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ABSTRACT 

Accessing natural products via de novo synthetic methods is important for the 

discovery of new medicines, antibiotics, agrochemicals and more. Design and investigation 

of efficient strategies is of interest to many pharmaceutical industries.  

 Herein, we discuss several strategies geared towards the synthesis of the natural 

product falcatin A. First, a general discussion of the class of natural products is discussed. 

Secondly, we discuss our first generation photoredox cascade cyclization approach toward 

the synthesis of falcatin A. This strategy allows for the efficient and convergent synthesis 

of two halves of falcatin. Next, a transition metal-catalyzed cascade cyclization approach 

is discussed in which we were able to successfully synthesize the core of the natural product 

on a model system. Efforts are ongoing to elaborate to more advanced fragments for the 

synthesis of falcatin A. Lasty, we discuss our work on the yttrium-catalyzed asymmetric 

Diels–Alder reaction of a-acyloxy enone dienophiles, performed in collaboration with 

BASF. We demonstrate that this methodology can be utilized to access enantioenriched 

natural product T-4-ol.  
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Chapter 1 

An Introduction to the Myrsinane Family of Natural Products 

 

1.1 INTRODUCTION 

Extracts from the roots, leaves, and flowering parts of the Euphorbia genus of plants 

have long been used in traditional Chinese medicine.1,2 In efforts to identify the chemical 

components which make the Euphorbiaceae medicinally relevant, isolation chemists have 

elucidated the structure of a number of natural products from these plants (Figure 1.1).  

Figure 1.1 Terpenes isolated from the Euphorbia genus 

 

One subclass of these natural products is known as the myrsinane diterpenoids. 

Myrsinane natural products possess a highly conserved 5-7-6 carbocyclic framework and 

are of particular interest to both biologists and chemists alike. Several myrsinane 

diterpenoids have been shown to demonstrate a variety of excellent medicinal properties 

such as anti-inflammatory (euphorbialoid B), anti-HIV (15-O-acetyl-3,5-O-dibutanoyl-7-

nicotinoylmyrsinol), anti-cancer (proliferin), and K-channel blocking (euphorproliferin D) 

activities (Figure 1.2).3–8  
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Figure 1.2 Bioactive myrsinane-related terpenes 

 

1.2 PROPOSED BIOSYNTHESIS OF THE MYRSINANE FAMILY 

     It has been proposed that the myrsinane family of natural products originates 

biosynthetically from geranylgeranyl pyrophosphate (GGPP) (Figure 1.3).3,4,9,10 A cationic 

cyclization is proposed to effect the first cyclization of GGPP to access the casbane 

skeleton 10. Subsequent cyclization affords the five-membered ring-containing lathyrane 

skeleton 11. Next, a transannular cyclization then furnishes both the six- and seven-

membered rings, giving rise to the premyrsinane skeleton 12. Lastly, a cyclopropane 

opening of 12 affords the myrsinane skeleton 13. Due to the interesting biological activities 

of natural products from the myrsinane family, efforts have been made to elucidate the 

biosynthetic pathway by which these natural products arise (Figure 1.4).  

Figure 1.3 Proposed skeletal rearrangement pathway to access myrsinane family 
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     In 2016, the Graham group detailed their work on the elucidation of the biosynthetic 

pathways for the production of jolkinol C (18) and 8-epi-jolkinol C (19).9 It is proposed 

that casbene (14) is oxidized by the enzyme CYP726A35 at C5 to form 5-ketocasbene (15) 

followed by a second enzymatic oxidation alpha to the carbonyl to furnish a-hydroxy 

ketone 16. Next, enzyme CYP71D495 can effect oxidation at C9 to afford diketone 17. 

Tautomerization of 17 to dienol 17a followed by extended tautomerization affords 

intermediate 17b. Intramolecular cyclization of 17b then furnishes the five-membered ring 

of the lathyrane natural products jokinol C and 8-epi-jolkinol C. Currently, the biosynthetic 

pathways from lathyrane to premyrsinane and myrsinane natural products are not well 

studied. However, a single report from 1995 provides some evidence towards this goal.  

Figure 1.4 Bioenzymatic pathway from casbene to lathyrane member  

 

casbene (14)

CYP726A35

5-ketocasbene (15)

5

6-hydroxy-5-
ketocasbene (16)

CYP71D495

6-hydroxy-5,9-
diketocasbene (17)

CYP726A35

tautomerization

aldol

8-epi-jolkinol C (19)

extended
tautomerization

17a17b

9

Me

Me
Me

Me

Me

6

Me

Me
Me

Me

Me

O

Me

Me
Me

Me

Me

O
HO

Me

Me
Me

Me

Me

O
HO

O
Me

Me
Me

Me

Me

OH
HO

O
Me

Me
Me

Me

Me

O
O

HO

R

O H

HO
O Me

Me

Me
Me

R = β-Me
R = α-Me

jolkinol C (18)

(lathryane members)



Chapter 1 – An Introduction to the Myrsinane Family of Natural Products 
 

4 

 

     In 1995, the Berendsohn group isolated several new natural products from Euphorbia 

seguieriana (Figure 1.5).11 In this report, the Berendsohn group hypothesized that 

lathryane 20 may undergo a cationic epoxide-opening reaction to afford tertiary 

carbocation 21. Next, a pendant alcohol could trap the cation followed by an acid-mediated 

cyclopropane opening to afford the myrsinane core 23. However, it is noteworthy that the 

only evidence for this hypothesis is the isolation of several myrsinane natural products of 

the form 23 and prior isolation of similar but non-identical lathyrane natural products such 

as 24 and 25.  

Figure 1.5 Proposed biosynthesis of myrsinane natural products 
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1.3.1 Total Synthesis Efforts Toward Euphorbia Natural Products 

Figure 1.6 Synthesis of (–)-bertyadionol  
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phosphonate followed by lithiation of the dithiane allowed the coupling of 31 and 28 to 

furnish 32 in 58% yield. In 6 additional steps, the Smith group was able to obtain 

cyclization precursor 27. Subsequent HWE reaction of 27 afforded the desired macrocycle, 

albeit in only 30% yield. In an additional 7 steps, the Smith group was able to elaborate 

macrocycle 33 to the natural product. In addition to the single reported total synthesis of 

lathyrane diterpenoid bertyadional, there has been some work towards the synthesis of 

other related natural products. 

     In 1993, the Yamamura group detailed the synthesis of an optically active cyclopentane 

derivative as a versatile intermediate toward the Euphorbia diterpenes (Figure 1.7).14 This 

group identified euphohelioscopin and euphoscopin as suitable natural product targets for 

which intermediate 34 may be a valuable synthon. 34 was synthesized in 9 steps starting 

from resolved cyclopentene 37. In three steps, they achieved the cyclopentenone 38 

containing a benzylidene acetal. From there, four steps were required to install the methyl 

group diastereoselectively and homologate the acetal. A final two-step sequence allowed 

them to achieve their desired intermediate 34. To date, there have been no further studies 

reported towards the use of intermediate 34 in the synthesis of any euphorbia natural 

products; however, this synthon possesses significant homology to this class of natural 

products quite nicely and thus could prove valuable for future synthetic endeavors. 

Figure 1.7 Synthetic work towards euphohelioscopin and euphoscopin  
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     In 2000, the Terada group detailed the facile construction of the lathyrane-type 

framework via sequential NHK reactions as their key step (Figure 1.8).15 With much 

interest in the lathyrane scaffold, this group sought to synthesize 40 as a model system for 

studying the lathyrane skeletal framework. Retrosynthetically, intermediate 40 could be 

disconnected via two sequential NHK reactions, leading back to 41 and 42 as two useful 

coupling partners. First, an NHK reaction between 41 and 42 afforded 43, which could be 

deprotected and converted to the alkenyl iodide precursor for a subsequent cyclization. A 

second NHK reaction then provided macrocycle 45 in 43% yield. A final oxidation of the 

bis-allylic alcohol furnished the desired model system 40 in an overall 13 steps from 

commercially available starting materials.  

Figure 1.8 Synthetic work towards a lathyrane model system 
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1.3.2 Natural Product Derivatization  

     In 2001, the Sterner group detailed the synthesis of unnatural products isolated from the 

transannular cyclization of Euphorbia factor L1, an agricultural commodity (Figure 1.9).16 
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47d can then undergo either etherification to afford 49 or acyloxy transfer followed by 

hydrolysis to give 48. 
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Figure 1.9 Natural product degradation studies for semi-synthesis
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 In 2021, the Gao group reported the iron-catalyzed skeletal conversion of lathyrane 

to premyrsinane diterpenes (Figure 1.10).17 In this report, it was found that subjection of 

51 to reductive iron conditions led to the conversion of lathyrane 51 to premyrsinanes 52 

and 53. It is hypothesized that an iron-hydride complex first delivers a hydrogen atom to 

51 to generate tertiary radical 54. This is then followed by reduction to enolate 56, which 

can be quenched with a proton to give 52 and 53.  

Figure 1.10 Iron-catalyzed conversion of lathyrane to premyrsinane skeleton 
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campaigns will be instructive and informative.  
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Chapter 2 

A Photoredox Cascade Cyclization Approach to the Synthesis of 

Falcatin A 

2.1 INTRODUCTION 

G protein-activated inwardly rectifying potassium ion (GIRK) channels have been 

shown to regulate the electrical activity of several cell types including: neurons, cardiac 

atrial myocytes, and b-pancreatic cells.1 The dysfunction of GIRK channels has also been 

implicated in disorders such as neuropathic pain, drug addiction, and cardiac arrhythmias.2 

It has been shown in animal models that selective inhibition of myocardial GIRK channels 

can reduce the number and duration of provoked atrial fibrillation episodes.3 Therefore, 

selective blocking of the GIRK channel may provide a useful tool in the treatment of atrial 

fibrillation.2–6  
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In 2016, the Hohmann group reported the isolation of several new myrsinane-

related diterpenoid natural products from the plant Euphorbia falcate, which exhibit 

selective inhibition of GIRK channels (Figure 2.1).4 The falcatins are structurally unified 

in that they contain a highly oxygenated 5-7-6 ring system as well as a geminal-dimethyl 

substitution.7 While each of these molecules have been demonstrated to exhibit K-channel 

inhibition, we were particularly drawn to falcatin A (1), as it exhibits the most potent K-

channel inhibition of the group (IC50 HEK-293 GIRK1/4 = 2.5 µM) making it a promising 

candidate for drug development. 

Figure 2.1 Falcatin Natural Products Possessing GIRK Channel Inhibitory Properties 

 

2.2 RETROSYNTHETIC STRATEGY 

The structural complexity of falcatin A (1) provides an interesting challenge for the 

modern synthetic chemist. The most difficult features of this molecule include the 

polycyclic framework, oxidation pattern, and all-carbon quaternary center. A convergent 

approach to 1 would represent a significant contribution to myrsinane natural product total 

synthesis. In general, the Reisman lab is dedicated to furthering our understanding and the 

application of convergent fragment coupling strategies in the context of natural product 

total synthesis.8 Thus, we have elected to pursue this strategy towards the synthesis of 

falcatin A (1). The most convergent application of this strategy would bring as much 

complexity as possible as shown in the ideal fragment coupling between 6 and 7 (Figure 
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2.2). Therefore, we were tasked with the objective of designing a retrosynthesis with 

complex fragments in mind. 

Figure 2.2 Ideal Convergent Fragment Coupling Strategy 

 

In a retrosynthetic sense, it was believed that falcatin A (1) could be obtained 

through late-stage functional group manipulations to install the acetoxy and benzoyloxy 

groups highlighted in blue (Scheme 2.1). Next, the isopropoxyl motif could be obtained 

via a cyclobutane ring opening of 9. Lastly, it was envisioned that intermediate 9 could 

arise from the convergent coupling of complex fragments 10 and 11 via a photochemical 

cascade cyclization reaction.  

Scheme 2.1 Retrosynthetic Analysis of Falcatin A 
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radical 12 (Figure 2.3). Next, neutral ketyl radical 12 could engage in a Giese reaction 

with cyclopentenone 11 to forge the C15–C14 bond. A photoredox-mediated reduction of 

radical 13 would then generate enolate 14 which would be poised to undergo an 

intramolecular aldol reaction to forge the central seven-membered ring 9.  

Figure 2.3 Fragment Coupling Strategy Proposal 

 

This strategy would inherently require asymmetric synthesis of each fragment to 

avoid making mixtures of diastereomers since two chiral fragments will be brought 

together. It was clear at the outset that the synthesis of 10 would be challenging given its 

structural complexity. To this end, it was envisioned that both the primary alcohol and THF 

ring could be synthesized in a single oxidative cyclization reaction of 15 (Scheme 2.2). 

The requisite all-carbon quaternary center could then be installed via an alkylation of 16 
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Scheme 2.2 Retrosynthetic Analysis of Tricycle 10 

 

2.3 SYNTHETIC PROGRESS 

2.3.1 Investigation of Quaternary Center Formation 

Scheme 2.3 Synthesis of Enol 23 
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isopropenyl cuprate into 17 followed by enolate trapping with ethyl formate furnished b-

keto aldeyhyde 23 in 68% yield. In deuterated chloroform, this compound exists solely in 

its tautomeric enol form 23. With 23 in hand, we were then poised to begin testing our 

alkylation reaction to install the challenging all-carbon quaternary center. 

 Initial attempts to alkylate b-keto aldeyhyde 23 with paraformaldehyde were 

unsuccessful, giving only exocyclic enone 25 as the major product (Figure 2.4). Our 

mechanistic proposal for the observed reactivity is summarized below. First, it is presumed 

that enol 23 is first deprotonated by K2CO3 to generate enolate 26. Next, an aldol reaction 

with monomeric formaldehyde generated in situ affords alkoxide 28. Alkoxide 28 can then 

undergo addition into a second equivalent of formaldehyde to furnish 29. This intermediate 

is then believed to undergo intramolecular addition into the aldehyde to generate spirocycle 

30. From here, 30 can undergo a Grob-like fragmentation to give 31. 31 can then undergo 

an E1cB elimination to deliver the observed product 25.  

Figure 2.4 Attempts to Alkylate b-Keto Aldehyde 23 
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 Indeed, similar reactivity has been observed in the literature (Scheme 2.4).13 In 

1967, Manson and Wood reported the isolation of related compounds. It was found that 

subjection of ketoaldehyde 32 to formaldehyde in pyridine resulted in the formation of 33 

which could either be: 1.) acylated to form stable spirodioxolane 34 or 2.) reacted with base 

to deliver exocyclic enone 35. 

Scheme 2.4 Literature Precedence for Spirodioxolane 

 

 Our hypothesis at this stage was that a screen of different metal bases may affect 

the coordination and in turn, affect the nucleophilicity of alkoxide 28. It was hypothesized 

that moving to more tightly coordinated metals such as lithium would reduce the 
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To test this hypothesis, we screened several bases and found in all cases only product 25 
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Table 2.1 Optimization Efforts 

 

 Given the lack of progress from screening bases, we next hypothesized that the 

aldehyde carbonyl may be too electrophilic and thereby resulting in high levels of alkoxide 

addition into the aldehyde of intermediate 29. We reasoned that by using a less electrophilic 

aldehyde surrogate functional group, we could lower the rate of this decomposition 

pathway. To this end, we first elected to test a methyl ester as a less electrophilic functional 

handle which could later be converted to an aldehyde (Scheme 2.5).  
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Scheme 2.5 Synthesis of Ester and Alkylation 

 

 To this end, subjection of 18 to base and dimethyl carbonate afforded 36 in good 

yield as a complex mixture of enol tautomers and diastereomers (Scheme 2.6). Next, 

selenation followed by oxidative elimination yields enone 39 in good yield. Finally, 

conjugate addition of isopropenyl cuprate in to enone 39 delivers 40. 

Scheme 2.6 Synthesis of Ester 40 
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46. Next, a Grob-like fragmentation would reveal macrocycle 47 which could then 

eliminate out formaldehyde to furnish the observed product 42.  

Figure 2.5 Attempts to Alkylate b-Keto Ester 40 

 

 We hypothesize that the isopropenyl group may provide some conformational 
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would generate monomeric formaldehyde over the course of the reaction. However, only 

the formation of epimer 48 and acid 42 was observed. 

Table 2.2 Optimization Efforts 

 

 Given our work with both the aldehyde 23 and ester 40, we hypothesized that 

potentially both a ketone and aldehyde carbonyl were both too electrophilic to avoid the 
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agent. Unfortunately, alkylations with MOMCl, MOMBr, and BOMCl were unsuccessful, 

leading only to either no conversion or exclusively O-alkylation product 56. 

Scheme 2.7 Alternative Attempts to Alkylate 

 

 We next sought to synthesize weinreb amide 58 as a potentially useful substrate for 
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Figure 2.6 Attempt to Synthesize Weinreb Amide 

 

Figure 2.7 Literature Precedence for Generation of Formaldehyde 
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cyanoformate 57 to generate carbamate 58 and lithium cyanide. Next, cyanide addition into 

ketone 18 would generate 73 which could then undergo TMS protection by desilylation of 

carbamate 73 to generate the observed product 69. 

Figure 2.8 Further Attempts to Synthesize Weinreb Amide 
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the desired quaternary center (Scheme 2.8). First, formylation of ketone 18 with ethyl 

formate proceeds in good yield followed by condensation of hydroxylamine to generate 

isoxazole 75. Base-mediated rearrangement of isoxazole 75 then delivers cyanoketone 76. 
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Scheme 2.8 Synthesis of Nitrile 78 and Alkylation Attempts 
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progress could be made moving forward (Scheme 2.9). Thus, methylation of cyanoketone 

78  proceeds to deliver a a 1.3:1 mixture of C-alkylation (81) to O-alkylation (80) products. 

Olefin 81 could then undergo a hydroboration oxidation to reveal primary alcohol 82. At 

this point, we were now prepared to begin investigating an intermolecular coupling of 82 

to forge the central seven-membered ring of the natural product.  
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(Scheme 2.10).15 In this report, they found that the use of an iridium photocatalyst along 

with quinuclidine and a phosphate base could catalyze the reaction between alcohol 83 and 

methyl acrylate 84 to generate lactone product 85. This reaction is presumed to proceed via 

generation of intermediate neutral ketyl radical 86.  

Given the challenges associated with synthesizing 10, we elected to test these 

photoredox conditions on model system 72. We were pleased to find that the reaction 

between alcohol 72 and methyl acrylate proceeded smoothly to deliver a 1.1:1 mixture of 

diastereomers of lactone 87. This result demonstrated that the alcohol of 72 could be 

selectively utilized to generate a neutral ketyl radical and that the intermolecular Giese 

reaction with this in situ generated radical is chemically competent. Encouraged by this 

result, we next turned to investigate the desired reaction between 72 and cyclopentenone 

88. 

Scheme 2.10 Successful C–H bond Functionalization in Model System 

 

 To this end, we screened hydrogen bonding catalysts in an attempt to optimize the 

reaction between model alcohol 83 and cyclopentenone 88 (Table 2.3). It was found that 

reactions with cyclopentenone performed best in the presence of TBA(TFA) as the 
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hydrogen bond acceptor. Unfortunatley, translating these conditions to the reaction with 

72 proved unsuccessful leading to a complex mixture of products from which the desired 

product 91 was not observed.  

Table 2.3 Optimization Efforts 

 

2.3.3 Investigation of an Intramolecular Coupling 

Given the challenges associated with the intermolecular Giese reaction, we revised 

our strategy to incorporate the five-membered A ring fragment prior to the Giese reaction 

(Scheme 2.11). We envisioned that intermediate 92 could arise from an intermolecular 7-

endo-trig radical cyclization of substrate 93. Substrate 93 could arise from a 1,2-addition 

reaction between nitrile 94 and alkenyl iodide 95. This strategy could potentially overcome 

the inherent lack of desired reactivity between 72 and 88 by positioning the radical acceptor 

nearby in an intramolecular reaction. Additionally, this strategy would take advantage of 

compounds which had already been synthesized, which would allow us to test our 

hypothesis quickly and efficiently. 
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Scheme 2.11 Revised Retrosynthetic Analysis 

 

 To begin, fragment 98 was synthesized in short order starting from cyclopentenone 

88 (Scheme 2.12). The iodination of 88 delivered 96 which could then undergo an 

enantioselective CBS-catalyzed reduction to deliver 97 in good yield and ee. Notably, 97 

could be recrystallized to >99% ee after only one recrystallization. Lastly, benzyl 

protection of the secondary alcohol delivered fragment 98. Next, alcohol 72 could be 

protected as the silyl ether in good yield.  

Scheme 2.12 Synthesis of Coupling Fragments 
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tertiary alcohol 101. This experiment however did demonstrate that lithiation of alkenyl 

iodide 98 was chemically feasible. We hypothesize that the nitrile is both less electrophilic 

and more sterically hindered leading to selective addition at the ketone carbonyl.  

Figure 2.9 Synthesis of Coupling Fragments 

 

 To address this issue of 1,2-addition selectivity, we decided to protect ketone 99 

(Scheme 2.13). Attempts to ketalize the carbonyl were unsuccessful. However, reduction 

with DIBAL followed by methylation were successful in protecting the carbonyl group.  

Scheme 2.13 Synthesis of Coupling Fragments 

 

 Our attempts to perform the 1,2-addition between alkenyl iodide 98 and nitrile 103 

were still largely unsuccessful (Figure 2.10). In a single case, we were able to observe 

formation of the intermediate imine 104. However, the reaction was low yielding and 

irreproducible. Additionally, it was found that desilylation occurred as it was observed that 

the isolated imine 104 lacked the TBS ether from starting material 103. Additionally, we 

isolated a-silylated cyclopentene 105 as a byproduct of this reaction. 
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Figure 2.10 Efforts Toward Fragment Coupling 

 

2.4 CONCLUDNG REMARKS 

In conclusion, we have reported our attempts to utilize a photoredox cyclization 

strategy towards the synthesis of falcatin A. In our efforts, we learned about the challenges 

and ultimate solutions to install an all-carbon quaternary center. Additionally, we found 

that a photoredox mediated generation of neutral ketyl radicals on complex substrates is 

chemically feasible. However, this strategy was ultimately unable to afford our desired 

intermediates. Thus, we have elected to pursue alternative strategies which will be 

discussed in Chapter 3. 
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2.5.1 Materials and Methods 

Unless otherwise stated, reactions were performed with freshly dried solvents utilizing 
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commercial sources and without further purification unless otherwise specified. All 

reactions were monitored by thin layer chromatography using EMD/Merck silica gel 60 

F254 pre-coated plates (0.25 mm) and were visualized by UV (254 nm) and KMnO4, p-

anisaldehyde, iodine, or CAM staining. Flash column chromatography was performed as 

described by Still et al.16 using silica gel (SiliaFlash® P60, particle size 40-63 microns [230 

to 400 mesh]) purchased from Silicycle. 1H and 13C NMR spectra were recorded on a 

Bruker Advance III HD with Prodigy Cryoprobe (at 400 MHz and 101 MHz, respectively) 

or Varian Inova 500 (at 500 MHz and 126 MHz, respectively) and are reported relative to 

internal CDCl3 (1H, δ = 7.26), CDCl3 (13C, δ = 77.16). Data for 1H NMR spectra are 

reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, 

t = triplet, q = quartet, p = pentet, hept = heptet, m = multiplet. IR spectra were recorded 

on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption 

(cm–1). Analytical chiral SFC was performed with a Mettler SFC supercritical CO2 

analytical chromatography system (CO2 = 1450 psi, column temperature = 40 °C) with a 

Chiralcel AD-H column (4.6 mm x 25 cm). Molecular formulas of the compounds [M] are 

given, with the observed ion fragment in brackets, e.g. [M+H]+. Deuteriochloroform was 

purchased from Cambridge Isotope Laboratories.  
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2.5.2 Substrate Preparation 

Preparation of ketone 18: 

 

Procedure: To an oven dried 500 mL round bottom flask, equipped with a large stir bar, 

in a N2-filled glovebox, was added tBuOK (28.0g, 250 mmol, 1.25 equiv). Reaction sealed 

with a red rubber septum and electrical tape and then removed from the glovebox. Next, 

nBuLi (100 mL of 2.5 M in hexanes, 250 mmol, 1.25 equiv) cannulated into tBuOK and 

stirred at room temperature, then cooled to –78 °C. Then 20 (27.2 g/31.7 mL, 200 mmol, 

1.0 equiv) added via syringe pump over 30 mins. Reaction then warmed to room 

temperature over 1 hour and stirred at room temperature for 48 hours. Next, reaction was 

cooled to –78 °C and B(OMe)3 (67.0 g, 650 mmol, 3.25 equiv) mixed with Et2O (50 mL) 

added slowly over 1 hour via syringe pump. Then reaction was warmed to room 

temperature over 1 hour and then stirred at room temperature for 1 hour. Then water (100 

mL) added slowly over 1 hour via syringe pump and stirred at room temperature for 3 

hours. Reaction then extracted with hexanes (3 x 200 mL), dried over MgSO4, filtered, and 

concentrated. Then MeOH (200 mL) added in a 500 mL round bottom flask, equipped with 

a stir bar, and fitted with a gas dispersion tube. Reaction was cooled to –78 °C and then 

ozone bubbled through for 2 hours at which point the reaction turned pale blue. Reaction 
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was then sparged first with oxygen followed by nitrogen and then DMS (20 mL) added. 

Reaction was then allowed to warm to room temperature and stirred overnight. Reaction 

was then extracted with Et2O (3 x 150 mL) and then washed with water (250 mL). 

Combined organic fractions were then concentrated in vacuo and subjected to column 

chromatography (10 to 15% Et2O/Hexanes) to afford 18 (20.69 g, 150 mmol, 75%) as a 

clear colorless oil. Spectral data matched the literature.17 

1H NMR (600 MHz, CDCl3) δ 2.62 – 2.54 (m, 2H), 2.52 (dtt, J = 11.9, 5.6, 1.4 Hz, 1H), 

2.34 (ddd, J = 19.1, 9.3, 2.0 Hz, 1H), 2.23 (dtd, J = 6.4, 4.3, 2.0 Hz, 1H), 2.04 (dddd, J = 

13.3, 11.2, 4.0, 2.0 Hz, 1H), 1.94 (dddt, J = 13.3, 9.2, 6.3, 1.9 Hz, 1H), 1.58 (d, J = 10.4 

Hz, 1H), 1.33 (s, 3H), 0.85 (s, 3H).	

Rf = 0.40 in 20% EtOAc/hexanes (KMnO4) 

 

Preparation of enone 17: 

 

Procedure: To an oven-dried 2-dram vial, equipped with a stir bar, was added ketone 18 

(138.2 mg, 1.0 mmol, 1.0 equiv) and PhMe (2.5 mL). Reaction cooled to 0 °C and then 

Zn(TMP)2 (0.5M in PhMe, 2.0 mL, 1.0 mmol, 1.0 equiv) added and stirred for 10 mins. 

Next, a solution of [Pd(allyl)Cl]2 (9.2 mg, 0.025 mmol, 2.5 mol %) and diethyl allyl 

phosphate (0.18 mL, 1.0 mmol, 1.0 equiv) in PhMe (0.82 mL) added. Reaction then sealed 

and heated to 120 °C for 2 hours. Reaction then quenched with aqueous ammonium 

O
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chloride, extracted with Et2O (3 x 1 mL), dried over MgSO4, filtered, and concentrated in 

vacuo. Reaction then purified via column chromatography (10% EtOAc/Hexanes) to afford 

17 (83.1 mg, 0.061 mmol, 61%) as a clear colorless oil. Spectral data matched the 

literature.18,19  

1H NMR (400 MHz, CDCl3) δ 7.52 (ddd, J = 9.0, 6.6, 1.0 Hz, 1H), 5.95 (ddd, J = 8.9, 

1.9, 1.0 Hz, 1H), 2.84 (dtd, J = 9.2, 5.5, 1.0 Hz, 1H), 2.72 (td, J = 5.9, 1.9 Hz, 1H), 2.59 

(tdd, J = 6.4, 5.3, 1.1 Hz, 1H), 2.14 (d, J = 9.2 Hz, 1H), 1.51 (s, 3H), 1.03 (s, 3H). 

Rf = 0.40 in 20% EtOAc/hexanes (KMnO4, UV-Active) 

 

Preparation of enol 23: 

 

Procedure: To an oven-dried 100-mL flask, equipped with a stir bar, in a nitrogen-filled 

glovebox, was charged CuI (1.397 g, 7.34 mmol, 2.0 equiv), sealed with a red rubber 

septum, and removed from the glovebox. To this was added THF (freeze-pump-thawed 

3X, 18.4 mL), and the mixture was cooled to –50 °C. To the resulting suspension was 

slowly added isopropenyl grignard (0.5 M in THF, 29.4 mL, 14.69 mmol, 4.0 equiv) over 

5 mins. After stirring for 2 hours at –50 °C, the reaction mixture was cooled to –78 °C. To 

this cuprate mixture was slowly added enone 17 (500 mg, 3.67 mmol, 1.0 equiv) as a stock 

solution in THF (7.5 mL). After 2 hours of stirring, ZnCl2 (1.9 M in 2-MeTHF, 3.86 mL, 

7.34 mmol, 2.0 equiv) was added, followed by ethyl formate (5.932 mL, 73.43 mmol, 20.0 
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equiv). Then the reaction mixture was warmed to room temperature and stirred overnight. 

The reaction was quenched by the addition of water, diluted with EtOAc, and the organic 

phase was separated. The aqueous phase was extracted with EtOAc (3X) and the combined 

organic layers were washed with brine, dried over anhydrous MgSO4, filtered, and 

concentrated under reduced pressure by rotary evaporation. Residue was then purified by 

column chromatography (10% EtOAc/Hexanes) to afford 23 (515 mg, 2.49 mmol, 68%) 

as a slight pink oil. 

1H NMR (400 MHz, CDCl3) δ 13.90 (s, 1H), 7.30 (s, 1H), 4.92 (p, J = 1.5 Hz, 1H), 4.83 

(dt, J = 1.9, 0.9 Hz, 1H), 3.27 – 3.22 (m, 1H), 2.47 (t, J = 5.4 Hz, 1H), 2.44 – 2.34 (m, 1H), 

2.17 (td, J = 5.7, 2.4 Hz, 1H), 1.79 – 1.75 (m, 3H), 1.54 (d, J = 10.6 Hz, 1H), 1.37 (s, 3H), 

0.97 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 208.55, 168.59, 146.90, 113.65, 54.48, 43.81, 43.08, 

41.53, 26.46, 24.28, 22.16, 21.25. 

FTIR (NaCl, thin film, cm-1): 3083, 2933, 2871, 1649, 1592, 1450, 1393, 1216, 1186, 

1107, 1059, 1000, 897, 937. 

HRMS (ESI+, m/z): calc’d for C13H18O2 207.1385 [M+H]+; found: 207.1393 

!"#$ = +110° (c = 0.375, CHCl3). 

Rf = 0.53 in 10% EtOAc/hexanes (stains brown in p-anisaldehyde) 
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Preparation of enone 25: 

 

Procedure: To an oven-dried ½-dram vial, equipped with a stir bar, was added enol 23 (5 

mg, 0.024 mmol, 1.0 equiv), p-formaldehyde (14.6 mg, 0.485 mmol, 20.0 equiv), K2CO3 

(5mg, 0.036 mmol, 1.5 equiv), and THF (240 uL). Reaction was capped and then heated to 

70 °C for 16 hours. Reaction then quenched with water (200 uL) and extracted with EtOAc 

(3 x 300 uL). Combined organic layers were then dried over Mg2SO4, filtered, and 

concentrated in vacuo. Reaction purified via prep plate (20% EtOAc/Hexanes) to afford 

enone 25 (4.5 mg, 0.0232 mmol, 97%) as a clear colorless oil.  

 

1H NMR (400 MHz, CDCl3) δ 6.57 – 6.51 (m, 1H), 5.48 – 5.42 (m, 1H), 4.92 (p, J = 1.5 

Hz, 1H), 4.81 (dt, J = 1.9, 0.9 Hz, 1H), 3.51 – 3.40 (m, 1H), 2.65 – 2.57 (m, 1H), 2.49 

(dtd, J = 11.0, 6.0, 1.6 Hz, 1H), 2.27 (d, J = 0.7 Hz, 0H), 2.23 – 2.14 (m, 1H), 1.76 (t, J = 

1.1 Hz, 3H), 1.62 (d, J = 11.0 Hz, 1H), 1.38 (s, 3H), 0.92 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 202.37, 146.34, 143.01, 125.57, 114.07, 55.86, 47.29, 

43.98, 41.33, 30.46, 29.85, 26.61, 24.54, 21.76, 21.55. 

FTIR (NaCl, thin film, cm-1): 2921, 2851, 1707, 1613, 1466, 1372, 1265, 1164, 949, 897. 

HRMS (ESI+, m/z): calc’d for C13H18O 209.1541 [M+H2O]+; found: 209.1594 

!"#$ = +62° (c = 0.255, CHCl3). 

 

 

O

H
Me

OH

Me
Me K2CO3, (CH2O)n

 THF, reflux, 24 h

97% yield
O

H
Me

Me
Me

23 25



Chapter 2 – A Photoredox Cascade Cyclization Approach to the Synthesis of Falcatin 
A 
 

40 

Preparation of ester 36: 

 

Procedure: To an oven-dried 250 mL round bottom flask, equipped with a stir bar, was 

added ketone 18 (21.00 g, 151.9 mmol, 1.0 equiv), dimethyl carbonate (15.4 g, 182.3 

mmol, 1.2 equiv), and THF (760 mL). The reaction mixture was cooled to 0 °C and then 

NaH (60% dispersion in mineral oil, 13.4 g, 334.3 mmol, 2.2 equiv) was added. Reaction 

stirred for 1 hour at 0 °C and then fitted with a reflux condenser and heated to 70 °C for 12 

hours. Reaction was quenched with aqueous sodium bicarbonate solution (500 mL), then 

extracted with Et2O (3 x 200 mL). Combined organic layers were then dried over MgSO4, 

filtered, and concentrated in vacuo. Residue was purified via column chromatography 

(15% EtOAc/Hexanes) to afford a 2:1:1 mixture of enol and epimeric b-ketoesters 36 (26.9 

g, 167.7 mmol, 92%) as a pale-yellow oil. Spectral data matched the literature.20  

1H NMR (400 MHz, CDCl3) δ 11.92 (s, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.75 (s, 3H), 

2.65 (t, J = 5.1 Hz, 1H), 2.62 – 2.44 (m, 1H), 2.44 – 2.16 (m, 2H), 1.90 – 1.82 (m, 1H), 

1.79 (d, J = 10.8 Hz, 3H), 1.66 (d, J = 10.7 Hz, 3H), 1.35 (d, J = 1.8 Hz, 3H), 1.33 (s, 

3H), 0.95 (s, 3H), 0.88 (s, 3H), 0.86 (s, 3H). 
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Preparation of alcohol 37: 

 

Procedure: To an oven-dried 1-dram vial, equipped with a stir bar, wa charged ketoester 

36 (30.0 g, 153 µmol, 1.0 equiv), KHCO3 (45.9 mg, 459 µmol, 3.0 equiv), THF (750 uL), 

and aqueous formaldehyde (35% in water, 120 µL, 1.53 mmol, 10.0 equiv). Reaction was 

stirred at room temperature for 16 hours. Reaction then diluted with water and extracted 

with Et2O (3X). Combined organic layers were then dried over MgSO4, filtered, and 

concentrated. Crude material was then purified by preparative TLC (40% EtOAc/hexanes) 

to afford alcohol 37 (24.2 mg, 107 µmol, 70%) as a clear colorless oil.  

1H NMR (400 MHz, CDCl3) δ 3.97 (d, J = 11.1 Hz, 1H), 3.70 (s, 3H), 3.62 (d, J = 11.1 

Hz, 1H), 2.69 – 2.57 (m, 2H), 2.44 (dddd, J = 11.4, 6.8, 5.1, 1.8 Hz, 1H), 2.16 (dtd, J = 6.3, 

4.8, 1.4 Hz, 1H), 1.60 (dt, J = 14.2, 1.6 Hz, 1H), 1.41 (d, J = 11.4 Hz, 1H), 1.30 (s, 3H), 

0.74 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 214.26, 173.53, 67.47, 58.76, 57.12, 53.20, 46.04, 40.31, 

30.37, 26.78, 25.44, 22.05. 

FTIR (NaCl, thin film, cm-1): 3516, 2952, 2874, 1736, 1709, 1456, 1434, 1246, 1217, 

1182, 1148, 1059, 1034, 931. 

HRMS (ESI+, m/z): calc’d for C12H18O4 249.1103 [M+Na]+; found: 249.1178 

!"## = –120° (c = 0.59, CHCl3). 

Rf = 0.37 in 50% EtOAc/hexanes (stains dark purple in p-anisaldehyde) 

36
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O
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O

MeO

O
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37
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KHCO3

THF

70% yield
single diastereomer
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Preparation of enone 39: 

 

Procedure: To an oven-dried 1L flask, equipped with a stir bar, was charged NaH (60% 

dispersion in mineral oil, 4.176 g, 104.4 mmol, 1.2 equiv) followed by THF (300 mL). The 

reaction was then cooled to 0 °C and stirred for 10 mins. Next, a solution of ester 36 (17.0 

g, 87.0 mmol, 1.0 equiv) in THF (50 mL total) was slowly cannulated from a 100mL 

pointed flask into the reaction flask. 10 mL of THF was then added to the pointed flask to 

ensure quantitative transfer. Reaction then stirred at 0 °C for 10 mins. Next, a solution of 

PhSeCl (20.0 g, 104.4 mmol, 1.2 equiv) in THF (50 mL total) was cannulated into the 

reaction mixture over 10 mins and stirred at 0 °C for 20 mins. Reaction was then warmed 

to room temperature and stirred for 30 mins. Reaction was then quenched with saturated 

aquoues sodium bicarbonate solution (200 mL), diluted with water (100 mL), extracted 

with Et2O (3 x 150 mL), washed with brine, dried over MgSO4, filtered, and concentrated. 

Residue was purified via column chromatography (10 to 20% EtOAc.Hexanes) to afford 

selenide 38 (20.0 g, 83.5 mmol, 80%).  

Procedure: Next, to an oven-dried 500 mL round bottom flask, equipped with a stir bar, 

was added selenide 38 (19 g, 54.1 mmol, 1.0 equiv) followed by DCM (216 mL). The 

reaction was then cooled to 0 °C for 20 mins. Meanwhile, a fresh solution of 15% aqueous 

H2O2 was prepared by combining 50% aqueous H2O2 (16.2 mL) with water (37.8 mL), in 

a 100mL pointed flask. This mixture was then cannulated into the reaction over 30 mins. 

Reaction then stirred at 0 °C for 3 hours and then warmed to room temperature and stirred 

O

Me
Me

MeO2C
O

Me
Me

MeO2C

1.) PhSeCl, NaH 2.) H2O2, DCM

36 38
O

Me
Me

MeO2C

39

PhSeTHF, 0 °C

80% yield 91% yield
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for 24 hours. Reaction was then quenched with saturated aqueous NaHCO3, extracted with 

DCM (3x), washed with brine, dired over MgSO4, filtered and concentrated. Residue was 

then purified by column chromatography (20 to 30 to 40% EtOAc/Hexanes) to afford 39 

(9.51 g, 49.0 mmol, 91%) as a pale-yellow oil. Spectral data matched the literature.21  

1H NMR (400 MHz, CDCl3) δ 8.39 (dd, J = 6.8, 1.0 Hz, 1H), 3.83 (s, 3H), 2.91 – 2.73 

(m, 4H), 2.13 (d, J = 9.0 Hz, 1H), 1.53 (s, 3H), 1.02 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 198.04, 165.86, 164.36, 128.12, 58.95, 54.99, 52.18, 

44.39, 40.43, 26.66, 22.51. 

 

Preparation of ketoester 40: 

 

Procedure: To an oven-dried 1 L flask, equipped with a stir bar, in a nitrogen-filled 

glovebox, was charged CuI (7.55 g, 39.6 mmol, 1.1 equiv), sealed with a red rubber septum, 

and removed from the glovebox. To this was added THF (freeze-pump-thawed 3X, 150 

mL), and the mixture was cooled to –50 °C. To the resulting suspension was slowly added 

isopropenyl grignard (0.5 M in THF, 158.6 mL, 79.3 mmol, 2.2 equiv) over 5 mins. After 

stirring for 2 hours at –50 °C, the reaction mixture was cooled to –78 °C. To this cuprate 

mixture was slowly added enone 39 (7.0 g, 36.0 mmol, 1.0 equiv) as a stock solution in 

THF (40 mL). The reaction was quenched by the addition of water, diluted with EtOAc, 

and the organic phase was separated. The aqueous phase was extracted with EtOAc (3X) 

O
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Me

MeO2C

39
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and the combined organic layers were washed with brine, dried over anhydrous MgSO4, 

filtered, and concentrated under reduced pressure by rotary evaporation. Residue was then 

purified by column chromatography (10% EtOAc/Hexanes) to afford 40 (6.33 g, 26.64 

mmol, 74%) as a dark green oil. 

1H NMR (400 MHz, CDCl3) δ 3.79 (s, 3H), 3.67 – 3.58 (m, 1H), 3.14 (d, J = 8.8 Hz, 

1H), 2.73 – 2.60 (m, 1H), 2.55 – 2.45 (m, 1H), 2.29 (ddd, J = 6.3, 4.8, 1.3 Hz, 1H), 1.83 – 

1.68 (m, 4H), 1.38 (d, J = 1.5 Hz, 3H), 0.99 (s, 2H). 

13C NMR (101 MHz, CDCl3) δ 207.98, 170.83, 145.29, 111.23, 57.25, 55.37, 52.52, 

44.24, 43.74, 42.78, 26.89, 23.80, 21.84, 21.35. 

FTIR (NaCl, thin film, cm-1): 2950, 1744, 1714, 1645, 1436, 1374, 1310, 1254, 1211, 

1148, 1030, 900. 

HRMS (ESI+, m/z): calc’d for C14H20O3 259.1310 [M+Na]+; found: 259.1315 

!"## = –42° (c = 0.855, CHCl3). 

Rf = 0.58 in 20% EtOAc/hexanes (stains brown in p-anisaldehyde) 

 

Preparation of acid 42: 

 

Procedure: To an oven-dried ½-dram vial, equipped with a stir bar, was added ketoester 

40 (5 mg, 0.024 mmol, 1.0 equiv), p-formaldehyde (14.6 mg, 0.485 mmol, 20.0 equiv), 

K2CO3 (5mg, 0.036 mmol, 1.5 equiv), and THF (240 uL). Reaction was capped and then 

O

Me
Me

MeO2C

Me

KHCO3, aq. CH2O
THF, 50 °C, 18 h

41% yield

Me
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heated to 70 °C for 16 hours. Reaction then quenched with water (200 uL) and extracted 

with EtOAc (3 x 300 uL). Combined organic layers were then dried over MgSO4, filtered, 

and concentrated in vacuo. Reaction purified via prep plate (20% EtOAc/Hexanes) to 

afford acid 42 (2.3 mg, 0.00984 mmol, 41%) as a clear colorless oil. 

1H NMR (400 MHz, CDCl3) δ 6.22 (d, J = 1.1 Hz, 1H), 5.52 (t, J = 1.0 Hz, 1H), 4.94 

(dt, J = 1.9, 0.9 Hz, 1H), 4.93 – 4.84 (m, 1H), 3.74 (s, 3H), 3.46 – 3.37 (m, 1H), 2.74 – 

2.56 (m, 1H), 2.39 (ddd, J = 11.8, 10.8, 7.8 Hz, 1H), 1.95 – 1.76 (m, 2H), 1.61 (dd, J = 

1.5, 0.8 Hz, 3H), 1.25 (d, J = 1.6 Hz, 4H), 1.07 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 178.01, 167.82, 144.39, 140.57, 125.17, 113.93, 60.57, 

52.06, 48.85, 45.72, 43.59, 42.81, 30.69, 23.69, 19.93. 

 

Preparation of ketal 53:  

 

Procedure: To a 200 mL round bottom flask was added ketone 40 (2.215 g, 9.375 mmol, 

1.0 equiv), ethylene glycol (1.31 g, 23.44 mmol, 2.5 equiv), p-toluenesufonic acid (0.8 mg, 

4.68 umol, 0.5 mol %) and benzene (75 mL). Reaction was fitted with a reflux condenser 

and heated to reflux overnight (16 hours). Reaction was then quenched with water (50 mL) 

and then extracted into EtOAc (3X). The combined organic layers were then dried over 

MgSO4, filtered, and concentrated. Material was then purified via column chromatography 

ethylene glycol 
pTsOH

PhH, reflux
16 h

>99% yield
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(10 to 20% EtOAc/hexanes) to afford 53 (2.62 g, 9.275 mmol, 99%) as a clear colorless 

oil.  

1H NMR (500 MHz, CDCl3) δ 4.74 (dp, J = 1.6, 0.8 Hz, 1H), 4.72 (t, J = 1.5 Hz, 1H), 

4.03 (ddd, J = 7.4, 6.2, 4.8 Hz, 1H), 3.93 (ddd, J = 7.3, 6.5, 4.8 Hz, 1H), 3.86 (td, J = 7.2, 

6.2 Hz, 1H), 3.83 – 3.78 (m, 1H), 3.73 (s, 3H), 3.27 (d, J = 9.3 Hz, 1H), 3.22 – 3.12 (m, 

1H), 2.34 – 2.20 (m, 1H), 1.98 (d, J = 5.9 Hz, 2H), 1.69 (dd, J = 1.4, 0.8 Hz, 3H), 1.47 (d, 

J = 10.9 Hz, 1H), 1.25 (s, 3H), 1.05 (s, 3H). 

 

Preparation of dimer 59: 

 

Procedure: To a flame-dried 100mL flask was charged diisopropyl amine (1.23 mL, 8.68 

mmol, 1.2 equiv) followed by THF (20 mL). Solution was then cooled to –78 °C and then 

nBuLi (2.5 M in hexanes, 3.47 mL, 8.68 mmol, 1.2 equiv) was added and stirred at –78 °C 

for 5 minutes. Ketone 18 (1.00 g, 7.24 mmol, 1.0 equiv) then added slowly as a solution in 

THF (8 mL) over 5 minutes. Reaction then slowly warmed to –50 °C and then cooled back 

down to –78 °C. Next, cyanoformate (1.01 g, 8.68 mmol, 1.2 equiv) added as a solution in 

THF (8 mL) and reaction allowed to warm slowly to rt over 4 hours. Reaction then 

quenched by addition of saturated aqueous NH4Cl solution (25 mL). Reaction extracted 

with EtOAc (3X). Combined organic layers then dried over MgSO4, filtered, and 

Me
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27% yield
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concentrated. Material was then purified via column chromatography (10% 

EtOAc/hexanes) to afford 59 (564 mg, 1.95 mmol, 27%) as a white solid. 

1H NMR (400 MHz, CDCl3) δ 2.74 (dq, J = 10.2, 7.4 Hz, 2H), 2.60 (t, J = 5.3 Hz, 2H), 

2.55 (s, 2H), 2.27 (ddd, J = 11.5, 6.9, 5.5 Hz, 2H), 1.99 (t, J = 7.1 Hz, 2H), 1.71 (d, J = 

10.5 Hz, 2H), 1.52 (ddt, J = 13.1, 7.7, 1.5 Hz, 2H), 1.32 (s, 6H), 0.75 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 216.59, 57.97, 43.11, 40.92, 39.66, 29.80, 28.83, 26.42, 

25.56, 22.23. 

FTIR (NaCl, thin film, cm-1): 2937, 2871, 1701, 1243, 1193. 

HRMS (ESI+, m/z): calc’d for C19H28O2 289.2167 [M+H]+; found: 289.2221 

!"## = 0° (c = 0.51, CHCl3). 

 

Preparation of cyanohydrin 69: 

 

Procedure: To a flame-dried 100 mL flask, equipped with a stir bar, was charged ketone 

18 (1.00 g, 7.23 mmol, 1.0 equiv), followed by THF (36 mL). Reaction was cooled to –78 

°C and then LHMDS (1.0 M in THF, 8.68 mL, 8.68 mmol, 1.2 equiv) added and stirred at 

–78 °C for 1 hour. Next, cyanoformate (990.6 mg, 8.68 mmol, 1.2 equiv) added and stirred 

for 15 minutes at –78 °C then allowed to warm to room temperature slowly over 16 hours. 

Reaction then quenched with saturated aqueous NaHCO3 and extracted with EtOAc (3X). 

Combined organic layers were then dried over MgSO4, filtered, and concentrated. Material 
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was then purified by column chromatography (10% EtOAc/hexanes) to afford 69 (155 mg, 

0.653 mmol, 10%) as a white solid.  

1H NMR (400 MHz, CDCl3) δ 2.64 – 2.51 (m, 1H), 2.44 – 2.32 (m, 1H), 2.29 (dd, J = 

6.6, 4.7 Hz, 1H), 2.15 – 2.03 (m, 1H), 2.03 (s, 2H), 1.93 – 1.81 (m, 1H), 1.24 (s, 3H), 

1.01 (s, 3H), 0.23 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 123.78, 74.55, 51.78, 40.38, 38.02, 33.11, 27.97, 27.51, 

24.31, 22.71, 1.50. 

FTIR (NaCl, thin film, cm-1): 2954, 1459, 1252, 1128, 1102, 1052, 865, 843, 757. 

HRMS (ESI+, m/z): calc’d for C13H23ONSi 165.1153 [M+H–TMS]+; found: 165.1120 

!"#$ = –12° (c = 0.480, CHCl3). 

Rf = 0.80 in 30% EtOAc/hexanes (stains purple/brown in p-anisaldehyde) 

 

Preparation of ketoaldehyde 74: 

 

Procedure: To a flame-dried 2 L round bottom flask, equipped with a stir bar, was added 

NaH (60% dispersion in mineral oil, 8.94 g, 223.5 mmol, 2.0 equiv) and THF (300 mL). 

Reaction cooled to 0 °C and then ethyl formate (250 mL, 3.35 mol, 30 equiv) was added. 

A solution of ketone 18 (15.45 g, 111.8 mmol, 1.0 equiv) in THF (250 mL) with ethanol 

(2.2 mL) was added dropwise at over 40 mins and then warmed to room temperature and 

stirred for 4 hours. Reaction quenched with saturated aqueous NH4Cl (250 mL) and then 

O
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extracted with Et2O (3 x 100 mL). Washed with water (50 mL), brine (50 mL), then dried 

over MgSO4, filtered and concentrated in vacuo. Residue was then purified by column 

chromatography (5 to 10% EtOAc/Hexanes) to afford 74 (11.278g, 67.8 mmol, 61%) as a 

white solid. Spectral data matched the literature.22  

1H NMR (500 MHz, CDCl3) δ 13.35 (d, J = 11.1 Hz, 1H), 7.20 (d, J = 6.6 Hz, 1H), 2.61 

– 2.45 (m, 4H), 2.26 (tt, J = 5.8, 3.0 Hz, 1H), 1.46 – 1.38 (m, 1H), 1.34 (s, 4H), 0.93 (s, 

4H). 

 

Preparation of isoxazole 75: 

 

Procedure: To a 200 mL flask, equipped with a stir bar, was charged enol 74 (2.58 g, 

15.52 mmol, 1.0 equiv). Next EtOH (64.2 mL) added and reaction cooled to 0 °C. Next, 

K2CO3 (3.24 g, 23.46 mmol, 1.5 equiv) added followed by hydroxylamine hydrochloride 

(2.19 g, 42.81 mmol, 2.0 equiv). The reaction was then fitted with a reflux condenser and 

refluxed for 2 hours. Reaction then quenched with water and acidified to pH 7 using 1.0 M 

HCl. Reaction mixture extracted with DCM (3 X 60 mL), washed with brine. Combined 

organic layer were then dried over MgSO4, filtered, and concentrated in vacuo to afford 75 

(2.65 g, 13.50 mmol, 87%) as a white solid. Material was used crude in the next reaction. 
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87% yield

NH2OH•HCl

K2CO3, EtOH, 
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Preparation of ketonitrile 76: 

 

Procedure: To a 50 mL round bottom flask, equipped with a stir bar, was charged solid 

sodium metal (577 mg, 25.10 mmol, 2.0 equiv) followed by EtOH (14.4 mL) and stirred at 

room temperature until all sodium had disappeared (2 hours). Next, isoxaxole 75 (2.048 g, 

12.55 mmol, 1.0 equiv) was added as a solution in EtOH (7.2 mL). Reaction then warmed 

to room temperature and stirred for 6 hours. Reaction then acidified to pH 7 with 2N HCl, 

diluted with H2O, and extracted with DCM (3X), washed with brine, dried over MgSO4, 

filtered, and concentrated. Material then purified by column chromatography (10 to 15 to 

20% EtOAc/hexanes) to afford 76 (1.716 g, 10.54 mmol, 84%) as a white solid. Spectral 

data matched the literature.22  

1H NMR (400 MHz, CDCl3) δ 1H NMR (400 MHz, CDCl3) δ 4.38 (dd, J = 8.9, 2.0 Hz, 

1H), 2.82 (t, J = 5.4 Hz, 1H), 2.79 – 2.63 (m, 2H), 2.55 (ddd, J = 15.6, 3.9, 2.0 Hz, 1H), 

2.25 (d, J = 11.0 Hz, 1H), 1.38 (s, 3H), 0.84 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 13C NMR (101 MHz, CDCl3) δ 207.16, 58.51, 41.93, 

41.31, 40.93, 34.25, 25.85, 25.72, 22.74. 

FTIR (NaCl, thin film, cm-1): 2987, 2958, 2931, 1713, 1690, 1444, 1195, 1089, 1034, 

905, 553. 
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Preparation of enone 77: 

 

Procedure: To a 200 mL flask, equipped with a stir bar, was charged PhSeCl (2.416 g, 

12.62 mmol, 1.2 equiv) followed by DCM (60 mL). Solution was cooled to 0 °C and then 

pyridine (1.275 mL, 15.77 mmol, 1.5 equiv) added. After stirred for 20 mins at 0 °C, a 

solution of nitrile ketone 76 (1.716 g, 10.51 mmol, 1.0 equiv) in DCM (12 mL) added 

slowly, dropwise, over a period of 20 mins. The reaction was then allowed to warm to room 

temperature and stirred overnight (16 h). Excess pyridine was removed by sequential 

washing with 1N HCl. The remaining organic layer was cooled to 0 °C and treated with 

H2O2 (30% in water, 2.714 mL, 31.53 mmol, 3.0 equiv) and stirred for 30 mins. Rection 

then quenched with water, and the aqueous layer was extracted with DCM (3X). The 

combined organic layers were then dried over MgSO4, filtered, and concentrated. Material 

was then purified by column chromatography (10 to 20 to 30% EtOAc/hexanes) to afford 

77 (1.56 g, 9.67 mmol, 92%) as a white solid. Spectral data matched the literature.22  

1H NMR (400 MHz, CDCl3) δ 8.24 (dd, J = 6.9, 1.0 Hz, 1H), 2.95 (dtd, J = 9.7, 5.5, 1.1 

Hz, 1H), 2.89 (t, J = 5.9 Hz, 1H), 2.82 (dt, J = 6.9, 5.6 Hz, 1H), 2.21 (d, J = 9.7 Hz, 1H), 

1.57 (s, 3H), 1.06 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 195.65, 169.07, 113.93, 113.59, 57.70, 55.43, 44.77, 

40.64, 26.72, 22.49. 

FTIR (NaCl, thin film, cm-1): 2978, 1702, 1333, 1236, 1020, 916, 821, 514. 

Me
Me

O
NC

PhSeCl 
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 0 °C to rt, 12 h;
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H2O2, 0 °C, 30 mins
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Preparation of alkene 78: 

 

Procedure: To a flame-dried 100 mL flask, equipped with a stir bar, was charged enone 

77 (1.0 g, 6.20 mmol, 1.0 equiv), followed by THF (36 mL). Reaction was then cooled to 

0 °C and then Grignard (0.5 M in THF, 24.8 mL, 12.4 mmol, 2.0 equiv) added slowly, 

dropwise, over 20 mins. Reaction then stirred for 2 hours at 0 °C. Reaction then quenched 

with saturated aqueous NH4Cl, extracted with Et2O (3X), dried over MgSO4, filtered, and 

concentrated. Material was then purified via column chromatography (10 to 20 to 30% 

EtOAc/hexanes) to afford 78 (1.0825 g, 5.33 mmol, 86%) as a clear colorless oil.  

1H NMR (400 MHz, CDCl3) δ 5.01 – 4.96 (m, 1H), 4.90 (d, J = 1.4 Hz, 1H), 3.59 (d, J = 

8.6 Hz, 1H), 2.96 (d, J = 8.6 Hz, 1H), 2.74 (t, J = 5.1 Hz, 1H), 2.64 – 2.53 (m, 1H), 2.39 

– 2.31 (m, 1H), 1.90 – 1.86 (m, 3H), 1.69 (d, J = 11.5 Hz, 1H), 1.42 (s, 3H), 0.96 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 13C NMR (101 MHz, CDCl3) δ 201.94, 143.30, 117.43, 

112.79, 56.47, 44.83, 44.13, 42.93, 40.91, 26.24, 22.81, 22.03, 21.79. 

FTIR (NaCl, thin film, cm-1): 2966, 1727, 1450, 1376, 1194, 894, 807. 

HRMS (GC-EI+, m/z): calc’d for C13H17ON 222.1494 [M+H3O]+; found: 222.1468 

!"#$ = +89° (c = 0.285, CHCl3). 

Rf = 0.47 in 25% EtOAc/hexanes (stains orange with p-anisaldehyde) 
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Preparation of enol ether 79: 

 

Procedure: To an oven-dried ½-dram vial, equipped with a stir bar, was added ketone 78 

(25.2 mg, 0.124 mmol, 1.0 equiv), p-formaldehyde (11.2 mg, 0.372 mmol, 3.0 equiv), 

K2CO3 (25.7 mg, 0.186 mmol, 1.5 equiv), and THF (2.5 mL). Reaction was capped and 

then heated to 60 °C for 16 hours. Reaction then quenched with water and extracted with 

EtOAc (3X). Combined organic layers were then dried over MgSO4, filtered, and 

concentrated in vacuo. Reaction purified via prep plate (20% EtOAc/Hexanes) to afford 

enol ether 79 (11.8 mg, 0.051 mmol, 41%) as a clear colorless oil. 

1H NMR (400 MHz, CDCl3) δ 5.87 (s, 1H), 5.75 (s, 1H), 5.00 (q, J = 1.3 Hz, 2H), 2.82 – 

2.72 (m, 2H), 2.49 (ddd, J = 11.7, 10.5, 7.9 Hz, 1H), 2.06 (dt, J = 11.5, 7.9 Hz, 1H), 1.82 

(dt, J = 11.6, 10.5 Hz, 1H), 1.72 (t, J = 1.1 Hz, 3H), 1.28 (s, 3H), 1.00 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 178.26, 142.14, 131.04, 124.14, 117.67, 114.52, 54.13, 

45.35, 43.42, 41.36, 30.79, 23.63, 21.11, 17.24. 

FTIR (NaCl, thin film, cm-1): 2956, 1700, 1432, 1368, 1251, 1214, 1158, 942, 906, 626. 

!"## = +59° (c = 0.580, CHCl3). 
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Preparation of alkene 78: 

 

Procedure: To a flame-dried 100 mL flask, equipped with a stir bar, was charged enone 

77 (1.0 g, 6.20 mmol, 1.0 equiv), followed by THF (36 mL). Reaction was then cooled to 

0 °C and then Grignard (1.0 M in THF, 12.4 mL, 12.4 mmol, 2.0 equiv) added slowly, 

dropwise, over 20 mins. Reaction then stirred for 2 hours at 0 °C. Reaction then quenched 

with saturated aqueous NH4Cl, extracted with Et2O (3X), dried over MgSO4, filtered, and 

concentrated. Material was then purified via column chromatography (10 to 20 to 30% 

EtOAc/hexanes) to afford 78 (727 mg, 3.84 mmol, 62%) as a clear colorless oil.  

1H NMR (400 MHz, CDCl3) δ 5.88 (ddd, J = 17.3, 10.2, 7.2 Hz, 1H), 5.30 (dt, J = 16.9, 

1.0 Hz, 1H), 5.24 (dt, J = 10.2, 0.9 Hz, 1H), 3.45 (d, J = 8.0 Hz, 1H), 3.03 (tq, J = 7.1, 1.3 

Hz, 1H), 2.75 (t, J = 5.1 Hz, 1H), 2.61 – 2.52 (m, 1H), 2.26 (ddd, J = 6.5, 4.7, 1.6 Hz, 

1H), 1.67 (d, J = 11.5 Hz, 1H), 1.41 (s, 3H), 0.96 (s, 3H). 

Rf = 0.44 in 25% EtOAc/hexanes (stains orange with p-anisaldehyde) 

 

Preparation of 81: 

 

Me
Me

O
NC

77

62% yield

MgBr

THF, 0 °C, 1 h

Me
Me

O
NC

78

Me
Me

O
NC

LiOH, MeI

MeOH/H2O (1:1)
65 °C, 24 h

Me
Me

O

NC
Me

50% yield
78 81
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Procedure: To a flame-dried 50 mL pressure flask, equipped with a stir bar, was charged 

nitrile ketone 78 (2.00 g, 10.6 mmol, 1.0 equiv), LiOH (304 mg, 12.7 mmol, 1.2 equiv), 

MeI (691 uL, 11.1 mmol, 1.05 equiv), H2O (13.25 mL), and MeOH (13.25 mL). Reaction 

was then sealed and reated to 65 °C behind a blast shield for 24 hours. Reaction then 

quenched with saturated aqueous NH4Cl, extracted with EtOAc (3X), washed with brine. 

Combined organic layers were then dried over MgSO4, filtered, and concentrated in vacuo. 

Material was then purified by column chromatography (10% EtOAc/hexanes) to afford 81 

(1.0718 g, 5.3 mmol, 50%) as a white solid.  

1H NMR (400 MHz, CDCl3) δ 5.83 (ddd, J = 17.1, 10.2, 8.9 Hz, 1H), 5.34 – 5.23 (m, 

2H), 3.26 – 3.19 (m, 1H), 2.78 (t, J = 5.3 Hz, 1H), 2.63 – 2.52 (m, 1H), 2.23 (ddd, J = 

6.8, 5.0, 1.8 Hz, 1H), 1.77 (d, J = 11.5 Hz, 1H), 1.63 (s, 3H), 1.41 (s, 3H), 1.05 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 13C NMR (101 MHz, CDCl3) δ 205.87, 134.17, 122.15, 

118.78, 56.93, 46.13, 46.05, 45.67, 42.35, 26.02, 24.84, 23.17, 22.20. 

FTIR (NaCl, thin film, cm-1): 3080, 2991, 2965, 1716, 1482, 1463, 1373, 1255, 1008, 

926, 757. 

HRMS (GC-EI+, m/z): calc’d for C13H17ON 222.1494 [M+H3O]+; found: 222.1469 

!"## = +103° (c = 0.735, CHCl3). 

Rf = 0.40 in 20% EtOAc/hexanes (KMnO4) 
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Preparation of 78: 

 

Procedure: To a 1-dram vial, equipped with a stir bar, was charged methyl ether 80 (100 

mg, 0.492 mmol, 1.0 equiv) followed by MeCN (0.5 mL). To this mixture was added H2O 

(44.3 uL), and PdCl2•(MeCN) (1.3 mg, 0.0049 mmol, 1 mol %). Reaction then sealed with 

a Teflon cap and heated to 65 °C for 24 hours. Reaction was then filtered over silica eluting 

with 50% EtOAc/hexanes to afford 78 (74.6 mg, 0.394 mmol, 80%) as a white solid. 

1H NMR (400 MHz, CDCl3) δ 5.88 (ddd, J = 17.3, 10.2, 7.2 Hz, 1H), 5.30 (dt, J = 16.9, 

1.0 Hz, 1H), 5.24 (dt, J = 10.2, 0.9 Hz, 1H), 3.45 (d, J = 8.0 Hz, 1H), 3.03 (tq, J = 7.1, 1.3 

Hz, 1H), 2.75 (t, J = 5.1 Hz, 1H), 2.61 – 2.52 (m, 1H), 2.26 (ddd, J = 6.5, 4.7, 1.6 Hz, 

1H), 1.67 (d, J = 11.5 Hz, 1H), 1.41 (s, 3H), 0.96 (s, 3H). 

 

Preparation of alcohol 82: 

 

Procedure: To a flame-dried 25 mL round bottom flask, equipped with a stir bar, was 

charged vinyl ketone 81 (1.07 g, 5.26 mmol, 1.0 equiv) under argon. Then 9-BBN (0.5 M 

in THF, 10.52 mL, 5.26 mmol, 1.0 equiv) was added and stirred at room temperature for 

20 mins. During these 20 minutes, the reaction became very thick and therefore THF (2 

Me
Me

O
NC

Me
Me

OMe
NC

PdCl2(MeCN)2 
(1 mol %)

MeCN, H2O
65 °C, 24 h

80% yield 7880

Me
Me

O

NC
Me

i.   9–BBN, THF, rt
ii.  NaBO3 
iii. H2O, 50 °C, 2 h Me

Me

O

NC
Me

HO

1 g scale
76% yield81 82
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mL) was added to dilute the reaction mixture. Then stir rate was increased to 1200 RPM 

and stirred for 4 hours. Next, NaBO3•H2O (1.576 g, 15.79 mmol, 3.0 equiv) were added in 

a single portion. After 2 hours of stirring, the reaction was cooled to 0 °C and water (5.26 

mL, 292.1 mmol, 55.5 equiv) was added slowly dropwise over 5 minutes. Reaction was 

then heated to 50 °C for 2 hours and then cooled to room temperature and stirred overnight 

(16 hours). Reaction was then transferred to a separatory funnel, extracted with Et2O (3X), 

and washed with brine. Combined organic layers were then dried over MgSO4, filtered, 

and concentrated in vacuo. Material was then purified by column chromatography (5% 

MeOH/DCM) to afford alcohol 82 (884 mg, 3.99 mmol, 76%) as a clear colorless oil.  

1H NMR (400 MHz, CDCl3) δ 3.89 – 3.71 (m, 2H), 2.51 (dddd, J = 12.0, 6.8, 5.5, 1.4 

Hz, 1H), 2.24 (ddd, J = 6.7, 5.0, 1.7 Hz, 1H), 2.01 (dtd, J = 13.7, 6.8, 5.9 Hz, 1H), 1.70 

(d, J = 2.0 Hz, 4H), 1.68 – 1.58 (m, 3H), 1.40 (s, 3H), 1.01 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 206.19, 122.36, 60.82, 57.23, 45.68, 45.47, 42.32, 38.00, 

32.18, 26.11, 23.83, 22.99, 22.17. 

FTIR (NaCl, thin film, cm-1): 3418, 2935, 1721, 1390, 1202, 1049, 682, 597. 

HRMS (GC-EI+, m/z): calc’d for C13H19O2N 222.1494 [M+H]+; found: 222.1467 

!"## = –72° (c = 0.455, CHCl3). 

Rf = 0.26 in 5% MeOH/DCM (stains purple with p-anisaldehyde) 
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Preparation of lactone 87: 

 

Procedure: To an oven-dried ½-dram vial, equipped with a stir bar, in a N2-filled 

glovebox, was charged (Ir[dF(CF3)ppy]2(dtbbpy))PF6 (0.68 mg, 0.6 umol, 1.0 mol %), 

quinuclidine (0.66 mg, 6.0 umol, 10 mol %), nBu4NH2PO4 (5.10 mg, 15.0 umol, 25 mol 

%), and MeCN (200 uL). The solids were shaken by hand until dissolved. Next, the catalyst 

solution was added to a ½-dram vial containing ketone 82 (13.3 mg, 60 umol, 1.0 equiv) 

followed by methyl acrylate (10.8 uL, 120 umol, 2.0 equiv). Reaction was then sealed and 

removed from the glovebox. Reaction was stirred and irradiated by blue LEDs (kessil 

lamp) in a hepatochem setup for 48 hours. Then Amberlyst 15 (20 mg) added and reaction 

heated to 40 °C for 2 hours. Reaction then filtered through a silica plug eluting with 50% 

EtOAc/hexanes. Mixture was concentrated in vacuo and then transferred to an NMR tube 

for obtaining an NMR yield. 71% yield by 1H-NMR. 

1H NMR (500 MHz, CDCl3) δ 4.64 – 4.51 (m, 2H), 3.72 – 3.64 (m, 2H), 2.89 – 2.82 (m, 

1H), 2.82 – 2.71 (m, 3H), 2.66 – 2.39 (m, 10H), 2.39 – 2.21 (m, 2H), 2.12 (ddd, J = 14.2, 

8.8, 5.5 Hz, 1H), 2.03 – 1.81 (m, 4H), 1.70 (s, 3H), 1.68 (s, 2H), 1.41 (s, 3H), 1.41 (s, 

2H), 1.02 (s, 3H), 1.01 (d, J = 1.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 199.07, 176.97, 79.89, 57.53, 45.82, 45.39, 44.15, 43.71, 

39.92, 38.73, 35.52, 28.90, 28.69, 26.54, 23.04, 21.83, 13.12. 

HRMS (ESI+, m/z): calc’d for C16H21O3N 276.1599 [M+H]+; found: 276.1591 

71% yield
1.1:1 d.r.

O

Me
Me

Me
NC

HO

OMe

O

O

Me
Me

Me
NC

O
O

H[Ir] (1 mol %)
quinuclidine (10 mol %)
TBA(H2PO4) (25 mol %)

MeCN, 27 °C, 
blue LEDs, 36 h;

then Amberlyst 15

(1.0 equiv) (2.0 equiv)
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Preparation of alcohol 89: 

 

Procedure: To an oven-dried ½-dram vial, equipped with a stir bar, in a N2-filled 

glovebox, was charged (Ir[dF(CF3)ppy]2(dtbbpy))PF6 (1.68 mg, 1.5 umol, 1.0 mol %), 

quinuclidine (1.67 mg, 15.0 umol, 10 mol %), nBu4NH2PO4 (12.7 mg, 37.5. umol, 25 mol 

%), and MeCN (500 uL). The solids were shaken by hand until dissolved. Next, the catalyst 

solution was added to a ½-dram vial containing alcohol 83 (18.8 uL, 150 umol, 1.0 equiv) 

followed by cyclopentene 88 (25.1 uL, 300 umol, 2.0 equiv). Reaction was then sealed and 

removed from the glovebox. Reaction was stirred and irradiated by blue LEDs (kessil 

lamp) in a hepatochem setup for 48 hours. Then Amberlyst 15 (20 mg) added and reaction 

heated to 40 °C for 2 hours. Reaction then filtered through a silica plug eluting with 50% 

EtOAc/hexanes. Mixture was concentrated in vacuo and then transferred to an NMR tube 

for obtaining an NMR yield. 99% yield by 1H-NMR. 

1H NMR (500 MHz, cdcl3) δ 3.61 (ddd, J = 9.2, 5.9, 3.2 Hz, 1H), 2.56 – 2.14 (m, 4H), 

2.14 – 2.00 (m, 1H), 1.85 – 1.74 (m, 1H), 1.60 (s, 4H), 1.58 – 1.44 (m, 2H), 1.40 – 1.27 

(m, 6H), 0.98 – 0.89 (m, 3H).	
13C NMR (101 MHz, CDCl3) δ 205.58, 74.40, 42.75, 41.88, 38.50, 35.88, 31.81, 25.36, 

24.69, 22.63, 14.04.	

HRMS (ESI+, m/z): calc’d for C11H20O2 167.1435 [M – H2O +H]+; found: 167.1470 

 

C5H11

OH

C5H11

OHO

O

[Ir] (1 mol %)
quinuclidine (10 mol %)
TBA(TFA) (25 mol %)

MeCN, 27 °C, 
blue LEDs, 36 h;

then Amberlyst 15
898883

99% yield
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Preparation of enone 96: 

 

Procedure: To a 500 mL round bottom flask, equipped with a stir bar, was charged enone 

88 (5.0 g, 61.0 mmol, 1.0 equiv) followed by THF (125 mL). Next, water (125 mL) was 

added followed by K2CO3 (10.1 g, 73.2 mmol, 1.2 equiv), I2 (23.2 g, 91.5 mmol, 1.5 equiv), 

and lastly DMAP (1.4 g, 12.2 mmol, 20 mol %). Reaction sealed under nitrogen and stirred 

for 4 hours at room temperature. Reaction was then quenched at 0 °C with saturated 

aqueous Na2S2O3 (3X), extracted with EtOAc (3X), and washed with brine. Combined 

organic layers were then dried over MgSO4, filtered, and concentrated in vacuo. Material 

was then purified via column chromatography (35% EtOAc/Hexanes) to afford 96 (9.15 g, 

43.9 mmol, 72%) as a white solid. Spectral data matched the literature.23 

1H NMR (400 MHz, CDCl3) δ 8.02 (t, J = 2.9 Hz, 1H), 2.81 – 2.74 (m, 2H), 2.54 – 2.47 

(m, 2H). 

13C NMR (101 MHz, CDCl3) δ 204.18, 169.69, 103.05, 31.39, 31.07. 

FTIR (NaCl, thin film, cm-1): 2923, 2853, 1710, 1574, 1283, 1153, 926, 896, 781, 742. 

 

Preparation of alcohol 97: 

 

O

I2, K2CO3 
DMAP (20 mol %)

THF/H2O (1:1), rt, 4 h
O

72% yield

I

88 96

O

I

(R)-CBS (10 mol %)
BH3•NEt2Ph

THF, –10 °C, 1.5 h
OH

I

76% yield
83% ee

>99.9% ee after
recrystallization

96 97
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Procedure: To a flame-dried 250 mL round bottom flask, equipped with a stir bar, was 

charged (R)-(+)-2-Me-CBS-oxazaborolidine (266.5 mg, 0.962 mmol, 10 mol %) and 

anhydrous THF (45 mL). The resulting solution was cooled to –10 °C via ice/acetone bath. 

After 15 minutes of stirring, BH3•NEt2Ph (2.56 mL, 14.42 mmol, 1.5 equiv) was added 

slowly dropwise via syringe over 10 minutes. After 15 minutes of stirring at –10 °C, 

cyclopentenone 96 (2.0 g, 9.62 mmol, 1.0 equiv) as a solution in THF (40 mL) was added 

slowly, dropwise, over 1 hour via cannula transfer. Vial was rinsed with THF (10 mL) to 

ensure quantitative transfer of cyclopentenone. Upon complete addition, reaction stirred 

for 15 minutes and then was diluted with Et2O. Reaction then carefully quenched with 

MeOH (10 mL) followed by 1N NaOH (90 mL) at –10 °C and then allowed t warm to 

room temperature. Mixture was extracted with Et2O (3X), and then washed with brine. 

Combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

Material was then purified via column chromatography (20% EtOAc/hexanes) to afford 

97. 97 was then recrystallized by heating in hexanes and then cooling to 0 °C in an ice bath 

to afford recrystallized 97 (1.53 g, 7.31 mmol, 76% yield, 99% ee) as a white cotton candy 

like solid. Spectral data matched the literature.23 

1H NMR (400 MHz, CDCl3) δ 1H NMR (400 MHz, CDCl3) δ 6.29 (td, J = 2.5, 1.0 Hz, 

1H), 4.69 (dqt, J = 6.5, 2.5, 1.1 Hz, 1H), 2.56 – 2.40 (m, 1H), 2.40 – 2.24 (m, 2H), 1.92 – 

1.79 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 13C NMR (101 MHz, CDCl3) δ 142.79, 100.39, 82.42, 

32.91, 31.60. 

FTIR (NaCl, thin film, cm-1): 3337, 2917, 2847, 1435, 1303, 1044, 805.  

!"## = –23° (c = 0.500, CHCl3). 
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Rf = 0.43 in 30% EtOAc/hexanes (stains green in p-anisaldehyde) 

 

Preparation of benzyl ether 98: 

 

Procedure: To a flame-dried 15 mL round bottom flask, equipped with a stir bar, was 

charged alcohol 97 (150 mg, 0.714 mmol, 1.0 equiv), TBAI (26.4 mg, 0.0714 mmol, 10 

mol %), THF (7.1 mL), and BnBr (203.6 uL, 1.714 mmol, 2.4 equiv). Reaction mixture 

was then cooled to 0 °C and then NaH (60% dispersion in mineral oil, 68.6 mg, 1.714 

mmol, 2.4 equiv) was added. Reaction was sealed with a red rubber septum under nitrogen. 

Reaction stirred overnight for 16 hours. Reaction was then quenched with saturated 

aqueous NH4Cl, extracted with Et2O (3X). Combined organic layers were then dried over 

MgSO4, filtered, and concentrated in vacuo. Material was then purified via column 

chromatography (10% EtOAc/hexanes) to afford 98 (199 mg, 0.664 mmol, 93%) as a clear 

colorless oil.  

1H NMR (400 MHz, CDCl3) δ 7.47 – 7.26 (m, 5H), 6.37 (td, J = 2.5, 1.1 Hz, 1H), 4.67 – 

4.59 (m, 2H), 4.55 (dddq, J = 7.6, 3.9, 2.6, 1.3 Hz, 1H), 2.49 (dddt, J = 16.6, 8.7, 4.3, 2.6 

Hz, 1H), 2.36 – 2.24 (m, 1H), 2.18 (dddd, J = 13.4, 8.8, 7.5, 4.3 Hz, 1H), 2.03 – 1.91 (m, 

1H). 

13C NMR (101 MHz, CDCl3) δ 143.76, 138.37, 128.37, 127.90, 127.63, 96.37, 88.33, 

70.67, 33.02, 28.92. 

FTIR (NaCl, thin film, cm-1): 2850, 1454, 1340, 1157, 1072, 806, 735, 696, 668. 

OH

I
NaH ,BnBr 

TBAI (10 mol %)
THF, 0 °C to rt, 8 h

93% yield
OBn

I

97 98
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HRMS (GC-EI+, m/z): calc’d for C12H13OI 300.0061 [M•]+; found: 300.0089 

!"## = +4° (c = 0.685, CHCl3). 

Rf = 0.75 in 30% EtOAc/hexanes (stains green with p-anisaldehyde) 

 

Preparation of silyl ether 99: 

 

Procedure: To a flame-dried 100 mL round bottom flask, equipped with a stir bar, was 

charged alcohol 72 (1.00 g, 4.52 mmol, 1.0 equiv) under nitrogen followed by DCM (45 

mL). Reaction mixture was cooled to 0 °C and then NEt3 (1.26 mL, 9.04 mmol, 2.0 equiv) 

added followed by TBSOTf (1.56 mL, 6.78 mmol, 1.5 equiv) slowly over 1 minute. 

Reaction was stirred at 0 °C for 45 minutes. Reaction then quenched by addition of 

saturated aqueous NH4Cl (30 mL) and extracted with DCM (3X). Combined organic layers 

were then dried over MgSO4, filtered, and concentrated in vacuo. Material was then 

purified via column chromatography (10 to 20 % EtOAc/hexanes) to afford 99 (1.50 g, 

4.47 mmol, 99%) as a pale yellow oil.  

1H NMR (400 MHz, CDCl3) δ 3.79 – 3.63 (m, 2H), 2.81 – 2.72 (m, 2H), 2.54 – 2.44 (m, 

1H), 2.28 (ddd, J = 6.7, 5.0, 1.7 Hz, 1H), 1.97 (dddd, J = 14.1, 7.7, 6.5, 4.8 Hz, 1H), 1.71 

– 1.64 (m, 4H), 1.62 – 1.52 (m, 2H), 1.40 (s, 3H), 1.00 (s, 3H), 0.90 (s, 8H), 0.07 (d, J = 

4.0 Hz, 6H). 

O

Me
Me

Me
NC

HO
TBSOTf

NEt3, DCM, rt

99% yield O

Me
Me

Me
NC

TBSO

72 99
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13C NMR (101 MHz, CDCl3) δ 206.51, 122.22, 60.88, 57.28, 45.79, 44.87, 42.16, 37.95, 

31.98, 26.13, 26.01, 23.93, 22.94, 22.15, 18.34, -5.16, -5.25. 

FTIR (NaCl, thin film, cm-1): 2928, 1724, 1254, 1097, 835, 777. 

HRMS (GC-EI+, m/z): calc’d for C18H29O2NSi 337.2311 [M+NH4]+; found: 337.2315 

!"## = –57° (c = 0.300, CHCl3). 

Rf = 0.80 in 5% MeOH/DCM (stains purple with p-anisaldehyde) 

 

Preparation of alcohol 101: 

 

Procedure: To an oven-dried 1-dram vial, equipped with a stir bar, was charged vinyl 

iodide 98 (30.0 mg, 0.1 mmol, 1.0 equiv) and THF (1 mL). Reaction placed under an 

atmosphere of N2 and then cooled to –78 °C. tBuLi (1.7 M in pentanes, 118 uL, 0.2 mmol, 

2.0 equiv) then added slowly dropwise. Next, a solution of ketone 99 (33.6 mg, 0.1 mmol, 

1.0 equiv) in THF (1.0 mL) added slowly dropwise. Reaction then stirred at –78 °C for 1 

hour. Reaction then quenched at –78 °C with MeOH (0.5 mL) and warmed to room 

temperature. Then 1 N HCl (0.1 mL) added and stirred for 1 hour. The reaction was then 

diluted with Et2O, and saturated aqueous NaHCO3. Reaction extracted with Et2O (3X). 

Combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

Material purified via preparatory TLC (20% EtOAc/hexanes) to afford 101 as the major 

product.  

OBn

I

O

Me
Me

Me

NC

TBSO

Me
MeTBSO

HO
OBn

Me

NC
THF

–78 °C, 1h

tBuLi

(2.0 equiv) (1.0 equiv)
1019998
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1H NMR (400 MHz, CDCl3) δ 7.47 – 7.28 (m, 5H), 5.80 (td, J = 2.5, 0.9 Hz, 1H), 5.69 

(s, 1H), 5.07 – 4.89 (m, 1H), 4.65 (d, J = 11.4 Hz, 1H), 4.54 (d, J = 11.4 Hz, 1H), 4.12 (q, 

J = 7.1 Hz, 1H), 3.71 (ddd, J = 10.3, 5.1, 4.0 Hz, 1H), 3.60 – 3.49 (m, 1H), 2.54 – 2.40 

(m, 2H), 2.37 – 2.11 (m, 3H), 2.03 – 1.92 (m, 3H), 1.89 (d, J = 11.3 Hz, 1H), 1.84 (t, J = 

5.5 Hz, 1H), 1.81 – 1.70 (m, 1H), 1.45 (s, 3H), 1.30 (s, 3H), 0.86 (s, 9H), 0.73 (s, 3H), 

0.03 (s, 3H), 0.01 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.49, 136.90, 135.52, 128.79, 128.59, 128.29, 123.22, 

86.86, 78.17, 71.43, 60.13, 54.10, 47.60, 42.84, 42.27, 37.39, 35.56, 30.87, 29.26, 27.69, 

25.99, 25.66, 25.22, 22.81, 18.24, -5.22, -5.26. 

Rf = 0.48 in 20% EtOAc/hexanes (stains blue in p-anisaldehyde) 

 

Preparation of methyl ether 103: 

 

Procedure: To an oven-dried 2-dram vial, equipped with a stir bar, was charged ketone 99 

(100 mg, 0.300 mmol, 1.0 equiv). To this vial was added DCM (3 mL) and then cooled to 

–78 °C. Next, DIBAL (1.0 M in DCM, 330 uL, 0.330 mmol, 1.1 equiv) added slowly, 

carefully. Reaction stirred for 5 minutes and then quenched by addition of MeOH (0.5 mL) 

and then saturated aqueous rochelle’s salt. Reaction extracted with DCM (3X). Combined 

organic layers were dried over MgSO4, filtered, and concentrated. Material then used crude 

in the next step.  

Me
Me

TBSO

NC

Me
Me

Me
TBSO

NC

Me

O

1.) DIBAL
      DCM, –78 °C

98% yield

2.) NaH, MeI 
     THF, 0 °C to rt OMe
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To a 0 °C solution of NaH (60% dispersion in mineral oil, 2.5 mg, 0.0623 mmol, 1.5 equiv) 

in THF (0.5 mL), was added crude material (14.5 mg, 0.0415 mmol, 1.0 equiv) from 

previous reaction and stirred at 0 °C for 15 minutes. Next, MeI (3.9 uL, 0.0623 mmol, 1.5 

equiv) added and allowed to warm to room temperature. After stirred for 4 hours, additional 

NaH (2.5 mg, 0.0623 mmol, 1.5 equiv) added and stirred for another 2 hours. Reaction then 

quenched with H2O, and extracted with Et2O (3X), and washed with brine. Combined 

organic layers were then dried over MgSO4, filtered, and concentrated in vacuo. Material 

purified via pipette column (10% EtOAc/hexanes) to afford 103 (14.5 mg, 0.0407 mmol, 

98%) as a clear colorless oil. 

1H NMR (400 MHz, CDCl3) δ 1H NMR (500 MHz, cdcl3) δ 2.77 (ddt, J = 10.3, 4.3, 1.5 

Hz, 1H), 2.33 (ddd, J = 6.6, 4.6, 3.6 Hz, 1H), 2.15 (dtd, J = 11.0, 6.4, 1.5 Hz, 1H), 1.98 – 

1.90 (m, 1H), 1.62 (s, 3H), 1.51 – 1.41 (m, 1H), 1.24 (s, 5H), 1.13 (s, 3H), 0.97 (d, J = 

11.0 Hz, 1H), 0.90 (s, 9H), 0.06 (d, J = 3.8 Hz, 6H). 

Rf = 0.74 in 30% EtOAc/hexanes (stains green with p-anisaldehyde) 

 

Preparation of imine 104: 

 

Procedure: To an oven-dried 1-dram vial, equipped with a stir bar, was charged vinyl iodide 

98 (30.7 mg, 0.102 mmol, 3.0 equiv) and THF (0.5 mL). Reaction placed under an 

atmosphere of N2 and then cooled to –78 °C. tBuLi (1.7 M in pentanes, 120 uL, 0.205 

98
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Me

NC

TBSO

THF
–78 °C to rt

O

Me
Me

Me

NHBnO

HO

trace
(3.0 equiv) (1.0 equiv)

tBuLi

103 104
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mmol, 6.0 equiv) then added slowly dropwise. Next, a solution of nitrile 103 (12.0 mg, 

0.0341 mmol, 1.0 equiv) in THF (0.5 mL) added slowly dropwise. Reaction then stirred at 

–78 °C for 1 hour. Reaction then quenched at –78 °C with MeOH (0.5 mL) and warmed to 

room temperature. Then 1 N HCl (0.1 mL) added and stirred for 1 hour. The reaction was 

then diluted with Et2O, and saturated aqueous NaHCO3. Reaction extracted with Et2O (3X). 

Combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

Material purified via preparatory TLC (20% EtOAc/hexanes) to afford 104 as the major 

product.  

1H NMR (400 MHz, CDCl3) δ 1H NMR (400 MHz, CDCl3) δ 7.43 – 7.27 (m, 6H), 6.04 

(t, J = 2.7 Hz, 1H), 4.77 (dt, J = 6.6, 2.7 Hz, 1H), 4.59 (d, J = 11.5 Hz, 1H), 4.48 (d, J = 

11.5 Hz, 1H), 3.67 (d, J = 4.7 Hz, 1H), 3.60 – 3.42 (m, 3H), 3.03 (s, 3H), 2.65 (dddt, J = 

17.7, 8.3, 6.0, 2.3 Hz, 1H), 2.42 (ddt, J = 11.9, 5.9, 4.0 Hz, 2H), 1.56 (d, J = 9.5 Hz, 4H), 

1.21 (s, 3H), 0.99 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 13C NMR (101 MHz, CDCl3) δ 138.12, 128.63, 128.20, 

127.87, 92.13, 86.20, 71.17, 60.63, 55.74, 49.38, 48.82, 42.53, 40.61, 36.22, 33.10, 31.50, 

31.10, 29.62, 28.80, 27.49, 22.92, 22.64. 

HRMS (GC-EI+, m/z): calc’d for C26H38O3N 412.2846 [M+H]+; found: 412.2830 

Rf = 0.17 in 20% EtOAc/hexanes (stains yellow in p-anisaldehyde) 
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Preparation of silyl ether: 

 

Procedure: To an oven-dried 1-dram vial, equipped with a stir bar was added alcohol  

starting material (14.1 mg, 0.067 mmol, 1.0 equiv), DCM (212 uL), and 2,6-lutidine (15.8 

uL, 0.135 mmol, 2.0 equiv). Reaction cooled to 0 °C and then TBSOTf (23.4 uL, 1.5 equiv) 

was added. Reaction warmed to room temperature and then stirred for 2 hours. Reaction 

then quenched with H2O (200 uL), then extracted with DCM (3x). Dried over MgSO4, 

filtered, concentrated and then purified via column chromatography (15% EtOAc/Hex) to 

afford silyl ether product (19 mg, 0.059 mmol, 87% yield) as a clear colorless oil.  

1H NMR (400 MHz, CDCl3) δ 4.91 (p, J = 1.5 Hz, 1H), 4.73 (dq, J = 1.9, 0.8 Hz, 1H), 

4.04 (dd, J = 10.0, 4.8 Hz, 1H), 3.73 (dd, J = 10.0, 2.7 Hz, 1H), 3.02 – 2.88 (m, 1H), 2.64 

(ddt, J = 9.8, 5.1, 2.5 Hz, 1H), 2.51 – 2.43 (m, 2H), 2.29 – 2.14 (m, 2H), 1.81 (ddd, J = 

19.8, 1.5, 0.8 Hz, 4H), 1.33 (d, J = 11.4 Hz, 4H), 0.88 – 0.85 (m, 7H), 0.83 (s, 8H), 0.00 

(s, 3H), -0.02 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 213.90, 146.11, 112.81, 62.82, 57.44, 50.35, 44.96, 

42.32, 41.13, 26.18, 25.98, 25.84, 23.77, 22.89, 21.75, -5.59, -5.64. 

FTIR (NaCl, thin film, cm-1): 2928, 1712, 1463, 1250, 1129, 1081, 891, 834, 776. 

!"## = +29° (c = 0.385, CHCl3). 

 

 

O

Me
Me

TBSO

Me
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Chapter 3 

A Transition-Metal Catalyzed Cascade Cyclization Approach to the 

Synthesis of Falcatin A 

3.1 INTRODUCTION 

3.1.1 Transition Metal Catalyzed Cyclization Approach to Natural 

Product Total Synthesis 

As discussed in Chapter 2, efforts to apply a photoredox catalyzed strategy to the 

synthesis of falcatin were unsuccessful. Therefore, we elected to revise our retrosynthetic 

approach to the natural product and elected to pursue a transition-metal catalyzed cascade 

cyclization approach. Transition-metal catalyzed cascade cyclizations are of particular 

interest to the Reisman group.1 In particular, the synthesis of (+)-perseanol (7) in 2019 

featured a Pd-catalyzed cascade cyclization (Scheme 3.1).2 Our approach began with a 1,2-

addition between fragments 1 and 2. Next, subjection of 3 to Pd(PPh3)4 affected an 

oxidative addition into the alkenyl bromide to give intermediate 4. Then, a migratory 

insertion forged the central six-membered ring giving alkyl palladium species 5 which 

could then undergo CO insertion and lactonization to afford the desired lactone 6. This 

could then be taken forward in a series of step to the natural product (7).  
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Scheme 3.1 Palladium Cascade Cyclization Approach to (+)-Perseanol 

 

3.2 RETROSYNTHETIC PLANNING 

3.2.1 Retrosynthesis 

Retrosynthetically, we believed we could disconnect falcatin A (8) back, via a 

series of late-stage function group interconversions and an allylic oxidation, to 9 (Scheme 

3.2). We envisioned accessing 9 via a Pd-catalyzed cascade cyclization of 10 which could 

then arise from the 1,2-addition between alkenyl iodide 12 and aldehyde 11. It is believed 

that iodide 12 could arise from 13 and aldehyde 11 could come from b-pinene (14). 

Scheme 3.2 Retrosynthetic Analysis 
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The palladium-catalyzed cascade cyclization is proposed to form both the 

tetrahydrofuran (C ring) and the central seven-membered ring (B ring) in a single reaction 

(Figure 3.1). Specifically, we envision that subjection of 10 to a palladium(0) source could 

first facilitate an oxidative addition to access alkenyl palladium complex 11. Next, an 

oxypalladation across the isopropenyl olefin would result in formation of the 

tetrahydrofuran ring and deliver the 8-membered palladacycle 12. Finally, a reductive 

elimination would forge the central seven-membered B ring to give product 9. We believe 

this strategy could be used to concisely and efficiently build two out of the four rings of 

the natural product and add a significant contribution to the field of total synthesis.  

Figure 3.1 Proposed Palladium Cascade Cyclization  

 

 

 

 

H
Me

Me

BnO OAc O

O
H

Me

Me

BnO OAc O

HO
BrPd-catalyzed

cascade
cyclization

Me OAc
Me

Me OAc
Me

9 10

Me

HO

AcO

Br

Pd(0)

10

Palladium Cyclization

O

Me OAc
Me

H

Me

BnO

Me

HO

AcO O

Me OAc
Me

H

Me

BnO

[PdII]Br

11

oxypalladation

[PdII]
O

Me
H

Me
OAc
Me

OAcOBnO

Me

reductive
elimination

H
Me

Me

BnO OAc O

O

Me OAc
Me

12

9



Chapter 3 – A Transition-Metal Catalyzed Cascade Cyclization Approach to the 
Synthesis of Falcatin A 
 

129 

3.3 MODEL SYSTEM STUDIES 

3.3.1 Substrate Synthesis 

To begin, we elected to study a model system which would allow us to test the key 

Pd-catalyzed cascade cyclization (Scheme 3.3). Given the challenges of installing the 

quaternary center with a hydroxymethyl group via an alkylation strategy (see chapter 2), 

we elected to pursue instead a Diels–Alder approach to forge both the quaternary center as 

well as the six-membered D ring fragment. Specifically, we aimed to synthesize 14 via a 

1,2-addition reaction between known dibromocyclopentene (15)3 and aldehyde 16. 

Aldehyde 16 could then arise from a Diels-Alder reaction between 2,3-dimethylbutadiene 

(17) as the diene and enal 18 as the dienophile. Enal 18 could then arise from known alcohol 

19.4 

Scheme 3.3 Model System Retrosynthetic Analysis 
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24. Reduction of methyl ester 24 followed by Stahl oxidation6 of allylic alcohol 25 afforded 

enal 18 in good yield.  

Scheme  3.4 Synthesis of Dienophile 18 
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Scheme 3.5 Synthesis of Model System 27 
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Figure 3.2 Oxypalladation Precedent 
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species 48. Next, coordination of the sodium alkoxide and subsequent reductive 

elimination yields the observed product 47. While this is not the desired process, this does 

indicate that oxidative addition of the Pd catalyst is a chemically feasible step. 

Figure 3.3 Direct C–O Coupling 
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Mechanistically, we hypothesized that product 50 arises via first an oxidative 

addition of palladium(0) into the alkenyl bromide to form alkenyl palladium(II) complex 

51. Next, a migratory insertion across the isopropenyl olefin would afford neopentyl alkyl 

palladium(II) species 52. Neopentyl palladium species 52 has no b-hydrides for 

elimination. We hypothesized that a coordination to the primary alcohol could occur to 

give oxapalladacycle 53 which can then undergo b-hydride elimination and subsequent 

reductive elimination to give the observed product accounting for the concomitant alcohol 

oxidation. While the desired reactivity was not observed, this reaction does provide 

evidence that the oxidative addition complex is geometrically capable of engaging with the 

isopropenyl olefin.  

Figure 3.4 Migratory Insertion Product 
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 We next hypothesized that Ag2CO3 may be too insoluble/weak of a base to get an 

appropriate rate of deprotonation of the primary alcohol to facilitate oxypalladation. Thus, 

we next attempted to use a base with an intermediate basicity (pKb of KOH = –0.7). In this 

case, we found the formation of cyclopropane 55 (Figure 3.5). Mechanistically, we 

hypothesize that this product 55 arises via first an oxidative addition of palladium(0) into 

the alkenyl bromide to form alkenyl palladium(II) complex 56. Next, a migratory insertion 

across the isopropenyl olefin would afford neopentyl alkyl palladium(II) species 57. 

Palladium complex 57 could then undergo coordination to the cyclopentenyl olefin and 

subsequent migratory insertion to forge the cyclopropane a give alkyl palladium species 

58. Then b-hydride elimination and deprotonation of the primary alcohol would afford 

intermediate 59. Lastly, a 5-exo-trig and protodepalladation would afford the observed 

product.  

Figure 3.5 Cyclopropanation 
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 We were interested to understand this cyclopropanation reaction in further detail. 

In 2009, Ray and coworkers published the report of a palladium-catalyzed 

cyclization/cyclopropanation reaction of alkenyl halide substrate 60 in which a similar 

mechanism was proposed (Figure 3.6).15 

Figure 3.6 Cyclopropanation Precedent 

 

To investigate our mechanistic proposal further, we subjected protected alcohol 27 

to the same reaction conditions and found that 62 was formed in good yield (Figure 3.7). 

This is consistent with our mechanistic hypothesis as the intermediate following b-hydride 

elimination is incapable of undergoing further 5-exo-trig cyclization. 

Figure 3.7 Further Cyclopropanation Studies 
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 Having identified the base as being a critical variable in this reaction, we next 

turned to investigate a variety of bases (Table 3.1). Despite looking at a variety of bases 

across different pKb values, we found low levels of reactivity. While KOH gave a mixture 

of 47, 50 and 55 as products, all other reactions failed to afford any of the previously 

observed products. 

Table 3.1 Attempted Optimization via Base Screen 

 

 While we were excited about the general reactivity we had observed in our 
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3.3.3 Nickel Studies 

Retrosynthetically, we believed we could disconnect falcatin A (8) back via a series 

of late-stage functional group interconversions and an allylic oxidation of 9 (Scheme 3.6). 

We then envisioned accessing 9 via an intramolecular Ni-catalyzed reductive coupling of 

66. It was envisioned that the tetrahydrofuran ring of 66 could be constructed via a 

bromoetherification reaction of alcohol 67.  

Scheme 3.6 Retrosynthetic Analysis 
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precedents, we envisioned utilizing a reductive coupling between a alkenyl halide and an 

alkyl halide. 

Figure 3.8 Nickel-Catalyzed Reductive Cross-Coupling Precedent 

 

We began by investigating the bromoetherification reaction of 14 (Figure 3.9). We 

were pleased to find that 14 undergoes the desired cyclization to afford 79 as a single 

diastereomer along with regioisomer 80. 

Figure 3.9 Synthesis of Substrate 79 
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 With 79 in hand, we began investigating the nickel-catalyzed reductive cross-

coupling reaction (Table 3.2). Utilizing similar conditions to the reported literature, we 

found in all cases a lack of the desired cross-coupled product (13). It was found that in 

most cases, substrate 79 was either unreactive or decomposed under the reaction 

conditions. In one case (entry 4), we observed reductive opening of the tetrahydrofuran to 

form 81. 

Table 3.2 Attempts to Perform Reductive Cross-Coupling 
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Scheme 3.7 Retrosynthetic Analysis 
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Figure 3.10 NHK Precedent 
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displacement of alkyl bromide 79 with an acetate group followed by subsequent 

methanolysis afforded alcohol 90. Alcohol 90 could then be oxidized via a Stahl oxidation 

in good yield to deliver aldehyde 91. 
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 We began our investigations by first screening nickel catalyst sources (Table 3.3). 

It was found that Ni(cod)2 performed best giving the desired product in 12% yield (entry 

5). Doubling the scale of the reaction improved the yield to 29% (entry 6). Finally, doubling 

the amount of CrCl2 to 4 equivalents improved the yield slightly to 34% (entry 7). 

Table 3.3 NHK Studies 
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bromide to afford 99 in a modest yield over 2 steps. Lastly, a kinetic resolution via a Corey-

Bakshi-Shibata (CBS) reduction afforded allylic alcohol 100 in 34% yield and 93% ee. 

Scheme 3.9 A Ring Fragment Synthesis 
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Towards the synthesis of the D ring fragment, we first began with commercially 
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Scheme 3.10 Synthesis of Enol Acetate 103 
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reported 85% yield (entry 1). We hypothesized that perhaps a lack of catalyst turnover 

could be an issue and thus attempted to remedy this by using a balloon of oxygen to help 

facilitate the oxidation of the catalyst (entry 2). Although we did see an improvement in 

the yield to 25%, this was unsatisfactory for our desired material throughput. Thus, we 

investigated the reaction in the absence of ligand with higher catalyst loading and found a 

marked increase in the yield up to 65% (entry 3). After screening various loadings of 

nBu3SnOMe (entries 4–7), it was found that 50 mol % was optimal giving the desired 

product in 75% yield (entry 5). We lastly found that running the reaction with a reflux 

condenser instead of in a heavy walled pressure tube was also satisfactory giving the 

product in 82% yield (entry 8).  

Table 3.4 Optimization of Desaturation Reaction 
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giving the product in 20% yield (entry 3). Scaling up this reaction to 500 mg improved the 

yield slightly up to 29% yield. 

Table 3.5 Optimization of Conjugate Addition 

 

 With 105 in hand, we could next test the alkylation of 105 with formaldehyde to 

form the quaternary center of the natural product. Subjection of 105 to a variety of bases 

in the presence of either aqueous formaldehyde (111) or paraformaldehyde (112) gave none 

of the desired product (Table 3.6). Instead, 110 was observed as the only isolable product 

from these reactions. Our mechanistic proposal for the observed reactivity is similar to that 

demonstrated previously in chapter 2 (Figure 3.11). 
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Table 3.6 Attempts to Alkylate Aldehyde 105 

  

Figure 3.11 Mechanistic Hypothesis for the Formation of 110 
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 We hypothesized that if we could slow the rate of formaldehyde generation, we 

could potentially lower the concentration of formaldehyde in solution thereby making the 

addition into a second equivalent of formaldehyde a slower process. Thus, we elected to 

screen reagents which would generate monomeric formaldehyde over the course of the 

reaction (Table 3.7). However, only the formation of epimer retro aldol product 120 and 

recovered starting material were observed. 

Table 3.7 Additional Attempts to Alkylate 105 
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this decomposition pathway. To this end, we first elected to test a methyl ester as a less 

electrophilic functional handle which could later be converted to an aldehyde (Figure 

111 112 121

entry

1

2

3

4

5

6

7

8

electrophile

111

112

121

122

111

112

121

122

result

decomp

decomp

66% 120

59% 120, 41% RSM

decomp

decomp

74% 120

35% 120, 52% RSM

base

Na2CO3

Na2CO3

Na2CO3

Na2CO3

LiOH

LiOH

LiOH

LiOH

O

H H O

base
(3.0 equiv)

electrophile
(6.0 equiv)

MeOH/H2O (1:1), 
50 °C, 24 h

OH

Me Me
OAc

Me

O

H

O

Me Me
OAc

Me

HO

OHC O

Me Me
OAc

Me

109

( (

n
(aqueous)

O O

O

N
OH

O

O

O

Me Me
OAc

Me

not observed
110 120105

122



Chapter 3 – A Transition-Metal Catalyzed Cascade Cyclization Approach to the 
Synthesis of Falcatin A 
 

149 

3.12). Ketoester 123 could be prepared in a single step from enone 104 by reacting in a 

conjugate addition, and trapping the enolate with ethyl cyanoformate to afford 123 as a 

single diastereomer. 

Figure 3.12 Synthesis of Substrate 123 
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with mCPBA, substrate 124 decomposed. Alternatively, subjection to NBS in acetone 

afforded the desired cyclized product in good yield albeit favoring the undesired 

diastereomer (126). 

Scheme 3.11 Cyclization to Form C Ring 

 

 Initial attempts to displace alkyl bromide with an acetate nucleophile were met 

instead with intramolecular displacement to afford the caged intermediate 127 which 
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Figure 3.13 Synthesis of Caged System 127 
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In summary, we were able to demonstrate a transition metal-mediated synthesis of 

the core of the natural product falcatin A (8). We discovered several possible pathways for 

synthesis of complex polycyclic intermediates using palladium catalysis. Nickel-catalyzed 

reductive cross-coupling to forge the central seven-membered ring was ultimately 
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unsuccessful. However, an NHK-strategy was found to be successful in the synthesis of 

the core structure in a model system. The synthesis of more complex fragments is ongoing 

in the laboratory. In our studies of complex fragment synthesis, we were able to 

successfully install the challenging quaternary center at C6 and forge the bridging 

tetrahydrofuran C ring. This chapter represents a significant contribution to the synthesis 

of small complex organic molecules. 

 

3.6 EXPERIMENTAL SECTION 

General Information  

 

3.6.1 Materials and Methods 

Unless otherwise stated, reactions were performed with freshly dried solvents utilizing 

standard Schlenk techniques. Glassware was oven-dried at 120 °C for a minimum of four 

hours or flame-dried utilizing a Bunsen burner under high vacuum. THF, Et2O, DCM, 

MeCN, PhH, and PhMe were dried by passing through activated alumina columns. Et3N, 

i-Pr2NH, DIPEA, Pyr, and 2,6- lutidine were distilled from calcium hydride prior to use 

and stored under N2 or Ar. Commercial reagents were used directly as supplied from 

commercial sources and without further purification unless otherwise specified. All 

reactions were monitored by thin layer chromatography using EMD/Merck silica gel 60 

F254 pre-coated plates (0.25 mm) and were visualized by UV (254 nm) and KMnO4, p-

anisaldehyde, iodine, or CAM staining. Flash column chromatography was performed as 

described by Still et al.34 using silica gel (SiliaFlash® P60, particle size 40-63 microns [230 

to 400 mesh]) purchased from Silicycle. 1H and 13C NMR spectra were recorded on a 
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Bruker Advance III HD with Prodigy Cryoprobe (at 400 MHz and 101 MHz, respectively) 

or Varian Inova 500 (at 500 MHz and 126 MHz, respectively) and are reported relative to 

internal CDCl3 (1H, δ = 7.26), CDCl3 (13C, δ = 77.16). Data for 1H NMR spectra are 

reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, 

t = triplet, q = quartet, p = pentet, hept = heptet, m = multiplet. IR spectra were recorded 

on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption 

(cm–1). Analytical chiral SFC was performed with a Mettler SFC supercritical CO2 

analytical chromatography system (CO2 = 1450 psi, column temperature = 40 °C) with a 

Chiralcel OB-H column (4.6 mm x 25 cm). Molecular formulas of the compounds [M] are 

given, with the observed ion fragment in brackets, e.g. [M+H]+. Deuteriochloroform was 

purchased from Cambridge Isotope Laboratories.  

 

3.6.2 Model System Synthesis 

Preparation of 19: 

 

Procedure: To a flame-dried 1L flask, equipped with a stir bar, was charged methyl 

acrylate (172 mL, 1.91 mol, 1.0 equiv), DABCO (32.2 g, 287 mmol, 15 mol %), and 

methacrolein (158, 1.91 mol, 1.0 equiv). Reaction sparged with N2 for 60 mins, then 

allowed to stir for 10 days, wrapped in foil at room temperature. Remaining starting 

materials were then distilled away via rotary evaporation. Then DCM (300 mL) added 

Me
OMe

OOH

31% yield
19

Me
OMe

OO

+H

DABCO
(15 mol %)
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followed by 0.1 M HCL (300 mL). Reaction extracted 3X with DCM and washed with 

brine. Combined organic layers were then dried over MgSO4, filtered, and concentrated in 

vacuo. Material was then purified via column chromatography (15% to 50% 

EtOAc/hexanes) to afford 19 (92.2g, 590 mmol, 31% yield) as a pale-yellow oil. Spectral 

data matched the literature.35 

1H NMR (400 MHz, CDCl3) δ 6.30 (d, J = 1.1 Hz, 1H), 5.85 (t, J = 1.2 Hz, 1H), 5.08 (q, 

J = 1.2 Hz, 1H), 4.98 (dt, J = 2.9, 1.5 Hz, 1H), 4.90 (d, J = 1.4 Hz, 1H), 3.77 (s, 3H), 1.71 

(dd, J = 1.4, 0.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 167.07, 144.64, 140.44, 126.40, 112.72, 74.72, 52.10, 

18.90. 

FTIR (NaCl, thin film): 2924, 2864, 1723, 1492, 1455, 1374, 1336, 1213, 1152, 1125, 

1100, 1040, 918, 803, 734 cm-1.  

Rf = 0.25 in 20%EtOAc/hexanes (stains blue with p-anisaldehyde) 

 

Preparation of 23: 

 

Procedure: To a dry 2L flask, equipped with a stir bar, was charged PPh3 (75.6 g, 288 

mmol, 1.5 equiv), 4-nitrobenzoic acid (48.2 g, 288 mmol, 1.5 equiv), and placed under 

nitrogen. To this was added THF (1.60 L), followed by triethylamine (40.2 mL, 288 mmol, 

Me
OMe

OOH
O2N

OH

O

THF, 0 °C to 23 °C

68% yield

DIAD, PPh3, NEt3 p-NO2Ph O

O

OMe

O

Me

19

20

23
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1.5 equiv). Reaction then cooled to –10 °C for 1 h. Then DIAD (56.7 mL, 288 mmol, 1.5 

equiv) added slowly over 1 h. Once DIAD finished adding, reaction stirred for 15 mins, 

and then alcohol 19 (30.0 g, 192 mmol, 1.0 equiv) was cannulated over 1 h, rinsed with 

THF (20 mL) to ensure quantitative transfer. Reaction then stirred overnight (16 hours) at 

room temperature. Reaction then quenched by addition of Et2O and water. Mixture was 

then transferred to a separatory funnel and washed with H2O, washed with 1N NaOH 

solution, and then extracted with Et2O (3X). Combined organic layers were then washed 

with saturated aqueous NaHCO3, and then washed with brine. Combined organic layers 

were then dried over MgSO4, filtered, and concentrated in vacuo. Material was then 

purified via column chromatography (10% EtOAc/hexanes) to afford 23 (58.6 g, 130.6 

mmol, 68% yield) as an off white amorphous solid. Spectral data matched the literature.36 

1H NMR (400 MHz, CDCl3) δ 8.32 – 8.23 (m, 2H), 8.23 – 8.13 (m, 2H), 7.49 (s, 1H), 

5.31 (t, J = 1.8 Hz, 1H), 5.23 (s, 2H), 5.21 (s, 1H), 3.81 (s, 3H), 1.99 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 167.32, 164.44, 150.71, 148.10, 139.91, 135.57, 130.92, 

125.38, 123.68, 122.30, 60.32, 52.47, 22.14. 

FTIR (NaCl, thin film): 2953, 1723, 1608, 1528, 1436, 1410, 1346, 1272, 1237, 1100, 

957, 719. 

Rf = 0.4 in 20%EtOAc/hexanes (stains blue with p-anisaldehyde) 
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Preparation of 24:  

 

Procedure: To a 2L round bottomed flask, equipped with a stir bar, was charged 23 (33.0 

g, 108 mmol, 1.0 equiv) followed by MeOH (1.00 L) and cooled to 0 °C under N2. To this 

solution was added K2CO3 (29.9 g, 216 mmol, 2.0 equiv) as a solid. Reaction then warmed 

to room temperature and stirred for 4 hours. Whole flask then concentrated via rotary 

evaporation to remove MeOH. Then water (300 mL) added followed by DCM (500 mL). 

Mixture was then extract into DCM (4X), and then washed with brine. Combined organic 

layers were then dried over Na2SO4, filtered, and concentrated in vacuo. Mixture was then 

azeotroped with hexanes (2X) to remove any last traces of MeOH. Crude alcohol used in 

next step without further purification. 

Procedure: To a 2L flask, equipped with a stir bar, was charged crude material from above 

followed by DCM (1.09 L).  Reaction cooled to 0 °C, and then 2,6-lutidine (18.9 mL, 162 

mmol, 1.5 equiv) added followed by TIPS(OTf) (37.8 mL, 141 mmol, 1.3 equiv). Reaction 

warmed to room temperature and stirred overnight. Reaction then quenched with saturated 

aqueous NaHCO3 (400 mL) and then extracted with DCM (3X). Combined organic layers 

were then dried over Na2SO4, filtered, and concentrated in vacuo. Material was then 

purified via column chromatography (2.5% to 5% EtOAc/hexanes) to afford 24 (15.5 g, 

49.7 mmol, 46% over 2 steps) as a pale-yellow oil. 

1) K2CO3, MeOH
  0 °C to 23 °C

46% yield
over 2 steps

2) TIPSOTf
    DCM, 0 °C

TIPSO OMe

O

Me
p-NO2Ph O

O

OMe

O

Me

23 24
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1H NMR (400 MHz, CDCl3) δ 7.19 (d, J = 1.2 Hz, 1H), 5.33 (dp, J = 2.0, 0.9 Hz, 1H), 

5.26 – 5.20 (m, 1H), 4.54 (s, 2H), 3.77 (s, 3H), 1.99 – 1.94 (m, 3H), 1.16 – 1.02 (m, 

27H). 

13C NMR (101 MHz, CDCl3) δ 168.60, 144.22, 140.23, 131.11, 120.83, 57.78, 51.95, 

22.32, 18.09, 17.84, 12.19. 

FTIR (NaCl, thin film): 2943, 2866, 1721, 1611, 1462, 1433, 1296, 1234, 1117, 1081, 

1063, 882, 752, 682, 658. 

HRMS: (ESI) calc’d for C17H32O3Si [M + H]+ 313.2198, found 313.2917.  

 

Preparation of 18:  

 

Procedure: To a 1L round bottom flask, equipped with a stir bar, was charged 24 (19.0 g, 

60.8 mmol, 1.0 equiv), followed by DCM (553 mL). Solution was cooled to –78 °C and 

then DIBAL (1.0 M in DCM, 152 mL, 152 mmol, 2.5 equiv) added via cannula over 20 

mins. Reaction stirred until complete consumption of ester 24 (1.5 hours). Reaction then 

quenched with saturated aqueous Rochelle's salt solution and stirred overnight (16 hours). 

To the reaction was then added H2O and DCM. Reaction was extracted with DCM (6X), 

dried over Na2SO4, filtered, and concentrated in vacuo. Material was then purified via 

column chromatography (10% to 20% EtOAc/hexanes) to afford a crude oil (16.2 g). 

Material used directly in next step without further purification. 

TIPSO OMe

O

Me

24

1) DIBAL, DCM

84% yield
over 2 steps

2) (MeCN)4•Cu(OTf) 
     4,4’-dtbbpy
     TEMPO, NMI, MeCN

TIPSO H

O

Me

18
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Procedure: To a 1L round bottom flask, equipped with a stir bar, was added crude material 

from above, (MeCN)4•Cu(OTf) (795 mg, 2.11 mmol, 4 mol %), 4,4-dimethoxy-2,2’-

bipyridine (456 mg, 2.11 mmol, 4 mol %), NMI (346 mg, 4.22 mmol, 8 mol %), TEMPO 

(330 mg, 2.11 mmol, 4 mol %), and MeCN (527 mL). Stirred at room temperature open to 

air for 3 hours. Reaction then filtered thru silica plug (250 g) eluting with 10% 

EtOAc/hexanes. Material was further purified via column chromatography (% 

EtOAc/hexanes) to afford 18 (14.43g, 51.1 mmol, 84%) as a pale-yellow oil. 

1H NMR (400 MHz, CDCl3) δ 9.45 (s, 1H), 6.87 (d, J = 0.9 Hz, 1H), 5.56 (dq, J = 1.8, 

0.9 Hz, 1H), 5.41 (p, J = 1.6 Hz, 1H), 4.51 (s, 2H), 2.15 (t, J = 1.2 Hz, 3H), 1.10 – 0.99 

(m, 22H). 

13C NMR (101 MHz, CDCl3) δ 194.72, 154.86, 140.79, 139.74, 124.99, 54.29, 21.39, 

17.85, 12.11. 

FTIR (NaCl, thin film): 2942, 2865, 1687, 1620, 1461, 1382, 1174, 1085, 1065, 1015, 

918, 881, 794, 680. 

HRMS: (ESI) calc’d for C16H30O2Si [M + H]+ 283.2093, found 283.2111.  

Rf = 0.4 in 10% EtOAc/hexanes (stains gray in p-anisaldehyde) 
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Preparation of 16: 

 

Procedure: To a 250 mL round-bottomed flask, equipped with a stir bar, was charged with 

3 Å MS (powdered, 5.65 g), and a stir bar, then flame-dried under high vacuum for 5 

minutes. The flask was cooled under N2 then charged with dienophile 18 (5.65 g, 20.0 

mmol, 1.0 equiv), 2,3-dimethylbutadiene (9.05 mL, 80.0 mmol, 4.0 equiv), and anhydrous 

DCM (100 mL). Reaction was then sparged with argon for 20 mins. Then the septum was 

sealed around the edges with parafilm and the reaction was transferred to the cryocool. The 

mixture was stirred at –55 °C under Ar for 15 mins, then BF3•Et2O (2.47, 20.0 mmol, 1.0 

equiv) was added last, slowly, dropwise via syringe over 7 minutes. The balloon was 

removed, and 2 pieces of electric tape was placed on top of the septum. The reaction was 

warmed to –45 °C and stirred at –45 °C for 16 hours. The reaction was brought to the fume 

hood and quenched with sat. aq. NaHCO3, with rapid stirring and agitation. The mixture 

was then filtered through a celite plug (NOTE!: make sure to stir the celite up and wash it 

with a good amount of DCM to ensure no product sticks to the celite). H2O was added, and 

then the product was extracted 3x with DCM, dried over Na2SO4, filtered, and concentrated 

in vacuo. Material was further purified via column chromatography (2% Et2O/hexanes) to 

afford 16 (3.23 g, 7.80 mmol, 39%) as a murky white oil.  

TIPSO
Me

MeMe

3 Å MS, DCM, 
–55 to –45 °C

39% yield
 1.1:1 rr

BF3•Et2O
Me

Me
OTIPSO

H

Me
O

H

18 16

17
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1H NMR (400 MHz, CDCl3) δ 9.57 (s, 1H), 4.85 (p, J = 1.6 Hz, 1H), 4.76 (d, J = 2.0 Hz, 

1H), 3.95 (d, J = 9.5 Hz, 1H), 3.64 (d, J = 9.5 Hz, 1H), 2.73 (dd, J = 6.7, 4.5 Hz, 1H), 

2.40 (d, J = 17.6 Hz, 1H), 2.16 – 2.05 (m, 1H), 2.00 (d, J = 16.3 Hz, 2H), 1.94 – 1.82 (m, 

1H), 1.73 – 1.68 (m, 3H), 1.68 (s, 3H), 1.58 (s, 3H), 1.15 – 0.91 (m, 21H). 

13C NMR (101 MHz, CDCl3) δ 207.33, 146.19, 125.33, 123.51, 113.72, 66.45, 53.55, 

41.90, 34.83, 32.77, 23.62, 19.24, 18.92, 18.10, 12.01. 

FTIR (NaCl, thin film): 2940, 2865, 1728, 1457, 1377, 1105, 1067, 882, 801, 682, 523. 

HRMS: (ESI) calc’d for C22H40O2Si [M + H]+ 365.2876, found 365.2882.  

Rf = 0.4 in 10% EtOAc/hexanes (stains gray in p-anisaldehyde) 

Preparation of 26:  

 

Procedure: To a flame-dried 250 mL round bottomed flask, equipped with a stir bar, was 

charged 1,2-dibromocyclopentene (1.91 mL, 16.0 mmol, 2.0 equiv) followed by THF (40 

mL). The solution was cooled to –78 °C and then tBuLi (1.55 M in hexanes, 20.7 mL, 32.0 

mmol, 4.0 equiv) added slowly via syringe. Solution stirred for 30 mins. Then aldehyde 16 

(2.92 g, 8.00 mmol, 1.0 equiv) cannulated at –78 °C as a solution in THF (30 mL). Flask 

of aldehyde rinsed with THF (10 mL) to ensure quantitative transfer. Reaction stirred at –

78 ° C for 30 mins. Reaction quenched with methanol (10 mL). Water (~50 mL) and Et2O 

(100 mL) then added and layers separated. Extracted with Et2O (3X) and the combined 

Me

Me
OTIPSO

H

Me

Br

Br

tBuLi, THF, –78 °C

OTIPS
Me

Me
H

OH

Br
Me

67% yield
16 26

15
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organic layers dried over MgSO4, filtered, and concentrated in vacuo. Material was then 

further purified via column chromatography (4% Et2O/hexanes) to afford 26 (2.52 g, 5.36 

mmol, 67%) as a thick pale-yellow oil.  

26: 

1H NMR (400 MHz, CDCl3) δ 4.73 (t, J = 1.9 Hz, 1H), 4.69 (d, J = 2.3 Hz, 1H), 4.65 (d, 

J = 7.4 Hz, 1H), 4.34 (d, J = 7.5 Hz, 1H), 4.03 (d, J = 10.2 Hz, 1H), 3.62 (d, J = 10.3 Hz, 

1H), 2.79 – 2.47 (m, 5H), 2.44 – 2.30 (m, 2H), 2.14 (dd, J = 7.1, 3.8 Hz, 1H), 2.06 – 1.96 

(m, 3H), 1.82 – 1.77 (m, 1H), 1.68 (s, 6H), 1.62 (s, 4H), 1.17 – 1.00 (m, 32H). 

13C NMR (101 MHz, CDCl3) δ 148.47, 141.26, 123.84, 123.55, 121.33, 112.97, 74.02, 

70.60, 44.17, 43.09, 40.20, 35.44, 35.06, 31.74, 31.35, 22.81, 22.55, 19.46, 18.76, 18.08, 

14.27, 11.98. 

FTIR (NaCl, thin film): 2928, 2863, 1733, 1457, 1381, 1264, 1096, 1015, 880, 808, 677, 

598.  

HRMS: (ESI) calc’d for C27H47O2BrSi [M + H – H2O]+ 493.2501, found 493.2490.  

Rf = 0.40 in 7.5% Et2O/hexanes (stains green in p-anisaldehyde) 

26’ (minor diastereomer): 

1H NMR (400 MHz, CDCl3) δ 4.73 – 4.67 (m, 3H), 3.91 (d, J = 9.7 Hz, 1H), 3.72 (d, J = 

9.7 Hz, 1H), 2.68 (t, J = 6.2 Hz, 1H), 2.53 (ttd, J = 8.0, 6.7, 5.4, 2.3 Hz, 4H), 2.38 (dtt, J 

= 15.8, 5.9, 2.8 Hz, 1H), 2.23 – 2.12 (m, 1H), 1.92 – 1.73 (m, 6H), 1.65 (s, 3H), 1.52 (dd, 

J = 5.8, 3.2 Hz, 10H), 1.02 (q, J = 5.8, 4.6 Hz, 27H). 

13C NMR (101 MHz, CDCl3) δ 147.81, 140.88, 124.58, 123.91, 121.46, 113.85, 75.64, 

69.34, 44.35, 44.25, 40.17, 35.78, 33.84, 31.52, 22.65, 22.44, 19.38, 18.79, 18.17, 12.30. 
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HRMS: (ESI) calc’d for C27H47O2BrSi [M + H – H2O]+ 493.2501, found 493.2493.  

Rf = 0.45 in 7.5% Et2O/hexanes (stains purple in p-anisaldehyde) 

 

Preparation of 27:  

 

Procedure: A oven-dried, 25ml vial, equipped with a stir bar, was charged with 26 (2.00 

g, 3.91 mmol, 1.0 equiv), anhydrous DCM (39.1 mL), freshly distilled Hunig’s base (15.0 

mL, 86.0 mmol, 22.0 equiv). To the homogeneous solution was added MOMCl (5.94 mL, 

78.2 mmol, 20.0 equiv) dropwise over 10 min, taking care to vent HCl fumes formed via 

the use of a needle. The reaction was stirred at room temperature for 36 hours. The resulting 

mixture was quenched via addition of sat. aq. NaHCO3 and stirred at room temperature for 

30 min. The aqueous layer was extracted with CH2Cl2 (3 x 10 mL). The combined organic 

layers were washed with H2O (10 mL), brine (10 mL), dried over Na2SO4, and 

concentrated. Material was further purified via column chromatography (20% 

EtOAc/hexanes) to afford 27 as a white amorphous solid which was used directly in the 

next step without further purification. 

1H NMR (400 MHz, CDCl3) δ 4.87 – 4.77 (m, 2H), 4.56 – 4.38 (m, 4H), 3.74 (d, J = 

10.0 Hz, 1H), 3.64 (d, J = 10.0 Hz, 1H), 3.37 (s, 3H), 2.87 (dd, J = 11.3, 5.9 Hz, 1H), 

2.58 (tdd, J = 14.2, 11.9, 5.6 Hz, 3H), 2.44 (ddd, J = 15.0, 9.2, 3.5 Hz, 1H), 2.36 – 2.12 

MOMCl, 
Hünig’s base

DCM, reflux

OTIPS
Me

Me
H

MOMO

Br
Me

27

OTIPS
Me

Me
H

HO

Br
Me

26
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(m, 4H), 1.90 (ttd, J = 17.4, 8.8, 4.1 Hz, 3H), 1.77 (s, 3H), 1.70 – 1.47 (m, 9H), 1.10 – 

0.92 (m, 21H). 

13C NMR (101 MHz, CDCl3) δ 147.67, 140.49, 125.07, 123.44, 121.47, 114.37, 96.01, 

78.10, 62.70, 56.63, 46.73, 40.08, 36.07, 32.67, 32.43, 22.74, 22.06, 19.41, 18.59, 18.18, 

18.04, 12.23. 

FTIR (NaCl, thin film): 2941, 2865, 1633, 1462, 1379, 1149, 1080, 1030, 883, 812, 682. 

HRMS: (ESI) calc’d for C29H51O3BrSi [M + H – OMOM]+ 493.2501, found 493.2508.  

 

Preparation of 14:  

 

Procedure: To a 100 mL round bottomed flask, equipped with a stir bar, was charged 

alcohol 26 (640 mg, 1.25 mmol, 1.0 equiv) followed by 9:1 MeCN/tBuOH (37.9 

mL) [34.11 mL of MeCN, 3.79 mL of tBuOH]. Solution cooled to 0 °C and then H2SiF6 

(1.30 mL, 3.75 mmol, 3.0 equiv) added via microsyringe. Reaction stirred at 0 °C and 

monitored by TLC until complete consumption of starting material (12 h). Reaction was 

then quenched with brine, diluted with DCM, extract with DCM (3X), filtered over celite, 

and concentrated in vacuo. Material was then further purified via column chromatography 

(40% EtOAc/hexanes) to afford 14 (329 mg, 0.925 mmol, 74% yield over 2 steps) as a 

clear colorless thick oil. 

H2SiF6

MeCN/tBuOH, 23 °C
OH

Me

Me
H

MOMO

Br
Me

14

OTIPS
Me

Me
H

HO

Br
Me
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1H NMR (400 MHz, CDCl3) δ 4.77 – 4.71 (m, 1H), 4.68 (dd, J = 2.5, 0.8 Hz, 2H), 4.50 

(d, J = 6.6 Hz, 1H), 4.44 (d, J = 6.6 Hz, 1H), 3.95 (d, J = 11.6 Hz, 1H), 3.46 – 3.40 (m, 

1H), 3.40 (s, 0H), 3.19 (d, J = 9.7 Hz, 1H), 2.86 – 2.68 (m, 1H), 2.67 – 2.46 (m, 3H), 2.44 

– 2.31 (m, 1H), 2.18 – 2.08 (m, 2H), 2.07 – 1.88 (m, 2H), 1.81 – 1.72 (m, 1H), 1.68 (qd, J 

= 1.5, 1.0 Hz, 6H), 1.66 – 1.61 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 148.63, 138.12, 125.10, 124.35, 123.19, 113.13, 94.72, 

79.38, 68.47, 56.63, 43.80, 43.50, 40.27, 35.42, 34.48, 31.87, 22.87, 22.72, 19.39, 18.80. 

FTIR (NaCl, thin film): 3515, 2914, 1631, 1441, 1208, 1150, 1025, 894, 524. 

HRMS: (ESI) calc’d for C20H31O3Br [M + Na]+ 421.1354, found 421.1357.  

 

3.6.3 Palladium Cyclization Studies 

Preparation of 47:  

 

Procedure: To a 1-dram vial, equipped with a stir bar, in a nitrogen filled glovebox, was 

added Pd G3 dimer (5.6 mg, 0.00751 mmol, 10 mol), RuPhos (17.5 mg, 0.0376 mmol, 50 

mol %), NaOtBu (7.9 mg, 0.0826 mmol, 1.1 equiv), alcohol 14 (30 mg, 0.075 mmol, 1.0 

equiv) followed by PhMe (2.0 mL). Reaction capped and removed from glovebox. Then 

brought to hood and stirred at 60 °C for 3 hours. Reaction then quenched with sat. aq. 

NaHCO3, extracted with Et2O (3X), washed with water, dried over MgSO4, filtered, 

O

MOMO
Me

Me

Me

Me

OHMOMO

Br H
Me

Me

Pd G3 dimer (10 mol %)
RuPhos (50 mol %)
NaOtBu (1.1 equiv)

Toluene, 60 °C, 3 h

14
47
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concentrated in vacuo. Material was then purified by preparatory TLC (40% 

EtOAc/hexanes) to afford 47.  

1H NMR (500 MHz, cdcl3) δ 7.26 (s, 2H), 4.84 (t, J = 1.9 Hz, 1H), 4.76 (d, J = 2.4 Hz, 

1H), 4.61 (d, J = 6.7 Hz, 1H), 4.55 (d, J = 6.7 Hz, 1H), 3.73 (s, 1H), 3.70 – 3.63 (m, 2H), 

3.38 (s, 3H), 2.55 (dt, J = 14.3, 7.3 Hz, 1H), 2.42 – 2.19 (m, 5H), 2.00 – 1.83 (m, 4H), 

1.76 (s, 3H), 1.71 (d, J = 17.9 Hz, 1H), 1.62 (s, 6H). 

13C NMR (101 MHz) δ 154.33, 148.51, 124.92, 123.36, 112.88, 106.27, 96.81, 77.48, 

77.16, 76.84, 72.65, 69.21, 55.72, 41.08, 39.53, 35.14, 31.35, 31.32, 30.91, 24.05, 20.04, 

19.31, 18.77. 

HRMS: (ESI) calc’d for C20H30O3 [M + NH4]+ 336.2538, found 336.2496.  

 

Preparation of 50:  

 

Procedure: To a 1-dram vial, equipped with a stir bar, in a nitrogen filled glovebox, was 

added Pd G3 dimer (5.6 mg, 0.00751 mmol, 10 mol), RuPhos (17.5 mg, 0.0376 mmol, 50 

mol %), Ag2CO3 (20.7 mg, 0.0751 mmol, 1.0 equiv), alcohol 14 (30 mg, 0.075 mmol, 1.0 

equiv) followed by PhMe (2.0 mL). Reaction capped and removed from glovebox. Then 

brought to hood and stirred at 95 °C for 18 hours. Reaction then quenched with sat. aq. 

NaHCO3, extracted with Et2O (3X), washed with water, dried over MgSO4, filtered, 

Me

OHMOMO

Br H
Me

Me

Pd G3 dimer (10 mol %)
RuPhos (50 mol %)
Ag2CO3 (1.1 equiv)

Toluene, 95 °C, 18 h
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concentrated in vacuo. Material was then purified by preparatory TLC (40% 

EtOAc/hexanes) to afford 50.  

1H NMR (400 MHz, CDCl3) δ 9.75 (s, 1H), 4.71 (d, J = 6.7 Hz, 1H), 4.64 (d, J = 6.7 Hz, 

1H), 4.02 (s, 1H), 3.39 (s, 3H), 2.78 – 2.70 (m, 1H), 2.64 – 2.54 (m, 1H), 2.43 – 2.31 (m, 

2H), 2.21 – 2.11 (m, 2H), 1.86 – 1.78 (m, 3H), 1.71 – 1.67 (m, 3H), 1.64 (ddt, J = 2.3, 

1.6, 0.8 Hz, 3H), 1.09 (s, 3H), 0.90 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 205.72, 147.74, 132.30, 124.48, 122.28, 97.66, 72.73, 

56.20, 53.42, 41.13, 36.31, 35.22, 31.81, 30.47, 30.02, 28.53, 22.64, 22.29, 19.12, 18.99. 

HRMS: (ESI) calc’d for C20H30O3 [M + NH4]+ 336.2538, found 336.2500.  

 

Preparation of 55:  

 

Procedure: To a 1-dram vial, equipped with a stir bar, in a nitrogen filled glovebox, was 

added Pd G3 dimer (5.6 mg, 0.00751 mmol, 10 mol), RuPhos (17.5 mg, 0.0376 mmol, 50 

mol %), Ag2CO3 (20.7 mg, 0.0751 mmol, 1.0 equiv), alcohol 14 (30 mg, 0.075 mmol, 1.0 

equiv) followed by PhMe (2.0 mL). Reaction capped and removed from glovebox. Then 

brought to hood and stirred at 95 °C for 18 hours. Reaction then quenched with sat. aq. 

NaHCO3, extracted with Et2O (3X), washed with water, dried over MgSO4, filtered, 

concentrated in vacuo. Material was then purified by preparatory TLC (40% 

EtOAc/hexanes) to afford 55.  

Me
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Br H
Me

Me

Pd G3 dimer (10 mol %)
RuPhos (50 mol %)

KOH (1.1 equiv)

Toluene, 95 °C, 18 h

20% yield
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1H NMR (400 MHz, CDCl3) δ 7.26 (d, J = 1.1 Hz, 2H), 4.69 – 4.61 (m, 2H), 3.83 (dd, J 

= 8.5, 1.6 Hz, 1H), 3.64 (d, J = 1.4 Hz, 1H), 3.63 – 3.59 (m, 1H), 3.41 (d, J = 1.2 Hz, 

3H), 2.16 – 1.65 (m, 8H), 1.61 (d, J = 8.6 Hz, 6H), 1.54 (d, J = 18.8 Hz, 2H), 1.43 (ddt, J 

= 9.7, 7.4, 3.0 Hz, 1H), 1.30 – 1.24 (m, 2H), 0.99 (d, J = 10.1 Hz, 1H), 0.94 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 125.34, 123.69, 96.75, 84.49, 82.86, 62.51, 56.68, 56.04, 

45.00, 44.23, 41.03, 38.70, 31.94, 31.21, 28.22, 26.01, 19.18, 16.58. 

FTIR (NaCl, thin film): 2924, 2864, 1723, 1492, 1455, 1374, 1336, 1213, 1152, 1125, 

1100, 1040, 918, 803, 734 cm-1.  

HRMS: (ESI) calc’d for C20H30O3 [M + H]+ 319.2273, found 319.2263.  

TLC (8% Et2O/hexanes): Rf 0.15 (anisaldehyde, stains blue). 

 

Preparation of 62:  

 

Procedure: To an oven-dried 2-dram vial, equipped with a stir bar, in an N2-filled 

glovebox, was charged Pd G3 dimer (3.70 mg, 0.005 mmol, 10 mol %), RuPhos (11.7 mg, 

0.0250 mmol, 50 mol %), KOH (5.61 mg, 0.100 mmol, 2.0 equiv), and alcohol 14 (27.8 

mg, 0.005 mmol, 1.0 equiv). The reaction was sealed with a Teflon-lined cap and electrical 

tape, removed from the glovebox, and stirred at 95 °C for 23 hours. The reaction was cooled 

to ambient temperature, then run through a silica plug (30% EtOAc/hexanes) and 

Me

OTIPSMOMO

Br H
Me

Me
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KOH (2.0 equiv)

Toluene, 95 °C, 18 h
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concentrated in vacuo. Material then further purified via column chromatography (1% 

Et2O/hexanes) to afford 62 (7.2 mg, 0.0015 mmol, 30%) as a clear colorless oil.  

1H NMR (400 MHz, CDCl3) δ 5.48 – 5.33 (m, 1H), 4.64 (dd, J = 37.6, 6.8 Hz, 3H), 3.87 

(s, 1H), 3.71 – 3.53 (m, 4H), 3.42 (s, 4H), 2.82 – 2.43 (m, 2H), 2.44 – 2.18 (m, 4H), 2.18 

– 1.96 (m, 7H), 1.90 – 1.66 (m, 4H), 1.66 – 1.51 (m, 12H), 1.10 – 0.93 (m, 36H), 0.62 – 

0.50 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 143.84, 125.77, 124.46, 124.33, 120.41, 120.02, 118.93, 

108.52, 96.44, 83.09, 77.45, 77.34, 77.14, 76.82, 62.79, 60.52, 55.92, 47.45, 44.10, 39.18, 

39.08, 33.74, 31.68, 31.64, 30.47, 21.18, 21.07, 19.08, 18.93, 18.80, 18.15, 18.09, 14.33, 

12.07. 

FTIR (NaCl, thin film): 3045, 2924, 2864, 1590, 1462, 1380, 1245, 1215, 1153, 1124, 

1103, 1038, 918, 842, 836, 807, 683, 657. 

TLC (8% Et2O/hexanes): Rf 0.15 (anisaldehyde, stains blue). 

 

3.6.4 Nickel Reductive Coupling Studies 

Preparation of 79 and 80:  

 

Procedure: In a 50-mL round-bottomed flask, alcohol 14 (304 mg, 0.761 mmol, 1.0 equiv) 

was dissolved in anhydrous acetone (7.61 mL). The solution was cooled to 0 °C under an 

atmosphere of N2, and then N-bromosuccinimide (142 mg, 0.799 mmol, 1.05 equiv) was 
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added as a solid. The reaction was stirred at 0 °C for 1 h under N2 then quenched with 10% 

aqueous NaHSO3 (5 mL). The mixture was diluted with H2O (25 mL) then extracted with 

Et2O (3 x 25 mL). The combined organic extracts were dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude oil was purified by silica gel chromatography (5 to 10% 

EtOAc/hexanes) to afford ether 79 (231 mg, 0.483 mmol, 63% yield) as a white solid and 

ether 80 (140 mg, 0.293 mmol, 38% yield) as a colorless oil. 

79: 

1H NMR (400 MHz, CDCl3): δ 4.47 (s, 1H), 4.44 (s, 2H), 3.97 (d, J = 8.9 Hz, 1H), 3.54 

(d, J = 8.9 Hz, 1H), 3.41 (s, 3H), 3.40 – 3.31 (m, 2H), 2.79 – 2.57 (m, 2H), 2.56 – 2.42 (m, 

1H), 2.42 – 2.32 (m, 1H), 2.32 – 2.21 (m, 2H), 2.17 (dt, J = 8.0, 1.4 Hz, 1H), 2.09 – 1.86 

(m, 3H), 1.81 (d, J = 17.7 Hz, 1H), 1.67 (s, 6H), 1.19 (s, 3H). 

13C NMR (101 MHz, CDCl3): 13C NMR (101 MHz, CDCl3) δ 138.2, 124.7, 124.3, 124.3, 

94.7, 84.4, 77.7, 74.1, 56.5, 50.3, 44.9, 43.6, 40.3, 36.5, 32.0, 31.1, 22.7, 21.3, 19.7, 18.8. 

FTIR (NaCl, thin film): 2927, 2854, 1443, 1208, 1143, 1094, 1027, 921 cm-1.  

HRMS: (FAB) calc’d for C18H25Br2O [M – OMOM]+ 417.0252, found 417.0238.  

TLC (10% EtOAc/hexanes): Rf 0.32 (anisaldehyde, stains orange). 

80: 

1H NMR (400 MHz, CDCl3): δ 4.95 (dt, J = 2.2, 0.7 Hz, 1H), 4.90 (t, J = 1.7 Hz, 1H), 

4.52 (d, J = 6.3 Hz, 1H), 4.50 – 4.43 (m, 2H), 4.16 – 4.06 (m, 1H), 3.54 (dd, J = 8.8, 1.4 

Hz, 1H), 3.39 (s, 3H), 3.14 – 3.04 (m, 1H), 2.74 (d, J = 12.4 Hz, 1H), 2.71 – 2.58 (m, 2H), 

2.58 – 2.36 (m, 2H), 2.19 – 2.05 (m, 2H), 2.03 – 1.88 (m, 2H), 1.85 (dd, J = 1.5, 0.8 Hz, 

3H), 1.80 (d, J = 12.4 Hz, 1H), 1.73 (s, 3H), 1.41 (s, 3H). 
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13C NMR (101 MHz, CDCl3): δ 145.8, 139.1, 122.7, 115.0, 96.8, 85.6, 76.8, 71.8, 71.4, 

56.9, 52.6, 47.3, 45.3, 45.0, 40.1, 33.0, 28.8, 23.0, 21.7, 21.4. 

FTIR (NaCl, thin film): 2934, 1449, 1378, 1154, 1093, 1034, 1014, 903 cm-1. 

HRMS: (ESI) calc’d for C20H34NO3Br2 [M + NH4]+ 494.0905, found 494.0903.  

TLC (10% EtOAc/hexanes): Rf 0.40 (anisaldehyde, stains green). 

 

3.6.5 NHK Studies 

Preparation of 91: 

 

Procedure: A 2-dram vial was charged with alkyl bromide 79 (291 mg, 0.608 mmol, 1 

equiv) and a stir bar then brought into an N2-filled glovebox. Me4NOAc (162 mg, 1.22 

mmol, 2 equiv), NaI (18.2 mg, 0.122 mmol, 20 mol %), and DMF (3.04 mL) were added 

in that order. The vial was sealed with a Teflon-lined screw cap, removed from the 

glovebox, and stirred at 110 °C for 26 h. The reaction was cooled to ambient temperature, 

diluted with H2O (20 mL), then extracted with EtOAc (3 x 20 mL). The combined organic 

extracts were washed with 1 M aqueous LiCl (2 x 10 mL), dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude acetate S1 was carried forward without further 

purification. 

A 50 mL round-bottomed flask was charged with crude S1 and a stir bar. K2CO3 

(252 mg, 1.82 mmol, 3 equiv) was added, followed by MeOH (12.2 mL). The reaction was 
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stirred at 20 °C under N2 for 20 h, then quenched with saturated aqueous NH4Cl (10 mL). 

The mixture was diluted with H2O (10 mL), then extracted with DCM (4 x 20 mL). The 

combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. 

The crude mixture was purified by silica gel chromatography (30% EtOAc/hexanes) to 

afford alcohol 90 (191 mg, 0.462 mmol, 76% yield) as a white solid. 

1H NMR (400 MHz, CD2Cl2): δ 4.46 (s, 1H), 4.45 – 4.36 (m, 2H), 3.87 (d, J = 8.7 Hz, 

1H), 3.51 (d, J = 8.7 Hz, 1H), 3.38 (s, 3H), 3.37 – 3.24 (m, 2H), 2.76 – 2.56 (m, 2H), 2.50 

– 2.24 (m, 3H), 2.22 – 2.14 (m, 2H), 2.04 – 1.81 (m, 3H), 1.71 (d, J = 10.4 Hz, 1H), 1.69 

– 1.64 (m, 6H), 0.97 (s, 3H). 

13C NMR (101 MHz, CD2Cl2): δ 138.6, 125.4, 124.4, 124.3, 94. 9, 86.5, 78.5, 74.7, 69.7, 

56.4, 49.9, 41.7, 40.5, 36.9, 32.0, 30.6, 22.9, 19.7, 19.5, 18.8. 

FTIR (NaCl, thin film): 3426, 2924, 2855, 1443, 1155, 1142, 1094, 1027 cm-1. 

HRMS: (ESI) calc’d for C20H31O4BrNa [M + Na]+ 437.1303, found 437.1307.  

TLC (30% EtOAc/hexanes): Rf 0.25 (anisaldehyde, stains dark purple). 

 

Preparation of 91: 

 

Procedure: A 50 mL round-bottomed flask was charged with (MeCN)4CuOTf (15.1 mg, 

0.04 mmol, 0.10 equiv), 4,4’-dimethoxy-2,2’-bipyridine (8.65 mg, 0.04 mmol, 0.10 equiv), 

MeCN (8 mL), and a stir bar then stirred at ambient temperature until a bright blue complex 
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formed. N-methylimidazole (6.38 µL, 0.08 mmol, 0.20 equiv) and ABNO (5.61 mg, 0.04 

mmol, 0.10 equiv) were added, followed by alcohol 90 (166 mg, 0.40 mmol, 1 equiv). The 

flask was equipped with a rubber septum, and then the reaction was stirred at 50 °C under 

a balloon of O2 for 19 h. 

The reaction was cooled to ambient temperature and then extracted with pentane (3 

x 30 mL). Water (5 mL) was added to the MeCN layer, which was then extracted again 

with pentane (3 x 30 mL). The combined pentane extracts were then concentrated in vacuo 

onto Celite. The crude mixture was purified by silica gel chromatography (12% 

EtOAc/hexanes) to afford aldehyde 91 (89.2 mg, 0.216 mmol, 54% yield) as a pale-yellow 

oil. 

1H NMR (400 MHz, CDCl3): δ 9.49 (s, 1H), 4.46 (s, 1H), 4.42 (d, J = 1.6 Hz, 2H), 3.99 

(d, J = 9.0 Hz, 1H), 3.69 (d, J = 8.9 Hz, 1H), 3.39 (s, 3H), 2.74 – 2.57 (m, 2H), 2.42 – 2.22 

(m, 4H), 2.17 (dd, J = 17.1, 7.2 Hz, 1H), 2.08 – 1.99 (m, 1H), 1.99 – 1.87 (m, 2H), 1.87 – 

1.78 (m, 1H), 1.70 – 1.65 (m, 6H), 1.14 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 203.2, 137.7, 125.3, 125.0, 124.8, 94.5, 89.2, 77.8, 76.0, 

56.5, 50.6, 41.6, 40.2, 37.1, 31.9, 29.9, 22.5, 19.5, 18.8, 17.2. 

FTIR (NaCl, thin film): 2929, 1733, 1440, 1142, 1094, 1028, 921 cm-1. 

HRMS: (ESI) calc’d for C20H29O4BrNa [M + Na]+ 435.1147, found 435.1130.  

TLC (20% EtOAc/hexanes): Rf 0.35 (anisaldehyde, stains gray). 
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Preparation of 92: 
 

 
 

Procedure: A 1-dram vial was charged with aldehyde 91 (8.27 mg, 0.0200 mmol, 1.0 

equiv) and a stir bar then brought into the glovebox. Ni(cod)2 (0.0730 uL, 0.004 mmol, 20 

mol %) and CrCl2 (1.70 uL, 0.08 mmol, 4.0 equiv) were added as solids, followed by DMF 

(200 uL). The vial was sealed with a Teflon-lined screw cap, removed from the glovebox, 

and then stirred at 80 °C for 18 h. The reaction was cooled to ambient temperature then 

filtered over a silica plug eluting with 50% EtOAc/hexane. Sample then concentrated in 

vacuo and transferred to an NMR tube with an internal standard of tetrachloroethane. 34% 

yield by NMR. 92 could be recrystallized to afford X-ray quality crystals. 

1H NMR (400 MHz, CDCl3): δ 4.80 – 4.70 (m, 2H), 4.04 (d, J = 8.4 Hz, 1H), 3.82 (s, 

1H), 3.79 (s, 1H), 3.45 (s, 3H), 3.41 (dd, J = 8.3, 1.2 Hz, 1H), 2.77 – 2.66 (m, 2H), 2.52 – 

2.32 (m, 2H), 2.28 – 2.18 (m, 1H), 2.06 – 2.01 (m, 1H), 2.00 (d, J = 1.9 Hz, 3H), 1.96 (s, 

1H), 1.88 – 1.78 (m, 1H), 1.77 (s, 3H), 1.74 (s, 4H), 1.73 – 1.65 (m, 1H), 1.27 – 1.24 (m, 

4H). 

13C NMR (101 MHz, CDCl3) δ 136.39, 135.33, 129.00, 127.33, 99.54, 86.18, 85.52, 

74.68, 56.65, 54.43, 44.39, 38.48, 37.99, 37.90, 32.01, 29.86, 22.17, 21.43, 19.63, 18.83. 

FTIR (NaCl, thin film): 2853, 1458, 1376, 1027, 723, 671 cm-1. 

HRMS: (ESI) calc’d for C20H29O4BrNa [M + Na]+ 435.1147, found 435.1130.  

TLC (20% EtOAc/hexanes): Rf 0.35 (anisaldehyde, stains gray). 
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3.6.6 A Ring Progress 

Preparation of 95: 

 

Procedure: A 250 mL round-bottomed flask equipped with a reflux condenser was 

charged with 1,3-cyclopentanedione 94 (4.18 g, 42.6 mmol, 1.0 equiv TsOH (162 mg, 

0.852 mmol, 0.5 mol %), EtOH (21.3 mL), and PhMe (63.9 mL). The reaction was stirred 

at 90 °C under N2 for 18 hours. The reaction mixture then was cooled to ambient 

temperature, concentrated, and then diluted with Et2O and water. The organic layer was 

washed twice with sat. aq. NaHCO3 then once with brine. Basified with NaHCO3 then 

extracted once with ether, still not good enough. Added NaCl and extracted 3x with EtOAc. 

The combined organic layers were dried over Na2SO4 and concentrated to afford 95 (3.71 

g, 29.40 mmol, 69%) as an orange oil. Spectral data matched the literature.37  

1H NMR (400 MHz, CDCl3) δ 5.29 (t, J = 1.2 Hz, 1H), 4.04 (q, J = 7.1 Hz, 2H), 2.64 – 

2.56 (m, 2H), 2.48 – 2.40 (m, 2H), 1.40 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 206.29, 190.39, 104.79, 67.85, 34.07, 28.69, 14.27. 

FTIR (NaCl, thin film): 2983, 2929, 1703, 1678, 1592, 1440, 1374, 1342, 1289, 1274, 

1184, 1028, 876, 842, 657 cm-1. 

 

Preparation of 96: 

69% yield
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Procedure: A flame-dried round-bottomed flask was charged with diisopropylamine (20.4 

mL, 145 mmol, 1.4 equiv) and THF (60 mL) then cooled to –78 °C under N2. nBuLi (2.5 

M in hexanes, 56.9 mL, 142 mmol, 1.37 equiv) was added via cannula, and the reaction 

was stirred for 30 minutes. Enone 95 (1.31 g, 104 mmol, 1.0 equiv) was added over 30 

minutes as a solution in THF (60 mL), and then the solution was stirred for an additional 

45 minutes. MeI (9.70 mL, 156 mmol, 1.5 equiv) and DMPU (25.1 mL, 208 mmol, 2.0 

equiv) were added slowly as a solution in THF (60 mL), and then the reaction was slowly 

allowed to warm to ambient temperature, stirring for an additional 1 hour. The reaction 

was quenched with water, and then the aqueous layer was extracted 3x with EtOAc. The 

combined organic phases were washed with water and brine, dried over MgSO4, and 

concentrated in vacuo. Material was further purified via column chromatography (30% 

EtOAc/hexanes) to afford 96 (7.73 g, 43.68 mmol, 42%) as a dark yellow oil. Spectral data 

matched the literature.38 

1H NMR (400 MHz, CDCl3) δ 5.22 (t, J = 1.2 Hz, 1H), 4.03 (q, J = 7.1 Hz, 2H), 2.82 

(ddd, J = 17.5, 7.3, 1.2 Hz, 1H), 2.49 (pd, J = 7.4, 2.8 Hz, 1H), 2.20 (ddd, J = 17.7, 2.8, 

1.1 Hz, 1H), 1.40 (t, J = 7.1 Hz, 3H), 1.19 (d, J = 7.5 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 209.20, 188.76, 103.38, 67.68, 39.78, 37.24, 16.86, 

14.28. 
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FTIR (NaCl, thin film, cm-1): 2929, 1696, 1593, 1373, 1341, 1278, 1247, 1221, 1193, 

1175, 1027, 920, 862, 813, 635. 

 

Preparation of 97: 

 

Procedure: An oven-dried round-bottomed flask was charged with vinylogous ester 96 

(7.73 g, 44.1 mmol, 1.0 equiv) and MeCN (294 mL). The solution was cooled to 0 ºC via 

an ice/water bath and stirring was continued for 15 min prior to the addition of iodine (11.8 

g, 46.3 mmol, 1.05 equiv), then CAN (25.4 g, 46.3 mmol, 1.05 equiv) in quick succession. 

The reaction mixture was immediately removed from the ice/water bath and the reaction 

was continued for 30 min at ambient temperature, during which time CAN slowly 

solubilized to give a deep red-black solution. The reaction mixture was recooled to 0 º C 

via an ice/water bath and carefully quenched with the addition of sat. aq. Na2S2O3. The 

resulting biphasic mixture was diluted with EtOAc and the layers were separated. The 

aqueous layer was extracted with EtOAc and the combined organic layers were washed 

with brine, dried over Na2SO4, filtered, and concentrated. Material further purified via 

column chromatography (35% to 45% EtOAc/hexanes) to afford 97 (9.54 g, 34.40 mmol, 

78%) as an off-white solid.  

OEt

O

Me
I2, CAN

MeCN, 20 °C, 30 
min

78% yield

OEt

O

IMe

96 97
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1H NMR (400 MHz, CDCl3) δ 4.34 (q, J = 7.1 Hz, 2H), 3.09 (dd, J = 17.4, 7.0 Hz, 1H), 

2.72 (pd, J = 7.3, 2.4 Hz, 1H), 2.43 (dd, J = 17.4, 2.4 Hz, 1H), 1.46 (t, J = 7.1 Hz, 3H), 

1.25 (d, J = 7.5 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 202.78, 187.49, 72.89, 66.72, 38.92, 36.25, 17.38, 15.28. 

FTIR (NaCl, thin film, cm-1): 2977, 2927, 1690, 1585, 1371, 1337, 1268, 1108, 1043, 

1019, 922, 859, 832, 597. 

HRMS: (ESI) calc’d for C8H11O2I [M + H]+ 266.9882, found 266.9876.  

 

Preparation of 99: 

 

Procedure: A round-bottomed flask was charged with iodoester 97 (1.33 g, 5.00 mmol, 

1.0 equiv), dioxane (20.0 mL), MeOH (20.0 mL), and then NaOH (1M in H2O, 50.0 mL, 

50.0 mmol, 10 equiv). The resulting reaction mixture was stirred at ambient temperature 

for 20 hours. The reaction was quenched with 1 M HCl (final pH = 1) and diluted with 

10% iPrOH/CHCl3.The layers were separated, and the aqueous layer was extracted 7x with 

10% iPrOH/CHCl3. The combined organic layers were dried over MgSO4, filtered, and 

concentrated in vacuo.The crude residue was then semi-purified via a SiO2 plug (12/1/87 

MeOH/Et3N/CHCl3) to afford a yellow oil. This material was then dried thoroughly on 

high vac, azeotroping 3x with hexanes then stirring on high vac, and carried directly 

forward into the next step. 

O

O

Medioxane/MeOH/
water, 20 °C

Br

O

Me

(COBr)2,
DMF

DCM
20 °C, 1 h

II

53% yield 
over 2 steps

NaOH

98 99

OEt

O

IMe

97
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Procedure: An oven-dried round-bottomed flask was charged with 1,3-diketone 98 (1.19 

g, 5 mmol, 1.0 equiv) and anhydrous DCM (50.0 mL), then stirred at 0 °C under N2. 

Anhydrous DMF (1.16 mL, 15.0 mmol, 3.0 equiv) was next added, and stirring continued 

for 15 min at 0 º C before the dropwise addition of oxalyl bromide (1.07 mL, 7.50 mmol, 

1.5 equiv) via syringe [Caution! Rapid generation of CO and CO2. A vent needle was 

routinely used during this addition to prevent over-pressurization.]. Upon complete 

addition, the ice/water bath was removed and stirring was continued for 1 hour before 

pouring the reaction mixture over DCM and ice-cold H2O. The layers were separated, and 

the aqueous layer was extracted 3x with DCM. The combined organic layers were washed 

with sat. aq. Na2S2O3, dried over MgSO4, filtered, and concentrated. The material was 

further purified via column chromatography (9% Et2O/hexanes) to afford 99 (793 mg, 2.65 

mmol, 53% over 2 steps) as an off-white solid.  

1H NMR (400 MHz, CDCl3) δ 3.30 (dd, J = 18.3, 7.0 Hz, 1H), 2.83 – 2.72 (m, 1H), 2.68 

(dd, J = 18.3, 2.5 Hz, 1H), 1.27 (d, J = 7.4 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 202.88, 165.18, 107.39, 46.61, 41.19, 16.53. 

FTIR (NaCl, thin film, cm-1): 2975, 1706, 1687, 1561, 1199, 1171, 848, 804, 733. 

 

Preparation of 100: 

 

Br

O

Me I

Br

OH

Me I

(R)-CBS (40 %),
BH3•NEt2Ph 
(0.7 equiv)

DCM, 21 °C

34% yield 
93% ee99 100
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Procedure: An oven-dried, 2-dram vial was charged with (R)-CBS catalyst (11.1 mg, 

0.0400 mmol, 40 mol %) and anhydrous DCM (1.0 mL) then stirred for 15 minutes. 

BH3•NEt2Ph (12.4 uL, 0.700 mmol, 70 mol %) was added dropwise via microsyringe, then 

the reaction was stirred for an additional 10 minutes. Then enone 99 (30.1 mg, 0.1 mmol, 

1.0 equiv) was added as a solution in the remaining DCM (1.0 mL) over 1 h via syringe 

pump, and then the reaction was stirred at ambient temperature under N2 for an additional 

2.5 hours. The reaction was diluted with Et2O and quenched with the careful addition of 

MeOH followed by H2O. The layers were separated, and the aqueous layer was extracted 

3x with Et2O. The combined organic layers were dried over Na2SO4, filtered, and 

concentrated in vacuo. TCNB (0.75 equiv, 19.6 mg) was added to obtain an 1H-NMR yield 

of 34%. Material further purified via preparatory TLC (20% EtOAc/hexanes) to obtain a 

pure sample for SFC analysis which determined the ee to be 93%.  

1H NMR (400 MHz, CDCl3) δ 4.49 (dd, J = 6.8, 2.2 Hz, 1H), 2.74 (ddd, J = 16.0, 7.9, 

0.7 Hz, 1H), 2.43 (ddd, J = 15.9, 6.2, 2.2 Hz, 1H), 1.65 (s, 2H), 1.15 (d, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 135.46, 103.57, 82.92, 46.38, 37.20, 14.26. 

Chiral SFC: (OB-H column, 2.5 mL/min, 3% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 8.7 min, tminor enantiomer = 8.1 min; 

100: racemic 
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100: enantioenriched (93% ee) 

 

 

 

3.6.7 D Ring Progress 

Preparation of 103: 

 

Procedure: To an flame-dried 250 mL round bottomed flask, equipped with a stir bar, was 

charged ketone 102 (6.00 g, 43.4 mmol, 1.0 equiv), Zn(OAc)2 (7.96 g, 43.4 mmol, 1.0 

equiv), and acetic anhydride (72.4 mL). This solution was cooled to 0 °C and then 

BF3•OEt2 (2.28 mL, 18.5 mmol, 42.5 mol %) was added dropwise. The resulting mixture 

was allowed to stir at 0 °C for 3 h. The reaction mixture was then quenched with ice water 

O

Me
Me

Zn(OAc)2
Ac2O, 0 °C, 3 h

81% yield

BF3•Et2O
(42.5 mol %)

OAc

Me Me
OAc

102 103
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(100 mL), and poured into a 1L Erlenmeyer flask. To this was added K2CO3 in small 

portions until vigorous bubbling ceased. The resulting mixture was then transferred into a 

large separatory funnel. The product was extracted with Et2O (3x) and combined extracts 

were washed successively with saturated NaHCO3, water, and brine and dried, filtered, and 

concentrated. Material was further purified via column chromatography (10 to 20 % 

EtOAc/hexanes) to afford 103 (8.40 g, 35.15 mmol, 81%) as a clear colorless oil. Spectral 

data matched the literature.39 

1H NMR (400 MHz, CDCl3) δ 5.38 – 5.31 (m, 1H), 2.34 – 2.20 (m, 1H), 2.17 – 2.06 (m, 

6H), 1.99 (s, 0H), 1.97 (s, 3H), 1.87 (ddq, J = 12.3, 6.0, 2.1 Hz, 1H), 1.55 – 1.49 (m, 1H), 

1.46 (s, 3H), 1.44 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.59, 169.64, 148.34, 113.33, 84.31, 60.54, 42.33, 

27.42, 24.69, 23.51, 23.30, 22.59, 21.20, 14.33. 

FTIR (NaCl, thin film, cm-1): 2936, 1754, 1727, 1368, 1258, 1221, 1117, 1016, 909, 829, 

681. 

 

Preparation of 104: 

 

Procedure: To a flame-dried 250 mL round bottom flask, equipped with a stir bar, in a 

nitrogen-filled glovebox, was charged Pd(OAc)2 (344 mg, 1.53 mmol, 10 mol %). Reaction 

OAc

Me Me
OAc

O

Me Me
OAc

Pd(OAc)2 (10 mol %)
nBu3SnOMe (50 mol %)

allyl methyl carbonate
MeCN, 80 °C

103 10482% yield
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removed from glovebox, then opened to atmosphere and enol acetate 103 (3.68 g, 15.3 

mmol, 1.0 equiv), allyl methyl carbonate (3.56 g, 30.6 mmol, 2.0 mmol), MeCN (76.6 mL) 

and lastly, nBu3SnOMe (2.21 mL, 7.66 mmol, 50 mol %) was added at room temperature. 

Reaction fitted with a reflux condenser under N2 and then submerged into a preheated oil 

bath at 80 °C. Reaction stirred for 4 hours behind a blast shield and then stir plate unplugged 

and reaction allowed to cool to room temperature overnight. The reaction was filtered over 

celite eluting with EtOAc. Reaction then concentrated in vacuo. Material was further 

purified via column chromatography (20% EtOAc/hexanes) to afford 104 (2.46 g, 12.55 

mmol, 82% yield) as an orange oil. Spectral data matched the literature.39 

1H NMR (400 MHz, CDCl3) δ 6.94 (dt, J = 10.4, 2.0 Hz, 1H), 6.08 (ddd, J = 10.4, 2.9, 

1.1 Hz, 1H), 3.19 (ddt, J = 11.4, 4.8, 2.5 Hz, 1H), 2.54 (dddd, J = 16.7, 4.3, 3.2, 1.1 Hz, 

1H), 2.38 (ddd, J = 16.6, 14.3, 5.0 Hz, 1H), 2.08 (tq, J = 6.8, 5.0 Hz, 1H), 2.02 (s, 3H), 

1.78 (dddd, J = 14.3, 13.0, 11.4, 4.3 Hz, 1H), 1.51 (s, 3H), 1.45 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 199.51, 170.53, 150.43, 130.55, 83.46, 45.04, 37.45, 

24.45, 23.92, 23.47, 22.53. 

FTIR (NaCl, thin film, cm-1): 2983, 1726, 1680, 1369, 1253, 1209, 1187, 1127, 1016, 

845. 

Rf = 0.27 in 20% EtOAc/hexanes (stains purple in p-anisaldehyde) 
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Preparation of 105: 

 

Procedure: To an oven-dried 25-mL flask, equipped with a stir bar, in a nitrogen-filled 

glovebox, was charged CuI (534 mg, 2.80 mmol, 1.1 equiv), sealed with a red septum, and 

removed from the glovebox. To this was added THF (freeze-pump-thawed 3X) (5 mL), 

and the mixture was cooled to –50 °C. To the resulting suspension was slowly added 

isopropenyl Grignard (1.0 M in THF, 5.61 mL, 5.61 mmol, 2.20 equiv) over 5 mins. After 

stirring for 2 hours at –50 °C, the reaction mixture was cooled to –78 °C. To this cuprate 

mixture was slowly added enone 104 (500 mg, 2.55 mmol, 1.0 equiv) as a stock solution 

in THF (7.5 mL). After 2 hours of stirring, DMPU (1.08 mL, 8.92 mmol, 3.50 equiv) was 

added, followed by formyloxyacetonitrile 108 (548 uL, 7.64 mmol, 3.0 equiv). Then the 

reaction mixture was warmed to room temperature and stirred for 16 hours. The reaction 

was quenched by the addition of water, diluted with EtOAc, and the organic phase was 

separated. The aqueous phase was extracted with EtOAc (3X) and the combined organic 

layers were washed with brine, dried over anhydrous MgSO4, filtered, and concentrated 

under reduced pressure by rotary evaporation. Material was then further purified via 

column chromatography (10 to 20% EtOAc/hexanes) to afford 105 (200 mg, 0.739 mmol, 

29%) as a yellow oil.  

O

Me Me
OAc

Me

MgBr
(2.2 equiv)

CuI
(1.1 equiv)

DMPU (2.0 equiv)

(3.0 equiv)
THF, –50 °C to –78 °C

to 23 °C

OH

Me Me
OAc

Me

O

H

105

O

H O CN104

108
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1H NMR (600 MHz, cdcl3) δ 8.67 (d, J = 2.5 Hz, 1H), 4.91 (p, J = 1.4 Hz, 1H), 4.73 (dt, 

J = 1.7, 0.9 Hz, 1H), 3.28 (d, J = 4.6 Hz, 1H), 2.38 – 2.33 (m, 2H), 2.29 – 2.21 (m, 1H), 

1.91 (s, 3H), 1.84 (dddd, J = 13.9, 7.6, 6.2, 4.4 Hz, 1H), 1.74 (dd, J = 1.4, 0.7 Hz, 3H), 1.68 

– 1.59 (m, 1H), 1.57 (s, 6H), 1.50 (s, 3H). 

 

Preparation of 123: 

 

Procedure: To an oven-dried 500-mL flask, equipped with a stir bar, in a nitrogen-filled 

glovebox, was charged CuI (4.80 mg, 25.2 mmol, 1.1 equiv), sealed with a red septum, and 

removed from the glovebox. To this was added THF (freeze-pump-thawed 3X) (45 mL), 

and the mixture was cooled to –50 °C. To the resulting suspension was slowly added 

isopropenyl Grignard (1.0 M in THF, 50.4 mL, 50.4 mmol, 2.20 equiv) over 20 mins. After 

stirring for 2 hours at –50 °C, the reaction mixture was cooled to –78 °C. To this cuprate 

mixture was slowly added enone 104 (4.5 g, 22.9 mmol, 1.0 equiv) as a stock solution in 

THF (75 mL). After 2 hours of stirring, DMPU (9.70 mL, 80.3 mmol, 3.50 equiv) was 

added, followed by ethyl cyanoformate (6.80 mL, 68.8 mmol, 3.0 equiv). Then the reaction 

mixture was warmed to room temperature and stirred for 16 hours. The reaction was 

quenched by the addition of water, diluted with EtOAc, and the organic phase was 

separated. The aqueous phase was extracted with EtOAc (3X) and the combined organic 

OH

Me Me
OAc

O

EtO

Me

MgBr

Et2O, –40 °C;
ethyl cyanoformate

Me

68% yield

CuI

single diastereomer

O

Me Me
OAc

104 123
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layers were washed with brine, dried over anhydrous MgSO4, filtered, and concentrated 

under reduced pressure by rotary evaporation. Material was then further purified via 

column chromatography (10 to 20 to 30% EtOAc/hexanes) to afford 123 (4.84 g, 15.57 

mmol, 68%) as a pale-yellow oil.  

1H NMR (400 MHz, CDCl3) δ 12.40 (s, 1H), 4.80 (dp, J = 17.1, 1.5 Hz, 1H), 4.59 (dt, J 

= 1.8, 0.9 Hz, 1H), 4.28 – 4.06 (m, 3H), 3.21 (s, 1H), 2.36 – 2.16 (m, 2H), 2.01 (ddd, J = 

5.5, 4.0, 1.7 Hz, 1H), 1.93 (s, 4H), 1.91 – 1.82 (m, 1H), 1.81 – 1.69 (m, 4H), 1.60 (s, 3H), 

1.56 (s, 3H), 1.47 (s, 3H), 1.35 – 1.20 (m, 4H). 

13C NMR (101 MHz, CDCl3) δ 172.77, 172.49, 170.46, 149.06, 111.28, 100.07, 85.16, 

60.35, 43.05, 40.31, 26.62, 25.23, 24.95, 22.73, 22.19, 18.68, 14.21. 

FTIR (NaCl, thin film, cm-1): 2929, 1732, 1654, 1368, 1282, 1252 1223, 837, 681. 

HRMS: (ESI) calc’d for C16H24O5 [M + H – OAc]+ 238.1568, found 238.1572.  

!"## = +36° (c = 1.0, CHCl3). 

 

Preparation of 124: 

 

Procedure: To a 1-dram vial, equipped with a stir bar, was charged ketoester 123 (25 mg, 

0.0805 mmol, 1.0 equiv), KHCO3 (24.2 mg, 0.242 mmol, 3.0 equiv), and then THF (1.61 

O

Me Me
OAc

O

EtO

Me
KHCO3

aq. formaldehyde

THF, 70 °C
24 h

HO
O

EtO

Me
MeMe

OAc

O
24% yield
10:1 dr

123 124
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mL). To this was added formaldehyde solution (35% in water, 38.0 uL, 0.483 mmol, 6.0 

equiv). Reaction was heated to 70 °C and stirred for 12 hours. Reaction then filtered over 

MgSO4 plug and concentrated. Material was further purified via preparatory TLC (40% 

EtOAc/hexanes) to afford 124 (6.6 mg, 0.0193 mmol, 24%) as a 10:1 mixture of 

diastereomers.  

1H NMR (400 MHz, CDCl3) δ 4.96 – 4.79 (m, 2H), 4.34 – 4.08 (m, 2H), 3.76 (dd, J = 

16.2, 11.6 Hz, 1H), 3.51 – 3.45 (m, 1H), 3.45 – 3.37 (m, 1H), 2.75 (ddd, J = 19.8, 4.6, 2.2 

Hz, 1H), 2.61 (ddd, J = 13.7, 6.4, 4.7 Hz, 1H), 2.36 – 2.21 (m, 1H), 1.89 – 1.74 (m, 1H), 

1.68 – 1.56 (m, 1H), 1.52 (s, 3H), 1.39 (s, 3H), 1.29 (d, J = 7.1 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 171.18, 170.60, 116.77, 84.47, 66.30, 62.13, 48.24, 

38.27, 25.09, 23.79, 22.50, 21.15, 13.98. 

 

Preparation of 126: 

 

Procedure: To an oven-dried 1/2-dram vial, equipped with a stir bar, was added alcohol 

124 (10.0 mg, 0.00147 mmol, 1.0 equiv) and anhydrous acetone (147 uL) and cooled to 0 

°C. To this mixture was added NBS (6.5 mg, 0.0367 mmol, 2.50 equiv) and stirred at 0 °C 

for 21 hours. The reaction mixture was then quenched with 10% NaHSO3 and extracted 3x 

with Et2O. The organic extracts were dried over Na2SO4 and concentrated. Crude NMR 

HO
O

EtO

Me
MeMe

OAc

O

124

NBS
(2.5 equiv)

Acetone, 23 °C

MeMe
OAc

O

O

HMeBr

EtO2C
88% yield 
*2.9:1 dr

*

126
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taken with internal standard first to give 88% yield by NMR. Then prep plate with 50% 

EtOAc/Hexanes.  

1H NMR (400 MHz, CDCl3) δ 4.21 (dq, J = 10.8, 7.1 Hz, 1H), 4.12 – 4.03 (m, 1H), 4.00 

(d, J = 7.6 Hz, 1H), 3.93 (d, J = 7.6 Hz, 1H), 2.81 (s, 1H), 2.50 (tt, J = 4.0, 2.1 Hz, 1H), 

1.95 (s, 6H), 1.90 – 1.80 (m, 1H), 1.81 – 1.71 (m, 1H), 1.65 (d, J = 1.5 Hz, 1H), 1.47 (d, J 

= 8.1 Hz, 8H), 1.26 (t, J = 7.2 Hz, 4H). 

13C NMR (101 MHz, CDCl3) δ 208.73, 170.83, 167.58, 83.86, 82.40, 74.68, 62.26, 

61.17, 49.46, 42.29, 40.79, 38.39, 25.82, 24.57, 24.26, 23.79, 22.64, 14.19. 

Rf = 0.6 in 40% EtOAc/hexanes (stains yellow with p-anisaldehyde) 

 

Preparation of S2: 

 

Procedure: To an oven-dried 1-dram vial, equipped with a stir bar, was charged alkyl 

bromide 126 (140 mg, 0.334 mmol, 1.0 equiv), Me4N(OAc) (88.9 mg, 0.668 mmol, 2.0 

equiv), NaI (10.0 mg, 0.00668 mmol, 20 mol %), and DMF (1.67 mL). Vial capped with a 

white teflon cap and then heated to 110 °C for 18 hours. Reaction then diluted with water, 

extracted into EtOAc (3X). combined organics were dried over MgSO4, filtered, and 

concentrated. Material further purified via column chromatography (10 to 20 to 30% 

EtOAc/hexanes) to afford S2 (60.5 mg, 0.180 mmol, 54%) as a white solid. S2 could be 

recrystallized via slow evaporation from Et2O to obtain X-ray quality crystals. 

O

Me Me
OAc

O

Me

EtO2C

H
Me4N(OAc)
(2.0 equiv)

NaI
(50 mol %)

DMF, 110 °C
16 h

Me
O

O

EtO2C
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MeAcOO

Me Me
OAc

O
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EtO2C

H
Br

54% yield126 S2 S2
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Crystal Structure Data for compound 92: 

V20219_a  
Table 1 Crystal data and structure refinement for V20219_a.  

Identification code  V20219_a  

Empirical formula  C20H30O4  

Formula weight  334.459  

Temperature/K  106.0  

Crystal system  monoclinic  

Space group  P21/c  

a/Å  9.9957(11)  

b/Å  20.179(2)  

c/Å  10.0496(12)  

α/°  90  

β/°  117.989(4)  

γ/°  90  

Volume/Å3  1789.9(4)  

Z  4  

ρcalcg/cm3  1.241  

μ/mm-1  0.678  

F(000)  730.3  

Crystal size/mm3  0.25 × 0.15 × 0.10  

Radiation  Cu Kα (λ = 1.54178)  

2Θ range for data collection/°  8.76 to 159  

Index ranges  -12 ≤ h ≤ 12, -25 ≤ k ≤ 25, -12 ≤ l ≤ 12  

Reflections collected  39690  

Independent reflections  3846 [Rint = 0.0550, Rsigma = 0.0265]  



Chapter 3 – A Transition-Metal Catalyzed Cascade Cyclization Approach to the 
Synthesis of Falcatin A 
 

188 

Data/restraints/parameters  3846/0/254  

Goodness-of-fit on F2  1.042  

Final R indexes [I>=2σ (I)]  R1 = 0.0402, wR2 = 0.1063  

Final R indexes [all data]  R1 = 0.0438, wR2 = 0.1094  

Largest diff. peak/hole / e Å-3  0.33/-0.23  

 

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 
Parameters (Å2×103) for V20219_a. Ueq is defined as 1/3 of of the trace of the 
orthogonalised UIJ tensor. 

 Atom x y z U(eq) 

O2 5006.2(9) 2943.2(4) 6719.6(9) 25.6(2) 

O1 3881.1(9) 1691.0(4) 3730.2(9) 25.8(2) 

O3 8805.3(9) 3381.7(4) 6440.0(9) 26.1(2) 

O4 9806.0(10) 4239.8(5) 5616.0(10) 34.0(2) 

C4 7459.5(12) 2379.7(5) 5504.6(12) 20.5(2) 

C11 4542.8(12) 3193.5(5) 4218.4(11) 19.2(2) 

C5 7395.0(12) 3121.1(5) 5262.3(12) 19.7(2) 

C6 6093.2(12) 3496.6(5) 5335.7(12) 20.3(2) 

C12 4200.3(12) 2700.4(6) 5187.6(11) 21.0(2) 

C14 6452.0(13) 1946.5(5) 5512.0(12) 21.1(2) 

C10 3339.9(13) 3730.6(6) 3418.9(13) 25.2(2) 

C13 4809.8(13) 2005.9(6) 5151.3(12) 21.7(2) 

C8 5276.3(15) 4451.6(6) 3398.4(15) 28.6(3) 

C9 3870.8(15) 4216.2(6) 2620.8(14) 28.6(3) 

C7 6184.8(14) 4241.1(6) 5027.1(14) 27.3(3) 

C3 8932.8(13) 2036.6(6) 5823.0(16) 29.5(3) 

C15 6189.5(14) 3382.8(7) 6894.6(13) 28.9(3) 



Chapter 3 – A Transition-Metal Catalyzed Cascade Cyclization Approach to the 
Synthesis of Falcatin A 
 

189 

C16 2547.2(13) 2641.9(7) 4837.2(14) 29.2(3) 

C1 7105.4(15) 1252.7(6) 5870.4(15) 30.8(3) 

C19 9905.7(15) 3568.9(7) 6006.3(17) 35.0(3) 

C18 6021(2) 4960.4(7) 2872.3(19) 41.3(4) 

C17 2746.8(19) 4404.9(7) 1038.5(16) 42.6(4) 

C2 8650.6(18) 1302.5(7) 5944(2) 43.7(4) 

C20 10248(2) 4666.4(8) 6884.2(17) 46.3(4) 

 

Table 3 Anisotropic Displacement Parameters (Å2×103) for V20219_a. The Anisotropic 
displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

 Atom U11 U22 U33 U12 U13 U23 

O2 27.2(4) 37.1(5) 14.0(4) -3.5(3) 11.0(3) -3.7(3) 

O1 26.8(4) 33.0(4) 19.6(4) -8.9(3) 12.5(3) -5.3(3) 

O3 19.6(4) 29.3(4) 25.3(4) -3.2(3) 7.1(3) 3.1(3) 

O4 32.6(5) 36.2(5) 29.4(5) -8.2(4) 11.5(4) 5.9(4) 

C4 19.4(5) 24.8(5) 14.1(5) 3.8(4) 5.3(4) 0.4(4) 

C11 19.0(5) 24.4(5) 14.1(5) 3.0(4) 7.6(4) -0.4(4) 

C5 17.8(5) 24.2(5) 16.1(5) 1.3(4) 7.2(4) 1.2(4) 

C6 20.6(5) 24.4(5) 16.3(5) 0.9(4) 8.9(4) -2.4(4) 

C12 19.6(5) 31.3(6) 12.2(5) 0.7(4) 7.7(4) -1.0(4) 

C14 24.8(5) 23.4(5) 13.3(5) 2.7(4) 7.4(4) 2.0(4) 

C10 23.4(5) 30.2(6) 19.8(5) 7.2(4) 8.3(4) 1.0(4) 

C13 24.8(5) 26.8(5) 14.7(5) -2.4(4) 10.3(4) 0.8(4) 

C8 41.4(7) 19.6(5) 33.5(6) 7.7(5) 24.9(6) 0.2(4) 

C9 39.6(7) 24.2(6) 23.5(6) 11.2(5) 16.0(5) 3.2(4) 

C7 26.8(6) 22.2(5) 32.6(6) 2.1(4) 13.7(5) -4.7(4) 
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C3 18.9(5) 27.4(6) 33.6(7) 4.2(4) 5.1(5) -2.6(5) 

C15 26.4(6) 43.1(7) 18.9(6) -7.1(5) 12.0(5) -8.3(5) 

C16 21.7(6) 43.7(7) 24.4(6) -0.1(5) 12.5(5) 1.5(5) 

C1 32.8(6) 23.5(6) 30.6(6) 2.9(5) 10.4(5) 2.4(5) 

C19 22.7(6) 37.8(7) 44.0(8) -0.6(5) 15.4(6) 10.2(6) 

C18 65.0(10) 23.8(6) 53.5(9) 1.8(6) 43.1(8) -1.2(6) 

C17 57.2(9) 35.5(7) 27.4(7) 11.7(6) 13.5(6) 9.0(5) 

C2 36.4(8) 31.3(7) 61.4(10) 13.9(6) 21.3(7) 15.9(7) 

C20 52.8(9) 45.5(8) 30.8(7) -23.9(7) 11.3(6) -0.2(6) 

 

Table 4 Bond Lengths for V20219_a. 

 Atom Atom Length/Å  Atom Atom Length/Å 

O2 C12 1.4475(12)  C6 C7 1.5453(16) 

O2 C15 1.4219(15)  C6 C15 1.5410(15) 

O1 C13 1.4355(13)  C12 C13 1.5355(16) 

O3 C5 1.4486(13)  C12 C16 1.5238(16) 

O3 C19 1.4116(16)  C14 C13 1.5105(16) 

O4 C19 1.3998(17)  C14 C1 1.5150(16) 

O4 C20 1.4255(18)  C10 C9 1.5115(17) 

C4 C5 1.5122(15)  C8 C9 1.334(2) 

C4 C14 1.3363(16)  C8 C7 1.5129(18) 

C4 C3 1.5193(16)  C8 C18 1.5027(18) 

C11 C6 1.5503(15)  C9 C17 1.5030(18) 

C11 C12 1.5390(15)  C3 C2 1.5234(19) 

C11 C10 1.5360(15)  C1 C2 1.515(2) 

C5 C6 1.5372(15)     
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Table 5 Bond Angles for V20219_a. 

 Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C15 O2 C12 110.98(8)  C16 C12 C11 116.30(9) 

C19 O3 C5 116.45(10)  C16 C12 C13 108.85(10) 

C20 O4 C19 112.46(11)  C13 C14 C4 133.13(10) 

C14 C4 C5 132.29(10)  C1 C14 C4 111.34(10) 

C3 C4 C5 116.66(10)  C1 C14 C13 115.41(10) 

C3 C4 C14 111.05(10)  C9 C10 C11 110.58(10) 

C12 C11 C6 103.91(8)  C12 C13 O1 110.44(9) 

C10 C11 C6 111.81(9)  C14 C13 O1 109.03(9) 

C10 C11 C12 115.79(9)  C14 C13 C12 117.73(9) 

C4 C5 O3 106.01(8)  C7 C8 C9 117.79(11) 

C6 C5 O3 107.64(9)  C18 C8 C9 126.64(13) 

C6 C5 C4 116.94(9)  C18 C8 C7 115.31(12) 

C5 C6 C11 110.59(9)  C8 C9 C10 117.09(11) 

C7 C6 C11 111.81(9)  C17 C9 C10 116.83(12) 

C7 C6 C5 109.77(9)  C17 C9 C8 126.05(13) 

C15 C6 C11 104.00(9)  C8 C7 C6 115.34(10) 

C15 C6 C5 108.96(9)  C2 C3 C4 105.22(11) 

C15 C6 C7 111.57(9)  C6 C15 O2 108.41(9) 

C11 C12 O2 106.04(9)  C2 C1 C14 105.44(10) 

C13 C12 O2 107.77(9)  O4 C19 O3 112.46(11) 

C13 C12 C11 111.49(9)  C1 C2 C3 106.46(11) 

C16 C12 O2 105.89(9)      
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Table 6 Torsion Angles for V20219_a. 

 A B C D Angle/˚  A B C D Angle/˚ 

O2 C12 C11 C6 25.99(9)  C4 C5 C6 C11 -54.85(10) 

O2 C12 C11 C10 -97.01(9)  C4 C5 C6 C7 -178.68(10) 

O2 C12 C13 O1 169.95(8)  C4 C5 C6 C15 58.87(10) 

O2 C12 C13 C14 -63.96(9)  C4 C14 C13 C12 -20.07(14) 

O2 C15 C6 C11 11.27(11)  C4 C14 C1 C2 -5.29(12) 

O2 C15 C6 C5 -106.69(10)  C4 C3 C2 C1 -6.25(11) 

O2 C15 C6 C7 131.94(10)  C11 C6 C7 C8 -30.86(10) 

O1 C13 C12 C11 -74.07(9)  C11 C12 C13 C14 52.02(10) 

O1 C13 C12 C16 55.54(9)  C11 C10 C9 C8 -47.23(11) 

O1 C13 C14 C4 106.70(10)  C11 C10 C9 C17 134.60(10) 

O1 C13 C14 C1 -68.92(10)  C5 C6 C7 C8 92.26(10) 

O3 C5 C4 C14 134.03(9)  C6 C7 C8 C9 44.17(12) 

O3 C5 C4 C3 -45.14(10)  C6 C7 C8 C18 -141.31(10) 

O3 C5 C6 C11 -173.95(8)  C12 C13 C14 C1 164.31(10) 

O3 C5 C6 C7 62.22(9)  C14 C1 C2 C3 6.95(11) 

O3 C5 C6 C15 -60.23(9)  C10 C9 C8 C7 -3.04(12) 

O3 C19 O4 C20 69.37(14)  C10 C9 C8 C18 -176.87(10) 

 

Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 
(Å2×103) for V20219_a. 

 Atom x y z U(eq) 

H1 4167(13) 1808(7) 3102(5) 38.7(3) 

H11 4678.0(12) 2937.6(5) 3437.7(11) 23.0(3) 

H5 7352.8(12) 3211.3(5) 4264.8(12) 23.6(3) 
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H10a 2383.0(13) 3520.7(6) 2678.2(13) 30.2(3) 

H10b 3138.9(13) 3969.5(6) 4167.2(13) 30.2(3) 

H13 4694.1(13) 1738.7(6) 5929.1(12) 26.0(3) 

H7a 5831.9(14) 4500.0(6) 5639.6(14) 32.8(3) 

H7b 7260.2(14) 4357.3(6) 5374.7(14) 32.8(3) 

H15a 6080.3(14) 3809.6(7) 7319.9(13) 34.7(3) 

H15b 7185.0(14) 3189.0(7) 7593.2(13) 34.7(3) 

H16a 2470.5(19) 2348(4) 5574(7) 43.8(4) 

H16b 2157(4) 3081.3(10) 4889(12) 43.8(4) 

H16c 1951(3) 2459(5) 3823(5) 43.8(4) 

H18a 5408(8) 5028(5) 1784(3) 62.0(5) 

H18b 6109(13) 5379.8(19) 3399(11) 62.0(5) 

H18c 7033(6) 4806(3) 3091(13) 62.0(5) 

H17a 2379(11) 4004.2(9) 420(4) 63.9(5) 

H17b 1892(7) 4638(6) 1049(2) 63.9(5) 

H17c 3237(4) 4695(5) 615(5) 63.9(5) 

H20a 10186(15) 5128.6(9) 6561(3) 69.5(6) 

H20b 9570(10) 4599(5) 7328(9) 69.5(6) 

H20c 11291(6) 4565(5) 7635(7) 69.5(6) 

H19a 9745(19) 3318(8) 5050(20) 38(4) 

H19b 10910(20) 3488(9) 6890(20) 42(5) 

H3a 9170(20) 2123(9) 4990(20) 39(4) 

H1a 7190(20) 1108(10) 6860(20) 51(5) 

H3b 9740(20) 2215(9) 6760(20) 47(5) 

H1b 6440(20) 917(10) 5100(20) 56(5) 

H2a 8620(30) 1048(13) 5000(30) 89(8) 
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H2b 9370(30) 1108(13) 6720(30) 76(7) 

Experimental  

Single crystals of C20H30O4 [V20219_a] were []. A suitable crystal was selected and [] on a 
Bruker APEX-II CCD diffractometer. The crystal was kept at 106.0 K during data 
collection. Using Olex2 [1], the structure was solved with the olex2.solve [2] structure 
solution program using Charge Flipping and refined with the olex2.refine [3] refinement 
package using Levenberg-Marquardt minimisation. 

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. 
(2009), J. Appl. Cryst. 42, 339-341. 

2. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. 
(2015). Acta Cryst. A71, 59-75. 

3. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. 
(2015). Acta Cryst. A71, 59-75. 

Crystal structure determination of [V20219_a]  

Crystal Data for C20H30O4 (M =334.459 g/mol): monoclinic, space group P21/c (no. 14), a 
= 9.9957(11) Å, b = 20.179(2) Å, c = 10.0496(12) Å, β = 117.989(4)°, V = 1789.9(4) Å3, Z = 
4, T = 106.0 K, μ(Cu Kα) = 0.678 mm-1, Dcalc = 1.241 g/cm3, 39690 reflections measured 
(8.76° ≤ 2Θ ≤ 159°), 3846 unique (Rint = 0.0550, Rsigma = 0.0265) which were used in all 
calculations. The final R1 was 0.0402 (I>=2u(I)) and wR2 was 0.1094 (all data).  

Refinement model description  

Number of restraints - 0, number of constraints - 33.  

Details: 
1. Fixed Uiso 
 At 1.2 times of: 
  All C(H) groups, All C(H,H) groups 
 At 1.5 times of: 
  All C(H,H,H) groups, All O(H) groups 
2.a Ternary CH refined with riding coordinates: 
 C11(H11), C5(H5), C13(H13) 
2.b Secondary CH2 refined with riding coordinates: 
 C10(H10a,H10b), C7(H7a,H7b), C15(H15a,H15b) 
2.c Idealised Me refined as rotating group: 
 C16(H16a,H16b,H16c), C18(H18a,H18b,H18c), C17(H17a,H17b,H17c), 
C20(H20a,H20b, 
 H20c) 
2.d Idealised tetrahedral OH refined as rotating group: 
 O1(H1) 

This report has been created with Olex2, compiled on 2020.11.12 svn.r5f609507 for OlexSys. Please let us know if 
there are any errors or if you would like to have additional features.  
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Chapter 4 

Enantioselective Diels-Alder Reactions of a-Acyloxy Enones 

 

4.1 INTRODUCTION 

Naturally occurring monoterpenes serve as important chiral building blocks for the 

synthesis of natural products, medicines, and agrochemicals.1 For example, the monocyclic 

cyclohexene-containing terpenes (+)-trans-dihydrocarvone (1), (+)-pulegone (3) and (+)-

carvone (5) are frequently used members of the ‘chiral pool’ (Figure 4.1).1–4 Given the 

importance of oxidized monoterpenes as entry points to higher order terpenes and other 

complex molecules, we sought to develop an enantioselective synthesis of related oxidized 

cyclohexenes that could expand the pool of chiral building blocks. 

                                     . 

Portions of this chapter were adapted from the following patent: Reisman, S.; Rombola, M.; Ladd, C.; 
McLaughlin, M. J.; Zuend, S.; Göetz, R. Process for the synthesis of non-racemic cyclohexenes. US Patent 
WO 2021/007141 A1, January 2021. The research discussed in this chapter was completed in collaboration 
with Karli Holman, a graduate student, and Dr. Michael Rombola, a former in the Reisman Lab.  
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Figure 4.1 Terpene use in Total Synthesis 

 

The starting material for the BASF herbicide cinmethylin (7) is terpinene-4-ol (T-4-ol, 

8, Figure 4.2), a naturally occurring monoterpene that is only available either as a racemate 

or as a 2:1 scalemic mixture of enantiomers. Cinmethylin (7), marketed under the name 

LuximoTM, is a terpene herbicide that was first discovered in 1981 by Shell.5 By 1989, 

cinmethylin had been brought to market and was used to treat otherwise difficult to control 

grassweeds for rice cultivation.6 However, the industrial synthesis of cinmethylin was 

deemed economically challenging; Coupled with the identification of other highly potent 

herbicides such as acetohydroxyacid synthase (AHAS), acetyl-coenzyme A carboxylase 

(ACCase) and very long chain fatty acid (VLCFA) around the same time, cinmethylin 

production proved to be short lived.7 However, resistance to these herbicides developed 

over time, resulting in a need for new herbicides with a new mode of action.8 In 2018, a 

new interest in cinmethylin arose from the discovery of a new site of action in which it was 
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found that cinmethylin binds to acyl-ACP thioesterase and inhibits plant fatty acid 

biosynthesis.7 Due to a lack of enantiopure terpinene-4-ol, currently, cinmethylin is 

produced on an industrial scale through BASF as a racemate despite one enantiomer being 

significantly more active.9 Partnering with BASF, we sought to intercept a chiral 

intermediate en route to cinmethylin and render the synthesis asymmetric. We believed this 

could be accomplished via a Diels-Alder reaction between isoprene (9) and an a–

oxygenated captodative dienophile.  

Figure 4.2 Industrial Motivation 

 

Since its discovery in 192810, the [4+2] cycloaddition between diene and dienophile 

(Diels-Alder reaction) has been established as one of the most powerful synthetic 

methodologies for the construction of six-membered rings (Figure 4.3).11–15 Immense 

research effort has been expended studying the reaction and continues to be spent.  

Figure 4.3 Diels-Alder Reaction 
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4.2 PRIOR ART 

4.2.1 Racemic Examples 

The previously been accomplished in a racemic manner. In 1982, the Sasaki group 

reported the Diels-Alder reaction of a-silyloxy enone 10 and isoprene (9) to deliver a-

hydroxyketone product 11 in moderate yield (Figure 4.4).16 In 1990, the Tamariz group 

was able to expand into a–acyloxy dienophiles.17 The reaction between isoprene (9) and 

a–oxygenated ester derivatives 12a-c was shown to deliver cyclohexene products 13a-c in 

good yields. Lastly, in 1997, the Barda group demonstrated that MeAlCl2 could also be 

used to affect a Diels-Alder reaction to deliver 16 in moderate yield.18 

Figure 4.4 Racemic Diels-Alder Examples 
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4.2.2 Asymmetric Examples 

Figure 4.5 Related Asymmetric Diels-Alder Examples 
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While there have been no reported examples of the desired asymmetric Diels-Alder 

reaction, there have been several examples of enantioselective [4+2] reactions of 

captodative dienophiles (Figure 4.5). Several examples using a-bromo dienophiles have 

been reported.19–21 While these examples provide Diels–Alder products in good yields and 

ee’s, there are currently no methods to stereospecifically convert these to the corresponding 

tertiary alcohol products. Alternatively, there have been several reports of using a-

oxygenated enal dienophiles in the presence of chiral amine catalysts.22–24 However, these 

reactions could not be extended into the methyl ketone dienophiles required for the desired 

transformation. Lastly, in 2020, the Brown group reported the stereoselective cycloaddition 

of chiral alkenylboranes to afford enantioenriched cyclohexenyl boranes which can be 

oxidized to the corresponding tertiary alcohols, but stoichiometric chiral borane precursor 

is a requirement for this methodology.25 

 

4.3 METHOD DEVELOPMENT 

4.3.1 Proposed Reaction 

In our efforts to target the synthesis of 8, we envisioned using an a-acyloxy 

dienophile. We reasoned that an a-acyloxy dienophile may form a 7-membered chelate to 

a Lewis acid catalyst through its two carbonyl oxygens, which should both cloak the 

intrinsic electron donating property of the ester and provide a sterically-defined 

environment for asymmetric induction (Figure 4.6).26,27 
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Figure 4.6 Proposed Reaction 
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Figure 4.7 Attempts to Expand Ru Catalysis Scope 
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4.3.3 Chiral Lewis Acid Catalysis 

Figure 4.8 Prior Art 

  

 With the idea of two-point binding in mind, we next turned to conditions reported 

in the literature for the catalytic asymmetric Diels-Alder of a-thioacrylates with 

cyclopentadiene (Figure 4.8).28 With these conditions in mind, we started off with a brief 

ligand screen (Figure 4.9). While BOX-ligand L1 gave some conversion, the product was 

found to be essentially racemic. Further screening identified PyBox ligand L5 to afford 

low levels of conversion but in a promising 27% ee. 

Figure 4.9 Ligand Screening 
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salts, we found Mg, Zn, and Sc (entries 1-3) all performed poorly, giving little to no 

enantioselectivity (Figure 4.10). Moving to trivalent Sc (entry 4) showed a promising 

increase in reactivity but again with no enantioselectivity. However, we were pleased to 

find that moving to lanthanum metals (entries 5-18), we observed both an increase in 

conversion and enantioselectivity with Yb serving as the optimal catalyst tested giving 65% 

conversion and 63% ee. It is important to note that 3 Å molecular sieves were used to 

ensure an anhydrous reaction environment.  

Figure 4.10 Metal Screening 
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chiral PyBox frameworks were useful in developing an asymmetric scandium(III)-

catalyzed DA reaction between 36 and 50.33  

 

Figure 4.11 Prior Art in Lathanides Catalysis for Diels–Alder Reactions 
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enantioselectivity. Returning to PyBox systems, we observe the best results with Ph-PyBox 

ligand L5. 

 

Figure 4.12 Ligand Screening 
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Figure 4.13 Solvent Screening 
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Figure 4.14 Ligand Screening 

 

 With L13 as the optimal ligand, we once again investigated the effect of metal 

identity and solvent on the reaction (Figure 4.15). It was found that moving to yttrium in 
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Figure 4.15 Additional Optimization 
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 Additionally, we were interested to understand the role of molecular sieves in the 

reaction. We had hypothesized that trace water could potentially cause quenching of the 

yttrium catalyst and therefore we believed adding molecular sieves could prevent this issue. 

However, we noticed that there was irreproducibility in the reaction and thought that 

perhaps the heterogeneity of the molecular sieves could be causing issues. To this end, we 

studied how changing the amount of molecular sieves and how the stirring rate could affect 

the reaction. Interestingly, it was found that removal of molecular sieves was beneficial to 

the reaction (Figure 4.16).  

Figure 4.16 Additional Optimization 
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long reaction times to achieve high conversion and the products were formed in lower ee 

(13j,k). We hypothesized that the lower enantioselectivity may result from dienophile 

hydrolysis by adventitious water during the extended reaction times, which produces the 

corresponding benzoic acid. Thus, we tested this hypothesis by doping in exogenous 

benzoic acid into the standard reaction and found a decrease in both yield and ee (51% 

yield, 37% ee). Given this finding, we tested whether catalyst deactivation was operative 

with slow-reacting dienophiles. Indeed, the results of a same excess experiment for the 

reaction between 9 and 12j were consistent with catalyst deactivation over time (Figure 

4.18).35 

Sterically encumbered aliphatic esters also performed well, giving the 

corresponding products in good yield and high ee (13f,l-m). The phenyl carbonate 

dienophile could also be used; however, the product was formed in lower yield and ee 

(13n). The reaction to give cycloadduct 13f was scaled to 1.0 mmol with no decrease in 

yield or selectivity (92% yield, 86% ee, 16:1 rr). 
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Figure 4.17 Ester Scope 

 

 

Figure 4.18 Same Excess Study Between 9 and 12j 

 

O

Me
O+ Me

O
Y(OTf)3 

(10 mol %)
L13 (12 mol %) O

(5 equiv)
9

(0.4 mmol)
12b,e-n 13b,e-n

PhCl, 23 °C
 46 hMe O

R

Me

O

R

N
NN

N N

1-Nap
O

1-Nap
O

Ph

Ph Ph

Ph

L13

Me

O
Me

O
Ad

O

Me

O
Me

O

tBu

O

Me

O
Me

O
1-Nap

O

Me

O
Me

O
O

Me

O
Me

O
OPh

O

13b
92% yield

87% ee, 13:1 rr
13f

94% yield
86% ee, 16:1 rr

13l
98% yield

91% ee, 13:1 rr

13m
92% yield

89% ee, >20:1 rr

13n
76% yield

79% ee, 14:1 rr

Ph Ph

Me

O
Me

O
O

R3 R3 = H
R3 = 4-NMe2
R3 = 4-OMe
R3 = 4-Me
R3 = 4-Br
R3 = 4-CF3

13e
13g
13h
13i
13j
13k

91% yield, 89% ee, 18:1 rr
99% yield, 91% ee, 13:1 rr[a]

97% yield, 91% ee, 16:1 rr
97% yield, 91% ee, 13:1 rr
94% yield, 81% ee, 15:1 rr[b]

84% yield, 63% ee, 17:1 rr[c]

[a] Reaction time of 3 days. [b] Reaction time of 5 days. [c] Reaction time of 14 days.

[Cat] = 50.0 mM, [9]0 = 2.500 M, [12j]0 = 0.500 M
[Cat] = 50.0 mM, [9]0 = 2.375 M, [12j]0 = 0.375 M

Me
+

O

Me
OO

4-Br-Ph
Me

O
Me

OY(OTf)3
L3

d5-PhCl
23 °C

4-Br-Ph

O

Same Excess Study

Time (h)
6040200 80

[D
ie

no
ph

ile
 1

2j
] 

(M
)

Time (h)

time adjustedoriginal data

0.40

0.20

0.00

0.60

0.40

0.20

0.00

0.60

6040200 80

A B

9 12j 13j

[D
ie

no
ph

ile
 1

2j
] 

(M
)



Chapter 4 – Enantioselective Diels-Alder Reactions of a-Acyloxy Enones 304 

4.4.2 Diene Scope 

Next, we investigated the diene scope (Figure 4.19). For these studies, dienophile 

12f was used due to its ease of handling. Although the simple 1,3-butadiene undergoes 

cycloaddition, the reaction was very slow and the product (54a) was formed in low yield 

with poor ee. Substitution at the 2-position of the diene with isopropyl is tolerated with 

only a minor decrease in ee (54b) compared to 13f. 2,3-dimethylbutadiene was found to be 

an excellent substrate, providing product 54c in 99% yield and 97% ee. Whereas 

cyclopentadiene undergoes cycloaddition to form 54d in high yield, ee, and dr favoring the 

endo-cycloadduct, the corresponding cyclohexa-1,3-diene is less reactive and the product 

is formed in lower ee (54e). Electron-rich 2-silyloxy dienes also perform well (54f,g), 

giving products with high regioselectivity and comparable ee to 13f. In contrast, slightly 

lower ee is observed when the 1-silyloxydiene is employed (13h). However, it is 

noteworthy that the reaction with 1-silyloxydiene 53 gives the cycloadduct with 

regioselectivity opposite to its electronic bias. We hypothesize that this occurs due to a 

steric repulsion effect between the large TIPS group of the diene and the ligand of our 

catalyst. Indeed, it was found that reaction of 53f with 12f in the presence of Sc(OTf)3 in 

the absence of ligand delivers the electronically matched product 55. Unsuccessful diene 

substrates include furan 53i, which was unreactive, and dienes 53j-l, which suffered from 

decomposition under the reaction conditions despite the use of varied temperatures and 

catalyst loading. 
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Figure 4.19 Diene Scope 
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butyl (56e) gave no conversion. Additionally, cyclic dienophile 56f as well as ester 56g 

were not tolerated.  

Figure 4.20 Ketone Scope 
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Scheme 1. Product Derivatization 

 

4.5 MECHANISTIC STUDIES 

Figure 4.21 Proposed Catalytic Cycle 
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cycloaddition with diene 63 would afford cycloadduct 64 bound to the yttrium catalyst. 

Lastly, product dissociation would then turn over the catalytic cycle.  

 To interrogate this mechanistic hypothesis, we first performed kinetic studies using 

variable time normalization analysis (VTNA), a technique developed by Jordie Bures.39 To 

run these kinetics experiments, we first needed to develop an experimental set up to acquire 

our data. We elected to utilize NMR as a method of obtaining concentration of each species 

over time given the ability to use a sealed tube which would prevent the loss of any volatile 

diene over the course of the reaction. However, given the heterogeneous nature of the 

reaction, we required a setup which would allow good stirring of the reaction. To achieve 

this, we used a combination of J-Young tubes and a rotoray evaporator. Specifically, J-

Young tubes were rotated using the setup shown below (Figure 4.22). First, a small test 

tube rack was cut horizontally to allow a top and bottom half. Along one edge, copper wire 

was used to make small hinges such that the tube rack would be allowed to open and close 

(similar to a book). The bottom half of this rack was then affixed to a stool leg using copper 

wire such that the stool leg would exist between the two rack layers (Figure 4.22C). J-

Young tubes could then be inserted into the holes to rest (Figure 4.22D). The top rack layer 

could then close over the tops of the J-Young tubes and was held together by copper wire. 

It was found that the installation of a counterweight (small glass bottle filled with sand) 

was necessary to achieve slow enough sample rotation for solid suspension. The stool leg 

was then attached to the rotovap with electrical tape while the other end rested on a cork 

ring (allowing for smooth rotation).  
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Figure 4.22 Experimental Setup for Kinetics Studies 

 

 
 

With a proper experimental setup finally developed, we began studying the kinetics 

of our reaction. We elected to study the reaction between dienophile 12i and diene 63 as 

this combination gave good levels of both yield and ee. We began by studying the effect 

of catalyst loading on the rate of the reaction. The standard reaction was run with 10 mol 

% catalyst (Figure 4.23, plum). From there, we lowered the catalyst down to 5 (blue) and 

2.5 mol % (teal). Normalizing this data with first order approximation in catalyst revealed 

graphical overlay of the data allowing us to conclude that the data is consistent with first 

order kinetics in catalyst.  
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Figure 4.23 Determining Order in Catalyst 
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order approximation in catalyst revealed graphical overlay of the data allowing us to 

conclude that the data is consistent with first order kinetics in diene. 
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Figure 4.24 Determining Order in Diene 
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Figure 4.25 Determining Order in Dienophile 

 

In summary, it was found that the reaction displays an observed first order 

dependence on catalyst, first order dependence on dienophile 12i, and first order 

dependence on diene 63. This observation is consistent with the proposed mechanism and 

provides evidence in support of 59 being the resting state of the catalyst and cycloaddition 

between 60 and diene 63 as being the rate-determining step. When the data was fully 

normalized with respect to all components (catalyst, diene, and dienophile) a linear trend 

was observed which is self-consistent with our earlier assignments of the order in each 

component (Figure 4.26). Additionally, from a linear model fit to this data, we were able 

to extract a calculated rate constant of 3.5 X 10–4 M–2•s–1.  
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Figure 4.26 Fully Normalized Kinetics Data 

 

 Additionally, we wanted to determine if catalyst inhibition was operative under the 

reaction conditions. To this end, we performed a same excess study between 65 and 12i 

and found no evidence for significant catalyst deactivation over the course of the reaction 

(Figure 4.27).  
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Figure 4.27 Same Excess Study Between 63 and 12i 

 

4.6 CONCLUDING REMARKS 

 In summary, we have developed an enantioselective Diels–Alder reaction of a–

acyloxy enone dienophiles. This method has been shown to be tolerant of a variety of 

dienophiles and dienes. Additionally, the products of this transformation can be used to 

generate enantioenriched terpenes which as relevant to the agrochemical industry. 

Mechanistically, the reaction is believed to have a free catalyst as a resting state with 

cycloaddition as the rate-determining step. 
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4.7 EXPERIMENTAL SECTION 

General Information  

4.7.1 Materials and Methods 

Unless otherwise stated, reactions were performed with freshly dried solvents 

utilizing standard Schlenk techniques. Glassware was oven-dried at 120 °C for a minimum 

of four hours or flame-dried utilizing a Bunsen burner under high vacuum. THF, DCM, 

MeCN, PhH, and PhMe were dried by passing through activated alumina columns. PyBim 

ligands were synthesized using the procedure reported by Beller and coworkers.40 MeOH 

(HPLC grade) was purchased from Fisher Scientific. Chlorobenzene, anhydrous 99.8%, 

was purchased from Millipore Sigma. DCE, Et3N, i-Pr2NH, DIPEA, Pyr, and 2,6- lutidine 

were distilled from calcium hydride prior to use and stored under N2 or Ar. Commercial 

reagents were used directly as supplied from commercial sources and without further 

purification unless otherwise specified. All reactions were monitored by thin layer 

chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and 

were visualized by UV (254 nm) and KMnO4, p-anisaldehyde, iodine, or CAM staining. 

Flash column chromatography was performed as described by Still et al.41 using silica gel 

(SiliaFlash® P60, particle size 40-63 microns [230 to 400 mesh]) purchased from Silicycle. 

1H and 13C NMR spectra were recorded on a Bruker Advance III HD with Prodigy 

Cryoprobe (at 400 MHz and 101 MHz, respectively) or Varian Inova 500 (at 500 MHz and 

126 MHz, respectively) and are reported relative to internal CDCl3 (1H, δ = 7.26), CDCl3 

(13C, δ = 77.16). Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations 
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are as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, hept = heptet, m 

= multiplet. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and 

are reported in frequency of absorption (cm–1). Analytical chiral SFC was performed with 

a Mettler SFC supercritical CO2 analytical chromatography system (CO2 = 1450 psi, 

column temperature = 40 °C) with either a Chiralcel IC column (4.6 mm x 25 cm), a 

Chiralcel AD-H column (4.6 mm x 25 cm), or a Chiralcel OJ-H column (4.6 mm x 25 cm). 

Molecular formulas of the compounds [M] are given, with the observed ion fragment in 

brackets, e.g. [M+H]+. Benzoyl chloride, diphenylacetyl chloride, Ytterbium(III) triflate, 

2,6-bis[(4S)-4-phenyl-2-oxazolinyl]pyridine and 2,6-Bis((S)-4,5-dihydro-4-

phenethyloxazol-2-yl)pyridine were purchased from Millipore Sigma and used as received. 

Isoprene was purchased from Millipore Sigma and distilled prior to use. Diacetyl was 

purchased from TCI America and used as received. Yttrium(III) triflate, lanthanum(III) 

triflate, cerium(III) triflate, praseodymium(III) triflate, neodymium(III) triflate, 

europium(III) triflate, gadolinium(III) triflate, terbium(III) triflate, dysprosium(III) triflate, 

holmium(III) triflate, erbium(III) triflate, and lutetium(III) triflate were purchased from 

Strem Chemicals, Inc. and used as received. Scandium(III) triflate, samarium(III) triflate, 

and ytterbium(III) triflate were purchased from Millipore Sigma and used as received. 

Deuteriochloroform was purchased from Cambridge Isotope Laboratories. 

Deuteriochlorobenzene was purchased from Sigma-Aldrich. The 3Å molecular sieve was 

purchased from Millipore Sigma and activated by heating under a flame at reduced pressure 

(100 mTorr) for 20 minutes prior to use. 
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4.7.2 Dienophile Preparation 

 

General Procedure A: To a dry round-bottomed flask, equipped with a magnetic stir bar, 

was added diketone (1.0 equiv), triethylamine (1.2 equiv) and dry DCM. To this solution 

was added electrophile (1.0 equiv) at 0 °C under N2. The reaction was allowed to slowly 

warm to 23 °C and monitored by TLC. Upon completion, hexanes (volume = reaction 

volume) was added, and the reaction mixture was filtered through a plug of celite. The 

resulting solution was concentrated under reduced pressure, and the residue was subjected 

to silica gel chromatography. 

3-oxobut-1-en-2-yl benzoate (12e) 

 

Prepared from diacetyl S1 (2.62 mL, 30.0 mmol, 1.0 equiv.), triethylamine (5.02 mL, 36.0 

mmol, 1.2 equiv.), benzoyl chloride (3.48 mL, 30.0 mmol, 1.0 equiv), and dry DCM (35 

mL) following General Procedure A. The resulting solution was concentrated under 

reduced pressure, and the residue was subjected to silica gel chromatography (1:20 

EtOAc/hexanes → 1:10 EtOAc/hexanes) to afford 12e (2.38 g, 12.5 mmol, 42%) as a 

electrophile
NEt3
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yellow oil which solidifies upon storage at –20 °C. Spectroscopic data matched previously 

reported values.42  

1H NMR (500 MHz, CDCl3) δ 8.12 (dt, J = 7.0, 1.4 Hz, 2H), 7.74 – 7.56 (m, 1H), 7.56 – 

7.40 (m, 2H), 6.04 (d, J = 2.4 Hz, 1H), 5.74 (d, J = 2.4 Hz, 1H), 2.42 (s, 3H). 

 

3-oxobut-1-en-2-yl 4-nitrobenzoate (S2): 

 

 

 

Prepared from diacetyl (1.32 mL, 15.0 mmol, 1.0 equiv), triethylamine (2.51 mL, 18.0 

mmol, 1.2 equiv), 4-nitro-benzoyl chloride (2.78 g, 15.0 mmol, 1.0 equiv), and dry DCM 

(35 mL) following General Procedure A. The resulting solution was concentrated under 

reduced pressure, and the residue was subjected to silica gel chromatography (1:20 to 1:10 

EtOAc/hexanes) to afford S2 (2.99 mg, 12.75 mmol, 85%) as a white solid. Spectroscopic 

data matched previously reported values.42  

1H NMR (500 MHz, CDCl3) δ 8.38 – 8.26 (m, 4H), 6.10 (d, J = 2.7 Hz, 1H), 5.85 (d, J = 

2.8 Hz, 1H), 2.45 (s, 3H). 
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3-oxobut-1-en-2-yl 4-(dimethylamino)- benzoate (12g): 

 

Procedure: To an oven-dried 150 mL pressure flask, equipped with a stir bar, was added 

S2 (4.00 g, 17.0 mmol, 1.0 equiv) followed by ethanol (90 mL). The mixture was heated 

in a preheated oil bath (110 °C) until S2 dissolved (~5 min). Next, iron powder (9.5 g, 170 

mmol, 10 equiv) added followed by a solution of NH4Cl (9.1 g, 170 mmol, 10 equiv) in 

water (27 mL). The resulting suspension was heated at reflux for 10 mins (110 °C). The 

hot mixture was then filtered through a Celite pad. The residue was dissolved in EtOAc 

and washed with H2O (30 mL), and the aqueous phase was further extracted with EtOAc 

(2 × 20 mL). The organic extracts were combined, dried over MgSO4, filtered, and 

evaporated under vacuum. Residue was subjected to silica gel column chromatography 

(50% EtOAc/hexanes) to afford S3 (440 mg, 2.21 mmol, 13% yield).  

Procedure: To an oven-dried 2-dram vial, equipped with a stir bar, was added S3 (420 mg, 

2.05 mmol, 1.0 equiv), and K2CO3 (622 mg, 4.5 mmol, 2.2 equiv) in DMF (4.1 mL). To 

this was added MeI (280 uL, 4.5 mmol, 2.2 equiv). Reaction then capped and heated to 60 

°C overnight. Reaction was quenched with water and extracted with EtOAc (3 x 10 mL). 

Washed with brine, dried over MgSO4, filtered, and concentrated. Residue subjected to 

silica gel column chromatography (40% EtOAc/hexanes) to afford 12g (276 mg, 1.19 

mmol, 58%) as a white solid. 

 

1H NMR (400 MHz, CDCl3) δ 8.02 – 7.94 (m, 2H), 6.74 – 6.65 (m, 2H), 5.97 (d, J = 2.0 

Hz, 1H), 5.62 (d, J = 2.0 Hz, 1H), 3.07 (s, 6H), 2.37 (s, 3H). 
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13C NMR (101 MHz, CDCl3) δ 192.84, 165.08, 153.86, 152.19, 132.27, 115.38, 113.07, 

111.12, 40.33, 25.86. 

FTIR (NaCl, thin film, cm-1): 2911, 1713, 1688, 1652, 1614, 1379, 1274, 1184, 1125, 

1080, 939 

HRMS (GC-EI+, m/z): calc’d for C13H15NO3 233.1052 [M•]+; found: 233.1058 

Rf = 0.54 in 40% EtOAc/hexanes (KMnO4, UV-Active) 

 

3-oxobut-1-en-2-yl 4-methoxybenzoate (12h): 

 

Prepared from diacetyl (1.32 mL, 15.0 mmol, 1.0 equiv), triethylamine (2.51 mL, 18.0 

mmol, 1.2 equiv), p-anisoyl chloride (2.56 g, 15.0 mmol, 1.0 equiv), and dry DCM (35 

mL) following General Procedure A. The resulting solution was concentrated under 

reduced pressure, and the residue was subjected to silica gel chromatography (1:1 

DCM/hexanes) to afford 7c (495 mg, 2.25 mmol, 15%) as a white solid. 

 

1H NMR (400 MHz, CDCl3) δ 8.16 – 7.99 (m, 2H), 7.02 – 6.89 (m, 2H), 6.01 (d, J = 2.3 

Hz, 1H), 5.69 (d, J = 2.3 Hz, 1H), 3.88 (s, 3H), 2.39 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 192.18, 164.21, 152.01, 132.25, 121.05, 113.82, 55.65, 

25.76. 

FTIR (NaCl, thin film, cm-1): 3627, 3382, 3127, 3006, 2940, 2842, 1714, 1600, 1504, 

1371, 1122, 1019, 971, 852, 762, 692 
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HRMS (GC-EI+, m/z): calc’d for C12H12O4 220.0736 [M•]+; found: 220.0748 

Rf = 0.58 in 40% EtOAc/hexanes (KMnO4, UV-Active) 

 

3-oxobut-1-en-2-yl 4-methylbenzoate (12i): 

 

Prepared from diacetyl (1.32 mL, 15.0 mmol, 1.0 equiv), triethylamine (2.51 mL, 18.0 

mmol, 1.2 equiv), p-toluoyl chloride (1.98 mL, 15.0 mmol, 1.0 equiv), and dry DCM (35 

mL) following General Procedure A. The resulting solution was concentrated under 

reduced pressure, and the residue was subjected to silica gel chromatography (1:20 → 1:10 

EtOAc/hexanes) to afford 12i (915 mg, 4.48 mmol, 30%) as a yellow solid. 12i can be 

recrystallized after column chromatography by leaving the compound in a minimal amount 

of EtOAc/hexanes after rotovaping in a flask overnight open to atmosphere to give pale 

yellow blocky crystals. 

 

1H NMR (400 MHz, CDCl3) δ 8.03 – 7.98 (m, 2H), 7.31 – 7.27 (m, 2H), 6.02 (d, J = 2.3 

Hz, 1H), 5.71 (d, J = 2.3 Hz, 1H), 2.44 (s, 3H), 2.40 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 192.05, 164.84, 151.99, 144.84, 130.44, 129.44, 126.01, 

113.90, 25.75, 21.90. 

FTIR (NaCl, thin film, cm-1): 3854, 3842, 2980, 1343, 2321, 1718, 1676, 1610, 1419, 

1284, 1167, 1117, 942 

HRMS (GC-EI+, m/z): calc’d for C12H12O3 204.0784 [M•]+; found: 204.0787 
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Rf = 0.69 in 40% EtOAc/hexanes (KMnO4, UV-Active) 

Melting point = 69–70 °C 

 

3-oxobut-1-en-2-yl 4-bromobenzoate (12j): 

 

Prepared from diacetyl (1.32 mL, 15.0 mmol, 1.0 equiv), triethylamine (2.51 mL, 18.0 

mmol, 1.2 equiv), 4-bromobenzoyl chloride (3.29 g, 15.0 mmol, 1.0 equiv), and dry DCM 

(35 mL) following General Procedure A. The resulting solution was concentrated under 

reduced pressure, and the residue was subjected to silica gel chromatography (1:20 → 1:10 

EtOAc/hexanes) to afford 12j (3.43 g, 12.7 mmol, 85%) as a yellow solid. 

 

1H NMR (600 MHz, CDCl3) δ 8.03 – 7.91 (m, 2H), 7.68 – 7.57 (m, 2H), 6.04 (d, J = 2.5 

Hz, 1H), 5.76 (d, J = 2.5 Hz, 1H), 2.41 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 191.53, 164.06, 151.84, 132.11, 131.86, 129.23, 127.71, 

114.48, 25.67. 

FTIR (NaCl, thin film, cm-1): 3904, 3888, 3663, 3216, 3020, 2807, 2504, 2262, 1723, 

1678, 1523, 1477, 1410, 1273 

HRMS (GC-EI+, m/z): calc’d for C11H9O3Br 267.9735 [M•]+; found: 267.9743 

Rf = 0.69 in 40% EtOAc/hexanes (KMnO4, UV-Active) 
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3-oxobut-1-en-2-yl 4-(trifluoromethyl) benzoate (12k): 

 

Prepared from diacetyl (1.32 mL, 15.0 mmol, 1.0 equiv), triethylamine (2.51 mL, 18.0 

mmol, 1.2 equiv), 4-(trifluoromethyl)-benzoyl chloride (3.12 g, 15.0 mmol, 1.0 equiv), and 

dry DCM (35 mL) following General Procedure A. The resulting solution was concentrated 

under reduced pressure, and the residue was subjected to silica gel chromatography (1:20 

→ 1:10 EtOAc/hexanes) to afford 7f (3.29 g, 12.7 mmol, 85%) as a pale-yellow solid. 

1H NMR (400 MHz, CDCl3) δ 8.23 (dp, J = 7.7, 0.9 Hz, 2H), 7.84 – 7.67 (m, 2H), 6.07 

(d, J = 2.6 Hz, 1H), 5.81 (d, J = 2.6 Hz, 1H), 2.43 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 191.28, 163.56, 151.81, 135.49, 135.17, 134.84, 127.72, 

125.82, 125.78, 125.75, 125.71, 125.01, 122.30, 119.59, 114.77, 25.63. 

19F NMR (282 MHz, CDCl3) δ 66.41 

FTIR (NaCl, thin film, cm-1): 3462, 3384, 3076, 3020, 2934, 2356, 1975, 1919, 1868, 

1738, 1703, 1641, 1621, 1587, 1514, 1410, 1361, 1328, 1291, 1265, 1179, 1113, 1065, 

1014, 976, 928, 869, 841, 827, 768, 733, 698, 612. 

HRMS (GC-EI+, m/z): calc’d for C12H9O3F3 258.0504 [M•]+; found: 258.0521 

Rf = 0.69 in 40% EtOAc/hexanes (KMnO4, UV-Active) 
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3-oxobut-1-en-2-yl 1-naphthoate (13b): 

 

Prepared from diacetyl (1.32 mL, 15.0 mmol, 1.0 equiv), triethylamine (2.51 mL, 18.0 

mmol, 1.2 equiv), 1-napthoyl chloride (2.26 mL, 15.0 mmol, 1.0 equiv), and dry DCM (18 

mL) following General Procedure A. The resulting solution was concentrated under 

reduced pressure, and the residue was subjected to silica gel chromatography (1:20 

EtOAc/hexanes → 1:10 EtOAc/hexanes) to afford 13b (1.54 g, 6.4 mmol, 43%). 

Spectroscopic data matched previously reported values.42  

1H NMR (500 MHz, CDCl3) δ 8.94 (dq, J = 8.7, 0.8 Hz, 1H), 8.39 (dd, J = 7.3, 1.3 Hz, 

1H), 8.09 (ddt, J = 8.2, 1.3, 0.6 Hz, 1H), 7.91 (ddt, J = 8.2, 1.3, 0.6 Hz, 1H), 7.64 (ddd, J 

= 8.6, 6.8, 1.4 Hz, 1H), 7.60 – 7.51 (m, 2H), 6.09 (d, J = 2.4 Hz, 1H), 5.81 (d, J = 2.4 Hz, 

1H), 2.47 (s, 3H). 

HRMS (GC-FAB+, m/z): calc’d for C15H13O3 241.0865 [M+H]+; found: 241.0859 

3-oxobut-1-en-2-yl 2,2-diphenylacetate (12f) 
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Prepared from diacetyl (2.19 mL, 25.0 mmol, 1.0 equiv), triethylamine (4.18 mL, 30.0 

mmol, 1.2 equiv), benzoyl chloride (2.90 mL, 25.0 mmol, 1.0 equiv), and dry DCM (35 

mL) following General Procedure A. The resulting solution was concentrated under 

reduced pressure, and the residue was subjected to silica gel chromatography (1:20 

EtOAc/hexanes → 1:10 EtOAc/hexanes) to afford 12f (3.1 g, 12.7 mmol, 74%) as a white 

solid. 7g can be recrystallized after column chromatography by leaving the compound in a 

minimal amount of EtOAc/Hex. after rotovaping in a flask overnight open to atmosphere 

to give clear colorless blocky crystals. Spectroscopic data matched previously reported 

values.43  

1H NMR (400 MHz, CDCl3) δ 7.25 – 7.50 (m, 10H), 5.93 (d, J = 2.5 Hz, 1H), 5.57 (d, J 

= 2.5 Hz, 1H), 5.22 (s, 2H), 2.28 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 191.54, 170.58, 151.67, 137.88, 128.78, 128.70, 127.53, 

113.93, 56.60, 25.48. 

HRMS (GC-FAB+, m/z): calc’d for C18H17O3 281.1178 [M+H]+; found: 281.1165 

Melting point = 61–62 °C. 

3-oxobut-1-en-2-yl pivalate (12m): 

 

Prepared from diacetyl (1.32 mL, 15.0 mmol, 1.0 equiv), triethylamine (2.51 mL, 18.0 

mmol, 1.2 equiv), pivaloyl chloride (1.85 mL, 15.0 mmol, 1.0 equiv), and dry DCM (15 
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mL) following General Procedure A. The resulting solution was concentrated under 

reduced pressure, and the residue was subjected to silica gel chromatography (1:20 

EtOAc/hexanes → 1:10 EtOAc/hexanes) to afford 12m (443 mg, 2.6 mmol, 17%).  

1H NMR (500 MHz, CDCl3) δ 5.90 (dd, J = 2.3, 1.2 Hz, 1H), 5.56 (dd, J = 2.3, 1.3 Hz, 

1H), 2.34 (d, J = 1.6 Hz, 3H), 1.31 (d, J = 1.5 Hz, 8H). 

13C NMR (101 MHz, CDCl3) δ 191.88, 176.81, 152.08, 113.45, 39.03, 27.20, 25.66. 

FTIR (NaCl, thin film, cm-1): 2976, 1752, 1700, 1640, 1480. 1367, 1275, 1170, 1119, 

1032, 918  

HRMS (GC-FAB+, m/z): calc’d for C9H14O3 171.1021 [M+H]+; found: 171.1013 

Rf = 0.74 in 40% EtOAc/hexanes (KMnO4) 

 

3-oxobut-1-en-2-yl (3r,5r,7r)-adamantane-1-carboxylate (12l) 

 

Prepared from diacetyl (1.32 mL, 15.0 mmol, 1.0 equiv), triethylamine (2.51 mL, 18.0 

mmol, 1.2 equiv), 1-adamantanecarbonyl chloride (2.98 g, 15 mmol, 1.0 equiv), and dry 

DCM (20 mL) following General Procedure A with 30h at 23 °C. The resulting solution 

was concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:20 EtOAc/hexanes → 1:10 EtOAc/hexanes) to afford 12l (816 mg, 3.29 

mmol, 22%).  
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1H NMR (500 MHz, CDCl3) δ 5.90 (d, J = 2.2 Hz, 1H), 5.54 (d, J = 2.2 Hz, 1H), 2.34 (s, 

3H), 2.06 (q, J = 3.0 Hz, 3H), 2.01 (d, J = 2.9 Hz, 6H), 1.75 (dt, J = 4.5, 2.9 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 192.00, 175.91, 152.09, 113.37, 41.01, 38.81, 36.54, 

27.98, 25.70. 

FTIR (NaCl, thin film, cm-1): 3584, 2905, 1748, 1694, 1453, 1361, 1212, 1122, 1057 

HRMS (GC-FAB+, m/z): calc’d for C15H20O3 249.1491 [M+H]+; found: 249.1513 

Rf = 0.63 in 40% EtOAc/hexanes (KMnO4) 

 

phenyl (3-oxobut-1-en-2-yl) carbonate (12n): 

 

Prepared from diacetyl (2 g, 23.23 mmol, 1.0 equiv), triethylamine (3.84 mL, 27.87 mmol, 

1.2 equiv), phenyl chlorooxoacetate (2.9 mL, 23,23 mmol, 1.0 equiv), and dry DCM (53 

mL) following General Procedure A. The resulting solution was concentrated under 

reduced pressure, and the residue was subjected to silica gel chromatography (1:20 

EtOAc/hexanes → 1:10 EtOAc/hexanes) to afford 12n (1 g, 4.83 mmol, 21%) as pale-

yellow solid.  

1H NMR (400 MHz, CDCl3) δ 7.47 – 7.37 (m, 2H), 7.33 – 7.22 (m, 3H), 6.01 (d, J = 2.8 

Hz, 1H), 5.87 (d, J = 2.8 Hz, 1H), 2.44 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 191.20, 151.44, 151.06, 129.71, 126.55, 120.98, 114.14, 

25.56. 
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FTIR (NaCl, thin film, cm-1): 3887, 3022, 2258, 1774, 1696, 1492, 1361, 1300, 1235, 

1209, 1161, 1123, 1072, 1022, 941 

HRMS (TOF-ESI, m/z): calc’d for C11H11O4 207.0657 [M+H]+; found: 207.0644 

Rf = 0.63 in 40% EtOAc/hexanes (KMnO4, UV-Active) 

 

3-oxoprop-1-en-2-yl 2,2-diphenylacetate (56a): 

 

Procedure: To a flame-dried 50 mL round bottom flask, equipped with a stir bar, was 

added ketone S5 (1 g, 7.68 mmol, 1.0 equiv), triethylamine (2.14 mL, 15.0 mmol, 2 equiv), 

and DMAP (188 mg, 1.5 mmol, 20 mol %) followed by DCM (15 mL). To this solution 

was added diphenylacetyl chloride (2.3 g, 9.98 mmol, 1.3 equiv). The reaction was allowed 

to stir for 12 h at 23 °C. The reaction was then quenched with hexanes, filtered through 

celite, and concentrated. The residue was then subjected to silica column chromatography 

(10% EtOAc/Hexanes) to afford S6. S6 was used crude in the following reaction. 

 

To an oven-dried 50 mL round bottom flask, equipped with a stir bar, was added crude S6, 

hydroquinone (333 mg, 3.02 mmol, 0.4 equiv), and PhMe (17 mL). Reaction was fitted 

with a reflux condenser and heated to 100 °C for 20 h. The reaction was then concentrated 

in vacuo and purified via flash column chromatography (10% EtOAc/Hexanes) to give 56a 
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(1.33 g, 4.98 mmol, 65%) as a white amorphous solid. Spectroscopic data matched 

previously reported values.44  

1H NMR (400 MHz, CDCl3) δ 9.39 (s, 1H), 7.49 – 7.27 (m, 10H), 6.03 (d, J = 2.4 Hz, 

1H), 5.93 (d, J = 2.4 Hz, 1H), 5.24 (s, 1H). 

13C NMR (101 MHz, CDCl3) δ 185.02, 170.07, 152.83, 137.91, 128.88, 128.87, 127.70, 

121.57, 56.69. 

 

3-oxopent-1-en-2-yl 2,2-diphenylacetate (56b): 

 

Procedure: To a flame-dried 100 mL round bottom flask, equipped with a stir bar, was 

added pent-2-yn-1-ol (1 g, 11.9 mmol, 1.0 equiv), triethylamine (5 mL, 35.7 mmol, 3 

equiv), and DMAP (290 mg, 2.38 mmol, 20 mol %) followed by DCM (40 mL). To this 

solution was added diphenylacetyl chloride (3.02 g, 13.1 mmol, 1.1 equiv). The reaction 

was allowed to stir for 12 h at 23 °C. The reaction was then quenched with hexanes, filtered 

through celite, and concentrated. The residue was then subjected to silica column 

chromatography (10% EtOAc/Hexanes) to afford S6 (3.15 g, 11.3 mmol, 95%). 

 

PPh3AuNTf2 (74 mg, 0.1 mmol, 5 mol %) was added to a solution of a propargylic benzoate 

S6 (555 mg, 2.0 mmol, 1.0 equiv) and Selectfluor® (1.06 g, 3.0 mmol, 1.5 equiv) in 

CH3CN (40mL) and water (80 uL) (MeCN: water = 500:1, 0.05 M). The reaction was 

heated in an oil bath pre-heated to 80 ºC and monitored by TLC. Upon completion (approx. 
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4 h), the reaction was allowed to cool to room temperature and treated with Me2S (excess) 

for 5 min before the removal of most of the solvent. The resulting residue was dissolved in 

diethyl ether and then washed with water and brine. The ethereal layer was dried with 

MgSO4 and concentrated under vacuum. The residue was purified through silica gel flash 

column chromatography (1:20 EtOAc/hexanes → 1:10 EtOAc/hexanes) to afford 56b as a 

pale yellow solid (170 mg, 0.57 mmol, 29%). 

1H NMR (400 MHz, CDCl3) δ 7.52 – 7.22 (m, 10H), 5.91 (d, J = 2.4 Hz, 1H), 5.54 (d, J 

= 2.4 Hz, 1H), 5.22 (s, 1H), 2.61 (q, J = 7.2 Hz, 2H), 1.09 (t, J = 7.2 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 194.72, 170.75, 151.54, 138.05, 128.92, 127.64, 113.08, 

56.80, 31.09, 7.94. 

FTIR (NaCl, thin film, cm-1): 3488, 3064, 3029, 2980, 2940, 1955, 1737, 1731, 1759, 

1642, 1600, 1494, 1454, 1379, 1359, 1309 

HRMS (GC-EI+, m/z): calc’d for C19H18O3 294.1256 [M•]+; found: 294.1278 

Rf = 0.70 in 40% EtOAc/hexanes (KMnO4, UV-Active) 

 

3-oxo-3-phenylprop-1-en-2-yl 2,2-diphenylacetate (56c): 

 

Prepared from 1-phenyl-1,2-propanedione (1.08 mL, 8.00 mmol, 1.0 equiv), triethylamine 

(1.34 mL, 9.6 mmol, 1.2 equiv), diphenylacetyl chloride (1.85 g, 8.0 mmol, 1.0 equiv), and 

dry DCM (27 mL) following General Procedure A. The resulting solution was concentrated 
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under reduced pressure, and the residue was subjected to silica gel chromatography (1:10 

EtOAc/hexanes) to afford 56c (1.57 g, 4.59 mmol, 57%). 

1H NMR (300 MHz, CDCl3) δ 7.88 – 7.78 (m, 2H), 7.61 – 7.51 (m, 1H), 7.47 – 7.38 (m, 

2H), 7.37 – 7.27 (m, 10H), 5.68 (dd, J = 2.2, 0.5 Hz, 1H), 5.58 (dd, J = 2.1, 0.6 Hz, 1H), 

5.23 (s, 1H). 

13C NMR (126 MHz, CDCl3) δ 189.60, 170.78, 151.30, 137.85, 136.18, 132.99, 129.59, 

128.81, 128.75, 128.40, 127.55, 114.55, 77.42, 77.16, 76.90, 56.42. 

FTIR (NaCl, thin film, cm-1): 3030, 1755, 1666, 1498, 1121, 962, 773, 756, 741 

HRMS (GC-EI+, m/z): calc’d for C23H18O3 342.1256 [M•]+; found: 342.1241 

Rf = 0.70 in 40% EtOAc/hexanes (KMnO4, UV-Active) 

 

(Z)-4-oxopent-2-en-3-yl 2,2-diphenylacetate (56d) 

 

Procedure: Prepared from diketone S8 (4 g, 39.9 mmol, 1.0 equiv), triethylamine (6.7 mL, 

48.0 mmol, 1.2 equiv), diphenylcetyl chloride (9.2 mL, 39.9 mmol, 1.0 equiv), and dry 

DCM (93 mL) following General Procedure A. The resulting solution was concentrated 

under reduced pressure, and the residue was subjected to silica gel chromatography (10% 

EtOAc/hexanes) to afford 56d (8.08 g, 29.92 mmol, 75%) as a pale-yellow solid.  

1H NMR (400 MHz, CDCl3) δ 7.45 – 7.24 (m, 11H), 6.53 (q, J = 7.1 Hz, 1H), 5.28 (s, 

1H), 2.25 (s, 3H), 1.59 (d, J = 7.1 Hz, 3H). 
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13C NMR (101 MHz, CDCl3) δ 191.13, 170.40, 147.30, 138.15, 128.98, 128.79, 128.47, 

127.62, 56.81, 25.29, 11.78. 

FTIR (NaCl, thin film, cm-1): 3503, 3361, 3062, 3029, 2006, 2921, 1956, 1889, 1755, 

1683, 1659, 1600, 1495, 1452, 1380, 1361 

HRMS (GC-EI+, m/z): calc’d for C19H1803 294.1256 [M•]+; found: 294.1249 

Rf = 0.67 in 40% EtOAc/Hex. (KMnO4, UV-Active) 

4.7.3 Diene Preparation 

4-methyl-3-methylenepent-1-ene (53b): 

 

Procedure: To a mixture of CuI (3.31 g, 17.5 mmol) and 1,4-dibromo-2-butene (4.8 g, 23 

mmol) in ether (35 mL) under N2, at –10 °C, was added dropwise a freshly prepared 

solution of isopropylmagnesium bromide in ether (2.5 M, 14 mL, 35 mmol). The reaction 

was followed by TLC (hexanes), and after consumption of 1 the mixture was diluted with 

saturated NH4Cl solution. The aqueous phase was extracted with ether (2 × 20 mL), and 

the combined organics were washed with brine (20 mL), dried over MgSO4, and 

concentrated to give crude S10. 

 

To a solution of KOH (3.14 g, 48 mmol) in DMF (70 mL) was added triisopropylsilanol 

(39 mg, 0.2 mmol). After the mixture was stirred at rt for 1 h, crude S10 (5 g, 28 mmol) 

was added dropwise. After being stirred for an additional 12 h, the reaction was judged 
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complete by TLC (hexanes) and the product was distilled directly from the reaction mixture 

(200 mtorr, 70 °C) to give 53b as a colorless oil (2.08 g, 77%). Spectroscopic data matched 

previously reported values.45  

 

1H NMR (300 MHz, CDCl3) δ 6.34 (dd, J = 17.6, 10.9 Hz, 1H), 5.28 (ddt, J = 17.7, 1.2, 

0.6 Hz, 1H), 5.05 (dtd, J = 10.9, 1.2, 0.7 Hz, 1H), 5.00 (s, 2H), 2.71 – 2.52 (m, 1H), 1.13 – 

1.06 (m, 6H). 

(buta-1,3-dien-2-yloxy)(tert-butyl)dimethylsilane (53f): 

 

Procedure: Di-isopropylamine (3.9 mL, 27.9 mmol, 1.16 equiv) was dissolved in 

anhydrous THF (60 mL) and the resultant solution cooled to –78 °C, followed by the 

dropwise addition of n-BuLi (18.3 mL, 1.5 M in hexanes, 27.9 mmol, 1.16 equiv). The 

reaction mixture was allowed to warm to 0 °C and stirred 30 min after which time the 

solution was re-cooled to –78 °C. In a separate vessel, methyl vinyl ketone (2.1 mL, 24.0 

mmol, 1.0 equiv) was dissolved in THF (7.5 mL) and the resultant mixture added to the 

solution of LDA dropwise. After 1 hr, TBSOTf (6.41 mL, 27.9 mmol, 1.16 equiv) was 

slowly added and the reaction mixture allowed to warm to room temperature overnight (16 

h). The reaction was quenched with ice cold water (20 mL) and the aqueous layer extracted 

with 1:1 hexanes/Et2O (3 x 50 mL). The combined organic layers were dried (Na2SO4) and 

concentrated in vacuo to yield the crude product as a yellow oil. Purification by silica plug 

LDA, TBSOTf

S11 53f
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with hexanes gives 53f (2.69 g, 14.60 mmol, 61%) as a clear colorless oil. Spectroscopic 

data matched previously reported values.46  

1H NMR (400 MHz, CDCl3) δ 6.19 (dd, J = 16.9, 10.5 Hz, 1H), 5.51 (ddt, J = 16.9, 1.9, 

0.6 Hz, 1H), 5.08 (dddd, J = 10.5, 2.1, 1.5, 0.7 Hz, 1H), 4.36 – 4.29 (m, 2H), 0.97 (s, 10H), 

0.18 (s, 6H). 

Rf = 0.7 (Hexanes, UV-active, KMnO4) 

 

tert-butyldimethyl((3-methylbuta-1,3-dien-2-yl)oxy)silane (53g): 

 

Procedure: Di-isopropylamine (3.9 mL, 27.9 mmol, 1.16 equiv) was dissolved in THF (60 

mL) and the resultant solution cooled to –78 °C, followed by the dropwise addition of n-

BuLi (18.3 mL, 1.5 M in hexanes, 27.9 mmol, 1.16 equiv). The reaction mixture was 

allowed to warm to 0 °C and stirred 30 min after which time the solution was re-cooled to 

–78 °C. In a separate vessel, 3-methyl-3-butene-2-one (S12) (2.01 g, 24.0 mmol, 1.0 equiv) 

was dissolved in THF (7.5 mL) and the resultant mixture added to the solution of LDA 

dropwise. After 1 hr, TBSOTf (6.41 mL, 27.9 mmol, 1.16 equiv) was slowly added and the 

reaction mixture allowed to warm to room temperature overnight (16 h). The reaction was 

quenched with ice cold water (20 mL) and the aqueous layer extracted with 1:1 

hexanes/Et2O (3 x 50 mL). The combined organic layers were dried (Na2SO4) and 

concentrated in vacuo to yield the crude product as a yellow oil. Purification by silica plug 
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with hexanes gives 53g (2.62 g, 13.20 mmol, 55%) as a clear colorless oil. Spectroscopic 

data matched previously reported values.47  

1H NMR (400 MHz, CDCl3) δ 5.43 (dh, J = 2.1, 0.7 Hz, 1H), 4.96 (dpd, J = 2.3, 1.4, 0.8 

Hz, 1H), 4.48 (dt, J = 1.5, 0.8 Hz, 1H), 4.35 – 4.29 (m, 1H), 1.88 (dd, J = 1.4, 0.7 Hz, 3H), 

0.97 (s, 9H), 0.17 (s, 6H). 

Rf = 0.7 (Hexanes, UV-active, KMnO4) 

 

(E)-(buta-1,3-dien-1-yloxy)triisopropylsilane (54h): 

 

Procedure: To an oven-dried 25mL round bottom flask was added (E)-2-butenal (S13) 

(1.40 g, 20.0 mmol, 1.35 equiv) in dry DCM (8.0 mL) at 0 ˚C. To this solution was added 

triethylamine (3.82 mL, 27.4 mmol, 1.85 equiv) and triisopropylsilyl 

trifluoromethanesulfonate (3.98 mL, 14.8 mmol, 1.0 equiv). The reaction solution was 

heated at 45 ˚C for 5 h then cooled to room temperature and quenched with saturated 

aqueous NaHCO3 (10 mL). The organic layer was washed with NaHCO3 (2 x 10.0 mL) 

and brine (10 mL), dried over MgSO4, filtered, and concentrated in vacuo. The resulting 

residue was flushed through a silica plug (30 mL) with hexanes to afford a clear, colorless 

oil 54h (1.70 g, 7.5 mmol, 51%). Spectroscopic data matched previously reported values.45  
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1H NMR (500 MHz, CDCl3) δ 6.68 (dd, J = 11.8, 0.8 Hz, 1H), 6.26 (dddd, J = 16.9, 11.0, 

10.2, 0.6 Hz, 1H), 5.78 (ddt, J = 11.7, 10.9, 0.8 Hz, 1H), 5.01 (ddt, J = 16.9, 1.7, 0.7 Hz, 

1H), 4.87 – 4.77 (m, 1H), 1.25 – 1.15 (m, 3H), 1.13 – 1.05 (m, 18H). 

4.7.4 Diels–Alder Reaction 

 

General Procedure B: In a nitrogen-filled glovebox, to a dry 1-dram vial, equipped with 

a magnetic stir bar, was charged with M(OTf)x and capped with a Teflon cap. The reaction 

vial was then removed from the glovebox. The cap was removed and to the reaction vial 

was then quickly added ligand, and solvent and then recapped. The reaction was allowed 

to stir at 100 RPM for 3 hours at 23 °C. The cap was then removed and to the reaction vial 

was quickly added diene and dienophile, and the reaction vial was recapped and sealed 

with electrical tape. The reaction was stirred at 23 °C and monitored by TLC. Upon 

completion, the reaction mixture was filtered through a plug of silica gel, eluting with 

DCM. The resulting solution was concentrated under reduced pressure. The entire residue 

was taken up in CDCl3 and conversion/yield were determined by 1H NMR spectroscopy. 
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Ester Scope 

(R)-1-acetyl-4-methylcyclohex-3-en-1-yl benzoate (13e): 

 

Prepared from 12e (76.1 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 18:1 mixture of regioisomers favoring 

13e (94.1 mg, 0.364 mmol, 91%) in 89% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 8.09 – 7.98 (m, 2H), 7.66 – 7.56 (m, 1H), 7.51 – 7.42 (m, 

2H), 5.40 – 5.29 (m, 1H), 2.72 – 2.58 (m, 1H), 2.54 – 2.42 (m, 1H), 2.42 – 2.32 (m, 1H), 

2.19 (s, 3H), 2.13 (ddddd, J = 12.1, 6.7, 3.2, 2.2, 1.1 Hz, 1H), 1.99 (ddt, J = 13.1, 10.6, 4.8 

Hz, 2H), 1.76 – 1.66 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 206.93, 166.01, 133.53, 133.35, 129.94, 129.90, 128.64, 

116.77, 84.22, 31.83, 27.83, 26.72, 24.09, 23.31. 

FTIR (NaCl, thin film, cm-1): 3773, 3662 3343, 3904, 2415, 2204, 1718, 1709, 1690, 

1286 

HRMS (TOF-ESI, m/z): calc’d for C16H18O3 259.1334 [M+H]+; found: 259.1338 

Rf = 0.60 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

Y(OTf)3 (10 mol %)
L13 (12 mol %)
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!"## = +26° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 10% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 7.6 min, tminor enantiomer = 8.2 min; Minor regioisomer: tmajor enantiomer = 6.3 

min, tminor enantiomer = 6.7 min 

13e: racemic 

 

 

 

 

(+)-13e: enantioenriched, 89% ee 
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(R)-1-acetyl-4-methylcyclohex-3-en-1-yl 4-(dimethylamino)benzoate (13g): 

 

Prepared from 12g (93.3 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B allowing the reaction to run 

for 72 hours. The resulting solution was concentrated under reduced pressure, and the 

residue was subjected to silica gel chromatography (20% EtOAc/hexanes) to afford a 13:1 

mixture of regioisomers favoring 13g (119.4 mg, 0.396 mmol, 99%) in 91% ee as a white 

solid. 

1H NMR (400 MHz, CDCl3): δ 7.86 – 7.78 (m, 2H), 6.64 – 6.56 (m, 2H), 5.26 (qt, J = 

2.8, 1.3 Hz, 1H), 2.98 (s, 6H), 2.54 (dp, J = 17.9, 2.4 Hz, 1H), 2.41 – 2.31 (m, 1H), 2.31 – 

2.20 (m, 1H), 2.10 (s, 3H), 2.06 – 1.74 (m, 2H), 1.65 – 1.60 (m, 3H). 

13C NMR (126 MHz, CDCl3) δ 207.68, 166.31, 153.65, 133.26, 131.70, 116.98, 116.69, 

111.00, 83.21, 40.30, 31.95, 27.87, 26.80, 23.96, 23.32. 
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FTIR (NaCl, thin film, cm-1): 2922, 1717, 1697, 1605, 1528, 1483, 1445, 1370, 1318, 

1293, 1250, 1181, 1103 

HRMS (GC-EI+, m/z): calc’d for C18H23NO3 301.1678 [M•]+; found: 301.1658 

Rf = 0.38 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = +51° (c = 1.0, CHCl3). 

Chiral SFC: (AD-H column, 2.5 mL/min, 15% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 7.4 min, tminor enantiomer = 9.1 min; 

 

13g: racemic 

 

 

 

(+)-13g: enantioenriched, 91% ee 
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(R)-1-acetyl-4-methylcyclohex-3-en-1-yl 4-methoxybenzoate (13h): 

 

Prepared from 12h (88.1 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 16:1 mixture of regioisomers favoring 

13h (111.9 mg, 0.388 mmol, 97%) in 91% ee as a clear colorless oil. 

1H NMR (400 MHz, CDCl3): δ 7.94 – 7.86 (m, 2H), 6.92 – 6.82 (m, 2H), 5.26 (tq, J = 

2.8, 1.4 Hz, 1H), 3.80 (s, 3H), 2.56 (dp, J = 17.9, 2.5 Hz, 1H), 2.44 – 2.22 (m, 2H), 2.11 

(s, 3H), 2.00 – 1.83 (m, 2H), 1.66 – 1.60 (m, 3H). 

13C NMR (126 MHz, CDCl3) δ 207.19, 165.74, 163.88, 133.31, 131.99, 122.29, 116.84, 

113.88, 83.81, 55.63, 31.89, 27.83, 26.74, 24.04, 23.30. 

FTIR (NaCl, thin film, cm-1): 3416, 2932, 2839, 2039, 1712, 1606, 1580, 1554, 1512, 

1442, 1350, 1318, 1262, 1199, 1170 

HRMS (TOF-ESI, m/z): calc’d for C17H21O4 289.1440 [M+H]+; found: 289.1432 

Rf = 0.49 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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!"## = +33° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 10% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 13.6 min, tminor enantiomer = 11.9 min; 

13h: racemic 

 

 

 

(+)-13h: enantioenriched, 91% ee 
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(R)-1-acetyl-4-methylcyclohex-3-en-1-yl 4-methylbenzoate (13i): 

 

Prepared from 12i (81.7 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 13:1 mixture of regioisomers favoring 

13i (105.7 mg, 0.388 mmol, 97%) in 91% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 7.95 – 7.87 (m, 2H), 7.29 – 7.20 (m, 3H), 5.33 (dtq, J = 

4.2, 2.8, 1.4 Hz, 1H), 2.63 (dp, J = 18.0, 2.5 Hz, 1H), 2.42 (s, 4H), 2.40 – 2.30 (m, 1H), 

2.18 (s, 3H), 2.13 – 1.86 (m, 3H), 1.70 (tt, J = 2.2, 1.3 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 207.11, 166.08, 144.34, 133.34, 129.96, 129.35, 127.20, 

116.81, 84.00, 31.86, 27.81, 26.73, 24.05, 23.30, 21.86. 

FTIR (NaCl, thin film, cm-1): 2916, 1714, 1611, 1508, 1448, 1354, 1312, 1288, 1248, 

1198, 1177, 1106, 1067, 1018 

HRMS (GC-EI+, m/z): calc’d for C17H20O3 272.1413 [M•]+; found: 272.1434 

Rf = 0.60 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = +29° (c = 1.0, CHCl3). 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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Chiral SFC: (IC column, 2.5 mL/min, 10% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 12.1 min, tminor enantiomer = 10.7 min; 

 

13i: racemic 

 

 

 

(+)-13i: enantioenriched, 91% ee 
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(R)-1-acetyl-4-methylcyclohex-3-en-1-yl 4-bromobenzoate (13j): 

 

Prepared from 12j (108 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 equiv), 

Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) and 

chlorobenzene (0.4 mL) following General Procedure B allowing the reaction to run for 5 

days. The resulting solution was concentrated under reduced pressure, and the residue was 

subjected to silica gel chromatography (1:10 EtOAc/hexanes) to afford a 15:1 mixture of 

regioisomers favoring 13j (126.8 mg, 0.376 mmol, 94%) in 81% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 7.93 – 7.82 (m, 2H), 7.65 – 7.55 (m, 2H), 5.34 (tp, J = 

4.0, 1.4 Hz, 1H), 2.72 – 2.57 (m, 1H), 2.45 (dtd, J = 18.2, 3.3, 1.7 Hz, 1H), 2.41 – 2.31 (m, 

1H), 2.19 (s, 3H), 2.15 – 1.93 (m, 3H), 1.70 (qd, J = 1.5, 0.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 206.63, 165.28, 133.40, 132.01, 131.39, 128.82, 128.75, 

116.67, 84.53, 31.86, 27.77, 26.69, 24.18, 23.29. 

FTIR (NaCl, thin film, cm-1): 3433, 2910, 2143, 1715, 1589, 1433, 1397, 1359, 1291, 

1246, 1173, 1113, 1103 

HRMS (TOF-ESI, m/z): calc’d for C16H17Br1O3 337.0493 [M+H]+; found: 337.0416 

Rf = 0.64 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = +19° (c = 1.0, CHCl3). 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
5 days
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Chiral SFC: (IC column, 2.5 mL/min, 7% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 16.9 min, tminor enantiomer = 15.3 min; 

13j: racemic 

 

 

(+)-13j: enantioenriched, 81% ee 
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(R)-1-acetyl-4-methylcyclohex-3-en-1-yl 4-(trifluoromethyl)benzoate (13k): 

 

Prepared from 12k (103.3 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B allowing the reaction to run 

for 2 weeks. The resulting solution was concentrated under reduced pressure, and the 

residue was subjected to silica gel chromatography (1:10 EtOAc/hexanes) to afford a 17:1 

mixture of regioisomers favoring 13k (109.6 mg, 0.336 mmol, 84%) in 63% ee as a clear 

colorless oil. 

1H NMR (400 MHz, CDCl3): δ 8.13 (dp, J = 7.7, 0.8 Hz, 2H), 7.72 (ddt, J = 8.3, 2.1, 1.1 

Hz, 2H), 5.35 (tq, J = 2.8, 1.3 Hz, 1H), 2.66 (dp, J = 18.1, 2.6 Hz, 1H), 2.54 – 2.34 (m, 

2H), 2.20 (s, 3H), 2.14 – 1.92 (m, 3H), 1.71 (tt, J = 3.1, 2.3, 1.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 206.16, 164.78, 134.99 (q, J = 32.6 Hz), 133.45, 133.16, 

130.30, 125.70 (q, J = 3.7 Hz), (d, J = 272.9 Hz), 116.62, 84.90, 31.84, 27.78, 26.67, 24.23, 

23.27. 

19F NMR (282 MHz, CDCl3) δ 66.39 

FTIR (NaCl, thin film, cm-1): 2917, 1722, 1585, 1514, 1440, 1412, 1358, 1327, 1291, 

1248, 1167, 1131, 1101, 1065 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
2 weeks
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HRMS (TOF-ESI, m/z): calc’d for C17H18F3O3 327.1208 [M+H]+; found: 327.1228 

Rf = 0.64 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = +14° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 5% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 4.7 min, tminor enantiomer = 4.3 min; 

13k: racemic 

 

 

(+)-13k: enantioenriched, 63% ee 
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(R)-1-acetyl-4-methylcyclohex-3-en-1-yl 1-naphthoate (13b): 

 

Prepared from 12b (96.1 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 13:1 mixture of regioisomers favoring 

13b (113.5 mg, 0.368 mmol, 92%) in 87% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 8.86 (ddt, J = 8.6, 1.3, 0.8 Hz, 1H), 8.25 – 8.13 (m, 1H), 

8.05 (ddt, J = 8.2, 1.3, 0.6 Hz, 1H), 7.95 – 7.87 (m, 1H), 7.65 – 7.46 (m, 3H), 5.48 – 5.39 

(m, 1H), 2.80 – 2.66 (m, 1H), 2.56 (dd, J = 18.6, 4.2 Hz, 1H), 2.49 – 2.40 (m, 1H), 2.28 (s, 

3H), 2.26 – 2.16 (m, 1H), 2.15 – 1.97 (m, 2H), 1.80 – 1.72 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 207.00, 167.18, 134.05, 133.98, 133.49, 131.54, 130.82, 

128.77, 128.12, 126.80, 126.49, 125.79, 124.69, 117.10, 84.56, 31.80, 27.86, 26.90, 24.14, 

23.33. 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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FTIR (NaCl, thin film, cm-1): 3773,3663, 3344, 2904, 2415, 2204, 1752, 1718, 1710, 

1690, 1286, 1241, 1108 

HRMS (TOF-ESI, m/z): calc’d for C20H20O3 309.1491 [M+H]+; found: 309.1482 

Rf = 0.58 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = +55° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 15% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 11.8 min, tminor enantiomer = 10.8 min; Minor regioisomer: tmajor enantiomer = 9.1 

min, tminor enantiomer = 8.7 min 

 

13b: racemic 

 

 

 

(+)-13b: enantioenriched, 87% ee 
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(R)-1-acetyl-4-methylcyclohex-3-en-1-yl 2,2-diphenylacetate (13f): 

 

Prepared from 12f (112 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 equiv), 

Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) and 

chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 16:1 mixture of regioisomers favoring 

13f (131.0 mg, 0.376 mmol, 94%) in 86% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 7.40 – 7.24 (m, 10H), 5.24 (ddq, J = 4.8, 3.3, 1.5 Hz, 1H), 

5.04 (s, 1H), 2.57 – 2.44 (m, 1H), 2.32 (dtd, J = 18.1, 3.2, 1.6 Hz, 1H), 2.16 (ddt, J = 11.4, 

5.8, 2.1 Hz, 1H), 2.00 (s, 3H), 1.90 – 1.66 (m, 3H), 1.62 – 1.57 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 206.60, 171.84, 138.20, 138.17, 133.48, 128.83, 128.77, 

128.74, 128.71, 127.53, 127.50, 116.50, 84.48, 57.28, 31.49, 27.63, 26.40, 24.00, 23.16. 

FTIR (NaCl, thin film, cm-1): 3752, 3058, 3027, 2921, 2355, 1733, 1718, 1685, 1507, 

1492, 1449 

HRMS (TOF-ESI, m/z): calc’d for C23H24O3 349.1804 [M+H]+; found: 349.1806 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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Rf = 0.58 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = +15° (c = 1.0, CHCl3). 

Chiral SFC: (IF-3 column, 2.5 mL/min, 7% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 11.8 min, tminor enantiomer = 10.8 min; Minor regioisomer: tmajor enantiomer = 9.1 

min, tminor enantiomer = 8.7 min 

13f: racemic 

 

 

(+)-13f: enantioenriched, 86% ee 
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(R)-1-acetyl-4-methylcyclohex-3-en-1-yl pivalate (13m):  

 

Prepared from 12m (68.1 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a >20:1 mixture of regioisomers favoring 

13m (87.7 mg, 0.368 mmol, 92%) in 89% ee as a clear colorless oil. 

1H NMR (400 MHz, CDCl3): δ 1H NMR (400 MHz, Chloroform-d) δ 5.34 – 5.23 (m, 1H), 

2.53 (ddq, J = 18.0, 5.3, 2.5 Hz, 1H), 2.28 (dtd, J = 18.1, 3.2, 1.6 Hz, 1H), 2.20 (dddd, J = 

13.3, 5.5, 3.2, 2.2 Hz, 1H), 2.10 (s, 3H), 2.08 – 1.91 (m, 2H), 1.85 (ddd, J = 13.3, 10.9, 6.0 

Hz, 1H), 1.68 (dtt, J = 2.4, 1.6, 0.8 Hz, 3H), 1.21 (s, 9H). 

13C NMR (126 MHz, CDCl3) δ 207.06, 177.97, 133.20, 116.74, 83.23, 39.01, 31.44, 

27.73, 27.09, 26.72, 23.78, 23.19. 

FTIR (NaCl, thin film, cm-1): 3613, 2971, 2933, 1729, 1479, 1455, 1395, 1357, 1292, 

1255, 1208, 1165, 1068 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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HRMS (TOF-ESI, m/z): calc’d for C14H22O3 239.1647 [M+H]+; found: 239.1633 

Rf = 0.62 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = –1° (c = 1.0, CHCl3). 

Chiral SFC: (AD-H column, 2.5 mL/min, 3% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 3.2 min, tminor enantiomer = 2.8 min; 

 

13m: racemic 

 

 

 

(–)-13m: enantioenriched, 89% ee 

 

 

 



Chapter 4 – Enantioselective Diels-Alder Reactions of a-Acyloxy Enones 355 

(R)-1-acetyl-4-methylcyclohex-3-en-1-yl (3R,5R,7R)-adamantane-1-carboxylate 

(13l): 

 

Prepared from 12l (99.3 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 13:1 mixture of regioisomers favoring 

13l (124.0 mg, 0.392 mmol, 98%) in 91% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 5.32 – 5.25 (m, 1H), 2.57 – 2.45 (m, 1H), 2.31 – 2.15 (m, 

2H), 2.08 (s, 3H), 2.06 – 1.95 (m, 5H), 1.95 – 1.80 (m, 7H), 1.80 – 1.65 (m, 9H). 

13C NMR (101 MHz, CDCl3) δ 207.02, 176.92, 133.11, 116.59, 82.88, 40.77, 38.64, 

36.43, 31.50, 27.86, 27.45, 26.54, 23.63, 23.12. 

FTIR (NaCl, thin film, cm-1): 2904, 2853, 1718, 1452, 1326, 1272, 1236, 1197, 1100, 

1072 

HRMS (TOF-ESI, m/z): calc’d for C20H28O3 317.2117 [M+H]+; found: 317.2134 

Rf = 0.62 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = –2° (c = 1.0, CHCl3). 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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Chiral SFC: (AD-H column, 2.5 mL/min, 7% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 5.1 min, tminor enantiomer = 5.5 min; 

13l: racemic 

 

 

 

 

(–)-13l: enantioenriched, 91% ee 
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(R)-1-acetyl-4-methylcyclohex-3-en-1-yl phenyl carbonate (13n): 

 

Prepared from 12n (82.5 mg, 0.40 mmol, 1.0 equiv), isoprene (200 µL, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 14:1 mixture of regioisomers favoring 

13n (83.4 mg, 0.304 mmol, 76%) in 79% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 7.39 – 7.26 (m, 2H), 7.13 – 7.06 (m, 2H), 5.27 (dtt, J = 

4.4, 2.8, 1.4 Hz, 1H), 2.62 – 2.49 (m, 1H), 2.45 – 2.33 (m, 1H), 2.31 – 2.14 (m, 4H), 2.11 

– 2.01 (m, 1H), 2.00 – 1.81 (m, 2H), 1.66 (dq, J = 2.7, 1.2 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 206.06, 152.72, 151.05, 133.62, 129.65, 126.32, 121.05, 

116.35, 86.47, 31.55, 27.79, 26.44, 24.27, 23.31. 

FTIR (NaCl, thin film, cm-1): 3416, 3021, 2918, 1754, 1731, 1592, 1555, 1493, 1455, 

1357, 1274, 1190, 1161, 1071, 1024 

HRMS (TOF-ESI, m/z): calc’d [M+H]+; found: 

Rf = 0.58 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = –13° (c=1.0, CHCl3) 

Chiral SFC: (IC column, 2.5 mL/min, 2% MeOH/CO2, l = 210 nm): tmajor enantiomer = 14.4 

min, tminor enantiomer = 13.7 min 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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13n: racemic 

 

 

 

(–)-13n: enantioenriched, 79% ee 

 

 

 

Diene Scope 

(R)-1-acetylcyclohex-3-en-1-yl 2,2-diphenylacetate (54a): 

 

 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
18 days

12f53a

OO
O

Me

+

54a

Me

O
O

O

Ph Ph Ph

Ph



Chapter 4 – Enantioselective Diels-Alder Reactions of a-Acyloxy Enones 359 

Prepared from 12f (112 mg, 1.00 mmol, 1.0 equiv), 1,3-butadiene (20 wt% in PhMe) (671 

µL, 5.0 mmol, 5.0 equiv), Y(OTf)3 (21.7 mg, 0.10 mmol, 10 mol %), L13 (39.7 mg, 0.12 

mmol, 12 mol %) and chlorobenzene (0.4 mL) following General Procedure B stirring for 

18 days. The resulting solution was concentrated under reduced pressure, and the residue 

was subjected to silica gel chromatography (1:10 EtOAc/hexanes) to afford 54a (36.1 mg, 

0.108 mmol, 27%) in 65% ee as a thick pale yellow oil. 

1H NMR (400 MHz, CDCl3): δ 7.31 – 7.19 (m, 11H), 5.68 – 5.53 (m, 1H), 5.53 – 5.44 

(m, 1H), 4.98 (s, 1H), 2.58 – 2.47 (m, 1H), 2.33 – 2.18 (m, 1H), 2.15 – 2.00 (m, 1H), 1.93 

(s, 3H), 1.92 – 1.80 (m, 1H), 1.77 – 1.67 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 206.31, 171.88, 138.17, 128.80, 128.78, 128.75, 127.55, 

126.20, 122.65, 84.51, 57.13, 31.17, 27.34, 23.84, 21.67. 

FTIR (NaCl, thin film, cm-1): 3028, 2926, 2847, 1813, 1731, 1600, 1557, 1494, 1453, 

1359, 1234, 1183, 1148 

HRMS (GC-EI+, m/z): calc’d for C22H22O3 334.1569 [M•]+; found: 334.1588 

Rf = 0.52 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = +4 ° (c=1.0, CHCl3) 

Chiral SFC: (AD-H column, 2.5 mL/min, 7% IPA/CO2, l = 210 nm): tmajor enantiomer = 10.6 

min, tminor enantiomer = 12.0 min 
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54a: racemic 

 

 

(+)-54a: enantioenriched, 65% ee 

 

 

 

 

 

(R)-1-acetyl-4-isopropylcyclohex-3-en-1-yl 2,2-diphenylacetate (54b):  

 

 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h

12f53b
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Prepared from 12f (112 mg, 0.4 mmol, 1.0 equiv), diene 53b (192 mg, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.04 mmol, 10 mol %), L13 (39.7 mg, 0.05 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 13:1 mixture of regioisomers favoring 

54b (131.0 mg, 0.348 mmol, 87%) in 83% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 7.37 – 7.21 (m, 13H), 5.26 (td, J = 3.2, 1.7 Hz, 1H), 5.04 

(s, 1H), 2.60 – 2.51 (m, 1H), 2.34 (dd, J = 18.9, 4.7 Hz, 1H), 2.24 – 2.05 (m, 2H), 2.02 (s, 

3H), 1.94 – 1.73 (m, 2H), 0.91 (dd, J = 6.8, 3.0 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 206.59, 171.94, 142.89, 138.25, 138.18, 128.80, 128.79, 

128.74, 127.58, 127.50, 113.87, 84.76, 57.20, 34.72, 31.43, 27.81, 24.06, 22.32, 21.51, 

21.17. 

FTIR (NaCl, thin film, cm-1): 3027, 2961, 1731, 1694, 1600, 1494, 1454, 1350, 1235, 

1189, 1146, 1065, 985 

HRMS (TOF-ESI, m/z): calc’d for C25H29O3 377.2117 [M+H]+; found: 377.2135 

Rf = 0.59 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = +15° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 20% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 9.2 min, tminor enantiomer = 11.9 min 
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54b: racemic

 

 

 

(+)-54b: enantioenriched, 83% ee 
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(R)-1-acetyl-3,4-dimethylcyclohex-3-en-1-yl 2,2-diphenylacetate (54c): 

 

Prepared from 12f (112 mg, 0.40 mmol, 1.0 equiv), 2,3-dimethylbutadiene (226 µL, 2.0 

mmol, 5.0 equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 

12 mol %) and chlorobenzene (0.4 mL) following General Procedure B. The resulting 

solution was concentrated under reduced pressure, and the residue was subjected to silica 

gel chromatography (1:10 EtOAc/hexanes) to afford 54c (144 mg, 0.397 mmol, 99%) in 

97% ee as a pale-yellow oil. 

1H NMR (500 MHz, CDCl3): δ 7.38 – 7.28 (m, 10H), 5.05 (s, 1H), 2.55 (d, J = 17.9 Hz, 

1H), 2.21 (d, J = 17.9 Hz, 1H), 2.10 (dtd, J = 13.1, 4.2, 2.2 Hz, 1H), 2.02 (s, 3H), 1.89 – 

1.82 (m, 2H), 1.81 – 1.71 (m, 1H), 1.57 (d, J = 11.3 Hz, 6H). 

13C NMR (126 MHz, CDCl3) δ 206.58, 171.84, 138.20, 129.85, 128.79, 128.75, 128.70, 

127.49, 127.48, 126.57, 124.87, 121.37, 85.48, 57.22, 36.66, 28.12, 27.91, 23.97, 18.92, 

18.63. 

FTIR (NaCl, thin film, cm-1): 2915, 1732, 1496, 1452, 1352, 1184, 1149, 1077, 747, 700 

HRMS (TOF-ESI, m/z): calc’d for C24H26O3 363.1960 [M+H]+; found: 363.1988 

Rf = 0.56 in 25% EtOAc/Hex. (KMnO4, UV-Active) 

!"## = +1° (c = 1.0, CHCl3). 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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Chiral SFC: (AD-H column, 2.5 mL/min, 7% IPA/CO2, l = 210 nm): tmajor enantiomer = 10.5 

min, tminor enantiomer = 13.1 min 

 

54c: racemic 

 

 

(+)-54c: enantioenriched, 97% ee 

 

 

 

 

(1S,2R,4S)-2-acetylbicyclo[2.2.1]hept-5-en-2-yl 2,2-diphenylacetate (54d): 

 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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Prepared from 12f (112 mg, 0.40 mmol, 1.0 equiv), cyclopentadiene (168 µL, 2.0 mmol, 

5.0 equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol 

%) and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:20 EtOAc/Hexanes) to afford a 11:1 mixture of diastereomers favoring 

54d (120 mg, 0.346 mmol, 87%) in 90% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 7.33 – 7.15 (m, 10H), 6.22 (dd, J = 5.6, 3.0 Hz, 1H), 

5.85 (dd, J = 5.7, 3.0 Hz, 1H), 4.89 (s, 1H), 3.02 (dq, J = 3.2, 1.7 Hz, 1H), 2.79 (dq, J = 

3.3, 1.7 Hz, 1H), 2.55 (dd, J = 12.9, 3.6 Hz, 1H), 1.88 (s, 3H), 1.51 (dd, J = 9.3, 1.7 Hz, 

1H), 1.32 (ddt, J = 9.1, 3.6, 1.8 Hz, 1H), 1.05 (dd, J = 13.0, 3.7 Hz, 1H). 

13C NMR (126 MHz, CDCl3) δ 205.46, 172.22, 140.38, 137.91, 137.75, 132.83, 128.83, 

128.76, 128.75, 128.71, 127.64, 127.57, 93.82, 56.91, 49.45, 46.76, 42.13, 38.15, 24.60. 

FTIR (NaCl, thin film, cm-1): 3063, 2980, 1732, 1600, 1496, 1455, 1354, 1335, 1242, 

1186, 1146, 1082, 1050, 982, 727, 700 

HRMS (GC-FAB+, m/z): calc’d for C23H22O3 347.1647 [M+H]+; found: 347.1642 

Rf = 0.52 (20% EtOAc/hexanes, UV, KMnO4) 

!"## = +60° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 15% IPA/CO2, l = 210 nm): tmajor enantiomer = 6.6 

min, tminor enantiomer = 10.0 min 
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54d: racemic 

 

 

 

 

 (+)-54d: enantioenriched, 90% ee 

 

 

 

(1S,2R,4S)-2-acetylbicyclo[2.2.2]oct-5-en-2-yl 2,2-diphenylacetate (54e): 

 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
13 days
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Prepared from 12f (112 mg, 0.40 mmol, 1.0 equiv), 1,3-cyclohexadiene (190 µL, 2.0 mmol, 

5.0 equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol 

%) and chlorobenzene (0.4 mL) following General Procedure B allowing the reaction to 

run for 13 days. The resulting solution was concentrated under reduced pressure, and the 

residue was subjected to silica gel chromatography (1:10 EtOAc/hexanes) to afford 7:1 

mixture of diastereomers favoring 54e (99.5 mg, 0.276 mmol, 69%) in 66% ee as a white 

solid. 

1H NMR (400 MHz, CDCl3): δ 7.41 – 7.28 (m, 10H), 6.29 (ddd, J = 7.9, 6.5, 1.1 Hz, 

1H), 6.00 (ddd, J = 8.1, 6.7, 1.3 Hz, 1H), 5.08 (s, 1H), 2.85 (dtd, J = 6.7, 2.7, 1.1 Hz, 1H), 

2.67 – 2.59 (m, 1H), 2.37 (dt, J = 14.2, 3.1 Hz, 1H), 1.95 (s, 3H), 1.88 – 1.80 (m, 1H), 

1.29 (ddd, J = 14.2, 5.2, 2.2 Hz, 2H), 1.20 (tq, J = 12.0, 3.3 Hz, 1H), 1.11 – 0.99 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 13C NMR (101 MHz, CDCl3) δ 204.37, 171.94, 146.08, 

137.99, 135.99, 129.50, 128.86, 128.78, 128.76, 128.75, 127.63, 127.58, 88.41, 57.07, 

36.37, 35.91, 30.11, 24.50, 23.73, 19.87. 

FTIR (NaCl, thin film, cm-1): 3028, 3060, 2947, 2864, 1731, 1600, 1495, 1453, 1432, 

1354, 1275, 1227, 1168, 1149 

HRMS (GC-Ei+, m/z): calc’d for C24H24O3 360.1726 [M•]+; found: 360.1746 

Rf = 0.52 (25% EtOAc/hexanes, UV, KMnO4) 

!"## = –7.3° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 20% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 9.2 min, tminor enantiomer = 11.9 min 
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54e: racemic 

 

 

 

(–)-54e: enantioenriched, 66% ee 

 

 

 

 

(R)-1-acetyl-4-((tert-butyldimethylsilyl)oxy)cyclohex-3-en-1-yl 2,2-diphenylacetate 

(54f): 

 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 0 °C
46 h
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Prepared from 12f (112 mg, 0.40 mmol, 1.0 equiv), diene 53f (369 mg, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B at 0 °C. The resulting solution 

was concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a >20:1 mixture of regioisomers favoring 

54f (148.7 mg, 0.32 mmol, 80%) in 84% ee as a clear colorless oil. 

1H NMR (400 MHz, CDCl3): δ 7.31 – 7.18 (m, 10H), 4.97 (s, 1H), 4.60 (ddt, J = 5.0, 

2.6, 1.2 Hz, 1H), 2.51 – 2.40 (m, 1H), 2.28 (ddq, J = 17.4, 4.9, 1.6 Hz, 1H), 2.21 – 2.02 

(m, 1H), 1.92 (s, 3H), 1.91 – 1.78 (m, 3H), 0.83 (d, J = 6.7 Hz, 9H), 0.00 (s, 3H), -0.02 

(s, 3H). 

13C NMR (101 MHz, CDCl3) δ 206.20, 172.05, 149.80, 138.19, 138.10, 128.87, 128.79, 

128.72, 128.70, 127.64, 127.56, 99.04, 84.09, 56.99, 30.69, 27.60, 26.03, 25.77, 24.06, 

18.12, -4.26, -4.41. 

FTIR (NaCl, thin film, cm-1): 3416, 3334, 3087, 3005, 3062, 3029, 2857, 1951, 1805, 

1731, 1681, 1632, 1510, 1495, 1360 

HRMS (GC-FAB+, m/z): calc’d for: C28H37SiO4 465.2461 [M+H]+; found: 465.2463 

Rf = 0.60 (25% EtOAc/hexanes, UV, KMnO4) 

!"## = +7.6° (c = 1.0, CHCl3). 

Chiral SFC: (OJ-H column, 2.5 mL/min, 5% IPA/CO2, l = 210 nm): tmajor enantiomer = 8.4 

min, tminor enantiomer = 9.0 min 
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54f: racemic 

 

 

(+)-54f: enantioenriched, 84% ee 

 

 

 

(R)-1-acetyl-4-((tert-butyldimethylsilyl)oxy)-3-methylcyclohex-3-en-1-yl 2,2-

diphenylacetate (54g): 

 

Prepared from 12f (112 mg, 0.40 mmol, 1.0 equiv), diene 53g (397 mg, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 0 °C
46 h
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and chlorobenzene (0.4 mL) following General Procedure B at 0 °C. The resulting solution 

was concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a >20:1 mixture of regioisomers favoring 

54g (153.2 mg, 0.320 mmol, 80%) in 86% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 7.38 – 7.17 (m, 11H), 5.04 (s, 1H), 2.52 (ddt, J = 17.7, 

2.8, 1.5 Hz, 1H), 2.27 – 2.14 (m, 2H), 2.00 (s, 3H), 1.97 – 1.84 (m, 3H), 1.56 – 1.51 (m, 

3H), 0.90 (s, 9H), -0.01 (d, J = 4.0 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 206.03, 172.08, 142.10, 138.25, 138.08, 128.88, 128.79, 

128.70, 128.63, 127.66, 127.56, 107.00, 84.78, 56.88, 36.30, 28.15, 26.35, 24.04, 18.26, 

16.09, -3.70, -3.87. 

FTIR (NaCl, thin film, cm-1): 3451, 3061, 3029, 2942, 2865, 2725, 1952, 1806, 1733, 

1692, 1623, 1600, 1495, 1464, 1453, 1380, 1352 

HRMS (GC-FAB+, m/z): calc’d for: C29H39SiO4 479.2618 [M+H]+; found: 479.2622 

Rf = 0.64 (25% EtOAc/hexanes, UV, KMnO4) 

!"## = +0.48° (c = 1.0, CHCl3). 

Chiral SFC: (OJ-H column, 2.5 mL/min, 5% IPA/CO2, l = 210 nm): tmajor enantiomer = 5.1 

min, tminor enantiomer = 4.1 min 
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54g: Racemic 

 

 

 

 

(+)-54g: enantioenriched, 86% ee 
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(1S,5S)-1-acetyl-5-((triisopropylsilyl)oxy)cyclohex-3-en-1-yl 2,2-diphenylacetate 

(54h): 

 

Prepared from 12f (112 mg, 0.40 mmol, 1.0 equiv), diene 53h (453 mg, 2.0 mmol, 5.0 

equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol %) 

and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a >20:1 mixture of regioisomers and 

>20:1 mixture of diastereomers favoring 54f (191 mg, 0.376 mmol, 94%) in 73% ee as a 

clear colorless oil. 

1H NMR (400 MHz, CDCl3): δ 7.35 – 7.19 (m, 11H), 6.25 (dd, J = 11.8, 0.7 Hz, 1H), 

5.10 – 4.98 (m, 2H), 3.06 – 2.96 (m, 1H), 2.64 – 2.52 (m, 1H), 1.99 – 1.79 (m, 2H), 1.73 

(s, 3H), 1.69 – 1.59 (m, 1H), 1.13 – 0.98 (m, 27H). 

13C NMR (101 MHz, CDCl3) δ 204.42, 171.64, 143.42, 137.98, 137.88, 128.84, 128.82, 

128.74, 127.64, 127.56, 108.59, 88.38, 57.02, 41.89, 26.70, 24.12, 22.59, 17.87, 17.84, 

12.09. 

FTIR (NaCl, thin film, cm-1): 3417, 3062, 3030, 2942, 2869, 2728, 2307, 1953, 1714, 

1567, 1600, 1496, 1463, 1453, 1354 

HRMS (GC-FAB+, m/z): calc’d for C31H43SiO4 507.2931 [M+H]+; found: 507.2923 

Rf = 0.68 (25% EtOAc/hexanes, UV, KMnO4) 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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!"## = –17° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 15% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 7.0 min, tminor enantiomer = 9.5 min 

 

54f: racemic 

 

 

 

 

(–)-54f: enantioenriched, 73% ee 
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Dienophile Scope 

(1S,2R,4S)-2-propionylbicyclo[2.2.1]hept-5-en-2-yl 2,2-diphenylacetate (57a): 

 

 

Prepared from 56a (107 mg, 0.40 mmol, 1.0 equiv), cyclopentadiene (168 µL, 2.0 mmol, 

5.0 equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol 

%) and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 8:1 mixture of diastereomers favoring 

57a (119.7 mg, 0.332 mmol, 66%) in 19% ee as a clear colorless oil. 

1H NMR (500 MHz, CDCl3): δ 9.60 (s, 1H), 7.37 – 7.24 (m, 15H), 6.31 (dd, J = 5.7, 3.1 

Hz, 1H), 5.89 (dd, J = 5.6, 3.0 Hz, 1H), 5.00 (s, 1H), 3.16 (s, 1H), 2.93 (s, 1H), 2.49 (dd, 

J = 13.1, 3.6 Hz, 1H), 1.68 (d, J = 9.3 Hz, 1H), 1.46 – 1.39 (m, 1H), 1.18 (dd, J = 13.1, 

3.8 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 198.60, 172.65, 140.67, 138.04, 132.53, 128.75, 128.66, 

127.62, 127.55, 92.20, 56.67, 48.74, 45.87, 42.25, 38.04. 

FTIR (NaCl, thin film, cm-1): 3027, 2978, 1731, 1598, 1494, 1453, 1333, 1235, 1151, 

1045, 724, 702, 677, 587.  

HRMS (GC-EI+, m/z): calc’d for C22H20O3 332.14070 [M+H]+; found: 332.14106 

Rf = 0.63 (15% EtOAc/hexanes, UV, KMnO4) 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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!"## = +14° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 15% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 5.3 min, tminor enantiomer = 6.3 min 

 

57a: racemic 

 

 

 

(+)-57a: enantioenriched, 19% ee 
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(1S,2R,4S)-2-propionylbicyclo[2.2.1]hept-5-en-2-yl 2,2-diphenylacetate (57b): 

 

Prepared from 56b (118 mg, 0.40 mmol, 1.0 equiv), cyclopentadiene (168 µL, 2.0 mmol, 

5.0 equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol 

%) and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 15:1 mixture of diastereomers favoring 

57b (119.7 mg, 0.332 mmol, 83%) in 80% ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 7.37 – 7.22 (m, 12H), 6.34 – 6.24 (m, 1H), 5.90 (dd, J = 

5.6, 3.0 Hz, 1H), 4.95 (s, 1H), 3.12 – 3.06 (m, 1H), 2.92 – 2.83 (m, 1H), 2.73 – 2.57 (m, 

1H), 2.31 (dq, J = 17.7, 7.3 Hz, 1H), 1.67 – 1.48 (m, 3H), 1.39 (ddt, J = 9.2, 3.7, 1.8 Hz, 

1H), 1.13 (dd, J = 13.0, 3.7 Hz, 1H), 0.94 (t, J = 7.3 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 208.42, 172.18, 140.29, 137.81, 132.94, 128.73, 127.55, 

93.73, 56.96, 49.71, 46.86, 42.11, 38.42, 29.65, 8.26. 

FTIR (NaCl, thin film, cm-1): 3417, 3063, 3030, 2953, 2979, 2876, 1956, 1731, 1714, 

1680, 1600, 1512, 1479, 1454, 1335, 1311, 1274, 1231 

HRMS (GC-EI+, m/z): calc’d for C24H24O3 360.1726 [M•]+; found: 360.1737 

Rf = 0.63 (25% EtOAc/hexanes, UV, KMnO4) 

!"## = +61° (c = 1.0, CHCl3). 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h
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Chiral SFC: (IC column, 2.5 mL/min, 15% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 5.0 min, tminor enantiomer = 6.3 min 

 

57b: racemic 

 

 

 

(+)-57b: enantioenriched, 80% ee 
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(1S,2R,4S)-2-benzoylbicyclo[2.2.1]hept-5-en-2-yl 2,2-diphenylacetate (57c): 

 

Prepared from 56c (137 mg, 0.40 mmol, 1.0 equiv), cyclopentadiene (168 µL, 2.0 mmol, 

5.0 equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol 

%) and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford 57c (153.6 mg, 0.376 mmol, 94%) in 86% 

ee as a white solid. 

1H NMR (400 MHz, CDCl3): δ 7.87 – 7.75 (m, 2H), 7.42 (ddt, J = 7.7, 7.0, 1.3 Hz, 1H), 

7.28 – 7.07 (m, 9H), 7.04 – 6.97 (m, 2H), 6.90 – 6.82 (m, 2H), 6.39 (dd, J = 5.7, 3.0 Hz, 

1H), 5.92 (dd, J = 5.7, 3.0 Hz, 1H), 4.75 (s, 1H), 3.65 (dtd, J = 2.9, 1.9, 1.1 Hz, 1H), 2.95 

(ddp, J = 4.0, 3.2, 1.2 Hz, 1H), 2.70 (dd, J = 12.5, 3.7 Hz, 1H), 1.82 – 1.74 (m, 1H), 1.59 

– 1.47 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 198.55, 171.49, 140.23, 137.51, 134.75, 132.87, 132.18, 

129.01, 128.54, 128.42, 128.32, 127.99, 127.16, 126.99, 92.23, 56.68, 50.30, 47.93, 

41.95, 40.24. 

FTIR (NaCl, thin film, cm-1): 3027, 3061, 2982, 1731, 1688, 1651, 1598, 1495, 1448, 

1333, 1309, 1269, 1246, 1146, 1138, 1117, 1029 

HRMS (TOF-ESI, m/z): calc’d for C28H25O3 409.1804 [M+H]+; found: 409.1816 

Rf = 0.59 (25% EtOAc/hexanes, UV, KMnO4) 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h

56c53d

OO
O

Ph

+

57c

Ph

O
O

O

Ph Ph Ph

Ph
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!"## = +2.4° (c = 1.0, CHCl3). 

Chiral SFC: (IC column, 2.5 mL/min, 15% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 11.7 min, tminor enantiomer = 13.9 min 

 

57c: racemic 

 

 

 

(+)-57c: enantioenriched, 86% ee 
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(1S,2R,3R,4R)-2-acetyl-3-methylbicyclo[2.2.1]hept-5-en-2-yl 2,2-diphenylacetate 

(57d): 

 

Prepared from 56d (118 mg, 0.40 mmol, 1.0 equiv), cyclopentadiene (168 µL, 2.0 mmol, 

5.0 equiv), Y(OTf)3 (21.4 mg, 0.040 mmol, 10 mol %), L13 (39.7 mg, 0.048 mmol, 12 mol 

%) and chlorobenzene (0.4 mL) following General Procedure B. The resulting solution was 

concentrated under reduced pressure, and the residue was subjected to silica gel 

chromatography (1:10 EtOAc/hexanes) to afford a 3:1 mixture of diastereomers favoring 

56d (125.2 mg, 0.347 mmol, 87%) in 93% ee as a clear colorless oil. 

1H NMR (400 MHz, CDCl3): δ 7.38 – 7.11 (m, 13H), 6.20 (ddd, J = 13.0, 5.7, 3.0 Hz, 

1H), 5.69 (ddt, J = 5.7, 3.1, 0.8 Hz, 1H), 4.90 (s, 1H), 3.38 (dq, J = 4.5, 1.6 Hz, 1H), 2.61 

(dp, J = 4.6, 1.5 Hz, 1H), 2.31 (qt, J = 7.1, 3.6 Hz, 1H), 1.83 (d, J = 0.9 Hz, 4H), 1.57 

(dtt, J = 9.2, 1.5, 0.7 Hz, 1H), 1.41 (tt, J = 9.2, 1.9 Hz, 1H), 0.75 (d, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 205.41, 171.98, 138.13, 137.90, 134.52, 128.85, 128.83, 

128.74, 128.71, 127.63, 127.59, 92.93, 57.03, 49.85, 47.90, 47.67, 43.11, 25.39, 14.84. 

FTIR (NaCl, thin film, cm-1): 3065, 3022, 2929, 2967, 1730, 1600, 1493, 1452, 1352, 

1308, 1228, 1185, 1149, 1102, 1080 

HRMS (GC-EI+, m/z): calc’d for C24H24O3 360.1726 [M•]+; found: 360.1707 

Rf = 0.59 (25% EtOAc/hexanes, UV, KMnO4) 

!"## = +42° (c = 1.0, CHCl3). 

Y(OTf)3 (10 mol %)
L13 (12 mol %)

PhCl, 23 °C
46 h

56d53d

OO
O

Me

+ Me

O
O

O

Ph Ph Ph

Ph

Me
Me 57d
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Chiral SFC: (IC column, 2.5 mL/min, 15% IPA/CO2, l = 210 nm): Major regioisomer: 

tmajor enantiomer = 9.3 min, tminor enantiomer = 8.4 min 

 

57d: racemic 

 

 

(+)-57d: enantioenriched, 93% ee 
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4.7.4 Mechanistic Studies 

VTNA Kinetic Studies 

 

Kinetic analysis performed using the Variable Time Normalization Analysis (VTNA) 

developed by Burés and coworkers.49  

 

 

 

Me
+

O

Me
OO

p-tol
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O
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OY(OTf)3
L13

d5-PhCl
23 °C

p-tol

O

63 12i 65

[Cat] = 0.0500 M, [63] = 2.50 M, [12i] = 0.50 M
[Cat] = 0.0250 M, [63] = 2.50 M, [12i] = 0.50 M
[Cat] = 0.0125 M, [63] = 2.50 M, [12i] = 0.50 M
[Cat] = 0.0500 M, [63] = 1.25 M, [12i] = 0.50 M
[Cat] = 0.0500 M, [63] = 2.50 M, [12i] = 0.25 M
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Me



Chapter 4 – Enantioselective Diels-Alder Reactions of a-Acyloxy Enones 384 

 

Supplemental Figure 6. Variable Time Normalization Analysis 

 

General Procedure: To a clean, dried 1 mL volumetric flask, in a N2-filled glovebox, was 

added Y(OTf)3, ligand (1.2x the mmol of metal), 1,3,5-trimethoxybenzene, and dienophile. 

Next, d5-PhCl (~0.35 mL) was added. The vial was then capped with a glass stopper, and 

removed from glovebox. Then vial was agitated by hand for 3h at 23 °C. Then the glass 

stopper was removed and diene was added. Flask filled to 1 mL mark with d5-PhCl. 

Reaction mixture then mixed by pipetting up and down several times and then transferred 

to a J-Young tube. Reaction analyzed by 1H-NMR. NMR parameters: number of scans = 

1, pulse angle = 90 °, ss=0, auto-gain: off, spin frequency = 0Hz. At the very end of the 

time course, reaction mixture filtered through a silica plug, eluting with EtOAc/hexanes 
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(1:1). Sample then concentrated, and loaded a small sample onto a prep plate (30% 

EtOAc/Hex.) to isolate band for ee determination. 

 

Sample Spinning Setup 

 

J-Young tubes were rotated using the setup shown below (Supplemental figure 7). 

Specifically, a small test tube rack was cut to allow a top and bottom half. Along one edge, 

copper wire was used to make small hinges such that the tube rack would be allowed to 

open and close (similar to a book). The bottom half of this rack was then affixed to a stool 

leg using copper wire such that the stool leg would exist between the two rack layers 

(Supplemental figure 7C). J-Young tubes could then be inserted into the holes to rest 

(Supplemental figure 7D). The top rack layer can then close over the tops of the J-Young 

tubes and is held together by copper wire. It was found that the installation of a 

counterweight (small bottle filled with sand) was necessary to achieve slow enough sample 

rotation for solid suspension. The stool leg was then attached to the rotovap with electrical 

tape while the other end rested on a cork ring (allowing for smooth rotation).  
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Supplemental Figure 7. J-Young Tube Spinning Setup 

 

1H NMR (400 MHz, CDCl3): δ 7.95 – 7.85 (m, 2H), 7.29 – 7.18 (m, 2H), 2.72 – 2.57 

(m, 1H), 2.42 (s, 3H), 2.39 – 2.22 (m, 2H), 2.18 (s, 4H), 2.05 – 1.85 (m, 2H), 1.71 – 1.59 

(m, 6H). 

13C NMR (101 MHz, CDCl3) δ 206.97, 166.11, 144.30, 129.97, 129.32, 127.23, 124.81, 

121.66, 93.04, 85.06, 55.48, 37.43, 28.20, 28.18, 24.05, 21.86, 19.01, 18.81. 
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FTIR (NaCl, thin film, cm-1): 2908, 1719, 1610, 1456, 1438, 1310, 1287, 1254, 1250, 

1204, 1166, 1105, 1076, 842, 758. 

HRMS (TOF-ESI, m/z): calc’d for C18H23O3 287.1647 [M+H]+; found: 287.1667  

Rf = 0.61 (20% EtOAc/hexanes, UV, KMnO4) 

!"## = +3.2° (c = 1.0, CHCl3). 

Chiral SFC: (AD-H column, 2.5 mL/min, 3% IPA/CO2, l = 210 nm): Major 

regioisomer: tmajor enantiomer = 13.2 min, tminor enantiomer = 11.6 min 

 

65: racemic 

 

 

 

(+)-65: enantioenriched, 92% ee 
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Tables of concentration data: 

 
 

 
Time (h) [63] [12i] [65] 

0 2.52 0.518 0.000 
0.5 2.50 0.495 0.028 
1 2.47 0.475 0.056 

1.5 2.45 0.448 0.084 
2 2.43 0.415 0.110 

2.5 2.39 0.382 0.135 
4 2.14 0.323 0.202 
5 2.29 0.273 0.244 
6 2.07 0.221 0.271 
8 2.21 0.175 0.329 
10 2.02 0.136 0.364 
24 2.06 0.037 0.467 

 
 

 
Time (h) [63] [12i] [65] 

0 2.44 0.525 0.000 
0.5 2.25 0.512 0.017 
1 2.23 0.475 0.035 

1.5 2.22 0.462 0.054 
2 2.20 0.440 0.072 

2.5 2.19 0.413 0.086 
3 2.18 0.418 0.106 
4 2.15 0.375 0.133 
5 2.10 0.345 0.158 
6 2.06 0.321 0.188 
8 2.03 0.275 0.229 
10 2.00 0.238 0.266 
24 1.87 0.099 0.404 

 
 

 
Time (h) [63] [12i] [65] 

0 2.25 0.512 0.000 
0.5 2.25 0.509 0.008 
1 2.22 0.499 0.017 

1.5 2.23 0.489 0.023 
2 2.25 0.491 0.032 

2.5 2.42 0.477 0.038 

[Cat] = 0.0500 M, [63] = 2.50 M, [65] = 0.50 M

[Cat] = 0.0250 M, [63] = 2.50 M, [65] = 0.50 M

[Cat] = 0.0125 M, [63] = 2.50 M, [65] = 0.50 M
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3 2.21 0.461 0.043 
4 2.20 0.454 0.058 
5 2.16 0.438 0.071 
6 2.11 0.426 0.083 
8 2.10 0.402 0.106 
10 2.08 0.383 0.126 

 
 

 
Time (h) [63] [12i] [65] 

0 1.16 0.499 0.000 
0.5 1.14 0.480 0.018 
1 1.13 0.463 0.035 

1.5 1.11 0.441 0.050 
2 1.09 0.431 0.066 

2.5 1.08 0.412 0.080 
3 1.06 0.392 0.094 
4 1.04 0.361 0.124 
5 1.01 0.339 0.148 
6 0.97 0.304 0.172 
8 0.95 0.265 0.211 

 
 

 
Time (h) [63] [12i] [65] 

0 2.46 0.293 0.000 
0.5 2.45 0.274 0.020 
1 2.45 0.252 0.037 

1.5 2.42 0.257 0.058 
2 2.41 0.234 0.071 

2.5 2.41 0.222 0.089 
3 2.38 0.187 0.102 
4 2.34 0.157 0.127 
5 2.32 0.135 0.148 
6 2.29 0.115 0.169 
8 2.26 0.086 0.190 
10 2.23 0.071 0.213 
24 2.18 0.000 0.241 

 

[Cat] = 0.0500 M, [63] = 1.25 M, [65] = 0.50 M

[Cat] = 0.0500 M, [63] = 2.50 M, [65] = 0.25 M
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Supplemental Figure 7. Fully Normalized Kinetics Data 

Rate constant = 3.51x10-4 M-2•s-1 

 

Discussion: Based on the available data, we can conclude the following rate law: rate = 

[cat]1[7d]1[9c]1. This rate law is consistent with the following proposed catalytic cycle. 

(Supplemental Figure 8). 

 

rate = k[L13•Y(OTf)3]1[63]1[65]1
R2 = 0.984
k = 3.5x10–4 M–2•s–1
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Supplemental Figure 8. Proposed Catalytic Cycle 

 

Same Excess Experiments: 

 

 

 

General Procedure: To a clean, dried 1 mL volumetric flask, in a N2-filled glovebox, was 

added Y(OTf)3, ligand (1.2x the mmol of metal), 1,3,5-trimethoxybenzene, and dienophile. 

Next, d5-PhCl (~0.35 mL) was added. The vial was then capped with a glass stopper, and 

removed from glovebox. Then vial was agitated by hand for 3h at 23 °C. Then the glass 

stopper was removed and diene was added. Flask filled to 1 mL mark with d5-PhCl. 
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Reaction mixture then mixed by pipetting up and down several times and then transferred 

to a J-Young tube. Reaction analyzed by 1H-NMR. NMR parameters: number of scans = 

1, pulse angle = 90 °, ss=0, auto-gain: off, spin frequency = 0Hz. At the very end of the 

time course, reaction mixture filtered through a silica plug, eluting with EtOAc/hexanes 

(1:1). Sample then concentrated and loaded a small sample onto a prep plate (30% 

EtOAc/Hex.) to isolate band for ee determination. 

 

Note: Same excess time adjusted by 2.8h to observe overlay. 

 

[Cat] = 50.0 mM, [63]0 = 2.500 M, [12i]0 = 0.500 M 
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0 2.52 0.518 0.000 
0.5 2.50 0.495 0.028 
1 2.47 0.475 0.056 

1.5 2.45 0.448 0.084 
2 2.43 0.415 0.110 

2.5 2.39 0.382 0.135 
4 2.14 0.323 0.202 
5 2.29 0.273 0.244 
6 2.07 0.221 0.271 
8 2.21 0.175 0.329 
10 2.02 0.136 0.364 
24 2.06 0.037 0.467 

 
[Cat] = 50.0 mM, [63]0 = 2.375 M, [12i]0 = 0.375 M 
 

Time (h) [63] [12i] [65] 
0 2.12 0.375 0.000 

0.5 2.11 0.341 0.028 
1 2.23 0.300 0.052 

1.5 2.21 0.295 0.073 
2 2.19 0.267 0.092 

2.5 2.00 0.249 0.109 
3 2.14 0.216 0.131 
4 1.97 0.206 0.162 
5 1.92 0.170 0.187 
6 1.89 0.154 0.210 
8 1.87 0.109 0.242 
10 1.86 0.084 0.268 
24 1.78 0.024 0.325 

 

 

 

General Procedure: To a clean, dried 1 mL volumetric flask, in a N2-filled glovebox, was 

added Y(OTf)3, ligand (1.2x the mmol of metal), 1,3,5-trimethoxybenzene, and dienophile. 
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Next, d5-PhCl (~0.35 mL) was added. The vial was then capped with a glass stopper, and 

removed from glovebox. Then vial was agitated by hand for 3h at 23 °C. Then the glass 

stopper was removed and diene was added. Flask filled to 1 mL mark with d5-PhCl. 

Reaction mixture then mixed by pipetting up and down several times and then transferred 

to a J-Young tube. Reaction analyzed by 1H-NMR. NMR parameters: number of scans = 

1, pulse angle = 90 °, ss=0, auto-gain: off, spin frequency = 0Hz. At the very end of the 

time course, reaction mixture filtered through a silica plug, eluting with EtOAc/hexanes 

(1:1). Sample then concentrated, and loaded a small sample onto a prep plate (30% 

EtOAc/Hex.) to isolate band for ee determination. 

 

Note: Same excess time adjusted by 8.0 h. Curves were fitted to a 4th-order polynomial. 

Curves are only intended to show the difference in traces. 
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[Cat] = 50.0 mM, [9]0 = 2.500 M, [12j]0 = 0.500 M 

 
Time (h) [3a] [7e] [8e] 

0 1.8507 0.4868 0.0000 
0.5 1.8634 0.4758 0.0113 
1 1.8660 0.4611 0.0163 
2 1.9599 0.4333 0.0359 
3 2.0910 0.4228 0.0548 
5 2.0657 0.3797 0.0894 
8 1.8692 0.3410 0.1295 
12 1.9833 0.2894 0.1685 
20 1.9218 0.2187 0.2410 
33 1.5524 0.1432 0.3150 
50 1.6223 0.0910 0.3584 
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72 1.4474 0.0625 0.3968 
 
[Cat] = 50.0 mM, [9]0 = 2.375 M, [12j]0 = 0.375 M 
 

Time (h) [3a] [7e] [8e] 
0 1.8993 0.3389 0.0000 

0.5 1.7798 0.3267 0.0054 
1 1.7643 0.3147 0.0139 
2 1.7107 0.2968 0.0269 
3 1.6736 0.2834 0.0431 
5 1.6654 0.2582 0.0682 
8 1.6278 0.2231 0.0976 
12 1.6217 0.1835 0.1293 
20 1.5646 0.1364 0.1795 
33 1.5770 0.0828 0.2362 
50 1.4595 0.0531 0.2564 
72 1.5484 0.0307 0.2756 

 

4.7.6 Product Derivitization 

 

(R)-1-isopropyl-4-methylcyclohex-3-en-1-ol (8): 

 

Procedure: To an oven-dried 25 mL round bottom flask, equipped with a stir bar, was 

charged ester 13f (800 mg, 2.30 mmol, 1.0 equiv) and K2CO3 (317 mg, 2.3 mmol, 1.0 

equiv). MeOH (11.5 mL, 0.2 M) then added and reaction heated to 50 °C for 6 h with 

stirring. Reaction was then concentrated in vacuo, water added, and product extracted into 

ether (3X), washed with brine, dried over MgSO4, filtered, and concentrated.  The resulting 

residue was subjected to silica gel chromatography (20% EtOAc:hexanes) to afford a S14 
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(295 mg, 1.913 mmol, 83%) as a clear colorless oil. Spectroscopic data matched previously 

reported values.45 

Procedure: To an oven-dried 2-dram vial, equipped with a stir bar, under nitrogen, was 

charged methyltriphenylphosphonium bromide (1.02 g, 2.85 mmol, 2.20 equiv) in 

anhydrous THF (1.5 ml) was stirred and n-butyllithium (2.5M in hexanes, 1.23 mL, 3.07 

mmol, 2.37 equiv) was added at room temperature. The mixture was stirred for 30 min and 

a solution of S14 (200 mg, 1.30 mmol, 1.0 equiv) in THF (0.5 ml) was added dropwise and 

the mixture was heated to 60°C for 14 h. Then, it was diluted with aqueous saturated 

solution of NH4Cl (2 ml) and extracted with EtOAc (3 x 3 ml). The organic layer was dried 

(Na2SO4) and the solvent was removed in vacuo. The residue was purified by column 

chromatography (15% EtOAc/hexanes) to afford S15 (192 mg, 1.261 mmol, 97%) as a 

clear colorless oil. Spectroscopic data matched previously reported values.45 

 

Procedure: To an oven-dried 2-dram vial, in a nitrogen-filled glovebox, was charged 

Wilkinson's catalyst (54.7 mg, 0.059 mmol, 15 mol %) and alkene S15 (60 mg, 0.39 mmol, 

1.0 equiv). A stir bar was added, the reaction was capped with a septa cap and then removed 

from glovebox. THF (3.94 mL) added and stirred at room temperature. Hydrogen gas then 

added via balloon with a vent needle and sparged through the reaction until complete 

consumption of SM observed as indicated by TLC. The reaction mixture was then filtered 

over celite and eluted with ether. The resulting mixture was concentrated and the residue 

was subjected to column chromatography (10% Et2O/pentanes) to afford 8 (52.3 mg, 0.339 

mmol, 86%) in 87% ee as a clear colorless oil. Spectroscopic data matched previously 

reported values.41 
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1H NMR (400 MHz, CDCl3): δ 1H NMR (400 MHz, CDCl3) δ 5.30 (dtq, J = 4.9, 2.4, 

1.4 Hz, 1H), 2.23 – 2.09 (m, 2H), 2.00 – 1.84 (m, 2H), 1.75 – 1.60 (m, 5H), 1.61 – 1.50 

(m, 1H), 1.50 – 1.40 (m, 1H), 0.93 (dd, J = 9.6, 6.9 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 13C NMR (101 MHz, CDCl3) δ 134.03, 118.58, 71.90, 

36.92, 34.75, 30.92, 27.19, 23.44, 16.97. 

FTIR (NaCl, thin film, cm-1): 3456, 3012, 2961, 2914, 2724, 1468, 1438, 1377, 1362, 

1304, 1250, 1224, 1190, 1122, 1091, 1049, 1012, 948, 925, 886, 866, 797, 780, 724, 699. 

Rf = 0.5 (DCM, p-anisaldehyde) 

!"## = –28° (c = 0.1, CHCl3). 

Chiral SFC: (AD-H column, 2.5 mL/min, 3% IPA/CO2, l = 210 nm): Major 

regioisomer: tmajor enantiomer = 6.9 min, tminor enantiomer = 6.0 min 

 

8: racemic 
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(–)-8: enantioenriched, 87% ee 

 

 

 

(R)-4,8-dimethyl-1-oxaspiro[4.5]deca-3,7-dien-2-one (58): 

 

 

Procedure: To an oven-dried 25 mL round bottom flask, equipped with a stir bar, was 

charged ester 13f (800 mg, 2.3 mmol, 1.0 equiv) and K2CO3 (317 mg, 2.3 mmol, 1.0 equiv). 

MeOH (11.5 mL) then added and reaction heated to 50 °C for 6 h with stirring. Reaction 

then concentrated in vacuo, water added, and product extracted into ether (3X), washed 

with brine, dried over MgSO4, filtered, and concentrated.  The resulting residue was 

subjected to silica gel chromatography (20% EtOAc:hexanes) to afford a S16 (295 mg, 

1.91 mmol, 83%) as a clear colorless oil. 

O
Me

O
O

PhPh

Me

HO
Me

O

Me

K2CO3
(1.0 equiv)

MeOH, 50 °C
6 h

800 mg scale
83% yield

S1613f
87% ee

Me

O

O

Me

58
87% ee

40 mg scale
84% yield

Ph3P • • O
(2.0 equiv)

NEt3 (5.0 equiv)

PhMe, 120 °C
2 h
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Procedure: To an oven-dried 25mL round bottomed flask, was charged S16 (40 mg, 0.259 

mmol, 1.0 equiv) followed by Bestmann ylide (156.8 mg, 0.519 mmol, 2.0 equiv). PhMe 

(13 mL) added and then NEt3 (180 µL, 1.295 mmol, 5.0 equiv) and reaction capped under 

nitrogen. Reaction heated to 120 °C for 2 hours and was monitored by TLC. Reaction 

quenched by addition of 13 mL of saturated NH4Cl solution. The aqueous layer was then 

extracted with Et2O (3x10 mL). The combined organic layers were then dried over Na2SO4, 

filtered, and concentrated. The resuting residue was subjected to column chromatography 

(20% EtOAc/hexanes) to afford 58 (39 mg, 0.218 mmol, 84% yield) in 87% ee as a clear 

colorless oil. 

 

1H NMR (400 MHz, CDCl3): δ 1H NMR (400 MHz, CDCl3) δ 5.75 (q, J = 1.5 Hz, 1H), 

5.37 (dtt, J = 5.0, 2.5, 1.3 Hz, 1H), 2.55 – 2.31 (m, 1H), 2.11 – 1.82 (m, 6H), 1.77 – 1.69 

(m, 3H), 1.69 – 1.58 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 13C NMR (101 MHz, CDCl3) δ 172.74, 172.45, 134.07, 

116.62, 116.50, 87.31, 33.23, 29.95, 27.03, 23.49, 13.42. 

!"## = +52° (c = 1.0, CHCl3). 

Chiral SFC: (AD-H column, 2.5 mL/min, 3% IPA/CO2, l = 210 nm): Major 

regioisomer: tmajor enantiomer = 14.0 min, tminor enantiomer = 18.7 min 

 

58: racemic 
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(+)-58: enantioenriched, 87% ee 

 

 

 

 

4.7.7 Stereochemical Analysis 

The optical rotation of (+)-andirolactone (58) is known in the literature to be +100°. 

Comparing the sign of this to our synthesized 58 shows a match indicating that the 

enantiomer generated in the Diels-Alder reaction leads to (+)-andirolactone. The 

enantiomeric assignments of all other Diels-Alder products were assigned by analogy.  
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