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ABSTRACT 

Our understanding of the interplay between microbial species and the hosts they live on 

and in is continually expanding. New insights have focused not only microorganisms that 

drive specific disease states but also those that help maintain human health. As research 

drives towards mechanistic understanding of host-microbe relationships new quantitative 

tools are needed to help interrogate these complex interactions. Chapter I of this thesis 

discusses formulation of a method for rapid detection of antibiotic resistance in Neisseria 

gonorrhoeae. Our approach identified RNA signatures from transcriptional profiling of 

Neisseria gonorrhoeae after 10-minute antibiotic exposure. Utilization of these RNA 

markers allowed for rapid identification of antibiotic susceptibility or resistance to the 

antibiotic ciprofloxacin. Chapter II shifts focus to the development of a quantitative 

sequencing technique for the measurement of absolute taxon abundances in complex 

microbial communities. Combining the precision of digital PCR with the high-throughput 

nature of 16S rRNA gene amplicon sequencing allowed for simultaneous quantitative 

profiling of all bacterial taxa in host-associated microbial communities. We extensively 

characterized our quantitative sequencing methodology in the presence of high host nucleic 

acid levels and low microbial loads to understand the limits of quantification and detection 

in complex sample types. Last, Chapter III applies the quantitative sequencing technology 

from Chapter II to investigate the microbial community of the human small intestine, 

specifically the duodenum. Data from the duodenum of 250 individuals revealed a wide 

range of total microbial loads and a distinct subset of microbes, termed disruptor taxa, that 

were associated with small intestinal bacterial overgrowth (SIBO) and GI symptom 

severity. 
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C h a p t e r  I

RNA MARKERS ENABLE PHENOTYPIC TEST OF ANTIBIOTIC 
SUSCEPTIBILITY IN NEISSERIA GONORRHOEAE AFTER 10 

MINUTES OF CIPROFLOXACIN EXPOSURE 

This chapter was originally published in “Khazaei T., Barlow J., Schoepp N., and Ismagilov 
R. "RNA markers enable phenotypic test of antibiotic susceptibility in Neisseria gonorrhoeae
after 10 minutes of ciprofloxacin exposure." Scientific Reports. (2018) 8:11606.
doi:10.1038/s41598-018-29707-w.”

Abstract 

Antimicrobial-resistant Neisseria gonorrhoeae is an urgent public-health threat with 

continued worldwide incidents of infection and rising resistance to antimicrobials. 

Traditional culture-based methods for antibiotic susceptibility testing are unacceptably slow 

(1–2 days), resulting in the use of broad-spectrum antibiotics and the further development 

and spread of resistance. Critically needed is a rapid antibiotic susceptibility test (AST) that 

can guide treatment at the point-of-care. Rapid phenotypic approaches using quantification 

of DNA have been demonstrated for fast-growing organisms (e.g. E. coli) but are challenging 

for slower-growing pathogens such as N. gonorrhoeae. Here, we investigate the potential of 

RNA signatures to provide phenotypic responses to antibiotics in N. gonorrhoeae that are 

faster and greater in magnitude compared with DNA. Using RNA sequencing, we identified 

antibiotic-responsive transcripts. Significant shifts (>4-fold change) in transcript levels 

occurred within 5 min of antibiotic exposure. We designed assays for responsive transcripts 

with the highest abundances and fold changes, and validated gene expression using digital 

PCR. Using the top two markers (porB and rpmB) we correctly determined the antibiotic 

susceptibility and resistance of 49 clinical isolates after 10 min exposure to ciprofloxacin. 

RNA signatures are therefore promising as an approach on which to build rapid AST devices 

for N. gonorrhoeae at the point-of-care, which is critical for disease management, 

surveillance, and antibiotic stewardship efforts. 
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Introduction 

Neisseria gonorrhoeae is the second most common sexually transmitted bacterial infection 

in the United States, with about 460,000 cases reported in 2016, an 18.5% rise since 

2015Prevention1. Worldwide, it is estimated that about 78 million new N. gonorrhoeae 

infections occur annually2. N. gonorrhoeae infections can lead to heart and nervous system 

infections, infertility, ectopic pregnancies, newborn blindness, and increased risk for other 

sexually transmitted infections, including HIV3. The CDC has identified N. gonorrhoeae as 

one of the three most urgent drug-resistant bacterial threats3. N. gonorrhoeae has developed 

resistance to all of the most commonly used antibiotics (including penicillins, sulfonamides, 

tetracyclines, and fluoroquinolones) leaving only one last effective class of antibiotics, 

cephalosporins. However, there have even been worldwide reported cases of decreased 

susceptibility to the cephalosporin ceftriaxone4-8, and therefore an imminent threat of 

widespread untreatable N. gonorrhoeae. An important factor leading to the widespread 

development of antibiotic resistance is the liberal use and misuse of antibiotics. Critically 

needed is a rapid antibiotic susceptibility test (AST) that can guide treatment at the point-of-

care – both to provide correct treatment and to facilitate antibiotic stewardship.  

The gold standard for determining N. gonorrhoeae susceptibility to antibiotics is the culture-

based agar dilution test, which is unacceptably slow (1–2 days). More rapid genotypic 

approaches, involving detection of gene mutations, are available for a subset of antibiotics in 

N. gonorrhoeae9,10, but such approaches are inherently limiting, as they require knowledge 

of the mechanisms of resistance. Moreover, N. gonorrhoeae is naturally competent for 

transformation, and can take up gonococcal DNA from the environment and recombine it 

with its own genome, resulting in frequent gene mutations11,12. Given the high rate at which 

new resistance emerges, relying solely on genotypic methods is not an acceptable long-term 

solution. Phenotypic methods involving growth measurements have enabled faster ASTs that 

are independent of resistance mechanisms13-16. However, such growth-based methods are 

challenging for N. gonorrhoeae, which is slow-growing and fastidious17. Another phenotypic 
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approach for antibiotic susceptibility testing is quantification of nucleic acids18,19. We have 

previously demonstrated a rapid (30 min) phenotypic AST using quantification of DNA 

replication by digital PCR (dPCR) to assess the antibiotic susceptibility of Escherichia coli 

in clinical urine samples20. However, AST methods that quantify changes in DNA replication 

require a longer antibiotic-exposure step for slow-growing pathogens such as N. 

gonorrhoeae, which has a doubling time of about 60 min21, compared with the 20 min 

doubling time of E. coli22.  

A complementary approach to DNA quantification is measuring the pathogen’s RNA 

response to antibiotic exposure. Transcriptional responses are among the earliest cellular 

changes upon exposure to antibiotics23, far before phenotypic changes in growth can be 

observed. Quantifying changes in RNA signatures is therefore a particularly appealing 

approach for slow-growing organisms. RNA has previously been used to differentiate 

antibiotic susceptibility and resistance in organisms where the transcriptional response is well 

characterized24,25. More recently, RNA sequencing (RNA-Seq) has been used to measure the 

transcriptome response of Klebsiella pneumoniae and Acinetobacter baumanii to antibiotic 

exposure25. Although the N. gonorrhoeae transcriptome has been previously sequenced26,27, 

to our knowledge, no one has characterized the transcriptome response of N. gonorrhoeae to 

antibiotic exposure. Unlike most bacteria, N. gonorrhoeae lacks the classic transcriptional 

SOS response to DNA damage whereby DNA repair is induced and the cell cycle is 

arrested28,29. The SOS response promotes survival to certain antibiotic classes, such as the 

fluoroquinolones, which act by directly inhibiting DNA synthesis30. The recA or recA-like 

proteins are essential for the induction of the SOS response28. However, neither recA 

transcripts nor recA protein levels increase in N. gonorrhoeae upon exposure to DNA 

damaging agents31,32.  

In this work, we explore the transcriptome response of N. gonorrhoeae upon exposure to 

ciprofloxacin. Ciprofloxacin is a fluoroquinolone and functions by inhibiting the enzymes 

topoisomerase II (DNA gyrase) and topoisomerase IV, thereby inhibiting cell division33. 

Ciprofloxacin was chosen in this study to gain insight into transcriptional changes that occur 



 

 

4
upon DNA damage in an organism lacking the classic SOS response. Here, we address the 

following questions: (1) How does the transcriptome of N. gonorrhoeae respond to 

ciprofloxacin exposure? (2) What is the shortest antibiotic exposure time at which we can 

still observe significant changes (>4-fold) in RNA expression? (3) Which transcripts provide 

the largest and most abundant fold-changes per cell, which is an important consideration for 

clinical samples that have low numbers of pathogens? (4) Will candidate markers respond 

consistently across a large pool of isolates with wide genetic variability?  

 

Results 

We used RNA-seq to study the transcriptome response of susceptible and resistant isolates 

of N. gonorrhoeae after 5, 10, and 15 min of ciprofloxacin exposure (Fig. 1.1). Each clinical 

isolate was initially split into two tubes, where one tube was exposed to the antibiotic (+) and 

the other served as the control with no antibiotic exposure (-). Samples were collected for 

RNA-seq prior to antibiotic exposure and every 5 min for 15 min. We calculated the fold 

change in gene expression between the control and treated samples – defined as the 

control:treated ratio (C:T ratio); genes that demonstrated significant fold-change differences 

between the susceptible and resistant isolates were identified as differentially expressed. To 

account for biological variability, three pairs of susceptible and resistant isolates were used 

in this study. Candidate markers were selected from the pool of differentially expressed genes 

and were validated using droplet dPCR (see Methods). 
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Figure 1.1. The workflow for selection and validation of RNA markers for phenotypic 

measurements of antibiotic susceptibility and resistance. Susceptible and resistant isolates of 

Neisseria gonorrhoeae are exposed to antibiotics (ABX) for 5, 10, and 15 min. Samples are collected 

for RNA sequencing at time zero and every 5 min thereafter. Genes demonstrating fold changes in 

expression (control:treated ratio (C:T ratio)) greater than the threshold of significance (gray line) are 

identified as differentially expressed (blue: downregulated and orange: upregulated). Candidate 

markers are selected from the pool of differentially expressed genes and validated by digital PCR. 

Temporal shifts in global gene expression upon antibiotic exposure  

We observed global shifts in RNA expression in susceptible isolates in as early as 5 min after 

antibiotic exposure (Fig. 1.2a). The distribution of fold changes in gene expression levels 

(C:T ratios) indicated global shifts toward negative log2 fold-change values 

(downregulation). The magnitude of fold change at which most genes were distributed was 

approximately 2-fold. The tail of the distribution illustrates that a few genes responded to 

antibiotic exposure with changes as large as 6-fold within 5 min. Increasing the antibiotic 

exposure time further shifted the distribution to larger negative log2 fold-change values. The 

transcriptional response in resistant isolates was tightly distributed around a fold-change 
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value of 1 at every time point, indicating that the transcriptome of the resistant isolates did 

not respond significantly to antibiotic exposure (Fig. 1.2a).  

To identify genes that were differentially expressed between control and treated samples, we 

defined a threshold of significance (Fig. 1.2b). The threshold of significance took into 

account technical variability and was calculated from the C:T ratios at t = 0 min of all 

biological replicates that were sequenced (three susceptible and three resistant isolates). For 

each of the six gene expression datasets (one for each isolate), we plotted the -log2(C:T ratio) 

against the -log2(expression) for all genes and fit a negative exponential curve to the outer 

edge of each plot. We then averaged the curves from all six datasets and added a 90% 

confidence interval to the average curve by assuming a Gaussian fit for the error distribution, 

which we define as our threshold of significance. Genes with a -log2(C:T ratio) value above 

or below the upper and lower thresholds were identified as differentially expressed. 

Downregulated genes (fold changes below the significance threshold) appeared as early as 5 

min after antibiotic exposure (blue dots, Fig. 1.2b). Two upregulated genes (fold changes 

above the significance threshold) appeared after 10 min of exposure (orange dots, Fig. 1.2b). 
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Figure 1.2. Temporal shifts in global gene expression upon ciprofloxacin exposure in Neisseria 

gonorrhoeae. (a) The distribution of -log2(C:T ratios) for a susceptible isolate (Sus) and resistant 

isolate (Res) at 0, 5, 10, and 15 min. (b) The fold change in gene expression between control and 

treated samples (C:T ratio) versus expression in the control sample at 0, 5, 10, and 15 min for one 

susceptible isolate and one resistant isolate. Genes with C:T ratios above or below the significance 

threshold are identified as differentially expressed (blue: downregulated; orange: upregulated). 

Thresholds for statistical significance of fold change (gray lines) are determined by fitting a negative 

exponential curve (with 90% confidence interval) to the outer edge of the -log2 C:T ratios measured at 

time zero (see Methods).  
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Selection of candidate markers that are consistent in response and abundant 

RNA expression in response to antibiotics can be heterogeneous among different isolates 

of the same species34; thus, it is important to select candidate markers from differentially 

expressed genes that respond consistently across isolates of N. gonorrhoeae. To identify 

these candidate markers, we exposed three different pairs of susceptible isolates (minimum 

inhibitory concentrations (MICs) <= 0.015mg/mL) and resistant isolates (MICs 2.0 

mg/mL, 4.0mg/mL, and 16.0mg/mL) to ciprofloxacin for 15 min and extracted RNA for 

sequencing (see workflow in Fig. 1.1). We found 181, 41, and 410 differentially expressed 

genes in susceptible isolates 1, 2, and 3, respectively (Fig. 1.3a). Among the differentially 

expressed genes, 38 genes responded consistently across the three pairs of susceptible and 

resistant isolates (i.e. responses overlapped in all three susceptible isolates, whereas all 

three resistant isolates were non-responsive) (Supplementary Table S2.1 online). These 

genes spanned a variety of biochemical functions in the cell. We selected six candidate 

transcript markers for further analysis based on the following criteria: (1) high fold change; 

(2) high expression levels (>75 transcripts per million, TPM); and (3) representative of 

different biochemical pathways. The selected candidate markers were: porB (membrane 

protein), rpmB (ribosomal protein), tig (molecular chaperone), yebC (transcriptional 

regulator), pilB (pilus assembly ATPase), and cysK (cysteine synthase). The candidate 

marker with the highest abundance and largest fold change upon antibiotic exposure was 

porB, which is a membrane channel forming protein and the site of antibiotic influx into 

the cell35.  

 

A high level of gene expression was one of our criteria for selection of candidate markers 

from the sequencing data. High expression of candidate markers is not only important for 

sensitivity and limits of detection, but is particularly important for clinical samples with 

low numbers of pathogen cells. One of the advantages of RNA compared with DNA as a 

nucleic acid marker is its natural abundance in the cell. Because the gene expression values 

obtained from sequencing are relative values, our next step was to quantify the absolute 
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copies per cell for the candidate markers. In our quantification approach, we plated 

clinical isolate samples after 15 min of ciprofloxacin exposure to obtain cell numbers in 

colony forming units (CFU/mL). We designed primers for the candidate markers (see 

Methods and Supplementary Table S1.2) and measured their absolute concentration using 

dPCR. The concentrations were converted to per cell values using the cell counts from 

plating (Fig. 1.3b). Additionally, we used the RNA sequencing data to obtain 

transcriptome-wide estimates of transcript copies per cell. In the sequencing approach, we 

added external RNA control consortium (ERCC) spike-ins to the lysis buffer step of the 

extraction protocol in order to capture any loss of RNA throughout the extraction steps. By 

linear regression, we captured the relationship between ERCC copies added to the samples 

and ERCC quantified by sequencing. Using the linear regression, we converted gene 

expression values from RNA sequencing (in TPM) to approximate copy numbers per cell 

(see Methods). The transcript copies per cell estimated for the candidate markers using the 

sequencing approach were within the same order of magnitude as the absolute copies per 

cell measured by digital PCR (Fig. 1.3b). 
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Figure 1.3. Selection of candidate RNA markers for phenotypic antibiotic susceptibility testing 

in Neisseria gonorrhoeae and measurements of candidate marker abundances per cell (a) Genes 

that are differentially expressed (light blue) across three pairs of resistant and susceptible clinical 

isolates are identified as candidate markers (dark blue). Six candidate markers that span different 

biological functions were selected for validation (red). (b) Copies/cell values for the candidate markers 

are determined from RNA sequencing (red) and dPCR (gray) (see Methods). Data is shown for one 

pair of susceptible (S2) and resistant (R2) isolates at 15 min of ciprofloxacin exposure. 
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Validation of candidate markers by dPCR 

We next asked how the relative changes observed through RNA-seq compare with direct 

gene expression measurements by dPCR. We designed dPCR assays for candidate markers, 

which involved measuring the absolute expression of the candidate marker in both control 

and treated samples, and calculating the C:T ratio. In this assay, the 16S rRNA was also 

measured and used to normalize the C:T ratio of the candidate markers. In the three 

susceptible isolates that were sequenced we found that rRNA consistently showed the 

smallest fold change (<1.06) in response to ciprofloxacin compared with all other genes in 

N. gonorrhoeae. Therefore, to account for experimental variations in the antibiotic exposure 

and RNA extraction steps between control and treated samples, we used the 16S rRNA as an 

intracellular control for normalizing the C:T ratios (see Methods). We found that the C:T 

ratios measured by the dPCR assay agreed with the C:T ratios obtained through sequencing 

(Fig. 1.4), confirming that both approaches accurately capture the transcriptional response to 

antibiotic exposure.  
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Figure 1.4. Validation of the RNA sequencing approach using digital PCR (dPCR) with six 

candidate markers. Control:treated ratios (C:T ratios) determined by RNA sequencing (red) were 

validated against C:T ratios measured by dPCR (gray). The dPCR C:T ratios were normalized using 

ribosomal RNA (rRNA) by dividing the C:T ratio of the candidate marker by the C:T ratio of 16S 

rRNA. This normalization step is not required for sequencing data because sequencing depth 

normalizes the values (see Methods). Markers were validated using two susceptible (S1 and S2) and 

two resistant (R1 and R2) isolates at 15 min of ciprofloxacin exposure.  

Validation of RNA markers across CDC isolates 

Finally, we asked whether candidate markers respond consistently across a large pool of 

isolates with genetic variability. We chose the two candidate markers with the highest 

abundances and fold changes (porB and rpmB) to determine the susceptibility of 49 clinical 

isolates, with a wide range of MIC values (Supplementary Table S1.3 online), from the N. 

gonorrhoeae panel of the Centers for Disease Control (CDC) Antimicrobial Resistance 

Isolate Bank. The MIC values were representative of the population-wide distribution values 

reported by the European Committee on Antimicrobial Susceptibility Testing36. We exposed 

each clinical isolate to ciprofloxacin for 10 min and measured the fold change in expression 

of the two candidate markers between the control and treated sample using dPCR (Fig. 1.5). 

Both markers correctly classified all 49 CDC isolates, based on Clinical and Laboratory 

Standards Institute (CLSI) breakpoint values, as 9 susceptible and 40 resistant strains.  
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Figure 1.5. Antibiotic susceptibility testing of 49 clinical isolates using (a) porB and (b) rpmB as 

RNA AST markers. Antibiotic susceptibility of 49 clinical isolates (9 susceptible and 40 resistant) 

from the Neisseria gonorrhoeae panel of the CDC bacteria bank was determined using the 

“normalized” C:T ratios (C:T ratio of marker/C:T ratio of 16S rRNA). Clinical isolates were exposed 

to ciprofloxacin for 10 min and the concentration of RNA markers was measured by digital PCR.  

Discussion 

In this work, we demonstrate that antibiotic-responsive transcripts can be used as suitable 

markers for a rapid phenotypic AST in N. gonorrhoeae. 

When characterizing the global transcriptional response of N. gonorrhoeae to antibiotic 

exposure, we observed a significant change in response in as early as 5 min. The nature of 

the response was a global downregulation in transcript levels. Among the candidate markers, 

all exhibited downregulation in response to ciprofloxacin. We specifically looked at gyrA 

and parC, which are known genotypic markers of resistance to ciprofloxacin, and differential 

expression was not observed. We also looked at the recA transcript because recA is one of 

the prominent genes in the SOS response, and as expected, because N. gonorrhoeae does not 

have a true SOS system28,29, we did not find recA levels to increase. Whereas recA is a 

specific cellular response to overcome DNA damage, the global downregulation that we 

observed suggests a general shift away from growth and cell proliferation. Among the 38 

candidate markers, 15 were ribosomal proteins (including one of the top markers, rpmB), 

which play a prominent role in assembly and function of the ribosomes and are essential for 

cell growth. Mutations in ribosomal proteins have been reported to confer resistance to 

different classes of antibiotics37. Another top marker identified in this study was porB, which 

is a membrane channel forming protein (porin) responsible for uptake of small nutrients and 

the site of antibiotic influx into the cell. The expression of porins is highly regulated in 

response to environmental stimuli38. Reducing permeability to decrease intracellular 

antibiotic concentration is a known mechanism for bacteria to confer antibiotic resistance37. 

The downregulation of porB observed in this study can be attributed to a halt in growth 
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processes caused by ciprofloxacin damage and possibly an attempt to reduce influx of 

antibiotic.  

A key aim of this study was to identify RNA markers that would yield a measurable response 

after only a short antibiotic exposure (<15 min) to ensure this approach can fit within the 

required timescale for a rapid AST. It is possible that longer exposure times could provide 

additional insight into the biological response of N. gonorrhoeae to ciprofloxacin, but this 

was not the focus of our study. Furthermore, the short exposure times potentially introduce 

a bias in selection of transcripts present at low abundances. For transcripts present at high 

abundance to display the same fold change as low abundance transcripts, a substantially 

higher number of mRNA molecules must be transcribed, which would require longer 

timescales. As an example, a 4-fold change from 1 to 4 transcripts requires 3 additional 

mRNA to be produced, whereas a 4-fold change from 20 to 80 requires 60 mRNA to be 

transcribed. This bias also holds true in downregulation, where mRNA continues to be 

transcribed in the control samples, whereas transcript levels drop in treated samples due to 

degradation of RNA, and/or a reduction in the rate of transcription. 

We identified candidate markers with consistent differential expression across three sets of 

susceptible and resistant pairs. Among the candidate markers, one of our criteria for selection 

was transcript abundance, which is of particular importance in clinical samples with low cell 

numbers. Furthermore, marker abundance affects measurement sensitivity and limits of 

detection, as has been previously demonstrated in AST methods based on quantification of 

DNA replication20. To measure the abundance of the candidate markers, we used both dPCR 

measurements and ERCC spike-ins for RNA sequencing to obtain approximate RNA 

copies/cell. Both methods yielded results within the same order of magnitude. To our 

knowledge, this is the first quantitative measurement of RNA abundance per cell in N. 

gonorrhoeae.  

We separately validated the performance of the two most abundant candidate markers, porB 

and rpmB, with 49 clinical isolates. Both markers were consistent in their ability to correctly 

determine susceptibility or resistance of all 49 clinical isolates. porB demonstrated C:T ratios 
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between 2.5 to 7 and rpmB demonstrated C:T ratios between 2 and 6 after 10 min of 

antibiotic exposure in the nine susceptible clinical isolates. The large fold changes highlight 

the significance of using RNA response as an AST marker compared with quantification of 

DNA replication. Our previous work using dPCR quantification of DNA replication 

demonstrated C:T ratios between 1.2 and 2.4 for 15 min of antibiotic exposure in E. coli20, 

which has a doubling time approximately 3 times shorter than N. gonorrhoeae.  

We performed an alignment search of porB against other prokaryotes and found it to be 

specific to the Neisseria genus. AST markers should be specific to the pathogen of interest 

because additional bacterial species are likely to be present in clinical samples. Additional 

experiments with mixtures of bacteria would be required to further confirm the specificity of 

the markers identified in this study. We additionally measured the 16s rRNA to normalize 

C:T ratios, which inherently enables pathogen identification as well. A combination of 

identification and susceptibility testing in a single integrated platform is important for correct 

and rapid diagnosis.  

This paper demonstrates that RNA markers can be used to determine antibiotic susceptibility 

of N. gonorrhoeae after short antibiotic exposure times, a requirement for a rapid phenotypic 

AST. N. gonorrhoeae is a fastidious slow-growing organism, presenting challenges to 

growth-based AST methods. Additional work will be needed to yield a clinic-ready, rapid 

RNA-based AST for N. gonorrhoeae. Additional background matrices of clinical samples, 

both urine and swab samples, that could possibly affect speed and sensitivity of an AST, 

must be further evaluated. Digital isothermal chemistries, such as digital loop-mediated 

isothermal amplification (dLAMP) should be considered to speed up quantification times 

relevant to point-of-care settings20. Follow-up studies should also examine the transcriptional 

response of N. gonorrhoeae to other classes of antibiotics and identify responsive RNA 

markers for class-specific antibiotics. Overall, as a first step, the work described here 

demonstrates the promise for a phenotypic RNA-based approach for a rapid AST of N. 

gonorrhoeae at the point-of-care, which is critically needed for disease management, 

surveillance, and antibiotic stewardship.  
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Methods 

Antibiotic exposure for RNA sequencing 

Antibiotic susceptible and resistant clinical isolates were obtained from the University of 

California, Los Angeles, Clinical Microbiology Laboratory. Isolates were plated from 

glycerol stocks onto Chocolate Agar plates and grown in static incubation overnight (37 C, 

5% CO2). Cells were re-suspended in Hardy Fastidious Broth (HFB) and incubated for 45 

min (37 C, 5% CO2) with shaking (800 rpm) to an OD600 between 1 and 5. Cultures were 

diluted (5X) into HFB. Each isolate culture was split into “treated” and “control” tubes. 

Ciprofloxacin was added to the “treated” tubes (final concentration of 0.5 µg/mL) and water 

was added to the “control” tubes; cultures were incubated (static; 37 C, 5% CO2) for 15 min. 

During incubation, samples were collected for RNA sequencing at 5, 10, and 15 min (300 

µL aliquot of sample was mixed into 600 µL of Qiagen RNA Protect Reagent (Qiagen, 

Hilden, Germany) for immediate RNA stabilization). In addition, a sample was collected for 

RNA sequencing immediately before ciprofloxacin was added. To quantify CFU, the sample 

at t = 15 min was serially diluted (10x), plated on a Chocolate Agar plate, and incubated 

overnight (37 C, 5% CO2). 

Antibiotic exposure for clinical isolates 

Antibiotic susceptible and resistant clinical isolates were obtained from the N. gonorrhoeae 

panel of the CDC Antimicrobial Resistance Isolate Bank. Isolates were plated from glycerol 

stocks onto Chocolate Agar plates and grown in static incubation overnight (37 C, 5% CO2). 

Cells were re-suspended in pre-warmed HFB + 5 mM sodium bicarbonate and incubated for 

30 min (37 C, 5% CO2) with shaking (800 rpm) to an OD600 between 1 and 5. Cultures were 

diluted (100X) into HFB + 5 mM sodium bicarbonate. Each isolate culture was split into 

treated (0.5 µg/mL final concentration of ciprofloxacin) and control (water instead of 

antibiotic) samples. Samples were incubated at 37 C for 10 min on a static hot plate. A 90 

µL aliquot of each sample was placed into 180 µL of Qiagen RNA Protect Reagent for 

immediate RNA stabilization. A 5 µL aliquot of each sample was plated onto a Chocolate 
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Agar plate and incubated overnight (37 C, 5% CO2) as a control for the exposure 

experiments. If the expected growth phenotypes (i.e. resistant = growth; susceptible = no 

growth) were not observed for any single sample in the plating control, the exposure 

experiment was repeated for the set of samples. From the 50 total isolates available from the 

N. gonorrhoeae panel of the CDC Antimicrobial Resistance Isolate Bank, 49 were used in 

this study. One isolate was excluded from this study because we suspected that it had been 

contaminated; we did not detect porB primer amplification using qPCR.  

RNA sequencing and analysis 

RNA was extracted using the Enzymatic Lysis of Bacteria protocol of the Qiagen RNeasy 

Mini Kit and processed according to the manufacturer’s protocol. DNA digestion was 

performed during extraction using the Qiagen RNase-Free DNase Set. The quality of 

extracted RNA was measured using an Agilent 2200 TapeStation (Agilent, Santa Clara, CA, 

USA). Extracted RNA samples were prepared for sequencing using the NEBNext Ultra RNA 

Library Prep Kit for Illumina (New England Biolabs, Ipswitch, MA, USA) and the NEBNExt 

Multiplex Oligos for Illumina. Libraries were sequenced at 50 single base pair reads and a 

sequencing depth of 10 million reads on an Illumina HiSeq 2500 System (Illumina, San 

Diego, CA, USA) at the Millard and Muriel Jacobs Genetics and Genomics Laboratory, 

California Institute of Technology. Raw reads from the sequenced libraries were subjected 

to quality control to filter out low-quality reads and trim the adaptor sequences using 

Trimmomatic (version 0.35). The reads were aligned to the FA 1090 strain of 

N. gonorrhoeae (NCBI Reference Sequence: NC_002946.2) using Bowtie2 (version 2.2.5) 

and quantified using the Subread package (version 1.5.0-p1). A pseudocount of 1 was added 

to the gene quantification; gene expression was defined in transcripts per million (TPM).  
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Marker selection 

For each gene, we defined the C:T ratio as the gene expression (TPM) in the control sample 

divided by the gene expression (in TPM) in the treated sample. We plotted the -log2(C:T) 

against the -log2(expression in TPM) for all genes. To identify genes that were differentially 

expressed between control and treated samples, we defined a threshold of significance. The 

threshold of significance was calculated from the C:T ratios at t = 0 min for the biological 

replicates that were sequenced (three susceptible and three resistant isolates). For each of the 

six gene expression datasets (one for each isolate), we fit a negative exponential curve to the 

outer edge of each plot and then averaged the curves from all six datasets. Finally, we added 

a 90% confidence interval to the average curve by assuming a Gaussian fit for the error 

distribution, which is our threshold of significance. Genes with a -log2(C:T) value above or 

below the upper and lower thresholds were identified as differentially expressed. Genes that 

were differentially expressed consistently (either always above or always below the 

thresholds) among the three susceptible isolates and were not differentially expressed among 

the three resistant isolates were defined as candidate markers.  

Copies/cell measurements from sequencing 

To measure copies per cell using sequencing data, we added 2uL of (1/1000 dilution) ERCC 

RNA Spike-In Mix (Thermo Fisher Scientific, Waltham, MA, USA) to the lysis buffer in the 

RNeasy Mini Kit to each individual sample. We calculated the number of copies of each 

ERCC transcript in the sample, by accounting for dilution and multiplying by Avogadro's 

number (manufacturer’s concentrations were reported in attomoles/µL). We plotted the 

relationship between log2(ERCC copies added) against log2(gene expression in TPM) and 

performed a linear regression in the region of linearity. We used the linear regression to 

convert TPM values to total RNA copies in each sample. Finally, using the CFU measured 

for each sample from plating (described in the “Antibiotic exposure for RNA sequencing” 

section), the total RNA copies were converted to copies per cell.  
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Validation with droplet digital PCR (dPCR) 

Primers were designed for candidate markers using Primer-BLAST39 and primer alignments 

were verified using SnapGene. Expression of candidate markers was quantified using the 

Bio-Rad QX200 droplet dPCR system (Bio-Rad Laboratories, Hercules, CA, USA). The 

concentration of the components in the dPCR mix used in this study were as follows: 1× 

EvaGreen Droplet Generation Mix (Bio-Rad), 150U/mL WarmStart RTx Reverse 

Transcriptase, 800U/mL RiboGaurd RNase Inhibitor, 500 nM forward primer, and 500 nM 

reverse primer. The RNA extraction comprised 5% of the final volume in the dPCR mix. The 

remaining volume was nuclease-free water. For each isolate, candidate marker expression 

was quantified in the control and treated samples and the fold-change difference (C:T ratio) 

was calculated. To account for potential differences between the control and treated samples 

that could arise from experimental variability and extraction efficiency, we used ribosomal 

RNA (rRNA) as an internal control because from our sequencing data, we found that rRNA 

was not affected by antibiotic exposure in the time frame of this study. To normalize by 

rRNA, we quantified the 16S rRNA in the control and treated samples by dPCR and 

calculated an rRNA C:T ratio. We then divided the C:T ratio of each marker by the rRNA 

C:T ratio. All dPCR C:T ratios reported in this paper are the normalized C:T ratios.  
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Supplementary Information 

 
Supplementary Table S1.1. List of candidate markers and their expression in transcripts per 

million (TPM) and copies per cell for susceptible isolate S2 and resistant isolate R2 after 15 

min of ciprofloxacin exposure. The genome used for alignment was N. gonorrhoeae FA1090 

(NCBI Reference Sequence: NC_002946.2). 

  Susceptible (S2) 
Control 

Susceptible (S2) 
Treated 

Resistant (R2) 
Control 

Resistant (R2) 
Treated 

Locus 
Tag 

Gene Description TPM copies/c
ell 

TPM copies/c
ell 

TPM copies/c
ell 

TPM copies/c
ell 

NGO03
40 

cysteine synthase A 
(cysK) 

894.1 21.1 505.
2 

8.9 551.8 16.3 600.0 20.0 

NGO18
37  

50S ribosomal 
protein L4 (rplD) 

474.9 10.8 262.
2 

4.4 403.6 11.9 425.4 13.8 

NGO18
43  

elongation factor G 
(fusA) 

433.4 9.8 224.
9 

3.8 432.9 12.8 503.5 16.6 

NGO20
24  

50S ribosomal 
protein L13 (rplM) 

415.0 9.4 213.
5 

3.6 455.3 13.5 503.5 16.6 

NGO18
45  

30S ribosomal 
protein S12 (rpsL) 

563.1 13.0 286.
8 

4.9 615.4 18.2 697.6 23.5 

NGO16
77  

50S ribosomal 
protein L27 (rpmA) 

410.7 9.3 192.
2 

3.2 500.6 14.8 497.6 16.4 

NGO18
44 

30S ribosomal 
protein S7 

520.0 11.9 241.
3 

4.0 520.1 15.4 651.6 21.9 

NGO01
71  

50S ribosomal 
protein L19 (rplS) 

379.2 8.5 175.
0 

2.9 328.5 9.7 353.2 11.3 

NGO18
34  

30S ribosomal 
protein S19 (rpsS) 

330.0 7.4 152.
1 

2.5 260.9 7.7 292.7 9.2 

NGO01
72  

tRNA (guanine-N(1)-
)-methyltransferase 
(trmD) 

237.3 5.2 108.
8 

1.7 208.8 6.2 224.6 6.9 

NGO18
35 

50S ribosomal 
protein L2 (rplB) 

392.5 8.9 179.
1 

2.9 297.6 8.8 359.8 11.5 

NGO16
73 

type IV pilus 
assembly protein 
(pilB) 

225.9 4.9 101.
5 

1.6 199.3 5.9 214.9 6.6 

NGO18
33  

50S ribosomal 
protein L22 (rplV) 

343.8 7.7 147.
9 

2.4 292.1 8.6 304.3 9.6 

NGO21
73  

50S ribosomal 
protein L32 (rpmF) 

407.5 9.2 173.
6 

2.9 394.7 11.7 404.1 13.1 

NGO06
04  

30S ribosomal 
protein S1 (rpsA) 

437.9 9.9 185.
3 

3.1 456.3 13.5 493.9 16.2 

NGO00
16  

preprotein 
translocase subunit 
(secG) 

180.1 3.9 73.7 1.1 169.1 5.0 184.5 5.6 

NGO21
74 

hypothetical protein 372.8 8.4 150.
2 

2.4 368.3 10.9 361.6 11.6 

NGO21
64  

GMP synthase 
(guaA) 

118.3 2.5 45.0 0.7 98.6 2.9 109.4 3.2 

NGO16
76  

50S ribosomal 
protein L21 (rplU) 

554.6 12.8 200.
4 

3.3 555.2 16.4 587.7 19.6 
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NGO16
79 

50S ribosomal 
protein L33 (rpmG) 

283.8 6.3 101.
4 

1.6 298.5 8.8 284.3 8.9 

NGO16
58 

hypothetical protein 98.4 2.1 33.8 0.5 118.3 3.5 116.1 3.4 

NGO14
40 

macrolide transport 
protein MacA 

143.3 3.1 48.6 0.7 132.3 3.9 139.7 4.2 

NGO01
74  

30S ribosomal 
protein S16 (rpsP) 

315.2 7.0 101.
2 

1.6 295.8 8.7 340.5 10.9 

NGO01
73  

ribosome 
maturation factor 
RimM (rimM) 

359.8 8.1 113.
5 

1.8 316.8 9.4 318.8 10.1 

NGO05
92 

trigger factor (tig) 146.5 3.1 45.5 0.7 147.5 4.3 152.1 4.6 

NGO16
80 

50S ribosomal 
protein L28 (rpmB) 

452.8 10.3 130.
3 

2.1 470.2 13.9 525.4 17.3 

NGO06
20 

aspartate alpha-
decarboxylase 

64.8 1.3 18.6 0.3 54.2 1.6 59.3 1.7 

NGO16
59 

intracellular 
septation protein A 

62.2 1.3 17.8 0.3 63.6 1.9 70.7 2.0 

NGO12
91 

transcriptional 
regulator (yebC) 

64.1 1.3 18.0 0.3 79.9 2.3 77.9 2.2 

NGO06
48 

membrane protein 56.4 1.1 15.3 0.2 47.6 1.4 45.2 1.2 

NGO05
93  

ATP-dependent Clp 
protease proteolytic 
subunit (clpP) 

60.2 1.2 16.0 0.2 73.6 2.2 75.9 2.2 

NGO18
04  

(3R)-
hydroxymyristoyl-
ACP dehydratase 
(fabZ) 

91.0 1.9 24.0 0.3 74.6 2.2 73.5 2.1 

NGO06
18 

membrane protein 81.4 1.7 20.1 0.3 66.8 2.0 70.2 2.0 

NGO06
19 

2-dehydro-3-
deoxyphosphoocton
ate aldolase 

61.1 1.2 15.1 0.2 51.1 1.5 62.6 1.8 

NGO18
12 

major outer 
membrane protein 
(porB) 

1293.
2 

31.2 293.
4 

5.0 1459.
1 

43.3 1587.
1 

57.1 

NGO18
90 

glutamate 
permease; 
sodium/glutamate 
symport carrier 
protein 

35.0 0.7 7.5 0.1 40.3 1.2 48.9 1.3 

NGO20
98 

diaminopimelate 
decarboxylase 

26.0 0.5 4.9 0.1 18.6 0.5 18.6 0.5 

NGO21
00 

frataxin-like protein 
(cyaY) 

20.4 0.4 3.6 0.0 14.0 0.4 18.1 0.5 
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Supplementary Table S1.2. Primer sequences used for validation of candidate markers by 

digital PCR. 

 

Supplementary Table S1.3. Minimum inhibitory concentration (MIC) values for the 49 

Neisseria gonorrhoeae clinical isolates acquired from the CDC and FDA Antibiotic 

Resistance Isolate Bank1. 

 
1 CDC and FDA Antibiotic Resistance Isolate Bank. Atlanta (GA): CDC. (2018) 

Candidate 
Marker 

Gene Name Forward Primer Sequence Reverse Primer Sequence 

porB major outer membrane 
porin GCTACGATTCTCCCGAATTTGCC CCGCCKACCAAACGGTGAAC 

rpmB 50S ribosomal protein L28 TTGCCCAACTTGCAATCACG AGCACGCAAATCAGCCAATAC 
tig trigger factor AAAGCCTTGGGTATTGCGG TGACCAAAGCAACCGGAAC 
yebC YebC/PmpR family 

Transcriptional Regulator GCTTTGGAAAAAGCAGCCG GGTTTTGTTGTCGGTCAGGC 
pilB Type IV-A pilus assembly 

ATPase GACTTTTGCCGCTGCTTTG GCGCATTATTCGTGTGCAG 
cysK Cysteine synthase A GAGGCTTCCCCCGTATTGAG TTCAAAAGCCGCTTCGTTCG 
16S rRNA 16S ribosomal RNA ACTGCGTTCTGAACTGGGTG GGCGGTCAATTTCACGCG 

MIC  Number of strains Susceptible or Resistant 
0.015 8 Susceptible 
0.03 1 Susceptible 
4 1 Resistant 
8 6 Resistant 
16 33 Resistant 
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C h a p t e r  I I  

A QUANTITATIVE SEQUENCING FRAMEWORK FOR ABSOLUTE 
ABUNDANCE MEASUREMENTS OF MUCOSAL AND LUMENAL 

MICROBIAL COMMUNITIES 

This chapter was originally published in: “Barlow J., Bogatyrev S., and Ismagilov R. "A 
quantitative sequencing framework for absolute abundance measurements of mucosal and 
lumenal microbial communities." Nature communications 11.1 (2020): 1-13. 
doi:10.1038/s41467-020-16224-6.” 

 

 

Abstract 

A fundamental goal in microbiome studies is determining which microbes affect host 
physiology. Standard methods for determining changes in microbial taxa measure relative, 
rather than absolute abundances. Moreover, studies often analyze only stool, despite 
microbial diversity differing substantially among gastrointestinal (GI) locations. Here, we 
develop a quantitative framework to measure absolute abundances of individual bacterial 
taxa by combining the precision of digital PCR with the high-throughput nature of 16S rRNA 
gene amplicon sequencing. In a murine ketogenic-diet study, we compare microbial loads in 
lumenal and mucosal samples along the GI tract. Quantitative measurements of absolute (but 
not relative) abundances reveal decreases in total microbial loads on the ketogenic diet and 
enable us to determine the differential effects of diet on each taxon in stool and small-
intestine mucosa samples. This rigorous quantitative microbial analysis framework, 
appropriate for diverse GI locations enables mapping microbial biogeography of the 
mammalian GI tract and more accurate analyses of changes in microbial taxa in microbiome 
studies. 
 

Introduction 
One main goal of microbiome studies is to determine which taxa, if any, drive phenotypic 
changes among study groups.1-3 The first step in this process is often to survey which 
microbial taxa differ in abundance between study groups (differentially abundant taxa). This 
survey is commonly performed by amplifying the 16S rRNA gene amplicon with “universal” 
primer sets before high throughput sequencing.4 The output of these studies provides the 
relative, not absolute, abundance of each taxon in each sample. Researchers often then use 
standard statistical tests or microbiome specific packages to determine which taxa are 
differentially abundant.5, 6 
 
Relative-abundance analyses are effective for determining the major microbial taxa in an 
environment (e.g., the human Microbiome Project). However, several researchers have 
pointed out the inherent limitations of comparing relative abundances between samples.7-10 
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In analyses of relative data, every increase in one taxon’s abundance causes an equivalent 
decrease across the remaining taxa. Thus, the measurement of a taxon’s relative abundance 
is dependent on the abundance of all other taxa, which can lead to high false positive rates in 
differential taxon analyses8, 11-13 and negative-correlation biases in correlation-based 
analyses.14, 15 Several methods (e.g., ALDEx216, Ancom17, Gneiss18, Differential Ranking10) 
acknowledge these biases and aim to address them by using the ratios among taxa, which are 
conserved regardless of whether the data are relative or absolute. These methods are 
particularly valuable because they enable improved re-analysis of existing datasets reporting 
relative abundances.10, 16-18 
 
Despite such methodological advancements, analyses of relative abundance cannot fully 
capture how individual microbial taxa differ among samples or experimental conditions. 
Using the simple example of a community containing two taxa (Fig. 2.1), we see that an 
increase in the ratio between Taxon A and Taxon B could indicate one of five scenarios: (i) 
Taxon A increased (Fig. 2.1a), (ii) Taxon B decreased (Fig. 2.1b), (iii) A combination of 1 
and 2, (iv) Taxon A and Taxon B increased but Taxon A increased by a greater magnitude, 
or (v) Taxon A and Taxon B decreased but Taxon B decreased by a greater magnitude (Fig. 
2.1c). Knowing which of these five scenarios occurs when analyzing experimental data could 
drastically alter the interpretation of which taxa are positively or negatively associated with 
phenotypes. Thus, an inherent limitation of methods that use relative abundance is that they 
cannot determine whether an individual taxon is more abundant or less abundant (the 
direction of the change) or by how much (the magnitude of the change) between two 
experimental conditions or samples. 

 
Figure 2.1: The value of absolute (compared with relative) quantification illustrated by three hypothetical 
scenarios. In this hypothetical, two taxa (Taxon A and Taxon B) are found in equal abundance (50:50) in a 
“healthy” state but in an 80:20 ratio in the “disease” state. Three possible scenarios arise: (a) Taxon A increases 
in abundance while Taxon B remains the same; (b) Taxon A remains unchanged while Taxon B decreases in 
abundance, and (c) Taxon A and Taxon B both decrease, but Taxon B decreases by a greater magnitude. 
 
To overcome these limitations, several important methods have been developed for 
quantifying the absolute abundance of microbial taxa by using known “anchor” points to 
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convert relative data to absolutes. Spiked standards are commonly used in method calibration 
and have recently been applied to quantifying taxa in microbiome research.19-23 These 
methods require a purified DNA sequence of known concentration from an organism not 
present in the sample and an estimate of the initial sample concentration to determine the 
amount of exogenous DNA to spike-in. Another group of anchoring methods, such as those 
that use flow cytometry24, total DNA25, or qPCR26-28, measure the total concentration of cells, 
DNA, or amplicons to transform the relative abundances to absolute numbers. These 
methods have already demonstrated the value of quantitative microbiome analysis, yet 
microbiome researchers have not yet uniformly adapted these methods. One may speculate 
that this lack of adoption is because of real or potential limitations of these methods. For 
example, flow-cytometry based methods require dissociating the sample into single bacterial 
cells, which could require complex sample preparation and have not been validated with 
complex samples such as from gut mucosa. Total-DNA-based methods are limited to 
samples only containing microbial DNA (no host DNA), and spike-in or qPCR-based 
methods can be limited by amplification biases.29, 30 To increase utilization of quantitative 
microbiome analyses, the following capabilities and validation need to be demonstrated: (i) 
performance across samples with microbial loads ranging from high, as in stool, to low, as 
in the small intestine; (ii) performance across biogeographically diverse sample types, from 
microbe-rich stool and colonic contents to host-rich mucosal samples; (iii) explicit evaluation 
of limits of quantification of the method, and how these limits depend on the starting 
microbial load, relative abundance of a specific target taxon in the sample, and sequencing 
depth. 
 
To address this challenge, in this paper we establish a rigorous, absolute quantification 
framework based on digital PCR (dPCR) anchoring. We chose dPCR as our anchoring 
method because PCR is already part of sequencing protocols and has been extensively 
validated as a quantitative method in nucleic-acid measurements. To achieve precise 
measurements of absolute abundance from diverse sample types, we assessed the efficiency 
and evenness of the DNA extraction protocol. To minimize and quantify bias resulting from 
potentially uneven amplification of microbial 16S rRNA gene DNA, or non-specific 
amplification of host DNA, we utilized dPCR in a microfluidic format.31-33 . dPCR is an 
ultrasensitive method for counting single molecules of DNA or RNA.34-36 By dividing a PCR 
reaction into thousands of nanoliter droplets and counting the number of “positive” wells 
(those with amplified template), dPCR yields absolute quantification without a standard 
curve. To understand the quantitative limits of our methodology, we measured the accuracy 
of each taxon’s absolute abundance as a factor of both input DNA amount and individual 
taxon relative abundance.37-39 We then evaluated this absolute quantification workflow by 
performing a murine ketogenic-diet study that illustrates how the selection of relative- vs. 
absolute-quantification analyses can result in different interpretations of the same 
experimental results. Many studies have shown that ketogenic diets can induce substantial 
compositional changes in gut microbiota,40-42 so, we predicted it would serve as a good 
illustrative model for our workflow. Finally, we applied this workflow to an analysis of 
microbial loads along the entire gastrointestinal (GI) tract to highlight the importance of 
judicious selection of sample location when evaluating the impact of diet on host phenotype, 
and to highlight the applicability of this workflow to GI sites with diverse microbial loads. 
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Results 
Efficient DNA extraction across microbial loads and sample types 
To estimate the maximum quantity of sample we could extract before overloading the 20-µg 
column capacity, we measured total DNA and microbial DNA load across small intestine 
and large intestine lumenal and mucosal samples (Supplementary Figure 2.1). We then 
evaluated extraction efficiency across three tissue matrices (mucosa, cecum contents, and 
stool) to assess whether variation in levels of PCR inhibitors and non-microbial DNA 
interfered with microbial quantification. We spiked a defined 8-member microbial 
community into GI samples taken from germ-free (GF) mice. To assess quantitative limits, 
we performed a dilution series of microbial spike-in from 1.4 x 109 CFU/mL to 1.4 x 105 
CFU/mL. dPCR quantification showed near equal and complete recovery of microbial DNA 
over 5 orders of magnitude (Fig. 2.2a). Overall, we measured ~ 2X accuracy in extraction 
across all tissue types (cecum contents, stool, SI mucosa) when total 16S rRNA gene input 
was greater than 8.3 x 104 copies (Supplementary Figure 2.2). Normalizing this sample input 
to the approximate maximum extraction mass (200 mg stool, 8 mg mucosa) yielded a lower 
limit of quantification (LLOQ) of 4.2 x 105 16S rRNA gene copies per gram for stool/cecum 
contents and 1 x 107 16S rRNA gene copies per gram for mucosa. Mucosal samples had a 
higher LLOQ because the high host DNA in this tissue type saturates the column, limiting 
total mass input. 

 
Figure 2.2: Lower limits of quantification for total microbial DNA extraction and 16S rRNA gene 
amplicon sequencing. (a) A comparison of theoretical and measured copies of the 16S rRNA gene with digital 
PCR using an eight-member microbial community spiked at a range of dilutions into germ-free (GF) mouse 
tissue from small-intestine (SI) mucosa, cecum, and stool. Each bar plot shows a single technical replicate for 
each matrix. (b) Relative abundance of the eight taxa as predicted and measured after 16S rRNA gene amplicon 
sequencing. (c) Correlation between the mean (n=4) relative abundance of each taxon and the coefficient of 
variation (%CV) using a cecum sample from a mouse on a chow diet with an initial template input of either 1.2 
x 107 or 1.2 x 104 16S rRNA gene copies. Each analysis comprised four technical (sequencing) replicates. Taxa 
found only in the low-input sample were labeled contaminants (red points); taxa found in the high-input sample 
but not low input sample were labeled dropouts (yellow points). Red shading indicates the Poisson sampling 
95% confidence interval (10,000 bootstrapped replicates) at a sequencing read depth of 28,000. (d) Relationship 
between relative abundance threshold (see text for details) and sequencing read depths at 30%, 40%, and 50% 
CV thresholds. 
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Next, to ensure extraction performance was consistent for both Gram-negative and Gram-
positive microbes, we performed 16S rRNA gene amplicon sequencing using previously 
described improved primers and protocol31, 33 on a subset of the extracted samples (Fig. 2.2b). 
It is important to note that all amplification reactions for 16S rRNA gene library prep were 
monitored with real-time qPCR and we stopped the reactions when they reached the late 
exponential phase to limit overamplification and chimera formation.30-33, 43, 44 Extraction 
appeared less even among microbial taxa at lower total microbial DNA inputs (Fig. 2.2b). 
This discrepancy from the theoretical profile did not correlate with the presence of chimeric 
sequences (Supplementary Figure 2.3) and was likely a function of the reduced accuracy 
incurred when diluting complex microbial samples. Additionally, sequencing samples with 
low total microbial loads (<1 x 104 16S rRNA gene copies) resulted in the presence of 
contaminants, as confirmed by sequencing of negative-control extractions (Supplementary 
Table 2.1). 
 
Quantitative limits of 16S rRNA gene amplicon sequencing 
To establish the precision of relative-abundance measurements, we sequenced four replicates 
of DNA extractions from cecum samples. Libraries from one DNA extraction were prepared 
with either an input of 1.2 x 107 16S rRNA gene copies or 1.2 x 104 16S rRNA gene copies 
to determine the impact of starting DNA amount on sequencing variability. We calculated 
the coefficient of variation (%CV) for each taxon’s relative abundance from amplicon 
sequencing the replicate samples. Each taxon’s mean relative abundance (n=4) was then 
plotted against its corresponding coefficient of variation of the relative abundance (Fig. 2.2c). 
We defined “dropouts” as taxa present only in the high-DNA-input sample whereas we 
defined “contaminants” as taxa present only in the low-DNA-input sample. The two dropout 
taxa in the low input sample corresponded to the lowest abundance taxa from the high input 
DNA sample (yellow points, Fig. 2.2c). Most of the contaminant taxa had a relative 
abundance < 0.03%, but three taxa (Pseudomonas(g), Acinetobacter(g), Rhizobiales(f)) had 
relative abundances of 0.38%, 0.35%, and 0.1%, respectively. These three taxa were also the 
three most common contaminants in our negative-control extractions (Supplementary Table 
2.1). The presence of contaminants in the sample containing 1.4 x 104 16S rRNA gene copies 
was consistent with the input amount at which we observed contaminants in our mixed 
microbial community dilutions (Fig. 2.2b). We calculated a bootstrapped Poisson sampling 
confidence interval at our sequencing depth (28,000 reads) to assess how close our accuracy 
limits were to the theoretical limits (red shading, Fig. 2.2c). At the low DNA input level of 
1.2 x 104 16S rRNA gene copies, we began to reach the fundamental Poisson loading limit 
in our library-preparation reaction (Supplementary Figure 2.4a). We expected divergence of 
the %CV at ~0.01% abundance because at a read depth of 28,000 a relative abundance of 
0.01% is a measure of ~3 reads whereas at a total 16S rRNA gene copy input of 1.4 x 104 a 
relative abundance of 0.01% is ~1 copy. Poisson statistics also helped us define the 
theoretical lower limits of relative-abundance measurements as a factor of sequencing depth 
(Supplementary Figure 2.4b). 
 
We next wished to quantify an approximate threshold that would tell us, for a given 
sequencing depth, at what percentage of relative abundance we lose accuracy in our 
measurements (we defined this threshold as “relative abundance threshold”). To determine 
this threshold, we fit a negative exponential to the replicate data and identified the percentage 
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abundance at which 30% CV was observed. This threshold is a function of the sequencing 
depth, so we subsampled the data at decreasing read counts and repeated the exponential 
fitting method to calculate the relationship between the relative abundance threshold and 
sequencing depth (Fig. 2.2d). Greater sequencing depths yielded lower quantitative limits 
with diminishing returns, as expected. We found that the threshold for percentage abundance 
decreases with increasing sequencing depth with a square root dependence analogous to the 
square-root dependence of Poisson noise. This trend follows for %CV thresholds of 40% and 
50% as well (Fig. 2.2d). This analysis provides a framework with which to impose thresholds 
on relative-abundance data that are grounded on the calculated limits of quantitation. 
 
Absolute quantification of taxa via digital PCR (dPCR) anchoring 
We calculated absolute abundances of taxa from sequencing data using dPCR measurement 
of total microbial loads as an anchor. Briefly, relative abundance of each taxon was measured 
by sequencing and these numbers were multiplied by the total number of 16S rRNA gene 
copies (obtained using the same universal primers from amplicon sequencing, without the 
barcodes) from dPCR. Next, we evaluated the accuracy of this quantitative sequencing 
approach. Typically, evaluation of quantitative accuracy and precision would involve the use 
of a mock microbial community (like the one used in Fig. 2.2). However, because we 
computed the absolute instead of relative abundances, we were able to use the actual gut-
microbiota samples and compare the results to the dPCR data obtained with relevant taxa-
specific primers. The 16S rRNA gene copy amount was then normalized to the mass of each 
extracted sample after correcting for volume losses (Materials and methods; Equation 1). We 
chose four representative taxa to encompass common gut flora of varying classification 
levels: Akkermansia muciniphila(s), Lachnospiraceae(f), Bacteroidales(o), and 
Lactobacillaceae(f). Like eubacterial primers, taxa-specific primer sets can (in principle) 
give rise to nonspecific amplification due to overlap with host mitochondrial DNA. To avoid 
nonspecific amplification, we ran temperature gradients with GF mucosal DNA and taxa-
specific microbial DNA to identify the optimal annealing temperature for each primer set 
(Supplementary Figure 2.5). Each taxa-specific primer targets a separate region of the 16S 
rRNA gene than the universal primer set, thus keeping the gene copy number equivalent 
across primers. We observed high correlation coefficients between the taxa load determined 
by quantitative sequencing with dPCR anchoring and the taxa load measured by dPCR with 
taxa-specific primers (all r2 >= 0.97, Fig. 2.3a) for all four taxa over a range of ~ 6 orders of 
magnitude. The ratio of the total load measurements obtained by quantitative sequencing 
with dPCR anchoring and by dPCR with taxa-specific primers showed unity agreement 
between three of the four primer sets with 2-fold deviation from the mean (Fig. 2.3b and 
Supplementary Figure 2.9). Sequencing quantification was consistently 2.5-fold higher than 
dPCR quantification for the species Akkermansia muciniphila (Fig. 2.3b). We cannot 
confirm amplification bias as a factor because the error did not depend on the number of 
cycles used in library preparation. An alternative factor could be a discrepancy in 
coverage/specificity between the taxon-specific and universal primer sets. We next tested the 
limits of the sequencing accuracy as a factor of input DNA load. A 10X dilution series of a 
cecum sample was created to cover input DNA loads of 1x108 copies down to 1x104 copies. 
Minimal differences in beta diversity (Aitchison distance) between the undiluted and diluted 
samples were observed with a trend towards increasing difference with decreasing DNA load 
(Fig. 2.3c). This negative correlation between beta diversity and microbial load is not 
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unexpected due to the higher presence of contaminant species from our negative controls in 
the lower input samples (Fig 2b). 

 

Figure 2.3: Digital PCR (dPCR) anchoring of 16S rRNA gene amplicon sequencing provides 
microbial absolute abundance measurements. Taxon-specific dPCR demonstrates low biases in 
abundance measurements calculated by 16S rRNA gene sequencing with dPCR anchoring. (a) Correlation 
between the Log

10
 abundance of four bacterial taxa as determined by taxa-specific dPCR and 16S rRNA 

gene sequencing with dPCR anchoring (relative abundance of a specific taxon measured by sequencing * 
total 16S rRNA gene copies measured by dPCR). (b) The Log

2
 ratio of the absolute abundance of four 

bacterial taxa as determined either by taxa-specific dPCR or by 16S rRNA gene sequencing with dPCR 
anchoring (N = 32 samples). Data points are overlaid on the box and whisker plot. The body of the box plot 
goes from the first to third quartiles of the distribution and the center line is at the median. The whiskers 
extend from the quartiles to the minimum and maximum data points within the 1.5× interquartile range, 
with outliers beyond. All dPCR measurements are single replicates. (c) Analysis of beta diversity in cecum 
samples at a series of 10X dilutions (n = 1 for each dilution). Mean Aitchison distance for six pairwise 
comparisons of n = 4 sequencing replicates of the undiluted (108 copies) sample is shown for reference 
(error bar is standard deviation). Individual data points are overlaid on the replicates bar plot. 

 
Absolute vs relative abundance analysis in a ketogenic-diet study 
To test the impact of using a quantitative framework for 16S rRNA gene amplicon 
sequencing, we performed a ketogenic-diet study. Our goals were twofold. First, we wished 
to test whether absolute instead of relative microbial abundances can more accurately 
quantify changes in microbial taxa between study groups. Second, we wished to investigate 
how using a quantitative sequencing framework can guide the interpretation of changes in 
taxa across study conditions. We emphasize that our objective was not to make claims about 
the effect of a ketogenic diet on the microbiome, but rather to use this model as an illustration 
of the added benefits of using this quantitative sequencing framework. 
After one week on a standard chow diet, 4-week old Swiss Webster mice were split into two 
groups (n=6 each): one was fed a ketogenic diet and the other a vitamin and mineral matched 
control diet (Supplementary Table 2.3). Stool was sampled immediately before the two diets 
were introduced (day 0), and again at days 4, 7 and 10. Additionally, on day 10, all mice 
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were euthanized and lumenal and mucosal samples were collected from throughout the GI 
tract (Fig. 2.4a). Microbial loads (quantified with dPCR) ranged from ~109 16S rRNA gene 
copies/g in small intestinal mucosa to ~1012 16S rRNA gene copies/g in stool. On average, 
we observed lower microbial DNA loads in the mice on the ketogenic diet compared with 
mice on the control diet, except in the stomach, where loads were similar in mice on both 
diets (Fig. 2.4b). 
 
All stool samples and roughly half of the samples for all other GI sites (evenly distributed 
across mice on the two diets) underwent 16S rRNA gene amplicon sequencing. Ordination 
methods (PCA, PCoA, NMDS, etc) are a common exploratory data analysis technique in the 
microbiome field. Common transformation techniques based on non-Euclidian distances 
(e.g., Bray-Curtis, UniFrac) can skew the accuracy of visualizations of relative data 
(Supplementary Figure 2.6a).11 We used the centered log-ratio transformation (CLR, often 
used to compute the Aitchison distance) to handle compositional effects, and performed PCA 
on the transformed absolute abundance data for all samples from the final collection day (Fig. 
2.4c). A clear separation along the first two principal components (PC) was observed. 
Separation along PC1 was related to the location within the GI tract whereas separation along 
PC2 was related to the diet. The PCA analysis suggested that stomach samples were 
distributed somewhere in-between small-intestine and large-intestine samples, possibly 
resulting from coprophagy in mice.32, 33 Additionally, the mucosal and lumenal samples from 
the small intestine on the control diet seemed to be closer together than on the ketogenic diet 
(Fig. 2.4c). 
 
We next investigated which taxa were contributing to separation in our principal component 
space. We calculated the scaled covariance between each taxon and the first two principal 
components by multiplying the eigenvectors by the square root of their corresponding 
eigenvalues. These values are also known as “feature loadings.” Plotting these feature 
loadings from smallest to highest shows that Lactobacillus(g) and Lactococcus(g) had the 
greatest impact on separation along PC1 in the direction of the small intestinal samples 
whereas Ruminiclostridium(g) and Lachnospiraceae(f) separated in the direction of the large 
intestine (Fig. 2.4d). This matches with what we know about the major genera commonly 
present in the small and large intestine.45 Along PC2 (the “diet axis”), the top two 
contributing taxa towards the control diet were Turicibacter(g) and Marvinbryantia(g), while 
towards the ketogenic diet Akkermansia(g) and Enterococcus(g) had the greatest covariance. 
Although the CLR transformation preserves distances in principal component space 
regardless of whether the starting data are relative or absolute, it normalizes out the 
differences in total loads by looking at log ratios between each taxon’s abundance and the 
geometric mean of the sample (Supplementary Figure 2.6b). In many cases, we want to know 
if the absolute load of a taxon is higher or lower under different conditions (e.g., in mice on 
ketogenic and control diets). When the total microbial load varies among samples, analyses 
of relative abundance cannot determine which taxa are differentially abundant (Fig. 1). To 
assess the impact of using absolute quantification in analyses, we analyzed microbiomes of 
stool samples from mice on ketogenic and control diets. PCA analysis on the CLR-
transformed relative abundances of microbial taxa showed separation between the two diets 
(Fig. 2.5a). Feature loadings were analyzed as before, but this time total impact of each taxa 
on the PC space was plotted, which was defined as the sum of the feature loading vectors in 
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PC1 and PC2 (Fig. 2.5b). The same analysis was performed on the log-transformed absolute 
abundance data (Fig. 2.5a). Separation between diets is clear in both relative and absolute 
abundance analyses, but the contribution of each taxon to the separation differed in direction 
and magnitude. Comparing the magnitude of feature loadings for two taxa, Akkermansia(g) 
and Acetatifactor(g), between the relative and absolute PCA plots showed obvious 
differences in the contribution of a given taxa to the separation in principal-component space. 
Analysis of relative-abundance data implies that Akkermansia(g) has the biggest contribution 
on separation between diets in PC space whereas the absolute abundance data implies that 
~50% of the taxa in the sample have a greater contribution than Akkermansia(g) to the 
separation between the diets in PC space. 
 

 
Figure 2.4: Microbial absolute abundances provide separation between GI locations of mice on ketogenic 
or control diets. Analysis of data comparing ketogenic and control diets provides changes of total microbial 
loads, separation of microbial communities by GI location and by diet in principal component analysis, and the 
top taxa driving the separation of samples along the principal components. (a) Overview of experimental setup 
and sample-collection protocol. Gastrointestinal tract (GIT) samples were collected from the following regions: 
stomach, upper small intestine (SI), lower SI, cecum, colon, and stool. (b) Comparison of total microbial loads 
between ketogenic and control diets in lumenal (top) and mucosal (bottom) samples collected after 10 days on 

each diet. The body of the box plot goes from the first to third quartiles of the distribution and the center line is 
at the median. The whiskers extend from the quartiles to the minimum and maximum data point within 1.5× 
interquartile range, with outliers beyond. (c) Principal component analysis (PCA) on the centered log-ratio 
transformed absolute abundances of microbial taxa shows separation by GI location (Upper SI, light blue; 
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Lower SI, dark blue; Stomach, yellow; Cecum, red; Colon+Stool, orange) and diet (Ketogenic, circles and 
triangles; Control, X’s and crosses). (d) Ranked order of the eigenvector coefficients scaled by the square root 
of the corresponding eigenvalue (feature loadings) for the top two principal components. The two most positive 
and most negative taxa are shown. 

 
 
PCA is only an exploratory data-analysis technique, so we next used a non-parametric 
statistical test to test for differentially abundant taxa in stool samples from mice on control 
and ketogenic diets (Fig. 2.5c).46 We performed separate analyses of the relative and absolute 
abundance data. We plotted the -log10 P-value for each taxon’s relative abundances against 
the corresponding -log10 P-value for that taxon’s absolute abundances. Points along the 
diagonal indicate congruence between the predictions from the relative and absolute 
abundance data. Points in the upper left corner indicate taxa that differed between the diets 
in the analysis of relative-abundance but not in the analysis of absolute abundance. 
Conversely, points in the lower right corner indicate taxa that do not differ between diets in 
the analysis of relative abundance but do differ in the analysis of absolute abundance. 
Akkermansia(g) is an example of a microbe that appears to differ (P = 6.49 x 10-3, Kruskal-
Wallis) between mice on the two diets in the relative-abundance analysis but not in the 
absolute-abundance analysis (P = 3.37 x 10-1, Kruskal-Wallis). Lachnospiraceae(f) showed 
the opposite trend; in the relative-abundance analysis it appears unchanged (P = 6.31 x 10-1, 
Kruskal-Wallis) but in the absolute-abundance analysis it differs (P = 3.95 x 10-3, Kruskal-
Wallis) between the two diets. Neither of these analyses is wrong, they are simply asking 
two different questions: with relative data, the question is whether the percentage of that 
microbe is different between two conditions whereas with absolute data, the question is 
whether the abundance of that microbe is different between two conditions. 
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Figure 2.5: Analyses of relative and absolute microbial abundances from the same dataset result in 
different conclusions. (a) PCA on centered log-ratio transformed relative abundance data and log transformed 
absolute-abundance data (only the vectors of the five features with the largest magnitude are shown). (b) The 
impact of each taxon in the principal-component space (see text for details), with two taxa indicated to illustrate 
the comparison. (c) A comparison of the taxa determined to be significantly different between diets using 
relative versus absolute quantification (N = 6 mice per diet). P-values were determined by Kruskal-Wallis. Each 
point represents a single taxon; blue points indicate taxa with the absolute value of P-value ratios greater than 
2.5; red points indicate two taxa that disagreed significantly between the relative and absolute analyses. (d) For 
illustrative purposes, a comparison of Akkermansia(g) relative abundance (percentage of Akkermansia), 
absolute abundance (Akkermansia load), and total microbial load between stool samples from one mouse on 
each diet (Ketogenic, orange; Control, red). Grey bars indicate loads prior to the diet switch when all mice were 
on the chow diet. 
 
To explore one example of how different interpretations of how taxa differ between study 
conditions occur when using relative versus absolute abundance, we analyzed 
Akkermansia(g) in stool across each of the three time points on experimental diets (days 4, 
7, and 10) and day 0 on chow diet. For simplicity in this illustration, we compared data from 
one mouse on each diet, but the trends hold on average between all mice on the two diets 
(Supplementary Figure 2.7). Analysis of relative microbial abundance demonstrated ~3X 
higher abundance of Akkermansia(g) in samples from the ketogenic compared with the 
control diet on days 7 and 10. However, when analyzing the difference in absolute 
abundance, more nuanced conclusions emerged. The rise in Akkermansia(g) results from 
switching mice from chow to experimental diets. The resulting Akkermansia(g) loads are 
similar in the two diets on days 7 and 10. However, the ketogenic diet reduces the total 
microbial load relative to both chow and control diets, therefore leading to the observed 
higher % of Akkermansia(g) in samples from mice on ketogenic diet. 
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Absolute abundances allow for quantitative differential taxon analysis 
We next analyzed the absolute microbiota abundances in stool and lower small intestinal 
mucosa samples from day 10. A volcano plot, akin to those used in gene expression studies, 
was used to represent the overall changes in taxa abundances between the two diets, and the 
absolute abundance of each taxon was indicated by the size of its symbol (Fig. 2.6a). P-
values from the Kruskal-Wallis tests were corrected for multiple hypothesis testing with the 
Benjamini–Hochberg method, resulting in q-values.46, 47 A false discovery rate (FDR) of 
10% was labeled on the volcano plot and q-values < 0.1 were used as a cutoff for designating 
differential taxa for downstream analyses. Comparisons between the two GI locations 
showed substantial differences in microbial response to diet by location. In stool, 
approximately 66% of the differential taxa were lower on the ketogenic diet vs the control 
diet whereas in the lower SI mucosa, > 80% of the differential taxa were more abundant in 
the ketogenic diet than control diet (Supplementary Table 2.4, Supplementary Table 2.5). 
 
Next, we highlighted several specific differential taxa that were discordant between stool and 
lower SI mucosa. (1) Bacteroides(g) was lower on ketogenic diet in stool and higher on 
ketogenic diet in lower SI mucosa. This type of result could lead researchers who analyze 
stool samples to believe that lower levels of Bacteroides(g) may be associated with a 
phenotype when it could be the opposite if the phenotype is driven by the SI mucosal 
microbiota. (2) Parabacteroides(g) and Lachnospiraceae GCA-900066575(g) showed the 
highest fold changes (in opposite directions) in stool but were not detected in the lower SI 
mucosa. The opposite was observed for Escherichia(g), which was more abundant in the 
ketogenic diet than the control diet in the lower SI mucosa but was not detected in stool. (3) 
Akkermansia(g) and Desulfovibrionaceae(f) were more abundant in the ketogenic diet than 
the control diet in the lower SI mucosa but were similar between the two diets in stool. Such 
microbes could have a relationship with phenotype through the small intestine but would be 
missed if only stool samples are analyzed. 
 
A further breakdown of the differential taxa, using our quantitative limits of sequencing 
accuracy (defined earlier), allowed us to categorize four distinct scenarios that describe how 
microbes differed between GI locations of mice on the two diets. We refer to these four 
scenarios as “quantification classes” (Fig. 2.6b). First, there were microbes that were present 
in one diet and absent in the other (“presence/absence” class). For example, Dorea(g), in 
stool, and Escherichia(g), in SI mucosa, were absent from the control diet but present in the 
ketogenic diet. Second, there were microbes above the detection limit but below the 
quantitative limit in both diets (“no quant” class). For example, in stool, Candidatus 
Soleaferrea(g), ranges in relative abundance from 0.002% to 0.025%, well below the 30% 
CV quantification threshold of 0.04% (as defined in Fig. 2.2d). Thus, we cannot 
quantitatively define the difference of this microbe between mice on the two diets. Third, 
microbes were above the detection limit in both diets but only above the quantitative limit in 
one of the diets (“semi-quant” class). For example, Desulfovibrionaceae(f) in the lower 
small-intestine mucosa was above the detection limit in mice on both diets but only above 
the quantitative limit in mice on the ketogenic-diet, so although we can be confident that a 
difference between the diets exists, we cannot be confident in our measurement of the 
magnitude of that difference. Fourth, microbes were found above the quantitative limits in 



 

  

38

both diets (“quant” class). For example, for Parabacteroides(g) in stool, we can be confident 
in both the difference between the diets (it was more abundant in the control diet) and in the 
magnitude of that difference (a 32.2-fold difference). We have the lowest confidence in the 
measured absolute fold change of a taxon that is classified in the presence/absence class, and 
the greatest confidence in a taxon in the quant class. 
 
Figure 2.6: Incorporating quantification limits enhances differential taxon analysis as shown in stool and 
SI mucosa. A quantitative framework that explicitly incorporates limits of quantification separates differential 

microbial taxa into four classes, and for each GI location identifies a distinct set of differential taxa, including 
taxa with opposite patterns in stool and SI mucosa. (a-b) Microbial taxa in stool (a) or lower small-intestine (b) 
mucosa in mice on ketogenic (N = 6) and control (N = 6) diets. The fold change on the x-axis is the Log2 ratio 
of the average absolute loads of taxon loads in each diet. Negative values indicate lower loads in ketogenic diet 
compared to control diet. The q-value for a taxon indicates the significance of the difference in absolute 
abundances between the two diets and were obtained by Kruskal-Wallis with a Benjamini–Hochberg correction 
for multiple hypothesis testing. The Log10 absolute abundance of each taxon is indicated by circle size. Orange 
circles indicate taxa discussed in the main text including taxa that show discordant fold changes between stool 
and lower SI mucosa. The red dashed line is shown at a q-value representing a 10% false-discovery rate. (c-d) 
A subset of taxa from stool (c) and lower SI mucosa (d) that were significantly different between diets (q-values 
< 0.1) and their corresponding fold change, absolute abundance (larger of the average absolute abundances 
between the two diets), and quantification class. Quantification class is determined by whether one or both 
measurements were above or below the lower limit of quantification and the limit of detection.  
 
 
 

Discussion 
In this study, we have shown that this technology performs across biogeographically diverse 
samples with microbial loads spanning over 6 orders of magnitude. Our lower limits of 
quantification for total microbial load from lumenal (e.g., stool, cecum contents) and mucosal 
samples were 4.2 x 105 16S rRNA gene copies/g and 1.0 x 107 16S rRNA gene copies/g 
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respectively. These lower limits were mainly restricted by the column-based extractions used 
which require < 200 mg of sample input for lumenal contents and < 8 mg of input for mucosal 
samples. This sample input is limited by the high concentration of PCR inhibitors and host 
DNA in these samples. New sample-processing methods that deplete host DNA before 
extraction (e.g. the use of propidium monoazide (PMA) or saponin with DNase)48, 49 could 
help improve the quantitative limits in samples with high levels of host DNA (e.g., mucosa) 
by removing non-microbial DNA before extraction. Such host-depletion methods could also 
improve performance of other current or future methods of quantitative sequencing. Before 
these methods are introduced into quantitative sequencing protocols, they will require 
extensive validation to understand the impacts host DNA depletion has on the microbial load 
and composition of these samples, which will affect the accuracy of any absolute-abundance 
technique. We showed that the precision of any individual taxon’s abundance can be defined 
as a function of that taxon’s relative abundance and the sequencing depth. These accuracy 
thresholds generally state that all taxa with relative abundance > 0.01% have a maximum 
%CV of 30%. We did not quite reach the theoretical limit of Poisson precision (Fig. 2.2c), 
which might be explained by slight differences in PCR amplification between high- and low-
abundance microbes, and could potentially be corrected with single-molecule counting 
techniques utilizing unique molecular identifiers (UMIs).50, 51 Interestingly, the precision of 
these abundance measurements did not differ between high input DNA samples (1.2 x 107 
16S rRNA gene copies) and low-input DNA samples (1.2 x 104 16S rRNA gene copies), 
even though the low-input sample required 10 additional PCR cycles. The lack of an increase 
in observed chimeric sequences in the low-input sample indicates that PCR bias from 
chimera generation may occur mainly during over-amplification; thus, we suggest 
monitoring library-prep amplification reactions with qPCR and stopping reactions during the 
late exponential phase. 
 
Our quantitative sequencing method, as validated, is subject to some of the same limitations 
of general 16S rRNA gene amplicon sequencing. Primarily, the accuracy of any given 
taxon’s abundance is believed to be impacted by amplification bias. We showed that the 
abundances of Akkermansia muciniphila(s), Lachnospiraceae(f), Bacteroidales(o), and 
Lactobacillaceae(f) could be quantified with similar precision (2X), but different accuracy, 
i.e. Akkermansia muciniphila(s) abundance was ~2.5X higher in the quantitative-sequencing 
estimate compared with the estimate from dPCR with taxa-specific primers. This offset was 
consistent between samples, indicating that it may be related to differences in primer 
coverage between the taxon-specific primer set and the universal primer set used in this 
study. Nevertheless, such offsets should be similar if the same library-prep conditions are 
used, so one can reliably compare taxa among groups or studies and the use of UMIs may 
further eliminate any potential amplification biases. We note that dPCR-based total microbial 
load measurements should be more robust to amplification biases of individual taxa. 
Additionally, the total microbial load measurement will be affected by the 16S rRNA primer 
set chosen and its respective taxonomic coverage. The primers in this study were chosen to 
have broad coverage and also to limit amplification of host mitochondrial DNA,31-33 to ensure 
proper quantification of mucosal and small-intestine samples with high host DNA loads. 
Finally, to take full advantage of the power of this quantitative framework, study designs 
must incorporate proper sampling techniques to address spatiotemporal variation in 
microbial abundances.22 
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A method-specific limitation is the requirement of an additional step, dPCR total microbial 
load quantification, which consumes a portion of the extracted DNA sample. This limitation 
is minor because dPCR generally requires at least 100 copies for a measurement with a ~10% 
Poisson error, which is much less than the roughly 10,000 copies required for sequencing. 
Additionally, the absolute abundances are reported in 16S rRNA gene copies/g and require 
conversion to number of cells/g, which has standard limitations (e.g., the completeness of 
rRNA databases and copy-number variation among similar species). However, when 
comparing taxa across study groups, the 16S rRNA gene copies per taxonomic group should 
be similar. Finally, this method was only validated for 16S rRNA gene amplicon sequencing; 
thus, further validation would be required for applying this method to converting 
metagenomic sequencing from relative to absolute quantification. We were not able to 
directly compare our measurements to other absolute abundance techniques discussed in the 
Introduction because these techniques have not been validated on the broad range of sample 
types and microbial loads tested here (Supplementary Table 2.2). A fair side-by-side 
comparison would require re-optimization of the other techniques for complex sample types, 
like those with high host DNA levels and low microbial biomass (e.g., mucosa). 
 
We applied the quantitative framework to a murine ketogenic-diet study to identify how 
microbial taxa at several GI locations respond to diet. Because total microbial loads were 
lower in the ketogenic diet compared to the control, analysis of absolute abundance was 
required to correctly identify differential taxa. The lower load observed on the ketogenic diet 
can likely be explained by its lower fiber and carbohydrate content, as these dietary 
components are main substrates for many gut microbes.52 Many factors (including diet) that 
induce changes in relative microbial abundances can also impact total microbial load.25, 53 
Even among healthy mice on the same (chow) diet, total microbial loads in stool can differ 
by 10 times.25 Such variation in total microbial load likely contributes to the noise in 
microbiome studies. Another insight of this study was that we found different patterns in the 
microbial communities at each GI sampling site. For example, Akkermansia(g) loads did not 
differ between diets in stool, but they were significantly greater in the small-intestine mucosa 
in the ketogenic diet compared with the control. Bacteroides(g) load was lower in stool and 
greater in the small-intestine mucosa in the ketogenic relative to the control diet. Clearly, 
differential taxa at one GI location cannot be used as a proxy for measuring differential taxa 
at another GI location. To our knowledge, this is the first microbiome study to show that 
microbial taxa in the small intestine and the stool can change in different directions and by 
different magnitudes in response to diet. Furthermore, for each taxon, this method enables a 
comparison of absolute microbial abundance to limits of detection and quantification. This 
comparison separates differential taxa into four classes (Quant, Semi-Quant, No Quant, 
Presence/Absence) which provide a convenient shortcut for more quantitative interpretation 
of microbiome studies. It should be noted that the absence of a microbe in a dataset is a factor 
of the sequencing depth, and just because a microbe is not found in the sequencing data does 
not mean it is not in the sample. However, with absolute anchoring, one can confidently say 
that when a microbe is not found, that microbe is below a given abundance. 
We have not focused on correlations among taxa in this dataset. However, the absolute 
abundance measurements acquired using our method should help overcome many of the 
limitations of correlation-based analyses on relative abundances54, 55 and enable analyses 
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using standard methodologies like Spearman’s rank correlation (Supplementary Figure 2.8). 
However, further work will be required to properly address the impact that correlations 
between total microbial loads will have on taxon-based correlation networks. In addition, 
new statistical and/or experimental design methods may be required for interpreting the 
correlations between a taxon’s presence and/or total load and observed phenotypes. 
 
This method overcomes three bottlenecks to wider adoption of absolute quantitative 
measurements in microbiome analysis: (i) performance across samples with a wide range of 
microbial loads; (ii) performance across biogeographically diverse sample types (iii) explicit 
evaluation of limits of quantification of the method. This method will be useful in other areas 
that benefit from quantitative analysis, such as monitoring microbial communities during 
manufacturing of complex probiotic mixtures56 and monitoring changes of host-associated 
microbial communities over time (e.g. in health, aging and development, disease 
progression, and during probiotic or other treatments). Applying absolute quantification19-21, 

23-28, 32, 33 of microbial taxa to biogeographically relevant GI locations will provide 
researchers with new insights in how microbial communities affect host phenotypes.  
  
 
Methods 
Mice 
All animal husbandry and experiments were approved by the Caltech Institutional Animal 
Care and Use Committee (IACUC protocols #1646 and #1769). Male and female germ free 
(GF) C57BL/6J mice were bred in the Animal Research Facility at Caltech, and 4-week-old 
female specific-pathogen-free (SPF) Swiss Webster mice were obtained from Taconic Farms 
(Germantown, NY, USA). Mice were housed on heat-treated hardwood chip bedding (Aspen 
Chip Bedding, Northeastern Products, Warrensburg, NY, USA) and provided with tissue 
paper (Kleenex, Kimberly-Clark, Irving, TX, USA) nesting material. Experimental animals 
were fed standard chow (Lab Diet 5010), 6:1 ketogenic diet (Envigo TD.07797, Indianapolis, 
IN, USA; Supplementary Table 2.3) or vitamin- and mineral-matched control diet (Envigo 
TD.150300; Supplementary Table 2.3). Diet design and experimental setup were taken from 
a recently published study.40 To minimize cage effects, mice were housed two per cage with 
three cages per diet group. Custom feeders, tin containers approximately 2.5 inches tall with 
a 1-inch diameter hole in the top, were used for the ketogenic diet as it is a paste at room 
temperature. Autoclaved water was provided ad libitum and cages were subjected to a daily 
13:11 light:dark cycle throughout the study. Mice were euthanized via CO2 inhalation as 
approved by the Caltech IACUC in accordance with the American Veterinary Medical 
Association Guidelines on Euthanasia.57 
 
Microbial Samples 
The mock microbial community (Zymobiomics Microbial Community Standard; D6300) 
was obtained from Zymo Research (Irvine, CA, USA). This community is stored in 
DNA/RNA Shield, which could interfere with extraction efficiency at high concentrations. 
We found that a 100 µL input of a 10X dilution of the microbial community stock is the 
maximum input that the Qiagen DNeasy Powersoil Pro Kit can handle without recovery 
losses. Negative control blanks were also used which included 100 µL of nuclease free water 
instead of mock community. 
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Fresh stool samples were collected immediately after defecation from individual mice and 
all collection occurred at approximately the same time of day. For intestinal samples, the GIT 
was excised from the stomach to the anus. Contents from each region of the intestine 
(stomach, upper half of SI, lower half of SI, cecum, and colon) were collected by 
longitudinally opening each segment with a scalpel and removing the content with forceps. 
Terminal colonic pellets are referred to as stool. After contents were removed the intestinal 
tissue was washed by vigorously shaking in cold sterile saline. The washed tissue was placed 
in a sterile petri dish and then dabbed dry with a Kimwipe (VWR, Brisbane, CA, USA) 
before scraping the surface of the tissue with a sterile glass slide. These scrapings were 
collected as the mucosa samples. All samples were stored at -80 °C after cleaning and before 
extraction of DNA. 
 
DNA Extraction 
DNA was extracted from all samples by following the Qiagen DNeasy Powersoil Pro Kit 
protocol (Qiagen; Valencia, CA, USA). Bead-beating was performed with a Mini-
BeadBeater (BioSpec, Bartlesville, OK, USA) for 4 min. To ensure extraction columns were 
not overloaded, we used ~10 mg of scrapings and ~50 mg of contents. Half of the lysed 
volume was loaded onto the column and elution volume was 100 µL. Nanodrop (NanoDrop 
2000, ThermoFisher Scientific) measurements were performed with 2 µL of extracted DNA 
to ensure concentrations were not close to the extraction column maximum binding capacity 
(20 µg). 
 
Absolute Abundance 
The concentration of total 16S rRNA gene copies per sample was measured using the Bio-
Rad QX200 droplet dPCR system (Bio-Rad Laboratories, Hercules, CA, USA). The 
concentration of the components in the dPCR mix used in this study were as follows: 1x 
EvaGreen Droplet Generation Mix (Bio-Rad), 500 nM forward primer, and 500 nM reverse 
primer. Universal primers to calculate the total 16S rRNA gene concentrations were a 
modification to the standard 515F-806R primers4 to reduce host mitochondrial rRNA gene 
amplification in mucosal and small-intestine samples (Supplementary Table 2.6).31-33 
Thermocycling for universal primers was performed as follows: 95 °C for 5 min, 40 cycles 
of 95 °C for 30 s, 52 °C for 30 s, and 68 °C for 30 s, with a dye stabilization step of 4 °C for 
5 min and 90 °C for 5 min. All ramp rates were 2 °C per second. The concentration of taxon-
specific gene copies per sample was measured using a similar dPCR protocol, except with 
different annealing temperatures. Annealing temperatures during thermocycling for taxa-
specific primers can be found in Supplementary Table 2.6. The concentration of the 
components in the qPCR mix used in this study were as follows: 1x SsoFast EvaGreen 
Supermix (BioRad), 500 nM forward primer, and 500 nM reverse primer. Thermocycling 
was performed as follows: 95°C for 3 min, 40 cycles of 95 °C for 15 s, 52 °C for 30 s, and 
68 °C for 30 s. All dPCR measurements are single replicates. 
Concentrations of 16S rRNA gene per microliter of extraction were corrected for elution 
volume and losses during extraction before normalizing to the input sample mass (Equation 
1). 
 

Microbial Load =  dPCR concentration ∗ elution volume ∗
dead volume

extraction volume
∗

1

sample mass
             (1) 
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Absolute abundance of individual taxa was calculated either by dPCR with taxa-specific 
primers or multiplying the total microbial load from Equation 1 by the relative abundance 
from 16S rRNA gene amplicon sequencing.  
 
16S rRNA Gene Amplicon Sequencing 
Extracted DNA was amplified and sequenced using barcoded universal primers and protocol 
modified to reduce amplification of host DNA31-33. The variable 4 (V4) region of the 16S 
rRNA gene was amplified in triplicate with the following PCR reaction components: 1X 
5Prime Hotstart mastermix, 1X Evagreen, 500 nM forward and reverse primers. Input 
template concentration varied. Amplification was monitored in a CFX96 RT-PCR machine 
(Bio-Rad) and samples were removed once fluorescence measurements reached ~10,000 
RFU (late exponential phase). Cycling conditions were as follows: 94 °C for 3 min, up to 40 
cycles of 94 °C for 45 s, 54 °C for 60 s, and 72 °C for 90 s. Triplicate reactions that amplified 
were pooled together and quantified with Kapa library quantification kit (Kapa Biosystems, 
KK4824, Wilmington, MA, USA) before equimolar sample mixing. Libraries were 
concentrated and cleaned using AMPureXP beads (Beckman Coulter, Brea, CA, USA). The 
final library was quantified using a High Sensitivity D1000 Tapestation Chip. Sequencing 
was performed by Fulgent Genetics (Temple City, CA, USA) using the Illumina MiSeq 
platform and 2x300bp reagent kit for paired-end sequencing. 
 
16S rRNA Gene Amplicon Data Processing 
Processing of all sequencing data was performed using QIIME 2 2019.1.58 Raw sequence 
data were demultiplexed and quality filtered using the q2-demux plugin followed by 
denoising with DADA2.59 Chimeric read count estimates were estimated using DADA2. 
Beta-diversity metrics (Aitchison distance,9 Bray-Curtis Dissimilarity) were estimated using 
the q2-diversity plugin after samples were rarefied to the maximum number of sequences in 
each of the relevant samples. Rarefaction was used to force zeros in the dataset to have the 
same probability (across samples) of arising from the taxon being at an abundance below the 
limit of detection. Although rarefaction may lower the statistical power of a dataset60 it helps 
decrease biases caused by different sequencing depths across samples.12 Taxonomy was 
assigned to amplicon sequence variants (ASVs) using the q2-feature-classifier61 classify-
sklearn naïve Bayes taxonomy classifier against the Silva62 132 99% OTUs references from 
the 515F/806R region. All datasets were collapsed to the genus level before downstream 
analyses.  All downstream analyses were performed in IPython primarily through use of the 
Pandas, Numpy and Scikit-learn libraries. 
 
Data Transforms and Dimensionality Reduction 
For dimensionality reduction techniques requiring a log transform, a pseudo-count of 1 read 
was added to all taxa. With relative abundance data, the centered log-ratio transform was 
used (Equation 2) to handle compositional effects whereas a log transform was applied to the 
absolute-abundance data to handle heteroscedasticity in the data.  
 
𝑥ୡ୪୰ = ቂlog ቀ

௫భ

ீ(௫)
ቁ , log ቀ
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ቁ , … , log ቀ

௫ವ

ீ()
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For comparative purposes, principal co-ordinates analysis (PCoA) was also performed using 
the Bray-Curtis dissimilarity metric. Principal component analysis (PCA) and PCoA were 
performed using scikit-learn decomposition methods. Feature loadings for each principal 
component were calculated by multiplying each eigenvector by the square root of its 
corresponding eigenvalue. All data were visualized using matplotlib and seaborn. 
 
Taxa Limits of Quantification 
Poisson confidence intervals were calculated by bootstrapping Poisson samples for rate 
parameters across the percentage abundance range (0–1) corresponding to either the input 
DNA copies or number of reads. We took 104 bootstrap replicates with a Poisson sample size 
of 4 to match the number of replicates we sequenced. The %CV for each replicate was 
calculated and the middle 95th percentile was shown as the confidence interval. 
Thresholds for percentage abundance were calculated by first fitting a negative exponential 
curve 𝑦 = 𝑎𝑥ି to the plot of %CV versus percentage abundance using SciPy. Then the 
percentage abundance at a given %CV threshold was determined. This process was repeated 
after subsampling the data at decreasing read depths to find the relationship between percent 
abundance accuracy limits at sequencing depth. 
 
Measurement Uncertainty 
When measuring the absolute abundance of a given taxon in a sample, many factors 
contribute to the uncertainty of the measurement. Two primary factors, extraction efficiency 
and average amplification efficiency for each taxon, should be equivalent for each taxon 
across samples processed under identical conditions and thus neither should impact the 
discovery of differential taxa. However, other factors contributing to the uncertainty of an 
absolute-abundance measurement vary among samples and can impact the discovery of 
differential taxa. At least six independent errors can contribute to the overall uncertainty of 
a taxon’s absolute abundance: (i) extraction error (ii) the Poisson sampling error of dPCR, 
(iii) the Poisson sampling error of sample input into an amplification reaction to make a 
sequencing library, (iv) the uncertainty in the amplification rates among sequences, (v) the 
Poisson sampling error of the sequencing machine, and (vi) the uncertainty in taxonomic 
assignment resulting from different software programs that differ in how they convert raw 
sequencing reads to a table of read counts per taxon.  
To measure the total error in our absolute-abundance measurements, we compared the true 
absolute load value of four “representative” taxa (taxa that are common gut flora from 
different taxonomic ranks) as measured by taxa-specific dPCR, with the value obtained from 
our method of quantitative sequencing with dPCR anchoring (Fig. 2.3b) and then analyzed 
the relative error in these measurements, defined as the log2 of the observed taxon load over 
the true taxon load. We constructed a quantile-quantile (Q–Q) plot (Supplementary Figure 
2.9) of the mean-centered log2 relative errors and found that the errors appeared normally 
distributed. We confirmed this by running a Shapiro–Wilk test (P-value = 0.272) on the 
mean-centered log2 relative errors, which uses a null hypothesis that the dataset comes from 
a normal distribution. The standard deviation of the mean-centered log2 relative errors was 
0.48, which results in a 95% confidence interval of ~(-1,1), indicating a 2x precision on each 
individual measurement. However, as seen with Akkermansia(g) (Fig. 2.3b), accuracy offsets 
may exist for specific taxa. It is important to note that all samples used in this analysis had 
relative abundances above the 50% CV threshold defined in Fig. 2.2d and thus we do not 
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make any conclusions about the precision of absolute abundance measurements for taxa with 
relative abundances below the 50% CV threshold. 
 
Biological Uncertainty and Statistical Inference Methods 
When measuring the absolute abundance of a taxon from a defined population (e.g., healthy 
adults, mice on a ketogenic diet) it is unlikely this abundance comes from a well-defined 
statistical distribution. Given this inherent limitation, we used non-parametric statistical tests, 
which do not rely on distributional assumptions, for our differential abundance analyses. 
Statistical comparisons between diet groups were analyzed using the Kruskal–Wallis46 rank 
sums test with Benjamini–Hochberg47 multiple hypothesis testing correction. All statistical 
tests were implemented using SciPy.stats Kruskal function and statsmodels.stats.multitest 
multipletests function with the fdr_bh option for Benjamini-Hochberg multiple-testing 
correction. When calculating differentially abundant taxa, only taxa present in at least 4 out 
of 6 mice in a group were considered to remove fold-change outliers when plotting (Fig. 
2.6a-b). 
 
Correlation Analysis 
Samples were separated by diet (ketogenic and control) and only stool samples were used 
(days 4, 7, and 10). The total microbial load and top 30 taxa with the highest average absolute 
abundance were selected for analysis. Spearman’s rank correlation coefficient and 
corresponding P-values were calculated for all pairwise interactions using the 
scipy.stats.spearmanr function. Benjamini–Hochberg procedure was to calculate q-values, 
which account for multiple hypothesis testing. A heatmap of the diagonal correlation matrix 
was plotted (Supplementary Figure 2.8) for q-values <10% FDR.  
 
Data Availability 
The complete sequencing data generated during this study are available in the National 
Center for Biotechnology Information Sequence Read Archive repository under study 
accession number PRJNA575097. Raw data for all figures available through CaltechDATA: 
https://data.caltech.edu/records/1371. Raw data for all figures is also provided as source data 
files. 
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Supplementary Information 

 

 
Supplementary Figure 2.1: Total DNA loads in small intestine and large intestine mucosa and lumen. 
Extracted DNA samples from mice in the ketogenic-diet group were measured by Nanodrop (total DNA) and 
digital PCR (microbial DNA). The horizontal lines represent the means and the points represent individual 
biological replicates (N = 24 for small intestine; N = 12 for large intestine). 
 
 
 
 

 
Supplementary Figure 2.2: Extraction and total DNA measurement accuracy of an eight-member mock 
microbial community dilutions spiked into extraction buffer or small-intestine mucosa, cecum, or stool 
from germ free mice. Log2 fold change between theoretical and dPCR measured copies of 
16S rRNA gene after extraction with varying input levels. Three technical replicates for buffer extractions are 
shown. All other sample types shown are N = 1 to illustrate the biological noise among sample types.  
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Supplementary Figure 2.3: Chimeric sequence prevalence is not determined by the number of PCR 
cycles. Relationship between the number of PCR cycles during the amplification reaction for library prep and 
the percentage of chimeric sequences detected by Divisive Amplicon Denoising Algorithm 2 (DADA2).1 N = 
33 samples that were sequenced from mice in the ketogenic-diet group. 
 
 
 

 
 
Supplementary Figure 2.4: Poisson limits of sequencing accuracy. (a) Relationship between the relative 
abundance of each taxon and % coefficient of variation (CV) using four technical (sequencing) replicates of a 
mouse cecum sample with an initial template input of 1.2 x 104 16S rRNA gene copies. The red shading 
indicates the bootstrapped (B = 104) Poisson sampling confidence interval of the input 16S rRNA gene copies. 
(b) Bootstrapped Poisson sampling relationship between %CV and percentage abundance as a function of read 
depth. 
 
 
 



 

  

53

 
Supplementary Figure 2.5: Optimization of group-specific primers to eliminate amplification of host 
DNA. Relative abundance of non-specific product amplified from 20 ng/µL small-intestine mucosa sample 
from a germ-free mouse measured by qPCR. Lower Cq values indicate more amplification. Each color 
represents a different annealing temperature used during the cycling process. Samples were run in singlet at 
each temperature. 
 
 
 
 
 
 

 
Supplementary Figure 2.6: Impact of ordination method on data visualization. (a) Principal coordinates 
analysis (PCoA) plot using Bray–Curtis dissimilarity metric of all samples collected 10 days after the diet 
switch. (b) Principal component analysis (PCA) plot using log-transform of absolute abundance data after 
adding a pseudocount of 1 read to all taxa. 
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Supplementary Figure 2.7: Comparison of relative and absolute abundance quantification of 
Akkermansia(g) between mice on ketogenic and control diet. Average Akkermansia(g) load from stool of N 
= 6 mice on control diet (red) and N = 6 mice on ketogenic diet (orange). Grey points and bars indicate loads 
prior to the diet switch when all mice were on the chow diet. Data points from mice without Akkermansia(g) 
are not shown. Bar plots show mean plus or minus the standard deviation. Individual data points are overlaid 
on the bar plots. 
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Supplementary Figure 2.8: Absolute-abundance measurements enable unbiased determination of 
correlation structure in microbiome datasets. Correlation matrices, using Spearman’s rank, for the total 



 

  

56

microbial load and the top 30 most abundant taxa in stool samples from mice on either a ketogenic diet (a) or 
control diet (b). The color of each marker is based on the correlation coefficient (orange indicates negative 
correlations, blue indicates positive correlations) and the size is determined by the q-value of the correlation 
after Benjamini–Hochberg multiple testing correction. False-discovery rates (FDR) indicate the q-value at 
which the correlation was deemed significant: 1%, 5%, 10%. Abbreviations: (f), family; (g), genus; (o), order. 
 
 

 
Supplementary Figure 2.9: The uncertainty in taxon absolute-abundance measures approximately 
follows a normal distribution. The quantile-quantile (Q–Q) plot of the mean-centered log2 relative error of 
absolute taxon abundances. The relative error is calculated as the ratio of the absolute taxon loads measured by 
our method of quantitative sequencing with dPCR anchoring over the absolute loads measured by taxon-specific 
primers in dPCR (data are from Fig. 3b). The x-axis represents the theoretical quantiles from a normal 
distribution while the y-axis is the actual quantiles of the mean-centered log2 relative errors. 
 
 
 
Supplementary Table 2.1: Contaminant taxa with greater than 1% abundance in negative-control 
extraction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
(f), family; (g), genus 
 
 
 

Contaminant Taxa Percentage 
Abundance

Acinetobacter(g) 31.38
Pseudomonas(g) 24.12
Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium(g) 9.77
Brevundimonas(g) 5.86
Massilia(g) 2.84
Delftia(g) 2.52
Dietzia(g) 2.33
Corynebacterium 1(g) 2.08
Xanthomononadaceae(f) 2.06
Anaerococcus(g) 1.95
Nubsella(g) 1.94
Lysobacter(g) 1.91
Comamonas(g) 1.82
Janthinobacterium(g) 1.30
Shinella(g) 1.29
Novosphingobium(g) 1.23
Sphingobium(g) 1.15
Taibaiella(g) 1.02
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Supplementary Table 2.2: Comparison between digital PCR anchoring method for absolute abundance measurements and other published absolute 
abundance methods2-5. 
 Approach Major Improvement to the 

Field 
Demonstrated 

Limit of 
Quantification 

Demonstrated 
Limit of 

Detection 

Demonstrated 
Precision 

Validated 
Sampling 
Locations 

Validation 
Against PCR 
Amplification 

Bias 

Bias-Free 
Validation with 
High Host DNA 

Loads 

References 

Flow 
Cytometry 

Showed importance of 
quantifying absolute abundance in 

clinical samples 

Not Discussed Not Discussed Not Discussed Stool Not Applicable Not Shown Vandeputte et 
al. 20172 

Sequencin
g Spike-ins 

Generated a variety of spike-in 
standards that can be used. 

Provided comprehensive analysis 
of detection limits and accuracy 

Not Discussed Dependent on 
spike-in 

amount (~100 
copies/reaction

) 

1.5-1.7X  
with mock 

communities 

Sludge, Soil Show that it 
may skew total 

load 
measurement 

Not Shown Tourlousse et 
al. 20163 

qPCR 
Anchoring 

Provided a simple and easy 
method for absolute quantification 

Not Discussed Not Discussed High correlation 
at high DNA 
input levels 

Stool Not Discussed Not Shown Jian et al. 
20184 

Total DNA Provided a simple method for 
absolute quantification. Showed 

dramatic variability in loads 
across animal kingdom and 

clinical scenarios 

Not Discussed ~100 pg of 
DNA 

Not Discussed Stool Not Applicable Not Applicable 
for stool 

Contijoch et 
al. 20195 

Digital 
PCR 

Anchoring 

Quantitative assessment of 
accuracy and precision of absolute 

abundances in complex gut 
samples and their impact on 
differential taxon analyses 

4.2x105 16S 
copies/g Stool 
1.0x107 16S 

copies/g Mucosa 

4.2x104 16S 
copies/g Stool 
1.0x106 16S 

copies/g 
Mucosa 

2X across 6 
orders of 

magnitude with 
low and high 

host DNA load 

Stool, 
Mucosa, 

Small 
Intestine, 
Cecum, 
Stomach 

Yes Yes This paper 
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Supplementary Table 2.3: Composition of ketogenic and control diets used in this study were based on 
previously reported diets (Envigo, Indianapolis, IN, USA).6 

  TD.150300 TD.07797.PWD 

  Control Diet (g/kg) Ketogenic Diet (g/kg) 

Casein 200 121 

Crisco 61.25 605 

Corn Oil 8.75 86.2 

Cellulose 50 112.95 

Corn Starch 389 0 

Maltodextrin 100 0 

Sucrose 150 0 

DL-Methionine 3 1.56 

Vitamin Mix, Teklad (40060) 10 17.8 

Choline Bitartrate 0 2.5 

TBHQ, antioxidant 0.07 0.14 

Mineral Mix, Ca-P Deficient (79055) 13.37 23.8 

Calcium Phosphate, dibasic 7.5 24.3 

Calcium Carbonate 6.85 4.4 

Magnesium Oxide 0.2 0.35 
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Supplementary Table 2.4: Absolute abundance, relative abundance, fold change and quantification class for each differentially abundant taxon in 
the stool 10 days after diet switch. 
 

Taxon
Absolute Abundance 

Ketogenic Diet          
(16S copies/g)

Absolute Abundance 
Control Diet                

(16S copies/g)

log2 Fold Change 
(Keto/Control)

Relative Abundance 
Ketogenic Diet (%)

Relative Abundance 
Control Diet (%)

Quantification Class

GCA-900066575(g) 1.94E+09 8.71E+07 4.00 0.799 0.014 Semi-Quant
Ruminococcaceae(f) 2.02E+09 2.43E+08 2.87 0.909 0.033 Semi-Quant

Lachnospiraceae NK4A136 group(g) 5.34E+09 8.57E+08 2.58 2.362 0.135 Quant

Acetatifactor(g) 5.20E+08 6.19E+07 2.46 0.256 0.009 Semi-Quant

Lachnospiraceae(f) 8.29E+09 1.71E+09 2.25 3.708 0.226 Quant

Ruminiclostridium 9(g) 1.91E+09 5.01E+08 1.84 0.863 0.059 Quant

Dorea(g) 7.79E+07 0.00E+00 1.36 0.032 0.000 Presence/Absence

Enterorhabdus(g) 7.55E+08 3.51E+08 0.99 0.349 0.052 Quant

[Eubacterium] xylanophilum group(g) 8.69E+07 1.91E+07 0.87 0.037 0.003 No Quant

Peptococcus(g) 8.83E+07 2.29E+07 0.79 0.040 0.004 Semi-Quant

Candidatus Soleaferrea(g) 5.91E+07 6.21E+06 0.78 0.026 0.002 No Quant

Marvinbryantia(g) 5.67E+08 1.35E+09 -1.26 0.226 0.218 Quant

Bacteroides(g) 8.81E+09 3.37E+10 -1.93 3.990 5.578 Quant

Faecalibaculum(g) 1.01E+11 3.87E+11 -1.93 46.724 54.268 Quant

Prevotellaceae UCG-001(g) 1.50E+07 7.87E+07 -2.12 0.006 0.015 No Quant

Bifidobacterium(g) 3.18E+08 1.42E+09 -2.15 0.153 0.100 Quant

Muribaculaceae(f) 1.25E+08 5.74E+08 -2.16 0.056 0.091 Quant

Ruminiclostridium 5(g) 2.85E+08 1.38E+09 -2.26 0.127 0.202 Quant
Ruminococcaceae UCG-014(g) 4.85E+08 2.45E+09 -2.32 0.209 0.427 Quant
Ruminococcaceae NK4A214 group(g) 8.66E+06 6.64E+07 -2.36 0.003 0.009 No Quant
Lactococcus(g) 3.34E+09 1.74E+10 -2.38 1.528 2.715 Quant
Muribaculaceae(f) 8.04E+09 4.26E+10 -2.40 3.520 6.506 Quant
Anaerotruncus(g) 2.23E+07 1.79E+08 -2.68 0.010 0.031 No Quant
Lactobacillus(g) 1.45E+10 1.35E+11 -3.22 6.632 19.295 Quant
Butyricimonas(g) 4.38E+08 4.39E+09 -3.30 0.203 0.755 Quant
Alistipes(g) 1.11E+09 1.15E+10 -3.36 0.526 2.018 Quant
Mollicutes RF39(o) 3.06E+07 3.99E+08 -3.38 0.014 0.074 Semi-Quant
Christensenellaceae(f) 2.35E+07 3.69E+08 -3.55 0.009 0.057 Semi-Quant
Clostridiales vadinBB60 group(f) 3.31E+07 5.68E+08 -3.77 0.017 0.108 Semi-Quant
ASF356(g) 0.00E+00 2.44E+08 -4.65 0.000 0.029 Presence/Absence
Parabacteroides(g) 9.26E+07 3.30E+09 -5.01 0.040 0.457 Quant
Gram-negative bacterium cTPY-13(g) 0.00E+00 3.71E+08 -5.20 0.000 0.050 Presence/Absence



 

 

60

 
Supplementary Table 2.5: Absolute abundance, relative abundance, fold change, and quantification class for each differentially abundant taxon in 
the lower small-intestine mucosa 10 days after diet switch. 

 
(f), family; (g), genus; (o), order 

Taxon
Absolute Abundance 

Ketogenic Diet          (16S 
copies/g)

Absolute Abundance 
Control Diet                

(16S copies/g)

log2 Fold Change 
(Keto/Control)

Relative Abundance 
Ketogenic Diet (%)

Relative Abundance 
Control Diet (%)

Quantification Class

Lachnoclostridium(g) 1.64E+07 7.07E+05 3.57 0.293 0.006 Semi-Quant

Lachnospiraceae(f) 9.60E+06 4.05E+05 3.16 0.171 0.006 Semi-Quant

A2(g) 2.29E+07 2.08E+06 3.06 0.441 0.025 Semi-Quant

Akkermansia(g) 2.57E+08 3.77E+07 2.74 5.576 0.419 Quant

Escherichia-Shigella(g) 2.96E+06 0.00E+00 2.21 0.059 0.000 Presence/Absence

Dorea(g) 2.94E+06 0.00E+00 2.20 0.062 0.000 Presence/Absence

Bacteroides(g) 5.51E+06 8.09E+05 1.94 0.112 0.009 Semi-Quant

Desulfovibrionaceae(f) 4.29E+06 5.91E+05 1.82 0.097 0.005 Semi-Quant

uncultured Bacteroidales bacterium(g) 1.55E+07 3.98E+06 1.76 0.365 0.041 Quant

Enterorhabdus(g) 1.12E+07 2.74E+06 1.73 0.245 0.022 Semi-Quant

Lachnospiraceae NK4A136 group(g) 1.38E+06 3.38E+05 0.65 0.031 0.005 No Quant

Ruminococcaceae(f) 8.48E+05 6.76E+04 0.51 0.017 0.001 No Quant

uncultured Lachnospiraceae bacterium(g) 6.46E+05 0.00E+00 0.35 0.013 0.000 Presence/Absence
Marvinbryantia(g) 4.62E+06 3.33E+06 0.27 0.127 0.037 Semi-Quant
Ruminiclostridium(g) 5.41E+05 0.00E+00 0.17 0.011 0.000 Presence/Absence
Muribaculaceae(f) 1.22E+08 3.48E+08 -1.51 2.585 3.041 Quant
Lactococcus(g) 1.20E+08 4.31E+08 -1.84 2.533 4.582 Quant
Lactobacillus(g) 9.05E+08 3.70E+09 -2.03 16.956 35.988 Quant
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Supplementary Table 2.6: Primers used in this study, relevant conditions, and specificity. All primers were tested in silico for coverage of their desired 
taxonomic group and specificity.7-13  

  Akkermansia muciniphila Bacteroidales Lachnospiraceae Lactobacillaceae 519F-806R 

Forward Primer CAGCACGTGAAGGTGGGG
AC 

GGTGTCGGCTTAAGTGCC
AT 

CGGTACCTGACTAAGAA
GC 

GCAGCAGTAGGGAATCTTC
CA 

CAGCMGCCGCGGTAA 

Reverse Primer CCTTGCGGTTGGCTTCAGA
T 

CGGAYGTAAGGGCCGTG
C 

AGTTTYATTCTTGCGAA
CG 

CACCGCTACACATGGAG GGACTACHVGGGTWTCTA
AT 

Taxonomy 
Level 

Species Order Family Family Kingdom 

Annealing 
Temp (°C) 

65 65 55 60 52 

Concentration 
(nM) 

500 500 500 500 500 

Coverage (n=1 
mismatch) 

100% 75% 86% 91% 94% Bacteria, 95% Archaea 

Potential 
Undetected 
Taxa 

None Rikenellaceae(f); Alistipes(g) UCG-010(g) None None 

Potential non-
specific 
interactions 
(n=1 mismatch) 

None None None Leuconostocaceae(o) None 

Citation Collado et al. (2007)8 Rinttilä et al. (2004)9 Kennedy et al. (2014)10 Castillo et al. (2006)11 Bogatyrev & Ismagilov (2020)14 
 
Bogatyrev et al. (2020)13 
 
Bogatyrev (2020)12 

 
(f), family; (g), genus; (o), order 
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C h a p t e r  I I I  

QUANTITATIVE SEQUENCING CLARIFIES THE ROLE OF 
DISRUPTOR TAXA, ORAL MICROBIOTA, AND STRICT 

ANAEROBES IN THE HUMAN SMALL-INTESTINE 
MICROBIOME 

 
1. This chapter was originally published in: Barlow J.*, Leite G.*, Romano A., 

Sedighi R., Chang C., Celly S., Rezaie A., Mathur R., Pimentel M., and 
Ismagilov R. “Quantitative sequencing clarifies the role of disruptor taxa, oral 
microbiota, and strict anaerobes in the human small-intestine microbiome.” 
Microbiome; doi:10.1186/s40168-021-01162-2. 

 
 
Abstract 
Background 
Upper gastrointestinal (GI) disorders and abdominal pain afflict between 12-30% of 
the worldwide population and research suggests these conditions are linked to the gut 
microbiome. Although large-intestine microbiota have been linked to several GI 
diseases, the microbiota of the human small intestine and its relation to human disease 
has been understudied. The small intestine is the major site for immune surveillance 
in the gut, and compared with the large intestine, it has greater than 100 times the 
surface area and a thinner and more permeable mucus layer. 
Results 
Using quantitative sequencing, we evaluated total and taxon-specific absolute 
microbial loads from 250 duodenal-aspirate samples and 21 paired duodenum-saliva 
samples from participants in the REIMAGINE study. Log-transformed total 
microbial loads spanned 5 logs and were normally distributed. Paired saliva-
duodenum samples suggested potential transmission of oral microbes to the 
duodenum, including organisms from the HACEK group. Several taxa, including 
Klebsiella, Escherichia, Enterococcus, and Clostridium, seemed to displace strict 
anaerobes common in the duodenum, so we refer to these taxa as disruptors. 
Disruptor taxa were enriched in samples with high total microbial loads and in 
individuals with small intestinal bacterial overgrowth (SIBO). Absolute loads of 
disruptors were associated with more severe GI symptoms, highlighting the value of 
absolute taxon quantification when studying small-intestine health and function. 
Conclusion 
This study provides the largest dataset of the absolute abundance of microbiota from 
the human duodenum to date. The results reveal a clear relationship between the oral 
microbiota and the duodenal microbiota and suggest an association between the 
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absolute abundance of disruptor taxa, SIBO, and the prevalence of severe GI 
symptoms. 
 
Background 
Hundreds of studies have linked the human microbiome to specific diseases. In 
metabolic diseases or gastrointestinal (GI) disorders (e.g., irritable bowel syndrome 
[IBS], Crohn’s disease, malabsorption) that can cause GI symptoms, such as pain, 
bloating, and diarrhea, the small intestine instead of the colon may be the primary 
site of microbial interactions related to disease. Studies have focused on stool 
primarily for its ease of access and the fact that it has the highest density of microbes 
out of any human sample type1. The stool microbiome has been shown to be a good 
proxy for the large-intestine microbiome, but is known to differ substantially from 
the small-intestine microbiome2, 3. Compared with the large intestine, the small 
intestine has several physiological differences that indicate its potential relevance for 
microbial interactions. The surface area of the small intestine is greater than 100 
times that of the large intestine, underlining its role in nutrient absorption. 
Additionally, the mucus layer of the small intestine is much thinner and more 
diffuse4, potentially allowing closer interactions between microbes and the host. 
Finally, the small intestine is the main site for intestinal immune surveillance by 
lamina propria dendritic cells5 and Peyer’s patches6, contributing to the body’s 
response to both commensal and pathogenic microbes. 
Although mouse studies have been an insightful proxy for understanding the large-
intestine microbiome of humans, the coprophagic behavior of mice7 and many other 
animal models results in a substantially different small-intestine microbiome 
compared with humans8. For example, the total microbial load of the human small 
intestine is generally thought to be low, around 102–106 CFU/mL1, whereas microbial 
loads in laboratory mice are nearly 109 CFU/mL8, 9. In humans, culturable levels 
above 103–105 CFU/mL from duodenal aspirates are used as the clinical 
determination of small intestinal bacterial overgrowth (SIBO)10. SIBO has been 
shown to correlate with IBS and GI symptoms such as bloating, constipation, and 
diarrhea11, 12. Physiologically, SIBO has also been linked to slow intestinal transit13, 
higher body mass index (BMI)14, and reduced stomach-acid levels15. Standard-of-
care treatments for SIBO often include antibiotics and diets designed to reduce the 
amount of rapidly fermentable products in the small intestine16. However, 
reoccurrence of symptoms after antibiotics is common and adherence to strict diets 
is often difficult for patients17. Only recently has a connection between the relative 
abundance of specific microbial taxa, generally from the Enterobacteriaceae family, 
and SIBO begun to be uncovered18. 
The difficult nature of sampling most of the gastrointestinal tract has resulted in a 
limited number of studies analyzing the microbial composition of the human small 
intestine. Several studies have relied on sampling from ileostomy bags19, 20, but such 
sampling will not be fully representative of the small-intestine microbiome21. More 
recent studies sample directly from the intact small intestine through an endoscopic 
procedure and have begun to unravel unique relationships between small-intestine 
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microbes and disease18, 22-25. An added challenge when quantifying individual 
microbial taxa from samples of low total microbial biomass is that it can be difficult 
to distinguish true small-intestine microbes from contamination (e.g. from the oral 
cavity while sampling or from reagents during sample processing). Additionally, the 
wide range of total microbial loads in the small intestine across individuals highlights 
the value of using absolute rather than relative microbial loads when investigating 
potential associations between small-intestine microbes and physiological factors9, 26, 

27. 
In this study, we selected a cohort of 250 individuals from the REIMAGINE study3 
to assess the absolute microbial loads in the human duodenum and their potential 
relationship with factors related to health and disease. We also surveyed the oral 
microbiome in a subset of 21 individuals from this cohort to understand the 
relationship between microbial taxa at these two body sites. We utilized our recently 
developed digital PCR anchored 16S rRNA gene amplicon sequencing method to 
provide absolute taxon abundances and filter out contaminants in samples with low 
microbial abundance9. We also used our optimized sample-collection procedure with 
a custom double lumen sterile closed catheter system and optimized processing steps 
to minimize oral, gastric and dead microbial contamination28. We hypothesized that 
by capturing the absolute microbial abundances of the human duodenal and oral 
microbiome we would be able to better understand the makeup of the human 
duodenal microbiome, improve the understanding of the underlying community 
structure of SIBO, and determine how microbial load and composition correlate with 
upper GI symptoms.  
 
Results 
We studied the microbiome of the duodenum and its potential relationship with 
health and disease in a cohort of 250 patients enrolled in the REIMAGINE study at 
Cedars-Sinai Medical Center. All patients undergoing esophagogastroduodenoscopy 
(EGD) without colonoscopy preparation as standard of care were eligible to enroll, 
resulting in patients with a wide range of GI conditions. We grouped the reason for 
endoscopy into 11 broad categories (Table S3.1). The most common (45% of the 
patient population) reasons for endoscopy were to rule out cancer/polyps and 
GERD/dyspepsia workup. No healthy controls are currently approved to be included 
in the study due to the risks associated with the EGD procedure. Summary statistics 
for patient demographic data and selected metadata categories from the enrollment 
questionnaire are included in Table S3.1. 
 
Total microbial load of the duodenum across patients with GI symptoms is log-
normally distributed 
A digital PCR-based determination of total microbial load9, 29 from 250 human 
duodenal aspirates revealed samples that spanned loads from our detection limit of 
~5x103 rRNA gene copies/mL up to nearly 109 copies/mL. The overall distribution 
of total loads was log-normal with mean = 6.13 Log10 copies/mL and standard 
deviation = 1.12 Log10 copies/mL (Figure 3.1 A, B). A quantile-quantile (QQ) plot 
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was constructed to compare the sample distribution to a log-normal distribution 
(Figure 3.1B). Data from our samples aligning with the y = x line on a QQ-plot 
indicate a high similarity between the sample distribution and a theoretical log-
normal distribution30. Neither age nor gender significantly correlated with total 
microbial load (Figure S3.1). Total microbial load also did not correlate with patient 
reported intake of probiotics supplements or yogurts, smoking, or usage of proton 
pump inhibitors (Figure S3.2, Table S3.2). Current antibiotic usage appeared to lower 
the average total microbial load, but antibiotic usage in the previous 6 months had no 
impact (Figure S3.2, Table S3.2).  

 
Figure 3.1: Microbial load distribution across 250 human duodenal aspirate samples. (A) 
Histogram of the total microbial load in 250 duodenal aspirate samples overlaid with a kernel-density 
estimate. (B) Quantile-quantile plot comparing the sample distribution of the log10-transformed total 
microbial load in duodenal aspirate samples to a normal distribution. (C) Kernel-density estimate plots 
showing the absolute abundance distribution for the taxa with greater than 50% prevalence in duodenal 
aspirates. Prevalence (defined as a taxon’s frequency of occurrence in our dataset) and number of 
samples with each genus are labeled next to the distribution. A legend indicates strict anaerobes (red 
line through O2) and the location each genus is commonly found (saliva and/or stool)31, 32. 
Classification of taxa as common in stool or saliva was determined by prevalence of ≥50% (stool data 
are not included in this study) in the 16 participants for whom we had paired samples. 

 
Digital PCR anchored 16S rRNA gene amplicon sequencing9 (hereafter quantitative 
sequencing) provided absolute taxon abundances in each sample and a statistical 
framework for differentiation between real and contaminant taxa (Methods). We first 
compared the culture counts from aerobic (MacConkey agar) and anaerobic (blood 
agar) plates to the total load of microbes expected to grow on these plates (Figure 
S3.3). For aerobic plating, we observed a bimodal distribution of combined 
Escherichia-Shigella, Enterobacteriaceae, Enterococcus, and Aeromonas bacterial 
load from quantitative sequencing and culture and a high correlation between the two 
measurements (Spearman, 0.61, P < 0.001, N=244). For anaerobic plating, we 
observed lower concordance (Spearman, 0.35, P < 0.001, N=244) between 
quantitative sequencing and culture. This discrepancy could reflect the difficulty in 
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culturing many intestinal microbes33, especially anaerobes that are initially collected 
and processed in aerobic environments. 
Next, we analyzed the log-transformed absolute-abundance distributions for the most 
prevalent genera in our dataset (Figure 3.1C). We define prevalence as a taxon’s 
frequency of occurrence in our dataset. Streptococcus was present in all 250 samples 
and followed an approximately log-normal distribution with a mean load that was 
half an order of magnitude below that of the mean total microbial load and an equal 
standard deviation. Other genera showed wide-ranging distributions that deviated 
from normality. For example, Porphyromonas appears bimodal with two local 
maxima whereas Haemophilus exhibits a long tail towards higher microbial loads. 
The 23 most prevalent genera in this study are also commonly found in the oral 
microbiota31. A subset of these genera (Streptococcus, Veillonella, Prevotella 7, 
Haemophilus) are also commonly found in stool samples, indicating possible 
survival of these genera throughout the entire GI tract32. The majority of prevalent 
genera are either strict or facultative anaerobes, indicating that parts of the duodenal 
environment are likely anoxic in this patient population. 
 
Direct transmission of microbes from saliva to duodenum 
To investigate whether many of the taxa found in the duodenum originated from the 
oral cavity we analyzed a subset of 21 patients for whom we had paired saliva and 
duodenum samples that were collected during the same hospital visit. Digital PCR 
revealed that the total microbial load in saliva was roughly 2.5 orders of magnitude 
higher than the total load in the duodenum (Kruskal-Wallis, P < 0.001).  
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Figure 3.2: Relationship between saliva and duodenal aspirate microbiomes. (A) Total microbial 
load of 21 paired duodenal aspirate and saliva samples. (B) No significant correlation between the total 
microbial load of 21 paired duodenal aspirate and saliva samples. (C) Percentage of taxa in duodenal 
aspirate samples also present in paired (same patient) vs the average of all non-paired saliva samples 
(Kruskal-Wallis, P<0.001). (D) Volcano plot showing the ratio of relative abundances of species in 
duodenum vs saliva samples. The red dashed line indicates a significance threshold at q=0.1 (Kruskal-
Wallis with Benjamini-Hochberg correction). Undefined Streptococcus sp. classified as S. pneumoniae 
with 80% confidence and one base pair mismatch to common Streptococcus taxon found in all 
samples. 

 
Further, the range in saliva total loads was 3 orders of magnitude smaller than the 
range in total loads of the duodenum samples (Figure 3.2A). No significant 
correlation was observed between the total microbial loads in paired saliva and 
duodenum samples (Figure 3.2B). In this study, all samples were collected with a 
custom double-sheathed catheter via endoscope (see Methods) that moves beyond 
the outer sheath before aspirating duodenal fluid. This custom catheter should limit 
oral microbiota contamination of the duodenum during the procedure. Additionally, 
the optimized sample-processing protocol (see Methods) should eliminate 
extracellular DNA from swallowed dead bacteria.  
To evaluate the direct transmission of microbes from saliva to duodenum, we 
compared the shared taxa between paired (same patient) and randomly paired 
samples from the same dataset. On average, 89% (±6% S.D.) of the taxa in the 
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duodenum were also found in the paired saliva sample, whereas only 66% (±9% 
S.D.) were found in the average of all non-paired comparisons (Figure 3.2C, Kruskal-
Wallis, P < 0.001), suggesting direct transmission of oral taxa to the duodenum. We 
then looked for genera that were proportionally enriched in either saliva or duodenum 
samples. Campylobacter was present in 21/21 saliva samples but only 10/21 
duodenum samples. The absence of Campylobacter in about half of the paired 
duodenum samples indicates the oral cavity may be the preferred niche of 
Campylobacter or that Campylobacter has a high sensitivity to the antibacterial 
properties of the stomach and small intestine34 (Figure 3.2D). In contrast, an 
undefined species of Streptococcus was only found in duodenum samples (6/21) 
(Figure 3.2D). A breakdown of the difference between duodenal and saliva 
abundance of all taxa is provided in Table S3.3. These differences in the relative 
abundance of specific taxa of microbes between paired saliva and duodenum samples 
also provide evidence against oral contamination in the duodenal samples. 
 
Taxa co-correlations reveal disruptor taxa 
We assumed that the taxa with the highest absolute abundance would have the highest 
potential for impacting the host. Thus, we began by analyzing the relationships 
between the top 20 most abundant genera. A co-correlation heatmap of these taxa 
revealed several distinct motifs (Figure 3.3A): (1) Taxa whose absolute loads had a 
high correlation with total load, (2) taxa whose absolute loads had a higher co-
correlation with another taxon’s absolute load than with total microbial load, (3) taxa 
with a mutually exclusive relationship with almost all other abundant taxa. Examples 
of the first motif are in the first column/row of the co-correlation heatmap in Figure 
3.3A. Correlation with total load was often an indicator of a prevalent taxon because 
the variance in total microbial load was larger than the variance in relative abundance. 
When two taxa have a higher co-correlation with each other than with total load 
(motif 2) it potentially indicates these taxa share preferred environmental factors or 
directly cooperate. One group of these co-correlating taxa that included several 
Prevotella species and a species of Porphyromonas matches a known shared 
metabolic niche in the oral cavity35, 36 (Table S3.4).  
Several genera stood out as having no significant correlation with almost all other 
abundant taxa (motif 3): Enterobacteriaceae, Escherichia-Shigella, Clostridium 
sensu stricto 1, and Lactobacillus (Figure 3.3A). For clarification, throughout the 
manuscript our references to Enterobacteriaceae and Escherichia-Shigella refer to 
unique sequence variants from the Enterobacteriaceae family, but only Escherichia-
Shigella could be classified at the genus level. Based on evidence from a previous 
study18 using the REIMAGINE cohort that found Klebsiella in several samples, we 
decided to measure the abundance of Klebsiella via qPCR in all samples containing 
a high abundance (at least 105 16S rRNA gene copies/mL) of Enterobacteriaceae. 
We found that the majority (16/22) of the samples with a high abundance of 
Enterobacteriaceae contained Klebsiella (Figure S3.4A). Furthermore, in the 
samples containing Klebsiella, there was a high correlation (Pearson, 0.88, P < 0.001) 
between Klebsiella load and Enterobacteriaceae load (Figure S3.4B). These taxa 
appeared to disrupt the commonly observed microbial structure (i.e., the prevalent 
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taxa that generally co-correlate with one another) of the duodenal microbiome. This 
pattern of mutual exclusivity can be represented algorithmically by sorting all taxa 
by the difference between their maximum abundance and their mean abundance. 
Practically, this means that these disruptors are relatively rare (i.e., present in a small 
fraction of samples), but when they are present they usually dominate, excluding 
other common taxa. A clustered heatmap of the top 16 taxa as ranked by the 
difference in their maximum and mean abundances reveals two taxonomic signatures 
(Figure 3.3B). The first signature in the top left of the heatmap contained the 
mutually-exclusive taxa from the co-correlation heatmap, along with Enterococcus, 
Romboutsia, Aeromonas, and Bacteroides. The second signature contained taxa that 
were generally found in lower abundance, many of which are from the HACEK 
(Haemophilus, Aggregatibacter, Cardiobacterium, Eikenella, Kingella) group of 
organisms associated with infective endocarditis34. However, the second group also 
clustered with more common taxa in this dataset, such as Prevotella and 
Fusobacterium. Thus, we initially labelled all eight of the taxa in the first taxonomic 
signature as “disruptors” (Figure 3.3B, bolded taxa) because their presence appeared 
to be mutually exclusive with many other common taxa. 
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Figure 3.3: Co-correlations reveal which taxa co-occur in high abundance and which can be 
considered disruptor taxa. (A) Co-correlation matrix of the top 20 most abundant genera and total 
microbial load. Only significant correlations (q<0.1, Benjamini–Hochberg correction) are shown. 
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Color of each marker is determined by the sign of the Spearman’s correlation coefficient and size of 
each marker is determined by the magnitude of the coefficient. Disruptor taxa labels are bolded. (B) 
Clustered co-correlation matrix of the top 16 genera ranked by the difference between their maximum 
abundance and mean abundance. Two common genera in the dataset are shown at the bottom for 
reference. The color of each square indicates the Spearman correlation coefficient from negative (blue) 
to positive (red). Disruptor taxa labels are bolded. Taxa with known relevance to human health are 
indicated. Enterobacteriaceae and Escherichia-Shigella are unique sequence variants from the 
Enterobacteriaceae family but only Escherichia-Shigella could be classified at the genus level. 
HAI=hospital acquired infection; IBS, irritable bowel syndrome; IBD, inflammatory bowel disease; 
HACEK, Haemophilus, Aggregatibacter, Cardiobacterium, Eikenella, Kingella. 

 
Aerobic disruptor taxa displace strict anaerobes and decrease diversity 
After performing the co-correlation analysis, we ran a principal component analysis 
(PCA) on the absolute taxon abundances to investigate the drivers of variance in the 
dataset (Figure 3.4A). Total loads spanned 5 orders of magnitude, accounting for 
most of the variance. Total load cleanly separated samples along the PC1 axis. The 
second most explanatory axis, PC2, strongly correlated with the Shannon diversity 
index of samples (Spearman, 0.74, P < 0.001, N=250). Ranked feature loadings for 
PC2 (Figure 3.4B) indicated that many of the disruptor taxa (dark blue) are the main 
drivers of separation in the positive direction of PC2 whereas the five taxa driving 
most of the separation in the negative direction (light blue) of PC2 consisted of four 
strict anaerobes (Porphyromonas, Leptotrichia, Prevotella, Prevotella 7) and one 
obligate aerobe (Neisseria). It should be noted that many more taxa were strongly 
associated with the negative direction of PC2 than the positive direction. This 
separation matches well with the mutual exclusivity seen between the disruptor taxa 
and other organisms in the co-correlation analysis. The two disruptor taxa with the 
highest loads are aerobic pathogens from the Enterobacteriaceae family and the taxa 
most associated with the negative direction of PC2 were strict anaerobes, so we next 
took a closer look at the composition of strict vs facultative anaerobes in each sample. 
We found a nearly 1:1 correlation between the strict and facultative anaerobe loads 
across all samples (Figure 3.4C). Additionally, the fraction of strict anaerobes in a 
sample was strongly correlated (Pearson, 0.71, P < 0.001, N=250) with Shannon 
diversity (Figure 3.4D), indicating that the disruptor taxa appear to be mutually 
exclusive with strict anaerobes and the “bloom” of absolute abundance of disruptors 
decreases Shannon diversity. Furthermore, in half of the samples containing the two 
most common disruptor taxa (Enterobacteriaceae and Escherichia-Shigella), the 
total microbial loads were greater than 107 16S rRNA gene copies/mL, indicating a 
clear enrichment of disruptor taxa in samples with higher than average total microbial 
loads (Figure 3.4E). This signature of higher than average total microbial loads and 
mutual exclusivity with other microbes has been observed in some pathogenic 
microbial species37, 38. 
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Figure 3.4: Strict anaerobes and disruptor taxa control diversity. (A) PCA plot of absolute 
microbial abundances at the genus level with the top two correlated metadata variables overlaid. (B) 
Feature loadings for principal component 2. Top five value-ranked genera in each direction (positive 
and negative) are highlighted and labeled. (C) Correlation between the strict anaerobic microbial load 
and facultative anaerobic microbial load. (D) Relationship between the percentage abundance of strict 
anaerobes and Shannon diversity index. (E) Empiric cumulative distribution function (ECDF) plot for 
Enterobacteriaceae (N=33), Escherichia-Shigella (N=24), Campylobacter (N=59), Lactobacillus 
(N=42) and the common taxa Prevotella (N=104). 

 
Absolute load of disruptor taxa correlates with SIBO and GI symptoms 
To determine whether disruptor taxa are associated with disease or GI symptoms we 
began by looking at patients with and without SIBO (SIBO classification was made 
based on aerobic culture results, ≥103 CFU/mL of duodenal aspirate10). Coloring the 
PCA plot by SIBO classification indicates a clear enrichment of patients with SIBO 
in the positive direction of the disruptor taxa axis (Figure 3.5A). We observed slightly 
but not significantly higher total microbial loads in samples from patients with SIBO 
vs without SIBO (Figure 3.5B). However, comparing the absolute abundance of 
specific taxa between the SIBO and non-SIBO samples by Kruskal-Wallis showed 
that the three taxa whose abundances differed the most between SIBO and non-SIBO 
(Enterobacteriaceae, Escherichia-Shigella, and a Clostridium which, based on the 
V4 region of the 16S rRNA gene, was classified as Clostridium perfringens) were 
also the three most common disruptor taxa in all samples (Figure 3.5C). This 
enrichment of disruptor taxa, but not total microbial load, in SIBO samples indicates 
that overgrowth of specific taxa drives the current clinical classification of SIBO. 
Additionally, using disruptor taxa load as the criterion for SIBO classification agreed 
well (80%) with the classification by the gold-standard method, aerobic aspirate 
culture (Figure S3.5). Lactobacillus abundance was similar in SIBO and non-SIBO 
samples (Figure 3.5C) even though it co-correlated with many of the disruptor taxa 
(Figure 3.3B). Most of the non-SIBO samples that clustered with SIBO samples on 
the upper part of the PC plot contained Lactobacillus (Figure 3.5A). Lactobacillus 
does not grow on the aerobic (MacConkey agar) plates used for SIBO classification, 
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which could explain why these samples cluster together by sequencing but are not 
classified as SIBO by culture. 
 

 
Figure 3.5: Disruptor species are dominant in SIBO samples and correlate with GI symptoms 
and the inflammatory cytokine IL8. (A) Principal component analysis (PCA) of absolute microbial 
abundances at the genus level. Colors indicate non-SIBO (grey) or SIBO (orange) participants as 
determined by culture. “X” markers indicate samples from non-SIBO participants that contained 
Lactobacillus. The PC1 axis correlates with total load and the PC2 axis correlates with the abundance 
of disruptor taxa. (B) Histogram with overlaid kernel-density estimate of the total microbial loads in 
samples from SIBO and non-SIBO participants. (C) Volcano plot indicating the taxa that differed 
between SIBO and non-SIBO samples. The red dashed line indicates the significance threshold at 
q=0.01. (D) Correlation between PC2 (disruptor axis) and patient-reported symptom scores (on a 0-
100 scale). The red dashed line represents significance threshold at q=0.05. (E) Correlation between 
PC2 and patient serum cytokine levels. The red dashed lines represent the significance thresholds at 
q=0.05. (F) Boxplot indicating increasing average total microbial load with increasing number of 
disruptor taxa with loads greater than 104 rRNA gene copies/mL (not including Lactobacillus). A 
significant difference between total load in samples with zero disruptor taxa and total load in samples 
with at least 1 disruptor taxa was observed (P<0.001). (G) Percentage of samples from patients with 
either 0 symptoms or 5-6 symptoms (out of 6 categories) for individuals with varying loads of disruptor 
taxa (not including Lactobacillus).  
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Patient-reported GI symptom scores (on a 0-100 scale) were correlated with the 
disruptor taxa axis (PC2). Bloating, incomplete evacuation, and constipation had the 
highest correlation with the disruptor taxa axis, whereas correlations between 
urgency, excess gas, or diarrhea and the disruptor taxa axis were much weaker 
(Figure 3.5D). There was a weak positive correlation between the disruptor taxa axis 
and serum interleukin 8 (IL8) levels (Spearman, 0.24, P < 0.001, N=232), indicating 
a potential neutrophil-related response (Figure 3.5E). However, none of the 
symptoms or cytokines had a significant correlation with the total load axis (PC1). 
One taxon, which based on the V4 region of the 16S rRNA gene was classified as C. 
perfringens, was the only one that, when present in patients, coincided with a 
significant increase (Kruskal-Wallis, P=0.039) in serum IL8 levels (Figure S3.6). 
However, there were only 9/250 samples with C. perfringens, limiting our ability to 
draw conclusions about this relationship. Although the two disruptor taxa with the 
highest absolute abundance (Enterobacteriaceae and Escherichia-Shigella) were 
enriched in high total microbial load samples, Lactobacillus did not follow this trend. 
Lactobacillus was found in samples with total microbial loads that were similar to 
the total loads of samples containing common taxa like Prevotella (Figure 3.4E). 
Additionally, in patients with high disruptor taxa loads (after excluding Lactobacillus 
load) the presence of Lactobacillus at greater than 5x104 copies/mL negatively 
correlated with bloating symptoms (Figure S3.7). These two facts led us to believe 
Lactobacillus likely has a more nuanced relationship with the host than the other taxa 
we classified as disruptors. Thus, we removed Lactobacillus from our list of disruptor 
taxa in our analyses of the association of disruptors with total load (Figure 3.5F) and 
GI symptoms (Figure 3.5G). When multiple disruptor taxa were present, there was a 
significant increase in total microbial load (Kruskal-Wallis, P < 0.001; Figure 3.5F). 
Patient-reported symptom scores are inherently qualitative, so to test whether 
disruptor taxa loads were correlated with more severe GI symptoms, we turned the 
0-100 scores into a binary yes/no variable, representing a severe symptom, by 
drawing a threshold at the median score reported for each symptom (Figure S3.8). 
We then calculated the percentage of patients with zero severe symptoms and the 
percentage of patients with many severe symptoms (people reporting severe 
symptoms in 5-6 of the 6 symptom categories) as a function of disruptor taxa loads 
(Figure 3.5G). We made three observations. First, at higher disruptor loads, patients 
were more likely to have more severe GI symptoms. Second, none of the patients 
with disruptor loads greater than 107 copies/mL (N=10) had zero symptoms whereas 
60% of them had 5 or 6 symptoms. Of the patients without disruptor taxa (N=153), 
23% had zero symptoms and 30% had 5 or 6 symptoms. Disruptor loads may also be 
higher as a function of age, all but one of the individuals with disruptor loads greater 
than 106 copies/mL (N=23) were older than 50 (Figure S3.9). The absolute and 
relative abundances of disruptor taxa did not correlate (Figure S3.10), preventing the 
clear connection between abundant symptoms and high absolute loads of disruptor 
taxa from being observed when analyzing only relative abundances. 
 
Discussion 
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In this study, we utilized quantitative sequencing to determine the total and taxon-
specific loads from the duodenum of 250 patients undergoing EGD as standard of 
care. We showed that the total microbial load in the duodenum of these patients spans 
5 orders of magnitude and follows a log-normal distribution. Paired saliva-duodenum 
samples revealed that on average 89% of the taxa in the duodenum were also present 
in paired saliva samples, suggesting potential transmission of taxa from the oral 
cavity. Co-correlation analysis of the most abundant taxa revealed a distinct 
taxonomic motif of “disruptor” taxa that, when present, dominate over other taxa. 
The most common of these disruptor taxa were aerobic pathogens from the 
Enterobacteriaceae family and were negatively correlated with the presence of strict 
anaerobes and diversity. In addition to the apparent community disruption, disruptor 
taxa were enriched in many patients classified as having SIBO and high loads of 
disruptors correlated with a high prevalence of severe GI symptoms. 
 
Human vs mouse small-intestine microbiome 
Several findings from this study emphasize how different the small-intestine 
microbiome is between mice and humans. Our previous study revealed that the 
coprophagic nature of mice resulted in total microbial loads spanning approximately 
one order of magnitude from 5x108–5x109 16S rRNA gene copies/mL8 in the small 
intestine while our human cohort spanned 5 orders of magnitude with a median of 
106 copies/mL (Figure S3.11). Additionally, neither the most common disruptor 
family, Enterobacteriaceae, nor any of the taxa with at least 50% prevalence in this 
study were commonly found in our previous study examining microbial loads in the 
mouse small intestine8. Instead, in that study we found that the mouse small intestine 
was dominated by Lactobacillus and, as a result of coprophagy, several stool 
microbes8. The total microbial load of stool is similar between mice and humans39 
and they both share several common taxonomic groups40. These differences should 
be considered when using mice to model human health or disease impacted by the 
small intestine. 
 
Value of quantitative analysis 
The nearly 5 orders of magnitude spread in total microbial loads in the duodenum of 
these patients revealed the value of utilizing an absolute abundance measurement 
technique when analyzing microbial communities. Analyzing absolute abundances 
of individual taxa also let us filter out likely contaminants using Poisson loading 
statistics, which is critical for samples with low microbial abundance, such as those 
sometimes found in the human small intestine41, 42. The range of total loads in saliva 
and in stool each appear to be smaller than in the duodenum, closer to two orders of 
magnitude, which likely relates to differences in residence times, nutrient 
availability, and host defenses at these two sites compared with the small intestine39. 
Another benefit of using absolute rather than relative abundance measurements is the 
improved accuracy of correlations between microbes and host phenotype. For 
example, the 10 patient samples with the greatest disruptor loads had the highest 
prevalence of severe GI symptoms, but these samples had relative abundances of 
disruptor taxa that ranged from 8-97%. This wide range of relative abundances made 
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samples with high disruptor loads indistinguishable from samples with intermediate 
disruptor loads when analyzing relative abundances. 
 
Microbial connection between oral cavity and small intestine 
The majority (89%) of identified microbial taxa in the paired duodenum samples 
were also present in the paired saliva samples. Our data supports the hypothesis of 
oral-duodenal transmission of microbes but a larger paired study utilizing shotgun 
metagenomic sequencing techniques would provide stronger evidence for this claim. 
Survival of microbes after ingestion is likely dependent on many host factors, 
including stomach-acid levels, bile secretions, antimicrobial-peptide production, and 
GI motility. The bimodal taxon abundance distributions (Figure 3.1C) observed for 
some taxa, including Prevotella, may indicate two subsets of patients with distinct 
stomach and/or duodenal environments that allow for differential abundance of 
specific taxa. For example, Campylobacter concisus, one of the most common oral 
Campylobacter species, is known to be sensitive to both stomach and bile acids34. 
Therefore, one could hypothesize that if a patient had low levels of stomach or bile 
acids some C. concisus may survive ingestion. Low-acid conditions could also allow 
many other bacteria to survive transit to the duodenum, resulting in higher total 
microbial loads in the small intestine. We suspect we observed something similar in 
our samples; the Campylobacter genus was only found in samples with greater than 
average total microbial loads (Figure 3.4E). However, we did not observe a 
relationship between total microbial loads in the duodenum and the patients’ use of 
proton pump inhibitors (PPI), which are known to reduce acid production. PPI impact 
on survival of microbes between the oral cavity and duodenum may be dependent on 
how recently the PPI was taken, however this information was not collected from 
patients in the REIMAGINE study. A conclusive comparison of the relative 
importance of various factors affecting bacterial survival in the duodenum would 
require additional information on small-intestine secretions of bile acids and 
antimicrobial peptides in these patients. 
Several common oral microbes have been implicated in GI diseases when present in 
stool31, 43. A high microbial load in the small intestine could increase the likelihood 
of these microbes surviving all the way down the GI tract. The shared taxa between 
the small intestine and oral microbiota in our paired saliva-duodenum samples 
provides evidence that blooms of opportunistic pathogens in the mouth could also 
lead to colonization in the SI31. In this study, only 1 of the 21 paired duodenum-saliva 
samples contained disruptor taxa in the duodenum, but these taxa were not present in 
the corresponding saliva sample. Several Enterobacteriaceae species have been 
identified in oral samples44 but usually at a low frequency in healthy populations. 
Many Enterobacteriaceae species are introduced into the gut from contaminated 
food and water sources45 which would likely result in only transient oral residence. 
However, persistent oral Enterobacteriaceae species have been linked to the use of 
dentures and the presence of periodontal disease46. All the taxa we classified as 
disruptors in this study are more frequently found in stool than in the small intestine 
or oral cavity31, 32. Further studies should be performed to determine the source of 
disruptor taxa in the upper GI tract.  
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A number of taxonomic groups we identified in the duodenum have members known 
to be opportunistic pathogens. Beyond disruptor taxa, several taxa from the HACEK 
group of organisms47 associated with infective endocarditis were found in high 
abundance in the duodenum. The route that these and other opportunistic pathogens 
take to reach the blood stream is not clear but our data show that the HACEK 
organisms are not limited to the oral cavity. The same traits that allow them to 
colonize the mouth and heart (biofilm production48, and general resistance to most 
host secretions) likely contribute to their ability to survive in the small intestine. 
Additionally, in mouse models, the transmission of opportunistic pathogens, like 
Klebsiella, from the oral cavity to the intestine has been shown to induce 
inflammation31. The oral cavity presents a potential reservoir for a wide range of 
opportunistic pathogens that have been linked to GI disorders.  
 
Potential relationship between oxygen and disruptor taxa 
Several colonic GI disorders are linked to increased oxygen levels in the lumen 
resulting from decreased epithelial integrity and inflammation49. However, the 
barrier properties of the small intestine, an absorptive organ, are different from those 
of the colon. To our knowledge, shifts in absolute abundance of microbes capable of 
aerobic respiration and anaerobes has not been quantitatively studied previously in 
the human small intestine. The highly correlated abundance of both strict and 
facultative anaerobes that we observed could be a function of the oxygen gradients 
in the gut from the epithelial surface to the center of the lumen50. In our study, when 
diversity collapsed and disruptor taxa bloomed, the microbial composition shifted 
away from strict anaerobes to taxa capable of aerobic respiration. One clear outlier 
was a Clostridium classified as C .perfringens, which is a strict anaerobe but was 
highly correlated with the Enterobacteriaceae genera classified as disruptors. 
Previous mutualistic relationships between aerobic and anaerobic species that could 
help facilitate colonization have been observed in other studies with Bacteroides 
fragilis and either Klebsiella pneumonia or Escherichia coli51, 52. We have previously 
hypothesized that the surprising coexistence of aerobe-anaerobe communities can 
occur in multi-stable systems, and that these communities can persist due to 
hysteresis51. Although multi-stability and hysteresis have not yet been documented 
in the gut microbiome, this phenomenon could explain the unexpected coexistence 
and persistence of aerobe-anaerobe communities in the small intestine. 
 
Disruptor taxa predict SIBO classification and likelihood of GI symptoms 
Clinically, SIBO is classified by culture of duodenal aspirates on aerobic MacConkey 
agar or measurement of exhaled hydrogen and methane after intake of a fermentable 
sugar solution10, 53. The main disruptor taxa (Enterobacteriaceae) grow well on 
MacConkey agar plates, which may explain the high correlation between SIBO 
classification and samples with disruptor taxa. It is commonly hypothesized that 
overgrowth of these taxa in the small intestine is responsible for the gas production 
detected during a breath test, and our study further supports this understanding 
because we found a correlation between bloating symptoms (attributable to gas 
production) and disruptor taxa. Future studies should determine whether individuals 
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with and without high loads of disruptor taxa yield positive breath test results. Our 
findings support a strong relationship between overgrowth of specific disruptor taxa 
and GI symptoms in subjects with SIBO. High total microbial load alone in the small 
intestine was not associated with GI symptoms usually observed in subjects with 
SIBO and other GI conditions and diseases. Microbial culture is never perfect and 
will not capture all taxa associated with SIBO and GI conditions. However, our data 
suggest that SIBO diagnosis via microbial culture should focus on quantification of 
a specific group of disruptor taxa (Enterobacteriaceae) rather than total microbial 
load. Additionally, SIBO diagnosis via quantitative sequencing should focus on the 
absolute abundance of the seven disruptor taxa identified in this study. 
Lactobacillus seemed to be an exception among the disruptor taxa in several ways. It 
commonly co-occurred with other disruptors; however, it was also present in many 
“normal” samples at low abundance. Additionally, when present at high total loads 
in the presence of other disruptor taxa, Lactobacillus load had a negative correlation 
with bloating score. However, Lactobacillus also dominated several samples that had 
no other disruptor taxa but had high symptom scores. It should also be noted that 
individuals taking probiotics (N=49) did not have increased prevalence or abundance 
of Lactobacillus in the duodenum. Overall, finer taxonomic resolution may be 
required to decipher the role of different Lactobacillus species and strains. Their 
impact on human health is likely also dependent on the overall microbial community 
and host environment. 
Although most patients in this study have various GI complications that could result 
in abdominal symptoms independent of a microbial component, patient samples with 
high loads of disruptor taxa had a substantially higher likelihood of having many 
severe GI symptoms. However, total microbial load alone did not associate with GI 
symptoms. Of the 13 cytokines and chemokines measured, only IL8 levels were 
significantly higher in the serum of patients with disruptor taxa, potentially indicating 
an associated local inflammatory process. Future studies that analyze biopsy 
transcriptomes would be needed to determine whether there is an associated host 
response, such as immune infiltration or epithelial stress responses in regions with 
disruptor taxa and/or high total microbial loads. 
We initiated this study with four expectations, only one of which was supported by 
our data. Because mice are coprophagic and humans are not, we expected to see a 
dramatic difference between mouse and human small-intestine microbiomes. We 
indeed observed large quantitative and qualitative differences between the two. 
However, we were more surprised and educated by the three expectations that were 
shown to be incorrect. First, we expected microbial load in the human duodenum to 
have a bimodal distribution, with low microbial loads for non-SIBO patients and 
much higher load for SIBO patients, which our findings did not support (Figure 
3.5B). Second, because stomach acid and bile acid secretions isolate the duodenum 
from the upper GI tract and because the unidirectional flow of digesta and the 
ileocecal valve isolate the small intestine from the colon, we expected to find a unique 
population of microbes in the duodenum. We were surprised by the extent to which 
the oral microbiota appeared to influence the small-intestine microbiota (Figure 3.1C, 
Figure 3.2). Third, we expected to see microbiomes dominated by taxa generally 
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thought of as commensals like Lactobacillus and Bifidobacterium. We were 
surprised by the prevalence and abundance of taxa known to be human pathogens 
(Figure 3.1C, Figure 3.3B), especially given that the small intestine is an immune-
rich, absorptive organ with a loose mucus structure that likely permits substantial 
exposure to microbial cells and microbial-associated proinflammatory molecules.   
 
Limitations 
An acknowledged limitation of the study is that there are no healthy controls. All 
participants had some GI condition warranting the EGD procedure, which could bias 
our dataset and mask our ability to perceive relationships between microbial 
abundances and patient symptoms. New sampling techniques may be required to 
reduce the procedural risk involved with sampling healthy controls. Additionally, all 
collected samples in this study were from the lumenal contents of the duodenum. 
Distal regions of the small intestine may reveal further insights, and mucosal biopsies 
could be more indicative of mucosa-associated microbes that interact closely with 
the host. Although short amplicon sequencing allowed for more samples to be 
included in this study, utilizing shotgun sequencing approaches to reveal species- and 
strain-level resolution could provide additional insights, especially with regard to 
disruptor taxa and potential transmission of taxa from saliva to the duodenum. 
Additionally, DNA-based analyses can only inform which microbes are in a sample, 
not whether they are actively performing a function. RNA-based analyses, either 16S 
rRNA or meta-transcriptomics, may shed additional light on which microbes are 
resident vs transient members of the duodenum and what functions they are 
performing. Finally, to truly unravel the connection between oral-to-small intestine 
microbial transmission and small-intestine microbe-host interactions, a more 
extensive characterization of the host is needed. Specifically, studies are needed to 
establish how variations in stomach acid levels, bile secretions, and GI motility 
impact the abundance and composition of small-intestine microbiota and in turn how 
the abundance and composition of small-intestine microbiota impacts immune and 
epithelial cell responses. 
 
Conclusions 
This study, with its acknowledged limitations, provides the largest dataset of the 
absolute abundance of microbiota from the human duodenum to date. We show a 
clear relationship between the human oral microbiota and that of the duodenum. 
Furthermore, absolute taxon abundances in the duodenum reveal a distinct subset of 
disruptor taxa, associated with human pathogens, that appear to displace common 
strict anaerobes. These same disruptor taxa are enriched in some individuals 
classified with SIBO and the absolute abundance of these disruptor taxa were 
associated with more severe GI symptoms. Future studies are needed to establish the 
host factors that control total microbial load in the duodenum, the mechanism of 
appearance and persistence of disruptor taxa, and how these disruptor taxa interact 
with the host. 
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Methods 
Study population and design 
The REIMAGINE (Revealing the Entire Intestinal Microbiota and its Associations 
with the Genetic, Immunologic, and Neuroendocrine Ecosystem) study was 
conceived to explore the relationships between the small-intestine microbial 
populations and different conditions and diseases3. Male and female subjects aged 
18-80 years undergoing standard-of-care upper endoscopy 
(esophagogastroduodenoscopy, EGD) without colon preparation were prospectively 
recruited. All subjects were required to fast (from both solids and liquids, including 
water) starting at midnight the night before the procedure. The study protocol was 
approved by the Institutional Review Board (IRB) at Cedars-Sinai Medical Center, 
and subjects provided written informed consent prior to participation (IRB Protocol: 
00035192). Data presented here represents a retrospective analysis of this 
prospectively collected information. 
 
Questionnaires 
Prior to EGD, all subjects completed a study questionnaire documenting 
demographic information and family and medical history, including GI disease and 
bowel symptoms, medication use, use of alcohol and recreational drugs, travel 
history, and dietary habits and changes. Subjects also reported any known underlying 
conditions, such as GI diseases and disorders, neurologic disease, hematologic 
disease, autoimmune disease, kidney disease, heart disease and cancer. All medical 
information provided by subjects was verified through audits of medical records. All 
data were de-identified prior to analysis.  
 
Blood collection and analysis  
After completing the study questionnaire, fasting blood samples were collected in 
BD Vacutainer SST tubes (Becton Dickson, Franklin Lakes, NJ, USA). Levels of 
circulating pro- and anti-inflammatory cytokines and chemokines were analyzed on 
a Luminex FlexMap 3D (Luminex Corp., Austin, TX, USA) using a bead-based 
multiplex panel that included: GM-CSF, IFNγ, IL10, IL12P70, IL13, IL1B, IL2, IL4, 
IL5, IL6, IL8, MCP1 and TNFα (EMD Millipore Corp., Billerica, MA, USA, cat. 
#HCYTOMAG-60K).  
 
Saliva and small-intestine lumenal sample collection 
Prior to EGD procedure, saliva was collected in a sterile 5 mL tube. During the EGD 
procedure, samples of duodenal lumenal fluid were procured using a custom-
designed sterile aspiration double-lumen catheter (Hobbs Medical, Inc.)28. Duodenal 
aspirates (DA) were collected using a custom-designed sterile inner catheter which 
was pushed through a sterile bone wax cap only after the endoscopist entered the 
second portion of the duodenum, in order to reduce contamination from the mouth, 
esophagus, and stomach. After collection, samples were immediately placed on ice 
and transferred to the laboratory for further analysis. 
 
Aspirate processing and microbial culture 
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Prior to microbial culture, an equal volume of sterile 6.5 mM dithiothreitol (DTT) 
prepared with RNase and DNase PCR-grade sterile water was added at a 1:1 ratio to 
each saliva and duodenal aspirate (~1mL) and the samples were vortexed until fully 
liquified (~30 sec) as described previously28. A 100 µl aliquot of each duodenal 
sample (DA+DTT) was then serially diluted with 900 µL sterile 1x PBS and plated 
on MacConkey agar (Becton Dickinson), and on blood agar (Becton Dickinson). 
Plates were incubated at 37 °C for 16-18 h under aerobic (MacConkey) or anaerobic 
(blood agar) conditions. Plates without bacterial growth after 18 h were re-incubated 
for an additional 18 hours. Colony forming units (CFU) were then counted 
electronically using a Scan 500 (Interscience, Paris, France). Saliva+DTT and the 
remainder of each DA+DTT were centrifuged at maximum speed (>13000 RPM) for 
5 min. The supernatant was removed, and 1 mL of sterile Allprotect reagent (Qiagen, 
Hilden, Germany) was added to the microbial pellet and then stored at -80°C.  
 
DNA isolation 
On the day of the DNA isolation, DA pellets were thawed on ice and processed as 
described previously28. Microbial DNA was isolated using the MagAttract PowerSoil 
DNA KF Kit (Qiagen) on a KingFisher Duo (Thermo Fisher Scientific, Waltham, 
MA, USA), and quantified using Qubit dsDNA high sensitivity and Qubit dsDNA 
BR Assay kits (Invitrogen by Thermo Fisher Scientific) on a Qubit 4 Fluorometer 
(Invitrogen, Carlsbad, CA, USA). 
 
16S rRNA gene sequencing 
Extracted DNA was amplified, barcoded and sequenced as described previously8, 9, 

29. Briefly, amplification of the variable 4 (V4) region of the 16S rRNA gene was 
performed in 20 µL duplicate reactions with: 8 µL of 2.5X 5Prime Hotstart 
Mastermix (VWR, Radnor, PA, USA), 1 µL of 20X Evagreen (VWR), 2 µL each of 
5 µM forward and reverse primers (519F, barcoded 806R, IDT, CoralVille, IA, 
USA), 3.5 µL of water, and 3.5 µL of extracted DNA template. A CFX96 RT-PCR 
machine (Bio-Rad Laboratories, Hercules, CA, USA) was used to monitor 
amplification reactions and all samples were removed in late exponential phase 
(~10,000 FRU) to minimize chimera formation and non-specific amplification9, 54, 55. 
Amplification was performed under the following cycling conditions: 94 °C for 3 
min, up to 50 cycles of 94 °C for 45 s, 54 °C for 60 s, and 72 °C for 90 s. Several 
samples were rerun after diluting the template as they showed non-exponential 
amplification in the undiluted sample, a sign of PCR inhibition. Amplified duplicates 
were pooled together and quantified with KAPA library quantification kit (Roche, 
Basel, Switzerland) and then all samples were pooled at equimolar concentrations 
with up to 96 samples per library. AMPureXP beads (Beckman Coulter, Brea, CA, 
USA) were used to clean up and concentrate libraries before final library 
quantification with a High Sensitivity D1000 Tapestation Chip (Agilent, Santa Clara, 
CA, USA). Illumina MiSeq sequencing was performed with a 2x300bp reagent kit 
by Fulgent Genetics (Temple City, CA, USA). 
Raw reads were demultiplexed by Fulgent Genetics. Demultiplexed forward and 
reverse reads were processed with QIIME 2 2020.256. Loading of sequence data was 
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performed with the demux plugin followed by quality filtering and denoising with 
the dada2 plugin57. Dada2 trimming parameters were set to the base pair where the 
average quality score dropped below thirty. All samples were rarefied to the lowest 
read depth present in all samples (45,386 reads) to decrease biases from varying 
sequencing depth between samples58. The q2-feature-classifier59 was then used to 
assign taxonomy to amplicon sequence variants (ASV) with the Silva60 132 99% 
OTUs references. Resulting read count tables were used for downstream analyses in 
IPython notebooks (see Data Availability Section). 
 
Klebsiella specific qPCR 
Primers specific for the Klebsiella gltA gene61 (F: 5’-
CAGGCCGAATATGACGAATTC-3’ , R: 5’-CGGGTGATCTGCTCATGAA-3’)  
were first informatically evaluated for coverage across Klebsiella pneumoniae, 
Klebsiella oxytoca, and Klebsiella aerogenes via Primer-BLAST62. This primer set 
was found to have a perfect match against strains from all three tested Klebsiella 
species. These primers were also evaluated in the lab for specificity against 
Escherichia coli. No amplification after 40 cycles was observed with a DNA 
equivalent of ~106 E. coli cells from the Zymo microbial community DNA standard 
(Zymo Research, Irvine, CA, USA). Klebsiella qPCR was performed in 10 µL 
reactions with: 5 µL of Ssofast Evagreen Supermix (Bio-Rad Laboraties), 0.5 µL of 
10 µM gltA primers, and 3.5 µL of water. A CFX96 RT-PCR machine (Bio-Rad 
Laboratories) was used for amplification with the following cycling conditions: 95 
°C for 3 min, 40 cycles of 95 °C for 15 s, 62 °C for 30 s, and 68 °C for 30 s. Estimated 
conversion of cycle threshold (Cq) to copies/µL was performed where a Cq of 22.4 
equals 1000 copies/uL. Klebsiella load was then calculated by adjusting for dilutions 
and normalizing to the collected sample volume. 
 
Absolute abundance 
The total microbial load (bacteria and archaea) of each sample and the absolute 
abundance of each taxon in individual samples was determined as described 
previously9, 29. Briefly, the Bio-Rad QX200 droplet dPCR system (Bio-Rad 
Laboratories) was utilized to measure the 16S concentration in each sample with the 
following reaction components: 1X QX200 EvaGreen Supermix (Bio-Rad), 500 nM 
forward primer, and 500 nM reverse primer (519F, 806R) and thermocycling 
conditions: 95 °C for 5 min, 40 cycles of 95 °C for 30 s, 52 °C for 30 s, and 68 °C 
for 30 s, followed by a dye stabilization step of 4 °C for 5 min and 90 °C for 5 min. 
The final concentration of 16S rRNA gene copies in each sample was corrected for 
dilutions and normalized to the extracted sample volume. 
For each sample, the input-volume-normalized total microbial load from dPCR was 
multiplied by each amplicon sequence variant’s (ASV) relative abundance to 
determine the absolute abundance of each ASV. No correlation between collected 
sample volume and measured bacterial load was observed. The average of all sample 
volumes for a specific sample type was used for a few samples (11 duodenum, 10 
saliva) that were missing the starting volume information. A 95% confidence interval 
of input volumes for duodenum samples ranged from 0.18-1.93 mL indicating that 
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the estimated input volume measurement would likely be up to 4X off in either 
direction while the total microbial load ranged 40,000X. Similarly, a 95% confidence 
interval of input volumes for saliva samples range from 0.36-1.28 mL indicating that 
the estimated input volume measurement would likely be up to 2X off in either 
direction while the total microbial load ranged 82X. 
 
Poisson quality filtering 
Two separate quality-filtering steps based on Poisson statistics were used to 
determine the statistical confidence in the measured values. First, a 95% confidence 
interval was calculated from the repeated measures of water blanks. Samples with a 
total microbial load below the upper bound of this confidence interval were removed 
from further analysis.  
Second, the limit of detection (LOD) in terms of relative abundance was determined 
for each sample. Sequencing can be divided into two separate Poisson sampling 
steps. First, an aliquot of sample is taken from the extracted sample and input into 
the library amplification reaction. The LOD of the library amplification step was 
determined by multiplying the total microbial load from dPCR by the input volume 
into the library amplification reaction and then finding the relative abundance 
corresponding to an input of three copies. Poisson statistics tells us that the likelihood 
of sampling one or more copies with an average input of three copies is 95%. The 
second Poisson sampling step in sequencing arises from the number of reads 
generated from the amplified library. The accuracy of the second Poisson sampling 
step was previously shown9 to follow a negative exponential curve, 𝐿𝑂𝐷 = 7.115 ∗
𝑟𝑒𝑎𝑑 𝑑𝑒𝑝𝑡ℎି.ଵଵହ, between the total read depth and relative abundance at which 
95% confidence of detection is observed. The minimum of the two described LODs 
(first determined per sample by total load, and second by sequencing depth) was then 
determined for each sample. For each sample, the abundance of any ASV with a 
relative abundance below the LOD was set to zero. After filtering, data tables for 
each taxonomic level were generated. 
 
Data transforms and dimensionality reduction 
For PCA, all absolute taxon abundances were log-transformed. To handle zeros, a 
pseudo-count of 0.1 reads was added to all taxon relative abundances before 
multiplying by each sample’s total microbial load as determined by digital PCR. PCA 
was performed with the sklearn.decomposition.PCA function in Python. Ranked 
feature loadings for each taxon on a given principal component were determined by 
scaling the corresponding eigenvector by the maximum transformed value for that 
principal component axis. 
 
Statistical analysis and correlations 
Group comparisons (e.g., SIBO vs. no SIBO, saliva vs. duodenum) were analyzed 
using the non-parametric Kruskal-Wallis rank sums tests with Benjamini–Hochberg 
multiple hypothesis testing correction using SciPy.stats Kruskal function and 
statsmodels.stats.multitest multipletests function with the fdr_bh option. 
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Correlation coefficients were either Spearman or Pearson and corresponding P-
values for all correlations were determined with scipy.stats.spearmanr or 
scipy.stats.pearsonr functions. Multiple hypothesis testing was performed for each 
group of correlations (e.g. taxa co-correlations, cytokine correlations) separately 
using the Benjamini–Hochberg procedure. 
 
Ethic Approval and Consent to Participate 
The study was reviewed and approved by the Cedars-Sinai Medical Center IRB 
(Protocol #00035192). All participants provided written informed consent prior to 
participation. 
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Supplementary Information 

 
 

Figure S3.1: Total microbial load breakdown by age (A) and gender (B). 
 

 
Figure S3.2: Distribution of total microbial load from subpopulations of patients: taking probiotics 
(N=49), active smokers (N=16), taking antibiotics in the past 6 months (N=100), or taking proton 
pump inhibitors (PPI, N=106). 
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Figure S3.3: (A) Scatterplot comparing aerobic culture load from MacConkey plates to total load from 
16S quantitative sequencing of only the subset of bacteria that are known to grow on MacConkey 
plates (Escherichia-Shigella, Enterobacteriaceae, Enterococcus, and Aeromonas)1. (B) Scatterplot 
comparing anaerobic culture load, from blood agar plates, to total load from sequencing of prevalent 
bacteria that are expected to grow on blood agar plates (Prevotella, Streptococcus, Fusobacterium, 
Escherichia-Shigella)2. Red dashed line indicates limit of detection of quantitative sequencing method. 
N = 244. (Six patients in the study were lacking culture data.) 
 

 
Figure S3.4: (A) Cycle threshold (Cq) values yielded by qPCR with Klebsiella-specific primers. 
Duodenum aspirate samples were classified via quantitative sequencing as containing 
Enterobacteriaceae (“Entero +”, N=22) or not containing Enterobacteriaceae (“Entero –”, N=8). (B)  
Total loads of Enterobacteriaceae (copies/mL) in duodenum aspirates as a factor of the approximate 
Klebsiella load (copies/mL). Enterobacteriaceae measurements are calculated based on 16S rRNA 
gene copies (8 copies/genome) and Klebsiella measurements are calculated based on the citrate 
synthase gene (gltA, 1 copy/genome). 
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Figure S3.5: Receiver operating characteristic (ROC) curve using absolute loads of seven disruptor 
taxa (Enterobacteriaceae, Escherichia-Shigella, Clostridium sensu stricto 1, Enterococcus, 
Romboutsia, Aeromonas, Bacteroides) identified in the sequencing data for SIBO classification. SIBO 
classification was made based on gold-standard aerobic culture results, ≥103 CFU/mL of duodenal 
aspirate. Data points are connected by a line between each consecutive point. 
 

 
 
Figure S3.6: IL8 levels in samples with and without Clostridium perfringens. 
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Figure S3.7: Relationship between Lactobacillus load and bloating symptoms in samples containing 
additional (non-Lactobacillus) disruptor taxa. 

 
 
Figure S3.8: Violin plots with data points overlaid for patient-reported symptom scores. Binary 
threshold for determining whether severe symptoms exist was set at the median score reported of each 
symptom, shown by the red-dashed lines. 
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Figure S3.9: Disruptor taxa load separated by patient age: 18-39 (N=40), 40-49 (N=31), 50-59 (N=58), 
60-69 (N=67), 70-83 (N=54). 
 
 

 
Figure S3.10: Relationship between absolute abundance (greater than 105 copies/mL) and relative 
abundance of disruptor loads (Spearman, P=0.09, not significant) 
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Figure S3.11: Comparison of total microbial load between human duodenum, mouse duodenum, and 
mouse duodenum where the mice had coprophagy prevented via tail cup. Mouse data from Bogatyrev 
et al. 20203. Reported P-values are from Kruskal-Wallis test. 
 
 
 
 
 
 
 
Table S3.1: Summary statistics for the patient cohort used in this study. All patients are from the 
REIMAGINE study4. 

Total 
subjects   Total 

SIBO non-SIBO 

  Duodenal Aspirate 250 23% (58) 77% (192) 

  Saliva 21 19% (4) 81% (17) 

    Mean (Std Dev)   

   Total SIBO non-SIBO 

Age   56.9 (14.9) 61.6 (13.6) 55.5 (15.0) 

Weight (lbs)   169.4 (49.5) 166.1 (38.7) 170.4 (52.4) 

    Percent (N)   

Gender  Total SIBO non-SIBO 

  Male 46% (115) 38% (22) 48% (93) 

 Female 54% (135) 62% (36) 52% (99) 

Antibiotic 
usage      

  

  last 6 months 40% (100) 59% (34) 34% (66) 



 

 

96

 
 
 
 
Table S3.2: P-values from significance tests (Kruskal-Wallis) comparing total microbial load between 
selected subgroups of individuals. Significance is indicated with an asterisk. 
 

Comparison (N) p-value 
Taking probiotics (49) vs no probiotics (201) 0.97 
Abx past 6 months (100) vs no Abx past 6 months (150) 0.67 
Current Abx (11) vs not currently taking Abx (239) 0.04* 
Current Abx (11) vs Abx past 6 months (100) 0.02* 
Taking PPI (106) vs no PPI (144) 0.29 
Current smoker (16) vs not currently smoker (234) 0.39 

  current 4% (11) 9% (5) 3% (6) 

PPI usage       

  PPI 34% (86) 36% (21) 34% (65) 

  H2 blocker 4% (10) 7% (4) 3% (6) 

  both 4% (10) 5% (3) 4% (7) 

Any 
probiotic 
usage   20% (49) 

26% (15) 18% (34) 

Smokers   6% (16) 3% (2) 7% (14) 

Symptom 
Scores     

  

 Bloating > 50th percentile 50% 57% (33) 45% (86) 

 Constipation > 50th percentile 50% 53% (31) 46% (89) 

 
Incomplete Evacuation > 50th 
percentile 50% 

55% (32) 47% (91) 

 Excess Gas > 50th percentile 50% 57% (33) 45% (86) 

 Diarrhea > 50th percentile 50% 55% (32) 46% (88) 

Reason for 
Endoscopy   

  

 GERD/dyspepsia workup 21% (53) 16% (9) 23% (44) 

 
Possible bleeding/anemia 
workup 7% (17) 

10% (6) 6% (11) 

 Rule out cancer/polyp 24% (59) 29% (17) 22% (42) 

 Biliary disease 13% (32) 16% (9) 12% (23) 

 Dysphagia 10% (24) 9% (5) 10% (19) 

 Crohn’s disease 4% (10) 3% (2) 4% (8) 

 Functional GI disease 5% (13) 2% (1) 6% (12) 

 Rule out Celiac disease 1% (3) 3% (2) 1% (1) 

 Known peptic ulcer disease 1% (3) 0% (0) 2% (3) 

 G-tube management 1% (2) 2% (1) 1% (1) 

 Other 3% (8) 2% (1) 4% (7) 

 Missing Information 10% (26) 9% (5) 11% (21) 
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Table S3.3: Comparison between prevalence and relative abundance of all taxa in paired saliva and 
duodenum samples (N=21 participants). 
 
 

# of 
Saliva 
samp
les 
taxon 
appe
ars in 
(N=2
1 
total) 

# of 
Duod
enum 
sampl
es 
taxon 
appea
rs in 
(N=21 
total) 

Saliva 
Rel. 
Abun
dance 
(%) 

Duoden
um Rel. 
Abunda
nce (%) 

Taxonomy Difference 
between # of 
samples taxon 
is present in 
between 
Saliva and 
Duodenum 
(N=21 total) 

21 8 0.22 0.20 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Flavobacteriales;D_4__
Weeksellaceae;D_5__Bergeyella;D_6__un
cultured bacterium 

13 

19 6 0.21 0.09 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella;__ 

13 

16 6 0.27 0.05 D_0__Bacteria;D_1__Firmicutes;D_2__Ne
gativicutes;D_3__Selenomonadales;D_4__
Veillonellaceae;D_5__Selenomonas 3;__ 

10 

18 8 1.63 0.49 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Alloprevotella;D_6__un
cultured Bacteroidetes bacterium 

10 

20 10 0.93 0.07 D_0__Bacteria;D_1__Epsilonbacteraeota;
D_2__Campylobacteria;D_3__Campylobac
terales;D_4__Campylobacteraceae;D_5__
Campylobacter;__ 

10 

15 5 0.32 0.05 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Flavobacteriales;D_4__
Flavobacteriaceae;D_5__Capnocytophaga;
__ 

10 

12 3 0.04 0.01 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Flavobacteriales;D_4__

9 
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Flavobacteriaceae;D_5__Capnocytophaga;
D_6__Capnocytophaga gingivalis 

12 3 0.13 0.01 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Betaproteo
bacteriales;D_4__Burkholderiaceae;D_5__
Lautropia;D_6__uncultured bacterium 

9 

15 6 0.28 0.05 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella;D_6__Prevot
ella oris 

9 

13 4 0.09 0.04 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Cardiobact
eriales;D_4__Cardiobacteriaceae;D_5__Ca
rdiobacterium;D_6__uncultured 
bacterium 

9 

16 8 0.96 0.16 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Betaproteo
bacteriales;D_4__Neisseriaceae;D_5__Nei
sseria;__ 

8 

11 3 0.56 0.07 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Alloprevotella;__ 

8 

13 6 0.54 0.21 D_0__Bacteria;D_1__Firmicutes;D_2__Ba
cilli;D_3__Lactobacillales;D_4__Streptoco
ccaceae;D_5__Streptococcus;D_6__Strept
ococcus mutans 

7 

16 9 1.73 0.37 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella;D_6__Prevot
ella sp. oral taxon 299 str. F0039 

7 

14 7 0.10 0.02 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Family 
XIII;D_5__[Eubacterium] nodatum 
group;D_6__[Eubacterium] sulci 

7 

12 5 0.09 0.01 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Actinobacteria;D_3__Corynebacteriales;

7 
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D_4__Corynebacteriaceae;D_5__Coryneb
acterium;__ 

12 5 0.08 0.03 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella 
7;D_6__Prevotella sp. oral clone P4PB_83 
P2 

7 

20 13 2.59 1.61 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Por
phyromonadaceae;D_5__Porphyromonas;
__ 

7 

10 3 0.09 0.02 D_0__Bacteria;D_1__Epsilonbacteraeota;
D_2__Campylobacteria;D_3__Campylobac
terales;D_4__Campylobacteraceae;D_5__
Campylobacter;D_6__Campylobacter 
rectus 

7 

8 1 0.06 0.00 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Betaproteo
bacteriales;D_4__Neisseriaceae;D_5__Kin
gella;D_6__uncultured bacterium 

7 

14 8 0.13 0.16 D_0__Bacteria;D_1__Firmicutes;D_2__Ba
cilli;D_3__Lactobacillales;D_4__Streptoco
ccaceae;D_5__Streptococcus;D_6__Strept
ococcus anginosus subsp. anginosus 

6 

17 11 0.18 0.30 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Oribacterium;__ 

6 

21 15 1.12 0.74 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Actinobacteria;D_3__Micrococcales;D_4
__Micrococcaceae;D_5__Rothia;D_6__un
cultured bacterium 

6 

7 1 0.06 0.03 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Alloprevotella;D_6__All
oprevotella tannerae 

6 

7 1 0.02 0.00 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre

6 
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votellaceae;D_5__Prevotella;D_6__Prevot
ella sp. oral taxon G60 

17 11 0.30 0.20 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Actinobacteria;D_3__Corynebacteriales;
D_4__Corynebacteriaceae;D_5__Coryneb
acterium;D_6__Corynebacterium durum 

6 

0 6 0.00 0.26 D_0__Bacteria;D_1__Firmicutes;D_2__Ba
cilli;D_3__Lactobacillales;D_4__Streptoco
ccaceae;D_5__Streptococcus;D_6__Strept
ococcus pneumoniae 

6 

19 13 0.45 0.24 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Coriobacteriia;D_3__Coriobacteriales;D_
4__Atopobiaceae;D_5__Atopobium;D_6_
_uncultured bacterium 

6 

9 4 0.06 0.02 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pal
udibacteraceae;D_5__F0058;D_6__uncult
ured bacterium 

5 

7 2 0.06 0.01 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella 
7;D_6__Prevotella sp. oral clone DO014 

5 

11 6 0.15 0.05 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Betaproteo
bacteriales;D_4__Neisseriaceae;D_5__Eik
enella;D_6__uncultured bacterium 

5 

17 12 1.79 0.45 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella 
6;D_6__uncultured bacterium 

5 

8 3 0.04 0.02 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Ta
nnerellaceae;D_5__Tannerella;D_6__uncu
ltured bacterium 

5 
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19 14 0.82 0.60 D_0__Bacteria;D_1__Fusobacteria;D_2__

Fusobacteriia;D_3__Fusobacteriales;D_4_
_Leptotrichiaceae;D_5__Leptotrichia;__ 

5 

13 8 0.30 0.14 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Peptostre
ptococcaceae;D_5__Peptostreptococcus;
D_6__uncultured organism 

5 

11 6 0.09 0.11 D_0__Bacteria;D_1__Firmicutes;D_2__Ba
cilli;D_3__Lactobacillales;D_4__Aerococca
ceae;D_5__Abiotrophia;D_6__uncultured 
bacterium 

5 

19 14 0.51 0.33 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Stomatobaculum;D_6__unc
ultured bacterium 

5 

18 13 0.33 0.39 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Lachnoanaerobaculum;D_6_
_uncultured organism 

5 

16 11 0.20 0.05 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Family 
XIII;D_5__Mogibacterium;__ 

5 

11 6 0.10 0.08 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella 
7;D_6__Prevotella denticola 

5 

6 2 0.05 0.01 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Actinobacteria;D_3__Bifidobacteriales;D
_4__Bifidobacteriaceae;D_5__Alloscardov
ia;D_6__Bifidobacterium longum subsp. 
longum 

4 

5 1 0.01 0.00 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella 
2;D_6__unidentified 

4 

5 1 0.04 0.01 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Betaproteo

4 
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bacteriales;D_4__Neisseriaceae;D_5__Nei
sseria;D_6__unidentified 

21 17 0.53 0.70 D_0__Bacteria;D_1__Fusobacteria;D_2__
Fusobacteriia;D_3__Fusobacteriales;D_4_
_Leptotrichiaceae;D_5__Leptotrichia;D_6
__uncultured bacterium 

4 

5 1 0.02 0.00 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Flavobacteriales;D_4__
Flavobacteriaceae;D_5__Capnocytophaga;
D_6__Capnocytophaga granulosa 

4 

8 4 0.13 0.14 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Actinobacteria;D_3__Bifidobacteriales;D
_4__Bifidobacteriaceae;D_5__Scardovia;D
_6__unidentified 

4 

5 1 0.01 0.00 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella 6;__ 

4 

10 6 0.57 0.26 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Pasteurella
les;D_4__Pasteurellaceae;D_5__Aggregati
bacter;D_6__uncultured bacterium 

4 

5 1 0.03 0.02 D_0__Bacteria;D_1__Epsilonbacteraeota;
D_2__Campylobacteria;D_3__Campylobac
terales;D_4__Campylobacteraceae;D_5__
Campylobacter;D_6__Campylobacter 
concisus 

4 

17 13 0.90 0.75 D_0__Bacteria;D_1__Firmicutes;D_2__Ne
gativicutes;D_3__Selenomonadales;D_4__
Veillonellaceae;D_5__Megasphaera;D_6_
_unidentified 

4 

11 7 0.05 0.04 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Family 
XIII;D_5__[Eubacterium] brachy 
group;D_6__Eubacterium brachy ATCC 
33089 

4 
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18 14 0.60 0.59 D_0__Bacteria;D_1__Firmicutes;D_2__Clo

stridia;D_3__Clostridiales;D_4__Family 
XI;D_5__Parvimonas;__ 

4 

12 8 0.11 0.23 D_0__Bacteria;D_1__Fusobacteria;D_2__
Fusobacteriia;D_3__Fusobacteriales;D_4_
_Leptotrichiaceae;D_5__Leptotrichia;D_6
__Leptotrichia wadei F0279 

4 

19 15 0.38 0.39 D_0__Bacteria;D_1__Firmicutes;D_2__Ery
sipelotrichia;D_3__Erysipelotrichales;D_4_
_Erysipelotrichaceae;D_5__Solobacterium
;__ 

4 

19 15 0.17 0.20 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Lachnoanaerobaculum;D_6_
_uncultured bacterium 

4 

14 11 1.37 0.89 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella;D_6__Prevot
ella pallens 

3 

6 3 0.18 0.03 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella;D_6__Prevot
ella aurantiaca JCM 15754 

3 

18 15 9.50 4.54 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella 
7;D_6__Prevotella melaninogenica 

3 

10 7 0.05 0.04 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Coriobacteriia;D_3__Coriobacteriales;D_
4__Atopobiaceae;D_5__Atopobium;__ 

3 

9 6 0.06 0.41 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Actinobacteria;D_3__Micrococcales;D_4
__Micrococcaceae;D_5__Rothia;D_6__un
cultured organism 

3 

19 16 3.57 2.22 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Betaproteo

3 
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bacteriales;D_4__Neisseriaceae;D_5__Nei
sseria;D_6__uncultured bacterium 

21 18 2.79 4.05 D_0__Bacteria;D_1__Firmicutes;D_2__Ba
cilli;D_3__Bacillales;D_4__Family 
XI;D_5__Gemella;__ 

3 

8 5 1.20 0.12 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Pasteurella
les;D_4__Pasteurellaceae;D_5__Actinobac
illus;__ 

3 

8 5 0.02 0.07 D_0__Bacteria;D_1__Firmicutes;D_2__Ne
gativicutes;D_3__Selenomonadales;D_4__
Veillonellaceae;__;__ 

3 

20 17 4.01 3.57 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella 7;__ 

3 

6 3 0.17 0.05 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Pasteurella
les;D_4__Pasteurellaceae;D_5__Aggregati
bacter;__ 

3 

6 4 0.04 0.01 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Coriobacteriia;D_3__Coriobacteriales;D_
4__Atopobiaceae;D_5__Atopobium;D_6_
_uncultured Actinomyces sp. 

2 

6 4 0.06 0.02 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Peptococ
caceae;D_5__Peptococcus;__ 

2 

18 16 0.31 0.73 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Oribacterium;D_6__Oribact
erium sinus 

2 

16 14 0.09 0.28 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Catonella;D_6__uncultured 
bacterium 

2 

20 18 6.27 3.21 D_0__Bacteria;D_1__Firmicutes;D_2__Ba
cilli;D_3__Lactobacillales;D_4__Streptoco

2 
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ccaceae;D_5__Streptococcus;D_6__Strept
ococcus salivarius subsp. thermophilus 

4 2 0.01 0.00 D_0__Bacteria;D_1__Fusobacteria;D_2__
Fusobacteriia;D_3__Fusobacteriales;D_4_
_Leptotrichiaceae;D_5__Leptotrichia;D_6
__Leptotrichia sp. oral clone EI022 

2 

7 5 0.10 0.02 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Pasteurella
les;D_4__Pasteurellaceae;__;__ 

2 

7 9 0.03 0.15 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Ruminoco
ccaceae;D_5__Ruminococcaceae UCG-
014;__ 

2 

9 7 0.08 0.11 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Oribacterium;D_6__Oribact
erium parvum ACB1 

2 

10 8 0.49 0.33 D_0__Bacteria;D_1__Fusobacteria;D_2__
Fusobacteriia;D_3__Fusobacteriales;D_4_
_Leptotrichiaceae;D_5__Leptotrichia;D_6
__Leptotrichia sp. oral clone FP036 

2 

12 10 0.06 0.06 D_0__Bacteria;D_1__Firmicutes;D_2__Ne
gativicutes;D_3__Selenomonadales;D_4__
Veillonellaceae;D_5__Dialister;__ 

2 

13 12 0.36 0.36 D_0__Bacteria;D_1__Actinobacteria;D_2_
_Actinobacteria;D_3__Micrococcales;D_4
__Micrococcaceae;D_5__Rothia;__ 

1 

4 5 0.01 0.01 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Shuttleworthia;__ 

1 

6 5 0.19 0.10 D_0__Bacteria;D_1__Firmicutes;D_2__Ba
cilli;D_3__Lactobacillales;D_4__Lactobacill
aceae;D_5__Lactobacillus;__ 

1 
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21 20 2.62 2.38 D_0__Bacteria;D_1__Firmicutes;D_2__Ba

cilli;D_3__Lactobacillales;D_4__Carnobact
eriaceae;D_5__Granulicatella;__ 

1 

7 6 0.02 0.02 D_0__Bacteria;D_1__Firmicutes;D_2__Ne
gativicutes;D_3__Selenomonadales;D_4__
Veillonellaceae;D_5__Selenomonas;D_6_
_uncultured bacterium 

1 

5 6 0.07 0.09 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Johnsonella;D_6__unculture
d bacterium 

1 

19 18 4.94 2.80 D_0__Bacteria;D_1__Proteobacteria;D_2_
_Gammaproteobacteria;D_3__Pasteurella
les;D_4__Pasteurellaceae;D_5__Haemoph
ilus;__ 

1 

4 5 0.02 0.04 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Ruminoco
ccaceae;D_5__Ruminococcaceae UCG-
014;D_6__Clostridiales bacterium oral 
taxon 075 

1 

4 5 0.04 0.03 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Butyrivibrio 
2;D_6__Eubacterium sp. oral clone GI038 

1 

3 3 0.04 0.16 D_0__Bacteria;D_1__Tenericutes;D_2__M
ollicutes;D_3__Mollicutes 
RF39;D_4__uncultured 
bacterium;D_5__uncultured 
bacterium;D_6__uncultured bacterium 

0 

3 3 0.02 0.02 D_0__Bacteria;D_1__Fusobacteria;D_2__
Fusobacteriia;D_3__Fusobacteriales;D_4_
_Leptotrichiaceae;D_5__Leptotrichia;D_6
__Leptotrichia buccalis C-1013-b 

0 

3 3 0.11 0.01 D_0__Bacteria;D_1__Firmicutes;D_2__Clo
stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;__;__ 

0 
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5 5 0.03 0.03 D_0__Bacteria;D_1__Firmicutes;D_2__Clo

stridia;D_3__Clostridiales;D_4__Lachnospi
raceae;D_5__Lachnoanaerobaculum;__ 

0 

21 21 9.62 8.29 D_0__Bacteria;D_1__Firmicutes;D_2__Ne
gativicutes;D_3__Selenomonadales;D_4__
Veillonellaceae;D_5__Veillonella;__ 

0 

10 10 0.05 0.19 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella;D_6__Prevot
ella nigrescens 

0 

21 21 3.92 5.89 D_0__Bacteria;D_1__Fusobacteria;D_2__
Fusobacteriia;D_3__Fusobacteriales;D_4_
_Fusobacteriaceae;D_5__Fusobacterium;_
_ 

0 

5 5 0.05 0.03 D_0__Bacteria;D_1__Bacteroidetes;D_2__
Bacteroidia;D_3__Bacteroidales;D_4__Pre
votellaceae;D_5__Prevotella 
7;D_6__Prevotella veroralis DSM 19559 = 
JCM 6290 

0 

21 21 23.94 39.08 D_0__Bacteria;D_1__Firmicutes;D_2__Ba
cilli;D_3__Lactobacillales;D_4__Streptoco
ccaceae;D_5__Streptococcus;__ 

0 

 
 
Table S3.4: Two groups of taxa (light blue and dark blue) that have stronger co-correlations with 
another taxon than with total load. Significance values for all correlations and co-correlations were P 
< 0.001. 

Taxon 1 Taxon 2 
Co-
Correlation 

Correlation 
with  
Total Load Difference Biological Link 

Alloprevotella Prevotella 0.73 0.30 0.43 Tertiary plaque 
biofilm colonizers. 
Metabolize same 
byproduct of 
primary 
colonizers5, 6. 

Prevotella 6 Prevotella 7 0.83 0.43 0.39 
Porphyromonas Prevotella 0.74 0.36 0.38 

Prevotella Prevotella 7 0.82 0.50 0.32 
Megasphaera Solobacterium 0.69 0.43 0.26 

Not Known 
Solobacterium Oribacterium 0.80 0.55 0.25 
Leptotrichia Oribacterium 0.81 0.60 0.20 
Atopobium Solobacterium 0.78 0.61 0.17 
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