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ABSTRACT 

In multicellular organisms, the lineage history and spatial organization of cells both play pivotal 

roles in cell fate determination during development, homeostasis, and disease. Investigating lineage 

relationships alongside cell state and space would provide a fundamental understanding of these 

biological processes. Current lineage tracking approaches rely on the progressive accumulation of 

either naturally-occurring somatic mutations or experimentally introduced markers. In most cases, 

these marks are then read out by sequencing, discarding the spatial information of the cells. To 

address this vital gap in our toolkit, we developed a new synthetic lineage tracking system that allows 

us to image single-cell lineage history. This system, termed integrase-editable memory by 

engineered mutagenesis with optical in situ readout (intMEMOIR), uses serine integrases to 

stochastically and irreversibly edit a synthetic memory array, generating up to 59,049 different 

outcomes that can be unambiguously distinguished by fluorescence in situ hybridization (FISH). We 

evaluated the reconstruction accuracy of our system in mouse embryonic stem (mES) cells and 

disentangled the relative contribution of lineage and space to cell fate determination in Drosophila 

brain development, establishing the foundation for an expandable synthetic microscopy-readable 

system. In this thesis, Chapter 1 introduces the importance of cell lineage and spatial organization to 

cell fate determination, and includes a brief history of the existing technologies of the lineage 

tracking field. Chapter 2 describes our characterization and demonstration of the intMEMOIR 

system. Finally, Chapter 3 discusses design principles for robust, serine-integrase-based recording 

systems and suggests future directions for intMEMOIR.  
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1 

C h a p t e r  1  

INTRODUCTION 

1.1 Cell fate determination is a central topic in biology 

Developed from a single zygote, each human contains trillions of cells with hundreds of cell types 

that perform specialized functions despite sharing mostly identical DNA (1, 2). Cells need to 

transition from one cell state to another to acquire unique functions, a necessary developmental 

process that continues to play a central role in homeostasis, regeneration, and even disease 

progression throughout a person’s lifetime (3, 4). Uncovering the underlying mechanism behind 

these transitions would give biologists a fundamental understanding of both normal and abnormal 

development and lay the groundwork for developing systems to imitate and manipulate these 

processes in basic research and medicine (5, 6).  

Cell fate determination is a complex and context-dependent process that, in many cases, results from 

the integration of multiple intrinsic and extrinsic signals (7). Examples of factors known to affect 

cell fate decisions include cell lineage history, spatial organization, signaling pathways, cell cycle, 

and mechanical signals (5, 8–11). To complicate matters further, the factors themselves are often 

interdependent on one another. Thus, to disentangle the underlying mechanism of cell fate 

determination, we need tools that will enable us to simultaneously analyze cell states and their 

relevant determinants. 

We wish to contribute to this effort by focusing on two critical factors that contribute to cell fate 

determination: cell lineage and spatial organization. There is a current need for a robust and versatile 

recording system that could simultaneously capture single cell lineage, cell state, and spatial 

organization within the same tissue. To fulfill that need, we designed a synthetic recording system 

termed integrase-editable memory by engineered mutagenesis with optical in situ readout 

(intMEMOIR).  

1.2 Cell lineage impacts cell fate determination 
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In 1855, Rudolf Virchow described the third cell theory — omnis cellula e cellula — all cells come 

from cells (12). This one sentence summarily points out that cell proliferation is involved in almost 

all biological systems of interest.  

Cell state transitions can often occur concurrently with, or even depend directly on, cell divisions 

(13). Famous examples include asymmetrical division during early embryo development (14) and 

stem cell differentiation (15), as well as the common phenomenon of cell cycle exit in terminally 

differentiated cells (16). Cell fate commitment also occurs throughout development and homeostasis, 

where fate decisions made by progenitor cells restrict the possible fates of their progeny (14, 17). 

These examples illustrate that cell lineage is fundamentally connected to cell fate decisions. Thus, a 

lineage tree record of all cell divisions involved in a biological process is an important variable to 

understanding fate determination. Furthermore, it is also an exceptional framework on which we 

could map all other determinants of cell fate, producing a “decorated lineage tree” that allows us to 

analyze the dynamics of cell state transition across time and cell divisions (Fig. 1.1) (5, 18).  

 
 
Fig. 1.1. Schematic of a “decorated” lineage tree.  
A lineage tree can serve as the framework for mapping all determinants of cell fate. Depicted here 
are cell lineage, cell state, spatial organization, and signaling event history. 
 
 
 
1.3 The lineage tracking field has an extensive history 

Lineage tracking is a longstanding goal in biology. The field started during the 19th century with the 

study of developing invertebrate embryos (19). Decades later, the landmark work from Sulston 

mapped the complete development of the Caenorhabditis elegans embryo through direct observation 
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under the microscope, leading to numerous breakthrough insights on processes such as programmed 

cell death (20). However, the development of more complex organisms is often not tractable for 

direct observation. To address these challenges, researchers turned to other techniques such as 

transplantation and dye labeling for clonal tracing (19). The methods continued to evolve over the 

years, and recent advances in readout and genome editing technologies have led to another wave of 

new developments.  

With new single-cell sequencing technology, naturally accumulating somatic mutations have 

become an invaluable source of lineage information (21). As cells divide, their otherwise identical 

DNA can gradually accumulate mutations that are inherited by their progenies. Shared mutations 

between the cells can then be used to reconstruct a lineage tree, similarly to how one would 

reconstruct a phylogenetic tree (22). Landmark experiments include the use of copy number 

variations (CNV) to infer tumor evolution (23), single-nucleotide variants (SNV) to reconstruct 

neuron lineage in human brains (24), and mutations in mitochondrial DNA to reconstruct cell lineage 

in human samples (25). More recently, a set of four studies also demonstrated lineage tracing in 

human development and homeostasis (26–30). Techniques such as these are often collectively 

referred to as “retrospective lineage tracking” (3, 22), and can be used to directly study humans and 

other organisms in which genetic manipulation cannot be performed. However, they usually result 

in the loss of spatial information due to the use of sequencing for readout. Further, since somatic 

mutations are relatively rare and can occur anywhere within the genome, the single cell genomes 

often need to be amplified prior to readout, which can result in artifacts (22).  

Inspired by the use of somatic mutations and enabled by the advances in genome editing 

technologies, others created systems to progressively generate mutations at engineered loci within 

cells to record lineage, collectively called “prospective lineage tracking” (22). Unlike somatic 

mutations, the location, rate, and types of edits are controlled, which simplifies the information 

recovery and allows tuning of the editing rates. Some methods use recombinases to generate DNA 

inversions and deletions as the lineage marker (31). Many others make use of CRISPR-Cas9 to target 

either synthetic recording units, with examples such as the genome editing of synthetic target arrays 

for lineage tracing (GESTALT) (32) and others (33–35), or to target their own gRNA loci with 

homing guides (36, 37). A number of these techniques have been implemented to study normal and 

cancer development in zebrafish and mice (31, 32, 35, 36, 38, 39). Since most rely on single-cell 
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RNA sequencing (scRNA-seq) to recover their edits, they are compatible with simultaneous analysis 

of cell states through the transcriptome. Like the retrospective lineage techniques, however, their 

readout also disrupts the spatial organization of the cells and is subject to the inherent limitations of 

sequencing technologies, such as sample dropout (40).  

Although they do not reconstruct cell divisions in time, there is also a related class of techniques that 

use scRNA-seq datasets to order cells on state transition trajectories (5, 41, 42). These methods have 

been used to map the differentiation process in a number of different model organisms (43–46), and 

while the inferred trajectories do not always correspond to the mitotic lineage of the cells, combining 

the two could provide important insight into the interaction between lineage and cell fate (5, 44). 

Finally, it is worth noting that there is an ongoing effort in the scientific community to develop 

sequencing technologies that incorporate spatial information. This exciting branch of tool 

development may enable the in situ readouts of these mutations with single-cell resolution in the 

future (8). However, for the time being, recovering spatial information from these lineage tracking 

technologies remains a fundamental challenge (3). 

1.4 Spatial organization impacts cell fate determination 

Cells within multicellular organisms exist in the context of each other: organized and coordinated 

for development and homeostasis (8). Their spatial location plays a major role in dictating the 

extrinsic signals they receive from their environment as well as the functions that they perform (47–

49). Examples range from morphogen gradients enabling essential pattern formation during 

development (50, 51) to nutrient gradients creating spatially organized tumors (52). Thus, knowing 

the physical location of the cells is important for understanding both the cause and consequence of 

cell fate determination.  

1.5 Some lineage tracking techniques recover single-cell spatial information 

Given the importance of spatial organization, a number of lineage tracking technologies also allow 

retrieval of the spatial information of the recorded cells. These technologies can be generally divided 

into three categories. First, advances in microscopy techniques and computational analysis tools have 
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enabled researchers to track single cells and their divisions through live imaging. Recent examples 

include lineage tracking during the development of the Parhyale hawaiensis limb (53), mouse 

development at the pre-implantation (54) and post-implantation (55) stages, and cerebral organoid 

development (56). For the duration of imaging, these powerful approaches provide insight into the 

dynamics of development on a level that is not yet achievable through other methods. Compared to 

the other technologies, however, the size of their data and the experiments’ hardware and software 

requirements often hinder their dissemination and usability (57). Most importantly, the fundamental 

challenge since Sulston’s experiments remains: the sample needs to be accessible and relatively 

unperturbed by the imaging conditions needed to resolve and track living single cells. This challenge 

can only be partially overcome with highly specialized equipment, such as that built to sustain mouse 

embryo development ex utero (55).  

A second set of lineage tracking technologies uses DNA recombination to label cells with random 

combinations of fluorescent proteins, which are inherited by their progenies to enable clonal tracing. 

Early predecessors to these techniques include mosaic analysis with a repressible cell marker 

(MARCM) and its mouse version, mosaic analysis with double markers (MADM), which were used 

to study brain development in their respective model organisms (58–60). These techniques were 

limited in the number of clones they could simultaneously follow. In 2007, Brainbow revolutionized 

the field by using the Cre-recombinase to invert and delete a cassette of up to four fluorescent 

proteins flanked by loxP sites, resulting in the random expression of one. By introducing multiple 

copies of the cassette into the same cell, one could now stochastically generate a significantly larger 

number of colors through the random combination of fluorescent proteins expressing from each 

array: a heritable marker that can be used for clonal tracing (61). Since its initial demonstration in 

the mouse brain, the Brainbow technology has been improved and adapted by multiple groups, 

resulting in higher multiplexibility and use in numerous other model organisms (62–64). The 

system’s diverse color combinations drastically increased the number of clones that could be 

simultaneously analyzed in parallel, but the number of colors that could be distinguished in practice 

(approximately 100) still remains relatively low (65). Further, because the edit outcomes cannot be 

assigned to the individual cassettes, Brainbow is not suitable for lineage reconstruction across 

multiple generations. In addition, because the system uses multiple fluorescent channels, it is 
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challenging to perform subsequent gene expression analysis with in situ methods such as 

fluorescence in situ hybridization (FISH) or fluorescent reporters (22).  

The third category contains the genetic lineage recording methods that generate progressive 

mutations, like those described in Chapter 1.3, that are compatible with in situ readouts. Very few 

technologies fall under this category. One of them is cell lineage access driven by an edition sequence 

(CLADES), which couples a gRNA cascade to fluorescent reporters in such a way that Cas9 editings 

would progressively change the expressed fluorescent protein in the cell (66). We developed the 

other system, termed memory by engineered mutagenesis with optical in situ readout (MEMOIR), 

with the goal to create a recording system that can simultaneously analyze cell lineage, state, and 

space (67). The system uses CRISPR-Cas9 to progressively and stochastically delete genomically 

distributed, barcoded recording units called scratchpads. We then used the accumulated deletions to 

reconstruct cell lineage based on the shared edit patterns of each cell. Each barcoded scratchpad was 

transcribed, and the edit states were read out by sequential rounds of single-molecule FISH 

(smFISH) (68). Thus, the system can be used alongside smFISH readout of endogenous genes to 

decipher cell state and, most importantly, ensures that we retain the spatial information of the cells.  

MEMOIR is a proof-of-principle that demonstrates the possibility to extract recorded 

multigenerational lineage information in situ. However, its reconstruction depth and accuracy are 

limited, and its designs are difficult to implement in a germline transmissible manner in vivo. Thus, 

we sought to create new systems that retain the strengths of the original MEMOIR while addressing 

its weaknesses. With that goal in mind, the next generation of technologies, Zombie is optical 

measurement of barcodes by in situ expression (Zombie) (69) and intMEMOIR, were developed 

(70). The prior uses in vitro transcription to distinguish DNA edits as small as a single base pair, and 

the latter uses serine integrase to progressively edit memory units, with the ability to generate up to 

59,049 distinct outcomes that can be unambiguously distinguished using FISH. We implemented 

intMEMOIR in mouse embryonic stem cells and Drosophila melanogaster lines, and the results are 

more extensively discussed in Chapter 2. 

1.6 Summary 
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Uncovering the mechanism behind cell fate determination will advance our understanding and ability 

to manipulate development, homeostasis, and disease. Since fate decisions are often influenced by 

many intrinsic and extrinsic factors, simultaneous readout of cell state alongside these influences 

will enable us to disentangle their relative contributions. 

Cell lineage and spatial organization are two dominant factors in cell fate determination. Most 

modern lineage tracking technologies are able to analyze cell state alongside lineage; however, those 

that also incorporate spatial information are relatively limited in the number of clones they can 

discriminate and their reconstruction depth and accuracy. To address this important gap in our 

toolkit, we developed intMEMOIR: a robust recording system that enables us to simultaneously 

analyze cell lineage, cell state, and spatial organization within the same tissue. Chapter 2 describes 

the design of the system, characterizes its performance in vitro, and illustrates its application in vivo. 

This system can also serve as a foundation for future recorders to capture other determinants of cell 

fate, such as the signaling history of the cell. To facilitate that goal, Chapter 3 discusses important 

design principles of intMEMOIR-based systems alongside suggestions for future directions.  
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C h a p t e r  2  

IMAGING CELL LINEAGE WITH A SYNTHETIC DIGITAL  
RECORDING SYSTEM 

2.1 Abstract 

During multicellular development, spatial position and lineage history play powerful roles in 

controlling cell fate decisions. Using a serine integrase-based recording system, we engineered cells 

to record lineage information in a format that can be read out in situ. The system, termed integrase-

editable memory by engineered mutagenesis with optical in situ readout (intMEMOIR), allowed in 

situ reconstruction of lineage relationships in cultured mouse cells and flies. intMEMOIR uses an 

array of independent three-state genetic memory elements that can recombine stochastically and 

irreversibly, allowing up to 59,049 distinct digital states. It reconstructed lineage trees in stem cells 

and enabled simultaneous analysis of single cell clonal history, spatial position, and gene expression 

in Drosophila brain sections. These results establish a foundation for microscopy-readable lineage 

recording and analysis in diverse systems. 

2.2 Introduction 

Cell lineage plays pivotal roles in cell fate determination in development, homeostasis, and disease 

(1–5). The ability to visualize lineage relationships directly within their native tissue context provides 

insight into the roles of intrinsic and extrinsic factors in cell fate specification. Inspired by the 

recovery of lineage information from naturally occurring somatic mutations (2, 3, 5–12), engineered 

lineage recording systems actively generate stochastic, heritable mutations at defined genomic target 

sites, and then identify those edits in individual cells to reconstruct their lineage (3, 11, 13–23). 

Currently, most of these methods require readout by sequencing, which disrupts spatial organization. 

Another approach, memory by engineered mutagenesis with optical in situ readout (MEMOIR) uses 

single-molecule fluorescence in situ hybridization (smFISH) to allow readout by imaging. However, 

this method relies on genomically distributed deletion edits that do not permit extended recording 

and germline transmission (23). Thus, there is a need for a broadly useful, digital, image-readable 

recording system. 
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2.3 Results 

2.3.1 Serine integrases enable a FISH-readable three-state memory element design 

One mode of lineage reconstruction is clonal tracing, which identifies cells descended from a 

common ancestor from distinct, heritable labels (e.g. sequence barcodes). A more complete lineage 

reconstruction provides the tree, or pedigree, of multiple divisions through which cells are related 

(Fig. 2.1A). To access both regimes, a recording system should be able to produce and preserve as 

much molecular diversity as possible to maximize the number of distinguishable clones, and 

accumulate that diversity over multiple cell generations to enable tree reconstruction. In systems 

with two-state memory elements (bits), extended recording durations eventually edit all memory 

elements, producing a noninformative homogeneous end state, and effectively erasing recorded 

information. By contrast, three-state memory elements, or trits, that start in an initial state and 

irreversibly switch to one of two potential end states, provide additional information per element and 

preserve recorded information. As a result, the use of trits improves the accuracy of multi-generation 

reconstruction and the multiplexibility of clonal classification in simulations, and allows the system 

to function across a broader range of edit rates compared to bit-based memory (Fig. 2.1, B and C) 

(24).  

Phage serine integrases provide an ideal basis for engineering trits. They mediate irreversible 

recombination between directional attP and attB target sites, deleting or inverting the intervening 

sequence depending on relative site orientation (25–29). Serine integrases such as Bxb1 do not rely 

on endogenous repair mechanisms to generate edits, and they function across species, including 

mammalian cells (29–31). To create a trit, we flanked a barcode sequence by an inverted pair of attP 

sites on one end and an attB site on the other such that Bxb1-mediated recombination produces either 

irreversible barcode deletion or inversion (Fig. 2.1D). A strong polymerase II (Pol II) promoter 

drives transcription of the trit, allowing in situ readout by FISH methods. Before editing, the 

promoter expresses the forward barcode, whereas after recombination, it expresses either no 

transcript (deletion) or the reverse complement barcode (inversion), enabling digital discrimination 

of trit states by FISH.  
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Concatenating multiple trits in a compact array and integrating it at a safe harbor locus (32–34) 

increase the amount of memory while facilitating germline transmissibility (35). Edit strategies that 

rely on double-stranded breaks and endogenous DNA repair machinery are prone to information loss 

in arrays through interunit deletions (24, 36). By contrast, integrases allow recombinational isolation 

between distinct trits in the same array. Within each att site, a central dinucleotide confers both 

specificity and directionality of recombination (31, 37) (Fig. 2.2A). In principle, 10 distinct 

dinucleotide variants can be used orthogonally (fig. S2.1), enabling 10 corresponding independent 

memory units in a single array, for a theoretical diversity of 310 (59,049) states.  

To validate the trit design in mouse embryonic stem (mES) cells, we constructed a prototype Bxb1 

trit that expressed no fluorescent protein, citrine, or mCherry in the unedited, inverted, and deleted 

states, respectively, allowing rapid characterization by flow cytometry (30) (Fig. 2.2B). 

Recombination occurred more efficiently between matching compared to mismatching 

dinucleotides, indicating that distinct dinucleotides operate in a largely orthogonal manner, as 

intended (Fig. 2.2C). When the attB and inverted attPs all contained the same dinucleotide, such as 

GT, inversion and deletion both occurred efficiently (Fig. 2.2D). Further, att sites made from 

palindromic dinucleotides such as AT, which lack directionality, enable a simplified design in which 

a single attP/B pair mediates both inversion and deletion (Fig. 2.2E). A control construct in which 

one site is inverted (AT’) performed similarly to the uninverted counterpart, permitting the use of 

palindromic sites in either orientation (Fig. 2.2E). This design could also be generalized to other 

integrases (fig. S2.2). Although deletion crosstalk did occur at low rates (Fig. 2.2C), consistent with 

observations using phiC31 integrase (38), these results indicate that dinucleotide variants permit 

orthogonal recombination, enabling construction of compact 10-unit trit arrays.  
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Fig. 2.1. Three-state memory elements (trits) enable in situ developmental lineage 
reconstruction. 
(A) An ideal recording system connects the spatial information, gene expression, and lineage history 
of single cells (schematic). Lineage information comprises multi-generation reconstruction of cell 
division trees (B) as well as multiplexed clone classification (C). (B and C) Simulations of editing 
and reconstruction for systems with 10 irreversible recording units. For lineage tree reconstruction 
in (B), trit recording units improve tree reconstructability compared with two-state bits across a wide 
range of edit rates and retain information when edited to completion. Reconstructability is defined 
as the normalized Robinson-Foulds score obtained by comparing the reconstructed tree to ground 
truth simulated lineage. For clonal classification in (C), trits enable simultaneous tracing of a large 
number of clones in the same organism, potentially distinguishing up to two orders of magnitude 
more clones with >95% confidence than its bit counterpart (4030 and 70 clones, respectively). Clonal 
confidence is defined as the probability that two randomly selected cells with identical edit patterns 
are from the same clone. (D) Serine integrases enable trit designs compatible with FISH readout 
methods. Transcribed barcodes are flanked by two attPs and one attB. Recombination results in 
either an inverted or deleted barcode, which can be distinguished by fluorescent probes (colored lines 
and asterisks) directed against either strand. 
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2.3.2 Design and characterization of the intMEM1 recording cell line 

On the basis of these results, we engineered a cell line, intMEM1, capable of inducible autonomous 

recording. We constructed an array of 10 trits, each with 500 base pairs of distinct barcode flanked 

by att sites, and site-specifically integrated it at the ROSA26 locus in mES cells (Fig. 2.2F). We also 

site-specifically integrated an inducible Bxb1 cassette at the TIGRE safe-harbor locus (39) and 

introduced the Tet3G doxycycline-dependent activator via piggyBac. In this cell line, doxycycline 

controls Bxb1 transcription and trimethoprim (TMP) stabilizes the protein by inhibiting a fused 

ecDHFR degron sequence (40). These complementary, redundant control systems together ensure 

tight regulation of integrase activity.  

To quantify editing rates and outcomes, we co-cultured a low density of intMEM1 cells together 

with an excess of unengineered parental cells to support their growth. We induced recording for 36 

hours by addition of doxycycline and TMP, terminated recording by washing out both inducers with 

fresh media, and then continued growth for 18 additional hours without inducers. Afterwards, we 

fixed the cells with formaldehyde (Fig. 2.2G). We then used five sequential rounds of hybridization 

chain reaction FISH (HCR-FISH) (fig. S2.3A) (41, 42) to read each trit’s edit state. Further, we 

subsequently imaged the same cells by immunofluorescence with antibodies against membrane 

proteins E-cadherin and β-catenin to facilitate segmentation of adjacent cells in images.  

The state of the entire array was determined with five rounds of imaging using four fluorophores and 

20 probe sets, one for each orientation of each trit. For example (Fig. 2.2H), in one cell, the first 

imaging round revealed a signal for the inverted orientation of trit 3 and no signal for the inverted 

orientations of trits 1 and 4, nor for the unedited orientation of trit 2. The second hybridization probed 

the opposite states of the same four trits, revealing inversion of trit 2 and deletion of trits 1 and 4. 

Automating most of this analysis, we determined the full array of editing outcomes in 1487 array-

expressing cells (figs. S2.4 and S2.5). Most trits were deleted and inverted at similar rates (Fig. 2.2I). 

However, trits 6 and 10 underwent deletions but rarely inverted. DNA sequencing revealed that both 

trits had acquired truncation mutations in their attP sites, likely during cloning. Most notably, mutual 

information analysis showed that trits within the same array were edited independently (Fig. 2.2J). 

Taken together, these results demonstrate that trits can be combined into a compact recording array 

of independent units. 
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Fig. 2.2. Trits can be independently edited within recording arrays.  
(Figure legend continued on next page) 
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(A) Ten trits (orange numbered rectangles) can be concatenated into a 10-unit array using attP/attB 
pairs with orthogonal central dinucleotides (red letters). (B) Fluorescent reporter assay enables rapid 
characterization of the recording units. The trit reporter construct (middle) produces no fluorescence 
until an integrase inverts it to express Citrine (top) or deletes it to express mCherry (bottom). In 
subsequent panels, cells transfected with reporter constructs were analyzed by flow cytometry after 
gating on a co-transfection marker (41). Plots show the mean ± SEM of the median fluorescent 
values from three independent experiments. (C) Bxb1 does not efficiently recombine attP and attB 
with mismatched dinucleotides. (D) All six non-palindromic dinucleotides mediate inversion (left) 
and deletion (right) of attP/B pairs. (E) With palindromic dinucleotides, one pair of matching attP 
and attB is sufficient for inversion and deletion. Bxb1 is agnostic to the relative orientation of these 
att sites, as demonstrated by the comparable edit efficiencies between attP/BAT when the two sites 
are arranged in the opposite (AT) and same (AT’) orientations. (F) intMEM1 is a stable mES cell 
line with the 10-unit array integrated at the ROSA26 locus and an inducible Bxb1 integrated at the 
TIGRE locus. The 10-unit array is constitutively expressed, whereas Bxb1 can be activated by the 
combination of doxycycline for transcription and trimethoprim (TMP) for protein stabilization. (G) 
Over 36 hours of growth with Bxb1 induction, cells progressively accumulate edits for 
multigenerational lineage reconstruction. Induction is then stopped, and array edits are inherited by 
daughter cells over an 18-hour expansion period, enabling clonal classification. (H) Five rounds of 
HCR-FISH read out all possible states of the recording array in situ (scale bar, 10 µm). (I) The 
relative frequency with which each trit is observed in its unedited, deleted, or inverted state after 36 
hours of Bxb1 induction. (J) The low mutual information between any given pair of units illustrates 
functional independence of each of the 10 units in the array. 
 
 
 
2.3.3 intMEMOIR reconstructs lineage relationships 

To quantify integrase-editable MEMOIR’s (intMEMOIR’s) lineage reconstruction ability, we 

obtained ground-truth lineages from time-lapse movies and compared them with lineage 

relationships reconstructed from array edits in the same cells (Fig. 2.3A and movies S1 to S3). We 

induced Bxb1 expression for 36 hours (Fig. 2.2G) to achieve ~3 generations of recording, followed 

by an additional ~1 or 2 generations of clonal expansion without Bxb1 induction, resulting in 

colonies of 13.7±7.7 cells (mean±SD). We then read out the state of the array using HCR-FISH, 

classified the cells into clones corresponding to distinct edit patterns, and performed multi-generation 

lineage tree reconstruction.  

To assess clonal accuracy, we quantified the number of distinct edit states that could be detected in 

each colony and the fidelity with which they reflected ground truth clonal relationships (fig. S2.6) 

(41). We focused on the 76% of intMEM1 cells within colonies that showed the strongest array 

expression (Fig. 2.3B, orange versus green cells) and more than one array state. These colonies 
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exhibited 8.4±4.7 (mean±SD) distinct array states. Across 1453 cells spanning 105 colonies, 318 

array edit patterns appeared in two or more cells in the same colony, with most clones (289) 

comprising two to four cells. Most clones were classified perfectly (median accuracy = 100%), and 

the average percentage of correctly classified cells per reconstructed clone was 85%, exceeding 

results from a negative control analysis in which barcode-cell relationships were scrambled (Fig. 2.3, 

C and D). Errors reflected false negative ambiguities due to subsets of cells within a clone 

undergoing additional edits, and false positive events in which distantly related cells convergently 

edited to identical patterns (Fig. 2.3C and fig. S2.6). On average, these errors occurred in <10% of 

cells per clone, and more than half of the clones had an error rate of 0% (Fig. 2.3D). Thus, 

intMEMOIR performed accurate clonal classification. 

Next, we assessed the ability to reconstruct lineage trees (Fig. 2.3A, “lineage tree reconstruction”). 

We used a maximum likelihood approach that incorporates the empirically determined recording 

parameters (Fig. 2.2I), assuming a constant edit rate per unedited site (fig. S2.7) (41). Using this 

framework, we computed the probability of observing each array state after G generations starting 

from an unedited array; the conditional probability of observing any two specific array states as a 

pair of sister cells; and, from these probabilities, the relative likelihood of observing a given pair of 

array states for two sister cells compared to two unrelated cells. This likelihood provided a pairwise 

distance metric, which we then used to reconstruct a hierarchical lineage tree (Fig. 2.3, E to G, and 

table S2) (41). We analyzed 93 colonies, omitting those with three or fewer states that are trivial to 

reconstruct. Reconstructed trees for the classified clones were often identical (Fig. 2.3, E and F) or 

at least markedly similar (Fig. 2.3G) to corresponding ground truth lineage trees. In some cases, 

reconstruction errors could be attributed to multi-trit deletions at the 3’ end of the array (e.g. Fig. 

2.3G, cells 16 and 17).  

To quantify reconstruction fidelity, we used the Robinson-Foulds (RF) metric, defined as the fraction 

of lineage partitions (clades) that are shared between the reconstruction and the ground truth (43). 

We defined a normalized RF score (41) that ranges from 0 (complete disagreement) to 1 (perfect 

agreement). Stochastic simulations provided an upper bound to the possible accuracy of the system 

under ideal conditions, given the memory capacity of a single array, the empirically measured editing 

rates, and the observed set of ground truth trees (Fig. 2.3H, cyan line). In parallel, we repeated this 

analysis, randomizing the cell-barcode relationships in the ground truth lineage, to compute a lower 
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bound on reconstruction performance (Fig. 2.3H, red line). Among the actual tree reconstruction 

scores (Fig. 2.3H, blue line), 25% of colonies reconstructed perfectly (RF score = 1), and the overall 

score distribution was significantly higher than the random control [p <10-16, Kolmogorov-Smirnov 

(K-S) test]. Further, colonies with greater normalized entropy in their edit patterns reconstructed 

with higher accuracy (fig. S2.8) (41). For instance, trees with the 40% highest normalized entropy 

showed performance similar to that of simulated optimal recording, statistically equivalent to the 

upper bound [p>0.2, K-S test] (Fig. 2.3H, green lines). In applications where no ground truth is 

available, the entropy score thus allows one to enrich for subsets of cells likely to reconstruct with 

greater accuracy. Together, these results indicate that lineage recording and reconstruction can 

approach theoretical limits. The use of two or more arrays should therefore reconstruct colonies with 

greater depth and accuracy, as shown through simulations (fig. S2.9) (24, 44). 
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Fig. 2.3. intMEMOIR reconstructs lineage relationships.  
(A) Quantitative analysis of the accuracy of clonal reconstruction and multigenerational lineage 
reconstruction. intMEM1 cells are tracked in time-lapse microscopy to establish ground truth lineage 
relationships (left panel). End-point HCR-FISH analysis recovers array edit states (second panel). 
Distinct edit patterns are used to classify cells into clones (“clonal classification,” color groups), or 
further analyzed based on sister likelihood distance (41) to reconstruct lineage trees (“lineage tree 
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reconstruction,” right). Comparison with ground truth allows quantification of reconstruction 
accuracy. (B) Cells from the same colony are segmented (highlighted in orange and green) and their 
array RNA HCR-FISH dots identified (white dots). Downstream analyses are performed on cells 
with strong array expression (orange cells) (scale bar, 50 µm). (C) Clonal classification errors arise 
either from clonal cells gaining additional edits (false negative) or convergent edits between distant 
relatives (false positive). (D) intMEMOIR demonstrates robust clonal classification accuracy, with 
few errors compared to scrambled control. (E to G) Lineage reconstruction examples, with ground 
truth lineage on the left, cell ID and their corresponding barcode states in the middle, and 
reconstructed lineage on the right. (E) and (F) are colonies with perfect tree reconstruction, whereas 
(G) shows reconstruction error in branches highlighted (red dots). (H) Cumulative distributions show 
that lineage reconstruction from intMEMOIR approaches the accuracy expected from simulations 
of a 10-unit trit array displaying experimentally observed edit rates (blue and cyan lines, 
respectively). Higher observed entropy in the edit patterns can independently identify colonies with 
greater reconstruction accuracy (green lines).   
 
 
 
2.3.4 intMEMOIR reconstructs early lineage of large colony of mES cells  

In many developmental contexts, it is of interest to know how distinct clones that acquired different 

fates were related to each other at an earlier time point (2, 45). As a proof of principle for this type 

of analysis, we followed 36 hours of editing with an additional 70 hours of growth without editing 

(~6 cell divisions). We then fixed cells, analyzed array states, and classified clones (Fig. 2.4A). 

Imaging revealed large domains of distinct, non-redundant edits in each array element (Fig. 2.4B 

and fig. S2.10A). Combining these images provided a spatial map of clonal boundaries (Fig. 2.4C). 

Clonality broadly correlated with spatial position, as expected for colony growth. However, all 

clones were spatially extended and non-contiguous (Fig. 2.4C). Thus, intMEMOIR’s ability to 

generate high digital diversity enables it to simultaneously label many intermingled clones. Further, 

the specific edit patterns also allow inference of clonal relatedness (Fig. 2.4D, right). Together, these 

results show how intMEMOIR can be used as an image-based clonal mapping system.  
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Fig. 2.4. intMEMOIR enables clonal reconstruction of large colonies.  
(A) We induced Bxb1 in an intMEM1 colony for 36 hours of lineage recording, followed by 70 
hours of clonal expansion, fixation, and imaging. (B) Example of HCR-FISH readout of the 
intMEMOIR array in a colony. Signals for the unedited and inverted states of each unit are colored 
green and magenta, respectively. Clones with deleted units are outlined in gray (scale bar, 50 µm). 
(C) Spatial distribution of the 10 clones in the colony. Cells are classified into clones on the basis of 
identical edits in their intMEMOIR arrays. (D) Reconstruction of the early lineage of the colony. 
Each clone is labeled with the number of cells it contains and its corresponding color in (C). Tree 
reflects reconstructed lineage relationships.  
 
 
 
2.3.5 intMEMOIR reveals spatial organization of clones and gene expression states in 

Drosophila melanogaster 

The Drosophila melanogaster brain provides an ideal model system to apply image-based clonal 

mapping in vivo. Drosophila permits rapid genetic engineering and quantitative imaging, and, while 

its brain development has been extensively characterized, fundamental questions about the role of 

lineage in fate determination remain unclear (46). The Drosophila central brain is known to develop 

from ~100 embryonic neuroblast progenitors per hemisphere (46–48), each exhibiting a distinctive 

lineage identity, acquired largely through spatial patterning, and controlled by lineage specific 



 

 

25 

transcription factors (46). A key step towards understanding central brain development is the 

capacity to specifically label and image all distinct clones within a single organism, along with their 

cellular gene expression states.  

To achieve such multi-clonal labeling in a single individual, we constructed a fly line that allows 

controllable editing and cell-type-specific readout. We cloned the intMEMOIR array used in 

intMEM1 downstream of a UAS promoter also expressing mCerulean to identify array-expressing 

cells, and site-specifically integrated this construct using the phiC31 system (49). The resulting fly 

line, which we term “Drosophila memoiphila,” provides a resource for general-purpose lineage 

analysis in flies. We then crossed these flies to an nSyb-Gal4 driver to restrict expression of the array 

to neurons (Fig. 2.5A) (50). Finally, we incorporated a Bxb1 integrase controlled by a tightly 

regulated heat shock inducible promoter (51) to record in specific time windows. Note that 

constitutive array expression combined with analysis of endogenous gene expression could also 

permit analysis of specific cell types in species that lack the Gal4 system or tissue-specific promoters.  

To confirm intMEMOIR operation, we exposed flies to varying durations of heat shock during early 

development, collected adults, sectioned their brains, and read out the intMEMOIR array using 

sequential rounds of HCR-FISH (42). Negligible levels of editing occurred without heat shock, 

whereas exposure to 37oC for 0.5 to 3 hours produced dose-dependent increases in editing, as 

quantified by analysis of two units (Fig. 2.5B) (41). These results demonstrate that Bxb1 activity can 

be controlled in a tight, dose-dependent manner by heat shock duration (Fig. 2.5B).  

We next sought to integrate analysis of lineage, cell state, and spatial organization in a single brain. 

To induce editing in neuroblasts during early embryonic development, we applied a 1-hour heat 

shock starting 4 hours after egg laying (Fig. 2.5C). We then analyzed brain sections from adults by 

15 rounds of automated smFISH, reading out not only the intMEMOIR array and mCerulean 

transcripts but also eight endogenous genes selected on the basis of their ability to identify diverse 

neuronal cell types (Fig. 2.5D and figs. S2.10B and S2.11). Of the 29 smFISH probe sets designed 

for this experiment (fig. S2.3B and table S4), one, targeting unedited unit 7, displayed nonspecific 

binding and was excluded from downstream analysis. Altogether we analyzed different sections 

from four brains, labeled B1 to B4 (41). 
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We first focused on a single section of brain B1 (Fig. 2.5D). We analyzed 29 clones that contained 

at least four cells and one inverted unit each (fig. S2.12). Most such clones consisted of tightly 

apposed cells (e.g. Fig. 2.5E inset, clones 1 and 2). However, a minority of clones were more 

dispersed, intermingling with other clones within the section (e.g. Fig. 2.5E inset, clone 3) (52–54) 

(Fig. 2.5F). Similar results were obtained in sections from three additional brains (figs. S2.13 to 

S2.15). These results, which are consistent with previous observations (55, 56), demonstrate the 

ability to simultaneously map the spatial arrangements of many clones in the same brain section.  

We next sought to visualize the spatial distribution of gene expression states. We used principal 

component analysis (PCA) (57), uniform manifold approximation and projection (UMAP) (58), and 

density-based clustering (DBSCAN) (59) to denoise, reduce dimensionality, and identify expression 

states (Fig. 2.5, G and H). Combining gene expression with spatial location identified known cell 

types including g-aminobutyric acid (GABA)–producing neurons, dopaminergic neurons, and 

Kenyon cells (Fig. 2.5G) and allowed us to plot their spatial distribution within the section of brain 

B1 (Figure 2.5I). Cross-referencing the spatial maps of expression states and lineage also allowed 

simultaneous inspection of any specific region, cell state, and lineage of interest. For example, 

intMEMOIR captured two out of the four known lineages of Kenyon cells in this experiment (Fig. 

2.5, E and I, cluster T in the right hemisphere) (46). Further, by labeling distinct clones in gene 

expression space, we were able to visualize correlations between clonal identity and cell type 

similarity (Fig. 2.5J, clustering of clones in gene expression space). This analysis revealed 

homogeneous clones containing a single cell type (Fig. 2.5J, clones 1 and 2), as well as more 

heterogeneous clones containing multiple cell types (Fig. 2.5J, clone 3), consistent with previous 

observations (55). Overall, cells within the same clone tended to be more similar to one another in 

gene expression than cells in different clones in all four brain sections (Fig. 2.5K and figs. S2.13 to 

S2.15).  

intMEMOIR’s ability to simultaneously analyze lineage, gene expression, and spatial arrangement 

in the same tissue could allow it to disentangle the contributions of cell-intrinsic, inherited factors 

and extrinsic, spatially organized cues to cell fate determination. To evaluate the contribution of 

neuroblast ancestry to fate determination, we compared the similarity of gene expression states 

between cell pairs within the same clone to cell pairs in different clones, across a range of different 

spatial separations. If extrinsic cues dominate, one would expect cell state similarity to strongly 
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correlate with spatial proximity, independent of clonal identity. By contrast, if intrinsic determinants 

dominate, then gene expression similarity should correlate with clonal identity, regardless of spatial 

separation (Fig. 2.5L). Here, among cell pairs drawn from distinct clones, transcriptional similarity 

showed little dependence on spatial distance (Fig. 2.5M, blue lines). However, cell pairs within the 

same clone showed strong cell type similarity at close distances, with a gradual relaxation of this 

similarity at larger distances (Fig. 2.5M, yellow-red lines). This result is robust to exclusion of the 

large, homogeneous population of Kenyon cells (cluster T, fig. S2.16A) and to other choices of gene 

expression distance metric (fig. S2.16B). Clonally restricted, spatially graded dependence of cell fate 

similarity was also observed in brains B2 and B4 (fig. S2.13F and S2.15F), indicating that it could 

be a general feature. Brain B3 did not show the effect, likely because homogenous gene expression 

within its clones did not provide an opportunity to detect distance dependent differences in cell fate 

(fig. S2.17). These relationships, although strong, would be difficult to observe without the 

simultaneous spatial, lineage, and gene expression analysis enabled by intMEMOIR.  
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Fig. 2.5. intMEMOIR connects single-cell spatial, molecular state, and lineage information in 
adult Drosophila brain.  
(A) A neuronal recording fly line was obtained by crossing D. memoiphila flies containing a site-
specifically integrated UAS-10-unit array with an nSyb-Gal4 strain. Offspring were then crossed 
with a tight heat shock inducible Bxb1 line to produce a fly line that allows heat shock induction of 
editing and exhibits pan-neuronal expression of the recording array. (Note that other Gal4 drivers 
could be used to analyze distinct tissues or cell types.) (B) Editing activity, measured as the ratio of 
edited unit 5 over unedited unit 9, increases with heat shock duration in a dose-dependent manner. 
(C) To achieve in situ analysis of cell state and clonal identity, editing was induced with a 1-hour 
heat shock at 4 hours after egg laying. This early induction aims to label neuroblasts with distinct 
array states that can be inherited by all neuron progeny in the adult brain. Flies were then grown to 
adulthood, and their brains dissected and cryosectioned. Sequential rounds of automated smFISH 
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were used to read out the intMEMOIR array and eight endogenous genes: tyrosine hydroxylase (TH), 
choline acetyltransferase (ChAT), fruitless (Fru), short neuropeptide F precursor (sNPF), glutamic 
acid decarboxylase (Gad1), vesicular glutamate transporter (VGlut), serotonin transporter (SerT), 
and tyramine β-hydroxylase (Tbh). (D) Example images from brain B1 showing single cell 
resolution imaging of endogenous expression and array state in the same tissue sample (scale bar, 
30 µm; see fig. S2.11 for additional examples). (E) intMEMOIR clones of brain B1 mapped in space. 
Segmented cells are colored by the 29 analyzed clones (n=529; scale bar, 30 µm). Inset highlights 
examples of clones that are clustered (clones 1 and 2) and dispersed (clone 3) in space. Cells outside 
the 29 clones are gray. Clone colors are consistent with (J). (F) Cells within the same clone (black 
line) are arranged closer in physical space than cells between clones (gray line). Cumulative 
distributions show pairwise distance between the cells. (G) UMAP clustering of 5,332 cells in brain 
B1 based on the expression of the eight endogenous genes. Four clusters are annotated by inspection 
based on expression patterns and in situ localization of the majority population. Cells among the 29 
analyzed clones are highlighted with saturated colors. Cluster colors are consistent between (G), (H), 
and (I). (H) Heatmap showing the relative expression, calculated as normalized Z-score, of the eight 
genes in each cluster for brain B1. (I) Gene expression clusters mapped in space. Segmented cells 
are colored by cluster. Cells among the 29 analyzed clones are highlighted with saturated colors 
(scale bar, 30 µm). The inset highlights the same cells in (E), demonstrating clones that display 
similar (clones 1 and 2) and mixed (clone 3) cell states. (J) The three represented clones of brain B1 
mapped onto UMAP space, demonstrating examples of cells whose molecular states are correlated 
to their neuroblast lineage to varying degrees. (K) Cells within the same clone (black line) are more 
similar in expression than cells in different clones (gray line). Cumulative distributions show 
pairwise UMAP expression distances. (L) Hypothetical observations if either neuroblast lineage or 
spatial distribution alone dominates cell state determination in the fly brain. (M) Within the same 
clone, larger physical distances between cells correlate with greater gene expression differences 
(yellow to red colors). This correlation is not observed between cells of different clones (gray to blue 
colors). Cumulative distributions show pairwise UMAP expression distances.  
 
 
 
2.4 Discussion 

How the lineage history of a cell affects its future potential is central to development but challenging 

to systematically address in most systems. Clonal imaging methods such as MARCM revolutionized 

lineage analysis but can discriminate a limited number of clones per animal (15). Conversely, 

sequencing-based recording approaches such as GESTALT can provide higher throughput lineage 

information but do not preserve spatial information (3, 11, 16, 17, 19, 20, 22). intMEMOIR allows 

high-density, cell-autonomous, digital editing with imaging-based readout for lineage reconstruction 

and is compatible with FISH gene expression measurements, providing the means to simultaneously 

analyze single cell lineage, spatial organization, and gene expression data in the same tissue.  
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We implemented intMEMOIR in two biological contexts: mouse embryonic stem cells and fly 

neural development. Analysis of the three-way lineage-space-expression relationship in the brains 

revealed a spatially graded, lineage-dependent correlation in cell state, and illustrated the potential 

of our system to reveal new insights. In the future, labeling at additional time points and analysis of 

larger numbers of genes should allow more detailed dynamic analysis of development over a broader 

range of cell types and time scales.  

The current intMEMOIR implementation can produce a theoretical maximum of 59,049 possible 

outcomes from a single array. This diversity is sufficient for accurate tree reconstruction across 

several cell divisions. Additional recording arrays would exponentially increase the number of array 

states, enabling reconstruction of deeper trees over longer developmental time scales (Fig. 2.3 and 

fig. S2.9). Further, the system could be extended to allow additional, independent “channels” 

consisting of distinct, orthogonal integrases and their corresponding sets of arrays (60). By validating 

independent editing by distinct integrases and making their activities conditional, one could create 

systems that allow reconstruction of the dynamic activity histories of signaling pathways and 

transcription factors (fig. S2.2) (23). Thus, intMEMOIR provides a versatile, extensible basis for 

developing new recording applications.  

Several aspects of intMEMOIR should allow its use in other species and biological contexts. First, 

its genetically compact array design facilitates engineering of transgenic animal lines, as exemplified 

by D. memoiphila, which can be crossed with other fly lines to enable recording in desired cell types 

at appropriate developmental times and in specific genetic backgrounds (Fig. 2.5A). Second, a 

minimal intMEMOIR implementation only requires regulated integrase activity and array expression 

prior to imaging. Editor activity can be regulated using diverse system-appropriate methods, 

including Gal4-UAS, heat shock promoters, cell type specific promoters, or Cre driver lines (61). 

Similarly, array expression can be either selectively induced in cell types of interest (e.g. pan-

neuronal expression), constitutively expressed in live tissue, or potentially even expressed in fixed 

tissue using in situ T7 transcription (62). Even without cell type specific array expression, array 

states in cell types of interest can be identified using FISH on relevant marker genes within the same 

workflow. Thus, we anticipate that intMEMOIR should be readily adaptable to other model 

organisms and developmental contexts. More generally, as cell atlas projects develop, it should be 

possible to incorporate spatial and morphological data and lineage relationships alongside molecular 
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profiles. The outcome would provide a richer view of cellular states and histories, allowing 

exploration of interactions among clonal lineages and analysis of developmental variation between 

individual organisms.  

2.5 Methods Summary 

We performed all tissue culture experiments with E14 mES cells (ATCC). For flow cytometry 

experiments shown in Figure 2.2, mES cells were cotransfected with mTagBFP2 (as cotransfection 

marker), integrase, and the sample’s corresponding prototype trit reporter. We performed flow 

cytometry 2 days after transfection. We constructed intMEM1 by sequentially introducing a TIGRE 

locus landing pad [modified from (39)] and Tet3G via PiggyBac (System Biosciences). We then 

integrated TRE-Bxb1-ecDHFR into the TIGRE landing pad. We also integrated the 10-unit 

intMEMOIR array into the Rosa26 locus using CRISPR-Cas9. Finally, we integrated mTurquoise2 

via PiggyBac. The cell lines underwent multiple rounds of clonal selection during this process, and 

the final intMEM1 line is monoclonal. 

For time-lapse intMEM1 imaging experiments, cells were plated on glass bottom 24-well plates 

(Eppendorf) coated with Laminin-511 (BioLamina) overnight. intMEM1 cells were co-cultured with 

parental E14 cells to increase total cell density to support growth and survival. For the lineage 

reconstruction experiments shown in Figures 2.2 and 2.3, we induced recording for 36 hours by the 

addition of the inducers trimethoprim and doxycycline to the culture media. We then halted the 

induction by washing off the induction media and replacing it with regular culture media, followed 

by another 18 hours of expansion. We then fixed cells and performed five sequential rounds of HCR-

FISH (41, 42) to read out the intMEMOIR array state, followed by immunostaining and imaging of 

E-cadherin and β-catenin to facilitate cell segmentation.  

To reconstruct the ground truth lineage, we manually tracked the cells in the time-lapse images using 

a modified version of the EasyTrack software [available at (63)]. We then identified individual array 

edit states using Ilastik (64), manual curation, and a custom analysis pipeline in Matlab [available at 

(63)]. Lineage trees were then reconstructed using a maximum likelihood approach (41). Similarly, 

for the large colony lineage reconstruction experiment in Figure 2.4, cells were induced for 36 hours, 

followed by 70 hours of growth with no induction, fixation, and HCR-FISH. Clone boundaries and 
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barcodes for this colony were analyzed manually. 

D. memoiphila fly lines were generated by site-specifically integrating the UAS-Ceru-10unit and 

PRExpress-Bxb1 constructs into the attp2 and VK27 sites, respectively (Bestgene Inc.). UAS-Ceru-

10-unit flies were first crossed with an nSyb-Gal4 line (Bloomington). Offspring were crossed with 

the PRExpress-Bxb1 line to generate an autonomous recording line with pan-neuronal expression of 

the intMEMOIR array. For the heat shock inducibility experiment, the flies were maintained at 25oC 

and heat shocked in 37oC water baths for the specified durations at the embryo stage. Adult fly brains 

were dissected, fixed, and cryosectioned onto coverslips pre-treated with 3-

aminopropyltriethoxysilane (Sigma). We installed SecureSeal Hybridization Chambers (Grace Bio-

Labs) onto the coverslips to perform HCR-FISH (41) for intMEMOIR array readouts.  

For the early neuroblast labeling experiment, fly embryos obtained 4 hours after egg laying were 

heat shocked at 37oC for 1 hour. The resulting adult flies were incubated at 29oC overnight to enhance 

the activity of Gal4 prior to brain collection, fixation, and cryosection onto coverslips pretreated with 

1% bind-silane (GE) and poly-D-lysine (Sigma). To read out the intMEMOIR arrays and eight 

endogenous genes, we used an automated imaging and fluidics delivery system to perform multiple 

rounds of smFISH (41, 65). Both HCR-FISH and automated smFISH are viable readout methods, 

but the latter offers higher throughput. For downstream analysis, we segmented the fly cells manually 

and used a custom Matlab program [available at (63)] to call the array edit states. To analyze the 

gene expression data for each brain, we applied PCA (57), UMAP (58), and DBSCAN (59) to 

denoise, reduce the dimensionality, and cluster the dataset. UMAP distance between cell pairs was 

then calculated as the Euclidean distance between their two-dimensional UMAP coordinates. We 

also calculated the physical Euclidean distance between cell pairs. On the basis of their intMEMOIR 

array state, cell pairs were then subsequently divided into “within clone” and “between clones” for 

analysis. To disentangle the contribution of space and lineage to gene expression, we also further 

binned the data by the physical Euclidean distance between cell pairs.  

All data, code, analysis, and sequence files are freely available on (63), and the full materials and 

methods are available in (41). 

2.6 Acknowledgements 



 

 

33 

We thank L. Sanchez-Guardado, H. Choi, C. Calvert, G. Shin, C. Tischbirek, Y. Takei, S. Shah, and 

N. Pierson for technical assistance and advice; A. Askary, X. Gao, F. Horns, D. Chadly, C. Su, and 

other members of the Elowitz lab for critical feedback on the manuscript; and A. Shur, P. Meyer, R. 

Lu, and J. Linton for scientific input and advice. Funding: This research was supported by the Allen 

Discovery Center program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen 

Family Foundation (grant UWSC10142 to M.B.E., C.L., and L.C.), the National Institutes of Health 

(NIH) (grant R01 MH116508 to M.B.E., C.L., and L.C.), and Burroughs Wellcome Fund CASI 

(K.L.F.), and M.B.E. is a Howard Hughes Medical Institute investigator. M.B.E. acknowledges Fritz 

Thyssen Stiftung for support for a visiting fellowship to Berlin. Authors contributions: K.K.C., 

M.W.B., A.A.G., K.L.F., L.C., C.L., and M.B.E. designed research. K.K.C., M.W.B., M.C., S.Y., 

S.C., and N.K. performed experiments. A.A.G., M.W.B., K.K.C., T.H., C.L., and M.B.E. analyzed 

data, K.K.C., M.W.B., A.A.G., C.L., and M.B.E. wrote the manuscript. Competing interests: 

K.L.F., K.K.C., L.C., and M.B.E. are inventors on a patent application for recording technologies. 

Data and materials availability: Plasmids to implement intMEMOIR in mES cells and Drosophila 

melanogaster are available from the Addgene repository (ID: 158387, 158389, 158390, and 

158391), Drosophila melanogaster lines are available from the Bloomington repository (RRID: 

BDSC_90853 and BDSC_90854), and the intMEM1 cell line will be made available from C.L. and 

M.B.E. under the terms of the Uniform Biological Material Transfer Agreement (UBMTA). The 

data, code, and analysis to generate the results in the manuscript and the sequence information of 

relevant constructs are freely available on (63). 

2.7 Materials and Methods 

Plasmids preparation 

Constructs were cloned using standard methods. Due to the repetitive sequence, inverted attPs were 

difficult to amplify in vitro, therefore PCR-based cloning methods were avoided for these regions. 

Mammalian constructs involving serine integrases Bxb1, phiC31, R4, and TP901 were  cloned from, 

or used directly as, plasmid gifts from Mitsuo Oshimura (66). All constructs reported in this 

manuscript are listed in table S1, and sequence maps for constructs generated for the intMEMOIR 

system are available at (63). The Bxb1 and intMEMOIR array constructs are available on Addgene: 
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TIGRE-TRE-[poor kozak]Bxb1-ecDHFR-BGHpA: https://www.addgene.org/158390/  

R26-pCAG-Ceru-10unit-BGHpA: https://www.addgene.org/158387/ 

PRExpress-Bxb1-hsp70pA: https://www.addgene.org/158391/ 

UAS-Ceru-10unit: https://www.addgene.org/158389/ 

Tissue culture 

All tissue culture experiments were done with E14 mouse embryonic stem (mES) cell line (ATCC 

catalog number CRL-1821). Cells were cultured in humidified chambers at 37oC and 5% CO2, with 

filtered media composed of GMEM (Sigma), 15% FBS, PSG (100 units/mL penicillin, 100 µM/mL 

streptomycin, 2 mM L-glutamine) (ThermoFisher), 1mM sodium pyruvate (ThermoFisher), 1X 

Minimum Essential Medium Non-Essential Amino Acids (MEM NEAA, ThermoFisher), and 

100µM 2-Mercaptoethanol (ThermoFisher), with 1,000 units/mL Leukemia Inhibitory Factor (LIF, 

Millipore) added after filtering. Cells were maintained on polystyrene plates coated with 0.1% 

gelatin.  

Flow cytometry 

For flow cytometry experiments shown in Figures 2.2, C to E and S2.2, D and E, mES cells were 

plated on 24 well plates at approximately 70% confluency. Cells in each well were then cotransfected 

with 200 ng mTagBFP2, 400 ng integrase, and 400 ng of the sample’s corresponding prototype trit 

reporter. The transfections were performed with Lipofectamine LTX and PLUS reagent overnight 

(ThermoFisher).  

Flow cytometry was performed two days after transfection on CytoFlex (Beckman Coulter). Cells 

were lifted from the plate with StemPro Accutase (ThermoFisher) and resuspended in buffer made 

of Hank’s Balanced Salt Solution (HBSS), 2.5mg/mL Bovine Serum Albumin (BSA), and 1mM 

EDTA. They were then filtered through a 40 µm cell strainer prior to flow cytometry. These 

experiments, including their respective transfections, were conducted in triplicate (Fig. 2.2C to E). 

Flow cytometry data were analyzed using the EasyFlow Matlab program developed by Yaron 

Antebi, the version used for this manuscript available at (63), and the latest version available at 
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https://antebilab.github.io/easyflow/. We gated for single cells using forward and side scatter (FSC 

and SSC), then gated for cells expressing high levels of the cotransfection marker mTagBFP2 to 

enrich for the transfected population in downstream analysis. For figure S2.2, D and E, we plotted 

the resulting distributions of Citrine and mCherry fluorescence for the relevant triplicates. For Figure 

2.2C, we determined the median Citrine and mCherry fluorescence, background subtracted the 

fluorescence detected in the no integrase negative control, and calculated the mCherry/Citrine ratio 

for each replicate. We then plotted the average ratio of the experimental triplicates, with error bars 

representing the standard error of the mean (SEM). For Figure 2.2, D and E, we determined the 

median Citrine and mCherry fluorescence for each sample, background subtracted the fluorescence 

detected in the no integrase negative control, and averaged the values over the experimental 

triplicates. The resulting values were then normalized to the values for matching GT att sites and 

plotted for comparison, with the error bars representing normalized SEM.  

Characterization of additional members of the serine integrase family 

To characterize the ability of additional, non-Bxb1 serine integrases to function in mES cells, we 

constructed stable reporter cell lines containing either an integrase-specific reporter construct (fig. 

S2.2, A and B), or a 4 unit array with palindromic att sites (fig. S2.2C). These cell lines were then 

transiently transfected with their respective integrases, and the results evaluated through 

hybridization chain reaction FISH (described in section below). 

To construct the stable reporter mES cell lines, the reporter constructs were site specifically inserted 

into the Rosa26 locus through Cas9-mediated homologous recombination by cotransfection of 600 

ng of the reporter plasmid with 200 ng of pX330 Cas9 (gRNA sequence: 

CAGGACAACGCCCACACACC), followed by 500 µg/mL geneticin selection.  

Polyclonal stable cell lines were used to generate figure S2.2, A and B. Monoclonal cell lines were 

selected for figure S2.2C. The cells were then transiently co-transfected with 600 ng of their 

corresponding integrase and 200 ng of puromycin resistance plasmid. After one day, 1 µg/mL 

puromycin was added for two days to enrich for transfected cells in downstream experiments. After 

ending selection, cells recovered in regular media for one day, and were then plated on glass bottom 

96-well plates (Cellvis) coated with 20 µg/mL of Laminin-511 (BioLamina). 
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For figure S2.2, A and B, cells were fixed one day after plating for HCR-FISH. Integrase activities 

were calculated as the percentage of manually counted cells with inverted reporters, out of all cells 

with the invariable barcode (fig. S2.2A). For figure S2.2C, cells were fixed approximately 4 hours 

after plating for HCR-FISH. The results were analyzed by a custom Matlab pipeline available at 

(63). Briefly, the program automatically segments the cells and counts HCR-FISH dots above 

manually determined thresholds. To account for different array expression levels, dot counts were 

normalized to nuclear CFP intensities before using them to call a unit state (i.e. unedited, inverted, 

and deleted), while the unnormalized dot counts were used to resolve rare conflicts between unedited 

and inverted calls. The 4 unit array constructs contain a barcode without att sites located in the middle 

of the array, and only cells with unedited middle barcodes detected were used for analysis. 

All transfections were performed with Lipofectamine LTX and PLUS reagent (ThermoFisher) 

overnight, on mES cells plated at approximately 70% confluency on a 24-well plate. All monoclonal 

selections involving site-specific integrations were screened with PCR. 

intMEM1 cell line construction 

To construct intMEM1, we began by integrating a landing pad containing FRT sites into the TIGRE 

locus using Cas9-mediated homologous recombination (construct modified from (39)). This was 

achieved through cotransfection of 600 ng of TIGRE-LandingPad-FRT-partialHygro-SV40pA and 

200 ng of pX330 Cas9 (gRNA sequence: CTGCCATAACACCTAACTTT), followed by selection 

with 10 µg/mL blasticidin. After selecting a clone with correct integration, we introduced 

constitutive pEF1ɑ-Tet3G through PiggyBac transposition (System Biosciences), transfecting with 

600 ng of the Tet3G plasmid and 200 ng of the transposase, followed by 1 µg/mL puromycin 

treatment, and again selected for a single clone. We then inserted TRE-Bxb1-ecDHFR into the 

TIGRE landing pad with FlpE recombinase through cotransfection of 600 ng of TIGRE-TRE-

(poorKozak)Bxb1-ecDHFR-BGHpA and 200 ng of FlpE, followed by 100 µg/mL hygromycin 

selection. The resulting polyclonal line was transfected with the 10-unit intMEMOIR array targeted 

to the Rosa26 locus through Cas9-mediated homologous recombination, by cotransfection of 600 ng 

of R26-pCAG-Ceru-10unit-BGHpA and 200 ng of pX330 Cas9 (gRNA sequence: 

CAGGACAACGCCCACACACC), 500 µg/mL geneticin selection, and monoclonal selection. 



 

 

37 

Finally, we increased the fluorescence of these cells for time-lapse movie tracking by integrating 

PGK-mTurquoise2-Blast by PiggyBac, using 600 ng of the marker plasmid and 200 ng of 

transposase, followed by blasticidin and a second round of hygromycin selection. A final round of 

monoclonal selection resulted in the intMEM1 cell line. All transfections were performed with 

Lipofectamine LTX and PLUS reagent (ThermoFisher) overnight, on mES cells plated at 

approximately 70% confluency on a 24-well plate. All monoclonal selections involving site-specific 

integrations were screened with PCR. 

Time-lapse imaging for ground truth lineage 

Cells were plated on glass bottom 24-well plates (Eppendorf) coated with 20 µg/mL of Laminin-511 

(BioLamina) overnight. Approximately 6,000 intMEM1 cells were seeded onto the coated wells, 

along with 18,000 parental E14 cells to increase cell density to support growth and survival. Media 

was changed prior to the start of the movie to remove any unattached cells. Imaging was done with 

an Olympus IX81 inverted epi-fluorescence microscope with Photometrics Prime 95b sCMOS 

camera, 20x air objective (0.75 numerical aperture), and equipped with an environmental chamber. 

intMEMOIR recording was initiated by adding 10 µM TMP (to block the DHFR degron) and 100 

ng/mL doxycycline (to activate the TRE3G promoter). Inducers were omitted in negative control 

samples. For each position, images were acquired every 15 minutes in both the visible light (DIC) 

and fluorescent (CFP) channels. 36 hours after the start of the movie we halted induction by washing 

off the induction media and replacing it with regular culture media. 54 hours after the start, we 

terminated time-lapse imaging and promptly fixed the sample at room temperature with 4% 

formaldehyde in PBS for 5 minutes, followed by HCR-FISH protocol (below). 

Constructing ground truth lineage 

Ground truth lineage trees were constructed by manually tracking the cells in the time-lapse images 

using a modified version of the EasyTrack software developed by Yaron Antebi (freely available at 

(63) and https://github.com/AntebiLab/EasyTrack/tree/Memoir). Cells were primarily tracked by 

their CFP fluorescence. Ground truth trees could begin at either the one or two cell stage depending 

on the colony’s cell cycle at the start of image acquisition, and were rooted at the two cell stage if 
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the parent cells in question were likely sisters based on proximity, cell morphology, CFP intensity, 

as well as their cell movements and cycles in the subsequent frames. Ground truth trees for all 

colonies were outputted as Newick strings (table S2 for colonies used in lineage reconstruction). 

Hybridization Chain Reaction (HCR) FISH and imaging 

Overview of imaging workflow: 

The imaging protocol consists of fixation and permeabilization steps, followed by multiple rounds 

of primary probe binding and signal amplification by HCR (fig. S2.3A). Below, we describe each of 

these steps in more detail.  

Fixation and permeabilization:  

HCR-FISH in tissue culture began after fixing the samples at room temperature with 4% 

formaldehyde in PBS for 5 minutes (as described above). Fixed cells were washed with PBS, 

followed by permeabilization in 70% RNase-free ethanol at -20oC overnight, and stored in 70% 

ethanol for up to 3 days at -20oC. Permeabilized cells were washed with 20% formamide wash buffer 

in 2X SSCT at room temperature for 5 minutes and pre-hybridized in 30% probe hybridization buffer 

at 37oC for 30 minutes.  

Primary probe hybridization:  

Primary probe hybridizations and hairpin amplifications were then carried out as previously 

described for HCR v3.0 (Molecular Instruments) (42). Primary probes for each round of 

hybridization were prepared in probe hybridization buffer (warmed to 37oC) at 4 nM per probe. The 

pre-hybridization solution was then replaced with the probe solution with an overnight incubation at 

37oC. The samples were then washed 4 times with warm 30% probe wash buffer at 37oC, with 15 

minutes incubation accompanying each wash. Finally, samples were washed once with 5X SSCT at 

room temperature for 5 minutes.  

HCR amplification: 

Samples were incubated in amplification buffer at room temperature for 30 minutes. Hairpins for 

amplification were prepared by snap cooling each at the stock concentration of 3 µM. This was done 

by heating the individual hairpins to 95oC for 90 seconds, then cooling them to room temperature in 
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the dark for 30 minutes. The cooled hairpins were then mixed and prepared in amplification buffer 

at 60 nM final concentration for each hairpin. The pre-amplification solution on the sample was then 

replaced with the hairpin mix and incubated at room temperature from 4 hours to overnight. During 

incubation and for all subsequent steps, the sample plate was protected from light by covering it with 

aluminum foil except during pipetting and/or imaging.  

Amplification was ended with two 5 minute washes, two 30 minute washes, and one 5 minute wash 

of 5X SSCT at room temperature. Finally, the cells were imaged in 5X SSCT. 

Materials: 

30% probe hybridization buffer, 30% probe wash buffer, amplification buffer, and HCR 

amplification hairpins were purchased from Molecular Instruments. Hairpins used for the intMEM1 

experiments were (in the format of HCR initiator-fluorophore): B1-Alexa594, B2-Alexa647, B3-

Alexa546, and B4-Alexa488. The probe binding regions for each intMEMOIR unit, along with their 

corresponding initiators, are listed in table S3, and the probes can be purchased from Molecular 

Instruments with order IDs 3049 and 3092. 

Rehybridization: 

Between hybridization rounds, probes were removed via DNase I treatment (Roche). Briefly, cells 

were washed with 1X DNase buffer, followed by incubation with 1 Kunitz unit/µL DNase I in 1X 

buffer for 2 to 4 hours at 37oC. Digestion was ended by washing the cells 3 times with 30% probe 

wash buffer, incubating the final wash for 15 minutes at 37oC. Finally, cells were washed once with 

5X SSCT before the pre-hybridization step for the next round of HCR-FISH.  

Imaging: 

Cells were imaged using a Nikon Eclipse Ti inverted fluorescence microscope, with an Andor Zyla 

4.2 sCMOS camera and a 60x oil objective (1.4 numerical aperture). For all HCR-FISH channels, 

each field of view was acquired with 0.5 µm z-steps for 20 z-slices. Maximum intensity projections 

from the in-focus slices were then used for downstream analysis. 

Antibody staining 
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Upon completion of all rounds of HCR-FISH readout and a final round of DNase I treatment to 

remove any HCR-FISH signals, cells underwent antibody staining for membrane markers E-

cadherin and β-catenin to facilitate segmentation. Immunostaining was performed following 

standard protocols, with most incubation and washing steps carried out on a gentle rocker. Briefly, 

samples were blocked with blocking buffer made in PBS (5% BSA, 1% DMSO, and 0.2% Triton X-

100) for 1 hour at room temperature. They were then incubated with primary antibodies E-cadherin 

(R&D Systems, AF648, 1:20) and β-catenin (Abcam ab6301clone15B8, 1:750) overnight at 4oC. 

The following day, they were washed 5 times with PBST for 5 minutes each, then incubated with 

secondary antibodies (donkey anti-goat IgG 647 A21447, and donkey anti-mouse IgG 488 A21202, 

respectively) diluted 1:1000 in blocking buffer for 3 hours at room temperature. Finally, samples 

were washed 5 times with PBS for 5 minutes each, followed by imaging in fresh PBS.  

Analysis of HCR-FISH readout in mES cells 

To segment individual cells and identify their array edit states, we used a custom analysis pipeline 

in Matlab (fig. S2.4, available at (63)). For cell segmentation, immunofluorescence images of E-

cadherin were first preprocessed with Ilastik (64) to generate a membrane probability map. The 

positions of cells in the final frame of the ground truth lineage analysis were used as watershed seeds 

overlaid on the membrane probability maps. The resulting segmented images were visually 

examined and manually curated. The four channels used for HCR-FISH analysis did not show 

significant fluorescent crosstalk (fig. S2.5). 

For array state determination, the centers of the mRNA dots were determined using a Laplacian of 

Gaussian filter in Matlab. Barcode mRNA locations were called when multiple units localized to the 

same spot. Each barcode mRNA state was determined by looking at the binary state of each of the 

twenty unit HCR-FISH images. All of the barcodes located in each cell were used to generate a 

consensus barcode state. Cells with fewer than 50 detected units were excluded from analysis. 

Calculation of mutual information between recording units 
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We pooled the observed states from all 1,453 cells and built a frequency matrix  representing 

each of the 10 recording units and the observed frequency of each one of the three possible 

intMEMOIR states which define the distribution  per site. For each pair of sites, we then 

computed the joint distribution  from the observed frequencies of pairs of states e.g. 

. We then combined the probabilities in  with the joint distribution to build a 

matrix of pairwise Mutual Information using Shannon’s formula, using  to normalize the 

maximum entropy of a single unit to 1 trit.   

Lineage analysis of large mES cell colony 

Cells were plated on glass bottom 24-well plates (Eppendorf) coated with 20 µg/mL of Laminin-511 

overnight. Approximately 1,000 intMEM1 cells were seeded onto the coated wells and induced with 

10 µM TMP and 100 ng/mL doxycycline, along with 9,000 parental E14 cells to increase cell density 

to support growth and survival. Induction lasted 36 hours, followed by approximately 70 hours of 

growth with no induction. Media was changed daily, and the cells were fixed at the end of the 

experiment with 4% formaldehyde in PBS for 5 minutes, followed by HCR-FISH protocol described 

above. Clone boundaries and barcode analysis for this colony were analyzed by hand. 

D. memoiphila fly line generation 

Fly lines containing UAS-Ceru-10unit and PRExpress-Bxb1-hsp70pA were site-specifically 

integrated into the attp2 and VK27 sites, respectively, using phiC31 (Bestgene Inc.). Flies with the 

10-unit array were first crossed with an nSyb-Gal4 line (R57C10-Gal4, attp40, Bloomington 

Drosophila stock center) for pan-neuronal expression of the intMEMOIR array. The offspring were 

then crossed with the PRExpress-Bxb1-hsp70pA to generate the line capable of autonomous 

recording for downstream experiments. The generated fly lines are available from Bloomington 

Drosophila stock center with the following RRID: 

PRExpress-Bxb1-hsp70pA: BDSC_90853 

nSyb-Gal4; UAS-Ceru-10unit: BDSC_90854 
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D. memoiphila characterization 

To determine if we could tune the edits in D. memoiphila embryo and read out the results in adult 

fly brains, we placed parents of the PRExpress-Bxb1-hsp70pA x nSyb-Gal4; UAS-Ceru-10unit cross 

in fresh vials overnight at 25oC to collect eggs. 3 to 4 hours after removing the parents, the embryos 

were heat shocked in 37oC water bath for 30 minutes, 1 hour, and 3 hours for the respective samples. 

Negative control samples were always kept at 25oC and not heat shocked. The resulting adult flies 

were sacrificed, and their brains were dissected in PBS and fixed in 4% paraformaldehyde (PFA) in 

PBS for 20 minutes. Samples were then washed 3 times with PBS for 10 minutes, transferred to 

Optimal Cutting Temperature (OCT) compound, and frozen on dry ice. Samples were cut into 20 

µm-thick sections on a cryostat and transferred onto coverslips that had been pre-treated with 3-

aminopropyltriethoxysilane (Sigma A3648, diluted to 2% v/v in Acetone), followed by post-fix with 

4% PFA in PBS for approximately 25 minutes, 3 rinses with PBS, 1 rinse with 70% ethanol, and 

permeabilized in 70% ethanol overnight at 4oC. Tissues were then cleared with 8% SDS for 5 

minutes at room temperature, rinsed once with PBS, then rinsed 3 times with 70% ethanol. After air 

drying the samples, we installed SecureSeal Hybridization Chambers (Grace Bio-Labs) onto the 

coverslips. intMEMOIR array states were then read out with HCR v3.0 as described above 

(Molecular Instruments) (42). Imaging for these samples were done on a Nikon Eclipse Ti inverted 

microscope, with a spinning disc unit Yokogawa CSU-W1, an electron-multiplying charge-coupled 

device camera Andor iXon Ultra, and a 40x oil objective (1.3 numerical aperture). 

intMEMOIR activity was evaluated by calculating the ratio of inverted-unit-5 to unedited-unit-9. 

The mES cell HCR-FISH data demonstrated that these two units are efficiently edited (Fig. 2.2I), 

and the two states were both probed in the same round of HCR-FISH, enabling comparison of the 

exact same fields of view and eliminating errors or bias that might result from image alignment. 

Each data point in Fig. 2.5B corresponds to one imaging position. 

intMEMOIR labeling of early neuroblast lineages 

To label neuroblast lineages at early embryonic stages, parents of the PRExpress-Bxb1-hsp70pA x 

nSyb-Gal4; UAS-Ceru-10unit cross were placed in fresh vials at 25oC to collect freshly laid eggs. 

The vials were inspected every hour and, upon observing egg laying, the parents were removed, and 
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4 hours later the embryos were heat shocked at 37oC for 1 hour. The resulting adult flies, up to 1 

week old, were incubated at 29oC overnight to enhance activity of the Gal4 transcription factor on 

the UAS promoter prior to brain collection and cryosection, followed by smFISH readout (fig. S2.3B 

and below).  

smFISH readout in D. melanogaster brain section 

To simultaneously examine spatial organization, cell state, and lineage information in the same tissue 

(Fig. 2.5D to M), the dissected fly brains were cryosectioned and attached onto coverslips treated 

with 1% bind-silane (GE 17-1330-0) and poly-D-lysine (Sigma P6407), and the resulting samples 

prepared and analyzed with sequential, automated rounds of smFISH in a manner similar to 

previously described (65). Briefly, sections were post-fixed with 4% PFA at room temperature for 

15 minutes, followed by three PBS washes. They were then permeabilized in 70% ethanol (either at 

4˚C overnight or at room temperature for 2 hours), cleared with 8% SDS in 1X PBS for 20 minutes 

at room temperature, then washed with 70% ethanol prior to two rounds of overnight primary probe 

hybridizations at 37˚C (in order to separate the hybridizations for unedited and inverted units). After 

each hybridization, samples were washed with 2X SSC for 3 times, incubated in 40% formamide in 

2X SSC for 30 minutes at 37˚C, followed by 3 additional rounds of 2X SSC wash. They were then 

stained with 100 µg/mL Concanavalin A-488 (ThermoFisher) in PBS with 0.1% BSA and 0.1% 

Triton X-100 for more than 5 hours at room temperature to facilitate segmentation in downstream 

analysis. After staining, the sample was washed three times with PBS plus 0.5% Triton X-100 (with 

an extended 5 minute incubation for the final wash), and stained with 10 µg/ml DAPI in 4X SSC for 

15 seconds. Next, an anti-bleaching buffer solution made of 10% (w/v) glucose, 1:100 diluted 

catalase, 0.5 mg/ml glucose oxidase and 50 mM pH 8 Tris-HCL in 4X SSC was flowed through the 

samples.  We used an automated imaging and fluidics delivery system described in (65) to image 

mCerulean transcripts, the intMEMOIR units, and 8 endogenous genes.  Two fluorophores, 647 and 

Cy3B, were used to read out the 29 targets in 15 rounds of hybridizations. The probe sequences and 

their corresponding readout channels are listed in table S4. The microscope used in this system was 

a Leica DMi8, with confocal scanner unit Yokogawa CSU-W1, Andor Zyla 4.2 Plus sCMOS 

camera, 63x oil objective Leica 1.40 NA, and an ASI MS2000 stage. Each field of view was acquired 

with 1 µm z-steps for 14 or 15 z-slices, across 647 nm, 561 nm, 488 nm, and 405 nm fluorescent 
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channels. Maximum intensity projections of the slices were used for example images in Figs. 2.5D 

and S2.11. For each brain, 1 z-slice with in-focus FISH signals (determined with mCerulean FISH 

signal to avoid bias), was then selected for downstream analysis. 

Analysis of smFISH readout in D. melanogaster brain section 

Fly cells were segmented manually. A custom Matlab program (available at (63)) was used to 

determine the barcode state, as with the mES cells. Clones which had at least one barcode inversion 

and at least 4 cells were chosen for downstream analysis.  

Gene expression analysis in brain section (Brain B1 as the example for the description below) 

The brain data set comprises gene expression, location, and intMEMOIR state for 5,332 individual 

cells. For each cell, we recorded the average pixel value as the expression level for the 8 endogenous 

genes. To investigate the structure of the gene expression space, we constructed a gene expression 

matrix , where n = 8 genes, and  m = 5,332. Based on this matrix, the analysis pipeline we 

built to delineate gene expression clusters consists of several steps: 1. Scaling gene expression using 

a z-transform, such that all genes have mean=0 and standard deviation=1. 2. Denoising data by 

applying PCA (57) to the scaled data and retaining principal components accounting for 80% of the 

total variance (6 PCs). 3. The 6-dimensional data were then transformed into a UMAP embedding 

of 4 dimensions followed by the DBSCAN clustering algorithm (59) (sklearn DBSCAN with eps = 

0.3) which resulted in a total of 20 distinct clusters. 4. For visualization, the 6-dimensional data set 

was transformed and projected into 2 dimensions using UMAP (58) (default parameters, Python 

UMAP v0.3.10). 5. Finally, we mapped the gene expression clusters (as color labels) into either the 

UMAP space (Fig. 2.5G) or physical space (Fig. 2.5I).  

Determining the relationship between clonality, physical distance, and gene expression distance 

The physical distance was calculated as the Euclidean distance between all pairs of barcoded cells 

chosen for analysis. This data set was then divided into two groups: pairs within the same clone or 

pairs from two different clones, and plotted as a cumulative histogram (Fig. 2.5F, ‘within clone’ and 
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‘between clone’, respectively). For gene expression space, the Euclidean distance was calculated 

between cell pairs using the UMAP coordinates (e.g. Fig. 2.5K and S2.16A). To disentangle the 

relative contribution of physical distance and lineage to gene expression, the aforementioned data 

was further binned by the physical Euclidean distance between cell pairs (Fig. 2.5M).  Pearson 

correlation was also used as an alternative metric for gene expression distance (figs. S2.16B and 

S2.17). 

Lineage and statistical analysis 

Here we describe procedures for two types of lineage analysis (Fig. 2.1A). First, we discuss 

assignment of individual cells to clones, i.e. groups of cells that share a common ancestor at the time 

of editing (clonal classification). Second, we discuss the hierarchical assignment of cells or clones 

into multi-generational lineage trees (lineage tree reconstruction). In both cases, we describe an 

analytical framework and experimental validation using the data in Figure 2.3. These data were 

obtained from experiments in which Bxb1 was expressed for ~3 generations, followed by an 

additional ~1-2 generations of clonal expansion without Bxb1 induction (Fig. 2.2G).  

Clonal classification 

intMEMOIR can classify cells into clones based on shared array state inherited from a common 

ancestor that was uniquely labeled at a specific point in the past. Clonal analysis can be used both to 

address specific biological questions, and to provide the ‘leaves’ of more detailed lineage tree 

reconstruction (below).  

Ideally, clonal classification should group cells in such a way that each cell is more closely related 

to other cells in its own group than to any cell in other groups. In general, a given lineage tree can 

generate multiple, distinct clonal classifications depending on which edits occurred at what point in 

the tree. For example, the tree in figure S2.6 could show multiple distinct sets of unique edit patterns 

(colors), all consistent with the true lineage.  

An experimental clonal classification is made in a straightforward way by grouping cells with 

identical edit patterns into putative clones. To assess the accuracy of such a clonal classification, we 
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must first determine if it is consistent with the ground truth lineage tree observed by direct time-lapse 

imaging (Fig. 2.3A), and, second, quantify the number and types of classification errors, if any (Fig. 

2.3C).  

The following algorithm assigns an accuracy score to a given putative clone, labeled R. To do so, it 

considers all subtrees (partitions) of the ground truth lineage tree and asks whether any subtree 

exactly matches the inferred clone. If such a subtree exists, then the clonal classification is considered 

accurate. If not, we identify the subtree that most closely matches the clone, which we label as S, 

and quantify its deviation from the putative clone. This deviation is computed by first classifying 

each cell in S as either a true positive (appears in both S and R), a false positive (appears in R but 

not S), or a false negative (appears in S, but not R). We then count the number of cells in each of 

these three categories and compute a clone score: 

 

Here, , , and  denote the number of cells that are true positive, false positive, or false 

negative, respectively. A higher score indicates a higher fraction of true positive cells (greater 

accuracy). Results from this analysis are plotted in Fig. 2.3D. 

Lineage reconstruction 

To reconstruct a multi-generation lineage tree from observed edit patterns, we first develop a 

relatedness metric for pairs of cells (or clones) based on their edit patterns. The metric is based on 

the likelihood of a sister relationship. We then use this metric to reconstruct lineage trees in such a 

way that cells that score higher on this sister likelihood metric are grouped more closely together on 

the reconstructed tree. Finally, we validate this procedure and quantify its accuracy. 

To develop the metric, we start by modeling the molecular events that generate the final edit patterns. 

We assume each unedited memory element can be edited stochastically at a constant, empirically 

determined rate per cell generation per memory element, denoted , where  indexes the 

memory element within the array (see Fig. 2.2I). We also incorporate the empirical transition 

probabilities for each of the two possible outcomes of each state (Fig. 2.2I). We then define the 
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probability distribution  for observing each of the 10-unit array states that occur in the colony of 

interest starting from an unedited array, after  generations.  is computed for each cell in the 

colony, and represents the probability of observing that cell’s specific array state, independent of the 

states of other cells in the colony.  

Next, we define the pairwise distance metric for a single memory element. We denote the conditional 

probability of observing any two specific memory states in a pair of sister cells as , where 

 and  index two specific, different cells . To convert this probability into a distance metric, 

we need to normalize it by comparing the likelihood of observing these two memory states in a pair 

of sister cells to the likelihood of them occurring independently in two unrelated cells. That is, we 

define the distance metric as 

  .  

Memory units edit independently (Fig. 2.2J). Therefore, it is possible to extend this distance metric 

for a single memory element to the level of a complete array in a straightforward manner, by 

replacing the single unit probabilities with products over all the units:  

From this we obtain the  unit array distance metric: 

 

Deriving probability distributions for the intMEMOIR system 

This distance metric is independent of many details of the recording system. To apply it to 

intMEMOIR data, we first need to derive expressions for the distributions  and . The recording 

units have an initial state, denoted 1, that can be edited irreversibly into either of two states, denoted 

0 and 2. The probability that a given unit is edited during a cell division is , and the probability 

that no edit happens during a cell division is . For simplicity, we first derive  assuming 

only two possible states: unedited  and edited . For a given unit, the probability that no editing 

happens for g generations (cell divisions) is then 
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Pg(1) = (1 − µ)g                                                                                    (1) 

The probability that an edit occurred at some point in the past is defined by the geometric distribution: 

 (2)                                                                                       

This expression considers all possible times at which the edit could have happened, e.g. in the first 

generation, the second generation, or even in the last generation. Once the edit occurs, the unit can 

no longer be edited. (Below, we will extend this analysis to the case of multiple edit outcomes.)  

By applying the geometric series, we can show that  is well defined as a probability distribution 

for all values of g such that:  

Pg(0) + Pg(1) = 1                                                      (3) 

We derive Eq. 3 by first expanding Eq. 2: 

Pg(0) = µ + (1 − µ)µ + (1 − µ)2µ + (1 − µ)3µ + ... + (1 − µ)g−1µ  

Combining eqs. 1 and 2 we obtain the total probability: 

Pg(0) + Pg(1) = µ[1 + (1 − µ) + (1 − µ)2 + ... + (1 − µ)g−1] + (1 − µ)g   

We then use the following identity for the geometric series: 

  

By setting ,  and , we obtain: 

  

Which shows that  is well-defined for all values of .  
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Three-state model  

We now extend the model by considering three possible edit outcomes: {1,0,2}. The probabilities of 

observing the recording unit in each of three possible states at generation   become:  

  

 

 (4) 

Here,  denotes the probability of an edited unit going to state 0 and  is the probability of it 

reaching state . Note that, in a similar way, this framework could also be generalized to larger 

numbers of editing outcomes. The transition probability distribution   represents all the 

ways in which an individual unit can change state during a single cell division cycle: 

P(1 → 1) = 1 − µ 

P(1 → 0) = µα 

P(1 → 2) = µ(1 − α) (5) 

P(0 → 0) = 1 

P(2 → 2) = 1 

The probabilities of all other transitions are zero, consistent with the irreversibility of intMEMOIR 

editing. Further, these transition rates are assumed to be time independent.  

Sister likelihood  

We now have all elements necessary to compute the sister likelihood scores that are the basis of our 

distance metric. We calculate the conditional probability that an unobserved parental state  in the 
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previous generation transitioned into the observed states . For simplicity, first consider just a 

single cell state, :  

                                    (6) 

Where  is the probability of observing the parental state  in the previous generation and can 

be calculated using Eq. 4. Considering now two cells , this transition probability becomes the joint 

distribution:  

  (7) 

Eq. 7 provides the probability that the observed states  came from the unobserved parental state 

.  Since we don’t actually observe , we need to account for all possible parental states to obtain the 

total sister probability : 

  (8) 

Finally, considering an array of  independent units we extend this and calculate the product: 

  (9) 

Where  represent a specific pair of array states, e.g. in two different cells or clones. 

Hierarchical lineage tree 

The calculations above enable us to compute the pairwise distance matrix , defined above, for 

any actual data set. As the final step in reconstruction, we built a dendrogram from  by applying 

divisive clustering, a top-down approach in which all observations start in one cluster, and two-way 

splits are performed recursively as one moves down the lineage tree, terminating at the leaves 

(individual cells or clones). Divisive clustering was implemented with the DIANA function from the 

R cluster package. Examples of the resulting trees are shown in Figures 2.3E to 2.3G. A complete 

list of reconstructed trees is provided in table S2 in the Newick tree format.  
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Assessing tree accuracy 

To quantitatively assess reconstruction accuracy compared to ground truth (Fig. 2.3H), we used the 

Robinson-Foulds distance metric, as implemented in the R phytools package, to compute the 

difference between the reconstructed and ground truth trees. For this analysis, all cells sharing the 

same array state are collapsed into a single clonal tree “leaf.” Occasionally, analysis of ground truth 

trees revealed convergent edits producing identical array states in distantly related cells (false 

positive events; see discussion of clonal analysis, above). These events prevent one from 

unambiguously collapsing identical array states in the ground truth tree. In these cases, we randomly 

retain one of the array states.  

Calculation of entropy in colonies 

In applications where no ground truth is available, we would like to develop a predictive metric that 

could be used to enrich for colonies that are likely to reconstruct with greater accuracy. Multiple 

variables, including spatial arrangements of cells or morphological similarity could in principle be 

informative. However, we reasoned that the most useful and generalizable metric would be one based 

only on the observed edit patterns, since this information should be available in all applications 

independent of systems-specific biological features.  

Shannon’s entropy provides an ideal metric to quantify information content in a discrete data set 

such as a list of edit states. To apply it to colonies, we pooled the edit states from all cells within 

each colony. We then constructed a  matrix,  representing the frequency of observing each 

of the 10 recording units in each of the 3 edit states. We can then apply Shannon’s formula to each 

unit to obtain its individual entropy, e.g.  is the entropy of the  unit. 

The total entropy of the colony is then obtained by adding the entropies of the individual sites: 

. Finally, we scaled the entropy by the fraction of edited sites in the colony, , 

to obtain an informative score of expected reconstruction quality. We confirmed that selecting 

colonies with higher normalized entropy enriched for better reconstruction (Figs. 2.3H and S2.8).  
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2.8 Supplementary Figures 

 
Fig. S2.1. 10 central dinucleotide variants in the att site enable the arrangement of 10 
independent memory units in one array.  
(A) The central dinucleotide (red) of attP/B form base pairs during recombination, dictating 
specificity and orthogonality of the sites. In principle, out of the 16 possible dinucleotide 
combinations, 10 could confer orthogonality in an array: four are palindromic, and the two sets of 
six non-palindromic dinucleotides are reverse complements of one another, so only one set could be 
used. (B) Schematic of the 10-unit array as designed with annotated att sites and barcodes (BC).  
  



 

 

53 

 
Fig. S2.2. Additional members of the serine integrase family function in mES cells.  
(A) To assess the activity of different serine integrases in mES cells (30), we integrated reporter 
constructs with an attP/B flanked unit followed by a barcode. Active integrase inverts the unit upon 
transfection, which can be detected via HCR-FISH. (B) Percentage of cells with inverted reporter 
after transfection. sPBc, phiC31, and wBeta are active in mES cells (n=91, 165, and 139 cells, 
respectively); R4 show weak activity (n=88 cells), and no activity was detected for phiBT1 and 
TP901 (n=172 and 171 cells, respectively). (C) Additional serine integrases can mediate inversion 
and deletion between att sites with palindromic dinucleotides. sPBc and wBeta reporter cell lines 
with a 4 unit array were transfected with their corresponding integrases, and their relative edit 
frequencies analyzed via HCR-FISH (n=307 and 264 cells, respectively). (D and E) Fluorescent 
reporter assay demonstrates that other serine integrases operate orthogonally to Bxb1 att sites, 
opening the possibility for orthogonal recording in the same cell. This is true for phiC31 and R4, as 
shown in (D), and wBeta and sPBc, as shown in (E), with n=3 for each sample. (F) Schematic 
illustrating simultaneous lineage tracking and signal recording using orthogonal serine integrases.   
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Fig. S2.3. Two fluorescent in situ hybridization methods were used to read the intMEMOIR 
array.   
(A) We used HCR v3.0 (42) to read the array state in the intMEM1 experiments (Figs. 2.2, G to J, 
3, 4, S4, and S5) and to determine the effect of heat shock duration on D. memoiphila editing (Fig. 
2.5B). 9 probe pairs were used for each unit, and the signals were subsequently amplified through 
HCR. The primary probe binding regions of each unit, the probe pairs’ HCR initiator ID, and the 
fluorophore used in the corresponding amplification hairpins are listed in table S3. We also used the 
HCR-FISH method, with different barcodes and corresponding probes, to test additional members 
of the serine integrase family (fig. S2.2, A to C) (B) We used automated smFISH (65) to read the 
array state and endogenous genes in D. memoiphila experiments (Fig. 2.5C onward, and S2.11 
onward). 12-13 primary probes were used for each intMEMOIR unit, 15 probes were used for 
mCerulean, and 24 probes were used for each endogenous gene. The target-specific sequences, 
readout sequences and ID, and the fluorophore used with the corresponding readout probes are listed 
in table S4. 
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Fig. S2.4. Cell segmentation and barcode determination.  
(Figure legend continued on next page) 
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Here we show the workflow for classifying array states in individual cells. (A) In order to segment 
individual cells, we acquired image stacks of cells stained with an E-cadherin antibody that localizes 
to cell membranes. (B) We trained the image analysis program Ilastik to classify pixels in these 
images as membrane or non-membrane. (C) A 3-dimensional watershed algorithm (Matlab) was 
used to segment cells from the pixel classification stack, using the final annotated cell positions from 
the movie as watershed seeds. Obvious segmentation errors were fixed by adding additional seeds 
and cutting joined cells. After the watershed, stacks were converted to 2-dimensional images by 
maximum projection. Here, cells ‘a’, ‘b’ and ‘c’ were shaded and labeled for subsequent panels. (D) 
Maximum intensity projections of the images for the 20 array channels. (E) RNA molecule locations 
were detected for each HCR-FISH probe set by finding the local maximum after applying a 
Laplacian filter. The points were dilated to account for small errors in localization. (F) Dilated points 
from all 20 channels were summed to identify locations with two or more barcodes as barcode arrays. 
Blue locations contain only a single detected dot and were discarded. (G) Locations with multiple 
detected unit reads are shown in magenta and white, and considered validated array signals. (H) 
Each local maximum was designated as an array location. For visualization, green boxes were drawn 
around the array locations. (I) The presence or absence of HCR-FISH signal (magenta dots) was 
determined for each barcode array location (green boxes) and tallied for each cell. Cells with greater 
than 50 validated unit reads were retained for downstream analysis. (J) Cells were considered 
positive for a given unit when a signal was present in at least 25% of the array locations in the cell. 
(K) From these results, the final array states were determined for each cell.  
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Fig. S2.5. The four HCR-FISH fluorescent channels show minimal crosstalk.  
Each row shows a portion of an intMEM1 cell positive for a single channel. Only the true positive 
channel shows significant fluorescent signal above background. Fluorescent crosstalk would have 
appeared as signal in the negative channel, at the same location as the true positive channel. Each 
column is shown with the same exposure, brightness, and contrast. 
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Fig. S2.6. A given lineage tree can generate multiple, distinct clonal classifications.  
Seven possible subtree assignments can accurately describe this simple five-cell tree, where all cells 
within a clone are more closely related to each other than to any cell outside of the clone. In one 
extreme, each individual cell can be classified as its own clone. At the other extreme, in the absence 
of editing, all cells are grouped into a single clone. 
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Fig. S2.7. Lineage simulation and reconstruction based on maximum likelihood of sister 
relationships. 
(A) Schematic of the lineage simulation method. We define a two-parameter stochastic model where 
 equals the edit rate in units of edits per site per generation, and  denotes the probability that the 

edit goes to state . The model assumes that cells divide synchronously and at a constant rate such 
that at generation G the lineage comprises  cells. (B) For a constant ,  the number of new edits 
appearing in each generation decays exponentially as dictated by the equation  
where g is the number of generations (cell divisions) and  is the expected fraction of edited 
sites. For intMEMOIR, the experimental value of  is ~0.1-0.3 (C) Schematic of the reconstruction 
approach. We first compute the probability that a trit is in either of the three possible states at 
generation G, combining the transition probabilities shown in A and the equation from B and called 
this distribution  (blue cell). For sister likelihood, we compute the probability that two cells  
share a parent  in the previous generation. (D) Equations for reconstructing lineages based on sister 
likelihood. 1. The probability that a recording unit is in either of the three possible states at generation 
G, independently of the other cells. 2. The probability that a parent cell  at  transitions into 
the states i, j. This equation assumes that the daughter cells  inherit the state of  and then edit 
with probability . Since the recording is irreversible, the only valid transitions are  and 
; once a cell reaches either state 2 or 0, all its daughters will inherit that state with Pr =1. We finally 
sum over all possible states of the parent cell . 3. We can then calculate the joint probability for the 
10 units as the product of the probabilities of each unit. And compare this number to the probabilities 
of observing the states  assuming no sister relationship, which are just the product of their  
probabilities in the numerator.  This ratio quantifies the likelihood of observing a given pair of array 
states for two sister cells compared to two unrelated cells. 4. This likelihood provides a pairwise 
distance metric that we then use to reconstruct the lineage tree. (E) Once we computed the likelihood 
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ratio for all pairs of cells, we can cluster the matrix using divisive hierarchical clustering, which 
starts by partitioning the data set into the most distinct groups, then it proceeds to partition each 
subgroup into two groups iteratively until each group contains only one cell. Ideally, each partition 
of the algorithm would correspond to a cell division event.  
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Fig. S2.8. Barcode entropy enriches for colonies that reconstruct with greater accuracy. 
We computed the entropy for a lineage as the sum of the individual entropies for each trit, using 
Shannon’s formula. The normalized entropy is then computed as the lineage’s entropy times the 
fraction of edited sites for that lineage, scaled by the maximum such that the metric has a range from 
[0,1]. This simulated dataset comprises 3000 lineages. (A) The fraction of lineages with normalized 
entropy larger than the threshold. (B) The fraction of perfectly reconstructed lineages for increasing 
thresholds of normalized entropy. For a given threshold value, we split the dataset and calculated the 
fraction of perfect trees in the high-entropy set. Note that the number of lineages analyzed decreases 
with increasing entropy thresholds, as shown in (A). (C) As an example, using a threshold of 0.6, 
we obtain a high-accuracy set of colonies that exhibit a fraction of perfect trees > 0.4 (compare high 
entropy colonies, ‘H MEMOIR’, with low entropy colonies, ‘L MEMOIR’). Note that the threshold 
is arbitrary and can be tuned to maximize the numbers of colonies and minimize the false discovery 
rate.  
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Fig. S2.9. Additional intMEMOIR arrays increase reconstruction accuracy and depth. 
(A) Accuracy in the reconstruction of simulated lineages using increasing numbers of recording 
units. Parameters were estimated from experimental data. The structure of the lineage trees used in 
the simulation are those observed experimentally. Using 40 units arranged as 4 intMEMOIR arrays, 
more than 50% of lineages can be reconstructed perfectly. (B) For a given accuracy (90%), the 
number of recording units necessary for reconstruction scales with the depth of the lineage. The 
calculation assumes binary lineages with no cell death. 
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Fig. S2.10. Example of stitched microscope images.  
(A) Data shown in Figure 2.4 were derived from four overlapping microscope positions (white 
squares) that were digitally combined. (B) Microscope images shown in Figure 2.5 and S2.11 were 
similarly derived from five positions (white squares). 
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Fig. S2.11. Probing the expression of 8 endogenous genes in an adult Drosophila brain section 
with smFISH.  
In addition to the intMEMOIR array, we probed for the expression of 8 endogenous genes in the 
same brain section: tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), fruitless (Fru), 
short neuropeptide F precursor (sNPF), glutamic acid decarboxylase (Gad1), vesicular glutamate 
transporter (VGlut), serotonin transporter (SerT), and tyramine ß-hydroxylase (Tbh). Endogenous 
genes and DAPI signals are shown in magenta and gray, respectively (scale bar, 30 µm).  
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Fig. S2.12. intMEMOIR recovers clone sizes in vivo. 
Cells in the adult Drosophila brain section were segmented, their array states determined (see 
Materials and Methods), and clones with ≥four cells and at least one unit inverted were chosen for 
downstream analysis. Clones 1, 2, and 3, as shown in Fig. 2.5E, are highlighted in their 
corresponding colors.  
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Fig. S2.13. Brain B2, a section of D. melanogaster antenna lobe. 
(A) A section of brain B2 stained with DAPI. (B and C) Cells in the same clone were closer in 
physical space than cells in different clones, as seen on the spatial map (B) and in the cumulative 
distributions (C). In (B), segmented cells are colored by the analyzed clones. Grey cells were 
excluded from analysis (see Materials and Methods) (scale bar, 30 µm). (D and E) Cells within a 
clone were more similar in gene expression space than cells in different clones, as seen on the UMAP 
(D) and in the cumulative distributions (E). (F) Within a clone, but not between different clones, cell 
pairs exhibited spatially graded cell type similarity (cf. Figure 2.5).  
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Fig. S2.14. Brain B3, a section of a D. melanogaster brain.  
(A) A section of brain B3 stained with DAPI. Downstream analyses were done on stitched images 
from two microscope positions (white squares). (B and C) Cells in the same clone were closer in 
physical space than cells in different clones, as seen on the spatial map (B) and in the cumulative 
distributions (C). In (B), segmented cells are colored by the analyzed clones. Grey cells were 
excluded from analysis (see Materials and Methods) (scale bar, 30 µm). (D and E) Cells within a 
clone were more similar in gene expression space than cells in different clones, as seen on the UMAP 
(D) and in the cumulative distributions (E). (F) This brain does not show a spatially graded 
dependence on cell fate similarity within clones, likely due to its reduced diversity of captured cell 
types (fig. S2.17). Cf. Figure 2.5. 
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Fig. S2.15. Brain B4, a section of a D. melanogaster brain. 
(A) A section of brain B4 stained with DAPI. Downstream analyses were done on a single 
microscope position capturing the central brain region (white square). (B and C) Cells in the same 
clone were closer in physical space than cells in different clones, as seen on the spatial map (B) and 
in the cumulative distributions (C). In (B), segmented cells are colored by the analyzed clones. Grey 
cells were excluded from analysis (see Materials and Methods) (scale bar, 30 µm). (D and E) Cells 
within a clone were more similar in gene expression space than cells in different clones, as seen on 
the UMAP (D) and in the cumulative distributions (E). (F) Within a clone, but not between different 
clones, cell pairs exhibited spatially graded cell type similarity (cf. Figure 2.5).  
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Fig. S2.16. Intra-lineage spatial distribution of cells predicts fate similarity in subsamples or 
with alternative distance metric.  
(A) To determine if the relationship observed in Fig. 2.5M was skewed by the large Kenyon cell 
clone, we repeated the analysis omitting those cells. The results still showed a strong role for lineage 
in cell fate determination at close distances. (B) Clonal dependence of cell type similarity at short 
distances is observed when we use Pearson correlation to measure gene expression similarity, 
demonstrating that it is robust to the choice of distance metric. 
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Fig. S2.17. Brain B3 displays the least diversity within clones.  
The Pearson correlation was used to determine the amount of diversity within and between clones 
in each brain and is shown as a cumulative histogram. Here, the correlation distance is defined as 1 
- correlation coefficient. For Brain B3, 95% of cell pairs within the captured clones have a correlation 
distance of less than 0.06, showing very little diversity within clones. 95% of cell pairs within clones 
in Brains B1, B2, and B4 have correlation distances of less than 0.84, 0.81, and 0.77, respectively. 
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2.9 Online Supplementary Materials 

Supplementary materials below are available online as separate files at:  

K.-H. K. Chow, M. W. Budde, A. A. Granados, M. Cabrera, S. Yoon, S. Cho, T.-H. Huang, N. 

Koulena, K. L. Frieda, L. Cai, C. Lois, M. B. Elowitz, Imaging cell lineage with a synthetic digital 

recording system. Science. 372 (2021), doi:10.1126/science.abb3099. 

Table S1. List of constructs used in the manuscript. 
 
Table S2. Ground truth and reconstructed lineage trees. 
 
Table S3. HCR probe binding regions and information. 
 
Table S4. Automation smFISH probe sequences and information. 
 
Movies S1 to S3. Time-lapse imaging and tracking of intMEM1 cells used for lineage reconstruction 
in Figure 3, E, F, and G. Cells were imaged as shown in Fig. 3A. Ground truth lineage trees were 
constructed by manually tracking the cells in the time-lapse images using a modified version of the 
EasyTrack software developed by Yaron Antebi (freely available at (63) and 
https://github.com/AntebiLab/EasyTrack/tree/Memoir). Tracked cells and division events are 
indicated with open and filled squares, respectively. Cells were primarily tracked by their CFP 
fluorescence. Arbitrary cell numbers in the final frame were assigned for subsequent analysis. 
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C h a p t e r  3  

BUILDING SERINE INTEGRASE-BASED, IMAGE-READABLE 
RECORDING SYSTEMS 

3.1 There are several design principles for a serine integrase based, image-readable 

recording system 

We have built the foundation of intMEMOIR, and it is now poised at an exciting junction where 

future work can increase its lineage reconstruction potential, introduce more recording channels, or 

employ it to answer biological questions. The goal of this chapter is to provide essential information 

for these developments. I will discuss unpublished design principles that we learned while 

developing intMEMOIR and end the chapter with suggestions for future directions. 

Most of the topics I touch on are outlined in Figure 3.1A and many of them are centered around the 

goal of achieving robust expression of the array in mammalian cells. Because our system relies on 

single molecule FISH readout, we require larger recording units than most sequencing-based 

technologies to ensure that sufficient numbers of probes can bind to each target and generate a strong 

signal. At the same time, strong expression (i.e. many transcripts) reduces the chance of miscalls 

from false positives and negatives FISH dots (Fig. 3.1B). However, we quickly discovered that it 

was nontrivial to transcribe a large, non-coding array in mammalian cells. Thus, we embarked on a 

journey to improve the array expression and, in the process, discovered a number of principles that 

I hope would be useful not only for intMEMOIR, but also for the design of future synthetic recording 

constructs (Fig. 3.1C).  

It is worth noting that many experiments described in this chapter were done during the exploratory 

phase of the intMEMOIR project and some were, in retrospect, not optimally controlled. 

Nevertheless, I will describe our interpretation of the results and, when relevant, point out their 

caveats. 
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Fig 3.1. Design details significantly impact the recording system’s performance.  
(A) A number of factors can affect the expression level and overall performance of serine integrase-
based recording arrays. (B) Increasing the array transcript count reduces the frequency of miscalls 
that result from FISH dots with false positives or false negatives signals. (C) Improving the array 
design can significantly improve its expression levels in mammalian cells. (scale bar, 25 µm). The 
top panel is an old prototype probed by traditional smFISH and the bottom panel is the final 
intMEM1 array probed by HCR-FISH. 
 
 
 
3.2 The promoter affects the array’s expression level and inter-unit deletion frequency 

The promoter is the first and foremost consideration when designing a synthetic array. To summarize 

our experience: a single strong and inducible promoter would be ideal for the array expression. 

The 10-unit array is strongly expressed by the CAG and UAS promoters in mammalian cells and 

Drosophila, respectively. TRE, a great choice due to its inducibility, and EFɑ1 promoters also 

robustly expressed shorter arrays in mammalian cells but were not tested for the full length 10-unit 

construct. Other candidates that showed robust expression in the literature, such as UbC, may be 

worth investigating if additional promoters are needed (1). Further, while developing the original 

MEMOIR system, we learned that CMV promoters tend to produce heterogeneous and bursty 

expressions. As such, they should be avoided for future designs.  

3.2.1 Transcriptional interference may preclude the use of tandem or bidirectional arrays 

When using PolII promoters, there should only be one promoter per integration site. For any 

synthetic system, reducing the number of necessary integrations increases germline heritability and 

system portability. Thus, we considered the possibility of increasing intMEMOIR memory by 
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integrating multiple tandem arrays into the same locus of the cell (multiple arrays are discussed in 

Chapter 3.6.1). However, in that configuration, transcriptional interference is an important factor to 

consider (2). Typically, small arrays (=< four units) are very well expressed in mammalian cells. 

However, when two 2-unit arrays (with one static barcode each) are expressed in tandem, each 

array’s expression becomes poor, and some cells appear to exclusively express only one of the two 

arrays (Fig. 3.2A). On rare occasions, we also observed cells with transcripts that showed all three 

FISH signals colocalized in the same dot, suggesting that they existed in one long, run-on transcript. 

Note that this experiment was performed on a polyclonal line, so we cannot rule out the possibility 

of incorrect integration. Nonetheless, the decrease in expression levels observed in this preliminary 

experiment was quite striking, and, combined with existing literature on transcriptional interference 

and numerous anecdotal encounters by we and others in the lab, we decided to avoid the use of 

tandem PolII arrays.  

We also encountered transcriptional interference with bidirectional TRE (biTRE) [sequence 

available at (3)]. We first tested this promoter as a possible alternative to the tandem arrangement. 

To do so, we created a polyclonal stable line with a biTRE fluorescent test construct in the TIGRE 

locus, expressing citrine and mCherry from the two directions (Fig. 3.2B, top). Upon overnight 

induction with 100ng/mL of doxycycline, we observed strong expression from both directions within 

the same cells by flow cytometry (Fig. 3.2B, bottom).  

Encouraged by this result, we next tested intMEMOIR arrays. To our surprise, when we performed 

this test with a biTRE 4x2-unit array using HCR-FISH readout, the expression profiles were poor. 

Most of the transcripts were retained in the nucleus and, similar to the tandem arrays, some cells 

appear to exclusively express only one direction of the construct (Fig. 3.2C). We suspected the lack 

of cytoplasmic RNA may be due to poor RNA stability (potentially caused by the lack of a 5’ H2B-

mCerulean we typically place before our array; see Chapter 3.4). Thus, the biTRE promoter may be 

alternating its transcription between the two directions and, due to the poor stability of the RNA, we 

rarely capture cells with both transcripts at the same time.  

If our suspicions are correct, it would explain why the stable protein reporters did not show exclusive 

expression in one direction (Fig. 3.2B), and highlight the fact that fluorescent proteins may not be 

the ideal reporters to test the stability and expression levels of different array designs. Also note, 
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however, that that this experiment was performed on a polyclonal line for Rosa26 integration, which 

has a lower success rate than the Flp-recombinase-mediated insertion into the TIGRE locus used in 

Figure 3.2B, so our observations could be due to artifacts of incorrect integration. Nevertheless, 

based on this preliminary result, we placed the biTRE design on hold. Overall, the tandem array and 

biTRE results are also the reasons why, despite the difficulty of transcribing a long synthetic array, 

we did not split them into smaller, independent expression arrays. 

3.2.2 Co-transcriptional editing increases the rate of crosstalk 

Lastly, co-transcriptional editing increases the rate of inter-unit deletions, so a promoter that is off 

during editing and on before imaging would be ideal for future systems. As discussed in Chapter 

2.3.1, the intMEMOIR units operate largely orthogonally due to the unique central dinucleotides of 

their att sites. However, occasional instances of cross-talk still occur and mostly manifest as inter-

unit deletions instead of inversions. Puzzled by this observation, we hypothesized that the RNA 

polymerase may prevent the integrase from successfully completing the recombination reaction after 

its initial DNA cleavage. For example, the polymerase could “knock off” the DNA-integrase 

complex mid-recombination before the attL/R sites are successfully ligated; or, in the case of failed 

recombination between orthogonal sites, before the attP/B sites have a chance to reform (4).  

To begin testing this hypothesis, we integrated a 4-unit array driven by the TRE promoter into the 

TIGRE locus. This array contains a static barcode labelled UnitS without its own attP/B pairs , which 

should always remain intact in the absence of crosstalk (Fig. 3.2D). Using the polyclonal stable line, 

we transfected the cells with either Tet3G alone, Tet3G + Bxb1, or Tet3G + Bxb1 + dox, which 

correspond to no editing, editing without transcription, and co-transcriptional editing, respectively. 

The constructs are designed such that Tet3G will be stably integrated via piggyBac, while Bxb1 

should only be expressed transiently after transfection.  

Approximately five days later, we induced each condition with 100ng/mL of doxycycline overnight 

to turn on the array transcription, prior to fixing and analysis with HCR-FISH targeting unedited 

Units 1, S, 3, and 4 (Fig. 3.2D, left). Interestingly, when we counted the percentage of CFP positive 

cells without unedited UnitS, we observed that co-transcriptional editing (condition 3) resulted in 

the highest rate of crosstalk (Fig. 3.2D, middle). To reduce the chance of counting cells with no array 
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expression in the polyclonal line, we also performed the analysis after gating for cells that are 

expressing at least one of the unedited units we FISHed for. The observation becomes even more 

pronounced under this criteria (Fig. 3.2D, right). Thus, based on these results, we concluded that co-

transcriptional editing likely increases the rate of crosstalk, and that future designs of intMEMOIR 

should aim to use promoters that are off during recording, and only turned on immediately prior to 

or even after sample fixation (5). 

 

 
Fig. 3.2. Promoter choice influences array performance.  
(A) Tandem arrays are poorly expressed, likely due to transcriptional interference. Here, the 
construct is integrated into a polyclonal stable cell line into the Rosa26 locus. The indicated units are 
then read out through traditional smFISH (scale bar, 25 µm). Filled arrowheads indicate cells that 
are expressing from only one of the two arrays, and empty arrowheads indicate cells that are 
expressing both arrays poorly. (B) Fluorescent reporter suggests that bidirectional TRE promoter is 
tightly off in the absence of doxycycline, and can be induced to express the proteins from both 
directions. The experiment was done on a polyclonal stable line with the construct integrated into 
the TIGRE locus. (C) Bidirectional TRE promoter appears to suffer from transcriptional 
interference, as suggested by FISH results on a polyclonal cell line with a 4x2-unit cell line integrated 
into the Rosa26 locus. Further, the 4-unit arrays are poorly expressed in these cells, potentially due 
to the lack of a 5’ H2B-mCerulean. (D) Co-transcriptional editing increases the rate of crosstalk. The 
experiment was done by transfecting a polyclonal stable cell line with TRE-4-unit integrated into the 
TIGRE locus. 
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3.3 The barcodes affect the array’s integration efficiency, readout, edit rate, and expression 

level  

The overall length of the array affects its integration efficiency and expression level, while the length 

of the individual barcodes determine the FISH methods we could use. Furthermore, the sequence of 

the barcode can also significantly impact the expression of the array. Given these considerations, I 

recommend using the shortest possible barcode that could still produce a robust FISH signal and 

efficient editing. Finally, the barcode sequence should be pre-screened in silico to avoid sequence 

similarity with endogenous genes, premature polyadenylation signals, and potential splice sites.  

3.3.1 The length of the array affects its integration efficiency and expression level 

The length of the array is inversely correlated with its integration efficiency. Over the course of 

developing intMEMOIR, we have integrated a range of constructs into the Rosa26 locus, with insert 

sizes that ranged from approximately 4.5kb to 11kb. These integrations were done with CRISPR-

mediated homology directed repair. Although no quantitative data is available, screening for 

monoclonal cell lines with the correct integration has consistently been more difficult with the larger 

constructs. Even when the clone’s successful integration is confirmed on the 5’ and 3’ ends by PCR, 

subsequent FISH experiments can show that only a part of the construct is transcribed, suggesting a 

truncated insert. Further, many conventional in vivo transgenic methods such as viral delivery and 

pronuclear injections have either strict size limitations or decreased success rate with larger 

constructs (6). Thus, for the ease of implementing intMEMOIR in new systems, future versions 

should strive to reduce the size of the insert and/or consider the use of alternative integration 

strategies (6, 7).  

Beyond integration efficiency, longer arrays also have lower expression levels. We tested this 

hypothesis by cloning non-coding regions of various lengths after an H2B-mCerulean, mimicking 

the structure of our recording arrays (Fig. 3.3A, top). We then transiently transfected these constructs 

into mES cells with mCherry as the cotransfection marker. The resulting CFP fluorescence, gated 

on high mCherry cells, are then used as a measure of the transcript expression level and stability. 

From the results, we see a clear decrease in median CFP fluorescence with increasing 3’ UTR length 

(Fig. 3.3A, bottom). Note, however, that the sequences chosen for the 3’ UTR were not the same nor 
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controlled for each tested length. As such, the sequence itself could also contribute to variations in 

expression levels. Nonetheless, this result is consistent with the increasing difficulty to achieve 

robust expression of longer arrays. Thus, this again argues for a smaller array design for future 

systems.  

3.3.2 The length of the barcodes determines the system’s compatible readout methods and 

potentially the unit edit efficiency 

While decreasing the size of the barcode could resolve many of the above concerns, we also need to 

ensure that it retains a sufficient number of probe binding sites to produce a robust FISH signal for 

downstream analysis. The exact number of probe binding sites required will depend on the barcode 

sequence and the readout methods. Of the three methods that we have used with intMEMOIR, 

traditional smFISH, seqFISH, and HCR-FISH produced the weakest to strongest signals, 

respectively (Table 3.1). With seqFISH and HCR-FISH, we read out 500 bp barcodes, while smFISH 

were used for barcodes around 900 bp. The original MEMOIR system also used smFISH for 

barcodes as short as 400bp, but the signal to noise ratio was suboptimal (8). Overall, even shorter 

lengths than 500 bp may be achievable with more optimized target sequences and signal 

amplification offered by seqFISH and HCR-FISH.  

Another concern for shortening the barcode is the possibility that the DNA length between attP/B 

pairs may affect the integrase’s edit efficiency. To invert or delete DNA, serine integrase dimers 

bind to attP and attB sites, which in turn bind to each other to form a tetrameric complex that 

mediates recombination (9). Thus, theoretically, sufficient length of DNA must exist between the 

attP/B pairs to avoid steric hindrance to the complex formation. We have never tested for this lower 

limit, and we observed efficient editing and near 1 to 1 inversion to deletion ratio in our 500 bp units 

(Fig. 2.2I). However, if future systems seek to lower the length of the barcodes, it would be 

interesting and important to observe its effect on edit efficiencies.  
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FISH method Signal Speed # of rounds Automation 

Traditional smFISH + ++ 9 No 

HCR-FISH +++ + 5 No 

seqFISH ++ +++ 15 Yes 
 
Table 3.1. The three different FISH methods used in MEMOIR and intMEMOIR development 
have different strengths and weaknesses.  
Of the three methods, automated seqFISH offered the best throughput, while HCR-FISH may be 
preferable when significant signal amplifications are needed (e.g. small barcode, tissue with high 
background). Note that the “# of rounds” column indicates the number of sequential rounds of FISH 
that we have used for our analyses and not the upper limits of the technique. Similarly, the 
“Automation” column also only indicates whether we have the automation setup for that method.  
 
 
 
3.3.3 Barcode sequence affects array expression 

Lastly, the sequence of the barcode itself may affect the array expression. We encountered this 

problem in early versions of the 4-unit intMEMOIR array, where the detection efficiency would drop 

sharply in the middle of the array (Fig. 3.3B). Puzzled by this observation, we hypothesized that a 

problematic barcode may be causing the transcript to terminate prematurely. To test this hypothesis, 

we took the last barcode we efficiently detected (labeled in red in Figure 3.3B) and rearranged it to 

the back of the array (Fig. 3.3C, top). Consistent with our suspicion, the detection efficiency of the 

array is restored (Fig. 3.3C). In addition, we also tested another 4-unit array with one static barcode 

that does not contain the red barcode. This array, too, appears efficiently transcribed. Thus, although 

these results were performed on polyclonal stable lines, they convincingly demonstrated that the red 

barcode is causing premature transcription termination. Upon further investigation, we discovered 

that the barcode sequence contained four copies of the polyadenylation sequence “AATAAA”, the 

likely cause of our observations. Taken together, we began to perform in silico screens to eliminate 

all barcodes with polyadenylation sequences and splice sites for future array designs [code developed 

by Mark W. Budde, available at (3)].  

Curiously, during the troubleshooting period, we discovered that flanking the 4-unit array between 

a pair of 5’ and 3’ splice sites also improved expression in the array with the red barcode (Fig. 3.3E, 
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left). Searching the literature revealed that the presence of a 5’ splice site may prevent the recognition 

of nearby poly(A) signals (10). To test if this was the cause of the improved expression, we 

transfected two additional constructs that contained only one of the two splice sites (Fig. 3.3E, middle 

and right). Consistent with our expectation, the 5’ splice site is necessary and sufficient to improve 

the expression of our array.  

 
Fig. 3.3. Array and barcode length affect expression.  
(A) Increasing the length of the 3’ UTR following an H2B-mCerulean decreases the fluorescence of 
the transiently transfected cells. This result suggests that longer recording arrays (i.e. 3’ UTR) 
decrease array expression level. (B to E) Barcode sequence can affect array expression. Experiments 
were done on polyclonal stable lines integrated in Rosa26 locus and read out through traditional 
smFISH (scale bar, 25 µm). (B) shows that transcription appears to drop off after one barcode, 
represented in red in the array schematic. The problem is resolved when the red barcode is moved to 
the end of the array or removed altogether, as shown in (C) and (D). (E) demonstrates that the 
presence of a 5’ splice site is able to counteract what appears to be premature transcription 
termination. 
 
 
 
3.4 Additional factors likely affect array performance 
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Overall, we have discussed a number of factors that could affect intMEMOIR performance, 

including the array’s promoter choice, array length, barcode length, and barcode sequence. In 

addition to these factors, I also have several suggestions that are extrapolated from our experience, 

but lack explicit results to support the claims. As such, they should be treated as discussion points 

that require further investigation.   

First and foremost, as I briefly suggested in Chapter 3.2.1’s discussion on biTRE, the presence of 

H2B-mCerulean in the 5’ end of our array appears to improve expression. Historically, this open 

reading frame (ORF) was introduced into our construct to facilitate mES cell colony selection for 

correct integration. Therefore, it was not included in all arrays. Interestingly, the arrays without this 

ORF tended to show either poor expression or retained transcripts in the nuclei. Thus, although we 

never explicitly tested whether the 5’ H2B-mCerulean improved expression, we have since included 

it in all our PolII expressing arrays in mammalian cells. Further, if the ORF does improve expression, 

it would be interesting to investigate whether the same effect could be achieved with any ORF, H2B 

alone, or mCerulean alone. Note that the Drosophila UAS-10-unit construct, which does have robust 

expression, only contains mCerulean (without H2B).   

Second, an ideal recording system minimizes its perturbation to the cell. This ensures that we are 

recording the natural process we hope to study, and not artifacts generated by the recording system 

itself. This was one of our original motivators to switch the editor from Cas9 to serine integrases 

(MEMOIR vs. intMEMOIR). Unlike Cas9-generated double-strand breaks (DSBs), serine integrase 

edits do not engage the endogenous DNA repair mechanism of the cell (9). As such, the recording 

likely creates less overall burden to the host cells. Furthermore, DSBs can be repaired through 

multiple pathways, and different cells may have different pathway preferences (11). With that in 

mind, Cas9 edits may also result in unnecessary variations in edit rate and outcomes between 

different cell types, tissues, or even organisms. Thus, serine integrases offer an overall more bio-

orthogonal choice.  

On a related note, compared to random integrations, site-specific integration of the recording array 

into a safe harbor locus also reduces our chances of perturbing the normal functions of the cell. This 

is an important consideration if we wish to employ other integration methods for future versions of 

intMEMOIR (discussed in Chapter 3.6.1). 
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Third, the memory unit design could also be improved in three ways. First, although it is not strictly 

necessary when many units are expressed on the same transcript, having a positive signal for deletion 

(instead of relying on the absence of unedited and inverted signals) could reduce miscalls during 

FISH readout. Second, future designs should strive to be compatible with sequencing-based 

readouts. Although it is not a primary goal of intMEMOIR, this compatibility would greatly improve 

the versatility of the system, allowing researchers to choose their preferred method of readout 

without needing to generate additional cell or model organism lines. Third, for applications where 

editing needs to be run to completion or near-completion, it may be preferable to introduce a third 

attP into the unit such that the “unedited” state becomes a third, terminal outcome. This ensures that 

we retain a maximum diversity of 310, and not 210 (i.e. deletion and inversion only). However, it is 

also important to note that a third attP will increase the sequence repetitiveness and overall array 

length, which may lead to other complications. 

Lastly, creating landing pad cell lines in safe harbor loci could significantly improve the turnover 

rate for testing future recording array designs. To generate a germline heritable system with robust 

expression and minimum perturbation to the endogenous genome, it is often preferred to site-

specifically integrate our system into a safe harbor locus like Rosa26 in intMEMOIR. However, 

integrating through CRISPR-mediated homology directed repair, while significantly more efficient 

than integrating by homology alone, is still relatively inefficient compared to those mediated by 

recombinases, especially when the donor construct is large (6). We observed this difference when 

comparing our polyclonal stable lines for constructs integrated in the TIGRE locus, which were 

mediated by the Flp-recombinase, against those integrated in the Rosa26 locus, which were done 

through CRISPR. Due to this low rate of correct integration, quantitative analyses of array 

performance often require us to generate monoclonal cell lines with confirmed integration, which is 

a slow and labor intensive process. Thus, it would greatly streamline future tests if we obtained or 

generated mES cell lines with recombinase landing pads in common safe harbor sites. Some of these 

may already be available from existing publications (6, 7, 12, 13). Related, mES cells containing 

mouse artificial chromosomes (MAC) with multiple integration sites may also be a useful resource 

for rapid tests or even mouse line generation (discussed in Chapter 3.6.2) (14). 

I have summarized the main suggestions for designing future Pol II arrays in a checklist below. The 

list is based on our experiences described in this chapter, and should only be used as a reference. 
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Promoter 

 Strong, consistent expression 

 Inducible 

 No transcriptional interference 

Barcode 

 Sufficient length to produce robust FISH signal 

 Efficiently edited with approximately 1:1 ratio for inversion and deletion outcomes 

 No splice sites 

 No poly(A) signals 

 No sequence homology with endogenous genes 

 Compatible with sequencing readout 

 As short as possible while satisfying the other criteria 

Single integration 

 Use safe-harbor sites that minimize perturbation to the cell 

 Site is not silenced in cell type of interest 

 Site is compatible with inducible promoters (e.g. low leakiness) 

 Site has high integration efficiency to enable fast testing (e.g. using recombinase landing pads) 

Multiple integrations 

 There is minimal inter-array crosstalk 

 Each array can be distinguished by FISH (e.g. via unique static barcodes) 

 Variations in expression levels due to position effects is acceptable 

Other considerations 

 Array has a 5’ ORF (e.g. H2B-mCerulean) 

 Array should be portable (i.e. easy to implement in new cell lines and organisms) 
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3.5 The Zombie expression system may offer an improved design that eliminates co-

transcriptional editing. 

In 2020, Askary et al. from our lab published the Zombie system, which uses bacteriophage 

promoters to drive the barcode transcription in fixed cells (5). Since then, we have designed a Zombie 

version of the intMEMOIR that may offer several improvements over the original (Fig. 3.4). In this 

design, each unit is expressed by its own T7 and T3 promoter for a Zombie-based readout. This 

could potentially give us better signal than a single PolII promoter transcribing the entire 10-unit 

array, especially if they are not integrated in safe harbor loci. In addition, because Zombie 

transcription happens after the cells have been fixed, this design also avoids co-transcriptional 

editing, which increases the rate of cross-talk in our array (see Chapter 3.2.2).  

Apart from adapting the T7/T3 promoters, we also made several modifications to the units 

themselves. First of all, they are designed to produce a positive signal for deletion to facilitate state-

calling (see Chapter 3.4). Second, the barcodes themselves now have common primer binding sites, 

which increases their compatibility with sequencing based readouts. Third, the pair of attPs in these 

constructs are direct repeats, which could theoretically decrease the chance of truncation mutations 

during cloning. Instead of using inverted repeats, the attPs behave as if they are facing opposite 

directions through the use of reverse complement dinucleotides (fig. S2.1). The prototype 10-unit 

Zombie construct has already been cloned, and it is available for implementation and future 

characterization in both mammalian and zebrafish cells (Table 3.2).  

 

 
 
Fig. 3.4. The Zombie intMEMOIR design offers several potential improvements. 
The new design provides a positive signal for deleted units, eliminates co-transcriptional editing, and 
is compatible with sequencing readout. 
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3.6 intMEMOIR can be the foundation for future recording systems 

By expanding on the existing intMEMOIR system, we can develop new versions that feature greater 

recording capacity and capabilities. As demonstrated in Chapter 2, the existing intMEMOIR system 

can accurately reconstruct 3-4 generations of mES cell lineage. Increasing the memory of the system 

beyond 10-units would allow us to reconstruct more accurate lineage over longer timescales. 

Alternatively, we could also design the system to record molecular event histories in addition to 

lineage, resulting in a “decorated” lineage tree (Fig. 1.1). Both of these improvements would be very 

valuable to the study of normal and disease development.  

3.6.1 Increasing memory increases reconstruction depth and accuracy 

Not just for intMEMOIR, but for almost all synthetic recording systems, the depth and accuracy of 

reconstruction depend on the available memory (fig. S2.9). The most straightforward way to increase 

the memory of intMEMOIR would be to introduce more recording arrays. One array gives 10 

recording units, or 310 possible outcomes, while n arrays give 10n units, or 310n outcomes. To achieve 

this, we could randomly integrate a library of barcoded arrays into the cell through methods such as 

piggyBac or lentivirus transduction (Fig. 3.5A). However, there are several concerns with this 

approach, such as varied expression and integrase accessibility due to chromosome position effects 

and decreased germline transmissibility for in vivo applications. Another important concern is the 

possibility of inter-array recombination causing aneuploidy (15): because our editor is a 

recombinase, cross-talk between arrays could result in large scale genomic deletion or even 

chromosome translocation. However, unlike tyrosine recombinases, serine integrases irreversibly 

convert their attP/B into attL/R. Because of this irreversible “destruction” of their target sites, the 

number of target sites will progressively decrease with editing, and the resulting rate of aneuploidy 

may be lower than those observed with Cre and Flp. Nevertheless, it is important to empirically 

confirm that editing scattered arrays will not significantly perturb the systems we wish to study.  

3.6.2 Orthogonal integrases can increase lineage reconstruction depth and accuracy 
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Additional orthogonal integrases can also expand our system. The current intMEMOIR only uses 

Bxb1, one member of a large family of serine integrases that could, theoretically, be used in parallel 

to enable both deeper lineage reconstruction and molecular event recording (16–18). The idea of 

using orthogonal integrases for event recording has already been discussed in Chapter 3 (fig. S3.2), 

so I will primarily focus on its potential to increase reconstruction depth and accuracy. However, it 

is worth noting that, unlike CRISPR-Cas9 based systems, additional intMEMOIR recording 

channels are enabled by orthogonal proteins (instead of orthogonal gRNAs). Thus, our system is 

able to record events on both the transcriptional and protein levels, enabling protein-based designs 

that incorporate synNotch, CHOMP, inducible dimerization domains, and others (19–21). 

In terms of increasing memory, orthogonal integrases’ arrays can, theoretically, be inserted into the 

same genomic locus with little to no crosstalk (Fig. 3.5A). These designs have the advantage of 

keeping the system confined within safe harbor locus and reducing the number of necessary 

constructs, simplifying germline heritability. Due to the transcriptional interference discussed in 

Chapter 3.2.1, however, it would likely be necessary to transcribe these arrays from the same 

promoter or through the Zombie system described in Chapter 3.5. Alternatively, they are also 

compatible with scattered integration approaches through transposons and viral transductions.  

Apart from directly increasing the number of memory units, additional integrases may also enable 

us to reconstruct deeper lineages with fewer memory units. This could be achieved through the use 

of integrase cascades. In this design, an integrase would edit for a couple of generations before 

excising itself and activating the next integrase in line. When tuned correctly, each integrase would 

only record small and highly accurate trees that can then be stitched together to form the complete 

lineage record (Fig. 3.5B). Cascades like this could be simply implemented with self-excising serine 

integrases (Fig. 3.5C), or with more complex schemes such as two separate drug inducible cascades 

that, by manually altering the inducers every couple of generations, would better synchronize the 

transition from one integrase to the next across the colony (Fig. 3.5D). Simulations are needed to 

quantify exactly how much benefit can be gained from having these cascades. 
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Fig. 3.5. Future versions of intMEMOIR could enable greater reconstruction depth and 
accuracy. 
(A) Additional memory units can be introduced as tandem arrays (top) scattered integration (bottom). 
In the latter case, transcripts from each array are distinguished from one another through a unique 
identifying barcode. (B) Integrase cascades can, theoretically, increase the reconstruction depth 
without significantly increasing the amount of required memory. (C) A simple cascade relies on the 
self-excision of each integrase. (D) A more elaborate design uses two orthogonally inducible 
cascades to potentially enable synchronized integrase activation across all cells in the colony. 
 
 
 
3.6.3 Generating the intMEMOIR mouse line and combining the system with other 

recording technologies could broaden its biological applications 

Briefly, I would also like to touch on the topic of mouse line generation. Although Drosophila is a 

powerful model organism, many biological questions are specific to mammalian systems. As such, 

generating intMEMOIR mouse lines is an important future direction. Unfortunately, previous 

attempts with blastocyst injection of the intMEM1 line have failed. We suspect this may be due to 

the cell line’s high passage number, which likely exceeded 200. Future work could tackle this 

challenge by recreating the intMEMOIR line in low passage mES cells, or by exploring pronuclear 

injections into zygotes (22). In particular, a recent publication that describes an in vivo, Bxb1-

mediated integration of transgenes into the Rosa26 locus in mice could be a useful resource for 

generating mouse lines with non-Bxb1 intMEMOIR arrays (6).  

Finally, I would like to end on the reminder that intMEMOIR is not mutually exclusive with other 

recording systems, and can be combined with other technologies to form complementary and more 

powerful recording technologies. For example, one could leverage the fast editing rates of integrases 

such as Bxb1, and use intMEMOIR to record developmental stages with rapid cell division, and use 

other slower editing systems or even somatic mutations to reconstruct periods of slower proliferation.  
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3.7 Summary 

We have discussed several design principles for a serine integrase-based, image-readable recording 

system and suggested a few future directions. Much of the information presented here is learned 

from the challenges and failures we encountered while creating the original intMEMOIR system, 

and I hope they would facilitate the design and construction of future synthetic recording systems.  

In summary, Figure 3.6 lists many of the general qualities we should look for in future versions of 

the intMEMOIR system. In addition, Table 3.2 contains a selected list of materials that may be useful 

for the testing and development of future systems. Most data, analyses, code, and sequence files 

described in this chapter are available at (3). 

 
 
Fig. 3.6. Future versions of intMEMOIR should aim to have several qualities. 
Although not an exhaustive list, future intMEMOIR systems should aim to have several important 
qualities for its editor, recording array, and overall design.  
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intMEMOIR 
Type Name Purpose Internal source External source Notes 

mES cell line intMEM1 
As used in the published manuscript. Contains the 
complete intMEMOIR system. nGC0244  

Monoclonal, 
nGC0222 background 

mES cell line Inducible Bxb1 
Preceeds intMEM1. Contains dox and TMP inducible 
Bxb1. nGC0222  

Polyclonal, nGC0170 
background 

mES cell line TIGRE LP + Tet3G 
Preceeds the inducible Bxb1 line. Contains the TIGRE 
landing pad and Tet3G. nGC0170  

Monoclonal, 
nGC0143 background 

mES cell line TIGRE LP 
Preceeds the TIGRE LP + Tet3G line. Contains the 
TIGRE landing pad. nGC0143  Monoclonal 

D. melanogaster PRExpress-Bxb1-hsp70pA Drosophila line with heat shock inducible Bxb1. Lois lab 
Bloomington: 
BDSC_90853  

D. melanogaster 
nSyb-Gal4; UAS-Ceru-
10unit 

Drosophila line with pan-neuronal expression of the 10 
unit array. Lois lab 

Bloomington: 
BDSC_90854  

Plasmid 

TIGRE-TRE-[poor 
kozak]Bxb1-ecDHFR-
BGHpA 

Dox and TMP inducible Bxb1 in the TIGRE donor 
vector. For mammalian cells. pGC0100 

Addgene: 
158390  

Plasmid 
R26-pCAG-Ceru-10unit-
BGHpA 

10 unit intMEMOIR array in the Rosa26 donor vector. 
For mammalian cells. pGC0101 

Addgene: 
158387  

Plasmid PRExpress-Bxb1-hsp70pA 
Heat shock inducible Bxb1 with phiC31 attB integration 
site. For Drosophila. pGC0102 

Addgene: 
158391  

Plasmid UAS-Ceru-10unit 
UAS driven 10 unit intMEMOIR array with phiC31 attB 
integration site. For Drosophila. pGC0103 

Addgene: 
158389  
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Other integrases 
Type Name Purpose Internal source External source Notes 

mES cell line New int 4mer xtalk 20-10 
Rosa26 integrated 4 unit array of sPBc with a static 
barcode, used to test integrase edit rates. nGC0180  

Monoclonal, 
nGC0143 background 

mES cell line New int 4mer xtalk 20-11 
Rosa26 integrated 4 unit array of sPBc with a static 
barcode, used to test integrase edit rates. nGC0181  

Monoclonal, 
nGC0143 background 

mES cell line New int 4mer xtalk 21-5 
Rosa26 integrated 4 unit array of wBeta with a static 
barcode, used to test integrase edit rates. nGC0182  

Monoclonal, 
nGC0143 background 

mES cell line New int 4mer xtalk 21-7 
Rosa26 integrated 4 unit array of wBeta with a static 
barcode, used to test integrase edit rates. nGC0183  

Monoclonal, 
nGC0143 background 

mES cell line 
R26 integrase test construct 
phiC31 polyclonal 

Rosa26 integrated 1 invertable unit of phiC31 with a 
static barcode, used to test integrase activity. nGC0102  Polyclonal 

mES cell line 
R26 integrase test construct 
R4 polyclonal 

Rosa26 integrated 1 invertable unit of R4 with a static 
barcode, used to test integrase activity. nGC0103  Polyclonal 

mES cell line 
R26 integrase test construct 
wBeta polyclonal 

Rosa26 integrated 1 invertable unit of wBeta with a 
static barcode, used to test integrase activity. nGC0104  Polyclonal 

mES cell line 
R26 integrase test construct 
sPBc polyclonal 

Rosa26 integrated 1 invertable unit of sPBc with a static 
barcode, used to test integrase activity. nGC0105  Polyclonal 

mES cell line 
R26 integrase test construct 
fBT1 polyclonal 

Rosa26 integrated 1 invertable unit of phiBT1 with a 
static barcode, used to test integrase activity. nGC0106  Polyclonal 

mES cell line 
R26 integrase test construct 
TP901 polyclonal 

Rosa26 integrated 1 invertable unit of TP901 with a 
static barcode, used to test integrase activity. nGC0107  Polyclonal 
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Zombie 
Type Name Purpose Internal source External source Notes 

mES cell line 
piggybac ZOMBIE 10mer 
Bxb1 "old" 

Prototype line, contains Zombie 10 unit arrays 
(pGC0104) integrated through piggyBac. nGC0249  

Polyclonal, from 
Maria 

Plasmid 
PB-Bxb1-old Zombie 
intMEMOIR array 

Prototype Zombie intMEMOIR array in piggyBac 
backbone. pGC0104  From Maria 

Plasmid 
Tol2-Bxb1-old Zombie 
intMEMOIR array 

Prototype Zombie intMEMOIR array in Tol2 backbone. 
For Zebrafish. pGC0105  From Maria 

Plasmid 
PB-Bxb1-new Zombie 
intMEMOIR array 

Prototype Zombie intMEMOIR array in piggyBac 
backbone with a new set of barcodes. pGC0106  From Maria 

Plasmid 
Tol2-sPBc Zombie 
intMEMOIR array 

Prototype Zombie intMEMOIR array for sPBc integrase 
in Tol2 backbone. For Zebrafish. pGC0107  

From Maria. Unit 2 
attP may be mutated 

 
Table 3.2. A list of useful materials for future intMEMOIR development.
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CONCLUSION 

Our recording projects began in 2014, around when I first joined Michael’s lab. Driven by the need 

in the field, we developed a synthetic lineage tracking system with imaging-based readout, which 

was demonstrated in mES cells. The system was a novel proof-of-principle that demonstrated the 

possibility to image single cell lineage history, but its reliance on genomically distributed recording 

units with only one edit outcome limited its reconstruction capabilities and germline transmissibility. 

Since then, we returned to the drawing board and focused on developing a new recorder that retains 

the unique strengths of the original while addressing its flaws. The efforts finally culminated into 

intMEMOIR, a system that allows us to simultaneously analyze single-cell lineage, cell state, and 

spatial organization in vitro and in vivo.  

Unlike most other technologies in the lineage tracking field, intMEMOIR uses serine integrases to 

edit a transcribed DNA array of 10 independently editable memory units. Each of the units can exist 

in one of three states: unedited, deleted, or inverted. Upon transcription, this produces three different 

RNA species (intact, absent, and reverse complement, respectively) that could be unambiguously 

distinguished from one another underneath the  microscope using FISH. The entire array collectively 

allows up to 59,049 possible edit outcomes: a significant improvement over existing image-readable 

recording systems. We implemented the system in an mES cell line, where we evaluated its clonal 

classification and lineage reconstruction accuracy, and in a Drosophila melanogaster line, where we 

demonstrated its ability to disentangle the relative contributions of lineage and spatial organization 

to cell fate determination in adult brains. 

Overall, we have built the foundation for a serine-integrase based, image-readable recording system. 

In the future, increasing the memory of the system would increase the depth and accuracy of its 

reconstruction. Furthermore, intMEMOIR could also serve as the foundation for systems with 

parallel recording channels to capture information such as the timing, duration, and magnitude of 

molecular events experienced by the individual cells and their ancestors. These improvements and 

new insights would enable the reconstruction of “decorated” lineage trees that would contribute to 

the construction of a developmental atlas. Ultimately, through developing, applying, and 
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disseminating these tools, we hope to bring us one step closer to deconvoluting the underlying 

mechanism of cell fate determination in development, homeostasis, and diseases. 

 


