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ABSTRACT

Random circuit simulation, the task of replicating the output of a randomly
chosen noiseless quantum computation, has been proposed as a problem that
should be easy for quantum devices but hard for classical ones. Establish-
ing the existence of such tasks and accomplishing them on actual quantum
hardware is important for benchmarking progress in an era where quantum
devices are hampered by small sizes and high noise rates. Additionally, at
a fundamental level, the assertion that random quantum circuits are hard to
classically simulate is a statement that quantum advantage is not only possi-
ble, but ubiquitous. In this thesis, we scrutinize the random circuit simulation
dilemma from both sides. On the one hand, we investigate whether the task
is classically hard—we find that, in certain non-trivial cases, it can actually
be easy, complicating a potential general proof of hardness. On the other
hand, we investigate whether the task can be easily accomplished on realistic
quantum devices, which are subject to substantial noise rates—we find that,
indeed, a version of the circuit simulation task can be salvaged even on a noisy
quantum device performing the computation with low fidelity, as long as the
noise meets certain conditions. Thus, this thesis emphasizes that, to construct
a strong argument of quantum advantage via random circuit simulation on
noisy quantum hardware, the core theoretical challenge remains proving lower
bounds on the classical complexity of the task; doing so will require new ideas
to circumvent the barriers presented by our work.

On the classical simulation side, we propose a classical algorithm for ap-
proximate random circuit simulation of constant-depth 2D circuits. We prove
that the algorithm is efficient for one specific family of 2D circuits, and we give
evidence that it is efficient more generally as long as the circuit depth is suf-
ficiently shallow. This is surprising because, under plausible conjectures from
complexity theory, it is known that no efficient simulation algorithm exists
that exactly computes the probabilities for most instances or exactly samples
from the distribution in every instance. Thus, our algorithm demonstrates
that allowing error (as is necessary when comparing with noisy quantum com-
puters) can greatly reduce the classical complexity of the simulation problem.
We also give evidence that the algorithm becomes inefficient when the circuit
depth exceeds some constant threshold value by connecting the complexity of
the simulation problem to phase transitions in statistical mechanical systems.

Next, we study the output probability distributions of noiseless random
quantum circuits; a classical or quantum device that simulates the random
circuits should be able to sample from these distributions, to some degree of
precision. We prove that these distributions achieve the anti-concentration
property—meaning that the probability mass has spread out roughly evenly
over all possible outcomes—at a much shallower circuit depth than previously
believed. We consider the case where gates are nearest-neighbor when the
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qubits are arranged in 1D, as well as the case where gates are completely non-
local; in both, we show that, for systems with n qubits, Θ(n log(n)) random
two-qubit gates are necessary and sufficient for anti-concentration, and we
give evidence that this fact is true in the general case as well. Having the
anti-concentration property is evidence that the simulation task is classically
hard, and it is advantageous for this to occur after the fewest possible number
of gates, as noise in near-term devices accumulates with the size of the circuit.

Finally, we examine the impact of noise on a quantum device running
a random quantum circuit; we show that random quantum circuits quickly
scramble local noise, allowing it to be treated as global white noise. Specif-
ically, as long as the local noise is incoherent and its strength ε satisfies
ε−1 � Ω̃(n), the output distribution pnoisy of a noisy random quantum cir-
cuit with s gates is approximately Fpideal + (1 − F )punif, where pideal is the
output distribution for the noiseless circuit, punif is the uniform distribution,
and F = e−Θ(εs) is the circuit fidelity. We show that the error in the approxi-
mation, as measured by the total variation distance, is bounded by O(Fε

√
s).

Thus, when ε2s � 1, the output pnoisy is well described by a combination of
signal from the ideal noiseless computation (weighted by F ) and white noise
(weighted by 1−F ); this allows the signal to be extracted from the noisy out-
puts simply by repetition of the experiment. One implication of this is that
low-fidelity random circuit experiments are essentially just as hard to classi-
cally replicate as high-fidelity random circuit experiments, bolstering claims
of quantum advantage on devices even at realistic noise rates.

The main analytical technique we utilize for each of these results is the sta-
tistical mechanics method for random quantum circuits, which maps random
quantum circuits made from local Haar-random gates to partition functions of
classical statistical mechanical systems. This thesis demonstrates the utility
of this method by applying it in several new ways. In some cases, we use
it for heuristic reasoning about the behavior of random quantum circuits; in
others, we go further and perform rigorous calculations of the resulting parti-
tion function, leading to precise technical statements about random quantum
circuits. For example, our anti-concentration analysis produces sharp upper
and lower bounds that match even up to the constant prefactor of the leading
Θ(n log(n)) term.
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C h a p t e r 1

INTRODUCTION: THE COMPLICATIONS OF A NOISY
QUANTUM WORLD

The desire to build quantum computers is driven by the belief that it will not
be possible to replicate their behavior on the computers we already have. In-
deed, with both public [1] and private (e.g., [2]) yearly investment in quantum
computing now measured in hundreds of millions of dollars, there is building
anticipation of a transformed world where quantum computers solve important
and previously insurmountable computational problems.

In this thesis, we shall not speculate on if or when such a future might
become reality, except to say that it is not imminent. With only dozens of
qubits, state-of-the-art quantum computers are still quite small and, crucially,
they are also error prone. Nevertheless, they are complex enough that the
task of simulating them is arguably impossible on modern classical computers.
We are now entering the Noisy Intermediate-Scale Quantum (NISQ) era [3],
where quantum devices are good enough to potentially carry out interesting
computations, but too small and too noisy to implement the quantum error-
correction schemes that will be required to realize the full potential of quantum
computing.

Benchmarking progress in the NISQ era requires careful examination of
the tasks that quantum computers can accomplish, as well as the reasons to
believe that the same tasks are difficult for classical computers. One way
to argue that a task is classically intractable is to determine the quantity of
resources (e.g., time, computer memory, money) required to solve the task
using the best known classical method for doing so, and observe that this
quantity is overwhelmingly large. The problem here is that better algorithms
might be discovered that dramatically reduce the resource cost of classically
performing the task. This is a risk especially when the task has been chosen
not because its classical complexity has been extensively studied, but rather
for the simple reason that NISQ computers can actually do it.

A stronger claim is that the task would be intractable even using classical
methods we might have yet to discover. After all, the intuition that quan-
tum computers should be superior to classical computers amounts to more
than a lack of classical ingenuity. Rather, fundamental features of quantum
mechanics—in particular, the fact that a system with n particles lives in a
Hilbert space with dimension exponentially large in n—should make quantum
computation inherently more powerful. It is notoriously hard to definitively
prove this stronger notion of intractability, but the field of complexity the-
ory provides a framework for giving concrete evidence in favor of such claims.
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For example, it can be shown that noiseless quantum computations cannot
generally be efficiently classically simulated if certain complexity-theoretic as-
sumptions are imposed; these assumptions are widely believed to be true for
reasons entirely independent from quantum computing. This conclusion forms
the bedrock of a research program that attempts to classify certain kinds of
quantum computations by whether they are hard to classically simulate in
this strong complexity-theoretic sense. Knowing that certain kinds of compu-
tations are classically hard is, of course, practically important for measuring
the computational value added by quantum computing and informing design
choices toward that end. But it is also of purely theoretical interest, as it
allows us to determine which features are essential for powerful quantum com-
putation and which are extraneous, leading to a better understanding of the
fundamental source of quantum advantage embedded in the laws of physics.

On this front, the limitations of the NISQ era lead to interesting ques-
tions. In particular, the fact that the hardware is noisy means that NISQ
computers are only capable of simulating a noiseless version of themselves in
an approximate sense. Is approximate simulation of quantum computations
still hard for classical computers? Moreover, the impact of noise accumulates
as computations get longer, eventually to a point where nothing interesting
can be accomplished. Thus, special attention must be given to computations
of relatively shallow depths, and in this case restrictions in the layout of the
qubits (e.g., 2D lattice) and implementable gate set can have a more significant
impact on the tasks that can be performed and the strength of the evidence
that classically simulating the quantum computation is hard.

The content of this thesis concerns a particular computational task called
Random Circuit Sampling (RCS) [4, 5] , which is amenable to implementation
in the NISQ era and, in fact, has already been attempted on quantum devices
[6, 7]. Our discussion so far has not drawn a hard distinction between clas-
sical simulation of a quantum computation that achieves a certain task and
classically accomplishing the task in some other way. That’s because for RCS,
simulation itself is the task. The idea is to choose a quantum circuit at ran-
dom, subject only to certain restrictions in depth and layout, and let the task
be to generate a sample from the output of a noiseless implementation of the
circuit. The fact that a noiseless quantum computer can perform the RCS task
becomes essentially tautological, but since NISQ computers are not noiseless,
the real-world situation is considerably more murky. Beyond the possibility
of NISQ implementation, the RCS task is of fundamental theoretical interest,
as random quantum circuits embody generic quantum evolution and allow us
to probe which features of quantum computing are only observed in special
situations, and which are ubiquitous.

The contributions contained here clarify certain aspects of the RCS land-
scape. The results are technical in nature, but their significance relates back
to the following complementary questions:
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(1) Are there efficient classical algorithms for RCS?

(2) How well can noisy quantum computers solve RCS despite the presence
of errors and the limitation of shallow depth?

In other words, we are interested in both the classical complexity and the
quantum complexity of simulation of ideal random quantum circuits. The
technical statements and the methods for achieving our results have other
potential applications, some of which we point out in later chapters, but the
lens of classical simulability provides a unifying framework to understand how
they fit together.

Another unifying feature of our results is the underlying techniques used
in the analysis. Specifically, we employ a method that associates random
quantum circuits with partition functions of classical statistical mechanical
systems. In some cases, we can glean intuition from the stat mech system that
yields insights for the random quantum circuits. In other cases, we go further
and perform rigorous calculations on the partition functions, producing pre-
cise upper and lower bounds on important random-quantum-circuit quantities.
Overall, one takeaway from this thesis is simply the utility of the stat mech
method, and we speak more on this method in Chapter 2.

In the remainder of this chapter, we dive deeper into the central concepts
needed to understand the significance of the contributions of this thesis. We
introduce technical definitions as necessary to explain our results, but full de-
tails and further commentary on motivation and meaning appears individually
in each chapter.

1.1 When is simulating quantum computations hard, and how do
we know?

Completely describing a quantum state on n qubits requires specifying 2n

complex numbers, the amplitudes for each of the basis states in the exponen-
tially large Hilbert space. This is the foundation for the belief that quantum
computers should have an exponential computational advantage over classi-
cal computers. Indeed, the exponential scaling of Hilbert space was Richard
Feynman’s initial reason for proposing the concept of a quantum computer in
1981 [8].

What this fact illustrates is that a classical algorithm that simulates a
quantum computation by storing a complete description of the n-qubit quan-
tum state and updating it after each gate will not be efficient1. However, this
is by no means the only way to attempt to simulate a quantum computation.
In certain special cases, there are known efficient simulation algorithms, of-
ten because in these cases there is a much more efficient way to represent the

1Here and throughout, we follow the convention of calling an algorithm “efficient” when
its runtime scales like some polynomial in its input size. When the input is a description of
a quantum circuit on n-qubits with poly(n) gates, the input size is itself polynomial in n.
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quantum state. For instance, quantum computations that generate a small
amount of entanglement can be simulated with matrix product states or other
tensor network methods [9–12], and quantum computations consisting entirely
of Clifford operations lead only to states that can be efficiently represented and
updated within the stabilizer formalism [13, 14]. How can one be sure there
does not exist a more efficient way to represent general quantum states that
would allow for an efficient general simulation algorithm?

Showing hardness of simulation by embedding a hard
computational problem into a quantum circuit

Complexity theory allows this question to be explored in a more precise man-
ner. In particular, one can encode the answer to a very hard classical com-
putational problem into the output of a simple quantum computation, such
that an efficient simulation of the quantum computation would lead to an
efficient solution to the hard computational problem, a highly dubious conclu-
sion. This can be done as follows. Let f : {0, 1}n → {0, 1} be an arbitrary
efficiently computable Boolean function on n-bit inputs, and let the quantity
#f be the number of inputs x for which f(x) = 1. The quantity #f is called
a #P function in complexity theory, and it is widely believed that, at least
for some functions f , there is no efficient way to compute #f . After all, the
naive way of computing #f by enumerating all 2n inputs x and counting how
many yield f(x) = 1 has exponential run time. Yet, we can design an efficient
quantum algorithm2 whose output is related to #f . We do so by computing
f on all 2n inputs in superposition and engineering interference between the
2n outcomes. Specifically, using Hadamard gates, we first prepare the initial
superposition state

1

2n/2

∑
x∈{0,1}n

|x〉 ⊗
(
|0〉 − |1〉√

2

)
. (1.1)

Then, we compute the Boolean function f(x) (recall it is efficiently com-
putable) and record the answer into the last qubit, that is, we perform the
unitary transformation Uf for which Uf |x, b〉 = |x, b ⊕ f(x)〉. This flips the
sign of terms for which f(x) = 1, yielding

1

2n/2

∑
x∈{0,1}n

(−1)f(x)|x〉 ⊗
(
|0〉 − |1〉√

2

)
. (1.2)

Finally, we throw away the last qubit and apply another round of Hadamard
gates on the remaining n qubits to arrive at

1

2n

∑
x∈{0,1}n

 ∑
y∈{0,1}n

(−1)f(y)+x·y

 |x〉 , (1.3)

2The algorithm described here is identical to the Deutsch-Jozsa algorithm [15, 16]. In
that context, there is the additional promise that either #f ∈ {0, 2n}, or #f = 2n−1, and
the problem is to determine which is the case.
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where x · y is the normal dot product between n-bit Boolean vectors. We now
note that the coefficient of |0n〉 in the final expression is precisely 1−#f/2n−1.
Thus, if there were a classical algorithm that could efficiently compute the am-
plitudes in the output for a given quantum computation, then there would also
be a classical algorithm that could efficiently compute any #P function, a con-
clusion complexity theorists consider highly unlikely. This provides a formal
answer to the question posed above: assuming that #P functions cannot be
efficiently computed, there cannot be a classical description of general quan-
tum states that allows for an efficient simulation of quantum computation, or
at least no description that allows us to compute output amplitudes.

However, computing output amplitudes (or the output probabilities,
which are the square of the magnitude of the amplitudes) is not something
even a quantum computer is capable of doing efficiently. Output states of
quantum computations ultimately must be measured, producing a random
output. In our example above, a measurement on all n output qubits would
yield the outcome |0n〉 with probability (1 − #f/2n−1)2. The quantum
computation would in general need to be repeated an exponential number of
times to produce a good estimate for #f . This emphasizes the distinction
between a strong simulation of a quantum computation, which is an algorithm
for computing the output probabilities, and a weak simulation, which is an
algorithm that produces random outputs according to the same distribution
as the quantum computation. In this language, we could say that a quantum
computer naturally performs the task of weakly simulating itself, but not the
task of strongly simulating itself. The argument above essentially showed that
classical computers cannot efficiently perform the task of strongly simulating a
quantum computation without surprising complexity-theoretic consequences;
the strong simulation task is #P-hard.

It turns out that the argument can be extended to rule out efficient weak
classical simulations as well, although showing this requires a deeper detour
into complexity theory. To summarize this, first note that the amplitude for
|0n〉 is 0 if and only if #f = 2n−1, that is, if exactly half the inputs x have
f(x) = 1. Thus, the quantum computation produces output |0n〉 with non-zero
probability only when #f 6= 2n−1. This was only possible due to destructive
interference between positive and negative amplitudes that exactly cancel only
when half the inputs have f(x) = 1, an inherently quantum phenomenon, and
it would be surprising if a classical computer could efficiently replicate this
feat. If a classical computer could efficiently weakly simulate the quantum
computation, then there would also be an efficient randomized classical algo-
rithm that outputs 0n with non-zero probability only when #f 6= 2n−1. In
complexity-theoretic language, this reads3 NP ⊃ coC=P. However, this would
be a surprising conclusion, since it is known to imply that a set of complexity

3The class NP can be defined as containing problems for which there is an efficient
randomized algorithm that outputs YES with non-zero probability if and only if the correct
answer is YES. The class coC=P can be defined as containing problems where there is an
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classes called the polynomial hierarchy (PH) “collapses” [17, 18]. It is not vi-
tal to understand the complexity-theoretic details here, except to know that
it is widely believed that the polynomial hierarchy does not in fact collapse,
for reasons that have nothing to do with quantum computing. In fact, the
assumption that the PH does not collapse is a slightly stronger version of the
well-known P 6= NP conjecture, which is virtually unquestioned but famously
hard to prove. In any case, the implication is that under plausible complexity-
theoretic assumptions, even weak classical simulation of quantum computation
cannot be efficient; the weak simulation task is PH-hard. This conclusion is
a key piece of justification in our pursuit of quantum computation: quan-
tum computers are doing things that genuinely cannot be efficiently replicated
on classical computers, even considering the possibility that better classical
simulation algorithms might be developed in the future.

One interesting theoretical direction building from this insight has been
to examine whether these kinds of arguments still work as certain restrictions
to the quantum computation are imposed. In some cases, hardness can still be
shown despite the restrictions. In other cases, restrictions make the compu-
tation efficient to simulate. By looking at both sides, one can begin to assess
the necessary and sufficient ingredients for quantum computation to transcend
the capabilities of efficient classical computation.

Noise and its connection to random quantum computations

Noise is one example of a restriction that puts the hardness-of-simulation argu-
ment in jeopardy. Without employing error-correcting schemes, noisy quantum
devices are incapable of encoding a hard classical problem into their output
amplitude to the precision required for the hardness argument above to apply.
To see this, let px be the probability the circuit above outputs |x〉, and let
p̃x be the probability a noisy implementation of it outputs |x〉. If the noisy
output distribution is δ-far from the ideal distribution in total variation dis-
tance (that is, 1

2

∑
x |p̃x− px| = δ) the entirety of that δ error can be allocated

to the |0n〉 output probability. In other words, |p̃0n − p0n| = δ is possible
in the worst case. Note that the quantity #f containing the answer to the
hard classical problem is related to this output probability p0n by the relation
#f = 2n−1(1±√p0n), which means it is exponentially sensitive to deviations
in p0n due to error; computing #f is no longer a #P-hard problem if additive
errors on p0n of size δ = O(1)4 are allowed.
efficient randomized algorithm that outputs YES with probability exactly 1/2 if and only
if the correct answer is NO. The containment NP ⊂ coC=P can be easily shown: given an
efficient randomized algorithm M that produces output M(x, r) ∈ {NO,YES} on input x
and random bits r, one can define a new algorithm M ′ with one additional random bit b,
such that M ′(x, r, b) = YES if b = 1 or if M(x, r) = YES, and otherwise M ′(x, r, b) = NO.
M ′ outputs YES for exactly half of the choices of (r, b) if and only if M outputs NO for all
choices of r.

4Throughout this thesis, we use big-O notation, where g(x) = O(f(x)) indicates there is
a constant c such that g(x) ≤ cf(x) for x sufficiently large, g(x) = Ω(f(x)) indicates there
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One way forward is to “hide” the answer to the hard computational
problem by introducing randomness into the computational problem instance
[19]. For each of the 2n outputs |x〉, we may define a Boolean function fx
by fx(y) = f(y) + x · y. Under this notation, f0n = f . In the quantum
circuit described above, the output probability for outcome |x〉 is precisely
px = (1−#fx/2

n−1)2, so all 2n outputs are associated with some #P function.
We may now argue that, when x is chosen uniformly at random, less than
O(δ/2n) error will be allocated to the |x〉 output with high probability—that
is, |p̃x − px| ≤ O(δ/2n) for most x. The idea is, even if the noise acts adver-
sarially, the x we chose has been hidden, and the noise cannot know which of
the 2n outputs it should attack; the best it can do is to allocate the δ error
roughly evenly over all 2n outputs. Moreover, the mean of the quantity px
when x is chosen uniformly at random is 1/2n (since the 2n output probabil-
ities must sum to 1), and as long as the output distribution has a property
called anti-concentration5, the random fluctuations away from the 1/2n mean
are not too large. When this is the case, the O(δ/2n) error on the value of px
will usually be a small fraction of the value of px itself; that is, |p̃x−px|

px
≤ O(δ)

for most x. In other words, O(δ) additive error in the worst case corresponds
to O(δ) relative error in the average case. Importantly, the task of estimating
px = (1−#fx/2

n−1)2 up to O(1) relative error for every #P function #fx can
be shown to be essentially #P-hard, and the task of sampling from a distribu-
tion p̃ for which p̃x is within O(1) relative error of px for every x is PH-hard
(see, e.g., Refs. [20, 21]).

Thus, using the average case instead of the worst case partially recovers
the computational hardness of the strong simulation problem, even in the pres-
ence of noise, but completing the argument now requires that these relative-
error tasks are hard not only in the worst case, but also in the average case.
In other words, to show that noisy quantum computations are difficult to sim-
ulate classically using this argument, one must show that random quantum
computations are difficult to simulate. While the exact ensemble of random
quantum computations that are chosen can be malleable (e.g., Ref. [19] ex-
amines Haar-random linear optical networks, and Ref. [22] examines random
“IQP” circuits), in all cases the question becomes some form of: are quantum
computations just as hard to simulate in the average-case as they are in the
worst-case? Beyond its connection to noise, this question is fundamentally in-
teresting: it asks whether classical hardness of simulation is a generic feature
of quantum evolution, or if it only appears in specific, contrived settings.

is a constant c such that g(x) ≥ cf(x) for x sufficiently large, and g(x) = Θ(f(x)) means
g(x) = O(f(x)) and g(x) = Ω(f(x)) simultaneously.

5Anti-concentration in random quantum circuits is the subject of Chapter 4. In partic-
ular, refer to Section 4.4.2 for a discussion on the role of anti-concentration in arguments
for hardness of simulation.
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1.2 Random quantum circuits and Random Circuit Sampling
Perhaps the simplest ensemble of random quantum computations are

random quantum circuits made of two-qubit gates arranged in some pre-
determined layout. This setting has been studied in a variety of contexts.
For example, physicists have used random quantum circuits to understand the
onset of chaos in strongly interacting systems and as a model for the dynam-
ics inside black holes. In a sense, random quantum circuits capture generic
unitary evolution where the sole constraint is locality (the gates act only on
pairs of qubits, arranged in some fashion). However, random quantum circuits
also have specific technical benefits when it comes to questions of classical
simulation complexity in the NISQ era, including the hiding property outlined
above. In this context, the task of random circuit sampling (RCS) was pro-
posed [4, 5, 23] not because it is useful for anything in particular, but rather
because it is experimentally feasible while providing a fertile testing ground
for studying the extent to which noisy quantum computers are difficult to
simulate on classical computers, both in theory and in practice.

Definition of RCS

The input to an instance of the RCS task is a description of a quantum circuit
with n qubits and s gates. For concreteness, assume that the initial state
of the circuit is always |0n〉, and that each of the s gates acts on only a
pair of qubits, chosen according to the particular architecture of interest; for
instance, in the 1D architecture, the gates are chosen to act on nearest-neighbor
pairs when the qubits are arranged in a ring. Each gate implements a 4 ×
4 unitary transformation, and the sequence of 4 × 4 unitaries (along with
the sequence of qubit pairs) taken together implements some 2n × 2n unitary
U . When we choose an instance, we always choose the s underlying 4 × 4
unitaries independently at random, usually according to the Haar measure6
over unitaries of dimension 4, which for a fixed architecture induces some
ensemble over 2n× 2n unitaries U . We would like to make statements that we
can prove must hold in expectation over choice of U from this ensemble.

If a computational basis measurement is performed on all n qubits of the
quantum circuit after the application of the s two-qubit gates, some bit string
x ∈ {0, 1}n is obtained randomly. For a certain fixed instance U , let pideal(x)
denote the probability that the outcome x is obtained after measurement of
that instance, assuming no error (i.e. the output is ideal).

pideal(x) = |〈x|U |0n〉|2 . (1.4)
6We use the Haar measure because it has certain properties that make the analysis easier,

and any conclusions we make should carry over to most other measures. In practice, we
would likely choose the gates at random from some discrete gate set because compiling Haar-
random unitaries into the discrete set implementable on our device would incur significant
overhead.
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The circuit sampling task (weak simulation) is to generate outputs x according
to the probability distribution pideal. We can also consider the task of com-
puting pideal(x) for some specific choice of x (strong simulation). If a device
completes this task successfully for every possible U , we say it is solving the
task in the worst case. For RCS, we relax this by requiring success only for a
large fraction of the instances randomly chosen according to the random quan-
tum circuit ensemble. We can refer to this as the average case. By default,
RCS refers to the weak simulation task, but, in a slight abuse of language, we
will say “strong RCS” to refer to the task of computing output probabilities in
the average case.

RCS with noise

We now relax the task to account for the possibility of error due to noise.
We measure error by the total variation distance (TVD) between the noisy
distribution pnoisy and the ideal distribution pideal.

TVD(pideal, pnoisy) =
1

2
‖pideal − pnoisy‖1 =

1

2

∑
x∈{0,1}n

|pideal(x)− pnoisy(x)| (1.5)

If the sampled distribution has total variation distance from the ideal distri-
bution that is exponentially small in n, then we call the task near-exact sim-
ulation, and we treat this as essentially equivalent to exact simulation. If the
total variation distance is a small constant, we call it approximate simulation.
In the context of RCS, these TVD bounds must hold for a large fraction of
randomly chosen instances. If a quantum computer is noisy but the noise rate
is sufficiently weak and localized, quantum error correction can be employed
to implement a random quantum circuit fault-tolerantly, and the distribution
pideal can be near-exactly sampled with only polynomial overhead in number
of gates and number of qubits [24]. (However, this polynomial overhead is
beyond the capabilities of NISQ-era devices.) Without error correction, the
quantum computer can only sample pideal approximately.

In practice, even approximate sampling can be difficult for a noisy quan-
tum device since the effect of noise accumulates quickly. Consider a compu-
tation with s gates, where each two-qubit gate is followed by a depolarizing
channel with error probability ε on each qubit involved of the gate. In this case,
the noisy distribution can differ from the ideal distribution in TVD by a quan-
tity O(εs). Doing interesting computations on dozens or hundreds of qubits
will require s to be at least in the hundreds or thousands, and error rates must
be proportionally small to keep the TVD beneath a small constant. In current
superconducting qubit systems, error rates are on the order of 10−2 to 10−3,
which is not good enough to approximately perform interesting computations.

A weaker form of noisy sampling is to generate samples from the white-
noise distribution

pwn(x) = Fpideal(x) + (1− F )2−n (1.6)
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for some small number F . The white-noise distribution is a mixture of the
ideal distribution pideal and the uniform distribution punif, for which each out-
come x has an equal probability 2−n of being obtained (complete white noise).
Note that for typical random circuits, TVD(punif, pideal) = Θ(1), and hence
TVD(punif, pwn) = Θ(F ). We define the task white-noise sampling as sampling
from a distribution pnoisy such that TVD(pnoisy, pwn) ≤ δF for some small con-
stant δ (thus, the sampled distribution pnoisy is much closer to pwn than punif
is to pwn).

The upshot of the white-noise distribution is that, while it is far in total
variation distance from the ideal distribution pideal, it retains a weak signal
of the ideal distribution, which can be extracted by repeating the experiment
many times. For example, suppose we are interested in some quantity Q(x) ∈
[−1, 1] that has mean µ when x is drawn from pideal, but mean 0 when x is
drawn from the uniform distribution. Then Q has expectation value µF when
x is drawn from the white-noise distribution. The standard deviation of Q is
bounded by a constant; hence, the error on our estimate of the mean of Q
decreases with the number of samples T like O(1/

√
T ) and we may estimate

µ up to precision η using O(η−2F−2) samples from pwn. As expected, smaller
F means more repetitions are required to extract the signal.

But why should we expect noisy quantum devices to sample from the
white-noise distribution? First of all, we expect noise in actual NISQ devices
to be fairly localized. In Chapter 5, we will model localized noise by inserting
single-qubit noise channels that act on each qubit involved in a gate immedi-
ately after the gate. This is an imperfect approximation since noise in actual
devices can be correlated from qubit to qubit, but experimentalists can suc-
cessfully suppress this kind of noise [6]. Note that quantum error correction
also requires an assumption of localized noise; the idea behind quantum er-
ror correcting codes is to encode logical information into non-local degrees of
freedom that are unlikely to be corrupted by an environment that produces
local physical errors. Under our local error model, we can generally think of
each noise channel as doing nothing with probability 1− ε and applying some
error operator with probability ε, for some parameter ε. Hence, the chance F
of performing s two-qubit gates without any errors decays like F = (1− ε)2s.
Meanwhile, there is a 1 − F probability that at least one of the gates expe-
riences an error. The white-noise assumption is essentially the assertion that
the output distribution conditioned on the occurrence of at least one error is
very close to the uniform distribution, and hence pnoisy ≈ pwn. A priori it is not
clear if and when this assumption would hold, but it is plausible that it does
in the case of random quantum circuits, which are expected to quickly scram-
ble local errors such that they contribute to the output probability in a way
that is random and uncorrelated with the ideal output. Numerical evidence
in favor of the white-noise assumption for random quantum circuits under a
local noise model was provided in Ref. [5].
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Task Condition NISQ feasibility

Near-exact RCS 1
2
‖pideal−pnoisy‖1 ≤ e−Ω(n) Not feasible; requires

error correction

Approximate RCS 1
2
‖pideal − pnoisy‖1 ≤ δ

Feasible only if noise is
very weak

White-noise RCS 1
2
‖pwn − pnoisy‖1 ≤ δF

Feasible with many
repetitions if
white-noise

assumption holds

Table 1.1: Summary of different versions of the RCS task. The error tolerance
for each task is stated in terms of the total variation distance between dis-
tributions, where pideal is the ideal (noiseless) distribution, pnoisy is the noisy
distribution sampled by the device, and pwn is the white-noise distribution
(mixture of ideal with weight F and uniform with weight 1−F ), and δ = O(1)
is a constant much smaller than 1. The condition must hold for large constant
fraction of random quantum circuit instances.

1.3 Progress on hardness of simulation for random circuits in prior
literature

It is generally believed that RCS is a hard classical task regardless of
which version of it we choose. A main reason for this is simply that we have no
good ideas on how we might simulate random quantum circuits efficiently. In
situations where we do know how to efficiently simulate quantum computations
on classical computers, the features that make them simulable also make them
not generic. Choosing a computation completely at random would be expected
to avoid these special cases with high probability.

Yet, relatively little progress has been made on formally connecting this
intuition with results from complexity theory. Unlike worst-case weak simula-
tion, which is PH-hard, average-case weak simulation (i.e., RCS) could be easy
for classical computers and there would be no surprising consequences. This is
true even for exact RCS; showing that approximate RCS or white-noise RCS is
a hard classical task would be an even more formidable challenge. In Ref. [4],
the hardness of approximate RCS was formally conjectured, building from
similar conjectures for other kinds of random computations in Refs. [19, 22],
which considered random linear-optical networks and random “IQP” circuits.

The one point of progress on the complexity of average-case simulation has
been for strong simulation, not weak simulation. In an intriguing line of work
[4, 25–27], it was shown that computing the output probabilities of random
quantum circuits is a hard task. The method for doing this was a reduction
from the worst-case (which is known to be #P-hard, as previously discussed),
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to the average case. Essentially, it was shown that for any worst-case instance,
one can generate a set of random instances and then infer the output proba-
bility of the worst-case instance from the output probabilities of the random
instances. Thus, if one could compute the output probability of most random
instances, then one could compute the output probability of any instance with
high probability, implying that the average-case task is also #P-hard. More-
over, it has been shown that this inference process is robust to a small amount
of error: as long as the average-case output probabilities are computed to ad-
ditive precision at most e−Ω(n logn) [26, 27], the worst-case output probability
can be inferred precisely enough for the argument to go through. Deviations of
size e−Θ(n logn) on each of the 2n possible outputs corresponds to 2ne−Θ(n logn)

total variation distance, which is exponentially small and therefore qualifies
as “near-exact.” Interestingly, if the robustness in the argument could be im-
proved to allow Ω(2−n) additive precision, this would allow the argument to
extend from strong simulation to weak simulation! However, there are sig-
nificant barriers that make such improvements unlikely (see the discussion in
Chapter 3 and Ref. [26]).

The status of these different tasks and their known hardness is listed in
Table 1.2. The most realistic tasks that can be performed on a noisy quantum
device without error-correction—approximate RCS (if noise is very weak) or
white-noise RCS (if noise is reasonably weak and the white-noise assumption
holds)—have unknown complexity, and are only conjectured to be classically
hard. In fact, these conjectures are in a sense two steps away from any concrete
statement that can be proved, since they deal with approximate average-case
weak simulation, but the only concrete results deal with (near-)exact average-
case strong simulation, or (near-)exact worst-case weak simulation: in each
case two qualifiers must be changed for something to be known.

1.4 Quantum computational supremacy on noisy devices
Random quantum circuits have also featured prominently in recent experi-

ments aimed at achieving “quantum computational supremacy” [28]. Indeed, it
was the proposals for these experiments that originally motivated much of the
theoretical attention on the RCS task. In quantum computational supremacy
experiments, the explicit goal is simply to perform a well-defined computa-
tional task on a quantum device that would be hard to perform on any existing
classical device, whether or not that task is useful. In 2019, a team at Google
declared they had achieved quantum computational supremacy after perform-
ing a version of the RCS task on their noisy device with 53 superconducting
qubits arranged in a 2D grid [6]. In 2021, a collaboration at the University of
Science and Technology of China (USTC) performed a very similar experiment
on 56 superconducting qubits [7].

When n qubits are arranged in a 2D grid, the diameter of the grid is
roughly

√
n. These experiments implemented circuits of depth exceeding the

circuit diameter, which is necessary for the circuit to be capable of spreading
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Exact
worst-case
simulation

Near-exact
RCS

Approximate
RCS

White-noise
RCS

Weak
simulation PH-hard conjectured

PH-hard conjectured PH-hard*

Strong
simulation #P-hard #P-hard

[25–27]
conjectured
#P-hard

conjectured
#P-hard

Table 1.2: Summary of known complexity of various simulation tasks. The
first row (weak simulation) is the more realistic sampling task that is naturally
performed by quantum devices. Weak approximate RCS and weak white-noise
RCS (*) are the only tasks a NISQ device might be capable of accomplishing.
In Chapter 5, we show they are equivalent in the sense that one is PH-hard if
and only if the other is (assuming that F is greater than inverse polynomial
in n). In the second row, by strong simulation of RCS, we mean computation
of output probabilities for most instances. The classification #P-hard means
that an efficient classical algorithm for the task would imply that #P functions
can be computed in randomized polynomial time. The classification PH-hard
roughly means that an efficient algorithm would imply the collapse of the
polynomial hierarchy. Both implications are widely believed to be unlikely
(the first even moreso than the second).

local information over the entire system. As n grows, this requires Θ(n3/2) total
two-qubit gates. In Google’s 53-qubit experiment, there were 430 two-qubit
gates (as well as more than a thousand single-qubit gates). The two-qubit gates
each had small error rates of less than 1%. Nevertheless, the overall fidelity of
their experiment, which is roughly speaking the chance that no errors occur
during the computation, was a very small 0.2%.

Since at least one error occurs 998 times out of 1000, the output distribu-
tion of the quantum device is not very close (in total variation distance) to the
ideal distribution, and the quantum device is not capable of performing the
approximate RCS task. Accomplishing the approximate RCS task with TVD
on the order of 0.1 would require error rates to be improved by multiple orders
of magnitude, and better still as n increases (error rate must scale as n−3/2).
This is decidedly out-of-reach in the near-term. The only version of the RCS
task that Google’s device can claim to have performed is white-noise RCS,
with the parameter F = 0.002. Indeed, in the supplementary material of their
paper, they made a complexity-theoretic argument that sampling exactly from
pwn can only be a factor of F easier for a classical computer than sampling
exactly from pideal. In reality, even if the white-noise distribution is a good
approximation for the output of the device, we do expect there to be some
small total variation distance error between the noisy distribution sampled by
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the device and the white-noise distribution; it remains conjecture that pwn is
hard to sample even when we tolerate a small amount of error.

Verification of the experiment with linear cross-entropy
benchmarking

Given the high error rate of Google’s experiment, it is of particular impor-
tance that they verify that their device actually performs the white-noise RCS
task with substantial fidelity. Their solution to the verification problem was
to use the linear cross-entropy metric, which is defined for a set of samples
{x1, . . . , xT} to be

F =
1

T

T∑
t=1

2npideal(xt)− 1 . (1.7)

In practice, the quantities pideal(xt) are computed by running exponential-time
(strong) classical simulation algorithms; thus, they are intractable to calculate
in the regime where “quantum computational supremacy” is being declared.
However, Google calculated F on smaller versions of its experiment, and for
a variation that omitted a relatively small number of the gates specifically to
make calculating pideal(xt) classically easier.

If there is no noise and the samples xt are drawn from the ideal distribution
for sufficiently deep random quantum circuits, then the mean of F can be
shown to be roughly equal to 1. If noise causes the samples xt to be drawn
from the white-noise distribution with parameter F , then the mean of F is
F . Thus, the empirical quantity F can be used to benchmark the overall
fidelity of the experiment. However, the standard deviation of the quantity F
is O(1/

√
T ). This means T = O(1/F 2) samples must be taken to differentiate

the parameter F from zero. This illustrates how the white-noise assumption is
important for justifying usage of the linear cross-entropy to benchmark noise
in the experiment. If the white-noise assumption fails and the noisy portion
of the output distribution is non-uniform in a way that is correlated with the
ideal output distribution, then the quantity F will not necessarily be a measure
of the underlying noise in the device.

However, calculating F is not alone sufficient for certifying that the output
distribution is close to the white-noise distribution, since other distributions
can lead to the same value. In fact, there is no hope of definitively verifying
that the output distribution is the white-noise distribution without taking an
exponential number of samples. We could circumvent this issue simply by re-
defining the quantum computational supremacy task to be producing samples
with a non-negligible linear cross entropy score F . This weaker task is related
to the Heavy Output Generation (HOG) task proposed in Ref. [23]. The issue
with these tasks is that it is more difficult to give complexity-theoretic evidence
that the task is classically hard. In fact, there is some evidence that scoring
well could be classically easy, or at least much easier than a genuine simulation
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of random quantum circuits: in Ref. [29], a classical algorithm for “spoofing”
the benchmark, i.e. scoring well despite not performing a full simulation of the
quantum computation, was developed for shallow circuits. While the algorithm
breaks down for deep circuits, or for 2D circuits, it is some indication that the
linear cross-entropy benchmark does not fully capture the classical hardness
of the simulation task.

Conjectures behind quantum computational supremacy

This clarifies the theoretical challenges associated with Google’s claim of quan-
tum computational supremacy. There are essentially two unproven assump-
tions.

(1) (White-noise assumption) The output distribution of noisy random
quantum circuits implemented on Google’s device is sufficiently close to
the white-noise distribution for most instances.

(2) (Hardness of white-noise RCS) Sampling from a distribution close to the
white-noise distribution on most instances is a hard classical task.

1.5 Overview of results
The technical results in this thesis contribute to clarifying the situation

regarding the classical simulability of RCS and the theoretical backing of quan-
tum computational supremacy demonstrations. Here we summarize these re-
sults, which appear in Chapters 3, 4, and 5.

Efficient classical simulation of shallow 2D random circuits

In Chapter 3, we propose two classical algorithms for the approximate RCS
task in any setting where the random circuits act on qubits arranged in a 2D
grid and have only a constant number of layers of gates. This setup is iden-
tical to recent quantum computational supremacy experiments by Google [6]
and USTC [7], except that the depth of the circuits in their experiment was
a deeper Θ(

√
n) instead of Θ(1). In one specific setting, we can rigorously

prove that one of our algorithms efficiently performs the approximate RCS
task, even though worst-case simulation and near-exact RCS are known to
be hard in the same setting. We also give numerical and analytical evidence
that our algorithms are efficient in a much wider range of settings where the
circuit depth is sufficiently small. Crucially, our algorithms exploit both the
average-case and approximate nature of the task, and cannot successfully per-
form near-exact RCS, nor can they perform any form of worst-case simulation.
An important takeaway, therefore, is that moving from the worst case to the
average case or from near-exact to approximate simulation can make the sim-
ulation task much easier. This might be regarded as a setback in the journey
to give evidence for the claim that NISQ devices performing RCS go beyond
the capabilities of classical computers (quantum computational supremacy),
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since the main source of formal evidence that the task is hard has been the
results on hardness of near-exact strong simulation discussed above.

On the other hand, our algorithms fail to be efficient once the circuits
become too deep, and cannot efficiently simulate the deep circuits Google im-
plemented. In some sense, the failure of our algorithm at large depth could
be regarded as positive evidence that the approximate RCS task can indeed
be hard in that setting. We also show that this transition from efficient to
inefficient as the depth increases is related to order-disorder thermal phase
transitions in certain classical statistical mechanical systems. Thus, our work
exposes the richness of the RCS landscape, where classical simulation com-
plexity has interesting dependencies on the depth and layout of the underlying
random circuits and has deep connections to statistical mechanics.

Anti-concentration depth of random quantum circuits

Our algorithm for approximate shallow RCS in 2D leaves open the possibility
that circuits with more layers or different layouts can be hard to approximately
simulate. While this has not been proven for any RCS setting, the arguments
that get closest to a proof require an ingredient called anti-concentration.
Anti-concentration roughly means that none of the 2n possible measurement
outcomes are exponentially more likely to be obtained than the others. Anti-
concentration is important for avoiding the situation where most output prob-
abilities are very close to zero, and even very tiny errors lead to deviations
that are much larger than the probabilities themselves.

In Chapter 4, we rigorously prove that the anti-concentration property
is achieved by random quantum circuits at a shallower depth than previously
believed. Google designed its quantum computational supremacy experiment
to have depth exceeding the Θ(

√
n) diameter of the 2D qubit array in part be-

cause it was believed that this was necessary to gain important properties like
anti-concentration. Our work suggests that anti-concentration can be achieved
after only Θ(log(n)) depth. We only manage to prove this statement in the
case that the qubits are arranged in 1D and in the case of a “complete-graph”
architecture where there is no spatial arrangement whatsoever. However, our
framework gives strong heuristic evidence that a similar statement should hold
in nearly any natural random quantum circuit layout. This conclusion indi-
cates that fewer gates are needed to reach the regime where classical simulation
should be hard. Moreover, we provide lower bounds on the depth needed for
anti-concentration. In general, Ω(log(n)) depth is required, potentially pro-
viding an alternate explanation for why constant-depth 2D circuits are easy to
approximately simulate. In the 1D and complete-graph case, we prove a tight
lower bound that matches the upper bound even up to the constant prefactor
of the leading term.

Although anti-concentration is generally thought to imply that simulation
is hard, there are some situations where it can indicate that simulation is easy;
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it has been a necessary ingredient for certain classical simulation algorithms
to be efficient [29–31]. In any case, it is clear that knowing precisely when
anti-concentration holds is generally important for assessing the difficulty of
simulation tasks. This is not surprising, as anti-concentration is a basic prop-
erty of the output distribution of a quantum circuit, and ultimately sampling
the output distribution is the only way to actually access the quantum infor-
mation processed during a quantum algorithm.

A proof of the white-noise assumption for random quantum circuits

Finally, in Chapter 5 we prove a version of the white-noise assumption for
noisy random quantum circuits, assuming that the noise is local and that the
circuit is deep enough to be anti-concentrated. Recall that if a quantum device
has s gates each with local depolarizing noise with strength ε, approximate
RCS can be performed only if εs � 1, or in other words, the chance of any
errors happening is small. We show that, if each two-qubit gate is followed by
single-qubit noise channels with noise strength ε on each qubit involved in the
gate, then when we choose the fidelity parameter F = exp(−2εs+O(sε2))),
the distance between the output distribution and the white-noise distribution
scales as O(Fε

√
s). This means one can perform the white-noise RCS task, as

previously defined, on a noisy device so long as the condition ε2s � 1 holds.
That is, even when gate errors are common overall, the white-noise assumption
is true as long it is rare for there to be a pair of gate errors at nearby locations
in the circuit. One caveat is that the error rate must also satisfy 1/ε ≥ Ω̃(n),
where the tilde suppresses log(n) factors in the lower bound.

Our results also hold for more general single-qubit noise channels, not just
depolarizing noise: our theorems depend only on the average infidelity and the
unitarity of the noise channel. En route to proving the white-noise assumption,
we also give tight bounds on the decay of the linear cross-entropy benchmark
(which depends only on the average infidelity) and the rate of convergence of
the output distribution toward the uniform distribution (which depends only
on the unitarity). We find that the white-noise assumption only holds when
the noise channel is mostly incoherent.

This adds important justification for the use of the white-noise assump-
tion to ground the hardness of quantum computational supremacy experiments
based on RCS and communicates how various circuit parameters must scale
with n for the white-noise assumption to remain true as n grows. It also jus-
tifies the use of the linear cross-entropy benchmark as a method of measuring
the overall noise in the experiment.

Beyond the narrow question of whether RCS-based quantum computa-
tional supremacy experiments actually perform a classically hard computa-
tion, the fact that random quantum circuits (approximately) transform local
gate-level errors into white-noise is a valuable insight for the NISQ era, sug-
gesting that it may be possible to salvage computations performed with low
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fidelity on a noisy quantum computer by repeating the experiment many times
to extract the signal from the white noise. Our bounds inform when to expect
that such a strategy could be possible. For example, random quantum circuits
are believed to be a good model for evolution by chaotic local Hamiltonians,
so simulation of these dynamics on noisy quantum devices are likely to benefit
from some version of the white-noise approximation.

Ch. Result Significance for simulation complexity

3

Efficient classical al-
gorithms for approxi-
mate RCS of shallow
2D circuits

• Proves that it is possible for approximate
RCS to be easy even when near-exact RCS
and exact worst-case simulation are hard
• Presents barrier to proving classical hard-
ness for NISQ-implementable task

4

Θ(n log(n)) random
two-qubit gates are
necessary and suffi-
cient to achieve the
anti-concentration
property

• Clarifies how many gates are needed to
attain key ingredient in justification of RCS
hardness conjecture

5

Noisy random quan-
tum circuits approx-
imately obey white-
noise approximation

• Proves one of two key assumptions (un-
der an idealized noise model) behind low-
fidelity quantum computational supremacy
experiments
• Justifies using linear cross-entropy metric
to benchmark NISQ implementation of RCS

Table 1.3: Summary of results in this thesis and their implications for the
classical complexity of RCS.

1.6 Outlook for simulation complexity of random quantum circuits
The contributions of this thesis cut both ways on the two complementary

questions of (1) whether RCS is hard for a classical computer and (2) whether
a well-defined version of RCS can be achieved on a NISQ device.

Regarding (1), our classical algorithm for approximate constant-depth
2D RCS is a significant reason to discount previous evidence that approxi-
mate RCS is generally a hard classical task. However, our observation that
constant-depth random quantum circuits are not anti-concentrated illustrates
one key sense in which constant-depth 2D random quantum circuits are differ-
ent from deeper 2D random quantum circuits, something that would need to
be leveraged if the latter are to be shown to be hard to approximately simulate.
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Regarding (2), our proof of the white-noise assumption for devices with
local noise—and generally our contribution to understanding the way that
random quantum circuits transform local noise in NISQ devices—fills an im-
portant gap in connecting what a realistic noisy quantum computer can accom-
plish to the formal RCS task. If we trust that our device is well characterized
by local, mostly incoherent, and sufficiently weak noise, then we can be con-
fident that the white-noise RCS task is indeed being performed. While we
would ideally have some independent verification of the task using the output
samples alone, a theoretical guarantee under an idealized noise model is per-
haps the best that we can hope for in this case. Moreover, the exponential
decay of the fidelity F with the number of gates s highlights the importance
of minimizing the number of gates in the circuit. On this front, our proof that
the anti-concentration property is gained after fewer gates than previously
believed is good news for the hardness of NISQ-implementable tasks.

The core theoretical conjecture in this research program, and the essence
of the complexity of RCS, is whether classical (weak) simulation of generic
quantum computations is essentially just as difficult as the worst case. Our
contributions demonstrate that proving this remains the central barrier to
a stronger claim of quantum advantage in the NISQ era, and that despite
significant attention and plenty of intuitive reasons to believe it should be
true—we elaborate on some of these reasons in Section 3.2.1 of Chapter 3—
formal evidence in favor of the conjecture is lacking. This perspective should
not be mistaken for significant doubt in the conjecture; in an empirical sense,
the longer the RCS task is studied without the discovery of an efficient classical
algorithm to solve it, the more confident we can be that the conjecture is
true. Rather, it is our perspective that, in our journey to utilize the laws of
quantum mechanics to transcend the capabilities of classical computation, we
should demand a more rigorous kind of confidence. Ideally, any contradiction
of our expectations that quantum computers are more powerful than classical
computers should bring about unexpected and exciting consequences of its
own. Reaching that point for tasks that can be implemented on NISQ devices
is a worthwhile goal, and it is our hope that the contributions of this thesis
have clarified the remaining obstacles toward that end.

1.7 Outline of this thesis
In Chapter 2, we give an introduction to the common technique used

in each of the following chapters, namely, the statistical mechanics method
for random quantum circuits. Chapters 3, 4, and 5 contain the technical
results mentioned above. Each of these chapters follows a roughly similar
structure. First, an independent introduction and motivation for the contents
of the chapter are provided; these introduction sections are broader than and
complementary to the motivation presented in this chapter. Then, an overview
of the technical results are stated, along with context on how they fit in with
prior literature. Next, the methods are discussed in more detail, but some of
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the most technical details are deferred to appendices. Each chapter has its
own appendix; the appendix sections are labeled with letters as opposed to
numbers.
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C h a p t e r 2

THE STATISTICAL MECHANICS METHOD FOR RANDOM
QUANTUM CIRCUITS

The previous chapter illustrated how our results tie back to the question of
random circuit simulation on classical computers and on noisy quantum de-
vices. However, the story of this thesis could just as easily have been told from
the perspective of the underlying techniques. In each of our three technical
chapters, we rely on variations of a common approach: the statistical mechan-
ics (“stat mech”) method for random quantum circuits. In this chapter, we
give an overview of the method and comment on its origins.

The stat mech method creates a map from random quantum circuits to
classical stat mech systems. In particular, it maps expectation values of quan-
tities that depend on the circuit instance to partition functions of the stat
mech system. It is useful to briefly define and review these concepts individ-
ually before discussing the map itself.

2.1 Random quantum circuits and their moments
Random quantum circuits appear in many settings in physics and quan-

tum information science. As a theoretical model, random circuits are broadly
useful because they capture a notion of generic evolution of quantum systems,
free of any built-in symmetries or bias, where the only constraint is the locality
of the underlying gates, a constraint that mirrors the local nature of physical
laws: interactions in physics are fundamentally few-body and typically require
those bodies to be spatially near one another. In the context of quantum com-
putation, random quantum circuits are appealing because they are more or
less straightforward to implement once you have a functional (programmable)
quantum computer.

To be more precise about notation, a random quantum circuit is a length-s
sequence of local (usually two-qudit) randomly chosen unitary gates acting on
an n-qudit system. Each qudit has local Hilbert space dimension q; for qubits,
q = 2. Denote the unitaries enacted by the s gates by (U (1), U (2), . . . , U (s)),
which can be organized into a quantum circuit diagram, as in Figure 2.1.
Each U (t) is chosen independently at random according to some measure on
the unitary group. In our analysis, we use the Haar measure, the only measure
invariant under multiplication by any unitary. Together these gates determine
a global qn × qn unitary U acting on the n-qudit system.1

1In Chapter 3 and Chapter 5, we consider the alternate scenario where weak measure-
ments and single-qudit noise channels, respectively, occur in between gates. In this case,
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Figure 2.1: Example of a quantum circuit diagram on n = 4 qudits with s = 7
two-qudit gates. For random quantum circuits, each unitary U (t) is chosen at
random, typically from the Haar measure.

The obvious first issue with analyzing random quantum circuits is that
the induced measure over U is difficult to grasp. There is an expectation that
if we perform enough random two-qudit gates, the global measure should look
very similar to the Haar measure on the entire qn-dimensional Hilbert space,
but at finite circuit size it is unclear exactly how to make precise characteri-
zations of the measure. The stat mech method is a solution to this problem.
Specifically, the stat mech method is a prescription for calculating expectation
values EU [f(U)] of some U -dependent quantity f(U) over choice of U from the
random quantum circuit ensemble. However, the method only works when f
is a linear function in U⊗k⊗U∗⊗k for some integer k, where X∗ is the complex
conjugate of X; that is, the stat mech method describes how to compute kth
moment information for the random quantum circuit ensemble. An example
of one such function is f(U) = 〈0n|⊗2kU⊗k ⊗ U∗⊗k|0n〉⊗2k = pideal(0

n)k, where
pideal is given in Eq. (1.4).

For probability distributions over a single real variable x, the moments
E[xk] are known to uniquely determine the entire distribution, as long as they
are reasonably well behaved [32]. Similarly, we expect the moments of the
random quantum circuit measure to collectively contain everything we might
want to learn. As we will see, the issue in practice is that the stat mech method
becomes increasingly complicated as k increases. In fact, for k ≥ 3, there has
been a scarcity of concrete results using the stat mech method (except in the
limit of q → ∞) and the first moment, k = 1, is often trivial. Indeed, as the
results in this thesis illustrate, it is primarily the second moment, k = 2, where
the stat mech method truly shines.

2.2 Statistical mechanics, partition functions, and the Ising model
Classical statistical mechanics connects macroscopic properties of physi-

cal systems like temperature, energy, and entropy to their microscopic descrip-
tions. The core idea is that for a certain macroscopic state of the system, there

the transformation enacted by the circuit is not strictly unitary, but the stat mech method
is still useful.
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is some ensemble of possible corresponding microstates. After all, knowing the
temperature, pressure, and volume of gas in a room hardly tells you the exact
location of all the particles, but it does tell you something.

The Ising model is an illustrative example of classical statistical mechanics
in action, and one that we will come back to in the context of random quantum
circuits. In the Ising model, we have a system of m spin-1/2 particles, each
with two internal states, so the system microstates are labeled by a choice of
σi = ±1 for each i = 1, . . . ,m, collectively denoted by σ. The energy of a
microstate is given by

H(σ) = −
m∑
i=1

m∑
j=i+1

Jijσiσj , (2.1)

where the matrix Jij encodes the interaction strengths between particle i and
particle j. The pairs of particles 〈ij〉 (with i < j) for which Jij 6= 0 form the
edges of the interaction graph for the model; often we restrict this interaction
graph to be spatially local, for example on a 1D or 2D lattice. One macroscopic
quantity of interest is the magnetizationM =

∑
i σi, which represents the total

magnetic moment of the system as a whole.

If the system is in thermal equilibrium at some temperature T , then in-
troductory statistical mechanics dictates that the system is in the canonical
ensemble and the probability that the system is in microstate σ is

Pr[σ] =
1

Z
exp

(
−H(σ)

kBT

)
, (2.2)

where kB is the Boltzmann constant and Z is the partition function, given as
follows:

Z =
∑
σ

exp

(
−H(σ)

kBT

)
=
∑
σ

m∏
i=1

m∏
j=i+1

exp

(
Jijσiσj
kBT

)
(2.3)

=
∑
σ

∏
〈ij〉

weight〈ij〉(σ) , (2.4)

where the sum over 〈ij〉 denotes a sum over edges of the interaction graph.
The definition

weight〈ij〉(σ) = exp

(
Jijσiσj
kBT

)
(2.5)

emphasizes that the partition function is simply a weighted sum over all pos-
sible microstates of the m-particle system, where all the weights are positive
numbers, and furthermore each weight can be decomposed into a product of
edge weights for each edge 〈ij〉 in the interaction graph; the edge weight for
edge 〈ij〉 only depends on the internal states of particles i and j.

The Ising model is used to understand ferromagnetism in materials as the
temperature changes. Suppose all Jij are non-negative so that the minimum
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energy microstates are the microstates where all of the particles have the same
internal state: either σi = 1 for all i or σi = −1 for all i. In either of these
microstates, the system is highly polarized, with the total magnetization M =
±m. At T = ∞, all microstates are equally likely, but as T decreases, lower
energy states become more probable. In some cases, there is a critical value
of T that divides two distinct phases. The high-temperature “paramagnetic”
phase is characterized by disorder and no macroscopic magnetization; that
is, microstates drawn from the canonical ensemble typically have small values
of |M |. The low-temperature “ferromagnetic” phase is characterized by long-
range order and macroscopic magnetization; that is, |M | = Θ(m). This kind
of order-disorder thermal phase transition happens for the 2D Ising model,
but not for the 1D Ising model, where the paramagnetic phase persists for
all T > 0. In Chapter 3, we argue that a similar phase transition occurs in
the classical model associated with 2D random quantum circuits. This phase
transition is driven not by temperature but rather by features of the quantum
circuit—specifically, the depth and the local Hilbert space dimension of the
qudits.

2.3 The map from random quantum circuits to classical partition
functions

The map from quantum circuits to classical stat mech systems depends
on the quantum circuit diagram (i.e., the arrangement of two-qudit gates), the
local Hilbert space dimension q of the qudits, and the particular quantity of
interest that relates to the kth moment of the random circuits. It is simplest
to assume that k = 2 and then generalize to larger k.

For k = 2, we are interested in the expectation value of quantities f(U)
where

f(U) = L
(
U⊗2 ⊗ U∗⊗2

)
(2.6)

for some linear function L. In fact, since U is composed of the smaller unitaries
U (t) for t = 1, 2, . . . , s, the function L is linear in

U (t)⊗2 ⊗ U (t)∗⊗2
(2.7)

for each t. Since each U (t) is chosen independently at random, we can per-
form the expectation value over choice of U (t) individually for each t, which
is possible because second moment expectation values over the Haar measure
have a closed-form expression. We express this key formula for single-qudit
q × q Haar-random unitaries. To so, we first choose any basis {|i〉}q−1

i=0 for the
Hilbert space and define vectors |I〉 and |S〉, which live in a four-fold tensor
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product of the Hilbert space.

|I〉 =

q−1∑
i1=0

q−1∑
i2=0

|i1, i2〉 ⊗ |i1, i2〉 (2.8)

|S〉 =

q−1∑
i1=0

q−1∑
i2=0

|i1, i2〉 ⊗ |i2, i1〉 . (2.9)

Then, with
∫
dV denoting integration over the Haar measure, we have

the following formula [33]: ∫
dV V ⊗2 ⊗ V ∗⊗2

=
1

q2 − 1
|I〉〈I|+ 1

q2 − 1
|S〉〈S| − 1

q(q2 − 1)
|I〉〈S| − 1

q(q2 − 1)
|S〉〈I| . (2.10)

In the case that V is a two-qudit unitary, we simply send q → q2, |I〉 →
|I〉⊗2 and |S〉 → |S〉⊗2 in the formula above.

The appearance of the stat mech partition function can be seen directly
from Eq. (2.10): each two-qudit gate U (t) in the circuit diagram gets replaced
with a pair of particles, an incoming particle associated with the bras in the
equation and an outgoing particle associated with the kets. These particles can
be in one of two internal states |I〉⊗2 or |S〉⊗2, and the formula is a weighted
sum over all possible internal states of those two particles. Let τt denote the
internal state of the tth incoming particle and σt denote the internal state of
the tth outgoing particle. The coefficients of the four terms above turn into
edge weights for the partition function.

U (t)

Figure 2.2: Map from a two-qudit gate in the random circuit diagram to a
pair of particles, an incoming (blue) particle and an outgoing (red) particle.
These particles have an interaction given by Eq. (2.11) and depicted by the
zigzag line.

By applying the formula to each of the random gates that comprise U ,
a circuit with s gates turns into a stat mech system with 2s particles, each
with two possible internal states, which gives a total of 22s system microstates.
There is an interaction between the two particles arising from the same unitary
t, which is denoted by the edge 〈t〉. The edge weight of 〈t〉 is read off from
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Eq. (2.10), with q replaced by q2 since the gates act on two qudits.

weight〈t〉(σ, τ) =

{
(q4 − 1)−1 if σt = τt

−q−2(q4 − 1)−1 if σt 6= τt .
(2.11)

There are also interactions between an outgoing particle from unitary u and
an incoming particle from unitary v if the two unitaries act in succession on
the same qudit. We denote this edge as 〈uv〉. The edge weight of 〈uv〉 is given
by

weight〈uv〉(σ, τ) =

{
q2 if σv = τu

q if σv 6= τu ,
(2.12)

owing to the fact that 〈I|I〉 = 〈S|S〉 = q2, and 〈I|S〉 = 〈S|I〉 = q. In the
case that measurements or noise channels act in between unitaries u and v,
the weight formula would be modified.

The final ingredient to the correspondence is the choice of boundary con-
ditions at the beginning and end of the quantum circuit diagram. These will
depend on the quantity f that we are trying to compute. For example, in
Chapter 4, we compute EU [〈0n|⊗4U⊗2 ⊗ U∗⊗2|0n〉⊗4] and in that case we have
open boundary conditions on both sides. However, in Chapter 3, we will see
an instance where more complicated boundary conditions at the end of the
circuit are required. For this general discussion, we will stick to looking only
at the bulk properties of the system. An example of the map from circuit
diagram to interaction graph appears in Figure 2.4.

Together, these observations allow us to write

E
U

[f(U)] =
∑
σ,τ

∏
〈t〉

weight〈t〉(σ, τ)
∏
〈uv〉

weight〈uv〉(σ, τ) , (2.13)

mirroring the equation for the partition function in Eq. (2.4).

One looming difference between this partition function and that of the
Ising model is the possibility of negative weights, as seen in Eq. (2.11). This
is a manifestation of the sign problem, and is problematic for a few reasons.
First of all, it is impossible to interpret the stat mech system as an actual
physical system at a real-valued temperature, making connections to conven-
tional statistical mechanics less direct. Second, it is possible that the positive
terms and negative terms in the sum are both very large but cancel out to
yield something small, complicating combinatorial methods that might try to
put upper and lower bounds on the quantity by taking the absolute value of
the individual terms. Later, we will show how the issue of negative weights
can be circumvented in the case of k = 2.

Higher moments

The generalization of the method to moments for k ≥ 3 is straightforward.
In fact, the interaction graph for the stat mech system is independent of k.
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However, instead of two internal states, each particle has k! possible internal
states, which can each be associated with an element from the symmetric
group Sk. These elements are permutations of the indices {1, . . . , k} and can
be written in cycle notation; for example, the swap operation for k = 2 could
be written as (12) instead of S. For ν ∈ Sk, we define

|ν〉 =

q−1∑
i1,...,ik=0

|i1, . . . , ik〉 ⊗ |iν−1(1), . . . , iν−1(k)〉 (2.14)

on 2k copies of the Hilbert space, generalizing Eqs. (2.8) and (2.9). This
definition allows for an updated integration formula [33, 34]∫

dV V ⊗k ⊗ V ∗⊗k =
∑
ν,µ∈Sk

Wg(q, ν−1µ)|ν〉〈µ| , (2.15)

where Wg(q, ν) is the Weingarten function [33–35], and updated weight for-
mulas

weight〈t〉(σ, τ) =Wg(q2, τ−1
t σt) (2.16)

weight〈uv〉(σ, τ) = qC(σ−1
u τv) , (2.17)

with C(ν) the function that returns the number of cycles in the permutation
ν ∈ Sk.

Getting rid of negative weights by decimating incoming particles

We now consider decimating the incoming particles; that is, in the partition
function in Eq. (2.13), we explicitly perform the sum over τ . This removes
the incoming particles from the system, giving a new stat mech system with
half as many particles. The remaining sum over σ can still be interpreted as
a partition function on this system, but the interactions become three-body
instead of two-body: we now have an interaction hypergraph consisting of
hyperedges on sets of three particles. These hyperedges 〈uvw〉 exist whenever
unitary u acts on a pair of qudits that were most recently acted upon by
unitaries v and w. We can compute this hyperedge weight by summing over
the k! possible values of τu, as follows:

weight〈uvw〉(σ) =
∑
τu∈Sk

qC(σ−1
v τu)qC(σ−1

w τu)Wg(q2, τ−1
u σu) , (2.18)

which for k = 2, yields the simple expression

weight〈uvw〉(σ) =


1 if σu = σv = σw

1
q+q−1 if σv 6= σw

0 if σu 6= σv = σw .

(2.19)
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Figure 2.3: Decimation of incoming (blue) particles creates a three-body in-
teraction between leftover outgoing particles.

The partition function for this version of the method reads

E
U

[f(U)] =
∑
σ

∏
〈uvw〉

weight〈uvw〉(σ) . (2.20)

At the expense of going from two-local to three-local interactions, we have
arrived at a stat mech system with only non-negative interaction weights,
which makes analysis easier. We can also see that this model is similar in
spirit to the ferromagnetic Ising model since the largest weights occur when
all of the spins agree.

Unfortunately, for k ≥ 3, some of the three-body weights can still be
negative [36, 37]. This observation, combined with the larger number of inter-
nal states and more complex interaction weights makes analyzing systems for
k ≥ 3 much more difficult than for k = 2.

An equivalent picture of evolving n-bit configurations

In Chapter 4 and Chapter 5, we will essentially be analyzing the system de-
scribed above with three-body weights, but we organize our analysis in a
slightly different way. For any choice of t with 0 ≤ t ≤ s and each 0 ≤ a < n,
let ua,t be the maximum integer such that ua,t ≤ t and qudit a was one of
the qudits involved in the gate at time step ua,t. Then we can construct what
we call a configuration ~γ(t) ∈ {I, S}n by letting γ(t)

a = σua,t . The sequence of
configurations γ = (~γ(0), ~γ(1), . . . , ~γ(s)) is called a trajectory, where ~γ(t) is the
same as ~γ(t−1) except potentially at the positions that are involved in the tth
gate. Each trajectory γ is associated with a microstate of the system in the
three-body stat mech picture as long as γ(t)

a = γ
(t)
b whenever unitary t acts on

qudits a and b. When this rule is obeyed, we can see from Eq. (2.19) that the
overall weight of a trajectory γ in the partition function decreases by a factor
of q + q−1 each time gate t acts on two qudits that have different assignments
in configuration ~γ(t−1). This version of the stat mech method is derived in a
self-contained manner in Chapter 4.

2.4 Past and future of the stat mech method
The stat mech method for random quantum circuits is very similar to

a method for analyzing random tensor networks, first introduced in 2016 by
Hayden et al. [38] as a model for holographic duality, and further studied in
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Figure 2.4: Complete example of stat mech map on a random quantum circuit
with s = 10 gates on n = 6 qudits. Top: Circuit diagram. Middle: Interaction
graph for corresponding stat mech system. There are two types of interactions,
denoted by straight and zigzag lines between particles. Expectation values of
kth moment quantities are given by partition functions for different choices of
boundary conditions at the input and output of the circuit. Bottom: Inter-
action hypergraph with three-body interactions (blue triangles) that results
from decimating all of the incoming (blue) particles from the middle diagram.
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Refs. [39, 40]. The random-quantum-circuit version of the method, as de-
scribed in this chapter, first appeared in 2017 in two simultaneous papers, one
by Nahum, Vijay, and Haah [41] and another by von Keyserlingk, Rakovszky,
Pollmann, and Sondhi [42]. Both of these papers sought to understand chaotic
quantum dynamics by studying entanglement growth and the spreading of lo-
cal operators in random quantum circuits. They employed the k = 2 version
of the method on 1D random quantum circuits to compute the average out-
of-time-order correlator (OTOC), a measure of operator spreading, as well as
the average purity (exponential of the Rényi-2 entanglement entropy) of sub-
regions of the chain. They observed that for k = 2, the three-body version
of the method maps 1D circuit diagrams to an interaction graph on a square
lattice, where each particle has two possible internal states. Contiguous re-
gions of particles with the same internal state define a “domain” and “domain
walls” divide these domains. The OTOC and average purity were computed
by counting domain wall patterns on the 2D lattice. Further calculations of
related quantities using a similar stat-mech-based approach later appeared in
Ref. [43].

In 2018, the method was considerably extended by Zhou and Nahum [36],
who combined it with the replica trick to compute the scaling of the average
Rényi-k entanglement entropy for different k in 1D random quantum circuits,
as a perturbative series in 1/q. They discussed the method for general k,
although explicit calculations were only performed for k = 2 and k = 3. For
k ≥ 3, there are more than two possible internal states for each particle, and
thus more than one flavor of domain wall. When domain walls of different
flavors come together, the combinatorial approach becomes more complicated,
in part because of the possibility of negative weights.

In 2019, Hunter-Jones [37] used the method to study the convergence
of 1D random quantum circuits to unitary k-designs, again by domain wall
counting. They showed that previously known results for k = 2 could be re-
produced using the stat mech method, and made progress toward extending
these results to larger k. Under a conjecture that single-domain-wall config-
urations dominate the calculation, it was shown that approximate k-designs
are achieved on n qudits in O(nk) circuit depth.

Later in 2019, the method was used in parallel papers by Jian, You,
Vasseur, and Ludwig [44] and Bao, Choi, and Altman [45] to study 1D ran-
dom quantum circuits that include measurements of some fraction of the qubits
after each layer of gates. It had been numerically observed in previous liter-
ature (e.g., Ref. [46]) that the output state of these “hybrid” circuits under-
goes a phase transition from a high-entanglement volume-law phase to a low-
entanglement area-law phase as the measurement fraction is increased. These
two papers gave an analytical explanation for the transition using the stat
mech method: the k = 2 version of the method allows for direct analysis of
an entanglement-entropy-like quantity that is similar to the Rényi-2 entropy,
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and it was seen that this quantity undergoes a disorder-order Ising-like phase
transition. Additionally, higher k could be successfully analyzed in the q →∞
limit, which, using the replica trick, allowed a deduction about the average
von Neumann entropy in that limit. Similar themes of an entanglement phase
transition appear in Chapter 3 of this thesis, which was adapted from work
[47] that first appeared publicly in early 2020.

The stat mech method has also been connected heuristically to random
stabilizer quantum error-correcting codes in Refs. [48, 49] and employed to give
evidence for exponential decay of fidelity in noisy random quantum circuits
in Ref. [50] (more on this in Chapter 5). Besides the work in this thesis,
the only other appearance of the method in relation to classical algorithms
for simulating random quantum circuits was in Ref. [29], which studied anti-
concentration in 1D circuits in order to argue their proposed algorithm is
efficient. We discuss that work further in Chapter 4.

Taken together, and in combination with the contributions in this thesis,
these results demonstrate that the stat mech method can be used in a variety of
settings. However, they also illustrate how the same hurdles appear regardless
of the application in mind. These hurdles are primarily (1) the difficulty of
analyzing the stat mech system for k ≥ 3 due to a larger number of internal
states for each particle and the possibility of negative weights, and (2) the
difficulty of going beyond 1D random quantum circuit architectures. On that
point, the work in this thesis pushes the method in a new direction since in
Chapter 3, we apply the method to several different families of shallow 2D
circuits. (However, there is a sense in which shallow 2D circuits and deep
1D circuits are very similar, with the second spatial dimension in the former
playing the role of time in the latter.) Moreover, in Chapter 4 and Chapter 5,
we move beyond 1D random quantum circuits and give a precise analysis for
a fully connected architecture.

Moving forward, given the success of the k = 2 version of the stat mech
method in many disparate settings, we are confident that there are many more
situations where the k = 2 method should be useful. It would seem that any
second-moment quantity for random quantum circuits, even if it does not allow
for rigorous analysis, would at least benefit from heuristic reasoning under
the stat mech method. Additionally, we are optimistic that further study of
the stat mech systems for k ≥ 3 might allow the obstacles discussed to be
surmounted in some circumstances.
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C h a p t e r 3

EFFICIENT SIMULATION OF SHALLOW 2D RANDOM
QUANTUM CIRCUITS

This chapter has been adapted from joint work with John Napp, Rolando
L. La Placa, Fernando G. S. L. Brandão, and Aram W. Harrow in Ref. [47].

3.1 Motivation
Simulating quantum systems on classical computers requires effort that

scales exponentially with the size of the quantum system, at least for a general-
purpose simulation. This was the original motivation of the field of quan-
tum computing, since it shows that time evolution (natural or controlled) of
quantum systems can perform tasks that are intractable for classical comput-
ers. However, many special cases are known where quantum time evolution
can be efficiently simulated, including limited entanglement/interaction, free
fermions, and Clifford circuits. Understanding the boundary between classi-
cally simulable and intractable gets at a crucial question of quantum comput-
ers: what makes quantum computing powerful?

There are two main ways to answer this question concretely. We can find
more classes of easy-to-simulate quantum dynamics, or we can find evidence
that other classes of quantum dynamics are hard for classical computers to
simulate. The latter approach is related to the goal of quantum computational
supremacy [28], which involves finding a well-defined computational task with
evidence for classical intractability (usually based on a plausible conjecture
from complexity theory), then actually performing the task on quantum hard-
ware and verifying the result. Achieving this feat (as has been claimed by
Refs. [6, 7, 51] is the computational analogue of a Bell inequality violation:
theoretically it would merely confirm orthodox interpretations of quantum me-
chanics, but practically it would be a milestone in our ability to coherently
control quantum systems.

A leading proposal for demonstrating quantum computational supremacy
is Random Circuit Sampling (RCS), meaning that the quantum computer
applies random unitary gates and then measures all the qubits. This was used
by Google [6] and, as we will discuss below, it is a plausible candidate for
an intractable class of dynamics. Indeed, the previously known examples of
efficiently simulable quantum dynamics were all in some ways special: using
only Clifford gates, or only non-entangling gates, for example. So it would be
reasonable to assume that random gates would be the best way to avoid any
known or unknown structure in the circuits that would facilitate simulation.



33

The main contribution of this chapter is to show that RCS becomes easy
to simulate at low enough circuit depth and local dimension. We do this by
developing classical algorithms for RCS that are efficient (polynomial-time) in
some settings in which all previously known classical algorithms are inefficient
(exponential-time). Moreover, in these regimes no efficient classical sampling
algorithms are possible for arbitrary (i.e., non-random) circuits, assuming stan-
dard complexity theoretic assumptions (specifically, the “non-collapse of the
Polynomial Hierarchy (PH)”). Our results thus show that for natural problems,
random instances can be much easier than a worst-case analysis would suggest.
On the other hand, we also find evidence that our algorithms exhibit compu-
tational phase transitions into inefficient regimes when certain parameters of
the circuits are tuned.

3.2 Overview of contributions
As discussed in the previous section, a fundamental question in computer

science and physics is to understand where the boundary between classically-
intractable and classically-simulable quantum systems or quantum circuits
lies. A more specific question within the context of quantum computational
supremacy is to understand what types of quantum gate sequences are hard-
est to classically simulate. So far, our answers to these questions have been
informal or incomplete. On the simulation side, Markov and Shi [52] showed
that a quantum circuit could be classically simulated by contracting a tensor
network with cost exponential in the treewidth of the graph induced by the
circuit. (Treewidth is a measure of how far from a tree a graph is; it is 1 for
a tree and ∼ LD−1 for a D-dimensional lattice with side length L.) When
applied to n qubits in a line running a circuit with depth d, the simulation
cost of this algorithm is exp(Θ(min(n, d))). More generally we could consider
n = L1L2 qubits arranged in an L1 × L2 grid running for depth d, in which
case the simulation cost would be

exp

(
Θ(min(L1L2, L1d, L2d))

)
. (3.1)

In other words, we can think of the computation as taking up a space-time
volume of L1 × L2 × d and the simulation cost is dominated by the size of
the smallest cut bisecting this volume. An exception is for depth d = 1 or
d = 2, which have simple exact simulations [53]. Some restricted classes such
as stabilizer circuits [13] or one-dimensional systems that are sufficiently un-
entangled [9–11] may also be simulated efficiently. However, the conventional
wisdom has been that in general, for 2D circuits with d ≥ 3, the simulation
cost scales as Eq. (3.1).

These considerations led IBM to propose the benchmark of “quantum vol-
ume” [54] which in our setting is exp(

√
dmin(L1, L2)); this does not exactly

coincide with Eq. (3.1) but qualitatively captures a similar phenomenon. The
idea of quantum volume is to compare quantum computers with possibly dif-
ferent architectures by evaluating their performance on a simple benchmark.
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This benchmark task is to perform n layers of random two-qubit gates on n
qubits, and being able to perform this with ∼ 1 expected gate errors corre-
sponds to a quantum volume of exp(n).1 Google’s quantum computing group
has also proposed random unitary circuits as a benchmark task for quan-
tum computers [5]. While their main goal has been quantum computational
supremacy [6, 56], random circuits could also be used to diagnose errors in-
cluding those that go beyond single-qubit error models by more fully exploring
the configuration space of the system [54].

These proposals from industry reflect a rough consensus that simulating
a 2D random quantum circuit should be nearly as hard as exactly simulating
an arbitrary circuit with the same architecture, or in other words that random
circuit simulation is nearly as hard as the worst case, given our current state
of knowledge.

To the contrary, we prove (assuming standard complexity-theoretic con-
jectures) that for a certain family of constant-depth architectures, classical
simulation of typical instances with small allowed error is easy, despite worst-
case simulation being hard (by which we mean, it is classically intractable to
simulate an arbitrary random circuit realization with arbitrarily small error).
For these architectures, we show that a certain algorithm exploiting the ran-
domness of the gates and the allowed small simulation error can run much
more quickly than the scaling in Eq. (3.1), running in time O(L1L2). While
our proof is architecture-specific, we give numerical and analytical evidence
that for sufficiently low constant values of d, the algorithm remains efficient
more generally. The intuitive reason for this is that the simulation of 2D shal-
low random circuits can be reduced to the simulation of a form of effective 1D
dynamics which includes random local unitaries and weak measurements. The
measurements cause the 1D process to generate much less entanglement than
it could in the worst case, making efficient simulation possible. Such dynam-
ics consisting of random local gates with interspersed measurements has in
fact recently become the subject of an intensive research focus [44–46, 48, 57–
80], and our simulation algorithm can be viewed as an application of this line
of work. Furthermore, the measurement-strength-driven entanglement phase
transitions observed in these processes are closely related to the computational
phase transition we observe for our algorithms.

3.2.1 Evidence from prior literature that simulating random cir-
cuits is hard

Before discussing our results in greater detail, we briefly review the main
technical arguments for the prevailing belief that random circuit simulation

1Our calculation of quantum volume for 2D circuits above uses the additional fact that,
assuming for simplicity that L1 ≤ L2, we can simulate a fully connected layer of gates on
L2x qubits (for x ≤ L1) with O(xL2/L1) locally connected 2D layers using the methods of
[55]. Then x is chosen to maximize min(L2x, d/(xL2/L1)).
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should be nearly as hard as the worst case.

1. Evidence from complexity theory. A long line of work has shown
that it is worst-case hard to either sample from the output distributions of
quantum circuits or compute their output probabilities with exponentially
small error [19, 22, 28, 30, 53, 81, 82]. While the requirements of worst-case
and near-exact simulation are rather strong, these results do apply to any
quantum circuit family that becomes universal once post-selection [81] is al-
lowed, thereby including noninteracting bosons [19] and 2D depth-3 circuits
[53]. The hardness results are also based on the widely believed conjecture
that the polynomial hierarchy (PH) is infinite, or more precisely that approx-
imate counting is weaker than exact counting. Since these results naturally
yield worst-case hardness, they do not obviously imply that random circuit
simulation should be hard. In some cases, additional conjectures can be made
to extend the hardness results to some form of average-case hardness (as well
as ruling out approximate simulations) [19, 22, 23], but these conjectures have
not received widespread scrutiny. Besides stronger conjectures, these hardness
results usually require that the quantum circuits have an “anti-concentration”
property, meaning roughly that their outputs are not too far from the uniform.
This is the subject of Chapter 4. While random circuits are certainly not the
only route to anti-concentration (applying a Hadamard gate to each qubit of
|0〉⊗n would do), they are a natural way to combine anti-concentration with
an absence of any obvious structure (e.g., Clifford gates) that might admit a
simple simulation (however, note that in Chapter 4, we show that constant-
depth random quantum circuits do not have the anti-concentration property).
Furthermore, a line of work beginning with Ref. [4] (see [25–27] for subse-
quent improvements) has established that random circuit simulation admits a
worst-to-average case reduction for the computation of output probabilities. In
particular, the ability to near-exactly compute the probability of some output
string for a 1− 1/ poly(n) fraction of Haar-random circuit instances on some
architecture is essentially as hard as computing output probabilities for an ar-
bitrary circuit instance with this architecture, which is known to be #P-hard
even for certain 2D depth-3 architectures.

2. Near-maximal entanglement in random circuits. Haar-random
states on n qudits are nearly maximally entangled across all cuts simultane-
ously [83, 84]. Random quantum circuits on L×L×· · · arrays of qudits achieve
similar near-maximal entanglement across all possible cuts once the depth is at
least ∼ L [85, 86] and before this time, the entanglement often spreads “ballis-
tically” [87]. Random tensor networks with large bond dimension nearly obey
a min-flow/max-cut-type theorem [38, 88], again meaning that they achieve
nearly maximal values of an entanglement-like quantity. These results sug-
gest that when running algorithms based on tensor contraction, random gates
should be nearly the hardest possible gates to simulate.
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3. Absence of algorithms taking advantage of random inputs.
There are not many algorithmic techniques known that simulate random cir-
cuits more easily than worst-case circuits. There are a handful of exceptions.
In the presence of any constant rate of noise, random circuits [31, 89], IQP
circuits [30] and (for photon loss) boson sampling [90, 91] can be efficiently sim-
ulated. These results can also be viewed as due to the fact that fault-tolerant
quantum computing is not a generic phenomenon and requires structured cir-
cuits to achieve (see [30] for discussion in the context of IQP). Permanents of
random matrices whose entries have small nonzero mean can be approximated
efficiently [92], while the case of boson sampling corresponds to entries with
zero mean and the approach of [92] is known to fail there. A heuristic ap-
proximate simulation algorithm based on tensor network contraction [93] was
recently proposed and applied to random circuits, although for this algorithm
it is unclear how the approximations made are related to the overall simula-
tion error incurred (in contrast, our algorithm based on matrix product states
can bound the overall simulation error it is making, even when comparison
with exact simulation is not feasible). In practice, evidence for a hardness
conjecture often is no more than the absence of algorithms. Indeed, while
some approximation algorithms are known for estimating output probabilities
of constant-depth circuits [94], IQP circuits [95] and boson sampling [19] up
to additive error δ in time poly(n, 1/δ), these are not very helpful for random
circuits where typical output probabilities are ∼ 2−n.

Despite the above intuitive arguments for why the simulation of uniformly
random circuits should be nearly as hard as the worst case, we (1) prove that
there exist architectures for which this is not the case, and (2) give evidence
that this result is not architecture-specific, but is rather a general property of
sufficiently shallow random circuits. To this end, we propose and implement a
simulation algorithm based on a 2D-to-1D mapping in conjunction with tensor
network methods. In Appendix 3.B, we introduce and study a second simula-
tion algorithm (referred to as Patching) based on locally simulating spatially
disconnected regions which are then “stitched” together. The performance of
both algorithms is related to certain entropic quantities.

We also give evidence of computational phase transitions for our proposed
simulation algorithms driven by circuit depth and qudit dimension. Previously
it was known that phase transitions between classical and quantum compu-
tation existed as a function of the noise parameter in conventional quantum
computation [96–102] as well as in measurement-based quantum computing
(MBQC) [103, 104]. In the noiseless setting, besides the gap between depth-2
and depth-3 circuits [53], a computational phase transition as function of rate
of qubit loss during the preparation of a resource state for MBQC [105] and
(under additional assumptions) as a function of duration of time evolution for
simulating dynamics generated by quadratic bosonic Hamiltonians [106, 107]
was also known.
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3.2.2 Our results
We give two classes of results, which we summarize in more detail below.

The first consists of rigorous separations in complexity between worst-case sim-
ulation2 and approximate average-case simulation (for sampling) and between
near-exact average-case simulation and approximate average-case simulation
(for computing output probabilities) for random circuit families defined with
respect to certain circuit architectures. While these results are rigorous, they
are proved with respect to a contrived architecture and therefore do not ad-
dress the question of whether random shallow circuits are classically simulable
more generally. To address this issue, we also give conjectures on the perfor-
mance of our algorithms for more general and more natural architectures. Our
second class of results consists of analytical and numerical evidence supporting
these conjectures.

Provable complexity separations

We now summarize our provable results for particular circuit architectures.
We first define more precisely what we mean by an “architecture.”

Definition 3.1 (Architecture). An architecture A is an efficiently computable
mapping from positive integers L to circuit layouts A(L) defined on rectangular
grids with sidelengths L× f(L) for some function f(L) ≤ poly(L). A “circuit
layout” is a specification of locations of gates in space and time and the number
of qudits acted on by each gate. (The gate itself is not specified.) For any
architecture A, we obtain the associated Haar-random circuit family acting
on qudits of constant dimension q, CA,q, by specifying every gate in A to be
distributed according to the Haar measure and to act on qudits of dimension q
which are initialized in a product state |0〉⊗(L×f(L)).

In this paper, we only consider architectures that are constant depth and
spatially 2-local (that is, a gate either acts on a single site or two adjacent
sites); therefore, “architecture” for our purposes always refers to a constant-
depth spatially 2-local architecture. The above definition permits architectures
for which the layout of the circuit itself may be different for different sizes.
However, it is natural for a circuit architecture to be spatially periodic, and
furthermore for the “unit cells” of the architecture to be independent of L. We
formalize this as a notion of uniformity, which we define more precisely below.

Definition 3.2 (Uniformity). We call a constant-depth architecture A uniform
if there exists some spatially periodic circuit layout B on an infinite square
lattice such that, for all positive integers L, A(L) is a restriction of B to a
rectangular sub-grid with sidelengths L × f(L) for some f(L) ≤ poly(L). A

2Unless specified otherwise, we use worst-case simulation to refer to the problem of
exactly simulating an arbitrary circuit instance.
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random circuit family CA,q associated with a uniform architecture A is said to
be a uniform random circuit family.

While uniformity is a natural property for a circuit architecture to pos-
sess, our provable separations are with respect to certain non-uniform circuit
families. In particular, we prove in Section 3.4 that for any fixed 0 < c < 1,
there exists some non-uniform circuit architecture A acting on n qubits such
that, if CA is the Haar-random circuit family associated with A acting on
qubits, the following are true:

1. Exact worst-case sampling is hard: There does not exist a poly(n)-
time classical algorithm that exactly samples from the output distri-
bution of arbitrary realizations of CA unless the polynomial hierarchy
collapses to the third level.

2. Near-exact average-case computation of output probabilities is
hard: Given an arbitrary fixed output string x, there does not exist
a poly(n)-time classical algorithm for computing the probability of ob-
taining x, |〈x|CA|0〉⊗n|2, up to additive error ≤ 2−cn log(n) for a constant
c > 0, with probability at least 1 − 1/ poly(n) over choice of circuit
instance, unless a #P-hard function can be computed in randomized
polynomial time.

3. Approximate average-case sampling is easy: There exists a clas-
sical algorithm that runs in time O(n) and, with probability at least
1− 2−n

c over choice of circuit instance, samples from the output distri-
bution of CA up to error at most 2−n

c in total variation distance.

4. Approximate average-case computation of output probabilities
is easy: There exists a classical algorithm that runs in time O(n) and,
for an arbitrary output string x, with probability at least 1− 2−n

c over
choice of circuit instance, estimates |〈x|CA|0〉⊗n|2 up to additive error
2−n/2n

c . (This should be compared with 2−n, which is the average output
probability over choices of x.)

The first two points above follow readily from prior works (respectively [53]
and [26, 27]), while the latter two follow from an analysis of the behavior of one
of our simulation algorithms for this architecture. These algorithms improve
on the previously best known simulation time for this family of architectures of
2O(L) = 2O(nc

′
) for some constant c′(c) < 1 based on an exact simulation based

on tensor network contraction. We refer to the architectures for which we prove
the above separations as “extended brickwork architectures” (see Figure 3.3
for a specification), as they are related to the “brickwork architecture” [108]
studied in the context of MBQC.
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Implications for quantum computational supremacy. The worst-
case to average-case reductions that imply the second item above have been
widely cited as evidence for the conjectures that underpin random-circuit-
based quantum computational supremacy proposals. Yet, the existence of an
architecture for which the fourth item is also true indicates that the robustness
of the reduction could not be sufficiently improved to actually prove those
conjectures, barring the introduction of some new technique that is sensitive to
the circuit depth. Thus, although our algorithms can only efficiently simulate
shallow random circuits, they accentuate a fundamental weakness in the main
source of formal evidence for hardness even in the case of deep circuits. (See
Appendix 3.D for further discussion of the relationship to this line of work.)

Conjectures for uniform architectures

While the above results are provable, they are unfortunately proved with re-
spect to a unnatural non-uniform architecture, and furthermore do not provide
good insight into how the simulation runtime scales with simulation error and
simulable circuit fraction. An obvious question is then whether efficient classi-
cal simulation remains possible for more natural random circuit families that
are sufficiently shallow, and if so, how the runtime scales with system size
and error parameters. We argue that it does, but that a computational phase
transition occurs for our algorithms when the depth (d) or local Hilbert space
dimension (q) becomes too large. Here we are studying the simulation cost as
n→∞ for fixed d and q. Intuitively, there are many constant-depth random
circuit families for which efficient classical simulation is possible, including
many “natural” circuit architectures (it seems plausible that any depth-3 ran-
dom circuit family on qubits is efficiently simulable). However, we expect a
computational phase transition to occur for sufficiently large constant depths
or qudit dimensions, at which point our algorithms become inefficient. The
location of the transition point will in general depend on the details of the
architecture. The conjectures stated below are formalizations of this intuition.

We now state our conjectures more precisely. Conjecture 3.1 essentially
states that there are uniform random circuit families for which worst-case sim-
ulation (in the sense of sampling or computing output probabilities) is hard,
but approximate average-case simulation can be performed efficiently. (Worst-
case hardness for computing probabilities also implies a form of average-case
hardness for computing probabilities, as discussed above.) This is stated
in more-or-less the weakest form that seems to be true and would yield a
polynomial-time simulation. However, we suspect that the scaling is some-
what more favorable. Our numerical simulations and toy models are in fact
consistent with a stronger conjecture, Conjecture 3.1′, which, if true, would
yield stronger run-time bounds. Conversely, Conjecture 3.2 states that if the
depth or local qudit dimension of such an architecture is made to be a suffi-
ciently large constant, our two proposed algorithms experience computational
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phase transitions and become inefficient even for approximate average-case
simulation.

Conjecture 3.1. There exist uniform architectures and choices of q such that,
for the associated random circuit family CA,q, (1) worst-case simulation of
CA,q (in terms of sampling or computing output probabilities) is classically
intractable unless the polynomial hierarchy collapses, and (2) our algorithms
approximately simulate CA,q with high probability. More precisely, given pa-
rameters ε and δ, our algorithms run in time bounded by poly(n, 1/ε, 1/δ) and
can, with probability 1 − δ over the random circuit instance, sample from the
classical output distribution produced by Cq up to variational distance error ε
and compute a fixed output probability up to additive error ε/qn.

Conjecture 3.1′. For any uniform random circuit family CA,q satisfying the
conditions of Conjecture 3.1, efficient simulation is possible with runtime re-
placed by

n1+o(1) · exp
(
O(
√

log(1/εδ))
)
. (3.2)

Conjecture 3.2. For any uniform random circuit family CA,q satisfying the
conditions of Conjecture 3.1, there exists some constant q∗ such that our algo-
rithms become inefficient for simulating CA,q′ for any constant q′ > q∗, where
CA,q′ has the same architecture as as Cq but acts on qudits of dimension q′.
There also exists some constant k∗ such that, for any constant k > k∗, our
algorithms become inefficient for simulating the composition of k layers of the
random circuit, Ck

A,q ◦ · · · ◦C2
A,q ◦C1

A,q, where each Ci
A,q is i.i.d. and distributed

identically to CA,q. In the inefficient regime, for fixed ε and δ the runtime of
our algorithms is 2O(L).

Our evidence for these conjectures, which we elaborate upon in the fol-
lowing sections, consists primarily of the following elements:

1. A rigorous reduction from the 2D simulation problem to a 1D simulation
problem that can be efficiently solved with high probability if certain con-
ditions on expected entanglement in the 1D state are met (Section 3.3).

2. Convincing numerical evidence that these conditions are indeed met for
a specific worst-case-hard uniform random circuit family and that in this
case the algorithm is extremely successful in practice (Section 3.5).

3. Heuristic analytical evidence for both conjectures using a mapping from
random unitary circuits to classical statistical mechanical models (Sec-
tion 3.6), and for Conjecture 3.1′ using a toy model which can be more
rigorously studied (Section 3.3.4).

The uniform random circuit family for which we collect the most evidence
for classical simulability is associated with the depth-3 “brickwork architecture”
[108] (see also Figure 3.3 for a specification).
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In the remainder of the paper we develop the evidence for our conjectures
outlined in the three items above, and also present our rigorous complexity
separation in Section 3.4.

3.3 Simulation by reduction to 1D dynamics
We reduce the problem of simulating a constant-depth quantum circuit

acting on a L × L′ grid of qudits to the problem of simulating an associated
“effective dynamics” in 1D on L qudits which is iterated for L′ timesteps, or
alternatively on L′ qudits which is iterated for L timesteps. This mapping
is rigorous and is related to previous maps from 2D quantum systems to 1D
system evolving in time [109–111]. The effective 1D dynamics is then sim-
ulated using the time-evolving block decimation algorithm of Vidal [10]. By
analogy, we call this algorithm space-evolving block decimation (SEBD). In Sec-
tion 3.3.1, we specify the details of SEBD and rigorously bound the simulation
error made by the algorithm in terms of quantities related to the entanglement
spectra of the effective 1D dynamics and give conditions in which it is provably
asymptotically efficient for sampling and estimating output probabilities with
small error. SEBD is self-certifying in the sense that it can construct confidence
intervals for its own simulation error and for the fraction of random circuit
instances it can simulate. This makes numerically studying the algorithm’s
performance feasible, and is a crucial difference between SEBD and heuristics
based on approximate tensor network contractions (e.g., [93]) in which the
error incurred by truncating bonds of the tensor network cannot be directly
related to operational measures such as trace-distance error.

A 1D unitary quantum circuit on L qubits iterated for Lc timesteps with
c > 0 is generally hard to simulate classically in poly(L)-time, as the entan-
glement across any cut can increase linearly in time. However, the form of
1D dynamics that a shallow circuit maps to includes measurements as well as
unitary gates. While the unitary gates tend to build entanglement, the mea-
surements tend to destroy entanglement and make classical simulation more
tractable. It is a priori unclear which effect has more influence.

Fortunately, unitary-and-measurement processes have been studied in a
flurry of recent papers from the physics community [44–46, 48, 57–80]. The
consensus from this work is that processes consisting of entanglement-creating
unitary evolution interspersed with entanglement-destroying measurements
can be in one of two phases, where the entanglement entropy equilibrates to
either an area law (constant), or to a volume law (extensive). When we vary
parameters like the fraction of qudits measured between each round of unitary
evolution, a phase transition is observed. The existence of a phase transition
appears to be robust to variations in the exact model, such as replacing projec-
tive measurements on a fraction of the qudits with weak measurements on all
of the qudits [46, 60], or replacing Haar-random unitary evolution with Clifford
[46, 57, 61, 62] or Floquet [57, 59] evolution. This suggests that the efficiency
of the SEBD algorithm depends on whether the particular circuit depth and
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architecture being simulated yields effective 1D dynamics that falls within the
area-law or the volume-law regime. It also suggests a computational phase
transition in the complexity of the SEBD algorithm. Essentially, decreasing the
measurement strength or increasing the qudit dimension in these models is
associated with moving toward a transition into the volume-law phase. Since
increasing the 2D circuit depth is associated with decreasing the measurement
strength and increasing the local dimension of the associated effective 1D dy-
namics, this already gives substantial evidence in favor of a computational
phase transition in SEBD.

SEBD is inefficient if the effective 1D dynamics are on the volume-law side
of the transition, and we expect it to be efficient on the area-law side because,
in practice, dynamics obeying an area law for the von Neumann entanglement
entropy are generally efficiently simulable. However, technically SEBD (like
matrix-product states) requires that Rényi entropy S0 to be bounded, not the
von Neumann entropy S, and S0 ≥ S. Indeed, there are known contrived ex-
amples of states where S0 � S, so that they obey an area law but cannot be
efficiently simulated with matrix product states [112]. We address this concern
by directly studying the entanglement spectrum of unitary-and-measurement
processes in the area-law phase. To do this, we introduce a toy model for
such dynamics which may be of independent interest. For this model, dis-
cussed more in Section 3.3.4, we rigorously derive an asymptotic scaling of
Schmidt values across some cut as λi ∝ exp

(
−Θ(log2 i)

)
which is consistent

with the scaling observed in our numerical simulations. Moreover, for this
toy model we show that with probability at least 1− δ, the equilibrium state
after iterating the process can be ε-approximated by a state with Schmidt
rank r ≤ exp

(
O(
√

log(n/εδ))
)
. Taking this toy model analysis as evidence

that the bond dimension of SEBD when simulating a circuit whose effective
1D dynamics is in an area-law phase obeys this asymptotic scaling leads to
Conjecture 3.1′.

3.3.1 Specification of algorithm
In this section, we assume that the reader is familiar with standard tensor

network methods, particularly algorithms for manipulating matrix product
states (see e.g. [12, 113] for reviews).

For concreteness, we consider a rectangular grid of qudits with local
Hilbert space dimension q, although the algorithm could be similarly defined
for different lattices. Assume WLOG that the grid consists of n = L1 × L2

qudits, where L1 is the number of rows, L2 is the number of columns, and
L1 ≤ L2. For each qudit, let |i〉, i ∈ [q] = {0, 1, . . . , q − 1} label a set of basis
states which together form the computational basis. Assume that all gates
act on one site or two neighboring sites, and the starting state is |0〉⊗n. Let
d denote the circuit depth, which should be regarded as a constant. For a
fixed circuit instance C, the goal is to sample from a distribution close to DC ,
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Figure 3.1: Schematic depiction of SEBD simulating a shallow 2D circuit. In
all figures, the 2D circuit is depicted as a spacetime volume, with time flowing
upwards. The blue regions correspond to sites for which measurements have
been simulated, while green regions correspond to unmeasured sites. In (a), we
apply all gates in the lightcone of column 1, namely, those gates intersecting
the spacetime volume shaded red. In (b), we simulate the computational basis
measurement of column 1. In (c), we apply all gates in the lightcone of column
2 that were previously unperformed. Figure (d) depicts the algorithm at an
intermediate stage of the simulation, after the measurements of about half of
the qudits have been simulated. The algorithm stores the current state as an
MPS at all times, which may be periodically compressed to improve efficiency.
Figure (e) depicts the algorithm at completion: the measurements of all n of
the qudits have been simulated.
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Figure 3.2: Iteration of SEBD. In (a), we begin with an MPS describing the
current state ρj. In (b), the MPS is compressed via truncation of small Schmidt
values. This will generally decrease the bond dimension of the MPS, depicted
in the cartoon by a reduction in the thickness of the lines between tensors. In
(c), qudits acted on by Vj that are not already incorporated into the current
state are added to the MPS (increasing the physical bond dimension of the
MPS) and initialized in |0〉 states. In (d), the unitary gates associated with Vj
are applied. Figure (e) depicts the MPS after the application of Vj; the virtual
bond dimension generally is increased by the application of Vj. In (f), the
measurement of column j is performed, and the outcome 0110 is obtained.
Subsequently, column j is projected onto the outcome 0110, removing the
physical legs associated with these sites from the MPS. The resulting state is
ρj+1.
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defined to be the distribution of the output of C upon measuring all qudits in
the computational basis. For an output string x ∈ [q]n, we let DC(x) denote
the probability of the circuit outputting x after measurement. The high-level
behavior of the algorithm is illustrated in Figure 3.1. Recall that C can al-
ways be exactly simulated in time L2q

Θ(dL1) using standard tensor network
algorithms [52].

Since all of the single-qudit measurements commute, we can measure the
qudits in any order. In particular, we can first measure all of the sites in
column 1, then those in column 2, and iterate until we have measured all
L2 columns. This is the measurement order we will take. Now, consider the
first step in which we measure column 1. Instead of applying all of the gates
of the circuit and then measuring, we may instead apply only the gates in
the lightcone of column 1, that is, the gates that are causally connected to
the measurements in column 1. We may ignore qudits that are outside the
lightcone, by which we mean qudits that are outside the support of all gates
in the lightcone.

Let ρ1 = |0〉〈0|⊗L1 denote the trivial starting state that is a tensor product
of |0〉 states in column 1, which the algorithm represents as an MPS. Let V1

denote the isometry corresponding to applying all gates in the lightcone of
this column. The algorithm simulates the application of V1 by adding qudits
in the lightcone of column 1 as necessary and applying the associated unitary
gates, maintaining the description of the state as an MPS of length L1 as
illustrated in Figure 3.2. Since there are up to d+ 1 columns in the lightcone
of column 1, each tensor of the MPS after the application of V1 has up to d+1
dangling legs corresponding to physical indices, for a total physical dimension
of at most qd+1. Since in the application of V1, there are up to O(d2) gates
that act between any two neighboring rows, the (virtual) bond dimension of
the updated MPS is at most qO(d2).

We now simulate the computational basis measurement of column 1.
More precisely, we measure the qudits of column 1 one by one. We first
compute the respective probabilities p1, p2, . . . , pq of the q possible measure-
ment outcomes for the first qudit. This involves contracting the MPS encod-
ing V1ρ1V

†
1 . We now use these probabilities to classically sample an outcome

i ∈ [q], and update the MPS to condition on this outcome. That is, if (say) we
obtain outcome 1 for site i, we apply the projector |0〉〈0| to site i of the state
and subsequently renormalize. After doing this for every qudit in the column,
we have exactly sampled an output string x1 ∈ [q]L1 from the marginal distri-
bution on column 1, and are left with an MPS description of the pure, nor-
malized, post-measurement state ρ2 proportional to trcolumn 1

(
Πx

1V1ρ1V
†

1 Πx
1

)
,

where Πx
1 denotes the projection of column 1 onto the sampled output string

x = x1. Using standard tensor network algorithms, the time complexity of
these steps is L1q

O(d2).
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We next consider column 2. At this point, we add the qudits and apply
the gates that are in the lightcone of column 2 but were not applied previously.
Denote this isometry by V2. It is straightforward to see that this step respects
causality. That is, if some gate U is in the lightcone of column 1, then any gate
W that is in the lightcone of column 2 but not column 1 cannot be required
to be applied before U , because if it were, then it would be in the lightcone
of column 1. Hence, when we apply gates in this step, we never apply a gate
that was required to be applied before some gate that was applied in the first
step. After this step, we have applied all gates in the lightcone of columns
(1, 2), and we have also projected column 1 onto the measurement outcomes
we observed.

By simulating the measurements of column 2 in a similar way to those of
column 1, we sample a string x2 from the marginal distribution on column 2,
conditioned on the previously observed outcomes from column 1. Each time
an isometry Vj is applied, the bond dimension of the MPS representation of the
current state will in general increase by a multiplicative factor. In particular,
if we iterate this procedure to simulate the entire lattice, we will eventually
encounter a maximal bond dimension of up to qO(dL1) and will obtain a sample
x = (x1,x2, . . . ,xL2) ∈ [q]n from the true output distribution.

To improve the efficiency at the expense of accuracy, we may compress
the MPS in each iteration to one with smaller bond dimension using standard
MPS compression algorithms. In particular, in each iteration j before we
apply the corresponding isometry Vj, we first discard as many of the smallest
singular values (i.e. Schmidt values) associated with each cut of the MPS as
possible up to a total truncation error per bond of ε, defined as the sum of
the squares of the discarded singular values. The bond dimension across any
cut is reduced by the number of discarded values. This truncation introduces
some error that we quantify below.

If the maximal bond dimension of this truncated version of the simulation
algorithm is D, the total runtime of the full algorithm to obtain a sample is
bounded by (taking q and d to be constants) O(nD3) using standard MPS
compression algorithms.

We assume that for a specified maximal bond dimension D and trunca-
tion error per bond ε, if a bond dimension ever exceeds D then the algorithm
terminates and outputs a failure flag fail. Hence, the runtime of the algo-
rithm when simulating some circuit C with parameters ε and D is bounded by
O(nD3), and the algorithm has some probability of failure pf,C . We summarize
the SEBD algorithm in Algorithm 1.
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Algorithm 1 SEBD
Input: circuit instance C, truncation error ε, bond dimension cutoff D
Output: string x ∈ [q]n or fail
Runtime: O(nD3) [q and d assumed to be constants]
1: initialize an MPS in the state |0〉〈0|⊗L1 , corresponding to column 1
2: for t = 1 . . . L2 do
3: compress MPS describing state by truncating small singular values, up

to error ε per bond
4: apply Vt, corresponding to gates in the lightcone of not yet applied
5: if some bond dimension is greater than D, terminate and output fail
6: simulate measurement of all qudits in column t via MPS contraction

and sampling
7: apply Πxt

t to condition on measurement string xt observed for that
column

return (x1, . . . ,xL2) ∈ [q]n

The untruncated version of the algorithm presented above samples from
the true distribution DC of the measurement outcomes of the original 2D
circuit C. However, due to the MPS compression which we perform in each
iteration and the possibility of failure, the algorithm incurs some error which
causes it to instead sample from some distribution D′C . Here, we bound the
total variation distance between these distributions, given by

1

2
‖D′C −DC‖1 =

1

2

∑
x

|D′C(x)−DC(x)|+ 1

2
pf,C , (3.3)

where the sum runs over the qn possible output strings (not including fail),
in terms of the truncation error made by the algorithm.

We first obtain a very general bound on the error made by SEBD with
no bond dimension cutoff in terms of the truncation error. Note that the
truncation error may depend on the (random) measurement outcomes, and is
itself therefore a random variable. See Appendix 3.E for a proof.

Lemma 3.1. Let εi denote the sum of the squares of all singular values dis-
carded in the compression during iteration i of the simulation of a circuit C
with output distribution DC by SEBD with no bond dimension cutoff, and let Λ
denote the sum of all singular values discarded over the course of the algorithm.
Then the distribution D′C sampled from by SEBD satisfies

1

2
‖D′C −DC‖1 ≤ E

L2∑
i=1

√
2εi ≤

√
2EΛ, (3.4)

where the expectations are over the random measurement outcomes.
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From Lemma 3.1, we immediately obtain two corollaries. The first is
useful for empirically bounding the sampling error in total variation distance
made by SEBD when the algorithm also has a bond dimension cutoff. The sec-
ond is a useful asymptotic statement. The corollaries follow straightforwardly
from the coupling formulation of variational distance, Markov’s inequality, and
the triangle inequality.

Corollary 3.1. Let A denote a SEBD algorithm with truncation error param-
eter ε and bond dimension cutoff D. Consider a fixed circuit C, and suppose
that A applied to this circuit fails with probability pf,C. Then A samples from
the output distribution of C with total variation distance error bounded by
L2

√
2εL1 + pf,C.

If the failure probability of A averaged over random choice of circuit in-
stance and measurement outcome is pf , then for any δ, on at least 1 − δ
fraction of circuit instances, A samples from the true output distribution with
total variation distance error bounded by L2

√
2εL1 + pf/δ.

In practice, the variational distance error of SEBD with truncation error ε
applied to the simulation of some circuit C can be bounded by constructing a
confidence interval for pf,C and applying the above bound.

Corollary 3.2. Let A denote a SEBD algorithm with truncation error param-
eter ε and no bond dimension cutoff. Suppose that, for some random circuit
family with q = O(1) and d = O(1), the expected bond dimension across any
cut is bounded by poly(n, 1/ε). Then, SEBD with some choice of ε = 1/ poly(n)
and D = poly(n) runs in time poly(n, 1/ε, 1/δ) and, with probability at least
1−δ over the choice of circuit instance C, samples from the output distribution
of C with variational distance error less than ε.

Thus, to prove the part of Conjecture 3.1 about sampling up to total
variation distance error ε for uniform random circuit families, it would suffice to
show that there is a 2D constant-depth uniform random quantum circuit family
with the worst-case-hard property for which the expected bond dimension
across any cut while running SEBD with truncation parameter ε is bounded by
poly(n, 1/ε). Later, we will introduce two candidate circuit families for which
we can give numerical and analytical evidence that this criterion is indeed met.

In the next subsection, we show how the other part of Conjecture 3.1,
regarding computing output probabilities, would also follow from a poly(n, 1/ε)
bound on the bond dimension of states encountered by SEBD on uniform worst-
case-hard circuit families.

3.3.2 Computing output probabilities with SEBD
In the previous section, we described how a SEBD algorithm with a trun-

cation error parameter ε and a bond dimension cutoff D applied to a circuit



49

C samples from a distribution D′C satisfying ‖D′C −DC‖1 ≤ 2L2

√
2εL1 + 2pf,C

where pf,C is the probability that some bond dimension exceeds D and the
algorithm terminates and indicates failure. Expanding the expression for the
1-norm and rearranging, we have

1

qn

∑
x

|D′C(x)−DC(x)| ≤ 2L2

√
2εL1 + pf,C
qn

. (3.5)

SEBD with bond dimension cutoff D can be used to compute D′C(x) for any
output string x in time O(nD3) (taking q and d to be constants). To do this,
for a fixed output string x, SEBD proceeds similarly to the case in which it is
being used for sampling, but rather than sampling from the output distribution
of some column, it simply projects that column onto the outcome specified
by the string x, and computes the conditional probability of that outcome
via contraction of the MPS. That is, at iteration t, the algorithm computes
the conditional probability of measuring the string xt ∈ [q]L1 in column t,
D′C(xt|x1, . . . ,xt−1), by projecting column t onto the relevant string via the
projector Πxt

t and then contracting the relevant MPS. If the bond dimension
ever exceeds D, then it must hold that D′C(x) = 0, and so the algorithm
outputs zero and terminates. Otherwise, the algorithm outputs D′C(x) =∏L2

t=1D′C(xt|x1, . . . ,xt−1). We summarize this procedure in Algorithm 2.

Algorithm 2 SEBD for computing output probabilities
Input: circuit instance C, truncation error ε, bond dimension cutoff D, string
x ∈ [q]n

Output: D′C(x)
Runtime: O(nD3) [q and d assumed to be constants]
1: initialize an MPS in the state |0〉〈0|⊗L1 , corresponding to column 1
2: for t = 1 . . . L2 do
3: compress MPS describing state by truncating small singular values, up

to error ε per bond
4: apply Vt, corresponding to gates in the lightcone of column t not yet

applied
5: if some bond dimension is greater than D, terminate and output zero
6: apply Πxt

t to condition on string xt
7: compute D′C(xt|x1, . . . ,xt−1) via MPS contraction

return D′C(x) =
∏L2

t=1D′C(xt|x1, . . . ,xt−1)

We have therefore shown the following:

Lemma 3.2. Let pf,C be the failure probability of SEBD when used to simulate
a circuit instance C with truncation error parameter ε and bond dimension
cutoff D. Suppose x ∈ [q]n is an output string drawn uniformly at random.
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Then Algorithm 2 outputs a number D′C(x) satisfying

E
x
|D′C(x)−DC(x)| ≤ 2L2

√
2εL1 + pf,C
qn

. (3.6)

The above lemma bounds the expected error incurred while estimating
a uniformly random output probability for a fixed circuit instance C. We
may use this lemma to straightforwardly bound the expected error incurred
while estimating the probability of a fixed output string over a distribution
of random circuit instances. The corollary is applicable if the distribution of
circuit instances has the property of being invariant under an application of a
final layer of arbitrary single-qudit gates. This includes circuits in which all
gates are Haar-random (as long as every qudit is acted on by some gate), but
is more general. In particular, any circuit distribution in which the final gate
to act on any given qudit is Haar-random satisfies this property. This fact will
be relevant in subsequent sections.

Corollary 3.3. Let pf be the failure probability of SEBD when used to simu-
late a random circuit instance C with truncation error parameter ε and bond
dimension cutoff D, where C is drawn from a distribution that is invariant
under application of a final layer of arbitrary single-qudit gates. Then for any
fixed string x ∈ [q]n, the output of Algorithm 2 satisfies

E
C
|D′C(x)−DC(x)| ≤ 2L2

√
2εL1 + pf
qn

. (3.7)

Proof. Averaging the bound of Eq. (3.6) over random circuit instances, we
have

E
y
E
C
|D′C(y)−DC(y)| ≤ 2L2

√
2εL1 + pf
qn

. (3.8)

Let Ly denote a layer of single-qudit gates with the property that Ly|x〉 = |y〉.
By assumption, C is distributed identically to the composition of C with Ly,
denoted Ly ◦ C. Together with the observation that DLy◦C(y) = DC(x), we
have

E
y
E
C
|D′C(y)−DC(y)| = E

y
E
C
|D′Ly◦C(y)−DLy◦C(y)| (3.9)

= E
C
|D′C(x)−DC(x)|, (3.10)

from which the result follows.

The following asymptotic statement follows straightforwardly.

Corollary 3.4. Let A denote a SEBD algorithm with truncation error param-
eter ε and no bond dimension cutoff. Suppose that, for some random circuit
family with q = O(1) and d = O(1), the expected bond dimension across any



51

cut is bounded by poly(n, 1/ε). Then, SEBD with some choice of ε = 1/ poly(n)
and D = poly(n) runs in time poly(n, 1/ε, 1/δ) and, with probability at least
1 − δ over the choice of circuit instance C, estimates DC(x) for some fixed
x ∈ [q]n up to additive error bounded by ε/qn.

Corollary 3.4 shows how the part of Conjecture 3.1 about computing
arbitrary output probabilities to error ε/qn would follow from a bound on the
bond dimension across any cut when SEBD runs on a uniform worst-case-hard
circuit family.

3.3.3 Example: SEBD applied to cluster state with Haar-random
measurements (CHR)

To illustrate the connection between SEBD and random unitary and mea-
surement dynamics, we now study the SEBD algorithm in more detail for a sim-
ple uniform family of 2D random circuits that possesses the worst-case-hard
property required by Conjecture 3.1. The model we consider is the following:
start with a 2D cluster state of n qubits arranged in a

√
n×
√
n grid, apply a

single-qubit Haar-random gate to each qubit, and then measure all qubits in
the computational basis. Recall that a cluster state may be created by starting
with the product state |+〉⊗n before applying CZ gates between all adjacent
sites. An equivalent formulation which we will find convenient in the subse-
quent section is to measure each qubit of the cluster state in a Haar-random
basis. We refer to this model as CHR, for “cluster state with Haar-random
measurements.”

Following Ref. [82], it is straightforward to show that sampling from the
output distribution of CHR is classically worst-case hard assuming the polyno-
mial hierarchy (PH) does not collapse to the third level. It can also be readily
shown, following Refs. [26, 27], that near-exactly computing output proba-
bilities of CHR is #P-hard in the average case. These results rule out, under
standard conjectures, the existence of a classical sampling algorithm for CHR
that succeeds for all instances, or a classical algorithm for efficiently comput-
ing most output probabilities of CHR near-exactly. A natural question is then
whether efficient approximate average-case versions of these algorithms may
exist. We formalize these questions as the problems CHRsamp/prob± .

Problem 3.1 (CHRsamp/prob± ). Given as input a random instance C of CHR (spec-
ified by a sidelength

√
n and a set of n single-qubit Haar-random gates applied

to the
√
n ×

√
n cluster state) and error parameters ε and δ, perform the

following computational task in time poly(n, 1/ε, 1/δ).

• CHRsamp± . Sample from a distribution D′C that is ε-close in total variation
distance to the true output distribution DC of circuit C, with probability
of success at least 1− δ over the choice of measurement bases.
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• CHRprob± . Estimate DC(0), the probability of obtaining the all-zeros string
upon measuring the output state of C in the computational basis, up to
additive error at most ε/2n, with probability of success at least 1− δ over
the choice of measurement bases.

We now show that SEBD solves CHRsamp/prob± if a certain form of 1D dynamics
involving local unitary gates and measurements is classically simulable. We
first consider the sampling variant of SEBD. Specializing to the CHR model, the
algorithm takes on a particularly simple form due to the fact that the cluster
state is built by applying CZ gates between all neighboring pairs of qubits,
which are initialized in |+〉 states. Due to this structure, the radius of the
lightcone for this model is simply one. In particular, the only gates in the
lightcone of columns 1-j are the Haar-random single-qubit gates acting on
qubits in these columns, as well as CZ gates that act on at least one qubit
within these columns. This permits a simple prescription for SEBD applied to
this problem.

Initialize the simulation algorithm in the state ρ1 = |+〉〈+|⊗
√
n corre-

sponding to column 1. To implement the isometry V1, initialize the qubits
of column 2 in the state |+〉〈+|⊗

√
n and apply CZ gates between adjacent

qubits that are both in column 1 and between adjacent qubits in separate
columns. Now, measure the qubits of column 1 in the specified Haar-random
bases (equivalently, apply the specified Haar-random gates and measure in
the computational basis), inducing a pure state ρ2 with support in column 2.
Iterating this process, we progress through a random sequence of 1D states
on
√
n qubits ρ1 → ρ2 → · · · → ρ√n which we will see can be equivalently

understood as arising from a 1D dynamical process consisting of alternating
layers of random unitary gates and weak measurements.

It will be helpful to introduce notation. Define |θ, φ〉 = cos
(
θ
2

)
|0〉 +

eiφ sin
(
θ
2

)
|1〉. In other words, let |θ, φ〉 denote the single-qubit pure state with

polar angle θ and azimuthal angle φ on the Bloch sphere. Let θ(t)
i and φ(t)

i spec-
ify the measurement basis of the qubit in row i and column t; that is, the pro-
jective measurement on the qubit in row i and column t is {Π0

θ
(t)
i ,φ

(t)
i

,Π1

θ
(t)
i ,φ

(t)
i

}

with Π0

θ
(t)
i ,φ

(t)
i

=
∣∣∣θ(t)
i , φ

(t)
i

〉〈
θ

(t)
i , φ

(t)
i

∣∣∣ and Π1

θ
(t)
i ,φ

(t)
i

= I−Π0

θ
(t)
i ,φ

(t)
i

. We also define

M0(θ, φ) =

cos(θ/2) 0

0 e−iφ sin(θ/2)

 (3.11a)

M1(θ, φ) =

sin(θ/2) 0

0 eiφ cos(θ/2)

. (3.11b)

Note that {M0(θ, φ),M1(θ, φ)} defines a weak single-qubit measurement. We
now describe, in Algorithm 3, a 1D process which we claim produces a sequence
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of states identical to that encountered by SEBD for the same choice of measure-
ment bases and measurement outcomes, and also has the same measurement
statistics.

Algorithm 3 Effective 1D dynamics of a fixed instance of CHR

1: ϕ1 ← |+〉〈+|⊗
√
n.

2: for t = 1 . . .
√
n− 1 do

3: apply a CZ gate between every adjacent pair of qubits
4: measure {M0(θ

(t)
i , φ

(t)
i ),M1(θ

(t)
i , φ

(t)
i )} on qubit i, obtaining X

(t)
i ,

for i ∈ {1, . . . ,
√
n}

5: apply a Hadamard transform
6: ϕt+1 ← resulting state
7: measure {Π0

θ
(
√
n)

i ,φ
(
√
n)

i

,Π1

θ
(
√
n)

i ,φ
(
√
n)

i

} on qubit i, obtaining X
(
√
n)

i , for i ∈
{1, . . . ,

√
n}

Lemma 3.3. For a fixed choice of {θ(t)
i , φ

(t)
i } parameters, the joint distribu-

tion of outcomes {X(t)
i }i,t is identical to that of {Y (t)

i }i,t, where {Y
(t)
i }i,t are

the measurement outcomes obtained upon measuring all qubits of a
√
n×
√
n

cluster state, with the measurement on the qubit in row i and column t being
{Π0

θ
(t)
i ,φ

(t)
i

,Π1

θ
(t)
i ,φ

(t)
i

}. Furthermore, for any fixed choice of measurement out-

comes, ϕj = ρj for all j ∈ {1, . . . ,
√
n}, where ρj is the state at the beginning

of iteration j of the SEBD algorithm.

Proof. The lemma follows from the above description of the behavior of SEBD
applied to CHR, as well as the following identities holding for any single-qubit
state |ξ〉 which may be verified by straightforward calculation:

(Π0
θ,φ ⊗ I)CZ(|ξ〉 ⊗ |+〉) = |θ, φ〉 ⊗HM0(θ, φ)|ξ〉 (3.12)

(Π1
θ,φ ⊗ I)CZ(|ξ〉 ⊗ |+〉) = |π − θ,−φ〉 ⊗HM1(θ, φ)|ξ〉. (3.13)

We have seen that, for a fixed choice of single-qubit measurement bases
{θ(t)

j , φ
(t)
j }t,j associated with an instance C, we can define an associated 1D

process consisting of alternating layers of single-qubit weak measurements and
local unitary gates, such that simulating this 1D process is sufficient for sam-
pling from DC .

Now, recall that in the context of simulating CHR, each single-qubit mea-
surement basis is chosen randomly according to the Haar measure. That is, the
Bloch sphere angles (θ

(t)
i , φ

(t)
i ) are Haar-distributed. If we define x(t)

i ≡ cos θ
(t)
i ,

we find that x(t)
i is uniformly distributed on the interval [−1, 1]. The parame-

ters φ(t)
i are uniformly distributed on [0, 2π]. Using these observations, as well
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as the observation that the outcome probabilities of the measurement of qubit
i in iteration t are independent of the azimuthal angle φ(t)

i when t <
√
n, we

may derive effective dynamics of a random instance.

Define the operators

N(x) =

√1+x
2

0

0
√

1−x
2

, x ∈ [−1, 1].

Note that {N(x), N(−x)} defines a weak measurement. Also, define the phase
gate

P (φ) =

1 0

0 eiφ

, φ ∈ [0, 2π].

By randomizing each single-qubit measurement basis according to the
Haar distribution, one finds that the dynamics of Algorithm 3 (which applies
for a fixed choice of measurement bases) may be written as Algorithm 4 below,
where the notation x ∈U [−1, 1] means that x is a random variable uniformly
distributed on [−1, 1]. That is, the distribution of random sequences ϕ1 →
ϕ2 → · · · → ϕ√n and distribution of output statistics produced by Algorithm 4
is identical to that produced by SEBD applied to CHR.

Algorithm 4 Effective 1D dynamics of CHR

1: ϕ1 ← |+〉〈+|⊗
√
n.

2: for t = 1 . . .
√
n− 1 do

3: apply a CZ gate between every adjacent pair of qubits
4: for i = 1 . . .

√
n do

5: measure {N(x), N(−x)} on qubit i with x ∈U [−1, 1]
6: apply the gate P (φ) with φ ∈U [0, 2π] to qubit i
7: apply a Hadamard transform
8: ϕt+1 ← resulting state
9: perform a projective measurement on each qubit in a Haar-random basis

Hence, if TEBD can efficiently simulate the process of Algorithm 4 with
high probability, then SEBD can solve CHRsamp± and CHRprob± . We formalize this
in the following lemma.

Lemma 3.4. Suppose that TEBD can efficiently simulate the process described
in Algorithm 4 in the sense that the expected bond dimension across any cut is
bounded by poly(n, 1/ε) where ε is the truncation error parameter. Then SEBD
can be used to solve CHRsamp± and CHRprob± .

Proof. Follows from Corollary 3.2, Corollary 3.4, and the equivalence to Algo-
rithm 4 discussed above.



55

We have shown how SEBD applied to CHR can be reinterpreted as TEBD
applied to a 1D dynamical process involving alternating layers of random uni-
taries and weak measurements. Up until this point, there has been little reason
to expect that SEBD is efficient for the simulation of CHR. In particular, with
no truncation, the bond dimension of the MPS stored by the algorithm grows
exponentially as the algorithm sweeps across the lattice.

We now invoke the findings of a number of related recent works [44–
46, 48, 57–80]. to motivate the possibility that TEBD can efficiently simulate
the effective 1D dynamics. These works study various 1D dynamical processes
involving alternating layers of measurements and random local unitaries. In
some cases, the measurements are considered to be projective and only oc-
cur with some probability p. In other cases, similarly to Algorithm 4, weak
measurements are applied to each site with probability one. The common
finding of these papers is that such models appear to exhibit an entanglement
phase transition driven by measurement probability p (in the former case), or
measurement strength (in the latter case). On one side of the transition, the
entanglement entropy obeys an area law, scaling as O(1) with the length L.
On the other side, it obeys a volume law, scaling as O(L).

Based on these works, one expects the entanglement dynamics to satu-
rate to an area-law or volume-law phase. And in fact, our numerical studies
(presented in Section 3.5) suggest that these dynamics saturate to an area-
law phase. The common intuition that 1D quantum systems obeying an area
law for the von Neumann entropy are easy to simulate with matrix product
states therefore suggests that SEBD applied to this problem is efficient. While
counterexamples to this common intuition are known [112], they are contrived
and do not present an obvious obstruction for our algorithm. To better un-
derstand the relationship between maximal bond dimension and truncation
error when the effective dynamics is in the area-law phase as well as rule out
such counterexamples, in the following section we describe a toy model for a
unitary-and-measurement process in the area-law phase, which predicts a su-
perpolynomial decay of Schmidt values across any cut and therefore predicts
that a polynomial runtime is sufficient to perform the simulation to 1/ poly(n)
error. Our numerical results (presented in Section 3.5) suggest that the effec-
tive dynamics of the random circuit architectures we consider are indeed in
the area-law phase, with entanglement spectra consistent with those predicted
by the toy model dynamics. Further analytical evidence for efficiency is given
in Section 3.6.

Note that, although we explicitly derived the effective 1D dynamics for the
CHR model and observed it to be a simple unitary-and-measurement process,
the interpretation of the effective 1D dynamics as a unitary-and-measurement
process is not specific to CHR and is in fact general. In the general case, SEBD
tracks O(r) columns simultaneously where r is the radius of the lightcone
corresponding to the circuit. In each iteration, new qudits that have come
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into the lightcone are added, unitary gates that have come into the lightcone
are performed, and finally projective measurements are performed on a single
column of qudits. Similarly to the case of CHR, this entire procedure can be
viewed as an application of unitary gates followed by weak measurements on a
1D chain of qudits of dimension qO(r). Intuitively, increasing the circuit depth
corresponds both to increasing the local dimension in the effective 1D dynam-
ics and decreasing the measurement strength. The former is due to the fact
that in general the lightcone radius r will increase as depth is increased, and
the local dimension of the effective dynamics is qO(r). The latter is due to the
fact that as r increases, the number of tracked columns increases but the num-
ber of measured qudits in a single round stays constant. Hence the fraction of
measured qudits decreases, and intuitively we expect this to correspond to a
decrease in effective measurement strength. This intuition together with the
findings of prior works on unitary-and-measurement dynamics suggests that
the effective dynamics experiences an entanglement phase transition from an
area-law to volume-law phase as q or d is increased, and therefore SEBD experi-
ences a computational phase transition, supporting Conjecture 3.2. While this
analogy is not perfect, we provide further analytical evidence in Section 3.6
that the effective 1D dynamics indeed undergoes such a phase transition.

3.3.4 Conjectured entanglement spectrum of unitary-and-
measurement dynamics in an area-law phase

Numerical (Section 3.5) and analytical (Section 3.6) evidence suggests
that the effective 1D dynamics corresponding to the uniform 2D shallow ran-
dom circuit families we consider are in the area-law phase, making efficient
simulation via SEBD very plausible. However, it is desirable to have clear pre-
dictions for the scaling of the entanglement spectra for states of the effective
1D dynamics, as this allows us to make concrete predictions for error scaling
of SEBD and rule out (contrived) examples of states [112] which cannot be effi-
ciently represented via MPS despite obeying an area law for the von Neumann
entanglement entropy.

To this end, we study a simple toy model of how entanglement might
scale in the area-law phase of a unitary-and-measurement circuit. Consider a
chain of n qubits where we are interested in the entanglement across the cut
between 1, . . . , n/2 and n/2 + 1, . . . , n (assume that n is even). We model the
dynamics as follows. In each time step, we perform the following three steps:

1. Set the state of sites n/2 and n/2 + 1 to be an EPR pair |Φ〉 = (|00〉 +
|11〉)/

√
2.

2. Perform the cyclic permutations of qubits (n/2, n/2−1, . . . , 1) and (n/2+
1, n/2 + 2, . . . , n). That is, move each qubit one step away from the
central cut, except for qubits 1 and n, which are moved to n/2 and
n/2 + 1, respectively.
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3. Perform a weak measurement on each qubit with Kraus elements
M0(θ) = cos(θ/2) |0〉〈0| + sin(θ/2) |1〉〈1| and M1(θ) = sin(θ/2) |0〉〈0| +
cos(θ/2) |1〉〈1|. This is based on Eq. (3.11), but the phases will not mat-
ter here, so we have dropped them for simplicity.

Without the measurements, this would create one EPR pair in each time
step until the system had n/2 EPR pairs across the cut after time n/2. How-
ever, the measurements have the effect of reducing the entanglement. For this
process, we derive the functional form of the asymptotic scaling of half-chain
Schmidt coefficients λ1 ≥ λ2 ≥ · · · . Moreover, bounds on the scaling of the
entanglement spectrum allows us to derive a relation between the truncation
error (sum of squares of discarded Schmidt values) ε incurred upon discarding
small Schmidt values, and the rank r of the post-truncation state. The bounds
are given in the following lemma, which is proved in Appendix 3.E.

Lemma 3.5. Let λ1 ≥ λ2 ≥ · · · denote the half-chain Schmidt values after
at least n/2 iterations of the toy model process. Then, with probability at least
1− δ, the half-chain Schmidt values indexed by i ≥ i∗ = exp

(
Θ(
√

log(n/δ))
)

obey the asymptotic scaling

λi ∝ exp
(
−Θ(log2(i))

)
. (3.14)

Furthermore, upon truncating the smallest Schmidt coefficients up to a trun-
cation error of ε, with probability at least 1− δ, the half-chain Schmidt rank r
of the post-truncation state obeys the scaling

r ≤ exp
(

Θ
(√

log(n/εδ)
))

. (3.15)

This is the basis for our Conjecture 3.1′. More precisely, we take this
analysis as evidence that the bond dimension D, truncation error ε, and
system size n obey the scaling D ≤ exp

(
Θ
(√

log(n/εδ)
))

with probabil-
ity 1 − δ over random circuit instance and random measurement outcomes
when SEBD simulates a random constant-depth 2D circuit whose effective 1D
dynamics lie in the area-law phase. Recalling that the runtime of SEBD scales
like O(nD3) for a maximal bond dimension of D and using the relationship
between truncation error, failure probability, variational distance error, and
simulable circuit fraction given in Corollary 3.1, we conclude that SEBD with a
maximal bond dimension cutoff scaling as exp

(
Θ
(√

log(n/εδ)
))

runs in time

n1+o(1) exp
(

Θ
(√

log(1/εδ)
))

and simulates 1 − δ fraction of random circuit
instances up to variational distance error ε.

It is important to note what this heuristic argument leaves out. While a
1D unitary-and-measurement circuit will indeed create O(1) ebits across any
given cut in each round, these will not remain in the form of distinct pairs
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2r

L

Figure 3.3: Extended brickwork architecture with n qubits. Here, circles rep-
resent qubits initialized in the state |0〉⊗n, turquoise lines represent the first
layer of gates to act, red lines represent the second layer, and black lines rep-
resent the third and final layer. All gates are chosen Haar-randomly. We let
Brickwork(L, r, v) denote the corresponding random circuit with circuit layout
depicted in the figure above with vertical sidelength L, “extension parameter”
2r (which gives the distance between vertical gates acting on adjacent pairs
of rows), and number of pairs of columns of vertical gates v. In the above
example, r = 5 and v = 4. The standard brickwork architecture corresponds
to r = 1. Note that n = Θ(Lrv).

of qubits. The unitary dynamics within each side of the cut will have the
effect of transforming the Schmidt bases into entangled ones. This will make
the measurements less effective at reducing the entanglement, for reasons that
can be understood in terms of quantum state merging [61, 114]. Another
simplification of the toy model is that the measurement angle θ is taken to be
a fixed constant rather than random. Finally, in the toy model, we assume for
simplicity that the EPR pairs move cyclically. We expect that, if this effect is
significant, it is more likely to make the toy model overly pessimistic compared
with the real situation. Despite these simplifications, we believe this model is
qualitatively accurate in the area-law phase. Indeed, the scaling of Schmidt
values predicted by our toy model analysis is consistent with the scaling we
find numerically in Figure 3.5.

3.4 Rigorous analysis of SEBD for the “extended brickwork archi-
tecture”

In this section, we show that SEBD is provably efficient for certain random
circuit families that are worst-case hard. We define the circuit architecture in
Figure 3.3. It follows readily from prior works that exactly sampling from the
output distribution of this random circuit family for arbitrary circuit instances
or near-exactly computing a specific output probability with high probability
is classically hard under standard complexity theoretic assumptions. We sum-
marize these observations in the following lemma.
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Lemma 3.6. Let r(L) and v(L) be any polynomially bounded functions, with
v(L) ≥ La for some a > 0. Suppose that there exists a classical algorithm that
runs in time poly(n) and samples from the output distribution of an arbitrary
realization of Brickwork(L, r(L), v(L)), as defined in Figure 3.3. Then the
polynomial hierarchy collapses to the third level. Suppose there exists a classical
algorithm that runs in time poly(n, 1/δ) and, for an arbitrary fixed output
string x, with probability at least 1−δ over choice of random instance, computes
the output probability of x up to additive error 2−Θ̃(n2). Then there exists a
probabilistic polynomial-time algorithm for computing a #P-hard function.

Proof. We first note that Brickwork(L, r(L), v(L)) supports universal MBQC,
in the sense that a specific choice of gates can create a resource state that
is universal for MBQC. This is an immediate consequence of the proof of
universality of the “standard” brickwork architecture (corresponding to r = 1)
proved in [108]. Indeed, when using the extended brickwork architecture for
MBQC, measurements on the long 1D stretches of length 2r may be chosen
such that the effective state is simply teleported to the end when computing
from left to right (i.e., measurements may be chosen such that the long 1D
segments simply amount to applications of identity gates on the effective state).
The scaling v ≥ La ensures that MBQC with an extended brickwork resource
state suffices to simulate any BQP computation with polynomial overhead.
Since a specific choice of gates creates a resource state for universal MBQC,
an algorithm that can simulate an arbitrary circuit realization can be used
to simulate arbitrary single-qubit measurements on a resource state universal
for MBQC. Under post-selection, such an algorithm can therefore simulate
PostBQP [109] and hence cannot be efficiently simulated classically unless the
polynomial hierarchy collapses to the third level [82].

Similarly, for some subsets of instances, it is #P-hard to compute the
output probability of an arbitrary string, since (by choosing gates to create a
resource state for universal MBQC) this would allow one to compute output
probabilities of universal polynomial-size quantum circuit families which is
known to be #P-hard. The result of Refs. [26, 27] is then applicable, which
implies that if the gates are chosen Haar-randomly, efficiently computing the
output probability of some fixed string with probability 1 − 1/ poly(n) over
the choice of instance up to additive error bounded by 2−Θ̃(n log(n)) implies the
ability to efficiently compute a #P-hard function with high probability.

Our goal is to prove that SEBD can efficiently approximately simulate the
extended brickwork architecture in the average case for choices of extension
parameters for which the above hardness results apply. To this end, we first
show a technical lemma which describes how measurements destroy entangle-
ment in 1D shallow random circuits. In particular, given a 1D state generated
by a depth-2 Haar-random circuit acting on qubits, after measuring some con-
tiguous region of spins B, the expected entanglement entropy of the resulting
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post-measurement pure state across a cut going through B is exponentially
small in the length of B. We defer the proof to Appendix 3.E.

Lemma 3.7. Suppose a 1D random circuit C is applied to qubits {1, . . . , n}
consisting of a layer of 2-qubit Haar-random gates acting on qubits (k, k + 1)
for odd k ∈ {1, . . . , n − 1}, followed by a layer of 2-qubit Haar-random gates
acting on qubits (k, k + 1) for even k ∈ {1, . . . , n − 1}. Suppose the qubits of
region B = {i, i+ 1, . . . , j} for j ≥ i are measured in the computational basis,
and the outcome b is obtained. Then, letting |ψb〉 denote the post-measurement
pure state on the unmeasured qubits, and letting A = {1, 2, . . . , i − 1} denote
the qubits to the left of B,

ES(A)ψb ≤ c|B| (3.16)

for some universal constant c < 1, where the expectation is over measurement
outcomes and choice of random circuit C.

We now outline the argument for why SEBD should be efficient for the
extended brickwork architecture for sufficiently large extension parameters;
full details may be found in Appendix 3.E. During the evolution of SEBD, as
it sweeps from left to right across the lattice, it periodically encounters long
stretches of length 2r in which no vertical gates are applied. We call these “1-
local regions” since the maps applied in the corresponding effective 1D dynam-
ics are 1-local when the algorithm is in such a region. Hence, in the effective
1D dynamics, no 2-qubit maps are applied and therefore the bond dimension
of the associated MPS cannot increase during these stretches. It turns out
that in 1-local regions, not only does the bond dimension needed to represent
the state not increase, but it in fact rapidly decays in expectation. If r is suffi-
ciently large, then the effective 1D state at the end of the 1-local region is very
close to a product state with high probability, regardless of how entangled the
state was before the region. Hence, when SEBD compresses the MPS describing
the effective state at the end of the region, it may compress the bond dimen-
sion of the MPS to some fixed constant with very small incurred error. The
two-qubit maps that are performed in-between 1-local regions only increase
the bond dimension by a constant factor. Hence, with high probability, SEBD
can use a O(1) maximal bond dimension cutoff and simulate a random circuit
with extended brickwork architecture with high probability. More precisely,
it turns out that the scaling r ≥ Θ(log(n)) is sufficient to guarantee efficient
simulation with this argument. A more precise statement of the efficiency of
SEBD for this architecture is given in the below lemma, whose proof may be
found in Appendix 3.E.

Lemma 3.8. Let C be an instance of Brickwork(L, r, v). Then, with proba-
bility at least 1− 2−Θ(r) over the circuit instance, SEBD running with maximal
bond dimension cutoff D = Θ(1) and truncation error parameter ε = 2−Θ(r)

can be used to (1) sample from the output distribution of C up to error n2−Θ(r)
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in variational distance and (2) compute the output probability of an arbitrary
output string up to additive error n2−Θ(r)/2n in runtime Θ(n).

With an appropriate choice of r = Θ(log(L)), the above result implies that
SEBD can perform the simulation with error 1/ poly(n) for at least 1−1/ poly(n)
fraction of instances. Similarly, choosing r to be a sufficiently large polynomial
in L, SEBD can perform the simulation with error 2−n

1−δ for 1−2−n
1−δ fraction

of instances, for any constant δ > 0. We summarize these observations as the
following corollary.

Corollary 3.5. For any choice of polynomially bounded v, p1, p2, for any suf-
ficiently large constant c SEBD can simulate 1 − 1/p1(n) fraction of instances
of Brickwork(L, dc log(L)e, v(L)) up to error ε ≤ 1/p2(n) in time O(n). For
any choice of δ > 0 and v(L) ≤ poly(L), for any sufficiently large constant c
SEBD can simulate 1−2−n

1−δ fraction of instances of Brickwork(L, dLce, v(L))
up to error ε ≤ 2−n

1−δ in time O(n). Here, “simulate with error ε” implies
the ability to sample with variational distance error ε and compute the output
probability of some fixed string x with additive error ε/2n.

3.5 Numerical results
We implemented3 SEBD on two families of random circuits: one consisting

of depth-3 random circuits defined on a “brickwork architecture” consisting
of three layers of two-qubit Haar-random gates (Figure 3.3 with parameter
r = 1), and the other being the random circuit family obtained by applying
single-qubit Haar-random gates to all sites of a cluster state—we referred to
this problem as CHR previously. Note that the former architecture has depth
three (not including the measurement layer) and the latter has depth four,
and both architectures support universal measurement-based quantum com-
putation [108], meaning they have the worst-case-hard property relevant for
Conjecture 3.1. We did not implement Patching, due to its larger overhead.

Implementing SEBD on a standard laptop, we could simulate typical in-
stances of the 409×409 brickwork model with truncation error 10−14 per bond
with a runtime on the order of one minute per sample, and typical instances
of the 34 × 34 CHR model with truncation error 10−10 per bond with a run-
time on the order of five minutes per sample (these truncation error settings
correspond to sampling errors of less than 0.01 in variational distance as de-
rived previously in Section 3.3). We in fact simulated instances of CHR with
grid sizes as large as 50× 50, although due to the significantly longer runtime
for such instances we did not perform large numbers of trials for these cases.
In the case of the 409 × 409 brickwork model, performing over 3000 trials
(consisting of generating a random circuit instance and generating a sample
from its output distribution using a truncation error of 10−14) and finding no

3The code for our implementation is available at https://github.com/random-shallow-
2d/random-shallow-2d.

https://github.com/random-shallow-2d/random-shallow-2d
https://github.com/random-shallow-2d/random-shallow-2d
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(a) CHR

(b) Brickwork

Figure 3.4: Rényi half-chain entanglement entropies Sk versus sidelength L
in the effective 1D dynamics for the CHR and brickwork models, after 80
(resp. 550) iterations. Each point represents the entanglement entropy av-
eraged over 50 random circuit instances, and over the final 10 (resp. 50) itera-
tions for the CHR (resp. brickwork) model. Dashed lines depict the half-chain
entanglement entropy scaling of a maximally entangled state, which can be
created with a “worst-case” choice of gates for both architectures. The maxi-
mal truncation error per bond ε was 10−10 for CHR and 10−14 for the brickwork
model.
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Figure 3.5: Typical half-chain entanglement spectrum λ1 ≥ λ2 ≥ . . . observed
during the effective 1D dynamics of CHR. These plots were generated from an
instance with sidelength L = 44 after running for 44 iterations, with squared
Schmidt values smaller than approximately 10−15 truncated. The left figure
shows a spectrum of half-chain eigenvalues. The downward curvature in the
log-log scale indicates superpolynomial decay. The right figure displays the
same data (minus the few largest values) on a loglog-loglog scale. The toy
model predicts that the blue curve asymptotes to a straight line with slope
two in the right figure, illustrated by the dashed orange line, corresponding
to scaling like λi ∼ 2−Θ(log2(i)). The plot is qualitatively consistent with this
prediction. The spectrum for the brickwork model decays too quickly to obtain
as useful statistics without going to much higher numerical precision.
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trials for which the bond dimension became large enough for the algorithm
to fail, then with 95% confidence, we may conclude that the probability that
a random trial fails, pf , is less than 0.001. Using the bound derived in Sec-
tion 3.3, we can therefore conclude with 95% confidence that for greater than
a 0.9 fraction of 409 × 409 circuit instances, we can sample from that circuit
instance’s output distribution with variational distance error less than 0.01.
Intuitively, we expect the true simulable fraction to be much larger than this
statistical guarantee, as it appears that the entanglement in the effective 1D
dynamics only grows extensively for highly structured instances. Note that
for both models, the runtime for a fixed truncation error was qualitatively
highly concentrated around the mean. We expect that substantially larger in-
stances of both random circuit families could be quickly simulated with more
computing power, although 409×409 simulation of the brickwork architecture
is already far beyond what could have been achieved by previous simulation
methods that we are aware of.

To make this more precise, it is useful to compare our observed runtime
with what is possible by previously known methods. The previously best-
known method that we are aware of for computing output probabilities for
these architectures would be to write the circuit as a tensor network and per-
form the contraction of the network [115]. The cost of this process scales
exponentially in the tree-width of a graph related to the quantum circuit,
which for a 2D circuit is thought to scale roughly as the surface area of the
minimal cut slicing through the circuit diagram, as in Eq. (3.1). By this rea-
soning, we estimate that simulating a circuit with brickwork architecture on a
400 × 400 lattice using tensor network contraction would be roughly equiva-
lent to simulating a depth-40 circuit on a 20× 20 lattice with the architecture
considered in [115], where the entangling gates are CZ gates. We see that
these tasks should be equivalent because the product of the dimensions of the
bonds crossing the minimal cut is equal to 2200 in both cases: for the brickwork
circuit, 100 gates cross the cut if we orient the cut horizontally through the
diagram in Figure 3.3 (with r = 1) and each gate contributes a factor of 4;
meanwhile, for the depth-40 circuit, only one fourth of the unitary layers will
contain gates that cross the minimal cut, and each of these layers will have 20
such gates that each contribute a factor of 2 (CZ gates have half the rank of
generic gates). The task of simulating a depth-40 circuit on a 7×7 lattice was
reported to require more than two hours using tensor network contraction on
the 281 petaflop supercomputer Summit [115], and the exponentiality of the
runtime suggests scaling this to 20× 20 would take many orders of magnitude
longer, a task that is decidedly intractable.

The discrepancy between maximal lattice sizes achieved for the two ar-
chitectures is a result of the fact that the two have very different effective 1D
dynamics. In particular, the entanglement of the effective dynamics for the
brickwork architecture saturates to a significantly smaller value than that of
the cluster state architecture. And even more directly relevant for prospects of
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fast simulation, the typical spectrum of Schmidt values across some cut of the
effective 1D dynamics for the brickwork architecture decays far more rapidly
than that of the 1D dynamics for CHR. For this reason, the slower-decaying
eigenvalue spectrum of CHR was significantly more costly for the runtime of
the algorithm. (In fact, the eigenvalue spectrum of the brickwork model de-
cayed sufficiently quickly that we were primarily limited not by the runtime
of our algorithm, but by our numerical precision, which could in principle be
increased.) But while the slower decay of the spectrum for the CHR model
necessitated a longer runtime for a given sidelength, it allowed us to study
the functional form of the spectrum and in particular compare against the
predictions of the toy model of Section 3.3.4 as we discuss below.

While we were computationally limited to probing low-depth and small-
size models, our numerical results point toward SEBD having an asymptotic
running time for both models bounded by poly(n, 1/ε, 1/δ) in order to sam-
ple with variational distance ε or compute output probabilities with additive
error ε/qn with probability 1− δ, suggesting that Conjecture 3.1 is true. Our
numerical evidence for this is as follows:

1. We find that the effective 1D dynamics associated with these random cir-
cuit families appear to be in area-law phases, as displayed in Figure 3.4.
That is, the entanglement does not grow extensively with the sidelength
L, but rather saturates to some constant. We furthermore observe qual-
itatively identical behavior for some Rényi entropies Sk with k < 1. It
is known [112] that this latter condition is sufficient to imply that a 1D
state may be efficiently described by an MPS, indicating that SEBD is
efficient for these circuit families and that Conjecture 3.1 is true.

2. For further evidence of efficiency, we study the functional form of the
entanglement spectra of the effective 1D dynamics. For the effective
1D dynamics corresponding to CHR, we observe superpolynomial decay
of eigenvalues (i.e. squared Schmidt values) associated with some cut,
displayed in Figure 3.5, indicating that choosing a maximal bond di-
mension of D = poly(1/ε) is more than sufficient to incur less than
ε truncation error per bond. The observed spectrum tends toward a
scaling which is qualitatively consistent with the asymptotic scaling of
λi ∼ 2−Θ(log2(i)) predicted by the toy model of Section 3.3.4 and consis-
tent with our Conjecture 3.1′. Note that this actually suggests that the
required bond dimension of SEBD may be even smaller than poly(1/ε),
scaling like D = 2Θ(

√
log(1/ε)).

While these numerical results may be surprising given the prevalence of
average-case hardness conjectures for quantum simulation, they are not sur-
prising from the perspective of the recent works (discussed in previous sections)
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that find strong evidence for an entanglement phase transition from an area-
law to volume-law phase for 1D unitary-and-measurement processes driven by
measurement strengths. Since the effective dynamics of the 2D random shal-
low circuits we study are exactly such processes, our numerics simply point out
that these systems are likely on the area-law side of the transition. (However,
no formal universality theorems are known, so the various models of unitary-
and-measurement circuits that have been studied are generally not known to
be equivalent to each other.) In the case of the brickwork architecture, we
are also able to provide independent analytical evidence (Section 3.6.6) that
this is the case by showing the “quasi-entropy” S̃2 for the 1D process is in
the area-law phase. We leave the problem of numerically studying the precise
relationship between circuit depth, qudit dimension, properties of the associ-
ated stat mech models (including “quasi-entropies”) as discussed in subsequent
sections, and the performance of SEBD for future work. In particular, simula-
tions of larger depth and larger qudit local dimension could be used to provide
numerical support for Conjecture 3.2, which claims that as these parameters
are increased the circuit architectures eventually transition to a regime where
our algorithms are no longer efficient.

3.6 Analytical evidence for conjectures from statistical mechanics
3.6.1 Overview

In the previous section, we provided strong numerical evidence that SEBD
is efficient when acting on certain sufficiently shallow architectures. Here we
provide complementary, analytical evidence that bolsters the case for SEBD’s
(and, in Appendix 3.C, Patching’s) efficiency. Our method is based on the
technique described in Chapter 2 and developed in Refs. [36, 37, 41, 42, 44, 45],
which maps random quantum circuits to classical statistical mechanical sys-
tems. We describe how the method can be applied generally to different 2D ar-
chitectures, but we give special attention to the depth-3 brickwork architecture
because it is a worst-case-hard uniform architecture which is simple enough
for concrete conclusions to be drawn that act as evidence that the algorithms
are efficient. The stat mech method also provides evidence of computational
phase transitions as qudit dimension and circuit depth are increased.

The map produces a classical stat mech model for which the entangle-
ment properties of the underlying random circuits are related to thermody-
namic properties of the model. In particular, we examine a quantity we call
the “quasi-k entanglement entropy,” denoted S̃k, to quantify the entanglement
of the 1D state “tracked” by SEBD at any given point in time throughout the
effective 1D dynamics; the mapping relates S̃k to the free energy cost incurred
by twisting boundary conditions of the stat mech system. The quasi-k entropy
is related but not exactly equal to the Rényi-k entanglement entropy averaged
over random circuit instances and measurement outcomes, denoted by 〈Sk〉.
Ideally, we would find rigorous bounds on 〈Sk〉 (for 0 < k < 1) for these states
throughout the effective 1D dynamics to show that SEBD is efficient. We study
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the quasi-entropies S̃k instead because the stat mech mapping permits for an
analytical handle on S̃k for integer k ≥ 2, and the calculations become es-
pecially tractable for k = 2. Changing the qudit dimension q of the random
circuit model corresponds to changing the interaction strengths in the associ-
ated stat mech model, which drives a phase transition. This phase transition
in the classical stat mech model is accompanied by phase transitions in quasi-
entropies. Even though the efficiency of our algorithms is related to different
entropic quantities, which are hard to directly analyze, the phase transition in
quasi-entropies provides analytical evidence in favor of our conjectures.

In the remaining subsections, we define the quasi-entropy, briefly restate
the details of the stat mech map discussed in Chapter 2, apply the map gener-
ally to 2D circuits to reason heuristically about order-disorder behavior, and
finally conclude by applying it more rigorously to the depth-3 brickwork ar-
chitecture, where we observe a q-driven order-disorder phase transition in the
corresponding stat mech model.

3.6.2 Quasi-entropy
Given an ensemble of pure quantum states, the quasi-entropy is a quantity

that is related to the expected amount of entanglement in the state. In our
case, the ensemble is generated by a random quantum circuit followed by a
projective measurement on some subset of the qudits, and the quasi-entropy
is computed as follows.

Suppose we fix a random quantum circuit instance U drawn according
to some specified architecture, as well as a known outcome x for a projective
measurement performed on some subset B ⊂ [n] of the output qudits. Let
ρ = ΠxU |0n〉〈0n|U †Πx be the pure output state associated with the instance
and measurement outcome, where Πx is the projection of the bits in region
B onto the measurement outcome x, and note that the normalization tr(ρ) is
equal to the probability of obtaining the outcome x. Then for any k ≥ 0 and
for some subregion A of the unmeasured qudits [n] \B, we define

Zk,∅ = tr(ρ)k (3.17)
Zk,A = tr

(
ρkA
)
, (3.18)

where ρA is the reduced density matrix of ρ on A. Letting EU denote expec-
tation over choice of instance U and uniformly random measurement outcome
x, the quasi-k entropy S̃k(A) for the random circuit ensemble is defined as

S̃k(A) =
1

1− k
log

EU(tr(ρ)k
Zk,A
Zk,∅

)

EU(tr(ρ)k)

 (3.19)

=
1

1− k
log

(
EU(Zk,A)

EU(Zk,∅)

)
(3.20)

=
Fk,∅ − Fk,A

1− k
, (3.21)
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where Fk,X = − log(EU(Zk,X)) for X ∈ {∅, A} will be associated with the “free
energy” of the classical stat mech model that the circuit maps to. Virtually
identical quantities were also considered in two other recent works [44, 45].

Note the similarity of the above expression to the average Rényi-k entan-
glement entropy, given by

〈Sk(A)ρ〉 =
EU(tr(ρ)Sk(A)ρ)

EU(tr(ρ))
(3.22)

=
1

1− k

EU
(

tr(ρ) log
Zk,A
Zk,∅

)
EU(tr(ρ))

. (3.23)

Indeed, the two formulas are the same, except that the quasi-entropy weights
instances by tr(ρ)k instead of tr(ρ), and takes the logarithm after taking the
expectation.

Also note that in the limit k → 1, both S̃k and 〈Sk〉 approach the expected
von Neumann entropy, which is defined by the following expression:

〈S(A)〉 = −E
U

(
tr

(
ρA

tr(ρ)
log

(
ρA

tr(ρ)

)))
. (3.24)

This observation lends some justification to the use of S̃k as a proxy for 〈Sk〉
even when k 6= 1. This is further justified by previous work studying random
1D circuits without measurements; in Ref. [42], the growth rate of S̃2 in random
1D circuits was calculated using the stat mech mapping and no significant
difference was found with numerical calculations of 〈S2〉. Moreover, Ref. [36]
used the replica trick to directly compute 〈S2〉 as a series in powers of 1/q,
where q is the qudit local dimension, and found that the leading term of this
expansion agrees with S̃2, indicating that S̃2 is a valid substitute for 〈S2〉 in
the q →∞ limit and suggesting it is a good approximation when q is finite.

3.6.3 Stat mech method for the quasi-entropy
For an introduction to the stat mech method for random quantum circuits,

we refer the reader back to Chapter 2. There we described how to map kth
moment random circuit quantities to partition functions of stat mech systems
where particles take on one of k! values, labeled by some element ν ∈ Sk
with Sk denoting the symmetric group. In our case, we would like to compute
EU(Zk,∅) and EU(Zk,A), which are kth moment quantities since they are linear
in U⊗k ⊗ U∗⊗k.

Specifically, for Zk,∅, we may rewrite Eq. (3.17) as

Zk,∅ =
∑

~i∈[q]kn

〈~i|(ΠxU |0n〉)⊗k(〈0n|U †Πx)⊗k|~i〉 (3.25)

=
∑

~i∈[q]kn

〈~i,~i|Π⊗2k
x U⊗k ⊗ U∗⊗k|0n〉⊗2k (3.26)

= 〈e|⊗nΠ⊗2k
x U⊗k ⊗ U∗⊗k|0n〉⊗2k , (3.27)
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where e labels the identity permutation and |e〉 =
∑q−1

i1,...,ik=0 |i1, . . . , ik〉 ⊗
|i1, . . . , ik〉 follows Eq. (2.14).

For Zk,A, we use the identity tr
(
ρkA
)

= tr
(
ρ⊗kW

(A)
(1...k)

)
, whereW (A)

(1...k) is the
operator acting on a k-fold tensor product of the n-qubit system that performs
the permutation (123 . . . k) (written in cycle notation) on the k copies of region
A, and acts as identity on the copies of region [n] \ A. We arrive at

Zk,A =
∑

~i∈[q]kn

〈~i|(ΠxU |0n〉)⊗k(〈0n|U †Πx)⊗kW
(A)
(1...k)|~i〉 (3.28)

=
∑

~i∈[q]kn

〈~i,~i|(I⊗nk ⊗W (A)
(k...1))Π

⊗2k
x U⊗k ⊗ U∗⊗k|0n〉⊗2k (3.29)

=

(⊗
a∈A

〈(1 . . . k)|a
⊗
c6∈A

〈e|c

)
Π⊗2k

x U⊗k ⊗ U∗⊗k|0n〉⊗2k , (3.30)

where |(1 . . . k)〉 denotes the state
∑q−1

i1,...,ik=0 |i1, i2, . . . , ik〉⊗|ik, i1, i2, . . . , ik−1〉,
following Eq. (2.14).

In Chapter 2, we explained how to map the quantity EU [U⊗k ⊗ U∗⊗k] to
a partition function of a classical stat mech system, described by Eq. (2.13).
Namely, each gate (labeled by integer u) in the circuit diagram gets mapped
to two particles, an “incoming” and “outgoing” particle, which can be in one
of k! internal states labeled by permutations τu and σu, respectively. There
are interactions between the incoming and outgoing particles originating from
the same gate t (denoted by the edge 〈t〉), and between outgoing particles
of one gate u and incoming particles of a subsequent gate v, when v acts
immediately after u on one of the same qubits (denoted by the edge 〈uv〉).
These interactions are associated with a weight factor

weight〈t〉(σ, τ) =Wg(τtσ
−1
t , q2) , (3.31)

where Wg is the Weingarten function, and

weight〈uv〉(σ, τ) = qC(σuτ
−1
v ) , (3.32)

where C(π) returns the number of cycles in the permutation π.

This describes the bulk interactions of the stat mech system. The bound-
ary conditions we impose for the quasi-entropy calculation can be determined
from Eqs. (3.27) and (3.30). In both cases, the input state is |0n〉⊗2k. If gate
u is the first gate to act on some qudit a, then the quantities EU(Zk,∅) and
EU(Zk,A) will pick up a factor of 〈τu|

(
|0〉⊗2k

)
= 1, independent of τu. Thus,

we have open boundary conditions at the input of the circuit.

Boundary conditions at the end of the circuit are more complex. Sup-
pose gate u is the last gate to act on some qudit a. If a ∈ B, then a is
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measured at the end of the circuit, and EU(Zk,∅) and EU(Zk,A) pick up fac-
tors of 〈e|Π⊗2k

xa |σu〉 = 1; hence there are open boundary conditions for region
B. If a ∈ [n] \ (A ∪ B), then EU(Zk,∅) and EU(Zk,A) both pick up a factor
of 〈e|σu〉 = qC(σu). If a ∈ A, then EU(Zk,∅) picks up the same factor, but
EU(Zk,A) picks up the factor 〈(1 . . . k)|σu〉 = qC((1...k)◦σ−1

u ) instead. Note that
these formulas mirror the right-hand-side of Eq. (3.32). Thus, this boundary
condition is equivalent to introducing a new auxiliary particle with internal
state χa′ for each qudit a′ 6∈ B (the prime is used to indicate that it is an
auxiliary particle), and adding an interaction 〈ua′〉 between the new particle
and the outgoing node for the final gate u to act on the particle. The weight
for this interaction is given by

weight〈ua′〉(σ, τ) = qC(σuχ
−1
a′ ) . (3.33)

The set of χ values is not an explicit argument of the weight function as these
values should be regarded as fixed; the partition function only sums over the
possible internal states τu and σu of incoming and outgoing particles. For the
calculation of EU(Zk,X) for X ∈ {∅, A}, the internal state χa′ of the auxiliary
particles is fixed to be the identity e if a′ 6∈ X, and fixed to be the k-cycle
(1 . . . k) if a′ ∈ X. The entire map can then be expressed by the equation

E[Zk,X ] =
∑
σ,τ

∏
u

weight〈u〉(σ, τ)
∏
〈uv〉

weight〈uv〉(σ, τ)
∏
〈ua′〉

weight〈ua′〉(σ, τ) ,

(3.34)
where the right-hand-side depends on X only through the setting of the inter-
nal states of the auxiliary particles. This is a partition function—a weighted
sum over spin configurations where the weight of each term is given by a
product of factors that depend only on the spin values of a pair of particles
connected by an edge in the interaction graph. We define the free energy to
be the negative logarithm of this partition function (see Eq. (3.21)), mirroring
the standard relationship F = −kBT log(Z) between the free energy and the
partition function from statistical mechanics, with kBT set to 1. The only dif-
ference between EU(Zk,∅) and EU(Zk,A) is that in the latter case, the boundary
condition at the output of the circuit is “twisted” from e to (1 . . . k) only in
the region A, and thus S̃k(A) measures the free energy cost of this twist.

We provide an example of the interaction graph for the stat mech system
that includes the auxiliary nodes in Figure 3.6.

3.6.4 Special case of k = 2

When k = 2, the symmetric group Sk has only 2 elements, identity (de-
noted by I ≡ e) and swap (which we denote by by S ≡ (12)), so the quantities
EU(Z2,∅) and EU(Z2,A) map to partition functions of Ising-like classical stat
mech models where each node takes on one of two values. Furthermore, as
discussed in Chapter 2, in the k = 2 case with no measurements, it was shown
in Refs. [41, 42] (see also Refs. [36, 37]) that one can get rid of all negative
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Figure 3.6: Example of stat mech mapping applied to a circuit diagram with
4 qudits and 5 Haar-random gates. Blue nodes are incoming nodes, red nodes
are outgoing nodes, and purple nodes are auxiliary nodes. Zigzag edges carry
Weingarten weight. Straight carry weight equal to qC where C is the number
of cycles in the product of the two adjacent permutations.

terms in the partition function by decimating half of the nodes, i.e. explicitly
performing the sum over the values of the incoming nodes τ in Eq. (3.34).
This continues to be true even when there are measurements in between uni-
taries in the circuit, as discussed in the appendices. However, the decimation
causes the two-body interactions to become three-body interactions between
any three outgoing particles in internal states σu1 , σu2 , σu3 when unitary u3

succeeds unitaries u1 and u2 and shares a qudit with each. The lack of negative
weights for k = 2 is convenient because it allows one to view the system as a
classical spin model at a real temperature and can therefore be analyzed with
well-studied numerical techniques like Monte Carlo sampling.

3.6.5 Mapping applied to general 2D circuits
We now apply the mapping directly to a depth-d circuit acting on a

√
n×√

n lattice of qudits consisting of nearest-neighbor two-qudit Haar-random
gates. This is the relevant case for the algorithms presented in this paper.
In this section, we will assume for concreteness that the first unitary layer
includes gates that act on qudits at gridpoints (i, j) and (i, j + 1) for all odd
i and all j, the second layer on (i, j) and (i, j + 1) for all even i and all j, the
third layer on (i, j) and (i + 1, j) for all i and all odd j, and the fourth layer
on (i, j) and (i + 1, j) for all i and all even j. Subsequent layers then cycle
through these four orientations.

The classical stat mech model

Replacing the unitaries in the circuit diagram with pairs of nodes and connect-
ing them as described previously yields a graph embedded in three dimensions.
The nodes in this graph still have degree three, so locally the graph looks sim-
ilar to the honeycomb lattice (the lattice that arises from a 1+1D circuit as
discussed in Refs. [37, 41, 44, 45] and in the appendix), but globally the nodes
form a 3D lattice that can be viewed roughly as a

√
n×
√
n×d slab, although



72

the details of how these nodes connect is not straightforward to visualize. We
have included pictures of the graph in Figure 3.7.

(a) Depth-4 circuit on 4× 4 lattice

(b) Depth-5 circuit on 28× 28 lattice

Figure 3.7: The graph produced by the stat mech mapping on shallow 2D
circuits. (a) A close up view of the graph reveals that the degree of most nodes
is three, similar to the honeycomb lattice. (b) A far-away view reveals that
globally the graph looks like a two-dimensional slab of thickness roughly d.

Recall that edges between nodes originating from the same unitary are
assigned a weight equal to the Weingarten function and edges between suc-
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cessive unitaries follow the interaction weight〈uv〉(σ, τ) = qC(σuτ
−1
v ). For k = 2

this amounts to a ferromagnetic Ising interaction where

weight〈uv〉(σ, τ) =

{
q2 if σuτv = I

q if σuτv = S .
(3.35)

To analyze the output state, we will divide the n qudits into three groups
A, B, and C. We suppose that after the d unitary layers have been performed,
a projective measurement is performed on the qudits in region B. Qudits in
regions A and C are left unmeasured and we wish to calculate quantities like
EU(Zk,∅) and EU(Zk,A). The mapping calls for us to introduce an auxiliary
node for each unmeasured qudit in the circuit, i.e. an auxiliary node for qudits
in regions A and C. For EU(Zk,∅) all of the auxiliary nodes are set to identity
e, while for EU(Zk,A), the auxiliary nodes for region A are set to the k-cycle
(1 . . . k).

Eliminating negative weights via decimation when k = 2

The quantities EU(Zk,∅) and EU(Zk,A) are now given by classical partition
functions on this graph with appropriate boundary conditions for the auxil-
iary nodes in regions A and C. We wish to understand whether this stat mech
model is ordered or disordered. We are faced with the issue that the Wein-
garten function can take negative values and thus some configurations over
this graph could have negative weight. For k = 2, as previously discussed, we
can rectify this by decimating all the incoming nodes. The resulting graph has
half as many nodes and interactions between groups of three adjacent outgoing
particles associated with gates u1, u2, and u3, whenever unitary u3 acts after
u1 and u2. There is a simple formula for the weights:

weight〈u1u2u3〉(σ) =


1 if σu1 = σu2 = σu3

1
q+q−1 if σu2 6= σu3

0 if σu1 6= σu2 = σu3 .

(3.36)

Now, all the weights are non-negative. Moreover, the largest weight oc-
curs when all the nodes agree, indicating a generally ferromagnetic interaction
between the trio of nodes. If either σu1 or σu2 disagrees with the other two
values, the weight is reduced by a factor of q + q−1. When σu3 disagrees, the
weight is 0; these configurations are forbidden and contribute nothing to the
partition function.

Given an assignment of I or S to each node σu, we can associate a pattern
of domain walls, that is, a set of edges connecting nodes with disagreeing
values. These domain walls partition the 2D slab into contiguous domains of
adjacent nodes all given the same value.
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Allowed domain wall configurations and disorder-order phase
transitions

Using this observation, we can understand the kinds of domain wall structures
that will appear in configurations that contribute non-zero weight. Recall that
the stat mech model occupies a 2D slab of constant thickness in the direction
of time, which we orient vertically. In this setting, domain wall structures
are membrane-like since the graph is embedded in 3D. Membranes that have
upward curvature, shaped like a bowl, are not allowed, because somewhere
there would need to be an interaction where the upper node disagrees with
the two below it, a situation that leads to 0 weight as in Eq. (3.36). On the
other hand, cylindrically shaped domain wall membranes do not have this is-
sue, nor do dome-shaped membranes with downward curvature. These three
cases are illustrated in Figure 3.8. The weight of a configuration is reduced

Figure 3.8: Cartoon depiction of forbidden and allowed domain wall structures
in the stat mech model for a shallow 2D circuit. Time is oriented vertically.
For a particular spin configuration, domain walls mark the boundary between
regions assigned e and regions assigned (12), forming a membrane. If this
membrane has upward curvature, it is forbidden (contributes 0 weight to the
partition function), whereas if it does not have upward curvature, it is allowed.
For allowed configurations, the contribution decreases exponentially in the
total domain wall area.

by a factor of q + q−1 for each unit of domain wall, an effect that acts to
minimize the domain wall size when drawing samples from the thermal distri-
bution (energy minimization). On the other hand, larger domain walls have
more configurational entropy—there are many ways to cut through the graph
with a cylindrically shaped membrane—an effect that acts to bring out more
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domain walls in samples from the thermal distribution (entropy maximiza-
tion). The question is, which of these effects dominates? For a certain setting
of the depth d (slab thickness) and local dimension q, is there long-range
order, or is there exponential decay of correlations indicating disorder? Gen-
erally speaking, increasing depth magnifies both effects: cylindrical domain
wall membranes must be longer—meaning larger energy—when the depth is
larger; however, longer cylinders also have more ways of propagating through
the graph. Meanwhile, increasing q only magnifies the energetic effect since it
increases the interaction strength and thus the energy cost of a domain wall
unit but leaves the configurational entropy unchanged.

Thus, in the limit of large q we expect the energetic effect to win out and
the system to be ordered for any fixed circuit depth d and any circuit architec-
ture. What about small q? Physically speaking, q must be an integer at least
2 since it represents the local Hilbert space dimension of the qudit. However,
the statistical mechanical model itself requires no such restriction, and we can
allow q to vary continuously in the region [1,∞). Then for q → 1, the energy
cost of one unit of domain wall becomes minimal (but it does not vanish).
Depending on the exact circuit architecture and the depth of the circuit, the
system may experience a phase transition into the disordered phase once q
falls below some critical threshold qc. The depth-3 circuit with brickwork ar-
chitecture that we present later in Section 3.6.6 provides an example of such a
transition. It is disordered when q = 2 and experiences a phase transition as q
increases to the ordered phase at a transition point we estimate to be roughly
qc ≈ 6.

When q is fixed and d is varied, it is less clear what to expect. Suppose
for small d, the system is disordered. Then increasing d will amplify both
the energetic and entropic effects, but likely not in equal proportions. If the
amplification of the energetic effect is stronger with increasing depth, then
we expect to transition from the disordered phase to the ordered phase at
some critical value of the depth dc. Without a better handle on the behavior
of the stat mech model, we cannot definitively determine if and when this
depth-driven phase transition will happen.

However, we have other reasons to believe that there should be a depth-
driven phase transition. In particular, we now provide an intuitive argument
for why a disorder-order transition in the parameter q should imply a disorder-
order transition in the parameter d. Consider fixed d, and another fixed integer
r ≥ 1 such that d/r � 1. We may group together r × r patches of qudits to
form a “supersite” with local dimension qr

2 . Similarly, we may consider a
“superlayer” of O(r) consecutive unitary layers. Since O(r) layers is sufficient
to implement an approximate unitary k-design on a r × r patch of qudits
(taking k = O(1)) [86], we intuitively take each superlayer to implement a
Haar-random unitary between pairs of neighboring supersites. Thus, a depth-
d circuit acting on qudits of local dimension q is roughly equivalent to a depth-
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O(d/r) circuit acting on qudits of local dimension qr2 in the supersite picture.
If for a fixed d, we observe a disorder-order phase transition for increasing q,
then for fixed q and fixed d/r, we should also observe a disorder-order phase
transition with increasing r. Equivalently, we should see a transition for fixed
q and increasing d. This logic is not perfect because superlayers do not exactly
map to layers of Haar-random two-qudit gates between neighboring supersites,
but nonetheless we take it as reason to expect a depth-driven phase transition.

Efficiency of SEBD algorithm from stat mech

The efficiency of the SEBD algorithm relies on the error incurred during the
MPS compression being small. If the inverse error has a polynomial relation-
ship (or better) with the bond dimension of truncation, then the algorithm’s
time complexity is polynomial (or better) in the inverse error and the number
of qudits. This will be the case if the MPS prior to truncation satisfies an area
law for the Rényi-k entropy for some 0 < k < 1. The stat mech mapping is
unable to probe these values of k. However, we hypothesize that the behavior
of larger values of k is indicative of the behavior for k < 1 since the exam-
ples where the Rényi-k entropy with k ≥ 1 satisfies an area law but efficient
MPS truncation is not possible require contrived spectrums of Schmidt coeffi-
cients. Although some physical processes give rise to situations where the von
Neumann and Rényi-k entropies with k > 1 exhibit different behavior (see
e.g. [116], which showed that for random 1D circuits without measurements
but with the unitaries chosen to commute with some conserved quantity, after
time t the entropy is O(t) for k = 1 but O(

√
t log t) for k > 1), the numerical

evidence we gave in Section 3.5, where the scaling of all the Rényi-k entropies
appears to be the same, suggests our case is not one of these situations.

Previously, we discussed how for 1D circuits with alternating unitary and
weak measurement dynamics, there has been substantial numerical evidence
in prior literature for a phase transition from an area-law phase to a volume-
law phase as the parameters of the circuit are changed. There has also been
analytical work [44, 45] on this model using the stat mech mapping (and in
Appendix 3.A, we use a similar approach to analyze 1D circuits with a different
form of weak measurement, inspired by the CHR problem discussed earlier, and
show there is a q-driven phase transition from a disordered phase to an ordered
phase).

The SEBD algorithm simulating a 2D circuit of constant depth made
from Haar-random gates may be viewed as a system with very similar
dynamics—an alternation between entanglement-creating unitary gates and
entanglement-destroying weak measurements. However, none of the unitary-
and-measurement models that have been previously studied capture the exact
dynamics of SEBD, one reason being that SEBD tracks the evolution of several
columns of qudits at once (recall it must include all qudits within the lightcone
of the first column). The Haar-random unitaries create entanglement within



77

these columns of qudits, but not in the exact way that entanglement is created
by Haar-random nearest-neighbor gates acting on a single column. Nonethe-
less, we expect the story to be the same for the dynamics of SEBD since the
main findings of studies of these unitary-and-measurement models have been
quite robust to variations in which unitary ensembles and which measurements
are being implemented; we expect that varying parameters of the circuit ar-
chitecture like q and d can lead to entanglement phase transitions, and thus
transitions in computational complexity.

Indeed, the discussion from the previous section suggests precisely this
fact. When we apply the stat mech mapping directly to 2D circuits instead
of to 1D unitary-and-measurement models, we expect disorder-order phase
transitions as both q and d are varied. To make the connection to entanglement
entropy explicit here, we note that after t steps of the SEBD algorithm, all

√
n

qudits in the first t columns of the
√
n ×
√
n lattice have been measured,

and we have an MPS representation of the state on columns t + 1 through
t+ r, where r = O(d) is the radius of the lightcone (which depends on circuit
architecture, but cannot be larger than d). To calculate the entropy of the
MPS, we take the region A to be the top half of these r columns, and region
C to be the bottom half. Region B consists of the first t columns, which
experience projective measurements. The prescription for computing S̃2(A)
calls for determining the free energy cost of twisting the boundary conditions
in region A, which creates a domain wall along the A : C border. If the bulk
is in the ordered phase, then this domain wall membrane originating at the
A : C boundary will penetrate through the graph a distance of t, leading to
a domain wall area of O(td). If the bulk is in the disordered phase, it will
only penetrate a constant distance, on the order of the correlation length ξ
of the disordered stat mech model, before being washed out by the disorder,
leading to a domain wall area of only O(ξd). This is the key observation that
connects order-disorder to the quasi-entropy; the observation is inspired by a
similar transition for random tensor networks (as opposed to random quantum
circuits), studied in [39]. The typical domain wall configurations before and
after twisting boundary conditions in the ordered and disordered phases is
reflected in the cartoon in Figure 3.9. As elaborated upon in Appendix 3.A,
we expect there to be a correspondence between the scaling of the domain wall
size and the free energy cost after twisting the boundary conditions of the stat
mech model.

This implies that the quasi-entropy S̃2 is in the area (resp. volume) law
phase when the classical stat mech model is in the disordered (resp. ordered)
phase. Heuristically we might expect the runtime of the SEBD algorithm to
scale like poly(n) exp

(
O(S̃2)

)
, suggesting that the disorder-to-order transition

is accompanied by an efficient-to-inefficient transition in the complexity of the
SEBD algorithm. Furthermore, near the transition point within the volume-law
phase, the quasi-entropy scales linearly with system size but with a small con-
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(a) Ordered phase

(b) Disordered phase

Figure 3.9: The stat mech mapping yields nodes arranged within a roughly√
n×t×d prism. (a) In the ordered phase, twisting the boundary conditions at

the right boundary introduces a domain wall between the two phases (indicated
by red and blue) that propagates through the bulk for a total area of O(td). (b)
In the disordered phase, boundary conditions introduce bias that is noticeable
only within a constant O(ξ) distance of the boundary, and the domain wall
membrane introduced by twisting the boundary conditions is quickly washed
out by the bulk disorder (dotted purple). The total area is O(ξd).

stant prefactor, suggesting that the SEBD runtime, though exponential, could
be considerably better than previously known exponential-time techniques.

3.6.6 Depth-3 2D circuits with brickwork architecture
Now, we turn our attention specifically to the depth-3 brickwork archi-

tecture that we also numerically simulated. In this architecture, three layers
of two-qudit gates are performed on a 2D lattice of qudits as shown in Fig-
ure 3.10(a). Note that this architecture was also introduced in Section 3.4; the
architecture we consider here is exactly the “extended brickwork architecture”
of that section with the extension parameter r fixed to be one.

As previously discussed in Section 3.4, this structure is known to be uni-
versal in the sense that one may simulate any quantum circuit using a brick-
work circuit (with polynomial overhead in the number of qudits) by judiciously
choosing which two-qudit gates to perform and performing adaptive measure-
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(a) (b)

Figure 3.10: Stat mech map for brickwork architecture. (a) The circuit di-
agram for the brickwork architecture. Qudits lie at location of black dots.
Three layers of two-qudit gates act between nearest-neighbor qudits—first qu-
dits linked by a vertical red edge, then vertical green, then horizontal blue. In
our SEBD simulation of this circuit architecture, we sweep from left to right. (b)
Result of stat mech mapping applied to brickwork architecture depicted in (a).
Nodes are implied to lie at the endpoints of each edge. Red, green, and blue
edges carry Weingarten weight, where the color indicates which gate from (a) it
originated from. Black edges carry weight given by weight〈uv〉(σ, τ) = qC(σuτ

−1
v ).

ments [108]. Thus, it is hard to exactly sample or compute the output prob-
abilities of brickwork circuits in the worst case assuming that the polynomial
hierarchy does not collapse, and we expect neither the SEBD algorithm nor
the Patching algorithm to be efficient. However, we now give evidence that
these algorithms are efficient in the “average-case,” where each two-qudit gate
is Haar random, by considering the order/disorder properties of the stat mech
model that the brickwork architecture maps to.

Stat mech mapping for general k

The stat mech mapping proceeds as previously discussed for 2D circuits, but
we will see that the brickwork architecture allows us to make some important
simplifications. Each gate in the circuit is replaced by a pair of nodes, which are
connected with an edge. Then, the outgoing nodes of the first (red) layer are
connected to the incoming nodes of the second (green) layer, and the outgoing
nodes of the second (green) layer are connected to the incoming nodes of the
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third (blue) layer. The resulting graph is shown in Figure 3.10(b). Edges
connecting incoming and outgoing nodes of the same layer are shown in color
(red, green, blue) and carry weight equal to the Weingarten function. Edges
connecting subsequent layers are black. These edges carry weight given by
weight〈uv〉(σ, τ) = qC(σuτ

−1
v ).

To perform the full mapping, we would also add a layer of auxiliary nodes
for any unmeasured qudits and connect them to the third layer. However,
we are interested primarily in the bulk order-disorder properties of the sytem
and suppose that all the qudits, except perhaps those at the boundary of the
2D system, will be measured after the third layer, so we need not consider
auxiliary nodes.

Looking at Figure 3.10(b), we see that some of the nodes have degree 1
and connect to the rest of the graph via a (red or blue) Weingarten link. We
can immediately decimate these nodes from the graph. For any τ , we have
[35] ∑

σ∈Sk

Wg(τσ−1, q2) =
∑
σ∈Sk

Wg(σ, q2) =
(q2 − 1)!

(k + q2 − 1)!
(3.37)

which is independent of τ , so decimating these spins merely contributes the
above constant to the total weight. This constant will appear in both the
numerator and denominator of quantities like EU(Zk,A)/EU(Zk,∅), and we ig-
nore them henceforth. The remaining graph can be straightened out, yielding
Figure 3.11(a). The fact that Figure 3.11(a) is a graph embedded in a plane
that includes only two-body interactions is one upshot of studying the brick-
work architecture, as it makes the analysis more straightforward and the stat
mech model easier to visualize. This property and the fact that the brickwork
architecture is universal for MBQC constitute the primary reasons we studied
this architecture in the first place. Architectures with larger depth would lead
to stat mech models that cannot be straightforwardly collapsed onto a single
plane while maintaining the two-body nature of the interactions.

Simplifications when k = 2

As in previous examples, we examine the k = 2 case. In this case we might
as well decimate all the degree-2 nodes in the graph in Figure 3.11(a). This
yields a graph with entirely degree-3 nodes, as shown in Figure 3.11(b). The
graph has two kinds of links, both carrying standard Ising interactions. The
vertical blue links have weights given by

weight〈uv〉(σ) =

{
q2(q2 + 1) if σuσv = e

q2(2q) if σuσv = (12) ,
(3.38)
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(a) (b)

Figure 3.11: Interaction graph for brickwork stat mech system after decima-
tion of some of the particles. (a) The graph that results from decimating
degree-1 nodes in Figure 3.10(b). Each thin black link carries weight equal
to the function qC(στ−1) while each thick green link carries weight equal to
Wg(στ−1, q2). (b) The graph that results from decimating nodes of the graph
in (a). For k = 2, both the horizontal light green and the vertical blue links
are ferromagnetic, but have different strengths.

while the horizontal light green links have weights given by

weight〈uv〉(σ) =

{
1

q2(q4−1)2 (q6 + q4 − 4q3 + q2 + 1) if σuσv = e
1

q2(q4−1)2 (2q5 − 2q4 − 2q2 + 2q) if σuσv = (12) .
(3.39)

Both of these interactions are ferromagnetic and become stronger as q in-
creases. We may think of the model as the square lattice Ising model for
which 1/2 of the links carry a ferromagnetic interaction of one strength, 1/4
of the links carry ferromagnetic interactions of another strength, and the fi-
nal 1/4 of the links have no interaction at all. The energy functional can be
written

E/(kT ) = −Jvert
∑
〈ij〉

sisj − Jhoriz
∑
〈ij〉

sisj , (3.40)

where si take on values in {+1,−1}. For q = 2 we have Jvert = log(5/4)/2 =
0.112 and Jhoriz = log(53/28)/2 = 0.319. Both of these values are weaker
than the critical interaction strength for the square lattice Ising model of
Jsquare = log

(
1 +
√

2
)
/2 = 0.441. This indicates that the graph generated by

the stat mech mapping on 2D circuits of depth 3 with brickwork architecture
is in the disordered phase when q = 2. This remains true for q = 3. For q = 4,
Jhoriz = 0.500 > Jsquare, but Jvert = 0.377 < Jsquare. Recall that 1/4 of the
links can be thought to have J = 0 since they are missing. Taking this into
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account, the value of J averaged over all the links remains below Jsquare for
q = 5, and slightly exceeds it for q = 6.

This indicates that when we run SEBD on these uniform depth-3 circuits
with Haar-random gates, the quasi-entropy satisfies S̃2 = O(1) (independent
of the number of qudits n) when q = 2 or q = 3 (and probably also for q = 4
and q = 5). We take this as evidence that SEBD would be efficient for these
circuits.

3.7 Future work and open questions
Our work yields several natural follow-up questions and places for poten-

tial future work. We list some here.

1. Can ideas from our work also be used to simulate noisy 2D quantum cir-
cuits? Roughly, we expect that increasing noise in the circuit corresponds
to decreasing the interaction strength in the corresponding stat mech
model, pushing the model closer toward the disordered phase, which is
(heuristically) associated with efficiency of our algorithms. We therefore
suspect that if noise is incorporated, there will be a three-dimensional
phase diagram depending on circuit depth, qudit dimension, and noise
strength. As the noise is increased, our algorithms may therefore be able
to simulate larger depths and qudit dimensions than in the noiseless case.

2. Can one approximately simulate random 2D circuits of arbitrary depth?
This is the relevant case for Google’s quantum computational supremacy
experiment [6]. Assuming Conjecture 3.2, our algorithms are not efficient
once the depth exceeds some constant, but it is not clear if this difference
in apparent complexity for shallow vs. deep circuits is simply an artifact
of our simulation method, or if it is inherent to the problem itself.

3. Our algorithms are well defined for all 2D circuits, not only random 2D
circuits. Are they also efficient for other kinds of unitary evolution at
shallow depths, for example evolution by a fixed local 2D Hamiltonian
for a short amount of time?

4. Can we rigorously prove Conjecture 3.1? One way to make progress
on this goal would be to find a worst-case-hard uniform circuit family
for which it would be possible to perform the analytic continuation of
quasi-entropies S̃k in the k → 1 limit using the mapping to stat mech
models.

5. Can we give numerical evidence for Conjecture 3.2, which claims that our
algorithms undergo computational phase transitions? This would require
numerically simulating our algorithms for circuit families with increasing
local Hilbert space dimension and increasing depth and finding evidence
that the algorithms eventually become inefficient.
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6. How precisely does the stat mech mapping inform the efficiency of our
algorithms? Is the correlation length of the stat mech model associ-
ated with the runtime of our simulation algorithms? How well does the
phase transition point in the stat mech model (and accompanying phase
transition in quasi-entropies) predict the computational phase transition
point in the simulation algorithms? If such questions are answered, it
may be possible to predict the efficiency and runtime of the simulation
algorithms for an arbitrary (and possibly noisy) random circuit distri-
bution via Monte Carlo studies of the associated stat mech model. In
this way, the performance of the algorithms could be studied even when
direct numerical simulation is not feasible.

7. In the regime where SEBD is inefficient, i.e., when the effective 1D dy-
namics it simulates are on the volume-law side of the entanglement phase
transition, is SEBD still better than previously known exponential-time
methods? Intuitively, we expect this to be the case close to the transition
point.

8. Can SEBD and/or Patching be generalized to simulate shallow circuits
in three or higher dimensions? For SEBD the natural approach would
be to use a PEPS (higher dimensional generalization of MPS) and sim-
ulate action of unitary gates and measurements, but PEPS cannot be
efficiently contracted or truncated exactly in the same way as MPS.
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APPENDIX TO CHAPTER 3

3.A Stat mech mapping for circuits with weak measurements
In Chapter 2, we described the stat mech map in general, and in Sec-

tion 3.6 we applied it to 2D circuits with projective measurements on some of
the qudits after the circuit. Here, we generalize the map to allow for weak mea-
surements during the circuit. Then, we apply this formalism to a model of 1D
random quantum circuits with weak measurements inspired by the CHR prob-
lem introduced in the main text. The problem of 1D circuits interspersed with
weak measurements was previously studied using this approach in Refs. [44, 45]
(however, we analyze a different weak measurement).

3.A.1 Setup and weak measurements
As before, we let our system consist of n qudits of local dimension q. The

circuits we consider are specified by a sequence of pairs of qudits (indicating
where unitary gates are applied) and single-qudit weak measurements; this
sequence can be assembled into a quantum circuit diagram. The single-qudit
measurements are each described by a setM of measurement operators along
with a probability distribution µ over the set M. These sets are normalized
such that tr

(
M †M

)
is constant for all M ∈ M and EM←µM †M = Iq where

here Iq denotes the q × q identity matrix (in other places in this thesis, Iq
has been denoted simply by I). Thus we have tr

(
M †M

)
= q for all M . The

introduction of a probability measure overM in our notation, which was also
used in [44], is not conventional, but it is equivalent to the standard formulation
and will be important for later definitions.

When a measurement is performed, if the state of the system at the time
of measurement is σ, the probability of measuring the outcome associated
with operator M is µ(M) tr

(
MσM †) (Born rule for quantum measurements).

For a fixed outcome M , the quantity tr
(
MσM †) is a function of σ that we

refer to as the relative likelihood of obtaining the outcome M on the state
σ, since it gives the ratio of the probability of obtaining outcome M in the
state σ to the probability of obtaining outcome M in the maximally mixed
state 1

q
Iq. After obtaining outcome M , the state is updated by the rule σ →

MσM †/ tr
(
MσM †). Thus a pure initial state remains pure throughout the

evolution. For notational convenience and without loss of generality, we will
assume that for each u, the uth unitary is immediately followed by single-
qudit measurements (Mu, µu) and (M′

u, µ
′
u) on the qudits au, a′u ∈ [n] that

are acted upon by the unitary, respectively; in the case no measurement is
performed, we may simply takeMu to consist solely of the identity operator,
and in the case that more than one measurement is performed, we may multiply
together the sets of measurement operators and their corresponding probability
distributions to form a single set describing the overall weak measurement.
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Thus, the (non-normalized) output state of the circuit with l unitaries
acting on the initial state |0 . . . 0〉 can be expressed as

ρ = E |0 . . . 0〉〈0 . . . 0|E† , (3.41)

with
E = (M ′

lMlUl) . . . (M
′
2M2U2)(M ′

1M1U1) , (3.42)

where each unitary Uu is chosen from the Haar measure over unitaries acting on
qudits au and a′u, while Mu and M ′

u are the measurement operators associated
with the measurement outcome obtained upon performing a measurement on
qudits au and a′u, respectively, following application of unitary Uu.

3.A.2 Generalized interaction weights
As in the main text, we are interested in studying the quasi-entropy S̃k,

where averages are taken over instance U as well as the outcomes of the weak
measurements during the circuit. Accordingly, we redefine the expectation
value of a quantity Q to be

E
U

(Q) = E
M1←µ1

E
M ′1←µ′1

. . . E
Ml←µ1

E
M ′l←µ

′
1

∫
U(q2)

dU1 . . .

∫
U(q2)

dUl Q , (3.43)

where
∫
U(q2)

denotes integration over the Haar measure of the unitary group
with dimension q2. As before, we would like to calculate

S̃k(A) =
1

1− k
log

EU(tr(ρ)k
Zk,A
Zk,∅

)

EU(tr(ρ)k)

 (3.44)

=
1

1− k
log

(
EU(Zk,A)

EU(Zk,∅)

)
(3.45)

=
Fk,∅ − Fk,A

1− k
. (3.46)

The mapping from the quantities EU(Zk,∅) and EU(Zk,A) to partition func-
tions proceeds identically to what was discussed in Chapter 2 and the main
text of this chapter—the interaction graph is exactly the same. The only dif-
ference is that the weight formula for edges 〈uv〉 between successive unitaries
needs to be updated due to the inclusion of a weak measurement in between
unitaries u and v.

Recall that the formula for the partition function comes about by perform-
ing Haar integration on each individual two-qudit unitary. Each two-qudit gate
in the circuit diagram is then mapped to a weighted sum over terms of the
form |σ〉⊗2〈τ |⊗2, which gives rise to the incoming and outgoing particles in
the stat mech system. Previously, the 〈uv〉 edge weights were given by 〈τv|σu〉
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which evaluates to Eq. (3.32). Now, if weak measurement (M, µ) acts between
gates u and v, this is modified to

weight〈uv〉(σ, τ) = E
M←µ
〈τv|(M ⊗M∗)⊗k|σu〉 = E

M←µ
tr
(
(M †M)⊗kWσuτ

−1
v

)
,

(3.47)
where Wπ is the operator that performs the permutation π on the k copies of
the system. A similar modification is made to the weights of edges connecting
to the auxiliary nodes.

weight〈ua′〉(σ, τ) = E
M←µ

tr
(

(M †M)⊗kWσuχ
−1
a′

)
, (3.48)

generalizing Eq. (3.33). Later, in Appendix 3.C, we will be interested in ex-
pressing entropies of the classical output distribution of the circuit in terms
of partition functions and to handle this case we will update Eq. (3.48). Note
that the quantity tr

(
X⊗kWπ

)
is equal for all π with the same cycle structure,

which corresponds to some partition λ = (λ1, . . . , λr) of k, where
∑

i λi = k
and λ1 ≥ . . . ≥ λr > 0. Then we have

tr
(
X⊗kWπ

)
=

r∏
i=1

tr
(
Xλi

)
. (3.49)

This formula allows us to simplify the weight formulas (3.47) and (3.48)
in a few special cases. If no measurement is made, then M = {I} and
weight〈uv〉(σ, τ) = qC(σuτ

−1
v ), where C(π) is the number of cycles r in the per-

mutation π, recovering the weight equations (3.32) and (3.33) from the main
text. On the other hand, if a projective measurement onto one of the q ba-
sis states is made, thenM = {√qΠm}q−1

m=0 and µ is the uniform distribution,
where Πm = |m〉〈m|. Since in this case tr

(
(M †M)w

)
= qw for any power w

and any M ∈M, we have weight〈uv〉(σ, τ) = qk−1 for any pair σu, τv.

3.A.3 Mapping applied to 1D circuits with weak measurements
In Section 3.3.3, we discussed the connection between the effective 1D

dynamics of our SEBD algorithm and previous work (originating from [57–59]
on 1D Haar-random circuits with some form of measurements in between each
layer of unitaries.

In this subsection, we apply the stat mech mapping to the 1D with
weak measurement model and explain the connection between the area-law-
to-volume-law transition that has been observed in numerical simulations and
the disorder-to-order thermal transition in the classical stat mech model, which
occurs at a non-zero critical temperature Tc. This analysis was first performed
in [45] and independently in [44]. The results presented in this section are
essentially a reproduction of their analysis but for a different weak measure-
ment, chosen to be relevant for the dynamics of the SEBD algorithm acting on
the CHR problem. We include this analysis for two purposes: first, to shed light
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(a) (b) (c)

Figure 3.12: Summary of series of maps for Haar-random 1D circuits with
weak measurements. (a) The quantum circuit diagram for the unitary plus
weak measurement model consists of layers of Haar-random two-qudit gates
followed by layers of weak measurements on every qudit, indicated by purple
dots. (b) The stat mech mapping results in a model on the honeycomb lattice,
where horizontal zigzag links have weight given by the Weingarten function and
diagonal straight links have weight that depends on the weak measurement.
Blue dots and red dots represent incoming and outgoing nodes, respectively.
Light purple dots represent auxiliary nodes. (c) By decimating the incoming
(blue) nodes in the honeycomb lattice, we reduce the number of nodes by half
and generate a model with three-body interactions living on rightward-pointing
triangles, shaded in blue. When k = 2 the weights are all positive, and the
three-body interaction can be decomposed into an anti-ferromagnetic interac-
tion along vertical (red) links and ferromagnetic interactions along diagonal
(black) links.

on the behavior of SEBD acting on CHR, and second, to serve as a more com-
plete example of the stat mech mapping in action, complementing the more
heuristic analysis we give in Section 3.6 of the main text.

Mapping to the honeycomb lattice

Let us assume that our circuit has n qudits of local dimension q arranged on
a line with open boundary conditions. A circuit of depth d acts on the qudits
where each layer consists of nearest-neighbor two-qudit Haar-random unitaries.
In between each layer of unitaries, a weak measurement is performed on every
qudit, described by the set M of measurement operators and a probability
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distribution µ overM. The first step of the stat mech mapping is to replace
each Haar-random unitary with a pair of nodes and connect these nodes ac-
cording to the order of the unitaries acting on the qudits. The second step is to
introduce a new auxiliary node for each qudit and connect each outgoing node
within the final layer of unitaries to the corresponding pair of auxiliary nodes.
The resulting graph is the honeycomb lattice, as shown in Figure 3.12(b). We
now review what the interactions are on this graph. The horizontal zigzag
links in Figure 3.12(b) host interactions that contribute a weight equal to the
Weingarten function. When k = 2, the interaction depends only on if the pair
of nodes agree (σuτ−1

u = e) or if they disagree (σuτ−1
u = (12)). In this case the

interactions are given explicitly by

weight〈u〉(σ) =Wg(σuτ
−1
u , q2) =

{
1

q4−1
if σuτ−1

u = e

− 1
q2(q4−1)

if σuτ−1
u = (12).

(3.50)

Meanwhile, the diagonally oriented links in Figure 3.12(b) host interactions
that depend on the details of the weak measurement being applied in between
each layer of unitaries, which we now define.

Weak measurement and diagonal weights

The weak measurement we choose is given as follows. First, for a fixed q × q
unitary matrix U , define

M
(m)
U =

√
q · diag(Um,·) (3.51)

that is, the q × q matrix whose diagonal entries are given by the mth row of
U , scaled by a factor of √q, and whose off-diagonal entries are 0. Define the
probability distribution µU to be the uniform distribution over the setMU =
{M (m)

U }
q−1
m=0. We can see that (MU , µU) forms a valid weak measurement since

q−1∑
m=0

µU(m)(M
(m)
U )†M

(m)
U =

q−1∑
m=0

diag(|Um,·|2) = Iq (3.52)

where the last equality follows from the fact that the sum of the squared norms
of the entries within a column of a unitary matrix is 1. When U = Iq, the
measurement operator M (m)

U is a projector onto the mth basis state (scaled by
a factor of√q), and the weak measurement is simply a projective measurement
onto the computational basis.

The weak measurement that we consider for our analysis will be a mixture
of the weak measurement (MU , µU) for different U . Formally, we takeM =
∪U∈U(q)MU . We let the distribution µ over M be the distribution resulting
from drawing U according to the Haar measure, and then drawing M from
MU uniformly at random.
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This weak measurement is seen to exactly reproduce the weak measure-
ment of SEBD acting on CHR in Algorithm 4 when q = 2, where the measurement
operators were the diagonal matrices

M (0) =

cos(θ/2) 0

0 e−iφ sin(θ/2)

 (3.53a)

M (1) =

sin(θ/2) 0

0 eiφ cos(θ/2)

 (3.53b)

with angles (θ, φ) drawn according to the Haar measure on the sphere. Indeed,
even for q 6= 2, this weak measurement arises from a natural generalization of
the CHR problem, where one makes Haar-random measurements on a cluster
state of higher local dimension, which is created by applying a generalized
Hadamard gate to each qudit followed by a generalized CZ gate on each pair
of neighboring qudits on the 2D lattice.

To compute the weights on the edges of the stat mech model for k = 2,
we apply the formula in Eqs. (3.47) and (3.48).

weight〈uv〉(σ, τ) =

∫
U(q)

dU

q−1∑
m=0

1

q
tr

((
(M

(m)
U )†M

(m)
U

)⊗2

Wσuτ
−1
v

)

=

∫
U(q)

dUq

q−1∑
m=0

{
tr (diag(|Um,·|2))

2 if σuτ−1
v = e

tr(diag (|Um,·|4)) if σuτ−1
v = (12)

=

{
q2 if σuτ−1

v = e

q2 · w if σuτ−1
v = (12) ,

(3.54)

with the definition

w =

∫
U(q)

dU
∑
m

1

q
tr
(
diag(|Um,·|4)

)
(3.55)

= q

∫
U(q)

dU |U0,0|4 (3.56)

= q
∑
σ,τ∈S2

Wg(στ−1, q) (3.57)

= 2q
∑
σ∈S2

Wg(σ, q) (3.58)

= 2q

(
1

q2 − 1
− 1

q(q2 − 1)

)
(3.59)

=
2

q + 1
, (3.60)
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where in the third line we have invoked the Haar integration formula that ap-
pears in Eq. (2.10), and then substituted the explicit values for the Weingarten
function when k = 2. The formula for weight〈ua′〉 is given similarly.

We can see that for all q > 1, the weight is larger when the values of
the nodes agree than when they disagree, indicating a ferromagnetic Ising
interaction. Indeed, the interaction for k = 2 will be ferromagnetic regardless
of what weak measurement M is made since tr

(
M †M

)2 ≥ tr
(
(M †M)2

)
holds

for allM . Furthermore, for our choice of weak measurement, the ferromagnetic
Ising interaction becomes stronger as q increases.

Eliminating negative weights via decimation when k = 2

The possibility of a negative weight on the horizontal edges of the honeycomb
lattice in Figure 3.12(b) appears to impede further progress in the analysis
since the classical model cannot be viewed as a physical system with real
interaction energies at a real temperature. As discussed in the main text, for
k = 2, this problem may be circumvented by decimating half of the spins;
that is, we explicitly perform the sum over {τu}u in the partition function in
Eq. (3.34), yielding a new stat mech model involving only the outgoing nodes
with assignment σu. Since the decimated incoming nodes (except for those in
the first layer) each have three neighbors, all three of which are undecimated
outgoing nodes, the new model will have a three-body interaction between
each such trio of nodes.

We may furthermore observe that, for our choice of weak measurement
when k = 2, the three-body weight may be re-expressed as the product of three
two-body weights acting on the three edges of the triangle. Below we give for-
mulas for the two-body weights; our formulas are a unique decomposition of
the three-body interaction up to a shifting of overall constant factors from one
link to another. Thus, via decimation we have moved from the honeycomb
lattice with two-body interactions to the triangular lattice with two-body in-
teractions, as illustrated in Figure 3.12(c). There are two kinds of two-body
interactions on this triangular lattice. Vertically oriented links between nodes
u1 and u2 host anti-ferromagnetic interactions

weight〈u1u2〉(σ) =

{
1

q4−1
if σu1σu2 = e

w
1+q2 ((q2 − w2)(q2w2 − 1))

−1/2 if σu1σu2 = (12) ,
(3.61)

and diagonally oriented links host ferromagnetic interactions, where

weight〈u1u2〉(σ) =

{
q
√
q2 − w2 if σu1σu2 = e

q
√
w2q2 − 1 if σu1σu2 = (12).

(3.62)

For all values of the measurement strength p, the ferromagnetic interactions
are stronger than the anti-ferromagnetic interaction.
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Phase diagram

The model described above for k = 2 is exactly the anisotropic Ising model on
the triangular lattice. In general this model may be described by its energy
functional

E/kT = −J1

∑
〈ij〉1

gigj − J2

∑
〈ij〉2

gigj − J3

∑
〈ij〉3

gigj , (3.63)

where gi ∈ {+1,−1} are Ising spin variables and the three sums are over links
along each of the three triangular axes. This model has been studied and its
phase diagram is well understood [117, 118]. In the setting where along two
of the axes the interaction strength is equal in magnitude and ferromagnetic,
while along the third axis it is weaker in magnitude and antiferromagnetic,
the model is known to experience a phase transition as the temperature is
varied. At high temperatures, it is in the disordered phase; in other words,
samples drawn from the thermal distribution exhibit exponentially decaying
correlations between spin values σu with a constant correlation length of ξ. At
low temperatures, it is in an ordered phase where samples exhibit long-range
correlation. At the critical point, the interaction strengths satisfy the equation
[117, 118]

sinh(2J1) sinh(2J2) + sinh(2J2) sinh(2J3) + sinh(2J1) sinh(2J3) = 1 . (3.64)

For us, the parameter q plays the role of the temperature, and the interaction
strengths, derived from Eqs. (3.61) and (3.62), are given by

J1 = J2 =
1

4
log

(
q2 − w2

w2q2 − 1

)
(3.65)

J3 = −1

2
log

(
w(q2 − 1)√

(q2 − w2)(q2w2 − 1)

)
. (3.66)

Using these equations, we can solve for the critical point, and we find it to be
qc = 3.249. Only integer values of q correspond to valid quantum circuits, so
we conclude that the model is disordered when q = 2 or q = 3 and ordered
when q ≥ 4. We plot this one-dimensional phase diagram in Figure 3.13.

Figure 3.13: Phase diagram showing for which values of q the anisotropic
Ising model on the triangular lattice is ordered and disordered. The critical
point, indicated by the red dot, occurs at qc = 3.249.
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Connection between (dis)order and scaling of entanglement entropy

We expect the scaling of the quantity S̃2 = F2,A − F2,∅ =
− log(EU(Z2,A)/EU(Z2,∅)) to be related to the order or disorder of the model
by the following argument. For EU(Z2,∅), the auxiliary spins are all set to
χa = e, biasing the bulk spins nearby to prefer e over (12). For EU(Z2,A),
the spins within the region A are twisted so that χa = (12), introducing a
domain wall at the boundary. In the ordered phase, the bias introduced at
the boundary extends throughout the whole bulk since there is no decay of
correlation with distance. The domain wall at the boundary in the calculation
of EU(Z2,A) forces the bulk to separate into two regions with distinct phases
separated by a domain wall that cuts through the bulk. The domain wall has
length of order min(|A|, d) where |A| is the number of sites in region A and
d is the depth. In the calculation of EU(Z2,∅), there is no domain wall. The
addition of one additional unit of domain wall within a configuration leads the
weight of the configuration to decrease by a constant factor, so in the ordered
phase we expect − log(EU(Z2,A)/EU(Z2,∅)) = O(min(|A|, d)). Meanwhile, in
the disordered phase, there is a natural length scale ξ that boundary effects
will penetrate into the bulk. The domain wall at the boundary due to twisted
boundary conditions will be washed out by the bulk disorder after a distance
on the order of ξ = O(1). Thus we expect − log(EU(Z2,A)/EU(Z2,∅)) = O(1).
A cartoon illustrating this logic appears in Figure 3.9 of the main text. For
further discussion of the connection between order-disorder properties of the
stat mech model and entropic properties of the underlying quantum objects,
see Refs. [39, 40, 44, 45].

This logic suggests that, if we take the scaling of S̃2 to be a good proxy
for the scaling of 〈S2〉, the disorder-to-order phase transition in the classical
model would be accompanied by an area-law-to-volume-law phase transition
in the Rényi-2 entropy of the output of random circuits.

Relationship to numerical simulation of SEBD on CHR

In Section 3.3.3, with fixed q = 2, it was established that the effective dynamics
of SEBD running on CHR are alternating layers of entangling two-qubit CZ gates
and weak measurements on every qubit of a 1D line, where the form of the weak
measurement is given explicitly. The dynamics we have studied in this section
use the same weak measurement, but choose the two-qubit entangling gates
to be Haar-random. We have established that the quasi-2-entropy S̃2 satisfies
an area law for this process when q = 2, and the statement remains true for
q = 3 when the weak measurement corresponds to a natural generalization of
the CHR problem to larger local dimension. For q = 4, it is no longer true; the
dynamics of S̃2 satisfy a volume law.

Due to the similarity between the dynamics studied in this section and
that of SEBD running on CHR, our conclusion provides a partial explanation for
the numerical observation presented in Section 3.5 that the average entangle-
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ment entropy 〈Sk〉 satisfies an area law when SEBD runs on CHR for q = 2 and
various values of k.

Additional observations appearing in previous work

The above analysis is essentially a restatement of what appears in recent works
by Bao, Choi, and Altman [45] and separately Jian, You, Vasseur, and Ludwig
[44], except that here we analyzed a different weak measurement. In particular,
Ref. [45] considered the case where a projective measurement occurs with some
probability p on each qudit after each layer of unitaries, and otherwise there
is no measurement. They made the observation that we describe above that
the k = 2 mapping can be written as a 2-body anisotropic Ising model on the
triangular lattice with an exact solution. Both of these papers went beyond
what we have presented here to analyze the q →∞ limit directly, where they
observed that the stat mech model becomes a standard ferromagnetic Potts
model on the square lattice for all integers k. For k = 2 this is exactly the
square lattice Ising model and indeed, we can see from Eq. (3.66) that when
q → ∞, J3 → 0; the anti-ferromagnetic links along one axis vanish leaving a
square lattice with exclusively ferromagnetic interactions. The fact that the
model becomes tractable for all integers k ≥ 2 allows these papers to invoke
analytic continuation and make sense of the k → 1 limit, where the quasi-
entropy S̃k exactly becomes the expected von Neumann entropy 〈S〉.

3.B Patching
We now describe a second algorithm for sampling from the output dis-

tributions and computing output probabilities of 2D quantum circuits acting
on qudits of local dimension q. While the SEBD algorithm described in the
previous section is efficient if the corresponding effective 1D dynamics can be
efficiently simulated with TEBD, the algorithm of this section is efficient if the
circuit depth d and local dimension q are constant and the conditional mu-
tual information (CMI) of the classical output distribution is exponentially
decaying in a sense that we make precise below. In Appendix 3.C we will give
evidence that the output distribution of sufficiently shallow random 2D cir-
cuits acting on qudits of sufficiently small dimension satisfies such a property
with high probability, and the property is not satisfied if the circuit depth or
local dimension exceeds some critical constant value.

The algorithm we describe is an adaptation and simplification of the Gibbs
state preparation algorithm of Ref. [119]. In that paper, the authors essen-
tially showed that a quantum Gibbs state defined on a lattice can be prepared
by a quasipolynomial time quantum algorithm, if the Gibbs state satisfies
two properties: (1) exponential decay of correlations and (2) exponentially
decaying quantum conditional mutual information for shielded regions. Our
situation is simpler than the one considered in that paper, due to the fact that
sufficiently separated regions of the lattice are causally disconnected as a re-
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sult of the fact that the circuit inducing the distribution is constant-depth and
therefore has a constant-radius lightcone. The structure of our algorithm is
very similar to theirs, except we can make some simplifications and substantial
improvements as a result of the constant-radius lightcone and the fact that we
are sampling from a classical distribution rather than a quantum Gibbs state.

Before we describe the algorithm, we set some notation. Let Λ denote
the set of all qudits of a L1 × L2 rectangular grid (assume that L1 ≤ L2 ≤
poly(L1)). If A and B are two subsets of qudits of Λ, we define dist(A,B) =
mini∈A,j∈B dist(i, j), where dist(i, j) is the distance between sites i and j as
measured by the ∞-norm. There are two primary facts that our algorithm
relies on. First, if the circuit has depth d, any two sets of qudits separated by
a distance greater than 2d have non-overlapping lightcones. Hence, if A and B
are two lattice regions separated by distance at least 2d, and ρ is the quantum
state output by the circuit (before measurement), it holds that ρAB = ρA⊗ρB
and therefore DAB = DA ⊗ DB if D =

∑
xD(x) |x〉〈x| is the classical output

distribution of the circuit and (for example) DA denotes the marginal of D on
subregion A. (Note that our notation is slightly different in this section – we
now use subscripts on D to denote marginals, and the dependence of D on the
circuit instance is left implicit.) Second, if the classical CMI I(X : Z|Y )p of
three random variables with joint distribution pXY Z is small, then pXY Z is close
to the distribution pX|Y pY pZ|Y corresponding to a Markov chain X − Y − Z.
We state this more formally as the following lemma, which follows from the
Pinsker inequality.

Lemma 3.9 (see e.g., [120]). Let X, Y, Z be discrete random variables, and
let pXY Z denote their joint distribution. Then

I(X : Z|Y )p ≥
1

2 ln 2
‖pXY Z − pX|Y pY pZ|Y ‖2

1.

Following [119], we also formally define a notion of CMI decay.

Definition 3.3 (Markov property). Let p denote a probability distribution
supported on Λ. Then p is said to satisfy the δ(l)-Markov condition if, for any
tripartition of a subregion X of the lattice into subregions X = A∪B∪C such
that dist(A,C) ≥ l, we have

I(A : C|B)p ≤ δ(l). (3.67)

Intuitively, our algorithm works by first sampling from the marginal dis-
tributions of spatially separated patches on the lattice, and then stitching the
patches together to approximately obtain a sample from the global distribu-
tion. For a O(1)-depth circuit whose output distribution has exponentially
decaying CMI, the efficiency of this procedure is guaranteed by the two facts
above. We now show this more formally.



95

l l

AB B AB3l

3l l

(a)

(b)

(c) (e)

(d)

Figure 3.14: Patching. Pink represents marginals of the output distribution
that have been approximately sampled, while white represents unsampled re-
gions. In (a), the algorithm has sampled from disconnected patches. Figure (b)
depicts how the algorithm transitions from configuration (a) to (c). Namely,
the algorithm generates a sample from the conditional distribution on A, con-
ditioned on the configuration of region B. Similarly, figure (d) depicts how
the “holes” of configuration (c) are filled in. The end result is shown in (e), an
approximate sample from the global distribution on the full lattice.

Theorem 3.1. Suppose C is a 2-local quantum circuit of depth d defined on
a 2D rectangular grid Λ of n = L1 × L2 qudits, and let D(x) = |〈x|C|0〉⊗n|2
denote its output distribution. Then if D satisfies the δ(l)-Markov condition,
for any integer l > 2d Patching with a length-scale parameter l runs in time
nqO(dl) and samples from some distribution D′ that satisfies ‖D′ − D‖1 ≤
O(1)(n/l2)

√
δ(l).

In particular, if d = O(1), q = O(1), and D is poly(n)e−Ω(l)-Markov, then
for any polynomial r(n), for some choice of lengthscale parameter Patching
runs in time poly(n) and samples from a distribution that is 1/r(n)-close to
D in total variation distance.

Proof. The algorithm proceeds in three steps, illustrated in Figure 3.14. First,
for each square subregion Ri shaded in Figure 3.14(a) with i ∈ [O(n/l2)],
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sample from DRi , the marginal distribution of D on subregion Ri. To do this,
first restrict to the qudits and gates in the lightcone of Ri. Sampling from
the output distribution on Ri produced by this restricted version of the circuit
is equivalent to sampling from the marginal on Ri of the true distribution
produced by the full circuit. Since l > 2d, this restriction of the circuit is
contained in a sublattice of dimensions O(l) × O(l). Using standard tensor
network methods [52], sampling from the output distribution of this restricted
circuit on Ri can be performed in time qO(dl). Since there are O(n/l2) patches,
this step can be performed in time nqO(dl). After performing this step, we have
prepared the state DR1⊗· · ·⊗DRk = DR1,...,Rk where the equality holds because
the patches are separated by l > 2d and are therefore mutually independent.

In the second step, we apply “recovery maps” to approximately prepare a
sample from the larger, connected lattice subregion S shaded in Figure 3.14(c).
The prescription for these recovery maps is given in Figure 3.14(b). Referring
to this figure, a recovery mapRB→AB is applied to generate a sample from sub-
region A, conditioned on the state of region B. Explicitly, the mapping is given
by linearly extending the mapRB→AB(|b〉〈b|B) =

∑
aDA|B(a|b) |a〉〈a|A⊗|b〉〈b|B.

Note that, for a tripartite distribution DABC , RB→AB(DBC) = DA|BDBDC|B.
To implement this recovery map, one can again restrict to gates in the light-
cone of region AB and utilize standard tensor network simulation algorithms
to generate a sample from the marginal distribution on A, conditioned on the
(previously sampled) state of B. The time complexity for this step is again
qO(dl). After applying this and O(n/l2) similar recovery maps, we obtain a
sample from a distribution D′S. By Lemma 3.9, the triangle inequality, and
Definition 3.3, the error of this step is bounded as

‖D′S −DS‖1 ≤ O(1)(n/l2)
√
δ(l) = O(1)(n/l2)

√
δ(l). (3.68)

Note that the fact that the errors caused by recovery maps acting on
disjoint regions accumulate at most linearly has been referred to previously
[119] as the “union property” for recovery maps. The final step is very similar to
the previous step. We now apply recovery maps, described by Figure 3.14(d),
to fill in the “holes” of the subregion S and approximately obtain a sample from
the full distribution D = DΛ. By a similar analysis, we find that the error
incurred in this step is again O(1)(n/l2)

√
δ(l), and therefore the procedure

samples from a distribution D′Λ for which ‖D′Λ −DΛ‖1 ≤ O(1)(n/l2)
√
δ(l).

The second paragraph of the theorem follows immediately by choosing a
suitable l = Θ(log n).

A straightforward application of Markov’s inequality implies that a
polynomial-time algorithm for sampling with error 1/ poly(n) succeeds with
high probability over a random circuit instance if the output distribution CMI
is exponentially decaying in expectation. We formalize this as the following
corollary.



97

Corollary 3.6. Let C be a random circuit distribution. Define C to be δ(l)-
Markov if, for any tripartition of a subregion X of the lattice into subregions
X = A ∪B ∪ C such that dist(A,C) ≥ l, we have

〈I(A : C|B)D〉 ≤ δ(l) (3.69)

where the angle brackets denote an average over circuit realizations and D is
the associated classical output distribution. Then if d = O(1), q = O(1), and
C is poly(n)e−Ω(l)-Markov, then for any polynomials r(n) and s(n), Patching
can run in time poly(n) and, with probability 1 − 1/s(n) over the random
circuit realization, sample from a distribution that is 1/r(n)-close to the true
output distribution in variational distance.

Thus, proving that some uniform worst-case-hard circuit family C is
poly(n)e−Ω(l)-Markov provides another route to proving the part of Conjec-
ture 3.1 about sampling with small total variation distance error. In Sec-
tion 3.6, we will give analytical evidence that if C is a random circuit distri-
bution of sufficiently low depth and small qudit dimension, then C is indeed
poly(n)e−Ω(l)-Markov, and if the depth or qudit dimension becomes sufficiently
large, then C is not poly(n)f(l)-Markov for any f(l) = o(1), supporting Con-
jecture 3.2, which states that our algorithms exhibit computational phase tran-
sitions.

Finally, we note that Patching can also be used to estimate specific out-
put probabilities of a random circuit instance C with high probability if C is
drawn from a distribution C that is poly(n)e−Ω(l)-Markov. This shows that the
Markov condition could also be used to prove the second part of Conjecture 3.1
regarding computing output probabilities with small error. This is similar to
how SEBD can also be used to compute output probabilities, as discussed in
Section 3.3.2.

Lemma 3.10. Let C be a circuit distribution over constant depth d and con-
stant qudit dimension q 2D circuits on n qudits which is poly(n)e−Ω(l)-Markov
and invariant under application of a final layer of arbitrary single-qudit gates.
Then for a circuit instance C drawn from C and a fixed x ∈ [q]n, a variant of
Patching can be used to output a number D′(x) in time poly(n) that satisfies

|D′(x)−D(x)| ≤ q−n/r(n) (3.70)

with probability 1− 1/s(n) for any polynomials r(n) and s(n), where D is the
output distribution associated with C.

Proof. With probability 1− 1/ poly(n) over the circuit instance C, Patching
with some choice of lengthscale l = Θ(log n) efficiently samples from a dis-
tribution D′C that is 1/ poly(n)-close in variational distance to DC for any
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choice of polynomials. Hence, for an output probability y chosen uniformly at
random and a circuit C drawn from C, it holds that

E
y
E
C
|D′(y)−D(y)| ≤ q−n/ poly(n) (3.71)

if l = c log n and c is a sufficiently large constant. By a nearly identical
argument to that used in the proof of Corollary 3.3, due to the invariance of C
under application of a final layer of single qudit gates, for some fixed x ∈ [q]n

we also have
E
C
|D′(x)−D(x)| ≤ q−n/ poly(n) (3.72)

for any choice of polynomial. Finally, it is straightforward to see that an in-
stance of Patching that samples from D′ can also be used to exactly compute
D′(x) for any x. (To do this, the algorithm computes conditional probabilities
via tensor network contractions as before, except instead of using these condi-
tional probabilities to sample, it simply multiplies them together similarly to
how SEBD can be used to compute output probabilities.) Applying Markov’s
inequality completes the proof.

3.C Efficiency of Patching algorithm from stat mech
We now study the predictions of the stat mech model for the fate of the

Patching algorithm we introduced in Appendix 3.B. To do so, we in turn study
the predictions of the stat mech model for entropic properties of the classical
output distribution, as Patching is efficient if the CMI of the classical output
distribution is exponentially decaying with respect to shielded regions.

We have previously applied the stat mech model to study expected en-
tropies of quantum states. However, we now wish to study expected entropies
of the classical output distribution. To this end, we now consider the non-
unitary quantum circuit consisting of the original, unitary circuit followed by
a layer of dephasing channels applied to every qudit. The resulting mixed state
is classical (i.e., diagonal in the computational basis) and is exactly equal to
the output distribution we want to study. That is, the state after application of
the dephasing channels is

∑
xD(x) |x〉〈x| where D is the output distribution of

the circuit. Note that the application of the dephasing channel is not described
in the formalism we have discussed previously, but is easily incorporated. In
particular, we need to compute the weights between the auxiliary node with
assignment χa′ and the corresponding outgoing node with assignment σu as-
sociated with the gate that is the last in the circuit to act on qudit a. We
may update Eq. (3.48) and compute the following, recalling the definition of
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|ν〉 from Eq. (2.14).

weight〈ua′〉(σ, τ) = 〈σu|

(
q−1∑
i=0

|i〉〈i| ⊗ |i〉〈i|

)⊗k
|χa′〉

=
∑
i1,...,ik

〈i1, . . . , ik|Wσ−1
u
|i1, . . . , ik〉 〈i1, . . . , ik|Wχa′

|i1, . . . , ik〉 .

(3.73)

We therefore see that weight〈ua′〉(σ, τ) in this setting is exactly equal to
the number of k-tuples of indices (i1, . . . , ik) with ij ∈ [q] that are invariant
under both permutation operators σu, χa′ ∈ Sk acting as σu · (i1, . . . , ik) =
(iσ(1), . . . , iσ(k)). In fact, for our purposes, the auxiliary spin χa′ will either
be set to the identity e or to the k-cycle permutation (1 . . . k). In the former
case, the weight reduces to tr(Wσu) = qC(σu). In the latter case, since the only
tuples that are invariant under application of the cycle permutation (1 . . . k)
are the q tuples of the form (x, x, . . . , x) for x ∈ [q], the weight is simply q for
all σu. Summarizing,

weight〈ua′〉(σ, τ) =

{
qC(σu), χa′ = e

q, χa′ = (1 . . . k).
(3.74)

From these expressions, we may immediately note the following facts. First,
flipping some auxiliary spin from e to (1 . . . k) cannot increase the weight
of a configuration, and hence such a flip corresponds to an increase in free
energy. Second, if an auxiliary spin is in the (1 . . . k) configuration, then the
auxiliary spin may be effectively removed from the system since in this case the
contribution of the auxiliary spin to the weight of a configuration is constant
across all configurations.

With these modified weights, we may now compute “quasi-entropies”
S̃k(X) as before, where now in the k → 1 limit S̃k(X) approaches the expected
Shannon entropy of the marginal of the output distribution on subregion X,
〈S(X)D〉, where the average is over random circuit instances.

Disordered stat mech model suggests Patching is successful

We consider the quasi-CMI defined by

Ĩ2(A : C|B) = S̃2(AB) + S̃2(BC)− S̃2(B)− S̃2(ABC), (3.75)

where all quasi-entropies are taken with respect to the collection of classical
output distributions that arise from the quantum circuit architecture. This
definition is in analogy to the definition of CMI as I(A : C|B) = S(AB) +
S(BC) − S(B) − S(ABC) [120]. Note that we may define the quasi-k-CMI
Ĩk(A : C|B) analogously for any nonnegative k, and it holds that 〈I(A :
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C|B)D〉 = limk→1 Ĩk(A : C|B) where the angle brackets denote an expectation
over random circuit instances.

Recalling that S̃2(X) = F2,X − F2,∅, we may rewrite the quasi-2-CMI as

Ĩ2(A : C|B) = (F2,AB − F2,B)− (F2,ABC − F2,BC). (3.76)

In stat mech language, the quasi-CMI is essentially the difference in free energy
costs of twisting the boundary condition of subregion A in the case where (1)
no other spins have boundary conditions, and the case where (2) subregion C
also has an imposed boundary condition.

Now, consider some random circuit family C with associated stat mech
model that is in the disordered phase for k = 2. For any subregion X of qudits,
and partition of X into subregions X = A ∪ B ∪ C, we expect this difference
between free energy costs will decay exponentially with the separation between
A and C as

Ĩ2(A : C|B) ≤ poly(n, q)e− dist(A,C)/ξ (3.77)

where ξ is a correlation length. This is because in the disordered phase of
the stat mech model, information about the boundary of region C will be
exponentially attenuated as the distance from region C grows. If we take Ĩ2(A :
C|B) as a proxy for the average CMI of the output distribution, 〈I(A : C|B)D〉,
we conclude that the random circuit family C is poly(n, q)e−Θ(l)-Markov as
defined in Appendix 3.B. The results of that section then show that Patching
can be used to efficiency sample from the output distribution and estimate
output probabilities with high precision and high probability. We take this
exponential decay of quasi-2-CMI as evidence that the average CMI also decays
exponentially, and therefore that Patching is successful. Recall from that main
text that the (worst-case-hard) depth-3 brickwork architecture’s associated
stat mech model is disordered; we therefore expect Patching to be capable of
efficiently simulating this architecture.

Ordered stat mech model suggests Patching is unsuccessful

We first obtain exact, closed form results in the zero-temperature limit of the
stat mech model, which corresponds to the q →∞ limit. However, we expect
that qualitatively similar results hold outside of this limit.

As before, consider the stat mech model obtained by applying dephasing
channels to all qudits after the application of all gates. Consider some con-
nected, strict subset A of qudits on the original grid. Suppose we are interested
in the quasi-entropy S̃k(A) = (Fk,A − Fk,∅)/(k − 1) of the output distribution
on this region. This quantity is given by the free energy cost of twisting
the boundary conditions (auxiliary spins) associated with region A from e to
(1 . . . k). The auxiliary spins associated with qudits in the complement of A
are fixed to be in the identity permutation configuration, e. For both sets of
boundary conditions, all non-auxiliary spins will order in the configuration e.
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This is because the configuration e maximizes the weights in Eq. (3.74) for
spins connected to auxiliary spins in the configuration e, and the weight of a
spin connected to an auxiliary spin in the configuration (1 . . . k) is indepen-
dent of that spin’s configuration. Hence, regardless of the configuration of the
auxiliary spins, all bulk spins are in the identity permutation configuration in
the q →∞ limit of infinitely strong couplings.

Therefore, twisting a single auxiliary spin from e to (1 . . . k) results in
a reduction of the total weight by a factor of q/qC(e) = q/qk = q1−k, corre-
sponding to a free energy increase of (k − 1) log(q). We therefore compute

S̃k(A) =
Fk,A − Fk,∅
k − 1

= |A| log(q). (3.78)

Note that this result is exact in the q → ∞ limit. Notably, we find that all
integer quasi-entropies are equal in this limit, and so we may trivially perform
the analytic continuation to the von Neumann (i.e. Shannon) entropy:

〈S(A)〉 = lim
k→1
|A| log(q) = |A| log(q). (3.79)

Hence, in the q → ∞ limit, the entropy of a strict subregion of the output
distribution is maximal.

Now, let X denote the set of all qudits. We want to compute 〈S(X)〉.
We again proceed by computing the quasi-entropies:

S̃k(X) =
Fk,X − Fk,∅
k − 1

.

As before, for each auxiliary spin associated with regionX that we “twist,”
the weight of the configuration is decreased by a factor of q1−k relative to the
configuration in which all auxiliary spins are set to e. However, in this case,
as opposed to our previous calculation, all of the auxiliary spins are twisted.
Recall from Eq. (3.74) that the weight between a twisted auxiliary spin and a
bulk spin is independent of the value of the bulk spin. Hence, if all auxiliary
spins are twisted, the lowest energy state in the bulk is no longer just the
configuration in which all spins take the value e—in the absence of a symmetry-
breaking boundary condition, there is now a global spin-flip symmetry and the
ground space is k!-fold degenerate, consisting of all configurations in which all
bulk spins are aligned. This symmetry contributes a factor of k! to the partition
function and − log(k!) to the free energy. We hence calculate

S̃k(X) = |A| log(q)− log(k!)

k − 1
. (3.80)
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We now perform the analytic continuation to the Shannon entropy:

〈S(X)〉 = lim
k→1

S̃k(X) (3.81)

= |A| log(q)− lim
k→1

log(k!)

k − 1
(3.82)

= |A| log(q)− 1− γ
ln(2)

(3.83)

≈ |A| log(q)− 0.61, (3.84)

where γ ≈ 0.557 denotes the Euler constant. The expected Shannon entropy
of the output distribution is therefore 1−γ

ln(2)
less bits than maximal in the low-

temperature limit, corresponding to q →∞.

From the above facts, we can immediately compute the expected CMI of
the output distribution in this limit. Let (A,B,C) be any partition of the
qudits. We have

〈I(A : C|B)D〉 (3.85)
≡ 〈S(AB)D + S(BC)D − S(B)D − S(ABC)D〉 (3.86)
= [(|A|+ |B|) log(q)] + [(|B|+ |C|) log(q)] (3.87)

− [(|B|) log(q)]− [(|A|+ |B|+ |C|) log(q)− 1− γ
ln(2)

]

=
1− γ
ln(2)

≈ 0.61. (3.88)

We therefore find that in this limit, the expected CMI of the classical
output distribution approaches a constant equal to 1−γ

ln(2)
. While this result was

derived with respect to the completely ordered stat mech model, corresponding
to q →∞, we expect similar behavior for ordered stat mech models in general.
In particular, if X denotes the set of all qudits, in the case of an ordered
kth-order stat mech model, S̃k(X) will similarly receive an extra contribution
corresponding to the global spin-flip symmetry, which will also be contributed
to the corresponding quasi-CMI Ĩk(A : C|B)D. Hence, we do not expect
the quasi-CMIs to decay when the corresponding stat mech model is in an
ordered phase. We take this as evidence that the average CMI does not decay,
and therefore that Patching is not successful in efficiently sampling from the
output distribution with small error.

3.D Relation to worst-to-average-case reductions based on trun-
cated Taylor series

It was shown [25] that for any constant-depth random circuit family with
Haar-random gates acting on n qubits for which it is #P-hard to compute
output probabilities in the worst case, there does not exist a poly(n)-time al-
gorithm for computing the output probability of some arbitrary output string
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x up to additive error 2−Θ̃(n3) with high probability over the circuit realiza-
tion, unless there exists a poly(n)-time randomized algorithm for computing a
#P-hard function. (Note: in even more recent work using the same technique,
the error robustness has been improved from 2−Θ̃(n3) to 2−Θ(n log(n)) [26, 27].)
Essentially, for Haar-random circuits, near-exact average-case computation of
output probabilities is as hard as worst-case computation of output probabil-
ities. Our complexity separation in Section 3.4 shows that the error tolerance
for this hardness result cannot be improved to 2−n/2n

c for any c < 1.

This hardness result builds on and improves other prior work [4] on the
average-case hardness of random circuit simulation. In particular, the original
paper [4] uses a different interpolation scheme than that used in Ref. [25] to
perform the worst-to-average-case reduction. Interestingly, as discussed be-
low, we find that the interpolation scheme of Ref. [4] cannot be used to prove
hardness results about our algorithms’ performance on a shallow random 2D
quantum circuit possessing worst-case hardness for computing output proba-
bilities; this essentially is a consequence of how SEBD and Patching exploit
the unitarity of the circuit to be simulated. While this observation may be
of technical interest for future work on worst-to-average-case reductions for
quantum circuit simulations, the alternative interpolation scheme of Ref. [25]
does not suffer from this limitation.

While Refs. [4, 25] prove hardness results for the near-exact computation
of output probabilites of random circuits, it is ultimately desirable to prove
hardness for the Random Circuit Sampling (RCS) problem of sampling from
the output distribution of a random circuit with small error in variational dis-
tance, as this is the computational task corresponding to the problem that
the quantum computer solves. A priori, one might hope that such a result
could be proved via such a worst-to-average-case reduction. In particular, it
was pointed out in these works that improving the error tolerance of the hard-
ness result to 2−n/ poly(n) would be sufficient to prove hardness of RCS. Our
work rules out such a proof strategy working in general by showing that even
improving the error tolerance to 2−n/2n

c for any constant c < 1 is unachiev-
able. In particular, any proof of the hardness of RCS should be sensitive to
the depth and should not be applicable to the worst-case-hard shallow random
circuit ensembles that admit approximate average-case classical simulations.

Implications for reductions based on truncated Taylor series
In this section, we discuss the relation between our algorithms (SEBD and

Patching) applied to the computation of output probabilities and the re-
cent result [4] on the hardness of average-case simulation of random circuits
based on polynomial interpolation via truncated Taylor series. In particu-
lar, we discuss how this polynomial interpolation argument is insufficient to
show that the task of even exactly computing output probabilities and sam-
pling from the output distribution of a constant-depth Haar-random circuit
instance with high probability using our algorithms is classically hard, even
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though these circuits possess worst-case hardness. We first briefly review their
technique before discussing a limitation in the robustness of the polynomial
interpolation scheme. We then discuss how this robustness limitation makes
the interpolation scheme inapplicable to our algorithms.

The main point is that our algorithms exploit unitarity (via the fact that
gates outside of the lightcone of the qudits currently under consideration are
ignored), but the hardness result of Ref. [4] holds with respect to circuit fam-
ilies that are non-unitary, albeit very close to unitary in some sense. Our
algorithms are unable to simulate these slightly non-unitary circuits to the
precision required for the worst-to-average case reduction, regardless of how
well they can simulate Haar-random circuit families. While it is true that in
this scheme there is an adjustable parameter K which, when increased, brings
the non-unitary circuit family closer to approximating the true Haar-random
family, increasing K also increases the degree of the interpolating polynomial.
This makes the interpolation more sensitive to errors in such a way that, for
any choice of K, the robustness that the interpolation can tolerate is not large
enough to overcome the inherent errors that our algorithms make when trying
to simulate these non-unitary families. The existence of simulation algorithms
like SEBD and Patching, which exploit the unitarity of the circuit, may present
an obstruction to applying worst-to-average-case reduction techniques that ob-
tain a polynomial structure at the expense of unitarity. Note that, as discussed
previously, a very recent alternative worst-to-average case reduction [25] based
on “Cayley paths” rather than truncated Taylor series does not suffer from this
same limitation.

Background: truncated Haar-random circuit ensembles and
polynomial interpolation

In this section, we give an overview (omitting some details) of the interpo-
lation technique of Ref. [4] used to show their worst-to-average-case reduc-
tion, partially departing from their notation. Suppose U is a unitary op-
erator. Then we define the θ-contracted and K-truncated version of U to
be U ′(θ,K) = U

∑K
k=0

(−θ lnU)k

k!
. Note that U ′(θ,∞) = Ue−iθ(−i lnU) is sim-

ply U pulled-back by angle θ towards the identity operator I. Note that
U ′(0,∞) = U and U ′(1,∞) = I. For U ′(θ,K) for K < ∞, the operator
that performs this pullback is then approximated by a Taylor series which is
truncated at order K. If K <∞, U ′(θ,K) is (slightly) non-unitary.

Suppose C is some circuit family for which computing output probabilities
up to error 2− poly(n) is classically hard. Now, for each gate G in C, multiply
that gate by H ′(θ,K) with H Haar-distributed and supported on the same
qubits as G. This yields some distribution over non-unitary circuits that we
call D(C, θ,K). Note that if θ = 0, D exactly becomes the Haar-random
circuit distribution with the same architecture as C. When θ = 1, the hard
circuit C is recovered up to some small correction due to the truncation. If
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K is sufficiently large, we can assume that computing output probabilities for
this slightly perturbed version of C is also classically hard.

Fix some circuit A drawn from H(C), the distribution over circuits with
the same architecture as C with gates chosen according to the Haar measure.
Let A(C, θ,K) denote the circuit obtained when the θ-pulled-back and K-
truncated gates of A are multiplied with their corresponding gates in C. Note
that A(C, θ,K) is distributed as D(C, θ,K). Define the quantity

p0(A, θ,K) = | 〈0|A(C, θ,K)|0〉|2. (3.89)

Assuming that the circuit C has m gates, it is easy to verify that
p0(A, θ,K) may be represented as a polynomial in θ of degree 2mK. Note
also that p0(A, 1,∞) = p0(C), which is assumed to be classically hard to
compute.

Now, assume that there exists some classical algorithm A and some ε =
1/ poly(n) such that, for some fixed K ≤ poly(n) and for all 0 ≤ θ ≤ ε, A
can compute p0(A, θ,K) up to additive error δ ≤ 2−n

c for some constant c,
with probability 1 − 1/ poly(n) over A(C, θ,K) ∼ D(C, θ,K). Then, A may
evaluate p0(A, θ,K) for 2mK + 1 evenly spaced values of θ in the range [0, ε]
(up to very small error), and construct an interpolating polynomial q0(A, θ,K).
By a result of Rakhmanov [121], there is some interval [a, b] ⊂ [0, ε] such that
b − a ≥ 1/ poly(n) and |p0(A, θ,K) − q0(A, θ,K)| ≤ 2−n

c′ for θ ∈ [a, b] where
c′ depends on c. One then invokes the following result of Paturi.

Lemma 3.11 ([122]). Let p : R → R be a real polynomial of degree d, and
suppose |p(x)| ≤ δ for all |x| ≤ ε. Then |p(1)| ≤ δe2d(1+1/ε).

Applying this result, we find |p0(A, 1, K)−q0(A, 1, K)| ≤ 2−n
c′
epoly(n,m,K).

If c is sufficiently large, then |p0(A, 1, K) − q0(A, 1, K)| ≤ 2− poly(n) and the
quantity q0(A, 1, K) is hard to compute classically. But this would be a con-
tradiction, because q0(A, 1, K) can be efficiency evaluated classically by per-
forming the interpolation.

Hence, this argument shows that for some choice of K and a sufficiently
large c depending on K, computing output probabilities of circuits in the
truncated families D(C, θ,K) with θ ≤ 1/ poly(n) up to error 2−n

c is hard
(assuming standard hardness conjectures).

Limitation of the interpolation argument

The above argument shows that the average-case simulation of some family
D(C, θ,K) of non-unitary circuits which in some sense is close to the corre-
sponding Haar-random circuit family to precision 2− poly(n) is classically hard,
if simulating C is classically hard and the polynomial in the exponent is suffi-
ciently large.
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We now explain how, based on this argument, we are unable to conclude
that exactly computing output probabilities of Haar-random circuits is clas-
sically hard.4 In other words, suppose that with probability 1 − 1/ poly(n),
some algorithm A can exactly compute output probabilities from the distri-
bution H(C). We argue that a straightforward application of the above result
based on Taylor series truncations and polynomial interpolation is insufficient
to compute p0(C) with small error.

Consider some circuit realization A drawn from H(C), and assume that
we can exactly compute its output probability p0(A). To use the argument of
Ref. [4], we actually need to compute p0(A, θ,K) for some fixed value of K and
θ in some range [0, ε]. We first find an upper bound for ε which must be satisfied
for the interpolation to be guaranteed to succeed with high probability. To
this end, we note that [4] the total variation distance between the distributions
D(C, θ,∞) and D(C, 0,∞) is bounded by O(mθ). Hence, if we try to use
the algorithm A to estimate p0(A, θ,∞), the failure probability over random
circuit instances could be as high as O(mθ). Therefore, since the θ values to be
evaluated are uniformly spaced on the interval [0, ε], the union bound tells us
that the probability that one of the 2mK + 1 values p0(A, θ,K) is erroneously
evaluated is bounded by O(m2Kε). Hence, in order to ensure that all 2mK+1
points are correctly evaluated, we should take ε ≤ O(1/m2K).

Now, assume that we have chosen ε ≤ O(1/m2K) and all 2mK+ 1 points
p0(A, ·,∞) are correctly evaluated. Let θ be one of the evaluation points. We
now must consider the error made by approximating the “probability” associ-
ated with the truncated version of the circuit with the probability associated
with the untruncated version of the circuit, namely |p0(A, θ,∞)−p0(A, θ,K)|.
This error associated with the truncated Taylor series is upper bounded by
δ ≤ 2O(nm)

K!
[4].

Plugging these values into Lemma 3.11, we find that if we use these
values to try to interpolate to the classically hard-to-compute quantity
p0(C, 1, K), the error bound guaranteed by Paturi’s lemma is no better than
2O(nm)

K!
exp (O(2mK(1 +m2K))), which diverges in the limit n → ∞ for any

scaling of m and K. Hence, the technique of Ref. [4] is insufficient to show
that exactly computing output probabilities of circuits drawn from the Haar-
random circuit distribution HC with high probability is hard.

Intuitively, the limitation arises because there is a tradeoff between the
amount of truncation error incurred and the degree of the interpolating poly-
nomial. As the parameter K is increased, the truncation error is suppressed,
but the degree of the interpolating polynomial is increased, making the inter-
polation more sensitive to errors.

4A simplified and slightly weaker version of our argument was also reported in [25].
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Inapplicability to SEBD and Patching

To summarize the findings above, the argument of Ref. [4] for the hardness
of computing output probabilities of random circuits applies not directly to
Haar-random circuit distributions, but rather to distributions over slightly
non-unitary circuits that are exponentially close to the corresponding Haar
distributions in some sense. We argued that the interpolation scheme can-
not be straightforwardly applied to circuits that are truly Haar-random, and
therefore it cannot be used to conclude that simulating truly Haar-random
circuits, even exactly, is classically hard.

A priori, it is not obvious whether this limitation is a technical artifact or
a more fundamental limitation of the interpolation scheme. In particular, one
might imagine that if some algorithm A is capable of exactly simulating Haar-
random circuit families, some modified version of the algorithm A′ might be
capable of simulating the associated truncated Haar-random circuit families,
at least up to the precision needed for the interpolation argument to work. If
this were the case, then the hardness argument would be applicable.

However, SEBD and Patching appear to be algorithms that cannot be
straightforwardly used to efficiently simulate truncated Haar-random circuit
families to the precision needed for the interpolation to work, even under the
assumption that they can efficiently, exactly simulate Haar-random circuit
families. This is because the efficiency of these algorithms crucially relies on
the existence of a constant-radius lightcone for constant-depth circuits. The
algorithm is able to ignore all qubits and gates outside of the lightcone of the
sites currently being processed. However, the lightcone argument breaks down
for non-unitary circuits. If the gates are non-unitary and we want to perform
an exact simulation, we are left with using Markov-Shi or some other general-
purpose tensor network contraction algorithm, with a running time of 2O(d

√
n)

for a depth-d circuit on a square grid of n qubits.

Consider what happens if one tries to use one of these algorithms to com-
pute output “probabilities” for a slightly non-unitary circuit coming from a
truncated Haar-random distribution D(C, θ,K), and then use these computed
values to interpolate to the hard-to-compute value p0(C, 1, K) via the interpo-
lating polynomial of degree 2mK proposed in Ref. [4]. Even without any other
sources of error, when one of these algorithms ignores gates outside of the cur-
rent lightcone, it is essentially approximating each gate outside the lightcone
as unitary. This causes an incurred error bounded by 2O(nm)/K! for the com-
puted output probability. Then, by an argument essentially identical to the
one appearing in the previous section, one finds that this error incurred just
from neglecting gates outside the lightcone is already large enough to exceed
the error permitted for the polynomial interpolation to be valid. We conclude
that this worst-to-average-case reduction based on truncated Taylor series ex-
pansions cannot be used to conclude that it is hard for SEBD or Patching
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to exactly simulate worst-case-hard shallow Haar-random circuits with high
probability.

3.E Deferred proofs
Lemma 3.1 (restated). Let εi denote the sum of the squares of all singular
values discarded in the compression during iteration i of the simulation of a
circuit C with output distribution DC by SEBD with no bond dimension cutoff,
and let Λ denote the sum of all singular values discarded over the course of the
algorithm. Then the distribution D′C sampled from by SEBD satisfies

1

2
‖D′C −DC‖1 ≤ E

L2∑
i=1

√
2εi ≤

√
2EΛ, (3.90)

where the expectations are over the random measurement outcomes.

Proof. We rely upon a well-known fact about the error caused by truncating
the bond dimension of a MPS, which we state in Lemma 3.12.

Lemma 3.12 (follows from Ref. [123]). Suppose the MPS |ψ〉 is compressed
via truncation of small singular values, and ε is the sum of the squares of the
discarded singular values. Then if |ψ(t)〉 is the truncated version of the MPS
after normalization,

‖|ψ〉〈ψ| − |ψ(t)〉〈ψ(t)|‖1 ≤
√

8ε. (3.91)

The second inequality follows from the fact that
√∑

i x
2
i ≤

∑
i xi for

xi ≥ 0. To prove the first inequality, we start by considering the version of the
algorithm with no truncation, which we have argued samples exactly from D.
Let Nt denote the TPCP map corresponding to the application of gates that
have come into the lightcone of column t and the measurement of column t.
That is,

Nt(ρ) =
∑
xt

Πxt
t VtρV

†
t Πxt

t , (3.92)

where xt indexes (classical) outcome strings of column t. Note that Nt(ρ)
is a classical-quantum state for which the sites corresponding to the first t
columns are classical, and the quantum register consists of sites which are in
the lightcone of column t but not in the first t columns. Define ρt = Nt−1(ρt−1)
and ρ1 = |0〉〈0|⊗L1

column 1, so that ρL2+1 is a classical state exactly corresponding
to output strings on the L1 × L2 grid distributed according to D.

Now consider the “truncated” version of the algorithm, which is defined
similarly except we use σt to denote the state of the algorithm immediately
after the truncation at the beginning of iteration t. That is, we define

σt = (Tt ◦ Nt−1)(σt−1), (3.93)
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where Tt denotes the mapping corresponding to the MPS truncation and
subsequent renormalization at the beginning of iteration t, and we define
σ1 = T1(ρ1) = ρ1 (there is no truncation at the beginning of the first iter-
ation since the initial state is a product state).

We now have

‖DC −D′C‖1 = ‖ρL2+1 − σL2+1‖1 (3.94)
≤ ‖ρL2+1 −NL2(σL2)‖1 + ‖NL2(σL2)− σL1+1‖1 (3.95)
≤ ‖ρL2 − σL2‖1 + ‖NL2(σL2)− σL2+1‖1, (3.96)

where the first inequality follows from the triangle inequality, and the second
from contractivity of TPCP maps. Applying this inequality recursively yields

‖DC −D′C‖1 ≤
L2∑
i=1

‖Ni(σi)− σi+1‖1 (3.97)

=

L2−1∑
i=1

‖Ni(σi)− (Ti+1 ◦ Ni)(σi)‖1 (3.98)

where we also used the fact that no truncation occurs after NL2 is applied
(i.e. TL2+1 acts as the identity). Now, note that ‖Ni(σi)− (Ti+1 ◦ Ni)(σi)‖1

is exactly the expected error in 1-norm caused by the truncation in iteration
i + 1. (This is true because of the following fact about classical-quantum
states:

∥∥∥Ei |i〉〈i|C ⊗ (|ψi〉〈ψi|Q − |φi〉〈φi|Q)
∥∥∥

1
= Ei ‖|ψi〉〈ψi| − |φi〉〈φi|‖1 where

{|i〉C}i is an orthonormal basis for the Hilbert space associated with register
C.) By Lemma 3.12, this quantity is bounded by E

√
8εi+1. Substituting this

bound into the summation yields the desired inequality.

Lemma 3.5 (restated). Let λ1 ≥ λ2 ≥ · · · denote the half-chain Schmidt
values after at least n/2 iterations of the toy model process. Then with prob-
ability at least 1 − δ the half-chain Schmidt values indexed by i ≥ i∗ =

exp
(

Θ(
√

log(n/δ))
)
obey the asymptotic scaling

λi ∝ exp
(
−Θ(log2(i))

)
. (3.99)

Furthermore, upon truncating the smallest Schmidt coefficients up to a trun-
cation error of ε, with probability at least 1− δ, the half-chain Schmidt rank r
of the post-truncation state obeys the scaling

r ≤ exp
(

Θ
(√

log(n/εδ)
))
. (3.100)

Proof. Suppose that an EPR pair is measured 2t times, corresponding to each
of the two qubits being measured t times. A calculation shows that the prob-
ability of obtaining s M1 outcomes is given by a mixture of two binomial
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distributions. Letting S be the random variable denoting the number of M1

outcomes, we find that Pr[S = s] is given by

1

2
Pr
[
B2t,sin2(θ/2) = s

]
+

1

2
Pr
[
B2t,cos2(θ/2) = s

]
, (3.101)

where Bn,p denotes a binomial random variable associated with n trials and
success probability p. If after the 2t measurements we obtain outcome M1 s
times, the post-measurement state is given by (up to normalization)

|00〉+ tan2(t−s)(θ/2)|11〉. (3.102)

Note that s can be assumed to be generated by sampling from either B2t,sin2(θ/2)

or B2t,cos2(θ/2) with probability 1/2 each. In the former case, the post-
measurement state may be written as

|00〉+ tan2(t−B2t,sin2(θ/2))(θ/2)|11〉 = |00〉+ tan2t cos(θ)−2X2t,sin2(θ/2)(θ/2)|11〉
(3.103)

where we have defined the random variable X2t,sin2(θ/2) via Bn,p = np + Xn,p.
That is, the random variable Xn,p is distributed as a binomial distribu-
tion shifted by its mean. Now, defining γ = (tan(θ/2))2 cos(θ) and X ′n,p =
Xn,p/ cos(θ), we may write the post-measurement state as

|00〉+ γ
t−X′

2t,sin2(θ/2)|11〉. (3.104)

We assume WLOG that 0 < θ < π/2, so that 0 < γ < 1. Similarly, if s is
drawn from B2t,cos2(θ/2), then the post-measurement state is given by

|00〉+ γ
−t−X′

2t,cos2(θ/2)|11〉. (3.105)

Note that, under a relabeling of basis states 0↔ 1, the post-measurement
state in this case is

|00〉+ γ
t−X′

2t,sin2(θ/2)|11〉, (3.106)

where we used the fact that −X ′2t,cos2(θ/2) is distributed identically to
X ′

2t,sin2(θ/2)
. Since we will be interested in studying the entanglement spec-

trum of this process, which is invariant under such local basis changes, we
may assume WLOG that the random post-measurement state after 2t mea-
surements is given by |00〉+ γ

t−X′
2t,sin2(θ/2)|11〉.

We can then model the final state as⊗
t

|00〉+ γ
t−X′

2t,sin2(θ/2)|11〉 (3.107)
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up to normalization. This allows an estimate of the tradeoff between rank,
truncation error, and associated probability of success.

Let Q(`) denote the number of “strict partitions” of `, i.e. the number of
ways of writing ` = t1 + t2 + . . . for positive integers t1 < t2 < . . . . Precise
asymptotics are known for Q(`) (see https://oeis.org/A000009 and [124]):

Q(`) = exp
(

Θ(
√
`)
)
. (3.108)

By expanding Eq. (3.107) as a superposition over computational basis
states, we obtain the unnormalized Schmidt coefficients λ̃1 ≥ λ̃2 ≥ · · · ;
each coefficient in the expansion gives an unnormalized Schmidt coefficient.
There are Q(`) unnormalized Schmidt coefficients that are distributed as
γ
`−X′

2`,sin2(θ/2) , where we used the fact that X ′
t1,sin

2(θ/2)
+ X ′

t2,sin
2(θ/2)

is dis-
tributed as X ′

t1+t2,sin
2(θ/2)

. We say that these Q(`) coefficients live in sector
`. For a fixed probability p, let K`,p denote the smallest positive integer for
which, with probability at least 1− p, all sector-` coefficients lie in the range
[γ`+K`,p , γ`−K`,p ]. By the union bound, to upper bound K`,p it suffices to find
an integer a for which

Pr
[∣∣∣X ′2`,sin2(θ/2)

∣∣∣ ≥ a
]
≤ p

Q(`)
= p exp

(
−Θ(
√
`)
)
. (3.109)

By Hoeffding’s inequality, we have Pr
[∣∣∣X ′2`,sin2(θ/2)

∣∣∣ ≥ a
]
≤ exp(−Θ(a2/`));

this yields the bound

K`,p ≤ Θ

(√
` log(1/p) + `

√
`

)
. (3.110)

Furthermore, note that since there are Θ(n2) sectors, by the union bound,
with probability at least 1− δ, for each sector j, all coefficients lie in the range
[γj+Kj,p , γj−Kj,p ] if we take p to be p = δ/Θ(n2). We make this choice of p
and assume for the remainder of the argument that all coefficients of sector j
lie in the given range, which is true with probability at least 1 − δ. We also
note the following fact which will be used below: if ` and p are related as
` ≥ Θ(log(1/p)), then K`,p = O(`).

Still working with the unnormalized state of Eq. (3.107), we now study
the scaling between the Schmidt index i and corresponding coefficient λ̃i for
i in the regime i ≥ exp

(
Θ(
√

log(1/p))
)
. Note that λ̃i = γ` for some integer

`. We first lower bound `. Note that the lower bound is achieved if, for each
sector j, all coefficients in that sector are equal to γj−Kj,p . In this case, the
exponent ` is equal to `′ −K`′,p, where `′ is the smallest integer such that

i ≤
`′∑
j=1

Q(`′) = exp
(

Θ(
√
`′)
)
. (3.111)

https://oeis.org/A000009
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Rearranging, we see that `′ = Θ(log2(i)) ≥ Θ(log(1/p)), and hence ` =
Θ(log2(i)) since `′−K`′,p = Θ(`′). Similarly , an upper bound on ` is achieved
if, for each sector j, all coefficients in that sector are equal to γj+Kj,p . In this
case, ` is equal to `′+K`′,p, where `′ is defined as above. This yields a matching
upper bound for ` of Θ(log2(i)). We therefore have the scaling ` = Θ(log2(i)),
which, using the fact that λ̃i = γ` yields

λ̃i = exp
(
Θ(− log2(i))

)
, i ≥ exp

(
Θ(
√

log(1/p))
)
. (3.112)

Noting that λi is proportional to λ̃i via λi = 1
N
λ̃i with N =

√∑
i λ̃

2
i , this

shows the first statement of the lemma.

Now, suppose that for some i ≥ i∗ = exp
(

Θ(
√

log(1/p))
)
, we truncate

all Schmidt coefficients with index ≥ i. The incurred truncation error is

ε =
∑
j≥i

λ2
j <

∑
j≥i

λ̃2
j = exp

(
−Θ(log2(i))

)
(3.113)

where the inequality holds because the unnormalized state has norm strictly
greater than one (i.e. N > 1). Rearranging, this becomes

i ≤ exp
(

Θ(
√

log(1/ε))
)
. (3.114)

Hence, if we truncate the state at the end of the process up to a truncation
error of ε, the rank r of the post-truncation state is bounded by

r ≤ max
(

exp
(

Θ(
√

log(1/ε))
)
, exp

(
Θ(
√

log(1/p))
))

(3.115)

= exp

(
Θ

(√
log
( n

ε · δ

)))
(3.116)

as desired, where we used the relation p = δ/Θ(n2).

Lemma 3.7 (restated). Suppose a 1D random circuit C is applied to qubits
{1, . . . , n} consisting of a layer of 2-qubit Haar-random gates acting on qubits
(k, k+1) for odd k ∈ {1, . . . , n−1}, followed by a layer of 2-qubit Haar-random
gates acting on qubits (k, k+1) for even k ∈ {1, . . . , n−1}. Suppose the qubits
of region B = {i, i+1, . . . , j} for j ≥ i are measured in the computational basis,
and the outcome b is obtained. Then, letting |ψb〉 denote the post-measurement
pure state on the unmeasured qubits, and letting A = {1, 2, . . . , i − 1} denote
the qubits to the left of B,

ES(A)ψb ≤ c|B| (3.117)

for some universal constant c < 1, where the expectation is over measurement
outcomes and choice of random circuit C.
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Proof. We will use a smaller technical lemma, which we state and prove below.

Lemma 3.13. Let |ψ〉AB be some state on subsystems A and B with subsystem
B a qubit, and let |H〉CD be some two-qubit Haar-random state on subsystems
C and D. Suppose a Haar-random two-qubit gate U is applied to subsystems
B and C. If subsystem B is measured in the computational basis and outcome
b is obtained, then the von Neumann entropy of the post-measurement state
|ψb〉ABCD in subsystem A satisfies

E
b,H,U

S(A)ψb ≤ c · S(A)ψ (3.118)

for some constant c < 1, where the expectation is over the random measure-
ment outcome, the random state |H〉CD, and the Haar-random unitary U .

Proof. Consider the Schmidt decomposition |ψ〉AB =
√
p|e1〉A|f1〉B +√

1− p|e2〉A|f2〉B where we assume WLOG that p ≥ 1/2. We also assume that
p < 1, because the statement is trivially true for any value of c when p = 1.
Note that the entanglement entropy of this state is simply S(A)ψ = H2(p)
where H2(p) = −p log p− (1−p) log(1− p) is the binary entropy function. Let
M0 = (Π0⊗I)U andM1 = (Π1⊗I)U denote the measurement operators acting
on subsystems B and C, where Πi denotes the projector onto the computa-
tional basis state |i〉 and U is the Haar-random unitary applied to subsystems
B and C. Let X denote a random variable equal to 1 with probability p and
equal to 2 with probability 1 − p. Let Y denote the measurement outcome
of {M0,M1} when applied to the state |eX〉A|fX〉B|H〉C,D. The probability of
obtaining measurement outcome b on the original state is simply Pr(Y = b),
and the post-measurement state after obtaining outcome b is

1√
Pr(Y = b)

(√
p · Pr(Y = b|X = 1)|e1〉A|b〉B|φb,1〉C,D

+
√

(1− p) · Pr(Y = b|X = 2)|e2〉A|b〉B|φb,2〉C,D
)

=
√

Pr(X = 1|Y = b)|e1〉A|b〉B|φb,1〉C,D
+
√

Pr(X = 2|Y = b)|e2〉A|b〉B|φb,2〉C,D

(3.119)

where |φb,j〉C,D are normalized states on subsystems C and D. Define

ε = min
b
|〈φb,1|φb,2〉|2. (3.120)

Letting ρA,b denote the reduced density matrix on subsystem A of the post-
measurement state after obtaining measurement outcome b, the maximal
eigenvalue of this matrix is lower bounded as λmax(ρA,b) ≥ Pr(X = 1|Y = b) +
εPr(X = 2|Y = b). (To see this, observe that the reduced density matrix on
CD is σ = Pr(X = 1|Y = b) |φb,1〉〈φb,1|+ Pr(X = 2|Y = b) |φb,2〉〈φb,2|, and the
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maximal eigenvalue is lower bounded as λmax(ρA,b) = λmax(σ) ≥ 〈φb,1|σ|φb,1〉 ≥
Pr(X = 1|Y = b) + εPr(X = 2|Y = b)). Furthermore, note that

E
Y
λmax(ρA,Y ) ≥ E

Y
[Pr(X = 1|Y ) + εPr(X = 2|Y )] (3.121)

= p+ ε(1− p). (3.122)

Now, using concavity of the binary entropy function, we have

E
Y
S(A)ψY = E

Y
H2(λmax(ρA,Y )) (3.123)

≤ H2(E
Y
λmax(ρA,Y )) (3.124)

≤ H2(p+ ε(1− p)). (3.125)

Consider the ratio r(p, ε) = H2(p+ε(1−p))
H2(p)

. We want to argue that for any ε > 0,
r(p, ε) is bounded away from one on the interval p ∈ [1/2, 1). This statement
is clearly true for any p bounded away from one since H2 is monotonically
decreasing on the interval [1/2, 1). Furthermore, it is straightforward to show
limp→1 r(p, ε) = 1− ε. Hence, we have

EY S(A)ψY
S(A)ψ

≤ r(p, ε) ≤ c(ε) (3.126)

where c(ε) < 1 unless ε = 0. We now average both sides over the choice of
Haar-random state on CD as well as the Haar-random unitary U acting on
BC. Since the event ε > 0 occurs with nonzero probability (in fact, with
probability one), we have the strict inequality EH,U [c(ε)] = c < 1, from which
the desired inequality follows.

We may assume that i 6= 0 and j 6= n since in these cases we trivially have
S(ρA(b)) = 0. The post-measurement state may be constructed as follows.
Apply all gates in the lightcone of qubit i, then measure qubit i. Now apply
all gates in the lightcone of qubit i + 1 not previously applied, then measure
qubit i + 1. Assume that qubits are introduced only when they come into
the lightcone under consideration. Iterate until all qubits in region B have
been measured. Finally, apply any gates that have not yet been applied. It
is straightforward to verify that this is equivalent to applying all gates of the
circuit before performing the measurement of region B, in the sense that the
measurement statistics are the same, and the post-measurement state given
some outcome b is the same.

By Lemma 3.13, after the first iteration we are left with the state
|ψ〉LR|bi1〉i1 , such that ES(L)ψ ≤ c for some constant c < 1. In all iterations,
we let L denote the current subsystem to the left of the measured qubits, and
R denote the subsystem to the right of the measured qubits. Now consider
the second iteration. Depending on whether i was even or odd, R may consist
of one or two qubits immediately after the measurement of i. In the former
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|ψ〉

A
L3 R3

L2 R2

L1 R1

≈ 2r

Figure 3.15: Illustration of the state after the qubits of columns i, i+ 1, . . . , j
have been measured, but before gates in the lightcone of registers A and L
have been performed. In each row i, we are left with a post-measurement
bipartite state |φi〉LiRi depicted by a wavy line. The expected entanglement
entropy S(Li)φi decays exponentially in r. The final state of interest |ψ′〉 is
obtained by applying local unitaries to the qubits in the dashed red box before
measuring all of these qubits in the computational basis, inducing the final
state |ψ′〉 on R = R1 ∪ · · · ∪ RL. By concavity of the von Neumann entropy,
the expected entanglement entropy of |ψ′〉 across the cut defined by the dotted
blue box is upper bounded by the entanglement entropy across this cut before
the unitaries and measurements in the dashed red box are performed.

case, we may apply Lemma 3.13 again, obtaining ES(L)ψ ≤ c2 after the mea-
surement of qubit i + 1, and obtaining a two-qubit subsystem to the right of
the measured qubits. In the latter case, as a consequence of concavity of von
Neumann entropy, we have ES(L)ψ ≤ c after measurement, and are left with
a one-qubit subsystem to the right of the measured qubits. Iterating this pro-
cess, after all qubits of subregion B have been measured, we are left with some
state |ψ〉LR such that ES(L)ψ ≤ c|B|/2 ≤ c′|B| where c′ =

√
c < 1. Finally, local

unitary gates are applied to |ψ〉LR to obtain the final post-measurement state
on the entire chain. Since each unitary is applied to only the left of region B
or only the right of region B, the entanglement entropy across the (A,Ac) cut
is unaffected by these gates, and remains bounded by c|B| in expectation.

Lemma 3.8 (restated). Let C be an instance of Brickwork(L, r, v). Then,
with probability at least 1−2−Θ(r) over the circuit instance, SEBD running with
maximal bond dimension cutoff D = Θ(1) and truncation error parameter
ε = 2−Θ(r) can be used to (1) sample from the output distribution of C up to
error n2−Θ(r) in variational distance and (2) compute the output probability of
an arbitrary output string up to additive error n2−Θ(r)/2n in runtime Θ(n).

Proof. Suppose the state stored by SEBD immediately before entering into a
1-local region is |ψ〉A, defined on register A. After another O(r) iterations of
SEBD, just before the end of the 1-local region, denote the new one-dimensional
state stored by SEBD as |ψ′〉. Note that |ψ′〉 is a random state, depending
on both the random choices of gates in the 1-local region and the random
measurement outcomes. We now bound the expected entanglement entropy
of |ψ′〉 across an arbitrary cut.
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To this end, we observe that the random final state |ψ′〉 may be equiva-
lently generated as follows. Instead of iterating SEBD as usual for O(r) iter-
ations, we first introduce a contiguous block of qubits that lie in the 1-local
region. In particular, for all rows, we introduce all qubits that lie in columns
{i, i + 1, . . . , j}. Here, i is chosen to be the leftmost column such that the
lightcone of column i does not contain qubits in register A. Similarly, j is
chosen to be the rightmost column such that the lightcone of qubits in column
j does not contain vertical gates. Note that |i− j| = Θ(r).

We next apply all gates in the lightcone of the qubits of columns {i, i +
1, . . . , j}, before measuring these qubits in the computational basis. Note
that in this step, we are effectively performing a set of L one-dimensional
depth-2 Haar-random circuits, and then measuring Θ(r) intermediate qubits
for each of the L instances. For each instance, we are left with a (generically
entangled) pure state between a “left” and “right” subsystem, as illustrated in
Figure 3.15. Let Li (Ri) denote the left (right) subsystem associated with row
i, and let |φi〉LiRi denote the associated post-measurement pure state on these
subsystems. By Lemma 3.7, it follows that the expected entanglement entropy
for any 1D instance obeys ES(Li)φi ≤ 2−Θ(r) where the expectation is over
random circuit instance and measurement outcomes.

The next step is to apply all gates in the lightcone of the qubits of registers
A and L = ∪iLi before measuring these registers, inducing a (random) 1D
post-measurement pure state on subsystem R = ∪iRi. It is straightforward to
verify that the distribution of the random 1D pure state |ψ′〉R obtained via this
procedure is identical to that obtained from repeatedly iterating SEBD through
column j5. Indeed, the procedures are identical up to performing commuting
gates and commuting measurements in different orders, which does not affect
the measurement statistics or post-measurement states.

Our goal is now to bound the entanglement entropy S(R1R2 . . . Rk)ψ′ in
expectation across an arbitrary cut of the post-measurement 1D state. Such
a bound follows from the concavity of the von Neumann entropy. Let ρR1,...,Rk

denote the reduced density matrix on these subsystems before the measure-
ments on A and L are performed. Let ρxR1,...,Rk

denote the reduced density
matrix on these subsystems after the measurements on A and L are per-
formed and the outcome x is obtained; note that the final state ψ′ implicitly
depends on x. Now, letting Pr[x] denote the probability of obtaining out-
come x, we have the relation

∑
x Pr[x]ρxR1···Rk = ρR1···Rk . To see this, observe

that for any set of measurement operators {Mx}x satisfying
∑

xM
x†Mx = I,

we have ρR1···Rk = tr\R1···Rk (|ψ′〉〈ψ′|) =
∑

x tr\R1···Rk
(
Mx |ψ′〉〈ψ′|Mx†) =

5Strictly speaking, we are actually studying a version of SEBD that only performs the
MPS compression step at the end of a 1-local region. Since 1-local operations cannot increase
the bond dimension of the associated MPS, the algorithm can forego the compression steps
during the 1-local regions without incurring a bond dimension increase.



117∑
x Pr[x]

tr\R1···Rk (Mx|ψ′〉〈ψ′|Mx†)
tr (Mx|ψ′〉〈ψ′|Mx†)

=
∑

x Pr[x]ρxR1···Rk . Now,∑
x

Pr[x]S(R1 . . . Rk)ψ′

=
∑
x

Pr[x]S(ρxR1,...,Rk
) (3.127)

≤ S

(∑
x

Pr[x]ρxR1,...,Rk

)
(3.128)

= S(ρR1,...,Rk) (3.129)

=
k∑
i=1

S(Ri)φi , (3.130)

where the first line follows by definition, the second line follows from concavity
of the von Neumann entropy, the third line uses the relation we discussed
previously, and in the final line we used the fact that ρR1,...,Rk is a product
state. Hence, we see that for any fixed set of gates and for any outcomes of the
measurements of qubits in columns i, i + 1, . . . , j, the expected entanglement
entropy of the final 1D state ψ′ on R across any cut is bounded by the entropy
across that cut before the measurements on subregions A and L. Taking the
expectations of both sides of this result with respect to the random gates and
measurement outcomes of the qubits in columns i, i+1, . . . , j, we finally obtain

ES(R1 . . . Rk)ψ′ ≤ L2−Θ(r) , (3.131)

where we used the fact that k < L and ES(Ri)φi ≤ 2−Θ(r). We now use the
fact that the largest eigenvalue λmax(R1 · · ·Rk) of the reduced density matrix
is lower bounded as λmax(R1 · · ·Rk)ψ′ ≥ 2−S(R1···Rk)ψ′ ; this follows from the
fact that Shannon entropy upper bounds min-entropy. Using this inequality
as well as Jensen’s inequality, we have the bound

Eλmax(R1 · · ·Rk) ≥ E 2−S(R1···Rk)ψ′ (3.132)

≥ 2−ES(R1···Rk)ψ′ (3.133)

≥ 2−L2−Θ(r)

(3.134)

≥ 1− L2−Θ(r). (3.135)

Therefore, if we truncate all but the largest Schmidt coefficient across the
Rk : Rk+1 cut, we incur an expected truncation error upper bounded by
L2−Θ(r). Hence, by Markov’s inequality, we incur a truncation error upper
bounded by L2−Θ(r) with probability at least 1− 2−Θ(r).

Therefore, if we run SEBD using a per bond truncation error of ε = L2−Θ(r)

and a maximum bond dimension cutoff of D = O(1), the failure probability
will be upper bounded by Lv2−Θ(r); here we used the union bound to upper
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bound the probability that any of the O(Lv) bonds over the course of the
algorithm becomes larger than the cutoff D. Hence, by Corollary 3.1, for at
least 1 − 2−Θ(r) fraction of random circuit instances, SEBD can sample from
the output distribution with variational distance error Lv2−Θ(r) < n2−Θ(r).
Similarly, by Corollary 3.3, for at least 1− 2−Θ(r) fraction of circuit instances,
SEBD can compute the probability of the all-zeros output string up to additive
error n2−Θ(r)/2n.

Since the runtime of SEBD is O(nD3) when acting on qubits as discussed
previously, and D is chosen to be constant for the version of the algorithm
used here, the runtime is O(n).
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C h a p t e r 4

ANTI-CONCENTRATION OF RANDOM QUANTUM
CIRCUITS IN LOGARITHMIC DEPTH

This chapter has been adapted from joint work with Nicholas Hunter-Jones
and Fernando G. S. L. Brandão in Ref. [125].

4.1 Motivation
In the previous chapter, we presented a classical algorithm for approxi-

mately simulating shallow 2D random quantum circuits (RQCs). The main
motivation there was to scrutinize claims that RQCs should be hard to simu-
late, which have been the basis for recent experiments aiming to demonstrate
exponential quantum advantage [6, 7]. Beyond this application, RQCs have
notably been used to study the onset of quantum chaos and dynamical spread
of entanglement in strongly interacting quantum systems [41, 42, 87], including
information processing in black holes [126].

The utility of RQCs in these situations derives from a myriad of quantita-
tive properties they have been shown to possess. For example, RQCs quickly
generate entanglement [85, 87, 127], lead to fast scrambling and decoupling of
quantum information [128, 129], and act as efficient encoding circuits for good
quantum error-correcting codes [130]. When the circuits are geometrically lo-
cal, they lead to ballistic spreading of local operators [41, 42]. Furthermore,
they form approximate unitary designs, that is, despite being composed of lo-
cal gates, they efficiently approximate a global random unitary transformation
up to any polynomial number of moments [37, 86, 131–133]. Meanwhile, as
discussed extensively in Chapter 3, computing transition amplitudes of RQCs
has been shown to be just as difficult as for arbitrary quantum circuits [4, 25–
27], a fact that has been used to suggest that classical simulation of RQCs
should require exponential time.

In this chapter, we focus on another property of random quantum circuits
called anti-concentration. Roughly speaking, when we measure the circuit’s
output state in the computational basis, anti-concentration is the property
that the distribution over measurement outcomes is fairly well spread across
all possible outcomes, and not too concentrated onto just one or only a small
portion of those outcomes. Quantitatively, our definition of anti-concentration
depends on the collision probability, the probability that measurement out-
comes from two independent copies of the circuit agree. An RQC architecture
is said to be anti-concentrated if the collision probability is at most a con-
stant factor larger than its minimal value. Understanding when this is the
case is particularly important for knowing when RQCs are hard to classically
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simulate. On the one hand, anti-concentration is a necessary ingredient in
most formal hardness arguments for RQC simulation [4, 19, 22, 134–138]. On
the other hand, certain classical algorithms for simulating RQCs require anti-
concentration in order to be efficient, for example, the algorithms discussed in
Refs. [30, 31] for noisy circuit simulation and the algorithm in Ref. [29] that
spoofs the linear cross-entropy benchmarking metric introduced in Ref. [6].

In most previous work where RQC anti-concentration is needed, it has
been asserted as an implication of the 2-design property (see, e.g., Refs. [136,
139]). However, the 2-design property is much stronger than what is required
for anti-concentration. It was shown that n-qubit RQCs on a fully connected
architecture form approximate 2-designs after roughly O(n) depth [131], and
this was later shown to also apply to geometrically local RQCs in 1D and
improved to O(n1/D) in D spatial dimensions [86]. However, recent work by
Barak, Chou, and Gao [29]—using a similar method to the one presented
here—showed that for 1D RQCs the collision probability converges in depth
O(log(n)), much faster than the 2-design depth of O(n). They also conjectured
that 2D RQCs anti-concentrate in depth O(

√
log(n)).

In this chapter, we prove sharp bounds on the number of gates needed for
anti-concentration in two RQC architectures. For 1D RQCs, we confirm the
O(log(n)) upper bound on the anti-concentration depth in Ref. [29], and add
a lower bound that matches the upper bound even up to the constant prefac-
tor of the log(n). We also show that an Ω(log(n)) lower bound on the depth
needed for anti-concentration holds regardless of which RQC architecture we
use, which refutes the conjecture from Ref. [29] that 2D RQCs anti-concentrate
in O(

√
log(n)) depth. We then consider a fully connected (i.e. not geometri-

cally local) RQC architecture, where each gate acts on a pair of qudits chosen
randomly among all n(n− 1)/2 possible such pairs. We show that, for qubits
(local dimension q = 2), 5n log(n)/6 gates are necessary and sufficient (up to
subleading corrections) for anti-concentration to be achieved, which settles a
conjecture in Ref. [86].

Our method employs a form of the stat mech method for RQCs, which
we discussed generally in Chapter 2, and then applied to shallow 2D RQCs in
Chapter 3, although its use in this chapter is completely self-contained. We
show how the technique converts the collision probability into a weighted sum
over bit assignments to each location in the circuit diagram, which can be
viewed as a partition function for an Ising-like statistical mechanical model.
The bit assignments can also be interpreted as a Markov chain, and the num-
ber of gates needed for anti-concentration ultimately translates into the time
needed for certain expectation values to converge under the dynamics of the
Markov chain. This method not only yields sharp quantitative bounds, it
also produces an appealing qualitative explanation on how and why the colli-
sion probability reaches its limiting value, which allows for effective heuristic
reasoning even in architectures that we have not explicitly considered here.
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The main takeaways from our work are twofold. First, we have shown
that anti-concentration is generally achieved much faster than the 2-design
property. The fact that anti-concentration occurs in Θ(n log(n)) circuit size
both in 1D and for the fully connected architecture—these being two opposite
extremes of geometric locality—suggests that anti-concentration may require
only Θ(n log(n)) size for any reasonably well-connected architecture. This
comes in sharp contrast to the situation for unitary designs, where the scaling
of the size needed with n is highly dependent on the architecture. Second,
the fact that we can prove tight upper and lower bounds attests to the power
of the stat mech method and suggests it might be similarly useful in other
situations.

The structure of this chapter is as follows: in Section 4.2, we briefly define
the collision probability and anti-concentration, so that we can precisely state
our technical results in Section 4.3; in Section 4.4, we comment on related
work and implications of our technical results; in Section 4.5, we overview
the correspondence between collision probability and stat mech system, and
discuss the intuition behind log-depth anti-concentration that we glean from
it; finally, in Section 4.6, we recap the takeaways of the chapter and open
problems for the future. Following the outlook section, several appendices
appear with more formal definitions and proofs of all the technical claims in
the chapter.

4.2 Setup and definition of anti-concentration
In the previous chapter, we discussed various constant-depth 2D RQC

architectures, which were families of quantum circuit diagrams indexed by
the circuit size n, where the actual gates in the diagram were always chosen
randomly from the Haar measure. In this chapter, we extend this concept to
deeper circuits and define an RQC architecture as simply an instruction set
on how to draw a circuit diagram given both the number of qudits n (each
with local Hilbert space dimension q) and the size s of the circuit. The two
architectures we consider specifically in this chapter are the 1D architecture
(with periodic boundary conditions), where qudits are arranged in a ring and
alternating layers of nearest-neighbor two-qudit gates are performed, and the
complete-graph architecture, where each two-qudit gate is chosen uniformly at
random among all n(n− 1)/2 possible qudit pairs. Formal definitions of these
architectures appear in Appendix 4.A. Note that in the formal analysis, we
also include a layer of n single-qudit gates at the beginning of the circuit, which
are not counted toward the circuit size s. These gates might be regarded as
fixing the local basis for the initial input state.

The associated RQC ensemble for an RQC architecture is formed by fol-
lowing this instruction set to obtain a circuit diagram, and then choosing
the value of each gate in the diagram independently from the Haar measure.
Choices for each gate determines an overall qn × qn unitary U that the cir-
cuit implements. Each instance U is associated with an output probability
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Figure 4.1: A caricature of anti-concentration. For the uniform distribution,
which is completely anti-concentrated, all qn outcomes are allocated probabil-
ity mass q−n (dashed blue line) and the collision probability is Z = q−n. For
globally Haar-random unitaries, the output probabilities are on average q−n
but have some non-zero variance, and the collision probability is Z ≈ 2q−n.
Whenever Z ≈ cq−n for some c independent of n, we call the distribution anti-
concentrated. For low-depth RQCs, the mean output probability is q−n, but
the variance is much larger, and the collision probability is much larger than
q−n. Most of the probability mass is concentrated onto a few measurement
outcomes, with the remainder of the outcomes being assigned a very small
amount of mass, leading to the frequency of circuit instances for which pU(0n)
is close to 0 to be large.
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distribution pU over qn possible computational basis measurement outcomes
x ∈ [q]n, (where [q] = {0, 1, . . . , q − 1}): pU(x) = |〈x|U |0n〉|2. Note that this
distribution is referred to by the notation pideal in Chapter 1 and Chapter 5.

Anti-concentration tries to capture the notion that the probability mass
in pU is well spread out over all the outcomes. The uniform distribution,
where each output is allocated q−n fraction of the total probability mass, is
the ultimate anti-concentrated distribution because the mass is exactly equally
spread, but we say a distribution is still anti-concentrated as long as the av-
erage fluctuations from uniform are no larger than O(q−n). This definition is
captured precisely by the collision probability, which is

∑
x pU(x)2. The col-

lision probability gives the probability that measurement outcomes from two
independent copies of the circuit are identical. It is also proportional to the
second moment (and thus is related to the variance) of the output probability
of a randomly chosen bit string. If pU is the uniform distribution, then the
collision probability is q−n, its minimal possible value. For an RQC architec-
ture at a specified qubit number n and circuit size s, we consider the collision
probability averaged over the randomly chosen circuit instances U , defined by
the expression

Z = E
U

∑
x∈[q]n

pU(x)2

 = qn E
U

[
pU(0n)2

]
, (4.1)

where the second equality holds because by symmetry, each of the qn terms
in the sum yields the same number under expectation as long as at least one
Haar-random gate acts on each qudit.

We say an RQC architecture with n qudits and s gates is anti-concentrated
if there is a constant α (independent of n) with 0 < α ≤ 1 for which Z ≤
α−1q−n, i.e. that the collision probability is only a constant factor larger than
its minimal value. In particular, our theorem statements roughly correspond
to the choice α = 1/4, but other choices of α would yield the same results up
to leading order. If desired, Markov’s inequality can then be used to bound the
fraction of the randomly chosen U whose collision probability is larger than
some constant multiple of Z. Moving forward, for convenience, when we say
collision probability we will mean the average collision probability Z.

Very shallow circuit architectures are not anti-concentrated: there are ex-
pected to be some output probabilities x for which pU(x) is exponentially larger
than the mean of q−n. As the circuit gets deeper, we expect the probability
distribution to become closer to uniform, but even at infinite depth, when the
circuit unitary U becomes a globally Haar-random qn× qn unitary, the output
distribution still does not become completely uniform. In this case, the output
distribution will typically follow a Porter-Thomas distribution1, and Z can be

1In the Porter-Thomas distribution, the frequency at which pU (x) = p is proportional
to exp(−p/q−n), illustrated roughly in the middle diagram of Figure 4.1.
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exactly computed as

lim
s→∞

Z = ZH =
2

qn + 1
, (4.2)

roughly twice as large as the minimal value of q−n associated with the uniform
distribution. This statement is proved using the techniques described later.
Refer to Figure 4.1 for a graphical illustration of these cases.

While one could capture the notion of anti-concentration with a differ-
ent definition, the definition we choose is useful and relevant because it has
concrete ramifications in all of the previously mentioned applications of anti-
concentration. For example, one implication of our definition (by application of
the Paley-Zygmund inequality) is that if Z ≤ α−1q−n, then for any 0 ≤ β ≤ 1,

Pr
U

[pU(x) ≥ βq−n] ≥ α(1− β)2 , (4.3)

meaning that for at least a constant fraction of the circuit instances the prob-
ability of a given measurement outcome x is at least a constant fraction β
of the mean measurement probability q−n. This sort of inequality is the
relevant one for turning good additive approximations into good multiplica-
tive approximations (with reasonable probability), employed in, for example,
Refs. [4, 19, 22, 134–138] in order to argue that it is hard to classically sample
output distributions for a large fraction of instances up to small total varia-
tion distance error (for more details, see Section 4.4.2). In fact, equations like
Eq. (4.3) are sometimes taken to be the definition of anti-concentration [136],
which is a weaker definition than ours since, in principle, it can hold even in
cases where our definition does not.

4.3 Overview of contributions

Architecture sAC upper bound sAC lower bound

general O(n2) Ω(n log(n))

1D c1D n log(n) +O(n) c1D n log(n)−O(n)

complete-graph ccg n log(n) +O(n) ccg n log(n)−O(n)

Table 4.1: Summary of results: upper and lower bounds on the circuit size
sAC at which anti-concentration is achieved for different random circuit ar-
chitectures. The constants are given by c1D = (2 log((q2 + 1)(2q)))−1 and
ccg = (q2 + 1)/(2(q2 − 1)), where q is the qudit local dimension (q = 2 for
qubits).

We show that the collision probability is given by a discrete sum, which
we interpret as the expectation value of a certain stochastic process or as the
partition function of an Ising-like statistical mechanical system. The corre-
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spondence between the collision probability and the discrete sum is described
in Section 4.5, and a complete derivation is provided in Appendix 4.B.

Analyzing our expression, we derive rigorous upper and lower bounds on
the collision probability generally and for two specific architectures. These
bounds are stated here and the proofs are provided in the Appendices. These
bounds are then used to form upper and lower bounds quoted in Table 4.1 on
the anti-concentration size sAC , defined as the minimum circuit size required
such that Z ≤ 2ZH . The constant 2 in that definition is arbitrary but a
different constant would only lead to linear-in-n changes to sAC , which would
be subleading and would not affect any of the statements in Table 4.1. All
logarithms in this thesis are natural logarithms.

Collision probability upper bounds

Our upper bounds take the following form:

Z ≤ ZH

(
1 + e−

2a
n

(s−s∗)
)
, (4.4)

where the constant a is independent of n and depends on the circuit architec-
ture, and s∗ is a function of n that also depends on the architecture. Thus, if
the anti-concentration size sAC is defined to be the minimum size s such that
Z ≤ 2ZH , then we have sAC ≤ s∗. Specifically, we have the following results,
which are restated here as theorems, and proved rigorously in the Appendices.

First, we consider the 1D architecture with periodic boundary conditions,
where the qudits are arranged on a ring and alternating layers of n/2 nearest-
neighbor Haar-random gates are applied.

Theorem 4.1. For the 1D architecture, Eq. (4.4) holds with

a = log

(
q2 + 1

2q

)
(4.5)

s∗ =
1

2a
n log(n) + n

(
1

2a
log(e− 1) +

1

2

)
(4.6)

whenever s ≥ s∗.

Since this depth of the 1D architecture is given by d = 2s/n, we can
define d∗ = 2s∗/n = a−1 log(n) + O(1) for 1D and conclude that the “anti-
concentration depth” dAC satisfies dAC ≤ d∗ = O(log(n)).

Similarly, we show an upper bound for the complete-graph architecture,
where each gate acts on a random pair of qudits without regard for their spatial
proximity.
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Theorem 4.2. For the complete-graph architecture, Eq. (4.4) holds with

a =
(q − 1)2

2(q2 + 1)
(4.7)

s∗ =
q2 + 1

2(q2 − 1)
n log(n) + cn (4.8)

whenever s ≥ s∗, for a constant c that is independent of n.

A size-s circuit diagram chosen randomly from the complete-graph ar-
chitecture will have depth at most O(s log(n)/n) with high probability [129],
meaning that O(log(n)2) depth is typically sufficient for anti-concentration in
the complete-graph architecture.

We also consider general architectures. We define a property called regu-
larly connected, which applies to an RQC architecture when for any partition
of qubits into two sets, there will be a gate in the circuit that couples the two
sets at least once every O(n) gates. The precise definition is given later in
Definition 4.5. Nearly all natural architectures have this property, including
standard architectures in D spatial dimensions for any D.

Theorem 4.3. If an architecture is regularly connected, then Eq. (4.4) holds
with a = Θ(1) and s∗ = Θ(n2).

This corresponds to Θ(n) gates per qudit. This result is weaker than our
specific results for the 1D and complete-graph architectures, and we conjecture
that it can be strengthened to Θ(log(n)) gates per qudit.

Conjecture 4.1. Theorem 4.3 can be improved to s∗ = Θ(n log(n)).

Collision probability lower bounds

Our lower bounds on the collision probability take the form

Z ≥ ZH
2

exp
(
Aelog(n)−Bs/n) , (4.9)

for constants A and B that are independent of n. (The lower bound for the
complete-graph architecture takes a different but very similar form.) This
form implies that if s grows with n like s ≈ fn log(n)/B for some f < 1,
then we have Z/ZH ≥ 1

2
eAn

1−f , which becomes arbitrarily large as n → ∞,
meaning the architecture is not anti-concentrated. This puts a lower bound
on the anti-concentration size sAC of sAC ≥ n log(n)/B −O(n).

Specifically, we show a general lower bound, as well as specific lower
bounds for the 1D and complete-graph architectures.
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Theorem 4.4. For any RQC architecture with s two-qudit gates, the following
holds:

Z ≥ ZH
2

exp

(
log(q)

q + 1
elog(n)−2 log(q2+1)s/n

)
. (4.10)

This has the consequence that if sAC and dAC are defined as the minimum
size and minimum depth for which Z ≤ 2ZH , then

sAC ≥ (2 log
(
q2 + 1

)
)−1n log(n)−O(n) (4.11)

dAC ≥ (log
(
q2 + 1

)
)−1 log(n)−O(1) . (4.12)

We improve on the general lower bound for the two specific architectures
we consider.

Theorem 4.5. For the 1D architecture, there exists a constant A such that

Z ≥ ZH
2

exp
(
Aelog(n)−2as/n

)
, (4.13)

where a = log((q2 + 1)/(2q)) is the same as for the upper bound in Eq. (4.5).

This implies that in 1D

sAC ≥ (2a)−1n log(n)−O(n) (4.14)
dAC ≥ a−1 log(n)−O(1) , (4.15)

which is tight with the upper bound up to subleading corrections.

Theorem 4.6. For the complete-graph architecture,

Z ≥ ZH
2

exp

(
log(q)

q + 1
e

log(n)+log

(
1− 2(q2−1)

n(q2+1)

)
s

)
. (4.16)

Although a slightly different form than the other lower bounds, this still
yields the conclusion

sAC ≥
q2 + 1

2(q2 − 1)
n log(n)−O(n) , (4.17)

which is tight with the upper bound up to subleading corrections. When q = 2
(qubits), the prefactor of the n log(n) is 5/6, settling a conjecture proposed in
Ref. [86].

The upper and lower bounds together allow us to conclude that sAC =
Θ(n log(n)) for both the 1D architecture and the complete-graph architecture,
and in fact we have matching upper and lower bounds on the constant prefactor
of the n log(n).
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We note that, for q ≥ 5, our results have the counter-intuitive implica-
tion that the 1D architecture anti-concentrates faster than the complete-graph
architecture, even though it is geometrically local. We argue that this is an
artifact of the definition of the models, and can be explained by the fact that
the qudit pairs acted upon by the gates in the complete-graph architecture are
chosen randomly, while the qudit pairs in the 1D architecture are not random;
in fact, in the latter case they are optimally packed into layers of n/2 non-
overlapping gates. As q increases, anti-concentration becomes arbitrarily fast
for the 1D architecture (the coefficient of the n log(n) decreases like 1/ log(q)).
Meanwhile, for the complete-graph architecture, no matter how large q is, there
will always be some minimum number of gates—roughly n log(n)/2—needed
simply to guarantee that all the qudits have been involved in the circuit with
high probability. We suspect that a parallelized version of the complete-graph
architecture would anti-concentrate with a slightly better constant than the
1D architecture.

4.4 Related work and implications
Here we highlight a few relevant previous works and emphasize how our

results fit in.

• Harrow and Mehraban [86] studied how quickly RQCs form approximate
unitary t-designs and anti-concentrate for various architectures. For geo-
metrically local circuits, they showed that the approximate t-design prop-
erty is achieved after only O(n1/D) depth in D spatial dimensions, the first
work to break the O(n) barrier for designs. Since anti-concentration follows
from the approximate 2-design property, their work implies an O(n1/D) up-
per bound on the anti-concentration depth. We show that for D = 1, the
anti-concentration depth is actually Θ(log(n)) and we conjecture that this
is also the case for D ≥ 2, but we do not prove this, so the O(n1/D) bound
remains the best known for D ≥ 2.
They also considered the question of anti-concentration in the complete-
graph architecture and showed an upper bound on the anti-concentration
size of O(n log(n)2) and a lower bound of Ω(n log(n)). They used heuristic
reasoning to conjecture that (for q = 2) the anti-concentration size should
be 5n log(n)/3, up to leading order. We are able to show that to lead-
ing order the anti-concentration size for the complete-graph architecture is
5n log(n)/6. This is off by a factor of 2 from the conjecture stated in their
paper, which we suspect is due to a minor error in their heuristic reasoning.

• Barak, Chou, and Gao [29] developed a classical algorithm for shallow RQCs
that achieves a non-negligible score on the Linear Cross-Entropy Bench-
marking (XEB) metric despite not performing a full simulation of the RQCs.
The Linear XEB metric was used by Google to verify its 2019 quantum com-
putational supremacy experiment [6]. Barak, Chou, and Gao show that if a
depth-d RQC architecture in D spatial dimensions has collision probability
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Z, their algorithm achieves a score of ε with high probability after a total
runtime (2nZ) · exp

(
ε 15−d

)
· poly(n, 2d

D
) (here q = 2). They prove that

Z = O(2−n) after d = Ω(log(n)) for 1D RQCs, which is equivalent to our
Theorem 4.1. This shows that their algorithm achieves a ε ≥ 1/poly(n)
score in polynomial time for logarithmic depth 1D RQCs. For 2D RQCs,
they conjecture that Z = O(2−n) after depth d = O(

√
log(n)), which would

imply their algorithm achieves ε ≥ 1/poly(n) score in polynomial time at
that depth. Our Theorem 4.4 contradicts their conjecture by showing gen-
erally that 2nZ ≥ exp

(
n1−o(1)

)
when d is sublogarithmic.

• Our method performs expectations over individual gates in the RQC using
formulas for Haar integration, a strategy that has also been used on similar
problems in the past. Many works have used this strategy to form a random
walk over Pauli strings with wide-ranging applications [85, 86, 128–131, 140–
142]. Our analysis applies this strategy in a distinct way that more closely
resembles a series of works that interpret the resulting expression as the
partition function of classical statistical mechanical models [36–42, 44, 45,
47], which are discussed more extensively in Chapter 2. Here, we analyze
those partition functions using a Markov chain analysis, but our Markov
chain has different transition rules compared to the Pauli string Markov
chain.

4.4.1 Connection to 2-design
Anti-concentration for random quantum circuits (as well as some Hamil-

tonian models) is often established as a consequence of the convergence to
approximate unitary 2-designs, where approximately reproducing the first two
moments of the Haar measure allows one to bound the RQC collision proba-
bility. For both 1D and complete-graph RQCs, size O(n2) circuits (of linear
depth) form approximate 2-designs and therefore anti-concentrate. There are a
number of definitions of approximate unitary designs utilizing different norms;
we briefly comment on the definitions and requirements for anti-concentration
in this architecture.

As we review in Appendix 4.F, defined in terms of the diamond norm,
ε-approximate 2-designs have a collision probability upper bounded by ZH
up to additive error. In order to achieve anti-concentration, ε must be taken
to be exponentially small (i.e. we require ε = 1/q2n). Ref. [133] introduced
a stronger notion of approximate design in terms of the complete positivity
of the difference in channels. Under this strong definition, 2-designs bound
the collision probability up to relative error with respect to the Haar value,
and thus anti-concentrate. A much weaker definition of approximate design
is the operator norm of the moment operators, often called the tensor prod-
uct expander (TPE) condition. Interestingly, TPEs also bound the collision
probability up to additive error, but again the error needs to be exponentially
small to achieve anti-concentration.
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Random quantum circuits on the 1D architecture form ε-approximate 2-
designs, in both diamond norm and the stronger definition, when the circuit
size is O(n(n + log(1/ε))). Moreover, 1D random circuits actually form ε-
approximate TPEs in constant depth, when the circuit size is O(n log(1/ε)).
But again, anti-concentration requires that ε be taken to be ε = 1/q2n,
thus mandating linear depth. So to establish that the collision probability
is bounded up to a relative error, as in the definition of anti-concentration,
using unitary 2-designs or a general bound on the moments necessitates lin-
ear depth. For non-local RQCs defined on a complete-graph, the best known
upper bounds on the approximate 2-design depth are the same as for the 1D
architecture. But it has been conjectured that this may be improved for non-
local RQCs, which would close the gap between the 2-design time and the
depth required for anti-concentration.

To further emphasize the distinction between anti-concentration and uni-
tary 2-designs, we note that anti-concentration can be achieved for specific
short-depth circuits without generating entanglement across the system (in-
deed, a circuit consisting of a single layer of single-qubit Hadamards suffices).
Moreover, for an ensemble of random quantum circuits, anti-concentration
can be equivalently phrased as the statement that certain matrix elements
of second moment operator EU [U⊗2 ⊗ U∗⊗2] reach the Haar value of 2/q2n

after some depth. Whereas the approximate 2-design condition gives that
EU [〈ψ|U⊗2 ⊗ U∗⊗2|ψ〉] is small for all states |ψ〉, even those that are entangled
across the tensor copies. As we show in Appendix 4.F, there are necessar-
ily some states which require linear depth to equilibrate to the minimal Haar
value, at least for RQCs on the 1D architecture.

4.4.2 Implications for arguments on hardness of simulation
Anti-concentration is a key ingredient in hardness-of-simulation argu-

ments [4, 19, 22, 25–27, 134–138, 143] that underlie quantum computational
supremacy proposals. In this section we review its role in those arguments
(briefly covered previously in Chapter 1) and the implications our results have
in this context.

The starting point for these hardness arguments is the long-known obser-
vation that the answer to a hard classical problem can be encoded into the
output probability pU(x) of a quantum circuit U .2 Thus, exactly computing
pU(x) for arbitrary U and x should not be possible in classical polynomial
time. This remains true even if one only needs to compute pU(x) up to some
constant relative error. The ultimate goal in the context of quantum com-
putational supremacy is to show that there is no polynomial-time classical
algorithm that approximately simulates random circuits (or at least to give
extremely convincing evidence in favor of this conclusion). More precisely, the
approximate simulation task is to produce samples from a distribution p′U for

2See Chapter 1 for discussion on how this is done.
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which
1

2
‖pU − p′U‖1 =

1

2

∑
x

|pU(x)− p′U(x)| = ε (4.18)

for some small ε = O(1), and to do this for a large fraction of U drawn
randomly from some random ensemble. Turning the starting point into the
ultimate goal requires a few steps (some of which rely on conjecture). Anti-
concentration is one of these steps.

The primary role anti-concentration plays is to turn a small additive dif-
ference |pU(x)−p′U(x)| for most x into a small relative difference r(x) for most
x, where

r(x) =
|pU(x)− p′U(x)|

pU(x)
. (4.19)

If Eq. (4.18) is obeyed, then the value of |pU(x) − p′U(x)| is on the order of
ε/qn for most x. Meanwhile, the mean value of pU(x) for random x is exactly
1/qn. If pU(x) is anti-concentrated, then for most x, pU(x) will be within a
constant factor of the mean, as shown in the middle diagram of Figure 4.1, and
r(x) = O(ε) will hold for most x. However, if pU(x) is not anti-concentrated,
then pU(x) will be much smaller than the mean for most x, as depicted in
the right diagram of Figure 4.1. This means that without anti-concentration,
r(x)� ε for most x, which is problematic because the hard classical problems
encoded into pU(x) are no longer hard when the relative error is extremely
large, so anti-concentration appears to be necessary if there is any hope of
completing the hardness argument using existing techniques.

Even if anti-concentration holds, more is needed to show hardness of ap-
proximately simulating RQCs. One must turn hardness of computing pU(x)
into hardness of sampling from pU and also turn hardness for arbitrary U into
hardness for a random U . There are techniques that work for each of these
steps individually, but currently they do not work together simultaneously,
and thus an additional conjecture must be made.

Our work puts sharp bounds on the number of gates needed for anti-
concentration to hold in multiple RQC architectures, which constrains when
these hardness arguments have the potential to work. Our finding that the
number of gates per qudit needed for anti-concentration grows only logarithmi-
cally in n in the 1D and complete-graph architectures implies that RQC-based
quantum computational supremacy might be achievable at a shallower circuit
depth than previously believed. For example, Google’s 2019 quantum com-
putational supremacy experiment was based on 2D RQC’s of depth exceeding
the
√
n diameter of the qubit array [5, 6]. The fact that 1D circuits anti-

concentrate in Θ(log(n)) depth is evidence that 2D circuits should have the
same scaling (if anything, anti-concentration should happen faster in 2D). Thus
a similar quantum computational supremacy experiment might be equally de-
fensible at Θ(log(n)) depth instead of Ω(

√
n) depth. We note, however, that
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there are other reasons to want to go to larger depth (e.g. classical simulation
via tensor network methods becomes harder at larger depths).

Without anti-concentration, the hardness-of-simulation arguments appear
to break down, but this does not generally imply that simulation is easy.
On this topic, we refer to the results of Chapter 3, where we proposed a
classical algorithm for solving the approximate simulation problem for 2D
RQCs. We proved that the algorithm is efficient for a certain constant-depth
(and thus not anti-concentrated) 2D RQC architecture, but it is conjectured to
become inefficient once the depth exceeds a larger constant threshold. Thus,
the complexity of the algorithm transitions to inefficient before the circuits
become anti-concentrated, suggesting that in 2D there could be a regime where
the RQCs are too shallow to be anti-concentrated, but classical simulation is
still hard.

4.5 Summary of method and intuition for logarithmic convergence
The main technical contribution of our work is to derive a correspondence

between the collision probability and a discrete sum (which can be interpreted
as the partition function of a classical statistical mechanical model or as the
expectation of a Markov chain), and then to derive rigorous upper and lower
bounds on the sum. Here we describe the correspondence along with a brief
example for a simple random quantum circuit in Figure 4.2. We also explain
why this correspondence leads us to expect anti-concentration to be achieved
after Θ(n log(n)) gates in most architectures. In Appendix 4.B, we give a
more careful derivation of this correspondence, and then in Appendix 4.C,
Appendix 4.D, and Appendix 4.E, we use it to rigorously prove the upper and
lower bounds quoted in Table 4.1.

Recall that we wish to compute the collision probability, defined as

Z = qn E
U

[
pU(0n)2

]
(4.20)

= qn E
U

[
〈0n|⊗2U⊗2|0n〉〈0n|⊗2U †

⊗2|0n〉⊗2
]
, (4.21)

where U is the unitary enacted by the random quantum circuit. The Haar
measure uniformly covers the unitary group so, intuitively speaking, taking
the expectation over application of a Haar-random gate removes much of the
bias in the quantum state; we use a technique that allows us to effectively
keep track of only n bits of information about the n-qudit state after the
application of (two copies of) each Haar-random gate. Instead of 0 or 1, our
bits take values I or S, because they are associated with the identity and swap
operations on two qudit copies.

In particular, if V is a q× q Haar-random matrix and σ is an operator on
two copies of a q-dimensional Hilbert space, then the quantity EV [V ⊗2σV †

⊗2
]

is equal to a linear combination of the identity operation I on the two copies
of the Hilbert space, and the swap operation S on the two copies of the Hilbert
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space. Specifically, it is given by(
tr(σ)− q−1 tr(σS)

q2 − 1

)
I +

(
tr(σS)− q−1 tr(σ)

q2 − 1

)
S . (4.22)

This well-known formula is derived in Appendix 4.B; it is also a direct conse-
quence of Eq. (2.10) from Chapter 2.

By applying the formula to each of the two-qudit Haar-random gates se-
quentially, the state (which begins in |0n〉〈0n|⊗2) evolves as a sum over n-fold
tensor products of identity and swap operations. Each of these n-fold tensor
products is labeled by an n-bit vector that we call a configuration ~ν ∈ {I, S}n.
For a circuit with s two-qudit gates, each term in the resulting sum is then
associated with a length-(s+ 1) sequence of configurations γ = (~γ(0), . . . , ~γ(s)),
which we call a trajectory. Each trajectory γ has a certain non-negative coef-
ficient in the sum, allowing us to write

Z =
1

(q + 1)n

∑
γ

weight(γ) (4.23)

for a fairly simple weighting function, described as follows and derived more
carefully in Appendix 4.B.

First of all, the weight for most trajectories is simply 0. In order for
a trajectory to have non-zero weight, it must obey the following rules. If
the gate at time step t acts on qudits a and b, then the configuration values
γ

(t)
a , γ

(t)
b ∈ {I, S} at positions a and b must be equal, either both I or both

S. Thus if the values disagreed at the previous time step, i.e. γ(t−1)
a 6= γ

(t−1)
b ,

one of the bits must be flipped during the transition from ~γ(t−1) to ~γ(t). If the
values at positions a and b already agreed at time step t−1, they must remain
unchanged from time step t − 1 to time step t. Moreover, the bit values at
the other n− 2 positions must also remain unchanged from time step t− 1 to
time step t.

For trajectories that obey these rules, the weight begins at 1, but each
time a bit flip occurs, the weight is reduced by a constant factor of 2/5 (for
qubits; generally q/(q2 + 1)). Thus, the most significant terms in the weighted
sum are the terms with the fewest bit flips along the trajectory.

The expression for Z as a weighted sum can alternatively be interpreted
as a partition function for an Ising-like classical statistical mechanical model
since it is a weighted sum over “spin” configurations for spins with two possible
values, or it can be interpreted as the expectation of a certain quantity over a
simple Markov chain that generates the sequence (~γ(0), . . . , ~γ(s)). We take the
latter approach in our application of the method to prove our upper and lower
bounds. See Figure 4.2 for an example of two trajectories for a simple RQC,
along with a calculation of their weight.
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collision probability = Z =
1
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∑
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25

Figure 4.2: Two example trajectories for a quantum circuit diagram with
n = 4 qubits and s = 5 gates. Each gate displayed is chosen randomly from
the Haar measure over single or two-qubit unitaries. The collision probability
Z is expressed as a weighted sum over trajectories γ = (~γ(0), . . . , ~γ(s)), which
are length-(s+1) sequences of assignments (“configurations") of I or S to each
of the n qudits. When the input bits to a gate are assigned opposite values,
one must be switched at the next configuration in the sequence. These bit
flips happen at gates 1, 2, 3, and 5 in the first example, and at gates 1 and
2 in the second example. Each bit flip results in a reduction of the weight by
a factor 2/5 (when q = 2). In the second example, the trajectory reaches one
of the fixed point configurations where all n values agree; this is not the case
in the first example. Trajectories that quickly reach a fixed point generally
have larger weights and make up most of the contribution to the collision
probability.
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The correspondence given in Eq. (4.23) is powerful because we have a
good sense of what to expect from the weighted sum over trajectories, and we
can draw conclusions that were not obvious from the definition of the collision
probability itself. For example, we can straightforwardly analyze the infinite
circuit-size limit. In this limit, each positive-weight trajectory γ will be forced
to keep flipping bits (each time a two-qudit gate acts on a disagreeing pair of
bits) until it reaches a fixed point, either In or Sn, in which case bits can no
longer be flipped since all the bits agree. Let Q(x) be the total weight of all
trajectories that begin at a configuration with x S assignments and n − x I
assignments. At some point in the circuit, a disagreeing pair of bits will be
acted upon by a gate, and one of the bits must flip, sending the number of S
assignments either to x − 1 or x + 1 and reducing the weight by q/(q2 + 1).
Since there are an infinite number of gates, the following recursion relation
must be obeyed

Q(x) =
q

q2 + 1
(Q(x− 1) +Q(x+ 1)) , (4.24)

which, by imposing the boundary conditions Q(0) = Q(n) = 1, has the unique
solution

Q(x) =
qx + qn−x

qn + 1
. (4.25)

Moreover, for each x, there are
(
n
x

)
configurations, each contributing weight

Q(x), so

lim
s→∞

Z =

∑n
x=0

(
n
x

)
(qx + qn−x)

(q + 1)n(qn + 1)
=

2

qn + 1
= ZH (4.26)

reproducing the value ZH that would be obtained if the random quantum
circuit were one large qn × qn Haar-random transformation instead of a series
of q2×q2 two-qudit gates. (The fact that a qn×qn Haar-random transformation
yields ZH is a direct consequence of Eq. (4.22) with the substitution q → qn.)
This conclusion makes sense since a random circuit with an infinite number of
2-local Haar-random gates should enact a global Haar-random transformation.

When the circuit size is a finite number s, we have Z > ZH , corresponding
to the fact that many trajectories have not yet reached a fixed point and are
overweighted compared to their contribution to ZH . As the circuit size in-
creases, more of the trajectories get closer to the fixed point and Z approaches
ZH . The point at which anti-concentration is achieved is intimately connected
with the point at which most of the weight can be accounted for by trajectories
that have reached a fixed point. A depiction of this process at n = 60 is given
in Figure 4.3.

Our quantitative challenge is to understand, for a certain RQC archi-
tecture, how quickly these trajectories approach the fixed points, and conse-
quently how quickly Z approaches ZH , as the circuit size increases. Recall
that we define the anti-concentration size sAC to be the circuit size (as a func-
tion of the number of qudits n) needed for Z to be only a constant factor
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larger than ZH . Perhaps surprisingly, we find in multiple architectures that
sAC = Θ(n log(n)), corresponding to only Θ(log(n)) gates per qudit. We can
explain this observation heuristically by generating trajectories γ at random
with probability proportional to weight(γ) (in the statistical mechanical inter-
pretation, this corresponds to drawing samples from the thermal distribution).
For typical trajectories generated in this fashion, each additional layer of Θ(n)
gates will cause the trajectory to move a constant fraction of the way closer to
terminating at a fixed point. Since trajectories typically begin on the order of
n bit flips away from the fixed point (i.e. the initial configuration typically has
Θ(n) I assignments and Θ(n) S assignments), Ω(log(n)) layers are necessary
and sufficient for typical trajectories to get within a constant distance from
the fixed point.

This heuristic statement is perhaps confirmed most clearly in the
complete-graph architecture, where qudit pairs are chosen uniformly at ran-
dom. Here let x� n, and suppose that the current configuration at time step
t has value S at x of the n positions and value I at the other n− x positions.
If we perform gates on n/2 random pairs of qudits, we will expect roughly x
of those pairs to couple an I value with an S value. Each time this happens,
a bit must be flipped and there is an opportunity for the trajectory to move
closer to the fixed point In. Thus, we expect the number of S values in the
configuration at time step t+n/2 to have decreased by an amount proportional
to x. After Θ(n log(n)) gates, we expect the trajectory to be at (or very close
to) the fixed point In with high probability. Fewer gates would leave most
trajectories too far from the fixed point for anti-concentration to have been
reached. In Figure 4.3, we illustrate the convergence of typical trajectories
and the correspondent convergence of Z for the complete-graph architecture
at n = 60.

We prove that a similar situation occurs even if the gates are arranged
in a 1D fashion, and we fully expect that this situation applies for nearly all
natural3 architectures, including circuits on D-dimensional lattices for D > 1.
We formalize this in Conjecture 4.1. We believe Conjecture 4.1 firstly because
anti-concentration should intuitively only be faster when the circuit becomes
more connected, and the 1D architecture is perhaps the least connected a
natural architecture can be, as it takes Ω(n2) gates for information to travel
across the diameter of the qudit array. Secondly, the above intuitive argument
about the convergence of typical trajectories to a fixed point in O(n log(n))
gates should apply to any natural architecture. Specifically, if you choose a
configuration with x S assignments at random, and you apply a layer of Θ(n)
two-qudit gates, with high probability you will have formed Θ(x) disagreeing

3One can construct contrived architectures that do not quickly anti-concentrate by par-
titioning the qudits into many subsets and only rarely choosing a gate that couples qudits
from different subsets. We define a property we call regularly connected to rule out this kind
of situation. We prove that it implies anti-concentration in O(n2) gates and conjecture this
can be improved to O(n log(n)).
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Figure 4.3: Thirty trajectories generated randomly for the complete-graph
architecture at n = 60. A trajectory γ is chosen with probability proportional
to weight(γ) in the s → ∞ limit, and then the number of S assignments
(out of 60) are plotted for the first 300 time steps. The trajectories rapidly
approach either the fixed point In with 0 S assignments, or the fixed point
Sn with 60 S assignments, but not all have reached the fixed point within
300 time steps. The distance of a typical trajectory from the nearest fixed
point decays exponentially with time, with characteristic time scale Θ(n).
Thus, it takes Θ(n log(n)) gates for most typical trajectories to have reached
the fixed point. Inset: As trajectories approach the fixed points, the collision
probability Z (which can be efficiently numerically calculated for the complete-
graph architecture) approaches ZH . Anti-concentration is defined as the point
where it falls beneath 2ZH (dashed line), which occurs at s = 214 for n = 60.

pairs and moved the trajectory a constant fraction of the way to the nearest
fixed point. The difficulty in proving Conjecture 4.1 lies in characterizing what
happens in the low-probability event that this is not the case.

Indeed, our rigorous proofs for the 1D and complete-graph architectures
have to deal with the fact that it is not sufficient to examine only typical
trajectory behavior. In particular, the collective contribution of trajectories
at the tails of what is allowed are tricky to bound. These rigorous bounds are
provided in the Appendices. Nonetheless, heuristic reasoning about typical
trajectory behavior ultimately gives accurate predictions about the collision
probability in these cases.
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4.6 Outlook
In a quantum computer, quantum information is ultimately accessed by

making measurements of the output state and obtaining samples from the asso-
ciated output distribution over measurement outcomes. In many applications,
it is desirable to choose our quantum computation completely at random, the
only constraint being the arrangement of the different gates, and thus it is
important to characterize the output distribution over measurement outcomes
in random quantum circuits, and how it depends on the underlying circuit
architecture.

One feature of the output distribution is that, for very shallow circuits,
there are a relatively small number of very “heavy” measurement outcomes
that are exponentially more likely than average to be obtained, a fact that
inhibits the design of certain classical simulation algorithms, but also in other
cases prevents potential proofs that no good simulation algorithms exist. As
the circuit gets deeper, the probability mass gradually anti-concentrates and
eventually becomes fairly well spread out over all possible measurement out-
comes. We have developed a framework to quantitatively understand this sit-
uation; we map the anti-concentration process to the equilibration of a simple
stochastic process (an alternative interpretation of the stochastic process is the
partition function of a statistical mechanical model). The stochastic process
allows for effective qualitative reasoning, but also produces sharp quantitative
anti-concentration upper and lower bounds.

Both sides of our bounds have meaningful and surprising takeaways. On
the one hand, the fact that only O(n log(n)) gates are needed to achieve anti-
concentration in geometrically local and non-local architectures contradicts the
intuition that anti-concentration should not occur until information has had
time to spread across the entire system. In fact, up to a constant factor, the
anti-concentration time does not appear to be sensitive to exact connectivity
structure of the circuit. While we only rigorously consider two architectures,
our work gives strong evidence that any natural architecture anti-concentrates
in O(n log(n)) gates (which typically corresponds to O(log(n)) depth). In cases
where anti-concentration is a desirable property, our work gives explicit bounds
on how many gates are needed, and the fact that this number is relatively small
will come as welcome news in practical situations where the gates are noisy or
otherwise costly to implement.

On the other hand, by showing that Ω(n log(n)) gates are necessary for
anti-concentration (and computing the optimal constant prefactor in our two
specific scenarios), we have cleared up some confusion about very shallow
circuits. Increasing the depth causes the anti-concentration process to begin,
but our lower bound implies that the phenomenon of very heavy measurement
outcomes will remain for any architecture of constant depth. Even the 2D
circuits of depth O(

√
log(n)) (for which the lightcone volume is O(log(n)))
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considered in Ref. [29] cannot be anti-concentrated, as had been speculated in
that work.

We conclude with some other specific open problems inspired by our work.

• We have proved that the anti-concentration size is Θ(n log(n)) for the 1D
and complete-graph architectures. We believe this is true for most other
natural architectures and formally conjecture in Conjecture 4.1 that this
follows from our “regularly connected” definition.

• A sharp anti-concentration analysis for 2D and higher dimensional geomet-
rically local architectures would be particularly valuable since, unlike in 1D,
Θ(log(n))-depth 2D circuits can perform universal quantum computation
(indeed, Ω(1)-depth is sufficient [53]), and 2D circuits form the basis for
Google’s 2019 quantum computational supremacy experiment [6].

• We suspect the constant prefactor of (2 log(q2 + 1))−1 in the general lower
bound in Theorem 4.4 could be improved. What is its optimal value? That
is, can we show an improved general lower bound and then find an RQC
architecture Afast that has a matching upper bound. This would show
that Afast is the fastest anti-concentrator. A candidate for Afast is the
architecture where each layer of n/2 gates is formed by choosing a random
partition of the n qudits into n/2 pairs.

• Are there other problems involving second moment calculations over RQCs
where our techniques would produce sharp upper and lower bounds? One
such problem could be the 2-design time for RQCs in various architectures.
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APPENDIX TO CHAPTER 4

4.A Formal definitions
4.A.1 Random quantum circuits (RQCs)

Here we establish some precise definitions for the terms in this paper.
Throughout, we consider systems of n qudits of local Hilbert space dimension
q, with basis states {|0〉, |1〉, . . . , |q−1〉}. Loosely speaking, a quantum circuit is
a sequence of unitary transformations called gates, which each typically involve
only a few of the n qudits, acting on the initial state |0〉⊗n ≡ |0n〉. Formally,
we let a quantum circuit diagram of circuit size s be specified by a length-
s sequence (A(1), . . . , A(s)) of non-empty subsets of [n] = {0, 1, 2, . . . , n − 1},
indicating for each gate which qudits participate in that gate. Since we consider
circuits consisting only of two-qudit gates, we require |A(t)| = 2 for all t. We
also make the assumption that the circuit begins with a single-qudit gate on
each of the n qudits at the beginning of the circuit, without counting these
n gates toward the circuit size. This sequence can be turned into a diagram
as in Figure 4.2 (ignoring the overlaid I and S), where the gate sequence
is ({0, 1}, {1, 2}, {0, 1}, {2, 3}, {1, 2}). Note that the single-qudit unitaries are
each displayed with the symbol U but will not necessarily be the same unitary.
The circuit depth d of a circuit diagram is the minimum number of layers
of non-overlapping gates needed to implement all s gates in the circuit, or
formally, the smallest integer such that there exists a sequence 0 = s0 < s1 <
s2 < . . . < sd = s where A(t) ∩ A(t′) = ∅ whenever sj < t < t′ ≤ sj+1.

Once a circuit diagram has been chosen, a quantum circuit instance is
generated by additionally specifying a length-s+n sequence of unitary matrices
(U (−n+1), . . . , U (−1), U (0), U (1), . . . , U (s)) where U (−j) is a q × q (single-qudit)
matrix for each j = 0, . . . , n − 1 and U (t) is a q2 × q2 (two-qudit) matrix for
each t = 1, . . . , s. We denote the global qn× qn unitary operator implemented
by the circuit by U , where

U = U
(s)

A(s)U
(s−1)

A(s−1) . . . U
(2)

A(2)U
(1)

A(1)U
(0)
{0} . . . U

(−n+1)
{n−1} , (4.27)

with VX indicating the action of the q|X| × q|X| unitary V on the qudits in
subregion X ⊂ [n] tensored with the identity operation on the qudits in the
complement of X.

In this work, we will always assume that projective computational basis
measurements are performed on all n qudits at the end of the circuit. Thus,
a quantum circuit instance U has a corresponding classical probability distri-
bution pU over possible measurement outcomes x ∈ [q]n, as follows:

pU(x) = |〈x|U |0n〉|2 . (4.28)

Random quantum circuits will refer to situations when, once a circuit
diagram has been fixed, the actual unitary gates U (t) that determine the circuit
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instance are each randomly chosen independently from some distribution over
the unitary group. In this paper, we always take this distribution to be the
Haar measure, but since our techniques rely on calculating expectations over
quantities with only two copies of each U (t), our results also apply when the
gates are drawn from any 2-design, such as the Clifford group. Note that
Google’s quantum computational supremacy experiment [6] drew gates from
another distribution that is not a 2-design. Heuristically speaking, as long
as the distribution lacks any bias or symmetries, we expect properties like
anti-concentration to be the same as in the Haar-random case.

4.A.2 Random quantum circuit architectures
An architecture for random quantum circuits is simply a procedure for

choosing a circuit diagram. Formally, we define it to be a (possibly random-
ized) classical algorithm that, given parameters n and s, computes a circuit
diagram of size s on n qudits. Given an architecture and parameters n and
s, we let the expectation of some quantity Q, denoted EU [Q], refer to the
expectation over the process of first choosing a circuit diagram according to
the architecture, and then choosing a circuit instance by randomly generating
each gate in the circuit diagram independently from the Haar measure. Next,
we define the two architectures we consider.

Definition 4.1 (Complete-graph architecture). Circuit diagrams of size s on
n qudits are generated by choosing s gates each uniformly at random from the
set of all two-qudit gates, i.e. A(t) is chosen uniformly from {{a, b} : a, b ∈
[n], a 6= b}.

Note that if it could be guaranteed that every qudit would eventually
participate in at least one gate, the distribution over circuit instances would
be equivalent if we omitted the first layer of n single-qudit gates (defined to be
part of every architecture), a fact that follows from the invariance of the Haar
measure; the single-qudit gates could be absorbed into the two-qudit Haar-
random gates that act directly before or after without changing the distribution
over the two-qudit gates. However, in the complete-graph architecture there
is a chance that a qudit does not participate in any two-qudit gates, although
for sufficiently large circuit size the probability of this vanishes.

Definition 4.2 (1D architecture). Assume that n is even and d = 2s/n is an
integer. The circuit diagram of size s on n qudits is generated by alternating
between the two types of layers of n/2 non-overlapping nearest-neighbor two-
qudit gates on a ring. That is, for each t = 1, . . . , n/2, if j is even, then
A(t+jn/2) = {2t−2, 2t−1}, and if j is odd, then A(t+jn/2) = {2t−1, 2t}, where
index n is identified with index 0 to enforce periodic boundary conditions.

4.A.3 Collision probability and anti-concentration
Anti-concentration is a concept that describes a classical probability dis-

tribution for which the probability mass is not too concentrated onto a small
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number of outcomes of the random variable. The uniform distribution is the
ultimate anti-concentrated distribution, as the probability mass is allocated
evenly over every possible outcome, but we would still like the term anti-
concentrated to apply to some non-uniform distributions if the probability
mass is fairly well spread over many of the outcomes. There are multiple ways
to make this quantitative. For the purposes of this paper, we choose one way—
the collision probability—that mirrors previous work on anti-concentration of
quantum circuit outputs and suffices for the applications we discuss in the
introduction.

Let X be a discrete random variable and M be the set of outcomes of
X. We can form another random variable p, where p is equal to Pr[X = x]
for an x chosen uniformly at random from M . Since

∑
x Pr[X = x] = 1, we

have E[p] = 1/|M | no matter how X is distributed. We define the collision
probability for X to be

Z =
∑
x∈M

Pr[X = x]2 (4.29)

= E[p2] · |M | (4.30)
= δ(p) |M |+ |M |−1 , (4.31)

which is the probability that two identical independent copies of X will be
equal to each other—hence collision probability. If the distribution over X is
the uniform distribution, then the distribution over p is the point distribution
on the value |M |−1, the collision probability takes its minimal value Z = |M |−1,
and δ(p) = 0. If X is non-uniform but still somewhat anti-concentrated, then
p will not always be |M |−1 but it will usually be close, and this will be reflected
by a collision probability that is greater, but not too much greater than |M |−1.
Formally, we make the following definition.

Definition 4.3 (Anti-concentrated). We say that a random variable X over
a set M of outcomes is α-anti-concentrated for 0 < α ≤ 1 if

Z =
∑
x∈M

Pr[X = x]2 ≤ 1

|M |α
. (4.32)

Thus a distribution is 1-anti-concentrated if and only if it is the uniform
distribution.

In our setting, the random variable X is the measurement outcome of a
random quantum circuit instance, which is distributed according to the dis-
tribution pU over the outcome set [q]n. Example distributions of pU for RQC
outputs in the uniform, the non-uniform but still anti-concentrated, and the
not anti-concentrated case are shown in the caricature in Figure 4.1. A ran-
dom quantum circuit architecture for specified n and s is understood as an
ensemble over many different U , only some of which will have output distribu-
tions pU that are α-anti-concentrated for a certain choice of α. We would like
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to say that the architecture as a whole is anti-concentrated if typical circuit
instances drawn from the architecture are anti-concentrated, acknowledging
that not every instance will be. We also require this to hold for the same con-
stant α as n increases, with s increasing like some function s(n). Formally, we
accomplish this by averaging the collision probability over the random circuit
instance, as follows.

Definition 4.4 (Anti-concentrated RQC architecture). We say that a random
quantum circuit architecture is α-anti-concentrated for 0 < α ≤ 1 at circuit
size s(n) if there exists n0 such that whenever n ≥ n0

Z = E
U

∑
x∈[q]n

pU(x)2

 ≤ (αqn)−1 , (4.33)

where EU denotes drawing circuit instances according to the architecture over
n qudits with circuit size s(n). Generally, we say that the architecture is anti-
concentrated at size s(n) if there exists a constant α > 0 independent of n for
which it is α-anti-concentrated at that size.

RQC architectures for which every qudit experiences at least one gate,
which includes all the architectures introduced above, will have a symmetry
over the qn measurement outcomes in the sense that the quantity pU(x) is
distributed identically (over circuit instances) for every x. In this case each
term in the sum in Eq. (4.33) will have the same contribution and we can write
simply

Z = qn E
U

[
pU(0n)2

]
. (4.34)

The anti-concentration of an architecture implies that most of the in-
stances drawn from that architecture have good anti-concentration properties:
Given an architecture at a certain size and a bound on its collision probability
Z ≤ α−1q−n, we can use Markov’s inequality to assert that at least a 1 − β
fraction of instances have collision probability at most q−n (1 + (α−1 − 1)β−1).
In practice, we expect the collision probability of individual instances to be
even more clustered near the mean collision probability than this analysis in-
dicates, but proving that this is the case would seem to require computing
higher moments like EU [pU(0n)k] for k > 2.

As discussed in the main text, an important implication of an α-anti-
concentrated architecture is that for any β with 0 ≤ β ≤ 1 and sufficiently
large n

Pr
U

[pU(x) ≥ βq−n] ≥ (1− β)2α , (4.35)

which follows directly from the Paley-Zygmund inequality. This inequality in-
dicates that whenever an architecture is anti-concentrated, at least a constant
fraction of the outcomes will be allocated an amount of mass that is within
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a constant factor β of the mean mass; it cannot be the case that all but a
vanishing fraction of the outcomes are allocated a vanishing fraction of the
mean mass.

4.B Framework for analysis: Random quantum circuits as a
stochastic process

This section gives more details on the correspondence discussed in Sec-
tion 4.5 from the main text. The key idea in our analysis of the collision
probability of RQCs is to perform the Haar expectation over each local uni-
tary individually. This is possible due to explicit formulas for expectations
under action by a Haar-random unitary. We use these formulas to re-express
the collision probability, originally an integral over many continuously varying
unitary matrices drawn from the Haar measure, as a weighted discrete sum,
which is then analyzed using combinatorial and stochastic methods. This
weighted sum can also be interpreted as the partition function of a classi-
cal statistical mechanical Ising-like model, as described in Chapter 2, or as
the expectation value of a simple stochastic process. Figure 4.4 depicts these
equivalent representations of the problem. In this section, we explain this
method and derive the important formulas that will apply generally for any
RQC architecture, which are then used in later sections to prove our main
results.

4.B.1 Averaging individual unitaries over the Haar measure
The quantity of interest for anti-concentration is the expected collision

probability, which is proportional to a second moment over choice of uni-
tary operator U , as illustrated in the following equation, where we recall that
|0n〉〈0n|⊗2 is two copies of the circuit input state

Z = qn E
U

[(
〈0n|U |0n〉〈0n|U †|0n〉

)2
]

(4.36)

= qn tr
[
E
U

[
U⊗2|0n〉〈0n|⊗2U †⊗2

]
|0n〉〈0n|⊗2

]
. (4.37)

Moreover, for a fixed quantum circuit diagram, the unitary U is given by
Eq. (4.27) as a product of single-qudit unitaries U (−j) acting on qudit j for
j = 0, . . . , n − 1 and two-qudit unitaries U (t) acting on some pair of qudits
A(t) ⊂ [n] for t = 1, . . . , s. Each unitary is independently chosen according to
the Haar measure, and its expectation can be evaluated separately. Let

M (t)[ρ] = E
U(t)

[
U

(t)

A(t)

⊗2
ρU

(t)

A(t)

†⊗2
]
. (4.38)

Then we can write

E
U

[
U⊗2|0n〉〈0n|⊗2U †

⊗2
]

(4.39)

= M (s) ◦M (s−1) ◦ · · · ◦M (1) ◦M (0) ◦ . . . ◦M (−n+1)
[
|0n〉〈0n|⊗2

]
. (4.40)
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Random quantum circuit

Collision probability

Z = qn E
U

[
pU(0n)2

]
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Z = qn
∑
σ,τ

∏
〈tt′〉
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(
σ, τ
)

~γ(0) ~γ(1) ~γ(2) ~γ(3) ~γ(4) ~γ(5)

Random walk through configuration space

Sum over trajectories

Z =
1

(q + 1)n

∑
γ

s∏
t=1

M~γ(t)~γ(t−1)

Figure 4.4: Diagram depicting the equivalent ways to interpret the expected
value of the collision probability for random quantum circuits. Top: a random
quantum circuit of size five. Middle: the reinterpretation as the partition
function of a classical statistical mechanics model with local Ising-like particles
as in Chapter 2. Bottom: another interpretation as a stochastic process of
evolving configurations.
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When an architecture is itself a mixture over randomly chosen circuit diagrams,
such as the complete-graph architecture, the overall quantity in Eq. (4.39) is
a mixture over terms of the form in Eq. (4.40).

The remainder of this subsection illustrates how the action of M (t) can
be evaluated, ultimately allowing us to arrive at the expression for Z given
in Eq. (4.59). In the other subsections of this section, we explain how that
equation can be interpreted as a partition function of a classical statistical
mechanical model or as the expectation over simple stochastic process.

When the local unitaries are drawn from the Haar measure (or any exact
2-design), the expression M (t)[ρ] can be evaluated in a simple way. Generally,
for σ a q2× q2 Hermitian operator, and with V chosen from the Haar measure
over the set of q × q unitaries, we define

M [σ] = E
V

[
V ⊗2σV †

⊗2
]

(4.41)

and observe that, for any unitary W and any σ

M [σ]W⊗2 = E
V

[
V ⊗2σ(W †V )

†⊗2]
= E

V

[
(WV )⊗2σV †

⊗2
]

= W⊗2M [σ] , (4.42)

where the second equality follows from the invariance of the Haar measure un-
der the substitution V → WV . A mathematical fact from Schur-Weyl duality
(see [144, 145]) is that any operator on k copies of a system that commutes
with W⊗k for any unitary W must be a linear combination of permutation op-
erators over the k systems. Here we have k = 2 and thus the only permutation
operators are the identity operation I and the swap operation S, which can
be defined as the operator satisfying S|ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉 for any |ψ〉, |φ〉.
Letting M [σ] = αI + βS, we make the following calculations

tr[M [σ]] = tr[σ] = αq2 + βq (4.43)
tr[M [σ]S] = tr[σS] = αq + βq2 , (4.44)

which determine α and β and allow us to write

M [σ] =
tr(σ)− q−1 tr(σS)

q2 − 1
I +

tr(σS)− q−1 tr(σ)

q2 − 1
S . (4.45)

The unitaries U (−j) are q×q (single-qudit) that act on qudit j. Two copies
of the input state on qudit j is |0〉〈0|⊗2

{j}. Denote two copies of the input state
on the other n− 1 qudits by ρ[n]\{j}. Using Eq. (4.45), we then find

M (−j)
[
ρ[n]\j ⊗ |0〉〈0|⊗2

{j}

]
= ρ[n]\{j} ⊗

1

q(q + 1)
(I + S){j} , (4.46)
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meaning that M (−j) simply replaces the state on qudit j as a uniform sum
over operators I and S. Hence

M (0) ◦M (−1) ◦ · · · ◦M (−n+1)
[
|0n〉〈0n|⊗2

]
=

n−1⊗
j=0

(
1

q(q + 1)
(I + S){j}

)
(4.47)

=
1

qn(q + 1)n

∑
~γ∈{I,S}n

n−1⊗
j=0

γj . (4.48)

We call each ~γ ∈ {I, S}n a configuration. The above equation states that the
expected value of two copies of the state after application of all the single-qudit
unitaries is precisely a uniform sum over all identity/swap configurations of
the n sites.

Now, we need to examine the action of M (t) for t > 0. In this case, the
unitaries are q2 × q2 and act on the qudit pair A(t). We can use Eq. (4.45) by
replacing q → q2 and sending I → I ⊗ I, the identity operation on two copies
of two qudits, and S → S⊗S, the swap operation on two copies of two qudits.
We assume that the input state is a product state ρ[n]\A(t) ⊗ ρA(t) and see that

M (t)[ρ[n]\A(t) ⊗ ρA(t) ] = ρ[n]\A(t) ⊗ (gI(I ⊗ I)A(t) + gS(S ⊗ S)A(t)) , (4.49)

where

gI =
tr(ρA(t))− q−2 tr (ρA(t)(S ⊗ S))

q4 − 1
(4.50)

gS =
tr (ρA(t)(S ⊗ S))− q−2 tr(ρA(t))

q4 − 1
. (4.51)

Since the two qudit gates act after the single-qudit gates, the input state to
M (t) will always be a sum of tensor products of I and S, so we only need to
evaluate the above expression when ρA(t) is either I⊗ I, I⊗S, S⊗ I, or S⊗S.
Doing so, we arrive at

M (t)
[
ρ[n]\A(t) ⊗ (I ⊗ I)A(t)

]
= ρ[n]\A(t) ⊗ (I ⊗ I)A(t) (4.52)

M (t)
[
ρ[n]\A(t) ⊗ (S ⊗ S)A(t)

]
= ρ[n]\A(t) ⊗ (S ⊗ S)A(t) (4.53)

M (t)
[
ρ[n]\A(t) ⊗ (I ⊗ S)A(t)

]
= M (t)

[
ρ[n]\A(t) ⊗ (S ⊗ I)A(t)

]
(4.54)

= ρ[n]\A(t)⊗
(

q

q2 + 1
(I ⊗ I)A(t) +

q

q2 + 1
(S ⊗ S)A(t)

)
.

(4.55)

Thus, if ρ is a linear combination of configurations in {I, S}n, M (t)[ρ] will
also be a linear combination of configurations, with coefficients that transform
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linearly under application of M (t). For configurations ~γ, ~ν ∈ {I, S}n, we let
M

(t)
~ν~γ be the matrix element of this linear transformation defined such that

M (t)

[
n−1⊗
j=0

γj

]
=

∑
~ν∈{I,S}n

M
(t)
~ν~γ

n−1⊗
j=0

νj . (4.56)

Suppose U (t) acts on qudits A(t) = {a, b} ⊂ [n]. Then from Eqs. (4.52),
(4.53), (4.55), we have

M
(t)
~ν~γ =


1 if γa = γb and ~γ = ~ν
q

q2+1
if γa 6= γb and νa = νb and γc = νc ∀c ∈ [n] \ {a, b}

0 otherwise
(4.57)

Importantly, M (t)
~ν~γ is always non-negative. The way to think about the above

equation is to notice three things. First, the input configuration ~γ and the
output configuration ~ν must agree on all indices that are not involved in the
gate, i.e. for all indices c 6∈ {a, b}; otherwise the matrix element is 0. Second,
if the two input values involved in the gate agree, i.e. if γa = γb then νa = νb =
γa = γb must hold (in which case the matrix element is 1); otherwise it is 0.
Third, if the two input values disagree, then one of them must be flipped so
that the two output values agree (in which case the matrix element is reduced
to q/(q2 + 1)); otherwise it is 0.

Note also that

tr

[(
n−1⊗
j=0

γj

)
|0n〉〈0n|⊗2

]
= 1 (4.58)

for all ~γ ∈ {I, S}n. Thus from Eq. (4.37), we find

Z =
1

(q + 1)n

∑
γ∈{I,S}n×(s+1)

s∏
t=1

M
(t)

~γ(t)~γ(t−1) (4.59)

=:
1

(q + 1)n

∑
γ

weight(γ) . (4.60)

which was the expression quoted in Eq. (4.23) from the main text. In the
above equation, the sum is over length-(s + 1) sequences of configurations,
which we call a trajectory γ = (~γ(0), . . . , ~γ(s)) and the weight of each term is
given by the product of the matrix elements for each step in the trajectory.
This final equation is depicted graphically in the right part of Figure 4.4.

4.B.2 Collision probability as statistical mechanical partition func-
tion

The expression for the collision probability in Eq. (4.59) can be interpreted
as a partition function for a classical statistical mechanical model by thinking
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of each γ(t)
j as an Ising spin variable with the association {I, S} ↔ {+1,−1}. A

trajectory γ is then a configuration of the Ising spins, and Z is a weighted sum
over all the spin configurations. Moreover, the weight is always non-negative
and is given by a product of factors M (t)

~γ(t)~γ(t−1) that can be determined by
examining a small number of the spin values. This means that the energy
functional over spin configurations of the classical Ising-like model is always
real and can be broken up into local terms that depend on the local dimension
q and which qudits are acted upon at each step in the circuit.

The statistical mechanics interpretation has been a useful one for similar
problems in the past, where certain RQC moment quantities can be exactly
rewritten as the partition sum over spin configurations of a lattice model, as
depicted in the central diagram in Figure 4.4. We can arrive at the formulation
as in Eq. (4.59) from the lattice model by summing over a subset of the spins
and reinterpreting the resulting nodes as 4-body interaction vertices.

This exact rewriting of RQCmoment quantities has been used to compute,
for instance, correlation functions [41], Rényi entropies [36], and the distance
to forming an approximate design [37]. Moreover, thermal phase transitions
in the classical model can be related to phase transitions of entanglement-
entropy-like quantities for the output state of the RQC [44, 45, 47]. The inter-
pretation is particularly intriguing when considering analogous quantities to
Z for higher moments. The collision probability is a second moment quantity,
and the resulting stat mech model has Ising-like variables with two possible
values. Quantities related to the kth moment will map to classical stat mech
models that have k! possible values, one for each element of the symmetric
group Sk. However, one challenge of computing higher-moment quantities is
that the weights in the partition function can be negative (corresponding to
non-real values of the energy for certain spin configurations), complicating
many strategies for bounding its behavior, including the strategies employed
in the rest of this paper.

4.B.3 Unbiased random walk
We can build from the formula for Z in Eq. (4.59) and re-express it in

terms of a length-s unbiased random walk through configuration space {I, S}n,
which we denote Pu. At time step 0, a configuration ~γ(0) is chosen uniformly at
random, i.e. the initial distribution is the uniform distribution in configuration
space, denoted Λu. Then configuration ~γ(t+1) at time step t + 1 is generated
from the configuration ~γ(t) at time step t as follows: letting A(t) = {a, b}, if
the ath and bth bits of ~γ(t) agree, then the configuration is left unchanged at
time step t+1; if they disagree, either the value at a or the value at b is flipped
each with probability 1/2 to form ~γ(t+1). The weight is reduced each time a
bit is flipped. Thus we can write

Z =
2n

(q + 1)n
E

Pu,Λu

[(
2q

q2 + 1

)(# of bit flips during walk)
]
, (4.61)
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where EPu,Λu indicates the expectation over the choosing a length-s walk as
described above, where the initial distribution is Λu. This is seen to be equiv-
alent to Eq. (4.59) since the probability of a certain trajectory occurring is
given by q−n(1/2)# of bit flips and thus each trajectory contributes exactly the
same amount toward Z, once the probability of observing the trajectory is
accounted for.

4.B.4 Biased random walk
A potential problem with the unbiased random walk picture is that the

weight of a particular walk is related to the number of bit flips that occur
during that walk; it depends not only where the walk begins and ends but also
on how it got there. To fix this issue, we can form an equivalent biased random
walk denoted Pb. In this case, the initial distribution Λb is not uniform over
{I, S}n, rather, the probability of choosing ~γ(0) = ~ν is proportional to q−|~ν|,
where |~ν| is the Hamming weight of ~ν (number of S entries). Specifically, we
have

Λb(~ν) =
qn

(q + 1)n
q−|~ν| . (4.62)

The dynamics of Pb are the same as Pu except that when the two bits involved
in a gate disagree, it chooses to flip the S to I with probability q2/(q2 +1) and
I to S with probability 1/(q2 + 1). Thus, it is biased in the I direction. Then
we can express

Z =
1

qn
E

Pb,Λb

[
q|~γ

(s)|
]
. (4.63)

Note that the quantity being averaged is exponentially large in the Hamming
weight of its final ending point, making the quantity sensitive to the probability
that the biased walk stays far from the all I configuration. The biased walk
is observed to be equivalent to the unbiased walk simply by noting that, once
the probability of observing a certain trajectory is included, every trajectory
contributes the same amount to Z for both walks. The exponential weighting
underneath the expectation in the biased walk exactly cancels the bias in the
probability of observing a certain walk.

4.B.5 Computing sums over trajectories
Throughout our analysis, we will need to compute weighted sums over

various trajectories, or, relatedly, compute probabilities that the biased and
unbiased walks end in a certain place. We use the following lemma. The
key takeaway is that (perhaps surprisingly), in the limit of infinite size, the
contribution of all trajectories originating from a certain initial configuration
depends only on the Hamming weight of that initial configuration, and not
the configuration itself. Moreover, this contribution can be calculated. This
lemma is a more precise and generalized version of the recursive calculation of
Q(x) in Section 4.5 in the main text.
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Lemma 4.1. Fix an infinite-size circuit diagram, that is, an infinite sequence
of qudit pairs A = (A(1), A(2), . . .). Also fix integers 0 ≤ x, y,m ≤ n such that
y ≤ x < y + m, as well as an initial configuration ~γ(0) such that |~γ(0)| = x.
For each s ≥ 0, let Ts be the set of length-s trajectories that

(1) begin at configuration ~γ(0)

(2) have a non-zero contribution to Z for the circuit diagram (A(1), . . . , A(s))
formed by truncating A to length s

(3) end at any configuration ~γ(s) for which |~γ(s)| = y, and

(4) satisfy y < |~γ(t)| < y +m for all t = 0, 1, 2, . . . , s− 1.

Let T =
⋃∞
s=0 Ts. Then

∑
γ∈T

(
q

q2 + 1

)(# of bit flips during γ)

=
1

1− q−2m

(
q−(x−y) − q−2m+x−y) . (4.64)

Proof. First, we claim that the sum should depend only on x, y, and m, and
not on ~γ(0) (other than through its dependence on x). To see this, note that
there is a one-to-one correspondence between trajectories in T and sequences
of Hamming weights (x, x1, . . . , xs′−1, y) with the property that either xt =
xt+1 + 1 or xt = xt+1 − 1 for every t (no consecutive duplicates). This is seen
by (1) the fact that given a trajectory in T , one can generate such a sequence by
taking the Hamming weight of each configuration in the sequence and removing
consecutive duplicates and (2) the fact that given such a Hamming weight
sequence one can generate a unique trajectory by starting with ~γ(0), evolving
the trajectory according to the circuit diagram A, and always choosing whether
to flip I to S or S to I so that the order of Hamming weights prescribed by the
sequence is followed. Thus, the sum over trajectories in T may be replaced by
a sum over Hamming weight sequences, which does not depend on ~γ(0), except
through its Hamming weight x.

For each x in the interval [y, y + m], let the expression on the left-hand-
side of the lemma be given by Q(x). Then for each x in [y + 1, y +m− 1], we
have the recursion relation

Q(x) =
q

q2 + 1
(Q(x− 1) +Q(x+ 1)) , (4.65)

since the first bit flip will either send x to x− 1 or to x+ 1 and in either case
a factor of q/(q2 + 1) is incurred. The recursion relation gives rise to a general
solution of the form

Q(x) = Fqx +Gq−x (4.66)

for some constants F and G. This is a unique solution since all values can
be generated once two consecutive values are specified, and the specification
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of two consecutive values also uniquely specifies F and G. To find F and
G in this case, we must also impose the boundary conditions Q(y) = 1 and
Q(y+m) = 0, since if x = y the only trajectory in T is the length-0 trajectory
(~γ(0)), and if x = y + m, T is the empty set. By specifying these boundary
conditions we can solve for F and G and verify the statement of the lemma.

Corollary 4.1. Fix non-negative integers x, y,m such that y ≤ x < y + m.
For the biased walk, if the starting configuration has Hamming weight x, the
probability that the walk reaches a configuration with Hamming weight y before
it reaches a configuration with Hamming weight y +m is given by

qx−y

1− q−2m

(
q−(x−y) − q−2m+x−y) . (4.67)

Proof. The transition rules of the biased walk prescribe that transitions up-
ward in Hamming weight occur with probability 1/(q2 + 1), and transitions
downward in Hamming weight occur with probability q2/(q2 + 1). Thus the
probability of a series of transitions in which the initial Hamming weight is
x, the final Hamming weight is y, and the number of times a bit flip occurs
is b is precisely qx−y(q/(q2 + 1))b. The sum over all paths weighted by their
probability is then precisely the sum in the left-hand-side of Lemma 4.1 scaled
by qx−y, yielding the corollary.

Corollary 4.2. If we begin at a trajectory ~γ(0) with |~γ(0)| = x and allow the
biased walk to evolve until it ends at one of the fixed points In or Sn, then the
probability the trajectory ends at In is given by

PI(x) =
1

1− q−2n

(
1− q−2n+2x

)
(4.68)

and the probability it ends at Sn is given by

PS(x) =
q−2n+2x

1− q−2n

(
1− q−2x

)
. (4.69)

Proof. Termination at In corresponds to the cases where Hamming weight 0
is hit before Hamming weight n. Thus the equation for PI(x) follows from
Corollary 4.1 with y = 0 and m = n. We have PS(x) = 1 − PI(x) since the
trajectory must terminate at one fixed point or the other.

4.B.6 Sanity check: Infinite circuit size convergence to Haar value
The Markov chain has two stationary distributions, at configurations In

and Sn. In the infinite circuit size limit, the biased walk will converge to a
mixture of these two fixed-point configurations, where the amount of mass at
each fixed-point depends only on the Hamming weight of the initial configu-
ration, as described in Corollary 4.2. Using the expressions for PI and PS, we
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find that, in the infinite circuit size limit,

Z =
1

qn

∑
~γ(0)

Λb(~γ
(0)) E

Pb,~γ(0)

[
q|~γ

(s)|
]

(4.70)

=
1

(q + 1)n

∑
~γ(0)

q−|~γ
(0)|(PI(|~γ(0)|) + qnPS(|~γ(0)|)) (4.71)

=
1

(q + 1)n(1− q−2n)

n∑
x=0

(
n

x

)
q−x(1− q−2n+2x + q−n+2x − q−n) (4.72)

=
1

(q + 1)n(1− q−2n)

(
(q + 1)n

qn
− (q + 1)n

q2n
+

(q + 1)n

qn
− (q + 1)n

q2n

)
(4.73)

=
(2q−n − 2q−2n)(q + 1)n

(q + 1)n(1− q−2n)
(4.74)

=
2

qn + 1
= ZH , (4.75)

where ZH is the Haar value. This outcome is expected since in the infinite
circuit size limit the distribution over random unitaries formed from Haar-
random local components will approach the distribution over n-qudit Haar
random unitaries.

4.C Bounds for general architectures
4.C.1 Upper bound on collision probability

In order to have a meaningful upper bound, we need the architecture
to satisfy basic connectivity requirements; for example, if the architecture
performs gates on the same pair of qudits over and over again, Z will never
decrease and the output distribution never become anti-concentrated. We need
to rule out this sort of architecture.

Recall that an RQC architecture is a (possibly randomized) procedure for
choosing a length-s sequence (A(1), . . . , A(s)) of pairs of qudit indices on which
to perform a Haar-random gate.

Definition 4.5 (Regularly connected). We say an RQC architecture is h-
regularly connected if for any n, any t, any subsequence A = (A(1), . . . , A(t))
and any proper subset R ⊂ [n] of qudit indices, there is at least a 1/2 probability
that, conditioned on the first t gates in the gate sequence being A, there exists
some index t′ for which t < t′ ≤ t+ hn, A(t′) ∩R 6= ∅, and A(t′) 6⊂ R.

The above definition requires that given any partition of the qudits into
two sets, we should expect at least one gate to couple a qudit from one set
with a qudit from the other set after only a linear number of gates. Note
that both the 1D and the complete-graph architecture have this property. In
1D, it only takes two layers, or n gates, to guarantee having performed a gate
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that crosses any partition one might choose. Similarly, in the complete-graph
architecture, the probability that a randomly chosen gate crosses a partition
is at least 1/n (which happens if the partition splits the indices into a set
with one index and a set with the other n − 1 indices), and the probability
of having crossed the partition becomes large after Θ(n) gates. Most natural
architectures we might consider have this property. One architecture that is
not regularly connected is the hypercube architecture, where n = 2D qudits
lie at the vertices of a D-dimensional hypercube, and D layers of gates are
performed by cycling through each set of parallel edges. In this architecture,
it would take nD/2 = Θ(n log(n)) gates to guarantee that any partition has
been crossed.

Assuming the regularly connected property, we can show a weak upper
bound on the collision probability.

Theorem 4.3 (restated). If an RQC architecture is h-regularly connected,
then the collision probability satisfies

Z ≤ ZH

(
1 + e−

2a
n

(s−s∗)
)
, (4.76)

where

a = (2h)−1 log

(
2(q2 + 1)

(q + 1)2

)
(4.77)

s∗ = (2a)−1 log

(
2q

q + 1

)
n2 +O(n) . (4.78)

Proof. We use the expression given to us by the unbiased walk in Eq. (4.61)

Z =
2n

(q + 1)n
E

Pu,Λu

[(
2q

q2 + 1

)(# of bit flips during walk)
]
. (4.79)

Define Z(t) to be the value of the collision probability, given above via the
biased walk, after t time steps, so Z = Z(s) and Z(0) = 2n/(q + 1)n.

Consider a given trajectory produced by the unbiased walk up to time step
t, γ = (~γ(0), . . . , ~γ(t)). If ~γ(t) = In or ~γ(t) = Sn then the walk has reached a fixed
point and will never again change. From the calculation in Appendix 4.B.6,
we know that the sum of all the weights of all walks of any length that reach
a fixed point is precisely ZH . Since the weights are non-negative, this implies
that the sum over walks that have reached it before time step t is less than
ZH , and hence the combined weight of trajectories that have not reached a
fixed point by time step t is at least Z(t) − ZH . Meanwhile, if ~γ(t) is not at a
fixed point, then we can consider the proper subset R ⊂ [n] of sites with value
S. By the h-regularly connected property, there is at least a 1/2 chance that
one of the gates between time step t + 1 and t + hn matches an index in R
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with one in the complement of R. When this happens, a bit must be flipped
and the weight of that trajectory is reduced by factor 2q/(q2 + 1). Thus, the
following must hold

Z(t+hn) − ZH ≤
(

1

2
+

1

2

2q

q2 + 1

)(
Z(t) − ZH

)
. (4.80)

Moreover, we know that Z(0) = 2n/(q + 1)n, so

Z(s) ≤ ZH +

(
(q + 1)2

2(q2 + 1)

)s/(hn)(
2n

(q + 1)n
− ZH

)
(4.81)

≤ ZH +

(
(q + 1)2

2(q2 + 1)

)s/(hn)(
2n

(q + 1)n

)
(4.82)

= ZH

(
1 +

2n(qn + 1)

2(q + 1)n

(
(q + 1)2

2(q2 + 1)

)s/(hn)
)

(4.83)

≤ ZH

(
1 +

2nqn

(q + 1)n

(
(q + 1)2

2(q2 + 1)

)s/(hn)
)

(4.84)

≤ ZH(1 + e−
2a
n

(s−s∗)) , (4.85)

where

a = (2h)−1 log

(
2(q2 + 1)

(q + 1)2

)
= Θ(1) (4.86)

s∗ = (2a)−1 log

(
2q

q + 1

)
n2 = Θ(n2) . (4.87)

Note that we have made no attempt to optimize the constant prefactor of
the Θ(n2) or the value of a. Indeed, we conjecture that Theorem 4.3 could be
improved so that s∗ = Θ(n log(n)), which would be a dramatic improvement
that implies the fundamental scaling of the anti-concentration size is inde-
pendent of the architecture’s connectivity, so long as it satisfies the regularly
connected property.

4.C.2 Lower bound on collision probability
In this section, we prove an Ω(n log(n)) lower bound on the circuit size

needed for anti-concentration in general circuit architectures. This also implies
an Ω(log(n)) lower bound on the anti-concentration depth.

Theorem 4.4 (restated). For any RQC architecture of size s on n qudits with
local dimension q, the collision probability satisfies

Z ≥ ZH
2

exp

(
log(q)

q + 1
exp

(
log(n)− 2s

n
log
(
q2 + 1

)))
. (4.88)
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Corollary 4.3. For a given RQC architecture, let sAC be the minimum circuit
size, as a function of n, such that Z ≤ 2ZH . Then it must hold that

sAC ≥
(
2 log

(
q2 + 1

))−1
n log(n)−O(n) . (4.89)

Proof. This statement follows directly from the bound in Eq. (4.88).

Corollary 4.4. For a given RQC architecture, let dAC be the minimum circuit
depth, as a function of n, such that Z ≤ 2ZH . Then it must hold that

dAC ≥
(
log
(
q2 + 1

))−1
log(n)−O(1) . (4.90)

Proof. Each layer can have at most n/2 gates so it must hold that dAC ≥
2sAC/n.

Proof of Theorem 4.4. We use the framework of the biased random walk, given
by the expression for Z in Eq. (4.63). For each of the n sites, there is some
initial probability that it starts with value S, and then each gate involving
that site has some chance of flipping it to value I. However, there will always
be some minimum probability that even after many gates, the value has not
yet been flipped to I. This constitutes the idea behind our lower bound.

Given an index j ∈ [n], we compute a lower bound on the probability that
γ

(t)
j = S for all t = 0, 1, . . . , s, (i.e. the jth bit begins with value S and is never

flipped to I), as a function of the number of gates sj that act on qudit j

Pr
Pb,Λb

[γ
(t)
j = S ∀t ∈ {0, . . . , s}] ≥ 1

q + 1

(
1

q2 + 1

)sj
, (4.91)

since there is a 1/(q + 1) chance that γ(0)
j = S when we draw ~γ(0) from Λb,

and the probability it does not flip after each gate is at least 1/(q2 + 1). This
holds for each j, and thus we have

E
Pb,Λb

[|~γ(s)|] =
n∑
j=1

Pr
Pb,Λb

[γ
(s)
j = S] (4.92)

≥
n∑
j=1

Pr
Pb,Λb

[γ
(t)
j = S ∀t ∈ {0, . . . , s}] (4.93)

≥ 1

q + 1

n∑
j=1

(
1

q2 + 1

)sj
. (4.94)

Since each of the s gates in the circuit diagram acts on two indices, it must
hold that

∑
j sj = 2s, and given this constraint, the minimum of the final

expression above occurs when all the sj are equal, and thus

E
Pb,Λb

[|~γ(s)|] ≥ 1

q + 1
n

(
1

q2 + 1

)2s/n

. (4.95)
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By convexity of the exponential function, we have E[qx] ≥ qE[x], and hence

Z =
1

qn
E

Pb,Λb
[q|~γ

(s)|] (4.96)

≥ 1

qn
exp

(
log(q)

n

q + 1

(
1

q2 + 1

)2s/n
)

(4.97)

≥ ZH
2

exp

(
log(q)

q + 1
exp

(
log(n)− 2s

n
log
(
q2 + 1

)))
. (4.98)

4.D Bounds for the 1D architecture
We now focus specifically on the 1D architecture defined formally in Def-

inition 4.2. We assume periodic boundary conditions, although it would be
possible to consider open boundary conditions as well. In 1D, the qudits are
arranged in a geometrically local fashion and it is fruitful to think of a configu-
ration ~γ ∈ {I, S}n as being composed of contiguous domains, consecutive sites
where all the values are I or all the values are S. We then identify domain
walls as locations where one domain ends and another begins. Gates that
couple qudits in different domains cause one of the values to flip, which moves
the domain wall separating those domains one unit to the left or one unit to
the right. The notation for talking formally about this is discussed in the next
subsection, and then the upper and lower bounds on Z are proved.

4.D.1 Domain walls and notation
In 1D, configurations ~γ ∈ {I, S}n are associated with a set of domain wall

locations. We let

DW (~γ) = {e ∈ {0, 1, 2, . . . , n− 1} : γe 6= γe+1} (4.99)

be the set of domain wall positions for a configuration ~γ, where γ0 is identified
with γn when there are periodic boundary conditions. For each set of do-
main wall locations there are exactly two configurations that map to it, since
choosing γ0 = I or γ0 = S determines the value of all other sites.

A configuration trajectory γ = (~γ(0), . . . , ~γ(s)) is then associated with a
sequence of sets of domain wall locations G = (g(0), . . . , g(s)) where g(t) =
DW (~γ(t)). We call G a domain wall trajectory. Domain wall trajectories with
non-zero contribution to the collision probability Z obey the following rules:
when there is a domain wall at position e and a gate acts on qudits {e, e+ 1},
the domain wall must move to position e−1 or e+1 (at the cost of a reduction
in the weight) and may annihilate with another domain wall if there is already
a domain wall at the new position. However, pairs of domain walls cannot be
created; the number of domain walls that exist throughout the domain wall
trajectory is non-increasing, and a particular domain wall can be uniquely
tracked throughout each step of the trajectory (either until the final step or
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until its annihilation). Let G be the set of all domain wall trajectories that
obey these rules. Any domain wall trajectory G ∈ G will have the property
that when t is odd, e is even for all e ∈ g(t), and when t is even (but non-zero),
e is odd for all e ∈ g(t). This is because odd (even) numbered layers couple
qubits {2j−1, 2j} ({2j, 2j+1}) meaning domain walls must lie between qudit
positions 2j and 2j + 1 (between qudit positions 2j − 1 and 2j) for some j.

By converting the sum over trajectories in Eq. (4.59) to a sum over domain
wall trajectories, we can express Z by the equation

Z =
2

(q + 1)n

∑
G∈G

weight(G) , (4.100)

where the weight is given as follows, recalling that A(t) is the pair of qudit
indices involved in the tth gate, which in 1D is always A(t) = {j, j + 1} for
some j.

weight(G) =
s∏
t=1

M
(t)

g(t−1)g(t) (4.101)

M
(t)

g(t−1)g(t)

{
q

q2+1
if min(A(t)) ∈ g(t−1)

1 otherwise .
(4.102)

In other words, if the gate on qudits {j, j + 1} and there is a domain wall at
position j, then the weight is reduced by a factor q/(q2 + 1) (and the domain
wall must move to position j − 1 or position j + 1, possibly annihilating if a
domain wall already exists at that position).

Given two domain wall trajectories G and G′, we will consider the com-
bined domain wall trajectory

G tG′ = (g(0) t g′(0)
, . . . , g(s) t g′(s)) , (4.103)

where t is the disjoint union and is defined only under the assumption g(t) ∩
g′(t) = ∅ for all t.

The upshot of thinking about trajectories this way is that if H = GtG′,
then

weight(H) = weight(G) · weight(G′) . (4.104)

In particular, we will find it useful to decompose a domain wall trajectory
G into G = GU t G0 where GU is a domain wall trajectory with a conserved
number of domain walls throughout the trajectory, and G0 is a trajectory
for which |G(s)

0 | = 0, i.e. all the domain walls have annihilated by the end
of the trajectory. This decomposition is unique, and an example is shown in
Figure 4.5. Let GU and G0 be the subsets of G that have no annihilations and
that have no surviving domain walls at the end of the circuit, respectively. Let
GU,k be the subset of GU with k domain walls. When the boundary conditions
are periodic, k must be even for GU,k to be non-empty.
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= t
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time
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Figure 4.5: Cartoon illustrating unique decomposition of a domain wall trajec-
tory G into a disjoint union of one part, G0, where all domain walls annihilate
prior to the end of the circuit, and another part, GU , where no domain walls
annihilate.

4.D.2 Collision probability upper bound

Theorem 4.1 (restated). For the 1D architecture, let

a = log

(
q2 + 1

2q

)
(4.105)

s∗ =
1

2a
n log(n) + n

(
1

2a
log(e− 1) +

1

2

)
= (2a)−1n log(n) +O(n) . (4.106)

Then,
Z ≤ ZH(1 + e−

2a
n

(s−s∗)) (4.107)

whenever s ≥ s∗. The circuit depth d is d = 2s/n, so we may define d∗ = 2s∗/n
and equivalently conclude

Z ≤ ZH(1 + e−a(d−d∗)) . (4.108)

Note that when s < s∗, an upper bound on Z can still be inferred from
this method. The essence of the proof of Theorem 4.1 is the same as the proof
of the statement proved in [29], although we have expressed it here within our
notation and framework.

Proof. We use the formula in Eq. (4.100), which expresses Z as a weighted sum
over domain wall trajectories. Each domain wall trajectory G = (g(0), . . . , g(s))
can be associated with an integer k = |g(s)|, the number of domain walls that
remain unannihilated at the end of the trajectory. Due to periodic boundary
conditions, k must be even, and let k0 = k/2. Let Gk ⊂ G be the associated
set of length-s domain wall trajectories, and let GU,k ⊂ Gk be the subset
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containing domain wall trajectories that have a conserved number of domain
walls throughout. As discussed in the previous subsection, it is possible to
uniquely decompose H ∈ Gk into H = G tG′ where G ∈ GU,k and G′ ∈ G0.

Suppose we fix a domain wall configuration g(0) for the initial time step
at the beginning of the circuit with k domain walls. There are

(
n
k

)
such con-

figurations. The total weight of all the trajectories in GU,k that begin at this
configuration is at most (2q/(q2 + 1))k(d−1) since each domain wall must move
either left or right (introducing a factor of 2) during each of the d layers of
gates, except for possibly the first layer (if the domain wall begins at an even
position it does not move during the first layer), and each time one moves it
incurs a weight reduction of q/(q2 +1). This does not account for the rule that
the k domain walls cannot intersect, but it still yields an upper bound on the
total weight.

Meanwhile, the sum of the weights of all domain wall trajectories in G0

approaches ZH(q + 1)n/2 from below as depth increases. This follows from
the analysis in Appendix 4.B.6 where it was shown that the sum over all
trajectories that eventually reach a fixed point is exactly ZH(q + 1)n, but at
a finite depth, not every trajectory will have reached a fixed point, so only a
subset of the terms are included in the sum. Due to the fact that each domain
wall configuration corresponds to 2 equal-weight trajectories through {I, S}n
the sum of the weights of all the domain wall trajectories in G0 can be at most
ZH(q + 1)n/2.

Collecting these observations and recalling that k = 2k0, we have

Z =
2

(q + 1)n

n/4∑
k0=0

∑
G∈G2k0

weight(G) (4.109)

=
2

(q + 1)n

n/4∑
k0=0

∑
G∈GU,2k0

∑
G′∈G0
G∩G′=∅

weight(G) · weight(G′) (4.110)

≤

 n/4∑
k0=0

∑
G∈GU,2k0

weight(G)

( 2

(q + 1)n

∑
G′∈G0

weight(G′)

)
(4.111)

≤

 n/4∑
k0=0

(
n

2k0

)(
2q

q2 + 1

)2k0(d−1)
 (ZH) (4.112)

= ZH

n/4∑
k0=0

(
n

2k0

)
(e−a)

2k0(d−1) ≤ ZH(1 + e−a(d−1))n (4.113)

≤ ZH(1 + (e− 1)ne−a(d−1)) (4.114)
= ZH (1 + exp (log(n)− da+ log (e− 1) + a)) (4.115)
≤ ZH (1 + exp (−a(d− d∗))) , (4.116)
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where Eq. (4.114) holds so long as d ≥ d∗, based on the following small lemma.

Lemma 4.2. If b, c > 0 and cb ≤ 1, then

(1 + c)b ≤ 1 + cb(e− 1) . (4.117)

Proof.

(1 + c)b =
b∑

k=0

(
b

k

)
ck = 1 + cb

b∑
k=1

(
b

k

)
ck−1

b
(4.118)

≤ 1 + cb
b∑

k=1

(
b

k

)
b−k ≤ 1 + cb

(
(1 + b−1)b − 1

)
(4.119)

≤ 1 + cb(e− 1) . (4.120)

4.D.3 Collision probability lower bound

Theorem 4.5 (restated). Consider the 1D architecture. There are constants
A and A′ such that as long as s∗ − s ≥ A′n, the collision probability satisfies

Z ≥ ZH
2

exp
(
Aelog(n)− 2a

n
s
)
, (4.121)

where a and s∗ are the same as in Theorem 4.1.

In our proof, the constant A is explicit but very small, on the order of
e−10, and A′ ≈ − log(A). The value of A could certainly be improved with
some attempt at optimization.

Corollary 4.5. For the 1D architecture, if we define sAC and dAC to be the
smallest circuit size and circuit depth for which Z ≤ 2ZH , then∣∣∣∣∣sAC −

(
2 log

(
q2 + 1

2q

))−1

n log(n)

∣∣∣∣∣ ≤ O(n) (4.122)∣∣∣∣∣dAC −
(

log

(
q2 + 1

2q

))−1

log(n)

∣∣∣∣∣ ≤ O(1) . (4.123)

Proof. Theorem 4.1 implies that

sAC ≤ s∗ = (2a)−1n log(n) +O(n) . (4.124)
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Meanwhile, Theorem 4.5 implies that if

s ≤ (2a)−1n log(n)−max

(
(2a)−1 log

(
log(4)A−1

)
, A′
)
n

= (2a)−1n log(n)−O(n) , (4.125)

then Z ≥ 2ZH . Hence sAC ≥ (2a)−1n log(n) − O(n). Together these imply
that |sAC − (2a)−1n log(n)| = O(n).

Proof of Theorem 4.5. Eq. (4.100) expresses Z as a weighted sum over do-
main wall trajectories. Heuristically, when d < d∗ we expect that the output
distribution will not be anti-concentrated and that domain wall trajectories
drawn at random with probability proportional to its weight will usually have
many domain walls that never annihilate. To lower bound Z, we will sum over
the set of configurations with k unannihilated domain walls for a particularly
chosen value of k.

For a fixed value of the depth d, define

nH =
e(d−1)a

2(e− 1)
. (4.126)

We chose nH to be exactly half the value of n for which a depth-d circuit
would be anti-concentrated. Heuristically, we expect on the order of n/2nH
unannihilated domain walls in typical configurations.

Let k be an even integer to be specified later. Let Hk ⊂ GU,k be the set
that contains any domain wall trajectory H = (h(0), . . . , h(s)) for which

(1) H has k domain walls at each time step (none annihilate)

(2) For each of the k domain walls in the initial configuration h(0), the nearest
domain wall in both directions is at most nH positions away.

Now, temporarily fix some H ∈ Hk. It has k domain walls which move
around throughout the trajectory. We let eH,j,t be the location of the jth
domain wall at time step t in the trajectory H. We then define the set JH,j ⊂
G0, for j = 1, . . . , k to be the set of domain wall trajectories for which (1) all
of the domain walls annihilate before time step s, and (2) the position et of
any domain wall at time step t satisfies

eH,j,t < et < eH,j+1,t . (4.127)

In other words, all of the domain walls fall between the jth and (j + 1)th
domain walls of H. This ensures that H is disjoint from any Jj ∈ JH,j.

Specifying a trajectory H ∈ Hk as well as Jj ∈ JH,j for each j = 1, . . . , k,
determines a unique trajectory H ′ = H tJH,1t . . .tJH,k. This decomposition
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e1

e2

e3

e1

e2

e3

e2 e2

e1

e3

= t t t · · ·

= t t t · · ·H ′ H JH,1 JH,2

Figure 4.6: Outline of the main idea of the proof of Theorem 4.5. We choose a
domain wall trajectory H which has k domain walls that never annihilate and
such that the distance between consecutive domain walls is always at most nH .
We then choose domain wall trajectories JH,1, . . . , JH,k such that the domain
walls of JH,j lie between the jth and (j + 1)th domain walls of H and all
annihilate before the end of the circuit. The domain wall configuration H ′ is
the disjoint union of H and JH,j for j = 1, . . . , k. We can lower bound the
collision probability by lower bounding the weighted sum over the contribution
from all H ′ formed this way.

is illustrated in Figure 4.6. Thus, if we perform the weighted sum only over
the set of H ′ formed this way, we will arrive at a lower bound to Z, as follows:

Z =
2

(q + 1)n

∑
H∈G

weight(H) (4.128)

≥ 2

(q + 1)n

(∑
H∈Hk

weight(H)

)
k∏
j=1

 ∑
Jj∈JH,j

weight(Jj)

 . (4.129)

The quantities in parentheses can be bounded with the following two
lemmas, whose proofs are delayed until after the proof of the Theorem.

Lemma 4.3. If 4d ≤ bn/kc and nH/2 ≥ dn/ke hold, then the set Hk satisfies

∑
H∈Hk

weight(H) ≥
(

1

2

⌊n
k

⌋)k ( 2q

q2 + 1

)dk
. (4.130)

Lemma 4.4. Fix a value of H and j. Suppose that the jth and (j + 1)th
domain walls of the initial configuration of H lie at positions e and e+X − 1
(mod n), respectively, for some positive integer X < n. Then ∑

J∈JH,j

weight(J)

 ≥ 1

c

(
q + 1

q

)X
, (4.131)

where c = 3e10.
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The sum of the domain length X for each of the domains is simply n.
Thus the ((q + 1)/q)X factors cancel the 1/(q + 1)n prefactor for Z, and we
have

Z ≥ q−n
(

1

2

⌊n
k

⌋)k
c−k
(

2q

q2 + 1

)dk
= q−n

(
1

2

⌊n
k

⌋)k
c−ke−adk (4.132)

for any k that satisfies 4d ≤ bn/kc and nH/2 ≤ dn/ke.

Now we choose a value of k to maximize the right-hand-side of the above
equation. In the limit of large n, the requirement that k is an even integer
will have negligible effect. In our analysis, we handle this requirement by
defining k′ to be a real number and k to be the smallest even integer larger
than k′, and then we make a few rather crude bounds on the floor and ceiling
of quantities like n/k, which are not asymptotically tight, but good enough
for our purposes. We choose

k′ =
n
(

2q
q2+1

)d
8ce

=
ne−da

8ce
=

n

nH

e−a

16e(e− 1)c
(4.133)

k = smallest even integer greater than k′ . (4.134)

Note that n/k′ is at least 8ce, which is very large, meaning dn/2k′e/2 ≤
n/2k′ ≤ 2bn/2k′c certainly holds. For finite n, we can say that as long as
k′ ≥ 1, then k′ ≤ k ≤ 2k′ will hold. The requirement k′ ≥ 1 translates into

d ≤ a−1(log(n)− log(8ce)) , (4.135)

which, by recalling s = nd/2 and that s∗ ≥ (2a)−1n log(n), can be re-expressed
as

s∗ − s ≥ A′n (4.136)

with A′ = (2a)−1 log(8ce(e− 1))+2−1, which is assumed to hold in the theorem
statement. This implies that⌊n

k

⌋
≥
⌊ n

2k′

⌋
≥ n

4k′
. (4.137)

Inspection of the formula for k′ reveals that the relation 4d ≤ bn/kc holds
for any d and n. Moreover, we have nH/2 = (ne−a)/(k′32e(e− 1)c) ≤ dn/ke,
so the second relation holds as well.
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Recall that ZH = 2/(qn + 1) ≤ 2q−n. Plugging in the above bound on
bn/kc into Eq. (4.132), we find

Z ≥ ZH
2

exp(k) ≥ ZH
2

exp(k′) (4.138)

≥ ZH
2

exp

(
ne−da

8ce

)
(4.139)

=
ZH
2

exp

(
1

8ce
elog(n)−da

)
(4.140)

=
ZH
2

exp

(
1

8ce
elog(n)− 2as

n

)
(4.141)

=
ZH
2

exp
(
Aelog(n)− 2as

n

)
(4.142)

for A defined to equal 1/8ce. Note that this value of A is quite small (on the
order of e−10), but with some optimization could likely be made much larger.

Now we provide the delayed proofs of the two lemmas.

Proof of Lemma 4.3. Each term in the sum on the left-hand-side is non-
negative, so we make a lower bound by summing over a subset of the terms.
To do so, we can split the n indices up into k nearly equal-size segments of
length at most dn/ke, which is less than nH/2 by assumption. Then for each
of these segments, we choose the location of a single domain wall that is at
least distance d from each edge of the segment. This will generate a unique
initial domain wall configuration that satisfies criteria (2) of Hk, since any
pair of consecutive domain walls is closer than nH apart. The total number of
choices is at least (⌊n

k

⌋
− 2d

)k
(4.143)

which, by the assumption 4d ≤ bn/kc, is at least (bn/kc/2)k.

Once the initial k domain wall locations have been chosen, we examine
how they can propagate through the circuit. Each layer of gates will force
each of the k domain walls to move in one of two directions, and the weight
is reduced by a factor (q/(q2 + 1))k, except for the first layer, where some
of the domain walls may not move if they begin at an even index. Since,
by construction, there are no instances where domain walls start within a
distance of 2d of any other domain wall, there is no chance of domain walls
crossing. Thus, we find that for each initial set of k locations chosen in the
manner outlined above, the combined weight of all possible trajectories is at
least (2q/(q2 + 1))kd. This proves the lemma.
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Proof of Lemma 4.4. Consider an alternative 1D qudit system with periodic
boundary conditions consisting of X sites by identifying site e+X with site e
and ignoring all other sites. Because H ∈ Hk, we can be assured that X ≤ nH .
Let J ′H,j be the set of all domain wall trajectories on the size-X system. Let
J ′H,j,l be the subset that have l = 2l0 domain walls on the last time step.
Because the collision probability, denoted ZX , for this X-qudit system must
satisfy ZX ≥ ZH,X , and here ZH,X = 2/(qX + 1), it must be the case that

ZX =
2

(q + 1)X

 ∑
J ′∈J ′H,j

weight(J)

 =
2

(q + 1)X

X/4∑
l0=0

 ∑
J ′∈J ′H,j,2l0

weight(J)


(4.144)

≥
(

2

qX + 1

)
=: ZH,X . (4.145)

We can upper bound the contribution of all the terms with l0 > 0 in the above
expression by the method that yielded the upper bound in Theorem 4.1. The
sum of those terms is upper bounded by the second term in Eq. (4.114), that
is

2

(q + 1)X

X/4∑
l0=1

 ∑
J ′∈J ′H,j,2l0

weight(J)

 ≤ ZH,X(e− 1)Xe−a(d−1) (4.146)

=

(
2

qX + 1

)
X

2nH
≤ 1

2

(
2

qX + 1

)
,

(4.147)

since X ≤ nH . Combining Eqs. (4.145) and (4.147), we find a lower bound on
the l0 = 0 term ∑

J ′∈J ′H,j,0

weight(J)

 ≥ ((q + 1)X

2

)(
2

qX + 1

)(
1− 1

2

)
(4.148)

=

(
q + 1

q

)X (
1

2

qX

qX + 1

)
(4.149)

≥
(
q + 1

q

)X (
1

3

)
, (4.150)

where the last inequality follows since q ≥ 2 and X ≥ 1 must be true. Now,
every domain wall trajectory in JH,j will also be in J ′H,j,0, but the converse
will not be true. Some trajectories in the latter set will have one or more
domain walls that intersect with either the jth or the (j + 1)th domain wall
of H at some time step, which is not allowed within the former set. Thus, the
sum over the domain wall trajectories in JH,j will be smaller than the sum over
those in J ′H,j,0. However, we argue that the difference is at most some constant
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Figure 4.7: Outline of the argument in the proof of Lemma 4.4 that the sum
over domain wall trajectories in JH,j is at least the sum in J ′H,j,0 divided by
some constant factor, expressed in Eq. (4.159). Every trajectory in J ′ ∈ J ′H,j,0
can be decomposed into a trajectory J ∈ JH,j a trajectory K ∈ BH,j, and a
trajectoryK ′ ∈ BH,j+1, where each domain wall inK intersects the jth domain
wall of H, and each domain wall of K ′ intersects the (j + 1)th domain wall of
H. Because the combined weight of all possible K and K ′ is only a constant
factor, independent of n, the combined weight of all possible J cannot be
more than a constant factor smaller than the combined weight of all possible
J ′. Note that the system with X sites has periodic boundary conditions in
this figure.

factor by the following argument, which is also described in Figure 4.7. Let
BH,j be the set of all trajectories in which every domain wall either intersects
the jth domain wall of H at some time step t, or it annihilates with a domain
wall that previously intersected with the jth domain wall of H. Then any
trajectory in J ′H,j,0 can be formed as the disjoint union of a trajectory in
J ∈ JH,j, a trajectory in K ∈ BH,j and a trajectory in K ′ ∈ BH,j+1, to account
for the parts that intersect the jth and (j + 1)th domain walls. Given J ′,
the choice of J for this decomposition is unique, but there may be multiple
choices of (K,K ′) for which it holds. Note also that a trajectory in BH,j can
be decomposed into individual domain wall pairs that coincide with the jth
domain wall of H at some time step t and annihilate at some time step t′. The
combined weight of all such pairs, given fixed coincidence point at eH,j,t is at
most (2q/(q2 + 1))2t′ . Summing over t′ ≥ t, we find that the combined weight
for all possible domain wall pairs coinciding at time step t is at most(

2q
q2+1

)2t

1−
(

2q
q2+1

)2 =
(q2 + 1)2

(q2 − 1)2

(
2q

q2 + 1

)2t

. (4.151)
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There can be many domain wall pairs that intersect the jth domain wall of H,
but for each value of t there will either be no intersection (in which case the
factor is 1) or one intersection (in which case the factor is at most the above
quantity). Thus we can take the product over including or not including a
domain wall at each value of t and find:

∑
K∈BH,j

weight(K) ≤
s∏
t=1

(
1 +

(q2 + 1)2

(q2 − 1)2

(
2q

q2 + 1

)2t
)
. (4.152)

This implies ∑
J ′∈J ′H,j,0

weight(J)

 (4.153)

≤

 ∑
J∈JH,j

weight(J)

 ∑
K∈BH,j

weight(K)

 ∑
K′∈BH,j+1

weight(K ′)


(4.154)

≤

 ∑
J∈JH,j

weight(J)

 · s∏
t=1

(
1 +

(q2 + 1)2

(q2 − 1)2

(
2q

q2 + 1

)2t
)2

(4.155)

≤

 ∑
J∈JH,j

weight(J)

 · exp

(
2

s∑
t=1

(q2 + 1)2

(q2 − 1)2

(
2q

q2 + 1

)2t
)

(4.156)

≤

 ∑
J∈JH,j

weight(J)

 · exp

 8q2

(q2 − 1)2

1

1−
(

2q
q2+1

)2

 (4.157)

=

 ∑
J∈JH,j

weight(J)

 · exp

(
8q2(q2 + 1)2

(q2 − 1)4

)
(4.158)

≤

 ∑
J∈JH,j

weight(J)

 · e10 , (4.159)

where the last inequality follows since q ≥ 2 and the function of q inside the
exp is monotonically decreasing. Combining the above with Eq. (4.150), we
arrive at ∑

J∈JH,j

weight(J)

 ≥ (q + 1

q

)X (
1

3e10

)
=

(
q + 1

q

)X
c−1 . (4.160)
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4.E Bounds for the complete-graph architecture
4.E.1 Proof intuition and guide

In the following sections, we complete the proofs for upper and lower
bounds of the complete-graph architecture, defined formally in Definition 4.1.
The first insight about the complete-graph architecture is that all configura-
tions with the same Hamming weight are equivalent, as there is a symme-
try upon permutation of the qudits. Thus, trajectories through configura-
tion space {I, S}n are reduced to trajectories through Hamming weight space
{0, 1, . . . , n}.

Our upper bound will use the framework of the unbiased walk, and the
lower bound will use the biased walk. Recall we can use the unbiased walk to
express the collision probability Z as a sum over all possible paths that the
trajectory might take, working from Eq. (4.61)

Z =
1

(q + 1)n

∑
~γ(0)

E
Pu,~γ(0)

[(
2q

q2 + 1

)(# of bit flips during walk)
]

(4.161)

=
1

(q + 1)n

n∑
x=0

(
n

x

)
E
Pu,x

[(
2q

q2 + 1

)(# of bit flips during walk)
]
, (4.162)

where the
(
n
x

)
comes from the fact that this is the number of initial config-

urations with Hamming weight x. For the complete-graph case, Pu takes on
a simple form: if the current configuration is x, the chances that the con-
figuration changes on the next time step is precisely the chances of finding
mismatching values upon drawing a random pair of indices in [n], which is
given by 2x(n−x)

n(n−1)
, and if it does change, it is equally likely to become x − 1

or to become x + 1. For the biased walk Pb, everything is the same except
that when the configuration changes, it is biased to travel to x− 1 with prob-
ability q2/(q2 + 1). Also, in the biased case, the initial configuration is not
a uniform choice over all configurations but instead distributed according to
Λb, and the expectation in the above equation is replaced with E[q|~γ

(s)|]. Thus
larger Hamming weight configurations are exponentially more significant in
their contribution to Z.

To get an intuition for what we expect, we first think about the biased
walk, which is what we use for the lower bound. Here, the peak of the prob-
ability mass in the initial configuration Λb starts around Hamming weight
x = n/(q+ 1). On average, the walk lingers for n(n− 1)/2x(n− x) time steps
before moving, which is approximately equal to n/2x when x is close to 0.
Due to the bias, and due to the time required to wait, the effective speed of
the biased walk is

veff(x) =
2x(n− x)

n(n− 1)

(
q2

q2 + 1
− 1

q2 + 1

)
≈ 2x

n

q2 − 1

q2 + 1
(4.163)

in the direction of 0, since each time it moves, it has a q2/(q2 + 1) chance
of moving one unit closer to 0, but a 1/(q2 + 1) chance of moving one unit



170

farther away from 0. Thus, in expectation, the time it takes for the peak of
the probability mass to reach value 0 is

n/(q+1)∑
x=1

1

veff(x)
≈ q2 + 1

q2 − 1

1

2
n log(n) ≈: s∗ , (4.164)

noting that
∑

x
1
x
≈ log(n).

This strongly suggests that s∗ time steps are necessary for anti-
concentration, as any less time would mean the peak of the distribution over
Hamming weights at the end of the circuit will be located at some Hamming
weight y > 0 and as a result, it will receive a significant amount of weight qy
in its contribution to Z. This is the intuition for our lower bound.

The biased walk also gives intuition for why there is a matching upper
bound. If the circuit size is a little bigger than the lower bound, we expect
the peak of the distribution to have terminated at the fixed point at 0. It is
still possible that the tail of the distribution, which will not yet have reached
the fixed point, is too fat to for anti-concentration to have been achieved; each
unit farther away from 0 results in a factor of q larger contribution to Z, so
we need the tail to be exponentially decaying if we want to be able to ignore
it. This is essentially what we are able to show, albeit in a way where it might
not be completely clear that this is what we have done. Intuitively, one reason
we expect this exponentially decaying tail is because the effective speed slows
down as you get closer to zero. This gives the tail of the distribution, which is
sitting further away from 0, time to “catch up,” as its effective speed is faster.

To actually perform the upper bound, we turn back to the unbiased walk.
To be clear and to match the progression in the full proof, we introduce the
concept of a reduced path (equivalently, “reduced walk”) as a walk that never
stands still at a certain configuration. If its Hamming weight at time step t
is y, then its Hamming weight at time step t + 1 will move to y − 1 or y + 1.
For each walk, we can form a corresponding reduced walk simply by removing
consecutive duplicates from the sequence of configurations. Another way to
look at it is that given a fixed reduced walk, the actual walk will linger at each
location for a certain number of time steps before continuing. In the limit
of large circuit size s, there is enough time for the actual walk to linger as
long as it would like at each step, and any reduced walk will successfully be
“completed” by the actual walk. In this limit, Z = ZH where ZH = 2/(qn + 1)
is the Haar value. Away from this limit, there is some probability that some
reduced paths will not be completed.

We are able to express the difference between Z and ZH as a sum over
all reduced paths, including reduced paths that do not terminate at Hamming
weight 0 or Hamming weight n, where the summand is proportional to the
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probability that the reduced path is not completed within s time steps:

(q + 1)n(Z − ZH) (4.165)

=
∑

red path φ

(
q

q2 + 1

)length of φ
(q − 1)2

2q
Pr[φ not completed in s time steps] .

(4.166)

The next key insight is to use a Chernoff bound to bound the probability of a
reduced walk not being completed. If L is the length of the walk, the Chernoff
bound states (for any constant a > 0)

Pr[L > s] ≤ E[eaL]

eas
, (4.167)

but this is particularly useful because, for fixed φ, L is itself a sum of indepen-
dent random variables Lφ(i) , the number of time steps the walk waits on step
i. Thus

E[eaL] =
∏
i

E[e
aL

φ(i) ] (4.168)

and because each random variable Lφ(i) is exponentially distributed, we can
calculate E[e

aL
φ(i) ] exactly. For the purposes of the proof sketch, denote

Tx = E[eaLx ] , (4.169)

which will depend only on the Hamming weight x of the configuration the
walk is at. (The walk will wait longer when it is near 0 or n than when it is
near n/2.) This dependence appears to be a problem as it is unclear how to
actually perform the following sum over all possible φ. (The constant a for
each reduced walk φ, denoted aφ, will be specified later.)

(q + 1)n(Z − ZH) =
(q − 1)2

2q

∑
red path φ

e−aφs
length of φ∏

i=1

(
q

q2 + 1
Tφ(i)

)
. (4.170)

To proceed, we break φ up into subpaths that inch closer and closer to
0 and n. We can write φ as the concatenation of φx, φx−1, . . . , φw, where φv
begins at either v or n − v and only reaches v − 1 or n − v + 1 for the first
time on the very last step. Then, w is the minimum Hamming weight distance
from one of the fixed points (0 or n) the reduced walk φ ever reaches. Because
the walk φv spends all its time between v and n − v, the expectation Ty for
all of the y within one of these φv walks will be less than or equal to Tv (the
walk moves slower when its closer to 0 or n), and we can write

2q

(q − 1)2
(q + 1)n(Z − ZH)

≤
n∑
x=0

(
n

x

)min(x,n−x)∑
w=0

e−aws
x∏

v=w

[∑
φv

(
q

q2 + 1
Tv

)length of φv
]
.

(4.171)
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Here the
(
n
x

)
comes in as the number of configurations with Hamming weight

x, and aφ has changed to aw because we will choose it so that it only depends
on the end point w of φ.

The above equation is huge progress because we already know how to
perform the sums in brackets. Essentially, the factor of Tx simply changes the
effective value of q; we may define q̄ to satisfy

q̄/(q̄2 + 1) = qTx/(q
2 + 1) . (4.172)

Then we can use the formulas for sums over paths that we have already devel-
oped in Lemma 4.1 to perform the sums. What we find is that, for the values
of aw that we can choose, we must allocate roughly (q2 + 1)n/2(q2 − 1)x time
steps for s such that e−aws can cancel out the value of the sum in brackets
for φx. Note that this is precisely the inverse of the effective speed we defined
before. Then, for all the sums to be canceled from v = 1 to v = n/2, we must
allocate

n/2∑
v=1

q2 + 1

2(q2 − 1)

n

x
≈ q2 + 1

2(q2 − 1)
n log(n) (4.173)

time steps. Fundamentally, the log(n) factor becomes necessary because the
walk waits longer and longer as it gets closer and closer to the fixed points.
In the full analysis, we find a term linear in n is also necessary to fully anti-
concentrate, but our analysis of the constant prefactor for the linear term is
not tight.

4.E.2 Preliminaries
Trajectories

For the complete-graph architecture, we may keep track of only the Hamming
weight of a certain configuration. Thus, our random walks are over the set
{0, 1, . . . , n}. A trajectory γ is now a sequence of integers (γ(0), . . . , γ(s)).
Generally speaking, if t > s for a sequence of length s, let γ(t) return γ(s).
A sequence is valid if for every t, |γ(t) − γ(t−1)| ≤ 1 and such that if 0 or n
appears, it appears only once at the very end of the sequence. Let Γ be the
set of all valid trajectories.

For any valid trajectory γ, the unbiased random walk associates a non-
zero probability:

Pr
Pu

[γ] =
s∏
t=1

Pu[γ
(t)|γ(t−1)] , (4.174)

where

Pu[y|x] =


x(n−x)
n(n−1)

if |y − x| = 1

1− 2x(n−x)
n(n−1)

if y = x

0 otherwise
. (4.175)
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We can make the same definition for the biased random walk by replacing Pu
with Pb where

Pb[y|x] =


2q1+x−y

q2+1
x(n−x)
n(n−1)

if |y − x| = 1

1− 2x(n−x)
n(n−1)

if y = x

0 otherwise
. (4.176)

For P ∈ {Pu, Pb} and any subset Υ ⊆ Γ, we let PrP [Υ] =
∑

γ∈Υ PrP [γ] be the
total probability assigned to paths in Υ.

Conditional probabilities and expectations

For any γ ∈ Υ, we may also define the conditional probability

Pr
P

[γ|Υ] =
PrP [γ]

PrP [Υ]
, (4.177)

which indicates drawing from the subset Υ with probability proportional to
that assigned by the (unbiased or biased) random walk. This also allows us to
naturally define conditional expectation values for some quantity Q computed
from γ

E
P

[Q[γ]|γ ∈ Υ] =
∑
γ∈Υ

PrP [γ]

PrP [Υ]
Q[γ] . (4.178)

Trajectory concatenation and other operations

For any trajectory γ = (γ(0), . . . , γ(s)) ∈ Γ, let L[γ] = s be the length of the
trajectory, and let γ(L) be shorthand for γ(L[γ]). The statement w ∈ γ returns
true if there exists some t for which γ(t) = w. Then, we let

Sw[γ] =

{
min

(
{t : γ(t) = w}

)
if w ∈ γ

−1 if w 6∈ γ
(4.179)

be the first time step along γ for which the trajectory reaches w. We also let

M [γ] = max
0≤t≤L[γ]

γt (4.180)

m[γ] = min
0≤t≤L[γ]

γt (4.181)

be the maximum and minimum Hamming weight the trajectory passes
through.

We can naturally concatenate two trajectories γ1 and γ2 if γ(L)
1 = γ

(0)
2 to

form a trajectory γ = γ1 · γ2 of length L[γ1] +L[γ2]. We will say that γA ⊂ γC
if there exists some γB for which γA · γB = γC .

For any trajectory γ, we let γ̃ be the flipped trajectory

γ̃ = (n− γ(0), n− γ(1), . . . , n− γ(s)) . (4.182)
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In general, if v is an integer with 0 ≤ v ≤ n, then let ṽ = min(v, n− v).

Similarly, let γ̄ return the reversed trajectory.

γ̄ = (γ(s), . . . , γ(0)) . (4.183)

Moreover, let γ[t] return the trajectory γ truncated to length t, or simply return
γ if t ≥ L[γ], i.e.

γ[t] =

{
γ if t ≥ L[γ]

(γ(0), . . . , γ(t)) if t < L[γ]
. (4.184)

Let γ[L−t] be shorthand for γ[L[γ]−t]. More generally, let

γ[a,b] = (γ(a), γ(a+1), . . . , γ(b)) . (4.185)

Important subsets of Γ

We now define various subsets of Γ. Let

Γx = {γ ∈ Γ : γ(0) = x} (4.186)

be the subset of trajectories that begin at x, and let

Γw = {γ ∈ Γ : Sw[γ] = L[γ]} (4.187)

be the set of trajectories that reach w for the first time and immediately
terminate. We make the natural combination of these

Γwx = {γ ∈ Γ : γ0 = x, Sw[γ] = L[γ]} . (4.188)

Of particular importance are sets where w = 0 or w = n, which include valid
trajectories that terminate at one of the fixed points of the random walk.
Define

Γ∗x = Γ0
x ∪ Γnx (4.189)

and note that PrPu [Γ∗x] = PrPb [Γ
∗
x] = 1, a statement that intuitively makes

sense since walks will eventually reach either 0 or n with probability 1. Adding
the superscript w to any set Υ restricts to walks for which L[γ] = Sw[γ].

When any walk in Υ can be concatenated with any walk in Υ′ we let

Υ ·Υ′ = {γ · γ′ : γ ∈ Υ, γ′ ∈ Υ′} . (4.190)

Additionally, we let

Υ̃ = {γ̃ : γ ∈ Υ} (4.191)
Ῡ = {γ̄ : γ ∈ Υ} . (4.192)
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Reduced trajectories

We also introduce the concept of a reduced trajectory, which we sometimes
refer to synonymously as a reduced walk, which is a valid trajectory for which
|γ(t) − γ(t−1)| = 1 for all t; that is, the reduced walk never stands still. We
let the set of reduced walks be Ψ, and let all sub and superscripts restrict Ψ
in the same way they restricted Γ. For any γ ∈ Γ we can associate a reduced
walk ψ ∈ Ψ by removing consecutive duplicates from γ. Under this definition,
we let R[γ] = ψ. For any ψ ∈ Ψ, we let

Γψ = {γ ∈ Γ : R[γ] = ψ,R[ψ[L−1]] 6= ψ} , (4.193)

where the second condition acts to include only trajectories γ whose final
configuration appears only once (i.e. when the final configuration is removed,
the reduced sequence changes).

Under dynamics by either the unbiased or biased walk, it is easy to cal-
culate the probability associated with Γψ:

Pr
Pu

[Γψ] =

(
1

2

)L[ψ]

(4.194)

Pr
Pb

[Γψ] = qψ
(0)−ψ(L)

(
q

q2 + 1

)L[ψ]

. (4.195)

Finally, define the following subsets of Ψ:

Λx = Ψx−1
x|n−x+1 ∪Ψn−x+1

x|x−1 (4.196)

Ξw = {ψ ∈ Ψw : m(ψ) ≥ w,M(ψ) ≤ n− w} , (4.197)

where the subset Ψc
a|b is defined as follows:

Ψw
x|z =


{ψ ∈ Ψw

x : M [ψ] < z} if w < x < z

{ψ ∈ Ψw
x : m[ψ] > z} if z < x < w

∅ otherwise
. (4.198)

In words, the set Ψw
x|z includes reduced walks that begin at x and end at w

without ever reaching z. Thus Λx is the set of reduced walks that start at x
and end at x− 1 without ever reaching n− x+ 1 or end at n− x+ 1 without
ever reaching x− 1. The set Ξw is the set of reduced walks of any finite length
that start at w, but never reach either w − 1 or n− w + 1.

4.E.3 Upper bound proof

Theorem 4.2 (restated). For the complete-graph architecture with circuit size
s on n qudits with local Hilbert space dimension q

Z ≤ ZH

(
1 + e−

2a
n

(s−s∗)
)
, (4.199)
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as long as s ≥ s∗, where

s∗ =
q2 + 1

2(q2 − 1)
n log(n) +O(n) (4.200)

a =
(q − 1)2

2(q2 + 1)
. (4.201)

Proof. In this proof, we will be working with expressions for the collision
probability Z. It will take several steps to manipulate the original expression
into the form we need, so we will move back and forth between updating the
expression and developing the tools needed to justify these updates.

We start by expressing

Z =
1

(q + 1)n

n∑
x=0

(
n

x

)
E
Pu

[(
2q

q2 + 1

)L[R[γ[s]]] ∣∣∣ γ ∈ Γ∗x

]
. (4.202)

This is seen to be equivalent to Eq. (4.61) as follows. There are
(
n
x

)
initial

configurations with Hamming weight x, and generating a length-s trajectory
beginning at x with the unbiased Markov chain is equivalent to randomly
choosing a trajectory γ from Γ∗x, which begins at x and ends at a fixed point
(0 or n), with probability proportional to that assigned by the unbiased walk,
and then truncating the walk to length s, denoted by γ[s]. Then R[γ[s]] is the
reduced trajectory, where consecutive duplicates are removed, and L[R[γ[s]]]
is the length of that reduced trajectory, or in other words, the total number
of bit flips that have occurred within the first s time steps.

Moving ahead, we observe that drawing γ from Γ∗x is equivalent to first
drawing a reduced trajectory ψ from Ψ∗x and then drawing γ from Γψ, so we
can rewrite

Z =
1

(q + 1)n

n∑
x=0

(
n

x

) ∑
ψ∈Ψ∗x

Pr
Pu

[Γψ] E
Pu

[(
2q

q2 + 1

)L[R[γ[s]]] ∣∣∣ γ ∈ Γψ

]
. (4.203)

Now, note the following general statement about any integer-valued ran-
dom variable X such that 0 ≤ X ≤M . For any function f , we have

E[f(X)] =
M∑
m=0

Pr[X = m]f(m) =
M∑
m=0

(Pr[X < m+ 1]− Pr[X < m]) f(m)

(4.204)

= f(M) +
M∑
m=1

Pr[X < m] (f(m− 1)− f(m)) . (4.205)
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Taking X = L[R[γ[s]]] for γ drawn at random from Γψ and f(X) = (2q/(q2 +
1))X , we find

E
Pu

[(
2q

q2 + 1

)L[R[γ[s]]] ∣∣∣ γ ∈ Γψ

]
(4.206)

=

(
2q

q2 + 1

)L[ψ]

+

L[ψ]∑
m=1

Pr
Pu

[
L[R[γ[s]]] < m

∣∣∣ γ ∈ Γψ

]( 2q

q2 + 1

)m−1
(q − 1)2

q2 + 1

(4.207)

=

(
2q

q2 + 1

)L[ψ]

+

L[ψ]∑
m=1

Pr
Pu

[
L[γ] > s

∣∣∣ γ ∈ Γψ[m]

]( 2q

q2 + 1

)m−1
(q − 1)2

q2 + 1
,

(4.208)

where the last line follows since the conditions L[R[γ[s]]] < m with γ ∈ Γψ and
L[γ] > s with γ ∈ Γψ[m] both correspond to deciding if the configuration has
changed at least m times within the first s steps.

The quantity

1

(q + 1)n

n∑
x=0

(
n

x

) ∑
ψ∈Ψ∗x

Pr
Pu

[Γψ]

(
2q

q2 + 1

)L[ψ]

(4.209)

is precisely equal to ZH , as this represents the limit of infinite size where all
trajectories terminate at one of the fixed points (see Appendix 4.B.6). Thus,
also noting that PrPu [Γψ] = 2−L[ψ], we have

(q + 1)n(2q)

(q − 1)2
(Z − ZH) (4.210)

=
2q

q2 + 1

n∑
x=0

(
n

x

) ∑
ψ∈Ψ∗x

Pr
Pu

[Γψ]

L[ψ]∑
m=1

Pr
Pu

[
L[γ] > s

∣∣∣ γ ∈ Γψ[m]

]( 2q

q2 + 1

)m−1

(4.211)

=
n∑
x=0

(
n

x

) ∑
ψ∈Ψ∗x

Pr
Pu

[Γψ]

L[ψ]∑
m=1

Pr
Pu

[
L[γ] > s

∣∣∣ γ ∈ Γψ[m]

]( 2q

q2 + 1

)m
(4.212)

=
n∑
x=0

(
n

x

) ∑
ψ∈Ψ∗x

2−L[ψ]

L[ψ]∑
m=1

Pr
Pu

[
L[γ] > s

∣∣∣ γ ∈ Γψ[m]

]( 2q

q2 + 1

)m
. (4.213)

Now, in the first line below, by associating φ = ψ[m], we reorder and regroup
the sums: instead of summing over paths ψ that end at a fixed point and then
all intermediate points m = 1, . . . , L[ψ] along the path, we first sum over all
m, all φ (not necessarily ending at a fixed point) of length m, and then all ψ
for which φ ⊂ ψ (recall this means that the first L[φ] entries in the trajectory
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ψ are equal to φ). In the second line, we note that the sums over m and φ of
length m is just a sum over all φ (of any length). In the third line, we note
that the total probability of all the walks ψ for which φ ⊂ ψ is just 2−L[φ].

2q

(q − 1)2
(q + 1)n(Z − ZH) (4.214)

=
n∑
x=0

(
n

x

) ∞∑
m=1

∑
φ∈Ψx
L[φ]=m

∑
ψ∈Ψ∗x
φ⊂ψ

2−L[ψ]

Pr
Pu

[
L[γ] > s

∣∣∣ γ ∈ Γφ

]( 2q

q2 + 1

)L[φ]

(4.215)

=
n∑
x=0

(
n

x

) ∑
φ∈Ψx

∑
ψ∈Ψ∗x
φ⊂ψ

2−L[ψ]

Pr
Pu

[
L[γ] > s

∣∣∣ γ ∈ Γφ

]( 2q

q2 + 1

)L[φ]

(4.216)

=
n∑
x=0

(
n

x

) ∑
φ∈Ψx

(
2−L[φ]

)
Pr
Pu

[
L[γ] > s

∣∣∣ γ ∈ Γφ

]( 2q

q2 + 1

)L[φ]

(4.217)

=
n∑
x=0

(
n

x

) ∑
φ∈Ψx

Pr
Pu

[
L[γ] > s

∣∣∣ γ ∈ Γφ

]( q

q2 + 1

)L[φ]

. (4.218)

Now we examine the final expression. The difference between Z and ZH is a
sum over Ψx, which includes all reduced paths φ that start at x and may or may
not terminate at 0 or n. The statement L[γ] > s is true if the number of time
steps it takes to complete this reduced path is at least s, i.e. the probability
that the path does not finish within s time steps. As a sanity check, when s
becomes infinite, we expect this probability to become zero for any path as
there would be enough time for any path to finish, and in this case Z = ZH as
expected. This expression represents progress because we will be able to bound
the probability of a certain path being completed using a Chernoff bound.

For any random variable X and for any constant a > 0,

Pr[X > k] ≤ E[eaX ]

eak
. (4.219)

We use this bound with X = L[γ], k = s, and yet-to-be-specified constants
aφ > 0

2q(q + 1)n

(q − 1)2
(Z − ZH) ≤

n∑
x=0

(
n

x

) ∑
φ∈Ψx

e−aφs E
Pu

[
eaφL[γ]

∣∣∣ γ ∈ Γφ

]( q

q2 + 1

)L[φ]

.

(4.220)

The Chernoff bound has the additional benefit that E[eaX ] separates when
X is the sum of independent random variables. In particular, once φ is fixed,
L[γ] is the sum of exponentially distributed random variables corresponding
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to how many time steps the path γ waits at each position along the reduced
path φ.

This is seen formally by noting that

φ = (φ(0), φ(1)) · (φ(1), φ(2)) · . . . · (φ(L−1), φ(L)) (4.221)
Γφ = Γ(φ(0),φ(1)) · Γ(φ(1),φ(2)) · . . . · Γ(φ(L−1),φ(L)) , (4.222)

and meanwhile, for any collection of subsets Υm,

E
Pu

[
eaL[γ] | γ ∈ Υ1 · . . . ·ΥM

]
=

M∏
m=1

E
Pu

[
eaL[γ] | γ ∈ Υm

]
. (4.223)

For any r = 0, . . . , L[φ]− 1, we can evaluate

E
Pu

[
eaL[γ] | γ ∈ Γ(φ(r),φ(r+1))

]
=
∞∑
t=1

(
1− λ−1

φ(r)

)t−1

λ−1
φ(r)e

at (4.224)

=
1

1− λφ(r)(1− e−a)
, (4.225)

where
λv =

n(n− 1)

2v(n− v)
(4.226)

is the expected amount of time the walk will wait at Hamming weight v before
moving to v + 1 or v − 1, and hence

E
Pu

[
eaφL[γ]

∣∣∣ γ ∈ Γφ

]
=

L[φ]−1∏
r=0

1

1− λφ(r)(1− e−aφ)
. (4.227)

We have made some progress at evaluating the bound on Z, but at this
point it remains unclear how to perform the sum over paths φ ∈ Ψx. To do so,
first we will decompose paths φ into a series of subpaths that inch closer and
closer to the fixed points at 0 and n. In particular, we will decompose a path
φ as a concatenation of subpaths drawn from Λv for various v and one final
subpath drawn from Ξw, as described in the following lemma. Recall from
Eqs. (4.196) and (4.197) that these subsets of Ψ are defined by where they
start, where they end, and/or some maximum or minimum point at which
they ever reach.

Lemma 4.5. Suppose φ ∈ Ψx. Let x̃ = min(x, n − x) and let w =
min(m(φ), n−M(φ)). Then there is a unique sequence of trajectories (φv)

x̃
v=w

with φv ∈ Λv for v = w + 1, . . . , x̃ and φw ∈ Ξw and such that

φ = αx̃ · αx̃−1 · . . . · αw , (4.228)

where for each v either αv = φv or αv = φ̃v, depending on whether αv+1

terminates at v or at n− v.
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Proof. Let rv be the minimum r such that φ(r) = v or φ(r) = n− v. Then for
each v = w + 1, . . . , x̃, we can define

αv = φ[rv ,rv−1] (4.229)

and
αw = φ[rw,L[φ]] . (4.230)

Then, each αv begins at either v or n− v and terminates upon reaching either
v− 1 or n− v+ 1 for the first time. Hence it is a member of Λv or Λ̃v, but not
both. Finally, αw is a member of Ξw because it begins at w and never reaches
either w − 1 or n−w + 1, since this would contradict the definition of w.

We will use the notation ṽ = min(v, n − v) for any integer v throughout
the remainder of the proof. The above lemma allows us to replace the sum
over φ ∈ Ψx with sums over w from 0 to x̃ and sums over φv ∈ Λv, φw ∈ Ξw.
The summand is a product of factors (1 − λφ(r)(1 − e−aφ))−1, each of which
can be collected within just one of the sums. Moreover, the fact that these
products are invariant under reversing the path, i.e.

L[ψ]−1∏
r=0

f(ψ(r)) =

L[ψ]−1∏
r=0

f(ψ̃(r)) (4.231)

for any function f , means that it is unimportant that αv can equal φv or φ̃v
as both yield the same result.

We will choose aφ so that it only depends on w = min(m(φ), n−M(φ)),
denoted henceforth by aw. Collecting these observations, and noting that the
L[φ] factors of q/(q2 + 1) can each be allocated to one of the steps taken in φ,
we find that

(q + 1)n(2q)

(q − 1)2
(Z − ZH) (4.232)

≤
n∑
x=0

(
n

x

) x̃∑
w=0

e−aws
x̃∏

v=w

 ∑
φv∈Λv

or
φw∈Ξw

L[φv ]−1∏
r=0

q

q2 + 1

1

1− λ
φ

(r)
v

(1− e−aw)

 (4.233)

≤
n∑
x=0

(
n

x

) x̃∑
w=0

e−aws
x̃∏

v=w

 ∑
φv∈Λv

or
φw∈Ξw

(
q

q2 + 1

1

1− λv(1− e−aw)

)L[φv ]

 , (4.234)

where in the final line, we used the fact that by definition of φv ∈ Λv or
φv ∈ Ξv, v ≤ φ

(r)
v ≤ n− v for all r < L[φ] and also λv ≥ λv′ whenever ṽ < ṽ′.
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This form is very useful because we know how to perform sums in paren-
theses, using the strategy we first saw in Lemma 4.1. The values of these sums
are given by the following lemma, whose proof is delayed until after the main
proof.

Lemma 4.6. Given v and a parameter a that satisfies 1 ≤ ea ≤ (1 −
(q−1)2

q2+1
1
λv

)−1, the following identities hold:

∑
α∈Λv

(
q

q2 + 1

1

1− λv(1− e−a)

)L[α]

= q̄−1
v,a

1 + q̄−n+2v
v,a

1 + q̄−n+2v−2
v,a

(4.235)

∑
α∈Ξv

(
q

q2 + 1

1

1− λv(1− e−a)

)L[α]

=
q̄2
v,a + 1

(q̄v,a − 1)2

(
1− q̄−1

v,a

1 + q̄−n+2v
v,a

1 + q̄−n+2v−2
v,a

)
,

(4.236)

where q̄v,a is defined in Definition 4.6.

Definition 4.6. Given x and parameter a satisfying 1 ≤ ea ≤ (1− (q−1)2

q2+1
1
λx

)−1,
let

q̄x,a =

(
q2 + 1

2q

)(
1− λx(1− e−a)

)(
1 +

√
1− 4q2

(q2 + 1)2(1− λx(1− e−a))2

)
.

(4.237)
Note that q̄x,a satisfies the equation

q̄x,a
q̄2
x,a + 1

=
q

q2 + 1

1

1− λx(1− e−a)
(4.238)

and that

q̄−1
x,a =

(
q2 + 1

2q

)(
1− λx(1− e−a)

)(
1−

√
1− 4q2

(q2 + 1)2(1− λx(1− e−a))2

)
.

(4.239)

This lemma allows us to define

Vv,a =
q̄2
v,a + 1

(q̄v,a − 1)2

(
1− q̄−1

v,a

1 + q̄−n+2v
v,a

1 + q̄−n+2v−2
v,a

)
, (4.240)

and state
(q + 1)n(2q)

(q − 1)2
(Z − ZH) (4.241)

≤
n∑
x=0

(
n

x

) x̃∑
w=0

e−saw

(
x̃∏

v=w+1

q̄−1
v,aw

1 + q̄−n+2v
v,aw

1 + q̄−n+2v−2
v,aw

)
Vw,aw (4.242)

≤
n∑
x=0

(
n

x

) x̃∑
w=0

e−saw

(
x̃∏

v=w+1

q̃−1
v,aw

)
e

q2

q2−1Vw,aw , (4.243)
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where the second line follows from the observation that (also noting q̄v,a < q
for all v, a)

x̃∏
v=w+1

1 + q̄−n+2v
v,aw

1 + q̄−n+2v−2
v,aw

≤
∞∏
m=0

1 + q−2m

1 + q−2m−2
=

∞∏
m=0

(
1 + q−2m 1− q−2

1 + q−2m−2

)
(4.244)

≤
∞∏
m=0

(
1 + q−2m

)
≤

∞∏
m=0

exp
(
q−2m

)
= exp

(
∞∑
m=0

q−2m

)
= exp

(
q2

q2 − 1

)
.

(4.245)

To continue, we will make choices for aw and show upper bounds for the
various factors in the above expression. For w > 0, we make the specification
for aw that

ηw = 1− e−aw =
(q − 1)2

q2 + 1

1

2λw
=

(q − 1)2

q2 + 1

w(n− w)

n(n− 1)
(4.246)

and that η0 = η1. This choice implies

aw ≥
(q − 1)2

q2 + 1

1

2λw
=

(q − 1)2

q2 + 1

w(n− w)

n(n− 1)
. (4.247)

Moreover, it implies that, so long as w ≤ x ≤ n− w,

1− λx(1− e−aw) ≥ 1− λw(1− e−aw) = 1− (q − 1)2

2(q2 + 1)
=

(q + 1)2

2(q2 + 1)
, (4.248)

which by Definition 4.6 implies that

q ≥ q̄x,aw ≥
(q + 1)2

4q
. (4.249)

When this is the case, we have

Vw,aw ≤
q̄2
w,aw + 1

(q̄w,aw − 1)2

(
1− q̄−1

w,aw

)
(4.250)

=
q̄2
w,aw + 1

(q̄w,aw − 1)q̄w,aw
(4.251)

≤ q2 + 1(
(q+1)2

4q
− 1
)

(q+1)2

4q

(4.252)

=
(q2 + 1)(4q)2

(q − 1)2(q + 1)2
(4.253)

≤ 320

9
, (4.254)
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where the last line follows for all q ≥ 2, which will be true for any physically
realizable circuit. This takes care of the final factor in Eq. (4.243). What
remains are the factors of q̄−1

v,aw . To handle these we will use the following
bound, whose proof is delayed to the next section.

Lemma 4.7. With q̄x defined as in Definition 4.6 and as long as 1 ≤ ea ≤
(1− (q−1)2

q2+1
1
λx

)−1,

q̄−1
x,a ≤ q−1 exp

(
a

(
λx
q2 + 1

q2 − 1
+ λ2

x(1− e−a)
(q2 + 1)4

(q2 − 1)3

))
. (4.255)

We also need the following observation, which holds under the assumption
that 1 ≤ j < k ≤ n

2

k∑
r=j+1

λr ≤
n

2

k∑
r=j+1

(
1

r
+

1

n− r

)
≤ n

2

(∫ k

j

dρ
1

ρ
+

∫ n−j−1

n−k−1

dρ
1

ρ

)
(4.256)

=
n

2

(
log(k/j) + log

(
(n− j − 1)/(n− k − 1)

))
(4.257)

≤ n

2
(log(k/j) + log(2)) <

n

2
(log(2k/j) + 1) . (4.258)

k∑
r=j+1

λ2
r ≤

n2

4

k∑
r=j+1

n2

r2(n− r)2
≤ n2

k∑
r=j+1

1

r2
≤ n2

j
<
π2n2

6j
. (4.259)

Similarly, for the case where j = 0, we find

k∑
r=1

λr ≤
n

2

(
log(2k) + 1

)
,

k∑
r=1

λ2
r ≤

π2n2

6
. (4.260)

Now we can write the following, where w̄ = max(w, 1)

exp

(
− q2

q2 − 1

)
9(q + 1)n(2q)

320(q − 1)2
(Z − ZH) (4.261)

≤
n∑
x=0

(
n

x

) x̃∑
w=0

e−saw

(
x̃∏

v=w+1

q̄−1
v,aw

)
(4.262)

≤
n∑
x=0

(
n

x

) x̃∑
w=0

e−saw

(
x̃∏

v=w+1

q−1 exp

(
q2 + 1

q2 − 1
awλv +

(q2 + 1)4

(q2 − 1)3
awηwλ

2
v

))
(4.263)

=
n∑
x=0

(
n

x

) x̃∑
w=0

e−sawq−x̃+w exp (Q) , (4.264)
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where

Q =
q2 + 1

q2 − 1
aw

x̃∑
v=w+1

λv +
(q2 + 1)4

(q2 − 1)3
awηw

x̃∑
v=w+1

λ2
v (4.265)

≤ q2 + 1

q2 − 1
aw
n

2

(
log

2x̃

w̄
+ 1

)
+

(q2 + 1)4

(q2 − 1)3
awηw

n2π2

6w̄
(4.266)

≤ aw

(
q2 + 1

q2 − 1

n

2

(
log

2x̃

w̄
+ 1

)
+

(q2 + 1)3(q − 1)2

(q2 − 1)3

nπ2(n− w)

6(n− 1)

)
. (4.267)

Now we are in a position to nearly complete the proof. We choose

s∗ =
1

2

q2 + 1

q2 − 1
n log(n) + cn , (4.268)

where

c = Q1 +Q2 +Q3 , (4.269)

with

Q1 =
q2 + 1

2(q2 − 1)
+

(q2 + 1)3(q − 1)2

(q2 − 1)3

π2

6
(4.270)

Q2 =
q2 + 1

(q − 1)2

(
log

(
320(q − 1)(qn + 1)

9qn

)
+

q2

q2 − 1

)
(4.271)

Q3 =
4(q2 + 1) log(q)

(q − 1)2
. (4.272)

The O(n log(n)) term in s∗ will be necessary to cancel the O(n log(2x̃/w))
term in Eq. (4.264). Meanwhile, Q1 is necessary to cancel the remaining terms
on the right-hand-side of Eq. (4.264), Q2 is used to cancel factors on the left-
hand-side of Eq. (4.264), and finally Q3 is vital for canceling the qw factor, as
follows:

qn + 1

qn
(q + 1)n(Z − ZH) (4.273)

≤ q − 1

q

n∑
x=0

(
n

x

) x̃∑
w=0

e−(s−s∗)awq−x̃+w exp

(
−4w(n− w)

n− 1
log(q)

)
(4.274)

≤ q − 1

q

n∑
x=0

(
n

x

) x̃∑
w=0

e−(s−s∗)awq−x̃−w (4.275)

≤ e−(s−s∗)a1
q − 1

q

n∑
x=0

(
n

x

)
q−x̃

x̃∑
w=0

q−w (4.276)

≤ e−(s−s∗)a1

n∑
x=0

(
n

x

)
q−x̃ (4.277)
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≤ e−(s−s∗)a1

n∑
x=0

(
n

x

)(
q−x + q−n+x

)
(4.278)

= 2e−(s−s∗)a1

(
q + 1

q

)n
. (4.279)

It was in Eq. (4.276), where we used a1 ≤ aw to pull the exponential out from
the sum, that the assumption s ≥ s∗ was necessary. This is the only place it
has been needed. As ZH = 2/(qn + 1), we then have

Z ≤ ZH(1 + e−(s−s∗)a1) , (4.280)

where a1 = (q− 1)2/(n(q2 + 1)). Defining a = na1/2, this completes the proof
of the upper bound.

4.E.4 Lower bound proof

Theorem 4.6 (restated). For the complete-graph architecture of size s on n
qudits with local dimension q, the collision probability satisfies

Z ≥ ZH
2

exp

(
log(q)

q + 1
exp

(
log(n) + s log

(
1− 2(q2 − 1)

n(q2 + 1)

)))
. (4.281)

Corollary 4.6. For the complete-graph architecture, let sAC be the minimum
circuit size, as a function of n, such that

Z ≤ 2ZH . (4.282)

Then it must hold that∣∣∣∣sAC − q2 + 1

2(q2 − 1)
n log(n)

∣∣∣∣ = O(n) . (4.283)

Proof. The upper bound on Z in Theorem 4.2 implies

sAC ≤
q2 + 1

2(q2 − 1)
n log(n) +O(n) . (4.284)

Meanwhile, since s = sAC implies Z ≤ 2ZH , the bound in Theorem 4.6 implies
that

exp

(
log(q)

q + 1
exp

(
log(n) + sAC log

(
1− 2(q2 − 1)

n(q2 + 1)

)))
≤ 4 (4.285)

and thus

sAC ≥
log(n)− log

(
(q+1) log(4)

log(q)

)
− log

(
1− 2(q2−1)

n(q2+1)

) (4.286)

≥
(

log(n)− log

(
(q + 1) log(4)

log(q)

))(
n(q2 + 1)

2(q2 − 1)
− 1

)
(4.287)

=
n(q2 + 1)

2(q2 − 1)
log(n)−O(n) , (4.288)

where we have used the general inequality −1/ log(1− u) ≥ 1/u− 1.
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Proof of Theorem 4.6. The structure of the proof is very similar to Theo-
rem 4.4 for general architectures. We use the framework of the biased random
walk.

Let xγ(t). The transition rule is such that

γ(t+1) =


x with probability 1− 2x(n−x)

n(n−1)

x− 1 with probability 2x(n−x)
n(n−1)

q2

q2+1

x+ 1 with probability 2x(n−x)
n(n−1)

1
q2+1

(4.289)

and so

E
Pb

[γ(t+1)|γ(t) = x] = x− 2x(n− x)

n(n− 1)

q2 − 1

q2 + 1
(4.290)

≥ x

(
1− 2(q2 − 1)

n(q2 + 1)

)
. (4.291)

As this is true for all x, when we have some probability distribution Λ over
values of x, it still holds that

E
Pb

[γ(t+1)] =
n∑
x=0

Pr
Λ

[γ(t) = x] E
Pb

[γ(t+1)|γ(t) = x] (4.292)

≥
n∑
x=0

Pr
Λ

[γ(t) = x]x

(
1− 2(q2 + 1)

n(q2 − 1)

)
(4.293)

=

(
1− 2(q2 + 1)

n(q2 − 1)

) n∑
x=0

Pr
Λ

[γ(t) = x]x (4.294)

=

(
1− 2(q2 − 1)

n(q2 + 1)

)
E
Λ

[γ(t)] , (4.295)

and by applying this equation recursively from the starting distribution Λb,
we find

E
Pb,Λb

[γ(s)] ≥
(

1− 2(q2 − 1)

n(q2 + 1)

)s
E
Λb

[γ(0)] (4.296)

=

(
1− 2(q2 − 1)

n(q2 + 1)

)s
n

q + 1
. (4.297)

By convexity, we have E[qx] ≥ qE[x], and hence

Z =
1

qn
E

Pb,Λb
[q|~γ

(s)|] (4.298)

≥ 1

qn
exp

(
log(q)

n

q + 1

(
1− 2(q2 − 1)

n(q2 + 1)

)s)
(4.299)

≥ ZH
2

exp

(
log(q)

q + 1
exp

(
log(n) + s log

(
1− 2(q2 − 1)

n(q2 + 1)

)))
. (4.300)
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4.E.5 Delayed proofs of lemmas

Proof of Lemma 4.6. The first equation will follow fairly straightforwardly
from Lemma 4.1. Note that the factor in parentheses on the left-hand-side
is q̄v,a/(q̄2

v,a + 1) as defined in Definition 4.6, as well as the fact that Λv con-
tains walks that start at v and end at v − 1 or n − v + 1. The walks that
start at v and end at v− 1 are covered by Lemma 4.1 with x→ v, y → v− 1,
and m → n − 2v + 2. The walks that start at v and end at n − v + 1 are
equivalent to walks starting at n−v and ending at v−1, and are thus covered
by Lemma 4.1 with x → n − v, y → v − 1, and m → n − 2v + 2. Summing
the results from these two substitutions yields the quantity

1

1− q̄−2(n−2v+2)
v,a

(
q̄−1
v,a − q̄−2n+4v−3

v,a

)
+

1

1− q̄−2(n−2v+2)
v,a

(
q̄−n+2v−1
v,a − q̄−n+v−3

v,a

)
= q̄−1

v,a

1 + q̄−n+2v
v,a

1 + q̄−n+2v−2
v,a

, (4.301)

which proves that the first equation in the Lemma is correct.

The second equation is not a direct application of Lemma 4.1, but it can
be shown by a similar method. Define

Ξx,v = {ψ ∈ Ψx : v ≤ m(ψ),M(ψ) ≤ n− v} (4.302)

so Ξv = Ξv,v. Moreover, for fixed v, let

I(x)
∑
α∈Ξx,v

(
q

q2 + 1

1

1− λv(1− e−a)

)L[α]

=
∑
α∈Ξx,v

(
q̄v,a

q̄2
v,a + 1

)L[α]

. (4.303)

The function I(x) obeys the recursion relation

I(x) = 1 +
q̄v,a

q̄2
v,a + 1

(I(x− 1) + I(x+ 1)) , (4.304)

since there is one term in the sum corresponding to the length-0 trajectory,
which contributes 1, but all other terms appear either in I(x− 1) or I(x+ 1)
reduced by factor q̄v,a/(q̄2

v,a+1). The general solution to this recursion relation
is

I(x) =
q̄2
v,a + 1

(q̄v,a − 1)2
+ Aq̄xv,a +Bq̄−xv,a (4.305)

for some constants A and B. Here is where we rely on boundary conditions.
We must have I(v − 1) = I(n − v + 1) = 0 since these sums do not include
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any terms. This allows us to solve for A and B and find

A = −
q̄2
v,a + 1

(q̄v,a − 1)2

q̄−n+v−1
v,a

1 + q̄−n+2v−2
v,a

(4.306)

B = −
q̄2
v,a + 1

(q̄v,a − 1)2

q̄v−1
v,a

1 + q̄−n+2v−2
v,a

(4.307)

I(v) =
q̄2
v,a + 1

(q̄v,a − 1)2

(
1− q̄−1

v,a

1 + q̄−n+2v
v,a

1 + q̄−n+2v−2
v,a

)
. (4.308)

Proof of Lemma 4.7. Define η = λx(1 − e−a) and let ζ = 1 − (1 − η)2. Thus,
1− η =

√
1− ζ.

We can write

q̄−1
x,a = q−1

(
q2 + 1

2

)(√
1− ζ

)(
1−

√
1− 4q2

(q2 + 1)2(1− ζ)

)
(4.309)

= q−1

(
q2 + 1

2

)(√
1− ζ − q2 − 1

q2 + 1

√
1− (q2 + 1)2

(q2 − 1)2
ζ

)
(4.310)

≤ q−1

(
q2 + 1

2

)(
1− 1

2
ζ − q2 − 1

q2 + 1

(
1− (q2 + 1)2

2(q2 − 1)2
ζ − (q2 + 1)4

2(q2 − 1)4
ζ2

))
(4.311)

= q−1

(
1 +

1

2

q2 + 1

q2 − 1
ζ +

(q2 + 1)4

4(q2 − 1)3
ζ2

)
(4.312)

≤ q−1 exp

(
1

2

q2 + 1

q2 − 1
ζ +

(q2 + 1)4

4(q2 − 1)3
ζ2

)
(4.313)

≤ q−1 exp

(
q2 + 1

q2 − 1
aλx +

(q2 + 1)4

(q2 − 1)3
aηλx

)
, (4.314)

which is equal to the lemma statement, where in the first inequality we utilized
1− u

2
− u2

2
≤
√

1− u ≤ 1− u
2
, in the second inequality we used 1 +u ≤ exp(u),

and in the third inequality we used ζ ≤ 2η ≤ 2aλx. The condition on a is
necessary to ensure that q̄x is real.

4.F Approximate 2-designs and anti-concentration
In this appendix, we clarify the relation between approximate unitary 2-

designs and anti-concentration. As we discussed in the text, forming a unitary
2-design is a sufficient condition for anti-concentration.

First, we recall some definitions. The k-fold channel of an operator O with
respect to a probability distribution µ on the unitary group U(qn) is defined
as

Φ(k)
µ (O)

∫
dµ(U)U⊗k(O)U †⊗k . (4.315)
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We denote the channel with respect to the Haar measure on the unitary
group as Φ

(k)
H . The diamond norm of a quantum channel Φ is defined as

‖Φ‖� supψ,D ‖Φ⊗ID(ψ)‖1, where ID is the identity channel on aD-dimensional
ancilla and ψ is a state on the entire system.

Definition 4.7 (Approximate designs). A probability distribution µ on U(qn)
is an ε-approximate unitary k-design if the k-fold channels obey∥∥Φ(k)

µ − Φ
(k)
H

∥∥
� ≤ ε . (4.316)

For a given k, if ε = 0, we say that the distribution forms an exact k-design.

A weaker notion of approximate design involves the operator norm of
the moment operators, sometimes referred to as the tensor product expander
(TPE) condition. The vectorization isomorphism uniquely maps channels to
operators, with which we can define the kth moment operator from the k-fold
channel for a probability distribution µ on the unitary group U(qn) as

Φ̂(k)
µ vec

(
Φ(k)
µ ) =

∫
dµ(U)U⊗k ⊗ U∗⊗k . (4.317)

For convenience we denote U⊗k ⊗ U∗⊗k by U⊗k,k.

Definition 4.8 (Weak approximate designs). A probability distribution µ on
U(qn) is a weak ε-approximate unitary k-design if the kth moment operators
obey ∥∥Φ̂(k)

µ − Φ̂
(k)
H

∥∥
∞ ≤ ε . (4.318)

The expectation of the collision probability for completely Haar-random
unitaries is ZH = EH [Z] = 2/(qn + 1) ≤ 2/qn, and thus anti-concentrates
with α = 1/2 as defined in Definition 4.4. But as the collision probability is
a second moment quantity, where pU(x)2 = |〈x|U |0n〉|4, for an exact unitary
2-design µ, we find that

Z = E
µ

[∑
x

pU(x)2

]
= E

H

[∑
x

pU(x)2

]
=

2

qn + 1
(4.319)

and thus also 1/2-anti-concentrates, where EH [·] denotes the expectation with
respect to the Haar measure on the unitary group.

Proposition 4.1. An ε-approximate 2-design µ with ε = 1/q2n has a collision
probability of Z = Eµ[

∑
x pU(x)2] ≤ 3/qn and is thus a 1/3-anti-concentrator.

Moreover, the same holds for a weak ε-approximate 2-design (TPE) µ with
ε = 1/q2n.
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Proof. For an ε-approximate 2-design in diamond norm, we find

E
µ

[∑
x

pU(x)2

]
(4.320)

= qn E
µ

[
|〈x|U |0n〉|4

]
− E

H

[
|〈x|U |0n〉|4

]
+ E

H

[
|〈x|U |0n〉|4

]
(4.321)

= qn tr
(
|x〉〈x|⊗2

(
E
µ

[
U⊗2(|0n〉〈0n|)U †⊗2

]
− E

H

[
U⊗2(|0n〉〈0n|)U †⊗2

]))
+

2

qn + 1
(4.322)

≤ qn
∥∥∥|x〉〈x|⊗2

(
Φ(2)
µ (|0n〉〈0n|)− Φ

(2)
H (|0n〉〈0n|)

)∥∥∥
1

+
2

qn + 1
(4.323)

≤ qn
∥∥|x〉〈x|⊗2

∥∥
∞

∥∥(Φ(2)
µ − Φ

(2)
H )(|0n〉〈0n|)

∥∥
1

+
2

qn(qn + 1)
(4.324)

≤ 2

(qn + 1)
+ qnε ≤ 3

qn
, (4.325)

where we wrote the difference in terms of the 2-fold channels, in the second
to last line used Hölder’s inequality, and in the last line used the definition of
the diamond norm and the definition of an ε-approximate 2-design.

Given the definition of an approximate design in terms of the diamond
norm, we must take the error to be exponentially small. Thus, for an approxi-
mate 2-design µ with ε = 1/q2n, the collision probability is Z ≤ 3/qn and thus
1/q2n-approximate unitary 2-designs in diamond norm anti-concentrate with
α = 1/3.

For a weak ε-approximate 2-design in operator norm (TPE), we proceed
similarly,

E
µ

[∑
x

pU(x)2

]
= qn

(
E
µ

[
|〈x|U |0n〉|4

]
− E

H

[
|〈x|U |0n〉|4

]
+ E

H

[
|〈x|U |0n〉|4

])
(4.326)

= qn tr
(
|0nx〉〈0nx|⊗2

(
E
µ

[
U⊗2,2

]
− E

H

[
U⊗2,2

]))
+

2

qn + 1
(4.327)

≤ qn
∥∥∥Φ̂(2)

µ − Φ̂
(2)
H

∥∥∥
∞

+
2

qn + 1
(4.328)

≤ 2

qn + 1
+ qnε , (4.329)

where we wrote the difference in terms of the 2-fold moment operators, in
the second to last line used Hölder’s inequality, and in the last line used the
definition of a weak ε-approximate 2-design. Again, we must take the error to
be exponentially small. For ε = 1/q2n, the collision probability is Z ≤ 3/qn and
thus 1/q2n-approximate unitary 2-designs in operator norm anti-concentrate
with α = 1/3.
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As n-qudit RQCs on the 1D architecture are known to form ε-approximate
unitary 2-designs in O(n + log(1/ε)) depth [133, 146], anti-concentration for
1D random circuits in linear depth is an immediate corollary. Moreover, an
n-independent upper bound on the spectral gap for the 1D architecture [133],
implies that they form weak approximate 2-designs in O(log(1/ε)) depth. By
Proposition 4.1, where we must take ε = 1/q2n, this again requires linear depth
for 1D RQCs.

For non-local RQCs on the complete-graph architecture, the best known
upper bounds on the 2-design circuit size are O(n2) [131]. However, it has
been conjectured that this can be improved to O(n log(n)), in which case anti-
concentration and 2-designs could occur at the same depth for the complete-
graph circuit architecture.

To argue that anti-concentration must be distinct from the 2-design prop-
erty, we consider lower bounds on the 2-design depth for RQCs on the 1D
architecture. The spectral gap of the second moment of a probability distri-
bution ν on the unitary group is defined as g(ν)‖Φ̂(2)

ν − Φ̂
(2)
H ‖∞. Ref. [133]

proved an n-independent bound on the spectral gap for 1D RQCs. This im-
plies that the behavior of the spectral gap for 1D RQCs of depth d must be
g(ν 1DRQC) = (1 − 1/c)d, for some constant c > 1. Further recalling that the
operator norm can be written as ‖M‖∞ = maxy〈y|M |y〉, this implies that
some states requires linear depth in order to become small. Specifically, there
is some state |y〉 on the 4-fold space which requires the 1D circuit depth to
be at least d = Ω(n) in order for the second moment operator for 1D RQCs
EU
[
〈y|U⊗2,2|y〉

]
to approach the minimal Haar value.
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C h a p t e r 5

APPROXIMATION OF NOISY RANDOM QUANTUM
CIRCUITS AS IDEAL CIRCUITS WITH WHITE NOISE

This chapter is based on joint work with Nicholas Hunter-Jones and Fernando
Brandão. It was adapted into a standalone article [147] that appeared publicly
shortly after the defense of this thesis.

5.1 Motivation
There is a fundamental tradeoff in quantum computation between com-

putation size and error rate. Naturally, the longer the computation, the lower
the physical error rate must be to maintain a high probability of an errorless
computation. Once the error rate is beneath a constant threshold, the theory
of fault tolerance and quantum error correction [24, 96] may be employed to
push the probability of a logical error arbitrarily close to zero, despite the
prevalence of many physical errors during the computation; however, error
correction comes at the cost of additional qubits and gates. These overheads,
while acceptable in an asymptotic sense, are likely to be overwhelming in the
near and intermediate term. This inspires the idea of an upcoming Noisy
Intermediate-Scale Quantum (NISQ) era [3], where hardware capabilities are
good enough to perform non-trivial quantum tasks on dozens or hundreds of
qubits, but quantum error correction, which might require thousands or mil-
lions of qubits, remains beyond reach.

In this chapter, we study a model of NISQ devices performing random
computations and prove a precise sense in which, for typical circuit instances,
local errors are quickly scrambled and can be treated as white noise. For some
applications, this phenomenon makes it possible for the signal of the noiseless
computation to be extracted by repetition despite a large overall chance that
at least one error occurs.

Our local error model assumes that each two-qubit gate in the quantum
circuit is followed by a pair of gate-independent single-qubit unital noise chan-
nels acting on the two qubits involved in the gate. For simplicity and ease
of analysis, we assume that each of these noise channels is identical, but we
fully expect the takeaways from our work to apply when the noise strength is
allowed to vary from location to location. For concreteness, we can consider
the depolarizing channel with error probability ε in this introduction. In this
case, the fidelity of the noisy computation with respect to the ideal computa-
tion is expected to be roughly equal to the probability that no errors occur.
We see that, for a circuit with s two-qubit gates, this quantity, denoted here
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by F = (1− ε)2s, is close to 1 only if the quantity 2εs—the average number of
errors—satisfies 2εs� 1.

However, this high-fidelity requirement is quite restrictive in practice.
Already for circuits with 50 qubits at depth 20, the error rate ε must be on the
order of 10−4 for the whole computation to run without error at least 90% of
the time. This error rate is more than an order of magnitude smaller than what
has been achievable in recent experiments on superconducting qubit systems
of that size [6, 7, 148]. Indeed, in their landmark 2019 quantum computational
supremacy experiment [6], a group at Google performed random circuits on
53 qubits of depth 20, but the fidelity of the computation was F ≈ 0.002,
meaning at least one error occurs in all but a tiny fraction of the trials. Similar
experiments at the University of Science and Technology of China on 56 [7] and
60 [148] qubits reported even smaller fidelities of 0.0007 [7] and 0.0004 [148].
This would not be an issue if one could determine when a trial is errorless.
(In this case, one could just repeat the experiment 1/F times.) However,
error-detection requires overheads similar to error-correction.

Rather, low-fidelity random circuit sampling experiments and their claim
of quantum computational supremacy benefit from a key assumption [5, 6]:
when at least one error does occur, the output of the experiment is well ap-
proximated by white noise, that is, the output is random and uncorrelated with
the ideal (noiseless) output. When this is the case, the signal of diminished
size F can, at least for some applications, be extracted from the white noise
using O(1/F 2) trials, as we explain later. Specifically, for quantum compu-
tational supremacy, the white-noise assumption is that the distribution pnoisy
over measurement outcomes of their noisy device is close to what we call the
“white-noise distribution”

pwn = Fpideal + (1− F )punif , (5.1)

with pideal the ideal distribution and punif the uniform1 distribution. In par-
ticular, for the approximation to be non-trivial, we demand that the total
variation distance between pnoisy and pwn be a small fraction of F , that is

1

2
‖pwn − pnoisy‖1 � F . (white-noise assumption) (5.2)

This demand is necessary because we expect that pnoisy also decays toward punif
such that 1

2
‖pnoisy − punif‖1 = Θ(F ), and thus punif is a trivial approximation

for pnoisy with error Θ(F ).
1In Google’s experiment, there was biased noise during readout (they measure |0〉 more

often than |1〉) that would lead the appropriate definition of white noise to be slightly
non-uniform (see Supplementary Material of [6]). We believe most of our analysis could
be straightforwardly generalized to account for this kind of end-of-circuit non-unital error
(although mid-circuit non-unital errors would likely complicate our method). However, the
goal of our work is to study the complexity and behavior of low-fidelity random circuit
experiments in an idealized sense, rather than the actual implementation of such ideas in
recent superconducting experiments specifically.



194

Prior to their experiment, the Google group provided numerical evidence
[5] in favor of the white-noise assumption2 for randomly chosen circuits by
showing that the output distribution of random circuits of depth 40 on 20
qubits (arranged in a 2D lattice) subject to a local Pauli error model ap-
proaches the uniform distribution, and that the fidelity of pnoisy with respect
to pideal appears to decay exponentially, consistent with pnoisy ≈ pwn. However,
their analysis did not specifically estimate the distance3 between pnoisy and pwn.
The white-noise condition in Eq. (5.2) requires that the distance between pnoisy
and pwn decrease as the expected number of errors increases and F decays, so
quantifying the differences between the distributions is vital for determining
how well the white-noise approximation is obeyed.

In this chapter, we prove rigorous bounds on the error in the white-noise
approximation. Our work applies for the complete-graph architecture, where
gates act between random pairs of qudits, as well as architectures made of
complete layers of n/2 parallel gates. We show that, for Pauli noise channels,
the approximation remains good as long as (1) ε2s � 1, (2) the ideal output
distribution has the anti-concentration property, and (3) ε � 1/(n log(n)).
We believe that condition (3) could be relaxed to read ε < c/n for some
universal constant c = O(1). Condition (1) is a quadratic improvement over
the condition εs � 1 needed for high fidelity. For circuits with ε < 0.01,
as is the case with Google’s hardware, thousands of gates could potentially
be implemented before condition (1) fails. Note that our technical statements
hold for non-Pauli error channels as well, but the results mentioned above only
follow for incoherent noise channels. Our method can be applied to analyze
coherent noise but, consistent with expectations, it suggests that the white-
noise approximation does not hold in that case.

By putting the white-noise approximation for random quantum circuits
on stronger theoretical footing, our work has several applications. First, the
white-noise assumption is an ingredient in formal complexity-theoretic argu-
ments that the task accomplished on noisy devices running random quantum
circuits is hard for classical computers (allowing the declaration of quantum
computational supremacy) [6]. We complement our main result by showing in
Section 5.C that classically sampling from the white-noise distribution within
total variation distance ηF is, in a certain complexity-theoretic sense, equiva-
lent up to a factor of F (which is optimal) to sampling from the ideal output
distribution within total variation distance O(η). This makes low-fidelity ex-

2Note that Ref. [5] proposed the stronger ansatz that the output quantum state is a
combination of the ideal output state and the maximally mixed state, which implies (but is
not necessary for) the statement pnoisy ≈ pwn about classical probability distributions over
measurement outcomes.

3Ref. [5] did not specifically formulate the assumption as in Eq. (5.2), where we demand
that the allowed approximation error decrease with the fidelity, but we argue that the
approximation is only meaningful when this is true. For example, in Appendix 5.C we
argue that such precision is necessary to make a stronger complexity-theoretic argument for
quantum computational supremacy.
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periments where errors are common nearly as defensible for quantum compu-
tational supremacy as high-fidelity experiments where errors are rare, at least
in principle. Second, our result lends theoretical justification to the usage
[6, 7, 148] of the linear cross-entropy metric proposed in Ref. [6] to benchmark
noise in random circuit experiments and verify that hardware has correctly
performed the quantum computational supremacy task. Indeed, as a side re-
sult, we show that, for both incoherent and coherent noise, the metric decays
precisely as e−2sε±O(sε2) when ε is sufficiently small; this also suggests that
the linear cross entropy benchmark can be used to accurately estimate the
underlying noise rate ε [50].

Beyond Google’s random circuit experiment, our work suggests that other
scenarios where the white-noise assumption holds may be advantageous in the
NISQ era, as one can eschew error-correction and nonetheless perform a fairly
long quantum computation, as long as one is willing to repeat the experiment
1/F 2 times. One example of a scenario where the assumption may hold is
quantum simulation of fixed chaotic Hamiltonians, since they are also believed
to be efficient at scrambling errors.

The structure of this chapter is as follows: in Section 5.2, we describe our
setup and in particular our model for local noise within a random quantum
circuit; in Section 5.3, we precisely state our results; in Section 5.4, we discuss
further implications and how our results fit in with prior work; in Section 5.5,
we give an overview of the intuition behind our result and the method we use in
our proofs, which is based on a map from random quantum circuits to certain
stochastic processes, which can also be interpreted as partition functions of
statistical mechanical systems. We conclude the main text with an outlook
in Section 5.6. The rigorous proofs and details behind the map to stochastic
processes then appear in the appendix sections.

5.2 Noise model and random quantum circuits
Here we describe our model of noisy random quantum circuits. Let the

circuit act on n qudits, each with local Hilbert space dimension q. As in
previous chapters, we define a random quantum circuit architecture as an in-
struction set for how to draw a quantum circuit diagram given the number
of qudits n and the circuit size s. In Chapter 4, we explicitly considered the
1D architecture, where the qudits are arranged in a ring and 2s/n alternat-
ing layers of n/2 nearest-neighbor gates are applied. We also considered the
complete-graph architecture, where the pair of qudits acted upon by each gate
is chosen independently and uniformly at random among all possible pairs
(thus, the circuit diagram itself is random). In this chapter, our results work
both for the complete-graph architecture and for any architecture that can
be decomposed into layers of n/2 parallel gates that also have the regularly
connected property that we defined in Definition 4.5 of Chapter 4. Briefly, an
architecture is h-regularly connected if, whenever we partition the qudits into
two sets A and the complement of A, the circuit diagram will typically include
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a gate coupling a qudit from A and a qudit from the complement of A at least
once every hn gates. This is a natural condition that allows us to categorically
exclude architectures that are designed to prevent scrambling.

Given an architecture and parameters n and s, we can generate a cir-
cuit instance by choosing the circuit diagram according to the instruction set
and then choosing each of the gates in the circuit at random according to the
Haar measure. Each instance is associated with an output probability dis-
tribution pideal over qn possible computational basis measurement outcomes
x ∈ [q]n, (where [q] = {0, 1, . . . , q − 1}) that would be sampled if the circuit
were implemented noiselessly. Note that in the formal analysis, we include
a layer of n (also Haar-random) single-qudit gates at the beginning and end
of the circuit without counting these 2n gates toward the circuit size; these
might be regarded as fixing the local basis for the input product state and the
measurement of the output.

5.2.1 Including local noise
In this chapter, we augment this setup by inserting single-qudit noise

channels into the circuit diagram, which act on qudits involved in a multi-qudit
gate immediately following the gate, as shown in the example in Figure 5.1.
Thus, the core assumption is that the noise is local, i.e. independent from qudit

U (-3) U (9)|0〉

U (-2) U (8)|0〉

U (-1) U (7)|0〉

U (0) U (6)|0〉 N

N

N

N

N

N

N

N N

N
U (1)

U (2)

U (3)

U (4)

U (5)

Figure 5.1: Example of a noisy quantum circuit diagram on n = 4 qudits with
s = 5 two-qudit gates. A pair of single-qudit noise channels N follow each two-
qudit gate. The circuit begins and ends with a layer of noiseless single-qudit
gates.

to qudit. We assume that each noise channel N is a unital and completely
positive trace-preserving map.

For a given noise channel, there are only two parameters that matter
for our analysis, the average infidelity and the unitarity of the channel. The
average infidelity for a channel N is defined as

r = 1−
∫
dV tr

[
V |ψ〉〈ψ|V †N (V |ψ〉〈ψ|V †)

]
, (5.3)

where the integral is over the Haar-measure on q × q unitary matrices V and
|ψ〉〈ψ| is any pure state. The average infidelity is one measure of the overall
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noise strength of the channel N . Following Refs. [149, 150], the unitarity is
defined for unital channels as

u =
q

q − 1

(∫
dV tr

[
N
(
V |ψ〉〈ψ|V †

)2
]
− 1

q

)
. (5.4)

The unitarity is the expected purity of the output state under random choice
of input state, scaled to have minimum value of 0 and maximum value of 1.

Examples: depolarizing, dephasing, and rotation channels

It is instructive to consider explicitly the following three channels. First, the
depolarizing channel

Ndepo(ρ) = (1− γ)ρ+ γ
I

q
= (1− ε)ρ+

ε

q2 − 1

q2−1∑
i=1

PiρP
†
i , (5.5)

where γ = εq2/(q2 − 1), {Pi}q
2−1
i=1 is the set of single-qudit Pauli matrices

(appropriately generalized to higher q), and I is the q × q identity matrix.
There are two ways to think of the channel: first, with probability 1− γ doing
nothing and with probability γ resetting the state to the maximally mixed
state on that qudit; second, with probability 1 − ε doing nothing and with
probability ε choosing a Pauli operator at random to apply to the qudit.

We can also consider the dephasing channel

Ndeph(ρ) = (1− q

q − 1
ε)ρ+

q

q − 1
ε

q−1∑
i=0

|i〉〈i|ρ|i〉〈i| , (5.6)

which represents doing nothing with probability 1− qε/(q−1) and performing
a measurement in the computational basis with probability qε/(q − 1).

Finally, we can consider a coherent noise channel, for example the rotation
channel

Nrot(ρ) = e−iθ|0〉〈0|ρeiθ|0〉〈0| . (5.7)

The average infidelity and unitary of these channels are given in Table 5.1.

5.2.2 Output distributions of the quantum circuit
Suppose the locations of the s two-qudit gates have been fixed, with gate

t acting on qudits {it, jt}. Then a circuit instance is specified by a sequence
(U (−n+1), . . . , U (s+n)), where U (t) is a q2 × q2 (two-qudit) unitary matrix if
1 ≤ t ≤ s and a q × q (single-qudit) unitary matrix otherwise. Accordingly,
for each t, let

U (t)(σ) =
(
I[n]\{it,jt} ⊗ U

(t)
{it,jt}

)
σ
(
I[n]\{it,jt} ⊗ U

†(t)
{it,jt}

)
(5.8)
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channel ave. infidelity r unitarity u

depolarizing, Eq. (5.5) q
q+1

ε (1− q2

q2−1
ε)2

dephasing, Eq. (5.6) q
q+1

ε 1− q2

q2−1
(2ε− q

q−1
ε2)

rotation, Eq. (5.7) 2(q−1)
q(q+1)

(1− cos(θ)) 1

Table 5.1: Average infidelity and unitarity for three different single-qudit
noise channels.

denote the unitary channel that acts with U (t) on qudits it and jt and as
identity on the other qudits. To account for noise, let

Ũ (t) =

{(
I[n]\{it,jt} ⊗N{it} ⊗N{jt}

)
◦ U (t) if 1 ≤ t ≤ s (two-qudit)

U (t) otherwise (single-qudit)
(5.9)

be the channel that applies noise channels after applying the unitary gate.
Now we can define the ideal and noisy output distributions by

pideal(x) = tr
[
|x〉〈x| U (s+n) ◦ · · · ◦ U (−n+1) (|0n〉〈0n|)

]
(5.10)

pnoisy(x) = tr
[
|x〉〈x| Ũ (s+n) ◦ · · · ◦ Ũ (−n+1) (|0n〉〈0n|)

]
. (5.11)

Our work compares the distribution pnoisy to the white-noise distribution
pwn, defined by

pwn(x) = Fpideal(x) + (1− F )q−n (5.12)

for some choice of F . The white-noise distribution is a mixture of the ideal
distribution and the uniform distribution. In the analysis we treat F as a free
parameter, and we choose it such that our bound on the distance between pnoisy
and pwn is minimized. The total variation distance between two distributions
p1 and p2 is defined as

TVD(p1, p2) =
1

2
‖p1 − p2‖1 =

1

2

∑
x

|p1(x)− p2(x)| . (5.13)

A comment on the various kinds of randomness in our setup

There are multiple types of randomness in our analysis, and in understanding
our result it is important to keep track of how they interplay. First of all, the
noiseless circuit instance U is generated randomly by choosing each gate to be
Haar random. The choice of U determines an ideal pure output state. Second
of all, for each fixed choice of U , the noise channels may introduce randomness
that makes the noisy output state mixed. When the noise is depolarizing
noise, this might be regarded as the insertion of a randomly chosen pattern of
Pauli errors. Lastly, the measurement of the state in the computational basis
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gives rise to a random measurement outcome drawn from a certain classical
probability distribution, pideal if we are considering the noiseless circuit, and
pnoisy if we are considering the noisy circuit. The important thing to remember
is that we are primarily concerned with thinking about fixed instances U and
the interplay between the resulting probability distributions pideal, pnoisy and
pwn for that instance. Then, we make a statement about these distributions
that holds in expectation over random choice of U . If desired, one could then
use Markov’s inequality to form bounds on the fraction of instances U for
which the white-noise approximation must be good.

5.3 Overview of contributions
The main result of this chapter is a proof that the output distribution

pnoisy of the quantum circuit with local noise is very close to the white noise
distribution pwn if the noise is sufficiently weak. In proving that result, we
also prove a statement about the expected fidelity in noisy random quantum
circuits, and another statement about the speed at which pnoisy approaches the
uniform distribution.

For all statements, the notation EU denotes expectation over choice of
Haar-random single-qudit and two-qudit gates. Additionally, our technical
results assume that the random quantum circuit architecture is either the
complete-graph architecture, or that it is composed of parallel layers (Defini-
tion 5.1) and has the h-regularly connected property (Definition 4.5) for some
h = O(1), which means at least one out of every hn gates is expected to act
across any division of the qudits into two groups. Standard lattice architec-
tures with periodic boundary conditions in any spatial dimension have these
properties. We only utilize the assumption of layers in one specific place of
our analysis, and we believe that a version of our results should hold for any
natural random quantum circuit architecture.

In the rest of this section, we state our results for general noise channels,
deferring the proofs to Appendix 5.B, but first we summarize the contributions
specifically applied to the depolarizing channel.

5.3.1 Fidelity decay
Define the quantity

F̄ =
EU
[∑

x pnoisy(x)(qnpideal(x)− 1)
]

EU
[∑

x pideal(x)(qnpideal(x)− 1)
] . (5.14)

The quantity F̄ is designed to quantify the fidelity of the noisy quantum device
with respect to the ideal computation; when pnoisy(x) and pideal(x) are viewed as
random variables in the instance U , F̄ is equal to their covariance, normalized
by the variance of pideal. Note also that the numerator of F̄ is the expected
score on the linear cross-entropy benchmark, as proposed in Ref. [6], using
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Fidelity decay F̄ = e−2sε ± O(sε2)

Approach to uniform EU
[

1
2
‖pnoisy − punif‖1

]
≤ e−2sε + O(sε2)

Distance from pwn for F = F̄ EU
[

1
2
‖pnoisy − pwn‖1

]
≤ O(Fε

√
s)

Table 5.2: Summary of results when the noise is depolarizing (Eq. (5.5)) with
error parameter ε. These statements assume that the anti-concentration size
is sAC = O(n log(n)) (which is known for the 1D architecture and conjectured
generally), that the circuit size is larger than Ω(n log(n)), and that the quantity
εn log(n) is small enough to be neglected. (It is believed this condition can be
relaxed to ε < c/n for some constant c.)

samples from the noisy device, and the denominator is the expected score
using samples from the ideal output distribution. The use of F̄ as a fidelity
benchmark has been further explored in Refs. [50, 151]. The denominator is
also given by qnZ − 1, where Z the collision probability studied in Chapter 4.
The results of that chapter imply that the denominator becomes within a small
constant factor of (qn − 1)/(qn + 1) ≈ 1 after sAC = O(n log(n)) gates in the
1D or complete-graph architectures, and this fact is conjectured to hold widely
for natural architectures.

Theorem 5.1. Consider either the complete-graph architecture or a regularly
connected, layered random quantum circuit architecture with n qudits of local
Hilbert space dimension q and s gates, where the anti-concentration size is
given by sAC. Let r be the average infidelity of the local noise channels. Then
there exists constants c and n0 such that whenever r ≤ c/n and n ≥ n0, the
following holds:

F̄ ≥ exp
(
−2sr(1 + q−1)

)
e−O(sr2)−O(sq−2n)−eO(sAC/n)e−Ω(s/n)

(5.15)
F̄ ≤ exp

(
−2sr(1 + q−1)

)
Q1 , (5.16)

where

Q1 = exp
(
O(sr2) +O(sACr) + eO(sAC/n)e−Ω(s/n) +O(nr log(1/(nr)))

)
.

(5.17)

Note that the relationship ε = r(q+1)/q holds for the depolarizing channel
as defined in Eq. (5.5), so, ignoring the O(q−2n) corrections,

e−2sε−O(sε2) ≤ F̄ ≤ e−2sε+O(sε2)+O(εsAC)+O(nε log(1/(nε)) , (5.18)

indicating that the fidelity decreases exponentially with the expected number
of Pauli errors 2sε, as long as the noise is sufficiently weak that the other terms
can be ignored. In particular, three conditions must be met to approximate
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Q1 by 1 in Eq. (5.16): (1) ε2s � 1, (2) anti-concentration has been reached,
i.e. s ≥ sAC + Ω(n), and (3) ε � 1/sAC . Even if these conditions are not
met, exponential decay is still observed, but our bounds on the decay constant
are not tight. Note that if sAC = Θ(n log(n)), condition (3) can be stated
1/ε ≥ Ω̃(n) where the Ω̃ suppresses log factors. We believe the analysis could
be improved to remove these log factors.

5.3.2 Convergence to uniform
We show an upper bound on the expected total variation distance between

the output of the noisy quantum device pnoisy and the uniform distribution.
Our bound decays exponentially in the number of error locations, under certain
circumstances. In particular, it decays exponentially in (1−u)(1−q−2)s where
u is the unitarity of the local noise channels.

Theorem 5.2. Consider either the complete-graph architecture or a regularly
connected, layered random quantum circuit architecture with n qudits of local
Hilbert space dimension q and s gates, where the anti-concentration size is
given by sAC. Let u be the unitarity of the local noise channels (and define
v = 1− u). Then there exist constants c and n0 such that as long as v ≤ c/n
and n ≥ n0

E
U

[
1

2
‖pnoisy − punif‖1

]
≤ exp

(
−sv(1− q−2)

)
Q2 , (5.19)

where punif is the uniform distribution and

Q2 = exp
(
O(sv2) +O(sACv) + eO(sAC/n)e−Ω(s/n) +O(nv log(1/(nv))

)
.

(5.20)

Note that Q2 is small under a similar three conditions as in the fidelity
decay result: (1) s(1− u)2 � 1, (2) anti-concentration has been reached, and
(3) sAC(1− u)� 1.

For the depolarizing channel, u = 1 − 2ε(1 − q−2)−1 up to first order in
ε, so the distance to uniform decays like e−2sε, which is identical to the rate
of fidelity decay. On the other hand, the unitarity of the rotation channel is
u = 1, so our upper bound does not decay with s, even though F̄ does decay
for the rotation channel. This is expected because the rotation channel is
coherent; indeed, unlike the other two examples, it sends pure states to pure
states. The ideal pure state and the noisy pure state will become less and less
correlated as more noise channels act, which explains why F̄ decays, but the
output distribution for the noisy pure state will not converge to uniform.

5.3.3 Distance to white noise distribution
If the noise is sufficiently weak, we show a stronger statement. Not only

does the output distribution decay to uniform, it does so in a very particular
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way, preserving an uncorrupted signal from the ideal distribution. We show
that pnoisy is close to pwn by upper bounding the expected total variation
distance between the two distributions.

Theorem 5.3. Consider either the complete-graph architecture or a regularly
connected, layered random quantum circuit architecture with n qudits of local
Hilbert space dimension q and s gates, where the anti-concentration size is
given by sAC. Let r be the average infidelity and u the unitarity of the local
noise channels (and define v = 1− u). Let

δ = 2r(1 + q−1)− (1− u)(1− q−2) . (5.21)

Then when we choose F = F̄ as in Eq. (5.14), there exist constants c1, c2, and
n0 such that as long as v ≤ c1/n, r ≤ c2/n, and n ≥ n0,

E
U

[
1

2
‖pnoisy − pwn‖1

]
≤ F̄
√
s
(√

δ +O(v) +O(r)
)

+O(F̄
√
sACv)

+O(F̄
√
nv log(1/nv)) + F̄ eO(sAC/n)−Ω(s/n) ,

(5.22)

whenever the right-hand side of Eq. (5.22) is less than F̄ .

We make a couple of comments. First, we emphasize how small the right-
hand side of Eq. (5.22) is. The quantity F̄ is decaying exponentially in the
number of expected errors, as shown in Theorem 5.1. We showed in Theo-
rem 5.2 that pnoisy converges to uniform at roughly the same rate. However,
the distance between pnoisy and pwn is much smaller than F̄ if the parameters
are sufficiently weak, demonstrating that the noisy and white-noise distribu-
tion are much closer even than either are to uniform.

Second, let us examine the quantity δ. For the depolarizing channel and
the dephasing channel, the leading term in δ cancels out leaving δ = O(ε2), so
the
√
δ term that appears is on the same order as the other terms. This is a

signature of incoherent noise. The coherent rotation channel, which has u = 1
and r = O(θ2), has δ = O(θ2), so

√
δ is large compared to the other terms in

the expression. In this case, we would need sr � 1 for the approximation to
be good, but if this is true, then F̄ ≈ 1 and the white-noise approximation is
trivial.

Relatedly, the parameter δ can be connected to the diamond distance D
of the channel N , which is the maximum amount action by N can change an
input state (which might be entangled with an auxiliary system) as measured
by the trace norm. If N is applied s times, the total deviation in trace norm
from the ideal output can be as large as sD in the worst case. It was shown
in Ref. [152] that D = O(

√
δ), specifically

1

2

√
δ ≤ D ≤ q2

2

√
δ . (5.23)



203

It is also known that r ≤ O(D) and 1 − u ≤ O(D). Thus, if we ignore the
final three terms in Eq. (5.22), we can write our result as

E
U

[
1

2
‖pnoisy − pwn‖1

]
≤ O(FD

√
s) . (5.24)

This emphasizes that the fundamental result is an improved tradeoff between
noise and circuit size; the strength of the signal decays exponentially, but the
error due to noise grows quadratically slower for random quantum circuits with
local noise than it does in the worst case.

5.4 Related work and implications
5.4.1 Quantum computational supremacy

A central motivation for our work has been recent quantum computational
supremacy experiments [6, 7] that sampled from the output of noisy random
quantum circuits on superconducting devices. In this context, the main claim
is that no classical computer could have performed the same feat in any rea-
sonable amount of time. As discussed in Chapter 1, while no efficient classical
algorithms to simulate the quantum device performing this task are known,
there is a lack of concrete theoretical evidence that no such algorithm exists.

Our work bolsters the theory behind these experiments in two ways, as-
suming that noise in the device is sufficiently well described by our local noise
model. First, our fidelity decay result validates using the linear cross-entropy
metric to benchmark the overall noise rate in the device, and quantify the
amount of signal from the ideal computation that survives the noise. Second,
convergence to the white-noise distribution has theoretical benefits with re-
spect to a potential proof that the random circuit sampling task accomplished
by the device is actually hard for classical computers.

Linear cross-entropy benchmarking

Quantum computational supremacy experiments are complicated by the fact
that since (by definition) they cannot be replicated on a classical computer,
it is non-trivial to classically verify that they actually performed the correct
computational task. A partial solution to this issue has been the proposal
of linear cross-entropy benchmarking, whereby a sample x is generated by
the device according to the noisy output distribution pnoisy, and a classical
supercomputer is used to compute pideal(x).4 When T samples {x1, . . . , xT}
are chosen, the average

F =
1

T

T∑
i=1

(qnpideal(x)− 1) (5.25)

4This requires exponential time but can be tractable for circuit sizes up to n = 50 or so
(in the case of a 2D architecture, it also depends on the depth of the circuit).
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is calculated, which is an empirical measure of the circuit fidelity. We can
see that the expected value of F is precisely

∑
x pnoisy(x)(qnpideal(x) − 1),

which is the numerator of the quantity F̄ defined in Eq. (5.14). Meanwhile,
the denominator of F̄ becomes close to 1, so long as the output is anti-
concentrated. In Theorem 5.1, we show that if the depolarizing error rate
ε satisfies ε � 1/(n log(n)) and as long as ε2s � 1, then there are matching
upper and lower bounds on the expected value of F , which decays with the
circuit size like e−2εs. Thus, assuming our local noise model, we prove that one
can infer ε given F and s. The inferred value of ε can then be compared to
the noise strength estimated when testing each circuit component individually,
thus providing one method of verification that the components are behaving
as expected during the experiment.

Indeed, the idea of using random circuit sampling as an alternative to
randomized benchmarking was formally proposed in Ref. [50], a work that has
certain similarities to ours. In particular, like us, they find that a noise rate of
1/ε ≥ Ω(n) appears necessary for controlled decay of the fidelity. (Our result
can be expressed as requiring 1/ε ≥ Ω̃(n), where the tilde hides log factors,
and we believe those log factors are not necessary for our result.) Additionally,
like us, they use the stat mech method to motivate their results. However,
they only analytically study the fidelity decay up to first order in the error
rate for a 1D architecture; that is, they compute the expected fidelity due to
contributions with only one error location. Moreover, they propose using F̄ in
their algorithm but only analytically study decay of another quantity, namely
the actual circuit fidelity E[tr[ρnoisyρideal]] where ρnoisy and ρideal are the noisy
and ideal output quantum states. Thus, our result might be regarded as a
completion of their analysis, as we rigorously show a precise exponential decay
of F̄ without any need for approximation.

Note that as the fidelity decays, more samples must be generated to get
a good estimate of the mean of F . Since pideal(x) for uniformly random x
has standard deviation on the order of q−n (assuming anti-concentration), the
standard deviation of F is expected to decay with the number of samples
like 1/

√
T . Thus, resolving it with enough precision to differentiate it from 0

requires T = Ω(1/F2) samples.

We comment that while our analysis assumes that each noise location has
the same value of ε, this is not essential to our method. We expect it could be
shown that the expected value of F decays like exp(−

∑
i εi) where i runs over

all possible noise locations. Moreover, our analysis works for any kind of local
noise, not just depolarizing noise; the only relevant parameter is the average
infidelity of the noise channels.

Classical hardness of sampling from the noisy output distribution

To claim to have achieved quantum computational supremacy, the low-fidelity
random circuit sampling experiments in Refs. [6, 7] must define a concrete
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computational problem that their device solved, but a classical device could
not also solve. Here there are a couple of options. One option is to simply rely
directly on the linear cross-entropy benchmarking task and define the task to
be generating a set of samples that scores at least F ≥ 1/ poly(n). A related
idea is the task of Heavy Output Generation (HOG) [23], which is to generate
outputs x for which pideal(x) is large (i.e. “heavy outputs”) significantly more
often than a uniform generator. The upshot of these definitions is that in the
regime where pideal(x) can be calculated classically with an exponential-time
algorithm, it can be verified that the quantum device successfully performed
the task. Their main drawback is that it is not clear whether running a
(noisy) quantum computation is the only way to perform these tasks. Perhaps
a classical algorithm can score well on the linear cross-entropy benchmark
without performing an actual random circuit simulation; for example, this
was the goal in Ref. [29].

Another option is to define the task specifically in terms of the white-noise
distribution. Namely, one must produce samples from a distribution pnoisy for
which 1

2
‖pnoisy − pwn‖1 ≤ εF for some choice of F not too small (ideally at

least inverse polynomial in n) and some small constant ε. In Chapter 1, we
referred to this task as “white-noise RCS.” A downside of this option is that
even with unlimited computational power, an exponential number of samples
from the device would be needed to definitively verify that the distribution is
close to pwn in total variation distance. Our work provides a partial solution
here, as we show that a local error model allows a device to accomplish the
white-noise RCS task, as long as the error rate is sufficiently weak compared
to the circuit size. Thus, if the experimenters are sufficiently confident in
the error model that describes their device, they can rely on our work to be
confident they are performing the white-noise RCS task. The major upside
of the white-noise RCS task is that one can give stronger evidence that it
is classically hard to perform. For example, in the Supplementary Material
of Ref. [6], it was shown that exactly (i.e. ε = 0) sampling from pwn (a task
they called “unbiased noise F -approximate random circuit sampling”) is a hard
computational task in the sense that an efficient classical algorithm for it
would cause the collapse of the polynomial hierarchy (PH), and further that
its computational cost should be at most a factor of F smaller than sampling
exactly from pideal. In that spirit, we show in Theorem 5.4, in the appendix,
that the more realistic task of sampling approximately from pwn is essentially
just as hard as sampling approximately from pideal, up to a factor polynomial
in F in the classical computational cost. This is important because some mild
progress has been made toward establishing that approximately sampling from
pideal is hard for the polynomial hierarchy, through a series of work that reduce
the task of computing pideal(x) in the worst case to the task of computing
pideal(x) in the average case up to some small error [4, 25–27]. Weaknesses in
this result as evidence for hardness of approximate sampling were discussed
in more detail in Chapter 3, but it remains true that the white-noise-centered
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definition of the computational task is the likeliest route to a more robust
version of quantum computational supremacy that can be grounded in well-
studied complexity theoretic principles.

5.4.2 Fast convergence to uniform
It is widely understood that incoherent, unbiased, and uncorrected noise

in quantum circuits should typically lead the output of a quantum circuit to
lose all correlation with the ideal circuit and become nearly uniform. It is
further asserted that the decay to uniform should scale with the circuit size;
however, rigorous results have only shown a decay in total variation distance
to uniform with the circuit depth d, following the form e−Ω(εd). In particular,
Ref. [153] showed that any (even non-random) circuit with interspersed local
depolarizing noise approaches uniform at least this quickly. Later, Ref. [31]
showed the same is true for any Pauli noise model, at least for most circuits
chosen from a particular random ensemble. However, in Ref. [26], a stronger
convergence at the rate of e−Ω(εs) in random quantum circuits like ours was
desired in order to show a barrier on further improvements of their worst-to-
average-case reduction for computing entries of pideal. To that end, they showed
that exponential convergence in circuit size occurs in a toy model where each
layer of unitary evolution enacts an exact global unitary 2-design as opposed
to many disjoint local gates, and they conjectured the same is true in the local
noise model we consider in this chapter. Thus, our result in Theorem 5.2 gets
close to providing the missing ingredient for their claim; for their application,
we would need to extend our result to show e−Ω(εs) even in the regime where
ε = O(1), independent of n. Our result applies only for ε = O(1/(n log(n))),
but we believe the extension to ε = O(1) might also be provable with our
method.

5.4.3 Signal extraction in noisy experiments
One implication of our work is that, in the parameter regime where our

results apply, the signal from the noiseless random circuit experiment can be
extracted by taking many samples. To illustrate this, suppose we are interested
in some classical function f(x) for x ∈ [q]n that takes values between −1 and
+1. Choosing x randomly from pideal induces a probability distribution over
the resulting values of f(x). To understand this distribution (e.g., estimate
its mean or variance), samples xi might be generated on a quantum device,
but if the device is noisy, these samples will be drawn from pnoisy instead of
pideal. However, if pnoisy ≈ pwn, then the sampled distribution over f(x) will
be a mixture of the ideal with weight F , and the distribution that arises from
uniform choice of x with weight 1 − F . Supposing the latter is well under-
stood, inferences can be made about the former by repetition. For example,
if
∑

x pideal(x)f(x) = µ = O(1) and
∑

x f(x)/qn = 0, then the mean of f
under samples from pwn is Fµ. Meanwhile, the standard deviation of f can
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be as large as O(1), indicating that O(1/F 2) samples from pwn are required to
compute the mean Fµ up to O(F ) precision.

A concrete example of such a situation is the Quantum Approximate Op-
timization Algorithm (QAOA) [154], where samples x from the output of a
parameterized quantum circuit are used to estimate the expectation of a clas-
sical cost function C(x). The parameters can then be varied to optimize the
expected value of the cost function. While our work is for Haar-random lo-
cal quantum circuits, not QAOA circuits, it is plausible that generic QAOA
circuits might exhibit a similar phenomenon. Indeed, in Refs. [155–157], nu-
merical and analytic evidence was given for the conclusion that the expectation
value of the cost function and its gradient with respect to the circuit parame-
ters decay toward zero when local noise is inserted into a QAOA circuit. This
behavior would be consistent with a stronger conclusion that the output is
well-described by pwn.

5.5 Summary of method and intuition
In this section, we present a heuristic argument about why the technical

statements stated above should hold. Then we give an overview of how we
actually show it using our method, which analyzes certain Markov processes
derived from the quantum circuits, extending our work in Chapter 4.

5.5.1 Intuition behind error scrambling
Our result that pnoisy is very close to pwn requires three conditions to be

satisfied: (1) ε2s � 1, (2) anti-concentration has been achieved, (3) εsAC �
1. Here, we try to motivate why these conditions should be sufficient and
speculate about whether they are also necessary. In particular, we believe
condition (3) can be significantly relaxed.

For simplicity, lets restrict to qubits (q = 2). Let U denote the unitary
enacted by the noiseless quantum circuit instance, so the ideal output state
is the pure state ρideal = U |0n〉〈0n|U †. If a location somewhere in the middle
of the circuit experiences a Pauli error, then we could write the output state
as U2PU1|0n〉〈0n|U †1P †U

†
2 , where P is a Pauli operator with support on only

one qubit, and U = U2U1 is a decomposition of the unitary into gates that act
before and after the error location. If we like, we can commute P to act at
the end of the circuit, giving OPU |0n〉〈0n|U †O†P where OP = U2PU

†
2 . Unlike

P , the operator OP will likely have support over many qubits. Indeed, this is
what we mean by scrambling; the portion of the circuit acting after the error
location scrambles the local noise P into more global noise OP . We can handle
error patterns E with multiple Pauli errors similarly, by commuting each to
the end one at a time and forming an associated global noise operator OE.

Next, we expand the output state ρnoisy of the noisy circuit as a sum
over all possible Pauli error patterns, weighted by the probability that each
pattern occurs. Assuming that the local noise is depolarizing, the probability
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of a pattern E depends only on the number of non-identity Pauli operators in
the error pattern, denoted by |E|.

ρn =
∑
E

( ε
3

)|E|
(1− ε)2s−|E|OEρidealO

†
E . (5.26)

The classical probability distribution pnoisy is then given by pnoisy(x) =
〈x|ρnoisy|x〉 for each measurement outcome x. Observe that for the error pat-
tern with |E| = 0 (no errors), we have ρE = ρideal. There can be other error
patterns for which OEρidealO

†
E = ρideal; for example, when a lone Pauli-Z er-

ror acts prior to any non-trivial gates, the state is unchanged since the initial
state |0n〉 is an eigenstate of all the Pauli-Z operators. However, these error
patterns are rare, and for the sake of intuition, we ignore this possibility. In
essence, the white-noise assumption is the claim that when we take the mix-
ture over output states for all of the error patterns, we arrive at a state ρerr
that produces measurement outcomes that are very close to uniform. (Note
that in general, ρerr need not be close to maximally mixed to yield uniform
measurements.) Letting F = (1− ε)2s, we may write

ρnoisy = Fρideal + F
∑

E:|E|>0

(
ε/3

1− ε

)|E|
OEρidealO

†
E (5.27)

= Fρideal + (1− F )
I

2n
+ F

∑
E:|E|>0

(
ε/3

1− ε

)|E|(
OEρidealO

†
E −

I

2n

)
.

(5.28)

This final term gives the deviations of the noisy output state ρnoisy from a
linear combination of the ideal state and the maximally mixed state.

This allows us to state more clearly the intuition for our result. Since the
circuit is randomly chosen and scrambles the local error patterns, the operators
OE generally have large support and are essentially uncorrelated for different
choices of error pattern E. Suppose we measure in the computational basis,
and examine the probability of obtaining the outcome x. Let

pE(x) = 〈x|OEρidealO
†
E|x〉 . (5.29)

We can calculate the squared deviation between this value and the white-noise
value under expectation over instance U .

E
U

[(pnoisy(x)− pwn(x))2] (5.30)

= E
U

[(
〈x|ρnoisy|x〉 − (F 〈x|ρideal|x〉+ (1− F )2−n)

)2
]

(5.31)

= F 2
∑
E,E′

|E|,|E′|>0

(
ε/3

1− ε

)|E|+|E′|
E
U

[(
pE(x)− 2−n

) (
pE′(x)− 2−n

)]
. (5.32)
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Suppose we now make the approximation that the quantities pE(x) and pE′(x),
when considered as functions of the random instance U , are independently dis-
tributed unless E = E ′. Their mean is 2−n and, assuming anti-concentration
(condition (2)), their standard deviation is O(2−n). Then we have

E
U

[(pnoisy(x)− pwn(x))2] (5.33)

≈ F 2
∑

E:|E|>0

(
ε/3

1− ε

)2|E|

E
U

[(
pE(x)− 2−n

)2
]

(5.34)

= F 2
∑

E:|E|>0

(
ε/3

1− ε

)2|E|

O(2−2n) (5.35)

= F 2 ·O(2−2n) ·
(
(1 +O(ε2))2s − 1

)
(5.36)

≈ O(F 22−2nε2s) (5.37)

when ε2s� 1. This implies that the deviation of each entry in the probability
distribution pnoisy from the white-noise distribution is on the order of F2−nε

√
s,

and since there are 2n entries, we have

E
U

[
1

2
‖pwn − pnoisy‖1

]
≈ O(Fε

√
s) . (5.38)

In other words, the total variation distance is much smaller than F when ε2s�
1, giving an intuitive reason for condition (1). Moreover, without condition
(2), the contribution of each term would be much larger than O(q−2n), which
illustrates why condition (2) is necessary.

The key step in this analysis was the assumption of independence between
pE and pE′ when E 6= E ′. This is only approximately true; indeed for a circuit
that does not scramble errors, this will be a bad approximation because it
might be common to have different error patterns E, E ′ that produce the
same (or approximately the same) effective error OE = OE′ . However, for
random quantum circuits, this outcome is unlikely for the vast majority of
error pairs. Our rigorous proof, later, might be regarded as a justification of
this intuition above.

Condition (3) is more subtle to motivate. In our analysis, we require
ε � 1/sAC so that the chance an error occurs while the circuit is still anti-
concentrating is small. This is helpful in the analysis because it allows us
to essentially ignore the possibility that an error P occurs near the begin-
ning or end of the circuit, where OPρidealO

†
P = ρideal is more likely to hold

(or approximately hold). When sAC = Θ(n log(n)), as is the case when the
architecture is the 1D or complete-graph architecture, condition (3) reads
1/ε� Θ(n log(n)) = Θ̃(n). We believe this can be improved to read 1/ε ≥ n/c
for some constant c that depends on the architecture (1D vs. complete-graph
etc.). However, we do not believe that improvement beyond this point would
be possible; there is a fundamental barrier that requires ε to scale as O(1/n).
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The reason for this is essentially that if the white-noise approximation is
to hold, the errors need to be scrambled at least as fast as they appear. The
fidelity F decreases like (1− ε)2s = exp(−2sε−O(sε2)), so each layer of O(n)
gates causes a decrease by a factor exp(−O(nε)). Recall that we demand that
the total variation distance between pnoisy and pwn be much smaller than F ,
so as F decreases, this condition becomes increasingly stringent. Meanwhile,
scrambling is fundamentally happening at the rate of increasing circuit depth,
not size. One way to see this is simply that local Pauli errors P that appear
at a certain circuit location are expected to be scrambled into larger operators
that grow ballistically with the depth [41, 42]; each layer of O(n) gates yields
a constant amount of operator growth. Another way to see this is to consider
a pair of error patterns E and E ′, where E consists of a single Pauli error
on qudit j at layer d and E ′ consists of a single Pauli error on qudit j at
layer d + ∆. The correlation between pE(x) and pE′(x), as a function of the
random instance U , which is roughly speaking the chance that the random
circuit transforms the first error into something resembling the second error,
will decay exponentially with ∆, the separation in depth between the two
errors.5 Yet a third way to see this fact is to notice that, after a circuit has
initially reached anti-concentration, convergence of the collision probability Z
to its limiting value ZH occurs like Z = ZH + O(ZH) exp(−O(s/n)). Each
additional layer of O(n) gates only decreases the deviation of Z from ZH by
a constant factor. The terms EU [(pE − 2−n)(pE′ − 2−n)] for E 6= E ′ that were
ignored above are expected to obey a similar kind of decay to the value 0 for
most choices of (E,E ′), but if F is decaying too fast, we are not be able to
neglect these terms. Each layer of O(n) gates must incur at most a constant-
factor decay in fidelity to not exceed the rate of scrambling; equivalently,
nε < c must hold for some constant c.

5.5.2 Noisy random quantum circuits as a stochastic process
In Chapter 4, we analyzed the collision probability Z = EU [

∑
x pideal(x)2]

by mapping it to the expectation value of a Markov process, which could also
be interpreted as the partition function of a classical stat mech system. In this
chapter, we extend that analysis to account for the action of the single-qudit
noise channels N that act after two-qudit gates.

This is a manifestation of the stat mech method for second-moment quan-
tities, so the first step is to somehow express the distance between pnoisy and
pwn in terms of second-moment random quantum circuit quantities. The start-
ing point for this is the general 1-norm to 2-norm bound: when p1 and p2 are

5This is particularly clear if the random circuits are Clifford circuits (for which our
results also apply since random Clifford gates form an exact 2-design). Clifford circuits
transform the error E at layer d more or less uniformly at random into one of the roughly
4∆ possible Pauli operators at layer d + ∆. The probability that this operator is E′ is
exponentially small in ∆.
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vectors on a qn-dimensional vector space, then

‖p1 − p2‖1 ≤ qn/2‖p1 − p2‖2 , (5.39)

where ‖p1 − p2‖2 =
√∑

x(p1(x)− p2(x))2 is a second-moment type quantity.
Applying this identity with p1 = pwn and p2 = pnoisy and invoking Jensen’s
inequality for the concave function

√
·, we find

E
U

[
1

2
‖pwn − pnoisy‖1

]
≤ qn/2 E

U

[
1

2
‖pwn − pnoisy‖2

]
≤ 1

2

√
qn E

U
[‖pwn − pnoisy‖2

2] .

(5.40)
Now we can expand

qn E
U

[
‖pwn − pnoisy‖2

2

]
= qn E

U

[∑
x

((
Fpideal(x) + (1− F )q−n

)
− pnoisy(x)

)2

]
(5.41)

= (Z2 − 1)− 2F (Z1 − 1) + F 2(Z0 − 1) , (5.42)

where

Z0 = qn E
U

[∑
x

pideal(x)2

]
= q2n E

U

[
pideal(0

n)2
]

(5.43)

Z1 = qn E
U

[∑
x

pnoisy(x)pideal(x)

]
= q2n E

U
[pnoisy(0

n)pideal(0
n)] (5.44)

Z2 = qn E
U

[∑
x

pnoisy(x)2

]
= q2n E

U

[
pnoisy(0

n)2
]

(5.45)

are second-moment quantities (the second equality holds since by symmetry
each term in the sum has the same value under expectation), with Zw con-
taining w copies of the noisy output and 2− w copies of the ideal output for
each w ∈ {0, 1, 2}. Note that Z0 = qnZ with Z the collision probability from
Chapter 4. Further, note that F is a free parameter, and we may choose it so
that it minimizes the right-hand side of Eq. (5.42), which occurs when

F̄ =
Z1 − 1

Z0 − 1
, (5.46)

which matches the definition for F̄ in Eq. (5.14). Plugging in F = F̄ yields

E
U

[
1

2
‖pwn − pnoisy‖1

]
≤ 1

2
F̄

√
(Z0 − 1)

(
(Z0 − 1)(Z2 − 1)

(Z1 − 1)2
− 1

)
. (5.47)

Now, we have reduced an assessment of the expected total variation distance
to an expression of second-moment quantities Z0, Z1, and Z2. We bound
these quantities by mapping them to stochastic processes. These stochastic
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processes are the same as that in Chapter 4, except that the noise channels
introduce slightly modified transition rules, as we now discuss.

The takeaway from Chapter 4 was that the quantity Z = q−nZ0 could be
expressed as a weighted sum over trajectories γ = (~γ(0), . . . , ~γ(s)), where each
~γ ∈ {I, S}n. In this chapter, the framework of the “biased random walk” from
Appendix 4.B is most helpful. The biased random walk describes a process
for generating a trajectory γ. For each time step t, if the tth gate acts on
qudits it and jt, then the transition from ~γ(t−1) to ~γ(t) can involve a bit flip at
position it, at position jt, or neither (but not at both), and no bit can flip at
any other position. Moreover, γ(t)

it
= γ

(t)
jt

must hold, so if γ(t−1)
it

6= γ
(t−1)
jt

, then
one of the two bits must be flipped. In this situation, when one bit is assigned
I and one is assigned S, the S is flipped to I with probability q2/(q2 + 1), and
the I is flipped to S with probability 1/(q2 + 1). Thus, there is a bias toward
making more of the assignments I. The quantity Z0 is given exactly by the
expectation value of q|~γ(s)| when trajectories γ are generated in this fashion,
where |~ν| denotes the Hamming weight of the bit string ~ν, that is, the number
of S assignments out of n.

With the biased random walk now defined, a vital observation is that the
random walk has two fixed points, the In configuration and the Sn configura-
tion, since whenever all the bits agree, none can be flipped. In Chapter 4, we
could precisely compute the fraction of the probability mass that eventually
reaches each of these fixed points if the circuit is infinitely long. Specifically,
qn/(qn + 1) of the probability mass converges to In and 1/(qn + 1) converges
to Sn; however, since the Sn fixed point receives a weighting of qn and the In
fixed point receives a weighting of 1, we find that Z0 → 2qn/(qn + 1).

Noise complicates this process. Suppose the configuration after the tth
two-qudit gate is ~ν, and a noise channel N acts on qudit it. Since the noise
channel is unital, if νit = I, then the configuration is left unchanged. However,
if νit = S, then the action of the noise may cause a flip from S to I. For the
calculation of Z0, there is no noise, so this happens with probability 0. For
the calculation of Z1, where there is one copy of the noisy distribution and
one copy of the ideal, we show that this happens with probability rq/(q − 1),
where r is the average infidelity given in Eq. (5.3). For depolarizing noise,
rq/(q − 1) = ε

1−q−2 = γ. For Z2, where there are two copies of the noisy
distribution, the probability of a transition is 1 − u, where u is the unitarity
of the noise channel given in Eq. (5.4).

Since noise can flip an S to an I but not vice versa, In is the only fixed
point of the noisy biased random walk; the Sn fixed point is only metastable.
Eventually, the action of noise will flip one of the S bits to an I, and the
trajectory might re-equilibrate to the In fixed point.

Now, we consider a toy example which captures the essence of our anal-
ysis. Suppose a circuit consists of alternating rounds of (1) a global Haar-
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|0〉

|0〉

|0〉

|0〉

|0〉
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U (1) U (2) U (3) U (4) U (5) U (6)

Figure 5.2: Toy example where global Haar-random gates U (t) act in between
a depolarizing noise channel on a single qudit. In this model we can exactly
compute quantities Z0, Z1, and Z2 because the global Haar-random gates cause
the probability mass in the stochastic process to fully re-equilibrate to one of
the fixed points, In or Sn.

random transformation and (2) a depolarizing noise channel on a single qudit,
as depicted in Figure 5.2. Step (1) can be approximately accomplished by
performing a very large number of two-qudit gates. This model is similar to
the toy model considered in Ref. [26] (the difference being that they considered
single-qudit noise channels on all n qudits in step (2)), which they analyzed
using the Pauli string method of Refs. [85, 131].

The initial global Haar-random transformation induces perfect equilibra-
tion to the two fixed points, with qn/(qn + 1) mass reaching the In fixed point
and 1/(qn + 1) mass reaching the (metastable) Sn fixed point. This is already
sufficient to compute Z0 − 1, which is not sensitive to the noise.

Z0 − 1 =
qn − 1

qn + 1
. (5.48)

Now suppose we want to calculate Z1, and that we are part of the 1/(qn + 1)
fraction at the Sn fixed point. The single-qudit depolarizing noise channel will
flip one of the S assignments to an I assignment with probability ε(1−q−2)−1.
If this happens, there are n−1 S assignments and 1 I assignment. While it may
seem that this new configuration is still close to the Sn fixed point, we must
remember that the random walk is biased in the I direction. When we perform
the global Haar-random transformation, we get perfect re-equilibration back
to the two fixed points; with probability 1−q−2

1−q−2n we end at the In fixed point,
and with probability q−2−q−2n

1−q−2n we end at the Sn fixed point. These probabilities
were derived in Appendix 4.B. Now, the total mass that remains at the Sn
fixed point is the 1

qn+1
(1 − ε

1−q−2 ) that never left and the ε
1−q−2

q−2−q−2n

1−q−2n that
left and returned, which comes out to 1

qn+1
(1− ε

1−q−2n ). After 2s single-qudit
error channels have been applied, the probability mass remaining at the Sn
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fixed point is precisely

probability mass at Sn
after 2s noise locations =

1

qn + 1

(
1− ε

1− q−2n

)2s

≈ 1

qn + 1
e−2εs . (5.49)

This mass receives weighting of qn toward Z1. Meanwhile the rest of the mass
is at the In fixed point and receives weighting of 1. This tells us

Z1 − 1 =
qn − 1

qn + 1

(
1− ε

1− q−2n

)2s

. (5.50)

Calculating Z2−1 is just as easy. Here transitions due to noise occur with
probability 1−u where u is the unitarity of the noise channel. For depolarizing
noise 1− u = 2ε(1− q−2)−1 −O(ε2), so Z2 − 1 is the same as Z1 − 1 with the
replacement ε→ 2ε−O(ε2), giving

Z2−1 =
qn − 1

qn + 1

(
1− 2ε

1− q−2n
+O(ε2)

)2s

=
qn − 1

qn + 1

(
1− ε

1− q−2n

)4s

eO(sε2) .

(5.51)

We can plug these calculations into Eq. (5.47) to find that

E
U

[
1

2
‖pwn − pnoisy‖1

]
≤ 1

2
F̄

√
qn − 1

qn + 1
(eO(ε2s) − 1) = O(F̄ ε

√
s) . (5.52)

In the proofs of our theorems, the difficulty is that the probability mass
does not fully equilibrate to a fixed point before the next error location acts.
Nonetheless, we manage to calculate tight bounds on Z1 and Z2 by keeping
track throughout the evolution of the amount of probability that the walk
would re-equilibrate back to Sn and In if the rest of the gates were noiseless,
which we refer to as S-destined and I-destined probability mass. We show
that, as long as ε < c/n for some constant c, the S-destined probability mass is
exponentially clustered near the Sn fixed point in the sense that the probability
of being x bit flips away from Sn conditioned on being S-destined decays
exponentially in x. Thus, nearly all the bits are still assigned S and the action
of a noise channel reduces the S-destined mass by a factor of roughly 1 − ε.
If, on the other hand, a substantial number of bits were assigned I, the noise
would cause a fewer number of flips and the fraction of the S-destined mass
that stays S-destined after each noise channel would be larger than 1−ε, which
ruins the analysis.

The reason ε < c/n is required is that we need errors to be rare enough
that the S-destined mass mostly re-equilibrates back to Sn before new errors
pop up; the errors must get scrambled at a faster rate than they appear. If a
configuration has n − 1 S assignments and 1 I assignment, it will take O(n)
gates before the single I-assigned qudit participates in a gate. Thus, if errors
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occur at a slower rate than one per O(n) gates, full re-equilibration will happen
before a new error most of the time. It is not clear if this condition is truly
necessary for the statement to hold. However, we need ε < c/n for another
reason: we need the fidelity to decay more slowly than the anti-concentration
rate. After all, even though the walk is I-biased, the I-destined mass does not
make it to the I fixed point instantaneously. After s gates, there will be some
residual contribution from the I-destined mass which decays by a constant
factor every O(n) gates. Thus, the fidelity must also decrease by at most a
constant factor for every O(n) gates, meaning ε < c/n. In our analysis, we
actually settle for something a bit weaker: we require that ε � 1/(n log(n)),
which essentially means that very few errors occur during the initial anti-
concentration period. However, this is done to make the analysis easier, and
we do not believe this condition is necessary.

5.6 Outlook
In this chapter, we have presented a comprehensive picture of how the

output distribution of typical random quantum circuits behaves under a weak
incoherent local noise model. As more gates are applied, the output distri-
bution decays toward the uniform distribution in total variation distance like
e−2εs where ε is the local noise strength in a Pauli error model (for non-Pauli
models, this can be expressed in terms of the average infidelity r) and s is the
number of gates, confirming strong intuition that had not previously been rig-
orously proven. Moreover, we show that the convergence to uniform happens
in a very special way: the residual non-uniform component of the noisy distri-
bution is approximately in the direction of the ideal distribution. The random
quantum circuits scramble the errors that occur locally during the evolution so
that they can ultimately be treated as global white noise, allowing some signal
of the ideal computation to be extracted even from a noisy device. While this
property had previously been conjectured—it was an underlying assumption
of quantum computational supremacy experiments [6, 7]—it had not received
rigorous analytical study. Basic questions like how the error in the white-noise
approximation scales with ε and s had not been investigated.

Our theorem statements are given for general, possibly coherent, noise
channels. While we show that local coherent noise channels lead the output
distribution to exhibit exponential decay in the linear cross-entropy bench-
mark for the fidelity, there is not generally also a decay toward the uniform
distribution. As a result, the white-noise approximation is not good for coher-
ent noise channels. Moreover, even for incoherent noise channels, our technical
statements are only applicable if the Pauli noise strength ε (or for non-Pauli
noise channels, the average infidelity) is beneath a threshold that shrinks with
system size like O(1/n) and if the circuit size is at least Ω(n log(n)). Further-
more, our bound on error in the white-noise approximation is only meaningful
if ε � 1/(n log(n)). We believe the ε � 1/(n log(n)) requirement is merely a
result of suboptimal analysis, but that the assumption ε < O(1/n) is funda-
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mentally necessary for the approximation to be good; the errors are meaning-
fully transformed into white noise only if they can be scrambled faster than
the fidelity F = e−2εs decays.

One implication of our result is to put low-fidelity random-circuit-based
quantum computational supremacy experiments on stronger theoretical foot-
ing by showing that, as long as our local noise model is a reasonable approx-
imation of noise in actual devices, the device produces samples from a well-
understood output distribution, which can subsequently be argued is hard to
classically sample. Indeed, in Appendix 5.C, we combine observations from
previous work to show that the task of classically sampling from the white-
noise distribution with fidelity F up to ηF error is essentially just as hard, in
a certain complexity theoretic sense, as the task of classically sampling from
the ideal distribution up to a O(η) error. This is important because the lat-
ter task (and variants of it in other computational models [19, 22]), which we
called “approximate RCS” in Chapter 1, has previously garnered significant
theoretical scrutiny [4, 25, 26], although it is still not known whether it is hard
in a formal complexity theoretic sense.

These results are good news for the utility of NISQ devices more broadly.
In order to perform a larger and more interesting computation, noise rates
must become smaller; our work shows that, in many applications, for circuits
with s gates, noise rates need only decrease like 1/

√
s, rather than 1/s, as long

as one is willing to repeat the experiment many times to extract the signal
from the global white noise. A natural next question is when, besides the case
of random quantum circuits, do we expect a similar white-noise phenomenon
to occur? Our result shows that convergence to white-noise is a generic prop-
erty, occurring for a large fraction of randomly chosen circuits. Heuristically,
this is because random quantum circuits are known to be good scramblers.
However, most interesting quantum circuits are non-generic in some way. An
extreme example is quantum error-correcting circuits, which are specifically
designed not to scramble errors (so that they can be corrected). The output
of these circuits will not be close to the white-noise distribution. A fascinating
follow-up question is whether other computations proposed for NISQ devices
appear to scramble errors well enough that a similar approximation can be
made. One leading candidate with relevance for many-body physics is circuits
that simulate evolution by fixed chaotic Hamiltonians, since these systems are
thought to scramble information efficiently. Indeed, random quantum circuits
have been studied as a more analytically tractable model of such systems,
precisely because of the similarity in their scrambling properties [41, 42, 87].

We conclude with a couple of comments on ways this analysis could be
improved.
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• We believe that a sharper analysis would allow the error term of the form
O(εsAC) to be omitted, as long as the error rate is a sufficiently small
fraction of 1/n. Can this be proven using our method?

• What are the actual constant prefactors of the error in the approxima-
tion? This would be relevant for knowing in practice how small one
must make the error in order to assert that the white-noise approxi-
mation holds. We have not made significant attempt to optimize these
factors; it might be possible to estimate them numerically.

• We showed that the classical output distribution over measurement out-
comes is close to a mixture of the ideal output and the uniform output. A
stronger statement would be that the output quantum state is a mixture
of the ideal output state and the maximally mixed state. Our method
struggles to prove this stronger claim owing to our usage of the 1-norm
to 2-norm inequality and a difference that appears in the quantum case.
The ideal output quantum state is a pure state, so both its 1-norm and
its 2-norm are equal to 1. However, the ideal output classical distribu-
tion is expected to look like a Porter-Thomas distribution; its 1-norm
is 1, but its 2-norm is O(q−n/2). Thus, the 1-norm to 2-norm bound in
Eq. (5.39) is tight in the classical case but not the quantum case, imply-
ing that we are unlikely to get tight bounds if we attempt to examine
the output quantum state using an identical strategy.
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APPENDIX TO CHAPTER 5

5.A Framework for noisy circuit analysis
We refer the reader back to Appendix 4.B, where the expected squared

output probabilities of a noiseless quantum circuit are expressed as a sum over
trajectories. Here we augment this by an analysis of the action of single-qudit
noise channels.

5.A.1 Action of averaged noise channel on identity and swap
Since every single-qudit noise channel is followed by a Haar-random (either

single-qudit or two-qudit) gate in the circuit diagram, we are free to add a
single-qudit Haar-random gate immediately after every noise channel without
changing the overall circuit ensemble (the Haar measure is invariant under
multiplication by any unitary). Denote this single-qudit Haar-random matrix
by V . There will be a difference in the analysis between the calculation of Z0,
Z1 and Z2, where Zw contains w copies of the noisy output. Define

N0 = I ⊗ I (5.53)
N1 = I ⊗N (5.54)
N2 = N ⊗N (5.55)

with I the single-qudit identity. Let ρ be a state on two copies of a single-qudit
Hilbert space. Then for w ∈ {0, 1, 2}, let

Nw[ρ] = E
V

[
V ⊗2 Nw(ρ)V †⊗2

]
(5.56)

be the Haar-averaged noise channel.

We will only need to compute the action of Nw on input states ρ = I
(here I is the two-qudit identity) or ρ = S since the random gates turn the
initial state |0n〉〈0n| into a linear combination of tensor products of I or S on
each qudit. Note that since N is assumed to be unital, we have

Nw[I] = I (5.57)

for all w ∈ {0, 1, 2}. However, computing the action on S is not as simple. Let

Yw = tr (SNw(S))) . (5.58)

(Note that Y0 = q2 since N0 is the identity channel.) Then, use Eq. (4.45) and
the fact that N is trace-preserving to show

Nw[S] =
q − q−1Yw
q2 − 1

I +
Yw − 1

q2 − 1
S . (5.59)
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Now we relate the quantities Y1 and Y2 to the average infidelity and the uni-
tarity, respectively. Recall that tr(AB) = tr(S(A⊗B)). Using this trick and
Eq. (4.45), the average infidelity from Eq. (5.3), can be evaluated as follows:

r = 1−
∫
dV tr

[
V |ψ〉〈ψ|V †N (V |ψ〉〈ψ|V †)

]
(5.60)

= 1−
∫
dV tr

[
S
(
V |ψ〉〈ψ|V † ⊗N (V |ψ〉〈ψ|V †)

)]
(5.61)

= 1−
∫
dV tr

[
S(I ⊗N )

((
V |ψ〉〈ψ|V †

)⊗2
)]

(5.62)

= 1− tr

[
SN1

(
I + S

q(q + 1)

)]
(5.63)

= 1− 1− q−1Y1

q + 1
=
q − q−1Y1

q + 1
. (5.64)

The unitarity from Eq. (5.4), can be evaluated in a similar way.

u =
q

q − 1

(∫
dV tr

[
N
(
V |ψ〉〈ψ|V †

)2
]
− 1

q

)
(5.65)

=
q

q − 1

∫
dV tr

[
S
(
N
(
V |ψ〉〈ψ|V †

))⊗2
]
− 1

q − 1
(5.66)

=
q

q − 1

∫
dV tr

[
S(N ⊗N )

((
V |ψ〉〈ψ|V †

)⊗2
)]
− 1

q − 1
(5.67)

=
q

q − 1
tr

[
SN2

(
I + S

q(q + 1)

)]
− 1

q − 1
(5.68)

=
q + Y2

(q − 1)(q + 1)
− 1

q − 1
(5.69)

=
Y2 − 1

q2 − 1
. (5.70)

Plugging these relations back into Eq. (5.59) gives us

N0[S] = S (5.71)

N1[S] =
r

q − 1
I +

(
1− qr

q − 1

)
S (5.72)

N2[S] =
1− u
q

I + uS . (5.73)

For weak noise channels, r is close to 0 and u is close to 1. In this case, we
see that the noise causes some small amount of leakage from the S state to
the I state, but no leakage from the I state to the S state, introducing an
asymmetry into the problem that did not exist in the noiseless analysis.

For t = 1, . . . , s, let N (t)
w = I[n]\{it} ⊗ Nw,{it} be the channel that acts

with the averaged noise channel on site it and identity elsewhere, and let
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N
′(t)
w = I[n]\{jt} ⊗Nw,{jt} be the same for site jt. For t ≤ 0 and t > s, let N (t)

w

be the identity channel. If ρ is a linear combination of tensor products of I and
S, N (t)

w (ρ) and N
′(t)
w (ρ) will be as well, with coefficients that transform linearly.

For configurations ~γ, ~ν ∈ {I, S}n, let N (t)
w,~ν~γ denote the matrix elements of this

transformation, that is

N (t)
w

[
n−1⊗
j=0

γj

]
=

∑
~ν∈{I,S}n

N
(t)
w,~ν~γ

n−1⊗
j=0

νj , (5.74)

where for 1 ≤ t ≤ s,

N
(t)
0,~ν~γ =

{
1 if ~γ = ~ν

0 otherwise
(5.75)

N
(t)
1,~ν~γ =


1 if γit = νit = I and ~γ = ~ν

1− qr
q−1

if γit = S and νit = S and ~γ = ~ν
r
q−1

if γit = S and νit = I and γa = νa∀a 6= it

0 otherwise

(5.76)

N
(t)
2,~ν~γ =


1 if γit = νit = I and ~γ = ~ν

u if γit = S and νit = S and ~γ = ~ν
1−u
q

if γit = S and νit = I and γa = νa ∀a 6= it

0 otherwise ,

(5.77)

and N
′(t)
w are given by the same equations, with jt replacing it.

5.A.2 Mapping to partition function
Define

U (t)
0 = U (t) ⊗ U (t) (5.78)

U (t)
1 = Ũ (t) ⊗ U (t) (5.79)

U (t)
2 = Ũ (t) ⊗ Ũ (t) , (5.80)

where U (t) and Ũ (t) are given in Eqs. (5.8) and (5.9). Then we may write, for
w ∈ {0, 1, 2}

Zw = q2n E
U

[
tr
[
|0n〉〈0n|⊗2 U (n+s)

w ◦ · · · ◦ U (−n+1)
w

(
|0n〉〈0n|⊗2

)]]
. (5.81)

Since each U (t) is chosen independently, we are free to perform the expectation
value individually over each U (t)

w channel. The noiseless channel U (t)
0 = U (t)⊗2

averages to M (t), where M (t) is given in Eq. (4.49). The action of the noise
may also be averaged, since, as discussed above, we may pull out a single-
qudit Haar random gate to act after each noise location. Thus, the noiseless
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single qudit gates at the end of the circuit may be dropped as they are being
absorbed into the noise. Let

M (t)
w = N

′(t)
w ◦N (t)

w ◦M (t) (5.82)

so that

Zw = q2n tr
[
|0n〉〈0n|⊗2 M (s)

w ◦ · · · ◦M (−n+1)
w

(
|0n〉〈0n|⊗2

)]
. (5.83)

Following Eq. (4.48), we have

M (0)
w ◦ · · · ◦M (−n+1)

w

(
|0n〉〈0n|⊗2

)
=

1

qn(q + 1)n

∑
~γ∈{I,S}n

n−1⊗
j=0

γj , (5.84)

and thus

Zw =
qn

(q + 1)n

∑
γ∈{I,S}n×(3s+1)

s∏
t=1

N
′(t)

w,~γ(t)~γ(t−1/3)N
(t)

w,~γ(t−1/3)~γ(t−2/3)M
(t)

~γ(t−2/3)~γ(t−1)

(5.85)

=:
qn

(q + 1)n

∑
γ

weightw(γ) , (5.86)

generalizing Eq. (4.59). We see, as was the case for Z in Appendix 4.B, Zw
is given by a weighted sum over trajectories, which can be interpreted as a
partition function on the Ising-like stat mech model where each γ(t)

a is an Ising
variable {+1,−1}. In the noisy case, these trajectories are of length 3s + 1
(labeled as t = 0, 1/3, 2/3, 1, . . . , s) instead of length s+ 1, to account for the
impact of the two single-qudit noise channels after each gate.

5.A.3 Modified biased random walk
For the noiseless case, we biased the random walk so that the weight of a

trajectory only depended on its start and end points. The same will work for
the noisy case. Inspection of Eqs. (5.76) and (5.77) reveals that a flip from S to
I also comes with a loss of a factor of q. This is fundamentally a consequence
of the trace-preserving property of the noise (since tr(I) = q2 but tr(S) = q).
The biased random walk from Eq. (4.63) has a built-in qx weighting, where x
is the number of S assignments in the final configuration. Thus, a flip from S
to I, which decreases x by 1, fits naturally into the framework of the biased
random walk.

We can say

Zw =
qn

(q + 1)n

∑
~γ(0)

q−|~γ
(0)| E

Pb,w,~γ(0)

[
q|~γ

(s)|
]
, (5.87)

where EPb,w,~γ(0) denotes expectation over the dynamics of a biased random
walk starting from configuration ~γ(0). These dynamics are as follows. Each
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step consists first of the same step from the biased random walk in Chapter 4:
if a gate acts on qudits {it, jt}, then one of the two bits is flipped in the case
that they differ at those positions; the I is flipped to an S with probability
1/(q2 + 1) and S to I with probability q2/(q2 + 1). Then, if the assignment
at position it and jt is S, each is flipped to I independently with a certain
probability. For Z0 that probability is 0 (noiseless), for Z1, it is rq/(q + 1),
and for Z2 it is (1 − u). We can see that any configuration γ has the same
weight in Eq. (5.86) as it contributes to the expectation value above.

Defining Λb to be the initial configuration over configurations that weights
a configuration ~ν proportional to q−|~ν|, we may rewrite this as

Zw = E
Pb,w,Λb

[
q|~γ

(s)|
]
. (5.88)

5.A.4 Matrix notation for the modified biased random walk
We can write this in slightly more precise notation, as follows. Consider

a 2n-dimensional vector space vector space, where basis states are labeled by
configurations |~ν〉 for each ~ν ∈ {I, S}n. We will use the association I ↔ 0,
S ↔ 1 and label these basis states explicitly by bit strings in {0, 1}n. Define
the vectors

|1〉 =
∑
~ν

|~ν〉 (5.89)

|q〉 =
∑
~ν

q|~ν||~ν〉 (5.90)

|Λb〉 =
1

(q + 1)n

∑
~ν

qn−|~ν||~ν〉 . (5.91)

Then we may define 2n×2n transition matrices P (t), which enacts the tth step
of the noiseless biased walk, as well as matrices Q(t)

σ and Q
′(t)
σ which enact

the S → I transition with probability σ on qudits it and jt, respectively.
Explicitly, we let

P (t) = I[n]\{it,jt} ⊗ P{it,jt} (5.92)

Q(t)
σ = I[n]\{it} ⊗

(
|0〉〈0|+ (1− σ)|1〉〈1|+ σ|0〉〈1|

)
{it}

(5.93)

Q
′(t)
σ = I[n]\{jt} ⊗

(
|0〉〈0|+ (1− σ)|1〉〈1|+ σ|0〉〈1|

)
{jt}

, (5.94)

where

D = |00〉〈00|+ |11〉〈11| (5.95)

T =
q2

q2 + 1
|00〉〈01|+ q2

q2 + 1
|00〉〈10|+ 1

q2 + 1
|11〉〈10|+ 1

q2 + 1
|11〉〈01| (5.96)

P = D + T . (5.97)
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Note that P is a stochastic matrix. Then, define

Zσ = 〈q|

(
s∏
t=1

Q
′(t)
σ Q(t)

σ P
(t)

)
|Λb〉 , (5.98)

where |Λb〉 is the initial distribution vector for the biased walk. Note that if the
circuit diagram is generated randomly, as is the case for the complete-graph
architecture, then Zσ is the mean of the above expression over choice of circuit
diagram.

The above equation for Zw implies that

Z0 = Z0 (5.99)
Z1 = Zrq/(q−1) (5.100)
Z2 = Z1−u . (5.101)

5.B Detailed proofs
First, we state the definition of a layered architecture and two main

lemmas, which are themselves dependent on more minor lemmas. Then, we
prove our theorems based on the main lemmas. Afterward, we develop some
more machinery and state the minor lemmas, deferring their proofs to Ap-
pendix 5.B.8.

5.B.1 Definitions and main lemmas
Our proofs apply to h-regularly connected (Definition 4.5), layered ar-

chitectures. Here we define layered, which just means that you can always
arrange the gates neatly into layers of n/2 non-overlapping gates.

Definition 5.1. An architecture is layered if any sequence of gates
(A(1), . . . , A(s)) it generates with non-zero probability has the property that for
any integer d ≥ 0, and any pair of gates in the same “layer”

t1, t2 ∈ {dn/2 + 1, dn/2 + 2, . . . , (d+ 1)n/2} (5.102)

with t1 6= t2, we have A(t1) ∩ A(t2) = ∅. Thus, all n qudits are acted upon by
exactly one gate out of every n/2 gates.

For layered architectures we can speak clearly about the depth d = 2s/n.
Typically we always require s be a multiple of n/2 so that there are an integer
number of layers. Regular lattice architectures in D spatial dimensions are
typically layered, although adhering strictly to the definition might require
applying periodic boundary conditions. We do not expect this condition is
actually necessary for our results, but it is analytically convenient. The only
place we need it is in Lemma 5.12.

Our theorems are corollaries of the following lemmas. Recall the definition
of Zσ from Eq. (5.98). Note that in these proofs, all constants are dependent
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on q as well as h (the regularly connected parameter), but independent of n
and the noise parameters.

Lemma 5.1. If the random quantum circuit architecture is h-regularly con-
nected and layered with anti-concentration depth dAC, then there exist con-
stants c0, c1, c2, c3, c4, c5, and n0 that depend on h and q but not on n or σ,
such that as long as σ ≤ c5/n and n ≥ n0, for any value of the circuit depth
d,

qn − 1

qn + 1
(1− fσ)d ≤ Zσ − 1 ≤ qn − 1

qn + 1
(1− fσ)d eKσ , (5.103)

where

fσ =
1− (1− σ(1− q−2))n

1− q−2n
(5.104)

Kσ = c0ndσ
2 + c1nσdAC + c2e

−c3(d−dAC)+2σdn + c4nσ log(1/(nσ)) . (5.105)

Proof. The lower bound is an immediate consequence of two lemmas that
appear later, Lemma 5.11 and Lemma 5.12. The upper bound is also an
immediate consequence, with the constant c1 absorbing an O(nσ) term since
dAC = 2sAC/n ≥ Ω(log(n)) by the results of Chapter 4.

We show the analogous statement for the complete-graph architecture.

Lemma 5.2. If the random quantum circuit architecture is the complete-graph
architecture, then there exist constants c′0, c′1, c′2, c′3, c′4, c′5, and n0 that depend
on q but not on n or σ, such that as long as σ ≤ c′5/n and n ≥ n0, for any
value of the circuit size s,

qn − 1

qn + 1
(1− f ′σ)

s ≤ Zσ − 1 ≤ qn − 1

qn + 1
(1− f ′σ)

s
eK
′
σ , (5.106)

where

f ′σ =
1− (1− σ(1− q−2))2

1− q−2n
(5.107)

K ′σ = c′0sσ
2 + c′1σsAC + c′2e

−c′3(s−sAC)/n+4σs + c′4nσ log(1/(nσ)) , (5.108)

and sAC = Θ(n log(n)) is the anti-concentration size for the complete-graph
architecture.

Proof. The proof is the same as Lemma 5.1 except using Lemma 5.13 in place
of Lemma 5.12.



225

Note that in the regime σ ≤ O(1/n), we can bound 1 − σ(1 − q−2) ≥
e−σ(1−q−2)e−O(σ2) and the following holds:

e−nσ(1−q−2)e−O(nσ2)−O(q−2n) ≤ 1− fσ ≤ e−nσ(1−q−2) (5.109)

e−2σ(1−q−2)e−O(σ2)−O(q−2n) ≤ 1− f ′σ ≤ e−2σ(1−q−2) . (5.110)

The upper bound in Eqs. (5.109) and (5.110) actually holds generally for all
σ.

5.B.2 Proofs of main theorems from main lemmas
Proof of Theorem 5.1: fidelity decay

Proof. The quantity F̄ is precisely (Z1− 1)/(Z0− 1) = (Zσ− 1)/(Z0− 1) with
σ = rq/(q − 1). The statements are then direct consequences of Lemma 5.1
for layered architectures and Lemma 5.2 for the complete-graph architecture,
combined with the observation in Eqs. (5.109) and (5.110). Note also that
nd = 2s.

Proof of Theorem 5.2: convergence to the uniform distribution

Proof. We can use the 1-norm to 2-norm inequality in Eq. (5.39), along with
Jensen’s inequality for the concave

√
· function to say

E
U

[
1

2
‖pnoisy − punif‖1

]
≤ 1

2

√√√√qn E
U

[∑
x

(pnoisy(x)− q−n)2

]
(5.111)

=
1

2

√
q2n E

U
[pnoisy(0n)2]− 1 =

1

2

√
Z2 − 1 (5.112)

=
1

2

√
Zv − 1 (5.113)

Then, the theorem follows from the upper bound in Lemma 5.1 for layered
architectures and Lemma 5.2 for the complete-graph architecture, with σ = v,
combined with the observation in Eqs. (5.109) and (5.110). Note also that
nd = 2s.

Proof of Theorem 5.3: approximation by white noise

Proof. Following Section 5.5.2, we first use the 1-norm to 2-norm bound and
Jensen’s inequality, and then we optimize the value of F . The bound on
the distance between pwn and pnoisy is minimized when we choose F = F̄ =
(Z1 − 1)/(Z0 − 1). When this value is chosen, the bound can be expressed as

E
U

[
1

2
‖pnoisy − pwn‖1

]
≤ 1

2
F̄

√
(Z2 − 1)(Z0 − 1)2

(Z1 − 1)2
− (Z0 − 1) (5.114)
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Note that after the anti-concentration size has been surpassed, the quantity
Z0 − 1 rapidly approaches qn−1

qn+1
≈ 1 from above. To evaluate Z0, Z1 and Z2

we use the correspondence Z0 = Z0, Z1 = Zrq/(q−1) and Z2 = Zv. The bounds
from Lemma 5.1 for layered architectures and Lemma 5.2 for the complete-
graph architecture then allow us to upper bound (Z2 − 1)(Z0 − 1)2/(Z1 − 1)2,
arriving at

(Z2 − 1)(Z0 − 1)2

(Z1 − 1)2

≤ qn − 1

qn + 1
e2s(2r(1+q−1)−v(1−q−2))eO(sr2)+O(sq−2n)+eO(sAC/n)e−Ω(s/n)

Q2 (5.115)

=
qn − 1

qn + 1
e2sδeO(sr2+sq−2n+sv2+sACv−nv log(nv))+eO(sAC/n)e−Ω(s/n)

, (5.116)

where Q2 is given in Eq. (5.20), and δ is given in Eq. (5.21). Now, working
back from Eq. (5.114), and noting that ex − 1 < 2x for all x ≤ 1, we have

E
U

[
1

2
‖pnoisy − pwn‖1

]
≤ F̄

2

√
4sδ +O(sr2 + sq−2n + sv2 + sACv − nv log(nv)) + eO(sAC/n)e−Ω(s/n)

(5.117)

= F̄
√
s
(√

δ +O(v) +O(r)
)

+O(F̄
√
sACv)

+O(F̄
√
nv log(1/nv)) + F̄ eO(sAC/n)−Ω(s/n) (5.118)

when the quantity under the square root is less than 1 (and using
√
A+B ≤√

A+
√
B).

5.B.3 Machinery for proof
We now develop some more notation, and we precisely state our lemmas.

We defer the proofs of these lemmas to Appendix 5.B.8. As we state them,
we attempt to give some commentary about the meaning and purpose of the
different lemmas.

Coupling a noiseless and noisy copy of the dynamics

We have a fairly good understanding of the noiseless random walk from Chap-
ter 4. Our strategy here is to try to examine how introducing noise perturbs
that walk. To that end, we consider two copies of the random walk, where one
is noiseless and one is noisy, but they are correlated so that we can isolate the
impact of the noise.

Recall that we have reduced the calculation of Zσ to the expectation
value of a random variable (the configuration) that evolves according to the
stochastic transition matrix P (t) (representing the noiseless gate) followed by
transition matrices Q(t)

σ and Q
′(t)
σ , which represent the impact of noise.
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Let X denote the 2n-dimensional vector space for the first “noiseless” copy
and Y for the second “noisy” copy. To define the dynamics formally, recall the
definition of D and T from Eqs. (5.95) and (5.96), and define the following
matrix that acts on four bits.

R =D ⊗D +D ⊗ T + T ⊗D + T ⊗ T (|01, 10〉〈01, 10|+ |10, 01〉〈10, 01|)

+
q2

q2 + 1
|00, 00〉〈01, 01|+ 1

q2 + 1
|11, 11〉〈01, 01|

+
q2

q2 + 1
|00, 00〉〈10, 10|+ 1

q2 + 1
|11, 11〉〈10, 10|

.

(5.119)

The matrix R is stochastic. It should be understood as a correlated bit flip
where, if the first and third bits are equal and the second and fourth bits are
equal, they are sent to a state where that is still true. However, its marginal
on either the first two bits or the last two bits is precisely P from Eq. (5.97).
Refer to the ith bit of the first random variable as Xi and the ith bit of the
second random variable as Yi. Then define

R(t)
σ = (I ⊗Q′(t)σ Q(t)

σ )
(
IXY \{Xit ,Xjt ,Yit ,Yjt} ⊗R{Xit ,Xjt ,Yit ,Yjt}

)
. (5.120)

In words, what R(t)
σ does is first generate a correlated noiseless transition

among the bits involved in the gate {XitXjt , YitYjt} for both the first “noiseless”
X copy and the second “noisy” Y copy, and then apply the noise transitions
only to the Y copy. Since the marginal dynamics of the matrix R restricted
either to the first two bits or to the last two bits is the matrix P , the marginal
dynamics of R(t)

σ are P (t) on the X copy and Q
′(t)
σ Q

(t)
σ P (t) on the Y copy.

An additional property of R
(t)
σ is that it preserves a certain sub-

space of the 2n × 2n Hilbert space. If we define the projector πi =
(|00〉〈00|+ |11〉〈11|+ |10〉〈10|){XiYi}, then the support of

⊗n−1
i=0 πi is not cou-

pled with its orthogonal complement by the matrix R(t)
σ . Let us refer to this

subspace as the accessible subspace. This corresponds to the fact that the noise
can send 1→ 0, but not vice versa.

We define the initial state to be the correlated version of |Λb〉

|ΛbΛb〉 =
1

(q + 1)n

∑
~ν

qn−|~ν||~ν〉X ⊗ |~ν〉Y , (5.121)

which lies in this subspace, so evolution by R(t)
σ is guaranteed to remain within

the subspace for the entire evolution.

In terms of R(t)
σ , we can rewrite Eq. (5.98) as

Zσ = 〈1,q|
s∏
t=1

R(t)
σ |ΛbΛb〉 , (5.122)
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where |a, b〉 is shorthand for |a〉X ⊗ |b〉Y .

Note also that since the marginal dynamics of the X copy is the noiseless
dynamics, we have

Z0 = 〈q,1|
s∏
t=1

R(t)
σ |ΛbΛb〉 (5.123)

for any σ.

In our proof, we find it convenient to let

|v(t)〉 =
t∏

t′=1

R(t′)
σ |ΛbΛb〉 . (5.124)

Note that for circuit architectures where the circuit diagram is chosen ran-
domly, such as the complete-graph architecture, |v(t)〉 is defined as the above
expression averaged over all circuit diagrams.

Also letW refer to a third copy of the Hilbert space and define a mapping
from the ith bits of X and Y to the ith bit of W , as follows:

∆i = |1〉Wi
〈11|XiYi + |1〉Wi

〈00|XiYi + |0〉Wi
〈01|XiYi + |0〉Wi

〈10|XiYi (5.125)

It maps a bit pair to |1〉 if they agree and |0〉 if they disagree. Let

∆ =
n−1⊗
i=0

∆i (5.126)

be the map from X ⊗ Y to W . Note that ∆|ΛbΛb〉 = |1n〉.

I-destined and S-destined probability mass

We view |v(t)〉 as the probability vector for the correlated biased random walk.
Suppose starting at timestep t + 1, we begin running noiseless dynamics on
both copies, i.e. we apply R(t)

0 , and we continue for an infinite number of gates.
Then we will get full convergence to the fixed points |0n〉 ⊗ |0n〉, |1n〉 ⊗ |1n〉
and |1n〉 ⊗ |0n〉. The fourth fixed point |0n〉 ⊗ |1n〉 is not in the accessible
subspace. We know precisely the probability of each of these outcomes, owing
to our derivation of the functions PI and PS for the biased random walk.

We define the diagonal matrices

LI =
∑
~ν

1− q−2n+2|~ν|

1− q−2n
|~ν〉〈~ν| (5.127)

LS =
∑
~ν

q−2n+2|~ν| − q−2n

1− q−2n
|~ν〉〈~ν| , (5.128)
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and note that LI + LS is the identity matrix. The coefficient of |~ν〉〈~ν| in LI
gives the probability that a configuration that starts at |~ν〉 ends at the In ≡ 0n

fixed point if it undergoes completely noiseless dynamics, and the coefficient
in LS gives the probability of ending at the Sn ≡ 1n fixed point.

Then define

LII = LI ⊗ I (5.129)
LSS = I ⊗ LS (5.130)
LSI = I ⊗ LI − LI ⊗ I , (5.131)

which are the analogous matrices for the joint dynamics to end at |0n〉 ⊗ |0n〉,
|1n〉 ⊗ |1n〉, and |1n〉 ⊗ |0n〉, respectively.

Now we may define

P
(t)
I = LIP

(t)L−1
I (5.132)

P
(t)
S = LSP

(t)L−1
S (5.133)

and

R
(t)
II = LIIR

(t)
0 L−1

II (5.134)

R
(t)
SS = LSSR

(t)
0 L−1

SS (5.135)

R
(t)
SI = LSIR

(t)
0 L−1

SI , (5.136)

where in each case O−1 denotes the Moore-Penrose pseudo-inverse of O. We
interpret these matrices as the transition operators for probability mass that
has been conditioned to end up at a certain fixed point. For example, P (t)

S is
the transition operator for a single copy conditioned on eventually ending up
at the Sn ≡ 1n fixed point. Even though the walk is generally biased toward
I, it will be biased toward S when you condition on ending at the 1n fixed
point. The following lemma asserts that these are indeed stochastic matrices.

Lemma 5.3. The matrices P (t)
I , P (t)

S , R(t)
II , R

(t)
SS, R

(t)
SI , restricted to their sup-

port, are stochastic matrices.

The next lemma asserts that if the X ⊗ Y system undergoes dynamics
under R(t)

SI , then the W system undergoes dynamics under P (t)
I . This makes

sense, since conditioning on X to go to Sn ≡ 1n and Y to go to In ≡ 0n should
be equivalent to conditioning the W system to go to 0n.

Lemma 5.4. Within the accessible subspace, the following holds:

∆R
(t)
SI = P

(t)
I ∆ . (5.137)
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We now introduce some more notation. For any vector |x〉 on a single
copy of the vector space, let

|xI〉 = LI |x〉 (5.138)
|xS〉 = LS|x〉 , (5.139)

and for any vector |v〉 on two copies of the vector space, let

|vII〉 = LII |v〉 (5.140)
|vSS〉 = LSS|v〉 (5.141)
|vSI〉 = LSI |v〉 . (5.142)

Thus, if |x〉 represents a probability distribution over the 2n basis states on a
single copy of the Hilbert space, then the vector |xI〉 is the portion of |x〉 that
is destined to end at the fixed point 0n, and |xS〉 is the portion destined to
end at 1n (if all future gates are noiseless).

The amount of probability mass for which the noisy copy is destined for
the 1n fixed point cannot decay too quickly with the number of noise locations
(note that if the noisy copy ends at 1n, the noiseless copy must also end at
1n).

Lemma 5.5. The S-destined probability mass obeys the following inequality,
for any t′ ≥ t.

〈1,1|v(t′)
SS 〉 ≥ (1− σ)2(t′−t)〈1,1|v(t)

SS〉 . (5.143)

Proof idea. Recall that the inner product with 〈1,1| gives the sum of the
entries of the vector. We interpret |v(t)

SS〉 as the probability vector of mass
destined to reach the 1n fixed point on both copies. Each time a noise location
acts, it can affect at most a σ fraction of the mass, so even after two noise
locations act, at least a (1−σ)2 fraction of the mass that was S-destined before
will still be S-destined.

Decomposing the I-destined probability mass

The final piece of machinery we need is an accounting of which error leads to
each piece of I-destined probability mass. To do this, for each t ≥ 1 define

|v(t,t)
SI 〉 = |v(t)

SI〉 − (I ⊗Q′(t)σ Q(t)
σ )R

(t)
SI |v

(t−1)
SI 〉 (5.144)

=
(
LSI

(
I ⊗Q′(t)σ Q(t)

σ

)
−
(
I ⊗Q′(t)σ Q(t)

σ

)
LSI

)
R

(t)
0 |v(t−1)〉 , (5.145)

and define the evolution rule

|v(t′+1,t)
SI 〉 = Q

′(t′+1)
σ Q(t′+1)

σ R
(t′+1)
SI |v(t′,t)

SI 〉 . (5.146)

The vector |v(t′,t)
SI 〉 represents the probability mass that would have gone to the

1n fixed point, but the noise at time step t caused it to be redirected to the
0n fixed point, and we have subsequently evolved it forward to timestep t′.
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Importantly, we can verify from the definition that

t′∑
t=1

|v(t′,t)
SI 〉 = |v(t′)

SI 〉 , (5.147)

indicating that all of the mass at time step t′ is accounted for as having origi-
nated at some previous time step t.

Lemma 5.6. For all t and t′ ≥ t,

〈1,1|v(t′,t)
SI 〉 ≤ (1− (1− σ)2)〈1,1|v(t−1)

SS 〉 . (5.148)

Proof idea. The vector |v(t,t)
SI 〉 represents the mass that satisfies two conditions:

(1) it was destined for the |1n〉⊗|1n〉 fixed point at time step t−1, and (2) the
noise at time step t caused it to be destined for the |1n〉⊗|0n〉 fixed point at time
step t. At most 〈1,1|v(t−1)

SS 〉 mass qualifies under condition (1). Among that
mass, each of the two noise location can only impact a σ fraction of the mass,
so the fraction of mass that can be re-directed is at most (1− (1− σ)2).

5.B.4 Consequences of anti-concentration
In all of our rigorous proofs, we assume that we have a random quantum

circuit architecture that is h-regularly connected for some constant h = O(1),
and has anti-concentration size equal to sAC . Recall that this means that Z0

becomes twice its limiting value at sAC . When this is the case, we have the
following lemmas. All constants are dependent on q and h, but not on n or
any noise parameters.

Lemma 5.7. Suppose the random quantum circuit architecture is regularly
connected. There exist constants χ1 and χ2 such that for all t ≥ sAC

〈q,1|v(t)〉 ≤ 2qn

qn + 1
+ ηt , (5.149)

where
ηt = χ2 exp

(
−χ1

n
(t− sAC)

)
. (5.150)

Proof idea. The left-hand side is precisely Z0 for a circuit with size t. The
regularly connected property indicates that for any configuration not at a fixed
point, there will be a gate that couples an I with an S roughly once every O(n)
gates. When this happens, the difference between Z0 and its infinite-size limit
is reduced by a constant factor, leading to the scaling in the lemma.

Lemma 5.8. Suppose the random quantum circuit architecture is regularly
connected. There exist constants χ3 and χ4 such that for all t

〈1n,1|v(t)〉 ≥ 1− η′t
qn + 1

, (5.151)
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where
η′t = χ4 exp

(
−χ3

n
(t− sAC)

)
. (5.152)

Proof idea. Anti-concentration happens because most of the probability mass
makes it to one of the fixed points. This lemma states that after the anti-
concentration size, most of the mass destined for the 1n fixed point has already
reached it. The fraction that has not yet reached is η′t, which decays expo-
nentially with t/n. We show that if this were not the case, then the bound in
Lemma 5.7 could not hold.

Lemma 5.9. Suppose the random quantum circuit architecture is regularly
connected. There exist constants χ5 and χ6 such that for any non-negative
vector |v〉 that is normalized (i.e. 〈1,1|v〉 = 1), the following holds for any t0
and any t1 ≥ t0:

〈q|∆
t1∏

t=t0+1

(
(I ⊗Q′(t)σ Q(t)

σ )R
(t)
SI

)
|v〉 − 1

≤ (〈q|∆|v〉 − 1)χ6 exp

(
−χ5(t1 − t0)

n

)
. (5.153)

Proof idea. Recall from Lemma 5.4 that if |v〉 evolves by R
(t)
SI , then ∆|v〉

evolves by P (t)
I . The transition matrix P (t)

I is the matrix that conditions on
sending the vector to the 0n fixed point, so it is even more I-biased than the
transition matrix P (t). Thus, each time a bit is flipped, the Hamming weight
is likely to decrease, and the inner product with 〈q| − 〈1| will be reduced by
a constant factor. This will happen once every O(n) gates if the architecture
is regularly connected. The insertion of the Q(t)

σ operators will only make the
Hamming weight smaller since they can only flip 1→ 0.

5.B.5 Exponential clustering of S-destined probability mass
A key step in our analysis is that the S-destined mass stays close to the

1n fixed point, as long as σ = O(1/n). In fact, the probability of deviating
from the fixed point by x bit flips decays exponentially in x. Intuitively, this
is because the S-destined mass is biased to move upward in Hamming weight,
and when σ is small enough, this upward pressure will be greater than the
downward pressure coming from the noise itself.

We prove this for the W system, which captures the difference between
the (noiseless) X and (noisy) Y systems. We cannot directly analyze the
Y system because at time step 0, the statement is definitively not true. It
takes sAC gates for the S-destined mass in the Y system to initially converge.
Meanwhile, theW system begins at the 1n fixed point. This is the main reason
we introduced the W system in the first place.
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Define the projector

Πw =
∑

~ν:|~ν|=w

|~ν〉〈~ν| . (5.154)

Lemma 5.10. There exist constants χ7, χ8, χ9, and n0 such that as long as
σ ≤ χ7/n and n ≥ n0, the following holds for any t and any integer w with
1 ≤ w < n:

〈1|Πw∆|v(t)
SS〉

〈1,1|v(t)
SS〉

≤ nσξw , (5.155)

where
ξw = χ9(n− w)q−(n−w)e−χ8(n−w) . (5.156)

Proof idea. The S-destined portion of the mass within the W system starts at
the 1n fixed point. When noise acts at time step t, some of the mass moves
to Hamming weight n − 1 but continues to be S-destined, and some of it is
“redirected” to become I-destined, which is captured in the |v(t,t)

SI 〉 vector. The
total amount of redirected mass cannot be too large, as we see in Lemma 5.6.
Moreover, the redirected mass must steadily move downward in Hamming
weight (after all, it is I-destined), which we quantify with Lemma 5.9. This
is important because for each value of the Hamming weight w, the amount of
S-destined mass divided by the amount of I-destined mass at that Hamming
weight is precisely q−2n+2w−q−2n

1−q−2n+2w ≈ q−2(n−w), so as the I-destined mass moves
down in Hamming weight, the S-destined mass that corresponds to it decreases
exponentially. After accounting for each bit of I-destined mass by summing
over all |v(t′,t)

SI 〉, we can prove the lemma.

5.B.6 Relating Zσ to the S-destined weight
The following lemma states that keeping track of the amount of S-destined

mass is sufficient to get good upper and lower bounds on the quantity Zσ.

Lemma 5.11. The following lower bound always holds

Zσ − 1 ≥ (qn − 1) 〈1,1|v(s)
SS〉 (5.157)

Moreover, there exist constants χ10, χ11, χ12, χ13, and n0 such that as long as
σ ≤ χ13/n and n ≥ n0, the following upper bound holds.

Zσ − 1 ≤ (qn − 1) 〈1,1|v(s)
SS〉 exp

(
1 + χ10nσ + χ12e

−χ11
n

(s−sAC)+4sσ
)

(5.158)

Proof idea. For each w, we know the ratio of the I-destined and S-destined
mass at Hamming weight w: for each portion of S-destined probability mass,
there is roughly q2(n−w) I-destined probability mass. This decreases with w
like q−2w. The contribution of mass at Hamming weight w to Zσ increases,
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but at the slower rate of qw. Thus, for a fixed amount of S-destined mass,
Zσ is minimized when all of it is at the 1n fixed point, leading to our lower
bound. On the other hand, we know that the S-destined mass is exponentially
clustered near the 1n fixed point (Lemma 5.10), so this lower bound cannot
be too loose, which we leverage into an upper bound.

5.B.7 Bounding the S-destined mass
Now, all that remains is to compute the amount of S-destined mass. Here

we show upper and lower bounds on this quantity for layered architectures and
for the complete-graph architecture.

Lemma 5.12. Suppose the random quantum circuit architecture is regularly
connected and layered. Let dAC be its anti-concentration depth. Then, for any
d,

〈1,1|v(dn/2)
SS 〉 ≥

(
1− 1−(1−σ(1−q−2))n

1−q−2n

)d
qn + 1

. (5.159)

Moreover, there exist constants a0, a1, a2, a3, and n0 such that, as long as
σ ≤ a3/n and n ≥ n0,

〈1,1|v(dn/2)
SS 〉 ≤

(
1− 1−(1−σ(1−q−2))n

1−q−2n

)d
qn + 1

ea0σ2dn+a1σndAC+a2nσ log(1/(nσ)) , (5.160)

where dAC is the anti-concentration depth.

Lemma 5.13. Suppose the random quantum circuit architecture is the
complete-graph architecture. Let sAC be its anti-concentration size. Then,
for any s,

〈1,1|v(s)
SS〉 ≥

(
1− 1−(1−σ(1−q−2))2

1−q−2n

)s
qn + 1

. (5.161)

Moreover, there exist constants b0, b1, b2, b3, and n0 such that, as long as
σ ≤ b3/n and n ≥ n0,

〈1,1|v(s)
SS〉 ≤

(
1− 1−(1−σ(1−q−2))2

1−q−2n

)s
qn + 1

eb0σ
2s+b1σsAC+b2nσ log(1/(nσ)) (5.162)

Proof idea for Lemma 5.12 and Lemma 5.13. When a portion of S-destined
mass is at the 1n fixed point, and noise acts to move it to Hamming weight
n − 1, we have a good understanding of what fraction remains S-destined.
Specifically, there is a q−2−q−2n

1−q−2n chance that it re-equilibrates to 1n. We also
know the chance that it will make the transition in the first place; the transition
from 1 → 0 happens with probability precisely σ. This scenario gives the
maximum amount of lost S-destined mass, and gives rise to our lower bound.
However, if the portion of S-destined mass is not at the 1n fixed point, then
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this is complicated in two ways. First, the probability of re-equilibrating back
to 1n is a slightly different expression, and, more importantly, the noise will
not cause a transition as often, as there is a chance it acts on a bit that is
already 0. If the configuration has Hamming weight w and the noise acts on
a random bit, the chance of a transition is n−w

n
σ so a smaller amount of S-

destined mass is lost at each step. Luckily, we know that the S-destined mass
is exponentially clustered near w = n (Lemma 5.10), so the corrections are
small, which gives rise to the upper bound.

We utilize the layered architecture property to be able to say that every
qudit is acted upon by noise after each layer, and thus, from the perspective
of the amount of S-destined mass, all that matters is the Hamming weight of
the configuration prior to the noise. The same is true for the complete-graph
case because the gates are chosen randomly and each qudit is equally likely
to participate. However, we do not believe this property is necessary for our
result to be true.

5.B.8 Deferred proofs of lemmas
Proof of Lemma 5.3

Proof. We demonstrate this for P (t)
I and leave the others to be verified in

a similar fashion. First of all, since P (t) is a stochastic matrix, its matrix
elements are non-negative. Since LI and L−1

I are diagonal matrices with non-
negative entries, P (t)

I = LIP
(t)L−1

I also has non-negative matrix elements. The
support of PI is the entire vector space except for the span of |1n〉. Consider
another basis state |~ν〉. Since gate t acts on qudits {it, jt}, if νit = νjt , then it
is a +1 eigenvector of |P (t)〉 and

〈1|P (t)
I |~ν〉 =

∑
~µ

〈~µ|LIP (t)L−1
I |~ν〉 (5.163)

=
∑
~µ

1− q−2n+2|~µ|

1− q−2n+2|~ν| 〈~µ|P
(t)|~ν〉 (5.164)

=
∑
~µ

1− q−2n+2|~µ|

1− q−2n+2|~ν| 〈~µ|~ν〉 = 1 . (5.165)

If νit 6= νjt , then P (t) sends |~ν〉 to a basis state with Hamming weight reduced
by 1 with probability q2/(q2 + 1), and to Hamming weight increased by 1 with
probability 1/(q2 + 1), so

〈1|P (t)
I |~ν〉 =

∑
~µ

1− q−2n+2|~µ|

1− q−2n+2|~ν| 〈~µ|P
(t)|~ν〉 (5.166)

=

(
q2

q2 + 1

1− q−2n+2|~ν|−2

1− q−2n+2|~ν| +
1

q2 + 1

1− q−2n+2|~ν|+2

1− q−2n+2|~ν|

)
= 1 . (5.167)
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This demonstrates that P (t)
I is a stochastic matrix when restricted to its sup-

port.

Proof of Lemma 5.4

Proof. We consider the action of both sides of the equation on an input state
|~ν, ~µ〉. Let a and b be the number of 1 entries in ~ν and ~µ, excluding the
positions {it, jt}, respectively, and let c be the number of entries on which
~ν and ~µ agree. Since we are restricting to the accessible subspace, we have
c = n−2−a+ b. Since ∆ is a tensor product across all bits i ∈ {0, . . . , n−1},
and both P

(t)
I and R

(t)
SI modify only bits it and jt, it is sufficient to consider

the transitions among just bits it and jt. First, define

c0 =
1− q−2n+2c

1− q−2n+2c+2

q2

q2 + 1
(5.168)

c1 =
1− q−2n+2c+4

1− q−2n+2c+2

1

q2 + 1
. (5.169)

Let the four bits below be ordered XitXjt , YitYjt . The right-hand side has the
following effect, where the first arrow is application of ∆ and the second is
application of P (t)

I .

|11, 11〉 → |11〉 → |11〉
|11, 10〉 → |10〉 → c0|00〉+ c1|11〉
|11, 01〉 → |01〉 → c0|00〉+ c1|11〉
|11, 00〉 → |00〉 → |00〉
|10, 10〉 → |11〉 → |11〉
|10, 00〉 → |01〉 → c0|00〉+ c1|11〉
|01, 01〉 → |11〉 → |11〉
|01, 00〉 → |10〉 → c0|00〉+ c1|11〉
|00, 00〉 → |11〉 → |11〉 .

Now, we can do the same for the left-hand side. For example, consider the
input state |11, 10〉. Action by R(t)

SI sends it to

|11, 10〉 → q−2n+2a+4 − q−2n+2b

q−2n+2a+4 − q−2n+2b+2

q2

q2 + 1
|11, 00〉 (5.170)

+
q−2n+2a+4 − q−2n+2b+4

q−2n+2a+4 − q−2n+2b+2

1

q2 + 1
|11, 11〉 (5.171)

= c0|11, 00〉+ c1|11, 11〉 , (5.172)

where the last line follows by recalling the relation c = n− 2− a + b. Action
by ∆ then yields the state c0|00〉+ c1|11〉. We can now list this calculation for
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each input state, where the first arrow is action by R(t)
SI and the second by ∆.

|11, 11〉 → |11, 11〉 → |11〉 (5.173)
|11, 10〉 → c0|11, 00〉+ c1|11, 11〉 → c0|00〉+ c1|11〉 (5.174)
|11, 01〉 → c0|11, 00〉+ c1|11, 11〉 → c0|00〉+ c1|11〉 (5.175)
|11, 00〉 → |11, 00〉 → |00〉 (5.176)

|10, 10〉 → q−2n+2a − q−2n+2b

q−2n+2a+2 − q−2n+2b+2

q2

q2 + 1
|00, 00〉 (5.177)

+
q−2n+2a+4 − q−2n+2b+4

q−2n+2a+2 − q−2n+2b+2

1

q2 + 1
|11, 11〉 (5.178)

→ |11〉 (5.179)
|10, 00〉 → c1|00, 00〉+ c0|11, 00〉 → c0|00〉+ c1|11〉 (5.180)

|01, 01〉 → q−2n+2a − q−2n+2b

q−2n+2a+2 − q−2n+2b+2

q2

q2 + 1
|00, 00〉 (5.181)

+
q−2n+2a+4 − q−2n+2b+4

q−2n+2a+2 − q−2n+2b+2

1

q2 + 1
|11, 11〉 (5.182)

→ |11〉 (5.183)
|01, 00〉 → c1|00, 00〉+ c0|11, 00〉 → c0|00〉+ c1|11〉 (5.184)

(5.185)
|00, 00〉 → |00, 00〉 → |11〉 , (5.186)

which verifies that the left-hand and right-hand sides are equal.

Proof of Lemma 5.5

Proof.

〈1,1|v(t)
SS〉 = 〈1,1|LSSR(t)

σ |v(t−1)〉 = 〈1,1|LSSR(t)
σ L

−1
SS|v

(t−1)
SS 〉 (5.187)

=
∑
~µ

~ν 6=0n

〈1,1|LSS|1, ~µ〉〈1, ~µ|R(t)
σ |1, ~ν〉〈1, ~ν|L−1

SS|v
(t−1)
SS 〉 (5.188)

=
∑
~µ

~ν 6=0n

q−2n+2|~µ| − q−2n

q−2n+2|~ν| − q−2n
〈1, ~µ|R(t)

σ |1, ~ν〉〈1, ~ν|v
(t−1)
SS 〉 (5.189)

=
∑
~µ

~ν 6=0n

q−2n+2|~µ| − q−2n

q−2n+2|~ν| − q−2n
〈~µ|Q′(t)σ Q(t)

σ P
(t)|~ν〉〈1, ~ν|v(t−1)

SS 〉 (5.190)

=
∑
~µ

~ν,~ζ 6=0n

E~µ~ζG~ζ~ν〈1, ~ν|v
(t−1)
SS 〉 (5.191)



238

where

E~µ~ζ =
q−2n+2|~µ| − q−2n

q−2n+2|~ζ| − q−2n
〈~µ|Q′(t)σ Q(t)

σ |~ζ〉 (5.192)

G~ζ~ν =
q−2n+2|~ζ| − q−2n

q−2n+2|~ν| − q−2n
〈~ζ|P (t)|~ν〉 = 〈~ζ|P (t)

S |~ν〉 (5.193)

However, note that E~ζ~ζ ≥ (1− σ)2 (with equality when ζit = ζjt = 1), and all
E~µ~ζ are non-negative. Moreover, note that∑

~ζ

G~ζ~ν = 1 , (5.194)

owing to the fact that P (t)
S is stochastic. Thus 〈1,1|v(t)

SS〉 ≥ (1−σ)2〈1,1|v(t−1)
SS 〉,

and by recursion, the statement holds.

Proof of Lemma 5.6

Proof. Recall that LSI = I⊗LI −LI ⊗ I, but the second term commutes with
I ⊗Q

′(t)
σ Q

(t)
σ , thus we may ignore it in the following calculation.

〈1,1|v(t,t)
SI 〉 =

∑
~µ,~ν

〈~µ|LIQ
′(t)
σ Q(t)

σ −Q
′(t)
σ Q(t)

σ LI |~ν〉〈1, ~ν|R
(t)
0 |v(t−1)〉 (5.195)

=
∑
~µ,~ν

q−2n+2|~ν| − q−2n+2|~µ|

1− q−2n
〈~µ|Q′(t)σ Q(t)

σ |~ν〉〈1, ~ν|R
(t)
0 |v(t−1)〉 (5.196)

If ~µ = ~ν the factor gives 0. For each ~ν there are at most three possible ~µ 6= ~ν

for which the matrix element 〈~µ|Q
′(t)
σ Q

(t)
σ |~ν〉 6= 0, corresponding to a single

error on either qudit or an error on both at once. In those cases, the matrix
element is σ(1−σ) (for single error) or σ2 (for double error). The double error
is only possible if |~ν| ≥ 2, but note that we may assume |~ν| 6= 1 since action by
R

(t)
0 will leave the two bits it acts on equal, and cannot lead to a configuration

with Hamming weight 1. We have

∑
~µ

q−2n+2|~ν| − q−2n+2|~µ|

1− q−2n
〈~µ|Q′(t)σ Q(t)

σ |~ν〉

≤ 2σ(1− σ)
q−2n+2|~ν| − q−2n+2|~ν|−2

1− q−2n
+ σ2 q

−2n+2|~ν| − q−2n+2|~ν|−4

1− q−2n
(5.197)

=

(
q−2n+2|~ν| − q−2n

1− q−2n

)
2σ(1− σ)(1− q−2) + σ2(1− q−4)

1− q−2|~ν| (5.198)

≤
(
q−2n+2|~ν| − q−2n

1− q−2n

)(
2σ − σ2

)
. (5.199)
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This lets us say

〈1,1|v(t,t)
SI 〉 ≤

∑
~ν

(
q−2n+2|~ν| − q−2n

1− q−2n

)(
2σ − σ2

)
〈1, ~ν|R(t)

0 |v(t−1)〉 (5.200)

=
∑
~ν

(
2σ − σ2

)
〈1, ~ν|LSSR(t)

0 |v(t−1)〉 (5.201)

=
∑
~ν

(
2σ − σ2

)
〈1, ~ν|R(t)

SSLSS|v
(t−1)〉 (5.202)

=
(
2σ − σ2

)∑
~ν

〈1, ~ν|R(t)
SS|v

(t−1)
SS 〉 (5.203)

= (1− (1− σ)2)〈1,1|v(t−1)
SS 〉 , (5.204)

where the last equality follows because RSS is stochastic.

The fact that this is also true for |v(t′,t)〉 with t′ > t follows from the fact
that |v(t′,t)〉 is related to |v(t,t)〉 by a sequence of stochastic matrices, which
preserves the left-hand side of the lemma statement.

Proof of Lemma 5.7

Proof. This proof is similar to that of Theorem 4.3 from Chapter 4. Define
Z(t′) = 〈q,1|v(t′)〉. If the anti-concentration size is sAC , this means that

Z(sAC) ≤ 2qnZH =
4qn

qn + 1
. (5.205)

Note that Z(t′) is monotonically non-increasing with t′ (i.e., collision proba-
bility only decreases as more gates are applied). Recall that for architectures
where the circuit diagram is random, |v(t′)〉 represents an average over choice
of circuit diagram. The h-regularly connected property says that, no matter
what the circuit diagram has looked like up to time step t′, given any partition
of the qudits into two parts, there is at least a 1/2 probability that the next hn
gates in the circuit diagram will include at least one gate that couples qudits
from opposite parts. Conditioned on coupling the two parts, the portion of
the collision probability associated with configurations not already at a fixed
point will decrease by a factor 2q/(q2 + 1), as was seen in Eq. (4.80). Thus for
all t′,

Z(t′+rn) − 2qn

qn + 1
≤
(

1

2
+

1

2

2q

q2 + 1

)(
Z(t′) − 2qn

qn + 1

)
(5.206)

=
(q + 1)2

2(q2 + 1)

(
Z(t′) − 2qn

qn + 1

)
. (5.207)

Applying the above recursively, we have

Z(sAC+zhn) − 2qn

qn + 1
≤
(

(q + 1)2

2(q2 + 1)

)z
2qn

qn + 1
≤ 2

(
(q + 1)2

2(q2 + 1)

)z
. (5.208)
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Now we ensure something similar holds for every value of t and not just t =
sAC + zhn for integers z. Let t0 be the maximum integer for which t0 ≤ t, and
t0 = sAC+z0hn for some integer z0. So t−t0 ≤ hn and z0 ≥ (t−sAC)/(hn)−1.
Moreover, by monotonicity, we have Z(t) ≤ Z(t0). Together, this implies

Z(t) ≤ 2qn

qn + 1
+ 2

(
(q + 1)2

2(q2 + 1)

)z0
=

2qn

qn + 1
+ 2

(
(q + 1)2

2(q2 + 1)

) t−sAC
hn

−1

(5.209)

=
2qn

qn + 1
+ χ2e

−χ1(t−sAC)/n , (5.210)

where χ2 = 4(q2 + 1)/(q + 1)2 and χ1 = 1
h

log(2(q2 + 1)/(q + 1)2).

Proof of Lemma 5.8

Proof. We have

〈q,1|v(t)〉 − 1

qn − 1

=
∑
~ν

q|~ν| − 1

qn − 1
〈~ν,1|v(t)〉 (5.211)

= 〈1n,1|v(t)〉+
∑

~ν 6=0n,1n

q|~ν| − 1

qn − 1
〈~ν,1|v(t)〉 (5.212)

= 〈1n,1|v(t)〉+
∑

~ν 6=0n,1n

q|~ν| − 1

qn − 1
〈~ν,1|(L−1

S LS ⊗ I)|v(t)〉 (5.213)

= 〈1n,1|v(t)〉+
∑

~ν 6=0n,1n

(1− q−2n)
(
q|~ν| − 1

)
(q−2n+2|~ν| − q−2n)(qn − 1)

〈~ν,1|LS ⊗ I|v(t)〉 (5.214)

≥ 〈1n,1|v(t)〉+
(1− q−2n) (qn−1 − 1)

(q−2 − q−2n)(qn − 1)

∑
~ν 6=0n,1n

〈~ν,1|LS ⊗ I|v(t)〉 (5.215)

= 〈1n,1|v(t)〉+
q (1 + q−n)

1 + q−n+1

∑
~ν 6=0n,1n

〈~ν,1|LS ⊗ I|v(t)〉 (5.216)

= −
(
q (1 + q−n)

1 + q−n+1
− 1

)
〈1n,1|v(t)〉+

q (1 + q−n)

1 + q−n+1

∑
~ν 6=0n

〈~ν,1|LS ⊗ I|v(t)〉

(5.217)

= − q − 1

1 + q−n+1
〈1n,1|v(t)〉+

q (1 + q−n)

1 + q−n+1
〈1,1|LS ⊗ I|v(t)〉 (5.218)

= − q − 1

1 + q−n+1
〈1n,1|v(t)〉+

q (1 + q−n)

1 + q−n+1

1

qn + 1
, (5.219)
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where the last line follows because the total amount of S-destined mass for
the noiseless copy is exactly 1/(qn + 1). From Lemma 5.7, we have

〈q,1|v(t)〉 − 1

qn − 1
≤ 1

qn + 1
+

ηt
qn − 1

. (5.220)

Combining the above, we have

〈1n,1|v(t)〉 q − 1

1 + q−n+1
≥ 1

qn + 1

(
q (1 + q−n)

1 + q−n+1
− 1

)
− ηt
qn − 1

, (5.221)

and hence

〈1n,1|v(t)〉 ≥ 1− η′t
qn + 1

, (5.222)

where

η′t = ηt
(qn + 1)(1 + q−n+1)

(q − 1)(qn − 1)
≤ 6ηt = 6χ2e

−χ1
n

(t−sAC) . (5.223)

The inequality above is true for all n ≥ 1 and q ≥ 2. We choose χ4 = 6χ2 and
χ3 = χ1, and the lemma is proved.

Proof of Lemma 5.9

Proof. The gate at time step t acts on bits it and jt. Suppose for some config-
uration ~ν these bits disagree, i.e. νit 6= νjt . Consider a state |~η, ~η′〉 for which
∆|~η, ~η′〉 = |~ν〉. Then consider the quantity

〈q|∆R(t)
SI |~η, ~η

′〉 − 1 = 〈q|P (t)
I ∆|~η, ~η′〉 − 1 = 〈q|P (t)

I |~ν〉 − 1 (5.224)

=
∑
~µ

(q|~µ| − 1)〈~µ|LIP (t)L−1
I |~ν〉 (5.225)

=
∑
~µ

(q|~µ| − 1)(1− q−2n+2|~µ|)

1− q−2n+2|~ν| 〈~µ|P (t)|~ν〉 . (5.226)

The action of P (t) on |~ν〉 will force a bit flip, so there are only two possible
~µ that lead to a non-zero contribution, one for which |~µ| = |~ν| + 1 and one
for which |~µ| = |~ν| − 1. The matrix element (probability) of the former is
1/(q2 + 1) and the matrix element for the latter is q2/(q2 + 1). Thus, we have

〈q|P (t)
I |~ν〉 − 1 =

q2(q|~ν|−1 − 1)(1− q−2n+2|~ν|−2)

(q2 + 1)(1− q−2n+2|~ν|)
+

(q|~ν|+1 − 1)(1− q−2n+2|~ν|+2)

(q2 + 1)(1− q−2n+2|~ν|)
(5.227)

=
2q

q2 + 1

q|~ν| − q+q−1

2
− q−2n+2|~ν|

(
q|~ν| q

2+q−2

2
− q+q−1

2

)
1− q−2n+2|~ν| (5.228)

≤ 2q

q2 + 1
(q|~ν| − 1) =

2q

q2 + 1
(〈q|~ν〉 − 1) . (5.229)
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The above is true for all ~ν, and demonstrates that each time disagreeing bits
are coupled, the total contribution under inner product with (〈q| − 〈1|)∆
decreases by a constant factor.

Now consider the sequence
∏t1

t=t0+1

(
I ⊗Q

′(t)
σ Q

(t)
σ

)
R

(t)
SI acting on |~η, ~η′〉.

Since the architecture is h-regularly connected, for any t there is at least a
1/2 chance that there will be some pair (it′ , jt′) with t < t′ ≤ t+ hn for which
νit′ 6= νjt′ (assuming that ~ν is not a fixed point). The first time this happens,
it will lead to a decrease in inner product with (〈q| − 〈1|)∆ by the factor
2q/(q2 +1). The only way this would not happen is if one of the bits νit′ or νjt′
was flipped already by action by one of the operators Q(t′′). However, since the
Q

(t)
σ operators act only on the noisy Y copy, they can only flip a bit of ~η′ from

a 1 to a 0, which would also induce a bit flip in ~ν from a 1 to a 0. In this case,
the Hamming weight decreases by 1 and the inner product with (〈q| − 〈1|)∆
would decrease by a factor of q|~ν|−1−1

q|~ν|−1
which is less than 2q/(q2 + 1).

Thus, if z0 is the largest integer such that t0 + z0hn ≤ t1, then

〈q|∆
t1∏

t=t0+1

(
(I ⊗Q′(t)σ Q(t)

σ )R
(t)
SI

)
|v〉 − 1

≤
(

1

2
+

1

2

2q

q2 + 1

)z0
(〈q|∆|v〉 − 1) (5.230)

≤
(

1

2
+

1

2

2q

q2 + 1

) t1−t0
hn
−1

(〈q|∆|v〉 − 1) (5.231)

= χ6 exp

(
−χ5(t1 − t0)

n

)
(〈q|∆|v〉 − 1) (5.232)

for appropriate choice of χ5 and χ6.

Proof of Lemma 5.10

Proof. When probability mass is redirected from S-destined at time step t− 1
to I-destined at time step t′, it may begin with Hamming weight as large as
n−1. But since it is I-destined, it will quickly move down in Hamming weight.
We wish to quantify this phenomenon. First of all,

〈1|Πw∆|v(t,t′)
SI 〉 =

∑
~µ:|~µ|=w

〈~µ|∆|v(t,t′)
SI 〉 =

∑
~µ:|~µ|=w(q|~µ| − 1)〈~µ|∆|v(t,t′)

SI 〉
qw − 1

(5.233)

≤ 〈q|∆|v
(t,t′)
SI 〉 − 〈1|v

(t,t′)
SI 〉

qw − 1
. (5.234)
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Now, note that |v(t,t′)
SI 〉 =

∏t
t′′=t′+1

(
(I ⊗Q

′(t′′)
σ Q

(t′′)
σ )R

(t′′)
SI

)
|v(t′,t′)
SI 〉, so we can

invoke Lemma 5.9.

〈1|Πw∆|v(t,t′)
SI 〉 ≤

〈q|∆|v(t′,t′)
SI 〉 − 〈1|v

(t,t′)
SI 〉

qw − 1
χ6 exp

(
−χ5(t− t′)

n

)
(5.235)

≤ qn − 1

qw − 1
〈1,1|v(t′,t′)

SI 〉χ6 exp

(
−χ5(t− t′)

n

)
, (5.236)

where the second line follows because qn is the maximum entry in 〈q|, and
the quantity 〈1|v(t,t′)

SI 〉 does not change as t increases (it evolves by stochastic
transformations).

We now invoke Lemma 5.6 (in the first line) and Lemma 5.5 (in the second
line) to say

〈1|Πw∆|v(t,t′)
SI 〉 ≤

qn − 1

qw − 1
(2σ − σ2)〈1,1|v(t′−1)

SS 〉χ6e
−χ5(t−t′)

n (5.237)

≤ qn − 1

qw − 1
(2σ − σ2)(1− σ)−2(t−t′+1)〈1,1|v(t)

SS〉χ6e
−χ5(t−t′)

n (5.238)

≤ σ(4χ6q
n−w) exp

(
−χ5(t− t′)

n
+ 2(t− t′ + 1) log

(
1

1− σ

))
〈1,1|v(t)

SS〉 ,

(5.239)

where the extra factor of 2 comes from a very crude bound (qn−1)/(qw−1) ≤
2qn−w. As long as χ5/n is greater than 2 log(1/(1− σ)), the above is exponen-
tially decaying in t. This will be the case whenever σ ≤ 1 − exp(−χ5/2n)).
There is an n0 and χ7 such that σ ≤ χ7/n whenever n ≥ n0 is a weaker con-
dition. Alternatively, we could make a simpler bound by invoking Lemma 5.6
and Lemma 5.5, but not Lemma 5.9.

〈1|Πw∆|v(t,t′)
SI 〉 ≤ 〈1,1|v

(t,t′)
SI 〉 ≤ 2σ〈1,1|v(t′−1)

SS 〉 (5.240)

≤ 2σ(1− σ)−2(t−t′+1)〈1,1|v(t)
SS〉 (5.241)

Both Eq. (5.239) and Eq. (5.241) will be useful.
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Now, we connect |v(t)
SS〉 to |v

(t,t′)
SI 〉. First we note that

〈1|Πw∆|v(t)
SS〉

= 〈1|Πw∆LSS|v(t)〉 =
∑
~µ,~ν

〈1|Πw∆|~µ, ~ν〉〈~µ, ~ν|LSS|v(t)〉 (5.242)

=
∑
~µ,~ν

|~µ|=|~ν|+n−w

〈~µ, ~ν|LSS|v(t)〉 =
∑
~µ,~ν

|~µ|=|~ν|+n−w

q−2n+2|~ν| − q−2n

1− q−2n
〈~µ, ~ν|v(t)〉 (5.243)

=
∑
~µ,~ν

|~µ|=|~ν|+n−w

q2|~ν| − 1

q2|~µ| − q2|~ν|
q−2n+2|~µ| − q−2n+2|~ν|

1− q−2n
〈~µ, ~ν|v(t)〉 (5.244)

=
∑
~µ,~ν

|~µ|=|~ν|+n−w

q−2(n−w) 1− q−2|~ν|

1− q−2(n−w)
〈~µ, ~ν|LSI |v(t)〉 (5.245)

≤ q−2(n−w)

1− q−2

∑
~µ,~ν

|~µ|=|~ν|+n−w

〈~µ, ~ν|v(t)
SI〉 =

q−2(n−w)

1− q−2
〈1|Πw∆|v(t)

SI〉 . (5.246)

This allows us to use Eq. (5.147) and assert

〈1|Πw∆|v(t)
SS〉 =

q−2(n−w)

1− q−2

t∑
t′=1

〈1|Πw∆|v(t,t′)
SI 〉 . (5.247)

Let tw = t−dn(n−w) log(q)/χ5e. For t′ > tw, we will bound |v(t,t′)
SI 〉 with

Eq. (5.241), and for t′ ≤ tw, we will use Eq. (5.239). Let us examine these sums
separately. For the t′ > tw portion, we make the substitution a = t′ − tw − 1,
and we have

t∑
t′=tw+1

〈1|Πw∆|v(t,t′)
SI 〉 ≤

t∑
t′=tw+1

2σ(1− σ)−2(t−t′+1)〈1,1|v(t)
SS〉 (5.248)

= 〈1,1|v(t)
SS〉2σ(1− σ)−2(t−tw)

t−tw−1∑
a=0

(1− σ)2a (5.249)

= 〈1,1|v(t)
SS〉2σ(1− σ)−2(t−tw) 1− (1− σ)2(t−tw−1)

2σ − σ2
(5.250)

≤ 〈1,1|v(t)
SS〉(1− σ)−2(t−tw) (4σ(t− tw)) (5.251)

≤ 〈1,1|v(t)
SS〉(1− σ)−2dn(n−w) log(q)/χ5e (4σdn(n− w) log(q)/χ5e) (5.252)

≤ 〈1,1|v(t)
SS〉q

−2n(n−w) log(1−σ)/χ5χ′5nσ(n− w) (5.253)

for some constant χ′5 slightly larger than 4 log(q)/χ5 to account for dropping
the ceiling in the last line. Note that in the third-to-last line, the extra factor
of 2 comes from the bound 2σ/(2σ − σ2) ≤ 2.
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For the t ≤ tw portion, we use the substitution a = tw − t′ and find
(assuming that χ5/n ≥ 2 log(1/(1− σ)))

tw∑
t′=1

〈1|Πw∆|v(t,t′)
SI 〉 ≤

tw∑
t′=1

σ(4χ6q
n−w)e−

χ5(t−t′)
n

+2(t−t′+1) log( 1
1−σ )〈1,1|v(t)

SS〉

(5.254)

= 〈1,1|v(t)
SS〉σ(4χ6q

n−w)
tw−1∑
a=0

e−
χ5(t−tw+a)

n
+2(t−tw+a+1) log( 1

1−σ ) (5.255)

≤ 〈1,1|v(t)
SS〉σ(4χ6q

n−w)
∞∑
a=0

e−
χ5(t−tw+a)

n
+2(t−tw+a+1) log( 1

1−σ ) (5.256)

= 〈1,1|v(t)
SS〉σ(4χ6q

n−w)
exp

(
−dn(n− w) log(q)/χ5e(χ5

n
+ 2 log(1− σ))

)
(1− e−χ5/n−2 log(1−σ))(1− σ)2

(5.257)

≤ 〈1,1|v(t)
SS〉σ(4χ6)

exp (−2dn(n− w) log(q)/χ5e log(1− σ))

(1− e−χ5/n−2 log(1−σ))(1− σ)2
(5.258)

≤ 〈1,1|v(t)
SS〉σχ

′
6q
−2n(n−w) log(1−σ)/χ5 (5.259)

for some constant χ′6. Plugging the bounds on the two parts of the sum into
Eq. (5.247), we find

〈1|Πw∆|v(t)
SS〉

〈1,1|v(t)
SS〉

≤ q−2(n−w)

1− q−2
nσq−2n(n−w) log(1−σ)/χ5

(
χ′5(n− w) +

χ′6
n

)
(5.260)

≤ χ9q
−2(n−w)nσ(n− w)qc

′(n−w) (5.261)

= χ9nσ(n− w)q−(n−w)q−(1−c′)(n−w) (5.262)

for some constants χ9 and c′ which is less than 1 whenever σ ≤ χ7/n and
n ≥ n0 hold. Thus we may define χ8 = (1 − c′) log(q) and the lemma is
proved.

Proof of Lemma 5.11

Proof. Recall that Zσ = 〈1,q|v(s)〉. and that |v(t)
SS〉 = LSS|v(t)〉. The matrix

L−1
SS is defined to be the Moore-Penrose pseudo-inverse of LSS, and note that

the null space of LSS is the space spanned by |~ν, 0n〉 for all ~ν. The projector
onto this subspace is |1, 0n〉〈1, 0n|. Thus,

|v(s)〉 = I|v(s)〉 = (|1, 0n〉〈1, 0n|+ L−1
SSLSS)|v(s)〉 (5.263)

= |1, 0n〉〈1, 0n|v(s)〉+ L−1
SS|v

(s)
SS〉 . (5.264)
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The lower bound is shown as follows:

Zσ − 1 =
∑
~ν

(
q|~ν| − 1

)
〈1, ~ν|v(s)〉 =

∑
~ν 6=0n

(
q|~ν| − 1

)
〈1, ~ν|v(s)〉 (5.265)

=
∑
~ν 6=0n

(
q|~ν| − 1

)
〈1, ~ν|

(
|1, 0n〉〈1, 0n|v(s)〉+ L−1

SS|v
(s)
SS〉
)

(5.266)

=
∑
~ν 6=0n

(
q|~ν| − 1

)
〈1, ~ν|L−1

SS|v
(s)
SS〉 (5.267)

=
∑
~ν 6=0n

(
q|~ν| − 1

)
〈~ν| 1− q−2n

q−2n+2|~ν| − q−2n
|v(s)
S 〉 (5.268)

=
∑
~ν 6=0n

(qn − 1)

(
1 + qn

1 + q|~ν|

)
〈1, ~ν|v(s)

SS〉 (5.269)

≥
∑
~ν 6=0n

(qn − 1) 〈1, ~ν|v(s)
SS〉 (5.270)

= (qn − 1)〈1,1|v(s)
SS〉 . (5.271)

Now, we will show the upper bound.

Zσ − 1 =
∑
~ν

(
q|~ν| − 1

)
〈1, ~ν|v(s)〉 (5.272)

=
∑
~ν

(
q|~ν| − 1

)〈1n, ~ν|+ ∑
~µ 6=1n

〈~µ, ~ν|

 |v(s)〉 (5.273)

=
∑
~ν

(q|~ν| − 1
)
〈1n, ~ν|v(s)〉+

∑
~µ 6=1n

(
q|~ν| − 1

)
〈~µ, ~ν|v(s)〉

 (5.274)

≤
∑
~ν

(q|~ν| − 1
)
〈1n, ~ν|v(s)〉+

∑
~µ 6=1n

(
q|~µ| − 1

)
〈~µ, ~ν|v(s)〉

 (5.275)

=
∑
~ν

((
q|~ν| − 1

)
〈1n, ~ν|v(s)〉

)
+ Z0 − 1− (qn − 1)〈1n,1|v(s)〉 , (5.276)

where we have used Z0 =
∑

~ν

∑
~µ q
|~µ|〈~µ, ~ν|v(s)〉. Now we invoke Lemma 5.8,

to say

Zσ − 1 ≤
∑
~ν

(
q|~ν| − 1

)
〈1n, ~ν|v(s)〉+ Z0 − 1− qn − 1

qn + 1
(1− η′s) (5.277)

=
∑
~ν

(
q|~ν| − 1

)
〈1n, ~ν|v(s)〉+

(
Z0 −

2qn

qn + 1

)
+ η′s

(
qn − 1

qn + 1

)
(5.278)

≤
∑
~ν

(
q|~ν| − 1

)
〈1n, ~ν|v(s)〉+

(
Z0 −

2qn

qn + 1

)
+ η′s . (5.279)
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Now we invoke Lemma 5.7 to bound Z0− 2qn/(qn + 1) in the first step below,
and continue on. Denote η′′s = ηs + η′s.

Zσ − 1 ≤
∑
~ν

(
q|~ν| − 1

)
〈1n, ~ν|v(s)〉+ η′s + ηs (5.280)

=
∑
~ν

(
q|~ν| − 1

)
〈1n, ~ν|L−1

SSLSS|v
(s)〉+ η′′s (5.281)

=
∑
~ν

(
(q|~ν| − 1)(1− q−2n)

q−2n+2|~ν| − q−2n

)
〈1n, ~ν|v(s)

SS〉+ η′′s (5.282)

=
∑
~ν

(qn − 1)

(
qn + 1

q|~ν| + 1

)
〈1n, ~ν|v(s)

SS〉+ η′′s (5.283)

≤ η′′s + (qn − 1)
∑
~ν

qn−|~ν|〈1n, ~ν|v(s)
SS〉 (5.284)

= η′′s + (qn − 1)
∑
~ν

qn−|~ν|〈~ν|∆|v(s)
SS〉 (5.285)

= η′′s + (qn − 1)〈1n, 1n|v(s)
SS〉+ (qn − 1)

n−1∑
w=1

qn−w〈1|Πw∆|v(s)
SS〉 (5.286)

≤ η′′s + (qn − 1)〈1n, 1n|v(s)
SS〉+ (qn − 1)

n−1∑
w=1

qn−wnσξw〈1,1|v(s)
SS〉 (5.287)

≤ η′′s + (qn − 1)〈1,1|v(s)
SS〉

(
1 + χ9nσ

n−1∑
w=1

(n− w)e−χ8(n−w)

)
, (5.288)

where in the second-to-last line, we have invoked Lemma 5.10, which requires
σ ≤ χ7/n and n ≥ n0 (leading to our requirements in this lemma that
σ ≤ χ13/n and n ≥ n0). Now, we make the choice of χ10 = χ9

∑n−1
w=1(n −

w)e−χ8(n−w) ≤ χ9

∑∞
w=1we

−χ8w = O(1), which yields the following. (In line 2,
we invoke Lemma 5.5.)

Zσ − 1 ≤ (qn − 1)〈1,1|v(s)
SS〉

(
1 + χ10nσ +

η′′s

(qn − 1)〈1,1|v(s)
SS〉

)
(5.289)

≤ (qn − 1)〈1,1|v(s)
SS〉
(

1 + χ10nσ +
qn + 1

qn − 1
η′′s (1− σ)−2s

)
(5.290)

≤ (qn − 1)〈1,1|v(s)
SS〉
(
1 + χ10nσ + 3η′′s (1− σ)−2s

)
(5.291)

≤ (qn − 1)〈1,1|v(s)
SS〉
(

1 + χ10nσ + χ12e
−χ11

n
(s−sAC)+4sσ

)
(5.292)

≤ (qn − 1)〈1,1|v(s)
SS〉 exp

(
1 + χ10nσ + χ12e

−χ11
n

(s−sAC)+4sσ
)
, (5.293)

where the third-to-last line is true for all q ≥ 2 and n ≥ 1, and the second-
to-last line plugs in the equations for ηs and η′s, chooses constants χ11 and χ12

appropriately, and asserts (1− σ)2s ≤ e−4σs, which is true whenever σ ≤ 0.79,
so it is certainly true under the assumption σ ≤ χ7/n for sufficiently large
n.
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Proof of Lemma 5.12

Proof. Recall that 〈1,1|v(0)
SS〉 = 1/(qn + 1). Let t0 = dn/2.

〈1,1|v(t0+n/2)
SS 〉 = 〈1,1|LSS

t0+n/2∏
t=t0+1

R(t)
σ |v(t0)〉 (5.294)

= 〈1,1|LSS
t0+n/2∏
t=t0+1

R(t)
σ L

−1
SS|v

(t0)
SS 〉 (5.295)

= 〈1,1|LSS
t0+n/2∏
t=t0+1

(I ⊗Q′(t)σ Q(t)
σ )

t0+n/2∏
t=t0+1

(I ⊗R(t)
0 )L−1

SS|v
(t0)
SS 〉 (5.296)

= 〈1,1|LSS
t0+n/2∏
t=t0+1

(I ⊗Q′(t)σ Q(t)
σ )L−1

SS

t0+n/2∏
t=t0+1

R
(t)
SS|v

(t0)
SS 〉 (5.297)

= 〈1,1|(I ⊗ LS)

t0+n/2∏
t=t0+1

(I ⊗Q′(t)σ Q(t)
σ )(I ⊗ L−1

S )

t0+n/2∏
t=t0+1

R
(t)
SS|v

(t0)
SS 〉 (5.298)

= 〈1|LS
t0+n/2∏
t=t0+1

(Q
′(t)
σ Q(t)

σ )L−1
S (〈1| ⊗ I)

t0+n/2∏
t=t0+1

R
(t)
SS|v

(t0)
SS 〉 (5.299)

=
∑
~ν 6=0n

〈1|LS
t0+n/2∏
t=t0+1

(Q
′(t)
σ Q(t)

σ )L−1
S |~ν〉〈1, ~ν|

t0+n/2∏
t=t0+1

R
(t)
SS|v

(t0)
SS 〉 . (5.300)

We now examine the quantity

〈1|LS
t0+n/2∏
t=t0+1

(Q
′(t)
σ Q(t)

σ )L−1
S |~ν〉 =

∑
~µ

〈~µ|LS
t0+n/2∏
t=t0+1

(Q
′(t)
σ Q(t)

σ )L−1
S |~ν〉 (5.301)

=
∑
~µ

q−2n+2|~µ| − q−2n

q−2n+2|~ν| − q−2n
〈~µ|

t0+n/2∏
t=t0+1

(Q
′(t)
σ Q(t)

σ )|~ν〉 .

(5.302)

Note that, because of the layered property, all n qudits are acted upon by one
of the Q(t)

σ or Q
′(t)
σ . This can cause some 1s to flip to 0s (with probability σ).

For ~µ to have non-zero contribution it must have µi ≤ νi for all i, a condition
we denote by ~µ ≤ ~ν, and in this case we have

〈~µ|
t0+n/2∏
t=t0+1

(Q
′(t)
σ Q(t)

σ )|~ν〉 = (1− σ)|~µ|σ|~ν|−|~µ| . (5.303)
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Note also the following sum formula, which holds for any z.

∑
~µ≤~ν

qz|~µ|(1− σ)|~µ|σ|~ν|−|~µ| =

|~ν|∑
x=0

(
|~ν|
x

)
qzx(1− σ)xσ|~ν|−x = (σ + qz(1− σ))|~ν| .

(5.304)
We find

〈1|LS
t0+n/2∏
t=t0+1

(Q
′(t)
σ Q(t)

σ )L−1
S |~ν〉 (5.305)

=
1

q2|~ν| − 1

∑
~µ≤~ν

(q2|~µ| − 1)(1− σ)|~µ|σ|~ν|−|~µ| (5.306)

=
(σ + q2(1− σ))|~ν| − 1

q2|~ν| − 1
=

(1− σ′)|~ν| − q−2|~ν|

1− q−2|~ν| , (5.307)

where σ′ = σ(1− q−2). Denote this final expression by

Ew =
(1− σ′)w − q−2w

1− q−2w
. (5.308)

Now we claim that, for any |~ν| 6= 0,

En ≤ E|~ν| . (5.309)

We can prove the statement above by noting that it holds for |~ν| = n and
observing that the derivative with respect to |~ν| is always negative (in this
verification, note that (1− σ′) ≥ 1/q holds for all σ ≤ 1).

Collecting these observations, we have

〈1,1|v(t0+n/2)
SS 〉 ≥

∑
~ν 6=0n

En〈1, ~ν|
t0+n/2∏
t=t0+1

R
(t)
SS|v

(t0)
SS 〉 (5.310)

= En〈1,1|
t0+n/2∏
t=t0+1

R
(t)
SS|v

(t0)
SS 〉 (5.311)

= En〈1,1|v(t0)
SS 〉 . (5.312)

Hence, the lower bound in the lemma statement follows by recursively applying
the above conclusion for increasing d.

To show the upper bound, we return to Eq. (5.300). Note that Ew ≤ 1.
We can restate what we know and divide the mass into whether or not the
noiseless copy has reached the Sn fixed point, and if it has, what value w for
the Hamming weight the noisy copy ends up at.

〈1,1|v(t0+n/2)
SS 〉 = Anot +

n∑
w=1

EwAw , (5.313)
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where

Anot =
∑

~ν 6=0n,~µ6=1n

E|~ν|〈1, ~ν|
t0+n/2∏
t=t0+1

R
(t)
SS (|~µ〉〈~µ| ⊗ I) |v(t0)

SS 〉 (5.314)

Aw =
∑

~ν:|~ν|=w

〈1, ~ν|
t0+n/2∏
t=t0+1

R
(t)
SS (|1n〉〈1n| ⊗ I) |v(t0)

SS 〉 . (5.315)

Since E|~ν| ≤ 1, we may directly apply Lemma 5.8 and bound Anot ≤ η′t0/(q
n +

1).

To bound Aw, we will need to use Lemma 5.10. Applying the layer of
R

(t)
SS from t = t0 + 1 to t = t0 + n/2 can at most double the number of 0

bits, since each qudit participates in at most one gate. So, in order to land
at a configuration with Hamming weight w, you have to start with Hamming
weight at most bn+w

2
c. In other words,

Aw ≤
bn+w

2
c∑

w′=1

∑
~µ:|~µ|=w′

〈1n, ~µ|v(t0)
SS 〉 . (5.316)

When w < n, the right-hand side of the above is then bounded with
Lemma 5.10, which requires σ ≤ χ7/n and n ≥ n0 (and thus the upper bound
portion of lemma inherits these requirements).

Aw ≤
bn+w

2
c∑

w′=1

∑
~µ:|~µ|=w′

〈~µ|∆|v(t0)
SS 〉 =

bn+w
2
c∑

w′=1

〈1|Πw′∆|v(t0)
SS 〉 (5.317)

≤
bn+w

2
c∑

w′=1

nσχ9(n− w′)q−(n−w′)e−χ8(n−w′)〈1,1|v(t0)
SS 〉 (5.318)

≤ nσχ9〈1,1|v(t0)
SS 〉

∞∑
a=dn−w

2
e

ae−a(χ8+log(q)) , (5.319)

where we have used the substitution a = n−w′. For any c, there is a constant
c′′ such that

∑∞
a=a0

ae−ca is bounded by c′′e−ca0 . Thus, there is a constant c′′
such that the sum in the expression above is bounded by

c′′e−(χ8+log(q))dn−w
2
e ≤ c′′e−(χ8+log(q))n−w

2 . (5.320)

Note also that by construction
∑n

w=1Aw ≤ 〈1,1|v
(t0)
SS 〉. Thus,

n∑
w=1

EwAw =
n∑

w=1

(En+Ew−En)Aw ≤ En〈1,1|v(t0)
SS 〉+

n−1∑
w=1

(Ew−En)Aw , (5.321)
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which we can insert into Eq. (5.313), along with the bounds on Aw, giving

〈1,1|v(t0+n/2)
SS 〉 ≤ 〈1,1|v(t0)

SS 〉

(
En + nσ

n−1∑
w=1

(Ew − En)fe−f
′(n−w)

)
+

η′t0
qn + 1

(5.322)

for appropriate constants f and f ′. We also have

Ew
En

=
1− q−2n

1− q−2w

(1− σ′)w − q−2w

(1− σ′)n − q−2n
≤ (1− σ′)−(n−w) , (5.323)

which can be verified by observing that the quantity

Ew
En

(1− σ′)n−w =
(1− q−2n)(1− (q

√
1− σ′)−2w)

(1− q−2w)(1− (q
√

1− σ′)−2n)
(5.324)

achieves its maximum with respect to σ′ when σ′ = 0, where it equals 1. The
quantity in parentheses in Eq. (5.322) is now at most(

En + nσEn

n−1∑
w=1

fe−f
′(n−w)(e− log(1−σ′)(n−w) − 1)

)

≤

(
En + nσEn

n−1∑
w=1

fe−f
′(n−w)τσ(n− w)

)
(5.325)

≤ En
(
1 + f ′′nσ2

)
, (5.326)

where in the second line, we bound e−x log(1−σ) − 1 by τσx for some constant
τ , which holds for x sufficiently small, as is the case when σ ≤ O(1/n) with n
sufficiently large; in the third line, we choose the appropriate constant f ′′ as
the exponentially decaying sum is bounded by a constant. This gives us the
recursion relation

〈1,1|v(t0+n/2)
SS 〉 ≤ 〈1,1|v(t0)

SS 〉En(1 + f ′′nσ2) +
η′t0

qn + 1
. (5.327)

For the first few layers, before anti-concentration has been reached and η′t0
has become small, we will just use the simpler naive bound 〈1,1|v(t0+n/2)

SS 〉 ≤
〈1,1|v(t0)

SS 〉. Suppose the anti-concentration depth is dAC = 2sAC/n. Then we
have

η′dn/2
qn + 1

≤ χ4

qn + 1
e−χ3(d−dAC)/2 ≤ χ′4

qn + 1
Ene

−χ3(d−dAC)/2−n log(1−σ) (5.328)

≤ χ′4En〈1,1|v
(dn/2)
SS 〉e−χ3(d−dAC)/2−n log(1−σ)−dn log(1−σ) (5.329)

≤ En〈1,1|v(dn/2)
SS 〉nσe−χ′3(d−d∗) , (5.330)
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where in line 1, we refer back to the definition of En and choose χ′4 slightly
larger than χ4, in line 2, we use Lemma 5.5, and in line 3 we choose

d∗ = dACχ3/2χ
′
3 + f ′′′ + log(1/nσ)/χ′3 (5.331)

for some constant f ′′′ that is O(1) whenever −n log(1− σ) is O(1). Note that
this also requires n log(1− σ) ≤ χ3. We can choose the constant a3 such that
the condition σ ≤ a3/n implies these requirements hold. Note we also must
choose a weaker exponential decay constant χ′3. Thus our recursion relation is

〈1,1|v(t0+n/2)
SS 〉 ≤ 〈1,1|v(t0)

SS 〉En(1 + f ′′nσ2 + nσe−χ
′
3(d−d∗)) . (5.332)

Iterating this equation starting at d = d∗, we get

〈1,1|v(dn/2)
SS 〉 ≤ Ed−d∗

n

qn + 1

d∏
d′=d∗+1

(1 + f ′′nσ2 + nσe−χ
′
3(d′−d∗)) (5.333)

≤ Ed−d∗
n

qn + 1
exp

(
d∑

d′=d∗+1

(f ′′nσ2 + nσe−χ
′
3(d′−d∗))

)
(5.334)

≤ Ed−d∗
n

qn + 1
exp

(
(d− d∗)(f ′′nσ2) + nσχ′′3

)
(5.335)

for some choice of χ′′3 (the exponentially decaying sum is bounded). Now, we
note from the definition of En that as long as σ ≤ O(1/n), there is a constant
g (slightly larger than 1) such that En ≥ exp(−gnσ′), allowing us to say

〈1,1|v(dn/2)
SS 〉 ≤ Ed

n

qn + 1
exp

(
f ′′nσ2d+ gnσ′d∗ + nσχ′′3

)
, (5.336)

which, recalling the definition of d∗ in Eq. (5.331), implies the lemma statement
for appropriate choices of a0, a1, and a2.

Proof of Lemma 5.13

Proof. In the layered case (proof of Lemma 5.12), we considered the action of
all n/2 gates in a layer at once. For complete-graph, we can treat each gate
individually. Following the layered derivation to Eq. (5.300), for complete-
graph we have

〈1,1|v(t)
SS〉 =

∑
~ν 6=0n

〈1|LSQ
′(t)
σ Q(t)

σ L
−1
S |~ν〉〈1, ~ν|R

(t)
SS|v

(t−1)
SS 〉 .

Here the tth gate acts on two qudits it and jt, but in forming |v(t)〉 from |v(t−1)〉,
we take the average over all possible choices. After action by R(t)

SS the values
assigned at position it and jt must be set equal. If they are assigned 1, then
errors can send the new configuration to one of four possible configurations,
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corresponding to errors on none, one, or both qudits. If they are assigned 0
then no errors are possible. If we assume that νit = νjt = 1, then zero errors
occurs with probability (1−σ)2, one error with probability 2σ(1−σ), and two
errors with probability σ2. Thus, we have

〈1|LSQ
′(t)
σ Q(t)

σ L
−1
S |~ν〉

= (1− σ)2 + 2σ(1− σ)
q−2n+2|~ν|−2 − q−2n

q−2n+2|~ν| − q−2n
+ σ2 q

−2n+2|~ν|−4 − q−2n

q−2n+2|~ν| − q−2n
(5.337)

=
(1− σ′)2 − q−2|~ν|

1− q−2|~ν| , (5.338)

where σ′ = σ(1− q−2). Define the final expression as

Jw =
(1− σ′)2 − q−2w

1− q−2w
. (5.339)

The quantity Jw is monotonically increasing in w and satisfies Jw ≤ Jn for all
w. Meanwhile, if νit = νjt = 0, then 〈1|LSQ

′(t)
σ Q

(t)
σ L

−1
S |~ν〉 = 1.

Recall the marginal dynamics of R(t)
SS on the noisy copy are simply P (t)

S .
Suppose the noisy copy starts at a configuration |~η〉. If |~η| = w, then let
φSS,w be the probability that the qudits it and jt are both assigned S, φIS,w
be the probability one is assigned S and one is assigned I, and φII,w be the
probability both are assigned I.

φSS,w =
w(w − 1)

n(n− 1)
(5.340)

φIS,w =
2w(n− w)

n(n− 1)
(5.341)

φII,w =
(n− w)(n− w − 1)

n(n− 1)
. (5.342)

Note that φSS,w + φIS,w + φII,w = 1. In the case where one is I and one is S,
the I is flipped to S by P (t)

S with probability P↑,w and the S is flipped to I
with probability P↓,w, where

P↑,w =
1

q2 + 1

q−2n+2w+2 − q−2n

q−2n+2w − q−2n
(5.343)

P↓,w = 1− P↑,w , (5.344)

which increases or decreases the Hamming weight of w by 1.



254

Note the following equalities and inequalities:

P↓,w =
1

q2 + 1

1− q−2w+2

1− q−2w
≥ 1

q2 + 1
− q−2w (5.345)

1− Jw =
1− (1− σ′)2

1− q−2w
=

2σ′ − σ′2

1− q−2w
(5.346)

Jn − Jw =
(1− (1− σ′)2)(q−2w − q−2n)

(1− q−2n)(1− q−2w)
≤ q−2w(2σ′ − σ′2)

1− q−2w
(5.347)

φII,w + φIS,wP↓,w ≥

{
n−w
n−1

(
1

q2+1
− q−2w

)
≥ n−w

n−1
1

q2+1
− q−2w if w ≥ n/2

1
4

if w < n/2
,

(5.348)

where the last inequality follows because, when w ≥ n/2, φIS,w ≥ n−w
n−1

, and
when w < n/2, φII,w ≥ 1

4
.

We may now define Gw by the following equation, where |~η| = w,

Gw =
∑
~ν 6=In
〈1|LSQ

′(t)
σ Q(t)

σ L
−1
S |~ν〉〈~ν|P

(t)
S |~η〉 (5.349)

= φSS,wJw + φIS,w(P↑,wJw+1 + P↓,w) + φII,w . (5.350)

We want to lower bound this quantity. If n = 2, then G1 = G2 = J2. If n > 2,
we have

Gw ≥ φSS,wJw + φIS,w(P↑,wJw + P↓,w) + φII,w (5.351)
= Jn + (1− Jw)(φII,w + P↓,wφIS,w)− (Jn − Jw) (5.352)

≥ Jn +
2σ′ − σ′2

1− q−2w

{
n−w
n−1

1
q2+1
− 2q−2w if w ≥ n/2

1
4
− q−2w if w < n/2

. (5.353)

By inspection of the final equation, we see that Gw ≥ Jn for every combination
n > 2, w ≥ 1 (since q > 2) except when w = n, but for w = n, Gw = Jn by
definition, so Gw ≥ Jn also holds.

This immediately gives us

〈1,1|v(t)
SS〉 =

n∑
w=1

Gw

∑
~η:|~η|=w

〈1, ~η|v(t−1)
SS 〉 ≥ Jn

n∑
w=1

∑
~η:|~η|=w

〈1, ~η|v(t−1)
SS 〉 (5.354)

= Jn〈1,1|v(t−1)
SS 〉 , (5.355)

which proves the lower bound by recursion on increasing t and the fact that
〈1,1|v(0)

SS〉 = 1/(qn + 1).

To show the upper bound, we first observe

Gw ≤ Jn + (1− Jn)(φII,w + P↓,wφIS,w) . (5.356)
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We have the inequalities

1− Jn =
2σ′ − σ′2

1− q−2n
≤ 2σ (5.357)

φII,w + P↓,wφIS,w ≤ φII,w +
1

2
φIS,w =

n− w
n

. (5.358)

Moreover, there exists a constant b such that Jn ≥ 1/b as long as n ≥ 2 and
σ ≤ 0.5. and thus

Gw ≤ Jn(1 + 2bσ
n− w
n

) . (5.359)

Similar to the proof of Lemma 5.12, we can split the initial weight into
parts for which the noiseless copy has reached the Sn fixed point, and a part
that has not.

〈1,1|v(t)
SS〉 = Anot +

n∑
w=1

GwAw , (5.360)

where

Anot =
∑

~η,~µ 6=Sn
G|~η|〈~µ, ~η|v(t−1)

SS 〉 (5.361)

Aw =
∑

~η:|~η|=w

〈Sn, ~η|v(t−1)
SS 〉 (5.362)

Since G|~η| ≤ 1 by definition, we may directly apply Lemma 5.8 and bound
Anot ≤ η′t−1/(q

n + 1).

When w < n, we also have

Aw ≤
∑

~η:|~η|=w

〈~η|∆|v(t−1)
SS 〉 ≤ nσ(n− w)q−(n−w)χ9e

−χ8(n−w)〈1,1|v(t−1)
SS 〉 (5.363)

by Lemma 5.10. This requires σ ≤ χ7/n and n ≥ n0, so the upper bound
inherits these requirements. Meanwhile by definition

∑n
w=1Aw ≤ 〈1,1|v

(t−1)
SS 〉.

Thus we have
n∑

w=1

GwAw = Gn

n∑
w=1

Aw +
n∑

w=1

(Gw −Gn)Aw (5.364)

≤ 〈1,1|v(t−1)
SS 〉

(
Gn +

n−1∑
w=1

(Gw −Gn)nσ(n− w)q−(n−w)χ9e
−χ8(n−w)

)
(5.365)

≤ 〈1,1|v(t−1)
SS 〉Jn

(
1 +

n−1∑
w=1

2bσ
n− w
n

nσ(n− w)q−(n−w)χ9e
−χ8(n−w)

)
(5.366)

≤ 〈1,1|v(t−1)
SS 〉Jn(1 + fσ2) (5.367)
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for some constant f , since
∑∞

a=1 a
2e−ca is bounded by a constant.

This gives us the recursion relation

〈1,1|v(t)
SS〉 ≤ 〈1,1|v

(t−1)
SS 〉Jn(1 + fσ2) +

η′t−1

qn + 1
(5.368)

However, for the first roughly sAC gates, we will use the naive recursion relation
〈1,1|v(t)

SS〉 ≤ 〈1,1|v
(t−1)
SS 〉. We will begin to use Eq. (5.368) once η′t−1 is small.

We have

η′t−1

qn + 1
≤ χ4

qn + 1
e−χ3(t−1−sAC)/n ≤ χ4

qn + 1
Jne

−χ3(t−1−sAC)/n−2 log(1−σ) (5.369)

≤ χ4Jn〈1,1|v(t−1)
SS 〉e

−χ3(t−1−sAC)/n−2 log(1−σ)−2(t−1) log(1−σ) (5.370)

≤ Jnnσ〈1,1|v(t−1)
SS 〉e

−χ′3(t−s∗)/n , (5.371)

where in the first line we used the fact that Jn ≥ (1− σ)2, in the second line
we invoked Lemma 5.5, and in the third line we have defined

s∗ = sAC + n log(1/nσ)/χ′3 + f ′′ + n log(χ4)/χ′3 (5.372)

for an appropriate constant f ′′ and a weaker exponential decay coefficient χ′3.
This requires −2 log(1− σ) < χ3/n, which will hold as long as σ ≤ b3/n for a
properly chosen constant b3. This gives us

〈1,1|v(t)
SS〉 ≤ 〈1,1|v

(t−1)
SS 〉Jn(1 + fσ2 + nσe−χ

′
3(s−s∗)/n) . (5.373)

Iterating this equation starting at t = s∗, and recalling that 〈1,1|v(s∗)
SS 〉 ≤

1/(qn + 1),

〈1,1|v(t)
SS〉 ≤

J t−s
∗

n

qn + 1

t∏
t′=s∗+1

(
1 + fσ2 + nσe−χ

′
3(t′−s∗)/n

)
(5.374)

≤ J t−s
∗

n

qn + 1
exp

(
t∑

t′=s∗+1

(
fσ2 + nσe−χ

′
3(t′−s∗)/n

))
(5.375)

≤ J t−s
∗

n

qn + 1
eftσ

2+χ′′3nσ (5.376)

for some choice of χ′′3 = O(1) (the exponentially decaying sum is bounded).
Now, we note that Jn ≥ exp(−gσ′) for a constant g slightly larger than 2
(when σ is beneath some constant), allowing us to say

〈1,1|v(t)
SS〉 ≤

J tn
qn + 1

eftσ
2+χ′′3nσ+gσ′s∗ , (5.377)

which, recalling the definition of s∗ in Eq. (5.372), implies the lemma statement
for appropriate choices of b0, b1, and b2. Note that the O(nσ) term can be
collected with the O(sACσ) term since sAC ≥ Ω(n log(n)).
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5.C Complexity theory of the white-noise sampling problem
Recent experiments on superconducting qubit devices [6, 7] have claimed

that the output distribution pnoisy sampled by their device would be intractable
to sample on a classical computer. This claim is motivated by progress in com-
plexity theory on showing that sampling the outputs of quantum computations
is hard, but ultimately these claims rely on conjecture.

As discussed in Chapter 1, the argument that quantum computations
should be hard to simulate classically begins with the observation that an
efficient classical algorithm for sampling pideal exactly with probability 1 over
choice of U (i.e. in the worst case) would lead to a contradiction of the widely
believed conjecture that the polynomial hierarchy (PH) does not collapse [82].
The main problem with this result in practice is that noisy quantum devices
cannot sample exactly from pideal. It has been conjectured that the task of
approximately sampling pideal with high probability over circuit instance cannot
be efficiently classically performed, assuming that the PH does not collapse.
Here “approximate” means that the sampled distribution pnoisy is close to pideal
in total variation distance. This is the approximate Random Circuit Sampling
(RCS) problem.

In the following, when we say a task is PH-hard, we mean that there is a
level of the polynomial hierarchy for which granting access to an oracle that
performs the task would imply that that level contains the entire PH. Thus a
polynomial time algorithm for the task would imply that the PH is contained
within one of its levels and collapses.

Conjecture 5.1 (Approximate RCS is PH-hard). There exists a choice of
ε = O(1) and δ ≥ 1/ poly(n) such that the task of sampling from a distribution
pnoisy for which 1

2
‖pnoisy − pideal‖1 ≤ ε for at least a 1 − δ fraction of random

quantum circuit instances is PH-hard.

This conjecture mirrors similar conjectures for random linear optical net-
works and random “instantaneous” quantum (IQP) circuits in Refs. [19, 22].
There is weak evidence for these conjectures in the form of worst-to-average
case reductions for computing the entries of pideal with very small error toler-
ance [4, 19, 25–27, 137], but as noted in Chapter 1, these results are multiple
steps away from proving Conjecture 5.1.

However, another issue with applying the conjecture in practice is that
actual devices are unlikely to be able to sample from a distribution with such
small total variation distance from ideal, as doing so requires error rates to
be exceedingly small. Sampling from a distribution pnoisy that is close in total
variation distance to pwn (for some non-negligible choice of F ) is potentially
much more tractable in the near term; indeed, the experiments from Refs. [6, 7]
claim to have performed this task (although note that their random circuits
were not Haar random, but rather chosen from some other discrete random
ensemble). We refer to this task as white-noise RCS.
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Conjecture 5.2 (White-noise RCS is PH-hard). There exists a choice of
ε = O(1) and δ ≥ 1/ poly(n) such that whenever the fidelity F satisfies
F ≥ 1/ poly(n), the task of sampling from a distribution pnoisy for which
1
2
‖pwn − pnoisy‖1 ≤ εF for at least a 1− δ fraction of random quantum circuit

instances is PH-hard.

Note that exact worst-case white-noise sampling is PH-hard for the same
reason that exact worst-case sampling is PH-hard (as long as F is at least
inverse polynomial). A fine-grained version of this statement, which further
claims that the exact worst-case white-noise task can be at most a factor of F
easier for classical computers than the exact worst-case noiseless task, appears
in the Supplementary Material of Ref. [6]. However, allowing error of size εF
was not explicitly considered. Here we show that this is not an issue, and that
approximate white-noise RCS and approximate RCS are essentially equivalent
in this context, up to a linear factor in F , whenever the underlying random
quantum circuits have the anti-concentration property.

Theorem 5.4. Consider a random quantum circuit architecture that has
the anti-concentration property. That is, there is a constant z such that
EU [
∑

x pideal(x)2] ≤ zq−n. Define an oracle O as follows. On input (U, b),
where U is a description of a n-qudit circuit with poly(n) gates drawn randomly
from the architecture, and b is a string of poly(n) uniformly random bits, O
produces an output x from a distribution pnoisy for which 1

2
‖pnoisy−pwn‖1 ≤ εF

holds for a certain constant F on at least 1 − δ fraction of random circuit
instances U .

Then, given access to O and an NP oracle, there is an algorithm with
runtime F−1 ∗ poly(n) that produces samples from a distribution p for which
1
2
‖p− pideal‖1 ≤ ε′ on at least 1− δ′ fraction of circuit instances, with

ε′ = 4ε+ 1/ poly(n) (5.378)
δ′ = δ + 1/ poly(n) . (5.379)

Corollary 5.1. For a random quantum circuit architecture with the anti-
concentration property, Conjecture 5.1 is true if and only if Conjecture 5.2
is true.

Proof of Corollary 5.1. It is straightforward to show that Conjecture 5.2 im-
plies Conjecture 5.1 simply by reduction from the white-noise RCS task to
the approximate RCS task: suppose one could efficiently classically produce
samples from a distribution pnoisy for which 1

2
‖pnoisy − pideal‖1 ≤ ε. Then,

for any choice of F , one can design another algorithm that samples from a
distribution p′noisy by producing a uniformly random output with probability
1 − F and an output drawn from pnoisy with probability F . Then we have
1
2
‖p′noisy − pwn‖1 ≤ εF . Thus whenever approximate RCS can be performed
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efficiently, white-noise RCS can also be performed efficiently with the same
(ε, δ) parameters, and if the latter is PH-hard then the former is also PH-hard.

The fact that Conjecture 5.1 implies Conjecture 5.2 is a direct implication
of Theorem 5.4. Given a target (ε′, δ′) pair for which approximate RCS is
hard, we can choose ε = O(1) and δ ≥ 1/ poly(n) such that if a white-noise
sampler exists with those parameters, there is also an approximate sampler
with parameters (ε′, δ′) that runs in poly(n) time and requires access to an NP
oracle. However, since NP lies within the PH, this would still imply a collapse
of the PH to one of its levels.

The part of the proof that shows Conjecture 5.2 implies Conjecture 5.1
also illustrates why a linear factor of F is optimal. To simulate a white-noise
output, one need only produce an output from pideal an F fraction of the time,
so producing T samples requires only FT queries to a sampler for pideal. If
sampling from pideal is a hard classical task, sampling from pwn is thus at least
a factor of F easier. Theorem 5.4 shows that, in a sense, it is also at most a
factor of F easier.

This observation essentially puts the low-fidelity and high-fidelity noise
regimes on the same theoretical footing when it comes to hardness of sampling,
as long as the fidelity is at least inverse polynomial in n. One might object that
F ≥ 1/ poly(n) is unrealistic in an asymptotic sense, and in many cases, this
may be true. One way to achieve F ≥ 1/ poly(n) is to run circuits with Pauli
error rate ε = Θ(1/n) and circuit size s = Θ(n log(n)), which conveniently,
is precisely the size required to achieve the anti-concentration property, as
shown in Chapter 4. Moreover, when the fidelity is inverse exponential in n
(but larger than 2−n), there is still a sense in which the low-fidelity regime can
be at most a factor of F easier for a classical computer than the high-noise
regime.

Proof of Theorem 5.4. The idea behind our reduction is to combine approxi-
mate rejection sampling with the ability to efficiently estimate pnoisy(x) up to
1/poly(n) relative error for any fixed instance U using an NP oracle (Stock-
meyer’s approximate counting algorithm [158]). To be precise, for any ν, any
µ, and any x, there is a randomized algorithm (with access to NP oracle) that
produces a number, denoted p′ such that with probability at least 1− µ,

|pnoisy(x)− p′| ≤ 2νpnoisy(x), (5.380)

and the algorithm runs in time ν−1 ∗ poly(n, log(1/µ)). For the linear depen-
dence on ν−1, see the Supplementary Material of Ref. [6] or the lecture notes
in Ref. [159]. For a fixed ν and µ, we may take µ′ = q−nµ and note that
log(1/µ′) = poly(n) + log(1/µ). Now fix a set of random bits ω to feed into
the randomized algorithm above. If we feed the same bits ω for every choice
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of x with parameters ν and µ′, then we have a fixed set of outputs p′noisy(x)
for each possible x, and by the union bound, these values satisfy

|pnoisy(x)− p′noisy(x)| ≤ 2νpnoisy(x) (5.381)

for every x simultaneously with probability at least 1 − µ over the choice of
ω. On any particular x, the algorithm still runs in time ν−1 poly(n, log(1/µ)).
When this is the case,

1

2
‖pnoisy(x)− p′noisy(x)‖1 ≤ ν . (5.382)

Also, let

pideal(x) =
pnoisy(x)− (1− F )q−n

F
(5.383)

and

pideal
′(x) =

{
p′noisy(x)−(1−F )q−n

F
if p′noisy(x) > (1− F )q−n

0 otherwise
, (5.384)

so that, as long as the instance U is among the 1 − δ fraction for which O
succeeds, the following hold:

1

2
‖pideal − pideal‖1 ≤ ε (5.385)

1

2
‖pideal − pideal′‖1 ≤ ν/F , (5.386)

and by the triangle inequality

1

2
‖pideal − pideal′‖1 ≤ ν/F + ε . (5.387)

Note that in general, the function pideal′ as defined does not describe a proba-
bility distribution since it is not necessarily normalized.

Now let k > 1 and consider the following approximate rejection sampling
algorithm, similar to that in the Supplementary Information of Ref. [160].

1. Choose a set of random bits ω, which implicitly determines a function
p′noisy.

2. Choose an x uniformly at random, and use the estimation algorithm with
bits ω to produce p′noisy(x).

3. Generate a random real number 0 ≤ η ≤ 1

4. If pideal′(x) ≤ 2kq−n and if η ≤ pideal
′(x)qn/(2k), output x (accept);

otherwise, return to step 2 (reject).
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.

Following the observations in Ref. [160], we first analyze the output dis-
tribution pω of our algorithm for a certain choice of ω in step 1. We see that
pω is precisely the distribution pideal

′ conditioned on x ∈ W where W is the
set of x for which pideal′(x) ≤ 2kq−n. Define

M =
∑
x

pideal
′(x) (5.388)

N =
∑
x∈W

pideal
′(x) . (5.389)

Then,

pω(x) =

{
N−1pideal

′(x) if x ∈ W
0 otherwise

. (5.390)

Hence,

1

2
‖pω − pideal′(x)‖1 =

1

2

∑
x∈W

|N−1pideal
′(x)− pideal′(x)|+ 1

2

∑
x 6∈W

pideal
′(x)

(5.391)

=
1

2
|1−N|+ 1

2
(M−N ) (5.392)

≤ 1

2
|1−M|+ (M−N ) . (5.393)

Note that |1−M| ≤ 2ν/F by Eq. (5.386) and the fact that the values of pideal
sum to 1 (although note some can in principle be negative). To handle the
quantityM−N =

∑
x 6∈W pideal

′(x), we invoke Lemma 5.14, with p1 = pideal
′,

p2 = pideal and T = 2kq−n. It shows that

M−N ≤ 4ε+ 4ν/F +
∑

x:pideal(x)>kq−n

pideal(x) , (5.394)

and thus

1

2
‖pω − pideal′(x)‖1 ≤ 5ν/F + 4ε+

∑
x:pideal(x)>kq−n

pideal(x) . (5.395)

This is progress because the right-hand side only has dependence on the ideal
distribution pideal, and not the approximate distribution output by the estima-
tor.

Now, recall that we assume that EU [
∑

x pideal(x)2] ≤ zq−n. By Markov’s
inequality, for any z′,

∑
x pideal(x)2 ≤ z′q−n for at least 1 − z/z′ fraction of
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instances U . Suppose we have such an instance. Then∑
x:pideal(x)>kq−n

pideal(x) =
∑

x:pideal(x)>kq−n

pideal(x)2

pideal(x)
(5.396)

≤
∑

x:pideal(x)>kq−n

pideal(x)2

kq−n
(5.397)

≤ z′/k . (5.398)

We conclude that the algorithm produces outputs from a distribution pω
for which

1

2
‖pω − pideal‖1 ≤ 5ν/F + 4ε+ z′/k (5.399)

(with probability at least 1− µ over its internal randomness) and succeeds on
at least 1− δ′ fraction of circuit instances, where

δ′ = δ + z/z′ . (5.400)

The δ′ fraction of failed instances arise either because the underlying white-
noise sampler also fails on those instances or because the output distribution
is not sufficiently anti-concentrated. Either way, whether an instance is among
this δ′ fraction is independent of the choice of ω. Thus, we may note that in
the µ chance that the total variation distance bound is not satisfied for the
random choice of ω, it will be at most its maximal value of 1, and thus, for
any of the 1−δ′ successful instances, the overall total variation distance of the
sampler is at most ε′, where

ε′ = 5ν/F + 4ε+ z′/k + µ . (5.401)

Now, we analyze the algorithm’s runtime. Each random choice of x and
subsequent calculation of pideal′(x) takes at most ν−1 poly(n, log(1/µ)) time,
but sometimes this step must be repeated. Each time the algorithm returns
to step 2, it will end up accepting on step 4 with probability N /2k. By the
above analysis,

|N − 1| ≤ |M− 1|+ (M−N ) ≤ 4ε+ 6ν/F + z′/k . (5.402)

Thus, as long 4ε+ 6ν/F + z′/k ≤ 1/2, then the acceptance probability will be
at least 1/4k, and the expected number of repetitions required to produce an
output is at most 4k.

Recall that z = O(1). Then we may choose z′ = poly(n) sufficiently
large, k = poly(n) even larger, ν−1 = F−1 ∗ poly(n) sufficiently large, and
µ−1 = poly(n) sufficiently large that the algorithm runs in expected6 time

6To make the runtime bounded, we could impose a cap on the number of times the
algorithm returns to step 2 of 4k · polylog(n) which, if hit, results in a uniformly random
output. This would increase the total variation distance ε′ by only 1/ poly(n) and can thus
be ignored.
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F−1 poly(n) and solves the approximate RCS task with parameters ε′ = 4ε+
1/ poly(n) and δ′ = δ+1/ poly(n). It is likely the factor of 4 could be optimized.

Lemma 5.14. Suppose p1 and p2 are two real functions on [q]n for which

1

2
‖p1 − p2‖1 ≤ ε . (5.403)

Let 1(·) be the indicator function. Then for any threshold T > 0, we have∑
x

p1(x)1(p1(x) > T ) ≤ 4ε+
∑
x

p2(x)1(p2(x) > T/2) . (5.404)

Proof. Let A1 be the subset of [q]n for which p1(x) > T , A2 be the subset for
which p2(x) > T , and A3 be the subset for which p2(x) > T/2. For a subset
X let X denote its complement.∑

x

p1(x)1(p1(x) > T ) =
∑
x∈A1

p1(x) (5.405)

=
∑
x∈A1

(p1(x)− p2(x)) +
∑
x∈A1

p2(x) (5.406)

≤ 2ε+
∑
x∈A1

p2(x) (5.407)

= 2ε+
∑

x∈A1∩A3

p2(x) +
∑

x∈A1∩A3

p2(x) (5.408)

≤ 2ε+
∑

x∈A1∩A3

p2(x) +
∑
x∈A3

p2(x) (5.409)

≤ 2ε+ (T/2)|A1 ∩ A3|+
∑
x∈A3

p2(x) (5.410)

≤ 2ε+ (T/2)
2ε

T/2
+
∑
x∈A3

p2(x) (5.411)

= 4ε+
∑
x

p2(x)1(p2(x) > T/2) , (5.412)

where the second-to-last line follows because any element of A1 ∩ A3 must
contribute at least T/2 toward the 2ε total allowed deviation between the two
functions.
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