
erate rollouts from each of the learned policies to measure style-consistency. Table
3.1 compares the median style-consistency (over 5 seeds) of learned policies. For
Basketball, CTVAE-style significantly outperforms baselines and achieves almost
perfect style-consistency for 4 of the 5 styles. For Cheetah, CTVAE-style outper-
forms all baselines, but the absolute performance is lower than for Basketball—we
conjecture that this is due to the complex environment dynamics that can be chal-
lenging for model-based approaches. Figure 3.3 visualizes of our CTVAE-style
policy calibrated for Destination(basket).

Model Speed Disp. Dest. Dir. Curve
CTVAE 83 72 82 77 61
CTVAE-info 84 71 79 72 60
CTVAE-mi 86 74 82 77 72
CTVAE-style 95 96 97 97 81

(a) Style-consistency for styles in Basketball, namely Speed, Displacement,
Destination(basket), Direction, and Curvature.
Model Speed Torso-height BFoot-height FFoot-height
CTVAE 59 63 68 68
CTVAE-info 57 63 65 66
CTVAE-mi 60 65 65 70
CTVAE-style 79 80 80 77

(b) Style-consistency for styles in Cheetah, namely Speed, Torso-height,
Back-foot-height, and Front-foot-height.

Table 3.1: Individual Style Calibration: Style-consistency (×10−2, median over 5
seeds) of policies evaluatedwith 4,000 Basketball and 500Cheetah rollouts. Trained
separately for each style, CTVAE-style policies outperform baselines for all styles
in Basketball and Cheetah environments.

We also consider cases in which programs can have several classes and non-uniform
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(a) Label class 0 (slow) (b) Label class 1 (mid) (c) Label class 2 (fast)

Figure 3.3: CTVAE-style rollouts calibrated for Destination(basket), 0.97
style-consistency. Diamonds (�) and dots (•) indicate initial and final positions.
Regions divided by green lines represent label classes.

distributions (i.e., some styles are more/less common than others). We threshold
Displacement into 6 classes for Basketball and Speed into 4 classes for Cheetah
and compare the policies in Table 3.2. In general, we observe degradation in overall
style-consistency accuracies as the number of classes increase. However, CTVAE-
style policies still consistently achieve better style-consistency than baselines in this
setting.

Basketball Cheetah
Model 2 classes 3 classes 4 classes 6 classes 3 classes 4 classes
CTVAE 92 83 79 70 45 37
CTVAE-info 90 83 78 70 49 39
CTVAE-mi 92 84 77 70 48 37
CTVAE-style 99 98 96 92 59 51

Table 3.2: Fine-grained Style-consistency: (×10−2, median over 5 seeds) Training
on programs with more classes (Displacement for Basketball, Speed for Cheetah)
yields increasingly fine-grained calibration of behavior. Although CTVAE-style
degrades as the number of classes increases, it outperforms baselines for all styles.

We visualize and compare policies calibrated for 6 classes of Displacement in
Figure 3.2. In Figure 3.2b and 3.2d, we see that our CTVAE-policy (0.92 style-
consistency) is effectively calibrated for styles of low and high displacement, as all
trajectories end in the correct corresponding regions (marked by the green dots). On
the other hand, trajectories from a baseline CTVAE model (0.70 style-consistency)
in Figure 3.2a and 3.2c can sometimes end in the wrong region corresponding to a
different style label (marked by red dots). These results suggest that incorporating
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programmatic style-consistency while training via (3.9) can yield good qualitative
and quantitative calibration results.

Experiment 2: Can we calibrate for combinatorial joint style spaces?
We now consider combinatorial style-consistency as in (3.7), which measures the
style-consistency with respect to all programs simultaneously. For instance, in
Figure 3.4, we calibrate to both terminating close to the net and also the speed at
which the agent moves towards the target destination; if either style is not calibrated
then the joint style is not calibrated. In our experiments, we evaluated up to 1024
joint styles.

(a) Label class 0 (slow) (b) Label class 1 (mid) (c) Label class 2 (fast)

Figure 3.4: CTVAE-style rollouts calibrated for 2 styles: label class 1 of
Destination(basket) in (see Figure 3.3) and each class for Speed, with 0.93
style-consistency. Diamonds (�) and dots (•) indicate initial and final positions.

Table 3.3 compares the style-consistency of policies simultaneously calibrated for up
to 5 programs for Basketball and 3 programs for Cheetah. This is a very challenging
task, and we see that style-consistency for baselines degrades significantly as the
number of joint styles grows combinatorially. On the other hand, our CTVAE-
style approach experiences only a modest decrease in style-consistency and is still
significantly better calibrated (0.55 style-consistency vs. 0.21 best baseline style-
consistency in the most challenging experiment for Basketball). We visualize a
CTVAE-style policy calibrated for two styles in Basketball with style-consistency
0.93 in Figure 3.4. CTVAE-style outperforms baselines in Cheetah as well, but there
is still room for improvement to optimize style-consistency better in future work.

Experiment 3: Does style-consistency compromise imitation quality?
In Table 3.4, we investigate whether CTVAE-style’s superior style-consistency
comes at a significant cost to imitation quality, since we optimize both in (3.6).
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2 styles, 3 styles, 4 styles, 5 styles, 5 styles,
3 classes 3 classes 3 classes 3 classes 4 classes

Model (8) (27) (81) (243) (1024)
CTVAE 71 58 50 37 21
CTVAE-info 69 58 51 32 21
CTVAE-mi 72 56 51 30 21
CTVAE-style 93 88 88 75 55

(a) Style-consistency for combinatorial styles in Basketball.
2 styles, 3 styles,
2 classes 2 classes

Model (4) (8)
CTVAE 41 28
CTVAE-info 41 27
CTVAE-mi 40 28
CTVAE-style 54 40

(b) Style-consistency for combinatorial styles in Cheetah.

Table 3.3: Combinatorial Style-consistency: (×10−2, median over 5 seeds) Simul-
taneously calibrated to joint styles from multiple programs, CTVAE-style policies
significantly outperform all baselines. The number of distinct style combinations
are in brackets. The most challenging experiment for basketball calibrates for 1024
joint styles (5 programs, 4 classes each), in which CTVAE-style has a +161%
improvement in style-consistency over the best baseline.

For Basketball, high style-consistency is achieved without any degradation in im-
itation quality. For Cheetah, negative log-density is slightly worse; a followup
experiment in Table B.8 in Appendix B.4 shows that we can improve imitation
quality with more training, sometimes with modest decrease to style-consistency.

Basketball Cheetah
Model � ! NLD � ! NLD
TVAE 2.55 -7.91 29.4 -0.60
CTVAE 2.51 -7.94 29.3 -0.59
CTVAE-info 2.25 -7.91 29.1 -0.58
CTVAE-mi 2.56 -7.94 28.5 -0.57
CTVAE-style 2.27 -7.83 30.1 -0.28

Table 3.4: KL-divergence and negative log-density per timestep for TVAE models
(lower is better). CTVAE-style is comparable to baselines for Basketball, but is
slightly worse for Cheetah.
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Experiment 4: Is our framework compatible with other policy classes?
We highlight that our framework introduced in Section 3.4 is compatible with any
policy class. In this experiment, we optimize for style-consistency using a simpler
model for the policy and show that style-consistency is still improved. In particular,
we use an RNN and calibrate for Destination(basket) in basketball. In Table
3.5, we see that style-consistency is improved for the RNN model without any
significant decrease in imitation quality.

Style-consistency ↑
Model Min Median Max NLD ↓
RNN 79 80 81 -7.7
RNN-style 81 91 98 -7.6

Table 3.5: Style-consistency of RNN policy model (10−2, 5 seeds) for
Destination(basket) in basketball. Our approach improves style-consistency
without significantly decreasing imitation quality.

Experiment 5: What if programs are noisy?
So far, we have demonstrated that our method optimizing for style-consistency di-
rectly can learn policies that aremuch better calibrated to styles, without a significant
degradation in imitation quality. However, we note that the programs used thus far
are assumed to be perfect, in that they capture exactly the style that we wish to
calibrate. In practice, domain experts may specify programs that are noisy; we
simulate that scenario in this experiment.

In particular, we create noisy versions of programs in Table 3.1 by adding Gaussian
noise to computed values before applying the thresholds. The noise will result in
some label disagreement between noisy and true programs (Table B.12 in Appendix
B.4). This resembles the scenario in practice where domain experts can mislabel
a trajectory, or have disagreements. We train CTVAE-style models with noisy
programs and compute style-consistency using the true programs without noise.
Intuitively, we expect the relative decrease in style-consistency to scale linearly with
the label disagreement.

Figure 3.5 shows that the median relative decrease in style-consistency of our
CTVAE-models scales linearly with label disagreement. Our method is also some-
what robust to noise, as -% label disagreement results in better than -% relative
decrease in style-consistency (black line in Figure 3.5). Directions for future work
include combining multiple noisy programs together to improve style-consistency
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with respect to a “true” program.

Figure 3.5: Relative change of style-consistency for CTVAE-style policies trained
with noisy programs, which are created by injecting noise with mean 0 and standard
deviation 2 ·f for 2 ∈ {1, 2, 3, 4} before applying thresholds to obtain label classes.
The x-axis is the label disagreement between noisy and true programs. The y-axis
is the median change (5 seeds) in style-consistency using the true programs without
noise, relative to Table 3.1. The relationship is generally linear and better than
a one-to-one dependency (i.e., if -% label disagreement leads to −-% relative
change, indicated by the black line). See Table B.12 and B.13 in the Appendix B.4
for more details.

3.6 Related Work
Our work combines ideas from policy learning and data programming to develop
a weakly supervised approach for more explicit and fine-grained calibration. As
such, our work is related to learning disentangled representations and controllable
generative modeling, reviewed below.

Imitation learning of diverse behaviors has focused on unsupervised approaches
to infer latent variables/codes that capture behavior styles (Yunzhu Li, Song, and
Ermon, 2017; Hausman et al., 2017; Z. Wang et al., 2017). Similar approaches have
also been studied for generating text conditioned on attributes such as sentiment or
tense (Hu et al., 2017). A typical strategy is to maximize the mutual information
between the latent codes and trajectories, in contrast to our notion of programmatic
style-consistency.

Disentangled representation learning aims to learn representations where each
latent dimension corresponds to exactly one desired factor of variation (Bengio,
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Courville, and Vincent, 2012). Recent studies (Locatello et al., 2019) have noted
that popular techniques (X. Chen et al., 2016; Higgins et al., 2017; Kim and
Mnih, 2018; T. Q. Chen et al., 2018) can be sensitive to hyperparameters and that
evaluation metrics can be correlated with certain model classes and datasets, which
suggests that fully unsupervised learning approaches may, in general, be unreliable
for discovering cleanly calibratable representations. We avoid this roadblock by
relying on expert-written programs to provide weak supervision.

Conditional generation for images has recently focused on attributemanipulation
(Bao et al., 2017; Creswell, Bharath, and Sengupta, 2017; Klys, Snell, and Zemel,
2018), which aims to enforce that changing a label affects only one aspect of the
image (similar to disentangled representation learning). We extend these models
and compare with our approach in Section 3.5. Our experiments suggest that these
algorithms do not necessarily scale well into sequential domains.

Enforcing consistency in generative modeling, such as cycle-consistency in im-
age generation (Zhu et al., 2017), and self-consistency in hierarchical reinforcement
learning (Co-Reyes et al., 2018) has proved beneficial. The former minimizes a
discriminative disagreement, whereas the latter minimizes a distributional disagree-
ment between two sets of generated behaviors (e.g., KL-divergence). From this
perspective, our style-consistency notion is more similar to the former; however,
we also enforce consistency over multiple time-steps, which is more similar to the
latter.

Goal-conditioned policy learning considers policies that take as input the current
state along with a desired goal state (e.g., a location), and then must execute a
sequence of actions to achieve the goal states. In some cases, the goal states are
provided exogenously (Zheng, Yue, and P. Lucey, 2016; Le, Jiang, et al., 2018; Broll
et al., 2019; Ding et al., 2019), and in other cases the goal states are learned as part
of a hierarchical policy learning approach (Co-Reyes et al., 2018; Sharma et al.,
2020) in a way that uses a self-consistency metric similar to our style-consistency
approach. Our approach can be viewed as complementary to these approaches as
the goal is to study more general notions of consistency (e.g., our styles subsume
goals as a special case) as well as to scale to combinatorial joint style spaces.
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Hierarchical control via learning latent motor dynamics is concerned with
recovering a latent representation of motor control dynamics such that one can
easily design controllers in the latent space (which then get decoded into actions).
The high level controllers can then be designed afterwards in a pipelined workflow
(Losey et al., 2020; Ling et al., 2020; Y.-S. Luo et al., 2020). The controllers
are effective for short time horizons and focus on finding good representations of
complex dynamics, whereas we focus on controlling behavior styles that can span
longer horizons.

3.7 Discussion
We propose a novel framework for imitating diverse behavior styles while also
calibrating to desired styles. Our framework leverages programs to tractably repre-
sent styles and introduces programmatic style-consistency, a metric that allows for
fair comparison between calibrated policies. Our experiments demonstrate strong
empirical calibration results.

We believe that our framework lays the foundation for many directions of future
research. First, can one model more complex styles not easily captured with a single
program (e.g., aggressive vs. passive play in sports) by composing simpler programs
(e.g., max speed, distance to closest opponent, number of fouls committed, etc.),
similar to (Ratner et al., 2016; Bach et al., 2017)? Second, can we use these per-
timestep labels to model transient styles, or simplify the credit assignment problem
when learning to calibrate? Third, can we blend our programmatic supervision with
unsupervised learning approaches to arrive at effective semi-supervised solutions?
Fourth, can we use model-free approaches to further optimize self-consistency,
e.g., to fine-tune from our model-based approach? Finally, can we integrate our
frameworkwith reinforcement learning to also optimize for environmental rewards?
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C h a p t e r 4

LEARNING DIFFERENTIABLE NEUROSYMBOLIC
PROGRAMS

The work in this chapter was published in (Shah et al., 2020). E.Z. formulated
and implemented the method, conducted experiments and analyzed results, and
participated in the writing of the manuscript.

Summary

We study the problem of learning differentiable functions expressed as programs
in a domain-specific language. Such programmatic models can offer benefits such
as composability and interpretability; however, learning them requires optimizing
over a combinatorial space of program “architectures”. We frame this optimization
problem as a search in a weighted graph whose paths encode top-down derivations
of program syntax. Our key innovation is to view various classes of neural networks
as continuous relaxations over the space of programs, which can then be used to
complete any partial program. This relaxed program is differentiable and can be
trained end-to-end, and the resulting training loss is an approximately admissible
heuristic that can guide the combinatorial search. We instantiate our approach on
top of A∗ search and an iteratively deepened branch-and-bound search, and use these
algorithms to learn programmatic classifiers in three sequence classification tasks.
Our experiments show that the algorithms outperform state-of-the-art methods for
program learning, and that they discover programmatic classifiers that yield natural
interpretations and achieve competitive accuracy.

4.1 Introduction
An emerging body of work advocates program synthesis as an approach to machine
learning. These methods learn functions represented as programs in symbolic,
domain-specific languages (DSLs) (Ellis, Solar-Lezama, and J. Tenenbaum, 2016;
Ellis, Ritchie, et al., 2018; Young, Bastani, and Naik, 2019; Valkov et al., 2018;
Verma, Murali, et al., 2018; Verma, H. M. Le, et al., 2019). Such symbolic models
have a number of appeals: they can be more interpretable than neural models,
they use the inductive bias embodied in the DSL to learn reliably, and they use
compositional language primitives to transfer knowledge across tasks.
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In this chapter, we study how to learn differentiable programs, which use structured,
symbolic primitives to compose a set of parameterized, differentiable modules.
Differentiable programs have recently attracted much interest due to their ability
to leverage the complementary advantages of programming language abstractions
and differentiable learning. For example, recent work has used such programs to
compactly describe modular neural networks that operate over rich, recursive data
types (Valkov et al., 2018).

To learn a differentiable program, one needs to induce the program’s “architecture”
while simultaneously optimizing the parameters of the program’s modules. This
co-design task is difficult because the space of architectures is combinatorial and
explodes rapidly. Prior work has approached this challenge using methods such as
greedy enumeration, Monte Carlo sampling, Monte Carlo tree search, and evolu-
tionary algorithms (Verma, Murali, et al., 2018; Valkov et al., 2018; Ellis, Nye,
et al., 2019). However, such approaches can often be expensive, due to not fully
exploiting the structure of the underlying combinatorial search problem.

In this chapter, we show that the differentiability of programs opens up a new line of
attack on this search problem. A standard strategy for combinatorial optimization
is to exploit (ideally fairly tight) continuous relaxations of the search space (Pearl,
1984; Charniak and Husain, 1991; Xiang and Kim, 2013; Sontag et al., 2012; Korf,
2000; Bagchi andMahanti, 1983; Verma, H.M. Le, et al., 2019). Optimization in the
relaxed space is typically easier and can efficiently guide search algorithms towards
good or optimal solutions. In the case of program learning, we propose to use various
classes of neural networks as relaxations of partial programs. We frame our problem
as searching a graph, in which nodes encode program architectures with missing
expressions, and paths encode top-down program derivations. For each partial
architecture D encountered during this search, the relaxation amounts to substituting
the unknownpart of Dwith a neural networkwith free parameters. Because programs
are differentiable, this network can be trained on the problem’s end-to-end loss. If
the space of neural networks is an (approximate) proper relaxation of the space of
programs (and training identifies a near-optimum neural network), then the training
loss for the relaxation can be viewed as an (approximately) admissible heuristic.

We instantiate our approach, called Near (abbreviation for Neural Admissible
Relaxation), on top of two informed search algorithms: A∗ search and an itera-
tively deepened depth-first search that uses a heuristic to direct branching as well
as branch-and-bound pruning (Ids-bb). We evaluate the algorithms in the task of
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learning programmatic classifiers in three behavior classification applications. We
show that the algorithms substantially outperform state-of-the-art methods for pro-
gram learning, and can learn classifier programs that bear natural interpretations
and are close to neural models in accuracy.

To summarize, this chapter makes three contributions. First, we identify a tool—
heuristics obtained by training neural relaxations of programs—for accelerating
combinatorial searches over differentiable programs. As far as we know, this is the
first approach to exploit the differentiability of a programming language in program
synthesis. Second, we instantiate this idea using two classic search algorithms.
Third, we present promising experimental results in three sequence classification
applications.

4.2 Problem Formulation
We view a program in our domain-specific language (DSL) as a pair (U, \), where U
is a discrete (program) architecture and \ is a vector of real-valued parameters. The
architecture U is generated using a context-free grammar (Hopcroft, Motwani, and
Ullman, 2007). The grammar consists of a set of rules - → f1 . . . f: , where - is
a nonterminal and f1, . . . , f: are either nonterminals or terminals. A nonterminal
stands for a missing subexpression; a terminal is a symbol that can actually appear
in a program’s code. The grammar starts with an initial nonterminal, then iteratively
applies the rules to produce a series of partial architectures: programs made from
one or more nonterminals and zero or more terminals. The process continues until
there are no nonterminals left, i.e., we have a complete architecture.

The semantics of the architectureU is given by a function [[U]] (G, \), defined by rules
that are fixed for the DSL. We require this function to be differentiable in \. Also,
we define a structural cost for architectures. Let each rule A in the DSL grammar
have a non-negative real cost B(A). The structural cost of U is B(U) = ∑

A∈R(U) B(A),
where R(U) is the multiset of rules used to create U. Intuitively, architectures with
lower structural cost are simpler are more human-interpretable.

To define our learning problem, we assume an unknown distribution � (G, H)
over inputs G and labels H, and consider the prediction error function Z (U, \) =
E(G,H)∼� [1{[[U]] (G, \) ≠ H}], where 1 is the indicator function. Our goal is to
find an architecturally simple program with low prediction error, i.e., to solve the
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optimization problem:

(U∗, \∗) = arg min
(U,\)

(B(U) + Z (U, \)). (4.1)

Program Learning for Sequence Classification.
Program learning is applicable in many settings; we specifically study it in the
sequence classification context (Dietterich, 2002). We now sketch our DSL for this
domain. Like many others DSLs for program synthesis (Feser, Chaudhuri, and
Dillig, 2015; Balog et al., 2017; Valkov et al., 2018), our DSL is purely functional.
The language has the following characteristics:

• Programs in the DSL operate over two data types: real vectors and sequences
of real vectors. We assume a simple type system that makes sure that these
types are used consistently.

• Programs use a set of fixed algebraic operations ⊕ as well as a “library”
of differentiable, parameterized functions ⊕\ . Because we are motivated by
interpretability, the library used in our current implementation only contains
affine transformations. In principle, it could be extended to include other
kinds of functions as well.

• Programs use a set of higher-order combinators to recurse over sequences. In
particular, we allow the standard map and fold combinators. To compactly
express sequence-to-sequence functions, we also allow a special mapprefix
combinator. Let 4 be a function thatmaps sequences to vectors. For a sequence
G, mapprefix(4, G) equals the sequence 〈4(G [1:1]), 4(G [1:2]), . . . , 4(G [1:=])〉,
where G [1:8] is the 8-th prefix of G.

• Programs can use a conditional branching construct. However, to avoid
discontinuities, we interpret this construct in terms of a smooth approximation:

[[if U1 > 0 then U2 else U3]] (G, (\1, \2, \3))
= f(V · [[U1]] (G, \1)) · [[U2]] (G, \2)
+ (1 − f(V · [[U1]] (G, \1))) · [[U3]] (G, \3).

(4.2)

Here, f is the sigmoid function and V is a temperature hyperparameter. As
V→ 0, this approximation approaches the usual if-then-else construct.

Figure 4.1 summarizes our DSL in the standard Backus-Naur form (Winskel, 1993).
Figures 4.2 and 4.3 show two programs synthesized by our learning procedure
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using our DSL with libraries of domain-specific affine transformations. Both pro-
grams offer an interpretation in their respective domains, while offering respectable
performance against an RNN baseline.

U ::= G | 2 | ⊕(U1, . . . , U: ) | ⊕\ (U1, . . . , U: ) | if U1 then U2 else U3 | sel( G
map(U1, G) | fold(U1, 2, G) | mapprefix(U1, G)

Figure 4.1: Grammar of DSL for sequence classification. Here, G, 2, ⊕, and ⊕\
represent inputs, constants, basic algebraic operations, and parameterized library
functions, respectively. sel( returns a vector consisting of a subset ( of the dimen-
sions of an input G.

map(
if DistAffine[.0217];−.2785(sC)

then AccelAffine[−.0007,.0055,.0051,−.0025];3.7426(sC)
else DistAffine[−.2143];1.822) (sC),

g)

Figure 4.2: Synthesized program classifying a “sniff” action between two mice in
the CRIM13 dataset. DistAffine and AccelAffine are functions that first select
the parts of the input states sC that represent distance and acceleration measurements,
respectively, and then apply affine transformations to the resulting vectors. In the
parameters (subscripts) of these functions, the brackets contain the weight vectors
for the affine transformation, and the succeeding values are the biases. The program
achieves an accuracy of 0.87 (vs. 0.89 for RNN baseline) and can be interpreted as
follows: if the distance between two mice is small, they are doing a “sniff” (large
bias in else clause). Otherwise, they are doing a “sniff” if the difference between
their accelerations is small.

4.3 Program Learning using Near
We formulate our program learning problem as a form of graph search. The search
derives program architectures top-down: it begins with the empty architecture,
generates a series of partial architectures following theDSLgrammar, and terminates
when a complete architecture is derived.

In more detail, we imagine a graph G in which:

• The node set consists of all partial and complete architectures permissible in
the DSL. Let D denote partial architectures (at least one nonterminal), and U,
as before, denote complete architectures (no nonterminals).
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map(
multiply(

add(OffenseAffine(sC), BallAffine(sC)),
add(OffenseAffine(sC), BallAffine(sC))
),

g)

Figure 4.3: Synthesized program classifying the ballhandler for basketball.
OffenseAffine and BallAffine are parameterized affine transformations over
the GH-coordinates of the offensive players and the ball. multiply and add are
computed element-wise. The program structure can be interpreted as computing
the Euclidean norm/distance between the offensive players and the ball and suggests
that this quantity can be important for determining the ballhandler. On a set of
learned parameters (not shown), this program achieves an accuracy of 0.905 (vs.
0.945 for an RNN baseline).

• The source node D0 is the empty architecture, while complete architectures U
are goal nodes.

• Edges are directed and capture single-step applications of rules of the DSL.
Edges can be divided into: (i) internal edges (D, D′) between partial architec-
tures D and D′, and (ii) goal edges (D, U) between partial architecture D and
complete architecture U. An internal edge (D, D′) exists if one can obtain D′

by substituting a nonterminal in D following a rule of the DSL. A goal edge
(D, U) exists if we can complete D into U by applying a rule A of the DSL.

• The cost of an internal edge (D, D′) is given by the structural cost B(A), where
A is the rule used to construct D′ from D. The cost of a goal edge (D, U) is
B(A) + Z (U, \∗),where \∗ = arg min\ Z (U, \) and A is the rule used to construct
U from D.

A path in the graph G is defined as usual, as a sequence of nodes D1, . . . , D: such
that there is an edge (D8, D8+1) for each 8 ∈ {1, . . . , : − 1}. The cost of a path is the
sum of the costs of these edges. Our goal is to discover a least-cost path from the
source D0 to some goal node U∗. Then by construction of our edge costs, U∗ is an
optimal solution to our learning problem in (4.1).
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Neural Relaxations as Admissible Heuristics
The main challenge in our search problem is that our goal edges contain rich cost
information, but this information is only accessible when a path has been explored
until the end. A heuristic function ℎ(D) that can predict the value of choices made at
nodes D encountered early in the search can help with this difficulty. If such a heuris-
tic is admissible—i.e., underestimates the cost-to-go—it enables the use of informed
search strategies such as A∗ and branch-and-bound while guaranteeing optimal so-
lutions. Our Near approach (abbreviation for Neural Admissible Relaxation) uses
neural approximations of spaces of programs to construct a heuristic that is n-close
to being admissible.

Let a completionof a partial architectureD be a (complete) architectureD[U1, . . . , U: ]
obtained by replacing the nonterminals in D by suitably typed architectures U8. Let
\D be the parameters of D and \ be parameters of all U8. The cost-to-go at D is given
by:

� (D) = min
U1,...,U: ,\D ,\

((B(D[U1, . . . , U: ] − B(D)) + Z (D[U1, . . . , U: ], (\D, \)), (4.3)

where the structural cost B(D) is the sum of the costs of the grammatical rules used
to construct D.

To compute a heuristic cost ℎ(D) for a partial architecture D encountered during
search, we substitute the nonterminals in D with neural networks parameterized by
l. These networks are type-correct—for example, if a nonterminal is supposed
to generate subexpressions whose inputs are sequences, then the neural network
used in its place is recurrent. We show an example of Near used in a program
learning-graph search formulation in Figure 4.4.

We view the neurosymbolic programs resulting from this substitution as tuples
(D, (\D, l)). We define a semantics for such programs by extending our DSL’s
semantics, and lift the function Z to assign costs Z (D, (\D, l)) to such programs.
The heuristic cost for D is now given by:

ℎ(D) = min
\D ,l

Z (D, (\D, l)). (4.4)

As Z (D, (\D, l)) is differentiable in \D and l, we can compute ℎ(D) using gradient
descent.

n-Admissibility. In practice, the neural networks that we use may only form an
approximate relaxation of the space of completions and parameters of architectures;
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Figure 4.4: An example of program learning formulated as graph search. Structural
costs are in red, heuristic values in black, prediction errors Z in blue, O refers to
a nonterminal in a partial architecture, and the path to a goal node returned by
A*-Near search is in teal.

also, the training of these networks may not reach global optima. To account for
these errors, we consider an approximate notion of admissibility. Many such notions
have been considered in the past (Harris, 1974; Pearl, 1984; Valenzano et al., 2013);
here, we follow a definition used by (Harris, 1974).

For a fixed constant n > 0, let an n-admissible heuristic be a function ℎ∗(D) over
architectures such that ℎ∗(D) ≤ � (D) + n for all D. Now consider any completion
D[U1, . . . , U: ] of an architecture D. As neural networks with adequate capacity are
universal function approximators, there exist parameters l∗ for our neurosymbolic
program such that for all D, U1, . . . , U: , \D, and \:

Z (D, (\D, l∗)) ≤ Z (D[U1, . . . , U: ], (\D, \)) + n . (4.5)

Because edges in our search graph have non-negative costs, B(D) ≤ B(D[U1, . . . , U: ]),



63

implying:

ℎ(D) ≤ min
U1,...,U: ,\D ,\

Z (D[U1, . . . , U: ], (\D, \)) + n

≤ min
U1,...,U: ,\D ,\

Z (D[U1, . . . , U: ], (\D, \)) + (B(D[U1, . . . , U: ]) − B(D)) + n

= � (D) + n .
(4.6)

In other words, ℎ(D) is n-admissible.

Empirical Considerations. We have formulated our learning problem in terms
of the true prediction error Z (U, \). In practice, we must use statistical estimates
of this error. Following standard practice, we use an empirical validation error
to choose architectures, and an empirical training error is used to choose module
parameters. This means that in practice, the cost of a goal edge (D, U) in our graph
is Zval(U, arg min\ Z train(U, \)).

One complication here is that our neural heuristics encode both the completions of
an architecture and the parameters of these completions. Training a heuristic on
either the training loss or the validation loss will introduce an additional error. Using
standard generalization bounds, we can argue that for adequately large training and
validation sets, this error is bounded (with probability arbitrarily close to 1) in either
case, and that our heuristic is n-admissible with high probability in spite of this
error.

Integrating Near with Graph Search Algorithms
The Near approach can be used in conjunction with any heuristic search algorithm
(Russell and Norvig, 2002) over architectures. Specifically, we have integrated
Near with two classic graph search algorithms: A∗ (Pearl, 1984) (Algorithm 3)
and an iteratively deepened depth-first search with branch-and-bound pruning (Ids-
bb) (Algorithm 8 in Appendix C.1). Both algorithms maintain a search frontier
by computing an 5 -score for each node: 5 (D) = 6(D) + ℎ(D), where 6(D) is the
incurred path cost from the source node D0 to the current node D, and ℎ(D) is a
heuristic estimate of the cost-to-go from node D. Additionally, Ids-bb prunes nodes
from the frontier that have a higher 5 -score than the minimum path cost to a goal
node found so far.

n-Optimality. An important property of a search algorithm is optimality: when
multiple solutions exist, the algorithm finds an optimal solution. Both A∗ and Ids-bb
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Algorithm 3 A∗ search
1: Input: Graph G with source D0
2: ( := {D0}, 5 (D0) := ∞
3: while ( ≠ ∅ do
4: E := arg minD∈( 5 (D)
5: ( := ( \ {E}
6: if E is a goal node then
7: return E, 5E
8: else
9: for child F of E do
10: Compute 6(F), ℎ(F), 5 (F)
11: ( := ( ∪ {F}

are optimal given admissible heuristics. An argument by (Harris, 1974) shows that
under heuristics that are n-admissible in our case, the algorithms return solutions
that at most an additive constant n away from the optimal solution. Let �∗ denote
the optimal path cost in our graph G, and let ℎ(D) be an n-admissible heuristic (Eq.
(4.6)). Suppose Ids-bb or A∗ returns a goal node U� that does not have the optimal
path cost �∗. Then there must exist a node D$ on the frontier that lies along the
optimal path and has yet to be expanded. This lets us establish an upper bound on
the path cost of U� :

6(U�) = 5 (U�)
≤ 5 (D$)
= 6(D$) + ℎ(D$)
≤ 6(D$) + � (D$) + n
≤ �∗ + n .

(4.7)

This line of reasoning can also be extended to the branch-and-bound component
of the Near-guided Ids-bb algorithm. Consider encountering a goal node during
search that sets the branch-and-bound upper threshold to be a cost �. In the
remainder of search, some node D? with an 5 -cost greater than � is pruned, and the
optimal path from D? to a goal node will not be searched. Assuming the heuristic
function ℎ is n-admissible, we can set a lower bound on the optimal path cost from
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D?, 5 (D∗?), to be � − n by the following:

5 (D∗?) = 6(D?) + � (D?)
≥ 5 (D?)
= 6(D?) + ℎ(D?) + n
≥ 6(D?) + ℎ(D?)
= �

≥ � − n .

(4.8)

Thus, the Ids-bb algorithm will find goal paths are at worst an additive factor of n
more than any pruned goal path.

4.4 Experiments
Datasets for Sequence Classification
For all datasets below, we augment the base DSL in Figure 4.1 with domain-
specific library functions that include 1) learned affine transformations over a subset
of features, and 2) sliding window feature-averaging functions. Trajectories are
represented as sequences of states: g = {s1, s2, . . . }.

CRIM13. The CRIM13 dataset (Burgos-Artizzu et al., 2012) contains trajectories
for a pair of mice engaging in social behaviors, annotated for different actions per
frame by behavior experts; we aim to learn programs for classifying actions at each
frame for fixed-size trajectories. Each frame is represented by a 19-dimensional
state vector: 4 features capture the GH-positions of the mice, and the remaining
15 features are derived from the positions, such as velocities and distance between
mice. We learn programs for two actions that can be identified the tracking features:
“sniff” and “other” (“other” is used when there is no behavior of interest occurring).
We cut every 100 frames as a trajectory, and in total we have 12,404 training, 3,077
validation, and 2,953 test trajectories.

Fly-vs.-Fly. We use the Aggression and Boy-meets-Boy datasets within the Fly-
vs.-Fly environment that tracks a pair of fruit flies and their actions as they interact
in different contexts (Eyjolfsdottir et al., 2014). We aim to learn programs that
classify trajectories as one of 7 possible actions displaying aggressive, threatening,
and nonthreatening behaviors. The length of trajectories can range from 1 to over
10,000 timesteps, but we segment the data into trajectories with a maximum length
of 300 for computational efficiency. The average length of a trajectory in our
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training set is 42.06 timesteps. We have 5,339 training, 594 validation, and 1,048
test trajectories.

Basketball. We use a subset of the basketball dataset from (Yue et al., 2014) that
tracks the movements of professional basketball players. Each trajectory is of length
25 and contains the GH-positions of 5 offensive players, 5 defensive players, and the
ball (22 state features per frame). We aim to learn programs that can predict which
offensive player has the ball (the "ballhandler") or whether the ball is being passed.
In total, we have 18,000 training, 2,801 validation, and 2,693 test trajectories.

Overview of Baseline Program Learning Strategies
We compare ourNear-guided graph search algorithms, A∗-Near and Ids-bb-Near,
with four baseline program learning strategies: 1) top-down enumeration, 2)Monte-
Carlo sampling, 3) Monte-Carlo tree search, and 4) a genetic algorithm. We also
compare the performance of these program learning algorithms with an RNN base-
line (1-layer LSTM).

1) Top-down enumeration. We synthesize and evaluate complete programs in
order of increasing complexitymeasured using the structural cost B(U). This strategy
iswidely employed in program learning contexts (Valkov et al., 2018; Verma,Murali,
et al., 2018; Verma, H. M. Le, et al., 2019) and is provably complete. Since our
graph G grows infinitely, our implementation is akin to breadth-first search up to a
specified depth.

2) Monte-Carlo (MC) sampling. Starting from the source node D0, we sample
complete programs by sampling rules (edges) with probabilities proportional to
their structural costs B(A). The next node chosen along a path has the best average
performance of samples that descended from that node. We repeat the procedure
until we reach a goal node and return the best program found among all samples.

3) Monte-Carlo tree search (MCTS). Starting from the source node D0, we
traverse the graph until we reach a complete program using the UCT selection
criteria (Kocsis and Szepesvári, 2006), where the value of a node is inversely
proportional to the cost of its children. In the backpropagation step we update the
value of all nodes along the path. After some iterations, we choose the next node in
the path with the highest value. We repeat the procedure until we reach a goal node
and return the best program found.
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4) Genetic algorithm. We follow the formulation in (Valkov et al., 2018). In our
genetic algorithm, crossover, selection, and mutation operations evolve a population
of programs over a number of generations until a predetermined number of programs
have been trained. The crossover and mutation operations only occur when the
resulting program is guaranteed to be type-safe.

For all baseline algorithms, as well as A∗-Near and Ids-bb-Near, model parameters
(\) were learned with the training set, whereas program architectures (U) were
evaluated using the performance on the validation set. Additionally, all baselines
(including Near algorithms) used F1-score (Sasaki, 2007) error as the evaluation
objective Z with which programs were chosen. To account for class imbalances,
F1-scoring is commonly used as an evaluation metric in behavioral classification
domains, such as those considered in this work (Eyjolfsdottir et al., 2014; Burgos-
Artizzu et al., 2012).

Experimental Results
Performance of learned programs. Table 4.1 shows the performance results on
the test sets of our program learning algorithms, averaged over 3 trials. The same
structural cost function B(U) is used for all algorithms, but can vary across domains.
Our Near-guided search algorithms consistently outperform other baselines in F1-
score while accuracy is comparable (note that our Z does not include accuracy).
Furthermore, Near-guided search algorithms are capable of finding deeper and
more complex programs that can offer non-trivial interpretations, such as the ones
shown in Figures 4.2 and 4.3. Lastly, we verify that our learned programs are
comparable with highly expressive RNNs, and see that there is at most a 10% drop
in F1-score when using Near-guided search algorithms with our DSL.

Efficiency of Near-guided graph search. Figure 4.5 tracks the progress of each
program learning algorithm by following the median best path cost (4.1) found at
a given time across 3 independent trials. Algorithms for each domain were run on
the same machine to ensure consistency, and each non-Near baseline was set up
such to have at least as much time as our Near-guided algorithms for their search
procedures (see Appendix C.2). We observe that Near-guided search algorithms
are able to find low-cost solutions more efficiently than existing baselines, while
maintaining an overall shorter running time.
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CRIM13-sniff CRIM13-other Fly-vs.-Fly Basketball
Acc. F1 3 Acc. F1 3 Acc. F1 3 Acc. F1 3

Enum. .851 .221 3 .707 .762 2 .819 .863 2 .844 .857 6.3
MC .843 .281 7 .630 .715 1 .833 .852 4 .841 .853 6
MCTS .745 .338 8.7 .666 .749 1 .817 .857 4.7 .711 .729 8
Genetic .829 .181 1.7 .727 .768 3 .850 .868 6 .843 .853 6.7
Ids-bb-Near .829 .446 6 .729 .768 1.3 .876 .892 4 .889 .903 8
A*-Near .821 .369 6 .706 .764 2.7 .872 .885 4 .906 .918 8
RNN .889 .481 - .756 .785 - .963 .964 - .945 .950 -

Table 4.1: Mean accuracy, F1-score, and program depth 3 of learned programs
(3 trials). Programs found using our Near algorithms consistently achieve better
F1-score than baselines and match more closely to the RNN’s performance. Our
algorithms are also able to search and find programs of much greater depth than the
baselines. Experiment hyperparameters are included in Appendix C.2.

Figure 4.5: Median minimum path cost to a goal node found at a given time, across
3 trials (for trials that terminate first, we extend the plots so the median remains
monotonic). A*-Near (blue) and Ids-bb-Near (green) will often find a goal node
with a smaller path cost, or find one of similar performance but much faster.

Cost vs. performance trade-off. We can also consider a modification of our
objective in (4.1) that allows us to use a hyperparameter 2 to control the trade-off
between structural cost (a proxy for interpretability) and performance:

(U∗, \∗) = arg min
(U,\)

(2 · B(U) + Z (U, \)). (4.9)

To visualize this trade-off, we run A∗-Near with the modified objective (4.9) for
various values of 2. Note that 2 = 1 is equivalent to our experiments in Table
4.1. Figure 4.6 shows that for the Basketball and CRIM13 datasets, as we increase
2, which puts more weight on the structural cost, the resulting programs found
by A∗-Near search have decreasing F1-scores but are also more shallow. This
confirms our expectations that we can control the trade-off between structural cost
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and performance, which allows users of Near-guided search algorithms to adjust to
their preferences. Unlike the other two experimental domains, the best performing
programs learned in Fly-vs.-Fly were relatively shallow, so we omitted this domain
as the trade-off showed little change in program depth.

(a) CRIM13-sniff (b) Bball-ballhandler

Figure 4.6: As we increase 2 in (4.9), we observe that A∗-Near will learn programs
with decreasing program depth and also decreasing F1-score. This highlights that
we can use 2 to control the trade-off between structural cost and performance.

We illustrate the implications of this trade-off on interpretability using the depth-2
program in Figure 4.7 and the depth-8 program in Figure 4.8, both synthesized for
the same task of detecting a “sniff” action in the CRIM13 dataset. The depth-2
program says that a “sniff” occurs if the intruder mouse is close to the right side of
the cage and both mice are near the bottom of the cage, and can be seen to apply
a position bias (regarding the location of the action) on the action. This program
is simple, due to the large weight on the structural cost, and has a low F1-score.
In contrast, the deeper program in Figure 4.8 has performance comparable to an
RNN but is more difficult to interpret. Our interpretation of this program is that it
evaluates the likelihood of “sniff” by applying a position bias, then using the velocity
of the mice if the mice are close together and not moving fast, and using distance
between the mice otherwise.

4.5 Related Work
Neural program induction. The literature on neural program induction (NPI)
(Graves, Wayne, and Danihelka, 2014; Kurach, Andrychowicz, and Sutskever,
2015; Reed and De Freitas, 2015; Santoro et al., 2016) develops methods to learn
neural networks that can perform procedural (program-like) tasks, typically using
architectures augmented with differentiable memory. Our approach differs from
these methods in that its final output is a symbolic program. However, since our
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mapprefix(
SlidingWindowAverage(PositionAffine(sC)),

g)

Figure 4.7: Synthesized depth-2 program classifying a “sniff” action between two
mice in the CRIM13 dataset. The sliding window average is over the last 10 frames.
The program achieves F1-score of 0.22 (vs. 0.48 for RNN baseline). This program
is synthesized using 2 = 8.

map(
add(
PositionAffine(sC),
if (add(VelocityAffine(sC), DistAffine(sC)) > 0)

then VelocityAffine(sC)
else DistAffine(sC)
),

g)

Figure 4.8: Synthesized depth 8-program classifying a “sniff” action between two
mice in the CRIM13 dataset. The program achieves F1-score of 0.46 (vs. 0.48 for
RNN baseline). This program is synthesized using 2 = 1.

heuristics are neural approximation of programs, our work can be seen as repeatedly
performing NPI as the program is being produced. While we have so far used
classical feedforward and recurrent architectures to implement our neural heuristics,
future work could use richer models from the NPI literature to this end.

DSL-based program synthesis. There is a large body of research on synthesis of
programs from DSLs. In many of these methods, the goal is not learning but finding
a program that satisfies a hard constraint (Alur et al., 2015; Solar-Lezama et al.,
2006; Polozov and Gulwani, 2015; Feser, Chaudhuri, and Dillig, 2015). However,
there is also a growing literature on learning programs from (noisy) data (Lake,
Salakhutdinov, and Joshua B Tenenbaum, 2015; Ellis, Solar-Lezama, and Joshua B.
Tenenbaum, 2015; Verma, Murali, et al., 2018; Ellis, Ritchie, et al., 2018; Valkov
et al., 2018; Verma, H. M. Le, et al., 2019). Of these methods, TerpreT (Gaunt,
Brockschmidt, Singh, et al., 2016) and Neural Terpret (Gaunt, Brockschmidt,
Kushman, et al., 2017) allows gradient descent as a mechanism for learning program
parameters. However, unlike Near, these approaches do not allow a general search
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over program architectures permitted by a DSL, and require a detailed hand-written
template of the program for even the simplest tasks. While the Houdini framework
(Valkov et al., 2018) combines gradient-based parameter learning with search over
program architectures, this search is not learning-accelerated and uses a simple
type-directed enumeration. As reported in our experiments, Near outperforms this
enumeration-based approach.

Many recentmethods for program synthesis use statistical models to guide the search
over program architectures (Balog et al., 2017; Chen, C. Liu, and Song, 2019; Ellis,
Solar-Lezama, and J. Tenenbaum, 2016; Devlin et al., 2017; Ellis, Ritchie, et al.,
2018; Parisotto et al., 2016; Ganin et al., 2018; Murali, Chaudhuri, and Jermaine,
2018). In particular, (Lee et al., 2018) use a probabilistic model to guide anA∗search
over programs. Most of these models (including the one in (Lee et al., 2018)) are
trained using corpora of synthesis problems and corresponding solutions, which are
not available in our setting. There is a category of methods based on reinforcement
learning (RL) (Ganin et al., 2018; Bunel et al., 2018). Unlike Near, these methods
do not directly exploit the structure of the search space. Combining them with our
approach would be an interesting topic of future work.

Structure search using relaxations. Our search problem bears similarities with
the problems of searching over neural architectures and the structure of graphical
models. Prior work has used relaxations to solve these problems (H. Liu, Simonyan,
and Yang, 2019; Shin, Packer, and Song, 2018; Zoph and Q. V. Le, 2017; Real,
Huang, and Q. V. Le, 2019; Xiang and Kim, 2013). Specifically, the A* lasso
approach for learning sparse Bayesian networks uses a dense network to construct
admissible heuristics (Xiang and Kim, 2013), and Darts computes a differentiable
relaxation of neural architecture search (H. Liu, Simonyan, and Yang, 2019; Shin,
Packer, and Song, 2018). The key difference between these efforts and ours is that
the design space in our problem is much richer, making the methods in prior work
difficult to apply. In particular, Darts uses a composition of softmaxes over all
possible candidate operations between a fixed set of nodes that constitute a neural
architecture, and the heuristics in the A* lasso method come from a single, simple
function class. However, in our setting, there is no fixed bound on the number of
expressions in a program, different sets of operations can be available at different
points of synthesis, and the input and output type of the heuristic (and therefore, its
architecture) can vary based on the part of the program derived so far.
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4.6 Discussion
We have a presented a novel graph search approach to learning differentiable pro-
grams. Our method leverages a novel construction of an admissible heuristic using
neural relaxations to efficiently search over program architectures. Our experiments
show that programs learned using our approach can have competitive performance,
and that our search-based learning procedure substantially outperforms conventional
program learning approaches.

There are many directions for future work. One direction is to extend the approach
to richer DSLs and neural heuristic architectures, for example, those suited to
reinforcement learning (Verma, H. M. Le, et al., 2019) and generative modeling
(Ritchie et al., 2016). Another is to combine Near with classical program synthesis
methods based on symbolic reasoning. A third is to integrate Near into more
complex program search problems, e.g., when there is an initial program as a starting
point and the goal is to search for refinements. A fourth is to more tightly integrate
with real-world applications to evaluate the interpretability of learned programs as
it impacts downstream tasks.
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C h a p t e r 5

LEARNING NEUROSYMBOLIC ENCODERS FOR
INTERPRETABLE REPRESENTATIONS

Thework in this chapter was published in (Zhan, Sun, et al., 2021). E.Z. participated
in the conception of the project, formulated and implemented themethod, conducted
experiments and analyzed results, and participated in the writing of the manuscript.

Summary

We present a framework for the unsupervised learning of neurosymbolic encoders,
i.e., encoders obtained by composing neural networks with symbolic programs from
a domain-specific language. Such a framework can naturally incorporate symbolic
expert knowledge into the learning process and lead to more interpretable and
factorized latent representations than fully neural encoders. Also, models learned
this way can have downstream impact, as many analysis workflows can benefit from
having clean programmatic descriptions. We ground our learning algorithm in the
variational autoencoding (VAE) framework, where we aim to learn a neurosymbolic
encoder in conjunction with a standard decoder. Our algorithm integrates standard
VAE-style training with modern program synthesis techniques. We evaluate our
method on learning latent representations for real-world trajectory data from animal
biology and sports analytics. We show that our approach offers significantly better
separation than standard VAEs and leads to practical gains on downstream tasks.

5.1 Introduction
Advances in unsupervised learning have enabled the discovery of latent structures
in data from a variety of domains, such as image data (Dupont, 2018), sound
recordings (Calhoun, Pillow, and Murthy, 2019), and tracking data (Luxem et al.,
2020). For instance, a common approach is to use encoder-decoder frameworks, such
as variational autoencoders (VAE) (Kingma and Welling, 2014), to identify a low-
dimensional latent representation from the raw data that could contain disentangled
factors of variation (Dupont, 2018) or semantically meaningful clusters (Luxem
et al., 2020). Such approaches typically employ complex mappings based on neural
networks, which can make it difficult to explain how the model assigns inputs to
latent representations (Y. Zhang et al., 2020).
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To address this issue, we introduce unsupervised neurosymbolic representation
learning, where the goal is to find a programmatically interpretable representation
(as part of a larger neurosymbolic representation) of the raw data. We consider
programs to be differentiable, symbolic models instantiated using a domain-specific
language (DSL), and use neurosymbolic to refer to blendings of neural and symbolic.
Neurosymbolic encoders can offer a few key benefits. First, since the DSL reflects
structured domain knowledge, they can often be human-interpretable (Verma et al.,
2018; Shah et al., 2020). Second, by leveraging the inductive bias of the DSL,
neurosymbolic encoders can potentially offer more factorized or well-separated rep-
resentations of the raw data (i.e., the representations are more semantically mean-
ingful), which has been observed in studies that used hand-crafted programmatic
encoders (Zhan, Tseng, et al., 2020).

Our learning algorithm is grounded in the VAE framework (Kingma and Welling,
2014; Mnih and Gregor, 2014), where the goal is to learn a neurosymbolic encoder
coupled with a standard neural decoder. A key challenge is that the space of
programs is combinatorial, which we tackle via a tight integration between standard
VAE training with modern program synthesis methods (Shah et al., 2020). We
further show how to incorporate ideas from adversarial information factorization
(Creswell et al., 2017) and enforcing capacity constraints (Burgess et al., 2017;
Dupont, 2018) in order to mitigate issues such as posterior and index collapse in the
learned representation.

We evaluate our neurosymbolic encoding approach on multiple behavior analy-
sis domains, where the data are from challenging real-world settings and cluster
interpretability is important for domain experts. Our contributions are:

• We propose a novel unsupervised approach to train neurosymbolic encoders,
to result in a programmatically interpretable representation of data (as part of
a neurosymbolic representation).

• We show that our approach can significantly outperform purely neural en-
coders in extracting semantically meaningful representations of behavior, as
measured by standard unsupervised metrics.

• We further explore the flexibility of our approach, by showing that perfor-
mance can be robust across different DSL designs by domain experts.
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• We showcase the practicality of our approach in the downstream task of
task programming, a state-of-the-art self-supervised learning approach for
behavior analysis (Sun, Kennedy, et al., 2021).

5.2 Preliminaries: VAEs and Differentiable Program Synthesis
Variational Autoencoders
We build upon VAEs (Kingma andWelling, 2014; Mnih and Gregor, 2014), a latent
variable modeling framework shown to learn effective latent representations (also
called encodings/embeddings) (Higgins et al., 2016; Zhao, J. Song, and Ermon,
2017; Yingzhen and Mandt, 2018) and can capture the generative process (Oord,
Vinyals, and Kavukcuoglu, 2017; Vahdat and Kautz, 2020; Zhan, Tseng, et al.,
2020). VAEs introduce a latent variable z, an encoder @q, a decoder ?\ , and a
prior distribution ? on z. q and \ are the parameters of the @ and ? respectively,
often instantiated with neural networks. The learning objective is to maximize the
evidence lower bound (ELBO) of the data log-likelihood:

ELBO := E@q (z|x)
[
log ?\ (x|z)

]
− � !

(
@q (z|x) | |?(z)

)
≤ log ?(x). (5.1)

The first term in (5.1) is the log-density assigned to the data, while the second term
is the KL-divergence between the prior and approximate posterior of z. Latent
representations z are often continuous and modeled with a Gaussian prior, but z can
be modeled to contain discrete dimensions as well (Kingma, Rezende, et al., 2014;
Hu et al., 2017; Dupont, 2018). Our experiments are focused on behavioral tracking
data in the form of trajectories, and so in practice we utilize a trajectory variant of
VAEs (Co-Reyes et al., 2018; Zhan, Tseng, et al., 2020; Sun, Kennedy, et al., 2021),
described further at the end of Section 5.3.

One challengewithVAEs (and deep encoder-decodermodels in general) is that while
the model is expressive, it is often difficult to interpret what is encoded in the latent
representation z. Common approaches include taking traversals in the latent space
and visualizing the resulting generations (Burgess et al., 2017), or post-processing
the latent variables using techniques such as clustering (Luxem et al., 2020). Such
techniques are post-hoc and thus cannot guide (in an interpretable way) the encoder
to be biased towards a family of structures. Some recent work have studied how to
impose structure in the form of graphical models or dynamics in the latent space
(Johnson et al., 2016; Deng et al., 2017). Our work can be thought of as a first step
towards imposing structure in the form of symbolic knowledge encoded in a domain
specific programming language.
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Synthesis of Differentiable Programs
Our approach utilizes recent work on the synthesis of differentiable programs (Shah
et al., 2020; Valkov et al., 2018), where one learns both the discrete structure of
the symbolic program (analogous to the architecture of a neural network) as well as
differentiable parameters within that structure. In particular, we use the formulation
that we introduced in Chapter 4, which we summarize below.

We use a domain-specific functional programming language (DSL), generated with
a context-free grammar (see Figure 5.2 for an example). Programs are represented
as a pair (U, k), where U is a complete program architecture (no nonterminals) and
k are its real-valued parameters. We denote P as the space of symbolic programs
(i.e. programs with complete architectures). The semantics of a program (U, k) are
given by a function [[U]] (G, k), which is guaranteed by the semantics of the DSL to
be differentiable in both G and k.

Like in Chapter 4, we pose the problem of learning differentiable programs as search
through a directed program graphG. The graphGmodels the top-down construction
of program architectures through the repeated firing of rules of the DSL grammar,
starting with an empty architecture (represented by the “start” nonterminal of the
grammar). Thus P, the set of complete programs, is simply the set of leaf nodes
of G. Other non-leaf nodes in G contain programs with partial architectures (has
at least one nonterminal), which we denote with D. We interpret a program in a
non-leaf node as being neurosymbolic, by viewing its nonterminals as representing
neural networks with free parameters (i.e., completion of a partial architectures).
The source node in G is the empty architecture D0, interpreted as a fully neural
program. A directed edge (D, D′) exists in G if one can obtain D′ from D by applying
a rule in the DSL that replaces a nonterminal in D. In that case, we would call D′ a
child of D.

Program synthesis in this problem setting equates to searching through G to find the
optimal complete program architecture, and then learning corresponding parameters
k, i.e., to find the optimal (U, k) that minimizes a combination of standard training
loss (e.g., classification error) and structural loss (preferring “simpler” U’s). In
Chapter 4, we evaluated multiple strategies for solving this problem and found
informed search using admissible neural heuristics to be the most efficient strategy.
Consequently, we adopt this same algorithm for our program synthesis task.
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5.3 Neurosymbolic Encoders
The structure of our neurosymbolic encoder is shown in the right diagram of Figure
5.1. The latent representation z = [zq, z(U,k)] is partitioned into neurally encoded
zq and programmatically encoded z(U,k) . This approach boasts several advantages:

• The symbolic component of the latent representation is programmatically
interpretable.

• The neural component can encode any residual information not captured by
the program, whichmaintains themodel’s capacity compared to standard deep
encoders.

• By incorporating a modular design, we can leverage state-of-the-art learn-
ing algorithms for both differentiable encoder-decoder training and program
synthesis.

Input

Neural 
Encoder

Symbolic Encoder:
Fully neural to start

Neural 
Decoder

Reconstructed 
Input Input

Symbolic Encoder: 
Program depth + 1

Input

Neural 
Encoder

Fully symbolic

Neural 
Decoder

Reconstructed 
Input

Step 1: Optimize with         fixed
            
              

Step 2: Update symbolic encoder Repeat steps 1 & 2 until              is fully symbolic,  
Optimize with complete

Figure 5.1: Sketch of Algorithm 4. The symbolic encoder is initially fully neural.
We alternate between VAE training with the program architecture fixed (Step 1),
and supervised program learning to increase the depth of the program by 1 (Step 2).
Once we reach a symbolic program, we train the model one last time to learn all the
parameters. The color (in terms of lightness) of the symbolic encoder corresponds
to the encoder becoming more symbolic over time.

We denote @q and @ (U,k) as the neural and symbolic encoders respectively (see Figure
5.1), where zq ∼ @q (·|x) and z(U,k) ∼ @ (U,k) (·|x). @q is instantiated with a neural
network, but @ (U,k) is a differentiable program with architecture U and parameters
k in the symbolic program space P defined by a DSL. Given an unlabeled training
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set of x’s, the VAE learning objective in (5.1) then becomes:

max
q,(U,k),\

E
@q (zq |x)@ (U,k) (z(U,k) |x)

[
log ?\ (x|zq, z(U,k))︸                  ︷︷                  ︸

reconstruction loss

]
− � !

(
@q (zq |x) | |?(zq)

)︸                       ︷︷                       ︸
regularization for neural latent

− � !

(
@ (U,k) (z(U,k) |x) | |?(z(U,k))

)︸                                     ︷︷                                     ︸
regularization for symbolic latent

.

(5.2)

Compared to the standard VAE objective in (5.1) for a single neural encoder, (5.2)
has separate KL-divergence terms for the neural and programmatic encoders.

Learning Algorithm
The challenge with solving for (5.2) is that while (q, k, \) can be optimized via back-
propagation with U fixed, optimizing for U is a discrete optimization problem. Since
it is difficult to jointly optimize over both continuous and discrete spaces, we take an
iterative, alternating optimization approach. We start with a fully neural program
(one with empty architecture D0) trained using standard differentiable optimization
(Figure 5.1, Step 1). We then gradually make it more symbolic (Figure 5.1, Step
2) by finding a program that is a child of the current program in G (more symbolic
by construction of G) that outputs as similar to the current latent representations as
possible:

min
D′:(D,D′)∈G, k′

Lsupervised
(
@ (D,k) (x), @ (D′,k′) (x)

)
, (5.3)

which can be viewed as a form of distillation (from less symbolic to more symbolic
programs) via matching the input/output behavior. We solve (5.3) by enumerating
over all child programs and selecting the best one, which is similar to iteratively-
deepened depth-first search in Chapter 4. We alternate between optimizing (5.2)
and (5.3) until we obtain a program with complete architecture U. Algorithm 4
outlines this procedure and is guaranteed to terminate if G is finite by specifying a
maximum program depth.

We chose this optimization procedure for two reasons. First, it maximally lever-
ages state-of-the-art tools in both differentiable latent variable modeling (VAE-style
training) and supervised program synthesis, leading to tractable algorithm design.
Second, this procedure never makes a drastic change to the program architecture,
leading to relatively stable learning behavior across iterations.
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Algorithm 4 Learning a neurosymbolic encoder
1: Input: program graph G, symbolic program space P
2: Initialize q, k, \, D = D0 (empty architecture)
3: while D is not complete do
4: q, k, \ ← optimize (5.2) with neural completion of D
5: (D, k) ← optimize (5.3)
6: q, k, \ ← optimize (5.2) with complete architecture D = U
7: return encoder {@q, @ (U,k)}

Algorithm 5 Learning a neurosymbolic encoder with : programs
1: Input: program graph G, symbolic program space P, :
2: for 8 = 1..: do
3: fix programs {@ (U1,k1) , . . . , @ (U8−1,k8−1)}
4: execute Algorithm 4 to learn @ (U8 ,k8)
5: remove @ (U8 ,k8) from P to avoid redundancies
6: return encoder {@q, @ (U1,k1) , . . . , @ (U: ,k: )}

Learning Multiple Programs
The interpretability of latent representations induced by symbolic encoders @ (U,k)
ultimately depends on the DSL. For instance, a program that encodes to one of ten
classes may not be very interpretable if it involves a matrix multiplication within
the program. Instead, we learn binary programs that encode sequences into one
of two classes (using binary cross-entropy for Lsupervised, a uniform prior on z(U,k) ,
and Gumbel-Softmax (Jang, Gu, and Poole, 2017) to sample from the posterior).
Figures 5.5a & 5.5b depict learned binary programs that encode mice trajectories
and their interpretations.

To encode more than two classes, we can simply learn multiple binary programs by
extending (5.2) to sum Lsupervised over : symbolic programs {@ (U1,k1) , . . . , @ (U: ,k: )}
and corresponding latent representations {z(U1,k1) , . . . , z(U: ,k: )}. This results in
2: classes and a solution space that now scales exponentially (e.g. |P |: if using
exhaustive enumeration). Algorithm 5 outlines our greedy solution that reuses
Algorithm 4 by iteratively learning one symbolic program at a time. We leave the
exploration of more sophisticated search methods as future work.

Dealing with Posterior and Index Collapse
Deep latent variable models, especially those with discrete latent variables, are
notoriously prone to both posterior (Bowman et al., 2015; Xi Chen, Kingma, et
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al., 2017; Oord, Vinyals, and Kavukcuoglu, 2017) and index (Kaiser et al., 2018)
collapse. Since our algorithms optimize for such models repeatedly, we can be
more susceptible to these failure modes. There are many approaches available for
tackling both these issues, but we emphasize that these contributions are orthogonal
to ours; as techniques for preventing posterior and index collapse improve, so will
the robustness of our algorithm. Below, we summarize two strategies that we found
to work well in our setting.

Adversarial information factorization (Creswell et al., 2017) introduces an ad-
versarial network �l that aims to predict z(U,k) from zq. Maximizing this adversarial
loss can prevent index collapse, where all data is encoded into the same class, as
doing so would would fail to fool the adversary.

max
q,(U,k),\

E
@q (zq |x)@ (U,k) (z(U,k) |x)

[
log ?\ (x|zq, z(U,k)) +min

l
Ladv

(
�l (zq), z(U,k)

)︸                          ︷︷                          ︸
adversary

]
− � !

(
@q (zq |x) | |?(zq)

)
− � !

(
@ (U,k) (z(U,k) |x) | |?(z(U,k))

)
(5.4)

Channel capacity constraint (Burgess et al., 2017; Dupont, 2018) forces the
KL-divergence terms to match capacities �q and �(U,k) . Since the KL-divergence
is an upper bound on the mutual information between latent variables and the data
(Kim andMnih, 2018; Dupont, 2018), this encourages the latent variables to encode
information and aims to prevent posterior collapse.

max
q,(U,k),\

E
@q (zq |x)@ (U,k) (z(U,k) |x)

[
log ?\ (x|zq, z(U,k))

]
− Wq |� !

(
@q (zq |x) | |?(zq)

)
− �q |

− W(U,k) |� !

(
@ (U,k) (z(U,k) |x) | |?(z(U,k))

)
− �(U,k) |

(5.5)

In our algorithms, we augment our initial objective in (5.2) with (5.4) and (5.5).

Instantiation for Sequential Domains
The objective in (5.2) describes a general problem that is applicable to any domain.
In our experiments, we focus on behavior modeling domains with trajectory data.
Trajectory data is often used in scientific applications where interpretability is
desirable, such as behavior discovery (Luxem et al., 2020; Hsu and Yttri, 2020).
The ability to easily explain the learned latent representation using programs can help
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domain experts better understand the structure in their data. Additionally, trajectory
data is often low dimensional for each timestamp, which helps experts encode
domain knowledge into the DSL more easily (Shah et al., 2020; Sun, Kennedy,
et al., 2021; Zhan, Tseng, et al., 2020).

Let g denote a trajectory of length ) : g = {s1, . . . , s) }, where sC denotes the state
at time C. The VAE decoder ?\ is essentially a parameterized policy c\ , although
we focus entirely on the encoder in this work. We then factorize the log-density in
(5.2) as a product of conditional probabilities:

log ?\ (x|zq, z(U,k)) = log c\ (g |zq, z(U,k)) =
)∑
C=1

log c\ (sC |s<C , zq, z(U,k)). (5.6)

When @q and c\ are instantiated with recurrent neural networks (RNN), the model is
more commonly known as a trajectory-VAE (TVAE) (Co-Reyes et al., 2018; Zhan,
Tseng, et al., 2020; Sun, Kennedy, et al., 2021).

As symbolic encoder @ (U,k) maps sequences to vectors, we adopt a DSL (Figure
5.2) similar to the one that we previously used for sequence classification in Chapter
4 (Figure 4.1). Our DSL is purely functional and contains both basic algebraic
operations and parameterized library functions. Domain experts can easily augment
the DSL with their own functions, such as selection functions that select subsets of
features that they deem potentially important. We ensure that all programs in our
DSL are differentiable, utilizing a smooth approximation of the non-differentiable
if-then-else construct. Figures 5.5a and 5.5b depict example programs in our DSL.

U ::= G | ⊕(U1, . . . , U: ) | ⊕\ (U1, . . . , U: )
if U1 then U2 else U3 | sel( G | mapaverage(U1, G)

Figure 5.2: Our DSL for sequential domains in this chapter, similar to the one used
Chapter 4 (Figure 4.1). G, ⊕, and ⊕\ represent inputs, basic algebraic operations,
and parameterized library functions, respectively. sel( selects a subset ( of the
dimensions of the input G. mapaverage(4, G) applies the function 4 to every element
of a sequence G and returns the average of the results. We employ a differential
approximation of the if-then-else construct.

5.4 Experiments
We study our proposed approach on sequential trajectory data from a synthetic
dataset to first provide intuition for our algorithm, and then on real-world datasets
in neuroscience and sports analytics.
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Experiments with Synthetic Dataset
We generate a synthetic dataset of trajectories and run our algorithm to demonstrate
the following:

• Programs can capture factors of variation in the data (in our case, 2 discrete
factors).

• Information pertaining to captured factors of variation are extracted out of the
latent space.

We generate synthetic trajectories by sampling initial positions and velocities from
a Gaussian distribution and introducing 2 ground-truth factors of variation as large
external forces in the positive/negative G/H directions that affect velocity, totaling to
4 discrete classes. Velocities are fixed for the entire trajectory, but we also sample
small Gaussian noise at each timestep. We generate 10k/2k/2k trajectories of length
25 for train/validation/test. Figure 5.3 shows 50 trajectories from the training set.
Full details of the synthetic dataset are included in the Appendix D.3.

We visualize the neural latent space in 2 dimensions of a TVAE with 0, 1, and 2
learned programs in Figure 5.4bcd. The initial TVAE latent space contains 4 clusters
corresponding to the 4 ground-truth classes in Figure 5.4b. After our algorithm
learns the first program that thresholds the final G-position, the resulting latent space
in Figure 5.4c captures the other factor of variation as 2 clusters corresponding
to the final H-positions. Lastly, when our algorithm learns a second program that
thresholds the final H-position, the resulting latent space in Figure 5.4d no longer
contains any clear clustering, as we’ve successfully extracted the 4 ground-truth
classes with our programs. Figure 5.4a depicts the 2 learned programs.

Experiments with Real-World Datasets
CalMS21. Our primary real-world dataset is the CalMS21 dataset (Sun, Karigo,
et al., 2021), containing trajectories of socially interacting mice captured for neuro-
science experiments. Each frame contains 7 tracked keypoints for both mice. The
dataset has one set of unlabeled tracking data, which we use to train our neurosym-
bolic encoder, and another set annotated for 4 behaviors, which we use to evaluate
our programs. Specifically, our evaluation uses labels from the test split of the
CalMS21 classification task. We have 231k/52k/262k trajectories of length 21 for
train/val/test. The features in our DSL are selected by a domain expert based on the
attributes from (Segalin et al., 2020).
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Figure 5.3: Trajectories in synthetic training set. Initial/final positions are indicated
in green/blue. Red lines delineate ground-truth classes, based on final positions.

1[>6.34] [
selFinalXPosition sC]

1[>8.99] [
selFinalYPosition sC]

(a) learned programs (b) zq, 0 programs (c) zq, 1 program (d) zq, 2 programs

Figure 5.4: (a) : = 2 learned binary programs using our algorithm. Thefirst program
(top) thresholds the final G-position while the second program (bottom) thresholds
the final H-position. (b, c, d) Neural latent variables reduced to 2 dimensions.
Top/bottom rows are colored by final G/H-positions respectively (green/yellow is
positive/negative). (b) Clusters in the TVAE neural latent space correspond to 4
ground-truth classes. (c) After learning the first program, the neural latent space
contains clusters only corresponding on the final H-position. (d) After learning the
second program, all 4 ground-truth classes have been extracted as programs and the
remaining neural latent space contains no clear clustering.

Basketball. We use the same basketball dataset as in previous chapters that tracks
professional basketball players. Each trajectory is of length 25 over 8 seconds
and contains the GH-positions of 10 players. We split trajectories into two by
grouping offensive and defensive players (5 each), effectively doubling the dataset
size. We evaluate our algorithm and the baselines with respect to the labels of
offensive/defensive players. Our DSL includes additional domain features like
player speed and distance-to-basket. In total, we have 177k/31k/27k trajectories for
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train/val/test.

Quantitative Evaluation Setup
Baselines. We compare our model containing a neurosymbolic encoder against
other approaches based on VAEs and its variations. In particular, we compare
against VAE, VAE with k-means loss used in (Ma et al., 2019; Luxem et al., 2020),
and Beta-VAE (Burgess et al., 2017). These models have a fully neural encoder and
learn continuous latent representations, which we can then use to produce clusters
with k-means clustering (Lloyd, 1982). Additionally, we compare against models
which produce discrete latent clusterings, such as JointVAEs (Dupont, 2018) and
VQ-VAEs (Oord, Vinyals, and Kavukcuoglu, 2017). We use the TVAE version of
all baselines (details included in Appendix D.2).

Metrics for evaluation. Unlike in the synthetic setting, we do not have ground
truth programs in the real-world datasets. We thus evaluate our programs quantita-
tively using standard cluster metrics relative to human-defined labels. In particular,
we use Purity (Schütze, Manning, and Raghavan, 2008), Normalized Mutual Infor-
mation (NMI) (H. Zhang et al., 2006), and Rand Index (RI) (Rand, 1971). These
metrics have also been used by other works for evaluating clustering such as (Ma
et al., 2019; Luxem et al., 2020).

Purity is defined as:
%DA8CH =

1
=

∑
D∈*

max
E∈+
|D ∩ E |, (5.7)

where* is the set of human-defined labels, + is the set of cluster assignments from
the algorithm, and = is the total number of trajectories.

NMI is defined as:

#"� =

∑
D∈*

∑
E∈+ |D ∩ E | log

( =|D∩E |
|D | |E |

)√∑
D∈* |D | log |D |

=

∑
E∈* |E | log |E |

=

. (5.8)

RI is defined as:
'� =

)% + )#
=(= − 1)/2 , (5.9)

where )% are the number of trajectory pairs correctly placed into the same cluster,
)# are the number of trajectory pairs correctly placed into different clusters, and =
is the total number of trajectories.
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For all metrics, a value closer to 1 indicates clusters that more closely match the
human-defined labels. We report the median metrics of three trials, and also include
a random baseline that assigns a class randomly to each sequence. We include
additional results, such as the standard deviation of cluster metrics and the ELBO,
in Appendix D.1.

Research Questions
Q1: Are the clusters created with our programs meaningful? We compare
clusters produced by our neurosymbolic encoder with fully neural autoencoding
baselines (Table 5.1), measured against human-annotated behaviors. For CalMS21,
we observe that our method consistently outperforms the baselines in all three cluster
metrics. Our method is able to do this by leveraging a DSL which encodes domain
knowledge such as behavior attributes that are useful for identifying behaviors. We
note that the purity increases as the number of programs (thus clusters) increase,
while NMI and RI decreases. This implies our method with two clusters best
correspond to CalMS21 behaviors, but the other clusters found by our method may
still be useful for domain experts. For Basketball, our method improves slightly
with respect to purity, but is overall comparable with the baselines.

We further study the programs and clusters produced by our algorithm for the
CalMS21 dataset, through a qualitative study with a domain expert in behavioral
neuroscience. In the single program case, the domain expert classified the discovered
clusters as when the mice are interacting and when there are no interaction. They
noted that this is based on distance between the mice, which is consistent with
our program (Figure 5.5a) using distance between nose of resident and tail of
intruder. For two programs, there are a total of four clusters, with two clusters each
corresponding to no interaction and interaction. For the interaction clusters, the
domain expert was further able to identify sniff tail behavior as one of the clusters.
In this case, the programs found were based on intruder head body angle, resident
nose and intruder tail distance, and resident nose and intruder nose distance. The
domain expert found the three program case to be more difficult to interpret, but was
able to identify clusters corresponding to sniff tail, resident exploration, interaction
facing the same direction (ex: mounting), and interaction facing opposite directions
(ex: face-to-face sniffing).

Q2: How sensitive is our approach to different DSL choices? To study the
effect of domain expert variation on our approach, we worked with different domain
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Model CalMS21 Basketball
Purity NMI RI Purity NMI RI

Random assignment .597 .000 .536 .500 .000 .500
TVAE .598 .089 .564 .501 .001 .500

TVAE+KMeans loss .605 .118 .573 .501 .001 .500
JointVAE .597 .019 .537 .560 .034 .507
VQ-TVAE .601 .124 .588 .572 .016 .511
Beta-TVAE .616 .115 .589 .565 .013 .509

Ours (1 program) .706 .423 .694 .596 .027 .518
Ours (2 programs) .725 .320 .648 .561 .033 .507
Ours (3 programs) .756 .314 .633 .584 .022 .514

Table 5.1: Median purity, NMI, and RI on CalMS21 and Basketball compared to
human-annotated labels (3 trials). Standard deviations are included in Appendix
D.1, and experiment hyperparameters are included in the Appendix D.2.

experts to construct alternate DSLs for studyingmouse social behavior on CalMS21.
While there is some variation in median cluster metrics, our approach consistently
outperforms other baseline approaches that contain fully neural encoders for all three
DSLs (Table 5.2). Comparing some learned programs from two DSLs (Figures 5.5a
& 5.5b), both contain a term that is correlated with whether the mice is interacting
(distance and bounding box overlap), and another term on resident speed (mouse
tends to be more stretched when they are moving quickly). A full list of features
selected by domain experts is in Appendix D.3.

Model CalMS21 (DSL 1) CalMS21 (DSL 2) CalMS21 (DSL 3)
Purity NMI RI Purity NMI RI Purity NMI RI

Ours (1 program) .706 .423 .694 .689 .364 .681 .649 .325 .616
Ours (2 programs) .725 .320 .648 .715 .359 .673 .664 .324 .634

Table 5.2: Median purity, NMI, and RI on CalMS21 of our algorithms with DSLs
selected by three domain experts compared to human-annotated labels (3 runs).
DSL1 corresponds to Table 5.1.

Q3: What if we simply encode DSL features as part of trajectory states? Since
our method uses features from domain experts as part of our DSL, we additionally
experiment with concatenating the same features with trajectory states for training
baseline models. For both CalMS21 and Basketball, including features with tra-
jectory states does not lead to any discern able improvements for baseline models
(Table 5.3). In contrast, by using the features more explicitly as part of the DSL in
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1[>−7.02]



mapaverage(
multiply(
ResidentSpeedAffine[−6.28];−8.28(sC),
NoseTailDistAffine[.042];−9.06(sC)
),

g)


(a) Program learned using CalMS21 DSL 1, resulting NMI 0.428. Since speed is positive,
the first term is always negative. One cluster thus generally consists of trajectories where
the mice are further apart, such that the second term is positive, and the negative product is
less than the threshold. The other cluster generally occurs when the mice are close together,
the second term is negative, and the product will be positive.

1[>−5.68]



mapaverage(
add(
ResidentAxisRatioAffine[−7.95];−7.14(sC),
BoundingBoxIOUAffine[−16.55];5.87(sC)
),

g)


(b) Program learned using CalMS21 DSL 2, resulting NMI 0.320. The axis ratio is the ratio
of major axis length and minor axis length of an ellipse fitted to the mouse keypoints. The
second term measures the bounding box overlap between mice, and is zero when the mice
are far apart. It follows that one cluster generally contains trajectories when the mice has
larger bounding box overlaps or if the resident axis ratio is large. The other cluster thus
contains trajectories where the mice bounding boxes do not overlap, and resident body is
compact.

Figure 5.5: Learned programs on CalMS21. The subscripts represents the learned
weights and biases, in particular, the brackets contain the weights for the affine
transformation followed by the bias.

our neurosymbolic encoders, we are able to produce clusters with a better separation
between behavior classes based on cluster metrics (as was seen in Table 5.1).

Q4: Are the programs useful for downstream tasks? We integrate the learned
programs from our neurosymbolic encoder into the task programming frame-
work (Sun, Kennedy, et al., 2021), a state-of-the-art self- and programmatically-
supervised learning approach. This framework uses expert provided programs to
train a trajectory representation, which can be applied to behavior analysis. Here,
rather than using hand-crafted programs, we instead use the learned programs from
our approach, so that experts would only need to provide the DSL. We evaluate on
the same mouse dataset (Segalin et al., 2020) as task programming. Using only one
program found using our approach, we are able to achieve comparable performance
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Model CalMS21 Basketball
Purity NMI RI Purity NMI RI

TVAE .598 .089 .564 .501 .001 .500
TVAE (w/ features) .597 .103 .570 .565 .012 .508

VQ-TVAE .601 .124 .588 .571 .016 .511
VQ-TVAE (w/ features) .608 .114 .601 .525 .002 .501

Beta-TVAE .616 .115 .589 .566 .013 .509
Beta-TVAE (w/ features) .612 .096 .571 .563 .011 .508

Table 5.3: Median purity, NMI, and RI on CalMS21 and Basketball compared to
human-annotated labels (3 trials) for baselines with trajectories only vs. baselines
with trajectories concatenated with DSL features.

to 10 expert-written programs on the behavior classification task studied in (Sun,
Kennedy, et al., 2021) (Figure 5.6). This demonstrates that programs found by our
approach can be applied effectively to downstream behavior analysis tasks such as
task programming.
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Task Programming with Program Variations
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 (10 expert progs)
Features 
 + TREBA 
 (ours, 1 prog)
Features 
 + TREBA 
 (ours, 2 progs)

Figure 5.6: Applying symbolic encoders for self-supervision. “Features” is baseline
w/o self-supervision. “TREBA” is a self-supervised approach, using either expert-
crafted programs or our symbolic encoders as the weak-supervision rules. The
shaded region is one standard deviation over 9 repeats. The standard deviation for
our approach (not shown) is comparable.

5.5 Related Work
Interpretable latent variable models. Latent representations, especially those
that are human-interpretable, can help us understand the structure of data. These
models may learn disentangled factors (Higgins et al., 2016; Xi Chen, Duan, et al.,
2016) or semantically meaningful clusters (Ma et al., 2019) using unsupervised
learning approaches. These approaches are often grounded in the VAE framework
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(Kingma and Welling, 2014). Similar to our programs which produce a discrete
code, there are other VAE variations which also learns a discrete latent representa-
tion, such as JointVAE (Dupont, 2018), Discrete VAE (Rolfe, 2016), and VQ-VAE
(Oord, Vinyals, and Kavukcuoglu, 2017). In particular, JointVAE models also
learns a discrete and continuous representation. However, these approaches use
fully neural encoders. To the best of our knowledge, our work is the first to propose
neurosymbolic encoders, where the symbolic component produces an interpretable
program.

Neurosymbolic/differentiable program synthesis. Existing program synthesis
approaches are often trained in a supervised fashion (Gulwani, 2011; Wang, Dillig,
and R. Singh, 2017; Shah et al., 2020), or within a (generative) policy learning
context with an explicit reward function (Xinyun Chen, Liu, and D. Song, 2018;
Verma et al., 2018; Inala et al., 2020; Feinman and Lake, 2020). In terms of
unsupervised program synthesis, the closest related area is generative modeling, as
the goal there is to discover programs that can generate the training data (Ellis et al.,
2018; Feinman and Lake, 2020), which can be viewed as analogous to learning a
symbolic decoder rather than a symbolic encoder. Studying how to incorporate such
methods into our framework can be an interesting future direction.

Representation learning for behavior analysis. Representation learning has
been applied to a variety of downstream tasks for behavior analysis, such as discov-
ering behavior motifs (Berman et al., 2014; S. H. Singh et al., 2021), identifying in-
ternal states (Calhoun, Pillow, and Murthy, 2019), and improving sample-efficiency
(Sun, Kennedy, et al., 2021). Studies in this area have used methods such as
VAE (Kingma and Welling, 2014), AR-HMM (Wiltschko et al., 2015), and Umap
(McInnes, Healy, and Melville, 2018) to better understand the latent structure of be-
havior. Similar to a few other representation learning methods (Luxem et al., 2020;
Sun, Kennedy, et al., 2021), we also use an encoder-decoder setup on trajectory
data. However, our work learns a neurosymbolic encoder whereas existing works in
this area have fully neural encoders. Our work can aid behavior analysis by learning
more interpretable latent representations and can be applied to existing frameworks,
such as task programming.
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5.6 Discussion
We present a novel approach for unsupervised learning of neurosymbolic encoders.
Our approach integrates the VAE framework with program synthesis and results in a
learned representation with both neural and symbolic components. Experiments on
trajectory data from behavior analysis demonstrate that our programmatic descrip-
tions of the latent space result in more meaningful clusters relative to human-defined
behaviors, compared to purely neural encoders. Additionally, we show the prac-
ticality of our approach by applying our learned programs to achieve comparable
performance to expert-constructed tasks in task programming (Sun, Kennedy, et al.,
2021), a self-supervised learning approach for behavior classification.

Based on our work, there are many future directions to explore for neurosymbolic
encoders. One direction is based on the observation that interpreting multiple
programs simultaneously can still be difficult for domain experts. Combining our
approach with other clustering methods, such as hierarchical clustering (Rokach and
Maimon, 2005), or working with domain experts to detail more expressive DSLs can
help with interpretability. Another direction is to extend this work to other domains
such as image and text data, to study both discrete and continuous symbolic latent
representations in a more naturally interpretable way. A third direction is to improve
upon our greedy approach in Algorithm 5 for finding the optimal set of symbolic
programs, e.g. by performing local coordinate ascent in program space, similar to
algorithms for large-scale neighborhood search (Ahuja et al., 2002). Lastly, while
practically-oriented extensions of VAEs such as our own have yielded great practical
benefit, they often lead to sub-optimal results from a pure likelihood (or ELBO)
perspective. One final direction is to rigorously formulate a learning objective from
the ground up that formally encapsulates practically-oriented extensions of VAEs.
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C h a p t e r 6

CONCLUDING REMARKS & FUTURE DIRECTIONS

In this thesis, we have demonstrated the benefits of incorporating programmatic
structure with deep learning for behavior modeling. In Chapters 2 and 3, we
used programs written by domain experts as sources of weak labels to facilitate
learning in challenging applications, namely multi-agent imitation learning and
controllable generation of diverse behavior styles. In Chapter 4, we developed
Near, an efficient algorithm for learning differentiable programs, which we then
leverage in Chapter 5 to learn neurosymbolic encoders that automatically learn
programmatically-interpretable representations of data. While we consider our
work to be among the first steps in programmatic deep learning, there remains many
interesting directions yet to be explored, which we outline below.

Putting programmatic deep learning into practice. In our work, an expert-
written programor aDSL serves as a starting point for our algorithms, but in practice,
we expect a more interactive process with the domain experts. For example, domain
experts may continually add library functions to the DSL; can we make sure that
Near is still efficient as the DSL grows? Domain experts may seed our algorithms
with an adequate initial program; can we search for better programs given an initial
one rather than start from scratch? There can be multiple domain experts, each
writing their own programs; how do we leverage multiple program sources that can
differ in quality and even disagree with each other? These are all questions and
challenges that can arise when programmatic deep learning is used in practice.

Expanding to more applications. We primarily test and evaluate our algorithms
for behavior modeling, but in principle our methods can apply to other settings as
well. For example, we use Near in Chapter 5 as a general-purpose tool to distill
a neural encoder into a program. Would this strategy work for neural modules in
other methods as well? In addition, what do programs and DSLs look like in other
domains, such as images and text? Would the differentiability requirement of the
DSL for Near be too much of a restriction? We expect that expanding to new
applications will inevitably introduce new technical challenges.
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Theoretical analysis. The strong empirical results presented in this thesis can be
complemented with additional theoretical analysis. For example, can we model
the noise of expert-written programs more explicitly to draw conclusions about the
robustness of our algorithms? In Chapter 5, we extend the VAE framework to
learn programmatically-interpretable representations, but at the cost of sub-optimal
results from a pure likelihood/ELBO perspective. Can we formulate the learning
objective from the ground up that formally encapsulates practically-oriented exten-
sions of VAEs? We believe that theoretical analysis would not only strengthen our
understanding of programmatic deep learning, but also allow domain experts to
confidently rely on it in practice.
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A p p e n d i x A

APPENDIX TO CHAPTER 2

A.1 Boids Model Details
We generate 32,768 training and 8,192 test trajectories. Each agent’s velocity is
updated as:

vC+1 = VvC + V(21vcoh + 22vsep + 23vali + 24vori), (A.1)

where

• vcoh is the normalized cohesion vector towards an agent’s local neighborhood
(radius 0.9),

• vsep is the normalized vector away from an agent’s close neighborhood (radius
0.2),

• vali is the average velocity of other agents in a local neighborhood,

• vori is the normalized vector towards the origin,

• (21, 22, 23, 24) = (±1, 0.1, 0.2, 1),

• V is sampled uniformly at random every 10 frames in range [0.8, 1.4].

A.2 Maximizing Mutual Information
We ran experiments to see if we can learn meaningful macro-intents in a fully
unsupervised fashion by maximizing the mutual information between macro-intent
variables and trajectories g. We use a VRAE-style model from (Fabius and Amers-
foort, 2014) in which we encode an entire trajectory into a latent macro-intent
variable z, with the idea that z should encode global properties of the sequence. The
corresponding ELBO is:

L1 = E@q (z|g)

[
)∑
C=1

 ∑
:=1

log c\: (s:C | s<C , z)
]
− � !

(
@q (z | g) | |?(z)

)
, (A.2)

where ?(z) is the prior, @q (z | g) is the encoder, and c\: (s:C | s<C , z) are policies per
agent.
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It is intractable to compute the mutual information between z and g exactly, so we
introduce a discriminator @k (z | g) and use the following variational lower-bound
of mutual information:

L2 = H(z) + Ec\ (g |z)
[
E@q (z|g)

[
log @k (z | g)

] ]
≤ � (g; z). (A.3)

We jointly maximize L1 + 2L2 wrt. model parameters (\, q, k), with 2 = 1 in our
experiments.

Categorical vs. real-valued macro-intent z. When we train an 8-dimensional
categorical macro-intent variable with a uniform prior (using Gumbel-Softmax trick
(Jang, Gu, and Poole, 2017)), the average distribution from the encoder matches
the discriminator but not the prior (Figure A.1). When we train a 2-dimensional
real-valued macro-intent variable with a standard Gaussian prior, the learned model
generates trajectories with limited variability as we vary the macro-intent variable
(Figure A.2).

Figure A.1: Average distribution of 8-dimensional categorical macro-intent vari-
able. The encoder and discriminator distributions match, but completely ignore the
uniform prior distribution.

A.3 Programs for Macro-intents in Basketball
We define macro-intents in basketball by segmenting the left half-court into a 10
× 9 grid of 5ft × 5ft boxes (Figure 2.2). Algorithm 6 describes Window25, which
computes macro-intents based on last positions in 25-timestep windows (Window50
is similar). Algorithm 7 describes Stationary, which computes macro-intents
based on stationary positions. For both, Label-macro-intent(s:C ) returns the
one-hot encoding of the box that contains the position s:C .

References

Fabius, Otto and Joost R van Amersfoort (2014). “Variational recurrent auto-
encoders”. In: ICLR workshop.

Jang, Eric, Shixiang Gu, and Ben Poole (2017). “Categorical Reparameterization
with Gumbel-Softmax”. In: ICLR.
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Figure A.2: Generated trajectories of green player conditioned on fixed blue players
given various 2-dimensional macro-intent variables with a standard Gaussian prior.
Left to Right columns: values of 1st dimension in {−1,−0.5, 0, 0.5, 1}. Top row:
2nd dimension equal to −0.5. Bottom row: 2nd dimension equal to 0.5. We see
limited variability as we change the macro-intent variable.

Algorithm 6 Program that computes macro-intents in 25-timestep windows
1: procedure Window25(g) ⊲ Trajectory with  players
2: macro-intents g← initialize array of size ( ,), 90)
3: for : = 1 . . .  do
4: g[:, )] ← Label-macro-intent(s:

)
) ⊲ Last timestep

5: for C = ) − 1 . . . 1 do
6: if (t+1) mod 25 == 0 then ⊲ End of window
7: g[:, C] ← Label-macro-intent(s:C )
8: else
9: g[:, C] ← g[:, C + 1]
10: return g

Algorithm 7 Program that computes macro-intents based on stationary positions
1: procedure Stationary(g) ⊲ Trajectory of  players
2: macro-intents g← initialize array of size ( ,), 90)
3: for : = 1 . . .  do
4: speed← compute speeds of player : in g:
5: stationary← speed < threshold
6: g[:, )] ← Label-macro-intent(s:

)
) ⊲ Last timestep

7: for C = ) − 1 . . . 1 do
8: if stationary[t] and not stationary[t+1] then ⊲ Player : moving
9: g[:, C] ← Label-macro-intent(s:C )
10: else ⊲ Player : stationary
11: g[:, C] ← g[:, C + 1]
12: return g



107

A p p e n d i x B

APPENDIX TO CHAPTER 3

B.1 Baseline Policy Models
1) Conditional-TVAE (CTVAE). The conditional version of TVAEs optimizes:

Lctvae(g, c\; @q) = E@q (z|g.y)

[
)∑
C=1
− log c\ (aC |sC , z, y)

]
+ � !

(
@q (z|g, y) | |?(z)

)
.

(B.1)

2) CTVAE with information factorization (CTVAE-info). (Creswell, Bharath,
and Sengupta, 2017; Klys, Snell, and Zemel, 2018) augment conditional-VAE
models with an auxiliary network �k (z) which is trained to predict the label y
from z, while the encoder @q is also trained to minimize the accuracy of �k . This
model implicitlymaximizes self-consistency by removing the information correlated
with y from z, so that any information pertaining to y that the decoder needs for
reconstruction must all come from y. While this model was previously used for
image generation, we extend it into the sequential domain:

max
\,q

(
E@q (z|g)

[
min
k
Laux (�k (z), y) + )∑

C=1
log c\ (aC |sC , z, y)

]
− � !

(
@q (z|g) | |?(z)

))
.

(B.2)

Note that the encoder in (B.1) and (B.2) differ in that @q (z|g) is no longer conditioned
on the label y.

3) CTVAEwithmutual informationmaximization (CTVAE-mi). In addition to
(B.1), we can also maximize the mutual information between labels and trajectories
� (y; g). This quantity is hard to maximize directly, so instead we maximize the
variational lower bound:

� (y; g) ≥ Ey∼?(y),g∼c\ (·|z,y)
[
log Ak (y|g)

]
+ H (y), (B.3)

where Ak approximates the true posterior ?(y|g). In our setting, the prior over labels
is known, soH(y) is a constant. Thus, the learning objective is:

Lctvae-mi(g, c\; @q) = Lctvae(g, c\) + Ey∼?(y),g∼c\ (·|z,y)
[
− log Ak (y|g)

]
. (B.4)
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Optimizing (B.4) also requires collecting rolloutswith the current policy, so similarly
we also pretrain and fine-tune a dynamicsmodel %i. This baseline can be interpreted
as a supervised analogue of unsupervised models that maximize mutual information
in (Li, Song, and Ermon, 2017; Hausman et al., 2017).

B.2 Stochastic Dynamics Function
If the dynamics function % of the environment is stochastic, we modify our approach
in Algorithm 2 by changing the form of our dynamics model. We can model the
change in state as a Gaussian distribution and minimize the negative log-likelihood:

i∗`, i
∗
f = arg min

i` ,i`

Eg∼D

)∑
C=1
− log ?(ΔC ; `C , fC), (B.5)

where ΔC = sC+1 − sC , `C = %i` (sC , aC), fC = %if
(sC , aC), and %i` , %if

are neural
networks that can share weights. We can sample a change in state during rollouts
using the reparametrization trick (Kingma and Welling, 2014), which allows us to
backpropagate through the dynamics model during training.

B.3 Experiment Details and Hyperparameters
Dataset details. See Table B.1. Basketball trajectories are collected from tracking
real players in the NBA. Figure B.2 shows the distribution of basketball programs
applied on the training set. For Cheetah, we train 125 policies using PPO (Schulman
et al., 2017) to run forwards at speeds ranging from 0 to 4 (m/s). We collect 25
trajectories per policy by sampling actions from the policy. We use (Kostrikov,
2018) to interface with (Tassa et al., 2018). Figure B.3 shows the distributions of
Cheetah programs applied on the training set.

Hyperparameters. See Table B.2 for training hyperparameters and Table B.3 for
model hyperparameters.

|S| |A| ) #train #test frequency (Hz)
Basketball 2 2 24 520,015 67,320 3
Cheetah 18 6 200 2,500 625 40

Table B.1: Dataset parameters for basketball and Cheetah environments.

B.4 Additional Experiment Figures and Tables
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1B 1 =dynamics =label =policy =collect =env ;A

Basketball 128 4,063 10 · 1 20 · 1 30 · 1 128 0 2 · 10−4

Cheetah 16 157 50 · 1 20 · 1 60 · 1 16 1 10−3

Table B.2: Hyperparameters for Algorithm 2. 1B is the batch size, 1 is the number
of batches to see all trajectories in the dataset once, and ;A is the learning rate. We
also use !2 regularization of 10−5 for training the dynamics model %i.

z-dim @q GRU �_
k
GRU c\ GRU c\ sizes %i sizes

Basketball 4 128 128 128 (128,128) (128,128)
Cheetah 8 200 200 - (200,200) (500,500)

Table B.3: Model parameters for Basketball and Cheetah environments.

(a) Label class 0 (closest) (b) Label class 1 (c) Label class 2

(d) Label class 3 (e) Label class 4 (f) Label class 5 (farthest)

Figure B.1: Rollouts from our policy calibrated to Destination(basket) with 6
classes. The 5 green boundaries divide the court into 6 regions, each corresponding
to a label class. The label indicates the target region of a trajectory’s final position
(•). This policy achieves a style-consistency of 0.93, as indicated in Table B.4c.
Note that the initial position (�) is the same as in Figures 3.3 and 3.4 for comparison,
but in general we sample an initial position from the prior ?(y) to compute style-
consistency.
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Model Speed Disp. Dest. Dir. Curve
CTVAE 82 83 85 71 72 74 81 82 82 76 77 80 60 61 62
CTVAE-info 84 84 87 69 71 74 78 79 83 71 72 74 60 60 62
CTVAE-mi 84 86 87 71 74 74 80 82 84 75 77 78 58 72 74
CTVAE-style 34 95 97 89 96 97 91 97 98 96 97 98 77 81 83

(a) Style-consistency wrt. single styles of 3 classes (roughly uniform distributions).
Model 2 classes 3 classes 4 classes 6 classes 8 classes

CTVAE 91 92 93 79 83 84 76 79 79 68 70 72 64 66 69
CTVAE-info 90 90 92 83 83 85 75 76 77 68 70 72 60 63 67
CTVAE-mi 90 92 93 81 84 86 75 77 80 66 70 72 62 62 67
CTVAE-style 98 99 99 15 98 99 15 96 96 02 92 94 80 90 93

(b) Style-consistency wrt. Displacement of up to 8 classes (roughly uniform distributions).
Model 2 classes 3 classes 4 classes 6 classes

CTVAE 86 87 87 80 82 83 76 78 79 70 74 77
CTVAE-info 83 87 88 79 81 83 73 75 78 71 77 78
CTVAE-mi 86 88 88 80 81 84 71 74 79 73 76 78
CTVAE-style 97 98 99 68 97 98 35 89 95 67 84 93

(c) Style-consistency wrt. Destination(basket) with up to 6 classes (non-uniform
distributions).

2 styles, 3 styles, 4 styles, 5 styles, 5 styles,
Model 3 classes 3 classes 3 classes 3 classes 4 classes

CTVAE 67 71 73 58 58 62 49 50 52 27 37 35 20 21 22
CTVAE-info 68 69 70 54 58 59 48 51 54 28 32 35 18 21 23
CTVAE-mi 71 72 73 48 56 61 45 51 52 16 30 31 18 21 23
CTVAE-style 92 93 94 86 88 90 62 88 88 66 75 80 11 55 77

(d) Style-consistency wrt. multiple styles simultaneously.

Table B.4: [min, median, max] style-consistency (×10−2, 5 seeds) of policies eval-
uated with 4,000 basketball rollouts each. CTVAE-style policies significantly out-
perform baselines in all experiments and are calibrated at almost maximal style-
consistency for 4/5 programs. We note some rare failure cases with our approach,
which we leave as a direction for improvement for future work.

(a) Speed (b) Displacement (c) Destination (d) Direction (e) Curvature

Figure B.2: Histogram of basketball programs applied on the training set (before
applying thresholds). Basketball trajectories are collected from tracking real players
in the NBA.
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Model Speed Torso-height B-foot-height F-foot-height
CTVAE 53 59 62 62 63 70 61 68 73 63 68 72
CTVAE-info 56 57 61 62 63 72 58 65 72 63 66 69
CTVAE-mi 53 60 62 62 65 70 60 65 70 66 70 73
CTVAE-style 68 79 81 79 80 84 77 80 88 74 77 80

(a) Style-consistency wrt. single styles of 2 classes (roughly uniform distributions).
Model 3 classes 4 classes

CTVAE 41 45 49 35 37 41
CTVAE-info 47 49 52 36 39 42
CTVAE-mi 47 48 53 36 37 38
CTVAE-style 59 59 65 42 51 60

(b) Style-consistency wrt. Speed with varying # of classes (non-uniform distributions).
Model 2 styles, 2 classes 3 styles, 2 classes

CTVAE 39 41 43 25 28 29
CTVAE-info 39 41 46 25 27 30
CTVAE-mi 34 40 48 27 28 31
CTVAE-style 43 54 60 38 40 52

(c) Style-consistency wrt. multiple styles simultaneously.

Table B.5: [min, median, max] style-consistency (×10−2, 5 seeds) of policies evalu-
ated with 500 Cheetah rollouts each. CTVAE-style policies consistently outperform
all baselines, but we note that there is still room for improvement (to reach 100%
style-consistency).

(a) Speed (b) Torso-height (c) Back-foot-height (d) Front-foot-height

Figure B.3: Histogram of Cheetah programs applied on the training set (before
applying thresholds). Note that Speed is the most diverse behavior because we
pre-trained the policies to achieve various speeds when collecting demonstrations,
similar to (Wang et al., 2017). For more diversity with respect to other behaviors,
we can also incorporate a target behavior as part of the reward when pre-training
Cheetah policies.
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Model Speed Disp. Dest. Dir. Curve
CTVAE 83.4 ± 1.2 72.4 ± 1.4 81.9 ± 0.6 77.7 ± 1.3 61.0 ± 1.0
CTVAE-info 85.0 ± 1.2 71.2 ± 1.9 80.1 ± 1.8 72.3 ± 1.1 60.2 ± 0.8
CTVAE-mi 85.8 ± 1.3 72.8 ± 1.5 82.2 ± 1.4 76.9 ± 1.1 68.6 ± 6.4
CTVAE-style 72.1 ± 33. 94.6 ± 3.1 95.0 ± 3.7 96.8 ± 0.7 79.6 ± 2.7

(a) Style-consistency wrt. single styles of 3 classes (roughly uniform distributions).
Model 2 classes 3 classes 4 classes 6 classes 8 classes

CTVAE 92.1 ± 0.9 82.4 ± 2.4 78.0 ± 1.4 69.9 ± 1.4 66.0 ± 2.0
CTVAE-info 90.5 ± 0.9 83.6 ± 1.0 75.9 ± 0.9 70.2 ± 1.6 63.4 ± 2.9
CTVAE-mi 91.6 ± 1.2 83.5 ± 2.1 77.6 ± 2.5 68.8 ± 2.5 63.7 ± 2.3
CTVAE-style 98.7 ± 0.4 81.4 ± 36.9 79.3 ± 35.9 68.1 ± 40.0 88.2 ± 5.1

(b) Style-consistency wrt. Displacement of up to 8 classes (non-uniform distributions).
Model 2 classes 3 classes 4 classes 6 classes

CTVAE 86.6 ± 0.6 81.6 ± 1.3 77.4 ± 1.5 74.0 ± 2.6
CTVAE-info 86.2 ± 1.7 81.1 ± 1.4 75.3 ± 2.5 75.3 ± 3.3
CTVAE-mi 87.3 ± 0.9 81.6 ± 1.6 74.3 ± 3.1 75.8 ± 2.1
CTVAE-style 98.1 ± 0.8 88.2 ± 13.6 77.0 ± 24.1 82.6 ± 11.3

(c) Style-consistency wrt. Destination(basket) of up to 6 classes (non-uniform distri-
butions).

2 styles, 3 styles, 4 styles, 5 styles, 5 styles,
Model 3 classes 3 classes 3 classes 3 classes 4 classes

CTVAE 70.5 ± 2.1 58.9 ± 1.5 50.4 ± 1.4 31.6 ± 2.8 20.8 ± 1.0
CTVAE-info 69.0 ± 0.9 57.5 ± 2.0 50.5 ± 2.3 31.4 ± 2.5 20.6 ± 2.0
CTVAE-mi 71.8 ± 0.7 53.8 ± 5.9 50.2 ± 2.7 26.9 ± 6.3 20.7 ± 1.9
CTVAE-style 92.8 ± 1.0 88.3 ± 1.7 81.7 ± 11.0 73.9 ± 5.4 50.3 ± 24.7

(d) Style-consistency wrt. multiple styles simultaneously.

Table B.6: Mean and standard deviation style-consistency (×10−2, 5 seeds) of poli-
cies evaluated with 4,000 basketball rollouts each. CTVAE-style policies generally
outperform baselines. Lower mean style-consistency (and large standard deviation)
for CTVAE-style is often due to failure cases, as can be seen from the minimum
style-consistency values we report in Table B.4. Understanding the causes of these
failure cases and improving the algorithm’s stability are possible directions for future
work.
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Model Speed Torso-height B-foot-height F-foot-height
CTVAE 57.4 ± 3.9 64.4 ± 3.1 67.4 ± 4.2 68.5 ± 3.7
CTVAE-info 58.3 ± 2.1 65.0 ± 4.2 64.1 ± 5.4 66.1 ± 2.7
CTVAE-mi 58.4 ± 3.9 65.7 ± 3.2 65.0 ± 3.6 69.9 ± 2.6
CTVAE-style 77.0 ± 5.3 81.0 ± 2.2 81.9 ± 5.4 77.2 ± 2.4

(a) Style-consistency wrt. single styles of 2 classes (roughly uniform distributions).
Model 3 classes 4 classes

CTVAE 45.2 ± 3.2 37.8 ± 2.9
CTVAE-info 49.2 ± 1.8 39.3 ± 2.8
CTVAE-mi 49.1 ± 2.2 36.8 ± 1.0
CTVAE-style 60.8 ± 2.9 51.3 ± 7.8

(b) Style-consistency wrt. Speed with varying # of classes (non-uniform distributions).
Model 2 styles, 2 classes 3 styles, 2 classes

CTVAE 40.9 ± 1.6 27.2 ± 1.9
CTVAE-info 41.8 ± 2.3 27.8 ± 2.2
CTVAE-mi 40.7 ± 4.9 28.5 ± 1.6
CTVAE-style 52.6 ± 6.1 42.8 ± 5.8

(c) Style-consistency wrt. multiple styles simultaneously.

Table B.7: Mean and standard deviation style-consistency (×10−2, 5 seeds) of poli-
cies evaluated with 500 Cheetah rollouts each. CTVAE-style policies consistently
outperform all baselines, but we note that there is still room for improvement (to
reach 100% style-consistency).

Speed Torso-height B-foot-height F-foot-height
Model NLD SC NLD SC NLD SC NLD SC
CTVAE-style -0.28 79 -0.24 80 -0.16 80 -0.22 77
CTVAE-style+ -0.49 70 -0.42 83 -0.36 80 -0.42 74

Table B.8: We report the median negative log-density per timestep (lower is better)
and style-consistency (higher is better) of CTVAE-style policies for Cheetah (5
seeds). The first row corresponds to experiments in Tables 3.1 and B.5a, and the
second row corresponds to the same experiments with 50%more training iterations.
The KL-divergence in the two sets of experiments are roughly the same. Although
imitation quality improves, style-consistency can sometimes degrade (e.g., Speed,
Front-foot-height), indicating a possible trade-off between imitation quality
and style-consistency.
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Style-consistency ↑
Model Min - Median - Max NLD ↓
RNN 79 79 80 81 81 -7.7
RNN-style 81 86 91 95 98 -7.6
CTVAE 81 82 82 82 82 -8.0
CTVAE-style 91 92 97 98 98 -7.8

Table B.9: Comparing style-consistency (×10−2) between RNN and CTVAE policy
models for Destination(basket) in basketball. The style-consistency for 5 seeds
are listed in increasing order. Our algorithm improves style-consistency for both
policy models at the cost of a slight degradation in imitation quality. In general,
CTVAE performs better than RNN in both style-consistency and imitation quality.

Speed Disp. Dest. Dir. Cure
Llabel 3.96 ± 0.33 4.58 ± 0.20 1.61 ± 0.18 3.19 ± 0.25 28.31 ± 0.95

(a) Basketball programs for experiments in Experiment 1.
Speed Torso-height B-foot-height F-foot-height

Llabel 3.24 ± 0.83 15.87 ± 1.78 17.25 ± 0.73 14.75 ± 0.74

(b) Cheetah programs for experiments in Experiment 1.

Table B.10: Mean and standard deviation cross-entropy loss (Llabel,×10−2) over
5 seeds of learned label approximators �_

k∗ on test trajectories after =label training
iterations for experiments in Experiment 1. �_

k∗ is only used during training; when
computing style-consistency for our quantitative results, we use original programs
_.

%i test error
Basketball 1.47 ± 0.59(×10−7)
Cheetah 1.93 ± 0.08(×10−2)

Table B.11: Average mean-squared error of dynamics model %i per timestep per
dimension on test data after training for =dynamics iterations.
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Basketball
noise Speed Disp. Dest. Dir. Curve
f 5.20 6.18 7.46 5.36 5.88
2f 10.33 12.24 15.54 10.93 11.66
3f 15.36 18.08 23.46 16.78 17.24
4f 20.10 23.47 30.10 22.56 22.52

f value 0.001 0.02 0.02 0.1 0.02

Table B.12: Label disagreement (%) of noisy programs: For each of the Basket-
ball programswith 3 classes in Table 3.1, we consider noisy versions where we inject
Gaussian noise with mean 0 and standard deviation 2 · f for 2 ∈ {1, 2, 3, 4} before
applying thresholds to obtain label classes. This table shows the label disagreement
between noisy and true programs over trajectories in the training set. The last row
shows the f value used for each program.

Basketball
noise Speed Disp. Dest. Dir. Curve
f 2.78 3.21 3.70 3.71 3.16
2f 5.59 7.88 9.75 8.63 4.46
3f 9.71 15.37 16.38 12.39 6.34
4f 11.63 20.54 21.11 19.98 12.41

Table B.13: Relative decrease in style-consistency when training with noisy pro-
grams: (%, median over 5 seeds) Using the noisy programs in Table B.12, we train
CTVAE-style models and evaluate style-consistency using the true programs with-
out noise. This table shows the percentage decrease in style-consistency relative to
when there is no noise in Table 3.1. Comparing with the label disagreement in Table
B.12, we see that the relative decrease in style-consistency generally scales linearly
with the label disagreement between noisy and true programs.
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A p p e n d i x C

APPENDIX TO CHAPTER 4

C.1 Iterative Deepening Depth-First-Search
In Algorithm 8, we provide the pseudocode for the Ids-bb algorithm introduced
in the main text. This algorithm is a heuristic-guided depth-first search with three
key characteristics: (1) the search depth is iteratively increased; (2) the search is
ordered using a function 5 (D) as in A∗, and (3) branch-and-bound is used to prune
unprofitable parts of the search space. We find that the use of iterative deepening in
the program learning setting is useful in that it prioritizes searching shallower and
less parsimonious programs early on in the search process.

Algorithm 8 Iterative Deepening Depth-First-Search
1: Input: initial depth dinitial, max depth dmax
2: Initialize frontier, nextfrontier as priority-queues for tuples (D, 5 (D), 3D) for

nodes D ∈ G, prioritizing smaller 5 -scores first
3: (current, best, 5min, 3iter) := (#>=4, #>=4,∞, 3initial)
4: frontier.push((D0,∞, 0))
5: while frontier ≠ ∅ do
6: if current is #>=4 then
7: (current, 5current, 3current) := frontier.pop()
8: if current is a goal node then
9: if 5current < 5min then
10: 5min := 5current
11: best := current
12: current := #>=4
13: else if 3current > 3iter then
14: current := #>=4
15: else
16: Compute 5 -scores for all children of current
17: Set current equal to child with smallest 5 -score
18: if 3current ≤ 3max then
19: for child F of current do
20: frontier.push((F, 5 (F), 3F))
21: if frontier = ∅ then
22: frontier := nextfrontier
23: nextfrontier := ∅
24: 3iter = 3iter + 1

return best, 5min
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C.2 Hyperparameter Details
In tables C.1, C.2, C.3, C.4, and C.5 we present the hyperparameters used in our
implementation for all baselines. Usage of each hyperparameter can be found in
our codebase. We elaborate below on hyperparameters specific to our contribution,
namely A∗-Near and Ids-bb-Near.

In A∗-Near and Ids-bb-Near, we allow for a number of hyperparameters to be used
that can additionally speed up our search. To improve efficiency, we allow for the
frontier in these searches to be bounded by a constant size. In doing so, we sacrifice
the completeness guarantees discussed in the main text in exchange for additional
efficiency. We also allow for a scalar performance multiplier, which is a number
greater than zero, that is applied to each node in the frontier when a goal node is
found. The nodes on the frontier must have a lower cost than the goal node after this
performance multiplier is applied; otherwise, they are pruned from the frontier in
the case of branch-and-bound. When considering non-goal nodes, this multiplier is
not applied. We introduce an additional parameter that decreases this performance
multiplier as nodes get farther from the source node, i.e., become more complete
programs. We also decrease the number of units given to a neural network within a
neural program approximation as nodes get further from the source node, with the
intuition that neural program induction done in a more complete program will likely
have less complex behavior to induce. We also allow for the branching factor of all
nodes in the graph to be bounded to a user-specified width in order to bound the
combinatorial explosion of program space. This constraint comes at the expected
sacrifice of completeness in our program search, given that potentially optimal paths
are arbitrarily not considered.

When searching over these hyperparameters, we noted that the the performance of
the neural program approximations as a heuristic required a balance in their levels
of accuracy with respect to the given optimization objective. If the approximations
are heavily underparameterized, the Near heuristic may not reach the same level of
expressivity as the DSL, and as a result, poor performance can lead to the heuristic
being inadmissible. However, if the approximations are so expressive that they
are able to achieve near-perfect accuracy on the task, admissibility will still hold,
but the resulting heuristic will become uninformative and inefficient. For example,
a Near heuristic that only returns 0 will remain admissible, but the performance
of A∗-Near in this case will be no better than breadth-first search. With this in
mind, we searched for a set of hyperparameters that yielded an informative level of
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performance.

In our experiments, we show that using the aforementioned approximative hyperpa-
rameters allows for an accelerated search while maintaining strong empirical results
with our Near-guided search algorithms.

max depth init. # units min # units max # children penalty V

CRIM13-sniff 10 15 6 8 0.01 1.0
CRIM13-other 10 15 6 8 0.01 1.0
Fly-vs.-Fly 6 25 10 6 0.01 1.0

Bball-ballhandler 8 16 4 8 0.01 1.0

Table C.1: Hyperparameters for constructing graph G.

# LSTM units # epochs learning rate batch size
CRIM13-sniff 100 50 0.001 50
CRIM13-other 100 50 0.001 50
Fly-vs.-Fly 80 40 0.00025 30

Bball-ballhandler 64 15 0.01 50

Table C.2: Training hyperparameters for RNN baseline.

# neural epochs # symbolic epochs learning rate batch size
CRIM13-sniff 6 15 0.001 50
CRIM13-other 6 15 0.001 50
Fly-vs.-Fly 6 25 0.00025 30

Bball-ballhandler 4 6 0.02 50

Table C.3: Training hyperparameters for all program learning algorithms. The
# neural epochs hyperparameter refers only to the number of epochs that neural
program approximations were trained in Near strategies.

A∗-Near Ids-bb-Near
frontier
size

frontier
size

initial
depth

depth
bias

perf.
multiplier

CRIM13-sniff 8 8 5 0.95 0.975
CRIM13-other 8 8 5 0.95 0.975
Fly-vs.Fly 10 10 4 0.9 0.95

Bball-ballhandler 400 30 3 1.0 1.0

Table C.4: Additional hyperparameters for A∗-Near and Ids-bb-Near.
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MC(TS) Enum. Genetic
samples
/step

max #
prog.

pop.
size

select.
size

# gens total #
evals

mutate
prob.

enum.
depth

CRIM13-sniff 50 300 15 8 20 100 0.1 5
CRIM13-other 50 300 15 8 20 100 0.1 5
Fly-vs.Fly 25 100 20 10 10 10 0.1 6

Bball-ballhandler 150 1200 100 50 10 1000 0.01 7

Table C.5: Additional hyperparameters for other program learning baselines

C.3 Additional Details on Experimental Domains
Fly-v.-Fly
The Fly-vs.-Fly dataset (Eyjolfsdottir et al., 2014) tracks a pair of flies and their
actions as they interact in different contexts. Each timestep is represented by a
53-dimensional feature vector including 17 features outlining the fly’s position and
orientation along with 36 position-invariant features, such as linear and angular
velocities. Our task in this domain is that of bout-level classification, where we are
tasked to classify a given trajectory of timesteps to a corresponding single action
taking place. Of the three datasets within Fly-vs.-Fly, we use the Aggression and
Boy-meets-Boy datasets and classify trajectories over the 7 labeled actions displaying
aggressive, threatening, and nonthreatening behaviors in these two datasets. We
omit the use of the Courtship dataset for our classification task, primarily due to the
heavily skewed trajectories in this dataset that vary highly in length and action type
from the Aggression and Boy-meets-Boy datasets. Full details on these datasets,
as well as where to download them, can be found in (Eyjolfsdottir et al., 2014).
To ensure a desired balance in our training set, we limit the length of trajectories
to 300 timesteps, and break up trajectories that exceed this length into separate
trajectories with the same action label for data augmentation. Our training dataset
has 5339 trajectories, our validation set has 594 trajectories, and our test set has
1048 trajectories. The average length of a trajectory is 42.06 timesteps.

Training details of Fly-v.-Fly baselines. For all of our program synthesis base-
lines , we used the Adam (Kingma and Ba, 2014) optimizer and cross-entropy loss.
Each synthesis baseline was run on an Intel 4.9-GHz i7 CPU with 8 cores, equipped
with an NVIDIA RTX 2070 GPU w/ 2304 CUDA cores.
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CRIM13
The CRIM13 dataset studies the social behavior of a pair of mice annotated each
frame by behavior experts (Burgos-Artizzu et al., 2012) at 25Hz. The interaction
between a resident mouse and an intruder mouse, which is introduced to the cage of
the resident, is recorded. Each mice is tracked by one keypoint and a 19 dimensional
feature vector based on this tracking data is provided at each frame. The feature
vector consists of features such as velocity, acceleration, distance between mice,
angle and angle changes. Our task in this domain is sequence classification: we
classify each frame with a behavior label from CRIM13. Every frame is labelled
with one of 12 actions, or “other”. The “other” class corresponds to cases where
no action of interest is occurring. Here, we focus on two binary classification tasks:
other vs. rest, and sniff vs. rest. The first task, other vs. rest, corresponds to
labeling whether there is an action of interest in the frame. The second task, sniff vs.
rest, corresponds to whether the resident mouse is sniffing any part of the intruder
mouse. These two tasks are chosen such that the RNN baseline has reasonable
performance only using the tracked keypoint features of the mice. We split the train
set in (Burgos-Artizzu et al., 2012) at the video level into our train and validation set,
and we present test set results on the same set as (Burgos-Artizzu et al., 2012). Each
video is split into sequences of 100 frames. There are 12404 training trajectories,
3077 validation trajectories, and 2953 test trajectories.

We observed higher variance in F1 score for the CRIM13-sniff class in Table C.7,
as compared to the other experiments. For this particular class, due to the high
variance of both baseline and NEAR runs, we would like to note the importance of
repeating runs.

Training details of CRIM13 baselines. All CRIM13 baselines training uses the
Adam (Kingma and Ba, 2014) optimizer and cross-entropy loss. In the loss for sniff
vs. rest, the sniff class is weighted by 1.5. Each synthesis baseline was run on an
Intel 2.2-GHz Xeon CPU with 4 cores, equipped with an NVIDIA Tesla P100 GPU
with 3584 CUDA cores.

Basketball
The basketball data tracks player positions (GH-coordinates on court) from real
professional games. We used the processed version from (Yue et al., 2014), which
includes trajectories over 8 seconds (3Hz in our case of sequence length 25) centered
on the left half-court. Among the offensive and defensive teams, players are ordered
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based on their relative positions. Labels for the ballhandler were extracted with a
labeling function written by a domain expert. See Table C.6 for full details of this
dataset.

Training details of Basketball baselines. All Basketball experiments use Adam
(Kingma and Ba, 2014) and optimize cross-entropy loss. Each synthesis baseline
was run on an Intel 3.6-GHz i7-7700 CPU with 4 cores, equipped with an NVIDIA
GTX 1080 Ti GPU with 3584 CUDA cores.

state dim label dim max seq. len. # train # valid # test
CRIM13-sniff 19 2 100 12404 3007 2953
CRIM13-other 19 2 100 12404 3007 2953
Fly-vs.-Fly 53 7 300 5339 594 1048

Bball-ballhandler 22 6 25 18000 2801 2893

Table C.6: Dataset details.

CRIM13-sniff CRIM13-other Fly-vs.-Fly Basketball
Acc. F1 3 Acc. F1 3 Acc. F1 3 Acc. F1 3

Enum. .024 .105 1 .036 .011 1 .013 .012 0 .009 .009 0.6
MC .013 .127 1.7 .088 .031 0.6 .028 .018 2 .012 .012 0.6
MCTS .047 .076 0 .103 .036 0 .008 .009 0.94 .003 .002 0
Genetic .003 .015 0.6 .005 .004 1.7 .028 .030 1 .016 .019 0.6
IDDFS-Near .021 .056 2 .006 .005 0.6 .023 .016 0 .006 .006 0
A*-Near .026 .114 1.7 .030 .010 2.1 .003 .004 0 .034 .034 0
RNN .008 .019 - .005 .002 - .006 .005 - .001 .001 -

Table C.7: Standard Deviations of accuracy, F1-score, and program depth 3 of
learned programs (3 trials).
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A p p e n d i x D

APPENDIX TO CHAPTER 5

D.1 Additional Results
Table D.1 contains the standard deviations of the results in Table 5.1 of the main
paper.

Table D.2 contains the median ELBO of our baselines and our neurosymbolic
encoders. We find that our symbolic encoders are comparable with our baselines.
This is expected: since we are imposing additional constraints on the encoder (a
program with a bounded depth), we would not expect the variational approximation
to be better than an encoder without these constraints (fully-neural encoder). In
general, obtaining better or more semantically-meaningful cluster assignments can
come at the cost of a smaller ELBO. For example, we find that introducing a
clustering loss to the TVAE can result in better metrics, but lower ELBO as well.

Model CalMS21 Basketball
Purity NMI RI Purity NMI RI

TVAE .002 .011 .001 .049 .012 .008
TVAE+KMeans loss .001 .002 .001 .006 .001 .001

JointVAE .000 .003 .022 .037 .020 .004
VQ-TVAE .005 .004 .016 .042 .022 .014
Beta-TVAE .001 .001 .001 .124 .140 .088

Ours (1 program) .026 .056 .035 .039 .014 .001
Ours (2 programs) .017 .051 .019 .053 .020 .018
Ours (3 programs) .088 .075 .030 .007 .002 .002

Table D.1: Standard deviation of purity, NMI, and RI on CalMS21 and Basketball
compared to human-annotated labels (3 runs). Random assignment metrics have
standard deviation close to 0.

D.2 Implementation Details
Hyperparameters
The hyperparameters for our approach are in Tables D.3, D.4 and the hyperparam-
eters for baselines are in Table D.5. We used the Adam (Kingma and Ba, 2014)
optimizer for all training runs. Specifically, Table D.3 contains hyperparameters
for program learning. Our use of the hyperparameters during the program learning
process are the same as those from Chapter4. Table D.4 contains the hyperparam-
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Model CalMS21 Basketball
TVAE 1120 895

TVAE+KMeans loss 1079 893
JointVAE 1090 902
VQ-TVAE 971 911
Beta-TVAE 1110 898

Ours (1 program) 1075 894
Ours (2 programs) 1073 893
Ours (3 programs) 1079 899

Table D.2: Median ELBO of CalMS21 and Basketball across 3 runs.

eters for training the VAE component of our model, including the hyperparameters
we used for capacity.

n. epochs s. epochs frontier size penalty max 3 ;A batch size
Synthetic 10 10 30 0.01 2 0.0002 32
CalMS21 6 10 8 0.01 5 0.001 256
Basketball 8 8 30 0.01 3 0.002 128

Table D.3: Hyperparameters for program learning. n. epochs and s. epochs
represent the number of neural and symbolic epochs respectively, where the neural
epoch is for the neural heuristic. 3 is depth, and ;A is the learning rate.

epochs z dim h dim RNN dim adv. dim disc. cap. cont. cap. ;A

Synthetic 50 4 16 16 8 0.6 - 0.0002
CalMS21 30 8 256 256 8 0.69 10 0.0001
Basketball 20 8 128 128 8 0.6 4 0.02

Table D.4: Hyperparameters for VAE training. The batch size is the same as the
ones for program learning in Table D.3. ;A is the learning rate.

JointVAE VQ-TVAE Beta-TVAE
weight disc. � cont. � # embs. weight � � iters

CalMS21 100 0.69 10 4 100 20 10k
Basketball 10 0.6 4 2 10 5 20k

Table D.5: Hyperparameters for baseline models. � is the capacity. On CalMS21,
the z dim for all baselines are 32 and trained for 200 epochs.

Baseline Details
TVAE. We use a variation of the VAE where the inputs are trajectory data, called
a TVAE (Co-Reyes et al., 2018; Zhan et al., 2020; Sun, Kennedy, et al., 2021).
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Here, the neural encoder @q and decoder ?\ are instantiated with recurrent neural
networks (RNN), where z ∼ @q (·|x). In this domain, g is a trajectory of length ) :
g = {s1, . . . , s) }. The TVAE objective is:

Ltvae = E@q

[ )∑
C=1
− log(?\ (sC |s<C , z))

]
+ � ! (@q (z|g) | |?(z)). (D.1)

All other baselines are variations of the TVAE, based on variations of VAE studied
in recent works.

TVAE + KMeans loss. A few works (Ma et al., 2019; Luxem et al., 2020) have
studied adding a loss to the VAE framework to encourage clustering in the latent
space, called theK-means loss. Given a datamatrix z ∈ R3×# , theK-means objective
is:

Lk-means = Tr(z)z) − Tr(A)z)zA), (D.2)

where A ∈ R#×: is called the cluster indicator matrix. We optimize this loss using
the implementation in (Luxem et al., 2020), where A is updated by computing the
:-first singular values of

√
zCz. The K-means loss is trained jointly with the TVAE

loss (Eq D.1) as one of our baselines.

JointVAE. JointVAE (Dupont, 2018) is a variation of VAE that jointly optimizes
discrete (c) and continuous (z) latent variables. The JointVAE objective encourages
the KL divergence terms to match capacities �I and �2 that gradually increases
during training. The objective is:

Ljointvae = E@q [log ?\ (x|z, c)]
− W |� ! (@q (z|x) | |?(z)) − �I |
− W |� ! (@q (c|x) | |?(c)) − �2 |,

(D.3)

where W is a constant. Since the capacities of the discrete and continuous variables
are controlled separately, the model is forced to encode information using both
channels. Here, we use the trajectory formulation of JointVAE, where:

log ?\ (g |z, c) =
)∑
C=1

log ?\ (sC |s<C , z, c). (D.4)

VQ-TVAE. VQ-VAE (Oord, Vinyals, and Kavukcuoglu, 2017) combines vector
quantization with VAEs. These models produce discrete latent encodings that are
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used to index an embedding table (or codebook). z4 , the continuous output of
the encoder, is mapped to a discrete encoding based on its nearest neighbor in the
codebook, then the indexed encoding z@ is used as input to the decoder. During
training, the model learns the codebook, as well as the assignments. The objective
is:

Lvqvae = log ?\ (x|z@) + | |sg[z4] − 4 | |22 + V | |z4 − sg[4] | |
2
2, (D.5)

where 4 are embeddings from the codebook, and sg represents the stopgradient
operator.

Beta-TVAE. Beta-VAEs (Higgins et al., 2016; Burgess et al., 2017) have been
shown to learn disentangled representations from the image domain. As originally
proposed, an adjustable hyperparameter V is used to weigh the KL term in the
VAE objective. We use the version of beta-VAE training objective with gradually
increasing capacity � proposed in (Burgess et al., 2017). This objective is:

Lbetavae = E@q [log ?\ (x|z)] − W |� ! (@q (z|x) | |?(z)) − � |, (D.6)

where W is a constant. Here, we apply the beta-VAE objective to trajectory data
using the factorization shown in Eq 5.6.

D.3 Dataset and DSL Details
Synthetic. We generate trajectories with the following steps:

1. Sample initial position G1 ∼ N([10, 10], [1, 1]).

2. Sample velocity from E = [EG , EH] ∼ N ([0, 0], [1, 1]) such that 0.05 <

‖E‖2 < 0.4.

3. Sample force in G-direction 2G ∼ Bernoulli(0.5) and update E′G = EG + 0.4 ·
(22G − 1).

4. Sample force in H-direction 2H ∼ Bernoulli(0.5) and update E′H = EH + 0.4 ·
(22H − 1).

5. Generate trajectory with GC+1 = GC + E′ + 0.2 · nC , where nC ∼ N(0, 1).

E′ is fixed for an entire trajectory. (2G , 2H) defines a label for each trajectory (one of
4). The ground-truth decoder is linear with respect to G, E, 2G , 2H. The DSL for the
synthetic dataset includes library functions that threshold the final G and H positions,
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used to demonstrate that the ground-truth can be learned and the information can be
extracted from the neural latent space (Figure 5.4). Experiments were run locally
with an Intel 3.6-GHz i7-7700 CPU with 4 cores and an NVIDIA GTX 1080 Ti
GPU with 3584 CUDA cores.

CalMS21. The CalMS21 dataset (Sun, Karigo, et al., 2021) consists of trajectory
data from a mouse tracker (Segalin et al., 2020), where each mouse is tracked by
seven body keypoints from an overhead camera. The twomice are engaging in social
interaction, where an intruder mouse is introduced to the cage of the resident mouse.
The dataset contains an unlabelled split which we use for training and validation, and
we use the test split of Task 1 in CalMS21 for testing. Each frame of the test split is
annotated by a domain expert with one of four labels: attack, mount, investigation,
and other. We use these annotated behavior labels for comparison with clusters
produced by our algorithm. This dataset is available under the CC-BY-NC-SA
license.

The feature selects in the CalMS21 DSL are based on behavior attributes computed
on trajectory data from domain experts in this area (Segalin et al., 2020). In
particular, we asked three domain experts to independently select features from
(Segalin et al., 2020) to be part of the DSL. The time it takes domain experts to do
this step is on the timescale of minutes. A full list of all features use in the DSLs
are as follows:

• Features in DSL 1: head body angle (resident and intruder), social angle
(resident and intruder), speed (resident and intruder), distance between nose
of resident and tail of intruder, and distance between nose of resident and nose
of intruder.

• Features in DSL 2: distance between head of mice, distance between body of
mice, distance between head of resident to body of intruder, resident accel-
eration, resident nose speed, resident axis ratio of fitted ellipse, intersection
over union of mice bounding boxes, resident social angle, distance between
nose of resident and tail of intruder, and distance between nose of resident
and nose of intruder.

• Features in DSL 3: head body angle (resident and intruder), area of ellipse
fitted to body keypoints (resident and intruder), acceleration (resident and
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intruder), distance between nose of resident and tail of intruder, and distance
between nose of resident and nose of intruder.

Note that unless otherwise stated, the CalMS21 experiments uses the features from
DSL 1.

The experiments are ran on Amazon EC2 with an Intel 2.3 GHz Xeon CPU with 4
cores equipped with a NVIDIA Tesla M60 GPUs with 2048 CUDA cores.

Basketball. The basketball dataset was also used in (Shah et al., 2020; Zhan et al.,
2020) and tracks the GH-positions of players from real NBA games. The positions
are centered on the left half-court. Both (5) offensive and (5) defensive players are
tracked, as well as the ball (excluded in our experiments).

The DSL for basketball contains library functions that compute the speed, accel-
eration, final positions, and distance-to-basket of players and take the maximum,
minimum, or average over the players. We did not consult a domain expert for this
DSL, but these functions were used as labeling functions in (Zhan et al., 2020).
Basketball experiments were run locally with an Intel 3.6-GHz i7-7700 CPU with 4
cores and an NVIDIA GTX 1080 Ti GPU with 3584 CUDA cores.

References

Burgess, Christopher P. et al. (2017). “Understanding disentangling in V-VAE”. In:
Neural Information Processing Systems Disentanglement Workshop.

Dupont, Emilien (2018). “Learning disentangled joint continuous and discrete rep-
resentations”. In: Proceedings of the 32nd Conference on Neural Information
Processing Systems.

Higgins, Irina et al. (2016). “beta-vae: Learning basic visual concepts with a con-
strained variational framework”. In: International Conference on Learning Rep-
resentations.

Kingma, Diederik and Jimmy Ba (2014). “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980.

Luxem, Kevin et al. (2020). “Identifying behavioral structure from deep variational
embeddings of animal motion”. In: BioRxiv.

Ma, Qianli et al. (2019). “Learning representations for time series clustering”. In:
Advances in neural information processing systems 32, pp. 3781–3791.

Oord, Aaron van den, Oriol Vinyals, and Koray Kavukcuoglu (2017). “Neural dis-
crete representation learning”. In: Proceedings of the 31st Conference on Neural
Information Processing Systems.



129

Co-Reyes, JohnD et al. (2018). “Self-consistent trajectory autoencoder: Hierarchical
reinforcement learningwith trajectory embeddings”. In: International Conference
on Machine Learning (ICML).

Segalin, Cristina et al. (2020). “The Mouse Action Recognition System (MARS): a
software pipeline for automated analysis of social behaviors in mice”. In: BioRxiv.

Shah, Ameesh et al. (2020). “Learning Differentiable Programs with Admissible
Neural Heuristics”. In: Advances in Neural Information Processing Systems.
Vol. 33, pp. 4940–4952. url: https://proceedings.neurips.cc/paper/
2020/hash/342285bb2a8cadef22f667eeb6a63732-Abstract.html.

Sun, Jennifer J, Tomomi Karigo, et al. (2021). “The Multi-Agent Behavior Dataset:
Mouse Dyadic Social Interactions”. In: arXiv preprint arXiv:2104.02710.

Sun, Jennifer J, Ann Kennedy, et al. (2021). “Task programming: Learning data
efficient behavior representations”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2876–2885. url: https:
/ / openaccess . thecvf . com / content / CVPR2021 / html / Sun _ Task _
Programming_Learning_Data_Efficient_Behavior_Representations_
CVPR_2021_paper.html.

Zhan, Eric et al. (2020). “Learning Calibratable Policies using Programmatic Style-
Consistency”. In: InternationalConference onMachineLearning. PMLR, pp. 11001–
11011. url: https://proceedings.mlr.press/v119/zhan20a.html.

https://proceedings.neurips.cc/paper/2020/hash/342285bb2a8cadef22f667eeb6a63732-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/342285bb2a8cadef22f667eeb6a63732-Abstract.html
https://openaccess.thecvf.com/content/CVPR2021/html/Sun_Task_Programming_Learning_Data_Efficient_Behavior_Representations_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Sun_Task_Programming_Learning_Data_Efficient_Behavior_Representations_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Sun_Task_Programming_Learning_Data_Efficient_Behavior_Representations_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Sun_Task_Programming_Learning_Data_Efficient_Behavior_Representations_CVPR_2021_paper.html
https://proceedings.mlr.press/v119/zhan20a.html

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Motivation for Programmatic Deep Learning
	Machine Learning for Behavior Modeling
	Thesis Structure and Contributions

	Multi-Agent Imitation Learning with Programmatic Macro-intents
	Introduction
	Sequential Generative Modeling for Imitation Learning
	Hierarchical Framework using Macro-intents
	Experiments
	Related Work
	Discussion

	Learning Controllable Style-consistent Policies
	Introduction
	Imitation Learning for Behavior Modeling
	Programmatic Style-consistency
	Learning Approach
	Experiments
	Related Work
	Discussion

	Learning Differentiable Neurosymbolic Programs
	Introduction
	Problem Formulation
	Program Learning using Near
	Experiments
	Related Work
	Discussion

	Learning Neurosymbolic Encoders for Interpretable Representations
	Introduction
	Preliminaries: VAEs and Differentiable Program Synthesis
	Neurosymbolic Encoders
	Experiments
	Related Work
	Discussion

	Concluding Remarks & Future Directions
	Bibliography
	Appendix to Chapter 2
	Boids Model Details
	Maximizing Mutual Information
	Programs for Macro-intents in Basketball

	Appendix to Chapter 3
	Baseline Policy Models
	Stochastic Dynamics Function
	Experiment Details and Hyperparameters
	Additional Experiment Figures and Tables

	Appendix to Chapter 4
	Iterative Deepening Depth-First-Search
	Hyperparameter Details
	Additional Details on Experimental Domains

	Appendix to Chapter 5
	Additional Results
	Implementation Details
	Dataset and DSL Details


